In the Name of GOD

Problem 7-1 For the prismatic beam and loading shown, determine (a) the equation of the elastic curve, (b) the slope at A, (c) the maximum deflection.
Answer:

$E I y=-\frac{\omega_{0}}{60 L} x^{5}+\frac{\omega_{0}}{30 L}\left\langle x-\frac{1}{2} L\right\rangle^{5}+\frac{\omega_{0}}{24 L} x^{3}-\frac{5}{192} \omega_{0} L^{3} x \quad \theta_{A}=-\frac{5 \omega_{0} L^{3}}{192 E I} \quad, \quad y_{\max }=-\frac{\omega_{0} L^{4}}{120 E I}$

$$
[x=0, y=0] \quad[x=L, \quad y=0]
$$

$$
\left[x=\frac{L}{2}, \frac{d y}{d x}=0\right]
$$

But $\quad M=0 \quad$ at $\quad x=0 ; \quad$ hence $C_{M}=0$

$E I \frac{d^{2} y}{d x^{2}}=\frac{w_{0}}{L}\left(\frac{1}{4} L^{2} x-\frac{1}{3} x^{3}\right)$ $E I \frac{d y}{d x}=\frac{w_{0}}{L}\left(\frac{1}{8} L^{2} x^{2}-\frac{1}{12} x^{4}\right)+C_{1}$

$$
0=\frac{w_{0}}{L}\left(\frac{1}{32} L^{4}-\frac{1}{192} L^{4}\right)+C_{1}=0 \quad C_{1}=-\frac{5}{192} w_{0} L^{3}
$$

$$
\left[x=\frac{L}{2}, \frac{d y}{d x}=0\right]
$$

$$
E I y=\frac{w_{0}}{L}\left(\frac{1}{24} L^{2} x^{3}-\frac{1}{120} x^{5}\right)-\frac{5}{192} w_{0} L^{3} x+C_{2}
$$

$$
[x=0, y=0] \quad 0=0-0+0+C_{2} \quad C_{2}=0
$$

$$
\frac{d y}{d x}=\frac{w_{0}}{E I L}\left(\frac{1}{8} L^{2} x^{2}-\frac{1}{12} x^{4}-\frac{5}{192} L^{4}\right)
$$

$$
x=0 \quad \theta_{A}=-\frac{5 \omega_{0} L^{3}}{192 E I}
$$

$y=\frac{w_{0}}{E I L}\left(\frac{1}{24} L^{2} x^{3}-\frac{1}{60} x^{5}-\frac{5}{192} L^{4} x\right)$
$x=\frac{L}{2} \quad y_{C}=-\frac{\omega_{0} L^{4}}{120 E I}$

Problem 7-2 For the beam and loading shown, determine (a) the equation of the elastic curve, (b) the deflection at the midpoint C.

Answer: (b) $-\frac{3 \omega_{0} L^{4}}{640 E I}$
(a) $y=\frac{\omega_{0}}{960 E I L}\left\{16 x^{5}-32\left\langle x-\frac{1}{2} L\right\rangle^{5}-40 L x^{4}+40 L^{2} x^{3}-15 L^{4} x\right\}$

SOLUTION

Distributed loads:

$$
k_{1}=\frac{2 w_{0}}{L} \quad k_{2}=\frac{4 w_{0}}{L}
$$

(1) $w_{1}(x)=w_{0}-k_{1} x$

$$
\begin{equation*}
w_{2}(x)=k_{2}\left\langle x-\frac{L}{2}\right\rangle^{1} \tag{2}
\end{equation*}
$$

$$
+) \Sigma M_{B}=0:\left(\frac{w_{0} L}{4}\right)\left(\frac{5}{6} L\right)+\left(\frac{w_{0} L}{4}\right)\left(\frac{L}{6}\right)+R_{A} L=0 \quad R_{A}=\frac{w_{0} L}{4} \uparrow
$$

$$
w(x)=w_{0}-k_{1} x+k_{2}\left\langle x-\frac{L}{2}\right\rangle^{1}
$$

$$
=w_{0}-\frac{2 w_{0}}{L} x+\frac{4 w_{0}}{L}\left\langle x-\frac{L}{2}\right\rangle^{1}
$$

$$
\frac{d V}{d x}=-w=-w_{0}+\frac{2 w_{0}}{L} x-\frac{4 w_{0}}{L}\left\langle x-\frac{L}{2}\right\rangle^{1}
$$

$$
\frac{d M}{d x}=V=\frac{w_{0} L}{4}-w_{0} x+\frac{w_{0}}{L} x^{2}-\frac{2 w_{0}}{L}\left\langle x-\frac{L}{2}\right\rangle^{2}
$$

$$
E I \frac{d^{2} y}{d x^{2}}=M=\frac{1}{4} w_{0} L x-\frac{1}{2} w_{0} x^{2}+\frac{1}{3} \frac{w_{0}}{L} x^{3}-\frac{2}{3} \frac{w_{0}}{L}\left\langle x-\frac{L}{2}\right\rangle^{3}
$$

$$
E I \frac{d y}{d x}=\frac{1}{8} w_{0} L x^{2}-\frac{1}{6} w_{0} x^{3}+\frac{1}{12} \frac{w_{0}}{L} x^{4}-\frac{1}{6} \frac{w_{0}}{L}\left\langle x-\frac{L}{2}\right\rangle^{4}+C_{1}
$$

$$
E I y=\frac{1}{24} w_{0} L x^{3}-\frac{1}{24} w_{0} x^{4}+\frac{1}{60} \frac{w_{0}}{L} x^{5}-\frac{1}{30} \frac{w_{0}}{L}\left\langle x-\frac{L}{2}\right\rangle^{5}+C_{1} x+C_{2}
$$

$$
[x=0, y=0]: \quad C_{2}=0
$$

$$
[x=L, y=0]: \frac{1}{24} w_{0} L^{4}-\frac{1}{24} w_{0} L^{4}+\frac{1}{60} w_{0} L^{4}-\frac{1}{30} \frac{w_{0}}{L}\left(\frac{L}{2}\right)^{5}+C_{1} L=0
$$

$$
C_{1}=-\frac{1}{64} w_{0} L^{3}
$$

$y=w_{0}\left[16 x^{5}-32\left\langle x-\frac{L}{2}\right)^{5}-40 L x^{4}+40 L^{2} x^{3}-15 L^{4} x\right] / 960 E I L$
$\left(y\right.$ at $\left.\quad x=\frac{L}{2}\right) \quad y_{C}=\frac{w_{0} L^{4}}{960 E I}\left(\frac{1}{2}-0-\frac{5}{2}+5-\frac{15}{2}\right)=-\frac{3 w_{0} L^{4}}{640 E I}$
Problem 7-3 For the beam and loading shown, determine (a) the reaction at point A, (b) the deflection at midpoint C.

Answer: (a) $\frac{20 P}{27} ; \frac{4 P L}{27}$
(b) $-\frac{5 P L^{3}}{1296 E I}$

SOLUTION

$$
\begin{align*}
& \frac{d M}{d x}=V=R_{A}-P\left\langle x-\frac{L}{3}\right\rangle^{0} \\
& \overbrace{R_{A}}^{M_{A}} \\
& E I \frac{d^{2} y}{d x^{2}}=M=M_{A}+R_{A} x-P\left\langle x-\frac{L}{3}\right\rangle^{1} \quad E I \frac{d y}{d x}=M_{A} x+\frac{1}{2} R_{A} x^{2}-\frac{1}{2} P\left\langle x-\frac{L}{3}\right\rangle^{2}+C_{1} \\
& \text { EIy }=\frac{1}{2} M_{A} x^{2}+\frac{1}{6} R_{A} x^{3}-\frac{1}{6} P\left\langle x-\frac{L}{3}\right\rangle^{3}+C_{1} x+C_{2} \\
& {\left[x=0, \frac{d y}{d x}=0\right] \quad 0+0-0+C_{1}=0 \quad \therefore C_{1}=0} \\
& {[x=0, y=0] \quad 0+0-0+C_{2}=0 \quad \therefore C_{2}=0} \\
& {\left[x=L, \frac{d y}{d x}=0\right] \quad M_{A} L+\frac{1}{2} R_{A} L^{2}-\frac{1}{2} P\left(\frac{2 L}{3}\right)^{2}=0} \tag{1}\\
& {[x=L, y=0] \quad \frac{1}{2} M_{A} L^{2}+\frac{1}{6} R_{A} L^{3}-\frac{1}{6} P\left(\frac{2 L}{3}\right)^{3}=0} \tag{2}
\end{align*}
$$

(a) Solving Eqs. (1) and (2) simultaneously,
$\left.R_{A}=\frac{20}{27} P \quad M_{A}=-\frac{4}{27} P L \quad R_{A}=\frac{20}{27} P \uparrow 4 \quad M_{A}=\frac{4}{27} P L\right)$

Elastic curve.

$$
y=\frac{P}{E I}\left[-\frac{2}{27} L x^{2}+\frac{10}{81} x^{3}-\frac{1}{6}\left\langle x-\frac{L}{3}\right\rangle^{3}\right]
$$

(b) Deflection at midpoint $C . \quad\left(y\right.$ at $\left.x=\frac{L}{2}\right)$
$y_{C}=\frac{P}{E I}\left[-\frac{2}{27} L\left(\frac{L}{2}\right)^{2}+\frac{10}{81}\left(\frac{L}{2}\right)^{3}-\frac{1}{6}\left(\frac{L}{6}\right)^{3}\right]=-\frac{5 P L^{3}}{1296 E I} \quad y_{C}=\frac{5 P L^{3}}{1296 E I} \downarrow$ <

Problem 7-4 For the beam and loading shown, determine (a) the reaction at point $A,(\mathrm{~b})$ the deflection at midpoint C.

Answer: (a) $\frac{3 \omega L}{32} ; \frac{5 \omega L^{2}}{192} \quad$ (b) $-\frac{\omega L^{4}}{768 E I}$

$\begin{align*} & w(x)=w\left\langle x-\frac{L}{2}\right\rangle^{0} \quad \frac{d V}{d x}=-w(x)=-w\left\langle x-\frac{L}{2}\right\rangle^{0} \\ & \frac{d M}{d x}=V=R_{A}-w\left\langle x-\frac{L}{2}\right\rangle^{1} \quad E I \frac{d^{2} y}{d x^{2}}=M=M_{A}+R_{A} x-\frac{1}{2} w\left\langle x-\frac{L}{2}\right\rangle^{2} \\ & E I \frac{d y}{d x}=M_{A} x+\frac{1}{2} R_{A} x^{2}-\frac{1}{6} w\left\langle x-\frac{L}{2}\right\rangle^{3}+C_{1} \quad\left[x=0, \frac{d y}{d x}=0\right] \quad C_{1}=0 \\ & E I y=\frac{1}{2} M_{A} x^{2}+\frac{1}{6} R_{A} x^{3}-\frac{1}{24} w\left(x-\frac{L}{2}\right\rangle^{4}+C_{1} x+C_{2} \quad[x=0, y=0] \quad C_{2}=0 \\ & {\left[\begin{array}{l} \left.x=L, \frac{d y}{d x}=0\right] \quad M_{A} L+\frac{1}{2} R_{A} L^{2}-\frac{1}{6} w\left(\frac{L}{2}\right)^{3}=0 \\ {[x=L, y=0] \quad \frac{1}{2} M_{A} L^{2}+\frac{1}{6} R_{A} L^{2}-\frac{1}{24} w\left(\frac{L}{2}\right)^{4}=0} \end{array}\right.} \tag{1} \end{align*}$	

Solving Eqs. (1) and (2) simultaneously,
(a) $R_{A}=\frac{3 w L}{32}$
$M_{A}=-\frac{5 w L^{2}}{192}$ $\left.R_{A}=\frac{3 w L}{32} \uparrow \longleftarrow M_{A}=\frac{5 w L^{2}}{192}\right)$
$E I y=-\frac{5}{384} w L^{2} x^{2}+\frac{3}{192} w L x^{3}-\frac{1}{24} w\left\langle x-\frac{L}{2}\right\rangle^{4}$
Elastic curve. $\quad y=\frac{w}{E I}\left\{-\frac{5}{384} L^{2} x^{2}+\frac{3}{192} L x^{3}-\frac{1}{24}\left\langle x-\frac{L}{2}\right\rangle^{4}\right\}$
(b) Deflection at midpoint C. $\quad\left(y\right.$ at $\left.x=\frac{L}{2}\right)$
$y_{C}=\frac{w}{E I}\left\{\left(-\frac{5}{384} L^{2}\right)\left(\frac{L}{2}\right)^{2}+\left(\frac{3}{192} L\right)\left(\frac{L}{2}\right)^{3}-0\right\}=-\frac{w L^{4}}{768 E I} \quad y_{B}=\frac{w L^{4}}{768 E I} \downarrow$

Problem 7-5 For the beam and loading shown, determine (a)
the deflection at C, (b) the slope at end A.
Answer: \quad (a) $\frac{\omega L^{4}}{384 E I} \downarrow$ (b) 0 .
SOLUTION
Loading I: $\quad y_{C}=-\frac{5 w L^{4}}{384 E I} \quad \theta_{A}=-\frac{w L^{3}}{24 E I}$

Loading II: $\quad y_{C}=-\frac{M_{A}}{6 E I L}\left[\left(\frac{L}{2}\right)^{3}-L^{2}\left(\frac{L}{2}\right)\right]=\frac{1}{16} \frac{M_{A} L^{2}}{E I} \quad \theta_{A}=\frac{M_{A} L}{3 E I}$
with $\quad M_{A}=\frac{w L^{2}}{12} \quad y_{C}=\frac{1}{192} \frac{w L^{4}}{E I} \quad \theta_{A}=\frac{1}{36} \frac{w L^{3}}{E I}$
Loading III: $\quad y_{C}=\frac{1}{16} \frac{M_{B} L^{3}}{E I}$ (using Loading II result)

$\theta_{A}=\frac{M_{B} L}{6 E I} \quad$ with $\quad M_{B}=\frac{w L^{2}}{12} \quad y_{C}=\frac{1}{192} \frac{w L^{4}}{E I} \quad \theta_{A}=\frac{1}{72} \frac{w L^{3}}{E I}$
(a) Deflection at $C . \quad y_{C}=-\frac{5}{384} \frac{w L^{4}}{E I}+\frac{1}{192} \frac{w L^{4}}{E I}+\frac{1}{192} \frac{w L^{4}}{E I}=-\frac{1}{384} \frac{w L^{4}}{E I}$ $y_{C}=\frac{1}{384} \frac{w L^{4}}{E I} \downarrow$
(b) Slope at $A . \quad \theta_{A}=-\frac{1}{24} \frac{w L^{3}}{E I}+\frac{1}{36} \frac{w L^{3}}{E I}+\frac{1}{72} \frac{w L^{3}}{E I}=0 \quad \theta_{A}=0$

Problem 7-6 For the uniform beam shown, determine the reaction at each of the three supports.

Answer: $R_{A}=\frac{M_{0}}{2 L} \uparrow ; R_{B}=\frac{5 M_{0}}{2 L} \uparrow ; R_{C}=\frac{3 M_{0}}{L} \downarrow$.

SOLUTION
Consider R_{C} as redundant and replace loading system by I and II.

Loading I:
$\underline{\text { Loading II: }}$

$y_{C}^{\prime}=-\frac{R_{C} L^{3}}{48 E I}$

$$
y_{C}^{\prime \prime}=-\frac{M_{0}}{6 E I L}\left[\left(\frac{L}{2}\right)^{3}-L^{2}\left(\frac{L}{2}\right)\right]=\frac{M_{0} L^{2}}{16 E I}
$$

Superposition and constraint: $\quad y_{C}=y_{C}^{\prime}+y_{C}^{\prime \prime}=0$

$$
\begin{array}{|llll|}
\hline-\frac{R_{C} L^{3}}{48 E I}+\frac{M_{0} L^{2}}{16 E I}=0 \quad R_{C}=\frac{3 M_{0}}{L} \downarrow \leftharpoonup & \text { A } \\
+) \Sigma M_{B}=0: & -R_{A} L+\left(\frac{3 M_{0}}{L}\right)\left(\frac{L}{2}\right)-M_{0}=0 & R_{A}=\frac{M_{0}}{2 L} \uparrow 4 & R_{\mathbf{A}} \\
+\uparrow \Sigma F_{Y}=0: & \frac{M_{0}}{2 L}-\frac{3 M_{0}}{L}+R_{B}=0 & R_{B}=\frac{5 M_{0}}{2 L} \uparrow 4 & R_{\mathbf{B}} \\
\hline
\end{array}
$$

Problem 7-7 Beam $A C$ rests on the cantilever beam $D E$ as shown. Determine for the loading shown (a) the deflection at point B, (b) the deflection at point D. Use $E=200 \mathrm{GPa}$ and $I=125 \times 10^{-6} \mathrm{~m}^{4}$.

Answer: (a) $10.54 \mathrm{~mm} \downarrow$. (b) $23.4 \mathrm{~mm} \downarrow$.

SOLUTION

Units: Forces in kN ; lengths in m .
Using free body $A B C$,

$+\sum M_{A}=0: 4.4 R_{C}-(4.4)(30)(2.2)=0 \quad R_{C}=66.0 \mathrm{kN}$
$E=200 \times 10^{9} \mathrm{~Pa} \quad I=125 \times 10^{6} \mathrm{~mm}^{4}=125 \times 10^{-6} \mathrm{~m}^{4}$

$E I=\left(200 \times 10^{9}\right)\left(125 \times 10^{-6}\right)=25.0 \times 10^{-6} \mathrm{~N} \cdot \mathrm{~m}^{2}=25,000 \mathrm{kN} \cdot \mathrm{m}^{2}$
For slope and defection at C, portion $C E$ of beam $D C E$.
$\theta_{C}=\frac{R_{C} L^{2}}{2 E I}=\frac{(66.0)(2.2)^{2}}{(2)(25,000)}=6.3888 \times 10^{-3} \mathrm{rad}$
$y_{C}=-\frac{R_{C} L^{3}}{3 E I}=\frac{(66.0)(2.2)^{3}}{(3)(25,000)}=-9.3702 \times 10^{-3} \mathrm{~m}$
Defection at B, assuming that point C does not move.
$\left(y_{B}\right)_{1}=-\frac{5 W L^{4}}{384 E I}=-\frac{(5)(30)(4.4)^{4}}{(384)(25,000)}=-5.8564 \times 10^{-3}$
Additional defection at B due to movement of point $C: \quad\left(y_{B}\right)_{2}=\frac{1}{2} y_{C}=-4.6851 \times 10^{-3} \mathrm{~m}$
(a) Total deflection at $B . \quad y_{B}=\left(y_{B}\right)_{1}+\left(y_{B}\right)_{2}=-10.54 \times 10^{-3} \mathrm{~m} \quad y_{B}=10.54 \mathrm{~mm} \downarrow$ Portion $D C$ of beam $D C B$ remains straight.
(b) Deflection at $D . \quad y_{D}=y_{C}-a \theta_{C}=-9.3702 \times 10^{-3}-(2.2)\left(6.3888 \times 10^{-3}\right)$ $=-23.4 \times 10^{-3} \mathrm{~m} \quad y_{D}=23.4 \mathrm{~mm} \downarrow$

Problem 7-8 The cantilever beam $B C$ is attached to the steel cable $A B$ as shown. Knowing that the cable is initially taut, determine the tension in the cable caused by the distributed load shown. Use $E=200 \mathrm{GPa}$. (Help: $I=156 \times 10^{-6} \mathrm{~m}^{4}$).
Answer: 43.9 kN .

SOLUTION

p
Let P be the tension developed in member $A B$ and δ_{B} be the elongation of that member.

Cable $A B: \quad A=255 \mathrm{~mm}^{2}=255 \times 10^{-6} \mathrm{~m}^{2}$
$\delta_{B}=\frac{P L}{E A}=\frac{(P)(3)}{\left(200 \times 10^{9}\right)\left(255 \times 10^{-6}\right)}=58.82 \times 10^{-9} \mathrm{P}$
Beam $B C: \quad I=156 \times 10^{6} \mathrm{~mm}^{4}=156 \times 10^{-6} \mathrm{~m}^{4}$
$E I=\left(200 \times 10^{9}\right)\left(156 \times 10^{-6}\right)=31.2 \times 10^{6} \mathrm{~N} \cdot \mathrm{~m}^{2}$
Loading I: $\quad 20 \mathrm{kN} / \mathrm{m}$ downward. $\quad\left(y_{B}\right)_{1}=-\frac{w L^{4}}{8 E I}=-\frac{\left(20 \times 10^{3}\right)(6)^{4}}{(8)\left(31.2 \times 10^{6}\right)}=-103.846 \times 10^{-3} \mathrm{~m}$
Loading II: \quad Upward force P at Point $B . \quad\left(y_{B}\right)_{2}=\frac{P L^{3}}{3 E I}=\frac{P(6)^{3}}{(3)\left(31.2 \times 10^{6}\right)}=2.3077 \times 10^{-6} P$
By superposition,

$$
y_{B}=\left(y_{B}\right)_{1}+\left(y_{B}\right)_{2}
$$

Also, matching the deflection at $B, \quad y_{B}=-\delta_{B}$

$$
\begin{aligned}
& -103.846 \times 10^{-3}+2.3077 \times 10^{-6} P=-58.82 \times 10^{-9} P \quad 2.3666 \times 10^{-6} P=103.846 \times 10^{-3} \\
& P=43.9 \times 10^{3} \mathrm{~N} \quad P=43.9 \mathrm{kN}\langle
\end{aligned}
$$

Problem 7-9 For the beam and loading shown, determine
(a) the equation of the elastic curve, (b) the deflection at point B, (c) the deflection at point D.
Answer: (b) $\frac{\omega L^{4}}{768 E I} \quad$ (c) $-\frac{5 \omega L^{4}}{256 E I}$

(a) $y=\frac{\omega}{24 E I}\left\{-x^{4}+\left\langle x-\frac{1}{2} L\right\rangle^{4}-\langle x-L\rangle^{4}+L x^{3}+3 L\langle x-L\rangle^{3}-\frac{1}{16} L^{3} x\right\}$

SOLUTION

Use free body $A B C D$ with the distributed loads replaced by equivalent concentrated loads.

$+) \Sigma M_{C}=0:-R_{A} L+\left(\frac{w L}{2}\right)\left(\frac{3 L}{4}\right)-\left(\frac{w L}{2}\right)\left(\frac{L}{4}\right)=0 \quad R_{A}=\frac{1}{4} w L$
$+\Sigma M_{A}=0: R_{C} L-\left(\frac{w L}{2}\right)\left(\frac{L}{4}\right)-\left(\frac{w L}{2}\right)\left(\frac{5 L}{4}\right)=0 \quad R_{C}=\frac{3}{4} w L$
$\frac{d V}{d x}=-w=-w+w\left\langle x-\frac{L}{2}\right\rangle^{0}-w\langle x-L\rangle^{0}$
Integrating and adding terms to account for the reactions,

$$
\begin{aligned}
& \frac{d M}{d x}=V=-w x+w\left\langle x-\frac{L}{2}\right\rangle^{1}-w\langle x-L\rangle^{1}+R_{A}+R_{C}\langle x-L\rangle^{0} \\
& E I \frac{d^{2} y}{d x^{2}}=M=-\frac{1}{2} w x^{2}+\frac{1}{2} w\left\langle x-\frac{L}{2}\right\rangle^{2}-\frac{1}{2} w\langle x-L\rangle^{2}+R_{A} x+R_{C}\langle x-L\rangle^{1} \\
& E I \frac{d y}{d x}=-\frac{1}{6} w x^{3}+\frac{1}{6} w\left\langle x-\frac{L}{2}\right\rangle^{3}-\frac{1}{6} w\langle x-L\rangle^{3}+\frac{1}{2} R_{A} x^{2}+\frac{1}{2} R_{C}\langle x-L\rangle^{2}+C_{1} \\
& E I y=-\frac{1}{24} w x^{4}+\frac{1}{24} w\left\langle x-\frac{L}{2}\right\rangle^{4}-\frac{1}{24} w\langle x-L\rangle^{4}+\frac{1}{6} R_{A} x^{3}+\frac{1}{6} R_{C}\langle x-L\rangle^{3}+C_{1} x+C_{2} \\
& {[x=0, y=0]-0+0-0+0+0+0+C_{2}=0 \quad C_{2}=0}
\end{aligned} \begin{array}{r}
{[x=L, y=0]-\frac{1}{24} 1 L^{4}+\frac{1}{24} w\left(\frac{L}{2}\right)^{4}-0+\frac{1}{6}\left(\frac{w L}{4}\right) L^{3}+0+C_{1} L+0=0} \\
C_{1}=-\frac{1}{384} w L^{3} \quad E I y=-\frac{1}{24} w x^{4}+\frac{1}{24} w\left(x-\frac{L}{2}\right\rangle^{4}+\frac{1}{24} w\langle x-L\rangle^{4} \\
+\frac{1}{6}\left(\frac{w L}{4}\right) x^{3}+\frac{1}{6}\left(\frac{3 w L}{4}\right)\langle x-L\rangle^{3}-\frac{1}{384} w L^{3} x
\end{array}
$$

(a) $\quad y=\frac{w}{24 E I}\left\{-x^{4}+\left\langle x-\frac{L}{2}\right\rangle^{4}-\langle x-L\rangle^{4}+L x^{3}+3 L\langle x-L\rangle^{3}-\frac{1}{16} L^{3} x\right\}\langle$
(b) $\quad\left(y\right.$ at $\left.x=\frac{L}{2}\right) \quad y_{B}=\frac{w}{24 E I}\left\{-\left(\frac{L}{2}\right)^{4}+0-0+(L)\left(\frac{L}{2}\right)^{3}+0-\left(\frac{1}{16} L^{3}\right)\left(\frac{L}{2}\right)\right\}$
(c) $\left(y\right.$ at $\left.x=\frac{3 L}{2}\right)$
$y_{B}=\frac{w L^{4}}{768 E I} \uparrow\langle$
$y_{D}=\frac{w}{24 E I}\left\{-\left(\frac{3 L}{2}\right)^{4}+L^{4}-\left(\frac{L}{2}\right)^{4}+(L)\left(\frac{3 L}{2}\right)^{3}+(3 L)\left(\frac{L}{2}\right)^{3}-\left(\frac{1}{16} L\right)\left(\frac{3 L}{2}\right)\right\}=-\frac{5 w L^{4}}{256 E I}$
$y_{D}=\frac{5 w L^{4}}{256 E I} \downarrow$

