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Goals of the Course

• Understand the fundamental capabilities and ultimate limitations of 
computation. 

• AKA theory of computation

• Introduction to the theory of computational complexity.
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What is 
Computation?
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Industrial 
Revolution

—19th century

Transfer of Human labor to Machines
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Information
Evolution

Transfer of Human intellectual to Machines
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Questions & Answers

Arithmetic as a mental operation

+ physical operations

Principle of
Behavioral

Equivalence
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The Functional Model

Computational Problem

Questions
(possible inputs)

Answers
(possible outputs)

݂
݂

݂

݂
Assumes Computations:
1. Read an input, think

for a while, write an 
output, and halt

2. Just the “relation 
between input and 
output” is important
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The Imperative Model

• What about computations that do not “compute a function”?
• deleting a file, anti-lock break system, …

sequences of imperatives which manipulate representations

More inclusive 
than

functional model

Hard to reason
about

programs at 
this level

advantageous
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Digital Computers

Defining characteristics:
1. Programmability
2. Uniform meta-representation for all data-types
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Meta-programming

“While programmability makes computer hardware viable, 
meta-programmability makes software economically viable.”

debuggers, static checkers, profilers, compilers, source-code management systems
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Simulation

• Can one computer always simulate another if it has enough memory?

• Is there an instruction set that is sufficient for simulating any kind of 
computer with any kind of instruction set?
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Universality

“It is possible to invent a single machine which can be used to compute any computable 
sequence. If this machine ܷ is supplied with a tape on the beginning of which is written 
the S.D ["standard description" of an action table] of some computing machine ܯ, then ܷ
will compute the same sequence as ܯ”

Turing-completeness
Turing equivalence
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Church-Turing Hypothesis (Church’s Thesis)

Any computable function is computable by a Turing machine.
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The Limits of Computation

Halting problem: automated detection of infinite loops

Halting problem is un-computable.

void contrarian(int input) {
if(halts(contrarian, input)

while(true) {
// loop infinitely

}
} ?
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After all, it is Computer Science

• This class will be about some of the foundational theories of computer 
science.

• Science is also about experimentation.
• Try things and see what happens.
• Learn from the experimental results.
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Some Bold Assertions

• The abstract models in computability theory 
deal with:

• Computers and software that currently exist
• Computers and software that will exist
• Computers and software that we can only imagine

• We are not concerned with optimization.

• Rather, we are concerned with the question of possibility.
• What computers and software can and cannot do.
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Overview of the Course

• We will begin with the study of languages.

• In a very formal way, hence the term formal languages.
• Which sentences belong to a language, and which ones don’t?

• We will design small machines called automata.

• An automaton designed for a particular language will “execute” when given a 
sentence as input and decide whether or not the sentence belongs to the 
language.
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Overview of the Course, cont’d

• Our first languages will be very simple, and so will be their automata.

• For example, an automaton may have very limited memory.

• What operations can we perform on sentences from a language and 
have the result be in the language?

• As the languages we study become more sophisticated, so will their 
automata.
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Overview of the Course, cont’d

• The automata are the models that will enable us to study computation.

• Can we design an automaton that can execute any algorithm that a 
modern computer can?

• How complex would this automaton have to be?
• What are the implications if the automaton cannot execute an algorithm?

• Are there algorithms that are inherently very hard to execute? That 
are impossible to execute by any computer?
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Our Plan (Very High Level Version)
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Languages

Automata

Computability

The “Language Game”

Abstract models that enable 
us to study computation.

Which algorithms are computable?
Which ones are impossible to compute?



Computational Complexity
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general study of what can be 
achieved within limited time
and/or other limitations on 

natural computational resources



Two Concerns of Complexity

1. determination of the 
complexity of any well-defined 
task

2. obtaining an understanding of 
the relations between various 
computational phenomena

23



P, NP, and NP-completeness

These three seemingly different computational tasks are computationally 
equivalent.
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Other advanced topics

• Randomness
• Knowledge
• Interaction
• Secrecy
• Learning
• Approximation
• Average-case complexity
• Space complexity
• …
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Syllabus

Title

Approx.
Tim

e 
(W

eeks) References

Regular Languages and Finite Automaton 4 Chapters 1-4

Context-free Languages and Grammars; 
Pushdown Machines 4 Chapters 5-8

Turing Machines and Decidability 5 Chapters 9-12

Basic Complexity and Its Modern 
Applications 3 Chapter 14 + …

An Introduction to Formal Languages 
and Automata, 5th edition 
Peter Linz
Jones & Bartlett Learning
2012 978-1-4496-1552-9 
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Software to Install Locally

• JFLAP
• Java Formal Language and Automata Package
• http://www.jflap.org

• There may be other software packages announced during the semester. 
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Grades
Title Grade Description

Exercises (Written + Programming)
(at least 12 series) 5 Weekly

Midterm 1
Chapters 1-4 3 Sunday, 2nd Aban 1395

Midterm 2
Chapters 5-8 3 Tuesday, 16th Azar 1395

Final
All the course material 9 See GOLESTAN

Excellence +2 Extra credit

Total 20 + 2

10% penalty for every late day.
100% penalty after 72 hours.
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The Language Game

• Our study of formal languages starts out like a game.

• As with any other game, it has rules.

• The rules determine what sentences belong to the language.

• The goal of the game is simple: 
Given an arbitrary sentence, determine if it belongs to the language.
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Some Basic Terms

• Let Σ represent a nonempty set of symbols called an alphabet.

• We can construct finite strings of symbols from the alphabet.
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String Examples

• Let alphabet Σ =  {ܽ, ܾ}.

• Then ܾܾܽܽ and ܾܾܾܽܽܽܽ are strings on Σ.

• If we write

it means that the string named ݓ has the value ܾܽܽܽܽ.
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= ݓ  ܾܽܽܽܽ

By convention, we use lowercase letters ܽ,ܾ, ܿ, … 
for elements in Σ and ݓ,ݒ,ݑ, … for string names.



Some Basic Terms, cont’d

• If string ݓ =  ܽ1ܽ2 …ܽ݊ and string ݒ =  ܾ1ܾ2 …ܾ݉ then ݒݓ =
 ܽ1ܽ2 …ܾܽ݊1ܾ2 …ܾ݉ is the concatenation of strings ݓ and ݒ.

• String ܴݓ =  ܽ݊ …  ܽ2ܽ1 is the reverse of string ݓ.

• |w| is the length of string ݓ.
• The number of symbols in the string.

• λ is the empty string.
• |ߣ|  =  0
• = ݓߣ ߣݓ 
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Substrings

• A substring of string ݓ is any string of consecutive symbols of ݓ.

• If ݓ = ݒ then the substring ,ݑݒ  is a prefix of ݓ, and the substring ݑ is 
a suffix of ݓ.

• Example: If ݓ =  ܾܾܾܽܽ, then
• All prefixes: {ߣ, ܽ, ܾܽ, ܾܾܽ, ܾܾܽܽ, ܾܾܾܽܽ}
• All suffixes: {ߣ, ܾ, ܾܽ, ܾܾܽ, ܾܾܾܽ, ܾܾܾܽܽ}

• If ݑ and ݒ are strings, then |ݒݑ|  = |ݑ|   + .|ݒ| 
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inductive hypothesis

A Proof by Induction that |ݒݑ|  = |ݑ|   + |ݒ| 

• Definitions: For all ܽ in Σ and ݓ any string on Σ

• Basis: By definition, |ݒݑ|  = |ݑ|  .of length 1 ݒ is true for all strings |ݒ| + 

• Inductive hypothesis: Assume that |ݒݑ|  = |ݑ|  ݒ is true for all strings |ݒ| +  of 
lengths 1, 2, 3, … , ݊.

• Let ݒ have length ݊ +  1 and let ݒ = |ݓ| where ,ܽݓ   =  ݊. 

• Then |v| = |w| + 1 by definition, and therefore
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 |ܽ|  =  1
|ܽݓ|   = |ݓ|   +  1

|uv| = |uwa| = |uw| + 1 = |u| + |w| + 1 = |u| + |v|



More Basic Terms

• If w is a string, then ݊ݓ is the string obtained by repeating ݓ for ݊
times.

• Special case: 0ݓ = .ݓ for all ߣ 

• If Σ is an alphabet, then Σ∗ is the set of strings obtained by 
concatenating zero or more symbols from Σ.

• Σ∗ always contains ߣ
• Σା = Σ∗ − {ߣ} is the set of all nonempty strings

• Even though Σ is finite, Σ∗ and Σା are infinite since there is no limit on 
the string lengths.
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The ∗ operator is known 
as the Kleene star.


