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PROBLEMS

3.1-1 Show that the Fourier transform of g(r) may be expressed as

o0

G(f) = /*oo g(t)cos2mft dt —j/ g(t) sin 2mft dt
o0

—00 —_

Hence, show that if g (¢) is an even function of r, then

G(f) = Z/OOg(t) cos 2mft dt
0

and if g(r) is an odd function of ¢, then
[0}
G(f) = ~2j[ g(t)ysin2mjt dr
0

Hence, prove that the following.

Ifg() is: Then G(f) is:

areal and even function of ¢ areal and even function of f

areal and odd function of ¢ an imaginary and odd function of f
an imaginary and even function of ¢ an imaginary and even function of f
a complex and even function of ¢ a complex and even function of f

a complex and odd function of ¢ a complex and odd function of f

3.1-2 (a) Show that for a real g (), the inverse transform, Eq. (3.9b), can be expressed as

o0
() = 2/0 |G(F)| cos[2ft + 0 2mf)] df
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A

This is the trigonometric form of the (inverse) Fourier transform.

(b) Express the Fourier integral (inverse Fourier transform) for g(1) = e~ %u(f) in the
trigonometric form given in part (a}.

3.1-3 If g(t) &= G(f), then show that g*(t) &= G*(~f).

3.1-4 From definition (3.92), find the Fourier transforms of the signals shown in Fig. P3. 1-4.

i P.3.1- -
Figure P.3.1-4 o @) 1 e )

o ~ T : > lo T r >

3.1-5 From definition (3.9a), find the Fourier transforms of the signals shown in Fig. P3.1-5.

Figure P.3.1-5 8® &)
4 1
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1 —3m
1 2 -1 |o T
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3.1-6 From definition (3.9b), find the inverse Fourier transforms of the spectra shown in Fig. P3.1-6.

Figure P.3.1-6 G,

2 -1 1 2
®

3.1-7 Fiom definition (3.9b), find the inverse Fourier transforms of the spectra shown in Fig. P3.1-7.

Figure R.3.1-7
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Figure P.3.1-8

3.1-8

Show that the two signals in parts (a) and (b) of Fig. P3.1-8 are totally different in the time
domain, despite their similarity.

IG(N

-B 0 B
I
8,(f) 2
8(f)
B B
_B f— -B f—
e
~Of I
¢ 2
(a) (b)
Hint: G(f) = |G(£)|e/% /). For part (a), G(f) = 1. 7270, |f| < B, whereas for part (b),
6(F) = le ¥ /2 =—j 0<f<B
T e = 0>f>-B
3.2-1 Sketch the following functions: (a) I(/2) ; (b)Y A(Bew/100) ; (¢) TI(¢—10/8) ; (d) sinc (ww/ /5);
(e} sinc [(w — 10m)/5]; (B sinc (z/5) [1(¢/10m).
Hint: g(%ﬁ) is g() right-shifted by a.
3.2-2 From deﬁnition (3.9a), show that the Fourier transform of rect (¢ — 5) is sinc (nf e~ 1107f
3.2-3 From definition (3.9b), show that the inverse Foutier transform of rect [(2zf — 10) /2m] is
sine (1) &/197,
3.2-4 Using pairs 7 and 12 (Table 3.1) show that u(t) <= 0.58(f) + 1/j2nf.
Hinr: Add 1 to sgn (1), and see what signal comes out.
3.2-5 Show that cos (2mfpt + 0) <= L[8(F + fp)e /¢ + 8(F — fo)e].
Hint: Bxpress cos (27fpt + 9) in terms of exponentials ﬁsing Euler’s formula.
3.3-1

Apply the duality propertv to the appropriate pair in Table 3.1 to show that:

(@) 05[8() + (i/nD)] <= ul(f)
(b) 8¢ +T)+6(0—T) & 2cos 2nfT
€ 8¢ +T)—38@~T) & 2jsin 27T

Hint: g(—1) <= G(—f)and 8(z) = §(—1).
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3.3-2 The Fourier transform of the triangular pulse g(f) in Fig. P3.3-2a is given as

1
@nf)?

G() = @ — jarfe®™ — 1)
Use this information, and the time-shifting and time-scaling properties, to find the Fourier
transforms of the signals shown in Fig. P3.3-2b-1f.

Hint: Time inversion in g(z) results in the pulse g1 (¥) in Fig. P3.3-2b; consequently g1(¢) =
g(—1). The pulse in Fig. P3.3-2¢c can be expressed as g (¢ —7T)+g1 (t—T) [the sumof g (¢) and g1 (¢)
both delayed by T]. Both pulses in Fig. P3.3-2d and e can be expressed as gt — T) + g1 (¢ + T)
[the sum of g(z) delayed by T and g1 () advanced by T'] for some suitable choice of T. The
pulse in Fig. P3.3-2f can be obtained by time-expanding g (#) by a factor of 2 and then delaying
the resulting pulse by 2 seconds [or by first delaying g(¢) by 1 second and then time-expanding

by a factor of 2].
Figure P.3.3-2 2(0) M
......................... 1 . 1
7 0 > o] 1> 1 0 t—> 1 2
() ()] (<}
1.5
&,(1) g,(1) 85(1)
1 1 .
t —>» 1
-1 0 t—>» 1 -1 0 1 0 t—>» 2
. 2 2
@ (e) ®

3.3-3 Using only the time-shifting property and Table 3.1, find the Fourier transforms of the signals
shown in Fig. P3.3-3.

Figure P.3.3-3 1 .
T sin £
7 0 > (@ ®)
f—>
0 :

' T
-1t n
1

- .
cos ¢ e
> © @
: lo T

0 /2

Hint: The signal in Fig. P3.3-3a is a sum of two shifted rectangular puises. The signal in
Fig. P3.3-3bis sin ¢ [u(f) — u(t — 7)] = sin ru(r) — sin tu(t — n) = sin tu(t) + sin (z — 7w)
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3.3-4

Figure P.3.3-4

u(t — m). The reader should verify that the addition of these two sinusoids indeed results in
the pulse in Fig. P3.3-3b, In the same way, we can express the signal in Fig. P3.3-3¢c as
cos tu(t) + sin (¢ — w/2yu(t — m/2) (verify this by sketching these signals). The signal in
Fig. P3.3-3d is e ¥ [u(t) — u(t — )} = e~ % u(t) — e~ e~ 9=D iy — ).

Use the time-shifting property to show that if g(f) <= G(f), then
gU+TY+ gt —T) <= 2G(f)cos 2nfT

This is the dual of Eq. (3.36). Use this result and pairs 17 and 19-in Table 3.1 to find the Fourier
transforms of the signals shown in Fig. P3.3-4.

3.3-8

Figure P.3.3-5

' e AL A

-2 o] 2 3 4 -4 -3 -2 o} 2 3 4
(a) (b)

Prove the following results:

1
&(r) sin 2mfor < Q;[G(f —Jo) - G( +/p)]

%[g(t-i-T) — gt = T)] & G(f)sin 2nfT

Use the latter result and Table 3.1 to find the Fourier transform of the signal in Fig. P3.3-3.

3.3-6

Figure P.3.3-6

-1

3 2 ()J{ ‘ -

The signals in Fig, P3.3-6 are modulated signals with carrier cos 10z. Find the Fourier transforms
of these signals by using the appropriate properties of the Fourier transform and Table 3.1. Sketch
the amplitude and phase spectra for Fig. P3.3-6a and b.

Hint: These functions can be expressed in the form g(¢) cos 27fz.
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3.3-7 Use the frequency shift property and Table 3.1 to find the inverse Fourier transform of the spectra
shown in Fig. P3.3-7. Notice that this time, the Fourier transform is in the o domain.

Figure P.3.3-7 G(®)

3.3-8 Asignal g(¢) is band-limited to B Hz. Show that the signal g™ (¢) is band-limited to nB Hz.
Hinr: gz(t) <= [G(f) * G{f)], and so on. Use the width property of convolution.

3.3-9 Find the Fourier transform of the signal in Fig. P3.3-3a by three different methods:

(a) By direct integration using the definition (3.9a). )
(b) Using only pair 17 Table 3.1 and the time-shifting property.

(¢) Using the time differentiation and time-shifting properties, along with the fact that
8(1) 4= 1.

Hint: 1 — cos 2x = 2sin? x.

3.3-10 The process of recovering a signal g(z) from the modulated signal g(¢) cos 2nfyt-is called
demodulation. Show that the signal g(#) cos 27 /3¢ can be demodulated by multiplying it by
2 cos 2mfyt and passing the product through a low-p\‘ass Silter of bandwidth B Hz [the bandwidth
of g(1)]. Assume B < fp. Hint: 2 cos? 2nft = 1+ cos 4nfyt. Recognize that the spectrufh of
*

g(f) cos drfyt is centered at 2y and will be suppressed by a low-pass filter of bandwidth B Hz.

3.4-1 Signals g((r) = 10*TI(10%) and g7 (r) = 8(z) are applied at the inputs of the ideal low-pass
filters H1(f) = TI(f /20,000) and Ho () = I1(f/10,000) (Fig. P3.4-1). The outputs y; (r) and
ya (1) of these filters are multiplied to obtain the signal y(£) = y1 (t)y2(6).

(a) Sketch G1(f) and G, (f).

(b) Sketch H; (f) and Hy(f).

(¢) Sketch Y1 (f) and Y5 (f).

(d) Find the bandwidths of y1(#), y2(9), and y(7).

Figure P.3.4-1

¥ () =y,0 3,0

3.5-1 For systems with the following impulse responses, \yhich system is causal?
@) () = e u(t), a>0 '
M) Aty =e %, a>0
(€) h(r) = e~y —15), a>0
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Figure P.3.5-4

3.5-2

3.5-3

354

(d) A(t) =sinclar), a>0
(&) h(t) =sincla(t — 1p)], a > 0.

Consider a filter with the transfer function

H(f) = e~ kQ@rkt)=j2fio

Show that this filter is physically unrealizable by using the time domain criterion [noncausal
h(1)] and the frequency domain (Paley-Wiener) criterion. Can this filter be made approximately
realizable by choosing a sufficiently large 137 Use your own (reasonable) criterion of approximate
realizability to determine #g.

Hint: Use pair 22 in Table 3.1.
Show that a filter with transfer function

2(10%) 2ty

H) = 2nf)? + 1010

is unrealizable. Can this filter be made approximately realizable by choosing a sufficiently large
to? Use your own (reasonable) criterion of approximate realizability to determine 7.

Hint: Show that the impulse response is noncausal.

Determine the maximum bandwidth of a signal that can be transmitted through the low-pass
RC filter in Fig. P3.5-4 with R = 1000 and C = 1077 if, over this bandwidth, the amplitude
response (gain) variation is to be within 5% and the time delay variation is to be within 2%.

+ O AARG—— GG -

&8

- € ¥

3.5-5

3.6-1

A bandpass signal g(¢) of bandwidth B = 2000 Hz centered at f = 10° Hz is passed through
the RC filter in Fig. P3.5-4 with RC = 1073, If over the passband, a variation of less than 2%
in amplitude response and less than 1% in time delay is considered distortionless transmission,
would g(f) be transmitted without distortion? Find the approximate expression for the output
signal.

" A certain channel has ideal amplitude, but nonideal phase response (Fig. P3.6-1), given by

H@)| =1
O,(f) = ~2mfig — k sin 2nfT k< 1

(a) Show that y(7), the channel response to an input pulse g(f) band-limited to B Hz, is

k
y() =gt —19) + Sl - —T) =gt~y +T)]

Hint: Use e 8 S270T oo | ik sin 250fT.
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{b) Discuss how this channel will affect TDM and FDM systems from the viewpoint of
interference among the multiplexed signals.

Figure P.3.6-1

3.6-2 The distortion caused by multipath transmission can be partly corrected by a tapped delay-line
equalizer. Show that if @ <« 1, the distortion in the multipath system in Fig. 3.31a can be
approximately corrected if the received signal in Fig. 3.31a is passed through the tapped delay-
line equalizer shown in Fig. P3.6-2.

Hint: From Eq. (3.64a), it is clear that the equalizer filter transfer function should be Heq(f) =

/04« e“ﬂ”fAt). Usethe factthat 1/(1 —x) = 1 +x+x2+x> +--- ifx < 1 to show what
should be the tap parameters g; to make the resulting transfer function

H(f)Heq(f) ~ 127l

Figure P.3.6-2
Input

Output

3.7-1 Show that the energy of the Gaussian pulse

1 £

53&202

8¢) = o2

from direct integration is 1/2c /7. Verify this result by usir.g Parseval's theorem to derive the
energy Eg from G(f). Hint: See pair 22 in Table 3.1. Use the fact that

o0 o0 > 9 oo 2
/ j[ e_x“ycixdy:rf:>/ e dx = /7.
—00 J~00 )

3.7-2 Show that

0
/ sinc? (kt)dt = %

—0C
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3.7-3

3.7-4

3.7-5

3.7-6

Figure P.3.7-6

3.8-1

Hint: Recognize that the integral is the energy of g(z) = sinc (k). Use Parseval’s theorem to
find this energy.

Generalize Parseval’s theorem to show that for real Fourier transformable signals g{(t) and
&2(0),

0 [oe] oo )
[ avnod= [ acnens = [ ancanar

20 o0 —CC

Show that

3
hS
=

o0 0
/ sinc (2 Bt — mm) sinc 2w Bt —nw)dt = §
—e0 5B m=n

Hint: Recognize that

, k)= s RN (L s
sinc (2 Bt — km) = sin¢ [2nB (t 2B>] = 75 i1, (ZB\) e

Use this fact and the result in Prob. 3.7-2 to show that
o0 ’ 1 B
f sinc (27 Bt — mm) sinc (27 Bt — an)dt = — / Jln—m)[2BR2xf g
—00 482 . _p

The desired result follows from this integral.

For the signal

2a
1) = 5—%x
=52

determine the essential bandwidth B Hz of g(¥) such that the energy contained in the spectral
components of g(¢) of frequencies below B Hz is 99% of the signal energy Eg.

Hint: Determine G(f) by applying the duality property [Eq. (3.26)] to pair 3 of Table 3.1

A low-pass signal g(f) is applied to a squaring device. The squarer output g2 (t) is applied to a
unity gain ideal low-pass filter of bandwidth Af Hz (Fig. P3.7-6). Show that if Af is very small
(Af — 0), the filter output js a dc signal of amplitude 2Eg Af where E, is the energy of g(r).

Hint: The output y(¢) is a dc signal because its spectrum Y (f) is concentrated at f = 0 from
—Af to Af with Af - O (impulse at the origin). If gz(t) &= A(f), and y(f) <= Y (f), then
Y(f) = [2A(0)AF18(f). Now, show that Eg = A(0).

Show that the autocorrelation function of g(z) = C cos 2nfor + 6p) is given by Re(r) =
(C2/2) cos 27fyr, and the corresponding PSD is Sg(f) = (C2/4)[5(f - foy + 8¢ + )l
Hence, show that for a signal y(r) given by

o0
(1) = Co+ Y Cn cos (n27fut + 6n)

n=1



Figure P.3.8-2

Figure P.3.8-4

3.8-2

x(t)

3.8-3

3.84
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the autocorrelation function and the PSD are given by

1 o0
Ry(r) = COZ + 5 Z an cos n2rfyr

n=1

1 oo
Sy() = Co8(F) + 3 3~ Cu8(F = nfo) + 8(F + nfy)]

n=l

Hint: Showthatif g(r) = g1 (1)+g>(¢), then Regl(t) = Rg, 1)+ Ry, (03 +Rg12, () + Ry (1),

where R o, (T) = limyp., oo (1/T) f»T/z g1()g2(r + Ty de. If g1(t) and go(r) represent any
two of the infinite terros in y(r), then show that Reg1g,(T) = Rgzg (r) = 0. To show this, use
the fact that the area under any sinusoid over a very large time interval is at most equal to the
area of the half-cycle of the sinusoid.

The random binary signal x(¢) shown in Fig. P3.8-2 transmits one digit every T), seconds. A
binary 1is transmitted by a pulse p(r) of width T}, /2 and amplitude 4; a binary @ is transmitted by
no pulse. The digits 1 and 0 are equally likely and occur randomly. Determine the autocorrelation
function R (7) and the PSD S, (f).

1 0 i

1_n.nnnqn

LT;,—-‘ -»1 L—- Ty/2 | [ —>

Find the mean square value (or power) of the output voltage y(¢) of the RC network shown
in Fig. P3.5-4 with RC = 2 if the input voltage PSD S, (f) is given by (a) K; (b) I HESBR
(© [8(f + 1) + 8(f — 1)]. In each case calculate the power (mean square value) of the input
signal x(¢).

Find the mean square value (or power) of the output voltage y(z) of the system shown in Fig. P3.8-
4 if the input voltage PSD Sy(f) = TI (=f). Calculate the power (mean square value) of the
input signal x(z).




AMPLTUDE MODULATIONS
AND DEMODULATIONS

frequency band that is dictated by the physical channel (e.g. voiceband telephone

modems). Modulation provides a number of advantages mentioned in Chapter 1
including ease of RF transmission and frequency division multiplexing. Modulations can be
analog or digital. Though traditional communication systems such as AM/FM radios and NTSC
television signals are based on analog modulations, more recent systems such as 2G and 3G
cellphones, HDTV, and DSL are all digital.

In this chapter and the next, we will focus on the classic analog modulations: amplitude
modulation and angle modulation. Before we begin our discussion of different analog modula-
tions, it is important to distinguish between communication systems that do not use modulation
{(baseband communications) and systems that use modulation (carrier communications).

M odulation often refers to a process that moves the message signal into a specific

4.1 BASEBAND VERSUS CARRIER
COMMUNICATIONS

The term baseband is used to designate the frequency band of the original message signal
from the source or the input transducer (see Fig. 1.2). In telephony, the baseband is the audio
band (band of voice signals) of 0 to 3.5 kHz. In NTSC television, the video baseband is
the video band occupying 0 to 4.3 MHz. For digital data or pulse code modulation (PCM)
that uses bipolar signaling at a rate of Rj, pulses per second, the baseband is approximately
0 to Ry Hz.

Baseband Communications

In baseband communication, message signals are directly transmitted without any modification.
Because most baseband signals such as audio and video contain significant low-frequency
content, they cannot be effectively transmitted over radio (wireless) links. Instead, dedicated
user channels such as twisted pairs of copper wires and coaxial cables are assigned to each
user for long-distance communications. Because baseband signals have overlapping bands,
they would interfere severely if sharing a common channel. Thus, baseband communications
leave much of the channel spectrum unused. By modulating several baseband signals and
shifting their spectra to nonoverlapping bands, many users can share one channel by utilizing

140
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most of the available bandwidth through frequency division multiplexing (FDM). Long-haul
communication over a radio link also requires modulation to shift the signal spectrum to
higher frequencies in order to enable efficient power radiation using antennas of reasonable
dimensions. Yet another use of modulation is to exchange transmission bandwidth for better
performance against interferences.

Carrier Modulations

Communication that uses modulation to shift the frequency spectrum of a signal is known as
carrier communication. In terms of analog modulation, one of the basic parameters {ampli-
tude, frequency, or phase) of a sinusoidal carrier of high frequency f. Hz (or o, = 2xf, rad/s)
is varied linearly with the baseband signal m(r). This results in amplitude modulation (AM),
frequency modulation (FM), or phase modulation (PM), respectively. Amplitude modulation
is linear, while the latter two types of carrier modulation are similar and nonlinear, often known
collectively as angle modulation.

A comment about pulse-modulated signals [pulse amplitude modulation (PAM), pulse
width modulation (PWM), pulse position modulation (PPM), pulse code modulation (PCM),
and delta modulation (DM)] is in order here. Despite the term modulation, these signals are
baseband digital signals. “Modulation” is used here not in the sense of frequency or band
shifting. Rather, in these cases it is in fact describing digital pulse coding schemes used to
represent the original analog signals. In other words, the analog message signal is modulating
parameters of a digital pulse train. These signals can still modulate a carrier in order to shift
their spectra.

Amplitude Modulations and Angle Modulations
We denote as m(r) the source message signal that is to be transmitied by the sender to its
receivers; its Fourier transform is denoted as M (f). To move the frequency response of m(r)
to a new frequency band centered at f, Hz, we begin by noting that the Fourier transform has
already revealed a very strong property known as the frequency shifting property to achieve
this goal. In other words, all we need to do is to multiply m(z) by a sinusoid of frequency £
such that

51(t) = m(t) cos 2mf,t
This immediately achieves the basic aim of modulation by moving the signal frequency content
to be centered at &f, via

1 i
S1(f) = M —fo) + iM(f +fe)

This simple multiplication is in fact allowing changes in the amplitude of the sinusoid s1 ()
to be proportional to the message signal. This method is indeed a very valuable modulation
known as amplitude modulation.

More broadly, consider a sinusoidal signal

s(t) = A(t) cos [wet + @ ()]

There are three variables in a sinusoid: amplitude, (instantaneous) frequency, and phase. Indeed,
the message signal can be used to modulate any one of these three parameters to allow s(z) to
carry the information from the transmitter to the receiver:

Amplitude A(¢) linearly varies with m(r) <=> amplitude modulation
Frequency linearly varies with m(z) <= frequency modulation
Phase ¢ (1) linearly varies with m(r) <= phase modulation
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These are known, respectively, as amplitude modulation, frequency modulation, and phase
modulation. In this chapter, we describe various forms of amplitude modulation in practical
communication systems. Amplitude modulations are linear, and their analysis in the time
and frequency domains is simpler. In Chapter 5, we will separately discuss nonlinear angle
modulations.

The Interchangeable Use of f and @

In Chapter 3, we noted the equivalence of frequency response denoted by frequency f with
angular frequency . Each of these two notations has its own advantages and disadvantages.
After the examples and problems of Chapter 3, readers should be familiar and comfortable
with the use of either notation. Thus, from this point on, we will use the two different notations
interchangeably, selecting one or the other on the basis of notational or graphical simplicity.

4.2 DOUBLE-SIDEBAND AMPLITUDE MODULATION

Amplitude modulation is characterized by an information-bearing carrier amplitude A(¢) thatis
a linear function of the baseband (message) signal m(r). At the same time, the carrier frequency
w, and the phase 0, remain constant. We can assume 6, = 0 without loss of generality. If the
carrier amplitude A is made directly proportional to the modulating signal m(s), then modulated
signalis m(t) cos wet (Fig. 4.1). As we saw earlier [Eq. (3.36)], this type of modulation simply
shifts the spectrum of m(?) to the carrier frequency (Fig. 4.1a). Thus, if

m(t) <= M (f)

then
m(t) cos 2nfet &= %[M (f+f)y+M(f =fIl @0

Recall that M (f — f.) is M (f) shifted to the right by f,, and M (f + f¢) is M (f) shifted to
the left by f,. Thus, the process of modulation shifts the spectrum of the modulating signal to
the left and to the right by f.. Note also that if the bandwidth of m(z) is B Hz, then, as seen
from Fig. 4.1c, the modulated signal now has bandwidth of 2B Hz. We also observe that the
modulated signal spectrum'centered at £, (or +e, inrad/s) consists of two parts: a portion that
lies outside +f,., known as the upper sideband (USB), and a portion that lies inside +f;, known
as the lower sideband (LSB). We can also see from Fig. 4.1c that, unless the message signal
M (f) has an impulse at zero frequency, the modulated signal in this scheme does not contain
a discrete component of the carrier frequency f. In other words, the modulation process does
not introduce a sinusoid at ... For this reason it is called double-sideband suppressed carrier
(DSB-SC) modulation.” :

The relationship of B to f is of interest. Figure 4.1c shows that f; > B, thus avoiding
overlap of the modulated spectra centered at f; and —fc. If fo < B, then the two copies of
message spectra overlap and the information of m(f) is lost during modulation, which makes
it impossible to get back m(z) from the modulated signal m(f) cos wet.

Note that practical factors may impose additional restrictions on f;. For instance, in broad-
cast applications, a transmit antenna can radiate only a narrow band without distortion. This
‘means that to avoid distortion caused by the transmit antenna, we must have f./B > 1. The

* The term suppressed carrier does not necessarily mean absence of the spectrum at the carrier frequency fe. It
means that there is no discrete component of the carrier frequency. This implies that the spectrum of the DSB-SC
does not have impulses at &, which also implies that the modulated signal m(z) cos 27f,1 does tiot contain a term
of the form k cos 2mf.t [assuming that m{) has a zero mean value].



Figure 4.1
DSB-SC
modulation and
demodulation.
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m(t)
(Modulating signal)

m(t) cos Wt

(Modulated signal)

{a) Modulator

cOS Wt
(Carrier)

m(r) cos w,t

T (e) Demodulator

cos Wl
(Carrier)

broadcast band AM radio, for instance, with B = 5 kHz and the band of 550 to 1600 kHz for
the carrier frequencies, gives a ratio of fz/B roughly in the range of 100 to 300.

Demodulation

‘The DSB-SC modulation translates or shifts the frequency spectrum to the left and the right
by fc (i.e., at +f. and —f..), as seen from Eq. (4.1). To recover the original signal m(¢) from the
modulated signal, it is necessary to retranslate the spectrum to its original position. The process
of recovering the signal from the modulated signal (retranslating the spectrum to its original
position) is referred to as demodulation. Observe that if the modulated signal spectrum in
Fig. 4.1c is shifted to the left and to the right by f. (and multiplied by one-half), we obtain the
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spectrum shown in Fig. 4.1d, which contains the desired baseband spectrum plus an unwanted
spectrum at +2f,. The latter can be suppressed by a low-pass filter. Thus, demodulation, which
is almost identical to modulation, consists of multiplication of the incoming modulated signal
m(t) cos w.t by a carrier cos .t followed by a low-pass filter, as shown in Fig. 4.1e. We
can verify this conclusion directly in the time domain by observing that the signal e(t) in
Fig. 4.1eis ' ~

e(t) = m(r) cos® wet

_ %[m(z) + () cos 2wef] (4.22)

Therefore, the Fourier transform of the signal e(f) is

1 1
E(f) = EM(f) +4M (f +2f) + M (f = 2/)] (4.2b)

This analysis shows that the signal e(t) consists of two components (1/2ym(t) and
(1/2)ym(t) cos 2w,t, with their nonoverlapping spectra as shown in Fig. 4.1d. The spectrum
of the second component, being a modulated signal with carrier frequency 2f,, is centered at
+2f,. Hence, this component is suppressed by the low-pass filter in Fig. 4.1e. The desired com-
ponent (1/2)M (f), being a low-pass spectrum (centered at f = 0), passes through the filter
unharmed, resulting in the output (1/2)m(r). A possible form of low pass filter characteristics
is shown (under the dotted line) in Fig. 4.1d. The filter leads to a distortionless demodulation of
the message signal m(#) from the DSB-SC signal. We can get rid of the inconvenient fraction
1/2 in the output by using a carrier 2cos w,t instead of cos wt. In fact, later on, we shall
often use this strategy, which does not affect general conclusions.

This method of recovering the baseband signal is called synchronous detection, ot coher-

ent detection, where we use a carrier of exactly the same frequency (and phase) as the carrier

used for modulation. Thus, for demodulation, we need to generate a local carrier at the receiver
in frequency and phase coherence (synchronism) with the carrier used at the modulator.

Example 4.1

For a baseband signal
m(t) = cos wyt = c0s 2w frl,

find the DSB-SC signal, and sketch its spectrum. Identify the USB and LSB. Verify that the

DSB-SC modulated signal can be demodulated by the demodulator in Fig. 4.1e.

The case in this example is referred to as tone modulation because the modulating signal
is a pure sinusoid, or tone, cos wpyt. To clarify the basic concepts of DSB-SC modulation,
we shall work this problem in the frequency domain as well as the time domain. In
the frequency domain approach, we work with the signal spectra. The spectrum of the
baseband signal m(t) = cos wp! is given by |

1
M) = S18(F —fm) +5(F +Fi)]
| = (8@ — om) + 8@ + )]
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The message spectrum consists of two impulses located at &, as shown in Fig. 4.2a.
The DSB-SC (modulated) spectrum, as seen from Eq. (4.1), is the baseband spectrum in
Fig. 4.2a shifted to the right and the left by f; (times one-half), as shown in Fig. 4.2b.
This spectrum consists of impulses at angular frequencies £=(fc — fm) and £(f; + fm).
The spectrum beyond f; is the USB, and the one below f; is the LSB. Observe that the
DSB-SC spectrum does not have the component of the carrier frequency fc. This is why
it is called suppressed carrier.
In the time domain approach, we work directly with signals in the time domain. For the
baseband signal m(f) = cos wy,?, the DSB-SC signal ¢pss-sc(#) is

@psp—sc(t) = m{f) cos wt

= COS Wyl COS Wl
1
= E[COS (we + @)t + cos (we — op)t]

This shows that when the baseband (message) signal is a single sinusoid of frequency fm,
the modulated signal consists of two sinusoids: the component of frequency fe + fin (the
USB) and the component of frequency f> — fin (the LSB). Figure 4.2b shows precisely the
spectrum of e, o (). Thus, each component of frequency fm in the modulating signal
turns into two components of frequencies f +f and fe — f, in the modulated signal. Note
the curious fact that there is no component of the carrier frequency f. on the right-hand
side of the preceding equation. As mentioned, this is why it is called double-sideband
suppressed carrier (DSB-SC) modulation.

We now verify that the modulated signal ¢pss-sc (t) = cos Wt cos wct, when applied
to the input of the demodulator in Fig. 4.1e, yields the output proportional to the desired
baseband signal cos wy,. The signal e(?) in Fig. 4.1e is given by

e(t) = cos wpy! cos? wt

1
=5 cos wpt {1 + cos 2w.1)

oM
1/21 ; T 12 (a)
S 10 fa f-
W)
DSB spectrum .
4 174 174 : 1/4
USBI T LSB LSB T : ‘ USB
Afet fu) —fo ~Uem ) 0 (fo=fu) fo el J -
. \
3M(P)
1/4 1/4 sl s .
Seppressed by foseepass filor Snppraenad by Jowe pas Ty (c)
84 518 178 4 : i 18
! f c
-2/ ~fn 10 fu f—- Y,
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The spectrum of the term cos wy,t cos 2wt is centered at 2w, and will be suppressed by
the low-pass filter, yielding —% COS wpt as the output. We can also derive this result in the
frequency domain. Demodulation causes the spectrum in Fig. 4.2b to shift left and right by
@, (and to be multiplied by one-half). This results in the spectrum shown in Fig, 4.2c. The
low-pass filter suppresses the spectrum centered at +2w,, yielding the spectrum %M ).

Figure 4.3
Nonlinear
DSB-SC
modulafor.

Modulators
Modulation can be achieved in several ways. We shall discuss some important categories of
modulators.

Multiplier Modulaters: Here modulation is achieved directly by multiplying m(f) with
cos wt, using an analog multiplier whose output is proportional to the product of two input
signals. Typically, such a multiplier may be obtained from a variable-gain amplifier in which
the gain parameter (such as the f of a transistor) is controlled by one of the signals, say, m(z).
When the signal cos .7 is applied at the input of this amplifier, the output is proportional to
m(t) cos w,t.

In the early days, multiplication of two signals over a sizable dynamic range was a chal-
lenge to circuit designers. However, as semiconductor technologies continued to advance,
signal multiplication ceased to be a major concern. Still, we will present several classical mod-
ulators that avoid the use of multipliers. Studying these modulators can provide unique insight
and an excellent opportunity to pick up some new signal analysis skills.

Nonlinear Modulators: Modulation can also be achieved by using nonlinear devices,
such as a semiconductor diode or a transistor. Figure 4.3 shows one possible scheme, which
uses two identical nonlinear elements (boxes marked NL).

Let the input-output characteristics of either of the nonlinear elements be approximated
by a power series

y(t) = ax(t) + bx*(2) (4.3)

where x(#) and y(¢) are the input and the output, respectively, of the nonlinear element. The
summer output z(¢) in Fig. 4.3 is given by

2(1) = y1(8) — y2() = [ax1 () + b 2 ()] — [ax2 () + bxy®(1)]

Substituting the two inputs x1 (f) = cos w.t+m(t) and x2(f) = cos wet —m(t) in this equation
yields

z(t) = 2a - m(t) + 4b - m(1) cos wet
The spectrum of m(t) is centered at the origin, whereas the spectrum of m(¢) cos w.t is centered
at dew.. Consequently, when z(#) is passed through a bandpass filter tuned to w,, the signal

am(r) is suppressed and the desired modulated signal 4bm(f) cos wct can pass through the
system without distortion.

R mff) G\\ x1(8) ey {8

BPF

s T rm—
* @,

4bm(r) cos @t

C0S M, x3(7) vt
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In this circuit there are two inputs: m(t) and cos w.¢. The output of the last summer, z(1),
no longer contains one of the inputs, the carrier signal cos . Consequently, the carrier signal
does not appear at the input of the final bandpass filter. The circuit acts as a balanced bridge
for one of the inputs (the carrier). Circuits that have this characteristic are called balanced
circuits. The nonlinear modulator in Fig. 4.3 is an example of a class of modulators known as
balanced modulators. This circuit is balanced with respect to only one input (the carrier); the
other input m(z) still appears at the final bandpass filter, which must reject it. For this reason, it
is called a single balanced modulator. A circuit balanced with respect to both inputs is called
a double balanced modulator, of which the ring modulator (see later: Fig. 4.6) is an example.

Switching Modulators: The multiplication operation required for modulation can be
replaced by a simpler switching operation if we realize that a modulated signal can be obtained
by multiplying m(z) not only by a pure sinusoid but by any periodic signal ¢(#) of the fun-
damental radian frequency w,. Such a periodic signal can be expressed by a trigonometric
Fourier series as

FOEDY Cy cos (nwet + 6,) (4.42)
n=0
Hence,
m(D)¢(t) = Y _ Cn m(?) cos (neoct + ) (4.4b)
n=0

This shows that the spectrum of the product m(f)¢(?) is the spectrum M {w) shifted to
+w,, +2ewe, ..., Enw,,. ... If this signal is passed through a bandpass filter of bandwidth
9B Hz and tuned to w,, then we get the desired modulated signal ¢im(t) cos (et + é).*

The square pulse train w(r) in Fig. 4.4b is a periodic signal whose Fourier series was found
earlier (by rewriting the results of Example 2.4) as

I 2 1 1
w(f) = = + — { cos w,t — = cos 3wl + - co8 Swet — -+ - 4.5)
2 n 3 5
The signal m(2)w(r) is given by
1 2 1 1
m(Hw() = -Z—m(t) + - [m(t) Ccos et — gm(t) cos 3wt + —S—m(t) cos Swet — - - :‘ (4.6)

The signal m(t)w(¢) consists not only of the component m(z) but also of an infinite
number of modulated signals with carrier frequencies w;, 3w, 3w, .. .. Therefore, the spec-
trum_of m(t)w(r) consists of multiple copies of the message spectrum M (f), shifted to
0, +f., £3f., £5f., ... (with decreasing relative weights), as shown in Fig. 4 .4c.

For modulation, we are interested in extracting the modulated component m() Cos .t
only. To separate this component from the rest of the crowd, we pass the signal m(£)w () through
a bandpass filter of bandwidth 2B Hz (or 47 B rad/s), centered at the frequency *f;. Provided
the carrier frequency f. > 2B (or @, > 47 B), this will suppress all the spectral components
not centered at £, to yield the desired modulated signal (2/7)m(7) cos w.t (Fig. 4.4d).

We now see the real payoff of this method. Muitiplication of a signal by a square pulse train
is in realiry a switching operation in which the signal m(¢) is switched on and off periodically; it

* The phase 61 is not important.
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Figure 4.4
Switching
modulator for
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can be accomplished by simple switching elements controlled by w(r). Figure 4.5a shows one
such electronic switch, the diode-bridge modulator, driven by a sinusoid A cos w,t to produce
the switching action. Diodes D(, Dy and D3, D4 are matched pairs. When the signal cos w.tis
of a polarity that will make terminal ¢ positive with respect to d, all the diodes conduct. Because
diodes D1 and D, are matched, terminals a and b have the same potential and are effectively
shorted. During the next half-cycle, terminal d is positive with respect to ¢, and all four diodes
open, thus opening terminals a and b. The diode bridge in Fig. 4.5a, therefore, serves as a
desired electronic switch, where terminals a and b open and close periodically with carrier

- frequency f. when a sinusoid A cos wt is applied across terminals ¢ and d. To obtain the signal

m(t)w(t), we may place this electronic switch (terminals a and b) in series (Fig. 4.5b) or across
(in parallel) m(f), as shown in Fig. 4.5¢. These modulators are known as the series-bridge
diode medulator and the shunt-bridge diode modulator, respectively, This switching on
and off of m(¢) repeats for each cycle of the carrier, resulting in the switched signal m(fw(f),
which when bandpass-filtered, yields the desired modulated signal (2/7)m(t) cos w,t.

- Another switehing modulator, known as the ring modulator, is shown in Fig. 4.6a. During
the positive half-cycles of the carrier, diodes Dy and D3 conduct, and Dy and Dy are open.
Hence, terminal a is connected to ¢, and terminal & is connected to d. During the negative
half-cycles of the carrier, diodes D} and Ds are open, and Dy and Dy are conducting, thus
connecting terminal a to 4 and terminal b to ¢. Hence, the output is proportional to m(r) during
the positive half-cycle and to —m(#) during the negative half-cycle. In effect, m(z) is multiplied
by a square pulse train wy(#), as shown in Fig. 4.6b. The Fourier series for wy(z) can be found
by using the signal w(z) of Eq. (4.5) to yield wo(¢) = 2w(r) — 1. Therefore, we can use the
Fourier series of w(t) [Eq. (4.5)] to determine the Fourier series of wo(z) as

4 1 1
wo(t) = — | cos w.t — = co8 3wt -+ — cos Swet — -- ) (4.7a)
1A 3 5
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Figure 4.5

(c) Diode-bridge

electronic switch.

(b} Series-bridge

diode modulator. c
{c) Shuntbridge

diode modulator.

a b
o— 0+ — R
Bandpass a Bandpass
m(t) filter | Am{t) cos et mit) Slter | km(e) cos 0.
b
- L o
(b) ©
Figure 4.6 D
Ring modulator. a ! ¢
O % H & ——
D, + Bandpass
mt) v; filter km(t) cos w.t
D, -
o & i » —o
b D, d
+ —

I

N

A cos @t

(a)
w(r)
1111
(b)

vi = m(t)wo(?)

(e (d)



150  AMPLITUDE MODULATIONS AND DEMODULATIONS

Hence, we have
4 1 , 1
vi(t) = m(O)wg(t) = — [m(t) Ccos wel — gm(t) cos 3wt + gm(t) Ccos Swet — - ] 4. 7b)
14

The signal m(t)wo(r) is shown in Fig. 4.6d. When this waveform is passed through a bandpass
filter tuned to w, (Fig. 4.6a), the filter output will be the desired signal (4/7)m(t) cos wct.

In this circuit there are two inputs: m() and cos w.¢. The input to the final bandpass filter
does not contain either of these inputs. Consequently, this circuit is an example of a double
balanced modulator.

Example 4.2 Frequency Mixer or Converter
We shall analyze a frequency mixer, or frequency converter, used to change the carrier
frequency of a modulated signal m(?) cos .t from w, to another frequency wy.

This can be done by multiplying 72(¢) cos ¢t by 2¢0s wyixt, Where wmix = w, + wy or
Wc — W, and then bandpass-filtering the product, as shown in Fig. 4.7a.

Figure 4.7
Frequency mixer m(t) cos w,t x(t) Bandpass m(1) cos wyl
or converter. filter

tuned to w;

2 cos (w, =L wy)t

(a)
/,‘\\ //“\
| / \ : [ \‘ W
0 2w, — wy 2w, 20, ta;
(b)

The product x(¢) is

x(1) = 2m(t) CO8 el COS Wmixt
= m(t)[cos (we — Omix)T + €08 (@ + Omix)1]

If we select wmix = o, — wy, then

x(t) = m(t)[cos wrt + cos 2w, — wy)1]
If we select wpyix = w, + oy, then

x(t) = m(f)[cos wit + cos Qw, + wr)t]
In either case, as long as w; — wy > 27 B and w; > 2x B, the various spectra in Fig. 4.7b
will not overlap. Consequently, a bandpass filter at the output, tuned to wy, will pass the

term m(¢) cos wyt and suppress the other term, vielding the output m(r) cos wit. Thus,
the carrier frequency has been translated to w; from w,.
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The operation of frequency mixing/conversion (also known as heterodyning) is basically a
shifting of spectra by an additional wyx. This is equivalent to the operation of modulation
with a modulating carrier frequency (the mixer oscillator frequency wp;x ) that differs from
the incoming carrier frequency by w;. Any one of the modulators discussed earlier can be
used for frequency mixing. When we select the local carrier frequency wmix = ®¢ + oy,
the operation is called upconversion, and when we select wnix = w, — wy, the operation
is dewnconversion.

Demodulation of DSB-SC Signals
As discussed earlier, demodulation of a DSB-SC signal essentially involves multiplication by
the carrier signal and is identical to modulation (see Fig. 4.1). At the receiver, we multiply the
incoming signal by a local carrier of frequency and phase in synchronism with the incoming
carrier. The product is then passed through a low-pass filter. The only difference between the
modulator and the demodulator lies in the input signal and the output filter. In the modulator,
message m(z) is the input while the multiplier output is passed through a bandpass filter tuned
to w., whereas in the demodulator, the DSB-SC signal is the input while the multiplier output
is passed through a low-pass filter. Therefore, all the modulators discussed earlier without
multipliers can also be used as demodulators, provided the bandpass filters at the output are
replaced by low-pass filters of bandwidth B.

For demodulation, the receiver must generate a carrier in phase and frequency synchro-
nism with the incoming carrier. These demodulators are synonymously called synchronous
or coherent (also homodyne) demodulators.

Example 4.3

Analyze the switching demodulator that uses the electronic switch (diode bridge) in Fig. 4.5a
as a switch (either in series or in parallel).

The input signal is m(z) cos w,t. The carrier causes the periodic switching on and off of the
input signal. Therefore, the output is m(z) cos w.t x w(f). Using the identity cos x cos y =
0.5[cos (x + y) -+ cos (x — y}], we obtain

il

1 2 1
m{t) cos w.t X w(t) = m(t) cos wct I:E i (cos wet — 3 cos 3wt + - )}
7T

.

i

2
—m(t) cos? wet + terms of the form m(t) cos nwet
T

il

1 1
—m(t) + —m(r) cos 2wt + terms of the form m(¢) cos nw.!
i i1 , ,

Spectra of the terms of the form m(f) cos nw,t are centered at +nw, and are filtered out
by the low-pass filter, yielding the output (1/7)m(z). 1t is left as an exercise for the reader
to show that the output of the ring circuit in Fig. 4.6a operating as a demodulator (with
the low-pass filter at the output) is (2/7)m(t) (twice that of the switching demodulator in
this example).

4.3 AMPLITUDE MODULATION (AM)

In the last section, we began our discussion of amplitude modulation by introducing the DSB-
SC amplitude modulation because it is easy to understand and to analyze in both the time
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and frequency domains. However, analytical simplicity does not always equate to simplicity
in practical implementation. The (coherent) demodulation of a DSB-SC signal requires the
receiver to possess a carrier signal that is synchronized with the incoming carrier. This require-
ment is not easy to achieve in practice. Because the modulated signal may have traveled
hundreds of miles and could even suffer from some unknown frequency shift, the bandpass
received signal in fact has the form of

r(£) = A;m(t — 1p) cos [(we + Aw)(t — to)] = Aem(t — to) cos [(we + Aw)t — 64)]
in which Aw represents the Doppler effect while
By = (0, + Aw)ty

comes from the unknown delay f;. To utilize the coherent demodulator, the receiver must be
sophisticated enough to generate a local oscillator ¢os [(w, + Aw)t — ;)] purely from the -
received signal 7(¢). Such a receiver would be harder to implement and could be quite costly.
This cost is particularly to be avoided in broadcasting systems, which have many receivers for
every transmitter. ,

The alternative to a coherent demodulator is for the transmitter to send a carrier A cos w.t
[along with the modulated signal m(#) cos w.7] so that there is no need to generate a carrier
at the receiver. In this case the transmitter needs to transmit at a much higher power level,
which increases its cost as a trade-off. In point-to-point communications, where there is one
transmitter for every receiver, substantial complexity in the receiver system can be justified,
provided its cost is offset by a less expensive transmitter. On the other hand, for a broadcast
system with a huge number of receivers for each transmitter, it is more economical to have
one expensive high-power transmitter and simpler, less expensive receivers because any cost
saving at the receiver is multiplied by the number of receiver units. For this reason, broadcasting
systems tend to favor the trade-off by migrating cost from the (many) receivers to the (fewer)
transmitters.

The second option of transmitting a carrier along with the modulated signal is the obvious
choice in broadcasting because of its desirable trade-offs. This leads to the so-called AM
(amplitude modulation), in which the transmitted signal pam(?) is given by

pam{t) : A cos wet + m(t) cos wet (4.8a)
= [A + m(r)]cos w.t (4.8b)

The spectrum of gam(t) is basically the same as that of ¢psg—sc(t) = m(f) cos w.t except
for the two additional impulses at %f,,

1 A
pam(®) &= SIM(f +fo) + M —fo)l + Y +fe) +8(f —foll (4.8¢)

Upon comparing gam(?) with gpgs—sc(f) = m(t) cos wct, it is clear that the AM signal is
identical to the DSB-SC signal with A + m(z) as the modulating signal {instead of m(t)]. The
value of A is always chosen to be positive. Therefore, to sketch gam (1), we sketch the envelope
|A + m(r)] and its mirror image —|A + m(z)| and fill in between with the sinusoid of the carrier
frequency f.. The size of A affects the time domain envelope of the modulated signal.

Two cases are considered in Fig. 4.8. In the first case, A is large enough that A +m(¢) = 0
is always nonnegative. In the second case, A is not large enough to satisfy this condition. In
the first case, the envelope has the same shape as m(z) (although riding on a dc of magnitude
A). In the second case, the envelope shape differs from the shape of m(7) because the negative
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Figure 4.8
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part of A + m(r) is rectified. This means we can detect the desired signal m(t) by detecting the
envelope in the first case when A +m(r) > 0. Such detection is not possible in the second case.
We shall see that envelope detection is an extremely simple and inexpensive operation, which
does not require generation of a local carrier for the demodulation. But as seen earlier, the AM
envelope has the information about m(r) only if the AM signal [4 + m(¢)] cos w,¢ satisfies the
condition A + m(t) > 0 for all 7.

Let us now be more precise about the definition of “envelope.” Consider a signal
E(t) cos w.t. I E(¢) varies slowly in comparison with the sinusoidal carrier cos w,t, then the
envelope of E(¢) cos w,tis |[E(¢)|. This means [see Eq. (4.8b)] that if and only if A +m(r) = 0
for all 1, the envelope of am(t) is

A+ m()| = A+ m(t)
In other words, for envelope detection to properly detect m(¢), two conditions must be met:

(a) f; > bandwidth of m(z)
B A+m@® =0

This conclusion is readily verified from Fig. 4.8d and e. In Fig. 4.8d, where A + m(f) > 0,
A + m(z) is indeed the envelope, and m(f) can be recovered from this envelope. In Fig. 4.8e,
where A + m(t) is not always positive, the envelope |4 + m(¢)] is rectified from A + m(z),
and m(z) cannot be recovered from the envelope. Consequently, demodulation of @am(f) in
Fig. 4.8d amounts to simple envelope detection. Thus, the condition for envelope detection
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of an AM signal is
A+m() =0 for all ¢ (4.9a)

If m(f) > O for all z, then A = O already satisfies condition (4.9a). In this case there is no need
to add any carrier because the envelope of the DSB-SC signal m(t) cos w,? is m(r) and such a
DSB-SC signal can be detected by envelope detection. In the following discussion we assume
that m(r) # 0 for all 7; that is, m(r) can be negative over some range of f.

Message Signals m(f) with Zero Offset: Let £m,, be the maximum and the minimum
values of m(t), respectively (see Fig. 4.8). This means that m(z) > —m,. Hence, the condition
of envelope detection (4.9a) is equivalent to

A = —Mgin (4.9b)

Thus, the minimum carrier amplitude required for the viability of envelope detection is m,.

This is quite clear from Fig. 4.8. We define the modulation index p as
Mp

= — 4.10a

p=- ( )

For envelope detection to be distortionless, the condition is A > m,. Hence, it follows that
O<u=x<l . (4.10b)

is the required condition for the distortionless demodulation of AM by an envelope detector.

When A < mj, Eq. (4.10a) shows that u > 1 (overmodulation). In this case, the option of
envelope detection is no longer viable. We then need to use synchronous demodulation. Note
that synchronous demodulation can be used for any value of p, since the demodulator will
recover signal A + m(z). Only an additional dc block is needed to remove the DC voltage A.
The envelope detector, which is considerably simpler and less expensive than the synchronous-
detector, can be used only for y < 1.

Message Signals m(¢) with Nonzero Offset: On rare occasions, the message signal
m(t) will have a nonzero offset such that its maximum mpyay and its minimum My, are not
symmetric, that is,

Mpin 7 —Mmax
In this case, it can be recognized that any offset to the envelope does not change the shape of
the envelope detector output. In fact, one should note that constant offset does not carry any
fresh information.

In this case, envelope detection would still remain distortionless if

O<pu=1l (4.11a)

with a modified modulation index definition of

N Mimax — Mmin
2A + Mpax + Mmin

“ (4.11b)

Example 4.4

Sketch panm(7) for modulation indices of p = 0.5 and p = 1, when m(z) = b cos wy,t. This
case is referred to as tone modulation because the modulating signal is a pure sinusoid (or
tone).
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In this case, Mgy = b and my, = —b. Hence the modualation index according to Eq.
(4.10a) is

-

b= (=b b
T 2A+b+(=b) 4
Hence, b = pA and
m(t) = bcos pt = LA COS Wyt

Therefore,
pam(t) = [A + m(t)] cos w.t = A[1 + 14c0s wpt]cos w .t
Figure 4.9 shows the modulated signals corresponding to i = 0.5 and w« = 1, respectively.

w=03 p=1
© 1+ cos Wyt
1+ 0.5 cos wy,t . - ol

Sideband and Carrier Power
The advantage of envelope detection in AM comes at a price. In AM, the carrier term does not
carry any information, and hence, the carrier power is wasteful from this point of view:

pam(t) = Acos wt +  mit)cos wt

carrier sidebands

The carrier power P, is the mean square value of A cos w,f, which is A2 /2. The sideband

[N

power Py is the power of m(t) cos w.t, whichis 0.5 m2(r) [see Eq. (3.93)]. Hence,

Pe= — and Py =

The useful message information resides in the sideband power, whereas the carrier power is
the used for convenience in modulation and demodulation. The total power is the sum of the
carrier (wasted) power and the sideband (useful) power. Hence, 7, the power efficiency, is

ful P 2(r
:utseax;power:}) SP: m(r) 100%
otal power ¢+ Py A2 4 m%‘)
For the special case of tone modulation,
varaaan A 2
m(t) = LA COS wyt and mz(t) = g—i-—l-

2
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Hence

“
= —— 100%
n= o 100%

with the condition that 0 < u < 1. It can be seen that n increases monotonically with u, and
max Occurs at 4 = 1, for which

Nmax = 33%

Thus, for tone modulation, under the best conditions (¢ = 1), only one-third of the transmitted
power is used for carrying messages. For practical signals, the efficiency is even worse—on the
order of 25% or lower—compared with the DSB-SC case. The best condition implies 4 = 1.
Smaller values of ; degrade efficiency further. For this reason, volume compression and peak
limiting are commonly used in AM to ensure that full modulation (1 = 1) is maintained most
of the time.

Example 4.5

Determine 7 and the percentage of the total power carried by the sidebands of the AM wave
for tone modulation when u = 0.5 and when p = 0.3,

For u = 0.5,
2 0.5)%
7 = ._fi__imo% = __E_)__Z
24 un 2+ (0.5)
Hence, only about 11% of the total power is in the sidebands. For u = 0.3,

100% = 11.11%

0.3)2
= 2 100% = 4.3%
=503 " ¢

§ Hence, only 4.3% of the total power is in the sidebands that contain the message signal.

Generation of AM Signals

In principle, the generation of AM signals is identical to that of the DSB- SC modulations
discussed in Sec. 4.2 except that an additional carrier component A cos w.f needs to be added
to the DSB-SC signal.

Demodulation of AM Signals

Like DSB-SC signals, the AM signal can be demodulated coherently by a locally generated
carrier. Coherent, or synchronous, demodulation of AM, however, defeats the purpose of AM
because it does not take advantage of the additional carrier component A cos wcf. As we have
seen earlier, in the case of i < 1, the envelope of the AM signal follows the message signal
m(t). Hence, we shall consider here two noncoherent methods of AM demodulation under the
condition of 0 < ¢ < 1: rectifier detection and envelope detection.

Rectifier Detector: If an AM signal is applied to a diode and a resistor circuit (Fig. 4.10),
the negative part of the AM wave will be removed. The output across the resistor is a half-wave-
rectified version of the AM signal. Visually, the diode acts like a pair of scissors by cutting off
any negative half-cycle of the modulated sinusoid. In essence, at the rectifier output, the AM
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Fi 4.10
R:agc’:;f::r detector [a + m(2)] cos w,e VD) [+ m()]

for AM . “‘*‘”{A + Iﬂ(t‘)}
. 4+ mi)]
U mm f‘\/—

L Low-pass
[4 + m(0)] cos w,t ;: filter

signal is multiplied by w(). Hence, the half-wave-rectified output vr(r) is
VR(®) = {[A + m(1)] cos wet} w(z) (4.12)

1 2 1 1
=[A+m()]cos wet | = + = | cOs wet — = cos 3wt + — cos Swet— - --
2 =z 3 5
“4.13)

1
= [A + m(#)] + other terms of higher frequencies (4.14)

When vg(t) is applied to a low-pass filter of cutoff B Hz, the output is [A + m(#)]/7, and all
the other terms in vg of frequencies higher than B Hz are suppressed. The dc term A/ may
be blocked by a capacitor (Fig. 4.10) to give the desired output m(7) /7. The output can be
doubled by using a full-wave rectifier.

It is interesting to note that because of the multiplication with w(t), rectifier detection is in
effect synchronous detection performed without using a local carrier. The high carrier content
in AM ensures that its zero crossings are periodic and the information about the frequency and
phase of the carrier at the transmitter is built in to the AM signal itself.

Envelope Detector: The output of an envelope detector follows the envelope of the
modulated signal. The simple circuit shown in Fig. 4.11a functions as an envelope detector.
On the positive cycle of the input signal, the input grows and may exceed the charged voltage
on the capacity v¢(t), turning on the diode and allowing the capacitor C to charge up to the
peak voltage of the input signal cycle. As the input signal falls below this peak value, it falls
quickly below the capacitor voltage (which is very nearly the peak voltage), thus causing the
diode to open. The capacitor now discharges through the resistor R at a slow rate (with a time
constant RC). During the next positive cycle, the same drama repeats. As the input signal rises
above the capacitor voltage, the diode conducts again. The capacitor again charges to the peak
value of this (new) cycle. The capacitor discharges slowly during the cutoff period.

During each positive cycle, the capacitor charges up to the peak voltage of the input signal
and then decays slowly until the next positive cycle as shown in Fig. 4.11b. The output voltage
ve (1), thus, closely follows the (rising) envelope of the input AM signal. Equally important,
the slow capacity discharge via the resistor R allows the capacity voltage to follow a declining
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Figure 4.11
Envelope
detector for AM.

P —o
¥
AM signal { c ;:%@ v (1)
. )
® -0

(a)

Envelope detector output

RC too large
L i Envelope IS

envelope. Capacitor discharge between positive peaks causes a ripple signal of frequency w,
in the output. This ripple can be reduced by choosing a larger time constant RC so that the
capacitor discharges very little between the positive peaks (RC > 1/w.). Picking RC too
large, however, would make it impossible for the capacitor voltage to follow a fast-declining
envelope (see Fig. 4.11b). Because the maximum rate of AM envelope decline is dominated
by the bandwidth B of the message signal m(¢), the design criterion of RC should be

1
1/w, < RC < 1/(2nB) or 2nB < RC <K ¢

The envelope detector output is ve(r) = A + m(z) with a ripple of frequency w,. The dc term
A can be blocked out by a capacitor or a simple RC high-pass filter. The ripple may be reduced
further by another (low-pass) RC filter.

4.4 BANDWIDTH-EFFICIENT AMPLITUDE
MODULATIONS

As seen from Fig. 4.12, the DSB spectrum (including suppressed carrier and AM) has two
sidebands: the upper sidebard (USB) and the lower sideband (LSB), each containing the
complete information of the baseband signal m(#). As a result, fora baseband signal m(z) with
bandwidth B Hz, DSB modulations require twice the radio-frequency bandwidth to transmit.
To improve the spectral efficiency of amplitude modulation, there exist two basic schemes to
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either utilize or remove the 100% spectral redundancy:

- Single-sideband (SSB) modulation, which removes either the LSB or the USB that uses only
bandwidth of B Hz for one message signal m(r);

* Quadrature amplitude modulation (QAM), which utilizes the spectral redundancy by sending
two messages over the same bandwidth of 28 Hz.

Amplitude Modulation: Single Sideband (SSB)

As shown in Fig. 4.13, either the LSB or the USB can be suppressed from the DSB signal
via bandpass filtering. Such a scheme in which only one sideband is transmitted is known as
single-sideband (SSB) transmission, and requires only one-half the bandwidth of the DSB
signal.

Figure 4.12
{a) Original
message
spectrum. {b} The
redundant
bandwidth
consumption in
DSB
modulations.

(2)
Figure 4.13
SSB spectra from
suppressing one
DSB sideband. () Bascband
Upper Lower
Lower sideband Upper
sideband sideband
\ (b) DSB
0 fe F—e
(c) USB
0
(d) LSB
0

(e)



160 AMPLITUDE MODULATIONS AND DEMODULATIONS

Figure 4.14
Transfer function
of an ideal /2
phase shifter
{Hilbert

transformer).

An SSB signal can be coherently (synchronously) demodulated just like DSB-SC signals.
For example, multiplication of a USB signal (Fig. 4.13c) by cos wf shifts its spectrum to the
left and right by w,, yielding the spectrum in Fig. 4.13e. Low-pass filtering of this signal yields
the desired baseband signal. The case is similar with LSB signals. Since the demodulation of
SSB signals is identical to that of DSB-SC signals, the transmitters can now utilize only half
the DSB-SC signal bandwidth without any additional cost to the receivers. Since no additional
carrier accompanies the modulated SSB signal, the resulting modulator outputs are known as
suppressed carrier signals (SSB-SC).

Hilbert Transform
We now introduce for later use a new tool known as the Hilbert transform. We use x), () and
H{x(1)} to denote the Hilbert transform of signal x(1)

(1) = Hx(®)) = ;1[_ f AU (4.15)

oo L~

Observe that the right-hand side of Eq. (4.15) has the form of a convolution
1
x(t) % —
wt

Now, application of the duality property to pair 12 of Table 3.1 yields 1/nr <=> —jsgn(f).
Hence, application of the time convolution property to the convolution {of Eq. (4.15) yields

Xp(f) = —jX () sen (f) (4.16)

From Eq. (4.16), it follows that if m(r) passes through a transfer function H(f) =
—j sgn (f), then the output is my (), the Hilbert transform of m(¢). Because

H(f)=—jsgn(f) (4.17)

[ —i=te >0 '

—{ j=1.672  f<0 (4.18)
it follows that |[H(f)| = 1 and that 6,(f) = —m/2forf > 0 and /2 for f < 0, as shown in
Fig. 4.14. Thus, if we change the phase of every component of m(t) by /2 (without changing
its amplitude), the resulting signal is (1), the Hilbert transform of m(z). Therefore, a Hilbert
transformer is an ideal phase shifter that shifts the phase of every spectral component by —m/2.

8,(f)

w

|H()!
! |2

(a) (b)
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Expressing SSB
spectra in terms
of My (f) and
M_(f).
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(a)

(b)

(c)
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M(F+ 1) |

“fc 0

Time Domain Representation of SSB Signals
Because the building blocks of an SSB signal are the sidebands, we shall first obtain a time
domain expression for each sideband.

Figure 4.15a shows the message spectrum M (f). Figure 4.15b shows itsright half M. (f),
and Fig. 4.15¢ shows its left half M_(f). From Fig. 4.15b and ¢, we observe that

1
Mo(f) =M () u(f) =Mz U+ sgn(f)] = 5 [M(f) +/Mp(f)] (4.19a)

(M (f) — jMu(f)] (4.19b)

PO P p O e

1
M_(f) =M (u(-f) =M )z 11~ sgn(f)] =

We can now express the SSB signal in terms of m() and m (#). From Fig. 4.15d it s clear
that the USB spectrum ®ysp(f) can be expressed as

Syss(f) =M (f —fo) +M_(f +fo)

1 1
=3 M(f —f)+M(f +fl— 2% M(f —fo) —M(f +1o)]
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From the frequency-shifting property, the inverse transform of this equation yields

pusB (1) = m(t) cos wet — my(f) sin w,t (4.20a)
Similarly, we can show that

wLse (1) = m(t) cos wet + my{t) sin w .t {4.20b)
Hence, a general SSB signal ¢ggp(7) can be expressed as

@ssB (1) = m(t) cos w.t F my(t) sin w,t (4.20¢)

where the minus sign applies to USB and the plus sign applies to LSB.
Given the time domain expression of SSB-SC signals, we can now confirm analytically
(instead of graphically) that SSB-SC signals can be coherently demodulated:
@ssB(f) cos wet = [m(r) cos wet F my(t) sin wet] 2 cos wet
=m(#)[1 + cos 2w.r] F my(r) sin 2wt

= m(7) + [m(t) cos 2wt F my(t) sin Zw,r]

SSB-SC signal with carrier 2e,

Thus, the product @ssg(f) - 2cos w,t yields the baseband signal and another SSB signal
with a carrier 2¢,. The spectrum in Fig. 4.13¢ shows precisely this result, A low-pass filter
will suppress the unwanted SSB terms, giving the desired baseband signal m(z). Hence, the
demodulator is identical to the synchronous demodulator used for DSB-SC. Thus, any one of
the synchronous DSB-SC demodulators discussed earlier in Sec. 4.2 can be used to demodulate
an SSB-SC signal.

Excmplé 4.6

Tone Modulation: SSB
Find ¢ssg () for a simple case of a tone modulation, that is, when the modulating signal is a
sinusoid m(#) = cos wpf. Also demonstrate the coherent demodulation of this SSB signal.

Recall that the Hilbert transform delays the phase of each spectral component by /2.
In the present case, there is only one spectral component of frequency wy,. Delaying the
phase of m(r) by 7 /2 yields

T .
mip(t) = cos (a)mt - E) = SIN Wyt
Hence, from Eq. (4.20c),

PSSR(L) = COS Wyl COS Wel T SIN Wyt SN w,t

= €08 {w, £ wpy)t
Thus,
@usp (1) = 08 (we + W)t and @LsB (1) = cos (W, — W)t

To verify these results, consider the spectrum of m(r) (Fig. 4.16a) and its DSB-SC
(Fig. 4.16b), USB (Fig. 4.16c), and LSB (Fig. 4.16d) spectra. It is evident that the spectra
in Fig. 4.16¢ and d do indeed correspond to the gysg (¢) and @155 (f) derived earlier.
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. - Finally, the coherent demodulation of the SSB tone modulation is can be achieved by

wssp ()2 cos wet = 2cos (@ £ wp)tcos wt

= 0§ wpl + o8 (W, + o)t

which can be sent to a lowpass filter to retrieve the message tone cos wp!.

SSB Modulation Systems

Three methods are commonly used to generate SSB signals: phase shifting, selective filtering,
and the Weaver method.! None of these modulation methods are precise, and all generaﬂy
require that the baseband signal spectrum have little power near the origin.

The phase shift method directly uses Eq. (4.20) as its basis. Figure 4.17 shows its imple-
mentation. The box marked “—m /2" is a phase shifter, which delays the phase of every positive
spectral component by 7 /2. Hence, it is a Hilbert transformer. Note that an ideal Hilbert phase
shifter is unrealizable. This is because the Hilbert phase shifter requires an abrupt phase change
of 7 at zero frequency. When the message m(f) has a dc null and very little low-frequency
content, the practieal approximation of this ideal phase shifter has almost no real effect and
does not affect the accuracy of SSB modulation.

In the selective-filtering method, the most commonly used method of generating SSB
signals, a DSB-SC signal is passed through a sharp cutoff filter to eliminate the undesired side-
band. To obtain the USB, the filter should pass all components above frequency f, unattenuated
and completely suppress all components below f,. Such an operation requires an ideal filter,
which is unrealizable. It can, however, be approximated closely if there is some separation
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Figure 4.17
Generating SSB
using the phase
shift method.

Figure 4.18
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between the passband and the stopband. Fortunately, the voice signal provides this condition,
because its spectrum shows little power content at the origin (Fig. 4.18a). In addition, articu-
lation tests have shown that for speech signals, frequency components below 300 Hz are not
important. In other words, we may suppress all speech components below 300 Hz (and above
3500 Hz) without affecting intelligibility appreciably. Thus, filtering of the unwanted sideband
becomes relatively easy for speech signals because we have a 600 Hz transition region around
the cutoff frequency f;. To minimize adjacent channel interference, the undesired sideband
should be attenuated at least 40.dB.

For very high carrier frequency f, the ratio of the gap band (600 Hz) to the carrier
frequency may be too small, and, thus, a transition of 40 dB in amplitude over 600 Hz may
be difficult. In such a case, a third method, known as Weaver’s method,! utilizes two stages
of SSB amplitude modulation. First, the modulation is carried out by using a smaller carrier
frequency (f;, ). The resulting SSB signal effectively widens the gap to 2f;, (see shaded spectra
in Fig. 4.18b). Now by treating this signal as the new baseband signal, it is possible to achieve
SSB-modulation at a higher carrier frequency.



