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Preface
The main reason I became interested in mediation analysis was its poten-
tial for improving public health by helping to identify how to prevent 
problem behavior and promote healthy behavior. Mediation is also fun-
damental to many substantive areas, especially psychology (i.e., health, 
social, clinical, developmental, and cognitive) and the social and medi-
cal sciences. The idea of mediation is a simple one—that a third variable 
transmits the effect of one variable to another. Although the idea is simple, 
the scientifi c investigation of these variables is more complex than might 
be expected. I can’t imagine tiring of the intriguing conceptual and statis-
tical aspects of assessing whether a variable is intermediate between two 
other variables. There is much remaining work to be done in the area of 
mediation analysis. I view this book as a way to combine information on 
mediation analysis from a variety of disciplines in one place. 

The goal of this book is to provide a comprehensive introduction to 
statistical, methodological, and conceptual aspects of mediation analysis. 
Throughout the book, substantive applications of mediation methods are 
described for a wide variety of research areas, from biology to sociology. 
In particular, readers will fi nd applications in the development and eval-
uation of prevention and treatment programs in many fi elds as well as 
applications in epidemiology, social psychology, developmental psychol-
ogy, and other areas. The book covers the single mediator model in detail 
before discussing extensions to advanced statistical methods including 
multilevel mediation models and longitudinal mediation models. The 
reader will notice the complexity involved even in the simplest single 
mediator model and remember these issues as the models become more 
complex. The goal is to prepare the reader for applying mediation analy-
sis to a research program including estimation of effects, consideration of 
assumptions, and understanding of the limitations of the methodology.

There are four parts to the book. Part I, consisting of chapters 1 and 2, 
covers defi nitions, history, and applications for the mediation model. The 
purpose of this section is to provide an overview of the research ques-
tions the mediation model can answer. In Part II, consisting of chapters 3, 
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viii Preface

4, and 5, the conceptual model described in the fi rst part of the book is 
quantifi ed in the estimation of mediation in single and multiple mediator 
models. This part of the book describes the estimation of mediation effects 
including assumptions of the methods, statistical tests, and construction 
of confi dence limits for the mediated effect. The methods described in this 
section serve as the foundation for the rest of the book. In Part III, consist-
ing of chapters 6 to 12, advanced mediation models including mediation in 
path analysis, longitudinal mediation models, mediation with multilevel 
data, mediation for categorical variables, and mediation in the context of 
moderation are described. In Part IV, consisting of chapters 13, 14, and 15, 
general issues in the investigation of mediation including causal infer-
ence for mediation models, additional approaches to identifying medi-
ating variables, and future directions are discussed. The importance of 
developing a program of research investigating mediational hypotheses 
is emphasized.

This book is intended to be an introduction to statistical mediation 
analysis. In general, the book assumes some exposure to a graduate level 
research methods or statistics course, although persons without this prep-
aration will fi nd many of the chapters useful. The entire book is designed 
so that a person with some exposure to graduate research methods and 
statistics could master the material in each chapter with suffi cient time 
and determination. The primary audiences for this book are advanced 
undergraduate students, graduate students, and researchers from many 
substantive areas. I expect that there will be two general types of readers 
of this book. The fi rst type will consist of persons skilled in a substantive 
area but less experienced with statistical methods. Persons designing pre-
vention or treatment programs based on the mediation model would fall 
in this group. Researchers planning a study in which mediating mecha-
nisms are investigated also fall in this group. For this group, it will be 
important to start with Chapters 1 and 2 even though some of this mate-
rial may be familiar to substantive readers. Chapters 3 and 5 provide the 
general introduction to statistical methods for the mediator model. Once 
chapters 1 through 5 are understood, substantive researchers will have 
an easier time discussing mediation analysis with fellow researchers and 
the person conducting the statistical analysis. Chapters 6, 7, and 8 gener-
ally assume at least 1 year of graduate level research methods. Chapters 1 
to 8 provide a general introduction to statistical mediation analysis. The 
remaining chapters describe special topics in mediation analysis. Chapter 
13 is important because it summarizes the limits of what can be concluded 
from a mediation analysis. Chapter 14 describes additional approaches to 
investigating mediation including experimental designs for a program of 
research. Chapter 15 provides an overview of mediation analysis along 
with guidelines for conducting a mediation analysis.
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The second type of reader is sophisticated statistically but without 
much exposure to mediation analysis. These persons may be interested 
in mediation in multilevel models (Chapter 9) or mediation with a binary 
outcome (Chapter 11) and already have some background in statistical 
methods. Chapters 1 and 2 provide a general background for the media-
tion model. The rest of the book is written so that statistically sophisti-
cated persons may be able to focus on their particular area of interest. 
Future directions for statistical development are described in chapter 15. 

There are several aspects of the book that should enhance learning. 
At the beginning of each chapter there is an overview of what is covered 
in the chapter. The summary at the end of each chapter provides links 
with subsequent chapters. Worked examples are provided in the text to 
make the topics in the book more concrete. Exercises at the end of each 
chapter solidify and extend topics covered in the chapter. Answers to the 
odd numbered questions are given in appendix A. The CD accompanying 
this book contains computer programs and output that are described in 
the book. The methods described in the book are illustrated with SAS and 
SPSS general computer programs and covariance structure analysis soft-
ware including LISREL, EQS, Mplus, and CALIS. The CD also includes 
instructions for downloading a program to compute the most accurate 
confi dence limits for the mediated effect based on the distribution of the 
product. A program to simulate the mediation model is also included on 
the CD.

Last, a word about notation: I have tried to keep notation consistent with 
existing literature on mediation in psychology with relations represented 
by a, b, c, and c’ in the single mediator model. In Chapter 6, when model 
specifi cation with matrix formulas are introduced, coeffi cient matrices are 
specifi ed consistent with existing literature on structural equation model-
ing. Similarly, the multilevel mediation model chapter uses notation consis-
tent with the research literature on multilevel analysis. However, whenever 
possible I have attempted to keep the simple notation for the single media-
tor model widely used in psychology even in more complicated models. 
As a result, in some places regular letters are used to represent relations in 
a mediation model and in other places Greek letters are used to represent 
relations in a mediation model. The cost of this is some ambiguity regard-
ing coeffi cients representing relations, but the benefi t is that the simpler 
single mediator notation is most widely used in social sciences research 
literature. Appendix B contains information on notation used in the book.

Acknowledgments
I sincerely acknowledge the support of the National Institute on Drug 
Abuse (DA09757) for my research on mediation analysis. Several data sets 

ER64296_C000.indd   ixER64296_C000.indd   ix 12/13/07   11:28:35 PM12/13/07   11:28:35 PM



x Preface

in this book were obtained as part of the Adolescents Training and Learn-
ing to Avoid Steroids study funded by the National Institute on Drug 
Abuse (DA07356).

Many former and current graduate students have provided feedback 
and contributed to this book on mediation analysis. In particular, I would 
like thank Chondra Lockwood, Jeewon Cheong, Jennifer Krull, Antonio 
Morgan-Lopez, Jason Williams, Ghulam Warsi, Marcia Taborga, Amanda 
Fairchild, Matt Fritz, Oi-Man Kwok, Myeongsun Yoon, Aaron Taylor, 
Krista Ranby, Davood Tofi ghi, Jeanne Hoffman, Felix Thoemmes, Van-
essa Ohlrich, and Ehri Ryu. Matt Fritz and Amanda Fairchild also com-
pleted the computer programs and output in the CD that accompanies 
this book.

I also thank Andy Johnson, Craig Enders, Peter Killeen, Kristopher 
Preacher, Jenn Tein, Morris Okun, Michael Hecht, Irwin Sandler, Manuel 
Barrera, Nancy Eisenberg, Booil Jo, Michael Sobel, Diane Elliot, and Esther 
Moe for many helpful comments and edits. The book benefi ted from dis-
cussion with Dave Kenny, John Graham, Bill Hansen, Leona Aiken, San-
ford Braver, Roger Millsap, Kim Johnson, Alex Zautra, Linda Luecken, 
Nancy Hay, Bill Fabricius, Helena Kraemer, and Linn Goldberg. I thank 
Hendricks Brown, Bengt Muthen, Wei Wang, George Howe, Dan Feaster, 
Lee Van Horn and other members of the Prevention Science Methodol-
ogy Group (MH40859) for their feedback and comments on mediation 
topics. Mary Ann Pentz and Jim Dwyer provided sound advice and clear 
thinking when I fi rst started investigating mediation.

I thank Lisa Harlow, the editor of this series, Patrick Curran, and Steve 
West for their extensive and challenging comments on many chapters in 
the book. I especially thank Ellen Laing and also Kristen Judd and Cam-
den Bay for help preparing the manuscript. I thank Kim, Lea, and Ross for 
their support and patience as I wrote this book. I thank Pete, Al, and Will 
for inspiration.

Many people have helped me with this book. Remaining errors in this 
book are mine. If you have comments or improvements to the book, I 
would appreciate hearing from you.

ER64296_C000.indd   xER64296_C000.indd   x 12/13/07   11:28:35 PM12/13/07   11:28:35 PM



1

1

Introduction

“From the best statistics which I could get on the 
Isthmus, I found that the French lost yearly by death 
from yellow fever about one-third of their white 
force. . . . During the fall of 1905 yellow fever rapidly 
decreased, and by November, the last case of this 
disease had occurred in Panama. This fact quieted 
alarm on the Isthmus, and gave the sanitary offi -
cials great prestige. Not only among the now large 
body of Canal employees, but also among the native 
population living on the Isthmus.”

—William Crawford Gorgas (1915, pp. 149, 156)

1.1 Overview
This book addresses the question of how and why two things are related. 
How do knowledge and beliefs lead to behavior? Why does poverty lead 
to juvenile delinquency? How do tobacco prevention programs reduce 
tobacco use? How does psychotherapy reduce depression? These ques-
tions are addressed by considering variables that explain how or why two 
things are related. These variables are called mediating variables or medi-
ators. More formally, a mediating variable is intermediate in the causal 
sequence relating an independent variable to a dependent variable. That 
is, the independent variable causes the mediating variable which then 
causes the dependent variable. Webster’s New World Dictionary of the Amer-
ican Language (Guralnik, 1970, p. 881) defi nes mediate as “(1) to be in an 
intermediate position or location. (2) to be an intermediary or conciliator 
between persons or sides.” and mediated as “(1) intermediate or interven-
ing. (2) dependent on, acting by or connected through some intervening 
agency; related indirectly.” The notion of a mediating variable in this book 
differs from the more common conception of a mediator as a person who 
negotiates between two parties. Mediation between two parties by a per-
son is not described in this book. Methods to investigate variables that 
explain how or why two variables are related are the focus of this book.
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2 Introduction to Statistical Mediation Analysis

Questions relating to mediating processes are central to basic and 
applied research in many fi elds. Here are a few mediational hypotheses: 
attitudes cause intentions, that then cause behavior; exposure to conta-
gious bacteria causes infection that then causes disease; and exposure 
to information causes learning that causes behavior based on that learn-
ing. Many other examples are described throughout this book, and you 
can probably think of several right now. The purpose of this book is to 
describe methods to investigate such mediating variables.

Chapter 1 introduces the notion of a mediating variable in scientifi c 
research and defi nes several concepts used throughout the book. Two 
mediation examples are described. The fi rst example, one of the most 
common examples of mediation, originated in the study of how an organ-
ism mediates the relation of a stimulus to a response (Woodworth, 1928). 
The substantial impact of this stimulus to organism to response (S–O–R)  
approach in psychology is described. The second mediation example is 
the description of the control of yellow fever during the building of the 
Panama Canal in the early 1900s. The same mediation approach is now 
widely used in health promotion and disease prevention. After these 
examples, several concepts are defi ned and a brief history of the mediat-
ing variable is given.

1.2 Stimulus–Organism–Response 
Model: A Mediation Theory
The stimulus–response (S–R) formulation dominated 20th century psy-
chology (Hebb, 1966), and its infl uence continues today. In the S–R formu-
lation of behavior, behavior is a response to stimuli. In a lower organism 
such as an insect, neural and muscular physiological mechanisms trans-
late a stimulus to behavior. In higher organisms, mental processes in 
addition to physiological mechanisms translate a stimulus into behavior. 
Woodworth (1928) outlined a stimulus–organism–response (S–O–R) model 
for explaining how the organism mediates the relationship between the 
stimulus and response by postulating different mediating mechanisms 
operating in the organism. Mediating mechanisms are what determines 
how an organism responds to a stimulus. For example, a stimulus may 
trigger a memory mechanism that identifi es the stimulus as a threat that 
leads to an avoidance response, or a stimulus may trigger an attraction 
process that leads to a physiological response such as pupil dilation and 
an approach response.

The S–R formulation was fi rst applied in studies of learning, primar-
ily with animals. In these experiments, animals learned how to avoid an 
electric shock or how to fi nd food in a maze. Experimental manipulations 
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Chapter One: Introduction 3

elucidated many aspects of learning such as the ideal reward schedule to 
maintain behavior and how unrewarded behaviors decrease. Research-
ers theorized about the processes occurring between when a stimulus is 
given and a response is made. In an American Psychological Association 
presidential address devoted to describing why rats turn the way they do 
in mazes, Tolman (1938) proposed that mental processes such as demand, 
appetite, and biases translate stimuli into response. Tolman (1935) was 
also the fi rst to use the term intervening variable for these mediating pro-
cesses coming between the stimulus and response. In contrast to Tolman’s 
mental processes, Hull (1937) postulated more materialistic variables 
such as habit strength and drive as mediating the relation of stimulus to 
response. In his view, learning consisted of organization and reorganiza-
tion of reinforced drives. For both views, mathematical functions deter-
mined how the stimulus affected the intervening variables and how the 
intervening variables affected the response.

Two examples further demonstrate the S–O–R model. Suppose that you 
are given two numbers 16 and 18 and are asked to respond with their 
product. The two numbers, 16 and 18, are the stimulus and your answer 
is the response. The mediating process is the thinking and other activities 
done in the time between when you were given the stimulus and when 
you made your response. Another example is from a study of learning 
in monkeys by Tinklepaugh (1928). The monkeys were allowed to view 
the experimenter put food such as lettuce in one of two cups out of the 
monkey’s reach. A screen was put up and after a delay the monkey was 
allowed to retrieve the food from one of the cups. In one experiment, the 
experimenter put lettuce in a cup that the monkey took and ate after a 
delay. In another experiment, the monkey saw the experimenter put a 
banana, the monkey’s favorite food, in one cup, but after the screen was 
put up, the experimenter replaced the banana with lettuce. When the 
screen was removed and the monkey picked up the lettuce, the mon-
key showed surprise and would not eat the lettuce, and some monkeys 
“turned toward observers present in the room and shrieked at them in 
apparent anger” (Tinklepaugh, 1928, p. 224). This study suggested that 
the stimulus of showing the food initiated expectancy in the monkey that 
then affected how the monkey responded to the food. The expectancy 
was the mediating or intervening variable.

The S–O–R model illustrates that the mediational process can be com-
plicated. First, the mediating process is generally unobservable. If each 
link in the S–O–R model is studied, then some way to measure the medi-
ating process is required. For the S–O–R model, examples of measur-
ing mediators are electroencephalography, pupil dilation, galvanic skin 
response, and self-reports. Second, the mediating process may operate at 
different levels. Mediating processes contain physiological changes that 
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4 Introduction to Statistical Mediation Analysis

translate the stimulus to the response and mental processes. Within the 
physiological domain, there are neuronal, sensory, and muscular media-
tional processes, even for simple S–R relations. Mediating mechanisms 
may be present outside the organism as well, such as group and com-
munity level processes (e.g., the socioeconomic status of a neighborhood 
may affect social cohesion that affects crime rates). Third, the mediat-
ing process can be the sum of a variety of mediating processes happen-
ing simultaneously or in sequence. Fourth, the chain of mediation may 
be extensive, for example, a sequence of sensory, neuronal, and muscu-
lar activity. In the S–R formulation, molar mediation approaches that 
focused on the major variables were preferred to molecular processes 
involved in detailed chains (Hull, 1943, p. 19). Decisions about the level of 
detail investigated in a mediational chain are required for any mediation 
analysis.

The S–O–R model is an example of the more general black box model, 
in which the black box refers to unobservable mechanisms by which an 
input affects an output (Weed, 1998). The variables in the black box are 
mediating variables and the mechanisms hypothesized in the black box 
are mediating mechanisms. The S–O–R and black box models provide 
the framework for mediation analysis. The black box model applies to 
many areas of science. Early in history, atomic mechanisms were hypoth-
esized for the observable processes of chemical reactions. These atomic 
chemical reactions are unobserved and must be inferred from the results 
of experiments. In these experiments, chemicals are the input to the black 
box and chemicals are the output from the black box. Experiments by 
John Dalton and Antoine Lavoisier demonstrating that mass was con-
served and proportions of original elements were identical after chemi-
cal reactions led to the conclusion that matter was composed of atoms 
(Brown, LeMay, & Bursten, 2000). Atomic reactions are what transform 
the chemical input to the chemical output. Scientifi c developments such 
as the electron microscope have improved the ability to view and measure 
these processes, and this has led to even more unobservable hypotheses 
such as subatomic particles. Gregor Mendel hypothesized that particles 
or genes were the mechanisms for his studies of inheritance in pea plants 
(Campbell, Reece, Taylor, & Simon, 2006). Genetic theory describes how 
parent traits, the input to the black box, lead to offspring traits, the output 
from the black box. With the discovery of deoxyribonucleic acid (DNA) 
and now the measurement of the human, rat, and fruit fl y genome, direct 
measurement of the previously unobserved genetic mechanisms is pos-
sible. The genetic and atomic theory examples illustrate how theory is 
used to understand unobservable inner mechanisms in the black box. 
These examples also demonstrate how science progresses by measur-
ing previously unobserved mediating mechanisms. In fact, investigation 
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Chapter One: Introduction 5

of mediating variables may be considered a measurement problem, for 
which progress occurs with more accurate measurement of the mediat-
ing process.

1.3 Yellow Fever and the Panama Canal: 
An Applied Mediation Example
The control of yellow fever during the building of the Panama Canal pro-
vides an early example of an intervention designed to change mediators 
to change an outcome variable. The French attempt to build the Panama 
Canal during 1889 to 1898 was stopped by yellow fever—a disease that 
killed or incapacitated so many workers that continuous work on the 
project was impossible. But the Panama Canal had to be built, as the trip 
around Cape Horn at the bottom of South America was too long and dan-
gerous. Because the Panama Canal was vital to the interests of the United 
States, it followed that the United States would take up the task to build 
the canal. Recognizing the health as well as the engineering challenges to 
build the canal, Dr. William Gorgas was selected to lead the public health 
attack on yellow fever and malaria (Gorgas, 1915).

Two major theories for the cause of yellow fever were present at this 
time (Gorgas, 1915). The fi rst theory held that person-to-person contact 
was the main cause of disease transmission. These arguments fl owed nat-
urally from the fi ndings that anthrax and other diseases were spread by 
contact with sick individuals or their body fl uids. This theory suggested 
that yellow fever could be battled by improving sanitation and quarantin-
ing infected persons. A second theory was that mosquitos carried malaria 
and yellow fever. Here the reduction of human exposure to mosquitos 
was the critical component to prevent yellow fever.

Convinced that malaria and yellow fever were transmitted by mos-
quitos, Dr. Gorgas set out with a comprehensive plan to reduce human 
exposure to mosquitos (Gorgas, 1915). The purpose of these activities was 
to reduce the number of mosquitos under the theory that fewer mos-
quitos led to fewer human bites, consequently fewer disease cases, and 
ultimately fewer deaths due to malaria and yellow fever. Such a multiple 
cause model was elegant but also unwieldy with many opportunities for 
failure. For example, if mosquitos were not the carrier of disease, no effect 
would be observed. If the species of mosquito that carried disease was not 
reduced, then the prevention activity would fail even if many mosquitos 
were killed.

To reduce human exposure to mosquitos, the number of animals that 
eat mosquitos was increased, drainage canals were built, and plumbing 
was introduced wherever possible to reduce the amount of standing water 
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6 Introduction to Statistical Mediation Analysis

ideal for mosquito breeding. Sleeping quarters were screened to keep out 
mosquitos. The result of these interventions, based on the theory that 
mosquitos caused the diseases, was a signifi cant reduction in malaria 
and yellow fever cases. Consequently, the Canal was built, at least partly, 
because of prevention activity based on a hypothesized causal connec-
tion based on theory, a target of the intervention or mediating variable 
(human exposure to mosquitos), and components to change the mediating 
variable. These results led to subsequent research identifying the viruses 
responsible for the diseases. Many disease prevention and health promo-
tion activities are of this type in which theory is used to identify impor-
tant mediators and activities are designed to change those mediators. This 
mediation model links the intervention activities to changes in mediators 
to changes in an outcome variable.

1.4 Two-Variable Effects
The translation of mediation concepts to statistical methods begins with 
the simplest form of a relation between two variables. Much of statistics 
focuses on the association of one variable, X, with another variable, Y. 
Often a distinction is made between the independent variable, X, and 
the dependent variable, Y, to identify the direction of the hypothesized 
relationship between the variables. Effects in which one variable causes 
another variable are called asymmetric effects to specify that one variable 
is the cause of another variable (Rosenberg, 1968). A symmetric relation 
is one in which both X and Y cause each other. By restricting the discus-
sion to two variables and assuming no other variable affects the relation 
between X and Y, there are four possibilities: X and Y are unrelated, X 
causes Y, Y causes X, or X causes Y and Y causes X at the same time, a 
reciprocal relation. Much research and theory are based on statistics from 
this two-variable system of relations. The correlation coeffi cient, regres-
sion coeffi cient, odds ratio, and the difference in the mean between two 
groups (where X represents assignment to the groups) are examples of 
quantitative measures from a two-variable system. Even in a two-variable 
system, it can be very diffi cult or impossible to identify causal relations 
because these relations are inferred from observed data.

1.5 Three-Variable Effects
The addition of a third variable to the interpretation of the relation between 
an independent and dependent variable increases the number and com-
plexity of the possible relations among the three variables. It is still possible 
that X causes Y or Y causes X, but there are many additional possibilities. 
Assuming asymmetric effects, now the third variable, Z, can be in any 
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Chapter One: Introduction 7

order of causal direction with X and Y, e.g., X to Z to Y, Z to X to Y, X to Y 
to Z, as well as other possibilities as described later. Reciprocal relations 
are also possible between any two variables and among all three variables. 
Given the number and complexity of the possible relations among these 
variables, there are several generally accepted descriptions of conceptual 
relations among three variables. These descriptions form a general way to 
understand effects in even more complicated systems of relations.

Confounder. One possibility is that the relation between X and Y 
changes when Z is considered because Z causes both X and Y, leading 
to an observed relationship between X and Y that may be considered 
causal if Z is not included in the analysis (see Greenland & Morgenstern, 
2001, for comprehensive discussion of confounding). Such a Z variable 
is a confounder of the effect and it may decrease or increase the relation 
between X and Y. A confounder is defi ned as a variable that changes the rela-
tion between an independent and dependent variable because it is related to both 
the independent and the dependent variable. Meinert (1986, p. 285) defi ned a 
confounder as “a variable related to two variables of interest that falsely 
obscures or accentuates the relation between them.” In many research 
studies, an effect is said to be adjusted for a confounder, which means 
that the reported relationship between X and Y has been adjusted for the 
confounder effect of Z. It is important to note that a third variable, Z, may 
actually increase the relation between X and Y, in which case Z is a sup-
pressor variable. A suppressor variable is one in which the original rela-
tion between two variables increases in magnitude when a third variable 
is adjusted for in an analysis (Conger, 1974; MacKinnon, Krull, & Lock-
wood, 2000). It is also possible that a relation between X and Y actually 
is reversed when a third variable is included in the analysis, which is a 
distorter variable (Rosenberg, 1968). A distorter variable is a variable that 
changes a relation between two variables such that when it is included in 
an analysis a relation emerges between previously unrelated variables or 
the direction of relation between two variables reverses in sign.

Covariate. Another possibility is that the third variable, Z, is another 
predictor of Y such that both X and Z predict Y. In this case, the addi-
tional predictor, Z, will make the prediction of Y more accurate because 
it explains variability in the Y variable. If there is no relation between X 
and Z, the addition of the third variable, Z, to the analysis will not change 
the relation between X and Y. These types of variables have been called 
covariates or predictors. A covariate is a variable related to the dependent vari-
able that typically has a minimal relation to the independent variable. Covari-
ates may also be related to both the dependent and independent variables. 
Typically, a confounder differs from a covariate in that a confounder is 
also related to X and Y but in a way that consideration of the confounder 
changes the relation between X and Y.
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8 Introduction to Statistical Mediation Analysis

Mediator. A more complicated relation may be present such that the 
third variable is intermediate in the causal chain relating X and Y such 
that X causes Z and Z causes Y. This type of relationship is called media-
tion, and the Z variable is called a mediator or mediating variable (M). A 
mediating (M) variable is intermediate in the causal path from an inde-
pendent variable to a dependent variable. A mediating variable represents 
asymmetric relations among variables. In a mediation model, the independent 
variable causes the mediator which then causes the dependent variable. Baron 
and Kenny (1986, p. 1173), defi ned mediation as “the generative mecha-
nism through which the focal independent variable is able to infl uence 
the dependent variable of interest.” In Last’s (1988) medical dictionary, a 
mediator is defi ned as “a variable that occurs in a causal pathway from 
an independent variable to a dependent variable. It causes variation in 
the dependent variable and itself is caused to vary by the independent 
variable.” So a mediator (M) is a variable that transmits the effect of an 
independent variable on a dependent variable. Mediation also implies a 
temporal relation with X occurring before M and M occurring before Y. 
These mediating variables and methods to test for them are the focus of 
this book.

Another widely used defi nition of a mediator has led to some confu-
sion because both a confounder and a mediator satisfy the defi nition, 
“In general, a given variable may be said to function as a mediator to the 
extent that it accounts for the relation between the predictor and the crite-
rion” (Baron & Kenny, 1986, p. 1176). Both the confounder and the media-
tor account for the relationship between X and Y. A confounder explains 
the relation because it is related to both X and Y, but not as part of a causal 
mediation process. The mediator explains the relation between X and Y 
because it transmits the effect of X on Y through the mediator Z. Sev-
eral other defi nitions of a mediating variable also include this ambiguity 
regarding a confounding and mediating variable. For example, Hoyle and 
Smith (1994, p. 437) stated “The question that gives rise to mediational 
hypotheses can be stated, How or why does X affect Y or, more specifi cally, 
Can the effect of X on Y be attributed to Z?” A confounder or a mediator 
will satisfy this defi nition as either explains how or why an effect occurs. 
Mediation explains the effect by the causal sequence from the indepen-
dent variable to the mediator to the dependent variable. The confounder 
effect also explains the relation because a confounder is related to both the 
independent and the dependent variable.

Some references identify a mediator as not necessarily in the causal 
sequence between the independent and dependent variable and only 
require that the independent variable infl uences the mediator and the 
mediator infl uences the dependent variable (Holmbeck, 1997, p. 600). This 
view has led to confusion regarding the meaning of mediation and, as 
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a result, in this book, a mediator is intermediate in the causal sequence 
between the independent variable and the dependent variable. It is true 
that other variables may explain a relation between an independent and 
dependent variable, but these other variables may serve as confounders of 
the relation and explain the relation in that manner. It does not explain the 
relation in terms of a mediation model.

Further misunderstanding has arisen because some mediation 
tests require that there is a signifi cant relation between the indepen-
dent and the dependent variable for mediation to exist. Although these 
effects may be rare, it is possible that there is a signifi cant mediational 
process, even if there is not a signifi cant overall relation between the 
independent variable and the dependent variable (Collins, Graham, 
& Flaherty, 1998; MacKinnon et al., 2000; Shrout & Bolger, 2002). If 
there is not a signifi cant relation of an independent variable with a 
dependent variable and the indirect effect is statistically signifi cant, 
Holmbeck (1997) concludes that there is an indirect effect but not a medi-
ated effect. The idea is that if there is not a signifi cant relation between 
two variables then it does not make sense to talk about mediation, but it 
does make sense to talk about indirect effects. As described in Holmbeck 
(1997, p. 603), “fi ndings suggest that the mediator does not (and cannot) 
signifi cantly ‘account’ for the predictor–criterion relationship (because 
there was not a signifi cant relation between the predictor and the crite-
rion in the fi rst place).” Even if there is not a signifi cant relation between 
the independent variable and the dependent variable, mediation can exist. 
This pattern may occur because the test of the mediated effect has more 
statistical power than the test of the overall relation of X on Y in some 
situations. It is easy to simulate data with a pattern such that the over-
all relation between X and Y is not statistically signifi cant, but there is a 
signifi cant mediation effect. One substantive example of this pattern of 
effects is the small relation between age and typing profi ciency, which is 
explained by the opposing mediational processes whereby age increases 
reaction time reducing typing profi ciency and age increases cognitive 
typing skills improving typing profi ciency (Salthouse, 1984). In this case, 
the mediating variables reveal important mediation relations as described 
in Rosenberg (1968, chapter 4) in his discussion of distorter variables.

Mediating variables are often called intervening or intermediate vari-
ables to clearly indicate their role as coming between an independent and 
a dependent variable. Mediating variables have also been called process 
variables (Judd & Kenny, 1981b) referring to their function as variables that 
describe the process by which an independent variable affects a depen-
dent variable. In the medical literature, mediating variables are sometimes 
called surrogate or intermediate endpoints because these variables repre-
sent proximal measures of a distal outcome (Prentice, 1989).
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10 Introduction to Statistical Mediation Analysis

Different names are also used for the sequence of variables in a media-
tional process. Kenny, Kashy, and Bolger (1998) described the three variables 
as initial to mediator to outcome variables. James and Brett (1984) referred 
to the antecedent to mediating to consequent variables to clearly defi ne 
the time sequence of a mediational process. Shipley (2000) described a 
mediator that transmits the effect of a causal ancestor on its descendant. In 
the medical literature, program exposure to intermediate endpoint to ulti-
mate endpoint is used (Freedman, Graubard, & Schatzkin, 1992). Another 
common nomenclature distinguishes between proximal and distal mea-
sures, where mediators are typically the proximal measures and the distal 
measures are outcome measures. The purpose of different variable names 
is to be precise about the nature of the variables studied. In this book, 
the variables will be described as the independent variable, mediator, and 
dependent variable because of the simplicity and the general applicability 
of these terms. Technically, there will be cases in which the independent 
variable is not strictly independent of other variables as the independent 
variable in a randomized study, for example. The independent variable 
will refer to the fi rst variable in the mediational sequence.

Researchers often make the distinction between a mechanism and a 
mediator. The mechanism is described as the true causal process by which 
two variables are related in contrast to a mediator or mediating variable, 
which is the measure used to investigate the mechanism. This distinction 
is the same as the difference between a hypothetical mediating mecha-
nism and intervening variable made by MacCorquodale and Meehl (1948). 
Inference regarding mediation must be based on sample data. In many 
cases, it will not be possible to fully distinguish between mediation and 
other third-variable effects, and additional information such as theory will 
be required to build a case for mediation. As clearly stated by McCullagh 
and Nelder (1989, p. 8), all models are generally wrong in some way and, 
“we must recognize that eternal truth is not within our grasp.” Inference 
regarding a true mediating mechanism is most likely to emerge based on 
a body of research evidence rather than one study.

Moderator. A third variable may also change the relation between the 
independent variable and the dependent variable because it moderates 
the relation between the two variables. Baron and Kenny (1986, p. 1174) 
defi ned a moderator as “a qualitative (e.g., sex, race, class) or quantitative 
(e.g., level of reward) variable that affects the direction and/or strength of 
the relation between an independent or predictor variable and a depen-
dent or criterion variable.” Sharma, Durand, and Gur-Arie (1981, p. 291) 
defi ne a moderator as a variable that “systematically modifi es either the 
form and/or strength of the relationship between a predictor and a crite-
rion variable.” In fact, Sharma et al. (1981) described three different types 
of moderators depending on the correlation between the moderator vari-
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able and X and Y, and whether there is a statistically signifi cant interac-
tion between the moderator and the X variable. Moderators are variables 
that interact such that the relation between X and Y is different at different 
levels of the moderator variable. A moderator is a variable that changes the 
sign or strength of the effect of an independent variable on a dependent vari-
able. It is typically (but not always) an interaction such that the effect of 
an independent variable on a dependent variable depends on the level 
of the moderator variable. Here the relation between X and Y changes at 
different values of the third variable. Moderator variables have also been 
called effect modifi ers or effect measure modifi ers given that the effect is 
modifi ed by the levels of the third variable (Rothman & Greenland, 1998). 
Effect modifi cation is the term most often used in the medical literature. 
Information on the investigation of moderator or interaction variables is 
described in Aiken and West (1991). More detailed information regarding 
moderator variables and types of models that have both moderator and 
mediator effects are described in chapter 10.

1.6 Mediators and Moderators
In addition to the Baron and Kenny (1986) landmark article, interesting 
discussions of the distinction between mediating and moderating vari-
ables have been described for nursing (Bennett, 2000), industrial and orga-
nizational psychology (James & Brett, 1984), child psychotherapy (Kazdin 
& Nock, 2003), clinical psychology (Holmbeck, 1997), psychoneuroimmu-
nology (Stone, 1992), and programs for children (Petrosino, 2000). More 
recently a series of comments and discussion on mediators and moderators 
appeared in the Journal of Consumer Psychology, Volume 10, 2001 (Ambler, 
2001; Heath, 2001; Lehmann, 2001). There are many valid, useful defi ni-
tions of mediators and moderators in the literature. For example, Kraemer, 
Stice, Kazdin, Offord, and Kupfer (2001) specifi ed mediators as variables 
that change over time after an intervention and moderators as variables 
that are measured before an intervention. More detailed defi nitions of con-
founding and confounders are also available (Greenland & Morgenstern, 
2001). To clarify the discussion in this book, the defi nitions in italics in this 
chapter will be used throughout this book.

For the most part, the relative priority of investigating moderators ver-
sus mediators depends on the research question of interest. However, as 
stated by Stone (1992, p. 14), “Perhaps it is in some sense fl ashier to focus 
solely on mediators, because they address more central hypothesized 
linkages.” Generally, mediators are more interesting because they address 
the mechanisms by which an effect occurs, whereas moderators provide 
information on when effects are present. Once a moderator effect is found, 
mediation analysis is often used to explain the source of the effect. In 
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12 Introduction to Statistical Mediation Analysis

the case of experimental manipulations, in which an effect is present for 
one group but not another, a subsequent study may investigate media-
tional process in the group for which the manipulation was successful. In 
another respect, the failure of a mediating process in a subgroup defi ned 
by a moderator may imply that the mediation theory is limited and needs 
revision. The ideal theory applies across subgroups and situations. There 
are also situations in which moderation is consistent with a mediated 
effect. In an exercise promotion study, for example, it is not likely that an 
intervention can improve exercise habits of persons who are already high 
on a mediator such as belief that exercise is important. As a result, there 
will be a moderator effect whereby program effects are only observed for 
persons low on beliefs about exercise at baseline.

1.7 Four or More Variable Effects
The number of possible relations among variables increases rapidly as 
the number of variables increases. An example of a four-variable effect is 
described in chapter 10, where a mediational process differs across levels 
of a moderator. Another more common example of a four-variable effect 
is a four-way interaction in analysis of variance. Perhaps as knowledge 
in a fi eld progresses, more complicated effects will be hypothesized and 
tested. A more common way to deal with this complexity is to identify 
third-variable effects in more complicated models.

Given the many possible relations among four or more variables, how 
should a researcher proceed? Theory and prior research provide the clear-
est motivation for reducing the number of realistic relations. Pilot and 
exploratory analysis further clarify the relations suitable for further study. 
Randomized experimental designs provide a way to localize the effect of 
one or more variables. In general, programs of research based on theory, 
prior research, qualitative methods, longitudinal studies, and experimen-
tal designs are necessary to investigate mediational processes.

1.8 Some Historical Background for Mediation Analysis
This section describes several major historical issues that provide the 
background for modern approaches to identify mediating variables. An 
attempt has been made to describe the issues in chronological order but 
this is diffi cult because the issues overlap in content and when they were 
fi rst discussed.

Cause. At approximately age 3, persons begin to interpret their world 
in terms of processes by which one thing leads to another (Shultz, 1982). 
These young persons can generate and answer questions about how two 
things are related, including whether one thing causes another. It is not 
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surprising that the identifi cation of how and why things are related has 
played a central role in how humans view their environment because once 
real causal sequences are identifi ed, they are likely to be present in new 
situations. As summarized by Shultz (1982, p. 1), “. . . the concept of causa-
tion is just as indispensable to human understanding as are the concepts 
of object, space, time, quantity, and logic.”

The fi rst written historical examples of questions similar to mediation 
begin in the 3rd century bc, with Aristotle’s identifi cation of material, for-
mal, effi cient, and fi nal causes. The effi cient cause refers to how a thing 
comes about and is most similar to the investigation of mediation. The 
research literature on causality is voluminous so only a few examples 
related to mediation and research to investigate mediational processes 
are presented here. In general, the literature focuses on a causal relation 
between one cause and one effect. Hume (1748) argued that observers are 
not capable of identifying causes but are capable of observing the regu-
larity of events and may consider one thing as a cause of another under 
certain conditions consisting of spatial/temporal contiguity (two events 
occur close in time and space), temporal succession (one event always 
precedes another), and constant conjunction (whenever one event is 
observed, the other event is also observed). In this framework, observed 
events form the basis for inferring mediation. Another view of causality 
argues that the causes of effects can be found and that is what humans 
do well (Kant, 1965/1781). Mill (1843) introduced the notion of covariation 
as being indicative of a causal relation and advocated experimentation 
to identify causes. Similarly, Suppes (1970) emphasized covariation as a 
manifestation of a causal relation and suggested tests of whether addi-
tional variables refl ecting alternative causes remove the covariation. Pop-
per (1959) argued that causes can never be proven, but that data can be 
viewed as consistent or inconsistent with a cause. Further, Popper argued 
that the best research strategy is to focus on testing whether hypothesized 
causal relations are false so that false causal hypotheses are rejected. In 
this way science advances by systematic testing and refutation of causal 
hypotheses.

Wright’s path analysis. Modern approaches to quantifying mediating 
mechanisms began with Sewall Wright’s (Wolfl e, 1999; Wright, 1920, 
1921) methods for the path analysis of systems of relations among vari-
ables that included mediating processes as an important component. 
Wright used this system of equations for the relations among variables 
to quantify the hereditary and environmental infl uences on the color 
patterns of piebald guinea pigs. Wright’s method, called path analysis, 
defi ned a model in terms of mathematical equations and displayed the 
model visually in a path diagram, in which variables were represented 
with symbols and causal relations between variables with arrows to 
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14 Introduction to Statistical Mediation Analysis

indicate the direction of the relation. Path analysis provided a way to 
specify the causal relations among many variables and generated coeffi -
cients refl ecting the size of the relation between variables. Path analysis 
generated quantitative estimates of the coeffi cients including mediated 
effects based on observed correlations among variables. Wright showed 
that the path coeffi cient for a mediating process was the product of all 
the path coeffi cients in a chain of mediation. The same quantifi cation 
of mediation as a product of coeffi cients is described later in this book 
starting in chapter 3.

As with many new statistical methods, path analysis was developed to 
extract the maximum amount of information from data. In this case, the 
data were from the U.S. Department of Agriculture’s extensive studies on 
breeding guinea pigs. Wright wrote several papers (Wright, 1920, 1921) 
on the quantitative analysis of the guinea pig data, which was an ideal 
application of path analysis methods because of clear genetic hypotheses 
and linear relations between parent and offspring variables. Wright used 
the methods to partition the variance in guinea pig breeding into heredity 
and environment.

Niles (1922, 1923) provided an important criticism of Wright’s path 
analysis. The criticisms by Niles are the same criticisms of path analysis 
and mediation methods that are voiced today. Niles criticized Wright 
on several accounts, of which three are most relevant here. First, Niles 
stated that correlation and causation are the same thing so it was sense-
less to contrast them, an idea popularized by Pearson in his classic book, 
The Grammar of Science (Pearson, 1911). Pearson (1911) argued that cor-
relation was a broad category with causation at its limit (Pearl, 2000) 
because all things are associated. The diffi culty was the assessment of 
how closely things are associated, for which Pearson proposed the cor-
relation coeffi cient.

Niles’ second criticism was that it was impossible to specify a correct 
system of the action of causes. In Wright’s most important response to 
Niles’ criticisms, Wright (1923, p. 240) stated an argument used to defend 
path analysis approaches to this day, “the combination of knowledge of 
correlations with knowledge of causal relations, to obtain certain results, 
is a different thing from the deduction of causal relations from correlations 
implied by Niles’ statement. Prior knowledge of the causal relations is 
assumed as a prerequisite in the former case.” Wright (1923, p. 241) further 
divided the application of theory into three cases, “(1) where the causal 
relations among the variables may be considered as known, (2) where 
enough is known to warrant an hypothesis or alternative hypothesis, and 
(3) where even an hypothesis does not seem justifi ed.” In case 1, he argued 
that knowledge of causation and correlation justifi es the modeling. In case 
2, he noted that models can be compared with new data. He suggested 
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that perhaps nothing could be done for case 3 because there is nothing to 
combine with knowledge of the correlations.

Wright agreed with Niles’ third criticism that the chain of causation 
must be cut off at some point, but argued that this was true of all scientifi c 
research. In particular, Niles noted Pearson’s idea that the causes of any 
individual thing can widen out in an unmanageable way. Wright argued 
that a portion of the unmanageable number of causes can be studied by 
isolating a portion of the system and investigating causation in this more 
limited system. Wright (1923, p. 250) stated, “In subtracting the total cause 
of one event from another there is an enormous cancellation of common 
factors.” This discussion of the chain of causation is the ubiquitous issue 
of molar versus molecular mediation where molecular or micromediation 
refers to the specifi cation of causal pathways in minute detail, and molar 
mediation specifi es causal pathways with more general variables that 
refl ect aggregated micromediational pathways. It is often only possible to 
study mediation at a molar level because of the unfeasible level of detail 
for measurement of micromediation.

In summary, Wright argued that path analysis was not a method to 
infer causation, it was a method to quantify already supposed causal rela-
tions. The attempt to quantify causal relations required an initial set of 
causal sequences that was deduced from all available information includ-
ing theory, prior correlations, and results of prior experiments. These causal 
relations were then quantifi ed using path analysis. Wright (1923) also gave 
a clear outline of path analysis including defi nitions of coeffi cients and 
applications of the method to study causal relations.

Many of these same criticisms and responses have been repeated in 
modern discussions of structural equation modeling of covariance and 
correlation matrices, which includes path analysis as a special case (Cliff, 
1983; Ling, 1982; MacCallum, Wegener, Uchino, & Fabrigar, 1993). Most 
criticisms relate to the case for which there is insuffi cient information 
to specify causal relations and the usefulness of applying the model is 
unclear. Others would argue that even in this case, specifying a model 
could be used to explore relations that will be tested in a subsequent 
study. Overall, these criticisms focus on the additional information that 
must be brought to bear on any research problem, rather than inferring 
relations based on correlations or associations (Berk, 1991; Blalock, 1991; 
Freedman, 1991).

Conceptualizations of mediation. During the 1950s, several important 
conceptualizations of  mediation were developed in psychology, agricul-
ture, and social science. As described earlier, one of the fi rst substantive 
examples of a mediation hypothesis in modern research comes from the 
S–O–R (Woodworth, 1928) ideas of classic psychology. Later a distinc-
tion between theoretical mediating variables and intervening variables 
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was made by MacCorquodale and Meehl (1948) and also Ginsberg (1954), 
where theoretical mediating processes were hypothetical constructs and 
intervening variables were the measures of those hypothetical constructs. 
This distinction between the theoretical nature of a mediating process and 
the variables used to measure that process is important for applications 
of mediation analysis. A similar distinction was made between molar 
mediation, whereby more general variables are investigated, in compari-
son with molecular or micromediation where each variable in the chain of 
mediation is investigated. Rozeboom (1956) described a mediation model 
in terms of functional relations, whereby the mediator is a function of 
the independent variable and the dependent variable is a function of the 
mediator. In this model, for mediation to exist, the relation between the 
independent variable and the dependent variable and the mediator and 
the dependent variable must not be independent. Mediation as functional 
relations has been the basis of subsequent conditional probability defi ni-
tions of mediation (Freedman & Schatzkin, 1992).

Another line of related research began with Fisher’s (1934) develop-
ment of analysis of covariance as a means to adjust the results of analysis 
of variance for an additional variable called a covariate. A covariate can 
reduce unexplained variability and clarify the true effects of an experi-
mental manipulation. Original applications of analysis of covariance were 
in agricultural studies in which, for example, the effects of an experimen-
tal manipulation on crop yield in plots of land were adjusted for covari-
ates such as variation in soil quality among the plots. A covariate is also 
called a concomitant variable because in some situations it was not sensi-
ble to remove the effects of the additional variable by covariance analysis 
(Cochran, 1957; Smith, 1957). For the case of mediation, the concomitant 
variable and the dependent variable are affected by the experimental 
manipulation. For example, fumigation reduces the number of eelworms, 
which increases oat yield because eelworms reduce oat yield (Cochran, 
1957). The number of eelworms in a volume of soil is a mediating variable. 
The true effect of fumigation of farmland is not obtained by removing 
the effect on eelworms from the effect of fumigation on oat yield because 
changes in the number of eelworms are affected by fumigation. This con-
ceptualization of mediation in terms of a concomitant variable affected 
by the independent variable forms the basis of several important modern 
contributions to mediation analysis based on the meaning and function of 
concomitant variables (Rosenbaum, 1984; Rubin, 2004).

Another historical precedent for mediation analysis is the elaboration 
method developed by Paul Lazarsfeld (1955) and colleagues (Kendall & 
Lazarsfeld, 1950). The elaboration method adds variables into statistical anal-
ysis to see how an original relation between two variables changes. The elab-
oration model was developed to formalize the analysis of contingency table 
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data from the research of Stouffer, Suchman, DeVinney, Star, and Williams 
(1949) on American soldiers during World War II. Stouffer and colleagues 
added variables to the statistical analysis to understand the meaning of 
observed relations between two variables. For example, based on elabora-
tion analysis, Stouffer and colleagues dem onstrated that the relation of 
soldier morale was primarily a function of soldiers’ feelings of deprivation 
relative to other soldiers around them rather than to soldiers in other loca-
tions. Lazarsfeld and colleagues formalized the methodology involved 
in elaboration, based on how the addition of a third variable affects the 
relation between two variables. If the addition of a third variable does 
not appreciably change the original relation, it is called replication, so 
the third variable is a covariate as discussed earlier. If the addition of a 
third variable changes the observed relation because the third variable is 
related to the two original variables but does not intervene between them, 
it is called explanation, and the third variable is the same as a confounder. 
Interpretation corresponds to a third variable that changes an observed 
relation because it comes between the independent and dependent vari-
able and is interpreted as an intervening or mediating variable. Specifi ca-
tion refers to a third variable that specifi es when and at what levels of the 
third variable a relation is observed or not observed, corresponding to a 
moderator variable. A primary aspect of elaboration is the identifi cation of 
the time ordering of variables based on theory and prior research, neces-
sary to identify the independent, intervening, and dependent variables. 
Rosenberg (1968) further developed the elaboration method including the 
notion of a distorter variable that may make a relation emerge and may 
reverse the sign of an original relation. The elaboration method is widely 
used in the social sciences.

Structural equation models. The next important events in the quantifi ca-
tion of mediating processes occurred when sociologists and economists 
developed models for sets of causal relations (Blalock, 1971; Duncan, 
1966; Goldberger, 1972; Simon, 1954). Simon (1954) clarifi ed the assump-
tions for the relations in three variable models. Duncan (1966) applied the 
path analysis methods described by Wright to examine models including 
mediated effects in sociology. Here one of the primary research topics 
was the effects of parental characteristics on child characteristics, such as 
the effects of parent socio economic status (SES) on child SES mediated by 
child education. Sociology has continued to be an active area of applica-
tion of mediation models as well as an important area of statistical devel-
opment and application for new methods. Because there are often many 
variables in sociological theory, there are often many mediators.

The modeling tradition started by Wright and rediscovered by Duncan 
and Blalock was made more general with the development of covariance 
structure modeling including the Jöreskog (1970, 1973) Keesling (1972) 
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Wiley (1973) or the JKW covariance structure model (Bentler, 1980). The 
LISREL (Jöreskog & Sörbom, 2001) program for the JKW approach was 
developed and has received widespread application. The Bentler–Weeks 
formulation (Bentler & Weeks, 1982) that required half as many matrices 
as the JKW approach was included in the EQS program (Bentler, 1997). 
Covariance structure models combine traditions. The path analysis mul-
tiple equation tradition, started by Wright and extended to sociology 
and economics, was combined with the psychometrics tradition with its 
focus on measurement. These models, which are also called structural 
equation models, combine a measurement structure from factor analysis 
(Mulaik, 1972) with the path analytical framework by specifying latent, 
unobserved, constructs formed by separating true and error variance in 
observed measures. In this way, covariance structure models distinguish 
between the measurement model for observed measures of a construct 
and the structural model for the relations among the constructs. These 
covariance structure analysis models improve the accuracy of the estima-
tion of mediated effects in a model that includes both methods to assess 
mediation and also methods to model measurement error in the analysis. 
The use of maximum likelihood estimation for covariance structure mod-
els allows for a statistical test of how close the predictions of the model are 
to the actual data (Shipley, 2000).

The estimation of each of the mediated effects in structural equation 
and path analysis models is called effect decomposition to identify the 
fact that there is a separation of effects in terms of direct effects and 
mediated effects (Alwin & Hauser, 1975). According to Duncan, effect 
decomposition in path analysis is important because “it makes explicit 
both the direct effects and indirect effects of causal variables on depen-
dent variables” (Duncan, Featherman, & Duncan, 1972, p. 23). General 
methods to decompose effects into direct and indirect effects for cova-
riance structure models were derived (Alwin & Hauser, 1975; Graff & 
Schmidt, 1982). Sobel (1982) derived the standard error of these direct 
and indirect effects and shortly thereafter several covariance structure 
analysis programs included these standard errors as part of their out-
put. These standard errors are used to compute confi dence intervals for 
indirect effects.

There has been consistent development of statistical methods for cova-
riance structure modeling such as methods for non-normal data (Browne, 
1984), ordinal or limited variables (Muthén, 1984), alternative specifi ca-
tions of the models (Bentler & Weeks, 1982; McArdle & McDonald, 1984), 
and growth curve models (Rogosa, 1988). Statistical software, such as EQS 
(Bentler, 1997), Mx (Neale, Boker, Xie, & Maes, 2002), & LISREL (Jöreskog 
& Sörbom, 2001), Mplus (Muthén & Muthén, 2004), AMOS (Arbuckle & 
Wothke, 1999), and CALIS (SAS, 1989) has simplifi ed the estimation of these 
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models. Recent developments include the description and comparison of 
different tests of mediation (MacKinnon, Lockwood, Hoffman, West, & 
Sheets, 2002) and the estimation of mediated effects for continuous and 
categorical outcomes using single sample and resampling methods (Bol-
len & Stine, 1990).

Mediation in prevention and treatment research. Starting in the 1970s, 
researchers in several fi elds noticed the usefulness of the mediation model 
in treatment and prevention research. Susser (1973) clarifi ed the different 
types of variables present in epidemiological studies including the medi-
ating variable notion for health program development. During the late 
1980s, the distinction between molar and molecular mediation arose in 
the medical and epidemiological literature on intermediate or surrogate 
endpoints (Prentice, 1989). Here the mediation model was used to identify 
mediating variables called surrogate or intermediate endpoints that serve 
as early indicators of later disease. These surrogate endpoints are impor-
tant because treatment effects on these variables are easier to study than 
treatment effects on disease, which may be of low frequency and require 
a long time to occur. 

The Judd and Kenny article (1981a) and book (1981b) described the use 
of the mediation model in experimental health promotion and disease 
prevention programs and marked the beginning of applying theoretical 
mediating mechanisms to the development and evaluation of prevention 
programs from a social science perspective. Baron and Kenny (1986) pro-
vided a major treatment of mediating variables in the social sciences and 
included methods to examine their effects. These articles are now widely 
cited in the research literature and have led to incorporation of media-
tion analysis in psychological research. MacKinnon and Dwyer (1993) 
outlined the application of mediation analysis in prevention research and 
evaluated several statistical aspects of assessing mediation.

Modern causal inference. Recent developments related to assessing 
mediation center around situations in which it is possible to make defi ni-
tive statements about whether a variable is truly intermediate in a causal 
sequence (Frangakis & Rubin, 2002; Holland, 1988a; Pearl, 2000; Rubin, 1974, 
2004). This research continues to formalize the work of Simon (1954) and 
Wright (1921, 1934). Here the assumptions required for identifying media-
tion are laid out and discussed. In general, these models demonstrate that 
identifying true mediation is diffi cult. The models suggest that the only 
true way to identify causality is with randomized experiments because 
only with this design is it possible to rule out alternative explanations of 
results. In several of these models, if a variable cannot be manipulated, 
such as sex or race, then it is not reasonable to consider causal relations. 
Furthermore, for the case of a mediating variable, true causal relations are 
only possible in specifi c circumstances related to counterfactual situations 
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in addition to random assignment (Frangakis & Rubin, 2002). This pes-
simistic view of identifying mediating variables is challenged by causal 
approaches developed as part of artifi cial intelligence research. This work 
grew out of the need to train machines to identify causal mediating pro-
cesses necessary for proper operation. Often the computer must make a 
decision based on incomplete information. In many cases, the machine 
does not have the luxury of deciding that a task is impossible, but must 
make a decision.

The general notion of these causal inference approaches is that X is 
related to Y through a mediating variable M such that X would not affect 
Y if it had no effect on M. More on these philosophical notions of causation 
can be found in Holland (1986) and Pearl (2000, especially the epilogue) and 
also in chapter 13. The general causal approach of this book is that all rel-
evant research can shed light on the accuracy of a mediational hy potheses, 
but some research designs lead to more defensible conclusions. In general, 
true causal relations cannot be known exactly, but observed manifestations 
of mediational theory can be repeatedly tested, thereby generating a body 
of research to bolster a mediational hypothesis. Mediation results from one 
study inform the predictions for the next, more detailed, study in the same 
or different research context. Furthermore, the identifi cation of media-
tional processes is a multifaceted approach that involves substantive skill 
and theory, results across substantive areas, and careful research design.

1.9 Summary
The purpose of this chapter was to introduce the notion of a mediating 
variable and to defi ne several concepts. The major applications of media-
tion in terms of identifying the mechanisms in the black box exempli-
fi ed by the S–O–R research and mediation in prevention were described. 
The mediating variable and related variables (confounder, concomitant, 
covariate, distorter, and moderator) were defi ned and the history of the 
mediating variable was briefl y summarized. More information about spe-
cifi c applications of the mediation model is included in chapter 2.

1.10 Exercises
1.1. Look up the words mediator, mediating, and mediate in the Oxford 

En glish Dictionary (OED). The OED is usually available on-line as 
part of university library systems. Briefl y describe some of the mean-
ings of these words and the fi rst use of the words.

1.2. Describe possible mediators to be targeted if the transmission of yel-
low fever was through person-to-person contact.
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1.3. Describe two examples of S–O–R models. Describe two examples of 
mediation in prevention.

1.4. Chapter 1 focused on two- and three-variable systems. Describe 
several effects in a four-variable system. Why is the four-variable 
system so complicated?

1.5. Given the number of possible types of effects in four or more-
 variable systems, when is it sensible to consider these more compli-
cated models?

1.6. Use a literature search program such as the Web of Knowledge 
(http://www.isiwebofknowledge.com) and search for the keywords, 
moderators and mediators. How many articles did you fi nd and from 
how many different fi elds? Search for the word mediator and count 
the number of articles listed for this keyword.

1.7. For each of the following examples describe whether the variable is 
a mediator, moderator, or confounder.

 a. The age effect is removed from the relation between stress and 
health.

 b. Effect of dissonance on a court decision depends on whether the 
court case was a harassment or product liability case.

 c. Physical fi tness affects feelings of athletic competence, which 
then affects body image.

 d. The relation between stress and health symptoms is compared 
across ages.

1.8. Here are two examples described in Simon (1954) for the measure-
ments of three variables in groups of people. Identify each variable 
as an independent variable, mediator, confounder, or dependent 
variable.

 a. The percentage of persons that are married, average pounds of 
candy consumed per month, and average age.

 b. The percentage of female employees who are married, average 
number of absences each week per employee, and number of 
hours of housework completed each week per employee.

1.9. In a classic psychological study, Horst (1941) observed that the coef-
fi cient relating mechanical ability and pilot performance increased 
when verbal ability was added to the regression equation. Is ver-
bal ability a confounder or a mediator? Why? Is verbal ability a 
suppressor?

1.10. In a hypothetical example, McFatter (1979) described relations among 
worker intelligence, boredom, and errors on an assembly line task. 
More intelligent workers make fewer errors but are also more likely 
to be bored. Is boredom a confounder or a mediator? Describe how 
the relations among these variables may indicate suppression.
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22 Introduction to Statistical Mediation Analysis

1.11. Rosenberg (1968) described a real data example showing a positive 
relation between being married and rate of suicide; that is, married 
persons had a higher rate of suicide. He gives evidence that age was 
a distorter variable of this relation. Explain how holding age con-
stant could reverse the positive relation between marital status and 
rate of suicide.

1.12. Section 1.5 describes situations in which the overall relation between 
two variables is not statistically signifi cant, but there is signifi cant 
mediation. Describe one real or hypothetical substantive example of 
how this could occur.
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2

Applications of the 
Mediation Model

“In the absence of a concern for such mediating or 
intervening mechanisms, one ends up with facts, 
but with incomplete understanding.”

—Morris Rosenberg, 1968, p. 63

2.1 Overview
Chapter 2 describes applications of the mediation model, thereby provid-
ing a substantive context for the statistical topics in the following chap-
ters. Examples outlined in this chapter are used throughout the book and 
are chosen to refl ect disparate fi elds to illustrate the widespread utility of 
the mediation model. Important methodological developments for media-
tion analysis in each research area are briefl y mentioned. As an example 
of studies designed on the basis of hypothesized mediating mechanisms, 
program development is described as a guide for designers of health pro-
motion and disease prevention programs. The focus of this chapter is sub-
stantive application rather than quantitative methods, which are the focus 
of the rest of the book.

2.2 Mediation for Explanation and Mediation for Design
There are two main uses of mediating variables in research studies. Once 
a relation between an independent and dependent variable is established, 
researchers often try to explain why or how the two variables are related. 
In this context, the purpose of mediation analysis is to investigate the 
processes underlying the observed relation between an independent vari-
able and dependent variable. There are many examples of this purpose of 
mediation analysis, which is most common in psychology, sociology, and 
related fi elds. This approach to assessing mediation stems from the elabo-
ration model whereby additional variables are analyzed to understand an 
observed relation (Lazarsfeld, 1955).
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A second approach to mediation attempts to select mediating variables 
beforehand that are causally related to the dependent variable, rather than 
explaining an observed relation between two variables. Once these medi-
ating mechanisms are identifi ed, a manipulation is designed to change 
the selected mediating variables. If the assumption that the mediating 
variables are causally related to the outcome is correct, then a manipu-
lation that changes the mediating variables will change the dependent 
variable. Studies using a mediation for design approach have increased 
because of the usefulness of this approach for applied research.

Both mediation for explanation and mediation for design approaches 
are used in the study of the same research topics. Often mediation results 
from explanation studies are used in subsequent mediation by design 
studies. Mediation for explanation is more common in basic research to 
explain an observed relation between an independent and dependent 
variable. Mediation for design is often a primary characteristic of applied 
experimental studies. The main difference between these two types of 
studies is when mediation is considered in the research process, either 
planned before the study to change a dependent variable or conducted 
after an effect is observed to understand how or why the effect occurred. 
Mediation for design research focuses on designing actions to solve a 
problem. Mediation for explanation attempts to explain how or why there 
is an observed relation between two variables.

2.3 Social Psychology
Mediation studies are common in social psychological research. In many 
psychological studies mediation is investigated with a randomized exper-
imental design, but there is no attempt to measure the mediating process. 
In these studies, participants are randomly assigned to receive different 
experimental conditions, and differences in means in the conditions are 
either consistent or inconsistent with a mediation theory. For example, 
cognitive dissonance is a social psychological theory which explains that 
persons make decisions at least in part to reduce internal discomfort or 
dissonance. Sherman and Gorkin (1980) studied dissonance by randomly 
assigning participants to either solve a brainteaser that invoked feelings of 
sexism or a brainteaser not related to sex roles. After the brainteaser, par-
ticipants judged a legal case that involved sex discrimination. After expo-
sure to the brainteaser, participants with feminist beliefs were more likely 
to make feminist judgments about the discrimination case if they failed 
the sexism brainteaser than participants with feminist beliefs who did not 
fail the brainteaser. It was hypothesized that failure to solve the sex role 
brainteaser induced discomfort regarding feelings of sexism and the dis-
comfort led to stronger judgments in favor of the sex discrimination case. 
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Although these results were taken as evidence of a cognitive dissonance 
mediation relation, the mediation relation was not investigated in a sta-
tistical analysis. Experimental studies will always be critically important 
for the study of mediation but more information may be extracted from a 
research study if measures of the mediating process are incorporated in 
the analysis. If measures of the mediator are obtained, more links in the 
mediated relation can be studied.

Taylor and Fiske (1981) described how mediation analysis is typically 
conducted in social psychological research when mediating variables 
are measured by testing the experimental effect on the dependent vari-
able and the mediator. If the experimental effects on the mediator and 
the dependent variable are both statistically signifi cant, then the experi-
mental manipulation changed the dependent variable, and the mediator 
was changed as expected. Taylor and Fiske (1981) demonstrated that this 
method of testing mediation is incomplete because the association between 
the mediator and the dependent variable is not tested in this framework. 
An important aspect of mediation is that the mediator is related to the 
dependent variable. It is possible for the experimental effects on the medi-
ator and the dependent variable to be statistically signifi cant, when the 
relation between the mediator and the dependent variable is zero.

In a later article, Fiske, Kenny, and Taylor (1982) applied structural equa-
tion modeling to test the relation between the mediator and the dependent 
variable in addition to the test of the experimental effect on the mediator 
and the dependent variable. This research is one of the fi rst applications 
of mediation analysis in an experimental research design. The researchers 
examined the psychological phenomenon whereby directing a person’s 
attention to stimuli in a social situation makes the person attribute more 
importance to that stimuli. Participants in the study viewed two persons 
talking together. Attention to specifi c stimuli, called salience, was manip-
ulated by instructing participants to watch one of the two persons. After 
viewing the two persons talking together, participants rated the infl uence 
of each person in the conversation and also recalled the characteristics of 
each person. The researchers were interested in the characteristics of the 
persons that mediated the relation between salience (attention to one per-
son) and ratings of infl uence. There was evidence that salience increased 
positive visual recall and positive visual recall was related to infl uence, 
consistent with the mediation hypothesis.

Harris and Rosenthal (1985) described potential mediational processes 
for how expectancies about a person’s behavior lead to actual changes in 
behavior. The origin of this research was a study of rat maze learning. 
Rosenthal and Fode (1963) had psychology students teach maze learning 
to rats that were either maze-dull or maze-bright, when, in fact, the labels 
were randomly assigned to the rats. Despite the random assignment of 
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labels, after 1 week rats labeled maze-bright were better at running the 
maze than maze-dull rats. The results were described as a self-fulfi lling 
prophecy—the expectancy introduced by the label led to actual perfor-
mance changes. A teacher expectancy effect on children’s learning was 
also reported such that children randomly labeled as bright had greater 
achievement than other children (Rosenthal, 1987). Harris and Rosen-
thal (1985) investigated the mediational processes that may explain the 
expectancy effect in a meta-analysis of 86 expectancy effect studies. For 
example, a teacher may devote more attention to a student whom the 
teacher expects to perform well, and this increase in attention to the stu-
dent increases the student’s subsequent performance. The expectancy 
effect remains somewhat controversial (Rosenthal, 1987; Wineburg, 1987) 
and is an active area of research. Mediation of the expectancy effect is an 
example used in chapter 6.

Another mediational hypothesis is the extent to which intentions medi-
ate the relationship between attitudes and behavior (Fishbein & Ajzen, 
1975). Alternatively, others have suggested that behavior changes inten-
tions (Bem, 1972). Bentler and Speckart (1979, 1981) found that, in general, 
attitudes affect behavior, but there was evidence of reversed patterns for 
some of the behaviors studied. In a related study, Smith (1982) investi-
gated the relations among the social cognition variables of beliefs, attri-
butions, and evaluations. The article had the classic substantive focus of 
research examining how an individual’s responses to achievement are 
mediated by attributions (Weiner, Russell, & Lerman, 1979) and how atti-
tudes about objects are mediated by beliefs about the objects (Fishbein & 
Ajzen, 1975). The methods of the study allowed for estimation of recip-
rocal paths among the measures; that is, beliefs cause attributions and 
attributions cause beliefs. One of the challenges in many research areas is 
that measures are reciprocally related, such that symmetric relations exist 
between variables. For example, the mediator may cause the dependent 
variable and the dependent variable may cause the mediator. Smith (1982) 
proposed an ingenious method to investigate these types of relations 
and quantify these reciprocal paths using an experimental methodology. 
Smith also described the many assumptions required for accurate estima-
tion of reciprocal relations. As expected, there was evidence for substan-
tial reciprocal relations among beliefs, attributions, and evaluations.

The seminal Baron and Kenny (1986) article describing mediation and 
moderator analysis in psychology was published in the Journal of Person-
ality and Social Psychology. This article is now widely cited and contains 
guidelines for mediation and moderation analysis. A set of criteria widely 
used for establishing mediation was described. 
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2.4 Industrial Psychology

Several topics in industrial psychology involve mediation (James & Brett, 
1984). The fi rst topic is how job perceptions mediate the effect of work envi-
ronments on worker productivity and employment. Aspects of the work 
environment include reward systems, management styles, and workgroup 
composition. For example, one model proposes that goals predict effort 
that then predicts performance (Hall & Foster, 1977). A second mediation 
topic is the extent to which the environment affects intentions that then 
affect worker retention. Third is attribution in leadership whereby sub-
ordinate performance evaluations by a leader are mediated by the lead-
er’s perceptions about the attributions of the causes of the subordinate’s 
performance. Billings and Wroten (1978) summarize the usefulness of 
path analysis including mediation in industrial psychology. Importantly, 
industrial psychology articles often describe assumptions underlying the 
application of the mediation model including decisions about the time 
ordering of variables, linear relations, and measurement error (see James, 
Mulaik, & Brett, 1982). 

In James and Brett’s (1984) article on mediation, they highlight the 
assumptions of the mediation and moderation model with an example of 
how effort and ability attributions mediate the relation between perfor-
mance feedback and intended persistence in the future among workers. 
The moderator variable was the self-esteem of the worker; for example, 
persons with high self-esteem given poor performance feedback attrib-
uted it to lack of effort and intended to work harder. More recently, Prus-
sia and Kinicki (1996) examined the mediation of performance feedback 
on group effectiveness with potential mediators of group affective evalua-
tions, group goals, and collective effi cacy. Group affective evaluations and 
collective effi cacy completely mediated the relation between performance 
feedback and group effectiveness.

Environmental effects on worker behavior can occur at the group level, 
as well as the individual level described earlier. For example, the effects 
of contextual or group level measures on individual outcomes are medi-
ated by the meanings of the group level measures to individuals (James, 
James, & Ashe, 1990). The centralization of a work unit may affect worker 
productivity through the mediating variable of perceived autonomy of the 
worker. The effects of group level measures may affect group-level per-
ceptions of autonomy that may in turn affect worker behavior (Hofmann 
& Gavin, 1998). These types of multilevel effects in which a group level 
measure affects another group level measure that then affects an indi-
vidual level measure will be discussed in chapter 9.
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2.5 Clinical Psychology and Psychiatry

Several prominent clinical researchers have called for increased atten-
tion to mediating mechanisms of psychological treatment (Kazdin, 2000; 
Kazdin & Nock, 2003; Kazdin & Weisz, 2003; Kraemer, Wilson, Fairburn, 
& Agras, 2002; Weersing & Weisz, 2002) at least in part to test theory. As 
summarized by Kraemer et al. (2002, p. 877), “Rapid progress in identify-
ing the most effective treatments and understanding on whom treatments 
work and do not work and why treatments work or do not work depends 
on efforts to identify moderators and mediators of treatment outcome. We 
recommend that randomized clinical trials routinely include and report 
such analysis.” Kazdin (1989) has repeatedly called for more research on 
the mechanisms by which childhood treatment programs achieve effects. 
Kazdin (1989) outlined different models for childhood depression, includ-
ing psychosocial models that postulate psychic and interpersonal causes 
of depression, psychoanalytic models that suggest intrapsychic infl uences, 
behavioral models that emphasize learning and environmental causes, 
cognitive models that emphasize perceptual and attributional styles that 
underlie depression, biochemical models that postulate chemical imbal-
ances for the cause of depression, and genetic models that implicate genes 
as the cause of depression. In many cases, these theories have very clear 
predictions of the mediational mechanisms underlying depression. For 
example, it is hypothesized that effects of negative life events increase 
hopelessness that then leads to depression (Kazdin, 1989). Most recently, 
Weisz and Kazdin (2003, p. 445) concluded that, “The job of making treat-
ments more effi cient could be greatly simplifi ed by an understanding of 
the specifi c change processes that make the treatments work. But a close 
review of child research reveals much more about what outcomes are pro-
duced than about what actually causes the outcomes.”

The possible theoretical mechanisms by which effective psychother-
apy works have been outlined by several researchers. Freedheim and 
Russ (1992) identifi ed six mechanisms of change that occur in child psy-
chotherapy: (a) labeling of feelings and the release of emotion (cathar-
sis), make the feelings less overwhelming and more understandable, 
(b) corrective emotional experience, which consists of the acceptance 
of the child’s emotions as valid and the discussion of the reasons for 
the emotions, (c) insight, the emotional resolution of confl ict and trauma, 
(d) problem solving and coping strategies, which consist of learning meth-
ods to solve problems and the use of effective coping strategies, (e) object 
relations and internal representations, which consist of exposure to a sta-
ble, predictable, and caring therapist throughout the process of therapy, 
and (f) nonspecifi c factors such as expectations before therapy. Additional 
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mediating mechanisms include the therapeutic alliance between therapist 
and client and a host of mediators related to compliance with prescription 
drug regimens.

As summarized by Weersing and Weisz (2002), few studies in clinical 
psychology estimate mediated effects even though most studies have the 
data available to examine mediation. Only a few researchers have con-
ducted some form of mediation analysis to address mediating mecha-
nisms in treatment research. Huey, Henggeler, Brondino, and Pickrel 
(2000) report that decreased affi liation with delinquent peers mediated 
the effects of their treatment program on delinquent behavior. Eddy and 
Chamberlain (2000) found that reductions in deviant peer associations 
and improved family management skills mediated the effects of their 
program on adolescent antisocial behavior. Hollon, Evans, and DeRubeis 
(1990) found evidence that attributional style mediated the effect of cogni-
tive behavioral treatment. Hinshaw (2002) found evidence that changes 
in negative parental discipline mediated the effect of treatment programs 
among children with attention defi cit hyperactivity disorder. In a study 
of treatment of substance abuse patients either with or without post-trau-
matic stress syndrome (PTSD), Ouimette, Finney, and Moos (1999) found 
evidence that PTSD was associated with poor coping strategies, which 
led to increased chance of remission. In a study of the effects of a Missis-
sippi River fl ood on psychological distress and physical symptoms, Smith 
and Freedy (2000) found that loss of psychosocial resources mediated the 
effects of fl ood exposure on symptoms.

There are several unique aspects of mediation in clinical treatment 
research. In particular, there are several levels of intervention. Therapy 
may be delivered in groups or in an individual setting. The most rec-
ognized agent of change is the therapist who conducts several actions, 
including discussion designed to assist the client. The client also conducts 
several activities to change mediators based on his or her own actions and 
thoughts. In many respects, the mediators inside the client are likely to be 
the most powerful agents of change in therapy. In addition, clinical treat-
ment may also include environmental changes designed to enhance treat-
ment, such as a period of separation as part of marriage therapy. Often 
drug treatments are included and sometimes changed during the course 
of treatment. These different agents of change may work simultaneously 
or synergistically in a treatment program. As a result, clinical research 
may require more detailed development of theory relating treatment 
components to mediators compared with the application of the mediation 
model to other fi elds. Treatment is also often adaptive to the experience of 
the client so that the meaning of different actions may differ at different 
times for the client.
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2.6 Communications Research
McGuire’s (1999) theory of the effects of communication on behavior 
encompasses a large number of steps from noticing a communication to 
changing behavior as a result of the communication. Some of these steps 
include noticing the message, processing the message, remembering the 
message, and changing attitude in response to the information in the 
message. The model explains the small effects of most communications 
because of the large number of steps that must be passed in the chain of 
mediation for an effect to be observed. This mediation chain is a good 
example of a multiple path mediation model with many links between the 
independent variable and the dependent variable.

Mediation analysis has also been recommended for political and 
health communication research as summarized by Holbert and Stephen-
son (2003, p. 559), “The basis for much of today’s mass communication 
study of political campaigns is built on a foundation of mediation” and 
McLeod and Reeves (1980, p. 18), “Mediating variables exist at every stage 
of the media effects process.” An example in political communication is 
the extent to which exposure to information about political candidates 
leads to attitudes about the candidates that predicts voting or political 
participation. McLeod, Kosicki, and McLeod (2002) describe an orienta-
tion–stimulus–organism–response model for communication to refl ect 
how an individual’s orientation may act as a moderator of a stimulus–
organism–response relation or their individual’s orientation may lead to 
selective attention to different stimuli.

2.7 Sociology
The direct and indirect effects of independent variables on dependent 
variables is a focus of sociological research. Parental characteristics infl u-
ence on offspring behavior (Duncan, 1966) has received sustained research 
attention for its importance in predicting future achievement based on 
background characteristics. Several of the example data sets in this book 
are classic sociological examples. In chapter 6, for example, mediation 
models for how father’s education affects offspring education that then 
affects offspring income (Duncan, Featherman, & Duncan, 1972) are used 
to illustrate path analysis models. In a study of parent characteristics on 
drug abuse, Chassin, Pillow, Curran, Molina, and Barrera (1993) found that 
pathways for the effect of parental alcoholism on child alcohol use were 
mediated by stress and negative affect but not by temperamental sociabil-
ity. Examples of other indirect effect hypotheses in sociology include the 
prediction that aid to families with dependent children leads to decreased 
school dropout rates, which lead to lower homicide rates (Hannon, 1997), 
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that poverty reduces local social ties, which increases assault and burglary 
rates (Warner & Rountree, 1997), and that social status has an indirect 
effect on depression through changes in social stress (Turner, Wheaton, 
& Lloyd, 1995).

Several major advancements in statistical methodology have been made 
in the context of sociological research (Alwin & Hauser, 1975; Hyman, 
1955; Sobel, 1982, 1986). One of the original articles on the decomposition 
of the effects of an independent variable into direct and indirect effects 
was discussed in sociology (Alwin & Hauser, 1975). The derivation of the 
standard error of indirect effects and detailed examination of indirect 
effects were published in sociology journals (Bollen, 1987; Sobel, 1982, 
1986). Application of resampling methods in the estimation of indirect 
effects was described by Bollen and Stine (1990).

2.8 Agriculture
There are examples of mediation in agricultural studies. In these studies 
mediating variables such as amount of fertilizer and insecticide, which are 
hypothesized to be related to crop yield, are manipulated. This literature 
distinguishes among different types of covariates or concomitant variables 
(Rosenbaum, 1984). Some concomitant variables such as watering in differ-
ent plots of land are generally not affected by the experimental manipula-
tion and may be used as covariates to reduce unexplained variability in the 
dependent variable. Other concomitant variables serve as mediators in that 
they are affected by the experimental manipulation. Fertilizers, varieties, 
and insecticides provide examples of mediating variables (Cochran, 1957; 
Smith, 1957). For example, fertilization affects germination, which then 
affects yield. Delivery of fertilizer increases soil quality, which increases 
plant growth. Cochran and Cox (1957) described an experiment in which 
the effects of fumigation to reduce eelworms is used to increase oat yield. 
In this study, some fi elds were randomly assigned to receive fumigation 
(actually four types of fumigants), and others were not fumigated. Mea-
sures of the density of eelworms in each plot of land were measured before 
and after fumigation. Measures of oat yield were made at the end of the 
study. There was interest in the extent to which the control of eelworms 
leads to increases in oat yield. In another interesting agricultural example, 
the effects of feeding cows three preparations of alfalfa that differed in the 
concentration of carotene were examined. Cows were assigned to receive 
one of the different preparations, and the potency of vitamin A in the but-
ter produced from each cow’s milk was measured (Snedecor, 1946). The 
mediated effect was the extent to which the preparation of alfalfa affects 
carotene in the alfalfa, which then affects vitamin A in butter. Other agri-
cultural examples are described in Shipley (2000).
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2.9 Epidemiology
Although description rather than theory is often prioritized in epidemiol-
ogy (Vandenbrouke, 1988), there are numerous examples of the impor-
tance of theory for the mechanism of transmission of disease. Examples 
are the mosquito theory for yellow fever, the germ theory for cholera, and 
related ideas (Gorgas, 1915). Susser (1973) described several examples of 
mediation models including the theory that maternal diet causes mater-
nal weight that in turn causes birth weight. In epidemiology, mediating 
variables are called intermediate or intervening variables. An ideal aspect 
of mediation analysis in epidemiology is the face validity of the dependent 
variables, such as disease, death, and injury. Many of these dependent 
variables are binary, requiring logistic regression or some other method 
to accurately handle the analysis of relations in the data. 

One of the best examples of mediation for design is the study of inter-
mediate endpoints in epidemiological and medical studies. In many 
medical studies, the length of time for a disease to occur and low inci-
dence rates of the disease make it very diffi cult to conduct research on 
predictors of disease. Instead, researchers advocate using a surrogate for 
disease as the dependent variable. This approach assumes that there is 
a causal relation between the surrogate and disease (Prentice, 1989). The 
surrogate is a mediator of the relation between a predictor and disease. 
For example, in the study of colon cancer, the lengthy development of 
the disease makes it very diffi cult to study the predictors of colon cancer. 
In this situation, the number of precancerous cells is investigated rather 
than colon cancer itself because the presence of these cells occurs earlier 
than colon cancer. The precancerous cells are known as a surrogate end-
point or intermediate endpoint in this literature. Prentice (1989, p. 432) 
defi ned a surrogate or intermediate endpoint as a “response variable 
for which a test of the null hypothesis of no relationship to the treat-
ment groups under comparison is also a valid test of the corresponding 
null hypothesis based on the true endpoint.” Once a valid surrogate is 
found, studies are designed to change the surrogate under the assump-
tion that changing the surrogate will subsequently change the ultimate 
endpoint.

Examples of intermediate endpoints are shown in Table 2.1 based on 
Choi, Lagakos, Schooley, and Volberding (1993), Day and Duffy (1996), 
and Fleming and DeMets (1996, Table 2.1). Surrogate endpoints for car-
diovascular disease include congestive heart failure, cholesterol levels, 
and blood pressure. A surrogate for breast cancer mortality is tumor 
size and level of malignancy at screening. A surrogate for osteoporosis 
is bone mineral density. These surrogate endpoints are generally easier 
to study than the ultimate disease outcome. They are easier to study 
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because the mediating variables are affected earlier than the disease 
outcome and the incidence of cases is larger than those for the disease. 
In this way, surrogates are related to the idea of a micromediational 
chain described in chapter 1. The surrogate tends to be very close to the 
ultimate endpoint in the mediational chain, often making the theoretical 
relation between the surrogate and the ultimate endpoint very clear and 
the statistical relation large.

The extent to which a variable is a valid surrogate endpoint, of course, 
depends on the mediation assumption that the variable is intermediate 
in the causal sequence relating an independent variable to the ultimate 
disease outcome. The relation between the surrogate and the disease end-
point has been questioned on the basis of studies in which medication is 
used to reduce levels of surrogates (Fleming & DeMets, 1996), but no cor-
responding reduction in the outcome measures is observed. An example 
in which the surrogate was actually iatrogenic occurred in the Cardiac 
Arrhythmia Suppression randomized trial in which the surrogate for 
cardiac deaths was premature ventricular contractions (PVCs). PVCs are 
associated with sudden death, so it was reasonable to hypothesize that 
the use of drugs to prevent PVCs ought to reduce death rates. However, 
the opposite effect occurred. More persons treated with the drugs died 
from arrhythmia and shock after a heart attack in the group receiving the 
drugs to prevent PVCs (Echt et al., 1991).

In an important article on surrogate endpoints, Freedman, Graubard 
and Schatzkin (1992) concretized the criteria for surrogate endpoints 
described in Prentice (1989) as the proportion of the treatment effect 

Table 2.1 Examples of Surrogates and Ultimate Endpoints

Disease Surrogate

Death due to cardiovascular 
 disease

Elevated lipid levels, congestive heart failure, 
arrhythmia, elevated blood pressure (Fleming 
& DeMets, 1996).

Death from breast cancer Tumor size, malignancy, and invasion of 
lymph nodes by cancer cells (Day & Duffy, 
1996)

Prostate cancer symptoms Prostate biopsy (Fleming & DeMets, 1996)
HIV infection CD4+ lymphocyte viral load (Choi et al., 1993)
Osteoporosis Bone mineral density (Fleming & DeMets, 

1996)
Ophthalmic conditions Partial loss of vision (Buyse & Molenberghs, 

1998)
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explained by the surrogate endpoint as a measure of the surrogate end-
point effect for which a value of 100% indicates that the surrogate end-
point explains all of the relation between the treatment and the dependent 
variable. The proportion measure includes the size of the surrogate end-
point (i.e., mediated) effect as well at the amount of the treatment effect 
explained by the surrogate endpoint. The use of the proportion mediated 
has not been accepted without criticism, namely that accurate identifi ca-
tion of surrogate endpoints requires measurement of the ultimate out-
come (Begg & Leung, 2000), that values of the proportion mediated are 
often very small, and that additional causal mechanisms through other 
mediators may be neglected (Fleming & DeMets, 1996). Furthermore, other 
research has shown that the proportion mediated is an unstable measure 
unless sample size is large or effect size is large (Freedman, 2001; MacKin-
non, Warsi, & Dwyer, 1995). The importance of this mediation assumption 
of surrogate endpoints for studies of disease was summarized by Begg 
and Leung (2000). Alternative measures of the surrogate endpoint effect 
are discussed in chapter 11.

 Surrogate endpoints are often more closely related to the ultimate 
outcome variable than mediating variables described in other examples. 
In the long mediational chain relating variables to an ultimate outcome, 
surrogates are often biological measures closely related to the ultimate 
outcome. Other mediating variables are often more distal in the micro-
mediational chain, and as a result are not as strongly related to the out-
come variable. A surrogate that is more distal to the ultimate outcome 
will tend to have a weaker relation with the outcome because more steps 
in the mediational chain are necessary for it to affect the ultimate out-
come variable. On the other hand, surrogates may occur much earlier 
than the ultimate endpoint, such as childhood obesity as a surrogate for 
adult heart disease.

2.10 Mediation in Program Development and Evaluation
Mediation analysis has been recommended in many fi elds of prevention 
and treatment including nursing, “Nurse scientists who are interested in 
exploring more than just the direct effects . . . should consider hypotheses 
about mediators that could provide additional information about why an 
observed phenomenon occurs” (Bennett, 2000, p. 419), children’s programs, 
“Including even one mediator and one moderator in a program theory and 
testing it with the evaluation should not be overly expensive or impractical, 
but it will yield more fruit than the atheoretical and exploratory searches 
that have dominated outcome studies of children’s programs to date” 
(Petrosino, 2000, p. 69), and nutrition, “Finally future nutrition intervention 
trials should include and analyze repeated measures of the hypothesized 
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mediating factors that are the basis for their interventions. More detailed 
analyses of large studies, beyond reporting intervention effects alone, will 
support further advances in behaviorally based chronic disease preven-
tion” (Kristal, Glanz, Tilley, & Li, 2000, p. 123).

Researchers from many fi elds have stressed the importance of assess-
ing mediation in the evaluation of prevention and treatment studies for 
four major reasons (Baranowski, Anderson, & Carmack, 1998; Baranowski, 
Lin, Wetter, Resnicow, & Hearn, 1997; Baron & Kenny, 1986; Begg & Leung, 
2000; Choi et al., 1993; Donaldson, 2001; Donaldson, Graham, & Hansen, 
1994; Judd & Kenny, 1981a, 1981b; MacKinnon, 1994; Sandler, Wolchik, 
MacKinnon, Ayers, & Roosa, 1997; Shadish, 1996; Sussman, 2001; Weiss, 
1997). First, mediation analysis provides a check on whether the preven-
tion or treatment program has produced a change in the construct it 
was designed to change. If a program is designed to change norms, then 
program effects on norm measures should be found. Second, the results 
may suggest that certain program components need to be strengthened 
or measurements need to be improved. Failures to signifi cantly change 
mediating variables occur either because the program was ineffective or 
the measures of the mediating construct were not adequate. Third, pro-
gram effects on mediating variables in the absence of effects on depen-
dent measures suggest that program effects on dependent variables may 
emerge later or that the targeted constructs were not critical in changing 
outcomes. Finally, and most importantly, evidence bearing on how the 
program achieved its effects can be obtained.

One common way to organize prevention activities is under the three 
headings of universal, selected, and indicated prevention. The mediation 
model applies in each of these prevention activities. Universal prevention 
refers to preventing disease prior to the biological origin of the disease, 
before the disease has had a chance to manifest itself. Examples of uni-
versal prevention include programs to prevent children from starting to 
smoke cigarettes and the promotion of healthy behaviors. Selected preven-
tion is the prevention of the disease after the disease has been identifi ed 
but before it has caused suffering and disability. Screening is an example 
of selected prevention such as mammography screening for breast cancer. 
Indicated prevention is the prevention of further deterioration after the 
disease has already caused suffering or disability. Treatment programs, 
in general, are examples of indicated prevention. Programs to prevent 
relapse from addiction, such as Alcoholic Anonymous, are examples of 
indicated prevention.

Prevention programs in a variety of substantive areas are designed to 
change mediating variables that are causally related to the outcome vari-
able as shown in Table 2.2. If the assumption that the mediating variables 
are causally related to the outcome is correct, a prevention program that 
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Table 2.2 Examples of Mediators and Outcomes in Prevention Studies

Reference Mediators Outcomes

AIDS/HIV: Sexually 
Transmitted diseases 
(Coyle, Boruch, & 
Turner, 1991)

Safe sex practices
Abstinence

Unprotected sexual 
relations 

Sexually transmitted 
diseases

Adolescent anabolic 
steroid use (Goldberg 
et al., 1996)

Nutrition alternatives 
Weight training 
alternatives

Anabolic steroid use

Mental illness (Heller, 
Price, Reinharz, Riger, & 
Wandersman, 1984)

Positive coping with stress 
social competency

Adjustment
DSM–III diagnosis

Symptoms of children 
after divorce (Sandler 
et al., 1997)

Quality of parent–child 
relationship

Child’s active coping

Conduct problems
Anxiety
Depression

Drug abuse (Hansen, 
1992)

Social norms
Resistance skills

Cigarette use
Alcohol use
Marijuana use

Learning disabilities 
(Silver & Hagin, 1989)

General social competency 
skills specifi c to learning

School achievement
Standardized test scores

Symptoms after disasters 
(Pynoos & Nader, 1989)

Affi rm family support
Facilitate through grief 
stages

Depression
Anxiety
Fear

Suicide (Shaffer, Philips, 
Garland, & Bacon, 1989)

Awareness of hotline 
services

Referrals to general 
psychiatric care

Suicide ideation
Deaths due to suicide

Delinquency (Dryfoos, 
1990)

Educational achievement
Parental support and 
guidance

Arrests

Cardiovascular disease 
(Multiple Risk Factor 
Intervention Trial 
Research Group, 1990)

Smoking
Cholesterol
Blood pressure

Death due to 
myocardial infarction

Nutrition (Kristal et al., 
2000)

Beliefs, attitudes, 
motivations barriers, 
norms, social support

Percent fat intake 
Servings of fruit and 
vegetables

Physical exercise (Lewis, 
Marcus, Pate, & Dunn, 
2002)

Self-effi cacy
Enjoyment
Knowledge of behaviors

Weekly physical activity

Teenage pregnancy 
(Dryfoos, 1990)

Educational achievement
Parent–child 
communication

Unintentional 
pregnancy

Unprotected intercourse
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substantially changes the mediating variables will, in turn, change the 
outcome. Mediating variables can be psychological such as norms, behav-
ioral such as social skills, or biological such as serum cholesterol level. 
Many drug prevention programs, for example, are designed to increase 
communication skills, educate, and change norms to reduce drug use. AIDS 
prevention programs focus on increasing condom use, safe sex, and absti-
nence to reduce exposure to the human immunodefi ciency virus (Miller 
& Downer, 1988). Selected prevention programs, such as campaigns to 
increase screening for cancer (Murray et al., 1986), educate, reduce barriers, 
and change health norms to increase screening rates. Indicated prevention 
in substance abuse treatment programs, such as Alcoholics Anonymous, 
increases communication, motivation, and support to prevent relapse (Pro-
chaska, DiClemente, & Norcross, 1992). In each of these examples, a media-
tor is a variable that transmits the effect of an intervention variable on a 
dependent variable.

2.10.1 Drug Prevention

As an example of mediation in prevention programs, mediation in school-
based drug prevention is described in more detail. Drug prevention has 
received major national attention, and considerable literature on the effects 
of school-based drug prevention programs exists. School programs based 
on social psychological principles have been shown to prevent or delay 
the onset of youth substance use (Botvin, Baker, Renick, Filazzola, & Bot-
vin, 1984; Cuijpers, 2002; Flay, 1987; Pentz et al., 1989). Not all studies gen-
erated consistent results, however, with variation in the magnitude and 
duration of effects and in the social infl uences program evaluated (Flay, 
1985; MacKinnon, Weber, & Pentz, 1989; Peterson, Kealey, Mann, Marek, 
& Sarason, 2000). The extent to which each component of these prevention 
programs is responsible for the program effects on drug use remains to be 
determined (Hansen, 1992; MacKinnon, Taborga, & Morgan-Lopez, 2002; 
Tobler, 1986).

Changing psychosocial mediating constructs is the basis of educa-
tional and behavioral approaches to universal drug prevention. Social 
infl uences programs, for example, are designed to teach social skills 
and engender a social environment less receptive to substance use. If 
these prevention programs work as planned, then favorable changes in 
mediating variables such as beliefs about drug use outcomes, normative 
beliefs, resistance skills, attitudes about drug use and related variables, 
and behavioral intentions are indicators of success. Understandably, the 
emphasis in drug prevention research has been on drug use outcomes, 
and much less attention has been paid to assessing program effects on 
the psychosocial variables hypothesized to mediate changes in out-
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comes. Less attention has been given to the relation between changes in 
mediating variables after program implementation and drug use outcomes. 
A better understanding of these mediating variables might help clarify 
inconsistent results among studies. In many cases, the data required to 
investigate these processes are available but the analyses have not been 
conducted.

The lack of attention to mediation has been noted by several prom-
inent drug prevention researchers. McCaul and Glasgow (1985, p. 361) 
concluded that “little is known about the construct validity of successful 
programs, a problem that results from the neglect of process measure-
ment and analysis.” Flay (1987, p. 172) has argued that future prevention 
programming should move to “comparing programs derived from com-
peting theoretical perspectives (with careful assessment of mediating 
variables presumed to be differentially affected by different treatments).” 
As recently summarized by Botvin (2000, p. 894), “While the research 
conducted thus far examining the impact of these preventive interven-
tions on mediators as well as efforts to identify mediating mechanisms 
are important fi rst steps, it is clear that additional research is needed.” 
Social norms appear to be a critical component in successful drug pre-
vention to date. Botvin, Eng, and Williams (1980) found the largest pro-
gram effects in the grades with the largest reduction in need for group 
acceptance. McAlister, Perry, and Maccoby (1979) concluded anecdotally 
that a change in school norms regarding drug use may have caused the 
reduction in cigarette use. MacKinnon et al. (1991) found evidence that 
social norms were statistically signifi cant mediators of drug prevention 
program effects. Social norms were also important mediators of a pro-
gram effect on drug use among minority youth (Botvin et al., 1992). Simi-
larly, Bachman, Johnston, O’Malley, and Humphrey (1988) found that a 
decline in marijuana use was due to changes in perceived approval of 
drug use. Hansen and Graham (1991) and Donaldson et al. (1994) found 
experimental evidence for the importance of social norms as a mediator 
of program effects on drug use. In a study of high school football players, 
norms and perceived severity of steroid use were important mediators of 
the program effect on intention to use steroids (MacKinnon, Goldberg, 
et al., 2001). Future studies have the potential of clarifying the mediating 
effects of social norms and other potential mediators of successful drug 
prevention programming.

2.10.2 Theoretical Interpretation of the Links in a Mediation Model

The mediation approach to prevention and treatment research is summa-
rized in Fig. 2.1, based on theory for how a program changes the dependent 
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variable. Lipsey (1993), for example, argues that theory should be used to 
shed light on the black box (Ashby, 1956) representing how an intervention 
leads to changes in the dependent variable. Chen (1990) identifi es two criti-
cal aspects of this type of intervening variable model. The fi rst part is action 
theory, which refers to how the intervention changes the mediating vari-
able. For example, a program component in drug prevention seeks to cor-
rect overestimation of drug use prevalence among adolescents; that is, most 
adolescents think more people smoke than actually do. The action theory 
is that a program component, such as correction of normative expectations, 
changes the social norm about smoking by reducing the perception of the 
number of smokers. The second theory is conceptual theory, which speci-
fi es how the mediating variables affect the dependent variable. For exam-
ple, conceptual theory refers to the general result that perceptions of social 
norms affect behavior. Most research focuses on conceptual theory for the 
important predictors of an outcome and most theoretical models focus 
entirely on how variables are related to the outcome variable. For example, 
there are many studies of the correlates of tobacco use. Less attention is 
devoted to action theory, or how the intervention will change the mediat-
ing variables. Action theory is important because it forces researchers to 
consider how a program can change intervening variables. For example, 
even though personality variables may be the strongest predictors of drug 
use, they may be diffi cult to change, especially with the resources of many 
intervention programs. Similarly, media is often the intervention of choice 
because it is relatively easy to change, by placing counter-advertisements, 
but the conceptual theory relating media to the outcome may suggest small 
effects on actual behavior. Action and conceptual theory provide a useful 
way to conceptualize prevention and treatment activities.

Mediation analysis consists of tests of the action theory link, the con-
ceptual theory link, and a simultaneous test of action and conceptual 
theory in the test of the process by which the program changes the medi-
ating variable, which then changes the dependent variable. Hansen and 
McNeal (1996) add an interesting interpretation of the action and concep-
tual theory links. First, the association between the mediating variable 

MediatorsProgram OutcomeAction
Theory

Conceptual
Theory

Figure 2.1. Prevention Program Model.
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and the dependent variable represents the maximum effect of the mediat-
ing variable on the dependent variable. The size of the program effect on 
the mediating variable will limit the size of the effect on the outcome vari-
able. Similarly, the size of the mediating variable effect on the dependent 
variable limits the size of effects. This approach assumes that all media-
tors are consistent; that is, the program changes the mediators in a way 
that there is a benefi cial effect on the dependent variable.

2.10.3 Where Do Ideas for Mediators Come From?

There are at least six overlapping ways in which possible mediators are 
identifi ed for prevention and treatment projects. Often several different 
ways to identify mediators are combined in a single study. For the most 
part, mediators are selected on the basis of conceptual theory for what 
variables are related to the outcome variable of interest. It is important to 
consider action theory, the theory for how a manipulation would affect 
a mediator, while identifying potential mediators. It is also important to 
evaluate mediating mechanisms in program development so that infor-
mation on benefi cial and iatrogenic mediators can be obtained.

The fi rst method, a seat-of-the-pants method, picks mediators on the 
basis of common sense or intuition about what seems to be the best target 
for a program. This may not be the best method, but in some cases may be 
the only method, such as the prevention activities when HIV/AIDS was 
fi rst observed and knowledge of its cause was limited. Even if changing 
the mediator does not prove to affect the outcome, the failure of programs 
designed to change the mediators provides useful information about the 
mediating variables to be targeted in the next study.

A second method applies qualitative methods such as focus groups to 
discuss a problem outcome and ways to prevent it (Sussman, 2001). For 
example, a focus group might consist of a group of 10 adolescents con-
victed of driving under the infl uence of alcohol who are convened to dis-
cuss how and why they did it and ways other persons like them could be 
stopped from driving after drinking alcohol or using drugs. Focus groups 
typically include clear-cut goals and are directed by an effective leader 
who ensures that all persons are heard from. These meetings are coded 
and scored for variables such as sentiments, concerns, and subtopics and 
are classifi ed into themes such as exploratory, clinical, and phenomenolog-
ical. There is typically a written report of the results that includes exten-
sive subjective information, and this report provides a basis for selecting 
mediating variables for a program.

A third way to identify mediators is through review of the research 
literature on a topic. Ideally there are reviews for the topic already pub-
lished. If these reviews are not available, any available literature on the 
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topic, such as popular articles and testimonials, is studied. If there are few 
studies on a topic, researchers typically look for program strategies for 
similar outcome measures. It is important to note that relevant literature 
may not be published or may not be easily accessible. Here the focus is on 
any information on empirical relations between mediating variables and 
the outcome variable of interest. It is surprising how few research articles 
present information useful for the design of prevention programs. Ideally, 
each research study would contain a section describing the implications 
of the study for the selection and importance of mediating variables.

A fourth way to identify mediators is based on theory. Many research-
ers have consistently argued for “theory-driven” evaluation (Chen, 1990; 
Lipsey, 1993; Sidani & Sechrest, 1999). For example, major theories in drug 
prevention include problem behavior theory, theory of reasoned action, 
and the health belief model (Hawkins, Catalano, & Miller, 1992; Jessor & 
Jessor, 1980). Theory provides a basis for mediators to target. For example, 
the health belief model would suggest that a program target barriers to 
performing a health behavior. A most important aspect of theory-based 
program development is that a theory successful in one situation is more 
likely to be successful in other situations (Bandura, 1977).

A fi fth way to identify mediators is to conduct a study on the correlates 
of the outcome measure to shed light on the conceptual theory for the 
outcome. Here the purpose of the study is to identify variables that are 
potentially causally related to the outcome and are also potentially modi-
fi able by a prevention strategy. A researcher may not need to know why 
a variable is related to the outcome variable, but the variable may still be 
an effective mediator. These studies then provide a quantitative measure 
of associations between mediators and outcome variables. Ideally, these 
studies include measures of effect size for the relation between the media-
tor and the outcome variable.

A sixth way to identify mediators is on the basis of prior mediational 
analyses of a prevention program. Ideally, successful mediators have been 
identifi ed in prior research that will guide the selection of mediators. 
It may also be reasonable to design a study based on the most effective 
mediators in one study. The methodical evaluation of mediating mecha-
nisms in a sequence of research studies is most likely to generate informa-
tion on mediating mechanisms and more effective programs.

2.10.4 Steps in a Mediation Approach to Program Development

Table 2.3 outlines the steps in a mediation approach to program develop-
ment. Step 1 illustrates the importance of preliminary research to help 
identify mediators and moderators of program effects. The six ways to 
identify mediators are refl ected in steps 2 and 3, in which the action and 
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conceptual theory of project are specifi ed. Step 4 addresses moderators of 
program effects, which is whether the program has differential effects by 
subgroups. An important moderator variable is the individual’s mediator 
value before the study whereby a person lower on a mediator before an 
experiment may have more room for improvement when exposed to the 
program. Step 5 emphasizes the importance of satisfactory implementa-
tion of a program. Implementation may be considered as a variable in 
a mediation chain relating exposure to treatment to implementation of 
treatment to change in the mediator to change in the outcome. Statistical 
mediation analysis is used in step 6 to evaluate the action and concep-

Table 2.3 Eight Steps in a Mediation Approach to Prevention and Treatment 
Program Development

1.  Defi ne the outcome measure. Investigate the epidemiology of the outcome. 
Identify high-risk groups. Develop theory for how the outcome occurs.

2.  Identify the conceptual theory of how the outcome occurs. Identify correlates 
of the outcome variables by theory and empirical studies. Review prior 
literature for ideas on what is related to the outcome. Create a conceptual 
theory effect size table with the list of candidate mediators and the effect size 
for the relation between the mediator and outcome. Ideally, identify two or 
more theories about the mechanism by which the outcome occurs that have 
different predictions regarding mediating processes.

3.  Link the mediators with the action needed to affect the mediator. Identify 
program components of studies that have attempted to change the outcome 
measure and related outcome measures. Is it reasonable to change the 
mediator given the resources available? Create an action theory table that 
lists the action that will change each mediator. 

4.  Study potential interaction effects of the program with subgroups. Are there 
groups for whom the action and conceptual theory make the most sense? 
Consider the possibility that the effect of the program will be greatest for 
those persons lowest or highest on the mediators at the baseline 
measurement.

5.  Design the intervention to have the greatest chance of success by 
documenting and ensuring adequate implementation of the program and 
measurement of variables. 

6.  Conduct the study and evaluate action and conceptual theory of the 
program.

7.  Repeat the study and improve the program by selecting effective 
components or adding new components. 

8.  Design a study in which subjects are randomly assigned to levels of 
mediating variables to more clearly understand the mechanism by which the 
program worked. 
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tual theory of the program. Statistical mediation and moderation analysis 
results are used in step 7 to improve the program by deleting ineffective 
or counterproductive components and enhancing successful components. 
Decisions such as these are diffi cult because some mediators may not 
have been affected by the program because of poor measurement, or these 
mediators may actually contribute to a longer mediation chain such that 
change in these mediators may lead to change in other mediators. Ideally, 
step 8 consists of more detailed studies of mediators including random 
assignment of individuals to the level of the mediator or separate studies 
to evaluate individual program components or mediators.

2.11 Summary
This chapter described examples of the mediation model in a variety of 
disparate areas. The goal of the examples was not to be exhaustive but 
to give a view of types of mediation studies. The same general media-
tion model applies in all research areas such that an independent variable 
is related to a mediating variable that is related to a dependent variable. 
Although the mediator model applies in many fi elds, the examples in this 
chapter illustrate some specifi c issues in each fi eld. In all research areas, 
the identifi cation of mediating variables is best served by a program of 
research involving information from many sources.

Two overlapping uses of mediating variables were described, media-
tion for the explanation of observed relations and the design of manipu-
lations based on mediating variables. In the mediation for explanation 
research, the relation of the independent variable to the dependent vari-
able is considered to be known, and the task of the researcher is to explain 
the mediation process that translates exposure to the independent variable 
to change in the dependent variable. Mediation for design studies target 
mediating variables hypothesized to be causally related to the depen-
dent variable. Surrogate endpoint, treatment, and prevention research are 
examples of mediation for design studies. In treatment and prevention 
studies, the relation of the mediator to outcome is assumed to be known, 
and the major task is designing actions to change the mediators. In the 
surrogate endpoint case, a relation between the mediator and dependent 
variable is considered to be known, but whether the relation is strong 
enough for the surrogate to be used instead of the ultimate outcome is 
investigated.

Some research, such as surrogate endpoint research, focuses on one 
mediator with the assumption that the single surrogate endpoint completely 
explains the mediation from the independent variable to the dependent 
variable. Other research areas such as prevention and treatment often 
target many mediators to change a dependent variable. The additional 
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mediating variables may have complicated relations among each other and 
may have synergistic effects or counterproductive effects. Prevention and 
treatment studies may also have more than one dependent variable. The 
number of mediators and their potential relations often makes mediation 
of prevention and treatment programs more complex. The complexity is 
ideally addressed in a program of research involving replication stud-
ies, studies of individual mediators, qualitative research, longitudinal 
designs, and theory testing.

Mediators differ in many ways. Mediators may be behavioral, psy-
chological, physiological, or biological. Mediators differ in ease of mea-
surement. For example, measurement of the number of eelworms in a 
liter of soil may be simpler than measuring social norms among friends. 
Mediation analysis may be viewed as a measurement process in which 
the mediating process is more accurately measured as a fi eld progresses. 
For example, brain processes fi rst measured as self-report may be sub-
sequently measured by brain scan activity. Mediators differ in ease of 
manipulation as well. For example, a pill may more easily and specifi cally 
alter blood chemicals than a cognitive behavior therapy program. More 
extensive actions are needed to alter personality than change attitudes. 
Similarly, surrogate endpoints are mediators selected to be used instead 
of the ultimate outcome. This differs from mediators in other contexts, 
which also lie along a causal chain but the purpose is not to identify medi-
ators that can be used instead of the ultimate outcome.

A goal of this chapter was for you to fi nd at least one content area that 
overlaps with your own interests. At this point you are probably ready to 
learn how to quantify mediated effects and test them for statistical sig-
nifi cance. The rest of this book is concerned with quantifying mediation 
effects. Chapter 3 describes the single mediator model. Chapter 4 describes 
some details about the single mediator model, and chapter 5 describes the 
multiple mediator model. The rest of the book describes mediation analy-
sis for more complicated designs.

2.12 Exercises
2.1. Why did Taylor and Fiske (1981) criticize the typical way to evaluate 

mediators in social psychological research?
2.2. Briefl y describe action and conceptual theory. What are reasons for 

considering action theory in the design of a prevention program?
2.3. Describe the action and conceptual theory for the mediators of the 

Multiple Risk Factor Intervention Trial (MRFIT) cardiovascular dis-
ease prevention study.

2.4. Pick one of the substantive areas mentioned in this chapter and 
describe the mediational model in one of the cited studies.
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2.5. Briefl y describe and give one example of mediation for explanation 
and mediation for design.

2.6. Pick one content area and fi nd one new study in that area. Describe 
the mediational hypothesis in that study.

2.7. How are surrogate endpoints different from mediators targeted in 
most prevention programs?

2.8. For one of the prevention programs in this chapter, describe how 
mediators could be selected.

2.9. In the context of a micromediational chain, where do mediators and 
surrogate endpoints lie?

2.10. Describe whether the following intermediate variables are more 
likely to be surrogates or mediators? Compare and contrast surro-
gate endpoints and mediating variables based on these examples.

 a. Seedlings is an intermediate variable for the effect of fertilizer on 
potato yield.

 b. Norms is an intermediate variable for the effect of socioeconomic 
status on assault.

 c. Carotene is an intermediate variable for the effect of alfalfa 
preparations fed to cows on vitamin A in butter made from cow 
milk.

 d. Fighting in sixth grade is an intermediate variable for the effect 
of an intervention on adult incarceration.

2.11. Describe the theory and the mediators targeted for a research project. 
Here are some possible examples: (a) school-based tobacco prevention 
programs, (b) Alcoholics Anonymous, (c) programs to prevent recid-
ivism among juvenile offenders, (d) suicide prevention programs.
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3

Single Mediator Model

Instead of going to a drinking fountain, a thirsty 
man may simply “ask for a glass of water”; that is, 
may engage in behavior that produces a certain pat-
tern of sounds, which in turn induces someone to 
bring him a glass of water. The sounds themselves 
are easy to describe in physical terms; but the glass 
of water reaches the speaker only as the result of a 
complex series of events including the behavior of 
the listener. . . . The consequences of such behavior 
are mediated by a train of events no less physical or 
inevitable than direct mechanical action

—Burrhus Frederic Skinner, 1961, p. 67

3.1 Overview
The fi rst two chapters provided verbal descriptions of mediating variables 
in diverse contexts including alfalfa growing, control of yellow fever, and 
educational achievement. These verbal descriptions of mediating variable 
models must be described more explicitly to quantify mediated effects and 
to judge whether a mediated effect substantially differs from zero. The 
purpose of this chapter is to translate the verbal description of mediation 
into regression equations and statistical procedures to conduct mediation 
analysis for the case of one mediator. In other words, chapter 3 describes 
a statistical model for the substantive aspects of mediation described in 
chapters 1 and 2. This chapter is important because subsequent chapters 
use the same notation and computational approach to mediation analysis. 
First, a visual representation of mediation is described along with sym-
bols to represent different mediation relations. Next, the three regression 
equations that provide the information for mediation analysis are pre-
sented. Statistical tests for mediation are described as are procedures to 
compute confi dence limits for the mediated effect. SPSS and SAS programs 
to estimate the single mediator model are shown, and mediation analysis 
is illustrated using data from a hypothetical study. Finally, assumptions 
for the mediator model to yield accurate results are presented along with 
sections of this book that deal with each assumption.
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The material in this chapter may be more diffi cult than that in the 
fi rst two chapters for some readers because it covers statistical aspects of 
mediation. Understanding the material in the chapter is worth the effort 
because it represents an approach to quantifying verbal descriptions of 
mediation.

3.2 The Mediation Model Diagram
Figure 3.1 shows a model relating an independent variable (X) to a depen-
dent variable (Y) and represents the simplest model of the relation of one 
variable to another variable. Note that there is an arrow in fi gure 3.1 to 
represent that X predicts Y. Note also that the path from X to Y is given 
the symbol, c. An equation relating X to Y is shown below the fi gure and 
will be described in the next section. The coeffi cient, e1, represents the part 
of Y that is not explained by its relation with X. Figure 3.1 is a total effect 
model because it represents the total relation between X and Y without 
consideration of other variables. Figure 3.1 is an example of a two-variable 
model where X causes Y.

Figure 3.2 represents the mediation model. In fi gure 3.2, the indepen-
dent variable (X) is related to the mediator (M) which in turn, is related to 
the dependent variable (Y). Figure 3.2 represents a third-variable model 
where there is an underlying mediation relation of X to M to Y. Note that 
there is a relation of X to Y that is not through M and that is the direct 
effect of X on Y. As in fi gure 3.1, the arrows show the direction of the rela-
tion with X to M, M to Y, and X to Y. Note also that there are symbols above 
each arrow corresponding to the relation of X to M, a, the relation of M 
to Y, b, and the relation of X to Y, c′. Note that the relation of X to Y has a 
prime, c′, to refl ect adjustment for the mediator in fi gure 3.2 but does not 
have a prime in fi gure 3.1, c, because it is not adjusted for the mediator, 

Figure 3.1 Path diagram and equations for the regression model.

INDEPENDENT
VARIABLE

DEPENDENT
VARIABLE

c YX

e1

Y = i1 + cX + e1
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M. The parameter e2 represents the part of Y that is not explained by its 
relation with X and M. The parameter e3 represents the part of M that is 
not explained by its relation with X. The two equations corresponding to 
fi gure 3.2 are also shown and described in the next section. Figure 3.2 rep-
resents the simplest mediation model, and it will be the primary model 
in much of this book. The mediation model in fi gure 3.2 looks simple and 
is simple in many respects, especially in its verbal description. However, 
the statistical specifi cation of the model and application to real data has 
intriguing statistical and interpretational challenges.

3.3 Regression Equations Used to Assess Mediation
The three regression equations in fi gures 3.1 and 3.2 are used to investi-
gate mediation,

 Y = i1 + cX + e1 (3.1)

 Y = i2 + c′X + bM + e2 (3.2)

 M = i3 + aX + e3 (3.3)

where Y is the dependent variable, X is the independent variable, M is 
the mediating variable or mediator, c represents the relation between the 
independent variable to the dependent variable in the fi rst equation, c′ is 

Figure 3.2 Path diagram and equations for the mediation model.

M ED IAT OR
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M

Y

e3

e2

c'

 Y = i2 + c′X + bM + e2

M = i3 + aX + e3
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50 Introduction to Statistical Mediation Analysis

the parameter relating the independent variable to the dependent variable 
adjusted for the effects of the mediator, b is the parameter relating the 
mediator to the dependent variable adjusted for the effects of the inde-
pendent variable, a is the parameter relating the independent variable to 
the mediating variable, e1, e2, and e3 represent unexplained or error vari-
ability, and the intercepts are i1, i2, and i3. The intercepts are not involved 
in the estimation of mediated effects and could be left out of the equa-
tions. However, they are included here because intercepts are important 
for other aspects of mediation such as plotting the mediated effect. Note 
that both c and c′ are parameters relating the independent variable to the 
dependent variable, but c′ is a partial effect, adjusted for the effects of 
the mediator. The parameters of this model can be estimated by multiple 
regression. Equation 3.1 defi nes the total effect model in fi gure 3.1, and 
Equations 3.2 and 3.3 defi ne the mediation model in fi gure 3.2.

3.4 The Total Effect
The relation between the independent variable and the dependent variable 
represented by c in Equation 3.1 is often of primary interest in research 
studies. In experimental studies, for example, the c parameter represents 
the effect of the manipulation on the dependent variable. The interpreta-
tion of this relation is important in mediation studies as well. However, a 
mediated effect may exist whether or not there is a statistically signifi cant 
effect of the independent variable on the dependent variable. Extra infor-
mation can be extracted from a research study if a mediating variable is 
measured.

3.5 Mediated Effect
There are two approaches to quantifying mediated effects from the regres-
sion models based on different uses of the parameters a, b, c, and c′. The 
product of the a and b parameters, ab, is the mediated effect. Because X 
affects Y indirectly through M, the mediated effect is also known as the 
indirect effect. The effect of X on Y after adjustment for M, c′, is known 
as the direct effect. The mediated effect is also equal to the difference 
between the c and c′ parameters, c − c′. As a result, the total effect c can 
be decomposed into a direct effect, c′, and an indirect effect, ab = c − c′. 
For the multiple regression equations described earlier, c − c′ is always 
equal to ab. The rationale behind the ab mediation quantity is that media-
tion depends on the extent to which the independent variable affects the 
mediator (parameter a) and the extent to which the mediator affects the 
dependent variable (parameter b). The ab quantity refl ects how much a 
1 unit change in X affects Y indirectly through M. Similarly, the change in 
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the c parameter when adjusted for the mediator, c′, refl ects how much of 
the relation between the independent variable and the dependent variable 
is explained by the mediator.

The parameters in Equations 3.1, 3.2, and 3.3 can be estimated using 
ordinary least squares regression to obtain estimates of the mediated 
effect, âb̂ and ĉ − ĉ′. (Hats ˆ above coeffi cients represent estimates.) As 
described in later chapters, in some analyses such as logistic regression 
and multilevel analysis, the estimated ĉ − ĉ′ does not always exactly equal 
the estimated âb̂ because of different standardization across mediation 
regression equations. However, for the analysis of the equations described 
in this chapter, ĉ − ĉ′ always equals âb̂, unless the sample was different 
for the different regression equations. For example, if the sample size for 
Equation 3.3 differs from the sample size for Equations 3.1 and 3.2, then 
ĉ − ĉ′ will be based on a different set of subjects than âb̂, and consequently 
ĉ − ĉ′ may not equal âb̂. This would happen if some subjects were missing 
the mediator variable, for example, so that the sample size for Equations 
3.2 and 3.3 is different from the sample size for Equation 3.1.

3.6 Confi dence Intervals for the Mediated Effect
The estimate of the mediated effect and its standard error can be used to 
construct confi dence intervals for the mediated effect. Confi dence inter-
vals are widely used because they incorporate the error in an estimate 
thereby providing a range of possible values for an effect rather than a 
single value of the effect. There is considerable movement toward the use 
of confi dence intervals in research for several reasons (Harlow, Mulaik, & 
Steiger, 1997). These reasons include that it forces researchers to consider 
the value of the effect in addition to its statistical signifi cance, the confi -
dence interval has a valid probability interpretation, and a wide confi -
dence interval implies inaccuracy in the value of the effect suggesting that 
the effect may not be easily replicated (Krantz, 1999).

As described earlier, the ĉ − ĉ′ or the âb̂ value provides an estimate of 
the mediated effect. There are several alternative formulas for the stan-
dard error of âb̂ and ĉ − ĉ′ that can be used to construct confi dence limits 
for the estimates. The standard errors based on âb̂ are called product of 
coeffi cient standard errors, and standard errors based on ĉ − ĉ′ are called 
difference in coeffi cients standard errors. Each of these standard error for-
mulas can be used to construct upper and lower confi dence limits for the 
mediated effect based on the following equations,

Lower confi dence limit (LCL) = mediated effect − zType 1 error (sâb̂) (3.4)

Upper confi dence limit (UCL) = mediated effect + zType 1 error (sâb̂) (3.5)
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where the mediated effect estimate is âb̂ = ĉ − ĉ′, zType 1 error is the value of 
the z (or t) statistic for the required confi dence limits (e.g., 1.96 for 95% con-
fi dence limits for a large sample size) and sâb̂ is an estimate of the standard 
error of the mediated effect based on one of the formulas for the stan-
dard error of the mediated effect described below. Critical values for the z 
rather than the t distribution are primarily used because the formulas for 
the standard errors are large sample approximations. Because âb̂ is alge-
braically equivalent to ĉ − ĉ′, these standard errors can be used to compute 
confi dence limits for ĉ − ĉ′ as well as âb̂.

The most commonly used standard error of âb̂, sâb̂, is the formula 
derived by Sobel (1982) based on fi rst derivatives using the multivariate 
delta method (Folmer, 1981). The background for this formula is described 
in chapter 4. The resulting formula is shown below, where sâ

2 and sb̂
2 cor-

respond to the squared standard error of â and b̂, respectively.

 s a s b sb aFirst = +ˆ ˆ
ˆ ˆ

2 2 2 2  (3.6)

Equation 3.6 shows the formula that is used in many covariance struc-
ture computer programs, such as EQS (Bentler, 1997), Mplus (Muthén & 
Muthén, 2004) and LISREL (Jöreskog & Sörbom, 2001), to compute the stan-
dard error estimates for mediated effects. When regression coeffi cients 
and standard errors are small, as they often are, it is very easy for round-
ing errors to affect the accuracy of the hand calculation of the standard 
error using Equation 3.6. A computationally easier formula is based on the 
t values for the â and b̂ effects, called tâ (â/sâ) and tb̂

 (b̂/sâ), respectively:

 s
ab t t

t t
First

a b

a b

=
+ˆ ˆ

ˆ ˆ

ˆ ˆ

2 2

 (3.7)

Standard Error of ĉ − ĉ′. The standard error of the difference between two 
regression coeffi cients (MacKinnon, Lockwood, Hoffman, West, & Sheets, 
2002; McGuigan & Langholz, 1988), ĉ − ĉ′, is equal to:

 s s s rs sc c c c c cˆ ˆ ˆ ˆ ˆ ˆ− ′ ′ ′= + −2 2 2  (3.8)

where the covariance between ĉ and ĉ′, rsĉsĉ′, is the mean square error 
(MSE, the variance of the error term in Equation 3.2) divided by the sam-
ple size times the variance of the independent variable (MSE/(N ∗ s2

X)). In 
most examples, the values from Equations 3.6 and 3.8 are very similar. 
Equation 3.6 (or 3.7) is usually preferred over Equation 3.8 as it is easier to 
compute and generalizes to more complicated models.
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3.7 Asymmetric Confi dence Limits 
for the Mediated Effect
The confi dence limits for the mediated effect described above are sym-
metric, meaning that the upper and lower limits are an equal amount 
above and below the mediated effect. More accurate confi dence limits for 
the mediated effect can be obtained with methods for asymmetric confi -
dence limits that do not have equal distance above and below the estimate 
for the mediated effect. Asymmetric confi dence limits are more accurate 
because the mediated effect does not always have a normal distribution. 
Using critical values from the distribution of the product of two vari-
ables to create confi dence limits is more accurate because it appropriately 
adjusts confi dence limits for the non-normality of the mediated effect. 
Another method to address the non-normality of the mediated effect is to 
use resampling methods. Both methods provide more accurate confi dence 
limits for the mediated effect. The distribution of the product method is 
described in chapter 4, and chapter 12 describes resampling methods for 
mediation studies.

3.8 Signifi cance Tests for the Mediated Effect
Researchers often want to test whether an observed mediated effect is sig-
nifi cantly different from zero. One way to test the mediated effect for sig-
nifi cance is to assess whether zero is included in the confi dence interval. If 
zero is outside the confi dence interval, then the mediated effect is statisti-
cally signifi cant. The mediated effect can also be tested for statistical sig-
nifi cance by dividing the estimate of the mediated effect by its standard 
error and comparing this value to tabled values of the normal distribution. 
If the absolute value of the ratio exceeds 1.96 then the mediated effect is 
signifi cantly different from zero at the 0.05 level of signifi cance. An alter-
native method is to test whether the â coeffi cient is statistically signifi cant, 
and whether the b̂ coeffi cient is statistically signifi cant, but this method 
does not incorporate confi dence limits. Chapter 4 describes more about 
statistical power and Type 1 error rates of these methods and several other 
alternative methods including methods based on the distribution of the 
product of two random variables that provide more accurate confi dence 
limits and signifi cance tests.

3.9 Assumptions of the Mediation Regression Equations
Each mediation regression equation requires the usual assumptions for 
regression analysis (Cohen, Cohen, West, & Aiken, 2003). Four of these 
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assumptions are correct functional form, no omitted infl uences, accurate 
measurement, and well-behaved residuals. Each of these assumptions is 
described below. More information regarding assessing these assump-
tions and methods to remedy them are described in Cohen et al. (2003). 
Section 3.12 describes several additional assumptions and considerations 
related to the inference about mediation relations.

Correct Functional Form. Each mediation regression equation assumes 
linear relations among variables whereby a 1 unit change in the indepen-
dent variable leads to a given change in the dependent variable. Using the 
X to M relation, for example, a 1 unit change in X leads to a change of â 
units in M. It is possible to model nonlinear relations among variables in 
these models with nonlinear transformations and specifi cation of inde-
pendent variables to refl ect the nonlinear relation.

Another aspect of the correct functional form assumption is that rela-
tions among variables are additive, meaning that variables do not interact. 
An important interaction effect in the single mediator case is the interac-
tion of X and M in the model where X and M predict Y. This interaction 
assesses whether the relation of M to Y is different at different levels of 
X and also whether the relation of X to Y differs across levels of M. This 
interaction can be tested by including the XM interaction in the prediction 
of Y as discussed in chapter 10. This type of interaction may also refl ect 
important mediational processes (Judd & Kenny, 1981b; Kraemer, Wilson, 
Fairburn, & Agras, 2002). If X represents assignment to one of two experi-
mental groups, then the XM interaction represents the different relation 
of M to Y for each experimental group, which may be very important in 
some situations.

No Omitted Infl uences. Stated concretely, it is assumed that the media-
tion regression equations refl ect the correct underlying model. No impor-
tant variables or other infl uences are omitted from the regression model. 
There are many ways that the model may fail to include all important 
infl uences as described later in section 3.12, which covers assumptions 
relating to inference from a mediation analysis.

Accurate Measurement. The third general assumption is that X, M, and 
Y are reliable and valid measures. There are several ways in which mea-
surement may be compromised in a mediation analysis, and there are sev-
eral methods to address this limitation. As described by Hoyle and Kenny 
(1999), measurement error can be especially problematic in the analysis 
of mediation because error in the mediator will lead to attenuated effects 
for the relation between M and Y. Using measures with adequate reliabil-
ity and validity addresses this concern. Another alternative is to specify 
measurement models for constructs such that a latent construct is hypoth-
esized to be measured by several fallible indicators. These types of mea-
surement models are described in chapter 7.
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Well-Behaved Residuals. Note that only two of the three mediation equa-
tions are estimated to test the mediated effect, that is, Equations 3.1 and 
3.2 for  ĉ − ĉ′ or Equations 3.2 and 3.3 for âb̂. The residuals in each equa-
tion are assumed to be uncorrelated with the predictor variables in each 
equation, are independent of each other, and the residuals are assumed 
to have constant variance at each value of the predictor variable. For the 
multiple equation case with Equations 3.2 and 3.3, it is also assumed that 
residual error terms are uncorrelated across equations. It is possible that 
errors could be correlated across equations if variables are omitted that 
are causes of both M and Y. There are situations in which it is possible to 
model these correlated errors (McDonald, 1997) using approaches such as 
instrumental variable estimation (Angrist, Imbens, & Rubin, 1996). Infer-
ential assumptions related to residuals are discussed in Section 3.12.

3.10 Hypothetical Study of the Effects of 
Temperature on Water Consumption
In this section, a hypothetical data example is used to clarify the compu-
tation and interpretation of mediation analysis. The example is a stimu-
lus–organism–response mediation study (Woodworth, 1928), in which the 
effect of a stimulus on a response is mediated by the organism. Here the 
stimulus was temperature, the response was water consumption, and the 
mediator was the subject’s report of thirst. The hypothesis was that expo-
sure to higher temperatures increases thirst, which then leads to water 
consumption. The mediated effect of temperature on water consumption 
through self-reported thirst provides an estimate of the extent to which 
persons were capable of gauging their own need for water. The purpose of 
the study was to investigate the effects of temperature on water consump-
tion in self-contained environments such as those present in spacecraft, 
space suits, and submarines. Each of these environments can be set to dif-
ferent temperatures and water loss and ensuing fatigue are detrimental to 
optimal performance. As persons in this environment will need to moni-
tor their own dehydration, self-reports of thirst are important indicators 
of water needs.

The data for the 50 subjects in this hypothetical study of the effects of 
room temperature on water consumption are shown in Table 3.1, where 
X is the temperature in degrees Fahrenheit, M is a self-report measure of 
thirst at the end of a 2-hour period, and Y is the number of deciliters of 
water consumed during the last 2 hours of the study. The 50 subjects were 
in a room for 4 hours doing a variety of tasks including sorting objects, 
tracking objects on a computer screen, and communicating via an inter-
com system. The tasks were selected to represent activities of persons alone 
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in contained environments such as a submarine, spacecraft, or space suit. 
Before the experiment, each participant was acclimated to a standard tem-
perature of 70°F. Temperature, the independent variable, was then manip-
ulated such that each participant was exposed to a specifi c temperature 
in the room for the 4 hours of the experiment. At the end of 2 hours, the 
subjects reported how thirsty they were on a 1 to 5 scale from 1 (not at all 
thirsty) to 5 (very thirsty). During the last 2 hours of the experiment, water 
was made available in the room, and the number of the deciliters of water 
the subjects drank was recorded.

SPSS and SAS Programs. The variable names X, M, and Y were used to rep-
resent the variables temperature, thirst, and water consumed, respectively. 

Table 3.1 Data for a Hypothetical Study 
of Temperature on Water Consumption

S#    X    M    Y S#    X    M    Y

  1    70    4    3 26    70    3    4
  2    71    4    3 27    70    2    3
  3    69    1    3 28    69    3    4
  4    70    1    3 29    69    4    3
  5    71    3    3 30    70    3    3
  6    70    4    2 31    71    2    1
  7    69    3    3 32    70    1    3
  8    70    5    5 33    70    2    5
  9    70    4    4 34    70    2    1
10    72    5    4 35    71    4    3
11    71    2    2 36    68    2    1
12    71    3    4 37    72    4    3
13    70    5    5 38    69    3    2
14    71    4    5 39    70    3    3
15    71    4    5 40    68    3    2
16    70    2    2 41    68    3    3
17    70    4    4 42    70    4    3
18    69    3    5 43    71    4    4
19    72    3    4 44    69    2    2
20    71    3    3 45    69    3    3
21    71    2    4 46    71    3    4
22    72    3    5 47    71    4    4
23    67    1    2 48    71    3    2
24    71    4    4 49    72    4    5
25    71    3    2 50    70    2    2
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The following SAS statements were used to obtain the regression coeffi cient 
estimates used to compute the mediated effect and its standard error. Com-
plete data were available for each of the 50 cases.

The SAS program and output are shown in Table 3.2. The values in the 
output are the numbers used in the calculation of the mediated effect and 
related quantities.

For SPSS, the statements in Table 3.3 were used to obtain the infor-
mation necessary to compute the mediated effect, standard error, and 
confi dence limits. Note that a new regression statement is required for 
each regression equation. The output from SPSS is also included in 
Table 3.3.

Table 3.2 SAS Program and Output for Equations 3.1, 3.2, and 3.3

proc reg;
model Y=X;
model Y=X M;
model M=X;

Output for Equation 3.1

                    Parameter   Standard    T for H0:
     Variable  DF   Estimate    Error       Parameter=0  Prob > |T|

     INTERCEP  1    -22.050489  9.42792490  -2.339       0.0236
         X     1      0.360366  0.13432191   2.683       0.0100

Output for Equation 3.2

         Root MSE    0.98523    R-square    0.2772
         Dep Mean    3.24000    Adj R-sq    0.2465
         C.V.       30.40836

                    Parameter   Standard    T for H0:
     Variable  DF   Estimate    Error       Parameter=0  Prob > |T|

     INTERCEP  1    -12.712884  9.19690719  -1.382       0.1734
         X     1      0.207648  0.13325967   1.558       0.1259
         M     1      0.451039  0.14597405   3.090       0.0034

Output for Equation 3.3

                    Parameter   Standard    T for H0:
     Variable  DF   Estimate    Error       Parameter=0  Prob > |T|

     INTERCEP  1    -20.702430  8.58884617  -2.410       0.0198
         X     1      0.338593  0.12236736   2.767       0.0080
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Table 3.3 SPSS Program and Output for Equations 3.1, 3.2, and 3.3

regression
  /variables X Y M
  /dependent=Y
  /enter=X.
regression
  /variables X Y M
  /dependent=Y
  /enter=X M.
regression
  /variables X Y M
  /dependent=M
  /enter X.

Output for Equation 3.1
  Unstandardized Coefficients Standardized
    Coefficients
  B Std. Error Beta t Sig
(Constant) -22.050 9.428  -2.339 .024
X    .360  .134 .361  2.683 .010
a. Dependent Variable Y

Output for Equation 3.2
   Model Summary
Model R R Square Adjusted R Std. Error 
    Square of the 
     Estimate
1 .5265 .2772 .2465 0.9852

  Unstandardized Coefficients Standardized
    Coefficients
  B Std. Error Beta t Sig
(Constant) -12.713 9.197  -1.382  .173
X     .208  .133 .208  1.558 .126
M    .451  .146 .413  3.090 .003
a. Dependent Variable Y

Output for Equation 3.3
  Unstandardized Coefficients Standardized
    Coefficients
  B Std. Error Beta t Sig
(Constant) -20.702 8.589  -2.410 .020
X    .339  .122 .371  2.767 .008
a. Dependent Variable M
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As shown below, all SPSS estimates are identical (with rounding) to 
those in the SAS output. The SPSS output automatically includes the stan-
dardized beta coeffi cients, which represent the change in the dependent 
variable for a 1 standard deviation change in the independent variable. 
The standardized beta measure is one of the effect size measures for 
mediation described in the next chapter.

Mediation Analysis for the Temperature and Water Consumption Study. The 
unstandardized regression estimates and standard errors (in parentheses) 
from the SAS or SPSS output for the three models are:

 Equation 3.l: Y = i1 + cX + ê1

  Ŷ = −22.0505 + 0.3604X
   (0.1343)

 Equation 3.2: Y = i2 + c′X + bM + e2

  Ŷ = −12.7129 + 0.2076X + 0.4510M
   (0.1333)(0.1460)

 Equation 3.3: M = i3 + aX + e3

  M̂ = −20.7024 + 0.3386X
   (0.1224)

Temperature was signifi cantly related to water consumption (ĉ = 0.3604, 
sĉ = 0.1343, tĉ = 2.6783), providing evidence that there is a statistically sig-
nifi cant relation between the independent and the dependent variable. A 
1°F increase in temperature was associated with roughly a third (0.36) of 
a deciliter of water consumed. There was a statistically signifi cant effect 
of temperature on self-reported thirst (â = 0.3386, sâ = 0.1224, tâ = 2.767). 
A 1°F increase in temperature was associated with change of 0.34 in the 
thirst rating scale. The relation of the self-reported thirst mediator on 
water consumption was statistically signifi cant (b̂ = 0.4510, sb̂ = 0.1460, 
tb = 3.090) when controlling for temperature. A 1 unit change in the thirst 
rating scale was associated with an increase of 0.45 deciliters consumed. 
The adjusted effect of temperature was not statistically signifi cant (ĉ′ = 
0.2076, sĉ′ = 0.1333, tĉ′ = 1.558). There was a drop in the value of ĉ′ (0.2076) 
compared with ĉ (0.3604).

The estimate of the mediated effect is equal to âb̂ = (0.33859)(0.45103) = 
ĉ − ĉ ′ = 0.36036 − 0.20765 = 0.1527. The mediated effect of temperature 
through perceived thirst was equal to 0.15 deciliters of water con-
sumed. Using Equation 3.6, the standard error of the mediated effect 
is equal to:

 0 0741 0 3386 0 1460 0 4510 0 12242 2 2. ( . ) ( . ) ( . ) ( . )= + 22
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As seen in the preceding example, when the regression coeffi cients and 
standard errors are small, it is easy for rounding errors to affect the accu-
racy of the calculation of the standard error. Using Equation 3.7 gives the 
same answer, but it is less susceptible to computation errors because small 
numbers are not squared:

 0 0741
0 3386 0 4510 2 767 3 090

2 76

2 2

.
( . )( . ) ( . . )

( .
=

+
77 3 090)( . )

The 95% confi dence limits for the mediated effect are equal to:

 LCL = 0.1527 − 1.96 (0.0741) = 0.0033

 UCL = 0.1527 + 1.96 (0.0741) = 0.2979

The standard error of ĉ − ĉ′ (where 1.293 is the variance of X) in Equa-
tion 3.8 shown below, is very close to the value for Equation 3.6. As in most 
situations, the estimates for the standard error formulas are very similar 
(MacKinnon, Warsi, & Dwyer, 1995):

 0 0770 0 1343 0 1333
2 0 9852
50 1 2

2 2
2

. . .
( )( . )
( )( .

= + −
993)

As described in chapter 4, asymmetric confi dence limits based on the 
distribution of the product would use critical values of −1.6175 and 2.2540 
rather than −1.96 and 1.96, respectively, and yield lower and upper confi -
dence limits of 0.0329 and 0.3197. And as described in chapter 12, boot-
strap confi dence limits for these data were 0.0604 and 0.3322. In simulation 
studies, these confi dence limits tend to be more accurate than the normal 
theory confi dence limits, but in most cases the research conclusions are 
the same. Confi dence limits based on critical values from the normal dis-
tribution tend to be very similar to the asymmetric confi dence limits if 
either or both of the ratios â/sâ or b̂/sb̂ 

 
are equal to or greater than 6.

Note that whenever complete data are used in a mediation analysis, 
the two quantities âb̂ and ĉ − ĉ′ are equal. However, if different subjects 
are included for the analysis of different equations, then âb̂ may not equal 
ĉ − ĉ′. In the SAS program for the water consumption example, all regres-
sion statements were included under one PROC REG statement. This pro-
cedure differs from regression analysis in SPSS in which equations are 
all run separately. As a result, a researcher is more likely to have unequal 
numbers of subjects in the different regression models when SPSS is used, 
and consequently the researcher will not fi nd that âb̂ = ĉ − ĉ′ because of 
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the slight difference in sample sizes for each regression. The researcher 
is advised to remove cases that do not have measures of all three vari-
ables before estimating the regression models in SPSS if it is desired that 
âb̂ = ĉ − ĉ′.

An important test for the single mediator model is whether there is 
an interaction between the independent variable and the mediator. This 
interaction can be tested by including the independent variable (X) by 
mediator (M) interaction as an additional predictor in Equation 3.2. If the 
interaction is statistically signifi cant, then there is evidence that the rela-
tion of the mediator to the dependent variable differs across the levels of 
the independent variable. The interaction effect was not statistically sig-
nifi cant for the water consumption example as described in chapter 10.

3.11 Plots of the Mediated Effect
Several plots may be useful for illustrating mediation effects and investi-
gating model assumptions. Plots for the regression analysis of the water 
consumption example data are shown in Figs. 3.3, 3.4, and 3.5. The dots 
in the fi gures represent observations, with larger dots representing more 
observations. Figure 3.3 shows a plot of the relation of X to Y correspond-
ing to Equation 3.1. In this fi gure, the slope of the line is 0.3604, refl ecting 
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Figure 3.3 Relation of X and Y.
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Figure 3.4 Relation of X and M.

Figure 3.5 Relation of M and Y at levels of X.
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the ĉ coeffi cient, the change in Y for a 1 unit change in X. The horizontal 
lines in the plot demonstrate that the mean for 70°F was 3.18 and for 71°F 
equaled 3.54, corresponding to the ĉ difference of 0.3604. Figure 3.4 shows 
the plot of X and M, corresponding to Equation 3.3. In Fig. 3.4, the rela-
tion of X to M, indicates that a 1 unit change in X corresponds to a 0.3386 
change in M. The horizontal line in Fig. 3.4 for X equal to 70, the predicted 
M is 2.99, and for X equal to 71, the predicted M is 3.38.

Figures 3.3 and 3.4 are relatively straightforward in that they represent 
the simple relation between two variables. Figure 3.5 is more complicated 
and summarizes the mediation model graphically for X, M, and Y. Infor-
mation from Figs. 3.3 and 3.4 is also shown in Fig. 3.5. The ĉ coeffi cient 
is shown in the plot by the difference between the horizontal lines. The 
difference between the horizontal lines represents the predicted values 
of Y for a 1 unit change in X. In Fig. 3.3, the predicted Y score was 3.18 for 
an X equal to 70 and 3.54 for X equal to 71, refl ecting the change in 0.3604 
units for a 1 unit change in X. The predicted scores for X of 71 and 72 were 
chosen to illustrate effects in the model. Other adjacent values of X could 
have been used and each adjacent value of X would differ by 0.3604. In Fig. 
3.5, the â coeffi cient is represented by the difference in the vertical lines 
in the plot for the predicted M value for X equal to 2.99 for 70°F, and the 
predicted M value for X equal to 3.38 for 71°F. The difference between the 
predicted M for X equal to 70 and 71 equals the â coeffi cient of 0.3386.

Figure 3.5 is more complicated than Figs. 3.3 and 3.4, because it shows 
the relation of M to Y at each level of X, the ĉ and â effects, as well as the 
mediated effect, âb̂ = ĉ − ĉ′. Because there are six temperatures of X for 
the water consumption example, there are six lines on the plot, and all of 
these lines have a slope equal to the b̂ coeffi cient, 0.4510. That is, each line 
represents the linear relation of M to Y for one of the six different tem-
peratures in the study. Each line has a different intercept corresponding 
to the value of water consumed, Y, when self-reported thirst, M, equals 
0. The distance between adjacent parallel lines is equal to the ĉ′ effect, 
0.1416. That is, the difference in the water consumed for a 1 unit change in 
temperature is 0.1416, holding self-reported thirst constant. As described 
earlier, the value of ĉ can be seen as the distance between horizontal lines 
and the value of â can be seen as the distance between the vertical lines. 
As shown in the graph, the distance between ĉ and ĉ′ is the mediated 
effect in these plots. The value of the mediated effect, âb̂, is the change in 
Y for a change of â units in M, as shown in the plot.

In the preceding plot, lines for all six values of X were presented. If X 
was continuous with many values, some decision must be made about 
what levels of X to plot. One option would be to plot lines for values of 
X that are 1 unit apart. Another alternative would be to plot lines for the 
most common values of X. In Fig. 3.5, the most common values were 70 
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and 71, so plotting only these two lines would provide a simpler plot. It is 
useful to plot lines 1 unit apart on X because the difference between the 
lines relating M and Y represents the ĉ′ coeffi cient. The ĉ, â, b̂, âb̂, and ĉ − ĉ′ 
estimates are obtained in the same manner as for the more comprehensive 
plot discussed earlier. Another alternative would be to plot the values of 
X 1 standard deviation above and 1 standard deviation below the average. 
The same procedure would be used to assess mediation, but the values, ĉ, 
â, b̂, âb̂, and ĉ − ĉ′, would be more diffi cult to specify because the difference 
between the lines is no longer in terms of 1 unit but is in terms of 1 stan-
dard deviation of X.

If X is a binary variable coding exposure to an independent variable, 
then the resulting plots are considerably simpler than the above case where 
X has many values. The plots for the effect of X on M and X on Y now 
have only two points, one for each level of X. The plot relating M to Y now 
includes two lines representing the b̂ coeffi cient for the two levels of X. 
The difference between the two lines is again the ĉ′ coeffi cient. The ĉ and â 
coeffi cients can be seen in the same way as for the continuous X variable, as 
the difference between the group means in Y on the ordinate and the dif-
ference between the group means in X for the abscissa, respectively. Again, 
the value of ĉ − ĉ′ is shown in the plot, and the change in Y for a change of 
â units refl ects the âb̂ measure of mediation.

Another interesting aspect of the plot in Fig. 3.5 is the parallel lines 
for each value of the X variable, temperature. Because the interaction of 
X and M is not estimated in the model, the different lines relating M to Y 
are parallel. If the interaction between X and M was in the model and was 
nonzero, then the lines would not be parallel (Merrill, 1994).

3.12 Inferential Assumptions of the Single Mediator Model
There are several other overlapping assumptions and considerations for 
the single mediator model in addition to the ones mentioned earlier. Like 
any statistical analysis, it is important to interpret mediation analysis in 
the context of the validity of the assumptions of the mediation model. In 
any mediation study, these assumptions must be addressed to provide a 
reasoned argument for or against evidence of mediation.

Temporal Precedence. The single mediator model assumes an ordering 
of variables such that X comes before M, which comes before Y. In this 
regard, assessment of mediation with cross-sectional data is problematic 
as generally no information regarding temporal precedence is available, 
but must be based on theory or some other means. There are situations in 
which the meaning of variables measured in a cross-sectional study do 
imply some temporal precedence that may shed light on mediation such 
as when X is measured before M (Smith, 1982). Comprehensive models 
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of time dependence in longitudinal data have been used in the past, and 
more methods are under development. Mediation models for longitudinal 
data are described in chapter 8.

Micro Versus Macro Mediational Chain. An assumption of the single 
mediator model related to temporal precedence is that the variables repre-
sent logical parts of a mediational chain. A mediational chain may consist 
of a large number of links or steps; the researcher must decide which of 
these steps to measure. Similar decisions must be made about the ultimate 
dependent variable studied. This distinction between the macromedia-
tional chain and the micromediational chain was discussed in the earliest 
applications of path analysis models. It is likely that research progresses 
by measuring more of the steps in a micromediational chain. It is also pos-
sible that a research study may not have measured the correct steps in the 
chain so that a real mediation effect will be missed. A research study may 
also investigate only a small part of a much longer mediational chain.

Measurement Timing. Related to micromediational chain and temporal 
precedence is the assumption that the timing of measurement of the medi-
ator and the dependent variable appropriately matches the true timing of 
the relation between change in the independent variable, change in the 
mediator, and change in the outcome. Many experimental manipulations 
are expected to lead to immediate changes in mediators that subsequently 
lead to changes in the outcome. In some cases, the change in the mediator 
occurs long before the change in the ultimate outcome such as change in 
dietary calcium among young women, which may have its effects much 
later on the development of osteoporosis. Other more complicated aspects 
of change including a triggering of a mediating mechanism whereby a sin-
gle event triggers an entire mediation mechanism or a cumulative effect 
mediation mechanism in which each change in a mediator increases effects 
over time (Howe, Reiss, & Yuh, 2002; Tang & DeRubeis, 1999). For example, 
most change in clinical psychotherapy appears to occur after early sessions 
(Tang & DeRubies, 1999).

Normally Distributed X, M, and Y. It is generally assumed that X, M, and 
Y have a normal distribution (Darlington, 1990). If X is binary, then the 
statistical methods outlined in the chapter remain accurate, but the size 
of effects may be reduced from when X is a continuous variable, unless 
X is truly binary. If Y is binary, then estimates of the mediated effect 
can be inaccurate as described in chapter 11, which describes mediation 
analysis for a binary dependent variable. In general, resampling meth-
ods that do not make as many assumptions regarding the distribution 
of X, M, and Y are appropriate when mediation variables do not have a 
normal distribution, as described in chapter 12. The appropriate media-
tion analysis may differ for different distributions of the variables in the 
mediation model.
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Normally Distributed Product of Coeffi cients. The application of the stan-
dard errors in chapter 3 assumes that the product of â and b̂, âb̂, has a 
normal distribution. In fact, the distribution of the product of two random 
variables does not have a normal distribution in several situations. Two 
alternative ways to address this problem are the creation of confi dence 
limits based on the distribution of the product of two random variables 
and resampling methods as described in chapter 12. More information 
about a method based on the distribution of the product is described in 
chapter 4.

Omitted Infl uences. The single mediator model assumes that no other 
variables affect the relations in the model. For the single mediator model, 
this means that there are no other variables related to the three variables in 
the mediation model. Omitted variables may consist of unmeasured, but 
important, variables or interactions among variables that are not included 
in the statistical analysis.

With real data, it is unlikely that the three variables in the single mediator 
model are the only relevant variables. As described in chapter 5, the single 
mediator model can be easily extended to multiple mediators, thereby incor-
porating additional mediation effects. A more general model with multiple 
mediators, multiple independent variables, and multiple dependent vari-
ables is described in chapter 6. It is still possible that these more compre-
hensive models with many mediators may not contain all relevant variables 
because there may be an unmeasured variable that may explain a pattern of 
effects. Approaches to this problem based on programs of research, careful 
interpretation of relations among variables, and replications are described 
in chapters 13 and 14. For example, a program of research based on experi-
mental and nonexperimental studies can reduce the plausibility of omitted 
variable explanations of observed mediated effects.

The model also assumes the same relations for all participants in a 
research study; that is, there are not subgroups of participants with dif-
ferent mediational processes. However, it is possible that important mod-
erators may not have been included in the analysis. Mediation may differ 
across groups. For example, the mediated effect may differ for males and 
females. As described in chapter 10, one way to assess the assumption of 
no moderation is to test potential moderator effects. In some cases, the 
moderator effects are predicted on the basis of theory and are included 
in the analysis, so they serve as not merely assumptions to be tested but 
also as a primary focus of the research study. For example, a treatment 
program may be more successful for persons already low on a mediator at 
baseline so that program effects are expected to be larger for participants 
with the lowest scores on a mediator. And if a mediated effect differs 
across subgroups, it suggests that other mediating variables may explain 
these moderator effects.
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Causal Inference. Another assumption related to omitted effects is that the 
relation between X and M, â, between M and Y adjusted for X, b̂, between 
X and Y, ĉ, and between X and Y adjusted for M, ĉ′, refl ect true causal 
relations of the correct functional form (Holland, 1988a; Rubin, 2004). If 
X represents random assignment to conditions, the â relation and the ĉ 
relation represent causal effects under certain assumptions described in 
chapter 13. However, there are situations in which these coeffi cients may 
not refl ect a true causal relation such as if X does not represent random 
assignment to conditions or the random assignment has been compro-
mised in some way. In this X nonrandomized case, the â coeffi cient may 
refl ect other effects besides the effect of level of X on M. Even if X rep-
resents random assignment, the b̂ and ĉ′ coeffi cients are still potentially 
problematic because M is not randomly assigned but is determined or 
self-selected by study participants, as discussed in chapter 13. In many 
situations, the results of a mediation analysis are descriptive rather than 
implying causal relations.

Theoretical Versus Empirical Mediator. Even though there is evidence 
for a variable as a mediator, such as a statistically signifi cant mediated 
effect, it is possible that the mediator identifi ed does not refl ect the true 
mechanism by which an effect occurs. One simple explanation of such 
an effect is a Type I error, whereby the effect was signifi cant by chance 
alone. Another option is that the mediator identifi ed is actually a proxy 
for the true mediator (Kraemer et al., 2002). For example, in a study of 
the effects of cognitive therapy on depression, cognitive attributions 
about health may function as a mediator in an analysis when it is really 
a proxy for the more general mediator of general negative cognitive 
attributions.

It is not likely that a true mechanism can be demonstrated in one sta-
tistical analysis. The point is that mediation analysis provides informa-
tion regarding possible mediating mechanisms. These analyses inform the 
next experiment that provides more information until a series of studies 
provides convincing evidence of a mediating mechanism.

3.13 Other Tests for Mediation
The methodology for testing mediation described in this chapter refl ects 
ideas from several different prior mediation tests and the results of simu-
lation studies comparing tests. Several other tests are described in this 
section because you may encounter these statistical tests in the research 
literature. These tests may be the mediation test of choice in some situa-
tions. This section provides optional background for mediation analysis.

Three general types of tests are described in this section. Tests of medi-
ation based on the âb̂ estimator of the mediated effect are called product 
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of coeffi cients tests and tests based on the ĉ − ĉ′ estimator are called dif-
ference in coeffi cients tests (MacKinnon, 2001). A third group of tests are 
based on testing hypotheses consistent with mediation. These step tests 
are described in the next section. As described in chapter 13, the defi nition 
of a causal relation is controversial and will often require more criteria 
than are described in these tests.

Baron and Kenny (1986) Steps to Establish Mediation. The most widely 
used method to assess mediation was described by David Kenny and 
colleagues (Baron & Kenny, 1986; Judd & Kenny, 1981b; Kenny, Kashy, & 
Bolger, 1998). The Baron and Kenny (1986) article is one of the most cited 
articles in the social sciences, largely because of its guidance regarding 
testing for mediation. This method consists of a series of statistical tests of 
relations among variables corresponding to signifi cance tests of the â, b̂, ĉ, 
and ĉ′ regression coeffi cients described earlier. The series of tests of causal 
steps described by Kenny and colleagues is essentially the same across all 
of the articles:

1.  The independent variable (X) must affect the dependent variable (Y), 
as indicated by coeffi cient ĉ in Equation 3.1.

   The purpose of this fi rst test is to establish that there is an effect to 
mediate. If the effect is not statistically signifi cant, then the analysis 
stops in the causal steps approach. This test is controversial because 
it is possible that the relation between the independent variable and 
the dependent variable may be nonsignifi cant, yet there can still 
be substantial mediation. This will occur in cases of what is called 
inconsistent mediation (suppression models). Inconsistent mediation 
occurs when the mediated effect and the direct effect have opposite 
signs. In these models the relation of X to Y actually increases in 
magnitude when it is adjusted for the mediator. As mentioned by 
Rosenberg (1968, p. 84), “one can be equally misled in assuming that 
an absence of relation between two variables is real, whereas it may 
be due . . . to the intrusion of a third variable.”

2.  The independent variable (X) must affect the mediator (M), evalu-
ated by coeffi cient â in Equation 3.3.

   This test requires that the independent variable is signifi cantly 
related to the mediator. In the case of an X variable coding an experi-
mental manipulation, this requires that there is an experimental effect 
on the mediating variable. As described in chapter 2, in an experimen-
tal study this provides a test of the action theory of the manipulation, 
that is, whether the theory of how the independent variable changes 
the mediator is accurate.

3.  The mediator (M) must affect the dependent variable (Y) when the 
independent variable (X) is controlled, coeffi cient b̂ in Equation 3.2.
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   This test requires a signifi cant relation between the mediator and 
the dependent variable, providing a test of the conceptual theory of 
how the mediator is related to the dependent variable as described 
in chapter 2. It makes sense that the mediator must be signifi cantly 
related to the dependent variable for there to be mediation. If the 
mediator is unrelated to the dependent variable, the effect of the 
independent variable on the mediator cannot be carried through to 
the dependent variable. Clogg, Petkova, and Shihadeh (1992) con-
cluded that the test of signifi cance of b̂ is a test for mediation at least 
in terms of testing whether adding the mediator changes the relation 
between the independent variable and the dependent variable. Gener-
ally, the test of b̂ is not suffi cient to demonstrate a mediation effect 
because a researcher will typically require the relation between the 
independent variable and the mediator, the â regression coeffi cient, 
to be statistically signifi cant.

4.  The direct effect, coefficient ĉ ′, must be nonsignificant, in Equa-
tion 3.2.

  Across the articles on the causal step mediation approaches, there 
is some difference regarding the fourth step, relating to the extent to 
which an effect is completely mediated or partially mediated. The 
Judd and Kenny (1981b) method requires total mediation or that the 
independent variable does not have a signifi cant effect on the depen-
dent variable when the mediator (M) is controlled. In this case, the 
ĉ′ or direct effect must not be signifi cantly different from zero. There 
is motivation for this requirement based on detailed causal analy-
sis of the mediation model described in chapter 13. The Judd and 
Kenny (1981b) description also assumes that X represents an experi-
mental manipulation. The Baron and Kenny (1986) method and later 
descriptions of this approach allow for partial mediation, or that the 
effect of the independent variable on the dependent variable is larger 
when the mediator is not partialled than when it is partialled, that 
is, that ĉ′ is less than ĉ. The partial mediation case allows ĉ′ to be sig-
nifi cant and makes sense given that complete mediation is probably 
unrealistic in many research areas such as social science research 
because of the many causes of behavior (Baron & Kenny, 1986). As 
a result, the requirement that ĉ′ be less than ĉ, that is, âb̂ > 0, rather 
than ĉ′ = 0, is included in most recent applications of these causal 
step methods. There are often situations, however, in which it can be 
demonstrated that ĉ′ is not signifi cantly different from zero, lending 
support for complete mediation.

In a recent simulation study, MacKinnon, Lockwood, et al. (2002) found 
results suggesting that the most important conditions for mediation are 
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that the â coeffi cient is statistically signifi cant (step 2) and that the b̂ coef-
fi cient is statistically signifi cant (step 3) based on Type 1 error rates and 
statistical power. Such a procedure was mentioned by Cohen and Cohen 
(1983, p. 366) in the slightly different context of a mediation effect with a 
chain of two or more mediators. As a result, for many mediation analy-
ses, only steps 2 and 3 are required to establish mediation. The statistical 
test for mediation described earlier in this chapter focuses on information 
from steps 2 and 3. The additional conditions relating to steps 1 and 4 are 
not critical, but there are situations in which these conditions are very 
important. If a researcher is interested only in direct and mediated effects 
of the same sign, then the fi rst step, that there is a signifi cant effect of X on 
Y, is important. The interpretation of the mediated effect is also clearer if 
there is evidence for total mediation, step 4.

The causal step approach is the most widely used method to test for 
mediation because of the clear conceptual link between the causal rela-
tions and the aforementioned statistical tests. It is worth emphasizing that 
steps for establishing mediation were outlined earlier in Judd and Kenny 
(1981a) but with three notable differences. First, the X variable represented 
an experimental design so that the â and ĉ relations represent effects of 
an experimental manipulation. Second, the ĉ′ coeffi cient was required to 
be nonsignifi cant, indicating a complete mediation model. Third, testing 
the interaction between the mediator and the independent variable was 
discussed.

MacArthur Mediation Framework. A recent example of a mediation frame-
work containing steps for establishing mediation is the MacArthur model 
as described by Kraemer and colleagues (Kraemer et al., 2002; Kraemer, 
Kiernan, Essex, & Kupfer, 2004). The MacArthur framework is similar to 
the causal steps tests of mediation. The main difference is that the Mac-
Arthur framework does not attempt to specify underlying mediating 
mechanisms beforehand but uses observed relations among variables to 
explore possible mediation and moderation relations. Temporal prece-
dence and association are the two primary criteria necessary (but not suf-
fi cient) to indicate a causal relation between two variables. The goal of the 
MacArthur approach is to generate hypotheses about a possible causal role 
to be tested in future studies. First, the MacArthur model explicitly states 
that nonlinear relations among variables qualify as mediation as long as 
there is a relation between X and M. If there is not a relation between X and 
M, but the interaction is statistically signifi cant, then the variable is con-
sidered as a moderator. Second, the existence of the interaction indicating 
that the relation between M and Y differs across levels of M is explicitly 
included in the model and is taken as evidence of mediation. Third, a 
defi ning characteristic of a moderator is that it is measured before any 
experimental manipulation is delivered. The time when the moderator 
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is measured is not explicitly defi ned (although it is generally contempo-
raneous; Baron, & Kenny, 1986, p. 1174) but is implied in the Baron and 
Kenny mediation steps methods and is usually based on theory. In the 
Mac Arthur framework, any variable measured at the baseline of the study 
is a potential moderator, and a mediator must change after the indepen-
dent variable. But any measure obtained after the study starts is not a 
moderator in this framework. Third, there must be evidence that there was 
change in the mediator before the change in the dependent variable for a 
variable to function as a mediator. This requirement explicitly addresses 
the temporal relation assumption. Any variable that changes over time is 
a potential mediator in this framework.

The Baron and Kenny (1986) steps test is criticized in the MacArthur 
approach, but these criticisms are addressed, primarily as assumptions 
of the Baron and Kenny model. For example, additive relations among 
variables are not explicitly excluded and the possibility of a differential 
relation between M and Y across levels of X was described in some detail 
by Judd and Kenny (1981a) as part of a steps method. It is unlikely that the 
steps approach would not consider additive or nonlinear relations among 
variables as mediation and do consider temporal precedence a character-
istic of a mediating variable.

The defi nition of moderator and mediator in terms of when they are 
measured can lead to some ambiguity in the MacArthur framework. 
In the MacArthur framework, a theoretical moderator variable is con-
sidered a mediator if it is not measured before treatment. Similarly, the 
strict requirement for measurement of a mediator before the outcome 
prohibits using cross-sectional data to study mediating processes. This 
would seem to prohibit the work of detectives, psychotherapists, and 
physicians who seek to untangle the process of events after they have 
occurred. Despite these limitations, in most cases the MacArthur frame-
work is a way to organize exploratory analyses of many potential vari-
ables in the evaluation of randomized clinical trials (MTA Cooperative 
Group, 1999). Most importantly, it has raised awareness of the impor-
tance of investigating mediation and moderation in the analysis of ran-
domized trials.

Another aspect of the MacArthur approach is the identifi cation of fi ve 
types of risk factors: proxy, overlapping, independent, moderator, and 
mediator. A proxy risk factor is one that serves as proxy for the true causal 
risk factor. For example, attributional style for events at the workplace is a 
proxy for general attributional style across many domains. In the MacAr-
thur framework, proxy risk factors are replaced by the true causal factor 
if there is a better measure of the causal risk factor. In other approaches, 
proxy measures would be used as additional measures of a construct to 
improve its reliability and validity. Overlapping risk factors refer to two 
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risk factors that are correlated. The other type of risk factors, independent 
risk factors, are uncorrelated and represent unique relations with the out-
come measure. In practice, some criterion value of the correlation must be 
defi ned for factors to be judged independent. Table 3.4 shows the steps in 
the MacArthur approach as described by Kraemer (2003), in which a cri-
terion value for the Spearman correlation is used as a threshold to deter-
mine the relation of a risk factor with an outcome. These criteria are based 
on an unpublished presentation and may be refi ned in later versions of 
this approach.

Confi rmatory Test of Complete Mediation. James, Mulaik, and Brett (2006) 
describe a confi rmatory approach to mediation analysis based on the com-
plete versus partial mediation models. The authors argue that the com-
plete mediation model should generally be the fi rst model tested because 
it is a more parsimonious representation of mediation, and a χ2 test of 
model fi t is available. Essentially, the complete mediation model consists 
of testing whether or not the ĉ′ coeffi cient is statistically signifi cant. The 
complete mediation model is also important because it reduces the pos-
sibility that some important mediation variables have been omitted from 
the analysis (given adequate statistical power, valid measurement, and 
other assumptions). A two-step process is proposed. First, the researcher 
hypothesizes a complete or partial mediation model. If theory or prior 
research is insuffi cient, the complete mediation model should be tested 
fi rst because it is a more parsimonious model. A noteworthy aspect of this 
fi rst step is that the c′ path is specifi ed to be zero for theoretical reasons 
before analysis rather than after statistical analysis of the ĉ′ coeffi cient. In 
the second step, for a complete mediation model, the path relating X to M, 
â, and the path relating M to Y (note that this is not adjusted for the media-
tor) b̂unadjusted, should be statistically signifi cant. For the complete mediation 
model, a statistical test of model fi t is obtained comparing the covariances 

Table 3.4 Steps in the MacArthur Framework for the Single Mediator Model

1.  Test the Spearman rank order correlation between X and Y. Decide whether 
to discard the variable if the correlation does not attain a specifi ed value. 
(Note that the authors of this approach mention that this requirement can be 
dismissed if necessary.)

2.  Test the Spearman rank order correlation between X and M. Decide whether 
to discard the variable if the correlation does not attain a specifi ed value. 

3.  Test whether the regression coeffi cient relating M to Y is statistically 
signifi cant when both X and M are in the same regression model. This is 
equivalent to testing whether the b̂ path is statistically signifi cant. Partial 
mediation is present if the relation between X and Y is statistically signifi cant 
in the model with both X and M as predictors. 
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among X, M, and Y predicted by the complete mediation model with the 
observed covariances among X, M, and Y. If a partial mediation model is 
hypothesized, then the â, b̂, and ĉ′ coeffi cients in Equations 3.2 and 3.3 are 
estimated and the coeffi cients â and b̂ must be statistically signifi cant for 
mediation to exist. If the ĉ′ coeffi cient is statistically signifi cant, then there 
is evidence of partial, not complete mediation. An important aspect of this 
test for mediation is its focus on specifying complete or partial mediation 
before the study is conducted. Practically, the test of complete mediation 
can be obtained with the methods described earlier in this chapter with 
the signifi cance test of the ĉ′ coeffi cient.

Product of Coeffi cients Tests for Mediation. The standard error of the medi-
ated effect is given in Equation 3.6. However, there are other standard 
error estimators for the mediated effect based on the product of coeffi -
cients, âb̂. One of these is the standard error of the product of â and b̂ 
which is equal to:

 s a s b s s sb a a bSecond = + +ˆ ˆ
ˆ ˆ ˆ ˆ

2 2 2 2 2 2  (3.9)

based on the fi rst- and second-order derivatives (Baron & Kenny, 1986; 
MacKinnon & Dwyer, 1993). The formula in Equation 3.6 is based on fi rst 
derivatives. In fact, the use of second derivatives in the Taylor series for 
the variance of the product involves a mixed derivative equal to 1, which 
leads to the additional term, sâ

2sb̂
2, in Equation 3.9 that is not in Equation 

3.6. This formula for the variance of the product of two random variables 
is also given in several mathematical statistics textbooks (Mood, Graybill, 
& Boes, 1974; Rice, 1988). An alternative formula for the second-order solu-
tion is shown in Equation 3.10. Although the standard error from Equa-
tion 3.9 is based on a more elaborate derivation, the two standard errors 
are usually very close and are sometimes not as accurate as the formula in 
Equation 3.6 (Allison, 1995b):

 s
ab t t

t t
a b

a b
Second =

+ +ˆ ˆ
ˆ ˆ

ˆ ˆ

2 2 1
 (3.10)

 Goodman (1960) and Sampson and Breunig (1971) derived the unbi-
ased variance of the product of two normal variables, which subtracts the 
product of variances sâ

2sb̂
2 shown in Equation 3.11, and Equation 3.12 shows 

an alternative computational formula.

 s a s b s s sb a a bUnbiased = + −ˆ ˆ
ˆ ˆ ˆ ˆ

2 2 2 2 2 2  (3.11)
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 s
ab t t

t t
a b

a b
Unbiased =

+ −ˆ ˆ
ˆ ˆ

ˆ ˆ

2 2 1
 (3.12)

 The Sampson and Breunig (1971) unbiased standard error takes into 
account the sample size associated with the â and b̂ coeffi cients. One draw-
back of the unbiased estimator of the standard error is that it is sometimes 
undefi ned at sample sizes <200 in simulation studies because the variance 
is negative (Mac Kinnon, Lockwood, et al., 2002; MacKinnon, Lockwood, 
& Williams, 2004). In this case, the mediated effect is likely to be nonsig-
nifi cant, because small values of â and b̂ make the two elements in Equa-
tion 3.11 very small compared to the sâ

2sb̂
2 term.

It has been suggested that the standard error formula in Equation 3.6 
can be used to test the statistical signifi cance of the product of â and b̂ 
standardized coeffi cients (Russell, Kahn, Spoth, & Altmaier, 1998). How-
ever, the standard error formula in Equation 3.6 was derived for unstan-
dardized regression coeffi cients, not standardized coeffi cients. Using the 
above formulas to test the signifi cance of the product of standardized â 
and b̂ regression coeffi cients (based on unstandardized standard errors) 
can lead to misleading results. Bobko and Rieck (1980) present a for-
mula for the standard error of the product of regression coeffi cients from 
path analysis, in which variables are standardized before analysis. The 
method uses the formula for the product of the standardized regression 
coeffi cients for â and b̂, calculated using the three correlation coeffi cients 
involved (i.e., the correlation between the independent variable and the 
dependent variable, rXY, the correlation between the independent variable 
and the mediator, rMX, and the correlation between the mediator and the 
dependent variable, rMY). The large sample covariance matrix among these 
three correlations (Olkin & Siotani, 1976) is required for the standard error 
computation, making the formula quite cumbersome because the covari-
ance formulas are complicated.

The other product of coeffi cient standard errors for âb̂ yields standard 
errors that are very close to those obtained from Equation 3.6. Simulation 
studies of the different standard errors suggest that the standard error for-
mula in Equation 3.6 performs better than other formulas for the standard 
error. The product of coeffi cients for standardized variables suggested by 
Bobko and Rieck (1980) is also not better than the standard error formula 
in Equation 3.6.

Difference in Coeffi cients Tests for Mediation. A difference in coeffi cients 
test for mediation estimates the difference between the correlation between 
the independent variable and the dependent variable, rXY, with the partial 
correlation between the independent and dependent variable corrected 
for the effect of the mediator, rXY.M (Olkin & Finn, 1995). The  difference 
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between the correlations is the mediated effect, and its standard error is 
found using the multivariate delta method. This method uses the covari-
ance matrix among the three correlations, rXY, rMX, and rMY, in the standard 
error, making it cumbersome to compute. The requirement for a correla-
tion to range from −1 to 1 can lead to failure to fi nd true mediated effects 
in some cases (see Kenny http://users.rcn.com/dakenny/mediate.htm). 
As a result the difference between the raw and partial correlation is not 
recommended as a test of mediation.

3.14 Summary
This chapter presents a basic statistical framework that can be used to 
evaluate mediational models. Two estimators, ĉ − ĉ′ and âb̂, which are 
equivalent for most analyses, can be used to calculate the mediated effect. 
Several different formulas for the standard error of the mediated effect 
were presented, which led to negligibly different estimates for the water 
consumption example in this chapter. Additional approaches to testing 
mediation were also described, which may be appropriate in certain 
research situations. The remainder of this book elaborates this general 
framework, at least in part, to address violations of assumptions described 
in this chapter. It is important to remember that the statistical model is an 
abstraction of a verbal description. A verbal description of mediation is 
limited because it does not explicitly describe relations among variables 
in a way that they can be tested. The statistical model is also limited as 
it reduces verbal concepts to numerical relations and assumptions. Both 
approaches are incomplete. It is the researcher’s task to interpret the 
results of the mediation analysis in the context of substantive and concep-
tual aspects of the mediation model studied.

Subsequent chapters expand upon the analysis presented here. In 
the next chapter, effect size measures and some statistical background 
for the single mediator model are described. Later chapters expand the 
model to categorical outcomes, multiple mediators, measurement mod-
els for mediators, multiple independent variables, and multiple depen-
dent variables.

3.15 Exercises
3.1.  Compute the standard error from Equation 3.6 and the ratio of the 

mediated effect estimate to its standard error for the following values:
 a. â = 0.2, sâ = .1, b̂ = 0.4, and sb̂ = 0.01.
 b. â = 0.22, sâ = .1, b̂ = 0.22, and sb̂ = 0.1.
 c. â = 0.2, sâ = 0.2, b̂ = .4, and sb̂ = 0.01.
 d. â = 0.2, sâ = 0.01, b̂ = 0.4, and sb̂ = 0.4.
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 e. How does the signifi cance levels of the individual coeffi cients 
relate to the signifi cance test of the mediated effect? Is it more 
important to have one of the paths highly signifi cant or both 
paths about the same size?

3.2.  Data from an evaluation of a program designed to increase healthy 
nutrition among high school football players are used to illustrate the 
estimation of mediated effects (Goldberg et al., 1996). In this exam-
ple, the data are from 1,227 subjects measured immediately after 
about half received a program designed to improve nutrition behav-
iors. The dependent variable is a summary measure composed of six 
measures of healthy nutrition. The mediator is a three-item measure 
of the extent to which subjects felt that their peers were a source of 
information about nutrition. The program was designed to change 
peer norms regarding nutrition behavior, which was then hypoth-
esized to improve nutrition behaviors. The regression estimates and 
standard errors (in parentheses) for the three models are presented 
below.

 Equation 3.1: Y = i1 + cX + e1

  Ŷ = 4.016 + 0.3552X
   (0.0631)
 Equation 3.2: Y = i2 + c′X + bM + e2

  Ŷ = 3.258 + 0.1856X + 0.1711M
   (.0642) (.0195)
 Equation 3.3: M = i3 + aX + e3

  M̂ = 4.423 + 0.9912X
   (0.0896)

 a. Compute the mediation effect using two methods.
 b. Compute the standard error using Equations 3.6, 3.7, 3.8, 3.9, 3.10, 

3.11, and 3.12. The mean square error for model 2 was 1.1289, 
and the variance of the independent variable was 0.2459. How 
much do the standard errors differ? Which formula is easiest to 
compute?

 c. What is the 95% confi dence interval for the mediated effect?
 d. Evaluate each step in the causal steps approach to establishing 

mediation.
 e. What is your conclusion about whether peers as an information 

source is a signifi cant mediator of the program effect on nutri-
tion behaviors?

3.3.  Compare and contrast the causal step method to directly testing 
whether the ratio of the mediated effect to its standard error is larger 
than a certain z value.
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3.4.  Evaluate each assumption for the water consumption example.
3.5.  Find a research article mentioned in the fi rst three chapters of this 

book and summarize how mediation was tested.
3.6.  For the water consumption example, dichotomize X so that 67, 68, 

or 69, have X equal to 0 and X equals 1 for 70, 71, or 72. Conduct 
a mediation analysis for the binary X variable and make the same 
plots as in fi gures 3.3, 3.4, and 3.5. Indicate mediation coeffi cients, 
â, b̂, ĉ, ĉ′, âb̂, and ĉ − ĉ′ in the plot.
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4

Single Mediator 
Model Details

Emmie: Mom, I’m not going back to school this year.
Mom:    Why not?
Emmie:  Because last year the teacher said three plus 

seven made ten. Then he said five plus five 
made ten. And then he said eight plus two 
made ten.

Mom:    So?
Emmie:  So, I’m not going back till he makes up his 

mind!

—Lisa Eisenberg & Katy Hall, 1994, p. 10

4.1 Overview
The first two chapters defined mediating variables and described sub-
stantive applications of mediating variables. Chapter 3 introduced the 
single mediator model regression equations and outlined assumptions 
of the model. Chapter 4 provides technical details and advanced infor-
mation about the single mediator model, including measures of effect 
size, expected variances and covariances among X, M, and Y, derivation 
of standard errors, and a Monte Carlo study investigating the statistical 
properties of mediated effect estimators.

4.2 Meaning of Effects in the Single Mediator Model
The estimate of the mediated effect (âb̂ or ĉ − ĉ′) is one meaningful statistic 
from mediation analysis. Remember that the value for the mediated effect 
in the single mediator model is the effect of the independent variable on 
the dependent variable that is indirect, through the mediating variable. 
The value of the mediated effect is more interpretable if the unit of mea-
surement of the dependent variable involved is clear; for example, for the 
water consumption example in chapter 3, the unit was deciliters of water. 
Confidence limits provide more information about a mediated effect 
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because a range of possible values for the mediated effect are considered 
rather than one single value (Krantz, 1999; Kline, 2004).

Significance tests aid in the evaluation of whether an observed effect 
is larger than expected by chance alone. A large critical value (estimate 
divided by the standard error of the estimate) for a significance test sug-
gests that the observed effect is not consistent with chance and is likely to 
be a real effect. The conclusion from a significance test depends on sample 
size, however, where very small effects can be highly statistically signifi-
cant if sample size is large enough and very large effects may be nonsig-
nificant for a small sample size. As described by many researchers (Cohen, 
1988; Rosnow & Rosenthal, 1989), significance tests do not provide good 
measures of the size or the meaningfulness of an effect.

Measures of effect size provide an indication of the size and mean-
ingfulness of an effect that does not depend on sample size. The effect 
size can be the same across studies with different conclusions regarding 
tests of significance. The importance of effect size measures in psychology 
and other fields has been emphasized by several researchers (Cohen, 1988; 
Rosnow & Rosenthal, 1989; Wilkinson et al., 1999). Although alternative 
effect size measures have been proposed for mediated effects (Taborga, 
MacKinnon, & Krull, 1999), the ideal effect size measure for mediation 
and the statistical properties of the potential effect size estimators are not 
yet resolved. The measures described here provide a survey of current 
measures to be evaluated in future studies.

4.3 Effect Size Measures of Individual Paths 
in the Mediated Effect: Partial Correlation
Effect size measures can be specified for each path in the two-path medi-
ated effect, the â path from the independent variable to the mediator and the 
b̂ path from the mediator to the dependent variable. One of the most widely 
used measures of effect size is the correlation coefficient. For the regression 
model with one predictor, the correlation between the independent and 
dependent variables is the correlation effect size measure. For example, the 
correlation between the independent variable and the mediating variable 
is the correlation effect size measure for the relation between the indepen-
dent variable and the mediator. Cohen (1988) provided guidelines for small, 
medium, and large effects in social sciences corresponding to correlations 
of 0.1, 0.3, and 0.5, respectively. For the model that includes both the media-
tor and the independent variable predicting the dependent variable, there 
are two regression coefficients and as a result, two partial correlations. The 
partial correlation effect size measure is the correlation between one pre-
dictor and the dependent variable with the relation of the other predictor 
and the dependent variable removed. Of primary interest for the mediated 
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effect is the correlation between the mediating variable and the depen-
dent variable adjusted for the correlation between the independent vari-
able and the dependent variable, thus providing a partial correlation for 
the b̂ coefficient. Equations 4.1 and 4.2 show the formulas for the partial 
correlations for ĉ′, rYX.M (correlation between X and Y partialled for M) and 
b̂, rYM.X (correlation between Y and M, partialled for X), respectively. For 
the water consumption example, the raw correlations among X, M, and Y 
were rXY = 0.361, rMY = 0.490, and rXM = 0.371. The correlation for the â coef-
ficient was 0.371, and the partial correlation for the b̂ coefficient was 0.411, 
corresponding to effects between medium and large in the social sciences. 
The correlation for the total effect ĉ was 0.361 and the partial correlation 
for ĉ′ was 0.208. Because guidelines for the effect size of correlations in the 
social sciences are available, simulation studies have often used the cor-
relation effect size measures (MacKinnon, Lockwood, Hoffman, West, & 
Sheets, 2002) in the generation of data. In this way, the statistical power to 
detect small, medium, and large effects in the social sciences can be stud-
ied in statistical simulations, as will be described in section 4.18:
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4.4 Effect Size Measures of Individual Paths in the 
Mediated Effect: Standardized Regression Coefficients
Another type of effect size measure for individual coefficients is the stan-
dardized regression coefficient. The standardized regression coefficient is 
a rescaled regression coefficient that represents the change in the depen-
dent variable for a 1 standard deviation change in the independent vari-
able. A standardized â coefficient represents the change in the mediating 
variable for a 1 standard deviation change in the independent variable. 
For the b̂ coefficient, the standardized regression coefficient represents the 
change in the dependent variable for a 1 standard deviation change in the 
mediating variable adjusted for the X variable in the model. The standard-
ized regression coefficients are commonly presented in covariance struc-
ture model results. For a mediation example, Hansen and McNeal (1997) 
reported a standardized coefficient from exposure to a Drug Abuse and 
Resistance Education (DARE) program to commitment to avoid drugs of 
.160 and a standardized coefficient for the relation between commitment 
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to avoid drugs and tobacco use of −0.134. Equations 4.3 and 4.4 show the 
formulas for the ĉ′ and b̂ regression coefficients in terms of correlations 
and standard deviations of X, M, and Y. Note that the right side of each 
equation includes the ratio of the standard deviation of the variables. For 
standardized coefficients, these variances are equal to 1 (i.e., sY = sX = 1). 
Also note the equations to the left of (sY/sX) in Equation 4.3 and (sY/sM) 
in Equation 4.4 are equal to the regression coefficients ĉs′ and b̂s, for stan-
dardized variables, respectively. For the water consumption example, the 
standardized regression coefficient for âs was 0.371 and the standardized 
regression coefficient for b̂s was 0.413. The standardized regression coef-
ficients were 0.361 for ĉs and 0.208 for ĉs′:

 ˆ′ = −
−
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r r r
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XM
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s
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M1 2
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4.5 Effect Size Measures for the Entire Mediated Effect
Other measures of effect size for mediation models focus on a single mea-
sure of the mediated effect, âb̂, as a way to gauge the size of the effect 
(Taborga, 2000). There are three major types of effect size measures for the 
overall mediated effect: (a) proportion and ratio measures, (b) R-squared 
measures, and (c) standardized effect measures. These effect size mea-
sures differ in meaning and statistical properties.

4.6 Ratio and Proportion Mediated Effect Measures
One of the most common mediation effect size measures is the proportion 
of the total effect that is mediated, âb̂/ĉ, which is algebraically equivalent 
to 1 − ĉ′/ĉ and âb̂/(ĉ′ + âb̂) in the ordinary least squares regression model. 
Alwin and Hauser (1975) suggested this measure as a way to gauge the 
size of mediated effects. A researcher could state that a mediated effect 
explains about 30% of the total effect of an independent variable on a 
dependent variable. For the water consumption example, the proportion 
mediated was 42% (0.1527/0.3604 = 0.42). MacKinnon et al. (1991) found 
that norms among friends explained about 37% of a school-based preven-
tion effect on tobacco use. Wolchik et al. (1993) found that 43% of the effect 
of a children of divorce program on child mental health was mediated by 
changes in the mother–child relationship.
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In some models, the mediated effect and the direct effect have oppo-
site signs, complicating the interpretation of the mediated effect because 
the proportion value can be greater than 1 or even negative. In this case, 
the total effect may be very close to zero, and the proportion mediated 
can then be very large. These models are inconsistent mediation models 
because there are both positive and negative effects on the dependent 
variable (MacKinnon, Krull, & Lockwood, 2000). One effect size option in 
these scenarios, suggested by Alwin and Hauser (1975), is to take the abso-
lute values of the quantities before computing the proportion mediated, 
leading to a different interpretation of the proportion mediated as the pro-
portion of the absolute total effect that is mediated. For the water consump-
tion example, if the ĉ′ coefficient was actually −0.2076, then the proportion 
mediated would equal 0.1527/(−0.2076 + 0.1527), which equals −2.78. Taking 
absolute values would yield a proportion mediated equal to 0.42.

A related measure is the ratio of the mediated effect to the direct effect, 
âb̂/ĉ′, which equals 0.736 (0.1527/0.2076) for the water consumption example. 
Sobel (1982) suggested that this measure may be useful to compare direct 
and indirect effects. With this measure, a researcher could state that the 
mediated effect is twice as large as the direct effect or that the mediated 
effect is one-third as large as the direct effect. For example, Leigh (1983) 
reported that the mediated effect of schooling to healthy habits to health 
was 18 times larger than the direct effect of schooling on health. Ratio 
measures may also be useful for comparing mediated effects. In a study of 
guinea pigs, Wright (1934) investigated whether size of litter affects birth 
weight through a shorter gestational period or by competition for growth 
among developing fetuses. He found evidence that the mediated effect 
through growth was three times larger than the mediated effect through 
length of the gestation period.

Buyse and Molenberghs (1998) suggest a ratio measure ĉ/â (which is 
equal to (ĉ′ + âb̂)/â in ordinary least squares regression) that is useful for 
identifying surrogate (mediator) endpoints. The ratio of the effect of X 
and Y, ĉ, to the effect of X on M, â, is expected to be 1, as a valid surrogate 
should have the same relation with an independent variable as the ulti-
mate outcome variable. An additional requirement for this framework 
is that the correlation between the mediator and the ultimate outcome 
should be close to 1. These two measures, ĉ/â and rMY, could be used to 
judge the effect size of a mediated effect. For the water consumption 
data, ĉ/â equals 0.613 (0.2076/0.3386) and rMY equals 0.361. So in terms 
of a surrogate effect, the effect of X on M is about 60% of the size of 
the effect of X on Y, and X and M have about 10% shared variance. No 
guidelines are yet available to judge whether these relations are large 
or small.
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4.7 R-Squared Measures
There are several possible R-squared measures for the mediated effect. 
These measures partition the observed amount of variance in the depen-
dent variable into parts; the part that is explained by the direct effect, 
the part that is not explained, and the part that is explained by the medi-
ated effect. Equation 4.5 represents an R-squared measure designed to 
localize the amount of variance in Y that is explained by M specific to 
the mediated effect. The R-squared measure is obtained by identify-
ing the variance in Y explained by both M and X but not by X alone 
or M alone. Equation 4.6 represents a measure that corresponds to the 
squared correlation between X and M times the squared partial cor-
relation between M and Y partialled for the effect of X. Equation 4.7 
represents a proportion measure such that the product of R-squared 
values in Equation 4.6 is divided by the total amount of variance in 
Y explained by both M and X. Note that the notation is the same as 
that used earlier with the difference that capital R is used for the effect 
size measures and R2

Y,MX is the amount of variance explained in Y by 
X and M. All three of these measures require more development, but 
it appears that they have minimal bias even at relatively small sam-
ple sizes for the model studied by Taborga (2000) and Taborga et al.  
(1999). For the water consumption example, values of (0.2401 − (0.2772 −  
0.1303)) = 0.0932, (0.1376)(0.1689) = 0.0232, and ((0.1376)(0.1689))/(0.2772) = 
0.0838 were obtained for Equations 4.5, 4.6, and 4.7, respectively. Apply-
ing Equation 4.5 to the water consumption example suggests that about 
9% of the variance in Y is explained by X and M together:

 R2
Y.Mediated = r2

YM − (R2
Y,MX − r2

YX) (4.5)

 R2
Y.Mediated = (r2

MX )(r2
YM.X) (4.6)

 R2
Proportion = ((r2

MX)(r2
YM.X))/(R2

Y,MX) (4.7)

4.8 Standardized Effect
Some alternative measures of effect size in mediation models include the 
product of standardized coefficients and d effect size measures suggested 
by Cohen (1988) and others for analysis of variance, that reflect the effect 
in standardized units. One possible d effect size measure is the ratio of 
the mediated effect to the standard deviation of the Y variable, as shown 
in Equation 4.8. The measure indicates the size of âb̂ in terms of standard 
deviation units in Y. For the water consumption example, the mediated 
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effect is associated with a change of 0.1343 (0.1527/1.137) standard devia-
tion units in Y:

 Standardizedâb̂ = âb̂/sY (4.8)

4.9 Summary of Effect Size Measures
Simulation studies of the effect size measures indicate that correlation 
and standardized coefficient measures have low bias even at small sample 
sizes. The proportion mediated and the ratio measures require much larger 
sample sizes. In general, a sample size of 500 is needed for the proportion 
measure to stabilize, but lower values are required if the direct effect is 
larger (MacKinnon, Warsi, & Dwyer, 1995). Smaller sample sizes are also 
adequate if all estimates are statistically significant. The results for the ratio 
measure are less encouraging with sample sizes of at least 1,000 required 
for stable findings for the set of sample sizes studied. The R-squared mea-
sures generally had low bias for a sample size of at least 50. These effect 
size measures have been primarily studied with a single mediator model 
that has consistent effects. It is unclear how accurate they will be in more 
complicated models, especially inconsistent mediation models.

There are also some conceptual difficulties with the interpretation of 
some effect size measures. The ratio and proportion can be large when 
the total effect is very small. That is, both the mediated effect and the total 
effect can be very small, yet the proportion or ratio may be large. One way 
to reduce this possibility is to test effects for statistical significance before 
computing these values. The R-squared measures can be very small, sug-
gesting that only a tiny percentage of variance in the dependent variable 
is explained by the mediated effect. Even small effects can be important 
(Abelson, 1985; Rosnow & Rosenthal, 1989), and small effects may be more 
common for mediated effects because they are products of coefficients, 
which will be smaller than the individual coefficients (if the coefficients 
are less than 1).

The standardized effect size measure for the mediated effect is new but 
is promising in simulation studies. Other potential measures of effect size 
include the percentage of persons with patterns of responses consistent 
with mediation. It may also be useful to test contrasts between effects in 
a mediation model such as testing whether the mediated effect is signifi-
cantly different than the direct effect (see Equation 4.32 for the variance of 
this difference). Meta-analysis effect sizes based on the significance levels 
of mediation coefficients may also be useful as mediation effect size mea-
sures. Another important tool for the interpretation of these effect size 
measures is the creation of confidence limits for the effects as described in 
chapter 3. Methods to determine the standard error of the mediated effect 
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and related quantities are described later in this chapter. Methods to cal-
culate more accurate confidence limits than those described in chapter 3 
are also described later in this chapter.

4.10 Derived Variances and Covariance 
for the Single Mediator Model
Given assumptions, it is possible to derive the population or true vari-
ances and covariances among X, M, and Y for the single mediator model. 
These variances and covariances are useful for the investigation of sev-
eral statistical aspects of mediation analysis, as will be done later in this 
chapter. The derivation is accomplished using covariance algebra based 
on Equations 3.2 and 3.3 and the assumption of uncorrelated error terms 
across equations, normally distributed variables, and a linear system of 
relations among variables (McDonald, 1997). With the true covariance 
matrix, it is then possible to determine the true values of many quanti-
ties in mediation analysis on the basis of the values of the parameters, a, 
b, and c′, and values of e2 and e3 error terms in Equations 3.2 and 3.3. This 
expected covariance matrix can also be used to determine the true values 
of several mediation analysis quantities, such as the variance of the medi-
ated effect and true effect sizes described earlier in this chapter. These 
true values can then be used in statistical simulation studies to evaluate 
the accuracy of estimators of mediation quantities in a sample as a func-
tion of sample size, population parameter values, and violations of media-
tion model assumptions.

To illustrate the derivation of covariances among X, M, and Y, three 
covariances are derived in detail as follows. For example, the covariance 
of X and Y, Cov[X,Y], is defined as E[(X − E(X))(Y − E(Y))] and the variance, 
Cov[X,X], is defined as E[(X − E(X))2], where E represents the expectation of 
the quantity or the value of the quantity that is most likely to occur. There 
are several rules of covariance algebra that will be applied in the deriva-
tions assuming that c is a constant: Cov[c,X] = 0, Cov[cX,M] = c Cov[X,M], 
and Cov[X + M,Y] = Cov[X,Y] + Cov[M,Y]. For example, the covariance 
between X and M (Cov[X,M]) is expanded to include the equations for X 
and M as shown below. The covariance between X and aX is equal to aσ2

X. 
The covariance between X and e3 is zero based on the assumption of uncor-
related error terms yielding the expected covariance between X and M in 
Equation 4.9:

 Cov[X,M] = Cov(X,aX + e3)

 Cov[X,M] = Cov(X,aX) + Cov(X,e3)

 Cov[X,M] = aσ2
X + 0 (4.9)
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The covariance between X and Y, Cov[X,Y] is derived by first writing the 
equations for X and Y, forming the product of these equations, and then 
reducing terms such as Cov[X,bM] to b Cov(X,M), which is equal to b 
times the covariance of X and M from Equation 4.9 (aσ2

X), which is equal 
to b aσ2

X. The terms Cov(X,c′X) and Cov(X,e2) are reduced in a similar 
manner:

 Cov[X,Y] = Cov(X,bM + c′X + e2)

 Cov[X,Y] = Cov(X,bM) + Cov(X,c′X) + Cov(X,e2)

 Cov[X,Y] = b Cov(X,M) + c′ Cov(X,X) + 0

 Cov[X,Y] = b aσ2
X + c′σ2

X (4.10)

Using the same methods gives the covariance between M and Y 
(Cov[M,Y]):

Cov[M,Y] = Cov(aX + e3, bM + c′X + e2)

Cov[M,Y] = Cov(aX,bM) + Cov(aX,c′X) + Cov(aX,e2) + Cov(e3,bM) + 
Cov(e3,c′X) + Cov(e3,e2)

Cov[M,Y] = abCov(X,M) + ac′ Cov(X,X) + 0 + b Cov(e3,M) + 0 + 0

Cov[M,Y] = abaσ2
X + ac′σ2

X + 0 + b Cov(e3, aX + e3) + 0 + 0

Cov[M,Y] = a2bσ2
X + ac′σ2

X + bσe3
2 (4.11)

The covariances (called variances if it is covariance of a variable with itself) 
of X, M, and Y are shown in Equations 4.12, 4.13, and 4.14, respectively:

 Cov[X,X] = Var[X] = σ2
X (4.12)

 Cov[M,M] = Var[M] = a2 σ2
X + σ2

e3 (4.13)

 Cov[Y,Y] = Var[Y] = b2 (a2σ2
X + σe3

2 ) + 2bc′aσ2
X + c′2σ2

X + σe2
2 (4.14)

The values of these covariances can be represented as the covariance 
matrix shown in Equation 4.15.
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As an example of how these covariances are used, consider the first step 
in the Baron and Kenny (1986) causal steps test of mediation, which 
requires that there is a statistically significant relation between X and Y 
for mediation to be present; that is, rXY = Cov[X,Y]/(Var[X]½ Var[Y]½). The 
expected values of Cov[X,Y], Var[X], and Var[Y] shown earlier are used 
to compute the population value of this correlation. Assuming that 2% 
of the variance in M explained by X for a and 13% of the variance in Y 
explained by M adjusted for X for b (based on Cohen’s guidelines) yields 
a true value of this correlation of 0.0474, it would require at least 3,488 
participants to have 0.8 power to detect this correlation and pass the first 
step of this approach. This demonstrates why the causal steps test has low 
power to detect effects. The expected correlations among X, M, and Y can 
be obtained in the same manner by dividing the covariance between the 
two variables by the standard deviation of each variable. These values can 
then be used to compute the expected effect size measures to get popula-
tion correlations and partial correlations for example.

4.11 Single Mediator Model Coefficients 
and Standard Errors
The variances and covariances derived in section 4.10 can be used to calcu-
late population parameters and the true variance of estimates. The popu-
lation a coefficient is given in Equation 4.16. Sample estimates of Cov[X,M] 
and Var[X] are used to estimate â.

 a = Cov[X,M]
Var[X]

 (4.16)

The theoretical or true variance of the estimator of â, σâ
2
T (sample values 

are used for the variance of the estimate, sâ
2) is shown in Equation 4.17.

 σ
σ

ˆ ( )aT
e

N
2

2
3

1
=

− Var[X]
 (4.17)
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where σe
2

3
 is the population variance of the errors in the equation where X 

predicts M. An estimator of the population residual variance, σ2
e, is shown in 

Equation 4.18, where p is the number of X variables, which is equal to 1 for 
the one predictor case here. For the single predictor case, ∑ei

2 is the sum of the 
squared difference between the predicted and observed M, that is, the sum 
of the squared residual score for each subject, divided by N − 2. The same 
formulas are used to determine the population value c and the variance of 
the estimator of ĉ:

 σ̂e
ei

N
2

2

1
=

∑
− −p

 (4.18)

In Equation 3.2, where both X and M are used to predict Y, the population 
c′ and b coefficients are shown in Equations 4.19 and 4.20, respectively. Sam-
ple values of the variances and covariances are used to calculate ĉ′ and b̂.

 ′ = −
c

Var[M]Cov[XY] Cov[XM]Cov[MY]
Var[X]Var[M] −− Cov[XM]2  (4.19)

 b = −
−

Var[X]Cov[MY] Cov[XM]Cov[XY]
Var[X]Var[M] CCov[XM]2  (4.20)

The true variances (sample values are used to estimate sĉ
2 and sb̂

2
)

 
of estima-

tors of ĉ′ and b̂ are equal to 4.21 and 4.22, respectively;

 σ σ
′ =

− −ĉ T
e

N r
2 2

2

21

1

1
Var[X]

XM

 (4.21)

 σ σ
b̂T

e

N r
2 2

2

21

1

1
=

− −
Var[M]

XM
 (4.22)

where N is the number of observations and σe2
2 is estimated by the sum of 

the squared difference between the observed and predicted Y score for each 
subject divided by N − 3, analogous to Equation 4.18 but for two predictors, 
X and M.

4.12 True Variance of âb̂
The population value of ab is the product of Equations 4.16 and 4.20 and 
the sample value âb̂ is obtained using sample values of variances and 
covariances. The true variance of the estimator of âb̂ can be obtained by 
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substituting the population values of σe
2

2
, σe

2
3 , Var[X], and Var[M] into 4.17 

and 4.22 and using the values in Equations for the standard error of âb̂ 
described in chapter 3. As an example, the theoretical or true variance 
of the estimator âb̂ based on Equation 3.9 is shown in Equation 4.23, with 
population values a and b and true variance of the estimators, σ2

âT and σ2
b̂T 

instead of sample estimates. 

 σ σ σ σ σˆ ˆ ˆ ˆ ˆ ˆabT bT bT aT bTa b2 2 2 2 2 2 2= + +  (4.23)

The population values a, b, c′, σx
2, σ2

e2
, and σ2

e3
 can be used to generate sam-

ple data to investigate statistical mediation analysis. Because population 
or true quantities are known, the extent to which mediation tests give the 
right answer can be evaluated in a Monte Carlo study as described in sec-
tion 4.18. For example, the square root of Equation 4.23 provides a true or 
theoretical standard error to compare with the standard error of âb̂ from 
sample estimates. Using N − p − 1 instead of N − 1 in Equations 4.17, 4.21, 
and 4.22 yields more accurate true values.

4.13 Covariance Among Parameter Estimates
Each of the coefficients in the single mediator model, â, b̂, ĉ, and ĉ′, has 
a variance that is the squared value of the standard error, as shown in 
the last section. There are also covariances among these coefficients. The 
covariances among the coefficients in the three mediation regression equa-
tions are used to calculate the standard error of several useful quantities 
for mediation analysis. The covariance matrix has four rows and four col-
umns corresponding to the four coefficients in the mediation regression 
equations, â, b̂, ĉ, and ĉ′. For the covariance between b̂ and ĉ′, the covari-
ance is computed as part of the analysis of Equation 3.2. The covariance 
between b̂ and ĉ′ in Equation 3.2 is equal to the negative of the correlation 
between X and M times the standard error of b̂ and the standard error of 
ĉ′ (Hanushek & Jackson, 1977). The covariances among other estimates in 
the mediation equations, â, b̂, ĉ, and ĉ′, are complicated because some coef-
ficients are from separate regression equations, including the case where 
the coefficient is for the same X variable in different equations, such as ĉ 
and ĉ′ and â and ĉ. The covariance of coefficients across different linear 
regression equations has been examined in several articles (Allison, 1995a; 
Clogg, Petkova, & Cheng, 1995; Tofighi, MacKinnon, & Yoon, 2006).

Two covariances between coefficients are especially important for 
mediation, the covariance between â and b̂, and the covariance between 
ĉ and ĉ′. The coefficients â and b̂ are independent in the single mediator 
model (MacKinnon et al., 1995; Sobel, 1982) so the covariance between 
a and b is zero (see exercise problem 4.10 for an approach to deriv- 
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ing this covariance). The covariance between ĉ and ĉ′ is complicated but has  
been examined by several researchers (Clogg et al., 1992; Freedman & Schatz-
kin, 1992; McGuigan & Langholz, 1988). McGuigan and Langholz (1988) 
and Clogg et al. (1995) derived the covariance between ĉ and ĉ′ shown in 
Equation 4.24, where σ̂2

e2 is the residual mean square from Equation 3.2.

 s
Ncc

e
ˆˆ

ˆ

( ( ( ))′ =
σ

2

2

Var X  (4.24)

The covariance between â and ĉ′ is zero for the single mediator model 
(MacKinnon et al., 1995; see exercise 4.10). The covariance between â and 
ĉ′ (b̂ Var(â)) is discussed in Buyse and Molenberghs (1998).

An important use of the covariance matrix among the regression coef-
ficients is the derivation of the standard errors of functions of mediation 
regression coefficients such as the proportion mediated. For the linear 
regression models described in chapter 3 and this chapter, the covariance 
of coefficients across equations must be computed by hand outside the 
software program. For covariance structure analysis programs discussed 
in chapter 6, the covariances among all coefficients in a model are calcu-
lated as part of the statistical analysis and are available in the computer 
printout. The next section describes a general method to derive the vari-
ance of any function, given the covariance matrix among coefficients in 
the function and partial derivatives of the function.

4.14 Variance of Functions of Parameters
Many important quantities in mediation analysis require finding the vari-
ance of functions of regression coefficients. The delta method is a general 
method to find the variance of a function of random variables such as 
regression coefficients (see Bishop, Fienberg, & Holland, 1975, chapter 14, 
and Rao, 1973, for more details). The delta method is most clearly described 
for the variance of a function of a variable X as shown in Equation 4.25. For 
the single delta method, the variance of a function of one random variable 
is equal to the square of its first derivative times the variance of the original 
variable. For example, the variance of 5X is equal to the variance of X times 
the square of the first derivative of 5X with respect to X, (∂f/∂X)2 = (5)2, yield-
ing the result that the variance of 5X is equal to 25 times the variance of X.

 Var(function) = (∂f/∂X)2 (Var(X)) (4.25)

The multivariate delta method is used to find the variance of functions 
of more than one random variable by pre- and post-multiplying the covari-
ance matrix among the parameter estimates, V, by a vector of first partial 
derivatives, D, as shown in Equation 4.26. The covariance matrix V includes 
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the covariances among regression parameter estimates such as the covari-
ance between ĉ and ĉ′. For the variance of the product of the â and b̂ , âb̂, the 
partial derivative with respect to â is ∂f/∂â = b̂, and the partial derivative 
with respect to b̂ is ∂f/∂b̂ = â, to form the 1 × 2 vector of partial derivatives, 
D′ = [b̂ â]. The covariance matrix among â and b̂ has off-diagonal values of 
0 because â and b̂ are uncorrelated. The diagonal of the covariance matrix 
has the squared values of the standard errors of â and b̂. Applying formula 
4.26 yields the multivariate delta solution for the variance of âb̂ in Equation 
4.27 as derived by Sobel (1982):

 Var(function) = D′ V D (4.26)

 s
2
âb̂ = â2sb̂

2 + b̂2sâ
2 (4.27)

If there is a nonzero covariance between â and b̂ corresponding to nonzero 
off-diagonal elements in the V matrix, then 2âb̂ Cov(â,b̂) must be added to 
the covariance formula in Equation 4.27. In some models, such as latent 
variable mediation models, the covariance between â and b̂ is nonzero, so 
this extra term, 2âb̂ Cov(â,b̂), must be included in the formula.

Applying the multivariate delta method for the difference in regression 
coefficients ĉ − ĉ′, with partial derivatives of ∂f/∂ĉ = 1 and ∂f/∂ĉ′ = −1 and 
the covariance between ĉ and ĉ′, gives the variance formula in Equation 3.8. 
The quantity sĉĉ′ is the covariance between ĉ and ĉ′ in Equation 4.28:

 s s s sc c c c ccˆ ˆ ˆ ˆ ˆˆ− ′ ′ ′= + −2 2 2 2  (4.28)

The multivariate delta method can also be used to find the variance 
of other functions that are useful for mediation analysis. As these func-
tions become more complicated, the derivation of partial derivatives can 
be more complicated because of the need to apply several rules for differ-
entiation such as the product and quotient rules. Detailed information on 
finding these partial derivatives can be obtained in any calculus textbook 
such as Stewart (1999, chapter 14). Without showing the details of finding 
the partial derivatives, the variance of the ratio effect size measure, âb̂/ĉ′, 
has partial derivatives equal to ∂f/∂â = b̂/ĉ′, ∂f/∂b̂ = â/ĉ′, and ∂f/∂ĉ′ = −âb̂/ĉ′2. 
The 3 by 3 covariance matrix now includes the covariances among â, b̂, and 
ĉ′ with the squared standard errors of each coefficient along the diagonal 
of the matrix and a nonzero covariance between b̂ and ĉ′. Applying Equa-
tion 4.26 yields the variance of âb̂/ĉ′, equal to Equation 4.29. The standard 
error is the square root of the variance:

 s
2
âb̂/ĉ′ = (b̂/ĉ′)2

s
2
â + (â/ĉ′)2

s
2
b̂ + 2 (â/ĉ′)(−âb̂/ĉ′2)sĉ′b̂ + (−âb̂/ĉ′2)2

sĉ′
2 (4.29)
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The variance of âb̂/(âb̂ + ĉ′), has a variance equal to Equation 4.30:

s2
âb̂/(c′+âb̂) = ((b̂ĉ′)/(ĉ′ + âb̂)2)2sâ 

2 + ((âĉ′)/(ĉ′ + âb̂)2)2s
b̂
2

                     + 2((−âb̂)/(ĉ′ + âb̂)2)((âĉ′)/(ĉ′ + âb̂)2)sĉ′b̂

                                             + ((−âb̂)/(ĉ′ + âb̂)2)2sĉ′
2 (4.30)

The variance of (ĉ′ + âb̂)/â, has a variance equal to Equation 4.31:

 s2
(ĉ′+âb̂)/(â) = (−ĉ′/â2)2sâ

2 + (1)2s
b̂
2 + 2(1)(1/â)sĉ′b̂ + (1/â)2sĉ′

2 (4.31)

The variance of contrasts among effects in a mediation model may also 
be derived. The contrasts are comparable because they are in the same 
metric as the dependent variable (MacKinnon, 2000). For example, the 
variance of the difference between the mediated effect and the direct 
effect, âb̂ − ĉ′, has a variance equal to Equation 4.32.

 s2
(âb̂–ĉ′) = b̂2sâ

2 + â2s
b̂
2 + sĉ′

2 − 2âsĉ′ b̂ (4.32)

To illustrate the calculation of these standard errors, the formula for the 
difference between the mediated effect and the direct effect for the water 
consumption example is shown in the following. The difference âb̂ − ĉ′ = 
0.1527 − 0.2076 = −0.0549 and the standard error of the difference is equal to 
0.1371 substituting sample estimates into Equation 4.32.

 s2
(âb̂–ĉ′) = 0.45102 0.12242 + 0.33862 .14602 + 0.13332 − 2(0.3386)(0.0066)

The multivariate delta method in this section was described for the 
case of functions of regression coefficients but is also applicable to 
functions of correlation coefficients such as the difference between the 
raw correlation between X and Y and the correlation between X and 
Y partialled for the mediator (see MacKinnon, Lockwood, et al., 2002, 
for a simulation study of this measure). Similarly, the variance of the R-
squared measures described earlier in this chapter can be derived using 
the multivariate delta method. The partial derivatives are obtained in 
the same manner for functions of correlation coefficients as for func-
tions of regression coefficients using Equation 4.26. The application of 
the multivariate delta method for functions of correlations requires the 
specification of the covariance matrix among correlation coefficients. The 
variance of correlation coefficients and the covariances among correla-
tions were derived by Olkin and Siotani (1976). The covariance matrix 
among correlations in the single mediator model are given in Appen-
dix A of MacKinnon, Lockwood, et al. (2002). The standard error of any 
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function of correlations can be obtained using this method, although the 
accuracy of these methods appears to depend on sample size (MacKin-
non et al., 2002).

Standard errors based on the multivariate delta are generally based on 
large sample theory and are best checked in a statistical simulation. The 
standard error for the mediated effect is generally accurate at sample sizes 
as low as 25. As discussed earlier, the standard errors for the proportion 
mediated and ratio of the mediated to direct effect are much less stable 
and require at least 500 or 1000 sample size, respectively.

4.15 Confidence Limits Based on the 
Distribution of the Product
The application of the standard error of âb̂ in chapter 3 assumes that the 
product of â and b̂, âb̂, has a normal distribution. In fact, the distribution 
of the product of two random variables does not have a normal distri-
bution in all situations, and information regarding the distribution of 
the product of two random variables has been shown to provide more 
accurate confidence limits and statistical tests (MacKinnon, Lockwood, & 
Williams, 2004). The method based on the distribution of the product is 
described here as it will be used elsewhere in this book. A second method 
for improving confidence limits and statistical tests based on resampling 
methods is described in chapter 12.

Although the variance and standard error estimates of the mediated 
effect may be unbiased at small sample sizes, there is evidence that confi-
dence limits based on these estimates do not always perform well. Three 
simulation studies (MacKinnon et al., 1995; MacKinnon et al., 2004; Stone 
& Sobel, 1990) show an imbalance in the number of times a true mediation 
value falls to the left or right of the confidence limits. For positive values 
of the mediated effect, where population values of a and b are both posi-
tive or both negative, sample confidence limits are more often to the left 
than to the right of the true value. The imbalance is also demonstrated in 
asymmetric confidence intervals from bootstrap analysis of the mediated 
effect (Bollen & Stine, 1990; Lockwood & MacKinnon, 1998). The implica-
tion of the imbalance is that there is less power to detect a true medi-
ated effect. Stone and Sobel (1990, p. 349) analytically demonstrate that 
part of the imbalance may be due to use of only the first-order derivatives 
in the solution for the multivariate delta method standard error of the 
indirect effect. However, MacKinnon et al. (1995) found that the second-
order Taylor series solution in Equation 3.9 also had similar imbalances 
in confidence intervals. MacKinnon et al. (2004) showed that confidence 
limits based on the distribution of the product were the best single sample 
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method in terms of Type I error rates, statistical power, and accuracy of 
confidence limits.

4.16 The Distribution of a Product
The assumption that the indirect (mediated) effect divided by its standard 
error has a normal distribution is incorrect in some situations. In these 
situations, using the standard normal distribution described earlier for  
z = âb̂/sâb̂ will be incorrect. An alternative method for testing indirect 
effects can be developed on the basis of the distribution of the product 
of two normally distributed random variables (Aroian, 1947; Craig, 1936; 
Springer, 1979). As the indirect effect is the product of regression estimates 
that are normally distributed (Hanushek & Jackson, 1977), the distribu-
tion of the product can be applied to the use of the product âb̂ as a test of 
the indirect effect based on the product, zazb, where za= â/sâ and zb = b̂/sb̂.

The product of two normal variables is not normally distributed 
(Lomnicki, 1967; Springer & Thompson, 1966). In the null case, in which 
both a and b (or za and zb) have zero means, the distribution is symmetric 
with kurtosis of 6 (Craig, 1936), and the predicted kurtosis is 6 for any 
sample size including very large sample sizes. When the product of the 
population means, ab or za zb, is nonzero, the distributions are skewed 
and have excess kurtosis, although Aroian, Taneja, and Cornwell (1978) 
showed that the product approaches the normal distribution as either 
za, zb or both get large in absolute value. The four moments of the prod-
uct of two correlated normal variables were given by Craig (1936) and 
Aroian et al. (1978). Following are the moments of za zb when the vari-
ables are uncorrelated as for the single mediator model case described in 
chapter 3. The non-normality of the distribution of the product can be 
easily shown with these formulas. For example, if the zs are zero, then 
the kurtosis will equal 6.

 Moment Mean1 = = z za b  (4.33)

 Moment Variance2
2 2 1= = + +z za b  (4.34)

 Moment Skewness3 2 2 3 2

6
1

= =
+ +

( )
( ) /

z z
z z

a b

a b

 (4.35)

 Moment Kurtosis4 2 2 2

12 6
1

= = + +
+ +

( )
( )

z z
z z

a b

a b

 (4.36)

ER64296_C004.indd   95 11/14/07   4:41:36 PM



96 Introduction to Statistical Mediation Analysis

The distribution of the product of two independent standard normal 
variables does not approximate familiar distributions commonly used in 
statistics, although Aroian (1947) showed that the gamma distribution can 
provide an approximation in some situations. Instead, the analytical solu-
tion for the product distribution is a Bessel function of the second kind 
with a purely imaginary argument (Aroian, 1947; Craig, 1936). Although 
computation of these values is complex, Springer and Thompson (1966) 
provided a table of the values of this function when za = zb = 0. Meeker, 
Cornwell, and Aroian (1981, see pp. 129–144 for uncorrelated variables) 
presented tables of the distribution of the product of two standard normal 
variables based on an alternative formula more conducive to numerical 
integration. Tables of fractiles of the standardized distribution function 
for (âb̂ − ab)/σab for different values of a, b, σa, and σb are given in Meeker 
et al. (1981). The tables assume that the population values of σab, a, and b are 
known, but the authors suggest that sample values can be used in place of 
the population values as an approximation, e.g., ta = â/sâ and tb = b̂/sb̂.

An alternative method to find critical values for the distribution of the 
product is to use a FORTRAN program, fnprod.f90 (http://users.bigpond.
net.au/amiller/), written by Alan Miller based on Meeker and Escobar 
(1994) to iteratively find the critical value. This program was edited to 
automate the iterative selection of critical values to form the PRODCLIN 
program (MacKinnon, Fritz, Williams, & Lockwood, 2007, http://www 
.public.asu.edu/~davidpm/ripl/index.htm). The input to the PRODCLIN 
program is the value of â, sâ (sea in the program), b̂, sb̂ (seb in the program), 
the correlation between â and b̂, and the Type I error rate for the desired 
confidence interval as described in the next section.

4.17 Asymmetric Confidence Limits 
for the Mediated Effect
As described in chapter 3, confidence limits for the normal distribution 
are obtained using Equations 3.4 and 3.5, where zType I error is the critical 
value from the z distribution. For 95% confidence limits, the z is equal to 
1.96. Because the distribution of the product is not always symmetric and 
is often skewed, these confidence limits can be inaccurate. A more accu-
rate method takes the shape of the distribution of the product into account 
when the confidence limits are calculated.

The computation of confidence limits using the distribution of the 
product requires different critical values for the upper and lower confi-
dence limits when the distribution of the product is not symmetric. When 
the distribution of the product is symmetric, the upper and lower critical 
values are the same value but are not the same as those for the normal 
distribution. The critical values, ProdUpper and ProdLower in Equations 
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4.37 and 4.38, respectively, are both added to the point estimate because 
the lower critical value is negative:

  Lower confidence limit (LCL) = mediated effect  
 + ProdLowerType 1 Error (sâb̂) (4.37)

  Upper confidence limit (UCL) = mediated effect  
 + ProdUpperType 1 Error (sâb̂) (4.38)

The values for the upper and lower critical values are obtained from the 
PRODCLIN program by inputting â, sâ, b̂, sb̂, the correlation between â and 
b̂, and Type I error rates for the desired confidence limits. So for the water 
consumption example, the following values served as input to the pro-
gram: 0.3386 0.1224 0.4510 0.1460 0 0.05. As shown in the following, the 
resulting critical values were −1.6175 and 2.2540 for upper and lower criti-
cal values, respectively. Note the substantial discrepancy in critical values 
based on the normal distribution that are −1.96 and 1.96. These confidence 
limits based on the distribution of the product were found to be more 
accurate than normal theory confidence limits in a large statistical simula-
tion (MacKinnon et al., 2004):

 LCL = mediated effect − 1.6175 (0.0741) = 0.0329

 UCL = mediated effect + 2.2540 (0.0741) = 0.3197

4.18 Monte Carlo Study of Mediation 
Regression Equations
The mediation regression methods described in chapters 3 and 4 are typi-
cally applied to one data set. But the data from a study are a sample from 
the population. Each sample of data contains error, making the results of 
any single study potentially an inaccurate representation of the popula-
tion. How can a researcher know whether the formulas for different sta-
tistical quantities such as the ones described in this book yield values that 
are close to population values? Similarly, which method yields the most 
statistical power to detect mediation effects?

Monte Carlo studies assess the accuracy of statistical methods. In a 
Monte Carlo study, the researcher determines the true population model, 
and data sets are generated on the basis of this true model. The data sets 
are generated based on Equations 3.2 and 3.3 for specific values of the 
population coefficients and error terms. Because the population model is 
known, the accuracy of statistical methods can be assessed by determin-
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ing whether the method leads to the correct conclusions for each simu-
lated data set. For example, a Monte Carlo study can be used to compare 
the estimates of the regression coefficient to the population value of the 
regression coefficient. The value of the population regression coefficient 
and other mediation quantities are obtained on the basis of the popu-
lation covariance matrix described in section 4.15. The standard errors 
can be evaluated in the same manner by comparing the true value of 
the standard error to the calculated standard error. Monte Carlo studies 
typically follow three steps: (a) a dataset of a certain sample size is gener-
ated under a known population model, (b) statistical methods are used to 
estimate parameters and standard errors for that sample and the results 
are saved, and (c) a new dataset is generated and the same statistics are 
calculated as in step 2. A large number of datasets are then generated 
and model coefficient estimated in this manner. The number of times the 
dataset is generated is called the number of replications. The average esti-
mated regression coefficients across the replications should be very close 
to the population regression coefficient used to generate the data.

A Monte Carlo study of the mediation regression Equations 3.1 through 
3.3 is summarized in Tables 4.1 and 4.2. Table 4.1 shows the average regres-
sion coefficients across 200 replications for sample sizes of 50, 100, 200, and 
500 for a true regression model with a = 0.4, b = 0.7, c′ = 0.2, σx

2 = 1 and 
residual error variances, σ2

e2
 and σ2

e3
 = 1. The average regression coefficients 

across the 200 replications are quite close to the true values.
Table 4.2 shows the true standard errors for â, b̂, ĉ′, and âb̂. Another mea-

sure of the true standard error, the empirical standard error, is the standard 
deviation of each statistic across the 200 replications. These two measures 
of the true standard error are compared with the average estimate of each 
of the standard errors, across the 200 replications. As a result, three stan-
dard error values are shown for â, b̂, ĉ′, and âb̂, (a) true value based on the 
analytical formula, e.g., σâT (b) true value based on the standard deviation 
of each statistic across the 200 replications, e.g., σâ and (c) the average of the 
estimated standard error across the 200 replications, e.g., s̄â. In all cases, the 
average of the estimated standard error is very close to the true standard 
error and the standard deviation across the 200 replications. For example, 

Table 4.1 Average Coefficient by Sample Size

True 50 100 200 500

a 0.4 0.4067 0.3938 0.4008 0.4024
b 0.7 0.7071 0.7097 0.7026 0.7000
c′ 0.2 0.1872 0.1856 0.2065 0.2022
ab   0.28 0.2887 0.2803 0.2817 0.2817
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Table 4.2 Standard Error by Sample Size

50 100 200 500

Theoretical standard errors  
(standard deviation of the estimator)

σâT 0.1443 0.1010 0.0711 0.0448 

σb̂T 0.1459 0.1015 0.0712 0.0449 

σĉT 0.1459 0.1015 0.0712 0.0449 

σâb̂T 0.1188 0.0822 0.0575 0.0362

Standard deviation of estimates
σâ 0.1390 0.0986 0.0762 0.0456 

σb̂ 0.1449 0.1079 0.0744 0.0456

σĉ 0.1470 0.1049 0.0755 0.0464 

σâb̂ 0.1188 0.0829 0.0616 0.0370

Average estimate of the standard errors
s̄â 0.1440 0.1011 0.0708 0.0449 

s̄b̂ 0.1446 0.1015 0.0718 0.0447 

s̄âb̂ 0.1552 0.1090 0.0770 0.0482 

¯̄sĉ–ĉ′ 0.1217 0.0834 0.0580 0.0363

Table 4.3 Approximate Sample Size Required for 0.8 Power to Detect a 
Mediated Effect as a Function of a and b Effect Size for a Completely  

Mediated Model

Small Medium Large

Causal steps
Baron & Kenny 20,886 397 92
Joint test   535  75 35

Product
Sobel sâb̂   667  90 42
Asymmetric confidence limits   509  70 33

Difference
sĉ–ĉ′   675  94 42

Note: Small refers to both a and b small effects, medium refers to both a and b medium 
effects, and large refers to both a and b large effects. Sample sizes are for a complete 
mediation model, i.e., c′ = 0.
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the average of all the estimates of the standard error of ab equals 0.0580 for 
a sample size of 200, which is very close to the true standard error of 0.0575 
and the standard deviation across the 200 replications, 0.0616. This Monte 
Carlo method has been used to study the statistical properties of mediation 
tests (Allison, 1995b; Bobko & Rieck, 1980; MacKinnon, Lockwood, et al., 
2002; MacKinnon et al., 1995; Stone & Sobel, 1990). A SAS program to con-
duct this Monte Carlo study is included in the CD for this book.

The simulation methodology can also be used to compare different 
tests for the mediated effect in terms of statistical power to detect effects 
and Type I error rates. It is possible to use the simulation program to 
empirically find the sample size required to have 0.8 power to detect a 
mediated effect of a certain size. Sample size is varied and iterations are 
conducted to determine the sample size empirically (Fritz & MacKinnon, 
2007). With the use of this method, Table 4.3 shows the approximate sam-
ple sizes necessary to find effects of different effect sizes, where effect 
size is determined by the correlation for the a coefficient and the partial 
correlation coefficient for the b coefficient. Note that for small effects 
of a and b, 20,886 subjects are required for the Baron and Kenny causal 
steps approach. Note that this sample size is based on a zero direct effect,  
c′ = 0, so the total effect is equal to ab in the population. The excessive 
sample size is obtained because the total effect, c, for a small value of a 
and a small value of b is the product of these two coefficients. In step 1 of 
the Baron and Kenny method, the total effect, c, is tested, but this is a very 
small value because it is the product of small values for a and b. If c′ is 
nonzero, smaller sample sizes are needed for the Baron and Kenny causal 
steps approach. The asymmetric CL approach described in section 4.17 
required the smallest sample size for any effect size.

4.19 Summary
This chapter presented several technical aspects of the single mediator 
regression model including effect size, the background for the derivation 
of standard errors, and the use of a Monte Carlo study to evaluate the 
accuracy of mediation methods. In the next chapter, the mediation regres-
sion equations for multiple mediators are described. More complicated 
mediation models are described in later chapters. Effect size measures, 
use of statistical simulations, and derivation of true quantities are impor-
tant for these more advanced models.

4.20 Exercises
4.1.  Describe the effect size measures for the single mediation model. 

Which effect size measure do you prefer?
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4.2.  How does taking absolute values of quantities before computing the 
proportion mediated change the meaning of the proportion mediated?

4.3.  The following data were generated using the Monte Carlo methods 
as described in section 4.18. Compute regression coefficients, stan-
dard errors, and effect size measures. What is unique about these 
data? Is this a consistent or inconsistent mediation model? The data 
were generated to demonstrate issues described in Hamilton (1987). 
Look at the title of the Hamilton paper for a hint about one unique 
aspect of these data.

X M Y

4.83 5.75 5.23
4.97 5.14 5.05
4.94 5.19 5.01
5.11 4.74 5.07
5.05 4.95 5.11
4.98 5.22 5.17
4.86 5.43 5.00
4.94 5.28 5.12
4.97 5.17 5.06
4.92 5.27 5.06
5.00 4.72 4.73
4.84 5.22 4.76
5.07 4.76 4.99
5.11 4.61 4.92
5.14 4.65 5.09

4.4.  Using the formula for the true covariance between X and Y, compute 
the t-value for a = 0.5 and b = 0.1, error variances = 1. Use this value to 
demonstrate why large sample sizes are required for the Baron and 
Kenny causal steps method when c′ is zero.

4.5.  Compute and interpret the proportion mediated and ratio of medi-
ated to direct effect or exercise 4.3.

4.6.  (Technical Question) Complete the steps for the covariance algebra 
for the single mediator model variances for X, M, and Y.

4.7.  (Technical Question) Derive the following quantities using the multi-
variate delta method:

 a. variance of the proportion mediated, âb̂/(ĉ′ + âb̂).
 b. variance of the product of three independent random variables, 

âb̂d̂.
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4.8. (Technical Question) What are the values of â and b̂ for standard-
ized values? Bobko and Rieck (1980) derived the standard error of 
the product of standardized â and b̂ using the multivariate delta 
method. Derive the variance using the multivariate delta method.

4.9. (Technical Question) What are the values of ĉ and ĉ′ for standardized 
variables? Derive the standard error of the difference between ĉ and 
ĉ′ for standardized variables.

4.10. (Advanced Technical Question) On pp. 107–109 in Bollen (1989), the 
matrix equation for the covariance among maximum likelihood esti-
mates is given as Σθ = [(2/(N − 1)) {E[(∂2 FML)/(∂θ ∂θ′)}], where ∂2 FML is 
the second derivatives of the fit function from maximum likelihood, 
FML = log|Σθ| + trace(SΣ−1(θ)) − log|S| − (p + q) where I is an iden-
tity matrix, S is the covariance matrix (the true covariance matrix in 
Equation 4.15 will be substituted here), p is the number of dependent 
variables (p = 2 for the single mediator model), and q is the num-
ber of independent variables (q = 1 for the single mediator model). 
The resulting matrix contains the asymptotic variances of â, b̂, and ĉ′ 
along the diagonal and the covariances among â, b̂, and ĉ′ in the off-
diagonal elements of the matrix. Derive this asymptotic covariance 
among the estimates for the single mediator model using the true 
covariance matrix in Equation 4.15.

4.11. (Advanced Technical Question) McGuigan and Langholz (1988) 
derived the covariance Cov(ĉ,ĉ′) where the estimate of ĉ = (X1

TX1)−1 
X1

Ty, the estimate of ĉ′ = 1/s (X2
TX2) X1

Ty − (X2
TX1) X2

Ty, t = (X1
TX1)−1, and  

s = (X1
TX1)(X2

TX2) − (X2
TX1)(X1

TX2). Using Cov(a,b − c) = Cov(a,b) − Cov(a,c) 
and Cov(X1

Ty, X1
Ty) = Var(X1

Ty) = X1
T Var(y) = X1

TX1σ2y from Rao (1973, p. 
107) and then expanding the product of the estimators of and ĉ and ĉ′, 
they obtained Equation 4.24 (actually MSE/(ΣX2)) for the covariance 
of ĉ and ĉ′. Supply the missing steps in the derivation. This result 
is important because it shows how covariances among coefficients 
across equations can be obtained.

ER64296_C004.indd   102 11/14/07   4:41:40 PM



103

5

Multiple Mediator Model

There are multiple pathways to persuasion, each involv-
ing a different subset of mediating processes. . . .

—William McGuire, 1999, p. 116

5.1 Overview
This chapter extends the analysis of the single mediator model to a model 
with two or more mediators. Examples of multiple mediator models are 
described and the equations for the two mediator model are given along 
with formulas for standard errors of effects in the model. A hypothetical 
study of teacher expectations on student achievement is then used to illus-
trate the analysis using both the SAS and SPSS computer languages.

5.2 The Multiple Mediator Model
Often more than one mediational process is hypothesized in the relation 
between an independent variable and a dependent variable. One example 
of a multiple mediator model is the four-mediator model of how teacher’s 
expectancies for a student affect student performance (Rosenthal, 1987). 
Harris and Rosenthal (1985) conducted a meta-analysis of 135 studies of 
the mediators of the relation between teacher expectancy and student 
achievement. Four major groups of mediators were identifi ed: (a) warmer 
social climate for high-expectancy students, (b) more differentiated feed-
back to high-expectancy students, (c) tendency to teach more material and 
more diffi cult material to high-expectancy students and (d) tendency to 
give high-expectancy students more opportunities to respond. There was 
evidence for each mediational pathway, but smaller effects were obtained 
for the feedback mediator because of a relatively weaker relation between 
feedback and student achievement. The four-mediator model summa-
rized a wide range of research on the topic and demonstrated multiple 
mediational processes in the relation between an independent and depen-
dent variable. 

Studies of health outcomes are also often based on more than one medi-
ator. The Multiple Risk Factor Intervention Trial (MRFIT) was designed 
to change three mediators, smoking, cholesterol, and blood pressure, to 
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104 Introduction to Statistical Mediation Analysis

prevent heart disease (Multiple Risk Factor Intervention Trial Research 
Group, 1990). Hansen (1992) outlined the 12 mediators most commonly 
targeted by drug prevention curricula: information, decision making, 
pledges, values clarifi cation, goal setting, stress management, self-esteem, 
resistance skills training, life skills training, norm setting, assistance, 
and alternatives. Not all programs target all of these mediators and few 
research studies measure all of them. Nevertheless, the multiple mediator 
model is the theoretical basis of many prevention programs. As a result, 
the multiple mediator model described in this chapter is often the correct 
model for the evaluation of such programs. The detailed examination of 
the contributions of multiple mediators to changes in a dependent vari-
able may clarify the critical mediators as well as help resolve discrepan-
cies among studies. 

Mediation analysis is most compelling when alternative theories pre-
dict different mediational pathways for program effects on drug use. 
Hansen and Graham (1991), for example, found evidence for the norm set-
ting mediator but not the resistance skills mediator after experimental 
manipulation of these mediators. Similarly, social infl uence approaches 
have been more successful than affective based programs (Flay, 1985), and 
these different approaches hypothesize different mediational pathways 
for reduction of drug use.

The complexity of relations between most variables also suggests that 
the multiple mediator model may be a more reasonable approach than the 
single mediator models described in chapter 3. Fortunately, the analysis of 
the multiple mediator model is a straightforward extension of the single 
mediator model.

5.3 Diagram of the Two Mediator Model
The two-mediator model is shown in fi gure 5.1, in which an independent 
variable (X) is related to two mediators (M1 and M2) that are both related 
to the dependent variable (Y). Note that there are other potential multiple 
mediator models such as X to M1 to M2 to Y, which is discussed in chapter 
6. The multiple mediator model described fi rst includes two mediators 
that come between the independent variable and the dependent variable. 

5.4 Regression Equations Used to Assess 
Mediation in the Two-Mediator Model
Four regression equations are used to investigate mediation in the two 
mediator model, 

 Y i cX e= + +1 1  (5.1)
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 Y i c X b M b M e= + ′ + + +2 1 1 2 2 2  (5.2)

 M i a X e1 3 1 3= + +  (5.3)

 M i a X e2 4 2 4= + +  (5.4)

where Y is the dependent variable, X is the independent variable, M1 is the 
fi rst mediator, M2 is the second mediator, c is the parameter relating the 
independent variable and the dependent variable in the fi rst equation, c′ 
is the parameter relating the independent variable to the dependent vari-
able adjusted for the two mediators, b1 is the parameter relating the fi rst 
mediator to the dependent variable adjusted for the independent variable 
and the second mediator, b2 is the parameter relating the second media-
tor to the dependent variable adjusted for the independent variable and 
the fi rst mediator, a1 is the parameter relating the independent variable to 
the fi rst mediating variable, a2 is the parameter relating the independent 
variable to the second mediating variable, e1, e2, e3, and e4 represent error 
variability, and the intercepts are i1, i2, i3, and i4. Note that both c and c′ are 

Figure 5.1. Path diagram and equations for the two mediator model.
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106 Introduction to Statistical Mediation Analysis

parameters relating the independent variable to the dependent variable, 
but c′ is adjusted for the effects of the mediators. The covariance between 
M1 and M2 is also included as part of Equation 5.2. Equations 5.2 through 
5.4 are the equations that defi ne the mediation model in fi gure 5.1. 

5.5 Total Effect
As for the single mediator model, the overall relation of X to Y is important 
in multiple mediator models as well. The parameter c again represents 
the change in Y for a 1 unit change in X. If X represents an experimental 
manipulation, then the c parameter represents the effect of the manipu-
lation. As for the single mediator model, adding measures of mediating 
variables provides a way to extract more information from a research 
study than just the overall relation of the X to Y. 

5.6 Mediated Effects
The product of the a1 and b1 parameters, a1b1, and the product of the a2 and 
b2 parameters, a2b2, are the two mediated effects in the model. The effect 
of X on Y after adjustment for the two mediators, c′, is the direct effect just 
as it was for the single mediator model; thus, a1b1 + a2b2 = c − c′. The total 
mediated effect, a1b1 plus a2b2 equals the difference between the c and c′ 
coeffi cients, where c is the total effect of X on Y, thus c = c′ + a1b1 + a2b2. As a 
result, the total effect c can be decomposed into a direct effect, c′, and two 
mediated effects, a1b1 and a2b2. The parameters in Equations 5.1, 5.2, 5.3, 
and 5.4 can be estimated using ordinary least squares regression to obtain 
estimates ĉ, ĉ ′, b̂, â, â1b̂1, â2b̂2 , and ĉ − ĉ ′. As described in chapter 3, there are 
times when researchers will fi nd that ĉ − ĉ ′ does not equal â1b̂1 plus â2b̂2 , 
usually because of different sample sizes across equations.

With more than one mediated effect, an approach to specifying each medi-
ated effect is necessary. Bollen (1987) calls each mediated effect such as â1b̂1 
and â2b̂2 for the two-mediator model specifi c indirect effects to clarify the dis-
tinction between the total mediated effect, which is the sum of â1b̂1 and â2b̂2 
and the individual mediated effects. As the number of mediators increases, 
the number of specifi c mediated effects increases so that there are four medi-
ated effects for a four-mediator model for example. In this book, a specifi c 
mediated effect will refer to a mediated effect transmitted through the prod-
uct of regression coeffi cients corresponding to a single mediated effect.

5.7 Confi dence Limits for the Mediated Effect
The estimate of the mediated effect and its standard error can be used to 
construct confi dence limits as described in Equations 3.4 and 3.5 for sym-
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Chapter Five: Multiple Mediator Model 107

metric intervals and Equations 4.37 and 4.38 for asymmetric intervals. The 
total mediated effect, ĉ − ĉ′ = â1b̂1 + â2b̂2, and each specifi c mediated effect, 
â1b̂1 and â2b̂2, are the estimates of the mediated effects in the two-mediator 
model. The alternative formulas for the standard error of the mediated 
effect described in chapter 3 can be used for confi dence limits of specifi c 
mediated effects, â1b̂1 and â2b̂2, and the standard error for the total medi-
ated effect, ĉ − ĉ′ = â1b̂1 + â2b̂2, as described later.

5.8 Standard Error of the Mediated Effects 
The formula for the standard error of each specifi c mediated effect in the 
multiple mediator model is the same formula as that for the standard error 
of the single mediated effect described in Equation 3.6. For example, the 
standard error of â1b̂1 is equal to

 s a s b sa b b aˆ ˆ ˆ ˆˆ ˆ
1 1 1

2
1

2
1
2

1
2= +  (5.5)

and Equation 5.6 provides a formula less susceptible to computation 
errors, where t is the t-value for the â and b̂ coeffi cients in the respective 
mediated effect: 

 s
a b t t

t ta b

a b

a b
ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

1 1

1 1

1 1

1 1
2 2

=
+

 (5.6)

Any of the other formulas for the standard error of the mediated effect 
described in chapter 3 can be applied in the multiple mediator case with 
corresponding notation change to indicate the correct mediated effect. 

The multivariate delta solution for the standard error of the total medi-
ated effect, â1b̂1 + â2b̂2, is equal to

 s s b s a s ba b a b a b aˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ

1 1 2 2 1 1 2

2
1
2 2

1
2 2

2+ = + + 22 2
2
2

1 22 1 2
2+ +s a a a sb b bˆ ˆ ˆˆ ˆ ˆ  (5.7)

which can be simplifi ed to 

 s s s a a sa b a b a b a b bˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ
1 1 2 2 1 1 2 2

2 2
1 22+ = + +

11 2b̂  (5.8)

where sb̂1b̂2
 the covariance between the b̂1 and b̂2 regression estimates. In 

some situations, there will be a nonzero covariance between â1 and â2, so 
2 b̂1b̂2 sâ1â2 should be added to Equations 5.7 and 5.8.
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108 Introduction to Statistical Mediation Analysis

The standard error of the total mediated effect, ĉ − ĉ′, for the multiple 
mediator case is equal to the following formula: 

 s s s rs sc c c c c cˆ ˆ ˆ ˆ ˆ ˆ− ′ ′ ′= + −2 2 2  (5.9)

where the covariance between ĉ and ĉ′, rsĉsĉ′, is the mean square error in 
Equation 5.2 divided by the product of the variance of the independent 
variable and sample size as in Equation 3.8.

For models with more than two mediators, formulas for the standard 
error of the specifi c mediated effects are the same as Equation 5.5 and 5.6. 
The formula for the total mediated effect includes the standard errors of 
each specifi c mediated effect and the product of each pair of â coeffi cients 
and the corresponding covariance between the two b̂ coeffi cients. 

5.9 Signifi cance Tests for the Mediated Effect
As described in chapter 3, the mediated effect can be tested for statistical 
signifi cance by dividing the estimate of the mediated effect by its stan-
dard error. The value of the mediated effect divided by its standard error 
is then compared to tabled values of the normal distribution. If the abso-
lute value of the ratio exceeds 1.96, for example, then the mediated effect 
is signifi cantly different from zero at the .05 level of signifi cance. Any of 
the aforementioned standard errors can be used for this test. As for the 
single mediator case, more accurate statistical tests can be obtained with 
the distribution of the product. 

The equality of pairs of mediated effects can be tested using the for-
mula for the standard error of the difference between the mediated effects 
shown in Equation 5.10. This test is justifi ed because both mediated effects 
are in the metric of the dependent variable. The difference between the 
two mediated effects is divided by the standard error and the resulting 
ratio is compared to tabled z values. Note that this formula is very similar 
to the standard error of the total mediated effect (Equation 5.7) except that 
the last element of the equation is subtracted. In some situations, there 
will be a nonzero covariance between â1 and â2, so 2b̂1b̂2 sâ1â2

 should be 
subtracted as well, as described in chapter 6:

 s s b s a s ba b a b a b aˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ

1 1 2 2 1 1 2

2
1
2 2

1
2 2

2− = + + 22 2
2
2

1 22 1 2
2+ −s a a a sb b bˆ ˆ ˆˆ ˆ ˆ  (5.10)

 s s s a a sa b a b a b a b bˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ
1 1 2 2 1 1 2 2

2 2
1 22− = + −

11 2b̂  (5.11)
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Chapter Five: Multiple Mediator Model 109

5.10 Baron and Kenny (1986) Steps 
to Establish Mediation
The causal steps method to assess mediation described in chapter 3 for 
one mediator also applies in multiple mediator models with a few limi-
tations. The causal step method in models with more than one media-
tor consists of a series of statistical tests of relations among variables 
corresponding to signifi cance tests of the â1, â2, b̂1, b̂2, ĉ, and ĉ′ regression 
coeffi cients described earlier. These steps are described here because the 
shortcomings of the steps demonstrate several unique aspects of the mul-
tiple mediator model. 

 1. The independent variable (X) must affect the dependent variable (Y), 
coeffi cient ĉ in Equation 5.1.

As in the single mediator case, the purpose of this fi rst test is to estab-
lish that there is an effect to mediate. If the effect is not statistically sig-
nifi cant, then the analysis for consistent mediation stops. As for the single 
mediator model, it is possible that the relation between the independent 
variable and the dependent variable may be nonsignifi cant, yet there can 
still be substantial mediation. This will occur in cases of what is called 
inconsistent mediation (suppression models), and these types of models 
can be very complicated with multiple mediator models as some medi-
ated effects may have different signs from each other and from the direct 
effect.

 2. The independent variable (X) must affect the fi rst mediator (M1), 
coeffi cient â1 in Equation 5.3, and the independent variable (X) must 
affect the second mediator (M2), coeffi cient â2 in Equation 5.4.

This test requires that the independent variable be signifi cantly related 
to the mediators. In the case of an X variable coding an experimental 
manipulation, this requires that there is an experimental effect on each 
mediating variable. As described in chapter 2, in an experimental study 
this provides a test of the action theory of the manipulation, of whether the 
theory of how the independent variable changes the mediators is accurate. 
It is possible that the â coeffi cient may not be signifi cant for one or more 
mediated effects, implying that the corresponding mediating variable is 
not a mediator of the relation between X and Y. 

 3. The mediator must affect the dependent variable (Y) when the inde-
pendent variable (X) is controlled: coeffi cient b̂1  for the fi rst mediator 
and b̂2  for the second mediator in Equation 5.2.

ER64296_C005.indd   109ER64296_C005.indd   109 11/14/07   1:23:57 PM11/14/07   1:23:57 PM



110 Introduction to Statistical Mediation Analysis

This test requires a signifi cant relation between the mediators and the 
dependent variable, providing a test of the conceptual theory of how the 
mediator is related to the dependent variable as described in chapter 2. It 
makes sense that the mediator must be signifi cantly related to the depen-
dent variable for there to be mediation. If the mediator is unrelated to the 
dependent variable, the effect of the independent variable on the mediator 
cannot be transmitted to the dependent variable. Clogg, Petkova, and Shi-
hadeh (1992) concluded that the test of signifi cance of either b̂1 or b̂2 is a test 
for mediation because that is equivalent to testing whether adding either 
mediator changes the relation between the independent variable and the 
dependent variable. Unfortunately, this Clogg et al. test will be signifi cant 
whenever any of the mediators in a multiple mediator model has a signifi -
cant relationship to the dependent variable so it is not possible to distin-
guish mediated effects through each mediator (Allison, 1995a).

 4. The direct effect must be nonsignifi cant: coeffi cient ĉ′ in Equation 5.2.

As for the single mediator model, when the direct effect is nonsignifi -
cant and either â1b̂1 or â2b̂2 or both are signifi cant, there is evidence for 
complete mediation. If the direct effect remains statistically signifi cant, 
there may still be a signifi cant partial mediation of the effect.

There are several limitations of this causal hypotheses test for media-
tion effects with more than one mediator. First, no estimate of either 
mediated effect (â1b̂1 or â2b̂2) is available, although the causal hypotheses 
method can be combined with other approaches that do provide estimates 
of the mediated effect as described earlier. In general, multiple mediators 
are diffi cult to incorporate in the causal steps mediation analysis. Only 
the total mediated effect can be obtained from ĉ − ĉ′. There is not a proce-
dure in the causal hypotheses method to obtain adjusted estimates of the 
specifi c mediated effects. A second limitation of the causal step method 
is that estimates of the standard errors of the mediated effects are not 
available, but the standard error formulas in chapter 3 are accurate in the 
multiple mediator case. It is possible to obtain estimates of the individual 
mediated effects and standard errors for multiple mediators using Equa-
tions 5.5 and 5.7. 

A third limitation of the causal hypotheses method is the requirement 
that there must be a signifi cant total effect, ĉ, for mediation analysis to 
proceed. Actually, signifi cant mediation effects may be present when the 
total effect, ĉ, is equal to zero, but this requires that some of the mediated 
effects, â1b̂1, â2b̂2, and the direct effect, ĉ′, have opposite signs. Models with 
positive and negative mediated effects are called inconsistent models 
(Blalock, 1969; Davis, 1985). Inconsistent effects are likely with multiple 
mediators. As the number of mediators increases, the number of possible 
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combinations of consistent and inconsistent mediation effects increases. 
As a result, the requirement of a signifi cant total effect, ĉ, may be incorrect 
for some models. 

It is helpful to consider examples for which the total effect is nonsig-
nifi cant, yet mediation is present. The effects of age, X, on performance, 
Y, is one common substantive multiple mediator example of this effect 
whereby aging reduces physical capabilities, M1, and performance but 
age also increases cognitive and other skills, M2, which improve perfor-
mance. For example, there is generally a nonsignifi cant relation of age 
on typing profi ciency because of two opposing mediational processes 
(Salthouse, 1984). Age increases reaction time which in turn reduces typ-
ing profi ciency, but age also increases cognitive skills such as chunking 
words which improves typing profi ciency. In this case, the overall relation 
between X and Y is nonsignifi cant because of opposing mediational pro-
cesses. Sheets and Braver (1999) described an experimental study of sexual 
harassment in which the organizational status of a person increased his 
or her perceived power, which increased perceived harassment, but orga-
nizational status increased social dominance, which reduced perceived 
harassment. As shown in fi gure 5.2, the overall relation between orga-
nizational status and perceived harassment may be close to zero, but the 

Figure 5.2. Opposing Mediational Process for Organizational Status and 
Harassment.
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112 Introduction to Statistical Mediation Analysis

addition of two mediators to the analysis, power perceptions and social 
dominance, reveals important opposing mediational processes. 

A total effect may be statistically signifi cant yet one or more mediated 
effects may be inconsistent. In an evaluation of a steroid prevention pro-
gram, the program increased knowledge of the reasons to use steroids 
that led to increased intentions to use steroids (MacKinnon, Krull, & 
Lockwood, 2000). Fortunately, there were changes in other mediators that 
led to a signifi cant total effect of reducing intentions to use steroids. With-
out a multiple mediator model, it would not have been possible to expose 
this counterproductive mediation relation. 

5.11 Hypothetical Study of Teacher 
Expectancies on Student Achievement
This example is based on Harris and Rosenthal’s (1985) four-mediator 
model for how teacher expectancies affect student achievement. Two 
mediators were examined in this study, social climate, a measure of verbal 
and nonverbal warmth, and input, the tendency to teach more material 
and more diffi cult material to high-expectancy students. It was hypoth-
esized that teacher expectancy leads the teacher to create a more positive 
social climate and input more material to high-expectancy students. A 
total of 40 students and 40 teachers provided the data. One student was 
picked from 1 of 40 classes taught by 40 separate teachers. Each student 
was randomly assigned an ability score and the teacher was told that this 
ability score refl ected the student’s true ability. The dependent variable 
was the score on a test of basic skills after one semester in the classroom. 
The social climate and teacher input to the student were measured four 
times during the semester and the four scores were averaged to obtain 
each score for the mediator. It is hypothesized that the general social 
warmth provided to the student is what leads him or her to achieve more. 
On the other hand, teacher expectancy may lead the teacher to teach more 
material and more diffi cult material that may lead to increased student 
achievement. 

The data for the 40 subjects in this hypothetical study of teacher expec-
tancies and student achievement are shown in Table 5.1, where X is the 
teacher expectancy based on an intelligence test given to the student the 
previous year, M1 is the average observer rating of social warmth, M2 is 
the average observer rating of input to the student, and Y is the score on 
the test at the end of the semester.

SPSS and SAS Programs. The variable names X, M1, M2, and Y were 
used to code the variables teacher expectancy, social climate, input, and 
test score at the end of the semester, respectively. The SAS statements in 
Table 5.2 were used to obtain the regression coeffi cient estimates used 
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to compute the mediated effects and standard errors. Because the model 
statements are all under one PROC REG statement, only cases with data 
for all three variables will be included in the analysis. Note that the covb 
option is included in the SAS commands for Equation 5.2 in order to get 
the covariance between the b̂1 and b̂2 regression estimates necessary for 
the computation of the standard error of the total mediated effect and the 
test of the difference between mediated effects.

The output from SAS is also shown in Table 5.2. The coeffi cients and 
standard errors are the numbers used in the calculation of the mediated 
effect, standard error, and confi dence limits as shown in the following. 

For SPSS, statements for the two mediator model are shown in Table 
5.3. The SPSS output is also shown in Table 5.3, and all estimates are iden-
tical (with rounding) to those found in the SAS output. The SPSS output 
automatically includes the standardized beta coeffi cients that represent 
the change in the dependent variable for a 1 standard deviation change 
in the independent variable. The standardized beta measure is one of 

Table 5.1 Data for Hypothetical Study of Teacher Expectations 
and Student Achievement

S# X M1 M2 Y S# X M1 M2 Y

1 51 41 54 59 21 53 69 44 84
2 40 34 51 60 22 53 67 40 82
3 55 42 53 60 23 40 49 45 74
4 35 22 56 61 24 34 40 37 62
5 47 34 45 47 25 32 40 49 54
6 58 52 79 84 26 56 60 51 81
7 56 57 55 69 27 55 46 65 89
8 53 49 55 85 28 51 58 54 83
9 38 42 46 75 29 50 53 56 75
10 73 80 48 87 30 45 61 52 72
11 57 42 65 85 31 63 42 40 63
12 54 62 55 73 32 46 39 51 69
13 68 54 55 77 33 60 62 53 66
14 46 41 62 50 34 48 41 56 72
15 48 44 43 58 35 46 40 46 68
16 56 54 54 69 36 50 51 52 73
17 67 73 61 99 37 49 51 55 69
18 47 61 38 64 38 35 39 46 46
19 60 59 42 65 39 50 44 46 70
20 54 51 55 68 40 47 40 68 76
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Table 5.2 SAS Program and Output for Equations 5.1, 5.2, 5.3, and 5.4 

proc reg;
model Y=X;
model Y=X M1 M2/covb;
model M1=X;
model M2=X;

SAS Output for Equation 5.1
Dependent Variable: Y

Parameter Estimates

Variable DF
Parameter 
Estimate Std Error

T for H0:

Parameter=0 Prob > |T|

INTERCEP 1 34.726935 8.92472341 3.891 0.0004
X 1  0.707760 0.17342970 4.081 0.0002

SAS Output for Equation 5.2
Dependent Variable: Y

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Prob>F

Model 3 2906.95288 968.98429 13.773 0.0001
Error 36 2532.82212  70.35617
C Total 39 5439.77500

Root MSE:   8.38786   R-squared:      0.5344
Dep Mean:  70.57500   Adj R-squared:   0.4956
C.V.:     11.88503

Parameter Estimates

Variable DF
Parameter 
Estimate Std Error

T for H0:

Parameter=0 Prob > |T|

INTERCEP 1 9.123327 10.47839358 0.871 0.3897
X 1 0.112152  0.20731147 0.541 0.5919
M1 1 0.569029  0.15681205 3.629 0.0009
M2 1 0.529720  0.16963747 3.123 0.0035

Covariance of Estimates

Variable Intercept x M1 M2

Intercept 109.79673207 −0.387895193 −0.495870555 −1.227545009

X  −0.387895193  0.0429780463 −0.022410629 −0.013017423

M1  −0.495870555 −0.022410629  0.02459002  0.0078936364

M2  −1.227545009 −0.013017423  0.0078936364  0.0287768709
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Table 5.2 (Continued)

SAS Output for Equation 5.3
Dependent Variable: M1

Parameter Estimates

Variable DF
Parameter 
Estimate Std Error

T for H0:

Parameter=0 Prob > |T|

INTERCEP 1 7.097020 8.12852544  0.873 0.3881
X 1 0.840138 0.15795758  5.319 0.0001

SAS Output for Equation 5.4
Dependent Variable: M2

Parameter Estimates

Variable DF
Parameter 
Estimate Std Error

T for H0:

Parameter=0 Prob > |T|

INTERCEP 1 40.710601 7.51396948 5.418 0.0001
X 1  0.221903 0.14601522 1.520 0.1369
 

the effect size measures described in chapter 4. A new regression state-
ment is required for each regression equation. As a result, a researcher is 
more likely to have unequal numbers of subjects in the different regres-
sion models when SPSS is used, and consequently the researcher may not 
fi nd that ĉ − ĉ′ = â1b̂1 + â2b̂2 only because of the slight difference in sample 
sizes for each regression. The researcher is advised to remove cases (or 
use missing data analysis) that do not have measures of all four variables 
before estimating the regression models in SPSS if it is desired that ĉ − ĉ′ 
= â1b̂1 + â2b̂2.

Mediation Analysis for the Expectancies and Achievement Study. The regres-
sion estimates and standard errors (in parentheses) from the SAS or SPSS 
output for the four models are given in the following equations and are 
displayed in fi gure 5.3:

Equation 5.1: Y = i1 + cX + e1

 Ŷ = 34.7269 + 0.7078 X
  (0.1734)

Equation 5.2: Y = i2 + c′X + b1M1 + b2M2 + e2

 Ŷ = 9.1233 + 0.1122X + 0.5690 M1 + 0.5297 M2 
  (0.2073)    (0.1568)         (0.1696)
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Table 5.3 SPSS Program and Output for Equations 5.1, 5.2, 5.3, and 5.4

regression
/variables= X Y M1 M2
  /dependent=Y
  /enter=X.
regression
  /variables= X Y M1 M2
  /dependent=Y
  /enter=X M1 M2
  /statistics=defaults bcov.
regression
  /variables= X Y M1
  /dependent=M1
  /enter= X.
regression
  /variables X Y M2
  /dependent=M2
  /enter X. 

Output for Equation 5.1

Unstandardized 
Coefficients

Standardized 
Coefficients

SigB Std. Error Beta t

(Constant) 34.727 8.925 3.891 .000
X   .708  .173 .552 4.081 .000

a. Dependent variable Y

Output for Equation 5.2

Model Summary

Model R R Square Adjusted R Square
Std. Error of 
the Estimate

1 .731 .534 .496 8.3879

Unstandardized 
Coefficients

Standardized 
Coefficients

SigB Std. Error Beta t

(Constant) 9.123 10.478 0.871 .390
X  .112   .207 .087 0.541 .592
M1  .569   .157 .571 3.629 .001
M2  .530   .170 .383 3.123 .002

a. Dependent variable Y
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Table 5.3 (Continued)

Output for Equation 5.3

Unstandardized 
Coefficients

Standardized 
Coefficients

SigB Std. Error Beta t

(Constant) 7.097 8.129 0.873 .388
X  .840  .158 .653 5.319 .000

a. Dependent variable M1

Output for Equation 5.4

Unstandardized 
Coefficients

Standardized 
Coefficients

SigB Std. Error Beta t

(Constant) 40.711 7.514 5.418 .000
X   .222  .146 .239 1.520 .137

a. Dependent variable M2
 

Figure 5.3. Expectancy to Achievement Mediation Model.

Social
Climate

Teacher
Expectancies

Material
Covered

Student
Achievement

.1122
(.2073)

.8401
(.1580)

.5690
(.1568)

.2219
(.1460)

.5297
(.1696)
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Equation 5.3: M1 = i3 + a1X + e3

 M̂1 = 7.0970 + 0.8401X
  (0.1580)

Equation 5.4: M2 = i4 + a2X + e4

 M̂2= 40.7106 + 0.2219X
  (0.1460)

Teacher expectancy was signifi cantly related to student achievement 
(ĉ = 0.7078, sĉ = 0.1734, tĉ = 4.081), providing evidence that there is a sig-
nifi cant relation between the independent and the dependent variable. A 
1 unit increase in the teacher expectancy scale was associated with about 
two-thirds of a point on the achievement test. This result is surprising 
because the ability scores were randomly assigned to students so that abil-
ity should be unrelated to student achievement unless teacher expectancy 
alters performance. Perhaps this total effect can be explained by mediated 
effects through climate and input. There was a statistically signifi cant effect 
of expectancy on social climate (â1 = 0.8401, sâ1 = 0.1580, tâ1 = 5.319) but not 
for the input mediating variable (â2 = 0.2219, sâ2 = 0.1460, tâ2 = 1.520). Teacher 
expectancy was associated with a 0.8401 increase in the score on the social 
climate mediator and 0.2219 change in the input mediator. The effect of the 
social climate mediator (b̂1 = 0.5690, sb̂1 = 0.1568, tb̂1 = 3.629) and the feedback 
mediator (b̂2 = 0.5297, sb̂2 = 0.1696, tb̂2 = 3.123) on student achievement was 
statistically signifi cant when controlling for teacher expectancy. A 1 unit 
change in the social climate mediator was associated with a 0.5690 increase 
in the score on the test and a 1 unit increase in the feedback mediator was 
associated with a 0.5297 increase on the test. The adjusted effect of expec-
tancy on student achievement was not statistically signifi cant, (ĉ′ = 0.1122, 
sĉ′ = 0.2073, tĉ′ = 0.541) consistent with a random association of ability score 
and test performance at the end of the semester. Apparently the overall 
signifi cant relation between expectancy and achievement was due to the 
effects of expectancy on the mediators. There was a drop in the value of ĉ′ 
(ĉ′ = 0.1122) compared with ĉ (ĉ = 0.7078) of 0.5956.

The estimate of the two mediated effects are equal to â1b̂1 = (0.8401)(0.5690) 
= 0.4781 for mediation through social climate and â2b̂2 = (0.2219)(0.5297) = 
0.1175 for mediation through input. The total mediated effect of â1b̂1 (0.4781) 
plus â2b̂2 (0.1175) equals 0.5956, which is equal to ĉ − ĉ′ = 0.7078 − .1122 = 0.5956. 
The total mediated effect of expectancy on student achievement is 0.5956 so 
that a 1 unit change in teacher expectancy is associated with a 0.5956 effect 
on student achievement through the two mediating variables. Using Equa-
tion 5.5, the standard error of the specifi c mediated effect â1b̂1 is equal to

 0 1595 0 8401 0 1568 0 5690 0 15802 2 2. ( . ) ( . ) ( . ) ( . )= + 22
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As seen in the preceding example, when the regression coeffi cients and 
standard errors are small, it is very easy for rounding errors to affect the 
accuracy of the calculation of the standard error. Using Equation 5.6 gives 
the same answer, but it is less susceptible to computation errors because 
small numbers are not squared.

 
0 1595

0 8401 0 5690 5 319 3 629
5 31

2 2

.
( . )( . ) ( . . )

( .
=

+
99 3 629)( . )

The 95% normal theory confi dence limits for the â1b̂1 mediated effect 
are equal to

 Lower confi dence limit (LCL) = 0.4781 − 1.96 (0.1595) = 0.1655

 Upper confi dence limit (UCL) = 0.4781 + 1.96 (0.1595) = 0.7907

Corresponding asymmetric confi dence limits based on the distribution of 
the product yielded confi dence limits of 0.1654 and 0.7906. Applying the 
normal theory computations to the â2b̂2 mediated effect, the upper confi -
dence limit was 0.2917 and the lower confi dence limit was −0.0568. Using 
the distribution of the product method critical values, the confi dence lim-
its were 0.3106 and −0.0261. The â1b̂1 mediated effect (sâ1b̂1 = 0.1595) was 
statistically signifi cant (tâ1b̂1 = 2.9975) and the â2b̂2 mediated effect (sâ2b̂2

 = 
0.0860) was not (tâ2b̂2

 = 1.3663). 
The standard error of the total mediated effect using Equation 5.8 is 

equal to 0.1892, yielding a z statistic of 3.1486 and lower and upper confi -
dence limits of 0.2405 and 0.9507, respectively: 

 0 1892 0 1595 0 0860 2 0 8401 0 2219 02 2. . . ( . )( . )( .= + + 00079)

The solution for the standard error of the total mediated effect estimator, ĉ − ĉ′ 
in Equation 5.9, is close to the standard error for the total mediated effect:

 
0 1777 0 1734 0 2073

2 8 3879
40 84

2 2
2

. . .
( )( . )

( )( .
= + −

88487)

Using formula 5.10 or 5.11 for the standard error of the difference 
between two mediated effects, the difference between the two mediated 
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120 Introduction to Statistical Mediation Analysis

effects is equal to 0.3605 with a standard error of 0.1729 yielding a z sta-
tistic of 2.0850 and leading to the conclusion that the two mediated effects 
were signifi cantly different. 

The EQS (Bentler, 1997) and LISREL (Jöreskog & Sörbom, 2001) covari-
ance structure modeling programs include routines to compute the total 
mediated effect and the total direct effects and their standard errors. Pro-
cedures to test specifi c mediated effects are now available in the Mplus 
(Muthén & Muthén, 2004) program, although it is not diffi cult to compute 
these effects by hand using the methods described in this chapter. Bollen 
(1987) gives matrix routines to compute these quantities. Procedures to 
compute specifi c mediated effects in models with multiple independent, 
mediating, and dependent variables are described in chapter 6.

5.12 Assumptions
The assumptions outlined for the single mediator model also apply to 
the multiple mediator model. The multiple mediator model addresses 
some omitted variable limitations of the single mediator model because 
it explicitly includes additional mediating variables. It is still possible that 
some important mediating variables have been omitted or that the order-
ing of relations among variables is incorrect. For example, it is assumed 
that there are no interactions between the independent variable and each 
of the mediators. These interactions can be tested statistically, but a prob-
lem arises if there are many mediators because the number of possible 
interactions among the mediators and the independent variable can be 
very large. For example, with eight mediators and one independent vari-
able, there are eight possible two-way interactions with the mediator and 
the independent variable alone and this does not include interactions 
among mediators or higher-way interactions. With so many possible rela-
tions among the variables, theory or prior research is often used to limit 
the number of interactions tested. 

5.13 Summary
The purpose of this chapter was to describe mediation analysis for the 
multiple mediator model, which was a straightforward extension of meth-
ods to investigate the single mediator model. The causal steps approach 
to identifying mediators breaks down somewhat in the multiple mediator 
case, primarily because more than one mediated effect is present. There 
are specifi c mediated effects through each mediator, and there is a total 
mediated effect composed of all the mediated effects. The multiple media-
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tor model is extended to more complicated models in later chapters in this 
book. In the next chapter, mediation analysis for path analysis models 
that incorporate multiple mediators, multiple independent variables, and 
multiple dependent variables is described. The ordinary least-squares 
approach to mediation described in chapters 3, 4, and 5 will no longer 
provide accurate estimation of coeffi cients and standard errors. With 
these more complex models, ordinary least squares will be replaced with 
the very general method of maximum likelihood estimation and related 
methods.

5.14 Exercises
5.1  The following estimates were obtained from a hypothetical study of 

the effects of exposure to a social infl uences based prevention pro-
gram on subsequent alcohol use among 300 high school students. 
The data were simulated on the basis of a study by Hansen and Gra-
ham (1991). Each subject received a different number of sessions (X) 
of a social infl uences prevention program. After the program was 
delivered, subjects were measured on the perceived social norms 
regarding alcohol use (M1) and skills learned to resist drug use (M2). 
The variance of X was equal to 125.5616, the mean square error was 
equal to 10.1913 for Model 5.2 and the covariance between b̂1 and b̂2 
was 0.0040.

 Equation 5.1: Y = i1 + cX + e1

  Ŷ = 40.4269 + −0.0014X
   (0.0603)

 Equation 5.2: Y = i2 + c′X + b1M1 + b2M2 + e2

  Ŷ = 45.8271 + 0.0044 X − 0.4830 M1 + 0.3365 M2
   (0.0635)     (0.0647)         (0.0562)

 Equation 5.3: M1 = i3 + a1X + e3

  M̂1 = 125.9704 + 0.3441X
   (0.0471)

 Equation 5.4: M2 = i4 + a2X + e4

  M̂2 = 21.2260 + 0.0542X
   (0.0129)

 a. Compute each mediated effect and standard error.
 b. Evaluate each step in the causal steps approach to establishing 

mediation. Describe the discrepancy between the conclusions of 
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applying the causal step approach and the approach described 
in part a.

 c. What are the 95% confi dence intervals for the mediated effects?
 d. What is your conclusion about the effect of the program? What 

study would you do next?
5.2. Find a research article in which multiple mediators were addressed 

(several articles are described in the fi rst three chapters of this book). 
Summarize how mediation was tested.

5.3. The following SAS computer output was obtained from a simulation 
of the Harris and Rosenthal (1985) results using coeffi cients for the 
four-mediator model described on p. 377 in fi gure 2 of their article. 
The four mediators were social climate (MED1), feedback (MED2), 
input (MED3), and output (MED4) as described at the beginning of 
this chapter. 

 a. Calculate each specifi c mediated effect and the total mediated 
effect.

 b. Test the signifi cance of each mediated effect and compute the 
confi dence limits of each mediated effect using one of the formu-
las for the standard error of each effect.

 c. Pick two mediated effects and test whether they are signifi cantly 
different from each other.

Model: MODEL1
Dependent Variable: Y

Analysis of Variance

                            Sum of       Mean
       Source      DF      Squares     Square    F Value    Prob>F

       Model        1      4.07554    4.07554      3.239    0.0726
       Error      398    500.72745    1.25811
       C Total    399    504.80299

          Root MSE      1.12165    R-square    0.0081
          Dep Mean      0.06019    Adj R-sq    0.0056
          C.V.       1863.56579

Parameter Estimates

                 Parameter     Standard    T for H0:
  Variable  DF    Estimate        Error   Parameter=0   Prob > |T|

  INTERCEP   1    0.061165   0.05608535         1.091       0.2761
  X          1   -0.095112   0.05284463        -1.800       0.0726
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Model: MODEL2
Dependent Variable: Y

Analysis of Variance

                            Sum of       Mean
       Source      DF      Squares     Square    F Value    Prob>F

       Model        5     80.09383   16.01877     14.861    0.0001
       Error      394    424.70917    1.07794
       C Total    399    504.80299

          Root MSE      1.03824    R-square    0.1587
          Dep Mean      0.06019    Adj R-sq    0.1480
          C.V.       1724.97684

Parameter Estimates

                 Parameter     Standard    T for H0:
  Variable  DF    Estimate        Error   Parameter=0   Prob > |T|

  INTERCEP   1    0.045016   0.05208877         0.864       0.3880
  X          1   -0.279107   0.05449605        -5.122       0.0001
  MED1       1    0.281868   0.05323348         5.295       0.0001
  MED2       1    0.059703   0.05495897         1.086       0.2780
  MED3       1    0.335794   0.05427165         6.187       0.0001
  MED4       1    0.114041   0.05350677         2.131       0.0337

Model: MODEL3
Dependent Variable: MED1

Analysis of Variance

                            Sum of       Mean
       Source      DF      Squares     Square    F Value    Prob>F

       Model        1     25.33725   25.33725     26.329    0.0001
       Error      398    383.01093    0.96234
       C Total    399    408.34818

          Root MSE      0.98099    R-square    0.0620
          Dep Mean      0.06380    Adj R-sq    0.0597
          C.V.       1537.58471

Parameter Estimates

                 Parameter     Standard    T for H0:
  Variable  DF    Estimate        Error   Parameter=0   Prob > |T|

  INTERCEP   1    0.061367   0.04905173         1.251       0.2116
  X          1    0.237149   0.04621743         5.131       0.0001
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Model: MODEL4
Dependent Variable: MED2

Analysis of Variance

                            Sum of       Mean
       Source      DF      Squares     Square    F Value    Prob>F

       Model        1      7.74522    7.74522      8.573    0.0036
       Error      398    359.56140    0.90342
       C Total    399    367.30662

          Root MSE      0.95048    R-square    0.0211
          Dep Mean      0.01789    Adj R-sq    0.0186
          C.V.       5314.34360

Parameter Estimates

                 Parameter     Standard    T for H0:
  Variable  DF    Estimate        Error   Parameter=0   Prob > |T|

  INTERCEP   1    0.016540   0.04752644         0.348       0.7280
  X          1    0.131117   0.04478027         2.928       0.0036

Model: MODEL5
Dependent Variable: MED3

Analysis of Variance

                            Sum of       Mean
       Source      DF      Squares     Square    F Value    Prob>F

       Model        1     26.58042   26.58042     28.789    0.0001
       Error      398    367.46580    0.92328
       C Total    399    394.04622

          Root MSE      0.96088    R-square    0.0675
          Dep Mean      0.01191    Adj R-sq    0.0651
          C.V.       8065.58439

Parameter Estimates

                 Parameter     Standard    T for H0:
  Variable  DF    Estimate        Error   Parameter=0   Prob > |T|

  INTERCEP   1    0.009421   0.04804600         0.196       0.8447
  X          1    0.242897   0.04526981         5.366       0.0001
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Model: MODEL6
Dependent Variable: MED4

Analysis of Variance

                            Sum of       Mean
       Source      DF      Squares     Square    F Value    Prob>F

       Model        1     26.69263   26.69263     28.123    0.0001
       Error      398    377.75293    0.94913
       C Total    399    404.44556

          Root MSE      0.97423    R-square    0.0660
          Dep Mean     -0.04397    Adj R-sq    0.0637
          C.V.      -2215.64527

Parameter Estimates

                 Parameter     Standard    T for H0:
  Variable  DF    Estimate        Error   Parameter=0   Prob > |T|

  INTERCEP   1   -0.046468   0.04871388        -0.954       0.3407
  X          1    0.243409   0.04589909         5.303       0.0001
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6

Path Analysis 
Mediation Models

Obviously, we believe it is important to interpret 
patterns of direct and indirect causation in path 
models and other structural equation models. Such 
interpretations help us answer questions of the 
form, “How does variable X affect variable Y?,” or 
“How much does mechanism Z contribute to the 
effect of X on Y?,” or “Does mechanism Z contribute 
as much to explaining the effect of X on Y in the 
population A as in population B?” At the same time, 
we should be disappointed if our efforts to elucidate 
such causal interpretations were to lead researchers 
to generate vast quantities of uninteresting or mean-
ingless components. Sometimes a detailed interpre-
tation will speak to an important research question, 
and at other times it will not. We offer no substitute 
for the thoughtful interpretation of social data.

—Duane Alwin & Robert Hauser, 1975, p. 47

6.1 Overview
This chapter extends the mediation model described in earlier chapters 
to more complex models. These models may have more than one inde-
pendent variable, mediating variable, or dependent variable and are com-
monly called path analysis models. First, the matrix methods required 
for the specifi cation of mediation in path analysis are described and illus-
trated using the two-mediator model from chapter 5. Matrix calculations 
for the mediated effects and their standard errors are described. Second, 
the mediation models are extended to include more than one media-
tor, more than one independent variable, and more than one dependent 
variable. With more than one dependent variable, ordinary least squares 
regression approaches are no longer appropriate because the correlations 
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128 Introduction to Statistical Mediation Analysis

among the dependent variables cannot be simultaneously estimated and 
a new method must be used. As will be shown, however, the extensions of 
the general mediation model can be considered as a system of regression 
models whose parameters and standard errors are estimated simultane-
ously. An example from sociology is used to illustrate the programming of 
these models with the LISREL (Jöreskog & Sörbom, 2001), Mplus (Muthén 
& Muthén, 2004), and EQS (Bentler, 1997) covariance structure analysis 
computer programs.

The material covered in this chapter is not easy, although the chapter 
should not be diffi cult for persons already familiar with matrix algebra 
and covariance structure analysis. Persons not familiar with these topics 
may wish to review material in one of several textbooks on covariance 
structure analysis such as Bollen (1989), Kaplan (2000), or Kline (1998). 
Several other regression and multivariate statistics books such as Cohen, 
Cohen, West, and Aiken (2003) and Tatsuoka (1988) provide presentations 
of matrix algebra. The return on your investment in learning the material 
in this chapter is substantial. With the methods in this and related chap-
ters, several assumptions of the simple mediation model can be investi-
gated, including the infl uence of omitted variables, reliability of measures, 
and longitudinal relations.

6.2 The Structural Model and the Measurement Model
Covariance structure analysis is a general method to estimate and evalu-
ate hypothesized models, in which the accuracy of the model is judged 
by the similarity of the predicted covariance matrix among the variables 
to the observed covariance matrix among the variables. There are two 
types of models in covariance structure analysis, the measurement model 
and the structural model. The structural model contains information on 
the relations among constructs. The measurement model describes how 
each measured variable is related to a latent or unobserved construct. The 
construct is called a latent construct or latent variable because it is not 
observed directly but must be inferred from variables that are measured. 
Measurement models typically include two or more observed variables 
hypothesized to measure a latent construct so that the part of each vari-
able that is related to the construct can be separated from the error, the 
part of the variable that is unrelated to the construct. Models in which 
one observed variable is used to measure one latent variable are called 
manifest variable models. In this case, it is often assumed that the sin-
gle variable is a perfect measure of the latent construct. Latent variable 
models and the measurement model used to defi ne the latent variable are 
described in the next chapter. This chapter focuses on manifest variables 
and how they are related in the structural model. Once the structural model 
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is understood, the general model incorporating both structural and mea-
surement models is straightforward, as will be discussed in chapter 7.

Path analysis is another common name for analysis of relations among 
variables where each construct is measured by one variable. Path analy-
sis is a method of estimating coeffi cients in the structural model that was 
originally invented by Sewall Wright (Wright, 1921, 1934). In the origi-
nal articles and subsequent developments, path analysis focused on the 
decomposition of effects based on correlations or standardized variables. 
More recently, path analysis has come to describe the analysis of any 
structural model containing only manifest variables and no latent vari-
ables. Either the correlation matrix or the covariance matrix is analyzed. 
In this book, path analysis refers to the analysis of any manifest variable 
model.

6.3 Matrix Representation of Mediation Models
As models become more complex with multiple mediators, independent, 
and dependent variables, it becomes diffi cult to keep track of all the 
parameters in the regression equations. Matrices are commonly used to 
organize the information contained in complex models. Once the matrices 
are specifi ed, matrix equations can be used to estimate important model 
effects, including mediation effects and their standard errors. Learning 
how to write mediation models in matrix form is complicated, but it makes 
the computation of more complex models much simpler. The use of matrix 
equations also makes it easier to understand the basis of the calculations.

The following structural model summarizes the matrix calculations 
in the general manifest variable mediator model using Greek symbols to 
represent matrices and parameters:

 η η ξ ζ= + +Β Γ  (6.1)

where η is a vector of dependent variables, ξ is a vector of independent 
variables and ζ is a vector representing estimates of residuals. The Β 
matrix codes the coeffi cients among the dependent variables and the Γ 
matrix codes the coeffi cients relating independent variables to dependent 
variables. Mediating variable coeffi cients are represented in both the Β 
and Γ matrices because a mediating variable is both a dependent vari-
able in the regression relating the independent variable to the mediator 
and an independent variable in the regression relating the mediator to the 
dependent variable. In Equation 6.1, there can be more than one indepen-
dent and dependent variable so this model represents a system of equa-
tions rather than single equations as discussed in chapters 3, 4, and 5. In 
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addition to the Β and Γ matrices, two additional matrices, Ψ and Φ, are 
used to represent variances and covariances. The elements in each matrix 
are represented by Greek letters and subscripts to uniquely identify each 
parameter. Four more matrices will be added in chapter 7 to incorpo-
rate measurement models and another four matrices will be included to 
model mean structure in chapter 8. The Greek notation used in this book 
is one of the most widely used notational method for specifying matrices 
in covariance structure analysis.

By specifying the mediation relations in matrix form, a matrix equation 
for the predicted covariance matrix is obtained. An iterative procedure, 
usually maximum likelihood, is used to estimate the parameters of the 
equation that make the predicted covariance matrix closest to the observed 
covariance matrix. Several measures of model fi t or closeness of the pre-
dicted and observed covariance matrix are available. One of these tests is 
the χ2 test of model fi t. If the χ2 test is statistically signifi cant, the model is 
rejected as an adequate representation of the observed covariance matrix. 
The χ2 test is based on the parameters estimated in the model. All of the 
parameters specifi ed in the matrix equations represent free parameters 
to be estimated by the model. The total number of possible parameters 
is equal to the number of variances and covariances among the variables 
in the model. The difference between the number of free variances and 
covariances among variables in the model and the number of parameters 
estimated in the model provides the degrees of freedom for the χ2 test. The 
statistical signifi cance of the χ2 test of model fi t is included in the output of 
covariance structure computer programs.

One problem with the χ2 test is that it is a function of sample size so that 
very highly signifi cant χ2 values may be obtained simply because the sam-
ple size is large. Several alternative measures of fi t have been proposed (Hu 
& Bentler, 1999). To conserve space in this book only the root mean square 
error of approximation (RMSEA) (square root of ((χ2/degrees of freedom − 1)/
(sample size − 1))) will be used. The RMSEA provides a measure of the 
extent to which the deviations from predicted and observed elements of 
the covariance matrix are large or small, adjusted for sample size. Gener-
ally models with a RMSEA of ≤0.05 are good models and models with a 
RMSEA > 0.1 represent poor fi t. Confi dence limits for the RMSEA are also 
available and provide more information on the fi t of the model.

Models are specifi ed in covariance structure analysis computer pro-
grams in two general ways. The fi rst method specifi es the equations that 
comprise the model along with the variances and covariances among the 
error terms in the model. This approach to specifying models is the one 
that we have used in the book so far. This method is used in the CALIS 
LINEQS program, Mplus (Muthén & Muthén, 2004), and in EQS (Bentler, 
1997). The second method is to specify the matrices and parameters of 
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these matrices in the program. This matrix specifi cation method is the 
method used by LISREL (Jöreskog & Sörbom, 2001) and other programs. 
These programs are described in this chapter and additional programs 
are included on the CD that comes with this book.

6.4 Matrix Representation of the Two-Mediator Model
The regression coeffi cients and standard errors from the two-mediator 
model analysis described in chapter 5 are used to illustrate the matrix 
formulas for the calculation of indirect effects (mediated effects) and their 
standard errors. The new symbols and notation simplify the organization 
and computation of indirect effects for more complex models. In Equa-
tion 6.1, the η vector contains the dependent variables, Y, M1, and M2, 
the ξ vector contains the X variable, and the ζ vector contains the errors, 
e, described in chapter 5. To make these differences more concrete, the 
matrix form of the structural equation for the two-mediator model dis-
cussed in chapter 5 and defi ned by Equations 5.2, through 5.4 is shown in 
matrix form in Equation 6.2:
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 (6.2)

The matrix equation using Greek letters to code parameters is shown in 
Equation 6.3 and Figure 6.1 shows the path diagram.
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 (6.3)

The matrix equation from Equation 6.3 corresponds to Equations 6.4 
through 6.6, which represent the same information as Equations 5.3, 5.4, 
and 5.2, respectively.

 η γ ξ ζ1 1 1= +   (6.4)

 η γ ξ ζ2 2 2= +   (6.5)

 η β η β η γ ξ ζ3 31 1 32 2 3 3= + + +  (6.6)

ER64296_C006.indd   131ER64296_C006.indd   131 12/14/07   8:49:50 AM12/14/07   8:49:50 AM



132 Introduction to Statistical Mediation Analysis

There are two more specifi cations in the covariance structure analysis 
model that must be made for the accurate estimation of the two-mediator 
model. The variances of each variable and the covariance between the 
mediators must be specifi ed for the estimation of the two-mediator model, 
but this is not refl ected in Equation 6.3. A Ψ matrix specifi es the covari-
ances among the dependent variables. In this example, the Ψ matrix is a 
3 × 3 matrix, with variances of the η variables along the diagonal, that 
is, ψ11 = Var(η1). Note that the two mediators η1 and η2, are dependent as 
well as independent variables in this model. The ψ21 element of the matrix 
codes the covariance between the two mediators. The second specifi ca-
tion is the Φ matrix which is a 1 × 1 matrix containing the variance of the 
single ξ variable, φ11.

 

Ψ Φ=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
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=
ψ
ψ ψ

ψ
φ

11

21 22

33

11

0 0
0

0 0
,     [ ]

 

Once specifi ed in this way, the parameters of the model can be esti-
mated with ordinary least squares regression as described in chapter 5 
or by other more general approaches including maximum likelihood. 
The maximum likelihood (ML) estimation procedure is a general method 
that can be used to estimate the parameters for a large number of mod-
els. The method uses an iterative procedure to estimate the parameters 
of the model that have the greatest likelihood of generating the observed 
covariance matrix among the variables in the model. In the two-media-
tor model, there are 10 estimated parameters, γ1, γ2, γ3, β31, β32, ψ11, ψ22, ψ33, 
ψ21, and φ11. There are 10 free variances and covariances in the covariance 

Figure 6.1. Two mediator model with Greek notation.
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matrix among the four variables (number of variables times number of 
variables plus 1 divided by 2:4(4 + 1))/2 = 10). Because the number of esti-
mated parameters equals the number of free variances and covariances, 
the model is called a saturated model and there are no degrees of freedom 
so the χ2 measure of fi t equals zero. If the direct effect coeffi cient, γ3 (cor-
responding to the c′ coeffi cient in chapter 5), was set to zero then the χ2 

test would have 1 degree of freedom. Because there are positive degrees 
of freedom, the χ2 test of signifi cance tests whether the complete media-
tion model is an adequate representation of the data. A general approach 
to comparing models is also available based on the difference in χ2 val-
ues between two nested models where the smaller model contains fewer 
parameters than the larger model. The difference between the χ2 for the 
two models provides a statistical test of whether the additional param-
eters in the larger model are equal to zero. More on these approaches can 
be found in Bollen (1989), Kaplan (2000), and Kline (1998).

6.5 EQS Code for the Two-Mediator Model
The EQS program for the two-mediator model for the data from chapter 5 
is shown in Table 6.1 and the output is shown in Table 6.2. The number of 
cases, variables, method of estimation, and location of the raw data set (in 

Table 6.1 EQS Program for the Two-Mediator Model

/TITLE
 CHAPTER 6 EXAMPLE EQS MEDIATION ANALYSIS
/SPECIFICATIONS
 CAS=40; VAR=5; ME=ML; DA=’c:\twomed.txt’; MA=RAW;
/LABEL
 V1=S; V2=X; V3=M1; V4=M2; V5=y;
/EQUATIONS
 V3 = 1*V2 + E1;
 V4 = 1*V2 + E2;
 V5 = 1*V2 + 1*v3+ 1*v4 + E3;
/VARIANCES
 V2 = 1*;
 E1 =  2*; E2 = 2*; E3 = 2*;
/COVARIANCES
 E1,E2 = 1*;
/PRINT
EFFECTS=YES;PARAMETERS=YES;
/END
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Table 6.2 Selected EQS Output for the Two-Mediator Model

MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST 
STATISTICS

M1 = V3  = 0.840*V2 + 1.000 E1
        0.156
        5.388

M2 = V4  = 0.222*V2 + 1.000 E2
        0.144
        1.540

Y    = V5  = 0.569*V3 +  0.530*V4 +  0.112*V2 + 1.000 E3

0.151 0.163 0.199
3.777 3.250 0.563

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY) 
VARIANCES OF INDEPENDENT VARIABLES

V F
V2 − X 84.849*

19.214
04.416

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY) 
VARIANCES OF INDEPENDENT VARIABLES

E D
E1 − M1 80.447*

18.218 
04.416

E2 − M2 68.742*
15.567 
04.416

I
E3 − Y 64.944*

14.707
04.416

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY) 
COVARIANCES AMONG INDEPENDENT VARIABLES

E D
E2 − M2 −22.067*
E1 − M1  12.421 

 −1.777 
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an external fi le on the c: directory) is specifi ed in the SPECIFICATIONS 
section. The EQUATIONS section contains the equations for the two-medi-
ator model. The VARIANCES section specifi es the variances of X along 
with the error variances in each of the regression equations. The COVARI-
ANCES section specifi es that the covariance between the two mediators 
is free to vary. The PRINT section requests that an effect decomposition, 
EFFECTS, is included in the output and the correlations among the esti-
mates are requested with the PARAMETERS=YES command. The use of 
this optional output will be described later in this chapter.

The EQS output for the regression estimates, standard errors, and t 
statistics are shown in Table 6.2. The estimated variances and covariance 
between the two mediators are also given. Note that the estimates are 
comparable to the results for ordinary least squares regression analysis.

A statistical test of complete mediation can also be conducted by esti-
mating a model with γ3 fi xed to zero and comparing the χ2 from this model 
with the χ2 from the saturated model. The difference between the two χ2 
values, 0.324, is nonsignifi cant with 1 degree of freedom so the complete 
mediation model cannot be rejected. Note that because the saturated model 
χ2 is equal to 0, the test of the difference between the saturated model and 
the model with γ3 fi xed to zero is the same as the model fi t χ2 for the model 
with γ3 fi xed to zero. The RMSEA for this model, .000, also suggests excel-
lent fi t for the complete mediation model. Note that relations in the model 
could be further investigated with χ2 difference tests; for example, a test 
of whether the relation from η2 to η3, β̂32, is statistically signifi cant.

The results from EQS can also be put into matrix format as shown in 
the following:

ˆ
.
.
.
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6.6 LISREL Program for the Two-Mediator Model
The EQS program specifi ed the regression equations comprising the 
relations in the model. The LISREL program instead specifi es the matri-
ces as described earlier in this chapter. The LISREL program in Table 
6.3 specifi es each matrix in the analysis. These matrices are the Β, Γ, Ψ, 
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and Φ matrices, which are given by two-letter keywords in LISREL: BE, 
GA, PS, and PH, respectively. The GA matrix is 3 × 1 with the following 
parameters, γ1, γ2, and γ3. In the 3 × 3 BE matrix, the β31 and β32 parameters 
are free. The 3 × 3 PS matrix includes ψ11, ψ22, ψ33, and ψ21. φ11 is the single 
element in the 1 × 1 PH matrix. The output from the LISREL analysis is 
shown in Table 6.4.

6.7 Decomposition of Effects
Alwin and Hauser (1975) described a general conceptual and statisti-
cal approach for the decomposition of total effects into direct and indi-
rect effects for the path analysis model. They integrated their own prior 
work and earlier work by others (Duncan, Featherman, & Duncan, 1972) 
and focused on understanding the complex relations among variables. 
Fox (1980) clarifi ed this earlier work by showing that the total effects (T) 
among the variables for models such as the two-mediator model example 
in chapter 5, is equal to:

 

T k=
=

∑Β *
1

∞

k  (6.7)

where k is equal to powers of the direct effects in the model, and Β* is a 
matrix of direct effects among the variables. Τ is defi ned if the infi nite 
sum converges. To describe this method, assume that the two-mediator 
model described in chapter 5 is reparameterized so that Β and Γ matrices 
are included in a 4 × 4 matrix, Β*, which represents all the direct effects in 
the model.

Table 6.3 LISREL Program for the Two-Mediator Model

Two-Mediator Model
DA NI=5 NO=40 MA=CM
RA FI=c:\twomed.txt
LA
‘obs’ ‘x’ ‘M1’ ‘M2’ ‘Y’
se
3 4 5 2 1
MO NY=3 NX=1 BE=FU,FI GA=FR PS=FU,FI
FR BE 3 1 BE 3 2  
FR PS 1 1 PS 2 2 PS 3 3 PS 2 1 
OU ef se tv pc ef ss  nd=4
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Table 6.4  Selected LISREL Output for the Two-Mediator Model

LISREL Estimates (Maximum Likelihood) 

BETA
M1 M2 Y

M1 — — —
M2 — — —
Y 0.5690 0.5297 —

(0.1526) (0.1651)
3.7282 3.2082

GAMMA
X

M1  0.8401

(0.1580)
 5.3188

M2  0.2219
(0.1460)
 1.5197

Y  0.1122
(0.2018)
 0.5558

PHI
X

 84.8487
(19.4656)
4.3589

PSI

M1 M2 Y

M1 80.4470

(18.4558)
 4.3589

M2 −22.0670 68.7425
(12.5835) (15.7706)

−1.7536  4.3589
Y — — 64.9442

(14.8992)

(continued)
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Table 6.4 (Continued)

Covariance Matrix of Parameter Estimates

BE 3,1 BE 3,2 GA 1,1 GA 2,1 GA 3,1 PH 1,1

BE 3,1  0.0233

BE 3,2  0.0075  0.0273
GA 1,1  0.0000  0.0000  0.0250
GA 2,1  0.0000  0.0000 −0.0068 0.0213
GA 3,1 −0.0212 −0.0123  0.0000 0.0000 0.0407
PH 1,1  0.0000  0.0000  0.0000 0.0000 0.0000 378.9108
PS 1,1  0.0000  0.0000  0.0000 0.0000 0.0000   0.0000

PS 2,1  0.0000  0.0000  0.0000 0.0000 0.0000   0.0000
PS 2,2  0.0000  0.0000  0.0000 0.0000 0.0000   0.0000
PS 3,3  0.0000  0.0000  0.0000 0.0000 0.0000   0.0000

Covariance Matrix of Parameter Estimates
PS 1,1 PS 2,1 PS 2,2 PS 3,3 AL 1 AL 2
PS 1,1 340.6168
PS 2,1 −93.4329 158.3442
PS 2,2  25.6291 −79.8390 248.7120
PS 3,3   0.0000   0.0000   0.0000 221.9865

Two-Mediator Model 
Standardized Solution 

BETA
M1 M2 Y

M1 — — —
M2 — — —
Y 0.5708 0.3830 —

GAMMA
X

M1 0.6533
M2 0.2394
Y 0.0875

Correlation Matrix of Y and X
M1 M2 Y X

M1  1.0000
M2 −0.0618 1.0000
Y  0.6043 0.3687 1.0000
x  0.6533 0.2394 0.5520 1.0000

PSI
M1 M2 Y

M1  0.5732
M2 −0.2181 0.9427
Y — — 0.4656
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Applying Equation 6.7 yields the following matrix of total effects:
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Note that the Β*3 or higher powered matrix is zero so that only the Β* and 
Β*2 matrix are combined to form the total effects matrix. The total indirect 
effects, Ι, can then be calculated from the difference of the total effects and 
the direct effects.

 Ι Τ Β= − *  (6.8)
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Using the two-mediator model from chapter 5 as an example, the follow-
ing matrices illustrate that the total effects minus the direct effects yields 
the total indirect effects. In this case, there is one total indirect effect, 
which equals 0.5956. Note that this method does not provide information 
on the specifi c indirect effect through M1 and the specifi c indirect effect 
through M2. The general effect decomposition methods do not yield spe-
cifi c indirect effects, only the total indirect effects.

ER64296_C006.indd   139ER64296_C006.indd   139 12/14/07   8:49:53 AM12/14/07   8:49:53 AM



140 Introduction to Statistical Mediation Analysis
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 This matrix formulation can be applied in a straightforward manner 
for many models. However, the matrix formulation must be expanded to 
incorporate models that can handle more than one independent variable 
and more than one dependent variable. The general matrix equations for 
the total effects, Τηη, and total indirect effects, Ιηη, of η on η that include 
the different specifi cation of Β and Γ matrices as described in Equation 6.1 
are shown in Equations 6.9 and 6.10, where Ι is an identify matrix with the 
same dimensions as matrix Β.

 Τ Ι Β Ιηη = − −−( ) 1

 (6.9)

 Ι Ι Β Ι Βηη = − − −−( ) 1

 (6.10)

The total effects, Τηξ, and total indirect effects, Ιηξ, of ξ on η are shown in 
Equations 6.11 and 6.12, respectively.

 Τ Ι Β Γηξ = − −( ) 1
 (6.11)

 Ι Ι Β Γ Γηξ = − −−( ) 1

 (6.12)

The values for Β and Γ when substituted in these equations yield the 
same estimate of the total indirect effect of 0.5956 for the two-mediator 
model in Ιηξ.

6.8 Standard Errors of Indirect Effects
In one of the most important papers on mediation, Sobel (1982) derived the 
large sample standard errors of the matrix of total indirect effects. Sobel 
used the multivariate delta method to fi nd these standard errors, which 
requires a matrix of partial derivatives of the indirect effects and the 
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covariance matrix among coeffi cients estimates in the model as described 
in chapter 4. Matrix calculus methods were used to derive the matrix of 
partial derivatives necessary for pre- and post-multiplying the covariance 
matrix among the parameter estimates to obtain the standard errors of 
indirect effects.

The general equation for matrices of partial derivatives is described here 
fi rst. After that a method that is generally easier to use for the calculation 
of indirect effect standard errors derived later by Sobel (1986) is given.

The variance of the indirect effects is obtained by pre- and post-
 multiplying the covariance matrix among the parameter estimates by the 
matrix of partial derivatives of the matrices of indirect effects, as shown 
in Equation 6.13:

 VAR N F F= ∂ ∂ ∂ ∂ ′−1( / ˆ) (ˆ) ( / ˆ)θ θ θΣ  (6.13)

where VAR is the matrix of variances (along the diagonal) and covari-
ances of the indirect effects, Σ(θ̂) is the covariance matrix among the 
parameter estimates, (∂F/∂θ̂) is the vector (or matrix) of partial derivatives 
of the effects, and N is sample size. Sobel (1986) presented general matrix 
equations for the partial derivatives of indirect effects that use specialized 
matrices to select partial derivatives indicated by Vβ and VΓ. As described 
in Sobel (1986, pp. 170–171), the partial derivatives for each indirect effect 
matrix Ιηη and Ιηξ are given in Equations 6.14 and 6.15, respectively.

 ∂ ∂ = ′ − ⊗ − ′ − ⊗− −vec V B BB m mΙ Ι Ι Ι Ιηη θ/ ˆ (( ) (( ) ) )1 1

 (6.14)

∂ ∂ = ′ − ⊗ − ′ + ′− −vec V B BBΙ Ι Γ Ι ΙΓηξ θ/ ˆ (( ) (( ) ) ) (1 1 V n ⊗ − − ′−(( ) )Ι Β Ι1 )  (6.15)

In Equations 6.14 and 6.15, vec indicates that the elements in the indirect 
effect matrices are reshaped into a column vector and ⊗ is the Kronecker 
or tensor product. The dimensions of the matrices are given by the number 
of η variables, m, the number of ξ variables, n, the number of Y variables, 
p, and the number of X variables, q. The dimension values are used to 
construct identity and output matrices necessary for the matrix deriva-
tives. The Vβ and VΓ matrices select partial derivatives for each parameter 
estimated. For most applications these matrices consist of 0s and 1s. The 
number of columns of Vβ and VΓ are equal to the number of direct effect 
parameters estimated. The number of rows is equal to the number of ele-
ments in each subscripted matrix, for example, Vβ has m2 rows for elements 
in the Β matrix and VΓ has m times n rows for elements in the Γ matrix.
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6.9 Standard Errors of Indirect Effects 
for the Two-Mediator Model
The Vβ and VΓ matrices for the two-mediator model are shown. For the 
two-mediator model, the number of columns corresponds to the fi ve direct 
effect parameters in the following order: β31, β32, γ1, γ2, and γ3. Vβ has m2 
rows (0, 0, β31, 0, 0, β32, 0, 0, and 0) and VΓ has m times n equals three rows, 
which is equal to the number of parameters estimated (γ1,, γ2, and γ3). For 
the two-mediator model Vβ is 9 × 5 and VΓ is 3 × 5. In each matrix there is a 
one where the same element is in the column and the row; for example, the 
3,1 element of Vβ is one because the fi rst column and third row corresponds 
to the β31 parameter and the 2,4 element of the VΓ matrix is one because the 
second row and fourth column correspond to the γ2 parameter.

 

VB =

0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
00 0 0 0 0

0 0 1 0 0
0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=VΓ 00 0 1 0
0 0 0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The vector of estimates, θ̂, and covariance matrix among these fi ve esti-
mates are shown. The estimated direct effect parameters of the model are 
β̂31, β̂32, γ̂1, γ̂2, and γ̂3, and are contained in θ̂. Note that covariances among 
these fi ve estimates are zero with four exceptions; the covariances between 
β̂31 and β̂32, β̂31 and γ̂3, β̂32 and γ̂3, and γ̂1 and γ̂2 are all nonzero. Furthermore, 
γ̂1 and γ̂2 are uncorrelated with β̂31 and β̂32.

 

ˆ

. . . . .

. .
Σθ =

−0 0233 0 0075 0 0000 0 0000 0 0212
0 0075 0 00273 0 0000 0 0000 0 0123
0 0000 0 0000 0 0250

. . .
. . .

−
−00 0068 0 0000

0 0000 0 0000 0 0068 0 0213 0 000
. .

. . . . .− 00
0 0212 0 0123 0 0000 0 0000 0 0407− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

. . . . . ⎦⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

ˆ

.

.

.

.

.

θ

0 5690
0 5297
0 8401
0 2219
0 1122

⎢⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

For the two-mediator model, there are no indirect effects of η on η so the 
indirect effect equation is not necessary for this model. There are indirect 
effects of ξ on η. Using LISREL estimates, applying Equations 6.12 and 6.15 
for the derivatives and the covariance matrix among the estimates yields 
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the following matrix of indirect effects and standard errors of the indirect 
effects. In this case the matrices include one indirect effect and one stan-
dard error of the indirect effect:

 

ˆ

.

ˆ

.
Ιξη ξη=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
0
0

0 5956

0
0

0 175
V ⎥⎥

⎥

The total indirect effect has the same value as for ordinary least squares 
regression described in chapter 5. The standard error is also close. Note 
that there is only one total indirect effect that includes all indirect effects, 
which in this case corresponds to the sum of the indirect effect through 
M1 and the indirect effect through M2.

6.10 Effect Decomposition in EQS
In the EQS program in Table 6.1, the code EFFECTS=YES is included. This 
EQS option prints out the total indirect effects and their standard errors. 
Because of the small sample size, estimates from EQS, LISREL, and Mplus 
differ somewhat. The total indirect effect from EQS was equal to 0.596 
with a standard error of 0.172 as shown in Table 6.5. The effect decompo-
sition for standardized regression coeffi cients are also given.

6.11 Effect Decomposition in LISREL
In the LISREL OU line, the EF keyword was included so that effect decom-
position results are printed out. The same type of output described earlier 
for EQS is given in the LISREL output and is shown in Table 6.6.

Table 6.5 EQS Effect Decomposition Output for the Two-Mediator Model

Decomposition of Effects with Nonstandardized Values 
Parameter Total Effects

M1 =V3 = .840*V2 + 1.000 E1
M2 =V4 = .222*V2 + 1.000 E2
Y =V5 = .569*V3

.569 E1
+  .530*V4 + .708*V2 +
+  .530 E2 + 1.000 E3

Decomposition of Effects with Nonstandardized Values 
Parameter Indirect Effects

Y =V5 = 0.596*V2 + 0.569 E1 + 0.530 E2
0.172   0.151   0.163
3.455   3.777   3.250
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Table 6.6 LISREL Effect Decomposition 
Output for the Two-Mediator Model

Total and Indirect Effects

Total Effects of X on Y

X

M1 0.8401
(0.1580)
5.3188

M2 0.2219
0.1460)
1.5197

Y 0.7078
(0.1734)
4.0810

Indirect Effects of X on Y

X

M1 —
M2 —
Y 0.5956

(0.1747)
3.4099

Total Effects of Y on Y

M1 M2 Y

M1 — — —
M2 — — —
Y 0.5690 0.5297 —

(0.1526) (0.1651)
3.7282 3.2082

6.12 Specifi c Indirect Effects
As you probably noticed, the aforementioned indirect effect and standard 
error formulas are for the standard errors of total indirect effects. The 
standard error of the total indirect effect is included in the output of both 
the LISREL and EQS programs. For complex models, the total indirect effect 
may contain several indirect effects, and only one or a few of them may be 
of substantive interest. The current versions of EQS, LISREL, and AMOS 
do not print out specifi c indirect effects and their standard errors.

As shown in Table 6.7 for the two-mediator model, the total indirect 
effect can be decomposed into two specifi c indirect effects. The results 
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for specifi c indirect effects are often summarized in tables that contain 
the specifi c indirect effects and their standard errors. Table 6.7 shows this 
type of table for the two-mediator model. The Effect column contains the 
specifi c indirect effect of interest, for example, X→M1→Y, corresponding 
to the specifi c indirect effect of X to M1 to Y. Note that the specifi c indirect 
effect through social climate (M1) is 3.05 (0.4780/0.1566) times larger than 
its standard error, and the indirect effect through amount of information 
input (M2) is only 1.37 (0.1175/0.0860) times its standard error, leading 
to the conclusion that only the social climate mediator was statistically 
signifi cant. Table 6.7 could also be enhanced to include confi dence lim-
its such as LCL = .0604 and UCL = .3197 product distribution confi dence
limits for X to M1 to Y. As the models become more complex, tables of spe-
cifi c indirect effects can be quite large, illustrating the number of indirect 
effects in more complex models.

The estimates of specifi c indirect effects can be obtained by setting the 
Β and Γ coeffi cients not involved in the indirect effect to 0 and calculating 
the indirect effects using Equations 6.10 and 6.12. The standard errors of 
these specifi c indirect effects can be obtained by changing the Vβ matrix 
and the VΓ matrix to correspond to the parameters of interest. For the two-
mediator model, this is done by altering the Vβ matrix so that the partial 
derivatives for certain parameters are not included in the calculation of 
the standard error. For example, to get the indirect effect through M1, 
include only the relevant estimates in the Β and Γ matrices; that is, β32, γ2, 
and γ3 are set to zero. Set element 6,2 of the Vβ matrix to zero and elements 
2,4 and 3,5 to zero in the VΓ matrix. When this is done, the indirect effect 
through M1 equals 0.4780, and its standard error is 0.1566. The indirect 
effect through M2 is obtained by setting β31, γ1, and γ3 equal to 0, setting 
element 3,1 of the Vβ matrix to zero, and elements 1,3 and 3,5 in the VΓ 
matrix equal to zero. Applying Equations 6.11 and 6.12 gives an indirect 
effect estimate of 0.1175 and a standard error of 0.0860. For more complex 
mediation models, the computation of specifi c indirect effects still follows 
these procedures, but calculation of the standard errors of specifi c indi-
rect effects requires more detailed use of the V matrices and the covari-
ance matrix among the estimates.

Table 6.7  Specifi c Indirect Effects and Standard Errors 
for the Two-Mediator Model

Effect Parameters Estimate Standard Error

X→M1→Y γ1β31 0.4780 0.1566
X→M2→Y γ2β32 0.1175 0.0860
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6.13 Hand Calculations for the Standard 
Error of Indirect Effects
Often researchers are interested in specifi c indirect effects but altering the 
Β, Γ, Vβ, and VΓ matrices to calculate the specifi c indirect effect and stan-
dard error using a matrix programming language can be cumbersome. 
Another method can be used in many situations based on the formulas 
described earlier in this book for the variance of a function of random 
variables. Like the matrix equation method described earlier, this method 
uses the coeffi cients and the covariance matrix among the coeffi cients for 
the indirect effect of interest. The coeffi cients and standard errors are 
included in the output of all covariance structure analysis programs. The 
covariance matrix among parameter estimates requires a keyword for it 
to be printed out as part of analysis, for example, PARAMETERS=YES in 
the output statement for EQS, PC for LISREL, PCOVES for CALIS, TECH3 
for Mplus, and $covest for AMOS. The covariance among parameter esti-
mates is required for the calculation of standard errors of indirect effects. 
In some situations, especially with very large samples, the covariance 
matrix contains very small values, which can cause rounding errors in 
the calculations. In this and other situations, calculations are more accu-
rate if the correlation among parameters and the standard errors of the 
coeffi cients are used to obtain the covariance matrix by pre- and post-
multiplying the correlation matrix by the vector of standard errors of the 
parameters.

The standard error for any two-path indirect effect, γ̂β̂, can be obtained 
using Equation 6.16, but here β̂ is used in place of the b̂ coeffi cient and γ̂ is 
used in place of the â coeffi cient:

 
σ γ σ β σ γβσβγ β γ γβˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ2 2 2 2 2 2= + +

 
(6.16)

If there is a zero covariance term between γ̂ and β̂, σγ̂β̂, in this equation, the
equation for this standard error is the same as Equation 3.6. If the covari-
ance between γ̂ and β̂ is nonzero, then the following term should be added 
as in the formula, 2γ̂ β̂σγ̂β̂, where σγ̂β̂ is the covariance between γ̂ and β̂. If 
the covariance matrix among the estimates is not available, the correlation 
among the estimates and the standard errors of the coeffi cients can be 
used to compute the covariance between γ̂ and β̂, σγ̂β̂, which equals rγ̂ β̂σγ̂σβ̂, 
where rγ̂ β̂ is the correlation between γ̂ and β̂, and σγ̂  and σβ̂ are the stan-
dard errors of γ̂ and β̂, respectively.

For more complex tests of the indirect effect, a similar approach may 
be used, but it requires careful incorporation of coeffi cients, standard 
errors, and covariances among the parameters of interest. Each test requires 
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obtaining information from the covariance matrix among the estimates, 
or, alternatively, the correlations among the estimates and the standard 
errors of the estimates. In terms of the two-mediator model, it may be use-
ful to test whether the indirect effect through γ̂ 1β̂31 is equal to the indirect 
effect γ̂ 2β̂32. The general covariance matrix among the four parameters in 
the two-mediator model is shown:

 

Σ =

σ σ σ σ

σ σ σ
β β β β γ β γ β

β β β β

31 31 32 31 1 31 2 31

31 32 32 32 γγ β γ β

β γ β γ γ γ γ γ

β γ β

σ

σ σ σ σ

σ σ

1 32 2 32

31 1 32 1 1 1 2 1

31 2 322 2 1 2 2 2γ γ γ γ γσ σ

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 

The observed covariance among the four parameter estimates is shown 
in the following matrix:

 

ˆ

. . . .

.
Σθ =

0 023300 0 007500 0 000000 0 000000
0 0075000 0 027300 0 000000 0 000000
0 000000 0 000000 0

. . .
. . .. .
. . .

025000 0 006800
0 000000 0 000000 0 006800 0

-

- ..040700

⎡

⎣

⎢
⎢
⎢
⎢
⎢

 

The vector of partial derivatives for the function, γ̂ 1β̂31 − γ̂ 2β̂32, is equal to 
[γ̂ 1, − γ̂ 2, β̂31, − β̂32], which yields the following sample coeffi cients for the 
partial derivatives: [0.8401, −0.2219, 0.5690, −0.5297]. The covariance matrix 
among the parameter estimates is pre- and post-multiplied by the vector of 
partial derivatives in order to give the variance of γ̂ 1β̂31 − γ̂ 2β̂32. The square 
root of this variance equals 0.1820 which is the standard error of γ̂ 1β̂31 − 
γ̂ 2β̂32 that can be used to construct confi dence limits for this difference.

The difference between the two indirect effects can also be computed 
by hand using the following general formula for the difference between 
two indirect effects. The covariances among the coeffi cients are used in the 
following formula for the variance of the difference between two indirect 
effects:

σ γ σ β σ γγ β γ β β γˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ
1 31 2 32 31 1

2
1
2 2

31
2 2

2− = + + 22 2
32
2 2

1 2 3132 2 31 32
2 2σ β σ γ γ σ ββ γ β βˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ+ − − ββ σ

γ β σ γ β σ

γ γ

β γ β

32

1 31 1 32

1 2

31 1 31
2 2

ˆ ˆ

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ+ − γγ β γ β γβ γ σ β γ σ

2 32 2 32 1
2 232 2 31 2+ −ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

 (6.17)

The formula can be simplifi ed somewhat by using the variances of the 
two indirect effects as shown in Equation 6.18:
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σ σ σ γγ β γ β γ γ ββˆ ˆ ˆ ˆ ˆ ˆ ˆˆ
ˆ ˆ

1 31 2 32 1 31 2 32

2 2 2
12− = + − γγ σ β β σ γ β σβ β γ γ β2 31 32 1 3131 32 1 2 31

2 2ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ− + ˆ̂

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ

γ

β γ β γγ β σ β γ σ β

1

31 2 32 2
2 2 21 32 32 2 3− − − 11 2 32 1

ˆ ˆγ σβ γ

 (6.18)

In many cases, including testing the equality of the two mediators in the 
two-mediator model, this formula is simplifi ed considerably because sev-
eral covariances are zero; σβ̂31̂γ 1, σβ̂31γ̂ 2, σβ̂32γ̂ 2, and σβ̂32γ̂ 1 

are zero here. Note 
that this formula is very similar to the standard error of the difference 
between the two indirect effects (Equation 5.10) described in chapter 5 for 
the ordinary regression model except that Equation 6.17 includes more 
covariance terms that are not available in ordinary least squares regres-
sion analysis, that is, σγ̂1γ̂2. These additional covariances are typically small. 
Nevertheless Equation 6.17 should be more accurate than assuming these 
covariances are equal to zero. Using the estimates from the two-mediator 
model in Equation 6.17 results in a value of 0.1820 for the standard error as 
shown in the following:

 

σγ β γ βˆ ˆ ˆ ˆ ( . ) ( . ) ( .
1 31 2 32

2 2 20 1566 0 0860 2 0 5− = + − 6690 0 5297 0 0068

2 0 8401 0 2219 0

)( . )( . )

( . )( . )( .

−

− 00075 0 0 0 0

0 0331 0 1820 2

)

. ( . )

+ − + −

= =

The difference between the two indirect effects, 0.4780 − 0.1175 = 0.3605, 
is 1.98 times larger than its standard error, suggesting that the difference 
between the two indirect effects is statistically signifi cant.

The standard errors of many indirect effects and functions of indirect 
effects can be obtained using matrix methods or inserting sample esti-
mates in formulas for different tests of indirect effects. The researcher must 
specify the function to be tested and the partial derivatives of the function. 
The covariance among parameter estimates is obtained from the output 
of a covariance structure analysis program. The calculation of the stan-
dard error is obtained by pre- and post-multiplying the covariance matrix 
among parameters by the vector of partial derivatives. Alternatively, sam-
ple estimates can be inserted in equations for the indirect effects. In most 
cases, many of the covariances in the formulas are zero, which simplifi es 
the calculation.

More on contrasts among indirect effects in a mediation model can be 
obtained in MacKinnon (2000) and Williams and MacKinnon (in press). 
The standard error of several contrasts are described, and Williams and 
MacKinnon report the results of a statistical simulation, suggesting that 
these contrasts are generally accurate.
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6.14 Mplus Code for Specifi c Indirect 
Effects in the Two-Mediator Model
The Mplus program includes commands for the estimation of specifi c 
indirect effects. The Mplus code to estimate the two-mediator model and 
output is shown in Table 6.8 along with the INDIRECT command line 
where the specifi cation of indirect effects occurs. The specifi cation in 
Mplus uses the ON command to indicate which variables have effects on 
other variables; for example, Y ON M1 M2 X, indicates that M1, M2, and 
X have effects on Y. The MODEL INDIRECT command is used to indicate 
which specifi c indirect effects are to be estimated. The Mplus results lead 
to the same research conclusions described earlier.

6.15 Path Analysis Models for More Than One 
Dependent, Independent, or Mediating Variable
Path analysis models provide a way to model comprehensive relations 
among variables including indirect or mediated effects. These specifi c 
mediated effects can be estimated and their standard errors determined 
using the multivariate delta method. Computer programs such as Mplus 
may also be used to estimate and compute the standard errors. The two-
mediator model outlined in chapter 5 illustrated the methods.

The matrix approach in Equation 6.1 can also be extended to models 
with more than one independent variable, more than one mediator, and 
more than one dependent variable. The dimensions of matrix equations 
are increased to incorporate the additional variables. As for the earlier 
models, these more complex models can be represented by equations or 
by matrices. In the next section, the general approach to investigating 
mediation covariance structure models is illustrated for a model with 
three independent variables, two mediating variables, and one dependent 
variable.

6.16 Socioeconomic Status and Achievement
An example from sociology is used to illustrate the general manifest vari-
able mediation model. Duncan et al. (1972, p. 38) presented data from a 
process model of achievement for data from 3,214, 35- to 44-year-old men 
measured during March 1962 who had nonfarm backgrounds and were 
in the experienced civilian labor force. The data were based on responses 
to the Occupational Changes in a Generation (OCG) questionnaire. The 
OCG data were collected in conjunction with the 1962 Current Popula-
tion Survey of the Bureau of the Census. Several books on occupational 
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Table 6.8 Mplus Program and Selected Output for the Two-Mediator Model

TITLE: Two Mediator Example;

DATA:
NOBS = 40;
NGROUPS = 1;
FILE IS c:\MyFiles\twomed.dat.txt;

VARIABLE:
NAMES ARE ID X M1 M2 Y;
USEVARIABLES ARE X M1 M2 Y;

ANALYSIS:
TYPE IS GENERAL;
ESTIMATOR IS ML;
ITERATIONS=1000;
CONVERGENCE = 0.000001;

MODEL:
Y ON M1 M2 X;
M1 ON X;
M2 ON X;
M1 WITH M2;
MODEL INDIRECT:
Y IND X;

OUTPUT:  SAMPSTAT RESIDUAL STANDARDIZED CINTERVAL TECH1 
TECH2 TECH3 TECH4 TECH5; TOTAL, TOTAL INDIRECT, SPECIFIC 
INDIRECT, AND DIRECT EFFECTS

Estimates S.E. Est./S.E. Std StdYX

Effects from X to Y

Total 0.708 0.169 4.187 0.708 0.552
Total 
indirect

0.596 0.170 3.499 0.596  0.465

Specific indirect

Y
M1
X 0.478 0.153 3.132 0.478 0.373

Y
M2
X 0.118 0.083 1.409 0.118 0.092

Direct

Y
X 0.112 0.197 0.570 0.112 0.087

(continued)
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achievement have used the OCG data (Blau & Duncan, 1967; Duncan et al., 
1972). These data have also been widely used for illustration of new devel-
opments in the analysis of covariance structure models and the estima-
tion of indirect effects and their standard errors, at least in part because 
of the large sample size (N = 3,214) and interesting effects. Alwin and 
Hauser (1975) used these data to describe the decomposition of effects in 
path analysis. Sobel (1982) used this example to illustrate the computation 
of the standard errors of indirect effects and Sobel (1986) used the data 
to illustrate general matrix equations for partial derivatives of indirect 
effects. Sobel (1987) used the example to provide a simpler description 
of the computation of indirect effects and their standard errors. Stone 
and Sobel (1990) used the model to generate data to evaluate the statis-
tical properties of the method described by Sobel (1982, 1986) to obtain 
standard errors in a simulation study. Bollen (1987) used the model as 
one example of the computation of different types of indirect effects 
including specifi c indirect effects. In this section, I describe the estima-
tion of the model, calculation of total indirect effects, and specifi c indirect 
effects. Estimation of the model in EQS, LISREL, and Mplus programs 
are described, and the relevant output is used to estimate indirect effects 
and their standard errors. There are six variables: X1, father’s education; 

Table 6.8 (Continued)
TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT 
EFFECTS

Lower .5%
Lower 
2.5% Estimates

Upper 
2.5% Upper .5%

Effects from X to Y

Total 0.272 0.376 0.708 1.039 1.143
Total 
indirect

0.157 0.262 0.596 0.929 1.034

Specific indirect

Y
M1
X 0.085 0.179 0.478 0.777 0.871

Y
M2
X −0.097 −0.046 0.118 0.281 0.332

Direct

Y
X −0.394 −0.273 0.112 0.498 0.619
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X2, father’s occupation; X3, number of siblings in the respondent’s family; 
Y1, respondent’s education; Y2, respondent’s occupational status; and Y3, 
respondent’s income. A diagram of the model is shown in fi gure 6.2 and 
the equations corresponding to fi gure 6.2 are the following:

 η γ ξ γ ξ γ ξ ζ1 11 1 12 2 13 3 1= + + +  (6.19)

 η β η γ ξ γ ξ γ ξ ζ2 21 1 21 1 22 2 23 3 2= + + + +  (6.20)

 η β η β η γ ξ γ ξ γ ξ ζ3 31 1 32 2 31 1 32 2 33 3 3= + + + + +  (6.21)

In matrix form, the equations are

 

η
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β
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 (6.22)

Figure 6.2. Socioeconomic status and achievement.
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6.17 EQS Code for the Achievement Example
The EQS code shown in Table 6.9 for the achievement model is very similar 
to the two-mediator model described earlier. There are six variables in the 
model, and the correlation matrix and standard deviations serve as input 
to the program. The three equations are specifi ed in the EQUATIONS sec-
tion, and the variances and residuals are specifi ed in the VARIANCES sec-
tion. Note that E1, E2, and E3 represent residuals for respondent’s income, 
occupation, and education, respectively. The covariances among the inde-
pendent variables, X1, X2, and X3 are specifi ed in the COVARIANCES 
section. Decomposition of effects, EFFECTS=YES, and correlation matrix 
among estimates, PARAMETERS=YES, are selected in the PRINT section. 
The EQS output for the achievement model is shown in Table 6.10.

Table 6.9  EQS Program for the Achievement Model

/TITLE
 MULTIPLE MEDIATOR MODEL PATH ANALYSIS
/SPECIFICATIONS
  CASES=3214; VARIABLES=6; ME=ML; ANALYSIS=COVARIANCE; 
MATRIX=CORRELATION;

/LABEL
  V1=INC1961; V2=OCC1962; V3=EDUC; V4=NUMSIB; V5=FATHOCC; 
V6=FATHEDUC;

/EQUATIONS
 V1 =  1*V2 + 1*V3 +1*V6 + 1*V5 + 1*V4 +E1;
 V2 =  1*V3 + 1*V5 +1*V4 + 1*V6 + E2;
 V3 =  1*V4 +1*V5 + 1*V6 +  E3;
/VARIANCES
 V4=9*; V5=423*; V6=36*;
 E1=25*; E2=525*; E3=9.2*;
/COVARIANCES
 V6,V5=45*;V6,V4=-3*; V5,V4= −16*;
/PRINT
EFFECTS=YES; PARAMETERS=YES;
/MATRIX=KM
 1.000
 0.4418 1.000
 0.3759 0.6426 1.000
 -0.1752 −0.2751 −0.3311 1.000
 0.2587 0.3899 0.4341 −0.2476  1.000
 0.2332 0.3194 0.4048 −0.2871 0.5300 1.000
/STANDARD DEVIATIONS
 5.36 24.71 3.20 2.88 23.14 3.72
/END
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Table 6.10 Selected EQS Output for the Achievement Model

MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST 
STATISTICS

INC1961 =V1  = .070*V2 +  .200*V3 + −.037*V4 + .011*V5
  .004   .036    .031       .004
15.682  5.493  −1.186      2.534
  .071*V6 + 1.000 E1
  .028
 2.585

OCC1962 =V2 = 4.377*V3 + −.463*V4 +  .135*V5 + .049*V6
  .120   .123    .017       .108
36.408 −3.761 724       .453
 1.000 E2

EDUC  =V3 =   −.228*V4 +  .038*V5 + .171*V6 + 1.000 E3
  .018   .002   .016

            −12.945 15.526 10.956

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY) 
VARIANCES OF INDEPENDENT VARIABLES

V F
V4 −NUMSIB   8.294*

  0.207
 40.081

V5 −FATHOCC 535.460*I
 13.359
 40.081

V6 −FATHEDUC  13.838*
  0.345
 40.081

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY) 
VARIANCES OF INDEPENDENT VARIABLES

E D
E1 −INC1961  22.523*

  0.562
 40.081

E2 −OCC1962 347.556* 
  8.671
 40.081

E3 −EDUC   7.485*
  0.187
 40.081
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6.18 LISREL Analysis of the Achievement Model
The program in Table 6.11 will estimate the same achievement model with 
LISREL. Most of this program is straightforward, and you will notice that 
the matrix specifi cations are directly related to the matrix equations, but 
there are variances and covariances among parameters that are specifi ed 
as well. Output from the program is shown in Table 6.12.

Table 6.10 (Continued)

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY) 
COVARIANCES AMONG INDEPENDENT VARIABLES

V F
V5 −FATHOCC  −16.501*
V4 −NUMSIB   1.211

−13.623
V6 −FATHEDUC   −3.076*
V4 −NUMSIB   0.197

−15.642
V6 −FATHEDUC   45.623*
V5 −FATHOCC   1.719

 26.544

DECOMPOSITION OF EFFECTS WITH NONSTANDARDIZED 
VALUES MAXIMUM LIKELIHOOD SOLUTION (NORMAL 
DISTRIBUTION THEORY)

STANDARDIZED SOLUTION:

INC1961 =V1  = 0.325*V2 + 0.119*V3 + −0.020*V4 + 0.049*V5
  0.049*V6 + 0.885 E1

 OCC1962 =V2 = 0.567*V3 + −0.054*V4 + 0.127*V5 + 0.007*V6
  0.754 E2

EDUC  =V3  =  −0.205*V4 + 0.278*V5 + 0.198*V6 + 0.855 E3

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION 
THEORY)CORRELATIONS AMONG INDEPENDENT VARIABLES

V F
V5 −FATHOCC −0.248*
V4 −NUMSIB 

V6 −FATHEDUC −0.287*
V4 −NUMSIB

V6 −FATHEDUC 0.530*
V5 −FATHOCC
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Putting the estimates from the LISREL output in each matrix gives the 
following matrices:

ˆ
. . .
. . .
. .

Γ =
−
−

0 038 0 171 0 228
0 135 0 049 0 463
0 011 0 0771 0 037

0 0 0
4 377 0 0
0 200 0 070 0−
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⎢

⎤

⎦
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⎥

=
.

ˆ .
. .

β
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⎣

⎢
⎢
⎢

⎤

⎦

⎥
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⎥

=
⎡

⎣

ˆ
.

.
.

Ψ
7 4852 0 0

0 347 5564 0
0 0 22 5230
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⎢
⎢

⎤

⎦

⎥
⎥
⎥
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−

ˆ
.
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.
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535 4596 0 0

46 6228 13 8384 0
16 50009 3 0759 8 2994−
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⎢

⎤

⎦

⎥
⎥
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Table 6.11 LISREL Program for the Achievement Model

Family Characteristics Effects on Child Achievement
DA NI=6 NO=3214 MA=cm ME=ML
KM
1
.4418 1 
.3759 .6426 1
−.1752 −.2751 −.3311 1
.2587 .3899 .4341 −.2476 1
.2332 .3194 .4048 −.2871 .5300 1 
SD
5.36 24.71 3.20 2.88 23.14 3.72
LA
‘INC1961’ ‘OCC1962’ ‘EDUC’ ‘NUMSIB’ ‘FATHOCC’ 
‘FATHEDUC’
se 
3 2 1 5 6 4 
MO NY=3 NX=3 BE=sd GA=FR
OU ef se tv pc ef ss ND=4
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Table 6.12 LISREL Output for the Achievement Model

LISREL Estimates (Maximum Likelihood)

BETA
EDUC OCC1962 INC1961

EDUC — — —
OCC1962  4.3767 — —

 (0.1203)
36.3906  

INC1961 0.1998  0.0704 —
(0.0364)  (0.0045)
5.4905 15.6751

GAMMA
FATHOCC FATHEDUC NUMSIB   

EDUC  0.0385  0.1707  −0.2281
 (0.0025)  (0.0156)   (0.0176)
15.5183 10.9514 −12.9393

OCC1962 0.1352 0.0490 −0.4631
(0.0175) (0.1082)  (0.1232)
7.7205 0.4529 −3.7590

INC1961 0.0114 0.0712 −0.0373
(0.0045) (0.0275)  (0.0314)
2.5331 2.5835 −1.1858

PHI
FATHOCC FATHEDUC NUMSIB   

FATHOCC 535.4596
 (13.3656)
 40.0625

FATHEDUC 45.6228 13.8384
 (1.7195)  (0.3454)
26.5320 40.0625

NUMSIB −16.5009  −3.0759  8.2944
  (1.2118)   (0.1967)  (0.2070)
−13.6170 −15.6346 40.0625

PSI
Note: This matrix is diagonal.

EDUC OCC1962 INC1961
 7.4852 347.5564 22.5230
(0.1868)  (8.6754) (0.5622)
40.0625  40.0625 40.0625

(continued)
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Table 6.12 (Continued)

Squared Multiple Correlations for Structural Equations  

EDUC OCC1962 INC1961   

0.2690 0.4308 0.2160

Covariance Matrix of Parameter Estimates 

BE 2,1 BE 3,1 BE 3,2 GA 1,1 GA 1,3

BE 2,1 0.0145
BE 3,1 0.0000 0.0013
BE 3,2 0.0000 −0.0001 0.0000
GA 1,1 0.0000 0.0000 0.0000 0.0000
GA 1,2 0.0000 0.0000 0.0000 0.0000
GA 1,3 0.0000 0.0000 0.0000 0.0000 0.0003
GA 2,1 −0.0006 0.0000 0.0000 0.0000 0.0000
GA 2,2 −0.0025 0.0000 0.0000 0.0000 0.0000
GA 2,3 0.0033 0.0000 0.0000 0.0000 0.0000
GA 3,1 0.0000 0.0000 0.0000 0.0000 0.0000
GA 3,2 0.0000 −0.0002 0.0000 0.0000 0.0000
GA 3,3 0.0000 0.0002 0.0000 0.0000 0.0000
PH 1,1 0.0000 0.0000 0.0000 0.0000 0.0000
PH 2,1 0.0000 0.0000 0.0000 0.0000 0.0000
PH 2,2 0.0000 0.0000 0.0000 0.0000 0.0000
PH 3,1 0.0000 0.0000 0.0000 0.0000 0.0000
PH 3,2 0.0000 0.0000 0.0000 0.0000 0.0000
PH 3,3 0.0000 0.0000 0.0000 0.0000 0.0000
PS 1,1 0.0000 0.0000 0.0000 0.0000 0.0000
PS 2,2 0.0000 0.0000 0.0000 0.0000 0.0000
PS 3,3 0.0000 0.0000 0.0000 0.0000 0.0000

Covariance Matrix of Parameter Estimates 

GA 2,1 GA 2,2 GA 2,3 GA 3,1 GA 3,3

GA 2,1 0.0003
GA 2,2 −0.0008 0.0117
GA 2,3 0.0001 0.0019 0.0152
GA 3,1 0.0000 0.0000 0.0000 0.0000
GA 3,2 0.0000 0.0000 0.0000 −0.0001
GA 3,3 0.0000 0.0000 0.0000 0.0000 0.0010
PH 1,1 0.0000 0.0000 0.0000 0.0000 0.0000
PH 2,1 0.0000 0.0000 0.0000 0.0000 0.0000
PH 2,2 0.0000 0.0000 0.0000 0.0000 0.0000
PH 3,1 0.0000 0.0000 0.0000 0.0000 0.0000
PH 3,2 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 6.12 (Continued)

PH 3,3 0.0000 0.0000 0.0000 0.0000 0.0000
PS 1,1 0.0000 0.0000 0.0000 0.0000 0.0000
PS 2,2 0.0000 0.0000 0.0000 0.0000 0.0000
PS 3,3 0.0000 0.0000 0.0000 0.0000 0.0000

Covariance Matrix of Parameter Estimates 

PH 1,1 PH 2,1 PH 2,2 PH 3,1 PH 3,3

PH 1,1 178.6399
PH 2,1 15.2207 2.9568
PH 2,2 1.2968 0.3934 0.1193
PH 3,1 −5.5050 −0.7476 −0.0874 1.4684
PH 3,2 −0.4690 −0.1149 −0.0265 0.1337
PH 3,3 0.1696 0.0316 0.0059 −0.0853 0.0429
PS 1,1 0.0000 0.0000 0.0000 0.0000 0.0000
PS 2,2 0.0000 0.0000 0.0000 0.0000 0.0000
PS 3,3 0.0000 0.0000 0.0000 0.0000 0.0000

Covariance Matrix of Parameter Estimates 

PS 1,1 PS 2,2 PS 3,3

PS 1,1 0.0349
PS 2,2 0.0000 75.2620
PS 3,3 0.0000 0.0000 0.3161

6.19 Total Indirect Effects and Standard 
Errors for the Achievement Example
The total indirect effects are calculated by LISREL and EQS using Equa-
tions 6.10 and 6.12. These total indirect effects are shown for both the EQS 
(Table 6.13) and LISREL (Table 6.14) output. Note that each total indirect 
effect is statistically signifi cant at least in part because of the large sample 
size. For example, the indirect effect of the number of siblings on respon-
dent’s occupation in 1962 was −0.9982 with a standard error of 0.0819. The 
total indirect effect of father’s occupation on respondent’s income in 1961 
was equal to 0.0291 with a standard error of 0.0022. The total indirect 
effect of father’s occupation on respondent’s income is actually composed 
of three indirect effects: (a) father’s occupation to respondent’s education 
to respondent’s income, ξ1→η1→η2, (2) father’s occupation to respondent’s 
education to respondent’s occupation to respondent’s income, ξ1→η1→η2→
η3, and (3) father’s occupation to respondents’ occupation to respondent’s 
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income ξ1→η2→η3. Note that there are both two-path and three-path indi-
rect effects in the total indirect effect of father’s education on respondent’s 
income. The EQS (Version 6.0) and LISREL (Version 8.8) programs do not 
include the calculation of these specifi c indirect effects and their standard 
errors. Other methods are required for computing these effects, as will be 
described later.

The matrices of total indirect effects and standard errors in EQS and 
LISREL were calculated using Equations 6.14 and 6.15 just as for the two-
mediator model. The Vβ and VΓ matrices for the total indirect effects for 
this model are given in Sobel (1986), and also in Sobel (1987), but the Vβ 
and VΓ matrices are different in each article to correspond to the differ-
ent ordering of the model parameters in the covariance matrix among 
the parameter estimates. The Vβ and VΓ matrices shown later are dif-
ferent from the Vβ and VΓ matrices in these two publications as well, 
but are consistent with the order of the parameters in the covariance 
matrix among parameter estimates in the LISREL output described in 
this chapter. Here the order of the columns corresponds to the estimated 
elements of the B matrix fi rst, followed by the estimated elements of the 
Γ matrix. The order of the parameters in the columns for the achieve-
ment model is, β21, β31, β32, γ11, γ12, γ13, γ21, γ22, γ23, γ31, γ32, and γ33. The sub-
scripts for the rows are 11, 21, 31, 12, 22, 32, 13, 23, and 33, so for the VΓ 
matrix the rows correspond to γ11, γ21, γ31, γ12, γ22, γ32, γ13, γ23, and γ33. The 

Table 6.13 EQS Effect Decomposition for the Achievement Model

PARAMETER TOTAL EFFECTS

INC1961 =V1 = 0.070*V2 + 0.508*V3 + −0.186*V4 + 0.040*V5 +
  0.161*V6 + 1.000 E1 + 0.070 E2 + 0.508 E3

OCC1962 =V2 = 4.377*V3 + −1.461*V4 + 0.303*V5 + 0.796*V6 +
  1.000 E2 + 4.377 E3
EDUC =V3 = −0.228*V4 + 0.038*V5 + 0.171*V6 + 1.000 E3

DECOMPOSITION OF EFFECTS WITH NONSTANDARDIZED VALUES 
PARAMETER INDIRECT EFFECTS

INC1961 =V1 = 0.308*V3 + −0.148*V4 + 0.029*V5 + 0.090*V6
         0.021    0.014    0.002    0.012
        14.403   −10.286    13.186     7.413
         0.070 E2 + 0.508 E3
         0.004    0.031
        15.682    16.601
OCC1962 =V2 = −0.998*V4 + 0.168*V5 + 0.747*V6 + 4.377 E3
         0.082     0.012    0.071    0.120
        −12.197     14.281    10.492    36.402
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Table 6.14 LISREL Effect Decomposition for the Achievement Model

Total and Indirect Effects

Total Effects of X on Y  

FATHOCC FATHEDUC NUMSIB

EDUC  0.0385  0.1707  -0.2281
 (0.0025)  (0.0156)   (0.0176)
15.5183 10.9514 -12.9393

OCC1962  0.3035  0.7963  -1.4613
 (0.0201)  (0.1263)   (0.1427)
15.1217  6.3065 -10.2369

INC1961  0.0405  0.1614  -0.1858
 (0.0046)  (0.0292)   (0.0330)
 8.7286  5.5342  -5.6352

Indirect Effects of X on Y

FATHOCC FATHEDUC NUMSIB

EDUC — — —
OCC1962  0.1683  0.7473  -0.9982

 (0.0118)  (0.0713)   (0.0819)
14.2746 10.4868 -12.1916

INC1961  0.0291  0.0902  -0.1485
 (0.0022)  (0.0121)   (0.0143)
13.3260  7.4621 -10.3749

Total Effects of Y on Y

EDUC OCC1962 INC1961

EDUC — — —
OCC1962  4.3767 — —

 (0.1203)
36.3906

INC1961  0.5080  0.0704 —
 (0.0318)  (0.0045)
15.9928 15.6751

Indirect Effects of Y on Y   

EDUC OCC1962 INC1961

EDUC — — —
OCC1962 — — —
INC1961  0.3083 — —

 (0.0214)
14.3963
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corresponding Vβ and VΓ matrices for the order of the covariances among 
the parameters are shown in the following. The construction of the Vβ and 
VΓ matrices can be confusing because the order of the subscripts for the 
rows, 11, 21, 31, 12, 22, 32, 13, 23, and 33 differs from the order of subscripts 
for the columns 11, 12, 13, 21, 22, 23, 31, 32, and 33. And the order of the 
columns will differ depending on the order of the estimates in the covari-
ance matrix among the estimates. Many different Vβ and VΓ matrix setups 
are possible that can be used to test indirect effects. It is critical that the 
order of the variables in the columns of the Vβ and VΓ matrices is the same 
as the order of the variables in the covariance matrix among the estimates 
for these calculations to be accurate.

Vβ =

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 00 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 00 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

VΓ =

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 11 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 00 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

6.20 Specifi c Indirect Effects and Standard 
Errors for the Achievement Example
The 13 specifi c indirect effects and their standard errors for the achieve-
ment model are shown in Table 6.15. Four of the specifi c indirect effects 
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and their standard errors are shown in the EQS and LISREL output: ξ3→
η1→η2 = −0.9982 (se = 0.0819), ξ2→η1→η2 = 0.7473 (se = 0.0713), ξ1→η1→η2 = 
0.1683 (se = 0.0118), and η1→η2→η3 = 0.3083 (se = 0.0214). As described ear-
lier, some of the total indirect effects in the LISREL and EQS output are 
composed of several indirect effects.

Nine of the specifi c indirect effects are not included in the total indirect 
effects in the computer output. In this section a method to calculate these 
specifi c indirect effects are described. I use ξ2→η1→η3, γ̂12β̂31, as an example 
of a specifi c indirect effect that is not included in the total indirect effects 
output in LISREL or EQS. One alternative is to alter the Β and Γ matrices 
so that only the coeffi cients in the specifi c indirect effect are included in 
the B and Γ matrices. Then the Vβ and VΓ matrices are altered so only the 
3,2 element in the Vβ matrix and element 4,5 in the VΓ matrix equal one, 
and all other elements are zero. Applying formula 6.15 gives an estimate 
of 0.0341 with a standard error of 0.0070 for that indirect effect.

It is possible to calculate indirect effects and their standard errors sepa-
rate from the program as long as the correlations among the parameter 
estimates, standard errors of estimates, and estimates of relevant coeffi -
cients are available. This standard error can also be estimated directly 
from the coeffi cients and standard errors of the parameter estimates using 

Table 6.15  Specifi c Indirect Effects and Standard Errors 
for the Achievement Model

Effect Parameter Estimate
Standard 

Error

ξ1→η1→ η2 γ11β21   0.1685 0.0118
ξ1→η2→ η3 γ21β32   0.0095 0.0014
ξ1→η1→ η3 γ11β31   0.0077 0.0015
ξ1→η1→ η2→ η3 γ11β21β32   0.0119 0.0011 
ξ2→η1→ η2 γ12β21   0.7471 0.0713
ξ2→η2→η3 γ22β32   0.0035 0.0076
ξ2→η1→ η3 γ12β31   0.0341 0.0070
ξ2→η1→ η2→ η3 γ12β21β32   0.0526 0.0060
ξ3→η1→ η2 γ13β21 −0.9983 0.0818
ξ3→η1→ η3 γ13β31 −0.0456 0.0090
ξ3→η2→ η3 γ23β32 −0.0326 0.0089
ξ3→η1→ η2→ η3 γ13β21β32 −0.0703 0.0073
η1→η2 → η3 β21β32   0.3081 0.0214
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Equation 6.16 (σγ̂12β̂31
 = 0) to give the same estimate and standard error as 

shown in the following:

σγ βˆ ˆ ( . ) ( . ) ( . ) ( .
12 31

2 2 2 20 1707 0 0364 0 1998 0 0= + 1156 0 00702 2) ( . )=

A similar approach is used for the estimate of the standard error of 
the three-path indirect effect, ξ2→η1→η2→η3, γ̂12β̂21β̂32, which is also not 
included in the EQS or LISREL output. Again an alternative is to alter 
the Β and Γ matrices so that only the coeffi cients in the indirect effect are 
included in these matrices before applying Equation 6.14 and 6.15. Then 
the Vβ and VΓ matrices are altered so the 2,1 and 6,3 elements in the Vβ 
matrix and element 4,5 in the VΓ matrix are one, and all other elements 
are zero. Applying formula 6.15 gives an estimate of .0526 with a standard 
error of .0060 for this three-path indirect effect.

An alternative is to compute the standard error based on the covari-
ance matrix among the estimates. Equation 6.23 shows the formula for 
the standard error of a three-path indirect effect for the product of three 
paths where the indirect effect is represented by γ̂β̂1β̂2. Note that this for-
mula is generic for the product of three coeffi cients, γ̂β̂1β̂2; the coeffi cients 
and standard errors for a specifi c indirect effect need to be specifi ed by 
the researcher.
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2 2
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2 2 2
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2 2
1 2 1
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2
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+ γγβ β σγβ
ˆ ˆ

ˆˆ1 2
2

1

 (6.23)

Putting in estimates in Equation 6.23 for the three path indirect effect, ξ2→
η1→η2→η3 indirect effect, γ̂12β̂21β̂32 = 0.0526, and covariances gives a standard 
error of .0060. Note that all of the covariance terms are zero for this case.

σγ β βˆ ˆ ˆ ( . ) ( . ) ( . )
12 21 32

2 2 2 20 1707 4 3767 0 0045= + (( . ) ( . ) ( . )

( . ) ( .

0 1707 0 0704 0 1203

4 3767 0 07

2 2 2

2+ 004 0 156 0 0 0

0 0060

2 2

2

) ( . )

( . )

+ + +

=

The equality of indirect effects can be tested in this model as described 
earlier in this chapter. To illustrate this procedure with the achievement 
example, the two indirect effects for father’s occupation (ξ1) on respon-
dent’s income (η3) are compared, one indirect effect through respondent’s 
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education (η1) and the other indirect effect is through respondent’s occu-
pation (η2). Equation 6.17 is used to test the equality of two indirect effects, 
ξ1→η1→η3 = γ̂11β̂31 = 0.0077 and ξ1→η2→η3 = γ̂21β̂32 = 0.0095. The covariance 
between β̂31 and β̂32 was −.0001 as shown in Table 6.12. The covariance 
between β̂31 and β̂32 could also be obtained by multiplying the correlation 
(not shown in Table 6.12) between β̂31 and β̂32 (−.5404) by σβ̂31 (.0025) and 
σβ̂32 (.0175). All other correlations were zero: σγ̂11β̂32

 = 0; σγ̂21β̂31
 = 0; σγ̂11β̂31

 = 0; 
σγ̂21β̂32

 = 0; σγ̂11β̂21
 = 0. Plugging numbers into Equation 6.17 yields the fol-

lowing test of the equality of the two indirect effects.

 

σγ β γ βˆ ˆ ˆ ˆ ( . ) ( . ) ( .
11 31 21 32

2 2 20 0385 0 0364 0 1− = + 9998 0 0025

0 1352 0 0045 0 0704

2 2

2 2

) ( . )

( . ) ( . ) ( . )+ + 22 20 0175

2 0 0385 0 1352 0001

0 0 0

( . )

( . ) ( . ) ( . )−

+ + +

−

++

=

0

0 002 2( . )
 

It appears that these two indirect effects are not signifi cantly different 
from each other,  γ̂11β̂31 − γ̂21β̂32 = 0.0077 − 0.0095 = −0.0018, which is about 
the size of the standard error of .002. As a result, it appears that the two 
indirect effects are not signifi cantly different from each other.

6.21 Mplus for Specifi c Indirect Effects 
and Their Standard Errors
The capabilities for calculating specifi c indirect effects, and their stan-
dard errors are described in this section for several of the specifi c indi-
rect effects in the achievement model. Mplus code for the achievement 
example is shown in Table 6.16. The line “INC1961 IND EDUC FATEDUC” 
requests the estimates and standard errors of the three indirect effects 
from father’s occupation on income in 1961. The line “INC1961 IND FATH-
OCC” requests the single indirect effect of father’s education on education 
to 1961 income. Lines to estimate all of the indirect effects are included as 
a homework problem at the end of this chapter.

As shown in the Table 6.17, the indirect effects of father’s occupation on 
1961 income contains the indirect effect through 1962 occupation (ξ1→η2→
η3 = γ̂21β̂32 = 0.010, se = 0.001, z = 6.930) education (ξ 1→η1→η3 = γ̂11β̂31 = 0.008, 
se = 0.001, z = 5.180), and the three-path indirect effect from father’s occu-
pation to education, to 1962 occupation to 1961 income (ξ 1→η1→η2→η3 = 
γ̂11β̂21β̂32 = .012, se = .001, z = 10.561) are the same as shown in Table 6.17. 
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Note that the fi rst effect listed is the direct effect of father’s occupation to 
1961 income.

6.22 Nonrecursive Models
So far in this book, recursive models have been described. Recursive models 
always have unidirectional arrows between variables. In the last example, 
there was a path from respondent’s education to respondent’s occupation 
but not a path from respondent’s occupation to respondent’s education. If 
both paths were in the model, the model is a nonrecursive model and the 
relation between respondent’s education and occupation would be called a 
reciprocal relation. Reciprocal relations are composed of repeated mediation 
effects, and the equations described in this chapter are accurate for the cal-
culation of mediation effects and standard errors in nonrecursive models.

Table 6.16 Mplus Program for Specifi c Indirect Effects in the 
Achievement Model

TITLE; ACHIEVEMENT EXAMPLE, DATA ON PAGE 38 IN DUNCAN, 
FEATHERMAN, AND DUNCAN 1972
DATA:
 TYPE IS std CORRELATION;
 NGROUPS = 1;
 NOBSERVATIONS = 3214;
 FILE IS c:\myfiles\Medbook\covach2.dat;

VARIABLE:
 NAMES ARE INC1961 OCC1962 EDUC NUMSIB FATHOCC FATHEDUC;
  USEVARIABLES ARE INC1961 OCC1962 EDUC NUMSIB FATHOCC 
FATHEDUC;

ANALYSIS:
 TYPE IS GENERAL;
 ESTIMATOR IS ML;
 ITERATIONS = 1000;
 CONVERGENCE = 0.00005;

MODEL:
 INC1961 ON EDUC OCC1962 FATHEDUC NUMSIB FATHOCC;
 EDUC ON FATHOCC FATHEDUC NUMSIB ;
 OCC1962 ON FATHOCC FATHEDUC NUMSIB EDUC;

MODEL INDIRECT:
INC1961 IND EDUC FATHEDUC;
INC1961 IND FATHOCC;
OUTPUT:  SAMP MOD STAND TECH1 TECH2;
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Nonrecursive models include reciprocal relations among variables. Using 
two variables, X1 and X2, for example, the two paths relating X1 to X2 and 
X2 to X1 represent a reciprocal relation. In these models, typically the two 
variables X1 and X2 are measured simultaneously. Models with recipro-
cal relations may more accurately refl ect the true relations among vari-
ables such that both variables cause each other. For example, in a model 
of political party affi liation and political candidate preference, it is likely 
that party affi liation affects candidate preference but also candidate pref-
erence may affect party affi liation. At some time sequence, one variable 
causes the other variable and the two variables do not cause each other 
simultaneously. However, a reciprocal relation is often modeled because 
the timing of measurement is not suffi cient to shed light on the order of 
the reciprocal relation.

Complications owing to nonrecursive models are described here based 
on the simplest reciprocal model, in which the path, β21, relates X1 to X2 and 

Table 6.17 Mplus MODEL INDIRECT Output for the Achievement Model

INDIRECT EFFECTS OUTPUT
TOTAL EFFECT FROM FATHOCC TO INC1961
TOTAL INDIRECT EFFECT FROM FATHOCC
 TO INC1961

0.029 0.002 13.334

SPECIFIC EFFECTS FROM FATHOCC TO 
INC1961
INC1961
FATHOCC 0.029 0.002 13.334
INC1961
OCC1962
FATHOCC 0.010 0.001  6.930
INC1961
EDUC
FATHOCC 0.008 0.001  5.180
INC1961
OCC1962
EDUC
FATHOCC 0.012 0.001 10.561
COMBINED PARTIAL INDIRECT EFFECT 
 FROM FATHEDUC TO INC1961

0.034 0.007  4.912

SPECIFIC EFFECTS FROM FATHEDUC 
 TO INC1961
INC1961
EDUC
FATHEDUC 0.034 0.007  4.912
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β12 relates X2 to X1. The total relation of X1 on X2 is complicated because 
the effect of X1 on X2 equals β21 plus the effect of X1 on X2 back to X1 and 
then back to X2, β21β12β21, plus X1 to X2 to X1 to X2 to X1 to X2, β21β12β21β12β21, 
and so on for all possible looping through the path coeffi cients. Collect-
ing terms, the 0, 1, 2, 3, 4, and 5 loop effects are β21, β21

2β12, β21
3β12

2, β21
4β12

3 , 
and β21

5β12
4, respectively. The effects in each loop form a geometric series 

that has a sum equal to the looping effect of 1/(1 − β21 β12) and a total rela-
tion of X1 to X2 of β21/(1 − β21 β12). The looping effects enhance or multiply 
direct and indirect effects (Hayduk, 1987). For the two-variable system, 
if the looping effect, β21β12, is negative, then the total effect of X1 on X2 is 
reduced. If the looping effect is positive, then the total effect of X1 on X2 is 
increased. The infi nite looping of effects leads to the addition of multiple 
mediated effects.

The general matrix formulas for the calculation of indirect effects and 
standard errors described in this chapter also apply to these looping medi-
ated effects and their standard errors (Hayduk, 1987). With these formu-
las, the indirect effects and standard errors for complicated models with 
combinations of reciprocal and regular relations can be obtained. These 
estimates of indirect effects and standard errors are calculated using cova-
riance structure analysis programs. Regarding the matrix of indirect effects 
Iηη for reciprocal models, as described by Hayduk (1987), the terms along 
the diagonal are composed entirely of the aforementioned looping effects. 
Hayduk further suggested that it may be useful to investigate the looping 
effect separately from other effects for the relation between two variables.

Note that the simple model for reciprocal effects of X1 and X2 is not 
identifi ed because there are more unknowns than free parameters. Often 
the reciprocal relations are part of a larger model and suffi cient degrees 
of freedom are available to estimate the model. However a problem arises 
regarding estimation of reciprocal relations. Because recursive models, by 
defi nition, have paths in only one direction, many coeffi cients are set to 
zero. In nonrecursive models, more coeffi cients may be included to model 
reciprocal relations. An option in these situations is to use instrumental 
variables to assist in the estimation of the model. For the simple model 
for X1 related to X2, a variable must be related to X1 but not to X2, and 
another variable must be found that is related to X2 but not to X1. Essen-
tially the instrumental variable for X1 is used to make a new variable that 
is the predicted X1 variable and the analogous thing happens for X2, i.e., a 
new variable for X2 is obtained by its prediction from another instrumen-
tal variable. With these instrumental variables, the model is identifi ed. A 
method of estimation called two-stage least squares is used to estimate 
the parameters of models with instrumental variables. The instrumental 
variable estimation comprises the fi rst stage and the estimation of the rest 
of the model is the second stage.
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6.23 Summary
The purpose of this chapter was to describe mediation analysis for the 
path analysis model. Conceptually the analysis of mediating variables 
in path analysis models was a straightforward extension of methods to 
investigate the multiple mediator model using multiple regression equa-
tions. Models with more than one independent variable, more than one 
mediator, and more than one dependent variable can be evaluated with 
these methods. A benefi t of these models is that they can more clearly 
incorporate additional variables in a comprehensive model. The calcula-
tion of effects in these models is simplifi ed by the use of matrices and 
matrix equations for the standard errors of indirect effects. The LISREL, 
Mplus, EQS, and AMOS covariance structure analysis programs include 
routines to calculate the total indirect effects. Additional calculations 
are necessary to compute specifi c indirect effects and standard errors of 
specifi c indirect effects. Although not emphasized in this chapter, con-
fi dence limits for indirect effects in path analysis models are useful to 
researchers and product of coeffi cients and resampling methods provide 
the most accurate confi dence limits. Chapter 12 describes resampling 
methods for path analysis models discussed in this chapter. The Mplus 
program includes commands by which users can request specifi c indi-
rect effects and their standard errors including resampling methods. A 
matrix equation for the calculation of these values and a method to cal-
culate these values by hand were described. A classic mediation model 
from sociology was used to illustrate the use of the methods. In the next 
chapter, general covariance structure modeling approaches that incorpo-
rate latent variables are described.

There are several limitations to the structural equation modeling 
approach described in this chapter (see MacCallum & Austin, 2000, 
for discussion of the strengths and limitations of these models). The 
assumptions of mediation models described earlier apply here as well, 
including uncorrelated errors, descriptive versus causal relations, and 
the inclusion of important variables. A primary limitation of these 
models is that there are often many possible models that would fi t the 
data as well or even better than the model tested. A prudent researcher 
carefully considers these alternative models and compares models on 
the basis of theoretical predictions. Similarly, no interactions among 
mediators or interactions between independent variables and media-
tors were included in the models in this chapter, yet in many contexts 
these interaction effects may be present. As the number of variables in 
these models increases, the number of possible relations among vari-
ables quickly becomes unwieldy. Theory and replication of previous 
research are a critical part of the specifi cation and testing of structural 
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equation models. As mentioned in the quote for this chapter, careful 
specifi cation of the tests beforehand and replication of these tests with 
additional data in different contexts is critical.

6.24 Exercises

6.1.  Write out the matrix equations for the model in Exercise 5.1.
6.2.  Kerckhoff (1974) shows the correlations for 767 twelfth grade stu-

dents for the following variables: X1, intelligence; X2, number of 
siblings; X3, father’s education; X4, father’s occupation; Y1, grades; 
Y2, educational expectation; and Y3, occupational aspiration. Kenny 
(1979) reanalyzed these data, and this example is described in the 
LISREL 8 manual on pages 159−164 (Jöreskog & Sörbom, 2001). These 
data have also been widely used in covariance structure analysis 
programs (LISREL) and also in papers on indirect effects and their 
standard errors. The equations are the following:

 Y1 = γ11X1 + γ12X2 + γ13X3 + γ14X4 + ζ1

 Y2 = β21Y1 + γ21X1 + γ22X2 + γ23 X4 + γ24X4 + ζ2

 Y3 = β31Y1 + β32Y2 + γ31X1 + γ32X2 + γ33X3 + γ34X4 + ζ3

  The correlation matrix among the seven variables is

X1 1.00
X2 −0.100 1.000
X3 0.277 −0.152 1.000
X4 0.250 −0.108 0.611 1.000
Y1 0.572 −0.105 0.294 0.248 1.000
Y2 0.489 −0.213 0.446 0.410 0.597 1.000
Y3 0.335 −0.153 0.303 0.331 0.478 0.651 1.000

 a. Write the equations in matrix form.
 b. Estimate the parameters of the model using a covariance struc-

ture program such as Amos, EQS, LISREL, or Mplus.
 c. Calculate several indirect effects and standard error.
 d. Test the equality of two indirect effects.
 e. What do you conclude about the relations of ambition and 

attainment?
6.3.  SAS CALIS can be used to specify the model either by equations or 

by matrices. The equations method is used in the CALIS program 
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below. The three regression equations are listed after the LINEQS 
statements. The variances of each dependent variable are specifi ed 
under the STD section and the covariance between M1 and M2 is 
specifi ed under the COV statement. The variance of the X variable is 
automatically included in this program. The Method=ML specifi es 
maximum likelihood estimation of the model parameters based on 
the covariance matrix (COV).

PROC CALIS DATA=a METHOD=ML COV;
LINEQS
M1=a1 X + E1,
M2=a2 X + E2,
Y= c X + b1 M1 + b2 M2+ E3;
STD
E1=EE1,
E2=EE2,
E3=EE3;
COV
E1 E2 = CM1M2;

 a. Run this program for the two-mediator model data from chapter 6.
 b. Are the parameters and standard errors the same as those for 

EQS or LISREL? Why?
6.4  For the three indirect effects of X3 on Y3 in the socioeconomic achieve-

ment model studied in this chapter, compute each effect by hand 
using formulas in this chapter. Find the Vβ and VΓ, matrices specifi ed 
in Sobel (1982) and Sobel (1987). What is the order of parameters in 
the columns in these two cases? Why are these matrices different 
across those two articles and in this chapter?

6.5  The models examined in this chapter assumed that the measures 
were perfect measures of latent constructs. For the socioeconomic 
achievement model discuss the reliability and validity of each mea-
sured variable. What suggestions do you have to improve each mea-
sure? One option to improve the measurement of the variables is 
to include multiple indicators of each construct. Pick at least three 
indicators of each of the six constructs in the model.

6.6.  The achievement data are used in many different publications. 
Which specifi c indirect effects are given in the Sobel (1982) paper? 
What is the sample size recommended in the Stone and Sobel (1990) 
simulation study for models like the achievement example. Describe 
in detail the results for one total indirect effect for the achievement 
example described in Stone and Sobel (1990).

6.7 Write the Mplus code for the MODEL INDIRECT to estimate all of 
the specifi c indirect effects in Table 6.15.
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7

Latent Variable 
Mediation Models

Who has seen the wind?
 Neither I nor you:
But when the leaves hang trembling
 The wind is passing thro’.

Who has seen the wind?
 Neither you nor I:
But when the trees bow down their heads
 The wind is passing by.

—Christina Georgina Rossetti, 1872, p. 93

7.1 Overview
This chapter extends the mediation structural model described in chap-
ter 6 to explicitly model measurement error. First, measurement error 
is described along with the infl uence of measurement error on the esti-
mation of the mediation effect. Second, the use of measurement models 
to overcome problems with measurement error is described. Third, the 
general model that includes both a measurement model and a structural 
model is presented and methods to decompose effects are extended to 
measurement models for latent variables. The methods are illustrated 
with the analysis of data from a study of intentions to use steroids among 
football players.

7.2 Measurement Error
All of the prior development of the mediation model in this book has 
assumed that the independent variable, mediating variable, and depen-
dent variables have been measured without error. But measurement error 
is common in all fi elds including the social sciences. Measurement error 
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can be random owing to unsystematic chance factors or nonrandom 
owing to systematic factors. Measurement error can distort estimates 
of relations between variables. For example, in most cases an observed 
regression coeffi cient is smaller than the true regression parameter 
because of measurement error in the independent variable. Similarly, the 
largest possible correlation between a measure and any other measure is 
the square root of the measure’s reliability. For the case of mediation, the 
â and b̂ coeffi cients are reduced as reliability of the measures decrease 
so that unreliability reduces the size of the mediated effect (Hoyle & 
Kenny, 1999).

Measurement is the assigning of numbers to units in a systematic way 
as a means of representing properties of the units (Allen & Yen, 1979). 
Measurement may be the most overlooked aspect of research in many 
disciplines, at least in part because of the diffi culty of doing it well. Mea-
surement is one of the most challenging aspects of research for at least six 
major reasons as summarized by Crocker and Algina (1986): (a) no single 
approach to measurement is universally accepted, (b) measurements are 
usually based on a sample of behavior, (c) because behaviors are sampled, 
there is some error inherent in the sampling, (d) units of measurement are 
not often well defi ned in many fi elds, for example, a 2-point difference at 
low levels of an attitudes scale may have a different meaning than a dif-
ference of 2 points at high values, (e) constructs must be defi ned by rela-
tions to other constructs or observable phenomenon in addition to their 
own internal consistency, and (f) measurement may differ across time of 
measurement and across subgroups of persons.

There are two major aspects of measurement: validity and reliability. 
The fi rst aspect of measurement is validity, which is the extent to which 
the measure actually measures what it is hypothesized to measure. 
Validity is often determined by convergent validity, the extent to which 
the construct is related to other measures of the same construct, and 
discriminant validity, the extent to which it is not related to measures 
of other constructs. The second aspect of measurement is reliability or 
the consistency with which a measure of a construct measures that con-
struct. There are quantitative measures of reliability based on measure-
ment on one occasion or measurement on multiple occasions. Measures 
of internal consistency reliability, such as coeffi cient alpha, are used 
for measurement on one occasion. A multiple occasion measure of reli-
ability is the test–retest correlation. More information on reliability and 
validity can be found in psychometric texts such as Crocker and Algina 
(1986), Allen and Yen (1979), and Lord and Novick (1968). This chapter 
addresses unreliability by using latent variable models. It is assumed 
that a program of research has generated valid measures of constructs.
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7.3 The Effect of Unreliability on Mediation Analysis
Hoyle and Kenny (1999, p. 202) demonstrated how measurement error 
affects mediation analysis. Specifi cally the â path is reduced by the 
unreliability of the X variable. The b̂ path is reduced by the unreliabil-
ity of the mediator with an error free independent variable partialled 
out. Importantly, as unreliability in the mediator increases, the ĉ′ path 
is overestimated, and the b̂ path is underestimated so that unreliability 
in the mediator reduces the size of the mediated effect and increases the 
size of the direct effect. Hoyle and Kenny (1999) found that the use of 
latent variable models removed the effects of unreliability in the media-
tors compared with using a single measure of the mediator with less than 
perfect reliability. The point is that the mediators are often not measured 
perfectly, which leads to underestimation of true mediation effects. The 
use of latent variable models improves the accuracy of mediated effect 
measurement.

One of the most serious effects of measurement error on regression 
results occurs when covariates have considerable measurement error 
(Darlington, 1990). Substantial error in covariates affects regression coeffi -
cients in an unpredictable manner, sometimes increasing coeffi cients and 
other times reducing or even reversing regression coeffi cients. For regular 
mediation analysis and analyses including covariates, reliable measures 
of constructs are critical.

7.4 Latent Variable Models
One way to reduce the effect of measurement error is to specify a model 
for how individual measures are related to the hypothetical or latent 
constructs of interest. These measurement models use multiple indica-
tors of a latent construct to model the relation between each indicator 
and the latent construct into two parts, the true relation and error. The 
latent variable is specifi ed as the true measure of the construct. To use 
the water consumption example from chapter 3, thirst could be concep-
tualized as a latent measure indicated by three observed measures of 
(a) self-reported thirst, (b) blood volume, and (c) saliva levels. Here the 
three measures are hypothesized to be indicators of a latent construct 
of thirst.

Latent variables are also called hypothetical, unmeasurable, or unob-
servable variables. Bollen (2002) reviewed latent variables and identifi ed 
the following four formal defi nitions of latent variables: (a) local indepen-
dence—the requirement that once a latent variable is held constant the 
indicators of that latent construct are independent, (b) expected value—

ER64296_C007.indd   175ER64296_C007.indd   175 11/14/07   11:44:23 AM11/14/07   11:44:23 AM



176 Introduction to Statistical Mediation Analysis

the average of an infi nite number of measures of the same latent construct 
will equal the true score on the construct, (c) nondeterministic function 
of observed variables—a latent variable is a variable that cannot be com-
pletely determined by measured variables, and (d) no sample value—a 
latent variable is a variable for which there is no value for at least some 
observations in a sample. Defi nitions a and b are most relevant here as 
they refer to multiple indicators of a latent variable.

7.5 The Measurement Model
The measurement model represents how observed measures are related 
to a latent construct. These latent constructs are indicated by η for latent 
variables that are endogenous (variables affected by other variables, Y) 
and ξ for latent exogenous (variables not affected by other variables, X) 
variables. There are measurement models for endogenous and exogenous 
latent variables, where m is the number of endogenous variables, n is the 
number of exogenous variables, q is the number of X variables, and p is the 
number of Y variables. Matrices for the measurement of exogenous latent 
variables are described in the lambda X, Λx, (q × n) matrix that codes the 
relation between each observed measure and the latent variable, and the 
theta delta, Θδ, (q × q) matrix that codes the covariance matrix among the 
errors δ, for the X variables. For endogenous latent variables, lambda Y, Λy, 
(p × m) codes the relation between the observed measures and the latent 
endogenous variable, and the theta epsilon, Θε, (p × p) matrix codes the 
covariance matrix among the error variances ε, among the Y variables. It is 
possible to specify an entire model in what is called an all-Y model so that 
the Λx and Θδ matrices are not required. This all-Y model often makes it 
easier to specify models, but the more complete model is described here to 
be consistent with most papers on indirect effects with latent variables.

For latent variable models, and unlike in chapter 6, the vectors of η and 
ξ variables are latent and not directly observed but are measured with 
multiple indicators as specifi ed in the measurement model matrices, Λy, 
Θδ, Λx, and Θε. The measurement model is specifi ed in Equations 7.1 for 
the Y variables and 7.2 for the X variables:

 y = Λyη + ε  (7.1)

 x = Λxξ + δ (7.2)

where ΛX represents the relations between the observed X variables and 
latent ξ variables and Λy represents the relations between the observed 
Y variables and the latent η variables. Examples of the specifi cation of 
measurement models will be given later in this chapter.
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7.6 The Structural Model
The following equation describes the structural model relating indepen-
dent variables, mediating variables, and dependent variables as described 
in chapter 6:

 η = Βη + Γ ξ + ζ (7.3)

where η is a vector of endogenous variables, ξ is a vector of exogenous 
variables, and ζ is a vector representing unexplained variability. The Β (m 
× m) matrix codes the coeffi cients among the endogenous variables, and Γ 
(m × n) codes the coeffi cients relating exogenous variables to endogenous 
variables. The covariance matrix among the ξs is specifi ed in the Φ (n × n) 
matrix, and the covariance matrix among the ηs is specifi ed in the Ψ (m × 
m) matrix. Note that these are the same matrices in the structural model 
equation described in chapter 6. In fact, the only difference between the 
models in this chapter and those in chapter 6 is the addition of measure-
ment models. As will be shown later, the matrix equations for the indirect 
effects and their standard errors are now expanded to include measure-
ment models.

7.7 Indirect Effects in Latent Variable Models

With the addition of measurement models, there are two more types of 
total indirect effects in addition to Iηη and Iηξ in Equations 6.10 and 6.12, 
respectively. There are total indirect effects of η variables on Y variables 
and total indirect effects of ξ variables on Y variables as shown in Equa-
tions 7.4 and 7.5. An indirect effect of a ξ variable on a Y variable is the 
effect of a ξ variable on an η variable, which is then is related to a Y vari-
able for Iyξ. An example of an η variable on a Y variable is the effect of an 
η variable to another η variable to a Y variable for Iyη. Often these medi-
ated effects Iyξ and Iyη are not central to a research hypothesis, because 
mediational hypothesis typically focus on latent variables in the Iηη and 
Iηξ matrices.

 Iyη = Λy(I − Β)−1 − Λy  (7.4)

 Iyξ = Λy(I − Β)−1Γ (7.5)

As shown in Equation 6.13, the standard errors of the indirect effects 
in Iyη and Iyξ require their respective matrices of partial derivatives. The 
two additional equations for the partial derivatives of the Iyη and Iyξ total 
indirect effect matrices are shown in Equations 7.6 and 7.7, respectively.
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The elements in these equations are the same as those described in chap-
ter 6 with a few additions. The VΛy matrix selects the variables for which 
partial derivatives are calculated from the Λy matrix. Note that X vari-
ables are not part of the indirect effect calculations or partial derivatives 
because there are no indirect effects on these variables. The number of 
η variables (m), the number of ξ variables (n), the number of Y variables 
(p), and the number of X variables (q) are used to construct identity and 
output matrices.

As described in detail in chapter 6, the matrices Vβ, VΓ, and VΛy, select 
partial derivatives. For most applications, these matrices consist of zeroes 
and ones. For each matrix, the number of columns is equal to the number 
of parameters estimated. The number of rows is equal to the number of 
elements in each subscripted matrix. For example, the VΛy matrix has rows 
equal to m times p.

7.8 Matrix Representation of a Three-Indicator 
Latent Variable Mediation Model
The manifest variable model described in earlier chapters assumed that 
each measure was measured without error or, in other words, had reli-
ability of 1. If reliability is less than 1, these models can be improved by 
specifying a measurement model for each construct. As discussed ear-
lier, the extension of manifest variable models to include measurement 
models for each construct requires four more matrices corresponding to 
the coeffi cients relating each indicator to each latent factor and the unex-
plained variability for each indicator. The eight matrices for a three fac-
tor latent variable model with three indicators of each factor are shown. 
Note that Λx is a 3 × 1 matrix with a coeffi cient for each observed variable 
and the latent variable ξ and Λy is a 6 × 2 matrix with coeffi cients relating 
three observed variables to η1 and three observed variables to η2. There 
is a 3 × 3 matrix of errors among the δ , Θδ, and a 6 × 6 matrix of errors 
among the ε in Θε. Both of these error matrices have only nonzero diago-
nal elements. The other matrices are the same as for the path analysis 
model described in chapter 6.
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The matrix equations in 7.8 and 7.9 correspond to Equations 6.5, and 6.6.

 η γ ξ ζ1 1 1= +  (7.8)

 η γ ξ β η ζ2 2 21 1 2= + +  (7.9)

The three-factor, three-indicator latent variable model is shown in 
fi gure 7.1. Note that latent variables are represented by circles, and mea-
sured variables are represented by rectangles. Pointed arrows represent a 
hypothesized direction of infl uence.

Once matrices (or a fi gure for some programs such as Amos) are speci-
fi ed in this way, the parameters of the model can be estimated with maxi-
mum likelihood or other approaches. It is important to note that when 
described in the aforementioned matrices, the models are not statistically 
identifi ed. The need for identifi cation stems from the use of latent vari-
ables that are not measured and have no original scale of measurement. 
Methods to identify measurement models include fi xing one path of each 
latent variable to equal one or fi xing the variance of the latent variables 
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to equal one. As shown in fi gure 7.1, one path for each latent variable was 
fi xed to equal one.

In this model there are 21 estimated parameters, λx21, λx31, λy21, λy31, λy52, 
λy62, γ1, γ2, β1, δ11, δ22, δ33, ε11, ε22, ε33, ε44, ε55, ε66, ψ11, ψ22, and ϕ11. There are 45 
free variances and covariances in the covariance matrix among the nine 
variables, that is, (9(9 + 1))/2 = 45 free parameters, so this model has 45 − 21 
= 24 degrees of freedom. With nonzero degrees of freedom it is possible to 
obtain a χ2 test with 24 degrees of freedom of whether the model is consis-
tent with the observed data.

7.9 Hypothetical Three-Variable Mediation 
Model With Latent Factors
A real data example from 547 high school football players is used to illus-
trate the three-factor three-indicator latent variable (Goldberg et al., 1996). 
The football players were measured before the football season, immedi-
ately after the season, and several months after the end of the season. For 
this illustration, the data will be used to investigate the extent to which 
coachs’ tolerance of steroids affect players perceptions about the sever-
ity of steroid use that then affects intentions to use steroids. Although 
these three variables were measured at all three time points, for this 
example each measure was taken at a different time point consistent with 
the temporal ordering of the mediation hypothesis. The measure at the 
fi rst time was coachs’ tolerance measured by three questionnaire items: 

Figure 7.1. Three-factor, three-indicator latent variable model.
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coach1—I have talked with at least one of my coaches about different 
ways to get stronger instead of using steroids, coach2—On my team there 
are rules against using steroids, and coach3—If I were caught using ste-
roids, I would be in trouble with my coaches. Three questionnaire items 
assessing perceived severity of steroid use were measured immediately 
after the season: severe1—The bad effects of anabolic steroids go away 
as soon as you stop using them, severe2—Only a few people who use 
anabolic  steroids ever have any harmful or unpleasant side effects, and 
severe3—Anabolic steroids are not dangerous if you use them only a few 
months each year. Intentions to use steroids were measured at the last 
wave: intent1—I intend to try or use anabolic steroids, intent2—I would 
be willing to use anabolic steroids to know how it feels, and intent3—I 
am curious to try anabolic steroids. Although the raw data from the 547 
participants could be used for analysis, the covariance matrix is used in 
these examples and will yield equivalent answers to the analysis of raw 
data for the model estimated. The covariance matrix among these nine 
variables is the data input into a covariance structure program to estimate 
the parameters of the three-factor latent variable model.

There are two matrices of indirect effects and standard errors in this 
model. First, Iηξ was described in chapter 6 and codes the effects of ξ to η2, 
γ1β21. Second, Iyη corresponds to the effects of η1 on Y4, η1 on Y5, and η1 on 
Y6. There are no examples of the Iyξ indirect effect matrix in the LISREL 
output, but these indirect effects are given in the EQS output.

7.10 LISREL Model for the Three-Factor 
Latent Variable Model
The LISREL Program for the three-latent variable model is shown in Table 
7.1. The correlation matrix and the list of standard deviations are used to 
enter the covariance matrix for analysis. Note that the specifi cation of the 
LISREL program exactly corresponds to the matrix representation of the 
three-factor, three-indicator model described earlier. There are additional 
keywords for the additional matrices required for latent variable models: 
LY, LX, TE, and TD matrices. One indicator on each latent variable is fi xed 
at 1, LX(1,1), LY(1,1), and LY (4,2). LISREL expects the order of variables in 
the analysis to start with the Y variables and then the X variables. The SE 
command changes the ordering of the variables so that the Y variables 
come fi rst. The EF command on the output, OU, line requests decomposi-
tion of effects as described in chapter 6.

Selected LISREL output is shown in Table 7.2. The null hypothesis that 
the model fi ts the data cannot be rejected with a χ2 of 29.11 with 24 degrees 
of freedom and probability of 0.22. The root mean squared error of approx-
imation was 0.018, indicating very good fi t. As a result, the model is an 
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excellent fi t to the data. The estimated direct effect parameters among the 
latent variables are β̂21 in the Β matrix and γ̂1, γ̂2, in the Γ matrix. The effect 
from ξ to η1, γ̂1, was −0.41 (sγ̂1

 = 0.09) and from η1 to η2, β̂21, was 0.27 (sβ̂21
 = 

0.05), which yields the estimator of the mediated effect ̂β21 times ̂γ1 equal to 
−0.11 with a standard error of 0.03 so the estimate was −3.56 times larger 
than the standard error. Note that for some latent variable models such as 
this one, there is a nonzero covariance between β̂21 and γ̂1 so Equation 6.16 
with 2 γ̂β̂σγ̂β̂ for the indirect effect standard error should be used (σγ̂,β̂21 = 
.0002 for the example). The product distribution confi dence limits (LCL 
= −.176, UCL = −.055) also incorporate the correlation (rγ,β̂21 = .0515). The 
identical value of the mediated effect and standard error are shown in 
the Indirect Effects of KSI on ETA section of the LISREL output. The data 
appear to be consistent with mediation whereby perceived coach toler-
ance of anabolic steroid use affects perceived severity of anabolic steroid 
use that affects intentions to use steroids. Of course, there are alternative 
interpretations of these results, including one that the measures do not 
refl ect true temporal ordering because they are not based on change in 
variables. More on mediation methods with longitudinal data is described 
in chapter 8.

Table 7.1 LISREL Program for the Latent Variable Mediation Model

THREE FACTOR MODEL
DA NI=9 NO=547 
KM
 1.00000
 0.26471   1.00000
 0.28632   0.62004   1.00000
-0.16839  -0.16309  -0.13774  1.00000
-0.14364  -0.18831  -0.17279  0.53254  1.00000
-0.12833  -0.20156  -0.17097  0.59639  0.67350  1.00000
-0.11335  -0.06592  -0.11003  0.15927  0.19443  0.21261  1.00000
-0.04452  -0.03775  -0.06406  0.16619  0.23220  0.23696  0.70284  1.00000
-0.07918  -0.03466  -0.06772  0.11044  0.22294  0.21583  0.65218  0.82221  1.00000
SD
*
1.932 1.534 1.294 1.440 1.485 1.448 1.197 1.397 1.536
LA
coach1 coach2 coach3 severe1 severe2 severe3 intent1 intent2 intent3
SE
4 5 6 7 8 9 1 2 3 
MO NX=3 NK=1 NY=6 NE=2 PS=SY,FI GA=FU,FI PH=FU,FI TE=DI,FR LX=FU,FI LY=FU,FI 
BE=FU,FI

FR LX(2) LX(3)
FR LY(2,1) LY(3,1)
FR LY(5,2) LY(6,2)
VA 1 LX(1) LY(1,1) LY(4,2)
FR BE(2,1)
FR GA(1) GA(2)
FR PS(1,1) PS(2,2) 
FR PH(1,1)
OU MI RS EF MR SS SC
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Table 7.2 Selected LISREL Output for the Latent Variable Mediation Model

LISREL Estimates (Maximum Likelihood)
         LAMBDA-Y
               ETA 1      ETA 2
            --------   --------
  severe1       1.00        - -
  severe2       1.18        - -
               (0.08)
               15.30
  severe3       1.27        - -
               (0.08)
               15.44
  intent1        - -       1.00
  intent2        - -       1.47
                          (0.07)
                          21.41
  intent3        - -       1.50
                          (0.07)
                          20.97
         LAMBDA-X
               KSI 1
            --------
   coach1       1.00
   coach2       1.75
               (0.25)
                6.96
   coach3       1.48
               (0.21)
                6.94
         BETA        
               ETA 1      ETA 2
            --------   --------
    ETA 1        - -        - -
    ETA 2       0.27        - -
               (0.05)
                5.53
         GAMMA
               KSI 1
            --------
    ETA 1      -0.41
               (0.09)
               -4.46
    ETA 2       0.00
               (0.07)
                0.02

(continued)
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Table 7.2 (Continued)

         PHI
               KSI 1
            --------
                0.47
               (0.13)
                3.78
         PSI
         Note: This matrix is diagonal.
               ETA 1      ETA 2   
            --------   --------
                0.89       0.73
               (0.11)     (0.07)
                8.29       9.84
         THETA-EPS
        severe1  severe2  severe3  intent1  intent2  intent3   
                        -------      -------      -------      -------      -------      -------
           1.10     0.86     0.53     0.63     0.22    0.56
          (0.08)   (0.08)   (0.08)   (0.04)   (0.05)  (0.06)
          13.57    10.64     6.78    14.47     4.76    9.73
         THETA-DELTA
              coach1     coach2     coach3
            --------   --------   --------
                3.26       0.91       0.63
               (0.21)     (0.16)     (0.12)
               15.81       5.65       5.49
         Indirect Effects of KSI on ETA
               KSI 1
            --------
    ETA 1        - -
    ETA 2      -0.11
               (0.03)
               -3.56
         Indirect Effects of ETA on Y
               ETA 1      ETA 2
            --------   --------
  severe1        - -        - -
  severe2        - -        - -
  severe3        - -        - -
  intent1       0.27        - -
               (0.05)
                5.53
  intent2       0.39        - -
               (0.07)
                5.66
  intent3       0.40        - -
               (0.07)
                5.61
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The indirect effect of ETA on Y matrix is one of the new indirect effect 
matrices for the latent variable model. These indirect effects represent the 
effects of ETA on the individual Y measures. For example, the indirect 
effect of η1 to η2 to Y1 is given in the product of β̂21, coeffi cient of 0.27, 
and the LY(4,1) coeffi cient of 1.0, which yields an indirect effect of 0.27 
and standard error equal to 0.05, which is identical to these values for β̂21 
because LY(4,1) is fi xed at 1.0. The indirect effect of η1 to η2 to Y2 is given in 
the product of the β̂21 coeffi cient of 0.27, and the LY(5,2) coeffi cient of 1.47, 
which yields an indirect effect of 0.39 and standard error equal to 0.07. The 
indirect effect of η1 to η2 to Y3 is given in the product of the β̂21 coeffi cient 
of 0.27, and the LY(6,2) coeffi cient of 1.50, which yields an indirect effect of 
0.40 and standard error equal to 0.07.

7.11 EQS Code for the Latent Variable Mediation Model
The EQS code for the latent variable model is shown in Table 7.3. The model 
is identical to the models in chapter 6 except that three latent factors, F1, 
F2, and F3, are specifi ed. Additional statements are required to specify the 
relations among the factors. As described in chapter 6, the EQS program 
specifi es models using an equation format. The input matrix is specifi ed 
as a correlation matrix, but the analysis is requested for the covariance 
matrix, ANALYSIS=COVARIANCE. The Print line with EFFECTS=YES 
requests decomposition of effects as described in chapter 6.

The same estimates and standard errors were obtained in the EQS 
analysis of the latent variable mediation model as for the LISREL output 
(Table 7.4). The estimates and standard errors are shown in equation form. 
The indirect effect of most interest is listed in the Indirect Effects output 
section, in which the indirect effects for intent or F3 are shown. Note that 
there are additional indirect effect estimates and standard errors in the 
EQS output, which would have also been present if the LISREL program 
had been set up as an all-Y model. The same indirect effects and standard 
errors in LISREL for the effect of ETA on Y are shown in the PARAM-
ETER INDIRECT EFFECTS section of the output in the fi rst coeffi cients of 
F2 for intent1 (0.266 × 1 = 0.266), intent2 (0.266 × 1.470 = .391), and intent3 
(0.266 × 1.499 = .394).

The indirect effects and standard errors of F1 on SEVERE1 (Y1) (−0.415 × 
1 = −0.415), F1 on SEVERE2 (Y2) (−0.415 × 1.175 = −0.487), and F1 on SEVERE3 
(Y3) (−0.415 × 1.269 = −0.526) are included in the output. These effects corre-
spond to the Iyη matrix in the LISREL output. More detailed indirect effects 
are given in the EQS output. To use INTENT1 (Y4) as an example, the indi-
rect effect of F2 (η1) (0.266 × 1 = 0.266), F1 (ξ1) (−0.415 × 0.266 × 1 = −0.109), 
D2 (residual for the severity latent variable 1 × 0.266 × 1 = 0.266, and D3 
(residual for the intentions latent variable (1 × 1 = 1) are shown. The same 
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Table 7.3 EQS Program for the Latent Variable Mediation Model

/TITLE
 Three Factor Latent Variable
/SPECIFICATIONS
 VARIABLES=9; CASES=547; 
 METHOD=ML; MATRIX=CORRELATON; ANALYSIS=COVARIANCE;
/LABELS
 V1=COACH1; v2=COACH2; v3=COACH3; v4=SEVERE1; v5=SEVERE2; v6=SEVERE3;
v7=INTENT1; v8=INTENT2; v9=INTENT3; 
F1=COACHTOL; F2=SEVERE; F3=INTENT;
/EQUATIONS
 V1  =   1 F1  + E1;
 V2  =   *F1  + E2;
 V3  =   *F1  + E3;
 V4  =   1  F2  + E4;
 V5  =   *F2  + E5;
 V6  =  *F2 + E6;
 V7  =  1  F3 + E7;
 V8  =  *F3 + E8;
 V9  =  *F3 + E9;
 F2  =   *F1 + D2;
 F3  =  *F1 + *F2 + D3;
/VARIANCES
 F1 = *; D2 TO D3=*;E1 TO E9=*; 
/MATRIX
 1.00000
 0.26471   1.00000
 0.28632   0.62004   1.00000
-0.16839  -0.16309  -0.13774  1.00000
-0.14364  -0.18831  -0.17279  0.53254  1.00000
-0.12833  -0.20156  -0.17097  0.59639  0.67350  1.00000
-0.11335  -0.06592  -0.11003  0.15927  0.19443  0.21261  1.00000
-0.04452  -0.03775  -0.06406  0.16619  0.23220  0.23696  0.70284  1.00000
-0.07918  -0.03466  -0.06772  0.11044  0.22294  0.21583  0.65218  0.82221  1.00000
/STANDARD DEVIATIONS
1.932 1.534 1.294 1.440 1.485 1.448 1.197 1.397 1.536
/PRINT
EFFECTS=YES;
/END

effects are present for INTENT2 (Y5) and INTENT3 (Y6). For most research 
questions, many of the indirect effects are not relevant.

7.12 Adjusting for Reliability in Manifest Variable Models
There are research situations in which it is not possible or unrealistic 
to obtain multiple indicators of a latent variable. One approach in this 
situation is to adjust for unreliability of measures in a manifest variable 
model. For a construct with a single indicator, the manifest variable mod-
els described in this book assume that the error variance is zero and the 
single indicator is a perfect measure of the latent construct. As described 
in this chapter, this may not be true in many research areas. One adjustment 
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Table 7.4 Selected EQS Output for the Latent Variable Mediation Model

MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST 
STATISTICS
  STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.
 COACH1  =V1  =   1.000 F1    + 1.000 E1
 COACH2  =V2  =   1.746*F1    + 1.000 E2
                   .251
                  6.956@
 COACH3  =V3  =   1.482*F1    + 1.000 E3
                   .214
                  6.936@
 SEVERE1 =V4  =   1.000 F2    + 1.000 E4
 SEVERE2 =V5  =   1.175*F2    + 1.000 E5
                   .077
                 15.296@
 SEVERE3 =V6  =   1.269*F2    + 1.000 E6
                   .082
                 15.441@
 INTENT1 =V7  =   1.000 F3    + 1.000 E7
 INTENT2 =V8  =   1.470*F3    + 1.000 E8
                   .069
                 21.409@
 INTENT3 =V9  =   1.499*F3    + 1.000 E9
                   .071
                 20.971@
 SEVERE  =F2  =   -.415*F1    + 1.000 D2
                   .093
                 -4.458@
 INTENT  =F3  =    .266*F2    +  .001*F1    + 1.000 D3
                   .048          .068
                  5.534@         .020
  VARIANCES OF INDEPENDENT VARIABLES
  ----------------------------------
  STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.
                 V                             F
                ---                           ---
                             F1  -COACHTOL             .474*
                                                       .125               
                                                      3.784@
                                                          
                 E                             D
                ---                           ---
 E1  -COACH1          3.258* D2  -SEVERE               .892*
                       .206                            .108

     15.814@                          8.286@

(continued)
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Table 7.4 (Continued)

 E2  -COACH2           .907* D3  -INTENT              .732*
                       .161                           .074 
                      5.649@                         9.839@
                                                           
 E3  -COACH3           .633*                               
                       .115                                
                      5.492@                               
                                                           
 E4  -SEVERE1         1.100*                               
                       .081                                
                     13.566@                               
                                                           
 E5  -SEVERE2          .860*                               
                       .081                                
                     10.641@                               
                                                           
 E6  -SEVERE3          .529*                               
                       .078                                           
                      6.778@                                          
                                                           
 E7  -INTENT1          .632*                               
                       .044                                
                     14.469@                               
                                                           
 E8  -INTENT2          .222*                               
                       .047                                
                      4.760@                               
                                                           
 E9  -INTENT3          .561*                               
                       .058                                
                      9.728@                               
                                                           
  DECOMPOSITION OF EFFECTS WITH NONSTANDARDIZED VALUES
  STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.

  PARAMETER INDIRECT EFFECTS
  --------------------------
 SEVERE1 =V4  =   -.415 F1  + 1.000 D2
                   .093
                 -4.458@
 SEVERE2 =V5  =   -.487 F1  + 1.175 D2
                   .108        .077
                 -4.499@     15.296@
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Table 7.4 (Continued)

 SEVERE3 =V6  =   -.526 F1  + 1.269 D2
                   .116        .082
                 -4.542@     15.441@
 INTENT1 =V7  =    .266 F2  -  .109 F1 +  .266 D2 + 1.000 D3
                   .048        .067       .048
                  5.534@     -1.622      5.534@
 INTENT2 =V8  =    .391 F2  -  .160 F1 +  .391 D2 + 1.470 D3
                   .069        .099       .069       .069
                  5.656@     -1.625      5.656@    21.409@
 INTENT3 =V9  =    .399 F2  -  .163 F1 +  .399 D2 + 1.499 D3  
                   .071        .101       .071       .071
                  5.608@     -1.624      5.608@    20.971@
 INTENT  =F3  =   -.110*F1    +.266 D2
                   .031        .048
                 -3.563@      5.534@

for manifest variable models is to use an estimate of reliability from prior 
research and fi x the error variance of the single measure equal to one 
minus the reliability of the measure times the variance of the measure  
(and fi x the loading to 1). The resulting model is then estimated, and the 
new model coeffi cients are adjusted for unreliability. If the data for the 
construct are actually a composite of the sum of many items, then the 
reliability of that scale is used as the reliability measure and the single 
composite measure is used in the covariance structure analysis model. 
Generally this method is better than ignoring unreliability but not as 
good as estimating a latent variable model (Stephenson & Holbert, 2003). 
Some of the limitations of this method include the extent to which the 
reliability estimate is accurate; the method may conceal measures that are 
actually composed of more than one factor, and the relation of these fac-
tors may have important relations with other variables in the model that 
will be ignored (Bagozzi & Heatherton, 1994). Nevertheless, this approach 
provides some adjustment for unreliability in manifest variable models. If 
the reliability of the measures is high to begin with this adjustment does 
not affect results substantially.

7.13 Summary
The purpose of this chapter was to describe mediation analysis for mod-
els that include a measurement model for latent constructs. Measure-
ment error is important because it can reduce mediation relations and 
can either increase or decrease coeffi cients when unreliable covariates 
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are used. At a minimum, reliability coeffi cients should be reported for 
constructs used in a mediation analysis. Latent variable measurement 
models require the addition of matrices or equations specifying how 
individual items are related to latent constructs. Once the measurement 
models are specifi ed, the usual tests for indirect effects can be based on 
more reliable measures of latent constructs. There are two additional 
types of indirect effects for these models with corresponding matrices of 
partial derivatives for the computation of their standard errors. Distribu-
tion of the product and resampling methods (chapter 12) are useful for 
latent variable mediation models. Practical limitations of latent variable 
models are the computational diffi culty of simultaneously estimating 
complex structural and measurement models and ambiguity regarding 
obtaining an actual score for an individual on an unobserved latent vari-
able. Although measurement error is directly addressed in latent variable 
models, other assumptions regarding mediation still apply including tim-
ing of measurement, omitted variables, and inference regarding causal 
relations. The latent variable model as described in this chapter does not 
explicitly include temporal relations. As temporal priority is an impor-
tant aspect of mediation, longitudinal mediation models are the focus of 
the next chapter. The latent growth curve longitudinal model described 
in the next chapter requires specifying latent variables to model change 
over time.

7.14 Exercises
7.1  Write out the matrices and computer programs for a three-variable 

latent variable model with four indicators for each latent variable.
7.2  Write out the matrices for the two-mediator model described in the 

last chapter but include three indicators of each latent factor.
7.3  Describe the additional indirect effect matrices when latent variables 

are added to a model.
7.4  Do you think that using indicators of latent variables improve the 

measurement of these constructs? Why?
7.5  Rerun the three-factor latent variable example in the book, but reverse 

the order of the variables such that intent at wave 3 is fi rst, followed 
by severity, followed by coach tolerance at wave 1, for example, SE 1 
2 3 4 5 6 7 8 9. What is your conclusion about the mediated effect of 
intentions to perceived severity to coach tolerance using the data in 
reverse order? What data would help you interpret these results?

7.6  Write out the matrices for a model with a single binary X variable, 
four indicators of the mediator and four indicators of the dependent 
variable. Describe the meaning of each indirect effect matrix.
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7.7 The reliability of a covariate may increase or decrease an observed 
correlation. The following SAS program, based on formulas in 
Cohen and Cohen (1983, pp. 406–412), calculates the observed par-
tial correlation, obsr, and true partial correlation, truer, as a func-
tion of ry1—the correlation between X1 and Y, ry2—the correlation 
between X2 and Y, r12—the correlation between X1 and X2, ryy—
the reliability of Y, r11—the reliability of X1, and r22—the reliability 
of X2. Vary the values of ry1 and ry2 and compare the true partial 
correlation to the observed partial correlation. What do you con-
clude about how the reliability of X1 affects the observed partial 
correlation?

  data a;
  input ry2 ry1 r12 r11 ryy r22;
  obsr=(ry2−(ry1*r12))/(sqrt((1−ry1**2)*(1−r12**2)));
  truer=(r11*ry2-(ry1*r12))/

(sqrt((r11−ry1**2)*(r11−r12**2)));
  cards;
  .3 .5 .6 .7 1 1
  ;
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8

Longitudinal 
Mediation Models

A “correctly specifi ed model” is, always has been, 
and always will be a fi ction. A more realistic view of 
models is that they are simplifi cations of extremely 
complicated behavior. It is a mistake to assume 
that any model actually represents the underlying 
processes absolutely correctly, even after certain 
obvious faults have been corrected. All that can be 
hoped is that a model captures some reasonable 
approximation to the truth, serving perhaps as a 
descriptive device or summarizing tool

—Robert Cudeck, 1991, p. 261

8.1 Overview
None of the mediation models described so far have included measure-
ment of the same variable on repeated occasions. For a variety of reasons, 
repeated measurement improves interpretation of mediational processes 
because change within individuals can be examined in addition to dif-
ferences among individuals. This chapter provides an overview of the 
additional information available for mediation models applied to longitu-
dinal data. Mediation models for unconditional and conditional two-wave 
mediation models are described followed by autoregressive, latent growth 
curve, and latent difference score models for three waves of data. A person-
oriented model requiring longitudinal binary data is also described. 
Finally, a data example is used to illustrate the models, and the model 
parameters are estimated with covariance structure analysis programs. 

8.2 Cross-Sectional Versus Longitudinal Data
Several aspects of longitudinal data elucidate mediating processes. First, 
longitudinal data provide more information regarding the temporal pre-
cedence of X, M, and Y. In the single mediator model in which all variables 
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are measured at the same occasion, the time ordering among the vari-
ables is based on theoretical or other grounds. If the X variable represents 
random assignment to conditions, then X precedes both M and Y in the 
cross-sectional model. However, the temporal relation between M and Y 
must be based on theory or prior research. Longitudinal data allow for the 
examination of whether changes in M are more likely to precede changes 
in Y. If a variable is measured at time 1, it is more likely that it will cause 
the time 2 variable than vice versa. Although it is unlikely that the time 
2 variable can cause the time 1 variable, it is possible to think of situations 
in which a third variable causes both time 1 and time 2 effects. Three or 
more waves of data generally provide more accurate representations of 
the temporal order of change over time that lead to more accurate conclu-
sions about mediation.

The second benefi t of longitudinal data is that both changes within 
individuals and cross-sectional relations can be investigated. For cross-
sectional data, estimates of effects are based on differences among indi-
viduals. Longitudinal relations are based on changes within individuals. 
Longitudinal data with two waves, for example, allow for examination 
of cross-sectional relations at each wave in addition to the examination 
of change between the two waves. This capability is important because 
changes within an individual can be different from changes among indi-
viduals. For example, the predictors of why one person has a higher score 
on a dependent variable than others at one time may be quite different 
from the predictors of why the change in the score for one person was 
greater than that for the others. Although longitudinal relations are gen-
erally of most interest, there are situations in which cross-sectional rela-
tions are more important than longitudinal relations. Students are more 
appropriately assigned to classrooms on the basis of aptitude or achieve-
ment rather than changes in these measures. Similarly, legislators may 
more appropriately fund counties on the basis of cross-sectional differ-
ences in population, rather than the percent growth in county popula-
tion. The percent change in population may be less important than static 
population levels.

A third benefi t of longitudinal data is that the data address some 
alternative explanations of cross-sectional mediated effects. One alter-
native explanation of an observed cross-sectional relation is the exis-
tence of an omitted variable that explains the relation. Longitudinal data 
remove some omitted variable explanations because the participant’s 
own scores control for extraneous variables. Change within an individ-
ual removes alternative explanations of effects that are due to static dif-
ferences among individuals because each individual serves as a control 
for himself or herself. For example, biological factors such as genetics are 
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unlikely explanations for longitudinal relations because these variables 
are not likely to have changed across waves of measurement.

Gollob and Reichardt (1991) described three related limitations of using 
cross-sectional data to investigate longitudinal relations. First, it takes 
time for variables to exert their effects. If variables are measured at the 
same time, there may not be enough time for X to affect M or M to affect Y. 
Second, variables have effects on themselves, for example, M is related to 
M at a later time. Third, the size of the effect depends on the time lag. The 
indirect effect of X on Y may be quite different if the measurement of the 
variables differs in seconds compared with decades. Gollob and Reich-
ardt argued that these limitations of cross-sectional data lead to biased 
estimates of effects. 

To clarify the limitations of cross-sectional data, Gollob and Reich-
ardt (1991) specifi ed a latent longitudinal model for cross-sectional data 
in which measures at an earlier time point are specifi ed as latent vari-
ables. They are latent in the sense that they are not measured. In this 
model, there are many more unknown parameters than data values so 
some assumptions regarding relations must be made. Gollob and Reich-
ardt suggested that the number of unknown parameters could be reduced 
by assuming that longitudinal relations among variables are known and 
variances at each time are equal. With this model and its (often unrealis-
tic) assumptions, it may be possible to estimate longitudinal relations with 
cross- sectional data. However, Gollob and Reichardt used this example to 
illustrate the diffi culty of assessing true relations with cross-sectional data 
and suggested alternative longitudinal models such as those described 
in this chapter. In general, cross-sectional data provide a snapshot of the 
relations among a system of variables at one time, under the assumption 
that the system has reached equilibrium so that the snapshot accurately 
refl ects relations that would be obtained at other time points. 

8.3 Additional Information From Longitudinal Data: 
Stability, Stationarity and Equilibrium
The introduction of repeated measurements of variables introduces sev-
eral new concepts unique to longitudinal data. The fi rst concept, stability, 
is the extent to which the mean of a measure is the same across time as 
described by Kenny (1979). Other defi nitions of stability relax the require-
ment of stable means but instead require stable trends or periodic stability 
of a process (see the six different types of stability outlined by Wohlwill, 
1973). Similarly, Burr and Nesselroade (1990) described additional defi ni-
tions of stability including strict stability for which individuals do not 
change over time, linear stability for which there is a linear trend over 
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time that differs across persons, and monotonic stability refl ecting the 
fact that persons maintain the same rank order over time. Statistical tests 
of nested models of stability are described in Tisak and Meredith (1990). 
Dwyer (1983) used the term temporal inertia, the tendency for an entity to 
remain stable over time, to describe stability. The tendency for temporal 
stability is affected by entropic decay, which refers to the tendency for a 
variable to change over time because of random error. The characteristics 
of stability and random error lead to the regression to the mean phenom-
enon (Campbell & Kenny, 1999) whereby persons high (or low) on a score 
at time one tend to regress to the mean at time two. The extent to which a 
person regresses to the mean is related to the amount of random error in 
the measures. Campbell and Kenny (1999) described artifactual effects in 
longitudinal analyses, owing to the regression to the mean phenomenon, 
especially when data are obtained from an observational study. Informa-
tion on stability from longitudinal data is assessed by measuring depen-
dency across measurement occasions.

Second is a related concept called stationarity which is the extent to 
which the relations among variables are the same over time (Kenny, 1979). 
The assumption is that the process generating the data does not change 
over time. Unfortunately, with real processes it is likely that relations 
among variables do change over time, especially for long duration stud-
ies. Consider the relation among positive body image, nutrition behaviors, 
and socioeconomic status at age 10 compared with the same measures 
at age 70. Information on stationarity can be obtained from longitudinal 
data by assessing the invariance of relations across measurement occa-
sions. Researchers have identifi ed several types of stationarity including 
mean and variance stationarity. However, it is possible that a process gen-
erating data is stationary, yet variance and means may change over time. 

The third important concept for longitudinal data is equilibrium, which 
is related to stationarity and stability. Dwyer (1983) has called a system 
at equilibrium when there is temporal stability in the patterns of covari-
ance and variance among variables. For mediation, the point is that the 
relations among X, M, and Y must have reached some equilibrium dur-
ing the period of data collection for accurate estimation of their relations. 
For cross-sectional data, it must be assumed that equilibrium has been 
reached when the variables have been measured. Experimental designs 
seek to disturb equilibrium by creating differences among groups. The 
disturbance may lead to a new equilibrium or the relation among vari-
ables may return to the original equilibrium. With longitudinal data, the 
researcher must consider whether a system has come to equilibrium in its 
relations among variables. Some information about equilibrium can be 
obtained from longitudinal data by examining the similarity of relations 
in the model across multiple waves.

ER64296_C008.indd   196ER64296_C008.indd   196 11/14/07   11:44:54 AM11/14/07   11:44:54 AM



Chapter Eight: Longitudinal Mediation Models 197

8.4 Difference Score Versus Analysis 
of Covariance Controversy
One of the recurring controversies in the analysis of longitudinal data 
is the preference for analysis by difference scores or analysis of covari-
ance. For example with two waves of observation a researcher can analyze 
the difference between the fi rst and second measure of X, M, and Y, and 
use these difference scores as the variables in the mediation equations 
described in earlier chapters. MacKinnon et al. (1991) used this procedure 
in a mediation analysis of a drug prevention program. An alternative 
method is analysis of covariance, in which the baseline value of each vari-
able is included as a covariate in the analysis. Dwyer (1983) noted that 
these two analyses actually specify two separate hypotheses regarding 
how scores would change over time, an unconditional model for the dif-
ference score method and a conditional model for the analysis of covari-
ance method. The difference score method assumes that without an effect 
of an independent variable, differences among individuals at baseline 
would be maintained at the follow-up measurement. The analysis of cova-
riance model assumes that each individual’s score would tend to regress 
to the mean of scores if unexposed to an independent variable. The rapid-
ity that scores regress to the mean is a function of the amount of error in 
the measure. More error yields greater regression to the mean.

At least part of the controversy with difference scores was the demonstra-
tion that the difference score was unreliable in many situations (Cronbach & 
Furby, 1970). For example, if both the pre- and the post-test are reliable then 
the difference score will be less reliable because any difference between the 
two scores is probably due to error. Rogosa (1988) and others (see Burr & 
Nesselroade, 1990) demonstrated that the difference score was not always 
unreliable. Rogosa pointed out that the unreliability of the difference score 
may merely refl ect that there is not substantial individual differences in 
growth (or change) over time. When the correlation between measurements 
is high, individual growth rates tend to be almost the same, so there is little 
variability in the growth. The difference score is more reliable when the reli-
ability of each test is high and the correlation between tests is low (assuming 
the same reliability across time and equal variances across time). 

Table 8.1, including values from Rogosa (1988) and some additional values, 
demonstrates how the reliability of the difference score is a function of the 
reliability of the measure and the correlation between the measures. The 
reliability of the difference score is 0 when both the reliability of the measure 
and the correlation between occasions is 0.7. Overall, if the correlation between 
occasions is low, then the reliability of the difference score is higher. 

Table 8.2, also from Rogosa (1988), gives the ratio of the reliability of the 
difference score to the average reliability of the measures as a function of 
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reliability at time 1 and the true correlation between occasions. Reliability 
at time 2 is 0.9. As shown in table entries greater than 1, the reliability of 
the difference score can be more reliable than the average reliability of the 
two tests. If the true correlation between tests is 0.4 and the reliability at 
time 1 is 0.6 and reliability at time 2 is 0.9, then the difference score is 1.06 
times more reliable than the average of the reliabilities.

In summary, if the correlation between a measure at two occasions is 
0.5 or less and the measure is generally reliable, the difference score has 
acceptable reliability. Often the correlation between adjacent waves with 
actual data is 0.5 or less. If you think of the reliability of the difference 
score as a measure of true change over time, it is not surprising that the 
difference is not so reliable when all people are changing the same way, 
yielding a high correlation between occasions.

Similar points were made by Singer and Willett (2003, pp. 42–44), in 
the context of precision of measuring change and reliability of change. 
Reliability in the change score is the proportion of population variance in 
observed change that is due to the true population change. High reliabil-
ity of change means that the variance of the observed change score is very 
close to the variance of the true rate of change. If all persons have the same 
true rate of change, then the reliability of the change score will be low 
because variability in the change is low. The reliability of observed change 

Table 8.1 Difference Score Reliability as a Function of Test 
Reliability and Correlation Between Tests (Rogosa, 1988)

R between Tests 0.6 0.7 0.8 0.9

0.4 0.33 0.50 0.67 0.83
0.5 0.20 0.40 0.60 0.80
0.6 0.00 0.25 0.50 0.75
0.7 0.00 0.33 0.67

Table 8.2 Ratio of Difference Score Reliability to Average 
Reliability of Two Waves (Rogosa, 1988; Table 5.4)

Reliability at Time 1

R True Correlation 0.6 0.7 0.8

0.4 1.06 1.03 1.00
0.6 0.86 0.88 0.90
0.8 0.53 0.60 0.67
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is affected by the size of change and also the reliability of true change. 
Singer and Willett (2003) conclude that reliability of change should not be 
the sole criterion for measurement of change.

The residualized change score is often used as an alternative to the 
difference score and analysis of covariance, at least in part because it 
adjusts for baseline differences and avoids some of the problems with 
the reliability of difference scores. The fi rst step in the calculation of the 
residualized change score is to obtain predicted values of the wave 2 mea-
sure using the wave 1 measure. These predicted scores for wave 2, Y2′, 
are subtracted from the actual wave 2 score, Y2, to form the residualized 
change score Y2  − Y2′. The residualized change score is then the difference 
between the observed score at wave 2 and the predicted score at wave 2, 
where the wave 1 measure is used to predict wave 2. The residualized 
change removes the relation between the two measures across time (Lord, 
1963). Often the conclusions based on the residualized change score are 
indistinguishable from the analysis of covariance because both measures 
adjust for baseline measurement. For the mediation case, the residualized 
change scores would be obtained separately for X, M, and Y, and then X, 
M, and Y would be analyzed as if there was a single measure of each vari-
able. One advantage of residualized change scores (and difference scores) 
is that the number of variables in the mediation model is reduced because 
the wave 1 measure is no longer needed in the analysis. For large models 
with multiple X, M, and Y variables, this can greatly simplify the estima-
tion and presentation of a model. The residualized change score does not 
solve the limitations of other two-wave analysis methods as it can be sus-
ceptible to low reliability and it assumes regression to the mean over time, 
which may not be appropriate in some situations (Rogosa, 1988). 

Several alternatives to change scores have been proposed. One alter-
native is to investigate relative change such as the natural logarithm of 
the time 2 to time 1 measure or the percent change relative to baseline 
(Törnqvist, Vartia, & Vartia, 1985). The appropriateness of these and other 
approaches to measuring change depend on the substantive question 
(Bonate, 2000). 

8.5 Two-Wave Regression Models
One option with two waves of data is to analyze the difference between the 
pre- and post-test measures. If X does not code an experimental manipu-
lation, then the difference scores of X, M, and Y would be entered in Equa-
tions 3.1 through 3.3, and mediation would be assessed as described in 
chapter 3. The interpretation of coeffi cients is different, as now the rela-
tion between change in X and change in M is refl ected in the a parameter. 
The b parameter codes the relation between change in M and change in Y 
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after adjustment for change in X. If X codes exposure to an experimental 
manipulation, then change in X refl ects group membership. Ideally the 
manipulation occurs between the pre- and post-test, as this model would 
then be in terms of the change in M and Y before versus after the experi-
mental manipulation. A second option is to analyze residualized change 
scores for X, M, and Y. For each variable a predicted score is obtained 
using the time 1 score on that variable as a predictor. The analysis is then 
conducted on the residualized scores for X, M, and Y. The interpretation 
of the results would consist of the change in X, M, and Y with the time 1 
score removed. As for the change score as the dependent variable, there 
is a single mediated effect estimated relating residualized change in X to 
residualized change in M which is related to residualized change in Y.

An alternative to the change score method is to use the time 1 measures 
as covariates in an analysis of covariance model for the two-wave data as 
shown in Equations 8.1 and 8.2. As in previous equations, e1 and e2 rep-
resent residuals, and the intercepts are i1 and i2. This model is also called 
a conditional model as the scores at the second time are conditioned on 
the scores on the fi rst time. Equation 8.1 represents the relation of both X 
measures, both M measures, and Y1 on Y2. In this model, the coeffi cient 
s1 represents the stability of the Y variable over time, after adjustment for 
other relations in the model. In Equation 8.1, the b1 coeffi cient codes the 
relation between M1 and Y2, b2 codes the relation between M2 and Y2, c′1 
codes the relation between X1 and Y2, and c′2 codes the relation between 
X2 and Y2. In Equation 8.2, a1 codes the relation between X1 and M2, and a2 
codes the relation between X2 and M2.

There are several possible estimators of the mediated effect in this 
two-wave regression design, â1b̂1, an estimator representing across time 
relations, and â2b̂2, a contemporaneous estimator refl ecting relations of 
measures at the second measurement. As argued by Cole and Maxwell 
(2003), the â1b̂1 estimator may be a better measure of the mediated effect 
because â1 represents the temporal relation between X and M and b̂1 repre-
sents the temporal relation between M and Y. The standard error formulas 
described in chapters 3 and 4 can be applied to test the signifi cance and 
compute confi dence intervals for either mediated effect. 

 Y2 = i1 + c′1X1 + c′2X2 + b1M1 + b2M2 + s1Y1 + e1  (8.1)

 M2 = i2 + a1X1 + a2X2 + s2M1 + e2 (8.2)

If the X variable codes an experimental manipulation between waves of 
measurement, then there will be a single X variable in the equations and 
correspondingly, there will be one a1 and one c1′ coeffi cient. Again there 
will be estimators of the mediated effect, â1b̂1, which refl ects longitudinal 
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time relations, and â1b̂2, which refl ects an across time relation for â1, but 
a within time relation for b̂2. The â1b̂1 estimator may be preferable as it 
refl ects change across time. It will also be important to assess whether b̂1 
and b̂2 differ across groups as the intervention may change the relation 
between M and Y (see chapter 10 for more on moderator models). 

A third alternative model for two-wave longitudinal data is an autore-
gressive mediation model. Autoregressive means regressed on itself, so 
in this model each variable is predicted by the same variable at an early 
wave. This model would not include contemporaneous relations among 
the variables, that is, the b2, c′2, and a2 parameters in Equations 8.1 to 8.2. 
As in the fi rst wave, the errors in the variables at the second wave would be 
allowed to covary refl ecting the fact that there are contemporaneous rela-
tions among variables, but the direction of the relations are not known. 

Although a statistically signifi cant longitudinal mediation relation is a 
convincing demonstration of a mediation relation, not all mediation rela-
tions may be captured in the longitudinal relations. One way that the lon-
gitudinal mediation estimator may miss true mediation is if the time of 
measurement differs from the timing of the mediated effect. On the other 
hand, the contemporaneous mediated effect may be infl ated by correlated 
errors introduced by measuring variables at the same wave. However, 
contemporaneous mediation may be important in some research contexts. 
It is important to realize that longitudinal data provide more information 
about longitudinal mediation effects but alternative explanations of the 
results remain. For example, say that Y actually causes M, which then 
causes X. It is possible that the mediation relation occurred between mea-
surements of X, M, and Y, so a model of longitudinal relations may fi nd 
longitudinal mediation consistent with X causes M which causes Y, when 
in fact the opposite relation exists. As stated many times in this book, 
theory, prior research, and randomized experimental designs are critical 
in judging the adequacy of a mediation hypothesis. 

8.6 Three-Wave Models
As you might expect given the complexity of two-wave models, there 
are many additional complexities for models with three or more waves. 
Assumptions regarding stability, stationarity, equilibrium, and timing are 
now important across three waves. Although these models are complex, 
they provide potentially more accurate information regarding the rela-
tions among variables. This section begins with the discussion of the lon-
gitudinal mediation models described in Cole and Maxwell (2003) and 
MacKinnon (1994) and then describes a general autoregressive mediation 
model described earlier (Jöreskog, 1979). An alternative longitudinal model 
based on growth in variables is then described. The complexity of these 
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202 Introduction to Statistical Mediation Analysis

models requires a covariance structure analysis program as described in
chapters 6 and 7 to accurately estimate the parameters and standard errors 
of the model parameters. 

Autoregressive Model I. The fi rst longitudinal three-wave mediation 
model is an extension of the autoregressive mediation model described in 
Gollob and Reichardt (1991) and elaborated by Cole and Maxwell (2003). 
The model is specifi ed in Equations 8.3 through 8.8 (intercepts and residu-
als are not shown to simplify presentation) and shown in fi gure 8.1. There 
are several important aspects of this model. First, relations one lag apart 
are specifi ed. With three waves it is possible to consider lag two effects or 
effects two waves apart, but these effects are not included in these equa-
tions. Second, the stability of the measures is assessed with the relation 
between the same variable over time; coeffi cient s1 for X, s2 for M, and 
s3 for Y. Third, only longitudinal relations consistent with longitudinal 
mediation are present among the variables, i.e., X1 is related to M2 and M2 
is related to Y3. Fourth, covariances among the variables at the fi rst wave 
are included, as are the covariances among the residual variances of X, M, 
and Y at each wave. Note that these covariances among residuals at each 
wave are not shown in the fi gure 8.1. In this model, the covariances among 
X, M, and Y at the same wave of measurement refl ect that the causal order 
of these measures is unknown.

The longitudinal relations between X1 and M2, coeffi cient a1, and 
between X2 and M3, coeffi cient a2, both represent the relation between X 
and M. Similarly, the longitudinal relations between M1 and Y2, coeffi cient 
b1, and between M2 and Y3, coeffi cient b2, represent the relation between 

1c ′
2c ′

b1 b2

s1

s2

s3

a1

s1

s2

s3Y1 Y2 Y3

M1 M2 M3

X1 X2 X3
a2

Figure 8.1. Autoregressive mediation model I.
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M and Y. There are several options for the mediated effect, a1b1 for the fi rst 
lag, a2b2 for the second lag, and a1b2 refl ecting the temporal ordering of 
the mediated effect. The mediated effect standard errors and formulas for 
the confi dence limits described earlier in this book can be applied to each 
mediated effect. The direct effect coeffi cients c′1 and c′2 refl ect longitudinal 
effects between adjacent waves from X1 to Y2 and X2 to Y3, respectively. 
Covariance structure computer programs allow for the test of the equality 
of paths, such as a1 and a2, to evaluate whether these relations are the same 
at the different waves.

 X2 = s1X1 (8.3)

 X3 = s1X2 (8.4)

 M2 = a1X1 + s2M1 (8.5)

 M3 = a2X2 + s2M2 (8.6)

 Y2 = b1M1 + c′1X1 + s3Y1 (8.7)

 Y3 = b2M2 + c′2X2 + s3Y2 (8.8)

As described in chapter 6, the parameters of this model can be estimated 
by fi rst specifying the free and fi xed parameters and then estimating the 
parameters and standard errors using a covariance structure analysis 
program. Often the covariance between residual variances at adjacent 
waves is included in longitudinal models. These covariances between 
adjacent measurement errors are added because the same measure taken 
over repeated occasions often has similar memory or retesting effects. It is 
also possible that there are lag 2 autoregressive relations among variables, 
which refer to the relation of a variable at one time to the same variable 
two waves later, for example, X1 on X3. Similar lag 2 relations may exist 
between different variables, such as the effect of X1 on M3 and Y3.

Autoregressive Model II. Another form of the autoregressive mediation 
model specifi ed in Equations 8.9 through 8.14 (intercepts and residuals not 
shown in the equations) includes contemporaneous mediation relations 
among X, M, and Y, as well as the longitudinal mediation effect described 
earlier and is shown in fi gure 8.2. Note that within each wave, except for 
the fi rst wave, the relations of X to M and M to Y are estimated. Con-
temporaneous estimates of mediated effects are then â3b̂3 at time 2 and 
â4b̂4 at time 3. Longitudinal autoregressive mediated effects include â1b̂1, 
â2b̂2, and the longitudinal mediated effect â1b̂2. The standard error of each 
mediated effect and combinations of these mediated effects can be found 
using the multivariate delta method described in chapter 4. It is possible 
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that the contemporaneous mediated effects are small or are opposite in 
sign from the longitudinal mediation effects when the true model may 
contain longitudinal mediation. It is also possible that the contemporane-
ous mediation relations may more closely match the true temporal rela-
tions in the mediation model so that the cross-sectional relation is more 
accurate than the longitudinal relation. The contemporaneous mediation 
relations may also be equivalent to correlated residuals at each measure-
ment. For example, for variables that have rapid temporal relations, a long 
time between measurements may lead to missing real relations. 

 X2 = s1X1 (8.9)

 X3 = s1X2 (8.10)

 M2 = a1X1 + s2M1 + a3X2 (8.11)

 M3 = a2X2 + s2M2 + a4X3 (8.12)

 Y2 = b1M1 + c′1X1 + s3Y1 + b3M2 (8.13)

 Y3 = b2M2 + c′2X2 + s3Y2 + b4M3 (8.14)

Autoregressive Model III. A third type of autoregressive longitudinal 
mediation model allows for cross-lagged relations among variables as 
specifi ed in Equations 8.15 through 8.20, for example, M1 to X2 and Y2 to X3 
and is shown in fi gure 8.3. In this model, the direction of relations among 

1c ′
2c ′

b1 b2

s1

s2

s3

a1

s1

s2

s3Y1 Y2 Y3

M1 M2 M3

X1 X2 X3
a2

b3

a3

b4

a4

Figure 8.2. Autoregressive mediation model II with longitudinal and contem-
poraneous mediation.
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X, M, and Y are all free to vary. The model violates the temporal prece-
dence of X to M to Y specifi ed by the mediation model because paths in 
the reverse direction are estimated such as M to X and Y to M. However, 
the model could be used to assess the possibility of cross-lagged relations 
among variables (d1, d2, and d3). Because it allows for these cross-lagged 
relations, it is probably a more reasonable model than assuming that these 
relations are zero. It is possible that the level of M at the second wave is 
predicted by the level of Y at the fi rst wave because M was related to Y at 
earlier time points. This relation of M to Y before the study is not observed 
because these variables were not measured at the earlier time. From this 
perspective, a nonzero relation between Y to M may be expected in a 
longitudinal study. There are many different potential mediated effects 
in this model, some of which are opposite to the hypothesized temporal 
order of the mediation relations.

 X2 = s1X1 + d1M1 + d2Y1 (8.15)

 X3 = s1X2 + d1M2 + d2Y2 (8.16)

 M2 = a1X1 + a3X2 + s2M1 + d3Y1 (8.17)

 M3 = a2X2 + a4X3 + s2M2 + d3Y2 (8.18)

 Y2 = c’1X1 + c’3X2 + b1M1 + b3M2 + s3Y1 (8.19)

 Y3 = c’2X2 + c’4X3 + b2M2 + b4M3 + s3Y2 (8.20)

Figure 8.3. Autoregressive mediation model III with longitudinal mediation.
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If X codes exposure to an intervention, then X is a single measure sim-
plifying the model. Ideally the experimental manipulation would occur 
after the fi rst or second wave of data collection so that change after the 
manipulation could be examined. With many repeated measures, more 
accurate modeling of growth over time can be assessed before and after 
the intervention. 

8.7 Mplus Longitudinal Autoregressive 
Mediation Model III
The Mplus program code for the autoregressive mediation model III 
closely follows Equations 8.15 through 8.20 listed earlier and is shown in 
Table 8.3. Covariances among the measures at each wave are specifi ed 
using the WITH command. The program can be easily changed to run the 
second and third type of autoregressive model described in this chapter 
by fi xing certain parameters to be zero.

Table 8.3 Mplus Program for the Longitudinal Autoregressive 
Mediation Model III

TITLE:
  AUTOREGRESSIVE MEDIATION MODEL III;
DATA:
  FILE IS c:\data;
VARIABLE:
  Names = X1 X2 X3 M1 M2 M3 Y1 Y2 Y3;
  Usevariables X1 X2 X3 M1 M2 M3 Y1 Y2 Y3;
ANALYSIS:
  TYPE IS meanstructure;
MODEL:
  X2 on X1 M1 Y1;
  X2 on X2 M2 Y2;
  M2 on X1 X2 M1 Y1;
  M3 on X2 X3 M2 Y2;
  Y2 on X1 X2 M1 M2 Y1;
  Y3 on X2 X3 M2 M3 Y2;
  M1 with X1 Y1;
  X1 with Y1;
OUTPUT:
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8.8 LISREL Longitudinal Autoregressive 
Mediation Model III
The program code for LISREL has the matrix specifi cations described in 
chapters 6 and 7 and is shown in Table 8.4 (assumes N = 100 and data from 
a fi le called c:\data). It is possible to specify what is called an all-Y model, 
which requires four matrices rather than eight matrices. An all-Y model is 
specifi ed here. The matrix for BE is also listed in the table. Note that each 
of the paths in the BE matrix correspond to effects in the autoregressive 
model where the columns represent X1, X2, X3, M1, M2, M3, Y1, Y2, and Y3 as 
predictor and rows represent them as dependent variables. In the second 
row of the BE matrix, for example, relations from X1 to X2, M1 to X2, and 
Y1 to X2 are freely estimated, as indicated by a 1 in the corresponding ele-
ments of the matrix.

Additional Autoregressive Models. A series of nested model can be used to 
test hypotheses regarding autoregressive mediation models. For example, 
the autoregressive model III can serve as the base model for several addi-
tional models such as a model that constrains all relations inconsistent with

Table 8.4 LISREL Program for the Longitudinal Autoregressive 
Mediation Model III

LONGITUDINAL AUTOREGRESSIVE MEDIATION MODEL III
DA NI=9 NO=100 MA=cm ME=ML
RA FI=c:\data
KM
SD
LA
‘X1’ ‘X2’ ‘X3’ ‘M1’ ‘M2’ ‘M3’ ‘Y1’ ‘Y2’ ‘Y3’
MO NY=9 NE=9 LY=ID BE=FU,FI PS=SY,FI TE=DI,FI
FR PS(1,1) PS(2,2) PS(3,3) PS(4,4) PS(5,5) PS(6,6) PS(7,7) 
PS(8,8) PS(9,9)
FR PS(1,4) PS(1,7) PS(4,7)
PA BE
0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 1 0 0
0 1 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 1 0 0
0 1 1 0 1 1 0 1 0
OU EF
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the temporal ordering of mediation to zero, that is, all paths from M to X, 
from Y to M, and from Y to X. A χ2 difference test can be used to test this 
hypothesis of any paths inconsistent with the temporal ordering of media-
tion. Other models include a test of an equal action theory (paths from X 
to M) effect that would compare a model with and without the â paths 
constrained to be equal. Corresponding tests of the equality of the stability 
coeffi cient (path from each variable to the same variable at the next wave), 
and the equality of the conceptual theory paths (M to Y) can also be made 
using this same approach. The covariances among adjacent error terms 
could be added to the model and an incremental χ2 test of adding these 
covariances could be used to assess the addition of these parameters. It may 
also be sensible in some cases to include lag 2 or higher relations among 
the same variables measured at one time and two times later. These mod-
els would suggest that the lag 1 relation is not suffi cient and there remain 
dependencies between the fi rst wave and third wave of measurement, for 
example. Similarly, correlated residual coeffi cients could replace the con-
temporaneous mediation effects as a way to incorporate nonspecifi c rela-
tions that may occur at each wave of measurement. Tests of these and other 
hypotheses may be conducted, starting with a complete model and making 
constraints to test hypotheses, or a simple model could be used with com-
parison of nested models used to decide the parameters to include in the 
longitudinal mediation model. These different types of models are more 
easily assessed with more waves of data. Some models cannot be estimated 
with three or even four waves of data. In this case, a set of nested model 
comparisons can be used to obtain a satisfactory model. 

Finally it is very important to note that the aforementioned models (and 
those described later in this chapter) were based on a single measure at each 
occasion. As described in chapter 7, measurement models for the measures 
can be incorporated in these models by including multiple indicators of 
latent variables, and these latent variables serve as the primary constructs 
in the longitudinal mediation model. With all of the models described ear-
lier, it may be useful to allow errors in the same variable to be correlated 
across time to refl ect that the measures were collected in the same way 
across the measurement occasions. The addition of measurement models 
also increases the number of alternative models that can be tested because 
the additional measures generally result in more degrees of freedom.

8.9 Strengths and Limitations of 
Autoregressive Mediation Models
There are many possible mediated effects in autoregressive mediation 
models including longitudinal and contemporaneous mediated effects. 
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The total mediated effects can be computed as the sum of the many differ-
ent longitudinal and contemporaneous mediated effects in the model. For 
example, the sum of the longitudinal mediated effects is the addition of each 
individual longitudinal mediated effect. The multivariate delta standard 
error can be derived for these complicated effects as described in chapter 4. 
However, at small samples, these estimates of the standard errors may be 
inaccurate because the delta method is based on asymptotic theory. 

Several limitations of autoregressive models are important. In particu-
lar the cross-lagged relations among the variables can be inaccurate. In 
fact, many different types of models may yield the same cross-lagged coef-
fi cients. Furthermore, a true model will produce different cross-lagged 
coeffi cients. For more on the limitations of these models see Dwyer (1983) 
and Rogosa (1988). Rogosa (1988) recommended growth curve models, 
which are described in the next section. 

One way to improve the interpretability of autoregressive models is to 
improve measurement of variables either by specifying latent variables 
or increasing the reliability of measures. As described in chapter 7, latent 
variables can be specifi ed for the measured constructs, which addresses 
some of the limitations of these models. 

8.10 Latent Growth Curve (LGC) Models 
The autoregressive models described earlier have been criticized for sev-
eral reasons. The most important criticisms are that growth or change 
in the measures over time and individual differences in growth are not 
explicitly modeled. Autoregressive models focus on the stability of the 
rank order of subjects on variables across time rather than trajectories of 
change across time. For the two-wave case, the difference score approach 
is the growth curve approach. With more than two waves, there are many 
interesting ways to proceed. The covariance structure analysis computer 
programs can be easily adapted to estimate the parameters of growth 
curve models.

When there are repeated measures for the independent variable, media-
tor, and dependent variables, mediation models can be tested with the latent 
growth curve (LGC) modeling framework (Duncan, Duncan, Strycker, Li, 
& Alpert, 1999; Muthén & Curran, 1997; Singer & Willet, 2003). One way 
that mediation effects can be investigated is with a parallel process model, 
in which three sets of latent growth factors are specifi ed, one set for the 
independent variable, one set for the mediator, and the other set for the 
dependent variable. In general, there are two parts of growth models that 
are represented by latent factors: (a) the intercept factor, representing the 
starting point of the growth trajectory at time 1, and (b) the slope factor, 
defi ning the shape of the developmental growth trajectory over time. The 
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simplest form of the slope factor codes linear change across time, but more 
complicated forms of growth can be specifi ed including logistic, qua-
dratic, cubic, and higher order growth. The latent growth curve mediation 
model includes the relations among the slope factor of the independent 
variable, the slope factor of the mediating variable, and the slope factor of 
the dependent variable. In this way mediation is assessed by investigating 
the relations among the growth in X, M, and Y.

The basic mediation LGC model examines whether the relation between 
an independent variable and a dependent variable is fully or partially 
accounted for by a mediating variable. Thus, the independent measure 
affects the mediating variable which, in turn, affects the dependent vari-
able. Extending this concept to the latent growth modeling framework, 
the mediation model examines whether the growth in the independent 
variable affects the growth trajectory of the mediating variable which, in 
turn, affects the growth trajectory of the dependent variable. The relation 
between the growth of the independent variable and the growth of the 
dependent variable is through two sources: the indirect or mediated effect 
via the growth of the mediator (ab) and the direct effect (c′). Equations 8.21 
through 8.29 specify these relations assuming t waves of measurement 
and individuals are represented by the i subscript.

Independent Variable Process:

 Xit = IXi + SXi*t + εXit (8.21)

 IXi = IX0i + υIXi (8.22)

 SXi = SX10i + υSXi (8.23)

Mediator Process:

 Mit = IMi + SMi*t + εMit (8.24)

 IMi = IM0i + γ1*IXi + υIMi (8.25)

 SMi = SM10i + γ5*IXi + γ2*IYi + a*SXi + υSMi (8.26)

Outcome Process:

 Yit = IYi + SYi*t + εYit (8.27)

 IYi = IY0i + γ3*IXi + υIYi (8.28)

 SYi = SY10i + c′*SXi + γ6*IXi + b*SMi + γ4*IMi + υSYi (8.29)
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Equation 8.21 specifi es a model for individual i’s data on X at time t that 
consists of an intercept, a slope factor, and error. Equations 8.22 and 8.23 
represent models for the intercept (IXi) and slope (SXi) for the X variable, 
respectively. These two equations represent the intercepts and slopes that 
vary across persons. Equations 8.24 through 8.26 represent the growth 
model for the mediator where individual i’s data on M is modeled by an 
intercept, a slope, and an error. Equation 8.25 specifi es the predictors of 
the intercept of M, with an intercept (IM0i) and γ1 representing the rela-
tion of the intercept of X to the intercept of M. Equation 8.26 specifi es the 
relation between the slope of M with an intercept (SM10i), an a parameter 
refl ecting the relation between the slope of X and the slope of M, γ5 rep-
resents the relation between the intercept of X and the slope of M, and 
γ2 represents the relation between the intercept of Y and the slope of M. 
Equations 8.27 through 8.29 are analogous to the mediator equations with 
the exception that there is an additional predictor of the slope in Y, c′, 
which represents the direct relation between the slope of X and the slope 
of Y, b represents the relation between the slope of M and the slope of Y, γ6 
represents the relation between the intercept of X and the slope of Y, and 
γ4 represents the relation between the intercept of M and the slope of Y. 

The random intercepts (IXi, IMi, and IYi) in Equation 8.22, 8.25, and 8.28 
represent the initial status of the independent variable, mediator and the 
dependent variable, respectively. The slope of the mediator (SMi) is infl u-
enced by the slope of the independent variable (SXi) and the initial status 
of the outcome process (IYi). The slope of the outcome (SYi) is infl uenced not 
only by the intercept (IXi) and slope (SXi) of the independent variable and 
the intercept of the mediator (IMi) but also by the slope of the mediator (SMi). 
In many cases it will be preferable to specify covariances among intercepts 
(and slopes) rather than directed paths in Equations 8.21 to 8.29.

Cheong, MacKinnon, and Khoo (2003) described a method to assess 
mediation of a prevention program in the LGC framework in which the 
growth curves of the mediator and the outcome were modeled as distinct 
parallel processes infl uenced by a binary independent variable. When the 
independent variable (X) is group membership under random assign-
ment, the coeffi cients γ1 and γ3, denoting the relation between the inde-
pendent variable and the random intercepts, are not different from zero. 
The mediated effect is estimated by the product of the coeffi cients â and 
b̂. Figure 8.4 represents a parallel process growth curve model for media-
tion, for which the trajectories of the mediator and the outcome processes 
are modeled as linear.

One criticism of the parallel process model of mediation is that the 
mediation relation is correlational such that the slope in X is correlated 
with the slope in M and the slope in M is correlated with the slope in Y 
when X, M, and Y are assessed at the same occasions. The interpretation 
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212 Introduction to Statistical Mediation Analysis

of this correlation between the slopes is that the change in M is related 
to change in Y, not that prior change in M is related to later change in Y. 
An interesting alternative to this model is a two-stage piecewise parallel 
process model, which can be more sensitive than the single-stage parallel 
process model in estimating mediated effects in a situation in which the 
trajectory shape changes across time (Cheong et al., 2003). In a two-stage 
parallel process model, the growth of the mediator and the outcome pro-
cess can be modeled separately for the earlier periods and for the later time 
periods. Thus, the mediated effects can be evaluated at different periods, 
that is, the mediated effect via the earlier growth of the mediator on the 
earlier growth of the outcome, the mediated effect via the earlier growth of 
the mediator on the later growth of the outcome, and the mediated effect 
via the later growth of the mediator on the later growth of the outcome.

Although specifying latent growth curve models addresses some 
limitations of autoregressive models, several criticisms of these models 
remain. Like autoregressive models, measurement is critical and may 
even be more important. The measure itself may change over time, which 
may yield a confusing representation of change over time. It is possible 
that what might be perceived as change over time is actually different 
measurement over time. As a result, investigation of measurement invari-
ance is often conducted as part of LGC modeling. It is also helpful to test 

a

b

1c

X1 X2 X3

M1 M2 M3

IXi
SX

IMi SM

Y1 Y2 Y3

IYi SY

Figure 8.4. Latent growth curve mediation model. Note that IXi→SMi, IYi→SMi, 
IXi→SYi, and IMi→SYi from Equations 8.21–8.29 not shown to simplify Figure 8.4.
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several different models of change over time for each variable separately 
before investing parallel process or two-stage LGC models. In this way, 
the change in each variable is established before the relation among the 
variables is assessed. 

There are several steps in assessing mediation with latent growth curve 
modeling as described in Cheong et al. (2003). A fi rst step requires detailed 
modeling of each individual variable over time, including assessment of 
different models for growth over time: linear, quadratic, exponential, logis-
tic, cubic, and so on. This work includes plotting the data and studying the 
distribution of the dependent variable. The possibility of different growth 
rates among the variables, X, M, and Y, and the possibility of differential 
growth across levels of X can be investigated. If X codes assignment to con-
ditions, this includes testing whether growth differs for treatment and con-
trol groups. The second step consists of combining the individual growth 
process models in a parallel process model and assessing mediation rela-
tions among the variables. Throughout this process standard methods for 
assessing model fi t and χ2 difference tests are applied. In the third step, 
estimates of the mediated effect and standard error are used to test medi-
ated effects. If the coeffi cients in the mediated effect are random, that is, 
the relation of X to M and the relation of M to Y vary across participants, 
then a standard error that takes this into account is needed (Kenny, Bol-
ger, & Korchmaros, 2003). The formula for the point estimate is shown in 
Equation 8.30 and the standard error is shown in Equation 8.31. Note that 
the formulas include the estimated covariance between the â and b̂ paths 
(cov(âb̂)) because these two coeffi cients represent random effects.

 âb̂random = âb̂ + cov(âb̂) (8.30)

 sâb̂
2  

random
 = â2sb̂

2 + b̂2sâ
2 + sb̂

2
sâ

2 + 2âb̂ cov(âb̂) + cov(âb̂)2 (8.31)

An example using these formulas is shown in chapter 9 for the case of 
random effects in a multilevel model.

8.11 Mplus Code for the Three-Wave Latent 
Growth Curve Mediation Model
The program code for Mplus shown in Table 8.5 closely follows the Equa-
tions 8.21 and 8.29. In addition to the equations, covariances among mea-
sures are specifi ed using the WITH command. The BY command specifi es 
the variables that are related to intercept and slope for each variable. The 
@1 and @2 commands give the fi xed values of the loadings relating each 
variable to the growth factors. Note that the loadings for intercepts are 1, 
1, and 1, and the loadings for the linear growth are 0, 1, 2.
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214 Introduction to Statistical Mediation Analysis

8.12 LISREL Code for the Three-Wave 
Latent Growth Curve Mediation Model
The specifi cation of latent growth curve models in LISREL shown in Table 
8.6 requires the addition of four new parameter matrices corresponding 
to the intercepts for the y variables, Tau-Y or τy, and for the x variables, 
Tau-X or τx, Alpha or α for the means of the endogenous latent variables 
η, and Kappa, κ, for the means of the exogenous latent variables ξ. Because 
an all-Y model is specifi ed, the Kappa and Tau-X matrices are not specifi ed 
in the LISREL program.

8.13 Latent Difference Score Models
The latent growth curve model estimates a slope based on several waves 
of data. Linear, quadratic, cubic, and higher way trends can be estimated 
to refl ect the time effect across all waves of measurement. For the mediation 

Table 8.5 Mplus Program for the Three-Wave Latent Growth Curve 
Mediation Model

TITLE:
  LATENT GROWTH CURVE MODEL 3 WAVES 3 VARIABLES;
DATA:
  FILE IS c:\data;
VARIABLE:
  Names = X1 X2 X3 M1 M2 M3 Y1 Y2 Y3;
  Usevariables X1 X2 X3 M1 M2 M3 Y1 Y2 Y3;
ANALYSIS:
  TYPE IS meanstructure;
MODEL:
  i1 by Y1@1 Y2@1 Y3@1;
  s1 by Y1@0 Y2@1 Y3@2;
  i2 by M1@1 M2@1 M3@1;
  s2 by M1@0 M2@1 M3@2;
  i3 by X1@1 X2@1 X3@1;
  s3 by X1@0 X2@1 X3@2;
  s1 on i2 i3 s2 s3; s2 on i1 i3 s3; 
  i2 on i3; i1 on i3;
  i1 with s1; i2 with s2; i3 with s3;
  [Y1@0 Y2@0 Y3@0
  M1@0 M2@0 M3@0
  X1@0 X2@0 X3@0
  i1-i3 s1-s3];
OUTPUT:
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model, the slope of X is related to the slope of M, which is related to the 
slope of Y. The two-stage piecewise parallel process latent growth model 
described earlier provides a way to evaluate the effect of earlier growth 
of mediator, for example, on later growth in the outcome variable Y. Sim-
ilarly, it is often useful to examine the change between pairs of waves 
as described in a latent difference score model (Ferrer & Mc Ardle, 2003; 
McArdle, 2001; McArdle & Hamagami, 2001; McArdle & Nesselroade, 
2003). In this model, fi xed parameters and hypothesized latent variables 
are used to specify latent difference (LD) scores. By specifying latent dif-
ferences, the model represents dynamic change in terms of the difference 
between waves. A latent difference score mediation model is shown in 
fi gure 8.5. Looking at the model for X1, X2, and X3, the latent difference 
is obtained by fi xing two paths at 1, the path from the time 1 to the time 
2 measure and the path from the latent difference to the time 2 measure. 
Because of these constraints, the latent difference between the two waves 

Table 8.6 LISREL Program for the Latent Growth Curve Mediation Model

LATENT GROWTH CURVE MODEL
DA NI=9 MA=CM ME=ML NO=100
RA FI=c:\data
LA
‘X1’ ‘X2’ ‘X3’ ‘M1’ ‘M2’ ‘M3’ ‘Y1’ ‘Y2’ ‘Y3’ 
MO NY=9 NE=9 LY=FI BE=FU,FI PS=SY,FI TE=DI,FI TY=FU,FI AL=FR 
FR PS(1,1) PS(2,2) PS (3,3) PS(4,4) PS(5,5) PS(6,6)
FR PS(2,1) PS(4,3) PS (6,5)
VA LY
1 0 0 0 0 0
1 1 0 0 0 0
1 2 0 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 1 2 0 0
0 0 0 0 1 0
0 0 0 0 1 1
0 0 0 0 1 2
PA BE
0 0 0 0 0 0
0 0 1 0 1 0
1 0 0 0 0 0
1 1 0 0 1 0
1 0 1 0 0 0
1 1 1 1 0 0
OU AL
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is obtained. This model may be especially useful in situations in which it 
is expected that the predictors of change are different at different waves of 
measurement. One common example of these effects may occur in experi-
mental research, in which the effects of a manipulation affect change 
early in a process, but these effects may not be present on the change at 
later waves. That is, the intervention affects change in a dependent vari-
able at time 1 and time 2 but does not affect change between later waves. 
The latent difference score model is not necessarily constrained to repre-
sent change between two waves, and it is possible to devise models that 
represent the change in the change between waves (i.e., second deriva-
tives; Malone, Lansford, Castellino, Berlin, Dodge, Bates & Pettit, 2004) 
and models representing moving averages are also possible.

Figure 8.5 shows a latent difference mediation model in which the rela-
tion of X1 to the latent difference of ΔM2 represents the a path for rela-
tion of X1 to the latent difference ΔM3. The original formulation of the 
latent difference model was programmed in the reticular activation 
model (RAM) devised by McDonald and colleagues (McArdle & Mc-
Donald, 1984). The RAM model requires only three matrices to represent 
any covariance structure model, although the matrices do not directly 
represent substantive relations as with the EQS and LISREL formulation. 

Figure 8.5. Latent difference score mediation model.
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Another version of the latent difference score model includes paths 
relating the latent differences to each other. There are many different 
potential mediation effects in this type of model corresponding to media-
tion effects for contemporaneous change and mediation effects for lon-
gitudinal change. An example of contemporaneous change includes the 
relation between change in the same waves, for example, change in X1 and 
X2 being related to change in M1 and M2, the a coeffi cient, and change in 
M1 and M2 is related to change in Y1 and Y2, the b coeffi cient. Longitudinal 
mediation change corresponds to change in earlier waves that is related to 
change at later waves. An example of a mediation effect with contempora-
neous and longitudinal change relations is the latent difference between 
X1 and X2 being related to the latent difference between M1 and M2, for the 
a coeffi cient, which is in turn related to the latent difference between Y2 
and Y3, the b coeffi cient.

The original formulation of the latent difference score model (Ferrer & 
McArdle, 2003) is actually different from the models described earlier. In 
the classic latent difference score model, a latent factor is included in the 
same manner as described earlier with paths predicting each latent differ-
ence score. The paths from the latent factor to the latent difference scores 
are called α paths and are constrained to be equal to each other. That is, 
the latent factor predicts each difference score to the same magnitude and 
represents latent change across time. There would be separate latent fac-
tors for X, M, and Y for the multiple process mediation model. Similarly all 
paths from the earlier score of a wave to the subsequent latent difference 
score are constrained to be equal and these paths are called β paths. Dif-
ferent specifi cations of these α and β paths correspond to different models 
for change over time. If β is set to zero, then the model is a constant change 
score model quantifi ed by the α coeffi cient. Specifying α = β = 0 corre-
sponds to a no change score model (McArdle & Hamagami, 2001). 

8.14 Application of Autoregressive and Growth Curve 
Models to the Evaluation of a Prevention Program
To illustrate the longitudinal mediation models, the analyses of a study of 
the effects of an anabolic steroid prevention program are presented. Par-
ticipants received either an anabolic steroid prevention program (X = 1) or 
a pamphlet (X = 0) designed to prevent steroid use. The participants in the 
study provided measures before the football season, immediately after 
the season, in the fall before next year’s season, and in the fall at the end 
of the next season. There were a total of four waves of observation. The 
program was delivered to about half of the participants between the fi rst 
and second measurement. Although there are many potential mediators to 
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examine, the mediating effect of perceived severity of anabolic steroid use 
on intent to use anabolic steroids was selected for illustration here. A goal 
of the program was to increase the perceived severity of anabolic steroid 
use, which was hypothesized to reduce intentions to use anabolic steroids. 
The computer programs to estimate the parameters of this model and the 
output from the Mplus programs are shown in Tables 8.7 and 8.8.

The Mplus code, shown in Table 8.7, specifi es the autoregressive model 
in Equations 8.3 through 8.8 extended to four waves. Note that this model 
includes autoregressive paths consistent with the mediation hypothesis. 
Only lag 1 relations are specifi ed in this model. The “MODEL RESULTS” 
section contains the coeffi cients, standard errors, and critical ratios for the 
paths. For example, baseline intentions (ŝ = 0.533, se = 0.037), baseline per-
ceptions of severity (â = −0.168, se = 0.036), and group (b̂ = −0.200, se = 0.084) 
were signifi cantly related to wave C intentions. At wave D, group is no 
longer statistically signifi cant, but the mediator at wave C is signifi cantly 
related to intentions at wave D, providing longitudinal evidence for the 
b̂ path (b̂ = −0.147, se = 0.046). Group is signifi cantly related to the mediator 
at wave C (â = 0.477, se = 0.106), providing evidence for the â path. There 
are other statistically signifi cant mediated effects from the mediator to the 
dependent variable at wave E, but there is only evidence for the â path at 
wave C for perceived severity. This signifi cant â path is part of mediation 
effects at later waves.

The overall fi t of the model is not very good with a root mean square 
error of approximation (RMSEA) = 0.116, suggesting that more analysis is 
necessary. In particular, the additional paths in the autoregressive II and III 
models provide better fi t to the data as you are asked to do in exercise 8.4.

Table 8.8 shows the results for the latent growth curve model for a dif-
ferent mediator and different dependent variable than in the last example 
(Note that some relations in Equations 8.21 to 8.29 are not estimated in 
the model, e.g., IXi→IMi). In the latent growth curve model, the mediated 
effect through belief that the media provides accurate information about 
health and nutrition on a nutrition behaviors measure was investigated. 
In the fi rst model (not shown here), linear growth in the mediator and the 
dependent variable was specifi ed as described earlier in this chapter. The 
problem with the initial growth curve model was that the main interven-
tion was delivered before the second wave of measurement, and it was not 
increased at later measurements. To model both the slope over time in the 
mediator and the dependent variable and to model the effect of group, an 
additional slope variable was included with a zero for baseline and a one 
for all subsequent waves of measurement. The results from that analysis 
are shown in Table 8.8. The relation from group to the slope of the media-
tor was signifi cant (â = −0.491, se = 0.069), and there was evidence that the 
slope in the mediator was signifi cantly associated with the slope in the 
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Table 8.7 Mplus Autoregressive Mediation Model and Selected Output

    TITLE:
          AUTOREGRESSIVE MODEL FOUR WAVES;
    DATA:
          FILE IS c:\Medbook h\New0204\c3medBtoG.csv;

    VARIABLE:
           Names = ID GROUP SCHOOL INTENT NUTRIT STRTRN KNWAS 

CCHTL PERTL PERIN TEMIN NORMS RESIST SEVER SUSCEP 
MEDIA PROAS CONAS CINTENT CNUTRIT CSTRTRN CKNWAS 
CCCHTL CPERTL CPERIN CTEMIN CNORMS CRESIST CSEVER 
CSUSCEP CMEDIA CPROAS CCONAS DINTENT DNUTRIT 
DSTRTRN DKNWAS DCCHTL DPERTL DPERIN DTEMIN DNORMS 
DRESIST DSEVER DSUSCEP DMEDIA DPROAS DCONAS 
EINTENT ENUTRIT ESTRTRN EKNWAS ECCHTL EPERTL 
EPERIN ETEMIN ENORMS ERESIST ESEVER ESUSCEP EMEDIA 
EPROAS ECONAS FINTENT FNUTRIT FSTRTRN FKNWAS 
FCCHTL FPERTL FPERIN FTEMIN FNORMS FRESIST FSEVER 
FSUSCEP FMEDIA FPROAS FCONAS GINTENT GNUTRIT 
GSTRTRN GKNWAS GCCHTL GPERTL GPERIN GTEMIN GNORMS 
GRESIST GSEVER GSUSCEP GMEDIA GPROAS GCONAS 
cohort;

          Missing = all (-99);
          Usevariables= GROUP SEVER CSEVER DSEVER ESEVER
          INTENT CINTENT DINTENT EINTENT;
          useobservations = cohort<=1;
    ANALYSIS:
          TYPE IS  meanstructure;
          iteration=50000;
          convergence=.000001;
          coverage=.05;
          h1convergence=.000001;
    MODEL:
        CINTENT ON GROUP INTENT SEVER;
        DINTENT ON GROUP CINTENT CSEVER;
        EINTENT ON GROUP DINTENT DSEVER;
        CSEVER ON GROUP SEVER;
        DSEVER ON GROUP CSEVER;
        ESEVER ON GROUP DSEVER;
        GROUP WITH INTENT SEVER;
        INTENT WITH SEVER;
        CINTENT WITH CSEVER;
        DINTENT WITH DSEVER;
        EINTENT WITH ESEVER;

(continued)

ER64296_C008.indd   219ER64296_C008.indd   219 11/14/07   11:45:00 AM11/14/07   11:45:00 AM



220 Introduction to Statistical Mediation Analysis

Table 8.7 (Continued)

    OUTPUT:

Number of groups                                1
Number of observations                        436

Number of y-variables                           6
Number of x-variables                           3
Number of continuous latent variables           0

Observed variables in the analysis
   GROUP     SEVER     CSEVER    DSEVER    ESEVER    INTENT
   CINTENT   DINTENT   EINTENT

Estimator                                      ML
Maximum number of iterations                50000
Convergence criterion                   0.100D-05

Input data file(s)
  c:\Medbook h\New0204\c3medBtoG.csv

Input data format  FREE

TESTS OF MODEL FIT

Chi-Square Test of Model Fit

          Value                            103.257
          Degrees of Freedom                    15
          P-Value                           0.0000

Chi-Square Test of Model Fit for the Baseline Model

          Value                           1132.131
          Degrees of Freedom                    33
          P-Value                           0.0000

CFI/TLI

          CFI                                0.920
          TLI                                0.823
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Table 8.7 (Continued)

Loglikelihood

          H0 Value                       -5405.114
          H1 Value                       -5353.486

Information Criteria

          Number of Free Parameters             39
          Akaike (AIC)                   10888.228
          Bayesian (BIC)                 11047.256
          Sample-Size Adjusted BIC       10923.490
Mplus VERSION 2.01
AUTOREGRESSIVE MODEL FOUR WAVES;

            (n* = (n + 2) / 24)

RMSEA (Root Mean Square Error Of Approximation)

          Estimate                           0.116
          90 Percent C.I.                    0.096  0.138
          Probability RMSEA <= .05           0.000

SRMR (Standardized Root Mean Square Residual)

          Value                              0.088

MODEL RESULTS

                   Estimates     S.E.  Est./S.E.

 CINTENT  ON
    GROUP             -0.200    0.084     -2.384
    INTENT             0.533    0.037     14.330
    SEVER             -0.168    0.036     -4.677

 DINTENT  ON
    GROUP              0.003    0.109      0.029
    CINTENT            0.351    0.045      7.732
    CSEVER            -0.147    0.046     -3.169

 EINTENT  ON
    GROUP              0.042    0.092      0.456
    DINTENT            0.424    0.040     10.587
    DSEVER            -0.183    0.040     -4.584

(continued)
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Table 8.7 (Continued)

CSEVER   ON
    GROUP              0.477    0.106      4.479
    SEVER              0.400    0.043      9.374

 DSEVER   ON
    GROUP              0.042    0.114      0.371
    CSEVER             0.442    0.046      9.638

 ESEVER   ON
    GROUP              0.118    0.108      1.095
    DSEVER             0.495    0.042     11.848

 GROUP    WITH
    INTENT            -0.014    0.027     -0.497
    SEVER              0.014    0.030      0.470

 INTENT   WITH
    SEVER             -0.516    0.073     -7.115

 CINTENT  WITH
    CSEVER            -0.290    0.048     -6.028

 DINTENT  WITH
    DSEVER            -0.566    0.067     -8.436

 EINTENT  WITH
    ESEVER            -0.367    0.053     -6.863

 Residual Variances
    CSEVER             1.220    0.083     14.765
    DSEVER             1.342    0.091     14.765
    ESEVER             1.240    0.084     14.765
    CINTENT            0.759    0.051     14.765
    DINTENT            1.224    0.083     14.765
    EINTENT            0.897    0.061     14.765

 Variances
    GROUP              0.247    0.017     14.765
    SEVER              1.538    0.104     14.765
    INTENT             1.320    0.089     14.765

 Means
    GROUP              0.447    0.024     18.782
    SEVER              5.865    0.059     98.743
    INTENT             1.609    0.055     29.239
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dependent variable (b̂ = 0.823, se = 0.426) consistent with the mediation 
model. This model included both time trends and a code to test the pro-
gram. The model also had an RMSEA = 0.026, which suggests good fi t. It 
appears that the program altered change in the beliefs about media, and 
this was associated with better nutrition. Note that the estimation of the 
model was conducted using a missing data analysis strategy so that all 
data, even partial data, were used in the analysis. The “Missing = All *” 
indicates that missing data are indicated by a “*” and the “Type is miss-
ing h1 meanstructure” line selects full information maximum likelihood 
estimation.

8.15 Additional Longitudinal Models
There are other longitudinal models in addition to the autoregressive and 
latent growth models described here. Curran and Bollen (2001) and Bollen 
and Curran (2004) describe a model that combines features of the latent 
growth curve model with the autoregressive model (Curran & Hussong, 
2003) called an autoregressive latent trajectory (ALT) model. The ALT 
model includes both latent growth along with paths between adjacent 
measures of the same variable. These models may be especially appro-
priate if the latent growth does not adequately refl ect dependency across 
time. Another alternative model includes traits for measures over time 
along with dependence among adjacent waves (Jackson & Sher, 2003).

One other potential model for mediational relations is a differential 
equation model (Arminger, 1986; Boker & Nesselroade, 2002; Dwyer, 1992) 
for X, M, and Y. Differential equation models are generally considered 
the language of science because they represent relations among variables 
in continuous time. These models do not have the problem of different 
time intervals of measurement because the model parameters are in a 
continuous time metric. The models are dynamic and include negative 
and positive feedback loops, again in continuous time, which correspond 
most clearly to the notions of stability, feedback, and equilibrium. In this 

Table 8.7 (Continued)

 Intercepts
    CSEVER             3.433    0.259     13.251
    DSEVER             3.138    0.275     11.424
    ESEVER             2.860    0.248     11.522
    CINTENT            1.878    0.244      7.692
    DINTENT            2.023    0.313      6.470
    EINTENT            2.028    0.274      7.389
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Table 8.8 Mplus Latent Growth Curve Mediation Model and Selected Output

Mplus VERSION 4.1
MUTHEN & MUTHEN
08/30/2006  11:54 AM

INPUT INSTRUCTIONS

    TITLE:
           Chapter 8 Latent Growth Model with 4 Wave and 3 

Variables;
    DATA:
          FILE IS Chap8_ATLASBtoE.csv;

    VARIABLE:
          Names =  group nutrit media cnutrit cmedia
                   dnutrit dmedia enutrit emedia;
          Missing = ALL *;
          Usevariables= group media cmedia dmedia emedia
                        nutrit cnutrit dnutrit enutrit;
    ANALYSIS:
          TYPE IS missing h1 meanstructure;
          iteration=50000;
          convergence=.000001;
              coverage=.05;
          h1convergence=.000001;
    MODEL:
        i1 by media@1 Cmedia@1 Dmedia@1 Emedia@1;
        s1 by media@0 Cmedia@.3 Dmedia@1 Emedia@1.3;
        s3 by media@0 Cmedia@1 Dmedia@1 Emedia@1;

        i2 by nutrit@1 Cnutrit@1 Dnutrit@1 Enutrit@1;
        s2 by nutrit@0 Cnutrit@.3 Dnutrit@1 Enutrit@1.3;
        s4 by nutrit@0 Cnutrit@1 Dnutrit@1 Enutrit@1;

        s1 on i2;
        s2 on i1 s3 group;
        s3 on i2 group;
        s4 on s3 i1 group;

        [media@0 Cmedia@0 Dmedia@0 Emedia@0
        nutrit@0 Cnutrit@0 Dnutrit@0 Enutrit@0
        i1-s4];

    OUTPUT:
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Table 8.8 (Continued)

Chapter 8 Latent Growth Model with 4 Wave and 3 Variables;

SUMMARY OF ANALYSIS

Number of groups                                           1
Number of observations                                  1506

Number of dependent variables                              8
Number of independent variables                            1
Number of continuous latent variables                      6

Observed dependent variables

  Continuous
   MEDIA     CMEDIA    DMEDIA    EMEDIA    NUTRIT    CNUTRIT
   DNUTRIT   ENUTRIT

Observed independent variables
   GROUP

Continuous latent variables
   I1         S1         S3         I2         S2         S4

Estimator                                                 ML
Information matrix                                  OBSERVED
Maximum number of iterations                           50000
Convergence criterion                              0.100D-05
Maximum number of steepest descent iterations             20
Maximum number of iterations for H1                     2000
Convergence criterion for H1                       0.100D-05

Input data file(s)
  Chap8_ATLASBtoE.csv

Input data format  FREE

SUMMARY OF DATA

     Number of patterns          21

COVARIANCE COVERAGE OF DATA

Minimum covariance coverage value   0.050

(continued)
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Table 8.8 (Continued)

     PROPORTION OF DATA PRESENT

           Covariance Coverage
             MEDIA     CMEDIA    DMEDIA    EMEDIA    NUTRIT
             _____     ______    ______    ______    ______
 MEDIA       0.973
 CMEDIA      0.778     0.801
 DMEDIA      0.555     0.497     0.569
 EMEDIA      0.321     0.295     0.325     0.331
 NUTRIT      0.973     0.779     0.556     0.322     0.974
 CNUTRIT     0.780     0.801     0.499     0.297     0.782
 DNUTRIT     0.559     0.501     0.569     0.327     0.560
 ENUTRIT     0.323     0.297     0.326     0.331     0.323
 GROUP       0.973     0.801     0.569     0.331     0.974

           Covariance Coverage
             CNUTRIT      DNUTRIT      ENUTRIT      GROUP
             _______      _______      _______      _____
 CNUTRIT      0.804
 DNUTRIT      0.503        0.573
 ENUTRIT      0.298        0.328        0.332
 GROUP        0.804        0.573        0.332       1.000

THE MODEL ESTIMATION TERMINATED NORMALLY

TESTS OF MODEL FIT

Chi-Square Test of Model Fit

          Value                             33.908
          Degrees of Freedom                    17
          P-Value                           0.0086

Chi-Square Test of Model Fit for the Baseline Model

          Value                           2037.965
          Degrees of Freedom                    36
          P-Value                           0.0000

CFI/TLI

          CFI                                0.992
          TLI                                0.982

ER64296_C008.indd   226ER64296_C008.indd   226 11/14/07   11:45:02 AM11/14/07   11:45:02 AM



Chapter Eight: Longitudinal Mediation Models 227

Table 8.8 (Continued)

Loglikelihood

          H0 Value                      -13124.173
          H1 Value                      -13107.219

Information Criteria

          Number of Free Parameters             35
          Akaike (AIC)                   26318.346
          Bayesian (BIC)                 26504.449
          Sample-Size Adjusted BIC       26393.263
            (n* = (n + 2) / 24)

RMSEA (Root Mean Square Error Of Approximation)

          Estimate                           0.026
          90 Percent C.I.                    0.013  0.038
          Probability RMSEA <= .05           1.000

SRMR (Standardized Root Mean Square Residual)

          Value                              0.029

MODEL RESULTS

                   Estimates     S.E.  Est./S.E.

 I1       BY
    MEDIA              1.000    0.000      0.000
    CMEDIA             1.000    0.000      0.000
    DMEDIA             1.000    0.000      0.000
    EMEDIA             1.000    0.000      0.000

 S1       BY
    MEDIA              0.000    0.000      0.000
    CMEDIA             0.300    0.000      0.000
    DMEDIA             1.000    0.000      0.000
    EMEDIA             1.300    0.000      0.000

 S3       BY
    MEDIA              0.000    0.000      0.000
    CMEDIA             1.000    0.000      0.000
    DMEDIA             1.000    0.000      0.000
    EMEDIA             1.000    0.000      0.000

(continued)
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Table 8.8 (Continued)

 I2       BY
    NUTRIT             1.000    0.000      0.000
    CNUTRIT            1.000    0.000      0.000
    DNUTRIT            1.000    0.000      0.000
    ENUTRIT            1.000    0.000      0.000

 S2       BY
    NUTRIT             0.000    0.000      0.000
    CNUTRIT            0.300    0.000      0.000
    DNUTRIT            1.000    0.000      0.000
    ENUTRIT            1.300    0.000      0.000

 S4       BY
    NUTRIT             0.000    0.000      0.000
    CNUTRIT            1.000    0.000      0.000
    DNUTRIT            1.000    0.000      0.000
    ENUTRIT            1.000    0.000      0.000

 S1       ON
    I2                -0.017    0.080     -0.210

 S2       ON
    I1                -0.159    0.065     -2.438
    S3                -0.236    0.373     -0.632

 S3       ON
    I2                -0.123    0.069     -1.769

 S4       ON
    S3                 0.823    0.426      1.932
    I1                -0.060    0.062     -0.964

 S2       ON
    GROUP             -0.419    0.196     -2.143

 S3       ON
    GROUP             -0.491    0.069     -7.111

 S4       ON
    GROUP              0.951    0.223      4.259

 I2       WITH
    I1                 0.208    0.038      5.510

 S2       WITH
    S1                 0.132    0.057      2.304
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 Table 8.8 (Continued)

 S4       WITH
    S1                -0.091    0.059     -1.543
    S2                -0.208    0.191     -1.092

 GROUP    WITH
    I1                -0.031    0.016     -1.910
    I2                -0.036    0.015     -2.432

 Means
    I1                 2.766    0.033     84.950
    I2                 3.966    0.029    135.555

 Intercepts
    MEDIA              0.000    0.000      0.000
    CMEDIA             0.000    0.000      0.000
    DMEDIA             0.000    0.000      0.000
    EMEDIA             0.000    0.000      0.000
    NUTRIT             0.000    0.000      0.000
    CNUTRIT            0.000    0.000      0.000
    DNUTRIT            0.000    0.000      0.000
    ENUTRIT            0.000    0.000      0.000
    S1                 0.061    0.320      0.192
    S3                 0.531    0.282      1.882
    S2                 0.504    0.189      2.675
    S4                 0.112    0.187      0.598

 Variances
    I1                 0.709    0.046     15.359
    I2                 0.754    0.075     10.105

 Residual Variances
    MEDIA              0.856    0.049     17.617
    CMEDIA             0.811    0.055     14.822
    DMEDIA             0.866    0.062     13.886
    EMEDIA             0.867    0.091      9.532
    NUTRIT             0.516    0.071      7.252
    CNUTRIT            0.375    0.113      3.301
    DNUTRIT            0.547    0.042     13.102
    ENUTRIT            0.484    0.062      7.839
    S1                 0.152    0.067      2.264
    S3                 0.134    0.059      2.271
    S2                 0.333    0.178      1.869
    S4                 0.230    0.218      1.056
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framework, the longitudinal model estimates are obtained using methods 
described earlier in this chapter, and these are treated as the integrated 
model. The task is to fi nd the differential equation model that led to the 
integrated model. Arminger (1986) outlined this approach for stochastic 
differential equation models. Differential equation models seem especially 
promising, given the continuous time orientation of these models and the 
modeling of reciprocal relations and negative and positive feedback rela-
tions. These models have been used to model attitude changes over time 
(Arminger, 1986) and relative weight and blood pressure (Dwyer, 1992). 
Computer programs for these models have been written (e.g., DIFFLONG; 
MacKinnon, Dwyer, & Arminger, 1992) but not for mediation relations.

8.16 Person-Centered Mediation Models
The dominant view of mediation is a variable-centered approach with 
which relations among variables are investigated. In contrast, person-
 centered tests for mediation focus on patterns of responses for individuals 
that are consistent or inconsistent with mediation (Robins & Greenland, 
1992; Witteman et al., 1998). The importance of developing person-oriented 
approaches to mediation is highlighted in an example in Collins, Graham, 
and Flaherty (1998) for a binary predictor (treatment/control), mediator 
(acquisition/failure to acquire refusal skills), and outcome (refused/failed 
to refuse drug offer). Collins et al. demonstrated that it is possible for tra-
ditional, variable-oriented approaches to detect mediated effects even 
when there are no differences between the treatment and control condi-
tions in terms of the proportion of people with responses consistent with 
the mediational process. This may occur when the impact of the mediator 
on the outcome varies as a function of the treatment group or when the 
mediator has different construct validity between groups (i.e., moderated 
mediation). 

Collins et al. (1998) specifi ed three conditions for mediation, assuming 
three waves for binary X, M, and Y. Following Collins et al., let T repre-
sent being in the treatment condition and C represent being in the control 
condition, M denotes being in the mediator stage and nM denotes not 
being in the mediator stage, Y denotes being in the outcome stage, and nY 
denotes not being in the outcome stage. A later time is indicated by t + x, 
where x represents some elapsed time.

Condition 1: The probability of undergoing the mediator to outcome 
sequence, given starting in the no mediator stage and in the no outcome 
stage, is greater in the treatment group than in the control group, as shown 
in Equation 8.32.

  P(Mt+x and Yt+x+y|T, nMt, nYt) > P(Mt+x and Yt+x+y|C, nMt, nYt) (8.32)
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Condition 2: The probability of a transition to the mediator stage, among 
those who are not already in the mediator stage, is greater in the treatment 
group than in the control group, as shown in Equation 8.33. This condition 
is analogous to the a parameter in the regression framework.

 P(Mt+x|nt, T) > P(Mt+x| nMt, C) (8.33)

Condition 3: As shown in Equation 8.34, being in the mediator stage 
increases the probability of a transition to the outcome stage for those not 
already in the outcome stage in both the treatment and control groups. 

 P(Yt+x |Mt, , nY, T) > P(Yt+x|nMt, nYt, T) and
 P(Yt+x |Mt, , nY, C) > P(Yt+x|nMt, nYt, C) (8.34)

In the original description of the method, sampling variability is not 
taken into account when the probabilities are compared. It seems rea-
sonable to conduct a t test of equal proportions for each condition using 
p(1 − p)/N for the variance of each proportion to form the pooled stan-
dard rror of the difference of proportions. 

Table 8.9 shows the data from Collins et al. (1998). The columns for 
Treatment, Mediator, and Outcome correspond to the different combina-
tions of Treatment, (treatment = 1, control = 0), Mediator (has mediator = 1 
and does not have mediator = 0), and Outcome (has the outcome = 1 and 
does not have the outcome = 0). For these data, Collins et al. assumed that 
all subjects start out without the mediator and without the outcome, so 

Table 8.9 Frequencies from Collins et al. (1998) and One Actual 
Data Example

Treatment Mediator Outcome

Frequency

C1nC2 C1nC3 C2C3 MED

1 1 1  60  45  36  65
1 1 0  15  30  54  71
1 0 1  30  45  18  39
1 0 0  45  30  42  76
0 1 1  45  27  36  89
0 1 0  30  18   9  74
0 0 1  30  63   0  41
0 0 0  45  42 105  82
Total 300 300 300 537
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it can be assumed that all frequencies are from subjects without these 
variables at baseline. The fi rst column, C1nC2, of frequencies corresponds 
to the case where Condition 1 is met (0.3 − 0.4 = 0.1, t = 1.8257; marginally 
signifi cant) and Condition 2 is not. The mediator has an effect on the out-
come, but the treatment did not affect the mediator. Condition 2 is not met 
because the probability of acquiring the mediator is 0.5 whether or not an 
individual received the treatment. Condition 3 is met because the prob-
ability of acquiring the outcome is greater if the mediator was acquired in 
both the control (t = 2.50) and treatment groups (t = 5.477). 

For the second column of numbers, C1nC3, Condition 1 is met because 
more persons acquired the mediator and the outcome in the treatment 
group compared with the control group (0.30 − 0.18 = 0.12, t = 2.458). Con-
dition 2 is met because the probability of acquiring the mediator in the 
control group is lower than that for the treatment group (0.3 − 0.5 = 0.2, 
t = −3.612). However, Condition 3 is not satisfi ed as the probability that an 
individual acquires the outcome is the same for each group (0.6) and does 
not depend on whether they acquired the mediator or not. 

Finally, the data in the third column, C2C3, illustrate some ambigu-
ity for tests of Condition 3. Specifi cally, the probability of acquiring the 
mediator associated with acquiring the outcome is nonsignifi cant in the 
treatment group (t = 1.27) but statistically signifi cant in the control group 
(t = 13.42). Condition 2 is satisfi ed because the probability of acquiring the 
mediator is higher in the treatment group than in the control group (0.6 − 
0.3 = 0.3, t = 5.477). However, Condition 1 is not satisfi ed because the prob-
ability of acquiring the mediator (0.24) was the same in both treatment 
and control groups. 

This method was applied to the data from the ATLAS example described 
earlier for longitudinal models with frequencies shown in the fourth 
column in Table 8.9. The median at baseline for nutrition behaviors and 
peer as an information source was used to dichotomize the third wave 
nutrition behaviors and second wave information source measure. These 
dichotomized measures were then classifi ed by treatment condition and 
the resulting frequencies are shown in the last column of Table 8.9. The 
results of this analysis do not suggest evidence for either Condition 1 
(0.3112 − 0.2590 = 0.0522, t = 1.3422) or Condition 2 (0.5699 − 0.5418 = 0.0281, 
t = 0.6540), but there was evidence for Condition 3 in the control (t = 3.69) 
and the treatment (t = 2.35) groups. 

There are several limitations to this model (Fairchild & MacKinnon, 
2005). First, the requirement of binary variables reduces the amount of 
information in the data and statistical power to detect effects. Second, the 
model as originally described requires that participants do not have the out-
come or mediator at the beginning of the study, which may be unrealistic 
for most applications of mediation. Nevertheless, the notion of classifying 
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individuals based on their scores on X, M, and Y is useful. For continuous 
data, it may be sensible to classify each individual according to whether 
they are consistent or inconsistent with an underlying mediational pro-
cess. Fairchild and MacKinnon (2005) further investigated this method 
and found that Condition 2 is the same requirement as a statistically sig-
nifi cant â path. There was no clear relation between Conditions 1 and 3 and 
values of the ĉ′, ĉ, or b̂ coeffi cients. 

Another development of person-oriented approaches is the mixture of 
person and variable relations, in which trajectories over time or other classes 
are identifi ed in the data as well as modeling the change in the variables 
over time (Muthén & Muthén, 2004). These models allow for clustering of 
individuals on the basis of their change over time. Once these clusters of 
persons are identifi ed, then variable-oriented methods are applied to each 
group. Here it may be possible to identify different mediators depending 
on the cluster of individuals.

8.17 Conclusions
The purpose of this chapter was to outline the strengths and limitations of 
several alternative approaches to investigating mediation in longitudinal 
data. Temporal precedence is a key idea in the identifi cation of mediating 
processes, and longitudinal data shed more light on these mechanisms 
than cross-sectional data. In general, it is diffi cult to recommend one model 
in all research contexts, and in many cases it will be wise to estimate sev-
eral of these longitudinal models for the same data set. The most con-
vincing relations among variables will be those that are consistent across 
different models. 

For designs with two waves of data, difference score, analysis of covari-
ance, and residualized change scores are options for analysis. Each model 
provides a different approach to modeling change over time. Difference 
score models assume that differences at the fi rst measurement will remain 
at the later measurement. Analysis of covariance and residualized change 
scores assume that scores will regress to the mean over time. Again the 
most convincing mediation relations are present for each model. 

The strengths and weaknesses of each model suggest a general approach 
to longitudinal mediation analysis. First, the latent growth model provides 
a general way to investigate whether there is signifi cant change over time 
and whether the change over time differs across participants. A fi rst step 
in longitudinal growth modeling is to fi t a growth model to each individ-
ual variable before estimating a model that includes all variables. If there 
is substantial growth in the variables over time, this suggests that a latent 
growth model may be ideal and subsequent analysis should be based on 
the latent growth model. Linear and nonlinear growth in each variable 
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in the mediation model should be considered on the basis of theory and 
empirical work. Once satisfactory models for each variable are obtained, a 
combined model is tested in which the longitudinal relations between X, 
M, and Y are included. Estimates of the mediated effect and its confi dence 
limits then provide some guidance regarding mediational processes.

In some cases, if changes between waves are expected or are observed, 
then the latent difference score or piecewise latent growth curve model 
may be ideal. These models allow for changes in mediators at differ-
ent times to be related to changes in the dependent variable at differ-
ent times. More convincing evidence for mediation is obtained when 
a change in a variable at earlier waves predicts change at later waves. 
Finally, the use of an X variable that represents random assignment to 
conditions also improves the interpretation of longitudinal relations 
because change in X must occur before a change in the mediator and the 
dependent variable.

If there is not signifi cant growth over time, then the autoregressive 
model is often the ideal model because of the way that longitudinal and 
cross-sectional mediation relations can be investigated in cross-sectional 
models. More complicated patterns of mediation across waves, such as 
multiple path mediation, are also easily incorporated in this model along 
with standard errors used for creating confi dence limits for the different 
mediated effects. 

The importance of temporal precedence has led some researchers to 
recommend the sole use of longitudinal data to assess relations includ-
ing mediation. There are situations in which cross-sectional models may 
provide information about mediation processes, but these relations must 
be interpreted in the context of the alternative models that may be oper-
ating when information on the timing of relations is not available. Many 
fi elds of science are based on cross-sectional data. The fi elds of geology 
and astronomy use cross-sectional data to examine longitudinal events. 
Aspects of cross-sectional data on geographic stratifi cation, for example, 
are used to infer change over geologic time. Red shift information is used 
to incorporate time effects in astronomy. Furthermore, individuals in pres-
tigious and effective jobs such as physicians and clinicians base diagno-
ses on cross-sectional measures of signs, symptoms, and tests. Physicians 
and clinicians study historical information based on forms completed 
at one time but also use longitudinal changes in response to treatments 
to diagnose and treat illness. Detectives complete entire investigations 
on the basis of cross-sectional analysis of crime scenes with inference 
regarding temporal precedence after the original event occurred. Timing 
of events is a critical component of cross-sectional interviews of suspects. 
In the social sciences, retrospective data regarding critical events in life 
history are used to map the temporal order of major events. The point 
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is that longitudinal data provide both cross-sectional and longitudinal 
information that is likely to more accurately expose mediation relations. 

As stated several times in this book, all studies can shed light on medi-
ational processes including cross-sectional studies and case studies. The 
important point is the quality of the conclusions regarding mediational 
processes. Longitudinal data have the capacity to provide more detailed 
information about these processes. Several new approaches to mediation 
relations will probably receive more application. The person-oriented 
latent transition models proposed by Collins et al. (1998) also provide use-
ful information regarding mediational processes. Current limitations to 
the model include the requirement of binary data. Differential equation 
models are also likely to receive additional development as they provide 
information on continuous time relations. To date, little is known about 
the correct models for longitudinal mediation. Advances in this area will 
probably require statistical development and theoretical development 
regarding the appropriate timing of mediation relations.

8.18 Exercises
8.1.  The following code is the SAS code for the formula (Burr & Nessel-

roade, 1990, p. 9) for the reliability of the difference score, rdd, given 
the variance of the fi rst measurement (s2x1), variance of the second 
measurement (s2x2), reliability of the fi rst measurement (rx1x1), reli-
ability of the second measurement (rx2x2), and correlation between 
the fi rst and second measurements (rx1x2).

  data diff;
  input s2x1 s2x2 rx1x1 rx2x2 rx1x2;
  sx1=sqrt(s2x1); sx2=sqrt(s2x2);
  num=s2x1*rx1x1 - 2*sx1*sx2*rx1x2+s2x2*rx2x2;
  den=s2x1-2*sx1*sx2*rx1x2 + s2x2;
  rdd=num/den;
  cards;
  1 1 .8 .8 .5

 a. Verify the reliability of the difference score values in Table 8.1. 
 b. If the true correlation between two waves is 0.6 and the reliabil-

ity of the scale is 0.8, what is the ratio of difference score reliabil-
ity to reliability of the individual score?

8.2. With your own four-wave data, estimate the mediated effect using 
an autoregressive, latent growth, and person-oriented approach. 
Compare the fi t and interpret each model. Which model is most 
appropriate for your data? Why?
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8.3. In what way can the estimate of the mediated effect from a parallel 
process growth curve model be considered correlational? How does 
the latent difference score model include time ordering in a way that 
may be more accurate than the latent growth curve model?

8.4. Estimate the second and third forms of the autoregressive model for 
the autrogressive example in the text. 

8.5. How could the person-oriented methods of Collins et al. (1998) be 
extended to continuous data?

8.6. What are the equations for the autoregressive and LGM model for 
fi ve waves of data?
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9

Multilevel Mediation 
Models

If there are effects of the social context on individu-
als, these effects must be mediated by interven-
ing processes that depend on characteristics of the 
social context, . . . The common core of these theo-
ries is that they all postulate one or more psycho-
logical processes that mediate between individual 
variables and group variables.

—Joop Hox, 2002, p. 7

9.1 Overview 
Chapter 9 extends the mediation model, described in chapters 3 and 5, to 
data that are collected at more than one level, typically at the individual 
and other levels such as schools, hospitals, or families. These multiple lev-
els of data complicate mediation analysis but also increase the informa-
tion available from mediation analysis. First, the statistical and conceptual 
issues in multilevel analysis are described. Next the use of a multilevel 
mediation model is described and illustrated with a hypothetical study 
of the effects of two different types of group therapy on depression. SAS 
and Mplus programs to conduct the analyses of the hypothetical data are 
described. Finally, applications of the mediation model to more compli-
cated patterns of mediation across and within different levels of analysis 
are discussed. 

9.2 Multilevel Data
Often studies are conducted in which the individuals measured are actu-
ally part of groups. Examples of these groups include schools, classrooms, 
hospitals, businesses, school districts, communities, and families. Groups 
may also correspond to geographical areas including census tracts, cities, 
states, and countries. Because individuals from the same group are likely 
to share characteristics, they are more likely to respond in the same way 
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on research measures compared with individuals in other groups. This 
dependency among individuals in the same group could be due to com-
munication among members, similar backgrounds, or similar response 
biases. As a result, the data from each subject are not independent from 
those of other subjects, thereby violating the assumption of independent 
observations required for accurate analysis using the methods described 
earlier in this book. The violation of independence is important because it 
can compromise statistical tests (Barcikowski, 1981).

Perhaps the clearest example of dependency in groups occurs when 
multiple observations are obtained for the same individual as in the lon-
gitudinal studies discussed in chapter 8. In a longitudinal study, partici-
pants are measured at two or more waves and participants’ scores tend 
to be more similar to each other than they are similar to scores for other 
participants. In this case, the repeated observations are obtained for indi-
viduals so that individuals are the groups and the repeated observations 
are the scores in each group. It is important to keep in mind that, although 
this chapter describes the multilevel model for individuals in groups 
such as schools or hospitals, the multilevel model also applies where the 
groups are individuals and the longitudinal measures are the scores in 
the groups defi ned by individual subjects.

9.3 Intraclass Correlation
A measure of the extent to which observations in the same group tend to 
respond in the same way is the intraclass correlation (ICC). The ICC has a 
long history. It was used by Fisher as a way to judge whether groups were 
signifi cantly different from each other. Haggard (1958) provides a good 
overview of the early applications of the ICC, and McGraw and Wong 
(1996) give an overview of more recent applications. Equation 9.1 describes 
a classic equation for the ICC,

 ICC
MS MS

MS k MS
B W

B W
= −

+ −( )1
 (9.1)

where MSB is the mean squared error between the groups, MSW is the 
mean squared error within groups, and k is the number of subjects in each 
group. The value of the ICC ranges from 1 to −1/(k − 1). Examples of ICCs 
in the school-based drug use literature are 0.02 for weekly smoking and 
0.01 for the number of cigarettes smoked (Murray et al., 1994). The average 
school level ICC for moderate physical activity for girls was .02 (Murray et 
al., 2004). The ICCs for mediating measures at the school level in Krull and 
MacKinnon (1999) ranged from 0.001 to 0.12. ICCs for the multilevel model 
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for longitudinal data for which observations are the repeated measures 
from the same participants often have much higher ICCs. 

If the subjects tend to respond in the same way, then there will be a 
positive ICC. When the ICC is nonzero, mediational analysis is subject 
to the violation of independence assumption as are other analytic tech-
niques (Krull & MacKinnon, 1999; Palmer, Graham, White, & Hansen, 
1998). Specifi cally, this analysis violates the independent observations 
assumption of ordinary least squares (OLS) estimation, and for a positive 
ICC the standard errors are too small and as a result, infl ate Type I error 
rates (Barcikowski, 1981; Moulton, 1986; Scariano & Davenport, 1987; Scott 
& Holt, 1982; Walsh, 1947). 

The signifi cance of the ICC can be tested with Equation 9.2: 

 F
k ICC

ICCg g k− − = + −
−1 1

1 1
1, ( )
( )

 (9.2)

where g is the number of groups and k is the number of subjects in each 
group. Although testing the signifi cance of the ICC is an important fi rst 
step in determining the effect of the violation of independence in a sample 
of data, even very small ICCs can distort signifi cance tests (Kreft, 1996; 
Muthén & Satorra, 1995). There are also various forms of the ICC that are 
a function of the design of a study and combinations of fi xed and random 
effects (McGraw & Wong, 1996). Similarly, the size of the ICC may change 
substantially when covariates are included in the analysis. There are dif-
ferent views regarding when an ICC is so large that it must be included in 
the analysis. Kreft (1996) suggests that an ICC less than 0.1 may be safely 
ignored in some situations. Others, such as Barcikowski (1981), note that 
even small ICCs can have substantial effects on signifi cance tests espe-
cially when the number of individuals in a cluster is large.

9.4 Traditional Analysis for a Nonzero ICC
Given the problem of a nonzero ICC on standard errors, researchers have 
typically used three options before multilevel models were introduced 
(Krull & MacKinnon, 1999). One option is to ignore the ICC and analyze 
the data as if there was no dependence among individuals, that is, ignore 
the groups altogether. More conservative signifi cance values, such as 0.01 
or .001, are then used to make some adjustment for the ICC effects on sig-
nifi cance testing. This method is unlikely to precisely adjust for the viola-
tion of independence. Bias is also possible because the single regression 
relation is a mixture of individual and group levels of analysis. 

Another option is to make an adjustment based on the value of the 
ICC. A measure called the variation infl ation factor (VIF) or design effect 
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(DE) is a simple function of the ICC, DE = 1 + (ICC(k − 1)), where k is the 
number of subjects in each group (Kish, 1965). If the number of subjects in 
each group is unequal, the harmonic mean of sample size for the groups is 
used for k. To correctly infl ate standard errors, the standard error should 
be multiplied by the design effect (Hox, 2002, p. 5). A design effect of 1 is 
consistent with simple random sampling of units. However, this adjust-
ment may not be optimal, and the multiple levels of the data may actually 
provide important additional information. The design effect is a good way 
to investigate the extent to which an ICC would affect results as it refl ects 
the amount that standard errors are increased owing to the ICC. 

A third option is to aggregate the data to the higher level of analysis 
and then analyze the data at the higher level. For example, if the data are 
from individuals in schools, then the data are aggregated to the school 
level, and the analysis is conducted on the school level means, ignor-
ing the information from individuals (e.g., MacKinnon et al., 1991). This 
approach avoids the problem with the ICC, but it can reduce statistical 
power because the sample size is now the number of aggregated units, 
not the total number of individual subjects. It is also possible that most of 
the variability in the data is at the individual, not the aggregate, unit of 
analysis (de Leeuw, 1992). Furthermore, often the purpose of a study is to 
identify effects at the individual level of analysis, which is typically the 
theoretical level at which the analysis is based. Another related limitation, 
called the ecological fallacy (Robinson, 1950), is that the relation between 
two variables may differ and may even have a different sign across levels 
of analyses (Burstein, 1980; Robinson, 1950). Robinson (1950) found a 0.53 
correlation between the percentage foreign born and the percentage illit-
erate for the 48 United States but a −0.11 correlation for the same variables 
measured from individuals. Relations between variables may also have 
different meanings at different levels of analysis. 

9.5 The Multilevel Model
Multilevel analysis solves the statistical problems introduced by the viola-
tion of the independence assumption and allows for investigation of rela-
tions across and within levels of analysis such as the mediation effect at 
the group level on individual measures (Bryk & Raudenbush, 1992; Hede-
ker, Gibbons, & Flay, 1994; Murray, 1998; Palmer et al., 1998). Multilevel 
analysis provides correct standard errors for clustered data and conse-
quently more accurate Type I error rates and appropriate statistical power. 
The model is considerably more complex than the single level mediation 
model and usually requires an iterative approach to estimate parameters 
and standard errors.
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There are several published examples of multilevel mediation analysis. 
Krull and MacKinnon (1999) incorporated the clustering of football player 
respondents within teams in mediation analysis of an anabolic steroid 
prevention program. Komro et al. (2001) conducted a multilevel media-
tion analysis of the effects of an alcohol prevention program delivered to 
schools. For both studies, the multilevel nature of the data was treated as a 
nuisance, that is, adjusted for in the mediation analysis of individual-level 
data rather than examining effects at different levels of analysis. Krull and 
MacKinnon (2001) outlined models for investigating mediation at both 
individual and group levels and applied the models to a study of play-
ers from football teams. Sampson, Raudenbush, and Earls (1997) examined 
neighborhood effects on violent crime in neighborhoods in Chicago, Illi-
nois. They tested a three-level model (where the fi rst level was for mea-
surement within each respondent) postulating that residential stability in 
a neighborhood reduces the collective effi cacy of the neighborhood, which 
increases violence. The mediated effect of collective effi cacy was tested by 
comparing the coeffi cient for the relation between residential instability 
and violence before and after adjustment for collective effi cacy in a multi-
level model. Raudenbush and Sampson (1999) later specifi ed a three-level 
mediation model that included latent variables, missing data, and unbal-
anced multilevel designs. They found evidence that the relation between 
neighborhood poverty concentration and perceived violence was mediated 
by social control. Mensinger (2005) found that schools with higher levels of 
confl icting gender roles were associated with more idealization of a super-
women construct which was, in turn, associated with disordered eating. 

9.6 Equations for Multilevel Mediation
There are many options for specifying multilevel mediation effects. One 
of the more common multilevel mediation models is discussed here as 
a start for describing additional models. For the case of individuals in 
groups and assignment of groups to one of two conditions, Equations 9.3 
to 9.9 specify multilevel models based on individual (Level 1) and group 
(Level 2) levels. The independent variable is at the group level, and the 
mediator and the dependent variables are at the individual level. At Level 
1, a model is specifi ed for individuals within each group. Parameters in 
this model are assumed to be random and vary in part as a function of 
predictors at the group level. At Level 2, another linear model is speci-
fi ed, but the dependent variable is the intercept (and slopes although only 
random intercepts are shown in these equations) in the Level 1 model. 
As a result, there are individual- and group-level equations for each of 
the three mediation equations described in chapter 3 (Equations 3.1, 3.2, 
and 3.3) because there are both individual- and group-level coeffi cients 
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as shown in Equations 9.3 to 9.9. In these equations, i subscripts refer to 
individuals and j subscripts refer to groups. Note that the value of the 
parameters β0j, eij, γ00, and u0j differ across the three-mediation Equations 
9.3 and 9.4, 9.6 and 9.7, and 9.8 and 9.9, even though the notation does not 
make this explicit. 

9.6.1 Equations for Y Predicted by X

 Individual Level 1: Yij = β0j + eij (9.3)

 Group Level 2: β0j = γ00 + cXj + u0j (9.4)

In Equation 9.3, the individual-level score on the dependent variable is 
equal to a group-level intercept β0j, plus an individual-level random error, 
eij associated with the ith individual in the jth group. The individual-level 
random error, eij, is assumed to have a normal distribution with Var(eij) = 
σ2. In Equation 9.4, the dependent variable is the group-level intercept, β0j, 
which is equal to the overall mean, γ00, plus the slope, c, relating the inde-
pendent variable, X, to the group-level intercepts and the random devia-
tion of the predicted group-level mean from the observed group-level 
mean, u0j. The deviations in the Level 2 group equation, u0j, are assumed to 
have a normal distribution with variation between group means, Var(u0j) 
= τoo. The c parameter is at the group level because assignment to condi-
tion is assumed to be at the group level for this example. The estimation of 
error terms at both levels of the model (êij at the individual level and û0j at 
the school level) allows for a nonzero ICC to be incorporated in the analy-
sis. As shown in Equation 9.5, random effect estimates of the variance 
between groups, τ̂oo, and the variance of the residuals at the individual 
level, σ̂ 2, provide an estimator of the residual ICC: 

 ICC /( )oo oo
� � �ˆ ˆ ˆτ τ σ2  (9.5)

Using this equation, the ICC conditional on other effects in the model can 
be easily calculated. For Equations 9.3 and 9.4, the ICC is conditional on 
the relation between X and Y at the group level, which is why it is called 
a residual ICC (i.e., dependency in scores for two people who share the 
same treatment group membership). 

9.6.2 Equations for Y Predicted by X and M

 Individual Level 1: Yij = β0j + bMij + eij (9.6)

 Group Level 2: β0j = γ00 + c′Xj + u0j (9.7)
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Equations 9.6 and 9.7 include two predictors, one at the individual level, 
M, and the other at the group level, X. The estimate of the b parameter is 
at the individual level, because the mediator is assumed to work through 
individual processes. The c′ parameter, on the other hand, is in the group-
level equation because the groups are assigned to conditions. There are 
several additional models that include the X and M predictors and that 
may be appropriate given the substantive context of the research. One 
such model investigates whether the slopes relating M to Y differ across 
the groups. This model would include two Level 2 regression equations, 
one for the random slope and one for the random intercept, so in prin-
ciple b in Equation 9.6 could be random. Yet another model would include 
the group-level mean of M as an additional predictor to investigate both 
group-level and individual-level relations between M and Y. The random 
slope model and the school and group-level predictor multilevel model 
will be estimated for an example data set later in this chapter.

9.6.3 Equations for M Predicted by X

 Individual Level 1: Mij = β0j + eij (9.8)

 Group Level 2: β0j = γ00 + aXj + u0j (9.9)

Equations 9.8 and 9.9 are analogous to Equations 9.3 and 9.4, but X pre-
dicts the dependent variable M rather than Y. The a parameter is esti-
mated at the group level because the assignment to conditions is at the 
group level for this example. Defi nitions of the other parameters in the 
model are the same as those for Equations 9.3 and 9.4.

Because of the complex structure of the multilevel model, including 
the error terms at multiple levels, the parameters of the model are not 
estimated with exact formulas but are instead estimated using iterative 
methods such as restricted maximum likelihood (REML) techniques, 
rather than the OLS methods typically used to estimate the parameters of 
single-level models. The standard error estimates for the multilevel model 
are consequently more accurate than those for a single-level individual-
as-unit-of-analysis model because they incorporate the dependence of 
subjects measured within groups (i.e., a nonzero ICC). 

The âb̂ and ĉ − ĉ′ estimators of the mediated effect, algebraically equiva-
lent in single-level models, are not exactly equivalent in the multilevel mod-
els (Krull & MacKinnon, 1999). This is because the weighting matrix used 
to estimate the model properly in the multilevel equations is typically not 
identical for each of the three equations. The non-equivalence between âb̂ 
and ĉ − ĉ′, however, is unlikely to be problematic because the discrepancy 
between the two estimates is typically small and unsystematic and tends 
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to vanish at larger sample sizes (Krull & MacKinnon, 1999). The standard 
error of the mediated effect is calculated using the same formulas described 
in chapters 3 and 5, except that the estimates and standard errors of â and 
b̂ may come from equations at different levels of analysis and may require 
the covariance between â and b̂. As described later, there are situations in 
which â and b̂ are random effects, and a different formula must be used to 
estimate the mediated effect (Kenny, Bolger, & Korchmaros, 2003). 

Centering, which usually consists of removing the group mean from 
predictors, is important when both group and individual-level effects of 
the same predictor are analyzed. In general, it is important to center pre-
dictor variables before estimation of multilevel models because the value 
and meaning of the intercept depends on the coding of the X variable 
(Using X to represent a predictor variable and Y to represent the depen-
dent variable). The intercept is the value of Y when all X variables are zero 
for any regression equation. If an X variable is not centered, then the inter-
cept will be the value of Y when X is zero, even when a zero value of X is 
impossible or not sensible. After centering the X variables by subtracting 
the mean of the variable, the intercept is the value of Y at the average value 
of X. In the case of including both group and individual-level predictors, 
it is also important to create a new variable by subtracting the group-level 
mean for each observation in that group. This will simplify interpretation 
and reduce any correlation between the group and individual-level pre-
dictor (Kreft, de Leeuw, & Aiken, 1995). In summary, there are three major 
ways of scaling predictors in the Level 1 equation (Hofmann & Gavin, 
1998): (a) raw metric—in which no centering occurs and Level 1 variables 
are left in their original metric; (b) grand-mean centering—in which the 
grand mean is subtracted from predictor variables; and (c) group mean 
centering—in which the mean of each group is subtracted from the score 
for each person in the group. These different options will be used in the 
multilevel analysis of an example later in this chapter. 

9.7 Hypothetical Study of Exercise 
Therapy for Depression
The following data are from a hypothetical study of group therapy for 
depression. A total of 16 groups were randomly assigned to one of two 
conditions so there were 8 groups in each condition. In each of the 16 
therapy groups, there were seven depressed persons. In one condition, 
the groups were assigned to receive a cognitive behavioral treatment pro-
gram. The other eight groups had a cognitive behavioral program and a 
special exercise program. Because interaction within the groups is part of 
the group therapy, it was expected that there would be some dependence 
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among subjects within each of the 16 groups. Indeed, the tasks required 
cooperation among group members, and in the exercise condition, all 
seven members of the group conducted the exercise program together. 
The independent variable was the assignment to the cognitive behavioral 
treatment or the cognitive behavioral treatment plus exercise program. 
The mediating variable was a measure of fi tness taken at the end of six 
weekly sessions. The dependent variable was the measure on a happiness 
scale at the end of 12 weeks. The researchers were interested in whether 
the addition of the exercise program would enhance the effects of the cog-
nitive behavioral therapy. Furthermore, they hypothesized that the exer-
cise program would work by changing the fi tness level of each person, 
which, in turn, would reduce depression and increase happiness. The 
researchers wanted to avoid a Type I error that could occur if they failed 
to include the clustering of subjects in groups in the data analysis. Fur-
thermore, they did not want to reduce the power to detect a real effect by 
analyzing the group means. 

Fabricated data for this hypothetical study of treatment for depression 
are shown in Table 9.1, where X is a binary independent variable (coded 0 
for the standard program and 1 for the new exercise program), M is the 
mediating variable (mean = 35.3036 and variance = 136.8800), Y is the 
dependent variable (mean = 41.8571 and variance = 210.9344), j represents 
the groups, and i represents the individual subjects. Three other variables 
were used in the multilevel analysis based on how the fi tness measure, 
M, was centered. First, the grand mean was subtracted from each value of 
the M variable to form the variable CM. Second, the average of the fi tness-
mediating variable in each group was used as a group-level measure of 
fi tness. For this measure, the grand mean of the fi tness measure was sub-
tracted from the average fi tness value for each group. The variable name 
for the group-level variable was MEANM. Third, the deviation of each 
participants’ fi tness score from the average fi tness in their group was used 
as an individual-level measure; that is, fi tness was centered within each 
group. The variable name for this variable was WITHINM.

There is evidence of clustering in the data for both the mediating and 
dependent variables. Applying Equation 9.2 for the dependent variable 
with MSB = 774.133 and MSW = 122.935, and k = 7, suggests a large ICC of 
.43 [F(15, 96) = 6.30, p < .01]. The ICC for the mediating variable was also 
large and equaled .38 [F(15, 96) = 5.30, p < .01]. These large ICCs suggest 
that participants in each group tend to respond in a more similar manner 
than participants in other groups. 

Mediation analysis at the individual level ignoring the grouping using 
Equations 3.2 and 3.3, led to an estimate of the mediated effect of 9.0247 
(sâb̂ = 1.8410) and zero was not in the interval formed by the lower confi dence 
limit (LCL) of 5.4164 and upper confi dence limit (UCL) of 12.6331. Ignoring 
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Table 9.1 Hypothetical Data for Exercise Group Therapy

Obs X M Y i j Obs X M Y i j

 1 1 23 31 1 1 57 0 23  2 1  9
 2 1 32 41 2 1 58 0 28 24 2  9
 3 1 32 41 3 1 59 0 28 24 3  9
 4 1 35 50 4 1 60 0 14 20 4  9
 5 1 42 41 5 1 61 0 28 24 5  9
 6 1 38 44 6 1 62 0 18 20 6  9
 7 1 38 44 7 1 63 0 23 10 7  9
 8 0 54 61 1 2 64 1 41 38 1 10
 9 0 32 42 2 2 65 1 41 38 2 10
10 0 54 61 3 2 66 1 54 50 3 10
11 0 15 33 4 2 67 1 44 25 4 10
12 0 32 14 5 2 68 1 54 50 5 10
13 0 22 26 6 2 69 1 44 42 6 10
14 0 38 44 7 2 70 1 61 53 7 10
15 0 24 44 1 3 71 0 28 19 1 11
16 0 27 45 2 3 72 0 21 36 2 11
17 0 24 44 3 3 73 0 28 19 3 11
18 0 27 35 4 3 74 0 25 22 4 11
19 0 31 35 5 3 75 0 25 22 5 11
20 0 27 35 6 3 76 0 34 43 6 11
21 0  4 25 7 3 77 0 16 31 7 11
22 1 40 31 1 4 78 1 44 39 1 12
23 1 33 47 2 4 79 1 44 45 2 12
24 1 33 47 3 4 80 1 22 36 3 12
25 1 33 50 4 4 81 1 44 45 4 12
26 1 53 59 5 4 82 1 40 50 5 12
27 1 53 59 6 4 83 1 44 45 6 12
28 1 42 73 7 4 84 1 25 38 7 12
29 1 47 74 1 5 85 1 42 47 1 13
30 1 38 43 2 5 86 1 42 47 2 13
31 1 18 45 3 5 87 1 47 45 3 13
32 1 47 74 4 5 88 1 39 40 4 13
33 1 38 43 5 5 89 1 39 45 5 13
34 1 38 56 6 5 90 1 39 53 6 13
35 1 26 57 7 5 91 1 39 45 7 13
36 0 20 26 1 6 92 0 28 29 1 14
37 0 32 43 2 6 93 0 24 24 2 14
38 0 20 26 3 6 94 0 28 29 3 14
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the individual-level data and analyzing the means for the 16 groups led to 
an â1b̂2 estimate of 6.9714, a larger standard error (sâb̂ = 4.3324), and a wider 
confi dence interval (LCL = −1.5201 and UCL = 15.4630) than the individual-
level analysis. Avoiding the problem with dependency within groups 
by conducting analysis of the 16 group means suggests that there is not 
statistically signifi cant mediation because zero was included in the con-
fi dence limits in the analysis of the means from the 16 groups. The indi-
vidual-level analysis led to the conclusion that the mediated effect was 
statistically signifi cant, but the individual-level analysis does not adjust 
standard errors for the nonzero ICC and the estimates mix both group 
level and individual-level relations. A multilevel analysis is necessary to 
incorporate the dependency among subjects in the same group. 

The presentation of the analysis of the example data is organized as 
follows. First, the results for a typical multilevel mediation analysis using 
Equations 9.3, 9.4, 9.6, 9.7, 9.8, and 9.9 are described along with a summary 
of the results of these analyses. Next three additional multilevel media-
tion models that correspond to models with both group and individual-
level mediational processes are described. Related sets of analysis using 
the Mplus program are then described for the example.

Table 9.1 (Continued)

Obs X M Y i j Obs X M Y i j

39 0 32 43 4 6  95 0 37 37 4 14
40 0 41 47 5 6  96 0 37 37 5 14
41 0 33 45 6 6  97 0 33 36 6 14
42 0 57 82 7 6  98 0 22 34 7 14
43 1 35 43 1 7  99 1 53 59 1 15
44 1 35 43 2 7 100 1 53 59 2 15
45 1 43 54 3 7 101 1 37 45 3 15
46 1 46 77 4 7 102 1 37 45 4 15
47 1 55 72 5 7 103 1 38 57 5 15
48 1 35 43 6 7 104 1 66 75 6 15
49 1 48 51 7 7 105 1 55 60 7 15
50 0 16 40 1 8 106 0 41 40 1 16
51 0 45 57 2 8 107 0 41 40 2 16
52 0 16 40 3 8 108 0 41 40 3 16
53 0 29 31 4 8 109 0 53 59 4 16
54 0 24 35 5 8 110 0 49 41 5 16
55 0 30 38 6 8 111 0 18 16 6 16
56 0 24 35 7 8 112 0 29 29 7 16
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9.8 MIXED Code and Output for Equations 
9.3 and 9.4 (Y Predicted by X)
Table 9.2 shows the MIXED code to estimate the parameters of the multi-
level model for Equations 9.3 and 9.4. The MIXED command actually 
inserts Equation 9.4 in Equation 9.3 to estimate the single equation Yij = 
(γ00 + cXj + u0j) + eij. Note that the group code j is in the class statement and 
also in the SUB option statement to indicate the groups in the analysis. 
The MODEL statement specifi es fi xed effects. Here the MODEL speci-
fi es that Y is predicted by X, and the /solution command requests that 
the regression coeffi cients and standard errors be printed in the output. 
The DDFM=BW command instructs SAS to use the between and within 
method for computing denominator degrees of freedom for the fi xed 
effects. For unbalanced data DDFM=SATTERHWAITHE is often recom-
mended. The RANDOM statement specifi es random effects in the model. 
Here the intercept for Y is specifi ed as random; that is, the group means 
are random, and the type=un statement indicates that covariance matrix 
among the error terms in the Level 2 random effect matrix is unstructured. 
The COVTEST command in the PROC MIXED line requests a hypothesis 
test of the signifi cance of the random effects based on asymptotic meth-
ods, and these tests may not be highly reliable at smaller sample sizes 
(Singer & Willett, 2003).

The output shown in Table 9.3 consists of a summary describing the 
name of the data set WORK.BOTH, the dependent variable Y, the unstruc-
tured covariance structure for the error terms, the subject or group effect 
variable j, the type of estimation, REML or restricted maximum likelihood, 
the profi le method of estimating residual variances, the model-based 
method to compute fi xed effects standard errors, and the between-within 
method to compute degrees of freedom. Next, class level information is 
provided in the output identifying the class variable j, the fact that there 
are 16 levels, and the values for the 16 levels. The dimensions section is 
often useful for verifying the model and data specifi ed for a multilevel 
analysis. The two covariance parameters are specifi ed for the variance of 
the errors in the individual and the group-level equations. The columns 
in X represent the intercept and slope and the columns in Z represent the 
random slope for the intercept in the 16 groups. There are 16 groups and 

Table 9.2 MIXED Program for Equations 9.3 and 9.4

proc mixed covtest;
class j;
model Y=X /solution ddfm=bw notest;
random intercept/type=un sub=j ;
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Table 9.3 MIXED Output for Equations 9.3 and 9.4

The Mixed Procedure

Model Information

Data Set WORK.BOTH
Dependent Variable y
Covariance Structure Unstructured
Subject Effect j
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Iteration History

Iteration Evaluations −2 Res Log Like Criterion

0 1 878.20894206
1 1 866.39597993 0.0000000

Convergence criteria met.
Covariance Parameter Estimates

Standard Z
Cov Parm Subject Estimate Error Value Pr Z
UN(1,1) j  41.1518 22.3361 1.84  0.0327
Residual 122.93 17.7441 6.93 <0.0001

Class Level Information

Class Levels Values

J 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Dimensions
Covariance Parameters 2
Columns in X  2
Columns in Z Per Subject 1
Subjects 16
Max Obs Per Subject 7
Observations Used 112
Observations Not Used 0
Total Observations 112

Fit Statistics

−2 Res Log Likelihood 866.4
AIC(smaller is better) 870.4
AICC(smaller is better) 870.5
BIC (smaller is better) 871.9

(continued)
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7 observations per group. The maximum number of observations for each 
group is 7. The number of possible observations used, observations not 
used, and total observations information is helpful to keep track of miss-
ing data. In this example, the number of observations per group is equal, 
and there are no missing data. A strength of multilevel data analysis is 
that it can appropriately analyze data with missing observations such as 
when some persons may be missing observations. The iteration history 
is then described; this model required one iteration to obtain maximum 
likelihood estimates that satisfi ed the convergence criteria.

The next sections of the output contain the estimates and standard 
errors of the multilevel equations in the “Covariance Parameter Estimates” 
section which contains the estimates for the random effects in the model 
with estimates for Var(eij) = σ̂ 2 = 122.93, which is the residual variation at 
the individual level, and Var(u0j) = τ̂oo = 41.1518, which is the residual varia-
tion between groups after removing the effects of X. These values can be 
put in Equation 9.9 to estimate the residual ICC of .25 which is conditional 
on X as a group-level predictor. 

After this section, several model fi t statistics are included including 
−2 times the residual log likelihood, which represents a measure of the 
likelihood of observing the data given the model parameters, the Akaike 
Information Criterion (AIC), the Akaike Information Criterion Corrected 
(AICC) for degrees of freedom, and the Bayesian Information Crite-
rion (BIC). Sometimes these measures of fi t are used to compare across 
models.

Finally, the SOLUTION command presents the parameter estimates 
and standard errors for the intercept fi xed effect, γ̂00 = 34.625, which is the 
average group-level happiness score in the standard condition, its stan-
dard error, 2.7091, and the ĉ coeffi cient, which is equal to 14.4643 with 
a standard error of 3.8313. There is a statistically signifi cant effect of the 
 fi tness program of 14.4643 units on the happiness measure. The null model 
likelihood ratio test section presents a statistical test of whether the model 

Table 9.3 (Continued)

Null Model Likelihood Ratio Test

DF Chi-SquarePr > ChiSq
1 11.81 0.0006

Solution for Fixed Effects

Effect Estimate
Standard 
Error DF t Value Pr > |t|

Intercept 34.6250 2.7091 14 12.78 <0.0001
x 14.4643 3.8313 14 3.78  0.0020
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estimated provides an improvement over a null model for the data. If this 
test was nonsignifi cant, it would suggest that the effects in the model do 
not provide an improvement in model fi t more than a model without the 
effects. The Type 3 tests of fi xed effect section is part of the default MIXED 
output and does not provide any information that was not in the solution 
for fi xed effects section. 

9.9 SAS Code and Output for Equations 9.6 and 9.7 
(Y Predicted by Grand-Mean Centered M and X)
The MIXED code for the model in which X and M predict Y is given in 
Table 9.4 and output is shown in Table 9.5. Note that the program is very 
similar to the code for the aforementioned regression model except that 
there is an additional predictor, the grand-mean centered mediating vari-
able, CM. The “Covariance Parameter Estimates” section again contains 
the estimates for the random effects in the model so Var(eij) = σ̂ 2 = 62.8216, 
which is the residual variation at the individual level, and for Var(u0j) = 
τ̂oo = 40.4209, which is the residual variation between groups. The solu-
tion presents the parameter estimates and standard errors for the inter-
cept fi xed effect, γ̂00 = 39.4273, which is the average group-level happiness 
score in the standard condition (X = 0) and its standard error, 2.5330, 
and the ĉ′ coeffi cient equals 4.8598 with a standard error of 3.6489, and 
b̂ equal to 0.8224, with a standard error of 0.0842. The mediator is signifi -
cantly related to the dependent variable. The group-level coeffi cient for X 
changed 9.6045 units from 14.4643 to 4.8598 with the addition of the fi tness 
mediator centered at the grand mean.

Output that is similar to the output for the fi rst equation is not repeated 
here. The only difference with the previous MIXED output is that now 
there are three columns in X.

9.10 MIXED Code and Output for Equations 
9.8 and 9.9 (Predicting M From X)
The MIXED code to estimate the independent variable effect on the medi-
ator is analogous to the program effect on the dependent variable and 

Table 9.4 Mixed Program for Equations 9.6 and 9.7

proc mixed covtest;
class j;
model y=X CM/solution ddfm=bw notest;
random intercept/type=un sub=j;
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is shown in Table 9.6. The output is shown in Table 9.7. The “Covariance 
Parameter Estimates” section again contains the estimates for the random 
effects in the model for Var(eij) = σ̂ 2 = 86.6101, which is the residual variation 
at the individual level, and for Var(u0j) = τ̂oo = 18.8538, which is the residual 
variation between groups. Finally the solution presents the intercept of 
the fi xed effect, γ̂00 = 29.4643, its standard error, 1.9757, and the â coeffi cient 
relating X to M is equal to 11.6786 with a standard error of 2.7940. There is 
a signifi cant effect of the program on the average fi tness level.

9.11 Summary of the PROC MIXED Output
The SAS PROC MIXED provides the coeffi cients and standard errors for 
Equations 9.3, 9.4, 9.6, 9.7, 9.8, and 9.9 as shown:

 Individual Level 1: Yij = β0j + eij  (9.3)

Table 9.5 Selected MIXED Output for Equations 9.6 and 9.7

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard 
Error Z Value Pr Z

UN(1,1) j 40.4209 18.7552 2.16  0.0156
Residual 62.8216  9.1120 6.89 <0.0001

Fit Statistics

−2 Res Log Likelihood 801.6

AIC (smaller is better) 805.6
AICC (smaller is better) 805.7
BIC (smaller is better) 807.2

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq
1 25.56 <0.0001

Solution for Fixed Effects

Effect Estimate
Standard 
Error DF t Value Pr > |t|

Intercept 39.4273 2.5330 14 15.57 <0.0001
X  4.8598 3.6489 14  1.33  0.2042
CM  0.8224 0.0842 95  9.77 <0.0001
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Table 9.7 Selected MIXED Output for Equations 9.8 and 9.9

Model Information
Data Set WORK.BOTH
Dependent Variable m
Covariance Structure Unstructured
Subject Effect j
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Table 9.6 Mixed Program for Equations 9.8 and 9.9

proc mixed covtest;
class j;
model M=X /solution ddfm=bw notest;
random int/type=un sub=j ;

Class Level Information

Class Levels Values

J 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Dimensions

Covariance Parameters 2
Columns in X 2
Columns in Z Per Subject 1
Subjects 16
Max Obs Per Subject 7
Observations Used 112
Observations Not Used 0
Total Observations 112

Iteration History

Iteration Evaluations −2 Res Log Like Criterion

0 1 830.47132504
1 1 823.93374022 0.00000000

(continued)
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 Group Level 2: β0j = 34.625 + 14.4643 Xj+ u0j (9.4)
              (2.7091)  (3.8313)

 Individual Level 1: Yij = β0j + .8224 Mij + eij  (9.6)
             (.0842)

 Group Level 2: β0j = 39.4273 + 4.8598Xj + u0j (9.7)
             (2.5330)  (3.6489)

 Individual Level 1: Mij = β0j + eij (9.8)

 Group Level 2: β0j = 29.463 + 11.6786Xj + u0j (9.9)
    (1.9757)  (2.794)

Table 9.7 (Continued)

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard 
Error Z Value Pr Z

UN(1,1) j 18.8538 11.9369 1.58  0.0571
Residual 86.6101 12.5011 6.93 <0.0001

Solution for Fixed Effects

Effect Estimate Standard Error DF t Value Pr > |t|
Intercept 29.4643 1.9757 14 −2.96 0.0104

x 11.6786 2.7940 14  4.18 0.0009

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq
1 6.54 0.0106

Fit Statistics

−2 Res Log Likelihood 823.9
AIC (smaller is better) 827.9
AICC (smaller is better) 828.0
BIC (smaller is better) 829.5
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The estimate of the total effect is 14.4693 (3.8313). In the multilevel 
model  ĉ − ĉ′ is not exactly equal to âb̂ as for the ordinary regression 
model. In most situations, however, the two values are very close (Krull 
& Mac Kinnon, 1999). It is also not clear how to extend the formula for the 
standard error of ĉ − ĉ′ from the OLS regression model to the multilevel 
model. As a result, I focus on the âb̂ method of assessing mediation and 
its standard error. The estimate of the mediated effect at the individual 
level using the grand-mean centered mediator is equal to (11.6796)(.8224) 
= 9.6054, which is almost the same as ĉ − ĉ′ = 14.4643 − 4.8598 = 9.6045. For 
the grand-mean centered mediator, âb̂ equals 9.6054 with a standard error 
of sâb̂ = 2.4994 and LCL = 4.7057 and UCL = 14.5032, consistent with a sta-
tistically signifi cant multilevel mediated effect.

There are several additional multilevel mediation models that are pos-
sible because of the possibility of measures at multiple levels of analysis. 
Three of these different models are described in the following.

9.12 SAS Code and Output for Equations 9.6 and 9.7 
(Y Predicted by Group-Mean Centered M and X)
For some models, it may be sensible to estimate the mediation effects of a 
group-mean centered mediating variable. The MIXED code for the model, 
in which X and M predict Y is given in Table 9.8 for group-mean centered 
M. The program is very similar to the code for the regression model for X 
and M predicting Y except that the predictor is WITHINM. In section 9.10, 
the grand-mean centered value of M was used as the additional predic-
tor. The grand-mean centered predictor includes some aspects of the indi-
vidual-level predictor, which is the relation between M and Y within each 
group and some aspects of the group-level relations among variables, that 
is, the relation between the group means of M and Y. If effects within 
each group are to be unambiguously examined and if both group and 
individual-level effects are simultaneously tested, group-mean centering 
is most appropriate. The group-mean centered variable represents how 
much an individual’s score deviates from the average score of their group 
and the resulting coeffi cient is an estimate of the within-group association 
between M and Y. 

Table 9.8  Mixed Program for Equations 9.6 and 9.7

proc mixed covtest;
class j;
model Y=X withinM/solution ddfm=bw notest;
random intercept/type=un sub=j ;
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The “Covariance Parameter Estimates” section of Table 9.9 again 
contains the estimates for the random effects in the model with esti-
mates for Var(eij) = σ̂ 2 = 62.8432, which is the residual variation at the 
individual level, Var(u0j) = τ̂oo = 49.7363, which is the residual variation 
between groups. The solution presents the parameter estimates and 
standard errors for the intercept fi xed effect, γ̂00 = 34.625, which is the 
average group-level happiness score in the standard condition, and its 
standard error is 2.7091. The ĉ′ coeffi cient equals 14.4643 with a standard 
error of 3.8313, and b̂ equals 0.8375 with a standard error of 0.0869. The 
mediator is signifi cantly related to the dependent variable. The group-
level coeffi cient for X is unchanged from the model without the fi tness 
mediator because the WITHINM variable is centered within each group; 
that is, X and WITHINM are orthogonal predictors when centered at the 
group mean. The relation estimated is at the individual level and does 
not include group-level relations.

Solution for Fixed Effects

Effect Estimate
Standard 
Error DF t Value Pr > |t|

Intercept 34.6250 2.7091 14 12.78 <0.0001
X 14.4643 3.8313 14  3.78  0.0020
withinm  0.8375  0.08694 95  9.63 <0.0001

Table 9.9  Selected MIXED Output for Equations 9.6 and 9.7

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard 
Error Z Value Pr Z

UN(1,1) j 49.7363 22.2300 2.24 0.0126
Residual 62.8432 9.1182 6.89 <0.0001

Fit Statistics

−2 Res Log Likelihood 804.0

AIC (smaller is better) 808.0
AICC (smaller is better) 808.1
BIC (smaller is better) 809.6

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq
1 32.29 <0.0001

ER64296_C009.indd   256ER64296_C009.indd   256 11/14/07   11:47:03 AM11/14/07   11:47:03 AM



Chapter Nine: Multilevel Mediation Models 257

9.13 SAS Code and Output for Y Predicted by Group-Mean 
Centered M and X With Random Slopes Within Groups

This model is similar to the last model except that now both the intercepts 
and slopes relating M and Y are random effects as shown in Equations 
9.10, 9.11, and 9.12. Note that there are now new coeffi cients. The term b1j is 
the slope within each of the groups, cb0′ is the relation between the X vari-
able and the intercepts in each group (depending on the coding of X and 
whether the data are balanced), cb1′ is the relation between the X variable 
and the slopes in each group, γ10 is the slope in the control condition, and u1j 
is the residual in the equation predicting the slopes within each group. 

 Individual Level 1: Yij = β0j + b1j M + eij (9.10)

 Group Level 2: β0j = γ00 + cb0′ X + u0j (9.11)

 Group Level 2: b1j = γ10 + cb1′X + u1j (9.12)

With these equations, it is possible to test whether the relation between M 
and Y differs across groups by testing whether the ĉb1′ coeffi cient is statisti-
cally signifi cant. The MIXED code for the model in which X and M predict 
Y is given in Table 9.10. Note that the program is very similar to the code 
for the aforementioned regression model except that there is an additional 
random effect in the RANDOM effect line so that the MIXED program 
estimates additional parameters. I have only included the “Covariance 
Parameter Estimates” section in Table 9.11 as this provides the informa-
tion necessary to test whether the slopes differ across groups. The vari-
ation among individuals within groups, Var(eij) = σ̂ 2 = 60.3643, and the 
residual variation among group means, Var(u0j) = τ̂oo = 48.5354, have the 
same meaning as described earlier except that the values are conditional 
on the additional parameters in the model. The UN(2,1) value of 1.9903 
is the covariance between the intercepts and the slopes, with a standard 
error of 1.0326. The UN(2,2) coeffi cient provides the test of whether the 
slope varies across groups and is equal to 0.05166 with a standard error 
of 0.06075, which suggests that the variation in the slope relating Y to M 
does not signifi cantly vary across groups. As a result, the parameter cod-
ing different slopes across groups is set to zero in further analysis. Note 

Table 9.10 MIXED Program for Equations 9.10, 9.11, and 9.12

proc mixed covtest;
class j;
model y=X withinm/solution ddfm=bw notest;
random int withinm/type=un sub=j;
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that a likelihood ratio test comparing the likelihood ratio for a model with 
UN(2,2) set to zero to the current model with UN(2,2) free is a more accu-
rate test of the differential relation of Y to M. In addition, differential rela-
tions of M to Y can also be tested by including an XM interaction (and M 
main effect) in Equation 9.12.

9.14 SAS Code and Output for Y Predicted 
by X and Group-Mean Centered Individual 
M and Group-Mean M Predictors of Y
The next model estimates effects of both group and individual-level medi-
ators as shown in Equations 9.13 and 9.14. There are now subscripts on 
the b parameters to indicate which b parameter is for the individual-level 
effect (bi, where Mij is the individual-level mediator) and which is for the 
group-level effect (bj, where M+j is the group level mean).

 Individual Level 1: Yij = β0j + bi Mij + eij  (9.13)

 Group Level 2: β0j = γ00 + c′ Xj + bj M+j + u0j (9.14)

The SAS code for the model in which X, group-level M (M+j), and indi-
vidual-level M (Mij) predict Y is given in Table 9.12. Note that the program 
is very similar to the code for the aforementioned regression model except 
that an additional predictor, the mediating variable, MEANM, is included 
as well as WITHINM. As shown in Table 9.13 the “Covariance Parameter 
Estimates” section contains the estimates for the random effects in the 
model. The estimates for Var(eij) = σ̂2 = 62.8432, which is the residual varia-
tion at the individual level, and for Var(u0j) = τ̂oo = 42.2698, which is the 
residual variation between groups. The solution presents the parameter 
estimates and standard errors for the intercept of the fi xed effect, γ̂00 = 
17.0367, which is the average group-level happiness score and its standard 

Table 9.11 Selected MIXED Output for Equations 9.10, 9.11, and 9.12

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard 
Error Z Value  Pr Z

UN(1,1) j 48.5354 21.2022 2.29 0.0110
UN(2,1) j  1.9903  1.0326 1.93 0.0539
UN(2,2) j   0.05166   0.06075 0.85 0.1975
Residual 60.3643  9.3262 6.47 <0.0001
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error, 10.4007, and the ĉ′ coeffi cient equals 7.4929 with a standard error of 
5.3666. The b̂i coeffi cient equals 0.8375 with a standard error of 0.08694, 
and the group-level coeffi cient relating the average group fi tness to hap-
piness, b̂j equals 0.5969 with a standard error of 0.3424.

The output for Equations 9.13 and 9.14 is shown in Table 9.13. Estimates 
and standard errors are

 Individual Level 1: Yij = β0j + 0.8375 Mij + eij  (9.15)
 (0.0870)

 Group Level 2: β0j = 17.0367 + 7.4929 Xj + 0.5969 M+j + u0j (9.16)
                                                  (10.4007) (5.3666)      (0.3424)

Two additional regression models are necessary to estimate the group-
level and individual-level mediated effect. For the individual-level 
mediated effect, the â coeffi cient is obtained from a multilevel model 
with WITHINM as the dependent variable and is equal to 0.0000 with 
a standard error of 1.6430 so that the mediated effect (0.0000)(0.8375) = 
0. For the group-level mediated effect the regression model relating X 
to the groups means MEANM is required, and â equals 11.6786 with a 
standard error of 2.7940. The difference between ĉ and ĉ′, 14.4643 − 7.4929 
equals 6.9714, which is very close to the sum of the individual-level medi-
ated effect, (0.0000)(0.8385) = 0.0000 and the group-level mediated effect, 
(11.6786)(.5969) = 6.9709 for a total mediated effect of 6.9709. The individual-
level mediated effect is nonsignifi cant. The group-level mediated effect 
equals 6.9714 (sâb̂ = 4.3326), and zero was contained in the confi dence limit 
for the mediated effect, LCL = −1.5210 and UCL = 15.4628. These results 
suggest some evidence that the exercise program improved the fi tness 
level, which increased happiness at the group level, but the effect was 
nonsignifi cant. 

9.15 Multilevel Modeling in Mplus
The Mplus software has two ways to estimate multilevel models: one is 
to incorporate the clustering of observations within units for all variables 
(TYPE IS COMPLEX) and the other is to specify the relations at each level 

Table 9.12 MIXED Program for Equations 9.13 and 9.14

proc mixed covtest;
class j;
model Y=X withinm meanm/solution ddfm=bw notest;
random int/type=un sub=j g;
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Table 9.13 Selected MIXED Output for Equations 9.13 and 9.14

Class Level Information

Class Levels Values

j 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Dimensions

Covariance Parameters 2
Columns in X 4
Columns in Z Per Subject 1
Subjects 16
Max Obs Per Subject 7
Observations Used 112
Observations Not Used 0
Total Observations 112

Iteration History

Iteration Evaluations −2 Res Log Like Criterion
0 1 827.27501963
1 1 801.42795022 0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Subject Estimate
Standard 
Error Z Value Pr Z

UN(1,1) j 42.2698 20.1430 2.10  0.0179
Residual 62.8432  9.1182 6.89 <0.0001

Fit Statistics

−2 Res Log Likelihood 801.4
AIC (smaller is better) 805.4
AICC (smaller is better) 805.5
BIC (smaller is better) 807.0

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq
1 25.85 <0.0001

Solution for Fixed Effects

Effect Estimate
Standard 
Error DF t Value Pr > |t|

Intercept  17.0367 10.4007 13 1.64  0.1254
X 7.4929 5.3666 13 1.40  0.1860
meanm 0.5969 0.3424 13 1.74  0.1048
withinm 0.8375 0.08694 95 9.63 <0.0001
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of the analysis (TYPE IS TWOLEVEL). The Mplus code (Table 9.14) and 
output (Table 9.15) identify the group-level cluster variable to estimate 
the multilevel model. The group variable is identifi ed in the CLUSTER=j 
command in the program. The TYPE IS COMPLEX code specifi es that 
the sampling is complex, meaning that the data are clustered in groups, 
here clustering in the j groups. The equations are specifi ed in the MODEL 
statement where Y is regressed on M and X and M is regressed on X. 
Mplus fi rst lists the characteristics of the data. Additional options are 
available, including listing of the observed data means, correlations, and 
covariances. Printed at the bottom are the regression estimates relevant 
for the multilevel model. These estimates are not identical to the results 
from PROC MIXED because a different estimation method is used, that 
is, a maximum likelihood estimator that corrects for nonindependence 
of observations within clusters. For Mplus multilevel analysis, the medi-
ated effect (11.679)(.773) was 9.0279 (sâb̂ = 2.4591) and LCL = 4.2081 and UCL 
= 13.8477, which are very similar to the results from PROC MIXED. The 
TYPE IS COMPLEX code is very useful as it provides a general adjustment 
for clustering in the data analysis for very complex mediation models. 

9.16 Mplus Analysis Using the TWOLEVEL Option
The TYPE IS COMPLEX command is a very general way to adjust for clus-
tering in data analysis. However, in some cases more detail regarding the 

Table 9.14 Mplus Program Using TYPE IS COMPLEX

TITLE:  MULTLEVEL DATA COMPLEX
DATA:
FILE IS “E:\Chapter 9 Multilevel\exmult3.txt”;
VARIABLE:
  NAMES ARE id x m y i j;
  USEVARIABLES ARE x m y i;
  CLUSTER IS j;
ANALYSIS:
  TYPE IS COMPLEX;
  ESTIMATOR IS MLR;
  ITERATIONS = 1000;
  CONVERGENCE = 0.00005;
MODEL:
Y ON X M;
M ON X;
OUTPUT:
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Table 9.15 Mplus Output for TYPE IS COMPLEX

INPUT INSTRUCTIONS

  TITLE:  MULTLEVEL DATA COMPLEX

  DATA:
    FILE IS “E:\Chapter 9 Multilevel\exmult4.txt”;

  VARIABLE:
    NAMES ARE id x m y i j;
    USEVARIABLES ARE x m y j;
    CLUSTER IS j;

  ANALYSIS:
    TYPE IS COMPLEX;
    ESTIMATOR IS MLM;
    ITERATIONS = 1000;
    CONVERGENCE = 0.00005;
  MODEL:
  Y ON X M;
  M ON X;

  OUTPUT;

MULTLEVEL DATA COMPLEX

SUMMARY OF ANALYSIS
Number of groups 1

Number of observations 112

Number of dependent variables 2

Number of independent variables 1

Number of continuous latent variables 0

Observed dependent variables

  Continuous

  M Y

Observed independent variables

  M

Variables with special functions

Cluster variable J

Estimator MLR
Maximum number of iterations 1000
Convergence criterion 0.500D-04

Maximum number of steepest descent iterations 20

Input data file(s)
  E:\Chapter 9 Multilevel\exmult4.txt
Input data format  FREE
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Table 9.15 (Continued)

SUMMARY OF DATA

Number of clusters 16

Size (s) Cluster ID with Size s
7 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

Loglikelihood

H0 Value -913.549

Information Criteria

Number of Free Parameters 7
Akaike (AIC) 1841.097
Bayesian (BIC) 1860.127
Sample-Size Adjusted BIC 1838.004
(n* = (n + 2) / 24)

RMSEA (Root Mean Square Error Of Approximation)

Estimate 0.000

SRMR (Standardized Root Mean Square Residual)

Value 0.000

MODEL RESULTS

Estimates S.E. Est./S.E. Std StdYX
Y ON

X  5.439 3.179  1.711  5.439 0.188
M  0.773 0.120  6.424  0.773 0.623

M ON
X 11.679 2.614  4.468 11.679 0.501

Intercepts

M 29.464 1.949 15.118 29.464 2.530
Y 11.856 4.589  2.583  1.856 0.820

Residual Variances

M 101.560 14.727 6.896 101.560 0.749
Y  96.099 16.088 5.973  96.099 0.460

R-SQUARE
Observed

Variable R-Square

M 0.251

Y 0.540
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effects at different levels are important. To illustrate the multilevel option 
in Mplus, the parameters of Equation 9.6 and 9.7 are estimated. The pro-
gram is shown in Table 9.16, and the output is shown in Table 9.17. For 
the ANALYSIS=TWOLEVEL keyword, Mplus requires additional infor-
mation about variables measured within and between groups. For most 
applications, the between model represents relations among variables at 
the second level of analysis, which may consist of means in each of the 
groups. The within model represents relations among individual-level 
variables for the entire data set (Heck, 2001). The WITHIN keyword speci-
fi es the names of the variables measured only at the individual level and 
used only at the individual level of the analysis. In this case, the M vari-
able is measured at the individual level and is used only at the individual 
level of analysis. The BETWEEN keyword lists the variables that are col-
lected at the group level. In this case only the X variable is measured at the 
group level. The CENTERING=GRANDMEAN(M) centers the M variable 
at the grand mean. The MODEL keyword is used to specify the equations 
of the multilevel model. There are two sections, one keyword WITHIN 
to specify the individual-level analysis. For the mediation example, the 
effect of Y on M is the only individual-level relation. The BETWEEN sec-
tion codes the equations for the between-group effects, which are the 
relation of Y on X. 

Table 9.16 Mplus Program From Group Therapy Example

TITLE:  MULTILEVEL DATA TWOLEVEL
DATA:
  FILE IS “E:\Chapter 9 Multilevel\exmult4.txt”;
VARIABLE:
  NAMES ARE id x m y I j ;
  USEVARIABLES ARE x m Y j;
  CLUSTER IS j;
  BETWEEN=X;
  WITHIN=M;
  CENTERING=GRANDMEAN(M);
ANALYSIS:
  TYPE IS TWOLEVEL random;
MODEL:
  %WITHIN%
  Y ON M;
  %BETWEEN%
  Y ON X ;

OUTPUT: 
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Table 9.17 Mplus Output for Multilevel Group Therapy Example

MULTLEVEL DATA TWOLEVEL

SUMMARY OF ANALYSIS

Number of groups 1
Number of observations 112

Number of y-variables 1
Number of x-variables 2
Number of continuous latent variables 0

Observed variables in the analysis

X M Y
Cluster variable J
Within variables
M
Between variables
X
Centering (GRANDMEAN)
M
Optimization algorithm EM

SUMMARY OF DATA

 Number of clusters 16
 Size (s) Cluster ID with Sizes

 7 1 2 3 4 5 6 7 8
 9 10 11 12 13 14 15 16

Average cluster size 7.000

THE MODEL ESTIMATION TERMINATED NORMALLY

Loglikelihood
H0 Value −402.846
H1 Value −402.846

Information Criteria
Number of Free Parameters 5
Akaike (AIC) 815.693
Bayesian (BIC) 829.285
Sample-Size Adjusted BIC 813.483
(n* = (n + 2) / 24)

(continued)
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Table 9.17 (Continued)

MODEL RESULTS

Estimates S.E. Est./S.E.

Within Level
Y ON

M  0.820  0.093  8.780
Residual Variances
Y 62.222 10.322  6.028
Between Level
Y ON

X  4.903  3.422  1.433
Intercepts
Y 39.406  2.391 16.478
Residual Variances
Y 34.078 12.632 2.698

The coeffi cients and standard errors are comparable to the results in 
MIXED but differ because a different estimation strategy is used. For the 
random effects in the model, the estimate for Var(eij) = σ̂ 2 = 62.222, which is 
the residual variation at the individual level, and for Var(u0j) = τ̂oo = 34.078, 
which is the residual variation between groups. The solution presents the 
parameter estimates and standard errors for the intercept fi xed effect, γ̂00 
=39.406, which is the average group-level happiness score in the standard 
condition and its standard error, 2.391, the ĉ′ coeffi cient equals 4.903 with 
a standard error of 3.422, and b̂

 is equal to 0.820 with a standard error of 
0.093. Using programs analogous to TWOLEVEL for Equations 9.3 and 9.4 
for X related to Y yielded estimates of ĉ equal to 14.831 with a standard 
error of 3.570. Applying “Type is Twolevel” multilevel model Mplus esti-
mates for Equations 9.8 and 9.9 yielded â equal to 11.668 with a standard 
error of 2.614. The resulting mediated effect (11.668)(.820) equals 9.568 with 
a standard error of 2.402 and UCL and LCL of 4.8589 and 14.2767. Analysis 
with the MPLUS TWOLEVEL option led to the conclusion that the medi-
ated effect is statistically signifi cant. 

9.17 Random Coeffi cients in Multilevel Mediation Models
So far in this chapter, at least one of the coeffi cients in the mediation analy-
sis has been fi xed, that is, treated as constant across clusters (groups) such 
as schools, clinics, and therapy groups. If the coeffi cients instead vary across 
clusters, then the mediation analysis is more complicated as described by 
Kenny et al. (2003). For the group therapy example data analysis in this 
chapter, the a and the b parameters may vary across therapy groups. In 
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other words, the a parameter may vary across the groups and the b param-
eter may vary across the groups so that no single a or b parameter applies 
for all groups. For this to occur, the X variable could not be treatment condi-
tion (unless conditions are assigned within groups) as it was in the example 
used in this chapter, which is generally a fi xed effect, but would have to be 
a continuous measure (or a random X variable) for each group so that the 
a parameter could vary across groups. Kenny and colleagues refer to this 
type of mediation analysis as lower level mediation. They describe a daily 
diary example in which respondents indicate exposure to daily stressors, 
coping efforts, and mood states. The individual is the cluster for the multi-
level analysis, and the parameters a, b, and c′ in the mediation model may 
differ across individuals, so they may represent random effects.

The model for random effects for a and b is summarized in two indi-
vidual-level Equations 9.15 and 9.16, representing the relation of X and M 
and the relation of X and M on Y at Level 1, respectively. There are three 
Level 2 equations corresponding to the average of each parameter a, b, and 
c′ and the deviation in each of the groups. 

 Individual Level 1: Mij = β1j + aj Xij + eij (9.15)

 Individual Level 1: Yij = β2j + c′j Xij + bj Mij + eij (9.16)

 Group Level 2: aj = a + u1j (9.17)

 Group Level 2: bj = b + u2j (9.18)

 Group Level 2: c′j  = c′ + u3j (9.19)

In the case of random effects for a and b, Kenny et al. (2003) show that 
the mediated effect estimate equals âb̂ plus the covariance between â and  
b̂ because the â and b̂ coeffi cients vary across groups, and this variation 
must be included when âb̂ is calculated. The standard error of the product 
of random â and b̂ coeffi cients adds 2âb̂ cov(âb̂) + cov(âb̂)2 to Equation 3.9 
for the standard error of âb̂ (see Equation 11 in Kenny et al., 2003). The for-
mula for the mediated effect and its standard error for the case in which â 
and b̂ are random effects is the same as the formula for the product of two 
correlated random variables. It is important to note also that the variance 
of â and b̂ corresponds to the variance of the û1j and û2j terms in the equa-
tions, not the standard errors of â and b̂ in Equations 9.15 and 9.16. 

In this lower level mediation model, the independent, mediator, and 
dependent variables are continuous variables with random effects at the 
higher level of analysis. Kenny et al. (2003) described a model in which 
the genetic relatedness of a person leads to perceived similarity with that 
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person, which leads to emotional closeness. Respondents named and 
reported several family members, and genetic relatedness was measured 
by the proportion of shared genes with the family member. The respon-
dents then rated the emotional closeness and similarity of 10 persons 
from their list of family members. There were 72 participants (upper level 
units) and 10 family members (lower level units) for each participant. 
As expected, the â path relation between genetic relatedness and per-
ceived similarity varied across persons and the b̂ path relation between 
perceived similarity and emotional closeness varied across persons. The 
mediated effect required the addition of the covariance of â and b̂, which 
was .348 and substantially increased the size of the standard error of the 
mediated effect. 

To illustrate the random effects mediation model, simulated data pro-
vided by Kenny et al. are used. The data consist of 200 participants with 
10 measures for each participant for each variable X, M, and Y. To add 
some context, assume a study similar to the group therapy study used in 
this chapter with X representing a continuous measure of how conducive 
the person’s lifestyle and environment was to exercise. M is again fi tness, 
and Y is feeling of happiness. A total of 200 participants had measures of 
X, M, and Y recorded on 10 different days. The Mplus program for this 
example is shown in Table 9.18. Note that 10 different environments allow 
for continuous measures of each variable rather than X representing expo-
sure to one of two treatments. Here it is likely that the extent to which the 
environment on a particular day is conducive to exercise leads to physical 
activity that leads to feelings of happiness. The variables X, M, and Y are 
included along with the cluster variable subjid. It is noted that X is within 
subjects only. The model is specifi ed in the type = twolevel random com-
mand and algorithmic integration is used. The %within% line specifi es 
the estimation of the relation of Y on X, ĉ′, the relation of M on X, â, and 
is the relation of Y on M, b̂. The line after the %between% command tells 
Mplus to estimate the covariance between â and b̂.

Selected output from the Mplus program in Table 9.18 is shown in Table 
9.19. The output in Table 9.19 fi rst shows means for each variable along with 
the covariances among the variables. The â coeffi cient equaled 0.589 with 
a standard error of 0.032. The b̂

 coeffi cient was equal to 0.633 with a stan-
dard error of 0.036. The variance of coeffi cient â equals 0.132 with a stan-
dard error of 0.020, suggesting signifi cant variability of the â coeffi cient. 
The variance of coeffi cient b̂

 was 0.174 with a standard error of 0.024, sug-
gesting signifi cant variability. The covariance between â and b̂ was equal 
to 0.126. These values were entered in Equation 8.31 for the variance of âb̂ 

equal to 0.2461 (â2sb̂
2 + b̂2sâ

2 + sb̂
2sâ

2 + 2âb̂ cov(âb̂) + cov(âb̂)2 = 0.5892(0.174)2 + 
0.6332(0.132)2 + (0.174)2(0.132)2 + 2(0.589)(0.633)(0.126) + (0.126)2), which differs 
only slightly from 0.2542 obtained in the Kenny et al. (2003) article using 
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an ad hoc method rather than direct estimation with Mplus. The product 
of â and b̂ equals 0.373 (0.589 × 0.633) but Kenny et al. show that cov(âb̂) 
should be added to âb̂ to equal 0.373 + 0.126 = 0.5 as in Equation 8.30. 
Using this corrected value for âb̂ and the variance of 0.2461 yields normal 
theory confi dence limits of −0.5 to 1.5 that includes 0, suggesting that the 
mediated effect was not statistically signifi cant even though the data were 
generated to have a nonzero mediated effect. The method described in the 
Kenny et al. article may not always be as accurate as using Mplus, so the 
Mplus method is recommended. 

A new method to estimate mediation for the case of random â, b̂, and  
ĉ′ coeffi cients has also been implemented in the SAS MIXED language 
(Bauer, Preacher, & Gil, 2006). The method used in Mplus, the SAS MIXED 
approach, and the ad hoc approach used in Kenny et al. have not yet been 
compared. However, the Mplus approach is integrated in the general sta-
tistical analysis of multilevel models, so it may be preferable.

Table 9.18 MPLUS Program for Random Effects Multilevel Mediation Model

title:
  kenny (2003)

  data:
  file=kenny.dat;
  variable:
  names=subjid meas X M Y constant;
  usevariables=x m y;
  cluster=subjid;
  within = x;
  analysis:
  type=twolevel random;
  algorithm = integration;
  ghfiml = on;
  model:
  %within%
  cprime | y on x;
  a | m on x;
  b | y on m;
  %between%
  a with b;
  output:
  sampstat tech1 tech3 tech8;
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Table 9.19 Selected MPLUS Output for the Random Effects Mediation Model

SAMPLE STATISTICS

Mean

M Y X
1 0.004 −0.007 0.034

Covariances

M Y X
M 2.131
Y 1.767 2.929
X 1.128 1.325 2.000

MODEL RESULTS

Estimates S.E. Est./S.E.

Within Level

Residual Variances

  M 0.645 0.023 28.647
  Y 0.465 0.017 27.618

Between Level

A WITH
B 0.126 0.017 7.455

Means

M 0.003 0.059 0.052
Y 0.001 0.050 0.016
CPRIME 0.176 0.027 6.446
A 0.589 0.032 18.402
B 0.633 0.036 17.601

Variances

M 0.588 0.065 9.061
Y 0.398 0.048 8.328
CPRIME 0.056 0.013 4.320
A 0.132 0.020 6.711
B 0.174 0.024 7.300

9.18 Multilevel Mediation Models at Different Levels
Besides adjusting for a nonzero ICC, multilevel models can be used to 
investigate effects at the different levels of analysis, for example, the 
mediated effect when a group-level predictor changes an individual-level 
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mediator. Kenny et al. (1998) briefl y discussed two situations, termed 
lower level mediation, for mediation at the individual level, and upper 
level mediation at the group level, for example, for mediation in a multi-
level framework. To date, these important cross-level effects have not been 
addressed in much detail (Palmer et al., 1998).

Krull and MacKinnon (2001) described three major types of multilevel 
models corresponding to the level of the independent variable, mediating 
variable, and dependent variable. They proposed a way to describe these 
models using arrows and numbers to indicate the level of analysis. For 
example, the 1 → 1 → 1 model has an independent variable (Xij), a media-
tor (Mij), and a dependent variable (Yij) all measured at Level 1, or the low-
est level of the data. As described earlier, the ij subscript on each variable 
indicates that the variable can take on a unique value for each individual 
i within each group j. In this simplest case, with all three variables mea-
sured at the individual level, it is only the clustered nature of the data that 
requires multilevel modeling to appropriately model the error structure. 
Examples of this model would be an experimental design in which assign-
ment to conditions would be made within group so that some subjects in a 
group are in the control condition and other subjects are in the treatment 
condition. Another example of this type of analysis would be when all 
measures are taken at the individual level, but there is clustering in the 
data such as the primary sampling unit in a telephone survey.

A second type of model, which is the one described earlier in this chap-
ter, has the independent variable at the group level but the mediator and 
dependent variable at the individual level. This 2 → 1 → 1 model, has 
an independent Level 2 variable (Xj), representing a characteristic of the 
group, which affects an individual-level mediator (Mij), which, in turn, 
affects an individual-level dependent variable (Yij). The single subscript j 
on the X variable indicates that this variable may take on a unique value 
for each group j. This type of multilevel mediation model is also common 
in the investigation of how group-level variables affect individual vari-
ables (Hofmann & Gavin, 1998). This model is very common in prevention 
research, in which assignment to conditions at the group level is the most 
practical level of assignment, but the mediating variable and the dependent 
variable are measured at the individual level. In management research, for 
example, mediators are hypothesized for how organizational climate affects 
individual performance, such as how level of centralization in a work unit 
affects the mediating variable of autonomy, which then affects job satisfac-
tion. It is worth noting that the relation coded by a from X to M is at the 
group level whereas the relation b between M and Y is at the individual 
level, and the mediated effect combines relations at two levels. 

In a large simulation study, Krull and MacKinnon (2001) found that 
group size, ICC of the mediator, and ICC of the dependent variable were 
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identifi ed as factors that increase the extent of underestimation of stan-
dard errors. As a result, multilevel mediation analysis may be most impor-
tant in these situations. The simulation study also suggests that the Level 
2 sample size (i.e., the number of groups in the analysis) plays at most a 
minimal role in determining the underestimation of single-level standard 
errors and the multilevel advantage in this regard. However, Level 2 sam-
ple size is known to play a key role in the statistical power of multilevel 
analysis (Kenny et al., 1998; Murray, 1998).

Another type of model is the 2 → 2 → 1 model in which both the 
independent (Xj) and mediator (Mj) variables are measured at the group 
level, but the dependent variable (Yij) is measured at the individual level. 
Sampson et al. (1997) used a similar model (note that Sampson et al., 1977 
actually had three levels with the fi rst level within respondent) to study 
how neighborhood level measures of social composition (which refl ect 
economic disadvantage and immigrant concentration) affect neighbor-
hood level measures of collective effi cacy (social cohesion and informal 
social control), which, in turn, infl uence individual-level measures of vio-
lence (such as perceived level of neighborhood violence and individual 
violent victimization). Sampson, Morenoff, and Gannon-Rowley (2002) 
described examples of this and other social process models in neigh-
borhood research. An example of the 2 → 2 → 1 model in management 
research occurs when individual psychological perceptions and mean-
ings are shared in a group to the extent that individuals within the same 
group share the same perceptions and meanings (Griffi n, Mathieu, & 
Jacobs, 2001). Because the individual-level measures of perceptions are so 
similar, the group-level perception measures are valid Level 2 predictors 
of individual variables (James, James, & Ashe, 1990).

These models can be extended to more than two levels such as individ-
ual, classroom, and school for educational data with correspondingly more 
complicated versions and types of multilevel models. In addition, many 
variables can be conceptualized at more than one level, making the clear 
interpretation of some multilevel models diffi cult. For example, any indi-
vidual-level measure can be aggregated to the group level, by taking the 
mean for each group. Effects involving such a variable may operate at either 
or both levels, and individual and aggregate measures of the same vari-
able may refl ect different constructs at the different levels. One example of 
this type of mediator is social norms for which the individual measure of 
norm may refl ect individual perceptions of social norms, whereas a norm 
measure at the school level may refl ect general social attitudes. Burstein 
(1980, 1985) noted that individual student level responses about parental 
occupation and education may serve as indicators of home background 
and refl ect parental commitment to the student’s learning, whereas school 
level aggregates of the same responses more likely indicate the wealth 
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and socioeconomic status of the community, which may determine the 
level of school resources. In general, true individual-level variables tend 
to be more psychological or specifi c in nature than group aggregates, 
which may be more indicative of social, organizational, or normative 
aspects of the environment. Aggregate measures may also represent 
contextual infl uences, which can operate in a different manner than the 
individual measure on which it was based as noted by Robinson (1950) 
in the well-known ecological fallacy that the effects of the same variable 
on the same outcome differ at different levels of analysis. For example, 
rebelliousness as an individual characteristic may encourage risk-taking 
and make an intervention less likely to be effective. Moreover, a group 
with a high average level of rebelliousness may create an environment in 
which discipline issues would make program delivery diffi cult, decreas-
ing program effectiveness even for nonrebellious individuals (Palmer 
et al., 1998). 

9.19 Summary
Many data sets are suitable for multilevel mediation modeling. The medi-
ation model can be extended to multilevel analysis, but it is considerably 
more complicated and requires a new iterative estimation strategy. The 
multilevel model requires estimates of effects at more than one level. A 
hypothetical example was used to demonstrate the use of the model. Sev-
eral additional models are described that differ on the level that is the 
focus of the analysis. As described in chapter 8, the multilevel model pro-
vides a general framework to incorporate longitudinal measures. In this 
regard, subject is a level of analysis, and the longitudinal measurements 
are clustered within each subject. This chapter presented Mplus and SAS 
MIXED programs for the estimation of multilevel models. There are other 
excellent programs for multilevel analysis including Mlwin and HLM as 
well as comprehensive covariance structure analysis programs with mul-
tilevel analysis capabilities such as LISREL and EQS. 

9.20 Exercises

9.1. What is the correlation between the same variable centered within 
each group and the group mean?

9.2.  Reparameterize the example used in this chapter so that there are 
random intercepts and slopes. 

9.3.  In your own research describe examples of the following models: 
(a) 1 → 1 → 1, (b) 2 → 2 → 2, (c) 2 → 1 → 1, (d), 3 → 2 → 1, and (e) 3  → 
1→ 1 → 1.
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9.4. For the Sampson, Raudenbush, and Earls (1997) study described in 
section 9.5, describe each level of analysis. Suggest one additional 
level of analysis for these data, and discuss how you would model 
the data. The authors used a difference in coeffi cients test for the 
mediated effect. What coeffi cients would you use to obtain a product 
of coeffi cients mediated effect for each group?
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10

Mediation and Moderation

The value of a model is that it often suggests a sim-
ple summary of data in terms of the major system-
atic effects together with a summary of the nature 
and magnitude of the unexplained or random vari-
ation. Such a reduction is certainly helpful, for the 
human mind, while it may be able to encompass 
say 10 numbers easily enough, fi nds 100 much more 
diffi cult, and will be quite defeated by 1000 unless 
some reducing process takes place.

—Peter McCullagh & John Nelder, 1989, p. 3

10.1 Overview
The strength and form of mediation effects may depend on other variables, 
called moderators. As described in chapter 1, moderators are variables 
that alter the relation between two variables. Many researchers advocate 
the evaluation of moderator variables and mediator variables in the same 
research study (Baron & Kenny, 1986; Kraemer, Wilson, Fairburn, & Agras, 
2002; MacKinnon, Weber, & Pentz, 1989). This chapter describes how to 
incorporate moderators in mediation analysis. The moderator effect is 
more commonly known as an interaction effect (Baron & Kenny, 1986), 
and these two terms are used synonymously in this chapter. There are 
several different ways in which an interaction alters a mediation analysis 
and the different ways have different statistical and conceptual complexi-
ties. The chapter describes the most straightforward situation in which 
mediation differs across subgroups of a moderator. Next, moderators that 
are variables in the mediational process are described. An example is used 
to illustrate moderator and mediator effects. Finally, several other types of 
moderator and mediator models are described. 

10.2 Moderators
A moderator is a variable that modifi es the form or strength of the relation 
between an independent and a dependent variable. The examination of 
moderator effects has a long and important history in a variety of research 
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areas. Moderator effects have been studied more extensively studied than 
mediator effects both in application and as a methodology, most notably 
in the context of analysis of variance. There are outstanding books on 
moderator effects (Aguinis, 2004; Aiken & West, 1991). Moderator effects 
are also called interactions to signify that the third variable interacts with 
the relation between two other variables. The third variable in this case 
is not part of a causal sequence but qualifi es the relation between X and 
Y. The moderator variable can be continuous or categorical, although a 
categorical moderator variable will often be easiest to interpret. From a 
substantive perspective, interactions are especially interesting as they 
imply that an observed relation between an independent variable and a 
dependent variable can be strengthened, weakened, removed, or made 
opposite in sign when the third variable is considered. Although most 
moderator effects refer to the situation in which the relation between two 
variables differs across the levels of a third variable, higher order inter-
actions involving more than one moderator are also possible. 

A moderator may be a factor in an experimental manipulation, rep-
resenting random assignment to levels of the factor. For example, par-
ticipants may be randomly assigned to a moderator factor of treatment 
duration in addition to type of treatment received to test the moderator 
effect of duration of treatment across type of treatment. A moderator 
may also be a variable that is not manipulated, such as gender or age. For 
example, studies of racial or gender bias evaluate interactions correspond-
ing to different relations between two variables across ethnic groups or 
gender. In treatment and prevention research, moderator variables may 
refl ect subgroups of persons for whom the treatment or intervention is 
more or less effective than for other groups. In general, moderator vari-
ables are critical for understanding the generalizability of a research fi nd-
ing. Theory may be used to predict moderator effects and in other cases 
moderators may refl ect a purely exploratory search for different relations 
across subgroups. 

10.3 Moderator Effects
Sharma, Durand, and Gur-Arie (1981) described three types of moderator 
effects. The fi rst type of moderator effect is called a homologizer for which 
the true relation between the independent variable and the dependent 
variable does not change across levels of the moderator, but the error vari-
ance does change across the levels of the moderator. If an effect is examined 
by subgroups, the strength of the standardized relation varies because 
the error variance varies across subgroups. The error variance may vary 
across subgroups because of different measurement properties such as 
response reliabilities across the subgroups. So a homologizer infl uences 

ER64296_C010.indd   276ER64296_C010.indd   276 11/14/07   11:47:36 AM11/14/07   11:47:36 AM



Chapter Ten: Mediation and Moderation 277

the strength of the link between the independent variable and dependent 
variable because of differences in error variance across groups. 

The second and third forms of a moderator variable are consistent with 
most discussions of moderators. Here the moderator is a variable that 
changes the form of the relation between the independent variable and 
the dependent variable. If the moderator variable is also a signifi cant pre-
dictor of the dependent variable, the moderator variable is called a quasi-
moderator, the second type of moderator. If the moderator variable is not 
a signifi cant predictor of the dependent variable it is called a pure mod-
erator, the third form of a moderator. The pure moderator is also called 
a psychometric moderator because the form of the relation between the 
independent variable and the dependent variable changes as a function 
of the moderator. 

The interaction effect model is shown in Equation 10.1. 

 Y = i1 + c1X + c2Z + c3XZ + e1 (10.1)

where Y is the dependent variable, X is the independent variable, Z is the 
moderator variable, and XZ is the interaction of the moderator and the 
independent variable; e1 is a residual, and c1, c2, and c3 represent the rela-
tion between the dependent variable and the independent variable, the 
moderator variable and the dependent variable, and moderator by inde-
pendent variable interaction, respectively. The interaction variable XZ is 
formed by the product of X and Z. Often X and Z are centered (i.e., the 
average is subtracted from each observed value of the variable, Xc = X 
– X–, Zc = Z – Z–) before the product is formed to improve interpretation 
of effects in the interaction model and to reduce collinearity among the 
measures, thereby improving the estimation of model parameters. In this 
model, centered X, centered Z, and the product of the centered X and Z 
variables are predictors.

If the XZ interaction is statistically signifi cant, the source of the sig-
nifi cant interaction is often explored by examining conditional effects 
with contrasts and plots. These contrasts, called tests of simple slopes, 
test the statistical signifi cance of the relation between X and Y at different 
values of Z. There are several ways in which the XZ interaction may be 
statistically signifi cant, which correspond to different simple slopes. For 
example, the size of the coeffi cient relating X and Y may be statistically 
signifi cant at all observed values of Z and differ across levels of Z. Thus, 
in a two-group study with Z representing group membership, the effect 
in one group may be signifi cantly different from the effect in the other 
group, and each effect may be individually statistically signifi cant. To use 
the relation between stress and blood pressure as an example, the relation 
between these variables may be statistically signifi cant for males and for 
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females, but the relation may be signifi cantly larger for males than for 
females. In another situation, the relation of the moderator to the depen-
dent variable may be close to zero (i.e., ĉ2 near 0) such that the relation 
between X and Y may have an opposite sign at different levels of Z. For 
example, for a two-group study, the coeffi cient relating X and Y may have 
a different sign in each group (a type of pure moderator). There are many 
other patterns of effects implied by a signifi cant XZ interaction that are 
clarifi ed by examining conditional effects with contrasts.

For a continuous moderator variable Z, tests of simple slopes are obtained 
by forming new variables so that the effect is computed at certain values 
of Z. For example, to obtain the simple effect of X at 1 standard deviation 
above the mean of Z, a new variable is made such that the zero value of 
Z is equal to 1 standard deviation above the mean of Z. The regression 
analysis is repeated, and the signifi cance test for XZ is the signifi cance 
test for the simple slope at the particular value of Z. More on interaction 
effects including procedures to plot interactions can be found in Aguinis 
(2004), Aiken and West (1991), and Keppel and Wickens (2004).

Plots of moderator effects are obtained by computing the predicted 
value of Y given the regression equation and values of X, Z, and XZ. Equa-
tion 10.2 shows a rearrangement of Equation 10.1 that makes plotting the 
data somewhat easier because the equation is recast in terms of the regres-
sion of Y on X at levels of Z.

 Y = (c1 + c3Z)X + (c2Z + i1) (10.2)

The slope of Y on X, c1 + c3Z, is called the simple slope and c2Z + i1 is the 
simple (or conditional) intercept. In Equation 10.2, only the values of X and 
Z are necessary to compute predicted scores. The value of the interaction 
XZ is necessary for predicted means if Equation 10.1 is used. If X and Z 
are binary variables, then the predicted scores in each of the four groups 
defi ned by binary X and Z are plotted. If X is continuous and Z is binary, 
then the plots of the relation between X and Y at each level of Z represent 
the relation in each group. If X and Z are continuous, then the predicted 
scores are often plotted for the mean, 1 standard deviation above, and
1 standard deviation below the mean. 

10.4 Moderation and Mediation
The defi nition and interpretation of mediation in the presence of mod-
eration can be complex statistically and conceptually (Baron & Kenny, 
1986; Hayduk & Wonnacott, 1980; James & Brett, 1984; Rogosa, 1988; Stol-
zenberg, 1980; Wegener & Fabrigar, 2000). In general, there are two types 
of effects that combine moderation and mediation (Baron & Kenny, 1986): 
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(a) moderation of a mediation effect in which the mediated effect is dif-
ferent at different values of a moderator and (b) mediation of a modera-
tor effect in which the effect of an interaction on a dependent variable is 
mediated. Historically, the moderated mediation effect (Baron & Kenny, 
1986) refers to different M to Y relations across levels of a moderator, dif-
ferent X to M relations across levels of the moderator or different M to Y 
and X to M relations across levels of the moderator. 

An example of moderated mediation is a case in which a mediation pro-
cess differs for males and females. A manipulation may affect social norms 
equally for both males and females, but social norms only signifi cantly 
reduce subsequent tobacco use for females. A more complicated example of 
moderated mediation is a case in which social norms mediate the effect of a 
prevention program on drug use, but the size of the mediated effect differs 
as a function of risk-taking propensity. An example of mediated modera-
tion is if the effect of a prevention program depends on risk-taking pro-
pensity, and this interaction changes a mediating variable of social norms, 
which then affects drug use. These types of effects are important because 
they help specify types of subgroups for whom mediational processes dif-
fer and help quantify more complicated hypotheses about mediation rela-
tions. Despite the potential benefi ts of testing for moderation of a mediated 
effect and mediation of a moderator effect, few research studies include 
both mediation and moderation, at least in part because of the diffi culty 
of specifying and interpreting these models. An approach to models with 
both mediation and moderation is described in the next few sections. 

10.5 Interaction Between the Mediator and the 
Independent Variable in the Single Mediator Model
The fi rst type of moderator effect in a mediation model provides a test of 
one of the assumptions of the single mediator model. One of the assump-
tions of the mediation Equation 3.2 described in chapter 3 is that the rela-
tion from the mediator to the dependent variable is the same across levels 
of the independent variable; that is, the M to Y relation does not differ 
across levels of X. A nonzero XM interaction effect suggests that the inde-
pendent variable alters the relation between the mediator and the depen-
dent variable. The existence of this interaction also means that the relation 
of the independent variable to the dependent variable differs across levels 
of the mediator. To simplify the description, this chapter focuses on how 
the relation of M to Y differs across levels of X because X is often a variable 
representing an experimental manipulation. With X representing group 
random assignment, X is not a moderator. In situations in which the levels 
of X are not randomly assigned, then the researcher must decide whether 
X or M (or both X and M) is the moderator. 
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The test of the XM interaction has important substantive implications 
as well as providing a test of an assumption of the single mediator model. 
Substantive examples of a signifi cant XM interaction are described in Judd 
and Kenny (1981a), in Merrill (1994), and more recently by the MacArthur 
group (Kraemer et al., 2002). As for any interaction effect, if the XM inter-
action is statistically signifi cant, then the main effects of X or M do not 
necessarily provide a complete interpretation of the effects in the data. A 
statistically signifi cant XM interaction means that the relation between M 
and Y differs for at least some values of X. Because the relation of M to Y 
differs across levels of X, the b path differs across groups. As described in 
Equation 10.3, the h coeffi cient codes the XM interaction.

 Y = i2 + c′X + bM + hXM + e2 (10.3)

For the water consumption example in chapter 3, this interaction is not 
statistically signifi cant (ĥ = .0299, sĥ = .1198, tĥ = 0.25, ns) suggesting that the 
assumption of no XM interaction is reasonable. That is, the signifi cance 
test suggests that the relation of M to Y does not differ across levels of X 
for the water consumption study. If the XM interaction is statistically sig-
nifi cant, it is important to explore the source of the signifi cant inter action 
with contrasts including simple effects and plots following methods out-
lined in Aiken and West (1991) and Keppel and Wickens (2004). These 
contrasts test the signifi cance of the b̂ coeffi cient relating M to Y at differ-
ent values of X. There are several ways in which the XM interaction may 
be statistically signifi cant, which correspond to different simple slopes. 
For example, the size of the b̂ coeffi cient may be statistically signifi cant at 
all values of X but still differ across levels of X (i.e., for a two-group study, 
the b̂ coeffi cient may be larger in one group than another). This pattern 
of effects may be predicted in treatment research in which the relation 
between M and Y is still substantial in each group, but the size of the 
relation is larger in one group, perhaps because the treatment increased 
(or decreased) the size of the relation. For example, assume that a drug 
prevention program reduces the relation between the number of offers of a 
drug and drug use. The relation between offers and drug use may be sig-
nifi cantly lower in the treatment group than in the control group because 
the treatment reduced the strong infl uence of offers on drug use. Alterna-
tively, the overall effect of M may be close to zero such that the b̂ coeffi cient 
relating M and Y may have an opposite sign at different levels of X (i.e., 
for a two-group study the b̂ coeffi cient may have a different sign in each 
group). In this case, the relation between M and Y is opposite in the two 
groups, which may lead to a nonsignifi cant b̂ coeffi cient if the interaction 
is ignored, when in fact, the relation of M to Y may be statistically signifi -
cant in both groups but opposite in sign. There are many other possible 
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patterns of effects implied by a signifi cant XM interaction that are clarifi ed 
with simple slopes and other types of contrasts. Although the preceding 
discussion assumes slopes for linear relations, nonlinear relations may be 
tested in a similar manner.

Plots of effects are obtained by predicting scores for values of X and M. 
For example, the regression model equation for the XM interaction for the 
water consumption example in chapter 3 is shown in Equation 10.4. Note 
that the procedure for making plots described in the following is based on 
linear relations among variables, but nonlinear relations may be plotted 
using analogous procedures. The X variable (mean = 70.18, sd = 1.1373) and 
M variable (mean = 3.06, sd = 1.0382) were centered before forming their 
interaction and conducting the analysis.

 Ŷ = 3.2272 + 0.2140 X + 0.4542 M + 0.0299 XM (10.4)

Putting values for X and M in the equation yields a predicted value 
for Y. These predicted values are used to make plots of the interaction. 
Predicted scores for this example at the mean, at 1 standard deviation 
above and 1 standard deviation below the mean for the variables in the 
interaction were (a) 1 sd below the mean for both X and M, 2.5476, (b) 1 sd 
below the mean for X and the mean of M, 2.9838, (3) 1 sd below the mean 
for X and 1 sd above the mean for M, 3.4200, (d) mean of X and 1 sd below 
the mean for M, 2.7557, (e) the mean of X and the mean of M, 3.4200, (f) the 
mean of X and 1 sd above the mean for M, 2.7557, (g) 1 sd above the mean 
for X and 1 sd below the mean for M, 3.6988, (h) 1 sd above the mean for X 
and the mean of M, 3.4706, and (i) 1 sd above the mean for X and 1 sd above 
the mean for M, 3.9774. 

Equation 10.5 makes it easier to obtain predicted means because only 
the values for X and M are needed for the calculations:

 Ŷ = (0.2140 + 0.0299 M)X + 0.4542 M + 3.2272 (10.5)

To illustrate the calculation of the predicted scores, the predicted score 
for 1 standard deviation below the mean for both X and M is shown in 
Equation 10.6.

 Ŷ = (0.2140 + 0.0299(−1.0382))(−1.1373) + 0.4542(−1.0382)
       + 3.2272 = 2.5476 (10.6)

The predicted score for Y at 1 standard deviation below the mean of X and 
1 standard deviation above the mean of M is shown in Equation 10.7.

 Ŷ = (0.2140 + 0.0299(0))(−1.1373) + 0.4542(0) + 3.2272 = 2.9838 (10.7)
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It is clear from the predicted means that the two lines are nearly paral-
lel, consistent with a nonsignifi cant interaction effect. If the interaction 
was statistically signifi cant, then tests of simple slopes would be con-
ducted. The test of simple slope is obtained by centering the data so that 
the slope is at certain values of X and M. For example, if the data are 
centered at 1 standard deviation above the mean, then the interaction 
tests the simple effect at 1 standard deviation above the mean for that 
variable. The aforementioned approach required computing six different 
means. An alternative approach to plotting the data would be to obtain 
the regression line relating M to Y at each of three values of X and plot-
ting these regression lines. 

Figure 10.1 shows a plot of the relation of M to Y for values of X equal 
to 1 standard deviation below the mean, the mean value, and 1 standard 
deviation above the mean. Note that the lines are almost, but not exactly, 
parallel, consistent with the nonsignifi cant and small XM interaction. 
The values of different effects can also be shown in the model extended 
from Merrill (1994), who presented graphs for these effects for the case of 
a binary X variable. The slopes represent different b̂ coeffi cients for the 
three groups. Note that the slight distance between the lines differs at dif-
ferent values of M consistent with the different values of the ĉ′ coeffi cient 
at different values of M. The mediated effect âb̂, or the change in Y for a 
change in M of â units, is slightly different for the different groups. 

Merrill (1994) described a substantive example in which there is an XM 
interaction, and X is a binary variable coding exposure to treatment or 

Figure 10.1. Relation of M to Y.
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control. For treatment and prevention studies, a statistically signifi cant 
XM interaction is sometimes expected with an effect of X on M. For exam-
ple, a prevention program may increase achievement among school chil-
dren that in turn reduces depression. However, the increase in this effect 
may depend on whether the persons had high or low achievement at the 
beginning of the study. So in this situation, the time 2 mediator is inter-
mediate in the causal sequence relating the independent to the dependent 
variable, and the size of the mediated effect depends on the level of the 
mediator at baseline. For another example, imagine a program designed 
to increase social competence. The program increases social competence, 
which then subsequently increases achievement. Additionally, the size of 
the mediated effect depends on social competence such that more highly 
social competent participants do not improve as much as persons low in 
social competence. 

Merrill (1994) described a set of procedures to test both the modera-
tor effect and the mediator effect in this situation when the X variable is 
binary and the XM interaction is estimated. The estimator of the medi-
ated effect is âb̂ and standard error is the same as described in chapter 
3 of this book. The estimator of the moderator effect is ĥ(î3 + â) with a 
standard error equal to (i2

3s
2
ĥ + 2î3âs

2
ĥ + â2s

2
ĥ + ĥ2s2

 î  3
+ 2ĥ2s2

 î  3,â + ĥ2s2
â)1/2, where i3 

is the intercept in Equation 3.3 in which X predicts M, â is the coeffi cient 
relating X to M, and sî 3,â is the covariance between i3 and â. Estimates from 
Equations 3.3 and 10.3 are inserted in these equations to test statistical sig-
nifi cance or to create confi dence intervals for these effects. For the water 
consumption example, the moderator effect was equal to 0.0299(−20.7024 
+ 0.3386) = −0.6089 with a standard error of 2.4527 and t = 0.2482 (sî 3,â = 
8.5889, ns). In a large simulation study, Merrill, MacKinnon, and Mayer 
(1994) demonstrated that the mediated effect is infl ated in an analysis that 
ignores an XM interaction that is present in the population model generat-
ing the data. 

10.6 Moderation and Mediation With Stacked Groups
A general approach to modeling mediation and moderation is described 
in the next few sections starting with a moderator with two different val-
ues. The approach is easily extended to moderators with more than two 
levels. The simplest way that an interaction is involved in a mediation 
effect is if the mediated effect differs between two different samples. For 
example, the mediated effect may differ for males versus females or for 
older versus younger persons. As described earlier, this would occur if 
mediation of a prevention program on drug use through social norms 
differed for males and females, for example. Such a model with a binary 
Z variable is shown in fi gure 10.2. In this situation, the estimation of the 
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mediated effect follows the procedures outlined in chapter 3 in each of 
the two groups. An example with two groups is shown in Equations 10.8, 
10.9, and 10.10 for group 1 and Equations 10.11, 10.12, and 10.13 for group 2. 
Note that the second subscript for the parameters represents group mem-
bership and Z represents the moderator variable with groups as Z equals 1 
or Z equals 2. 

Group Z = 1

 Y1 = i11 + c11X + e11 (10.8)

 Y1 = i21 + c′11X + b11M + e21 (10.9)

 M1 = i31 + a11X + e31 (10.10)

Group Z = 2

 Y2 = i12 + c12X + e12 (10.11)

 Y2 = i22 + c′12X + b12M + e22 (10.12)

 M2 = i32 + a12X + e32 (10.13)

There are several interesting hypotheses that could be tested with these 
data, including a test of the equality of the a parameters (Ho: a11 − a12 = 0), 

Figure 10.2. Moderation of a mediated relation.
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a test of the equality of the b parameters (Ho: b11 − b12 = 0), or a test of the 
equality of the direct effect c′, (Ho: c′11 − c′12 = 0). A test of the equality of 
the total effect c, (Ho: c11 − c12 = 0) is the test of the overall interaction effect 
of X on Y. Because the two groups are independent, the estimator of the 
standard error of the difference is the pooled standard error from each 
group. The tests of the equality of the a parameters is called a test of medi-
ated moderation by Baron and Kenny (1986). The test of the equality of the 
b parameter is a test of moderated mediation in Baron and Kenny (1986). 
However these tests are not actually tests of mediation because they test 
the equality of only one link in the mediated effect. As a result, the test 
of equality of a parameters is a test of homogenous action theory (how 
X is related to M) and the tests of the equality of the b parameter across 
groups is a test for homogenous conceptual theory (how M is related to 
Y). These names clarify that the test is of either a or b separately and is 
not strictly a test of mediation. To test whether the mediated effect differs 
across levels of the moderator, a test of the equality of the mediated effect 
in each group is needed (Ho: a11b11 − a12b12 = 0). The standard error of this 
test is the pooled standard error of the mediated effect from each group. 
If there are more than two groups, then contrasts among the mediated 
effects are explored to fi nd the source of the signifi cant moderated media-
tion effect. With three groups for example, the main effect of any differ-
ence among mediated effects could be tested as well as contrasts between 
pairs of mediated effects. 

10.7 Moderation and Mediation With 
a Continuous Moderator
There are many situations in which the moderator variable is continuous. 
In this case, one option would be to fi t the mediation model treating each 
value of the continuous variable as a separate group (practical only if the 
moderator is an integer variable). A problem with this approach is that 
sample size may not be suffi cient to estimate the model at all values of the 
continuous variable. There is an alternative setup of this moderator and 
mediator model that can be more easily generalized to moderator vari-
ables that are continuous. This model is described fi rst for the two-group 
moderator variable.

The following models are used to test the same hypotheses described 
earlier for the two-group case for a binary or continuous moderator 
variable. Equation 10.14 represents the relation between the independent 
variable, the moderator, and the interaction of the moderator and the inde-
pendent variable. Equation 10.14 combines Equations 10.8 and 10.11, which 
were separate equations for two groups when Z is binary. Equation 10.15 
combines Equations 10.9 and 10.12. Equation 10.16 combines Equations 10.10 
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and 10.13. These are the equations implied by Baron and Kenny (1986, 
p. 1179). Equations 10.15 and 10.16 extend the single mediator model in sev-
eral ways. First, the moderator variable, Z, is added along with its interac-
tion with X, represented by XZ. The interaction of the moderator with M 
is represented by MZ. In this model, a test of homogeneous action theory 
is included in the test of the â3 coeffi cient because this coeffi cient tests 
whether the a parameter differs across the groups. A test of homogeneous 
conceptual theory is made with the b̂2 coeffi cient that tests whether the b 
parameter is different across values of Z. The test of whether the c′ param-
eter is different across groups is obtained by testing the ĉ′3 coeffi cient. The 
results from these tests are algebraically equivalent to the aforementioned 
model for which effects were estimated separately in each group. That is, 
Ho: a11 − a12 = 0 is the same as Ho: a3 = 0, Ho: b11 − b12 = 0, is the same as Ho: 
b2 = 0, and Ho: c′11 − c′12 = 0 is the same as Ho: c′3 = 0. 

 Y = i1 + c1X + c2Z + c3XZ + e1 (10.14)

 Y = i2 + c′1X + c′2Z + c′3XZ + b1M + b2MZ + e2 (10.15)

 M = i3 + a1 X + a2Z + a3XZ + e3 (10.16)

In these equations with X and Z centered, Y is the dependent variable, X 
is the independent variable, M is the mediator, Z is the moderator, XZ is 
the interaction of the moderator Z and X, c1, c2, and c3 represent the rela-
tion between the independent variable, moderator variable, moderator by 
independent variable interaction, and dependent variable, respectively; 
c′1, c′2, and c′3 represent the relation between the independent variable, 
moderator variable, moderator by independent variable interaction, and 
dependent variable, adjusted for the other effects in Equation 10.15, b1 is 
the coeffi cient relating the mediator to the dependent variable adjusted for 
the other effects in Equation 10.15, b2 is the coeffi cient relating the media-
tor by moderator interaction to the dependent variable adjusted for the 
effects in Equation 10.16, a1 is the coeffi cient relating X to the mediating 
variable, a2 is the coeffi cient relating Z to the mediating variable, and a3 
is the coeffi cient relating XZ to the mediator, e1, e2, and e3 represent error 
variability, and i1, i2, and i3 are the intercepts in the Equations.

If a researcher assumes homogeneous conceptual theory but wishes 
to test for homogeneous action theory, then the coeffi cient b2 would be 
zero and the interaction, MZ, would not be included as a predictor. If a 
researcher assumes homogeneous action theory but wishes to test for 
homogeneous conceptual theory then the a3 parameter would be zero and 
XZ would not be included as a predictor in the model. Note that model 
tests with and without assuming an interaction is zero may lead to different 
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research conclusions so it is often sensible to include the interactions in 
the analyses.

To investigate the value of the mediated effect as a function of Z it is 
useful to plot the value of the mediated effect as a function of the value of 
Z, where the X axis represents the value of Z and the Y axis represents the 
value of the mediated effect. If X codes random assignment to an experi-
mental condition then X and Z should be uncorrelated. If Z codes a vari-
able with one of two values, then the interaction codes the difference in 
the value of the coeffi cient between groups.

10.8 General Moderation and Mediation Model
The model can be made more general by adding two other interactions 
thereby allowing for testing more complicated forms of moderation and 
mediation. The XM and XMZ interactions can be added to the mediation 
and moderation equations to form a general model in Equation 10.17: 

 Y = i2 + c′1X + c′2Z+ c′3XZ + b1M + b2MZ + hXM + jXMZ + e2 (10.17)

As described earlier (Equation 10.3) the h coeffi cient represents the test 
of whether the M to Y relation differs across levels of X. The j coeffi cient 
represents the three-way interaction effect where the relations between Z 
and M and Y differ across levels of X. If a statistically signifi cant j coef-
fi cient is found, further simple interaction mediated effects and simple 
mediated effects are explored. In many situations the h and j parameters 
will be assumed to be zero. When time is included in this model, more 
general estimation strategies are needed such as the methods described 
in chapters 6, 7, and 8. 

10.9 Mediated Baseline by Treatment Interaction Models
One example of a moderation and mediation model that explicitly includes 
a baseline score is the mediated baseline by treatment interaction model. 
These models are important because they may be the ideal model for the 
evaluation of treatment and prevention programs for which the effect of 
the program depends on baseline measures of the mediator or depen-
dent variable. The XM interaction in the prediction of Y, described earlier 
in this chapter, was an example of a moderator variable in the media-
tional process. There are other more complicated forms of these models. 
I describe one of these models here, the mediation baseline by treatment 
interaction model.
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Baron and Kenny (1986) and later Morgan-Lopez and MacKinnon (2006) 
specifi ed the mediated baseline by treatment interaction model as shown 
in Equations 10.18 through 10.20:

 Y = i1 + c1 X + c2Z + c3XZ + e1 (10.18)

 Y = i2 + c′1X + c′2Z + c′3XZ + bM + e2 (10.19)

 M = i3 + a1X + a2Z + a3XZ + e3  (10.20)

where the variables and coeffi cients are the same as in the moderation 
and mediation model described in Equations 10.14 through 10.16, but here 
the Z variable corresponds to a baseline measure of M or Y (or X if it does 
not represent groups). Baseline values for M and Y are usually considered 
moderator variables, because X often codes an experimental manipula-
tion occurring after the baseline measurement. And baseline values for M 
(MBaseline) are somewhat more common moderators than baseline values 
of Y (YBaseline). In Equation 10.18, the XZ interaction tests whether the rela-
tion between X and Y differs as a function of baseline status. Using the 
baseline measure of Y as the moderator, Equation 10.19 would correspond 
to the prediction of Y with X, the baseline measure of Y, and the interac-
tion of the baseline measure of Y with X. The XZ interaction in Equation 
10.19 tests whether the relation between Y at baseline and follow-up dif-
fers across levels of X. The interaction has the same meaning in Equation 
10.14, except that the effect is adjusted for M. In this model, there are three 
mediated effects corresponding to the effect of X to M to Y, Z to M to Y, 
and XZ to M to Y. The mediated YBaseline by treatment interaction suggests 
that the size of the mediated effect depends on level of the outcome at 
baseline. This model is often appropriate when the mediated effect is dif-
ferent for persons at different levels on the outcome. 

The interpretation of the mediated baseline by treatment interaction is 
similar if the baseline measure of the mediator is used as the moderator 
rather than the baseline measure of Y. The substantive interpretation of 
the mediated effect is that mediation depends on the baseline measure 
of the mediating variable. These types of effects are often observed in 
treatment research because the participants who benefi t the most from 
a treatment are often the persons who start out at the lowest level on the 
mediator. 

It is possible to include baseline measures of both M and Y in the medi-
ated baseline by treatment equations. In this model, there would be addi-
tional interactions in each equation, and it may be appropriate to include 
the three-way interaction among baseline measures of M and Y and the 
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X variable. As described earlier, it is important to interpret these inter-
actions with plots and contrasts. Morgan-Lopez and MacKinnon (2006) 
conducted a simulation study and found that mediated effect standard 
errors in a mediation of a moderator effect model generally underesti-
mated true standard errors when there were smaller correlations among 
predictors, smaller sample sizes (N < 100), and nonzero direct effects.

10.10 More Complicated Moderation 
and Mediation Models
There are several more complicated models that include both moderation 
and mediation. One interesting method was developed recently for data 
that are entirely within subjects, for which the value of the independent 
variable is not assigned to individual participants (Judd, Kenny, & McClel-
land, 2001). For a single X variable, two measures of the mediator, M1 and 
M2, and two measures of the outcome, Y1 and Y2, test whether the change 
in Y depends on the level of the X variable. Mediator effects include a test 
of whether differences in the mediator between conditions is in the same 
direction as the difference in Y and a test that M predicts Y. 

Other recent approaches include combining the identifi cation of groups 
of persons with models for mediation, known as mixture models that 
identify subgroups of participants who serve as moderators of mediation 
effects. Participants are grouped in terms of their trajectory of change 
over time or grouped based on other variables. Mediation effects are then 
investigated within these groups. Recent advances in computing (Muthén 
& Muthén, 2004) should increase the application of these types of models. 
These models are likely to prove especially useful in the evaluation of 
prevention programs as they will allow for the examination of mediation 
models across unobserved groups. However, other research has demon-
strated that violation of the normality assumption can have substantial 
effects on the accuracy of the subgroup trajectories (Bauer & Curran, 
2003). The development and application of these models is an active area 
of research.

One common concern when interaction effects are examined is the 
effect of measurement error on the test of the interaction effect. Measure-
ment error reduces the power to detect interaction effects and can distort 
parameter estimates. New approaches allow for the estimation of interac-
tions among latent variables or latent interaction effects (Klein & Moos-
brugger, 2000). Measurement error is modeled in these methods, thereby 
providing more accurate tests of interaction effects. These new methods 
should help further clarify mediator and moderator effects. Recent work, 
however, also suggests that these methods may be susceptible to violation 
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of normality, and there has not been extensive research supporting the 
use of these methods for models with more than one interaction (Marsh, 
Wen, & Hau, 2004; Wall & Amemiya, in press). 

Developments in generalized additive models (Brown, 1993) may allow 
for more accurate modeling of interaction effects and mediation effects. In 
these models, the relation between two variables is not restricted to linear 
relations and can model local relations among variables, where relations 
among variables are fi t for different sized windows or ranges of values. 
The mediated effect is estimated within these windows defi ned by one 
or more of the variables in the mediation model. There is some question 
about whether these methods capitalize on chance relations and conse-
quently whether the models replicate.

10.11 Example
The example used for the demonstration of moderation and mediation 
models assumes that the data described in chapter 3 for the infl uence 
of temperature on water consumed were actually for a sample of nor-
mal persons. Table 10.1 presents fabricated data from another sample 
consisting of 50 persons classifi ed as fi t. These data will be initially ana-
lyzed separately and then will be added to the data in Table 3.1 for the 
50 normal persons. Assume that 1 year before the research study, half 
of the 100 total persons were randomly assigned to receive a special-
ized training program to improve fi tness and the other 50 persons were 
not given any specialized training, called the normal group in the fol-
lowing analysis. After 1 year, both the persons in the fi t group and the 
normal group participated in the water consumption study described 
in chapter 3. There are several ways in which mediation may differ for 
fi t and normal persons. First, fi t persons may be more sensitive to body 
functions and may more accurately judge their own thirst in relation to 
temperature. This type of moderator effect would be consistent with a 
statistically signifi cant difference in the â path relating temperature to 
perceived thirst. Second, less fi t persons may be less likely to translate 
their feelings of thirst to actual water consumption, which is consistent 
with a statistically signifi cant difference in the b̂ coeffi cient. Finally, both 
processes may be present. 

SAS programs for the single mediator model were used to conduct the 
analysis yielding the following estimates for Equations 10.11 through 10.13 
for 50 persons in the fi t group: 

Model l: Y = i1 + cX + e1

    Ŷ = −18.0323 + .3004X
           (.1766)
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Model 2: Y = i2 + c′ X + bM + e2

    Ŷ = −0.6095 + 0.0359X + 0.3475M
          (0.2035)   (0.1490)

Model 3: M = i3 + aX + e3

    M̂ = −50.1371 + 0.7611X
           (0.1637)

For the fi t participants, temperature (X) was not signifi cantly related to 
water consumption (Y) (ĉ = 0.3004, sĉ = 0.1766, tĉ = 1.70) although the size of 
the ĉ coeffi cient was comparable to the value for the normal group (0.3604). 
There was a statistically signifi cant effect of temperature on self-reported 

Table 10.1 Hypothetical Data for a Study of Temperature (X) Self-Reported 
Thirst (M), and Water Consumption (Y) for Fit Participants

S# X M Y S# X M Y

 1 69 2 3 26 71 5 4
 2 70 2 4 27 73 5 3
 3 69 1 2 28 68 1 3
 4 70 3 2 29 70 4 4
 5 69 1 1 30 70 5 4
 6 70 2 3 31 69 4 3
 7 69 4 3 32 70 5 4
 8 70 2 3 33 70 5 5
 9 70 3 2 34 70 2 3
10 69 3 2 35 71 5 5
11 69 4 2 36 70 3 5
12 71 3 5 37 70 4 3
13 71 4 1 38 69 2 2
14 71 4 3 39 71 4 4
15 69 3 4 40 70 5 3
16 70 2 2 41 70 2 3
17 70 3 3 42 70 3 4
18 71 2 2 43 71 4 3
19 70 3 3 44 69 2 1
20 71 3 2 45 71 5 4
21 69 2 4 46 71 3 4
22 71 5 1 47 71 4 4
23 69 1 2 48 71 4 5
24 70 2 1 49 70 3 3
25 70 3 2 50 71 4 3
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thirst for fi t participants (â = 0.7611, sâ = 0.1637, tâ = 4.65), which was almost 
twice the size as that for normal participants (0.3386). The relation of the 
self-reported thirst mediator on water consumption was also statistically 
signifi cant (b̂ = 0.3475, sb̂ = 0.1490, tb̂ = 2.33) when controlling for tempera-
ture. The adjusted effect of temperature on water consumption was not 
statistically signifi cant, (ĉ′ = 0.0359, sĉ′ = 0.2035, tĉ′ = 0.18). The estimate of the 
mediated effect for the fi t group was equal to âb̂ = 0.2645 with asymmetric 
lower confi dence limit (LCL) = 0.0430 and upper confi dence limit (UCL) = 
0.5395. The mediated effect of temperature through perceived thirst was 
equal to .2645 deciliters of water consumed. Using Equation 3.6 or 3.7, the 
standard error of the mediated effect was equal to 0.1269, and the mediated 
effect was statistically signifi cant (zâb̂ = 2.0846). Note that all of the preced-
ing standard errors are from the 50 persons in the fi t group.

10.12 Tests of Moderator and Mediator Effects
Because the two samples of participants are independent, one way to test for 
moderator effects is to conduct a t-test comparing the regression coeffi cients 
in the two models divided by their pooled standard error. For example, the 
test of homogenous â coeffi cients could be conducted with a t-test as shown 
in Equation 10.21 where subscript 1 refers to the normal sample and sub-
script 2 refers to the fi t sample. The difference between the two â regression 
coeffi cients is statistically signifi cant (tâ1−â2 = −2.08, p � .05) as shown in the 
formula following Equation 10.21. Analogous tests of the equality of the ĉ′ 
coeffi cients (tĉ′1−ĉ′2 = 0.71, ns), b̂ coeffi cients (tb̂1−b̂2 = 0.50, ns), and ĉ coeffi cients 
(tĉ1−ĉ2 = 0.27, ns) were not statistically signifi cant, suggesting that only the 
relation from the temperature to self-reported thirst signifi cantly differed 
between the two groups. The test of equal mediated effects using Equation 
6.18 was also not statistically signifi cant (tâ1b̂1−â2b̂2

  = .7608).

 
t a a s sa a a aˆ ˆ ˆ ˆ( ˆ ˆ )/

( . .

1 2 1 2
2 2
1 2

0 3386 0 761

− = − +

− 11 0 1224 0 1637 2 082 2)/ ( . . ) .SQRT + = −
 (10.21)

A more general way to test moderated mediation effects is by combin-
ing the two data sets for a total of 100 participants and specifying inter-
action terms that correspond to the different tests as shown in Equations 
10.14 through 10.16. A numeric value for group, X, is also needed, so here 
X = −1 for not fi t and X = 1 for fi t. The estimates and standard errors (in 
parentheses) for these equations are shown in the following:

Ŷ = −20.0414 + 0.3304X + 2.0091Z + −0.0300XZ
      (0.1104)  (7.7445)  (0.1104)
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 Ŷ = −6.6612 + 0.1218X + 6.0517Z −0.0859XZ + 0.3993M −0.05178MZ
      (0.1201)   (8.2713) (0.1201)  (0.1045) (0.1045)

M̂  = −35.4198 + 0.5498X − 14.7173Z + 0.2113XZ
      (0.1015)    (7.1189)   (0.1015)

The test of homogeneous â  paths corresponds to the test of the XZ inter-
action in the prediction of M (â3 = 0.2113, sâ3

 = 0.1015, tâ3
 = 2.08) and gives the 

identical test of signifi cance to the two-sample independent t-test. The sign 
of the coeffi cient is reversed, and the value of the interaction effect, 0.2113, 
is half as large as the difference between the two coeffi cients because the 
groups were coded as 1 for fi t and −1 for normal groups. Similarly the test 
of homogenous b̂ paths is given in the MZ interaction coeffi cient for the 
prediction of Y, equivalent ĉ ′ paths in the XZ interaction coeffi cient in the 
prediction of Y, and homogeneous ĉ  paths in the XZ interaction coeffi cient 
in Equation 10.8. The t-test for each effect is identical whether the vari-
able is an independent group t-test or a test of an interaction effect. The 
test of equal mediated effects is a bit more complicated in these equations 
because the value of the mediated effect depends on the values of other 
predictors in the equations. To calculate the mediated effect at the average 
of the moderator, a method analogous to tests for simple effects is needed 
(Tein, Sandler, MacKinnon, & Wolchik, 2004). For the case of a moderator 
with two groups, the simple mediated effects are tested for each group. 
With a continuous moderator, it is necessary to select values to test the 
mediated effect. As for interaction effects, it is often sensible to test effects 
at 1 standard deviation above and below the mean. 

The procedure for plotting simple regression lines for the XZ inter-
action is simpler than that described earlier for the continuous Z example, 
because for a binary Z variable there are separate plots for each level of 
Z. In this case, the plot consists of two lines or one line for each level of 
the moderator. The regression equation for the signifi cant moderator by 
X interaction on M is shown, followed by the rearrangement of terms to 
make computation of predicted means easier. 

 M̂  = −35.4198 + 0.5498X − 14.7173Z + 0.2113XZ

       M̂  = (0.5498 + 0.2113Z)X − 14.7173Z − 35.4198

For the fi t group (Z = 1), the mean of M at 1 standard deviation below 
the mean of X equals 

 M̂  = (0.5498 + 0.2113(1))(69.1085) − 14.7173(1) − 35.4198 = 2.4614 
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For the fi t group, the mean of M at the mean of X equals 

 M̂  = (0.5498 + 0.2113(1))(70.1300) − 14.7173(1) − 35.4198 = 3.2388

For the fi t group, the mean of M at 1 standard deviation above the mean 
of X equals 

 M̂  = (0.5498 + 0.2113(1))(71.1515) − 14.7173(1) − 35.4198 = 4.0163

For the normal group (Z = −1), the mean of M at 1 standard deviation 
below the mean of X equals 

 M̂  = (0.5498 + 0.2113(−1))(69.1085) − 14.7173(−1) − 35.4198 = 2.6907

For the normal group, the mean of M at the mean of X equals 

 M̂  = (0.5498 + 0.2113(−1))(70.1300) − 14.7173(−1) − 35.4198 = 3.0365

For the normal group, the mean of M at 1 standard deviation above the 
mean of X equals 

 M̂  = (0.5498 + 0.2113(−1))(71.1515) − 14.7173(−1) − 35.4198 = 3.3823

As shown in the plot of these data in Figure 10.3, the two lines are not 
parallel, consistent with an interaction effect. The test of signifi cant simple 
slopes indicates whether the â  coeffi cient is different in each group. The 
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Figure 10.3. Simple effects of X to M for normal and fi t groups.
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test of simple slopes for the fi t group is obtained by testing the regression 
coeffi cient relating X to M in that group. For this example, the simple slope 
is statistically signifi cant in both the fi t (â1 = 0.7611, sâ1

 = 0.1637, tâ1
 = 4.65) 

and normal (â2 = 0.3386, sâ2
 = 0.1224, tâ2

 = 2.77) groups. Setting the regres-
sion equation for fi t group equal to the regression equation for the normal 
group and solving for X yields the point at which the two lines cross; for 
these data, the lines cross at X equal to 69.6679. It is possible to compute 
the regions of statistical signifi cance for which the values of X correspond 
to signifi cant differences on M using regions of signifi cance procedures 
described in Huitema (1980). Regions of signifi cance calculations are espe-
cially useful when lines do not cross, yet there is a statistically signifi cant 
interaction (Preacher, Curran, & Bauer, 2006).

10.13 Summary
This chapter presents the basic statistical framework that can be used to 
estimate mediation models in the presence of moderator variables. There 
are several different types of potential moderator variables. For many sit-
uations, models with moderation and mediation require theoretical and 
empirical evidence for hypotheses. In the case of the XM interaction, the 
assumption that its value is zero should be routinely tested in mediation 
analysis. A statistically signifi cant XM interaction will not negate fi ndings 
of mediation but may in fact provide richer and more detailed information 
about an observed mediation effect. Hypotheses regarding moderation 
and mediation effects refl ect a mature fi eld of study that has progressed 
from initial work to detailed understanding of the mechanisms underly-
ing relations that may differ across groups. 

There are several limitations of models that combine moderation and 
mediation. All of the assumptions of the single mediator model outlined 
in chapter 3 apply. Several of these assumptions are more problematic for 
mediation models with moderators. First, as for the mediator case, it is 
assumed that measures have no, or negligible, error. Measurement error 
can seriously distort interaction effects. Results may not be as accurate 
with heterogeneous variances across levels of the moderator (Overton, 
2001). Suffi cient power to detect interaction effects often requires very 
large sample sizes or very large effect sizes (Aiken & West, 1991). The addi-
tion of moderators to mediator models also makes assumptions regarding 
true causal relations more complex, whereby some effects are only present 
at certain values of the moderator variable. Although richer understand-
ing of the data is obtained with these models, the complexity of the model 
makes simple interpretations diffi cult. Nevertheless, models with media-
tors and moderators are important because they probably refl ect the true 
complexity of relations among variables. 
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10.14 Exercises
10.1. Compare and contrast mediation, moderation, mediation of a mod-

erator effect, and moderation of a mediated effect. Give examples of 
each type of effect. 

10.2. A researcher wants to test whether the mediation effect differs for 
males and females. What methods would you recommend to her?

10.3. Do you think that moderation and mediation effects should be 
expected in your research area? 

10.4. Assume that the data in this chapter and chapter 3 had an addi-
tional grouping variable. The fi rst 25 observations in each data set 
were from participants who were told that their activities were all 
recorded and that their performance on the tasks they completed 
would be compared with that of all persons in the study. The last 25 
observations were not given any instructions. Assume that partici-
pants were randomly assigned to conditions. 

 a. Conduct a moderation and mediation analysis of these data. 
 b. Does the mediation effect depend both on fi tness and competi-

tion manipulation?
10.5. During the self-contained environment study, measures of work 

completed were obtained for the two groups. In general, the fi t group 
participants completed twice as many tasks as the normal group 
participants. How would you interpret this effect in the context of 
the moderation and mediation effects?
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11

Mediation in Categorical 
Data Analysis

Above all else, we believe that the issue of when and 
how to use surrogate endpoints is probably the pre-
eminent contemporary problem in clinical trials 
methodology, so it merits much extensive scrutiny.

—Colin Begg & Denis Leung, 2000, p. 27

11.1 Overview
The purpose of this chapter is to describe methods to assess mediation when 
the dependent variable is categorical. First, logistic and probit regression, 
the appropriate regression methods for categorical dependent variables, 
are described. Second, the problems inherent in estimating mediation 
using logistic and probit regression are discussed. Two solutions for the 
problems involved in the estimation of mediation with categorical out-
comes are proposed. A hypothetical example from the fi eld of surrogate 
endpoints is used to illustrate the methods. Next, the multiple mediator 
model with categorical outcomes is presented. 

11.2 Categorical Dependent Variables 
Categorical outcome variables are common in many different types of 
studies. One of the outcomes in the Multiple Risk Factor Intervention Trial 
(MRFIT) was the presence or absence of coronary heart disease (Multiple 
Risk Factor Intervention Trial Research Group, 1990). Programs to prevent 
sexually transmitted diseases such as AIDS are designed to promote safer 
sex practices with binary outcome variables of reinfection or abstinence 
(Mays, Albee, & Schneider, 1989). Secondary prevention programs attempt 
to increase screening rates for serious illness with a binary outcome measure 
of whether the subject was screened for or not. Examples of binary outcome 
variables in psychology include clinical diagnosis, whether a subject littered 
or not, and whether a criminal was or was not recognized in a lineup.
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An example of testing mediation with binary outcomes was described 
by Foshee et al. (1998). A program to prevent adolescent dating violence was 
hypothesized to prevent dating violence through the mediating variables 
of changing norms, decreasing gender stereotyping, improving confl ict 
management, changing beliefs about the need for help, increasing aware-
ness of services for victims and perpetrators, and increasing help-seeking 
behavior. The researchers compared the values of the logistic regression 
coeffi cient of treatment predicting outcome with and without controlling 
for the proposed mediators. The authors considered evidence of media-
tion to occur when the difference between the two values was attenuated 
by 20%. Given these criteria, results indicated that the treatment effect on 
sexual violence was mediated by changes in norms, gender stereotyping, 
and awareness of victim services. However, there are more accurate meth-
ods than proportion reduction to assess mediation, as described later.

Surrogate endpoint research is another area with categorical dependent 
variables. Surrogate endpoints are intervening or mediating variables that 
can be used instead of a dependent variable (Susser, 1973, 1991). In many 
areas of medical research, the length of time for a disease to occur and 
low incidence rates of the disease would require exorbitantly large sample 
sizes to study correlates of the disease. In this situation, researchers advo-
cate the use of surrogate or intermediate endpoints (see special issue of 
Statistics in Medicine, Brookmeyer, 1989, and National Institutes of Health 
conference on surrogate endpoints, Henney, 1999). As described in chap-
ter 2, surrogate endpoints are more frequent or more proximate to the pre-
vention strategy and, as a result, are easier to study. Examples of surrogate 
endpoints are serum-cholesterol levels for the ultimate outcome of coro-
nary heart disease and the presence of polyps for the ultimate outcome 
of colon cancer (Freedman & Schatzkin, 1992). The use of surrogate end-
points rests on the mediation assumption that the independent variable 
causes the surrogate endpoint that in turn causes the ultimate outcome. 
As a result, effects on the surrogate endpoints are important to the extent 
that the surrogate endpoint is causally related to the outcome. 

Prentice (1989, p. 432) defi ned a surrogate endpoint as a “response vari-
able for which a test of the null hypothesis of no relationship to the treat-
ment groups under comparison is also a valid test of the corresponding 
null hypothesis based on the true endpoint.” In an important article on 
identifying surrogate endpoints, Freedman, Graubard, and Schatzkin (1992) 
proposed the proportion mediated as a measure of a surrogate endpoint, 
where a value of 100% indicates that the surrogate endpoint explains all of 
the relation between the treatment and dependent variable. The propor-
tion mediated measure includes the size of the surrogate endpoint effect 
as well as the amount of the treatment effect explained by the surrogate 
endpoint. The proportion mediated has been criticized, however, because 
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proportion values are often very small and very large sample sizes are 
required for accurate confi dence intervals. 

In the situation in which the dependent variable is categorical, the esti-
mation of the mediated effect is more complicated and requires logistic or 
probit regression because the categorical dependent variable violates sev-
eral assumptions of ordinary regression analysis. The next section gives 
an overview of logistic and probit regression.

11.3 Introduction to Logistic and Probit Regression
Logistic regression is the most common method used to analyze data 
when the dependent variable is categorical (Hosmer & Lemeshow, 2000). 
Typically the dependent variable is binary or dichotomous, meaning it 
has two categories, although variables with ordinal categories can be eas-
ily incorporated in this analysis. The widespread application of logistic 
regression began after application for the analysis of binary dependent 
variables from the groundbreaking longitudinal study of cardiovascular 
disease conducted in Framingham, Massachusetts (Dawber, 1980). 

To make regression work properly for a categorical dependent variable, 
the ordinary least squares regression model must be changed substan-
tially. These changes are necessary because if ordinary regression pro-
cedures are used to analyze a binary categorical outcome variable, there 
are three major problems: (a) predicted values may be outside the possible 
range of possible values, for example, >1 or <0 for a variable coded as 0 
or 1, (b) the residuals or errors from such a model will not be normally 
distributed, and (c) the standard errors of the estimates of the regression 
coeffi cients are inaccurate. Each of these problems with using ordinary 
least squares regression for binary outcome data is addressed in logis-
tic regression. Once these changes have been made, logistic regression is 
similar to ordinary regression. These adjustments are made by the analy-
sis of logits rather than the original binary dependent variable. 

Logistic regression has become very popular in many fi elds for at least 
two reasons. First, logistic regression coeffi cients can be easily converted 
to odds ratios. Odds refers to the likelihood of one event relative to another 
event, for example, a horse has 2 to 1 odds of winning a horse race. The 
odds ratio is a ratio of odds; for example, horse A is two times more likely 
to win the race than horse B. The odds ratio is informative on a practical 
as well as a scientifi c level. Phrases such as “a person who smokes is two 
times more likely to die of coronary heart disease than a person who does 
not smoke” make intuitive sense. The logit is the natural logarithm of the 
odds ratio. The logit has several useful statistical properties that solve the 
problems with the analysis of a binary dependent variable. Second, logis-
tic regression is more accurate than discriminant analysis, a method that 
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is also used to analyze a binary dependent variable. The primary reason 
that logistic regression is preferable to discriminant analysis is a restric-
tive assumption of discriminant analysis. In discriminant analysis, it is 
assumed that for each level of the dependent variable, the independent 
variables have a multivariate normal distribution. But there are many pre-
dictor variables that are dichotomous or are not normally distributed, for 
example, gender and drug use, which will violate this assumption.

11.4 Logistic Regression Coeffi cients
Logistic regression coeffi cients are in the metric of the natural logarithm 
of the odds ratio, that is, the logit. To convert these coeffi cients to odds 
ratios compute eregression coeffi cient or the antilogarithm of the regression coef-
fi cient. For example, if the logistic regression estimate was equal to 0.34, 
then the odds ratio equals e.34 = 1.4049. If the logistic regression parameter 
was equal to 0.68, then the odds ratio equals 1.9739. 

Table 11.1 presents the formulas for calculating the odds ratio and the vari-
ance of the logarithm of the odds ratio for data from a 2 × 2 table. Table 11.2 
shows the data for a 2 × 2 table formed by a binary variable coding whether a 
subject was exposed to a smoking prevention program and a binary variable 
coding whether the subject smoked in the last month or not.

If group is coded 1 for program and 0 for control group, and cigarette 
use is coded 1 for use and 0 for no use, the logistic regression coeffi cient 
relating program exposure and smoking equals the logarithm of the odds 
ratio or −0.5057. If study participants received the program, they were 0.6 
times less likely to smoke in the last month. The variance of the logarithm 
of the odds ratio equals 0.0316, so the standard error in logistic regression 
output is 0.1778. The coeffi cients of the logistic regression model can also 
be used to obtain predicted logits and predicted proportions as shown in 
Table 11.3.

Table 11.1 Frequencies and Formulas for the Odds Ratio and Its 
Standard Error

Exposed

Yes No All

Cases a b a + b = N1

Controls c d c + d = N0

All a + c b + d a + b + c + d = N

ad
cb

a/b
c/d

odds ratio;
aln(odds ratio)

2= = =σ 1 ++ + +1 1 1
b c d
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The logistic regression equation is Ŷ = −1.2441 − 0.5057 X1. To get the 
predicted logit, insert values for X in the logistic regression equation. For 
the control group: Ŷ = −1.2441 − 0.5057 (X1 = 0) = −1.2441. For the program 
group: Ŷ = −1.2441 − 0.5057 (X1 = 1) = −1.7498. As shown in Table 11.3, these 
formulas are used to compute predicted proportions for each cell in the 
2 × 2 table. These equations can be easily extended to the case of multiple 
independent variables.

11.5 Estimation
In Tables 11.1 and 11.2, logistic regression parameters were computed 
by hand using formulas for the regression coeffi cient, and standard 
error. These closed-form formulas are only available for the simplest

Table 11.2 Odds Ratio for the Relation Between Exposure to a Tobacco 
Prevention Program and Smoking

Smoked a Cigarette in the Last Month

Yes No All

Program  73 420 493
Control  83 288 371
All 156 708 864

odds ratio ; ln(odds r= =73 420
83 288

0 6031
/
/

. σ̂ aatio)
2

ln(0.603)

= + + + =

±

1
73

1
420

1
83

1
288

0 0316.

e 11 96 0316 0 8541 0 1573 0 4257 0 8544. . . , . . , .= =− −e

Table 11.3 Predicted Proportions and Predicted Logits

Smoked

Yes No

Program 0.1481 0.8519
Control 0.2237 0.7763

P
e

e
e

e
eLogit

Logit

X

X=
+

=
+

=
+

+

−

1 1

0 1 1

0 1 1

1 749β β

β β

. 88

1 74981
0 1738

1 0 1738
0 1481

+
=

+
=−e .

.
.

.

P
e

e
e

e

Logit

Logit=
+

=
+

=
−

−1 1
0 2882

1

1 2441

1 2441

.

.
.

++
=

0 2882
0 2237

.
.
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302 Introduction to Statistical Mediation Analysis

logistic regression models. Often there are continuous predictors and 
more than one independent variable, making the estimation of parameters 
more complicated. In these more complicated situations, the parameters 
of the logistic regression model are estimated using an iterative procedure 
to determine the estimates that maximize the likelihood of observing the 
data. The purpose of the method is to fi nd the value of the logistic regres-
sion estimates that maximizes the likelihood of observing the data that 
were actually observed.

The calculation of the odds ratio and standard error for the 2 × 2 table 
are shown here to explicitly show how the logistic regression model is a 
nonlinear model. In all of the logistic regression analyses described in 
this chapter, coeffi cients can be transformed in the same way from logit 
to odds to proportion. As described later the transformations to logits for 
statistical analysis and transformations to proportions and odds make 
standard approaches to mediation analysis inaccurate. 

11.6 Probit Regression
Probit regression is very similar to logistic regression. In probit regres-
sion, the normal distribution rather than the logistic distribution is used. 
For example, rather than the logit of a proportion, the z-score correspond-
ing to the cumulative proportion from the normal curve is the dependent 
variable. The predicted values in probit regression are the z-scores that 
correspond to the predicted proportion and are thus easily transformed 
to the proportion. The estimation of parameters follows an approach 
similar to that with logistic regression, and the conclusions from a probit 
regression analysis will be very similar, but not identical, to the conclu-
sions from the logistic regression. In fact, the probit regression coeffi cients 
are approximately equal to 0.625 times the logistic regression coeffi cients 
(Amemiya, 1981). As will be seen later, there are several aspects of probit 
regression that make it preferable for mediation analysis. In particular, the 
mathematical tractability of the multivariate probit distribution makes it 
more widely used in advanced modeling of categorical variables using 
programs such as Mplus (Muthén & Muthén, 2004). 

11.7 Mediation Analysis in Probit and Logistic Regression
As in the case of a continuous dependent variable, the mediated effect 
can be calculated in two ways when the dependent variable is categori-
cal (MacKinnon, Warsi, & Dwyer, 1995). Both methods to calculate the 
mediated effect use information from the three equations described in chap-
ter 3, but the notation has been changed in Equations 11.1, 11.2, and 11.3 to 
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refl ect the categorical dependent variable. Figure 11.1 displays the single 
mediator model with a categorical dependent variable.

 Y* = i1 + cX + e1 (11.1)

 Y* = i2 + c’X + bM + e2 (11.2)

 M = i3 + aX + e3 (11.3)

INDEPENDENT
VARIABLE

DEPENDENT
VARIABLE

  c

MEDIATOR

INDEPENDENT
VARIABLE

DEPENDENT
VARIABLE

c’

a b

X

X

Y*

X

Y*

Y*  = i1 + cXp + e1

Y*  = i2 + c’X + bX + e2

M = i3 + aX + e3

Figure 11.1 Path diagram and equations for the mediation model.
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304 Introduction to Statistical Mediation Analysis

The dependent variable, Y*,

 Y* = ln[P(Y0 = 1)/(1 − P(Y0 = 1))]

is the underlying latent continuous variable that is dichotomized into one 
of the categories of the outcome variable, where Y is the value of the out-
come variable, either 0 or 1 for a binary dependent variable, X is the inde-
pendent variable, and M is the mediator in the equations. The intercept 
and residual of each equation are ii and ei, respectively. 

As described in chapter 3 for a continuous dependent variable, there are 
two methods to estimate the mediated effect in logistic or probit regres-
sion, the difference in the independent variable coeffi cients, ĉ – ĉ′, and the 
other based on the product of coeffi cients, âb̂. In logistic or probit regres-
sion, these values can be quite discrepant as will be shown later. 

11.8 Standard Errors of the Mediated 
Effect in Logistic Regression
The standard error of âb̂ can be calculated using any of the standard error 
equations described in chapter 3 such as Equation 3.6. The standard error 
of ĉ – ĉ′ using formula 3.8 is more complicated because the covariance 
between ĉ and ĉ′ for ordinary regression does not directly apply for logis-
tic regression. Freedman et al. (1992) described a formula for the covari-
ance between ĉ and ĉ′, which is also described in Buyse and Molenberghs 
(1998). The steps required to compute the covariance between ĉ and ĉ′ 
from logistic regression are presented in Table 11.4. The approach requires 
a matrix programming language such as SAS PROC IML.

When the dependent variable is continuous, and ordinary regression 
is used, the two methods for calculating the mediated effect are equiva-
lent (âb̂ = ĉ – ĉ′). This is not the case in logistic regression. The scale for 
the dependent variable, Y*, in logistic regression equations is not directly 
observed. Unlike the error terms in ordinary linear regression with a con-
tinuous dependent variable, the residual variance in logistic regression is 
set to equal π2/3 to fi x the scale of the unobserved Y* variable. In probit 
regression, the residual variance is fi xed to 1. Because the residual vari-
ances are fi xed in logistic and probit regression, the scale of the Y* vari-
able is not the same across models. Therefore, the ĉ – ĉ′ and âb̂ methods of 
estimating mediation are not equal and can be quite different. 

A small simulation study conducted by MacKinnon and Dwyer ( 1993) 
compared the ĉ – ĉ′ and âb̂ estimates of the mediated effect in logistic and 
probit regression. The ĉ – ĉ′ estimates did not change even though the size 
of the mediated effect was increased and did not equal âb̂ for either logis-
tic or probit regression for the effects studied. When the probit regression 
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Chapter Eleven: Mediation in Categorical Data Analysis 305

estimates were standardized using methods described later in this chapter, 
the ĉ – ĉ′ and âb̂ mediated effect estimates were approximately equal and 
increased as the population mediated effect increased. Standardization of 
logistic and probit regression coeffi cients is described in section 11.11. 

Using true values based on a method described by Haggstrom (1983), 
MacKinnon, Lockwood, Brown, Wang, and Hoffman (in press) demon-
strated the problems with the c – c′ method of testing mediation in pro-
bit and logistic regression. Figure 11.2 demonstrates how the ab method 
increases with increasing values of the mediated effect, but the c – c′ 
method fl attens out and actually decreases, when, in fact, the mediated 
effect is increasing. The problem is present for probit regression for c – c′ 
versus ab as well. This occurs because the residual variance in logistic and 
probit regression is fi xed so that the change in coeffi cients such as c and c′ 
is due to fi xing the residual variance across equations in addition to the 
change owing to adjusting for the mediator. 

Table 11.4 Steps to Compute Covariance of ĉ and ĉ′

1.  For each subject compute the predicted proportion, p̂, using the model with 
just X. Remember that the predicted proportion is exp(equation)/(1 + 
exp(equation)).

2.  For each subject compute the predicted proportion using the model with X 
and M.

3.  Make a diagonal matrix from 1 with p̂ (1 − p̂) along the diagonal. This is the 
V matrix.

4.  Make a diagonal matrix from 2 with p̂ (1 − p̂) along the diagonal. This is the Vs 
matrix.

5.  Make X, which is the design matrix for the model with just X. It has a vector of 
1s in the fi rst column and the value of X in the second column. It is an n × 2 
matrix.

6.  Make Xs, which is the design matrix for the model with X and M. It has a 
vector of 1s in the fi rst column, the value of X in the second column, and the 
value of M in the third column. It is an n × 3 matrix.

7. Compute the following matrix equation: 

W = (XT VX)−1 XT VsXs (X
T VX)−1

  where T indicates a transpose and −1 is the inverse.

8.  The element (2, 2) of the W matrix is the covariance between ĉ and ĉ′ in 
logistic regression. The covariance is then included in formula 3.18 to compute 
the standard error of ĉ – ĉ′ .
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306 Introduction to Statistical Mediation Analysis

11.9 Solutions for the Problem with Mediation 
in Probit and Logistic Regression
One solution to different scales across logistic regression equations (Mac-
Kinnon & Dwyer, 1993) is to make the scale equivalent across equations 
by standardizing regression coeffi cients before mediation is estimated 
(Winship & Mare, 1983). For example, in Equations 11.1 and 11.2, the vari-
ance of Y* is equal to Equations 11.4 and 11.5, respectively, as described in 
Winship and Mare (1983):

 ˆ ˆ ˆσ σ π
Y Xc∗ = +2 2 2

2

3
 (11.4)

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆσ σ σ σ π
Y X M XMc b c b∗ = ′ + + ′ +2 2 2 2 2

2

2
3

 (11.5)

Logistic regression estimates of ĉ are divided by σ̂Y* from Equation 11.4, 
the estimates of ĉ′ and b̂ are divided by σ̂Y* from Equation 11.5. Estimates of 
standard errors are similarly rescaled; that is, standard errors are divided 
by the square root of the variance of the equation. These standardized 
estimates are then used in the calculation of the mediated effect and its 
standard error. The mediated effect, âb̂, is then divided by its standard 
error and compared with a standard normal distribution to test for signif-
icance. Probit regression estimates are standardized in the same manner 
except that 1 replaces π2/3 in Equations 11.4 and 11.5.

As shown in Equation 11.6, another formula can be used to put the 
ĉ coeffi cient in Equation 11.1 in the same metric as the ĉ′ coeffi cient in 
Equation 11.2. Coeffi cient ĉ in Equation 11.1 is standardized by multi-
plying by the quantity in Equation 11.6, where σ̂2

Equation 11.3 is the residual 
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Chapter Eleven: Mediation in Categorical Data Analysis 307

 variance in Equation 11.3, that is, the ordinary least squares regression of 
M predicted by X. This method of standardization preserves the original 
metric of the variables in Equation 11.2 and requires only standardizing 
coeffi cients from Equation 11.1. 

 ˆ ˆ
ˆ ˆ

/
.c c

b
corrected

Equation= +1
3

2
11 3

2

2

σ
π

 (11.6)

Some researchers have assessed mediation by calculating the percent-
age drop between the unadjusted and adjusted coeffi cients, (ĉ − ĉ′)/ĉ, and 
concluding that there is mediation if the drop is greater than a certain 
percentage. For example, Foshee et al. (1998) used a 20% reduction as evi-
dence of mediation. In the continuous outcome case, however, the propor-
tion mediated does not stabilize until a sample size of 500, making the use 
of this method to assess mediation questionable for small sample sizes 
(MacKinnon et al. 1995). Confi dence limits for the proportion mediated, 
1 − (c′/c), can be obtained using Fieller’s theorem or the multivariate delta 
method. For Fieller’s theorem the following equations are used to fi nd the 
confi dence limits (Herson, 1975); 

 A cc z scc= ′ − ′ˆˆ ˆˆ
2  (11.7)

 B c z sc= −ˆ ˆ
2 2 2  (11.8)

 C c z sc= ′ − ′ˆ ˆ
2 2 2  (11.9)

 Upper confidence limit (UCL
A A BC

B
) = − − −

1
2

 (11.10)

 Lower confidence limit (LCL
A A BC

B
) = − + −

1
2

 (11.11)

The multivariate delta standard error for 1 – (ĉ′/ĉ) is shown in Equation 
11.12, which can be used to compute confi dence limits using Equations 3.4 
and 3.5. Other measures of the proportion mediated that are identical to 
1 – (ĉ′/ĉ) are âb̂/ĉ and âb̂/(ĉ′ + âb̂) in the ordinary least squares analysis but 
not logistic or probit analysis, in which these formulas may yield different 
values. The multivariate delta solution for the standard error of âb̂/ĉ and  
âb̂/(ĉ′ + âb̂) were shown in chapter 4: 

 var( ˆ /ˆ)
ˆ

(
ˆ
ˆ

)
ˆ
ˆˆ ˆ1

1
22

2
2

2 2− ′ = + ′ − ′
′c c

c
s

c
c

s
c

c c cc
scc3 ˆˆ′  (11.12)
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308 Introduction to Statistical Mediation Analysis

11.10 Hypothetical Study of Pancreatic Cancer
To illustrate the mediation analysis of a binary dependent variable, a 
hypothetical data example is used. The data in Table 11.5 are from a hypo-
thetical study of the relation between eating grilled meat and pancreatic 
cancer, which also included a mediating variable of blood fats. The data 
in Table 11.5 were simulated for an independent variable (X) that is the 
number of days eating grilled meat during a typical week, a mediator (M) 
that is the amount of fatty acids in the blood, and the binary dependent 
variable (Y) that is whether the person developed pancreatic cancer. The 
data, shown in Table 11.5, were simulated from a population with a very 
large mediated effect where a = 0.2, b = 1.2, and c′ = 0.6. 

SPSS and SAS Programs. The SAS statements and output, shown in Table 
11.6, were used to obtain the logistic regression coeffi cient estimates used 
to compute the mediated effect and its standard error. For SPSS, the pro-
gram and output are shown in Table 11.7. A new logistic regression state-
ment is required for each regression equation. As a result, a researcher is 
more likely to have unequal numbers of subjects in the different regression 
models when SPSS is used. The researcher may want to remove cases that 
do not have measures of all three variables before estimating the regres-
sion models in SPSS. As shown in the output, all estimates are identical 
(within rounding) to those found in the SAS output. 

Mediation Analysis for the Grilled Meat and Pancreatic Cancer Data. The 
regression estimates and standard errors (in parentheses) from the SAS or 
SPSS output for the three models are

Equation 11.l: Y* = i1 + cX + e1

 Ŷ* = −3.9845 + 1.0065 X

  (0.1918)

Equation 11.2: Y* = i2 + c′ X + bM + e2

 Ŷ* = −11.0764 + 1.0499X + 1.7373M

  (0.2287) (0.2755)

Equation 11.3: M = i3 + aX + e3

 M̂ = 3.1516 + 0.2149X

  (0.0747)
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Table 11.5 Hypothetical Data for a Study of Pancreatic Cancer 
and Eating Grilled Meat

Obs X M Y Obs X M Y

 1 4 4 1 38 5 4 0
 2 4 3 0 39 5 3 0
 3 4 4 1 40 4 7 1
 4 4 4 0 41 4 1 0
 5 4 4 1 42 6 5 1
 6 2 4 0 43 3 4 1
 7 4 3 1 44 2 4 0
 8 4 2 0 45 3 4 1
 9 3 5 1 46 6 4 1
10 2 3 0 47 3 4 0
11 4 2 0 48 4 2 0
12 3 4 0 49 3 2 0
13 5 4 1 50 3 5 0
14 4 3 0 51 4 4 1
15 5 4 1 52 3 3 0
16 6 5 1 53 5 3 0
17 4 5 0 54 5 4 1
18 4 4 1 55 3 5 0
19 4 3 0 56 3 3 0
20 6 6 1 57 3 3 0
21 3 6 1 58 4 3 0
22 2 3 0 59 3 4 1
23 5 5 1 60 5 4 1
24 2 3 0 61 7 5 1
25 5 3 1 62 3 3 0
26 5 4 1 63 4 5 1
27 5 4 1 64 3 5 1
28 4 3 0 65 5 5 1
29 4 4 0 66 4 6 0
30 4 3 1 67 4 4 0
31 3 3 0 68 3 2 0
32 3 3 0 69 5 4 0
33 4 4 1 70 4 3 0
34 3 4 1 71 3 3 0
35 4 3 0 72 4 5 1
36 4 4 1 73 4 3 0
37 3 4 0 74 6 5 1

(continued)
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Table 11.5 (Continued)

Obs X M Y Obs X M Y

75 3 3 0 113 5 5 1
76 5 5 1 114 5 4 1
77 4 5 1 115 3 5 0
78 3 5 1 116 4 4 1
79 3 5 0 117 4 4 1
80 5 4 1 118 3 3 0
81 3 4 0 119 4 3 0
82 4 6 1 120 3 3 0
83 3 5 0 121 3 4 1
84 4 4 1 122 3 4 0
85 3 3 0 123 3 4 0
86 4 4 0 124 4 5 1
87 4 4 1 125 4 2 0
88 5 5 1 126 5 5 1
89 5 6 1 127 5 4 1
90 4 2 0 128 3 4 1
91 5 5 1 129 6 5 1
92 4 4 1 130 3 5 1
93 4 5 1 131 3 4 0
94 3 3 0 132 3 3 0
95 3 2 0 133 3 3 0
96 3 4 1 134 3 2 0
97 3 3 0 135 4 4 0
98 4 6 1 136 3 4 0
99 4 4 1 137 4 3 0
100 3 4 0 138 4 3 0
101 4 5 1 139 3 5 1
102 4 5 1 140 5 7 1
103 4 4 0 141 3 3 0
104 4 3 0 142 3 4 0
105 3 5 0 143 4 4 0
106 3 4 1 144 4 5 1
107 4 3 0 145 5 4 1
108 2 4 0 146 3 3 0
109 5 4 1 147 4 3 0
110 5 4 1 148 3 4 0
111 5 4 0 149 3 6 1
112 5 6 1 150 3 3 0
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Days eating grilled meat (X) was signifi cantly related to pancreatic can-
cer (Y) (ĉ = 1.0065, sĉ = 0.1918, tĉ = 5.2470, X2 = 27.5314), providing evidence 
that there is a statistically signifi cant relationship between the indepen-
dent and the dependent variable. A 1-day increase in eating grilled meat is 
associated with an increase of 1.0065 in the logit of pancreatic cancer. There 
was a statistically signifi cant effect of days eating grilled meat on levels 
of fatty acids (â = 0.2149, sâ = 0.0747, tâ = 2.8758). A 1-day increase in eating 
grilled meat was associated with change of 0.2149 in the blood measure 
of fat. The effect of the fat mediator on the logit of pancreatic cancer was 
statistically signifi cant (b̂ = 1.7373, sb̂ = 0.2755, tb̂ = 6.3053) even when control-
ling for days eating grilled meat. A 1 unit change in the blood measure 
of fat was associated with an increase of 1.7373 in the logit of pancreatic 

Table 11.5 (Continued)

Obs X M Y Obs X M Y

151 4 5 1 176 4 5 1
152 5 4 0 177 4 5 1
153 4 3 0 178 3 3 0
154 3 4 1 179 5 4 0
155 4 5 1 180 3 4 0
156 3 4 0 181 4 4 1
157 5 6 1 182 4 4 0
158 3 3 0 183 3 5 0
159 4 4 1 184 4 4 0
160 5 4 0 185 4 5 0
161 3 3 0 186 5 5 1
162 3 4 0 187 4 2 0
163 5 3 0 188 5 4 1
164 4 4 1 189 1 5 1
165 3 3 0 190 4 4 1
166 3 4 1 191 4 5 1
167 5 3 0 192 4 3 0
168 3 5 0 193 2 4 0
169 3 4 0 194 6 3 1
170 5 4 1 195 5 4 1
171 4 6 1 196 3 4 0
172 3 3 0 197 4 5 1
173 5 3 0 198 4 3 1
174 5 3 0 199 4 5 1
175 4 5 1 200 3 5 1
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Table 11.6 SAS Program and Output for Equations 11.1, 11.2, and 11.3 

Proc logistic data=ex11.1 descending;
model Y=X ;
Proc logistic data=ex11.1 descending outest=covout;
model Y=X M ;
proc reg data=ex11.1;
model M=X;

Output for Equation 11.1

Analysis of Maximum Likelihood Estimate

Parameter DF Estimate Std Error Chi Square Pr >ChiSq

Intercept 1 −3.9845 0.7549 27.8612 <0.0001
X 1  1.0065 0.1918 27.5314 <0.0001

Output for Equation 11.2

Analysis of Maximum Likelihood Estimate

Parameter DF Estimate Std Error Chi Square Pr > ChiSq

Intercept 1 −11.0764 1.5653 50.0727 <0.0001
X 1   1.0499 0.2287 21.0674 <0.0001
M 1   1.7373 0.2755 39.7567 <0.0001

Output for Equation 11.3

Parameter Estimates

Variable DF
Parameter 
Estimate Std Error t Value Pr > |t|

Intercept 1 3.15163 0.29659 10.63 <0.0001
X 1 0.21488 0.07472  2.88  0.0045

cancer. The adjusted effect of days eating grilled meat on pancreatic cancer 
was statistically signifi cant (ĉ′ = 1.0499, sĉ′ = 0.2287, tĉ′ = 4.5899). Surprisingly, 
there was actually an increase in the value of ĉ ′ (ĉ ′ = 1.0499) compared 
with ĉ (ĉ = 1.0065), even though the data were generated from a population 
model with a very large mediation effect. This substantial discrepancy is 
the result of problems with estimating mediation using the ĉ − ĉ ′method. 

The âb̂ estimate of the mediated effect, (0.2149)(1.7373) = 0.3733, is very 
different from ĉ − ĉ ′ = 1.0065 − 1.0499 = −0.0434. The reason for the large 
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Table 11.7 SPSS Program for Equations 11.1, 11.2, and 11.3

logistic regression variables = Y
  with X.
logistic regression variables = Y
  with X M.
regression
 /dependent=M
 /enter=X.

Output for Equation 11.1

Variables in the Equation

B S.E. Wald df Sig. Exp(B) 

Step 1 X 1.007 0.192 27.531 1 0.000 2.736 
Constant  −3.985 0.755 27.861 1 0.000 0.019 

a. Variable(s) entered on step 1: X.

Output for Equation 11.2

Variables in the Equation

  B S.E. Wald df Sig. Exp(B) 

Step 1 X   1.050 0.229 21.067 1 0.000 2.857 
 M   1.737 0.276 39.757 1 0.000 5.682 
 Constant −11.076 1.565 50.073 1 0.000 0.000 

a. Variable(s) entered on step 1: X, M.

Output for Equation 11.3

Coeffi cients

Unstandardized 
Coeffi cients Standardized Coeffi cients

B Std. Error Beta t Sig.

Model 1 (Constant) 3.152 0.297  10.626 0.000 
 X 0.215 0.075 0.200  2.876 0.004 

a. Dependent variable M
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discrepancy is that the scaling of the ĉ and ĉ′ coeffi cients differs across 
equations. To equate the scaling across equations, the standard errors and 
estimates must be scaled using formulas 11.4 and 11.5. Using Equation 3.6, 
the standard error of the mediated effect is equal to

 0 1426 0 2149 0 2755 1 7373 0 07472 2 2. ( . ) ( . ) ( . ) ( . )= + 22

 

As seen in the preceding example, when the regression coeffi cients and 
standard errors are small, it is very easy for rounding errors to affect the 
accuracy of the calculation of the standard error. Equation 3.7 gives the 
same answer, but it is less susceptible to computation errors because small 
numbers are not squared.

 
0 1426

0 2149 1 7373 2 8758 6 3053
2 87

2 2

.
( . )( . ) . .

( .
=

+
558 6 3053)( . )

The 95% confi dence limits for the mediated effect are equal to

 LCL = 0.3733 − 1.96 (0.1426) = 0.0938

 UCL = 0.3733 + 1.96 (0.1426) = 0.6529

The standard error of ĉ − ĉ′ in Equation 3.8 is equal to 0.1246 using the 
covariance between ĉ and ĉ′ of 0.0368 based on the formulas described in 
Freedman et al. (1992):

 0 1246 0 1918 0 2287 2 0 03682 2. . . ( )( . )= + −

The proportion mediated 1 − (ĉ′/ĉ) equaled 1 − (1.0499/1.0065) = −0.0430 
with 95% confi dence limits of −0.3122 and 0.2122 computed on the basis 
of Equations 11.7 through 11.11. The confi dence limits based on the multi-
variate delta method were very similar and were equal to −0.2862 and 
0.2001 for the lower and upper limits, respectively. The true percentage 
mediated for the population model was equal to 1 − (0.6/1.2) = 0.5 which 
is not included in the confi dence interval for 1 − (ĉ ′/ĉ). Again, the reason 
for the discrepancy is that the ĉ and ĉ′ estimates are from models with a 
different scale. The proportion mediated measured by âb̂/ĉ equaled 0.3709 
and âb̂/(ĉ′ + âb̂) equaled 0.2623 and are much closer to the true proportion 
mediated. 
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11.11 Standardizing Coeffi cients to Equate 
the Scale Across Logistic Regression Models
The fi rst step in standardizing coeffi cients is to compute the variance of the 
dependent variable in logistic regression using Equations 11.4 and 11.5: 

4.2001 = 1.00652 (0.8985) + π2/3

8.1077 = 1.04992 (.8985) + 1.73732(1.0348) + 2(1.0499)(1.7373)(.1931) + π2/3

The square roots of the variance for logistic regression Equations 11.1 and 
11.2 were 2.0494 and 2.8474, respectively. As a result, the standardized 
logistic regression estimates were ĉ = 0.4911, sc = 0.0936, ĉ′ = 0.3687, sĉ′ = 
0.0803, b̂ = 0.6101, and sb̂ = 0.0968. The estimates of the mediated effect 
are more similar for standardized logistic regression coeffi cients: ĉ − ĉ′ = 
0.4911 − 0.3687 = 0.1224 and âb̂ = 0.2149(0.6101) = 0.1311. The standard error 
of the âb̂ estimate is 0.0506 with UCL = 0.1311 + 1.96(.0506) = 0.2303 and 
LCL = 0.1311 − 1.96(0.0506) = 0.0319. The proportion mediated measures 
were also very similar: 1 − ĉ′/ĉ = 0.2492, âb̂/ĉ = 0.2670, and âb̂/(ĉ′ + âb̂) = 
0.2623. Note that the  âb̂/(ĉ′ + âb̂) measure is identical to the measure with 
unstandardized coeffi cients because the coeffi cients in the numerator, b̂, 
are standardized by the same values as the coeffi cients in the denomina-
tor, b̂ and ĉ′.

The second method is to put ĉ and ĉ′ in the same metric using Equation 
11.6:

 

ˆ .
. ( . )

/
.ccorrected = + =1 0065 1

1 7373 0 998
3

1 39
2

2π
331

Now the difference between ĉcorrected and ĉ′ equals 1.3931 − 1.0499 = 0.3442 
for a difference in odds ratios of 4.03 and 2.86 and is now comparable to 
the âb̂ estimate of 0.3733.

11.12 Mediation Analysis in Probit Regression
As shown in Table 11.8, the conclusions from probit analysis are the 
same as those for logistic regression analysis. Nevertheless, the results 
for probit regression are presented because there is evidence that probit 
regression is more accurate for mediation with a categorical outcome. One 
limitation of probit regression is that the estimates do not have as clear an 
interpretation as the odds ratio from logistic regression. Another name for 
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probit regression is normit regression, so the command to conduct probit 
regression requests the normit link function in PROC LOGISTIC. Probit 
regression is easily conducted in SAS with the following statements on the 
model line: Model y=x/link=normit and Model y=x m/ link=normit. Note 
that even though the output will say that the “LOGISTIC Procedure” is 
being used, the link function is included in the program to indicate that 
normit or probit regression is conducted in the program output, “Link 
Function Normit.”

The probit regression estimates and standard errors (in parentheses) 
from the SAS output for the two probit regression models are shown in 
the following. The results for Equation 11.3 are not shown again as they 
are from ordinary least squares regression analysis. 

Model l: Y* = i1 + c X + e1

 Ŷ* = −2.3782 + 0.6012X + e1

  (0.1102)

Model 2: Y* = i2 + c′ X + bM + e2

 Ŷ* = −6.5168 + 0.6252X + 1.0117M + e2

  (0.1296) (0.1485)

Days eating grilled meat (X) was signifi cantly related to pancreatic can-
cer (Y) (ĉ = 0.6012, sĉ = 0.1102, tĉ = 5.4533), providing evidence that there is 

Table 11.8 SAS Probit Regression With Output for Equations 11.1 and 11.2

Output for Equation 11.1

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimate

Parameter DF Estimate Standard Error Chi Square Pr > ChiSq

Intercept 1 −2.3782 0.4346 29.9492 <0.0001
x 1  0.6012 0.1102 29.7387 <0.0001

Output for Equation 11.2

Analysis of Maximum Likelihood Estimate

Parameter DF Estimate Standard Error Chi Square Pr > ChiSq

Intercept 1 −6.5198 0.8346 60.9668 <0.0001
x 1  0.6252 0.1296 23.2887 <0.0001
M 1  1.0117 0.1485 46.3989 <0.0001
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a statistically signifi cant relationship between the independent and the 
dependent variable. A 1-day increase in eating grilled meat is associated 
with an increase of 0.6012 in the z-score relating eating grilled meat to 
pancreatic cancer. The effect of the fat mediator on the logit of pancre-
atic cancer was statistically signifi cant (b̂ = 1.0117, sb̂ = 0.1485, tb̂ = 6.8117), 
when controlling for days eating grilled meat. A 1 unit change in the blood 
measure of fat was associated with an increase of 0.6252 i n the z-score 
of pancreatic cancer. The adjusted effect of days eating grilled meat was 
statistically signifi cant, (ĉ = 0.6252, sĉ = 0.1296, tĉ = 4.8258). As in logistic 
regression, there was an increase in the value of ĉ′(ĉ′ = 0.6252) compared 
with ĉ (ĉ = 0.6012), even though the data were generated from a population 
model with a very large mediation effect.

The âb̂ estimate of the mediated effect is equal to (0.2149)(1.0117) = 0.2174 
which is very different from ĉ − ĉ′ = 0.6012 − 0.6252 = − 0.0240. The reason 
for the large discrepancy is that the scaling of the c and c′ coeffi cients dif-
fers across equations, and if the scale is not made consistent across the 
equations, then the two methods to assess mediation will not be equal. 
The standard error of the âb̂ mediated effect was equal to 0.0828. The pro-
portion mediated measure, 1 − (ĉ′/ĉ) = −0.0400, differed from the other 
proportion measures, âb̂/ĉ = 0.3616 and âb̂/(ĉ′ + âb̂) = 0.2580.

The 95% confi dence limits for the mediated effect are equal to:

LCL = 0.2149 − 1.96 (0.0828) = 0.0526

UCL = 0.2149 + 1.96 (0.0828) = 0.3772

The fi rst step in standardizing coeffi cients is to compute the variance of 
the dependent variable in probit regression. The probit estimates for the 
standard deviation using Equations 11.4 and 11.5 are equal to 1.1510 and 
1.6293, respectively, with the following standardized estimates for probit 
regression, ĉ = 0.5223, sĉ = 0.0958, ĉ′ = 0.3837, sĉ′ = 0.0795, b̂ = 0.6210, sb̂ = 
0.0912. The difference and product estimates of the mediated effect are 
now very close, ĉ − ĉ′ = 0.1386 and âb̂ = 0.1334. The standard error of âb̂ 
equals 0.0508. The three measures of the proportion mediated are now 
also quite similar as well, 1 − (ĉ′/ĉ) = 0.2653, âb̂/ĉ = 0.2555, and âb̂/(ĉ′ + âb̂) = 
0.2580.

11.13 Multiple Mediator Models
Models for continuous variables outlined in earlier chapters can also be 
evaluated when the dependent variable is categorical. As shown in the 
following, for the case of multiple mediators, Equations 11.2 and 11.3 may 
be modifi ed to include more mediators as was done for the continuous 
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Table 11.9 Mplus Program and Output for Data in Table 11.5

  TITLE:  Example 11.1 Binary Dependent Variable
  DATA:
FILE IS “e:\chapter 11 Cat. med\ex111”;
  VARIABLE:
    NAMES ARE id x m y ;
    USEVARIABLES ARE x m y;
    CATEGORICAL Y;
  ANALYSIS:
    TYPE IS general;
    ESTIMATOR IS WLSMV ;
    ITERATIONS = 1000;
    CONVERGENCE = 0.00005;
  MODEL:
  Y ON X M;
  M ON X;
  OUTPUT: STANDARDIZED;

MPLUS Output
Example 11.1 Binary Dependent Variable
MODEL RESULTS
Mplus VERSION 2.01      PAGE 3
Example 11.1 Binary Dependent Variable

Estimates S.E. Est./S.E. Std StdYX

Y  ON
X 0.448 0.083 5.385 0.448 0.369
M 0.713 0.070 10.140 0.713 0.629
M  ON
X 0.215 0.082 2.615 0.215 0.201

Residual Variances

M 0.988 0.096 10.291 0.988 0.960

R-SQUARE

Observed Residual
Variable Variance R-Square
M 0.040
Y 0.497 0.624
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dependent variable case in chapter 4. The equations for the four mediator 
model are 

 Y* = i1 + cX + e1 (11.13)

 Y* = i2 + c′X + b1M1 + b2M2 + b3M3 + b4M4 + e2 (11.14)

 M1 = i3 + a1X + e3 (11.15)

 M2 = i4 + a2X + e4 (11.16)

 M3 = i5 + a3X + e5 (11.17)

 M4 = i6 + a4X + e6 (11.18)

The same mediation analysis steps for the single categorical dependent 
variable are followed for multiple mediators. As described in chapter 6, 
there are now four mediated effects, one transmitted through each of the 
four mediators. The total mediated effect can be calculated in the same 
way as that described in chapter 6, that is, â1b̂1 + â2b̂2 + â3b̂3 + â4b̂4, which is 
not equal to ĉ − ĉ′ for the same reasons that the two total mediated effect 
measures are not equal using logistic regression for the single mediator 
model. Standardizing coeffi cients and standard errors can be used to 
appropriately model the different scales across the two logistic regression 
Equations 11.4 and 11.5 (or Equation 11.6). The matrix routine to calculate 
the covariance between ĉ and ĉ′ is accurate for this situation as well. 

Mplus SAS, and SPSS programs are easily expanded for the multiple 
mediator case by adding additional predictors in the equation relating X 
and the mediators to the binary dependent variable, and additional regres-
sion statements are needed to estimate the parameters for each mediator. 

11.14 Mediator Models With Combinations 
of Categorical and Continuous Variables
With more than two categorical dependent variables, the parameters of 
the model must be estimated with more complicated iterative approaches 
such as the Mplus covariance structure analysis. These models are based 
on the multivariate probit distribution. Because the models are standard-
ized as part of the analysis, these models solve the scaling problem for the 
different types of mediated effects. This approach uses probit regression 
to estimate thresholds for categorical variables. These thresholds are then 
included in the estimation of a model that can be used for a large number 
of models. The Mplus program in Table 11.9 is used to analyze the data in 
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Table 11.5. The Y variable is specifi ed as categorical. Even though Mplus 
uses probit regression, the results are not the same as described earlier 
because a weighted least squares estimation procedure is used to esti-
mate parameters. However if Mplus uses the ESTIMATOR IS ML, then the 
same results as with SAS and SPSS are obtained. 

Days eating grilled meat (X) was associated with fatty acids (â = 0.215, 
sâ = 0.082, tâ = 2.615). A 1 day a week increase in eating grilled meat was 
associated with a change of 0.21 in the blood measure of fat. The effect of 
the fat mediator on the probit of pancreatic cancer was statistically signifi -
cant (b̂ = 0.713, sb̂ = 0.070, tb̂ = 10.140) even when controlling for days eating 
grilled meat, providing evidence for Step 3. A 1 unit change in the blood 
measure of fat was associated with an increase of 0.713 in the probit of 
pancreatic cancer. The adjusted effect of days eating grilled meat on pan-
creatic cancer was statistically signifi cant, (ĉ′ = 0.448, sĉ′ = 0.083, tĉ′ = 5.385). 
The estimate of the mediated effect is âb̂ = (0.215)(0.713) = 0.1533 with a 
standard error of 0.0604 and UCL = 0.2717 and LCL = 0.0349. 

Mplus has two types of standardized variables, one based on standard-
izing the dependent variable, Std and the other based on standardizing 
both the x and the y variable, StdYX. Using the coeffi cients standardized 
on the basis of the x and y variable, â = 0.201, sâ = 0.0717, tâ = 2.615, and 
b̂ = 0.629, sb̂ = 0.0618, tb̂ = 10.140. The estimate of the mediated effect is then 
0.1264 with a standard error of 0.0468, which gives UCL = 0.2181 and LCL = 
0.0347. As described in the next section, the INDIRECT command can be 
used to compute the indirect effects and standard errors using Mplus.

Even though Mplus conducts probit regression, the estimation proce-
dure leads to different results. In fact, the Mplus program does not esti-
mate the univariate probit regression model. The probit is used to model 
the relationship between the observed categorical variable and the latent 
normally disturbed variable. The entire model is then estimated using the 
probit as the threshold value. Mplus applies this same approach to esti-
mate more complicated models for any number of latent variables as well 
as measured variables. 

11.15 Mediator Models for Other Categorical Variables
There are other possible combinations of categorical variables in media-
tion analysis. For example, the mediator may be a categorical variable. 
For instance, assume that marital quality predicts a binary variable of 
whether the couple divorces or not, which is then related to a continu-
ous measure of children’s symptomatology. In this case, Equation 11.3 is 
estimated using logistic or probit regression, and the other equations are 
estimated using ordinary regression. Thus, the ĉ − ĉ′ and âb̂ methods of 
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estimating mediation will not be equal, but both methods should provide 
similar conclusions about the signifi cance of the mediated effect.

Another prominent model with a categorical outcome is survival analy-
sis. For example, in the evaluation of a smoking cessation program, research-
ers may be interested in the mediators of time until relapse in addition to 
whether a client relapses or not. These types of models share the same type 
of problems outlined in this chapter for logistic regression. More on media-
tion in survival analysis is described in Tein and MacKinnon (2003). 

11.16 Summary
The purpose of this chapter was to describe important issues in the estima-
tion of mediated effects for categorical data dependent variables. Methods 
to assess mediation based on the difference in coeffi cients ĉ − ĉ′ method or 
the 1 − (ĉ′/ĉ) measure of the proportion mediated are incorrect unless model 
parameters are standardized. Methods based on the product measure of 
mediation, âb̂, are more accurate and are not susceptible to the scaling prob-
lem as only the b̂ coeffi cient is from a logistic regression analysis.

11.17 Exercises
11.1. Why is the estimate ĉ − ĉ′ not equal to âb̂ in logistic and probit  regres-

sion? Use Example 11.10 to illustrate how these two quantities are 
not equal.

11.2. In the pancreatic cancer example, what are the odds ratios and confi -
dence limits for each of the logistic regression coeffi cients? Interpret 
these values. 

11.3. Imagine a study like the one described in the chapter in which the 
amount of grilled meat a person eats in a typical week is the indepen-
dent variable on a scale of 0, 1, 2, and 3, a mediator is the amount of 
fatty acids in the blood coded 1, 2, 3, or 4, and the dependent variable 
is whether the person developed pancreatic cancer. The frequency of 
subjects in each of the possible categories is given by the freq vari-
able. Using the steps in section 11.4, the covariance between c and c′ 
was found to be 0.0125.

  Hypothetical data for a replication study of pancreatic cancer and 
eating grilled meat.

data pancreas;
input x m y freq;
cards;
0 1 1 26
1 1 1 1
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2 1 1 1
3 1 1 2
0 2 1 12
1 2 1 1
2 2 1 3
3 2 1 3
0 3 1 4
1 3 1 2
2 3 1 5
3 3 1 5
0 4 1 1
1 4 1 8
2 4 1 10
3 4 1 12
0 1 0 42
1 1 0 8
2 1 0 12
3 1 0 9
0 2 0 25
1 2 0 3
2 2 0 4
3 2 0 4
0 3 0 8
1 3 0 2
2 3 0 2
3 3 0 1
0 4 0 10
1 4 0 1
2 4 0 1
3 4 0 6
;
Proc logistic data=pancreas descending 
outest=covout; weight freq;
model y=x ;
Proc logistic data=pancreas descending 
outest=covout; weight freq;
model y=x m ;
proc reg data=pancreas; weight freq;
model m=x;

The output from SAS is shown. These are the numbers that can be 
used in the calculation of the mediated effect and its standard error.
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Output for Equation 11.1

Analysis of Maximum Likelihood Estimate

Parameter DF Estimate Std Error Chi Square Pr > ChiSq

Intercept 1 −0.6409 0.1768 13.1317 0.0003
x 1  0.2771 0.1118 6.1435 0.0132

SAS Output for Equation 11.2

Analysis of Maximum Likelihood Estimate

Parameter DF Estimate Std Error Chi Square Pr > ChiSq
Intercept 1 −1.4507 0.2955 24.1005 <0.0001
x 1  0.1390 0.1213  1.3127  0.2519
m 1  0.4406 0.1244 12.5376  0.0004

SAS Output for Equation 11.3

Root MSE  1.10853 R-Square 0.1177
Dependent Mean  2.11111 Adj R-Sq 0.1139
Coeff Var 52.50910

Parameter Estimates

Variable DF
Parameter 
Estimate Std Error t Value Pr > |t| Corr Type I

Intercept 1 1.78228 0.09352 19.06 <0.0001
x 1 0.33748 0.06067  5.56 <0.0001 0.11768

a.  Write the three equations with coeffi cients and standard errors based 
on the SAS output.

b.  Compute the two estimates of the mediated effect. 
c.  Compute the standard errors and confi dence limits for the two esti-

mates of the mediated effect. Do the mediated effect estimates differ?
d. Compute the proportion mediated and its confi dence limits.
e.  Compute the two mediated effect estimates with one of the two meth-

ods to standardized coeffi cients. 

11.4. Write an Mplus program to analyze the data in 11.3. How does the 
estimte of the mediated effect and its confi dence interval compare to 
the values in your answer to 11.3?
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12

Computer Intensive Methods 
for Mediation Analysis

In recent years tests using the physical act of ran-
domisation to supply (on the Null Hypothesis) a 
frequency distribution, have been largely advocated 
under the name of “Non-parametric” tests. Some-
what extravagant claims have often been made on 
their behalf. The example of this Section, published 
in 1935, was by many years the fi rst of its class. The 
reader will realise that it was in no sense put for-
ward to supersede the common and expeditious 
tests based on the Gaussian theory of errors. The 
utility of such nonparametric tests consists in their 
being able to supply confi rmation whenever, rightly 
or, more often, wrongly, it is suspected that the sim-
pler tests have been appreciably injured by depar-
tures from normality. 

They assume less knowledge, or more ignorance, 
of the experimental material than do the standard 
tests, and this has been an attraction to some mathe-
maticians who often discuss experimentation with-
out personal knowledge of the material. In inductive 
logic, however, an erroneous assumption of igno-
rance is not innocuous: it often leads to manifest 
absurdities. Experimenters should remember that 
they and their colleagues usually know more about 
the kind of material they are dealing with than do 
the authors of text-books written without such per-
sonal experience, and that a more complex, or less 
intelligible, test is not likely to serve their purpose 
better, in any sense, than those of proved value in 
their own subject

—Ronald Aylmer Fisher, 1960, pp. 48–49
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12.1 Overview 
The purpose of this chapter is to describe computer-intensive methods 
to estimate mediated effects, construct confi dence limits, and conduct 
signifi cance tests. In general, these computer-intensive methods use the 
observed data to determine the signifi cance of an effect and do not make as 
many assumptions about underlying distributions as methods described 
earlier in this book (Manly, 1997; Mooney & Duval, 1993; Noreen, 1989). 
There has been enormous growth in the application of computer-intensive 
methods during the last 30 years, primarily because of improvements in 
computing power. Computer-intensive methods are often the method of 
choice when exact formulas for statistical quantities are not available or 
are too complicated, when unknown distributions or outlier observations 
may bias results, or when sample size is small. First, different computer-
intensive methods are described and applied to the case of mediation 
analysis. Second, each method is illustrated with data from chapter 3 and 
software to conduct these tests is described. Strengths and limitations of 
the methods are discussed. 

12.2 Single Sample and Resampling Methods
Each of the methods described so far in this book is based on a single 
sample. Formulas for the point estimator of the mediated effect and its 
standard error were described that can be used to test the signifi cance of 
a mediated effect and construct confi dence intervals for the effect in the 
population based on data from the single sample. One assumption of this 
approach is that the population distribution underlying both the point and 
standard error estimates of the mediated effect is normal. As discussed in 
chapter 4, there is reason to believe that the mediated effect is not distrib-
uted normally. Similarly, outliers and other types of non- normal data may 
make tests based on normal theory assumptions invalid. 

Several computer-intensive statistical methods have been developed that 
are more accurate than traditional methods in many situations including 
situations in which the data are not normally distributed. These methods 
use repeated samples from the original sample to conduct analyses. The 
repeated samples from the original data are used to form an empirical
version of a sampling distribution of a statistic (Efron & Tibshirani, 1993;
Manly, 1997; Mooney & Duval, 1993; Noreen, 1989). The empirical distribu-
tion of the statistic formed by repeated sampling from the original data is
used to determine the signifi cance of the effect and to construct confi dence
intervals. The bootstrap (Efron & Tibshirani, 1993), permutation (Edging-
ton, 1995), randomization (Edgington, 1995), and jackknife (Mosteller &
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Tukey, 1977) are examples of computer-intensive tests. Because most 
computer-intensive tests entail repeated sampling from the observed data, 
they are also called resampling methods. The methods differ in how the 
resampling is accomplished, but each method consists of taking repeated 
samples from the original sample to create a new sampling distribution to 
which the results from the observed sample are compared.

Resampling methods show considerable promise for the estimation of 
mediated effects. Bollen and Stine (1990) and Lockwood and MacKinnon 
(1998) applied the bootstrap method to examine the confi dence intervals 
of mediated effects. In general, confi dence limits constructed using the 
bootstrap were asymmetric, consistent with the asymmetric distribu-
tion of the mediated effect. Shrout and Bolger (2002) recently suggested 
that the bootstrap methods should be used instead of the single sample 
methods because the distribution of the mediated effect is unknown. 
Mac Kinnon, Lockwood, and Williams (2004) compared a large number 
of single sample and resampling methods to assess the mediated effect 
and found several bootstrap methods had more accurate confi dence lim-
its than the single sample methods. Several other resampling methods 
did not differ substantially from the single sample methods. The material 
in this chapter provides an overview of current applications of computer 
intensive methods for mediation analysis. 

12.3 Permutation Test for Mean Differences
Although computer-intensive tests appear to be a modern method, these 
methods were originally discussed much earlier by R. A. Fisher, one of 
the most well-known developers of statistical methods. Fisher outlined 
a re sampling method known as the permutation test, which is now also 
called the exact randomization test. When the F (named the F-test by 
Snedecor to honor R. A. Fisher) and t-tests were fi rst proposed, one of the 
criticisms was the rather stringent assumptions required for the methods. 
For example, normally distributed data and independent observations 
were assumptions of the t-test for the difference between two groups. Crit-
ics argued that these assumptions were rarely met, and data that departed 
from the normal distribution would make the methods inaccurate. To 
address this criticism, Fisher and others (Eden & Yates, 1933; Pitman, 1937) 
used a permutation test to evaluate the accuracy of the t-test.

The data for Fisher’s permutation test example were from a study of the 
effects of self- versus cross-fertilization on the height of plants (Darwin, 
1876). For each of 15 matched pairs of plants, one plant was self-fertilized 
and the other plant was cross-fertilized. Fisher used a permutation test to 
determine the accuracy of the t-test comparing the height of self- versus 
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cross-fertilized plants. The permutation test compares the difference in 
mean height for the observed data to all data sets that could have occurred. 
“All data sets” refers to all of the unique data sets that can be made by 
rearranging the observed data; for example, one permuted data set would 
consist of switching the height of the self-fertilized plant in the fi rst pair 
with that of the cross-fertilized plant in the second pair. For 15 pairs of 
plants, there were a total of 215 = 32,768 possible data sets. Fisher found that 
863 of these 32,768 permuted data sets had a group difference equal to or 
larger than the observed difference for an exact one-tailed probability of 
0.02634 (863/32,768) compared with 0.02485 from the ordinary t-test (and 
0.02529 with a slight correction to the t-statistic, see, Fisher, 1960, Table 5, 
p. 48). His conclusion was that the use of the t-test was justifi ed because the 
signifi cance level was so close to the results of the permutation test. The 
permutation test was used as the true test to verify the traditional test.

In general, Fisher did not promote the use of these exact randomiza-
tion tests because traditional methods were expeditious (see quote at the 
beginning of this chapter) and presumably because of the large number of 
computations necessary to conduct such an analysis in the pre-computer 
era (Ludbrook & Dudley, 1998). He used the permutation test as a way to 
demonstrate the accuracy of parametric methods. Interestingly, the t-test, 
F-test, and related methods are sometimes called classic methods and the 
resampling approaches are called modern methods, yet it appears that the 
two approaches appeared at similar times. Here I refer to the classic tests 
as traditional tests to avoid the ambiguity of when these tests were devel-
oped. I call them traditional tests because these statistical tests refl ect the 
most widely used statistical methods. 

For a two-group matched pair design, the permutation test proceeds as 
follows: (a) Compute the difference between means in the two groups for 
the original data. (b) Make all possible data sets by rearranging observed 
data and compute the difference between the means in each group for 
each of the possible data sets. The number of these data sets can be very 
large if there are a lot of subjects. For example, for the two-group matched-
pairs design with 15 plants in each group, there are a total of 32,768 dif-
ferent data sets. (c) Tabulate all the possible values of the mean difference 
between groups for all the data sets. (d) Compare the observed difference 
between groups with the entire distribution of possible differences. The 
proportion of differences as big as or bigger than the observed difference 
is the exact probability or signifi cance level. The exact probability is then 
compared with a specifi ed signifi cance level such as 0.05. If the probabil-
ity from the empirical distribution is smaller than the signifi cance level, 
then the difference would be considered statistically signifi cant. Note that 
if it is a two-tailed test, then the test uses the distribution of the absolute 
value of the differences in means to determine the signifi cance level. 
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12.4 Permutation Test for the Correlation Coeffi cient
The permutation test for a correlation follows the same logic as for the dif-
ference between the mean in two groups. The observed value of the cor-
relation between two variables is compared with the entire distribution of 
possible correlations in the N! (factorial) possible data sets. With N = 2 there 
are 2! = 2 data sets. For N = 3, there are 6, and for N = 4, there are 24 data 
sets. The number of possible data sets gets very large very quickly; for 
example, for N = 10 there are 3,628,800 different possible data sets and, as a 
result, 3,628,800 correlations must be computed for the permutation test.

The data in Table 12.1 are the number of cases of malaria per 1,000 per-
sons during the building of the Panama Canal during 1906, 1909, and 1912 
(Gorgas, 1915, p. 275). These data are used to illustrate a permutation test 
for N = 3 and 3! = 6 different data sets as in Noreen (1989, p. 198). 

The correlation in the observed sample was −0.926. The correlations in 
the other fi ve data sets were −0.789, −0.137, 0.789, 0.137, and 0.926. Two of 
the six data sets had an absolute value of 0.926, so the two-tailed probabil-
ity is 2/6 = 0.333 based on the permutation test. 

12.5 Approximate Randomization Tests
Permutation tests require the analysis of a large number of data sets for 
even modest sample sizes. Because the number of possible data set gets 

Table 12.1 Data for Correlation Permutation Example

Permutation 1
Observed Data Permutation 4

X Y X Y
1906 821 1906 110
1909 215 1909 215 
1912 110 1912 821 

Permutation 2 Permutation 5
X Y X Y
1906 821 1906 215 
1909 110 1909 110 
1912 215 1912 821 

Permutation 3 Permutation 6
X Y X Y
1906 215 1906 110 
1909 821 1909 821 
1912 110 1912 215 
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very large even with small sample sizes, researchers (Edgington, 1995) 
have advocated taking a random sample of all of the possible data sets 
rather than using all possible data sets. Tests based on a random sample 
of permuted data sets are called approximate randomization tests, and the 
permutation test is sometimes called an exact randomization test because 
it is based on all possible data sets and is therefore exact (Noreen, 1989). 
For example, for the test of a correlation in a sample of size 10, a ran-
dom sample of 999 of the 3,628,800 data sets are taken, and the correlation 
is computed for these 999 samples. The distribution of the correlation is 
based on these 999 correlations plus the one observed correlation (the fact 
that the total is 1,000 makes it easier to calculate signifi cance level), and 
the signifi cance test is based on the number of cases for which the corre-
lation is as large as or larger than the observed correlation in the sample 
of 1,000 correlations. Typically, the steps in this analysis are (a) randomly 
shuffl e the Y variable, (b) compute the statistic, (c) repeat steps (a) and 
(b) for a certain number of replications (e.g., 999), and (d) fi nd the propor-
tion of shuffl ed data sets in which the statistic is equal to or greater than 
the statistic in the original data and that is the exact probability. This exact 
probability is compared with a specifi ed signifi cance level such as 0.05 to 
determine whether the observed correlation is statistically signifi cant for 
the approximate permutation test.

12.6 Randomization Tests for the Mediated Effect
Randomization tests for the mediated effect are complicated because two 
separate equations are involved in the analysis of three variables. As a 
result, the number of potential data sets is even larger than that for the 
correlation coeffi cient. The fi rst step in the development of an exact ran-
domization test is the creation of all possible data sets. There are three 
variables in each of the data sets for the single mediator model. The total 
number of unique data sets is equal to N!2, so for a sample size of 4, there 
are 576 different data sets. For N = 5, 6, 7, or 8, there are 14,400, 518,400, 
25,401,600, and 1,625,702,400 different data sets, respectively. 

The exact randomization test or permutation test for the mediated 
effect proceeds as follows: (a) estimate the mediated effect from the origi-
nal sample of data, (b) create each possible permuted data set and estimate 
the mediated effect, (c) construct the distribution of these mediated effects 
in each possible data set along with the mediated effect in the original 
data to form a distribution of the mediated effect, and (d) locate the per-
centile of the observed mediated effect in the distribution of mediated 
effects. The corresponding percentile is the probability level and does not 
make many of the assumptions of the usual tests of mediation (MacKin-
non & Lockwood, 2001). 
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The data in Table 12.2 are provided only to illustrate the N!2 = 2!2 = 4 
possible sets of data for two observations and three variables. It is not pos-
sible to estimate the mediated effect with N = 2 because there are not suf-
fi cient degrees of freedom. If there are N = 3 observations, then the model 
(Equation 3.2) with two predictors has 0 degrees of freedom. With N = 4 
there is 1 degree of freedom for the regression model with two predictors, 
making N = 4 the lowest possible sample size for mediation analysis that 
includes the direct effect.

The small data set presented in Table 12.3 is provided to demonstrate 
an exact randomization (permutation) test of the mediated effect with four 
observations. Imagine that these data are per capita values from four cities 
(of equal miles driven) in which the independent variable, X, is the change 
in per capita money spent yearly on the prevention of driving while under 
the infl uence of alcohol, the mediator, M, is the yearly change in the average 
from a survey of individuals’ perception of being caught if a person drives 
under the infl uence of alcohol in each city, and Y is the yearly change in 
per capita number of alcohol-related accidents in each city. Each variable 
was the change from the previous year for each city so that some numbers 
are negative. There are a total of N!2 = 4!2 = 576 unique permuted data sets, 
including the observed data in Table 12.3. Each of these data sets generates 
a mediated effect, which results in a distribution of the mediated effect. 
Using methods described in chapter 3, the mediated effect in the original 
sample of 4 was equal to 76.3799 with a standard error of 4.09638, t value of 
18.6457 (p < 0.0001) and lower confi dence limit (LCL) = 68.3510 and upper 
confi dence limit (UCL) = 84.4088. The mediated effect value of 76.3799 was 
at the 93.9th (554/576) percentile of the permutation distribution as plotted 

Table 12.2 Permuted Data Sets for N = 2

Original Data 
X M Y
1 2 3
4 5 6
Permutation 1
4 2 3
1 5 6
Permutation 2
1 5 3
4 2 6
Permutation 3
4 5 3
1 2 6
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in fi gure 12.1. The data were generated from a population model with an 
extremely large mediated effect, a = 8, b = 8, and c′ = 2, so the mediated 
effect was present in the population model. The exact randomization test 
was not as highly signifi cant as the normal theory test, that is, p = .061 ver-
sus p < .0001. The confi dence limits for the randomization test are compli-
cated and require iteratively searching for the upper and lower limit and 
are thus not presented here. Confi dence limits based on the permutation 
methods are described in Taylor and MacKinnon (2006).

Because of the large number of possible data sets for even small sample 
sizes, the exact randomization test is unrealistic for many situations. To 
conduct an exact randomization test for the example with N = 50 in chap-
ter 3 would require making the N!2 = 50!2 = 9.2502 × 10128 different data 
sets. An alternative is to conduct an approximate randomization test, in 

Table 12.3 Data for N = 4 Permutation Test Example

Obs I X M Y

1 1 −0.42761 −3.9026 −33.365
2 2  0.44967  4.2594  34.484
3 3  2.24475 18.7894 154.468
4 4  0.63210  6.3242  52.358

Figure 12.1. Randomization test distribution.
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which the values of variables are shuffl ed to select a random sample of 
all possible data sets. As described earlier, because only a sample of all 
possible data sets are selected, this type of test is called an approximate 
randomization test (Noreen, 1989). There are several options for selecting 
data sets for this test, including shuffl ing the mediator, randomly shuf-
fl ing the dependent variable, or randomly shuffl ing both variables. An 
approximate randomization test would proceed as follows: (a) estimate 
the mediated effect from the whole sample of data, (b) randomly shuffl e 
the mediating variable and the dependent variable, (c) estimate the medi-
ated effect, (d) repeat Steps 2 and 3 a large number times (e.g., 999 times) 
to form a distribution of the mediated effect, and (e) locate the percentile 
of the value of the mediated effect from the original data set in the distri-
bution of 1,000 (999 permuted and 1 observed data sets) mediated effects. 
Later in this chapter, an approximate randomization test is applied to the 
data in chapter 3. 

12.7 Bootstrap Sampling
The bootstrap is now a widely used resampling method (Efron, 2000; 
Efron & Tibshirani, 1993; Yung & Bentler, 1996). Assume that you have a 
sample of size N. The bootstrap method consists of randomly sampling 
with replacement from the original N observations so that a new sample 
of N observations is obtained, which is the fi rst resample (or the fi rst boot-
strap sample). Because there is sampling with replacement, one case in 
the original data set may be included 0, 1, 2, 3, 4, or more times in the 
bootstrap sample. For example, using the four cases in Table 12.3 for a 
pedagogical illustration, the fi rst bootstrap sample may select the 4th, 3rd, 
4th, and 3rd observations, the second bootstrap sample may consist of the 
3rd, 1st, 2nd, and 1st observations, a third bootstrap sample may consist 
of the 2nd, 3rd, 2nd, and 1st observations, and so on for a large number of 
bootstrap samples. Typically, at least 1,000 of these bootstrap samples are 
selected to compute confi dence limits (Efron & Tibshirani, 1993), although 
ways to determine the optimal number of bootstrap samples have been 
discussed (Fay & Follmann, 2002). A statistic, such as the correlation, is 
calculated for each of these 1,000 samples. The average of the correlations 
across the 1,000 samples is the bootstrap estimate of the correlation and 
the bootstrap standard error of the correlation is the standard deviation 
of the estimate of the correlation across the 1,000 samples. In the simplest 
form of bootstrapping, called the percentile bootstrap, upper and lower 
confi dence limits are obtained by fi nding the values of the correlation in 
the 1,000 samples that correspond to the 2.5% and 97.5% percentiles. There 
are several variations of the bootstrap method that are useful in some 
situations. 
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Another bootstrap method, called the bias-corrected bootstrap, is impor-
tant for mediation analysis because of its accuracy for computing confi -
dence intervals for the mediated effect when the mediated effect is nonzero 
(Efron, 1987). The method consists of adjusting each bootstrap sample for 
potential bias in the estimate of the statistic. The bias-corrected bootstrap 
method removes bias that arises because the true parameter value is not 
the median of the distribution of the bootstrap estimates. The bias correc-
tion is used to obtain a new upper and lower percentile used to adjust the 
confi dence limits in the bootstrap distribution. The steps in the bias-cor-
rected bootstrap are as follows: (a) Find the observed value of the statistic in 
the bootstrap distribution and determine the proportion of bootstrapped 
values that are as large as or larger than the observed statistic. (b) Find 
the value from the normal distribution that corresponds to the proportion 
of bootstrap samples that are as large as or larger than the statistic from 
the observed sample found in (a). The z value from the standard normal 
distribution corresponding to the proportion, called z0, is the bias correc-
tion. (c) For the lower confi dence limit subtract the t value for the upper 
confi dence limit; that is, 2z0 − 1.96. Determine the proportion on the normal 
distribution that corresponds to this new z value for the lower confi dence 
limit. Find the percentage in the bootstrap distribution that corresponds to 
the percentage for the new z value. (d) For the upper confi dence limit add 
2z0 to the t value for the upper confi dence limit (2z0 + 1.96). Determine the 
percentage on the normal distribution that corresponds to this new z value 
for the upper confi dence limit. Find the percentage in the bootstrap distri-
bution that corresponds to the percentage for the new z value for the bias-
corrected bootstrap. This percentage is then the probability of observing a 
mediated effect as large as or larger than the observed value. The probabil-
ity level can be used to test the signifi cance of the mediated effect. 

Another resampling method, the jackknife (Mosteller & Tukey, 1977), 
preceded the development of the bootstrap. For a sample size N, there are 
N jackknife samples, each corresponding to removing one observation at 
a time from the original sample, so that each jackknife sample has N − 1 
observations. The jackknife estimate is the average estimate across the N 
jackknife samples. The standard error of the jackknife estimate is a function 
of (N − 1)/N times the squared deviations of the mediated effect in each 
jackknife sample from the jackknife estimate of the mediated effect. The 
number of possible data sets is N because each jackknife data set consists of 
the original data set with one observation removed.

There are other forms of the bootstrap method, including the accel-
erated bias-corrected bootstrap, bootstrap t, bootstrap Q, resampling 
residuals and iterated bootstrap methods, which are not discussed here. 
More on these methods can be found in several sources: Chernick (1999), 
Edgington (1995), Efron and Tibshirani (1993), Good (2000), Manly (1997), 
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and Noreen (1989). Cross-validation was also not discussed here but it is a 
computer intensive method that entails dividing an observed sample and 
evaluating the correspondence between the mediated effects between the 
two samples.

12.8 Bootstrap Estimates of the Mediated Effect
Bootstrap estimates of the mediated effect and its confi dence limits are 
straightforward to obtain. First, the mediated effect estimate is obtained 
from the sample of data. In a bootstrap analysis of a sample of N = 100, for 
example, a new sample of 100 is taken with replacement from the origi-
nal sample of 100, and the mediated effect is estimated. Then a second 
sample of 100 is taken from the original sample, and the mediated effect 
is estimated. The process is repeated a large number of times, usually 
at least 1,000. The mediated effect estimated in each bootstrap sample is 
used to form a distribution of the bootstrap mediated effect estimates, and 
confi dence limits are obtained from the bootstrap distribution. Using the 
distribution of mediated effect estimates, the 95% confi dence limits of the 
mediated effect are then the values of the mediated effect at the 2.5th and 
97.5th percentiles in the distribution of bootstrapped mediated effects. 
The bias-corrected bootstrap is more complicated in that the difference 
between the observed sample mediated effect and the average mediated 
effect in the bootstrap distribution are used to correct the percentiles in 
the bootstrapped distribution. Other types of bootstrap methods such as 
the bootstrap t differ only in which value is evaluated in the bootstrap 
distribution.

12.9 Software for Computer Intensive Methods
A bootstrap procedure suitable for mediation analysis is included in the 
AMOS (Arbuckle & Wothke, 1999), Mplus (Muthén & Muthén, 2004), and 
EQS (Bentler, 1997) covariance structure analysis programs. The jackknife 
method is also included as part of the EQS program. A SAS program 
to compute the bootstrapped confi dence limits of the mediated effect is 
described in Lockwood and MacKinnon (1998). This program has been 
expanded to include several versions of the bootstrap, randomization, 
and jackknife tests for the mediated effect. Preacher and Hayes (2004) pro-
vide SPSS and SAS programs for resampling. There are other statistical 
packages that conduct re sampling tests such as StatXact (StatXact, 1999), 
Re sampling Stats (Blank, Seiter, & Bruce, 1999), and SPSS Exact (SPSS Inc., 
1999, at an extra cost), but few programs include options specifi c for the 
mediated effect. The bootstrap approaches for models larger than the sin-
gle mediator model are straightforward extensions of the single mediator 
methods described in this chapter. A bootstrap sample is taken from the 
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observed data and the larger model is estimated in the bootstrap sample, 
a second bootstrap sample is taken, and the larger model is estimated 
again and so on to construct bootstrap distributions for the coeffi cients in 
these larger models. The randomization test, on the other hand, is more 
complicated for larger models and would entail shuffl ing each mediator 
separately, increasing the time to conduct the analysis. The randomization 
test developed here may prove useful for covariance structure analysis 
of mediation. No software now exists to conduct the randomization test 
for covariance structure analysis for larger models. The AMOS program 
does include a randomization test in which the variables in a model are 
randomly rearranged, but this is a different test from the randomization 
test described here, in which the position of variables themselves are 
re arranged in the model.

12.10 Resampling Methods Applied 
to the Data in Chapter 3
In chapter 3, mediation analysis was conducted using data from a hypo-
thetical study of the effect of temperature on water consumption through 
the mediator self-reported thirst. The data for the 50 subjects were shown 
in Table 3.1, where X is the temperature in degrees Fahrenheit, M is a self-
report of thirst at the end of a 2-hour period, and Y is the number of decili-
ters of water consumed during the last 2 hours of the study. In this section, 
computer intensive methods are applied to these data. The estimates and 
standard errors for the regression analysis are given in chapter 3.

The estimate of the mediated effect is equal to âb̂ = (0.3386)(0.4510) = 
ĉ − ĉ′ = 0.3604 − 0.2076 = 0.1527. Using Equation 3.6, the standard error 
of the mediated effect is equal to 0.0741. The 95% confi dence limits for 
the mediated effect based on normal theory are LCL = 0.0033 and UCL 
= 0.2979. The 95% confi dence limits for the mediated effect based on the 
distribution of the product are LCL = 0.0329 and UCL = 0.3197. 

12.11 SAS Program to Conduct Resampling Analyses
The data in chapter 3 were analyzed with the two-shuffl e randomization 
(i.e., shuffl ed the mediator and shuffl ed the dependent variable), percentile 
bootstrap, bias-corrected bootstrap, bootstrap t, bootstrap Q, and jackknife 
methods using a SAS program (MacKinnon et al., 2004). Computer-inten-
sive methods for the single mediator model can be easily tested with this 
program. The program requires that the original data set be identifi ed 
as part of a SAS LIBNAME statement and that the independent, media-
tor, and dependent variables are labeled, X, M, and Y in this data set (i.e., 
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upper case letters). The data containing the results of the computer inten-
sive tests are written to another directory defi ned by the user. 

For the present analysis, none of the 999 mediated effects from any of the 
permuted data sets from the approximate randomization test had a mediated 
effect as large as or larger than the observed mediated effect, so the signifi -
cance level value was 1/1000 = 0.001. The same program was run with 10,000 
data sets, and there were seven data sets for which the mediated effect was 
as large as or larger than the observed mediated effect, so the resulting sig-
nifi cance level was 0.0008. The confi dence limits using the SAS program are 
shown in Table 12.4. The EQS and AMOS programs to conduct resampling 
analysis are described in the next section. Note that there are some minor 
differences among the confi dence limits, but, overall, the confi dence limits 
for all tests are very close for this data set. The original data were simulated 
to have a multivariate normal distribution, so the assumptions of each of the 
procedures are met, and different approaches are not expected to yield very 
different results. The resampling tests were based on 1,000 resamples, with 
the exception of the jackknife and the normal theory test.

12.12 EQS Program for Resampling Tests
The EQS (Bentler, 1997) computer program has several resampling options 
under the /SIMULATION command. The bootstrap and the jackknife 
method are conducted using the BOOTSTRAP (and JACKKNIFE) com-
mands as shown in Table 12.5. The EQS program below was used to gen-
erate the data for a bootstrap analysis.

The SIMULATION command is used to conduct resampling analysis. 
Here a total of 1,000 bootstrapped data sets are requested. A separate data 
fi le called “boot” is written and saved separately. In the OUTPUT section, 
a fi le called boot.rst contains the results of the analysis of each bootstrap 

Table 12.4 Confi dence Limits for Single Sample 
and Resampling Tests of the Mediated Effect

LCL UCL

Normal 0.0033 0.2979
Percentile SAS 0.0395 0.2876
Percentile EQS 0.0405 0.2756
Percentile AMOS 0.0275 0.3130
Bias-corrected SAS 0.0604 0.3322
Bias-corrected EQS 0.0567 0.3237
Bias-corrected AMOS 0.0465 0.3700
Jackknife EQS SAS 0.0239 0.2813
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sample. The fi rst line of this data set contains information about the model 
estimation. The second line contains the six parameter estimates of this 
model. The third line contains the six estimates of the standard error of 
each parameter estimate in the model. EQS does not provide a summary 
of these results. A separate program must be written to analyze the data. 
Although the lack of summary analysis in the EQS output makes com-
puter-intensive analysis more diffi cult than the AMOS program, which 
summarizes these results, the availability of an output fi le with the infor-
mation for each bootstrap sample makes it possible to bootstrap many 
additional mediation measures such as the proportion mediated or the 
ratio of the mediated to the direct effect. 

The SAS program in Table 12.6 was used to read the data fi le and com-
pute resampling tests. This program is necessary to compute the medi-
ated effect in each of these samples and to construct confi dence limits 
from the results and relevant bootstrap results.

For the data from chapter 3, the percentile bootstrap confi dence limits 
were 0.0405 and 0.2756 with an average bootstrap estimate of 0.1473 and 
an average standard error of 0.0745. The bias-corrected confi dence limits 
are adjusted by the proportion of bootstrap estimates to the right of the 
sample estimate of the mediated effect. The mediated effect estimate of 

Table 12.5 EQS Program for Bootstrap Estimation of Chapter 3 
Water Consumption Data

/TITLE
   CHAPTER 3 EXAMPLE EQS MEDIATION ANALYSIS
/SPECIFICATIONS
   CAS=50; VAR=4; ME=ML; DA=’a:cpt3.txt’;MA=RAW;
/LABEL
  V1=s; V2=X; V3=M; V4=Y; 
/EQUATIONS
   V4 = 1*V2 + 1*V3 + E2;
   V3 = 1*V2 + E3;
/VARIANCES
   V2  = 1*;
   E2 TO E3 =  2*;
/SIMULATION
  replications=1000;
  BOOT=50; 
  DA=’boot’;
  save = separate;
/OUTPUT
  DA=’BOOT.RST’; STANDARD ERRORS; PARAMETER ESTIMATES;
/END
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0.1527 was at the 57.8th percentile in the bootstrap distribution, which cor-
responds to a z value of 0.1968. The corrected upper and lower z values 
equaled 2.3536 (2(.1968) + 1.96) and −1.5664 (2(0.1968) − 1.96), respectively, 
which correspond to the 99.07th and 5.86th percentiles, respectively. These 
values are 0.3237 and 0.0567, which are the bias-corrected bootstrap upper 
and lower 95% confi dence intervals. 

The EQS program in Table 12.7 was used to conduct the jackknife analysis 
of the chapter 3 data using EQS. The results of each separate jackknife sample 

Table 12.6 SAS Program to Read EQS Bootstrap File

data a;
infile ‘c:\btstrap\boot.rst’;
input
#1
#2 e1 e2 e3 a b cp
#3 see1 see2 see3 sea seb secp;
ab=a*b;
seab=sqrt(a*a*seb*seb+b*b*sea*sea);
t=ab/seab;
;
proc means;
proc univariate normal freq; var ab;
run;

Table 12.7 EQS Code to Conduct Jackknife Analysis of the Chapter 3 
Water Consumption Data

/TITLE
   CHAPTER 3 EXAMPLE EQS MEDIATION ANALYSIS
/SPECIFICATIONS
   CAS=50; VAR=4; ME=ML; DA=’a:cpt3.txt’;MA=RAW;
/LABEL
  V1=s; V2=X; V3=M; V4=Y; 
/EQUATIONS
   V4 = 1*V2 + 1*V3 + E2;
   V3 = 1*V2 + E3;
/VARIANCES
   V2  = 1*;
   E2 TO E3 =  2*;
/SIMULATION
  REP=50;JACKNIFE; 
/OUTPUT
  DA=’JACK.RST’; STANDARD ERRORS; PARAMETER ESTIMATES;
/END
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are not saved by EQS because it simply deletes the data from one subject to 
create each new data set. The data, with estimates and standard errors, are 
saved in a fi le called Jack.rst. The average jackknife mediated effect estimate 
was 0.1526. The standard error from the jackknife was equal to 0.0656, which 
led to lower and upper confi dence limits of 0.0239 and 0.2813 respectively.

Another important use of EQS is the bootstrap estimation of other 
mediation statistics, such as the proportion mediated and the ratio of the 
mediated to the direct effect. Figure 12.2 shows the bootstrap distribu-
tion of the proportion mediated. The observed proportion mediated was 
0.1527/(0.1527 + 0.2061) = 0.4344, which was at the 97.5th percentile in the 
bootstrap distribution of the proportion as shown in Figure 12.2. The ratio 
was equal to 0.1527/0.2061 = 0.7333, which was located at the 98.4th percen-
tile of the bootstrap distribution of the ratio.

12.13 AMOS Program for Resampling Tests
AMOS has options for the percentile and bias-corrected bootstrap and 
unlike EQS, the AMOS output includes the upper and lower confi dence 
limits for the mediated effect. To date, no computer program conducts the 
randomization test for the mediated effect with the exception of the SAS 
program described above. Models can be entered either by drawing a fi g-
ure in the AMOS graphics input option or by writing code in the AMOS 
basic input option. The graphics method is an easy way to set up the pro-
gram because it is based on a detailed fi gure for the model to be tested. 

Figure 12.2. Bootstrap distribution for proportion.
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Options to conduct the bootstrap analysis are obtained with options from 
a window in the program. It is important to request estimates of indirect 
effects so that they are included in the resampling routine. 

The percentile bootstrap confi dence limits for the mediated effect were 
0.0275 and 0.3130 and for the bias-corrected percentile bootstrap 0.0465 
and 0.3700, as shown in Table 12.8. The mediated effect is signifi cant with 
both of these methods. AMOS prints out the upper and lower bounds of 
the estimates as shown below for the bias-corrected bootstrap. Note that 
the (BC) refers to the bias-corrected confi dence limits. The corresponding 
values for the percentile method have the code (PC). 

12.14 Mplus Resampling for the Two Mediator Model
The Mplus program for bootstrap analysis of the two mediator model, 
described in chapter 5, is shown in Table 12.9. In the analysis section, 500 
bootstrap samples are selected by the command BOOTSTRAP=500 (for 
1,000 bootstrap samples use BOOTSTRAP=1000). The MODEL INDIRECT 
command, Y IND X, requests that all specifi c indirect effects of X on Y are 
estimated: the specifi c effect X to M1 to Y and the specifi c indirect effect X 
to M2 to Y. The asymmetric percentile bootstrap confi dence intervals are 
selected by the CINTERVAL(BOOTSTRAP) command. The bias-corrected 
bootstrap would be selected by CINTERVAL(BCBOOTSTRAP). 

Selected output from the Mplus program is shown in Table 12.10. First 
the total indirect and specifi c indirect effects obtained from the bootstrap 
analysis are presented. The values for the total indirect and specifi c indirect 
effects are very similar to those for the single sample analysis described 
in chapter 5. In the next section, the 99% and 95% confi dence limits are 
shown. For example, the 95% confi dence interval for X to M1 to Y was 
0.207 to 0.791, compared with normal (0.1842 to 0.7719) and distribution of 
product (0.1654 to 0.7906) confi dence limits described in chapter 5. The 95%

Table 12.8 AMOS Output for Bias-Corrected Bootstrap of the Water 
Consumption Data

X M

Indirect effects lower bounds (BC)
M 0.0000 0.0000
Y 0.0465 0.0000
Indirect effects upper bounds (BC)
M 0.0000 0.0000
Y 0.3700 0.0000
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confi dence interval for the X to M2 to Y specifi c indirect effect was −0.029 
to 0.306 which is also similar to the normal (−0.0467 to 0.2817) and distri-
bution of product (−0.0261 to 0.3106) confi dence intervals from chapter 5. 
Mplus can be easily used to conduct resampling analysis of complicated 
models including the models described in chapters 6, 7, and 8.

12.15 Pros and Cons of Resampling 
Versus Single Sample Methods
First, consider the arguments in favor of resampling methods. Often a 
resampling method is the only way to fi nd a standard error to test sig-
nifi cance or create confi dence intervals because the analytical derivations 
for these quantities are not available. This may be useful in mediation 
analysis because of the non-normal distribution of the product in some 
cases and also for tests based on functions of mediated effects. Traditional 
procedures require generalizing sample results to a theoretical popula-
tion, which in turn, requires assumptions about distributions. In many 
situations, the characteristics of the population are not clear and invalid 
assumptions about the population may render traditional methods inac-
curate. Resampling methods apply to nonrandom (but with restricted 
generalization) as well as random samples, and most traditional methods 
assume random sampling. Resampling methods, especially randomiza-
tion tests, may handle small samples better than alternative tests and may 
provide more accurate results than traditional tests in this situation. Simi-
larly, resampling methods handle outliers and other violations of assump-
tions. Replication is an important aspect of scientifi c research, and the 
repeated samples in resampling approaches are like replications, but, of 

Table 12.9 Mplus Program for the Two-Mediator Model

TITLE:  TWO MEDIATOR MODEL;
DATA:   FILE IS c:\twomed.dat;
VARIABLE:
    NAMES= S X M1 M2 Y;
    USEVARIABLES=X M1 M2 Y;
ANALYSIS:
    BOOTSTRAP=500;
MODEL:
    M1 ON X; M2 ON X;Y ON M1 M2 X;M1 WITH M2;
MODEL INDIRECT:
    Y IND X;
OUTPUT:
    CINTERVAL(BCBOOTSTRAP);
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course, these replications are different from independent research stud-
ies. Resampling methods such as the permutation test are also intuitively 
appealing given that they consider all, or a sample of all, possible data 
sets. Finally, R. A. Fisher and others used it to determine the accuracy of 
their traditional tests, at least suggesting that that test may be used as a 
gold standard for signifi cance testing.

Now consider arguments against resampling methods. The researcher 
may get more from the data than what actually exists. Resampling may 
just magnify the bias in biased samples. Generalizing beyond the particu-
lar sample may be problematic. There is evidence that resampling meth-
ods do not work well if the sampling of bootstrap samples differs from 

Table 12.10 Mplus Resampling Output

TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS
                   Estimates     S.E.  Est./S.E.
Effects from X to Y

  Total                0.708    0.174      4.075
  Total indirect       0.596    0.174      3.429
  Specific indirect
    Y
    M1
    X                  0.478    0.154      3.096
    Y
    M2
    X                  0.118    0.084      1.405

TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS
     Lower .5%  Lower 2.5%  Estimates  Upper 2.5%  Upper .5%
Effects from X to Y

  Total           0.324    0.368     0.708    1.056    1.189
  Total indirect  0.221    0.286     0.596    0.991    1.113

  Specific indirect
    Y
    M1
    X             0.125     0.207    0.478    0.791    0.961

    Y
    M2
    X            -0.050    -0.029    0.118    0.306    0.374
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the sampling that generated the data such as for goodness-of-fi t indices 
as described by Bollen and Stine (1993), but this limitation is not problem-
atic for mediation effect estimation. The computing power is adequate for 
most computer-intensive methods, but the software to make these rou-
tines simple is only beginning to be widely available. For example, a SAS 
macro had to be specifi cally written to conduct bootstrap analysis and ran-
domization tests of the mediated effect for this chapter. Furthermore, the 
difference between resampling and traditional tests is often minuscule, so 
why bother with resampling methods that can be complicated and time-
consuming? Another criticism is based on Gleser’s fi rst law of applied 
statistics, “Two individuals using the same statistical method on the same 
data should arrive at the same conclusion” (Gleser, 1996, p. 210). Because 
resampling methods, with the exception of the jackknife and the exact 
randomization test, entail repeated random samples of observations, it is 
possible that different individuals would come to different conclusions in 
a resampling analysis of the same data set. Finally, as Fisher’s quote at the 
beginning of this chapter describes, resampling approaches may refl ect 
a certain lack of knowledge about important aspects of substantive prob-
lems such as the correct underlying distribution. 

12.16 Summary
Resampling approaches for testing mediation effects hold considerable 
promise for mediation analysis. There is evidence that the resampling 
methods generally have more accurate Type I error rates and more statis-
tical power than single sample methods that assume a normal distribu-
tion for the mediated effect (MacKinnon et al., 2004). There is also some 
evidence that the percentile bootstrap is preferred over the bias-corrected 
bootstrap because in some rare cases the bias-corrected bootstrap has 
excess Type I error rates. Resampling methods are also a good general 
option for more complicated models with mediated effects. The avail-
ability of bootstrap resampling methods in the AMOS, EQS, and Mplus 
computer programs should make the application of these methods more 
common. Resampling methods are often useful for any mediation model 
to obtain accurate confi dence limits, especially for models with complex 
mediated effects such as three-path mediated effects. It is likely that com-
puter-intensive methods will continue to be an active area of research for 
mediation analysis. 

12.17 Exercises
12.1. How many unique data sets of three variables can be made with 

eight subjects? 
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12.2. Why are approximate rather than exact randomization tests 
conducted?

12.3. Why does the bootstrap yield more accurate confi dence limits for the 
mediated effect than normal theory methods?

12.4. Why is it not possible to conduct a resampling analysis at the achieve-
ment model in chapter 6?

12.5. Describe how the words jackknife and bootstrap are appropriate 
names for resampling tests. (Hint: think of the typical defi nitions of 
jackknife and bootstrap.)

12.6. Read R. A. Fisher’s quote at the beginning of this chapter again. Do 
you think he is correct about resampling tests? Do you think that 
resampling methods just display ignorance or blind analysis? Dis-
cuss the arguments for and against resampling tests. 
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13

Causal Inference for 
Mediation Models

Two roads diverged in a yellow wood, / And sorry 
I could not travel both, / And be one traveler long I 
stood, / And looked down one as far as I could

—Robert Lee Frost, 1920

13.1 Overview
The purpose of this chapter is to describe modern causal inference 
approaches to evaluating mediating variables. These approaches specify 
the criteria for causal relations that clarify the limitations of mediation 
models and suggest additional methods to identify mediating processes. 
Several approaches to demonstrating causal relations are briefl y described, 
followed by a description of the Rubin causal model (RCM), one of the 
most widely used models to interpret causal relations. Compliance with a 
treatment regimen as a mediator is then described along with instrumen-
tal variable approaches to investigating mediating variables. Holland’s 
extension of the RCM to mediation is presented, followed by more recent 
extensions based on principal stratifi cations of participants in a study. 

13.2 Causal Inference 
Causal interpretation is the motivation for many research studies even 
though researchers may not claim that their results provide causal con-
clusions (Pearl, 2000). The identifi cation of causes has been a primary 
focus of knowledge since the time of Aristotle (Wheelwright, 1951). Gen-
eral methods to identify causes based on research are relatively recent. 
Robert Koch, the famous 19th century biologist, outlined a set of rules 
for determining whether an agent is a cause of disease (cited in Last & 
Wallace, 1992). First, the agent must be present in organisms with the dis-
ease. Second, the agent must be isolated from diseased organisms. Third, 
introduction of the agent into a new organism must create disease in the 
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new organism. These rules were developed when the bacterial causes of 
many diseases were being discovered. Koch used these rules to prove the 
bacterial causes of anthrax and tuberculosis.

Primarily in response to the question of whether smoking was a cause of 
lung cancer, criteria for causal relations were described by Hill (1965) and 
the U.S. Surgeon General’s report on Smoking and Health (U.S. Depart-
ment of Health, Education, and Welfare, 1964). Hill (1971) outlined these 
criteria for statistical evidence of causal relations: (a) strength of associa-
tion, that the size of the relation between two variables provides evidence 
for a causal relation, (b) consistency, that the same effect is observed by 
different researchers, on different subjects (animal or human) in differ-
ent circumstances and times, (c) specifi city, that there is a clear link from 
exposure to a certain disease and other exposures do not lead to the dis-
ease, (d) temporal precedence, that a relation in time such that exposure 
to the risk factor occurs before the disease, (e) biological gradient, that 
the likelihood of the disease increases as the exposure increases, that is, 
there is a dose-response curve, (f) biological plausibility, that the relation 
makes sense from biological theory, (g) coherence of the evidence, that the 
cause and effect hypothesis should not confl ict with what is known about 
the natural history and biology of the disease, (h) experimental results, 
that an experimental intervention designed to reduce the risk factor has 
expected effects on the outcome, (i) reasoning by analogy, that the action 
of the disease under study is similar to the action of other exposures 
and diseases, and (j) common sense and fi gures, that the observed effects 
should be evident in statistical analysis as well as make common sense. 
Hill (1971) provides these criteria as guidelines, not as set rules for causa-
tion. Several of these criteria are especially relevant for mediation studies. 
Specifi city of an effect through one mediator and not other mediators adds 
credence to a mediator. Temporal precedence provides evidence such that 
a change in the mediator leads to a later change in the dependent variable. 
Perhaps most important is the consistency criteria for which mediated 
effects should be observed by other researchers using other experimental 
designs. Similarly, as in the biological gradient criterion, larger effects on 
the mediator should be associated with larger changes on the outcome.

During the last 30 years, new methods for making causal interpretations 
of research results have been developed. The purpose of these models is 
to provide a framework to carefully consider the different information 
and assumptions necessary for causal interpretation of research results 
and to add to the previous criteria required for causal statements, such as 
the temporal precedence and specifi city criteria outlined in the Surgeon 
General’s 1964 Report on Smoking (Hill, 1965; U.S. Department of Health, 
Education, and Welfare, 1964). Unlike the biological transmission of disease 
and smoking and lung cancer motivations of earlier criteria, these new 
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methods were designed for the interpretation of medical and social policy 
research, which often used observational as well as experimental designs. 
These new developments in causal interpretation of research results incor-
porate the causal criteria of Koch and Hill to form a broader interpretation 
of causal evidence. An important benefi t of these methods is that they 
elucidate the diffi culty of establishing causal relations and often suggest 
that mediation methods provide only descriptive information about rela-
tions, rather than identifying causal relations. In many cases, the methods 
suggest alternative information or designs that bolster the evidence for a 
mediational relation among variables. Overall, these methods provide a 
sound theoretical basis for conclusions drawn from mediation studies. 

13.3 The RCM
The RCM (Rubin, 1974, 1977) provides a basis for causal inference in 
research designs including the mediation model. One common theme of 
the RCM is the distinction between the effects of a cause versus the cause 
of effects (Holland, 1986, 1988b). It is often easier to defi ne the effects of 
a cause than it is to infer the cause of an effect. As described by Holland, 
the statement that A is a cause of B is usually false because it represents a 
summary of current knowledge, and what is considered a cause now may 
be incorrect when more information becomes available. It is more sensible 
to focus on statements from experimental results such as, “An effect of A 
is B” because the effect of A will be B in future studies as well as in the 
current study.

A second and most important theme of the RCM and related approaches 
is the notion of a counterfactual. The counterfactual is central to causal 
inference. The counterfactual is common in everyday thinking such as 
when one is considering possible actions other than the action the person 
actually took, for example, if I had left for work at 6 this morning rather 
than 8, then I would not have been in so much traffi c. The Robert Frost 
quote at the beginning of the chapter also refers to the counterfactual case 
in which only one road was actually taken, but the author is considering 
what would have happened if the other road had been taken. In the RCM, 
the counterfactual is more specifi c. It refers to conditions in which a par-
ticipant could serve, not just the condition they did serve in. The counter-
factual follows from the RCM′s grounding in experiments, in which a 
causal effect can only be considered in relation to another causal effect (e.g., 
treatment versus control group). Ideally, the effect of an experiment would 
compare an individual participant’s score on a variable when that subject 
received the treatment to the score for the same participant without the 
treatment. In most experiments, the same participant cannot realistically 
participate in both the treatment and control groups, because, for example, 
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the effect of the treatment may carry over to the control condition. The 
counterfactual requires the consideration of a treatment effect for a person 
who was actually in the control condition. So the RCM (and other causal 
inference approaches) requires consideration of situations, contrary to fact, 
in which a person would have actually served in a condition that they did 
not actually serve. The historical precedent for this counterfactual idea is 
the potential yield concept described by Neyman (1923).

Because it is impossible to simultaneously observe the same person in 
two conditions, Holland (1986) calls this problem the fundamental prob-
lem of causal inference. However, if it is assumed that different persons 
have identical responses to treatment and control conditions, then one 
person can serve as the counterfactual case for another. Unit homogene-
ity is the assumption that the units (here persons) in the treatment and 
control group are so similar that they can be considered identical. If unit 
homogeneity can be assumed, then the treatment and control units are so 
similar before the experiment that the difference between units refl ects 
the causal effect of the treatment after the experiment. It is unlikely that 
human subjects are similar enough to satisfy unit homogeneity, with the 
possible exception of some biological characteristics. In response to this 
problem, the average causal effect (ACE) is considered. If a large number 
of participants are randomly assigned to treatment and control groups, 
then the causal effect of a treatment can be ascertained by comparing the 
average of participants’ scores in the treatment group to the average of 
the participants’ scores in the control group. Randomization of units to 
conditions is used to ensure that assignment to conditions is unrelated 
to all other variables before the study. The average causal effect requires 
the stable unit treatment value assumption (SUTVA). The SUTVA is that 
the effects of a treatment are stable, such that one unit’s potential out-
comes do not depend on other unit’s assignment and that assignment to 
conditions does not affect units in ways unrelated to the treatment. For 
example, SUTVA is violated if the control group participants resent the 
fact that treatment participants received the treatment and purposefully 
changed their behavior because of this resentment (resentful demoraliza-
tion as described by Cook & Campbell, 1979). With SUTVA and successful 
randomization, the difference between the treatment and control means 
allows for causal inference to be made.

The RCM makes a crucial distinction between the equations for the 
causal relations among variables, the ACEs (Average Causal Effects), and 
the equations for observed data. This distinction is important because it 
clarifi es how estimators based on observed data may be different from 
estimators in the causal model. Estimators of causal effects for observed 
data are called prima facie average causal effects (FACEs; prima facie 
means “on the face of it”). The difference in the average response in treat-
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ment versus control groups is a FACE when there is random assignment 
of units to conditions. The distinction between the ACE and the FACE 
is that the FACE can be computed from data, but it does not necessarily 
equal the ACE. The ACE requires information from the counterfactual 
and cannot be directly computed from data. 

Observed and causal relations clarify the distinction between descrip-
tive versus causal interpretation of results in the RCM. A descriptive 
interpretation of a mediation study of tobacco prevention, for example, 
would state that those persons whose norms against smoking increased 
after an intervention were less likely to smoke at a later date than persons 
whose norms against smoking stayed the same. This descriptive interpre-
tation differs from a causal interpretation, which might state that changes 
in norms caused a change in smoking. The level of proof required for 
the causal interpretation is more detailed. The RCM clarifi es the prob-
lems in making causal inference by the consideration of counterfactual 
situations. 

The RCM was originally developed for the investigation of cases in 
which X does not represent random assignment to conditions (Rubin, 
1974). In this situation, Rubin (1977) describes ignorability given a covari-
ate, where ignorability means that X is independent of omitted variables 
once conditioned on another variable or variables. In this situation, the 
FACEs become covariate adjusted FACEs (C-FACEs). In this way, the RCM 
is very clear about the importance of how assignment occurred when con-
sidering causal inference. It is critical to specify an assignment mecha-
nism for how units are assigned to conditions. The covariate represents 
a variable that accounts for the assignment mechanism. If the assign-
ment mechanism is known, then accurate estimates of causal effects can 
be obtained under certain assumptions. The description of the RCM for 
mediation described later in this chapter is in terms of X as a randomized 
experiment because this often occurs in mediation studies and it simpli-
fi es aspects of the RCM application to mediation. 

One other important aspect of the counterfactual idea is that appropri-
ate causal interpretation can only be made when it is possible for individu-
als to be in either group (e.g., an individual could be in either the program 
or control group). As a result, effects of sex and race, for example, cannot 
be interpreted as causal effects in the RCM and related causal inference 
models because these variables cannot be manipulated. The model dem-
onstrates that in most situations, only random assignment can lead to a 
causal interpretation of the effect of a treatment compared to a control 
group. Sobel (1998) and others (Pratt & Schlaifer, 1988) discuss situations 
in which it may be sensible to study the causal effect of variables such as 
sex, at least in part because the original assignment of sex at conception is 
likely to be random. 

ER64296_C013.indd   351ER64296_C013.indd   351 11/14/07   11:50:25 AM11/14/07   11:50:25 AM



352 Introduction to Statistical Mediation Analysis

In summary, the RCM provides a general framework for understanding 
the limitations and strengths of possible causal inferences from any study 
including a mediation study. As described later in this chapter, the RCM 
and related methods have been extended to mediation models (Frangakis 
& Rubin, 2002; Holland, 1988a), for direct and indirect effects of epidemio-
logical measures (Robins & Greenland, 1992), and for methods based on 
graph theory (Pearl, 2000).

13.4 Instrumental Variables
Several modern approaches to assessing causal mediation relations use 
instrumental variables. Instrumental variables methodology is a gen-
eral approach to improve the interpretation of coeffi cients in a statistical 
model (Angrist & Krueger, 2001). Instrumental variables are more com-
monly used in economics and related fi elds in which experimental design 
cannot be easily used to rule out threats to conclusions from a research 
study. Instead, assumptions are made, and model-based corrected esti-
mates are generated. As the situation approximates randomization, esti-
mates approximate the true values. If assumptions are violated, estimates 
can be incorrect and even worse than uncorrected estimates (Stolzenberg 
& Relles, 1990). It is important to keep in mind that the instrumental vari-
able methods are based on assumptions that may be violated (Shadish, 
Cook, & Campbell, 2002). 

In economics, instrumental variables are used to deal with violation 
of regression assumptions including a nonzero correlation between an 
explanatory variable and an error term, correlated errors across equa-
tions, omitted variables, and violations of other assumptions. For example, 
instrumental variables provide better estimates of regression coeffi cients 
in multiple equation models with a nonzero correlation between errors 
across equations (Hanushek & Jackson, 1977, pp. 234–239). Other applica-
tions of instrumental variables included adjustment for latent variables 
and measurement error (Angrist & Krueger, 2001).

In the correlated errors across equations application of instrumental 
variables, an instrumental variable (also called an instrument) is con-
structed that is equal to the predicted scores from a regression equation. 
These predicted scores are then used as predictors in a second equation. 
To use the mediation example, the predicted scores of X on M, M′, are 
used in a regression equation where Y is predicted by M′. The coeffi cient 
relating M′ to Y is the instrumental variable estimator of the b̂ coeffi cient. 
These coeffi cients are more accurate than ordinary least squares (OLS) 
estimates of the b̂ coeffi cient if the correlated error is ignored in the OLS 
analysis (Hanusheck & Jackson, 1977, pp. 234–239 for results from a simu-
lation study). In general, the standard error of the instrumental variable 
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estimator is larger than the standard error estimator relating M and Y 
without the instrument. In Hanushek and Jackson (1977) and other places, 
the derivation of the standard error of the instrumental variable effect is 
shown. 

Controlling for omitted variables is a primary use of instrumental vari-
able methods in mediation analysis. In this application of instrumental 
variables, the goal is to estimate a causal relation between a mediator and 
a dependent variable, such as the relation between schooling and income 
or the relation between military service and health. The original estimate 
of the relation between the mediator and outcome is likely to be inac-
curate because of the potential infl uence of omitted variables that may 
alter the relation between M and Y. The instrumental variables solution 
is to use an instrumental variable, X, that refl ects random assignment to 
a program that affects M but is related to Y only through its effect on M. 
Here the instrumental variable allows for the estimation of the relation 
of M and Y without bias from omitted variables. A good instrumental 
variable is related to M for clear reasons and unrelated to Y beyond its 
effect through M. Examples of this application of instrumental variables 
for mediation analysis are described next. 

13.5 Instrumental Variables and Mediation
Recent applications of the RCM in the examination of mediating variables 
have focused on the effects of exposure to a treatment on an outcome 
measure for compliers. For example Angrist, Imbens, and Rubin (1996) 
investigated the effect of Vietnam War service on health by using random 
selection in the draft as an instrumental variable, serving in Vietnam as 
the mediating variable, and health as the dependent variable. The causal 
effect of military service on death rates for compliers was examined. The 
lottery for military service based on randomly selecting birth dates was 
used as an instrumental variable in the analysis. The selection of birth 
dates was random and was associated with increased military service. 
Using the draft as an instrumental variable allowed for an estimate of 
the causal effect of military service on death for compliers. The causal 
effect of the draft on death was substantial. Of subjects with low lottery 
numbers and more likely to be drafted, 2.04% died between 1974 and 1983 
compared with 1.95% with high lottery numbers; the difference of 0.09% 
was an estimate of the complier average causal effect of draft status on 
mortality. The authors conducted sensitivity analysis of the assumptions 
required for the accuracy of the instrumental variables estimator of the 
relation between military service and health.

Angrist et al. (1996) and corresponding discussion papers described the 
instrumental variables approach for the effect of military service on health 
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in terms of imperfect compliance. Compliance with the draft was not 
perfect, as some persons drafted did not serve in the military by staying 
in school, for example. One common way to evaluate randomized treat-
ments in which compliance varies is to compare the difference in outcome 
between participants in the control and treatment groups for all partic-
ipants present at the beginning of the study. This type of analysis has 
been called intent-to-treat (ITT) analysis because it estimates the group 
difference based on assignment to treatment or control groups, without 
consideration of the amount of the program actually received by program 
participants or control participants. However, in most research studies, 
persons participate in the intervention to different degrees and some sub-
jects drop out before completing the treatment. Subjects in the control 
condition may actually receive some treatment such as persons with high 
lottery numbers volunteering for military service in the previous exam-
ple. Although the ITT estimate is the treatment effect in the real world, 
the ITT approach may underestimate treatment effects, because, in fact, 
some participants may have gotten a minimal treatment or no treatment 
at all. Critics of ITT analysis argue for analyzing the effects of treatment 
on the treated (TOT), so that the treatment effect refl ects only those per-
sons who received the whole treatment. There are problems with the TOT 
effect as well, including the facts that it is often impossible to determine 
who will get the entire treatment before the study and it may be diffi cult 
to generalize effects beyond the unique group of TOT participants. The 
subset of participants in the treatment group who receive the entire treat-
ment are unlikely to be a random sample of the treatment group (and 
control participants may take up the treatment), making them unique in 
some unknown ways. Another option is to use an instrumental variables 
approach to estimate the local average treatment effect (LATE) so that the 
amount of the treatment is taken into account. In general, the instrumental 
variables estimator may provide a more sensitive way than ITT or TOT to 
determine effects among the treated. As described by Angrist et al. (1996), 
the LATE is the treatment effect on compliers, persons induced to receive 
the whole treatment. This model generally assumes a binary compliance 
measure. Efron and Feldman (1991) addressed a continuous compliance 
measure and described analysis required to shed light on the relation of 
degree of compliance to the dependent variable in both treatment and 
control groups. 

Neither the TOT nor the LATE estimator of treatment effects is likely 
to represent the effect of a treatment if it were made widely available. As 
a result, researchers have suggested that TOT and LATE estimators repre-
sent bounds for the average treatment effect under several assumptions if 
the goal is to extend the results of the single research study to the popula-
tion. Under certain assumptions, the instrumental variables estimator is a 
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valid LATE estimator of treatment-induced changes (Shadish et al., 2002). 
These assumptions, using the X, M, and Y mediation example, where M 
is compliance, are the following. (a) X is exogenous, which means that X 
is uncorrelated with unobserved characteristics of the persons, including 
pretreatment measures of Y (this assumption is most easily met by random 
assignment). (b) The effect of the instrument X (i.e., predicted values for M) 
on M is substantial. (c) The relation between X, M, and Y are independent 
across participants; that is, potential outcomes for one participant do not 
depend on assignment of other participants. This is the stable unit treatment 
alue (SUTVA) described earlier. (d) The effect of X on M is the same for all 
participants; that is, no one in the treatment group received less treatment 
than if they had, in fact, not received the treatment. This is related to the 
monotonicity assumption. An example of violating this assumption would 
occur if, for some reason, participants assigned to the treatment actually 
behaved in a way opposite to the treatment. (e) M completely mediates the 
effect of X on Y. This is called the exclusion restriction. However, complete 
mediation may be rare and unrealistic in many research contexts. Alterna-
tively, it may be possible to design research studies and identify subgroups 
in which the assumption of complete mediation may be reasonable. 

An analogous approach to instrumental variable analysis in a media-
tion context is found in studies in which the mediator is the single active 
ingredient in an intervention. In a clinical trial of a new drug, for example, 
the dosage of the drug can be treated as a mediator with random assign-
ment to conditions as the instrumental variable (Rosenbaum, 2002b; see 
also Efron & Feldman, 1991). This approach estimates the biological effi -
cacy of a treatment (LATE) compared with the programmatic effective-
ness of a treatment (ITT). In this model, the exclusion restriction is that the 
effect of the treatment to the outcome is entirely due to effects on dose. 

13.6 Instrumental Variable Estimation 
of the Mediation Effect
To use the mediation example, the estimates of the causal relation between 
M and Y are obtained by using X as an instrumental variable (Gennetian, 
Morris, Bos, & Bloom, 2005). Steps in this process are summarized in Table 
13.1. The instrumental variable estimate of this causal effect reduces to 
ĉ/â from the single mediator equations in chapter 3. As described earlier, 
for the case of the mediation model, the idea is to use an instrument for 
the prediction of M and then use the predicted values of M to predict Y. 
The statistical signifi cance of the coeffi cient relating predicted M to Y is 
the test of the b̂ path for the mediated effect and is equal to ĉ/â. Note that 
the instrumental variable must be related to M and not to Y, following the 
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exclusion restriction. Furthermore, the stronger the relation of X to M, the 
better the instrument is, with the best instrument having a correlation 
of 1 with M; that is, the M variable is the same as the instrument. There 
are several limitations to this approach, the requirement of no relation 
of the instrumental variable with Y being one of the major limitations. 
Other limitations are the reasonableness of the assumptions described 
earlier. Shadish et al. (2002) reviewed the plausibility of the assumptions 
of instrumental variables approaches.

If there were multiple mediators, then a separate instrument would be 
required for each potential mediator. For the analogous case for the single 
mediator model, each mediator would be required to be randomly assigned 
to the units studied, which is rare in most research (West & Aiken, 1997). 
For example in drug prevention, social infl uences-based drug prevention 
programming may be randomly assigned to schools and, independently, 
resistance skills training would also be randomly assigned to schools. 
Both interventions, resistance skills and social infl uences prevention 
programming, are randomly assigned to schools. Two variables, one 
for each random assignment, would be used as separate instrumental 
variables. 

The data from chapter 3 can be used to demonstrate a simple instru-
mental variable approach. Here the X variable coding random assignment 
to temperature is used as an instrumental variable. The relation of X to 
Y was nonsignifi cant when the mediator was included in the analysis, a 
result consistent with the exclusion restriction assumption but not exactly 
because the exclusion restriction refers to counterfactual values. The rela-
tion of X to M is assessed via linear regression, and the predicted scores 
for M, M′, are saved and used in a regression equation relating M′ to Y. 
The coeffi cient, b̂, relating M′ to Y is the estimator of the causal effect of 
M on Y. The regression equation for the prediction of M is M′ = −20.70243 
+ 0.3386 X. When Y is regressed on M′, the coeffi cient is 1.0643 (0.3967), t = 
2.68. The ratio of ĉ/â = 0.3604/0.3386 = 1.0643, as expected because this is 
the value of b̂. That b̂ = ĉ/â can be seen by solving algebraically for b̂ in 
the equation ĉ – ĉ′ = âb̂, where ĉ′ is zero based on the exclusion restriction

Table 13.1 Steps in Instrumental Variables Approach to Mediation

1. Use the X variable coding random assignment as the instrumental variable.
2.  Estimate the regression of the mediating variable on the instrumental variable 

X and save the predicted scores on the mediators, M′.
3.  Estimate the regression coeffi cient relating the predicted mediator scores from 

Step 2, M′, on the dependent variable Y. This is an estimate of the b̂ path for 
the mediated effect.
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(i.e., ĉ = âb̂ so b̂ = ĉ/â and â = ĉ/b̂). The predicted value of M based on X, M′, 
represents the change in M from the randomization of units to X. The 
resulting relation of the instrumental variable M′ to Y refl ects the part of 
M that was changed by X that results in the change in Y. 

13.7 The RCM and Mediation (Holland, 1988a)
For the case in which X represents random assignment to conditions, the 
causal interpretation of mediating variables (Holland, 1988a; Robins & Green-
land, 1992) is improved for several reasons, including temporal precedence 
whereby the assignment to conditions precedes measurement of the medi-
ating variable and the dependent variable. Holland applied the RCM to 
examine a mediating variable design called the encouragement design. In 
the encouragement design described by Holland, students are randomly 
assigned to one of two conditions, either to a group receiving encourage-
ment to study or to a control group that does not receive such encourage-
ment. Here the mediating process is that assignment to the encouragement 
condition affects the number of hours studied, which in turn affects test 
performance. This is similar to the compliance example (with continuous 
compliance), where here the compliance is encouragement to study.

Under the unit homogeneity, the usual regression coeffi cient for the 
group effect on test score, ĉ, and for the group effect on number of hours 
studied, â, are valid estimators of the causal effect, because of the random-
ization of units to treatment. The relation between the mediating variable 
of the number of hours studied (M) and test score (Y) is more problem-
atic because it does not consider potential outcomes. The regression coef-
fi cient, b̂, may not be an accurate estimator of the causal effect because this 
relation is correlational, not the result of random assignment. The estima-
tor ĉ′ is also not an accurate causal estimator of the direct effect because 
it refl ects the relation of X to Y at different levels of M, and M is not ran-
domly assigned. The missing information for the causal effects is whether 
the relation between the number of hours studied and test score would 
have been different for subjects in the treatment group if they had instead 
been assigned to the control group. That subjects in the treatment group 
are not directly comparable to subjects in the control group because they 
have not served in both groups is the counterfactual concept again. That 
is, what would be the participant’s score if he or she had studied m hours 
if assigned to the control group compared with the same participant’s 
score if he or she had studied m hours and was assigned to the treatment 
group? One other consideration in this causal approach is that the medi-
ating variable must be a variable that could potentially be manipulated 
because it serves as both an effect of treatment assignment and a cause in 
its effect on the dependent variable.
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13.8 Holland’s Causal Mediation Model
Holland’s causal model for the encouragement design uses a detailed 
notational system, consisting of two sets along with the three variables in 
the single mediator model. The two sets are U and K. The set U represents 
the units studied, which are participants in the study. Lower case u refers 
to an individual participant in the set of U participants. K represents the 
set of encouragement conditions. As in Holland (1988a) assume there are 
two conditions, either encouraged to study, t, or not, c, or K = {t,c}. The 
addition of the two sets U and K to the variables, X, M, and Y, clarifi es the 
causal effects in the encouragement design. X represents random assign-
ment to condition where X(u) = 1 if encouraged [the t group or X(u) = t] 
and X(u) = 0 if not encouraged [the c group or X(u) = c]. M codes number 
of hours of study, which depends on the participant, u, and the encour-
agement condition to which u is exposed, so that M is a function of the 
units u and experimental condition, x. That is, M = (u,x) has two possibili-
ties: M(u,t) amount u studies if encouraged to study and M(u,c) amount 
u studies if not encouraged to study. Y represents the test score, which 
depends on the participant, u, on whether u is encouraged to study or not 
(x), and on the amount of time u studies (m). Y is a function of u, x, and 
m, so Y(u,t,m) is the test score for u if u is encouraged to study and u stud-
ies for m hours and Y(u,c,m) is the test score for u if u is not encouraged 
to study and u studies for m hours. Note that these two effects represent 
the test score for subject u who studies m hours for both treatment and 
control groups. But each participant is either in the treatment or control 
groups, not in both groups, so the researcher cannot obtain both Y(u,c,m) 
and Y(u,t,m), just Y(u,c, M(c)) or Y(u,t, M(t)). Note that M(c) refers to the 
mediator value in the control group and M(t) refers to the mediator value 
in the treatment group. In summary, ideally we would have the scores for 
every participant, u, in each possible condition, but we only have the score 
for each participant in the condition in which they actually served. 

To summarize, the model for the encouragement design is a quintuple 
{U,K,X,M,Y} where X maps U to K, M is a function of (u,x), and Y is a 
function of (u,x,m). The values of M given u and x and Y given u, x and 
m are not directly observable for all combinations of u, x, and m and this 
makes causal inference diffi cult. According to the RCM, the notation M(u) 
and Y(u) for structural equation modeling is too simple because it does 
not reveal the causal structure of the problem where X and M are func-
tions of counterfactual cases [i.e., M(u) should be M(u,x) and Y(u) should 
be Y(u,x,m) to represent the causal structure in terms of individual partici-
pants, u]. The terms X(u), M(u,x), and Y(u,x,m) in the causal model corre-
sponding to the observed values of M and Y according to Holland (1988a, 
p. 462, with a notation of X for S and M for R) are as follows: M(u,X(u)) 
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is the observed M response and Y(u,X(u), M(u,X(u)) is the observed Y 
response. The dependence of M(u,x) and Y(u,x,m) on the unit, u, is how 
the RCM includes individual variation in response to causes. The value of 
a response (Y) depends both on causes that are measured, such as x and 
m, and other factors that affect the participant’s (u’s) responses.

13.9 Four Types of Unit-Level Causal Effects
There are four types of participant-level causal effects in Holland’s exten-
sion of the RCM for encouragement designs: three different effects of 
encouragement (t) and one effect of studying (M). Two of the encourage-
ment (t) effects are the causal effect of t on M and the causal effect of t on 
Y. The causal effect of t on M is the increment in the amount that unit u 
would study if encouraged to study over how much u would study if not 
encouraged. The causal effect of t on Y is the increment in the test score 
a participant (u) would receive if the participant (u) were encouraged to 
study over the test score the participant (u) would receive if the participant 
(u) were not encouraged to study. The causal effect of t on M corresponds 
to the a effect and the causal effect of t on Y corresponds to the c effect in 
the mediation model.

The third unit-level causal effect of encouragement is more complicated 
than the fi rst two and represents how the RCM clarifi es the mediation 
model. The third effect is the effect of t on Y for fi xed M, which is the pure 
effect of encouragement on test scores because it is the increment in u′ test 
score when u studies m hours and is encouraged to study, compared with 
u’s test score when u studies m hours but is not encouraged to study. Only 
one of these scores is observed and the other is the counterfactual case. 
The effect of t on Y for fi xed M demonstrates that the amount u studies is 
a self-selected treatment that can differ from the treatment that actually 
occurs. This effect corresponds to the c′ parameter, but it is more compli-
cated than the c′ parameter, because the causal relation of t on Y for fi xed 
M involves characteristics of the counterfactual for participants in each 
group. The effect of t on Y for fi xed M describes the effect on test scores for 
the same number of hours of studying for the same subject in the encour-
agement and control conditions. This description of the c′ effect makes it 
explicit that encouragement may have a different effect on test score even 
for the same subject and the same number of hours of studying, whereas 
the typical direct effect assumes a constant effect. It seems sensible to 
assume that this effect is zero in some situations, that is, that the encour-
agement design does not have an effect on test score if the numbers of 
hours studied are the same in the encouraged (t) and not encouraged (c) 
condition for the same subject. 
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The fourth unit-level causal effect corresponds to the effect of studying 
on test score and refl ects the idea that amount of study is a self-selected 
treatment that can differ from the amount the student did study. For 
this unit level causal effect, the encouragement condition is fi xed, x, and 
the causal effect of M on Y is the change in test score that results when 
the same individual u studies m versus m′ hours. This effect is related to 
the b parameter and refers to how the change in M relates to the change 
in Y. Because the researcher does not have the same subject randomly 
assigned to all levels of M, it is not possible to determine this value with 
observed data in the RCM. That is, the researcher does not have informa-
tion on the same participant’s test score for m versus m′ hours of study. 

The four unit-level causal effects are never directly observable because 
of the fundamental problem of causal inference, but they may be used to 
defi ne causal parameters that can be estimated or measured with data. 
Holland’s theoretical analysis clarifi es consideration of counterfactual sit-
uations, demonstrating how the self-selection of participants to level of the 
mediator makes interpretation of direct and mediated effects more com-
plicated. Averaging each of the four types of unit-level causal effects over 
U results in the important causal parameters called ACEs, as described 
earlier in the description of the RCM. The four ACEs are (a) effect of t on 
M, (b) effect of t on Y, (c) effect of t on Y for fi xed M, and (d) effect of M on 
Y for m versus m′ values. 

The ACEs must be distinguished from the FACEs, which are defi ned 
in terms of observable values of X, M, and Y. Because FACEs are based 
on observable data, the FACEs are associational parameters rather than 
causal parameters. They are primae facie ACEs rather than ACEs because 
they may or may not equal their corresponding ACEs, depending on 
whether certain assumptions are met.

13.10 Holland’s ALICE Model
As described earlier, the fi rst two ACEs correspond to parameters in a 
structural equation model, a and c (c, the total effect, is actually not in the 
structural model), respectively. The last two ACEs are not in mediation 
regression equations but correspond to the c′ and b parameters. Holland 
describes a model for the encouragement design with which it is possible to 
estimate all four average causal effects, but it requires several assumptions, 
including Additive, Linear, and Constant Effects (ALICE). In the ALICE 
model, the effect of t on m and y for a given unit are additive, and the 
effect of m on y is linear. For the ALICE model, p is the constant number of 
hours that encouragement increases each student’s amount of study, f + pBc 
is the constant linear improvement in test scores due to encouragement to 
study, f is the constant amount that encouragement increases the test scores 
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of a student who always studies m hours, Bc is the constant amount that 
studying 1 hour more increases a student’s test score. The causal effect of t 
on M is p. The causal effect of t on Y is f + pBc. The causal effect of encourage-
ment on test scores for a student who always studies m hours is f. The causal 
effect of M on Y for a person who studies m versus m′ hours is Bc(m – m′). 

The FACEs for the last two causal effects, f and Bc(m – m′), include an 
additional term that represents the average value of test scores for stu-
dents when they are not encouraged to study and they do not study for all 
students who would study an amount m when they are not encouraged to 
study. Holland proposes a linear model for this quantity equal to g + dm, 
where a “positive d means that the more a student would study when not 
encouraged, the higher he or she would score on the test without study-
ing and without encouragement. A negative d means that the more a stu-
dent would study when not encouraged, the lower he or she would score 
without studying and without encouragement.” (Holland, 1988a, p. 469). If 
“students who tend to study a lot tend to be those who do well even when 
they don’t study, then d is positive but if those who study a lot are those 
who need to study, then d is negative.” In other words the d parameter 
represents how a student’s predisposition to studying is related to his or 
her test performance. Given these results, the a path corresponds to p, the b 
path corresponds to b + d, and the c′ path corresponds to c′ − dp. Note that a 
positive d reduces c′ and a negative d increases c′. If d is equal to zero, where 
the tendency to study when not encouraged is unrelated to test score with-
out studying and without encouragement, then the coeffi cients a, b, and c′ 
refl ect causal effects given the assumptions of the ALICE model. 

An estimate the causal effect of encouraged activity is obtained by 
assuming that c′ is zero and using an instrumental variables approach. 
The total effect of X on Y is then equal to âb̂ and the b̂ coeffi cient is equal 
to ĉ/â. This approach does not assume that d is zero but it does require the 
exclusion restriction that c′ is equal to zero. 

In summary, the causal inference problem is in the interpretation of the 
mediation relation between M and Y because levels of M are not randomly 
assigned. A researcher does not know the relation of M to Y for treated 
subjects if they were not given the treatment. Similarly, the researcher does 
not know the M to Y relation for controls if given the treatment. Similarly, 
the causal effect of X to Y adjusted for M is not known for either group. 

Sobel (1998) extended the RCM in two ways. First, he outlined an instru-
mental variable procedure following Holland that does not make as strict 
a constant effects assumption (Sobel, in press). Second, he outlined the dif-
fi culties with causal inference for the case of multiple mediators. Causal 
interpretation with multiple mediators is more complex because of the 
unknown counterfactual relations of M to Y and X to Y adjusted for other 
mediators. Counterfactual relations for the multiple mediators as well as 
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Y must be considered. The assumption that the direct effect is zero in the 
multiple mediator model simplifi es the interpretation of this model some-
what, but having no counterfactual relations among the multiple media-
tors is problematic. Theory and sequential randomization designs may be 
useful here to uncover causal relations among mediators. Random assign-
ment of participants to receive different program components targeting 
different mediators in an instrumental variable approach may help clarify 
the mediating mechanisms operating in a multiple mediator study.

13.11 Principal Stratifi cation and 
Other Extensions of the RCM
Frangakis and Rubin (2002) and Rubin (2004) described a new approach to 
dealing with the ambiguity regarding the relation of M to Y in the media-
tion model. The approach applies the notion of counterfactual or potential 
outcomes to the relation between M and Y and specifi es stratifi cations 
of different types of units regarding how the relation between M and 
Y would change in response to the treatment X. These models specify 
different subsets of persons in terms of how they would respond under 
different conditions. Because the principal stratifi cations are in terms of 
potential outcomes, they are uncorrelated with treatment and can be used 
as a covariate in statistical analysis. The approach is based on an instru-
mental variables method in the RCM as in Angrist et al. (1996).

Rubin (2004) described an interesting example in which the effects 
of an anthrax vaccine were examined in macaques and humans. In the 
macaque sample, macaques were either vaccinated or not, a surrogate mea-
sure of immunogenicity (immunity to disease) was obtained, and then the 
macaques were exposed to anthrax virus and whether the macaque lived 
or died was recorded. The humans provided measures of vaccination or 
not and immunogenicity. The purpose of the study was to use the results 
from the macaques, which include measures of X, M, and Y, to infer the 
results of humans who have measures of only X and M. Rubin demon-
strated that unobserved strata of units that may have different relations 
of vaccination to immunogenicity to disease introduces problems in the 
interpretation of direct and indirect effects. Three strata were described 
in the study: (a) macaques who have low immunogenicity whether vac-
cinated or not, (b) macaques who, if exposed to the vaccine, would change 
from low to high immunogenicity, and (c) macaques who would have high 
immunogenicity whether vaccinated or not. Rubin demonstrated that dif-
ferent patterns of response of the three strata in this case lead to different 
conclusions about direct and indirect effects than the conclusions reached 
based on observed data. The results from an analysis of the observed data 
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would lead to different conclusions than the truth because information on 
potential outcomes based on types of individuals was not included in the 
analysis of observed data. 

Frangakis and Rubin (2002) described a principal stratifi cation example 
for patients with HIV infection and treatment to affect CD4 counts (CD4 
is a measure of immunity) using four strata: (a) CD4 is low and unaffected 
by treatment, (b) CD4 is high and unaffected by treatment, (c) CD4 under 
new treatment would be higher than that with no treatment, and (d) CD4 
under new treatment would be lower than with no treatment. Rubin (2004) 
and Frangakis and Rubin (2002) suggested that potential outcomes can be 
introduced into the analysis by imputation of potential outcomes, which 
can be used to generate principal strata. The imputation method produces 
the correct average estimate along with an estimate of the error of the 
estimate. Rubin described several additional assumptions and exclusion 
restrictions that will increase the accuracy of the imputation method. 
Principal stratifi cation is a most promising approach to causal relations in 
mediation models. Although it will be critical to assess the application of 
the model to real data, the key benefi t of these models is how it improves 
understanding of mediated effects. It will also be critical to evaluate these 
models as assumptions are violated.

Jo (2004) extended the RCM to the mediator case by focusing on the 
relation between the mediator and the outcome by conceptualizing the 
counterfactual as a latent, unobserved, variable. The strategy is to estimate 
potential values of mediator variables if control group participants were 
assigned to the treatment. The potential value of the mediator variable in 
the control group can be treated as a continuous latent variable. Treating 
the counterfactual case as a latent variable is consistent with descriptions 
of the counterfactual. Jo (2006) used a principal stratifi cation approach in 
the mediation analysis of a program hypothesized to increase mastery, 
which then improves mental health outcomes. Four principal strata were 
used including children who never improve, children who get worse, chil-
dren who improve, and children who always improve. In this model there 
was evidence that increases in mastery led to reduced depression.

13.12 Additional Causal Inference Approaches
This chapter has focused on the RCM approach to causal inference 
because of its clear application to mediation models and the limited space 
to develop other models. Other causal inference approaches also provide 
useful interpretations of mediation models. Pearl (2000) has developed an 
important approach to causal inference based on a method of identifying 
causal relations among variables on the basis of directional separation. 
The purpose of this approach is to determine which relations merit causal 
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interpretation based on evidence from data. Directional separation (d-sepa-
ration) refers to whether two variables are statistically independent after 
control for other variables. A variable is called a parent if it is a cause 
of another variable and if it is caused by another variable it is called a 
child. A cause of a parent is called a grandparent and so on. Ancestors are 
the causes of a variable and descendents are the variables that a variable 
causes. Two focal variables become independent if the research controls a 
common cause that would otherwise produce a relation between the two 
variables. Hayduk  et al. (2003) demonstrate that the d-separation method 
is closely related to the concept of partial correlation.

Another important approach described by Greenland and Robins (1986) 
has much in common with the RCM. The method also specifi es all the 
possible combinations of effects in a research study including the coun-
terfactual cases that are not observed, with attention devoted to the case 
of X, M, and Y all binary. These researchers have developed an approach 
to estimating parameters of these models that includes both observed and 
counterfactual observations using a method called G-estimation, which 
has been programmed in a SAS macro (Witteman et al., 1998; see also 
Fischer-Lapp & Goetghebeur, 1999). The approach clarifi es distinctions 
among different types of confounding and mediating variables.

13.13 Equivalent Models
Meehl and Waller (2002) outlined the major criticisms of recursive struc-
tural equation approaches, which include the mediation model as a special 
case. These criticisms refer to violations of the major assumptions of recur-
sive structural equation models (Freedman, 1987; James, Mulaik, & Brett, 
1982) which are (a) linear causal relations, (b) no reciprocal feedback, (c) no 
causal loops, (d) uncorrelated disturbances, (e) manifest variables being 
direct measures of causal factors rather than proxies, (f) model self-contain-
ment, that is, all relevant variables are included in the model, and (g) mani-
fest variables being perfectly reliable (Meehl & Waller, 2002). As described 
in chapter 3, it is often not possible to test the validity of these assumptions. 
Some authors suggested that because these assumptions are unreasonable 
and often untestable, these models should not be applied (Berk, 2003; Freed-
man, 1987) or should at least be accompanied by much more additional 
detective work related to the variables in the model. In general, the criti-
cisms demonstrate that estimates from structural equation models often do 
not represent causal relations, and it is incorrect to make causal interpreta-
tions from these models. This is the same distinction between descriptive 
and causal interpretations discussed in the RCM.

An example of such a criticism is that the mediation model methods 
based on the traditional regression and structural equation approach do 
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not refl ect a causal analysis of the relationships among variables. For 
example, if X (independent variable), M (mediator), and Y (dependent vari-
able) are measured simultaneously, there are other equivalent models (e.g., 
X is the mediator of the M to Y relationship or M and Y both cause X) that 
could explain the data equally well, and it is not possible to distinguish 
these alternatives without more information (Duncan, 1975; MacKinnon, 
Krull, & Lockwood, 2000; Spirtes, Glymour, & Scheines, 1993). The differ-
ent models may each adequately represent the data, but these equivalent 
models may suggest different conclusions than the fi nal model obtained in 
a research project (MacCallum, Wegener, Uchino, & Fabrigar, 1993; Stelzl, 
1986). Procedures for generating these equivalent models have been out-
lined (Lee & Hershberger, 1990). Similar criticisms of structural equation 
models have been made on the basis of mathematical and philosophical 
approaches to causality, and a computer program that will generate these 
equivalent models is available (Spirtes et al., 1993). Researchers typically 
address these equivalent models with randomization of units to levels of 
X, longitudinal data, and theory for the order of X, M, and Y. Neverthe-
less, consideration of equivalent models is critical in the evaluation of any 
mediation model. These equivalent models may actually provide insight 
into the true mediational process by forcing researchers to consider other, 
perhaps more accurate, representations of relations among variables. Sev-
eral computer programs now allow the investigation of equivalent models. 
The AMOS program will test models by randomly switching the position 
of variables in the model. The TETRAD program will generate equivalent 
models as part of a principled search strategy (Scheines, Spirtes, Glymour, 
& Meek, 1994). The authors state that “All of its search procedures are 
`pointwise consistent`—they are guaranteed to converge almost certainly 
to correct information about the true structure in the large sample limit, 
provided that structure and the sample data satisfy various commonly 
made (but not always true!) assumptions.” 

13.14 Summary
The purpose of this chapter was to outline the RCM approach to causal 
inference in mediation models. The model demonstrates the problems in 
the interpretation of the relation between M and Y in mediation mod-
els, at least in part because this relation is not randomized but is self-
selected in most applications. The main benefi t of all these detailed causal 
approaches is the careful consideration of the limitations and strengths 
of different types of evidence for causal inference. However, there are 
criticisms of these detailed causal modeling approaches, which are best 
summarized in the title of an article by Berk (1991), “Toward a Methodol-
ogy for Mere Mortals.” With such extensive criteria for establishing causal 
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relations, can any research study ever demonstrate a causal relation? 
The extra criteria may drastically reduce power to detect effects even in 
large samples. Another question is whether these criteria are necessary 
for obtaining useful research results that can be used to develop better 
research manipulations and to inform subsequent studies. At a minimum, 
the causal inference approaches force researchers to consider the assump-
tions under which mediation is investigated. For the most part, the sensi-
tivity of the estimates to violation of assumptions is not generally known, 
and at least one study of other instrumental variable approaches dem-
onstrated that they are not robust to violation of important assumptions 
(Stolzenberg & Relles, 1990). It would seem that analysis of sensitivity to 
violation of assumptions would differ greatly across research areas. More 
work is needed on approaches to assess robustness of results to confound-
ing variables. Rosenbaum (2002b) describes a method to assess what the 
impact would have to be to alter inference about a relation (see also Frank, 
2000 and Lin, Psaty, & Kronmal, 1998). At this point, these methods are 
complex and their application is challenging for most researchers. This 
chapter may help start more applications of these models. The next chap-
ter provides some additional methods to help address some of the limita-
tions described in this chapter. 

13.15 Exercises

13.1. The simulation program described in chapter 4 can be extended to 
study the d parameter described in section 13.10. Add an additional 
simulation parameter called d to refl ect the counterfactual relation 
between M and Y. In the section in which data are generated, include 
c′ − da instead of the c′ parameter and b + d instead of the b param-
eter. Conduct simulations with a positive value of delta of +2 and −2. 
How do the results change as a function of sample size? How do the 
results change as a function of the size of the b parameter?

13.2. For the single mediator model, summarize Holland’s use of the 
RCM.

13.3. Apply the steps in Table 13.1 to your own data. 
13.4. Discuss the reasonableness of the assumptions of the instrumental 

variable methods. Does it make sense to you that the predicted value 
of M by X is a valid way to assess the relation of M to Y? Why or why 
not?

13.5. List the equivalent models for the multiple mediator model described 
in chapter 5 and the path analysis model described in chapter 6. 

13.6. The Angrist, Imbens, and Rubin (1996) paper assumed there are four 
types of persons in a compliance study: (a) complier—always com-

ER64296_C013.indd   366ER64296_C013.indd   366 11/14/07   11:50:29 AM11/14/07   11:50:29 AM



Chapter Thirteen: Causal Inference for Mediation Models 367

plies with the treatment if in the program group, (b) never taker—
never takes the treatment in the program group, (c) defi er—would 
have received the treatment if had the control but would not have 
received the treatment if in the program group, and (d) always 
taker—always takes the treatment in the treatment group. It is often 
assumed that there are no defi ers when applying these models. Do 
you think that assumption is always justifi ed? What is one example 
for which that assumption is not justifi ed? 
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14

Additional Approaches 
to Identifying 
Mediating Variables

In the end, even the randomized experiment requires 
subjective decisions on the part of the researcher. 
This is why the independent replication of experi-
ments in different locations using slightly differ-
ent environmental or experimental conditions and 
therefore having different sets of ancillary assump-
tions is so important. As the causal hypothesis con-
tinues to be accepted in these new experiments, it 
becomes less and less reasonable to suppose incor-
rectly that auxiliary assumptions are conspiring to 
give the illusion of correct causal hypothesis.

—Bill Shipley, 2000, p. 53

14.1 Overview
The purpose of this chapter is to describe additional methods to investigate 
mediating variables. Five major overlapping approaches are described in 
this chapter: (a) mediation designs, (b) mediation meta-analysis, (c) modera-
tor and mediator models revisited, (d) qualitative methods, and (e) explor-
atory methods. A recurring theme of this book is that the identifi cation of 
mediational processes is best addressed by programs of research that incor-
porate information from many different types of studies. These additional 
methods add evidence for mediational processes and help rule out alterna-
tive explanations of an observed mediation effect.

14.2 Mediation Designs
One of the best ways to investigate mediational processes is to conduct 
a program of research that includes research designs that directly test a 
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mediation hypothesis (Shadish & Cook, 1999). The theme of the follow-
ing discussion is that every study provides information on mediational 
processes. The quality of information about mediating processes differs 
across studies on the basis of the design of the study and assumptions of 
the analysis. This chapter describes the same general approach to design 
outlined in Shadish, Cook, and Campbell (2002; see also Cronbach, 1982). 
In general, the approach considers threats to the conclusions of a media-
tion analysis of a research study. There are two general aspects to validity 
of the conclusions from a research study. Internal validity refers to the 
extent to which the conclusions from a study are correct given other alter-
native explanations. Example alternative explanations are that observed 
changes are due to maturation of participants or nonrandom selection 
of participants in research groups. External validity is the second major 
aspect of design that refers to the extent to which the results from one 
study may be generalized to another group of persons, in a different 
context, at a different time. Research results may not be externally valid 
because they are unique to an age group or special context and as a result 
may not be obtained in a subsequent study with a sample having different 
characteristics. 

In the following sections, less rigorous designs are described fi rst fol-
lowed by designs more likely to provide accurate information about medi-
ational processes. Research designs in which an independent variable 
represents exposure to one or more experimental manipulations are given 
priority in the description of designs. To conserve space the independent 
variable is represented by X, the mediator by M, and the dependent vari-
able by Y. The word intervention is used as a general term to describe any 
experimental manipulation or assignment to the conditions of a study. 

Analysis for Correlational Studies of the M to Y and X to M Relations. Cross-
sectional, correlational studies relating M to Y (and also X to M) can pro-
vide insight about whether M is related to Y (and whether X is related to 
M). In general, however, it is diffi cult to determine the direction of infl u-
ence from cross-sectional studies (i.e., whether the M predicts Y or vice 
versa), as described in chapter 8. In addition, covariation between M and Y 
(or between X and M) may be due to another variable that is not measured 
but predicts both variables. Therefore, correlational studies provide lim-
ited information on the relation of M to Y or X to M because of the number 
of alternative explanations of any observed relations among variables. 

Analysis of a Single Group Design. In this design all participants receive 
the same intervention, with assessment of M and Y before and after the 
intervention. The single group design allows for the assessment of change 
in M and Y. However, in the absence of a control or comparison group, it is 
diffi cult to establish whether any change in M or Y is due to the interven-
tion. Several variables within the person and outside of the person could 
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account for observed change across time (Cook & Campbell, 1979) and 
without a comparison group, these possibilities cannot be ruled out.

Measures of exposure to the intervention can be used to obtain some 
information on mediating variables (Weiss, 1997). One type of exposure 
study involves different exposure to the levels of X. In this situation, expo-
sure is analogous to the dose of X. For example, assume that the interven-
tion consists of a 10-session drug prevention program in which participants 
do not attend all sessions so that variation in session attendance may be 
considered a measure of the dose of the program. In this situation, X is a 
continuous measure of the amount of program exposure. An analysis of 
covariance adjusted for baseline values of M and Y or a difference score 
between baseline and follow-up analysis with program exposure as X may 
provide information on whether or not variation in exposure changed M 
which then changed drug use. Here, instead of an intervention effect for 
the c parameter in Equation 3.1 (and c′ in Equation 3.2), the parameter codes 
an implementation effect. Although this analysis may appear to eliminate 
some problems associated with the lack of a control group, the results are 
still very diffi cult to interpret clearly. A positive relation between atten-
dance (dose) and the dependent variable (and mediators) may be the result 
of other factors such as reporting bias. One common confounding infl u-
ence is that motivation may strongly infl uence self-selection into program 
attendance. Furthermore, when amount of exposure is used to predict both 
the change in the mediator and the change in the outcome, the direction 
of the relation between the mediator and outcome is diffi cult to determine. 
A method based on instrumental variables described in chapter 13 may 
be relevant, but assumptions of this method may be violated such as the 
exclusion restriction, leading to inaccurate estimates of mediated effects. 
Continuous dose variables may be obtained from sources other than from 
the participant. For example, teachers may provide intervention exposure 
information based on participant attendance records. The same limitations 
of self-reported dosage apply to teacher exposure measures because the 
reports may be positively or negatively biased. In both cases of exposure, 
it may be possible to set up propensity scores for dosage as described by 
Rosenbaum (2002a; 2002b). In these models, the predictors of the propen-
sity to receive a dosage are incorporated in the analysis. However, it may 
be diffi cult to accurately specify the propensity score model, and to date 
there have been few applications of the method for other than a binary X. 

Another alternative is to evaluate mediated effects in a single group 
design and test comparison or control M or Y variables. These variables 
are selected so that they would be affected by the same response biases 
as targeted M and Y variables but are not expected to be affected by X. If 
the mediated effect is stronger for the targeted mediation relation than for 
the comparison variables, there is additional evidence for the mediation 
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relation. For example, consider an intervention designed to reduce test 
anxiety. The targeted mediator is teaching students to learn to relax while 
taking the exam. The mediating measure of relaxation is a self-report of 
calmness during the exam. A comparison mediator could be self-report of 
happiness during the exam. A comparison Y variable could be a measure 
of social anxiety that is not expected to be affected by changes in relaxation 
during the exam. The evidence for mediation should be stronger for the 
relaxation mediator than for the happiness mediator if relaxation during 
the exam does lead to less test anxiety. If the only infl uence in the study is 
a response bias to respond favorably to all variables, then the evidence for 
mediation should be similar for both mediators and both dependent vari-
ables. The comparison variable approach suggests that researchers should 
routinely consider variables that address alternative explanations of any 
observed mediation effects.

Analysis of Multiple Interventions Without a Control Group. Another design 
without a control group is the situation in which more than one interven-
tion is evaluated in a single study. For example, assume that three differ-
ent interventions are delivered to three groups for which, ideally, each 
intervention targets one or more different mediators. Here, examination of 
the mediated effect across groups is of interest as a way to test the theory 
underlying each of the three programs. The signifi cant mediated effects 
are ideally those predicted by theory before the study began. In this case, 
X represents group membership so it is not continuous (although it may 
be continuous if group membership refl ects a quantitative variable). For 
a three-group study, one option is to specify two independent variables 
to code group membership, with contrast (or dummy) codes comparing 
pairs of groups. In the three-group case, there are separate X to M effects, 
a1 and a2, for each independent variable. For example, the code for a1 could 
be 1 for group 1, −1 for group 2, and 0 for group 3. The other contrast code 
for a1 could be 1 for group 1, 0 for group 2, and −1 for group 3. Ideally, these 
contrast codes would refl ect meaningful comparisons among the groups. 
However, this design would have the same diffi culties in interpretation 
that are common to all designs in which there is no control group to com-
pare with the experimental groups. If there are no signifi cant differences 
among the groups, it may be that none of the interventions worked or it 
could be that the interventions had equivalent effects. However, mediated 
effects can generally be compared across groups, and different hypoth-
esized mediated effects across groups may provide more compelling evi-
dence for specifi c mediational processes.

An example of multiple interventions without a controp group is Proj-
ect MATCH, which was a large scale evaluation in which three treatments 
were matched to alcohol-dependent persons based on client characteris-
tics. The three treatments were a 12-Step program, a motivational inter-
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viewing program, and a cognitive behavioral therapy program. At the 
end of the study the programs were not signifi cantly different on most 
measures, and there was no extensive evidence for a matching effect. 
The extent to which each program targeted specifi c mediators could be 
investigated (Longabaugh & Writz, 2001). Some of the mediators were 
working alliance between the client and therapist, amount of structure 
in treatment, amount of treatment offered, and treatment emphasis on 
psychology. The results of mediation analyses were equivocal, at least in 
part because modern approaches to assess mediation were not applied 
and the importance of investigating mediation was not widely known 
when the study was designed, so measures of many potential mediating 
variables were not included (Longabaugh & Writz, 2001, pp. 323–324). A 
further issue in this type of study is the number and conceptual overlap 
of the mediators. For example, all interventions may target one mediator 
but other interventions may target one or more different mediators, which 
may require more comprehensive models in an attempt to tease out the 
specifi c mediated effects for each intervention.

Analysis of a Single Intervention and a Control Group. The comparison of 
an intervention group and a control group is the most common type of 
research design. It is the design described in most of this book, and it has 
strengths and limitations as do all the other designs. Adding a control 
group with which to compare the intervention group improves the validity 
of the research conclusions from a study. The control group provides a mea-
sure of the effect if the intervention group was left untreated, as described 
in chapter 13. Ideally the program would be based on theory such that 
the program components target specifi c mediators so that each mediated 
effect can be tested. It is also ideal if measures of mediators are included 
that should not be affected by the intervention but should be affected by 
other explanations of mediation effects—the aforementioned comparison 
variables. For example, a measure of response bias may be useful to dem-
onstrate that it does not serve as a mediator of the effect of an intervention 
on a self-report outcome measure.

An example of the program versus control group mediation design 
is the Midwestern Prevention Project (MPP), based on social cognitive 
theory. The MPP (Pentz et al., 1989) targeted two potential mediators of 
drug use (a) perceptions of friends’ reactions to drug use and (b) beliefs 
about the positive consequences of drug use. The program consisted of 10 
sessions to correct normative expectations and change beliefs. Forty-two 
middle schools were assigned to either the control or treatment group. 
Mediation analysis allowed the investigators to evaluate whether both, 
one, any, all, or none of the mediator variables explained the program 
effect. For example, there was evidence that changes in perceptions of 
friends’ tolerance mediated the program effects on drug use. 
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Mediation analyses are important whether there was an intervention 
effect on the outcome or not. Using a drug prevention example, if the inter-
vention effect was explained by one or more of the mediators, there should 
be increases in mediators, indicating that the program did in fact change 
the mediator (action theory), which would affect the outcome for the exper-
imental group (conceptual theory). In this case, perceptions of friends’ tol-
erance of drug use decreased (action theory), indicating that the program 
was effective in changing the mediator and the decrease in friends’ toler-
ance decreased drug use (conceptual theory), supporting the social cogni-
tive theory of the program. Analogous results were obtained for positive 
consequences. An ideal subsequent study would attempt to manipulate 
perception of friends’ tolerance in isolation and observe resulting effects 
on drug use. 

When critical mediating processes are identifi ed, then the interven-
tion can be improved by focusing on the most effective components and 
removing ineffective or even counterproductive components. If none of 
the mediated effects were signifi cant, yet the program was effective in 
reducing drug use, this would inform the researcher that some other, 
unmeasured, mediational processes (e.g., attention that the experimental 
group received) may explain the effect. In any case, applying mediation 
analysis to the program can guide future research (MacKinnon, 1994). 

Analysis of Multiple Interventions and a Control Group. An ideal study has 
several interventions based on different theories regarding Y along with a 
control group. Using drug prevention as an example, one program might 
target social norms, another program might focus on teaching resistance 
skills, and a third program might attempt to increase knowledge of the 
health consequences of drug use. A fourth group, a control group, would 
be included to control for the general changes in the outcome and media-
tor variables over time. Again, X would be changed to refl ect contrasts 
among groups. One ideal strategy is to select dummy codes such that each 
intervention group is compared with the control group. In this case of 
four groups, three dummy codes would be used in the mediation model.

A multiple program design can be informative, but one potential prob-
lem is that program components are often related and work together to 
affect the outcome or have interactive effects on the outcome. For example, it 
is possible that none of the aforementioned interventions—the social norms 
program, the resistance skills program, or the knowledge of health con-
sequences program—is able to affect the outcome independently, but they 
are effective when combined in one program. Perhaps knowledge of health 
consequences helps the adolescent want to improve resistance skills and 
knowing the real social norms makes knowledge of health consequences 
easier to absorb. To better understand the processes by which programs 
have their effects, more complicated designs can be used. However, multiple 
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program designs can be informative especially if there are theoretical rea-
sons to believe that one program would be more effective or work in a dif-
ferent way than another program. Finally, this design can also be used to 
examine competing theories of the outcome. In fact, mediation analyses are 
most compelling when alternative theories predict different mediational 
pathways for program effects on drug use. For example, Hansen and Gra-
ham (1991) found evidence for the effi cacy of the norm-setting mediator 
but not the resistance skills mediator after experimental manipulation of 
both norms and skills in a drug prevention study. Similarly, social infl uence 
approaches have been more successful than affective based programs such 
as improving self-esteem (Flay, 1985). 

Although a control group improves the validity of the study, how 
units are assigned to groups is critical. For example, if adolescents self-
selected into the experimental group and the control group were taken 
from the remaining population, covariates such as socioeconomic sta-
tus (SES) and baseline drug use may explain any changes in drug use. 
These and other nonequivalencies between the control and experimental 
groups can potentially bias the measure of a program effect. Measur-
ing any potential covariates before program implementation can poten-
tially reduce some of the bias that can occur as a result of nonrandomized 
assignment to groups. It may be possible to use these covariates to obtain 
more accurate estimates of effects using propensity scoring methods 
(Rosenbaum, 2002b). Propensity scores for each person are obtained by 
using background and other variables to predict group membership. The 
effect of the experimental manipulation is examined at each level of the 
propensity score. Under certain assumptions, such as accurate propen-
sity scores, these methods yield accurate tests of conditions, but there are 
diffi culties with this approach (McCaffrey, Ridgeway, & Morral, 2004). 
Nevertheless, the ideal situation is to randomly assign a large number 
of units to the experimental and control groups to minimize nonequiva-
lence on any covariates.

Examination of Intervention Components. Once an intervention is found 
to be successful, it is reasonable to conduct further research to identify 
the most powerful components of the intervention. Two designs are dis-
cussed here: dismantling and constructive research strategies (West & 
Aiken, 1997; West, Aiken, & Todd, 1993). With the dismantling strategy, 
the full intervention is compared with a version of the intervention in 
which at least one component is removed. In this strategy, the presump-
tion is that the component that is removed may not contribute any positive 
change in the desired Y or may even produce change in the undesired 
direction. With the constructive research strategy, the full manipulation 
or a reduced version of the manipulation is compared with a version(s) of 
the program that has the additional component(s). In this case, the interest 
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is in examining the increase in the effects of the added components above 
and beyond the effects of the base program. It is important to consider 
that the original program may be so effective that additional program 
components are unlikely to improve effects if the new components affect 
the same mediating variables addressed in the original program. The 
same methods of analysis would hold for both strategies, with strategies 
being distinguishable only by which program is designated as the full 
program and the research question. Both strategies are used to answer 
questions about the incremental success of individual program compo-
nents (Kazdin, 1998). Such designs are useful in terms of cost-benefi t anal-
yses to make decisions about adding and deleting program components 
(West & Aiken, 1997). They also facilitate decisions about components to 
be included in an intervention instituted by an agency after the interven-
tion trial phase of the program (Sussman, 2001). 

Separate program components may each have an impact on only one 
mediating variable. In this case, program components are orthogonal. 
However, a single program component is likely to affect more than one 
mediator and a single mediator may be infl uenced by more than one 
program component. When a single program component is intended to 
infl uence a single mediator but has unintended infl uences on other medi-
ators, sequential random assignment to program components may clarify 
results. For example, in the fi rst week of a program, subjects are randomly 
assigned to receive the fi rst component or not. During the second week, 
subjects receiving the fi rst component are randomly assigned to receive 
the second component or not, and so on. The analysis of this design would 
be similar to the method described for the analysis of multiple program 
groups with a control group. In this case, contrasts between groups may 
be useful to clarify the importance of added components.

As it is possible for program components to overlap, program mediators 
may be nonorthogonal as well. There are examples of correlated media-
tors in most research areas. For example, a drug prevention intervention 
that only targets drug refusal self-effi cacy may also have an impact on 
norms regarding drugs. However, change in both of these mediators 
would be diffi cult to interpret in the single component framework. In this 
hypothetical example, the program may affect both mediators or change 
in social norms may lead to change in perceived parental approval. In this 
case, a constructive research strategy comparing a self-effi cacy only com-
ponent, a social norm plus a self-effi cacy component, and an equivalent 
no-treatment group might offer a solution for disentangling this problem 
of interpreting intervention effects with correlated mediators and corre-
lated components.

Mediation Links in Multiple Mediator Models. A multiple mediator analysis 
will typically lead to a smaller number of signifi cant mediators. As described 
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in chapter 13, because the relations among the mediators and the rela-
tions from the mediators to the outcome are correlational, there are many 
potential models for the true relations among the variables, including one 
in which the dependent variable affects the mediator. In this context, if a 
mediator that does not provide a signifi cant mediated effect, it suggests 
that this mediator may not be important. The lack of a signifi cant effect 
should be further examined for the source of the lack of signifi cance. If 
the link from X to M is nonsignifi cant, this suggests that the independent 
variable is not related to the mediator, but if the effects of X on Y were 
signifi cant, then there is evidence that this mediator was not a signifi cant 
mediator of the program. It is also possible that the mediator was not mea-
sured well enough for an effect to be statistically signifi cant. If there was 
another dependent variable with the same reliability for which the media-
tor was statistically signifi cant, then it is less likely that poor measurement 
would explain the lack of a mediated effect on the fi rst dependent vari-
able. This specifi city of the mediated effect for one dependent variable but 
not another increases the likelihood that a real mediator has been found. 
Similarly, if one potential mediating variable does not mediate a relation 
but another mediator does, this increases the likelihood that the mediator 
is a real one. In some situations it may be useful to include mediators that 
assess plausible alternative explanations (for examples for fear appeals, 
see Leventhal, 1971). These comparison mediators, or mediators that, if 
signifi cant, would represent alternative explanations of the results, may 
be especially useful to disentangle more complicated multiple mediator 
models. For example, in a program designed to change norms, a mediator 
refl ecting skills should not be statistically signifi cant. A measure of acqui-
escence bias (increased likelihood of agreeing with all statements) should 
not serve as a mediator unless participants do indeed tend to respond yes 
to all questions and that is the explanation of program effects.

If the relation of X to M is signifi cant but the M to Y relation is not, 
then the possible function of the mediator in a chain of mediation should 
be examined by considering and estimating additional models whereby 
the mediator is a link in such a chain. If the mediator is not signifi cantly 
related to other mediators, then it may not be part of a chain of mediators, 
however. An alternative explanation is that the mediator is not related to 
the dependent variable. The single mediator model described earlier is 
easily expanded to include a chain of mediating variables. In fact, most 
mediating variables are actually part of a longer theoretical mediational 
chain (Cook & Campbell, 1979). For example, a research study may mea-
sure each of the four constructs in a theoretical chain from exposure to 
a prevention program, to comprehension of the program, to short-term 
attitude change, to change in social norms, and, fi nally, to change in the 
dependent variable. Typically, researchers measure an overall social norms 
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mediator rather than all mediators in the chain, even though a more detailed 
chain is theorized.

The single mediator methods can also be extended to multiple media-
tors and multiple outcomes with correspondingly more mediated effects 
as described in chapter 6. Multiple mediator models are often justifi ed 
because most independent variables have effects through multiple medi-
ating processes. The true causal relations are diffi cult to disentangle in 
this model because of the number of potential alternative relations among 
variables. One solution to the problems inherent in the causal interpreta-
tion of multiple as well as single mediator models is to view the identi-
fi cation of mediating variables as a sustained research effort requiring 
a variety of experimental and nonexperimental approaches to identify-
ing mediating variables. The analysis of multiple mediators in one study 
informs the design of randomized experiments to contrast alternative 
mediating variables, leading to refi ned understanding of mediating pro-
cesses (West & Aiken, 1997). Meta-analytical studies provide information 
about the consistency of mediating variable effects across many situations 
(Cook et al., 1992). 

Double Randomization. In this design, participants are randomly assigned 
to an intervention targeting a certain mediator and after assignment to 
intervention conditions and after the intervention has affected the medi-
ator, there is random assignment within groups to an intervention that 
will change the same mediator. Triple and quadruple randomization may 
be applied in the same manner. Given certain assumptions described in 
chapter 13, valid estimates of program effects on the mediator and the 
dependent variable can be obtained and valid estimates of the mediator 
effects on the outcome can be obtained because participants were ran-
domly assigned to levels of the mediator within each group. This type 
of design may not be realistic in many studies, for which the goal of the 
research is to deliver a single powerful program. However, the delivery of 
most interventions has an inherent ordering because not all interventions 
can be delivered at once. The timing of the delivery of these components 
could be incorporated in these models in a way to provide more accurate 
information about program mediators and components. 

In some designs it may be possible to investigate a mediational process 
by a randomized experiment to investigate the X to M relation and a second 
randomized experiment to investigate the M to Y relation (MacKinnon, Lock-
wood, Hoffman, West & Sheets, 2002; Spencer, Zanna, & Fong, 2005; West & 
Aiken, 1997). Spencer et al. (2005) recently summarized two experiments 
reported by Word, Zanna, and Cooper (1974) that executed this design in 
a study of self-fulfi lling prophecy for racial stereotypes. In study 1, White 
participants were randomly assigned to interview a Black or White con-
federate. Using measures from the participants, Black applicants received 
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less immediacy, higher rates of speech errors, and shorter interviews than 
White applicants. This part of the study demonstrated that race of appli-
cant (X) signifi cantly affected interview quality (M). In Study 2, confed-
erate White interviewers interviewed the participants. The confederate 
interviewers either gave interviews like White applicants were given in 
Study 1, or they interviewed applicants with less immediacy, higher rates 
of speech errors, and shorter amounts of interviewer time, like Black appli-
cants received. Here the M variable, type of interview, was randomized 
and the behavior of the applicants, the Y variable, was measured. The 
results of Study 2 indicated that participants treated like Blacks in Study 1 
performed less adequately and were more nervous in the interview than 
participants treated like Whites in Study 1. So randomized experimental 
evidence was obtained for the relation of race (X) on interview quality (M) 
and the relation of interview quality (M) on applicant performance (Y). 

A hypothetical example in prevention research would be an intervention 
to increase exercise to reduce obesity among adolescents. An experimen-
tal investigation would study the X to M relation by randomly assigning 
persons to a norm change manipulation to increase exercise, measured 
by the number of steps taken each day. The M to Y relation would be ran-
domized by randomly assigning persons to increase the number of steps 
exactly equal to the effect of the intervention in the X to M study. Such a 
study may be unrealistic because of the diffi culty of directly assigning 
persons to increase the number of steps. 

Although double randomization experiments do much to reduce alter-
native explanations of the mediation hypothesis, it may be diffi cult to 
implement the design in practice. Generally the most diffi cult aspect of 
the design is randomly assigning participants to the levels of the media-
tor so that the M  to Y part of the relation can be studied experimentally. 
It is also interesting to note that a statistical mediation analysis may be 
relevant in the M to Y study because the manipulation to directly change 
M may not be perfectly successful.

Designs to Replicate and Extend a Mediational Hypothesis. This section 
describes fi ve different types of experimental designs to investigate medi-
ational hypothesis outlined by Mark (1986). In general these designs are 
used to seek further evidence for a mediational hypothesis using a ran-
domized design. The fi rst type of design is a direct observation method 
to directly observe the mediational process by measuring the mediator 
and conducting mediation analysis. This approach has been the primary 
approach of this book. Both the statistical methods described in this book 
and qualitative methods may be used to directly investigate the process. 
One assumption of this approach discussed in chapter 13 is that the rela-
tion of M to Y represents a real causal relation so that other studies that 
directly change M will lead to a change in Y.
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The second experimental design is called a blockage design. In this 
design, a manipulation is used to block the mediational process. If the inter-
vention to block the mediation process removes the mediation relation, 
then there is evidence for the mediational process. For example, consider 
a mediation hypothesis that exercise increases endorphins, which then 
decreases depression. A blockage study would have persons randomly 
assigned to either an experimental group that receives a drug that blocks 
the production of endorphins or to a control group that does not receive 
the drug to block endorphins. Reduced depression should be observed 
in the control group but not in the group that received the drug if exer-
cise reduces depression by increasing endorphins. Another hypothetical 
example of the blockage design is from a study to investigate the extent 
to which an intervention to reduce drug use works by changing social 
norms through contact among friends. Persons receiving the intervention 
may be randomly assigned to a condition in which contact among friends 
was eliminated or to a control condition that allowed regular contact 
among friends. If social norms among friends is the mediator of the drug 
prevention program, then reduced drug use should be observed in the 
control group but not in the group in which norm change was not possible 
because of lack of contact among friends. 

A third type of mediation replication study is called an enhancement 
study. This design is similar to the blockage study except that mediation 
effects are expected to be enhanced in certain groups. For example, con-
sider that a research study of medical care evaluations found more ben-
efi cial effects for patients in locations where there was more discussion of 
patients and problems (Maxwell, Bashook, & Sandlow, 1986). However, the 
level of discussion was not randomly assigned in the original investigation 
so the relation between discussion and the outcome is correlational. Imag-
ine a follow-up study in which the amount of discussion was randomly 
assigned to each location, perhaps by paying medical personal to spend 
more time discussing patients. If the discussion is an important media-
tional process, then the largest benefi cial effects should be obtained in the 
group randomly assigned to receive the most discussion. A similar study 
was conducted by Klesges, Vasey, and Glasgow (1986) in which participa-
tion was considered an important mediator of antismoking campaigns. 
Klesges et al. designed strategies to increase participation in some loca-
tions. A hypothetical enhancement design to investigate whether social 
support is an important mediator of addiction treatment may randomly 
assign participants to a condition for which social support is enhanced 
by increasing contact with persons or to another group that would have 
standard contact among persons. 

A fourth type of model is the purifi cation approach whereby repeated 
mediation studies are used to develop the best possible intervention. In 
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purifi cation studies important mediators are typically selected and rep-
lication studies with these mediators are conducted to increase power-
ful components and remove ineffective components. The analog in the 
biological research is studies to identify the active ingredient in a medi-
cine. The purifi cation approach requires a program of research that may 
be unrealistic in research contexts in which individual studies are exces-
sively cumbersome or expensive to conduct. For example, in drug preven-
tion studies, among the roughly 10 types of mediators targeted, there is 
evidence that changes in perceived positive consequences of drug use, 
social norms, and intentions to avoid drugs are important mediators. A 
purifi cation approach would include programs of studies to help identify 
the critical ingredients of successful drug prevention. 

A fi fth approach, called pattern matching (Trochim, 1985), is the gen-
eral approach of this book. The idea is to conduct research in many dif-
ferent contexts, in different types of interventions, at different times, and 
with different samples of participants to validate a mediational hypoth-
esis. Pattern matching may be observed for multiple variables whereby a 
mediation relation is observed for one dependent variable but not another; 
for example, changes in beliefs about positive consequences of alcohol 
use is a mediator for program effects on alcohol but not for tobacco use. 
Similarly, a variable may function as a mediator and another variable that 
shares similar measurement biases may not; for example, beliefs about 
positive consequences of alcohol use is a mediator, but beliefs about nega-
tive consequences is not. Pattern matching for different settings also 
provides further evidence for a mediation theory, for example, an inter-
vention designed to change norms should be more effective in settings in 
which norm change is more likely to occur. Another example of setting is 
demonstration of a mediation relation in animal research that is also pres-
ent among humans. Different types of manipulations that target the same 
mediator should also lead to the same change on an outcome variable if 
the mediation theory is correct. Mediation relations may be expected to 
occur in some samples and not others, which may provide further evi-
dence for a mediation relation. Overall, the goal of the pattern matching 
is to design studies whereby the process has different patterns of predic-
tion. Pattern matching may be most appropriate in situations for which it 
is easier to conduct a variety of studies. For example, research in college 
settings may be well suited to study variations in intervention design and 
specifi ed mediation relations but may not be ideal for assessing mediated 
relations in older persons or other groups of persons who may be ideal to 
test the external validity of mediation relations. 

Summary of Mediation Designs. The design of a mediation study leads to 
different information about mediation relations. It is the quality of infor-
mation that varies across research studies. The ideal design would include 
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random assignment to conditions, theoretically specifi ed mediating mecha-
nisms targeted that differ across interventions, longitudinal measurement, 
and good measures of mediating and outcome variables. The use of com-
parison mediators, mediators that should not change but address alternative 
mediational hypotheses, and randomization of the levels of the mediator 
may also improve the conclusions from a research study. Replication stud-
ies also provide additional evidence that an observed relation is not due 
to chance, especially when the mediated effect is replicated by different 
researchers, in different contexts, and for different measures (Rosenbaum, 
2001). It is important to note also that many of the designs to investigate 
mediation will yield data useful for a statistical mediation analysis. 

14.3 Combining Moderators and Mediators
As described in chapter 10, moderator variables alter the strength of the 
relation between two other variables and can also alter the strength of 
the relations in a mediation model. In the context of program evaluation, 
it is possible that the program did not have a consistent mediation effect 
across particular subgroups (e.g., age, gender, ethnicity, SES, or program 
implementation) or across preintervention variables that affect mediators 
as well as outcome variables (Morgan-Lopez, Castro, Chassin, & MacKin-
non, 2003; Tein, Sandler, MacKinnon, & Wolchik, 2004). Moderator effects 
may provide further evidence for mediational processes if mediated 
effects differ across subgroups that differ on the baseline measure of the 
mediating variable. For example, more evidence of the effects of social 
norms as a mediator may be obtained if the size of the mediated effect 
depends on the baseline level of social norms. In particular, if the medi-
ated effect is largest for those persons low on the mediator at baseline, 
this provides some additional evidence for the importance of that media-
tor. These mediated baseline by treatment interactions were described in 
chapter 10. However, these methods are problematic because the possible 
self-selection of treatment such that a moderator effect may represent dif-
ferent motivations among participants in a research study. 

Combining variable-oriented with person-oriented methods is an exam-
ple of the investigation of moderators and mediators. Recent developments 
in structural equation modeling with multiple time points allow for identi-
fi cation of classes of persons based on the change in the dependent variable 
over time (Nagin, 1999, 2005; Muthén & Muthén, 2004). These models mix 
person-oriented relations to form classes with variable-oriented relations 
among variables (i.e., mixture models). One way that these mixture models 
could be especially useful is in identifying persons based on trajectories, 
identifying mediation models within these groups, and then testing equal-
ity of mediation across groups. These types of models require care because 
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the mediation effect is conditional on the classes obtained. The methods 
may also be especially susceptible to violations of assumptions such as 
non-normal data (Bauer & Curran, 2003).

An alternative mixture model approach would be to attempt to explain 
the classes of trajectories obtained with a mediating variable. The tra-
jectories refl ect classes of persons with similar trajectories of the vari-
able across time. For example, consider an intervention that changes the 
trajectory class of heavy users of some drug. A mediation analysis may 
address which mediating variables changed by the intervention led to the 
change in the trajectory class of heavy users. This is similar to identi-
fying classes based on predictor variables but here the focus would be 
to determine classes based on mediational processes. It is likely that the 
mediating variables themselves would also have to be changing over time 
to explain trajectories over time. These types of models are important for 
future development including investigation of whether these models may 
be particularly susceptible to the violation of assumptions.

14.4 Meta Analysis
One way to investigate mediational process is to conduct a systematic review 
of studies relevant to action and conceptual theory in a research area. In 
some situations, it is possible to quantify effect sizes for relations among 
variables such that a qualitative review can be combined with quantitative 
information about the consistency and size of effects across many studies. 
Meta-analysis (Hedges & Olkin, 1985), the methodology for combining of 
quantitative information across many studies, is an active area of methods 
development and substantive application for several reasons. Meta-analy-
sis provides an objective way to combine information across many studies 
that has the promise of making research reviews into scientifi c studies in 
their own right. Meta-analyses can also show gaps in the research litera-
ture on certain topics. Although the characteristics of each study may dif-
fer, the combination of results from many studies may reveal consistent 
effects diffi cult to identify in a typical research review. In this way, the con-
sistency of effects across many studies is explicitly investigated as urged 
by Shipley in the quote at the beginning of this chapter. Consistent results 
across many studies may also make it easier for effective interventions to 
be more widely disseminated because they help convince nonscientists to 
provide resources for treatments. For example, Shadish and Baldwin (2003) 
suggested that effective marriage and family counseling programs be clas-
sifi ed as meta-analytically supported treatments (MASTs).

Generally, meta-analysis consists of fi ve stages as summarized in Cook 
et al. (1992): (a) specifi cation of the research problem, (b) identifi cation of rel-
evant research studies, (c) retrieval of data such as effect sizes from research 
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studies, (d) analysis of data from studies and interpretation of results, and 
(e) public presentation in a research document. The common purpose of most 
meta-analyses is to synthesize effect sizes relating an independent variable 
to a dependent variable across many studies. The independent variable may 
be a type of intervention such as psychotherapy (Shadish, Matt, Navarro, 
& Phillips, 2000) or drug prevention (Tobler, 1986). The independent vari-
able may also be exposure to advertisement (Brown & Stayman, 1992) or 
age (Verhaeghen & Salthouse, 1997). Examples of dependent variables are 
science achievement (Becker, 1992) and effect size for marriage and family 
therapy (Shadish & Baldwin, 2003). Meta-analysis is also used to fi nd sur-
rogate endpoints (Buyse, Molenberghs, Burzykowski, Renard, & Geys, 2000). 
Meta-analysis studies may also consider potential moderator variables such 
as research design, sample composition, and demographic variables. 

Cook et al. (1992) argued that meta-analysis is useful for explanations of 
how or why variables are related in addition to whether results suggest con-
sistent effects for a relation between an independent and dependent vari-
able. In particular, several researchers have suggested that meta-analysis of 
mediating variables may be useful for identifying mediating processes by 
which an independent variable affects a dependent variable(Becker & Sch-
ram, 1994; Cook et al., 1992; Harris & Rosenthal, 1985; Shadish, 1996). The 
rationale here is that it may be reasonable to combine information across 
different studies to conduct a meta-analysis of relations among more than 
just an independent and a dependent variable. In the context of an interven-
tion or treatment, the purpose of mediational meta-analysis is to determine 
the extent to which studies support conceptual and action theory for the 
intervention or treatment. That is, to identify successful mediating mecha-
nisms by focusing both on how successful the programs are at changing 
mediators as well as the relation from the mediators to the outcome. 

Because mediation involves at least two paths represented by the rela-
tions between X and M and M and Y, there are several challenges intro-
duced in meta-analysis for mediational processes. Unlike meta-analysis 
of relations between an independent variable and a dependent variable, 
in which each individual study may provide one or more effect sizes, 
the studies of the relation between X and M may differ from the stud-
ies that examined the relation of M to Y. As a result, information for a 
mediational meta-analysis may consist of (a) within-study relations for 
the independent variable, mediator, and dependent variable. which are 
all collected in the same study and (b) across-study information, which 
is combined information on different parts of mediational relations from 
different studies. The potential limitations of across-study relations in 
meta-analysis refl ect problems in comparing coeffi cients for X to M and 
M to Y obtained in different studies with different samples and other 
characteristics. There is also information on mediation relations within 
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each study and also relations between studies where the studies are the 
unit of analysis. For example, whether an article is published or not is an 
example of a between-study variable. The sample size for between-study 
analysis of the published or not variable is the number of studies in the 
meta-analysis. An example of a within-study relation is the correlation 
between teacher expectancy and feedback in each study. The sample size 
for these relations is more complicated because the correlation obtained 
from each study is based on the sample size in that study. Both within 
and between relations could be examined in the same meta-analysis.

One example of the across-study approach was Harris and Rosenthal’s 
(1985) examination of mediators of how expectations of high performance 
enhance performance in others, as discussed in chapter 4. Harris and Rosen-
thal conducted a meta-analysis of 135 studies of the expectancy phenome-
non and documented at least 1 of 31 different behavioral variables related 
to the following four hypothesized explanations for the effect: (a) change 
in the social climate, (b) increased feedback from teachers, (c) more mate-
rial taught, and (d) the tendency to give students more opportunities to 
respond. Some of the studies in the meta-analysis reported the results of 
a manipulation, and other studies reported correlations. The correlations 
were averaged across the studies. For climate, feedback, material taught, 
and response opportunities, the correlations for the â paths from teacher 
expectancy were 0.20, 0.13, 0.26, and 0.19 and for the b̂ paths related to stu-
dent performance were 0.36, 0.07, 0.33, and 0.20, respectively. A massive 
amount of research results were combined in this study.

Verhaeghen and Salthouse (1997) investigated a model for relations 
among age and fi ve cognitive variables—speed of processing, primary 
working memory, episodic memory, reasoning, and spatial ability—from 
which the 15 correlations (Verhaeghen & Salthouse, 1997, Table 5) among 
these variables were obtained from 91 studies. Some studies produced 
more than one correlation for a relation, and the number of correlations 
for each of the 15 relations differed; for example, there were correlations 
from 22 studies for speed-working memory and 50 studies provided 
information for the age-speed relation. The correlations across studies 
were combined using a method described by Hedges and Olkin (1985). 
The method converts correlations to Fisher’s z, the average Fisher’s z is 
computed, and the z is then converted back to a correlation. The study 
combined an enormous amount of information from many different stud-
ies and generally showed that speed of processing and primary working 
memory were substantial mediators of the relation between age-related 
differences and other measures. 

Shadish and colleagues (Shadish, 1996; Shadish & Sweeney, 1991; Shad-
ish, Matt, Navarro, & Phillips, 2000) have provided leadership in the devel-
opment and application of mediational meta-analysis. One primary 
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focus of Shadish et al.’s work on mediational meta-analysis has been 
the meta-analysis of mediating mechanisms of psychotherapy. Shadish 
and Sweeney (1991) conducted a between-study analysis of data from 71 
randomized studies comparing a treated group with a control group at 
posttest. The following data were collected from each of the 71 studies: 
behavioral orientation, treatment standardization, treatment implementation, 
behavior-dependent variable, dissertation status, and effect size. These 
data provided the information for a path analysis model. Of importance, 
the relation of behavioral orientation of therapy had a nonsignifi cant over-
all effect but had an indirect effect through its effects on mediators. Later 
Shadish (1996) provided an example of an opposing mediational process 
such that behavioral orientation of therapy increases the likelihood of 
using behavior-dependent variables, which led to increased effect sizes. 
Studies of behavioral therapy are more likely to match participants to 
treatment before randomization, which led to reduced effects. There was 
evidence that both of these mediation effects were statistically signifi cant 
but opposite in direction, leading to an overall nonsignifi cant effect. Cook 
et al. (1992) stated “it remains to be seen whether this (between-studies) 
strategy will prove to be useful in meta-analysis.”

In summary, there are two types of data for mediational meta-analysis. 
One type of meta-analysis includes values of the â coeffi cient from stud-
ies that may or may not also provide a b̂ coeffi cient, or between-study 
comparisons. An alternative is to combine estimates of both â and b̂ and 
consequently the mediated effect within studies. There are two types of 
relations investigated in mediation analysis, the within-study relations 
among variables exemplifi ed by Harris and Rosenthal (1985) and Premack 
and Hunter (1988) and the between-study relations exemplifi ed by Shad-
ish (1996; Shadish & Sweeney, 1991). 

There are several limitations to mediational meta-analysis. Probably 
the most important diffi culty of meta-analytic studies of mediational 
processes is that relatively few studies include any mediation analysis, 
and thus few studies report information on relations for mediating vari-
ables. Second, different studies often measure different mediators, and 
even when the same mediator is the focus of measurement, the actual 
measures are rarely the same. In some respects, the different measures of 
the same construct improve the generalizability of the results. There are 
also meta-analytic methods to assess whether it is reasonable to combine 
effect size measures from different studies as well as methods to allow 
for treating effects as random effects, which further increases the likeli-
hood that results will generalize to other studies. Similarly, the number 
of relations obtained from each study may differ, creating a missing data 
problem for those studies that do not include measures of all variables 
of interest. Third, the values for paths from different studies may differ 
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in many ways, other than simply sampling variability, making the inter-
pretation of mediation effects somewhat suspect. It is also possible that 
for some studies unadjusted relations among variables are shown rather 
than results adjusted for other variables in the model, for example, the 
relation between M and Y adjusted for X. Fourth, the specifi ed model may 
not be accurate, which is the same problem as with path analysis models 
described earlier in chapter 1. For any model, there may be many alterna-
tive models that may fi t the data as well as or better than the specifi ed 
model. Nevertheless, mediational meta-analysis provides a useful way to 
combine information across many studies. The inclusion of quantitative 
information with a qualitative review is likely to reveal more interesting 
results. As for any mediational analyses, it is important that individual 
studies report relations among variables that could be used for subsequent 
mediational analysis. At a minimum, values of â, b̂, ĉ, and ĉ′ along with 
their standard errors should be reported. Ideally the covariance matrix 
among variables is made available either in the article itself or by contact-
ing authors of the article. Although there are problems with mediational 
meta-analysis, the promise of the method is substantial because it com-
bines and organizes information from a variety of studies. 

One of the ways in which methods in this book may improve mediation 
meta analysis is based on formulas for the standard error of the mediated 
effect. If the t values for paths in the model are available, it is possible to test 
the signifi cance and create confi dence limits for the mediated effect using 
any of the standard errors described in chapter 4 including the asymmet-
ric confi dence limits based on the distribution of the product. To illustrate 
this procedure using the Brown and Stayman (1992) article, the coeffi cient 
for the relation between advertisement cognitions and advertisement 
attitude was 0.52 (t = 21.53). The relation between advertisement attitude 
and brand attitude was 0.57 (t = 25.58). By using the multivariate delta 
standard error in Equation 3.7 rather than the distribution of the product 
because the t values are large, the lower confi dence limit was 0.2611 and 
the upper confi dence limit was 0.3316 for a mediated effect equal to 0.2964. 
The multilevel mediation models described in chapter 9 may be useful in 
that models for the between-study relations can be combined with mod-
els for the within-study relations as done by the Becker and colleagues in 
their meta-analysis (Becker, 1992; Becker & Schram, 1994).

Another important part of meta-analysis studies is the investigation of 
moderator variables, where the size of an effect depends on the level of a 
third variable. Meta-analytic studies that investigate moderators of effect 
sizes are more common than those for mediators of effects, at least in part 
because some moderators, such as sex and age, are more often measured. 
Once important moderator variables are identifi ed in a meta-analysis, it 
is reasonable to then examine mediators that explain why the moderator 
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effect is present. Application of models that included moderators and medi-
ators can be applied to these studies. 

14.5 Qualitative Approaches
Scientifi c innovations and explanations often arise from qualitative meth-
ods such as intuition, clinical skill, ethnography, and historical observa-
tion. Mediational theories start out as a qualitative idea that is translated 
into testing hypotheses using the methods described in this book. As the 
investigation of mediational processes becomes more precise from initial 
relations to complicated causal inference models, the actual results of a 
study may become less relevant to the real world, even though the veracity 
of the mediating mechanisms may be more clearly demonstrated. Quali-
tative methods are a useful addition to a quantitative mediation study to 
study processes in detail and provide a method to learn about unexpected 
effects (Maxwell, 2004). For example, providing an open-ended question 
about how an experimental intervention affects individuals may provide 
valuable information about the meaning and interpretation of the inter-
vention by participants in the study. In particular, qualitative methods 
may provide valuable information if the process of an intervention differs 
from the researcher’s expectation.

A recent paper on the evaluation of a HIV/AIDS prevention interven-
tion illustrates the usefulness of open-ended questions (Dworkin, Exner, 
Melendez, Hoffman, & Ehrhardt, 2006). Interviews of study participants 
were conducted at the 1-year follow-up assessment. Open-ended questions 
were asked about how the study affected the participants’ lives. Qualita-
tive evidence for mediation was observed for several mediators, includ-
ing increased susceptibility to HIV/sexually transmitted diseases, greater 
social support, openness to discuss sexual matters, and empowerment. 

Cronbach (1982) most clearly stated this view of research when he argued 
that rigid experimental designs including those discussed throughout this 
book are rarely how actual evaluations of social and educational programs 
are conducted. The evaluation of these programs requires an ongoing 
interpretation and reinterpretation of the many effects of the interven-
tion, effects that may have unexpected and unintended infl uences. A rigid 
design may be very ineffective in this context; these evaluations require 
vigilance by researchers to extract the most information from a research 
study. For example, Cronbach described how the evaluation of clinical 
observation of effective therapies also provides more information about 
mediational processes. 

There are several useful approaches that incorporate qualitative informa-
tion in a mediation analysis. As described by Crabtree and Miller (1999), quali-
tative data come from many disciplines and research traditions. Qualitative 

ER64296_C014.indd   388ER64296_C014.indd   388 11/14/07   11:51:11 AM11/14/07   11:51:11 AM



Chapter Fourteen: Additional Approaches to Identifying Mediating Variables 389

studies are generally of three types: (a) observational, (b) interview, and 
(c) material culture—based on materials such as news papers and other 
documents. Observations include fi eld studies in which the observer is 
also a participant in the study. As a participant, the researcher is in an 
ideal position to experience the intervention. A fi eld observer attempts 
to identify the meaning of the processes in a research study with data 
obtained from diaries, recordings, and structured information such as 
checklists or unstructured information such as general impressions of 
persons in a research study. Interviews may be structured or unstruc-
tured and may consist of life histories, free associations, and open-ended 
surveys. In key informant interviews a small number of persons identi-
fi ed as critical to the research are interviewed in detail. Key informants 
may be considered experts in the description of the process of a research 
study. Material culture studies use archival information and documenta-
tion to identify themes and meanings. For example, the content of news-
paper articles may be examined for attention to particular topics such as 
violence or drug overdose.

Thought listing, where participants write down their thoughts dur-
ing the study, is a popular qualitative method for assessing mediation in 
marketing, social, and cognitive psychology. The contents of the listed 
thoughts are then organized and scored, and these scores are evaluated 
as mediators of effects. For example, in a study of the effects of warn-
ings on alcohol advertisements, participants wrote down their thoughts 
as they waited to respond to a subsequent survey. These listed thoughts 
were then categorized by independent raters. 

Focus groups are another source of important qualitative information 
on mediators. Participants in focus groups are generally selected on the 
basis of their interest in the topic of the focus group and representiveness 
of views on the topic. The moderator of the focus group is critical; acting 
as a moderator often requires skill both in the content of the focus group 
and understanding the appropriate methodology for successful focus 
groups such as ensuring that all members of the focus group are allowed 
to contribute. Focus groups are also used in the identifi cation of potential 
mediators, as described in chapter 2. 

The overall purpose of qualitative methods is to identify the meanings 
and ideas among participants in a research study, including the research 
participants and researchers themselves. In the case of mediation stud-
ies, responses to open-ended questions may provide unique insight into 
how and why (or why not) persons were affected by an intervention. 
Qualitative methods may uncover additional important information that 
complements quantitative information. In this regard, the addition of a 
qualitative component is especially useful for mediation studies because a 
purpose of qualitative methods is to identify what happens in the process 
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by which an independent variable affects a dependent variable (Swanson 
& Chapman, 1994). However, there are limitations to qualitative methods. 
Weaknesses of qualitative methods are sampling that is not representa-
tive, imprecise measurement of constructs, and bias, which can lead to 
erroneous conclusions (Diaconis, 1985). 

14.6 Exploratory Methods
The statistical methods used in this book can also be used to explore a 
data set for potential mediating variables. These analyses may include 
plots of mediation relations, estimation of potential mediation relations, 
and the qualitative methods described earlier. If possible, the variables 
in this study should be grouped into three types: independent variables, 
mediators, and dependent variables. If the independent variable is ran-
domly assigned, then the independent variable may be considered the 
fi rst variable in the mediation sequence. The two parts of the mediation 
relation may be explored in this situation, including the M to Y relation 
and the X to M relation. In the fi rst phase of an exploratory analysis, the 
intervention effects on the potential mediator and dependent variables 
represent tests of the â coeffi cient and also the total effect test, ĉ. In the 
exploratory context, it is useful to test individual mediating variable 
effects on each outcome measure. This can represent a large number of 
tests. The researcher may want to control for experiment-wise error rates 
because of the large number of tests. Both the single mediator and multi-
ple mediator models are useful in this context. An important next step for 
exploratory models is the consideration of equivalent models described in 
chapter 13. It is important to consider the possibility that the dependent 
variable is actually the cause of the mediator and other equivalent models 
for the data at hand. 

The next stages in the exploratory analysis consider the other assump-
tions of the mediation model as described in chapter 3. First, the possibil-
ity of moderator variables not among the mediators or outcome should be 
considered, followed by consideration of the possibility that each media-
tor or outcome may interact with the program such that program effects 
differ across levels of the mediator or outcome. Plots of relations among 
variables in the mediation model may be especially helpful to understand 
relations among variables and perhaps identify subgroups of persons for 
whom the relations differ. A great deal of information and analyses may 
be generated in an exploratory analysis. Ideally specifi c hypotheses are 
generated on the basis of the exploratory results. Similarly, it may be most 
useful to focus on smaller numbers of the variables in a controlled study. 
A primary goal of the exploratory analysis is to identify mediation rela-
tions to be explored in a subsequent study. 
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14.7 Summary 
The purpose of this chapter was to describe alternatives to identifying 
mediational processes besides the statistical approach addressed in most 
of this book. The most widely used method is the development of designs 
to identify mediational processes. It is clear that this is the best approach 
for many reasons not only from a causal inference perspective as described 
in chapter 13 but also because of the importance of studies that replicate 
results. Similarly, the borrowing of information across many studies in a 
meta-analysis would seem to be an ideal application for mediation. How-
ever, one problem with existing meta-analyses is that the measures used 
in each study may differ drastically, making comparisons across studies 
diffi cult. However, the review of studies, especially with detailed interpre-
tation of action and conceptual theory, improves understanding of mediat-
ing mechanisms within and across behaviors. 

Qualitative methods provide valuable information and often form the basis 
for theory. Clinical judgments about how interventions work form the basis of 
treatment and prevention studies. Qualitative studies and exploratory studies 
can be used to develop methods to test with quantitative methods in a new 
study. The combination of person- and variable-oriented methods would seem 
to be an ideal method to triangulate on important mediational processes. 

Most of the methods described in this book focus on one study. In 
reality, the research enterprise consists of a series of studies that vary in 
design and goals. Experimental results are combined with intuition, clini-
cal skill, and luck to fi nd a true phenomenon. Single study methods have 
the capability of extracting the maximum amount of information from a 
single research study. Nevertheless, replication studies are critical for the 
identifi cation of mediational processes. These replication studies should 
ideally include variation in assignment of units to conditions and vary 
the context in which a treatment is delivered, especially in observational 
studies of treatment effects (Rosenbaum, 2002b).

14.8 Exercises
14.1. Write out the coding matrix for the following study: 
 a. Subjects are randomly assigned to one of three groups, control, 

cognitive therapy, and psychoanalytic therapy. The degree to 
which there is a therapeutic alliance between the client and the 
therapist is measured at the end of therapy, and it was hypoth-
esized that therapeutic alliance is the mediating mechanism by 
which depression is reduced. 

14.2. How does randomization improve the interpretation of a mediation 
study?
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14.3. Provide evidence for and against the idea that all information on 
mediating mechanisms is qualitative. 

14.4. Given that you could only conduct one research study, in general, 
what research design would you use? Describe the research design 
in a substantive area of research. 

14.5. Describe the research studies that you would conduct, given that 
you have resources to conduct a program of research to investigate 
mediation relations. Describe the program of research in a substan-
tive area. 

14.6. Compare and contrast the investigation of mediation relations in a 
research area in which the maximum amount of information must 
be extracted from one or a few studies (such as a randomized com-
munity health intervention) and a research area in which it is easy to 
conduct multiple replication and extension studies (such as a study 
of mediation of a social psychological processes with college student 
participants).
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15

Conclusions and 
Future Directions

This should not be interpreted as meaning that ran-
domization is necessary for drawing causal inferences. 
In many cases, appropriate untestable assumptions 
will be well supported by intuition, theory, or past 
evidence. In such cases, we should not avoid draw-
ing causal inferences and hide behind the cover 
of uninteresting descriptive statements. Rather we 
should make causal statements that explicate the 
underlying assumptions and justify them as well as 
possible.

—Paul Holland and Donald Rubin, 1983, p. 19

15.1 Overview 
The purpose of this chapter is to summarize the material covered in this 
book in the context of recommendations for investigating mediational 
processes in confi rmatory and exploratory research. Future statistical, 
methodological, and theoretical research is then outlined. 

15.2 Goals
The main goal of this book was to describe methods to assess mediation. 
The book began with a description of the different types of relations among 
variables in the three-variable model, and then focused on mediation rela-
tions. Mediation relations are characterized by a variable that is intermedi-
ate in the sequence from an independent variable to a dependent variable. 
These processes were distinguished from moderator or confounder rela-
tions. In most cases, statistical methodology cannot distinguish among 
these different possibilities, and theory or prior research is used to jus-
tify the relation. Many examples of the mediator model in applied and 
basic research were described. Methods to investigate mediation in the 
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single mediator model using ordinary least squares regression were then 
described along with the assumptions required for such methods to be 
accurate. Approaches to addressing these assumptions were covered in 
the rest of the book. Considerable space was devoted to covariance struc-
ture models, which represent a general method to assess mediated effects 
in many research situations. Methods to assess mediation in longitudinal 
studies were used to illustrate the assumptions and limitations of cross-
sectional analyses. Several special topics in mediation analysis were then 
described including multilevel models, models with categorical outcomes, 
and resampling methods. Models with both moderators and mediators, 
described in chapter 10, provide a general approach to assess how media-
tion relations differ across people. Models for causal inference of the 
mediation relation were described, as were experimental and nonexperi-
mental designs for the assessment of mediation. These methods provide a 
very general and adaptable approach to assessing mediation that differs, 
depending on research topic and design.

15.3 Two Components of Mediation
A mediation relation is composed of two relations, a relation between X 
and M and a relation between M and Y (Sobel, 1990). Much of this book 
was devoted to identifying estimators of the mediated effect and standard 
error based on the product of the paths relating X to M and M to Y in 
a wide variety of situations. This approach has several benefi ts over the 
causal steps approaches of Baron and Kenny (1986) and Judd and Kenny 
(1981a). Judd and Kenny (1981b) and Baron and Kenny (1986) required a 
statistically signifi cant relation between X and Y for mediation to exist. 
However, the requirement that X has a substantial relation with Y is not 
necessary for mediation. There are substantive and simulation examples 
in which mediation is present when this criterion is not satisfi ed. In addi-
tion, the requirement for a statistically signifi cant relation between X 
and Y reduces power to detect mediated effects, especially in complete 
mediation models. In some research situations, there may be a compelling 
reason for keeping this criterion as a way to reduce the sheer number of 
mediation analyses in an exploratory analysis of many dependent vari-
ables. However, researchers should be aware that mediated effects may be 
missed with this requirement. In particular, models in which the medi-
ated and direct effects have opposite signs may be missed. 

Similarly, the Judd and Kenny (1981a) and Baron and Kenny (1986) 
requirement that there be a reduction in the coeffi cient for the relation of 
X to Y when M is included in the statistical model is not necessary and can 
lead to missing inconsistent, or opposing mediation effects. By defi ni-
tion in ordinary least squares regression, if there is either a consistent or 
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inconsistent mediation effect, the coeffi cient ĉ will differ from ĉ′ in the 
single mediator model because ĉ − ĉ′ = âb̂. The requirement of a reduc-
tion in ĉ′ from ĉ occurs only for consistent relations in a mediation model, 
that is, when âb̂ and ĉ′ have the same sign. However, the requirement of a 
drop in the value of the unadjusted and adjusted coeffi cients may prohibit 
the identifi cation of iatrogenic (opposing) mediation effects (MacKinnon, 
Krull, & Lockwood, 2000). In fact, the additional requirements of causal 
step methods regarding the X to Y relation and the drop in adjusted and 
unadjusted coeffi cients may have limited mediation analysis to only con-
sistent mediation models; yet inconsistent mediation models may be pres-
ent in many situations. In any research study, it is important to consider 
the possibility that opposing mediation effects may be present. 

The requirement that the relation of X to Y adjusted for M (ĉ′), the direct 
effect, is nonsignifi cant is also not necessary. A nonsignifi cant relation of 
X to Y adjusted for M, ĉ′, and a signifi cant mediated effect are consistent 
with complete mediation. In most social science research, complete medi-
ation is unlikely. There are many substantive examples for which âb̂ and 
ĉ′ are both statistically signifi cant. As described in chapter 13, however, 
causal interpretation of mediation relations is more defensible when the 
direct effect (ĉ′) is zero. 

To summarize, the relation of X to M and the relation of M to Y (adjusted 
for X) are the primary mediation relations. These two relations are appli-
cable to all mediation models described in this book, including compli-
cated covariance structure models. The specifi cation of these relations 
and estimation of these relations may differ depending on the design and 
measurements in the study. Categorical dependent variables require spe-
cial estimation strategies, for example. These two relations and the sign of 
the mediated and direct effect are useful for differentiating consistent and 
inconsistent mediation models.

15.4 Assumptions of the Mediation Model
There are several additional criteria for identifying mediation relations 
besides the X to M and M to Y adjusted for X criteria. First, the functional 
form of the mediation relations is assumed to be linear in most treatments 
of mediation in this book. It is possible to specify and test nonlinear rela-
tions among variables, however. Second, if X, M, and Y are measured 
simultaneously, the temporal precedence of the variables is unclear, and 
other models may fi t the data as well as the X to M to Y model (e.g., X to Y 
to M or M to Y to X). In the case of X representing a randomized treatment, 
X clearly comes before M and Y. The temporal order of M and Y is dif-
fi cult to defend with cross-sectional data. Theory or previous empirical 
research may provide the basis for the M to Y relation. Mediation analysis 
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requires some justifi cation for the assumption about the temporal order-
ing of variables. 

Longitudinal data can be used to investigate the temporal precedence 
of variables. Evidence for a relation of M to Y for example, can be obtained 
if M at time 2 adds to the prediction of Y at time 3, after adjustment for 
the effect of Y at time 2. Such effects are more convincing if there is no 
evidence for the opposite relation from Y to M. It is important to note that 
theoretical or empirical justifi cation for temporal precedence is required 
for longitudinal data as well as for cross-sectional data. That a variable is 
measured before another variable, such as M measured before Y, does not 
mean that M is a cause of Y. A measure of Y at an earlier time point may 
actually cause M.

Other assumptions relate to the timing and level of the mediated 
effect. The design of the study is assumed to be suffi cient to investigate 
the timing of the relations among X, M, and Y (Collins & Graham, 2002). 
If relations occur at a long time interval but measurements are taken at 
shorter intervals, then mediation relations may be missed. Similarly, the 
level of analysis is assumed to be correct to identify mediational pro-
cesses. For example, if a mediation process present at the individual level 
is studied at the level of school, then conclusions about mediation may 
be incorrect. Mediation analysis also assumes that the correct variables 
in the micromediational chain were investigated. If the variables selected 
for study are in very different locations in the chain of mediation with 
multiple steps between them, then mediated effects may be too small to 
detect and massive sample sizes are necessary. Violation of each of these 
assumptions, accurate timing, correct level of analysis, and the correct 
mediational chain tend to reduce power to detect a mediated effect and 
can introduce bias.

Another important assumption is that no infl uences that would affect 
the mediation model are omitted. A variety of omitted variables may 
explain an observed mediation relation including unmeasured modera-
tors and mediators. A model that is unaffected by omitted infl uences 
is called a self-contained system of variables. Given the interrelations 
among many variables, it is likely that few models are self-contained. Per-
haps the best a researcher can do is to measure as many of these poten-
tial variables and include them in the model, consider the possible effects 
of unmeasured omitted variables, and hope that these omitted relations 
have random or small effects on the mediating process. Mediation stud-
ies by different researchers and in different contexts can reduce omitted 
infl uence explanations of a mediation model. 

Another assumption of a mediation relation is that the observed medi-
ation relation does, in fact, represent the true underlying relations among 
variables. As described in chapter 13 for the counterfactual assumption, 
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there are many ways in which the M to Y relation (and also the X to Y 
relation adjusted for M) may not refl ect a true relation. Replication stud-
ies that include experimental manipulations designed to precisely alter 
mediating variables can provide more convincing evidence about a medi-
ation relation. Testing predictions of a mediation relation in other contexts 
gives further evidence for the veracity of mediation relations. 

Measurement error can invalidate observed relations among variables. 
Methods to improve reliability include detailed psychometric research 
programs. For some variables, such as intelligence, extensive psychometric 
studies have been conducted. However, for many variables, measurement 
validity and reliability are not well known. Although latent variable mod-
els theoretically lead to more reliable measures, they have been criticized 
because latent variables are unobserved and may be more diffi cult to use 
as predictors in future data sets (as are true scores from reliability theory 
or from item response analysis). Information on the reliability and valid-
ity of measures in a mediation model is central to accurate interpretation 
of these models. In addition to measurement error, correlations among 
errors across mediation equations and between errors and predictors may 
be assumed to be zero; that is, the model is correctly specifi ed.

Many of the methods described in this book assume normal distribu-
tions for variables in the mediation model. There are strategies, such as 
resampling methods, that accommodate some violations of distributions. 
Methods based on the distribution of the product of random variables 
lead to more accurate statistical tests for the mediated effect. 

15.5 Recommendations for Mediation Studies
As for most research studies, the quality of a research project is a function 
of decisions made before the study is conducted. In general, design is more 
important than statistical adjustments. In the case of a mediation study, 
the identifi cation of how a dependent variable will be affected by change 
in mediators is a central task. The timing of how changes in X affect M 
that then affect Y must be hypothesized. Decisions about the timing of 
relations among variables specify the number and when longitudinal 
measurements should be taken. Decisions must also be made about what 
variables in a mediational chain will be measured. Similarly, the level of 
mediating processes such as biological, individual, social, community, or 
a combination of these levels must be determined. Potential moderator 
variables should be specifi ed if different mediation effects are expected 
across subgroups defi ned by categorical or continuous moderator vari-
ables. Depending on the context of the research study, potential modera-
tor effects may be characteristics that are not likely to change such as age, 
gender, and location, and person characteristics unlikely to change such as 
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tendency to take risks, depression, and educational achievement. Modera-
tor effects that may differ across levels of baseline outcome and mediator 
variables should also be considered. 

As described in chapter 2, decisions about the relation between the 
mediators and the dependent variable are based on conceptual theory 
and prior empirical evidence. Measures of effect size relating mediators 
to the dependent variables are helpful in selecting mediators especially 
for applied research. Action theory decisions must also be made about 
how an experimental intervention will affect the targeted mediators. 
These decisions are diffi cult in treatment or prevention research because 
the mediators with the largest effects are often the hardest to change with 
an intervention. Again measures of effect size relating an intervention 
to the mediator are helpful for making action theory decisions. In most 
cases, prior empirical research and theory relating mediators to outcomes 
is incomplete and the researcher must make some decisions regarding 
the ideal mediators and program components. In the ideal research study, 
different theories predicting different effective mediators are compared. 
Theory is important because good theory is applicable to situations out-
side the situations for which it was developed. In treatment and preven-
tion research, several competing mediating variables are often available. 
Because the theories are tested on the same data set, the superiority of one 
theory over another suggests that the theory may be a better description 
of the mediating mechanisms operating in the research study.

A sample size should be selected that will have suffi cient statistical 
power to detect a real mediated effect. For the most part, prior research on 
mediational processes has been underpowered. If the asymmetric confi -
dence interval method is used to test for mediation in the single mediator 
model, sample sizes of approximately 500 are necessary to detect small 
effects for both the X to M and X to Y adjusted for M relations. More 
detailed power calculations can be conducted with increased information 
about effect sizes in the mediation model. If a more complicated multiple 
mediator model is used, larger sample sizes may be necessary to detect 
small effect size relations among variables. Longitudinal designs increase 
power to detect effects by reducing unexplained variability, but effects 
may decay over time. 

Before the research study, the validity and reliability of measures of pro-
gram exposure, mediators, and outcomes must be established. In many 
cases, however, the research literature will not contain suffi cient background 
for every proposed measure. As mediator studies often include novel or 
new theoretical interpretations, at least some of the mediators will require 
new psychometric development. In this case, the researcher ideally con-
ducts psychometric studies before the larger study to assess the measure-
ment properties of the mediators. Otherwise, failure to fi nd a statistically 
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signifi cant mediator may be the result of inadequate measurement. Even 
if the measures are not new, many different measurement decisions must 
be made before the study. One decision is whether to measure a construct 
narrowly or to measure the most general form of the construct, e.g., self-
effi cacy for health behaviors in general versus self-effi cacy for refusing 
drug offers in a drug prevention study. Often both narrow and general 
measures are included in a research study. Qualitative measures of medi-
ators should also be considered. At least some open-ended questions of 
mediating mechanisms should be obtained from study participants.

There are four overlapping steps in the identifi cation and measurement 
of the mediators in a research study. To use the evaluation of a prevention 
program as an example, the fi rst step in this process is the identifi cation 
of mediating variables targeted by each component of the intervention. 
A table with mediators along the left side and components along the top 
with entries indicating which mediator is targeted by each component is 
useful to clarify this process. The second step once these mediators are 
identifi ed, is the specifi cation of multiple measures of each mediating vari-
able in the existing measurement protocol (usually a questionnaire, but 
alternatives to self-report are often important). In some situations, a single 
measure may be suffi cient, such as a biological mediator, but in general 
more measures lead to better psychometric properties (but consider the 
possibility that testing more mediators may lead to fi nding signifi cance 
effects by chance alone). Researchers should consider including measures 
of variables that help address alternative explanations of research results. 
An example of such a comparison mediator would be a measure designed 
to determine the tendency for participants to respond in a biased way to 
please (or displease) the researchers. If the response bias measure is a sig-
nifi cant mediator of program effects, then there is evidence that response 
bias may be an alternative explanation of observed mediation effects. 
Specifi city of mediated effects could be investigated by including media-
tors that are consistent with one theory but not with another theory. In the 
third step, after measures of each mediator are specifi ed, psychometric 
analyses are used to identify the extent to which the measurement of the 
mediator is adequate. Generally, reliability measures of 0.7 or greater are 
adequate, but individual researchers must make decisions about the ade-
quacy of their measures. Confi rmatory factor analysis provides a way to 
identify whether the mediators specifi ed represent unique constructs or if 
there is evidence of excessive overlap among the measures. This process is 
iterative and can be quite time consuming, but it helps researchers clarify 
the meaning of the mediators targeted and the measures selected for the 
mediators. In the fourth step, decisions made about the measurement of 
mediators are documented in a report. Similar analyses are conducted 
for major dependent and independent variables if necessary. Often these 
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types of analyses are conducted on baseline data before an intervention 
has been delivered to one of the research groups.

For many reasons as described in chapter 13, random assignment of units 
to conditions improves the causal interpretation of a mediation analysis. 
As a result, in the ideal study X represents randomization to experimen-
tal groups. Researchers should also consider randomization of different 
components of an intervention or double randomization of components 
so additional information on mediators and program components can be 
obtained. In some cases, it will be unethical or impossible to randomly 
assign persons to conditions. In this situation it will be helpful to consider 
measures of alternative explanations of any observed results and poten-
tial instrumental variables. Some of these alternative explanations include 
baseline nonequivalence and differential group trajectories. In any research 
study, it is critical to obtain information on how assignment to conditions 
was done.

As described in several places in this book, longitudinal data are ideal 
for the examination of mediation because both cross-sectional and lon-
gitudinal mediation relations can be investigated. Theory regarding the 
timing of the relations among X, M, and Y should be used to determine 
when repeated measures are taken. Pragmatically, more repeated mea-
sures usually mean a better outcome and at least four repeated measures 
enable the application of more detailed longitudinal models such as the 
latent growth models described in chapter 8. The delivery of the interven-
tion at some point after a baseline measurement will allow for an assess-
ment of group equivalence at baseline. Additional measures before an 
experimental manipulation would improve assessment of effects because 
a baseline for longitudinal change can be determined. At this point, the 
usefulness of continuous time differential equation models for mediation 
has not yet been determined. However, ideally, analysis of longitudinal 
data would include a continuous time model that may be more easily gen-
eralizable to other research studies. 

Many studies include multiple mediators. To simplify analyses, the 
fi rst step of the mediation analysis should evaluate one mediator at a 
time using the most comprehensive model. Often theory about mediators 
focuses on single mediators so that investigating one mediator at a time 
tests specifi c hypotheses about mediated effects. Nonsignifi cant as well as 
signifi cant tests of potential mediators should be reported as lack of signif-
icant mediation can be as important as statistically signifi cant mediation. 
Generally it is wise to fi rst examine potential moderator effects in single 
mediator models. If there are many mediators and moderators investi-
gated, some control for experiment-wise error rates may be warranted to 
protect against fi nding signifi cant effects that are not truly present. As a 
second step, multiple mediator models should be estimated. In general, 
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it is prudent to include all measured mediators in the multiple media-
tor model rather than only including signifi cant mediators identifi ed in 
the fi rst step. In the third step, a fi nal multiple mediator model should be 
estimated by fi xing paths to zero to form the most parsimonious model. 
There are limitations to the third step because it is possible that important 
relations may be left out, leading to biased estimates. 

Programs of research are required for the identifi cation of mediational 
processes. In many respects, the problems with identifying mediational 
processes are not statistical or methodological but conceptual and theo-
retical. As described in the quote at the beginning of chapter 14, consistent 
evidence for mediational processes across different contexts with differ-
ent researchers is the goal for demonstrating real mediated effects. Speci-
fi city of evidence for one mediator and not others bolsters evidence for 
that mediator. 

In summary, the ideal mediation study has clearly specifi ed media-
tional processes based on competing theories and prior mediation anal-
ysis. The study includes random assignment of units to conditions in a 
longitudinal design with the timing of observations based on theory. The 
ideal study would also have at least four longitudinal measurements so 
that advanced longitudinal methods can be applied. Each measure in the 
study would be valid and reliable on the basis of considerable empirical 
research. The mediation effects are then replicated in different contexts 
and by different researchers to establish a real mediational process. 

15.6 Exploratory Mediator and Moderator Analysis
Exploratory analysis is used to identify possible relations that can be eval-
uated in other data sets and in future studies. Because limited theory or 
an unspecifi ed model drives the analysis, the likelihood of Type I errors 
increases because the chances of fi nding a signifi cant mediator increases 
owing to the number of statistical tests. The steps outlined earlier for the 
ideal mediation study apply to the case of an exploratory study except that 
the detailed expectations from theory and prior research are not avail-
able. Rather than confi rming predictions, exploratory mediation analysis 
consists of testing a large number of mediators and moderators as well as 
testing mediators at the different levels of the moderators. Tests for all of 
these mediators and moderators are then used to specify hypotheses for 
future studies. Qualitative methods described in chapter 14 also have an 
important role in the generation of research questions and ideas.

The most likely situation in which an exploratory mediator and mod-
erator analysis would be conducted is after a series of hypothesized 
mediation and moderation relations are tested using methods described 
in this book. The following steps are described for a longitudinal study of 
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randomized intervention, but they will also apply to other types of studies. 
Three general analyses are outlined: (a) moderator analysis, (b) media-
tor analysis, and (c) combined moderator and mediator analysis. In an 
exploratory analysis, these three general analyses could be conducted in 
any order, although the moderator, mediator, and moderator/mediator 
sequence is likely to be more consistent with the priorities for the most 
research studies. In addition, it may be wise to investigate moderator vari-
ables fi rst as these may qualify any mediation effects investigated later. 
Note that the timing of measurement and variables measured may limit 
these analyses. In most situations, it is diffi cult to investigate change in 
the mediator as an explanation of change in an outcome if there is no lon-
gitudinal measurement of variables. In general, a variable that does not 
change from baseline to follow-up cannot be a mediator because it appears 
to be unaffected by the independent variable, but this is not always true; 
in developmental studies no change in a variable may refl ect a reduction 
from the normal growth in variables. A variable that is measured only 
at baseline can be included in the analysis only as a moderator, although 
these effects may refl ect mediation, if the effect of the program depends 
on where the participant scored on the baseline variable.

To keep some organization to the moderator analysis, moderators refl ect-
ing unchangeable characteristics of individuals such as demographic 
variables are examined fi rst. In a second step, moderator effects related to 
baseline mediator and outcome measures are examined, as these results 
refl ect important program effects. In a third step, other moderator effects 
should be considered such as personality measures of impulsivity or soci-
opathy. The overall results of the moderator analysis should then be orga-
nized and investigated with contrasts and plots of the data. A fi nal model 
including all or a subset of important moderators should then be esti-
mated to understand how the moderators may act together. These results 
should be further investigated with contrasts and plots to understand the 
signifi cant mediators in the study. 

In the mediation analysis stage, mediation analysis of all possible medi-
ators should be conducted. These analyses should include documenting 
whether the â  path was statistically signifi cant or the b̂ path was statisti-
cally signifi cant, as these two paths refl ect the action and conceptual the-
ory of the intervention, respectively. In an exploratory study, researchers 
should consider many variables so as to not overlook unexpected medi-
ating variables. The results of mediator analysis should be summarized 
including plots and contrasts. Two different multiple mediator models 
should be considered here. One multiple mediator model should include 
all mediators or a subset of them to understand how the mediators are 
related in a comprehensive model. Another multiple mediator model 
should consider the possible chains of mediation that may be present. As 
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the number of mediators increases, the number of potential orderings of 
mediators get very large, so some decisions to reduce this number should 
be considered. 

The third phase consists of models with both moderators and media-
tors in the same analysis. The simplest approach to this analysis may be to 
include only moderators and mediators that were statistically signifi cant 
in individual analyses or some other reasonable decision of which media-
tors and moderators to include. Given the large number of potential tests, 
some control over experiment-wise error rates is warranted. As described 
earlier, in some contexts, researchers may want to start with models that 
have both moderation and mediation. Given the complexity of these anal-
yses, building up of results from moderator to mediator analysis followed 
by models with both moderators and mediators seems most sensible.

In most studies, if all mediators, moderators, and their combinations are 
considered, the number of analyses is prohibitive. So even in an explor-
atory analysis, it may be necessary to limit analyses on the basis of the-
ory or practical considerations. An alternative to the exploratory analysis 
described earlier is to use a program such as TETRAD mentioned in chap-
ter 13 to conduct a search for models given a set of possible variables. 

15.7 Sensitivity Analysis 
Once a mediation analysis is completed it is useful to consider how vio-
lation of assumptions may have affected results. These types of analy-
ses are known as sensitivity analyses (Angrist, Imbens, & Rubin, 1996). 
Usually, sensitivity analyses assess the infl uences of situations outside 
the observed data set. Sensitivity analyses provide another way to evalu-
ate the veracity of the numerous assumptions of mediation analysis. The 
infl uence of measurement error may be assessed by estimating model 
relations after systematically adding measurement error to a variable or 
group of variables. The infl uence of measurement error on mediation 
results can be investigated by estimating a model with a larger coeffi cient 
for error variance or actually adding random error to each observation. A 
change in mediated effect estimates refl ects the extent to which increas-
ing measurement error may affect results. Similarly, the extent to which a 
confounder affects results may be considered by including an artifi cially 
constructed variable that has a specifi c correlation with the mediating 
variable and the dependent variable and assessing how this would affect 
results either using analytical formulas for mediation model quantities 
or by generating data and evaluating the analysis results (Rosenbaum, 
2002b; Frank, 2000). Often, an artifi cially constructed confounder that is 
strongly related to the variables in the mediation model does not change 
conclusions regarding a mediation analysis. Bias in observed relations 
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owing to nonrandom missing data or selection bias may be evaluated 
using methods by systematically removing or adding observations. The 
infl uence of confounders, measurement error, and missing data is evalu-
ated on effect size measures as well as whether the mediated effect is sta-
tistically signifi cant or not. Mediation analysis with resampling methods 
may be useful to address alternative interpretation of results in terms of 
violation of distributional assumptions. The extent to which the relation 
between the mediator and the dependent variable may be assessed by con-
sidering the specifi city of the relation as well as its consistency with theory 
and qualitative results. Consideration of model results as consistent with 
theory or not is also useful but should not be used to deny new or coun-
terintuitive mediation results. Finally, the replication of mediators with 
new data and new contexts provides more credibility to conclusions about 
mediating mechanisms. Mediating mechanisms that are present in differ-
ent areas of research, different samples of participants, and across different 
methodologies provide more defi nitive assessment of mediation. 

15.8 Future Research 
A goal of this book was to describe the state of the knowledge of media-
tion analysis. In the process of doing this, several weaknesses and areas 
of needed methodology have been identifi ed. The need for future research 
falls in overlapping categories of statistical, methodological, and theoreti-
cal aspects of mediation analysis. 

Regarding statistical developments, it will be illustrative to demonstrate 
analytically how the different formulas for the standard error of the medi-
ated effect are related. Similarly, the accuracy of general methods for the 
derivation of the standard error of functions of coeffi cients based on the 
covariance among parameter estimates should continue to be examined 
in analytical and simulation studies. In particular, the best effect size mea-
sures for mediation are yet to be determined. Confi dence interval methods 
in multilevel models require evaluation. For these and other questions, it is 
important to evaluate methods with both analytical and statistical simula-
tion studies. 

Values for the distribution of the product of t statistics may also improve 
the accuracy of the distribution of the product calculations; the ratio of 
regression estimate to its standard error is a t statistic. Similarly, statistical 
theory and computational methods for the distribution of three or more 
random variables are necessary for obtaining confi dence limits for more 
complicated mediated effects. Resampling methods for assessing medi-
ation effects have shown considerable promise and have been used for 
more complicated mediation effects. More elaborate resampling methods 
may also prove useful including the iterated bootstrap and bootstrapping 
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asymmetric confi dence limits based on the distribution of the product. 
Different variations of the permutation test described in chapter 11 may 
be useful for mediation analysis. 

Bayesian approaches to investigating mediation relations show prom-
ise—at least in part because they incorporate additional information 
to inform mediation analysis. Models for linear and nonlinear relations 
among variables in a mediation model would also be useful. In particular, 
generalized additive models that allow for any relation among variables 
in the mediation model (Brown, 1993) would appear to be straightfor-
ward to apply to mediation models. For these models, any relation among 
variables would be modeled rather than the strict linear (or hypothesized 
nonlinear) relations now included in mediation models.

Another important area of statistical development is person-centered 
approaches to mediation. Methods to identify person-centered versions of 
mediation like the Collins, Graham, and Flaherty (1998) methods described 
in chapter 8 may help clarify mediational processes. In contrast to the 
variable-centered model, person-oriented models consider the question 
of what pattern of responses is consistent or inconsistent with mediation. 
Models with both person-oriented and variable-oriented mediation may 
also prove useful. Models that include moderation and mediation in the 
same analysis need further development. An example of combining mod-
eration and mediation is the mixture models in which trajectories of types 
of individuals are identifi ed and mediational processes for these trajec-
tories explain the trajectories. This model is like a model with mediation 
and moderation, but the classes of persons are determined with a statisti-
cal method based on similar trajectories rather than moderator variables 
of sex, for example, that have two distinct categories. Type I and Type II 
errors and confi dence limit coverage rates will continue to be an impor-
tant way to evaluate new methods.

Important methodological developments include a clearer description 
of causal inference approaches to mediation. In particular, the similarities 
and differences of different approaches to causal inference such as directed 
graph approaches (Pearl, 2000) and the RCM (Rubin, 1974) described in 
chapter 13 would help clarify the meaning of both approaches to media-
tion analysis. Application of instrumental variable methods with more 
than one instrumental variable and mediator may help answer questions 
about true relations in multiple mediator models or lead to reduced confi -
dence in mediation relations. Perhaps the most important methodological 
contribution of future research will be the application of these methods to 
studying real mediation situations. Models are often very clear and help-
ful when described in ideal situations but may not be helpful for practi-
cal interpretation of data. The discussion of causal models in chapter 13 
may suggest to some researchers that it is not worth the effort to conduct 
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mediation analysis because it is so diffi cult to make causal inferences. How-
ever, the information mediational analyses may provide is too important 
about how variables are related to dismiss as impossible. 

The adequacy of alternative longitudinal mediation models has not 
been determined. Continuous time longitudinal models have the potential 
to provide more generalizable models of mediation relations. Longitudinal 
mediation models hold the promise of specifying the timing of interven-
tions and timing of relations among variables. In general, the different con-
ceptual foundations and statistical performance of mediation longitudinal 
models requires more clarifi cation. No single longitudinal framework for 
assessing mediation can be considered ideal now. 

Theory is the glue that holds the investigation of mediation together. 
There are potentially an infi nite number of variables to measure and sam-
ples to study. Theory provides a way to approach this unwieldy problem 
by limiting the total number of possibilities to consider. There is a need 
for theories for specifi c mediational hypotheses. The timing of relations 
between variables in the model should be a new criterion for good theory. 
Ideally, competing theories will be specifi ed with clear alternative predic-
tions regarding a mediation study. Ideally a program of research would 
investigate the same mediational processes in a variety of substantive areas. 
It is likely that the development of methods to assess mediational pro-
cesses will lead to more detailed theories regarding these processes and 
the development of mediation methods will lead to more detailed theo-
ries. One benefi t of understanding the importance of mediation in general 
is that it forces researchers to think about specifi c mediational processes. 
The increased conceptual attention to theoretical mediational processes 
may be of more benefi t than any statistical mediation analyses. 

For health promotion and disease prevention and treatment programs, 
mediation analysis has the potential to identify critical components, 
thereby reducing costs and increasing scientifi c understanding of health 
behavior. The methods described in this book are applicable to all preven-
tion and treatment programs and can be applied to data that have already 
been collected. Mediation analyses are likely to increase the amount of 
information extracted from these studies. 

15.9 Summary
The purpose of this book was to describe the rationale for assessing medi-
ation and to describe methods to assess mediated effects. The ultimate 
goal of the book is to increase the number of studies applying media-
tion analysis as summarized in fi gure 15.1. The book targeted mediators 
of knowledge of statistical methods to assess mediation, the norm that 
mediation is important, comprehension of reasons for mediation analy-
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sis, and the importance of theory testing. The hypothesis was that if 
persons understand why mediation is important, know how to conduct 
the analysis, and understand limitations of the methods then more rig-
orous mediation studies will be conducted. Attention to the limitations 
of mediation analysis is especially important because it helps generate 
alternative explanations of results. These alternative interpretations are 
then addressed in each study and inform subsequent research design. In 
particular, experimental studies of mediation processes are important. 
For example, health promotion and disease prevention program research 
is an ideal application for mediation analysis because these studies are 
designed to change mediators, replication and extension studies are often 
feasible, and the dependent variable is often clearly defi ned. Limitations 
of current methods also stimulate future methodological and statistical 
developments. Another goal of the book was to change the norm regard-
ing reporting research results so that mediation results, especially esti-
mates of mediation effects are routinely reported. Consideration of how 
an intervention achieved its effects or failed to achieve effects increases the 
amount of information from a research study. Another goal of the book 
was to emphasize the importance of theory testing. There are often a large 
number of potential mediators to examine in a research study. Theory 
provides a way to organize prior research and make clear predictions for 

Figure 15.1. A mediation model for this book.

ER64296_C015.indd   407ER64296_C015.indd   407 11/14/07   11:51:48 AM11/14/07   11:51:48 AM



408 Introduction to Statistical Mediation Analysis

future studies. Of course, mediation analysis is also useful when theory is 
not available and interventions to change an outcome in any way possible 
are desired. It is unclear whether the mediators in Figure 15.1 are the criti-
cal mediators for increasing the number of studies investigating media-
tion. However, these mediators hold promise for increasing the study of 
variables that are intermediate in the sequence relating an independent 
variable to a dependent variable. 
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Appendix A

Answers to Odd-
Numbered Exercises

Chapter 1
1.1. There are many interesting aspects of mediation defi nitions in the 

OED. For example, the word mediate is from the Latin word mediare, 
to be in the middle.

1.3.  Two examples of S–O–R models are the following (a) Pavlov’s bell 
leads to conditioned hunger response that leads to eating. (b) Putting 
an animal in a maze leads the animal to remember prior rewarded 
maze actions that leads to behavior to complete the maze. Two 
examples of mediation in prevention are the following. (a) Tobacco 
prevention programs are designed to change social norms to be 
less tolerant of tobacco use and reduced tolerance for tobacco use is 
hypothesized to reduce smoking. (b) A health promotion program 
encourages team members to communicate about healthy eating 
and healthy eating reduces percent body fat.

1.5.  Most models of human behavior are likely to be affected by more 
than one variable so it makes sense to consider models with many 
variables. The drawback of including several variables is the number 
of possible relations among the variables. One option is to hypoth-
esize and to test the different types of effects described in this chap-
ter such as mediator, moderator, and confounder variables in more 
complicated models.

1.7.   a. confounder
  b. moderator 
  c. mediator 
  d. moderator
1.9.  The Horst (1941) study is considered one of the fi rst examples of 

suppression because the addition of a third variable, verbal abil-
ity, increased the relation between mechanical ability and pilot 
training success. Mechanical ability was related to success in pilot 
training during World War II. Verbal ability predicted the test of 
mechanical ability because increased verbal ability made it easier to 
read the test and increased test performance. Verbal ability had only 
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a small relation with pilot training success. As a result, removing 
the relation of verbal ability from the test of mechanical ability actu-
ally increased the relation between mechanical ability and piloting 
success. Verbal ability can also be considered a confounder because 
including it changes the relation between mechanical ability and 
piloting success.

1.11. The simple X to Y relation was that suicide rates were higher for mar-
ried persons compared to unmarried persons. When stratifi ed by 
age, suicide rates were actually lower for married persons compared 
with unmarried persons for most age groups. Rosenberg (1968) calls 
age a distorter variable because including it in the analysis revealed 
that the correct interpretation was actually the reverse of the inter-
pretation when the distorter variable was not included. The distorter 
variable was also a confounding variable because it changed the rela-
tion between two variables. In this case it reversed the sign of the 
relation.

Chapter 2
2.1. They criticized the typical way of assessing mediation because it failed 

to consider the relation of the mediator to the dependent variable. It 
is possible that there is a signifi cant relation of the independent vari-
able on the mediator and a signifi cant relation of the independent 
variable on the dependent variable yet no or very little evidence for 
the relation of the mediator to the dependent variable.

2.3.  Briefl y, action theory would focus on the three mediators targeted. 
Smoking cessation programs targeted smoking, medication is used 
to lower cholesterol, and medication is used to lower blood pressure. 
Prior research, especially from the Framingham study found a sub-
stantial associations between smoking, cholesterol level, and blood 
pressure and cardiovascular disease

2.5.  Mediation for explanation example: Physical abuse in early child-
hood is associated with violence later in life. Dodge, Bates, and Pettit 
(1990) found evidence that deviant social processing measures medi-
ated the relation between early childhood physical abuse and later 
aggressive behavior. Mediation for design example: Middle school 
drug prevention programs target social norms, resistance skills, and 
communication skills because changing these mediating variables 
are hypothesized to reduce tobacco, alcohol, and marijuana use.

2.7.  Surrogate endpoints are typically variables that are used instead of 
an outcome and as a result are more closely related to the ultimate 
outcome. Surrogate endpoints also tend to explain the entire rela-
tion between an independent variable and a dependent variable. A 
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mediator is less clearly related to the dependent variable because it 
is not considered a surrogate for the dependent variable and often 
more than one mediator explains a relation between the indepen-
dent variable and the dependent variable.

2.9.  Surrogate endpoints tend to lie very close to the ultimate endpoint. In 
some mediation studies, a surrogate endpoint would actually be con-
sidered a useful dependent variable. For example, blood pressure may 
be considered in some cases as a surrogate for cardiovascular health, 
but it is also used as a dependent variable in other studies. Another 
study may attempt to change mediators to change blood pressure.

2.11.  For school-based prevention, social learning theory provides a ratio-
nale for the modeling of resisting drugs and changing norms to be less 
tolerant of drug use. Some of the mediators targeted in drug preven-
tion campaigns include knowledge, social norms, beliefs about positive 
and negative consequences of drug use, bonding with school, adults, 
and family, communication skills, and intentions to use drugs.

Chapter 3

3.1. a. s zab = + = ′ =( . )( . ) ( . )( . ) . , .0 2 0 01 0 4 0 1 0 0400 02 2 2 2 008 0 0400 1 998/ . .=

 b. s zab = + = ′ =( . )( . ) ( . )( . ) . ,0 22 0 1 0 22 0 1 0 0311 02 2 2 2 .. / . .0484 0 0311 1 556=

 c. s zab = + = ′ =( . )( . ) ( . )( . ) . , .0 2 0 01 0 4 0 2 0 0800 02 2 2 2 008 0 0800 1 0/ . .=

 d. s zab = + = ′ =( . )( . ) ( . )( . ) . , .0 2 0 4 0 4 0 01 0 0801 02 2 2 2 008 0 0801 1 0/ . .=

 e.  The signifi cance levels of the individual coeffi cients are positively 
related to the signifi cance level of the mediated effect, such that 
two individually signifi cant coeffi cients are more likely to yield 
a signifi cant mediated effect. In general, both coeffi cients must 
be statistically signifi cant for the test of the mediated effect to 
be statistically signifi cant. Note also that dividing the mediated 
effect by the standard error does not necessarily have a normal 
distribution. A test of signifi cance based on the distribution of the 
product is more accurate.

3.3.  The causal step method does not provide a direct test of signifi cance 
for the mediated effect. Instead, one assesses mediation through the 
presence or absence of several model criteria in the steps. Calculating 
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the ratio of the mediated effect to its standard error not only pro-
vides a point estimate of the mediated effect, but also allows for sig-
nifi cance testing of the â b̂ or ĉ − ĉ′ quantity. Finally, the causal steps 
method requires a signifi cant overall effect of X on Y, which reduces 
power of the mediation test and does not support the estimation 
of models in which there may be a signifi cant mediated effect but 
nonzero overall effect (e.g., suppression or inconsistent mediation 
models).

3.5. Donaldson, Graham, & Hansen (1994) evaluated the Adolescent 
Alcohol Prevention Trial (AAPT), an intervention program designed 
to prevent the onset of adolescent drug/alcohol use. Two psycho-
logical mediators, resistance skills training and social norms, were 
hypothesized to link the program to desired outcomes. Donaldson 
et al. implemented path analysis in an analysis of covariance design 
to test for possible mediation effects. They examined the signifi cance 
of all component paths (i.e., direct and indirect) to provide evidence 
for mediation.

Chapter 4

4.3. Component Quantities: 

N = 15 rXY = .01576 rXM = −.90500
rYM = .40843 sY = .13601 sX = 0.09865
sM = .32515
â = −2.98297 b̂ = .97701 ĉ = .02173
ĉ′ = 2.93612 rYM.X = 0.9937

 Note that these data were simulated with a = −3, b = 1 and c’ = 3 for 
an inconsistent mediation model.

Calculations:

Regression coefficient for ˆ . ( . )(′ = − −
c

0158 9050 .. )(. )
( . ) (. )

.
4084 1360

1 9050 0986
2 93612− −

=

Regression coefficient for ˆ . ( . )(.
b = − −4084 9050 00158 1360

1 9050 3252
97702

)(. )
( . ) (. )

.
− −

=

Proportion Mediated = − = −( . )(. )
.

2 9830 9770
02173

1134 118.
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Ratio of mediated effect to direct effect:
( 2.983− 00)(.9770)

2.9361
= −.9926

Ratio of X on Y to X on M:
.0217
2.9830−

= −.9926

R Multiple2
2 20 4084 0158 2 0 4084 0 01

:
( . . ) ( ( . )( .+ − 558 9050

1 905
0 9875

2

)( . )
( . )

.
−

− −
=

R2 2 21 0 4084 0 9875 0158 8204# : . ( . (. ) .− − = −

R2 2 22 9050 0 9937 8088# : ( . )( . ) .− = −

R2
2 2

3
9050 9937

8242# :
( . )(. )

.
− = −

.9875

4.5.  The proportion mediated equals −825.425 and the ratio of mediated 
to direct effect equals 0.73547. A negative value for the proportion 
mediated and a value outside the range of ±1 is not sensible. This 
illustrates the problem with the proportion mediated measure. The 
ratio mediated makes more sense here but is often very unstable 
even at large sample sizes.

4.7.  a. See Equation 4.30; b. See Equation 6.23, where a = γ, b = β1, and d = β2.

4.9.  The function for the difference between c and c’ for standardized 
variables equals rXY − ((rXY − rMYrXM)/(l − rXM

2)). The partial deriva-
tives with respect to rXY, rXM, and rMY equal rXM/(1 − rXM

2), (−2rXMrXY 
+ rMY + rXM

2rMY)/(1 − rXM
2)2, and − ((rXM

2)/(1 − rXM
2)), respectively. As 

described in the chapter, the multivariate delta method can be used 
to obtain the asymptotic variance by pre- and post-multiplying the 
vector of partial derivatives by the covariance matrix among rXY, rXM 

and rMY.
4.11. Here are some of the steps in the derivation:

 Cov(c, c’) = t/s (X2
TX2)(X1

TX1)σ2y − t/s(X2
TX1)(X1

TX2)σ2y

 Cov(c, c’) = [[(X2
TX2)(X1

TX1) − (X2
TX1)2]σ2y]/[(X1

TX2)s]

 Cov(c, c’) = sσ2y/[s(X1
TX1)]

 Cov(c, c’) = σ2y/(X1
TX1)
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Chapter 5

5.1. a. ˆ ˆ ( . )( . ) .a b1 1 0 3441 0 4830 0 1662003= − = −

  
ˆ ˆ ( . )( . ) .a b2 2 0 0542 0 3365 0 0182383= =

  
sa bˆ ˆ ( . )( . ) ( . )( .

1 1
0 3441 0 0647 0 4830 0 0472 2 2= + − 11 0 0318312) .=

  
sa bˆ ˆ ( . )( . ) ( . )( .

2 2
0 0542 0 0562 0 3365 0 01292 2 2= + 22 0 0053023) .=

  

ˆ ˆ .
.

.
ˆ ˆ

a b
sa b

1 1

1 1

0 1662003
0 031831

5 22141= − = −

  

ˆ ˆ .
.

.
ˆ ˆ

a b
sa b

2 2

2 2

0 0182383
0 005302956

3 43927= =

 b. Assess X Y
c
s

ns
c

→ = − =:
ˆ .

.
. ,

ˆ

0 0014
0 0603

0 02322

  
Assess X M

a
s

p
a

→ = = <1
0 3441
0 0471

7 30573 01

1

:
ˆ .

.
. ,

ˆ
..05

  
Assess M Y

b
s

p
b

1
0 4830

0 0647
7 465221

1

→ = − = <:
ˆ .

.
. ,

ˆ
00 05.

  
Assess X M

a
s

p
a

→ = = <2
0 0542
0 0129

4 20155 02

2

:
ˆ .

.
. ,

ˆ
..05

  
Assess M Y

b
s

p
b

2
0 3365
0 0562

5 9875 02

2

→ = = <:
ˆ .

.
. , .

ˆ
005

  Assess vs.ˆ ˆ : . .c c′ >0 2332 0 0044
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c.

 

95 0 1662003 1 96 0 0318311 1% ˆ ˆ : . . ( . )CI for a b

LC

= − ±
LL

UCL

= −
= −

0 228589
0 10381
.
.

  

95 0 0182383 1 96 0 00530232 2% ˆ ˆ : . . ( . )CI for a b

LC

= ±
LL

UCL

=
=

.
.

007845
0 02863

d. Because the overall effect of X on Y is nonsignifi cant, the causal steps 
method fi nds that there is no mediation. This contrasts with the fi nding 
in part A of 5.1, in which the point estimates divided by their respec-
tive standard errors show signifi cant mediated effects. Given that 
zero is not included in the 95% confi dence intervals, and signifi cant 
mediated effects based on the product of coeffi cients computation 
method, there is signifi cant mediation of the prevention program on 
subsequent alcohol use by both social norms and resistance skills. 
A follow-up study may investigate possible moderation effects to 
determine whether the program worked differentially on subjects 
given particular characteristics. Studies to manipulate more specifi c 
aspects of the norms and skills manipulation may be useful.

5.3. a. ˆ ˆ ( . )( . ) .a b1 1 0 237149 0 281868 0 06684= =

  ˆ ˆ ( . )( . ) .a b2 2 0 131117 0 059703 0 00783= =

  ˆ ˆ ( . )( . ) .a b3 3 0 242897 0 335794 0 08156= =

  ˆ ˆ ( . )( . ) .a b4 4 0 243409 0 114041 0 02776= =

  

Total mediated effect:

= + +0 06684 0 00783 0 081. . . 556 0 02776 0 18399
1 1

4 4

+ =∑ . .
ˆ ˆ

ˆ ˆ

a b

a b

 b. ˆ ˆ ( . )( . ) .a b1 1 0 237149 0 281868 0 06684= =
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sa bˆ ˆ ( . )( . ) ( . )(

1 1
0 237149 0 053233 0 2818682 2 2= + 00 046217 0 0181402. ) .=

  

ˆ ˆ .
.

.
ˆ ˆ

a b
sa b

1 1

1

0 06684
0 018140

3 68459= =

  

= ±0 06684 1 96 0 018140. . ( . )
:95% Confidence Limits == ±

=
=

0 06684 0 03555
0 03129
0 10239

. .
.
.

LCL

UCL

  
ˆ ˆ ( . )( . ) .a b2 2 0 131117 0 059703 0 00783= =

  
sa bˆ ˆ ( . )( . ) ( . )(

2 2
0 131117 0 054959 0 0597032 2 2= + 00 044780 0 0076862. ) .=

  

ˆ ˆ .
.

.
ˆ ˆ

a b
sa b

2 2

2 2

0 00783
0 007686019

1 01873= =

  

= ±0 00783 1 96 0 007686. . ( . )
:95% Confidence Limits == ±

= −
=

0 00783 0 01506
0 000723

0 02289

. .
.

.
LCL

UCL

  
ˆ ˆ ( . )( . ) .a b3 3 0 242897 0 335794 0 08156= =

  
sa bˆ ˆ ( . )( . ) ( . )(

3 3
0 242897 0 054272 0 3357942 2 2= + 00 045270 0 0201212. ) .=

  

ˆ ˆ .
.

.
ˆ ˆ

a b
sa b

3 3

3 3

0 08156
0 020121

4 05345= =

  

= ±

=

0 08156 1 96 0 020121

95 0 0812

. . ( . )

% ˆ ˆ : .CI for ab 556 0 03944
0 04212
0 121

±
=
=

.
.
.

LCL

UCL
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ˆ ˆ ( . )( . ) .a b4 4 0 243409 0 114041 0 02776= =

  
sa bˆ ˆ ( . )( . ) ( . )(

4 4
0 243409 0 053507 0 1140412 2 2= + 00 045899 0 0140372. ) .=

  

ˆ ˆ .
.

.
ˆ ˆ

a b
sa b

4 4

4 4

0 02776
0 014037

1 97769= =

  

= ±

=

0 02776 1 96 0 014037

95 0 0272

. . ( . )

% ˆ ˆ : .CI for ab 776 0 02751
0 00025
0 05527

±
=
=

.
.
.

LCL

UCL

 
c.

 

a b a b
s

p
a b a b

1 1 2 2

1 1 2 2

0 05902
0 01181

4 9985
− = =
−

.

.
. , << 0 05.

  

s s s a a sa b a b s s b ba b a b1 1 2 2 1 1 2 2 1 2

2 2
1 22

0 018

− = + −

= . 1140 0 007686 2 0 237149 0 131117 0 0042 2+ −. ( . )( . )( . 00

0 000329 0 000059 0 000249

0 000139

0 0

)

. . .

.

.

= + −

=

= 11181

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

ER64296_C017.indd   443ER64296_C017.indd   443 12/1/07   12:44:48 AM12/1/07   12:44:48 AM



444 Appendix A

Chapter 6

6.1.

M

M

Y b b

M

M

Y

1

2

1 2

1

2

0 0 0
0 0 0

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
′

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡⎣ ⎤⎦ +
⎡

⎣

⎢
⎢

a

a

c

X

e

e

e

1

2

1

2

3
⎢⎢

⎤

⎦

⎥
⎥
⎥

=
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 0 0
0 0 0

0 4830 0 3365 0

1

2

. .

M

M

Y

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡⎣

0 3441
0 0542
0 0044

.

.

.
X⎤⎤⎦ +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

e

e

e

1

2

3

6.3.a. Selected CALIS output

The CALIS Procedure

Covariance Structure Analysis: Maximum Likelihood Estimation

Observations 40 Model Terms 1
Variables  4 Model Matrices 4
Informations 10 Parameters 9

Manifest Variable Equations with Estimates
m1 = 0.8401*x + 1.0000 e1
Std Err 0.1559 a1
t Value 5.3883
m2 = 0.2219*x + 1.0000 e2
Std Err 0.1441 a2
t Value 1.5396
y = 0.5690*m1 + 0.5297*m2 + 0.1122*x + 1.0000 e3
Std Err 0.1507 b1 0.1630 b2     0.1992 c

t Value 3.7769 3.2502     0.5631

Variances of Exogenous Variables

Variable Parameter Standard Estimate Error t Value

x 84.84872
e1 ee1 80.44700 18.21766 4.42
e2 ee2 68.74247 15.56710 4.42
e3 ee3 64.94416 14.70696 4.42
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Covariances Among Exogenous Variables

Var1 Var2 Parameter Standard Estimate Error t Value

e1 e2 cm1m2 −22.06700 12.42111 −1.78

6.3.  b.  Yes, the estimates from SAS Proc CALIS are the same, within 
rounding error, as the estimates from EQS and LISREL.

6.5. Due to measurement error, it is unlikely that any of these constructs 
are perfectly reliable, which affects the validity of these constructs. 
One way to account for measurement error is to use latent variables 
with multiple indicators. Three indicators of father’s occupation are 
income, size of company, and job title. Three indicators of father’s 
education are highest degree attained, number of years of school, 
and grade point average. Three indicators of respondent’s occupa-
tion are income, size of company, and job title. Three indicators of 
respondent’s education are highest degree attained, number of years 
of school, and grade point average. It is more diffi cult to specify 
three indicators for respondent’s number of siblings or income.

6.7. MODEL INDIRECT:

OCC1962 ind FATHOCC;
OCC1962 ind FATHEDUC;
OCC1962 ind NUMSIB; 

INC1961 ind FATHEDUC;
INC1961 ind FATHOCC;
INC1961 ind NUMSIB;
INC1961 ind EDUC;

—OR—

MODEL INDIRECT:

OCC1962 ind EDUC FATHOCC;
OCC1962 ind EDUC FATHEDUC;
OCC1962 ind EDUC NUMSIB; 

INC1961 ind EDUC FATHEDUC;
INC1961 ind EDUC FATHOCC;
INC1961 ind EDUC NUMSIB;
INC1961 ind OCC1962 FATHEDUC;
INC1961 ind OCC1962 FATHOCC;

ER64296_C017.indd   445ER64296_C017.indd   445 12/1/07   12:44:48 AM12/1/07   12:44:48 AM



446 Appendix A

INC1961 ind OCC1962 NUMSIB;
INC1961 ind EDUC OCC1962 FATHEDUC;
INC1961 ind EDUC OCC1962 FATHOCC;
INC1961 ind EDUC OCC1962 NUMSIB;

INC1961 ind EDUC;

Chapter 7
7.1.
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== ⎡⎣ ⎤⎦φ11

EQS:
/TITLE
 Three Factor Latent Variable Model
/SPECIFICATIONS
VARIABLES=12; CASES=100;
MATRIX=CORRELATION; ANALYSIS=COVARIANCE;
METHOD=ML;
/LABELS
 V1=X1; V2=X2; V3=X3; V4=X4; 
 V5=M1; V6=M2; V7=M3; V8=M4;
 V9=Y1; V10=Y2; V11=Y3; V12=Y4;
 F1=X; F2=M; F3=Y;
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/EQUATIONS
 V1 = 1 F1 + E1;
 V2 = *F1 + E2;
 V3 = *F1 + E3;
 V4 = *F1 + E3;
 V5 = 1 F2 + E5;
 V6 = *F2 + E6;
 V7 = *F2 + E7;
 V8 = *F2 + E8;
 V9 = 1 F3 + E9;
 V10 = *F3 + E10;
 V11 = *F3 + E11;
 V12 = *F3 + E12;
 F2 = *F1 + D2;
 F3 = *F1 + *F2 + D3;
/VARIANCES
 F1 = *;
 D2 TO D3 = *;
 E1 TO E12 = *;
/END
LISREL:
THREE FACTOR MODEL
DA NI=12 NO=100 
LA
X1 x2 x3 x4 m1 m2 m3 m4 y1 y2 y3 y4
SE
4 5 6 7 8 9 1 2 3
MO NX=4 NK=1 NY=8 NE=2 PS=SY,FIGA=FU,FIPH=FU,FITE=DI,
FR LX=FU,FILY=FU,FIBE=FU,FI
FR LX(2)LX(3)LX(4)
FR LY(2,1) LY(3,1) LY(4,1)
FR LY(6,2) LY(7,2) LY(8,2)
VA 1 LX(1) LY(1,1) LY(4,2)
FR BE(2,1)
FR GA(1) GA(2)
FR PS(1,1) PS(2,2) 
FR PH(1,1)
OU MI RS EF MR SS SC

MPLUS:
TITLE: Three Factor Three Indicator Model Chapter 7 
Example 1;
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DATA:
  FILE IS “C:\chapt7 _ exp1”;
  TYPE IS CORRELATION STD;
  NGROUPS = 1;
  NOBSERVATIONS = 100;

VARIABLE:
  NAMES ARE x1 x2 x3 x4 m1 m2 m3 m4 y1 y2 y3 y4;
  USEVARIABLES ARE x1 x2 x3 x4 m1 m2 m3 m4 y1 y2 y3 y4;

ANALYSIS:
  TYPE IS GENERAL;
  ESTIMATOR IS ML;
  ITERATIONS = 1000;
  CONVERGENCE = 0.00005;

Model:
 x by x1@1 x2 x3 x4;
 m by m1@1 m2 m3 m4;
 y by y1@1 y2 y3 y4;
 y on x m;
 m on x;

OUTPUT:  SAMPSTAT STANDARDIZED;

7.3.  The additional indirect effect matrices for multiple indicator models 
represent the indirect effects of the η variables on the Y variables 
and the indirect effects of the ξ variables on the Y variables.

7.5.  THREE FACTOR MODEL
Number of Iterations = 7
LISREL Estimates (Maximum Likelihood)

LAMBDA-Y

ETA 1 ETA 2

coach1 1.00 —
coach2 1.75 —

(0.25)
6.96

coach3 1.48 —
(0.21)
6.94
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severe1 —  1.00
severe2 —  1.18

 (0.08)
15.30

severe3 —  1.27
 (0.08)
15.44

LAMBDA-X

KSI 1

intent1  1.00
intent2  1.47

 (0.07)
21.41

intent3  1.50
 (0.07)
20.97

BETA

ETA 1 ETA 2

ETA 1 — —
ETA 2 −0.38 —

 (0.09)
−4.31

GAMMA

KSI 1 

ETA 1 −0.06
 (0.04)
−1.62

ETA 2  0.30
 (0.05)
 5.54

Covariance Matrix of ETA and KSI

ETA 1 ETA 2 KSI 1

ETA 1  0.47
ETA 2 −0.20 0.97
KSI 1 −0.05 0.26 0.80
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PHI

KSI 1

0.80
(0.08)
9.93

PSI
Note: This matrix is diagonal.

ETA 1 ETA 2

 0.47  0.82
(0.12) (0.10)
 3.78  8.24

Squared Multiple Correlations for Structural Equations  

ETA 1 ETA 2

0.01 0.16

Squared Multiple Correlations for Reduced Form

ETA 1 ETA 2

0.01 0.09
 

Reduced Form

KSI 1

ETA 1 −0.06
 (0.04)
−1.62

ETA 2  0.32
 (0.06)
  5.84

THETA-EPS

coach1 coach2 coach3 severe1 severe2 severe3

 3.26  0.91 0.63  1.10  0.86 0.53
(0.21) (0.16) (0.12)  (0.08)  (0.08) (0.08)
15.81 5.65 5.49 13.57 10.64 6.78
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Squared Multiple Correlations for Y - Variables

coach1 coach2 coach3 severe1 severe2 severe3

0.13 0.61 0.62 0.47 0.61 0.75

THETA-DELTA 

intent1 intent2 intent3

0.63 0.22 0.56
 (0.04) (0.05) (0.06)
14.47 4.76 9.73

Squared Multiple Correlations for X - Variables

intent1 intent2 intent3

0.56 0.89 0.76

Goodness of Fit Statistics
Degrees of Freedom = 24
Minimum Fit Function Chi-Square = 29.11 (P = 0.22)
Normal Theory Weighted Least Squares Chi-Square = 28.44 
 (P = 0.24)
Root Mean Square Residual (RMR) = 0.073
Standardized RMR = 0.030
Goodness of Fit Index (GFI) = 0.99

  Note that all the fi t indices are the same as the model without vari-
ables reversed. Perceived severity does not appear to mediate the 
effect of intentions on coach tolerance because the â path from inten-
tions to severity is not statistically signifi cant. These results may sim-
ply refl ect that intentions are not signifi cantly related to perceived 
severity, not any mediation relation. Longitudinal data may shed 
light on the relation among these variables. Experimental manipula-
tion of the variables such as in a prevention program to manipulate 
coach tolerance to change intentions may also help clarify the order-
ing of the variables. In addition, the sequence of variables is not con-
sistent with theory for how the variables are related.

7.7. The higher the reliability of X1, the closer the observed partial cor-
relation is to the true partial correlation.
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Chapter 8
8.1. a. The values in Tables 8.1 are correct.

b. 90.
8.3.  In the typical parallel process latent growth curve model, the relation 

of the slope in the X variable is related to the slope in the M variable, 
which is related to the slope in the Y variable. These relations are 
essentially correlations among slopes, which does not clearly refl ect 
a time ordering. It is possible to estimate latent growth models such 
that the slope in variables does refl ect time ordering such as when 
the slope in the X for the fi rst three waves is related to the slope in 
M for the next three waves, and the slope in M is related to the slope 
in Y for the last three waves. The latent difference score explicitly 
models change between waves in a way that change in earlier waves 
can be related to change in later waves.

8.5. It is interesting to conceive of the Collins et al. person-centered 
approach with continuous variables. One option is to specify a test 
for each condition but with continuous data. Another option is to 
dichotomize continuous measures to form binary variables suitable 
for analysis with the Collins et al. method.  Many different cut points 
could be used and mediation investigated for each of the cut points. 
These analyses may reveal important thresholds with continuous 
data.

Chapter 9
9.1. The correlation would be zero.
9.3. a.  Individual attitudes about drug use affect individual intentions 

to use drugs, which then affects an individual’s actual drug use, 
where the Level 1 variable is individuals.

 b.  An intervention given to sports teams to improve nutrition 
increases team cohesion, which then increases the number of 
games won by the teams, where the Level 2 variable is teams 
and the Level 1 variable is individuals.

 c.  Perceived classmate intelligence affects an individual’s percep-
tion of his or her own intelligence, which affects individual 
achievement, where the Level 2 variable is classrooms and the 
Level 1 variable is students.

 d.  Budgetary differences at schools affect classroom size, which 
affects student learning, where the Level 3 variable is schools, 
the Level 2 variable is classrooms, and the Level 1 variable is 
students.
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 e.  Differences in the amount of resources a state allocates to men-
tal health issues affects how close an individual lives to a mental 
health care facility, which affects the likelihood of seeking help 
for depression, which affects the number of times an individual 
attempts suicide, where the Level 3 variable is states, a Level 2 
variable could be counties, and the Level 1 variable is individual.

Chapter 10
10.1. A mediator is a third variable that explains the mechanism by which 

two other variables are related, thus answering “how” or “why” 
there is a relation between the other variables. For example, drug 
resistance skills for refusing drug offers may mediate the relation 
between a program that taught those skills and a drug use outcome. 
A moderator is a third variable that defi nes the conditions (e.g., lev-
els of a variable) under which a given relation between other vari-
ables is true. For example, increased achievement may decrease 
depression, but this effect may only hold for subjects with low initial 
achievement (Merrill, 1994). Mediated moderation is used to explain 
the source of an overall moderated treatment effect of X on Y, where 
mediation (i.e., XZ→M→Y) is responsible for the overall moderated 
relation. For example, the infl uence of a cognitive prime on game 
behavior may be moderated by one’s social value orientation. The 
reason for this moderation could be the result of forming expecta-
tions of one’s partner’s behavior in a game, given the social value 
orientation (Muller et al., 2005). Moderated mediation is used to 
describe when a mediated relation of X→M→Y differs across the lev-
els of another variable. For example, intentions to use drugs may 
mediate the relation between a prevention program and drug use, 
but this effect may only be present for subjects who were risk takers; 
a program’s effect on intentions to use drugs may affect those sub-
jects who are risk takers.

10.3. It is reasonable to expect both mediation and moderation effects 
in prevention research for example. There should be a quantifi able 
mechanism by which a program is intended to achieve success (i.e., 
a mediator of the program), although that mechanism may not hold 
true for all recipients (i.e., moderation). How much or how little one 
should tailor a prevention/intervention based on program effi cacy 
in certain subgroups is a compound decision.

10.5. There are several ways that a measure of work completed could be 
used in the analysis. Fit persons may just be able to complete more 
tasks. The number of tasks completed could be a measure of energy 
expenditure which ought to be related to water consumed thereby 
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reducing unexplained variability in water consumed. It is also possi-
ble that self-reported thirst may be related to tasks completed. Tem-
perature may be related to tasks completed which then affects thirst 
and water consumed; the rationale being that tasks are more easily 
completed in cooler temperatures.

Chapter 11
11.1. The product of coeffi cients and difference in coeffi cients methods of 

computing mediation are not equivalent in logistic and probit regres-
sion because the residual variances associated with the mediation 
regression equations are fi xed, to set the metric of the latent outcome. 
Thus, any change in model coeffi cients is dependent on the error term, 
and the scale of the dependent variables differs across equations.

11.3.  a. Y X

sec

∗ = − +
=

0 6409 0 2771
0 1118

. .
( . )ˆ

  Y X M

se sec b

∗ = − + +
= =
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. . .
( . ,ˆ .. )1244

  

M X
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0 06067
. .

( . )ˆ
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= ±0 1487 1 96 0 04977
95

. . ( . )
% Confidence Limits (ab)) : . .

.
.

= ±
=
=

0 1487 0 0975
0 0512
0 2462

LCL

UCL

 Although the mediated effect estimates across the âb̂ and ĉ − ĉ′ meth-
ods differ in the 10ths decimal place, results associated with signifi -
cance tests and confi dence limits are consistent.

 d.  Proportion Mediated = =( . )( . )
.

0 33748 0 4406
0 2771

00 5366.

  

= ±0 5366 1 96 0 2632. . ( . )
95% CI for the proportion meddiated: = ±

= −
=

0 5366 0 5159

0 0174
1 014

. .

.
.

LCL

UCL 22

e.  The unstandardized difference estimate was .1381 and the product 
estimate was .1489. By using the standardization in Equation 11.6, 
the value of the difference method was .1479, which is now much 
closer to the product estimate standardization with Equations 11.4 
and 11.5 yields a product and difference estimate of .078 and .077, 
respectively.

Chapter 12
12.1. (8!)2 = 1,625,702,400 unique data sets with eight subjects and three 

observations.
12.3. The bootstrap may yield more accurate confi dence intervals for the 

mediated effect because it does not require a normal distribution for 
the mediated effect.

12.5. The defi nition of bootstrap is to rely only on one’s own efforts and 
resources, as in pulling one’s self up by the bootstraps. Bootstrap 
resampling is so named because the method relies only on the data 
in your sample, not on any other data or data distributions.

The jackknife is so called because a jackknife is a very useful tool to 
have handy, just as the jackknife method of estimating variance is a 
very useful tool to have handy. 
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Chapter 13
13.1. A statistical simulation was conducted using the simulation program 

described in chapter 4 for a sample size of 100 and 500 replications 
for 16 different values of a, b, c′, and three values of d (0, .2, and 0.5). 
Overall, there were more Type I errors for the b coeffi cient, which is 
not surprising because d is added to the b coeffi cient in the popula-
tion model. Regarding detection of mediation effects, there was no 
increase in Type I error rates when b was equal to zero, but the power 
to detect the mediated effect was greater for nonzero values of d.

13.5. There are four variables in the two mediator models discussed in 
chapter 4. Each of the variables, X, M1, M2, and Y may be in all pos-
sible positions in the model. Path relations and correlations may be 
reversed and still have equivalent models. It is also important to 
note that there are six possible two-way interactions, four three-way 
interactions, and one four-way interactions that may be necessary to 
accurately represent the data.

Chapter 14
14.1. The dummy codes listed correspond to the difference between the 

control and cognitive (C1) and between control and psychoanalytic 
(C2). 

  Group C1 C2
  Control 0 0
  Cognitive  1 0
  Psychoanalytic 0 1
14.3. This statement is true in that mediation ideas and theory are not 

strictly quantitative. However, it is somewhat inaccurate because in 
testing mediation ideas and theory, it is helpful to obtain quantita-
tive information on theory to assess effects.

14.5. The stage of the research would dictate the design. Let’s say that I 
start with studies of conceptual and action theory to understand 
what actions can be taken to change a mediator and also the extent to 
which the mediator is related to the dependent variables. Once a rea-
sonable strategy to change the mediators is determined, a random-
ized study would be planned to compare different theories about 
how the dependent variable comes about. After the results of this 
study are obtained, several follow-up experimental studies would be 
conducted, such as blockage or enhancement designs. Ideally quali-
tative studies would be conducted along with replication studies con-
sisting of extensions of the mediation theory to other contexts.
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Notation

Chapter 1
X Independent variable
M Mediating variable
Y Dependent variable
Z Third variable

Chapter 3
c Coeffi cient relating X to Y
a Coeffi cient relating X to M
b Coeffi cient relating M to Y adjusted for X
c′ Coeffi cient relating X to Y adjusted for M
bunadjusted Coeffi cient relating M to Y not adjusted for X
Hats above coeffi cients represent estimates or estimators, for example, â, 
b̂, ĉ, ĉ′, and âb̂, ĉ–ĉ
LCL Lower confi dence limit
UCL Upper confi dence limit
i intercept
e residual
MSE Mean Square Error
N Sample Size
z value on the standard normal distribution
t value on the t distribution
sfi rst standard error of âb̂ based on fi rst derivatives
ssecond standard error of âb̂ based on fi rst and second derivatives
sunbiased unbiased standard error of âb̂

Chapter 4
rXY correlation between X and Y
rXM correlation between X and M
rMY correlation between M and Y
rXY.M correlation between X and Y partialled for M
rXM.Y correlation between X and M partialled for Y
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rMY.X correlation between M and Y partialled for X
R2

Y,XM correlation squared between Y and both X and M
E(X) Expectation of X
Cov[X,Y] Covariance of X and Y
θ parameter
Σθ covariance matrix among parameters
sX standard deviation of X
c’s standardized ĉ’ coeffi cient
σ2

e2
 population residual variance for Equation 3.2

σ̂2
e2

 sample estimate of residual variance for Equation 3.2
σ  standard error if subscript has a hat and standard deviation 

of an estimator if there is not a hat on the subscript
sâ standard error of â
σâT theoretical or true standard error of â
σâ  standard deviation of estimated â across replications in the 

Monte Carlo study
s̄â  average standard error of â across replications in the Monte 

Carlo study

Chapters 6 and 7
RMSEA Root mean square error of approximation
B Beta matrix of coeffi cients relating dependent variables
β Beta, elements in the B matrix
 Γ  Gamma matrix of coeffi cients relating independent (exogenous) 

to dependent (endogenous) variables
γ Gamma, the elements in the Γ matrix
Λy  Lambda Y is the matrix of coeffi cients relating indicators of Y 

to latent measures
λy Lambda y, elements of Λy

Λx  Lambda X is the matrix of coeffi cients relating indicators of X 
to latent measures

λx Lambda x, elements of Λx

Φ  Phi, covariance matrix among independent (exogenous) latent 
variables

ϕ  Phi, elements of Φ
Ψ  Psi, covariance matrix among dependent (endogenous) latent 

variables
ψ  Psi elements of Ψ
Θδ Theta delta, matrix of errors in X variables
θδ  Theta delta, elements of θδ matrix 
Θε Theta epsilon, matrix of errors in Y variables
θε  Theta epsilon, elements of θε matrix
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η Eta, latent dependent variables
ξ Ksi, latent independent variables
ζ Zeta, residual variance for latent dependent variables
p Number of observed dependent or Y variables
q Number of observed independent or X variables
m Number of latent independent η variables
n Number of latent dependent ξ variables
VΛy Selection matrix for partial derivatives for Λy

VB Selection matrix for partial derivatives for B 
VΓ Selection matrix for partial derivatives for Γ
Tηη  Total effects of latent dependent variables on latent depen-

dent variables.
Iηη  Indirect effects of latent dependent variables on latent depen-

dent variables.
Tηξ  Total effects of latent independent variables on latent depen-

dent variables
Iηξ  Indirect effects of latent independent variables on latent 

dependent variables.
Iyη Indirect effects of latent dependent variables on Y
Iηξ Indirect effects of latent independent variables on Y
se standard error
sd standard deviation

Chapter 8
τx intercepts for X variables
τy intercepts for Y variables
κ intercepts for latent independent (exogenous) variables
α intercepts for latent dependent (endogenous) variables
IXi intercept for X
S1 stability coeffi cient
IMi LGC intercept for the M variable
SMi LGC slope for the M variable
IMOi LGC intercept for the prediction of IMi

SMOi LGC intercept for the prediction of SMi

ΔM2  Latent difference between wave 2 and wave 1 for the M 
variable

Mt Mediator stage at time t
nMt Not in Mediator at time t

Chapter 9
ICC Intraclass correlation
β0j Group level intercept for j groups in the multilevel model

ER64296_C018.indd   459ER64296_C018.indd   459 11/14/07   11:53:51 AM11/14/07   11:53:51 AM



460 Appendix B

eij  Individual error associated with the ith individual in the jth 
group in the multilevel model

γ00  Overall mean of the groups in the regression models where 
group mean is the dependent variable in the multilevel model

u0j  Random deviation of the predicted group-level mean from 
the observed group-level mean in the multilevel model

τoo  Var (u0j) Variation between group means in the multilevel 
model

σ2  variance of the residuals at the individual level in the multi-
level model

u1j  Random error of the a coeffi cient at the group level in the 
multilevel random effects model

u2j  Random error of the b coeffi cient at the group level in the 
multilevel random effects model

u3j  Random error of the c′ coeffi cient at the group level in the 
multilevel random effects model

Chapter 11
Y* Continuous latent variable underling a categorical variable
ĉcorrected ĉ coeffi cient corrected to be in the same metric as ĉ′
σ̂2

Equation 11.3 Estimated residual variance in Equation 11.3

Chapter 13
RCM Rubin’s causal model
ACE Average causal effect
FACE Prima facie causal effect
C-FACE Covariate adjusted prima facie causal effect
ITT Intention to treat
TOT Treatment effect among treated
ICC Intraclass correlation
LATE Local average treatment effect
SUTVA Stable unit treatment value assumption
ALICE Additive linear and constant effects
M′ Predicted value of M
U set of units
u Individual unit
K Set of conditions
t Treatment or encouragement to study
c Control or no encouragements to study
X(u) Unit in a condition
M(u,x) Mediator score for unit u in condition x
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Y(u,x,m)  Dependent variable score for unit u in condition x and a 
value of m

Y(u,t,m)  Score for unit u if u is encouraged to study and studies 
m hours

Y(u,c,m)  Score for unit u if u is not encouraged to study and studies 
m hours

Y(u,c, M(c))  Score for unit u if u is not encouraged to study, and a medi-
ator score in the control group

Y(u,t, M(t))  Score for unit u if u is encouraged to study, and a mediator 
score in the treatment group

p  Constant number of hours that encouragement increases 
each student’s amount of study; the causal effect of t on M

f + pBc  Constant linear improvement in test scores due to encour-
agement to study; the causal effect of t on Y

f  Constant amount that encouragement increases the test  
scores of a student who always studies m hours; the causal 
effect of encouragement on test scores for a student who 
always studies m hours

Bc  Constant amount that studying 1 more hour increases a 
student’s test score 

g  Average value of test scores for students when they are not 
encouraged to study and they do not study for all students 
who would study an amount m when they are not encour-
aged to study 

d  Slope relating the more a student studies when not encour-
aged, the higher he or she would score on the test without 
studying and without encouragement 
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