


Theory of Computer Science
Ali Shakiba

Vali-e-Asr University of Rafsanjan

ali.shakiba@vru.ac.ir



Preliminaries (1)
Programs and Computable Functions (2)

Theory of Computation
Course note based on Computability, Complexity, and Languages:

Fundamentals of Theoretical Computer Science, 2nd edition,

authored by Martin Davis, Ron Sigal, and Elaine J. Weyuker.

course note prepared by

Tyng–Ruey Chuang

Institute of Information Science, Academia Sinica

Department of Information Management, National Taiwan University

Week 1, Spring 2010

1 / 36



Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Program That Computes f (x1, x2) = x1 · x2

I Z2 ← X2

[B] IF Z2 6= 0 GOTO A
GOTO E

[A] Z2 ← Z2 − 1
Z1 ← X1 + Y
Y ← Z1

GOTO B

I OK!

31 / 36



Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Program That Computes f (x1, x2) = x1 · x2

I Z2 ← X2

[B] IF Z2 6= 0 GOTO A
GOTO E

[A] Z2 ← Z2 − 1
Z1 ← X1 + Y
Y ← Z1

GOTO B

I OK!

31 / 36



Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Shorter Program That Computes f (x1, x2) = x1 · x2?

I Z2 ← X2

[B] IF Z2 6= 0 GOTO A
GOTO E

[A] Z2 ← Z2 − 1
Y ← X1 + Y
GOTO B

I NO GOOD!

I Why?

32 / 36



Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Shorter Program That Computes f (x1, x2) = x1 · x2?

I Z2 ← X2

[B] IF Z2 6= 0 GOTO A
GOTO E

[A] Z2 ← Z2 − 1
Y ← X1 + Y
GOTO B

I NO GOOD!

I Why?

32 / 36



Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Shorter Program That Computes f (x1, x2) = x1 · x2?

I Z2 ← X2

[B] IF Z2 6= 0 GOTO A
GOTO E

[A] Z2 ← Z2 − 1
Y ← X1 + Y
GOTO B

I NO GOOD!

I Why?

32 / 36



Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

I The macro for f (x1, x2) = x1 + x2

Y ← X1

Z ← X2

[B] IF Z 6= 0 GOTO A
GOTO E

[A] Z ← Z − 1
Y ← Y + 1
GOTO B

I Macro expanding Y ← X1 + Y :

Y ← X1

Z ← Y
[B] IF Z 6= 0 GOTO A

GOTO E
[A] Z ← Z − 1

Y ← Y + 1
GOTO B

I The above actually computes f (x1, x2) = 2 · x1

33 / 36



Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

I The macro for f (x1, x2) = x1 + x2

Y ← X1

Z ← X2

[B] IF Z 6= 0 GOTO A
GOTO E

[A] Z ← Z − 1
Y ← Y + 1
GOTO B

I Macro expanding Y ← X1 + Y :

Y ← X1

Z ← Y
[B] IF Z 6= 0 GOTO A

GOTO E
[A] Z ← Z − 1

Y ← Y + 1
GOTO B

I The above actually computes f (x1, x2) = 2 · x1

33 / 36



Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

I The macro for f (x1, x2) = x1 + x2

Y ← X1

Z ← X2

[B] IF Z 6= 0 GOTO A
GOTO E

[A] Z ← Z − 1
Y ← Y + 1
GOTO B

I Macro expanding Y ← X1 + Y :

Y ← X1

Z ← Y
[B] IF Z 6= 0 GOTO A

GOTO E
[A] Z ← Z − 1

Y ← Y + 1
GOTO B

I The above actually computes f (x1, x2) = 2 · x1
33 / 36



Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Program That Computes f (x1, x2) = x1 · x2, Revisited
I Need to macro expand Z1 ← X1 + Y .
I After macro expansion:

Z2 ← X2

[B] IF Z2 6= 0 GOTO A
GOTO E

[A] Z2 ← Z2 − 1
Z1 ← X1

Z3 ← Y
[B2] IF Z3 6= 0 GOTO A2

GOTO E2

[A2] Z3 ← Z3 − 1
Z1 ← Z1 + 1
GOTO B2

[E2] Y ← Z1

GOTO B
34 / 36



Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

Note on The Macro Expansion

I The output variable Y in the macro f (x1, x2) = x1 + x2 is now
fresh variable Z1 in the expanded form.

I The local variable Z in the macro f (x1, x2) = x1 + x2 is now
fresh variable Z3 in the expanded form (as variables Z1 and Z2

are already used).

I Fresh labels A2, B2, and E2 are used in the expanded form (as
the original labels A, B, and E are already used).

I The instruction GOTO E2 only terminates the addition. The
computation must continue to place following the addition.
Hence, the instruction immediately following the addition is
labeled E2.

I Unlimited supply of fresh local variables and local labels!

I More about macro expansion next week.

35 / 36



Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Final Example
I What does this program compute?

Y ← X1

Z ← X2

[C ] IF Z 6= 0 GOTO A
GOTO E

[A] IF Y 6= 0 GOTO B
GOTO A

[B] Y ← Y − 1
Z ← Z − 1
GOTO C

I If we begin with X1 = 5 and X2 = 2, . . .
I If we begin with X1 = 2 and X2 = 5, . . .
I This program computes the following partial function

g(x1, x2) =

{
x1 − x2 if x1 ≥ x2

↑ if x1 < x2

36 / 36



Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Final Example
I What does this program compute?

Y ← X1

Z ← X2

[C ] IF Z 6= 0 GOTO A
GOTO E

[A] IF Y 6= 0 GOTO B
GOTO A

[B] Y ← Y − 1
Z ← Z − 1
GOTO C

I If we begin with X1 = 5 and X2 = 2, . . .

I If we begin with X1 = 2 and X2 = 5, . . .
I This program computes the following partial function

g(x1, x2) =

{
x1 − x2 if x1 ≥ x2

↑ if x1 < x2

36 / 36



Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Final Example
I What does this program compute?

Y ← X1

Z ← X2

[C ] IF Z 6= 0 GOTO A
GOTO E

[A] IF Y 6= 0 GOTO B
GOTO A

[B] Y ← Y − 1
Z ← Z − 1
GOTO C

I If we begin with X1 = 5 and X2 = 2, . . .
I If we begin with X1 = 2 and X2 = 5, . . .

I This program computes the following partial function

g(x1, x2) =

{
x1 − x2 if x1 ≥ x2

↑ if x1 < x2

36 / 36



Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Final Example
I What does this program compute?

Y ← X1

Z ← X2

[C ] IF Z 6= 0 GOTO A
GOTO E

[A] IF Y 6= 0 GOTO B
GOTO A

[B] Y ← Y − 1
Z ← Z − 1
GOTO C

I If we begin with X1 = 5 and X2 = 2, . . .
I If we begin with X1 = 2 and X2 = 5, . . .
I This program computes the following partial function

g(x1, x2) =

{
x1 − x2 if x1 ≥ x2

↑ if x1 < x2 36 / 36



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Syntax of Language S
I Variables:

I Input variables: X1,X2,X3, . . .
I Output variable: Y
I Local variables: Z1,Z2,Z3, . . .

I Labels: A1,B1,C1,D1,E1,A2,B2,C2,D2,E2,A3, . . .
I A statement is one of the following:

I V ← V + 1
I V ← V − 1
I V ← V
I IF V 6= 0 GOTO L

where V may be any variable and L may be any label.

Note: X1 is a shorthand for X , Z1 is a shorthand for Z , and A is a
shorthand for A1, etc.
V ← V are harmless “dummy” commands (more on these
statements later).

3 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Syntax of Language S
I Variables:

I Input variables: X1,X2,X3, . . .
I Output variable: Y
I Local variables: Z1,Z2,Z3, . . .

I Labels: A1,B1,C1,D1,E1,A2,B2,C2,D2,E2,A3, . . .
I A statement is one of the following:

I V ← V + 1
I V ← V − 1
I V ← V
I IF V 6= 0 GOTO L

where V may be any variable and L may be any label.

Note: X1 is a shorthand for X , Z1 is a shorthand for Z , and A is a
shorthand for A1, etc.
V ← V are harmless “dummy” commands (more on these
statements later).

3 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Program

I An instruction is either a statement or [L] followed by a
statement.

I A program is a list (i.e., a finite sequence) of instruction. The
length of this list is called the length of the program. The
empty program is of length 0.

4 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

State

I A state of a program P is a list of equations of the form

V = m

where V is a variable and m is a number, including an
equation for each variable that occurs in P and including no
two equations with the same variable.

I Let σ be a state of P and let V be a variable that occurs in
σ. The value of V at σ is the (unique) number q such that
the equation V = q is one of the equations making up σ.

Note: An number is a nonnegative integer.

5 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

State

I A state of a program P is a list of equations of the form

V = m

where V is a variable and m is a number, including an
equation for each variable that occurs in P and including no
two equations with the same variable.

I Let σ be a state of P and let V be a variable that occurs in
σ. The value of V at σ is the (unique) number q such that
the equation V = q is one of the equations making up σ.

Note: An number is a nonnegative integer.

5 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

A State of A Program: Examples

[A] IF X 6= 0 GOTO B
Z ← Z + 1
IF Z 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
IF Z 6= 0 GOTO A

Given program P above, each of the following is a state of P:

I X = 4,Y = 3,Z = 3

I X1 = 4,X2 = 5,Y = 4,Z = 4

but each of the following is not a state of P

I X = 3,Z = 3

I X = 3,X = 4,Y = 2,Z = 2
6 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Snapshot

Let P be a program of length n. Then,

I A snapshot, or instantaneous description, of program P is a
pair (i , σ) where 1 ≤ i ≤ n + 1, and σ is a state of P.

I The value of a variable V at a snapshot (i , σ) just means the
value of V at σ.

I Intuitively the number i indicates that it is the ith instruction
which is about to be executed; i = n + 1 corresponds to a
“stop” instruction. A snapshot with i = n + 1 is called
terminal.

7 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

The Successor of A Snapshot

Let (i , σ) be a nonterminal snapshot of program P, then its
successor (j , τ) will depend on the ith instruction of P. If the ith
instruction is

V ← V + 1 then j = i + 1, and τ is σ with equation V = m
replaced by V = m + 1;

V ← V − 1 then j = i + 1, and τ is σ with equation V = m
replaced by V = m − 1;

V ← V then j = i + 1, and τ = σ;

IF V 6= 0 GOTO L then j = i + 1, and τ = σ if the value of V
at σ is 0; otherwise τ = σ and j is the least number
such that the jth instruction of P is labeled L (in
case no instruction in P is labeled L, let j = n + 1).

8 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

The Successor of A Snapshot: Examples

[A] IF X 6= 0 GOTO B
Z ← Z + 1
IF Z 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
IF Z 6= 0 GOTO A

Given program P above, then

I the successor of (1, {X = 4,Y = 0,Z = 0}) is
(4, {X = 4,Y = 0,Z = 0});

I the successor of (2, {X = 4,Y = 0,Z = 0}) is
(3, {X = 4,Y = 0,Z = 1});

I the successor of (7, {X = 4,Y = 0,Z = 0}) is
(8, {X = 4,Y = 0,Z = 0}) which is a terminal snapshot.

9 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Computation

A computation of a program P is defined to be a sequence (i.e., a
list) s1, s2, . . . , sk of snapshots of P such that si+1 is the successor
of si for i = 1, 2, . . . , k − 1 and sk is terminal.

10 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Computation from An Initial State
Let P be a program, and let r1, r2, . . . , rm be m given numbers.
The state σ of P is defined to consist of the equations

X1 = r1, X2 = r2, . . . , Xm = rm, Y = 0

together with the equation V = 0 for each variable V in P other
than X1,X2, . . . ,Xm,Y . This state is called the initial state, and
the snapshot (1, σ) the initial snapshot.

Starting from the initial snapshot s1 = (1, σ), there can be either

I a computation s1, s2, . . . , sk of P, or

I no such computation (i.e., there is an infinite sequence
s1, s2, s3, . . . where each sk+1 is the successor of sk).

We write Ψ
(m)
P (r1, r2, . . . , rm) for the value of Y at the terminal

snapshot. In the case where there is no computation,

Ψ
(m)
P (r1, r2, . . . , rm) is undefined.

11 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Computation from An Initial State
Let P be a program, and let r1, r2, . . . , rm be m given numbers.
The state σ of P is defined to consist of the equations

X1 = r1, X2 = r2, . . . , Xm = rm, Y = 0

together with the equation V = 0 for each variable V in P other
than X1,X2, . . . ,Xm,Y . This state is called the initial state, and
the snapshot (1, σ) the initial snapshot.
Starting from the initial snapshot s1 = (1, σ), there can be either

I a computation s1, s2, . . . , sk of P, or

I no such computation (i.e., there is an infinite sequence
s1, s2, s3, . . . where each sk+1 is the successor of sk).

We write Ψ
(m)
P (r1, r2, . . . , rm) for the value of Y at the terminal

snapshot. In the case where there is no computation,

Ψ
(m)
P (r1, r2, . . . , rm) is undefined.

11 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Computation from An Initial State
Let P be a program, and let r1, r2, . . . , rm be m given numbers.
The state σ of P is defined to consist of the equations

X1 = r1, X2 = r2, . . . , Xm = rm, Y = 0

together with the equation V = 0 for each variable V in P other
than X1,X2, . . . ,Xm,Y . This state is called the initial state, and
the snapshot (1, σ) the initial snapshot.
Starting from the initial snapshot s1 = (1, σ), there can be either

I a computation s1, s2, . . . , sk of P, or

I no such computation (i.e., there is an infinite sequence
s1, s2, s3, . . . where each sk+1 is the successor of sk).

We write Ψ
(m)
P (r1, r2, . . . , rm) for the value of Y at the terminal

snapshot. In the case where there is no computation,

Ψ
(m)
P (r1, r2, . . . , rm) is undefined.

11 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Function f (x) = x , Revisited

[A] IF X 6= 0 GOTO B (1)
Z ← Z + 1 (2)
IF Z 6= 0 GOTO E (3)

[B] X ← X − 1 (4)
Y ← Y + 1 (5)
Z ← Z + 1 (6)
IF Z 6= 0 GOTO A (7)

Given program P above (line numbers added), then

Ψ
(1)
P (x) = x

for all x .

12 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

A Computation of Program P

Assuming r 6= 0, the snapshots are

(1, {X = r , Y = 0, Z = 0}),
(4, {X = r , Y = 0, Z = 0}),
(5, {X = r − 1, Y = 0, Z = 0}),
(6, {X = r − 1, Y = 1, Z = 0}),
(7, {X = r − 1, Y = 1, Z = 1}),
(1, {X = r − 1, Y = 1, Z = 1}),
. . . ,
(1, {X = 0, Y = r , Z = r}),
(2, {X = 0, Y = r , Z = r}),
(3, {X = 0, Y = r , Z = r + 1}),
(8, {X = 0, Y = r , Z = r + 1})

13 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Partially Computable Functions and Computable Functions

I A given partial function g is said to be partially computable if
it is computed by some program. That is, g is partially
computable if there is a program P such that

g(r1, . . . , rm) = Ψ
(m)
P (r1, . . . , rm)

for all t1, . . . , rm. The above equation is understood to mean
not only that both sides agree to the same value when they
are defined, but also that when either side is undefined, the
other is also undefined.

I A function is computable if it is both partially computable and
total.

I Partially computable functions are also called partial recursive,
and computable functions are called recursive.

14 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Partially Computable Functions and Computable Functions

I A given partial function g is said to be partially computable if
it is computed by some program. That is, g is partially
computable if there is a program P such that

g(r1, . . . , rm) = Ψ
(m)
P (r1, . . . , rm)

for all t1, . . . , rm. The above equation is understood to mean
not only that both sides agree to the same value when they
are defined, but also that when either side is undefined, the
other is also undefined.

I A function is computable if it is both partially computable and
total.

I Partially computable functions are also called partial recursive,
and computable functions are called recursive.

14 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Partially Computable Functions and Computable Functions

I A given partial function g is said to be partially computable if
it is computed by some program. That is, g is partially
computable if there is a program P such that

g(r1, . . . , rm) = Ψ
(m)
P (r1, . . . , rm)

for all t1, . . . , rm. The above equation is understood to mean
not only that both sides agree to the same value when they
are defined, but also that when either side is undefined, the
other is also undefined.

I A function is computable if it is both partially computable and
total.

I Partially computable functions are also called partial recursive,
and computable functions are called recursive.

14 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

A Nowhere Defined Function

[A] X ← X + 1
IF X 6= 0 GOTO A

I For the above program P, Ψ
(1)
P (x) is undefined for all x .

I The function
f (x) ↑, for all x

is partially computable because f (x) = Ψ
(1)
P (x).

15 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

A Nowhere Defined Function

[A] X ← X + 1
IF X 6= 0 GOTO A

I For the above program P, Ψ
(1)
P (x) is undefined for all x .

I The function
f (x) ↑, for all x

is partially computable because f (x) = Ψ
(1)
P (x).

15 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Computability Theory

I Computability theory (also called recursion theory) studies the
class of partially computable functions.

I A function can be claimed to be “computable” only when
there really is a program of language S which computes it.

I Is this justified? Isn’t the language S too simplistic and too
ad hoc?

I More evidence will be developed as we go along! We will show
language S is as powerful as we can get!

16 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Computability Theory

I Computability theory (also called recursion theory) studies the
class of partially computable functions.

I A function can be claimed to be “computable” only when
there really is a program of language S which computes it.

I Is this justified? Isn’t the language S too simplistic and too
ad hoc?

I More evidence will be developed as we go along! We will show
language S is as powerful as we can get!

16 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Computability Theory

I Computability theory (also called recursion theory) studies the
class of partially computable functions.

I A function can be claimed to be “computable” only when
there really is a program of language S which computes it.

I Is this justified? Isn’t the language S too simplistic and too
ad hoc?

I More evidence will be developed as we go along! We will show
language S is as powerful as we can get!

16 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Computability Theory

I Computability theory (also called recursion theory) studies the
class of partially computable functions.

I A function can be claimed to be “computable” only when
there really is a program of language S which computes it.

I Is this justified? Isn’t the language S too simplistic and too
ad hoc?

I More evidence will be developed as we go along! We will show
language S is as powerful as we can get!

16 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Wanted: Macro Expansion without Headache

Let f (x1, . . . , xn) be some partially computable function computed
by the program P. How are we able to use macros like

W ← f (V1, . . . ,Vn)

in our programs, where V1, . . . ,Vn,W can be any variables
whatsoever? In particular, W might be one of V1, . . . ,Vn.

17 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

A Program Form

I Assume that the variables that occur in P are all included in
the list Y ,X1, . . . ,Xn,Z1, . . . ,Zk and that the labels that
occur in P are all included in the list E ,A1, . . . ,Al .

I We also assume that for each instruction of P of the form
IF V 6= 0 GOTO Ai

there is in P an instruction labeled Ai . In other words, E is
the only “exit” label.

I Any program P can be made to meet the above conditions
after minor changes in notation.

18 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

Renaming in A Program Form

I We now write

P = P(Y ,X1, . . . ,Xn,Z1, . . . ,Zk ; E ,A1, . . . ,Al)

and write

Qm = P (Zm,Zm+1, . . . ,Zm+n,Zm+n+1, . . . ,Zm+n+k ;

Em,Am+1, . . . ,Am+l)

for each given value of m.

I The number m is chosen such that all variables and labels in
Qm are new.

19 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

W ← f (V1, . . . , Vn), Macro Expanded

Zm ← 0
Zm+1 ← V1

Zm+2 ← V2

. . .
Zm+n ← Vn

Zm+n+1 ← 0
Zm+n+2 ← 0
. . .
Zm+n+k ← 0
Qm

[Em] W ← Zm

Note: If f (V1, . . . ,Vn) is undefined, the program Qm will never
terminate.

20 / 27



Programs and Computable Functions (2)
Primitive Recursive Functions (3)

Syntax (2.3)
Computable Functions (2.4)
More about Macros (2.5)

General Conditional Branch Statement

I Function P(x1, . . . , xn) is a computable predicate if it is a
computable function returning either 1 (interpreted as TRUE)
or 0 (interpreted as FALSE).

I Let P(x1, . . . , xn) be any computable predicate. Then the
appropriate macro expansion of

IF P(x1, . . . , xn) GOTO L

is simply

Z ← P(x1, . . . , xn)
IF Z 6= 0 GOTO L

where variable Z is new.

21 / 27




