

Formal Languages
& Automata

Ali Shakiba

Vali-e-Asr University of Rafsanjan

<ali.shakiba@vru.ac.ir>

Goals of the Course

• Understand the fundamental capabilities and ultimate limitations of
computation.

• AKA theory of computation

• Introduction to the theory of computational complexity.

3

What is
Computation?

4

Industrial
Revolution

—19th century

Transfer of Human labor to Machines

5

Information
Evolution

Transfer of Human intellectual to Machines

6

Questions & Answers

Arithmetic as a mental operation

+ physical operations

Principle of
Behavioral

Equivalence
7

The Functional Model

Computational Problem

Questions
(possible inputs)

Answers
(possible outputs)

݂
݂

݂

݂
Assumes Computations:
1. Read an input, think

for a while, write an
output, and halt

2. Just the “relation
between input and
output” is important

8

The Imperative Model

• What about computations that do not “compute a function”?
• deleting a file, anti-lock break system, …

sequences of imperatives which manipulate representations

More inclusive
than

functional model

Hard to reason
about

programs at
this level

advantageous
di

s-
ad

va
nt

ag
eo

us

9

Digital Computers

Defining characteristics:
1. Programmability
2. Uniform meta-representation for all data-types

10

Meta-programming

“While programmability makes computer hardware viable,
meta-programmability makes software economically viable.”

debuggers, static checkers, profilers, compilers, source-code management systems

11

Simulation

• Can one computer always simulate another if it has enough memory?

• Is there an instruction set that is sufficient for simulating any kind of
computer with any kind of instruction set?

12

Universality

“It is possible to invent a single machine which can be used to compute any computable
sequence. If this machine ܷ is supplied with a tape on the beginning of which is written
the S.D ["standard description" of an action table] of some computing machine ܯ, then ܷ
will compute the same sequence as ܯ”

Turing-completeness
Turing equivalence

13

Church-Turing Hypothesis (Church’s Thesis)

Any computable function is computable by a Turing machine.

14

The Limits of Computation

Halting problem: automated detection of infinite loops

Halting problem is un-computable.

void contrarian(int input) {
if(halts(contrarian, input)

while(true) {
// loop infinitely

}
} ?

15

After all, it is Computer Science

• This class will be about some of the foundational theories of computer
science.

• Science is also about experimentation.
• Try things and see what happens.
• Learn from the experimental results.

16

Some Bold Assertions

• The abstract models in computability theory
deal with:

• Computers and software that currently exist
• Computers and software that will exist
• Computers and software that we can only imagine

• We are not concerned with optimization.

• Rather, we are concerned with the question of possibility.
• What computers and software can and cannot do.

17

Overview of the Course

• We will begin with the study of languages.

• In a very formal way, hence the term formal languages.
• Which sentences belong to a language, and which ones don’t?

• We will design small machines called automata.

• An automaton designed for a particular language will “execute” when given a
sentence as input and decide whether or not the sentence belongs to the
language.

18

Overview of the Course, cont’d

• Our first languages will be very simple, and so will be their automata.

• For example, an automaton may have very limited memory.

• What operations can we perform on sentences from a language and
have the result be in the language?

• As the languages we study become more sophisticated, so will their
automata.

19

Overview of the Course, cont’d

• The automata are the models that will enable us to study computation.

• Can we design an automaton that can execute any algorithm that a
modern computer can?

• How complex would this automaton have to be?
• What are the implications if the automaton cannot execute an algorithm?

• Are there algorithms that are inherently very hard to execute? That
are impossible to execute by any computer?

20

Our Plan (Very High Level Version)

21

Languages

Automata

Computability

The “Language Game”

Abstract models that enable
us to study computation.

Which algorithms are computable?
Which ones are impossible to compute?

Computational Complexity

22

general study of what can be
achieved within limited time
and/or other limitations on

natural computational resources

Two Concerns of Complexity

1. determination of the
complexity of any well-defined
task

2. obtaining an understanding of
the relations between various
computational phenomena

23

P, NP, and NP-completeness

These three seemingly different computational tasks are computationally
equivalent.

24

ݔ ∨ ݔ ∨ ݕ ∧
ݔ¬ ∨ ݕ¬ ∨ ݕ¬ ∧

ݔ¬) ∨ ݕ ∨ (ݕ

Other advanced topics

• Randomness
• Knowledge
• Interaction
• Secrecy
• Learning
• Approximation
• Average-case complexity
• Space complexity
• …

25

Syllabus

Title

Approx.
Tim

e
(W

eeks) References

Regular Languages and Finite Automaton 4 Chapters 1-4

Context-free Languages and Grammars;
Pushdown Machines 4 Chapters 5-8

Turing Machines and Decidability 5 Chapters 9-12

Basic Complexity and Its Modern
Applications 3 Chapter 14 + …

An Introduction to Formal Languages
and Automata, 5th edition
Peter Linz
Jones & Bartlett Learning
2012 978-1-4496-1552-9

26

Software to Install Locally

• JFLAP
• Java Formal Language and Automata Package
• http://www.jflap.org

• There may be other software packages announced during the semester.

27

Grades
Title Grade Description

Exercises (Written + Programming)
(at least 12 series) 5 Weekly

Midterm 1
Chapters 1-4 3 Sunday, 2nd Aban 1395

Midterm 2
Chapters 5-8 3 Tuesday, 16th Azar 1395

Final
All the course material 9 See GOLESTAN

Excellence +2 Extra credit

Total 20 + 2

10% penalty for every late day.
100% penalty after 72 hours.

28

The Language Game

• Our study of formal languages starts out like a game.

• As with any other game, it has rules.

• The rules determine what sentences belong to the language.

• The goal of the game is simple:
Given an arbitrary sentence, determine if it belongs to the language.

29

Some Basic Terms

• Let Σ represent a nonempty set of symbols called an alphabet.

• We can construct finite strings of symbols from the alphabet.

30

String Examples

• Let alphabet Σ = {ܽ, ܾ}.

• Then ܾܾܽܽ and ܾܾܾܽܽܽܽ are strings on Σ.

• If we write

it means that the string named ݓ has the value ܾܽܽܽܽ.

31

= ݓ ܾܽܽܽܽ

By convention, we use lowercase letters ܽ,ܾ, ܿ, …
for elements in Σ and ݓ,ݒ,ݑ, … for string names.

Some Basic Terms, cont’d

• If string ݓ = ܽ1ܽ2 …ܽ݊ and string ݒ = ܾ1ܾ2 …ܾ݉ then ݒݓ =
 ܽ1ܽ2 …ܾܽ݊1ܾ2 …ܾ݉ is the concatenation of strings ݓ and ݒ.

• String ܴݓ = ܽ݊ … ܽ2ܽ1 is the reverse of string ݓ.

• |w| is the length of string ݓ.
• The number of symbols in the string.

• λ is the empty string.
• |ߣ| = 0
• = ݓߣ ߣݓ

32

Substrings

• A substring of string ݓ is any string of consecutive symbols of ݓ.

• If ݓ = ݒ then the substring ,ݑݒ is a prefix of ݓ, and the substring ݑ is
a suffix of ݓ.

• Example: If ݓ = ܾܾܾܽܽ, then
• All prefixes: {ߣ, ܽ, ܾܽ, ܾܾܽ, ܾܾܽܽ, ܾܾܾܽܽ}
• All suffixes: {ߣ, ܾ, ܾܽ, ܾܾܽ, ܾܾܾܽ, ܾܾܾܽܽ}

• If ݑ and ݒ are strings, then |ݒݑ| = |ݑ| + .|ݒ|

33

inductive hypothesis

A Proof by Induction that |ݒݑ| = |ݑ| + |ݒ|

• Definitions: For all ܽ in Σ and ݓ any string on Σ

• Basis: By definition, |ݒݑ| = |ݑ| .of length 1 ݒ is true for all strings |ݒ| +

• Inductive hypothesis: Assume that |ݒݑ| = |ݑ| ݒ is true for all strings |ݒ| + of
lengths 1, 2, 3, … , ݊.

• Let ݒ have length ݊ + 1 and let ݒ = |ݓ| where ,ܽݓ = ݊.

• Then |v| = |w| + 1 by definition, and therefore

34

 |ܽ| = 1
|ܽݓ| = |ݓ| + 1

|uv| = |uwa| = |uw| + 1 = |u| + |w| + 1 = |u| + |v|

More Basic Terms

• If w is a string, then ݊ݓ is the string obtained by repeating ݓ for ݊
times.

• Special case: 0ݓ = .ݓ for all ߣ

• If Σ is an alphabet, then Σ∗ is the set of strings obtained by
concatenating zero or more symbols from Σ.

• Σ∗ always contains ߣ
• Σା = Σ∗ − {ߣ} is the set of all nonempty strings

• Even though Σ is finite, Σ∗ and Σା are infinite since there is no limit on
the string lengths.

35

The ∗ operator is known
as the Kleene star.

