

Mastering MATLAB®

This page intentionally left blank

Upper Saddle River Boston Columbus San Francisco
New York Indianapolis London Toronto Sydney Singapore Tokyo Montreal

Dubai Madrid Hong Kong Mexico City Munich Paris Amsterdam Cape Town

Mastering MATLAB®

Duane Hanselman
Bruce Littlefield
Department of Electrical and Computer Engineering

University of Maine

International Edition contributions by

Arindam Chatterjee

Salil Joshi

Vice President and Editorial Director, ECS:
 Marcia J. Horton
Senior Editor: Andrew Gilfillan
Associate Editor: Alice Dworkin
Editorial Assistant: William Opaluch
Marketing Manager: Tim Galligan
Production Manager: Pat Brown
Publisher, International Edition:
 Angshuman Chakraborty
Acquisitions Editor, International Edition:
 Somnath Basu
Publishing Assistant, International Edition:
 Shokhi Shah

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

© Pearson Education Limited 2012.

The rights of Duane Hanselman and Bruce Littlefield to be identified as authors of this work have been
asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Mastering MATLAB®, 1st edition, ISBN
978-0-13-601330-3 by Duane Hanselman and Bruce Littlefield published by Pearson Education © 2012.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This
book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Visit us on the World Wide Web at:
www.pearsoninternationaleditions.com

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without either the prior written permission of the publisher or a licence permitting restricted copying in
the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6—10 Kirby Street,
London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this
text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor
does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data

A Catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1
14 13 12 11 10

Typeset in Times Ten-Roman by Kiruthiga Anand/Integra Software Services Pvt. Ltd.
Printed and bound by R.R. Donnelley—Crawfordsville in The United States of America

The publisher’s policy is to use paper manufactured from sustainable forests.

 ISBN 10: 0-273-75213-8
ISBN 13: 978-0-273-75213-4

Print and Media Editor, International Edition:
 Ashwitha Jayakumar
Project Editor, International Edition:
 Jayashree Arunachalam
Art Director: Jayne Conte
Cover Designer: Bruce Kenselaar
Full-Service Project Management/
Composition: Kiruthiga Anand/Integra
 Software Services Pvt. Ltd.
Cover Printer: R.R. Donnelley—
 Crawfordsville

Contents
 Preface 13

1 Getting Started 17

 1.1 Introduction 17
 1.2 Typographical Conventions 17
 1.3 What’s New in MATLAB 18
 1.4 What’s in Mastering MATLAB 18

2 Basic Features 20

 2.1 Simple Math 20
 2.2 The MATLAB Workspace 22
 2.3 About Variables 23
 2.4 Comments, Punctuation, and Aborting Execution 26
 2.5 Complex Numbers 28
 2.6 Floating-Point Arithmetic 30
 2.7 Mathematical Functions 32

3 The MATLAB Desktop 38

 3.1 MATLAB Windows 38
 3.2 Managing the MATLAB Workspace 39
 3.3 Memory Management 43
 3.4 Number Display Formats 43
 3.5 System Information 44
 3.6 The MATLAB Search Path 46

4 Script M-files 47

 4.1 Script M-file Use 47
 4.2 Block Comments and Code Cells 51
 4.3 Setting Execution Time 53
 4.4 Startup and Finish 54

5 Arrays and Array Operations 56

 5.1 Simple Arrays 56
 5.2 Array Addressing or Indexing 57
 5.3 Array Construction 59
 5.4 Array Orientation 62
 5.5 Scalar–Array Mathematics 66
 5.6 Array–Array Mathematics 66
 5.7 Standard Arrays 73

5

6 Contents

 5.8 Array Manipulation 77
 5.9 Array Sorting 92
 5.10 Subarray Searching 95
 5.11 Array-Manipulation Functions 102
 5.12 Array Size 108
 5.13 Arrays and Memory Utilization 111

6 Multidimensional Arrays 117

 6.1 Array Construction 117
 6.2 Array Mathematics and Manipulation 121
 6.3 Array Size 132

7 Numeric Data Types 135

 7.1 Integer Data Types 135
 7.2 Floating-Point Data Types 141
 7.3 Summary 143

8 Cell Arrays and Structures 145

 8.1 Cell Array Creation 146
 8.2 Cell Array Manipulation 149
 8.3 Retrieving Cell Array Content 151
 8.4 Comma-Separated Lists 155
 8.5 Cell Functions 159
 8.6 Cell Arrays of Strings 162
 8.7 Structure Creation 164
 8.8 Structure Manipulation 169
 8.9 Retrieving Structure Content 171
 8.10 Comma-Separated Lists (Again) 173
 8.11 Structure Functions 176
 8.12 Summary 180

9 Character Strings 181

 9.1 String Construction 181
 9.2 Numbers to Strings to Numbers 187
 9.3 String Evaluation 194
 9.4 String Functions 195
 9.5 Cell Arrays of Strings 199
 9.6 Searching Using Regular Expressions 203

10 Relational and Logical Operations 211

 10.1 Relational Operators 211
 10.2 Logical Operators 215
 10.3 Operator Precedence 216
 10.4 Relational and Logical Functions 217
 10.5 NaNs and Empty Arrays 220

Contents 7

11 Control Flow 224

 11.1 For Loops 224
 11.2 While Loops 230
 11.3 If-Else-End Constructions 231
 11.4 Switch-Case Constructions 234
 11.5 Try-Catch Blocks 236

12 Functions 239

 12.1 M-file Function Construction Rules 240
 12.2 Input and Output Arguments 245
 12.3 Function Workspaces 248
 12.4 Functions and the MATLAB Search Path 252
 12.5 Creating Your Own Toolbox 255
 12.6 Command–Function Duality 256
 12.7 Function Handles and Anonymous Functions 257
 12.8 Nested Functions 263
 12.9 Debugging M-files 267
 12.10 Syntax Checking and File Dependencies 269
 12.11 Profiling M-files 270

13 File and Directory Management 272

 13.1 Native Data Files 272
 13.2 Data Import and Export 275
 13.3 Low-Level File I/O 279
 13.4 Directory Management 281
 13.5 File Archives and Compression 285
 13.6 Internet File Operations 286

14 Set, Bit, and Base Functions 289

 14.1 Set Functions 289
 14.2 Bit Functions 294
 14.3 Base Conversions 295

15 Time Computations 297

 15.1 Current Date and Time 297
 15.2 Date Format Conversions 298
 15.3 Date Functions 304
 15.4 Timing Functions 306
 15.5 Plot Labels 307

16 Matrix Algebra 310

 16.1 Sets of Linear Equations 310
 16.2 Matrix Functions 315

8 Contents

 16.3 Special Matrices 317
 16.4 Sparse Matrices 318
 16.5 Sparse Matrix Functions 320

17 Data Analysis 323

 17.1 Basic Statistical Analysis 323
 17.2 Basic Data Analysis 337
 17.3 Data Analysis and Statistical Functions 343
 17.4 Time Series Analysis 344

18 Data Interpolation 348

 18.1 One-Dimensional Interpolation 348
 18.2 Two-Dimensional Interpolation 353
 18.3 Triangulation and Scattered Data 357
 18.4 Summary 365

19 Polynomials 367

 19.1 Roots 367
 19.2 Multiplication 368
 19.3 Addition 368
 19.4 Division 370
 19.5 Derivatives and Integrals 371
 19.6 Evaluation 372
 19.7 Rational Polynomials 372
 19.8 Curve Fitting 374
 19.9 Polynomial Functions 377

20 Cubic Splines 379

 20.1 Basic Features 379
 20.2 Piecewise Polynomials 380
 20.3 Cubic Hermite Polynomials 383
 20.4 Integration 385
 20.5 Differentiation 388
 20.6 Spline Interpolation on a Plane 389

21 Fourier Analysis 393

 21.1 Discrete Fourier Transform 393
 21.2 Fourier Series 397

22 Optimization 402

 22.1 Zero Finding 402
 22.2 Minimization in One Dimension 407
 22.3 Minimization in Higher Dimensions 409
 22.4 Practical Issues 412

Contents 9

23 Integration and Differentiation 414

 23.1 Integration 414
 23.2 Differentiation 420

24 Differential Equations 427

 24.1 IVP Format 427
 24.2 ODE Suite Solvers 428
 24.3 Basic Use 429
 24.4 Setting Options 433
 24.5 BVPs, PDEs, and DDEs 441

25 Two-Dimensional Graphics 442

 25.1 The plot Function 442
 25.2 Linestyles, Markers, and Colors 444
 25.3 Plot Grids, Axes Box, and Labels 446
 25.4 Customizing Plot Axes 448
 25.5 Multiple Plots 451
 25.6 Multiple Figures 451
 25.7 Subplots 453
 25.8 Interactive Plotting Tools 454
 25.9 Screen Updates 456
 25.10 Specialized 2-D Plots 457
 25.11 Easy Plotting 465
 25.12 Text Formatting 467
 25.13 Summary 469

26 Three-Dimensional Graphics 472

 26.1 Line Plots 472
 26.2 Scalar Functions of Two Variables 474
 26.3 Mesh Plots 478
 26.4 Surface Plots 481
 26.5 Mesh and Surface Plots of Irregular Data 487
 26.6 Changing Viewpoints 489
 26.7 Camera Control 491
 26.8 Contour Plots 492
 26.9 Specialized 3-D Plots 494
 26.10 Volume Visualization 498
 26.11 Easy Plotting 505
 26.12 Summary 507

27 Using Color and Light 511

 27.1 Understanding Colormaps 511
 27.2 Using Colormaps 513
 27.3 Displaying Colormaps 514

10 Contents

 27.4 Creating and Altering Colormaps 516
 27.5 Using Color to Describe a Fourth Dimension 518
 27.6 Transparency 521
 27.7 Lighting Models 523
 27.8 Summary 527

28 Images, Movies, and Sound 529

 28.1 Images 529
 28.2 Image Formats 531
 28.3 Image Files 532
 28.4 Movies 534
 28.5 Movie Files 536
 28.6 Sound 540
 28.7 Summary 541

29 Printing and Exporting Graphics 543

 29.1 Printing and Exporting Using Menus 544
 29.2 Command Line Printing and Exporting 545
 29.3 Printers and Export File Formats 546
 29.4 PostScript Support 548
 29.5 Choosing a Renderer 549
 29.6 Handle Graphics Properties 550
 29.7 Setting Defaults 552
 29.8 Publishing 553
 29.9 Summary 554

30 Handle Graphics 555

 30.1 Objects 555
 30.2 Object Handles 557
 30.3 Object Properties 557
 30.4 Get and Set 558
 30.5 Finding Objects 566
 30.6 Selecting Objects with the Mouse 568
 30.7 Position and Units 569
 30.8 Default Properties 572
 30.9 Common Properties 575
 30.10 Plot Objects 577
 30.11 Group Objects 578
 30.12 Annotation Axes 580
 30.13 Linking Objects 581
 30.14 New Plots 582
 30.15 Callbacks 583
 30.16 M-file Examples 584
 30.17 Summary 591

Contents 11

31 MATLAB Classes and Object-Oriented Programming 595

 31.1 Overloading 597
 31.2 Class Creation 603
 31.3 Subscripts 618
 31.4 Converter Functions 629
 31.5 Precedence, Inheritance, and Aggregation 630
 31.6 Handle Classes 632

32 Examples, Examples, Examples 633

 32.1 Vectorization 633
 32.2 JIT-Acceleration 636
 32.3 The Birthday Problem 636
 32.4 Up–Down Sequence 641
 32.5 Alternating Sequence Matrix 647
 32.6 Vandermonde Matrix 652
 32.7 Repeated Value Creation and Counting 655
 32.8 Differential Sums 665
 32.9 Structure Manipulation 673
 32.10 Inverse Interpolation 676
 32.11 Polynomial Curve Fitting 684
 32.12 Nonlinear Curve Fitting 692
 32.13 Circle Fitting 701
 32.14 Laminar Fluid Flow in a Circular Pipe 706
 32.15 Projectile Motion 712
 32.16 Bode Plots 723
 32.17 Inverse Laplace Transform 734
 32.18 Picture-in-a-Picture Zoom 740

 Appendix A MATLAB Release Information 747

 Appendix B MATLAB Function Information 805

 Index 851

This page intentionally left blank

13

Preface

This book is about MATLAB®. If you use MATLAB or consider using it, Mastering
MATLAB is for you. The text represents an alternative to learning MATLAB on
your own, with or without the help of the documentation that comes with the software.
The informal style of this book makes it easy to read, and, as the title suggests,
it provides the tools you need to master MATLAB. As a programming language
and data-visualization tool, MATLAB offers a rich set of capabilities for solving
 problems in engineering, scientific, computing, and mathematical disciplines. The
fundamental goal of this text is to help you increase your productivity by showing
you how to use these capabilities efficiently. To optimize the interactive nature of
MATLAB, the material is generally presented in the form of examples that you can
duplicate by running MATLAB as you read this book.

This text covers only topics that are of use to a general audience. The material
presented here generally applies to all computer platforms. None of the Toolboxes,
Blocksets, or other Libraries that are available for additional cost are discussed,
although some are referred to in appropriate places. There are simply too many
 additional product items to consider in one book.

Since MATLAB continues to evolve as a software tool, this text focuses on
MATLAB version 7.12. For the most part, the material applies to versions 6.x
through 7.11 of MATLAB, as well as later versions. When appropriate, distinctions
between versions are made.

We, the authors, encourage you to give us feedback on this book. What are
the best features of the text? What areas need more work? What topics should be
left out? What topics should be added? We can be reached at the e-mail address
masteringmatlab@gmail.com. In addition, errata, all examples in the text, and other
related material can be found at http://www.masteringmatlab.com

Instructor Resources for the International Edition can be accessed at www.
pearsoninternationaleditions.com/hanselman.

NEW TO THIS EDITION

Major changes from Mastering MATLAB 7 (based on MATLAB version 7.0,
 Release 14, June 2004) were prompted by user feedback, changes and enhancements
to MATLAB itself, increased availability of books on specialized aspects of
 MATLAB such as programming interfaces and Windows integration, and the
 desire for more examples in the text.

 1. All chapters have been revised and updated for MATLAB version 7.12,
 Release 2011a, April 2011.

 2. Chapter 32 (“Examples, Examples, Examples”) is revised and greatly expanded
to provide even more helpful examples.

 3. Many topics are rewritten to take advantage of new features available in
MATLAB 7.12 and beyond.

 4. Depreciated or obsolete functions have been removed or de-emphasized.
 5. Appendices have been expanded to include changes in MATLAB functions

and functionality from version 5.0 through version 7.12. These appendices help
the user identify incompatibilities between versions so that MATLAB code
can be written that runs seamlessly across many MATLAB versions.

 6. Chapters on programming in C, Fortran, and Java along with Windows inte-
gration were dropped to make room for expanded examples and coverage of
the new features of MATLAB 7.12.

DUANE HANSELMAN

BRUCE LITTLEFIELD

The publishers would like to thank Dr Sudhir Bhide and Sourav Sen Gupta for
reviewing the content of the International Edition.

14 Preface

Mastering MATLAB®

This page intentionally left blank

17

Getting Started

1

1.1 INTRODUCTION

This text assumes that you have some familiarity with matrices and computer
 programming. Matrices and arrays, in general, are at the heart of MATLAB, since
all data in MATLAB are stored as arrays. Besides offering common matrix algebra
operations, MATLAB offers array operations that allow you to quickly manipu-
late sets of data in a wide variety of ways. In addition to its matrix orientation,
MATLAB offers programming features that are similar to those of other computer
programming languages. Finally, MATLAB offers graphical user interface (GUI)
tools that enable you to use MATLAB as an application-development tool. This
combination of array data structures, programming features, and GUI tools makes
MATLAB an extremely powerful tool for solving problems in many fields. In this
text, each of these aspects of MATLAB is discussed in detail. To facilitate learning,
detailed examples are presented.

1.2 TYPOGRAPHICAL CONVENTIONS

The following conventions are used throughout this book:

Bold italics New terms or important facts

Boxed text Important terms and facts

Bold Initial Caps Keyboard key names, menu names, and menu items

Constant width Computer user input, function and file names,
commands, and screen displays

18 Chapter 1 Getting Started

Boxed constant width Contents of a script, function, or data file

Constant width italics User input that is to be replaced and not taken
literally, such as » help functionname

Italics Window names, object names, book titles, toolbox
names, company names, example text, and
mathematical notations

1.3 WHAT’S NEW IN MATLAB

The previous edition of this text, Mastering MATLAB 7, was based on MATLAB
version 7.0. Over time, MATLAB has evolved through a number of versions. As of
Release 2011a of the MATLAB/Simulink software suite, MATLAB has progressed
to version 7.12.

The latest version is yet another evolutionary change in MATLAB. The
Command window remains the primary user interface, Figure windows are used to
display graphical information and to create graphical user interfaces (GUIs), and
a text editor/debugger is provided for writing, editing, and debugging MATLAB
code. The MATLAB desktop coordinates the position and visibility of a number of
other windows, such as Workspace, Editor, Help, and Command History.

Under the surface, several numerical and operational changes have been
made to the software. In addition to having added or modified several internal
numerical algorithms, MATLAB 7 and above supports mathematical operations
on data types other than double-precision arrays, which have always been at the
heart of MATLAB. Perhaps even more importantly, the MATLAB command
 interpreter now includes acceleration features, collectively called The MATLAB
 JIT-accelerator. This accelerator, which first appeared in MATLAB 6.5, dramatically
increases the speed of loop operations by interpreting and executing code within a
loop as a whole, rather than line by line, as was done previously. This acceleration
eliminates the need to vectorize some code, which requires you to create and
 maximize the use of arrays and array mathematics to achieve optimal performance.
To make use of the JIT-accelerator, loop operation code must follow specific guide-
lines, which are covered in this text. When these guidelines are not followed, loop
operation code is interpreted at the much slower line-by-line rate.

In sum, version 7.12 represents an evolutionary change in MATLAB. The basic
operation of MATLAB and its capabilities haven’t changed in any dramatic way.
In almost all cases, MATLAB code written for MATLAB 6.0–7.11 will run without
change in MATLAB 7.12 and above. For the most part, the new and changed features
of MATLAB can increase your productivity in solving problems with MATLAB.

1.4 WHAT’S IN MASTERING MATLAB

MATLAB documentation, in both hard copy and electronic format, exceeds 5000
pages of information and help text. Given this exhaustive documentation and help,
Mastering MATLAB does not attempt to be a comprehensive tutorial or reference,

Section 1.4 What’s in Mastering MATLAB 19

which just isn’t possible in a single book containing less than 1000 pages. Mastering
MATLAB does not even attempt to document all functions within the base product
of MATLAB. This too is impossible, as there are more than 1500 operators and func-
tions that are part of the base product of MATLAB. In light of this documentation
set, the goals of Mastering MATLAB include the following: (1) introduce MATLAB
to the novice user, (2) illustrate all key features and capabilities of MATLAB, and
(3) demonstrate by example how to write efficient MATLAB code.

This text is intended to be a valuable resource when the MATLAB documen-
tation set is unavailable. It follows the rule of providing 80 percent of the informa-
tion needed in 20 percent of the space required to cover everything. The book is
also intended to be a valuable resource when the MATLAB documentation set
is available. In this case, it supplies numerous examples of efficient MATLAB
 coding that demonstrate how the many features of MATLAB come together to
solve real problems.

Equally important is what’s not included in Mastering MATLAB. The book
does not discuss all of the windows, menus, menu items, submenus, and dialog boxes
of the MATLAB user interface. While these user-interface aspects of MATLAB are
very important, there is no room for them in this text. Moreover, they are difficult
to cover effectively in a text and are best learned by hands-on exploration. Rather,
this text focuses on the mathematical, programming, and graphical features that
facilitate problem solution.

In addition to updating the second edition to reflect changes and additions
to MATLAB since version 7.0, revisions include a major expansion of Chapter 32
(“Examples, Examples, Examples”), consolidation and revision of some of the other
chapters, and dropping the specialized GUI and API (application programming
interface) chapters. For those interested in building graphical user interfaces, the
MATLAB online documentation is quite extensive. In addition to the MATLAB
documentation, a number of specialized texts on integrating MATLAB with C,
FORTRAN, Java, and Microsoft Windows applications are also available.

This book was written using information about MATLAB version 7.12. As
MATLAB evolves, some things are bound to change. As a result, there may be
 isolated areas in this book where information about new features is missing and,
worse yet, where information is incorrect. The authors have no control over
MATLAB. We also cannot rewrite the text to reflect minor MATLAB releases.
We are thankful that the makers of MATLAB are very careful when introducing
new features and when changing old features. Historically, old features are grand-
fathered for one major release, and sometimes for additional releases. As a result,
even though the book reflects MATLAB version 7.12, it will undoubtedly be useful
for all future MATLAB versions as well.

To support this text, the authors maintain the Mastering MATLAB website
at http://www.masteringmatlab.com. At the site, you can find errata for the text, as
well as MATLAB script M-files for creating all of the figures in the book. The
authors also encourage constructive feedback about the text at the e-mail address
masteringmatlab@gmail.com.

20

Running MATLAB creates one or more windows on your computer monitor. One
of these windows, entitled MATLAB, is commonly called the MATLAB desktop.
This window is the primary graphical user interface for MATLAB. Within the
MATLAB window, there is a window called the Command window, which is the
primary place wherein you interact with MATLAB. The prompt >> is displayed in
the Command window, and when the Command window is active, a blinking cursor
appears to the right of the prompt. This cursor and prompt signify that MATLAB is
waiting to perform a mathematical operation.

2.1 SIMPLE MATH

Just like a calculator, MATLAB can do basic math. Consider the following simple
example: Mary goes to the office supply store and buys five pens at 30 cents each,
seven notebooks at 60 cents each, and one pair of scissors for 70 cents. How many
items did Mary buy, and how much did they cost?

To solve this problem with a calculator, you enter

5 + 7 + 1 = 13 items

5 × 30 + 7 × 60 + 1 × 70 = 640 cents

In MATLAB, this problem can be solved in a number of different ways. First, the
calculator approach can be taken:

>> 5+7+1

ans =

 13

Basic Features

2

Section 2.1 Simple Math 21

>> 5*30 + 7*60 + 1*70

ans =

 640

Note that MATLAB doesn’t care about spaces, for the most part, and that multipli-
cation takes precedence over addition. Note also that MATLAB calls the result ans,
which is short for answer for both computations.

As an alternative, the problem can be solved by storing information in
MATLAB variables:

>> pens = 5

pens =

 5

>> notebooks = 7

notebooks =

 7

>> scissors = 1;

>> items = pens + notebooks + scissors

items =

 13

>> cost = pens*30 + notebooks*60 + scissors*70

cost =

 640

Here, we created three MATLAB variables—pens, notebooks, and
 scissors—to store the number of each item. After entering each statement,
MATLAB displayed the results, except in the case of scissors. The semicolon
at the end of the line tells MATLAB to evaluate the line, but not to display the
answer. Finally, rather than calling the results ans, we told MATLAB to call the
number of items purchased items and the total price paid cost. At each step,
MATLAB remembered past information. Because MATLAB remembers things,
let’s ask what the average cost per item was:

>> average_cost = cost/items

average_cost =

 49.2308

Since the term average cost is two words and MATLAB variable names must
be one word, an underscore was used to create the single MATLAB variable
average_cost.

22 Chapter 2 Basic Features

In all, MATLAB offers the following basic arithmetic operations:

Operation Symbol Example

Addition � 3 � 22

Subtraction � 54.4 � 16.5

Multiplication * 3.14 * 6

Division / or \ 19.54/7 or 7\19.54

Exponentiation ^ 2^8

The order in which these operations are evaluated in a given expression is deter-
mined by the usual rules of precedence, summarized as follows:

Expressions are evaluated from left to right, with the exponentiation operation having
the highest precedence, followed by multiplication and division, having equal precedence,
and then by addition and subtraction, having equal precedence.

Parentheses can be used to alter this ordering, in which case these rules of
 precedence are applied within each set of parentheses, by starting with the innermost
set and proceeding outward.

More information about precedence rules can be displayed by typing help
precedence at the MATLAB prompt.

2.2 THE MATLAB WORKSPACE

As you work in the Command window, MATLAB remembers the commands you
enter, as well as the values of any variables you create. These commands and vari-
ables are said to reside in the MATLAB workspace or base workspace, and they
can be recalled whenever you wish. For example, to check the value of scissors,
all you have to do is ask MATLAB for it by entering its name at the prompt:

>> scissors

scissors =

 1

If you can’t remember the name of a variable, you can ask MATLAB for a list of
the variables it knows by using the MATLAB command who:

>> who

Your variables are:

ans items scissors

average_cost notebooks

cost pens

Section 2.3 About Variables 23

Note that MATLAB doesn’t tell you the value of all of the variables; it merely gives
you their names. To find their values, you must enter their names individually at the
MATLAB prompt.

To recall previous commands, MATLAB responds to the Cursor keys on your
keyboard. For example, pressing the ↑ key once recalls the most recent command to
the MATLAB prompt. Repeatedly pressing ↑ scrolls back through prior commands,
one at a time. In a similar manner, pressing the ↓ key scrolls forward through com-
mands. By pressing the → or ← keys, you can maneuver within a given command
at the MATLAB prompt, thereby editing the command in much the same way that
you edit text in a word-processing program. Other standard editing keys, such as
Delete or Backspace, Home, and End, perform their commonly assigned tasks.
The Tab key is useful for variable-name completion. Once a scrolled command is
acceptable, pressing the Return key with the cursor anywhere in the command tells
MATLAB to process it. Finally, and perhaps most useful, the Escape key erases the
current command at the prompt. For those of you familiar with the EMACS editor,
MATLAB also accepts common EMACS editing control-character sequences, such
as Control-U to erase the current command.

2.3 ABOUT VARIABLES

Like any other computer language, MATLAB has rules about variable names.
Earlier, it was noted that variable names must be a single word containing no spaces.
More specifically, MATLAB variable-naming rules are listed as follows.

Variable-Naming Rules Comments/Examples

Variable names are case sensitive. Cost, cost, CoSt, and COST are all
different MATLAB variables.

Variable names can contain up to
namelengthmax characters (63 as of
version 7.12). Any characters beyond the
63rd are ignored.

Howabouthisvariablename

Variable names must start with a letter,
followed by any number of letters, digits,
or underscores.

Punctuation characters are not allowed,
because many of them have special
meanings in MATLAB.

how_about_this_variable_
nameX51483

a_b_c_d_e

There are some specific exceptions to these naming rules. MATLAB has sev-
eral names that cannot be used for variables. These names are keywords and form a
reserved word list for MATLAB:

24 Chapter 2 Basic Features

Reserved Word List

for end if while function return elseif case otherwise classdef
switch continue else try catch global persistent break parfor spmd

This list is returned as an output of the iskeyword function. MATLAB will
report an error if you try to use a reserved word as a variable. However, you can
use words similar to keywords by capitalizing one or more letters. The function
isvarname('teststring') returns True (1) if the character-string argument
'teststring' is a valid variable name; otherwise, it returns False (0).

In addition, just as your calculator stores constants such as π, MATLAB has a
number of special variables:

Special Variables Description

ans Default variable name used for results

beep Makes computer sound a beep

computer Computer type

version MATLAB version string

ver MATLAB, computer OS, and Java version information

pi Ratio of the circumference of a circle to its diameter

eps Smallest number that, when added to 1, creates a
number greater than 1 on the computer

inf Stands for infinity (e.g., 1/0)

NaN or nan Stands for Not-a-Number (e.g., 0/0)

i or j Stands for 1-1

nargin Number of function input arguments

nargout Number of function output arguments

intmin Largest usable negative integer

intmax Largest usable positive integer

realmin Smallest usable positive real number

realmax Largest usable positive real number

bitmax Largest usable positive integer stored in double-
precision format

varargin Variable number of function input arguments

varargout Variable number of function output arguments

Section 2.3 About Variables 25

If you reuse a variable (such as scissors in the earlier example) or assign a
value to one of the special variables from the preceding list, the prior value of the
variable is overwritten and lost. However, any other expressions computed with the
prior values do not change. Consider the following example:

>> pens = 5;

>> notebooks = 7;

>> scissors = 1;

>> items = pens + notebooks + scissors

items =

 13

>> pens = 9

pens =

 9

>> items

items =

 13

Here, using the first example again, we found the number of items Mary purchased.
Afterward, we changed the number of pens to nine, overwriting its prior value of 5.
In doing so, the value of items has not changed. Unlike a common spreadsheet pro-
gram, MATLAB does not recalculate the number of items based on the new value
of pens. When MATLAB performs a calculation, it does so using the values that it
knows at the time the requested command is evaluated. In the preceding example,
if you wish to recalculate the number of items, the total cost, and the average cost,
it is necessary to recall the appropriate MATLAB commands and ask MATLAB to
evaluate them again.

The special variables given earlier follow this guideline, also, with the exception
of the fact that the special values can be restored. When you start MATLAB, the
variables have their original values; when you change their values, the original special
values are lost. To restore a special value, all you have to do is clear the overwritten
value. For example,

>> intmax

ans =

 4294967296

>> intmax = 1.23e-4

intmax =

 0.000123

26 Chapter 2 Basic Features

>> clear intmax

>> intmax

ans =

 4294967296

shows that intmax has the special value of 4294967296, to ten significant digits;
is overwritten with the value of 1.23e-4; and then, after being cleared using the
clear function has its original special value once again. Remember that intmax is a
platform-dependent constant.

2.4 COMMENTS, PUNCTUATION, AND ABORTING EXECUTION

As we saw earlier, placing a semicolon at the end of a command suppresses printing
of the computed results. This feature is especially useful for suppressing the results
of intermediate calculations. For instance,

>> pens = 9

pens =

 9

>> items = pens + notebooks + scissors;

>> cost = pens*30 + notebooks*60 + scissors*70;

>> average_cost = cost/items

average_cost =

 44.7059

displays the average cost of the items that Mary bought when she purchased nine
pens, rather than the original five. The intermediate results items and cost were
not printed, because semicolons appear at the ends of the commands defining them.

In addition to semicolons, MATLAB uses other punctuation symbols. For
example, all text after a percent sign (%) is taken as a comment statement:

>> scissors = 1 % number of pairs of scissors purchased

The variable scissors is given the value of 1, and MATLAB simply ignores the
percent sign and all text following it.

If they are separated by commas or semicolons, multiple commands can be
placed on one line:

>> pens = 6, notebooks = 6; scissors = 2

pens =

 6

scissors =

 2

Section 2.4 Comments, Punctuation, and Aborting Execution 27

Commas tell MATLAB to display results; semicolons suppress printing.
Sometimes, expressions or commands are so long that it is convenient to con-

tinue them onto additional lines. In MATLAB, statement continuation is denoted
by three periods in succession, as shown in the following code:

>> average_cost = cost/items % command as done earlier

average_cost =

 44.7059

>> average_cost = cost/ . . . % command with valid continuation

items

average_cost =

 44.7059

>> average_cost = cost . . . % command with valid continuation

/items

average_cost =

 44.7059

>> average_cost = cost . . . command with valid continuation (no % needed)

/items

average_cost =

 44.7059

>> average_cost = cost/it . . . % command with Invalid continuation

ems

??? ems

 |

Error: Missing MATLAB operator.

Note that statement continuation works if the three periods appear between variable
names and mathematical operators, but not in the middle of a variable name. That is,
variable names cannot be split between two lines. Furthermore, all text after the three
periods is considered to be a comment, so no percent symbol is needed. In addition,
since comment lines are ignored, they cannot be continued either, as the following
example shows:

>> % Comments cannot be continued . . .

>> either

??? Undefined function or variable 'either'.

28 Chapter 2 Basic Features

In this case, the . . . in the comment line is part of the comment and is not processed
by MATLAB.

Finally, MATLAB processing can be interrupted at any time by pressing
Control-C (i.e., pressing the Ctrl and C keys simultaneously).

2.5 COMPLEX NUMBERS

One of the most powerful features of MATLAB is that it does not require any special
handling for complex numbers. Complex numbers are formed in MATLAB in several
ways. Examples of complex numbers include the following:

>> c1 = 1-2i % the appended i signifies the imaginary part

c1 =

 1.0000 - 2.0000i

>> c1 = 1-2j % j also works

c1 =

 1.0000 – 2.0000i

>> c1 = complex(1,-2) % a function that creates complex numbers

c1 =

 1.0000 – 2.0000i

>> c2 = 3*(2-sqrt(-1)*3)

c2 =

 6.0000 - 9.0000i

>> c3 = sqrt(-2)

c3 =

 0 + 1.4142i

>> c4 = 6+sin(.5)*1i

c4 =

 6.0000 + 0.4794i

>> c5 = 6+sin(.5)*1j

c5 =

 6.0000 + 0.4794i

In the last two examples, multiplication by 1i and 1j are used to form the imagi-
nary part. Multiplication by 1i or 1j is required in these cases, since sin(.5)i and
sin(.5)j have no meaning in MATLAB. Termination with the characters i and j,
as shown in the first two examples above, works only with numbers, and not with
expressions.

Section 2.5 Complex Numbers 29

Some programming languages require special handling for complex numbers,
wherever they appear. In MATLAB, no special handling is required. Mathematical
operations on complex numbers are written the same way as those on real numbers:

>> c6 = (c1+c2)/c3 % from the above data

c6 =

 -7.7782 - 4.9497i

>> c6r = real(c6)

c6r =

 -7.7782

>> c6i = imag(c6)

c6i =

 -4.9497

>> check_it_out = 1i^2 % sqrt(-1) squared must be -1!

check_it_out =

 -1

In general, operations on complex numbers lead to complex number results.
However, in the last case, MATLAB is smart enough to drop the zero imaginary
part of the result. In addition, the foregoing shows that the functions real and imag
extract the real and imaginary parts of a complex number, respectively.

As a final example of complex arithmetic, consider the Euler iden-
tity that relates the polar form of a complex number to its rectangular form
M�u = Meju = a + bj, where the polar form is given by a magnitude M and an
angle u, and the rectangular form is given by a + bj. The relationships among these
forms are M = 2a2 + b2, u = tan-1(b/a), a = Mcos(u), b = Msin(u).

In MATLAB, the conversion between polar and rectangular forms makes use
of the functions real, imag, abs, and angle:

>> c1

c1 =

 1.0000 - 2.0000i

>> mag_c1 = abs(c1) % magnitude

mag_c1 =

 2.2361

>> angle_c1 = angle(c1) % angle in radians

angle_c1 =

 -1.1071

>> deg_c1 = angle_c1*180/pi % angle in degrees

30 Chapter 2 Basic Features

deg_c1 =

 -63.4349

>> real_c1 = real(c1) % real part

real_c1 =

 1

>> imag_c1 = imag(c1) % imaginary part

imag_c1 =

 -2

The MATLAB function abs computes the magnitude of complex numbers or the
absolute value of real numbers, depending on which one you assign it to compute.
Likewise, the MATLAB function angle computes the angle of a complex number in
radians. MATLAB does not natively perform trigonometric operations with units
of degrees; however, basic trigonometric functions supporting angles in degrees are
provided in MATLAB.

2.6 FLOATING-POINT ARITHMETIC

In almost all cases, numerical values in MATLAB are represented in double-
precision arithmetic using a binary (base 2) representation internally. It is the most
common representation used by computers and is a native format for numerical
coprocessors. Because of this representation, not all numbers can be represented
exactly. There are limiting values that can be represented, and there is a recogniz-
able lower limit for addition.

The largest positive real number that can be represented is

>> format long % tell MATLAB to display more precision

>> realmax

ans =

 1.797693134862316e+308

The smallest positive number that can be represented is

>> realmin

ans =

 2.225073858507201e-308

The smallest number that can be added to 1 to produce a number larger than 1 in
double precision is

Section 2.6 Floating-Point Arithmetic 31

>> eps

ans =

 2.220446049250313e-16

Generalizing this concept, eps(x) is the smallest increment that can be added to x
to produce a number larger than x, as the following examples show:

> eps(1) % same as eps by itself

ans =

 2.220446049250313e-16

>> eps(10)

ans =

 1.776356839400251e-15

>> eps(1e10)

ans =

 1.907348632812500e-06

As the magnitude of a number increases, the distance between values that can be
represented in finite precision (which is what eps(x) returns) increases as well.

The consequences of the limitations of finite-precision arithmetic are sometimes
strange. For example, as shown here, addition is not exactly commutative:

>> 0.21 - 0.25 + 0.04

ans =

 -6.9389e-018

>> 0.04 - 0.25 + 0.21 % rearrange order

ans =

 0

>> 0.04 + 0.21 - 0.25 % rearrange order again

ans =

 0

All three of these results should be zero, but they are not. In each case, the arith metic
was performed from left to right. The issue here is that not all of the numbers can be
represented exactly in double-precision arithmetic. In fact, only 0.25 has an exact
 representation. When numbers cannot be represented exactly, they are approximated
with as much precision as possible—leading to inevitable errors in computed results.
For the most part, these errors are minor; otherwise, double-precision arithmetic
wouldn’t be used in modern computers. In practice, the problems with double- precision

32 Chapter 2 Basic Features

 arithmetic occur most often when asking MATLAB to compare two numbers for
equality or inequality. Clearly, within MATLAB, 0.21 � 0.25 + 0.04 does not equal 0.04
� 0.25 � 0.21, even though our brains can do the exact arithmetic to show that it does.

A second drawback of finite-precision arithmetic appears in function evalu-
ation. Not only is finite-precision arithmetic unable to always represent function
arguments exactly, but also most functions cannot themselves be represented
exactly, as the following code shows:

>> sin(0)

ans =

 0

>> sin(pi)

ans =

 1.224646799147353e-16

Here, both results should be zero, but sin(π) is not. It is interesting to note that the
error here and the error in the previous example are both less than eps.

Finally, when using double-precision, floating-point arithmetic to represent
integers, only integers up to a limit can be represented exactly. The limiting value is
253 � 1, which is represented by MATLAB as follows:

>> bitmax

ans =

 9.007199254740991e+15

2.7 MATHEMATICAL FUNCTIONS

Lists of the common functions that MATLAB support are shown in the tables at
the end of this chapter. Most of these functions are used in the same way you would
write them mathematically:

>> x = sqrt(3)/3

x =

 0.5773

>> y = asin(x)

y =

 0.6154

>> y_deg = y*180/pi

y_deg =

 35.2608

Section 2.7 Mathematical Functions 33

These commands find the angle where the sine function has a value of 13/3. Note,
again, that MATLAB uses radians, not degrees, in trigonometric functions. Other
examples include the following:

>> y = sqrt(3^2 + 4^2) % show 3-4-5 right triangle relationship

y =

 5

>> y = rem(23,4) % remainder function, 23/4 has a remainder of 3

y =

 3

>> x = 2.6, y1 = fix(x), y2 = floor(x), y3 = ceil(x), y4 = round(x)

x =

 2.6000

y1 =

 2

y2 =

 2

y3 =

 3

y4 =

 3

Trigonometric Function Description

acos Inverse cosine returning radians

acosd Inverse cosine returning degrees

acosh Inverse hyperbolic cosine returning radians

acot Inverse cotangent returning radians

acotd Inverse cotangent returning degrees

acoth Inverse hyperbolic cotangent returning radians

acsc Inverse cosecant returning radians

acscd Inverse cosecant returning degrees

acsch Inverse hyperbolic cosecant returning radians

asec Inverse secant returning radians

asecd Inverse secant returning degrees

34 Chapter 2 Basic Features

Trigonometric Function Description

asech Inverse hyperbolic secant returning radians

asin Inverse sine returning radians

asind Inverse sine returning degrees

asinh Inverse hyperbolic sine returning radians

atan Inverse tangent returning radians

atand Inverse tangent returning degrees

atanh Inverse hyperbolic tangent returning radians

atan2 Four-quadrant inverse tangent returning radians

cos Cosine returning radians

cosd Cosine of argument in degrees

cosh Hyperbolic cosine returning radians

cot Cotangent returning radians

cotd Cotangent of argument in degrees

coth Hyperbolic cotangent returning radians

csc Cosecant returning radians

cscd Cosecant of argument in degrees

csch Hyperbolic cosecant returning radians

hypot Square root of sum of squares

sec Secant returning radians

secd Secant of argument in degrees

sech Hyperbolic secant returning radians

sin Sine returning radians

sind Sine returning degrees

sinh Hyperbolic sine returning radians

tan Tangent returning radians

tand Tangent returning degrees

tanh Hyperbolic tangent returning radians

Section 2.7 Mathematical Functions 35

Exponential Function Description

^ Power

exp Exponential

expm1 Exponential minus 1 [i.e., exp(x) � 1]

log Natural logarithm

log10 Base 10 logarithm

log1p Natural logarithm of x � 1 [i.e., log(x � 1)]

log2 Base 2 logarithm and floating-point number
dissection

nthroot nth real root of real numbers

pow2 Base 2 power and floating-point number scaling

reallog Natural logarithm limited to real nonnegative
values

realpow Power limited to real-valued arguments

realsqrt Square root limited to real-valued values

sqrt Square root

nextpow2 Next higher power of 2

Complex Function Description

abs Absolute value or magnitude

angle Phase angle in radians

conj Complex conjugate

imag Imaginary part

real Real part

unwrap Unwraps phase angle

isreal True for real values

cplxpair Sorts vector into complex conjugate pairs

complex Forms complex number from real and
imaginary parts

sign Signum function

36 Chapter 2 Basic Features

Rounding and
Remainder Function

Description

fix Rounds toward zero

floor Rounds toward negative infinity

ceil Rounds toward positive infinity

round Rounds toward nearest integer

mod Modulus or signed remainder

rem Remainder after division

idivide Integer division with rounding option

sign Signum function

Coordinate
Transformation Function

Description

cart2sph Cartesian to spherical

cart2pol Cartesian to cylindrical or polar

pol2cart Cylindrical or polar to Cartesian

sph2cart Spherical to Cartesian

Number Theoretic Function Description

factor Prime factors

isprime True for prime numbers

primes Generates list of prime numbers

gcd Greatest common divisor

lcm Least common multiple

rat Rational approximation

rats Rational output

perms All possible combinations

nchoosek All combinations of N elements taken K at a time

factorial Factorial function

Section 2.7 Mathematical Functions 37

Specialized Function Description

airy Airy function

besselj Bessel function of the first kind

bessely Bessel function of the second kind

besselh Bessel function of the third kind

besseli Modified Bessel function of the first kind

besselk Modified Bessel function of the second kind

beta Beta function

betainc Incomplete beta function

betaincinv Inverse incomplete beta function

betaln Logarithm of beta function

ellipj Jacobi elliptic function

ellipke Complete elliptic integral

erf Error function

erfc Complementary error function

erfcinv Inverse complementary error function

erfcx Scaled complementary error function

erfinv Inverse error function

expint Exponential error function

gamma Gamma function

gammainc Incomplete gamma function

gammaincinv Inverse incomplete gamma function

gammaln Logarithm of gamma function

legendre Associated Legendre functions

psi Psi (polygamma) function

cross Vector cross product

dot Vector dot product

38

As stated in the preceding chapter, running MATLAB creates one or more
 windows on your computer monitor. One of these windows, entitled MATLAB,
is commonly called the MATLAB desktop. This window contains or manages
all other windows that are part of MATLAB. Depending on how you set up
MATLAB, some windows associated with the desktop may or may not be visible,
and some may or may not reside within (i.e., be docked in) the MATLAB window.
Management of the MATLAB desktop window and its associated windows is
not discussed in this text. If you are familiar with other window-based programs,
manipulation of windows in MATLAB will be familiar to you. The MATLAB
desktop menu items change, depending on which window is active. In addition,
there are many helpful contextual menus (which are accessed by pressing the right
mouse button over an item). If you are not familiar with window-based programs,
it may be beneficial to seek general assistance in this area from other sources.
In any case, to find out which windows are associated with the desktop, investigate
the items on the Desktop menu within the MATLAB desktop window.

3.1 MATLAB WINDOWS

The windows used in MATLAB include the (1) Command, (2) Command History,
(3) Current Folder (browser), (4) Workspace (browser), (5) Help (browser), (6)
Profiler, (7) File Exchange, (8) Editor, (9) Figures, (10) Web Browser, (11) Variable
Editor, and (12) Comparison Tool. The following table gives an overview of the
purpose of each of these windows:

The MATLAB Desktop

3

Section 3.2 Managing the MATLAB Workspace 39

3.2 MANAGING THE MATLAB WORKSPACE

Within the MATLAB desktop, actions taken in all windows support computations
performed in the Command window. As a result, the rest of this chapter provides
more detailed information about the Command window.

The data and variables created in the Command window reside in what is
called the MATLAB workspace or base workspace. In addition to viewing variables
in the Workspace window, you can see what variable names exist in the MATLAB
workspace by issuing the command who:

>> who

Your variables are:

angle_c1 c4 cost notebooks

ans c5 deg_c1 real_c1

average_cost c6 pens scissors

c1 c6i imag_c1

c2 c6r items

c3 check_it_out mag_c1

Window Description

Command Issues commands to MATLAB for processing

Command History Running history of prior commands issued in the Command
window

Current Folder GUI for directory and file manipulation in MATLAB

Workspace GUI for viewing, editing, loading, and saving MATLAB variables

Help GUI for finding and viewing online documentation

Profiler Tool for optimizing M-file performance

File Exchange GUI for accessing the MATLAB File Exchange

Editor Text editor for creating, editing, and debugging M-files

Figures Creates, views, and modifies plots and other figures

Web Browser MATLAB HTML viewer

Variable Editor Tool for viewing and editing arrays in table format

Comparison Tool GUI for comparing text files line by line

40 Chapter 3 The MATLAB Desktop

The variables you see may differ from those just listed, depending on what you’ve
asked MATLAB to do since you opened the program. For more detailed informa-
tion, use the command whos:

>> whos

 Name Size Bytes Class Attributes

 angle_c1 1x1 8 double

 ans 1x1 8 double

 average_cost 1x1 8 double

 c1 1x1 16 double (complex)

 c2 1x1 16 double (complex)

 c3 1x1 16 double (complex)

 c4 1x1 16 double (complex)

 c5 1x1 16 double (complex)

 c6 1x1 16 double (complex)

 c6i 1x1 8 double

 c6r 1x1 8 double

 check_it_out 1x1 8 double

 cost 1x1 8 double

 deg_c1 1x1 8 double

 pens 1x1 8 double

 imag_c1 1x1 8 double

 items 1x1 8 double

 mag_c1 1x1 8 double

 notebooks 1x1 8 double

 real_c1 1x1 8 double

 scissors 1x1 8 double

Here, each variable is listed, along with its size, the number of bytes used, its class,
and other attributes, if any. Since MATLAB is array oriented, all of the variables
belong to the class of double-precision arrays, even though all of the variables are
scalars. Later, as other data types or classes are introduced, the information in this
last column will become more useful. The preceding list is also displayed in the
Workspace window, which can be viewed by typing workspace at the MATLAB
prompt or by choosing the Workspace menu item on the Desktop menu of the
MATLAB desktop.

The command clear deletes variables from the MATLAB workspace. For
example,

Section 3.2 Managing the MATLAB Workspace 41

>> clear real_c1 imag_c1 c*

>> who

Your variables are:

angle_c1 deg_c1 mag_c1

ans pens notebooks

average_cost items scissors

deletes the variables real_c1, imag_c1, and all variables starting with the letter c.
Other options for the clear function can be identified by asking for information
with the command help or helpwin:

>> help clear

 CLEAR Clear variables and functions from memory.

 CLEAR removes all variables from the workspace.

 CLEAR VARIABLES does the same thing.

 CLEAR GLOBAL removes all global variables.

 CLEAR FUNCTIONS removes all compiled M- and MEX-functions.

 CLEAR ALL removes all variables, globals, functions and MEX links.

 CLEAR ALL at the command prompt also removes the Java packages import

 list.

 CLEAR IMPORT removes the Java packages import list at the command

 prompt. It cannot be used in a function.

 CLEAR CLASSES is the same as CLEAR ALL except that class definitions

 are also cleared. If any objects exist outside the workspace (say in

 userdata or persistent in a locked m-file) a warning will be issued and

 the class definition will not be cleared. CLEAR CLASSES must be used if

 the number or names of fields in a class are changed.

 CLEAR JAVA is the same as CLEAR ALL except that java classes on the

 dynamic java path (defined using JAVACLASSPATH) are also cleared.

 CLEAR VAR1 VAR2 . . . clears the variables specified. The wildcard

 character '*' can be used to clear variables that match a pattern. For

42 Chapter 3 The MATLAB Desktop

 instance, CLEAR X* clears all the variables in the current workspace

 that start with X.

 CLEAR -REGEXP PAT1 PAT2 can be used to match all patterns using regular

 expressions. This option only clears variables. For more information on

 using regular expressions, type “doc regexp” at the command prompt.

 If X is global, CLEAR X removes X from the current workspace, but

 leaves it accessible to any functions declaring it global.

 CLEAR GLOBAL X completely removes the global variable X.

 CLEAR GLOBAL -REGEXP PAT removes global variables that match regular

 expression patterns.

 Note that to clear specific global variables, the GLOBAL option must

 come first. Otherwise, all global variables will be cleared.

 CLEAR FUN clears the function specified. If FUN has been locked by

 MLOCK it will remain in memory. Use a partial path (see PARTIALPATH) to

 distinguish between different overloaded versions of FUN. For

 instance, 'clear inline/display' clears only the INLINE method for

 DISPLAY, leaving any other implementations in memory.

 CLEAR ALL, CLEAR FUN, or CLEAR FUNCTIONS also have the side effect of

 removing debugging breakpoints and reinitializing persistent variables

 since the breakpoints for a function and persistent variables are

 cleared whenever the m-file changes or is cleared.

 Use the functional form of CLEAR, such as CLEAR('name'), when the

 variable name or function name is stored in a string.

 Examples for pattern matching:

 clear a* % Clear variables starting with "a"

 clear -regexp ^b\d{3}$ % Clear variables starting with "b" and

 % followed by 3 digits

 clear -regexp \d % Clear variables containing any digits

 See also clearvars, who, whos, mlock, munlock, persistent.

Section 3.4 Number Display Formats 43

Reference page in Help browser

doc clear

Obviously, the clear command does more than just delete variables. Its other uses
will become apparent as you become familiar with more of MATLAB’s features.

3.3 MEMORY MANAGEMENT

MATLAB allocates memory for variables as they are created and for M-file functions
as they are used. Depending on the computer on which the program is installed, it is
 possible for MATLAB to run out of memory, making it impossible to do any further
work. When you eliminate variables by using the clear command, MATLAB frees
up the memory used by the variables. Over time, however, it is possible for memory to
become fragmented, leaving MATLAB’s memory space populated by variables sur-
rounded by numerous small fragments of free memory. Since MATLAB always stores
variables in contiguous chunks of memory, these fragments of free memory may not
be reusable. To alleviate this problem, the pack command performs memory garbage
collection. The command saves all MATLAB workspace variables to disk, clears all
variables from the workspace, and then reloads the variables back into the workspace.
On completion, all fragments of free memory are consolidated into one large, usable
block. Depending on how much memory is allocated to MATLAB on your computer,
how long you’ve been running a particular MATLAB session, and how many variables
you’ve created, you may or may not ever need to use the pack command.

3.4 NUMBER DISPLAY FORMATS

When MATLAB displays numerical results, it follows several rules. By default, if a
result is an integer, MATLAB displays it as an integer. Likewise, when a result is a
real number, MATLAB displays it with approximately four digits to the right of the
decimal point. If the significant digits in the result are outside of this range, MATLAB
displays the result in scientific notation, similar to the display of a scientific calcula-
tor. You can override this default behavior by specifying a different numerical format.
From the Command window File menu, choose the Preferences menu. Alternatively,
type the appropriate MATLAB format command at the prompt. With the special
variable pi, the numerical display formats produced by different format selections
are as follows:

MATLAB
Command

pi Comments

format short 3.1416 5 digits

format long 3.141592653589793 16 digits

44 Chapter 3 The MATLAB Desktop

Note: In MATLAB, the internal representation of a number does not change when
different display formats are chosen; only the display changes. All calculations using
double-precision numbers are performed using double-precision arithmetic.

format short e
format shorte

3.1416e+00 5 digits plus a 2-digit
exponent

format long e
format longe

3.141592653589793e+00 16 digits plus a 2-digit
exponent

format short eng
format shorteng

3.1416e+000 At least 5 digits plus a
3-digit exponent that is
a multiple of three

format long eng
format longeng

3.14159265358979e+000 15 significant digits plus a
3-digit exponent that is a
multiple of three

format short g 3.1416 Best of format short or
format short e with 5
digits

format long g 3.14159265358979 Best of format long or
format long e with 15
digits

format hex 400921fb54442d18 Hexadecimal, floating point

format bank 3.14 2 decimal digits

format + + Positive (+), negative (−),
or blank ()

format rat 355/113 Rational approximation

format debug Structure address = 1214830

 m = 1

 n = 1

pr = 11d60d0

pi = 0

 3.1416

Internal storage
information in addition to
short g

3.5 SYSTEM INFORMATION

MATLAB provides a number of commands that provide information about the
computer in use, as well as about the MATLAB version in use. The command
 computer returns a character string identifying the computer in use:

Section 3.5 System Information 45

>> computer

ans =

GLNX86

In this case, the computer is a PC that is running 32-bit Linux. The command
 version returns a character string identifying the MATLAB version:

>> version

ans =

7.12.0.635 (R2011a)

Note that the command ver returns information about MATLAB, as well as
installed toolboxes:

>> ver

MATLAB Version 7.12.0.635 (R2011a)

MATLAB License Number: 123456

Operating System: Linux 2.6.38.8-35.fc15.i686 #1 SMP Wed Jul 6 14:46:26 UTC 2011 i686

Java VM Version: Java 1.6.0_17-b04 with Sun Microsystems Inc. Java HotSpot(TM) Client

VM mixed mode

MATLAB Version 7.12 (R2011a)

Mastering MATLAB Toolbox Version 6.0

MATLAB licensing information can be found by using the commands
license and hostid:

>> license

ans =

123456

>> hostid

 'no_file'

Of course, your results from entering these commands will most likely be different
from those shown above since your computer and MATLAB version differ from
those used to produce this text. The hostid command returns information about
your license server. In this example, the license is node-locked and does not require
a separate license server.

46 Chapter 3 The MATLAB Desktop

3.6 THE MATLAB SEARCH PATH

MATLAB uses a search path to find information stored in files on disk. MATLAB’s
files are organized into numerous directories and subdirectories.

The list of all directories where MATLAB’s files are found is called the MATLAB
search path or simply MATLAB path.

Use of the MATLAB search path is described next. When you enter cow at the
MATLAB prompt by typing >> cow, MATLAB does the following:

 1. It checks to see if cow is a variable in the MATLAB workspace.
 2. If not, checks to see if cow is a built-in function.
 3. If not, searches for a file named cow.m in the current directory.
 4. If none exists, checks to see if cow.m exists anywhere on the MATLAB search

path by searching in the order in which the path is specified.
 5. If cow isn’t found at this point, MATLAB reports an error.

MATLAB takes appropriate action according to this search strategy. If cow is a
variable, MATLAB uses the variable. If cow is a built-in function or if cow.m is a
file either in the current directory or anywhere on the MATLAB search path, the
built-in function is executed or the file cow.m is opened, and MATLAB acts on
what is found in the file. As is documented in Chapters 4 and 12, MATLAB has
two basic file types that are of common use; both are simple text files containing
MATLAB commands. (See Chapters 4 and 12 for further information regarding
these M-files.)

In reality, the search procedure is more complicated than just described,
because of advanced features in MATLAB. For the most part, however, this search
procedure provides sufficient detail for basic MATLAB work. (More detailed
 information regarding the MATLAB search path can be found in Chapter 12.)

When MATLAB starts up, it defines a default MATLAB search path that
points to all of the directories in which MATLAB stores its files. This search path
can be displayed and modified in several ways. The easiest way is to use the Path
Browser, which is a graphical user interface designed for viewing and modify-
ing the MATLAB search path. The path browser is made available by choosing
Set Path . . . from the File menu on the MATLAB desktop window. Since the
MATLAB search path already points to all directories where MATLAB stores
its files, the primary purpose for accessing the path browser is to add your own
MATLAB file storage directories to the search path.

To display the MATLAB search path in the Command window, MATLAB
provides the functions path and matlabpath. In addition, the features of the path
browser can be duplicated in the Command window by using the functions path,
addpath, and rmpath. For more information regarding these functions, see the
online documentation.

47

For simple problems, entering your requests at the MATLAB prompt in the
Command window is fast and efficient. However, as the number of commands
increases, or when you wish to change the value of one or more variables and
reevaluate a number of commands, typing at the MATLAB prompt quickly
becomes tedious. MATLAB provides a logical solution to this problem. It allows
you to place MATLAB commands in a simple text file and then tells MATLAB
to open the file and evaluate the commands exactly as it would have if you had
typed the commands at the MATLAB prompt. These files are called script files or
M-files. The term script signifies that MATLAB simply reads from the script found
in the file. The term M-file means that script filenames must end with the extension
'.m', as in, for example, example1.m.

4.1 SCRIPT M-FILE USE

To create a script M-file, click on the blank page icon on the MATLAB desktop
toolbar, or choose New from the File menu and select M-file. This procedure brings
up a text editor window wherein you can enter MATLAB commands. The following
script M-file shows the commands from an example considered earlier:

Script M-files

4

% script M-file example1.m

 pens = 5; % number of each item

 notebooks = 7;

 scissors = 1;

48 Chapter 4 Script M-files

This file can be saved to disk and executed immediately by (1) choosing Save and
Run from the Debug menu, (2) pressing the Save and Run button on the Editor
toolbar, or (3) simply pressing the function key F5. Alternatively, you can save this
file as the M-file example1.m on your disk by choosing Save from the File menu;
then, at the MATLAB prompt, it’s just a matter of typing the name of the script file
without the .m extension:

>> example1

items =

 13

cost =

 640

average_cost =

 49.2308

When MATLAB interprets the example1 statement, it follows the search
path described in Chapter 3. In brief, MATLAB prioritizes current MATLAB vari-
ables ahead of M-file names. If example1 is not a current MATLAB variable or a
built-in function name, MATLAB opens the file example1.m (if it can find it) and
evaluates the commands found there just as if they had been entered directly at the
Command window prompt. As a result, commands within the M-file have access to
all of the variables in the MATLAB workspace, and all of the variables created by
the M-file become part of the workspace. Normally, the M-file commands are not
displayed as they are evaluated. The echo on command tells MATLAB to display,
or echo, commands to the Command window as they are read and evaluated. You
can probably guess what the echo off command does. Similarly, the command
echo by itself toggles the echo state.

This ability to create script M-files makes it simple to answer “what-if?” ques-
tions. For example, you could repeatedly open the example1.m M-file, change the
number of pens, notebooks, or scissors, and then save and execute the file.

The utility of MATLAB comments is readily apparent when you use script
files, as shown in example1.m. Comments allow you to document the commands
found in a script file, so that you do not forget the commands when you view them
in the future. In addition, the use of semicolons at the ends of lines to suppress the
display of results allows you to control script-file output, so that only important
results are shown.

items = pens + notebooks + scissors

cost = pens*30 + notebooks*60 + scissors*70

average_cost = cost/items

Section 4.1 Script M-file Use 49

Because of the utility of script files, MATLAB provides several functions that
are particularly helpful when used in M-files:

Function Description

beep Makes computer sound a beep

disp(variablename) Displays results without identifying variable names

echo Controls Command window echoing of script file contents
as they are executed

input Prompts user for input

keyboard Temporarily gives control to keyboard. (Type return to
return control to the executing script M-file.)

pause or pause(n) Pauses until user presses any keyboard key, or pauses for n
seconds and then continues

waitforbuttonpress Pauses until user presses any keyboard key or any mouse
button over a figure window

When a MATLAB command is not terminated by a semicolon, the results are
 displayed in the Command window, with the variable name identified. For a prettier
display, it is sometimes convenient to suppress the variable name. In MATLAB,
this is accomplished with the command disp:

>> items

items =

 13

>> disp(items)

 13

Rather than repeatedly edit a script file for computations for a variety of cases, you
can employ the input command to prompt for input as a script file is executed. For
example, reconsider the example1.m script file, with the following modifications:

% script M-file example1.m

pens = 5; % Number of each item

notebooks = 7;

scissors = input('Enter the number of pairs of scissors purchased > ');

items = pens + notebooks + scissors

50 Chapter 4 Script M-files

Running this script M-file produces this result:

>> example1

Enter the number of pairs of scissors purchased > 1

items =

 13

cost =

 640

average_cost =

 49.2308

In response to the prompt, the number 1 was entered and the Return or Enter key
was pressed. The remaining commands were evaluated as before. The function
input accepts any valid MATLAB expression for input. For example, running the
script file again and providing different input gives the following result:

>> example1

Enter the number of pairs of scissors purchased > round(sqrt(5))-1

items =

 13

cost =

 640

average_cost =

 49.2308

In this case, the number of pairs of scissors was set equal to the result of evaluating
the expression

round(sqrt(5))-1.

To see the effect of the echo command, add it to the script file and execute it:

% script M-file example1.m

echo on

cost = pens*30 + notebooks*60 + scissors*70

average_cost = cost/items

Section 4.2 Block Comments and Code Cells 51

>> example1

pens = 5; % Number of each item

notebooks = 7;

scissors = input('Enter the number of pairs of scissors purchased > ');

Enter the number of pairs of scissors purchased > 3

items = pens + notebooks + scissors

items =

 13

cost = pens*40 + notebooks*50 + scissors*30

cost =

 640

average_cost = cost/items

average_cost =

 42.667

echo off

As you can see, the echo command made the result much harder to read. On
the other hand, the echo command can be very helpful when debugging more
 complicated script files.

4.2 BLOCK COMMENTS AND CODE CELLS

In prior versions of MATLAB, comments were line oriented. That is, comments
began with an initial percent sign and continued to the end of the current line.
To continue the comments on the next line required another initial percent sign.

pens = 5; % Number of each item

notebooks = 7;

scissors = input('Enter the number of pairs of scissors purchased > ');

items = pens + notebooks + scissors

cost = pens*40 + notebooks*50 + scissors*30

average_cost = cost/items

echo off

52 Chapter 4 Script M-files

Therefore, a block of comments would all start with initial percent signs, as
shown here:

% This is an example of multiple line comments

% in an M-file. Each line requires an initial % sign, or MATLAB

% assumes the line contains code to be executed.

While the block of comments is visually simple, it can become cumbersome to
manage later, when comment text is augmented or edited. In this case, the percent
signs must remain at the beginning of the lines, and the comment text must flow
after the initial percent signs on each line. In the past, to make it less cumber-
some, the MATLAB editor included commands for adding or removing the initial
 percent signs on a highlighted block of lines. Now, MATLAB 7 and above supports
block comments through the use of the syntax %{ and %}. These symbols mark the
beginning and end, respectively, of a block of text to be treated as comments by
MATLAB. For example, using block comment syntax on the previous example
produces

%{

This is an example of multiple line comments

in an M-file. Each line requires an initial % sign or MATLAB

assumes the line contains code to be executed.

(Now lines can be added and edited as desired without having to

place percent signs at the beginning of each line.)

%}

In addition to their utility in composing multiline comments, block comments
will allow you to rapidly turn on and off the interpretation and execution of any
number of lines of code in an M-file. This feature is particularly helpful in creat-
ing and debugging large M-files. Simply adding %{ before and %} after a block of
MATLAB code turns the enclosed code into comments that are not processed
by MATLAB. When this feature is used, different sections of a script file can be
 executed at different times during the editing and debugging processes.

In the past, the MATLAB editor offered commands for executing a block
of highlighted code in an editor window. In MATLAB 7 and above, the editor
now supports the selective execution of M-file code through the use of code
cells. A code cell is simply a block of M-file code that starts with a comment line
 containing two percent signs followed by a space (i.e., % %). The code cell contin-
ues to the end of the M-file or to the beginning of another code cell. From within

Section 4.3 Setting Execution Time 53

the MATLAB editor, cells can be created, individually executed, and sequen-
tially executed, thereby enabling effective M-file debugging. The Cell menu in
the Editor window facilitates these operations. It is important to note that the
syntax for code cells is interpreted by the editor, not by the MATLAB command
 interpreter. As a result, when an M-file is executed after its name has been entered
in the Command window, code-cell syntax is ignored, and all executable lines in
the file are processed.

4.3 SETTING EXECUTION TIME

When the name of an M-file is typed at the Command window prompt, the M-file is
executed immediately. In some circumstances (such as large programming projects,
or situations wherein data to be manipulated becomes available only over a long
period of time while MATLAB is running), it is convenient to specify execution
times for M-files. In MATLAB, this capability is accomplished by using timer
objects. A timer object is created using the function timer. For example,

>> my_timer = timer('TimerFcn','MfileName','StartDelay',100)

creates the timer object stored in the variable my_timer, which executes the
M-file MfileName 100 seconds after the timer has been started by using the start
 function:

>> start(my_timer) % start the timer in the variable my_timer

In general terms, timer function syntax has the form

>> t=timer('PropertyName1',PropertyValue1,'PropertyName2',PropertyValue2, . . .)

where the arguments identify property names as character strings paired with
 corresponding property values.

Neither MATLAB nor the computer operating system is held up while a timer
is running, but not executing code. MATLAB and other programs can be used
 during this idle time. When the timer object initiates code execution, the timer takes
control of MATLAB and executes the code, just as if the code had been typed at
the MATLAB prompt. When this execution ends, MATLAB returns control to the
Command window prompt.

The timer object has many more features. For example, 'MfileName' can
be any statement executable at the MATLAB prompt. It can be a script M-file,
a function handle or function M-file, or a set of MATLAB commands. You also
can specify that timer code be executed on a periodic basis or executed a specified
number of times. You can specify four different M-files or code sequences to be
executed under different conditions. For example,

54 Chapter 4 Script M-files

>> my_timer = timer('TimerFcn','Mfile1', . . .

'StartFcn','Mfile2', . . .

'StopFcn,, 'Mfile3', . . .

'ErrorFcn','Mfile4');

creates a timer function that executes (1) 'Mfile1' as the primary timer code that
may be repeatedly executed, (2) 'Mfile2' when the timer is started with the start
function, (3) 'Mfile3' when the timer is stopped with the stop function, and (4)
'Mfile4' if a MATLAB error occurs while any of these functions are executing.
(See the MATLAB documentation for more complete information about timer
objects.)

4.4 STARTUP AND FINISH

When MATLAB starts up, it executes two script M-files, matlabrc.m and
startup.m. The first, matlabrc.m, comes with MATLAB and generally should
not be modified. The commands in this M-file set the default Figure window
size and placement, as well as a number of other default features. The default
MATLAB search path is set by retrieving the script file pathdef.m from
matlabrc.m. The Path Browser and Command window functions for editing the
MATLAB search path maintain the file pathdef.m, so there is no need to edit it
with a text editor.

Commands in matlabrc.m check for the existence of the script M-file
startup.m on the MATLAB search path. If the M-file exists, the commands in
it are executed. This optional M-file startup.m typically contains commands
that add personal default features to MATLAB. For example, it is common to
put one or more addpath or path commands in startup.m to append additional
directories to the MATLAB search path. Similarly, the default number display
format can be changed (e.g., format compact). Since startup.m is a standard
script M-file, there are no restrictions as to what commands can be placed in it.
(However, it’s probably not wise to include the command quit in startup.m!)
On single-user installations, startup.m is commonly stored in the toolbox/
local subdirectory on the MATLAB path. On network installations, a conve-
nient location for your startup.m file is the default directory where you start
MATLAB sessions.

When you terminate MATLAB via the Exit MATLAB item on the File menu
in the MATLAB desktop window (or by typing exit or quit at the MATLAB
prompt), MATLAB searches the MATLAB path for a script M-file named
finish.m. If one is found, the commands in it are executed before MATLAB ter-
minates. For example, the following finish.m prompts the user for confirmation
using a dialog box before quitting, and the command quit cancel provides a way
to cancel quitting:

Section 4.4 Startup and Finish 55

%FINISH Confirm Desire for Quitting MATLAB

question = 'Are You Sure You Want To Quit?';

button = questdlg(question,'Exit Request','Yes','No','No');

switch button

case 'No'

 quit cancel; % how to cancel quitting!

end

% 'Yes' lets script and MATLAB end.

56

All of the computations considered to this point have involved single numbers
called scalars. Operations involving scalars are the basis of mathematics. At the
same time, when we wish to perform the same operation on more than one number
at a time, performing repeated scalar operations is time consuming and cumber-
some. To solve this problem, MATLAB defines operations on data arrays.

5.1 SIMPLE ARRAYS

Consider the problem of computing values of the sine function over one half of its
period, namely, y � sin(x) over 0 � x � p. Since it is impossible to compute sin(x)
at all points over this range (there are an infinite number of them), we must choose
a finite number of points. In doing so, we sample the function. To pick a number,
let’s evaluate sin(x) every 0.1p in this range; that is, let x � 0, 0.1p, 0.2p, …, 1.0p.
If you were using a scientific calculator to compute these values, you would start by
making a list, or an array, of the values of x. Then, you would enter each value of x
into your calculator, find its sine, and write down the result as the second array y.
Perhaps you would write the arrays in an organized fashion, as follows:

Arrays and Array
Operations

5

x 0 0.1p 0.2p 0.3p 0.4p 0.5p 0.6p 0.7p 0.8p 0.9p p

y 0 0.31 0.59 0.81 0.95 1 0.95 0.81 0.59 0.31 0

Section 5.2 Array Addressing or Indexing 57

As shown, x and y are ordered lists of numbers; that is, the first value or element
in y is associated with the first value or element in x, the second element in y is
associated with the second element in x, and so on. Because of this ordering, it is
common to refer to individual values or elements in x and y by using subscripts;
for example, x1 is the first element in x, y5 is the fifth element in y, and xn is the nth
element in x.

MATLAB handles arrays in a straightforward, intuitive way. Creating
arrays is easy—just follow the preceding visual organization to create the follow-
ing array:

>> x = [0 .1*pi .2*pi .3*pi .4*pi .5*pi .6*pi .7*pi .8*pi .9*pi pi]

x =

 Columns 1 through 7

 0 0.3142 0.6283 0.9425 1.2566 1.5708 1.8850

 Columns 8 through 11

 2.1991 2.5133 2.8274 3.1416

>> y = sin(x)

y =

 Columns 1 through 7

 0 0.3090 0.5878 0.8090 0.9511 1.0000 0.9511

 Columns 8 through 11

 0.8090 0.5878 0.3090 0.0000

To create an array in MATLAB, all you have to do is start with a left bracket, enter
the desired values separated by spaces (or commas), and then close the array with
a right bracket. Notice that finding the sine of the values in x follows naturally.
MATLAB understands that you want to find the sine of each element in x and
place the results in an associated array called y. This fundamental capability makes
MATLAB different from other computer languages.

Since spaces separate array values, complex numbers entered as array values
cannot have embedded spaces, unless the expressions are enclosed in parentheses.
For example, [1 -2i 3 4 5+6i] contains five elements, whereas the identical
arrays [(1-2i) 3 4 5+6i] and [1-2i 3 4 5+6i] contain four.

5.2 ARRAY ADDRESSING OR INDEXING

In the previous example, since x has more than one element (it has 11 values sepa-
rated into columns), MATLAB gives you the result with the columns identified. As
shown, x is an array having 1 row and 11 columns; or in mathematical jargon, it is a
row vector, a 1-by-11 array, or simply an array of length 11.

58 Chapter 5 Arrays and Array Operations

In MATLAB, individual array elements are accessed by using subscripts; for
example, x(1) is the first element in x, x(2) is the second element in x, and so on.
The following code is illustrative:

>> x(3) % The third element of x

ans =

 0.6283

>> y(5) % The fifth element of y

ans =

 0.9511

To access a block of elements at one time, MATLAB provides colon notation:

>> x(1:5)

ans =

 0 0.3142 0.6283 0.9425 1.2566

These are the first through fifth elements in x. The notation 1:5 says, start with 1
and count up to 5. The code

>> x(7:end)

ans =

 1.8850 2.1991 2.5133 2.8274 3.1416

starts with the seventh element and continues to the last element. Here, the word
end signifies the last element in the array x. In the code

>> y(3:-1:1)

ans =

 0.5878 0.3090 0

the results contain the third, second, and first elements in reverse order. The nota-
tion 3:–1:1 says, start with 3, count down by 1, and stop at 1. Similarly, the results
in the code

>> x(2:2:7)

ans =

 0.3142 0.9425 1.5708

consists of the second, fourth, and sixth elements in x. The notation 2:2:7 says,
start with 2, count up by 2, and stop when you get to 7. (In this case adding 2

Section 5.3 Array Construction 59

to 6 gives 8, which is greater than 7, and so the eighth element is not included.)
The code

>> y([8 2 9 1])

ans =

 0.8090 0.3090 0.5878 0

uses another array, [8 2 9 1], to extract the elements of the array y in the order
we wanted them! The first element taken is the eighth, the second is the second, the
third is the ninth, and the fourth is the first. In reality, [8 2 9 1] itself is an array
that addresses the desired elements of y. Note that in the code

>> y([1 1 3 4 2 2])

ans =

 0 0 0.5878 0.8090 0.3090 0.3090

there is no requirement that the array used as an index contain unique elements.
This allows you to rearrange and duplicate array elements arbitrarily. Using this
feature leads to efficient MATLAB coding.

Addressing one array with another works as long as the addressing array
 contains integers between 1 and the length of the array. In contrast, consider the
following code:

>> y(3.2)

??? Subscript indices must either be real positive integers or logicals.

>> y(11.6)

??? Subscript indices must either be real positive integers or logicals.

>> y(12)

??? Index exceeds matrix dimensions.

In these examples, MATLAB simply returns an error when the index is noninte-
ger and returns a statement that no such value exists when the index exceeds the
dimensions of the variable. In all cases, no numerical output appears.

5.3 ARRAY CONSTRUCTION

Earlier, we entered the values of x by typing each individual element in x. While
this is fine when there are only 11 values in x, what if there were 111 values? Two
other ways of entering x are as follows:

>> x = (0:0.1:1)*pi

x =

60 Chapter 5 Arrays and Array Operations

 Columns 1 through 7

 0 0.3142 0.6283 0.9425 1.2566 1.5708 1.8850

 Columns 8 through 11

 2.1991 2.5133 2.8274 3.1416

>> x = linspace(0,pi,11)

x =

 Columns 1 through 7

 0 0.3142 0.6283 0.9425 1.2566 1.5708 1.8850

 Columns 8 through 11

 2.1991 2.5133 2.8274 3.1416

In the first case, the colon notation (0:0.1:1) creates an array that starts at 0,
increments (or counts) by 0.1, and ends at 1. Each element in the array is then
multiplied by p to create the desired values in x. In the second case, the MATLAB
function linspace is used to create x. This function’s arguments are described by

linspace(first_value,last_value,number_of_values)

Both of these array creation forms are common in MATLAB. The colon notation
form allows you to directly specify the increment between data points, but not the
number of data points. Using linspace, on the other hand, allows you to directly
specify the number of data points, but not the increment between the data points.

Both of these array creation forms result in arrays in which the individual ele-
ments are linearly spaced with respect to each other. For the special case where a
logarithmically spaced array is desired, MATLAB provides the logspace function:

>> logspace(0,2,11)

ans =

 Columns 1 through 7

 1.0000 1.5849 2.5119 3.9811 6.3096 10.0000 15.8489

Columns 8 through 11

 25.1189 39.8107 63.0957 100.0000

Here, we created an array starting at 100, ending at 102, and containing 11 values.
The function arguments are described by

logspace(first_exponent,last_exponent,number_of_values)

Although it is common to begin and end at integer powers of 10, logspace works
equally well when nonintegers are used as the first two input arguments.

Section 5.3 Array Construction 61

When using colon notation, or the functions linspace or logspace, there is
often a temptation to enclose expressions in brackets:

>> a = [1:7]

a =

 1 2 3 4 5 6 7

>> b = [linspace(1,7,5)]

b =

 1.0000 2.5000 4.0000 5.5000 7.0000

Although using brackets does not change the results and may add clarity to the
statements, the added brackets force MATLAB to do more work and take more
time, because brackets signify a concatenation operation. In the preceding exam-
ples, no concatenation is performed, and so there’s no need to ask MATLAB to
take the time to consider that possibility.

Parentheses do not signify concatenation and therefore do not slow MATLAB
down. As a result, parentheses can be used as needed:

>> a = (1:7)' % change row to column

a =

 1

 2

 3

 4

 5

 6

 7

Sometimes, an array is required that is not conveniently described by a
 linearly or logarithmically spaced element relationship. There is no uniform way to
create these arrays. However, array addressing and the ability to combine expres-
sions can help eliminate the need to enter individual elements, one at a time.
For example,

>> a = 1:5, b = 1:2:9

a =

 1 2 3 4 5

b =

 1 3 5 7 9

62 Chapter 5 Arrays and Array Operations

creates two arrays. Remember that multiple statements can appear on a single line
if they are separated by commas or semicolons. The code

>> c = [b a]

c =

 1 3 5 7 9 1 2 3 4 5

creates an array c composed of the elements of b, followed by those of a, while the
code

>> d = [a(1:2:5) 1 0 1]

d =

 1 3 5 1 0 1

creates an array d composed of the first, third, and fifth elements of a, followed by
three additional elements.

The simple array construction features of MATLAB are summarized in the
following table:

Array Construction Technique Description

x=[2 2*pi sqrt(2) 2-3j] Creates row vector x containing arbitrary elements

x=first:last Creates row vector x starting with first, counting
by 1, and ending at or before last (Note that
x=[first:last] produces the same result, but takes
longer, since MATLAB considers both bracket and
colon array-creation forms.)

x=first:increment:last Creates row vector x starting with first, counting by
increment, and ending at or before last

x=linspace(first,last,n) Creates linearly spaced row vector x starting with
first, ending at last, having n elements

x=logspace(first,last,n) Creates logarithmically spaced row vector x starting
with 10first, ending at 10last, and having n elements

5.4 ARRAY ORIENTATION

In the preceding examples, arrays contained one row and multiple columns. As a result
of this row orientation, the arrays are commonly called row vectors. It is also possible
for an array to be a column vector, having one column and multiple rows. In this case,
all of the previous array manipulation and mathematics apply without change. The
only difference is that results are displayed as columns, rather than as rows.

Since the array creation functions previously illustrated all create row vectors,
there must be some way to create column vectors. The most straightforward way to

Section 5.4 Array Orientation 63

create a column vector is to specify it, element by element, and by using semicolons
to separate values:

>> c = [1;2;3;4;5]

c =

 1

 2

 3

 4

 5

According to this example, separating elements by spaces or commas specifies
 elements in different columns, whereas separating elements by semicolons specifies
elements in different rows.

To create a column vector using the colon notation start:increment:end or
the functions linspace and logspace, you must transpose the resulting row into a
column by using the MATLAB transpose operator ('). For example,

>> a = 1:5

a =

 1 2 3 4 5

creates a row vector using the colon notation format. The code

>> b = a'

b =

 1

 2

 3

 4

 5

uses the transpose operator to change the row vector a into the column vector b:

>> w = b'

w =

 1 2 3 4 5

This statement applies the transpose again and changes the column back into a row.

64 Chapter 5 Arrays and Array Operations

In addition to performing the simple transpose operations just described,
MATLAB also offers a transpose operator with a preceding dot. In this case, the
dot-transpose operator is interpreted as the noncomplex conjugate transpose. When
an array is complex, the transpose (') gives the complex conjugate transpose; that
is, the sign on the imaginary part is changed, as part of the transpose operation. On
the other hand, the dot-transpose (.') transposes the array, but does not conjugate
it. The code

>> c = a.'

c =

 1

 2

 3

 4

 5

shows that .' and ' are identical for real data, while the code

>> d = complex(a,a)

d =

 Columns 1 through 4

 1.0000 + 1.0000i 2.0000 + 2.0000i 3.0000 + 3.0000i 4.0000 + 4.0000i

 Column 5

 5.0000 + 5.0000i

creates a simple complex row vector from the array a by using the function complex.
The code

>> e = d'

e =

 1.0000 - 1.0000i

 2.0000 - 2.0000i

 3.0000 - 3.0000i

 4.0000 - 4.0000i

 5.0000 - 5.0000i

creates a column vector e that is the complex conjugate transpose of d, while
the code

Section 5.4 Array Orientation 65

>> f = d.'

f =

 1.0000 + 1.0000i

 2.0000 + 2.0000i

 3.0000 + 3.0000i

 4.0000 + 4.0000i

 5.0000 + 5.0000i

creates a column vector f that is the transpose of d.
If an array can be a row vector or a column vector, it makes intuitive sense that

arrays can have both multiple rows and multiple columns. That is, arrays can also
be in the form of matrices. The creation of matrices follows the creation of row and
column vectors. Commas or spaces are used to separate elements in a specific row,
and semicolons are used to separate individual rows:

>> g = [1 2 3 4;5 6 7 8]

g =

 1 2 3 4

 5 6 7 8

Here, g is an array or matrix having 2 rows and 4 columns; that is, it is a 2-by-4
matrix, or it is a matrix of dimension 2 by 4. The semicolon tells MATLAB to start a
new row between the 4 and the 5. Note the use of line breaks in the following code:

>> g = [1 2 3 4

5 6 7 8

9 10 11 12]

g =

 1 2 3 4

 5 6 7 8

 9 10 11 12

Thus, in addition to using semicolons, pressing the Return or Enter key while enter-
ing an array tells MATLAB to start a new row. MATLAB strictly enforces the fact
that all rows must contain the same number of columns:

>> h = [1 2 3;4 5 6 7]

??? Error using ==> vertcat

CAT arguments dimensions are not consistent.

66 Chapter 5 Arrays and Array Operations

5.5 SCALAR–ARRAY MATHEMATICS

In the first array example given, the array x is multiplied by the scalar p. Other
simple mathematical operations between scalars and arrays follow the same natural
interpretation. Addition, subtraction, multiplication, and division by a scalar simply
apply the operation to all elements of the array. For example, the code

>> g-2

ans =

 -1 0 1 2

 3 4 5 6

 7 8 9 10

subtracts 2 from each element in g, while the code

>> 2*g - 1

ans =

 1 3 5 7

 9 11 13 15

 17 19 21 23

multiplies each element in g by 2 and subtracts 1 from each element of the result.
Finally, the code

>> 2*g/5 + 1

ans =

 1.4000 1.8000 2.2000 2.6000

 3.0000 3.4000 3.8000 4.2000

 4.6000 5.0000 5.4000 5.8000

multiplies each element of g by 2, then divides each element of the result by 5, and
finally adds 1 to each element.

Note that scalar–array mathematics uses the same order of precedence used in
scalar expressions to determine the order of evaluation.

5.6 ARRAY–ARRAY MATHEMATICS

Mathematical operations between arrays are not quite as simple as those between
scalars and arrays. Clearly, array operations between arrays of different sizes or
dimensions are difficult to define and are of even more dubious value. However,

Section 5.6 Array–Array Mathematics 67

when two arrays have the same dimensions, addition, subtraction, multiplication,
and division apply on an element-by-element basis in MATLAB, as in the following
example:

>> g % recall previous array

g =

 1 2 3 4

 5 6 7 8

 9 10 11 12

>> h = [1 1 1 1;2 2 2 2;3 3 3 3] % create new array

h =

 1 1 1 1

 2 2 2 2

 3 3 3 3

>> g + h % add h to g on an element-by-element basis

ans =

 2 3 4 5

 7 8 9 10

 12 13 14 15

>> ans - h % subtract h from the previous answer to get g back

ans =

 1 2 3 4

 5 6 7 8

 9 10 11 12

>> 2*g - h % multiplies g by 2 and subtracts h from the result

ans =

 1 3 5 7

 8 10 12 14

 15 17 19 21

>> 2*(g-h) % use parentheses to change order of operation

ans =

 0 2 4 6

 6 8 10 12

 12 14 16 18

68 Chapter 5 Arrays and Array Operations

For this particular example, matrix multiplication is not defined:

>> g*h

??? Error using ==> mtimes

Inner matrix dimensions must agree.

Element-by-element division, or dot division, also requires use of the dot symbol as
follows:

>> g./h

ans =

1.0000 2.0000 3.0000 4.0000

2.5000 3.0000 3.5000 4.0000

3.0000 3.3333 3.6667 4.0000

>> h.\g

ans =

1.0000 2.0000 3.0000 4.0000

2.5000 3.0000 3.5000 4.0000

3.0000 3.3333 3.6667 4.0000

Note that array–array mathematics uses the same order of precedence used in scalar
expressions to determine the order of evaluation. Note also that parentheses can be
used as desired to change the order of operation.

Element-by-element multiplication and division work similarly, but use
slightly unconventional notation:

>> g.*h

ans =

 1 2 3 4

 10 12 14 16

 27 30 33 36

Here, we multiplied the arrays g and h, element by element by using the dot multi-
plication symbol .*.

The dot preceding the standard asterisk multiplication symbol tells MATLAB to
 perform element-by-element array multiplication. Multiplication without the dot
 signifies matrix multiplication, which is discussed later.

Section 5.6 Array–Array Mathematics 69

Array or dot division also applies if the numerator is a scalar. Consider the following
example:

>> 1./g

ans =

 1.0000 0.5000 0.3333 0.2500

 0.2000 0.1667 0.1429 0.1250

 0.1111 0.1000 0.0909 0.0833

In this case, the scalar 1 in the numerator is expanded to an array the same size
as the denominator, and then element-by-element division is performed. That is,
the preceding code represents a shorthand way of computing:

>> f=[1 1 1 1; 1 1 1 1; 1 1 1 1] % create numerator

f =

 1 1 1 1

 1 1 1 1

 1 1 1 1

>> f./g

ans =

 1.0000 0.5000 0.3333 0.2500

 0.2000 0.1667 0.1429 0.1250

 0.1111 0.1000 0.0909 0.0833

>> f./h

ans =

 1.0000 1.0000 1.0000 1.0000

 0.5000 0.5000 0.5000 0.5000

 0.3333 0.3333 0.3333 0.3333

This process of automatically expanding scalar values so that element-by-element
arithmetic applies is called scalar expansion. Scalar expansion is used extensively
in MATLAB.

As with scalars, division is defined by using both forward and backward slashes.
In both cases, the array below the slash is divided into the array above the slash.

The dot preceding the forward or backward slash symbol tells MATLAB to perform
element-by-element array division. Division without the dot signifies matrix inversion,
which is discussed later.

70 Chapter 5 Arrays and Array Operations

Division without the dot is the matrix division or matrix inversion operation,
which is an entirely different operation, as the following code shows:

>> g/h

Warning: Rank deficient, rank = 1 tol = 5.3291e-015.

Ans =

 0 0 0.8333

 0 0 2.1667

 0 0 3.5000

>> h/g

Warning: Rank deficient, rank = 2, tol = 1.8757e-14.

ans =

 -0.1250 0 0.1250

 -0.2500 0 0.2500

 -0.3750 0 0.3750

Matrix division gives results that are not necessarily the same size as g and h. (Matrix
operations are discussed in Chapter 16.)

Array exponentiation is defined in several ways. As used with multiplica-
tion and division, ^ is reserved for matrix exponentiation, and .^ is used to denote
element-by-element exponentiation. When the exponent is a scalar, the scalar is
applied to each element of the array. For example,

>> g, h % recalls the arrays used earlier

g =

 1 2 3 4

 5 6 7 8

 9 10 11 12

h =

 1 1 1 1

 2 2 2 2

 3 3 3 3

>> g.^2

ans =

 1 4 9 16

 25 36 49 64

 81 100 121 144

Section 5.6 Array–Array Mathematics 71

squares the individual elements of g, whereas

>> g^2

??? Error using ==> mpower

Matrix must be a scalar and a square matrix.

is matrix exponentiation, which is defined only for square matrices—that is, matrices
with equal row and column counts. The code

>> g.^-1

ans =

 1.0000 0.5000 0.3333 0.2500

 0.2000 0.1667 0.1429 0.1250

 0.1111 0.1000 0.0909 0.0833

finds the reciprocal of each element in g. The code

>> 1./g

ans =

 1.0000 0.5000 0.3333 0.2500

 0.2000 0.1667 0.1429 0.1250

 0.1111 0.1000 0.0909 0.0833

produces the same result as the scalar expansion approach seen earlier.
When the exponent is an array operating on a scalar, each element of the array

is applied to the scalar. For example, the code

>> 2.^g

ans =

 2 4 8 16

 32 64 128 256

 512 1024 2048 4096

raises 2 to the power of each element in the array g.
If both components are arrays of the same size, exponentiation is applied

 element by element. Thus,

>> g.^h

ans =

72 Chapter 5 Arrays and Array Operations

 1 2 3 4

 25 36 49 64

 729 1000 1331 1728

raises the elements of g to the corresponding elements in h. In this case, the first row
is unchanged, since the first row of h contains ones, the second row is squared, and
the third row is cubed.

The following example shows that the scalar and array operations can be
 combined:

>> g.^(h-1)

ans =

 1 1 1 1

 5 6 7 8

 81 100 121 144

The two forms of exponentiation that have scalar parts are further examples
of scalar expansion. The results make intuitive sense if the scalars involved are first
expanded to the size of the array and element-by-element exponentiation is then
applied.

The following table summarizes basic array operations:

Element-by-Element Operation Representative Data

A = [a1 a2 ... an], B = [b1 b2 ... bn],
c = <a scalar>

Scalar addition A+c = [a1+c a2+c ... an+c]

Scalar subtraction A-c = [a1–c a2–c ... an–c]

Scalar multiplication A*c = [a1*c a2*c ... an*c]

Scalar division A/c = c\A = [a1/c a2/c ... an/c]

Array addition A+B = [a1+b1 a2+b2 ... an+bn]

Array multiplication A.*B = [a1*b1 a2*b2 ... an*bn]

Array right division A./B = [a1/b1 a2/b2 ... an/bn]

Array left division A.\B = [a1\b1 a2\b2 ... an\bn]

Array exponentiation A.^c = [a1^c a2^c ... an^c]

c.^A = [c^a1 c^a2 ... c^an]

A.^B = [a1^b1 a2^b2 ... an^bn]

Section 5.7 Standard Arrays 73

5.7 STANDARD ARRAYS

Because of the general utility of standard arrays, MATLAB provides functions for
creating a number of them. Standard arrays include those containing all ones or
zeros or the special variables NaN or Inf. Others include identity matrices, arrays of
random numbers, diagonal arrays, and arrays whose elements are a given constant.
The following are examples:

>> ones(3)

ans =

 1 1 1

 1 1 1

 1 1 1

>> zeros(2,5)

ans =

 0 0 0 0 0

 0 0 0 0 0

>> size(g)

ans =

 3 4

>> nan(size(g))

ans =

 NaN NaN NaN NaN

 NaN NaN NaN NaN

 NaN NaN NaN NaN

When called with a single input argument, for example ones(n) or zeros(n),
MATLAB creates an n-by-n array containing ones or zeros, respectively. When
called with two input arguments, ones(r,c), MATLAB creates an array having r
rows and c columns. To create an array that is the same size as another array, use
the size function (discussed later in this chapter) in the argument of the array-
creation function as shown above.

In the code

>> eye(4)

ans =

 1 0 0 0

 0 1 0 0

74 Chapter 5 Arrays and Array Operations

 0 0 1 0

 0 0 0 1

>> eye(2,4)

ans =

 1 0 0 0

 0 1 0 0

>> eye(4,2)

ans =

 1 0

 0 1

 0 0

 0 0

the function eye produces identity matrices by using the same syntax style as that
used to produce arrays of zeros and ones. An identity matrix or array is all zeros,
except for the elements A(i,i), where i = 1:min(r,c), in which min(r,c) is the
minimum of the number of rows and columns in A. In the code

>> rand(3)

ans =

 0.8147 0.9134 0.2785

 0.9058 0.6324 0.5469

 0.1270 0.0975 0.9575

>> rand(1,5)

ans =

 0.9649 0.1576 0.9706 0.9572 0.4854

>> b = eye(3)

b =

 1 0 0

 0 1 0

 0 0 1

>> rand(size(b))

ans =

 0.8003 0.9157 0.6557

Section 5.7 Standard Arrays 75

 0.1419 0.7922 0.0357

 0.4218 0.9595 0.8491

the function rand produces uniformly distributed random arrays whose elements
lie between 0 and 1. On the other hand, the function randn produces arrays whose
 elements are samples from a zero-mean, unit-variance normal distribution.

>> randn(2)

ans =

 1.6302 1.0347

 0.4889 0.7269

>> randn(2,5)

ans =

 -0.3034 -0.7873 -1.1471 -0.8095 1.4384

 0.2939 0.8884 -1.0689 -2.9443 0.3252

The function diag creates diagonal arrays in which a vector can be placed at any
location parallel to the main diagonal of an array:

>> a = 1:4 % start with a simple vector

a =

 1 2 3 4

>> diag(a) % place elements on the main diagonal

ans =

 1 0 0 0

 0 2 0 0

 0 0 3 0

 0 0 0 4

>> diag(a,1) % place elements 1 place up from diagonal

ans =

 0 1 0 0 0

 0 0 2 0 0

 0 0 0 3 0

 0 0 0 0 4

 0 0 0 0 0

76 Chapter 5 Arrays and Array Operations

>> diag(a,-2) % place elements 2 places down from diagonal

ans =

 0 0 0 0 0 0

 0 0 0 0 0 0

 1 0 0 0 0 0

 0 2 0 0 0 0

 0 0 3 0 0 0

 0 0 0 4 0 0

The function B = eps(A), where A is a numeric array, produces an array B the same
size as A such that B(i,j) contains eps(abs(A(i,j))), that is, the smallest incre-
ment that can be added to the absolute value of A(i,j) to produce a number larger
than abs(A(i,j)):

>> A = [0 1 2; -1 -2 0.5]

A =

 0 1.0000 2.0000

 -1.0000 -2.0000 0.5000

>> B = eps(A)

B =

 1.0e-15 *

 0.0000 0.2220 0.4441

 0.2220 0.4441 0.1110

With the preceding standard arrays, there are several ways to create an array whose
elements all have the same value. Some of them are as follows:

>> d = pi; % choose pi for this example

>> d*ones(3,4) % slowest method (scalar-array multiplication)

ans =

 3.1416 3.1416 3.1416 3.1416

 3.1416 3.1416 3.1416 3.1416

 3.1416 3.1416 3.1416 3.1416

>> d+zeros(3,4) % slower method (scalar-array addition)

ans =

 3.1416 3.1416 3.1416 3.1416

 3.1416 3.1416 3.1416 3.1416

 3.1416 3.1416 3.1416 3.1416

Section 5.8 Array Manipulation 77

This MATLAB code uses scalar expansion to create a vector having r*c ele-
ments all equal to d. The vector is then reshaped, by using the function reshape,
into an r-by-c array. (The functions repmat and reshape are discussed in more
detail later.)

5.8 ARRAY MANIPULATION

Because arrays are fundamental to MATLAB, there are many ways to manipu-
late them in MATLAB. Once arrays are formed, MATLAB provides powerful
ways to insert, extract, and rearrange subsets of arrays by identifying subscripts

>> d(ones(3,4)) % fast method (array addressing)

ans =

 3.1416 3.1416 3.1416 3.1416

 3.1416 3.1416 3.1416 3.1416

 3.1416 3.1416 3.1416 3.1416

>> repmat(d,3,4) % fastest method (optimum array addressing)

ans =

 3.1416 3.1416 3.1416 3.1416

 3.1416 3.1416 3.1416 3.1416

 3.1416 3.1416 3.1416 3.1416

For small arrays, all of the methods used in this example are fine. However,
as the array grows in size, the multiplications required in the scalar multiplication
approach slow the procedure down. Since addition is often faster than multipli-
cation, the next best approach is to add the desired scalar to an array of zeros.
Although they are not intuitive, the last two methods explained are the fastest for
large arrays. They both involve array indexing, as described earlier.

The solution d(ones(r,c)) creates an r-by-c array of ones and then uses this
array to index and duplicate the scalar d. Creating the temporary array of ones takes
time and uses memory, thereby slowing down this approach, despite the fact that no
floating-point mathematics are used. The solution repmat(d,r,c) calls the function
repmat, which stands for replicate matrix. For scalar d, this function performs the
following steps:

D(r*c) = d; % a row vector whose (r*c)-th element is d

D(:) = d; % scalar expansion to fill all elements of D with d

D = reshape(D,r,c); % reshape the vector into the desired r-by-c shape

78 Chapter 5 Arrays and Array Operations

of interest. Knowledge of these features is a key to using MATLAB efficiently.
To illustrate the array-manipulation features of MATLAB, consider the follow-
ing examples:

>> A = [1 2 3;4 5 6;7 8 9]

A =

 1 2 3

 4 5 6

 7 8 9

>> A(3,3) = 0 % set element in 3rd row, 3rd column to zero

A =

 1 2 3

 4 5 6

 7 8 0

The preceding code changes the element in the third row and third column to zero.
The code

>> A(2,6) = 1 % set element in 2nd row, 6th column to one

A =

 1 2 3 0 0 0

 4 5 6 0 0 1

 7 8 0 0 0 0

places the number one in the second row, sixth column. Since A does not have six
columns, the size of A is increased as necessary, and filled with zeros, so that the
array remains rectangular.

The code

>> A(:,4) = 4

A =

 1 2 3 4 0 0

 4 5 6 4 0 1

 7 8 0 4 0 0

sets the fourth column of A equal to 4. Since 4 is a scalar, it is expanded to fill all of the
elements specified. This is another example of scalar expansion. MATLAB performs
scalar expansion to simplify statements that can be interpreted unambiguously.

Section 5.8 Array Manipulation 79

For example, the preceding statement is equivalent to the following, more cumbersome,
statement:

>> A(:,4) = [4;4;4]

A =

 1 2 3 4 0 0

 4 5 6 4 0 1

 7 8 0 4 0 0

Let’s start over and look at other array manipulations. The code

>> A = [1 2 3;4 5 6;7 8 9]; % restore original data

>> B = A(3:-1:1,1:3)

B =

 7 8 9

 4 5 6

 1 2 3

>> B = A(end:-1:1,1:3) % same as above

B =

 7 8 9

 4 5 6

 1 2 3

creates an array B by taking the rows of A in reverse order. The word end automati-
cally denotes the final or largest index for a given dimension. In this example, end
signifies the largest row index 3. The code

>> B = A(3:-1:1,:)

B =

 7 8 9

 4 5 6

 1 2 3

does the same as the previous example. The final single colon means take all
 columns. That is, : is equivalent to 1:3 in this example, because A has three columns.
The code

>> C = [A B(:,[1 3])]

80 Chapter 5 Arrays and Array Operations

C =

 1 2 3 7 9

 4 5 6 4 6

 7 8 9 1 3

creates C by appending, or concatenating, all rows in the first and third columns of B
to the right of A. Similarly, the code

>> B = A(1:2,2:3)

B =

 2 3

 5 6

>> B = A(1:2,2:end) % same as above

B =

 2 3

 5 6

creates B by extracting the first two rows and last two columns of A. Once again,
colon notation is used to create index vectors that identify the array elements to
extract. In the second instance just shown, end is used to denote the final or largest
column index.

The statement

>> C = [1 3]

C =

 1 3

>> B = A(C,C)

B =

 1 3

 7 9

uses the array C to index the array A, rather than specify them directly by using the
colon notation start:increment:end or start:end. In this example, B is formed
from the first and third rows and first and third columns of A. The code

>> B = A(:)

B =

 1

 4

Section 5.8 Array Manipulation 81

 7

 2

 5

 8

 3

 6

 9

builds B by stretching A into a column vector and taking its columns one at a time, in
order, which is the simplest form of reshaping an array into an array that has differ-
ent dimensions, but the same number of total elements.

In MATLAB, the statement

>> B = B.'

B =

 1 4 7 2 5 8 3 6 9

>> B = reshape(A,1,9) % reshape A into 1-by-9

B =

 1 4 7 2 5 8 3 6 9

>> B = reshape(A,[1 9])

B =

 1 4 7 2 5 8 3 6 9

illustrates the dot-transpose operation introduced earlier, as well as the function
reshape. In this case, reshape works with the indices, supplied as separate function
arguments or as a single-vector argument. The code

>> B = A % copy A into B

B =

 1 2 3

 4 5 6

 7 8 9

>> B(:,2) = []

B =

 1 3

 4 6

 7 9

82 Chapter 5 Arrays and Array Operations

redefines B by throwing away all rows in the second column of the original B. When
you set something equal to the empty matrix or empty array [], it is deleted, causing
the array to collapse into what remains. Note that you must delete whole rows or
columns, so that the result remains rectangular.

The statement

>> C = B.'

C =

 1 4 7

 3 6 9

>> reshape(B,2,3) % reshape is not equivalent to transpose

ans =

 1 7 6

 4 3 9

illustrates the transpose of an array and demonstrates that reshape is not the same
as transpose. The transpose operation converts the ith row to the ith column of the
result, and so the original 3-by-2 array becomes a 2-by-3 array.

The code

>> C(2,:) = []

C =

 1 4 7

throws out the second row of C, leaving a row vector, while the code

>> A(2,:) = C

A =

 1 2 3

 1 4 7

 7 8 9

replaces the second row of A with C. The MATLAB code

>> B = A(:,[2 2 2 2]) % create new B array

B =

 2 2 2 2

 4 4 4 4

 8 8 8 8

Section 5.8 Array Manipulation 83

>> B = A(:,2+zeros(1,4)) % [2 2 2 2]=2+zeros(1,4)

B =

 2 2 2 2

 4 4 4 4

 8 8 8 8

>> B = repmat(A(:,2),1,4) % replicate 2nd column into 4 columns

B =

 2 2 2 2

 4 4 4 4

 8 8 8 8

creates B in three ways by duplicating all rows in the second column of A four times.
The last approach is fastest for large arrays. The statement

>> A, C % show A and C again

A =

 1 2 3

 1 4 7

 7 8 9

C =

 1 4 7

>> A(2,2) = []

??? Subscripted assignment dimension mismatch.

shows that you can throw out only entire rows or columns. MATLAB simply does not
know how to collapse an array when partial rows or columns are thrown out. Finally,

>> C = A(4,:)

??? Attempted to access A(4,:); index out of bounds because

size(A)=[3,3].

produces an error since A does not have a fourth row. According to this result,
 indices must adhere to the following guidelines:

If A(r,c) appears on the left-hand side of an equal sign and one or more elements
specified by (r,c) do not exist, then zeros are added to A as needed, so that A(r,c)
addresses known elements. However, on the right-hand side of an equal sign, all ele-
ments addressed by A(r,c) must exist or an error is returned.

84 Chapter 5 Arrays and Array Operations

Continuing on, consider the following:

>> C(1:2,:) = A

??? Subscripted assignment dimension mismatch.

This example shows that you can’t squeeze one array into another array of a
 different size.

However, the statement

>> C(3:4,:) = A(2:3,:)

C =

 1 4 7

 0 0 0

 1 4 7

 7 8 9

reveals that you can place the second and third rows of A into the same-size area of
C. Since the second through fourth rows of C did not exist, they are created as neces-
sary. Moreover, the second row of C is unspecified, and so it is filled with zeros.

The code

>> A = [1 2 3;4 5 6;7 8 9] % fresh data

A =

 1 2 3

 4 5 6

 7 8 9

>> A(:,2:3) % a peek at what's addressed next

ans =

 2 3

 5 6

 8 9

>> G(1:6) = A(:,2:3)

G =

 2 5 8 3 6 9

creates a row vector G by extracting all rows in the second and third columns of A.
Note that the shapes of the matrices are different on both sides of the equal sign.
The elements of A are inserted into the elements of G by going down the rows of the
first column and then down the rows of the second column.

Section 5.8 Array Manipulation 85

When (:) appears on the left-hand side of the equal sign, it signifies that
elements will be taken from the right-hand side and placed into the array on the
left-hand side without changing its shape. In the following example, this process
extracts the second and third columns of A and inserts them into the column
vector H:

>> H = ones(6,1); % create a column array

>> H(:) = A(:,2:3) % fill H without changing its shape

H =

 2

 5

 8

 3

 6

 9

Of course, for this code to work, both sides must address the same number of
 elements.

When the right-hand side of an assignment is a scalar and the left-hand side is
an array, scalar expansion is used. For example, the code

>> A(2,:) = 0

A =

 1 2 3

 0 0 0

 7 8 9

replaces the second row of A with zeros. The single zero on the right-hand side is
expanded to fill all the indices specified on the left. This example is equivalent to

>> A(2,:) = [0 0 0]

A =

 1 2 3

 0 0 0

 7 8 9

Scalar expansion occurs whenever a scalar is used in a location calling for an array.
MATLAB automatically expands the scalar to fill all requested locations and then
performs the operation dictated. The code

86 Chapter 5 Arrays and Array Operations

>> A(1,[1 3]) = pi

A =

 3.1416 2.0000 3.1416

 0 0 0

 7.0000 8.0000 9.0000

is yet another example in which the scalar p is expanded to fill two locations.
Consider again what the function reshape does with scalar input. Let’s create a
2-by-4 array containing the number 2:

>> D(2*4) = 2 % create array with 8 elements

D =

 0 0 0 0 0 0 0 2

>> D(:) = 2 % scalar expansion

D =

 2 2 2 2 2 2 2 2

>> D = reshape(D,2,4) % reshape

D =

 2 2 2 2

 2 2 2 2

The first line D(2*4) = 2 causes a row vector of length 8 to be created and places 2
in the last column. Next, D(:) = 2 uses scalar expansion to fill all elements of D with
2. Finally, the result is reshaped into the desired dimensions.

Sometimes, it is desirable to perform some mathematical operation between a
 vector and a two-dimensional (2-D) array. For example, consider these arrays:

>> A = reshape(1:12,3,4)'

A =

 1 2 3

 4 5 6

 7 8 9

 10 11 12

>> r = [3 2 1]

r =

 3 2 1

Section 5.8 Array Manipulation 87

Suppose that we wish to subtract r(i) from the ith column of A. One way of accom-
plishing it is as follows:

>> Ar = [A(:,1)-r(1) A(:,2)-r(2) A(:,3)-r(3)]

Ar =

 -2 0 2

 1 3 5

 4 6 8

 7 9 11

Alternatively, one can use indexing:

>> R = r([1 1 1 1],:) % duplicate r to have 4 rows

R =

 3 2 1

 3 2 1

 3 2 1

 3 2 1

>> Ar = A - R % now use element by element subtraction

Ar =

 -2 0 2

 1 3 5

 4 6 8

 7 9 11

The array R can also be computed faster and more generally by using the functions
ones and size or by using the function repmat, all of which are discussed later.
Consider the following example:

>> R = r(ones(size(A,1),1),:) % historically this is Tony's trick

R =

 3 2 1

 3 2 1

 3 2 1

 3 2 1

>> R = repmat(r,size(A,1),1) % often faster than Tony's trick

88 Chapter 5 Arrays and Array Operations

R =

 3 2 1

 3 2 1

 3 2 1

 3 2 1

In this example, size(A,1) returns the number of rows in A.
Sometimes it is more convenient to address array elements with a single

index. When a single index is used in MATLAB, the index counts down the rows,
proceeding column by column starting with the first column. Here is an example:

>> D = reshape(1:12,3,4) % new data

D =

 1 4 7 10

 2 5 8 11

 3 6 9 12

>> D(2)

ans =

 2

>> D(5)

ans =

 5

>> D(end)

ans =

 12

>> D(4:7)

ans =

 4 5 6 7

The MATLAB functions sub2ind and ind2sub perform the arithmetic to convert
to and from a single index to row and column subscripts:

>> sub2ind(size(D),2,4) % find single index from row and column

ans =

 11

>> [r,c] = ind2sub(size(D),11) % find row and column from single index

Section 5.8 Array Manipulation 89

In addition to addressing arrays on the basis of their subscripts, logical arrays
that result from logical operations (to be discussed more thoroughly later) can
also be used if the size of the array is equal to that of the array it is addressing.
In this case, True (1) elements are retained, and False (0) elements are discarded.
For example,

>> x = -3:3 % Create data

x =

 -3 -2 -1 0 1 2 3

>> abs(x)>1

ans =

 1 1 0 0 0 1 1

returns a logical array with ones (True), where the absolute value of x is greater than
one and zeros (False) elsewhere. (Chapter 10 contains more detailed information.)

The statement

>> y = x(abs(x)>1)

y =

 -3 -2 2 3

creates y by taking those values of x where its absolute value is greater than 1.
Note, however, that even though abs(x)>1 produces the array [1 1 0 0 0 1 1],

it is not equivalent to a numerical array containing those values; that is, the code

r =

 2

c =

 4

The element in the second row, fourth column is the 11th indexed element. Note
that these two functions need to know the size of the array to search (i.e., size(D),
rather than the array D itself).

Subscripts refer to the row and column locations of elements of an array; for instance,
A(2,3) refers to the element in the second row and third column of A. The index of an
element in an array refers to its position relative to the element in the first row, first
column, having index 1. Indices count down the rows first and then proceed across the
columns of an array. That is, the indices count in the order in which the subscripts appear;
for example, if D has three rows, D(8) is the second element in the third column of D.

90 Chapter 5 Arrays and Array Operations

>> y = x([1 1 0 0 0 1 1])

??? Subscript indices must either be real positive integers or logicals.

gives an error, even though the abs(x)>1 and [1 1 0 0 0 1 1] appear to be the
same vector. In the second case, [1 1 0 0 0 1 1] is a numeric array as opposed
to a logical array. The difference between these two visually equal arrays can be
identified by using the function class:

>> class(abs(x)>1) % logical result from logical comparison

ans =

logical

>> class([1 1 0 0 0 1 1]) % double precision array

ans =

double

Alternatively, the functions islogical and isnumeric return logical True (1) or
False (0) to identify data types:

>> islogical(abs(x)>1)

ans =

 1

>> islogical([1 1 0 0 0 1 1])

ans =

 0

>> isnumeric(abs(x)>1)

ans =

 0

>> isnumeric([1 1 0 0 0 1 1])

ans =

 1

Because of the differences between logical and numeric arrays, MATLAB gener-
ates an error when executing x([1 1 0 0 0 1 1]) because MATLAB arrays do
not have indices at zero.

Quite naturally, MATLAB provides the function logical for converting
numeric arrays to logical arrays:

>> y = x(logical([1 1 0 0 0 1 1]))

y =

 -3 -2 2 3

Section 5.8 Array Manipulation 91

Just as the functions ones and zeros are useful for creating numeric arrays,
the functions true and false are useful for creating logical arrays containing True
and False values, respectively:

>> true

ans =

 1

>> true(2,3)

ans =

 1 1 1

 1 1 1

>> false

ans =

 0

>> false(1,6)

ans =

 0 0 0 0 0 0

Although these results appear to be equal to results returned by equivalent state-
ments that use ones and zeros, they are logical arrays, not numeric.

Logical arrays work on 2-D arrays, as well as on vectors:

>> B = [5 -3;2 -4] % new data

B =

 5 -3

 2 -4

>> x = abs(B)>2 % logical result

x =

 1 1

 0 1

Once again we have the desired result.
To summarize,

Specifying array subscripts with numerical arrays extracts the elements having the
given numerical indices. On the other hand, specifying array subscripts with logical
arrays, which are returned by logical expressions and the function logical, extracts
elements that are logical True (1).

92 Chapter 5 Arrays and Array Operations

5.9 ARRAY SORTING

Given a data vector, a common task required in numerous applications is sorting.
In MATLAB, the function sort performs this task:

>> x = randperm(8) % new data

x =

 7 5 2 1 3 6 4 8

>> y = B(x) % grab True values

y =

 5

 -3

 -4

However, the final result is returned as a column vector, since there is no way to
define a 2-D array having only three elements. No matter how many elements are
extracted, MATLAB extracts all of the true elements by using single-index order
and then forms or reshapes the result into a column vector.

The preceding array-addressing techniques are summarized in the following
table:

Array Addressing Description

A(r,c) Addresses a subarray within A defined by the index vector of
desired rows in r and an index vector of desired columns in c

A(r,:) Addresses a subarray within A defined by the index vector of
desired rows in r and all columns

A(:,c) Addresses a subarray within A defined by all rows and the index
vector of desired columns in c

A(:) Addresses all elements of A as a column vector taken column by
column. If A(:) appears on the left-hand side of the equal sign,
it means to fill A with elements from the right hand-side of the
equal sign without changing A's shape

A(k) Addresses a subarray within A defined by the single-index vector
k, as if A were the column vector A(:)

A(x) Addresses a subarray within A defined by the logical array x.
Note that x should be the same size as A. If x is shorter than A, the
missing values in x are assumed to be False. If x is longer than A,
all extra elements in x must be False.

Section 5.9 Array Sorting 93

In prior versions of MATLAB, sorting in the descending direction required
turning around the sort function output by using array-indexing techniques. For
example, consider the following code:

>> xsd = xs(end:-1:1)

xsd =

 8 7 6 5 4 3 2 1

>> idxd = idx(end:-1:1)

idxd =

 8 1 6 2 7 5 3 4

With MATLAB version 7 and above, the sort direction can be specified when call-
ing the sort function:

>> xs = sort(x,'descend') % sort descending

xs =

 8 7 6 5 4 3 2 1

>> xs = sort(x) % sort ascending by default

xs =

 1 2 3 4 5 6 7 8

>> xs = sort(x,'ascend') % sort ascending

xs =

 1 2 3 4 5 6 7 8

>> [xs,idx] = sort(x) % return sort index as well

xs =

 1 2 3 4 5 6 7 8

idx =

 4 3 5 7 2 6 1 8

As shown, the sort function returns one or two outputs. The first is an ascending
sort of the input argument, and the second is the sort index—for example, xs(k) =
x(idx(k)).

Note that when a MATLAB function returns two or more variables, they are enclosed
by square brackets on the left-hand side of the equal sign. This syntax is different from
the array-manipulation syntax discussed previously, in which [a,b] on the right-hand
side of the equal sign builds a new array, with b appended to the right of a.

94 Chapter 5 Arrays and Array Operations

When presented with a 2-D array, sort acts differently. For example, in the
code

>> A = [randperm(6);randperm(6);randperm(6);randperm(6)] % new data

A =

 1 2 5 6 4 3

 4 2 6 5 3 1

 2 3 6 1 4 5

 3 5 1 2 4 6

>> [As,idx] = sort(A)

As =

 1 2 1 1 3 1

 2 2 5 2 4 3

 3 3 6 5 4 5

 4 5 6 6 4 6

idx =

 1 1 4 3 2 2

 3 2 1 4 1 1

 4 3 2 2 3 3

 2 4 3 1 4 4

the sort function sorts, in ascending order, each column independently of the
others, and the indices returned are those for each column. In many cases, we are
more interested in sorting an array on the basis of the sort of a specific column.
In MATLAB, this task is easy. For example, in the code

>> [tmp,idx] = sort(A(:,4)); % sort 4-th column only

>> As = A(idx,:) % rearrange rows in all columns using idx

As =

 2 3 6 1 4 5

 3 5 1 2 4 6

 4 2 6 5 3 1

 1 2 5 6 4 3

the rows of As are just the rearranged rows of A, in which the fourth column of As is
sorted in ascending order.

Section 5.10 Subarray Searching 95

MATLAB is a flexible program. Rather than sort each column, it is also
 possible to sort each row. By using a second argument to sort, you can specify in
which direction to sort:

>> As = sort(A,2) % sort across 2-nd dimension

As =

 1 2 3 4 5 6

 1 2 3 4 5 6

 1 2 3 4 5 6

 1 2 3 4 5 6

>> As = sort(A,1) % same as sort(A)

As =

 1 2 1 1 3 1

 2 2 5 2 4 3

 3 3 6 5 4 5

 4 5 6 6 4 6

Since in A(r,c), the row dimension appears first, sort(A,1) means to sort down
the rows. Because the column dimension appears second, sort(A,2) means to sort
across the columns. Although not shown, 'descend' can be appended to the func-
tion calls (e.g., sort(A,1,'descend')), to return a descending sort. (Chapter 17
contains much more information about the sort function.)

5.10 SUBARRAY SEARCHING

Many times, it is desirable to know the indices or subscripts of the elements of an
array that satisfy some relational expression. In MATLAB, this task is performed
by the function find, which returns the subscripts when a relational expression is
True as, for example, in the following code:

>> x = -3:3

x =

 -3 -2 -1 0 1 2 3

>> k = find(abs(x)>1) % finds those subscripts where abs(x)>1

k =

 1 2 6 7

96 Chapter 5 Arrays and Array Operations

>> y = x(k) % creates y using the indices in k.

y =

 -3 -2 2 3

>> y = x(abs(x)>1) % creates the same y vector by logical addressing

y =

 -3 -2 2 3

The find function also works for 2-D arrays:

>> A = [1 2 3;4 5 6;7 8 9] % new data

A =

 1 2 3

 4 5 6

 7 8 9

>> [i,j] = find(A>5) % i and j are not equal to sqrt(-1) here

i =

 3

 3

 2

 3

j =

 1

 2

 3

 3

Here, the indices stored in i and j are the associated row and column indices,
respectively, where the relational expression is True. That is, A(i(1),j(1)) is the
first element of A, where A>5, and so on.

Alternatively, find returns single indices for 2-D arrays:

>> k = find(A>5)

k =

 3

 6

 8

 9

Section 5.10 Subarray Searching 97

Of the two index sets returned for 2-D arrays, this latter single-index form is often
more useful:

>> A(k) % look at elements greater than 5

ans =

 7

 8

 6

 9

>> A(k) = 0 % set elements addressed by k to zero

A =

 1 2 3

 4 5 0

 0 0 0

>> A = [1 2 3;4 5 6;7 8 9] % restore data

A =

 1 2 3

 4 5 6

 7 8 9

>> A(i,j) % this is A([3 3 2 3],[1 2 3 3])

ans =

 7 8 9 9

 7 8 9 9

 4 5 6 6

 7 8 9 9

>> A(i,j) = 0 % this is A([3 3 2 3],[1 2 3 3]) also

A =

 1 2 3

 0 0 0

 0 0 0

These A(i,j) cases are not as easy to understand as the preceding single-index
cases. To assume that A(k) is equivalent to A(i,j) is a common MATLAB indexing
mistake. Rather, A(i,j) in the previous example is equivalent to

98 Chapter 5 Arrays and Array Operations

>> [A(3,1) A(3,2) A(3,3) A(3,3)

 A(3,1) A(3,2) A(3,3) A(3,3)

 A(2,1) A(2,2) A(2,3) A(2,3)

 A(3,1) A(3,2) A(3,3) A(3,3)]

ans =

 7 8 9 9

 7 8 9 9

 4 5 6 6

 7 8 9 9

where the first-row index in i is coupled with all of the column indices in j to
form the first row in the result. Then, the second-row index in i is coupled with
the column indices in j to form the second row in the result, and so on. Given the
form in this example, the diagonal elements of A(i,j) are equal to those of A(k).
Therefore, the two approaches are equal if the diagonal elements of A(i,j) are
retained. In the code

>> diag(A(i,j))

ans =

 7

 8

 6

 9

while diag(A(i,j)) = A(k), simply entering A(k) is preferred, as it does not cre-
ate an intermediate square array.

Similarly, A(i,j) = 0 is equivalent to

>> A(3,1)=0; A(3,2)=0; A(3,3)=0; A(3,3)=0; % i(1) with all j

>> A(3,1)=0; A(3,2)=0; A(3,3)=0; A(3,3)=0; % i(2) with all j

>> A(2,1)=0; A(2,2)=0; A(2,3)=0; A(2,3)=0; % i(3) with all j

>> A(3,1)=0; A(3,2)=0; A(3,3)=0; A(3,3)=0 % i(4) with all j

A =

 1 2 3

 0 0 0

 0 0 0

Based on the above equivalents, it is clear that A(i,j) is not generally as useful as
A(k) for subarray searching using find.

Section 5.10 Subarray Searching 99

When you only need to find a few indices, the find function offers an alterna-
tive syntax that avoids searching the entire array. For example, in the code

>> x = randperm(8) % new data

x =

 8 2 7 4 3 6 5 1

>> find(x>4) % find all values greater than 4

ans =

 1 3 6 7

>> find(x>4,1) % find first value greater than 4

ans =

 1

>> find(x>4,1,'first') % same as above

ans =

 1

>> find(x>4,2) % find first two values greater than 4

ans =

 1 3

>> find(x>4,2, 'last') % find last two values greater than 4

ans =

 6 7

find(expr,n), find(expr,n,'first'), and find(expr,n,'last'), where the
expression expr is True, return up to n indices. That is, n defines the maximum
 number of indices returned. If fewer indices satisfying expr exist, fewer are returned.

The preceding concepts are summarized in the following table:

Array Searching Description

i=find(X) Returns single indices of the array X, where its
elements are nonzero or True

[r,c]=find(X) Returns row and column subscripts of the array
X, where its elements are nonzero or True

find(X,n) or find(X,n,'first') Starting at the beginning of the array X, returns
up to n indices, where X is nonzero or True

find(X,n,'last') Starting at the end of the array X, returns up to
n indices, where X is nonzero or True

100 Chapter 5 Arrays and Array Operations

In addition to using the function find to identify specific values within an array,
using the maximum and minimum values and their locations within an array is often
helpful. MATLAB provides the functions max and min to accomplish these tasks:

>> v = rand(1,6) % new data

v =

 0.3046 0.1897 0.1934 0.6822 0.3028 0.5417

>> max(v) % return maximum value

ans =

 0.6822

>> [mx,i] = max(v) % maximum value and its index

mx =

 0.6822

i =

 4

>> min(v) % return minimum value

ans =

 0.1897

>> [mn,i] = min(v) % minimum value and its index

mn =

 0.1897

i =

 2

For 2-D arrays, min and max behave a little differently. For example, in the code

>> A = rand(4,6) % new data

A =

 0.1509 0.8537 0.8216 0.3420 0.7271 0.3704

 0.6979 0.5936 0.6449 0.2897 0.3093 0.7027

 0.3784 0.4966 0.8180 0.3412 0.8385 0.5466

 0.8600 0.8998 0.6602 0.5341 0.5681 0.4449

>> [mx,r] = max(A)

Section 5.10 Subarray Searching 101

mx =

 0.8600 0.8998 0.8216 0.5341 0.8385 0.7027

r =

 4 4 1 4 3 2

>> [mn,r] = min(A)

mn =

 0.1509 0.4966 0.6449 0.2897 0.3093 0.3704

r =

 1 3 2 2 2 1

mx is a vector containing the maximum of each column of A, and r is the row index
where the maximum appears. The same principle applies to mn and r, relative to
the function min. To find the overall minimum or maximum of a 2-D array, one can
take one of two approaches:

>> mmx = max(mx) % apply max again to prior result

mmx =

 0.8998

>> [mmx,i] = max(A(:)) % reshape A as a column vector first

mmx =

 0.8998

i =

 8

The first of these is essentially max(max(A)), which requires two function calls.
The second is preferred in many situations, because it also returns the single index
where the maximum occurs (i.e., mmx = A(i)). (The latter approach also works for
multidimensional arrays, which are discussed in the next chapter.)

When an array has duplicate minima or maxima, the indices returned by min
and max are the first ones encountered. To find all minima and maxima requires the
use of the find function:

>> x = [1 4 6 3 2 1 6]

x =

 1 4 6 3 2 1 6

>> mx = max(x)

mx =

 6

102 Chapter 5 Arrays and Array Operations

>> i = find(x==mx) % indices of values equal to mx

i =

 3 7

(Chapter 17 contains more information about the functions min and max.)

5.11 ARRAY-MANIPULATION FUNCTIONS

In addition to the arbitrary array-addressing and manipulation capabilities described
in the preceding sections, MATLAB provides several functions that implement
common array manipulations. Many of these manipulations are easy to follow:

>> A = [1 2 3;4 5 6;7 8 9] % fresh data

A =

 1 2 3

 4 5 6

 7 8 9

>> flipud(A) % flip array in up-down direction

ans =

 7 8 9

 4 5 6

 1 2 3

>> fliplr(A) % flip array in the left-right direction

ans =

 3 2 1

 6 5 4

 9 8 7

>> rot90(A) % rotate array 90 degrees counterclockwise

ans =

 3 6 9

 2 5 8

 1 4 7

>> rot90(A,2) % rotate array 2*90 degrees counterclockwise

ans =

 9 8 7

 6 5 4

 3 2 1

Section 5.11 Array-Manipulation Functions 103

>> A = [1 2 3;4 5 6;7 8 9] % recall data

A =

 1 2 3

 4 5 6

 7 8 9

>> circshift(A,1) % circularly shift rows down by 1

ans =

 7 8 9

 1 2 3

 4 5 6

>> circshift(A,[0 1]) % circularly shift columns right by 1

ans =

 3 1 2

 6 4 5

 9 7 8

>> circshift(A,[-1 1]) % shift rows up by 1 and columns right by 1

ans =

 6 4 5

 9 7 8

 3 1 2

>> B = 1:12 % more data

B =

 1 2 3 4 5 6 7 8 9 10 11 12

>> reshape(B,2,6) % reshape to 2 rows, 6 columns, fill by columns

ans =

 1 3 5 7 9 11

 2 4 6 8 10 12

>> reshape(B,[2 6]) % equivalent to above

ans =

 1 3 5 7 9 11

 2 4 6 8 10 12

>> reshape(B,3,4) % reshape to 3 rows, 4 columns, fill by columns

104 Chapter 5 Arrays and Array Operations

ans =

 1 4 7 10

 2 5 8 11

 3 6 9 12

>> reshape(B,3,[]) % MATLAB figures out how many columns are needed

ans =

 1 4 7 10

 2 5 8 11

 3 6 9 12

>> reshape(B,[],6) % MATLAB figures out how many rows are needed

ans =

 1 3 5 7 9 11

 2 4 6 8 10 12

>> reshape(A,3,2) % A has more than 3*2 elements, OOPS!

??? Error using ==> reshape

To RESHAPE the number of elements must not change.

>> reshape(A,1,9) % stretch A into a row vector

ans =

 1 4 7 2 5 8 3 6 9

>> A(:)' % convert to column and transpose; same as the above

ans =

 1 4 7 2 5 8 3 6 9

>> reshape(A,[],3) % MATLAB figures out how many rows are needed

ans =

 1 2 3

 4 5 6

 7 8 9

The following functions extract parts of an array to create another array:

>> A % remember what A is

A =

 1 2 3

 4 5 6

 7 8 9

Section 5.11 Array-Manipulation Functions 105

>> diag(A) % extract diagonal using diag

ans =

 1

 5

 9

>> diag(ans) % remember this? same function, different action

ans =

 1 0 0

 0 5 0

 0 0 9

>> triu(A) % extract upper triangular part

ans =

 1 2 3

 0 5 6

 0 0 9

>> tril(A) % extract lower triangular part

ans =

 1 0 0

 4 5 0

 7 8 9

>> tril(A) - diag(diag(A)) % lower triangular part with no diagonal

ans =

 0 0 0

 4 0 0

 7 8 0

The following functions create arrays from other arrays:

>> a = [1 2;3 4] % a smaller data array

a =

 1 2

 3 4

>> b = [0 1;-1 0] % another smaller data array

106 Chapter 5 Arrays and Array Operations

b =

 0 1

 -1 0

>> kron(a,b) % the Kronecker tensor product of a and b

ans =

 0 1 0 2

 -1 0 -2 0

 0 3 0 4

 -3 0 -4 0

The preceding kron(a,b) is equivalent to

>> [1*b 2*b

 3*b 4*b]

ans =

 0 1 0 2

 -1 0 -2 0

 0 3 0 4

 -3 0 -4 0

Now consider

>> kron(b,a) % the Kronecker tensor product of b and a

ans =

 0 0 1 2

 0 0 3 4

 -1 -2 0 0

 -3 -4 0 0

The preceding kron(b,a) is equivalent to

>> [0*a 1*a

 -1*a 0*a]

ans =

 0 0 1 2

 0 0 3 4

 -1 -2 0 0

 -3 -4 0 0

Section 5.11 Array-Manipulation Functions 107

So, kron(a,b) takes each element of its first argument, multiplies it by the second
argument, and creates a block array.

One of the most useful array-manipulation function is repmat, which was
introduced earlier:

>> a % recall data

a =

 1 2

 3 4

>> repmat(a,1,3) % replicate a once down, 3 across

ans =

 1 2 1 2 1 2

 3 4 3 4 3 4

>> repmat(a,[1 3]) % equivalent to above

ans =

 1 2 1 2 1 2

 3 4 3 4 3 4

>> [a a a] % equivalent to above

ans =

 1 2 1 2 1 2

 3 4 3 4 3 4

>> repmat(a,2,2) % replicate a twice down, twice across

ans =

 1 2 1 2

 3 4 3 4

 1 2 1 2

 3 4 3 4

>> repmat(a,2) % same as repmat(a,2,2) and repmat(a,[2 2])

ans =

 1 2 1 2

 3 4 3 4

 1 2 1 2

 3 4 3 4

108 Chapter 5 Arrays and Array Operations

>> [a a; a a] % equivalent to above

ans =

 1 2 1 2

 3 4 3 4

 1 2 1 2

 3 4 3 4

As illustrated, the functions repmat and reshape accept indexing arguments
in two ways. The indexing arguments can be passed as separate input arguments,
or they can be passed as individual elements in a single-vector argument. In addi-
tion, for repmat, a single second-input argument repmat(A,n) is interpreted as
repmat(A,[n n]).

Finally, to replicate a scalar to create an array that is the same size as another
array, one can simply use repmat(d,size(A)):

>> A = reshape(1:12,[3 4]) % new data

A =

 1 4 7 10

 2 5 8 11

 3 6 9 12

>> repmat(pi,size(A)) % pi replicated to be the size of A

ans =

 3.1416 3.1416 3.1416 3.1416

 3.1416 3.1416 3.1416 3.1416

 3.1416 3.1416 3.1416 3.1416

(Note that the function size is discussed in the next section.)

5.12 ARRAY SIZE

In cases where the size of an array or vector is unknown and is needed for some
mathematical manipulation, MATLAB provides the utility functions size, length,
and numel:

>> A = [1 2 3 4;5 6 7 8]

A =

 1 2 3 4

 5 6 7 8

Section 5.12 Array Size 109

>> s = size(A)

s =

 2 4

With one output argument, the size function returns a row vector whose first ele-
ment is the number of rows, and whose second element is the number of columns:

>> [r,c] = size(A)

r =

 2

c =

 4

With two output arguments, size returns the number of rows in the first variable
and the number of columns in the second variable:

>> r = size(A,1) % number of rows

r =

 2

>> c = size(A,2) % number of columns

c =

 4

Called with two input arguments, size returns either the number of rows or
 columns. The correspondence between the second argument to size and the
 number returned follows the order in which array elements are indexed. That is,
A(r,c) has its row index r specified first and hence size(A,1) returns the number
of rows. Likewise, A(r,c) has its column index c specified second and so size(A,2)
returns the number of columns.

The function numel returns the total number of elements in an array:

>> numel(A)

ans =

 8

The function length returns the number of elements along the largest dimension.
For example, the code

>> length(A)

ans =

 4

110 Chapter 5 Arrays and Array Operations

returns the number of rows or the number of columns, whichever is larger. For
 vectors, length returns the vector length:

>> B = -3:3

B =

 -3 -2 -1 0 1 2 3

>> length(B) % length of a row vector

ans =

 7

>> length(B') % length of a column vector

ans =

 7

The functions size and length also work for an array of zero dimension:

>> c = [] % you can create an empty variable!

C =

 []

>> size(c)

ans =

 0 0

>> d = zeros(3,0) % an array with one dimension nonzero!

d =

 Empty matrix: 3-by-0

>> size(d)

ans =

 3 0

>> length(d)

ans =

 0

>> max(size(d)) % maximum of elements of size(d)

ans =

 3

As shown, MATLAB allows arrays to have one zero and one nonzero dimension.
For these arrays, length and maximum dimension are not the same.

Section 5.13 Arrays and Memory Utilization 111

5.13 ARRAYS AND MEMORY UTILIZATION

In most modern computers, data transfer to and from memory is more time consum-
ing than floating-point arithmetic, which has been fully integrated into most proces-
sors. Memory speed just hasn’t kept pace with processor speed, and this has forced
computer manufacturers to incorporate multiple levels of memory cache into their
products in an attempt to keep processors supplied with data. In addition, computer
users work with increasingly larger data sets (variables), which can easily exceed cache
capacity. Consequently, efficient memory utilization is critical to effective computing.

MATLAB itself does not perform any explicit memory management. Memory
allocation and deallocation within MATLAB use calls to standard C functions (malloc,
calloc, free). Therefore, MATLAB relies on the compiler’s implementation of these
library functions to take appropriate, efficient, system-specific steps for memory alloca-
tion and deallocation. Given that there is an inherent trade-off between memory use
and execution speed, MATLAB purposely chooses to use more memory when doing
so increases execution speed. Since MATLAB uses memory to gain performance, it is
beneficial to consider how memory is allocated in the program and what can be done to
minimize memory overuse and fragmentation.

When a variable is created with an assignment statement such as

>> P = zeros(100);

MATLAB requests a contiguous chunk of memory to store the variable, letting the
compiler and the operating system determine where that chunk is allocated. If a
variable is reassigned, as in

>> P = rand(5,6);

These array size concepts are summarized in the following table:

Array Size Description

s=size(A) Returns a row vector s whose first element is the number of rows
in A, and whose second element is the number of columns in A

[r,c]=size(A) Returns two scalars, r and c, containing the number of rows and
columns, respectively

r=size(A,1) Returns the number of rows in A

c=size(A,2) Returns the number of columns in A

n=length(A) Returns max(size(A)) for nonempty A, 0 when A has either zero
rows or zero columns and the length of A if A is a vector

n=max(size(A)) Returns length(A) for nonempty A, and for empty A returns the
length of any nonzero dimension of A

n=numel(A) Returns the total number of elements in A

112 Chapter 5 Arrays and Array Operations

the original memory is deallocated, and a new allocation request is made for the new
variable in its new size. Once again, it is up to the compiler and the operating system
to figure out how to implement these tasks. Clearly, when the reassigned variable is
larger than the original, a different chunk of contiguous memory is required to store
the new data.

In a case where the variable reassignment just so happens to use exactly the
same amount of memory, MATLAB still goes through the memory allocation and
deallocation process:

>> P = zeros(5,6); % same size as earlier

>> P = ones(6,5); % same number of elements as earlier

As a result, reusing variable names does not eliminate memory allocation or deal-
location overhead. However, it does clear the memory used by prior data that are no
longer needed. The exception to this reallocation is with scalars. For example, a = 1
followed by a = 2 simply copies the new value into the old memory location.

On the other hand, if an assignment statement addresses indices that already
exist in a variable, the associated memory locations are updated, and no allocation
or deallocation overhead is incurred. For example,

>> P(3,3) = 1;

does not force any memory allocation calls because P(3,3) already exists. The
variable size remains the same, and hence, there’s no need to find a different
 contiguous chunk of memory to store it. However, if an assignment statement
increases the size of a variable, as in the code

>> P(8,1) = 1;

>> size(P)

ans =

 8 5

which makes P grow from 6-by-5 or 30 elements to 8-by-5 or 40 elements, MATLAB
requests memory for the revised variable, copies the old variable into the new
 memory, and then deallocates the old memory chunk, thereby incurring allocation
or deallocation overhead.

When all the indices of a variable are addressed in an assignment statement,
such as

>> P(:) = ones(1,40);

the number of elements on the left- and right-hand sides must be equal. When this
is true, MATLAB simply copies the data on the right-hand side into the memory

Section 5.13 Arrays and Memory Utilization 113

that already exists on the left-hand side. No allocation or deallocation overhead is
incurred. Furthermore, the dimensions of P remain unchanged:

>> size(P)

ans =

 8 5

In MATLAB, variables can be declared global in scope using the global com-
mand. (This is discussed elsewhere in the text.) From a memory-management point
of view, global variables do not behave any differently than ordinary variables. So
there is neither benefit from, nor penalty for, using them.

One interesting thing that MATLAB does to improve performance is a fea-
ture called delayed copy. For example, in the code

>> A = zeros(10);

>> B = zeros(10);

>> C = B;

the variables A and B each have memory for 100 elements allocated to them.
However, the variable C does not have any memory allocated to it. It shares the
memory allocated to B. Copying of the data in B to a chunk of memory allocated to
C does not take place until either B or C is modified. That is, a simple assignment,
such as that shown, does not immediately create a copy of the right-hand-side array
in the left-hand-side variable. When an array is large, it is advantageous to delay the
copy. That is, future references to C simply access the associated contents of B, and
so to the user it appears that C is equal to B. Time is taken to copy the array B into
the variable C only if the contents of B are about to change or if the contents of C
are about to be assigned new values by some MATLAB statement. While the time
saved by this delayed-copy feature is insignificant for smaller arrays, it can lead to
significant performance improvements for very large arrays.

The delayed-copy scheme applies to functions as well. When a function is
called, for example, myfunc(a,b,c), the arrays a, b, and c are not copied into
the workspace of the function, unless the function modifies them in some way. By
implementing a delayed copy, memory-allocation overhead is avoided, unless the
function modifies the variable. As a result, if that function only reads data from the
array, there is no performance penalty for passing a large array to a function. (This
feature is covered in Chapter 12 as well.)

When you call a function, it is common to pass the result of a computation or a
function output directly to another function. For example, in the code

>> prod(size(A))

ans =

 100

114 Chapter 5 Arrays and Array Operations

the results from the function size(A) are passed directly to the function prod, with-
out explicitly storing the result in a named variable. The memory used to execute
this statement is identical to

>> tmp = size(A);

>> prod(tmp)

ans =

 100

In other words, even though the first statement did not explicitly create a variable
to store the results from size(A), MATLAB created an implicit variable and then
passed it to the function prod. The only benefit gained by the first approach is that
the implicit variable is automatically cleared after the function call.

In many applications, it is convenient to increase the size of an array as part
of a computational procedure. Usually, this procedure is part of some looping
 structure, but for now, let’s consider a simpler example:

>> A = 1:5

A =

 1 2 3 4 5

>> B = 6:10;

>> A = [A;B]

A =

 1 2 3 4 5

 6 7 8 9 10

>> C = 11:15;

>> A = [A;C]

A =

 1 2 3 4 5

 6 7 8 9 10

 11 12 13 14 15

Every time the size of the variable A is increased, new memory is allocated, old
data is copied, and old memory is deallocated. If the arrays involved are large
or the reassignment occurs numerous times, then memory overhead can signifi-
cantly reduce algorithm speed. To alleviate the problem, you should preallocate
all the memory needed and then fill it as required. Doing so for the preceding
example gives

Section 5.13 Arrays and Memory Utilization 115

>> A = zeros(3,5) % grab all required memory up front

A =

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 0

>> A(1,:) = 1:5; % no memory allocation here

>> B = 6:10;

>> A(2,:) = B; % no memory allocation here

>> C = 11:15;

>> A(3,:) = C % no memory allocation here

A =

 1 2 3 4 5

 6 7 8 9 10

 11 12 13 14 15

While this example is somewhat silly, it serves to illustrate that the memory-
allocation process for the variable A is performed only once, rather than once at
every reassignment of A.

If the size of a variable is decreased, no additional memory allocation is
 performed. The deleted elements are removed and the memory for the unused
 elements is deallocated, that is, the memory is compacted.

>> A = A(:,1:3) % no memory allocation; deallocation does occur

A =

 1 2 3

 6 7 8

 11 12 13

The following table summarizes the facts discussed in this section:

Syntax Description

P=zeros(100);
P=rand(5,6);

Reassignment of a variable incurs memory allocation and
deallocation overhead.

P(3,3)=1; If the indices on the left exist, no memory allocation and
deallocation is performed.

116 Chapter 5 Arrays and Array Operations

P(8,1)=1; If the indices on the left do not exist, memory allocation and
deallocation occurs.

P=zeros(5,6);
P=ones(5,6);

Reassignment of a variable incurs memory allocation and
deallocation overhead, even if the reassignment does not
change the number of elements involved.

P(:)=rand(1,30) If P exists, contents from the right-hand side are copied into
the memory allocated on the left. No memory allocation and
deallocation is performed.

B=zeros(10); C=B; Delayed copy. C and B share the memory allocated to B until
either B or C is modified.

prod(size(A))
tmp=size(A);
prod(tmp)

Implicit and explicit variables require the same memory
allocation. However, the implicit variable is automatically
cleared.

myfunc(a,b,c) Delayed copy. The variables a, b, and c are not copied into
the function workspace unless the function modifies them. No
memory allocation and deallocation overhead is incurred if the
variables are not modified within the function.

A=zeros(3,5);
A(1,:)=1:5;
A(2,:)=6:10;
A(3,:)=11:15;

Preallocate all memory for a variable that grows as an
algorithm progresses. Memory allocation and deallocation
overhead is incurred only once, rather than once per iteration
or reassignment.

A=A(:,1:3); When the size of a variable is decreased, the variable uses the
same memory location so no new memory is allocated, but the
unused portion is deallocated.

117

In the previous chapter, 1- and 2-D arrays and their manipulation were illustrated.
Since MATLAB version 5 appeared several years ago, MATLAB has added
 support for arrays of arbitrary dimensions. For the most part, MATLAB supports
multidimensional arrays (i.e., n-D arrays) by using the same functions and address-
ing techniques that apply to 1- and 2-D arrays. In general, the third dimension is
numbered by pages, while higher dimensions have no generic name. Thus, a 3-D
array has rows, columns, and pages. Each page contains a 2-D array of rows and
columns. In addition, just as all of the columns of a 2-D array must have the same
number of rows and vice versa, all of the pages of a 3-D array must have the same
number of rows and columns. One way to visualize 3-D arrays is to think of the
residential listings (white pages) in a phone book. Each page has the same number
of columns and the same number of names (rows) in each column. The stack of all
of the pages forms a 3-D array of names and phone numbers.

Even though there is no limit to the number of dimensions, 3-D arrays are predom-
inately used as examples in this chapter, because they are easily visualized and displayed.

6.1 ARRAY CONSTRUCTION

Multidimensional arrays can be created in several ways:

>> A = zeros(4,3,2)

A(:,:,1) =

 0 0 0

 0 0 0

Multidimensional
Arrays

6

118 Chapter 6 Multidimensional Arrays

 0 0 0

 0 0 0

A(:,:,2) =

 0 0 0

 0 0 0

 0 0 0

 0 0 0

This is an array of zeros, having four rows, three columns, and two pages. The
first page is displayed first, followed by the second page. The other common
 array-generation functions ones, rand, and randn work the same way, simply by
adding dimensions to the input arguments.

Direct indexing also works, as in the following example:

>> A = zeros(2,3) % start with a 2-D array

A =

 0 0 0

 0 0 0

>> A(:,:,2) = ones(2,3) % add a second page to go 3-D!

A(:,:,1) =

 0 0 0

 0 0 0

A(:,:,2) =

 1 1 1

 1 1 1

>> A(:,:,3) = 4 % add a third page by scalar expansion

A(:,:,1) =

 0 0 0

 0 0 0

A(:,:,2) =

 1 1 1

 1 1 1

A(:,:,3) =

 4 4 4

 4 4 4

This approach starts with a 2-D array, which is the first page of a 3-D array. Then,
additional pages are added by straightforward array addressing.

Section 6.1 Array Construction 119

The functions reshape and repmat can also be used to create n-D arrays.
For example, in the code

>> B = reshape(A,2,9) % 2-D data, stack pages side-by-side

B =

 0 0 0 1 1 1 4 4 4

 0 0 0 1 1 1 4 4 4

>> B = [A(:,:,1) A(:,:,2) A(:,:,3)] % equivalent to above

B =

 0 0 0 1 1 1 4 4 4

 0 0 0 1 1 1 4 4 4

>> reshape(B,2,3,3) % recreate A

ans(:,:,1) =

 0 0 0

 0 0 0

ans(:,:,2) =

 1 1 1

 1 1 1

ans(:,:,3) =

 4 4 4

 4 4 4

>> reshape(B,[2 3 3]) % alternative to reshape(B,2,3,3)

ans(:,:,1) =

 0 0 0

 0 0 0

ans(:,:,2) =

 1 1 1

 1 1 1

ans(:,:,3) =

 4 4 4

 4 4 4

reshape can change any dimensional array into any other dimensional array.

120 Chapter 6 Multidimensional Arrays

The code

>> C = ones(2,3) % new data

C =

 1 1 1

 1 1 1

>> repmat(C,1,1,3) % this form not allowed above 2-D!

??? Error using ==> repmat

Too many input arguments.

>> repmat(C,[1 1 3]) % this is how to do it

ans(:,:,1) =

 1 1 1

 1 1 1

ans(:,:,2) =

 1 1 1

 1 1 1

ans(:,:,3) =

 1 1 1

 1 1 1

replicates C once in the row dimension, once in the column dimension, and three
times in the page dimension.

The cat function creates n-D arrays from lower dimensional arrays:

>> a = zeros(2); % new data

>> b = ones(2);

>> c = repmat(2,2,2);

>> D = cat(3,a,b,c) % conCATenate a,b,c along the 3rd dimension

D(:,:,1) =

 0 0

 0 0

D(:,:,2) =

 1 1

 1 1

Section 6.2 Array Mathematics and Manipulation 121

D(:,:,3) =

 2 2

 2 2

>> D = cat(4,a,b,c) % try the 4th dimension!

D(:,:,1,1) =

 0 0

 0 0

D(:,:,1,2) =

 1 1

 1 1

D(:,:,1,3) =

 2 2

 2 2

>> D(:,1,:,:) % look at elements in column 1

ans(:,:,1,1) =

 0

 0

ans(:,:,1,2) =

 1

 1

ans(:,:,1,3) =

 2

 2

>> size(D)

ans =

 2 2 1 3

Note that D has two rows, two columns, one page, and three fourth-dimension parts.

6.2 ARRAY MATHEMATICS AND MANIPULATION

As additional dimensions are created, array mathematics and manipulation become
more cumbersome. Scalar–array arithmetic remains straightforward, but array–
array arithmetic requires that the two arrays have the same size in all dimensions.
Since scalar–array and array–array arithmetic remains unchanged from the 2-D
case presented in the previous chapter, further illustrations are not presented here.

122 Chapter 6 Multidimensional Arrays

MATLAB provides several functions for the manipulation of n-D arrays. The
function squeeze eliminates singleton dimensions; that is, it eliminates dimensions
of size 1. For example, in the code

>> E = squeeze(D) % squeeze dimension 4 down to dimension 3

E(:,:,1) =

 0 0

 0 0

E(:,:,2) =

 1 1

 1 1

E(:,:,3) =

 2 2

 2 2

>> size(E)

ans =

 2 2 3

E contains the same data as D, but has two rows, two columns, and three pages.
How about a 3-D vector? This case is shown as follows:

>> v(1,1,:) = 1:6 % a vector along the page dimension

v(:,:,1) =

 1

v(:,:,2) =

 2

v(:,:,3) =

 3

v(:,:,4) =

 4

v(:,:,5) =

 5

v(:,:,6) =

 6

>> squeeze(v) % squeeze it into a column vector

Section 6.2 Array Mathematics and Manipulation 123

ans =

 1

 2

 3

 4

 5

 6

>> v(:) % this always creates a column vector

ans =

 1

 2

 3

 4

 5

 6

The function reshape allows you to change the row, column, page, and higher
order dimensions, without changing the total number of elements:

>> F = cat(3,2+zeros(2,4),ones(2,4),zeros(2,4)) % new 3-D array

F(:,:,1) =

 2 2 2 2

 2 2 2 2

F(:,:,2) =

 1 1 1 1

 1 1 1 1

F(:,:,3) =

 0 0 0 0

 0 0 0 0

>> G = reshape(F,[3 2 4]) % change it to 3 rows, 2 columns, 4 pages

G(:,:,1) =

 2 2

 2 2

 2 2

124 Chapter 6 Multidimensional Arrays

G(:,:,2) =

 2 1

 2 1

 1 1

G(:,:,3) =

 1 1

 1 0

 1 0

G(:,:,4) =

 0 0

 0 0

 0 0

>> H = reshape(F,[4 3 2]) % or 4 rows, 3 columns, 2 pages

H(:,:,1) =

 2 2 1

 2 2 1

 2 2 1

 2 2 1

H(:,:,2) =

 1 0 0

 1 0 0

 1 0 0

 1 0 0

>> K = reshape(F,2,12) % 2 rows, 12 columns, 1 page

K =

 2 2 2 2 1 1 1 1 0 0 0 0

 2 2 2 2 1 1 1 1 0 0 0 0

Reshaping can be confusing until you become comfortable with visualizing arrays in
n-D space. In addition, some reshaping requests make more practical sense than others.
For example, G in the previously displayed code has little practical value, whereas K is
much more practical, because it stacks the pages of F side by side as additional columns.

The reshaping process follows the same pattern as that for 2-D arrays. Data
are gathered first by rows, followed by columns, then by pages, and so on into higher
dimensions. That is, all the rows in the first column are gathered, then all the rows in
the second column, and so on. Thus, when the first page has been gathered, MATLAB
moves on to the second page and starts over with all the rows in the first column.

Section 6.2 Array Mathematics and Manipulation 125

The order in which array elements are gathered is the order in which the
 functions sub2ind and ind2sub consider single-index addressing:

>> sub2ind(size(F),1,1,1) % 1st row, 1st column, 1st page is element 1

ans =

 1

>> sub2ind(size(F),1,2,1) % 1st row, 2nd column, 1st page is element 3

ans =

 3

>> sub2ind(size(F),1,2,3) % 1st row, 2nd column, 3rd page is element 19

ans =

 19

>> [r,c,p] = ind2sub(size(F),19) % inverse of above

r =

 1

c =

 2

p =

 3

The n-D equivalent to flipud and fliplr is flipdim:

>> M = reshape(1:18,2,3,3) % new data

M(:,:,1) =

 1 3 5

 2 4 6

M(:,:,2) =

 7 9 11

 8 10 12

M(:,:,3) =

 13 15 17

 14 16 18

>> flipdim(M,1) % flip row order

126 Chapter 6 Multidimensional Arrays

ans(:,:,1)

 2 4 6

 1 3 5

ans(:,:,2) =

 8 10 12

 7 9 11

ans(:,:,3) =

 14 16 18

 13 15 17

>> flipdim(M,2) % flip column order

ans(:,:,1) =

 5 3 1

 6 4 2

ans(:,:,2) =

 11 9 7

 12 10 8

ans(:,:,3) =

 17 15 13

 18 16 14

>> flipdim(M,3) % flip page order

ans(:,:,1) =

 13 15 17

 14 16 18

ans(:,:,2) =

 7 9 11

 8 10 12

ans(:,:,3) =

 1 3 5

 2 4 6

The function shiftdim shifts the dimensions of an array. That is, if an array
has r rows, c columns, and p pages, a shift by one dimension creates an array with c
rows, p columns, and r pages, as shown in the following example:

Section 6.2 Array Mathematics and Manipulation 127

>> M % recall data

M(:,:,1) =

 1 3 5

 2 4 6

M(:,:,2) =

 7 9 11

 8 10 12

M(:,:,3) =

 13 15 17

 14 16 18

>> shiftdim(M,1) % shift one dimension

ans(:,:,1) =

 1 7 13

 3 9 15

 5 11 17

ans(:,:,2) =

 2 8 14

 4 10 16

 6 12 18

Shifting dimensions by 1 causes the first row on page 1 to become the first
column on page 1, the second row on page 1 to become the first column on
page 2, and so on.

In the code

>> shiftdim(M,2) % shift two dimensions

ans(:,:,1) =

 1 2

 7 8

 13 14

ans(:,:,2) =

 3 4

 9 10

 15 16

128 Chapter 6 Multidimensional Arrays

ans(:,:,3) =

 5 6

 11 12

 17 18

the first column on page 1 of M becomes the first row on page 1, the first column on
page 2 becomes the second row on page 1, and so on. If you are like the authors of
this text, shifting dimensions is not immediately intuitive. For the 3-D case, it helps
if you visualize M forming a rectangular box with page 1 on the front, followed by
page 2 behind page 1, and then page 3 forming the back of the box. Hence, shifting
dimensions is equivalent to rotating the box so that a different side faces you.

The function shiftdim also accepts negative shifts. In this case, the array is
pushed into higher dimensions, leaving singleton dimensions behind, as in this example:

>> M % recall data

M(:,:,1) =

 1 3 5

 2 4 6

M(:,:,2) =

 7 9 11

 8 10 12

M(:,:,3) =

 13 15 17

 14 16 18

>> size(M) % M has 2 rows, 3 columns, and 3 pages

ans =

 2 3 3

>> shiftdim(M,-1) % shift dimensions out by 1

ans(:,:,1,1) =

 1 2

ans(:,:,2,1) =

 3 4

ans(:,:,3,1) =

 5 6

ans(:,:,1,2) =

 7 8

Section 6.2 Array Mathematics and Manipulation 129

ans(:,:,2,2) =

 9 10

ans(:,:,3,2) =

 11 12

ans(:,:,1,3) =

 13 14

ans(:,:,2,3) =

 15 16

ans(:,:,3,3) =

 17 18

>> size(ans)

ans =

 1 2 3 3

The result now has four dimensions. The reader is left to figure out the correspon-
dence between the original data and the shifted result.

In 2-D arrays, the transpose operator swapped rows and columns, converting
an r-by-c array into a c-by-r array. The functions permute and ipermute are the
n-D equivalents of the transpose operator. By itself, permute is a generalization of
the function shiftdim. In the code

>> M % recall data

M(:,:,1) =

 1 3 5

 2 4 6

M(:,:,2) =

 7 9 11

 8 10 12

M(:,:,3) =

 13 15 17

 14 16 18

>> permute(M,[2 3 1]) % same as shiftdim(M,1)

ans(:,:,1) =

 1 7 13

 3 9 15

 5 11 17

130 Chapter 6 Multidimensional Arrays

ans(:,:,2) =

 2 8 14

 4 10 16

 6 12 18

>> shiftdim(M,1)

ans(:,:,1) =

 1 7 13

 3 9 15

 5 11 17

ans(:,:,2) =

 2 8 14

 4 10 16

 6 12 18

[2 3 1] instructs the function to make the second dimension the first, the third
dimension the second, and the first dimension the third.

Now, in the simpler example

>> permute(M,[2 1 3])

ans(:,:,1) =

 1 2

 3 4

 5 6

ans(:,:,2) =

 7 8

 9 10

 11 12

ans(:,:,3) =

 13 14

 15 16

 17 18

[2 1 3] instructs permute to transpose the rows and columns, but to leave the third
dimension alone. As a result, each page in the result is a conventional transpose of
the original data.

The second argument to permute, called ORDER, must be a permutation of
the dimensions of the array, passed as the first argument; otherwise, the requested
 permutation doesn’t make sense, as shown in the following example:

Section 6.2 Array Mathematics and Manipulation 131

>> permute(M,[2 1 1])

??? Error using ==> permute

ORDER cannot contain repeated permutation indices.

>> permute(M,[2 1 4])

??? Error using ==> permute

ORDER contains an invalid permutation index.

The function permute can also be used to push an array into higher dimensions.
For example, shiftdim(M,-1), shown earlier, is equivalent to

>> permute(M,[4 1 2 3])

ans(:,:,1,1) =

 1 2

ans(:,:,2,1) =

 3 4

ans(:,:,3,1) =

 5 6

ans(:,:,1,2) =

 7 8

ans(:,:,2,2) =

 9 10

ans(:,:,3,2) =

 11 12

ans(:,:,1,3) =

 13 14

ans(:,:,2,3) =

 15 16

ans(:,:,3,3) =

 17 18

An array always has a unit dimension beyond its size; for example, a 2-D array has
one page. That is, all dimensions past the nonunity size of an array are singletons.
As a result, in the preceding example, the singleton fourth dimension in M is made
the first dimension of the result shown.

For 2-D arrays, issuing the transpose operator a second time returns the array
to its original form. Because of the added generality of n-D arrays, the function
ipermute is used to undo the actions performed by permute:

132 Chapter 6 Multidimensional Arrays

>> M % recall data

M(:,:,1) =

 1 3 5

 2 4 6

M(:,:,2) =

 7 9 11

 8 10 12

M(:,:,3) =

 13 15 17

 14 16 18

>> permute(M,[3 2 1]) % sample permutation

ans(:,:,1) =

 1 3 5

 7 9 11

 13 15 17

ans(:,:,2) =

 2 4 6

 8 10 12

 14 16 18

>> ipermute(ans,[3 2 1]) % back to original data

ans(:,:,1) =

 1 3 5

 2 4 6

ans(:,:,2) =

 7 9 11

 8 10 12

ans(:,:,3) =

 13 15 17

 14 16 18

6.3 ARRAY SIZE

As demonstrated in the prior chapter and earlier in this chapter, the function
size returns the size of an array along each of its dimensions. The functionality
of size is unchanged from the features demonstrated in the last chapter.
In addition, the function numel remains unchanged. Consider the following example:

Section 6.3 Array Size 133

>> size(M) % return array of dimensions

ans =

 2 3 3

>> numel(M) % number of elements

ans =

 18

>> [r,c,p] = size(M) % return individual variables

r =

 2

c =

 3

p =

 3

>> r = size(M,1) % return just rows

ans =

 2

>> c = size(M,2) % return just columns

c =

 3

>> p = size(M,3) % return just pages

p =

 3

>> v = size(M,4) % default for all higher dimensions

v =

 1

When the number of dimensions is unknown or variable, the function ndims
is useful:

>> ndims(M)

ans =

 3

>> ndims(M(:,:,1)) % just the 2-D first page of M

ans =

 2

134 Chapter 6 Multidimensional Arrays

In this last example, M(:,:,1) is a 2-D array, because it has only one page.
That is, it has a singleton third dimension. The function ndims is equivalent to the
following simple code fragment:

>> length(size(M))

ans =

 3

The following table summarizes the functions illustrated in this chapter:

n-D Function Description

ones(r,c, . . .)

zeros(r,c, . . .)

rand(r,c, . . .)

randn(r,c, . . .)

Basic n-D array creation

reshape(B,2,3,3)
reshape(B,[2 3 3])

Reshapes array into arbitrary dimensions

repmat(C,[1 1 3]) Replicates array into arbitrary dimensions

cat(3,a,b,c) Concatenates array along a specified dimension.

squeeze(D) Eliminates dimensions of size equal to 1 (i.e.,
singleton dimensions)

sub2ind(size(F),1,1,1)
[r,c,p]=ind2sub(size(F),19)

Subscript to single-index conversion, and
single-index to subscript conversion

flipdim(M,1) Flips order along a given dimension; n-D
equivalent to flipud and fliplr

shiftdim(M,2) Shifts dimensions; circular shift for positive second
argument; push-out for negative second argument

permute(M,[2 1 3])
ipermute(M,[2 1 3])

Arbitrary permutation and inverse of dimensions;
generalization of transpose operator to n-D arrays

size(M)

[r,c,p]=size(M)

r=size(M,1)

c=size(M,2)

p=size(M,3)

Size of n-D array along its dimensions

ndims(M) Number of dimensions in an array

numel(M) Number of elements in an array

135

In the preceding chapters, numeric variables were real or complex arrays containing
values stored in double precision. Historically, all data in MATLAB was stored
in double-precision format. Character strings and logical data were stored as
 double-precision, 8 byte, real arrays. Needless to say, this resulted in very inefficient
memory usage. Character strings need, at most, two bytes per character, and logical
arrays require only one bit per element to distinguish between True and False.

Over time, these storage inefficiencies were eliminated. First, charac-
ter strings became a separate data type or variable class and were changed to a
two-bytes-per-character representation. Then, logical arrays became a separate
data type and were changed to a one-byte-per-value representation. Most recently,
single-precision data types and a variety of signed and unsigned integer data types
were introduced.

Prior to MATLAB 7, arithmetic operations on single-precision and integer
data were undefined. However, sorting, searching, logical comparisons, and array
manipulation were supported. To perform arithmetic operations on these data
types, it was necessary to convert the data to double precision before performing
the desired operation. Then, if desired, the result could be converted back to the
original data type. With the release of MATLAB 7, most operations on these data
types are performed natively, without explicit conversions.

7.1 INTEGER DATA TYPES

MATLAB supports signed and unsigned integer data types having 8-, 16-, 32-, and
64-bit lengths. These data types are summarized in the following table:

Numeric Data Types

7

136 Chapter 7 Numeric Data Types

With the exception of the range of definition, each of these integer data types
has the same properties. The upper and lower limits of their ranges are given by the
intmax and intmin functions, as shown in the following example:

>> intmax('int8')

ans =

 127

>> intmin('uint32')

ans =

 0

Variables containing integer data can be created in a number of ways. When
an array of zeros or ones is desired, the functions zeros and ones can be used:

>> m = zeros(1,6,'uint32') % specify data type as last argument

m =

Columns 1 through 5

 0 0 0 0 0

Column 6

 0

>> class(m) % confirm class of result

ans =

 uint32

>> n = ones(4,'int8') % again specify data type as last argument

Data Type Description

uint8 Unsigned 8-bit integer in the range 0 to 255 (or 0 to 28)

int8 Signed 8-bit integer in the range −128 to 127 (or −27 to 27−1)

uint16 Unsigned 16-bit integer in the range 0 to 65,535 (or 0 to 216)

int16 Signed 16-bit integer in the range −32,768 to 32,767 (or −215 to 215−1)

uint32 Unsigned 32-bit integer in the range 0 to 4,294,967,295 (or 0 to 232)

int32 Signed 32-bit integer in the range −2,147,483,648 to 2,147,483,647
(or −231 to 231−1)

uint64 Unsigned 64-bit integer in the range 0 to 18,446,744,073,709,551,615
(or 0 to 264)

int64 Signed 64-bit integer in the range −9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 (or −263 to 263−1)

Section 7.1 Integer Data Types 137

n =

 1 1 1 1

 1 1 1 1

 1 1 1 1

 1 1 1 1

>> class(n) % confirm class of result

ans =

int8

For other values, one must convert or cast results into the desired data type:

>> k = 1:7 % create default double precision

k =

 1 2 3 4 5 6 7

>> class(k)

ans =

double

>> kk = uint8(k) % convert using uint8 function

kk =

 1 2 3 4 5 6 7

>> class(kk)

ans =

uint8

>> kkk = cast(k,'uint8') % use more general cast function

kkk =

 1 2 3 4 5 6 7

>> class(kkk)

ans =

uint8

Once a variable of a given data type exists, it retains that data type even if other
data are inserted into it:

>> kkk(3:5) = zeros(1,3)

kkk =

 1 2 0 0 0 6 7

138 Chapter 7 Numeric Data Types

>> class(kkk) % class remains unchanged

ans =

uint8

>> kkk(5:7) = ones(1,3,'uint8')

kkk =

 1 2 0 0 1 1 1

>> class(kkk) % class remains unchanged

ans =

uint8

>> kkk(1:2:end) = exp(1)

kkk =

 3 2 3 0 3 1 3

>> class(kkk)

ans =

uint8

Note that when a noninteger is inserted, it is first rounded to the nearest integer and
then inserted into the array.

Mathematical operations on integer data types of the same kind are defined,
as in the following code:

>> k = int8(1:7) % create new data

k =

 1 2 3 4 5 6 7

>> m = int8(randperm(7)) % more new data

m =

 7 2 3 6 4 1 5

>> k+m % addition

ans =

 8 4 6 10 9 7 12

>> k-m % subtraction

ans =

 -6 0 0 -2 1 5 2

Section 7.1 Integer Data Types 139

>> k.*m % element by element multiplication

ans =

 7 4 9 24 20 6 35

>> k./m % element by element division

ans =

 0 1 1 1 1 6 1

>> k % recall data

k =

 1 2 3 4 5 6 7

>> k/k(2)

ans =

 1 1 2 2 3 3 4

Addition, subtraction, and multiplication are straightforward. However, in many
cases, integer division does not produce an integer result. As shown, MATLAB
performs the integer division as if the arrays were double precision and then rounds
the result to the nearest integer.

When dividing integers, MATLAB effectively performs the operation in double
 precision, rounds the result to the nearest integer, and converts the result back to the
integer data type involved.

Mathematical operations between variables of different integer data types are
not defined. However, mathematical operations between a double-precision scalar
and an integer data type implicitly convert the double-precision scalar to the corre-
sponding integer type and then performs the requested operation, as the following
code illustrates:

>> m % recall data and data type

m =

 0 0 0 0 0 0

>> class(m)

ans =

int8

140 Chapter 7 Numeric Data Types

>> n = cast(k,'uint16') % new data of type uint16

n =

 1 2 3 4 5 6 7

>> m+n % try mixed type addition

??? Error using ==> plus

Integers can only be combined with integers of the same class, or scalar doubles.

>> n+3 % try adding default double precision constant 3

ans =

 4 5 6 7 8 9 10

>> class(ans)

ans =

uint16

>> n-(1:7) % try nonscalar double precision subtraction

??? Error using ==> minus

Integers can only be combined with integers of the same class, or scalar doubles.

MATLAB supports mixed mathematical operations between a scalar double-
precision value and an integer data type, but it does not support operations
between an array of double-precision values and an integer array.

Given the limited range of each integer data type, mathematical operations may
produce results that exceed the data type’s range. In this case, MATLAB imple-
ments saturation. That is, when the result of an operation exceeds that specified by
intmin and intmax, the result becomes either intmin or intmax, depending on
which limit is exceeded:

>> k = cast('hellothere','uint8') % convert a string to uint8

k =

 104 101 108 108 111 116 104 101 114 101

>> double(k)+150 % perform addition in double precision

ans =

 254 251 258 258 261 266 254 251 264 251

>> k+150 % perform addition in uint8, saturate at intmax('uint8')=255

ans =

 254 251 255 255 255 255 254 251 255 251

Section 7.2 Floating-Point Data Types 141

>> k-110 % perform subtraction in uint8, saturation at intmin('uint8')=0

ans =

 0 0 0 0 1 6 0 0 4 0

In sum, MATLAB supports a variety of integer data types. Except for the
64-bit types, these data types are more storage efficient than double-precision data.
Mathematical operations on identical integer data types produce results in the
same data type. Operations between mixed data types are defined only between
a double-precision scalar and the integer data types. Although not illustrated
 previously, the double-precision values inf and NaN map to intmax and zero
respectively for all integer data types.

7.2 FLOATING-POINT DATA TYPES

The default data type in MATLAB is double precision, or simply double. This
floating-point data type conforms to the IEEE standard for double-precision
 arithmetic. MATLAB supports arrays containing single-precision data as a storage-
saving alternative. Mathematical operations on single-precision data are defined
and perform similarly to the integer data types illustrated in the preceding section.
As shown in the following example, the values of realmin, realmax, and eps reflect
the reduced range and precision of single-precision data:

>> realmin('single')

ans =

 1.1754944e-38

>> realmax('single')

ans =

 3.4028235e+38

>> eps('single')

ans =

 1.1920929e-07

>> realmin('double') % compare to corresponding double values

ans =

 2.225073858507201e-308

>> realmax('double')

ans =

 1.797693134862316e+308

142 Chapter 7 Numeric Data Types142 Chapter 7 Numeric Data Types

>> eps % same as eps(1) and eps('double')

ans =

 2.220446049250313e-16

The creation of single-precision data follows the approach used for integer data types:

>> a = ones(1,5,'single') % specify data type as last argument

a =

 1 1 1 1 1

>> b = *eye(3,'single') % specify data type as last argument

b =

 2 0 0

 0 2 0

 0 0 2

>> c = single(11:17) % convert default double precision to single

c =

 11 12 13 14 15 16 17

>> d = cast(3:-1:-3,'single') % use more general cast function

d =

 3 2 1 0 -1 -2 -3

Mathematical operations between single-precision data and between single- and
double-precision data produce single-precision results:

>> c.^d % element by element exponentiation of singles

ans =

 1.0e+003 *

 Columns 1 through 4

 1.3310000 0.1440000 0.0130000 0.0010000

 Columns 5 through 7

 0.0000667 0.0000039 0.0000002

>> c*pi % multiplication by a scalar double

ans =

 Columns 1 through 4

 34.5575180 37.6991119 40.8407059 43.9822960

Section 7.2 Floating-Point Data Types 143

Single-precision data share the special floating-point values of inf and NaN that are
well known in double precision:

c = % recall data

 11 12 13 14 15 16 17

>> c(1:2:end) = 0 % inserting double precision does not change data type

c =

 0 12 0 14 0 16 0

>> c./c % create 0/0 values

Warning: Divide by zero.

ans =

 NaN 1 NaN 1 NaN 1 NaN

>> 1./c % create 1/0 values

Warning: Divide by zero.

ans =

 Columns 1 through 4

 Inf 0.0833333 Inf 0.0714286

 Columns 5 through 7

 Inf 0.0625000 Inf

MATLAB supports mathematical operations between double- and single-precision
arrays, returning single-precision results.

 Columns 5 through 7

 47.1238899 50.2654839 53.4070740

>> d.*rand(size(d)) % element by element multiplication by a double array

ans =

 4.8017 0.7094 1.6870 2.7472 1.5844 0.9595 0

>> class(ans)

ans =

single

144 Chapter 7 Numeric Data Types

7.3 SUMMARY

The following table identifies functions that pertain to the numeric data types
 supported in MATLAB:

Function Description

double Double-precision data type creation and conversion

single Single-precision data type creation and conversion

int8, int16,

int32, int64

Signed integer data type creation and conversion

uint8, uint16,
uint32, uint64

Unsigned integer data type creation and conversion

isnumeric True for integer or floating-point data types

isinteger True for integer data types

isfloat True for single or double data types

isa(x,'type') True if x has class 'type', including 'numeric', 'integer',
and 'float'

cast(x,'type') Casts x to class 'type'

intmax('type') Maximum integer value for class 'type'

intmin('type') Minimum integer value for class 'type'

realmax('type') Maximum floating-point real value for class 'type'

realmin('type') Minimum floating-point real value for class 'type'

eps('type') eps value for floating-point value for class 'type'

eps(x) Distance between x and next larger representable value of
same type as x

zeros(. . . ,'type') Creates array containing zeros of class 'type'

ones(. . . ,'type') Creates array containing ones of class 'type'

eye(. . . ,'type') Creates identity array of class 'type'

rand(. . . ,'type') Creates an array of pseudorandom numbers of class 'type'
from the standard uniform distribution

randn(. . . ,'type') Creates an array of pseudorandom numbers of class 'type'
from the standard normal distribution

randi(. . . ,'type') Creates an array of pseudorandom integers of class 'type'
from a uniform discrete distribution

145

MATLAB version 5 introduced two container data types called cell arrays and
structures. These data types allow the grouping of dissimilar, but related, arrays into
a single variable. Data management then becomes easier, since groups of related
data can be organized and accessed through a cell array or structure. Because cell
arrays and structures are containers for other data types, mathematical operations
on them are not defined. The contents of a cell or structure must be addressed to
perform mathematical operations.

One way to visualize cell arrays is to imagine a collection of post office boxes
covering a wall at the post office. The collection of boxes is the cell array, with each
box being one cell in the array. The contents of each post office box are different, just
as the contents of each cell in a cell array are different types or sizes of MATLAB
data, such as character strings or numerical arrays of varying dimensions. Just as
each post office box is identified by a number, each cell in a cell array is indexed by
a number. When you send mail to a post office box, you identify the box number
you want it put in. When you put data in a particular cell, you identify the cell num-
ber you want them put in. The number is also used to identify which box or cell to
take data out of.

Structures are almost identical to cell arrays, except that the individual post
office boxes (or data-storage locations) are not identified by number. Instead, they
are identified by name. Continuing the post office box analogy, the collection of
post office boxes is the structure, and each box is identified by its owner’s name. To
send mail to a post office box, you identify the name of the box you want it put in.
To place data in a particular structure element, you identify the name (i.e., field) of
the structure element to put the data in.

Cell Arrays and
Structures

8

146 Chapter 8 Cell Arrays and Structures

8.1 CELL ARRAY CREATION

Cell arrays are MATLAB arrays whose elements are cells. Each cell in a cell array
can hold any MATLAB data type, including numerical arrays, character strings,
symbolic objects, other cell arrays, and structures. For example, one cell of a cell
array might contain a numerical array; another, an array of character strings; and
another, a vector of complex values. Cell arrays can be created with any number
of dimensions, just as numerical arrays can. However, in most cases, cell arrays are
created as a simple vector of cells.

Cell arrays can be created by using assignment statements or by preallocating
the array with the cell function and then assigning data to the cells. If you have
trouble with these examples, it is very likely that you have another variable of the
same name in the workspace. If any of the examples that follow give unexpected
results, clear the array from the workspace and try again.

If you assign a cell to an existing variable that is not a cell, MATLAB will stop and
report an error.

Like other kinds of arrays, cell arrays can be built by assigning data to individual
cells, one at a time. There are two different ways to access cells. If you use standard
array syntax to index the array, you must enclose the cell contents in curly braces,
{ }. These curly braces construct a cell array. They act like a call to the cell function:

>> clear A % make sure A is not being used

>> A(1,1) = { [3 2 1; 12 4 86; -23 2 8] };

>> A(1,2) = { 3-3i }; % semicolons suppress display

>> A(2,1) = { 'Some character string' };

>> A(2,2) = { 8:-2:0 } % no semicolon, so display requested

A =

[3x3 double] [3.0000- 3.0000i]

[1x21 char] [1x5 double]

Note that MATLAB shows that A is a 2-by-2 cell array, but it does not show the con-
tents of all cells. Basically, MATLAB shows the cell contents if they do not take up
much space, but only describes the cell contents if they do take up significant space.
The curly braces on the right side of the equal sign indicate that the right-hand-side
expression returns a cell, rather than numerical values. This is called cell indexing.
Alternatively, the following statements create the same cell array:

>> A{1,1} = [3 2 1; 12 4 86; -23 2 8];

>> A{1,2} = 3-3i; % semicolons suppress display

Section 8.1 Cell Array Creation 147

>> A{2,1} = 'Some character string';

>> A{2,2} = 8:-2:0 % no semicolon, so display requested

A =

[3x3 double] [3.0000+ 3.0000i]

[1x21 char] [1x5 double]

Here, the curly braces appear on the left-hand side of the equal sign. The term
A{1,1} indicates that A is a cell array and that the contents of the first row and first
column of the cell array are on the right-hand side of the equal sign. This is called
content addressing. Both methods can be used interchangeably.

As the example demonstrates, curly braces { } are used to access or specify
the contents of cells, whereas parentheses () are used to identify cells, but not
their contents. To apply the post office box analogy, curly braces are used to look
at the contents of post office boxes, whereas parentheses are used to identify post
office boxes without looking inside at their contents.

The two commands A(i,j) = {x}; and A{i,j} = x; both tell MATLAB to
store the content of variable x in the (i,j) element of the cell array A. The notation
A(i,j) is called cell indexing, and the notation A{i,j} is called content addressing.
That is, curly braces { } access the contents of cells, whereas parentheses () identify
cells without looking at their contents.

The celldisp function forces MATLAB to display the contents of cells in the
usual manner:

>> celldisp(A)

A{1,1} =

1 2 3

4 5 6

7 8 9

A{2,1} =

A character string

A{1,2} =

2.0000+ 3.0000i

A{2,2} =

12 10 8 6 4 2 0

If a cell array has many elements, celldisp can produce a lot of output to the
Command window. As an alternative, requesting the contents of the cell by using
content addressing displays the contents of a single cell. This is different from cell
indexing, which identifies the cell, but not its contents:

148 Chapter 8 Cell Arrays and Structures

>> A{2,2} % content addressing

ans =

8 6 4 2 0

>> A(2,2) % cell indexing

ans =

[1x5 double]

>> A{1,:} % address contents of the first row

ans =

 3 2 1

 12 4 86

-23 2 9

ans =

3.0000 - 3.0000i

>> A(1,:)

ans =

[3x3 double] [3.0000- 3.0000i]

Note that the contents of all of the cells shown are generically named ans, because
the cells store data that do not have associated variable names.

Square brackets were used in previous chapters to create numerical arrays.
Curly braces work the same way for cells. In the following example, commas sepa-
rate columns, and semicolons separate rows:

>> B = { [1 2], 'John Smith'; 2+3i, 5 }

B =

[1x2 double] 'John Smith'

[2.0000+ 3.0000i] [5]

When dealing with numerical arrays, it is common to preallocate an array with
zeros and then fill the array as needed. The same can be done with cell arrays. The
cell function creates a cell array and fills it with empty numerical matrices, []:

>> C = cell(2,3)

C =

[] [] []

[] [] []

Once the cell array has been defined, both cell indexing and content addressing can
be used to populate the cells. In the code

Section 8.2 Cell Array Manipulation 149

>> C(1,1) = 'This doesn''t work'

??? Conversion to cell from char is not possible.

the left-hand side uses cell indexing. As a result, the right-hand side must be a cell,
but it is not, because it lacks curly braces surrounding its contents. This problem can
be resolved by addressing the cell correctly:

>> C(1,1) = { 'This does work' }

C =

'This does work' [] []

[] [] []

>> C{2,3} = 'This works too'

C =

'This does work' [] []

[] [] 'This works too'

Because curly braces appear on the left-hand side of the last statement, MATLAB makes
the character string the contents of the addressed cell. Once again, this is an example of
content addressing, whereas the prior statement is an example of cell indexing.

8.2 CELL ARRAY MANIPULATION

The numerical array-manipulation techniques presented in preceding
 chapters apply to cell arrays as well. In a sense, cell array manipulation is just a
natural extension of these techniques to a different type of array. If you assign
data to a cell outside of the dimensions of the current cell array, MATLAB
automatically expands the array and fills the intervening cells with the empty
numerical array [].

Square brackets are used to combine cell arrays into larger cell arrays, just as
they are used to construct larger numerical arrays:

>> A % recall prior cell arrays

A =

[3x3 double] [3.0000- 3.0000i]

[1x21 char] [1x5 double]

>> B

B =

[1x2 double] 'John Smith'

[2.0000+ 3.0000i] [5]

150 Chapter 8 Cell Arrays and Structures

>> C = [A;B]

C =

[3x3 double] [3.0000- 3.0000i]

[1x21 char] [1x5 double]

[1x2 double] 'John Smith'

 [2.0000+ 3.0000i] [5]

A subset of cells can be extracted to create a new cell array by conventional array-
addressing techniques:

>> D = C([1 3],:) % first and third rows

D =

[3x3 double] [2.0000+ 3.0000i]

[1x2 double] 'John Smith'

An entire row or column of a cell array can be deleted by using the empty array:

>> C(3,:) = []

C =

[3x3 double] [2.0000+ 3.0000i]

'A character string' [1x7 double]

[2.0000+ 3.0000i] [5]

Note that curly braces do not appear in either of the preceding expressions,
because we are working with the cell array itself, not the contents of the cells. Once
again, curly braces are used to address the contents of cells, whereas parentheses
are used to identify the cells without regard for their content.

The reshape function can be used to change the configuration of a cell array,
but cannot be used to add or remove cells. For example, in the code

>> X = cell(3,4);

>> size(X) % size of the cell array, not the contents

ans =

3 4

>> Y = reshape(X,6,2);

>> size(Y)

ans =

6 2

Section 8.3 Retrieving Cell Array Content 151

the function reshape naturally reshapes any array, without regard to its type.
Similarly, the size function returns the size of any array type.

The function repmat also works, even though its name implies that it repli-
cates matrices. The function repmat was created when matrices were MATLAB’s
only data type. If MATLAB had been written after the introduction of cell arrays
and other array types, perhaps this function would have been called reparray. The
following example is illustrative:

>> Y % recall data

Y =

[] []

[] []

[] []

[] []

[] []

[] []

>> Z = repmat(Y,1,3)

Z =

[] [] [] [] [] []

[] [] [] [] [] []

[] [] [] [] [] []

[] [] [] [] [] []

[] [] [] [] [] []

[] [] [] [] [] []

8.3 RETRIEVING CELL ARRAY CONTENT

To retrieve the contents of a cell in a cell array, you must apply content addressing,
which involves the use of curly braces. For instance, in the code

>> A % recall cell array

A =

[3x3 double] [3.0000- 3.0000i]

[1x21 char] [1x5 double]

>> x = A{2,2} % content addressing uses { }

x =

8 6 4 2 0

152 Chapter 8 Cell Arrays and Structures

the variable x now contains the numerical value 5, making x a numerical array (a
scalar, in this case). The class function can be used to confirm that this is true, as
in the following example:

>> class(x) % return argument's data type

ans =

double

Because numerical arrays are double precision, class returns a character string
that identifies x as being double. If cell indexing had been used mistakenly, the
result would be different:

>> y = A(2,2)

y =

[1x5 double]

>> y = A(4) % same as above using single index

y =

[1x5 double]

>> class(y) % y is not a double, but a cell!

ans =

cell

>> class(y{1}) % but the contents of y is a double!

ans =

double

By now, you are either bored with this distinction between cell indexing and content
addressing, or your head is spinning from the confusion.

There are also other functions for testing variable types. The following exam-
ples return logical results, where True = 1 and False = 0:

>> iscell(y) % yes, y is a cell

ans =

1

>> iscell(y{1}) % contents of y is NOT a cell

ans =

0

Section 8.3 Retrieving Cell Array Content 153

>> isa(y,'cell') % yes, y is a cell

ans =

1

>> isdouble(y{1}) % this function doesn't exist

??? Undefined function or method 'isdouble' for input arguments of

type 'double'.

>> isnumeric(y{1}) % contents of y is numerical

ans =

1

> isfloat(y{1}) % contents of y is floating point

ans =

1

>> isa(y{1},'double') % contents of y is a double

ans =

1

>> isa(y{1},'numeric') % contents of y is also numeric

ans =

1

>> isa(y{1},'cell') % contents of y is NOT a cell

ans =

0

While you can display the contents of more than one cell array at a time, it
is not possible to assign more than one at a time to a single variable by using a
 standard assignment statement. Consider the following code:

>> B{:,2}

ans =

John Smith

ans =

5

>> d = B{:,2}

d =

John Smith

>> class(d)

154 Chapter 8 Cell Arrays and Structures

ans =

char

If you think about it, this behavior makes sense. How can two pieces of data be
assigned to a single variable? In the preceding example, d is assigned the contents of
the first cell referenced by B{:,2}, that is, B{1,2}. The cell content referenced by
B{2,2} is superfluous and is silently dropped. Extracting data from multiple cells at
a time simply cannot be done so casually.

When addressing the contents of a single cell, it is possible to further address
a subset of the contents by simply appending the desired subscript range:

>> A % recall prior data

A =

[3x3 double] [3.0000- 3.0000i]

[1x21 char] [1x5 double]

>> celldisp(A) % display contents

A{1,1} =

 3 2 1

 12 4 86

-23 2 8

A{2,1} =

Some character string

A{1,2} =

3.0000 - 3.0000i

A{2,2} =

8 6 4 2 0

>> A{1,1}(3,:) % third row of 3-by-3 array

ans =

-23 2 8

>> A{4}(2:5) % second through fifth elements of A{2,2}

ans =

6 4 2 0

>> A{1,2}(2) % second element doesn't exist

??? Index exceeds matrix dimensions.

>> A{2,1}(6:14)

ans =

character

Section 8.4 Comma-Separated Lists 155

8.4 COMMA-SEPARATED LISTS

To extract the contents of more than one cell at a time, MATLAB provides comma–
separated list syntax. This syntax applies in any place where variables or constants
appear in a list separated by commas. For example, comma-separated lists appear
in array construction:

>> a = zeros(2,3);

>> b = ones(2,1);

>> c = (23:24)';

>> d = [a,b,c] % same as [a b c]

d =

1 1 1 0 23

1 1 1 0 24

They also appear in function input and output argument lists:

>> d = cat(2,a,b,c)

d =

1 1 1 0 23

1 1 1 0 24

>> [m,n] = size(d')

m =

5

n =

2

Comma–separated list syntax is implemented as follows: Placing a content-addressed
cell array in locations where comma-separated lists appear causes MATLAB
to extract the contents of the addressed cell arrays and place them sequentially,
 separated by commas. In the code

>> F = {c b a} % create a cell array

F =

[2x1 double] [2x1 double] [2x3 double]

>> d = cat(2,F{:}) % same as cat(2,a,b,c)

d =

23 1 0 0 0

24 1 0 0 0

156 Chapter 8 Cell Arrays and Structures

>> d = cat(2,F(:)) % not content addressing

d =

[2x1 double]

[2x1 double]

[2x3 double]

cat(2,F{:}) is interpreted by MATLAB as cat(2,F{1},F{2},F{3}), which
is equal to cat(2,c,b,a). That is, comma–separated list syntax dictates that F{:}
is interpreted as a listing of all addressed parts of F{:}, separated by commas.
Note that content addressing must be used. Cell indexing as shown in the second
case in the preceding example, acts on the cells, not on their contents. As a result,
there is no comma-separated list in the second case, cat(2,F(:)). Consider this
example:

>> d = [F{:}]

d =

23 1 0 0 0

24 1 0 0 0

>> d = [F{1},F{2},F{3}] % what is implied by the above

d =

23 1 0 0 0

24 1 0 0 0

>> e = [F{2:3}] % can also content address any subset

e =

1 0 0 0

1 0 0 0

>> e = [F{2},F{3}] % what is implied by the above

e =

1 0 0 0

1 0 0 0

At first, comma–separated list syntax may seem strange. However, once you become
familiar with it, you will recognize its power. (For more information, see the online
help for lists, or search for the phrase comma separated list.)

Given comma–separated list syntax, MATLAB provides a way to extract the
contents of numerous cells into separate variables. In the code

>> celldisp(F) % recall data

F{1} =

Section 8.4 Comma-Separated Lists 157

23

24

F{2} =

1

1

F{3} =

0 0 0

0 0 0

>> [r,s,t] = F{:} % extract the contents of F into separate

 variables

r =

23

24

s =

1

1

t =

0 0 0

0 0 0

the variables r, s, and t are numerical variables, with r = F{1}, s = F{2}, t = F{3}.
Comma-separated lists can be used to assign the contents of multiple unrelated

variables in one statement. If you have ever used playing cards, you know that “to deal”
means to pass out the cards in some organized way. The function deal does just that; it
passes out the contents of a list of variables to another set of variables. In the code

>> a,b,c % recall data

a =

0 0 0

0 0 0

b =

1

1

c =

23

24

158 Chapter 8 Cell Arrays and Structures

>> [r,s,t] = deal(a,b,c) % deal out contents of a, b, and c

r =

0 0 0

0 0 0

s =

1

1

t =

23

24

the variables r, s, and t are numerical variables, with r = a, s = b, t = c.
So, the function deal is, in reality, pretty simple. It just assigns the contents of
the first input argument to the first output argument, the second to the second,
and so on. Despite its simplicity, deal is a useful tool for extracting data from
multiple variables with one statement when content addressing is not easily
accomplished.

Because the output of deal is also a comma-separated list, deal can be used
to assign the contents of multiple types of variables in one statement:

>> d = eye(2);

>> e = 'This is a character string.';

>> f = {[1 2 3]};

>> [x,y,z] = deal(d,e,f)

x =

1 0

0 1

y =

This is a character string.

z =

[1x3 double]

>> class(x)

ans =

double

>> class(y)

Section 8.5 Cell Functions 159

ans =

char

>> class(z)

ans =

cell

8.5 CELL FUNCTIONS

Besides the functions celldisp, cell, iscell, deal, and isa, there are several
other functions that are useful when dealing with cell arrays. The function cellfun
provides a way to apply certain functions to all cells in a cell array, thereby eliminat-
ing the need to apply them to each cell individually:

>> A % recall data

A =

[3x3 double] [3.0000- 3.0000i]

[1x21 char] [1x5 double]

>> cellfun('isreal',A) % True=1 where not complex

ans =

1 0

1 1

>> cellfun('length',A) % length of contents

ans =

3 1

21 5

>> cellfun('prodofsize',A) % number of elements in each cell

ans =

9 1

21 5

>> cellfun('isclass',A,'char') % True for character strings

ans =

0 0

1 0

The function cellfun offers other options as well. For further information, see
online help.

160 Chapter 8 Cell Arrays and Structures

Another function that is sometimes useful is num2cell. This function takes an
array of any type (not just numbers as the function name suggests) and fills a cell
array with its components:

>> a = rand(3,5) % new numerical data

a =

0.7922 0.0357 0.6787 0.3922 0.7060

0.9595 0.8491 0.7577 0.6555 0.0318

0.6557 0.9340 0.7431 0.1712 0.2769

>> c = num2cell(a) % c{i,j}=a(i,j)

c =

[0.7922] [0.0357] [0.6787] [0.3922] [0.7060]

[0.9595] [0.8491] [0.7577] [0.6555] [0.0318]

[0.6557] [0.9340] [0.7431] [0.1712] [0.2769]

>> d = num2cell(a,1) % d{i}=a(:,i)

d =

[3x1 double] [3x1 double] [3x1 double] [3x1 double]

>> e = num2cell(a,2) % e{i}=a(i,:)

e =

[1x5 double]

[1x5 double]

[1x5 double]

With numerical data as input, num2cell(a) isn’t useful in many applications, but
packing larger pieces of an array into cells is often more useful, as illustrated in the
last two cases.

A similar function is mat2cell. This function breaks up a two-dimensional
matrix of any type into a cell array of adjacent matrices. The arguments are an input
matrix, a vector of the distribution of rows, and a vector of the distribution of col-
umns. The distribution vectors must sum to the size of the input matrix. Consider
the following code:

>> M=[1 2 3 4 5; 6 7 8 9 10; 11 12 13 14 15; 16 17 18 19 20; 21 22 23 24 25];

>> size(M)

Section 8.5 Cell Functions 161

ans =

5 5

>> C = mat2cell(M,[1 2 2],[2 3]) % Break up matrix into six pieces

C =

[1x2 double] [1x3 double]

[2x2 double] [2x3 double]

[2x2 double] [2x3 double]

>> celldisp(C)

C{1,1} =

1 2

C{2,1} =

6 7

11 12

C{3,1} =

16 17

21 22

C{1,2} =

3 4 5

C{2,2} =

8 9 10

13 14 15

C{3,2} =

18 19 20

23 24 25

The corresponding function is cell2mat:

>> N = cell2mat(C)

N =

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

162 Chapter 8 Cell Arrays and Structures

8.6 CELL ARRAYS OF STRINGS

Although a rigorous discussion of character strings doesn’t occur until the next
chapter, the use of character strings and their storage in cell arrays are described
in this section. If the concept of a character string is foreign to you, read the next
chapter and then come back to this material.

In MATLAB, character strings are formed by enclosing characters within
quotes. For example, in the code

>> s = 'Rarely is the question asked: is our children learning?'

s =

Rarely is the question asked: is our children learning?

the variable s contains a string of characters. In many applications, groups of character
strings are associated with each other. When this occurs, it is convenient to group
them into a cell array rather than store them in individual variables. In the code

>> cs = {'My answer is bring them on.'

s

'I understand small business growth. I was one.'}

cs =

'My answer is bring them on.'

'Rarely is the question asked: is our children learning?'

'I understand small business growth. I was one.'

>> size(cs) % a column cell array

ans =

3 1

>> iscell(cs) % yes, it is a cell array

ans =

1

the cell array cs has three cells, each containing a character string. In MATLAB,
this is simply called a cell array of strings. Because cell arrays are commonly used
to store sets of character strings, MATLAB provides several functions to support
them, like the one in the following example:

>> iscellstr(cs)

ans =

1

Section 8.6 Cell Arrays of Strings 163

The function iscellstr returns logical True (1) if all the cells in its cell array argu-
ment contain character strings; otherwise, it returns logical False (0).

Before cell arrays were introduced in MATLAB 5, groups of character strings
were stored in character-string arrays—2-D arrays just like the numerical arrays dis-
cussed earlier—with each string occupying a separate row in the array. Each charac-
ter in the string array occupies its own location and is indexed just like a numerical
array.

MATLAB provides functions to convert a cell array of strings to a string array
and vice versa:

>> cs % recall previous cell array of strings

cs =

'My answer is bring them on.'

'Rarely is the question asked: is our children learning?'

'I understand small business growth. I was one.'

>> sa = char(cs) % convert to a string array

sa =

My answer is bring them on.

Rarely is the question asked: is our children learning?

I understand small business growth. I was one.

>> ischar(sa) % True for string array

ans =

1

>> iscell(sa) % True for cell array

ans =

0

>> size(sa) % size of string array

ans =

3 34

>> size(cs) % size of cell array

ans =

3 1

>> cst = cellstr(sa) % convert back to cell array

cst =

'My answer is bring them on.'

'Rarely is the question asked: is our children learning?'

'I understand small business growth. I was one.'

164 Chapter 8 Cell Arrays and Structures

>> iscell(cst) % True for cell array

ans =

1

>> isequal(cs,cst) % True for equal variables

ans =

1

>> isequal(cs,sa) % cell array not equal to string array

ans =

0

So, the MATLAB functions char and cellstr are inverses of each other. In addi-
tion, since a string array must have the same number of columns in each row, blank
spaces are added to rows, as necessary, to make the string array rectangular.

8.7 STRUCTURE CREATION

Structures are like cell arrays in that they allow you to group collections of dissimi-
lar data into a single variable. However, instead of addressing elements by number,
structure elements are addressed by names called fields. Like cell arrays, structures
can have any number of dimensions, but a simple scalar or vector array is the most
common type.

Whereas cell arrays use curly braces to access data, structures use dot notation
to access data in fields. Creating a structure can be as simple as assigning data to
individual fields. For example, in the code

>> circle.radius = 3; % semicolon, no display

>> circle.center = [-1 2];

>> circle.linestyle = '==';

>> circle.color = 'blue' % no semicolon, so display

circle =

radius: 3

center: [-1 2]

linestyle: '=='

color: 'blue'

the data are stored in a structure variable called circle. The case-sensitive fields
are entitled radius, center, linestyle, and color. Structure field names have the
same restrictions as variable names: They can contain up to 63 characters, and they
must begin with a letter. For example, in the statement

Section 8.7 Structure Creation 165

>> size(circle)

ans =

1 1

>> whos

Name Size Bytes Class Attributes

ans 1x2 16 double array

circle 1x1 532 struct array

circle is a scalar structure, since size says that it is a 1-by-1 array. The whos com-
mand shows its size, the fact that it is a structure array, and the fact that it uses
532 bytes of memory. If there is more than one circle, it can be stored as a second
element in the circle variable. For example, in the code

>> circle(2).radius = exp(1);

>> circle(2).color = 'black';

>> circle(2).linestyle = '--’;

>> circle(2).center = [pi 2]

circle =

1x2 struct array with fields:

radius

center

linestyle

color

circle is a structure array having two elements. The (2) appears immediately after
the variable name, because it is the variable that is having an element added to it.
The .fieldname suffix identifies the field where data is to be placed. Note that
the structure fields are filled in a different order this time and that the size of the
data differs between the two elements. That is, the color fields are 'blue' and
'black'. There are no restrictions on what can be placed in fields from one array
element to the next. For instance, in the MATLAB statement

>> circle(2).radius = 'pi'

circle =

1x2 struct array with fields:

radius

center

linestyle

color

166 Chapter 8 Cell Arrays and Structures

>> circle.radius % display radius contents

ans =

3

ans =

pi

circle(1).radius holds numerical data and circle(2).radius holds a character
string.

If the value of structures is not apparent to you, consider how the data would
be stored without structures:

>> Cradius = [pi exp(1)]; % ignore changes above

>> Ccenter = [1 -1 ; 3.14 -3.14];

>> Clinestyle = {'= =' '--'}; % cell array of strings

>> Ccolor = {'blue' 'black'};

Now, rather than having a single variable storing the information for two cir-
cles, there are four variables that must be indexed properly to extract data for each
circle. It’s easy to add another circle to the structure, but more cumbersome to add
them to the four variables. Now, consider the following example:

>> circle(3).radius = 2.4;

>> circle(3).center = [1 2];

>> circle(3).linestyle = ':';

>> circle(3).color = 'red' % third circle added

circle =

1x3 struct array with fields:

radius

center

linestyle

color

>> Cradius(3) = 3.4

Cradius =

3.1416 2.7183 3.4000

>> Ccenter(3,:) = [1 2]

Ccenter =

1.0000 -1.0000

3.1400 -3.1400

1.0000 2.0000

Section 8.7 Structure Creation 167

>> Cradius(3) = 2.4

Cradius =

3.1416 2.7183 2.4000

>> Clinestyle{3} = '->'

Clinestyle =

'==' '--' '->'

>> Ccolor(3) = {'orange'}

Ccolor =

'blue' 'black' 'orange'

The clarity provided by structures should be readily apparent. In addition, consider
passing the circle data to a function. For example, as a structure, the data are passed
simply as

myfunc(circle)

whereas the other approach requires

myfunc(Cradius,Ccenter,Clinestyle,Ccolor)

Suppose that, at some later date, you wanted to add another field to circle:

>> circle(1).filled = 'no'

circle =

1x3 struct array with fields:

radius

center

linestyle

color

filled

>> circle.filled % display all .filled fields

ans =

no

ans =

[]

ans =

[]

168 Chapter 8 Cell Arrays and Structures

Now, all of the elements of circle have the field filled. Those not assigned
by default contain the empty array []. The other filled fields are easily
assigned:

>> circle(2).filled = 'yes';

>> circle(3).filled = 'yes';

>> circle.filled

ans =

no

ans =

yes

ans =

yes

When structure creation by direct assignment isn’t possible, MATLAB provides
the function struct. For example, to re-create the previous structure, the following
code is used:

>> values1 = {3.2 'pi' 2.27}; % cell arrays with field data

>> values2 = {[1 1] [2 -2] [-1 exp(1)]};

>> values3 = {'<-' '--' '=='};

>> values4 = {'black' 'red' 'green'};

>> values5 = {'no' 'yes' 'yes'};

>> CIRCLE = struct('radius',values1,'center',values2,. . .

'linestyle',values3,'color',values4,'filled',values5)

CIRCLE =

1x3 struct array with fields:

radius

center

linestyle

color

filled

>> isequal(circle,CIRCLE) % False since we did not use the same data

ans =

0

Section 8.8 Structure Manipulation 169

8.8 STRUCTURE MANIPULATION

Structures are arrays and therefore can be combined and indexed like numerical
arrays and cell arrays. When combining structure arrays, the only restriction is that
the arrays combined must share the same fields. Thus, in the code

>> square.width = 5; % a new structure

>> square.height = 14;

>> square.center = zeros(1,2);

>> square.rotation = pi/4

square =

width: 5

height: 14

center: [0 0]

rotation: 0.7854

>> A = [circle CIRCLE]

A =

1x6 struct array with fields:

radius

center

linestyle

color

filled

>> B = [circle square]

??? Error using ==> horzcat

CAT arguments are not consistent in structure field number.

the structures circle and CIRCLE are both 1 by 3 and share the same fields; hence,
concatenating them produces a 1-by-6 structure array. However, the structures
square and circle do not have the same fields and therefore cannot be concatenated.

It is also possible to address a subarray of a structure. For example, in the code

>> C = [circle(1:2) CIRCLE(3)]

C =

1x3 struct array with fields:

radius

center

linestyle

170 Chapter 8 Cell Arrays and Structures

color

filled

>> isequal(C,circle) % True since equal

ans =

1

C and circle are equal because CIRCLE(3) = circle(3). Once again, basic array
addressing and concatenation apply to structure arrays as well. For concatenation,
field names must match exactly.

Although they are not as useful in this case, structures can also be manipulated
with the functions reshape and repmat:

>> Aa = reshape(A,3,2)

Aa =

3x2 struct array with fields:

radius

center

linestyle

color

filled

>> Aaa = reshape(A,1,2,3)

Aaa =

1x2x3 struct array with fields:

radius

center

linestyle

color

filled

Since there is seldom a practical reason to have anything other than a structure
array with vector orientation, reshape is seldom needed or used with structures.
However, it is often convenient to create a structure array with default data in all
fields of all array elements. The function repmat performs this task with ease:

>> S = repmat(square,3,1)

S =

3x1 struct array with fields:

width

height

Section 8.9 Retrieving Structure Content 171

center

rotation

>> S.width % look at all width fields

ans =

5

ans =

5

ans =

5

All three elements of the structure S contain the data originally assigned to the
structure square. At this point, the structure fields can be modified, as needed, to
describe different squares.

8.9 RETRIEVING STRUCTURE CONTENT

When you know the names of the fields associated with a structure array, retrieving
the data in a particular structure element and field simply requires identifying them.
For example, in the code

>> rad2 = circle(2).radius

rad2 =

pi

>> circle(1).radius

ans =

3

>> area1 = pi*circle(1).radius^2

area1 =

28.2743

circle(1).radius identifies the value 3, which is used to compute the area of the
first circle.

When the contents of a field are an array, it is also possible to retrieve a subset
of that field by appending an array index to the structure request:

>> circle(1).filled % the entire field

ans =

no

172 Chapter 8 Cell Arrays and Structures

>> circle(1).filled(1) % first element of field

ans =

n

>> circle(1).filled(2:end) % rest of field

ans =

0

As is true for cell arrays, retrieving the contents of more than one structure
array element and field cannot be accomplished by direct addressing. For example,
the command

>> col = circle.color

col =

blue

attempted to extract three pieces of data and store them in one variable, but only
stored one. However, MATLAB solves this problem the same way it does for cell
arrays by using comma-separated lists.

When the structure field to be accessed is stored in a character string,
MATLAB provides dynamic addressing to gain access to the data:

>> fldstr = 'color'; % store desired field in variable

>> circle.(fldstr) % get all color fields

ans =

blue

ans =

black

ans =

red

>> fldstr = 'radius';

>> area=pi*circle(1).(fldstr)^2 % compute area of first circle

area =

28.2743

Dynamic addressing is similar to using subscripts to identify specific elements in an
array. Both methods use parentheses to hold the chosen elements. For example,
A(r,c) uses the information in variables r and c to identify the desired rows and

Section 8.10 Comma-Separated Lists (Again) 173

columns of array A, whereas circle.(fldstr) uses the information in variable
fldstr to identify the desired field in the structure circle.

8.10 COMMA-SEPARATED LISTS (AGAIN)

To extract the contents of more than one structure array element at a time,
MATLAB provides comma–separated list syntax. This syntax applies in any place
where variables or constants appear in a list separated by commas. For example, it
appears in array construction:

>> a = ones(2,3);

>> b = zeros(2,1);

>> c = (3:4)';

>> d = [a,b,c] % same as [a b c]

d =

1 1 1 0 3

1 1 1 0 4

It also appears in function input and output argument lists:

>> d = cat(2,a,b,c)

d =

1 1 1 0 3

1 1 1 0 4

>> [m,n] = size(d)

m =

2

n =

5

Building on this idea, comma–separated list syntax is implemented as follows:
Placing a structure array with appended field name in locations where comma-
separated lists appear causes MATLAB to extract the contents of the addressed
fields and place them sequentially, separated by commas. In the code

>> cent = cat(1,circle.center) % comma-separated list syntax

cent =

-1.0000 2.0000

3.1416 2.0000

 1.0000 2.0000

174 Chapter 8 Cell Arrays and Structures

>> cent = cat(1,circle(1).center,circle(2).center,circle(3).center)

cent =

-1.0000 2.0000

3.1416 2.0000

1.0000 2.0000

>> some = cat(1,circle(2:end).center)

some =

3.1416 2.0000

1.0000 2.0000

the cat function concatenates the circle centers into rows of the numerical array
cent. According to comma–separated list syntax, the first two statements in the
preceding example are identical. The third statement shows that you can index and
extract a subarray as well.

Since the color fields of the structure circle are character strings of differ-
ent lengths, they cannot be extracted into a string array, but they can be extracted
into a cell array, as in the following example:

>> circle.color

ans =

blue

ans =

black

ans =

red

>> col = cat(1,circle.color) % elements have different lengths

??? Error using ==> cat

CAT arguments dimensions are not consistent.

>> col = [circle.color] % no error but not much use!

col =

blueblackred

>> col = {circle.color} % cell array of strings

col =

'blue' 'black' 'red'

>> col = char(col) % if needed, convert to string array

col =

Section 8.10 Comma-Separated Lists (Again) 175

blue

black

red

MATLAB does not provide tools for extracting all the fields of a single
 structure array element. For instance, there is no way to retrieve the radius, cen-
ter, linestyle, color, and filled fields of the first circle in one statement. In
a sense, there is no need to have such a function, because each of these fields can
be directly addressed and used in computations, such as area1 = pi*circle(1).
radius^2.

Given comma–separated list syntax, you can extract the contents of numerous
structure elements into separate variables, as in the following example:

>> [c1,c2,c3] = circle.color % get all colors

c1 =

blue

c2 =

black

c3 =

red

>> [rad1,rad3] = circle ([1 3]).radius % 1st and 3rd radius

rad1 =

3

rad3 =

2.4000

Because the output of deal is also a comma-separated list, deal can be used
to assign the contents of multiple structure array elements, with a single field in one
statement. For example, consider the following code:

>> [circle.radius] = deal(5,14,83)

circle =

1x3 struct array with fields:

radius

center

linestyle

color

filled

176 Chapter 8 Cell Arrays and Structures

>> circle.radius % confirm assignments

ans =

5

ans =

14

ans =

83

>> [triangle(:).type] = deal('right','isosceles','unknown')

??? Error using ==> deal at 38

The number of outputs should match the number of inputs.

>> [triangle(1:3).type] = deal('right','isosceles','unknown')

triangle =

1x3 struct array with fields:

type

>> triangle.type

ans =

right

ans =

isosceles

ans =

unknown

In the first statement, the structure circle already existed and has three elements.
Therefore, the output argument was expanded into three elements. In the second
statement containing deal, the structure triangle didn’t exist. Because it wasn’t
possible to determine how many elements to create in a comma-separated list, an
error was returned. However, in the last statement containing deal, the number of
elements was given explicitly, and the type property of the newly created structure
triangle was populated with the given data.

8.11 STRUCTURE FUNCTIONS

In the Command window, it is easy to identify the field names of a given structure
by simply entering the structure name at the MATLAB prompt:

>> CIRCLE

CIRCLE =

Section 8.11 Structure Functions 177

1x3 struct array with fields:

radius

center

linestyle

color

filled

>> square

square =

width: 5

height: 14

center: [0 0]

rotation: 0.7854

When a structure is passed to a function—for example, myfunc(circle)—the
function internally must know or have some way to obtain the field names of the
structure. (Writing functions in MATLAB is covered in Chapter 12.) In MATLAB,
the function fieldnames provides this information:

>> fieldnames(CIRCLE)

ans =

'radius'

'center'

'linestyle'

'color'

'filled'

The output of fieldnames is a cell array of strings identifying the fields that are
associated with the input structure.

It is also possible to guess the field names and ask whether they exist by using
the logical function isfield:

>> isfield(CIRCLE,'height')

ans =

0

>> isfield(CIRCLE,'filled')

ans =

1

178 Chapter 8 Cell Arrays and Structures

If you don’t know whether a variable is a structure or not, the functions class
and isstruct are helpful, as the following example shows:

>> class(square) % ask for the class of variable square

ans =

struct

>> isstruct(CIRCLE) % True for structures

ans =

1

>> d = pi;

>> isstruct(d) % False for doubles

ans =

0

When the field names of a structure are known, the function rmfield allows
you to remove one or more fields from the structure. For example, the code

>> fnames = fieldnames(CIRCLE)

fnames =

'radius'

'center'

'linestyle'

'color'

'filled'

stores in fnames the field names of circle in a cell array. Arbitrarily choosing
the last field name, we can remove the filled field from the structure by calling
rmfield. This code:

>> circle2 = rmfield(circle,fnames{5})

circle2 =

1x3 struct array with fields:

radius

center

linestyle

color

removes the field filled from circle and assigns the result to a new structure
circle2. Similarly,

Section 8.11 Structure Functions 179

>> circle3 = rmfield(circle,fnames(1:3))

circle3 =

1x3 struct array with fields:

'color'

'filled'

removes the fields radius, center, and linestyle from circle, and assigns the
result to a new structure circle3.

In some cases, it is beneficial to rearrange the order in which the field names
of a structure are presented. The function orderfields performs this task and
places the fields in ASCII order:

>> circleA = orderfields(circle)

circleA =

1x3 struct array with fields:

center

color

filled

linestyle

radius

Other orderings are possible as well, as in the following code:

>> circleB = orderfields(circleA,CIRCLE) % match fields of structure CIRCLE

circleB =

1x3 struct array with fields:

radius

center

linestyle

color

filled

>> circleC = orderfields(circle,[2 5 1 4 3]) % provide permutation vector

circleC =

1x3 struct array with fields:

center

filled

radius

180 Chapter 8 Cell Arrays and Structures

color

linestyle

>> circleD = orderfields(circle,fnames(end:-1:1)) % reverse original order

circleD =

1x3 struct array with fields:

filled

color

linestyle

center

radius

Finally, given the similarity between cell arrays and structures and applying the post
office box analogy, it’s not hard to believe that MATLAB provides the functions
cell2struct and struct2cell to convert cell arrays to structures and back in an
organized fashion. (More detailed explanations of these functions can be found in
the online documentation.)

8.12 SUMMARY

MATLAB supports arrays with an unlimited number of dimensions. Cell arrays and
structures can store any array type, including cell arrays and structures. So, it is pos-
sible to have a cell in a cell array that contains a structure with a field that contains
another structure that has a field containing a cell array, of which one cell contains
another cell array. Needless to say, there comes a point where the power of cell
arrays and structures becomes indecipherable and of little practical use. Thus, to
end this chapter, try to decipher the following legal MATLAB statements:

>> one(2).three(4).five = {circle}

one =

1x2 struct array with fields:

three

>> test = {{{circle}}}

test =

{1x1 cell}

How many structures are involved in the first statement? What is the total number
of structure elements, including empty arrays, created by the statement? Can the
structure circle be extracted from the second statement with a single MATLAB
statement?

181

MATLAB’s true power is in its ability to crunch numbers. However, there are
times when it is desirable to manipulate text, such as when putting labels and titles
on plots. In MATLAB, text is referred to as character strings, or simply strings.
Character strings represent another variable class or data type in MATLAB.

9.1 STRING CONSTRUCTION

Character strings in MATLAB are special numerical arrays of ASCII values that
are displayed as their character-string representation, as in the following code:

>> t = 'This is a character string'

t =

This is a character string

>> size(t)

ans =

 1 26

>> whos

 Name Size Bytes Class Attributes

 ans 1x2 16 double

 t 1x26 52 char

Character Strings

9

182 Chapter 9 Character Strings

A character string is simply text surrounded by single quotes. Each character in
a string is one element in an array that requires 2 bytes per character for storage,
which is different from the 8 bytes per element that is required for numerical or
double arrays.

To see the underlying ASCII representation of a character string, you need
only perform some arithmetic operation on the string or use the dedicated function
double, as in the following code:

>> u = double(t)

u =

Columns 1 through 14

84 104 105 115 32 105 115 32 97 32 99 104 97 114

Columns 15 through 26

97 99 116 101 114 32 115 116 114 105 110 103

>> abs(t)

ans =

Columns 1 through 14

82 104 105 115 32 115 32 97 32 32 99 104 97 114

Columns 15 through 26

97 99 116 101 114 32 115 116 114 105 110 103

The function char performs the inverse transformation:

>> char(u)

ans =

This is a character string

Numerical values less than 0 produce a warning message when converted to charac-
ter; values greater than 255 simply address characters in the font beyond char(255):

>> a = double('a')

a =

97

Section 9.1 String Construction 183

>> char(a)

ans =

a

>> char(a+256) % adding 256 does change the result

ans =

š

>> char(a-256) % negative value produces a blank character

Warning: Out of range or non-integer values truncated during conversion

to character.

ans =

Since strings are arrays, they can be manipulated with all the array-manipula-
tion tools available in MATLAB. For example, in the code

>> u = t(16:24)

u =

cter stri

strings are addressed just as arrays are. Here, elements 16 through 24 contain the
word character.

>> u = t(24:-1:16)

u =

irts retc

The result here is the word character spelled backwards.
Using the transpose operator changes the word character to a column:

>> u = t(16:24)'

u =

c

t

e

r

s

t

r

i

184 Chapter 9 Character Strings

Single quotes within a character string are symbolized by two consecutive quotes:

>> v = 'I can''t find the manual!'

v =

I can't find the manual!

Also, string concatenation follows directly from array concatenation:

>> u = 'If a woodchuck could chuck wood,';

>> v = 'how much wood could a woodchuck chuck?';

>> w = [u v]

w =

If a woodchuck could chuck wood, how much wood could a woodchuck chuck?

The function disp allows you to display a string without printing its variable name:

>> disp(u)

If a woodchuck could chuck wood,

Note that the u = statement is suppressed. This feature is useful for displaying help
text within a script file.

Like other arrays, character strings can have multiple rows, but each row must
have an equal number of columns. Therefore, blanks are explicitly required to make
all rows the same length, as in the following code:

>> v = ['Character strings having more than'

 'one row must have the same number '

 'of columns just like arrays! ']

v =

Character strings having more than

one row must have the same number

of columns just like arrays!

The functions char and strvcat create multiple-row string arrays from individual
strings of varying lengths:

Section 9.1 String Construction 185

>> legends = char('John','Tom','Smith','Marlon','Morgan','Jim')

legends =

John

Tom

Smith

Marlon

Morgan

Jim

>> legends = strvcat('John','Tom','Smith','Marlon','Morgan','Jim')

legends =

John

Tom

Smith

Marlon

Morgan

Jim

>> size(legends)

ans =

 6 6

The only difference between char and strvcat is that strvcat ignores empty
string inputs, whereas char inserts blank rows for empty strings, as in the following
example:

>> char('one','','two','three')

ans =

one

two

three

>> strvcat('one','','two','three')

ans =

one

two

three

186 Chapter 9 Character Strings

Horizontal concatenation of string arrays that have the same number of rows
is accomplished by the function strcat. Padded blanks are ignored. The following
code is illustrative:

>> a = char('apples','bananas')

a =

apples

bananas

>> b = char('oranges','grapefruit')

b =

oranges

grapefruit

>> strcat(a,b)

ans =

applesoranges

bananasgrapefruit

Once a string array is created with padded blanks, the function deblank is
useful for eliminating the extra blanks from individual rows extracted from the
array:

>> c = legends(4,:)

c =

Marlon

>> size(c)

ans =

 1 6

>> c = deblank(legends(4,:))

c =

Marlon

>> size(c)

ans =

 1 6

Section 9.2 Numbers to Strings to Numbers 187

9.2 NUMBERS TO STRINGS TO NUMBERS

There are numerous contexts in which it is desirable to convert numerical results to
character strings and to extract numerical data from character strings. MATLAB
provides the functions int2str, num2str, mat2str, sprintf, and fprintf for con-
verting numerical results to character strings. Examples of the first three functions
are in the following code:

>> int2str(eye(3)) % convert integer arrays

ans =

1 0 0

0 1 0

0 0 1

>> size(ans) % it's a character array, not a numerical matrix

ans =

 3 7

>> num2str(rand(2,4)) % convert noninteger arrays

ans =

0.95013 0.60684 0.8913 0.45647

0.23114 0.48598 0.7621 0.01850

>> size(ans) % again it is a character array

ans =

 2 43

>> mat2str(pi*eye(2)) % convert to MATLAB input syntax form!

ans =

[3.14159265358979 0;0 3.14159265358979]

>> size(ans)

ans =

 1 39

The following code illustrates the two functions sprintf and fprintf:

>> fprintf('%.4g\n',sqrt(2)) % display in Command window

1.414

188 Chapter 9 Character Strings

>> sprintf('%.4g',sqrt(2)) % create character string

ans =

1.414

>> size(ans)

ans =

 1 5

sprintf and fprintf are general-purpose conversion functions that closely resem-
ble their ANSI C language counterparts. As a result, these two functions offer the
most flexibility. Normally fprintf is used to convert numerical results to ASCII
format and append the converted results to a data file. However, if no file identifier
is provided as the first argument to fprintf or if a file identifier of one is used, the
resulting output is displayed in the Command window. The functions sprintf and
fprintf are identical, except that sprintf simply creates a character array that
can be displayed, passed to a function, or modified like any other character array.
Because sprintf and fprintf are nearly identical, consider the usage of sprintf
in the following example:

>> radius = sqrt(2);

>> area = pi * radius^2;

>>s = sprintf('A circle of radius %.5g has an area of %.5g.',radius,area)

s =

A circle of radius 1.4142 has an area of 6.2832.

Here, %.5g, the format specification for the variable radius, indicates that five sig-
nificant digits in general-conversion format are desired. The most common usage
of sprintf is to create a character string for the purposes of annotating a graph,
displaying numerical values in a graphical user interface, or creating a sequence of
data file names. A rudimentary example of this last usage is as follows:

>> i = 3;

>> fname = sprintf('mydata%.0f.dat',i)

fname =

mydata3.dat

In the past, the functions int2str and num2str were nothing more than a simple
call to sprintf, with %.0f and %.4g as format specifiers, respectively. In MATLAB
5, int2str and num2str were enhanced to work with numerical arrays. As a result
of these functions’ former simplicity, in prior versions of MATLAB it was common
to use the following code:

Section 9.2 Numbers to Strings to Numbers 189

s = ['A circle of radius' num2str(radius)' has an area of' . . .

num2str(area) '.']

s =

A circle of radius 1.4142 has an area of 6.2832.

Even though we obtain the same result when using int2str and num2str as we do
when using sprintf, these functions require more computational effort, are more
prone to typographical errors (such as missing spaces or single quotes), and require
more effort to read. As a result, it is suggested that usage of int2str and num2str
be limited to the conversion of arrays, as illustrated earlier in this section. In almost
all other cases, it is more productive to use sprintf directly.

The help text for sprintf concisely describes its use:

>> help sprintf

 SPRINTF Write formatted data to string.

 STR = SPRINTF(FORMAT, A, . . .) applies the FORMAT to all elements of

 array A and any additional array arguments in column order, and returns

 the results to string STR.

 [STR, ERRMSG] = SPRINTF(FORMAT, A, . . .) returns an error message when

 the operation is unsuccessful. Otherwise, ERRMSG is empty.

 SPRINTF is the same as FPRINTF except that it returns the data in a

 MATLAB string rather than writing to a file.

 FORMAT is a string that describes the format of the output fields, and

 can include combinations of the following:

 * Conversion specifications, which include a % character, a

 conversion character (such as d, i, o, u, x, f, e, g, c, or s),

 and optional flags, width, and precision fields. For more

 details, type “doc sprintf” at the command prompt.

 * Literal text to print.

 * Escape characters, including:

\b Backspace '' Single quotation mark

\f Form feed %% Percent character

\n New line \\ Backslash

\r Carriage return \xN Hexadecimal number N

\t Horizontal tab \N Octal number N%

190 Chapter 9 Character Strings

 where \n is a line termination character on all platforms.

Notes:

 If you apply an integer or string conversion to a numeric value that

 contains a fraction, MATLAB overrides the specified conversion, and

 uses %e.

 Numeric conversions print only the real component of complex numbers.

Examples

sprintf('%0.5g',(1+sqrt(5))/2) % 1.618

sprintf('%0.5g',1/eps) % 4.5036e+15

sprintf('%15.5f',1/eps) % 4503599627370496.00000

sprintf('%d',round(pi)) % 3

sprintf('%s','hello') % hello

sprintf('The array is %dx%d.',2,3) % The array is 2x3.

See also fprintf, sscanf, num2str, int2str, char.

Reference page in Help browser

doc sprintf

The following table shows how pi is displayed under a variety of conversion
specifications:

Command Result

sprintf('%.0e',pi) 3e+00

sprintf('%.1e',pi) 3.1e+00

sprintf('%.3e',pi) 3.142e+00

sprintf('%.5e',pi) 3.14159e+00

sprintf('%.10e',pi) 3.1415926536e+00

sprintf('%.0f',pi) 3

sprintf('%.1f',pi) 3.1

sprintf('%.3f',pi) 3.142

sprintf('%.5f',pi) 3.14159

sprintf('%.10f',pi) 3.1415926536

sprintf('%.0g',pi) 3

Section 9.2 Numbers to Strings to Numbers 191

In the preceding table, the format specifier e signifies exponential notation, f
signifies fixed-point notation, and g signifies the use of e or f, whichever is shorter.
Note that for the e and f formats, the number to the right of the decimal point
indicates how many digits to the right of the decimal point are to be displayed. On
the other hand, in the g format, the number to the right of the decimal specifies the
total number of digits that are to be displayed. In addition, note that in the last five
entries, a width of eight characters is specified for the result, and the result is right
justified. In the very last case, the 8 is ignored because more than eight digits were
specified.

Although it is not as common, sometimes it is necessary to convert or extract a
numerical value from a character string. The MATLAB functions str2num, sscanf,
and str2double provide this capability:

>> s = num2str(pi*eye(2)) % create string data

s =

3.1416 0

 0 3.1416

>> ischar(s) % True for string

ans =

 1

>> m = str2num(s) % convert string to number

m =

 3.1416 0

 0 3.1416

sprintf('%.1g',pi) 3

sprintf('%.3g',pi) 3.14

sprintf('%.5g',pi) 3.1416

sprintf('%.10g',pi) 3.141592654

sprintf('%8.0g',pi) 3

sprintf('%8.1g',pi) 3

sprintf('%8.3g',pi) 3.14

sprintf('%8.5g',pi) 3.1416

sprintf('%8.10g',pi) 3.141592654

192 Chapter 9 Character Strings

>> isdouble(m) % Oops, this function doesn't exist

??? Undefined function or method 'isdouble' for input arguments of

type 'double'.

>> isnumeric(m) % True for numbers

ans =

 1

>> isfloat(m) % True for floating point numbers

ans =

 1

>> pi*eye(2) - m % accuracy is lost

ans =

-7.3464e-06 0

 0 -7.3464e-06

The function str2num can contain expressions, but not variables, in the
workspace:

>> x = pi; % create a variable

>> ss = '[sqrt(2) j; exp(1) 2*pi-x]' % string with variable x

ss =

[sqrt(2) j; exp(1) 2*pi-x]

>> str2num(ss) % conversion fails because of x

ans =

 []

>> ss = '[sqrt(2) j; exp(1) 2*pi-6]' % replace x with 6

ss =

[sqrt(2) j; exp(1) 2*pi-6]

>> str2num(ss) % now it works

ans =

 1.4142 0 + 1i

 2.7183 0.28319

Section 9.2 Numbers to Strings to Numbers 193

>> class(ans) % yes, its a double

ans =

double

The function sscanf is the counterpart to sprintf. The function sscanf reads
data from a string under format control:

>> v = version % get MATLAB version as a string

v =

7.11.0.584 (R2010b)

>> sscanf(v,'%f') % get floating point numbers

ans =

 7.11

 0

 0.584

>> sscanf(v,'%f',1) % get just one floating point number

ans =

 7.11

>> sscanf(v,'%d') % get an integer

ans =

 7

>> sscanf(v,'%s') % get a string

ans =

7.11.0.584(R2010b)

You can specify the format under which sscanf operates; this capability makes
sscanf a very powerful and flexible function. (See the online help text for sscanf
for more thorough information about the capabilities of this function.)

When the conversion to a single double-precision value is required, the func-
tion str2double is useful. While the function str2num performs this task as well,
str2double is generally quicker because of its more limited scope:

>> str2double('Inf') % It does convert infinity

ans =

Inf

194 Chapter 9 Character Strings

>> class(ans)

ans =

double

>> str2double('34.6 - 23.2j') % complex numbers work

ans =

 34.6 - 23.2i

>> str2double('pi') % variables and expressions don't work

ans =

 NaN

9.3 STRING EVALUATION

There are some applications in which it is convenient to evaluate a character string
as if it were a MATLAB expression. This is a generalization of what str2num and
str2double do. These functions are limited to extracting numerical values from
strings. The MATLAB functions eval and evalc bring in the entire MATLAB
interpreter to evaluate any string that conforms to MATLAB syntax. For example,
in the code

>> funs = char('floor','fix','round','ceil')

funs =

floor

fix

round

ceil

>> [deblank(funs(1,:)) '(pi)'] % display string to evaluate

ans =

floor(pi)

>> f = eval([deblank(funs(1,:)) '(pi)'])

f =

 3

>> class(f) % data type of output is numeric double

ans =

double

>> fc = evalc([deblank(funs(1,:)) '(pi)']) % try evalc

Section 9.4 String Functions 195

fc =

ans =

 3

>> class(fc) % output of evalc is a character string

ans =

char

>> size(fc)

ans =

 1 16

the function eval uses the MATLAB command interpreter to evaluate a char-
acter-string input and returns the results into its output argument. The function
evalc also evaluates an input string, but its output is the character-string repre-
sentation of the output. In other words, it returns the results seen in the Command
window.

If at all possible, for the most part, the use of eval and evalc should be
avoided. Since these functions bring in the entire MATLAB interpreter to evaluate
a string expression, they incur significant overhead. In addition, the functions can-
not be compiled by the MATLAB compiler, which is a MATLAB add-on product
that converts MATLAB code into executable C code.

9.4 STRING FUNCTIONS

MATLAB provides a variety of string-related functions, some of which have been
discussed already. The following table briefly describes many of the string functions
in MATLAB:

Function Description

char(S1,S2, . . .) Creates character array from strings or cell arrays

double(S) Converts string to ASCII representation

cellstr(S) Creates cell array of strings from character array

blanks(n) Creates string of n blanks

deblank(S) Removes trailing blanks

eval(S), evalc(S) Evaluates string expression with MATLAB interpreter

ischar(S) True for string array

iscellstr(C) True for cell array of strings

196 Chapter 9 Character Strings

Function Description

isletter(S) True for letters of the alphabet

isspace(S) True for white-space characters

isstrprop(S,'property') True for elements that have specified property

strcat(S1,S2, . . .) Concatenates strings horizontally

strvcat(S1,S2, . . .) Concatenates strings vertically, ignoring blanks

strcmp(S1,S2) True if strings are equal

strncmp(S1,S2,n) True if n characters of strings are equal

strcmpi(S1,S2) True if strings are equal, ignoring case

strncmpi(S1,S2,n) True if n characters of strings are equal,
ignoring case

strtrim(S1) Trims leading and trailing white space

findstr(S1,S2) Finds shorter string within longer string (depreciated;
use strfind)

strfind(S1,S2) Finds S2 string in S1 string

strjust(S1,type) Justifies string array left, right, or center

strmatch(S1,S2) Finds indices of matching strings

strrep(S1,S2,S3) Replaces occurrences of S2 in S1 with S3

strtok(S1,D) Finds tokens in string given delimiters

upper(S) Converts to uppercase

lower(S) Converts to lowercase

num2str(x) Converts number to string

int2str(k) Converts integer to string

mat2str(X) Converts matrix to string for eval

str2double(S) Converts string to double-precision value

str2num(S) Converts string array to numerical array

sprintf(S) Creates string under format control

sscanf(S) Reads string under format control

textscan(S) Reads formatted data from a string

Section 9.4 String Functions 197

Now consider some examples of the usage of some of the functions that were
defined in the preceding table. For instance, the function strfind returns the
 starting indices of one string within another:

>> b = 'She sells sea shells on the sea shore';

>> findstr(b,' ') % find indices of spaces

ans =

 4 10 14 21 24 28 32

>> findstr(b,'s') % find the letter s

ans =

 5 9 11 15 20 29 33

>> find(b=='s') % for single character searches find works too

ans =

 5 9 11 15 20 29 33

>> findstr(b,'ocean') % 'ocean' does not exist

ans =

 []

>> findstr(b,'sells') % find the string sells

ans =

 5

Note that strfind is case sensitive and returns the empty matrix when no match is
found. strfind does not work on string arrays with multiple rows.

Tests on character strings include the following:

>> c = 'a2 : b_c'

c =

a2 : b_c

>> ischar(c) % it is a character string

ans =

 1

>> isletter(c) % where are the letters?

ans =

 1 0 0 0 0 1 0 1

198 Chapter 9 Character Strings

>> isspace(c) % where are the spaces?

ans =

 0 0 1 0 1 0 0 0

>> isstrprop(c,'wspace') % same as above

ans =

 0 0 1 0 1 0 0 0

>> isstrprop(c,'digit') % True for digits

ans =

 0 1 0 0 0 0 0 0

To illustrate string comparison, consider the situation where a user types (perhaps
into an editable text uicontrol) a string that must match, at least in part, one of a
list of strings. The function strmatch provides this capability:

>> S = char('apple','banana','peach','mango','pineapple')

S =

apple

banana

peach

mango

pineapple

>> strmatch('pe',S) % pe is in 3rd row

ans =

 3

>> strmatch('p',S) % p is in 3rd and 5th rows

ans =

 3

 5

>> strmatch('banana',S) % banana is in 2nd row

ans =

 2

>> strmatch('Banana',S) % but Banana is nowhere

ans =

 Empty matrix: 0-by-1

Section 9.5 Cell Arrays of Strings 199

>> strmatch(lower('Banana'),S) % changing B to b finds banana

ans =

 2

9.5 CELL ARRAYS OF STRINGS

The fact that all rows in string arrays must have the same number of columns is
sometimes cumbersome, especially when the nonblank portions vary significantly
from row to row. This issue of cumbersomeness is eliminated by using cell arrays.
All data forms can be placed in cell arrays, but their most frequent use is with char-
acter strings. A cell array is simply a data type that allows you to name a group of
data of various sizes and types, as in the following example:

>> C = {'This';'is';'a cell';'array of strings'}

C =

 'This'

 'is'

 'a cell'

 'array of strings'

>> size(C)

ans =

 4 1

Note that curly brackets { } are used to create cell arrays and that the quotes
around each string are displayed. In this example, the cell array C has four rows and
one column. However, each element of the cell array contains a character string of
different length.

Cell arrays are addressed just as other arrays are:

>> C(2:3)

ans =

 'is'

 'a cell'

>> C([4 3 2 1])

ans =

 'array of strings'

 'a cell'

200 Chapter 9 Character Strings

 'is'

 'This'

>> C(1)

ans =

 'This'

Here, the results are still cell arrays. That is, C(indices) addresses given cells, but
not the contents of those cells. To retrieve the contents of a particular cell, use curly
brackets, as in the following example:

>> s = C{4}

s =

array of strings

>> size(s)

ans =

 1 16

To extract more than one cell, the function deal is useful:

>> [a,b,c,d] = deal(C{:})

a =

This

b =

is

c =

a cell

d =

array of strings

Here, C{:} denotes all the cells as a list. That is, it’s the same as

>> [a,b,c,d] = deal(C{1},C{2},C{3},C{4})

a =

This

b =

is

c =

a cell

Section 9.5 Cell Arrays of Strings 201

d =

array of strings

>> [a,b,c,d] = C{:} % since C{:} is a list, deal is optional

a =

This

b =

is

c =

a cell

d =

array of strings

Partial cell array contents can also be dealt, as in the following code:

>> [a,b] = deal(C{2:2:4}) % get 2nd and 4th cell contents

a =

is

b =

array of strings

>> [a,b] = C{2:2:4} % the right hand side is a list, so no deal

a =

is

b =

array of strings

A subset of the contents of a particular cell array can be addressed as well:

>> C{4}(1:15) % 4th cell, elements 1 through 15

ans =

array of string

The multipurpose function char converts the contents of a cell array to a conven-
tional string array, as in the following example:

>> s = char(C)

s =

202 Chapter 9 Character Strings

This

is

a cell

array of strings

>> size(s) % result is a standard string array with blanks

ans =

 4 16

>> ss = char(C(1:2)) % naturally you can convert subsets

ss =

This

is

>> size(ss) % result is a standard string array with blanks

ans =

 2 4

The inverse conversion is performed by the function cellstr, which deblanks the
strings as well:

>> cellstr(s)

ans =

 'This'

 'is'

 'a cell'

 'array of strings'

You can test whether a particular variable is a cell array of strings by using the
 function iscellstr:

>> iscellstr(C) % True for cell arrays of strings

ans =

 1

>> ischar(C) % True for string arrays not cell arrays of strings

ans =

 0

>> ischar(C{3}) % Contents of 3rd cell is a string array

ans =

 1

Section 9.6 Searching Using Regular Expressions 203

>> iscellstr(C(3)) % but 3rd cell itself is a cell

ans =

 1

>> ischar(C(3)) % and not a string array

ans =

 0

>> class(C) % get data type or class string

ans =

cell

>> class(s) % get data type or class string

ans =

char

Most of the string functions in MATLAB work with either string arrays or cell arrays
of strings. In particular, examples include the functions deblank, strcat, strcmp,
strncmp, strcmpi, strncmpi, strmatch, and strrep. (Further information regarding
cell arrays in general can be found in Chapter 8.)

9.6 SEARCHING USING REGULAR EXPRESSIONS

The standard string functions, like strfind, are useful to search for specific
sequences of characters within strings and to replace specific character sequences.
More generally, you may want to find such patterns in strings as repeated characters,
all uppercase letters, any capitalized words, or all dollar amounts (i.e., strings of dig-
its preceded by a dollar sign and containing a decimal point). MATLAB supports
regular expressions, which is a powerful tool to search for character strings within
character strings. A regular expression is a formula for matching strings that fol-
low some pattern. The Unix world has used regular expressions in many of its tools
(such as grep, awk, sed, and vi) for years. Programmers who use Perl and other
languages make extensive use of regular expressions. MATLAB’s implementation
of regular expressions is very comprehensive and has many features including some
called extended regular expressions. And, if you are familiar with regular expres-
sions, MATLAB’s implementation will seem to you to follow naturally. If you are
new to regular expressions, you can make use of the simpler features immediately
and the more complex features later on.

Here are a few simple rules to get you started. A formula string, or expression,
that describes the criteria for identifying matching portions of a character string is
created. The expression consists of characters and optional modifiers that define
the criteria to be used for the substring match. The simplest expression is a string of
literal characters, as in the following code:

204 Chapter 9 Character Strings

>> str = 'Peter Piper picked a peck of pickled peppers.'; % create a string

>> regexp(str,'pe') % return the indices of substrings matching 'pe'

ans =

9 22 38 41

Here, we found the letter combination 'pe' in the words Piper and peck and twice
in the word peppers.

Character classes are used to match a specific type of character—such as a let-
ter, a number, or a white-space character—or to match a specific set of characters.
The most useful character class is a period (.), which represents any single character.
Another useful character class is a list of characters, or range of characters, within
square brackets ([]) that matches any member of the list or range of characters in the
set. For example, consider searching for a sequence of three characters consisting of
a p, followed by any single character, followed by the letter c or the letter r:

>> regexpi(str,'p.[cr]')

ans =

9 13 22 30 41

>> regexp(str,'p.[cr]','match') % list the substring matches

ans =

'per' 'pic' 'pec' 'pic' 'per'

You could also use a range of characters to find all uppercase letters in the string:

>> regexp(str,'[A-Z]') % match any uppercase letter

ans =

1 7

The character expressions in the following table match a single character with
the indicated characteristics:

Character Expression Description and Usage

. Any single character (including white space)

[abcd35] Any single character in the set enclosed by square brackets []

[a-zA-Z] Any single character in the range a-z or A-Z; the dash -
between characters defines an inclusive range of characters

[^aeiou] Any single character NOT in the set of lowercase vowels; the ^
used as the first character in the set negates the sense of the set

Section 9.6 Searching Using Regular Expressions 205

The character expressions in the preceding table can be modified by using
regular-expression modifiers or quantifiers. Here is an example of using the \w class,
along with a modifier, to find all of the words in the string:

>> regexp(str,'\w+','match') % find all individual words

ans =

 'Peter' 'Piper' 'picked' 'a' 'peck' 'of'

'pickled' 'peppers'

This example shows how the + modifier changes the sense of the expression. Without
the modifier, the \w expression matches any single “word character.” Adding the

\s Any white-space character (space, tab, form feed, new line, or
carriage return), equivalent to the set [\t\f\n\r]

\S Any nonwhite-space character: [^ \t\f\n\r]

\w Any “word character” (an upper- or lowercase letter, a digit, or
an underscore): [a-zA-Z_0-9]

\W Any character that is not a “word character”: [^a-zA-Z_0-9]

\d Any numeric digit: [0-9]

\D Any nondigit character: [^0-9]

\xN or \x{N} The character with hexadecimal value N

\oN or \o{N} The character with octal value N

\a The alarm, bell, or beep character: \o007 or \x07

\b The backspace character: \o010 or \x08

\t The horizontal tab character: \o011 or \x09

\n The line-feed or newline character: \o012 or \x0A

\v The vertical tab character: \o013 or \x0B

\f The form-feed character: \o014 or \x0C

\r The carriage-return character: \o015 or \x0D

\e The escape character: \o033 or \x1B

\ Use a backslash to force a literal match on the next character.
This enables matching on characters that have special meaning
in regular expressions; for example, the characters \.*\?\\
represent a literal period, asterisk, question mark, and backslash,
respectively.

206 Chapter 9 Character Strings

modifier changes the expression to match all words (groups of one or more “word
characters”) in the string.

Character modifiers are listed in the following table:

Modifier Description and Usage

? Matches the preceding element zero or one time

* Matches the preceding element zero or more times

+ Matches the preceding element one or more times

{n} Matches the preceding element exactly n times

{n,} Matches the preceding element at least n times

{n,m} Matches the preceding element at least n times, but no more than m times

Character modifiers are considered greedy (i.e., they match the longest string they
can). For example, in the code

>> regexp(str,'p.*p','match')

ans =

'per picked a peck of pickled pepp'

the modifier matches a lowercase p, followed by zero or more of any character,
followed by a lowercase p. This behavior can be changed by using the quantifier
expressions listed in the following table:

Quantifier Description and Usage

q Matches as much of the string as possible (a greedy quantifier). This is the default.
Here, q represents one of the modifiers in the previous table (e.g., ?, *, +, {n,m}).

q+ Matches as many components of the string as possible, without rescanning any
portions of the string should the initial match fail (a possessive quantifier). Again,
q represents one of the modifiers in the previous table (e.g., ?, *, +, {n,m}).

q? Matches as little of the string as possible, while scanning the string (a lazy
quantifier). Again, q represents one of the modifiers in the previous table
(e.g., ?, *, +, {n,m}).

The following code matches shorter strings bracketed by lowercase p characters:

>> regexp(str,'p.*?p','match')

ans =

'per p' 'peck of p' 'pep'

Section 9.6 Searching Using Regular Expressions 207

Notice that the string 'picked a p' was not returned. Lazy quantifiers cause the
string to be scanned from beginning to end. If a match is found, scanning continues,
beginning with the next character in the string; previous portions are not rescanned.

Parentheses can be used to group patterns. For example, the expression in the
following code matches a p, followed by one or more characters that are not the letter i:

>> regexp(str,'p[^i]+','match')

ans =

'per p' 'peck of p' 'peppers'

The modifier applies to the preceding character. The sense of the expression changes
slightly when parentheses are added. The expression in the following example
matches one or more sequences of a p followed by a character that is not the letter i:

>> regexp(str,'(p[^i])+','match')

ans =

'pe' 'pe' 'pepp'

The modifier now applies to the two-character sequence within the parentheses.
Matches can be made conditional to the context of a regular-expression match.

MATLAB supports both logical operators and lookaround operators. Lookaround
operators can be used to condition a match only if the string is preceded or followed
by the presence or absence of another string match. The next example matches all
words preceded by words ending in d:

>> regexp(str,'(?<=d\s)\w+','match')

ans =

'a' 'peppers'

The expression matches groups of word characters only if preceded by the character
d, followed by a white-space character.

Lookaround operators are listed in the following table:

Lookaround Operator Description and Usage

p(?=q) Lookahead. Matches pattern p only if followed by a match for
pattern q

p(?!q) Negative lookahead. Matches pattern p only if not followed by
a match for pattern q

(?<=q)p Lookbehind. Matches pattern p only if preceded by a match for
pattern q

(?<!q)p Negative lookbehind. Matches pattern p only if not preceded by
a match for pattern q

208 Chapter 9 Character Strings

Logical operators are also available. The following example matches words
containing the string 'ip' or the string 'ck':

>> regexp(str,'\w*(ip|ck)\w*','match')

ans =

'Piper' 'picked' 'peck' 'pickled'

Logical operators are listed in the following table:

Logical Operator Description and Usage

p|q Matches the pattern p or the pattern q

^p Matches the pattern p only if it occurs at the beginning of the string

p$ Matches the pattern p only if it occurs at the end of the string

\<p Matches the pattern p only if it occurs at the beginning of a word

p\> Matches the pattern p only if it occurs at the end of a word

\<p\> Matches the pattern p only if it exactly matches a word

Repeated sequences can be matched by using tokens. When expressions
contain parentheses, the string matching the expression within the parentheses (a
token) is stored and can be reused in the expression. Up to 255 tokens can be used
in an expression. Tokens can be referenced by using the syntax \d, where d is the
index of the desired token. For example, \1 represents the first token, \2 represents
the second token, and so on. The following example matches any doubled word
character:

>> regexp(str,'(\w)\1','match')

ans =

'pp'

The next example matches any character followed by zero or more word characters,
followed by a white-space character, followed by the same initial character, followed
by zero or more word characters, followed by the same white-space character:

>> regexp(str,'(.)\w*(\s)\1\w*\2','match')

ans =

'Peter Piper'

Notice that the string 'pickled peppers' did not match, since there is no space
after the string 'peppers'.

Section 9.6 Searching Using Regular Expressions 209

The following table lists the token expressions available in MATLAB:

Expression Description and Usage

(p) Captures all characters matched by expression p in a token

(?:p) Groups all characters matched by expression p, but do not save in
a token

(?>p) Groups atomically, but do not save in a token

(?#A Comment) Inserts a comment into an expression (The comment is ignored.)

\N Matches the Nth token in this expression (\1 is the first token, \2 is
the second token, etc.)

$N Inserts a match for the Nth token in a replacement string
(regexprep function only)

(?<name>p) Captures all characters matched by the pattern p in a token and
assigns a name to the token

\k<name> Matches the token referred to by name

S<name> Inserts a match for the named token in a replacement string
(regexprep function only)

(?(T)p) If token T is generated (i.e., the match for token T was successful),
then matches pattern p. This is an IF/THEN construction. The
token can be a named token or a positional token.

(?(T)p|q) If token T is generated, then matches pattern p; otherwise, matches
pattern q. This is an IF/THEN/ELSE construction. The token can
be a named token or a positional token.

There are four different regular-expression functions in MATLAB. The
 preceding examples used regexp. The regexpi function ignores case when matching,
whereas the regexprep function replaces strings by using regular expressions. The
regexptranslate function can help to generate regular expressions from character
strings.

The following example searches for words beginning with the string 'pi',
reverses the words, and returns the resulting string:

>> regexprep(str,'(pi\w*)(.*)(pi\w*)','$3$2$1')

ans =

'Peter Piper pickled a peck of picked peppers'

This example generates three tokens: Token 1 is the string 'picked', token 2 is 'a
peck of', and token 3 is 'pickled'. The replacement string '$3$2$1' instructs
regexprep to remove the part of the original string matched by the first argument,

210 Chapter 9 Character Strings

and replace it with a string consisting of the values of the tokens, in the reverse
order. The rest of the original string is returned unchanged. Numbered tokens are
referenced in the search pattern by using the \N notation. The $N notation is used to
reference the tokens in the replacement string.

The regular-expression functions are listed in the following table:

Function Description and Usage

regexp Searches for substrings by using regular expressions

regexpi Searches for substrings by using regular expressions, ignoring case

regexprep Searches and replaces substrings by using regular expressions

regexptranslate Translates a wildcard string into a regular expression

There are many options available for applying and modifying the regular-
expression functions. One option is the 'match' argument illustrated earlier. The
regexprep function is normally case sensitive and replaces all matches it finds.
Options are available to change that default behavior.

All four functions operate on cell arrays of strings, as well as on individual strings.
One pattern can be used to search many strings, or different patterns can be used for
different strings. Any or all of the input parameters can be a cell array of strings.

Dynamic regular expressions are available for the more adventurous or those
more familiar with the usage of regular expressions. Dynamic regular expressions
use independent regular expression matching or MATLAB command output to
modify a regular expression dynamically. They allow you to make the pattern you
want to match dependent on the string you are searching.

Dynamic operators available in MATLAB are listed in the following table:

Dynamic Operator Description and Usage

(??p) Parses p as a separate regular expression and includes the
resulting string in the match expression

(??@cmd) Executes the MATLAB command cmd and includes the string
returned in the match expression

(?@cmd) Executes the MATLAB command cmd but throws away any
string returned by the command (often used to debug regular
expressions. e.g., disp())

${cmd} Executes the MATLAB command cmd and includes the string
returned in the replacement expression

For additional examples and more thorough information about these extremely
powerful and complex capabilities, see the MATLAB help documentation.

211

In addition to traditional mathematical operations, MATLAB supports relational
and logical operations. You may be familiar with these if you’ve had some experience
with other programming languages. The purpose of these operators and functions is
to provide answers to True/False questions. One important use of this capability is to
control the flow or order of execution of a series of MATLAB commands (usually in
a M-file) based on the results of True/False questions.

Relational and Logical
Operations

10

As inputs to all relational and logical expressions, nonzero values are considered
True, and zero values are considered False. The output of all relational and logical
expressions produces logical arrays with True (1) and False (0).

Logical arrays are a special type of numerical array that can be used for logical
array addressing (discussed in Chapter 5), as well as in any numerical expression.
Internally, logical arrays are a separate variable class that uses one byte of storage
per value.

10.1 RELATIONAL OPERATORS

MATLAB relational operators include all common comparisons, as shown in the
following table:

212 Chapter 10 Relational and Logical Operations

MATLAB relational operators can be used to compare two arrays of the same
size or to compare an array with a scalar. In the latter case, scalar expansion is used
to compare the scalar with each array element and the result has the same size as
the array. For example, the code

>> A = 8:-1:0, B = 9-A

A =

 8 7 6 5 4 3 2 1 0

B =

 1 2 3 4 5 6 7 8 9

>> tf = A>4

tf =

 1 1 1 1 0 0 0 0 0

finds elements of A that are greater than 4. Zeros appear in the result where A<=4,
and ones appear where A>4.

The code

>> tf = (A==B-1)

tf =

 0 0 0 0 1 0 0 0 0

finds elements of A that have a value of one less than those in B.

Relational Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to (not to be confused with =)

~= Not equal to

Note that = and == mean two different things: == compares two variables and
returns ones (True) where they are equal and zeros (False) where they are not; =,
on the other hand, is used to assign the output of an operation to a variable.

Section 10.1 Relational Operators 213

Note that testing for equality sometimes produces confusing results for floating-
point numbers:

>> tf = (-0.04 + 0.25 -0.21)==(0.25 - 0.21 - 0.04) % equal?

tf =

 0

>> tf = (-0.04 + 0.25 -0.21)~=(0.25 - 0.21 - 0.04) % equal?

tf =

 1

>> (-0.04 + 0.25 -0.21)-(0.25 - 0.21 - 0.04) % find the difference

ans =

 -6.9389e-018

This is the example we used in Chapter 2 to illustrate that arithmetic is not exactly
commutative when using finite precision. We would expect the result to be True = 1;
but it is not, because the two expressions differ by a number smaller than eps. On the
MATLAB newsgroup, this fundamental fact of finite-precision arithmetic is regularly
posed as a bug in MATLAB.

It is possible to combine relational expressions with mathematical expres-
sions. For example, the code

>> tf = B - (A>2)

tf =

 0 1 2 3 4 5 7 8 9

finds where A>2 and subtracts the resulting vector from B. The code

>> A = A + (A==0)*eps

A =

 8 7 6 5 4 3 2 1 2.2204e-016

is a demonstration of how to replace zero elements in an array with the special
MATLAB number eps, which is approximately 2.2e–16 for double-precision
 values. This particular expression is sometimes useful to avoid dividing by zero, as
in the code

>> x = (-3:3)/3

x =

 -1.0000 -0.6667 -0.3333 0 0.3333 0.6667 1.0000

214 Chapter 10 Relational and Logical Operations214 Chapter 10 Relational and Logical Operations

>> sin(x)./x

ans =

 0.8415 0.9276 0.9816 NaN 0.9816 0.9276 0.8415

Since sin(0)/0 is undefined, MATLAB returns NaN (meaning Not-a-Number) at
that location in the result. This can be avoided by replacing the zero with eps, as the
following code shows:

>> x = x + (x==0)*eps;

>> sin(x)./x

ans =

Columns 1 through 6

 0.8415 0.9276 0.9816 1.0000 0.9816 0.9276

Column 7

 0.8415

Now sin(x)/x for x=0 gives the correct limiting answer. Alternatively, you can
avoid the computation at x=0, for example, by using the code

>> x = (3:9)/3 % create new x

x =

 1.0000 1.3333 1.6667 2.0000 2.3333 2.6667 3.0000

>> y = zeros(size(x)) % create default output

y =

 0 0 0 0 0 0 0

>> tf = x~=0 % find nonzero locations

tf =

 1 1 1 1 1 1 1

>> y(tf) = sin(x(tf))./x(tf) % operate only on nonzeros

y =

Columns 1 through 4

 0.84147 0.72895 0.59724 0.45465

 Columns 5 through 7

 0.30989 0.17148 0.04704

While this approach may seem cumbersome compared with adding eps to x, the concept
of avoiding computations with selected components of an array is used often in efficient
MATLAB programming.

Section 10.2 Logical Operators 215

10.2 LOGICAL OPERATORS

Logical operators provide a way to combine or negate relational expressions.
MATLAB logical operators include those shown in the following table:

Logical Operator Description

& Element-by-element AND for arrays

| Element-by-element OR for arrays

~ NOT

&& Scalar AND with short circuiting

|| Scalar OR with short circuiting

The next four examples illustrate the use of logical operators. The code

>> A = 8:-1:0; B = 9-A; % recall data

>> tf = A>4

tf =

 1 1 1 1 0 0 0 0 0

finds where A is greater than 4.
The code

>> tf = ~(A>4)

tf =

 0 0 0 0 1 1 1 1 1

negates the preceding result; that is, it swaps the positions of the logical ones and
zeros.

The code

>> tf = (A>2) & (A<6)

tf =

 0 0 0 1 1 1 0 0 0

returns True where A is greater than 2 AND less than 6.
The code

>> tf = A<2 | A>7

216 Chapter 10 Relational and Logical Operations

tf =

 1 0 0 0 0 0 0 1 1

returns True where A is less than 2 OR greater than 7.
The scalar short-circuiting logical operators permit an early exit from logi-

cal comparisons where the operator arguments are scalars. That is, when a logical
result is known before performing all relational tests, unneeded comparisons are
skipped. The following code is illustrative:

>> a = 0; b = pi; % new data

>> a==0 || b~=1 % a=0 so this is True and b~=1 is not evaluated

ans =

 1

>> b==1 && a==0 % b~=1 so this is False and a==0 is not evaluated

ans =

 0

>> a==0 || (1/a)<1 % a==0 so 1/a is not computed

ans =

 1

This last example demonstrates the utility of short circuiting. Since a is equal to
zero, the second expression is never evaluated because it does not change the True
result. Therefore, 1/a is not computed. If it was, a divide-by-zero error would have
been returned.

10.3 OPERATOR PRECEDENCE

When evaluating an expression, MATLAB follows a set of rules governing operator
precedence. Operators having higher precedence are evaluated before operators of
lower precedence. Operators of equal precedence are evaluated left to right. The
following table illustrates the operator precedence rules used by MATLAB:

Operator Precedence
Level

Parentheses () Highest

Transpose (.'), conjugate transpose ('), power (.^), matrix power (^)

Unary plus (+), unary minus (-), negation (~)

Section 10.4 Relational and Logical Functions 217

This order of precedence is similar, or exactly equal, to the order used by
most computer programming languages. As a result, you are probably already
 comfortable with writing expressions that conform to these rules. As in other
 programming languages, parentheses can and should be used to control the order
in which an expression is evaluated. Within each level of parentheses, the rules
hold; for example, the code

>> 1|0&0

ans =

 1

>> 1|(0&0)

ans =

 1

>> (1|0)&0

ans =

 0

points out that the order of precedence table is different from the tables included in
MATLAB versions prior to 6. In version 5 and prior versions of MATLAB, logical
AND and logical OR shared the same order of precedence, whereas logical AND
now has higher precedence than logical OR.

10.4 RELATIONAL AND LOGICAL FUNCTIONS

In addition to basic relational and logical operators, MATLAB provides a number
of other relational and logical functions, including the following:

Multiplication (.*), matrix multiplication (*), right division (./), left
division (.\), matrix right division (/), matrix left division (\)

Addition (+), subtraction (-), logical negation (~)

Colon operator (:)

Less than (<), less than or equal to (<=), greater than (>), greater than
or equal to (>=), equal to (==), not equal to (~=)

Element-wise logical AND (&)

Element-wise logical OR (|)

Short-circuiting logical AND (&&)

Short-circuiting logical OR (||) Lowest

218 Chapter 10 Relational and Logical Operations

In addition to these functions, MATLAB provides numerous functions that
test for the existence of specific values or conditions and return logical results as in
the following table:

Function Description

and(x,y) Functional equivalent of the & (AND) operator: x & y

or(x,y) Functional equivalent of the | (OR) operator: x | y

not(x,y) Functional equivalent of the ~ (NOT) operator: ~x

xor(x,y) Exclusive OR operation. Returns True for each element where either x
or y is nonzero. Returns False where both x and y are zero, or both are
nonzero.

any(x) Returns True if any element in a vector x is nonzero. Returns True for
each column in an array x that has any nonzero elements.

all(x) Returns True if all elements in a vector x are nonzero. Returns True for
each column in an array x that has all nonzero elements.

Function Description

ispc True for the PC (Windows) version of MATLAB

ismac True for the Macintosh OS X version of MATLAB

isunix True for the UNIX version of MATLAB

isstudent True for MATLAB student edition

ismember True for set member

isglobal True for global variables

mislocked True if an M-file cannot be cleared

isdir True if input is a directory or folder

isempty True for an empty matrix

isequal True if arrays are numerically equal

isequalwithequalnans True if arrays are equal with NaNs considered equal

isevent True if input is object event

isfinite True for finite elements

isfloat True for floating-point numbers

isscalar True for a scalar

Section 10.4 Relational and Logical Functions 219

isinf True for infinite elements

islogical True for a logical array

isnan True for Not-a-Number

isnumeric True for a numeric array

isinteger True for an integer array

isreal True for a real array

isprime True for prime numbers

issorted True if an array is sorted

automesh True if the inputs should be automatically meshgridded

inpolygon True for points inside a polygonal region

isvarname True for a valid variable name

iskeyword True for keywords or reserved words

issparse True for a sparse matrix

isvector True for a vector

isappdata True if application-defined data exists

ishandle True for graphics handles

ishold True if the graphics hold state is On

figflag True if a figure is currently displayed on screen

iscellstr True for a cell array of strings

ischar True for a character-string array

isletter True for letters of the alphabet

isspace True for white-space characters

isa True if an object is a given class

isstrprop True if a string is of a given category

iscell True for a cell array

isfield True if a field is in structure array

isjava True for Java object arrays

ismethod True for object methods

isobject True for objects

isprop True for object properties

220 Chapter 10 Relational and Logical Operations

10.5 NANS AND EMPTY ARRAYS

NaNs (Not-a-Number) and empty arrays ([]) require special treatment in
MATLAB, especially when used in logical or relational expressions. According
to IEEE mathematical standards, almost all operations on NaNs result in NaNs.
Consider the following example:

>> a = [1 2 nan inf nan] % note that NaN is not case-sensitive

a =

 1 2 NaN Inf NaN

>> b = 2*a

b =

 2 4 NaN Inf NaN

>> c = sqrt(a)

c =

 1.0000 1.4142 NaN Inf NaN

>> d = (a==nan)

d =

 0 0 0 0 0

>> f = (a~=nan)

f =

 1 1 1 1 1

The first two computations give NaN results for NaN inputs. However, the final two
relational computations produce somewhat surprising results: (a==nan) produces
all zeros or False results even when NaN is compared with NaN; at the same time,
(a~=nan) produces all ones or True results. Thus, individual NaNs are not equal
to each other. Because of this property of NaNs, MATLAB has a built-in logical
 function for finding NaNs, called isnan:

Function Description

isstruct True for structures

isvalid True for valid timer, handle, serial port, or instrument or
device group objects

iscom True for Component Object Model (COM) objects

isinterface True for Component Object Model (COM) interfaces

Section 10.5 NaNs and Empty Arrays 221

>> g = isnan(a)

g =

 0 0 1 0 1

Moreover, the isnan function makes it possible to find the indices of NaNs with the
find command:

>> i = find(isnan(a)) % find indices of NaNs

i =

 3 5

>> a(i) = zeros(size(i)) % changes NaNs in a to zeros

a =

 1 2 0 Inf 0

Whereas NaNs are well-defined mathematically by IEEE standards, empty
arrays are defined by the creators of MATLAB and have their own interesting
properties. Empty arrays are just that: They are MATLAB variables having zero
length in one or more dimensions, as in the following code:

>> size([]) % simplest empty array

ans =

 0 0

>> c = zeros(0,5) % how about an empty array with multiple columns!

c =

 Empty matrix: 0-by-5

>> size(c)

ans =

 0 5

>> d = ones(4,0) % an empty array with multiple rows!

d =

 Empty matrix: 4-by-0

>> size(d)

ans =

 4 0

>> length(d) % its length is zero even though it has 4 rows

222 Chapter 10 Relational and Logical Operations

ans =

 0

This may seem strange, but allowing an empty array to have zero length in any
dimension is sometimes useful. [] is just the simplest empty array.

In MATLAB, many functions return empty arrays when no other result is
appropriate. Perhaps the most common example is the find function:

>> x = -2:2 % new data

x =

 -2 -1 0 1 2

>> y = find(x>2)

y =

Empty matrix: 1-by-0

In this example, x contains no values greater than 2, and so, there are no indi-
ces to return. To test for empty results, MATLAB provides the logical function
isempty:

>> isempty(y)

ans =

 1

When performing relational tests where empty arrays may appear, it is important to
use isempty, as the following code shows:

>> c == [] % comparing 0-by-5 to 0-by-0 arrays produces an error

??? Error using ==> eq

Matrix dimensions must agree.

>> isempty(c) % isempty returns the desired result.

ans =

 1

>> a = []; % create an empty variable

>> a == [] % comparing equal size empties gives empty results

ans =

 []

Section 10.5 NaNs and Empty Arrays 223

>> b = 1; % create nonempty variable

>> b == [] % comparing nonempty to empty produces an empty result.

ans =

 []

>> b ~= [] % even not equal comparison produces and empty result.

ans =

 []

The general rule is that relational operations on empty arrays produce either an
error or an empty array result. Therefore, it is important to use isempty to consider
the empty array case whenever it may appear.

224

Computer programming languages and programmable calculators offer features
that allow you to control the flow of command execution using decision-making
structures. If you have used these features before, this section will be very familiar
to you. On the other hand, if control flow is new to you, the material may seem
 complicated the first time through.

Control flow is extremely powerful, since it lets past computations influence
future operations. MATLAB offers five decision-making or control-flow struc-
tures: (1) For Loops, (2) While Loops, (3) If-Else-End constructions, (4) Switch-
Case constructions, and (5) Try-Catch blocks. Because these constructions often
 encompass numerous MATLAB commands, they frequently appear in M-files,
rather than having to be typed directly at the MATLAB prompt.

11.1 FOR LOOPS

For Loops allow a group of commands to be repeated for a fixed, predetermined
number of times. The general form of a For Loop is

for x = array

 (commands)

end

The (commands) between the for and end statements are executed once for every
column in array. At each iteration, x is assigned to the next column of array; that
is, during the nth time through the loop, x = array(:,n). For example, in the code

Control Flow

11

Section 11.1 For Loops 225

>> for n = 1:10

 x(n) = cos(n*pi/10);

 end

>> x

x =

 Columns 1 through 8

 0.9511 0.8090 0.5878 0.3090 0.0000 -0.3090 -0.5878 -0.8090

 Columns 9 through 10

 -0.9511 -1.0000

the first statement says, “For n equals 1 to 10, evaluate all statements until the next
end statement.” The first time through the For Loop, n=1; the second time, n=2;
and so on through the n=10 case. After the n=10 case, the For Loop ends, and any
commands after the end statement are evaluated, which in this case results in the
computed elements of x.

Since the loop variable is assigned to successive columns of the array on the
right-hand side of the equal sign, arbitrary indexing, or inadvertent errors, can
occur. For example, in the code

>> for n = 10:-1:1 % decrementing loop

 x(n) = cos(n*pi/10);

 end

>> x

x =

 Columns 1 through 8

 0.9511 0.8090 0.5878 0.3090 0.0000 -0.3090 -0.5878 -0.8090

 Columns 9 through 10

 -0.9511 -1.0000

the loop variable n counts down from 10 to 1. The expression 10:-1:1 is a stan-
dard array-creation statement that creates a row vector with multiple columns. Any
numerical array can be used. In the code

>> i = 0; % count loop iterations

>> for n = (1:10)'

 i = i+1;

 x(n) = cos(n*pi/10);

 end

226 Chapter 11 Control Flow

>> i % Only one time through the loop!

i =

 1

>> x

x =

 Columns 1 through 8

 0.9511 0.8090 0.5878 0.3090 0.0000 -0.3090 -0.5878 -0.8090

 Columns 9 through 10

 -0.9511 -1.0000

the For Loop executes only one pass! The expression (1:10)' is a column vector,
and so n is set equal to the entire array (1:10)' on its first pass. Since there are no
additional columns in the right-hand-side array, the loop terminates. In the code

>> array = randperm(10)

array =

 8 2 10 7 4 3 6 9 5 1

>> for n = array

 x(n) = sin(n*pi/10);

 end

>> x

x =

 Columns 1 through 6

 0.30902 0.58779 0.80902 0.95106 1 0.95106

 Columns 7 through 10

 0.80902 0.58779 0.30902 1.2246e-016

In this example the loop variable n takes on the numbers 1–10 in the random order
given by array.

A For Loop cannot be terminated by reassigning the loop variable n within
the loop:

>> for n = 1:10

 x(n) = sin(n*pi/10);

 n = 10;

 end

>> x

x =

Section 11.1 For Loops 227

 Columns 1 through 6

 0.30902 0.58779 0.80902 0.95106 1 0.95106

 Columns 7 through 10

 0.80902 0.58779 0.30902 1.2246e-016

To repeat, the right-hand-side array in the For Loop statement can be any
valid array-creation statement:

>> i = 1;

>> for x = rand(4,5)

 y(i) = sum(x);

 i = i+1;

 end

>> y

y =

 2.4385 1.5159 2.5453 1.8911 1.5018

Here, the loop variable x is assigned to the successive 4-by-1 columns of a random
array. Since the For Loop has no natural loop index, i was added.

Naturally, For Loops can be nested as desired:

>> for n = 1:5

 for m = 5:-1:1

 A(n,m) = n^2 + m^2;

 end

 disp(n)

 end

 1

 2

 3

 4

 5

>> A

A =

 2 5 10 17 26

 5 8 13 20 29

228 Chapter 11 Control Flow

 10 13 18 25 34

 17 20 25 32 41

 26 29 34 41 50

Just because the preceding examples were used to illustrate For Loop usage,
it doesn’t mean that they are examples of efficient MATLAB programming.
Historically, For Loops represented poor programming practice whenever an
equivalent array approach existed. The equivalent array approach, called a vector-
ized solution, often is orders of magnitude faster than the scalar approaches just
shown. For example, in the code

>> n = 1:10;

>> x = cos(n*pi/10)

x =

 Columns 1 through 8

 0.9511 0.8090 0.5878 0.3090 0.0000 -0.3090 -0.5878 -0.8090

 Columns 9 through 10

 -0.9511 -1.0000

the two statements duplicate the repeated example of computing the sine function at
10 angles. In addition to being orders of magnitude faster, the preceding vectorized
solution is more intuitive, is easier to read, and requires less typing.

The earlier nested For Loop is equivalent to the following vectorized code:

>> n = 1:5;

>> m = 1:5;

>> [nn,mm] = meshgrid(n,m);

>> A = nn.^2 + mm.^2

A =

 2 5 10 17 26

 5 8 13 20 29

 10 13 18 25 34

 17 20 25 32 41

 26 29 34 41 50

As discussed in Chapter 5, arrays should be preallocated before a For Loop
(or While Loop) is executed. Doing so minimizes the amount of memory allocation
required. For example, in the first case considered in this section, every time the
commands within the For Loop are executed, the size of the variable x is increased

Section 11.1 For Loops 229

by 1, which forces MATLAB to take the time to allocate more memory for x every
time it goes through the loop. To eliminate this step, the For Loop example should
be rewritten as follows:

>> x = zeros(1,10); % preallocated memory for x

>> for n = 1:10

x(n) = sin(n*pi/10);

 end

In this case, only the values of x(n) need to be changed each time through
the loop. Memory allocation occurs once outside the loop, so no memory allocation
overhead bogs down the operations within the loop.

Starting with MATLAB 6.5, improvements were made to the MATLAB
interpreter to minimize the processing overhead involved in executing loops.
These improvements are collectively known as the JIT-accelerator. As stated in
the documentation, such improvements will appear over a series of MATLAB
releases. When the JIT-accelerator was introduced, MATLAB code containing
loops would benefit from JIT-acceleration if the code had the following features
and properties:

 1. The loop structure is a For Loop.
 2. The loop contains only logical, character-string, double-precision, and less

than 64-bit integer data types.
 3. The loop uses arrays that are three dimensional or less.
 4. All variables within a loop are defined prior to loop execution.
 5. Memory for all variables within the loop are preallocated and maintain

 constant size and data type for all loop iterations.
 6. Loop indices are scalar quantities, such as the index i in for i=1:N.
 7. Only built-in MATLAB functions are called within the loop.
 8. Conditional statements with if-then-else or switch-case constructions (introduced

later in this chapter) involve scalar comparisons.
 9. All lines within the block contain no more than one assignment statement.
 10. The number of iterations is significant (more than a few).

JIT-acceleration provides the greatest benefit when the arrays that are
addressed within the loop are relatively small and the number of iterations is large.
As array sizes increase, computational time increases and the percentage of time
spent on processing overhead decreases, thereby leading to less dramatic improve-
ments in overall execution time. The JIT-accelerator has continued to evolve and
now handles much more of the MATLAB language (e.g., objects), but still incurs
costs the first time (or few times) through a loop as it analyzes and compiles the
code. At this time, the JIT-accelerator offers significant improvements for a large
subset of MATLAB syntax, data types, and array sizes.

230 Chapter 11 Control Flow

The following code demonstrates the capabilities of the JIT-accelerator:

N = 1e6;

% generate sin(x) at 1e6 points by using array mathematics

% this is often called a 'vectorized' solution.

x = linspace(0,2*pi,N);

y = sin(x); % vectorized solution requires two lines

% redo code using JIT-acceleration.

i = 0;

y = zeros(1,N); % initialize all variables within loop

x = zeros(1,N); % and allocate all memory

for i=1:N % scalar loop variable

 x(i) = 2*pi*(i-1)/N; % only built-in function calls

 y(i) = sin(x(i));

end

With JIT-acceleration, both approaches take approximately the same time to
 execute. However, prior to the existence of the JIT-accelerator, the For Loop
approach would have been orders of magnitude slower than the vectorized
 solution. For this particular case, the array mathematics approach is much shorter
and much easier to read, so the JIT-acceleration approach has little value for solv-
ing this problem. JIT-acceleration proves its value in more substantial problems
where it is difficult or impossible to compose a vectorized solution by using array
mathematics.

11.2 WHILE LOOPS

As opposed to a For Loop that evaluates a group of commands a fixed number of
times, a While Loop evaluates a group of statements an indefinite number of times.

The general form of a While Loop is

while expression

 (commands)

end

The (commands) between the while and end statements are executed as long as all
elements in expression are True. Usually, evaluation of expression gives a scalar

Section 11.3 If-Else-End Constructions 231

result, but array results are also valid. In the array case, all elements of the resulting
array must be True.

One way of computing the double-precision value eps, which is the smallest number
that can be added to 1 such that the result is greater than 1, using finite precision is

>> num = 0; EPS = 2;

>> while (1+EPS)>2

 EPS = EPS/2;

 num = num+1;

 end

>> num

num =

 1

>> EPS = 2*EPS

EPS =

 2

Here, we used uppercase EPS so that the MATLAB value eps is not overwritten. In this
example, EPS starts at 1. As long as (1+EPS)>2 is True (nonzero), the commands inside
the While Loop are evaluated. Since EPS is continually divided in two, it eventually
gets so small that adding EPS to 1 is no longer greater than 2. (Recall that this happens
because a computer uses a fixed number of digits to represent numbers. Double preci-
sion specifies approximately 16 digits, so we would expect eps to be near 10–16.) At this
point, (1+EPS)>2 is False (zero) and the While Loop terminates. Finally, EPS is multi-
plied by 2, because the last division by 2 made it too small by a factor of 2.

For array expressions, the While Loop continues only when all elements in
expression are True. If you want the While Loop to continue when any element is
True, simply use the function any. For instance, while any(expression) returns a
scalar logical True whenever any of its contents are True.

11.3 IF-ELSE-END CONSTRUCTIONS

Many times, sequences of commands must be conditionally evaluated on the basis of
a relational test. In programming languages, this logic is provided by some variation
of an If-Else-End construction. The simplest If-Else-End construction is

if expression

 (commands)

end

232 Chapter 11 Control Flow

The (commands) between the if and end statements are evaluated if all elements in
expression are True (nonzero).

In cases where expression involves several logical subexpressions, only the
 minimum number required to determine the final logical state are evaluated. For
example, if expression is (expression1 | expression2), then expression2 is
evaluated only if expression1 is False. Similarly, if expression is (expression1 &
expression2), then expression2 is not evaluated if expression1 is False. Note that
this short circuiting occurs in If-Else-End constructions even if the specific short-
circuiting operators || or && are not used.

The following example is illustrative:

>> apples = 10; % number of apples

>> cost = apples*25 % cost of apples

cost =

 250

>> if apples>5 % give 20% discount for larger purchases

 cost = (1-20/100)*cost;

end

>> cost

cost =

200

In cases where there are two alternatives, the If-Else-End construction is

if expression

 (commands evaluated if True)

else

 (commands evaluated if False)

end

Here, the first set of commands is evaluated if expression is True; the second set is
evaluated if expression is False.

When there are three or more alternatives, the If-Else-End construction takes
the form

if expression1

 (commands evaluated if expression1 is True)

Section 11.3 If-Else-End Constructions 233

elseif expression2

 (commands evaluated if expression2 is True)

elseif expression3

 (commands evaluated if expression3 is True)

elseif expression4

 (commands evaluated if expression4 is True)

elseif expression5

 .

 .

 .

else

 (commands evaluated if no other expression is True)

end

In this last form, only the commands associated with the first True expression
encountered are evaluated; ensuing relational expressions are not tested; and
the rest of the If-Else-End construction is skipped. Furthermore, the final else
 command may or may not appear.

Now that we know how to make decisions with If-Else-End constructions, it is
possible to show a legal way to break out of For Loops and While Loops:

>> EPS = 2;

>> for num = 1:1000

 EPS = EPS/2;

 if (1+EPS)<=2

 EPS = EPS*2

 break

 end

 end

EPS =

 2

>> num

num =

 1

This example demonstrates another way of estimating the double-precision value
eps. In this case, the For Loop is instructed to run some sufficiently large number

234 Chapter 11 Control Flow

of times. The If-Else-End structure tests to see if EPS has gotten small enough.
If it has, EPS is multiplied by 2, and the break command forces the For Loop to end
prematurely, which, in this case is at num=53.

Furthermore, when the break statement is executed, MATLAB jumps to the
next statement outside of the loop in which the break statement appears. Therefore,
it returns to the MATLAB prompt and displays EPS. If a break statement appears
in a nested For Loop or While Loop structure, MATLAB only jumps out of the
immediate loop in which the break statement appears. It does not jump all the way
out of the entire nested structure.

MATLAB version 6 introduced the command continue for use in For Loops
and While Loops. When MATLAB encounters a continue statement inside of a
For Loop or While Loop, it immediately jumps to the end statement of the loop,
bypassing all of the commands between the continue command and the end state-
ment. In doing so, the continue command moves immediately to the expression
test for the next pass through the loop:

>> EPS = 2;

>> for num = 1:1000

 EPS = EPS/2;

 if (1+EPS)>2

 continue

 end

 EPS = EPS*2

 break

 end

EPS =

 2

Here, the previous example is rewritten to use the continue command. Note that
the continue command has no effect on the If-End construction.

11.4 SWITCH-CASE CONSTRUCTIONS

When sequences of commands must be conditionally evaluated on the basis of
repeated use of an equality test with one common argument, a Switch-Case con-
struction is often easier. Switch-Case constructions have the form

switch expression

 case test_expression1

 (commands1)

Section 11.4 Switch-Case Constructions 235

 case {test_expression2,test_expression3,test_expression4}

 (commands2)

 otherwise

 (commands3)

end

where expression must be either a scalar or a character string. If expression
is a scalar, expression==test_expressionN is tested by each case statement.
If expression is a character string, strcmp(expression,test_expression) is
tested. In this example, expression is compared with test_expression1 at the
first case statement. If they are equal, (commands1) are evaluated, and the rest of
the statements before the end statement are skipped. If the first comparison is not
true, the second is considered. In this example, expression is compared with test_
expression2, test_expression3, and test_expression4, which are contained
in a cell array. If any of these are equal to expression, (commands2) are evaluated,
and the rest of the statements before end are skipped. If all case comparisons are
false, (commands3) following the optional otherwise statement are executed. Note
that this implementation of the Switch-Case construction allows at most one of the
command groups to be executed.

A simple example demonstrating the Switch-Case construction is

x = 2.7;

units = 'm';

switch units % convert x to centimeters

 case {'inch','in'}

 y = x*2.54;

 case {'feet','ft'}

 y = x*2.54*12;

 case {'meter','m'}

 y = x/100;

 case {'millimeter','mm'}

 y = x*10;

 case {'centimeter','cm'}

 y = x;

 otherwise

 disp(['Unknown Units: ' units])

 y = nan;

end

Executing this code gives a final value of y = 0.027.

236 Chapter 11 Control Flow

11.5 TRY-CATCH BLOCKS

A Try-Catch block provides user-controlled error-trapping capabilities. That is,
with a Try-Catch block, errors found by MATLAB are captured, giving the user
the ability to control the way MATLAB responds to errors. Try-Catch blocks have
the form

try

 (commands1)

catch

 (commands2)

end

Here, all MATLAB expressions in (commands1) are executed. If no MATLAB
errors are generated, control is passed to the end statement. However, if a
MATLAB error appears while executing (commands1), control is immediately
passed to the catch statement and subsequent expressions in (commands2). The
code within (commands2) can make use of the functions lasterr and lasterror
to access information about the error and act accordingly.

Consider the following example, implemented in a script M-file for conve-
nience:

x = ones(4,2);

y = 4*eye(2);

try

 z = x*y;

catch

 z = nan;

 disp('X and Y are not conformable.')

end

z

With the preceding data for x and y, this code segment produces the following
 output:

z =

 4 4

 4 4

 4 4

 4 4

Section 11.5 Try-Catch Blocks 237

In this case, only the code in the Try block was executed. Changing the variable y
creates an error:

x = ones(4,2);

y = 4*eye(3); % now wrong size

try

 z = x*y;

catch

 z = nan;

 disp('X and Y are not conformable.')

end

z

Executing the code this time generates the following output in the Command window:

X and Y are not conformable.

z =

 NaN

In addition, the function lasterr describes the error found:

>> lasterr

ans =

Error using ==> mtimes

Inner matrix dimensions must agree.

More detailed information is returned by the structure output of the function lasterror:

>> lasterror

ans =

 message: 'Error using ==> mtimes

Inner matrix dimensions must agree.'

 identifier: 'MATLAB:innerdim'

 stack: [0x1 struct]

Here, the content of the message field is the same as the output from lasterr. The
identifier field describes the message identifier, which in this case classifies the
error type as being generated by an inner-dimension error in MATLAB.

238 Chapter 11 Control Flow

The Catch block also may perform tasks and then reissue the original error by
using the rethrow function. For example, revising and rerunning the code from the
previous example produces

x = ones(4,2);

y = 4*eye(3); % now wrong size

try

 z = x*y;

catch ERR % capture the error in an MException object (ERR)

 z = nan;

 disp('X and Y are not conformable.')

 rethrow(ERR) % process error as if Try-Catch did not happen.

end

z

In this case, the Command window displays

X and Y are not conformable.

??? Error using ==> mtimes

Inner matrix dimensions must agree.

The rethrow function reissues the error, terminates execution, and therefore does
not display the contents of z as requested by the last code line.

239

When you use MATLAB functions such as inv, abs, angle, and sqrt, MATLAB
takes the variables that you pass to it, computes the required results using your input,
and then passes these results back to you. The commands evaluated by the function, as
well as any intermediate variables created by these commands, are hidden. All you see
is what goes in and what comes out. In other words, a function is a black box.

This property makes functions very powerful tools for evaluating commands
that encapsulate useful mathematical functions or sequences of commands that
often appear when you are solving some larger problem. Because of the usefulness
of this power, MATLAB provides several structures that enable you to create
 functions of your own. These structures include M-file functions, anonymous
 functions, and inline functions. Of these, M-file functions are the most common.
M-file functions are text files that contain MATLAB code and a function header.
The function mmempty is a good example of an M-file function:

Functions

12

function d = mmempty(a,b)

%MMEMPTY Substitute Value if Empty.

% MMEMPTY(A,B) returns A if A is not empty,

% otherwise B is returned.

%

% Example: The empty array problem in logical statements

% let a = []; then use MMEMPTY to set default logical state

% (a==1) is [], but MMEMPTY(a,1)==1 is true

% (a==0) is [], but MMEMPTY(a,0)==0 is true

240 Chapter 12 Functions

% Also:

% sum(a) is 0, but sum(MMEMPTY(a,b)) = sum(b)

% prod(a) is 1, but prod(MMEMPTY(a,b)) = prod(b)

%

% See also ISEMPTY, SUM, PROD, FIND

if isempty(a)

 d = b;

else

 d = a;

end

A function M-file is similar to a script M-file in that it is a text file having
a .m extension. Like script M-files, function M-files are not entered in
the Command window, but rather are external text files created with a
text editor (probably the Editor/Debugger that comes with MATLAB).
A function M-file is different from a script file in that a function commu-
nicates with the MATLAB workspace only through the variables passed
to it and through the output variables it creates. Intermediate variables
within the function do not appear in, or interact with, the MATLAB work-
space. As can be seen in the example, the first line defines the M-file as a
function and specifies its name, which is the same as its filename without
the .m extension. The first line also defines the M-file’s input and output
variables. The next continuous sequence of comment lines comprises the
text displayed in response to the help command help mmempty or helpwin
mmempty. The first help line, called the H1 line, is the line searched by the
lookfor command. Finally, the remainder of the M-file contains MATLAB
commands that create the output variables. Note that there is no return
command in mmempty; the function simply terminates after it executes the
last command. However, you can use the return command to terminate
execution before reaching the end of the M-file.

12.1 M-FILE FUNCTION CONSTRUCTION RULES

Function M-files must satisfy a number of criteria and should have a number
of desirable features:

 1. The function M-file name and the function name (e.g., mmempty)
that appear in the first line of the file should be identical. In reality,
 MATLAB ignores the function name in the first line and executes
functions on the basis of the file name stored on disk.

Section 12.1 M-file Function Construction Rules 241

 2. Function M-file names can have up to 63 characters. This maximum may be
 limited by the operating system, in which case the lower limit applies. MATLAB
ignores characters beyond the 63rd or the operating system limit, and so longer
names can be used, provided the legal characters point to a unique file name.

 3. Function M-file names are case sensitive on UNIX platforms, and as of
 MATLAB 7, they are now case sensitive on Windows platforms as well. To
avoid platform dependencies across MATLAB versions, it is beneficial to use
only lowercase letters in M-file names.

 4. Function names must begin with a letter. Any combination of letters, numbers,
and underscores can appear after the first character. Function names cannot
contain spaces or punctuation characters. This naming rule is identical to that
for variables.

 5. The first line of a function M-file is called the function-declaration line and
must contain the word function followed by the calling syntax for the function
in its most general form. The input and output variables identified in the first
line are variables local to the function. The input variables contain data passed
to the function, and the output variables contain data passed back from the
function. It is not possible to pass data back through the input variables.

 6. The first set of contiguous comment lines after the function-declaration line
are the help text for the function. The first comment line is called the H1
line and is the line searched by the lookfor command. The H1 line typically
 contains the function name in uppercase characters and a concise description
of the function’s purpose. Comment lines after the first describe possible
 calling syntaxes, algorithms used, and simple examples, if appropriate.

 7. Function names appearing in the help text of a function are normally capitalized
only to give them visual distinction. Functions are called by matching the exact
case of the letters making up their filenames.

 8. All statements following the first set of contiguous comment lines compose the
body of the function. The body of a function contains MATLAB statements that
operate on the input arguments and produce results in the output arguments.

 9. A function M-file terminates after the last line in the file is executed or whenever
a return statement is encountered. If an M-file contains nested functions, each
function in the M-file requires a terminating end statement.

 10. A function can abort operation and return control to the Command window
by calling the function error. This function is useful for flagging improper
function usage, as shown in the following code fragment:

if length(val) > 1

 error('VAL must be a scalar.')

end

When the function error in the preceding code is executed, the string 'VAL
must be a scalar.' is displayed in the Command window, after a line identi-
fying the file that produced the error message. Passing an empty string to error

242 Chapter 12 Functions

(e.g., error('')) causes no action to be taken. After being issued, the error
character string is passed to the functions lasterror and lasterr for later
 recall. It is also possible to pass numerical data to the displayed error string by
using the function error as one would use the function sprintf. For instance,
the previous example could be revised as follows:

val = zeros(1,3);

if length(val) > 1

 error('VAL has %d elements but must be a scalar.',length(val))

end

??? VAL has 3 elements but must be a scalar.

The %d specification indicates that an integer format should be used to insert
the value of length(val) into the given place in the error string. When
 MATLAB identifies an error, it also creates an error message identifier string
that is returned by the function lasterror, as in the following code:

>> eig(eye(2,4))

??? Error using ==> eig

Matrix must be square.

>> lasterror

ans =

 message: 'Error using ==> eig

Matrix must be square.'

 identifier: 'MATLAB:square'

 stack: [0x1 struct]

Here, the identifier field identifies the error source as coming from
 MATLAB and having to do with square matrices. To include this information
in an M-file function, simply add it as a first argument to the error function,
as illustrated in the following code:

>> val = zeros(1,3);

>> msg = 'VAL has %d elements but must be a scalar.';

if length(val) > 1

 error('MyToolbox:scalar',msg,length(val))

end

??? VAL has 3 elements but must be a scalar.

>> lasterror

Section 12.1 M-file Function Construction Rules 243

ans =

 message: 'VAL has 3 elements but must be a scalar.'

 identifier: 'MyToolbox:scalar'

 stack: [0x1 struct]

The identifier field now shows that this error was flagged by a function in
 MyToolbox, rather than by MATLAB itself, and that the error was related to
a scalar.

 11. A function can report a warning and then continue operation by calling the
function warning. This function has the same calling syntax as the function
error. Warnings can contain simple character strings, strings containing
 formatted data, and an optional initial message identifier string. The difference
between the warning and error functions is that warnings can be turned Off
globally, or have warnings associated with specific message identifiers turned
Off. Warning states can also be queried. (See MATLAB documentation for
more thorough information about the features of the function warning.)

 12. Function M-files can contain calls to script files. When a script file is encountered,
it is evaluated in the function’s workspace, not in the MATLAB workspace.

 13. Multiple functions can appear in a single function M-file. Additional functions,
called subfunctions or local functions, are simply appended to the end of the
primary function. Subfunctions begin with a standard function statement line
and follow all function construction rules.

 14. Subfunctions can be called by the primary function in the M-file, as well as
by other subfunctions in the same M-file, but subfunctions cannot be called
 directly from outside the M-file. Like all functions, subfunctions have their
own individual workspaces.

 15. Subfunctions can appear in any order after the primary function in an M-file. Help
text for subfunctions can be displayed by entering >> helpwin func >subfunc,
where func is the main function name and subfunc is the subfunction name.

 16. It is suggested that subfunction names begin with the word local, for example,
local_myfun. This practice improves the readability of the primary function,
because calls to local functions are clearly identifiable. All local function names
can have up to 63 characters. The following function mmclass demonstrates
the use of subfunctions:

function c = mmclass(arg)

%MMCLASS MATLAB Object Class Existence.

% MMCLASS returns a cell array of strings containing the

% names of MATLAB object classes available with this license.

%

244 Chapter 12 Functions

% MMCLASS('ClassName') returns logical True (1) if the class

% having the name 'ClassName' exists with this license.

% Otherwise logical False (0) is returned.

%

% MMCLASS searches the MATLABPATH for class directories.

% Classes not on the MATLABPATH are ignored.

%

% See also CLASS, ISA, METHODS, ISOBJECT

persistent clist % save data for future calls

if isempty(clist) % clist contains no data, so create it

 clist = local_getclasslist;

end

if nargin==0

 c = clist;

elseif ischar(arg)

 c = ~isempty(strmatch(arg,clist));

else

 error('Character String Argument Expected.')

end

function clist = local_getclasslist

%LOCAL_GETCLASSLIST Get list of MATLAB classes

%

% LOCAL-GETCLASSLIST returns a list of all MATLAB classes

% in a cell array of strings.

clist = cell(0);

cstar = [filesep '@*'];

dlist = [pathsep matlabpath];

sidx = findstr(pathsep,dlist)+1; % path segment starting indices

eidx = [sidx(2:end)-2 length(dlist)]; % path segment ending indices

for i = 1:length(sidx)-1 % look at each path segment

cdir = dir([dlist(sidx(i):eidx(i)) cstar]); % dir @* on segment

Section 12.2 Input and Output Arguments 245

clist = [clist {cdir.name}]; % add results to list

end

cstr = char(clist); % convert to string array

cstr(:,1) = []; % eliminate initial '@'

cstr = unique(cstr,'rows');% alphabetize and make unique

clist = cellstr(cstr); % back to a cell array

% end of subfunction

 17. In addition to subfunctions, M-file functions can contain nested functions.
Nested functions are defined completely within another function in an M-file.
(Refer to Section 12.8 for more information on nested functions.)

 18. In addition to subfunctions and nested functions, M-files can call private M-files,
which are standard function M-files that reside in a subdirectory of the calling
function entitled private. Only functions in the immediate parent directory of
private M-files have access to private M-files. Private subdirectories are meant to
contain utility functions useful to several functions in the parent directory. Private
function M-file names need not be unique, because of their higher precedence
and limited scope.

 19. It is suggested that private M-file names begin with the word private, for
example, private_myfun. This practice improves the readability of the
primary function, because calls to private functions are clearly identifiable.
Like other function names, the names of all private M-files can have up to
63 characters.

12.2 INPUT AND OUTPUT ARGUMENTS

MATLAB functions can have any number of input and output arguments. The
 features of, and criteria for, these arguments are as follows:

 1. Function M-files can have zero input arguments and zero output arguments.
 2. Functions can be called with fewer input and output arguments than are speci-

fied in the function-definition line in the M-file. Functions cannot be called
with more input or output arguments than the M-file specifies.

 3. The number of input and output arguments used in a function call can be
 determined by calls to the functions nargin and nargout, respectively.
Since nargin and nargout are functions, not variables, one cannot reassign
them with statements such as nargin = nargin - 1. The function mmdigit
 illustrates the use of nargin:

246 Chapter 12 Functions

function y = mmdigit(x,n,b,t)

%MMDIGIT Round Values to Given Significant Digits.

% MMDIGIT(X,N,B) rounds array X to N significant places in base B.

% If B is not given, B = 10 is assumed.

% If X is complex the real and imaginary parts are rounded separately.

% MMDIGIT(X,N,B,'fix') uses FIX instead of ROUND.

% MMDIGIT(X,N,B,'ceil') uses CEIL instead of ROUND.

% MMDIGI T(X,N,B,'floor') uses FLOOR instead of ROUND.

if nargin<2

 error('Not enough input arguments.')

elseif nargin==2

 b = 10;

 t = 'round';

elseif nargin==3

 t = 'round';

end

n = round(abs(n(1)));

if isempty(b), b = 10;

else b = round(abs(b(1)));

end

if isreal(x)

 y = abs(x)+(x==0);

 e = floor(log(y)./log(b)+1);

 p = repmat(b,size(x)).^(n-e);

 if strncmpi(t,'round',1)

 y = round(p.*x)./p;

 elseif strncmpi(t,'fix',2)

 y = fix(p.*x)./p;

 elseif strncmpi(t,'ceil',1)

 y = ceil(p.*x)./p;

 elseif strncmpi(t,'floor',2)

 y = floor(p.*x)./p;

Section 12.2 Input and Output Arguments 247

 else

 error('Unknown rounding requested')

 end

else % complex input

 y = complex(mmdigit(real(x),n,b,t),mmdigit(imag(x),n,b,t));

end

In mmdigit, nargin is used to assign default values to input arguments not
supplied by the user.

 4. When a function is called, the input variables are not copied into the function’s
workspace, but their values are made readable within the function. However,
if any values in the input variables are changed, the array is then copied into
the function’s workspace. Thus, to conserve memory and increase speed, it is
better to extract elements from large arrays and then modify them, rather than
to force the entire array to be copied into the function’s workspace. Note that
using the same variable name for both an input and an output argument causes
an immediate copying of the contents of the variable into the function’s work-
space. For example, function y = myfunction(x,y,z) causes the variable
y to be immediately copied into the workspace of myfunction.

 5. If a function declares one or more output arguments, but no output is desired,
simply do not assign the output variable (or variables) any values. Alterna-
tively, the function clear can be used to delete the output variables before
terminating the function.

 6. Functions can accept a variable and an unlimited number of input arguments
by specifying varargin as the last input argument in the function-declaration
line. The argument varargin is a predefined cell array whose ith cell is the
ith argument, starting from where varargin appears. For example, consider a
function having the following function-declaration line:

function a = myfunction(varargin)

If this function is called as myfunction(x,y,z), then varargin{1} contains
the array x, varargin{2} contains the array y, and varargin{3} contains the
array z. Likewise, if the function is called as myfunction(x), then varargin
has length 1 and varargin{1} = x. Every time myfunction is called, it can be
called with a different number of arguments.

In cases where one or more input arguments are fixed, varargin must
appear as the last argument:

function a = myfunction(x,y,varargin)

248 Chapter 12 Functions

If this function is called as myfunction(x,y,z), then, inside of the function,
x and y are available, and varargin{1} contains z. In any case, the function
nargin returns the actual number of input arguments used. (For further infor-
mation on cell arrays, see Chapter 8.)

 7. Functions can accept a variable, unlimited number of output arguments by
specifying varargout as the last output argument in the function-declaration
line. The argument varargout is a predefined cell array whose ith cell is the
ith argument, starting from where varargout appears. For example, consider
a function having the following function-declaration line:

function varargout = myfunction(x)

If this function is called as [a,b] = myfunction(x), then, inside of the
 function, the contents of varargout{1} must be assigned to the data that
become the variable a, and the contents of varargout{2} must be assigned
to the data that become the variable b. As with varargin, discussed
 previously, the length of varargout is equal to the number of output
 arguments used and nargout returns this length. In cases where one or more
output arguments are fixed, varargout must appear as the last argument
in the function-declaration line, that is, function [a,b,varargout] =
myfunction(x) (see Chapter 8).

 8. The functions nargchk and nargoutchk provide simple error checking for
the number of valid input and output arguments, respectively. Since functions
automatically return an error if called with more input or output arguments
that appear in their function definitions, these functions have limited value.
They may be useful, however, when a function definition declares an arbitrary
number of input or output arguments.

12.3 FUNCTION WORKSPACES

As stated earlier, functions are black boxes. They accept inputs, act on these inputs,
and create outputs. Any and all variables created within the function are hidden
from the MATLAB (or base) workspace. Each function has its own temporary
workspace that is created with each function call and deleted when the function
completes execution. MATLAB functions can be called recursively, and each call
has a separate workspace. In addition to furnishing input and output arguments,
MATLAB provides several techniques for communicating among function work-
spaces and the MATLAB (or base) workspace:

 1. Functions can share variables with other functions, the MATLAB workspace,
and recursive calls to themselves if the variables are declared global. To gain
access to a global variable within a function or the MATLAB workspace, the
variable must be declared global—for example, global myvariable.

Section 12.3 Function Workspaces 249

 2. In addition to sharing data through global variables, function M-files can have
 restricted access to variables for repeated or recursive calls to themselves by
 declaring a variable persistent, such as persistent myvariable. Persistent
variables act like global variables whose scope is limited to the function where they
are declared. Persistent variables exist as long as an M-file remains in memory in
MATLAB. The function mmclass illustrates the use of persistent variables:

As a matter of programming practice, the use of global variables is discouraged
whenever possible. However, if they are used, it is suggested that global variable
names be long, contain all capital letters, and optionally start with the name of the
M-file where they appear—for example, MYFUN_ALPHA. If followed, these
 suggestions will minimize unintended conflicts among global variables.

function c = mmclass(arg)

%MMCLASS MATLAB Object Class Existence.

% MMCLASS returns a cell array of strings containing the

% names of MATLAB object classes available with this license.

%

% MMCLASS('ClassName') returns logical True (1) if the class

% having the name 'ClassName' exists with this license.

% Otherwise logical False (0) is returned.

%

% MMCLASS searches the MATLABPATH for class directories.

% Classes not on the MATLABPATH are ignored.

%

% See also CLASS, ISA, METHODS, ISOBJECT

persistent clist % save data for future calls

if isempty(clist) % clist contains no data, so create it

 clist = cell(0);

 cstar = [filesep '@*'];

 dlist = [pathsep matlabpath];

 sidx = findstr(pathsep,dlist)+1; % path segment starting indices

 eidx = [sidx(2:end)-2 length(dlist)]; % path segment ending indices

250 Chapter 12 Functions

 for i = 1:length(sidx)-1 % look at each path segment

 cdir = dir([dlist(sidx(i):eidx(i)) cstar]); % dir @* on segment

 clist = [clist {cdir.name}]; % add results to list

 end

 cstr = char(clist); % convert to string array

 cstr(:,1) = []; % eliminate initial '@'

 cstr = unique(cstr,'rows'); % alphabetize and make unique

 clist = cellstr(cstr); % back to a cell array

end

if nargin==0

 c = clist;

elseif ischar(arg)

 c = ~isempty(strmatch(arg,clist));

else

 error('Character String Argument Expected.')

end

In mmclass, the variable clist is declared persistent. The first time
mmclass is called during a MATLAB session, clist is created as an empty
array. When the function finds it empty, it fills it with data in the first If-End
 construction in the function. In future calls to mmclass, clist exists because
of its persistence, and re-creating clist in the future is unnecessary.
For these subsequent function calls, the data previously stored in clist is
simply reused.

 3. MATLAB provides the function evalin to allow you to reach into another work-
space, evaluate an expression, and return the result to the current workspace. The
function evalin is similar to eval, except that the string is evaluated in either
the caller or the base workspace. The caller workspace is the workspace where
the current function was called from. The base workspace is the MATLAB
 workspace in the Command window. For example, A=evalin('caller',
'expression') evaluates 'expression' in the caller workspace and returns
the results to the variable A in the current workspace. Alternatively, A=evalin
('base','expression') evaluates 'expression' in the MATLAB workspace
and returns the results to the variable A in the current workspace. The function
 evalin also provides error trapping with the syntax evalin('workspace',
'try','catch'), where 'workspace' is either 'caller' or 'base'; 'try' is
the first expression evaluated; and 'catch' is an expression that is evaluated in
the current workspace if the evaluation of 'try' produces an error.

Section 12.3 Function Workspaces 251

 4. Since you can evaluate an expression in another workspace, it makes sense that
you can also assign the results of some expression in the current workspace to a
variable in another workspace. The function assignin provides this capability.
For example, assignin('workspace','vname',X), where 'workspace' is
 either 'caller' or 'base', assigns the contents of the variable X in the current
workspace to a variable named 'vname' in the 'caller' or base' workspace.

 5. The function inputname provides a way to determine the variable names used
when a function is called. For example, suppose a function is called as

>> y = myfunction(xdot,time,sqrt(2))

Issuing inputname(1) inside of myfunction returns the character string
'xdot', inputname(2) returns 'time', and inputname(3) returns an empty
array, because sqrt(2) is not a variable, but rather an expression that produces
an unnamed temporary result.

The function mmswap illustrates the use of evalin, assignin, and
 inputname:

function mmswap(x,y)

%MMSWAP Swap Two Variables.

% MMSWAP(X,Y) or MMSWAP X Y swaps the contents of the

% variable X and Y in the workspace where it is called.

% X and Y must be variables not literals or expressions.

%

% For example: Rat = ones(3); Tar=pi; MMSWAP(Rat,Tar) or MMSWAP Rat Tar

% swaps the contents of the variables named Rat and Tar in the

% workspace where MMSWAP is called giving Rat = pi and Tar = ones(3).

if nargin~=2

 error('Two Input Arguments Required.')

end

if ischar(x) & ischar(y) % MMSWAP X Y 'string input arguments'

 % check existence of arguments in caller

 estr = sprintf('[exist(''%s'',''var'') exist(''%s'',''var'')]',x,y);

 t = evalin('caller',estr);

 if all(t) % both x and y are valid

 xx = evalin('caller',x); % get contents of x

252 Chapter 12 Functions

 yy = evalin('caller',y); % get contents of y

 assignin('caller',y,xx) % assign contents of x to y

 assignin('caller',x,yy) % assign contents of y to x

 elseif isequal(t,[0 1]) % x is not valid

 error(['Undefined Variable: ''' x '''])

 elseif isequal(t,[1 0]) % y is not valid

 error(['Undefined Variable: ''' y ''''])

 else % neither is valid

 error(['Undefined Variables: ''' x ''' and ''' y ''''])

 end

else % MMSWAP(X,Y) 'numerical input arguments'

 xname = inputname(1); % get x argument name if it exists

 yname = inputname(2); % get y argument name if it exists

 if ~isempty(xname) & ~isempty(yname) % both x and y are valid

 assignin('caller',xname,y) % assign contents of y to x

 assignin('caller',yname,x) % assign contents of x yo y

 else

 error('Arguments Must be Valid Variables.')

 end

end

 6. The name of the M-file being executed is available within a function in the
 variable mfilename. For example, when the M-file myfunction.m is being
 executed, the workspace of the function contains the variable mfilename, which
contains the character string 'myfunction'. This variable also exists within
script files, in which case it contains the name of the script file being executed.

12.4 FUNCTIONS AND THE MATLAB SEARCH PATH

Function M-files and their powerful features are among the fundamental strengths
of MATLAB. They allow you to encapsulate sequences of useful commands and
apply them over and over. Since M-files exist as text files on disk, it is important that

Section 12.4 Functions and the MATLAB Search Path 253

MATLAB maximize the speed at which the files are found, opened, and executed.
The following are the techniques that MATLAB uses to maximize speed:

 1. The first time MATLAB executes a function M-file, it opens the corresponding
text file and compiles the commands into an internal pseudocode representa-
tion in memory that speeds execution for all later calls to the function. If the
function contains references to other M-file functions and script M-files, they
too are compiled into memory.

 2. The function inmem returns a cell array of strings containing a list of functions
and script files that are currently compiled into memory.

 3. Issuing the command mlock within an M-file locks the compiled function so that
it cannot be cleared from memory. For example, clear functions does not
clear a locked function from memory. By locking an M-file, persistent variables
declared in a function are guaranteed to exist from one call to the next. Issuing
the command munlock within an M-file unlocks the compiled function. The
function call munlock('FUN') unlocks the function FUN, so that it can be cleared
from memory. The function mislocked('FUN') returns True if the function FUN
is currently locked in memory. By default, function M-files are unlocked.

 4. It is possible to store the pseudocode, or P-code, version of a function M-file
to disk by using the pcode command. When this is done, MATLAB loads the
P-file, rather than the M-file, into memory. For most functions, this step does
not significantly shorten the amount of time required to execute a function for
the first time. However, it can speed up large M-files associated with complex
GUI functions. P-code files are created by issuing the command

>> pcode myfunction

where myfunction is the M-file name to be compiled. P-code files are
 encrypted, platform-independent binary files that have the same name as
the original M-file but end in .p rather than in .m. P-code files provide a
level of security, since they are visually indecipherable and can be executed
 without the corresponding M-file. Furthermore, it is not possible to convert a
P-code file into an M-file. Because of their binary nature, P-code files are not
 necessarily backward compatible across MATLAB versions. That is, a P-code
file created by using MATLAB 7.5 will not run on MATLAB 6 or even 7.4.
However, they are generally forward compatible. That is, a P-code file created
using MATLAB 7.4 will usually run on MATLAB 7.5 or even 7.10.

 5. When MATLAB encounters a name it doesn’t recognize, it follows a set of
precedence rules to determine what to do. For example, when you enter cow
at the MATLAB prompt or if MATLAB encounters a reference to cow in a
script or function M-file,

 a. MATLAB checks to see if cow is a variable in the current workspace; if not,
 b. it checks to see if cow is a nested function in the function in which cow

 appears, if not,

254 Chapter 12 Functions

 c. it checks to see if cow is a subfunction in the file in which cow appears,
if not,

 d. it checks to see if cow is a private function to the file in which cow appears,
if not,

 e. it checks to see if cow exists in the current directory, if not,
 f. it checks to see if cow exists in each directory specified on the MATLAB

search path, by searching in the order in which the search path is
 specified.

MATLAB uses the first match it finds. In addition, in steps d, e, and f, it prioritizes
by type considering MEX-files first, followed by P-code files, and then by
M-files. So if cow.mex, cow.p, and cow.m exist, MATLAB uses cow.mex, where
mex is replaced by the platform-dependent MEX-file extension. If cow.p and
cow.m exist, MATLAB uses cow.p. In step f, if cow.m exists on the search path
and cow is a built-in function, the built-in function is executed. If cow.m exists
and is not a built-in function, the M-file is executed.

 6. When MATLAB is started, it caches the name and location of all M-files
stored within the toolbox subdirectory and within all subdirectories of the
toolbox directory. This allows MATLAB to find and execute function M-files
much faster.

M-file functions that are cached are considered read-only. If they are
 executed and then later altered, MATLAB simply executes the function that
was previously compiled into memory, ignoring the changed M-files. More-
over, if new M-files are added within the toolbox directory after MATLAB
is already running, their presence will not be noted in the cache, and thus they
will be unavailable for use.

As a result, as you develop M-file functions, it is best to store them outside
of the toolbox directory, perhaps in the MATLAB directory, until you consider
them to be complete. When they are complete, move them to a subdirectory
inside of the read-only toolbox directory. Finally, make sure the MATLAB
search path cache is changed to recognize their existence.

 7. When new M-files are added to a cached location, MATLAB finds them only
if the cache is refreshed by the command rehash toolbox. On the other
hand, when cached M-files are modified, MATLAB recognizes the changes
only if a previously compiled version is dumped from memory by issuing the
clear command; for example, >> clear myfun clears the M-file function
myfun from memory. Alternatively, >> clear functions clears all unlocked,
compiled functions from memory.

 8. MATLAB keeps track of the modification date of M-files outside of the
 toolbox directory. As a result, when an M-file function that was previously
compiled into memory is encountered, MATLAB compares the modification
date of the compiled M-file with that of the M-file on disk. If the two dates are
the same, MATLAB executes the compiled M-file. On the other hand, if the
M-file on disk is newer, MATLAB dumps the previously compiled M-file and
compiles the newer, revised M-file for execution.

Section 12.5 Creating Your Own Toolbox 255

 9. It is possible to check all of the file dependencies for a function M-file by
using the function depfun. This function rigorously parses an M-file for all
calls to other M-file functions, built-in functions, and function calls in eval
strings and callbacks, and identifies variable and Java classes used. This
function is helpful for identifying function dependencies in M-files that are
being shared with others who may not have the same toolboxes installed.
The function depdir uses depfun to return a listing of the dependent direc-
tories of an M-file.

12.5 CREATING YOUR OWN TOOLBOX

It is common to organize a group of M-files into a subdirectory on the MATLAB
search path. If the M-files are considered complete, the subdirectory should be
placed in the toolbox directory so that the M-file names are cached, as described
earlier. When a toolbox subdirectory is created, it is beneficial to include two addi-
tional script M-files containing only MATLAB comments (i.e., lines that begin
with a percent sign %). These M-files, named Readme.m and Contents.m, have the
 following properties:

 1. The script file Readme.m typically contains comment lines that describe late
breaking changes or descriptions of undocumented features. Issuing the
 command >> whatsnew MyToolbox (where MyToolbox is the name of the
directory containing the group of M-files) displays this file in the Help window.
If the toolbox is posted to MATLAB Central at The Mathworks website, the
Readme.m file should include a disclaimer, such as the following, to avoid legal
problems:

% These M-files are User Contributed Routines that are being redistributed

% by The Mathworks, upon request, on an "as is" basis. A User Contributed

% Routine is not a product of The Mathworks, Inc. and The Mathworks assumes

% no responsibility for any errors that may exist in these routines.

 2. The script file Contents.m contains comment lines that list all the M-files in the
toolbox. Issuing the command >> doc MyToolbox (where MyToolbox is the
name of the directory containing the group of M-files) displays the file listing in
the Help window. The first line in the Contents.m file should specify the name
of the toolbox, and the second line should state the toolbox version and date, as
follows:

% Toolbox Description
% Version xxx dd-mmm-yyyy

This information is used by the ver command, which lists installed toolbox
information.

256 Chapter 12 Functions

 3. When writing a collection of M-files to form a toolbox, it is sometimes conve-
nient to allow the user to maintain a set of preferences for toolbox use or for
one or more functions in the toolbox. While it is always possible to store this
information in a MAT-file and retrieve it in later MATLAB sessions, doing so
requires choosing a directory location for the preferences file and guaranteeing
that the file isn’t moved or deleted between sessions. To eliminate these weak-
nesses of the data file approach, MATLAB provides the functions getpref,
setpref, addpref, and rmpref. These functions allow you to get, set, add, and
remove preferences, respectively. Preferences are organized in groups so that
preferences for multiple activities are supported. Within each group, individual
preferences are named with character strings, and the values stored can be any
MATLAB variable. The function ispref is provided to verify the existence of
a specific group or preference. When these functions are used, the handling of
preference files is hidden from the user. Where they are stored is system depen-
dent, and they remain persistent from one MATLAB session to the next.

12.6 COMMAND–FUNCTION DUALITY

In addition to creating function M-files, it is also possible to create MATLAB
 commands. Examples of MATLAB commands include clear, who, dir, ver, help,
and whatsnew. MATLAB commands are very similar to functions. In fact, there are
only two differences between commands and functions:

 1. Commands do not have output arguments.
 2. Input arguments to commands are not enclosed in parentheses.

For example, clear functions is a command that accepts the input argument
functions without parentheses, performs the action of clearing all compiled func-
tions from memory, and produces no output. A function, on the other hand, usually
places data in one or more output arguments and must have its input arguments
separated by commas and enclosed in parentheses (e.g., a=atan2(x,y)).

In reality, MATLAB commands are function calls that obey the two differ-
ences. For example, the command whatsnew is a function M-file. When called from
the MATLAB prompt as

>> whatsnew MyToolbox

MATLAB interprets the command as a call to the function whatsnew with the
 following syntax:

>> whatsnew('MyToolbox')

In other words, as long as there are no output arguments requested, MATLAB
interprets command arguments as character strings, places them in parentheses,

Section 12.7 Function Handles and Anonymous Functions 257

and then calls the requested function. This interpretation applies to all MATLAB
commands.

Both command and function forms can be entered at the MATLAB prompt,
although the command form generally requires less typing. A function M-file can
also be interpreted as a function, if it obeys the rules for calling functions. For
 example, the command

>> which fname

displays the directory path string to the M-file fname, and the function call

>> s = which('fname')

returns the directory path string in the variable s. At the same time, the code

>> s = which fname

??? s = which fname

|

Error: Unexpected MATLAB expression.

causes an error because it mixes function and command syntaxes. Whenever MATLAB
encounters an equal sign, it interprets the rest of the statement as a function, which
requires a comma-separated list of arguments enclosed in parentheses.

To summarize, both commands and functions call functions. Commands are
translated into function calls by interpreting command arguments as character
strings, placing them in parentheses, and then calling the requested function. Any
function call can be made in the form of a command if it produces no output and if
it requires only character-string input.

12.7 FUNCTION HANDLES AND ANONYMOUS FUNCTIONS

There are a number of occasions when the identity of a function must be passed to
another function for evaluation. For example, many of the numerical analysis func-
tions in MATLAB evaluate a function provided by the user as part of the function’s
input arguments. For example, Chapter 23 discusses the function quad, which, when
called as quad(Fun,low,high), computes the area under the function Fun over the
range from low to high. Historically, the function argument Fun was specified by
the character-string name of the function to be evaluated (e.g., sin(x) was denoted
as 'sin'). This method works for both built-in functions and M-file functions.
Alternatively, MATLAB 5 introduced inline functions, which create functions from
character-string expressions. In MATLAB 7.0 and above, the use of strings identifying
function names and the use of inline functions remain supported, but are discouraged
in favor of using anonymous functions and their corresponding function handles.

258 Chapter 12 Functions

Anonymous functions are created as shown in the following example:

>> af_humps = @(x) 1./((x-.3).^2 +.01) +1./((x-.9).^2 +.04) - 6;

Here, the @ symbol identifies that the left-hand side is to be a function handle. The
(x) defines the list of function arguments, and the remainder of the line describes
the function expression. Evaluation of this function uses the function handle name
itself to perform function evaluation:

>> z = af_humps([-1 0 1])

z =

 -5.1378 5.1765 16

The definition of an anonymous function can access any MATLAB function as well
as the present content of variables that exist in the workspace where the anonymous
function is created. For example, in the code

>> a = -.3; b = -.9;

>> af_humpsab = @(x) 1 ./ ((x+a).^2 + .01) + 1 ./ ((x+b).^2 + .04) - 6;

>> af_humpsab([-1 0 1])

ans =

 -5.1378 5.1765 16

the values of the previously defined values of a and b become part of the anonymous
function definition. If the values of a or b change, the anonymous function does
not change. The function handle af_humpsab captures and holds a snapshot of the
function at the time it is created:

>> a = 0; % changing the value of a does not change the function

>> af_humpsab([-1 0 1]) % evaluate again, get the same results

ans =

 -5.1378 5.1765 16

The concept of creating function handles applies to built-in and M-file
 functions as well. For example, in the code

>> fh_Mfile = @humps % function handle for M-file function

fh_Mfile =

 @humps

Section 12.7 Function Handles and Anonymous Functions 259

>> fh_Mfile(1) % evaluate humps(1)

ans =

 16

>> fh_builtin = @cos % function handle for built-in function

fh_builtin =

 @cos

>> fh_builtin(pi) % evaluate cos(pi)

ans =

 -1

a function handle for an M-file function or built-in function is created by using the @
symbol, followed immediately by the name of the function to be converted. Function
handles can also be placed in cell arrays and evaluated by using the same approach:

>> fhan = {@humps @cos}

fhan =

 [@humps] [@cos]

>> fhan{1}(1) % evaluate humps(1)

ans =

 16

>> fhan{2}(pi) % evaluate cos(pi)

ans =

 -1

Here, the cell array fhan contains a function handle to the M-file function humps.m and
a function handle to the built-in function cos. Evaluation of the two functions follows
the approach outlined earlier, with fhan{1} and fhan{2} addressing the first and
 second function handles, respectively. In MATLAB 6, function handles were standard
arrays, so the preceding handles could be created using standard brackets, as in fhan =
[@humps @cos]. This standard-array format for function handles is no longer supported.

To support function handles, MATLAB offers a number of useful functions:

>> functions(fh_Mfile)

ans =

 function: 'humps'

 type: 'simple'

 file: '/usr/local/matlab/toolbox/matlab/demos/humps.m'

260 Chapter 12 Functions

>> functions(fh_builtin)

ans =

 function: 'cos'

 type: 'simple'

 file:''

>> functions(af_humps)

ans =

 function: '@(x)1./((x-.3)^2+.01)+1./((x-.9).^2+.04)-6'

 type: 'anonymous'

 file: ''

 workspace: {[1x1 struct]}

The function functions returns information about the function handle. (For the
most part, this information is used for debugging purposes only. MATLAB warns
that the content of the structure returned by functions is subject to change.)

When the name of a function is stored in a character-string variable, the
 function str2func provides a means for creating a function handle:

>> myfunc = 'humps' % place name of humps.m in a string variable

myfunc =

humps

>> fh2 = @myfunc % this doesn't work!

??? Error: "myfunc" was previously used as a variable,

conflicting with its use here as the name of a function or command.

See MATLAB Programming, "How MATLAB Recognizes Function Calls That Use

Command Syntax" for details.

>> fh2 = str2func(myfunc) % this works

fh2 =

 @humps

>> isequal(fh2,fh_Mfile) % these are equal function handles

ans =

 1

The inverse operation of str2func is func2str. As shown next, it simply extracts
the name of the function or the string identifying the anonymous function:

Section 12.7 Function Handles and Anonymous Functions 261

>> func2str(fh2) % M-file function

ans =

humps

>> func2str(af_humps) % anonymous function

ans =

@(x)1./((x-.3).^2+.01)+1./((x-.9).^2+.04)-6

>> class(ans) % output is a character string

ans =

char

>> isa(fh2,'function_handle') % True for function handles

ans =

 1

Function handles are an extremely powerful and beneficial feature in
MATLAB. First, they capture all of the information needed to evaluate the function
at the time of function handle creation. As a result, when a function defined by
a function handle is evaluated, MATLAB does not need to search for it on the
MATLAB path. It immediately evaluates it. For example, as shown before, the file
location for humps.m is stored as part of the function handle fh_Mfile. The over-
head time required to find the function is eliminated, which improves performance,
especially when a function is evaluated repeatedly.

Another powerful and beneficial feature of function handles is that they can
point to subfunctions, private functions, and nested functions (to be discussed next)
that normally are not visible from outside of the functions where they appear or
are referenced. That is, if the output of a function contains a function handle to a
 subfunction, private function, or nested function that is visible or within the scope
of the function returning the function handle, the returned function handle can
be evaluated. For example, the following M-file function skeleton demonstrates
returning a function handle to a subfunction:

function out = myfunction(select)

%MYFUNCTION Return function handle to a subfunction.

% Example function demonstrating function handles to subfunctions.

switch select

262 Chapter 12 Functions

case 'case1'

 out = @local_subfun1;

case 'case2'

 out = @local_subfun2;

otherwise

 out = [];

 error('Unknown Input.')

end

function a = local_subfun1(b,c)

%LOCAL_SUBFUN Some function operation.

% code that operates on the input arguments b and c

% and returns content in the variable a

% end of local_subfun1

function d = local_subfun2(e,f)

%LOCAL_SUBFUN Some function operation.

% code that operates on the input arguments e and f

% and returns content in the variable d

% end of local_subfun2

On the basis of this function skeleton, the following sample code creates a function
handle to a subfunction in myfunction and then evaluates the subfunction outside
of the context of the original function myfunction:

>> h_subfun = myfunction('case2'); % handle to local_subfun2

>> dout = h_subfun(x,y); % execute local_subfun2(e,f)

This works because all of the information required to execute either subfunc-
tion is captured by the function handle when it is created. Therefore, the subfunction
local_subfun2 can be evaluated, because h_subfun has complete knowledge of the
content and location of local_subfun2.

Section 12.8 Nested Functions 263

12.8 NESTED FUNCTIONS

Nested functions were introduced in MATLAB 7.0. If you are unfamiliar with the
concept of nested functions, they can appear to be strange and confusing, and they
can promote poor programming practice. Indeed, they can be all of these things if
used improperly. However, they can also be immensely helpful in some situations.

Fundamentally, nested functions provide a way to pass information to and from
a function without using global variables, and without passing information through the
input and output arguments. The following is the basic form of a simple nested function:

function out = primary_function(...)

%PRIMARYFUNCTION primary function.

% code in primary function

% this code can call nested functions

function nout1 = nested_function1(...)

% Code in nested_function1.

% In addition to variables passed through the input arguments

% this nested function has access to all variables in existence

% in the primary function at the point where this function

% definition appears. This access permits reading and writing

% to all variables available.

end % required to mark the end of nested_function1

% other code in primary_function, including other

% nested functions terminated with end statements

end % end statement required here for primary_function

As shown in the preceding code, nested functions are functions that are fully contained
within the definition of another function, with end statements marking the end of each
nested function and the primary function as well. As opposed to subfunctions, which
are functions appended to the primary function, nested functions have access not only
to data passed through the nested function input arguments, but also to variables in
the parent function. A nested function has its own workspace that includes read and
write access to the primary function workspace. In addition, the primary function has
read and write access to variables defined in functions nested within it.

264 Chapter 12 Functions

In general, a primary function can have any number of nested functions.
In addition, nested functions can have nested functions within them. Arbitrary
 nesting is permitted, but usually is not that useful. In addition, a nested function has
access to variables passed to it, and to the workspaces of all functions in which it is
nested. If this sounds confusing to you, you are not alone. Nested functions add a
level of complexity that can make M-file debugging difficult. Moreover, it may not
be clear what beneficial purpose this apparent complexity provides.

The example that follows illustrates a prime use for nested functions. In this
rational polynomial example, the primary function returns a function handle to a
nested function, which obtains data directly from the primary function workspace:

function fhandle = nestexample(num,den)

%NESTEXAMPLE Example Nested Function.

% NESTEXAMPLE(Num,Den) returns a function handle to a function that can

% be used to evaluate a rational polynomial. Num and Den are vectors

% containing the numerator and denominator polynomial coefficients.

%

% For example, ratpoly = nestexample([1 2],[1 2 3]) returns a function

% handle that facilitates evaluation of the rational polynomial

%

% x + 2

% ------------

% x^2 + 2x + 3

if ~isnumeric(num) || ~isnumeric(den)

 error('Num and Den Must be Numeric Vectors.')

end

num = reshape(num,1,[]); % make num into a row vector

den = reshape(den,1,[]); % make den into a row vector

fhandle = @nested_ratpoly; % create function handle for return

function out = nested_ratpoly(x)

% Nested function that evaluates a rational polynomial, where the

% numerator and denominator coefficients are obtained from the primary

% function workspace. Only the evaluation points x appear as an input

% argument.

out = polyval(num,x)./polyval(den,x);

Section 12.8 Nested Functions 265

Using this function, function handles to specific rational polynomials can be
created, as demonstrated by the following code:

>> ratpoly1 = nestexample([1 2],[1 2 3]) % (x + 2)/(x^2 + 2x + 3);

>> ratpoly2 = nestexample([2 1],[3 2 1]) % (2x +1)/(3x^2 + 2x +1);

>> x = linspace(-10,10); % independent variable data

>> y1 = ratpoly1(x); % evaluate first rational polynomial

>> y2 = ratpoly2(x); % evaluate second rational polynomial

>> plot(x,y1,x,y2) % plot created data

>> xlabel('X')

>> ylabel('Y')

>> title('Figure 12.1: Rational Polynomial Evaluation')

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.5

0

0.5

1

X

Y

Figure 12.1: Rational Polynomial Evaluation

end % nested function terminated with an end statement

end % primary function terminated with an end statement too!

266 Chapter 12 Functions

The two calls to nestexample in the preceding code return function handles to
two different rational polynomials. Because each rational polynomial obtained its
coefficients from the input arguments to nestexample, and these coefficients were
available to the nested function through a shared workspace, the coefficients are
not needed for evaluating the rational polynomials. The coefficients are contained
in their respective function handles.

Prior to the existence of nested functions, rational polynomial evaluation
using function handles could have been implemented with the following function:

function out = ratpolyval(num,den,x)

%RATPOLYVAL Evaluate Rational Polynomial.

% RATPOLYVAL(Num,Den,X) evaluates the rational polynomial, whose

% numerator and denominator coefficients are given by the vectors

% Num and Den respectively, at the points given in X.

if ~isnumeric(num) || ~isnumeric(den)

 error('Num and Den Must be Numeric Vectors.')

end

num = reshape(num,1,[]); % make num into a row vector

den = reshape(den,1,[]); % make den into a row vector

out = polyval(num,x)./polyval(den,x);

Evaluation of the two rational polynomials used earlier proceeds as follows:

>> yy1 = ratpolyval([1 2],[1 2 3],x); % same as y1 above

>> yy2 = ratpolyval([2 1],[3 2 1],x); % same as y2 above

In this case, the numerator and denominator polynomials are required every time a rational
polynomial is evaluated. While this is straightforward and common in MATLAB, the nested
function approach allows you to encapsulate all information required for a particular rational
polynomial into a function handle that is easily evaluated.

Because rational polynomial evaluation can be written as a single statement,
this example can also be implemented by using anonymous functions, while retaining
the features of the nested function approach. That is, the two function handles
 ratpoly1 and ratpoly2 could be created by the following statements:

>> num = [1 2]; den = [1 2 3]; % specify numerator and denominator

>> ratpoly1 = @(x) polyval(num,x)./polyval(den,x); % create anonymous fun

Section 12.9 Debugging M-files 267

>> num = [2 1]; den = [3 2 1]; % redefine numerator and denominator

>> ratpoly2 = @(x) polyval(num,x)./polyval(den,x); % create anonymous fun

>> y1 = ratpoly1(x); % evaluate first rational polynomial

>> y2 = ratpoly2(x); % evaluate second rational polynomial

This process of creating handles to nested functions and using function
 handles to evaluate functions is extremely powerful. It allows you to create
multiple instances of a function, each with a shared purpose (such as rational
polynomial evaluation), while permitting distinct properties as well (such as
 different numerator and denominator coefficients). Equally important is the
fact that each instance has its own workspace, and therefore, each operates
independently of all others.

12.9 DEBUGGING M-FILES

In the process of developing function M-files, it is inevitable that errors (i.e., bugs)
appear. MATLAB provides a number of approaches and functions to assist in
debugging M-files.

Two types of errors can appear in MATLAB expressions: syntax errors
and run-time errors. Syntax errors (such as misspelled variables or function
names or missing quotes or parentheses) are found when MATLAB evaluates
an expression or when a function is compiled into memory. MATLAB
flags these errors immediately and provides feedback on the type of error
 encountered and the line number in the M-file where the error occurred.
Given this feedback, these errors are usually easy to spot. An exception to this
 situation occurs in syntax errors within GUI callback strings. These errors are
not detected until the strings themselves are evaluated during the operation of
the GUI.

Run-time errors, on the other hand, are generally more difficult to find, even
though MATLAB flags them also. When a run-time error is found, MATLAB
returns control to the Command window and the MATLAB workspace. Access
to the function workspace where the error occurred is lost, and so you cannot
interrogate the contents of the function workspace in an effort to isolate the
problem.

According to the authors’ experience, the most common run-time errors occur
when the result of some operation leads to empty arrays or to NaNs. All operations
on NaNs return NaNs, so if NaNs are a possible result, it is good to use the logical
 function isnan to perform some default action when NaNs occur. Addressing arrays
that are empty always leads to an error, since empty arrays have a zero dimension.
The find function represents a common situation where an empty array may result.
If the empty array output of the find function is used to index some other array, the

268 Chapter 12 Functions

result returned will also be empty. That is, empty matrices tend to propagate empty
matrices, as, for example, in the following code:

>> x = pi*(1:4) % example data

x =

3.1416 6.2832 9.4248 12.5664

>> i = find(x>20) % use find function

i =

Empty matrix: 1-by-0

>> y = 2*x(i) % propagate the empty matrix

y =

Empty matrix: 1-by-0

Clearly, when y is expected to have a finite dimension and values, a run-time error
is likely to occur. When performing operations or using functions that can return
empty results, it helps to use the logical function isempty to define a default result
for the empty matrix case, thereby avoiding a run-time error.

There are several approaches to debugging function M-files. For simple
 problems, it is straightforward to use a combination of the following:

 1. Remove semicolons from selected lines within the function so that intermediate
results are displayed in the Command window.

 2. Add statements that display variables of interest within the function.
 3. Place the keyboard command at selected places in the M-file to give temporary

control to the keyboard. By doing so, the function workspace can be interro-
gated and values changed as necessary. Resume function execution by issuing
a return command, K>> return, at the keyboard prompt.

 4. Change the function M-file into a script M-file by placing a % before the
 function definition statement at the beginning of the M-file. When executed
as a script file, the workspace is the MATLAB workspace, and thus it can be
interrogated after the error occurs.

When the M-file is large, recursive, or highly nested (i.e., it calls other M-file
functions that call still other functions, etc.) it is more convenient to use the
MATLAB graphical debugging functions found on the Debug and Breakpoints
menus of the Editor/Debugger. Command window equivalents of these functions
exist, but are more cumbersome to use. If you insist on using these functions rather
than the graphical debugger, see the online help text for debug—that is,

>> doc debug

Section 12.10 Syntax Checking and File Dependencies 269

The graphical debugging tools in MATLAB allow you to stop at user-set break-
points, at MATLAB warnings and errors, and at expressions that create NaNs and
Infs. You can also set conditional breakpoints on the basis of some condition tested
in the breakpoint itself. When a breakpoint is reached, MATLAB stops execution
before the affected line completes execution and returns results. While the program is
stopped, the Command window keyboard prompt K>> appears, allowing you to inter-
rogate the function workspace, change the values of variables in the workspace, and
so on, as required to track down the bug. In addition, the Editor/Debugger window
shows the line where execution stopped and provides the means for stepping into the
workspace of other functions that were called by the M-file being debugged. When you
are ready to move beyond a breakpoint, the Editor/Debugger provides menu items for
single-stepping, continuing until the next breakpoint, continuing until the cursor posi-
tion is reached, or terminating the debugging activity.

Describing the use of the graphical debugging tools is difficult because of their
graphical nature and because the process of debugging is unique to each debugging
session. However, the authors have found the debugging tools to be intuitive and
easy to use. Once the basic steps are mastered, the graphical debugging features of
MATLAB are extremely powerful and productive in assisting the process of creat-
ing good MATLAB code.

12.10 SYNTAX CHECKING AND FILE DEPENDENCIES

During the process of creating and debugging an M-file, it is advantageous to check
the code for syntax errors and run-time errors. In the past, this was accomplished by
executing the M-file and watching for warnings and errors reported in the Command
window. Alternatively, it was done by using the pcode command to create a P-code file
from the M-file. Now the function mlint (introduced in MATLAB 7) parses M-files
for syntax errors and other possible problems and inefficiencies. For example, mlint
will point out variables that are defined but never used, input arguments that are not
used, output arguments that are not assigned, obsolete usages, statements that are
unreachable, and so on. In addition, mlint will make suggestions to improve execution
time. This function is commonly called as a command—for example,

>> mlint myfunction

where myfunction is the name of an M-file anywhere on the MATLAB search
path. This function can also be called using function syntax, in which case the output
can be captured in a number of different ways. For example, the function

>> out = mlint('myfunction','-struct');

returns the output of mlint in the structure variable out. This feature is also
available as the Code Analyzer from the Tools menu of the MATLAB Editor.
In addition to checking a single function by using mlint, the function mlintrpt

270 Chapter 12 Functions

accepts a directory name as an input argument, applies mlint to all M-files in
the directory, and provides a report for each function in a separate HTML-based
window. This feature is also available as a choice from the Current Folder window
in the MATLAB desktop.

Given the ease with which M-files can be transferred electronically, it is not
uncommon to run an M-file only to find out that it fails to run because it calls one or
more M-file functions not found on your MATLAB path. MATLAB provides the
function depfun, which parses an M-file for file dependencies. This function recur-
sively searches for all function dependencies, including the dependencies within
functions called by the function in question as well as any dependencies found in
the callbacks of Handle Graphics objects. Because of the large amount of output
produced by this function, it is difficult to demonstrate here and is best explored
firsthand.

12.11 PROFILING M-FILES

Even when a function M-file works correctly, there may be ways to fine-tune the
code to avoid unnecessary calculations or function calls. Performance improve-
ments can be obtained by simply storing the result of a calculation to avoid a
 complex recalculation, by preallocating arrays before accessing them within loops,
by storing and accessing data in columns, by using vectorization techniques to avoid
an iterative procedure such as a For Loop, or by taking advantage of MATLAB
JIT-acceleration features. When writing a function, it is difficult to guess where most
execution time is spent. In today's high-speed processors, with integrated floating-
point units, it may be faster to calculate a result more than once than to store it in
a variable and recall it again later. There is an inherent trade-off between memory
usage and the number of computations performed. Depending on the data being
manipulated, it may be faster to use more memory to store intermediate results, or
it may be faster to perform more computations. Furthermore, the trade-off between
memory and computations is almost always dependent on the size of the data set
being considered. If a function operates on large data sets, the optimum implemen-
tation may be much different from that of a small data set. Complicating things even
further is the fact that the best computer implementation of a given algorithm is
often much different from how one writes the algorithm on paper.

MATLAB provides profiling tools to optimize the execution of M-file func-
tions. These tools monitor the execution of M-files and identify which lines con-
sume the greatest amount of time relative to the rest of the code. For example, if
one line (or function call) consumes 50 percent of the time in a given M-file, the
attention paid to this line (or function call) will have the greatest impact on overall
execution speed. Sometimes, you can rewrite the code to eliminate the offending
line or lines. Other times, you can minimize the amount of data manipulated in the
line, thereby speeding it up. And still other times, there may be nothing you can
do to increase speed. In any case, a great deal of insight is gained by profiling the
operation of M-file functions.

Section 12.11 Profiling M-files 271

In addition to using the profiler through the Profiler window on the MATLAB
desktop, MATLAB uses the profile command to determine which lines of code
in an M-file take the most time to execute. Using profile is straightforward. For
example, the execution profile of myfunction is found by executing the following
commands:

>> profile on

>> for i = 1:100

out = myfunction(in);

end

>> profile viewer

First, the profiler is turned On; then, myfunction is executed some sufficient number
of times to gather sufficient data; finally, a profile report is generated. The profile
report is an HTML file, displayed in the Profiler window in the MATLAB desktop,
which in turn is displayed by choosing it from the Desktop menu or by issuing the
last command in the preceding example. The profile report generates a variety of
data. Clicking on various links in the window supplies additional information.

272

MATLAB opens and saves data files in a variety of file formats. Some are formats
custom to MATLAB, others are industry standards, and still others are file for-
mats custom to other applications. The techniques used to open and save data files
include GUIs, as well as Command window functions.

Like most modern applications, MATLAB uses the current directory as the
default location for data files and M-files. Implementing directory management
tools and changing the current directory are accomplished through GUIs, as well as
through the Command window functions.

This chapter covers file and directory management features in MATLAB.

13.1 NATIVE DATA FILES

Variables in the MATLAB workspace can be saved in a format native to MATLAB
by using the save command. For example,

>> save

stores all variables from the MATLAB workspace, in MATLAB binary format, to
the file matlab.mat in the current directory. These native binary MAT-files main-
tain full double precision, as well as the names of the variables saved. MAT-files are
not platform-independent, but are completely cross-platform compatible. Variables
saved on one platform can be opened on other MATLAB platforms without any
special treatment.

File and Directory
Management

13

Section 13.1 Native Data Files 273

The save command can be used to store specific variables as well. For exam-
ple, the code

>> save var1 var2 var3

saves just the variables var1, var2, and var3 to matlab.mat. The file name can be
specified as a first argument to save, as in the code

>> save filename var1 var2 var3

which saves var1, var2, and var3 to the file named filename.mat.
Using command–function duality, the preceding command form can also be

written in function form as

>> save('filename','var1','var2,','var3')

This particular format is useful if the file name is stored in a MATLAB character
string:

>> fname = 'myfile';

>> save(fname,'var1','var2,','var3')

Here, the named variables are stored in a file named myfile.mat.
In addition to these simple forms, the save command supports options for

saving in uncompressed format and in ASCII text formats, and the command can be
used to append data to a file that already exists. (For help with these features, refer
to the online help.)

The complement to save is the load command. This command opens data
files that were created by the save command or that are compatible with the save
command. For example,

>> load

loads all variables found in matlab.mat, wherever it is first found in the current
directory or on the MATLAB search path. The variable names originally stored
in matlab.mat are restored in the workspace, and they overwrite any like-named
variables that may exist there.

To load specific variables from a MAT-file, you must include the file name
and a variable list:

>> load filename var1 var2 var3

>> load('filename','var1','var2','var3')

Here, filename.mat is opened, and variables var1, var2, and var3 are loaded into
the workspace. The second statement demonstrates the functional form of the load

274 Chapter 13 File and Directory Management

command, which allows the data file to be specified as a character string. Although
not shown, the filename string can include a complete or a partial directory path,
thereby restricting load to a search in a specific directory for the data file.

The latter example provides a way to open a sequence of enumerated data
files, such as mydata1.mat and mydata2.mat, as in the following example:

for i = 1:N

fname = sprintf('mydata%d',i);

load(fname)

end

This code segment uses sprintf to create file-name strings inside of a For Loop, so
that a sequence of data files is loaded into the workspace.

When you do not wish to overwrite workspace variables, you can write the
load command in function form and give it an output argument. For example,

>> vnew = load('filename','var1','var2');

opens the file filename.mat and loads the variables var1 and var2 into a structure
variable named vnew that has fields var1 and var2—that is, vnew.var1 = var1
and vnew.var2 = var2.

The load command can also open ASCII text files. In particular, if the data file
consists of MATLAB comment lines and rows of space-separated values, the syntax

>> load filename.ext

opens the file filename.ext and loads the data into a single double-precision data
array named filename. (For further information regarding the load command, see
the online help.)

To find out whether a data file exists and what variables it holds, the MATLAB
commands exist and whos are valuable. For example, the command

>> exist('matlab.mat','file')

returns 0 if the file doesn’t exist and 2 if it does, and the command

>> whos -file matlab.mat

returns the standard whos Command window display for the variables contained in
the file matlab.mat. Alternatively, the code

>> w = whos('-file','matlab.mat')

w =

3x1 struct array with fields:

Section 13.2 Data Import and Export 275

name

size

bytes

class

global

sparse

complex

nesting

persistent

returns a structure array with fields named for the columns of the whos display along
with potential attributes. Used in this way, the variable names, array sizes, storage
requirements, class, and any attributes are stored in variables.

Last, but not least, data files can be deleted by using the Command window
command delete. For example,

>> delete filename.ext

deletes the file named filename.ext.
In MATLAB, data file management functions can be accessed from the

Current Folder browser, as well as from the Import wizard. The Current Folder
browser can be viewed by choosing Current Folder from the Desktop menu on
the MATLAB desktop. The Import wizard, which appears by selecting Import
Data… from the File menu or by typing uiimport in the Command window, is a
general-purpose GUI that facilitates loading data in a variety of formats, not just
MATLAB’s native MAT-file format.

13.2 DATA IMPORT AND EXPORT

In addition to supporting MATLAB’s native MAT-file format and conventional
ASCII text format, MATLAB supports a variety of industry standard formats and
other custom file formats. Some formats are restricted to reading, others to writing.
Some formats are restricted to images, others to multimedia or spreadsheets. These
data import and export functions and capabilities make it possible for MATLAB to
exchange data with other programs.

Figure window images can be saved in a native MATLAB FIG-file format
or exported to a variety of standard graphics file formats by selecting Save or
Save As… from the File menu of a Figure window. The Command window func-
tion saveas provides an alternative to this GUI-based approach. (For assistance in
using saveas, see the online documentation.)

Data-specific import and export functions available in MATLAB include
those listed in the following table:

276 Chapter 13 File and Directory Management

Function Description

load Loads data from MAT file

save Saves data to MAT file

dlmread Reads delimited text file

dlmwrite Writes delimited text file

textread Reads formatted text from file (depreciated; use textscan
instead)

textscan Reads formatted text from file after opening with fopen or from a
string

xlsread Reads spreadsheet file

xlswrite Writes spreadsheet file

importdata Reads data file

VideoReader Reads movie file (replaces mmreader)

VideoWriter Writes movie file

imread Reads image file

imwrite Writes image file

auread Reads Sun sound file

auwrite Writes Sun sound file

wavread Reads Microsoft sound file

wavwrite Writes Microsoft sound file

hdfread Reads data from an HDF4 or HDF-EOS file

hdf5read Reads data from an HDF5 file

hdf5write Writes data to an HDF5 file

xmlread Parses an XML document and returns a Document Object
Model node

xmlwrite Writes a DOM node to an XML file

cdfread Reads from a CDF file

cdfwrite Writes to a CDF file

fitsread Reads data from a FITS file

netcdf.* Low-level access to netCDF files

Section 13.2 Data Import and Export 277

(The help text for each of these functions provides information on their use.)
The functions imread and imwrite in particular support multiple formats,

including JPEG, TIFF, BMP, PNG, HDF, PCX, and XWD. The help text for
fileformats provides a more complete listing of the file formats supported by
MATLAB, such as the following:

>> help fileformats

Supported file formats.

NOTE: You can import any of these file formats with the Import Wizard or

the IMPORTDATA function, except netCDF, H5, Motion JPEG 2000, and

platform-specific video. The IMPORTDATA function cannot read HDF

files.

NOTE: '.' indicates that no existing high-level functions export the

given data format.

Format Import Export

------ -------- --------

MAT - MATLAB workspace load save

DAQ - Data Acquisition Toolbox daqread .

Text formats

any - White-space delimited numbers load save -ascii

any - Delimited numbers dlmread dlmwrite

any - Any above text format, or textscan .

a mix of strings and numbers

XML - Extended Markup Language xmlread xmlwrite

Spreadsheet formats

XLS - Excel worksheet xlsread xlswrite

XLSX, XLSB, XLSM require Excel 2007 for Windows

Scientific data formats

CDF - Common Data Format cdfread cdfwrite

 cdflib cdflib

FITS - Flexible Image Transport System fitsread .

278 Chapter 13 File and Directory Management

HDF - Hierarchical Data Format v.4 hdfread .

H5 - Hierarchical Data Format v.5 hdf5read hdf5write

NC - network Common Data Form v.3 netcdf netcdf

Video formats (All Platforms)

AVI - Audio Video Interleave VideoReader VideoWriter

MJ2 - Motion JPEG 2000 VideoReader VideoWriter

Video formats (Windows and Mac)

MPEG - Motion Picture Experts Group, VideoReader .

phases 1 and 2 (Includes MPG)

Video formats (Windows Only)

WMV - Windows Media Video VideoReader .

ASF - Windows Media Video VideoReader .

ASX - Windows Media Video VideoReader .

any - formats supported by DirectShow VideoReader .

Video formats (Mac Only)

MOV - QuickTime Movie VideoReader .

MP4 - MPEG-4 Video (Includes M4V) VideoReader .

3GP - 3GPP Mobile Video VideoReader .

3G2 - 3GPP2 Mobile Video VideoReader .

DV - Digital Video Stream VideoReader .

any - formats supported by QuickTime VideoReader .

Video formats (Linux Only)

any - formats supported by GStreamer VideoReader .

 plug-ins on your system

Image formats

BMP - Windows Bitmap imread imwrite

CUR - Windows Cursor resources imread .

FITS - Flexible Image Transport System imread .

Includes FTS

GIF - Graphics Interchange Format imread imwrite

Section 13.3 Low-Level File I/O 279

HDF - Hierarchical Data Format imread imwrite

ICO - Icon image imread .

JPEG - Joint Photographic Experts Group imread imwrite

Includes JPG

JP2 - JPEG 2000 imread imwrite

Includes JPF, JPX, J2C, J2K

PBM - Portable Bitmap imread imwrite

PCX - Paintbrush imread imwrite

PGM - Portable Graymap imread imwrite

PNG - Portable Network Graphics imread imwrite

PNM - Portable Any Map imread imwrite

PPM - Portable Pixmap imread imwrite

RAS - Sun Raster imread imwrite

TIFF - Tagged Image File Format imread imwrite

Includes TIF

XWD - X Window Dump imread imwrite

Audio formats

AU - NeXT/Sun sound auread auwrite

SND - NeXT/Sun sound auread auwrite

WAV - Microsoft Wave sound wavread wavwrite

See also uiimport, fscanf, fread, fprintf, fwrite, hdf, hdf5, Tiff,

imformats.

Reference page in Help browser

doc fileformats

13.3 LOW-LEVEL FILE I/O

Because an infinite variety of file types exists, MATLAB provides low-level file
I/O functions for reading or writing any binary or formatted ASCII file imagin-
able. These functions closely resemble their ANSI C programming language
 counterparts, but do not necessarily exactly match their characteristics. In fact,
many of the special-purpose file I/O commands described previously use these com-
mands internally. The low-level file I/O functions in MATLAB are given in the fol-
lowing table:

280 Chapter 13 File and Directory Management

Category Function Description/Syntax Example

File opening and
closing

fopen Opens file
fid = fopen('filenename','permission')

fclose Closes file
status = fclose(fid)

Binary I/O fread Reads part or all of a binary file
A = fread(fid,num,precision)

fwrite Writes array to a binary file
count = fwrite(fid,array,precision)

Formatted I/O fscanf Reads formatted data from file
A = fscanf(fid,format,num)

fprintf Writes formatted data to file
count = fprintf(fid,format,A)

fgetl Reads line from file; discards newline character
line = fgetl(fid)

fgets Reads line from file; keeps newline character
line = fgets(fid)

String conversion sprintf Writes formatted data to string
S = sprintf(format,A)

sscanf Reads string under format control
A = sscanf(string,format,num)

File positioning ferror Inquires about file I/O status
message = ferror(fid)

feof Tests for end of file
TF = feof(fid)

fseek Sets file position indicator
status = fseek(fid,offset,origin)

ftell Gets file position indicator
position = ftell(fid)

frewind Rewinds file
frewind(fid)

In this table, fid is a file identifier number and permission is a character
string identifying the permissions requested. Possible strings include 'r' for reading
only, 'w' for writing only, 'a' for appending only, and 'r+' for both reading and
writing. Since the PC distinguishes between text and binary files, a 't' must often be

Section 13.4 Directory Management 281

appended when you are working with text files—for example, 'rt' and 'wt' cause
the carriage return character preceding a newline character to be deleted on input
and added before the newline character on output, respectively. In the preceding
table, format is a character string defining the desired formatting. Note that format
follows ANSI standard C very closely. (More information regarding the use of these
functions can be found in the online documentation for each function.)

13.4 DIRECTORY MANAGEMENT

With all the windows in MATLAB, it makes sense to have management of the current
directory and its files available in a GUI. The Current Folder window, displayed by
choosing Current Folder from the Desktop menu in the MATLAB desktop window,
performs these tasks. In addition to traversing the directory tree, this GUI allows you
to preview the files in the current directory, see their modification dates, search for text
in M-files, create new directories and new M-files, and so on. Because of the funda-
mental utility of knowing the current directory, the current directory is also displayed
in a pop-up menu in the MATLAB desktop window. Therefore, the current directory
always can be known simply by looking at the toolbar on the desktop.

Prior to MATLAB version 6, directory management was conducted through
the use of Command window functions. Although these functions are not as impor-
tant now, they still serve a valuable purpose. In particular, most functions have
the capability of returning directory and file information in MATLAB variables,
thereby allowing complex manipulation of files and directories to be completed
within function M-files. The Command window directory management functions
available in MATLAB are summarized in the following table:

Function Description

cd, pwd

S = cd;

Shows present working directory

Returns present working directory as a string in S

cd dirname Changes present working directory to dirname

copyfile(oldname, dirname)

copyfile(oldname, newname)

Copies file oldname to directory dirname

Copies file oldname to newname

delete filename.ext Deletes file filename.ext

dir, ls

S = dir;

Displays files in current directory

Returns directory information in structure S

fileattrib Gets or sets file attributes

mkdir dirname Makes directory dirname in current directory

movefile(source, destination) Moves source file or directory to a new destination

rmdir dirname Removes directory dirname

282 Chapter 13 File and Directory Management

Function Description

what

S = what;

Displays an organized listing of all MATLAB
files in the current directory

Returns listing information in structure S

which filename

S = which('filename');

Displays directory path to filename

Returns directory path to filename as a string in S

who

who -file filename

S = who('-file','filename');

Displays variables in workspace

Displays variables in MAT-file filename.mat

Returns variables names in filename.mat in a
cell array S

whos

whos -file filename

S = whos('-file', 'filename')

Displays variables, size, and class in workspace

Displays variables, size, and class in MAT-file
filename.mat

Returns variables, size, and class in filename.mat
in structure S

help filename

S = help('filename');

Displays help text for filename in Command
window

Returns help text for filename in a character
string S

type filename Displays M-file filename in Command window

Most of these functions require only partial path information to locate a
 particular file. That is, filename may or may not include part of its directory path.
If no directory path is included in filename, then the MATLAB search path is used
to find the requested file. If some part of the directory path is provided, MATLAB
traverses the MATLAB search path to find the subdirectory and file specified. For
example, if filename = 'mystuff/myfile', MATLAB restricts its search to a subdi-
rectory named mystuff on the MATLAB path.

To illustrate the usefulness of these functions, consider the function mmbytes:

function y = mmbytes(arg)

%MMBYTES Variable Memory Usage.

% MMBYTES and MMBYTES('base') returns the total memory in bytes

% currently used in the base workspace.

% MMBYTES('caller') returns the total memory in bytes currently

% used in the workspace where MMBYTES is called from.

% MMBYTES('global') returns the total memory in bytes currently

Section 13.4 Directory Management 283

% used in the global workspace.

if nargin==0

arg = 'base';

end

if strcmp(arg,'global')

x = evalin('base','whos(''global'')');

else

x = evalin(arg,'whos');

end

y = sum(cat(1,x.bytes));

This function uses the whos function to gather information about the variables that
exist within MATLAB. The output of the whos function generates a structure array
x. The bytes field of this structure contains the memory allocated to all variables.
The final statement in the function concatenates all of the memory-allocated num-
bers into a vector, which is summed using the sum function.

Because of its varied uses, the function exist was not listed in the preceding
table. This function tests for the existence of variables, files, directories, and so on.
The help text for this function describes its many uses:

>> help exist

EXIST Check if variables or functions are defined.

EXIST('A') returns:

0 if A does not exist

1 if A is a variable in the workspace

2 if A is an M-file on MATLAB's search path. It also returns 2 when

A is the full pathname to a file or when A is the name of an

ordinary file on MATLAB's search path

3 if A is a MEX-file on MATLAB's search path

4 if A is a MDL-file on MATLAB's search path

5 if A is a built-in MATLAB function

6 if A is a P-file on MATLAB's search path

7 if A is a directory

8 if A is a class (EXIST returns 0 for Java classes if you

start MATLAB with the -nojvm option.)

284 Chapter 13 File and Directory Management

EXIST('A') or EXIST('A.EXT') returns 2 if a file named 'A' or 'A.EXT'

and the extension isn't a P or MEX function extension.

EXIST('A','var') checks only for variables.

EXIST('A','builtin') checks only for built-in functions.

EXIST('A','file') checks for files or directories.

EXIST('A','dir') checks only for directories.

EXIST('A','class') checks only for classes.

If A specifies a filename, MATLAB attempts to locate the file,

examines the filename extension, and determines the value to

return based on the extension alone. MATLAB does not examine

the contents or internal structure of the file.

When searching for a directory, MATLAB finds directories that are

part of MATLAB's search path. They can be specified by a partial path.

It also finds the current working directory specified by a partial path,

and subdirectories of the current working directory specified by

a relative path.

EXIST returns 0 if the specified instance isn't found.

See also dir, what, isempty, partialpath.

Overloaded methods:

inline/exist

Reference page in Help browser

doc exist

To facilitate the manipulation of character strings containing directory paths
and filenames, MATLAB provides several useful functions, summarized in the
 following table:

Function Description

addpath('dirname') Prepends directory dirname to the MATLAB search path

[path,name,ext] = ...
fileparts(filename)

Returns path, name, and extension for file filename

Section 13.5 File Archives and Compression 285

filesep Returns file separator character for this computer platform.
The file separator is the character used to separate
directories and the file name. For example, on the PC the
file separator is '\'.

fullfile(d1, d2, ...,
filename)

Returns full path and file specification for filename by
using directory tree strings, d1, d2,

matlabroot Returns a string containing the path to the root directory of
MATLAB

mexext Returns MEX-file extension for this computer platform

pathsep Returns path separator for this platform. The path
separator is the character used to separate entries on the
MATLAB search path string.

prefdir Returns MATLAB preferences directory for this platform

rmpath('dirname') Removes directory dirname from the MATLAB search path

tempdir Returns name of a temporary directory for this platform

tempname Returns name of a temporary file for this platform

These functions, along with those in the preceding table, facilitate the creation
of file and directory management functions as M-files. (More assistance for each
 function can be found by consulting the online help.)

13.5 FILE ARCHIVES AND COMPRESSION

MATLAB supports file archives and file compression in a number of common for-
mats using graphical tools and Command window functions. The Current Folder
browser treats ZIP file archives as folders. The contents are visible simply by open-
ing the “folder,” for example, myfiles.zip, in the file and folder list. Command
window functions support ZIP, GZIP, and TAR formats.

The zip function creates a compressed ZIP archive given a list of files
and directories to be included in the archive as a string or cell array of strings.
Directories recursively add all of their contents to the archive. The unzip function
extracts the files and folders from a zip archive. All paths are relative in the archive.
The unzip function also accepts URL input. The zip archive given in the URL
is downloaded to a temporary directory, the files and directories are extracted,
and the zip file is deleted. Password-protected and encrypted zip archives are not
 supported.

The gzip function, given a list of files and directories as a string or cell array
of strings, creates compressed versions of the files using GNU GZIP compression.
Compressed files are given the .gz extension. Directories recursively compress all of
their content. The gunzip function uncompresses gziped files. Folders are recursively

286 Chapter 13 File and Directory Management

searched for gzipped files to uncompress. The gunzip function also accepts URL
input. The gzipped file given in the URL is downloaded and uncompressed.

The tar function creates a TAR archive given a list of files and directories to
be included in the archive as a string or cell array of strings. Directories recursively
add all of their contents to the archive. The archive that is created is given the .tar
extension if an extension is omitted in the archive filename. If the filename ends
in .tgz or .gz, the archive is automatically compressed using gzip. All paths are
relative in the archive. The untar function extracts the files and folders from a tar
archive into the current directory and sets the file attributes. If the archive filename
ends in .tgz or .gz, the tar file is uncompressed into a temporary directory, the
contents are extracted into the current directory, and the temporary file is deleted.
The untar function also accepts URL input. Consider these examples:

>> zip('mfiles.zip','*.m'); % zip up all M-files in the current directory

>> unzip('mfiles.zip','backup'); % extract into the directory 'backup'

>> gzip('*.m','backup'); % create compressed M-files in 'backup' directory

>> gunzip('backup'); % ungzip the .gz files in the 'backup' directory

>> tar('backup/mfiles.tgz','*.m'); % create gzipped tar archive in 'backup'

MATLAB file archive and compression utility functions are summarized in the
 following table.

Function Description

zip Compresses files and directories into ZIP archive

unzip Extracts contents of ZIP file

gzip Compresses files into GZIP files

gunzip Uncompresses GZIP files

tar Archive files and directories into TAR archive with optional compression

untar Extracts contents of TAR archive

13.6 INTERNET FILE OPERATIONS

MATLAB includes several built-in Internet file access capabilities. From within
MATLAB, the function ftp creates an FTP object that acts like the file identifier
used in low-level file I/O. For example,

>> ftp_object = ftp('ftp.somewhere.org','username','password')

Section 13.6 Internet File Operations 287

establishes an FTP connection to the site ftp.somewhere.org and returns an identifier
to this connection in the variable ftp_object. If the FTP server supports anony-
mous connections, the username and password arguments can be omitted. Once this
FTP session is established, common FTP commands can be used to change directo-
ries and perform file operations. Many of these operations use the same functions
used for local file and directory manipulation. For instance,

>> dir(ftp_object)

returns a directory listing of the default directory. Once FTP operations are com-
pleted, the function close closes the FTP session. For example,

>> close(ftp_object)

terminates the FTP session at ftp.somewhere.org.
The following table identifies a list of FTP functions available in MATLAB:

Function Description

ascii Sets FTP transfer type to ASCII

binary Sets FTP transfer type to binary

cd Changes current directory

close Closes connection

delete Deletes file

dir Lists directory contents

ftp Connects to FTP server

mget Downloads file

mkdir Creates new directory

mput Uploads file or directory

rename Renames file

rmdir Removes directory

Web page content is also accessible from within MATLAB. The urlread and
urlwrite functions access the contents of a URL and store the result in a string
variable or file, respectively. The URL string must include the protocol being used,
that is, 'http://', 'ftp://', or 'file://'. Some examples are shown below.

>> G = urlread('http://www.google.com');

>> urlwrite('ftp://ftp.mathworks.com/README','/tmp/README.txt');

>> S = urlread('file:///tmp/README.txt');

288 Chapter 13 File and Directory Management

Information may be passed to the web server using the POST or GET methods
as well. For example, to access data from a company intranet server that requires a
query string such as 'http://qserver.intra.net/query.php?user=john&pass
=secret&page=3', the following code

>> myurl = 'http://qserver.intra.net/query.php';

>> mymethod = 'get';

>> myparams = {'user','john','pass','secret','page','3'};

>> myfile = 'page3.html';

>> urlwrite(myurl, myfile, mymethod, myparams);

downloads the requested page and saves the result to the file page3.html.
You can even send email from within MATLAB. The sendmail function

sends the email including attachments, if desired, from the Command window or
even from within an M-file. Two preferences have to be set before sendmail is
invoked or an error will occur. In the following example, an email with two attach-
ments is sent to the Mastering MATLAB authors.

>> setpref('Internet','SMTP_Server','mail.example.edu');

>> setpref('Internet','E_mail','jsmith@example.edu');

>> mail_to = {'MasteringMatlab@gmail.com','jsmith@example.edu'};

>> mail_subj = 'Mastering MATLAB example';

>> mail_body = {'I may have found a slightly faster algorithm for one of the ',

'example M-files. Both versions are attached to this email.',

'Please check it out.',

'Sincerely, John Smith'};

>> mail_attach = {'mm4001.m','js4001.m'};

>> sendmail(mail_to, mail_subj, mail_body, mail_attach);

289

14.1 SET FUNCTIONS

Since arrays are ordered collections of values, they can be thought of as sets. With
that understanding, MATLAB provides several functions for testing and comparing
sets. The simplest test is for equality, as in the following code:

>> a = rand(2,5); % random array

>> b = randn(2,5); % a different random array

>> isequal(a,b) % a and b are not equal

ans =

0

>> isequal(a,a) % but a is certainly equal to a

ans =

1

>> isequal(a,a(:)) % a with a as a column

ans =

0

Set, Bit, and Base
Functions

14

290 Chapter 14 Set, Bit, and Base Functions

For two arrays to be equal, they must have the same dimensions and the same con-
tents. This function applies to all MATLAB data types, not just numerical arrays:

>> a = 'a string';

>> b = 'a String';

>> isequal(a,b) % character string equality

ans =

0

>> a = {'four' 'five' 'six'};

>> b = {'four' 'two' 'three'};

>> isequal(a,b) % cell array equality

ans =

0

>> isequal(a,a)

ans =

1

>> c.one = 'two';

>> c.two = 4;

>> c.three = pi;

>> d.two = 4;

>> d.one = 'two';

>> d.three = pi;

>> isequal(c,d) % structure equality

ans =

1

>> isequal(c,c)

ans =

1

MATLAB variables are equal if they have the same size and exactly the same
 content.

The function unique removes duplicate items from a given set:

>> a = [2:2:10;4:2:12] % new data

a =

2 4 6 8 10

4 6 8 10 12

Section 14.1 Set Functions 291

>> unique(a) % unique elements sorted into a column

ans =

2

4

6

8

10

12

The unique function returns a sorted column vector because removal of duplicate
values makes it impossible to maintain the array dimensions. The function unique
also applies to cell arrays of strings, as in the following example:

>> c = {'Tom' 'Bob' 'Tom' 'Shaun' 'Frida' 'Shaun' 'Bob'};

>> unique(c)

ans =

'Bob' 'Frida' 'Shaun' 'Tom'

Set membershi p is determined with the function ismember, as in the following code:

>> a = 2:10

a =

2 3 4 5 6 7 8 9 10

>> b = 2:2:10

b =

2 4 6 8 10

>> ismember(a,b) % which elements in a are in b

ans =

1 0 1 0 1 0 1 0 1

>> ismember(b,a) % which elements in b are in a

ans =

1 1 1 1 1

For numeric arrays, ismember returns a logical array the same size as its first
 argument, with ones appearing at the indices where the two vectors share common
values.

>> A = [1 2 3; 4 5 6; 7 8 9] % new data

292 Chapter 14 Set, Bit, and Base Functions

A =

1 2 3

4 5 6

7 8 9

>> B = [4 5 6; 3 2 1] % more new data

B =

4 5 6

3 2 1

>> ismember(A,B) % which elements in A are in the set B

ans =

1 1 1

1 1 1

0 0 0

>> ismember(B,A) % which elements in B are in the set A

ans =

1 1 1

1 1 1

If both arrays contain the same number of columns, the following example returns a logi-
cal column vector containing ones where the corresponding row in A is also a row in B:

>> ismember(A,B,'rows') % which rows of A are also rows of B

ans =

0

1

0

The function ismember also applies to cell arrays of strings:

>> c % recall prior data

c =

'Tom' 'Bob' 'Tom' 'Shaun' 'Frida' 'Shaun' 'Bob'

>> ismember(c,'Tom')

ans =

1 0 1 0 0 0 0

Section 14.1 Set Functions 293

Set arithmetic is accomplished with the functions union, intersect, setdiff,
and setxor. Examples of the use of these functions include the following:

>> a,b % recall prior data

a =

2 3 4 5 6 7 8 9 10

b =

2 4 6 8 10

>> union(a,b) % union of a and b

ans =

2 3 4 5 6 7 8 9 10

>> intersect(a,b) % intersection of a and b

ans =

2 4 6 8 10

>> setxor(a,b) % set exclusive or of a and b

ans =

3 5 7 9

>> setdiff(a,b) % values in a that are not in b

ans =

3 5 7 9

>> setdiff(b,a) % values in b that are not in a

ans =

Empty matrix: 1-by-0

>> union(A,B,'rows') % matrix inputs give rows; no repetitions

ans =

1 2 3

3 2 1

4 5 6

7 8 9

294 Chapter 14 Set, Bit, and Base Functions

Like prior functions discussed in this chapter, these set functions also apply to cell
arrays of strings.

14.2 BIT FUNCTIONS

In addition to the logical operators discussed in Chapter 10, MATLAB provides
functions that allow logical operations on individual bits of any unsigned integer
data. For backward compatibility, these bit functions also work on floating-point
integers, namely integers stored in double-precision floating-point variables. The
MATLAB bitwise functions bitand, bitcmp, bitor, bitxor, bitset, bitget, and
bitshift work on integers. Examples of bit operations include:

>> format hex

>> intmax('uint16') % largest unsigned 16-bit number

ans =

ffff

>> a = uint16(2^10 -1) % first data value

a =

03ff

>> b = uint16(567) % second data value

b =

0237

>> bitand(a,b) % (a & b)

ans =

0237

>> bitor(a,b) % (a | b)

ans =

03ff

>> bitcmp(a) % complement a

ans =

fc00

>> bitxor(a,b) % xor(a,b)

ans =

01c8

>> bitget(b,7) % get 7th bit of b

ans =

0000

Section 14.3 Base Conversions 295

>> bitset(b,7) % set 7th bit of b to 1

ans =

0277

>> b, swapbytes(b) % swap byte ordering (little-endian<=>big-endian)

b =

0237

ans =

3702

>> format short g % reset display format

14.3 BASE CONVERSIONS

MATLAB provides a number of utility functions for converting decimal numbers
to other bases in the form of character strings. Conversions between decimals and
binary numbers are performed by the functions dec2bin and bin2dec, as in the
following example:

>> a = dec2bin(17) % find binary representation of 17

a =

10001

>> class(a) % result is a character string

ans =

char

>> bin2dec(a) % convert a back to decimal

ans =

17

>> class(ans) % result is a double precision decimal

ans =

double

Conversions between decimals and hexadecimals are performed by dec2hex and
hex2dec, as in the following example:

>> a = dec2hex(2047) % hex representation of 2047

a =

7FF

>> class(a) % result is a character string

296 Chapter 14 Set, Bit, and Base Functions

ans =

char

>> hex2dec(a) % convert a back to decimal

ans =

2047

>> class(ans) % result is a double precision decimal

ans =

double

Conversions between decimals and any base between 2 and 36 are performed by
dec2base and base2dec:

>> a = dec2base(26,3)

a =

222

>> class(a)

ans =

char

>> base2dec(a,3)

ans =

26

Base 36 is the maximum usable base, because it uses the numbers 0 through 9 and
the letters A through Z to represent the 36 distinct digits of a base 36 number.

297

MATLAB offers a number of functions to manipulate time. You can do arithmetic
with dates and times, print calendars, and find specific days. MATLAB does this by
storing the date and time as a double-precision number representing the number
of days since the beginning of year zero. For example, midnight, January 1, 2000, is
represented as 730486, and the same day at noon is 730486.5. This format may make
calculations easier for a computer, but it is difficult to interpret visually. That’s why
MATLAB supplies a number of functions to convert between date numbers and
character strings, and to manipulate dates and times.

15.1 CURRENT DATE AND TIME

The function clock returns the current date and time in an array:

>> T = clock

T =

1.0e+003 *

 2.0110 0.0090 0.0010 0.0190 0.0470 0.0232

This was the time when this part of the text was written. The preceding data are
organized as

T = [year month day hour minute seconds], so the time shown is the
year 2011, the 9th month, 1st day, 19th hour, 47th minute, and 23.2 seconds.

The function now returns the current date and time as a double-precision date
number, or simply a date number:

Time Computations

15

298 Chapter 15 Time Computations

>> format long g

>> t = now

t =

 734747.825187164

>> format short g

Both T and t represent essentially the same information.
The function date returns the current date as a character string in the

dd-mmm-yyyy format:

>> date

ans =

01-Sep-2011

>> class(t)

ans =

double

15.2 DATE FORMAT CONVERSIONS

In general, mathematics with time involves converting time to date number format,
performing standard mathematical operations on the date numbers, and then
 converting the result back to a format that makes human sense. As a result, converting
time among different formats is very important. MATLAB supports three formats
for dates: (1) double-precision date number, (2) date (character) strings in a variety
of styles, and (3) numerical date vector, where each element contains a different
date component, that is,[year,month,day,hour,minute,seconds].

The function datestr converts the date number to a date string. The syntax
for using datestr is datestr(date,dateform), where dateform is described by
the help text for datestr:

>> help datestr

 DATESTR String representation of date.

 S = DATESTR(V) converts one or more date vectors V to date strings S.

 Input V must be an M-by-6 matrix containing M full (six-element) date

 vectors. Each element of V must be a positive double-precision number.

 DATESTR returns a column vector of M date strings, where M is the total

 number of date vectors in V.

Section 15.2 Date Format Conversions 299

 S = DATESTR(N) converts one or more serial date numbers N to date

 strings S. Input argument N can be a scalar, vector, or

 multidimensional array of positive double-precision numbers. DATESTR

 returns a column vector of M date strings, where M is the total number

 of date numbers in N.

 S = DATESTR(D, F) converts one or more date vectors, serial date

 numbers, or date strings D into the same number of date strings S.

 Input argument F is a format number or string that determines the

 format of the date string output. Valid values for F are given in Table

 1, below. Input F may also contain a free-form date format string

 consisting of format tokens as shown in Table 2, below.

 Date strings with 2-character years are interpreted to be within the

 100 years centered around the current year.

 S = DATESTR(S1, F, P) converts date string S1 to date string S,

 applying format F to the output string, and using pivot year P as the

 starting year of the 100-year range in which a two-character year

 resides. The default pivot year is the current year minus 50 years.

 F = -1 uses the default format.

 S = DATESTR(. . . ,'local') returns the string in a localized format. The

 default (which can be called with 'en_US') is US English. This argument

 must come last in the argument sequence.

 Note: The vectorized calling syntax can offer significant performance

 improvement for large arrays.

TABLE 1: Standard MATLAB date format definitions

Number String Example
==
 0 'dd-mmm-yyyy HH:MM:SS' 01-Mar-2000 15:45:17

 1 'dd-mmm-yyyy' 01-Mar-2000

 2 'mm/dd/yy' 03/01/00

 3 'mmm' Mar

 4 'm' M

300 Chapter 15 Time Computations

 5 'mm' 03

 6 'mm/dd' 03/01

 7 'dd' 01

 8 'ddd' Wed

 9 'd' W

 10 'yyyy' 2000

 11 'yy' 00

 12 'mmmyy' Mar00

 13 'HH:MM:SS' 15:45:17

 14 'HH:MM:SS PM' 3:45:17 PM

 15 'HH:MM' 15:45

 16 'HH:MM PM' 3:45 PM

 17 'QQ-YY' Q1-96

 18 'QQ' Q1

 19 'dd/mm' 01/03

 20 'dd/mm/yy' 01/03/00

 21 'mmm.dd,yyyy HH:MM:SS' Mar.01,2000 15:45:17

 22 'mmm.dd,yyyy' Mar.01,2000

 23 'mm/dd/yyyy' 03/01/2000

 24 'dd/mm/yyyy' 01/03/2000

 25 'yy/mm/dd' 00/03/01

 26 'yyyy/mm/dd' 2000/03/01

 27 'QQ-YYYY' Q1-1996

 28 'mmmyyyy' Mar2000

 29 (ISO 8601) 'yyyy-mm-dd' 2000-03-01

 30 (ISO 8601) 'yyyymmddTHHMMSS' 20000301T154517

 31 'yyyy-mm-dd HH:MM:SS' 2000-03-01 15:45:17

TABLE 2: Free-form date format symbols

Symbol Interpretation of format symbol
==
yyyy full year, e.g. 1990, 2000, 2002

yy partial year, e.g. 90, 00, 02

mmmm full name of the month, according to the calendar locale, e.g.

"March", "April" in the UK and USA English locales.

mmm first three letters of the month, according to the calendar

locale, e.g. "Mar", "Apr" in the UK and USA English locales.

Section 15.2 Date Format Conversions 301

Examples:

DATESTR(now) returns '24-Jan-2003 11:58:15' for that particular date,

on an US English locale DATESTR(now,2) returns 01/24/03, the same as

for DATESTR(now,'mm/dd/yy') DATESTR(now,'dd.mm.yyyy') returns

24.01.2003 To convert a non-standard date form into a standard MATLAB

dateform, first convert the non-standard date form to a date number,

using DATENUM, for example,

DATESTR(DATENUM('24.01.2003','dd.mm.yyyy'),2) returns 01/24/03.

mm numeric month of year, padded with leading zeros, e.g . . . /03/.

or ../12/.

m capitalized first letter of the month, according to the

calendar locale; for backwards compatibility.

dddd full name of the weekday, according to the calendar locale, e.g.

"Monday", "Tuesday", for the UK and USA calendar locales.

ddd first three letters of the weekday, according to the calendar

locale, e.g. "Mon", "Tue", for the UK and USA calendar locales.

dd numeric day of the month, padded with leading zeros, e.g.

05/../.. or 20/../.

d capitalized first letter of the weekday; for backwards

compatibility

HH hour of the day, according to the time format. In case the time

format AM | PM is set, HH does not pad with leading zeros. In

case AM | PM is not set, display the hour of the day, padded

with leading zeros. e.g 10:20 PM, which is equivalent to 22:20;

9:00 AM, which is equivalent to 09:00.

MM minutes of the hour, padded with leading zeros, e.g. 10:15,

10:05, 10:05 AM.

SS second of the minute, padded with leading zeros, e.g. 10:15:30,

10:05:30, 10:05:30 AM.

FFF milliseconds field, padded with leading zeros, e.g.

10:15:30.015.

PM set the time format as time of morning or time of afternoon. AM

or PM is appended to the date string, as appropriate.

302 Chapter 15 Time Computations

 See also date, datenum, datevec, datetick.

Reference page in Help browser

doc datestr

Some examples of datestr usage include the following:

>> t = now

t =

 734747.842392396

>> datestr(t)

ans =

01-Sep-2011 20:13:02

>> datestr(t,12)

ans =

Sep11

>> datestr(t,23)

ans =

09/01/2011

>> datestr(t,25)

ans =

11/09/01

>> datestr(t,13)

ans =

20:13:02

>> datestr(t,29)

ans =

2011-09-01

The function datenum is the inverse of datestr. That is, datenum converts a date
string to a date number using the form datenum(str). Alternatively, it converts

Section 15.2 Date Format Conversions 303

individual date specifications using the form datenum(year,month,day) or
datenum(year,month,day,hour,minute,second), as in the following example:

>> format long

>> t = now

t =

 7.347478436599305e+005

>> ts = datestr(t)

ts =

01-Sep-2011 20:14:52

>> datenum(ts)

ans =

 7.347478436574074e+005

>> datenum(2011,9,1,20,15,07)

ans =

 7.347478438310185e+005

>> datenum(2011,9,1)

ans =

 734747

The datevec function converts a date string to a numerical vector containing the date
components using a format string consisting of format symbols from Table 2 in datestr
help or formats 0, 1, 2, 6, 13, 14, 15, 16, or 23 from Table 1. Note that supplying the for-
mat string, if known, is significantly faster than omitting it. Alternatively, it converts a
date number to a numerical vector of date components, as in the following code:

>> c = datevec('12/24/1984','mm/dd/yy')

c =

 1984 12 24 0 0 0

>> [yr,mo,day,hr,min,sec] = datevec('24-Dec-1984 08:22')

yr =

 1984

mo =

 12

day =

 24

304 Chapter 15 Time Computations

hr =

 8

min =

 22

sec =

 0

>> [yr,mo,day,hr,min,sec] = datevec(t)

yr =

 2010

mo =

 11

day =

 2

hr =

 15

min =

 38

sec =

 29.848297119140625

15.3 DATE FUNCTIONS

The numerical day of the week can be found from a date string or a date number by
using the function weekday (MATLAB uses the convention that Sunday is day 1
and Saturday is day 7):

>> [d,w] = weekday(734699)

d =

 6

w =

 Fri

>> [d,w] = weekday('21-Dec-1994')

d =

 4

Section 15.3 Date Functions 305

w =

 Wed

The last day of any month can be found by using the function eomday. Because of
leap year, both the year and the month are required, as in the following example:

>> eomday(2008,2) % divisible by 4 is a leap year

ans =

 29

>> eomday(1800,2) % divisible by 100 not a leap year

ans =

 28

>> eomday(1600,2) % divisible by 400 is a leap year

ans =

 29

MATLAB can generate a calendar for any month you request and display it in the
Command window or place it in a 6-by-7 matrix by using the function calendar:

>> calendar(date)

 Sep 2011

 S M Tu W Th F S

 0 0 0 0 1 2 3

 4 5 6 7 8 9 10

 11 12 13 14 15 16 17

 18 19 20 21 22 23 24

 25 26 27 28 29 30 0

 0 0 0 0 0 0 0

>> calendar(1986,1)

 Jan 1986

 S M Tu W Th F S

 0 0 0 1 2 3 4

 5 6 7 8 9 10 11

 12 13 14 15 16 17 18

 19 20 21 22 23 24 25

Section 15.5 Plot Labels 307

>> tic; plot(rand(50,5)); toc

Elapsed time is 0.999414 seconds.

>> tic; plot(rand(50,5)); toc

Elapsed time is 0.151470 seconds.

Note the difference in elapsed times for identical plot commands. The second plot
was significantly faster, because MATLAB had already created the Figure window
and compiled the functions it needed into memory.

The function cputime returns the amount of central processing unit (CPU)
time, in seconds, that MATLAB has used since the current session was started. The
function etime calculates the elapsed time between two time vectors, in six-element
row vector form such as that returned by the functions clock and datevec. Both
cputime and etime are based on the system clock and can be used to compute the
amount of system time it takes for an operation to be completed. Usage of cputime
and etime are demonstrated by the following examples, in which myoperation is a
script file containing a number of MATLAB commands:

>> t0 = cputime; myoperation; cputime - t0 % CPU time

ans =

 0.130000000000109

>> t = clock; myoperation; etime(clock, t) % system clock time

ans =

 0.108533999999999

>> t1 = tic; myoperation; toc(t1) % elapsed time (most accurate)

Elapsed time is 0.107682 seconds.

15.5 PLOT LABELS

Sometimes it is useful to plot data and use dates or time strings for one or more of
the axis labels. The datetick function automates this task. Use of this function
requires that the axis to be marked be plotted with a vector of date numbers, such
as the output of the datenum function. The following code is illustrative:

>> t = (1920:10:2010)';

>> p = [75.995; 91.972; 105.711; 123.203; 131.669;

 150.697; 179.323; 203.212; 226.505; 249.633];

>> plot(datenum(t,1,1),p)

306 Chapter 15 Time Computations

 26 27 28 29 30 31 0

 0 0 0 0 0 0 0

>> x = calendar(2011,7)

x =

 0 0 0 0 0 1 2

 3 4 5 6 7 8 9

 10 11 12 13 14 15 16

 17 18 19 20 21 22 23

 24 25 26 27 28 29 30

 31 0 0 0 0 0 0

>> class(x)

ans =

double

Arithmetic can be performed on dates using the addtodate function. There are
some limitations, however. The addtodate function requires a date number as input
and returns a date number as output. The number to be added must be an integer
value and can affect only one field at a time. The field specification must be one of the
strings 'year', 'month', 'day', 'hour', 'minute', 'second', or 'millisecond'.
Date format conversion functions are used to convert other date forms as needed:

>> datestr(addtodate(now,20,'month')) % 20 months from now

ans =

03-Jul-2012 17:53:28

>> datestr(addtodate(addtodate(now,6,'month'),29,'day')) % 6 months 29 days

ans =

01-Jun-2011 17:53:50

>> datestr(addtodate(datenum('22-Jan-2012','dd-mmm-yyyy'),-6,'day'))

ans =

16-Jan-2012

15.4 TIMING FUNCTIONS

The functions tic and toc are used to time a sequence of MATLAB operations.
The function tic starts a stopwatch, while toc stops the stopwatch and displays the
elapsed time:

308 Chapter 15 Time Computations

>> datetick('x','yyyy') % use 4-digit year on the x-axis

>> title('Figure 15.1: Population by Year')

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
60

80

100

120

140

160

180

200

220

240

260
Figure 15.1: Population by Year

Next, we create a bar chart of company sales from November 2009 to December 2010:

>> y = [2009 2009 2010*ones(1,12)]';

>> m = [11 12 (1:12)]';

>> s = [1.1 1.3 1.2 1.4 1.6 1.5 1.7 1.6 1.8 1.3 1.9 1.7 1.6 1.95]';

>> bar(datenum(y,m,1),s)

>> datetick('x','mmmyy')

>> ylabel('$ Million')

>> title('Figure 15.2: Monthly Sales')

Section 15.5 Plot Labels 309

Time and date functions in MATLAB are summarized in the following table.

Oct09 Jan10 Apr10 Jul10 Oct10 Jan11
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
$

M
ill

io
n

Figure 15.2: Monthly Sales

Date and Time Function Description

clock Current date and time as a date vector

now Current date and time as a date number

date Current date as a date string

datestr String representation of a date

datenum Numeric representation of a date

datevec Vector of date components

addtodate Adds an integer to a date field

weekday Day of the week for a specified date

eomday Last day number for a specified month and year

calendar Generates a calendar for the current or a
specified month

tic Starts the stopwatch timer

toc Reads the stopwatch timer

cputime Elapsed CPU time in seconds

etime Elapsed time between date vectors

datetick Date formatted tick labels

310

16

Matrix Algebra

MATLAB was originally written to provide an easy-to-use interface to professionally
developed numerical linear algebra subroutines. As it has evolved over the years,
other features, such as graphics and graphical user interfaces, have made the numerical
linear algebra routines less prominent. Nevertheless, MATLAB offers a wide range
of valuable matrix algebra functions.

It is important to note that while MATLAB supports n-dimensional arrays, matrix
algebra is defined only for 2-D arrays—that is, vectors and matrices.

16.1 SETS OF LINEAR EQUATIONS

One of the most common linear algebra problems is finding the solution of a linear
set of equations. For example, consider the set of equations

C 4 5 6

23 2 84

23 21 1

S # Cx1

x2

x3

S 5 C232

401

198

S
A # x 5 y

where the mathematical multiplication symbol (·) is now defined in the matrix
sense, as opposed to the array sense discussed earlier. In MATLAB, this matrix
multiplication is denoted with the asterisk notation *. The above equations
define the product of the matrix A and the vector x as being equal to the vector
y. The very existence of solutions of this equation is a fundamental issue in linear
algebra. Moreover, when a solution does exist, there are numerous approaches

Section 16.1 Sets of Linear Equations 311

to finding that solution, such as Gaussian elimination, LU factorization, or the
direct use of A−1. Clearly, it is beyond the scope of this text to discuss the many
analytical and numerical issues of matrix algebra. We wish only to demonstrate
how MATLAB can be used to solve problems like the one in the preceding
example.

To solve the problem at hand, it is necessary to enter A and y:

>> A = [4:6;23 2 84;-3:2:2

A =

 4 5 6

 23 2 84

 -3 -1 1

>> y = [232;401;198]

y =

 232

 401

 198

As discussed earlier, the entry of the matrix A shows the two ways that MATLAB
distinguishes between rows. The semicolon between the 3 and 4 signifies the start
of a new row, as does the new line between the 6 and 7. The vector y is a column,
because each semicolon signifies the start of a new row.

If you have a background in linear algebra, you will find it easy to see that this
problem has a unique solution if the rank of A and the rank of the augmented matrix
[A y] are both equal to 3. Alternatively, you can check the condition number of A.
If the condition number is not excessively large, then A has an inverse with good
numerical properties. Testing this problem produces the following result:

>> rank(A)

ans =

 3

>> rank([A y])

ans =

 3

>> cond(A) % close to one is best

ans =

 39.619

312 Chapter 16 Matrix Algebra

Since the rank and condition number tests hold, MATLAB can find the solution of
A·x = y in two ways, one of which is preferred. The less favorable method is to take
x = A−1·y literally, as in the following code:

>> x = inv(A)*y % Avoid this approach if possible

x =

 -85.018

 83.126

 26.073

Here, inv(A) is a MATLAB function that computes A−1, and the multiplication
operator * denotes matrix multiplication. The preferable solution is found by using
the matrix left-division operator, or backward slash, as in this example:

>> x = A\y % Recommended approach to solving sets of equations

x =

 -85.018

 83.126

 26.073

This equation uses an LU factorization approach and expresses the answer as the
left division of A into y. The left-division operator \ has no preceding dot, as this is
a matrix operation, not an element-by-element array operation. There are many
 reasons to prefer this second solution. Of these, the simplest is that the latter method
requires fewer floating-point operations and, as a result, is significantly faster. In
addition, this solution is generally more accurate, especially for larger problems.
In either case, if MATLAB cannot find a solution or cannot find one accurately, it
displays a warning message.

If the transpose of the above set of linear equations is taken (i.e., (A·x)' = y'),
then the previous set of linear equations can be written as x'·A' = y', where x' and
y' are now row vectors. As a result, it is equally valid to express a set of linear
 equations in terms of the product of a row vector and a matrix being equal to
another row vector—for example, u·B = v. In MATLAB, this case is solved by the
same internal algorithms by using the matrix right-division operator, or forward
slash, as in u = v/B.

It is important to note that when MATLAB encounters a forward slash (/)
or backward slash (\), it checks the structure of the coefficient matrix to determine
what internal algorithm to use to find the solution. In particular, if the matrix is
upper or lower triangular or a permutation of an upper or lower triangular matrix,
MATLAB does not refactor the matrix, but rather just performs the forward or
backward substitution steps required to find the solution. As a result, MATLAB
makes use of the properties of the coefficient matrix to compute the solution as
quickly as possible.

Section 16.1 Sets of Linear Equations 313

When the structure of the coefficient matrix is known ahead of time, the
function linsolve solves the set of equations by using matrix structure infor-
mation provided by the user. By using this function, MATLAB does not spend
time analyzing the structure of the coefficient matrix and thereby minimizes the
time required to solve the set of equations. The calling syntax for this function is
linsolve(A,y,options), where options is a structure containing fields that can
be set to True or False to identify the structure of the A matrix.

If you’ve studied linear algebra rigorously, you know that when the number of
equations and number of unknowns differ, a single unique solution usually does not
exist. However, with further constraints, a practical solution can usually be found. In
MATLAB, when rank(A) = min(r,c), where r and c are the number of rows and columns
in A, respectively, and there are more equations than unknowns (r > c) (i.e., the over-
determined case), a division operator / or \ automatically finds the solution that minimizes
the norm of the squared residual error e = A·x − y. This solution is of great practical value
and is called the least-squares solution. The following example is illustrative:

>> A = [1 2 3;4 5 6;7 8 0;2 5 8] % 4 equations in 3 unknowns

A =

 1 2 3

 4 5 6

 7 8 0

 2 5 8

>> y = [366 804 351 514]' % a new r.h.s. vector

y =

 366

 804

 351

 514

>> x = A\y % least squares solution

x =

 247.98

 -173.11

 114.93

>> e = A*x-y % this residual has the smallest norm.

e =

 -119.45

 11.945

 2.2737e-013

 35.836

314 Chapter 16 Matrix Algebra

>> norm(e)

ans =

 125.28

In addition to the least-squares solution that is computed with the left- and right-
division operators, MATLAB offers the functions lscov and lsqnonneg. The func-
tion lscov solves the weighted least-squares problem when the covariance matrix
(or weighting matrix) of the data is known, and lsqnonneg finds the nonnegative
least-squares solution where all solution components are constrained to be positive.

When there are fewer equations than unknowns (r < c) (i.e., the under-
determined case), an infinite number of solutions exist. Of these solutions, MATLAB
computes two in a straightforward way. Use of the division operator gives a solution
that has a maximum number of zeros in the elements of x. Alternatively, computing
x = pinv(A)*y gives a solution where the length or norm of x is smaller than all
other possible solutions. This solution, based on the pseudoinverse, also has great
practical value and is called the minimum norm solution:

>> A = A' % create 3 equations in 4 unknowns

A =

 1 4 7 2

 2 5 8 5

 3 6 0 8

>> y = y(1:3) % new r.h.s. vector

y =

 366

 804

 351

>> x = A\y % solution with maximum zero elements

x =

 0

 -165.9000

 99.0000

 168.3000

>> xn = pinv(A)*y % minimum norm solution

xn =

 30.8182

 -168.9818

 99.0000

 159.0545

Section 16.2 Matrix Functions 315

>> norm(x) % norm of solution with zero elements

ans =

 256.2200

>> norm(xn) % minimum norm solution has smaller norm!

ans =

 254.1731

16.2 MATRIX FUNCTIONS

In addition to the solution of linear sets of equations, MATLAB offers numerous
matrix functions that are useful for solving numerical linear algebra problems.
A thorough discussion of these functions is beyond the scope of this text. In general,
MATLAB provides functions for all common, and some uncommon, numerical
 linear algebra problems. A brief description of many of the matrix functions is given
in the following table:

Function Description

/ and \ Solves Ax = y (much better than using inv(A)*y)

accumarray(ind,val) Constructs array with accumulation

A^n Exponentiation, for example, A^3 = A*A*A

balance(A) Scale to improve eigenvalue accuracy

[V,D] = cdf2rdf(V,D) Complex diagonal form to real block diagonal form

chol(A) Cholesky factorization

cholupdate(R,X) Rank 1 update to Cholesky factorization

cond(A) Matrix condition number using singular value
decomposition

condest(A) 1-norm condition number estimate

[V,D,s] = condeig(A) Condition number with respect to eigenvalues

det(A) Determinant

dmperm(A) Dulmage–Mendelsohn permutation

eig(A) Vector of eignenvalues

[V,D] = eig(A) Matrix of eignenvectors, and diagonal matrix containing
eigenvalues

expm(A) Matrix exponential

funm(A,@fun) General matrix function

316 Chapter 16 Matrix Algebra

Function Description

gsvd(A,B) Generalized singular values

[U,V,X,C,S] = gsvd(A) Generalized singular value decomposition

hess(A) Hessenburg form of a matrix

inv(A) Matrix inverse (use only when / or \ won’t do)

linsolve(A,y,options) Solves Ax = y quickly when structure of A is given
by options

logm(A) Matrix logarithm

lscov(A,y,V) Weighted least squares with covariance matrix

lsqnonneg(A,y) Nonnegative least-squares solution

[L,U,P]=lu(A) LU decomposition

minres(A,y) Minimum residual method

norm(A,type) Matrix and vector norms

null(A) Null space

ordeig(T) Eigenvalues of quasitriangular Schur matrix

ordeig(A,B) Generalized eigenvalues of quasitriangular matrices

ordschur(U,T,select) Reorders eigenvalues in Schur factorization

ordqz(A,B,Q,Z,select) Reorders eigenvalues in QZ factorization

orth(A) Orthogonal range space using singular value
decomposition

pinv(A) Pseudoinverse using singular value decomposition

planerot(X) Givens plane rotation

poly(A) Characteristic polynomial

polyeig(A0,A1,. . .) Polynomial eigenvalue solution

polyvalm(A) Evaluates matrix polynomial

qr(A) Orthogonal-triangular decomposition

qrdelete(Q,R,J) Deletes column or row from QR factorization

qrinsert(Q,R,J,X) Inserts column or row into QR factorization

qrupdate(Q,R,U,V) Rank 1 update to QR factorization

qz(A,B) Generalized eigenvalues

rank(A) Matrix rank using singular value decomposition

Section 16.3 Special Matrices 317

Function Description

rcond(A) LAPACK reciprocal condition estimator

rref(A) Reduced row echelon form

rsf2csf(A) Real Schur form to complex Schur form

schur(A) Schur decomposition

sqrtm(A) Matrix square root

subspace(A,B) Angle between two subspaces

svd(A) Singular values

[U,S,V] = svd(A) Singular value decomposition

trace(A) Sum of matrix diagonal elements

16.3 SPECIAL MATRICES

MATLAB offers a number of special matrices; some of them are general utilities,
while others are matrices of interest to specialized disciplines. These and other
 special matrices include those given in the following table (use the online help to
learn more about these matrices):

Matrix Description

[] Empty matrix

blkdiag(A0,A1, . . .) Block diagonal concatenation of input arguments

compan(P) Companion matrix of a polynomial

eye(r,c) Identity matrix

gallery More than 60 test matrices

hadamard(n) Hadamard matrix of order n

hankel(C) Hankel matrix

hilb(n) Hilbert matrix of order n

invhilb(n) Inverse Hilbert matrix of order n

magic(n) Magic matrix of order n

ones(r,c) Matrix containing all ones

pascal(n) Pascal matrix of order n.

rand(r,c) Uniformly distributed random matrix with elements between
0 and 1

318 Chapter 16 Matrix Algebra

16.4 SPARSE MATRICES

In many practical applications, matrices are generated that contain only a
few nonzero elements. As a result, these matrices are said to be sparse. For
 example, circuit simulation and finite element analysis programs routinely deal
with matrices containing less than 1 percent nonzero elements. If a matrix is
large—for example, max(size(A)) > 100—and has a high percentage of zero
 elements, it is wasteful, both of computer storage to store the zero elements
and of computational power to perform arithmetic operations by using the zero
 elements. To eliminate the storage of zero elements, it is common to store only
the nonzero elements of a sparse matrix and two sets of indices identifying the
row and column positions of these elements. Similarly, to eliminate arithmetic
operations on the zero elements, special algorithms have been developed to solve
typical matrix problems (such as solving a set of linear equations in which opera-
tions involving zeros are minimized, and intermediate matrices have minimum
nonzero elements).

The techniques used to optimize sparse matrix computations are complex
in implementation, as well as in theory. Fortunately, MATLAB hides this
 complexity. In MATLAB, sparse matrices are stored in variables, just as
 regular, full matrices are. Moreover, most computations with sparse matrices
use the same syntax as that used for full matrices. In particular, all of the array-
manipulation capabilities of MATLAB work equally well on sparse matrices.
For example, s(i,j) = value assigns value to the ith row and jth column of the
sparse matrix s.

In this text, only the creation of sparse matrices and the conversion to and
from sparse matrices are illustrated. In general, operations on full matrices produce
full matrices and operations on sparse matrices produce sparse matrices. In addi-
tion, operations on a mixture of full and sparse matrices generally produce sparse
matrices, unless the operation makes the result too densely populated with nonzeros
to make sparse storage efficient.

Matrix Description

randi(n,r,c) Uniformly distributed random integers over the range 1:n

randn(r,c) Normally distributed random matrix with elements having
zero mean and unit variance

rosser Classic symmetric eigenvalue test problem

toeplitz(C,R) Toeplitz matrix

vander(C) Vandermonde matrix

wilkinson(n) Wilkinson’s eigenvalue test matrix of order n

zeros(r,c) Matrix containing all zeros

Section 16.4 Sparse Matrices 319

Sparse matrices are created using the MATLAB function sparse. For example,
the code

>> As = sparse(1:9,1:9,ones(1,9))

As =

 (1,1) 1

 (2,2) 1

 (3,3) 1

 (4,4) 1

 (5,5) 1

 (6,6) 1

 (7,7) 1

 (8,8) 1

 (9,9) 1

creates a 9-by-9 identity matrix. In this usage, sparse(i,j,s) creates a sparse
matrix whose kth nonzero element is s(k), which appears in the row i(k) and
column j(k). Note the difference in how sparse matrices are displayed. Nonzero
elements and their row and column positions are displayed. The preceding sparse
matrix can also be created by conversion. For example, the code

>> As = sparse(eye(9))

As =

 (1,1) 1

 (2,2) 1

 (3,3) 1

 (4,4) 1

 (5,5) 1

 (6,6) 1

 (7,7) 1

 (8,8) 1

 (9,9) 1

creates the 9-by-9 identity matrix again, this time by converting the full matrix
eye(9) to sparse format. While this method of creating a sparse matrix works, it is
seldom used in practice, because the initial full matrix wastes a great deal of memory.

320 Chapter 16 Matrix Algebra

Given a sparse matrix, the function full generates the conventional full
matrix equivalent. The following example converts the sparse matrix As back to its
full form:

>> A = full(As)

A =

 1 0 0 0 0 0 0 0 0

 0 1 0 0 0 0 0 0 0

 0 0 1 0 0 0 0 0 0

 0 0 0 1 0 0 0 0 0

 0 0 0 0 1 0 0 0 0

 0 0 0 0 0 1 0 0 0

 0 0 0 0 0 0 1 0 0

 0 0 0 0 0 0 0 1 0

 0 0 0 0 0 0 0 0 1

To compare sparse matrix storage to full matrix storage, consider the following
example:

>> B = eye(200);

>> Bs = sparse(B);

>> whos

 Name Size Bytes Class Attributes

 B 200x200 320000 double

 Bs 200x200 3204 double sparse

Here, the sparse matrix Bs contains only 0.5 percent nonzero elements and requires
3204 bytes of storage. On the other hand, B, the same matrix in full matrix form
requires two orders of magnitude more bytes of storage!

16.5 SPARSE MATRIX FUNCTIONS

MATLAB provides numerous sparse matrix functions. Many involve different aspects
of, and techniques for, the solution of sparse simultaneous equations. A discussion of
these functions is beyond the scope of this text. The functions available are listed in
the following table:

Section 16.5 Sparse Matrix Functions 321

Sparse Matrix Function Description

bicg Biconjugate gradient iterative linear equation solution

bicgstab Biconjugate gradient stabilized iterative linear equation
solution

bicgstabl Biconjugate gradients stabilized(l) method

cgs Conjugate gradients squared iterative linear equation
solution

cholinc Incomplete Cholesky factorization

colamd Column approximate minimum degree reordering method

colperm Column permutation

condest 1-norm condition number estimate

dmperm Dulmage–Mendelsohn reordering method

eigs A few eigenvalues using ARPACK

etree Elimination tree

etreeplot Plots elimination tree

find Finds indices of nonzero elements

full Converts sparse matrix to full matrix

gmres Generalized minimum residual iterative linear equation
solution

gplot Constructs graph theory plot

ilu Incomplete LU factorization

issparse True for sparse matrix

lsqnonneg Solves nonnegative least-squares constraints problem

lsqr LSQR implementation of conjugate gradients on normal
equations

luinc Incomplete LU factorization

minres Minimum residual iterative linear equation solution

nnz Number of nonzero matrix elements

nonzeros Nonzero matrix elements

normest Estimate of matrix 2-norm

nzmax Storage allocated for nonzero elements

322 Chapter 16 Matrix Algebra

Sparse Matrix Function Description

pcg Preconditioned conjugate gradients iterative linear equation
solution

qmr Quasi-minimal residual iterative linear equation solution

randperm Random permutation

spalloc Allocates space for sparse matrix

sparse Creates sparse matrix

spaugment Forms least-squares augmented system

spconvert Import from sparse matrix external format

spdiags Sparse matrix formed from diagonals

speye Sparse identity matrix

spfun Applies function to nonzero elements

spones Replaces nonzeros with ones

spparms Sets parameters for sparse matrix routines

sprand Sparse uniformly distributed matrix

sprandn Sparse normally distributed matrix

sprandsym Sparse random symmetric matrix

sprank Structural rank

spy Visualizes sparsity pattern

svds A few singular values

symamd Symmetric approximate minimum degree reordering
method

symbfact Symbolic factorization analysis

symmlq Symmetric LQ iterative linear equation solution

symrcm Symmetric reverse Cuthill–Mckee reordering method

tfqmr Transpose-free quasi-minimal residual method

treelayout Lays out tree or forest

treeplot Plots picture of tree

323

Because of its array orientation, MATLAB readily performs statistical analyses on
data sets. While MATLAB, by default, considers data sets stored in column-oriented
arrays, data analysis can be conducted along any specified dimension.

Data Analysis

17

Unless specified otherwise, each column of an array represents a different measured
variable, and each row represents individual samples or observations.

17.1 BASIC STATISTICAL ANALYSIS

For example, let’s assume that the daily high temperature (in Celsius) of three cities
over a 31-day month was recorded and assigned to the variable temps in a script M-file.
Running the M-file puts the variable temps in the MATLAB workspace. When this
work is done, the variable temps contains the following data:

>> temps

temps =

 12 8 18

 15 9 22

 12 5 19

 14 8 23

 12 6 22

 11 9 19

324 Chapter 17 Data Analysis

 15 9 15

 8 10 20

 19 7 18

 12 7 18

 14 10 19

 11 8 17

 9 7 23

 8 8 19

 15 8 18

 8 9 20

 10 7 17

 12 7 22

 9 8 19

 12 8 21

 12 8 20

 10 9 17

 13 12 18

 9 10 20

 10 6 22

 14 7 21

 12 5 22

 13 7 18

 15 10 23

 13 11 24

 12 12 22

Each row contains the high temperatures for a given day, and each column con-
tains the high temperatures for a different city. To visualize the data, plot it with the
 following code:

>> d = 1:31; % number the days of the month

>> plot(d,temps)

>> xlabel('Day of Month'), ylabel('Celsius')

>> title('Figure 17.1: Daily High Temperatures in Three Cities')

Section 17.1 Basic Statistical Analysis 325

The plot command in this example illustrates yet another form of plot command
usage. The variable d is a vector of length 31, whereas temps is a 31-by-3 matrix.
Given this data, the plot command plots each column of temps versus d.

To illustrate some of the data-analysis capabilities of MATLAB, consider the
following commands based on the temperature data stored in temps:

>> avg_temp = mean(temps)

avg_temp =

 11.968 8.2258 19.871

This result shows that the third city has the highest average temperature. Here, MATLAB
found the average of each column individually. Taking the average again gives

>> avg_avg = mean(avg_temp)

avg_avg =

 13.355

which returns the overall average temperature of the three cities.

0 5 10 15 20 25 30 35
4

6

8

10

12

14

16

18

20

22

24

Day of Month

C
el

si
us

Figure 17.1: Daily High Temperatures in Three Cities

When the input to a data-analysis function is a row or column vector, MATLAB simply
performs the operation on the vector, returning a scalar result.

326 Chapter 17 Data Analysis

Alternatively, you can specify the dimension to work on:

>> avg_temp = mean(temps,1) % same as above, work down the rows

avg_temp =

 11.968 8.2258 19.871

>> avg_tempr = mean(temps,2) % compute means across columns

avg_tempr =

 12.667

 15.333

 12

 15

 13.333

 13

 13

 12.667

 14.667

 12.333

 14.333

 12

 13

 11.667

 13.667

 12.333

 11.333

 13.667

 12

 13.667

 13.333

 12

 14.333

 13

 12.667

 14

 13

 12.667

Section 17.1 Basic Statistical Analysis 327

 16

 16

 15.333

This output lists the three-city average temperature on each day. The scalar second
argument to mean dictates the dimension to be analyzed; for example, 1 is the row
dimension number, so MATLAB performs the analysis accumulating information
down the rows; 2 is the column dimension number, so MATLAB performs the anal-
ysis accumulating information across the columns.

If temps were n-dimensional, the mean and other statistical functions could be
used along any dimension, as in the following example:

>> temps2 = temps+round(2*rand(size(temps))-1);

>> temps3 = cat(3,temps,temps2);

>> size(temps3)

ans =

 31 3 2

>> mean(temps3) % same as mean(temps3,1)

ans(:,:,1) =

 11.968 8.2258 19.871

ans(:,:,2) =

 11.935 8.1935 19.935

>> squeeze(mean(temps3))' % squeeze to two dimensions

ans =

 11.968 8.2258 19.871

 11.935 8.1935 19.935

>> reshape(mean(temps3),3,2)' % alternate squeeze

ans =

 11.968 8.2258 19.871

 11.935 8.1935 19.935

>> mean(temps3,3)

ans =

 12 8 18

 14.5 8.5 22

 12.5 5.5 19

 14.5 8.5 23.5

328 Chapter 17 Data Analysis

 12 6 22.5

 11 8.5 19.5

 14.5 8.5 15

 8 10 20

 19 7 18

 12 6.5 17.5

 14.5 10 18.5

 11 8 17.5

 8.5 7 22.5

 7.5 8 18.5

 15 8 18

 7.5 9.5 19.5

 10 7.5 17

 12.5 7 22

 9 8 19.5

 12 7.5 21.5

 12 8 20.5

 9.5 9 17

 12.5 11.5 18

 9 10 20

 10.5 6 22

 13.5 7 21

 12 5 22

 13.5 6.5 18

 15 10 23

 13 11.5 24

 12.5 12.5 22

Here, temps2 contains randomly generated data for the temperatures in the three
cities for a second month. The variable temps3 contains the first month’s temper-
atures on page 1 and the second month’s temperatures on page 2. The function
call mean(temps3) computes the means down each column on each page, giving a
result that has one row, three columns, and two pages. This data can be squeezed
into two rows and three columns by using squeeze or reshape. The function call
mean(temps3,3) computes the mean along the page dimension, which is the month-
to-month mean of the temperatures on a given day, in a given city. The result is an
array having 31 rows, three columns, and one page (i.e., a 2-D array).

Section 17.1 Basic Statistical Analysis 329

Going back to the 2-D case, consider the problem of finding the daily devia-
tion from the mean of each city. That is, avg_temp(i) must be subtracted from
column i of temps. You cannot simply issue the statement

>> avg_temp

avg_temp =

 11.968 8.2258 19.871

>> temps - avg_temp

??? Error using ==> minus

Matrix dimensions must agree.

because the operation is not a defined array operation (temps is 31 by 3, and avg_
temp is 1 by 3). Perhaps the most straightforward approach is to use a For Loop:

>> for c = 1:3

 tdev(:,c) = temps(:,c) - avg_temp(c);

 end

While this approach works, it was much slower before the introduction of JIT-
acceleration in MATLAB. An alternative is to use the array-manipulation features
of MATLAB. In this case, you duplicate avg_temp to make it the size of temps and
then do the subtraction:

>> tdev = temps - repmat(avg_temp,31,1)

tdev =

 0.032258 -0.22581 -1.871

 3.0323 0.77419 2.129

 0.032258 -3.2258 -0.87097

 2.0323 -0.22581 3.129

 0.032258 -2.2258 2.129

 -0.96774 0.77419 -0.87097

 3.0323 0.77419 -4.871

 -3.9677 1.7742 0.12903

 7.0323 -1.2258 -1.871

 0.032258 -1.2258 -1.871

 2.0323 1.7742 -0.87097

 -0.96774 -0.22581 -2.871

330 Chapter 17 Data Analysis

 -2.9677 -1.2258 3.129

 -3.9677 -0.22581 -0.87097

 3.0323 -0.22581 -1.871

 -3.9677 0.77419 0.12903

 -1.9677 -1.2258 -2.871

 0.032258 -1.2258 2.129

 -2.9677 -0.22581 -0.87097

 0.032258 -0.22581 1.129

 0.032258 -0.22581 0.12903

 -1.9677 0.77419 -2.871

 1.0323 3.7742 -1.871

 -2.9677 1.7742 0.12903

 -1.9677 -2.2258 2.129

 2.0323 -1.2258 1.129

 0.032258 -3.2258 2.129

 1.0323 -1.2258 -1.871

 3.0323 1.7742 3.129

 1.0323 2.7742 4.129

 0.032258 3.7742 2.129

Here, repmat(avg_temp,31,1) replicates the row vector avg_temp, 31 times in
the row dimension and once in the column dimension, creating a 31-by-3 matrix
the same size as temps. The first column of repmat(avg_temp,31,1) contains
avg_tmp(1), the second column contains avg_temp(2), and the third column
 contains avg_temp(3).

A better solution is to use the function bsxfun introduced in MATLAB
 version 7.4. This function applies the element-by-element binary operation specified
by a function handle to two arrays. The code

>> tdev = bsxfun(@minus, temps, mean(temps))

tdev =

 0.032258 -0.22581 -1.871

 3.0323 0.77419 2.129

 0.032258 -3.2258 -0.87097

 2.0323 -0.22581 3.129

 0.032258 -2.2258 2.129

Section 17.1 Basic Statistical Analysis 331

 -0.96774 0.77419 -0.87097

 3.0323 0.77419 -4.871

 -3.9677 1.7742 0.12903

 7.0323 -1.2258 -1.871

 0.032258 -1.2258 -1.871

 2.0323 1.7742 -0.87097

 -0.96774 -0.22581 -2.871

 -2.9677 -1.2258 3.129

 -3.9677 -0.22581 -0.87097

 3.0323 -0.22581 -1.871

 -3.9677 0.77419 0.12903

 -1.9677 -1.2258 -2.871

 0.032258 -1.2258 2.129

 -2.9677 -0.22581 -0.87097

 0.032258 -0.22581 1.129

 0.032258 -0.22581 0.12903

 -1.9677 0.77419 -2.871

 1.0323 3.7742 -1.871

 -2.9677 1.7742 0.12903

 -1.9677 -2.2258 2.129

 2.0323 -1.2258 1.129

 0.032258 -3.2258 2.129

 1.0323 -1.2258 -1.871

 3.0323 1.7742 3.129

 1.0323 2.7742 4.129

 0.032258 3.7742 2.129

produces the same result without explicitly duplicating arrays. This is possible
because bsxfun performs singleton expansion internally when needed.

MATLAB can also find minima and maxima. For example, the code

>> max_temp = max(temps)

max_temp =

 19 12 24

332 Chapter 17 Data Analysis

finds the maximum high temperature of each city over the month, while

>> [max_temp,maxday] = max(temps)

max_temp =

 19 12 24

maxday =

 9 23 30

finds the maximum high temperature of each city and the row index maxday where
the maximum appears. In this example, maxday identifies the day of the month
when the highest temperature occurred.

The code

>> min_temp = min(temps)

min_temp =

 8 5 15

finds the minimum high temperature of each city, and the code

>> [min_temp,minday] = min(temps)

min_temp =

 8 5 15

minday =

 8 3 7

finds the minimum high temperature of each city and the row index minday where
the minimum appears. For this example, minday identifies the day of the month
when the lowest high temperature occurred.

Other standard statistical measures are also provided in MATLAB, including
the following:

>> s_dev = std(temps) % standard deviation in each city

s_dev =

 2.5098 1.7646 2.2322

>> median(temps) % median temperature in each city

ans =

 12 8 20

>> cov(temps) % covariance

Section 17.1 Basic Statistical Analysis 333

ans =

 6.2989 0.04086 -0.13763

 0.04086 3.114 0.063441

 -0.13763 0.063441 4.9828

>> corrcoef(temps) % correlation coefficients

ans =

 1 0.0092259 -0.024567

 0.0092259 1 0.016106

 -0.024567 0.016106 1

You can also compute differences from day to day by using the function diff:

>> daily_change = diff(temps)

daily_change =

 3 1 4

 -3 -4 -3

 2 3 4

 -2 -2 -1

 -1 3 -3

 4 0 -4

 -7 1 5

 11 -3 -2

 -7 0 0

 2 3 1

 -3 -2 -2

 -2 -1 6

 -1 1 -4

 7 0 -1

 -7 1 2

 2 -2 -3

 2 0 5

 -3 1 -3

 3 0 2

 0 0 -1

 -2 1 -3

 3 3 1

334 Chapter 17 Data Analysis

 -4 -2 2

 1 -4 2

 4 1 -1

 -2 -2 1

 1 2 -4

 2 3 5

 -2 1 1

 -1 1 -2

This function computes the difference between daily high temperatures and describes
how much the daily high temperature varied from day to day. For example, between
the first and second days of the month, the first row of daily_change is the amount
that the daily high changed. As with other functions, the difference can be computed
along other dimensions as well:

>> city_change = diff(temps,1,2)

city_change =

 -4 10

 -6 13

 -7 14

 -6 15

 -6 16

 -2 10

 -6 6

 2 10

 -12 11

 -5 11

 -4 9

 -3 9

 -2 16

 0 11

 -7 10

 1 11

 -3 10

 -5 15

 -1 11

 -4 13

Section 17.1 Basic Statistical Analysis 335

 -4 12

 -1 8

 -1 6

 1 10

 -4 16

 -7 14

 -7 17

 -6 11

 -5 13

 -2 13

 0 10

Here, the function diff(temps,1,2) produces a first-order difference along dimen-
sion 2. Therefore, the result is the city difference. The first column is the difference
between city 2 and city 1; the second column is the difference between city 3 and
city 2.

It is common to use the value NaN to signify missing data. When this is done,
most statistical functions require special treatment, because operations on NaNs
generally produce NaNs, as in the following example:

>> temps4 = temps; % copy data

>> temps4(5,1) = nan; % insert some NaNs

>> temps4(29,2) = nan;

>> temps4(13:14,3) = nan

temps4 =

 12 8 18

 15 9 22

 12 5 19

 14 8 23

 NaN 6 22

 11 9 19

 15 9 15

 8 10 20

 19 7 18

 12 7 18

 14 10 19

 11 8 17

336 Chapter 17 Data Analysis

 9 7 NaN

 8 8 NaN

 15 8 18

 8 9 20

 10 7 17

 12 7 22

 9 8 19

 12 8 21

 12 8 20

 10 9 17

 13 12 18

 9 10 20

 10 6 22

 14 7 21

 12 5 22

 13 7 18

 15 NaN 23

 13 11 24

 12 12 22

>> max(temps4) % max and min ignore NaNs

ans =

 19 12 24

>> mean(temps4) % other statistical functions propagate NaNs

ans =

 NaN NaN NaN

>> std(temps4)

ans =

 NaN NaN NaN

One solution to this NaN problem is to write your own functions that exclude NaN
elements:

>> m = zeros(1,3); % preallocate memory for faster results

>> for j = 1:3 % find mean column by column

 idx = ~isnan(temps4(:,j));

Section 17.2 Basic Data Analysis 337

 m(j) = mean(temps4(idx,j));

end

>> m

m =

 11.967 8.1667 19.793

Here, the function isnan is used to locate elements containing NaN. Then, the mean
down each column is found by indexing only non-NaN elements. It is not possible
to exclude NaN elements over all columns simultaneously, because not all columns
have the same number of NaN elements.

An alternative to the preceding approach is to replace the NaNs with zeros,
and compute the mean accordingly, as in the following example:

>> lnan = isnan(temps4); % logical array identifying NaNs

>> temps4(lnan) = 0; % change all NaNs to zero

>> n = sum(~lnan); % number of nonNaN elements per column

>> m = sum(temps4)./n % find mean for all columns

m =

11.967 8.1667 19.793

In this example, a logical array lnan containing True where the elements of temps4
are NaN was found. The NaN values were then set to zero. Then the mean was com-
puted by dividing the column sums by the number of non-NaN elements per column.

17.2 BASIC DATA ANALYSIS

In addition to statistical data analysis, MATLAB offers a variety of general-purpose
data-analysis functions. For example, the temperature data temps can be filtered by
using the function filter(b,a,data):

>> filter(ones(1,4),4,temps)

ans =

3 2 4.5

6.75 4.25 10

9.75 5.5 14.75

13.25 7.5 20.5

13.25 7 21.5

12.25 7 20.75

338 Chapter 17 Data Analysis

13 8 19.75

11.5 8.5 19

13.25 8.75 18

13.5 8.25 17.75

13.25 8.5 18.75

14 8 18

11.5 8 19.25

10.5 8.25 19.5

10.75 7.75 19.25

10 8 20

10.25 8 18.5

11.25 7.75 19.25

9.75 7.75 19.5

10.75 7.5 19.75

11.25 7.75 20.5

10.75 8.25 19.25

11.75 9.25 19

11 9.75 18.75

10.5 9.25 19.25

11.5 8.75 20.25

11.25 7 21.25

12.25 6.25 20.75

13.5 7.25 21

13.25 8.25 21.75

13.25 10 21.75

Here, the filter implemented is 4yn = xn + xn-1 + xn-2 + xn-3, or, equivalently,
yn = (xn + xn-1 + xn-2 + xn-3)>4. In other words, each column of temps is passed
through a moving-average filter of length 4. Any realizable filter structure can be
applied by specifying different coefficients for the input and output coefficient vectors.

The function y = filter(b,a,x) implements the following general tapped
delay-line algorithm:

a
N

k=0
ak+1yn-k = a

M

k=0
bk+1xn-k

Here, the vector a is the tap weight vector ak+1 on the output, and the vector b is the
tap weight vector bk+1 on the input. For N = 2 and M = 3, the preceding equation is
equivalent to

a1yn + a2yn-1 + a3yn-2 = b1xn + b2xn-1 + b3xn-2 + b4xn-3

Section 17.2 Basic Data Analysis 339

The filter function uses a difference equation description of a filter. When a state
space description of a filter is known, the built-in function ltitr is useful. The help
text of this function contains the following:

 >> help ltitr

 LTITR Linear time-invariant time response kernel.

 X = LTITR(A,B,U) calculates the time response of the system:

 x[n+1] = Ax[n] + Bu[n]

 to input sequence U. The matrix U must have as many columns as

 there are inputs u. Each row of U corresponds to a new time

 point. LTITR returns a matrix X with as many columns as the

 number of states x, and with as many rows as in U.

 LTITR(A,B,U,X0) can be used if initial conditions exist.

 Here is what it implements, in high speed:

 for i = 1:n

 x(:,i) = x0;

 x0 = a * x0 + b * u(i,:).';

 end

 x = x.';

In this case, if the state space output equation is y[n] = Cx[n] + Du[n], where C and
D are matrices of appropriate dimensions, x = ltitr(A,B,u) can be used to com-
pute the state response x[n], followed by

y = x*C.' + u*D.';

to obtain the filter output. Here, the array y will have as many columns as there are
outputs and as many rows as there are time points.

In MATLAB, data can also be sorted:

>> data = rand(10,1) % create some data

data =

0.61543

0.79194

340 Chapter 17 Data Analysis

0.92181

0.73821

0.17627

0.40571

0.93547

 0.9169

0.41027

0.89365

>> [sdata,sidx] = sort(data) % sort in ascending order

sdata =

0.17627

0.40571

0.41027

0.61543

0.73821

0.79194

0.89365

 0.9169

0.92181

0.93547

sidx =

5

6

9

1

4

2

10

8

3

7

The second output of the sort function is the sorted index order. That is, the fifth
element in data has the lowest value, and the seventh element in data has the
 highest value.

Section 17.2 Basic Data Analysis 341

Sometimes, it is important to know the rank of the data. For example, what is the
rank or position of the ith data point in the unsorted array with respect to the sorted
array? With MATLAB array indexing, the rank is found by the single statement

>> ridx(sidx) = 1:10 % ridx is rank

ridx =

4 6 9 5 1 2 10 8 3 7

That is, the first element of the unsorted data appears fourth in the sorted data, and
the last element is seventh. If a descending sort is required, it is simply a matter of
calling the sort function as [sdata,sidx] = sort(data,'descend').

When the array to be sorted is a matrix, as temps in the preceding example, each
column is sorted, and each column produces a column in the optional index matrix. As
with the other data-analysis functions, the dimension to analyze can be specified as a
second input argument before the optional final 'ascend' or 'descend' argument.

Very often, it is desirable to use the results of sorting one column of an array
by applying that sort order to all remaining columns, as in the following example:

>> newdata = randn(10,4) % new data for sorting

newdata =

-0.43256 -0.18671 0.29441 -0.39989

-1.6656 0.72579 -1.3362 0.69

0.12533 -0.58832 0.71432 0.81562

0.28768 2.1832 1.6236 0.71191

-1.1465 -0.1364 -0.69178 1.2902

1.1909 0.11393 0.858 0.6686

1.1892 1.0668 1.254 1.1908

-0.037633 0.059281 -1.5937 -1.2025

0.32729 -0.095648 -1.441 -0.01979

0.17464 -0.83235 0.57115 -0.15672

>> [tmp,idx] = sort(newdata(:,2)); % sort second column

>> newdatas = newdata(idx,:) % shuffle rows using idx from 2nd column

newdatas =

0.17464 -0.83235 0.57115 -0.15672

0.12533 -0.58832 0.71432 0.81562

-0.43256 -0.18671 0.29441 -0.39989

-1.1465 -0.1364 -0.69178 1.2902

342 Chapter 17 Data Analysis

0.32729 -0.095648 -1.441 -0.01979

-0.037633 0.059281 -1.5937 -1.2025

1.1909 0.11393 0.858 0.6686

-1.6656 0.72579 -1.3362 0.69

1.1892 1.0668 1.254 1.1908

0.28768 2.1832 1.6236 0.71191

Here, the second column of the random array is sorted in increasing order. Then,
the sort index is used to shuffle the rows in all columns. For example, the last row
of newdata is now the first row in newdatas, because the last element in the second
column is the smallest element in the second column.

A vector is strictly monotonic if its elements either always increase or always
decrease as one proceeds down the array. The function diff is useful for determin-
ing monotonicity:

>> A = diff(data) % check random data

A =

0.17651

0.12987

-0.1836

-0.56194

0.22944

0.52976

-0.01857

-0.50663

0.48338

>> mono = all(A>0) | all(A<0) % as expected, not monotonic

mono =

0

>> B = diff(sdata) % check random data after sorting

B =

0.22944

0.00456

0.20516

0.12278

0.05373

0.10171

Section 17.3 Data Analysis and Statistical Functions 343

0.02325

0.00491

0.01366

>> mono = all(B>0) | all(B<0) % as expected, monotonic

mono =

1

Furthermore, a monotonic vector is equally spaced if the second difference is
zero.

>> all(diff(diff(sdata))==0) % random data is not equally spaced

ans =

0

>> all(diff(diff(1:25))==0) % but numbers from 1 to 25 are equally spaced

ans =

1

17.3 DATA ANALYSIS AND STATISTICAL FUNCTIONS

By default, data analysis in MATLAB is performed on column-oriented matrices.
Different variables are stored in individual columns, and each row represents a dif-
ferent observation of each variable. Many data-analysis functions work along any
dimension, provided that the dimension is specified as an input argument. The data
analysis and statistical functions in MATLAB are listed in the following table:

Function Description

corrcoef(A) Correlation coefficients

conv(A,B) Convolution and polynomial multiplication

conv2(A,B) Two-dimensional convolution

convn(A,B) N-dimensional convolution

cov(A) Covariance matrix

cplxpair(v) Sorts vector into complex conjugate pairs

cumprod(A) Cumulative product of elements

cumsum(A) Cumulative sum of elements

cumtrapz(A) Cumulative trapezoidal integration

344 Chapter 17 Data Analysis

Function Description

deconv(B,A) Deconvolution and polynomial division

del2(A) Discrete Laplacian (surface curvature)

detrend(A) Linear trend removal

diff(A) Differences between elements

filter(B,A,X) One-dimensional digital filter

filter2(B,X) Two-dimensional digital filter

gradient(Z,dx,dy) Approximate surface gradient

hist(X,M) Bins the elements of X into M equally spaced containers

histc(X,edges) Histogram count and bin locations using bins marked by edges

issorted(A) True if A is sorted

max(A) Maximum values

mean(A) Mean values

median(A) Median values

min(A) Minimum values

mode(A) Mode or most frequent sample

prod(A) Product of elements

sort(A) Sorts in ascending or descending order

sortrows(A) Sorts rows in ascending order, that is, dictionary sort

std(A) Standard deviation

subspace(A,B) Finds the angle between two subspaces specified by columns of
A and B

sum(A) Sum of elements

trapz(A) Trapezoidal integration

var(A) Variance, that is, square of standard deviation

17.4 TIME SERIES ANALYSIS

An important subset of data analysis is concerned with time series data. Data
sampled over time at regular intervals are analyzed to identify potential patterns
or internal structure. These patterns can be used to model processes and possibly
 forecast future values. Time series data inherently include some random variation

Section 17.4 Time Series Analysis 345

that may be reduced or eliminated by smoothing techniques to help reveal the
underlying structure. MATLAB contains structures and tools (objects and methods)
specifically designed for analysis of time series data.

MATLAB timeseries objects are structures optimized for storage and
analysis of time series observations. They contain values for one or more variables
associated with each specific sample time along with a number of properties assoc-
iated with the timeseries object itself. Events may be created and associated with
specific time values. Events are used to define intervals that may be analyzed or
manipulated independently within a timeseries object. Time series functions are
summarized in the following table.

Time Series Function Description

addevent Adds events

addsample Adds sample(s) to a time series object

ctranspose Transpose of time series data

delevent Removes events

delsample Deletes sample(s) from a time series object

detrend Removes mean or best-fit line and all NaNs from time series data

fieldnames Cell array of time series property names

filter Shapes time series data

get Query time series property values

getabstime Extracts a date string time vector into a cell array

getdatasamplesize Size of time series data

getinterpmethod Interpolation method name for a time series object

getqualitydesc Quality description of the time series data

getsampleusingtime Extracts data in the specified time range to a new object

gettsafteratevent Extracts samples occurring at or after a specified event

gettsafterevent Extracts samples occurring after a specified event

gettsatevent Extracts samples occurring at a specified event

gettsbeforeatevent Extracts samples occurring at or before a specified event

gettsbeforeevent Extracts samples occurring before a specified event

gettsbetweenevents Extracts samples occurring between two specified events

idealfilter Applies an ideal (noncausal) filter to time series data

iqr Interquartile range of the time series data

346 Chapter 17 Data Analysis

Time Series Function Description

isempty True for empty time series object

ldivide (.\) Left array divide time series

length Length of the time vector

max Max of the time series data

mean Mean of the time series data

median Median of the time series data

min Min of the time series data

minus (-) Subtracts time series data

mldivide (\) Left matrix division of time series

mrdivide (/) Right matrix division of time series

mtimes (*) Matrix multiplication of time series

plot Plots time series data

plus (+) Adds time series data

rdivide (./) Right array divide time series

resample Resamples time series data

set Sets time series property values

setabstime Sets time using date strings

setinterpmethod Sets default interpolation method in a time series

size Size of the time series object

std Standard deviation of the time series data

sum Sum of the time series data

synchronize Synchronizes two time series objects onto a common time vector

times (.*) Multiplies time series data

timeseries Creates a time series object

tsdata.event Constructs an event object for a time series

tsprops Time series object properties

var Variance of the time series data

vertcat Vertical concatenation of time series objects

Section 17.4 Time Series Analysis 347

Related time series objects with a common time vector may be combined
into tscollection objects (time series collections) that may be analyzed or
 manipulated as a collection. Time series collection functions are summarized in the
following table.

Time Series Collection Function Description

addsampletocollection Adds sample(s) to a collection

addts Adds data vector or time series object to a collection

delsamplefromcollection Removes sample(s) from a collection

fieldnames Cell array of time series collection property names

get Query time series collection property values

getabstime Extracts a date string time vector into a cell array

getsampleusingtime Extracts samples from a collection between specified
time values

gettimeseriesnames Cell array of names of time series in tscollection

horzcat Horizontal concatenation of tscollection objects

isempty True for empty tscollection objects

length Length of the time vector

removets Removes time series object(s) from a collection

resample Resamples time series members of a collection

set Sets time series collection property values

setabstime Sets time of a collection using date strings

settimeseriesnames Changes the name of a time series member of a
collection

size Size of a tscollection object

tscollection Creates a time series collection object

vertcat Vertical concatenation of tscollection objects

Time series objects and methods may be accessed using the Time Series Tools
window invoked from the Start menu as Start/MATLAB/Time Series Tools or
using the tstool command in the Command window.

348

Interpolation is a way of estimating values of a function between those given by
some set of data points. In particular, interpolation serves as a valuable tool when
you cannot quickly evaluate the function at the desired intermediate points—for
example, when the data points are the result of some experimental measurements
or lengthy computational procedure. MATLAB provides tools for interpolating in
any number of dimensions by using multidimensional arrays. To illustrate interpo-
lation, only 1- and 2-D interpolations are considered in depth here. However, the
functions used for higher dimensions are briefly discussed.

18.1 ONE-DIMENSIONAL INTERPOLATION

Perhaps the simplest example of interpolation is MATLAB plots. By default,
MATLAB draws straight lines connecting the data points used to make a plot. This
linear interpolation guesses that intermediate values fall on a straight line between
the entered points. Certainly, as the number of data points increases and the dis-
tance between them decreases, linear interpolation becomes more accurate:

>> x1 = linspace(0,2*pi,60);

>> x2 = linspace(0,2*pi,6);

>> plot(x1,sin(x1),x2,sin(x2),'--')

>> xlabel('x'),ylabel('sin(x)')

>> title('Figure 18.1: Linear Interpolation')

Data Interpolation

18

Section 18.1 One-Dimensional Interpolation 349

Of the two plots of the sine function shown, the one using 60 points is much
more accurate between the data points than the one using only 6 points.

To understand 1-D interpolation, consider the following illustration: The
threshold of audibility (i.e., the lowest perceptible sound level) of the human ear
varies with frequency. Typical data are as follows:

>> Hz = [20:10:100 200:100:1000 1500 2000:1000:10000]; % frequencies in Hertz

>> spl = [76 66 59 54 49 46 43 40 38 22 ... % sound pressure level in dB

14 9 6 3.5 2.5 1.4 0.7 0 -1 -3 ...

-8 -7 -2 2 7 9 11 12];

The sound pressure levels are normalized, so that 0 dB appears at 1000 Hz. Since
the frequencies span such a large range, plot the data using a logarithmic x-axis:

>> semilogx(Hz,spl,'-o')

>> xlabel('Frequency, Hz')

>> ylabel('Relative Sound Pressure Level, dB')

>> title('Figure 18.2: Threshold of Human Hearing')

>> grid on

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

si
n(

x)

Figure 18.1: Linear Interpolation

350 Chapter 18 Data Interpolation

According to this plot, the human ear is most sensitive to tones around 3 kHz.
Given these data, let’s use the function interp1 to estimate the sound pressure
level in several different ways at a frequency of 2.5 kHz:

>> s = interp1(Hz,spl,2.5e3) % linear interpolation

s =

-5.5

>> s = interp1(Hz,spl,2.5e3,'linear') % linear interpolation again

s =

-5.5

>> s = interp1(Hz,spl,2.5e3,'cubic') % cubic interpolation

s =

-6.0488

>> s = interp1(Hz,spl,2.5e3,'spline') % cubic spline interpolation

s =

-5.869

>> s = interp1(Hz,spl,2.5e3,'nearest') % nearest neighbor interpolation

s =

-8

10
1

10
2

10
3

10
4

−10

0

10

20

30

40

50

60

70

80

Frequency, Hz

R
el

at
iv

e
S

ou
nd

 P
re

ss
ur

e
Le

ve
l,

dB

Figure 18.2: Threshold of Human Hearing

Section 18.1 One-Dimensional Interpolation 351

Note the differences in these results. The first two results return exactly what is
shown in the figure at 2.5 kHz, since MATLAB linearly interpolates between
data points on plots. Cubic and spline interpolation fit cubic, that is, third-order,
 polynomials to each data interval by using different constraints. Cubic interpola-
tion maintains data monotonicity, whereas spline interpolation exhibits the greatest
smoothness. The crudest interpolation in this case is the nearest-neighbor method,
which returns the input data point nearest the given value.

So how do you choose an interpolation method for a given problem? In many
cases, linear interpolation is sufficient. In fact, that’s why it is the default method.
While the nearest-neighbor method produced poor results here, it is often used
when speed is important or when the data set is large. The most time-consuming
method is 'spline', but it frequently produces the most desirable results.

While the preceding case considered only a single interpolation point, interp1
can handle any arbitrary number of points. In fact, one of the most common uses
of cubic or spline interpolation is to smooth data. That is, given a set of data, use
interpolation to evaluate the data at a finer interval:

>> Hzi = linspace(2e3,5e3); % look closely near minimum

>> spli = interp1(Hz,spl,Hzi,'spline'); % interpolate near minimum

>> i = find(Hz>=2e3 & Hz<=5e3); % find original data indices near minimum

>> semilogx(Hz(i),spl(i),'--o',Hzi,spli) % plot old and new data

>> xlabel('Frequency, Hz')

>> ylabel('Relative Sound Pressure Level, dB')

>> title('Figure 18.3: Threshold of Human Hearing')

>> grid on

In the plot, the dashed line is the linear interpolation, the solid line is the cubic
interpolation, and the original data are marked with 'o'. By asking for a finer reso-
lution on the frequency axis, and by using spline interpolation, we have a smoother
estimate of the sound pressure level. In particular, note how the slope of the spline
solution does not change abruptly at the data points.

With these data, we can make a better estimate of the frequency of greatest
sensitivity, using, for example, the following code:

>> [spl_min,i] = min(spli) % minimum and index of minimum

spl_min =

-8.4245

i =

45

>> Hz_min = Hzi(i) % frequency at minimum

352 Chapter 18 Data Interpolation

Hz_min =

3333.3

According to this analysis, the human ear is most sensitive to tones near 3.33 kHz.
It is important to recognize the major restriction enforced by interp1,

namely, that the independent variable must be monotonic. That is, the first variable
must always increase or decrease. In our example, Hz is monotonic.

Finally, it is possible to interpolate more than one data set at a time, because
the function interp1 supports multidimensional input (e.g., if y is a column-
oriented data array). That is, if x is a vector, either y can be a vector, as shown
 previously, or can be an array having length(x) rows and any number of columns.
For example, in the code

>> x = linspace(0,2*pi,11)'; % example data

>> y = [sin(x) cos(x) tan(x)];

>> size(y) % three columns

ans =

11 3

>> xi = linspace(0,2*pi); % interpolate on a finer scale

>> yi = interp1(x,y,xi,'cubic');

10
3.4

10
3.5

10
3.6

−9

−8

−7

−6

−5

−4

−3

−2

Frequency, Hz

R
el

at
iv

e
S

ou
nd

 P
re

ss
ur

e
Le

ve
l,

dB

Figure 18.3: Threshold of Human Hearing

Section 18.2 Two-Dimensional Interpolation 353

>> size(yi) % result is all three columns interpolated

ans =

100 3

sin(x), cos(x), and tan(x) are all interpolated at the points in xi.

18.2 TWO-DIMENSIONAL INTERPOLATION

Two-dimensional interpolation is based on the same underlying ideas as 1-D inter-
polation. However, as the name implies, 2-D interpolation interpolates functions
of two variables: z = f(x,y). To illustrate this added dimension, consider the follow-
ing example. An exploration company is using sonar to map the ocean floor. At
points every 0.5 km on a rectangular grid, the ocean depth in meters is recorded for
later analysis. A portion of the data collected is entered into MATLAB in the script
M-file ocean.m, as shown in the following:

% ocean.m, example test data

% ocean depth data

x = 0:.5:4; % x-axis (varies across the rows of z)

y = 0:.5:6; % y-axis (varies down the columns of z)

z = [100 99 100 99 100 99 99 99 100

100 99 99 99 100 99 100 99 99

 99 99 98 98 100 99 100 100 100

100 98 97 97 99 100 100 100 99

101 100 98 98 100 102 103 100 100

102 103 101 100 102 106 104 101 100

 99 102 100 100 103 108 106 101 99

 97 99 100 100 102 105 103 101 100

100 102 103 101 102 103 102 100 99

100 102 103 102 101 101 100 99 99

100 100 101 101 100 100 100 99 99

100 100 100 100 100 99 99 99 99

100 100 100 99 99 100 99 100 99];

354 Chapter 18 Data Interpolation

A plot of this data can be displayed by entering

>> mesh(x,y,z)

>> xlabel('X-axis, km')

>> ylabel('Y-axis, km')

>> zlabel('Ocean Depth, m')

>> title('Figure 18.4: Ocean Depth Measurements')

With these data, the depth at arbitrary points within the rectangle can be
found by using the function interp2, as in the following code:

>> zi = interp2(x,y,z,2.2,3.3)

zi =

103.92

>> zi = interp2(x,y,z,2.2,3.3,'linear')

zi =

103.92

>> zi = interp2(x,y,z,2.2,3.3,'cubic')

zi =

104.19

0
1

2
3

4

0

2

4

6
96

98

100

102

104

106

108

X-axis, km

Figure 18.4: Ocean Depth Measurements

Y-axis, km

O
ce

an
 D

ep
th

, m

Section 18.2 Two-Dimensional Interpolation 355

>> zi = interp2(x,y,z,2.2,3.3,'spline')

zi =

104.3

>> zi = interp2(x,y,z,2.2,3.3,'nearest')

zi =

102

As was the case with 1-D interpolation, several interpolation methods are available,
with the default method being linear.

Once again, we can interpolate on a finer scale, or mesh, to smooth the plot:

>> xi = linspace(0,4,30); % finer x-axis

>> yi = linspace(0,6,40); % finer y-axis

For each value in xi, we wish to interpolate at all values in yi. That is, we wish to
create a grid of all combinations of the values of xi and yi, and then interpolate at
all of these points. The function meshgrid accepts two vectors and produces two
arrays, each containing duplicates of its inputs, so that all combinations of the inputs
are considered:

>> xtest = 1:5

xtest =

1 2 3 4 5

>> ytest = 6:9

ytest =

6 7 8 9

>> [xx,yy] = meshgrid(xtest,ytest)

xx =

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

yy =

6 6 6 6 6

7 7 7 7 7

8 8 8 8 8

9 9 9 9 9

356 Chapter 18 Data Interpolation

As shown in this code, xx has length(ytest) rows, each containing xtest, and yy
has length(xtest) columns, each containing ytest. With this structure, xx(i,j)
and yy(i,j) for all i and j cover all combinations of the original vectors, xtest
and ytest.

Applying meshgrid to our ocean depth example produces

>> [xxi,yyi] = meshgrid(xi,yi); % grid of all combinations of xi and yi

>> size(xxi) % xxi has 40 rows each containing xi

ans =

40 30

>> size(yyi) % yyi has 30 columns each containing yi

ans =

40 30

Given xxi and yyi, the ocean depth can now be interpolated on the finer scale by
entering

>> zzi = interp2(x,y,z,xxi,yyi,'cubic'); % interpolate

>> size(zzi) % zzi is the same size as xxi and yyi

ans =

40 30

>> mesh(xxi,yyi,zzi) % plot smoothed data

>> hold on

>> [xx,yy] = meshgrid(x,y); % grid original data

>> plot3(xx,yy,z+0.1,'ok') % plot original data up a bit to show nodes

>> hold off

>> xlabel('X-axis, km')

>> ylabel('Y-axis, km')

>> zlabel('Ocean Depth, m')

>> title('Figure 18.5: 2-D Smoothing')

Using these data, we can now estimate the peak and its location:

>> zmax = max(max(zzi))

zmax =

108.05

>> [i,j] = find(zmax==zzi);

Section 18.3 Triangulation and Scattered Data 357

>> xmax = xi(i)

xmax =

2.6207

>> ymax = yi(j)

ymax =

2.9231

The concepts discussed in the first two sections extend naturally to higher
dimensions, where ndgrid, interp3, and interpn apply. The function ndgrid is
the multidimensional equivalent of meshgrid. Multidimensional interpolation uses
 multidimensional arrays in a straightforward way to organize the data and perform the
interpolation. The function interp3 performs interpolation in 3-D space, and interpn
performs interpolation in higher-order dimensions. Both interp3 and interpn offer
method choices of 'linear', 'cubic', 'spline', and 'nearest'. (For more informa-
tion regarding these functions, see the MATLAB documentation and the online help.)

18.3 TRIANGULATION AND SCATTERED DATA

In a number of applications, such as those involving geometric analysis, data points
are often scattered, rather than appearing on a rectangular grid, like the ocean data
in the example discussed in the last section. For example, consider the following 2-D
random data:

0
1

2
3

4

0

2

4

6
96

98

100

102

104

106

108

110

X-axis, km

Figure 18.5: 2−D Smoothing

Y-axis, km

O
ce

an
 D

ep
th

, m

358 Chapter 18 Data Interpolation

>> x = randn(12,1); % use column vector format

>> y = randn(12,1);

>> plot(x,y,'o')

>> title('Figure 18.6: Random Data')

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1
Figure 18.6: Random Data

Given these scattered data, it is common to apply Delaunay triangulation,
which returns a set of triangles connecting the data points such that no data points
are contained within any triangle. The MATLAB class constructor DelaunayTri
accepts data points and returns a structure which includes a list of indices that iden-
tify the triangle vertices. For the random data, DelaunayTri returns

>> tri = DelaunayTri(x,y)

tri =

DelaunayTri

Properties:

Constraints: []

X: [12x2 double]

Triangulation: [17x3 double]

Methods, Superclasses

Section 18.3 Triangulation and Scattered Data 359

where tri.X contains the data points [x y]

>> tri.X

ans =

0 -0.5465

-0.3179 -0.8468

1.0950 -0.2463

-1.8740 0.6630

0.4282 -0.8542

0.8956 -1.2013

0.7310 -0.1199

0.5779 -0.0653

0.0403 0.4853

0.6771 -0.5955

0.5689 -0.1497

-0.2556 -0.4348

and tri.Triangulation contains the array of indices identifying the triangles:

>> tri.Triangulation

ans =

1 8 12

1 2 5

8 1 11

10 1 5

2 12 4

2 1 12

4 12 9

10 11 1

8 9 12

7 8 11

7 9 8

10 7 11

3 9 7

6 10 5

360 Chapter 18 Data Interpolation

6 3 10

2 6 5

10 3 7

Each row contains indices into tri.X that identify triangle vertices. For example, the
first triangle is described by the data points in tri.X([1 8 12],:). The triangles
can be plotted by using the function triplot:

>> hold on, triplot(tri), hold off

>> title('Figure 18.7: Delaunay Triangulation')

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1
Figure 18.7: Delaunay Triangulation

Once the Delaunay triangulation is known, the methods pointLocation and
 nearestNeighbor can be used to interpolate it. For example, the triangle enclosing
the origin is

>> tri.pointLocation(0,0) % find row of tri.Triangulation closest to (0,0)

ans =

9

>> tri.Triangulation(ans,:) % vertices of triangle closest to (0,0)

ans =

8 9 12

Section 18.3 Triangulation and Scattered Data 361

Naturally, the pointLocation method accepts multiple values. For example,

>> testpoints = [0,0; -0.5,0.1; 1,0.5];

>> tri.pointLocation(testpoints)

ans =

9

7

NaN

Here, triangle 9 encloses the point (0, 0), triangle 7 encloses the point (−0.5, 0.1),
and no triangle encloses the point (1, 0.5).

Rather than returning the triangle enclosing one or more data points, the
method nearestNeighbor returns the indices into tri.X that are closest to the
desired points:

>> tri.nearestNeighbor(testpoints)

ans =

9

12

7

Here, the point (tri.X(9,:)) is closest to the point (0, 0), the point
(tri.X(12,:)) is closest to the point (−0.5, 0.1), and the point (tri.X(7,:))
is closest to (1, 0.5).

In addition to interpolating the data, it is often useful to know which points
form the outer boundary or convex hull for the set. The function convhull
returns indices into x and y that describe the convex hull, as in the following
example:

>> [k,a] = convhull(x,y); % use the original data points

>> k'

k =

2 6 3 9 4 2

>> a % optional 2nd argument gives area enclosed

a =

2.7551

>> [k,a] = convexHull(tri); % use the DelaunayTri/convexHull method

>> k'

362 Chapter 18 Data Interpolation

k =

2 6 3 9 4 2

>> a

a =

2.7551

Note that convhull and convexHull return the indices of a closed curve, since
the first and last index values are the same. In addition, the optional second output
argument returns the area enclosed by the convex hull. Based on the data returned
by convhull, the boundary can be drawn with the following code:

>> plot(x,y,'o',x(k),y(k))

>> title('Figure 18.8: Convex Hull')

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1
Figure 18.8: Convex Hull

It is also possible to define and draw the lines that separate regions in the plane
that are closest to a particular data point. These lines form what is called a Voronoi
polygon. In MATLAB, these lines are drawn by the function voronoi:

>> voronoi(tri)

>> title('Figure 18.9: Voronoi Diagram')

Section 18.3 Triangulation and Scattered Data 363

Finally, it is possible to interpolate a Delaunay triangulation to produce
 interpolated points on a rectangular grid by using the function griddata. In
 particular, this step is required to use functions such as surf and other standard
plotting routines. These plotting routines require data that contain information at
a complete sequence of points along two coordinate axes, rather than the scattered
data that triplot uses. Think about a map analogy. Delaunay triangulation allows
you to identify specific scattered points on a map. The function griddata uses this
information to construct an approximation to the rest of the map, filling in data in a
user-specified rectangular region in two coordinate directions:

>> z = rand(12,1); % now use some random z axis data

>> xi = linspace(min(x),max(x),30); % x interpolation points

>> yi = linspace(min(y),max(y),30); % y interpolation points

>> [Xi,Yi] = meshgrid(xi,yi); % create grid of x and y

>> Zi = griddata(x,y,z,Xi,Yi); % grid the data at Xi,Yi points

>> mesh(Xi,Yi,Zi)

>> hold on

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1
Figure 18.9: Voronoi Diagram

364 Chapter 18 Data Interpolation

>> plot3(x,y,z,'ko') % show original data as well

>> hold off

>> title('Figure 18.10: Griddata Example')

−2
−1

0
1

2

−2

−1

0

1
0

0.2

0.4

0.6

0.8

1

Figure 18.10: Griddata Example

In this example, the information at the 12 scattered data points was interpolated
to produce an array of data on a 30-by-30 grid in the x–y plane. The variable Zi
contains a 30-by-30 array of points linearly interpolated from the triangulation of
the data in x, y, and z. Just as interp1 and interp2 support other interpolations,
griddata also supports others:

>> Zi = griddata(x,y,z,Xi,Yi,'linear') % same as above (default)

>> Zi = griddata(x,y,z,Xi,Yi,'cubic') % triangle based cubic interpolation

>> Zi = griddata(x,y,z,Xi,Yi,'nearest') % triangle based nearest neighbor

The functions discussed in this section also support higher dimensions. The
DelaunayTri(X) form of the constructor supports a single multidimensional
array as input. The functions trimesh and trisurf are the multidimensional
analogs of triplot, and voronoin is the multidimensional version of voronoi.
(For more information regarding these functions and the TriRep class for trian-
gular representation in 2-D and 3-D space, see the MATLAB documentation
and the online help.)

Section 18.4 Summary 365

18.4 SUMMARY

In MATLAB, the triangulation functions discussed in this chapter have n-dimen-
sional forms as well. Many of the data interpolation functions have other features
and options that cannot be covered here. The data interpolation functions and
classes in MATLAB are summarized in the following table:

Function Description

convhull Convex hull in 2-D or 3-D space

convhulln n-D convex hull

delaunay 2-D and 3-D Delaunay triangulation

delaunay3 3-D Delaunay tetrahedra creation (depreciated in favor of
DelaunayTri)

delaunayn n-D Delaunay tesselation

dsearch Nearest point search in Delaunay triangulation (depreciated in
favor of DelaunayTri/nearestNeighbor)

griddata 2-D rectangular gridding

griddata3 3-D rectangular gridding (depreciated in favor of
TriScatteredInterp)

griddatan n-D rectangular gridding

interp1 1-D interpolation

interp1q 1-D quick interpolation (no error checking)

interp2 2-D interpolation

interp3 3-D interpolation

interpft 1-D interpolation using FFT method

interpn n-D interpolation

meshgrid Generates X and Y matrices for 3-D functions

ndgrid Generates arrays for multidimensional functions

tetramesh Tetrahedron mesh plot

trimesh Triangular mesh plot

triplot 2-D triangular plot

trisurf Triangular surface plot

tsearch Closest triangle search (depreciated in favor of DelaunayTri/
pointLocation)

366 Chapter 18 Data Interpolation

Function Description

tsearchn n-D closest simplex search

voronoi Voronoi diagram

voronoin n-D Voronoi diagram

DelaunayTri Delaunay triangulation representation class constructor (and
methods)

TriRep Triangulation representation class constructor (and methods)

TriScatteredInterp Scattered data interpolant

367

MATLAB provides a number of functions for manipulating polynomials.
Polynomials are easily differentiated and integrated, and it is straightforward to find
polynomial roots. However, higher-order polynomials pose numerical difficulties in
a number of situations and therefore should be used with caution.

19.1 ROOTS

Finding the roots of a polynomial—that is, the values for which the polynomial is
zero—is a problem common to many disciplines. MATLAB solves this problem and
provides other polynomial manipulation tools as well. In MATLAB, a polynomial
is represented by a row vector of its coefficients in descending order. For example,
the polynomial 2x4 − 6x3 + 2x2 + 0x + 86 is entered as

>> p = [2 -6 2 0 86]

p =

2 -6 2 0 86

Note that terms with zero coefficients must be included. MATLAB has no way of
knowing which terms are zero unless you specifically identify them. Given this form,
the roots of a polynomial are found by using the function roots:

>> r = roots(p)

r =

 2.7147 + 1.5601i

 2.7147 - 1.5601i

Polynomials

19

368 Chapter 19 Polynomials

-1.2147 + 1.7062i

-1.2147 - 1.7062i

Since in MATLAB both a polynomial and its roots are vectors, MATLAB adopts
the convention that polynomials are row vectors and roots are column vectors.

Given the roots of a polynomial, it is also possible to construct the associated
polynomial. In MATLAB, the command poly performs this task:

>> pp = poly(r)

pp =

1.0000 -3.0000 1.0000 -0.0000 43.0000

>> pp(abs(pp)<.1) = 0 % change small element appearing to be -0 to zero!

pp =

1.0000 -3.0000 1.0000 0 43.0000

Because of truncation errors, it is not uncommon for the results of poly to have
near-zero components or to have components with small imaginary parts. As
already shown, near-zero components can be corrected by array manipulation.
Similarly, eliminating spurious imaginary parts is simply a matter of using the func-
tion real to extract the real part of the result.

19.2 MULTIPLICATION

Polynomial multiplication is supported by the function conv (which performs the
convolution of two arrays). Consider the product of the two polynomials a(x) = 2x3 +
x2 – 3x + 1 and b(x) = x3 – 4x2 + 3x + 23:

>> a = [2 1 -3 1]; b = [1 -4 3 23];

>> c = conv(a,b)

c =

1 -7 -1 62 10 -66 23

This result is c(x) = 2x6 – 7x5 – x4 + 62x3 + 10x2 – 66x + 23. Multiplication of more
than two polynomials requires repeated use of conv.

19.3 ADDITION

MATLAB does not provide a direct function for adding polynomials. Standard
array addition works if both polynomial vectors are of the same order, as in the code

>> d = a + b

Section 19.3 Addition 369

d =

3 -3 0 24

which represents d(x) = 3x3 – 3x2 + 0x + 24. When two polynomials are of different
orders, the polynomial of lower order must be padded with leading zeros so that it
has the same effective order as the higher-order polynomial. Consider the addition
of the preceding polynomials c and d:

>> e = c + [0 0 0 d]

e =

2 –7 –1 65 7 –66 47

The resulting polynomial is e(x) = 2x6 – 7x5 – 1x4 + 65x3 + 7x2 + 66x + 47. Leading zeros,
rather than trailing zeros, are required, because coefficients associated with like powers
of x must line up. The following M-file functions automate polynomial simplification:

function y = mmpsim(x,tol)

%MMPSIM Polynomial Simplification

% Strip leading zero terms and small coefficients.

if nargin<1 | ~isnumeric(x)

error('First Input Must be Numeric')

end

x = x(:).'; % make sure input is a row

if nargin<2

tol = max(abs(x))*100*eps; % default tolerance

else

tol = max(tol(1),eps); % check user tolerance

end

i = find(abs(x)<.99 & abs(x)<tol); % find insignificant indices

x(i) = 0; % set them to zero

i = find(x~=0); % find significant indices

if isempty(i)

y = 0; % the extreme case: nothing left!

else

y = x(i(1):end); % start with first significant term

end

370 Chapter 19 Polynomials

and addition:

function p = mmpadd(a,b)

%MMPADD Polynomial Addition.

% MMPADD(A,B) adds the polynomials A and B.

if nargin<2

error('Not Enough Input Arguments.')

end

a = reshape(a,1,[]); % make sure inputs are polynomial row vectors

b = b(:).'; % this makes a row as well

na = length(a); % find lengths of a and b

nb = length(b);

p = [zeros(1,nb-na) a]+[zeros(1,na-nb) b]; % pad with zeros as necessary

To illustrate the use of mmpadd, consider again the preceding example

>> f = mmpadd(c,d)

f =

2 -7 -1 65 7 -66 47

which is the same as our earlier e. Of course, mmpadd can also be used for subtrac-
tion, as in

>> g = mmpadd(c,-d)

g =

2 -7 -1 59 13 -66 -1

The resulting polynomial is g(x) = 2x6 – 7x5 – x4 + 59x3 + 13x2 + 66x – 1.

19.4 DIVISION

In some special cases, it is necessary to divide one polynomial into another. In
MATLAB, this is accomplished with the function deconv:

Section 19.5 Derivatives and Integrals 371

>> [q,r] = deconv(c,b)

q =

2 1 –3 1

r =

0 0 0 0 0 0 0

This result says that b divided into c gives the quotient polynomial q and the remain-
der r, which is zero in this case, since the product of b and q is exactly c. Another
example gives a remainder:

>> [q,r] = deconv(e,b)

q =

2 1 –3 4

r =

0 0 0 0 9 -9 -45

Here, b divided into e gives the quotient polynomial q and the remainder r. The
leading zeros in r simply make r the same length as f. In this case, the quotient is
q(x) = 2x3 + 1x2 – 3x + 4 and the remainder term is r(x) = 9x2 − 9x − 45.

19.5 DERIVATIVES AND INTEGRALS

Because differentiation of a polynomial is simple to express, MATLAB offers the
function polyder for polynomial differentiation:

>> a % recall polynomial

a =

2 1 -3 1

>> h = polyder(a)

h =

6 2 –3

Similarly, the integral of a polynomial is easy to express. Given an integration
 constant, the function polyint returns the integral:

>> polyint(h,1) % get g back from h = polyder(a)

ans =

2 1 –3 1

372 Chapter 19 Polynomials

19.6 EVALUATION

Given that you can add, subtract, multiply, divide, and differentiate polynomials
on the basis of row vectors of their coefficients, you should be able to evaluate
them also. In MATLAB, this is accomplished with the function polyval, as in the
 following example:

>> p = [1 4 -7 -10]; % the polynomial

>> x = linspace(-1,3); % evaluation points

>> v = polyval(p,x); % evaluate p at points in x

>> plot(x,v) % plot results

>> title('Figure 19.1: x{^3} + 4x{^2} - 7x -10')

>> xlabel('x')

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−15

−10

−5

0

5

10

15

20

25

30

35
Figure 19.1: x3 + 4x2 − 7x −10

x

19.7 RATIONAL POLYNOMIALS

Sometimes one encounters ratios of polynomials—for example, transfer functions and
Pade approximations to functions. In MATLAB, these are manipulated by considering
the numerator and denominator polynomials separately, as in the following example:

>> n = [30 2 110] % a numerator

n =

Section 19.7 Rational Polynomials 373

30 2 110

>> d = [2 1 20 3] % a denominator

d =

2 1 20 3

>> z = roots(n) % the zeros of n(x)/d(x)

z =

-0.0333 + 1.9146i

-0.0333 - 1.9146i

>> p = roots(d) % the poles of n(x)/d(x)

p =

-0.1746 + 3.1491i

-0.1746 - 3.1491i

-0.1508

The derivative of this rational polynomial with respect to x is found by using polyder:

>> [nd,dd] = polyder(n,d)

nd =

-60 -8 -62 -40 -2194

dd =

 4 4 81 52 406 120 9

Here, nd and dd are the respective numerator and denominator polynomials of the
derivative.

Another common operation is to find the partial-fraction expansion of a
 rational polynomial. Consider the following data:

>> [r,p,k] = residue(n,d)

r =

4.7175 + 0.6372i

4.7175 - 0.6372i

5.5650

374 Chapter 19 Polynomials

p =

-0.1746 + 3.1491i

-0.1746 - 3.1491i

0.1508

k =

[]

In this case, the residue function returns the residues or partial-fraction expan-
sion coefficients r, their associated poles p, and the direct term polynomial k. Since
the order of the numerator is less than that of the denominator, there are no direct
terms. For this example, the partial-fraction expansion of the rational polynomial is

n(x)

d(x)
 =

4.7175 + 0.6372i
x + 0.1746 - 3.1491i

 +
4.7175-0.6372i

x + 0.1746 + 3.1491i
 +

5.5650
x + 0.1508

Given this information, the original rational polynomial is found by using residue
yet again:

>> [nn,dd] = residue(r,p,k) % Both polynomials are divided by 2

nn =

15.000 1.0000 55.0000

dd =

1.0000 0.5000 10.0000 1.5000

So, in this case, the function residue performs two operations that are inverses of
one another depending on how many input and output arguments are used.

19.8 CURVE FITTING

In numerous application areas, you are faced with the task of fitting a curve to mea-
sured data. Sometimes the chosen curve passes through the data points, but at other
times the curve comes close to, but does not necessarily pass through, the data points.
In the most common situation, the curve is chosen so that the sum of the squared
errors at the data points is minimized. This choice results in a least-squares curve fit.
While least-squares curve fitting can be done by using any set of basis functions, it is
straightforward and common to use a truncated power series—that is, a polynomial.

In MATLAB, the function polyfit solves the least-squares polynomial
 curve-fitting problem. To illustrate the use of this function, let’s start with the
 following data:

>> x = [0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1];

>> y = [-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];

Section 19.8 Curve Fitting 375

To use polyfit, we must supply the data and the order, or degree, of the polyno-
mial we wish to best fit to the data. If we choose n = 1 as the order, the best straight-
line approximation will be found. This is often called linear regression. On the other
hand, if we choose n = 2 as the order, a quadratic polynomial will be found. For
now, let’s choose a quadratic polynomial:

>> n = 2;

>> p = polyfit(x,y,n)

p =

-9.8108 20.129 -0.031671

The output of polyfit is a row vector of the polynomial coefficients. Here the
 solution is y(x) = −9.8108x2 + 20.129x − 0.031671. To compare the curve-fit solution
to the data points, let’s plot both:

>> xi = linspace(0,1,100);

>> yi = polyval(p,xi);

>> plot(x,y,'-o',xi,yi,'--')

>> xlabel('x'), ylabel('y = f(x)')

>> title('Figure 19.2: Second Order Curve Fitting')

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

12

x

y
=

 f(
x)

Figure 19.2: Second Order Curve Fitting

376 Chapter 19 Polynomials

This plot contains the original data x and y, marking the data points with 'o'
and connecting them with straight lines. In addition, the evaluated polynomial data
xi and yi are plotted with a dashed line ('--').

The choice of polynomial order is somewhat arbitrary. It takes two points
to define a straight line or first-order polynomial. (If this isn’t clear to you, mark
two points and draw a straight line between them.) It takes three points to define
a quadratic, or second-order, polynomial. Following this progression, it takes n +
1 data points to uniquely specify an nth-order polynomial. Thus, in the preceding
case, where there are 11 data points, we could choose up to a 10th-order polyno-
mial. However, given the poor numerical properties of higher-order polynomi-
als, you should not choose a polynomial order that is any higher than necessary.
In addition, as the polynomial order increases, the approximation becomes less
smooth, since higher-order polynomials can be differentiated more times before
they become zero. For example, consider choosing a 10th-order polynomial:

>> pp = polyfit(x,y,10);

>> pp.' % display polynomial coefficients as a column

ans =

-4.6436e+05

2.2965e+06

-4.8773e+06

5.8233e+06

-4.2948e+06

2.0211e+06

-6.0322e+05

1.0896e+05

-10626

435.99

-0.447

Note the size of the polynomial coefficients in this case, compared with those of the
earlier quadratic fit. Note also the seven orders of magnitude difference between
the smallest (-0.447) and largest (-4.6436e+005) coefficients and the alternating
signs on the coefficients. To see how this polynomial differs from the quadratic fit
shown earlier, consider a plot of both:

>> y10 = polyval(pp,xi); % evaluate 10th order polynomial

>> plot(x,y,'o',xi,yi,'--',xi,y10) % plot data

Section 19.9 Polynomial Functions 377

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

12

14

16

x

y
=

 f(
x)

Figure 19.3: 2nd and 10th Order Curve Fitting

>> xlabel('x'), ylabel('y = f(x)')

>> title('Figure 19.3: 2nd and 10th Order Curve Fitting')

In this plot, the original data are marked with 'o', the quadratic curve fit with
a dashed line, and the 10th-order fit with a solid line. Note the wavelike ripples that
appear between the data points at the left and right extremes in the 10th-order fit.
This example clearly demonstrates the difficulties with higher-order polynomials.

19.9 POLYNOMIAL FUNCTIONS

The polynomial functions in MATLAB are summarized in the following table

Polynomial Function Description

conv Convolution and polynomial multiplication

dconv Deconvolution and polynomial division

poly Polynomial with specified roots

polyder Polynomial derivative

378 Chapter 19 Polynomials

Polynomial Function Description

polyeig Polynomial eigenvalue problem solver

polyfit Polynomial curve fitting

polyint Polynomial integration

polyval Polynomial evaluation

polyvalm Polynomial matrix evaluation

residue Partial-fraction expansion

roots Finds polynomial roots

379

It is well known that interpolation using high-order polynomials often produces ill-
behaved results. There are numerous approaches to eliminating this poor behav-
ior. Of these approaches, cubic splines are very popular. In MATLAB, basic cubic
splines interpolation is accomplished by the functions spline, ppval, mkpp, and
unmkpp. Of these, only spline appears in earlier MATLAB documentation.
However, help text is available for all of these functions. In the following sections,
the basic features of cubic splines, as implemented in these M-file functions, are
demonstrated. Also considered is an alternative to cubic splines called a piecewise
cubic Hermite interpolating polynomial. This piecewise polynomial is computed by
the function pchip and returns a piecewise polynomial, just as spline does.

20.1 BASIC FEATURES

In cubic splines, cubic polynomials are found to approximate the curve between
each pair of data points. In the language of splines, these data points are called
 breakpoints. Since a straight line is uniquely defined by two points, an infinite num-
ber of cubic polynomials can be used to approximate a curve between two points.
Therefore, in cubic splines, additional constraints are placed on the cubic polynomi-
als to make the result unique. By constraining the first and second derivatives of each
cubic polynomial to match at the breakpoints, all internal cubic polynomials are well
defined. Moreover, both the slope and curvature of the approximating polynomials
are continuous across the breakpoints. However, the first and last cubic polynomials
do not have adjoining cubic polynomials beyond the first and last breakpoints. As a
result, the remaining constraints must be determined by some other means. The most
common approach, which is used by the function spline, is to adopt a not-a-knot
condition if x and y are the same length. This condition forces the third derivative of

Cubic Splines

20

380 Chapter 20 Cubic Splines

the first and second cubic polynomials to be identical, and likewise for the last and
second-to-last cubic polynomials. However, if y contains two more values than x, the
first and last values in y are used as the slopes of the ends of the cubic spline.

Based on this description, you could guess that finding cubic spline polynomi-
als requires solving a large set of linear equations. In fact, given n breakpoints, there
are n − 1 cubic polynomials to be found, each having 4 unknown coefficients. Thus,
the set of equations to be solved involves 4(n − 1) unknowns. By writing each cubic
polynomial in a special form and by applying the constraints, the cubic polynomials
can be found by solving a reduced set of n equations in n unknowns. Thus, if there
are 50 breakpoints, there are 50 equations in 50 unknowns. Luckily, these equations
can be concisely written and solved using sparse matrices, which describe what the
function spline uses to compute the unknown coefficients.

20.2 PIECEWISE POLYNOMIALS

In its most simple use, spline takes data x and y and desired values xi, finds the
cubic spline interpolation polynomials that fit x and y, and then evaluates the
polynomials to find the corresponding yi values for each xi value. This approach
matches the use of yi = interp1(x,y,xi,'spline'):

>> x = 0:12;

>> y = tan(pi*x/25);

>> xi = linspace(0,12);

>> yi = spline(x,y,xi);

>> plot(x,y,'o',xi,yi)

>> title('Figure 20.1: Spline Fit')

This approach is appropriate if only one set of interpolated values is required.
However, if more values are needed from the same set of data, it doesn’t make
sense to recompute the same set of cubic spline coefficients a second time. In this
situation, one can call spline with only the first two arguments:

>> pp = spline(x,y)

pp =

 form: 'pp'

 breaks: [0 1 2 3 4 5 6 7 8 9 10 11 12]

 coefs: [12x4 double]

 pieces: 12

 order: 4

 dim: 1

Section 20.2 Piecewise Polynomials 381

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14

16
Figure 20.1: Spline Fit

When called in this way, spline returns a structure containing the pp-form,
or piecewise polynomial form, of the cubic splines. This structure contains all
of the information necessary to evaluate the cubic splines for any set of desired
 interpolation values. The pp-form structure is also compatible with the optional
Spline Toolbox available with MATLAB. Given the pp-form, the function ppval
evaluates the cubic splines. For example,

>> yi = ppval(pp,xi);

computes the same yi values computed earlier. Similarly,

>> xi2 = linspace(10,12);

>> yi2 = ppval(pp,xi2);

uses the pp-form again to evaluate the cubic splines over a finer spacing, restricted
to the region between 10 and 12. The code

>> xi3 = 10:15;

>> yi3 = ppval(pp,xi3)

yi3 =

 3.0777 5.2422 15.8945 44.0038 98.5389 188.4689

382 Chapter 20 Cubic Splines

>> yi4 = ppval(xi3,pp) % can be called with arguments reversed

yi4 =

 3.0777 5.2422 15.8945 44.0038 98.5389 188.4689

shows that cubic splines can be evaluated outside of the region over which the cubic
polynomials were computed. When data appears beyond the last or before the first
breakpoint, the last and first cubic polynomials are used, respectively, to find inter-
polated values. In addition, this shows that ppval can be called with its input argu-
ments reversed. This permits creating a function handle for ppval and passing it
as an argument to functions that evaluate a user-supplied function as part of their
work. For example, the function

>> quad(@ppval,0,10,[],[],pp)

ans =

 9.3775

computes the area under the spline given by pp over the range 0–10. (More
 information about the function quad can be found in Chapter 23.)

The cubic splines pp-form just given stores the breakpoints and polynomial
 coefficients, as well as other information regarding the cubic splines representation.
This form is a convenient data structure in MATLAB, since all information is stored
in a single structure. When a cubic spline representation is evaluated, the various
fields in the pp-form must be extracted. In MATLAB, this process is conveniently
performed by the function unmkpp. Using this function on the preceding pp-form gives

>> [breaks,coefs,npolys,ncoefs,dim] = unmkpp(pp)

breaks =

0 1 2 3 4 5 6 7 8 9 10 11 12

coefs =

 0.0007 -0.0001 0.1257 0

 0.0007 0.0020 0.1276 0.1263

 0.0010 0.0042 0.1339 0.2568

 0.0012 0.0072 0.1454 0.3959

 0.0024 0.0109 0.1635 0.5498

 0.0019 0.0181 0.1925 0.7265

 0.0116 0.0237 0.2344 0.9391

-0.0083 0.0586 0.3167 1.2088

 0.1068 0.0336 0.4089 1.5757

-0.1982 0.3542 0.7967 2.1251

Section 20.3 Cubic Hermite Polynomials 383

 1.4948 -0.2406 0.9102 3.0777

 1.4948 4.2439 4.9136 5.2422

npolys =

12

ncoefs =

4

dim =

1

Here, breaks contains the breakpoints, coefs is a matrix whose ith row is the ith
cubic polynomial, npolys is the number of polynomials, ncoefs is the number of
coefficients per polynomial, and dim is the spline dimension. Note that this pp-form
is sufficiently general that the spline polynomials need not be cubic. This fact is
 useful when the spline is integrated or differentiated.

In MATLAB prior to version 6, the pp-form was stored in a single numerical
array rather than in a structure. As a result, unmkpp was valuable in separating the parts
of the pp-form from the numerical array. Given the simplicity of the structure form,
you can easily address the fields directly and avoid using unmkpp entirely. However,
unmkpp continues to support the prior numerical array pp-form, thereby making the
process of extracting the parts of a pp-form transparent to the user.

Given the broken-apart form, the function mkpp restores the pp-form:

>> pp = mkpp(breaks,coefs)

pp =

form: 'pp'

breaks: [0 1 2 3 4 5 6 7 8 9 10 11 12]

coefs: [12x4 double]

pieces: 12

order: 4

dim: 1

Since the size of the matrix coefs determines npolys and ncoefs, they are not
needed by mkpp to reconstruct the pp-form.

20.3 CUBIC HERMITE POLYNOMIALS

When the underlying data to be interpolated represents a smooth function, cubic
splines return appropriate values. However, when the underlying data are not so
smooth, cubic splines can predict minima and maxima that do not exist and can destroy

384 Chapter 20 Cubic Splines

monotonicity. Therefore, for nonsmooth data, a different piecewise polynomial inter-
polation is called for. In MATLAB, the function pchip returns a piecewise cubic
polynomial that has the properties described in the following help text:

>> help pchip

PCHIP Piecewise Cubic Hermite Interpolating Polynomial.

PP = PCHIP(X,Y) provides the piecewise polynomial form of a certain

shape-preserving piecewise cubic Hermite interpolant, to the values

Y at the sites X, for later use with PPVAL and the spline utility UNMKPP.

X must be a vector.

If Y is a vector, then Y(j) is taken as the value to be matched at X(j),

hence Y must be of the same length as X.

If Y is a matrix or ND array, then Y(:,. . .,:,j) is taken as the value to

be matched at X(j), hence the last dimension of Y must equal length(X).

YY = PCHIP(X,Y,XX) is the same as YY = PPVAL(PCHIP(X,Y),XX), thus

providing, in YY, the values of the interpolant at XX.

The PCHIP interpolating function, p(x), satisfies:

On each subinterval, X(k) <= x <= X(k+1), p(x) is the cubic Hermite

interpolant to the given values and certain slopes at the two endpoints.

Therefore, p(x) interpolates Y, i.e., p(X(j)) = Y(:,j), and

the first derivative, Dp(x), is continuous, but

D^2p(x) is probably not continuous; there may be jumps at the X(j).

The slopes at the X(j) are chosen in such a way that

p(x) is "shape preserving" and "respects monotonicity". This means that,

on intervals where the data is monotonic, so is p(x);

at points where the data have a local extremum, so does p(x).

Comparing PCHIP with SPLINE:

The function s(x) supplied by SPLINE is constructed in exactly the same way,

except that the slopes at the X(j) are chosen differently, namely to make

even D^2s(x) continuous. This has the following effects.

SPLINE is smoother, i.e., D^2s(x) is continuous.

SPLINE is more accurate if the data are values of a smooth function.

PCHIP has no overshoots and less oscillation if the data are not smooth.

PCHIP is less expensive to set up.

Section 20.4 Integration 385

The two are equally expensive to evaluate.

Example:

 x = -3:3;

 y = [-1 -1 -1 0 1 1 1];

 t = -3:.01:3;

 plot(x,y,'o',t,[pchip(x,y,t); spline(x,y,t)])

 legend('data','pchip','spline',4)

Class support for inputs x, y, xx:

 float: double, single

See also interp1, spline, ppval, unmkpp.

Reference page in Help browser

 doc pchip

The following example demonstrates the similarities and differences between spline
and pchip:

>> x = [0 2 4 5 7.5 10];% sample data

>> y = exp(-x/6).*cos(x);

>> cs = spline(x,y); % cubic spline

>> ch = pchip(x,y); % cubic Hermite

>> xi = linspace(0,10);

>> ysi = ppval(cs,xi); % interpolate spline

>> yhi = ppval(ch,xi); % interpolate Hermite

>> plot(x,y,'o',xi,ysi,':',xi,yhi)

>> legend('data','spline','hermite')

>> title('Figure 20.2: Spline and Hermite Interpolation')

20.4 INTEGRATION

In many situations, it is desirable to know the area under a function described by
piecewise polynomials as a function of the independent variable x. That is, if the
piecewise polynomials are denoted y = s(x), we are interested in computing

386 Chapter 20 Cubic Splines

S(x) = L
x

x1

s(x)dx + C

where x1 is the first breakpoint and C is the integration constant. Since s(x) is com-
posed of connected cubic polynomials, with the kth cubic polynomial being

sk(x) = ak(x - xk)3 + bk(x - xk)2 + ck(x - xk) + dk, xk … x … xk+1

and whose integral or area over the range [xk, x], where xk … x … xk+1, is

Sk(x) = L
x

xk

sk(x)dx =
ak

4
 (x - xk)4 +

bk

3
 (x - xk)3 +

ck

2
 (x - xk)2 + dk(x - xk)

the area under a piecewise polynomial is easily computed as

S(x) = a
k-1

i=1
Si(xi+1) + Sk(x)

where xk…x…xk+1. The summation term is the cumulative sum of the areas under
all preceding cubic polynomials. As such, it is readily computed and forms the
 constant term in the polynomial describing S(x), since Sk(x) is a polynomial. With
this understanding, the integral itself can be written as a piecewise polynomial. In
this case, it is a quartic piecewise polynomial, because the individual polynomials
are of order four.

0 1 2 3 4 5 6 7 8 9 10
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Figure 20.2: Spline and Hermite Interpolation

data
spline
hermite

Section 20.4 Integration 387

Because the pp-form used in MATLAB can support piecewise polynomials of
any order, the preceding piecewise polynomial integration is embodied in the func-
tion mmppint. The body of this function is as follows:

function ppi = mmppint(pp,c)

%MMPPINT Cubic Spline Integral Interpolation.

% PPI = MMPPINT(PP,C) returns the piecewise polynomial vector PPI

% describing the integral of the cubic spline described by

% the piecewise polynomial in PP and having integration constant C.

if prod(size(c))~=1

error('C Must be a Scalar.')

end

[br,co,npy,nco] = unmkpp(pp); % take apart pp

sf = nco:-1:1; % scale factors for integration

ico = [co./sf(ones(npy,1),:) zeros(npy,1)]; % integral coefficients

nco = nco+1; % integral spline has higher order

ico(1,nco) = c; % integration constant

for k = 2:npy % find constant terms in polynomials

ico(k,nco) = polyval(ico(k-1,:),br(k)-br(k-1));

end

ppi = mkpp(br,ico); % build pp form for integral

Consider the following example using mmppint:

>> x = (0:.1:1)*2*pi;

>> y = sin(x); % create rough data

>> pp = spline(x,y); % pp-form fitting rough data

>> ppi = mmppint(pp,0); % pp-form of integral

>> xi = linspace(0,2*pi); % finer points for interpolation

>> yi = ppval(pp,xi); % evaluate curve

>> yyi = ppval(ppi,xi); % evaluate integral

>> plot(x,y,'o',xi,yi,xi,yyi,'--') % plot results

>> title('Figure 20.3: Spline Integration')

388 Chapter 20 Cubic Splines

Note that this plot qualitatively shows the identity

L
x

0
 sin (x)dx = 1 - cos(x)

20.5 DIFFERENTIATION

Just as you may be interested in piecewise polynomial integration, you may find
that the derivative or slope of a function described by piecewise polynomials is also
useful. Given that the kth cubic polynomial is

sk(x) = ak(x - xk)3 + bk(x - xk)2 + ck(x - xk) + dk, xk … x … xk+1

the derivative of sk(x) is easily written as

d sk(x)

dx
 = 3ak(x - xk)2 + 2bk(x - x)ck

where xk … x … xk+1. As with integration, the derivative is also a piecewise
 polynomial. However, in this case, it is a quadratic piecewise polynomial, since the
order of the polynomial is two.

Based on this expression, the function mmppder performs piecewise polynomial
differentiation. The body of this function is as follows:

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

1.5

2
Figure 20.3: Spline Integration

Section 20.6 Spline Interpolation on a Plane 389

function ppd = mmppder(pp)

%MMPPDER Cubic Spline Derivative Interpolation.

% PPD = MMPPDER(PP) returns the piecewise polynomial vector PPD

% describing the cubic spline derivative of the curve described

% by the piecewise polynomial in PP.

[br,co,npy,nco] = unmkpp(pp); % take apart pp

sf = nco-1:-1:1; % scale factors for differentiation

dco = sf(ones(npy,1),:).*co(:,1:nco-1); % derivative coefficients

ppd = mkpp(br,dco); % build pp form for derivative

To demonstrate the use of mmppder, consider the following example:

>> x = (0:.1:1)*2*pi; % same data as earlier

>> y = sin(x);

>> pp = spline(x,y); % pp-form fitting rough data

>> ppd = mmppder(pp); % pp-form of derivative

>> xi = linspace(0,2*pi); % finer points for interpolation

>> yi = ppval(pp,xi); % evaluate curve

>> yyd = ppval(ppd,xi); % evaluate derivative

>> plot(x,y,'o',xi,yi,xi,yyd,'--') % plot results

>> title('Figure 20.4: Spline Differentiation')

Note that this plot qualitatively shows the identity

d
dx

 sin (x) = cos (x)

20.6 SPLINE INTERPOLATION ON A PLANE

Spline interpolation, as implemented by the function spline, assumes that the inde-
pendent variable is monotonic. That is, the spline y = s(x) describes a continuous
 function. When it is not monotonic, there is no one-to-one relationship between x and
y, and the function ppval has no way of knowing what y value to return for a given x.
A common situation where this occurs is a curve defined on a plane. For example,

>> t = linspace(0,3*pi,15);

>> x = sqrt(t).*cos(t);

390 Chapter 20 Cubic Splines

0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

1.5
Figure 20.4: Spline Differentiation

>> y = sqrt(t).*sin(t);

>> plot(x,y)

>> xlabel('X')

>> ylabel('Y')

>> title('Figure 20.5: Spiral Y = f(X)')

It is not possible to compute a cubic spline for the spiral as a function of x, since there are
multiple y values for each x near the origin. However, it is possible to compute a spline
for each axis with respect to the variable or parameter t. This can be accomplished in
two ways in MATLAB. First, you could make two calls to spline to fit a spline to x(t)
and then make another call to fit a spline to y(t). Alternatively, the spline function can
fit both splines simultaneously and return a single pp-form structure containing both
fits. The following example demonstrates the latter approach:

>> ppxy = spline(t,[x;y])

ppxy =

 form: 'pp'

 breaks: [1x15 double]

 coefs: [28x4 double]

 pieces: 14

 order: 4

 dim: 2

Section 20.6 Spline Interpolation on a Plane 391

Here, the second argument to spline is an array containing two rows, each of which
is fit with a spline by using the independent variable t, which is monotonic. Elsewhere
in MATLAB, data arrays are column-oriented, with different columns representing
different variables. However, the function spline adopts a row-oriented approach
in which different rows represent different variables. Not recognizing this subtle
fact can lead to errors. For example,

>> ppz = spline(t,[x;y]') % try "normal" column oriented data

??? Error using ==> chckxy at 89

The number of sites, 15, is incompatible with the number of values, 2.

Error in ==> spline at 55

[x,y,sizey,endslopes] = chckxy(x,y);

In addition, the pp-form structure returned now identifies ppxy.dim = 2, meaning
that ppxy describes a 2-D spline.

Given this spline fit, the original data can be interpolated as desired, as in the
following example.

>> ti = linspace(0,3*pi); % total range, 100 points

>> xy = ppval(ppxy,ti); % evaluate both splines

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

X

Y
Figure 20.5: Spiral Y = f(X)

392 Chapter 20 Cubic Splines

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

X

Y

Figure 20.6: Interpolated Spiral Y = f(X)

>> size(xy) % results are row-oriented too!

ans =

2 100

>> plot(x,y,'d',xy(1,:),xy(2,:))

>> xlabel('X')

>> ylabel('Y')

>> title('Figure 20.6: Interpolated Spiral Y = f(X)')

In the example, the results of ppval are also row-oriented, the first row being
associated with the first spline, and so on. Therefore, to plot y versus x, the second
row xy(2,:) is plotted versus the first row xy(1,:).

Finally, the preceding approach is not limited to two dimensions. The pp-form
structure and MATLAB piecewise polynomial functions all handle n-dimensional
splines.

393

Frequency-domain tools, such as Fourier series, Fourier transforms, and their
 discrete-time counterparts, form a cornerstone in signal processing. These
 transforms decompose a signal into a sequence or continuum of sinusoidal compo-
nents that identify the frequency-domain content of the signal. MATLAB provides
the functions fft, ifft, fft2, ifft2, fftn, ifftn, fftshift, and ifftshift for
Fourier analysis. This collection of functions performs the discrete Fourier trans-
form and its inverse in one or more dimensions. (More extensive signal-processing
tools are available in the optional Signal Processing Toolbox.)

Because signal processing encompasses such a diverse area, it is beyond the
scope of this text to illustrate even a small sample of the type of problems that can
be solved using the discrete Fourier transform functions in MATLAB. Therefore,
only one example of using the function fft to approximate the Fourier transform
of a continuous time signal is illustrated. In addition, the use of the function fft to
approximate the Fourier series of a periodic continuous time signal is demonstrated.

21.1 DISCRETE FOURIER TRANSFORM

In MATLAB, the function fft computes the discrete Fourier transform of a signal.
In cases where the length of the data is a power of 2, or a product of prime factors,
fast Fourier transform (FFT) algorithms are employed to compute the discrete
Fourier transform.

Fourier Analysis

21

Because of the substantial increase in computational speed that occurs when data
length is a power of 2, whenever possible it is important to choose data lengths equal to
a power of 2, or to pad data with zeros to give it a length equal to a power of 2.

394 Chapter 21 Fourier Analysis

The fast Fourier transform implemented in MATLAB follows that commonly
used in engineering texts:

F 1k 2 5 FFT5f 1n 2 6 5 a
N21

n50
f 1n 2e2j2pnk/N k 5 0,1, c, N 2 1

Since MATLAB does not support zero indices, the values are shifted by one index
value to

F 1k 2 5 FFT5f 1n 2 6 5 a
N

n51
f 1n 2e2j2p1n2121k212/N k 5 1,2, c, N

The inverse transform follows accordingly as

f 1n 2 5 FFT 215F 1k 2 6 5
1

N
 a

N

k51
F 1k 2ej2p1n2121k212/N n 5 1,2, c, N

Specific details on the use of the fft function are described in its help text:

>> help fft

 FFT Discrete Fourier transform.

 FFT(X) is the discrete Fourier transform (DFT) of vector X. For

 matrices, the FFT operation is applied to each column. For N-D

 arrays, the FFT operation operates on the first non-singleton

 dimension.

 FFT(X,N) is the N-point FFT, padded with zeros if X has less

 than N points and truncated if it has more.

 FFT(X,[],DIM) or FFT(X,N,DIM) applies the FFT operation across the

 dimension DIM.

 For length N input vector x, the DFT is a length N vector X,

 with elements

 N

 X(k) = sum x(n)*exp(-j*2*pi*(k-1)*(n-1)/N), 1 <= k <= N.

 n = 1

 The inverse DFT (computed by IFFT) is given by

 N

 x(n) = (1/N) sum X(k)*exp(j*2*pi*(k-1)*(n-1)/N), 1 <= n <= N.

 k = 1

 See also fft2, fftn, fftshift, fftw, ifft, ifft2, ifftn.

Section 21.1 Discrete Fourier Transform 395

Overloaded methods:

 uint8/fft

 uint16/fft

Reference page in Help browser

 doc fft

To illustrate the use of the FFT, consider the problem of estimating the continuous
Fourier transform of the signal

f 1 t 2 5 2e23t t $ 0

Analytically, the Fourier transform of f(t) is given by

F 1v 2 5
2

3 1 jv

Although using the FFT has little real value in this case (since the analytical solution
is known), this example illustrates an approach to estimating the Fourier transform
of less common signals, especially those whose Fourier transform is not readily
found analytically. The following MATLAB statements estimate |F(v)| by using the
FFT and graphically compare it to the preceding analytical expression:

>> N = 128; % choose a power of 2 for speed

>> t = linspace(0,3,N); % time points for function evaluation

>> f = 2*exp(-3*t); % evaluate function, minimize aliasing: f(3) ~ 0

>> Ts = t(2) - t(1); % the sampling period

>> Ws = 2*pi/Ts; % the sampling frequency in rad/sec

>> F = fft(f); % compute the fft

>> Fc = fftshift(F)*Ts; % shift and scale

>> W = Ws*(-N/2:(N/2)-1)/N; % frequency axis

>> Fa = 2./(3+j*W); % analytical Fourier transform

>> plot(W,abs(Fa),W,abs(Fc),'.') % generate plot, 'o' marks fft

>> xlabel('Frequency, Rad/s')

>> ylabel('|F(\omega)|')

>> title('Figure 21.1: Fourier Transform Approximation')

The function fftshift flips the halves of F so that the (N/2) + 1 element of Fc is
the DC component of the result. Elements less than this are negative frequency

396 Chapter 21 Fourier Analysis

 components, while those greater are positive frequency components. Using this fact,
W creates the appropriate analog frequency axis with W(N/2 + 1) = 0. Graphically,
the FFT approximation is good at low frequencies, but demonstrates some aliasing
at higher frequencies near the Nyquist frequency.

The FFT-related functions in MATLAB include those listed in the following table:

Function Description

conv Convolution

conv2 2-D convolution

convn n-D convolution

deconv Deconvolution

filter Discrete-time filter

filter2 2-D discrete-time filter

fft Discrete Fourier transform

fft2 2-D discrete Fourier transform

fftn n-D discrete Fourier transform

fftw Tunes FFTW library planner method used by subsequent FFT functions

ifft Inverse discrete Fourier transform

−150 −100 −50 0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frequency, Rad/s

|F
(ω

)|

Figure 21.1: Fourier Transform Approximation

Section 21.2 Fourier Series 397

21.2 FOURIER SERIES

MATLAB itself offers no functions specifically tailored to Fourier series analy-
sis and manipulation. However, these functions can be easily added when you
 understand the relationship between the discrete Fourier transform of samples of a
periodic signal and its Fourier series.

The Fourier series representation of a real-valued periodic signal f(t) can be
written in complex exponential form as

f 1 t 2 5 a
`

n52`

Fne
jnvot

where the Fourier series coefficients are given by

Fn 5
1

To

 3
t1To

t

f 1 t 2e2jnvotdt

and the fundamental frequency is vo = 2p/To, where To is the period. The complex
exponential form of the Fourier series can be rewritten in trigonometric form as

f 1 t 2 5 Ao 1 a
`

n51

5Ancos 1nvot 2 1 Bn sin 1nvot 2 6

where the coefficients are given by

Ao 5
1

To
 3

t1To

t

f 1 t 2dt

An 5
2

To
 3

t1To

t

f 1 t 2cos 1nvot 2dt

Bn 5
2

To
 3

t1To

t

f 1 t 2sin 1nvot 2dt

ifft2 2-D inverse discrete Fourier transform

ifftn n-D inverse discrete Fourier transform

fftshift Shifts FFT results so that negative frequencies appear first

ifftshift Undo actions performed by fftshift

abs Magnitude of complex array

angle Radian angle of complex array

unwrap Remove phase angle jumps

cplxpair Sorts vector into complex conjugate pairs

nextpow2 Next higher power of 2

398 Chapter 21 Fourier Analysis

Of these two forms, the complex exponential Fourier series is generally eas-
ier to manipulate analytically, whereas the trigonometric form provides a more
 intuitive understanding because it makes it easier to visualize sine and cosine wave-
forms. The relationships between the coefficients of the two forms are

 Ao 5 Fo

 An 5 2 Re5Fn6

 Bn 5 22 Im5Fn6

Fn 5 F2n
* 5 1An 2 jBn 2 /2

Using these relationships, you can use the complex exponential form analytically
and then convert results to the trigonometric form for display.

The discrete Fourier transform can be used to compute the Fourier series coef-
ficients, provided that the time samples are appropriately chosen and the transform
output is scaled. For example, consider computing the Fourier series coefficients of
the sawtooth waveform shown next.

First, you must create a function to evaluate the sawtooth at arbitrary points:

function f = sawtooth(t,To)

%SAWTOOTH Sawtooth Waveform Generation.

% SAWTOOTH(t,To) computes values of a sawtooth having

0 0.2 0.4 0.6
0

5

10
Figure 21.2: Sawtooth Waveform

Section 21.2 Fourier Series 399

% a period To at the points defined in the vector t.

f = 10*rem(t,To)/To;

f(f==0 | f==10) = 5; % must average value at discontinuity!

To minimize aliasing, it is necessary to compute enough harmonics so that the
 highest harmonic amplitude is negligible. In this case, choose

>> N = 25; % number of harmonics

>> To = 0.2; % choose period

The number of terms to consider in the discrete Fourier transform is twice the
 number of harmonics, since the discrete Fourier transform computes both positive
and negative harmonics:

>> n = 2*N;

The function must be evaluated at n points over one period in such a manner that
the (n + 1)th point is one period away from the first point:

>> t = linspace(0,To,n+1); % (n+1)th point is one period away

>> t(end) = []; % throw away undesired last point

>> f = sawtooth(t,To); % compute sawtooth

We are now ready to compute the transform, rearrange the components, and scale
the results:

>> Fn = fft(f); % compute FFT

>> Fn = [conj(Fn(N+1)) Fn(N+2:end) Fn(1:N+1)]; % rearrange values

>> Fn = Fn/n; % scale results

The vector Fn now contains the complex exponential Fourier series coefficients
in ascending order. That is, Fn(1) is F–25; Fn(N+1) is F0, the DC component; and
Fn(2*N+1) is F25, the 25th harmonic component.

From these data, the trigonometric Fourier series coefficients are as follows:

>> A0 = Fn(N+1) % DC component

A0 =

5

400 Chapter 21 Fourier Analysis

>> An = 2*real(Fn(N+2:end)) % Cosine terms

An =

1.0e-015 *

Columns 1 through 7

-0.1176 -0.0439 -0.2555 0.3814 0.0507 -0.2006 0.1592

Columns 8 through 14

-0.1817 0.0034 0 0.0034 -0.1141 -0.1430 -0.0894

Columns 15 through 21

-0.0685 -0.0216 0.0537 -0.0496 -0.0165 0 -0.0165

Columns 22 through 25

-0.0079 0.2405 0.3274 0.2132

>> Bn = -2*imag(Fn(N+2:end)) % Sine terms

Bn =

Columns 1 through 7

-3.1789 -1.5832 -1.0484 -0.7789 -0.6155 -0.5051 -0.4250

Columns 8 through 14

-0.3638 -0.3151 -0.2753 -0.2418 -0.2130 -0.1878 -0.1655

Columns 15 through 21

-0.1453 -0.1269 -0.1100 -0.0941 -0.0792 -0.0650 -0.0514

Columns 22 through 25

-0.0382 -0.0253 -0.0126 0

Since the sawtooth waveform has odd symmetry (except for its DC component), it
makes sense that the cosine coefficients An are negligible. (Note that they are scaled
by 10–15.) Comparing the actual Fourier series coefficients for this sawtooth wave-
form with the preceding Bn terms gives a relative error of

>> idx = -N:N; % harmonic indices

>> Fna = 5j./(idx*pi); % complex exponential terms

>> Fna(N+1) = 5;

>> Bna = -2*imag(Fna(N+2:end)); % sine terms

>> Bn_error = (Bn-Bna)./Bna % relative error

Bn_error =

Section 21.2 Fourier Series 401

Columns 1 through 7

-0.0013 -0.0053 -0.0119 -0.0211 -0.0331 -0.0478 -0.0653

Columns 8 through 14

-0.0857 -0.1089 -0.1352 -0.1645 -0.1971 -0.2330 -0.2723

Columns 15 through 21

-0.3152 -0.3620 -0.4128 -0.4678 -0.5273 -0.5917 -0.6612

Columns 22 through 25

-0.7363 -0.8174 -0.9051 -1.0000

As with the earlier Fourier transform example, aliasing causes errors that increase
with increasing frequency. Since all practical signals are not band-limited, aliasing is
inevitable, and a decision must be made about the degree of aliasing that can be tol-
erated in a given application. As the number of requested harmonics increases, the
degree of aliasing decreases. Therefore, to minimize aliasing, you can request a larger
number of harmonics and then choose a subset of them to view and further manipulate.

Finally, the line spectra of the complex exponential Fourier series can be plot-
ted using the stem function:

>> stem(idx,abs(Fn))

>> xlabel('Harmonic Index')

>> title('Figure 21.3: Sawtooth Harmonic Content')

>> axis tight

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Harmonic Index

Figure 21.3: Sawtooth Harmonic Content

402

Optimization in the context of this chapter refers to the process of determining where
a function y = g(x) takes on either specific or extreme values. When a function is
defined simply, the corresponding inverse function x = g -1(y) can often be found,
in which case you can determine what x values produce a given y by evaluating the
inverse function. On the other hand, many functions, including simple ones, have no
inverse. When this is the case, you must estimate the x that produces a known y by
some iterative procedure. In practice, this iterative procedure is called zero finding,
because finding x such that y = g(x) for some y is equivalent to finding x such that
f(x) = 0, where f(x) = y - g(x).

In addition to knowing where a function takes on specific values, it is also
 common to know its extreme values—that is, where it achieves maximum or
 minimum values. As before, there are numerous times when these extreme values
must be estimated by some iterative procedure. Since a function maximum is the
minimum of its negative (i.e., max f(x) = min { - f(x)}), iterative procedures for
finding extreme values typically find only minimum values, and the procedures are
called minimization algorithms.

In this chapter, the optimization functions available in basic MATLAB are
covered. (Many more functions are available in the optional Optimization Toolbox.)

22.1 ZERO FINDING

Finding a zero of a function can be interpreted in a number of ways, depending on
the function. When the function is 1-D, the MATLAB function fzero can be used
to find a zero. The algorithm used by this function is a combination of bisection and
inverse quadratic interpolation. When the function is multidimensional—that is, the
function definition consists of multiple scalar functions of a vector variable—you

Optimization

22

Section 22.1 Zero Finding 403

must look beyond basic MATLAB for a solution. The Optimization Toolbox or
other third-party toolbox is required to solve the multidimensional case.

To illustrate the use of the function fzero, consider the function humps:

>> x = linspace(−.5,1.5);

>> y = humps(x);

>> plot(x,y)

>> grid on

>> title('Figure 22.1: Humps Function')

The humps M-file evaluates the function

humps(x) =
1

(x - 0.3)2 + 0.01
+

1

(x - 0.9)2 + 0.04
- 6

which crosses zero near x = - 0.2 and x = 1.3. The function fzero provides a way
to find a better approximation to these zero crossings:

>> format long % display more precision

>> H_humps = @humps; % create function handle to humps.m function.

>> x = fzero(H_humps,1.3)

−0.5 0 0.5 1 1.5
−20

0

20

40

60

80

100
Figure 22.1: Humps Function

404 Chapter 22 Optimization

x =

 1.299549682584822

>> humps(x) % how close is it to 0?

ans =

 0

>> H_humps(x) % evaluate humps through its handle as well

ans =

 0

>> [x,value] = fzero(H_humps,−0.2)

x =

 −0.131618018099606

value =

 8.881784197001252e-16

Here, the two zeros of the function were found. The first zero is very close to 1.3, and
evaluation of function at the zero produced zero. The second zero was found to be close
to –0.13. In this call to fzero, a second output argument was supplied, which returned the
function evaluated at the zero. Therefore, it wasn’t necessary to call humps(x) to check
the accuracy of the solution found by fzero. It is important to note that fzero returns
just one zero—the zero found closest to the initial guess. So, if a function has more than
one zero, it is up to the user to call fzero multiple times with different initial guesses.

When initially called, the function fzero searches on either side of the
 initial guess for a sign change in the function. When a sign change is found, the
two endpoints that produced the sign change form a bracket on the number line.
If a function is continuous, it must cross through zero somewhere in the bracket.
Knowing this, the function fzero then searches for the zero crossing and returns
the value of x that comes closest to making this happen.

In many cases, supplying an initial guess or estimate of the zero is unneces-
sary, because a bracket is already known from the properties of the problem to be
solved. When this occurs, you can simply supply fzero with the bracket rather than
with an initial guess of the zero location:

>> [x,value] = fzero(H_humps,[−2 0])

x =

 −0.131618018099606

value =

 0

>> [x,value] = fzero(H_humps,[0 1.2])

Section 22.1 Zero Finding 405

??? Error using ==> fzero at 283

The function values at the interval endpoints must differ in sign.

In the first example, [−2 0] is a bracket around the zero near -0.13. As a result, fzero
finds the zero. In the second example, [0 1.2] is not a bracket around a zero, forcing
fzero to report an error and abort its search. So, if a two-element array is supplied to
fzero, it must bracket a zero, or else the function terminates without doing a zero search.

In the preceding examples, the function to be searched was provided to fzero
as a function handle, which uniquely identifies the function M-file. As discussed
in Chapter 12, the function to be searched can also be supplied as an anonymous
function, an in-line function object, or a string expression. While all three of these
work, the use of function handles is encouraged. In-line function objects and string
expression definitions are obsolete, but remain operable in MATLAB for the time
being. (To learn more about these alternatives, see the MATLAB documentation.)

All functions in this chapter have various settable parameters. These functions,
as well as those in the Optimization Toolbox, share the same format for managing
parameters. The functions optimset and optimget are used, respectively, to set
and get parameters for all functions. For fzero, there are two settable parameters,
'Display' and 'TolX'. The first parameter controls the amount of detail returned
while the function is working; the second sets a tolerance range for accepting the
final answer. The following code is illustrative:

>> options = optimset('Display','iter'); % show iteration history

>> [x,value] = fzero(H_humps,[−2 0],options)

Func-count x f(x) Procedure

 2 0 5.17647 initial

 3 −0.952481 −5.07853 interpolation

 4 −0.480789 −3.87242 interpolation

 5 −0.240394 −1.94304 bisection

 6 −0.120197 0.28528 bisection

 7 −0.135585 −0.0944316 interpolation

 8 −0.131759 −0.00338409 interpolation

 9 −0.131618 1.63632e-06 interpolation

 10 −0.131618 −7.14819e-10 interpolation

 11 −0.131618 0 interpolation

Zero found in the interval [−2, 0]

x =

−0.131618018099606

406 Chapter 22 Optimization

value =

0

>> options = optimset('Display','final'); % display successful interval

>> [x,value] = fzero(H_humps,[−2 0],options)

Zero found in the interval: [−2, 0].

x =

−0.131618018099606

value =

0

>> options = optimset('TolX',0.1);

>> [x,value] = fzero(H_humps,[−2 0],options)

x =

−0.240394472507622

value =

−1.943038259725652

>> options = optimset('Display','iter','TolX',0.1); % set both

>> [x,value] = fzero(H_humps,[−2 0],options)

Func-count x f(x) Procedure

2 0 5.17647 initial

3 −0.952481 −5.07853 interpolation

4 −0.480789 −3.87242 interpolation

5 −0.240394 −1.94304 bisection

Zero found in the interval [−2, 0]

x =

−0.240394472507622

value =

−1.943038259725652

In the preceding code, an options structure was created with the desired parameters
and then passed as a third argument to fzero. The 'Display' option has four
 settings: 'final', 'iter', 'notify', and 'off'. The setting 'notify' is the

Section 22.2 Minimization in One Dimension 407

default, and it means “Display information only if no solution is found.” The 'TolX'
option sets the tolerance for the final answer, which is equal to eps by default.
(See the online help for optimset and optimget for more information regarding
 parameters for MATLAB optimization functions.)

22.2 MINIMIZATION IN ONE DIMENSION

In addition to the visual information provided by plotting, it is often necessary to
determine other, more specific attributes of a function. Of particular interest in many
applications are function extremes, that is, the function’s maxima (peaks) and minima
(valleys). Mathematically, these extremes are found analytically by determining
where the derivative (slope) of a function is zero. This idea can be readily understood
by inspecting the slope of the humps plot at its peaks and valleys. Clearly, when a
function is simply defined, this process often works. However, even for many sim-
ple functions that can be differentiated readily, it is often impossible to find where
the derivative is zero. In these cases and in cases where it is difficult or impossible
to find the derivative analytically, it is necessary to search for function extremes
numerically. MATLAB provides two functions that perform this task, fminbnd and
 fminsearch. These two functions find minima of 1-D and n-D functions, respec-
tively. The function fminbnd employs a combination of golden-section search and
parabolic interpolation. Since a maximum of f(x) is equal to a minimum of - f(x),
fminbnd and fminsearch can be used to find both minima and maxima. If this
notion is not clear, visualize the preceding humps(x) plot flipped upside down. In the
upside-down state, peaks become valleys and valleys become peaks.

To illustrate 1-D minimization and maximization, consider the preceding humps(x)
example once again. From the figure, there is a maximum near x = 0.3 and a minimum
near x = 0.6. With fminbnd, these extremes can be found with more accuracy:

>> H_humps = @humps; % create handle to humps.m function.

>> [xmin,value] = fminbnd(H_humps,0.5,0.8)

xmin =

0.637008211963619

value =

11.252754125877694

>> options = optimset('Display','iter');

>> [xmin,value] = fminbnd(H_humps,0.5,0.8,options)

Func-count x f(x) Procedure

1 0.61459 11.4103 initial

2 0.68541 11.9288 golden

408 Chapter 22 Optimization

3 0.57082 12.7389 golden

4 0.638866 11.2538 parabolic

5 0.637626 11.2529 parabolic

6 0.637046 11.2528 parabolic

7 0.637008 11.2528 parabolic

8 0.636975 11.2528 parabolic

Optimization terminated:

the current x satisfies the termination criteria using OPTIONS.TolX

of 1.000000e-04

xmin =

0.637008211963619

value =

11.252754125877694

In this example, in the two calls to fminbnd, 0.5 and 0.8 denote the range over which
to search for minimum. In the second case, options were set to display the iterations
performed by fminbnd.

To find the maximum near x = 0.3, we can either modify the humps.m file
to negate the expression, or we can create an anonymous function. The following
example demonstrates the latter approach:

>> AH_humps = @(x) −1./((x−.3).^2 +.01) − 1./((x−.9).^2 +.04) + 6;

>> [xmax,value] = fminbnd(AH_humps,0.2,0.4,options)

Func-count x f(x) Procedure

1 0.276393 −91.053 initial

2 0.323607 −91.4079 golden

3 0.352786 −75.1541 golden

4 0.300509 −96.5012 parabolic

5 0.300397 −96.5014 parabolic

6 0.300364 −96.5014 parabolic

7 0.300331 −96.5014 parabolic

Optimization terminated:

the current x satisfies the termination criteria using OPTIONS.TolX

of 1.000000e-04

Section 22.3 Minimization in Higher Dimensions 409

xmax =

0.300364137900245

value =

−96.501407243870503

On termination, the maximum is found to be very close to 0.3, and the peak has an
amplitude of +96.5. The value returned by fminbnd is the negative of the actual
value, because fminbnd computes the minimum of –humps(x).

22.3 MINIMIZATION IN HIGHER DIMENSIONS

As described previously, the function fminsearch provides a simple algorithm for
minimizing a function of several variables. That is, fminsearch attempts to find the
minimum of f(x), where f(x) is a scalar function of a vector argument x. The function
fminsearch implements the Nelder–Mead simplex search algorithm, which modi-
fies the components of x to find the minimum of f(x). This algorithm is not as effi-
cient on smooth functions as some other algorithms are, but, on the other hand, it
does not require gradient information that is often expensive to compute. It also
tends to be more robust on functions that are not smooth, where gradient informa-
tion is less valuable. If the function to be minimized is inexpensive to compute, the
Nelder–Mead algorithm usually works very well.

To illustrate usage of fminsearch, consider the banana function, also called
Rosenbrock’s function:

f (x) = 100 (x2 - x1
2)2 + (1 - x1)

2

This function can be visualized by creating a 3-D mesh plot with x1 as the x-dimen-
sion and x2 as the y-dimension:

x = [−1.5:0.125:1.5]; % range for x1 variable

y = [−.6:0.125:2.8]; % range for x2 variable

[X,Y] = meshgrid(x,y); % grid of all x and y

Z = 100.*(Y-X.*X).^2 + (1−X).^2; % evaluate banana

mesh(X,Y,Z)

hidden off

xlabel('x(1)')

ylabel('x(2)')

title('Figure 22.2: Banana Function')

410 Chapter 22 Optimization

−2
−1

0
1

2

−1
0

1
2

3
0

200

400

600

800

1000

x(1)

Figure 22.2: Banana Function

x(2)

hold on

plot3(1,1,1,'k.','markersize',30)

hold off

As shown in the plot, the banana function has a unique minimum of zero at x = [1; 1].
To find the minimum of this function, it must be rewritten in terms of x1 = x(1) and
x2 = x(2), as shown before mathematically. It can be entered as the M-file

function f = banana(x)

% Rosenbrock's banana function

f = 100*(x(2)−x(1)^2)^2 + (1−x(1))^2;

or as the anonymous function

>> AH_banana = @(x) 100*(x(2)−x(1)^2)^2 + (1−x(1))^2;

Using either of these representations, fminsearch produces

Section 22.3 Minimization in Higher Dimensions 411

>> [xmin,value,flag,output] = fminsearch(AH_banana,[−1.9,2])

xmin =

1.000016668894802 1.000034473862770

value =

4.068551535063419e-10

flag =

1

output =

iterations: 114

funcCount: 210

algorithm: 'Nelder-Mead simplex direct search'

 message: [1x194 char]

Here, four output parameters are shown: the minimum found, the function evalu-
ated at the minimum, a flag signifying success, and finally an algorithm statistics
structure. Finding the minimum with a tolerance of 1e–4 required 114 iterations and
210 banana function evaluations. If less output is desired, it is simply a matter of
providing fewer output variables.

As with fminbnd, fminsearch accepts an options structure. Although it is
 possible to set over 65 options in an options structure, those used by fminsearch
are listed in the next table. As shown earlier, preferences are set by calling
 optimset as options = optimset('Name',value,'Name',value,. . .). Setting
'Display' to 'iter' in fminsearch can lead to a tremendous amount of output to
the Command window.

Option Name Description Default Value

'Display' Displays frequency,
'iter', 'final', 'notify', or 'off'

'notify' (displays
information only if no
solution is found)

'FunValCheck' Checks validity of objective
function values 'on' or 'off'

'off' (do not display an error
if the objective function returns
a complex value or a NaN)

'MaxFunEvals' Maximum function evaluations 200*length(x)

'MaxIter' Maximum algorithm iterations 200*length(x)

'PlotFcns' Plot function called by an
optimization function at each iteration

[] (empty array)

'OutputFcn' User-defined function called by an
optimization function at each iteration

[] (empty array)

'TolFun' Function solution tolerance 1.00E-04

'TolX' Variable solution tolerance 1.00E-04

412 Chapter 22 Optimization

To demonstrate how to use the options shown in the table, consider finding
the solution to the previous problem with tighter function and variable tolerances:

>> options = optimset('TolFun',1e-8,'TolX',1e-8);

>> [xmin,value,flag,output] = fminsearch(AH_banana,[−1.9,2],options)

xmin =

1.000000001260770 1.000000002307897

value =

6.153858843361103e-18

flag =

1

output =

iterations: 144

funcCount: 266

algorithm: 'Nelder-Mead simplex direct search'

message: [1×194 char]

With tighter tolerances, xmin is now within 1e–8 of the actual minimum, the function
evaluates to well within eps of the minimum of zero, and the number of algorithm
iterations and function evaluations increases by approximately 26 percent. From
this information, it is clear that fminsearch requires a lot of function evaluations
and therefore can be slow for functions that are computationally expensive.

22.4 PRACTICAL ISSUES

Iterative solutions, such as those found by fzero, fminbnd, and fminsearch, all
make some assumptions about the function to be iterated. Since there are essentially
no limits to the function provided, it makes sense that these function functions may
not converge or may take many iterations to converge. At worst, these functions
can produce a MATLAB error that terminates the iteration without producing
a result. And even if they do terminate promptly, there is no guarantee that they
have stopped at the desired result. To make the most efficient use of these function
 functions, consider applying the following points:

 1. Start with a good initial guess. This is the most important consideration. A
good guess keeps the problem in the neighborhood of the solution, where its
numerical properties are hopefully stable.

 2. If components of the solution (e.g., in fminsearch) are separated by several
orders of magnitude or more, consider scaling them to improve iteration
 efficiency and accuracy. For example, if x(1) is known to be near 1, and x(2)
is known to be near 1e6, scale x(2) by 1e-6 in the function definition and then

Section 22.4 Practical Issues 413

scale the returned result by 1e6. When you do so, the search algorithm uses
numbers that are all around the same order of magnitude.

 3. If the problem is complicated, look for ways to simplify it into a sequence of
simpler problems that have fewer variables.

 4. Make sure your function cannot return complex numbers, Inf, or NaN, which
usually results in convergence failure. The functions isreal, isfinite, and
isnan can be used to test results before returning them.

 5. Avoid functions that are discontinuous. Functions such as abs, min, and max
all produce discontinuities that can lead to divergence.

 6. Constraints on the allowable range of x can be included by adding a penalty
term to the function to be iterated, such that the algorithm is persuaded to
avoid out-of-range values.

414

Integration and differentiation are fundamental tools in calculus. Integration computes
the area under a function, and differentiation describes the slope or gradient of a
 function. MATLAB provides functions for numerically approximating the integral
and slope of a function. Functions are provided for making approximations when
functions exist as M-files and as anonymous functions, as well as when functions are
tabulated at uniformly spaced points over the region of interest.

23.1 INTEGRATION

MATLAB provides seven functions for computing integrals of functions: quad,
quadl, quadgk, quadv, quad2d, dblquad, and triplequad.

To illustrate integration, consider the function humps(x), as shown in Figure 23.1.
As is apparent in the figure, the sum of the trapezoidal areas approximates the
integral of the function. Clearly, as the number of trapezoids increases, the fit between
the function and the trapezoids gets better, leading to a better integral or area
 approximation.

Using tabulated values from the humps function, the MATLAB function
trapz approximates the area using the trapezoidal approximation. Duplicating the
trapezoids shown in the figure produces the following result:

>> x = -1:.17:2;

>> y = humps(x);

>> area = trapz(x,y)

Integration and
Differentiation

23

Section 23.1 Integration 415

area =

25.917

In comparison to the figure, this is probably not a very accurate estimate of the area.
However, when a finer discretization is used, more accuracy is achieved:

>> x = linspace(-1,2,100);

>> y = humps(x);

>> format long

>> area = trapz(x,y)

area =

26.344731195245956

This area agrees with the analytical integral through five significant digits.
Sometimes, we are interested in the integral as a function of x—that is,

L
x

x1

f(x)dx

where x1 is a known lower limit of integration. The definite integral from x1 to
any point x is then found by evaluating the function at x. Using the trapezoidal
rule, tabulated values of the cumulative integral are computed using the function
 cumtrapz, as in the following example:

>> x = linspace(-1,2,100);

>> y = humps(x);

−1 −0.5 0 0.5 1 1.5 2
−20

0

20

40

60

80

100
Figure 23.1: Integration Approximation with Trapezoids

416 Chapter 23 Integration and Differentiation

>> z = cumtrapz(x,y);

>> size(z)

ans =

1 100

>> plotyy(x,y,x,z)

>> grid on

>> xlabel('x')

>> ylabel('humps(x) and integral of humps(x)')

>> title('Figure 23.2: Cumulative Integral of humps(x)')

−1 −0.5 0 0.5 1 1.5 2
−50

0

50

100

x

hu
m

ps
(x

)
an

d
in

te
gr

al
 o

f h
um

ps
(x

)

Figure 23.2: Cumulative Integral of humps(x)

−1 −0.5 0 0.5 1 1.5 2
−20

0

20

40

Depending on the properties of the function at hand, it may be difficult to
determine an optimum trapezoidal width. Clearly, if you could somehow vary
the individual trapezoid widths to match the characteristics of the function, much
greater accuracy could be achieved.

The MATLAB functions quad, quadl and quadgk, which are based on a
mathematical concept called quadrature, take this approach. These integration
functions operate in the same way. They all evaluate the function to be integrated
at whatever intervals are necessary to achieve accurate results. Moreover, all three
functions make higher-order approximations than a simple trapezoid, with quadl

Section 23.1 Integration 417

being more rigorous than quad and quadgk being the most rigorous. As an example,
consider computing the integral of the humps function again:

>> z(end) % cumtrapz result

ans =

26.344731195245959

>> H_humps = @humps; % create function handle

>> quad(H_humps,-1,2) % use adaptive Simpson quadrature

ans =

26.344960501201232

>> quadl(H_humps,-1,2) % use adaptive Lobatto quadrature

ans =

26.344960471378968

>> quadgk(H_humps,-1,2) % use adaptive Gauss-Kronrod quadrature

ans =

26.344960471378776

For this example, quad, quadl, and quadgk all return the same result to eight
 significant digits, exhibiting eight-digit accuracy with respect to the true solution.
On the other hand, cumtrapz achieves only five significant digit accuracy.

The function to be integrated (i.e., the integrand) must support a vector input
argument. That is, the integrand must return a vector of outputs for a vector of
inputs. Doing so means using dot-arithmetic operators, .*, ./, .\, and .^. For
example, the function in humps.m is given by the statement

y = 1 ./ ((x-.3).^2 + .01) + 1 ./ ((x-.9).^2 + .04) - 6;

The functions quad and quadl also allow you to specify an absolute error
 tolerance as a fourth input argument, with the default absolute tolerance being 10−6.
The quadgk function allows you to specify four parameters, as shown in the following
table.

Parameter Description Default Value

'AbsTol' Absolute error tolerance 1.0e–10

'RelTol' Relative error tolerance 1.0e–6

'Waypoints' Vector of integration waypoints [] (empty array)

'MaxIntervalCount' Maximum number of intervals 650

418 Chapter 23 Integration and Differentiation

In addition to 1-D integration, MATLAB supports 2-D integration with the
function dblquad. That is, dblquad approximates the integral

L
y max

y min L
x max

x min

f(x,y)dx dy

To use dblquad, you must first create a function that evaluates f(x,y). For example,
consider the function myfun.m:

function z = myfun(x,y)

%MYFUN(X,Y) an example function of two variables

z = sin(x).*cos(y) + 1; % must handle vector x input

This function can be plotted by issuing the commands

>> x = linspace(0,pi,20); % xmin to xmax

>> y = linspace(-pi,pi,20); % ymin to ymax

>> [xx,yy] = meshgrid(x,y); % create grid of point to evaluate at

>> zz = myfun(xx,yy); % evaluate at all points

>> mesh(xx,yy,zz)

>> xlabel('x'), ylabel('y')

>> title('Figure 23.3: myfun.m plot')

The volume under this function is computed by calling dblquad as

>> area = dblquad(@myfun,0,pi,-pi,pi)

area =

19.739208806091021

>> relerr = (area-2*pi^2)/(2*pi^2)

relerr =

1.981996941074027e-10

Here, dblquad is called as dblquad(Fname,xmin,xmax,ymin,ymax). Based on the
 relative error computed above, we can say that the results produced by dblquad are highly
accurate, even though the function quad is called by dblquad to do the actual integration.

The function triplequad extends the above quadrature integration schemes
to triple integration, or volume integration. In this case, triplequad(Fname,xmin,

Section 23.1 Integration 419

xmax,ymin,ymax,zmin,zmax) integrates the function Fname(x,y,z) over the limits
specified by the remainder of the triplequad arguments.

The integration functions in MATLAB are summarized in the following table.

Function Description

trapz Trapezoidal numerical integration

cumtrapz Cumulative trapezoidal numerical integration

quad Numerical integration using adaptive Simpson quadrature

quadl Numerical integration using adaptive Lobatto quadrature

quadgk Numerical integration using adaptive Gauss–Kronrod quadrature

quadv Vectorized quad

dblquad Numerical double integration

quad2d Numerical double integration over a planar region

triplequad Numerical triple integration

0
1

2
3

4

−4
−2

0
2

4
0

0.5

1

1.5

2

x

Figure 23.3: myfun.m plot

y

For further information regarding these integration functions, see the
MATLAB documentation.

420 Chapter 23 Integration and Differentiation

23.2 DIFFERENTIATION

As opposed to integration, numerical differentiation is much more difficult.
Integration describes an overall or macroscopic property of a function, whereas dif-
ferentiation describes the slope of a function at a point, which is a microscopic prop-
erty of a function. As a result, integration is not sensitive to minor changes in the
shape of a function, whereas differentiation is. Any small change in a function can
easily create large changes in its slope in the neighborhood of the change.

Because of this inherent sensitivity in differentiation, numerical differen-
tiation is avoided whenever possible, especially if the data to be differentiated is
obtained experimentally. In this case, it is best to perform a least-squares curve fit to
the data and then differentiate the resulting polynomial. Alternatively, you could fit
cubic splines to the data and then find the spline representation of the derivative, as
discussed in Chapter 20. For example, consider again the example from Chapter 19:

>> x = [0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1];

>> y = [-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];

>> n = 2; % order of fit

>> p = polyfit(x,y,n) % find polynomial coefficients

p =

 -9.8108 20.1293 -0.0317

>> xi = linspace(0,1,100);

>> yi = polyval(p,xi); % evaluate polynomial

>> plot(x,y,'-o',xi,yi,'--')

>> xlabel('x'), ylabel('y = f(x)')

>> title('Figure 23.4: Second Order Curve Fitting')

The derivative in this case is found by using the polynomial derivative function polyder:

>> dp = polyder(p)

dp =

-19.6217 20.1293

The derivative of y(x) = −9.8108x2 + 20.1293x − 0.0317 is dy/dx = −19.6217x + 20.1293.
Since the derivative of a polynomial is yet another polynomial of the next-lowest
order, the derivative can also be evaluated at any point. In this case, the polynomial
fit is second order, making the resulting derivative first order. As a result, the
 derivative is a straight line, meaning that it changes linearly with x.

Section 23.2 Differentiation 421

MATLAB provides a function for computing an approximate derivative, given
tabulated data describing some function. This function, named diff, computes the
difference between elements in an array. Since differentiation is defined as

dy

dx
 = lim

� xS0

f (x + �x) - f(x)

�x

the derivative of y = f(x) can be approximated by

dy

dx
 �

�y

�x
 =

f(x + �x) - f(x)

�x

which is the forward finite difference in y divided by the finite difference in x.
Since diff computes differences between array elements, differentiation can be
 approximated in MATLAB. Continuing with the previous example, we have

>> dyp = polyval(dp,x); % poly derivative for comparison

>> dy = diff(y)./diff(x); % compute differences and use array division

>> xd = x(1:end-1); % new x axis array since dy is shorter than y

>> plot(xd,dy,x,dyp,':')

>> ylabel('dy/dx'), xlabel('x')

>> title('Figure 23.5: Forward Difference Derivative Approximation')

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

0

2

4

6

8

10

12

x

y
=

 f(
x)

Figure 23.4: Second Order Curve Fitting

422 Chapter 23 Integration and Differentiation

The resulting output produced by diff contains one less element than the original
array. Thus, to plot the derivative, one element of the x array must be thrown out.
When the first element of x is thrown out, the procedure gives a backward difference
approximation, which uses information at x(n−1) and x(n) to approximate the derivative
at x(n). On the other hand, throwing out the last element gives a forward difference
approximation, which uses x(n+1) and x(n) to compute results at x(n). Comparing
the derivative found using diff with that found from polynomial approximation, it
is overwhelmingly apparent that approximating the derivative by finite differences
can lead to poor results, especially if the data originates from experimental or noisy
 measurements. When the data used do not have uncertainty, the results of using diff
can be acceptable, especially for visualization purposes, as in this example:

>> x = linspace(0,2*pi);

>> y = sin(x);

>> dy = diff(y)/(x(2)-x(1));

>> xd = x(2:end);

>> plot(x,y,xd,dy)

>> axis tight

>> xlabel('x'), ylabel('sin(x) and cos(x)')

>> title('Figure 23.6: Backward Difference Derivative Approximation')

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

10

15

20

25

30

dy
/d

x

x

Figure 23.5: Forward Difference Derivative Approximation

Section 23.2 Differentiation 423

Here, x was linearly spaced, so dividing by x(2)-x(1) gives the same answer
as diff(x), which is required if x is not linearly spaced. In addition, the first
 element in x is thrown out, making the result a backward difference derivative
 approximation. Visually, the derivative in this example is quite accurate. In fact, the
maximum error is

>> max(abs(cos(xd)-dy))

ans =

0.0317

When forward or backward difference approximations are not sufficient,
central differences can be computed by performing the required array operations
directly. The first central difference for equally spaced data is given by

dy(xn)

dx
 �

f(xn+1) - f(xn-1)
xn+1 - xn-1

Therefore, the slope at xn is a function of its neighboring data points. Repeating the
previous example gives

>> dy = (y(3:end)-y(1:end-2)) / (x(3)-x(1));

>> xd = x(2:end-1);

>> max(abs(cos(xd)-dy))

0 1 2 3 4 5 6

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

si
n(

x)
 a

nd
 c

os
(x

)

Figure 23.6: Backward Difference Derivative Approximation

424 Chapter 23 Integration and Differentiation

ans =

0.00067086

In this case, the first and last data points do not have a central difference approximation,
because there are no data at n = 0 and n = 101, respectively. However, at all
 intermediate points, the central difference approximation is nearly two orders of
 magnitude more accurate than the forward or backward difference approximation.
The MATLAB function gradient implements this approach for estimating the
 derivative of tabulated 1-D data. Since central differences cannot be computed for the
first or last data point, gradient simply computes forward and backward differences
for these points respectively. Using the function gradient, the derivative of the
 preceding data can be estimated at each data point in x as

>> dy = gradient(y,x); % derivative of y at points in x.

When dealing with 2-D data, the function gradient uses central differences
to compute the slope in each direction at each tabulated point. Forward differences
are used at the initial points, and backward differences are used at the final points,
so that the output has the same number of data points as the input. The function
gradient is used primarily for graphical data visualization:

>> [x,y,z] = peaks(20); % simple 2-D function

>> dx = x(1,2) - x(1,1); % spacing in x direction

>> dy = y(2,1) - y(1,1); % spacing in y direction

>> [dzdx,dzdy] = gradient(z,dx,dy);

Figure 23.7: Gradient Arrow Plot

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Section 23.2 Differentiation 425

>> contour(x,y,z)

>> hold on

>> quiver(x,y,dzdx,dzdy)

>> hold off

>> title('Figure 23.7: Gradient Arrow Plot')

In this example, gradient computes dz/dx and dz/dy from the tabulated data output
of peaks. These data are supplied to the function quiver, which draws arrows
 normal to the underlying surface with lengths scaled by the slope at each point.

In addition to the gradient, it is sometimes useful to know the curvature of a
surface. The curvature, or change in slope, at each point is calculated by the function
del2, which computes the discrete approximation to the Laplacian:

�2z(x,y) =
d2z

dx2 +
d2z

dy2

In its simplest form, this value is computed by taking each surface element and
 subtracting from it the average of its four neighbors. If the surface is flat in each
direction at a given point, the element does not change. Since MATLAB version
5, central second differences have been used at interior points to produce more
 accurate results. In the following example, the absolute surface curvature influences
the color of the surface:

>> [x,y,z] = peaks; % default output of peaks

>> dx = x(1,2) - x(1,1); % spacing in x direction

>> dy = y(2,1) - y(1,1); % spacing in y direction

>> L = del2(z,dx,dy);

>> surf(x,y,z,abs(L))

>> shading interp

>> title('Figure 23.8: Discrete Laplacian Color')

426 Chapter 23 Integration and Differentiation

For further information regarding diff, gradient, and del2, see the MATLAB
documentation.

−4
−2

0
2

4

−4
−2

0
2

4
−10

−5

0

5

10

Figure 23.8: Discrete Laplacian Color

427

In 1995, MATLAB introduced a collection of M-files called the MATLAB ODE
suite for solving ordinary differential equations (ODEs). With the introduction
of MATLAB 5, the MATLAB ODE suite became a standard part of MATLAB.
In MATLAB 6, the ODE suite added two initial value problem (IVP) solvers.
In addition, functions have been added in MATLAB 6 to solve boundary value
 problems (BVPs) and partial differential equations (PDEs). Since MATLAB 6, the
ODE suite has added the ability to solve delay differential equations (DDEs) and to
solve implicit differential equations.

Taken as a whole, MATLAB now has the capability to solve a wide variety
of problems involving differential equations. However, discussing each of these is
beyond the scope of this text. Because initial value problems appear most often in
applications, they are discussed here.

24.1 IVP FORMAT

The initial value problem solvers in MATLAB compute the time history of a
set of coupled first-order differential equations with known initial conditions. In
 mathematical terms, these problems have the form

y
= f(t,y) y(to) = yo

which is vector notation for the set of differential equations

 y1
= f1(t, y1, y2,c, yn) y1(to) = y1o

 y2
= f2(t, y1, y2,c, yn) y2(to) = y2o

f f

 yn
= fn(t, y1, y2,c, yn) yn(to) = yno

Differential Equations

24

428 Chapter 24 Differential Equations

where y
#
i = dyi/dt, n is the number of first-order differential equations, and yio is

the initial condition associated with the ith equation. When an initial value problem
is not specified as a set of first-order differential equations, it must be rewritten as
one. For example, consider the classic van der Pol equation

x
$ - m(1 - x2)x

+ x = 0

where μ is a parameter greater than zero. If we choose y1 = x and y2 = dx/dt, the
van der Pol equation becomes

 y
#
1 = y2

 y
#
2 = m(1 - y1

2)y2 - y1

This initial value problem is used throughout this chapter to demonstrate aspects of
the IVP solvers in MATLAB.

24.2 ODE SUITE SOLVERS

The MATLAB ODE suite offers eight initial value problem solvers. Each has
 characteristics appropriate for different initial value problems. The calling syntax
for each solver is identical, making it relatively easy to change solvers for a given
problem. A description of each solver is given in the following table:

Solver Description

ode23 An explicit one-step Runge–Kutta low-order (2nd- to 3rd order) solver. Suitable
for problems that exhibit mild stiffness, problems where lower accuracy is
acceptable, or problems where f(t,y) is not smooth (e.g., discontinuous).

ode23s An implicit one-step modified Rosenbrock solver of order two. Suitable
for stiff problems where lower accuracy is acceptable or where f(t,y) is
discontinuous. Stiff problems are generally described as problems in which
the underlying time constants vary by several orders of magnitude or more.

ode23t An implicit, one-step trapezoidal rule using a free interpolant. Suitable
for moderately stiff problems. Can be used to solve differential-algebraic
equations (DAEs).

ode23tb An implicit trapezoidal rule followed by a backward differentiation of order two.
Similar to ode23s. Can be more efficient than ode15s for crude tolerances.

ode45 An explicit one-step Runge–Kutta medium-order (4th- to 5th order) solver.
Suitable for nonstiff problems that require moderate accuracy. This is
typically the first solver to try on a new problem.

ode113 A multistep Adams–Bashforth–Moulton PECE solver of varying order
(1st- to 13th order). Suitable for nonstiff problems that require moderate
to high accuracy or where f(t,y) is expensive to compute. Not suitable for
problems where f(t,y) is not smooth.

Section 24.3 Basic Use 429

Solver Description

ode15s An implicit, multistep numerical differentiation solver of varying order
(1st- to 5th order). Suitable for stiff problems that require moderate accuracy.
This is typically the solver to try if ode45 fails or is too inefficient.

ode15i A solver of varying order (1st- to 5th order) for solving fully implicit
differential equations.

This table uses terminology—for example, explicit, implicit, and stiff—that requires a
substantial theoretical background to understand. If you understand the terminology,
the table describes the basic properties of each solver. If you don’t understand the
terminology, just follow the guidelines presented in the table, and apply ode45 and
ode15s, respectively, as the first and second solvers to be tried on a given problem.

It is important to note that the MATLAB ODE suite is provided as a set of
M-files that can be viewed. In addition, these same solvers are included internally in
SIMULINK for the simulation of dynamic systems.

24.3 BASIC USE

Before a set of differential equations can be solved, they must be coded in a function
M-file as ydot = odefile(t,y). That is, the file must accept a time t and a solution
y and return values for the derivatives. For the van der Pol equation, this ODE file
can be written as follows:

function ydot = vdpol(t,y)

%VDPOL van der Pol equation.

% Ydot = VDPOL(t,Y)

% Ydot(1) = Y(2)

% Ydot(2) = mu*(1−Y(1)^2)*Y(2)−Y(1)

% mu = 2

mu = 2;

ydot = [y(2); mu*(1−y(1)^2)*y(2)−y(1)];

Note that the input arguments are t and y, but that this particular function does not
use t. Note also that the output ydot must be a column vector.

Given the preceding ODE file, this set of ODEs is solved by using the following
commands:

430 Chapter 24 Differential Equations

>> tspan = [0 20]; % time span to integrate over

>> yo = [2; 0]; % initial conditions (must be a column)

>> [t,y] = ode45(@vdpol,tspan,yo);

>> size(t) % number of time points

ans =

333 1

>> size(y) % (i)th column is y(i) at t(i)

ans =

333 2

>> plot(t,y(:,1),t,y(:,2),'--')

>> xlabel('time')

>> title('Figure 24.1: van der Pol Solution')

0 2 4 6 8 10 12 14 16 18 20
−4

−3

−2

−1

0

1

2

3

4

Time

Figure 24.1: van der Pol Solution

Note that the use of function handles is appropriate in this case, since differential
equations are written as M-files, and they are evaluated many times in the process
of generating a solution over a reasonable time span.

By default, if a solver is called with no output arguments (e.g., ode45
(@vdpol,tspan,yo)) the solver generates no output variables, but generates a time
plot similar to that in Figure 24.1. Alternatively, if a solver is called with one output

Section 24.3 Basic Use 431

argument, that argument is a structure containing all of the information needed to
evaluate the solution at arbitrary time points by using the function deval:

>> sol = ode45(@vdpol,tspan,yo)

sol =

solver: 'ode45'

extdata: [1×1 struct]

x: [1×84 double]

y: [2×84 double]

stats: [1×1 struct]

idata: [1×1 struct]

The help text for deval provides information about the contents of the output variable
sol. It is also possible to use this solution structure to extend or extrapolate the solution
by using the function odextend.

In addition to specifying the initial and final time points in tspan, you can
identify the desired specific solution time points by simply adding them to tspan, as
in the following example:

>> yo = [2; 0];

>> tspan = linspace(0,20,100);

>> [t,y] = ode45(@vdpol,tspan,yo);

>> size(t)

ans =

100 1

>> size(y)

ans =

100 2

Here, 100 points are gathered over the same time interval as in the earlier example.
When called in this way, the solver still uses automatic step-size control to maintain
accuracy. The solver does not use fixed step integration. To gather the solution at
the desired points, the solver interpolates its own solution in an efficient way that
does not deteriorate the solution’s accuracy.

Sometimes the set of differential equations to be solved contains a set of
parameters that the user wishes to vary. Rather than open the ODE file and change
the parameters before each call to a solver, the parameters can be added to the
solver and ODE file input arguments:

432 Chapter 24 Differential Equations

function ydot = vdpol(t,y,mu)

%VDPOL van der Pol equation.

% Ydot = VDPOL(t,Y,mu)

% Ydot(1) = Y(2)

% Ydot(2) = mu*(1−Y(1)^2)*Y(2)−Y(1)

% mu = ?; now passed as an input argument

if nargin<3 % supply default if not given

mu = 2;

end

ydot = [y(2); mu*(1−y(1)^2)*y(2)−y(1)];

0 2 4 6 8 10 12 14 16 18 20
−15

−10

−5

0

5

10
Figure 24.2: van der Pol Solution, μ = 10

>> mu = 10 % set mu in Command window

mu =

10

>> ode45(@vdpol,tspan,yo,[],mu)

>> title('Figure 24.2: van der Pol Solution, \mu=10')

Section 24.4 Setting Options 433

The preceding code solves the van der Pol equation with � � 10. Here, mu is added
as a third input argument to vdpol.m. Then the differential equations are solved by
adding two input arguments to the ode45 function call. The first added argument is
an empty array; this tells the function to use default solver options. The second added
argument contains the value of the parameter. Since no output arguments were
specified, the plotted solution is automatically created. While the above example
describes the use of one parameter, any number of parameters can be added after the
first one shown. In addition, each parameter can be an array of any data type.

24.4 SETTING OPTIONS

Up to this point, we have just accepted all default tolerances and options. When these
are not sufficient, an options structure can be passed to a solver as a fourth input
argument. The MATLAB ODE suite contains the functions odeset and odeget to
manage this options structure. The function odeset works similarly to the Handle
Graphics set function, in that parameters are specified in name/value pairs—for
example, options = odeset('Name1',Value1,'Name2',Value2,. . .);. The
available parameter names and values are described in the online help for odeset:

>> help odeset

 ODESET Create/alter ODE OPTIONS structure.

 OPTIONS = ODESET('NAME1',VALUE1,'NAME2',VALUE2,. . .) creates an integrator

 options structure OPTIONS in which the named properties have the

 specified values. Any unspecified properties have default values. It is

 sufficient to type only the leading characters that uniquely identify the

 property. Case is ignored for property names.

 OPTIONS = ODESET(OLDOPTS,'NAME1',VALUE1,. . .) alters an existing options

 structure OLDOPTS.

 OPTIONS = ODESET(OLDOPTS,NEWOPTS) combines an existing options structure

 OLDOPTS with a new options structure NEWOPTS. Any new properties

 overwrite corresponding old properties.

 ODESET with no input arguments displays all property names and their

 possible values.

 ODESET PROPERTIES

 RelTol - Relative error tolerance [positive scalar {1e-3}]

 This scalar applies to all components of the solution vector, and

 defaults to 1e-3 (0.1% accuracy) in all solvers. The estimated error in

 each integration step satisfies e(i) <= max(RelTol*abs(y(i)),AbsTol(i)).

434 Chapter 24 Differential Equations

AbsTol - Absolute error tolerance [positive scalar or vector {1e-6}]

 A scalar tolerance applies to all components of the solution vector.

 Elements of a vector of tolerances apply to corresponding components of

 the solution vector. AbsTol defaults to 1e-6 in all solvers. See RelTol.

NormControl - Control error relative to norm of solution [on | {off}]

 Set this property 'on' to request that the solvers control the error in

 each integration step with norm(e) <= max(RelTol*norm(y),AbsTol). By

 default the solvers use a more stringent component-wise error control.

Refine - Output refinement factor [positive integer]

 This property increases the number of output points by the specified

 factor producing smoother output. Refine defaults to 1 in all solvers

 except ODE45, where it is 4. Refine does not apply if length(TSPAN) > 2

 or the ODE solver returns the solution as a structure.

OutputFcn - Installable output function [function_handle]

 This output function is called by the solver after each time step. When

 a solver is called with no output arguments, OutputFcn defaults to

 @odeplot. Otherwise, OutputFcn defaults to [].

OutputSel - Output selection indices [vector of integers]

 This vector of indices specifies which components of the solution vector

 are passed to the OutputFcn. OutputSel defaults to all components.

Stats - Display computational cost statistics [on | {off}]

Jacobian - Jacobian function [function_handle | constant matrix]

 Set this property to @FJac if FJac(t,y) returns dF/dy, or to

 the constant value of dF/dy.

 For ODE15I solving F(t,y,y') = 0, set this property to @FJac if

 [dFdy, dFdyp] = FJac(t,y,yp), or to a cell array of constant

 values {dF/dy,dF/dyp}.

JPattern - Jacobian sparsity pattern [sparse matrix]

 Set this property to a sparse matrix S with S(i,j) = 1 if component i of

 F(t,y) depends on component j of y, and 0 otherwise.

 For ODE15I solving F(t,y,y') = 0, set this property to

 {dFdyPattern,dFdypPattern}, the sparsity patterns of dF/dy and

 dF/dy', respectively.

Vectorized - Vectorized ODE function [on | {off}]

 Set this property 'on' if the ODE function F is coded so that

Section 24.4 Setting Options 435

 F(t,[y1 y2 . . .]) returns [F(t,y1) F(t,y2) . . .].

 For ODE15I solving F(t,y,y') = 0, set this property to

 {yVect,ypVect}. Setting yVect 'on' indicates that

 F(t,[y1 y2 . . .],yp) returns [F(t,y1,yp) F(t,y2,yp) . . .].

 Setting ypVect 'on' indicates that F(t,y,[yp1 yp2 . . .])

 returns [F(t,y,yp1) F(t,y,yp2) . . .].

Events - Locate events [function_handle]

 To detect events, set this property to the event function.

Mass - Mass matrix [constant matrix | function_handle]

 For problems M*y' = f(t,y) set this property to the value of the constant

 mass matrix. For problems with time- or state-dependent mass matrices,

 set this property to a function that evaluates the mass matrix.

MStateDependence - Dependence of the mass matrix on y [none | {weak} | strong]

 Set this property to 'none' for problems M(t)*y' = F(t,y). Both 'weak' and

 'strong' indicate M(t,y), but 'weak' will result in implicit solvers

 using approximations when solving algebraic equations.

MassSingular - Mass matrix is singular [yes | no | {maybe}]

 Set this property to 'no' if the mass matrix is not singular.

MvPattern - dMv/dy sparsity pattern [sparse matrix]

 Set this property to a sparse matrix S with S(i,j) = 1 if for any k, the

 (i,k) component of M(t,y) depends on component j of y, and 0 otherwise.

InitialSlope - Consistent initial slope yp0 [vector]

 yp0 satisfies M(t0,y0)*yp0 = F(t0,y0).

InitialStep - Suggested initial step size [positive scalar]

 The solver will try this first. By default the solvers determine an

 initial step size automatically.

MaxStep - Upper bound on step size [positive scalar]

 MaxStep defaults to one-tenth of the tspan interval in all solvers.

NonNegative - Non-negative solution components [vector of integers]

 This vector of indices specifies which components of the

 solution vector must be non-negative. NonNegative defaults to [].

 This property is not available in ODE23S, ODE15I. In ODE15S,

 ODE23T, and ODE23TB, the property is not available for problems

 where there is a mass matrix.

BDF - Use Backward Differentiation Formulas in ODE15S [on | {off}]

436 Chapter 24 Differential Equations

 This property specifies whether the Backward Differentiation Formulas

 (Gear's methods) are to be used in ODE15S instead of the default

 Numerical Differentiation Formulas.

MaxOrder - Maximum order of ODE15S and ODE15I [1 | 2 | 3 | 4 | {5}]

 See also odeget, ode45, ode23, ode113, ode15i, ode15s, ode23s, ode23t, ode23tb,

 function_handle.

 NOTE:

 Some of the properties available through ODESET have changed in MATLAB 6.0.

 Although we still support the v5 properties when used with the v5 syntax

 of the ODE solvers, any new functionality will be available only with the

 new syntax. To see the properties available in v5, type in the command line

 more on, type odeset, more off

 Reference page in Help browser

 doc odeset

The following examples use the preceding options:

>> odeset

AbsTol: [positive scalar or vector {1e-6}]

RelTol: [positive scalar {1e-3}]

NormControl: [on | {off}]

NonNegative: [vector of integers]

OutputFcn: [function_handle]

OutputSel: [vector of integers]

Refine: [positive integer]

Stats: [on | {off}]

InitialStep: [positive scalar]

MaxStep: [positive scalar]

BDF: [on | {off}]

MaxOrder: [1 | 2 | 3 | 4 | {5}]

Jacobian: [matrix | function_handle]

JPattern: [sparse matrix]

Vectorized: [on | {off}]

Mass: [matrix | function_handle]

MStateDependence: [none | {weak} | strong]

MvPattern: [sparse matrix]

Section 24.4 Setting Options 437

MassSingular: [yes | no | {maybe}]

InitialSlope: [vector]

Events: [function_handle]

Invoking odeset without input or output arguments returns an option listing, their
possible values, and default values in braces:

>> tspan = [0 20]; % set time span to solve

>> yo = [2; 0]; % intial conditions

>> mu = 10; % parameter mu

>> options = odeset('AbsTol',1e-12,'RelTol',1e-6);

>> [t,y] = ode45(@vdpol,tspan,yo,[],mu); % default tolerances

>> length(t)

ans =

593

>> [t,y] = ode45(@vdpol,tspan,yo,options,mu); % tight tolerances

>> length(t)

ans =

1689

>> [t,y] = ode15s(@vdpol,tspan,yo,[],mu); % new solver, default tols

>> length(t)

ans =

232

>> [t,y] = ode15s(@vdpol,tspan,yo,options,mu); % new solver, tight tols

>> length(t)

ans =

651

Here, the steps needed to integrate the first 20 seconds are shown. Default tolerances
(i.e., AbsTol = 1e-6 and RelTol = 1e-3) force ode45 to take 593 time steps.
Decreasing the tolerances to AbsTol = 1e-12 and RelTol = 1e-6 takes 1689 time
steps. However, changing to the stiff solver ode15s requires only 651 steps at the
tighter tolerances.

The stiff solvers ode15s, ode23s, ode23t, and ode23tb allow you to specify
an analytical Jacobian, rather than a numerically computed approximation, which is
the default. The Jacobian is a matrix of partial derivatives that has the form

438 Chapter 24 Differential Equations

G
0f1

0y1

0f1

0y2
c

0 f1

0yn

0f2

0y1

0f2

0y2
c

0f2

0yn

f f f f

0fn

0y1

0 fn

0y2
c

0fn

0yn

W
This matrix or a numerical approximation of it is used by the stiff solvers to compute
the solution of a set of nonlinear equations at each time step. If at all possible, an
analytical Jacobian should be supplied, as shown in the following code:

function jac = vdpoljac(t,y,mu)

%VDPOLJAC van der Pol equation Jacobian.

% mu = ?; passed as an input argument

if nargin<3 % supply default if not given

 mu = 2;

end

jac = [0 1

 (−2*mu*y(1)*y(2)−1) (mu*(1−y(1)^2))];

>> options = odeset(options,'Jacobian',@vdpoljac);

>> [t,y] = ode15s(@vdpol,tspan,yo,options,mu);

>> length(t)

ans =

 670

In this example, the function handle of the M-file that computes the Jacobian
is added to the options structure set discussed earlier. Running the solver now
shows that it takes 670 steps. While this is more than the 651 steps shown
 earlier, providing the analytical Jacobian still significantly increases execution
speed.

When it is not possible to supply an analytical Jacobian, it is beneficial to
 supply a vectorized ODE file. Vectorizing the ODE file usually means replacing
y(i) with y(i,:) and using array operators. Doing so allows computation of the
numerical Jacobian to proceed as fast as possible, as in this example:

Section 24.4 Setting Options 439

The 'Refine' property determines how much output data to generate. It does
not affect the step sizes chosen by the solvers, or the solution accuracy. It merely
 dictates how many intermediate points to interpolate the solution at within each
integration step, as in the following example:

>> options = odeset('Refine',1);

>> [t,y] = ode45(@vdpol,tspan,yo,options,mu);

>> length(t) % # of time points

ans =

 149

>> options = odeset('Refine',4);

>> [t,y] = ode45(@vdpol,tspan,yo,options,mu);

>> length(t) % # of time points

ans =

 593

With 'Refine' set to 1, 149 time points are returned over the 20-second time span.
Setting 'Refine' to 4 increases the number of time points returned to 593.

The 'Events' property allows you to flag one or more events that occur as
an ODE solution evolves in time. For example, a simple event could be when some
solution component reaches a maximum, a minimum, or crosses through zero.
Optionally, the occurrence of an event can force a solver to stop integrating. To
make use of this feature, you must simply supply a function handle that computes
the values of the events to be tracked. At each time step, the solver computes the
events and marks in time those that cross through zero. For example,

function ydot = vdpol(t,y,mu)

%VDPOL van der Pol equation.

% Ydot = VDPOL(t,Y)

% Ydot(1) = Y(2)

% Ydot(2) = mu*(1−Y(1)^2)*Y(2)−Y(1)

% mu = ?; now passed as an input argument

if nargin<3 % supply default if not given

 mu = 2;

end

ydot = [y(2,:); mu*(1−y(1,:)^2)*y(2,:)−y(1,:)];

440 Chapter 24 Differential Equations

>> mu = 2;

>> options = odeset('Events',@vdpolevents);

>> [t,y,te,ye] = ode45(@vdpol,tspan,yo,options,mu);

>> plot(t,y,te,ye(:,2),'o')

>> title('Figure 24.3: van der Pol Solution, |y(2)|=2')

function [value,isterminal,direction] = vdpolevents(t,y,mu)

%VDPOLEVENTS van der Pol equation events.

value(1) = abs(y(2))−2; % find where |y(2)|=2

isterminal(1) = 0; % don't stop integration

direction(1) = 0; % don't care about crossing direction

0 2 4 6 8 10 12 14 16 18 20
−4

−3

−2

−1

0

1

2

3

4
Figure 24.3: van der Pol Solution, |y(2)|=2

The function vdpolevents receives the same three arguments as the other functions
and returns three numerical vectors. The first is the value of the events, the second is a
logical array dictating whether the solver should terminate execution on a zero crossing
in one or more of the computed events, and the third gives the user the ability to specify
whether the direction of event crossing should be considered. In the preceding example,
the points where abs(y2(t)) = 2 are selected as the only event. The solver is told to
not halt on sensing events and to not care about the direction of event crossing. The
 generated plot shows the system solution and the points where the chosen events occur.

Section 24.5 BVPs, PDEs, and DDEs 441

24.5 BVPS, PDES, AND DDES

In addition to the eight MATLAB solvers for solving initial value ordinary
 differential equations, MATLAB includes functions for the solution of boundary
value problems, partial differential equations, and delay differential equations. The
functions used to solve BVPs are shown in the following table:

Function Description

bvp4c BVP solver

bvp5c BVP solver (more efficient for small error tolerances)

bvpextend Forms a guess structure for extending a BVP solution

bvpget Gets BVP options structure

bvpinit Forms the initial solution guess, which is refined by bvp4c or bvp5c

bvpset Sets the BVP options structure

deval Evaluates/interpolates the solution found using bvp4c or bvp5c

(Further information regarding the solution of BVPs can be found in the
MATLAB documentation.)

The functions used to solve PDEs are shown in this table:

Function Description

pdepe Solves IVPs for parabolic-elliptic PDEs in one dimension

pdeval Evaluates/interpolates the solution found using pdepe

Function Description

dde23 Solves DDE initial value problems with constant delays

ddesd Solves DDE initial value problems with general delays

deval Evaluates/interpolates the solution found using dde23 or ddesd

ddeget Gets DDE options from options structure

ddeset Creates or alters options structure for dde23 and ddesd

(Further information regarding the solution of PDEs can be found in the
online documentation.)

The functions used to solve DDEs are shown in this table:

(Further information regarding the solution of DDEs can be found in the
MATLAB documentation.)

442

Throughout this text, several of MATLAB’s graphics features have been introduced.
In this and the next several chapters, the graphics features in MATLAB are more
rigorously illustrated. Many of the features and capabilities illustrated here are
available as menu items from the top of a Figure window. They are also available as
buttons on the Figure or Camera toolbar, which appears by default when plots are
generated or can be chosen via the View menu in a Figure window.

The general rule is to use the toolbar and menu features of Figure windows
if you want to customize a single Figure. Otherwise, use Command window
 functions to automate the process of customizing plots. This text concentrates on the
Command window functions, since they perform the actions taken when menu and
toolbar items are used.

25.1 THE plot FUNCTION

As you have seen in earlier examples, the most common function for plotting 2-D
data is the plot function. This versatile function plots sets of data arrays on appro-
priate axes and connects the points with straight lines:

>> x = linspace(0,2*pi,30);

>> y = sin(x);

>> plot(x,y), title('Figure 25.1: Sine Wave')

Two-Dimensional
Graphics

25

Section 25.1 The plot Function 443

This example creates 30 data points over 0 … x … 2p to form the horizontal
axis of the plot and creates another vector y containing the sine of the data points in x.
The plot function opens a graphics window, called a Figure window, scales the axes
to fit the data, plots the points, and then connects the points with straight lines. It also
adds numerical scales and tick marks to the axes automatically. If a Figure window
already exists, plot generally clears the current Figure window and draws a new plot.

The following code plots more than one curve or line:

>> z = cos(x);

>> plot(x,y,x,z)

>> title('Figure 25.2: Sine and Cosine')

Just giving plot another pair of arguments instructs it to generate a second line. This
time, sin(x) versus x, and cos(x) versus x were plotted on the same plot. Although the
figure doesn’t show color, plot automatically draws the second curve in a different color.
The function plot generates as many curves as it receives pairs of input arguments.

If one of the arguments is a matrix and the other a vector, the plot function
plots each column of the matrix versus the vector. For example, the code

>> W = [y;z]; % create a matrix of the sine and cosine

>> plot(x,W) % plot the columns of W vs. x

reproduces the preceding plot.

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Figure 25.1: Sine Wave

444 Chapter 25 Two-Dimensional Graphics

If you change the order of the arguments, the orientation of the plot changes
accordingly:

>> plot(W,x) % plot x vs. the columns of W

title('Figure 25.3: Change Argument Order')

When the plot function is called with only one argument (e.g., plot(Y)) the
function acts differently, depending on the data contained in Y. If Y is a complex-
valued vector, plot(Y) is interpreted as plot(real(Y),imag(Y)). In all other
cases, the imaginary components of the input vectors are ignored. On the other hand,
if Y is real-valued, then plot(Y) is interpreted as plot(1:length(Y),Y); that is,
Y is plotted versus an index of its values. When Y is a matrix, this interpretation is
applied to each column of Y.

25.2 LINESTYLES, MARKERS, AND COLORS

In the previous examples, MATLAB chose the solid linestyle, and the colors blue
and green for the plots. You can specify your own colors, markers, and linestyles by
giving plot a third argument after each pair of data arrays. This optional argument
is a character string consisting of one or more characters from the following table:

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Figure 25.2: Sine and Cosine

Section 25.2 Linestyles, Markers, and Colors 445

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
Figure 25.3: Change Argument Order

Symbol Color Symbol Marker Symbol Linestyle

b Blue . Point - Solid line

g Green o Circle : Dotted line

r Red x Cross -. Dash-dot
line

c Cyan + Plus sign —— Dashed line

m Magenta * Asterisk none No line

y Yellow s Square

k Black d Diamond

w White v Triangle (down)

^ Triangle (up)

< Triangle (left)

> Triangle (right)

p Pentagram

h Hexagram

none No marker

446 Chapter 25 Two-Dimensional Graphics

If you do not specify a color and you are using the default color scheme, MATLAB
starts with blue and cycles through the first seven colors in the preceding table for
each additional line. The default linestyle is a solid line, unless you explicitly specify a
 different linestyle. There is no default marker. If no marker is selected, no markers are
drawn. The use of any marker places the chosen symbol at each data point, but does not
connect the data points with a straight line unless a linestyle is specified as well.

If a color, a marker, and a linestyle are all included in the string, the color
applies to both the marker and the line. To specify a different color for the marker,
plot the same data with a different specification string:

>> plot(x,y,'b:p',x,z,'c-',x,1.2*z,'m+')

>> title('Figure 25.4: Linestyles and Markers')

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5
Figure 25.4: Linestyles and Markers

As with many of the plots in this section, your computer displays color, but the
figures shown here do not. If you are following along in MATLAB, just enter the
commands listed in the examples to see the effects of color.

25.3 PLOT GRIDS, AXES BOX, AND LABELS

The grid on command adds grid lines to the current plot at the tick marks. The grid
off command removes the grid. The command grid with no arguments alternately
turns the grid lines on and off—that is, it toggles them. By default, MATLAB starts
up with grid off for most plots. If you like to have grid lines on all of your plots by
default, add the following lines to your startup.m file:

Section 25.3 Plot Grids, Axes Box, and Labels 447

set(0,'DefaultAxesXgrid','on')

set(0,'DefaultAxesYgrid','on')

set(0,'DefaultAxesZgrid','on')

These lines illustrate the use of Handle Graphics features in MATLAB and the
 setting of default behavior. (More information on these topics can be found in
Chapter 30.)

Normally, 2-D axes are fully enclosed by solid lines called an axes box. This
box can be turned off with box off. The command box on restores the axes box.
The box command toggles the state of the axes box. Horizontal and vertical axes can
be labeled with the xlabel and ylabel functions, respectively. The title function
adds a line of text at the top of the plot. The following example is illustrative:

>> x = linspace(0,2*pi,30);

>> y = sin(x);

>> z = cos(x);

>> plot(x,y,x,z)

>> box off % turn off the axes box

>> xlabel('Independent Variable X') % label horizontal axis

>> ylabel('Dependent Variables Y and Z') % label vertical axis

>> title('Figure 25.5: Sine and Cosine Curves, No Box') % title

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Independent Variable X

D
ep

en
de

nt
 V

ar
ia

bl
es

 Y
 a

nd
 Z

Figure 25.5: Sine and Cosine Curves, No Box

448 Chapter 25 Two-Dimensional Graphics

You can add a label or any other text string to any specific location on your plot
with the text function. The syntax for text is text(x,y,'string'), where
(x,y) represents the coordinates of the center left edge of the text string in units
taken from the plot axes. For example, the following code segment places the text
'sin(x)' at the location x = 2.5, y = 0.7:

>> grid on, box on % turn axes box and grid lines on

>> text(2.5,0.7,'sin(x)')

>> title('Figure 25.6: Sine and Cosine Curves, Added Label')

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Independent Variable X

D
ep

en
de

nt
 V

ar
ia

bl
es

 Y
 a

nd
 Z

sin(x)

Figure 25.6: Sine and Cosine Curves, Added Label

If you want to add a label, but don’t want to stop to figure out the coordinates to use,
you can place a text string with the mouse. The gtext('text') function switches to
the current Figure window, puts up a crosshair that follows the mouse, and waits for
a mouse click or key press. When either one occurs, the string argument to gtext is
placed with the lower left corner of the first character at that location.

25.4 CUSTOMIZING PLOT AXES

MATLAB gives you complete control over the scaling and appearance of both the
horizontal and vertical axes of your plot with the axis command. Because this com-
mand has so many features, only the most useful are described here. The primary
features of the axis command are given in the following table:

Section 25.4 Customizing Plot Axes 449

Command Description

axis([xmin xmax
ymin ymax])

Sets axis limits on the current plot

V = axis Returns a row vector containing the current axis limits

axis auto Returns axis scaling to automatic defaults

axis manual Freezes axis scaling so that if hold is on, subsequent plots use the
same axis limits

axis tight Sets axis limits to the range of the plotted data

axis fill Sets the axis limits and aspect ratio so that the axis
fills the allotted space. This option has an effect only if
PlotBoxAspectRatio or DataAspectRatioMode is 'manual'

axis ij Puts axis in matrix mode. The horizontal axis increases from left
to right. The vertical axis increases from top to bottom

axis xy Puts axis in Cartesian mode. The horizontal axis increases from
left to right. The vertical axis increases from bottom to top

axis equal Sets the aspect ratio so that equal tick mark increments on each
axis are equal in size

axis image Sets axis limits appropriate for displaying an image

axis square Makes the axis box square

axis normal Restores the current axis box to full size and removes any
restrictions on unit scaling

axis vis3d Freezes the aspect ratio to enable rotation of 3-D objects without
axis size changes

axis off Turns off all axis labeling, tick marks, and background

axis on Turns on all axis labeling, tick marks, and background

Multiple commands to axis can be given at once. For example, axis auto on xy is
the default axis scaling. The axis command affects only the current plot. Therefore,
it is issued after the plot command, just as grid, xlabel, ylabel, title, text, and
so on, are issued after the plot is on the screen:

>> x = linspace(0,2*pi,30);

>> y = sin(x);

>> plot(x,y)

>> title('Figure 25.7: Fixed Axis Scaling')

>> axis([0 2*pi -1.5 2]) % change axis limits

450 Chapter 25 Two-Dimensional Graphics

Note that by specifying the maximum x-axis value to be 2*pi, the plot axis ends at
exactly 2*pi rather than rounding the axis limit up to 7. The simplest way to see
what the various axis command arguments do is to generate a simple plot, then
issue multiple axis commands, and, finally, view the resulting changes.

When you simply want to change the axis limits on a single axis, the axis
 command is cumbersome because it requires you to enter limits for all axes. To
solve this problem, MATLAB provides the functions xlim, ylim, and zlim, which
are described by the help text for xlim, with the obvious change for ylim and zlim:

>> help xlim

XLIM X limits.

XL = XLIM gets the x limits of the current axes.

XLIM([XMIN XMAX]) sets the x limits.

XLMODE = XLIM('mode') gets the x limits mode.

XLIM(mode) sets the x limits mode.

(mode can be 'auto' or 'manual')

XLIM(AX,. . .) uses axes AX instead of current axes.

XLIM sets or gets the XLim or XLimMode property of an axes.

See also pbaspect, daspect, ylim, zlim.

Reference page in Help browser

doc xlim

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5

2
Figure 25.7: Fixed Axis Scaling

Section 25.6 Multiple Figures 451

25.5 MULTIPLE PLOTS

You can add new plots to an existing plot by using the hold command. When
you enter hold on, MATLAB does not remove the existing axes when new plot
 functions are issued. Instead, it adds new curves to the current axes. However, if the
new data does not fit within the current axes limits, the axes are rescaled. Entering
hold off releases the current Figure window for new plots. The hold command,
without arguments, toggles the hold setting:

>> x = linspace(0,2*pi,30);

>> y = sin(x);

>> z = cos(x);

>> plot(x,y)

>> hold on

>> ishold % return 1 (True) if hold is ON

ans =

1

>> plot(x,z,'m')

>> hold off

>> ishold % hold is no longer ON

ans =

0

>> title 'Figure 25.8: Use of hold command'

Notice that this example specifies the color of the second curve. Since there is only
one set of data arrays in each plot function, the line color for each plot function
would otherwise default to the first color in the color order list, resulting in two lines
plotted in the same color. Note also that the title text is not enclosed in parentheses,
but the effect remains unchanged. In the alternative form shown, title is interpreted
as a command rather than a function. In addition, the command hold all holds
both the current plot and the next line color to be used. Therefore, if hold on in the
 previous example is replaced by hold all, and no explicit color is specified for the
second plot, then, by default, plot(x,z) would have produced a green line.

25.6 MULTIPLE FIGURES

It is possible to create multiple Figure windows and plot different data sets in
 different ways in each one. To create new Figure windows, use the figure command
in the Command window or the New Figure selection from the File menu in the
Command or Figure window. You can choose a specific Figure window to be the
active, or current, figure by clicking on it with the mouse or by using figure(n),

452 Chapter 25 Two-Dimensional Graphics

where n is the number of the window. The current Figure window is the window that
is active for subsequent plotting functions.

Every time a new Figure window is created, a number identifying it—that is,
its handle—is returned and stored for future use. The figure handle is also displayed
in the Figure window title bar. When a new Figure window is created, it is placed in
the default figure position on the screen. As a result, when more than one Figure
window is created, each new window covers all preceding Figure windows. To see
the windows simultaneously, simply drag them around by using the mouse on the
Figure window title bar.

To reuse a Figure window for a new plot, it must be made the active, or cur-
rent, figure. Clicking on the figure of choice with the mouse makes it the current
figure. From within MATLAB, figure(h), where h is the figure handle, makes the
corresponding figure active or current. Only the current figure is responsive to the
axis, hold, xlabel, ylabel, title, and grid commands.

Figure windows can be deleted by closing them with the mouse, similar to the
way you may close windows on your computer. Alternatively, the command close
can be issued. For example,

>> close

closes the current Figure window,

>> close(h)

closes the Figure window having handle h, and

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Figure 25.8: Use of hold command

Section 25.7 Subplots 453

>> close all

closes all Figure windows.
If you simply want to erase the contents of a Figure window without closing it,

use the command clf. For example,

>> clf

clears the current Figure window, and

>> clf reset

clears the current Figure window and resets all properties, such as hold, to their
default states.

25.7 SUBPLOTS

One Figure window can hold more than one set of axes. The subplot(m,n,p)
 command subdivides the current Figure window into an m-by-n matrix of plotting
areas and chooses the pth area to be active. The subplots are numbered left to right
along the top row, then along the second row, and so on. The following code is
 illustrative:

>> x = linspace(0,2*pi,30);

>> y = sin(x);

>> z = cos(x);

>> a = 2*sin(x).*cos(x);

>> b = sin(x)./(cos(x)+eps);

>> subplot(2,2,1) % pick the upper left of a 2-by-2 grid of subplots

>> plot(x,y), axis([0 2*pi -1 1]), title('Figure 25.9a: sin(x)')

>> subplot(2,2,2) % pick the upper right of the 4 subplots

>> plot(x,z), axis([0 2*pi -1 1]), title('Figure 25.9b: cos(x)')

>> subplot(2,2,3) % pick the lower left of the 4 subplots

>> plot(x,a), axis([0 2*pi -1 1]), title('Figure 25.9c: 2sin(x)cos(x)')

>> subplot(2,2,4) % pick the lower right of the 4 subplots

>> plot(x,b), axis([0 2*pi -20 20]), title('Figure 25.9d: sin(x)/cos(x)')

454 Chapter 25 Two-Dimensional Graphics

Note that when a particular subplot is active, it is the only subplot or axis that is
responsive to the axis, hold, xlabel, ylabel, title, grid, and box commands. The
other subplots are not affected. In addition, the active subplot remains active until
another subplot or figure command is issued. When a new subplot command
changes the number of subplots in the Figure window, previous subplots are erased to
make room for the new orientation. To return to the default mode and use the entire
Figure window for a single set of axes, use the command subplot(1,1,1). When you
print a Figure window containing multiple plots, all of them are printed on the same
page. For example, when the current Figure window contains four subplots and the
orientation is landscape mode, each of the plots uses one-quarter of the printed page.

25.8 INTERACTIVE PLOTTING TOOLS

Before the Figure window menu bar and toolbars existed, MATLAB offered sev-
eral functions for annotating plots interactively. These functions are described in
this section, and most are available from the Figure menu bar and toolbars.

Rather than using individual text strings, a legend can be used to identify the data
sets on your plot. The legend command creates a legend box on the plot, keying any
text you supply to each line in the plot. If you wish to move the legend, simply click and
hold down the mouse button on the legend and drag the legend to the desired location.
The command legend off deletes the legend. The following example is illustrative:

>> close % close figure containing subplots

>> x = linspace(0,2*pi,30);

0 2 4 6
−1

−0.5

0

0.5

1
Figure 25.9a: sin(x)

0 2 4 6
−1

−0.5

0

0.5

1
Figure 25.9b: cos(x)

0 2 4 6
−1

−0.5

0

0.5

1
Figure 25.9c: 2sin(x)cos(x)

0 2 4 6
−20

−10

0

10

20
Figure 25.9d: sin(x)/cos(x)

Section 25.8 Interactive Plotting Tools 455

>> y = sin(x);

>> z = cos(x);

>> plot(x,y,x,z)

>> legend('sin(x)','cos(x)')

>> title('Figure 25.10: Legend Example')

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Figure 25.10: Legend Example

sin(x)
cos(x)

MATLAB provides an interactive tool to expand sections of a 2-D plot to see
more detail or to zoom in on a region of interest. The command zoom on turns on
the zoom mode. Clicking the left mouse button within the Figure window expands
the plot by a factor of 2 centered around the point under the mouse pointer. Each
time you click, the plot expands. Double-clicking zooms back out. Click the right
mouse button to open a contextual menu to zoom out or select other properties.
You can also click and drag a rectangular area to zoom in on a specific area. The
zoom out command returns the plot to its initial state. The command zoom off
turns off the zoom mode. Just zoom with no arguments toggles the zoom state of the
active Figure window. The Figure toolbar and Figure window menus offer a GUI
approach to implementing this feature as well.

In some situations, it is convenient to select coordinate points from a plot in a
Figure window. In MATLAB, this feature is embodied in the ginput function. The
form [x,y] = ginput(n) gets n points from the current plot or subplot based on
mouse click positions within the plot or subplot. If you press the Return or Enter
key before all n points are selected, ginput terminates with fewer points. The
points returned in the vectors x and y are the respective x and y data coordinate
points selected. The returned data are not necessarily points from the plotted data,
but rather the explicit x- and y-coordinate values where the mouse was clicked. If

456 Chapter 25 Two-Dimensional Graphics

points are selected outside of the plot or subplot axes limits—for example, outside
the plot box—the points returned are extrapolated values.

This function can be somewhat confusing when used in a Figure window
 containing subplots. The data returned is with respect to the current or active subplot.
Thus, if ginput is issued after a subplot(2,2,3) command, the data returned is with
respect to the axes of the data plotted in subplot(2,2,3). If points are selected from
other subplots, the data is still with respect to the axes of the data in subplot(2,2,3).
When an unspecified number of data points are desired, the form [x,y] = ginput
without an input argument can be used. Here, data points are gathered until the Return
key is pressed. The gtext function (described earlier in this chapter) uses the function
 ginput along with the function text for placing text with the mouse.

25.9 SCREEN UPDATES

Because screen rendering is relatively time-consuming, MATLAB does not always
update the screen after each graphics command. For example, if the following
 commands are entered at the MATLAB prompt, MATLAB updates the screen
after each graphics command (plot, axis, and grid):

>> x = linspace(0,2*pi); y = sin(x);

>> plot(x,y)

>> axis([0 2*pi -1.2 1.2])

>> grid

However, if the same graphics commands are entered on a single line, such as

>> plot(x,y), axis([0 2*pi -1.2 1.2]), grid

MATLAB renders the figure only once—when the MATLAB prompt reappears.
A similar procedure occurs when graphics commands appear as part of a script or
function M-file. In this case, even if the commands appear on separate lines in the
file, the screen is rendered only once—when all commands are completed and the
MATLAB prompt reappears.

In general, six events cause MATLAB to render the screen:

 1. A return to the MATLAB prompt
 2. Encountering a function that temporarily stops execution, such as pause,

 keyboard, input, ginput, waitfor, and waitforbuttonpress
 3. Execution of a getframe command
 4. Execution of a drawnow command
 5. Execution of a figure command
 6. Resizing of a Figure window

Section 25.10 Specialized 2-D Plots 457

Of these, only the drawnow command specifically allows one to force MATLAB to
update the screen at arbitrary times. The refresh command completely erases and
redraws the current figure.

25.10 SPECIALIZED 2-D PLOTS

Up to this point, the basic plotting function plot has been illustrated. In many
 situations, plotting lines or points on linearly scaled axes does not convey the desired
information. As a result, MATLAB offers other basic 2-D plotting functions, as well
as specialized plotting functions that are embodied in function M-files.

In addition to plot, MATLAB provides the functions semilogx for plotting
with a logarithmically scaled x-axis, semilogy for plotting with a logarithmically scaled
y-axis, and loglog for plotting with both axes logarithmically spaced. All of the features
discussed previously with respect to the function plot apply to these functions as well.

The area function is useful for building a stacked area plot. The function
area(x,y) is the same as plot(x,y) for vectors x and y, except that the area under
the plot is filled in with color. The lower limit for the filled area may be specified, but
defaults to zero. To stack areas, use the form area(X,Y), where Y is a matrix and X
is a matrix or vector whose length equals the number of rows in Y. If X is omitted, as
in the following example, area uses the default value X = 1:size(Y,1):

>> z = -pi:pi/5:pi;

>> area([sin(z);cos(z)])

>> title('Figure 25.11: Stacked Area Plot')

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
Figure 25.11: Stacked Area Plot

458 Chapter 25 Two-Dimensional Graphics

Filled polygons can be drawn by using the fill function. The function
fill(x,y,'c') fills the 2-D polygon defined by the column vectors x and y with the
color specified by c. The vertices of the polygon are specified by the pairs (xi,yi).
If necessary, the polygon is closed by connecting the last vertex to the first. Like the
plot function, fill can have any number of pairs of vertices and associated colors.
Moreover, when x and y are matrices of the same dimension, the columns of x and
y are assumed to describe separate polygons. In the code

>> t = (1:2:15)'*pi/8;

>> x = sin(t);

>> y = cos(t);

>> fill(x,y,'r') % a filled red circle using only 8 data points

>> axis square off

>> text(0,0,'STOP', . . .

'Color',[1 1 1], . . .

'FontSize',80, . . .

'FontWeight','bold', . . .

'HorizontalAlignment','center')

>> title('Figure 25.12: Stop Sign')

Figure 25.12: Stop Sign

STOP

the text(x,y,'string') function is used with extra arguments. The Color,
FontSize, FontWeight, and HorizontalAlignment arguments tell MATLAB
to use Handle Graphics to modify the text. Handle Graphics is the name of
MATLAB’s underlying graphics functions. You can access this rich set of powerful,

Section 25.10 Specialized 2-D Plots 459

versatile graphics functions yourself. (See Chapter 30 for more information on these
features.)

Standard pie charts can be created by using the pie(a,b) function, where a
is a vector of values and b is an optional logical vector describing a slice or slices to
be pulled out of the pie chart. The pie3 function renders the pie chart with a 3-D
appearance:

>> a = [.5 1 1.6 1.2 .8 2.1];

>> pie(a,a==max(a)); % chart a and pull out the biggest slice

>> title('Figure 25.13: Example Pie Chart')

7%

14%

22%

17%

11%

29%

Figure 25.13: Example Pie Chart

Sometimes it is desirable to plot two different functions on the same axes by
using different y-axis scales. The function plotyy does just that:

>> x = -2*pi:pi/10:2*pi;

>> y = sin(x);

>> z = 3*cos(x);

>> subplot(2,1,1), plot(x,y,x,z)

>> title('Figure 25.14a: Two plots on the same scale.');

>> subplot(2,1,2), plotyy(x,y,x,z)

>> title('Figure 25.14b: Two plots on different scales.');

460 Chapter 25 Two-Dimensional Graphics

−8 −6 −4 −2 0 2 4 6 8
−4

−2

0

2

4
Figure 25.14a: Two plots on the same scale.

−8 −6 −4 −2 0 2 4 6 8
−1

−0.5

0

0.5

1
Figure 25.14b: Two plots on different scales.

−8 −6 −4 −2 0 2 4 6 8
−4

−2

0

2

4

Bar and stair plots can be generated by using the bar, barh, and stairs
 plotting functions. The bar3 and bar3h functions render the bar charts with a 3-D
appearance, as in the following example:

>> x = -2.9:0.2:2.9;

>> y = exp(-x.*x);

>> subplot(2,2,1)

>> bar(x,y)

>> title('Figure 25.15a: 2-D Bar Chart')

>> subplot(2,2,2)

>> bar3(x,y,'r')

>> title('Figure 25.15b: 3-D Bar Chart<')

>> subplot(2,2,3)

>> stairs(x,y)

>> title('Figure 25.15c: Stair Chart')

>> subplot(2,2,4)

>> barh(x,y)

>> title('Figure 25.15d: Horizontal Bar Chart')

Section 25.10 Specialized 2-D Plots 461

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1
Figure 25.15a: 2−D Bar Chart

−5

0

5

0

0.5

1
Figure 25.15b: 3−D Bar Chart

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1
Figure 25.15c: Stair Chart

0 0.5 1
−4

−2

0

2

4
Figure 25.15d: Horizontal Bar Chart

The various bar functions accept a single-color argument for all bars. Bars can be
grouped or stacked as well. The form bar(x,Y) for vector x and matrix Y draws groups
of bars corresponding to the columns of Y. The form bar(x,Y,'stacked') draws the
bars stacked vertically. The functions barh, bar3, and bar3h have similar options.

Histograms illustrate the distribution of values in a vector. The function
hist(y) draws a 10-bin histogram for the data in vector y. The function hist(y,n),
where n is a scalar, draws a histogram with n bins. The function hist(y,x), where x
is a vector, draws a histogram using the bins specified in x:

>> x = -2.9:0.2:2.9; % specify the bins to use

>> y = randn(5000,1); % generate 5000 random data points

>> hist(y,x) % draw the histogram

>> title('Figure 25.16: Histogram of Gaussian Data')

Discrete sequence data can be plotted by using the stem function. The func-
tion stem(z) creates a plot of the data points in vector z connected to the hori-
zontal axis by a line. An optional character-string argument can be used to specify
linestyle, as in the following code:

>> z = randn(30,1); % create some random data

>> stem(z,'--') % draw a stem plot using dashed linestyle

>> set(gca,'YGrid','on') % turn grid on Y-axis only

>> title('Figure 25.17: Stem Plot of Random Data')

462 Chapter 25 Two-Dimensional Graphics

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3
Figure 25.17: Stem Plot of Random Data

−4 −3 −2 −1 0 1 2 3 4 5
0

50

100

150

200

250

300

350

400

450
Figure 25.16: Histogram of Gaussian Data

Section 25.10 Specialized 2-D Plots 463

The function stem(x,z) plots the data points in z at the values specified in x.
A plot can include error bars at the data points. The function errorbar(x,y,e)

plots the graph of vector x versus vector y with error bars specified by vector e:

>> x = linspace(0,2,21); % create a vector

>> y = erf(x); % y is the error function of x

>> e = rand(size(x))/10; % e contains random error values

>> errorbar(x,y,e) % create the plot

>> title('Figure 25.18: Errorbar Plot')

Note that all vectors must be the same length. For each data point (xi,yi), an
error bar is drawn a distance ei above and ei below the point:

−0.5 0 0.5 1 1.5 2 2.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Figure 25.18: Errorbar Plot

Plots in polar coordinates can be created by using the polar(t,r,S) function,
where t is the angle vector in radians, r is the radius vector, and S is an optional
character string describing color, marker symbol, and/or linestyle:

>> t = linspace(0,2*pi);

>> r = sin(2*t).*cos(2*t);

>> subplot(2,2,1)

>> polar(t,r), title('Figure 25.19a: Polar Plot')

464 Chapter 25 Two-Dimensional Graphics

Complex data can be plotted by using compass and feather. The function
compass(z) draws a plot that displays the angle and magnitude of the complex
 elements of z as arrows emanating from the origin. The function feather(z) plots the
same data by using arrows emanating from equally spaced points on a horizontal line.
The functions compass(x,y) and feather(x,y) are equivalent to compass(x+i*y)
and feather(x+i*y), respectively. The following example is illustrative:

>> z = eig(randn(20));

>> subplot(2,2,2)

>> compass(z)

>> title('Figure 25.19b: Compass Plot')

>> subplot(2,2,3)

>> feather(z)

>> title('Figure 25.19c: Feather Plot')

The function rose(v) draws a 20-bin polar histogram for the angles in vector
v. The function rose(v,n), where n is a scalar, draws a histogram with n bins. The
function rose(v,x), where x is a vector, draws a histogram using the bins specified
in x. The following code illustrates the first of these options:

>> subplot(2,2,4)

>> v = randn(1000,1)*pi;

>> rose(v)

>> title('Figure 25.19d: Angle Histogram')

 0.25

 0.5

30

210

60

240

90

270

120

300

150

330

180 0

Figure 25.19a: Polar Plot

 2.5

 5

30

210

60

240

90

270

120

300

150

330

180 0

Figure 25.19b: Compass Plot

−10 0 10 20
−4

−2

0

2

4
Figure 25.19c: Feather Plot

 50

 100

30

210

60

240

90

270

120

300

150

330

180 0

Figure 25.19d: Angle Histogram

Section 25.11 Easy Plotting 465

The function scatter generates a scatter plot—that is, a plot of circles at data
points, where the circle size or color can vary, point by point:

>> x = rand(40,1);

>> y = randn(40,1);

>> area = 20+(1:40);

>> scatter(x,y,area)

>> box on

>> title('Figure 25.20: A scatter plot')

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Figure 25.20: A scatter plot

25.11 EASY PLOTTING

When you don’t want to take the time to specify the data points explicitly for a plot,
MATLAB provides the functions fplot, ezplot, and ezpolar. The function fplot
plots functions defined by M-file names or function handles. The functions ezplot
and ezpolar plot functions defined by function handles, string expressions, or
 symbolic math objects, with the obvious difference in plot type. These functions
simply spare the user from having to define the data for the independent variable,
as the following code indicates:

>> subplot(2,2,1)

>> fplot(@humps,[-.5 3])

>> title('Figure 25.21a: Fplot of the Humps Function')

466 Chapter 25 Two-Dimensional Graphics

>> xlabel('x')

>> ylabel('humps(x)')

>> subplot(2,2,2)

>> f_hdl = @(x) sin(x)/x;

>> ezplot(f_hdl,[-15,15])

>> title('Figure 25.21b: sin(x)/x')

>> subplot(2,2,3)

>> ezpolar('sin(3*t).*cos(3*t)',[0 pi])

>> title('Figure 25.21c: ezpolar plot')

>> subplot(2,2,4)

>> istr = '(x-2)^2/(2^2) + (y+1)^2/(3^2) - 1';

>> ezplot(istr,[-2 6 -5 3])

>> axis square

>> grid

>> title(['Figure 25.21d: ' istr])

0 1 2 3
−50

0

50

100
Figure 25.21a: Fplot of the Humps Function

x

hu
m

ps
(x

)

−10 0 10

0

0.5

1

x

Figure 25.21b: sin(x)/(x)

 0.25

 0.5

30

210

60

240

90

270

120

300

150

330

180 0

Figure 25.21c: ezpolar plot

r = sin(3 t) cos(3 t)
x

y

Figure 25.21d: (x−2)2/(22) + (y+1)2/(32) − 1

−2 0 2 4 6

−4

−2

0

2

The last example shows that ezplot can be used to plot implicit functions.
In this case, the string expression is that of an ellipse centered at (2, −1).

Section 25.12 Text Formatting 467

25.12 TEXT FORMATTING

Multiline text can be used in any text string, including titles and axis labels, as well
as the text and gtext functions. Simply use string arrays or cell arrays for multiline
text. For example,

>> xlabel({'This is the first line','and this is the second.'});

labels the x-axis with two lines of text. Note that the string separator can be a space,
a comma, or a semicolon; each style produces the same result. (See Chapter 9 for
more details on cell arrays of strings.)

A selection of more than 100 symbols, including Greek letters and other special
characters, can be included in MATLAB text strings by embedding commands
within the string. The available symbols and the character strings used to define them
are listed in the following table (this information can also be found by viewing the
string property of the text Handle Graphics object in the online documentation):

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\alpha α \pi π \upsilon υ

\angle ∠ \rho ρ \phi Φ

\ast * \sigma σ \chi χ

\beta β \varsigma ς \psi ψ

\gamma γ \tau τ \omega ω

\delta δ \equiv ≡ \Gamma Γ

\epsilon ε \Im ℑ \Delta Δ

\zeta ζ \otimes ⊗ \Theta Θ

\eta η \cap ∩ \Lambda Λ

\theta Θ \supset ⊃ \Xi Ξ

\vartheta ϑ \int ∫ \Pi Π

\iota ι \rfloor ⎦ \Sigma Σ

\kappa κ \lfloor ⎣ \Upsilon ϒ

\lambda λ \perp ⊥ \Phi Φ

\mu μ \wedge ∧ \Psi Ψ

\nu ν \rceil ⎤ \Omega Ω

\xi ξ \vee ∨ \forall ∀

Section 25.13 Summary 469

>> text(0.2,0.1,'\color{blue}\itE = M\cdotC^{\rm2}')

>> text(0.2,0.2,'\fontsize{16} \nabla \times H = J + \partialD/\partialt')

>> text(0.2,0.3,'\fontname{courier}\fontsize{16}\bf x_{\alpha}+y^{2\pi}')

>> fsstr = 'f(t) = A_o + \fontsize{30}_\Sigma\fontsize{10}';

>> text(0.2,0.4,[fsstr '[A_ncos(n\omega_ot) + B_nsin(n\omega_ot)]'])

>> title('Figure 25.22: TeX Formatting Examples')

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E = M.C2

∇ × H = J + ∂D/∂t

 xα + y2π

f(t) = A
o
 + Σ[A

n
cos(nω

o
t) + B

n
sin(nω

o
t)]

Figure 25.22: TeX Formatting Examples

25.13 SUMMARY

The following table lists MATLAB functions for 2-D plotting:

Function Description

plot Linear plot

loglog Log–log plot

semilogx Semilog x-axis plot

semilogy Semilog y-axis plot

polar Polar coordinate plot

plotyy Linear plot with two y-axes

axis Control axis scaling and appearance

468 Chapter 25 Two-Dimensional Graphics

In several previous versions of MATLAB, only a limited subset of TEX formatting
commands was available. In MATLAB 7 and above, all TEX formatting commands
are available. Complete information regarding these commands can be found online.
Some of the common and important commands include the following: Superscripts and
subscripts are specified by ^ and _ respectively; text font and size are chosen by using
the \fontname and \fontsize commands; and a font style is specified by using the
\bf, \it, \sl, or \rm command to select a boldface, italic, oblique (or slant), or normal
Roman font, respectively. To change the color of the text, use \color{colorname} or
\color[rgb]{r g b} to specify the color. To print the special characters used to define
TEX strings, prefix them with the backslash (\) character. The characters affected are
the backslash (\), left and right curly braces { }, underscore (_), and carat (^). The
 following example illustrates the use of TEX formatting commands:

>> close % close last Figure window and start over

>> axis([0 1 0 0.5])

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\exists ∃ \sim ∼ \propto ∝

\ni ∋ \leq ≤ \partial ∂

\cong ≅ \infty ∞ \bullet

\approx ≈ \clubsuit ♣ \div ÷

\Re ℜ \diamondsuit ♦ \neq ≠

\oplus ⊕ \heartsuit ♥ \aleph ℵ

\cup ∪ \spadesuit ♠ \wp ℘

\subseteq ⊆ \leftrightarrow ↔ \oslash ∅

\in ∈ \leftarrow ← \supseteq ⊇

\lceil ⎡ \Leftarrow ⇐ \subset ⊂

\cdot \uparrow ↑ \o ο

\neg ¬ \rightarrow → \nabla ∇

\times ξ \Rightarrow ⇒ \ldots …

\surd √ \downarrow ↓ \prime ′

\varpi ϖ \circ ° \0 ∅

\rangle 〉 \pm ± \mid |

\langle 〈 \geq ≥ \copyright ©

470 Chapter 25 Two-Dimensional Graphics

Function Description

xlim x-axis limits

ylim y-axis limits

zlim z-axis limits

daspect Sets and gets data aspect ratio, that is, axis equal

pbaspect Sets and gets plot box aspect ratio, that is, axis square

zoom Zooms in and out

grid Grid line visibility

box Axis box visibility

hold Holds current plot

subplot Creates multiple axes in Figure window

figure Creates Figure windows

legend Adds legend

title Title at top of plot

xlabel x-axis label

ylabel y-axis label

text Places text on plot

gtext Places text with mouse

ginput Gets coordinates at cursor

area Filled area plot

bar Bar graph

barh Horizontal bar graph

bar3 3-D bar graph

bar3h 3-D horizontal bar graph

comet 2-D animated comet plot

compass Compass graph

errorbar Linear plot with error bars

ezplot Easy line plot of string expression

ezpolar Easy polar plot of string expression

feather Feather plot

Section 25.13 Summary 471

fill Filled 2-D polygons

fplot Plot function

hist Histogram

pareto Pareto chart

pie Pie chart

pie3 3-D pie chart

plotmatrix Scatter plot matrix

rectangle Creates rectangle, rounded-rectangle, or ellipse

ribbon Linear plot with 2-D lines as ribbons

scatter Scatter plot

stem Discrete sequence or stem plot

stairs Stairstep plot

472

MATLAB provides a variety of functions to display 3-D data. Some functions plot lines
in three dimensions, while others draw surfaces and wire frames. In addition, color can
be used to represent a fourth dimension. When color is used in this manner, it is called
pseudocolor, since color is not an inherent or natural property of the underlying data in
the way that color in a photograph is a natural characteristic of the image. To simplify
the discussion of 3-D graphics, the use of color is postponed until the next chapter. In
this chapter, the fundamental concepts of producing useful 3-D plots are discussed.

26.1 LINE PLOTS

The plot function from the 2-D world is extended into three dimensions with plot3.
The format is the same as the 2-D plot, except that the data is supplied in triplets
rather than in pairs. The general format of the function call is plot3(x1,y1,z1,S1,
x2,y2,z2,S2,. . .), where xn, yn, and zn are vectors or matrices and Sn are optional
 character strings specifying color, marker symbol, and/or linestyle. The function plot3
is commonly used to plot a 3-D function of a single variable, as in the following example:

>> t = linspace(0,10*pi);

>> plot3(sin(t),cos(t),t)

>> xlabel('sin(t)'), ylabel('cos(t)'), zlabel('t')

>> text(0,0,0,'Origin')

>> grid on

Three-Dimensional
Graphics

26

Section 26.1 Line Plots 473

>> title('Figure 26.1: Helix')

>> v = axis

v =

 -1 1 -1 1 0 35

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

5

10

15

20

25

30

35

sin(t)

Origin

Figure 26.1: Helix

cos(t)

t

From this simple example, it is apparent that all of the basic features of 2-D graphics
exist in 3-D graphics also. The axis command extends to 3-D by returning the z-axis
limits (0 and 35) as two additional elements in the axis vector. There is a zlabel
function for labeling the z-axis. The grid command toggles a 3-D grid underneath
the plot, and the box command creates a 3-D box around the plot. The defaults for
plot3 are grid off and box off. The function text(x,y,z,'string') places a
character string at the position identified by the triplet x,y,z. In addition, subplots
and multiple Figure windows apply directly to 3-D graphics functions.

In the last chapter, multiple lines or curves were plotted on top of one another
by specifying multiple arguments to the plot function or by using the hold command.
The function plot3 and the other 3-D graphics functions offer the same capabilities.
For example, the added dimension of plot3 allows multiple 2-D plots to be stacked
next to one another along one dimension, rather than directly on top of one another:

>> x = linspace(0,3*pi); % x-axis data

>> z1 = sin(x); % plot in x-z plane

>> z2 = sin(2*x);

474 Chapter 26 Three-Dimensional Graphics

>> z3 = sin(3*x);

>> y1 = zeros(size(x)); % spread out along y-axes

>> y3 = ones(size(x)); % by giving each curve different y-axis values

>> y2 = y3/2;

>> plot3(x,y1,z1,x,y2,z2,x,y3,z3)

>> grid on

>> xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis')

>> title('Figure 26.2: sin(x), sin(2x), sin(3x)')

>> pause(5)

>> plot3(x,z1,y1,x,z2,y2,x,z3,y3)

>> grid on

>> xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis')

>> title('Figure 26.3: sin(x), sin(2x), sin(3x)')

26.2 SCALAR FUNCTIONS OF TWO VARIABLES

As opposed to generating line plots with plot3, it is often desirable to visualize a
scalar function of two variables—that is,

z 5 f 1x,y 2

0
2

4
6

8
10

0

0.5

1
−1

−0.5

0

0.5

1

X-axis

Figure 26.2: sin(x), sin(2x), sin(3x)

Y-axis

Z
-a

xi
s

Section 26.2 Scalar Functions of Two Variables 475

0
2

4
6

8
10

−1
−0.5

0
0.5

1
0

0.2

0.4

0.6

0.8

1

Z
-a

xi
s

Figure 26.3: sin(x), sin(2x), sin(3x)

X-axisY-axis

Here, each pair of values for x and y produces a value for z. A plot of z as a function
of x and y is a surface in three dimensions. To plot this surface in MATLAB, the
values for z are stored in a matrix. As described in the section on 2-D interpolation,
given that x and y are the independent variables, z is a matrix of the dependent
 variable and the association of x and y with z is

z 1i,: 2 5 f 1x,y 1i 2 2 and z 1:,j 2 5 f 1x 1j 2,y 2

That is, the ith row of z is associated with the ith element of y, and the jth column of
z is associated with the jth element of x.

When z = f(x,y) can be expressed simply, it is convenient to use array
 operations to compute all of the values of z in a single statement. To do so
requires that we create matrices of all x- and y-values in the proper orientation.
This orientation is sometimes called plaid by The Mathworks Inc. MATLAB
 provides the function meshgrid to perform this step:

>> x = -3:3; % choose x-axis values

>> y = 1:5; % y-axis values

>> [X,Y] = meshgrid(x,y)

X =

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

476 Chapter 26 Three-Dimensional Graphics

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

Y =

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

4 4 4 4 4 4 4

5 5 5 5 5 5 5

As you can see, meshgrid duplicated x for each of the five rows in y. Similarly, it
duplicated y as a column for each of the seven columns in x.

An easy way to remember which variable is duplicated which way by meshgrid is to
think about 2-D plots. The x-axis varies from left to right, just as the X output of meshgrid
does. Similarly, the y-axis varies from bottom to top, just as the Y output of meshgrid does.

Given X and Y, if z = f(x,y) = (x + y)2, then the matrix of data values defining
the 3-D surface is given simply as

>> Z = (X+Y).^2

Z =

4 1 0 1 4 9 16

1 0 1 4 9 16 25

0 1 4 9 16 25 36

1 4 9 16 25 36 49

4 9 16 25 36 49 64

When a function cannot be expressed simply, you must use For Loops or
While Loops to compute the elements of Z. In many cases, it may be possible to
compute the elements of Z row wise or column wise. For example, if it is possible to
compute Z row wise, the following script file fragment can be helpful:

x = ??? % statement defining vector of x axis values

y = ??? % statement defining vector of y axis values

nx = length(x); % length of x is no. of rows in Z

ny = length(y); % length of y is no. of columns in Z

Z = zeros(nx,ny); % initialize Z matrix for speed

Section 26.2 Scalar Functions of Two Variables 477

for r = 1:nx

(preliminary commands)

Z(r,:) = {a function of y and x(r) defining r-th row of Z}

end

On the other hand, if Z can be computed column wise, the following script file
 fragment can be helpful:

x = ??? % statement defining vector of x axis values

y = ??? % statement defining vector of y axis values

nx = length(x); % length of x is no. of rows in Z

ny = length(y); % length of y is no. of columns in Z

Z = zeros(nx,ny); % initialize Z matrix for speed

for c = 1:ny

(preliminary commands)

Z(:,c) = {a function of y(c) and x defining c-th column of Z}

end

Only when the elements of Z must be computed element by element does the computa-
tion usually require a nested For Loop, such as in the following script file fragment:

x = ??? % statement defining vector of x axis values

y = ??? % statement defining vector of y axis values

nx = length(x); % length of x is no. of rows in Z

ny = length(y); % length of y is no. of columns in Z

Z = zeros(nx,ny); % initialize Z matrix for speed

for r = 1:nx

for c = 1:ny

(preliminary commands)

Z(r,c) = {a function of y(c) and x(r) defining (r,c)-th element}

end

end

478 Chapter 26 Three-Dimensional Graphics

26.3 MESH PLOTS

MATLAB defines a mesh surface by the z-coordinates of points above a rectangular
grid in the x–y plane. It forms a mesh plot by joining adjacent points with straight
lines. The result looks like a fishing net with knots at the data points. The following
example is illustrative:

>> [X,Y,Z] = peaks(30);

>> mesh(X,Y,Z)

>> xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis')

>> title('Figure 26.4: Mesh Plot of Peaks')

−4
−2

0
2

4

−4
−2

0
2

4
−10

−5

0

5

10

X-axis

Figure 26.4: Mesh Plot of Peaks

Y-axis

Z
-a

xi
s

Note on your monitor how the line colors are related to the height of the mesh.
In general, mesh accepts optional arguments to control color use in the plot. (This
ability to change how MATLAB uses color is discussed in the next chapter.) The use
of color is called pseudocolor, since color is used to add a fourth effective dimension
to the graph. Note also that the plot was drawn with a grid. Most 3-D plots, other
than plot3 and a few other exceptions, default to grid on.

In addition to these input arguments, mesh and most 3-D plot functions can also
be called with a variety of input arguments. The syntax used here is the most specific,

Section 26.3 Mesh Plots 479

in that information is supplied for all three axes. The function mesh(Z) plots the matrix
Z versus its row and column indices. The most common variation is to use the vectors
that were passed to meshgrid for the x- and y-axes—for example, mesh(x,y,Z).

As shown in the previous figure, the areas between the mesh lines are opaque
rather than transparent. The MATLAB command hidden controls this aspect of
mesh plots:

>> [X,Y,Z] = sphere(12);

>> subplot(1,2,1)

>> mesh(X,Y,Z), title('Figure 26.5a: Opaque')

>> hidden on

>> axis square off

>> subplot(1,2,2)

>> mesh(X,Y,Z), title('Figure 26.5b: Transparent')

>> hidden off

>> axis square off

Figure 26.5a: Opaque Figure 26.5b: Transparent

The sphere on the left is opaque (the lines are hidden), whereas the one on the right
is transparent (the lines are not hidden).

The MATLAB mesh function has two siblings: meshc, which is a mesh plot
and underlying contour plot, and meshz, which is a mesh plot that includes a zero
plane. The following example uses both of these forms:

>> [X,Y,Z] = peaks(30);

>> meshc(X,Y,Z) % mesh plot with underlying contour plot

>> title('Figure 26.6: Mesh Plot with Contours')

>> pause(5)

>> meshz(X,Y,Z) % mesh plot with zero plane

>> title('Figure 26.7: Mesh Plot with Zero Plane')

480 Chapter 26 Three-Dimensional Graphics

−4
−2

0
2

4

−4
−2

0
2

4
−10

−5

0

5

10

Figure 26.6: Mesh Plot with Contours

−4
−2

0
2

4

−4
−2

0
2

4
−10

−5

0

5

10

Figure 26.7: Mesh Plot with Zero Plane

The function waterfall is identical to mesh, except that the mesh lines appear only
in the x-direction:

>> waterfall(X,Y,Z)

>> hidden off

Section 26.4 Surface Plots 481

>> xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis')

>> title('Figure 26.8: Waterfall Plot')

−4
−2

0
2

4

−4
−2

0
2

4
−10

−5

0

5

10

X-axis

Figure 26.8: Waterfall Plot

Y-axis

Z
-a

xi
s

26.4 SURFACE PLOTS

A surface plot looks like a mesh plot, except that the spaces between the lines,
called patches, are filled in. Plots of this type are generated using the surf
 function:

>> [X,Y,Z] = peaks(30);

>> surf(X,Y,Z)

>> xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis')

>> title('Figure 26.9: Surface Plot of Peaks')

Note how this plot type is a dual of sorts to a mesh plot. Here, the lines are black and
the patches have color, whereas in mesh, the patches are the color of the axes and
the lines have color. As with mesh, color varies along the z-axis, with each patch or
line having constant color. Surface plots default to grid on also.

In a surface plot, one does not think about hidden line removal as in a mesh plot, but
rather about different ways to shade the surface. In this surf plot, the shading is faceted
like a stained-glass window or object, where the black lines are the joints between the

482 Chapter 26 Three-Dimensional Graphics

−4
−2

0
2

4

−4
−2

0
2

4
−10

−5

0

5

10

X-axis

Figure 26.9: Surface Plot of Peaks

Y-axis

Z
-a

xi
s

 constant-color patches. In addition to faceted shading, MATLAB provides flat shading
and interpolated shading. These are applied by using the function shading:

>> [X,Y,Z] = peaks(30);

>> surf(X,Y,Z) % same plot as above

>> shading flat

>> xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis')

>> title('Figure 26.10: Surface Plot with Flat Shading')

>> pause(5)

>> shading interp

>> title('Figure 26.11: Surface Plot with Interpolated Shading')

In flat shading, the black lines are removed and each patch retains its single color,
whereas in interpolated shading, the lines are removed but each patch is given
interpolated shading. That is, the color of each patch is interpolated over its area
on the basis of the color values assigned to each of its vertices. Needless to say,
interpolated shading requires much more computation than faceted and flat
 shading. While shading has a significant visual impact on surf plots, it also applies
to mesh plots, although in this case the visual impact is relatively minor, since only
the lines have color. Shading also affects pcolor and fill plots.

On some computer systems, interpolated shading creates extremely long
 printing delays or, at worst, printing errors. These problems are not due to the size of
the PostScript data file, but rather to the enormous amount of computation required

Section 26.4 Surface Plots 483

−4
−2

0
2

4

−4
−2

0
2

4
−10

−5

0

5

10

X-axis

Figure 26.10: Surface Plot with Flat Shading

Y-axis

Z
-a

xi
s

−4
−2

0
2

4

−4
−2

0
2

4
−10

−5

0

5

10

X-axis

Figure 26.11: Surface Plot with Interpolated Shading

Y-axis

Z
-a

xi
s

in the printer to generate shading that continually changes over the surface of the
plot. Often, the easiest solution to this problem is to use flat shading for printouts.

In some situations, it may be convenient to remove part of a surface so that
underlying parts of the surface can be seen. In MATLAB, this is accomplished by

Section 26.4 Surface Plots 485

>> xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis')

>> title('Figure 26.13: Surface Plot with Contours')

>> pause(5)

>> surfl(X,Y,Z) % surf plot with lighting

>> shading interp % surfl plots look best with interp shading

>> colormap pink % they also look better with shades of a single color

>> xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis')

>> title('Figure 26.14: Surface Plot with Lighting')

−4
−2

0
2

4

−4
−2

0
2

4
−10

−5

0

5

10

X-axis

Figure 26.13: Surface Plot with Contours

Y-axis

Z
-a

xi
s

The function surfl makes a number of assumptions regarding the light applied
to the surface. It does not use the light object. Rather, it simply modifies the color
of the surface to give the appearance of lighting. (The next chapter provides more
rigorous information regarding light properties.) Also, in the preceding commands,
colormap is a MATLAB function for applying a different set of colors to a figure.
(This function is discussed in the next chapter as well.)

The surfnorm(X,Y,Z) function computes surface normals for the surface defined
by X, Y, and Z, plots the surface, and plots vectors normal to the surface at the data points:

>> [X,Y,Z] = peaks(15);

>> surfnorm(X,Y,Z)

>> xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis')

>> title('Figure 26.15: Surface Plot with Normals')

484 Chapter 26 Three-Dimensional Graphics

setting the data values where holes are desired to the special value NaN. Since NaNs
have no value, all MATLAB plotting functions simply ignore NaN data points,
leaving a hole in the plot where they appear:

>> [X,Y,Z] = peaks(30);

>> x = X(1,:); % vector of x axis

>> y = Y(:,1); % vector of y axis

>> i = find(y>.8 & y<1.2); % find y axis indices of hole

>> j = find(x>-.6 & x<.5); % find x axis indices of hole

>> Z(i,j) = nan; % set values at hole indices to NaNs

>> surf(X,Y,Z)

>> xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis')

>> title('Figure 26.12: Surface Plot with a Hole')

−4
−2

0
2

4

−4
−2

0
2

4
−10

−5

0

5

10

X-axis

Figure 26.12: Surface Plot with a Hole

Y-axis

Z
-a

xi
s

The MATLAB surf function also has two siblings: surfc, which is a surface plot
and underlying contour plot, and surfl, which is a surface plot with lighting. Both
are used in the following code:

>> [X,Y,Z] = peaks(30);

>> surfc(X,Y,Z) % surf plot with contour plot

486 Chapter 26 Three-Dimensional Graphics

Note that the surface normals are unnormalized and valid at each vertex. The form
[Nx,Ny,Nz] = surfnorm(X,Y,Z) computes the 3-D surface normals and returns
their components, but does not plot the surface.

−4
−2

0
2

4

−4
−2

0
2

4
−10

−5

0

5

10

X-axis

Figure 26.14: Surface Plot with Lighting

Y-axis

Z
-a

xi
s

−4
−2

0
2

4

−4
−2

0
2

4
−10

−5

0

5

10

X-axis

Figure 26.15: Surface Plot with Normals

Y-axis

Z
-a

xi
s

Section 26.5 Mesh and Surface Plots of Irregular Data 487

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

2

4

6

8

10

Figure 26.16: Triangular Mesh Plot

26.5 MESH AND SURFACE PLOTS OF IRREGULAR DATA

Irregular or nonuniformly spaced data can be visualized using the functions
 trimesh, trisurf, and voronoi:

>> x = rand(1,50);

>> y = rand(1,50);

>> z = peaks(x,y*pi);

>> t = delaunay(x,y);

>> trimesh(t,x,y,z)

>> hidden off

>> title('Figure 26.16: Triangular Mesh Plot')

>> pause(5)

>> trisurf(t,x,y,z)

>> title('Figure 26.17: Triangular Surface Plot')

>> pause(5)

>> voronoi(x,y)

>> title('Figure 26.18: Voronoi Plot')

(See Chapter 18 for more information on Delaunay triangulation and Voronoi
 diagrams.)

488 Chapter 26 Three-Dimensional Graphics

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

2

4

6

8

10

Figure 26.17: Triangular Surface Plot

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Figure 26.18: Voronoi Plot

Section 26.6 Changing Viewpoints 489

26.6 CHANGING VIEWPOINTS

Note that the default viewpoint of 3-D plots is looking down at the z 5 0 plane at
an angle of 30 degrees and looking up at the x 5 0 plane at an angle of 37.5 degrees.
The angle of orientation with respect to the z 5 0 plane is called the elevation, and
the angle with respect to the x 5 0 plane is called the azimuth. Thus, the default
3-D viewpoint is an elevation of 30 degrees and an azimuth of −37.5 degrees. The
default 2-D viewpoint is an elevation of 90 degrees and an azimuth of 0 degrees. The
 concepts of azimuth and elevation are described visually in the following figure.

In MATLAB, the function view changes the graphical viewpoint for all types
of 2-D and 3-D plots. The forms view(az,el) and view([az,el]) change the
viewpoint to the specified azimuth az and elevation el:

>> x = -7.5:.5:7.5; y = x; % create a data set

>> [X,Y] = meshgrid(x,y);

>> R = sqrt(X.^2+Y.^2)+eps;

>> Z = sin(R)./R;

>> subplot(2,2,1)

>> surf(X,Y,Z)

>> view(-37.5,30)

>> xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis')

>> title('Figure 26.19a: Default Az = -37.5, El = 30')

490 Chapter 26 Three-Dimensional Graphics

>> subplot(2,2,2)

>> surf(X,Y,Z)

>> view(-37.5+90,30)

>> xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis')

>> title('Figure 26.19b: Az Rotated to 52.5')

>> subplot(2,2,3)

>> surf(X,Y,Z)

>> view(-37.5,60)

>> xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis')

>> title('Figure 26.19c: El Increased to 60')

>> subplot(2,2,4)

>> surf(X,Y,Z)

>> view(0,90)

>> xlabel('X-axis'), ylabel('Y-axis')

>> title('Figure 26.19d: Az = 0, El = 90')

−10
0

10
−10

0
10
−1

0

1

X-axis

Figure 26.19a: Default Az = −37.5, El = 30 Figure 26.19b: Az Rotated to 52.5

Y-axis

Z
-a

xi
s

−10
0

10 −10
0

10
−1

0

1

Y-axisX-axis

Z
-a

xi
s

−10
0

10

−10

0

10
−1

0
1

X-axis

Figure 26.19c: El Increased to 60

Y-axis

Z
-a

xi
s

−10 −5 0 5 10
−10

−5

0

5

10

X-axis

Figure 26.19d: Az = 0, El = 90

Y
-a

xi
s

In addition to these forms, view offers additional features that are summarized in
its online documentation and help text:

Section 26.7 Camera Control 491

>> help view

VIEW 3-D graph viewpoint specification.

VIEW(AZ,EL) and VIEW([AZ,EL]) set the angle of the view from which an

observer sees the current 3-D plot. AZ is the azimuth or horizontal

rotation and EL is the vertical elevation (both in degrees). Azimuth

revolves about the z-axis, with positive values indicating counter-

clockwise rotation of the viewpoint. Positive values of elevation

correspond to moving above the object; negative values move below.

VIEW([X Y Z]) sets the view angle in Cartesian coordinates. The

magnitude of vector X,Y,Z is ignored.

Here are some examples:

AZ = -37.5, EL = 30 is the default 3-D view.

AZ = 0, EL = 90 is directly overhead and the default 2-D view.

AZ = EL = 0 looks directly up the first column of the matrix.

AZ = 180 is behind the matrix.

VIEW(2) sets the default 2-D view, AZ = 0, EL = 90.

VIEW(3) sets the default 3-D view, AZ = -37.5, EL = 30.

[AZ,EL] = VIEW returns the current azimuth and elevation.

T = VIEW returns the current general 4-by-4 transformation matrix.

VIEW(AX,. . .) uses axes AX instead of the current axes.

See also viewmtx, the axes properties view, Xform.

Reference page in Help browser

doc view

In addition to the view function, the viewpoint can be set interactively with the
mouse by using the function rotate3d. The function rotate3d on turns on mouse-
based view rotation, rotate3d off turns it off, and rotate3d with no arguments
toggles the state. This functionality is also available on the Tools menu in a Figure
window, as well as on a button on the Figure toolbar. In reality, the Rotate 3D menu
item and toolbar button both call rotate3d to do the requested work.

26.7 CAMERA CONTROL

The viewpoint control provided by the view function is convenient, but limited in
 capabilities. To provide complete control of a 3-D scene, camera capabilities are needed.
That is, one must have all of the capabilities available when filming a movie with a

492 Chapter 26 Three-Dimensional Graphics

 camera. Alternatively, one must have all of the capabilities available in a 3-D computer
or console game environment. In this environment, there are two 3-D coordinate systems
to manage: one at the camera and one at what the camera is pointed at (i.e., the camera
target). The camera functions in MATLAB manage and manipulate the relationships
between these two coordinate systems and provide control over the camera lens.

Use of the camera functions in MATLAB is generally not easy for a novice.
Therefore, to simplify the use of these functions, most are made available interac-
tively from the Tools menu or from the Camera toolbar in a Figure window. To view
the Camera toolbar, choose it from the View menu in the Figure window. By using the
interactive camera tools, you avoid dealing with the input and output arguments that the
Command window functions require. Given the ease with which the interactive tools
can be used, the complexity involved in using and describing the camera functions, and
the relatively small number of potential users, they are not described in this text. The
MATLAB documentation contains a rigorous discussion of these functions and their
use. The camera functions available in MATLAB are listed at the end of this chapter.

26.8 CONTOUR PLOTS

Contour plots show lines of constant elevation or height. If you’ve ever seen a
 topographical map, you know what a contour plot looks like. In MATLAB, contour plots
in 2-D and 3-D are generated by using the contour and contour3 functions, respectively:

>> [X,Y,Z] = peaks;

>> subplot(1,2,1)

>> contour(X,Y,Z,20) % generate 20 2-D contour lines

>> axis square

>> xlabel('X-axis'), ylabel('Y-axis')

>> title('Figure 26.20a: 2-D Contour Plot')

>> subplot(1,2,2)

>> contour3(X,Y,Z,20) % the same contour plot in 3-D

>> xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis')

>> title('Figure 26.20b: 3-D Contour Plot')

The pcolor function maps height to a set of colors and presents the same
information as the contour plot, at the same scale:

>> subplot(1,2,1)

>> pcolor(X,Y,Z)

>> shading interp % remove the grid lines

>> axis square

>> title('Figure 26.21a: Pseudocolor Plot')

Section 26.8 Contour Plots 493

X-axis

Y
-a

xi
s

Figure 26.20a: 2−D Contour Plot

−2 0 2
−3

−2

−1

0

1

2

3

−2
0

2

−2

0

2

−6

−4

−2

0

2

4

6

8

Z
-a

xi
s

Figure 26.20b: 3−D Contour Plot

X-axisY-axis

Combining the idea of a pseudocolor plot with a 2-D contour produces a filled
 contour plot. In MATLAB, this plot is generated by the function contourf:

>> subplot(1,2,2)

>> contourf(X,Y,Z,12) % filled contour plot with 12 contours

>> axis square

>> xlabel('X-axis'), ylabel('Y-axis')

>> title('Figure 26.21b: Filled Contour Plot')

−2 0 2
−3

−2

−1

0

1

2

3
Figure 26.21a: Pseudocolor Plot

X-axis

Y
-a

xi
s

Figure 26.21b: Filled Contour Plot

−2 0 2
−3

−2

−1

0

1

2

3

494 Chapter 26 Three-Dimensional Graphics

Contour lines can be labeled by using the clabel function, which requires a matrix
of lines and optional text strings that are returned by contour, contourf, and contour3:

>> C = contour(X,Y,Z,12);

>> clabel(C)

>> title('Figure 26.22: Contour Plot With Labels')

−5.42
−4.3

−3.17

−2.05

−2.05

−0.923

−0.923

0.202

0.202

1.33

1.33
2.45

2.45

2.45
3.58

3.58

3.58

4.7 5.83
6.95

Figure 26.22: Contour Plot With Labels

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Alternatively, inline labels are generated by using two arguments returned by
the contour functions. For example, modifying the preceding MATLAB code to
[C,h] = contour(X,Y,Z,12); clabel(C,h) produces inline labels that follow
the contours. Finally, by using the mouse, you can select which contours to label
by providing 'manual' as the last input argument to clabel. Inline or horizontal
labels are used, depending on the presence of the second argument h, as illustrated
previously.

26.9 SPECIALIZED 3-D PLOTS

MATLAB provides a number of specialized plotting functions in addition to those
already discussed. The function ribbon(Y) plots the columns of Y as separate
 ribbons. The function ribbon(x,Y) plots x versus the columns of Y. The width of
the ribbons can also be specified by using the syntax ribbon(x,Y,width), where
the default width is 0.75. The following code uses the first of these forms:

Section 26.9 Specialized 3-D Plots 495

>> Z = peaks;

>> ribbon(Z)

>> title('Figure 26.23: Ribbon Plot of Peaks')

0
10

20
30

40
50

0

20

40

60
−10

−5

0

5

10

Figure 26.23: Ribbon Plot of Peaks

The function quiver(x,y,dx,dy) draws directional or velocity vectors
(dx,dy) at the points (x,y):

>> [X,Y,Z] = peaks(16);

>> [DX,DY] = gradient(Z,.5,.5);

>> contour(X,Y,Z,10)

>> hold on

>> quiver(X,Y,DX,DY)

>> hold off

>> title('Figure 26.24: 2-D Quiver Plot')

Three-dimensional quiver plots of the form quiver3(x,y,z,Nx,Ny,Nz) display
the vectors (Nx,Ny,Nz) at the points (x,y,z):

>> [X,Y,Z] = peaks(20);

>> [Nx,Ny,Nz] = surfnorm(X,Y,Z);

Section 26.9 Specialized 3-D Plots 497

−2
0

2

−2

0

2

−6

−4

−2

0

2

4

6

Figure 26.25: 3−D Quiver Plot

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Figure 26.26: Five Random Filled Triangles

496 Chapter 26 Three-Dimensional Graphics

Figure 26.24: 2−D Quiver Plot

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

>> surf(X,Y,Z)

>> hold on

>> quiver3(X,Y,Z,Nx,Ny,Nz)

>> axis tight

>> hold off

>> title('Figure 26.25: 3-D Quiver Plot')

The function fill3, being the 3-D equivalent of fill, draws filled polygons in 3-D
space. The form fill3(X,Y,Z,C) uses the arrays X, Y, and Z as the vertices of the
polygon; and C specifies the fill color, as in the following example:

>> fill3(rand(3,5),rand(3,5),rand(3,5),rand(3,5))

>> grid on

>> title('Figure 26.26: Five Random Filled Triangles')

The 3-D equivalent of stem plots discrete sequence data in 3-D space. The form
stem3(X,Y,Z,C,'filled') plots the data points in (X,Y,Z) with lines extending
to the x–y plane. The optional argument C specifies the marker style or color, and
the optional 'filled' argument causes the marker to be filled in. The stem3(Z)

498 Chapter 26 Three-Dimensional Graphics

function plots the points in Z and automatically generates X and Y values. The
 following code uses stem3 with three arguments:

>> Z = rand(5);

>> stem3(Z,'ro','filled');

>> grid on

>> title('Figure 26.27: Stem Plot of Random Data')

1
2

3
4

5

1
2

3
4

5
0

0.2

0.4

0.6

0.8

1

Figure 26.27: Stem Plot of Random Data

26.10 VOLUME VISUALIZATION

In addition to the common mesh, surface, and contour plots, MATLAB offers a
variety of more complex volume and vector visualization functions. These functions
construct plots of scalar and vector quantities in 3-D space. Because they generally
construct volumes rather than surfaces, their input arguments are 3-D arrays, one
for each axis x, y, and z. The points in each 3-D array define a grid of coordinates
or data at the coordinates. For scalar functions, four 3-D arrays are required, one
for each of the three coordinate axes, plus one for the scalar data at the coordinate
points. These arrays are commonly identified as X, Y, Z, and V, respectively. For
vector functions, six 3-D arrays are required, one for each of the three coordinate
axes, plus one for each axis component of the vector at the coordinate points. These
arrays are commonly identified as X, Y, Z, U, V, and W, respectively.

Use of the volume and vector visualization functions in MATLAB requires
an understanding of volume and vector terminology. For example, divergence and
curl describe vector processes, and isosurfaces and isocaps describe visual aspects
of volumes. If you are unfamiliar with these terms, using MATLAB volume and

Section 26.10 Volume Visualization 499

visualization functions can be confusing. It is beyond the scope of this text to cover
the terminology required to rigorously use these volume and vector visualization
functions. However, the structure of the data arrays and the use of several functions
are demonstrated in what follows. The MATLAB documentation contains a more
thorough introduction and more rigorous explanations and examples.

Consider the construction of a scalar function defined over a volume. First,
the volume coordinate axes must be constructed:

>> x = linspace(-3,3,13); % x coordinate points

>> y = 1:20; % y coordinate points

>> z = -5:5; % z coordinate points

>> [X,Y,Z] = meshgrid(x,y,z); % meshgrid works here too!

>> size(X)

ans =

20 13 11

Here, X, Y, Z are 3-D arrays defining the grid. The X array contains x duplicated for
as many rows as length(y) and as many pages as length(z). Similarly, Y contains
y transposed to a column and duplicated for as many columns as length(x) and as
many pages as length(z). And Z contains z permuted to a 1-by-1-by-length(z)
vector and duplicated for as many rows as length(y) and as many columns as
length(x). As described, this is a direct extension of meshgrid to 3-D.

Next, we need to define a function of these data, such as

>> V = sqrt(X.^2 + cos(Y).^2 + Z.^2);

Now, the 3-D arrays X, Y, Z, and V define a scalar function v = f(x,y,z) defined over a
volume. To visualize what this looks like, we can look at slices along planes:

>> slice(X,Y,Z,V,[0 3],[5 15],[-3 5])

>> xlabel('X-axis')

>> ylabel('Y-axis')

>> zlabel('Z-axis')

>> title('Figure 26.28: Slice Plot Through a Volume')

This plot shows slices on planes defined by x = 0, x = 3, y = 5, y = 15, z = –3, and
z = 5, as shown by the last three arguments to the function slice. The color of the
plot is mapped to the values in V on the slices.

The slices displayed need not be planes. They can be any surface, as generated
by the following code:

>> [xs,ys] = meshgrid(x,y);

>> zs = sin(-xs+ys/2); % a surface to use

500 Chapter 26 Three-Dimensional Graphics

−4
−2

0
2

4

0
5

10
15

20
−5

0

5

X-axis

Figure 26.28: Slice Plot Through a Volume

Y-axis

Z
-a

xi
s

>> slice(X,Y,Z,V,xs,ys,zs)

>> xlabel('X-axis')

>> ylabel('Y-axis')

>> zlabel('Z-axis')

>> title('Figure 26.29: Slice Plot Using a Surface')

Here, xs, ys, and zs define a surface to slice through the volume.
Going back to the original slice plot, it is possible to add contour lines to

selected planes by using the contourslice function:

>> slice(X,Y,Z,V,[0 3],[5 15],[-3 5])

>> hold on

>> h = contourslice(X,Y,Z,V,3,[5 15],[]);

>> set(h,'EdgeColor','k','Linewidth',1.5)

>> xlabel('X-axis')

>> ylabel('Y-axis')

>> zlabel('Z-axis')

>> title('Figure 26.30: Slice Plot with Selected Contours')

>> hold off

Section 26.10 Volume Visualization 501

−4
−2

0
2

4

0
5

10
15

20
−1

−0.5

0

0.5

1

X-axis

Figure 26.29: Slice Plot Using a Surface

Y-axis

Z
-a

xi
s

−4
−2

0
2

4

0
5

10
15

20
−5

0

5

X-axis

Figure 26.30: Slice Plot with Selected Contours

Y-axis

Z
-a

xi
s

502 Chapter 26 Three-Dimensional Graphics

Here, contour lines are added to the x = 3, y = 5, and y = 15 planes. With the use of
Handle Graphics features, the contour lines are set to black and their width is set to
1.5 points.

In addition to looking at slices through a volume, surfaces where the scalar
 volume data V has a specified value can be plotted by using the isosurface
 function. This function returns triangle vertices in a manner similar to Delaunay
triangulation, the results being in the form required by the patch function, which
plots the triangles:

>> [X,Y,Z,V] = flow(13); % get flow data

>> fv = isosurface(X,Y,Z,V,-2); % find surface of value -2

>> subplot(1,2,1)

>> p = patch(fv); % plot V = -2 surface

>> set(p,'FaceColor',[.5 .5 .5],'EdgeColor','Black'); % modify patches

>> view(3), axis equal tight, grid on % pretty it up

>> title({'Figure 26.31a:' 'Isosurface Plot, V = 2'})

>> subplot(1,2,2)

>> p = patch(shrinkfaces(fv,.3)); % shrink faces to 30% of original

>> set(p,'Facecolor',[.5 .5 .5],'EdgeColor','Black'); % modify patches

>> view(3), axis equal tight, grid on % pretty it up

>> title({'Figure 26.31b:' 'Shrunken Face Isosurface Plot, V = 2'})

2
4−2

0
2

−2

0

2

Figure 26.31a:
Isosurface Plot, V = 2

2
4−2

0
2

−2
−1

0
1

2

Figure 26.31b:
Shrunken Face Isosurface Plot, V = 2

Section 26.10 Volume Visualization 503

The preceding plots also demonstrate the use of the function shrinkfaces, which
does exactly what its name suggests.

Sometimes volume data contain too many points for efficient display. The
 functions reducevolume and reducepatch represent two ways to improve the display
of an isosurface. The function reducevolume eliminates data before the isosurface is
formed, whereas reducepatch seeks to eliminate patches while minimizing distortion
in the underlying surface. The following code is illustrative:

>> [X,Y,Z,V] = flow;

>> fv = isosurface(X,Y,Z,V,-2);

>> subplot(2,2,1) % Original

>> p = patch(fv);

>> Np = size(get(p,'Faces'),1);

>> set(p,'FaceColor',[.5 .5 .5],'EdgeColor','Black');

>> view(3), axis equal tight, grid on % pretty it up

>> zlabel(sprintf('%d Patches',Np))

>> title('Figure 26.32a: Original')

>> subplot(2,2,2) % Reduce Volume

>> [Xr,Yr,Zr,Vr] = reducevolume(X,Y,Z,V,[3 2 2]);

>> fvr = isosurface(Xr,Yr,Zr,Vr,-2);

>> p = patch(fvr);

>> Np = size(get(p,'Faces'),1);

>> set(p,'FaceColor',[.5 .5 .5],'EdgeColor','Black');

>> view(3), axis equal tight, grid on % pretty it up

>> zlabel(sprintf('%d Patches',Np))

>> title('Figure 26.32b: Reduce Volume')

>> subplot(2,2,3) % Reduce Patch

>> p = patch(fv);

>> set(p,'FaceColor',[.5 .5 .5],'EdgeColor','Black');

>> view(3), axis equal tight, grid on % pretty it up

>> reducepatch(p,.15) % keep 15 percent of the faces

>> Np = size(get(p,'Faces'),1);

>> zlabel(sprintf('%d Patches',Np))

>> title('Figure 26.32c: Reduce Patches')

504 Chapter 26 Three-Dimensional Graphics

>> subplot(2,2,4) % Reduce Volume and Patch

>> p = patch(fvr);

>> set(p,'FaceColor',[.5 .5 .5],'EdgeColor','Black');

>> view(3), axis equal tight, grid on % pretty it up

>> reducepatch(p,.15) % keep 15 percent of the faces

>> Np = size(get(p,'Faces'),1);

>> zlabel(sprintf('%d Patches',Np))

>> title('Figure 26.32d: Reduce Both')

1 2 3 4 5
−2

0
2

−2

0

2

Figure 26.32a: Original

35
68

 P
at

ch
es

2 4−2
0

2

−2

0

2

Figure 26.32b: Reduce Volume

65
6

P
at

ch
es

1 2 3 4 5
−2

0
2

−2

0

2

Figure 26.32c: Reduce Patches

53
4

P
at

ch
es

2 4−2
0

2

−2

0

2

Figure 26.32d: Reduce Both

98
 P

at
ch

es

Three-dimensional data can also be smoothed by filtering it with the smooth3
 function, as in the following code:

>> data = rand(10,10,10); % random data

>> datas = smooth3(data,'box',3); % smoothed data

>> subplot(1,2,1) % random data

>> p = patch(isosurface(data,.5), . . .

'FaceColor','Blue','EdgeColor','none');

>> patch(isocaps(data,.5), . . .

'FaceColor', 'interp', 'EdgeColor', 'none');

Section 26.11 Easy Plotting 505

>> isonormals(data,p)

>> view(3); axis vis3d tight off

>> camlight; lighting phong

>> title({'Figure 26.33a:' 'Random Data'})

>> subplot(1,2,2) % smoothed random data

>> p = patch(isosurface(datas,.5), . . .

'FaceColor','Blue','EdgeColor','none');

>> patch(isocaps(datas,.5), . . .

'FaceColor', 'interp', 'EdgeColor', 'none');

>> isonormals(datas,p)

>> view(3); axis vis3d tight off

>> camlight; lighting phong

>> title({'Figure 26.33b:' 'Smoothed Data'})

Figure 26.33a:
Random Data

Figure 26.33b:
Smoothed Data

This example demonstrates the use of the functions isocaps and isonormals. The
function isocaps creates the faces on the outer surfaces of the block. The function
isonormals modifies properties of the drawn patches, so that lighting works correctly.

26.11 EASY PLOTTING

For those occasions when you don’t want to take the time to specify the data points
explicitly for a 3-D plot, MATLAB provides the functions ezcontour, ezcontour3,
ezcontourf, ezmesh, ezmeshc, ezplot3, ezsurf, and ezsurfc. These functions
construct plots like their equivalents without the ez prefix. However, the input
 arguments are functions defined by function handles, string expressions, or symbolic
math objects and, optionally, the axis limits over which the plot is to be generated.

506 Chapter 26 Three-Dimensional Graphics

Internally, the functions compute the data and generate the desired plot, as in the
following example:

>> fstr = ['3*(1-x).^2.*exp(-(x.^2) - (y+1).^2)' . . .

' - 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2)' . . .

' - 1/3*exp(-(x+1).^2 – y.^2)'];

>> subplot(2,2,1)

>> ezmesh(fstr)

>> title('Figure 26.34a: Mesh of peaks(x,y)')

>> subplot(2,2,2)

>> ezsurf(fstr)

>> title('Figure 26.34b: Surf of peaks(x,y)')

>> subplot(2,2,3)

>> ezcontour(fstr)

>> title('Figure 26.34c: Contour of peaks(x,y)')

>> subplot(2,2,4)

>> ezcontourf(fstr)

>> title('Figure 26.34d: Contourf of peaks(x,y)')

−2 0 2
−202

−10

0

10

x

Figure 26.34a: Mesh of peaks(x,y)

y
−2 0 2

−202
−10

0

10

x

Figure 26.34b: Surf of peaks(x,y)

y

x

y

Figure 26.34c: Contour of peaks(x,y)

−2 0 2

−2

0

2

x

y

Figure 26.34d: Contourf of peaks(x,y)

−2 0 2

−2

0

2

Section 26.12 Summary 507

26.12 SUMMARY

The following table documents MATLAB functions for 3-D plotting:

Function Description

plot3 Plots lines and points in 3-D space

mesh Mesh surface

meshc Mesh with underlying contour plot

meshz Mesh with zero plane

surf Surface plot

surfc Surface plot with underlying contour plot

surfl Surface plot with basic lighting

fill3 Filled 3-D polygons

comet3 3-D animated comet-like trajectories

sphere Generates or plots a sphere

ellipsoid Generates or plots an ellipsoid

cylinder Generates or plots a cylinder

shading Color shading mode

hidden Mesh hidden line removal

surfnorm Surface normals

axis Controls axis scaling and appearance

grid Grid line visibility

box Axis box visibility

hold Holds current plot

subplot Creates multiple axes in Figure window

daspect Data aspect ratio

pbaspect Plot box aspect ratio

xlim x-axis limits

ylim y-axis limits

zlim z-axis limits

view 3-D viewpoint specification

508 Chapter 26 Three-Dimensional Graphics

Function Description

viewmtx View transformation matrix

rotate3d Interactive axes rotation

campos Camera position

camtarget Camera target

camva Camera view angle

camup Camera up vector

camproj Camera projection

camorbit Camera orbit

campan Pan camera

camdolly Dolly camera

camzoom Zoom camera

camroll Roll camera

camlookat Looks at specific object

camlight Camera lighting creation and placement

title Plot title

xlabel x-axis label

ylabel y-axis label

zlabel z-axis label

text Places text on plot

gtext Places text with mouse

contour Contour plot

contourf Filled contour plot

contour3 3-D contour plot

clabel Contour labeling

pcolor Pseudocolor plot

voronoi Voronoi diagram

trimesh Triangular mesh plot

trisurf Triangular surface plot

scatter3 3-D scatter plot

Section 26.11 Summary 509

stem3 3-D stem plot

waterfall Waterfall plot

ezmesh Easy mesh plot of string expression

ezmeshc Easy mesh plot with contour plot of string expression

ezplot3 Easy 3-D linear plot of string expression

ezsurf Easy surface plot of string expression

ezsurfc Easy surface plot with contour plot of string expression

ezcontour Easy contour plot of string expression

ezcontourf Easy filled contour plot of string expression

vissuite Help for visualization suite

isosurface Isosurface extractor

isonormals Isosurface normals

isocaps Isosurface end caps

isocolors Isosurface and patch colors

contourslice Contours in slice planes

slice Volumetric slice plot

streamline Streamlines from data

stream3 3-D streamlines

stream2 2-D streamlines

quiver3 3-D quiver plot

quiver 2-D quiver plot

divergence Divergence of a vector field

curl Curl and angular velocity of a vector field

coneplot Cone plot

streamtube Stream tube

streamribbon Stream ribbon

streamslice Streamlines in slice planes

streamparticles Displays stream particles

interpstreamspeed Interpolates streamline vertices from speed

subvolume Extracts subset of volume data set

510 Chapter 26 Three-Dimensional Graphics

Function Description

reducevolume Reduces volume data set

volumebounds Returns volume and color limits

smooth3 Smoothes 3-D data

reducepatch Reduces number of patch faces

shrinkfaces Reduces size of patch faces

rectint Rectangle intersection area

polyarea Area of polygon

inpolygon True for points inside or on a polygonal region

511

MATLAB provides a number of tools for displaying information visually in two and
three dimensions. For example, the plot of a sine curve presents more information
at a glance than a set of data points could. The technique of using plots and graphs
to present data sets is known as data visualization. In addition to being a powerful
computational engine, MATLAB excels in presenting data visually in interesting
and informative ways.

Often, however, a simple 2-D or 3-D plot cannot display all of the information
you would like to present at one time. Color can provide an additional dimension.
Many of the plotting functions discussed in previous chapters accept a color
 argument that can be used to add that additional dimension.

This discussion begins with an investigation of colormaps—how to use them,
display them, alter them, and create them. Next, techniques for simulating more
than one colormap in a Figure window or for using only a portion of a colormap are
 illustrated. Finally, lighting models are discussed, and examples are presented. As in
the preceding chapters, the figures in this chapter do not exhibit color, although they
do have color on a computer screen. As a result, if you are not following along in
MATLAB, it may take some imagination to understand the concepts covered in this
chapter.

27.1 UNDERSTANDING COLORMAPS

MATLAB uses a numerical array with three columns to represent color values.
This array is called a colormap, and each row in the matrix represents an individual
color by using numbers in the range 0 to 1. The numbers in each row indicate the
intensity of red, green, and blue that make up a specific color. The following table
illustrates the correspondence between numerical values in a colormap and colors:

Using Color and Light

27

512 Chapter 27 Using Color and Light

The first column in a colormap is the intensity of red, the second column is the
intensity of green, and the third column is the intensity of blue. Colormap values are
restricted to the range from 0 to 1.

A colormap is a sequence of rows containing red–green–blue (RGB) values
that vary in some prescribed way from the first row to the last. MATLAB provides
a number of predefined colormaps, as shown in the following table:

Red Green Blue Color

1 0 0 Red

0 1 0 Green

0 0 1 Blue

1 1 0 Yellow

1 0 1 Magenta

0 1 1 Cyan

0 0 0 Black

1 1 1 White

0.5 0.5 0.5 Medium gray

0.67 0 1 Violet

1 0.4 0 Orange

0.5 0 0 Dark red

0 0.5 0 Dark green

Colormap Function Description

hsv Hue–saturation–value (HSV) colormap; begins and ends with red

jet Variant of hsv that starts with blue and ends with red

hot Black to red to yellow to white

cool Shades of cyan and magenta

summer Shades of green and yellow

autumn Shades of red and yellow

winter Shades of blue and green

spring Shades of magenta and yellow

Section 27.2 Using Colormaps 513

By default, each of these colormaps (except vga) generates a 64-by-3 array
specifying the RGB descriptions of 64 colors. Each of these functions accepts an
argument specifying the number of rows to be generated. For example, hot(m)
 generates an m-by-3 matrix containing the RGB values of colors ranging from black,
through shades of red, orange, and yellow, to white.

27.2 USING COLORMAPS

The statement colormap(M) installs the matrix M as the colormap to be used in the
 current Figure window. For example, colormap(cool) installs a 64-entry version
of the cool colormap. The form colormap default installs the default colormap,
usually jet.

Line plotting functions, such as plot and plot3, do not use colormaps;
they use the colors listed in the plot color and linestyle table. The sequence
of colors used by these functions varies, depending on the plotting style you
have chosen. Most other plotting functions, such as mesh, surf, contour, fill,
pcolor, and their variations, use the current colormap to determine color
sequences.

Plotting functions that accept a color argument usually accept the argument in
one of three forms:

 (1) a character string representing one of the colors in the plot color and linestyle
table, for example, 'r' or 'red' for red;

 (2) a three-entry row vector representing a single RGB value—for example,
[.25 .50 .75];

 (3) an array. If the color argument is an array, the elements are scaled and used as
indices into the current colormap.

white All white

gray Linear gray scale

bone Gray with a tinge of blue

pink Pastel shades of pink

copper Linear copper tone

prism Alternating red, orange, yellow, green, blue, and violet

flag Alternating red, white, blue, and black

lines Alternating plot line colors

colorcube Enhanced color cube

vga 16-color Windows colormap (16-by-3)

514 Chapter 27 Using Color and Light

27.3 DISPLAYING COLORMAPS

Colormaps can be viewed in a number of ways. One way is to view the elements in
a colormap matrix directly:

>> hot(8)

ans =

 0.33333 0 0

 0.66667 0 0

 1 0 0

 1 0.33333 0

 1 0.66667 0

 1 1 0

 1 1 0.5

 1 1 1

>> gray(5)

ans =

 0 0 0

 0.25 0.25 0.25

 0.5 0.5 0.5

 0.75 0.75 0.75

 1 1 1

This example shows two standard colormaps. The first is an eight-element hot
 colormap, and the second is a five-element gray colormap. The gray colormap
increments all three components equally, thereby producing various shades of gray.

A colormap is best visualized graphically. The pcolor and rgbplot functions
are useful in this case, as in the following example:

>> n = 21;

>> map = copper(n);

>> colormap(map)

>> subplot(2,1,1)

>> [xx,yy] = meshgrid(0:n,[0 1]);

>> c = [1:n+1;1:n+1];

>> pcolor(xx,yy,c)

>> set(gca,'Yticklabel','')

Section 27.3 Displaying Colormaps 515

>> title('Figure 27.1a: Pcolor of Copper')

>> subplot(2,1,2)

>> rgbplot(map)

>> xlim([0,n])

>> title('Figure 27.1b: RGBplot of Copper')

These figures show how a copper colormap varies, from its first row (shown
on the left) to its last row (shown on the right). The function rgbplot simply plots
the three columns of the colormap in red, green, and blue, respectively, thereby
 dissecting the three components visually.

When a 3-D plot is made, the color information in the plot can be displayed
as auxiliary information in a colorbar by using the colorbar function. For example,
consider the following:

>> mesh(peaks)

>> axis tight

>> colorbar

>> title ('Figure 27.2: Colorbar Added')

0 2 4 6 8 10 12 14 16 18 20

Figure 27.1a: Pcolor of Copper

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1
Figure 27.1b: RGBplot of Copper

516 Chapter 27 Using Color and Light

27.4 CREATING AND ALTERING COLORMAPS

The fact that colormaps are arrays means that you can manipulate them exactly like
other arrays. The function brighten takes advantage of this feature to adjust a given
colormap to increase or decrease the intensity of the colors. The form brighten(beta)
brightens (0 < beta ≤ 1) or darkens (-1 ≤ beta < 0) the current colormap. The form
brighten(beta) followed by brighten(-beta) restores the original colormap.
The command newmap = brighten(beta) creates a brighter or darker version of
the current colormap without changing the current map. The command mymap =
brighten(cmap,beta) creates an adjusted version of the specified colormap without
affecting either the current colormap or the specified colormap cmap.

Colormaps can be created by generating an m-by-3 array mymap and installing
it with colormap(mymap). Each value in a colormap matrix must be between 0 and 1.
If you try to use a matrix with more or less than three columns, or one containing
any values less than 0 or greater than 1, colormap will report an error.

Colormaps can be converted between the red–green–blue standard and
the hue–saturation–value standard by using the rgb2hsv and hsv2rgb functions.
MATLAB, however, always interprets colormaps as RGB values. Colormaps can
be combined as well, as long as the result satisfies the size and value constraints.
For example, the colormap called pink is simply

pinkmap = sqrt(2/3*gray + 1/3*hot);

Again, the result is a valid colormap only if all elements of the m-by-3 matrix are
between 0 and 1 inclusive.

10
20

30
40

10
20

30
40

−5

0

5

Figure 27.2: Colorbar Added

−6

−4

−2

0

2

4

6

8

In this plot, color is associated with the z-axis, and the colorbar associates z-coordinate
values with the colors in the colormap.

Section 27.4 Creating and Altering Colormaps 517

Normally, a colormap is scaled to extend from the minimum to the maximum
values of your data—that is, the entire colormap is used to render your plot. You may
occasionally wish to change the way these colors are used. The caxis function, which
stands for color axis, allows you to use the entire colormap for a subset of your data
range or to use only a portion of the current colormap for your entire data set.

The statement [cmin, cmax] = caxis returns the minimum and maximum
data values mapped to the first and last entries of the colormap, respectively. These
are normally set to the minimum and maximum values of your data. For example,
mesh(peaks) creates a mesh plot of the peaks function and sets caxis to [-6.5466,
8.0752], the minimum and maximum z values. Data points between these values
use colors interpolated from the colormap.

The function caxis([cmin,cmax]) uses the entire colormap for data in the range
between cmin and cmax. Data points greater than cmax are rendered with the color asso-
ciated with cmax, and data points less than cmin are rendered with the color associated
with cmin. If cmin is less than min(data), or cmax is greater than max(data), the colors
associated with cmin or cmax will never be used. Only the portion of the colormap associ-
ated with data will be used. The function caxis('manual') fixes the axis scaling at the
current range. The function caxis('auto') or the command form caxis auto restores
the default values of cmin and cmax. The following example illustrates color axis settings:

>> N = 17;

>> data = [1:N+1;1:N+1]';

>> subplot(1,3,1)

>> colormap(jet(N))

>> pcolor(data)

>> set(gca,'XtickLabel','')

>> title('Figure 27.3: Auto Limits')

>> caxis auto % automatic limits (default)

>> subplot(1,3,2)

>> pcolor(data)

>> axis off

>> title('Extended Limits')

>> caxis([-5,N+5]) % extend the color limits

>> subplot(1,3,3)

>> pcolor(data)

>> axis off

>> title('Restricted Limits')

>> caxis([5,N-5]) % restrict the color limits

518 Chapter 27 Using Color and Light

The first plot on the left is the default plot. This plot covers the complete
 colormap. In the center plot, the color axis is extended, forcing all plotted values
to use a subset of the colormap. In the plot on the right, the color axis is restricted,
forcing the colormap to cover a region in the center of the plot. The plot extremes
simply use the colormap extremes.

27.5 USING COLOR TO DESCRIBE A FOURTH DIMENSION

Surface plots such as mesh and surf vary color along the z-axis, unless a color argument
is given—for example, surf(X,Y,Z) is equivalent to surf(X,Y,Z,Z). Applying color
to the z-axis produces a colorful plot, but does not provide additional information, since
the z-axis already exists. To make better use of color, it is suggested that color be used
to describe some property of the data not reflected by the three axes. To do so requires
specifying different data for the color argument to 3-D plotting functions.

If the color argument to a plotting function is a vector or a matrix, it is
scaled and used as an index into the colormap. This argument can be any real
vector or matrix that is the same size as the other arguments. The following code
is illustrative:

>> x = -7.5:.5:7.5; % data

>> [X,Y] = meshgrid(x); % create plaid data

>> R = sqrt(X.^2 + Y.^2)+eps; % create sombrero

>> Z = sin(R)./R;

2

4

6

8

10

12

14

16

18
Figure 27.3: Auto Limits Extended Limits Restricted Limits

Section 27.5 Using Color to Describe a Fourth Dimension 519

>> subplot(2,2,1)

>> surf(X,Y,Z,Z) % default color order

>> colormap(gray)

>> shading interp

>> axis tight off

>> title('Figure 27.4a: Default, Z')

>> subplot(2,2,2)

>> surf(X,Y,Z,Y) % Y axis color order

>> shading interp

>> axis tight off

>> title('Figure 27.4b: Y axis')

>> subplot(2,2,3)

>> surf(X,Y,Z,X-Y) % diagonal color order

>> shading interp

>> axis tight off

>> title('Figure 27.4c: X - Y')

>> subplot(2,2,4)

>> surf(X,Y,Z,R) % radius color order

Figure 27.4a: Default, Z Figure 27.4b: Y axis

Figure 27.4c: X − Y Figure 27.4d: Radius

520 Chapter 27 Using Color and Light

>> shading interp

>> axis tight off

>> title('Figure 27.4d: Radius')

These subplots demonstrate four simple ways to use color as a fourth
 dimension. Whatever data are provided as the fourth argument to surf is used to
interpolate the colormap. Any function of the first three arguments can be provided,
or some completely independent variable works as well. Using the functions del2
and gradient allows one to apply color with respect to curvature and slope,
 respectively:

>> subplot(2,2,1)

>> surf(X,Y,Z,abs(del2(Z))) % absolute Laplacian

>> colormap(gray)

>> shading interp

>> axis tight off

>> title('Figure 27.5a: |Curvature|')

>> subplot(2,2,2)

>> [dZdx,dZdy] = gradient(Z); % compute gradient of surface

>> surf(X,Y,Z,abs(dZdx)) % absolute slope in x-direction

>> shading interp

>> axis tight off

>> title('Figure 27.5b: |dZ/dx|')

>> subplot(2,2,3)

>> surf(X,Y,Z,abs(dZdy)) % absolute slope in y-direction

>> shading interp

>> axis tight off

>> title('Figure 27.5c: |dZ/dy|')

>> subplot(2,2,4)

>> dR = sqrt(dZdx.^2 + dZdy.^2);

>> surf(X,Y,Z,abs(dR)) % absolute slope in radius

>> shading interp

>> axis tight off

>> title('Figure 27.5d: |dR|')

Section 27.6 Transparency 521

Note how color in these subplots provides an additional dimension to the plotted
surface. The function del2 is the discrete Laplacian function that applies color
based on the curvature of the surface. The function gradient approximates the
gradient, or slope, of the surface with respect to the two coordinate directions.

27.6 TRANSPARENCY

Object transparency is another method that can be used to convey additional
 information in 3-D data visualization. Graphics objects such as surfaces, patches, or
images can be made transparent or semi-transparent to show information that would
normally be hidden, similar to the effect of the hidden command for mesh plots.

Figure 27.5a: |Curvature| Figure 27.5b: |dZ/dx|

Figure 27.5c: |dZ/dy| Figure 27.5d: |dR|

Transparency functions are only effective on platforms that support OpenGL rendering
modes. If OpenGL is not supported, the transparency functions have no effect.

Transparency values (known as alpha values) are similar to color values in that
they are values in the range 0 ≤ alpha ≤ 1, where 0 means completely transparent
and 1 means completely opaque. The alpha(x) function, where x is a scalar, sets
the transparency of all surface, patch, and image objects in the current axes to x.
The alpha('astring') function, where 'astring' is one of 'clear', 'opaque',
'flat', 'interp', or 'texture' sets appropriate alpha values to the applicable
objects. The form alpha(M), where M is a matrix the same size as the color data for
the appropriate objects, sets an alpha value for each element in the object’s data.
The function alpha('alstr'), where 'alstr' is one of 'x', 'y', 'z', 'color', or

522 Chapter 27 Using Color and Light

'rand', sets the alpha values to be the same as the x data, y data, z data, color data,
or random values, respectively. The following code is illustrative:

>> subplot(2,2,1)

>> sphere

>> axis square off

>> alpha(0)

>> title({'Figure 27.6a:','Transparent, alpha = 0'})

>> subplot(2,2,2)

>> sphere

>> axis square off

>> alpha(1)

>> title({'Figure 27.6b:','Opaque, alpha = 1'})

>> subplot(2,2,3)

>> sphere

>> axis square off

>> alpha(0.5)

>> title({'Figure 27.6c:','Semi-transparent, alpha = 0.5'})

>> subplot(2,2,4)

>> sphere

Figure 27.6a:
Transparent, alpha = 0

Figure 27.6b:
Opaque, alpha = 1

Figure 27.6d:
Graduated, alpha = 'color'

Figure 27.6c:
Semi-transparent, alpha = 0.5

Section 27.7 Lighting Models 523

>> axis square off

>> alpha('color')

>> title({'Figure 27.6d:','Graduated, alpha = "color"'})

The alim function gets or sets the alpha limits similar to the caxis function.
The alphamap function gets or sets the alphamap for a figure. The function
alphamap(M), where M is an m-by-1 array of alpha values, sets the current figure’s
alphamap. As with the colormap function, MATLAB supplies a number of
 predefined alphamaps, including the following examples.

Alphamap Function Description

alphamap('default') Sets the alphamap to the default

alphamap('rampup') Linear alphamap with increasing opacity

alphamap('rampdown') Linear alphamap with decreasing opacity

alphamap('vup') Transparent in the center increasing opacity toward each end

alphamap('vdown') Opaque in the center decreasing opacity toward each end

alphamap('increase') Increases opacity by 0.1 across the map

alphamap('decrease') Increases transparency by 0.1 across the map

alphamap('spin') Rotates the current alphamap

amap = alphamap; Returns the current alphamap in amap

Finer control is available for alpha and alphamap by setting properties and values.
Consult the MATLAB documentation for details.

27.7 LIGHTING MODELS

The graphics functions pcolor, fill, fill3, mesh, and surf discussed in the previous
chapters render objects that appear to be well lit from all sides by very diffuse light.
This technique emphasizes the characteristics of the objects in the Figure window and
enhances the user’s ability to visualize the data being analyzed. Although the data can
be visualized quite clearly, the realism of the scene can be enhanced or diminished by
creating different lighting effects.

The shading function selects faceted, flat, or interpolated shading. (Examples of
each of these were illustrated in Chapter 26.) Although requiring more computational
power and subsequently more time to render, interpolated shading of the objects in a
scene can enhance the realism of the scene being rendered.

One or more light sources can be added to simulate the highlights and shadows
associated with directional lighting. The function light creates a white light source
infinitely far away along the vector [1 0 1]. Once the light source has been created, the
lighting function allows you to select from four different lighting models: none (which
ignores any light source), flat (the default when a light source is created), phong, and

524 Chapter 27 Using Color and Light

gouraud. Each of these models uses a different algorithm to change the appearance of
the object. Flat lighting uses a uniform color for each face of the object. Gouraud lighting
interpolates the face colors from the vertices. Phong lighting interpolates the normals at
the vertices across each face and calculates the reflectance at each pixel. While colormaps
are properties of Figure windows, light is a property, or child, of the axes. Therefore, each
axis in a Figure window can be separately lit, as in the following example:

>> subplot(2,2,1)

>> sphere

>> light

>> shading interp

>> axis square off

>> lighting none

>> title('Figure 27.7a: No Lighting')

>> subplot(2,2,2)

>> sphere

>> light

>> shading interp

>> axis square off

>> lighting flat

>> title('Figure 27.7b: Flat Lighting')

>> subplot(2,2,3)

>> sphere

>> light

>> shading interp

>> axis square off

>> lighting gouraud

>> title('Figure 27.7c: Gouraud Lighting')

>> subplot(2,2,4)

>> sphere

>> light

>> shading interp

>> axis square off

>> lighting phong

>> title('Figure 27.7d: Phong Lighting')

Section 27.7 Lighting Models 525

In addition to lighting, the appearance of objects in an axis can be changed
by modifying the apparent reflective characteristics, or reflectance, of surfaces.
Reflectance is made up of a number of components:

 • Ambient light—strength of the uniform directionless light in the figure
 • Diffuse reflection—intensity of the soft directionless reflected light
 • Specular reflection—intensity of the hard directional reflected light
 • Specular exponent—controls the size of the specular “hot spot” or spread
 • Specular color reflectance—determines the contribution of the surface color

to the reflectance

Some predefined surface-reflectance properties are available by using the material
function. Options include shiny, dull, metal, and default for restoring the default
surface-reflectance properties. The form material([ka kd ks n sc]), where
n and sc are optional, sets the ambient strength, diffuse reflectance, specular
reflectance, specular exponent, and specular color reflectance of objects in an axis.
The following code illustrates the first four options:

>> subplot(2,2,1)

>> sphere

>> colormap(gray)

>> light

>> shading interp

>> axis square off

>> material default

>> title('Figure 27.8a: Default Material')

Figure 27.7a: No Lighting Figure 27.7b: Flat Lighting

Figure 27.7d: Phong LightingFigure 27.7c: Gouraud Lighting

526 Chapter 27 Using Color and Light

>> subplot(2,2,2)

>> sphere

>> light

>> shading interp

>> axis square off

>> material shiny

>> title('Figure 27.8b: Shiny Material')

>> subplot(2,2,3)

>> sphere

>> light

>> shading interp

>> axis square off

>> material dull

>> title('Figure 27.8c: Dull Material')

>> subplot(2,2,4)

>> sphere

>> light

>> shading interp

Figure 27.8a: Default Material

Figure 27.8c: Dull Material Figure 27.8d: Metal Material

Figure 27.8b: Shiny Material

Section 27.8 Summary 527

>> axis square off

>> material metal

>> title('Figure 27.8d: Metal Material')

Note that the function light is fairly limited. It creates white light emanating from
an infinite distance away along a given direction. In reality, light is a Handle Graphics
object-creation function. The function light offers a variety of properties that can be set.
For example, the light color, position, and style can be set, with style meaning that the light
can be a point source at a given position or can be infinitely far away along some vector:

>> Hl = light('Position',[x,y,z],'Color',[r,g,b],'Style','local');

This command creates a light source at position (x,y,z) using light color [r,g,b]
and specifies that the position is a location ('local') rather than a vector
 ('infinite'). It also saves the handle of the light object (Hl), which can be used to
change the properties of the light source at a later time. For example,

>> set(Hl,'Position',[1 0 1],'Color',[1 1 1],'Style','infinite');

sets the light source defined by the handle Hl back to its default characteristics. (For more
information see Chapter 30 or consult the MATLAB online documentation.)

27.8 SUMMARY

The following table documents MATLAB functions for color and lighting:

Function Description

light Light object-creation function

lighting Sets lighting mode (flat, gouraud, phong, or none)

lightangle Positions light object in spherical coordinates

material Sets material reflectance (default, shiny, dull, or metal)

camlight Sets light object with respect to camera

brighten Brightens or darkens colormap

caxis Sets or gets color axis limits

diffuse Finds surface diffuse reflectance

specular Finds surface specular reflectance

surfnorm Computes surface normals

surfl Creates surface plot with lighting

528 Chapter 27 Using Color and Light

Function Description

colorbar Creates colorbar

colordef Defines default color properties

colormap Sets or gets Figure window colormap

colormapeditor GUI for creating colormaps

hsv2rgb Converts hue–saturation–value color values to red–green–blue model

rgb2hsv Converts red–green–blue color values to hue–saturation–value model

rgbplot Plots colormap

shading Selects surface shading (flat, faceted, or interp)

spinmap Spins colormap

whitebg Changes plot axes background color

graymon Sets graphics defaults for grayscale monitors

autumn Colormap with shades of red and yellow

bone Gray-scale colormap with a tinge of blue

cool Colormap with shades of cyan and magenta

copper Colormap with linear copper tone

flag Colormap with alternating red, white, blue, and black

gray Colormap with linear gray scale

hot Colormap with black, red, yellow, and white

hsv Colormap based on hue, saturation, and value progression

jet Colormap variant of hsv that starts with blue and ends with red

lines Colormap based on line colors

prism Colormap with alternating red, orange, yellow, green, blue, and violet

spring Colormap with shades of magenta and yellow

summer Colormap with shades of green and yellow

vga 16-color Windows VGA colormap

winter Colormap with shades of blue and green

alim Gets or sets alpha limits

alpha Gets or sets alpha properties

alphamap Gets or sets alphamap

529

MATLAB provides commands for displaying several types of images. Images can be
created and stored as standard double-precision floating-point numbers (double)
and, optionally, as 8-bit (uint8) or 16-bit (uint16) unsigned integers. MATLAB
can read and write image files in a number of standard graphics file formats, as
well as use load and save to save image data in MAT-files. MATLAB provides
 commands for creating and playing animations as movies (sequences of frames).
Sound functions are available as well for a number of sound formats.

28.1 IMAGES

Images in MATLAB consist of a data matrix and usually an associated colormap
matrix. There are three types of image data matrices, each interpreted differently:
indexed images, intensity images, and truecolor, or RGB, images.

An indexed image requires a colormap and interprets the image data as
 indices into the colormap matrix. The colormap matrix is a standard colormap—any
m-by-3 array containing valid RGB data. Given an image data array X(i,j) and a
colormap array cmap, the color of each image pixel Pij is cmap(X(i,j),:). This
implies that the data values in X are integers within the range [1 length(cmap)].
This image can be displayed by using the following code:

>> image(X); colormap(cmap)

An intensity image scales the image data over a range of intensities. This
form is normally used with images to be displayed in gray scale or one of the other
 monochromatic colormaps, but other colormaps can be used if desired. The image

Images, Movies,
and Sound

28

530 Chapter 28 Images, Movies, and Sound

data are not required to be in the range [1 length(cmap)], as is the case with
indexed images. The data are scaled over a given range, and the result is used to
index into the colormap. For example,

>> imagesc(X,[0 1]); colormap(gray)

associates the value 0 with the first colormap entry, and the value 1 with the last
colormap entry. Values in X between 0 and 1 are scaled and used as indices into the
colormap. If the scale is omitted, it defaults to [min(X(:)) max(X(:))].

A truecolor, or RGB, image is created from an m-by-n-by-3 data array
 containing valid RGB triples. The row and column dimensions specify the pixel
 location, and the page of third dimension specifies each color component. For
example, pixel Pij is rendered in the color specified by X(i,j,:). A colormap is
not required, because the color data are stored within the image data array itself.
For example,

>> image(X)

displays the image, where X is an m-by-n-by-3 truecolor, or RGB, image. The image
X can contain uint8, uint16, or double data.

If images are displayed on default axes, the aspect ratio will often be incorrect
and the image will be distorted. Issuing

>> axis image off

sets the axis properties so that the aspect ratio matches the image and the axis
labels and ticks are hidden. To force each pixel in the image to occupy one pixel
on the display requires setting figure and axes object properties, as in the following
 example:

>> load clown % sample image

>> [r,c] = size(X); % pixel dimensions

>> figure('Units','Pixels','Position',[100 100 c r])

>> image(X)

>> set(gca,'Position',[0 0 1 1])

>> colormap(map)

Here, the figure is set to display exactly the same number of pixels as the image by
setting its width and height equal to that of the image. Then, the axes position is set
to occupy the entire figure in normalized units.

MATLAB installations have a number of sample images in addition to clown.mat
used in the preceding example. The demos subdirectory on the MATLAB
path contains cape.mat, clown.mat, detail.mat, durer.mat, earth.mat,
 flujet.mat, gatlin.mat, mandrill.mat, and spine.mat. Each of these files
contain images that can be displayed by issuing

Section 28.2 Image Formats 531

>> load filename

>> image(X), colormap(map)

>> title(caption)

>> axis image off

28.2 IMAGE FORMATS

The image and imagesc commands can display 8- and 16-bit images without first
converting them to the double format. However, the range of data values for uint8
is [0 255], as supported in standard graphics file formats, and the range of data
values for uint16 is [0 65535].

For indexed uint8 images, image maps the value 0 to the first entry in a
256-entry colormap and the value 255 to the last entry, by automatically supplying
the proper offset. Since the normal range of double data for indexed images is
[1 length(cmap)], converting between uint8 and double or uint16 and double
requires shifting the values by 1. Before MATLAB 7, mathematical operations on
uint8 and uint16 arrays were not defined. As a result, to perform mathematical
operations on unsigned integers in previous versions of MATLAB requires
 conversion from integers to the double format. For example, the code

>> Xdouble = double(Xuint8) + 1;

>> Xuint8 = uint8(Xdouble – 1);

converts the uint8 data in Xuint8 to double and back, taking into account the offset
of 1. With the introduction of arithmetic for integer data types in MATLAB 7, it is
now possible to perform operations without conversion to double precision. This
facilitates easier image manipulation in MATLAB.

For 8-bit intensity and RGB images, the range of values is normally [0 255]
rather than [0 1]. To display 8-bit intensity and RGB images, use either of the
 following commands:

>> imagesc(Xuint8,[0 255]); colormap(cmap)

>> image(Xuint8)

The 8-bit color data contained in an RGB image is automatically scaled when it
is displayed. For example, the color white is normally [1 1 1] when doubles are
used. If the same color is stored as 8-bit data, it is represented as [255 255 255].
Conversion of an RGB image between uint8 and double can also be normalized,
as in the following code:

>> Xdouble = double(Xuint8)/255;

>> Xuint8 = uint8(round(Xdouble*255));

532 Chapter 28 Images, Movies, and Sound

Conversion of uint16 RGB images are normalized the same way, using 65535
rather than 255 as the constant.

The Xrgb = ind2rgb(Xind,cmap) function converts an indexed image
and associated colormap into an RGB image. The indexed image can be double,
uint8, or uint16, while the resulting RGB image is always a double. The
 companion function rgb2ind converts an RGB image into an indexed image and
associated colormap using uniform quantization, minimum variance quantization,
or colormap approximation, depending on usage. See the help text for rgb2ind
for details. Other image conversion functions available in MATLAB include
imapprox, dither, and cmunique. See the help text for complete descriptions and
usage of these functions.

The optional Image Processing Toolbox available for MATLAB contains
many additional functions for manipulating images. This toolbox is valuable if you
regularly manipulate images.

28.3 IMAGE FILES

Image data can be saved to files and reloaded into MATLAB using many different
file formats. The normal MATLAB save and load functions support image data
in double, uint8, or uint16 format in the same way that they support any other
MATLAB variable and data type. When saving indexed images or intensity images
with nonstandard colormaps, be sure to save the colormap as well as the image data,
using, for example, the command

>> save myimage.mat X map

MATLAB also supports a number of industry-standard image file formats
using the imread and imwrite functions. Information about the contents of a
graphics file can be obtained with the imfinfo function. The help text for imread
gives extensive information regarding image read formats and features. Following is
a list of the major formats supported.

Type Description Extensions

BMP Windows Bitmap bmp

CUR Windows Cursor resources cur

GIF Graphics Interchange Format gif

HDF Hierarchical Data Format hdf

ICO Windows Icon resources ico

JPEG Joint Photographic Experts Group jpg, jpeg

Section 28.3 Image Files 533

The calling syntax for imwrite varies, depending on the image type and
file format. The help text for imwrite, shown in part as follows, gives extensive
 information regarding image save formats and features:

Table: summary of supported image types

BMP 1-bit, 8-bit and 24-bit uncompressed images

GIF 8-bit images

HDF 8-bit raster image datasets, with or without associated

colormap; 24-bit raster image datasets; uncompressed or

with RLE or JPEG compression

JPEG 8-bit, 12-bit, and 16-bit Baseline JPEG images

JPEG2000 1-bit, 8-bit, and 16-bit JPEG2000 images

PBM Any 1-bit PBM image, ASCII (plain) or raw (binary) encoding.

PCX 8-bit images

PGM Any standard PGM image. ASCII (plain) encoded with

arbitrary color depth. Raw (binary) encoded with up

to 16 bits per gray value.

JPEG 2000 JPEG 2000 j2c, j2k, jp2, jpf, jpx

PBM Portable Bitmap pbm

PCX Windows Paintbrush pcx

PGM Portable Graymap pgm

PNG Portable Network Graphics png

PNM Portable Any Map pnm

PPM Portable Pixmap ppm

RAS Sun Raster ras

TIFF Tagged Image File Format tif, tiff

XWD X Window Dump xwd

534 Chapter 28 Images, Movies, and Sound

PNG 1-bit, 2-bit, 4-bit, 8-bit, and 16-bit grayscale images;

8-bit and 16-bit grayscale images with alpha channels;

1-bit, 2-bit, 4-bit, and 8-bit indexed images; 24-bit

and 48-bit truecolor images; 24-bit and 48-bit truecolor

images with alpha channels

PNM Any of PPM/PGM/PBM (see above) chosen automatically.

PPM Any standard PPM image. ASCII (plain) encoded with

 arbitrary color depth. Raw (binary) encoded with up

to 16 bits per color component.

RAS Any RAS image, including 1-bit bitmap, 8-bit indexed,

24-bit truecolor and 32-bit truecolor with alpha.

TIFF Baseline TIFF images, including 1-bit, 8-bit, 16-bit,

and 24-bit uncompressed images, images with packbits

compression, images with LZW compression, and images with

Deflate compression; 8-bit and 24-bit images with JPEG

compression; 1-bit images with CCITT 1D, Group 3, and

Group 4 compression; CIELAB, ICCLAB, and CMYK images.

XWD 8-bit ZPixmaps

28.4 MOVIES

Animation in MATLAB takes one of two forms. First, if the computations
needed to create a sequence of images can be performed quickly enough,
figure and axes properties can be set so that screen rendering occurs suffi-
ciently quickly, making the animation visually smooth. On the other hand, if
computations require significant time or the resulting images are complex
enough, you must create a movie.

In MATLAB, the functions getframe and movie provide the tools required
to capture and play movies. The getframe command takes a snapshot of the current
 figure, and movie plays back the sequence of frames after they have been captured. The
output of getframe is a structure containing all of the information needed by movie.
Capturing multiple frames is simply a matter of adding elements to the structure array.
The following code is illustrative:

Section 28.4 Movies 535

The preceding script file creates a movie by incrementally rotating the sphere and capturing
a frame at every increment. Finally, the movie is played in the same figure window. The
variable m contains a structure array, with each array element containing a single frame:

>> m

m =

1x25 struct array with fields:

 cdata

 colormap

>> m(1)

ans =

 cdata : [420x560x3 uint8]

 colormap: []

The color data holding the image cdata make up a truecolor, or RGB, bitmap image.
As a result, the complexity of contents of the axes does not influence the bytes required
to store a movie. The size of the axes in pixels determines the size of the image and
therefore the number of bytes required to store a movie. Because the color data is
stored in cdata, a colormap is unnecessary and is always empty for RGB images.

Conversion between indexed images and movie frames is possible with the
im2frame and frame2im functions. For example,

>> [X,cmap] = frame2im(M(n))

converts the nth frame of the movie matrix M into an indexed image X and associated
colormap cmap. Similarly,

>> M(n) = im2frame(X,cmap)

% moviemaking example: rotate a 3-D surface plot

[X,Y,Z] = sphere(50); % create data

surf(X,Y,Z,X) % plot the sphere

axis vis3d tight off % fix axes for 3D and turn off axes ticks, etc.

for k = 1:25 % rotate and capture each frame

 view(-37.5+15*(k-1),30) % change the viewpoint for this frame

 m(k) = getframe(gcf); % add this figure to the frame structure array

end % end of loop

movie(gcf,m) % play the movie in the existing figure window

536 Chapter 28 Images, Movies, and Sound

converts the indexed image X and colormap cmap into the nth frame of the movie
matrix M. Note that im2frame can be used to convert a series of images into a
movie in the same way that getframe converts a series of figures or axes into
a movie.

28.5 MOVIE FILES

Movies can be saved to AVI-format (Audio Video Interleave format) files
using the movie2avi function. The form movie2avi(m,'spin.avi') creates
the file spin.avi in the current directory from the MATLAB movie structure
array m using default settings. The help text for movie2avi lists the available
parameters:

>> help movie2avi

MOVIE2AVI(MOV,FILENAME) Create AVI movie from MATLAB movie

MOVIE2AVI(MOV,FILENAME) creates an AVI movie from the MATLAB movie MOV.

MOVIE2AVI(MOV,FILENAME,PARAM,VALUE,PARAM,VALUE. . .) creates an AVI movie

from the MATLAB movie MOV using the specified parameter settings.

Available parameters

FPS - The frames per second for the AVI movie. The

default is 15 fps.

COMPRESSION - A string indicating the compressor to use. On UNIX,

this value must be 'None'. Valid values for this param-

eter on Windows are 'Indeo3', 'Indeo5', 'Cinepak',

'MSVC', or 'None'. To use a custom compressor, the

value can be the four character code as specified by

the codec documentation. An error will result if the

specified custom compressor can not be found. The

default is 'Indeo5' on Windows and 'None' on UNIX.

QUALITY - A number between 0 and 100. This parameter has no

effect on uncompressed movies. Higher quality numbers

result in higher video quality and larger file sizes,

where lower quality numbers result in lower video

quality and smaller file sizes. The default is 75.

Section 28.5 Movie Files 537

KEYFRAME - For compressors that support temporal compression,

this is the number of key frames per second. The

default is 2 key frames per second.

COLORMAP - An M-by-3 matrix defining the colormap to be used for

indexed AVI movies. M must be no greater than 256 (236 if

using Indeo compression). There is no default colormap.

VIDEONAME - A descriptive name for the video stream. This

parameter must be no greater than 64 characters long.

The default name is the filename.

See also avifile, aviread, aviinfo, movie.

Reference page in Help browser

doc movie2avi

The avifile, aviread, and aviinfo functions mentioned in the help
text along with the addframe function are depreciated and will be removed in
future releases. The newer VideoReader and VideoWriter classes and methods
replace all of the functionality of the depreciated functions and also support many
 additional video formats. The following code saves the movie m into an AVI file:

>> vo = VideoWriter('spin2.avi')

VideoWriter

General Properties:

 Filename: 'spin2.avi'

 Path: '/home/bl/matlab/mm'

 FileFormat: 'avi'

 Duration: 0

Video Properties:

 ColorChannels: 3

 Height:

 Width:

 FrameCount: 0

 FrameRate: 30

538 Chapter 28 Images, Movies, and Sound

 VideoBitsPerPixel: 24

 VideoFormat: 'RGB24'

 VideoCompressionMethod: 'Motion JPEG'

 Quality: 75

Methods

>> open(vo)

>> writeVideo(vo,m)

>> close(vo)

Video file formats supported by VideoWriter can be listed using the getProfiles
method:

>> VideoWriter.getProfiles()

Summary of installed VideoWriter profiles:

 Name Description

------------------- ----------------------------

Archival Video file compression with JPEG 2000 codec

with lossless mode enabled.

Motion JPEG 2000 Video file compression with JPEG 2000 codec.

Motion Jpeg AVI An AVI file with Motion JPEG compression

Uncompressed AVI An AVI file with uncompressed RGB24 video data

Video file formats supported by VideoReader vary by platform and by
installed software codecs:

>> VideoReader.getFileFormats() % Linux platform example

Video File Formats:

 .avi - AVI File

 .mj2 - Motion JPEG2000

 .ogg - Ogg File

 .ogv - Ogg Video

>> VideoReader.getFileFormats() % Windows platform example

Video File Formats:

 .asf - ASF File

 .asx - ASX File

Section 28.5 Movie Files 539

 .avi - AVI File

 .mj2 - Motion JPEG2000

 .mpg - MPEG-1

 .wmv - Windows Media Video

The VideoReader function creates a VideoReader object which can then
be used to get information about a video file and to import data into MATLAB.
The following code is illustrative.

>> v1 = VideoReader('spin.avi')

Summary of Multimedia Reader Object for 'spin.avi'.

Video Parameters: 15.00 frames per second, RGB24 560x420.

 25 total video frames available.

>> get(v1) % display more detail

General Settings:

Duration = 1.6667

Name = spin.avi

Path = /home/bl/matlab/mm

Tag =

Type = VideoReader

UserData = []

Video Settings:

BitsPerPixel = 24

FrameRate = 15

Height = 420

NumberOfFrames = 25

VideoFormat = RGB24

Width = 560

>> f3 = read(v1,3); % read frame 3 of the file into f3

>> size(f3) % this is a single RGB image

ans =

 420 560 3

>> class(f3) % f3 contains uint8 data

ans =

uint8

> image(f3) % render the image

540 Chapter 28 Images, Movies, and Sound

Note that while VideoWriter objects must be opened and closed, VideoReader
objects do not. The object-creation functions VideoWriter and VideoReader
return errors if the file cannot be created, or cannot be read, respectively.

28.6 SOUND

Sound manipulation in MATLAB is supported by the versatile audioplayer and
audiorecorder objects and associated methods. The audioplayer function creates
an audioplayer object from supplied data or from an audiorecorder object. This
audioplayer object can be manipulated with methods such as get, set, play,
pause, resume, stop, isplaying, and playblocking. The audiorecorder
 function creates an audiorecorder object for recording sound data from a sound
card. Similar methods are available including get, set, record, pause, resume,
stop, isrecording, and recordblocking. The getaudiodata method creates an
array that stores the recorded signal values. The getplayer and play methods both
 create audioplayer objects. The latter plays the recorded audio as well. Consult the
online documentation for detailed usage and additional options.

In addition to these high-level functions, MATLAB supports sound by using
a variety of lower-level functions. The function sound(y,f,b) sends the signal in
 vector y to the computer’s speaker at sample frequency f. If y is a two-column matrix
rather than a vector, the sound is played in stereo on supported platforms. Values
in y outside of the range [-1 1] are clipped. If f is omitted, the default sample
 frequency of 8192 Hz is used. MATLAB plays the sound by using b bits per sample,
if possible. Most platforms support b = 8 or b = 16. If b is omitted, b = 8 is used.

The soundsc function is the same as sound, except that the values in y are scaled
to the range [-1 1] rather than clipped. This results in a sound that is as loud as
 possible without clipping. An additional argument is available that permits mapping
a range of values in y to the full sound range. The format is soundsc(y,. . . ,[smin
smax]). If omitted, the default range is [min(y) max(y)].

Two industry-standard sound file formats are supported in MATLAB. NeXT/
Sun audio format (file.au) files and Microsoft WAVE format (file.wav) files can be
written and read.

The NeXT/Sun audio sound storage format supports multichannel data for 8-bit
mu-law, 8-bit linear, and 16-bit linear formats. The most general form of auwrite is
auwrite(y,f,b,'method','filename'), where y is the sample data, f is the
 sample rate in hertz, b specifies the number of bits in the encoder, 'method' is a
string specifying the encoding method, and 'filename' is a string specifying the
name of the output file. Each column of y represents a single channel. Any value in y
outside of the range [-1 1] is clipped prior to writing the file. The f, b, and 'method'
 arguments are optional. If omitted, f = 8000, b = 8, and method = 'mu'. The
method argument must be either 'linear' or 'mu'. If the file name string contains no
extension, '.au' is appended.

Conversion between mu-law and linear formats can be performed by using
the mu2lin and lin2mu functions. (More information about the exact conversion
processes involved with these two functions can be found by using the online help.)

Section 28.7 Summary 541

Multichannel 8-, 16-, 24-, and 32-bit WAVE format sound files can be created
with the wavwrite function. The most general form is wavwrite(y,f,b,'filename'),
where y is the sample data, f is the sample rate in hertz, b specifies the number of
bits in the encoder, and 'filename' is a string specifying the name of the output file.
Each column of y represents a single channel. Any value in y outside of the range
[-1 1] is clipped prior to writing the file. The f and b arguments are optional. If omitted,
f = 8000 and b = 16. If the file name string contains no extension, '.wav' is appended.

Both auread and wavread have the same syntax and options. The most general
form is[y,f,b] = auread('filename',n), which loads a sound file specified by the
string 'filename' and returns the sampled data into y. The appropriate extension
(.au or .wav) is appended to the file name if no extension is given. Values in y are
in the range [-1 1]. If three outputs are requested, as previously illustrated, the
sample rate in hertz and the number of bits per sample are returned in f and b,
respectively. If n is given, only the first n samples are returned from each channel
in the file. If n = [n1 n2], only samples from n1 through n2 are returned from
each channel. The form [samples,channels] = wavread('filename','size')
returns the size of the audio data in the file, rather than the data itself. This form is
useful for preallocating storage or estimating resource use.

28.7 SUMMARY

The following table summarizes the image, movie, and sound capabilities in MATLAB:

Function Description

image Creates indexed or truecolor (RGB) image object

imagesc Creates intensity image object

colormap Applies colormap to image

axis image Adjusts axis scaling for image

uint8 Conversion to unsigned 8-bit integer

uint16 Conversion to unsigned 16-bit integer

double Conversion to double precision

imread Reads image file

imwrite Writes image file

imfinfo Image file information

imapprox Approximates indexed image by one with fewer colors

dither Converts RGB image to indexed image using dithering

cmunique Eliminates unneeded colors in colormap; converts RGB or
intensity image to indexed image

542 Chapter 28 Images, Movies, and Sound

Function Description

imformats Manages image file format registry

getframe Captures movie frame from axis or figure

movie Plays movie from movie structure

frame2im Converts movie frame to image

im2frame Converts image to movie frame

im2java Converts image to Java image

rgb2ind Converts RGB image to indexed image

ind2rgb Converts indexed image to RGB image

avifile Creates AVI movie file

addframe Adds frame to AVI movie file

close Closes AVI movie file

aviread Reads AVI movie file

aviinfo Information about an AVI movie file

movie2avi Converts movie in MATLAB format to AVI format

VideoReader Multimedia reader object and methods

VideoWriter Multimedia writer object and methods

audiorecorder Audio recorder object and methods

audioplayer Audio player object and methods

audiodevinfo Audio device information (Windows platform only)

sound Plays vector as sound

soundsc Autoscales and plays vector as sound

wavplay Plays WAVE format sound file (depreciated; use audioplayer instead)

wavrecord Records sound using audio input device (depreciated; use
audiorecorder instead)

wavread Reads WAVE format sound file

wavwrite Writes WAVE format sound file

auread Reads NeXT/Sun sound file

auwrite Writes NeXT/Sun sound file

lin2mu Converts linear audio to mu-law

mu2lin Converts mu-law audio to linear

543

MATLAB graphics are very effective tools for data visualization and analysis.
Therefore, it is often desirable to create hard-copy output or to use these graphics in
other applications. MATLAB provides a very flexible system for printing graphics
and creating output in many different graphics formats including JPEG, EPS, and
TIFF. Most other applications can import one or more of the graphics file formats
supported by MATLAB.

Perhaps the most important issue to recognize when printing or exporting
graphics is that the figure is rerendered in the process. That is, what you see on
the screen is not what you get on a printed page or in an exported file. By default,
MATLAB can choose a different renderer (painters, zbuffer, or OpenGL), can
change the axes tick-mark distribution, and can change the size of the figure being
printed and exported. Naturally, MATLAB provides the capability to enforce what-
you-see-is-what-you-get (WYSIWYG), but this is not the default action taken.

In general, printing and exporting are not simple, because there is an almost
uncountable number of possible combinations involving printer drivers, printer
protocols, graphics file types, renderers, bit-mapped versus vector graphics descrip-
tions, dots-per-inch selection, color versus black and white, compression, platform
limitations, and so on. Most of this complexity is hidden when default output is
requested. However, when very specific printed characteristics are required,
or when exporting a figure for insertion into a word processing or presentation
 document, the complexities of printing and exporting must be understood. In these
cases, it is not uncommon to spend a significant amount of time tweaking output
until it matches the characteristics desired.

This chapter introduces the printing and exporting capabilities of MATLAB.
As in other areas, MATLAB provides menu items, as well as Command window

Printing and Exporting
Graphics

29

544 Chapter 29 Printing and Exporting Graphics

functions, for printing and exporting. The menu approach offers convenience,
but limited flexibility, whereas the function approach offers complete flexibility,
but requires much more knowledge on the part of the user.

Accessing the online documentation for the function print by issuing >> doc print
provides a great deal of information about printing and exporting.

29.1 PRINTING AND EXPORTING USING MENUS

When graphics are displayed in a Figure window, the top of the window contains a
menu bar and possibly one or more toolbars. The menu bar has a number of menus,
including File, Edit, View, Insert, Tools, Desktop, Window, and Help. Of these, the
File menu lists menu items for printing and exporting the current figure. In addition,
the Edit menu on the Windows platform contains menu items for exporting the
 current figure to the system clipboard. The File menu includes the menu items
Export Setup, Print Preview, and Print. Each of these items offers dialog boxes for
setting various aspects of printing and exporting.

The Export Setup menu item makes it possible to save the current figure in
one of many graphics formats. The Export Setup dialog box presents an opportunity
to set many properties including size and features of the saved figure. Customized
feature sets (export styles) may be saved and loaded as well. The Export button
brings up an Export dialog, where the user chooses a directory, file name, and file
type for the current figure.

The Print Preview menu item (or the printpreview command) opens a
 window showing how the figure will be rendered on the printed page. Options are
provided to set many properties of the printed page including page layout, line, text,
and color properties, and the renderer used to print the figure. Here also, feature
sets may be saved and loaded. After any necessary changes are made, a button is
available to directly call the Print dialog box to print the figure.

The Print menu item, the Print button in the Print Preview dialog box, or the
printdlg command opens a standard Print dialog box, from which the printer and
the number of copies can be chosen. The option to print to a file is available here
as well. The printer, the paper type and source, and other options can be selected.
Finally, there is a Print button to send the graphic to the printer (or to open a file
dialog box.)

On the Windows platform, the Edit menu provides export capabilities through
the system clipboard. The Copy Figure menu item places the current figure on the
 clipboard based on the options set in the preferences dialog box opened by selecting
the Copy Options menu item. The current figure can be copied in either bitmap (BMP)
or enhanced meta file (EMF) format. A template can be used to change line widths
and font sizes, as well as to set other default options for copy operations. These options
apply only when a figure is copied to the clipboard by using the Copy Figure menu
item. They have no effect when printing or exporting a figure to a graphics file.

Section 29.2 Command Line Printing and Exporting 545

See “How to Print or Export” in the MATLAB Graphics documentation for
details on all aspects of printing and exporting using menus and dialog boxes.

29.2 COMMAND LINE PRINTING AND EXPORTING

The function print handles all graphics printing and exporting from the Command
window. This single function offers numerous options that are specified as additional
input arguments. The syntax for the command form of print is

>> print -device -option -option filename

where all parameters or arguments are optional. The parameter -device specifies the
device driver to be used, -option specifies one or more options, and filename speci-
fies the name of an output file if the output is not sent directly to a printer. Because of
 command–function duality, print can be called as a function as well. For example,

>> print('-device','-option','-option','filename')

is equivalent to the preceding print command statement and is quite useful in
scripts and functions.

In general, print options including –device can be specified in any order.
Recognized print -option strings are described in the following table:

-option Description

-adobecset Selects PostScript default character set encoding (early PostScript
printer drivers and EPS file formats only)

-append Appends figure to existing file (PostScript printer drivers only)

-cmyk Prints with CMYK colors instead of RGB colors (PostScript printer
drivers and EPS file format only)

-device Printer driver to be used

-dsetup Displays the Print Setup dialog box (Windows only)

-fhandle Specifies numerical handle of figure to print or export

-loose Uses loose PostScript bounding box (PostScript, EPS, and
Ghostscript only)

-noui Suppresses printing of uicontrol objects

-opengl Renders using OpenGL algorithm (bitmap format)

-painters Renders using Painter’s algorithm (vector format)

-Pprinter Specifies name of printer to use (UNIX only)

546 Chapter 29 Printing and Exporting Graphics

29.3 PRINTERS AND EXPORT FILE FORMATS

The print function supports a number of output devices (printers and file types).
Many of these printers are supported through the use of Ghostscript printer drivers,
which convert PostScript printer code to native printer code. This conversion
process is transparent to the user, but limits printable fonts to those supported in
PostScript.

The function print also supports exporting to a file or to the clipboard in a
number of graphics formats. Export file formats are also specified by the -device
option to print. Some of the supported file formats are shown in the following table:

-option Description

-rnumber Specifies resolution in dots per inch (dpi). Settable for most devices
for printing. Settable for built-in MATLAB file formats except
EMF and ILL. Not settable for many Ghostscript export formats.
Default export resolution is 150 dpi for Z-buffer and OpenGL
renderers, and 864 dpi for Painter’s renderer.

-swindowtitle Specifies name of SIMULINK system window to print or export

-v Verbose. Displays the Print dialog box (Windows only)

-zbuffer Renders using Z-buffer algorithm (bitmap format)

-device Description Type Generator

-dbmp16m 24-bit BMP Bitmap Ghostscript

-dbmp256 8-bit BMP with fixed colormap Bitmap Ghostscript

-dbmp 24-bit BMP Bitmap MATLAB

-dbmpmono Monochrome BMP Bitmap Ghostscript

-dmeta EMF (Windows only) Vector MATLAB

-deps EPS level 1, black and white,
including grayscale

Vector MATLAB

-depsc EPS level 1, color Vector MATLAB

-deps2 EPS level 2, black and white,
including grayscale

Vector MATLAB

-depsc2 EPS level 2, color Vector MATLAB

-hdf HDF, 24-bit Bitmap MATLAB

-dill Adobe Illustrator Vector MATLAB

Section 29.3 Printers and Export File Formats 547

Type print -d in the Command window for a list of all of the printer drivers
supported on your platform.

MATLAB also provides methods for exporting images to graphics
files. The functions getframe, imwrite, avifile, and addframe provide the
 capability to create and save image files from figures. (See Chapter 28 for more
information.)

-djpeg

-djpegNN

JPEG, 24-bit, quality setting of 75
(uses Z-buffer)
JPEG, 24-bit, quality setting of NN

Bitmap MATLAB

-dpbm PBM plain format Bitmap Ghostscript

-dpbmraw PBM raw format Bitmap Ghostscript

-dpcxmono PCX, 1-bit Bitmap Ghostscript

-dpcx24b PCX, 24-bit color (three 8-bit
planes)

Bitmap Ghostscript

-dpcx256 PCX, 8-bit color (256 colors) Bitmap Ghostscript

-dpcx16 PCX, 16 colors (EGA/VGA) Bitmap Ghostscript

-dpcxgray PCX, grayscale Bitmap Ghostscript

-dpdfwrite PDF, color Vector Ghostscript

-dpgm PGM portable graymap, plain Bitmap Ghostscript

-dpgmraw PGM portable graymap, raw Bitmap Ghostscript

-dpng PNG, 24-bit Bitmap MATLAB

-dppm PPM portable pixmap, plain Bitmap Ghostscript

-dppmraw PPM portable pixmap, raw Bitmap Ghostscript

-dsvg Scalable Vector graphics Vector MATLAB

-dtiff TIFF, 24-bit (rendered using
Z-buffer)

Bitmap MATLAB

-dtiffnocompression TIFF, no compression Bitmap MATLAB

-dtifflzw TIFF, LZW compression Bitmap MATLAB

-dtiffpack TIFF, Packbits compression Bitmap MATLAB

-dtiff24nc TIFF, 24-bit (no compression) Bitmap MATLAB

-tiff Adds TIFF preview to EPS formats
only—must be used in addition to
an EPS device specification

Bitmap MATLAB

548 Chapter 29 Printing and Exporting Graphics

29.4 POSTSCRIPT SUPPORT

All PostScript devices, as well as devices that use Ghostscript, offer limited font
 support. This includes both devices that print and those that save images. The
 following table shows the supported fonts, in addition to common Windows fonts
that map into standard PostScript fonts. (Note that fonts not listed in the table are
mapped to Courier, and that the Windows devices -dwin and -dwinc use standard
Windows printer drivers and therefore support all installed fonts.)

PostScript Font Windows Equivalent

AvantGarde

Bookman

Courier Courier New

Helvetica Arial

Helvetica-Narrow

NewCenturySchlBk New Century Schoolbook

Palatino

Symbol

Times-Roman Times New Roman

ZapfChancery

ZapfDingbats

If your printer supports PostScript, a built-in PostScript driver should be used.
Level 1 PostScript is an older specification and is required for some printers. Level
2 or 3 PostScript produces smaller and faster code and should be used if possible.

If you are using a color printer, a color driver should be used. Black-and-white or
grayscale printers can use either driver. However, when a color driver is used for a black-
and-white printer, the file is larger and colors are dithered, making lines and text less
clear in some cases. When colored lines are printed by using a black-and-white driver,
they are converted to black. When colored lines are printed by using a color driver on
a black-and-white printer, the lines are printed in grayscale. In this case, unless the lines
have sufficient width, they often do not have sufficient contrast with the printed page.

As implemented in MATLAB, PostScript supports surfaces and patches (only
with triangular faces) that have interpolated shading. When printed, the corresponding
PostScript files contain color information at the surface or patch vertices, requiring
the printer to perform the shading interpolation. Depending on the printer charac-
teristics, this may take an excessive amount of time, possibly leading to a printer
error. One way to solve this problem is to use flat shading along with a finer meshed
surface. Another alternative that ensures that the printed output matches the screen
image is to print by using either the Z-buffer or OpenGL renderer with a sufficiently

Section 29.5 Choosing a Renderer 549

high resolution. In this case, the output is in bitmap format and may result in a large
output file, but no interpolation is required by the printer.

29.5 CHOOSING A RENDERER

A renderer processes graphics data such as arrays of vertices and color data into a
format suitable for display, printing, or export. There are two major categories of
graphics formats: bitmap (or raster) graphics and vector graphics.

Bitmap graphics formats contain information such as color at each point in
a grid. As the divisions between points decrease, and the total number of points
increases, the resolution of the resulting graphic increases, and the size of the
resulting file increases. Increasing the number of bits used to specify the color of
each point in the grid increases the total number of possible colors in the resulting
graphic, and also increases the size of the resulting file. Increasing the complexity of
the graphic has no effect on the size of the resulting output file.

Vector graphics formats contain instructions for re-creating the graphic by
using points, lines, and other geometric objects. Vector graphics are easily resized
and usually produce higher-resolution results than bitmap graphics. However, as the
number of objects in the graphic increases, the number of instructions required to
re-create the graphic increases, and the size of the resulting file increases. At some
point, the complexity of the instructions can become too much for an output device
to handle, and the graphic simply cannot be output on the specific output device.

MATLAB supports three rendering methods: OpenGL, Z-buffer, and
Painter’s. Painter’s uses vector format, while OpenGL and Z-buffer produce
 bitmaps. By default, MATLAB automatically selects a renderer based on the
 characteristics of the figure and the printer driver or file format used.

The renderer MATLAB selects for printing or exporting is not necessarily the same
renderer used to display a figure on the screen.

MATLAB’s default selection can be overridden by the user, and this is often
done to make the printed or exported figure look the same as it does on the screen or
to avoid embedding a bitmap in a vector-format output file, such as PostScript or EPS.

Examples of some situations that require specific renderers are as follows:

 • If the figure uses RGB color rather than a single color for surface or patch objects,
the graphic must be rendered by using a bitmap method to properly capture color.

 • HPGL (-dhpgl) and Adobe Illustrator (-dill) output formats use the Painter’s
renderer.

 • JPEG (-djpeg) and TIFF (-dtiff) output formats always use Z-buffer rendering.
 • Lighting effects cannot be reproduced by using the vector-format Painter’s

renderer, and so a bitmap method must be used in this case as well.
 • The OpenGL renderer is the only method that supports transparency.

550 Chapter 29 Printing and Exporting Graphics

The renderer used for printing and exporting can be chosen by using dialog
boxes or options to the print command, or by setting Handle Graphics properties.
The Advanced tab in the Print Preview dialog box can be used to select a renderer.
The -zbuffer, -opengl, and -painters options to the print command select a
 specific renderer when printing or exporting that overrides any other selections made.

29.6 HANDLE GRAPHICS PROPERTIES

A number of Handle Graphics properties influence the way graphics are printed
or exported. (Handle Graphics are discussed in more detail in Chapter 30.) Many
of the options selected from printing and exporting dialog boxes make changes to
these properties for the current figure. The following table lists the figure properties
that influence printing and exporting:

'PropertyName' 'PropertyValue'
choices, {default}

Description

Color [RGB vector] Sets figure background color

InvertHardcopy [{on} | off] Determines whether figure
background color is printed
or exported. When set to on,
forces a white figure background
independent of the Color property.

PaperUnits [{inches} |
centimeters |
normalized | points]

Units used to measure the size of
a printed or exported figure (the
default units may vary by locale)

PaperOrientation [{portrait} |
landscape | rotated]

Orientation of figure with respect
to paper

PaperPosition [left bottom width
height] vector

Position of figure on paper or in
exported file. width and height
determine the size of the figure
printed or exported.

PaperPositionMode [auto | {manual}] Determines whether
PaperPosition width, and
height are used. When set to
auto, the figure is printed or
exported using the Figure window
displayed width and height
(i.e., output is WYSIWYG)

PaperSize [width height] vector Paper size measured in
PaperUnits.

Section 29.6 Handle Graphics Properties 551

Certain axes properties also influence printing and exporting. Particularly important
are the axes tick mode properties

XTickMode [{auto} | manual]

YTickMode [{auto} | manual]

ZTickMode [{auto} | manual]

When a figure is printed or exported, the resulting graphic is normally rendered at a
different size than the figure on the screen. Since the width and height are different,
MATLAB can rescale the number and placement of tick marks on each axis to reflect
the new size. Setting the tick mode properties to 'manual' prevents MATLAB from
changing the tick marks on the axes when the figure is printed or exported.

Some line properties can be used to advantage for output as well:

Color: [3-element RGB vector]

LineStyle: [{-} | -- | : | -. | none]

LineWidth: [scalar]

Marker: [+ | o | * | . | x | square | diamond | v | ^ | > | < | pentagram

 | hexagram | {none}]

MarkerSize: [scalar]

MarkerEdgeColor: [none | {auto}] -or- a ColorSpec.

MarkerFaceColor: [{none} | auto] -or- a ColorSpec.

PaperType [{usletter} | uslegal
| A0 | A1 | A2 | A3 |
A4 | A5 | B0 | B1 |
B2 | B3 | B4 | B5 |
arch-A | arch-B |
arch-C | arch-D |
arch-E | A | B | C |
D | E | tabloid |
<custom>]

Type of paper used. Selecting a
PaperType sets the PaperSize
accordingly. (Default may vary by
locale.)

Renderer [{painters} | zbuffer
| OpenGL | None]

Specifies renderer

RendererMode [{auto} manual] Determines how the renderer
is chosen. When set to auto,
MATLAB chooses the renderer
automatically and independently for
display, printing, and export. When
set to manual, the renderer set by
the Renderer property is used for
display, printing, and export.

552 Chapter 29 Printing and Exporting Graphics

When colored lines are printed, the result depends on the capabilities of the output
device and the printer driver. If a color printer and a color printer driver are used,
the result is in color, as expected. If a black-and-white printer driver is used, the
result is black and white. If a color printer driver is used with a black-and-white
printer, the result is grayscale. This can be a problem, since grayscale is printed by
using dithering, which may lead to lines that are not distinct. A different, but related,
problem can occur when printing in black and white. When multiple solid lines are
printed in black, they lose the distinction that color provides on the screen. In this
case, the line properties 'Color', 'LineStyle', 'LineWidth', and 'Marker' can
be used to add distinction to plotted lines.

Finally, it is often advantageous to modify text when printing or exporting
figures. Useful text properties include the following:

Color: [3-element RGB vector]

FontAngle: [{normal} | italic | oblique]

FontName: [font name]

FontSize: [scalar]

FontUnits: [inches | centimeters | normalized | {points} | pixels]

FontWeight: [light | {normal} | demi | bold]

Increasing the size of text strings such as titles and axes labels when printing
or exporting to a smaller-sized graphic can often make the text easier to read. If the
font used in the figure is not one of the 11 previously listed fonts supported by
MATLAB for PostScript output, changing the font to one of these 11 can prevent
unwanted font substitution. Sometimes a bold font shows up better in printed output
than a normal-weight font. Changes such as these can often improve the appearance
of the printed or exported output. Font characteristics are particularly important
when exporting graphics for inclusion in presentation software, where fonts must be
large and distinct enough to be readable from across a large room.

29.7 SETTING DEFAULTS

MATLAB sets the following factory default options for printing and exporting.

 • Figure size is 8-by-6 inches (may be different outside of the United States).
 • Orientation is portrait.
 • Figure and axes background colors are inverted to white.
 • U.S. letter (8.5-by-11 inch) paper is used if available (may be different outside

of the United States).
 • Figure is centered on the paper.
 • Figure is cropped.
 • Output is RGB (not CYMK).

Section 29.8 Publishing 553

 • Tick marks are recalculated.
 • MATLAB chooses the renderer.
 • Uicontrols print.
 • Print device is -dps2 on UNIX and -dwin on the Windows PC platform.

The default print device is set in the $TOOLBOX/local/printopt.m file. Edit
this file to change the default print device across MATLAB sessions. If you do not
have write access to this file, edit the file by using the command edit printopt.m,
make your changes, save the printopt.m file into a local directory, and make sure
the local directory is in the MATLABPATH before $TOOLBOX/local. For example,
if you use a color PostScript printer for printed output on a UNIX platform, edit
printopt.m and add the line dev = '-dpsc2'; to the file at the location specified
in the file.

Other option defaults can be changed by setting default properties in the
startup.m file. For example, set(0,'DefaultFigurePaperType','A4');
changes the default paper type to A4. The handle 0 addresses the root object. The
'DefaultFigurePaperType' property sets the default value for the figure property
'PaperType'. Adding the prefix 'Default' to any Handle Graphics property
name specifies that the accompanying property value should be used as the default.
Default properties for a given object must be set at a higher level in the Handle
Graphics hierarchy. For example, default figure properties must be set at the root
object level, and default axes properties must be set at the figure object or root object
level. Therefore, defaults are usually set at the root level. For example, the code

set(0,'DefaultFigurePaperOrientation','landscape');

set(0,'DefaultFigurePaperPosition',[0.25 0.25 10.5 8]);

set(0,'DefaultAxesXGrid','on','DefaultAxesYGrid','on');

set(0,'DefaultAxesLineWidth','1');

tells MATLAB to use the landscape mode, fill the page with the plot, print (and
 display) x- and y-axis grids, and display and print lines that are 1 point wide, as
defaults in all figures and axes.

Many other options can be set using Handle Graphics properties. Most printing
and exporting properties are figure and axes properties. (For more information on
Handle Graphics properties and default values, see Chapter 30.)

29.8 PUBLISHING

MATLAB provides additional options for publishing your formatted results,
 including graphics, to a number of different formats. Publishing in MATLAB
 provides the ability to execute M-files and capture the output in a formatted
 document. Document formats supported by MATLAB include HTML, XML,
and LaTeX, as well as formats for Microsoft Office (Word or PowerPoint) and

554 Chapter 29 Printing and Exporting Graphics

the OpenOffice.org equivalents. The MATLAB Notebook is another option for
 publishing on PC platforms, but is discouraged in the latest documentation.

Publishing requires that the user define Cells (sections of code) in the M-file
to be executed. (See the documentation on the MATLAB Editor for additional
information on defining Cells.) When an M-file is published, the M-file is executed
and the output—including the source code in each Cell, along with any Command
window output and graphical output—is formatted and published into document
files in the selected format. Text markup is also supported. Additions can include
an overall title, section titles, descriptive text, and equations and symbols using TeX
formatting. Text may be formatted by using bold text, indented or preformatted
text, bulleted lists, monospaced text, or even HTML links.

In addition to the Publish entries in the File menu of the MATLAB Editor, the
publish function is available in the Command window. Publishing preferences can
be set in the Editor/Debugger section of the MATLAB Preferences menu. Specific
instructions and examples of publishing are available in the online documentation.

29.9 SUMMARY

MATLAB provides a very flexible system for printing graphics and creating output
in many different graphics formats. Most other applications can import one or
more of the graphics file formats supported by MATLAB, but many have limited
ability to edit the resulting graphic. The best results are achieved if the figure is
edited and appropriate options are set before the figure is printed or exported. The
most widely used, flexible output formats are PostScript, EPS, EMF, and TIFF.
MATLAB contains native support for all of these formats and uses Ghostscript to
translate them into many others.

MATLAB also provides the ability to publish a document that includes
 portions of an M-file—along with Command window output, graphics output,
descriptive text, and comments—in a number of document formats, including
HTML, XML, LaTeX, Microsoft Word, and PowerPoint.

555

Handle Graphics is the name given to a large collection of low-level graphics
 features that specify how graphics behave and are displayed in MATLAB. Through
interaction with Handle Graphics objects and their associated properties, you can
gain almost infinite control over the graphical features available in MATLAB. As
MATLAB continues to evolve, many Handle Graphics features can be manipulated
interactively by using the numerous menus, contextual menus, toolbars, palettes,
browsers, and editors available within Figure windows. These interactive tools
make it possible to customize graphics while requiring minimal knowledge of
Handle Graphics. As a result, detailed knowledge of Handle Graphics is required
only when noninteractive graphics customization is desired. In this case, Handle
Graphics function calls are commonly placed in an M-file.

Because of the diversity and breadth of the graphics features in MATLAB,
the MATLAB-supplied documentation on graphics is very extensive. As a result, it
is simply not possible to provide a comprehensive survey of Handle Graphics in this
text. Doing so would at least double the size of this text.

Given the space limitations and broader goals of the text, this chapter develops
a basic understanding of Handle Graphics features that provides a basis for learning
the many more specific aspects of graphics in MATLAB.

30.1 OBJECTS

Handle Graphics is based on the idea that every component of a MATLAB graphic
is an object, that each object has a unique identifier, or handle, associated with it,
and that each object has properties that can be modified as desired. Here, the term
object is defined as a closely related collection of data and functions that form a

Handle Graphics

30

556 Chapter 30 Handle Graphics

unique whole. In MATLAB, a graphics object is a distinct component that can be
manipulated individually.

All plotting and graphics in MATLAB create graphics objects. Some produce
composite objects, and some produce core objects. Graphical objects in MATLAB
are arranged in a hierarchy of parent objects and associated child objects, as shown
in the following diagram:

The computer screen itself is the root object and the parent of everything else.
One or more figure objects are children of the root. The objects axes, annotation
axes, and the collection of UI objects are children of figures. Plot objects, group
objects, and the collection of core objects are children of axes. All objects that are
children of the figure object in the hierarchy, except for the core objects, are called
composite objects.

This hierarchy was new to MATLAB 7. In MATLAB 6, the graphics hierarchy
did not document the hidden annotation axes and did not have plot objects or group
objects. Core objects and some UI objects existed, but were simply not grouped and
named. UI objects and core objects behave in the same way in MATLAB 7 as they
did in previous MATLAB versions, whereas plot objects and group objects are new
in MATLAB 7 and beyond.

root
(Computer Screen)

figure

uicontrol

uitoolbar

uimenu

uitoggletool

axes

image

light

line

patch

rectangle

surface

text

uimenu

uimenu

uicontextmenu

uipushtool

Plot Objects

Annotation axes
(Hidden)

Annotation
ObjectsGroup Objects

Core Objects

UI Objects

uicontainer

uipanel

uitreeuitreenode

uicontrol uibuttongroup

uitable

Section 30.3 Object Properties 557

30.2 OBJECT HANDLES

In MATLAB, each object has an associated identifier, called a handle, which is a double-
precision number. Each time an object is created, a unique handle is created for it. The
handle of the root object, the computer screen, is always zero. The Hf_fig = figure
command creates a new figure and returns its handle in the Hf_fig variable. Figure han-
dles are normally small integers and are usually displayed in the Figure window title bar.
Other object handles are typically larger integers or noninteger numbers in full MATLAB
 precision. All object-creation functions return the handles of the objects they create.

Before MATLAB 7, the high-level graphics functions (discussed in Chapters 25
and 26) returned a column vector of handles to the core objects they created. For exam-
ple, Hl = plot(…) returned handles to all line objects created by the plot function.
Similarly, Hs = surf(…) returned a handle to a surface object. Now many high-level
graphics creation functions return handles to plot objects. That is, Hls = plot(…)
returns handles to lineseries plot objects. In the presence of these changes in the
graphics hierarchy, fundamental operations using Handle Graphics remain unchanged.
As a result, before these new features are addressed, the fundamental creation and
manipulation of Handle Graphics objects through use of their handles is discussed.

It is suggested that variable names used to store handles start with an upper case
H, followed by one or more letters identifying the object type, then an underscore, and finally
one or more descriptive characters. Thus, Hf_fig is a handle to a figure, Ha_ax1 is a handle to an
axes object, and Ht_title is a handle to a text object. When an object type is unknown, the letter
x is used, as in Hx_obj. While handles can be given any name, following this convention makes it
easy to spot object handle variables in an M-file.

30.3 OBJECT PROPERTIES

All objects have a set of properties that define their characteristics. It is by setting
these properties that you modify how graphics are displayed. The properties asso-
ciated with each object type (e.g., axes, line, and surface) are unique, although a
number of property names are common to all objects. Object properties include
characteristics such as an object’s position, color, object type, parent object handle,
or child object handles. Each distinct object has properties associated with it that
can be changed without affecting other objects of the same type.

Object properties consist of property names and their associated property
 values. Property names are character strings. They are typically displayed in mixed
case, with the initial letter of each word capitalized. For example, the property name
'LineStyle' identifies the linestyle for a line object. When identifying a property
name in an M-file or at the Command window prompt, MATLAB recognizes
properties regardless of case. In addition, you need use only enough characters to
uniquely identify the property name. For example, the position property of an axes
object can be called 'Position', 'position', or even 'pos'.

558 Chapter 30 Handle Graphics

When an object is created, it is initialized with a full set of default property
values that can be changed in either of two ways. The object-creation function can
be issued with ('Property-name',Property-value) pairs, or property values can
be changed after the object is created. For example,

>> Hf_1 = figure('Color','yellow')

creates a new figure with default properties, except that the background color is set
to yellow rather than to the default color.

In addition to the Figure window menu and toolbar features in MATLAB, the
function inspect provides a GUI for inspection and modification of object properties.
To use this function, simply issue inspect(H), where H is the handle of the desired object.

30.4 Get AND Set

The two functions get and set are used to obtain or change Handle Graphics object
properties from the Command window or an M-file. The function get returns the
current value of one or more properties of an object. The most common syntax is
get(handle,'PropertyName'). For example,

>> p = get(Hf_1,'Position')

returns the position vector of the figure having the handle Hf_1. Similarly,

>> c = get(Hl_a,'Color')

returns the color of an object identified by the handle Hl_a.
The function set changes the values of Handle Graphics object properties and

uses the syntax set(handle,'PropertyName',PropertyValue). For instance,

>> set(Hf_1,'Position',p_vect)

sets the position of the figure having the handle Hf_1 to that specified by the vector
p_vect. Likewise,

>> set(Hl_a,'Color','r')

sets the color of the object having the handle Hl_a to red. In general, the set function
can have any number of ('PropertyName',PropertyValue) pairs. For example,

>> set(Hl_a,'Color',[1 0 0],'LineWidth',2,'LineStyle','--')

changes the color of the line having the handle Hl_a to red, its line width to 2 points,
and its linestyle to dashed.

Section 30.4 Get and Set 559

In addition to these primary purposes, the get and set functions provide feed-
back about object properties. For example, set(handle,'PropertyName') returns
a list of values that can be assigned to the object described by handle. For example,

>> set(Hf_1,'Units')

[inches | centimeters | normalized | points | {pixels} | characters]

shows that there are six allowable character-string values for the 'Units' property
of the figure referenced by Hf_1 and that 'pixels' is the default value.

If you specify a property that does not have a fixed set of values, MATLAB
informs you of that fact:

>> set(Hf_1,'Position')

A figure’s "Position" property does not have a fixed set of property values.

In addition to the set command, Handle Graphics object-creation functions
accept multiple pairs of property names and values. For example,

>> figure('Color','blue','NumberTitle','off','Name','My Figure')

creates a new figure with a blue background entitled 'My Figure', rather than the
default window title 'Figure 1'.

As an illustration of the preceding concepts, consider the following example:

>> Hf_fig = figure % create a figure

Hf_fig =

 1

>> Hl_light = light % add default light to an axes in the figure

Hl_light =

 174

>> set(Hl_light)

Position

Color

Style: [{infinite} | local]

ButtonDownFcn: string -or- function handle -or- cell array

Children

Clipping: [{on} | off]

CreateFcn: string -or- function handle -or- cell array

DeleteFcn: string -or- function handle -or- cell array

560 Chapter 30 Handle Graphics

BusyAction: [{queue} | cancel]

HandleVisibility: [{on} | callback | off]

HitTest: [{on} | off]

Interruptible: [{on} | off]

Parent

Selected: [on | off]

SelectionHighlight: [{on} | off]

Tag

UIContextMenu

UserData

Visible: [{on} | off]

>> get(Hl_light) % get all properties and names for light

Position = [1 0 1]

Color = [1 1 1]

Style = infinite

BeingDeleted = off

ButtonDownFcn =

Children = []

Clipping = on

CreateFcn =

DeleteFcn =

BusyAction = queue

HandleVisibility = on

HitTest = on

Interruptible = on

Parent = [175.002]

Selected = off

SelectionHighlight = on

Tag =

Type = light

UIContextMenu = []

UserData = []

Visible = on

Section 30.4 Get and Set 561

The light object was used because it contains the fewest properties of any MATLAB
graphics object. A figure was created and returned a handle. A light object was then
created that returned a handle of its own. An axes object was also created, since light
objects are children of axes; the axes handle is available in the 'Parent' property
of the light.

Note that the property lists for each object are divided into two groups. The
first group lists properties that are unique to the particular object type, and the
 second group lists properties common to all object types. Note also that the set and
get functions return slightly different property lists. The function set lists only prop-
erties that can be changed with the set command, while get lists all visible object
properties. In the previous example, get listed the 'Type' property, while set did
not. This property can be read but not changed; that is, it is a read-only property.

The number of properties associated with each object type is fixed in each
release of MATLAB, but the number varies among object types. As already shown,
a light object lists 3 unique and 18 common properties, or 21 properties in all. On
the other hand, an axes object lists 103 properties. Clearly, it is beyond the scope of
this text to thoroughly describe and illustrate all of the properties of all object types!

As an example of the use of object handles, consider the problem of plotting a
line in a nonstandard color. In this case, the line color is specified by using an RGB
value of [1 .5 0], a medium orange color:

>> x = -2*pi:pi/40:2*pi; % create data

>> y = sin(x); % find sine of x

>> Hls_sin = plot(x,y) % plot sine and save lineseries handle

Hls_sin =

 59.0002

>> set(Hls_sin,'Color',[1 .5 0],'LineWidth',3) % Change color and width

Now add a cosine curve in light blue:

>> z = cos(x); % find cosine of x

>> hold on % keep sine curve

>> Hls_cos = plot(x,z); % plot cosine and save lineseries handle

>> set(Hls_cos,'Color',[.75 .75 1]) % color it light blue

>> hold off

It’s also possible to do the same thing with fewer steps:

>> Hls_line = plot(x,y, x,z); % plot both curves and save handles

>> set(Hls_line(1),'Color',[1 .5 0],'LineWidth', 3)

>> set(Hls_line(2),'Color',[.75 .75 1])

562 Chapter 30 Handle Graphics

How about adding a title and making the font size larger than normal?

>> title('Handle Graphics Example') % add a title

>> Ht_text = get(gca,'Title') % get handle to title

>> set(Ht_text,'FontSize',16) % customize font size

The last example illustrates an interesting point about axes objects. Every
object has a 'Parent' property, as well as a 'Children' property, which contains
handles to descendant objects. A lineseries object on a set of axes has the handle of
the axes object in its 'Parent' property and the empty array in the 'Children'
property. At the same time, the axes object has the handle of its figure in its
'Parent' property and the handles of lineseries objects in the 'Children' prop-
erty. Even though text objects created with the text and gtext commands are
children of axes and their handles are included in the 'Children' property, the
handles associated with the title string and axis labels are not. These handles are
kept in the 'Title', 'XLabel', 'YLabel', and 'ZLabel' properties of the axes.
These text objects are always created when an axes object is created. The title
command simply sets the 'String' property of the title text object within the cur-
rent axes. Finally, the standard MATLAB functions title, xlabel, ylabel, and
zlabel return handles and accept property and value arguments. For example, the
following command adds a 24-point green title to the current plot and returns the
handle of the title text object:

>> Ht_title = title('This is a title.','FontSize',24,'Color','green')

In addition to set and get, MATLAB provides several other functions for
manipulating objects and their properties. Objects can be copied from one parent to
another using the copyobj function. For instance,

>> Ha_new = copyobj(Ha_ax1,Hf_fig2)

makes copies of the axes object with handle Ha_ax1 and all of its children, assigns
new handles, and places the objects in the figure with handle Hf_fig2. A handle to
the new axes object is returned in Ha_new. Any object can be copied into any valid
parent object based on the hierarchy described earlier. Either one or both argu-
ments to copyobj can be vectors of handles.

Note that any object can be moved from one parent to another simply by changing
the 'Parent' property value to the handle of another valid parent object. For example,

>> figure(1)

>> set(gca,'Parent',2)

moves the current axes and all of its children from the figure having handle 1 to the
figure having handle 2. Any existing objects in figure 2 are not affected, except that
they may become obscured by the relocated objects.

Section 30.4 Get and Set 563

Any object and all of its children can be deleted using the delete(handle)
function. Similarly, reset(handle) resets all object properties associated with
handle, except for the 'Position' and 'Units' properties, to the defaults for that
object type. 'PaperPosition', 'PaperUnits', and 'WindowStyle' properties of
figure objects are also unaffected. If handle is a column vector of object handles, all
referenced objects are affected by set, reset, copyobj, and delete.

The get and set functions return a structure when an output is assigned.
Consider the following example:

>> lprop = get(Hl_light)

lprop =

 BeingDeleted: 'off'

 BusyAction: 'queue'

 ButtonDownFcn: ''

 Children: [0x1 double]

 Clipping: 'on'

 Color: [1 1 1]

 CreateFcn: ''

 DeleteFcn: ''

 HandleVisibility: 'on'

 HitTest: 'on'

 Interruptible: 'on'

 Parent: 175

 Position: [1 0 1]

 Selected: 'off'

 SelectionHighlight: 'on'

 Style: 'infinite'

 Tag: ''

 Type: 'light'

 UIContextMenu: []

 UserData: []

 Visible: 'on'

>> class(lprop) % class of get(Hl_light)

ans =

struct

>> lopt = set(Hl_light)

564 Chapter 30 Handle Graphics

lopt =

 BusyAction: {2x1 cell}

 ButtonDownFcn: {}

 Children: {}

 Clipping: {2x1 cell}

 Color: {}

 CreateFcn: {}

 DeleteFcn: {}

 HandleVisibility: {3x1 cell}

 HitTest: {2x1 cell}

 Interruptible: {2x1 cell}

 Parent: {}

 Position: {}

 Selected: {2x1 cell}

 SelectionHighlight: {2x1 cell}

 Style: {2x1 cell}

 Tag: {}

 UIContextMenu: {}

 UserData: {}

 Visible: {2x1 cell}

>> class(lopt) % class of set(Hl_light)

ans =

struct

The field names of the resulting structures are the object property-name strings and
are assigned alphabetically. Note that even though property names are not case
 sensitive, these field names are:

>> lopt.BusyAction

ans =

 'queue'

 'cancel'

>> lopt.busyaction

??? Reference to non-existent field 'busyaction'.

Combinations of property values can be set by using structures as well. For example,

>> newprop.Color = [1 0 0];

>> newprop.Position = [-10 0 10];

Section 30.4 Get and Set 565

>> newprop.Style = 'local';

>> set(Hl_light,newprop)

changes the 'Color', 'Position', and 'Style' properties, but has no effect on any
other properties of the light object. Note that you cannot simply obtain a structure of
property values using get and use the same structure to set values:

>> light_prop = get(Hl_light);

>> light_prop.Color = [1 0 0]; % change the light color to red

>> set(Hl_light,light_prop); % reapply the property values

??? Error using ==> set

Attempt to modify a property that is read-only.

Object Name : light

Property Name : 'BeingDeleted'.

Since 'BeingDeleted' and 'Type' are the only read-only properties of a light object,
you can work around the problem by removing these fields from the structure:

>> light_prop = rmfield(light_prop,{'BeingDeleted','Type'});

>> set(Hl_light,light_prop)

For objects with more read-only properties, all read-only properties must be
removed from the structure before using it to set property values.

A cell array can also be used to query a selection of property values. To do so,
create a cell array containing the desired property names in the desired order and
pass the cell array to get. The result is returned as a cell array as well:

>> plist = {'Color','Position','Style'}

plist =

 'Color' 'Position' 'Style'

>> get(Hl_light,plist)

ans =

 [1x3 double] [1x3 double] 'local'

>> class(ans) % cell array in, cell array out

ans =

cell

One more point about the get function should be noted. If H is a vector of
handles, get(H,'Property') returns a cell array rather than a vector. Consider the
following example, given a Figure window with four subplots:

566 Chapter 30 Handle Graphics

>> Ha = get(gcf,'Children') % get axes handles

Ha =

 183

 180

 177

 174

>> Ha_kids = get(Ha,'Children') % get handles of axes children

Ha_kids =

 [184]

 [181]

 [178]

 [175]

>> class(Ha_kids)

ans =

 cell

>> Hx = cat(1,Ha_kids{:}) % convert to column vector

Hx =

 184

 181

 178

 175

>> class(Hx)

ans =

 double

Now Hx can be used as an argument to Handle Graphics functions expecting a
 vector of object handles.

30.5 FINDING OBJECTS

As has been shown, Handle Graphics provides access to objects in a figure and allows
the user to customize graphics by using the get and set commands. The use of these
 functions requires that you know the handles of the objects to be manipulated. In cases
where handles are unknown, MATLAB provides a number of functions for finding object
handles. Two of these functions, gcf and gca, were introduced earlier. For example,

>> Hf_fig = gcf

Section 30.5 Finding Objects 567

returns the handle of the current figure, and

>> Ha_ax = gca

returns the handle of the current axes in the current figure.
In addition to the above, MATLAB includes gco, a function to obtain the

handle of the current object. For example,

>> Hx_obj = gco

returns the handle of the current object in the current figure; alternatively,

>> Hx_obj = gco(Hf_fig)

returns the handle of the current object in the figure associated with the handle
Hf_fig.

The current object is defined as the last object clicked on with the mouse
within a figure. This object can be any graphics object except the root. When a figure
is initially created, no current object exists, and gco returns an empty array. The
mouse button must be clicked while the pointer is within a figure before gco can
return an object handle.

Once an object handle has been obtained, the object type can be found by
querying an object’s 'Type' property, which is a character-string object name such
as 'figure', 'axes', or 'text'. The 'Type' property is common to all objects. For
example,

>> x_type = get(Hx_obj,'Type')

is guaranteed to return a valid object string for all objects.
When something other than the 'CurrentFigure', 'CurrentAxes', or

'CurrentObject' is desired, the function get can be used to obtain a vector of
handles to the children of an object. For example,

>> Hx_kids = get(gcf,'Children');

returns a vector containing handles of the children of the current figure.
To simplify the process of finding object handles, MATLAB contains the built-in

function findobj, which returns the handles of objects with specified property values.
The form Hx = findobj(Handles,'flat','PropertyName',PropertyValue) returns
the handles of all objects in Handles whose 'PropertyName' property contains
the value PropertyValue. Multiple ('PropertyName',PropertyValue) pairs are
allowed, and all must match. When Handles is omitted, the root object is assumed.
When no ('PropertyName',PropertyValue) pairs are given, all objects match
and all Handles are returned. When 'flat' is omitted, all objects in Handles and
all descendants of these objects, including axes titles and labels, are searched.
When no objects are found to match the specified criteria, findobj returns an empty

568 Chapter 30 Handle Graphics

array. As an example, finding all green line objects is easily accomplished with the
 following statement:

>> Hl_green = findobj(0,'Type','line','Color',[0 1 0]);

It is possible to hide the visibility of specific handles by using the
'HandleVisibility' property common to all objects. This property is convenient,
because it keeps the user from inadvertently deleting or changing the properties of
an object. When an object has its 'HandleVisibility' property set to 'off' or
to 'callback', findobj does not return handles to these objects when called from
the Command window. Hidden handles do not appear in lists of children or as the
output of gcf, gca, or gco. However, when the property is set to 'callback', these
handles can be found during the execution of a callback.

30.6 SELECTING OBJECTS WITH THE MOUSE

The gco command returns the handle of the current object, which is the last object
clicked on with the mouse. When a mouse click is made near the intersection of
more than one object, MATLAB uses rules to determine which object becomes the
current object. Each object has a selection region associated with it. A mouse click
within this region selects the object. For line objects, the selection region includes
the line and all of the area within a 5-pixel distance from the line. The selection
region of a surface, patch, or text object is the smallest rectangle that contains the
object. The selection region of an axes object is the axes box itself, plus the areas
where labels and titles appear. Objects within axes, such as lines and surfaces, are
higher in the stacking order, and clicking on them selects the associated object
rather than the axes. Selecting an area outside of the axes selection region selects
the figure itself.

When a mouse click is within the border of two or more objects, the stacking
order determines which object becomes the current object. The stacking order
determines which overlapping object is on top of the others. Initially, the stacking
order is determined when the object is created, with the newest object at the top
of the stack. For example, when you issue two figure commands, two figures are
created. The second figure is drawn on top of the first. The resulting stacking order
has figure 2 on top of figure 1, and the handle returned by gcf is 2. If the figure(1)
command is issued or if figure 1 is clicked on, the stacking order changes. Figure 1
moves to the top of the stack and becomes the current figure.

In the preceding example, the stacking order was apparent from the window
overlap on the computer screen. However, this is not always the case. When two
lines are plotted, the second line drawn is on top of the first at the points where they
intersect. If the first line is clicked on with the mouse at some other point, the first
line becomes the current object, but the stacking order does not change. A click on
the intersecting point continues to select the second line until the stacking order is
explicitly changed.

Section 30.7 Position and Units 569

The stacking order is given by the order in which 'Children' handles appear
for a given object. That is, Hx_kids = get(handle,'Children') returns handles
of child objects, in the stacking order. The first element in the vector Hx_kids is at
the top of the stack, and the last element is at the bottom of the stack. The stacking
order can be changed by changing the order of the 'Children' property value of
the parent object. For example,

>> Hf = get(0,'Children');

>> if length(Hf) > 1

 set(0,'Children',Hf([end 1:end-1]);

 end

moves the bottom figure to the top of the stack, where it becomes the new current
figure. The uistack function can be used to change the visual stacking order of
children of the same parent.

30.7 POSITION AND UNITS

The 'Position' property of figure objects and of most other Handle Graphics
objects is a four-element row vector. As shown in the following figure, the values
in this vector are[left, bottom, width, height], where [left, bottom] is
the position of the lower left corner of the object relative to its parent and [width,
height] is the width and height of the object.

Child Object

Parent Object

left width

bo
tto

m

he
ig

ht

Position vector = [left, bottom, width, height]

570 Chapter 30 Handle Graphics

These position vector values are in units specified by the 'Units' property of
the object. For example, the code

>> get(gcf,'Position')

ans =

 920 620 672 504

>> get(gcf,'units')

ans =

pixels

shows that the lower left corner of the current figure object is 920 pixels to the right
and 620 pixels above the lower left corner of the screen and that the figure object is
672 pixels wide and 504 pixels high. Note that the 'Position' vector for a figure
gives the drawable area within the figure object itself and does not include window
borders, scroll bars, menus, or the title bar of the Figure window.

Alternatively, figures have an undocumented 'OuterPosition' property
that does include the window borders:

>> get(gcf,'Position') % drawable position

ans =

 920 620 672 504

>> get(gcf,'OuterPosition') % outside position

ans =

 916 616 680 531

Here, the outer position contains the left, bottom, width, and height of the outer
boundary of the Figure window. When the Figure or Camera toolbar is displayed or
hidden in response to a choice from the View menu in a Figure window, either the
drawable position or the outer position parameters can be maintained by setting the
'ActivePositionProperty' of the figure. Setting this property to 'Position'
gives priority to the drawable position, thereby keeping the 'Position' values
unchanged when toolbars are displayed or hidden. Setting this property to
'OuterPosition' gives similar priority to the 'OuterPosition' values, leaving
them unchanged when toolbars are displayed or hidden.

The 'Units' property for figures defaults to pixels, but can be inches, centi-
meters, points, characters, or normalized coordinates. Pixels represent screen pixels,
the smallest rectangular object that can be represented on a computer screen. For
example, a computer display set to a resolution of 1024 by 768 is 1024 pixels wide
and 768 pixels high. Points are a typesetting standard, where 1 point is equal to 1/72
of an inch. Character units are units relative to the width of a character in the default
system font. A value of 1 is equal to the width of the letter x in the default system
font. Normalized coordinates are in the range 0 to 1. In normalized coordinates, the

Section 30.7 Position and Units 571

lower left corner of the parent is at [0, 0] and the upper right corner is at [1, 1].
Inches and centimeters are self-explanatory.

To illustrate various 'Units' property values, consider again the preceding
example:

>> set(gcf,'units','inches') % INCHES

>> get(gcf,'position')

ans =

 7.9224 5.3362 5.7931 4.3448

>> set(gcf,'units','cent') % CENTIMETERS

>> get(gcf,'position')

ans =

 20.108 13.544 14.703 11.027

>> set(gcf,'units','normalized')% NORMALIZED

>> get(gcf,'position')

ans =

 0.57438 0.51583 0.42 0.42

>> set(gcf,'units','points') % POINTS

>> get(gcf,'position')

ans =

 570.41 384.21 417.1 312.83

>> set(gcf,'units','char') % CHARACTERS

>> get(gcf,'position')

ans =

 153.17 38.688 112 31.5

All of these values represent the same figure position relative to the computer
screen for a particular monitor and screen resolution.

The positions of axes objects are also four-element vectors having the same
form, [left, bottom, width, height], but specifying the object position relative
to the lower left corner of the parent figure. In general, the 'Position' property of
a child is relative to the position of its parent.

To be more descriptive, the computer screen, or root object, position property
is not called 'Position', but rather 'ScreenSize'. In this case, [left, bottom]
is always [0, 0], and [width, height] are the dimensions of the computer
screen in units specified by the 'Units' property of the root object. One exception
is when the 'Units' property is set to 'Pixels'. In this case, [left, bottom] is
always [1, 1], and [width, height] are the dimensions of the computer screen
in pixels.

572 Chapter 30 Handle Graphics

30.8 DEFAULT PROPERTIES

MATLAB assigns default properties to each object as it is created. The built-in
defaults are referred to as factory defaults. To override these defaults, you must set or
get the values using set and get. In cases where you want to change the same proper-
ties every time, MATLAB allows you to set your own default properties. It lets you
change the default properties for individual objects and for object types at any point in
the object hierarchy. When an object is created, MATLAB looks for a default value
at the parent level. If no default is found, the search continues up the object hierarchy
until a default value is found or until it reaches the built-in factory default.

You can set your own default values at any level of the object hierarchy by using
a special property-name string consisting of 'Default', followed by the object type
and the property name. The handle you use in the set command determines the point
in the object parent–child hierarchy at which the default is applied. For example,

>> set(0,'DefaultFigureColor',[.5 .5 .5])

sets the default background color for all new figure objects to medium gray rather
than the MATLAB default. This property applies to the root object (whose handle
is always zero), and so all new figures will have a gray background. Other examples
include the following:

>> set(0,'DefaultAxesFontSize',14) % larger axes fonts - all figures

>> set(gcf,'DefaultAxesLineWidth',2) % thick axis lines - this figure only

>> set(gcf,'DefaultAxesXColor','y') % yellow X axis lines and labels

>> set(gcf,'DefaultAxesYGrid','on') % Y axis grid lines - this figure

>> set(0,'DefaultAxesBox','on') % enclose axes - all figures

>> set(gca,'DefaultLineLineStyle',':') % dotted linestyle - these axes only

When a default property is changed, only objects created after the change is made are
affected. Existing objects already have property values assigned and do not change.

When working with existing objects, it is always a good idea to restore them to
their original state after they are used. If you change the default properties of objects
in an M-file, save the previous settings and restore them when exiting the routine:

oldunits = get(0,'DefaultFigureUnits');

set(0,'DefaultFigureUnits','normalized');

 <MATLAB statements>

set(0,'DefaultFigureUnits',oldunits);

To customize MATLAB to use user-defined default values at all times, simply
include the desired set commands in your startup.m file. For example, the code

Section 30.8 Default Properties 573

set(0,'DefaultAxesXGrid','on')

set(0,'DefaultAxesYGrid','on')

set(0,'DefaultAxesZGrid','on')

set(0,'DefaultAxesBox','on')

set(0,'DefaultFigurePaperType','A4')

creates all axes with grids, and an enclosing box is turned on and sets the default
paper size to A4. Defaults set at the root level affect every object in every Figure
window.

There are three special property value strings that reverse, override, or query
user-defined default properties. They are 'remove', 'factory', and 'default'.
If you’ve changed a default property, you can reverse the change, thereby resetting
it to the original defaults using 'remove':

>> set(0,'DefaultFigureColor',[.5 .5 .5]) % set a new default

>> set(0,'DefaultFigureColor','remove') % return to MATLAB defaults

To temporarily override a default and use the original MATLAB default value for
a particular object, use the special property value 'factory':

>> set(0,'DefaultFigureColor',[.5 .5 .5]) % set a new user default

>> figure('Color','factory') % figure using default color

The third special property value string is 'default'. This value forces MATLAB
to search up the object hierarchy until it encounters a default value for the desired
 property. If one is found, MATLAB uses this default value. If the root object is reached
and no user-defined default is found, the MATLAB factory default value is used. This
feature is useful when you want to set an object property to a default property value
after it was created with a different property value, as in the following code:

>> set(0,'DefaultLineColor','r') % set default at the root level

>> set(gcf,'DefaultLineColor','g') % current figure level default

>> Hl_rand = plot(rand(1,10)); % plot a line using 'ColorOrder' color

>> set(Hl_rand,'Color','default') % the line becomes green

>> close(gcf) % close the window

>> Hl_rand = plot(rand(1,10)); % plot a line using 'ColorOrder' color again

>> set(Hl_rand,'Color','default') % the line becomes red

Note that the plot command does not use line object defaults for the line color. If a
color argument is not specified, the plot command uses the axes 'ColorOrder'
property to specify the color of each line it generates.

574 Chapter 30 Handle Graphics

A list of all of the factory defaults can be obtained by issuing

>> get(0,'factory')

Default properties that have been set at any level in the object hierarchy can be
listed by issuing

>> get(handle,'default')

The root object contains default values for a number of color properties and the
figure position at startup:

>> get(0,'default')

ans =

 defaultFigurePosition: [520 678 560 420]

 defaultTextColor: [0 0 0]

 defaultAxesXColor: [0 0 0]

 defaultAxesYColor: [0 0 0]

 defaultAxesZColor: [0 0 0]

 defaultPatchFaceColor: [0 0 0]

 defaultPatchEdgeColor: [0 0 0]

 defaultLineColor: [0 0 0]

 defaultFigureInvertHardcopy: 'on'

 defaultFigureColor: [0.8000 0.8000 0.8000]

 defaultAxesColor: [1 1 1]

 defaultAxesColorOrder: [7x3 double]

 defaultFigureColormap: [64x3 double]

 defaultSurfaceEdgeColor: [0 0 0]

Other defaults are not listed until they have been created by the user:

>> get(gcf,'default')

ans =

0x0 struct array with fields:

>> set(gcf,'DefaultLineMarkerSize',10)

>> get(gcf,'default')

ans =

 defaultLineMarkerSize: 10

Section 30.9 Common Properties 575

30.9 COMMON PROPERTIES

All Handle Graphics objects share the common set of object properties shown in
the following table:

Property Description

BeingDeleted Sets to 'on' when object is about to be deleted

BusyAction Controls how MATLAB handles callback interruptions

ButtonDownFcn Callback code executed when the mouse button is pressed
over the object

Children Handles of visible children

Clipping Enables or disables clipping of axes children

CreateFcn Callback code executed immediately after an object is created

DeleteFcn Callback code executed immediately before an object is deleted

HandleVisibility Determines whether the object handle is visible in the
Command window or while executing callbacks

HitTest Determines whether the object can be selected with the mouse
and then become the current object

Interruptible Determines whether callbacks to this object are interruptible

Parent Handle of parent object

Selected Determines whether an object has been selected as the
current object

SelectionHighlight Determines whether a selected object shows visible selection
handles or not

Tag User-defined character string used to identify or tag the object.
Often useful in association with findobj. For example,
findobj(0,'Tag','mytagstring').

Type Character string identifying object type

UIContextMenu Handle of contextual menu associated with an object

UserData Storage of any user-defined variable associated with an object

Visible Visibility of object

Three of these properties contain callbacks:'ButtonDownFcn', 'CreateFcn',
and 'DeleteFcn'. Callbacks identify MATLAB code to be executed when the
action described by the property occurs. In many cases, the code is a function call.
The 'Parent' and 'Children' properties contain handles of other objects in the

576 Chapter 30 Handle Graphics

hierarchy. Objects drawn on the axes are clipped at the axes limits if 'Clipping' is
'on', which is the default for all axes children except text objects. 'Interruptible'
and 'BusyAction' control the behavior of callbacks if a later callback is triggered
while a previous callback is currently executing. 'Type' is a string specifying the
object type. 'Selected' is 'on' if this object is the 'CurrentObject' of the figure,
and 'SelectionHighlight' determines whether the object changes appear-
ance when selected. 'HandleVisibility' specifies whether the object handle
is visible, invisible, or visible only to callbacks. The root 'ShowHiddenHandles'
property overrides the 'HandleVisibility' property of all objects, if needed.
If 'Visible' is set to 'off', the object disappears from view. It is still there, and
the object handle is still valid, but it is not rendered on the computer screen. Setting
'Visible' to 'on' restores the object to view. The 'Tag' and 'UserData' proper-
ties are reserved for the user. The 'Tag' property is typically used to tag an object
with a user-defined character string. For example,

>> set(gca,'Tag','My Axes')

attaches the string 'My Axes' to the current axes in the current figure. This string
does not display in the axes or in the figure, but you can query the 'Tag' property
to identify the object. For instance, when there are numerous axes, you can find the
handle to the above axes object by issuing the command

>> Ha_myaxes = findobj(0,'Tag','My Axes');

The 'UserData' property can contain any variable you wish to put into it. A character
string, a number, a structure, or even a multidimensional cell array can be stored in any
object’s 'UserData' property. No MATLAB function changes, or makes assumptions
about, the values contained in these properties.

The properties listed for each object using the get and set commands are the
documented properties. There are also undocumented, or hidden, properties used
by MATLAB developers. Some of them can be modified, but others are read-only.
Undocumented properties are simply hidden from view. These properties still exist
and can be modified. The undocumented root property 'HideUndocumented' controls
whether get returns all properties or only documented properties. For example,

>> set(0,'HideUndocumented','off')

makes undocumented object properties visible within MATLAB.

Since undocumented properties have been purposely left undocumented, one must be
cautious when using them. They are sometimes less robust than documented proper-
ties and are always subject to change. Undocumented properties may appear, disappear,
change functionality, or even become documented in future versions of MATLAB.

Section 30.10 Plot Objects 577

30.10 PLOT OBJECTS

As stated earlier, MATLAB includes plot objects and group objects. Plot objects are
objects associated with the high-level graphics functions discussed in Chapters 25
and 26. Plot objects were created as a way to group the core objects created by
high-level graphics functions, so that the overall properties of the graphics are more
easily identified and modified. That is, plot objects have additional properties that
do not exist in the core objects used in their creation. These additional properties
specify properties specific to the type of graphic created. For example, consider the
creation of a bar graph:

>> hbs_mm = bar(randn(1,6));

>> title('Figure 30.1 Random Bar Graph')

>> get(hbs_mm,'type')

ans =

hggroup

>> hx_hbs = get(hbs_mm,'children');

>> get(hx_hbs,'type')

ans =

patch

1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1
Figure 30.1 Random Bar Graph

578 Chapter 30 Handle Graphics

This bar graph contains a composite barseries plot object whose handle type is
 designated hggroup. The children of this object are single patch objects. Rather
than have all of the properties of the patch object, the barseries object has properties
such as 'BaseLine', 'BarLayout', and 'BarWidth', which directly specify aspects
of the created bar chart. Changing these properties in turn changes the appropriate
properties of the underlying patch object. By adding this layer on top of the patch
object, manipulation of the bar chart is much easier. You do not need to know how
to manipulate patch object properties to make changes in the bar chart.

The plot objects in MATLAB are shown in the following table (also included is
the 'type' property returned when get(H,'type') is called, where H is the handle
of the corresponding plot object):

Plot Object Get(H,'type') Created by the Graphics Functions

areasseries hggroup area

barseries hggroup bar, bar3, bar3h.

contourgroup hggroup contour, contour3, contourf

errorbarseries hggroup errorbar

lineseries line plot, plot3, semilogx, semilogy, loglog

quivergroup hggroup quiver, quiver3

scattergroup hggroup scatter, scatter3

stairseries hggroup stairs

stemseries hggroup stem, stem3

surfaceplot surface surf, mesh

Since the functions in this table returned handles to core objects in previous
versions of MATLAB, current versions provide backward compatibility when 'v6' is
used as the first argument to these functions. For example, Hl = plot('v6', . . .)
returns handles to line objects rather than to lineseries objects.

As with the core objects, there are simply too many plot object properties to
discuss each one here. (For further information about all object properties and the
action taken by all of their property values, see the MATLAB documentation.)

30.11 GROUP OBJECTS

The plot objects discussed in the previous section are an example of grouped objects.
Each of the plot group types forms a layer between the user and the underlying core
objects created. That is, each plot group is a parent object to one or more underlying
core objects. In addition to furnishing plot objects, MATLAB 7 and above provides
this grouping capability through the function hggroup. That is, you can group any

Section 30.11 Group Objects 579

number of axes object children into a group. These children can include any of the core
objects, plot objects, or other objects grouped with the use of the hggroup function. As
such, a group object has an axes object, or another group object, as its parent object.

By grouping Handle Graphics objects and giving them a single group handle,
the visibility and selectability of the group are determined globally. That is, setting
the 'visible' property of the group sets the individual 'visible' properties of all
underlying group children. In addition, it is possible to select all members in a group by
clicking on any group member with the mouse. While the plot objects created as part of
MATLAB have different or additional property names and property values than their
underlying core objects, MATLAB does not provide this capability for groups created
by means of the hggroup function. Group objects have all of the common object
 properties listed in Section 30.9. In addition, they have an 'EraseMode' property that
controls the 'EraseMode' property of all core objects in the group.

To illustrate the creation of a group object, consider the following code segment:

Ha = newplot; % create new axes object

Hl = line(1:6,[rand(1,6);1:6]); % create 2 core line objects

Hp = patch([3 5 4],[2 2 5],'w'); % create a core patch object

Hg_mm = hggroup; % create a new group object and return handle

set(Hl,'Parent',Hg_mm) % place lines in group

set(Hp,'Parent',Hg_mm) % place patch in group

get(Hg_mm) % look at group properties

 Annotation = [(1 by 1) hg.Annotation array]

 DisplayName =

 HitTestArea = off

 BeingDeleted = off

 ButtonDownFcn =

 Children = [(3 by 1) double array]

 Clipping = on

 CreateFcn =

 DeleteFcn =

 BusyAction = queue

 HandleVisibility = on

 HitTest = on

580 Chapter 30 Handle Graphics

 Interruptible = on

 Parent = [174.004]

 Selected = off

 SelectionHighlight = on

 Tag =

 Type = hggroup

 UIContextMenu = []

 UserData = []

 Visible = on

The children of the group object having handle Hg_mm are the two line objects and
one patch object. The properties of the lines and patch are hidden under the group
object, and the group 'type' property is hggroup.

There are many cases where it is desirable to rotate, translate, or scale
a group of objects within an axes. While the hggroup function does not provide
this capability, the group function hgtransform does. Like the hggroup function,
 hgtransform creates a group object that becomes the parent of any number of axes
object children. These children can include any of the core objects, plot objects,
or other objects grouped by means of the hgtransform function. As such, a
group object has an axes object, or another group object, as its parent object. The
 construction of a hgtransform group object follows that of the hggroup function.
Group objects created by using the hgtransform function have all of the common
object properties listed in Section 30.9. In addition, they have a 'Matrix' property
that specifies a graphical transformation matrix to be applied to all members of the
group object. The content of this transformation matrix is constructed following
standard graphics transformation practice. The function makehgtform facilitates
the construction of this matrix. (For further information, see the MATLAB
 documentation and other resources on graphics transformations.)

30.12 ANNOTATION AXES

The annotation axes shown in the Handle Graphics hierarchy at the beginning
of this chapter is simply a core object axes with its handle visibility turned Off.
This object contains all of the annotations added to a figure, using the numerous
menus, toolbars, palettes, browsers, and editors available within Figure windows.
The 'units' property of this axes is set to 'normalized', and its position is set
to [0 0 1 1], so that it covers the entire drawing area of the figure. Lines, arrows,
rectangles, text boxes, and so on, can be created by the use of the interactive aspects
of Figure windows; in addition, they can be created with the annotation function.
Because annotations added to a figure exist in this separate axes, they do not change
in response to additions or modifications to any underlying data plots. Therefore, it
is important to create annotations after the underlying plots are finalized.

Section 30.13 Linking Objects 581

30.13 LINKING OBJECTS

In some situations, it is desirable to link identical properties of a number of objects,
so that changing a linked property of any one of the objects makes the same change
to all linked objects. To support this capability, MATLAB provides the functions
linkprop and linkaxes. The function linkprop provides general object-property
linking, whereas linkaxes is an M-file function that uses linkprop to specifically
link axis limits on two or more axes objects.

To demonstrate the use of these functions, consider the following code:

>> H_a1 = subplot(2,1,1); % create axes object

>> plot(rand(1,30)) % plot some random data

>> H_a2 = subplot(2,1,2); % create a second axes

>> plot(randn(1,30)) % plot random data on second axes

>> linkaxes([H_a1 H_a2],'xy') % link x and y axis limits

After this code is executed, the axis limits on the two axes are linked. Using the
pan or zoom features on the Figure window toolbar, panning or zooming one axes
 performs the identical function on the other axes. Alternatively, issuing an axis
command on one axes applies the command to all linked axes objects.

The previous example can also be implemented with the use of linkprop by
executing the following code:

>> close % close current figure to start over

>> H_a1 = subplot(2,1,1); % create axes object

>> plot(rand(1,30)) % plot some random data

>> H_a2 = subplot(2,1,2); % create a second axes

>> plot(randn(1,30)) % plot random data on second axes

>> H_link = linkprop([H_a1 H_a2],{'Xlim','Ylim'})

H_link =

 graphics.linkprop

>> class(H_link)

ans =

graphics.linkprop

>> methods(H_link)

Methods for class graphics.linkprop:

addprop addtarget linkprop removeprop removetarget

582 Chapter 30 Handle Graphics

The output H_link of the linkprop function is a handle to a linkprop object named
graphics.linkprop. This object is an object-oriented class created by using
MATLAB’s object-oriented programming features (as discussed in Chapter 31). As
shown, this class has five methods that facilitate manipulation of linkprop objects.
Once properties are linked via the function linkprop, the returned handle H_link
must remain in existence. In the preceding example, H_link exists in the base work-
space. If H_link is deleted or destroyed by being overwritten, the linked properties
are unlinked. Modifying a linkprop object requires passing the associated object
handle to one of its methods. For example,

>> addprop(H_link,'Zlim')

adds z-axis limit linking to the object in H_link. (See the MATLAB documentation
for more information on Handle Graphics object linking.)

30.14 NEW PLOTS

When a new graphics object is created by using a low-level command such as line
or text, the object appears on the current axes in the current figure by default.
High-level graphics functions like mesh and plot, however, clear the current axes
and reset most axes properties to their defaults before displaying a plot. As discussed
earlier, the hold command can be used to change this default behavior.

Both figures and axes have a 'NextPlot' property used to control how
MATLAB reuses existing figures and axes. The hold, newplot, reset, clf, and
cla functions all affect the 'NextPlot' property of figures and axes. 'NextPlot'
has four possible values:

>> set(gcf,'NextPlot')

 [new | {add} | replace | replacechildren]

>> set(gca,'NextPlot')

 [new | add | {replace} | replacechildren]

The default setting for figures is 'add'; the default for axes is 'replace'. When
'NextPlot' is set to 'add', a new plot is added without clearing or resetting the current
figure or axes. When the value is 'replace', a new object causes the figure or axes to
remove all child objects and reset all properties except 'Position' and 'Units' to their
defaults before drawing the new plot. When 'NextPlot' is set to 'new' for a figure, a new
figure window is created for the new object. For axes, 'new' and 'add' are equivalent.
The default settings clear and reset the current axes and reuse the current figure.

The fourth possible setting for 'NextPlot' is 'replacechildren'. This setting
removes all child objects, but does not change the current figure or axes properties.
The command hold on sets both figure and axes 'NextPlot' properties to 'add'.
The command hold off sets the axes 'NextPlot' property to 'replace'.

Section 30.15 Callbacks 583

The newplot function returns a handle to an axes prepared by following the
'NextPlot' guidelines. This function is meant to be called to create an axes that will
contain children created by a core object-creation function such as line or patch
as opposed to a high-level graphics function such as plot or surf. The newplot
 function prepares an axes and returns its handle using code whose effect is similar to
the following code segment:

Hf = gcf; % get current figure or create one

next = lower(get(Hf,'NextPlot'));

switch next

 case 'new', Hf = figure; % create new figure

 case 'replacechildren', clf; % delete figure children

 case 'replace', clf('reset'); % delete children and reset properties

end

set(Hf,'NextPlot','add');

Ha = gca; % get current axes or create one

next = lower(get(Ha,'NextPlot'));

switch next

 case 'replacechildren', cla; % delete axes children

 case 'replace', cla('reset'); % delete children and reset properties

end

If an argument consisting of a column vector of object handles is passed to
newplot, the listed objects are not deleted and the figure and axis containing these
objects is prepared for use.

30.15 CALLBACKS

All Handle Graphics objects have the properties 'ButtonDownFcn', 'CreateFcn',
and 'DeleteFcn'. In addition, figures have the properties 'CloseRequestFcn',
'KeyPressFcn', 'WindowButtonDownFcn', 'WindowButtonMotionFcn',
'WindowScrollWheelFcn', and many others. The user interface functions have a
property 'CallBack'. The property names associated with each of these proper-
ties are called callbacks. These callbacks identify code to be executed when the
specific user actions associated with a property name are taken. In the simplest case,
callbacks are character strings that are evaluated by eval in the Command window
workspace. These strings can contain any sequence of valid MATLAB statements.
In most cases, callbacks are function calls, often to the same function where the

584 Chapter 30 Handle Graphics

callbacks are defined. The setting of callbacks tells MATLAB to perform certain
tasks in response to an action taken by the user. These callbacks form the basis for
MATLAB’s GUI features.

The simplest callback is the close request callback, which, by default, is not empty:

>> get(gcf,'CloseRequestFcn')

ans =

closereq

>> class(ans)

ans =

char

By default, when a Figure window is closed by clicking the close box in the figure
title bar, the string 'closereq' is passed to eval. This string is the name of a
 function in MATLAB that simply deletes the current figure. So, by default, clicking
the close box deletes the associated Figure window. This behavior can be changed
simply by replacing the preceding string with another to be evaluated on a close
request. Consider the following example:

>> set(gcf,'CloseRequestFcn','')

This replacement disables closure via the close box. The close request function is
an empty string, and so no action is taken. This callback string can be any valid
sequence of MATLAB statements. Therefore, the string could prompt the user for
confirmation of the close request before actually doing it.

30.16 M-FILE EXAMPLES

There are many, many examples of Handle Graphics usage in MATLAB itself.
Almost all of the specialized plotting functions in the specgraph directory (>> doc
specgraph) are composed of Handle Graphics functions. Even the M-file function
axis is implemented by using Handle Graphics function calls. This section provides
further illustrations of Handle Graphics usage.

The function mmis2d returns logical True if an axis is a 2-D view of the x–y plane:

function [tf,xa,ya] = mmis2d(H)

%MMIS2D True for Axes that are 2D.

% MMIS2D(H) returns True if the axes having handle H displays

% a 2D viewpoint of the X-Y plane where the X- and Y-axes are

Section 30.16 M-file Examples 585

This function makes use of the function ishandle, which returns logical True for
arguments that are valid object handles. It checks to see if the supplied handle is
that of an axes by getting the 'Type' property. If successful, it then gets the 'View'
property to determine the requested output.

The function mmgetpos finds the position of an object in a specific set of units.
This function does the right thing, in that it gets the current 'Units' property, sets

% parallel to the sides of the associated figure window.

%

% [TF,Xa,Ya] = MMIS2D(H) in addition returns the angles of x- and y-axes

%

% e.g., if the x-axis increases from right-to-left Xa = 180

% e.g., if the y-axis increases from left-to-right Ya = 0

% e.g., if the x-axis increases from bottom-to-top Xa = 90

if ~ishandle(H)

 error('H Must be a Handle.')

end

if ~strcmp(get(H,'Type'),'axes')

 error('H Must be a Handle to an Axes Object.')

end

v = get(H,'view');

az = v(1);

el = v(2);

tf = rem(az,90)==0 && abs(el)==90;

if nargout==3

 xdir = strcmp(get(H,'Xdir'),'reverse');

 ydir = strcmp(get(H,'Ydir'),'reverse');

 s = sign(el);

 xa = mod(-s*az - xdir*180,360);

 ya = mod(s*(90-az) - ydir*180,360);

end

586 Chapter 30 Handle Graphics

the units to the 'Units' of the desired output, gets the 'Position' property in the
desired units, and then resets the 'Units' property:

function p = mmgetpos(H,u,cp)

%MMGETPOS Get Object Position Vector in Specified Units.

% MMGETPOS(H,'Units') returns the position vector associated with the

% graphics object having handle H in the units specified by 'Units'.

% 'Units' is one of: 'pixels', 'normalized', 'points', 'inches', 'cent',

% or 'character'.

% 'Units' equal to 'data' is valid for text objects only.

%

% MMGETPOS does the “right thing”, i.e., it: (1) saves the current units,

% (2) sets the units to those requested, (3) gets the position, then

% (4) restores the original units.

%

% MMGETPOS(H,'Units','CurrentPoint') returns the 'CurrentPoint' position

% of the figure having handle H in the units specified by 'Units'.

%

% MMGETPOS(H,'Units','Extent') returns the 'Extent' rectangle of the text

% object having handle H.

%

% 'Uimenu', 'Uicontextmenu', 'image', 'line', 'patch', 'surface',

% 'rectangle' and 'light' objects do NOT have position properties.

if ~ischar(u)

 error('Units Must be a Valid String.')

end

if ~ishandle(H)

 error('H is Not a Valid Handle.')

end

Htype = get(H,'Type');

if nargin==3 && ~isempty(cp) && ischar(cp)

 if strcmp(Htype,'figure') && lower(cp(1))=='c'

Section 30.16 M-file Examples 587

The mmzap function illustrates a technique that is very useful when writing
Handle Graphics function M-files. It uses a combination of waitforbuttonpress
and gco to get the handle to an object selected using the mouse. The command
waitforbuttonpress is a built-in MATLAB function that waits for a mouse click
or key press. Part of its help text is as follows:

>> help waitforbuttonpress

WAITFORBUTTONPRESS Wait for key/buttonpress over figure.

 T = WAITFORBUTTONPRESS stops program execution until a key or

 mouse button is pressed over a figure window. Returns 0

 when terminated by a mouse buttonpress, or 1 when terminated

 by a keypress. Additional information about the terminating

 event is available from the current figure.

 pname = 'CurrentPoint';

 elseif strcmp(Htype,'text') && lower(cp(1))=='e'

 pname = 'Extent';

 else

 error('Unknown Input Syntax.')

 end

elseif H~=0

 pname = 'Position';

elseif H==0 % root object

 pname = 'ScreenSize';

else

 error('Unknown Input Syntax.')

end

hu = get(H,'units'); % get original units

set(H,'units',u) % set to desired units

p = get(H,pname); % get position in desired units

set(H,'units',hu) % set units back to original units

588 Chapter 30 Handle Graphics

After a mouse button is pressed with the mouse pointer over a figure, gco returns
the handle of the selected object. This handle is then used to manipulate the selected
object:

function mmzap(arg)

%MMZAP Delete Graphics Object Using Mouse.

% MMZAP waits for a mouse click on an object in

% a figure window and deletes the object.

% MMZAP or MMZAP text erases text objects.

% MMZAP axes erases axes objects.

% MMZAP line erases line objects.

% MMZAP surf erases surface objects.

% MMZAP patch erases patch objects.

%

% Clicking on an object other than the selected type, or striking

% a key on the keyboard aborts the command.

if nargin<1

 arg = 'text';

end

Hf = get(0,'CurrentFigure');

if isempty(Hf)

 error('No Figure Window Exists.')

end

if length(findobj(0,'Type','figure'))==1

 figure(Hf) % bring only figure forward

end

key = waitforbuttonpress;

if key % key on keyboard pressed

 return

 else % object selected

 object = gco;

 type = get(object,'Type');

Section 30.16 M-file Examples 589

The functions xlim, ylim, and zlim in MATLAB allow you to set and get axis
 limits for the three plot axes independently. There are no equivalent functions for
grid lines. The function grid turns grid lines on and off along all three axes. To add
this feature, the function mmgrid allows you to turn grid lines on and off along any
individual axis:

 if strncmpi(type,arg,4)

 delete(object)

 end

end

function mmgrid(varargin)

%MMGRID Individual Axis Grid Lines on the Current Axes.

% V is a single character X, Y, or Z denoting the desired axis.

% MMGRID V toggles the major grid lines on the V-axis.

% MMGRID V ON adds major grid lines to the V-axis.

% MMGRID V ON MINOR adds minor grid lines to the V-axis.

% MMGRID V OFF removes major grid lines from the V-axis.

% MMGRID V OFF MINOR removes minor grid lines from the V-axis.

%

% See also GRID

ni = nargin;

if ni==0

 error('At Least One Input Argument Required.')

end

if ~iscellstr(varargin)

 error('Input Arguments Must be Strings.')

end

Hf = get(0,'CurrentFigure'); % get current figure if it exists

if isempty(Hf) % no figure so do nothing

 return

end

590 Chapter 30 Handle Graphics

Ha = get(Hf,'CurrentAxes'); % get current axes if it exists

if isempty(Ha) % no axes so do nothing

 return

end

% parse input and do work

V = varargin{1};

idx = strfind('xXyYzZ',V(1));

if isempty(idx)

 error('Unknown Axis Selected.')

end

VGrid = [upper(V(1)) 'Grid']; % XGrid, YGrid, or ZGrid

if ni==1 % MMGRID V Toggle Grid

 Gstate = get(Ha,VGrid);

 if strcmpi(Gstate,'on')

 set(Ha,VGrid,'off')

 else

 set(Ha,VGrid,'on')

 end

elseif ni==2 % MMGRID V ON or MMGRID V OFF

 OnOff = varargin{2};

 if strcmpi(OnOff,'on')

 set(Ha,VGrid,'on')

 elseif strcmpi(OnOff,'off')

 set(Ha,VGrid,'off')

 else

 error('Second Argument Must be On or Off.')

 end

elseif ni==3 % MMGRID V ON MINOR or MMGRID V OFF MINOR

 if ~strcmpi(varargin{3},'minor')

 error('Unknown Third Argument.')

Section 30.17 Summary 591

 end

 VGrid = [upper(V(1)) 'MinorGrid'];

 OnOff = varargin{2};

 if strcmpi(OnOff,'on')

 set(Ha,VGrid,'on')

 elseif strcmpi(OnOff,'off')

 set(Ha,VGrid,'off')

 else

 error('Second Argument Must be On or OFF.')

 end

end

Rather than use the functions gcf and gca to get the current figure and axes
respectively, Handle Graphics calls are used to get the 'CurrentFigure' and
'CurrentAxes' properties. By doing so, no automatic creation of a figure or axes
is performed. This allows the function to terminate without performing any action,
if no figure or axes exists. The rest of the function simply modifies the 'XGrid',
'YGrid', 'ZGrid', 'XMinorGrid', 'YMinorGrid', or 'ZMinorGrid' properties of
the current axes, as directed by the input arguments.

30.17 SUMMARY

Handle Graphics functions provide the ability to fine-tune the appearance of visual
aspects of MATLAB. Each graphics object has a handle associated with it that can
be used to manipulate the object. The following table documents pertinent Handle
Graphics functions in MATLAB:

Function Description

get Gets object properties

set Sets object properties

gcf Gets current figure

gca Gets current axes

gco Gets current object

shg Shows most recent graph window

592 Chapter 30 Handle Graphics

Function Description

findobj Finds visible objects having specified properties

findall Finds visible and invisible objects having specified properties

findfigs Returns visible figure windows to the computer screen

allchild Gets visible and invisible children handles for an object

ancestor Ancestor of graphics object

copyobj Copies object to new parent

inspect Opens Handle Graphics property inspector GUI

root Root computer object, handle = 0

figure figure object creation

axes axes object creation

image image object creation

light light object creation

line line object creation

patch patch object creation

rectangle rectangle object creation

surface surface object creation

text text object creation

axis Axis scaling and appearance

box Axes border

grid Grid lines for 2-D and 3-D plots

linkaxes Creates a link object for linking axis limits on two or more
axes objects

linkprop Creates a link object for linking listed properties of two or
more Handle Graphics objects

uibuttongroup User interface container object for managing 'radiobutton'
and 'togglebutton' style uicontrol objects

uicontrol User interface uicontrol object creation

uimenu User interface uimenu object creation

uicontextmenu User interface uicontextual menu object creation

uipanel User interface uipanel object creation

Section 30.17 Summary 593

uitoolbar User interface uitoolbar object creation

uipushtool Momentary contact pushbutton for a uitoolbar

uitoggletool On/Off pushbutton for a uitoolbar

uitable User interface uitable object creation

areasseries Plots object created by the function area

barseries Plots object created by the functions bar, bar3, bar3h

contourgroup Plots object created by the functions contour, contour3,
contourf

errorbarseries Plots object created by the function errorbar

lineseries Plots object created by the functions plot, plot3,
semilogx, semilogy, loglog

quivergroup Plots object created by the functions quiver, quiver3

scattergroup Plots object created by the functions scatter, scatter3

stairseries Plots object created by the function stairs

stemseries Plots object created by the functions stem, stem3

surfaceplot Plots object created by the functions surf, mesh

hggroup Creates group object

hgtransform Creates group object

makehgtform Creates transformation matrix for hgtransform group object

annotation Creates annotation axes object

reset Resets object properties to default values

clf Clears current figure

cla Clears current axes

ishandle True for arguments that are object handles

ishold Returns current hold state

hgload Loads Handle Graphics object hierarchy from file

hgsave Saves Handle Graphics object hierarchy to file

saveas Saves figure using specified format

delete Deletes object

close Closes figure using close request function

refresh Refreshes figure

594 Chapter 30 Handle Graphics

Function Description

refreshdata Refreshes data in graph when data source is specified

drawnow Flushes event queue and updates figure window

waitfor Blocks execution and waits for event or condition

gcbo Gets current callback object

gcbf Gets current callback figure

closereq Default figure 'CloseRequestFcn' callback

newplot Creates axes with knowledge of 'NextPlot' properties

opengl Controls OpenGL rendering

propedit Opens Property Editor tool

595

MATLAB has a number of fundamental data types otherwise known as classes.
For example, arrays of numbers are commonly double-precision arrays. A variable
containing such an array has a class called double. Similarly, character strings are
another data type or class. Variables containing character strings have a class called
char. Consider the following example:

>> pi % a simple double

ans =

 3.1416

>> class(pi)

ans =

double

>> s = 'pi' % a simple string

s =

pi

MATLAB Classes and
Object-Oriented
Programming

31

596 Chapter 31 MATLAB Classes and Object-Oriented Programming

>> class(s)

ans =

char

Data types or classes in basic MATLAB include double, char, logical, cell,
and struct. These data types are the most commonly used classes in MATLAB.
In addition, MATLAB includes the lesser-used classes function_handle, map,
single, and a variety of integer data types.

For each of these classes, MATLAB defines operations that can be
 performed. For example, addition is a defined operator for elements of the class
double, but is not defined for elements of the class char, or for elements of the
class cell:

>> x = pi+2

x =

 5.1416

>> y = 'hello' + 'there'

y =

 220 205 209 222 212

>> {'hello' 'there'}+{'sunny' 'day'}

??? Undefined function or method 'plus' for input arguments of type 'cell'.

Here, adding two character strings created a numerical array rather than a character
string. Rather than report an error, MATLAB chose to convert 'hello' and
'there' to their ASCII numerical equivalents, and then perform element-by-element
 numerical addition. Even though MATLAB produced a result for this character-string
example, it did so only after converting the elements on the right-hand side to the class
double. MATLAB does this implicit type or class conversion for convenience, not
because addition is defined for character strings. On the other hand, trying to add two
cell arrays produces an immediate error.

Starting with version 5, MATLAB added the ability to define new operations
for the basic data types and, more importantly, added the ability to create
 user-defined data types or classes. Creating and using data types is called object
 oriented programming (OOP), in which variables in each data type or class are
called objects. Operations on objects are defined by methods that encapsulate data
and overload operators and functions. The vocabulary of OOP includes terms such
as operator and function overloading, data encapsulation, methods, inheritance,
and aggregation. These terms and the fundamental principles of object-oriented
 programming in MATLAB are discussed in this chapter.

Section 31.1 Overloading 597

31.1 OVERLOADING

Before getting involved in the details of OOP and creating new variable classes, consider
the process of overloading standard classes in MATLAB. The techniques used to overload
standard classes are identical to those used for user-created classes. Once overloading is
understood for standard classes, it is straightforward for user-created classes.

When the MATLAB interpreter encounters an operator such as addition, or
a function with one or more input arguments, it considers the data type or class
of the arguments to the operator or function and acts according to the rules it has
defined internally. For example, addition means to compute the numerical sum
of the arguments if the arguments are numerical values or can be converted to
 numerical values, such as character strings. When the internal rules for an operation
or function are redefined, the operator or function is said to be overloaded.

Operator and function overloading allow a user to redefine what actions MATLAB
 performs when it encounters an operator or function.

In MATLAB, the redefined rules for interpreting operators and functions are
simply function M-files stored in class directories just off of the MATLAB search path.

The collection of rules or M-files for redefining operators and functions define
 methods. The files themselves are commonly referred to as method functions.

That is, class directories themselves are not and cannot be on the MATLAB search
path, but they are and must be subdirectories of directories that are on the MATLAB
search path. To find class subdirectories, MATLAB requires that class directories be
named as @class, where class is the variable class that the M-files in @class apply
to. In addition, MATLAB supports multiple class directories. That is, there can be
 multiple @class directories for the same data type just off of the MATLAB path.
When looking for functions in class directories, MATLAB follows the order given
by the MATLAB search path and uses the first matching method function file found.

For example, if a directory @char appears just off of the MATLAB search
path, the M-files contained in this directory can redefine operations and functions
on character strings. To illustrate this, consider the function M-file plus.m:

function s = plus(s1,s2)

% Horizontal Concatenation for char Objects.

if ischar(s1)&ischar(s2)

598 Chapter 31 MATLAB Classes and Object-Oriented Programming

If this M-file is stored in any @char directory just off of the MATLAB search path,
addition of character strings is redefined as horizontal concatenation. For example,
repeating the statement y = 'hello' + 'there' made earlier becomes

>> y = 'hello' + 'there'

y =

hellothere

MATLAB no longer converts the strings on the right-hand side to their ASCII equiva-
lents and adds the numerical results! What MATLAB did was: (1) construe character
strings to appear on both sides of the addition symbol +; (2) look down the MATLAB
search path for an @char subdirectory; (3) find the one we created and look for a function
M-file named plus.m; (4) find the previous plus.m function, pass the two arguments to
the addition operator to the function, and let it determine what action to perform; and
(5) finally, return the function output as the result of the addition operation.

 s = cat(2,s1(:).',s2(:).');

elseif isnumeric(s2)

 s = double(s1)+s2;

else

 error('Operator + Not Defined.')

end

To speed operation, MATLAB caches class subdirectories at startup. So, for this
 example to work, you must create the subdirectory and M-file and then restart
MATLAB or issue the rehash command to get MATLAB to cache the newly created
class subdirectory and associated M-files.

When addition is performed between two different data types, such as char
and double, MATLAB considers the precedence and order of the arguments.
For variables of equal precedence, MATLAB gives precedence to the leftmost
 argument to an operator or function, as in the following example:

>> z = 2 + 'hello'

z =

 106 103 110 110 113

The classes double and char have equal precedence. As a result, MATLAB
 considers addition to be numerical and applies its internal rules, converting 'hello'

Section 31.1 Overloading 599

to its ASCII equivalent and performing numerical addition. On the other hand, if
the order of the preceding operands is reversed, as in the code,

>> z = 'hello' + 2

z =

 106 103 110 110 113

then MATLAB considers addition to be a char class operation. In this case, the
@char/plus.m function is called as plus('hello',2). As written, plus.m identifies this
mixed class call with isnumeric(s2) and returns the same result as z = 2 + 'hello'.

As illustrated earlier, a function named plus.m defines addition in a class
 subdirectory. To support overloading of other operators, MATLAB assigns the
function names shown in the following table to operators.

Operator Function Name Description

a + b plus(a,b) Numerical addition

a – b minus(a,b) Numerical subtraction

−a uminus(a) Unary minus

+a uplus(a) Unary plus

a .* b times(a,b) Element-by-element multiplication

a * b mtimes(a,b) Matrix multiplication

a ./ b rdivide(a,b) Element-by-element right division

a .\ b ldivide(a,b) Element-by-element left division

a / b mrdivide(a,b) Matrix right division

a \ b mldivide(a,b) Matrix left division

a .^ b power(a,b) Element-by-element exponentiation

a ^ b mpower(a,b) Matrix exponentiation

a < b lt(a,b) Less than

a > b gt(a,b) Greater than

a <= b le(a,b) Less than or equal to

a >= b ge(a,b) Greater than or equal to

a ~= b ne(a,b) Not equal

a == b eq(a,b) Equal

a & b and(a,b) Logical AND

a | b or(a,b) Logical OR

600 Chapter 31 MATLAB Classes and Object-Oriented Programming

Continuing with the previous char class example, note that subtraction can be
overloaded with the following function:

Operator Function Name Description

~a not(a) Logical NOT

a:d:b colon(a,d,b) Colon operator

a:b colon(a,b)

a' ctranspose(a) Conjugate transpose

a.' transpose(a) Transpose

[a b] horzcat(a,b) Horizontal concatenation

[a; b] vertcat(a,b) Vertical concatenation

a(s1,s2,. . .) subsref(a,s) Subscripted reference

a(s1,s2,. . .) = b subsasgn(a,s,b) Subscripted assignment

b(a) subsindex(a) Subscript index

display(a) Command window output

end end(a,k,n) Subscript interpretation of end

function s = minus(s1,s2)

% Subtraction for char Objects.

% Delete occurrences of s2 in s1.

if ischar(s1)&ischar(s2)

 s = strrep(s1,s2,'');

elseif isnumeric(s2)

 s = double(s1)-s2;

else

 error('Operator - Not Defined.')

end

As defined, subtraction is interpreted as the deletion of matching substrings:

>> z = 'hello' - 'e'

z =

hllo

Section 31.1 Overloading 601

>> a = 'hello' - 2

a =

 102 99 106 106 109

Again, this mixed-class case returns the MATLAB default action.
When multiple operators appear in a statement, MATLAB adheres to its

usual order of precedence rules, working from left to right in an expression, as in the
following example:

>> a = 'hello' + ' ' + 'there'

a =

hello there

>> a - 'e'

ans =

hllo thr

>> a = 'hello' + ' ' + ('there' - 'e')

a =

hello thr

This discussion concludes how MATLAB overloads operators.
Overloading functions follows the same procedure. In this case, the function

stored in the class subdirectory has the same name as that of the standard MATLAB
function:

function s = cat(varargin)

%CAT Concatenate Strings as a Row.

if length(varargin)>1 & ~ischar(varargin{2})

 error('CAT Not Defined for Mixed Classes.')

else

 s = cat(2,varargin{:});

end

602 Chapter 31 MATLAB Classes and Object-Oriented Programming

This function overloads the function cat for character strings. It is called only
if the first argument to the cat function is a character string; that is, it is of
class char. If the first argument is numerical, the standard cat function is
called:

>> cat('hello','there') % call overloaded cat

hellothere

>> cat('hello',2) % call overloaded cat

??? Error using ==> char.cat at 5

CAT Not Defined for Mixed Classes.

>> cat(2,'hello') % call built in cat

ans =

hello

In addition to the operator overloading functions listed in this section,
MATLAB provides several OOP utility functions. They include methods, isa,
class, loadobj, and saveobj. The functions isa and class help to identify the
data type or class of a variable or object:

>> a = 'hello';

>> class(a) % return class of argument

ans =

char

>> isa(a,'double') % logical class test

ans =

 0

>> isa(a,'char') % logical class test

ans =

 1

The function methods returns a listing of the methods, or overloading operators
and functions associated with a given class:

>> methods cell

Section 31.2 Class Creation 603

Methods for class cell:

accumarray newdepfun setdiff strtok

cell2struct permute setxor transpose

ctranspose regexp sort union

display regexpi strcat unique

intersect regexprep strfind

ismember regexptranslate strjust

issorted reshape strmatch

This result shows that MATLAB itself has overloading functions that are called when
input arguments are cell arrays. These functions extend the functionality of basic
MATLAB functions to cell arrays without requiring the basic functions themselves to
be rewritten to accept cell array arguments.

Finally, the functions loadobj and saveobj are called (if they exist) whenever
the functions load and save are called with user-defined classes, respectively.
Adding these functions to a class subdirectory allows you to modify a user-defined
variable after a load operation or before a save operation.

31.2 CLASS CREATION

Operator and function overloading are key aspects of OOP. MATLAB’s preferred
implementation relies on a simple scheme whereby all of the properties and
 methods associated with a variable class are stored in a class definition file in class
 subdirectory just off of the MATLAB search path. Although class subdirectories
containing individual method M-files as illustrated in the previous section are still
supported, a single class definition file has been the preferred style since MATLAB 7.6.
This section illustrates the creation of user-defined classes in the preferred style.

A new variable class is created when a class directory @classname is created
and populated by a class definition M-file. The M-file has the name classname.m,
and is used to define the properties and methods of the new variable class. This file
is structured as follows:

classdef classname % class definition instance

 properties % properties of the class

 property1;

 property2;

 propertyn;

 end % properties

 methods % class methods (function and operator definitions)

 function output = classname(input) % class constructor method

604 Chapter 31 MATLAB Classes and Object-Oriented Programming

The following example creates a new rational polynomial variable class.
A directory is created just off of the MATLAB path named @mmrp. Then the M-file
mmrp.m is created within this class directory structured as shown above. The file
begins with a classdef statement, followed by properties of the class, followed
by class method functions:

 statements;

 end % classname

 additional function and operator definitions

 end % methods

end % classdef

classdef mmrp

%MMRP Mastering MATLAB Rational Polynomial Object Class

properties (Access = private) % restrict property access to class methods

n;

d;

v;

end % properties

methods

% insert method functions here

end % methods

end % classdef

In this case, the class variable is constructed as a structure with fields n (numerator),
d (denominator), and v (variable name). The attribute 'Access = private' indicates
that the properties are accessible within the class methods, but not externally.

The first required class method is a function to create variables of the new class
from existing classes. This function is called the constructor and is named for the class
itself. The second required method is the function display and is used to display the new
variable in the Command window. No variable class is useful without additional method
functions, but the constructor and display functions are a minimum requirement.

Section 31.2 Class Creation 605

The constructor method is a standard function call with input arguments containing the
data needed to create an output variable of the desired class. For greatest flexibility,
the constructor should handle three different sets of input arguments. Just as there
are empty strings, arrays, cells, and so on, the constructor should produce an empty
 variable if no arguments are passed to it. On the other hand, if the constructor is passed
a variable of the same class as that created by the constructor, the constructor should
simply pass it back as an output argument. Finally, if creation data are provided, a
new variable of the desired class should be created. In this last case, the input data can
be checked for appropriateness. Inside of the constructor, the data used to create a
 variable of the desired class are stored in the fields of a structure. Once the structure
fields are populated, the new variable is created. For example, the following is the
constructor function for a rational polynomial object:

function r = mmrp(varargin)

%MMRP Mastering MATLAB Rational Polynomial Object Constructor.

% MMRP(p) creates a polynomial object from the polynomial vector p

% with 'x' as the variable.

% MMRP(p,'s') creates the polynomial object using the letter 's' as

% the variable in the display of p.

% MMRP(n,d) creates a rational polynomial object from the numerator

% polynomial vector n and denominator polynomial d.

% MMRP(n,d,'s') creates the rational polynomial using the letter 's' as

% the variable in the display of p.

%

% All coefficients must be real.

[n,d,v,msg] = local_parse(varargin); % parse input arguments

if isempty(v) % input was mmrp so return it

 r = n;

else

 error(msg) % return error if it exists

In the vocabulary of OOP, the constructor creates an instance of the class. This instance
is an object that utilizes the methods that overload how operators and functions act in
the presence of the object.

606 Chapter 31 MATLAB Classes and Object-Oriented Programming

 tol = 100*eps;

 if length(d)==1 & abs(d)>tol % enforce scalar d = 1

 r.n = n/d;

 r.d = 1;

 elseif abs(d(1))>tol % make d monic if possible

 r.n = n/d(1);

 r.d = d/d(1);

 else % can't be made monic

 r.n = n;

 r.d = d;

 end

 r.v = v(1);

 r.n = mmpsim(r.n); % strip leading zero terms

 r.d = mmpsim(r.d); % see chapter 19 for mmpsim

 r = minreal(r); % perform pole-zero cancellation

end % if

 function [n,d,v,msg]=local_parse(args); % nested function

 % parse input arguments to mmrp

 statements omitted for simplification

 end % local_parse

end % mmrp function

To simplify the function, parsing of the input arguments is done in the nested function
local_parse. Details are not shown in the preceding code, but local_parse sets
the values of four variables, n, d, v, and msg. The variables n and d are numerical row
vectors containing the coefficients of the numerator and denominator of the rational
polynomial, respectively. The variable v contains the string variable used to display
the polynomial. Last, msg contains an error message if the parsing routines encounter
invalid inputs.

The previous constructor considers all three sets of input arguments. If no input
arguments exist, n, d, and v are returned to create an empty rational polynomial.
If the input argument is a rational polynomial object, it is simply returned as the
 output argument. Finally, if data are supplied, a rational polynomial object is
 created. In the simplest case, the denominator is simply equal to 1 and the display
variable is 'x'. The last assignment statement in mmrp passes the created rational

Section 31.2 Class Creation 607

polynomial to the overloaded but not shown function minreal, which returns a
minimal realization of the object by canceling like poles and zeros.

Since the mmrp function is contained within the methods section of the class
definition M-file and will be followed by other functions, the function itself must be
terminated by an end statement as does the nested function local_parse.

Within the constructor method, it is important that the structure fields be
 created in the same order under all circumstances. Violation of this rule may cause
the created object to behave erratically.

Given the mmrp constructor method, we have the following associated display
method:

function display(r)

%DISPLAY Command Window Display of Rational Polynomial Objects.

loose = strcmp(get(0,'FormatSpacing'),'loose');

if loose, disp(' '), end

var = inputname(1);

if isempty(var)

 disp('ans =')

else

 disp([var ' ='])

end

nstr = mmp2str(r.n,r.v); % convert polynomial to string

nlen = length(nstr);

if length(r.d)>1 | r.d~=1

 dstr = mmp2str(r.d,r.v);

else

 dstr = [];

end

dlen = length(dstr);

dash = '-';

if loose, disp(' '), end

if dlen % denominator exists

 m = max(nlen,dlen);

 disp('MMRP Rational Polynomial Object:')

 disp([blanks(ceil((m-nlen)/2)) nstr]);

608 Chapter 31 MATLAB Classes and Object-Oriented Programming

 disp(dash(ones(1,m)));

 disp([blanks(fix((m-dlen)/2)) dstr]);

else

 disp('MMRP Rational Polynomial Object:')

 disp(nstr);

end

if loose, disp(' '), end

end % display function

This display function calls the function mmp2str to convert a numerical polynomial
vector and a desired variable to a character-string representation. Like the mmpsim
function used in the mmrp method, this mmp2str function must exist elsewhere on
the MATLAB search path, not in the @mmrp directory or as a method in the class
definition file. In this case, mmp2str is not part of the MATLAB installation. If it
existed in the class directory or as a class method, MATLAB would not find it, since
the arguments to mmp2str are double and char, respectively, and not of class mmrp.
As described in the last section, a method function is called only if the leftmost or
highest-precedence input argument has a class that matches that of the method.
Note that a user-defined class has the highest precedence.

Within a method function, it is possible to act on objects as shown in the last
assignment statement in the constructor r = minreal(r), where the variable r on the
right-hand side is an object having class mmrp. There are two exceptions to this property.
The overloading functions subsref and subsasgn are not called when subscripted
reference and subscripted assignment appear within a method function. This allows
the user to more freely access and manipulate a class variable within a method function.

It is also possible for class methods to act on the data contained in an object by
simply addressing the structure fields of the object, as shown in numerous places within
the display method. In this case, the class of the data determines how MATLAB acts.

Outside of method functions (e.g., in the Command window) it is not possible to gain
access to the contents of fields of an object, nor is it possible to determine the number
of or names of the fields. This property is called data encapsulation.

The following examples demonstrate the creation and display of rational polynomial
objects:

>> p = mmrp([1 2 3])

p =

MMRP Rational Polynomial Object:

x^2 + 2x^1 + 3

Section 31.2 Class Creation 609

>> q = mmrp([1 2 3],[4 5 6],'z')

q =

MMRP Rational Polynomial Object:

0.25z^2 + 0.5z^1 + 0.75

 z^2 + 1.25z^1 + 1.5

>> r = mmrp(conv([1 2],[1 4]),conv([1 2],[1 3]))

r =

MMRP Rational Polynomial Object:

x^1 + 4

x^1 + 3

Rational polynomial objects have little value unless operators and functions
are overloaded. In particular, it is convenient to define arithmetic operations
on mmrp objects. The following methods define addition, subtraction, multipli-
cation, and division for mmrp objects (since multiplication and division offer
multiple methods, they are all overloaded with the associated polynomial
manipulation):

function r = plus(a,b)

%PLUS Addition for Rational Polynomial Objects.

if isnumeric(a)

 rn = mmpadd(a*b.d,b.n); % see chapter 19 for mmpadd

 rd = b.d;

 rv = b.v;

elseif isnumeric(b)

 rn = mmpadd(b*a.d,a.n);

 rd = a.d;

 rv = a.v;

else % both polynomial objects

 if ~isequal(a.d,b.d)

 rn = mmpadd(conv(a.n,b.d),conv(b.n,a.d));

 rd = conv(a.d,b.d);

610 Chapter 31 MATLAB Classes and Object-Oriented Programming

 else

 rn = mmpadd(a.n,b.n);

 rd = b.d;

 end

 if ~strcmp(a.v,b.v)

 warning('Variables Not Identical')

 end

 rv = a.v;

end

r = mmrp(rn,rd,rv); % create new MMRP object from results

end % plus

function r = uminus(a)

%UMINUS Unary Minus for Rational Polynomial Objects.

r = mmrp(-a.n,a.d,a.v);

end % uminus

function r = minus(a,b)

%MINUS Subtraction for Rational Polynomial Objects.

r = a+uminus(b); % use plus and uminus to implement minus

end % minus

function r = times(a,b)

%TIMES Dot Times for Rational Polynomial Objects.

a = mmrp(a); % convert inputs to mmrp if necessary

b = mmrp(b);

rn = conv(a.n,b.n);

rd = conv(a.d,b.d);

Section 31.2 Class Creation 611

if ~strcmp(a.v,b.v)

 warning('Variables Not Identical')

end

rv = a.v;

r = mmrp(rn,rd,rv); % create new MMRP object from results

end % times

function r = mtimes(a,b)

%MTIMES Times for Rational Polynomial Objects.

r = a.*b; % simply call times.m

end % mtimes

function r = rdivide(a,b)

%RDIVIDE Right Dot Division for Rational Polynomial Objects.

a = mmrp(a); % convert inputs to mmrp if necessary

b = mmrp(b);

rn = conv(a.n,b.d);

rd = conv(a.d,b.n);

if ~strcmp(a.v,b.v)

 warning('Variables Not Identical')

end

rv = a.v;

r = mmrp(rn,rd,rv); % create new MMRP object from results

end % rdivide

function r = mrdivide(a,b)

%MRDIVIDE Right Division for Rational Polynomial Objects.

r = a./b; % simply call rdivide.m

end % mrdivide

612 Chapter 31 MATLAB Classes and Object-Oriented Programming

function r = ldivide(a,b)

%LDIVIDE Left Dot Division for Rational Polynomial Objects.

r = b./a; % simply call rdivide.m

end % ldivide

function r = mldivide(a,b)

%MLDIVIDE Left Division for Rational Polynomial Objects.

r = b./a; % simply call rdivide.m

end % mldivide

The preceding method functions are self-explanatory, in that they implement simply
polynomial arithmetic. Note that each method is terminated by an end statement.
Examples of their use include the following:

>> a = mmrp([1 2 3])

a =

MMRP Rational Polynomial Object:

x^2 + 2x^1 + 3

>> b = a + 2 % addition

b =

MMRP Rational Polynomial Object:

x^2 + 2x^1 + 5

>> a - b % subtraction

ans =

MMRP Rational Polynomial Object:

-2

>> a + b % addition

ans =

MMRP Rational Polynomial Object:

2x^2 + 4x^1 + 8

Section 31.2 Class Creation 613

>> 2*b % multiplication

ans =

MMRP Rational Polynomial Object:

2x^2 + 4x^1 + 10

>> a * b % multiplication

ans =

MMRP Rational Polynomial Object:

x^4 + 4x^3 + 12x^2 + 16x^1 + 15

>> b/2 % division

ans =

MMRP Rational Polynomial Object:

0.5x^2 + x^1 + 2.5

>> 2/b % division

ans =

MMRP Rational Polynomial Object:

2

x^2 + 2x^1 + 5

>> c = a/b % division

c =

MMRP Rational Polynomial Object:

x^2 + 2x^1 + 3

x^2 + 2x^1 + 5

>> d = c/(1+c) % mixed

d =

MMRP Rational Polynomial Object:

0.5x^2 + x^1 + 1.5

x^2 + 2x^1 + 4

614 Chapter 31 MATLAB Classes and Object-Oriented Programming

>> (a/b)*(b/a) % mixed

ans =

MMRP Rational Polynomial Object:

1

Given the polynomial functions available in MATLAB and the ease with which
they can be manipulated, there are many functions that can be overloaded. For
example, the basic MATLAB functions roots and zeros can be overloaded by the
following method M-files:

function [z,p] = roots(r)

%ROOTS Find Roots of Rational Polynomial Objects.

% ROOTS(R) returns the roots of the numerator of R.

% [Z,P] = ROOTS(R) returns the zeros and poles of R in

% Z and P respectively.

z = roots(r.n);

if nargout==2

 p = roots(r.d);

end

end % roots

function z = zeros(r)

%ZEROS Zeros of a Rational Polynomial Object.

z = roots(r.n);

end % zeros

The method function roots calls the basic MATLAB function roots, because the
arguments within the method are of class double. With the creation of the zeros
method, the function zeros has two entirely different meanings, depending on what
its arguments are. The beauty of OOP is that functions can have multiple meanings
or contexts without having to embed them all in a single M-file. The class of the
input arguments dictates which function is called into action.

Mimicking their Handle Graphics usage, it is common to use them to set or
get individual class structure fields, as in the following example:

Section 31.2 Class Creation 615

function set(r,varargin)

%SET Set Rational Polynomial Object Parameters.

% SET(R,Name,Value,. . .) sets MMRP object parameters of R

% described by the Name/Value pairs:

%

% Name Value

% 'Numerator' Numeric row vector of numerator coefficients

% 'Denominator' Numeric row vector of denominator coefficients

% 'Variable' Character Variable used to display polynomial

if rem(nargin,2)~=1

 error('Parameter Name/Values Must Appear in Pairs.')

end

for i = 2:2:nargin-1

 name = varargin{i-1};

 if ~ischar(name), error('Parameter Names Must be Strings.'), end

 name = lower(name(isletter(name)));

 value = varargin{i};

 switch name(1)

 case 'n'

 if ~isnumeric(value) | size(value,1)>1

 error('Numerator Must be a Numeric Row Vector.')

 end

 r.n = value;

 case 'd'

 if ~isnumeric(value) | size(value,1)>1

 error('Denominator Must be a Numeric Row Vector.')

 end

 r.d = value;

 case 'v'

 if ~ischar(value) | length(value)>1

 error('Variable Must be a Single Character.')

 end

 r.v = value;

616 Chapter 31 MATLAB Classes and Object-Oriented Programming

 otherwise

 warning('Unknown Parameter Name')

 end

end

vname = inputname(1);

if isempty(vname)

 vname = 'ans';

end

r = mmrp(r.n,r.d,r.v);

assignin('caller',vname,r);

end % set

function varargout = get(r,varargin)

%GET Get Rational Polynomial Object Parameters.

% GET(R,Name) gets the MMRP object parameter of R described by

% one of the following names:

%

% Name Description

% 'Numerator' Numeric row vector of numerator coefficients

% 'Denominator' Numeric row vector of denominator coefficients

% 'Variable' Character Variable used to display polynomial

%

% [A,B,. . .] = get(R,NameA,NameB,. . .) returns multiple parameters

% in the corresponding output arguments.

if (nargout+(nargout==0))~=nargin-1

 error('No. of Outputs Must Equal No. of Names.')

end

for i = 1:nargin-1

 name = varargin{i};

 if ~ischar(name), error('Parameter Names Must be Strings.'), end

 name = lower(name(isletter(name)));

Section 31.2 Class Creation 617

 switch name(1)

 case 'n'

 varargout{i} = r.n;

 case 'd'

 varargout{i} = r.d;

 case 'v'

 varargout{i} = r.v;

 otherwise

 warning('Unknown Parameter Name')

 end

end

end % get

These functions allow you to modify an mmrp object or to get data out of one, as the
following example shows:

>> c % recall data

c =

MMRP Rational Polynomial Object:

x^2 + 2x^1 + 3

x^2 + 2x^1 + 5

>> n = get(c,'num') % get numerator vector

n =

 1 2 3

>> set(c,'Numerator',[3 1]) % change numerator

>> c

c =

MMRP Rational Polynomial Object:

 3x^1 + 1

x^2 + 2x^1 + 5

618 Chapter 31 MATLAB Classes and Object-Oriented Programming

>> class(c) % class and isa know about mmrp objects

ans =

mmrp

>> isa(c,'mmrp')

ans =

 1

31.3 SUBSCRIPTS

Because of MATLAB’s array orientation, user-defined classes can also make
use of subscripts. In particular, V(. . .), V{. . .}, and V.field are all supported.
In addition, these constructions can appear on either side of an assignment
statement. When they appear on the right-hand side of an assignment statement,
they are referencing the variable V; and when they appear on the left-hand side,
they are assigning data to some part of the variable V. These indexing processes
are called subscripted reference and subscripted assignment, respectively. The
method functions that control how they are interpreted when applied to an object
are subsref and subasgn, respectively. These functions are not as straightfor-
ward to understand as other operator and function overloading methods. As a
result, this section specifically addresses them. To facilitate this discussion, the
mmrp object created in the preceding section is used in the examples.

When dealing with rational polynomials, there are two obvious interpretations
for subscripted reference. For a rational polynomial object R, R(x), where x is a data
array, can return the results of evaluating R at the points in x. Alternatively, R('v'),
where 'v' is a single character, could change the variable used to display the object
to the letter provided.

The part of the help text for subsref that describes how to write a subsref
method is as follows:

B = SUBSREF(A,S) is called for the syntax A(I), A{I}, or A.I

when A is an object. S is a structure array with the fields:

 type -- string containing '()', '{}', or '.' specifying the

 subscript type.

 subs -- Cell array or string containing the actual subscripts.

For instance, the syntax A(1:2,:) invokes SUBSREF(A,S) where S is a

1-by-1 structure with S.type = '()' and S.subs = {1:2,':'}. A colon

used as a subscript is passed as the string ':'.

Section 31.3 Subscripts 619

Similarly, the syntax A{1:2} invokes SUBSREF(A,S) where S.type = '{}'

and the syntax A.field invokes SUBSREF(A,S) where S.type = '.' and

S.subs = 'field'.

These simple calls are combined in a straightforward way for

more complicated subscripting expressions. In such cases

length(S) is the number of subscripting levels. For instance,

A(1,2).name(3:5) invokes SUBSREF(A,S) where S is 3-by-1 structure

array with the following values:

 S(1).type = '()' S(2).type = '.' S(3).type = '()'

 S(1).subs = {1,2} S(2).subs = 'name' S(3).subs = {3:5}

According to the help text, if R is an mmrp object, R(x) creates S.type = '()' and
S.subs = x, where x contains the values where R is to be evaluated, not indices into
an array. Similarly, R('v') creates S.type = '()' and S.subs = 'v'. All other
 possibilities should produce an error.

Using this information leads to the subsref method function:

function y = subsref(r,s)

%SUBSREF(R,S) Subscripted Reference for Rational Polynomial Objects.

% R('z') returns a new rational polynomial object having the same numerator

% and denominator, but using the variable 'z'.

%

% R(x) where x is a numerical array, evaluates the rational polynomial R

% at the points in x, returning an array the same size as x.

if length(s)>1

 error('MMRP Objects Support Single Arguments Only.')

end

if strcmp(s.type,'()') % R(x) or R('v')

 arg = s.subs{1};

 argc = class(arg);

 if strcmp(argc,'char')

620 Chapter 31 MATLAB Classes and Object-Oriented Programming

 if strcmp(arg(1),':')

 error('MMRP Objects Do Not Support R(:).')

 else

 y = mmrp(r.n,r.d,arg(1)); % change variables

 end

 elseif strcmp(argc,'double')

 if length(r.d)>1

 y = polyval(r.n,arg)./polyval(r.d,arg);

 else

 y = polyval(r.n,arg);

 end

 else

 error('Unknown Subscripts.')

 end

else % R{ } or R.field

 error('Cell and Structure Addressing Not Supported.')

end

end % subsref

Examples using this method include the following:

>> c % recall data

c =

MMRP Rational Polynomial Object:

3x^1 + 1

x^2 + 2x^1 + 5

>> c = c('t') % change variable

c =

MMRP Rational Polynomial Object:

3t^1 + 1

t^2 + 2t^1 + 5

Section 31.3 Subscripts 621

>> x = -2:2

x =

 -2 -1 0 1 2

>> c(x) % evaluate c(x)

ans =

 -1 -0.5 0.2 0.5 0.53846

>> c{3} % try cell addressing

??? Error using ==> mmrp.mmrp>mmrp.subsref at 463

Cell and Structure Addressing Not Supported.

>> c.n % Try field addressing

??? Error using ==> mmrp.mmrp>mmrp.subsref at 463

Cell and Structure Addressing Not Supported.

As stated earlier, outside of method functions, the field structure of objects is hidden
from view. If it were not, issuing c.n above would have returned the numerator row
vector from the object c. To enable this feature, it must be explicitly included in the
subsref method:

function y = subsref(r,s)

%SUBSREF(R,S) Subscripted Reference for Rational Polynomial Objects.

% R('z') returns a new rational polynomial object having the same numerator

% and denominator, but using the variable 'z'.

%

% R(x) where x is a numerical array, evaluates the rational polynomial R

% at the points in x, returning an array the same size as x.

%

% R.n returns the numerator row vector of R.

% R.d returns the denominator row vector of R.

% R.v returns the variable associated with R.

if length(s)>1

 error('MMRP Objects Support Single Arguments Only.')

end

622 Chapter 31 MATLAB Classes and Object-Oriented Programming

if strcmp(s.type,'()') % R()

 arg = s.subs{1};

 argc = class(arg);

 if strcmp(argc,'char')

 if strcmp(arg(1),':')

 error('MMRP Objects Do Not Support R(:).')

 else

 y = mmrp(r.n,r.d,arg(1));

 end

 elseif strcmp(argc,'double')

 if length(r.d)>1

 y = polyval(r.n,arg)./polyval(r.d,arg);

 else

 y = polyval(r.n,arg);

 end

 else

 error('Unknown Subscripts.')

 end

elseif strcmp(s.type,'.') % R.field

 arg = lower(s.subs);

 switch arg(1)

 case 'n'

 y = r.n;

 case 'd'

 y = r.d;

 case 'v'

 y = r.v;

 otherwise

 error('Unknown Data Requested.')

 end

else % R{ }

 error('Cell Addressing Not Supported.')

end

Section 31.3 Subscripts 623

Examples using this method include the following:

>> c.n % return numerator

ans =

 3 1

>> c.v % return variable

ans =

t

>> c.nadfdf % only first letter is checked in this example method

ans =

 3 1

>> c.t % not n, d, or v

??? Error using ==> mmrp.mmrp>mmrp.subsref at 472

Unknown Data Requested.

>> c.d(1:2) % we didn't include subaddressing in subsref

??? Error using ==> mmrp.mmrp>mmrp.subsref at 442

MMRP Objects Support Single Arguments Only.

As stated earlier, the overloading functions subsref and subsasgn are not
implicitly called when subscripted reference and subscripted assignment
appear within a method function. Overloading the MATLAB polynomial
evaluation function polyval demonstrates this fact, as shown by the following
method:

function y = polyval(r,x)

%POLYVAL Evaluate Rational Polynomial Object.

% POLYVAL(R,X) evaluates the rational polynomial R at the

% values in X.

if isnumeric(x)

 %y = r(x); % what we'd like to do, but can't

624 Chapter 31 MATLAB Classes and Object-Oriented Programming

Because of how subsref is written for the mmrp object, polynomial evaluation
is simply a matter issuing R(x), where R is an mmrp object and x contains the
values where R is to be evaluated. Since this matches the expected operation of
 polyval, simply issuing y = r(x) within polyval should cause MATLAB to call
the subsref method to evaluate the rational polynomial. This does not happen,
because MATLAB does not call subsref or subsasgn within methods. However,
to force this to happen, one can explicitly call subsref with the desired arguments,
as previously shown.

When dealing with rational polynomials, there is one obvious interpretation
for subscripted assignment. For a rational polynomial object R, R(1,p)= v, where p
is a numerical vector identifying variable powers and v is a numerical vector of the
same length, the elements of v become the coefficients of the numerator polynomial
associated with the powers in p. Likewise, R(2,q) = w changes the denominator
coefficients for those powers identified in q.

The part of the help text for subsasgn that describes how to write a subsasgn
method is as follows:

A = SUBSASGN(A,S,B) is called for the syntax A(I) = B, A{I} = B, or

A.I = B when A is an object. S is a structure array with the fields:

 type -- string containing '()', '{}', or '.' specifying the

 subscript type.

 subs -- Cell array or string containing the actual subscripts.

For instance, the syntax A(1:2,:) = B calls A = SUBSASGN(A,S,B) where

S is a 1-by-1 structure with S.type = '()' and S.subs = {1:2,':'}. A

colon used as a subscript is passed as the string ':'.

 S.type = '()';

 S.subs = {x};

 y = subsref(r,S); % must call subsref explicitly

else

 error('Second Input Argument Must be Numeric.')

end

end % polyval

Section 31.3 Subscripts 625

On the basis of this help text and the desired subscripted assignment, the following
subsasgn method is created:

Similarly, the syntax A{1:2} = B invokes A = SUBSASGN(A,S,B) where

S.type = '{}' and the syntax A.field = B invokes SUBSASGN(A,S,B) where

S.type = '.' and S.subs = 'field'.

These simple calls are combined in a straightforward way for

more complicated subscripting expressions. In such cases

length(S) is the number of subscripting levels. For instance,

A(1,2).name(3:5) = B invokes A = SUBSASGN(A,S,B) where S is 3-by-1

structure array with the following values:

 S(1).type = '()' S(2).type = '.' S(3).type = '()'

 S(1).subs = {1,2} S(2).subs = 'name' S(3).subs = {3:5}

function a = subsasgn(a,s,b)

%SUBSASGN Subscripted assignment for Rational Polynomial Objects.

%

% R(1,p) = C sets the coefficients of the Numerator of R identified

% by the powers in p to the values in the vector C.

%

% R(2,p) = C sets the coefficients of the Denominator of R identified

% by the powers in p to the values in the vector C.

%

% R(1,:) or R(2,:) simply replaces the corresponding polynomial

% data vector.

%

% For example, for the rational polynomial object

% 2x^2 + 3x + 4

% R(x) = --------------------

% x^3 + 4x^2 + 5x + 6

626 Chapter 31 MATLAB Classes and Object-Oriented Programming

%

% R(1,2)=5 changes the coefficient 2x^2 to 5x^2

% R(2,[3 2])=[7 8] changes x^3 + 4x^2 to 7x^3 + 8x^2

% R(1,:)=[1 2 3] changes the numerator to x^2 + 2x + 3

if length(s)>1

 error('MMRP Objects Support Single Arguments Only.')

end

if strcmp(s.type,'()') % R(1,p) or R(2,p)

 if length(s.subs)~=2

 error('Two Subscripts Required.')

 end

 nd = s.subs{1}; % numerator or denominator

 p = s.subs{2}; % powers to modify

 if ndims(nd)~=2 | length(nd)~=1 | (nd~=1 & nd~=2)

 error('First Subscript Must be 1 or 2.')

end

if isnumeric(p) & . . .

 (ndims(p)~=2 | any(p<0) | any(fix(p)~=p))

 error('Second Subscript Must Contain Nonnegative Integers.')

end

if ndims(b)~=2 | length(b)~=prod(size(b))

 error('Right Hand Side Must be a Vector.')

end

b = b(:).'; % make sure b is a row

p = p(:)'; % make sure p is a row

if ischar(p) & length(p)==1 & strcmp(p,':') % R(1,:) or R(2,:)

 if nd==1 % replace numerator

 r.n = b;

 r.d = a.d;

 else % replace denominator

 r.n = a.n;

Section 31.3 Subscripts 627

 r.d = b;

 end

elseif isnumeric(p) % R(1,p) or R(2,p)

 plen = length(p);

 blen = length(b);

 nlen = length(a.n);

 dlen = length(a.d);

 if plen~=blen

 error('Sizes Do Not Match.')

 end

 if nd==1 % modify numerator

 r.d = a.d;

 rlen = max(max(p)+1,nlen);

 r.n = zeros(1,rlen);

 r.n = mmpadd(r.n,a.n);

 r.n(rlen-p) = b;

 else % modify denominator

 r.n = a.n;

 rlen = max(max(p)+1,dlen);

 r.d = zeros(1,rlen);

 r.d = mmpadd(r.d,a.d);

 r.d(rlen-p) = b;

 end

else

 error('Unknown Subscripts.')

end

else % R{ } or R.field

 error('Cell and Structure Addressing Not Supported.')

end

a = mmrp(r.n,r.d,a.v);

end % subsasgn

628 Chapter 31 MATLAB Classes and Object-Oriented Programming

Examples using this method include the following:

>> a = mmrp([3 1],[1 2 5 10]) % create test object

a =

MMRP Rational Polynomial Object:

 3x^1 + 1

x^3 + 2x^2 + 5x^1 + 10

>> a(1,:) = [1 2 4] % replace entire numerator

a =

MMRP Rational Polynomial Object:

 x^2 + 2x^1 + 4

x^3 + 2x^2 + 5x^1 + 10

>> a(2,2) = 12 % replace x^2 coef in denominator

a =

MMRP Rational Polynomial Object:

 x^2 + 2x^1 + 4

x^3 + 12x^2 + 5x^1 + 10

>> a(1,0) = 0 % replace 4x^0 with 0x^0

a =

MMRP Rational Polynomial Object:

 x^2 + 2x^1

x^3 + 12x^2 + 5x^1 + 10

>> a(1,:) = a.d % subsref and subsasn! (a.n and a.d cancel)

a =

MMRP Rational Polynomial Object:

1

Section 31.4 Converter Functions 629

31.4 CONVERTER FUNCTIONS

As demonstrated in earlier chapters, the functions double, char, and logical convert
their inputs to the data type matching their name. For example, double('hello')
converts the character string 'hello' to its numerical ASCII equivalent. Whenever
possible, methods for these converter functions should be included in a class. For mmrp
objects, double and char have obvious interpretations. The double method should
extract the numerator and denominator polynomials, and the char method should cre-
ate a string representation such as that displayed by display.m, as in the following code:

function [n,d] = double(r)

%DOUBLE Convert Rational Polynomial Object to Double.

% DOUBLE(R) returns a matrix with the numerator of R in

% the first row and the denominator in the second row.

% [N,D] = DOUBLE(R) extracts the numerator N and denominator D

% from the rational polynomial object R.

if nargout<=1 & length(r.d)>1

 nlen = length(r.n);

 dlen = length(r.d);

 n = zeros(1,max(nlen,dlen));

 n = [mmpadd(n,r.n);mmpadd(n,r.d)];

elseif nargout<=1

 n = r.n;

else % nargout==2

 n = r.n;

 d = r.d;

end

end % double

function [n,d,v] = char(r)

%CHAR Convert Rational Polynomial Object to Char.

% CHAR(R) returns a 3 row string array containing R in the

% format used by DISPLAY.M

% [N,D] = CHAR(R) extracts the numerator N and denominator D

630 Chapter 31 MATLAB Classes and Object-Oriented Programming

% as character strings from the rational polynomial object R.

% [N,D,V] = CHAR(R) in addition returns the variable V.

if nargout<=1

 nstr = mmp2str(r.n,r.v);

 nlen = length(nstr);

 if length(r.d)>1

 dash = '-';

 dstr = mmp2str(r.d,r.v);

 dlen = length(dstr);

 m = max(nlen,dlen);

 n = char([blanks(ceil((m-nlen)/2)) nstr],. . .

 dash(ones(1,m)),. . .

 [blanks(fix((m-dlen)/2)) dstr]);

 else

 n = nstr;

 end

elseif nargout>1

 n = mmp2str(r.n); % converts polynomial to string

 d = mmp2str(r.d);

end

if nargout>2

 v = r.v;

end

end % char

31.5 PRECEDENCE, INHERITANCE, AND AGGREGATION

MATLAB automatically gives user-defined classes higher precedence than the
built-in classes. Therefore, operators and functions containing a mixture of built-
in classes and a user-defined class always call the methods of the user-defined
class. While this default precedence is usually sufficient for simple classes, the
presence of multiple user-defined classes requires that some mechanism exist to
allow the user to control the precedence of classes with respect to one another.

Section 31.5 Precedence, Inheritance, and Aggregation 631

The InferiorClasses attribute to the classdef function can be used to specify
that one user-defined class has higher precedence than other user-defined classes.
For example, the statement

 classdef (InferiorClasses = {?mmp}) mmrp

in a class definition file asserts that the mmrp class has higher precedence than the
mmp class. MATLAB built-in classes (double, char, single, int16, struct, etc.)
are always inferior to user-defined classes and should not be used in this list.

The functions inferiorto and superiorto provided this capability prior to
MATLAB version 7.6. If you are using them, calls to these functions must appear
within the constructor function for a class. They only apply to the older, non-
classdef style class constructors that used the class function to create an object.

For large programming projects, it may be convenient to create a hierarchy of
object types. In this case, it may be beneficial to let one object type inherit methods
from another type. In doing so, fewer methods need to be written, and method
 modifications are more centralized. In the vocabulary of OOP, an object that
 inherits the properties of another is called a child class, and the class it inherits from
is called the parent class. In the simplest case, a child class inherits methods from
a single parent class. This is called simple or single inheritance. It is also possible
for a child class to inherit methods from multiple classes, which is called multiple
inheritance.

In single inheritance, the child class is given all of the fields of the parent
class, plus one or more unique fields of its own. As a result, methods associated
with the parent can be directly applied to objects of the child class. Quite naturally,
methods of the parent class have no knowledge of the fields unique to the child
and therefore cannot use them in any way. Similarly, fields of the parent class
cannot be accessed by methods of the child. The child must use the methods it
inherited from the parent to gain access to the parent fields. The lti object in the
Control Toolbox is an example of a parent class having child classes tf, zpk, ss,
dss, and frd.

In multiple inheritance, a child class is given all of the fields of all parent
classes, plus one or more unique fields of its own. As in single inheritance, the
 parents and child do not have direct access to each other’s fields. With multiple
parents, the complexity of determining which parent methods are called under what
 circumstances is more difficult to describe. (Information and detailed examples
regarding inheritance can be found in the MATLAB documentation.)

In the mmrp class used as an example earlier, the object fields contained data
that were elements of the MATLAB classes double and char. In reality, there is no
reason object fields cannot contain other data types, including user-defined classes.
In the vocabulary of OOP, this is called containment or aggregation. The rules for
operator and function overloading do not change. Within method functions of one
class, the methods of other classes are called as needed to operate on the fields of
the original class.

632 Chapter 31 MATLAB Classes and Object-Oriented Programming

31.6 HANDLE CLASSES

This chapter detailed the creation of a user-defined value class. As shown above,
a value class constructor returns an instance that is associated with the variable to
which it is assigned. If the variable is assigned to another variable, a copy is created.
If the variable is passed to a function that modifies the object, the function must
return the modified object.

MATLAB also supports the creation of user-defined handle classes. A handle
class constructor returns a handle object that is a reference to the object created. If a
handle object is reassigned, additional references to the original object are created.
If passed to a function that modifies the object, it need not be returned since the
changed object is referenced by all of the handles. Handle objects are essentially
pointers to objects rather than the objects themselves.

The reference behavior of handles enables these classes to support
features like events, listeners, and dynamic properties. User-defined handle classes
are all subclasses of the abstract handle class and as such inherit a number of
useful methods. The power of handle classes is self-evident. Although a detailed
 discussion of user-defined handle classes is beyond the scope of this text, the
MATLAB documentation includes a wealth of detailed information and examples
of user-defined handle classes.

633

It’s been said that a picture is worth a thousand words. Likewise, when it comes to
software, an example is worth a thousand words. This chapter is devoted to exten-
sive examples. Some of the examples demonstrate vectorization, which is the pro-
cess of writing code that maximizes the use of array operations. Other examples
illustrate creating code that maximizes the benefits achieved from MATLAB’s
 JIT-accelerator features. Still other examples demonstrate the solution of typical
problems. Before considering the examples, it is beneficial to introduce vectorization
and JIT-acceleration.

32.1 VECTORIZATION

Vectorization means to write or rewrite code so that scalar operations on array
 elements are replaced by array operations. For example,

>> for i=1:n

y(i) = sin(2*pi*i/m);

end

is replaced by the vectorized code

>> i = 1:n;

>> y = sin(2*pi*i/m);

Examples, Examples,
Examples

32

634 Chapter 32 Examples, Examples, Examples

The For Loop above represents poor programming practice. Not only is the For
Loop unnecessary as seen by its vectorized equivalent but also is very slow since
memory is reallocated for the variable y each time through the loop.

Contrary to what some may believe, vectorization does not mean eliminating
all For Loops. For Loops serve a very useful purpose; after all, MATLAB wouldn’t
include them as a control flow structure if they didn’t. For Loops are a good choice
when the loop makes full use of JIT-acceleration features. When that is not possible,
For Loops are often a good choice when: (1) the amount of code to be interpreted
within the loop is small, especially if this code requires substantial floating-point
operations; (2) the code within the loop makes minimum calls to M-file functions;
(3) no memory is allocated or reallocated after the first pass through the loop; or (4)
using a For Loop eliminates the need to create arrays larger than the computer can
access with minimum delay. Obviously, the last case is not only platform-dependent
but also dependent on the attributes of an individual platform.

While vectorization leads to efficient MATLAB programming, it does have
a downside. That is, vectorized code is often more difficult to read or follow. The
above example is clearly an exception to this fact—the vectorized code is much
 easier to read than the nonvectorized code. The above example represents a simple,
easy-to-learn vectorization. Most often, it is the more difficult or less obvious vec-
torization challenges that lead to code that is more difficult to follow.

Vectorizing code makes use of a small number of MATLAB operators and
functions. These operators and functions generally involve the manipulation of
 indices or the replication of arrays and can be divided into three categories as shown
in the tables below. The first two categories are basic internal MATLAB capabilities
and are therefore fast. The last category consists of optimized M-file code for imple-
menting common array-manipulation functions.

Operator Description

: Colon notation. n:m creates a row array that starts with n and ends with m.
n:inc:m creates a row array that starts with n, counts by inc, and ends at
or before m. As an array index, : means take all elements. Also, A(:) on the
right-hand side of an equal sign means reshape A as a column vector. On the
left-hand side of an equal sign, A(:) means fill contents of A with results of
the right-hand side without reallocating memory for A.

.' Nonconjugate transpose. Exchange rows for columns.

[] Brackets. Array concatenation.

Built-in Function Description

all(x) True if all elements of x are nonzero.

any(x) True if any elements of x are nonzero.

cat(Dim,A,B,. . .) Concatenates A, B, … along dimension Dim.

Section 32.1 Vectorization 635

cumprod(x) Cumulative product of elements of vector x.

cumsum(x) Cumulative sum of elements of vector x.

diff(x) Difference between elements in x.

end Last index. Inside array index identifies the last element along
given dimension.

find(x)
find(x,n)
find(x,n,'first')
find(x,n,'last')

Find indices where x is nonzero. (This is usually slower than
using the logical argument x directly for array addressing.)

logical(x) Converts x to logical data type to enable logical array
addressing.

permute(A,Order) Generalized transpose. Rearranges the dimensions of A so that
they are in the order specified by the vector Order.

prod(x) Product of elements in x.

reshape(A,r,c) Reshapes array A to be r-by-c.

sort(x)
sort(x,'descend')

Sort array x in ascending or descending order.

sum(x) Sum of elements in x.

M-file Function Description

arrayfun(fun,S) Applies function to each element of array.

bsxfun(fun,A,B) Element-by-element binary operation between A and B.

ind2sub(Size,idx) Converts single indices in idx to array subscripts of an array
having dimensions Size.

ipermute(A,Order) Generalized transpose. Inverse of permute(A,Order).

kron(A,B) Kronecker tensor product of A and B.

meshgrid(x,y) Mesh domain generation from vectors x and y.

repmat(A,r,c) Replicates array A creating an r-by-c block array.

shiftdim(A,n) Shifts dimensions of A by integer n.

squeeze(x) Removes singleton dimensions from array A.

sub2ind(Size,r,c) Converts array subscripts r and c of an array having dimensions
Size to single indices.

636 Chapter 32 Examples, Examples, Examples

Using the above operators, built-in functions, and M-file functions, vectoriza-
tion involves the substitution of scalar operations with equivalent array operations
when such operations increase execution speed.

32.2 JIT-ACCELERATION

Just-In-Time acceleration, commonly referred to as JIT-acceleration, describes fea-
tures in the MATLAB interpreter that convert whole sections of code into native
instructions in one pass, rather than doing so on a line-by-line basis, which is the
conventional way MATLAB code is interpreted and executed. In particular, the
JIT-accelerator minimizes the processing overhead involved in executing loops.
When the JIT-accelerator can process and execute a whole loop structure at one
time, each line of code within the loop is not reinterpreted each time through the
loop. As a result, the loop structure is interpreted once and executed as a block.
This process speeds the execution of MATLAB code immensely.

Not all loops fit the requirements of the JIT-accelerator. From one MATLAB
release to the next, the features and limitations of the JIT-accelerator change, and
these changes are often not well documented. In any case, MATLAB code con-
taining loops benefits from the JIT-accelerator if it has the following features and
properties:

 1. The loop structure is a For Loop.
 2. The loop contains only logical data, character-string data, double-precision

real data, and less than 64-bit integer data.
 3. The loop utilizes arrays that are three-dimensional or less.
 4. All variables within a loop are defined prior to loop execution.
 5. Memory for all variables within the loop is preallocated outside the loop and the

variables maintain constant size, orientation, and data type for all loop iterations.
 6. Loop indices are scalar quantities, for example, the index k in for k = 1:N.
 7. Only built-in MATLAB functions are called within the loop.
 8. Conditional statements using if-then-else or switch-case constructions involve

scalar comparisons.
 9. All lines within the block contain no more than one assignment statement.

JIT-acceleration provides the greatest benefit when the arrays addressed
within the loop are relatively small. As array sizes increase beyond cpu cache
 capacities, total execution time increases due to the time consumed by memory
transfers, thereby leading to less dramatic improvements in overall execution time.

32.3 THE BIRTHDAY PROBLEM

The classic birthday problem is this: What is the probability p that in a random
group of n people at least one pair of them shares the same birthday?

Section 32.3 The Birthday Problem 637

The analytic solution to this problem is well known and is given by,

p(n) = 1 -
n!a365

n
b

365n

and one approximate solution is given by

pa(n) = 1 - expa
-n2

2 * 365
 b

To explore this problem, let’s plot these two solutions as a function of the group
size n. The following code cell and the resulting figure demonstrate the results.

%% Birthday Problem Solutions

% create anonymous functions

% analytic solution

p = @(n) 1 – factorial(n)*nchoosek(365,n)/(365^n);

% note that the function factorial implements n!

% and nchoosek implements (365 over n)

% approximate solution

p_a = @(n) 1 - exp(-(n^2)/(2*365));

% the functions operate on scalar inputs,

% so a loop is required to gather data.

% preallocate memory for results (ALWAYS do this!)

N = 50; % maximum number of people

pexact = zeros(1,N);

papprox = zeros(1,N);

for n = 1:N % JIT acceleration will work here!

pexact(n) = p(n);

papprox(n) = p_a(n);

end

nn = 1:N; % x axis for plot

638 Chapter 32 Examples, Examples, Examples

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Number of People in Group

P
ro

ba
bi

lit
y

of
 S

ha
re

d
B

irt
hd

ay
s

Figure 32.1: Birthday Problem

plot(nn,pexact,nn,papprox)

grid

xlabel('Number of People in Group')

ylabel('Probability of Shared Birthdays')

title('Figure 32.1: Birthday Problem')

When n is equal to 8 or greater, the function nchoosek gives a warning stat-
ing that the output it provides has reduced accuracy. This warning appears because
double-precision arithmetic does not have sufficient integer range to compute these
values without loss of precision.

Figure 32.1 shows that there is a 50 percent probability of shared birthdays in a group
of 23 people and a 90 percent probability of shared birthdays in a group of 41 people.

To confirm the analytic results, let’s run some random trials. That is, start with a
group of n people, assign random birthdays to them, then see if there are any shared
birthdays. The following code cell demonstrates the basic features of this testing.

%% test birthday problem results

n = 23; % number of people in test group

Section 32.3 The Birthday Problem 639

bdays = randi(365,1,n) % generate n random birthdays

% the number of duplicate values in bdays

% is the number of shared birthdays in the group.

% sort bdays to get duplicates next to each other

sortedbdays = sort(bdays)

% find duplicates by taking differences

diffbdays = diff(sortedbdays)

% shared birthdays occur where values are zero

numshared = sum(diffbdays==0)

One run of this code cell produced the following results.

bdays =

Columns 1 through 12

96 293 11 340 267 179 212 87 168 352 200 191

Columns 13 through 23

85 179 228 248 145 135 361 14 324 334 291

sortedbdays =

Columns 1 through 12

11 14 85 87 96 135 145 168 179 179 191 200

Columns 13 through 23

212 228 248 267 291 293 324 334 340 352 361

diffbdays =

Columns 1 through 12

3 71 2 9 39 10 23 11 0 12 9 12

Columns 13 through 22

16 20 19 24 2 31 10 6 12 9

numshared =

1

640 Chapter 32 Examples, Examples, Examples

The birthday 179 appears twice in sortedbdays, making the ninth value in
 diffbdays equal to zero. Therefore, this group of 23 people has one pair with
shared birthdays. Therefore, it appears that the number of zeros in diffbdays is
equal to the number of shared birthdays.

Depending on the random integers generated by randi, there may be any num-
ber of shared birthdays. Of particular interest is the case when one or more birthdays
are shared by more than two people. In this case, there are more zeros in diffbdays
than there are shared birthdays. When birthdays are shared by more than two people,
there will be consecutive zeros in diffbdays. If we want to know exactly the number of
shared birthdays, further processing of diffbdays would be needed. However, since
we are only interested in knowing when there is at least one shared birthday, we only
need to know when there is at least one zero in the array diffbdays.

To have value, the above random trial must be run many, many times. The
 following code cell demonstrates an implementation.

%% test birthday problem

Ntests = 1000; % number of random trials to run

n = 23; % size of group to test

shared = zeros(1,Ntests); % preallocate result array

for k = 1:Ntests

bdays = randi(365,1,n);

% the number of duplicate values in bdays

% is the number of shared birthdays in the group.

% sort bdays to get duplicates next to each other

sortedbdays = sort(bdays);

% find duplicates by taking differences

diffbdays = diff(sortedbdays);

% shared birthdays occur when there are zero values

shared(k) = any(diffbdays==0);

end

% probability is equal to normalized number of times

% that shared birthdays appear in the trials

probshared = sum(shared)/Ntests

Section 32.4 Up–Down Sequence 641

Running this code multiple times produces values that are very close to the analytic
solutions given earlier. Consider the following example:

probshared =

0.5060

probshared =

0.4820

probshared =

0.4990

probshared =

0.5110

probshared =

0.5080

probshared =

0.5240

probshared =

0.4990

probshared =

0.5180

32.4 UP–DOWN SEQUENCE

Consider the following simple algorithm. Let N be some positive integer. If N is
even, divide it by 2. On the other hand, if it is odd, multiply it by 3 and add 1. Repeat
these steps until N becomes 1. This algorithm has some interesting properties. It
appears to converge to 1 for all numbers N. Some numbers require many iterations
to converge. Others such as N = 2m converge very quickly. While it is interesting to
study the sequence of values generated by different values of N, let’s just compute
the number of iterations required to achieve convergence.

First, let N be a scalar. That is, let’s write the algorithm for a single number.
The following script M-file implements the above algorithm.

% updown1.m

% up-down algorithm

N = 25; % number to test

count = 0; % iteration count

642 Chapter 32 Examples, Examples, Examples

while N>1

if rem(N,2)==0 % even, since division by 2 gives zero remainder

N = N/2;

count = count+1;

else % odd

N = (3*N+1)/2;

count = count+2;

end

end

count % display iteration count

The above code directly implements the algorithm with one exception. When an
odd number is multiplied by 3 and has 1 added, the resulting number is automati-
cally even. As a result, the next pass through the algorithm always divides by 2.
Since this always occurs, the divide-by-2 step is included and the count is incre-
mented by 2 to reflect the fact that two steps are taken.

Next, consider letting N be an array of numbers, for each of which we wish to
find the iteration count. The most direct approach is to use a For Loop, as shown in
the following script M-file.

% updown2.m

% up-down algorithm

Nums = 25:50; % numbers to test

for i = 1:length(Nums)

N = Nums(i); % number to test

count = 0; % iteration count

while N>1

if rem(N,2)==0 % even

N = N/2;

count = count+1;

else % odd

N = (3*N+1)/2;

count = count+2;

end

Section 32.4 Up–Down Sequence 643

end

Counts(i) = count;

end

results = [Nums' Counts']

Here, the earlier scalar algorithm appears within a For Loop. At the beginning of the
loop, the ith element of the vector Nums is copied into N. The algorithm then runs to
completion, and the iteration count is copied into the ith element of Counts. Finally,
all results are displayed. This code segment violates a key memory allocation guide-
line, namely, the variable Counts is reallocated to a larger size at every pass through
the For Loop. As a result, the above code does not make use of the JIT-acceleration.

To fix this problem, Counts must be preallocated as shown below.

% updown3.m

% up-down algorithm

Nums = 25:50; % numbers to test

Counts = zeros(size(Nums)); % preallocate array

N = Nums(1); % predefine N data type and dimension

count = 0; % predefine count data type and dimension

for i = 1:length(Nums)

N = Nums(i); % number to test

count = 0; % iteration count

while N>1

if rem(N,2)==0 % even

N = N/2;

count = count+1;

else % odd

N = (3*N+1)/2;

count = count+2;

end

end

Counts(i) = count;

end

results = [Nums' Counts']

644 Chapter 32 Examples, Examples, Examples

Now every time through, the For Loop simply inserts the current count into a pre-
existing location in Counts. Preallocation is always a first and most important step
in any code optimization process. In addition, since N and count are used within
the For Loop, their data types and dimensions are predefined. With these changes,
updown3.m makes full use of JIT-acceleration.

For comparison purposes, it is beneficial to develop a vectorized version of
this algorithm. In a vectorized version, all input data must be processed simultane-
ously. This eliminates the For Loop. The function rem returns an array the same size
as its input, and so all numbers can be tested simultaneously at every iteration of the
While Loop. Using this fact leads to the following script M-file.

% updown4.m

% up-down algorithm

Nums = 25:50; % numbers to test

N = Nums; % duplicate numbers

Counts = zeros(size(N)); % preallocate array

not1 = N>1; % True for numbers greater than one

while any(not1)

odd = rem(N,2)~=0; % True for odd values

odd_not1 = odd & not1; % True for odd values greater than one

even_not1 = ~odd & not1; % True for even values greater than one

N(even_not1) = N(even_not1)/2; % Process evens

Counts(even_not1) = Counts(even_not1)+1;

N(odd_not1) = (3*N(odd_not1)+1)/2; % Process odds

Counts(odd_not1) = Counts(odd_not1)+2;

not1 = N>1; % Find remaining numbers not converged

end

results = [Nums' Counts']

When considering all elements simultaneously, find a way to operate only on
array elements that have not converged to 1. The statement not1 = N>1; logically
identifies all elements of N that haven’t converged. Inside the While Loop, the
 nonconverged odd and even values are identified by the odd_not1 and even_not1

Section 32.4 Up–Down Sequence 645

logical variables, respectively. Using these variables, the corresponding elements of
N are processed and the Counts values are updated.

This vectorized solution makes use of logical array addressing. Addressing
using numerical indices could have been done as well by using the find function;
for example, the odd indices are given by find(odd_not1). However, use of this
function adds more statements to the solution, which makes the code run slower.

Running the profiler on this solution shows that the greatest percentage of
time is consumed by the odd = rem(N,2)~=0; statement. There are two reasons
for this. First, this statement finds the remainder for all elements of N every time,
not just the remainder of nonconverged numbers. For example, if there are 1000
data points in N and only 10 of them are nonconverged, the remainder is computed
for 990 elements in N that are not required. Second, the remainder function incurs
overhead because it is a function call and because it performs internal error check-
ing. Both of these reasons for the time consumed by the call to the rem function can
be addressed. Eliminating the cause of the first reason requires removing the con-
verged values from N as they appear. Implementing this requires substantial com-
plexity. However, the rem function overhead can be minimized by replacing it with
its definition, as shown in the code below.

% updown5.m

% up-down algorithm

Nums = 25:50; % numbers to test

N = Nums; % duplicate numbers

Counts = zeros(size(N)); % preallocate array

not1 = N>1; % True for numbers greater than one

while any(not1)

odd = (N-2*fix(N/2))~=0; % True for odd values

odd_not1 = odd & not1; % True for odd values greater than one

even_not1 = ~odd & not1; % True for even values greater than one

N(even_not1) = N(even_not1)/2; % Process evens

Counts(even_not1) = Counts(even_not1)+1;

N(odd_not1) = (3*N(odd_not1)+1)/2; % Process odds

Counts(odd_not1) = Counts(odd_not1)+2;

646 Chapter 32 Examples, Examples, Examples

not1 = N>1; % Find remaining numbers

end

results = [Nums' Counts']

Running the MATLAB profiler on this example shows that (N-2*fix(N/2))is
generally faster than rem(N,2).

As a final test, it is worth considering the use of integer arithmetic. Since N
and Counts are always integers, it is possible to cast them into integer arrays. In this
case, (N-2*fix(N/2))no longer works as a replacement for rem(N,2). However,
odd = 2*(N/2)~=N; is an alternative test for odd integers. The code shown below
illustrates this integer implementation.

% updown6.m

% up-down algorithm

Nums = 25:50; % numbers to test

N = uint32(Nums); % duplicate numbers as uint32

Counts = zeros(size(N),'uint32'); % preallocate array as uint32

not1 = N>1; % True for numbers greater than one

while any(not1)

odd = 2*(N/2)~=N; % True for odd values

odd_not1 = odd & not1; % True for odd values greater than one

even_not1 = ~odd & not1; % True for even values greater than one

N(even_not1) = N(even_not1)/2; % Process evens

Counts(even_not1) = Counts(even_not1)+1;

N(odd_not1) = (3*N(odd_not1)+1)/2; % Process odds

Counts(odd_not1) = Counts(odd_not1)+2;

not1 = N>1; % Find remaining numbers

end

results = [Nums' Counts']

Section 32.5 Alternating Sequence Matrix 647

As a comparison, the last four implementations were timed with the profiler
using Nums = 1:2049; and with the last line results = [Nums' Counts'] removed.
Of these implementations, the fifth and sixth are about equally fast, with the fourth
being a little slower, followed by the third which was about one-half as fast as the sixth.

32.5 ALTERNATING SEQUENCE MATRIX

MATLAB has a number of matrix creation functions such as ones, zeros, rand,
diag, eye, pascal, and hilb. In this example, let’s create a MATLAB function that
returns a matrix containing alternating values. That is, if the function is called as
plusminus(K,m,n) or plusminus(K,[m n]), where K is a real-valued scalar, and m
and n are scalar integers, then the output returned has the form shown below.

D K -K Á
-K K Á
f f f

T
As with most problems, there are many ways to solve this in MATLAB. The

most direct approach is to use nested For loops to set each individual element of the
result individually, as shown in the code cell segment and its resulting output below.

%% Alternating Sequence For loop approach

K = 1; % chosen value

m = 4; % number of rows

n = 5; % number of columns

out = zeros(m,n); preallocate memory for results

for i = 1:m % loop over rows

for j = 1:n % loop over the columns

oddrow = rem(i,2)==1; % true if in odd numbered row

oddcol = rem(j,2)==1; % true if in odd numbered column

if (oddrow && ~oddcol) || ~oddrow && oddcol

out(i,j) = -K;

else

648 Chapter 32 Examples, Examples, Examples

out(i,j) = K;

end

end

end

out % display results

out =

1 -1 1 -1 1

-1 1 -1 1 -1

1 -1 1 -1 1

-1 1 -1 1 -1

Another solution approach uses the fact that (-1)m+n, where m and n are the
row and column indices, respectively, gives the correct sign for each element of the
matrix. Once a matrix of plus and minus ones is computed, the final result is found
by multiplying by K. This approach is shown in the code cell segment and its result-
ing output below.

%% Alternating Sequence indices approach

K = 2; % chosen value

m = 4; % number of rows

n = 5; % number of columns

% create m-by-n matrices of row and column indices

[NN,MM] = meshgrid(1:n,1:m);

% sum of column indices gives exponent

out = K*(-1).^rem(MM+NN,2);

out % display results

Section 32.5 Alternating Sequence Matrix 649

out =

2 -2 2 -2 2

-2 2 -2 2 -2

2 -2 2 -2 2

-2 2 -2 2 -2

Yet another solution uses the MATLAB function repmat to replicate the
basic matrix [K -K; -K K] to the correct final dimensions. The only issue with this
approach is when the number of rows or columns are odd. This approach is shown
in the code cell segment and its resulting output below.

%% Alternating Sequence repmat approach.

K = 3; % chosen value

m = 4; % number of rows

n = 5; % number of columns

% function ceil rounds up to next integer

mrep = ceil(m/2); % number of times to replicate rows

nrep = ceil(n/2); % number of times to replicate columns

out = repmat([K -K;-K K],mrep,nrep); % replicate

out = out(1:m,1:n); % eliminate any extra rows and columns

out % display results

out =

3 -3 3 -3 3

-3 3 -3 3 -3

3 -3 3 -3 3

-3 3 -3 3 -3

The final approach considered here relies on the outer product of two vec-
tors. That is, if x is a column vector having m rows, and y is a row vector having n
columns, then the product of x and y is an m-by-n matrix. Furthermore, if x and y
contain alternating +1 and −1 values, this outer product will contain a matrix of plus
and minus ones. Multiplying this matrix by K produces the desired final value. This
approach is shown in the code cell segment and its resulting output below.

650 Chapter 32 Examples, Examples, Examples

%% Alternating Sequence outer product approach

K = 4; % chosen value

m = 4; % number of rows

n = 5; % number of columns

pm = ones(2,ceil(max(m,n)/2)); % two rows of ones

pm(2,:) = -1; % set second row to -1

% resulting pm(:) is the alternating vector [1 -1 1 -1 1. . .]'

% use pm array as needed to create output variable

out = K*(pm(1:m).' * pm(1:n)); % outer product: column * row = matrix

out % display results

out =

4 -4 4 -4 4

-4 4 -4 4 -4

4 -4 4 -4 4

-4 4 -4 4 -4

The approach using repmat performs no multiplications and does not create
numerous large intermediate variables. For that reason, it is marginally faster than the
outer product approach. The code below demonstrates how this algorithm can be encap-
sulated into a MATLAB function. The following code contains needed initial help text
and parses and error checks the input arguments before implementing the algorithm.

function out = plusminus(K,m,n)

%PLUSMINUS Array of Alternating Plus and Minus K Values.

% PLUSMINUS(K,N) returns an N-by-N array.

%

% PLUSMINUS(K,M,N) or

% PLUSMINUS(K,[M N]) return an M-by-N array.

%

% PLUSMINUS(K,size(A)) returns an array

% the same size as matrix A.

%

Section 32.5 Alternating Sequence Matrix 651

% For example: PLUSMINUS(8,3,5)

% produces the matrix

% [8 -8 8 -8 8

% -8 8 -8 8 -8

% 8 -8 8 -8 8]

% parse and error check inputs

if nargin<2

error('At least 2 input arguments are required.')

elseif nargin==2 && isscalar(m) % PLUSMINUS(K,N)

n = m;

elseif nargin==2 && numel(m)==2 % PLUSMINUS(K,[M N])

% or PLUSMINUS(K,size(A))

n = m(2);

m = m(1);

elseif nargin==2 && numel(m)~=2

error('Second argument must be a scalar or two element vector.')

end

if numel(m)~=1 || fix(m)~=m || m<1

error('M must be a positive scalar.')

end

if numel(n)~=1 || fix(n)~=n || n<1

error('M must be a positive scalar.')

end

if ~isscalar(K) || ~isnumeric(K)

error('K must be a numeric scalar.')

end

% implement the algorithm

out = repmat([K -K;-K K],ceil(m/2),ceil(n/2));

out = out(1:m,1:n);

652 Chapter 32 Examples, Examples, Examples

32.6 VANDERMONDE MATRIX

There are a number of numerical linear algebra problems that require the genera-
tion of a Vandermonde matrix. For a vector x, a Vandermonde matrix has the form

V = Ex1
m x1

m-1 Á x1 1

x2
m x2

m-1 Á x2 1

f f f f f

xn
m xn

m-1 Á xn 1

U
As shown, the columns of V are element-by-element powers of the components of
x. Let’s consider a variety of approaches to constructing this matrix.

The first approach that comes to mind is the straightforward application of a
For Loop, as in the following code cell.

%% construct a Vandermonde matrix, approach 1

x = (1:6)'; % column vector for input data

m = 5; % highest power to compute

V = [];

for i = 1:m+1 % build V column by column

V = [V x.^(m+1-i)];

end

The above approach builds V column by column, starting from an empty matrix.
There are a number of weaknesses in this implementation, the most obvious being
that memory is reallocated for V each time through the loop. So the first vectorization
step is to preallocate V, as shown in the code cell below.

%% construct a Vandermonde matrix, approach 2

x = (1:6)'; % column vector for input data

m = 5; % highest power to compute

n = length(x); % number of elements in x

V = ones(n,m+1); % preallocate memory for result

for i = 0:m-1 % build V column by column

V(:,i+1) = x.^(m-i);

end

Section 32.6 Vandermonde Matrix 653

Here V is initialized as a matrix containing all ones. Then the individual columns of
V are assigned within the For Loop. The last column is not assigned in the For Loop
since it already contains ones and there is no use in computing x.^0. There are still
two problems with the above code. First, the columns of V are explicitly computed
without making use of prior columns, and second, the For Loop should be able to be
eliminated. The code cell below solves the first problem.

%% construct a Vandermonde matrix, approach 3

x = (1:6)'; % column vector for input data

m = 5; % highest power to compute

n = length(x); % number of elements in x

V = ones(n,m+1); % preallocate memory for result

for i = m:-1:1 % build V column by column

V(:,i) = x.*V(:,i+1);

end

Now the columns of V are assigned starting with the second last column and pro-
ceeding backward to the first column. This is done because the ith column of V is
equal to the (i + 1)th column multiplied elementwise by x. This is the implementa-
tion found in the MATLAB functions polyfit and vander.

At this point, the above implementation cannot be optimized further without
eliminating the For Loop. Eliminating the For Loop requires some ingenuity and
a lot of familiarity with the functions in MATLAB. Using the array-manipulation
tables found earlier in this chapter, the functions repmat and cumprod offer some
promise. The script M-file below demonstrates an approach that uses repmat.

%% construct a Vandermonde matrix, approach 4

x = (1:6)'; % column vector for input data

m = 5; % highest power to compute

n = length(x); % number of elements in x

p = m:-1:0; % column powers

V = repmat(x,1,m+1).^repmat(p,n,1);

654 Chapter 32 Examples, Examples, Examples

This implementation uses repmat twice, once to replicate x creating a matrix of m+1
columns each containing x, and the second time to create a matrix containing the
powers to be applied to each element of the matrix containing x. Given these two
matrices, element-by-element exponentiation is used to create the desired result.
As with the second approach, this implementation explicitly computes each column
without using information from other columns. The function cumprod solves this
problem, as shown in the code cell below.

% construct a Vandermonde matrix, approach 5

x = (1:6)'; % column vector for input data

m = 5; % highest power to compute

n = length(x); % number of elements in x

V = ones(n,m+1); % preallocate memory for result

V(:,2:end) = cumprod(repmat(x,1,m),2);

V = V(:,m+1:-1:1); % reverse column order

Here, the function cumprod is used to compute the columns of V after using repmat
to duplicate x. Since cumprod proceeds from left to right, the final result is found
by reversing the columns of V. This implementation uses only one M-file function,
repmat. Eliminating this function by array addressing should lead to the fastest pos-
sible implementation. Doing so leads to the code cell below.

% construct a Vandermonde matrix, approach 6

x = (1:6)'; % column vector for input data

m = 5; % highest power to compute

n = length(x); % number of elements in x

V = ones(n,m+1); % preallocate memory for result

V(:,2:end) = cumprod(x(:,ones(1,m)),2); % avoid call to repmat

V = V(:,m+1:-1:1); % reverse column order

Section 32.7 Repeated Value Creation and Counting 655

Given these six implementations, the third and sixth are the fastest. The
MATLAB functions polyfit and vander utilize the same algrorithm as the third
approach, which is easier to read and requires less memory than the sixth.

32.7 REPEATED VALUE CREATION AND COUNTING

This section considers the following problem. Given a vector x containing data and
a vector n of equal length containing nonnegative integers, construct a vector where
x(i) is repeated n(i) times for every ith element in the two vectors. For example, x �
[3 2 0 5 6] and n � [2 0 3 1 2] would produce the result y � [3 3 0 0 0 5 6 6]. Note that
since n(2) is zero, x(2) does not appear in the result y.

In addition to repeated value creation, the inverse problem of identifying and
counting repeated values is also of interest. Thus, given the example y above, find
the vectors x and n that describe it.

Consider repeated value creation first. A scalar approach is straightforward,
as shown in the script M-file below.

% repeat1.m

% repeated value creation and counting

x = [3 2 0 5 6]; % data to repeat

n = [2 0 3 1 2]; % repeat counts

y = [];

for i = 1:length(x)

y = [y repmat(x(i),1,n(i))];

end

In this implementation, the result is built using brackets to concatenate the repeated
values next to each other. JIT-acceleration does not work with this example because
memory is reallocated for y every loop iteration and the M-file function repmat
appears in the loop. These issues can be resolved by preallocating y and by using
indexing, as shown in the following script M-file.

% repeat2.m

% repeated value creation and counting

x = [2 1 0 4 5]; % data to repeat

n = [3 0 2 1 3]; % repeat counts

656 Chapter 32 Examples, Examples, Examples

nz = n==0; % locations of zero elements

n(nz) = []; % eliminate zero counts

x(nz) = []; % eliminate corresponding data

y = zeros(1,sum(n)); % preallocate output array

idx = 1; % pointer into y

for i=1:length(x)

y(idx:idx+n(i)-1) = x(i); % fill y using scalar expansion

idx = idx+n(i); % next pointer location

end

As shown above, zero counts are eliminated prior to the For Loop since they do not
contribute to the result. In this algorithm, sum(n) is the total number of elements
in the result, and the variable idx is used to identify where the next data is to be
placed in y.

Once again, it is worthwhile to consider a vectorized solution to this problem.
To determine how to proceed, it is beneficial to look at how x is related to y. After
eliminating zero counts in the example being considered, x, n, and y are

>> x

x =

2 0 4 5

>> n

n =

3 2 1 3

>> y

y =

2 2 2 0 0 4 5 5 5

If we can create an index vector idx = [1 1 2 2 2 3 4 4], then x is related to y as

>> idx = [1 1 2 2 3 3 3 4];

>> y = x(idx)

y =

 2 2 0 0 4 4 4 5

Section 32.7 Repeated Value Creation and Counting 657

So rather than concentrate on getting the values of x into the correct places in y, if
we can generate an index vector for x with the desired values, finding y simplifies to
just one statement, y = x(idx). This is a common situation when vectorizing. The
indices are often more important than the data itself.

The relationship between n and idx above is straightforward. In addition,
since idx looks like a cumulative sum, there’s a chance that the cumsum function
will be useful. If we can generate an array of ones and zeros at the indices where idx
changes value, then idx is indeed a cumulative sum. Consider the example:

>> tmp = [1 1 0 1 0 0 1 1]

tmp =

1 1 0 1 0 0 1 1

>> idx = cumsum(tmp)

idx =

1 2 2 3 3 3 4 5

The nonzero values in tmp are related to n. To discover this relationship, look at its
cumulative sum:

>> csumm = cumsum(n)

csumm =

3 5 6 9

If the last value in csn is discarded and one is added to the remaining values,
the indices of all ones in tmp are known, except for the first which is always one.
Therefore, the indices of all ones can be computed. Consider the example:

>> tmp2 = [1 csumn(1:end-1)+2]

tmp2 =

1 5 7 8

That’s it. The values in tmp2 identify the ones to be placed in tmp. All other values
in tmp are 0. Now all that remains is creating tmp. This is easily done, as in the fol-
lowing example.

>> tmp = zeros(1,csumn(end)) % preallocate with all zeros

tmp =

0 0 0 0 0 0 0 0 0

>> tmp(tmp2) = 1 % poke in ones with scalar expansion

tmp =

1 0 0 0 1 0 1 1 0

658 Chapter 32 Examples, Examples, Examples

>> idx = cumsum(tmp) % form the desired cumsum

idx =

1 1 1 1 2 2 3 4 4

>> y = x(idx) % idx does the rest!

y =

2 2 2 2 0 0 4 5 5

Using the above approach, a vectorized implementation of creating repeated values
is shown in the script M-file below.

% repeat3.m

% repeated value creation and counting

x = [3 2 0 5 6]; % data to repeat

n = [2 0 3 1 2]; % repeat counts

nz = n==0; % locations of zero elements

n(nz) = []; % eliminate zero counts

x(nz) = []; % eliminate corresponding data

csn = cumsum(n); % cumulative sum of counts

tmp = zeros(1,csn(end)); % preallocate memory

tmp([1 csn(1:end-1)+1]) = 1; % poke in ones

idx = cumsum(tmp); % index vector

y = x(idx); % let array indexing do the work

Let’s move on to the inverse of the above algorithm, namely, repeated value
identification and counting. That is, starting with y, find x and n (except for any zero
count values, of course). Again, the most obvious solution is nonvectorized and uses
a For Loop, as shown in the script M-file below.

% repeat4.m

% repeated value creation and counting

% inverse operation

y = [3 3 0 0 0 5 6 6]; % data to examine

x = y(1); % beginning data

Section 32.7 Repeated Value Creation and Counting 659

n = 1; % beginning count

idx = 1; % index value

for i = 2:length(y)

if y(i)==x(idx) % value matches current x

n(idx) = n(idx)+1; % increment current count

else % new value found

idx = idx+1; % increment index

x(idx) = y(i); % poke in new x

n(idx) = 1; % start new count

end

end

Here, a simple If-Else-End construction is used to decide if a particular element of
y is a member of the current repeated value. If it is, the count is incremented. If it’s
not, a new repeat value is created. Though it is not obvious, each time the Else sec-
tion is executed, memory is reallocated for x and n. As a result, the above solution
does not gain benefit from JIT-acceleration.

The next step is to use preallocation, as shown in the script M-file below.

% repeat5.m

% repeated value creation and counting

% inverse operation

y = [2 2 0 0 0 4 5]; % data to examine

x = zeros(size(y)); % preallocate results

n = zeros(size(y));

x(1) = y(1); % beginning data

n(1) = 1; % beginning count

idx = 1; % index value

for i = 2:length(y)

660 Chapter 32 Examples, Examples, Examples

if y(i)==x(idx) % value matches current x

n(idx) = n(idx)+1; % increment current count

else % new value found

idx = idx+1; % increment index

x(idx) = y(i); % poke in new x

n(idx) = 1; % start new count

end

end

nz = (n==0); % find elements not used

x(nz) = []; % delete excess allocations

n(nz) = [];

Since the length of x and n are unknown, but they cannot be any longer than y, x
and n are preallocated to have the same size as y. At the end, the excess memory
allocations are discarded.

Eliminating the For Loop to vectorize this algorithm requires study of an
example. Consider the y vector that was the result of applying the creation algo-
rithm to the original x and n data:

>> y

y =

2 2 0 0 0 4 5

Because of the structure of this vector, the MATLAB function diff must be useful:

>> diff(y)

ans =

0 -2 0 0 4 1

If this vector is shifted one element to the right, the nonzero elements line up with
places in y that represent new repeated values. In addition, the first element is
always a new repeated value. So, using logical operations, the repeated values can
be identified, as in the following example:

>> y

y =

2 2 0 0 0 4 5

Section 32.7 Repeated Value Creation and Counting 661

>> tmp = [1 diff(y)]~=0

tmp =

1 0 1 0 0 1 1

Given the logical variable tmp, the vector x is found by logical addressing:

>> x = y(tmp)

x =

2 0 4 5

Finding the repeat counts n associated with each value in x takes further study. The
repeat counts are equal to the distance between the ones in tmp. Therefore, finding
the indices associated with tmp is useful:

>> find(tmp)

ans =

1 3 6 7

>> diff(ans)

ans =

2 3 1

The difference in indices gives the repeat count for all but the last repeated element.
The function diff misses this count because there is no marker identifying the end
of the array, which marks the end of the last repeated value. Appending one non-
zero to tmp solves this problem:

>> find([tmp 1])

ans =

1 3 6 7 8

>> n = diff(ans)

n =

2 3 1 1

The inverse algorithm is now known. Implementing it leads to the script file below.

% repeat6.m

% repeated value creation and counting

% inverse operation

662 Chapter 32 Examples, Examples, Examples

y = [3 3 0 0 0 5 6 6]; % data to examine

tmp = ([1 diff(y)]~=0);

x = y(tmp);

n = diff(find([tmp 1]));

The above implementation demonstrates the compactness of vectorization. This
solution requires just three lines of code, compared to the 17 used in repeat5.m.
This implementation also demonstrates the difficulty often encountered in reading
vectorized code. These three lines are essentially meaningless unless one executes
and views the results of each line with a simple example.

Before concluding, it is important to note that the above implementations fail
if y contains any Inf or NaN elements. The function diff returns NaN for differences
between Inf elements, as well as for differences containing NaN elements. Because
of the utility of creating and counting repeated values, it is encapsulated in the func-
tion mmrepeat shown below.

function [y,m] = mmrepeat(x,n)

%MMREPEAT Repeat or Count Repeated Values in a Vector. (MM)

% MMREPEAT(X,N) returns a vector formed from X where X(i) is repeated

% N(i) times. If N is a scalar it is applied to all elements of X.

% N must contain nonnegative integers. N must be a scalar or have the same

% length as X.

%

% For example, MMREPEAT([1 2 3 4],[2 3 1 0]) returns the vector

% [1 1 2 2 2 3] (extra spaces added for clarity)

%

% [X,N] = MMREPEAT(Y) counts the consecutive repeated values in Y returning

% the values in X and the counts in N. Y = MMREPEAT(X,N) and [X,N] = MMREPEAT(Y)

% are inverses of each other if N contains no zeros and X contains unique

% elements.

if nargin==2 % MMREPEAT(X,N) MMREPEAT(X,N) MMREPEAT(X,N) MMREPEAT(X,N)

nlen = length(n);

if ~isvector(x)

error('X Must be a Vector.')

Section 32.7 Repeated Value Creation and Counting 663

else

[r,c] = size(x);

end

if any(n<0) || any(fix(n)~=n)

error('N Must Contain NonNegative Integers.')

end

if ~isvector(n) || (nlen>1 && nlen~=numel(x))

error('N Must be a Scalar or Vector the Same Size as X.')

end

x = reshape(x,1,xlen); % make x a row vector

if nlen==1 % scalar n case, repeat all elements the same amount

if n==0 % quick exit for special case

y = [];

return

end

y = x (ones(1,n),:); % duplicate x to make n rows each containing x

y = y(:); % stack each column into a single column

if r==1 % input was a row so return a row

y = reshape(y,1,[]);

end

else % vector n case

iz = n~=0; % take out elements to be repeated zero times

x = x(iz);

n = n(iz);

csn = cumsum(n);

y = zeros(1,csn(end)); % preallocate temp/output variable

y(csn(1:end-1)+1) = 1; % mark indices where values increment

y(1) = 1; % poke in first index

y = x(cumsum(y)); % use cumsum to set indices

if c==1 % input was a column so return a column

y = reshape(y,[],1);

end

end

664 Chapter 32 Examples, Examples, Examples

elseif nargin==1 % MMREPEAT(Y) MMREPEAT(Y) MMREPEAT(Y) MMREPEAT(Y)

xlen = length(x);

if ~isvector(x)

error('Y Must be a Vector.')

else

c = size(x,2);

end

x = reshape(x,1,[]); % make x a row vector

xnan = isnan(x);

xinf = isinf(x);

if any(xnan|xinf) % handle case with exceptions

ntmp = sum(rand(1,4))*sqrt(realmax); % replacement for nan's

itmp = 1/ntmp; % replacement for inf's

x(xnan) = ntmp;

x(xinf) = itmp.*sign(x(xinf));

y = [1 diff(x)]~=0; % places where distinct values begin

m = diff([find(y) xlen+1]); % counts

x(xnan) = nan; % poke nan's and inf's back in

x(xinf) = inf*x(xinf); % get correct sign in inf terms

else % x contains only finite numbers

y = [1 diff(x)]~=0; % places where distinct values begin

m = diff([find(y) xlen+1]); % counts

end

y = x(y); % the unique values

if c==1 % input was a column so return a column

y = reshape(y,[],1);

end

else

error('Incorrect Number of Input Arguments.')

end

Section 32.8 Differential Sums 665

32.8 DIFFERENTIAL SUMS

This section considers computing the differential sum between elements in an array.
That is, if x � [3 1 2 6 3 1 −1], then the differential sum of x is y � [4 3 8 9 4 0]. This
is the dual or complement of the MATLAB function diff. Just as with diff, we
wish to create a function that works along any dimension of its input, no matter how
many dimensions the input has. Before generalizing to the n-D case, let’s consider
the vector and matrix cases. The vector case is straightforward:

>> x = [1 2 3 4 5 6 -1]

x =

1 2 3 4 5 6 -1

>> x(1:end-1)

ans =

1 2 3 4 5 6

>> x(2:end)

ans =

2 3 4 5 6 -1

>> y = x(1:end-1) + x(2:end)

y =

3 5 7 9 11 5

Simple array addressing is all that is required, and the above approach works if x is
either a row or a column vector. When the input is a matrix, the default action is to
perform a differential sum down the columns, which is along the row dimension, as
in the example below:

>> x = magic(4) % 2-D data

x =

16 5 9 4

2 11 7 14

3 10 6 15

13 8 12 1

>> y = x(1:end-1,:) + x(2:end,:)

y =

18 16 16 18

5 21 13 29

16 18 18 16

666 Chapter 32 Examples, Examples, Examples

It is also desirable to be able to specify an operation across the columns, which is
along the column dimension:

>> y = x(:,1:end-1) + x(:,2:end)

y =

21 14 13

13 18 21

13 16 21

21 20 13

Here, the row and column indices are reversed from the preceding row operation.
This operation along the column dimension can be performed by the preceding row
operation if x is transposed first, and then transposed again after the operation.
Consider the following example.

>> tmp = x'; % transpose data

>> y = tmp(1:end-1,:) + tmp(2:end,:);

>> y = y' % transpose result

y =

21 14 13

13 18 21

13 16 21

21 20 13

This can also be accomplished with the n-D functions permute and ipermute,
which are generalizations of the transpose operator, as in the following example:

>> tmp = permute(x,[2 1])

tmp =

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

>> y = tmp(1:end-1,:) + tmp(2:end,:);

>> y = ipermute(y,[2 1])

y =

21 14 13

13 18 21

13 16 21

21 20 13

Section 32.8 Differential Sums 667

Before extending this to the n-D case, consider the 3-D case since it is relatively
easy to visualize:

>> x = cat(3,hankel([3 1 6 -1]),pascal(4))

x(:,:,1) =

3 1 6 -1

1 6 -1 0

6 -1 0 0

-1 0 0 0

x(:,:,2) =

1 1 1 1

1 2 3 4

1 3 6 10

1 4 10 20

>> y = x(1:end-1,:,:) + x(2:end,:,:) % diff sum along row dimension

y(:,:,1) =

4 7 5 -1

7 5 -1 0

5 -1 0 0

y(:,:,2) =

2 3 4 5

2 5 9 14

2 7 16 30

Note that the same process occurs here but that added colons are required to reach
both pages of x. If the 1:end-1 and 2:end indices are moved to other dimensions,
the differential sum moves to that dimension:

>> y = x(:,:,1:end-1) + x(:,:,2:end)

y =

4 2 7 0

2 8 2 4

7 2 6 10

0 4 10 20

This is the differential sum between the two pages of x.
The above example points to one way to generalize this algorithm to

n- dimensions. The indices into x on the right-hand side are comma-separated lists.

668 Chapter 32 Examples, Examples, Examples

Therefore, if we create cell arrays containing the desired indices, the differential
sum can be computed using comma–separated list syntax:

>> y = x(1:end-1,:,:) + x(2:end,:,:) % duplicate this case

y(:,:,1) =

4 7 5 -1

7 5 -1 0

5 -1 0 0

y(:,:,2) =

2 3 4 5

2 5 9 14

2 7 16 30

>> c1 = {(1:3) ':' ':'} % first set of indices

c1 =

[1x3 double] ':' ':'

>> c2 = {(2:4) ':' ':'} % second set of indices

c2 =

[1x3 double] ':' ':'

>> y = x(c1{:}) + x(c2{:}) % use comma separated list syntax

y(:,:,1) =

4 7 5 -1

7 5 -1 0

5 -1 0 0

y(:,:,2) =

2 3 4 5

2 5 9 14

2 7 16 30

The above example demonstrates the power of comma–separated list syntax. In
this example, the keyword end could not be used because it has meaning only when
used directly as an index to a variable. As a result, c1 and c2 contain the actual
numerical indices.

The following script file generalizes the above implementation for computing
differential sums.

Section 32.8 Differential Sums 669

% diffsum1.m

% compute differential sum along a given dimension

x = cat(3,hankel([3 1 6 -1]),pascal(4)) % data to test

dim = 1 % dimension to work along

xsiz = size(x)

xdim = ndims(x)

tmp = repmat({':'},1,xdim) % cells of ':'

c1 = tmp;

c1{dim} = 1:xsiz(dim)-1 % poke in 1:end-1

c2 = tmp;

c2(dim) = {2:xsiz(dim)} % poke in 2:end

y = x(c1{:}) + x(c2{:}) % comma separated list syntax

With no semicolons at the end of the statements, diffsum1 produces the following
output.

x(:,:,1) =

3 1 6 -1

1 6 -1 0

6 -1 0 0

-1 0 0 0

x(:,:,2) =

1 1 1 1

1 2 3 4

1 3 6 10

1 4 10 20

dim =

1

xsiz =

4 4 2

xdim =

3

670 Chapter 32 Examples, Examples, Examples

tmp =

':' ':' ':'

c1 =

[1x3 double] ':' ':'

c2 =

[1x3 double] ':' ':'

y(:,:,1) =

4 7 5 -1

7 5 -1 0

5 -1 0 0

y(:,:,2) =

2 3 4 5

2 5 9 14

2 7 16 30

Here, x is the input data and dim is the dimension chosen for computing the dif-
ferential sum. Using information about the size and dimensions of x, repmat can
produce a cell array for addressing all elements in all dimensions of x. Then indices
are inserted into the proper cells to create c1 and c2, as shown earlier. Finally,
comma–separated list syntax is used to generate the final result.

This algorithm is not the only way to compute differential sums for an arbi-
trary n-D array. The functions permute and ipermute can be used to transpose x so
that the desired dimension for computing the sum is the row dimension. Applying
this procedure to the 3-D example earlier gives the following script M-file.

% diffsum2.m

% compute differential sum along a given dimension

x = cat(3,hankel([3 1 6 -1]),pascal(4)) % data to test

dim = 3 % dimension to work along

xsiz = size(x);

n = xsiz(dim); % size along desired dim

xdim = ndims(x); % # of dimensions

perm = [dim:xdim 1:dim-1] % put dim first

x = permute(x,perm) % permute so dim is row dimension

Section 32.8 Differential Sums 671

x = reshape(x,n,[]) % reshape into a 2D array

y = x(1:n-1,:) + x(2:n,:) % Differential sum along row dimension

xsiz(dim) = n-1 % new size of dim dimension

y = reshape(y,xsiz(perm)) % put result back in original form

y = ipermute(y,perm) % inverse permute dimensions

Here, the variable perm forms a permutation vector for transposing x so that
the differential sum is computed along the row dimension. After permuting, x is
reshaped into a 2-D array. For 3-D x, this means block-stacking the pages of x as
additional columns. Then the differential sum is computed, and the array result is
reshaped and inverse-permuted to its original shape using the fact that its size along
the chosen dimension has decreased by 1. With no semicolons at the end of the
statements, diffsum2 produces the following output.

x(:,:,1) =

3 1 6 -1

1 6 -1 0

6 -1 0 0

-1 0 0 0

x(:,:,2) =

1 1 1 1

1 2 3 4

1 3 6 10

1 4 10 20

dim =

 3

perm =

 3 1 2

x(:,:,1) =

3 1 6 -1

1 1 1 1

x(:,:,2) =

1 6 -1 0

1 2 3 4

672 Chapter 32 Examples, Examples, Examples

x(:,:,3) =

6 -1 0 0

1 3 6 10

x(:,:,4) =

-1 0 0 0

1 4 10 20

x =

 Columns 1 through 12

3 1 6 -1 1 6 -1 0 6 -1 0 0

1 1 1 1 1 2 3 4 1 3 6 10

 Columns 13 through 16

-1 0 0 0

1 4 10 20

y =

 Columns 1 through 12

4 2 7 0 2 8 2 4 7 2 6 10

 Columns 13 through 16

0 4 10 20

xsiz =

4 4 1

y(:,:,1) =

4 2 7 0

y(:,:,2) =

2 8 2 4

y(:,:,3) =

7 2 6 10

y(:,:,4) =

0 4 10 20

y =

4 2 7 0

2 8 2 4

7 2 6 10

0 4 10 20

Of these two approaches to generalizing functions, the n-D case, the approach
taken in diffsum2, appears more often in M-File functions distributed with
MATLAB. There is no significant difference in the speed of the approaches.

Section 32.9 Structure Manipulation 673

32.9 STRUCTURE MANIPULATION

Structures are a convenient data structure in MATLAB. They allow one to group
associated data into a single variable and use descriptive field names to identify
different data contained within the structure. Given the utility and convenience of
structures, it is often convenient to pack a group of variables into a single structure,
and then later extract them back out. To illustrate this, first consider the process of
gathering variables and storing them as fields within a single structure, with field
names matching variable names. Performing this task in the Command window is
straightforward; one just assigns fields to like-named variables, as in the following
example:

>> a = speye(2) % test data

a =

 (1,1) 1

 (2,2) 1

>> b = 'Word'

b =

Word

>> c = cell(3)

c =

 [] []

 [] []

 [] []

>> x.a = a; % store variables in a structure

>> x.b = b;

>> x.c = c

x =

 a: [2x2 double]

 b: 'Word'

 c: {3x3 cell}

The inverse of this process is also straightforward. For example, using the
structure y as an example leads to the following statements.

>> a = x.a

a =

 (1,1) 1

 (2,2) 1

674 Chapter 32 Examples, Examples, Examples

>> b = x.b

b =

Word

>> c = x.c

c =

 [] [] []

 [] [] []

 [] [] []

Here, the field names of the structure become the variable names.
This process of packing and unpacking variables is encapsulated in the M-file

function mmv2struct, as shown below.

function varargout = mmv2struct(varargin)

%MMV2STRUCT Pack/Unpack Variables to/from a Scalar Structure.

% MMV2STRUCT(X,Y,Z,. . .) returns a structure having fields X,Y,Z,. . .

% containing the corresponding data stored in X,Y,Z,. . .

% Inputs that are not variables are stored in fields named ansN

% where N is an integer identifying the Nth unnamed input.

%

% MMV2STRUCT(S)assigns the contents of the fields of the scalar structure

% S to variables in the calling workspace having names equal to the

% corresponding field names.

%

% [A,B,C,. . .] = MMV2STRUCT(S) assigns the contents of the fields of the

% scalar structure S to the variables A,B,C,. . . rather than overwriting

% variables in the caller. If there are fewer output variables than

% there are fields in S, the remaining fields are not extracted. Variables

% are assigned in the order given by fieldnames(S).

if nargin==0

 error('Input Arguments Required.')

elseif nargin==1 % Unpack Unpack Unpack Unpack Unpack Unpack Unpack Unpack

Section 32.9 Structure Manipulation 675

argin = varargin{1};

if ~isstruct(argin) || length(argin)~=1

error('Single Input Must be a Scalar Structure.')

end

names = fieldnames(argin);

if nargout==0 % assign in caller

for i = 1:length(names)

assignin('caller',names{i},argin.(names{i}))

end

else % deal fields into variables in caller

varargout = cell(1,nargout); % preallocate output

for i = 1:nargout

varargout{i} = argin.(names{i});

end

end

else % Pack Pack Pack Pack Pack Pack Pack Pack Pack Pack Pack Pack Pack Pack

args = cell(2,nargin);

num = 1;

for i = 1:nargin % build cells for call to struct

args(:,i) = {inputname(i); varargin{i}};

if isempty(args{1,i})

args{1,i} = sprintf('ans%d',num);

num = num + 1;

end

end

varargout{1} = struct(args{:}); % create struct using comma-separated list

end

676 Chapter 32 Examples, Examples, Examples

Consider the code that unpacks a structure into variables. When called with
no output arguments as mmv2struct(structvar), the function uses a For Loop
to repeatedly call the function assignin to assign values to variables in the work-
space that called mmv2struct. During each For Loop iteration, variables having
names that match the corresponding field names of the structure are created. The
statement fragment arg.(names{i}) addresses the field name string contained
in names{i} of the structure argin, which is equal to structvar. The content of
arg.(names{i}) is assigned to a variable named names{i} in the workspace of the
 calling program.

The code that packs variables into a structure creates a cell array containing
the arguments required for the struct function, for example, struct('field1',
values1, 'field2', values2, . . .). For convenience, the arguments to the
struct function are created with 'field1', 'field2', and so on, as a first row
in the variable args, and values1, values2, and so on, as a second row in the
 variable args. Then args{:} in the struct(arg{:}) statement creates a single row
of arguments as needed by the struct function using comma–separated list syntax.

32.10 INVERSE INTERPOLATION

In Chapter 18, Data Interpolation, 1-D interpolation was demonstrated using
the function interp1(x,y,xi). While this function offers a variety of beneficial
 features, it assumes that there is one y value for each value in xi. If there is not, the
function terminates with an error.

In some situations, it is necessary to interpolate in the reverse direction, that
is, to inverse interpolate data, whereby given a value of y, the problem is to find
all values of x where y � f(x). To illustrate this situation, consider the following
example code and associated plot.

>> x = (1:10).'; % sample data

>> y = cos(pi*x);

>> yo = -0.2; % inverse interpolation point

>> xol = [x(1); x(end)];

>> yol = [yo; yo];

>> plot(x,y,xol,yol)

>> xlabel X

>> ylabel Y

>> set(gca,'Ytick',[-1 yo 0 1])

>> title('Figure 32.2: Inverse Interpolation')

Section 32.10 Inverse Interpolation 677

As shown by the triangle waveform in the figure, it is straightforward to use
interp1 to find y values associated with any set of x values since for each x value
there is one and only one value of y. On the other hand, in the inverse direction
there are numerous values of x for each value of y between −1 and 1. For example,
for the horizontal line drawn yo = -0.2, there are nine corresponding values of y.
The function interp1 cannot be used to find those points:

>> interp1(y,x,yo)

??? Error using ==> interp1

The data abscissae should be distinct.

Since interp1 does not work in this case, let’s consider the development of an
M-file function that performs this task.

To solve this problem, we must find all the data points that stagger the
desired point. As shown in the figure below, in some cases a data point will
appear below the interpolating point yo and the next point will be above it. In
other cases, a data point will appear above yo and the next point will be below
it. Once the pairs of data points (xk,yk) and (xk+1,yk+1) are found, it is simply a
matter of linearly interpolating between the data point pairs to find each xo that
corresponds with yo.

0 2 4 6 8 10
−1

−0.2

0

1

X

Y

Figure 32.2: Inverse Interpolation

678 Chapter 32 Examples, Examples, Examples

A straightforward, nonvectorized solution is shown in the code segment below.

(xk,yk)

(xk,yk)(xk+1,yk+1)

(xk+1,yk+1)

yo

y

x

% invinterp1

x = (1:10).'; % sample data

y = cos(pi*x);

yo = -0.2; % chosen inverse interpolation point

if yo<min(y) || yo>max(y) % quick exit if no values exist

xo = [];

else % search for the desired points

n = length(y);

xo = nan(size(y)); % preallocate space for found points

alpha = 0;

for k = 1:n-1 % look through all data pairs

if (y(k)<yo && y(k+1)>=yo) ||. . . % below then above

 (y(k)>yo && y(k+1)<=yo) % above then below

 alpha = (yo-y(k))/(y(k+1)-y(k)); % distance between x(k+1) and x(k)

 xo(k) = alpha*(x(k+1)-x(k)) + x(k); % linearly interpolate using alpha

end

end

xo = xo(~isnan(xo)); % get rid of unneeded preallocated space

yo = repmat(yo,size(xo)); % duplicate yo to match xo points found

end

Section 32.10 Inverse Interpolation 679

Note that this code preallocates the interpolation points xo with an array of NaNs.
An array of zeros or ones is not appropriate since zero and one are potential valid
points in xo. In some sense, this preallocation is wasteful because xo typically has
many fewer points than the input data. In any case, the unused points are eliminated
in the second last statement and yo is replicated to be the same size as xo in the last
statement. This replication makes it simple to plot the interpolated points, as in
plot(xo,yo,'o').

It appears that this function can be vectorized since logical comparisons can
be done on an array basis. To investigate this possibility, consider the example code
below.

>> x = (1:10); % sample data

>> y = cos(pi*x);

>> yo = -0.2; % chosen inverse interpolation point

>> below = y<yo % True where below yo

below =

 1 0 1 0 1 0 1 0 1 0

>> above = y>=yo % True where at or above yo

above =

 0 1 0 1 0 1 0 1 0 1

Because of the choice of x and y in the above example, alternating elements are
below and alternating elements are above. The value yo is bracketed by consecu-
tive data points when below(k) and above(k+1) are True or when above(k) and
below(k+1) are True. By shifting the below and above arrays by one, these tests
are accomplished as shown below.

>> n = length(y);

>> below(1:n-1) & above(2:n) % below(k) and above(k+1)

ans =

 1 0 1 0 1 0 1 0 1

>> above(1:n-1) & below(2:n) % above(k) and below(k+1)

ans =

 1 0 1 0 1 0 1 0 1

680 Chapter 32 Examples, Examples, Examples

Combining these gives the k points. The points immediately after these are the
(k+1) points. These are found by the code

>> kth = (below(1:n-1)&above(2:n))|(above(1:n-1)&below(2:n)); % True at k points

>> kp1 = [false kth]; % True at k+1 points

These two logical arrays address the points in y that require interpolation. Using
the same interpolation algorithm as used earlier, a vectorized inverse interpolation
solution is shown in the code segment below.

% invinterp2

x = (1:10).'; % sample data

y = cos(pi*x);

yo = -0.2; % chosen inverse interpolation point

n = length(y);

if yo<min(y) || yo>max(y) % quick exit if no values exist

xo = [];

else % find the desired points

below = y<yo; % True where below yo

above = y>=yo; % True where at or above yo

kth = (below(1:n-1)&above(2:n))|(above(1:n-1)&below(2:n)); % True at k points

kp1 = [false; kth]; % True at k+1 points

alpha = (yo - y(kth))./(y(kp1)-y(kth));% distance between x(k+1) and x(k)

xo = alpha.*(x(kp1)-x(kth)) + x(kth); % linearly interpolate using alpha

yo = repmat(yo,size(xo)); % duplicate yo to match xo points found

end

Searching with a For Loop is replaced with logical comparisons and logical
 manipulation. Again, the find function has been avoided since it requires additional
 computations, which would slow the implementation down. All linear interpolations
are performed with array mathematics. Here, the size of xo is determined as the
code executes, so there is no need to preallocate it. The downside of this vectorized
case is that it creates a number of potentially large arrays.

Section 32.10 Inverse Interpolation 681

function [xo,yo] = mminvinterp(x,y,yo)

%MMINVINTERP 1-D Inverse Interpolation.

% [Xo,Yo] = MMINVINTERP(X,Y,Yo) linearly interpolates the vector Y to find

% the scalar value Yo and returns all corresponding values Xo interpolated

% from the X vector. Xo is empty if no crossings are found. For

% convenience, the output Yo is simply the scalar input Yo replicated so

% that size(Xo) = size(Yo).

% If Y maps uniquely into X, use INTERP1(Y,X,Yo) instead.

%

% See also INTERP1.

if nargin~=3

 error('Three Input Arguments Required.')

end

n = numel(y);

if ~isequal(n,numel(x))

 error('X and Y Must have the Same Number of Elements.')

end

if ~isscalar(yo)

 error('Yo Must be a Scalar.')

end

x = x(:); % stretch input vectors into column vectors

y = y(:);

if yo<min(y) || yo>max(y) % quick exit if no values exist

 xo = [];

 yo = [];

else % find the desired points

 below = y<yo; % True where below yo

 above = y>=yo; % True where at or above yo

Testing both of these algorithms with the profiler shows that they have essen-
tially identical performance. Since neither implementation dominates, the following
code illustrates M-file function creation implementing the vectorized solution.

682 Chapter 32 Examples, Examples, Examples

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X

Y

Figure 32.3: Intersection of Two Curves

 kth = (below(1:n-1)&above(2:n)) | (above(1:n-1)&below(2:n)); % point k

 kp1 = [false; kth]; % point k+1

 alpha = (yo – y(kth)) ./ (y(kp1)-y(kth));% distance between x(k+1) and x(k)

 xo = alpha.*(x(kp1)-x(kth)) + x(kth); % linearly interpolate using alpha

 yo = repmat(yo,size(xo)); % duplicate yo to match xo points found

end

The above function is useful for finding the intersection of two plotted curves.
For example, consider the problem of finding the intersection points of the two
curves created by the code below.

>> x = linspace(0,10);

>> y = sin(x);

>> z = 2*cos(2*x);

>> plot(x,y,x,z)

>> xlabel X

>> ylabel Y

>> title 'Figure 32.3: Intersection of Two Curves'

Section 32.10 Inverse Interpolation 683

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X

Y

Figure 32.4: Intersection Points

The intersection of these two curves is given by the zero crossings of
their difference. Given the above data, these points are found using
mminvinterp:

>> xo = mminvinterp(x,y-z,0); % find zero crossings of difference

>> yo = interp1(x,y,xo); % find corresponding y values

>> plot(x,y,x,z,xo,yo,'o') % regenerate plot showing intersection points

>> xlabel X

>> ylabel Y

>> title 'Figure 32.4: Intersection Points'

684 Chapter 32 Examples, Examples, Examples

32.11 POLYNOMIAL CURVE FITTING

As discussed in Chapter 19, polynomial curve fitting is performed using the function
polyfit. Because polynomial curve fitting is a basic numerical analysis topic, it is
worth exploring more fully. Consider a general polynomial

y = p1x
n + p2x

n-1 + c + pnx + pn+1

Here, there are n+1 coefficients for an nth order polynomial. For convenience, the
coefficients have subscripts that are numbered in increasing order as the power
of x decreases. Written in this way, the polynomial can be written as the matrix
product as

y = [xn xn-1 c x 1] # E p1

p2

c
pn

pn+1

U
In this format, the polynomial coefficients are grouped into a single column

vector.
Common polynomial curve fitting uses this form to compute the polynomial

coefficients given a set of data points {xi, yi} for i � 1,2,…N. Substituting each of
these data points into the above relationship and grouping the results leads to the
matrix equation

E x1
n x1

n-1 c x1 1
x2

n x2
n-1 c x2 1

f f c f f

xN
n xN

n-1 c xN 1

U # E p1

p2

c
pn

pn+1

U = E y1

y2

f

yN

U
As written, the matrix on the left is a Vandermonde matrix as discussed earlier in
Section 32.6. If N � n+1, the Vandermonde matrix is square. Furthermore, if the
data points are distinct, the matrix has full rank and the unique polynomial vector
p � [p1 p2 … pn pn+1]' is found in MATLAB by using the backslash or left-division
operator as p = V\y, where V is the Vandermonde matrix and y is the right-hand-
side vector.

On the other hand, when N Ú n+1 and the data points are distinct,
the Vandermonde matrix has more rows than columns, and no exact solution
exists. In this case, p = V\y in MATLAB computes the polynomial coeffi-
cient vector that minimizes the least squared error in the set of equations. The
 following code segment demonstrates an example with and without the use of
polyfit.

Section 32.11 Polynomial Curve Fitting 685

% polyfit1.m

% find polynomial coefficients without polyfit

x = [0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]'; % column vector data

y = [-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]';

n = 2; % desired polynomial order

pm = polyfit(x,y,n) % MATLAB polyfit result

% create Vandermonde matrix using code from vander3.m

m = length(x); % number of elements in x

V = ones(m,n+1); % preallocate memory for result

for i = n:-1:1 % build V column by column

 V(:,i) = x.*V(:,i+1);

end

p = V\y; % find least squares solution

p = p' % convert to row vector to match MATLAB's convention for polynomials

Running this code shows that both polynomial vectors are equal.

>> polyfit1

pm =

 -9.8108 20.129 -0.031671

p =

 -9.8108 20.129 -0.031671

From this basic understanding, it is possible to consider potential numerical prob-
lems. In particular, because the Vandermonde matrix contains elements ranging
from 1 to xn, it can suffer accuracy problems if the x data points differ a great deal
from the number one. For example, if the desired polynomial order is increased to
4 and the x data is scaled by 104, the Vandermonde matrix becomes

>> x = 1e4*[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]'; % scale x data by 1e4

>> n = 4; % change order to 4

686 Chapter 32 Examples, Examples, Examples

>> m = length(x); % number of elements in x

>> V = ones(m,n+1); % preallocate memory for result

>> for i = n:-1:1 % build V column by column

 V(:,i) = x.*V(:,i+1);

end

>> V

V =

 0 0 0 0 1

 1e+012 1e+009 1e+006 1000 1

 1.6e+013 8e+009 4e+006 2000 1

 8.1e+013 2.7e+010 9e+006 3000 1

 2.56e+014 6.4e+010 1.6e+007 4000 1

 6.25e+014 1.25e+011 2.5e+007 5000 1

 1.296e+015 2.16e+011 3.6e+007 6000 1

 2.401e+015 3.43e+011 4.9e+007 7000 1

 4.096e+015 5.12e+011 6.4e+007 8000 1

 6.561e+015 7.29e+011 8.1e+007 9000 1

 1e+016 1e+012 1e+008 10000 1

Now the values in V vary in value from 1 to 1016. This disparity causes trouble for the
function polyfit, as shown below.

>> p = polyfit(x,y,n)

 Warning: Polynomial is badly conditioned. Add points with distinct X

values, reduce the degree of the polynomial, or try centering

and scaling as described in HELP POLYFIT.

pm =

 2.2057e-015 -2.8038e-011 -6.3531e-008 2.3810e-003 -4.5159e-001

Since we have reached the limits of double-precision mathematics, to eliminate this
problem we must somehow scale the data so that the Vandermonde matrix does not
exhibit this disparity in values. Of the numerous ways to scale the data, use of the mean
and standard deviation often leads to good results. That is, instead of fitting a polyno-
mial to the data in x, the fit is done with respect to a new independent variable z given by

z =
x - xm

s

Section 32.11 Polynomial Curve Fitting 687

where xm and s are the mean and standard deviation, respectively, of the x data.
Subtracting the mean shifts the data to the origin, and dividing by the standard deviation
reduces the spread in the data values. Applying this to the data that was scaled by 104 gives

>> xm = mean(x)

>> s = std(x)

>> z = (x - xm)/s;

>> m = length(z); % number of elements in x

>> V = ones(m,n+1); % preallocate memory for result

>> for i = n:-1:1 % build V column by column

 V(:,i) = z.*V(:,i+1);

end

V

V =

 5.1653 -3.4263 2.2727 -1.5076 1

 2.1157 -1.7542 1.4545 -1.206 1

 0.66942 -0.74007 0.81818 -0.90453 1

 0.13223 -0.21928 0.36364 -0.60302 1

 0.0082645 -0.02741 0.090909 -0.30151 1

 0 0 0 0 1

 0.0082645 0.02741 0.090909 0.30151 1

 0.13223 0.21928 0.36364 0.60302 1

 0.66942 0.74007 0.81818 0.90453 1

 2.1157 1.7542 1.4545 1.206 1

 5.1653 3.4263 2.2727 1.5076 1

Now the Vandermonde matrix is numerically well conditioned and the polynomial
curve fit proceeds without difficulty. For this data, the resulting polynomial is

>> p = (V\y)';

p =

 0.26689 0.58649 -1.6858 2.4732 7.7391

Comparing these polynomial coefficients to those computed before scaling shows
that these are much better scaled as well.

While the above result works well, it changes the original problem to

y = p1z
n + p2z

n-1 + c + pnz + pn+1

688 Chapter 32 Examples, Examples, Examples

That is, the polynomial is now a function of the variable z. Because of this, evalua-
tion of the original polynomial requires a two-step process. First, using the values of
xm and s used to find z, x data points for polynomial evaluation must be converted to
their z data equivalents using z � (x – xm)/s. Then, the polynomial can be evaluated:

>> xi = 1e4*[.25 .35 .45]; % sample data for polynomial evaluation

>> zi = (xi-xm)/s; % convert to z data

>> yi = polyval(p,zi) % evaluate using polyval

yi =

 4.752 6.2326 7.326

Rather than performing this step manually when data scaling is used, the MATLAB
functions polyfit and polyval implement this data scaling through the use of an addi-
tional variable. For example, the above results are duplicated by the following code.

>> [p,Es,mu] = polyfit(x,y,n);

>> p

p =

 0.26689 0.58649 -1.6858 2.4732 7.7391

>> yi = polyval(p,xi,Es,mu)

yi =

 4.752 6.2326 7.326

The optional polyfit output variable mu contains the mean and the standard devia-
tion of the data used to compute the polynomial. Providing this variable to polyfit
directs it to perform the conversion to z before evaluating the polynomial. As shown
here, the polynomial p and the interpolated points yi are equal to those computed
using the Vandermonde matrix.

The structure variable Es that has not been discussed here is used to compute
error estimates in the solution. See the documentation for further information
regarding this variable.

Beyond consideration of data scaling, it is sometimes important to perform
weighted polynomial curve fitting. That is, in some situations, there may be more
confidence in some of the data points than others. When this is true, the curve fitting
procedure should take this confidence into account and return a polynomial that
reflects the weight given to each data point.

While polyfit does not provide this capability, it is easy to implement in a
 number of ways. Perhaps the simplest way is to weigh the data before the Vandermonde
matrix is formed. For example, consider the case of a third-order polynomial being fit
to five data points. Assuming that the confidence in the third data point is a times that
of all other data points, the matrix equation to be solved becomes

Section 32.11 Polynomial Curve Fitting 689

E x1
3 x1

2 x1 1
x2

3 x2
2 x2 1

a # x3
3 a # x3

2 a # x3 a

x4
3 x4

2 x4 1
x5

3 x5
2 x5 1

U # Dp1

p2

p3

p4

T = E y1

y2

a # y3

y4

y5

U
By multiplying the third row of the matrix equation by a, the error in this equation
is weighted by a. The process of minimizing the least squared error forces the error
at this data point to decrease relative to the others. As a increases, the error at the
data point decreases.

In general, it is possible to give a weight to each data point, not just one of
them as shown above. Implementing this approach in MATLAB is shown in the
code segment example below.

% polyfit2.m

% find weighted polynomial coefficients

x = [0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]';

y = [-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]';

n = 3;

pm = polyfit(x,y,n) % MATLAB polyfit result

% create Vandermonde matrix using code from vander3.m

m = length(x); % number of elements in x

V = ones(m,n+1); % preallocate memory for result

for i = n:-1:1 % build V column by column

 V(:,i) = x.*V(:,i+1);

end

w = ones(size(x)); % default weights of one

w(4) = 2; % weigh 4th point by 2

w(7) = 10; % weigh 7th point by 10

V = V.*repmat(w,1,n+1); % multiply rows by weights

y = y.*w; % multiply y by weights

p = (V\y)' % find polynomial

690 Chapter 32 Examples, Examples, Examples

Running this code shows that the unweighted and weighted polynomials are
different.

>> polyfit2

pm =

 16.076 -33.924 29.325 -0.6104

p =

 28.576 -50.761 34.104 -0.67441

An alternative to the above approach uses the MATLAB function lscov,
which specifically computes weighted least squares solutions. Repeating the
 previous example using this function is straightforward, as shown in the following
code segment and its associated output.

% polyfit3

% find weighted polynomial coefficients using lscov

x = [0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]';

y = [-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]';

n = 3;

pm = polyfit(x,y,n) % MATLAB polyfit result

% create Vandermonde matrix using code from vander3.m

m = length(x); % number of elements in x

V = ones(m,n+1); % preallocate memory for result

for i = n:-1:1 % build V column by column

 V(:,i) = x.*V(:,i+1);

end

w = ones(size(x)); % default weights of one

w(4) = 2^2; % here weights are the square of those used earlier

w(7) = 10^2;

p = lscov(V,y,w)'

Section 32.11 Polynomial Curve Fitting 691

>> polyfit3

pm =

 16.076 -33.924 29.325 -0.6104

p =

 28.576 -50.761 34.104 -0.67441

To see how these polynomials differ, they can be plotted over the range of the data
as shown below.

% mm3205.m

% find weighted polynomial coefficients using lscov

x = [0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]';

y = [-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]';

n = 3;

pm = polyfit(x,y,n); % MATLAB polyfit result

% create Vandermonde matrix using code from vander3.m

m = length(x); % number of elements in x

V = ones(m,n+1); % preallocate memory for result

for i = n:-1:1 % build V column by column

 V(:,i) = x.*V(:,i+1);

end

w = ones(size(x)); % default weights of one

w(4) = 2^2;

w(7) = 10^2;

p = lscov(V,y,w)';

xi = linspace(0,1,100);

ym = polyval(pm,xi);

yw = polyval(p,xi);

692 Chapter 32 Examples, Examples, Examples

pt = false(size(x)); % logical array pointing to weighted points

pt([4 7]) = true;

plot(x(~pt),y(~pt),'x',x(pt),y(pt),'o',xi,ym,'--',xi,yw)

xlabel('x'), ylabel('y = f(x)')

title('Figure 32.5: Weighted Curve Fitting')

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

8

10

12

x

y=
f(

x)

Figure 32.5: Weighted Curve Fitting

The weighted points are marked with circles in the figure, while the unweighted
points are marked with an x. Clearly, the weighted polynomial is closer to the fourth
and seventh data points than the original polyfit results. In addition, the seventh
data point is closer than the fourth because its weight is much higher.

32.12 NONLINEAR CURVE FITTING

The polynomial curve fitting discussed in the previous section is popular in part
because the problem can be written in matrix form and solved using linear least
squares techniques. Perhaps most important or most convenient is that no initial
guess is required. The optimum solution is found without searching an n-dimensional
solution space. In the more general case, where the unknown parameters do not

Section 32.12 Nonlinear Curve Fitting 693

appear linearly, that is, nonlinear curve fitting, the solution space must be searched
starting with an initial guess. For example, consider fitting data to the function

f(t) = a + beat + cebt

If a and b are known constants and a, b, and c are the unknowns to be found, this
function can be written as

f(t) = [1 eat ebt] # Ca

b
c
S

Substituting a given a set of data points, {ti, yi � f(ti)} for i � 1,2,…N, into this
expression and gathering the results in matrix format results in the equation

E 1 eat1 ebt1

1 eat2 ebt2

f f f

1 eatN ebtN

U # Ca

b
c
S = Dy1

y2
f
yN

T
Written in this way, a, b, and c appear linearly, just as the polynomial coefficients
did in the previous section. As a result, the backslash operation in MATLAB pro-
duces the least squares solution for the unknown variables. That is, if E is the N-
by-3 matrix on the left, p is the vector [a b c]′, and y is the right-hand-side vector,
p = E\y gives the least squares solution for p.

When a and b are not known, the linear least squares solution does not apply
because a and b cannot be separated as a, b, and c, as in the preceding equation.
In this case, it is necessary to use a minimization algorithm such as fminsearch in
MATLAB. There are two ways to set up this problem for solution with fminsearch.
The first is to write f(t) as

f(t) = x3 + x4e
x1t + x5e

x2t

where the unknown variables have been combined into a vector x � [x1 x2 x3 x4 x5]′.
Given this form, and a set of data points {ti, yi} for i � 1,2,…N, the least squares
solution minimizes the norm of error between the data points yi and the function
evaluated at ti, f(ti). That is, if y is a vector containing the yi data points and if f is a
vector containing the above function evaluated at the time points ti, then the least
squares solution is given by

 min
x 0 0 y - f 0 0

To use fminsearch, this norm must be expressed as a function. One way to do so is
to define it using the anonymous function

fitfun = @(x,td,yd) norm(x(3)+x(4)*exp(x(1)*td)+x(5)*exp(x(2)*td)-yd);

where td and yd are vectors containing the data points to be fit. Since the function
fminsearch expects to call a function of just one variable, that is, the variable it
manipulates is x, another anonymous function must be created where td and yd are

694 Chapter 32 Examples, Examples, Examples

incorporated into function rather than be arguments to the function. One way of
doing so is to use fitfun:

fitfun1 = @(x) fitfun(x,td,yd);

The following code segment uses this approach by creating some data, making an
initial guess, and calling fminsearch to find a solution.

%% testfitfun1

% script file to test nonlinear least squares problem

% create test data

x1 = -2; % alpha

x2 = -5; % beta

x3 = 10;

x4 = -4;

x5 = -6;

xstar = [x1;x2;x3;x4;x5]; % gather optimum solution

td = linspace(0,4,30)';

yd = x3 + x4*exp(x1*td) + x5*exp(x2*td);

% create an initial guess

x0 = zeros(5,1); % not a good one, but a common first guess

% create anonymous function to minimize

fitfun = @(x,td,yd) norm(x(3)+x(4)*exp(x(1)*td)+x(5)*exp(x(2)*td)-yd);

% create anonymous function that incorporates the numerical data

% given rather than pass it as an argument

fitfun1 = @(x) fitfun(x,td,yd);

options = []; % take default options for fminsearch

x = fminsearch(fitfun1,x0,options);

Section 32.12 Nonlinear Curve Fitting 695

% compare fminsearch solution to optimum solution

output = [x xstar]

% compute error norm at returned solution

enorm = fitfun1(x)

Running this code produces the following result:

Exiting: Maximum number of function evaluations has been exceeded

- increase MaxFunEvals option.

Current function value: 3.234558

output =

0.17368 -2

-1.5111 -5

13.972 10

-2.2059 -4

-9.4466 -6

enorm =

3.2346

For this initial guess, the algorithm has not converged. Increasing the number of
function evaluations and algorithm iterations permitted to 2000 leads to

>> options = optimset('MaxFunEvals',2e3,'MaxIter',2e3);

>> x = fminsearch(fitfun1,x0,options);

output =

-0.78361 -2

-3.7185 -5

10.061 10

-0.80533 -4

-9.1907 -6

enorm =

0.23727

696 Chapter 32 Examples, Examples, Examples

The algorithm now converges to a solution, but not to the values x* = [-2 -5 10 -4 -6]
used to create the data. A plot of the data, the actual function, and the fitted solution
provide further information as computed and displayed below.

%% testfitfun2

% script file to test nonlinear least squares problem

% create test data

x1 = -2; % alpha

x2 = -5; % beta

x3 = 10;

x4 = -4;

x5 = -6;

td = linspace(0,4,30)';

yd = x3 + x4*exp(x1*td) + x5*exp(x2*td);

% create an initial guess

x0 = zeros(5,1); % not a good one, but a common first guess

% create anonymous function to minimize

fitfun = @(x,td,yd) norm(x(3)+x(4)*exp(x(1)*td)+x(5)*exp(x(2)*td)-yd);

% create anonymous function that incorporates the numerical data

% given rather than pass it as an argument

fitfun1 = @(x) fitfun(x,td,yd);

options = optimset('MaxFunEvals',2e3,'MaxIter',2e3);

x = fminsearch(fitfun1,x0,options);

% pick time points to evaluate at

ti = linspace(0,4);

% evaluate true function

actual = x3 + x4*exp(x1*ti) + x5*exp(x2*ti);

Section 32.12 Nonlinear Curve Fitting 697

% evaluate fitted solution

fitted = x(3) + x(4)*exp(x(1)*ti) + x(5)*exp(x(2)*ti);

subplot(2,1,1)

plot(td,yd,'o',ti,actual,ti,fitted)

xlabel t

title 'Figure 32.6: Nonlinear Curve Fit'

subplot(2,1,2)

plot(ti,actual-fitted)

xlabel t

ylabel Error

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

t

Figure 32.6: Nonlinear Curve Fit

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

t

E
rr

or

The fitted solution in the upper plot looks good visually. However, the lower
plot shows that there is significant error. If the overall goal of this problem is to
minimize the error between the actual coefficients represented by the data and the
results returned by fminsearch, then this algorithm essentially failed even though
the fitted solution plot looks good visually.

At this point, one must decide whether this solution is good enough. Certainly
one can try setting tighter convergence criteria. For example,

698 Chapter 32 Examples, Examples, Examples

>> options=optimset('TolX',1e-10,'TolFun',1e-10,'MaxFunEvals',2e3,'MaxIter',2e3);

>> x = fminsearch(fitfun1,x0,options)

x =

-0.78359

 -3.7185

 10.061

-0.80533

 -9.1907

>> enorm = fitfun1(x)

enorm =

0.23727

In this case, the solution has not changed. One can also try better initial guesses, as
the example shows:

>> x0 = [-1 -4 8 -3 -7]'; % much closer initial guess

>> options = []; % default options

>> x = fminsearch(fitfun1,x0,options)

x =

-2

-5

10

-4

-6

>> enorm = fitfun1(x)

enorm =

3.2652e-006

In this case, fminsearch returns coefficients that very closely match those used to
create the data. This example illustrates an ambiguity inherent in most nonlinear
optimization algorithms. That is, other than having the error norm be zero, there is
no set way of knowing when a solution is the best that can be expected.

When a nonlinear curve fitting problem contains a mixture of linear and non-
linear terms, as is true in this example, it is possible to use linear least squares to
compute the linear terms and use a function such as fminsearch to compute the
nonlinear terms. In almost all cases, this leads to better results.

Section 32.12 Nonlinear Curve Fitting 699

To understand how this is done, consider the problem formulation stated ear-
lier where a and b were known constants.

E 1 eat1 ebt1

1 eat2 ebt2

f f f

1 eatN ebtN

U # Ca

b
c
S = Dy1

y2
f
yN

T
In this case, a and b become the variables manipulated by fminsearch. Within the
function that evaluates the error norm, the linear least squares problem is solved
using the current estimates for a and b. That is, if x1 � a, x2 � b, and p � [a b c]′,
then the function M-file to be evaluated can be written as follows:

function [enorm,p] = fitfun2(x,td,yd)

%ENORM Norm of fit to example nonlinear function

% f(t) = p(1)+p(2)*exp(x(1)*t)+p(3)*exp(x(2)*t)

%

% ENORM(X,Td,Yd) returns norm(Yd-f(Td))

%

% [e,p]=ENORM(. . .) returns the linear least squares

% parameter vector p

% solve linear least squares problem given x input supplied by fminsearch

E = [ones(size(td)) exp(x(1)*td) exp(x(2)*td)];

p = E\yd; % least squares solution for p = [a b c]'

% use p vector to compute error norm

f = p(1) + p(2)*exp(x(1)*td) + p(3)*exp(x(2)*td);

enorm = norm(f-yd);

Because of the multiple steps involved, the above example cannot be written as an
anonymous function, but must be written as an M-file.

Now there are only two parameters for fminsearch to manipulate. The fol-
lowing code segment tests this alternative approach.

%% testfitfun3

% script file to test nonlinear least squares problem

700 Chapter 32 Examples, Examples, Examples

% create test data

x1 = -2; % alpha

x2 = -5; % beta

p1 = 10;

p2 = -4;

p3 = -6;

xstar = [x1;x2]; % ideal values

pstar = [p1;p2;p3];

td = linspace(0,4,30)';

yd = p1 + p2*exp(x1*td) + p3*exp(x2*td);

% create an initial guess, only two needed!

x0 = zeros(2,1); % not a good one, but a common first guess

% create anonymous function calls the fitfun2.m function

fitfun1 = @(x) fitfun2(x,td,yd);

options = []; % take default options for fminsearch

x = fminsearch(fitfun1,x0,options);

% compute error norm and get p from solution

[enorm,p] = fitfun1(x);

% compare results

enorm

pout = [p pstar]

xout = [x xstar]

Running this code produces the following output.

enorm =

7.1427e-006

Section 32.13 Circle Fitting 701

pout =

10 10

-4 -4

-6 -6

xout =

-2 -2

-5 -5

Although the inner least squares solution reports a warning on several iterations,
fminsearch finds a minimum very close to the actual values without difficulty. The
incorporation of an internal linear least squares algorithm within an outer nonlin-
ear problem reduces dimension of the parameter space to be searched. This almost
always improves the speed and convergence of the nonlinear algorithm. In the
above example, the problem was reduced from five dimensions to two.

Finally, note how the parameter p was included as a second output argument
to fitfun2. The minimization algorithm fminsearch ignores this argument, so it
does not influence the search process. However, after the algorithm terminates, call-
ing the fitfun2 again through the anonymous function fitfun1 with two output
arguments returns the values of the linear parameters at the solution point. Calling
fitfun2 after fminsearch finishes execution guarantees that the parameter vector
p is evaluated at the solution returned by fminsearch.

32.13 CIRCLE FITTING

There are numerous applications where data describing points on a circle are known.
From these data points, the coordinates of the circle center and the radius are usually
desired. Since there are three unknowns, namely the coordinates of the center given
by xc and yc, and the radius given by r, three distinct data points uniquely describe
a circle provided the data points don’t fall on a straight line. When there are more
than three distinct data points, no unique circle exists. However, it is possible to find
some circle that best fits the data. What is meant by best fit depends on the algorithm
chosen. In this section, let’s consider a least squared equation error approach.

A circle is commonly described by the equation

(x - xc)
2 + (y - yc)

2 = r2

Expanding this expression and rearranging the result leads to the equation

(2x)xc + (2y)yc + (1)z = x2 + y2

where the new variable z is

z = r2 - xc
2 - yc

2

from which the circle radius can be found as

r = 3z + xc
2 + yc

2

702 Chapter 32 Examples, Examples, Examples

The preceding expanded and rearranged expression is linear with respect to xc, yc,
and z. For a set of data points xi and yi, for i � 1, 2, 3,…N, this rearranged equation
can be written in matrix form as

E 2x1 2y1 1

2x2 2y2 1

f f f

2xN 2yN 1

U Cxc

yc

z
S = Ex1

2 + y1
2

x2
2 + y2

2

f

xN
2 + yN

2

U
When there are three distinct data points not on a straight line, there is a unique
solution to these three equations in three unknowns. That solution gives xc, yc, and z.
From the equation for the radius r, the radius is easily computed. When there are
more than three distinct data points, the least squares solution gives a least squares
solution for xc, yc, and z.

As with the Vandermonde matrix used in polynomial fitting, the N-by-3
matrix can have poor numerical properties when the data points are very large or
widely separated. This is likely to occur when a small diameter circle is a long way
from the origin or when the radius is very large. As a result, the robustness of the
solution to the above equation can be improved by appropriate scaling of the data.
Depending on how well distributed the data is around the circle, different scaling
techniques are appropriate. In the function shown below that implements the above
algorithm, the x- and y-data are scaled by their mean values first to center the data
at the origin. Then, all the data is scaled by the distance from the origin to the far-
thest data point.

function [xc,yc,r] = circlefit(x,y)

%CIRCLEFIT Fit circle to data.

% [Xc,Yc,R] = CIRCLEFIT(X,Y) finds the center of a circle (Xc,Yc) and its

% radius R that best fits the data points contained in X and Y in a least

% squares sense. X and Y must be arrays containing at least three distinct

% points in the x-y plane. The data pair (X(i),Y(i)) is the coordinates of

% the i-th data point. If three data points are given, the circle will fit

% the three points.

%

% [Xc,Yc,R] = CIRCLEFIT(XY) where XY is a two column array assumes that

% X = XY(:,1) and Y = XY(:,2).

%

% P = CIRCLEFIT(. . .) alternatively ouput P = [Xc, Yc, R];

%

% Requires Single or Double real-valued data

Section 32.13 Circle Fitting 703

% Algorithm:

% Circle Equation (X - Xc)^2 + (Y - Yc)^2 = R^2

% Multiply out and rearrange as

% (2X)*Xc + (2Y)*Yc + (1)*Z = X^2 + Y^2 where Z = R^2 - Xc^2 - Yc^2

%

% Solve for the vector [Xc;Yc;Z] by writing out the above for each data

% point and form a set of equations. Compute R = sqrt(Z + Xc^2 + Yc^2).

if nargin==1 % CIRCLEFIT(XY)

y = x(:,2);

x = x(:,1);

end

x = x(:); % make sure data is in columns

y = y(:);

nx = numel(x);

if ~isfloat(x) || ~isfloat(y) || ~isreal(x) || ~isreal(y)

error('CIRCLEFIT:IncorrectInput',. . .

'X and Y Must Contain Real Valued Floating Point Data.')

end

if nx~=numel(y)

error('CIRCLEFIT:IncorrectInput',. . .

'X and Y Must Contain the Same Number of Elements.')

end

if nx<3

error('CIRCLEFIT:IncorrectInput',. . .

'X and Y Must Contain at Least Three Elements.')

end

% shift and scale data for better conditioned results

xm = mean(x); % compute mean of x data

x = x-xm; % subtract mean from x data

ym = mean(y); % compute mean of y data

y = y-ym; % subtract mean from y data

704 Chapter 32 Examples, Examples, Examples

s = max(max(hypot(x,y)),eps); % find point farthest from origin

x = x/s; % scale all data by farthest point

y = y/s;

% form matrix equation to be solved and solve it

xyz = [2*x 2*y ones(nx,1)]\hypot(x,y).^2; % it only takes one line

% unscale data and form output

p = [xm ym 0]+[xyz(1) xyz(2) sqrt(xyz(3)+hypot(xyz(1),xyz(2)).^2)]*s;

if nargout==3 % [Xc,Yc,R] = CIRCLEFIT(. . .)

xc = p(1);

yc = p(2);

r = p(3);

elseif nargout==1 % P = CIRCLEFIT(. . .)

xc = p;

else

error('CIRCLEFIT:IncorrectOutput',. . .

'1 or 3 Output Arguments Required.')

end

The code segment and figure below demonstrate use of the function circlefit.

%% mm3207

% Ideal data

Xc = 10;

Yc = -4;

R = 5;

% generate data for fitting

theta = 2*pi*rand(20,1); % random angle around circle

x = Xc + R*cos(theta); % x data

y = Yc + R*sin(theta); % y data

Section 32.13 Circle Fitting 705

% add a little noise to the data

x = x + randn(size(x))/8;

y = y + randn(size(y))/8;

p = circlefit(x,y); % get p = [Xc Yc R]

% generate data on fitted circle

theta = linspace(0,2*pi);

xf = p(1) + p(3)*cos(theta);

yf = p(2) + p(3)*sin(theta);

% plot original data and fitted circle

plot(x,y,'o',xf,yf,'k')

title('Figure 32.7: Data and Fitted Circle')

text(Xc,Yc,. . .

sprintf('X_c = %.2f, Y_c = %.2f, R = %.2f',p),. . .

'HorizontalAlignment','center')

4 6 8 10 12 14 16
−10

−8

−6

−4

−2

0

2
Figure 32.7: Data and Fitted Circle

X
c
 = 10.01, Y

c
 = −3.94, R = 4.99

706 Chapter 32 Examples, Examples, Examples

32.14 LAMINAR FLUID FLOW IN A CIRCULAR PIPE

When fluid flows through a pipe, there is friction between the fluid and the pipe
walls that slows the fluid flow as one approaches the pipe’s inner surface. At the
center of the pipe, the fluid velocity is maximum and it is zero on the pipe’s inner
surface. The following equation models this behavior.

v(r) = v max a1 -
r
ro

 b1/n

In this equation, v(r) is the fluid flow velocity as a function of radius, nmax is the
maximum velocity, r0 is the pipe radius, and n is a variable that depends on the
properties of the fluid and its interaction with the pipe walls. The code cell and
 figure below demonstrate this function for n equal to 7.

%% mm3208

% basic fluid flow analysis

n = 7; % chose n value

% generate normalized radii across the pipe diameter

rn = linspace(-1,1);

% compute normalized flow velocity

vn = (1-abs(rn)).^(1/n);

plot(rn,vn)

xlabel('Normalized radius, r / r_o')

ylabel('Normalized velocity, v(r) / v_{max}')

title('Figure 32.8: Flow Analysis Example')

The following code cell and figure demonstrate how the flow profile changes as a
function of n.

%% mm3209

% fluid flow analysis versus n

% create an anonymous function to compute velocity

Section 32.14 Laminar Fluid Flow in a Circular Pipe 707

vnf = @(rn,n) (1-abs(rn)).^(1./n);

% plot multiple solutions

plot(rn,vnf(rn,3),'k-',. . . % n = 3 case

 rn,vnf(rn,5),'k--',. . .% n = 5 case

 rn,vnf(rn,7),'k-.',. . .% n = 7 case

 rn,vnf(rn,9),'k:') % n = 9 case

xlabel('Normalized radius, r / r_o')

ylabel('Normalized velocity, v(r) / v_{max}')

title('Figure 32.9: Flow Analysis versus \it{n}')

legend('n = 3','n = 5','n = 7','n = 9','Location','SouthEast')

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Normalized radius, r / r
o

N
or

m
al

iz
ed

 v
el

oc
ity

, v
(r

)
/ v

m
ax

Figure 32.8: Flow Analysis Example

708 Chapter 32 Examples, Examples, Examples

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Normalized radius, r / r
o

N
or

m
al

iz
ed

 v
el

oc
ity

, v
(r

)
/ v

m
ax

Figure 32.9: Flow Analysis versus n

n = 3
n = 5
n = 7
n = 9

%% mm3210

% mesh plot alternative

% create an anonymous function to compute velocity

vnf = @(rn,n) (1-abs(rn)).^(1./n);

n = 2:10; % define a range of values

[nn,rnn] = meshgrid(n,rn); % generate data for all n values

vnn = vnf(rnn,nn); % evaluate function at all data points at once

mh = mesh(nn,rnn,vnn); % create mesh plot

set(mh,'MeshStyle','column') % get rid of unwanted lines along n axis

set(mh,'FaceColor','none') % make surface transparent

set(mh,'CData',nn) % vary color with n

As an alternative to the above line plot, a mesh surface plot can provide a better
visual display, as demonstrated in the following code cell and figure.

Section 32.14 Laminar Fluid Flow in a Circular Pipe 709

ylabel('Normalized radius')

xlabel('n')

title('Figure 32.10: Flow Analysis versus \it{n}')

2
4

6
8

10

−1

0

1
0

0.2

0.4

0.6

0.8

1

n

Figure 32.10: Flow Analysis versus n

Normalized radius

Using the flow velocity equation, we can pose and answer a number of
 questions. For example, the average flow velocity is given by

vavg =
2v max

ro
2 L

ro

0
ra1 -

r
ro

 b1/n

dr

Written in terms of normalized radius rn = r/r0 and normalized velocity, this expres-
sion becomes

vnavg =
vavg

v max
 = 2L

1

0
rn(1 - rn)1/ndr

The following code section computes this integral using a number of MATLAB
algorithms for n equal to 5.

%% compute average flow rate

n = 5;

% anonymous function for normalized average velocity integrand

710 Chapter 32 Examples, Examples, Examples

% n in function declaration takes the value defined above

vint = @(rn) 2*rn.*(1-abs(rn)).^(1./n);

format long

vquad = quad(vint,0,1)

vquadl = quadl(vint,0,1)

vquadgk = quadgk(vint,0,1)

rn = linspace(0,1,1000);

vtrapz = trapz(rn,vint(rn)) % try simple trapezoidal rule

Running the above code cell produces the following output.

vquad =

0.757567393217381

vquadl =

0.757575561210144

vquadgk =

0.757575755675408

vtrapz =

0.757399742733815

All four results agree with each to three significant digits, which is usually sufficient
for engineering calculations.

One can also find the value of n that achieves a specified normalized average
velocity, as demonstrated in the following code cell and its output.

%% find n that produces a specific average velocity

% anonymous function for normalized average velocity integrand

% n is now included as an argument

vint2 = @(rn,n) 2*rn.*(1-abs(rn)).^(1./n);

avgvalue = 0.8; % chosen normalized average velocity

Section 32.14 Laminar Fluid Flow in a Circular Pipe 711

% create an anonymous function for zero finding

fzerofun = @(n) quad(@(rn)vint2(rn,n) ,0,1) - avgvalue;

nstar = fzero(fzerofun,[2,10]) % call fzero to find desired n

fzerofun(nstar) % check result (should be very close to 0)

nstar =

6.3169

ans =

0

It is also possible to find the radius where the actual velocity equals the
 average velocity, as shown in the following code cell and its output. In this case, rn
is the argument for fzero.

%% find radius where velocity equals average velocity

n = 5; % chosen value

vnf = @(rn,n) (1-abs(rn)).^(1./n); % velocity profile

vint = @(rn) 2*rn.*(1-abs(rn)).^(1./n); % integrand

avgvalue2 = quad(vint,0,1); % normalized average velocity for n = 5

% create an anonymous function for zero finding

fzerofun2 = @(rn) vnf(rn,n)-avgvalue2;

rstar = fzero(fzerofun2,[0,1]) % call fzero to find desired r

vnf(rstar,n) - avgvalue2 % check value (should be very close to 0)

rstar =

0.75048

ans =

0

712 Chapter 32 Examples, Examples, Examples

32.15 PROJECTILE MOTION

A common physics problem considers the influence of gravity on the motion of a
projectile when there is no wind resistance or other losses or dynamic effects. If the
projectile is launched from the origin of a coordinate at a specified velocity and angle
with respect to the horizontal axis, the motion can be described by the equations

 y(t) = vyot -
g

2
 t2

 x(t) = vxot

where y(t) describes the height, x(t) describes the distance, g is the gravitational con-
stant, for example, g � 9.81 on earth, and the initial y- and x-direction velocities are

vyo = Vo sin (u)

and

vxo = Vo cos (u)

in which Vo is the initial velocity along the launched direction and u is the launch
angle.

Given these equations, trajectories can be plotted as a function of initial
 velocity for a fixed angle. The following code cell and its output demonstrate these
trajectories.

%% mm3211

g = 9.81; % gravity constant

% anonymous function for height, y(t)

height = @(t,Vo,theta) Vo*sin(theta)*t -(g/2)*t.^2;

% anonymous function for distance, x(t)

distance = @(t,Vo,theta) Vo*cos(theta)*t;

% create time axis

t = linspace(0,2.5);

M = length(t);

% constant angle

theta = pi/4;

Section 32.15 Projectile Motion 713

% a variety of velocities

Vo = [10 15 20];

N = length(Vo);

Y = zeros(M,N); % preallocate arrays

X = zeros(M,N);

for k = 1:N % fill in columns with data

Y(:,k) = height(t,Vo(k),theta);

X(:,k) = distance(t,Vo(k),theta);

end

plot(X,Y)

xlabel('Distance, m')

ylabel('Height, m')

legend('V_o = 10','V_o = 15','V_o = 20',. . .

 'Location','SouthEast')

title('Figure 32.11: Example Trajectories')

0 5 10 15 20 25 30 35 40
−15

−10

−5

0

5

10

15

Distance, m

H
ei

gh
t,

m

Figure 32.11: Example Trajectories

V
o
 = 10

V
o
 = 15

V
o
 = 20

714 Chapter 32 Examples, Examples, Examples

The trouble with this figure is that the trajectories end at a specified time, not
a specified height or distance. In many cases, the trajectory makes the most sense
when it ends when the height returns to zero. This can be accomplished in a number
of ways numerically. One way is to compute data past the point where the height
returns to zero, then simply not plot data beyond that point. This is easily done, as
shown in the following code cell and its output.

%% mm3212

g = 9.81; % gravity constant

% anonymous function for height, y(t)

height = @(t,Vo,theta) Vo*sin(theta)*t -(g/2)*t.^2;

% anonymous function for distance, x(t)

distance = @(t,Vo,theta) Vo*cos(theta)*t;

% create time axis

% t = linspace(0,6,400); % old time axis

% increase time resolution and time length

t = linspace(0,6,400); % new time axis

M = length(t);

% constant angle

theta = pi/4;

% a variety of velocities

Vo = [10 15 20];

N = length(Vo);

Y = zeros(M,N); % preallocate arrays

X = zeros(M,N);

for k = 1:N % fill in columns with data

 Y(:,k) = height(t,Vo(k),theta);

 X(:,k) = distance(t,Vo(k),theta);

end

Section 32.15 Projectile Motion 715

% eliminate data below y = 0

tf = Y<0; % true where height is less than zero.

Y(tf) = nan; % NaNs in the data do not plot

X(tf) = nan; % NaNs

plot(X,Y)

xlabel('Distance, m')

ylabel('Height, m')

legend('V_o = 10','V_o = 15','V_o = 20',. . .

 'Location','NorthEast')

title('Figure 32.12: Example Trajectories')

0 10 20 30 40 50
0

2

4

6

8

10

12

Distance, m

H
ei

gh
t,

m

Figure 32.12: Example Trajectories

V
o
 = 10

V
o
 = 15

V
o
 = 20

As shown in this figure, the trajectories do not end exactly at zero height.
When this is unacceptable, some other technique must be used. In this case, it is
possible to analytically determine the time to, when a trajectory returns to zero
height, that is, y(to) = 0. Rather than solve this problem analytically, we can let
MATLAB search for the zero crossing, as shown in the following code cell and its
output.

716 Chapter 32 Examples, Examples, Examples

%% mm3213

g = 9.81; % gravity constant

% anonymous function for height, y(t)

height = @(t,Vo,theta) Vo*sin(theta)*t -(g/2)*t.^2;

% anonymous function for distance, x(t)

distance = @(t,Vo,theta) Vo*cos(theta)*t;

% constant angle

theta = pi/4;

% a variety of velocities

Vo = [10 15 20];

N = length(Vo);

M = 100; % number of time points

Y = zeros(M,N); % preallocate arrays

X = zeros(M,N);

for k = 1:N

tofun = @(t) height(t,Vo(k),theta); % look where height is zero

to = fzero(tofun,[0.1,10]); % let fzero find zero crossing time

t = linspace(0,to,M); % just the right time vector

Y(:,k) = height(t,Vo(k),theta);

X(:,k) = distance(t,Vo(k),theta);

end

plot(X,Y)

xlabel('Distance, m')

ylabel('Height, m')

Section 32.15 Projectile Motion 717

title('Figure 32.13: Example Trajectories')

legend('V_o = 10','V_o = 15','V_o = 20',. . .

'Location','NorthEast')

xmm = xlim; % get x axis limits

line(xmm,[0 0],. . . % put in horizontal axis

'Color','k',. . .

'LineStyle',':')

0 10 20 30 40 50
−2

0

2

4

6

8

10

12

Distance, m

H
ei

gh
t,

m

Figure 32.13: Example Trajectories

V
o
 = 10

V
o
 = 15

V
o
 = 20

Now the trajectories end at zero height as identified by the horizontal axis line.
Projectile motion can be used to describe a basketball shot. As a result, we can

find the initial velocities and angles that lead to a perfect swish through the center
of the basket. In particular, let’s closely model a free throw where the distance to
the front of the rim is 4.0 meters from the shooter, the distance to the center of the
basket is 4.25 meters, the distance to the back of the rim is 4.5 meters, the net height
of the rim is 1.0 meter up from where the ball is launched, and the center of the ball
must clear the front edge of the rim by 0.125 meters so that the ball swishes through
the basket. This geometry and one potential solution is shown in the following code
cell and its output.

718 Chapter 32 Examples, Examples, Examples

%% mm3214

g = 9.81; % gravity constant

d2f = 4; % distance to front of rim

d2c = 4.25; % distance to center of basket

d2b = 4.5; % distance to back of rim

h2r = 1; % height to rim

hmin = 1.125; % minimum ball height at front of rim

Vo = 7.251; % good velocity

theta = 0.28*pi; % good angle

% anonymous function for height, y(t)

height = @(t,Vo,theta) Vo*sin(theta)*t -(g/2)*t.^2;

% anonymous function for distance, x(t)

distance = @(t,Vo,theta) Vo*cos(theta)*t;

tofun = @(t) height(t,Vo,theta); % where height is zero

to = fzero(tofun,[0.1,10]); % let fzero find zero crossing time

t = linspace(0,to);

y = height(t,Vo,theta); % find trajectory

x = distance(t,Vo,theta);

tf = x<=d2b; % stop at back of rim

% plot geometry and swish

plot([0 d2b d2b],[0 0 2.5*h2r],'k',. . . % border

 [d2f d2b],[h2r h2r],'k',. . . % rim

 d2c,h2r,'xk',. . . % center of hoop

 d2f,hmin,'ko',. . .

 x(tf),y(tf),'-.k')

xlabel('Distance, m')

ylabel('Height, m')

Section 32.15 Projectile Motion 719

title('Figure 32.14: Basketball Swish')

text(d2c,h2r,'Rim',. . .

'VerticalAlignment','Top',. . .

'HorizontalAlignment','Center')

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

Distance, m

H
ei

gh
t,

m

Figure 32.14: Basketball Swish

Rim

It should be apparent that there is a unique relationship between initial veloc-
ity and initial angle that leads to a swish. That is, for a given initial angle u, there is
one initial velocity Vo that produces a perfect swish. While this relationship can be
determined analytically, let’s find it numerically using MATLAB. Doing so requires
that the distance relationship, x(t) = nxot = Vo cos(u)t be rewritten to solve for the
swish time, that is, the time it takes the ball to travel to the center of the basket,

ts =
d2c

Vo cos (u)

where the distance to the center of the basket, d2c, is equal to 4.25 in this example.
Substituting this into the height equation, y(t) = Vo sin (u)t - (g/2)t2, gives the
ball height at the time when the ball is over the center of the basket. The resulting
 equation can be written as

h2r = d2c tan (u) -
g

2
 a

d2c

Vo cos (u)
 b2

720 Chapter 32 Examples, Examples, Examples

When h2r is equal to the rim height and the ball clears the front of the rim, the shot
is a perfect swish. The following code cell and its output demonstrate the perfect
swish solution.

%% mm3215

g = 9.81; % gravity constant

d2f = 4; % distance to front of rim

d2c = 4.25; % distance to center of basket

h2r = 1; % height to rim

hmin = 1.125; % minimum ball height above front of rim

% anonymous function that is zero for a swish

swish = @(Vo,theta) d2c*tan(theta)-(g/2)*(d2c./(Vo*cos(theta))).^2 - h2r;

% with simple changes to above function we can get an

% anonymous function that gives ball height at front of rim

habove = @(Vo,theta) d2f*tan(theta)-(g/2)*(d2f./(Vo*cos(theta))).^2 - hmin;

% choose angles, find velocities

thetad = linspace(35,75); % angles in degrees to test

theta = thetad*pi/180; % convert angles to radians

N = length(theta);

Vo = zeros(1,N); % preallocate memory

pass = Vo;

for k = 1:N % gather data

Vo(k) = fzero(@(Vo) swish(Vo,theta(k)),10); % find swish velocity

pass(k) = habove(Vo(k),theta(k)); % above front of rim?

end

plot(thetad(pass<0),Vo(pass<0),'k:',. . . % non-passing solutions

thetad(pass>0),Vo(pass>0),'k') % passing solutions

xlabel('Initial Angle, degrees')

ylabel('Initial Velocity, m/s')

title('Figure 32.15: Swish Solution Space')

Section 32.15 Projectile Motion 721

Based on the figure, the initial angle must be greater than about 45 degrees for the
ball to make it over the front of the rim. The following code cell and its output plot
several solution trajectories.

35 40 45 50 55 60 65 70 75
7

7.5

8

8.5

9

9.5

Initial Angle, degrees

In
iti

al
 V

el
oc

ity
, m

/s

Figure 32.15: Swish Solution Space

%% mm3216

g = 9.81; % gravity constant

d2f = 4; % distance to front of rim

d2c = 4.25; % distance to center of basket

d2b = 4.5; % distance to back of rim

h2r = 1; % height to rim

hmin = 1.125;% minimum ball height above front of rim

% anonymous function for height, y(t)

height = @(t,Vo,theta) Vo*sin(theta)*t -(g/2)*t.^2;

% anonymous function for distance, x(t)

distance = @(t,Vo,theta) Vo*cos(theta)*t;

722 Chapter 32 Examples, Examples, Examples

% anonymous function that is zero for a swish

swish = @(Vo,theta) d2c*tan(theta)-(g/2)*(d2c./(Vo*cos(theta))).^2 - h2r;

% with simple changes to above function we can get an

% anonymous function that gives ball height at front of rim

habove = @(Vo,theta) d2f*tan(theta)-(g/2)*(d2f./(Vo*cos(theta))).^2 - hmin;

% choose angles, find velocities

thetad = 45:5:75; % angles in degrees to test

theta = thetad*pi/180; % convert angles to radians

N = length(theta);

M = 100; % number of time points to compute

Vo = zeros(1,N); % preallocate memory

X = zeros(M,N);

Y = zeros(M,N);

for k = 1:N % gather data

Vo(k) = fzero(@(Vo) swish(Vo,theta(k)),10); % find swish velocity

tofun = @(t) height(t,Vo(k),theta(k)); % where height is zero

to = fzero(tofun,[0.1,10]); % let fzero find zero crossing time

t = linspace(0,to,M);

Y(:,k) = height(t,Vo(k),theta(k)); % find trajectory

X(:,k) = distance(t,Vo(k),theta(k));

end

% don't plot past back of rim

Y(X>d2b) = nan;

X(X>d2b) = nan;

% plot geometry and swishes

plot([0 d2b d2b],[0 0 4.5*h2r],'k',. . . % border

[d2f d2b],[h2r h2r],'k',. . . % rim

d2c,h2r,'xk',. . . % center of hoop

Section 32.16 Bode Plots 723

d2f,hmin,'ko',. . .

X,Y,'-.k')

xlabel('Distance, m')

ylabel('Height, m')

title('Figure 32.16: Swish Trajectories')

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Distance, m

H
ei

gh
t,

m

Figure 32.16: Swish Trajectories

32.16 BODE PLOTS

The frequency response of a system provides valuable insight into system opera-
tion and performance capabilities. Because frequency response is characterized by
a complex-valued function of frequency, there are a number of ways to interpret or
visualize this data. Of these, a Bode plot is perhaps the most useful. A Bode plot is
composed of two subplots. One is a plot of the magnitude of the frequency response
in decibels versus frequency, and the other is a plot of the phase of the frequency
response in degrees versus frequency.

Given a transfer function,

H(s) =
bmsm + bm-1s

m-1 + c + b1s + b0

sn + an-1s
n-1 + c + a1s + a0

724 Chapter 32 Examples, Examples, Examples

the frequency response is given by

H(v) = H(s)|s= jv

The magnitude of H(ω) in decibels is given by

H(v)|dB = 20 log 10(� H(v) �)

and its phase in degrees is given by

�(H(v) = arctan a
s(H(v))

t(H(v))
 b

where ℑ(·) is the imaginary part and ℜ(·) is the real part of its argument.
Because the transfer function is simply a rational polynomial, that is, a poly-

nomial divided by a polynomial, computing the frequency response in MATLAB
is easily done using polynomial evaluation, as shown in the following code segment
and its output for the transfer function

H(s) =
100

s2 + 6s + 100

%% mm3217

num = 100; % numerator polynomial

den = [1 6 100]; % denominator polynomial

w = logspace(0,2,100); % frequency vector

jw = 1i*w; % jOmega

% evaluate frequency response

h = polyval(num,jw)./polyval(den,jw);

hdb = 20*log10(abs(h)); % magnitude in dB

hph = angle(h)*180/pi; % phase in degrees

subplot(2,1,1)

semilogx(w,hdb) % magnitude plot

title('Figure 32.17: First Example Bode Plot')

ylabel('|H(\omega)|, dB')

subplot(2,1,2)

semilogx(w,hph) % phase plot

xlabel('Frequency, rad/s')

ylabel('\angle(H), \circ')

Section 32.16 Bode Plots 725

10
0

10
1

10
2

−40

−20

0

20
Figure 32.17: First Example Bode Plot

|H
(ω

)|
, d

B

10
0

10
1

10
2

−200

−100

0

Frequency, rad/s

(H
),

 °

The use of the function polyval makes computation of the frequency response
simple. However, it does have a problem when the difference between the number
of poles and zeros is greater than two, as shown in the following code segment and
its output for the transfer function

H(s) =
100(s + 5)

s4 + 14s3 + 168s2 + 530s + 375

%% mm3218

num = 100*[1 5];

den = [1 14 168 530 375];

w = logspace(0,2,100); % omega axis points

jw = 1i* w; % j*Omega

% evaluate frequency response

h = polyval(num,jw)./polyval(den,jw);

hdb = 20*log10(abs(h)); % magnitude in dB

hph = angle(h)*180/pi; % phase in degrees

726 Chapter 32 Examples, Examples, Examples

subplot(2,1,1)

semilogx(w,hdb) % magnitude plot

title('Figure 32.18: Second Example Bode Plot')

ylabel('|H(\omega)|, dB')

subplot(2,1,2)

semilogx(w,hph) % phase plot

xlabel('Frequency, rad/s')

ylabel('\angle(H), \circ')

10
0

10
1

10
2

−100

−50

0
Figure 32.18: Second Example Bode Plot

|H
(ω

)|
, d

B

10
0

10
1

10
2

−200

0

200

Frequency, rad/s

(H
),

 °

The discontinuity in phase just past 10 rad/s in the phase plot occurs because the
angle of a complex number can only be resolved into its principle range from −180°
to +180° by the function angle. In reality, the phase should continue its monotonic
decrease beyond 10 rad/s. To fix this, 360° needs to be subtracted from all the phase
data at and beyond the discontinuity. The MATLAB function unwrap accepts the
phase information in radians and returns a revised unwrapped phase vector, as
shown in the following code segment and its output.

Section 32.16 Bode Plots 727

10
0

10
1

10
2

−100

−50

0
Figure 32.19: Third Example Bode Plot

|H
(ω

)|
, d

B

10
0

10
1

10
2

−300

−200

−100

0

Frequency, rad/s

(H
),

 °
%% mm3219

num = 100*[1 5];

den = [1 14 168 530 375];

w = logspace(0,2,100); % omega axis points

jw = 1i* w; % j*Omega

% evaluate frequency response

h = polyval(num,jw)./polyval(den,jw);

hdb = 20*log10(abs(h)); % magnitude in dB

hph = unwrap(angle(h))*180/pi; % phase in degrees, unwrapped

subplot(2,1,1)

semilogx(w,hdb) % magnitude plot

title('Figure 32.19: Third Example Bode Plot')

ylabel('|H(\omega)|, dB')

728 Chapter 32 Examples, Examples, Examples

The MATLAB function unwrap knows what to do because it finds the discon-
tinuities in the phase data and adds or subtracts the correct multiple of 2π radians as
needed to unwrap the phase. If the frequency range over which the frequency response
data is computed does not jump over discontinuities, then unwrap is unsuccessful.

To eliminate this phase ambiguity requires that the frequency response
be computed differently. Rather than evaluate the numerator and denominator
 polynomials in their entirety using polyval, the magnitude and phase can be com-
puted term by term when the transfer function is written in the zero-pole-gain form

H(s) = k
(s - z1)(s - z2) c (s - zm)

(s - p1)(s - p2) c (s - pn)
In this case, the magnitude of the frequency response can be written as

0H(v) 0 = |k|
|(jv - z1)||(jv - z2)| c|(jv - zm)|

|(jv - p1)||(jv - p2)| c|(jv - pn)|
and the phase can be written as

 �(H(v)) = �(k) + �(jv - z1) + �(jv - z2) c+ �(jv - zm)

 - �(jv - p1) - �(jv - p2) c- �(jv - pn)

The MATLAB function tf2zp converts the original rational polynomial
transfer function form into this zero-pole-gain form. Given the above frequency
response magnitude and phase expressions, the frequency response can be com-
puted as shown in the following code segment and its output.

%% mm3220

num = 100*[1 5];

den = [1 14 168 530 375];

w = logspace(0,2,100); % omega axis points

jw = 1i* w; % j*Omega

subplot(2,1,2)

semilogx(w,hph) % phase plot

xlabel('Frequency, rad/s')

ylabel('\angle(H), \circ')

Section 32.16 Bode Plots 729

[Z,P,K] = tf2zp(num,den); % convert to zero-pole-gain form

HdB = abs(K)+zeros(size(w)); % magnitude of gain term

Hph = zeros(size(w)); % phase is zero for positive gain term

if K<0

Hph(:) = -pi; % phase is -pi for negative gain term

end

for k = 1:length(Z) % add contribution from each zero

HdB = HdB .* abs(jw-Z(k));

Hph = Hph + angle(jw-Z(k));

end

for k = 1:length(P) % add contribution from each pole

HdB = HdB ./ abs(jw-P(k));

Hph = Hph - angle(jw-P(k));

end

HdB = 20*log10(HdB); % convert magnitude to dB

Hph = Hph*180/pi; % convert phase to degrees

subplot(2,1,1)

semilogx(w,HdB) % magnitude plot

title('Figure 32.20: Fourth Example Bode Plot')

ylabel('|H(\omega)|, dB')

subplot(2,1,2)

semilogx(w,Hph) % phase plot

xlabel('Frequency, rad/s')

ylabel('\angle(H), \circ')

The following figure matches the previous third example Bode plot without calling
the function unwrap to eliminate discontinuities in the phase data.

730 Chapter 32 Examples, Examples, Examples

10
0

10
1

10
2

−100

−50

0
Figure 32.20: Fourth Example Bode Plot

|H
(ω

)|
, d

B

10
0

10
1

10
2

−300

−200

−100

0

Frequency, rad/s

(H
),

 °

function varargout = mmbode(varargin)

%MMBODE Bode Frequency Response.

% MMBODE(Num,Den) computes the frequency response of the transfer function

% having the numerator polynomial coefficients in row vector Num and the

% denominator polynomical coefficients in the row vector Den.

%

% FunH = MMBODE(Num,Den) returns a function handle with the following

% properties:

% [HdB,Hph] = FunH(w) returns in HdB the magnitude in dB and in Hph returns

% the phase in degrees at the frequency points contained in array w.

% FunH('Num') returns the numerator polynomial contained in FunH.

% FunH('Den') returns the denominator polynomial contained in FunH.

%

The content of this section can easily be incorporated into a useful function
such as that shown below. This implementation allows the user to simply create a
Bode plot given the numerator and denominator polynomials, returns frequency
response data, or returns a function handle for computing the frequency response
data of a given transfer function.

Section 32.16 Bode Plots 731

% [HdB,Hph] = MMBODE(Num,Den,w) returns in HdB the magnitude in dB and in

% Hph returns the phase in degrees at the frequency points contained in

% array w.

% [HdB,Hph,w] = MMBODE(Num,Den) returns in HdB the magnitude in dB and in

% Hph returns the phase in degrees at program selected radian frequency

% points, which are returned in vector w.

% MMBODE(Num,Den) and MMBODE(Num,Den,w) with no output arguments creates

% Bode magnitude and Bode phase plots.

% check and parse inputs

if nargin<2 || nargin>3

error('Two or three input arguments required.')

end

Num = varargin{1}; % numerator coefficients

Den = varargin{2}; % denominator coefficients

if ~isnumeric(Num) || ~isvector(Num) ||. . .

~isnumeric(Den) || ~isvector(Den)

error('Num and Den must be numeric vectors')

end

% convert transfer function to zero/pole/gain form

[Z,P,K] = tf2zp(Num(:)',Den(:)');

if nargin==3

w = varargin{3};

if ~isnumeric(w)

error('w must be a numeric array')

end

end

% create function handle to compute response

funh = @(w) boderesp(w,Z,P,K); % boderesp is a subfunction

if nargin==2 && nargout==1 % function handle only requested

varargout{1} = funh;

return

end

732 Chapter 32 Examples, Examples, Examples

if nargin==2 % no omega data points given, so find them

zp = abs(real([Z;P])); % magnitudes of zero and pole real parts

zpm = min(zp); % smallest zero or pole real part

zpx = max(zp); % largest zero or pole real part

if zpm<1e-6 % pole or zero at origin

lmin = -1; % start at 10^-1

else

lmin = floor(log10(zpm)); % go below smallest

end

lmax = ceil(log10(zpx))+1; % go a decade above largest

lmax = max(lmin+1,lmax); % go at least one decade

lmax = min(lmin+5,lmax); % but not more than 5 decades

w = logspace(lmin,lmax,max(50,25*(lmax-lmin))); % good w axis?

end

% compute response at points in w by calling function handle

[HdB,Hph] = funh(w);

% figure out what to return

if nargout==0 % create plot only

subplot(2,1,1)

semilogx(w,HdB) % magnitude plot

ylabel('|H(\omega)|, dB')

subplot(2,1,2)

semilogx(w,Hph) % phase plot

xlabel('Frequency, rad/s')

ylabel('\angle(H), \circ')

elseif nargin==3 % [HdB,Hph] = MMBODE(Num,Den,w)

varargout{1} = HdB;

varargout{2} = Hph;

elseif nargin==2 % [HdB,Hph,w] = MMBODE(Num,Den)

varargout{1} = HdB;

varargout{2} = Hph;

varargout{3} = w;

end

Section 32.16 Bode Plots 733

%--

function [HdB,Hph] = boderesp(w,Z,P,K)

% compute frequency response at points in w given the

% zero/pole/gain form of the transfer function

% handle character string input requests first

if ~isempty(w) && ischar(w)

if strncmpi(w,'Num',1) % FunH('Num')

HdB = K*real(poly(Z));

elseif strncmpi(w,'Den',1) % FunH('Den')

HdB = real(poly(P));

else

error('Unknown input')

end

return

elseif isempty(w) || ~isnumeric(w)

error('Numeric input expected')

end

% compute frequency response magnitude and phase

jw = 1i * w; % jOmega points

HdB = abs(K)+zeros(size(w)); % magnitude of gain term

Hph = zeros(size(w)); % phase of gain term

if K<0

Hph(:) = -pi; % phase is -pi for negative gain

end

for k = 1:length(Z) % add contribution from each zero

HdB = HdB .* abs(jw-Z(k));

Hph = Hph + angle(jw-Z(k));

end

for k = 1:length(P) % add contribution from each pole

HdB = HdB ./ abs(jw-P(k));

Hph = Hph - angle(jw-P(k));

end

HdB = 20*log10(abs(HdB)); % convert magnitude to dB

Hph = Hph*180/pi; % convert phase to degrees

734 Chapter 32 Examples, Examples, Examples

32.17 INVERSE LAPLACE TRANSFORM

Finding the inverse Laplace transform is a common academic task in engineering.
Analytically, the inverse is computed by performing a partial-fraction expansion,
finding coefficients, and writing the corresponding time function with the help of a
Laplace transform table. For simple Laplace transforms, this task is readily accom-
plished by hand. However, as the complexity of the Laplace transform expression
increases, this becomes a tedious task. Moreover, the resulting time function expres-
sion provides no visual feedback about the shape or characteristics of the result. To
help resolve these issues, let’s use MATLAB.

Partial-fraction expansion of rational polynomial functions such as

F(s) =
bmsm + bm-1s

m-1 + c + b1s + b0

sn + an-1s
n-1 + c + a1s + a0

make use of the Laplace transform pair relationship

R
(s + a)m 3

R
(m - 1)!

t m-1 e-at us (t)

where us(t) is the unit step function. This relationship holds for all real and com-
plex values of the variable a. When a partial-fraction expansion is performed by
hand, other Laplace transform pairs are more convenient when a is complex, but
that does not diminish the validity of the above transform pair. Since MATLAB
works seamlessly with complex numbers, the above Laplace transform pair is all
that is required.

Finding the inverse Laplace transform of F(s) requires that it be written in
partial-fraction expansion form as

F(s) =
R1

s + p1
 +

R2

s + p2
 + c +

Rn

s + pn

when all the poles -pi are distinct. When a pole is repeated, or has a multiplicity
greater than one, additional terms are required, such as

Rm

(s + pk)m +
Rm-1

(s + pk)m-1 + c +
R1

(s + pk)

when a pole -pk has multiplicity m.
The partial-fraction expansion containing terms as shown above holds as long

as F(s) is strictly proper, that is, F(s) has more poles than zeros. When this is not
true, the resulting time function contains impulse functions and its derivatives at
time equal to zero that cannot be evaluated numerically. As a result, in MATLAB
these terms are simply discarded.

The MATLAB function residue computes the partial-fraction expansion, as
shown in the following code cell and its output.

Section 32.17 Inverse Laplace Transform 735

%% use of residue

num = 100

den = poly([0;-2;-4]) % s(s+2)(s+4)

[R,P,K] = residue(num,den)

num =

100

den =

1 6 8 0

R =

12.5000

-25.0000

12.5000

P =

-4

-2

0

K =

[]

These results describe the partial-fraction expansion as

F(s) =
100

s3 + 6s2 + 8s
 =

12.5
s + 4

 -
25

s + 2
 +

12.5
s

The output K from residue contains polynomial coefficients that characterize
impluse functions and its derivatives. Since this F(s) is strictly proper, K is an empty
array as shown. If K is not empty, it is discarded as described earlier.

When a pole has multiplicity greater than one, the function residue returns
all coefficients as shown in the code cell and its output below.

%% multiplicities and residue

num = 100

den = poly([0;-2;-4;-4]) % s(s+2)(s+4)^2

[R,P] = residue(num,den) % simply don't ask for K

736 Chapter 32 Examples, Examples, Examples

num =

100

den =

1 10 32 32 0

R =

9.3750

12.5000

-12.5000

3.1250

P =

-4.0000

-4.0000

-2.0000

0

In this case, the output of residue describes the partial-fraction expansion as

F(s) =
100

s4 + 10s3 + 32s2 + 32s
 =

9.375
s + 4

 +
12.5

(s + 4)2 -
12.5

s + 2
 +

3.125
s

With this understanding of the output of the function residue, it is possible
to perform inverse Laplace transforms in MATLAB and evaluate the resulting time
function. This possibility comes with the inherent fact that performing a partial-
fraction expansion is an ill-posed numerical problem. When done analytically, that
is, by hand, partial-fraction expansion is fine. However, when done numerically,
even when using double-precision arithmetic as MATLAB does, the results may
produce significant errors. That being said, as long as one is solving academic prob-
lems, for example, homework problems, this approach generally works very well.

The solution to this problem is best accomplished by a MATLAB function that
accepts the numerator and denominator polynomials and returns a function handle
that evaluates the time function at user-chosen time points. In that way, the function
handle internally contains all the information necessary to evaluate the resulting time
function. This function handle can point to a subfunction or a nested function. In the
earlier Bode plot section, a subfunction was used. Therefore, a nested function will
be used here for illustrative purposes. In addition to evaluating the inverse transform,
it is beneficial to provide the capability of returning the underlying numerator and
denominator polynomial vectors. The following function implements these features.

function fun = mminvlap(B,A)

%MMINVLAP Time Function from Laplace Transform.

% FUN = INVLAPFUN(B,A) returns a function handle for evaluating the time

Section 32.17 Inverse Laplace Transform 737

% function FUN(t) associated with the Laplace Transform B(s)/A(s), where

% B and A are the respective row vectors containing the real-valued

% polynomial coefficients.

%

% FUN(t) evaluates the inverse Laplace transform evaluated at the time

% points in the array t. FUN(t) = 0 for t<0.

%

% S = FUN('ba') returns a structure S with fields containing the numerator

% and denominator polynomial vectors. That is, S.B contains the numerator

% polynomial vector and S.A returns the denominator polynomial vector.

%

% Alternatively, S = FUN('rpk') returns a structure S with fields

% containing the outputs from RESIDUE. That is, S.R contains R, S.P

% contains P, and S.K contains K.

%

% This function uses the partial fraction expansion returned by the

% function RESIDUE. As a result, the accuracy of this function is limited

% by the accuracy of the function RESIDUE in MATLAB.

% parse inputs

if nargin~=2

error('Two input arguments expected')

end

if ~isnumeric(B) || ~isvector(B) || ~isreal(B) ||. . .

~isnumeric(A) || ~isvector(A) || ~isreal(A)

error('Inputs must be real-valued numeric Vectors')

end

% perform partial fraction expansion

[R,P,K] = residue(B,A);

% create anonymous function handle to time function

fun = @(t) invlaplace(t);

% define invlaplace as a "nested function" so it has access to all the

738 Chapter 32 Examples, Examples, Examples

% variables in the above mminvlap function, namely R,P,K, and B and A.

% Nested Function --

function y = invlaplace(t)

if ~isempty(t) && ischar(t)

if strncmpi(t,'ba',1) % FUN('ba')

y.B = B;

y.A = A;

elseif strncmpi(t,'rpk',1) % FUN('rpk')

y.R = R;

y.P = P;

y.K = K;

end

return

elseif isempty(t) || ~isnumeric(t)

error('Numeric Input Array Expected.')

end

% time points provided, compute time response

y = zeros(size(t)); % preallocate memory for result

t(t<0) = nan; % throw out negative time points

tol = 0.001; % tolerance for repeated roots

k = 1; % loop through all roots

while k <= length(P)

y = y + R(k)*exp(P(k).*t); % basic term that always exists

m = sum(abs(P(k)-P) < tol*max(abs(P(k)),1)); % root multiplicity

if m > 1 % multiplicity, add extra terms as needed

for n = k+1:k+m-1 % loop through all powers

y = y + (R(n)/prod(1:n-k)) * t.^(n-k) .* exp(P(k).*t);

end

end

k = k+m; % next root to consider

end

Section 32.17 Inverse Laplace Transform 739

y(isnan(t)) = 0; % output is zero for negative time

% when complex conjugate roots exist, residual complex values may

% exist. Strip them away.

y = real(y);

end % End of Nested Function

end % End of Outer Function

The following code cell and its output demonstrate use of this function.

%% mm3221

num = 32;

den = poly([0;-2;-4;-4]); % s(s+2)(s+4)^2

myfun = mminvlap(num,den); % get inverse Laplace function handle

myfun('ba') % get B and A polynomial vectors

myfun('rpk')% get R, P, and K

t = linspace(0,4); % time points

y = myfun(t); % evaluate inverse Laplace function

plot(t,y) % plot response

xlabel('time, s')

ylabel('Response')

title('Figure 32.21: Inverse Laplace Example')

ans =

B: 32

A: [1 10 32 32 0]

ans =

R: [4x1 double]

P: [4x1 double]

K: []

740 Chapter 32 Examples, Examples, Examples

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

time, s

R
es

po
ns

e

Figure 32.21: Inverse Laplace Example

32.18 PICTURE-IN-A-PICTURE ZOOM

The final example in this chapter demonstrates use of the Handle Graphics fea-
tures in MATLAB. As illustrated in the figure below, this example implements a
picture-in-a-picture zoom. That is, the user calls the function, then goes to the cur-
rent axes, and drags a selection rectangle using the mouse. Once created, a dotted
outline of the selection rectangle remains and a new, but smaller, axes is created
showing the graphical contents inside the drawn selection rectangle. This function
allows the user to zoom into a portion of an axes without hiding the original plot.
Though not shown, the smaller axes can be selected, dragged, and resized.

There are a number of steps involved in the creation of this function. Rather
than implement this function as one large function, it is convenient to create
 supporting functions first that could be subfunctions of the primary functions or sim-
ply functions on the MATLAB search path. The first function getn simplifies the
assignment of the output of the get function into individual variables.

function varargout = getn(H,varargin)

%GETN Get Multiple Object Properties.

% [Prop1,Prop2,. . .] = GETN(H,PName1,PName2,. . .) returns the requested

% properties of the scalar handle H in the corresponding output arguments.

%

Section 32.18 Picture-in-a-Picture Zoom 741

% For example, [Xlim,Ylim,Xlabel] = GETN(gca,'Xlim','Ylim','Xlabel')

% returns the requested axes properties in like-named output variables.

%

% This simplifies the construct

% [Xlim,Ylim,Xlabel] = deal(get(gca,{'Xlim','Ylim','Xlabel'}))

if ~isscalar(H) || ~ishandle(H)

error('Scalar Object Handle Required.')

end

varargout = get(H,varargin);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
Figure 32.22: Picture in a Picture Zoom.

t

X
, Y

, Z

0.5 0.6 0.7
−1

−0.8

−0.6

−0.4

−0.2

0

This function is not absolutely needed, but it is convenient and demonstrates use of
varargin and varargout.

The next function to consider is implementation of the selection rectangle and
capturing its x- and y-axis limits. As shown below, this requires use of the MATLAB
functions rbbox, waitforbuttonpress, and the CurrentPoint properties of the
axes and figure objects.

742 Chapter 32 Examples, Examples, Examples

function [xbox,ybox,prect] = getbox

%GETBOX Get axes information from user-drawn selection rectangle.

% [Xbox,Ybox,Prect] = GETBOX waits for the user to drag a selection box The

% x and y axis data limits of the selection box are returned in Xbox, Ybox,

% and Prect.

% Xbox is a two element vector containing the minimum and maximum limits

% along the x axis, i.e., Xbox = [min(x) max(x)]

% Ybox is a two element vector containing the minimum and maximum limits

% along the y axis, i.e., Ybox = [min(y) max(y)]

% Prect is a four element vector containing the selection box position

% in standard position vector format, Prect = [left bottom width height]

% Data returned is in the axis data units.

%

% The selection box is limited to the x and y axis limits of the axes where

% the selection rectangle was drawn.

% waitforbuttonpress waits until user presses a mouse button over a figure

% waitforbuttonpress return False if that happens. Alternatively, it

% returns True if the user presses a key on the keyboard.

if waitforbuttonpress % Returns True if a key is pressed, abort

xlim = [];

ylim = [];

prect = [];

return

end

% Function only gets here if user presses a mouse button in a figure

Hf = gcf; % get current figure where button was pressed

Ha = gca(Hf); % get current axes where button was pressed

AxesPt = get(Ha,'CurrentPoint'); % get first axes data point clicked

FigPt = get(Hf,'CurrentPoint'); % get first figure point clicked

% call the function rbbox, i.e., rubberband box, to create the selection

% rectangle. This function needs to know where to start from. It does not

% automatically start at the mouse click unless told to do so.

Section 32.18 Picture-in-a-Picture Zoom 743

% drag selection rectangle starting at first figure point

rbbox([FigPt 0 0],FigPt) % function returns as soon as mouse button is up

% get point on opposite corner of selection rectangle; add to first point

AxesPt = [AxesPt; get(Ha,'CurrentPoint')];

% get axis limits of axes where selection rectangle was drawn

[Xlim,Ylim] = getn(Ha,'Xlim','Ylim');

% convert AxesPt data into usable output vectors.

xbox = [min(AxesPt(:,1)) max(AxesPt(:,1))]; % x axis limits of selection

xbox = [max(xbox(1),Xlim(1)) min(xbox(2),Xlim(2))]; % limit to axes size

ybox = [min(AxesPt(:,2)) max(AxesPt(:,2))];

ybox = [max(ybox(1),Ylim(1)) min(ybox(2),Ylim(2))]; % limit to axes size

prect = [xbox(1) ybox(1) diff(xbox) diff(ybox)]; % position rectangle

The comments contained in getbox describe its operation. The CurrentPoint
property of an axes object returns a 2-by-3 matrix containing the x, y, and z data
points of the back and front of the current point in 3-D space. Since this is a 2-D
axes, only the x and y data points in the first two columns are relevant. Manipulation
of this data produces the desired output variables.

Using getn and getbox, the function mmzoom shown below implements the
picture-in-a-picture zoom.

function [Hza,Hzr] = mmzoom(arg)

%MMZOOM Picture in a Picture Zoom.

% MMZOOM creates a new axes containing the data inside a box formed by a

% click and drag with the mouse in the current axes. The new zoomed axes

% is placed in the upper right of the current axes, but can be moved with

% the mouse. Clicking in the figure border disables dragging.

%

% Previous axes created by MMZOOM are deleted if MMZOOM is called again.

%

744 Chapter 32 Examples, Examples, Examples

% [Hza,Hzr] = MMZOOM returns handles to the created axes and rectangle

% marking the zoomed area respectively.

%

% MMZOOM DRAG enables dragging of a zoomed axes.

% MMZOOM RESET disables dragging of a zoomed axes.

% MMZOOM OFF removes the zoomed axes and rectangle marking the zoomed area.

if nargin == 0

arg = [];

end

if isempty(arg) % zoom zoom zoom zoom zoom zoom zoom zoom zoom zoom zoom

Hzoom = findobj(0,'Tag','MMZOOM'); % find previous zoomed axes

if ~isempty(Hzoom) % delete prior zoomed axes if it exists

delete(Hzoom)

end

[xlim,ylim,prect] = getbox; % get selection box for zoom

if ~isempty(prect) % act only if rectangle exists

Haxes = gca; % handle of axes where selection box was drawn

Hzr = rectangle('Position',prect,. . . % place rectangle object

'Linestyle',':',. . . % to mark selection box

'Tag','MMZOOM');

Hfig = gcf; % handle of Figure where selection box was drawn

Hzoom = copyobj(Haxes,Hfig); % copy original axes and its children

OldUnits = get(Haxes,'Units'); % get position vector of original

set(Haxes,'Units','normalized') % axes in normalized units

Pvect = get(Haxes,'Position');

set(Haxes,'Units',OldUnits)

% scale and shift zoomed axes relative to original axes

alpha = 1/3; % position scaling for zoomed axes

beta = 98/100; % position shift for zoomed axes

Section 32.18 Picture-in-a-Picture Zoom 745

% compute position vector for zoomed axes

Zwidth = alpha*Pvect(3); % zoomed axes width

Zheight = alpha*Pvect(4); % zoomed axes height

Zleft = Pvect(1)+beta*Pvect(3)-Zwidth; % zoomed axes left

Zbottom = Pvect(2)+beta*Pvect(4)-Zheight; % zoomed axes bottom

% modify zoomed axes as required

set(Hzoom,'units','Normalized',. . . % make units normalized

'Position',[Zleft Zbottom Zwidth Zheight],. . .% axes position

'Xlim',xlim,'Ylim',ylim,. . . % axis data limits

'Box','on',. . . % axis box on

'Xgrid','off','Ygrid','off',. . . % grid lines off

'FontUnits','points',. . .

'FontSize',8,. . . % shrink font size

'ButtonDownFcn',@selectmoveresize,. . . % enable drag

'Tag','MMZOOM',. . . % tag zoomed axes

'UserData',Haxes) % store original axes

[Htx,Hty,Htt] = getn(Hzoom,'Xlabel','Ylabel','Title');

set([Htx,Hty,Htt],'String','') % delete labels on zoomed axes

set(Haxes,'DeleteFcn',. . . % delete both axes together

'delete(findobj(0,''Type'',''axes'',''Tag'',''MMZOOM''))')

% place zoomed axes at top of object stack

Hchild = findobj(Hfig,'type','axes'); % get all axes in figure

Hchild(Hchild==Hzoom) = []; % remove zoomed axes from list

set(Hfig,'Children',[Hzoom;Hchild],. . .% put zoom axes at top of stack

'CurrentAxes',Haxes,. . . % make original axes current

'ButtonDownFcn','mmzoom reset') % enable reset

if nargout>=1 % provide output only if requested

Hza = Hzoom;

end

end

746 Chapter 32 Examples, Examples, Examples

elseif strncmpi(arg,'d',1) % drag zoom axes drag zoom axes drag zoom axes

Hzoom = findobj(0,'Type','axes','Tag','MMZOOM');

if ~isempty(Hzoom)

set(Hzoom,'ButtonDownFcn',@selectmoveresize)

end

elseif strncmpi(arg,'r',1) % reset reset reset reset reset reset reset

Hzoom = findobj(0,'Type','axes','Tag','MMZOOM');

if ~isempty(Hzoom)

[Hfig,Haxes] = getn(Hzoom,'Parent','UserData');

set(Hzoom,'ButtonDownFcn','','Selected','off')% turn off selection

set(Hfig,'CurrentAxes',Haxes) % make Haxes current

end

elseif strncmpi(arg,'o',1) % off off off off off off off off off off off

Hzoom = findobj(0,'Tag','MMZOOM');

if ~isempty(Hzoom)

delete(Hzoom)

end

else

error('Unknown Input Argument.')

end

The structure of mmzoom uses a switchyard approach that evaluates code based on the
input argument. When no input argument is used, mmzoom creates the zoomed axes. The
function copyobj is used to make a copy of the original axes and all its children. This new
axes is then modified to create the zoomed axes. Finally, the zoomed axes is placed on top
of the original axes, which is made the current axes. The ButtonDownFcn callback of the
zoomed axes executes the function selectmoveresize, which performs exactly what its
name implies. The ButtonDownFcn callback of the figure calls mmzoom('reset'), which
deselects the zoomed axes and deletes its callback. Since this function is fairly simple, the
function findobj is used to find the zoomed axes and the rectangle marking the selection
box. Doing so makes it difficult to allow multiple simultaneous instances of this func-
tion to exist. As a result, only one is permitted. If multiple simultaneous instances were
desired, function handle callbacks with added arguments would be required.

747

These appendices document the new and revised functionality and functions available
in individual releases of MATLAB, starting with MATLAB 5. This material makes
it possible to identify what functionality and functions appeared in which version
of MATLAB. With worldwide MATLAB users running a variety of MATLAB
releases, and with the proliferation and ease of file sharing, it is important to be
able to identify the backward and forward compatibility of MATLAB M-files. The
information contained in these appendices facilitates this process by documenting
MATLAB release information that is otherwise not centrally available.

The material presented is limited to the base MATLAB product only and is
based on information contained in the release notes for each release. Because the
release notes are not always comprehensive, some information may be missing.

Furthermore, two distinct classes of information have been omitted because
(1) the topics are outside the scope of this text, and (2) they constitute too much
information to be included here: Handle Graphics objects and their properties,
and changes relating to the MATLAB API. Specialized texts are available for
those interested in building graphical user interfaces and/or interfacing MATLAB
with external C, FORTRAN, and/or Java programs or with Windows-specific
 applications. Therefore, functions, objects, and properties specific to Handle
Graphics or the MATLAB API (e.g., MX-/MEX-functions, ActiveX/DDE/COM
objects and associated functions) are not included in these appendices.

Each MATLAB release cited here identifies the public release date, the functionality
and functions introduced in the release, as well as the revised f unctionality and functions
that became effective with the release. Obsolete functions are also identified. Changed
functionality and functions have (Change) in their description. When appropriate, a
 reference to the chapter number covering the cited functionality is included.

MATLAB Release
Information

Appendix A

748 Appendix A MATLAB Release Information

MATLAB 5.0, Release 8 (December 1996)

Functionality Description Chapter

Camera viewing model Axes now have camera properties to set
viewing properties

26

Cell arrays A container variable class identified by a
name, with contents enclosed with { and }

8

Character-string storage (Change) Each character occupies 2 bytes of
storage rather than 8

9

Dimension specification in
data analysis
functions

(Change) Data analysis functions sum, prod,
cumprod, and cumsum now accept a last input
argument that specifies the dimension along
which the function operates

17

Empty arrays (Change) Empty arrays may have some non-
zero dimensions

5, 6

end as last array element Last element along a dimension can be
addressed by using the keyword end
(e.g., A(1,2:end))

5

Light object New graphics object 27, 30

Marker style enhancements (Change) New line markers are available, and mark-
ers can be specified independently from linestyles

25

Multidimensional arrays Arrays can have any number of dimensions
(e.g., A(i,j,k,. . .))

6

Object-oriented
 programming

User-defined variable classes with function
and operator overloading, data encapsula-
tion, methods, inheritance, and so on

31

Private functions Function M-files in private subdirectories
just off of the MATLAB path

12

Pseudocode creation Ability to precompile M-files into an
encrypted format

12

Scalar expansion assignment (Change) A(. . .) = x performs scalar expansion
to fill all addressed elements of A with the scalar x

5

Single-byte data type for
images

Image object supports 8-bit integer data, using
the uint8 data type

7, 28

Structures A container variable class identified by a vari-
able name and fields, with fields denoted by a
preceding period (e.g., varname.field1)

8

Subfunctions Function M-files can contain multiple
 functions, with those appearing after the first
or primary function being subfunctions

12

Appendix A MATLAB Release Information 749

Functionality Description Chapter

Switch-case statements Alternative control flow construction 11

TeX support (Change)Text objects can contain TeX
 formatting commands

25

Truecolor Images in Truecolor are supported 28

Variable length function input
and output argument lists

Cell arrays varargin and varargout support-
ed in function input and output argument lists

12

Z-buffer support Z-buffer graphics rendering is supported 29

Math Function Description

airy Airy functions

besselh Bessel functions of the third kind (Hankel)

condeig Condition number with respect to eigenvalues

condest 1-norm matrix condition number estimate

dblquad Numerical 2-D integration

mod Modulus

normest 2-norm estimate

n-D Function Description

cat Concatenates arrays

flipdim Flips array along specified dimension

ndgrid Generates arrays for n-D functions

ndims Number of array dimensions

permute, ipermute Permute and inverse permute dimensions of n-D array

reshape Changes the shape of an array

shiftdim Shifts dimensions

squeeze Eliminates singleton dimensions

sub2ind, ind2sub Single index from subscripts and subscripts from single
linear index

Cell Array and
Structure Function

Description

cell Creates cell array

cell2struct Converts cell to structure

celldisp Displays cell structure

750 Appendix A MATLAB Release Information

Cell Array and
Structure Function

Description

cellplot Graphically displays cell structure

fieldnames Field names of structure

getfield Gets field from structure

num2cell Converts matrix to cell array

rmfield Removes field from structure

setfield Sets field in structure

struct Creates structure array

struct2cell Converts structure to cell array

Character Function Description

char Converts to string array

mat2str Converts matrix to string

strcat String concatenation

strmatch Finds matches for a string

strncmp Compares first n characters

strvcat Vertical string concatenation

Logical Function Description

iscell True for cell array

isequal True if arrays are equal

isfinite True for finite elements

islogical True for logical arrays

isnumeric True for numeric array

isstruct True for structure

logical Converts (casts) to logical array

M-file Function Description

assignin Assigns variable in a specific workspace

evalin Evaluates expression in a specific workspace

inmem Functions in memory

inputname Input argument name

Appendix A MATLAB Release Information 751

mexext MEX-file extension

mfilename Name of the currently running M-file

pcode Creates pseudocode

profile Profiles M-file execution

varargin, varargout Passes or returns a variable number of function arguments

warning Displays warning message

File and Directory Function Description

addpath Appends directory(s) to the MATLAB search path

edit Edits M-file (launch MATLAB Editor/Debugger)

editpath Modifies the MATLAB search path

fullfile Builds full filename from parts

Set, Bit, and Base Function Description

base2dec Converts base to decimal

bin2dec Converts binary to decimal

bitand Bitwise AND

bitcmp Compares bits

bitget Gets bit

bitmax Maximum floating-point integer

bitor Bitwise OR

bitset Sets bit

bitshift Bitwise shift

bitxor Bitwise XOR

dec2base Converts decimal to base

dec2bin Converts decimal to binary

intersect Set intersection

ismember Detects members of a set

setdiff Set difference

setxor Set exclusive OR

union Union of two sets

unique Unique elements of a vector

752 Appendix A MATLAB Release Information

Matrix Function Description

cholinc Incomplete Cholesky factorization

gallery More than 50 test matrices

luinc Incomplete LU factorization

repmat Replicates and tiles an array

sprand Random uniformly distributed sparse arrays

Sparse Matrix Function Description

bicg Biconjugate gradients method

bicgstab Biconjugate gradients stabilized method

cgs Conjugate gradients squared method

eigs Finds several eigenvalues and eigenvectors

gmres Generalized minimal residual method

pcg Preconditioned conjugate gradients method

qmr Quasi-minimal residual method

svds A few singular values

Time and Date Function Description

calendar Produces monthly calendar

datenum Serial date number

datestr Creates date string

datetick Creates date-formatted tick labels

datevec Date components

eomday End of month

now Current date and time

weekday Day of week

Data Analysis Function Description

convhull Convex hull

cumtrapz Cumulative trapezoidal numerical integration

Appendix A MATLAB Release Information 753

delaunay Delaunay triangularization

dsearch Searches for nearest point

factor Prime factors

inpolygon Detects points inside a polygonal region

isprime True for prime numbers

nchoosek All possible combinations of n elements taken k at
a time

perms All possible permutations

polyarea Area of a polygon

primes Generates a list of prime numbers

sortrows Sorts rows in ascending order

sum([]) = 0,
prod([]) = 1,
max([]) = [],
min([]) = []

(Change) Defined output for empty inputs

tsearch Searches for enclosing Delaunay triangle

voronoi Voronoi diagram

Interpolation Function Description

griddata (Change) Uses triangle-based interpolation

interp3 3-D data interpolation

interpn n-D data interpolation

ndgrid Generates arrays for n-D functions and interpolation

ODE Function Description

ode45, ode23,
ode113, ode23s,
ode15s

Solves differential equations by using various methods

odefile Problem definition file for ODE solvers

odeget Extracts options from ODE options structure

odeset Creates or edits options structure for ODE solvers

754 Appendix A MATLAB Release Information

Plot Function Description

area Filled area plot

bar3 3-D bar chart

bar3h 3-D horizontal bar chart

barh 2-D horizontal bar chart

box Turns On or Off axes box

contourf Filled contour plot

pie Pie chart

pie3 3-D pie chart

plotyy Plot with y-axis labels on both the left and right

quiver3 3-D quiver plot

ribbon Draws lines as 3-D strips

stem (Change) Stem tips can be filled or unfilled

stem3 3-D stem plot

trimesh Triangular mesh plot

trisurf Triangular surface plot

Color and Light Function Description

autumn Colormap of red and yellow

colorcube Colormap of regularly spaced colors

colordef Selects figure color scheme

lines Colormap that follows axes colororder property

spring Colormap of magenta and yellow

summer Colormap of green and yellow

winter Colormap of blue and green

Image Function Description

imread Reads image data

imwrite Writes image data

Graphics Function Description

dragrect Drags rectangle

inputdlg Displays input dialog

Appendix A MATLAB Release Information 755

Function Description

ismember Now calls the MEX function ismemc to maximize speed

pagedlg Open Page Layout dialog

printdlg Open Print dialog

scatter 2-D scatter plot

scatter3 3-D scatter plot

MATLAB 5.1, Release 9 (June 1997)

Functionality Description Chapter

find function returns
empty

(Change) find(. . .) returns [] if no indices
where argument is True are found

5

Multibyte characters (Change) Two byte characters are supported 9

MATLAB 5.2, Release 10 (March 1998)

Functionality Description Chapter

HDF file support Files in HDF format can be read and written to 13

M-file locking M-files can now be locked so that clear does not
purge that M-file from memory

12

OpenGL support OpenGL graphics rendering is supported 29

Persistent variables Variables can be declared persistent so that they
persist from one call to a function to the next

12

S = load(. . .) (Change) Loads file contents to structure 13

Support for cell arrays
of strings

The functions intersect, ismember, lower,
setdiff, setxor, sort, union, unique, and upper
now handle inputs that are cell arrays of strings

8, 9, 14

msgbox Displays message dialog

questdlg Displays question dialog

rbbox Rubberband box

selectmoveresize Interactively selects, moves, or resizes objects

uiresume Resumes suspended M-file execution

uiwait Blocks M-file execution

waitfor Blocks execution until condition is satisfied

756 Appendix A MATLAB Release Information

Mathematical, FFT,
or ODE Function

Description

cholinc Sparse incomplete Cholesky and Cholesky-infinity factorization

cholupdate Rank 1 update to Cholesky factorization

ifftshift Inverse FFT shift

ode23t Solves moderately stiff differential equations

ode23tb Solves stiff differential equations by using crude error tolerances

Functionality Description Chapter

Toggle buttons New Uicontrol object 30

Tooltips UI controls have a tooltip string property 30

try/catch blocks Error handling using try/catch blocks 11

Uicontextmenu New Uimenu object 30

Graphics or 3-D
 Visualization Function

Description

camdolly Translates camera position and target

camlight Creates or moves light object in camera coordinate system

camorbit Rotates camera position around camera target

campan Rotates camera target around camera position

campos Sets or gets camera position and position mode

camproj Sets or gets camera projection type

camroll Rotates camera about camera viewing axis

camtarget Sets or gets camera target and camera target mode

camup Sets or gets camera up vector and up vector mode

camva Sets or gets camera view angle and view angle mode

camzoom Zooms camera in or out

daspect Sets or gets data aspect ratio and aspect ratio mode

lightangle Creates or moves light object in spherical coordinates

pbaspect Sets or gets plot box aspect ratio and plot box aspect mode

xlim Sets or gets x-axis limits and limit mode

ylim Sets or gets y-axis limits and limit mode

zlim Sets or gets z-axis limits and limit mode

Appendix A MATLAB Release Information 757

M-File Function Description

lastwarn Returns last warning string

mislocked True if M-file cannot be cleared

mlock Prevents M-file clearing

munlock Permits M-file clearing

persistent Declares a variable persistent

Other Function Description

strcmpi Compares strings, ignoring case

strjust (Change) Now does right, left, and center justification

strncmpi Compares first n characters in strings ignoring case

MATLAB 5.3, Release 11 (March 1999)

Functionality Description Chapter

Double buffering Figure windows now support double buffering
to reduce flicker

30

Execute function when
 quitting

When MATLAB is quit, MATLAB executes
the function finish

4

Integer data types Support for int8, uint8, int16, uint16, int32,
and uint32 added

7

Mass matrix support All functions in the ODE suite support the use
of a mass matrix

24

Optimization parameters Options for optimization functions fminbnd,
fminsearch, and lsqnonneg are set using
an options structure variable rather than an
 options vector

22

Portable Network Graphics Support for images in PNG format 28

Rectangle object New Handle Graphics object for drawing
 rectangle, ovals, and circle

30

Single-precision data Storage support for single added 7

Matrix Function Description

blkdiag Creates block diagonal matrix

complex Creates complex array from real and imaginary parts

sum (Change) Can now be used with all integer data types

758 Appendix A MATLAB Release Information

Graphics or 3-D
Visualization Function

Description

coneplot Velocity vector cone plot in a 3-D vector field

contourslice Draws contours in volume slices

ezcontour Easy contour plotter

ezcontourf Easy filled contour plotter

ezmesh Easy mesh plotter

ezmeshc Easy mesh with contour plotter

ezplot Easy 2-D line plotter

ezplot3 Easy 3-D line plotter

ezpolar Easy polar plotter

ezsurf Easy surface plotter

ezsurfc Easy surface with contour plotter

findfigs Finds all visible Figure windows

hist (Change) Now calls MEX function histc

histc Histogram binning given bin edges

isocaps Computes isosurface end-cap geometry

isonormals Computes normals at isosurface vertices

isosurface Extracts isosurface data from volume data

lsqnonneg (Change) New name and calling sequence for function nnls

reducepatch Reduces number of patch faces

reducevolume Reduces number of volume data elements

shrinkfaces Reduces size of patch faces

smooth3 Smoothes 3-D data

stream2 Computes 2-D streamlines

stream3 Computes 3-D streamlines

streamline Draws streamlines

subvolume Extracts subset of volume data set

surf2patch Converts surface data to patch data

Optimization Function Description

fminbnd (Change) New name and calling sequence for function fmin

fminsearch (Change) New name and calling sequence for function fmins

optimget, optimset Get, set, and modify optimization options

Appendix A MATLAB Release Information 759

Other Function Description

cellfun Performs common operations on cell arrays

datenum, datestr, datevec (Change) Now accepts pivotyear argument

evalc String evaluation with output converted to a string

int8, uint8, int16,
uint16, int32, uint32

Conversion to integer data types

pause (Change) Fractional second argument is accepted

single Conversion to single-precision data type

str2double Converts character string to double-precision value

texlabel Creates the TeX format from a character string

MATLAB 6.0, Release 12 (November 2000)

Functionality Description Chapter

Fast Fourier
Transform

(Change) MATLAB now uses the MIT FFTW library for
computing Fast Fourier Transforms

21

Function handles New data type for capturing function information for
evaluation

12

Java MATLAB now supports an interface with the Java language

MATLAB desktop User interface organized and named the MATLAB
 desktop, which is implemented in the Java language

3

Matrix math (Change) MATLAB now uses LAPACK with BLAS for
matrix computations

16

Operator
precedence

(Change) Logical AND now has higher precedence than
logical OR

10

Transparency (Change) Surfaces, patches, and images now support
transparency

27, 28

Logical Function Description

iskeyword Generates or tests if argument is a MATLAB keyword

isvarname True if input string is a valid variable name

M-file Function Description

check_syntactic_warnings Runs syntax check on M-files

func2str Constructs function name string from function handle

functions Displays information about a function handle

760 Appendix A MATLAB Release Information

Sparse Matrix
Function

Description

colamd Computes approximate column minimum degree permutation

lsqr LSQR implementation of Conjugate Gradients on Normal Equations

minres Solves system of equations by using Minimal Residual Method

symamd Symmetric approximate minimum degree permutation

symmlq Solves system of equations by using symmetric LQ method

Interpolation Function Description

convhulln n-D convex hull

delaunay3 3-D Delaunay tessellation

delaunayn n-D Delaunay tessellation

desearchn n-D nearest point search

griddata3 3-D data gridding

griddatan n-D data gridding

interp1 (Change) 'cubic' option now calls pchip

pchip Piecewise cubic Hermite interpolating polynomial interpolation

voronoin n-D Voronoi diagram

Optimization or
Integration Function

Description

dblquad (Change) Can now pass extra arguments to integrand function

fzero (Change) Calling sequence changed

quadl Numerically computes integral by using Lobatto quadrature;
replaces quad8

Differential Equation Function Description

bvp4c Solves two-point boundary value problem by collocation

bvpget Gets BVP option from option structure

M-file Function Description

nargoutchk Validates number of output arguments

rehash Refreshes function and file system caches

str2func Constructs function handle from function name string

Appendix A MATLAB Release Information 761

3-D Visualization Function Description

coneplot Creates 3-D coneplot

curl Computes curl and angular velocity perpendicular to flow

divergence Computes divergence of vector field

interpstreamspeed Interpolates streamline vertices from speed

isocolors Computes colors of isosurface vertices

isosurface Extracts isosurface

streamparticles Draws stream particles

streamribbon Draws stream ribbons

streamslice Draws streamlines

streamtube Draws stream tubes

volumebounds Gets coordinate and color limits for volume data

bvpinit Forms initial guess for bvp4c

bvpset Creates or changes BVP option structure

bvpval Evaluates solution from bvp4c

ode* (Change) ODE solvers can now solve problems
 without using an ODE file

pdepe Solves partial differential equations in one dimension

pdeval Evaluates solution computed by pdepe

Graphics Function Description

alim Sets or gets axes alpha limits

alpha Sets or gets transparency properties

alphamap Specifies figure alphamap

Java Function Description

import Adds to the current Java packages import list

isjava True for Java Object

javaArray Creates Java array

javaMethod Invokes Java method

javaObject Constructs Java object

methodsview Displays information on all methods implemented by a
Java or MATLAB class

762 Appendix A MATLAB Release Information

Obsolete Function Description

errortrap Replaced by try-catch block

flops Removed. Floating-point operation count no longer relevant

fmin Replaced by fminbnd

fmins Replaced by fminsearch

foptions Replaced by optimget and optimset

interp4, interp5,
interp6

Replaced by interp2

isdir Replaced with exist

isieee Obsolete. All MATLAB platforms now use IEEE arithmetic

isstr Replaced by ischar

meshdom Replaced by meshgrid

nnls Replaced by lsnonneg

quad8 Replaced by quadl

saxis Removed. No longer used

setstr Replaced by char

str2mat Replaced by char

table1 Replaced by interp1

table2 Replaced by interp2

Other Function Description

beep Makes computer sound a beep

continue Skips rest of For Loop or While Loop

genpath Generates path string that includes all directories below a
 specified directory

numel Number of elements in an array

polyfit, polyval (Change) Now support centering and scaling of data

sort (Change) Now works on data types other than double precision

std (Change) std([]) now returns NaN rather than empty

MATLAB 6.1, Release 12.1 (June 2001)

Functionality Description Chapter

Transparent legend Can now make axes legend box transparent 25

Appendix A MATLAB Release Information 763

Mathematics or Data
Analysis Function

Description

bvpval (Obsolete) Replaced by deval

convhull (Change) [K,a] = convhull(x,y) now returns the area a of the
convex hull; in addition, it now ignores the third input argument

convhull, delaunay,
 griddata, voronoi

(Change) Now make use of Qhull

convhulln (Change) [K,v] = convhulln(x,y) now returns the volume v
of the convex hull

delaunay (Change) Now ignores third input argument

deval Evaluates ODE solution; also replaces obsolete bvpval function

erfcinv Inverse complementary error function

interp1 (Change) Now enables data extrapolation

ode* (Change) Now optionally returns solution structure for use by deval

polyeig (Change) Can now return only the eigenvalues

ppval (Change) Now supports ppval(xx,pp) to permit use of ppval
with function functions

quad (Change) Function sampling bug fixed

svd (Change) Can now return only the first two outputs, U and S

Graphics Function Description

histc (Change) Bug fixed

tetramesh Tetrahedron mesh plot for use with delaunayn

triplot 2-D triangular plot for use with delaunay

External Interface
Function

Description

audioplayer Creates audio object to play audio data on Windows platforms

audiorecorder Creates audio object to record audio data on Windows platforms

cdfinfo Gets information about a CDF file

cdfread Reads CDF file

fitsinfo Gets information about a FITS file

fitsread Reads FITS file

hdfinfo Gets information about a HDF file

hdfread Reads HDF file

764 Appendix A MATLAB Release Information

MATLAB 6.5, Release 13 (August 2002)

Other Function Description

datenum, datestr (Change) Now accept date vector as an input argument

numel (Change) numel(A,varargin) returns the number of subscripted
elements in A(varargin{:})

reshape (Change) reshape(A,. . . ,[],. . .) now calculates the size
 required for the empty dimension

sortrows (Change) Now calls MEX function sortrowsc to maximize
speed. With cell array of strings input, now calls MEX function
sortcellchar to maximize speed

strfind Search for occurrence of second string argument in first string
 argument

Functionality Description Chapter

BLAS for Pentium 4 Specific BLAS provided for the Pentium
4 processor

Delay differential
equations

Support for solving delay differential equations
provided

24

Dynamic structure field
names

Need for getfield and setfield eliminated;
var.(fstr), where fstr is a character string,
 addresses the field identified by fstr in the
 variable var

8

Empty comparisons []==[] and []==scalar now return empty ([])
result to coincide with other operators

10

Formatted error and
 warning strings

Functions error and warning now accept data
formatting inputs similar to sprintf

12

Integer array subscripts Array subscripts must be real positive integer
 values or logical values (e.g., x(1.3) reports an
error)

5

JIT-acceleration For Loops with specific properties now execute
at maximum speed, thereby avoiding the need to
vectorize code under some circumstances

11

Logical class Logical arrays are now a separate MATLAB
class that use one byte of storage per array
 element

10

Logical operators for
short-circuiting

New operators && and || short circuit
 comparisons when an early exit is possible

10

Appendix A MATLAB Release Information 765

Logical True and False MATLAB now supports direct creation of
 arrays containing logical True and logical False
by using the functions true and false

10

Maximum name length for
variables and functions

Variable names and function names can now
have up to 63 characters

2

Message identifiers Error and warning messages can now contain
 identifier tags to make the message uniquely
 identifiable

12

Platform support First release to support Macintosh PowerPC
(PPC) platform

Regular expressions MATLAB now supports regular expressions 9

Relational operators and
64 bit-integer arrays

(MATLAB 6.5.1) All relational operators now
 support int64 and uint64 data types

7

Scheduled execution New timer object permits scheduled execution of
MATLAB code

4

Sparse class Sparse is now an attribute of the underlying
 variable class, as opposed to a distinct or
 separate variable class. In MATLAB 6.5, logical
and double data types can be sparse

16

Text object properties Text objects now have properties for their
 background box

30

UMFPACK support When appropriate, sparse matrix solutions now
use UMFPACK library functions

16

Warning control Individual warnings can be suppressed 12

Data Analysis or
 Mathematical Function

Description

corrcoef (Change) Three new syntaxes

dde23 Solves delay differential equations with constant delays

ddeget Gets properties from DDE options structure

ddeset Creates or modifies properties in DDE options structure

deval (Change) Now accepts output from dde23

lu (Change) Now uses UMFPACK for sparse matrices

psi Evaluates Digamma function

qrdelete, qrinsert (Change) Can now insert or delete rows as well as columns

triplequad Evaluates triple integral

766 Appendix A MATLAB Release Information

External Interface
 Function

Description

audiodevinfo Gets information about installed audio devices on Windows
platforms

cdfepoch Converts MATLAB date number or string to CDF format

cdfwrite Writes data to CDF file

copyfile (Change) Now also copies directories

fileattrib Sets or gets file attributes

imformats Eases the task of adding read and write support for new
file formats

movefile (Change) Now also renames a file or directory

multibandread Supports reading data from raw files

multibandwrite Supports writing data to raw files

namelengthmax Returns maximum variable and function name lengths

pcode (Change) Internal format of P-files change

perl Calls Perl script using platform executable

rmdir Removes directory and, optionally, contents as well

sendmail Sends e-mail

urlread, urlwrite Reads and writes content using URL

winopen On Windows platforms, opens a file in its appropriate application

xmlread, xmlwrite Reads and writes XML document

xslt Transforms XML document using XSLT engine

zip, unzip Compresses and uncompresses files and directories

Logical Function Description

false Creates array of logical False

isequal (Change) When used to compare structures, input argument
field creation order no longer has an impact on equality

isequalwithequalnans True if arrays are equal with NaNs considered equal

ismember (Change) [tf, idx] = ismember(. . .) now returns indices
idx of located members; in this case, MEX function ismemc2
is called to maximize speed

issorted True if array is sorted

true Creates array of logical True

Appendix A MATLAB Release Information 767

Other Function Description

cell2mat Combines cell array of matrices into one matrix; previously part of
the Neural Networks Toolbox

colormapeditor Interactive colormap editor

gallery (Change) New test matrices available

int64, uint64 Creates signed or unsigned 64-bit integer array

lasterror Returns last error message and related information

mat2cell Breaks matrix up into a cell array of matrices; previously part
of the Neural Networks Toolbox

orderfields Order fields of a structure

profview Produces graphical profile report

regexp Matches regular expression

regexpi Matches regular expression, ignoring case

regexprep Replaces string, using regular expression

rethrow Reissues error

timer Creates and controls timer objects to schedule execution of
 MATLAB code

ver (Change) Now returns more detailed information, and hostid
information is no longer provided

MATLAB 7.0, Release 14 (June 2004)

Functionality Description Chapter

Annotation layer Figure windows now have an annotation layer where
annotations appear. Annotations include rectangles,
ellipses, arrows, double arrows, text arrows, text boxes,
lines, colorbars, and legends

30

Anonymous
 functions

Single line function specification as a replacement for
in-line functions

12

Block comments Now supports block comments using %{ and %} syntax 4

Case sensitivity Function and directory names are now case sensitive; in prior
versions, they were case sensitive only on UNIX platforms

4, 12, 13

Code cells Editor permits creation, execution, and so on, on
 sections of code called code cells

4

Code checking M-file code can be assessed for potential problems and
improvement by using the functions mlint or mlintrpt

12

768 Appendix A MATLAB Release Information

Functionality Description Chapter

Desktop Native MATLAB HTML reader/web browser
 introduced. Drag and drop supported between Desktop
tools. Tooltips and tool preferences enhanced

3

FIG files (Change) The format of FIG files has changed 29

File FTP support Access files using FTP commands in MATLAB 13

Freeform date and
time

Date and time functions now support user-specified date
and time specifications

15

Function
 precedence

Built-in and M-file functions now share the same calling
precedence; in prior versions, built-in functions had
higher precedence

12

Generic dynamic
linked libraries

MATLAB supports interaction with Generic DLLs on
the Windows platform

Group objects Graphics objects can now be grouped or linked to each
other

30

Java 1.4 MATLAB now uses Java version 1.4

Nested functions M-file functions can be nested, allowing shared
 workspaces among the primary and all nested functions

12

Nondouble
 arithmetic

Mathematical operations on integer and single-precision
data are now supported; many built-in functions support
these data types as well

7

Panels and button
groups

New user interface container objects 30

Performance Significant overall performance improvements

Plot objects High-level and specialized plotting functions now
 create plot objects that have properties specific to
the type of plot created. In the past, these functions
returned handles to the core graphics objects used to
create the graphics

30

Regular
 expressions

Expanded regular expression capabilities 9

Results publishing M-files and figures can be published to HTML, XML,
LaTeX, Word, and PowerPoint

29

TeX support Text objects now optionally support complete TeX
 capabilities

25, 30

Toolbars New user interface object 30

Unicode character
storage

MATLAB now encodes character strings in Unicode
format

9

Appendix A MATLAB Release Information 769

Mathematical Function Description

acosd, acotd, acscd,
 asecd, asind, atand

Inverse trigonometric functions returning angles in
 degrees

balance (Change) Now returns different outputs and offers
 balancing without permuting rows and columns

bvp4c (Change) Can now solve multipoint boundary value
 problems

convhulln, delaunayn,
voronoin

(Change) Now support user-settable options

cosd, cotd, cscd, secd,
sind, tand

Trigonometric functions with arguments in degrees

decic Computes consistent initial conditions for odeo15i

deval (Change) Now optionally returns derivative at points
as well

eps (Change) Now accepts arguments to specify single- or
double-precision values and to return eps relative to any
value, not just 1

expm1 Computes exp(x)–1 accurately

eye, ones, zeros (Change) Now accept a final argument specifying
 numeric data type of result

fftw Tunes or sets options in FFTW library for FFT
 computations

fminbnd,
fminsearch, fzero

(Change) Now support calling an output function at each
iteration

funm (Change) The optional second output is now an
exit flag rather than a (sometimes inaccurate) error
 estimate

gammainc Can now specify the tail of the incomplete gamma
 function for nonnegative input

int8, int16, int32,
int64, uint8, uint16,
uint32, uint64

(Change) Now round noninteger inputs rather than
 truncating

interp1 (Change) Now optionally returns a pp-form for
 evaluation with ppval

interp1, ppval, spline (Change) Now support multidimensional arrays for Y

linsolve Solves Ax = y, given specific structure of A

log1p Computes log(1+x) accurately

770 Appendix A MATLAB Release Information

Mathematical Function Description

lscov Can now specify either Cholesky or orthogonal
 decomposition

ltitr (Change, previously undocumented) Linear time-invariant
time response kernel

mimofr (Change, previously undocumented) Linear time-invariant
frequency response

nthroot nth real root

ode15i Ordinary differential equation solver for implicit
 equations

odextend Extends solution of ordinary differential equations

ordqz Reorders QZ factorization

ordschur Reorders Shur factorization

poleig Can now return a vector of condition numbers for the
 eigenvalues

pwch Piecewise cubic Hermite interpolation

quadv Vectorized quad function

sort (Change) Now supports an optional last argument that
specifies the sort direction

svd (Change) Adds support for economy decomposition
on matrices having few rows and many columns using
svd(A,'econ'). (Documented in MATLAB 7.1.)

Logical Function Description

iscom True for COM/ActiveX objects

isevent True if event of object

isfloat True for floating-point data

ishghandle True for Handle Graphics Object handle

isinteger True for integer data

isinterface True for COM interface

ispuma True for computers running Mac OS X 10.1.x

isscalar True if argument is a scalar

isstrprop True for string elements matching a variety of specifications

isvector True if argument is a row or column vector

Appendix A MATLAB Release Information 771

M-file Function Description

auditcontents Audits Contents.m file for a given directory

dbstack Now supports nested functions

dbstatus Display breakpoints function now supports anonymous and
nested functions as well as a new -completenames argument

dbstop Now supports nested and anonymous functions

deleteconfirm Confirms the deletion of a file with a dialog box

deprpt Scans a file or directory for dependencies

diff2asv Compares file to autosaved version, if one exists

diffrpt Visual directory browser

dofixrpt Scans a file or directory for all TODO, FIXME, or NOTE
messages

function (Change) Function definition line no longer requires commas
separating output values

helprpt Scans a file or directory for help

makecontentsfile Makes a new Contents.m file

makemcode Makes M-file for regenerating object and its children

mlint, mlintrpt Examine M-file or a directory of M-files for potential
 problems and make suggestions for possible improvements

path2rc (Obsolete) Replaced by savepath

profile No longer supports the -detail flag’s builtin option

profreport (Obsolete) Replaced by profsave

publish Runs a script M-file and saves the results

recycle Determines if deleted files go to Recycle Bin

restoredefaultpath Restores default MATLAB path

savepath Saves current MATLAB path; replaces path2rc function

Obsolete Function Description

colmmd (Removed) Use colamd instead

fmin, fmins, icubic, interp4, interp5,
interp6, meshdom, nnls, saxis

(Removed) No longer supported

quad8 (Removed) Use quadl instead

symmmd (Removed) Use symamd instead

terminal (Removed) No longer supported

772 Appendix A MATLAB Release Information

Graphics Function Description

addsubplot Adds subplot to figure in given location

ancestor Gets ancestor of graphics object

annotation Adds annotation object

axes (Change) ActivePositionProperty, OuterPosition,
TightInset properties added

axescheck Processes leading axes object from input list

axis (Change) Now accepts axes handle as first argument

commandhistory Opens Command History window or selects it

commandwindow Opens Command window or selects it

datacursormode Interactively creates data cursors on plot

exportsetupdlg Shows figure export style dialog

figure (Change) DockControls property added, KeyPressFcn
property modified

figureheaderdlg Shows figure header dialog

figurepalette Shows or hides the palette for a figure

getpixelposition Gets position of object in pixels

hasbehavior Sets or gets behaviors of Handle Graphics objects

hgexport Exports a figure

hggroup Creates a Handle Graphics group object

hgtransform Creates graphics transformation object

hold (Change) Now supports all option, which holds the plot so that
subsequent plots do not reset the color and linestyle order

linkaxes Synchronizes limits of specified axes objects

linkprop Maintains same value for corresponding Handle Graphics properties

makehgtransform Creates graphical transformation matrix

pan Interactively pans the plot view

plotbrowser Shows or hides the plot browser for a figure

plottools Shows or hides the plot-editing tools for a figure

printdlg Prints dialog box

printpreview Displays preview of figure to be printed

propertyeditor Shows or hides the property editor for a figure

refreshdata Refreshes data in plot

setpixelposition Sets position of object in pixels

Appendix A MATLAB Release Information 773

showplottool Shows or hides one of the plot-editing components for a figure

title (Change) Now accepts axes handle as first argument

uibuttongroup Creates buttongroup object

uicontainer Creates container object

uicontrol (Change) uicontrol(h) now transfers focus to the uicontrol
 having handle h. Multiline 'edit' style uicontrol objects
now have a vertical scroll bar. uicontrol objects now have a
 'KeyPressFcn' callback

uigetfile (Change) Now permits selection of multiple files

uipanel Creates uipanel container object

uipushtool Creates pushbutton in uitoolbar object

uitable Creates a uitable object

uitoggletool Creates togglebutton in uitoolbar object

uitoolbar Creates uitoolbar object

uitree Creates uitree object

uitreenode Creates a node object in a uitree component

uiwait (Change) uiwait(handle,t) now times out after time t has elapsed

xlabel, ylabel,
zlabel

(Change) Now accept axes handle as first argument

External Interface Function Description

calllib, libfunctions,
 libfunctionsview,
 libisloaded, libpointer,
libstruct, loadlibrary
unloadlibrary

Generic DLL Interface functions

callsoapservice Sends a SOAP message off to an endpoint

eventlisteners Lists all events that are registered

ftp Creates ftp object

instrfindall Finds all serial port objects with specified property
values

javaaddpath Adds directories to the dynamic Java path

javaclasspath Gets and sets Java path

javacomponent Creates a Java AWT Component and puts in a figure

javarmpath Removes directory from dynamic Java path

774 Appendix A MATLAB Release Information

External Interface Function Description

registerevent Registers events for a specified control at runtime

unregisterallevents Unregisters all events for a specified control at runtime

unregisterevent Unregisters events for a specified control at runtime

Other Function Description

accumarray Constructs array with accumulation; that is, if any element is
specified more than once, later elements add to the current
value rather than overwrite it

addtodate Modifies a particular field of a date number

audiorecorder,
 audioplayer

(Change) Now supported on both UNIX and Windows
 platforms

bin2dec Now ignores any spaces in the input string

cast Casts a variable to a different data type

datatipinfo Produces short description of a variable

datenum, datevec,
datestr

Can now specify output formats and local date options

deal No longer needed in many cases, for example, [a,b,c,d] = C{:}
is equivalent to [a,b,c,d] = deal(C{:})

dlmwrite New input arguments and output options

docsearch Searches HTML documentation in the Help browser

find (Change) Now supports optional arguments specifying an upper
limit on the number of indices returned, and whether the search
begins at the start or end of the array

fixquote Double up single quotes in a string

genvarname Generates variable name from candidate name

hd5info, hd5read,
hdf5write

HDF5 file information, read, and write

hex2num, num2hex Converts number to and from IEEE hexadecimal format

imread Added ability to read a specified portion of a TIFF image

inmem Now reports path information

intmax, intmin Maximum and minimum integer values given integer data type

intwarning Controls state of the integer data type warnings

mmcompinfo Multimedia compressor information

mmfileinfo Gets information about a multimedia file (PC only)

Appendix A MATLAB Release Information 775

recycle Sets option to move deleted files to a recycle folder

save (Change) Now supports compressing MAT-files

strfind, strtok (Change) Now support cell array of strings as input

strtrim Removes leading and trailing white space from a string

textscan Reads text file into a cell array; has more features than
 textread

timerfindall Finds all timer objects with specified property values

weekday New output options

xlsfinfo Output format change

xlsread Date import enhanced

xlswrite Writes Matrix to Excel spreadsheet

MATLAB 7.0.1, Release 14 Service Pack 1 (September 2004)

Functionality Description Chapter

Character set
conversion

The native2unicode and unicode2native functions
 convert between Unicode and a native character set

9

Desktop tools Enhancements for desktop tools including additional
 keyboard shortcuts

3

FIG-files FIG file format change 28

Library path Now uses the librarypath.txt file to locate native Java
method libraries. PATH and LD_LIBRARY_PATH
 environment variables are no longer used

4

Math libraries Intel/AMD BLAS libraries used; FDLIBM is now version 5.3

Persistent
 variables

Multiple declarations of persistent variables are no longer
supported

12

Single- precision
data

More functions now accept single-precision data inputs in
 addition to the usual double-precision inputs

7

Web services Expanded support for web services such as SOAP and WDSL.
Integrated MATLAB web browser only used for files smaller
than 1.5MB; system default browser used for larger files

Mathematical Function Description

ordeig Returns the vector of eigenvalues of a quasitriangular
 matrix or matrix pair

776 Appendix A MATLAB Release Information

M-file Function Description

dbstatus (Change) Display breakpoints function now supports anonymous
and nested functions as well as a new -completenames argument

depfun (Change) Now supports a number of new options

nargin, nargout (Change) Now accept either a function name or function handle as
an input argument

Graphics Function Description

opengl Allows switching between hardware and software-based
OpenGL® rendering

External Interface Function Description

fwrite Now supports saving uint64 and int64 values on all platforms

Other Function Description

clear (Change) The clear mex command no longer clears M-functions
in addition to MEX-functions

funm (Change) Second output argument changed from error estimate to
result flag

mat2str (Change) Now converts non double data types

native2unicode Converts a character string from a native character set to Unicode

regexprep (Change) Now supports the use of character representations
(like \t or \n) in replacement strings

unicode2native Converts a character string from Unicode to a native character set

MATLAB 7.0.4, Release 14 Service Pack 2 (March 2005)

Functionality Description Chapter

BLAS libraries Vendor BLAS libraries have changed for the Macintosh
and 64-bit Linux platforms

Installation
folder

Folder names with spaces in the installation path are now
supported on Windows platforms

13

JVM updated Version 1.5 of the Java Virtual Machine is now installed

Memory-mapped
files

Memory-mapped files are now supported. Memory-mapping
speeds up and simplifies access to file contents and permits
access to data from MATLAB and other applications

13

Appendix A MATLAB Release Information 777

Preferences Various interface preferences have been added or enhanced 3

Publishing results Cell publishing image file types and extensions have changed 29

Subfunction help Use help functionname>subfunctionname to get help
for a subfunction

12

Mathematical Function Description

max, min (Change) Now return an error when input arguments are
complex integers

Graphics and GUI Function Description

imwrite (Change) Now supports GIF format

External Interface Function Description

gzip, gunzip Compress or uncompress files to/from gzip format or
 uncompress from a URL

tar, untar Archive or extract files to/from a tar file or extract from
a URL

unzip (Change) Argument can be a file or a URL

xlsread (Change) Now operates on function handles; date formats
changed

Other Function Description

format (Change) Two new display formats are introduced: short eng and
long eng

textscan (Change) Now reads data from strings in addition to files

MATLAB 7.1, Release 14 Service Pack 3 (September 2005)

Functionality Description Chapter

Built-in functions Built-in functions no longer use files with the .bi
 extension. All .bi files have been removed

Demos Demos now run in the Command window; variables are
available in the workspace. The playshow helper function
is replaced by the echodemo function

778 Appendix A MATLAB Release Information

Functionality Description Chapter

Editor/Debugger Various enhancements including split screen views,
 highlighting, commenting, and indenting options. Mathworks
introduces a new bug reporting system on their website

3

Find Files More filtering options are now available in the Find Files tool 3

JIT-accelerator Now supported on Macintosh platforms 11

LAPACK
 location

The location of the LAPACK libraries have been relocated
on Windows platforms

Notebook No longer supports Word 97 on the Windows platform

Plot tools Now available on the Macintosh platform 3

Preferences A number of changes were made to preference options
including the name of the preferences directory/folder

3, 4

Mathematical
Function

Description

accumarray (Change) Now supports additional data types and classes

hypot Square root of the sum of squares

mode Finds most frequent values in a sample. mode is now a reserved word

odeset (Change) Nonnegativity constraints can be imposed on computed solutions

rand (Change) Now supports the Mersenne twister algorithm

svd (Change) Now supports economy decomposition (introduced but
 undocumented in v7.0)

timeseries,
 tscollection

New functions for time series analysis. Must be manually enabled on
Linux 64-bit platforms

M-file Function Description

mlint (Change) New -notok option; hyperlink to Editor/Debugger in output

swapbytes Swap byte-ordering

typecast Converts data types without changing the underlying data

Obsolete Function Description

clruprop (Obsolete) Use rmappdata instead

ctlpanel (Obsolete) Use guide instead

extent (Obsolete) Use get(h,'extent') instead

Appendix A MATLAB Release Information 779

figflag (Obsolete) Use findobj and/or figure instead

getuprop (Obsolete) Use getappdata instead

hthelp (Obsolete) Use web instead

layout (Obsolete) No replacement

matq2ws, matqdlg, matqparse,
matqueue, ws2matq

(Obsolete) No replacement

menuedit (Obsolete) Use guide instead

menulabel (Obsolete) Use '&' and the 'Accelerator'
 property instead

playshow (Obsolete) Replaced by the echodemo helper function

setuprop (Obsolete) Use setappdata instead

wizard (Obsolete) No replacement

Date and Time Function Description

datenum, datestr, datevec (Change) Now support milliseconds using Free Form
Date Format Specifiers

datestr (Change) Seconds field truncates instead of rounding

External Interface Function Description

exifread Reads EXIF information from JPEG and TIFF image files

fread (Change) Added a precision argument (in MATLAB 7.1
and earlier)

mexext (Change) Now returns mexw32 on 32-bit Windows platforms

Other Function Description

arrayfun Applies a function to each element of an array

cellfun (Change) Applies a function to each cell of a cell array

error (Change) Now saves stack information accessible by lasterror

isfield (Change) Now supports cell array input

lasterror (Change) Now returns stack information from the last error

rethrow (Change) Now accepts stack information as input

structfun Applies a function to each field of a structure

who, whos (Change) Now displays information for nested functions separately

780 Appendix A MATLAB Release Information

MATLAB 7.2, Release R2006a (March 2006)

Functionality Description Chapter

Desktop The MATLAB desktop has been reorganized 3

Error logs Error logs are now generated upon a segmentation fault.
The user is prompted to e-mail the log to the Mathworks, Inc

Installation The default installation directory structure has changed on
Windows platforms

Java Virtual
Machine

The JVM software has been updated on 64-bit Linux platforms

Libraries CHOLMOD for sparse matrices, BLAS libraries updated,
GCC on Linux platforms must be version 3.4 or later

Preferences Some preferences have been reorganized and renamed 3

Profiling A number of profiling enhancements have been made 12

Regular
 expressions

Expanded support for regular expressions 9

Time series
tools

Full support of 64-bit Linux; importing data from text files
(.csv, .dat, .txt) now supported

17

Mathematical Function Description

accumarray (Change) Now accepts a cell vector as the subs input

condest (Change) Efficiency improvements

ddesd New solver for delay differential equations that have general delays

expm (Change) Efficiency improvements

gallery (Change) New optional classname input argument: either
'single' or 'double'

idivide Integer division similar to A./B; fractional quotients are
rounded to integers using a specified rounding mode

Graphics and GUI Function Description

inspect The Property Inspector has a new interface but no new
functionality

External Interface Function Description

fopen (Change) Now supports an argument specifying a character
encoding scheme

Appendix A MATLAB Release Information 781

fread, fwrite (Change) Now use character encoding specified by fopen;
calls to unicode2native and native2unicode are no
longer needed or appropriate

xlsread, xlsinfo Now support Excel files in formats other than XLS

Other Function Description

dbstop (Change) Now supports stopping just before a non M-file
 function (such as a built-in function)

gzip, gunzip, tar,
zip

Partial paths and wildcards (e.g., '~' and '*') are accepted in
filename arguments

issorted Now works on cell arrays of strings

mexect MEX-files on 64-bit Windows now use the .mexw64 extension

mlint (Change) The mlint functionality has been built into the Editor/
Debugger. Some of the message text has changed as well

profile (Change) New -nohistory option added

publish (Change) New catchError option available. Italic text now
 supported

regexp, regexpi (Change) Calling these functions with 'tokenExtents' and
'once' options now returns a double array

regexptranslate Returns a regular expression for a literal string containing
 wildcard or metacharacters

setenv Sets an environment variable in the underlying operating system

toolboxdir Returns the absolute path to the specified toolbox

MATLAB 7.3, Release R2006b (September 2006)

Functionality Description Chapter

Desktop tools Enhancements to Plotting Tools, Editor/Debugger, and Figure
window user interface. File Comparisons tool introduced

3

Help Enhanced searching in the Help browser

Import Wizard Can generate M-code to import similar files

Installation A new utility has been added to the Help browser to support
file extension associations on Windows platforms

Libraries New versions of FFTW, AMD, COLAMD, CHOLMOD, and
UMFPACK libraries

MAT-files Format change permits saving files larger than 2 GB.
HDF5-based MAT-file support

13

782 Appendix A MATLAB Release Information

Functionality Description Chapter

Performance Improved performance on 64-bit systems and accessing cell arrays 8

Printing Enhancements to the Printing user interface 29

Redirection When run in -nodesktop mode, MATLAB now conforms to
standard Unix redirection: errors are logged to stderr

Sparse arrays Changes to internal storage of sparse arrays on 64-bit systems 16

Time series
tools

Enhancements to time series tools and objects 17

User interface The user interface on Linux and Solaris platforms has
changed; functionality was added but none removed

3

Mathematical Function Description

amd Interface to the amd algorithm; similar to symamd but typically
faster

bvpxtend Generates a guess structure for extending a boundary value
problem solution

fftw (Change) Default planner method is now estimate. New syntax
for importing/exporting wisdom databases. Wisdom exported by
earlier versions of FFTW (prior to 3.1.1) cannot be imported

ldl Full ldl factorization and solving for Hermitian matrices

lu (Change) Additional output helps improve numerical stability
of sparse lu factorization

lu, luinc, ldl,
chol, spparms,
symbfact

Enhancements to improve control, performance, and memory
usage, as well as access to upper and lower triangular factors
and lower symbolic factor

max, min (Change) Now use the phase angle in the case of equal
 magnitude complex input. No longer return warning messages
for inputs of different data types

Obsolete Function Description

axlimdlg (Removed) No replacement

bessela (Removed) No replacement

beta No longer accepts three inputs

betacore (Obsolete) Generates a warning message but still works

bvpval (Removed) No replacement

edtext (Obsolete) Sets the Editing property of the text object

Appendix A MATLAB Release Information 783

eigs The eigs options structure no longer accepts the opts.cheb and
opts.stagtol fields

gamma No longer accepts two inputs

ge, gt, le, lt No longer accept complex integer inputs

menubar (Obsolete) Sets the MenuBar property of the figure to none

pagedlg (Obsolete) Use pagesetupdlg instead

propedit The -v6 option is no longer supported. The Version 6 Property
Editor has been removed

quad8 (Removed) No replacement

save No longer accepts -compress, -uncompress, -unicode, or
-nounicode options. Compression and Unicode are the defaults.
Use the -v6 argument to disable compression and Unicode

sort No longer accepts complex integer inputs

table1, table2 (Removed) No replacement

umtoggle (Obsolete) Sets the Checked property of the uimenu object

External Interface Function Description

fprintf, fwrite (Change) Writing to stdin (fwrite(0,...)) now
 generates an error

mwIndex New platform-independent index type declaration

mwSize New platform-independent size type declaration for values
such as array dimensions and number of elements

notebook (Change) The -setup switch no longer accepts arguments

save (Change) Now supports –v7.3 option to save MAT-files
in uncompressed HDF5 format permitting file sizes greater
than 2 GB. Compressed HDF5 format will be the default
MAT-file format in a future version

Other Function Description

dbstop (Change) The ability to restore breakpoints was added

mlint (Change) Enhanced preferences and message text changes

mlintrpt (Change) New option applies preferences from a settings file

parfor, classdef New reserved words

regexp, regexpi (Change) New ?%cmd operator to help with debugging regular
expressions

784 Appendix A MATLAB Release Information

Other Function Description

unique (Change) New 'first' and 'last' options

whos (Change) Modifications to the output format

MATLAB 7.4, Release R2007a (March 2007)

Functionality Description Chapter

Desktop The stand-alone editor is depreciated and will be
 removed. Use the MATLAB Editor/Debugger instead.
 Enhancements to a number of MATLAB desktop windows
and preferences

3

Ghostscript
 printing

Ghostscript printing software has been upgraded;
 stand-alone Ghostscript executable is no longer included

29

JVM updated The Java Virtual Machine supplied with MATLAB on
Windows platforms has been updated to version 1.5.0_07

Libraries BLAS libraries updated

M-lint enhanced M-lint now has the ability to suggest corrections or
 enhancements to your code in the Editor/Debugger

3, 12

Multithreaded
computation
 support added

Enable multithreaded computation support for multicore
processors or multiprocessor systems using preferences.
It is disabled by default

Performance Improved performance on 64-bit platforms. Faster scalar
 indexing and assignment of cell array data into variables.
More efficient matrix multiplication of sparse matrices

Platform support First release to support Intel Macintosh platform

Publishing Added publishing options include publishing M-files and add-
ing in-line links with text, graphics, and/or HTML markup

29

Startup directory The default startup directory on Microsoft Windows platforms
has changed from $MATLAB\Work to My Documents\MATLAB,
or Documents\MATLAB on the Vista platform.

Mathematical Function Description

bsxfun Applies element-by-element binary operation to two full
 arrays with singleton expansion enabled

ilu Performs the sparse incomplete LU factorization

mode (Change) Returns NaN for an empty array input

rand (Change) Now uses the Mersenne twister algorithm as default
rather than Subtract-with-Borrow

Appendix A MATLAB Release Information 785

M-File Function Description

assert Generates an error when a specified condition is violated

inputParser New OOP class available for parsing and validating inputs to functions

ismac Returns true on OSX platforms

verLessThan Compares specified toolbox version with currently running version

Obsolete Function Description

cshelp (Depreciated) No replacement available

figflag (Depreciated) No replacement available

getstatus (Depreciated) No replacement available

hidegui (Obsolete) Set the figure HandleVisibility property instead

ispuma (Depreciated) OS X 10.1 is no longer supported on the Mac platform

menulabel (Depreciated) No replacement available

popupstr (Depreciated) No replacement available

print (Change) The -dln03 option has been removed

setstatus (Depreciated) No replacement available

uigettoolbar (Depreciated) No replacement yet available

External Interface Function Description

publish (Change) New maxOutputLines field added; default
value is Inf

save (Fix) The -rexgrep argument is no longer taken to be a
file name if no file name is supplied

Other Function Description

builddocsearchdb Creates a search database for your own HTML help files for
the Help browser

dir (Change) Now returns additional numeric date (datenum) field

mat2str (Fix) Now returns correct values for character array input

mexext (Change) New MEX-file extensions for Intel Mac (mexmaci)
and Solaris 64-bit (mexs64) platforms

sprintf, fprintf,
 warning, error, assert

(Change) Additional numeric positional arguments available
for formatted string format specifiers

textscan (Change) New CollectOutput switch to return like values
in the same cell array

786 Appendix A MATLAB Release Information

MATLAB 7.5, Release R2007b (September 2007)

Functionality Description Chapter

Array size The maximum array size has increased from 231 elements to
248 –1 elements on 64-bit platforms given sufficient memory

5

Desktop
 enhancements

Desktop user interface enhanced; buttons and tools
 redesigned, links and targets added. Help browser and
 Editor/Debugger enhanced

3

Error messages Text of some error messages changed

GUIDE Enhancements including new toolbar editor and icon editors

Libraries LAPACK and BLAS libraries upgraded; symbol libraries
separated out

Line endings Text files supplied with MATLAB on the Windows platform
no longer include a carriage return and line feed at the end
of each line; Notepad does not recognize line endings

P-code format Internal P-code format change. P-code files created in
 version 7.5 are not recognized in earlier releases

12

Platform
 support

Last release to support PowerPC (PPC) Macintosh and 32-bit
SPARC platforms; 64-bit UltraSPARC support continues

Publishing Notebook supports Word of Office 2007 on Windows
 platforms. Editor/Debugger menu items added for enhanced
cell markup

Mathematical Function Description

bvp5c Solves boundary value problems for ODEs, most useful for
small error tolerances

dmperm (Change) New output arguments for the indices of the
 Dulmage–Mendelsohn coarse decomposition

ldl (Change) Now supplies factorization and solving for an
 additional output argument, the scaling matrix, when the input
matrix is real, sparse, and symmetric

maxNumCompThreads Gets/sets the maximum number of complex threads

MException New OOP class available for exception handling in function
M-files

ones, zeros, rand,
true, false, eye, ..

(Change) Matrix generating functions no longer accept
 complex dimension arguments

quadgk Numerically evaluates the integral, adaptive Gauss–Kronrod
quadrature

Appendix A MATLAB Release Information 787

M-File Function Description

catch (Change) New optional MException class argument

pcode (Change) Internal format of P-files change

validateattributes Checks the validity (e.g., numeric, nonempty) of an input
array

validatestring Checks the validity (e.g., character, nonempty) of text string
input

Obsolete Function Description

axlimdlg (Removed) No replacement

cbedit (Removed) Use guide instead

clruprop (Removed) Use rmappdata instead

ctlpanel (Removed) Use guide instead

edtext (Removed) Set the editing property of the text object

extent (Removed) Set the extent property of the text object

finite (Depreciated) Use isfinite instead

freeserial (Obsolete) Use fclose instead

getuprop (Removed) Use getappdata instead

hthelp (Removed) Use web instead

layout (Removed) No replacement

matq2ws (Removed) No replacement

matqdlg (Removed) No replacement

matqparse (Removed) No replacement

matqueue (Removed) No replacement

menubar (Removed) Set the menubar property of the figure
to none

menuedit (Removed) Use guide instead

pagedlg (Removed) Use guide instead

setuprop (Removed) Use guide instead

umtoggle (Removed) Set the Checked property of the uimenu
object

wizard (Removed) Use guide instead

ws2matq (Removed) No replacement

788 Appendix A MATLAB Release Information

Graphics Function Description

annotation (Change) New FitBoxToText property
permits textboxes to automatically resize to
fit the enclosed text

area, bar, barh, colorbar, contour,
contourf, errorbar, legend, loglog,
mesh, plot, plot3, quiver, quiver3,
scatter, scatter3, semilogx,
 semilogy, stairs, stem, stem3,
 subplot, surf

(Change) The v6 option for high-level
 plotting functions is obsolete

drawnow (Change) Can now selectively update
UI components

External Interface Function Description

avifile (Change) Now generates uncompressed AVI files on
 Windows platforms unless the Indio5 codec is installed

aviread (Change) No longer reads compressed AVI files on
 Windows platforms unless the Indio5 codec is installed

hdfread (Change) Now generates an error rather than a warning on
a failed I/O operation

imread (Change) Improved support for TIFF files. Improved
 performance in some instances

mmfileinfo (Change) Now reads files on the MATLAB path as well
as the current directory. New Path field added to the
mmfileinfo output struct

mmreader Video file reader for Windows platforms

movie2avi (Change) Now generates uncompressed AVI files on
 Windows platforms unless the Indio5 codec is installed

tempname (Change) Now generates a longer and more unique
 filename

Other Function Description

colon (:) (Change) Colon operations on characters iterating a For Loop
(for x = 'a':'c') now returns character data type rather than double

mlint (Change) New cyc option to determine McCabe (cyclomatic)
 complexity of M-files

rexgrep (Change) New 'split' option to split an input string into sections

Appendix A MATLAB Release Information 789

MATLAB 7.6, Release R2008a (March 2008)

Functionality Description Chapter

Desktop tools Array Editor renamed and enhanced, Help browser
 reorganized, stand-alone Editor removed, Editor/
Debugger enhancements, Data Brushing and Data
Linking tools introduced

3

Desktop UI New Desktop UI customization, license management,
and check for updates enhancements. Default startup
directory on all platforms is now userhome/Documents/
MATLAB

3

JIT support JIT support extended to statements executed in the
 Command window and in cell mode in the Editor/Debugger

11

JVM updated The JVM is updated to Version 6 on Solaris platforms

Libraries BLAS, MKL, SPL, LAPACK libraries upgraded. FFTW
may be overridden

Multithreaded
support

Multithreaded support added to elementwise math
 functions. Multithreading now enabled by default

5

Object-oriented
 programming

Enhancements to MATLAB object-oriented
 programming include a new classdef keyword, a
new handle class for reference behavior, support for
events and listeners, support for packages of classes and
 functions, and the availability of metaclasses

31

Publishing Multiple configurations supported, additional cell nesting
options, new code evaluation, and output publishing options

29

Mathematical Function Description

funm (Change) New algorithms

ldivide (Change) Multithreaded support added

ldl (Change) New algorithms

log, log2 (Change) Multithreaded support added

logm (Change) New algorithms

rdivide (Change) Multithreaded support added

rem (Change) Multithreaded support added

M-File Function Description

onCleanup Specifies task(s) to perform just before exiting the current function

790 Appendix A MATLAB Release Information

Obsolete Function Description

bessela (Obsolete) Use besselj instead

beta No longer supports three input arguments. Use betainc with three
input arguments instead

betacore (Obsolete) Use betainc instead

colmmd (Obsolete) Use colamd instead

flops (Obsolete) No replacement

hidegui (Depreciated) Set the figure’s handlevisibility property

meditor (Removed) Stand-alone editor removed; use the Editor/Debugger
instead

quad8 (Obsolete) Use quadl instead

symmmd (Obsolete) Use symamd instead

table1 (Obsolete) Use interp1 or interp1g instead

table2 (Obsolete) Use interp2 instead

Graphics Function Description

brush Turns data brushing on or off and selects a color for brushing graphs

get, set (Change) Do not use get or set to manage properties of a Java
object; this usage will generate an error in future releases

linkdata Turns data linking on or off for a figure

uigetfile,
 uiputfile

(Change) Now supports meta directories such as '.', '..',
and '/'

uitable Creates a new graphic table component

External Interface
Function

Description

imfinfo (Change) Now returns Exif data for JPEG or TIFF files. New
 DigitalCamera and GPSInfo fields

imwrite (Change) New RowsPerStrip parameter to specify number of
 image rows per strip written to TIFF files. Default <= 8KB

publish (Change) New codetoEvaluate option; stopOnError option
removed

save (Change) Data items over 2 GB stored in a MAT-file using the
-v7.3 option are now compressed

Appendix A MATLAB Release Information 791

snapnow Includes a snapshot of output in a published document

userpath Views/sets/clears the user directory from the top of the MATLAB
search path. Default is "$HOME/Documents/MATLAB" or
"My Documents\MATLAB" or "Documents\MATLAB" depending
on platform

Other Function Description

clearvars Clears variables from the workspace; supports exceptions

dbclear, dbstop (Change) New -completenames option permits clearing or setting
breakpoints for M-files not on the search path

edit (Change) Now accepts file path information to enable editing files
not in the current directory

memory (Change) Displays memory usage and availability information on
Windows platforms. Formerly provided help text describing how
to free additional memory for MATLAB

mlint (Change) New -config option to override preference settings

MATLAB 7.7, Release R2008b (October 2008)

Functionality Description Chapter

Desktop New Desktop default layout. New Function Browser tool
and popup function hints. Help browser, Current
Directory browser, File and Directory comparisons tool
enhancements

3

Editor/
Debugger

Now supports templates for new function and class M-files.
M-lint and code folding enhancements

3

JVM
 updated

The Java Virtual Machine has been updated to JVM version 6
update 4.

Libraries Intel Math Kernel Libraries updated

Map object
introduced

New map object implements associative arrays with key lookup 31

Publishing In-line LaTeX math symbols supported within text 29

Startup
changes

Mac version now uses standard Mac App bundle packaging.
Windows version has a new -shield startup option for memory
allocation and protection. The -memmgr and -check_malloc
startup options are now depreciated

792 Appendix A MATLAB Release Information

Mathematical
Function

Description

bvp5c (Change) Now supports multipoint boundary value problems

lsqnonneg (Change) More efficient; now accepts sparse matrices as input and
maintains sparsity throughout

randi (New) Returns random integers from a uniform discrete distribution

randn (Change) New longer period random number algorithm is the default

M-File Function Description

pause (Change) New query argument to return pause state

Obsolete Function Description

betacore (Removed) Use betainc instead

colmmd (Removed) Use colamd instead

flops (Removed) No replacement—no longer practical to count flops

print, saveas (Depreciated) Certain printer and graphics format option strings
are depreciated and will be removed in future versions

symmmd (Removed) Use symamd instead

Graphics Function Description

hist (Change) Changes to the data tips in the histogram display

External Interface Function Description

dir (Change) Empty matrices now returned when appropriate

fopen (Change) No longer supports 'vaxd', 'vaxg', or 'cray'
('d', 'g', or 'c') formats

publish (Change) New figureSnapMethod option to specify
figure details be included in the snapshot. Now supports
in-line LaTeX math symbols

Other Function Description

addtodate (Change) Now supports hours, minutes, seconds, and
milliseconds in addition to years, months, and days

getReport (Change) Several new options available

Appendix A MATLAB Release Information 793

tic, toc (Change) Now support multiple consecutive timings

what (Change) New package information available

MATLAB 7.8, Release R2009a (March 2009)

Functionality Description Chapter

Desktop tools Enhancements to Current Directory browser, File and
Directory Comparisons tool, extended M-lint messages
in the Editor/Debugger. Integrated text editor and block
indenting options removed from Editor/Debugger

3

Libraries New computational geometry tools and library (CGAL).
ACML and HDF5 libraries upgraded. LAPACK and
BLAS support 64-bit integers for matrix dimensions

Multithreading New -singleCompThread startup flag limits MATLAB
to a single computational thread. Default is multithread-
ing if supported. More functions support multithreading

Profiling Profile summary report now includes information on
profiling overhead when available

12

Publishing New options to snapshot the figure or the entire figure
window. Dynamic links to files on the MATLAB path
are now supported

29

Serial port Now supported on all platforms

Timer object format The format in which MATLAB saves timer objects has
changed

15

Mathematical Function Description

betaincinv Implements the inverse incomplete beta function

bicgstabl Implements the stabilized biconjugate gradients method for
solving systems of linear equations

conv2, convn (Change) Now accept the shape parameter as input

fft, fft2, fftn,
ifft, ifft2, ifftn

(Change) These functions are now multithreaded

gammaincinv Implements the inverse incomplete gamma function

prod, sum, max, min (Change) These functions are now multithreaded

quad2d Provides additional quadrature functionality for
 nonrectangular areas of integration

tfqmr Implements a transpose-free quasi-minimal-residual method
for solving systems of linear equations

794 Appendix A MATLAB Release Information

M-File Function Description

isempty (Change) Now supports containers.Map objects

str2func (Change) Can now convert an anonymous function definition
to a function handle

TriRep, DelaunayTri,
TriScatteredInterp

New OOP classes provide enhanced computational geometry
tools

validateattributes (Change) Now supports checking size and range of input values

Obsolete Function Description

finite (Obsolete) Function removed. Use isfinite instead

nextpow2 Due to change to element-by-element calculation in a future release

Graphics Function Description

cmpermute Rearranges colors in colormap

cmunique Eliminates unneeded colors in colormap of indexed image

dither Converts image using dithering

immapprox Approximates indexed image by one with fewer colors

rgb2ind Converts RGB image to indexed image

External Interface Function Description

mmreader (Change) Now supported on Linux platforms

serial (Change) Now supported on all platforms

web (Change) Use -browser parameter to specify which
system browser to use (default is Firefox.) Any docopt.m
browser specification is now ignored

xlsread, xlswrite,
 importdata

(Change) Now support XLS, XLSX, XLSB, and XLSM
formats on Windows platforms with an appropriate
 version of Excel installed

Other Function Description

docsearch (Change) Now accepts multiple arguments including
 wildcards without function syntax

maxNumCompThreads (Change) Ability to adjust the maximum number of
computational threads has been removed; multithreading
support is either on or off

Appendix A MATLAB Release Information 795

publish (Change) New figureSnapMethod options are
 entireGUIWindow (default) and entireFigureWindow
which include the title bar and all other window decorations
in the snapshot

MATLAB 7.9, Release R2009b (September 2009)

Functionality Description Chapter

Desktop tools Enhancements to the Help browser, Plotting tool, Current
 Directory browser, Variable Editor, File and Folder
 Comparison tool, and the Editor/Debugger. New File
 Exchange desktop tool

3

Multithreading Support for many more functions including bsxfun, sort,
 filter, gamma and gammaln, mldivide and qr for sparse
 matrices, and erf

Performance Performance improvements for basic math, binary and relational
operations, exponential functions, and indexing for sparse
 matrices. Significant performance improvements for conv2

Platform support Last release to support UltraSPARC 64-bit platform

Preferences Changes to keyboard bindings and shortcut preferences and
desktop tools font preferences

Publishing Now supports publishing to PDF files 29

Startup options The -memmgr and -check_malloc startup options are
 obsolete and are ignored

Mathematical Function Description

conv2 (Change) Significant performance improvements

convhull, delaunay,
 delaunay3, griddata,
 griddata3, voronoi

(Change) No longer support the QHULL or QHULL
options arguments

fft, fft2, fftn, ifft,
ifft2, ifftn

(Change) Now support larger input arrays (size in one
dimension greater than 231–1) on 64-bit platforms

mldivide (Change) Now supports complex regular sparse input
matrices. Performance improvements for sparse
 rectangular matrix input

qr (Change) Now supports complex sparse input matrices
with a third output argument containing a fill-reducing
permutation for sparse matrix input

796 Appendix A MATLAB Release Information

M-File Function Description

~ (Change) New usage: to specify unused input arguments or
 unused outputs

Obsolete Function Description

delaunay3 (Depreciated) Use DelaunayTri method instead

dsearch (Depreciated) Use DelaunayTri/nearestNeighbor methods
instead

erfcore (Obsolete) Use erf, erfc, erfcx, erfinv, or erfcinv instead

griddata3 (Depreciated) Use TriScatteredInterp method instead

lasterr, lasterror (Depreciated) Use MException objects instead

maxNumCompThreads (Depreciated) To be discontinued with no replacement planned

rethrow (Change) The rethrow(lasterror) usage is depreciated. Use the
rethrow(MException) or rethrow(MException.last) instead

tsearch (Depreciated) Use DelaunayTri/pointLocation methods instead

Graphics Function Description

print (Change) The -adobecset option and -dill device are
 depreciated and will be removed

view (Change) No longer supports 4-by-4 transformation matrices as
inputs. Use view([az el]) instead

External Interface Function Description

imread, imwrite (Change) Now support rewriting portions of a TIFF
file rather than replacing the entire file. New Tiff object
 allows access to functions in the LibTIFF library

mmreader (Change) Now supports Motion JPEG 2000 (.mj2) files
on all platforms except Solaris

Other Function Description

gallery (Change) New integerdata, normaldata, and
 uniformdata options for gallery suite of test matrices

isequal (Change) Now ignores class: isequal(double(3),
single(3)); now returns True

numel (Fix) Now returns consistent results for built-in classes
and subclasses

Appendix A MATLAB Release Information 797

MATLAB 7.9.1, Release R2009bSP1 (Fall 2009)

Functionality Description Chapter

Bug fixes A number of bug fixes were incorporated in this release

MCR version
change

The MATLAB Compiler Runtime (MCR) version number
changed

MATLAB 7.10, Release R2010a (March 2010)

Functionality Description Chapter

Desktop tools Ability to zip and unzip files and folders in the Current
Folder browser. Enhancements for the Editor/
Debugger, Plot Selector, Help Browser, and File and
Folder Comparison tool

3, 13

Keyboard shortcuts Keyboard shortcuts are now organized into sets for
easier set management

Libraries and OOP CDFlib package added to enable low-level access to
CDF files. CDF, HDF5, HDF4, HDF-EOS2, and PNG
file format libraries upgraded. Tiff class enhancements

13

Multithreading Additional math functions support multithreading 5

Performance Multicore support and performance improvements for
over 50 functions including sparse matrix indexing and
functions

Platform support Last release to support 32-bit Intel Macintosh; 64-bit
support continues

Time series objects Now accept duplicate times in adjacent positions; time
vectors must be nondecreasing

17

Mathematical Function Description

bvp4c, bvp5c (Change) Significant performance improvements for sparse
problems

delaunay, convhull,
griddata, voronoi,
delaunay3, griddata3

(Change) These computational geometry functions no longer
use the options arguments.

fft, conv2, int8,
int16, int32, int64,
uint8, uint16,
uint32, uint64

(Change) Multithreading extended to fft for long vectors,
the two-input form of conv2, and integer conversion and
arithmetic

798 Appendix A MATLAB Release Information

Mathematical Function Description

lsqnonneg (Change) No longer uses the optional input x0 as a starting
point

nextpow2 (Change) Now returns a vector the same size as the input

qr (Change) The upper triangular matrix produced by the
factorization routine in qr always contains real, nonnegative
diagonal elements

sortrows, mrdivide,
convn, hisrtc

(Change) Significant performance improvements

spones, spfun,
sprand, sprandn,
sprandsym, cat,
horzcat, vertcat

(Change) Better error checking for sparse matrix functions

M-File Function Description

containers.Map (Change) New syntax available to construct Map object containers

Obsolete Function Description

aviinfo To be removed. Use mmreader and get instead

aviread To be removed. Use mmreader and read instead

delaunay3 Depreciated. Use DelaunayTri instead

docopt Removed. Preferred web browser now set in Preferences

dsearch Depreciated. Use DelaunayTri/nearestNeighbor instead

erfcore Removed. Replace with erf, erfc, erfcx, erfinv, or erfcinv.

exifread To be removed. Use imfinfo instead

fileparts (Change) Fourth output (versn) is always empty

griddata3 Depreciated. Use TriScatteredInterp instead

intwarning To be removed. Use warning instead

intwarning Depreciated and will be removed in a future release

isstr To be removed. Use ischar instead

mmreader.
isPlatformSupported

(Change) Always returns True. Use mmreader.getFileFormats
instead

setstr To be removed. Use char instead

str2mat To be removed. Use char instead

strread To be removed. Use textscan instead

Appendix A MATLAB Release Information 799

strvcat To be removed. Use char instead

textread To be removed. Use textscan instead

tsearch Depreciated. Use DelaunayTri/pointLocation instead

wk1finfo To be removed. Use xlsinfo instead

wk1read To be removed. Use xlsread instead

wk1write To be removed. Use xlswrite instead

Graphics Function Description

mmreader.
getFileFormats

Returns a platform-specific list of video file formats mmreader
 supports

External Interface Function Description

imwrite Added support for JPEG 2000 format files

Other Function Description

migrateistimefirst Time series object isTimeFirst property behavior is changing
in a future release. migrateistimefirst is a temporary
 function to help migrate this property to conform to the newer
usage; it will be removed in future releases

unzip Now preserves original write attribute of all extracted files

MATLAB 7.11, Release R2010b (September 2010)

Functionality Description Chapter

Desktop tools Ability to manage ZIP files as folders in the Current Folder
browser and File and Folder Comparison tool. Additional
enhancements for the Editor/Debugger, Plot Selector, and
File and Folder Comparison tool

3, 13

Graphic objects Support for Motion JPEG and uncompressed AVI files greater
than 2 GB. Support for NetCDF and HDF5 data storage

28

Libraries and
OOP

Support for enumerated data types with sets of named
 values. Enumeration class templates supplied. Arrays of
time series objects are now supported. A number of new
HDF4, HDF5, HDF-EOS, and NetCDF functions support
high- and low-level access to their respective library routines

800 Appendix A MATLAB Release Information

Functionality Description Chapter

Mathematics Support for 64-bit integer arithmetic in core functions 5

Performance Significant performance improvements for the three-output
form of svd, sparse column assignment, and all degree-based
trigonometric functions

Toolboxes Spline Toolbox merged into Curve Fitting Toolbox. RF
Blockset renamed as SimRF

Mathematical Function Description

arrayfun (Change) Now accepts arrays of objects as input

convhull (Change) Now supports 3-D input. The simplify option
 allows removal of noncontributing vertices

delaunay (Change) Now supports 3-D input in either multiple vector
or multicolumn matrix format

DelaunayTri/
NearestNeighbor

(Change) The two-output form returns the corresponding
Eculidean distances between the query points and their
 nearest neighbors

plus (+), minus (-),
uminus (-), times (.*),
rdivide (./), rem, mod,
 ldivide (.\), bitcmp,
power (.^), sign,
any, all, sum, diff,
colon (:), accumarray,
bsxfun

(Change) Now support int64 and uint64 classes natively

sind, cosd, tand,
cotd, secd, cscd,
asind, acosd, acotd,
asecd, acscd

(Change) Significant performance improvements

svd (Change) Significant performance improvement for the
three-output form of svd

Logical Function Description

isa, islogical (Change) Now return consistent results for objects
with base class of logical

isequal, isequalwithequalnans (Fix) Now return correct values when inputs are
arrays of objects containing NaN values

isrow, iscolumn, ismatrix Provide basic information about inputs

Appendix A MATLAB Release Information 801

M-File Function Description

hdf, hdf5, netcdf A number of new functions support MATLAB interface to
the HDF4, HDF5, and NetCDF libraries. Use help hdf,
help dhf5, and help netcdf for overviews of the available
 functionality

Obsolete Function Description

bessel (Obsolete) Use besselj instead

erfcore (Removed) Use erf, erfc, erfcx, erfinv, or erfcinv instead

fileparts (Change) Returns an empty fourth argument (file versions not
supported)

intwarning (Removed) No replacement

mmreader To be removed. Use VideoReader instead

print, printdmfile (Change) The -dmfile option to print and the printdmfile
function will be removed in a future release

saveas (Change) The mmat format option is depreciated and will be
removed in a future release

wavplay To be removed. Use audioplayer and play instead

wavrecord To be removed. Use audioplayer and record instead

wk1finfo To be removed. Use xlsinfo instead

wk1read To be removed. Use xlsread instead

wk1write To be removed. Use xlswrite instead

Graphics Function Description

movie (Change) No longer a built-in function; the syntax is unchanged

uitab, uitabgroup (Change) Changes are being made to these undocumented
 functions

VideoReader Replacement for mmreader; both return identical VideoReader
objects

VideoWriter Improvement over avifile supports files larger than 2 GB

External Interface Function Description

imread, imwrite (Change) Now support n-channel J2C JPEG 2000 files

802 Appendix A MATLAB Release Information

MATLAB 7.11.1, Release R2010bSP1 (March 2011)

Functionality Description Chapter

Bug fixes There were a couple of minor bug fixes in MATLAB; this
release contained mostly bug fixes for Simulink

MATLAB 7.12, Release R2011a (April 2011)

Mathematical Function Description

gammainc (Change) New 'scaledlower' or 'scaledupper' argument
returns scaled versions of the incomplete gamma function

ichol New incomplete Cholesky factorization function; preferred
replacement for the cholinc function

Functionality Description Chapter

Desktop Menus now conform to the Mac standard (top of screen
vs. top of window) on the Macintosh platform. Plot
 Catalog tool enhanced

3

File management Editor/Debugger reflects changes in directory or file
names. MAT-file comparisons support viewing and
 manipulating variables. Folder comparisons support filters.
Text file comparisons support difference-only viewing

3, 13

Help browser Support requests may be submitted directly from
the Help browser. Mathworks website help and
 documentation enhancements and URL changes

Libraries HDF4 and HDF EOS functions grouped into three
 packages. Two new functions added to CDFLIB package

Performance Performance enhancements to matrix transpose,
 element-wise single-precision functions, sparse matrix
indexed assignment, many linear algebra functions, and
convolution for large matrices and long vectors using
conv and conv2

Preferences Changes to default preference for deleting autosaved files.
Color preference changes for nonlocal variable display

Publishing New option to include in-line LaTeX equations in
 comment lines when publishing code

29

Toolboxes Some toolboxes reorganized and renamed

Appendix A MATLAB Release Information 803

qr Reverts to pre-v7.10 behavior; the diagonal of R may
 contain complex or negative elements

rng New function to control the random number generator. Use
rng rather than the 'seed', 'state', or 'twister' inputs
to the rand or randn functions

Obsolete Function Description

bessel (Removed) Use besselj instead

cholinc (Obsolete) Use ichol instead

hdf5info (Depreciated) Use h5info instead

hdf5read (Depreciated) Use h5read instead

hdf5write (Depreciated) Use h5write instead

intwarning (Removed) No replacement

luinc (Obsolete) Use ilu instead

pagesetupdlg (Depreciated) Use printpreview instead

RandStream object (Changes) RandnAlg property replaced by NormalTransform
property, setDefaultStream method replaced by
setGlobalStream method, getDefaultStream method
 replaced by getGlobalStream method

External Interface
Function

Description

audioplayer,
audiorecorder

(Change) Now support device selection on all platforms

fitsread (Change) New options to support data subsetting

h5create (New) Creates HDF5 data set

h5disp (New) Displays the contents of an HDF5 file

h5info (New) Returns information about an HDF5 file

h5read (New) Reads data from an HDF5 data set

h5readatt (New) Reads an attribute from an HDF5 group or data set

h5write (New) Writes to an HDF5 data set

804 Appendix A MATLAB Release Information

External Interface
Function

Description

h5writeatt (New) Writes an attribute to an HDF5 group or data set

nccreate (New) Creates variable in a NetCDF file

ncdisp (New) Displays contents of a NetCDF file

ncinfo (New) Returns information about a NetCDF file

ncread (New) Reads data and attributes of a NetCDF file

ncreadatt (New) Reads an attribute from a NetCDF file

ncwrite (New) Writes data to a NetCDF file

ncwriteatt (New) Writes an attribute to a NetCDF file

ncwriteschema (New) Adds NetCDF schema definitions to a NetCDF file

VideoWriter (Change) Now supports Motion JPEG 2000 files

805

Each MATLAB function cited here was (1) introduced in MATLAB version 5.0 (Re-
lease 8) or later, (2) had significant changes in one or more of these releases, or (3)
was depreciated, made obsolete, or was removed. Each entry identifies the function
name, a description of the function introduced, changed, or obsoleted, as well as the
MATLAB version in which the introduction or change occurred. Changed functions
have (Change) in their description. Obsolete functions are also identified.

This is not a comprehensive list of functions in every version of MATLAB.
The current version alone contains over 1600 functions and methods. A full list of
functions available in the current release organized by category and alphabetically,
along with hyperlinks to the help text for each function, may be found in the
 documentation distributed with MATLAB.

MATLAB Function
Information

Appendix B

Function Description Version

~ (Change) New usage: to specify unused input arguments
or unused outputs

7.9

accumarray Constructs array with accumulation; that is, if any
 element is specified more than once, later elements add
to the current value rather than overwrite it

7.0

accumarray (Change) Now supports additional data types and classes 7.1

accumarray (Change) Now accepts a cell vector as the subs input 7.2

accumarray (Change) Now supports int64 and uint64 classes natively 7.11

806 Appendix B MATLAB Function Information

Function Description Release

acosd Inverse trigonometric functions returning angles in degrees 7.0

acosd (Change) Significant performance improvements 7.11

acotd Inverse trigonometric functions returning angles in degrees 7.0

acotd (Change) Significant performance improvements 7.11

acscd Inverse trigonometric functions returning angles in degrees 7.0

acscd (Change) Significant performance improvements 7.11

addpath Appends directory(s) to the MATLAB search path 5.0

addsubplot Adds subplot to figure in given location (undocumented) 7.0

addtodate Modifies a particular field of a date number 7.0

addtodate (Change) Now supports hours, minutes, seconds, and
milliseconds in addition to years, months, and days

7.7

airy Airy functions 5.0

alim Sets or gets axes alpha limits 6.0

all (Change) Now supports int64 and uint64 classes natively 7.11

alpha Sets or gets transparency properties 6.0

alphamap Specifies figure alphamap 6.0

amd Interface to the amd algorithm; similar to symamd but
typically faster

7.3

ancestor Gets ancestor of graphics object 7.0

annotation Adds annotation object 7.0

annotation (Change) New FitBoxToText property permits textboxes
to automatically resize to fit the enclosed text

7.5

any (Change) Now supports int64 and uint64 classes natively 7.11

area Filled area plot 5.0

area (Change) The v6 option for high-level plotting functions
is obsolete

7.5

arrayfun Applies a function to each element of an array 7.1

arrayfun (Change) Now accepts arrays of objects as input 7.11

asecd Inverse trigonometric functions returning angles in degrees 7.0

asecd (Change) Significant performance improvements 7.11

asind Inverse trigonometric functions returning angles in degrees 7.0

asind (Change) Significant performance improvements 7.11

assert (Change) Additional numeric positional arguments
available for formatted string format specifiers

7.4

Appendix B MATLAB Function Information 807

assert Generates an error when a specified condition is violated 7.4

assignin Assigns variable in a specific workspace 5.0

atand Inverse trigonometric functions returning angles in degrees 7.0

atand (Change) Significant performance improvements 7.11

audiodevinfo Gets information about installed audio devices on
 Windows platforms

6.5

audioplayer Creates audio object to play audio data on Windows
platforms

6.1

audioplayer (Change) Now supported on both UNIX and Windows
platforms

7.0

audioplayer (Change) Now supports device selection on all platforms 7.12

audiorecorder Creates audio object to record audio data on Windows
platforms

6.1

audiorecorder (Change) Now supported on both UNIX and Windows
platforms

7.0

audiorecorder (Change) Now supports device selection on all platforms 7.12

auditcontents Audits Contents.m file for a given directory 7.0

autumn Colormap of red and yellow 5.0

avifile (Change) Now generates uncompressed AVI files on
Windows platforms unless the Indio5 codec is installed

7.5

aviinfo To be removed; use mmreader and get instead 7.10

aviread (Change) No longer reads compressed AVI files on
Windows platforms unless the Indio5 codec is installed

7.5

aviread To be removed; use mmreader and read instead 7.10

axes (Change) ActivePositionProperty, OuterPosition,
TightInset properties added

7.0

axescheck Processes leading axes object from input list 7.0

axis (Change) Now accepts axes handle as first argument 7.0

axlimdlg (Removed) No replacement 7.3

axlimdlg (Removed) No replacement 7.5

balance (Change) Now returns different outputs and offers
 balancing without permuting rows and columns

7.0

bar (Change) The v6 option for high-level plotting functions
is obsolete

7.5

bar3 3-D bar chart 5.0

bar3h 3-D horizontal bar chart 5.0

808 Appendix B MATLAB Function Information

Function Description Release

barh 2-D horizontal bar chart 5.0

barh (Change) The v6 option for high-level plotting functions
is obsolete

7.5

base2dec Converts base to decimal 5.0

beep Makes computer sound a beep 6.0

bessel (Obsolete) Use besselj instead 7.11

bessel (Removed) Use besselj instead 7.12

bessela (Removed) No replacement 7.3

bessela (Obsolete) Use besselj instead 7.6

besselh Bessel functions of the third kind (Hankel) 5.0

beta No longer accepts three inputs 7.3

beta No longer supports three input arguments. Use betainc
with three input arguments instead

7.6

betacore (Obsolete) Generates a warning message but still works 7.3

betacore (Obsolete) Use betainc instead 7.6

betacore (Removed) Use betainc instead 7.7

betaincinv Implements the inverse incomplete beta function 7.8

bicg Biconjugate gradients method 5.0

bicgstab Biconjugate gradients stabilized method 5.0

bicgstabl Implements the stabilized biconjugate gradients method
for solving systems of linear equations

7.8

bin2dec Converts binary to decimal 5.0

bin2dec Now ignores any spaces in the input string 7.0

bitand Bitwise AND 5.0

bitcmp Compare bits 5.0

bitcmp (Change) Now supports int64 and uint64 classes natively 7.11

bitget Gets bit 5.0

bitmax Maximum floating-point integer 5.0

bitor Bitwise OR 5.0

bitset Sets bit 5.0

bitshift Bitwise shift 5.0

bitxor Bitwise XOR 5.0

blkdiag Creates block diagonal matrix 5.3

Appendix B MATLAB Function Information 809

box Turns On or Off axes box 5.0

brush Turns data brushing on or off and selects a color for
brushing graphs

7.6

bsxfun Applies element-by-element binary operation to two full
arrays with singleton expansion enabled

7.4

bsxfun (Change) Now supports int64 and uint64 classes natively 7.11

builddocsearchdb Creates a search database for your own HTML help files
for the Help browser

7.4

bvp4c Solves two-point boundary value problem by collocation 6.0

bvp4c (Change) Can now solve multipoint boundary value
problems

7.0

bvp4c (Change) Significant performance improvements for
sparse problems

7.10

bvp5c Solves boundary value problems for ODEs, most useful
for small error tolerances

7.5

bvp5c (Change) Now supports multipoint boundary value
problems

7.7

bvp5c (Change) Significant performance improvements for
sparse problems

7.10

bvpget Gets BVP option from option structure 6.0

bvpinit Forms initial guess for bvp4c 6.0

bvpset Creates or changes BVP option structure 6.0

bvpval Evaluates solution from bvp4c 6.0

bvpval (Obsolete) Replaced by deval 6.1

bvpval (Removed) No replacement 7.3

bvpxtend Generates a guess structure for extending a boundary
value problem solution

7.3

calendar Produces monthly calendar 5.0

calllib Generic DLL Interface function 7.0

callsoapservice Sends a SOAP message off to an endpoint 7.0

camdolly Translates camera position and target 5.2

camlight Creates or moves light object in camera coordinate system 5.2

camorbit Rotates camera position around camera target 5.2

campan Rotates camera target around camera position 5.2

campos Sets or gets camera position and position mode 5.2

camproj Sets or gets camera projection type 5.2

810 Appendix B MATLAB Function Information

Function Description Release

camroll Rotates camera about camera viewing axis 5.2

camtarget Sets or gets camera target and camera target mode 5.2

camup Sets or gets camera up vector and up vector mode 5.2

camva Sets or gets camera view angle and view angle mode 5.2

camzoom Zooms camera in or out 5.2

cast Casts a variable to a different data type 7.0

cat Concatenates arrays 5.0

cat (Change) Better error checking for sparse matrix functions 7.10

catch (Change) New optional MException class argument 7.5

cbedit (Removed) Use guide instead 7.5

cdfepoch Converts MATLAB date number or string to CDF format 6.5

cdfinfo Gets information about a CDF file 6.1

cdfread Reads CDF file 6.1

cdfwrite Writes data to CDF file 6.5

cell Creates cell array 5.0

cell2mat Combines cell array of matrices into one matrix; previ-
ously part of the Neural Networks Toolbox

6.5

cell2struct Converts cell to structure 5.0

celldisp Displays cell structure 5.0

cellfun Performs common operations on cell arrays 5.3

cellfun (Change) Applies a function to each cell of a cell array 7.1

cellplot Graphically displays cell structure 5.0

cgs Conjugate gradients squared method 5.0

char Converts to string array 5.0

check_ syntactic_
warnings

Runs syntax check on M-files 6.0

chol Enhancements to improve control, performance, and
memory usage, as well as access to upper and lower
triangular factors and lower symbolic factor

7.3

cholinc Incomplete Cholesky factorization 5.0

cholinc Sparse incomplete Cholesky and Cholesky-infinity
 factorization

5.2

cholinc (Obsolete) Use ichol instead 7.12

Appendix B MATLAB Function Information 811

cholupdate Rank 1 update to Cholesky factorization 5.2

classdef New reserved word 7.3

clear (Change) The clear mex command no longer clears
M-functions in addition to MEX-functions

7.0.1

clearvars Clears variables from the workspace; supports exceptions 7.6

clruprop (Obsolete) Use rmappdata instead 7.1

clruprop (Removed) Use rmappdata instead 7.5

cmpermute Rearranges colors in colormap 7.8

cmunique Eliminates unneeded colors in colormap of indexed
 image

7.8

colamd Computes approximate column minimum degree
 permutation

6.0

colmmd (Depreciated) Use colamd instead 7.0

colmmd (Obsolete) Use colamd instead 7.6

colmmd (Removed) Use colamd instead 7.7

colon (:) (Change) Colon operations on characters iterating a
For Loop (for x = 'a':'c') now returns character
data type rather than double

7.5

colon (:) (Change) Now supports int64 and uint64 classes
natively

7.11

colorbar (Change) The v6 option for high-level plotting functions
is obsolete

7.5

colorcube Colormap of regularly spaced colors 5.0

colordef Selects figure color scheme 5.0

colormapeditor Interactive colormap editor 6.5

commandhistory Opens Command History window or selects it 7.0

commandwindow Opens Command window or selects it 7.0

complex Creates complex array from real and imaginary parts 5.3

condeig Condition number with respect to eigenvalues 5.0

condest 1-norm matrix condition number estimate 5.0

condest (Change) Efficiency improvements 7.2

coneplot Velocity vector cone plot in a 3-D vector field 5.3

coneplot Creates 3-D coneplot 6.0

containers.Map (Change) New syntax available to construct Map object
containers

7.10

812 Appendix B MATLAB Function Information

Function Description Release

continue Skips rest of For Loop or While Loop 6.0

contourf (Change) The v6 option for high-level plotting functions
is obsolete

7.5

contourslice Draws contours in volume slices 5.3

conv2 (Change) Now accepts the shape parameter as input 7.8

conv2 (Change) Significant performance improvements 7.9

conv2 (Change) Multithreading extended to the two-input
form of conv2

7.10

convhull Convex hull 5.0

convhull (Change) Now makes use of Qhull 6.1

convhull (Change) [K,a] = convhull(x,y) now returns the
area a of the convex hull; in addition, it now ignores the
third input argument

6.1

convhull (Change) No longer supports the QHULL or QHULL
options arguments

7.9

convhull (Change) No longer uses the options argument 7.10

convhull (Change) Now supports 3-D input. The simplify
 option allows removal of noncontributing vertices

7.11

convhulln n-D convex hull 6.0

convhulln (Change) [K,v] = convhulln(x,y) now returns the
volume v of the convex hull

6.1

convhulln (Change) Now supports user-settable options 7.0

convn (Change) Now accepts the shape parameter as input 7.8

convn (Change) Significant performance improvements 7.10

copyfile (Change) Now also copies directories 6.5

corrcoef (Change) Three new syntaxes 6.5

cosd Trigonometric function with arguments in degrees 7.0

cosd (Change) Significant performance improvements 7.11

cotd Trigonometric function with arguments in degrees 7.0

cotd (Change) Significant performance improvements 7.11

contour (Change) The v6 option for high-level plotting functions
is obsolete

7.5

contourf Filled contour plot 5.0

cscd Trigonometric function with arguments in degrees 7.0

Appendix B MATLAB Function Information 813

cscd (Change) Significant performance improvements 7.11

cshelp (Depreciated) No replacement available 7.4

ctlpanel (Obsolete) Use guide instead 7.1

ctlpanel (Removed) Use guide instead 7.5

cumtrapz Cumulative trapezoidal numerical integration 5.0

curl Computes curl and angular velocity perpendicular to flow 6.0

daspect Sets or gets data aspect ratio and aspect ratio mode 5.2

datacursormode Interactively creates data cursors on plot 7.0

datatipinfo Produces short description of a variable 7.0

datenum Serial date number 5.0

datenum (Change) Now accepts pivotyear argument 5.3

datenum (Change) Now accepts date vector as an input argument 6.1

datenum Can now specify output formats and local date options 7.0

datenum (Change) Now supports milliseconds using Free Form
Date Format Specifiers

7.1

datestr Creates date string 5.0

datestr (Change) Now accepts pivotyear argument 5.3

datestr (Change) Now accepts date vector as an input argument 6.1

datestr Can now specify output formats and local date options 7.0

datestr (Change) Seconds field truncates instead of rounding 7.1

datestr (Change) Now supports milliseconds using Free Form
Date Format Specifiers

7.1

datetick Creates date-formatted tick labels 5.0

datevec Date components 5.0

datevec (Change) Now accepts pivotyear argument 5.3

datevec Can now specify output formats and local date options 7.0

datevec (Change) Now supports milliseconds using Free Form
Date Format Specifiers

7.1

dbclear (Change) New -completenames option permits clearing
or setting breakpoints for M-files not on the search path

7.6

dblquad Numerical 2-D integration 5.0

dblquad (Change) Can now pass extra arguments to integrand
function

6.0

dbstack Now supports nested functions 7.0

814 Appendix B MATLAB Function Information

Function Description Release

dbstatus Display breakpoints function now supports anonymous and
nested functions as well as a new -completenames argument

7.0

dbstatus (Change) Display breakpoints function now
supports anonymous and nested functions as well as a
new-completenames argument

7.0.1

dbstop Now supports nested and anonymous functions 7.0

dbstop (Change) Now supports stopping just before a non
M-file function (such as a built-in function)

7.2

dbstop (Change) The ability to restore breakpoints was added 7.3

dbstop (Change) New -completenames option permits clearing
or setting breakpoints for M-files not on the search path

7.6

dde23 Solves delay differential equations with constant delays 6.5

ddeget Gets properties from DDE options structure 6.5

ddeset Creates or modifies properties in DDE options structure 6.5

ddesd New solver for delay differential equations that have
general delays

7.2

deal No longer needed in many cases, for example,
[a,b,c,d] = C{:} is equivalent to
[a,b,c,d] = deal(C{:})

7.0

dec2base Converts decimal to base 5.0

dec2bin Converts decimal to binary 5.0

decic Computes consistent initial conditions for ode15i 7.0

delaunay Delaunay triangularization 5.0

delaunay (Change) Now ignores third input argument 6.1

delaunay (Change) Now makes use of Qhull 6.1

delaunay (Change) No longer supports the QHULL or QHULL
options arguments

7.9

delaunay (Change) No longer uses the options argument 7.10

delaunay (Change) Now supports 3-D input in either multiple
 vector or multicolumn matrix format

7.11

delaunay3 3-D Delaunay tessellation 6.0

delaunay3 (Depreciated) Use DelaunayTri method instead 7.9

delaunay3 (Change) No longer supports the QHULL or QHULL
options arguments

7.9

delaunay3 (Change) No longer uses the options argument 7.10

Appendix B MATLAB Function Information 815

delaunay3 Depreciated. Use DelaunayTri instead 7.10

delaunayn n-D Delaunay tessellation 6.0

delaunayn (Change) Now supports user-settable options 7.0

DelaunayTri New OOP class provides enhanced computational
 geometry tools

7.8

deleteconfirm Confirms the deletion of a file with a dialog box 7.0

depfun (Change) Now supports a number of new options 7.0.1

deprpt Scans a file or directory for dependencies 7.0

desearchn n-D nearest point search 6.0

deval Evaluates ODE solution; also replaces obsolete bvpval
function

6.1

deval (Change) Now accepts output from dde23 6.5

deval (Change) Now optionally returns derivative at points as well 7.0

diff (Change) Now supports int64 and uint64 classes natively 7.11

diff2asv Compares file to autosaved version, if one exists 7.0

diffrpt Visual directory browser 7.0

dir (Change) Now returns additional numeric date
 (datenum) field

7.4

dir (Change) Empty matrices now returned when appropriate 7.7

dither Converts image using dithering 7.8

divergence Computes divergence of vector field 6.0

dlmwrite New input arguments and output options 7.0

dmperm (Change) New output arguments for the indices of the
Dulmage–Mendelsohn coarse decomposition

7.5

docopt Removed. Preferred web browser now set in Preferences 7.10

docsearch Searches HTML documentation in the Help browser 7.0

docsearch (Change) Now accepts multiple arguments including
wildcards without function syntax

7.8

dofixrpt Scans a file or directory for all TODO, FIXME, or
NOTE messages

7.0

dragrect Drags rectangle 5.0

drawnow (Change) Can now selectively update UI components 7.5

dsearch Searches for nearest point 5.0

dsearch Depreciated. Use DelaunayTri/nearestNeighbor
instead

7.9

816 Appendix B MATLAB Function Information

Function Description Release

dsearch (Depreciated) Use DelaunayTri/nearestNeighbor
methods instead

7.10

edit Edits M-file (launch MATLAB Editor/Debugger) 5.0

edit (Change) Now accepts file path information to enable
editing files not in the current directory

7.6

editpath Modifies the MATLAB search path 5.0

edtext (Obsolete) Set the Editing property of the text object 7.3

edtext (Removed) Set the editing property of the text object 7.5

eigs Finds several eigenvalues and eigenvectors 5.0

eigs The eigs options structure no longer accepts the
opts.cheb and opts.stagtol fields

7.3

eomday End of month 5.0

eps (Change) Now accepts arguments to specify single- or
double-precision values and to return eps relative to any
value, not just 1

7.0

erfcinv Inverse complementary error function 6.1

erfcore (Obsolete) Use erf, erfc, erfcx, erfinv, or erfcinv
instead

7.9

erfcore (Removed) Replace with erf, erfc, erfcx, erfinv, or
erfcinv

7.10

erfcore (Removed) Use erf, erfc, erfcx, erfinv, or erfcinv
instead

7.11

error (Change) Now saves stack information accessible by
lasterror

7.1

error (Change) Additional numeric positional arguments
available for formatted string format specifiers

7.4

errorbar (Change) The v6 option for high-level plotting functions
is obsolete

7.5

errortrap Replaced by try-catch block 6.0

evalc String evaluation with output converted to a string 5.3

evalin Evaluates expression in a specific workspace 5.0

eventlisteners Lists all events that are registered 7.0

exifread Reads EXIF information from JPEG and TIFF image files 7.1

exifread To be removed. Use imfinfo instead 7.10

expm (Change) Efficiency improvements 7.2

Appendix B MATLAB Function Information 817

expm1 Computes exp(x)–1 accurately 7.0

exportsetupdlg Shows figure export style dialog 7.0

extent (Obsolete) Use get(h,'extent') instead 7.1

extent (Removed) Set the extent property of the text object 7.5

eye (Change) Now accepts a final argument specifying
 numeric data type of result

7.0

eye (Change) No longer accepts complex dimension arguments 7.5

ezcontour Easy contour plotter 5.3

ezcontourf Easy filled contour plotter 5.3

ezmesh Easy mesh plotter 5.3

ezmeshc Easy mesh with contour plotter 5.3

ezplot Easy 2-D line plotter 5.3

ezplot3 Easy 3-D line plotter 5.3

ezpolar Easy polar plotter 5.3

ezsurf Easy surface plotter 5.3

ezsurfc Easy surface with contour plotter 5.3

factor Prime factors 5.0

false Creates array of logical False 6.5

false (Change) No longer accepts complex dimension arguments 7.5

fft (Change) FFT functions are now multithreaded 7.8

fft (Change) Now supports larger input arrays (size in one
dimension greater than 231–1) on 64-bit platforms

7.9

fft (Change) Multithreading extended to fft for long vectors 7.10

fft2 (Change) FFT functions are now multithreaded 7.8

fft2 (Change) Now supports larger input arrays (size in one
dimension greater than 231–1) on 64-bit platforms

7.9

fftn (Change) FFT functions are now multithreaded 7.8

fftn (Change) Now supports larger input arrays (size in one
dimension greater than 231–1) on 64-bit platforms

7.9

fftw Tunes or sets options in FFTW library for FFT
 computations

7.0

fftw (Change) Default planner method is now estimate.
New syntax for importing/exporting wisdom databases.
 Wisdom exported by earlier versions of FFTW (prior
to 3.1.1) cannot be imported

7.3

818 Appendix B MATLAB Function Information

Function Description Release

fieldnames Field names of structure 5.0

figflag (Obsolete) Use findobj and/or figure instead 7.1

figflag (Depreciated) No replacement available 7.4

figure (Change) DockControls property added, KeyPressFcn
property modified

7.0

figureheaderdlg Shows figure header dialog 7.0

figurepalette Shows or hides the palette for a figure 7.0

fileattrib Sets or gets file attributes 6.5

fileparts (Change) Fourth output (versn) is always empty 7.10

fileparts (Change) Returns an empty fourth argument (file
 versions not supported)

7.11

find (Change) Now supports optional arguments specifying
an upper limit on the number of indices returned, and
whether the search begins at the start or end of the array

7.0

findfigs Finds all visible Figure windows 5.3

finite (Depreciated) Use isfinite instead 7.5

finite (Removed) Use isfinite instead 7.8

fitsinfo Gets information about a FITS file 6.1

fitsread Reads FITS file 6.1

fitsread (Change) New options to support data subsetting 7.12

fixquote Double up single quotes in a string 7.0

flipdim Flips array along specified dimension 5.0

flops (Depreciated) Floating-point operation count no longer
relevant

6.0

flops (Obsolete) No replacement 7.6

flops (Removed) No replacement—no longer practical to
count flops

7.7

fmin Replaced by fminbnd 6.0

fmin (Removed) No longer supported 7.0

fminbnd (Change) New name and calling sequence for function fmin 5.3

fminbnd (Change) Now supports calling an output function at
each iteration

7.0

fmins Replaced by fminsearch 6.0

fmins (Removed) No longer supported 7.0

Appendix B MATLAB Function Information 819

fminsearch (Change) New name and calling sequence for function
fmins

5.3

fminsearch (Change) Now supports calling an output function at
each iteration

7.0

fopen (Change) Now supports an argument specifying a
 character encoding scheme

7.2

fopen (Change) No longer supports 'vaxd', 'vaxg', or
'cray' ('d', 'g', or 'c') formats

7.7

foptions Replaced by optimget and optimset 6.0

format (Change) Two new display formats are introduced:
short eng and long eng

7.0.4

fprintf (Change) Writing to stdin (fprintf(0,...)) now
generates an error

7.3

fprintf (Change) Additional numeric positional arguments
available for formatted string format specifiers

7.4

fread (Change) Added a precision argument (in MATLAB 7.1
and earlier)

7.1

fread (Change) Now uses character encoding specified by
 fopen; calls to unicode2native and native2unicode
are no longer needed or appropriate

7.2

freeserial (Obsolete) Use fclose instead 7.5

ftp Creates ftp object 7.0

fullfile Builds full filename from parts 5.0

func2str Constructs function name string from function handle 6.0

function (Change) Function definition line no longer requires
commas separating output values

7.0

functions Displays information about a function handle 6.0

funm (Change) The optional second output is now an exit flag
rather than a (sometimes inaccurate) error estimate

7.0

funm (Change) Second output argument changed from error
estimate to result flag

7.0.1

funm (Change) New algorithms 7.6

fwrite Now supports saving uint64 and int64 values on all
platforms

7.0.1

fwrite (Change) Now uses character encoding specified by
 fopen; calls to unicode2native and native2unicode
are no longer needed or appropriate

7.2

820 Appendix B MATLAB Function Information

Function Description Release

fwrite (Change) Writing to stdin (fwrite(0,...)) now
 generates an error

7.3

fzero (Change) Calling sequence changed 6.0

fzero (Change) Now supports calling an output function at
each iteration

7.0

gallery More than 50 test matrices 5.0

gallery (Change) New test matrices available 6.5

gallery (Change) New optional classname input argument:
either 'single' or 'double'

7.2

gallery (Change) New integerdata, normaldata, and
 uniformdata options for gallery suite of test matrices

7.9

gamma No longer accepts two inputs 7.3

gammainc Can now specify the tail of the incomplete gamma
 function for nonnegative input

7.0

gammainc (Change) New 'scaledlower' or 'scaledupper'
 argument returns scaled versions of the incomplete
gamma function

7.12

gammaincinv Implements the inverse incomplete gamma function 7.8

ge No longer accepts complex integer inputs 7.3

genpath Generates path string that includes all directories below
a specified directory

6.0

genvarname Generates variable name from candidate name 7.0

get (Change) Do not use get or set to manage properties
of a Java object; this usage will generate an error in
future releases

7.6

getfield Gets field from structure 5.0

getpixelposition Gets position of object in pixels 7.0

getReport (Change) Several new options available 7.7

getstatus (Depreciated) No replacement available 7.4

getuprop (Obsolete) Use getappdata instead 7.1

getuprop (Removed) Use getappdata instead 7.5

gmres Generalized minimal residual method 5.0

griddata (Change) Uses triangle-based interpolation 5.0

griddata (Change) Now makes use of Qhull 6.1

Appendix B MATLAB Function Information 821

griddata (Change) No longer supports the QHULL or QHULL
options arguments

7.9

griddata (Change) No longer uses the options argument 7.10

griddata3 3-D data gridding 6.0

griddata3 (Depreciated) Use TriScatteredInterp method instead 7.9

griddata3 (Change) No longer supports the QHULL or QHULL
options arguments

7.9

griddata3 (Change) No longer uses the options argument 7.10

griddata3 Depreciated. Use TriScatteredInterp instead 7.10

griddatan n-D data gridding 6.0

gt No longer accepts complex integer inputs 7.3

gunzip Uncompresses files from gzip format or from a URL 7.0.4

gunzip Partial paths and wildcards (e.g., '~' and '*') are
 accepted in filename arguments

7.2

gzip Compresses files to gzip format 7.0.4

gzip Partial paths and wildcards (e.g., '~' and '*') are
 accepted in filename arguments

7.2

h5create (New) Creates HDF5 data set 7.12

h5disp (New) Displays the contents of an HDF5 file 7.12

h5info (New) Returns information about an HDF5 file 7.12

h5read (New) Reads data from an HDF5 data set 7.12

h5readatt (New) Reads an attribute from an HDF5 group or data set 7.12

h5write (New) Writes to an HDF5 data set 7.12

h5writeatt (New) Writes an attribute to an HDF5 group or data set 7.12

hasbehavior Sets or gets behaviors of Handle Graphics objects 7.0

hd5info Returns HDF5 file information 7.0

hd5read Reads HDF5 file 7.0

hdf A number of new functions support MATLAB interface
to the HDF4 libraries. Use help hdf for overviews of
the available functionality

7.11

hdf5 A number of new functions support MATLAB interface
to the HDF5 libraries. Use help dhf5 for overviews of
the available functionality

7.11

hdf5info (Depreciated) Use h5info instead 7.12

hdf5read (Depreciated) Use h5read instead 7.12

822 Appendix B MATLAB Function Information

Function Description Release

hdf5write Writes HDF5 file 7.0

hdf5write (Depreciated) Use h5write instead 7.12

hdfinfo Gets information about a HDF file 6.1

hdfread Reads HDF file 6.1

hdfread (Change) Now generates an error rather than a warning
on a failed I/O operation

7.5

helprpt Scans a file or directory for help 7.0

hex2num Converts number from IEEE hexadecimal format 7.0

hgexport Exports a figure 7.0

hggroup Creates a Handle Graphics group object 7.0

hgtransform Creates graphics transformation object 7.0

hidegui (Obsolete) Set the figure HandleVisibility property
instead

7.4

hidegui (Depreciated) Set the figure’s handlevisibility
property

7.6

hisrtc (Change) Significant performance improvements 7.10

hist (Change) Now calls MEX function histc 5.3

hist (Change) Changes to the data tips in the histogram display 7.7

histc Histogram binning given bin edges 5.3

histc (Change) Bug fixed 6.1

hold (Change) Now supports all option, which holds the
plot so that subsequent plots do not reset the color and
linestyle order

7.0

horzcat (Change) Better error checking for sparse matrix functions 7.10

hthelp (Obsolete) Use web instead 7.1

hthelp (Removed) Use web instead 7.5

hypot Square root of the sum of squares 7.1

ichol New incomplete Cholesky factorization function;
 preferred replacement for the cholinc function

7.12

icubic (Removed) No longer supported 7.0

idivide Integer division similar to A./B; fractional quotients are
rounded to integers using a specified rounding mode

7.2

ifft (Change) FFT functions are now multithreaded 7.8

Appendix B MATLAB Function Information 823

ifft (Change) Now supports larger input arrays (size in one
dimension greater than 231–1) on 64-bit platforms

7.9

ifft2 (Change) FFT functions are now multithreaded 7.8

ifft2 (Change) Now supports larger input arrays (size in one
dimension greater than 231–1) on 64-bit platforms

7.9

ifftn (Change) FFT functions are now multithreaded 7.8

ifftn (Change) Now supports larger input arrays (size in one
dimension greater than 231–1) on 64-bit platforms

7.9

ifftshift Inverse FFT shift 5.2

ilu Performs the sparse incomplete LU factorization 7.4

imfinfo (Change) Now returns Exif data for JPEG or TIFF files.
New DigitalCamera and GPSInfo fields

7.6

imformats Eases the task of adding read and write support for new
file formats

6.5

immapprox Approximates indexed image by one with fewer colors 7.8

import Adds to the current Java packages import list 6.0

importdata (Change) Now supports XLS, XLSX, XLSB, and XLSM
formats on Windows platforms with an appropriate
 version of Excel installed

7.8

imread Reads image data 5.0

imread Added ability to read a specified portion of a TIFF image 7.0

imread (Change) Improved support for TIFF files. Improved
performance in some instances

7.5

imread (Change) Now supports rewriting portions of a TIFF
file rather than replacing the entire file. New Tiff object
 allows access to functions in the LibTIFF library

7.9

imread (Change) Now supports n-channel J2C JPEG 2000 files 7.11

imwrite Writes image data 5.0

imwrite (Change) Now supports GIF format 7.0.4

imwrite (Change) New RowsPerStrip parameter to specify
number of image rows per strip written to TIFF files.
Default <= 8KB

7.6

imwrite (Change) Now supports rewriting portions of a TIFF
file rather than replacing the entire file. New Tiff object
 allows access to functions in the LibTIFF library

7.9

imwrite Added support for JPEG 2000 format files 7.10

824 Appendix B MATLAB Function Information

Function Description Release

imwrite (Change) Now supports n-channel J2C JPEG 2000 files 7.11

ind2sub Subscripts from single linear index 5.0

inmem Functions in memory 5.0

inmem Now reports path information 7.0

inpolygon Detects points inside a polygonal region 5.0

inputdlg Displays input dialog 5.0

inputname Input argument name 5.0

inputParser New OOP class available for parsing and validating
inputs to functions

7.4

inspect The Property Inspector has a new interface but no new
functionality

7.2

instrfindall Finds all serial port objects with specified property values 7.0

int16 Conversion to 16-bit signed integer data types 5.3

int16 (Change) Now rounds noninteger inputs rather than
truncating

7.0

int16 (Change) Multithreading extended to integer conversion
and arithmetic

7.10

int32 Conversion to 32-bit signed integer data types 5.3

int32 (Change) Now rounds noninteger inputs rather than
truncating

7.0

int32 (Change) Multithreading extended to integer conversion
and arithmetic

7.10

int64 Creates signed 64-bit integer array 6.5

int64 (Change) Now rounds noninteger inputs rather than
truncating

7.0

int64 (Change) Multithreading extended to integer conversion
and arithmetic

7.10

int8 Conversion to 8-bit signed integer data types 5.3

int8 (Change) Now rounds noninteger inputs rather than
truncating

7.0

int8 (Change) Multithreading extended to integer conversion
and arithmetic

7.10

interp1 (Change) 'cubic' option now calls pchip 6.0

interp1 (Change) Now enables data extrapolation 6.1

interp1 (Change) Now supports multidimensional arrays for Y 7.0

Appendix B MATLAB Function Information 825

interp1 (Change) Now optionally returns a pp-form for
 evaluation with ppval

7.0

interp3 3-D data interpolation 5.0

interp4 Replaced by interp2 6.0

interp4 (Removed) No longer supported 7.0

interp5 Replaced by interp2 6.0

interp5 (Removed) No longer supported 7.0

interp6 Replaced by interp2 6.0

interp6 (Removed) No longer supported 7.0

interpn n-D data interpolation 5.0

interpstreamspeed Interpolates streamline vertices from speed 6.0

intersect Set intersection 5.0

intmax Maximum integer value given integer data type 7.0

intmin Minimum integer value given integer data type 7.0

intwarning Controls state of the integer data type warnings 7.0

intwarning To be removed. Use warning instead 7.10

intwarning Depreciated and will be removed in a future release 7.10

intwarning (Removed) No replacement 7.11

intwarning (Removed) No replacement 7.12

ipermute Inverse permute dimensions of n-D array 5.0

isa (Change) Now returns consistent results for objects with
base class of logical

7.11

iscell True for cell array 5.0

iscolumn True if argument is a column vector 7.11

iscom True for COM/ActiveX objects 7.0

isdir Replaced with exist 6.0

isempty (Change) Now supports containers.Map objects 7.8

isequal True if arrays are equal 5.0

isequal (Change) When used to compare structures, input argument
field creation order no longer has an impact on equality

6.5

isequal (Change) Now ignores class:
isequal(double(3),single(3)) now returns True

7.9

isequal (Fix) Now returns correct values when inputs are arrays
of objects containing NaN values

7.11

826 Appendix B MATLAB Function Information

Function Description Release

isequalwithequalnans True if arrays are equal with NaN s considered equal 6.5

isequalwithequalnans (Fix) Now returns correct values when inputs are arrays
of objects containing NaN values

7.11

isevent True if event of object 7.0

isfield (Change) Now supports cell array input 7.1

isfinite True for finite elements 5.0

isfloat True for floating-point data 7.0

ishghandle True for Handle Graphics Object handle 7.0

isieee Obsolete. All MATLAB platforms use IEEE arithmetic 6.0

isinteger True for integer data 7.0

isinterface True for COM interface 7.0

isjava True for Java Object 6.0

iskeyword Generates or tests if argument is a MATLAB keyword 6.0

islogical True for logical arrays 5.0

islogical (Change) Now returns consistent results for objects with
base class of logical

7.11

ismac Returns true on OSX platforms 7.4

ismatrix True if argument is a (2-D) matrix 7.11

ismember Detects members of a set 5.0

ismember Now calls the MEX function ismemc to maximize speed 5.1

ismember (Change) [tf, idx] = ismember(...) now returns
indices idx of located members; in this case, MEX
 function ismemc2 is called to maximize speed

6.5

isnumeric True for numeric array 5.0

isocaps Computes isosurface end-cap geometry 5.3

isocolors Computes colors of isosurface vertices 6.0

isonormals Computes normals at isosurface vertices 5.3

isosurface Extracts isosurface data from volume data 5.3

isosurface Extracts isosurface 6.0

isprime True for prime numbers 5.0

ispuma True for computers running Mac OS X 10.1.x 7.0

ispuma (Depreciated) OS X 10.1 is no longer supported on the
Mac platform

7.4

Appendix B MATLAB Function Information 827

isrow True if argument is a row vector 7.11

isscalar True if argument is a scalar 7.0

issorted True if array is sorted 6.5

issorted Now works on cell arrays of strings 7.2

isstr Replaced by ischar 6.0

isstr To be removed. Use ischar instead 7.10

isstrprop True for string elements matching a variety of specifications 7.0

isstruct True for structure 5.0

isvarname True if input string is a valid variable name 6.0

isvector True if argument is a row or column vector 7.0

javaaddpath Adds directories to the dynamic Java path 7.0

javaArray Creates Java array 6.0

javaclasspath Gets and sets Java path 7.0

javacomponent Creates a Java AWT Component and puts in a figure 7.0

javaMethod Invokes Java method 6.0

javaObject Constructs Java object 6.0

javarmpath Removes directory from dynamic Java path 7.0

lasterr (Depreciated) Use MException objects instead 7.9

lasterror Returns last error message and related information 6.5

lasterror (Change) Now returns stack information from the last error 7.1

lasterror (Depreciated) Use MException objects instead 7.9

lastwarn Returns last warning string 5.2

layout (Obsolete) No replacement 7.1

layout (Removed) No replacement 7.5

ldivide (Change) Multithreaded support added 7.6

ldivide (.\) (Change) Now supports int64 and uint64 classes natively 7.11

ldl Enhancements to improve control, performance, and
memory usage, as well as access to upper and lower
triangular factors and lower symbolic factor

7.3

ldl Full ldl factorization and solving for Hermitian matrices 7.3

ldl (Change) Now supplies factorization and solving for an
additional output argument, the scaling matrix, when the
input matrix is real, sparse, and symmetric

7.5

ldl (Change) New algorithms 7.6

828 Appendix B MATLAB Function Information

Function Description Release

le No longer accepts complex integer inputs 7.3

legend (Change) The v6 option for high-level plotting functions
is obsolete

7.5

libfunctions Generic DLL Interface function 7.0

libfunctionsview Generic DLL Interface function 7.0

libisloaded Generic DLL Interface function 7.0

libpointer Generic DLL Interface function 7.0

libstruct Generic DLL Interface function 7.0

lightangle Creates or moves light object in spherical coordinates 5.2

lines Colormap that follows axes colororder property 5.0

linkaxes Synchronizes limits of specified axes objects 7.0

linkdata Turns data linking on or off for a figure 7.6

linkprop Maintains same value for corresponding Handle
 Graphics properties

7.0

linsolve Solves Ax = y, given specific structure of A 7.0

loadlibrary Generic DLL Interface function 7.0

log (Change) Multithreaded support added 7.6

log1p Computes log(1+x) accurately 7.0

log2 (Change) Multithreaded support added 7.6

logical Converts (casts) to logical array 5.0

loglog (Change) The v6 option for high-level plotting functions
is obsolete

7.5

logm (Change) New algorithms 7.6

lscov Can now specify either Cholesky or orthogonal
 decomposition

7.0

lsqnonneg (Change) New name and calling sequence for function
nnls

5.3

lsqnonneg (Change) More efficient; now accepts sparse matrices as
input and maintains sparsity throughout

7.7

lsqnonneg (Change) No longer uses the optional input x0 as a
starting point

7.10

lsqr LSQR implementation of Conjugate Gradients on
 Normal Equations

6.0

lt No longer accepts complex integer inputs 7.3

Appendix B MATLAB Function Information 829

ltitr (Change, previously undocumented) Linear time-invariant
time response kernel

7.0

lu (Change) Now uses UMFPACK for sparse matrices 6.5

lu Enhancements to improve control, performance, and
memory usage, as well as access to upper and lower
triangular factors and lower symbolic factor

7.3

lu (Change) Additional output helps improve numerical
stability of sparse lu factorization

7.3

luinc Incomplete LU factorization 5.0

luinc Enhancements to improve control, performance, and
memory usage, as well as access to upper and lower
 triangular factors and lower symbolic factor

7.3

luinc (Obsolete) Use ilu instead 7.12

makecontentsfile Makes a new Contents.m file 7.0

makehgtransform Creates graphical transformation matrix 7.0

makemcode Makes M-file for regenerating object and its children 7.0

mat2cell Breaks matrix up into a cell array of matrices; previously
part of the Neural Networks Toolbox

6.5

mat2str Converts matrix to string 5.0

mat2str (Change) Now converts nondouble data types 7.0.1

mat2str (Fix) Now returns correct values for character array input 7.4

matq2ws (Obsolete) No replacement 7.1

matq2ws (Removed) No replacement 7.5

matqdlg (Obsolete) No replacement 7.1

matqdlg (Removed) No replacement 7.5

matqparse (Obsolete) No replacement 7.1

matqparse (Removed) No replacement 7.5

matqueue (Obsolete) No replacement 7.1

matqueue (Removed) No replacement 7.5

max([]) = [] (Change) Defined output for empty inputs 5.0

max (Change) Now returns an error when input arguments
are complex integers

7.0.4

max (Change) Now uses the phase angle in the case of equal
magnitude complex input. No longer returns warning
messages for inputs of different data types

7.3

830 Appendix B MATLAB Function Information

Function Description Release

max (Change) Multithreading supported 7.8

maxNumCompThreads Gets/sets the maximum number of complex threads 7.5

maxNumCompThreads (Change) Ability to adjust the maximum number of
computational threads has been removed; multithreading
support is either on or off

7.8

maxNumCompThreads (Depreciated) To be discontinued with no replacement
planned

7.9

meditor (Removed) Stand-alone editor removed; use the Editor/
Debugger instead

7.6

memory (Change) Displays memory usage and availability informa-
tion on Windows platforms. Formerly provided help text
describing how to free additional memory for MATLAB

7.6

menubar (Obsolete) Set the MenuBar property of the figure to none 7.3

menubar (Removed) Set the menubar property of the figure to none 7.5

menuedit (Obsolete) Use guide instead 7.1

menuedit (Removed) Use guide instead 7.5

menulabel (Obsolete) Use '&' and the 'Accelerator' property
instead

7.1

menulabel (Depreciated) No replacement available 7.4

mesh (Change) The v6 option for high-level plotting functions
is obsolete

7.5

meshdom Replaced by meshgrid 6.0

meshdom (Removed) No longer supported 7.0

methodsview Displays information on all methods implemented by a
Java or MATLAB class

6.0

MException New OOP class available for exception handling in
function M-files

7.5

mexext MEX-file extension 5.0

mexext (Change) Now returns mexw32 on 32-bit Windows
platforms

7.1

mexext MEX-files on 64-bit Windows now use the .mexw64
extension

7.2

mexext (Change) New MEX-file extensions for Intel Mac
 (mexmaci) and Solaris 64-bit (mexs64) platforms

7.4

mfilename Name of the currently running M-file 5.0

Appendix B MATLAB Function Information 831

migrateistimefirst Time series object isTimeFirst property behavior is
changing in a future release. migrateistimefirst is a
temporary function to help migrate this property to conform
to the newer usage; it will be removed in future releases

7.10

mimofr (Change, previously undocumented) Linear time-invariant
frequency response

7.0

min([]) = [] (Change) Defined output for empty inputs 5.0

min (Change) Now returns an error when input arguments
are complex integers

7.0.4

min (Change) Now uses the phase angle in the case of equal
magnitude complex input. No longer returns warning
messages for inputs of different data types

7.3

min (Change) Multithreading supported 7.8

minres Solves system of equations by using Minimal Residual
Method

6.0

minus (-) (Change) Now supports int64 and uint64 classes
natively

7.11

mislocked True if M-file cannot be cleared 5.2

mldivide (Change) Now supports complex regular sparse input
matrices. Performance improvements for sparse
 rectangular matrix input

7.9

mldivide (\) (Change) Now supports int64 and uint64 classes natively 7.11

mlint Examines M-file or a directory of M-files for potential
 problems and makes suggestions for possible improvements

7.0

mlint (Change) New -notok option; hyperlink to Editor/
Debugger in output

7.1

mlint (Change) The mlint functionality has been built into
the Editor/Debugger. Some of the message text has
changed as well

7.2

mlint (Change) Enhanced preferences and message text changes 7.3

mlint (Change) New cyc option to determine McCabe
 (cyclomatic) complexity of M-files

7.5

mlint (Change) New -config option to override preference
settings

7.6

mlintrpt Examines M-file or a directory of M-files for potential
 problems and makes suggestions for possible improvements

7.0

mlintrpt (Change) New option applies preferences from a
 settings file

7.3

832 Appendix B MATLAB Function Information

Function Description Release

mlock Prevents M-file clearing 5.2

mmcompinfo Multimedia compressor information 7.0

mmfileinfo Gets information about a multimedia file (PC only) 7.0

mmfileinfo (Change) Now reads files on the MATLAB path as well
as the current directory. New Path field added to the
mmfileinfo output struct

7.5

mmreader Video file reader for Windows platforms 7.5

mmreader (Change) Now supported on Linux platforms 7.8

mmreader (Change) Now supports Motion JPEG 2000 (.mj2) files
on all platforms except Solaris

7.9

mmreader.
getFileFormats

Returns a platform-specific list of video file formats
mmreader supports

7.10

mmreader.

isPlatformSupported
(Change) Always returns True.
Use mmreader.getFileFormats instead

7.10

mmreader To be removed. Use VideoReader instead 7.11

mod Modulus 5.0

mod (Change) Now supports int64 and uint64 classes natively 7.11

mode Finds most frequent values in a sample. mode is now a
reserved word

7.1

mode (Change) Returns NaN for an empty array input 7.4

movefile (Change) Now also renames a file or directory 6.5

movie (Change) No longer a built-in function; the syntax is
unchanged

7.11

movie2avi (Change) Now generates uncompressed AVI files on
Windows platforms unless the Indio5 codec is installed

7.5

mpower (^) (Change) Now supports int64 and uint64 classes natively 7.11

mrdivide (Change) Significant performance improvements 7.10

mrdivide (/) (Change) Now supports int64 and uint64 classes natively 7.11

msgbox Displays message dialog 5.0

mtimes (*) (Change) Now supports int64 and uint64 classes natively 7.11

multibandread Supports reading data from raw files 6.5

multibandwrite Supports writing data to raw files 6.5

munlock Permits M-file clearing 5.2

mwIndex New platform-independent index type declaration 7.3

Appendix B MATLAB Function Information 833

mwSize New platform-independent size type declaration for
 values such as array dimensions and number of elements

7.3

namelengthmax Returns maximum variable and function name lengths 6.5

nargin (Change) Now accepts either a function name or
 function handle as an input argument

7.0.1

nargout (Change) Now accepts either a function name or
 function handle as an input argument

7.0.1

nargoutchk Validates number of output arguments 6.0

native2unicode Converts a character string from a native character set
to Unicode

7.0.1

nccreate (New) Creates variable in a NetCDF file 7.12

ncdisp (New) Displays contents of a NetCDF file 7.12

nchoosek All possible combinations of n elements taken k at a time 5.0

ncinfo (New) Returns information about a NetCDF file 7.12

ncread (New) Reads data and attributes of a NetCDF file 7.12

ncreadatt (New) Reads an attribute from a NetCDF file 7.12

ncwrite (New) Writes data to a NetCDF file 7.12

ncwriteatt (New) Writes an attribute to a NetCDF file 7.12

ncwriteschema (New) Adds NetCDF schema definitions to a NetCDF file 7.12

ndgrid Generates arrays for n-D functions and interpolation 5.0

ndims Number of array dimensions 5.0

NearestNeighbor/
(DelaunayTri)

(Change) The two-output form returns the corresponding
Eculidean distances between the query points and their
nearest neighbors

7.11

netcdf A number of new functions support MATLAB
 interface to the NetCDF libraries. Use help netcdf
for overviews of the available functionality

7.11

nextpow2 Due to change to element-by-element calculation in a
future release

7.8

nextpow2 (Change) Now returns a vector the same size as the input 7.10

nnls Replaced by lsnonneg 6.0

nnls (Removed) No longer supported 7.0

normest 2-norm estimate 5.0

notebook (Change) The -setup switch no longer accepts arguments 7.3

now Current date and time 5.0

834 Appendix B MATLAB Function Information

Function Description Release

nthroot nth real root 7.0

num2cell Converts matrix to cell array 5.0

num2hex Converts number to IEEE hexadecimal format 7.0

numel Number of elements in an array 6.0

numel (Change) numel(A,varargin) returns the number of
subscripted elements in A(varargin{:})

6.1

numel (Fix) Now returns consistent results for built-in classes
and subclasses

7.9

ode* (Change) ODE solvers can now solve problems without
using an ODE file

6.0

ode* (Change) Now optionally returns solution structure for
use by deval

6.1

ode113 Solves nonstiff differential equations, variable order method 5.0

ode15i Ordinary differential equation solver for implicit equations 7.0

ode15s Solves stiff differential equations, variable order method 5.0

ode23 Solves nonstiff differential equations, low order method 5.0

ode23s Solves stiff differential equations, low order method 5.0

ode23t Solves moderately stiff differential equations 5.2

ode23tb Solves stiff differential equations by using crude error
tolerances

5.2

ode45 Solves nonstiff differential equations, medium order method 5.0

odefile Problem definition file for ODE solvers 5.0

odeget Extracts options from ODE options structure 5.0

odeset Creates or edits options structure for ODE solvers 5.0

odeset (Change) Nonnegativity constraints can be imposed on
computed solutions

7.1

odextend Extends solution of ordinary differential equations 7.0

onCleanup Specifies task(s) to perform just before exiting the
 current function

7.6

ones (Change) Now accepts a final argument specifying
 numeric data type of result

7.0

ones (Change) No longer accepts complex dimension arguments 7.5

opengl Allows switching between hardware and software-based
OpenGL® rendering

7.0.1

Appendix B MATLAB Function Information 835

optimget Gets optimization options 5.3

optimset Sets or modifies optimization options 5.3

ordeig Returns the vector of eigenvalues of a quasitriangular
matrix or matrix pair

7.0.1

orderfields Order fields of a structure 6.5

ordqz Reorders QZ factorization 7.0

ordschur Reorders Shur factorization 7.0

pagedlg Open Page Layout dialog 5.1

pagedlg (Obsolete) Use pagesetupdlg instead 7.3

pagedlg (Removed) Use guide instead 7.5

pagesetupdlg (Depreciated) Use printpreview instead 7.12

pan Interactively pans the plot view 7.0

parfor New reserved word 7.3

path2rc (Obsolete) Replaced by savepath 7.0

pause (Change) Fractional second argument is accepted 5.3

pause (Change) New query argument to return pause state 7.7

pbaspect Sets or gets plot box aspect ratio and plot box aspect mode 5.2

pcg Preconditioned conjugate gradients method 5.0

pchip Piecewise cubic Hermite interpolating polynomial
 interpolation

6.0

pcode Creates pseudocode 5.0

pcode (Change) Internal format of P-files change 6.5

pcode (Change) Internal format of P-files change 7.5

pdepe Solves partial differential equations in one dimension 6.0

pdeval Evaluates solution computed by pdepe 6.0

perl Calls Perl script using platform executable 6.5

perms All possible permutations 5.0

permute Permutes dimensions of n-D array 5.0

persistent Declares a variable persistent 5.2

pie Pie chart 5.0

pie3 3-D pie chart 5.0

playshow (Obsolete) Replaced by the echodemo helper function 7.1

plot (Change) The v6 option for high-level plotting functions
is obsolete

7.5

836 Appendix B MATLAB Function Information

Function Description Release

plot3 (Change) The v6 option for high-level plotting functions
is obsolete

7.5

plotbrowser Shows or hides the plot browser for a figure 7.0

plottools Shows or hides the plot-editing tools for a figure 7.0

plotyy Plots with y-axis labels on both the left and right 5.0

plus (+) (Change) Now supports int64 and uint64 classes natively 7.11

poleig Can now return a vector of condition numbers for the
eigenvalues

7.0

polyarea Area of a polygon 5.0

polyeig (Change) Can now return only the eigenvalues 6.1

polyfit (Change) Now supports centering and scaling of data 6.0

polyval (Change) Now supports centering and scaling of data 6.0

popupstr (Depreciated) No replacement available 7.4

power (.^) (Change) Now supports int64 and uint64 classes natively 7.11

ppval (Change) Now supports ppval(xx,pp) to permit use of
ppval with function functions

6.1

ppval (Change) Now supports multidimensional arrays for Y 7.0

primes Generates a list of prime numbers 5.0

print (Change) The -dln03 option has been removed 7.4

print (Depreciated) Certain printer and graphics format
option strings are depreciated and will be removed in
future versions

7.7

print (Change) The -adobecset option and -dill device are
depreciated and will be removed

7.9

print (Change) The -dmfile option to print will be removed
in a future release

7.11

printdlg Opens Print dialog 5.1

printdlg Prints dialog box 7.0

printdmfile (Change) The printdmfile function will be removed in
a future release

7.11

printpreview Displays preview of figure to be printed 7.0

prod([]) = 1 (Change) Defined output for empty inputs 5.0

prod (Change) Multithreading supported 7.8

profile Profiles M-file execution 5.0

Appendix B MATLAB Function Information 837

profile No longer supports the -detail flag’s builtin option 7.0

profile (Change) New -nohistory option added 7.2

profreport (Obsolete) Replaced by profsave 7.0

profview Produces graphical profile report 6.5

propedit The -v6 option is no longer supported. The Version 6
Property Editor has been removed

7.3

propertyeditor Shows or hides the property editor for a figure 7.0

psi Evaluates Digamma function 6.5

publish Runs a script M-file and saves the results 7.0

publish (Change) New catchError option available. Italic text
now supported

7.2

publish (Change) New maxOutputLines field added; default
value is Inf

7.4

publish (Change) New codetoEvaluate option; stopOnError
option removed

7.6

publish (Change) New figureSnapMethod option to specify
figure details be included in the snapshot. Now supports
in-line LaTeX math symbols

7.7

publish (Change) New figureSnapMethod options are
 entireGUIWindow (default) and entireFigureWindow
which include the title bar and all other window decorations
in the snapshot

7.8

pwch Piecewise cubic Hermite interpolation 7.0

qmr Quasi-minimal residual method 5.0

qr (Change) Now supports complex sparse input matrices
with a third output argument containing a fill-reducing
permutation for sparse matrix input

7.9

qr (Change) The upper triangular matrix produced by
the factorization routine in qr always contains real,
nonnegative diagonal elements

7.10

qr Reverts to pre-v7.10 behavior; the diagonal of R may
contain complex or negative elements

7.12

qrdelete (Change) Can now delete rows as well as columns 6.5

qrinsert (Change) Can now insert rows as well as columns 6.5

quad (Change) Function sampling bug fixed 6.1

quad2d Provides additional quadrature functionality for
nonrectangular areas of integration

7.8

838 Appendix B MATLAB Function Information

Function Description Release

quad8 Replaced by quadl 6.0

quad8 (Depreciated) Use quadl instead 7.0

quad8 (Obsolete) Use quadl instead 7.3

quad8 (Removed) Use quadl instead 7.6

quadgk Numerically evaluates the integral, adaptive Gauss–
Kronrod quadrature

7.5

quadl Numerically computes integral by using Lobatto
 quadrature; replaces quad8

6.0

quadv Vectorized quad function 7.0

questdlg Displays question dialog 5.0

quiver (Change) The v6 option for high-level plotting functions
is obsolete

7.5

quiver3 3-D quiver plot 5.0

quiver3 (Change) The v6 option for high-level plotting functions
is obsolete

7.5

rand (Change) Now supports the Mersenne twister algorithm 7.1

rand (Change) Now uses the Mersenne twister algorithm as
default rather than Subtract-with-Borrow

7.4

rand (Change) No longer accepts complex dimension arguments 7.5

randi (New) Returns random integers from a uniform discrete
distribution

7.7

randn (Change) No longer accepts complex dimension arguments 7.5

randn (Change) New longer period random number algorithm
is the default

7.7

RandStream object (Changes) RandnAlg property replaced by
NormalTransform property, setDefaultStream
method replaced by setGlobalStream method,
getDefaultStream method replaced by
getGlobalStream method

7.12

rbbox Rubberband box 5.0

rdivide (Change) Multithreaded support added 7.6

rdivide (./) (Change) Now supports int64 and uint64 classes natively 7.11

recycle Sets option to move deleted files to a recycle folder 7.0

recycle Determines if deleted files go to Recycle Bin 7.0

reducepatch Reduces number of patch faces 5.3

Appendix B MATLAB Function Information 839

reducevolume Reduces number of volume data elements 5.3

refreshdata Refreshes data in plot 7.0

regexp Matches regular expression 6.5

regexp (Change) Calling regexp with 'tokenExtents' and
'once' options now returns a double array

7.2

regexp (Change) New ?%cmd operator to help with debugging
regular expressions

7.3

regexpi Matches regular expression, ignoring case 6.5

regexpi (Change) Calling regexpi with 'tokenExtents' and
'once' options now returns a double array

7.2

regexpi (Change) New ?%cmd operator to help with debugging
regular expressions

7.3

regexprep Replaces string, using regular expression 6.5

regexprep (Change) Now supports the use of character
 representations (like \t or \n) in replacement strings

7.0.1

regexptranslate Returns a regular expression for a literal string
 containing wildcard or metacharacters

7.2

registerevent Registers events for a specified control at runtime 7.0

rehash Refreshes function and file system caches 6.0

rem (Change) Multithreaded support added 7.6

rem (Change) Now supports int64 and uint64 classes
natively

7.11

repmat Replicates and tiles an array 5.0

reshape Changes the shape of an array 5.0

reshape (Change) reshape(A,...,[],...) now calculates the
size required for the empty dimension

6.1

restoredefaultpath Restores default MATLAB path 7.0

rethrow Reissues error 6.5

rethrow (Change) Now accepts stack information as input 7.1

rethrow (Change) The rethrow(lasterror) usage is
 depreciated. Use the rethrow(MException) or
rethrow(MException.last) instead

7.9

rexgrep (Change) New 'split' option to split an input string
into sections

7.5

rgb2ind Converts RGB image to indexed image 7.8

840 Appendix B MATLAB Function Information

Function Description Release

ribbon Draws lines as 3-D strips 5.0

rmdir Removes directory and, optionally, contents as well 6.5

rmfield Removes field from structure 5.0

rng New function to control the random number generator.
Use rng rather than the 'seed', 'state', or 'twister'
inputs to the rand or randn functions

7.12

save (Change) Now supports compressing MAT-files 7.0

save (Change) Now supports -v7.3 option to save
MAT-files in uncompressed HDF5 format permitting
file sizes greater than 2 GB. Compressed HDF5 format
will be the default MAT-file format in a future version

7.3

save No longer accepts -compress, -uncompress, -unicode,
or -nounicode options. Compression and Unicode
are the defaults. Use the -v6 argument to disable
 compression and Unicode

7.3

save (Fix) The -rexgrep argument is no longer taken to be a
file name if no file name is supplied

7.4

save (Change) Data items over 2 GB stored in a MAT-file
using the -v7.3 option are now compressed

7.6

saveas (Depreciated) Certain printer and graphics format
option strings are depreciated and will be removed in
future versions

7.7

saveas (Change) The mmat format option is depreciated and
will be removed in a future release

7.11

savepath Saves current MATLAB path; replaces path2rc
 function

7.0

saxis (Obsolete) No longer used 6.0

saxis (Removed) No longer supported 7.0

scatter 2-D scatter plot 5.1

scatter (Change) The v6 option for high-level plotting functions
is obsolete

7.5

scatter3 3-D scatter plot 5.1

scatter3 (Change) The v6 option for high-level plotting functions
is obsolete

7.5

secd Trigonometric function with arguments in degrees 7.0

secd (Change) Significant performance improvements 7.11

selectmoveresize Interactively selects, moves, or resizes objects 5.0

Appendix B MATLAB Function Information 841

semilogx (Change) The v6 option for high-level plotting functions
is obsolete

7.5

semilogy (Change) The v6 option for high-level plotting functions
is obsolete

7.5

sendmail Sends e-mail 6.5

serial (Change) Now supported on all platforms 7.8

set (Change) Do not use get or set to manage properties
of a Java object; this usage will generate an error in
future releases

7.6

setdiff Set difference 5.0

setenv Sets an environment variable in the underlying
 operating system

7.2

setfield Sets field in structure 5.0

setpixelposition Sets position of object in pixels 7.0

setstatus (Depreciated) No replacement available 7.4

setstr Replaced by char 6.0

setstr To be removed. Use char instead 7.10

setuprop (Obsolete) Use setappdata instead 7.1

setuprop (Removed) Use setappdata instead 7.5

setxor Set exclusive OR 5.0

shiftdim Shifts dimensions 5.0

showplottool Shows or hides one of the plot-editing components for
a figure

7.0

shrinkfaces Reduces size of patch faces 5.3

sign (Change) Now supports int64 and uint64 classes
natively

7.11

sind Trigonometric function with arguments in degrees 7.0

sind (Change) Significant performance improvements 7.11

single Conversion to single-precision data type 5.3

smooth3 Smoothes 3-D data 5.3

snapnow Includes a snapshot of output in a published document 7.6

sort (Change) Now works on data types other than double
precision

6.0

sort (Change) Now supports an optional last argument that
specifies the sort direction

7.0

sort No longer accepts complex integer inputs 7.3

842 Appendix B MATLAB Function Information

Function Description Release

sortrows Sorts rows in ascending order 5.0

sortrows (Change) Now calls MEX function sortrowsc to
 maximize speed. With cell array of strings input, now
calls MEX function sortcellchar to maximize speed

6.1

sortrows (Change) Significant performance improvements 7.10

spfun (Change) Better error checking for sparse matrix functions 7.10

spline (Change) Now supports multidimensional arrays for Y 7.0

spones (Change) Better error checking for sparse matrix functions 7.10

spparms Enhancements to improve control, performance, and
memory usage, as well as access to upper and lower
triangular factors and lower symbolic factor

7.3

sprand Random uniformly distributed sparse arrays 5.0

sprand (Change) Better error checking for sparse matrix functions 7.10

sprandn (Change) Better error checking for sparse matrix functions 7.10

sprandsym (Change) Better error checking for sparse matrix functions 7.10

spring Colormap of magenta and yellow 5.0

sprintf (Change) Additional numeric positional arguments
available for formatted string format specifiers

7.4

squeeze Eliminates singleton dimensions 5.0

stairs (Change) The v6 option for high-level plotting functions
is obsolete

7.5

std (Change) std([]) now returns NaN rather than empty 6.0

stem (Change) Stem tips can be filled or unfilled 5.0

stem (Change) The v6 option for high-level plotting functions
is obsolete

7.5

stem3 3-D stem plot 5.0

stem3 (Change) The v6 option for high-level plotting functions
is obsolete

7.5

str2double Converts character string to double-precision value 5.3

str2func Constructs function handle from function name string 6.0

str2func (Change) Can now convert an anonymous function
 definition to a function handle

7.8

str2mat Replaced by char 6.0

str2mat To be removed. Use char instead 7.10

strcat String concatenation 5.0

Appendix B MATLAB Function Information 843

strcmpi Compares strings, ignoring case 5.2

stream2 Computes 2-D streamlines 5.3

stream3 Computes 3-D streamlines 5.3

streamline Draws streamlines 5.3

streamparticles Draws stream particles 6.0

streamribbon Draws stream ribbons 6.0

streamslice Draws streamlines 6.0

streamtube Draws stream tubes 6.0

strfind Searches for occurrence of second string argument in
first string argument

6.1

strfind (Change) Now supports cell array of strings as input 7.0

strjust (Change) Now does right, left, and center justification 5.2

strmatch Finds matches for a string 5.0

strncmp Compares first n characters 5.0

strncmpi Compares first n characters in strings ignoring case 5.2

strread To be removed. Use textscan instead 7.10

strtok (Change) Now supports cell array of strings as input 7.0

strtrim Removes leading and trailing white space from a string 7.0

struct Creates structure array 5.0

struct2cell Converts structure to cell array 5.0

structfun Applies a function to each field of a structure 7.1

strvcat Vertical string concatenation 5.0

strvcat To be removed. Use char instead 7.10

sub2ind Single index from subscripts 5.0

subplot (Change) The v6 option for high-level plotting functions
is obsolete

7.5

subvolume Extracts subset of volume data set 5.3

sum([]) = 0 (Change) Defined output for empty inputs 5.0

sum (Change) Can now be used with all integer data types 5.3

sum (Change) Multithreading supported 7.8

sum (Change) Now supports int64 and uint64 classes natively 7.11

summer Colormap of green and yellow 5.0

surf (Change) The v6 option for high-level plotting functions
is obsolete

7.5

844 Appendix B MATLAB Function Information

Function Description Release

surf2patch Converts surface data to patch data 5.3

svd (Change) Can now return only the first two outputs, U and S 6.1

svd (Change) Adds support for economy decomposition
on matrices having few rows and many columns using
svd(A,'econ') (Documented in MATLAB 7.1.)

7.0

svd (Change) Now supports economy decomposition
 (introduced but undocumented in v7.0)

7.1

svd (Change) Significant performance improvement for the
three-output form of svd

7.11

svds A few singular values 5.0

swapbytes Swap byte-ordering 7.1

symamd Symmetric approximate minimum degree permutation 6.0

symbfact Enhancements to improve control, performance, and
memory usage, as well as access to upper and lower
triangular factors and lower symbolic factor

7.3

symmlq Solves system of equations by using symmetric LQ method 6.0

symmmd (Depreciated) Use symamd instead 7.0

symmmd (Obsolete) Use symamd instead 7.6

symmmd (Removed) Use symamd instead 7.7

table1 Replaced by interp1 6.0

table1 (Depreciated) Use interp1 instead 7.3

table1 (Obsolete) Use interp1 or interp1g instead 7.6

table2 Replaced by interp2 6.0

table2 (Obsolete) Use interp2 instead 7.6

table8 (Removed) No replacement 7.3

tand Trigonometric function with arguments in degrees 7.0

tand (Change) Significant performance improvements 7.11

tar Archive files to a tar file 7.0.4

tar Partial paths and wildcards (e.g., '~' and '*') are
 accepted in filename arguments

7.2

tempname (Change) Now generates a longer and more unique
filename

7.5

terminal (Removed) No longer supported 7.0

tetramesh Tetrahedron mesh plot for use with delaunayn 6.1

Appendix B MATLAB Function Information 845

texlabel Creates the TeX format from a character string 5.3

textread To be removed. Use textscan instead 7.10

textscan Reads text file into a cell array; has more features than
textread

7.0

textscan (Change) Now reads data from strings in addition to files 7.0.4

textscan (Change) New CollectOutput switch to return like
values in the same cell array

7.4

tfqmr Implements a transpose-free quasi-minimal-residual
method for solving systems of linear equations

7.8

tic (Change) Now supports multiple consecutive timings 7.7

timer Creates and controls timer objects to schedule execution
of MATLAB code

6.5

timerfindall Finds all timer objects with specified property values 7.0

times (.*) (Change) Now supports int64 and uint64 classes natively 7.11

timeseries New functions for time series analysis. Must be manually
enabled on Linux 64-bit platforms

7.1

title (Change) Now accepts axes handle as first argument 7.0

toc (Change) Now supports multiple consecutive timings 7.7

toolboxdir Returns the absolute path to the specified toolbox 7.2

trimesh Triangular mesh plot 5.0

triplequad Evaluates triple integral 6.5

triplot 2-D triangular plot for use with delaunay 6.1

TriRep New OOP class provides enhanced computational
 geometry tools

7.8

TriScatteredInterp New OOP class provides enhanced computational
 geometry tools

7.8

trisurf Triangular surface plot 5.0

true Creates array of logical True 6.5

true (Change) No longer accepts complex dimension arguments 7.5

tscollection New functions for time series analysis. Must be manually
enabled on Linux 64-bit platforms

7.1

tsearch Searches for enclosing Delaunay triangle 5.0

tsearch (Depreciated) Use DelaunayTri/pointLocation instead 7.9

tsearch (Obsolete) Use DelaunayTri/pontLocation methods
instead

7.10

846 Appendix B MATLAB Function Information

Function Description Release

typecast Converts data types without changing the underlying data 7.1

uibuttongroup Creates buttongroup object 7.0

uicontainer Creates container object 7.0

uicontrol (Change) uicontrol(h) now transfers focus to the
 uicontrol having handle h. Multiline 'edit' style
 uicontrol objects now have a vertical scroll bar. uicontrol
objects now have a 'KeyPressFcn' callback

7.0

uigetfile (Change) Now permits selection of multiple files 7.0

uigetfile (Change) Now supports meta directories such as '.',
'..', and '/'

7.6

uigettoolbar (Depreciated) No replacement yet available 7.4

uint16 Conversion to 16-bit unsigned integer data types 5.3

uint16 (Change) Now rounds noninteger inputs rather than
truncating

7.0

uint16 (Change) Multithreading extended to integer conversion
and arithmetic

7.10

uint32 (Change) Now rounds noninteger inputs rather than
truncating

7.0

uint32 (Change) Multithreading extended to integer conversion
and arithmetic

7.10

uint64 (Change) Now rounds noninteger inputs rather than
truncating

7.0

uint64 (Change) Multithreading extended to integer conversion
and arithmetic

7.10

uint8 Conversion to 8-bit unsigned integer data types 5.3

uint8 (Change) Now rounds noninteger inputs rather than
truncating

7.0

uint8 (Change) Multithreading extended to integer conversion
and arithmetic

7.10

uipanel Creates uipanel container object 7.0

uipushtool Creates pushbutton in uitoolbar object 7.0

uiputfile (Change) Now supports meta directories such as '.',
'..', and '/'

7.6

uiresume Resumes suspended M-file execution 5.0

uitab (Change) Changes are being made to this undocument-
ed function

7.11

Appendix B MATLAB Function Information 847

uitabgroup (Change) Changes are being made to this undocument-
ed function

7.11

uitable Creates a uitable object 7.0

uitable Creates a new graphic table component 7.6

uitoggletool Creates togglebutton in uitoolbar object 7.0

uitoolbar Creates uitoolbar object 7.0

uitree Creates uitree object 7.0

uitreenode Creates a node object in a uitree component 7.0

uiwait Blocks M-file execution 5.0

uiwait (Change) uiwait(handle,t) now times out after time
t has elapsed

7.0

uminus (-) (Change) Now supports int64 and uint64 classes natively 7.11

umtoggle (Obsolete) Set the Checked property of the uimenu object 7.3

umtoggle (Removed) Set the Checked property of the uimenu object 7.5

unicode2native Converts a character string from Unicode to a native
character set

7.0.1

union Union of two sets 5.0

unique Unique elements of a vector 5.0

unique (Change) New 'first' and 'last' options 7.3

unit32 Conversion to 32-bit unsigned integer data types 5.3

unit64 Creates unsigned 64-bit integer array 6.5

unloadlibrary Generic DLL Interface function 7.0

unregisteral
levents

Unregisters all events for a specified control at runtime 7.0

unregisterevent Unregisters events for a specified control at runtime 7.0

untar Extracts files from a tar file or URL 7.0.4

unzip Uncompresses files and directories 6.5

unzip (Change) Argument can be a file or a URL 7.0.4

unzip Now preserves original write attribute of all extracted files 7.10

uplus (+) (Change) Now supports int64 and uint64 classes natively 7.11

urlread Reads content using URL 6.5

urlwrite Writes content using URL 6.5

userpath Views/sets/clears the user directory from the top of the
MATLAB search path

7.6

848 Appendix B MATLAB Function Information

Function Description Release

validateattributes Checks the validity (e.g., numeric, nonempty) of an
input array

7.5

validateattributes (Change) Now supports checking size and range of input
values

7.8

validatestring Checks the validity (e.g., character, nonempty) of text
string input

7.5

varargin Passes a variable number of function arguments 5.0

varargout Returns a variable number of function arguments 5.0

ver (Change) Now returns more detailed information, and
hostid information is no longer provided

6.5

verLessThan Compares specified toolbox version with currently
 running version

7.4

vertcat (Change) Better error checking for sparse matrix
 functions

7.10

VideoReader Replacement for mmreader; both return identical
 VideoReader objects

7.11

VideoWriter Improvement over avifile supports files larger than 2 GB 7.11

VideoWriter (Change) Now supports Motion JPEG 2000 files 7.12

view (Change) No longer supports 4-by-4 transformation
matrices as inputs. Use view([az el]) instead

7.9

volumebounds Gets coordinate and color limits for volume data 6.0

voronoi Voronoi diagram 5.0

voronoi (Change) Now makes use of Qhull 6.1

voronoi (Change) No longer supports the QHULL or QHULL
options arguments

7.9

voronoi (Change) No longer uses the options argument 7.10

voronoin n-D Voronoi diagram 6.0

voronoin (Change) Now supports user-settable options 7.0

waitfor Blocks execution until condition is satisfied 5.0

warning Displays warning message 5.0

warning (Change) Additional numeric positional arguments
available for formatted string format specifiers

7.4

wavplay To be removed. Use audioplayer and play instead 7.11

wavrecord To be removed. Use audioplayer and record instead 7.11

Appendix B MATLAB Function Information 849

web (Change) Use -browser parameter to specify which
 system browser to use (default is Firefox.) Any
docopt.m browser specification is now ignored

7.8

weekday Day of week 5.0

weekday New output options 7.0

what (Change) New package information available 7.7

who (Change) Now displays information for nested functions
separately

7.1

whos (Change) Now displays information for nested functions
separately

7.1

whos (Change) Modifications to the output format 7.3

winopen On Windows platforms, opens a file in its appropriate
application

6.5

winter Colormap of blue and green 5.0

wizard (Obsolete) No replacement 7.1

wizard (Removed) Use guide instead 7.5

wk1finfo To be removed. Use xlsinfo instead 7.10

wk1finfo To be removed. Use xlsinfo instead 7.11

wk1read To be removed. Use xlsread instead 7.10

wk1read To be removed. Use xlsread instead 7.11

wk1write To be removed. Use xlswrite instead 7.10

wk1write To be removed. Use xlswrite instead 7.11

ws2matq (Obsolete) No replacement 7.1

ws2matq (Removed) No replacement 7.5

xlabel (Change) Now accepts axes handle as first argument 7.0

xlim Sets or gets x-axis limits and limit mode 5.2

xlsfinfo Output format change 7.0

xlsinfo Now supports Excel files in formats other than XLS 7.2

xlsread Date import enhanced 7.0

xlsread (Change) Now operates on function handles; date
 formats changed

7.0.4

xlsread Now supports Excel files in formats other than XLS 7.2

xlsread (Change) Now supports XLS, XLSX, XLSB, and XLSM
formats on Windows platforms with an appropriate
 version of Excel installed

7.8

850 Appendix B MATLAB Function Information

Function Description Release

xlswrite Writes Matrix to Excel spreadsheet 7.0

xlswrite (Change) Now supports XLS, XLSX, XLSB, and XLSM
formats on Windows platforms with an appropriate
 version of Excel installed

7.8

xmlread Reads XML document 6.5

xmlwrite Writes XML document 6.5

xslt Transforms XML document using XSLT engine 6.5

ylabel (Change) Now accepts axes handle as first argument 7.0

ylim Sets or gets y-axis limits and limit mode 5.2

zeros (Change) Now accepts a final argument specifying
 numeric data type of result

7.0

zeros (Change) No longer accepts complex dimension
 arguments

7.5

zip Compresses files and directories 6.5

zip Partial paths and wildcards (e.g., '~' and '*') are
 accepted in filename arguments

7.2

zlabel (Change) Now accepts axes handle as first argument 7.0

zlim Sets or gets z-axis limits and limit mode 5.2

851

2-D bar chart, 461f
2-D contour plot, 493f
2-D quiver plot, 496f
3-D bar chart, 461f
3-D contour plot, 493f
3-D quiver plot, 497f
Adams–Bashforth–Moulton PECE

solver, 428
addtodate function, 306
algorithm

delay-line, 338
internal, 312
interpolation, 680
inverse, 661
minimization, 402, 693
Nelder-Mead, 409
OpenGL, 545
Painter’s, 545
up-down, 641–646
Z-buffer, 546

aliasing, 399, 401
alim function, 523
alpha values, 521, 522f
alphamap function, 523
alternating sequence matrix, 647–651

analytical and numerical issues, 311
angle histogram, 464f
animation, 534
annotation axes, 580
anonymous function, 257–258, 405
arbitrary nesting, 264
arithmetic operation, 22
array

addressing, 57–59, 77, 92
construction, 59–62
creation functions, 62
exponentiation, 70
indexing, 77, 87, 93, 171, 658
memory utilization, 111–116
orientation, 62–65
reshaping, 81
searching, 99
size, 108–111
sorting, 92–95

array-manipulation, 78–79
array–array mathematics, 66–72
arrays of strings, 162–164
ASCII arrays, 181–182
ASCII text formats, 273, 275
assignin function, 251

Index

Note: The letters ‘f’ and ‘t’ following locators denote figures and tables respectively.

852 Index

assignment statement, 153
audioplayer, 540
audiorecorder, 540
AVI-format, 536
axes box, 447
axis command, 448–449
azimuth, 489

backward difference derivative
approximation, 423f

backward differentiation formulas
(Gear’s method), 436

banana function, 409, 410f
bar chart, 461
bar graph, 577f
base18dec function, 296
basic data analysis, 337–343
basketball swish, 719f
bin18dec function, 295
binary files, 279, 280
birthday problem, 636–641
bit functions, 294–295
bitmap formats, 549
block comments, 51–53
Bode plots, 723–733
boundary value problems (BVPs), 427,

441
brackets usage (cell arrays). 148
break statement, 234
breakpoints and polynomial

coefficients, 382
breaks function, 383
bsxfun function, 330–331

calendar function, 305–306
callback strings, 267
callbacks, 583–584
camera functions, 492
case sensitivity, 241
cat function, 120, 174, 602
caxis function, 517
cell array of strings, 162, 199–203
cell function, 146
cell indexing, 146–149, 156
cell18mat function, 161
celldisp function, 147
cellfun function, 159
cellstr function, 164, 202
central difference approximation, 424
change argument order, 445f
char function, 164, 184, 201
character sequence, 203, 467, 468
circle fitting, 701–705

clabel function, 494
class

constructor, 604–605
function, 152, 178
variable, 604, 608

clear function, 247, 253
clock function, 297, 307
code cells, 51–53
code fine-tuning, 270
colon notation, 58, 60–61, 63, 80
color axis settings, 518f
colorbar function, 515
colormap function, 512–513, 523
comma-separated lists, 155–159,

173–176
command line, 545–546
command-function duality, 256,

273, 545
comments and punctuation, 26–28
common properties, 575–576
compass plot, 464f
complex function, 35
complex numbers, 28–29
composite objects, 556
containment, 631
content addressing, 147, 156
continue statement, 234
contour

function, 492
of peaks, 506f
plot with labels, 494f

contour19 function, 492
contourf function, 493
contourf of peaks, 506f
contourslice function, 500
control flow, 224–238
convex hull, 361, 362f
coordinate transformation, 36
core objects, 556
cputime function, 307
creating function handles, 258
cubic hermite polynomials, 383–385
cubic interpolation, 350, 351
cubic splines, 379–392
cumprod function, 654
cumtrapz function, 415
cumulative integral of humps, 416f
curly braces usage, 150, 199–200
current folder, 270

data
and fitted circle, 705f
file management functions, 275
import and export, 275–279

Index 853

interpolation, 348–366
visualization, 511

date
(character) strings, 298
format -definitions, 299t–300t
format symbols, 300t–301t
function, 298

datenum function, 302–303
datevec function, 303–304, 307
dblquad function, 418
deal function, 157–158, 175, 200
deblank function, 186
debugging, 264, 267
dec18base function, 296
dec18bin function, 295
default

material, 526f
properties, 572–574
settings, 552–553

delaunay triangulation, 358–359,
360f, 363

delay differential equations (DDEs),
427, 441

delay-line algorithm, 338
delayed-copy, 113
derivatives and integrals of

polynomials, 371
deval function, 431
diag function, 75
diff function, 333–334, 342–343,

421–422
differential sums, 665–472
differential-algebraic equations

(DAEs), 428
direct indexing, 118
discrete Fourier transform (DFT), 394
discrete Laplacian color, 425f, 426
display functions, 604, 608
display method, 615, 616
divide-by-zero error, 216
dot division, 69
dot notation (structure), 164
dot-transpose operator, 64, 81
double function, 182
double method, 629
double-precision arithmetic, 30
double-precision arrays, 595
double-precision data, 139, 141
double-precision date, 298
double-precision values, 140, 213
dull material, 526f
duplicate minima or maxima, 101
dynamic addressing, 172
dynamic operator (regular expression),

210

easy plotting, 505–506
element-by-element

array operation, 312
binary operation, 330–331
operations, 68–72
subtraction, 87

elevation, 489
empty arrays, 220
empty matrices, 268
enhanced meta file (EMF), 544, 546,

554
eomday function, 305
equality testing, 213
error function, 241, 243
errorbar plot, 463f
errors, 267, 412
etime function, 307
eval function, 195
evalc function, 195
evaluation of polynomials, 372
exponential function, 35
exponentiation, forms of, 72
export file formats, 546, 547
export functions, 275
extended regular expressions, 203
eye function, 74
ezplot function, 466
ezpolar plot, 466f

faceted shading, 481
Fast Fourier Transform (FFT), 393–395,

399
feather plot, 464f
FFT-related functions, 396–397
fftshift function, 395
fieldname (structure), 165
fieldnames function, 177
figure window, 443
file

archives and compression, 285–286
dependencies, 255, 269, 270
formats, 275, 277
identifier, 188, 286

fill function, 458
fill19 function, 496
filled contour plot, 493f
filter function, 337–339
find function, 95–96, 222
finding objects, 566–568
finite-precision arithmetic limitations,

31–32
five random filled triangles, 497f
fixed axis scaling, 450
flat lighting, 525f

854 Index

objects, 270
properties, 550–552

helix, 473f
Hierarchical Data Format, 278, 279
higher precedence, 630
higher-order approximations, 416
Hilbert matrix, 317
histograms, 461, 462f
horizontal bar chart, 461f
horizontal concatenation of arrays, 186
Horizontal Alignment property, 458
hsv18rgb function, 516
hue–saturation–value standard, 516
humps function, 403f, 414, 417

identifier field, 237, 243
identity matrix, 73, 319
IEEE standard, 141, 220, 221
image formats, 531–533
image processing toolbox, 532
in-line function, 405
ind18sub function, 88, 125
index vectors, 80
indexed image, 529, 531
Inferior Classes attribute, 631
initial value problem (IVPs), 427, 428, 441
inline function, 257
inmem function, 253
input and output arguments, 73, 155,

245–248
inputname function, 251
int18str function, 188–189
integer data, 135
integration approximation with

trapezoids, 415f
intensity image, 529, 531
interactive plotting tools, 454, 455
internal algorithm, 312
internet file operations, 286–288
interp17 function, 352
interpolated shading, 482f, 483f
interpolated spiral, 392f
interpolation accuracy, 348
interpolation algorithm, 680
intersect function, 293
intmax function, 136
intmin function, 136
inverse Fourier transform, 394
inverse interpolation, 676–683
inverse Laplace transform, 734–740
ipermute function, 129
iscellstr function, 163
isempty function, 222
isfield function, 177

flat shading, 482f, 483f
floating-point arithmetic, 30–32, 77
flow analysis vs n, 708f, 709f
flow analysis, 707f
fminbnd function, 407–408, 411
fminsearch function, 407, 411
FontSize property, 458
FontWeight property, 458
for loops, 476
formula string (regular expression), 203
forward difference derivative

approximation, 422f
Fourier transform approximation, 396f
fplot function, 465
fplot of the Humps function, 466f
fprintf function, 188–189
free-form date format symbols,

300t–301t
ftp function, 286
FTP functions, 287
function

construction rules, 240–245
handle, 257, 259
overloading, 597
syntax, 269
workspaces, 248–252

function-declaration line, 241, 247–248
functions function, 260
fzero function, 402–404, 412

Gaussian elimination, 311
general-purpose data analysis, 337–338
getframe function, 534
Ghostscript, 545, 547, 548, 554
global variable, 248
gouraud lighting, 524, 525f
gradient arrow plot, 424f
gradient function, 424
graphical debugging, 268–269
graphical file tools, 285
graphics file formats, 546–547
Greek letters, 467
grid command, 446
griddata function, 363, 364f
group objects, 556, 578–580
gtext function, 448
GUI-based file I/O, 275
gzip function, 285

handle classes, 632
handle graphics

features, 502
function, 587, 584

Index 855

MATLAB search path, 46
MATLAB windows, 38–39
matrix

division, 70
exponentiation, 71
functions, 315–317
inversion operation, 70
multiplication, 68

max function, 100
mean function, 327–328
memory

allocation, 112–113, 228
compaction, 115
deallocation, 112
management, 43

mesh
function, 479
plot of peaks, 478f
plot with contours, 480f
plot with zero plane, 480f

meshgrid function, 355–356, 475–476,
479

metal material, 526f
mfilename variable, 252
min function, 100
minima and maxima, 331–332, 383
minimization, 402, 407–412, 693
minimum norm solution, 314–315
mlint function, 269
mlock command, 253
mmbytes function, 281–282
mmclass function, 249–250
mmgetpos function, 585
mmpadd function, 370
mmppder function, 388–389
mmppint function, 387
mmrp constructor method, 607
mmrp objects, 629
MMRP rational polynomial object, 620
mmzap function, 587
modifier (regular expression),

205–206
monotonic vector, 343
movie files, 536–540
movie function, 534
moving-average filter, 338
multichannel wave, 541
multidimensional interpolation,

357
multiline text, 467
multiple

figures, 451–453
functions, 243
inheritance, 631
plots, 451

ishandle function, 585
iskeyword function, 24
ismember function, 291–292
isnan function, 220–221, 337
isocaps, 498, 505
isonormals function, 505
isosurface function, 498
isosurface plot, 502f
isstruct function, 178
IVP format, 427–428

Jacobian matrix, 437–438
JIT-accelerator, 229–230, 270, 329,

633, 634, 636

laminar fluid flow in a circular pipe,
706–711

Laplacian approximation, 425
lasterr function, 236–237, 242
lasterror function, 236–237, 242
least squared equation error, 701
least-squares curve, 420
least-squares solution, 313–314, 375
legend command, 454
legend example, 455f
lighting models, 523–527
line plotting (color map), 513
linear equations, sets of, 310–315
linear regression, 375
linestyles and markers, 446f
linkaxes function, 581
linking objects, 581–582
linkprop function, 581
linspace function, 60, 63
load command, 273–274
logarithmically spaced element, 61
logical

addressing, 96
array, 89–91
function, 90
operators (regular expression), 208

logspace function, 60, 63
lookaround operator, 207–208
loop termination, 226
loop variable, 225
low-level file I/O, 279–281
lscov function, 314
ltitr function, 339
LU factorization, 311–312

material function, 525
mathematical operations on integers,

138–139

856 Index

549–551
operator overloading, 599–600
operator precedence, 216–217
optimization toolbox, 405
orderfields function, 179
ordinary differential equations (ODEs),

427
overloaded FFT methods, 395
overloading, 597–603

P-code files, 253, 254, 269
padded blanks, 186
Pade approximations, 372
Painter’s algorithm, 545
panning or zooming, 581
parentheses usage (regular expression),

207
parentheses usage (structure), 172
partial differential equations (PDEs),

427, 441
partial-fraction expansion, 373–374
patch objects, 549, 578, 580, 588
patches, 481
pchip function, 384–385
pcode command, 269
pcolor and fill plots, 482
pcolor function, 514
pcolor of Copper, 515f
permute function, 129, 131
persistent variable, 249
phong lighting, 524, 525f
picture-in-a-picture zoom, 740–746
pie chart, 459f
piecewise cubic Hermite interpolating

polynomial, 379
piecewise polynomials, 380–383, 388
plaid, 475
plot command, 307, 324–325, 449
plot function, 442–444, 458, 472
plot objects, 556, 577–578
plotting functions (color map), 513
pointLocation, 360–361
polar plot, 464f
poly command, 368
polyder function, 371, 420
polyfit function, 375
polyint function, 371
polynomial

addition, 368–370
curve fitting, 375–378, 684–692
division, 370–371
functions, 378
multiplication, 368
simplification, 369–370

multistep numerical differentiation
solver, 429

myfun.m plot, 419f

n -by- n array, 73
n-D Function, 134
NaN or Inf variables, 73, 220–223
NaN, 220, 335–336
nargchk function, 248
nargoutchk function, 248
native data files, 272–275
natural loop index, 227
ncoefs function, 383
ndims function, 133
nearest-neighbor method, 351
nearestNeighbor, 360–361
Nelder–Mead simplex search algorithm,

409
nested functions, 245, 263–267
new plots, 582–583
NeXT/Sun format, 540
no lighting, 525f
nonlinear curve fitting, 692–701
nonlinear least squares problem, 694,

696, 699
nonzero elements, 218, 318–321
not-a-knot condition, 379
npolys function, 383
num18cell function, 160
num18str function, 188–189
number display formats, 43–44
number theoretic, 36
numel function, 132
numeric array, 76, 90
numerical date vector, 298
numerical value display, 188
numerical values of color maps,

511–512
Nyquist frequency, 396

object handling, 557
object oriented programming (OOP),

582, 596
object properties, 557–558
objects, 555–556
ODE suite solvers, 428–429
odeset function, 433–436
one-dimensional interpolation, 348–353
one-step trapezoidal rule, 428
ones function, 118
OOP utility functions, 602
opaque, 479f
OpenGL rendering, 521, 543, 545,

Index 857

ribbon plot of peaks, 495f
rmfield function, 178
roots, 367–368
Rosenbrock solver, 428
Rosenbrock’s function, 409
rotate19d function, 491
rounding and remainder, 36
row vectors, 62
run-time errors, 267–269
Runge–Kutta low-order, 428
Runge–Kutta medium-order, 428

save and load functions (image), 532
saving options, 273
sawtooth harmonic content, 401f
sawtooth waveform, 398f, 400–401
scalar

doubles, 140
expansion, 69, 71, 72, 77, 78, 85, 86,

118, 212
functions of two variables, 474–477,

499
short-circuiting, 216

scalar–array mathematics, 66, 76, 77,
121

scatter plot, 465f
scientific calculator, 56
screen updates, 456–457
script files, 47, 243
second order curve fitting, 376f, 377,

421f
selecting objects, 568–569
sendmail function, 288
sensitivity in differentiation, 420
setdiff function, 293
setting execution time, 53–54
setxor function, 293
shading function, 523
shiftdim function, 126, 128
shiny material, 526f
shrinkfaces function, 503
shrunken face isosurface plot,

 502f
signal-processing tools, 393
signed and unsigned integers, 135
simple arrays, 56–57
simple math, 20–21
sine and cosine curves, added label,

448f
sine and cosine curves, no box,

447f
sine and cosine waves, 444f
sine wave, 443f
single-index addressing, 97, 125

variable, 604
polyval function, 623–624
position and units, 569–571
post office box analogy, 145, 147, 180
postscript support, 548–549
pp-form, 381
ppval function, 382, 389
precedence rules, 22, 253
private function, 245
prod function, 114
profile command, 271
profiling, 270–271
projectile motion, 712–723
pseudocode representation, 253
pseudocolor plot, 493f
pseudocolor, 472, 478
publishing, 553–554

quad function, 417
quadgk function, 417
quadrature, 416
quantifier (regular expression), 205–206
quiver function, 425, 495
quotes usage (strings), 162

r -by- c array, 77
radians, 33
rand function, 118
randn function, 118
rank and condition number, 312
rational polynomials, 265–266, 372–375,

609
red–green–blue standard, 516
reducevolume function, 503
refine property, 439
reflectance, 525
regexpi function, 209
regexprep function, 209–210
regexptranslate function, 209
regular expressions, 203–210
renderer, 549–550
repmat function, 87, 119, 151, 170
reserved word list, 23, 24
reshape function, 86, 119, 123, 170
reshape or squeeze, 328
reshaping process, 124
residue function, 374
rethrow function, 238
RGB image, 531
rgb18hsv function, 516
rgbplot function, 514
RGBplot of Copper, 515f
ribbon function, 494

858 Index

string
array, 163
construction (regular expression),

181–186
conversion, 187–194
evaluation (regular expression),

194–195
expression, 405

strmatch function, 198–199
structure addressing, 620, 621, 627
structure fields, 164
strvcat function, 184
sub18ind function, 88, 125
subfunction, 243
subplots, 453–454
subsasgn method, 624–625
subsref method, 619, 621
supported data types, 143–144
supported image types, 533t–534t
surf

function, 484
of peaks, 506f
plot, 481

surface plot
of peaks, 482f
with a hole, 484f
with contours, 485f
surfaces and patches, 548
surfl function, 485
swish solution space, 720, 721f
swish trajectories, 723f
switchyard approach, 746
symbols (text), 467–468
syntax checking, 269–270
syntax errors, 267, 269
system information, 44–45

tar function, 286
TeX formatting, 468, 469f
text

formatting, 467–469
function, 448
handle graphics object, 467

textscan function, 276, 277
third-party toolbox, 403
tic function, 306
tick marks, 446
time series

analysis, 344–347
collection, 347
tools, 347

timeseries function, 345
toc function, 306

single-precision data, 143
singleton dimensions, 122
size function, 132
slice function, 499
slice plot through a volume,

500f
slice plot using a surface, 501f
slice plot with selected contours,

501f
smoothing techniques, 345
solution, 375
sort function, 92–94, 340
sort index, 93
sparse function, 319
sparse matrix, 318–322, 434–436
special

characters, 467
matrices, 317–318
variables, 24, 25

specialized function, 37
specification string, 446
spiral, 391f
spline
and hermite interpolation, 386f

differentiation, 389, 390f
fit, 381f
function, 379
integration, 388f
interpolation, 351, 389, 391
toolbox, 381

sprintf function, 188–189
square brackets usage (cell arrays),

149–150
square matrices, 71
squeeze function, 122
squeeze or reshape, 328
sscanf function, 193
stacked area plot, 457f
stair chart, 461f
standard C functions, 111
standard statistical measures,

332–333
startup and finish, 54–55
statistical analysis, 323–337
stem function, 461
stem plot of random data, 462f,

498f
stiff solvers, 437
stop sign, 458f
str18double function, 193–195
str18func function, 260
str18num function, 192, 194–195
strcat function, 186
strfind function, 197–198, 203

Index 859

van der Pol equation, 429, 433
van der Pol solution, 430f,

432f, 440f
vandermonde matrix, 652–655, 702
varargin function, 247
varargout function, 247
variable-naming rules, 23
variables, 21
varying order solver, 429
vector formats, 549
vectorization, 652
vectorized solution, 228
vectorizing code, 634
VideoReader, 537, 539
VideoWriter, 537–538, 540
view function, 489, 491
voronoi diagram, 363f
voronoi function, 362–363
voronoi plot, 488f

warning function, 243
waterfall, 480, 481f
wavwrite function, 541
weekday function, 304
workspace management, 39–43, 263
WYSIWYG (what-you-see-is-what-

you-get), 543, 550

xlabel function, 447

ylabel function, 447

Z-buffer rendering, 546
zero argument, 245
zero coefficients, 367
zero finding, 402–407
zero-mean, unit-variance, 75
zip function, 285
zoom command, 455

toggles, 446
tokens, 196, 208–210
TolX parameter, 407
Tony’s trick, 87
toolbox creation, 255–256
transfer functions, 372
transparency, 521–523
transparent, 479f
transpose operator, 63
trapezoidal rule, 415
trapz function, 414
tri.triangulation, 359–360
triangular mesh plot, 487f
triangular surface plot, 488f
triangulation and scattered data,

357–366
triangulation, delaunay, 358, 360, 363,

365, 502
trigonometric function, 33–34
trimesh function, 364
triplequad function, 418
triplot function, 360
trisurf function, 364
truecolor image, 530
truncated power series, 375
tscollection function, 347
tspan function, 431
two plots on different scales, 60f
two plots on same scale, 60f
two-dimensional interpolation,

353–357
typographical conventions, 17

union function, 293
unique function, 291
unmkpp function, 382–383
up–down sequence, 641–647
urlread function, 287–288
urlwrite function, 287–288
utility file functions, 286

	Contents
	Preface
	Getting Started
	2.
Basic Features
	The MATLAB Desktop
	Script M-files
	Arrays and Array Operations
	Multidimensional Arrays
	Numeric Data Types
	Cell Arrays and Structures
	Character Strings
	Relational and Logical Operations
	Control Flow
	Functions
	File and Directory Management
	Set, Bit, and Base Functions
	Time Computations
	Matrix Algebra
	Data Analysis
	Data Interpolation
	Polynomials
	Cubic Splines
	Fourier Analysis
	Optimization
	Integration and Differentiation
	Differential Equations
	Two-Dimensional Graphics
	Three-Dimensional Graphics
	Using Color and Light
	Images, Movies, and Sound
	Printing and Exporting Graphics
	Handle Graphics
	MATLAB Classes and Object-Oriented Programming
	Examples, Examples, Examples
	MATLAB Release Information
	MATLAB Function Information
	Index

