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6.4 Lévy processes: Properties and examples . . . . . . . . . . . 320
6.4.1 Definition and properties of Lévy processes . . . . . . 320
6.4.2 Examples of Lévy processes . . . . . . . . . . . . . . . 324
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7.3 Special Lévy models and their simulation . . . . . . . . . . . 340
7.3.1 The Esscher transform . . . . . . . . . . . . . . . . . . 341
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Chapter 1

Introduction and User Guide

1.1 Introduction and concept

Monte Carlo methods are ubiquitous in applications in the finance and
insurance industry. They are often the only accessible tool for financial engi-
neers and actuaries when it comes to complicated price or risk computations,
in particular for those that are based on many underlyings. However, as they
tend to be slow, it is very important to have a big tool box for speeding them
up or – equivalently – for increasing their accuracy. Further, recent years have
seen a lot of developments in Monte Carlo methods with a high potential for
success in applications. Some of them are highly specified (such as the Ander-
sen algorithm in the Heston setting), others are general algorithmic principles
(such as the multilevel Monte Carlo approach). However, they are often only
available in working papers or as technical mathematical publications.

On the other hand, there is still a lack of understanding of the theory of
finance and insurance mathematics when new numerical methods are applied
to those areas. Even in very recent papers one sees presentations of big break-
throughs when indeed the methods are applied to already solved problems or
to problems that do not make sense when viewed from the financial or insur-
ance mathematics side.

We therefore have chosen an approach that combines the presentation of
the application background in finance and insurance together with the theory
and application of Monte Carlo methods in one book. To do this and still keep
a reasonable page limit, compromises in the presentation are unavoidable. In
particular, we will not to give strict formal proofs of results. However, one
can often use the arguments given in the book to construct a rigorous proof
in a straightforward way. If short and nontechnical arguments are not easy
to provide, then the related references are given. This will keep the book at
a reasonable length and allow for fluent reading and for getting fast to the
point while avoiding burdening the reader with too many technicalities. Also,
our intention is to give the reader a feeling for the methods and the topics via
simple pedagogical examples and numerical and graphical illustrations. On
this basis we try to be as rigorous and detailed as possible. This in particular
means that we introduce the financial and actuarial models in great detail
and also comment on the necessity of technicalities.

1
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In our approach, we have chosen to separately present the Monte Carlo
techniques, the stochastic process basics, and the theoretical background and
intuition behind financial and actuarial mathematics. This has the advantage
that the standard Monte Carlo tools can easily be identified and do not need
to be separated from the application by the reader. Also, it allows the reader
to concentrate on the main principles of financial and insurance mathematics
in a compact way. Mostly, the chapters are as self-contained as possible,
although the later ones are often building up on the earlier ones. Of course,
all ingredients come together when the applications of Monte Carlo methods
are presented within the areas of finance and insurance.

1.2 Contents

We have chosen to start the book with a survey on random number gen-
eration and the use of random number generators as the basis for all Monte
Carlo methods. It is indeed important to know whether one is using a good
random number generator. Of course, one should not implement a new one
as there are many excellent ones freely available. But the user should be able
to identify the type of generator that his preferred programming package is
offering or the internal system of the company is using. Modern aspects such
as parallelization of the generation of random numbers are also touched and
are important for speeding up Monte Carlo methods.

This chapter is followed by an introduction to the Monte Carlo method,
its theoretical background, and the presentation of various methods to speed
them up by what is called variance reduction. The application of this method
to stochastic processes of diffusion type is the next step. For this, basics of
diffusion processes and the Itô calculus are provided together with numerical
methods for solving stochastic differential equations, a tool that is essential for
simulating paths of e.g. stock prices or interest rates. Here, we already present
some very recent methods such as the statistical Romberg or the multilevel
Monte Carlo method.

The fifth chapter contains an introduction to both classical stock option
pricing, more recent stock price models in the diffusion context, and interest
rate models. Here, many nonstandard models (such as stochastic volatility
models) are presented. Further, we give a lot of applications of Monte Carlo
methods in option pricing and interest rate product pricing. Some of the
methods are standard applications of what have been presented in the pre-
ceding chapters, some are tailored to the financial applications, and some have
been developed more recently.

In the sixth and seventh chapters we leave the diffusion framework. Stochas-
tic processes that contain jumps such as jump-diffusions or Lévy processes en-
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ter the scene as the building blocks for modelling the uncertainty inherent in
financial markets. Developing efficient Monte Carlo methods for Lévy models
is a very active area that still is at its beginning. We therefore only present
the basics, but also include some spectacular examples of specially tailored
algorithms such as the variance gamma bridge sampling method.

Finally, in Chapter 8, some applications of Monte Carlo methods in ac-
tuarial mathematics are presented. As actuarial (or insurance) mathematics
has many aspects that we do not touch, we have only chosen to present some
main areas such as premium priniciples, life insurance, nonlife insurance, and
asset-liability management.

1.3 How to use this book

This book is intended as an introduction to both Monte Carlo methods and
financial and actuarial models. Although we often avoid technicalities, it is
our aim to go for more than just standard models and methods. We believe
that the book can be used as an introductory text to finance and insurance
for the numerical analyst, as an introduction to Monte Carlo methods for the
practitioners working in banks and insurance companies, as an introduction
to both areas for students, but also as a source for new ideas of presentation
that can be used in lectures, as a source for new models and Monte Carlo
methods even for specialists in the areas. And finally the book can be used as
a cooking book via the collection of the different algorithms that are explicitly
stated where they are developed.

There are different ways to read the contents of this book. Although we
recommend to have a look at Chapter 2 and the aspects of generation of
random numbers, one can directly start with the presentation of the Monte
Carlo method and its variants in Chapters 3 and 4. If one is interested in the
applications in finance then Chapter 5 is a must. Also, it contains methods
and ideas that will again be used in Chapters 6 through 8.

If one is interested in special models then they are usually dealt with in
a self-contained way. If one is only interested in a special algorithm for a
particular problem then this one can be found via the table of algorithms.

1.4 Further literature

All topics covered in this book are popular subjects of applied mathematics.
Therefore, there is a huge amount of monographs, survey papers, and lecture
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notes. We have tried to incorporate the main contributions to these areas. Of
course, there exist related monographs on Monte Carlo methods. The book
that comes closest to ours in terms of applications in finance is the excellent
monograph by Glasserman (2004) which is a standard reference for financial
engineers and researchers. We have also benefitted a lot from reading it, but
have of course tried to avoid copying it. In particular, we have chosen to
present financial and actuarial models in greater detail. A further recent and
excellent reference is the book by Asmussen and Glynn (2007) that has a
broader scope than the applications in finance and insurance and that needs
a higher level of preknowledge as our book. In comparison to both these
references, we concentrate more on the presentation of the models.

More classic and recent texts dealing with Monte Carlo simulation are Ru-
binstein (1981), Hammersley and Handscomb (1964), or Ugur (2009) who also
considers numerical methods in finance different from Monte Carlo.

1.5 Acknowledgments

As with all books written there are many major and minor contributors
besides the authors. We have benefitted from many discussions, lectures,
and results from friends and colleagues. Also, our experiences from recent
years gained from lecture series, student comments, and in particular industry
projects at the Fraunhofer Institute for Industrial Mathematics ITWM at
Kaiserslautern entered the presentations in the book.

We are happy to thank Christina Andersson, Roman Horsky and Henning
Marxen for careful proof reading and suggestions. Assistance in providing
numbers and code from Georgi Dimitroff, Nora Imkeller, and Susanne Wendel
is gratefully acknowledged. Further, the authors thank Hansjörg Albrecher
and participants of the 22nd Summer School of the SWISS Association of
Actuaries at the University of Lausanne for many useful comments, good
questions, and discussions.

Finally, the staff at Taylor & Francis/CRC Press has been very friendly
and supportive. In particular, we thank (in alphabetical order) Rob Calver,
Kevin Craig, Shashi Kumar, Linda Leggio, Sarah Morris, Katy Smith, and
Jessica Vakili for their great help and encouragement.



Chapter 2

Generating Random Numbers

2.1 Introduction

2.1.1 How do we get random numbers?

Stochastic simulations and especially the Monte Carlo method use random
variables (RVs). So the ability to provide random numbers (RNs) with a
specified distribution becomes necessary. The main problem is to find num-
bers that are really random and unpredictable. Of course, throwing dice is
much too slow for most applications as usually a lot of RNs are needed. An
alternative is to use physical phenomena like radioactive decay, which is often
considered as a synonym for randomness, and then to transform measurements
into RNs. With the right equipment this works much faster. But how can one
ensure that the required distribution is mimicked? Indeed, modern research
makes it possible to use physical devices for random number generation by
transforming the measurements so that they deliver a good approximation to a
fixed distribution, but those devices still are too slow for extensive simulations.
Another disadvantage is that the sequence of RNs cannot be reproduced un-
less they have been stored. Reproducibility is an important feature for Monte
Carlo methods, e.g. for variance reduction techniques, or simply for debugging
reasons. However, physical random number generators (RNGs) are useful for
applications in cryptography or gambling machines, when you have to make
sure that the numbers are absolutely unpredictable.

The RNs for Monte Carlo simulations are usually generated by a numerical
algorithm. This makes the sequence of numbers deterministic which is the
reason why those RNs are often called pseudorandom numbers. But if we
look at them without knowing the algorithm they appear to be random. And
in many statistical tests they behave like true random numbers. Of course,
as they are deterministic, they will fail some tests. When choosing a RNG we
should make sure that the RNs are thoroughly tested and we should be aware
which tests they fail.

First of all, we concentrate on generating uniformly distributed RNs, es-
pecially uniformly distributed real RNs on the interval from zero to one,
u ∼ U [0, 1], U (0, 1), U (0, 1] or U [0, 1). Theoretically, whether 1 or 0 are
included or not does not matter, as the probability for a single number is
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zero. But the user should be aware whether the chosen RNG delivers zeroes
and ones as this might lead to programme crashes, as e.g. ln(0).

In a second step these uniformly distributed RNs will be transformed into
RNs of a desired distribution (such as e.g. the normal or the gamma one).

Nowadays there exist a lot of different methods to produce RNs and the
research in this area is still very active. The reader should be aware that the
top algorithms of today might be old-fashioned tomorrow. Also the subject
of writing a good RNG is so involved that it cannot be covered here in all its
details. So, we will not describe the perfect RNG in this chapter (in fact it
does not exist!). Here we will give the basics for understanding a RNG and
being able to judge its quality. Also, we will try to give you some orientation to
choose the one that suits your problem. After reading this chapter you should
not go and write your own RNG, except for research reasons and to collect
experience. It is better to search for a good, well-programmed and suitable
up-to-date RNG, or to check the built-in one in your computer package, accept
it as usable, and be happy with it (for some time) or otherwise, if it is no good,
mistrust the simulation results.

Although implementing RNGs is such an enormous and complicated field,
we will present some simple algorithms here so that you can experiment a
little bit for yourself. But do not see those algorithms as recommendations,
the only aim is to get familiar with the technical terms.

2.1.2 Quality criteria for RNGs

For a reliable simulation good random numbers are imperative. A bad RNG
could cause totally stupid simulation results which can lead to false conclu-
sions. Before using an built-in RNG of a software programme, it should be
checked first. Here are some quality criteria the user should be aware of.

• Of course, uniformly distributed RNs ∼ U [0, 1] should be evenly dis-
tributed in the interval [0, 1], but the structure should not be too regular.
Otherwise they will not be considered as random. However, in some simula-
tion situations we are able to take advantage of regular structures, especially
when working with smooth functions. In these cases we can use quasirandom
sequences, which do not look random at all, but are very evenly distributed.

• As in Monte Carlo simulations, where we often need lots of RNs, it should
be possible to produce them very fast and efficiently without using too much
memory. So, speed and memory requirements matter.

• RN algorithms work with a finite set of data due to the construction prin-
ciple of the algorithm and due to the finite representation of real numbers in
the computer. So the RNG will eventually repeat its sequence of numbers.
The maximal length of this sequence before it is repeated is called the period
of the RNG. For the extensive simulations of today huge amounts of RNs are
needed. Therefore the period must be long enough to avoid using the same
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RNs again. A rule of thumb says that the period length of the RNG should
be at least as long as the square of the quantity of RNs needed. Otherwise
the deterministic aspect of the RNG comes into play and makes the RNs cor-
related. In former times RNGs with a period of about 1019 were considered
as good, but nowadays those algorithms are considered as insufficient. Even
worse, there are still RNGs with a period of only 105 in use, especially built-in
RNGs, which are often the cause for severely bad Monte Carlo simulations.

• In cryptography the unpredictability of the RNs is essential. This is not
really necessary for Monte Carlo methods. It is more important that RNs ap-
pear to be random and independent, and pass statistical tests about being
independent, identically distributed (i.i.d.) RNs ∼ U [0, 1].

• Within Monte Carlo methods the sequence of RNs should be reproducible.
First because of debugging reasons. If we get strange simulation results, we
will be able to examine the sequence of RNs. Also it is quite common in
some applications, e.g. in sensitivity analysis, to use the same sequence again.
Another advantage is the possibility to compare different calculation methods
or similar financial products in a more efficient way by using the same RNs.

• The algorithm should be programmed so that it delivers the same RNs in
every computer, also called portability. It should be possible to repeat cal-
culations in other machines and always obtain the same result. The same seed
for initialization should always return the same RN sequence.

• To make calculations very fast it is often desirable to use a computer with
parallel processors. So the possibility of parallelization is another impor-
tant point of consideration. One option is e.g. to jump ahead quickly many
steps in the sequence and produce disjoint substreams of the stream of RNs.
Another option is to find a family of RNGs which work equally well for a large
set of different parameters.

• The structure of the random points is very important. A typical feature of
some RNGs is that if d-dimensional vectors are constructed out of consecutive
RNs, then those points lie on hyperplanes. Bad RNGs have only a few hy-
perplanes in some dimensions which are far apart, leaving huge gaps without
any random vectors in space. Further, one should be aware if there is a severe
correlation between some RNs. For example, if the algorithm constructs a
new RN out of two previous RNs, groups of three RNs could be linked too
closely. This correlation can lead to false simulation results if the model has
a structure that is similar.

• Sometimes it is necessary to choose random number generators which are
easy to implement, i.e. the code is simple and short. This is a more general
point and applies to all parts of the simulation. Very often it is useful to have
a second simulation routine to check important simulation results. In this
case, code which is easy to read increases the possibility that it is bug-free.
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2.1.3 Technical terms

All RNGs that are based on deterministic recurrences can be described as
a quintuple (S, μ, f,U , g) (see L’Ecuyer [1994]), where

• S is the finite set of states, the so-called state space.

• sn ∈ S is a particular state at iteration step n.

• μ is the probability measure for selecting s0, the initial state, from S. s0 is
called the seed of the RNG.

• The function f , also called the transition function, describes the algo-
rithm, sn+1 = f (sn).

• U is the output space. We will mainly consider [0, 1], [0, 1), (0, 1] or (0, 1).

• The output function g : S → U maps the state sn ∈ S into a number
un ∈ U , the final random number that we are interested in.

REMARK 2.1 1. The importance of the seed that invokes the RNG
should not be underestimated. One cause of strange simulation results is
often that the RNG has not been seeded or has been started with a zero
vector. Another reason is that some seeds have to be avoided as they lead
to bad RN sequences, e.g., a seed that contains mainly zeroes might lead to
RNs that do not differ much. Further, it is advisable to save the seed for
debugging.

2. As real numbers can only be presented with finite accuracy in computers,
the set of states S must be finite and so the range g (S) ⊂ U is also finite. As
we are interested in an even distribution, we want the gaps in [0, 1) not to be
too large. Therefore, S has to be a large set.

3. Another consequence of S being finite is that sn+ρ = sn for some integer
ρ, meaning the sequence will repeat itself eventually. The smallest number ρ
for which this happens is called the period of the RNG. It cannot be larger
than |S|, another reason for the set of states being huge. In some generators
the period might be different for different seeds and the RN cycles are then
disjoint. So we have to be careful with which seed we start.

2.2 Examples of random number generators

2.2.1 Linear congruential generators

The linear congruential method was one of the first RNGs. Linear congru-
ential generators (LCGs) were first introduced by Lehmer (1949) and were
very popular for many years.



Generating Random Numbers 9

Algorithm 2.1 LCG

sn+1 = (asn + c) mod m, n ∈ N,

where
• m ∈ N \ {0} is called the modulus,

• a ∈ N is called the multiplier, a < m,

• c ∈ N is called the increment, c < m,

• s0 ∈ N is called the seed, s0 < m.

Numbers in [0, 1) are obtained via

un =
sn
m
.

These generators are often denoted by LCG(m, a, c). The state space can
be described as

S ⊆ N, S = {0, 1, . . . ,m− 1} or {1, 2, . . . ,m− 1} .

For the increment c = 0 the generator cannot be started with s0 = 0. Then 0
is excluded from the set of states.

Choosing coefficients

Often the modulus m is chosen as a prime. Then all calculations are done
in the finite field Zm. Preferred moduli are Mersenne Primes, primes of the
form 2k − 1, e.g. 231 − 1 = 2147483647, the largest 32-bit signed integer.
Sometimes a power of 2 is chosen as the modulus, because calculations can
be made faster by exploiting the binary structure of computers. But then the
lower order bits of the RNs are highly correlated, especially the last bit of
the states sn is either constant or strictly alternates between 0 and 1. This
means that all our integer RNs sn are either even or odd or we have a regular
even/odd pattern.

If the period of such a generator is m or m−1 (in the case of c = 0) we call
this property full period as this is the maximum possible period length. In
order to achieve a long period it is advisable to choose a very large number as
the modulus. Further, the increment and the multiplier have to be selected
to create a generator with full period. If c = 0, m is a prime, a is a primitive
root modulo m, then the generator has full period. For c �= 0 the criteria for
full period are more complicated (see e.g. Knuth [1998]): the only common
divisor ofm and c should be 1, every prime number that divides m should also
divide a− 1; if m is divisible by 4, then a− 1 should also have the divisor 4.
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Implementation issues

Our next task is the implementation of the algorithm. If the modulus m is
near the maximum integer and also the multiplier a is quite large, then the
calculation step done with integer arithmetics can lead to an overflow. We
then get errors or, in the better case, our code will be machine dependent
and is no longer portable. To circumvent this difficulty there are several
possibilities:

• Instead of integer arithmetic we can work with floating-point arithmetic. For
example, in 64-bit floating-point arithmetic integers up to 253 are represented
exactly. So we just take care that a (m− 1) ≤ 253.

• As we work in the ring Zm, we could consider multiplying with −ā instead
of multiplying with a, where ā = m− a is the additive inverse of a.

• Another technique is called approximate factoring. If m is large and
a not too large, e.g. a <

√
m, then we decompose m = aq + r, i.e. r = m

mod a , q = 
m/a�. The complicated part of the iteration step is done by

(asn) mod m =
{
a (sn mod q) − r
z/q� if it is ≥ 0
a (sn mod q) − r
z/q� +m otherwise (2.1)

As the parameter r is small this method avoids overflows. This trick also
works when a = 
m/k� with an integer k <

√
m.

• The powers-of-two decomposition can be applied when a can be written
as a sum or a difference of a small number of powers of 2, e.g. a = 23 + 28.
Then the modulus is decomposed as m = 2k − h with integers k, h ∈ N. Now
(asn) mod m can be efficiently calculated using shifts, masks, additions,
subtractions, and a single multiplication by h.

Disadvantages of LCGs

LCGs should no longer be used for important simulations. First, much
better RNGs exist, and then they also have a lot of disadvantages:

• There exists a high sequential correlation between the RNs, so they do
not mimic randomness very well. For example, if the multiplier a is small
compared to the modulus m, then very small RNs are always followed by
another small RN. In a simulation this means that rare events could be too
close together or happen too often.

• The modulus m cannot be larger than the largest integer available in the
programming language and so the period, which is maximally m, is usually
not very long. In 32-bit computers the period is often only 231 − 1 and this is
simply too short nowadays.

• We take a closer look at the set of all possible t-dimensional vectors filled
with consecutive RNs, the finite set Ψt := {(u1, u2, . . . , ut) |s0 ∈ S} ⊆ [0, 1)t
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RANDU.

(see Definition 2.2). If our pseudorandom numbers were indeed random and
independent, the t-dimensional hypercube would be filled evenly, without any
recognizable structure. But the pattern structure of Ψt from an LCG is very
regular – all points lie on equidistant, parallel hyperplanes. This is called the
lattice structure of the LCG.

Example 1: As a toy example, we take a look at the LCG sn+1 =
(1 · sn + 1) mod 3331. This “RNG” has full period, i.e. ρ = 3331. But
Ψ2 consists of only one “hyperplane” and one single point (see Figure 2.1).

Example 2: The LCG RANDU – given by a = 65539, c = 0, m = 231 –
was very popular for many years. But a look at the three-dimensional vectors
that are constructed out of consecutive RNs reveals that all the points from
Ψ3 lie on just 15 “hyperplanes”(see Figure 2.2).

Improving LCGs

The advantages of LCGs are that they are very fast, do not need much
memory, are easy to implement, and easy to understand. Still there are ap-
plications where good representatives of this type of generator are sufficient.

• One cannot avoid the lattice structure, so when working with an LCG, a
variant with many hyperplanes should be chosen. The key to judge this is
the spectral test (see Knuth [1998]). It computes the largest distance 1/lt
between two successive hyperplanes for a family of hyperplanes. Often the
value lt is computed for several Ψt, t ∈ N. It gives us a rough impression of
the number of hyperplanes in Ψt. If Ψt has many hyperplanes or 1/lt is small
for many t, the better is the generator. A rule says that lt ≤ 1 + a2 for the
case c = 0, so the multiplier a should not be too small.
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• There is the possibility to shuffle the sequence of RNs, eventually with the
help of another LCG (or any RNG) (see Knuth [1998]). The j-th value of
the original sequence is not the j-th output, instead it is kept in waiting po-
sition. The j-th value of the sequence or the value of the other RNG decides
which waiting position is freed, and this position is again filled up with the
momentary RN. This method removes parts of the serial correlation in the
RN sequence.

• Generally, we can combine the output of two (or even more) different LCGs.
Then we have a new type of RNG, called combined LCG. There are two
different methods to combine the generators (see also the next section):

Method 1: If u(1)
n ∈ [0, 1) is the output of LCG1, u(2)

n the output of LCG2,
then un = (u(1)

n + u
(2)
n ) mod 1 is the output of the combined generator.

Method 2: If s(1)n ∈ S is the n-th integer value in the sequence of LCG1,
s
(2)
n is that from LCG2, then we combine sn = (s(1)n + s

(2)
n ) mod m1, where

m1 is the modulus from LCG1 with m1 > m2.

Recommended LCGs

LCGs of good quality can e.g. be used for shuffling sequences or seeding
other RNGs. A combined generator is good enough for small-scale simula-
tions. In Table 2.1, we list some recommended choices for the parameters (see
Entacher [1997], Press et al. [2002]).

Known as LCG(m, a, c) Period
Park and Miller LCG(231 − 1, 16807, 0) 231 − 2
Fishman and Moore LCG(231 − 1, 950706376, 0) 231 − 2
Fishman LCG(231 − 1, 48271, 0) 231 − 2
L’Ecuyer LCG(231 − 249, 40692, 0) 231 − 250
ran2 (combined LCG) LCG1(2147483563, 40014, 0)

LCG2(2147483399, 40692, 0) 2.3 × 1018

Table 2.1: Linear Congruential Generators

2.2.2 Multiple recursive generators

Multiple recursive generators (MRGs) are a generalization of linear gen-
erators and are as easy to implement. With the same modulus their periods
are much longer and their structure is improved. We are considering only
homogeneous recurrences with c = 0 as every inhomogeneous recurrence can
be replaced by a homogeneous one of higher order with suitable initial values.
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Algorithm 2.2 MRG

sn = (a1sn−1 + . . .+ aksn−k) mod m, n ∈ N, n ≥ k,

where
• m ∈ N \ {0} is the modulus,

• ai ∈ N are the multipliers, i = 1, . . . , k, ai < m,

• k with ak �= 0 is the order of the recursion, k ≥ 2,

• s0 = (s0, s1, . . . , sk−1) ∈ N
k is the seed, si < m, i = 0, . . . , k − 1.

Numbers in [0, 1) are obtained by

un =
sn+k−1

m
, n > 0.

The state space of an MRG can be described as

S ⊆ N
k, S = {0, 1, . . . ,m− 1}k \ {0} .

The initial vector s0 ∈ S can be chosen arbitrarily, only the vector 0 has
to be excluded from the set of states. The n-th vector in the sequence is
sn = (sn+k−1, . . . , sn+1, sn) ∈ S. Besides ak �= 0 there has to be at least
one other coefficient ai �= 0. This algorithm can be rewritten with a matrix
A ∈ N

k,k via

A =

⎛
⎜⎜⎜⎝

0 1 0
... 0 0
0 0 . . . 1
ak ak−1 . . . a1

⎞
⎟⎟⎟⎠ ,

sn+1 = (Asn) mod m.

(2.2)

Choosing coefficients

Nearly the same considerations as for LCGs apply here. With modulus
m the maximal possible period length is mk − 1, with k the order of the
recurrence. Hence, for k large, very long periods are possible, even with a
smaller modulus.

• If m is a prime number, it is possible to choose the coefficients ai, so that
the maximal period length can be achieved. The MRG has maximal period
if and only if the characteristic polynomial of the recurrence is primitive over
the field Zm (see L’Ecuyer [1999a]).

P (z) = det (zI − A) = zk − a1z
k−1 − . . .− ak. (2.3)

• If nearly all ai are zero (consider MRGs with ak �= 0, ar �= 0 for 0 < r < k,
ai = 0 for i �= k, r) then the algorithm is very fast, but the structure of
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FIGURE 2.3: Vectors from con-
secutive RNs.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0
0.2

0.4
0.6

0.8
1.

FIGURE 2.4: Vectors from selected
RNs.

the RNs is too coarse. There are too many gaps in space when vectors are
filled with RNs. If m and k are large with many coefficients ai �= 0, then the
structure is usually excellent, but the algorithm becomes rather slow.

• We take a closer look at the finite set Ψt of t-dimensional random vectors,
for which we will give a formal definition here as we will encounter it more
often in the following text.

DEFINITION 2.2

The set Ψt := {(u1, u2, . . . , ut) |s0 ∈ S} ⊆ [0, 1)t is the set of all t-dimensional
vectors produced by consecutive RNs from a distinctive RNG. s0 symbolizes
the seed, u1 is the first real RN produced with this seed, u2 is the second one,
and so on. This set is seen as a multiset and so |Ψt| = |S|. We will call it
“ the set of all t-dimensional output vectors”.

We further consider a generalized set ΨI := {(ui1 , ui2 , . . . , uit) |s0 ∈ S} ⊆
[0, 1)t where I = {i1, . . . , it} , ir ∈ N, is a finite index set.

With MRGs, these point sets have lattice structure and consist of equidis-
tant parallel hyperplanes. The largest distance between two successive hy-
perplanes 1/lt can be computed with the spectral test (see Section 2.3.1).
The coefficients ai should be chosen in such a way that 1/lt is small for
as many t as possible. It can be shown that for t > k the distance is
1/lt ≥ (1+a2

1+. . .+a2
k)
−1/2 (see L’Ecuyer [1997]). If the sum of squares of the

coefficients is small there will be only a few hyperplanes. The same relation
is true for sets I containing all indices corresponding to nonzero coefficients,
i.e. I = {1, k + 1, all j + 1 with ak−j �= 0}.
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Example: We look at the generator proposed by Mitchell and Moore in 1958
(unpublished by the authors; see Knuth [1998]):

sn = (sn−24 + sn−55) mod 231 (2.4)

This is a RNG with a nonprime modulus, so for the initialization not all
numbers in the seed vector should be even. Here we have the enormous
period of 230(255 − 1). Further, the method is extremely fast, because there
is no multiplication. In Figure 2.3 we look at a subset of 10, 000 points of
the set Ψ3 = (u1, u2, u3) filled with successive RNs. The points are evenly
distributed in space, and there are no huge gaps to be seen. In Figure 2.4
we see 10, 000 points of the set ΨI = (u1, u32, u56). This is exactly the set
of RNs that corresponds to the set of nonzero coefficients. This is indeed an
extreme example, because there are only two planes (and one single point).
RNGs with only two nonzero coefficients, both being one, have once been
quite popular, but they always have a low-dimensional index set with only
three hyperplanes. They may seem to be good in most applications, but if
a special simulation just depends on the most critical RNs in the sequence,
which happens in practice, the results will be unreliable.

2.2.3 Combined generators

MRGs with a good lattice structure have many nonzero coefficients which
are large as well. But these generators are no longer fast as a lot of multiplica-
tions have to be done. One way to improve fast multiple recursive generators
with poor lattice structure is to combine them. Typically, the component
generators of the combined RNGs have different moduli m.

Consider J distinct MRGs with

sn,j =
(
a1,jsn−1,j + . . .+ akj ,jsn−kj ,j

)
mod mj

n ∈ N, kj ∈ N, n ≥ kj , j = 1, . . . , J, (2.5)

where m1 = max {mj |j = 1, . . . , J}, akj ,j �= 0, and at least one other coef-
ficient ai,j �= 0 for each j. Now there are two possibilities to combine these
generators to obtain a new one:

vn = (d1sn+k−1,1 + . . .+ dJsn+k−1,J ) mod m1

un =
vn
m1

∈ [0, 1) ,
(2.6)

or

un =
(
d1sn+k−1, 1

m1
+ . . .+

dJsn+k−1,J

mJ

)
mod 1 ∈ [0, 1) (2.7)

with k = max {k1, . . . , kJ} and n > 0. The weight factors dj , j = 1, . . . , J are
integers −mj < dj < mj . The state space can be described as

S ⊆ N
k1,k2,...,kJ , S ⊆ {0, 1, . . . ,m1 − 1}k1 × . . .× {0, 1, . . . ,mJ − 1}kJ .
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Known as Coefficients Period
combMRG96a m1 = 231 − 1,m2 = 2145483479,

a11 = 0, a12 = 63308, a13 = −183326, ≈ 2185

a21 = 86098, a22 = 0, a23 = −539608
MRG32k3a m1 = 232 − 209,m2 = 232 − 22853,

a11 = 0, a12 = 1403580, a13 = −810728, ≈ 2191

a21 = 527612, a22 = 0, a23 = −1370589
MRG32k5a m1 = 232 − 18269,m2 = 232 − 32969,

a11 = a13 = 0, a12 = 1154721, a14 = 1739991, ≈ 2319

a15 = −1108499, a21 = 1776413, a22 = a24 = 0,
a23 = 865203, a25 = −1641052

Table 2.2: Combined Multiple Recursive 32-Bit Generators

The vector 0 should be excluded from the set of states, also vectors where
a complete section for one j ∈ {1, . . . , J} is zero. After that the seed vector
s0 = (s0,1, . . . , sk1−1,1, . . . , s0,J , . . . , skJ−1,J) ∈ S can be chosen arbitrarily.

If all coefficients are carefully chosen (e.g. m1, . . . ,mJ distinct primes, dj <
mj , k = k1 = . . . = kJ , each recurrence with maximal period ρj = (mk

j − 1))
(see L’Ecuyer [1996a]), then it can be shown that the combination in Equa-
tion (2.7) is equivalent to a MRG with modulus m = m1 · · ·mJ and period ρ,
where ρ is the least common multiple of ρ1, . . . , ρJ . Further, both variants of
the combined generator deliver nearly the same RNs if the moduli are close
to each other. So a combined RNG can be seen as a clever way to work with
a RNG with a huge modulus m, long period ρ, and a lot of nonzero coeffi-
cients, but which is however rather fast when the components have a lot of
zero coefficients.

One of the first combined MRGs, combMRG96a (see Table 2.2), can be
found in L’Ecuyer (1996a), where also an implementation in C with q-r de-
composition is given. However, an implementation with floating-point arith-
metic is much faster (see L’Ecuyer [1999a], where also 64-bit generators are
described). The other generators in Table 2.2 have also been described by
L’Ecuyer (1999a). Negative coefficients a < 0 are regarded as an additive
inverse to −a in the field Zm, i.e. ā = a +m > 0. All combinations are con-
structed as vn = (sn+k−1,1 − sn+k−1,2) mod m1, un = vn/m1 (see Equation
(2.6) with d1 = 1, d2 = −1)).

2.2.4 Lagged Fibonacci generators

The lagged Fibonacci RNGs (LFGs) are a generalization of the Fibonacci
series

sn = sn−1 + sn−2. (2.8)
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Note that this is obviously not a good RNG. However, some representatives
of the generalized versions create usable RNGs:

sn = sn−q � sn−p. (2.9)

The operator � can be addition, subtraction, or multiplication modulo m, or
the bitwise exclusive XOR-function. The lagged Fibonacci generators will be
noted as LFG(p,q,�), where p and q are called the lags, p, q ∈ N \ {0}, p > q.
Multiplication must be done on the set of odd integers. The modulus m can
be any integer, 1 included. In the latter case, sn are floating-point numbers
in the interval (0, 1).

These generators can be generalized by using three or more lags. LFGs
with addition or subtraction are special cases of MRGs, e.g. the Mitchell and
Moore RNG in Equation (2.4). As we have seen above these RNGs are not
good, some point sets in low dimensions consist of only a few hyperplanes.
The formerly very popular shift register generators, e.g. the infamous R250,
are another special case of LFGs, using the XOR-operation. Although very
fast, they are no longer recommended as they fail important statistical tests.

Multiplicative LFGs seem to belong to the group of good RNGs although
they are slower than the additive versions. If the modulus is a power of two,
2b, and the lags are chosen so that they are the exponents of a primitive
polynomial, then the period is 2b−2(2p−1). Multiplicative LFGs have the
speciality to own several independent, full-period RN cycles. Seed tables can
be created for seeds that start disjoint cycles.

2.2.5 F2-linear generators

Another idea to speed up implementation is to exploit the binary represen-
tation of numbers in the computer. So we are looking for algorithms using
only 0’s and 1’s. Therefore, we work in the field F2 with elements {0, 1},
i.e. all operations are performed modulo 2. Addition in F2 is just the binary
exclusive-or (XOR) operation, ⊕:

(x+ y) mod 2 is equivalent to x⊕ y, x, y ∈ F2. (2.10)

To start the sequence, F2-linear generators have to be initialized with a seed
vector x0 = (x0, x1, . . . , xk−1) ∈ S. The state space can be described as

S = {0, 1}k \ {0} .

With this in mind, the period of the generator cannot be larger than 2k−1 as
this is the maximum of possible values for xn, zero vector excluded. The length
of the period can be determined by analyzing the characteristic polynomial
of the matrix A,

P (z) = det (zI − A) = zk − α1z
k−1 − . . .− αk−1z

1 − αk, (2.11)
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Algorithm 2.3 F2-linear generators

xn+1 = Axn, xn ∈ F
k
2 , A ∈ F

k,k
2

yn+1 = Bxn+1, yn+1 ∈ F
w
2 , B ∈ F

w,k
2

• xn is called the k-bit state vector at step n, n ∈ N, k ∈ N \ {0},
• yn is called the w-bit output vector, w ∈ N \ {0},
• A is called the transition matrix,

• B is called the output matrix or tempering.

The final output un ∈ [0, 1) is then generated via

un =
w∑
i=1

yn,i−12−i = 0.yn,0yn,1 . . . yn,w−1 (in binary representation).

where αj ∈ F2, j = 1, . . . , k, α1 = trace (A) , αk = detA. With this polyno-
mial a linear recurrence in F2 can be defined: (see also L’Ecuyer [1994])

vn = α1vn−1 + . . .− αk−1vn−k+1 + αkvn−k (2.12)

If αk = 1, meaning the rank of A is maximal, then this recurrence is of order
k and every xn,i, n > 0, i = 0, . . . , k − 1, from the Algorithm 2.3 follows this
recursion. If the polynomial P (z) is primitive over F2, the recurrence (2.12)
has maximal period 2k−1 and consequently the first recurrence in Algorithm
2.3 also. The matrix B is often used to improve the distribution of the output,
but in many cases it is just the w×w-identity matrix with k−w zero columns
added.

Linear feedback shift register generators

Special cases of F2-linear generators are the Tausworthe generators, also
known as linear feedback shift register (LFSR) generators.

Algorithm 2.4 Linear feedback shift register generators

xn = (a1xn−1 + . . .+ akxn−k) mod 2, n ≥ k, ai ∈ {0, 1}
with output

un =
w∑
i=1

xns+i−12−i, w, s ∈ N.
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The generation of uniformly distributed real numbers can be seen as taking
a block of w bits (word length) every s steps (stepsize). To start the
algorithm, a seed vector x0 = (x0, x1, . . . , xk−1) ∈ S has to be chosen. The
characteristic polynomial of the first recurrence in Algorithm (2.4) is

P (z) = zk − a1z
k−1 − . . .− ak. (2.13)

The recurrence has period length 2k−1 if and only if P is a primitive polyno-
mial. If the stepsize s is relatively prime to 2k − 1, then the sequence of real
RNs also has period 2k − 1. The algorithm can be rewritten with the matrix
A = Ãs, where

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 0 0

. . .
0 1 0
0 0 1
ak ak−1 . . . a2 a1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ F
k,k
2 ,

xn = (xns, xns+1, . . . , xns+k−1)
T
,

xn+1 = Ãsxn.

(2.14)

An example of a popular LFSR generator is the formerly popular R250
xn = xn−103 ⊕ xn−250 with period 2250 − 1, which was already mentioned
in Section 2.2.4. The R250 belongs to the class of trinomial-based LFSR
generators, because the characteristic polynomial has only three nonzero coef-
ficients. The generators in this class are very fast but they fail some important
statistical tests. LFSR generators do not have good equidistribution proper-
ties (see Section 2.3.2). Nevertheless, LFSR generators are useful for produc-
ing random signs or ideal for the Monte Carlo exploration of a binary tree for
decisions whether to branch left or right. And most importantly, they are a
good basis for combined generators, which finally have good equidistribution
properties.

Combined F2-linear generators

We can combine J different mod-2-RNGs with parameters (kj , w,Aj ,Bj),
j = 1, . . . , J . All the B-matrices must have the same number w of rows.
Then we get J different xj,n = Ajxj,n−1-sequences, j = 1, . . . , J , which are
combined into a single yn-sequence

yn = B1x1,n ⊕ B2x2,n ⊕ . . .⊕ BJxJ,n. (2.15)

The random number in [0, 1) is then constructed as

un =
w∑
i=1

yn,i2−i = 0.yn,1 . . . yn,w (2.16)
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It can easily be seen that the combined generator is just a normal F2-linear
generator with k = k1 + . . .+ kJ , the matrix A is a big block-diagonal matrix
A = diag (A1, . . . ,AJ ), and the columns of B consist of the columns of all
Bj , i.e. B = (B1, . . . ,BJ).

The combined generator cannot have full period. The period is as large
as the least common multiple of its component generators. But with a good
choice of parameters it is possible to get very close to the theoretical full
period of 2k − 1 (see L’Ecuyer [1999b]).

Interesting combined generators are the combination of three or four tri-
nomial-based LFSR generators. With their few nonzero coefficients each single
generator works very fast. If the combined generators are chosen cleverly, the
combined generators can have very large periods with characteristic polyno-
mials that have a lot of nonzero coefficients, which take care that the RNs
are well distributed. So we can achieve fast RNGs with excellent distribu-
tion properties. L’Ecuyer (1999b) presents several tables of combinations of
three or four fast LFSR generators with excellent equidistribution properties.
Those combinations are maximally equidistributed and further collision-free
(see Section 2.3.2). Also, implementations in C++ are given in L’Ecuyer’s
paper.

As an example we reformulate L’Ecuyer’s entry no. 62 from table 1 as an
algorithm (see Algorithm 2.5). This RNG has a period of about 2113 and is a
combination of four different 32-bit LFSR generators.

Algorithm 2.5 Example of a combined LFSR generator
This RNG consists of four trinomial-based LFSR generators of degrees 31, 29,
28, and 25.

x1,n = x1,n−25 + x1,n−31 mod 2,
x2,n = x2,n−27 + x2,n−29 mod 2,
x3,n = x3,n−15 + x3,n−28 mod 2,
x4,n = x4,n−22 + x4,n−25 mod 2.

Numbers in [0, 1) for each generator are generated by

u(j, n) =
w∑
i=1

xj,nsj+i−12−i, j = 1, . . . , 4.

The stepsizes are s1 = 16, s2 = 24, s3 = 11, s4 = 12, and the word length is
w = 32, the final RN in [0, 1) is the XOR-combination

un = u1,n ⊕ u2,n ⊕ u3,n ⊕ u4,n.



Generating Random Numbers 21

Generalized feedback shift register generator and Mersenne Twister

The most famous RNG in the F2-category is the Mersenne Twister MT19937
(see Matsumoto and Nishimura [1998]) with the tremendously large period
length of 219937 − 1. The Mersenne Twister is a variant of a generalized
feedback shift register (GFSR) generator.

Algorithm 2.6 GFSR
The n-th iterate x̃n ∈ {0, 1}pq is calculated as x̃n = Ax̃n−1, where

A =

⎛
⎜⎜⎜⎜⎜⎝

S1 S2 Sq−1 Sq
Ip 0

Ip
. . .

...
0 Ip 0

⎞
⎟⎟⎟⎟⎟⎠

with Si ∈ {0, 1}p,p, Ip the p× p-identity matrix.

In the case of w = p, B consisting of the first rows of an identity matrix,
Sr = Sq = Ip for some 1 ≤ r < q, Si = 0 for i /∈ {r, q}, we have got
a trinomial-based generalized feedback shift register (GFSR) generator. By
denoting xn := (x̃n,1, . . . , x̃n,p) ∈ {0, 1}p we have

xn = xn−r ⊕ xn−q.

The lower bits of the vector x̃n are just shifted.

Sometimes GFSR generators have more than two matrices Si = Ip. This
means that xn is constructed with several p-dimensional parts from previous
vectors combined by bitwise XOR. GFSR generators can be effectively im-
plemented and are therefore very fast, but the maximal period of a GFSR
generator is just 2q − 1, no matter how many matrices are nonzero. This is a
bit disappointing, because with x̃ ∈ {0, 1}pq we would expect a much longer
period. This motivated the construction of the Mersenne Twister.

In the Mersenne Twister framework we work with matrix Sq in the form

Sq =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 s1
1 0 0 s2

0 1
...

0
. . . 0 sp−1

0 0 1 sp

⎞
⎟⎟⎟⎟⎟⎟⎠
, Sq ∈ {0, 1}p,p , si ∈ {0, 1} . (2.17)

If further Sr = Ip for some r ∈ {1, . . . , q}, Si = 0 for i /∈ {r, q}, then this
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RNG is called the twisted GFSR (TGFSR) generator. Instead of the last
equation in Algorithm 2.6 we then have

xn = xn−r ⊕ Sqxn−q. (2.18)

If the parameters are carefully chosen, then the period length is 2pq. But
this generator needs a special matrix B, which improves the uniformity of the
RNs. The operation implemented by matrix B is called tempering.

Niederreiter (1995) examined a generalization of the TGFSR, the multiple
recursive matrix methods (MRMMs), with various matrices Si

xn = S1xn−1 ⊕ . . .⊕ Sqxn−q. (2.19)

The Mersenne Twister type also belongs to this class, i.e. it alters recursion
(2.18) by

xn = xn−r ⊕ Sq
(
xun−q,x

l
n−q
)

(2.20)

where u = w − l denote the upper bits of vector xn−q and l the lower (i.e.
the last) bits of xn−q, 0 ≤ l < p. Usually, in Mersenne Twister types we have
p = w.

The most famous RNG of the Mersenne Twister type is MT19937, mean-
while implemented in many computer programmes and freely downloadable
from various sources. Although this RNG is still the state of the art at the
time of writing, we would recommend that the reader also tries other good
generators. Mersenne Twisters often have good equidistribution properties
but all these generators have one severe weakness. Once we are in a state
with only a few 1’s and many 0’s (or we accidently start with such a seed!),
we stay in such a situation for a long time, which means that the states do not
differ much for some time. This problem is called lack of diffusion capacity
(see Section 2.3.3).

2.2.6 Nonlinear RNGs

Linear RNGs typically have quite a regular structure such as the lattice
structure of t-tuples of RNs from MRGs. To get away from this regular-
ity, one can either transform the RNs, discard or skip some of the RNs – or
use a nonlinear RNG. Until today not many nonlinear RNGs have been dis-
cussed in the literature as those RNGs are difficult to analyze theoretically.
That they perform well is often just shown with a battery of statistical tests.
There are inversive congruential generators (ICGs), explicit inversive congru-
ential generators (EICGs), digital inversive congruential generators (DICGs),
and combinations. They may have quadratic or cubic functions (see e.g.
Eichenauer-Herrmann [1995], Knuth [1998]).

Characteristic for nonlinear RNGs is that there are no lattice structures.
But the operation inversion in computers is more time-consuming than ad-
dition, bit shifting, subtraction, or even multiplication. So those generators
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ICG(m, a, c) Period
ICG(1039, 173, 1) 1039
ICG(2027, 579, 1) 2027
ICG(231 − 595, 858993221, 1) 231 − 595
ICG(231 − 1, 1288490188, 1) 231 − 1
ICG(231 − 1, 9102, 36884165) 231 − 1

Table 2.3: Inversive Congruential Generators

are usually significantly slower than linear RNGs. But nevertheless, they are
useful to verify important simulation results. Another idea is to add nonlin-
earity to a RNG by combining an excellent fast linear RNG with a nonlinear
RNG (see L’Ecuyer and Granger-Piché [2003]).

Here we present two examples of nonlinear RNGs. Let m ∈ Z be a prime
number to ensure that Zm is a field. We define c̄ := c−1 in Zm if c �= 0 and
c̄ := 0 if c = 0, i.e. cc̄ = 1 for all c �= 0. The first type, ICG(m, a, c), looks
like a LCG but includes the inverse of the RN, see Algorithm 2.7.

Algorithm 2.7 Inversive congruential generators

sn+1 = (as̄n + c) mod m, n ∈ N,

with m ∈ N prime, c ∈ N, c < m, a ∈ N \ {0}, a < m, seed s0 ∈ S ⊆ N, S =
Zm. Numbers in [0, 1) are obtained via

un =
sn
m
.

ICG(m, a, c) has a maximal period length of m. A sufficient condition for
maximum period is that the polynomial x2 − cx− a is primitive over Zm (see
Eichenauer-Herrmann and Lehn [1986]). If ICG(m, a, 1) has maximal period,
then so has ICG(m, t2a, t) for 0 < t < m. Examples for ICGs with maximal
period are given in Table 2.3 (see also Hellekalek [1995]).

The second type, EICG(m, a, c), has the enormous advantage that one can
easily produce disjoint substreams, which is particularly useful for paralleliza-
tion techniques.

sn = (a (n+ s0) + c) mod m (2.21)

Selecting the parameters for a maximal period is easy – m must be
prime and a �= 0. Unfortunately, we do not have many different RNGs as
most of them are equivalent. The sequence EICG(m, a, 0) is obtained from
EICG(m, 1, 0) by choosing every a-th element.
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2.2.7 More random number generators

We will mention some more random number generators with good proper-
ties only briefly:

• The recent WELL RNGs by L’Ecuyer et al. (2006) have excellent equidis-
tribution properties. They belong to the class of F2-linear generators. Their
period lengths are comparable to the Mersenne Twister types. Matrix A has
a block structure and consists mainly of zero blocks. The nonzero blocks de-
scribe fast operations that are easy to implement as shifting, bitwise XOR,
bitwise AND, or they are identity matrices. A is composed in such a way that
the bit mixing is improved which results in a better diffusion capacity.

• Marsaglia (2003) has described XORshift generators, which are extremely
fast RNGs that mainly work with binary shifts and bitwise XORs. They are
a special case of the multiple recursive matrix method.

• Instead of working in the field F2 we can use the ring F2m . This turns these
generators into mod 2m-generators. If m is chosen according to the number
of bits needed to represent a real number or integer in the computer, we can
take advantage of the binary structure of computers and implement fast cal-
culations.

• Recently, there has been research on generalized Mersenne Twisters which
use 128-bit arithmetic or a combined 32-bit arithmetic that adds up to 128
bits, and take advantage of special processor features to speed up calcula-
tions (see Matsumoto and Saito [2008]). However, such RNGs are no longer
machine independent.

2.2.8 Improving RNGs

• As mentioned with LCGs, the output can be shuffled with the help of another
generator or with the same generator. However, this removes only part of
existing serial correlations and the RNs stay the same. Another drawback is
that this kind of RNG cannot be used for parallelization techniques because
the n-th output is no longer foreseeable.

• Some generators that have deficencies in their structure can be improved by
dumping some of the produced RNs. An example is the RANLUX generator
of Lüscher (1994) in which one “takes the luxury” to discard a certain number.
It is based on a subtract-with-borrow RNG:

sn = (sn−10 − sn−24 − cn) mod 224

cn+1 = [sn−10 < sn−24 + cn]
(2.22)

If the luxury level is LUX = 0, no numbers are ignored; with LUX = 1,
24 points are skipped, LUX = 2 skips 73 numbers, and so on. Although
the RNG becomes slower with higher luxury levels, the structure improves
significantly.
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• It is possible to split the sequence of an RNG into several substreams and
then to alternate between these streams.

• Two or more RNGs can be combined. Usually, combined generators show a
much better performance, but this cannot be guaranteed for all combinations.

2.3 Testing and analyzing RNGs

There are two ways of analyzing the quality of a sequence of RNs: one is to
examine the mathematical properties of the RNG analytically, the other is to
submit the RNG to a battery of statistical tests, e.g. the test suite TestU01 by
L’Ecuyer and Simard (2002) or the Diehard test battery by Marsaglia (1996).

2.3.1 Analyzing the lattice structure

As t-dimensional vectors formed by consecutive RNs from LCGs, MRGs,
and other generators lie on a fixed number of hyperplanes, this number can
be calculated for a range of dimensions. A good RNG should have a lot of
hyperplanes in as many dimensions as possible, or alternatively, the distance
between the parallel hyperplanes should be small, so that the RNG does not
leave big gaps in the t-dimensional space.

The spectral test (see Knuth [1998]) analyzes the lattice structure in the
set Ψt of all t-dimensional vectors constructed from t consecutive RNs from a
special RNG (see Definition 2.2), started with every possible seed from state
space S:

Ψt := {(u1, . . . , ut) |s0 ∈ S} ⊆ [0, 1)t (2.23)

The traditional spectral test is only applicable if this point set has indeed
a lattice structure. Then it measures the maximum distance lt between two
successive hyperplanes. The value 1/lt is called the accuracy, a value that is
closely related to the minimum number of parallel hyperplanes. This number
depends on the slope of the hyperplanes and their position to the coordinate
axes of the t-dimensional cube.

The accuracy has to be calculated for each dimension. It may happen
that the quality of some RNGs is totally different in selected dimensions. So
sometimes the spectral test gives no clear ranking among RNGs, then it only
shows what RNGs to avoid.

The search for the maximum distance between hyperplanes must be done
efficiently as one cannot check all sequence points of the RNG separately
when the period of the generator is very long. There also exist variants of the
spectral test for general point sets.
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2.3.2 Equidistribution

Here we consider the equidistribution of uniformly distributed real RNs
u ∼ U [0, 1). There also exists a similar concept for uniformly distributed
integers n = 1, . . . , N ∈ N, called the k-distribution test (see e.g. Matsumoto
and Kurita [1992]). We take a close look at the set Ψt, defined in Definition
2.2. In every simulation, there should be a chance to get close to each vector
in the t-dimensional unit hypercube, so a good RNG should cover the unit
hypercube [0, 1)t with Ψt as even and as dense as possible. So, firstly, S should
be a large set. Then we have to check if the RNs are well distributed, which
we are going to make more precise now. Indeed, there exist several uniformity
measures. Here we present the concept of equidistribution because values can
be computed efficiently in many cases (see L’Ecuyer [1996b]).

DEFINITION 2.3 Equidissection

The partition of [0, 1) into 2l equal segments defines a partition of the t-
dimensional unit hypercube [0, 1)t into 2tl equal cells. This partition is called
a (t, l)-equidissection in base 2.

DEFINITION 2.4 Equidistribution

The set Ψt is said to be (t, l)-equidistributed if each cell of a (t, l)-equidissection
in base 2 of the unit hypercube contains the same number of points of the set
Ψt.

A theoretical problem is that perfect equidistribution is only possible when
the number of cells divides |Ψt|. Practically, the problem is neglible, also
because |Ψt| = |S| = 2k for a k ∈ N in most cases (this time zero vectors
are included in the state space in order to make counting easier). For every
RNG there exist special limitations up to which degree equidistribution is
possible. The number of cells has to be smaller than the number of points
in the state space 2tl ≤ |Ψt|, and the partition should not be finer than the
bit representation of numbers in the computer, l ≤ w, w word length. For
example, in the case of LFSR generators this means l ≤ w and tl ≤ k.

DEFINITION 2.5 Maximal equidistribution

Set k := logbase2(|Ψt|), l∗t := min {w, 
k/t�} the maximal number for which
the multiset Ψt of an F2-linear generator can be (t, l)-equidistributed. If Ψt

is (t, l∗t )-equidistributed for all 0 ≤ t ≤ k, then it is called maximally equidis-
tributed (ME).

L’Ecuyer (1999b) described several combined Tausworthe generators which
are maximally equidistributed and further collision-free.
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DEFINITION 2.6 Collision-free

The set Ψt is said to be collision-free, if each nonempty cell of a (t, l)-equi-
dissection in base 2 of the unit hypercube contains exactly one point for
l∗t < l ≤ w.

The criterion equidistribution gives more importance to the most significant
bits of the RN, while the lower order bits may have quite a poor distribution.
One can multiply the RNs by a power of two, modulo 1, and then analyze
the equidistribution again. RNGs that have the same good equidistribution
properties for all bits are called resolution-stationary. This property is
not very important as it suffices to know that sometimes lower order bits
do not have a good distribution and to avoid placing importance on them
in simulations. For example, a die is best simulated as �6un� and not as
(sn mod 6) + 1, where sn is the random integer in the iteration before it has
been converted to a real number.

2.3.3 Diffusion capacity

A RNG is said to have a good diffusion capacity if started with two different
seeds that are in some sense close to each other, though the sequences of RNs
still differ significantly. If a state sn contains many 0’s and just a few 1’s,
then some RNGs have trouble getting away from that point and the following
states sn+k also contain many 0’s for a long time. This is called low diffusion
capacity. Some variants of the Mersenne Twister are known to have such a
disadvantage.

One cause for the bad diffusion capacity is that often the characteristic
polynomial of the recurrence contains too many zeroes. This means that
during the recursion too many bits remain unchanged. Once we are in a state
with many zeroes, we are stuck in it for a while as the algorithm only changes
a few bits in every step, e.g. in trinomial-based generators.

In this context often the Hamming weight H(s) is evaluated, where H(s)
is the number of bits set to 1 in the bit vector s. One idea is to calculate a
moving average of the fraction of bits that are 1 of a selection of successive
output vectors sn. If the RNG is started in a state with many 0’s, then
this average should reach approximately 0.5 after some, but not too many,
iteration steps. An alternative is to examine moving averages of the RN
sequences ui ∈ [0, 1), when started close to 0 or 1, which gives more weight
to the more significant bits.

2.3.4 Statistical tests

The RN sequences should be uniformly distributed on [0, 1) and appear
to be independent. These are properties that can be tested with several
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statistical tests. Therefore, the RNs un are tested against the null hypothesis:

H0: The numbers un, n = 1, . . . , N, are realizations of
i.i.d. U(0, 1)-distributed random variables. (2.24)

A test statistic for a RN sequence un, n = 1, . . . , N is a random variable
X : [0, 1)N → R for which a good approximation of the distribution under the
null hypothesis H0 is known. We define the left and right p-values of the test
by

pr := P (X ≥ x̂|H0) , pl := P (X ≤ x̂|H0) , (2.25)
where x̂ is the observed value of the RV X . Usually, the observations are
divided into J subsets, then the theoretical probability pj , j = 1, . . . , J , of
each subset underH0 is calculated and compared with the empirical frequency,
usually by a weighted difference.

What does passing a test in the RNG context mean? If the p-value is
not too small, e.g. more than 0.05, we can say that this test has been passed.
But it is not like in medicine that e.g. a p-value of less than 0.01 leads to the
conclusion that the null hypothesis should be rejected. Here things are not so
easy to decide. We do not fix significance levels here. We even accept smaller
p-values, because we want the less likely combinations also to appear with our
RNG. But if repeated tests always give small p-values, we get the suspicion
that the RNG might not work well. Also very small p-values like 0.00000001
or smaller give a hint that the RNG might be bad.

Passing those tests does not prove that the RNG is suitable for all kinds of
simulations. This does not even show that we have found a good RNG. But
with every test that is passed, our confidence in the generator is improved.
As the RNs are not truly random but deterministic, there will always be a
statistical test that they will fail. Due to this, we only require that good
RNGs should not fail simple statistical tests. Better generators should pass
more tests. We also should make sure that the RNs are suitable for our special
application. So at least one test should be designed in such a way to check
the generator in our special simulation situation.

Different tests are needed to test different departures from the null hypoth-
esis. It should be possible that any test can be applied to any subsequence,
extracted at random. Further the behaviour of the RNG must be equal for
each seed, so that not only one seed should be tested.

Well-known test collections for RNGs are Marsaglia’s Diehard test battery
(see Marsaglia [1996]), the library TestU01 from L’Ecuyer and Simard (2002)
or the NIST (National Institute of Standards and Technology) test suite from
Rukhin et al. (2001), which test i.i.d. U(0, 1)- sequences and strings of random
bits.

To get a feeling for testing we are going to present some examples of sta-
tistical tests here. By no means can the following tests be considered as the
most important tests, they are more of a kind of instructional list, although
some of them are indeed very important.
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0-1-test

Here, we want to test whether a RNG, which produces random bits, actually
generates zeroes and ones with equal probability. Suppose we have generated
the 0-1-sequence sn, n = 1, . . . , N . We look at the sum SN =

∑N
i=1 si. If the

sequence is random with independent RNs and equal probability, then the
sum is B(N, 1/2)-distributed. We use the test statistic

X :=
2√
N

(
N∑
i=1

si − N

2

)
. (2.26)

If N is large (i.e. N > 35), X is approximately N(0, 1)-distributed under H0.

χ2-test

This is a generalization of the 0-1-test. Suppose that we have to produce
r RNs to get a result for one special observation, and that every observation
falls into one of k categories. For example, we observe three random bits to get
an integer 0 ≤ i < 8, so r = 3 and k = 8. Let pi, 0 ≤ i < k, be the probability
under H0 that the observation falls into category i. Now we produce N · r
independent RNs. Let Yi be the number of observations in category i. This
value is compared with the theoretical value EYi = Npi, and the following
statistic is formed:

X :=
k−1∑
i=0

(Yi −Npi)
2

Npi
=

1
N

k−1∑
i=0

Y 2
i

pi
−N. (2.27)

If the null hypothesis is true, then this value is approximately χ2-distributed
with (k − 1) degrees of freedom for sufficiently large N . A common rule says
that N should be at least so large that every theoretical value is Npi ≥ 5.

Frequency test

This test is an application of the χ2-test and checks in a simple way if RNs
are evenly distributed over the interval [0, 1). We therefore split a sample of
N RNs un, n = 1, . . . , N into k subgroups via the rule vn = 
kun�. The
number k can be chosen according to your needs, e.g. the choice k = 128 = 27

tests the leading seven bits of the real RNs. Let Yi be the number of RNs in
category i, i = 0, . . . , k − 1. Then under H0 the test statistic

X :=
k−1∑
i=0

(Yi −N/k)2

N/k
=

k

N

k−1∑
i=0

Y 2
i −N (2.28)

is approximately χ2-distributed with k − 1 degrees of freedom, provided that
N/k ≥ 5.
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Serial test or m-tuple test

The frequency test can be generalized in examining pairs of successive RNs.
Again we have partitioned the single RNs into k equally possible subgroups,
so every possible pair (v2n−1, v2n) = (r, s), 0 ≤ r, s ≤ k − 1, n = 1, . . . , N
should appear with the same frequency. For this test we apply the χ2-test
to k2 categories, each with probability 1/k2. k should not be too large, but
N should be large, at least 5k2. Let Yi be the number of RNs in category i,
i = 0, . . . , k2 − 1. Under the null hypothesis the statistic

X :=
k2−1∑
i=0

(
Yi −N/k2

)2
N/k2

=
k2

N

k2−1∑
i=0

Y 2
i −N. (2.29)

is approximately χ2-distributed with k2 − 1 degrees of freedom. This test can
further be generalized to triples or quadruples or more.

This test is one of the important tests and can be seen as the “book-
writing test.” If you work with 26 categories which symbolize letters of the
alphabet, this test checks if every two, or three-letter word appears with equal
probability, when you choose the letters randomly with the help of your RNG.
Sometimes this test reveals astonishing facts, as some RNGs would never
write the word “cat” in some cases (see Marsaglia [1996]).

There are many tests based on this scheme, e.g. the poker test, where the
RNs are tested whether they would be a usable basis for a computer poker
simulation.

Kolmogorov-Smirnov test

In contrast to the χ2-test, the Kolmogorov-Smirnov-type tests also check
probability distributions with infinitely many values, especially with contin-
uous cumulative distribution functions F (x). This test compares the em-
pirical with the desired theoretical distribution function. With the sample
u1, . . . , uN ∈ (0, 1) the empirical distribution function is defined by

FN (x) :=
| {ui|ui ≤ x, i = 1, . . . , N} |

N
, x ∈ R. (2.30)

The Kolmogorov-Smirnov test measures the maximal distance between the
theoretical and empirical distributions:

K+
N =

√
N sup
−∞<x<+∞

(FN (x) − F (x)) (2.31)

K−N =
√
N sup
−∞<x<+∞

(F (x) − FN (x)) (2.32)

The advantage of this test is that it is also applicable for small sample sizes as
the distributions of the two test statistics are exactly known and can be found
in tables or computer routines. As we want the RNs uniformly distributed,
we can test for uniform distribution, or we could test a series of independent
χ2-test results if they are really χ2-distributed.
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Maximum-of-t-test

This is an application of the Kolmogorov-Smirnov test. In a series of RNs
∈ [0, 1) we determine the maximum in independent groups of t RNs vi :=
max {uti+1, . . . , uti+t}. Thus, we have the theoretical distribution function
F (x) = xt, 0 ≤ x < 1, which can be compared to the empirical one. Alterna-
tively, the sequence vt1, . . . , v

t
N , which should be uniformly distributed under

H0, can be analyzed with the Kolmogorov-Smirnov test.

Application-based tests

One of the most important tests is the test run of the RNG with a similar
problem to the one that should be solved but from which the exact solution
is already known. If the Monte Carlo method performs well with this task,
the RNG seems to be suitable for the more complicated problem.

A famous allround application-based test is the two-dimensional Ising model
test with the Wolff algorithm or Metropolis algorithm (see Knuth [1998]),
which is an application in physics, where the solution is well known. This test
is good in discovering long-term correlations. Many generators in the past
that on first glance appeared to be excellent, failed in this test. This fuelled
further research and the disadvantages of these generators came to light.

2.4 Generating random numbers with general
distributions

Let us assume that we have found a good RNG which generates RNs that
behave like i.i.d. RV∼ U [0, 1). Our next step is to transform these RNs
into nonuniform RNs, e.g. normally distributed, χ2-distributed, or Poisson-
distributed ones. Often the desired distribution can only be approximated. Of
course, the approximation should be as exact as possible. Further robustness
is important. If the distribution depends on parameters, then the approxima-
tion should also be good for nearby parameters. The transformation method
should be efficient, it should be fast, and should not use too much memory.
Another important point is the compatibility with variance reduction tech-
niques in Monte Carlo simulations. Then often the only acceptable method
for transformation is the inversion method.

2.4.1 Inversion method

The best way to transform RNs is the inversion method because it preserves
structures. If the distribution structure of the uniformly distributed RNs is
good, so will the structure of the transformed RNs. Also it is compatible



32 Monte Carlo Methods and Models in Finance and Insurance

with variance reduction techniques like e.g. antithetic variates. But, if speed
matters, this method might not be the best, as often complicated functions
are involved or one has to work with approximation algorithms.

Assume that the RV X has the cumulative distribution function (c.d.f.) F
where F is strictly increasing and continuous. Then there exists the inverse
F−1. For the uniformly distributed RV U ∼ U [0, 1) the RV F−1 (U) has the
same distribution as X , i.e. it has c.d.f. F due to

P
(
F−1 (U) ≤ x

)
= P (U ≤ F (x)) = F (x) . (2.33)

Note that there is a monotone relationship between the uniformly distributed
RV and the transformed variable. If the c.d.f. F is not strictly increasing or
not continuous, we can define a general inverse by

F← (u) := min {x | F (x) ≥ u} . (2.34)

With this generalized inverse, we are able to formulate the inversion method.

Algorithm 2.8 Inversion method
Let F be a univariate c.d.f.

1. Sample a uniformly distributed RN u on [0, 1).

2. Obtain a RN with c.d.f. F via x = F← (u).

If it is not possible to invert F analytically, it can be inverted numeri-
cally (by e.g. the Newton-Raphson method) or with an explicit approxima-
tion formula. Explicit approximation formulae can be improved by a Newton-
Raphson, a regula falsi, or an interpolation step.

Discrete RVs

We now want to simulate a die, i.e. an equidistribution on {1, 2, 3, 4, 5, 6}.
As the c.d.f. is

F (x) =
min(6,�x�)∑

i=1

1
6
, x ≥ 0, (2.35)

the generalized inverse is given by

F← (u) = �6u�, u ∈ (0, 1] (2.36)

Hence, we simply multiply a uniformly distributed RN u ∼ (0, 1] by 6 and use
the computer built-in rounding mechanism.
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For an equidistribution on the set 1, . . . , N and u ∼ (0, 1], we obtain the
desired distribution via

x := �Nu�. (2.37)

Finally, for the integer-valued RV X with P (X = i) = pi, i ∈ N,

x := min

{
k ∈ N

∣∣∣
k∑
i=0

pi ≥ u

}
(2.38)

is the desired RN given by the inversion method. If this is coded in a straight-
forward way, the expected number of steps in search of the minimum is
E(X+1). The search can be accelerated by using tables (see Devroye [1986]).

Exponential distribution

The exponential distribution appears as waiting time between independent
Poisson events and is suitable for measuring life spans or modelling radioactive
decay. When the RV X is exponentially distributed with rate λ > 0, it has
the c.d.f.

F (x) = 1 − e−λx for x ≥ 0, (2.39)

and the inverse of F is given by

F−1 (u) = − ln (1 − u)
λ

for 0 ≤ u < 1. (2.40)

Then y = − ln (1 − u) /λ with u ∼ U [0, 1) is exponentially distributed with
rate λ. In practice, we rather use − ln (u) /λ as the RV (1 −U) has the same
distribution as U . In software packages other algorithms for generating RNs
with the exponential distribution are often implemented, as the evaluation of
the logarithm function is rather time-consuming.

2.4.2 Acceptance-rejection method

Some distributions are so complicated, that the inversion of the c.d.f. F is
much too difficult or only approximations exist. Then generating a RN with
the acceptance-rejection method could be much faster and even easier. An
acceptance-rejection algorithm can be constructed whenever we have got a
density.

Suppose we want to simulate the RV X with density f(x). Then we look
for another RV Y with density g(y), from which samples can be easily drawn
by transforming uniformly distributed RNs, and which has the property

f(x) ≤ Cg(x), x ∈ R or x ∈ R
d, (2.41)

with a constant 1 ≤ C < ∞. g is often called the comparison density or the
majorizing function. Indeed, this can always be achieved with some simple,
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Algorithm 2.9 Acceptance-rejection method
Let the densities f and g satisfying (2.41) be given.

1. Generate a uniformly distributed RN u on [0, 1).

2. Generate a RN y with the distribution given by the density g.

3. If u ≤ f (y) / (Cg (y)) then accept y as the new RN x with density f .
Otherwise reject it and go back to Step 1.

suitable density and a large constant C. In the case of a bounded density with
compact support, the majorizing function can be constructed by choosing a
uniform density on the support.

To produce one RN with distribution f we need more than one uniformly
distributed RN. The speed of this RNG is determined by the time to generate
the sample y, the time to calculate f(y), and the constant C, because

P

(
U ≤ f (Y )

Cg (Y )

)
= E

[
P

(
U ≤ f (Y )

Cg (Y )

∣∣∣ Y
)]

= E

[
f (Y )
Cg (Y )

]
=
∫

f (y)
Cg (y)

g (y) dy =
1
C
. (2.42)

So 1/C gives us the acceptance probability. For a fast algorithm the constant
C should be as close to 1 as possible. In that case, nearly all RNs y are
accepted and not too many RNs u and y have to be generated in vain.

If the function f is too time-consuming to evaluate, we can use squeeze
functions q1, q2 with

q1(x) ≤ f(x) ≤ q2(x) ≤ Cg(x), (2.43)

which can be computed much faster. If u ≤ q1(y)/Cg(y), then y can immedi-
ately be accepted. Otherwise, if u > q2(y)/Cg(y) then y can immediately be
rejected. Only if both cases do not apply, should the function f be evaluated.

To illustrate in detail how the acceptance-rejection method works, we take
a look at a special area.

DEFINITION 2.7 Body of a function
Let f : R

d → R be a nonnegative, integrable function. Then

Bf :=
{
(x, z) ∈ R

d × R |0 ≤ z ≤ f(x)
}

(2.44)

is called the body of f .

The acceptance-rejection method is based upon the following theorem (see
Devroye [1986]).
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THEOREM 2.8

Let X be a multivariate RV with density f on R
d, U ∼ U [0, 1) independent

from X, and C > 0. Then (X,UCf(X)) is uniformly distributed on BCf .

Vice versa, if the multivariate RV (X,Z) ∈ R
d+1 is uniformly distributed on

Bf , then X has density f on R
d.

So, the aim is to find a way to pick points randomly from the area Bf ,
where f is the desired density, with equal distribution. Because we are able
to simulate the RV Y with density g, uniformly distributed points on BCg
can easily be determined by generating one RN y ∼ Y and another indepen-
dent RN u ∼ U [0, 1). Then (y, uCg(y)) is uniformly distributed on BCg. If
uCg(y) ≤ f(y) we have also found a point in Bf . Otherwise we have to do a
new trial. The assumption Cg(x) ≥ f(x) makes sure that we do not cut out
points from Bf . This is the core of the acceptance-rejection method.

Application: Standard normal distribution

First, we look at the distribution of a RV X given by the absolute value of a
standard normal distribution, X = |Z|, Z ∼ N (0, 1). So X has the density

f (x) =

√
2
π
e−x

2/2 for x ≥ 0. (2.45)

The exponential function in the density reminds us of the exponential distri-
bution with density g(y) = e−y, from which we already know how to draw
samples with the inversion method: u ∼ U [0, 1) ⇒ y = −ln(u) ∼ exp(1). We
now try to find the constant C so that

f (x)
g (x)

· 1
C

=

√
2
π
ex−x

2/2 · 1
C

≤ 1. (2.46)

This term is maximized for x = 1, so if we choose C =
√

2e
π , the acceptance

probability is about 0.76. In a final step we can transform our accepted RN
into a normal RN by assigning a random sign to it, determined by another
independent uniformly distributed RN.

As three and more RNs are needed for just one normal RN, the acceptance
probability is not very close to 1. Further, the exponential function has to be
exploited, so this method is very slow and therefore not the standard method
for generating normal RNs.

For discrete probabilities the acceptance-rejection method works as well,
just substitute the density with the mass probability function.
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2.5 Selected distributions

2.5.1 Generating normally distributed random numbers

The task we encounter most often in Monte Carlo simulations is to generate
normally distributed RNs. Here we concentrate on standard normal RNs. If
we need RNs Z with distributionN(μ, σ2), we first generate RNsX ∼ N(0, 1),
then we obtain Z ∼ N(μ, σ2) via

Z = σX + μ. (2.47)

The first problem with a standard normal RV X with density

φ (x) =
1√
2π
e−x

2/2

and c.d.f.
Φ (x) =

∫ x

−∞

1√
2π
e−x

2/2dx

is that we cannot calculate values of the c.d.f. Φ by a simple formula. Instead
we have to evaluate the integral numerically. A fast approximation avoiding
the time-consuming exponential function is given e.g. by the rational function
(see Abramowitz and Stegun [1972]) in Algorithm 2.10.

Algorithm 2.10 Approximation of the standard normal c.d.f.
This function gives approximate values for the standard normal distribution:

d := (0.0498673470, 0.0211410061, 0.0032776263,
0.0000380036, 0.0000488906, 0.0000053830)

For x ∈ [0,∞) approximate

Φ (x) ≈ 1 − 0.5
(
1 + d1x+ d2x

2 + d3x
3 + d4x

4 + d5x
5 + d6x

6
)−16

This approximation has a maximum relative error of 1.5 · 10−7.

For many applications it suffices to work with approximations on the inter-
val [0,∞) as due to the symmetry of Φ we have

Φ (x) = 1 − Φ (−x) . (2.48)

When more precision is needed, then it is better to have a special approxi-
mation on the interval (−∞, 0), which takes care that events with very small
possibilities are not neglected (see e.g. Marsaglia [2004]).
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When trying to generate normally distributed random numbers with the
inverse method we encounter a similar problem: we do not have an explicit
formula for the inverse. Again, we have to work with a numerical approxima-
tion. There exist several good approximations as e.g. the Acklam inverse, the
Moro inverse, the Beasley-Springer approximation. As an example we present
the Beasley-Springer-Moro algorithm (see Glasserman [2004]). We only have
to work out an approximation on the interval [0.5, 1) as due to the symmetry
of Φ we have

Φ−1 (u) = −Φ−1 (1 − u) , 0 < u < 1. (2.49)

Algorithm 2.11 Beasley-Springer-Moro algorithm for the inverse standard
normal
Let

a : = (2.50662823884,−18.61500062529, 41.39119773534,−25.44106049637)
b : = (−8.47351093090, 23.08336743743,−21.06224101826, 3.13082909833)
c : = (0.3374754822726147, 0.9761690190917186, 0.1607979714918209,

0.0276438810333863, 0.0038405729373609, 0.0003951896511919,
0.0000321767881768, 0.0000002888167364, 0.0000003960315187)

1. For u ∈ [0.5, 0.92] approximate

Φ−1 (u) ≈
∑3

n=0 a[n]
(
u− 1

2

)2n+1

1 +
∑3

n=0 b[n]
(
u− 1

2

)2n
2. For u ∈ (0.92, 1) approximate

Φ−1 (u) ≈
8∑

n=0

c[n] (ln (−ln (1 − u)))n

This approximation has a maximum absolute error of 3×10−9 over the range
[Φ(−7),Φ(7)] .

It is also possible to search for the root of the equation Φ(x) = u with the
Newton algorithm

xn+1 = xn − Φ(xn) − u

φ(xn)
. (2.50)

Adding just one Newton step to the Beasley-Springer-Moro algorithm im-
proves the accuracy even more.

The classical method for generating standard normal RNs is the Box-Muller
method which samples from the two-dimensional standard normal distribution
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(see Algorithm 2.12). Due to the functions ln, cos, and sin, this method is
rather slow. But it is very easy to implement, so it is a good start for normal
RNs.

Algorithm 2.12 The Box-Muller method

1. Generate two independent RNs u1, u2 ∼ U (0, 1].

2. Obtain two independent standard normal RVs via

y1 =
√

−2 ln (u1) sin (2πu2) , y2 =
√

−2 ln (u1) cos (2πu2) .

2.5.2 Generating beta-distributed RNs

The just cited Box-Muller method belongs to the group of polar methods
as the functions sin and cos are involved. For the beta distribution a similar
transformation exists. A RV X ∼ Beta(a, b), a, b > 0 has the density

f(x) =
xa−1 (1 − x)b−1

B(a.b)
, 0 ≤ x ≤ 1, (2.51)

with

B(a, b) =
Γ(a)Γ(b)
Γ(a+ b)

, Γ(a) =
∫ ∞

0

ta−1e−tdt. (2.52)

A symmetric RV X ∼ Beta(a, a) with a ≥ 0.5 can be generated as

x =
1
2

(
1 +
√

1 − u
2/(2a−1)
1 cos (2πu2)

)
, u1, u2 ∼ U (0, 1] independent.

(2.53)
Devroye (1996) describes a more general method valid for all a > 0. For
0 < a, b < 1 we can use the acceptance-rejection algorithm called Jöhnk’s
beta generator. This method is not recommended for a, b > 1 as it is too slow
in this case. It requires on average Γ(a+b+1)/ (Γ(a+ 1)Γ(b+ 1)) trials, which
increases rapidly with a and b. Approximation methods for the symmetrical
beta distribution and its inverse have been described by L’Ecuyer and Simard
(2006).

2.5.3 Generating Weibull-distributed RNs

The Weibull distribution appears in insurance mathematics. It is also a
good basis for an acceptance-rejection algorithm for the gamma distribution
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Algorithm 2.13 Jöhnk’s beta generator

1. Generate two independent RNs u1, u2 ∼ U (0, 1].

2. Transform them into x = u
1/a
1 , y = u

1/b
2 .

3. If x + y ≤ 1 then return z :=
x

x+ y
∼ Beta(a, b), else go back to step

one.

(see Section 2.5.4). The Weibull(a) distribution has density and c.d.f.

f(x) = axa−1/ exp(−xa), F (x) = 1 − exp(−xa), a, x > 0. (2.54)

Random numbers can be generated with the inversion method

x := (− ln(u))1/a , u ∼ U (0, 1] . (2.55)

2.5.4 Generating gamma-distributed RNs

The gamma distribution appears naturally when discrete events are Poisson-
distributed. Consider the waiting time Da until the a-th event happens, where
the events are distributed according to Poisson(λ). Then Da is gamma-
distributed with parameters a and θ = 1/λ. More general: A RV X is gamma-
distributed with shape parameter a and scale parameter θ, X ∼ Gamma(a, θ),
if it has the density

fa,θ(x) = xa−1 exp(−x/θ)
Γ(a)θa

, x > 0, a, θ > 0. (2.56)

Properties of the gamma distribution:

• EX = aθ, VarX = aθ2, mode = (a− 1)θ for a ≥ 1.

• Scaling: If X is ∼ Gamma(a, θ), then cX ∼ Γ(a, cθ) for any c > 0.

• Summation: If Xi ∼ Gamma(ai, θ), i = 1, . . . , N , independent, then∑N
i=1Xi ∼ Gamma(

∑N
i=1 ai, θ).

• Limiting behaviour: For a < 1 the density fa,θ is monotone decreas-
ing with limx↘0 fa,θ(x) = ∞.

• Exponential distribution: Gamma(1, θ) is simply the exponential
distribution exp(1/θ).

The scaling property tells us that it is only necessary to know how to gen-
erate Gamma(a, 1)-distributed RNs. The last property and the summation
property give us an easy method to generate Gamma(a, θ) random numbers
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when a is a small integer. Then the gamma distribution can be generated as
the sum of exponentially distributed RVs. In general, the gamma distribution
could be split up into an integer part and a part with a < 1:

Gamma(a, 1) ∼ Gamma(
a�, 1) +Gamma(a− 
a�, 1). (2.57)

So, it would suffice to design a method for a < 1 only, but if a is large then
we have to generate a lot of uniform RNs which makes this method slow.
Further, the product of many numbers less than 1 is extremely small, so
instability problems appear. This is the reason why this method normally
should not be chosen.

There exist different acceptance-rejection methods for a < 1 and a > 1 as
the comparison functions must follow the different limiting behaviour. Well-
known algorithms for a > 1 are the ones by Ahrens and Dieter, Best, and
Cheng (for details see Devroye [1986]). The last one will be described here as
it is an interesting example for constructing an acceptance-rejection algorithm.
Cheng’s algorithm is based on the Burr XII density g(x) with c.d.f. G(x)

g(x) = λaμa
xλa−1

(μa + xλa)2
, G(x) =

xλa

μa + xλa
, x ≥ 0, (2.58)

where λa and μa are parameters chosen according to a. RNs with this distribu-
tion can be generated with the inversion methodG−1(u) = [(μau)/(1 − u)]1/λa ,
u ∼ [0, 1]. Cheng chooses μa = aλa and λa =

√
2a− 1. Thus, the rejection

constant is

C =
4aae−a

λaΓ(a)
, (2.59)

which asymptotically tends to 1.13 for large a, which is quite good. To speed
up calculations a squeeze step is added.

Algorithm 2.14 Cheng’s algorithm for gamma-distributed RNs with a > 1

1. Generate two independent RNs u1, u2 ∼ U (0, 1).

2. Calculate

y :=
1√

2a− 1
ln
(

u1

1 − u1

)
, x := aey, z := u2

1u2,

r := a− ln(4) +
(
a+

√
2a− 1

)
y − x.

3. Squeeze step: If r ≥ 9
2
z − 1 − ln

(
9
2

)
, then accept x.

4. Else: If r ≥ ln(z), then accept x.
Otherwise reject x and go back to the first step.
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We still need an algorithm for 0 < a < 1. The example we present here
is constructed with the help of the Weibull distribution (see Devroye [1986])
and was chosen because of its elegant form. There are algorithms by Ahrens,
Ahrens/Dieter, and Ahrens/Best (see Knuth [1998] or Devroye [1986]), which
seem to work better. We have the rejection constant

C =
exp
(
(1 − a)

(
aa/(1−a)

))
Γ(a+ 1)

≤ 3.07 for all a ∈ (0, 1). (2.60)

The rejection constant tends to 1 as a ↗ 1 or a ↘ 0.

Algorithm 2.15 Algorithm for gamma-distributed RNs with 0 < a < 1

1. Generate two independent RNs u1, u2 ∼ U (0, 1] and transform them to
exponentially distributed RNs e1 = − ln(u1), e2 = − ln(u2).

2. Generate a RN with Weibull(a) distribution x := e
1/a
1 .

3. If e1 + e2 − (1 − a) aa/(1−a) ≥ x, then accept x,
else go back to the first step.

More properties of the gamma distribution

• If X ∼ Gamma(a, θ) then 1/X is inverse gamma-distributed with pa-
rameters a and θ−1.

• If X ∼ Gamma(a, θ) and Y ∼ Gamma(b, θ), X,Y independent, then
X/(X + Y ) is beta-distributed with parameters a, b.

• If X ∼ Gamma(a, 2) then X is chi-square-distributed with 2a degrees
of freedom, i.e. X ∼ χ2

2a.

• If Y ∼ Gamma(b, 1), Z ∼ Beta(a, b− a), b > a > 0, independent, then
X1 = Y Z ∼ Gamma(a, 1) and X2 = Y (1−Z) ∼ Gamma(b− a, 1), also
independent.

The second property is very important as it shows an interesting relation
between the gamma and the beta distributions. It can be used when working
with conditional gamma-distributed RV and is a basis for the bridge-sampling
of the gamma process. With the help of the last property we can formulate
Jöhnk’s method to generate gamma-distributed RNs with shape parameter
a < 1. Here, the rejection constant satisfies C ≤ 4/π ≈ 1.27 for 0 < a < 1,
which is quite good, but the calculation of two powers and one logarithm is
time-consuming.
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Algorithm 2.16 Jöhnk’s generator for gamma-distributed RNs with
0 < a < 1

1. Generate a Beta(a, 1−a)-distributed RN z with Jöhnk’s beta generator.

2. Generate another independent uniformly distributed RN u ∼ U (0, 1]
and transform it into an exponentially distributed RN y = − ln(u).

3. Then x := yz is Gamma(a, 1)-distributed for a < 1.

2.5.5 Generating chi-square-distributed RNs

The chi-square distribution is a special case of the gamma distribution as
indicated in the properties of the gamma distribution. A RV X is chi-square-
distributed, X ∼ χ2

k, with k degrees of freedom, if it has the density

fk(x) =
xk/2−1e−x/2

2k/2Γ(k/2)
, x, k > 0. (2.61)

We have EX = k and VarX = 2k. Chi-square-distributed RNs can be gener-
ated with the help of gamma-distributed RNs.

Algorithm 2.17 Chi-square-distributed RNs
Let k > 0 be given.

1. Simulate a RN y ∼ Gamma(k/2, 1)

2. Obtain a RN x ∼ χ2
k via x := 2y

Chi-square-distributed RVs with degree k ∈ N \ {0} can also be described
with the help of normally distributed RVs:

X1, . . . , Xk ∼ N(0, 1) ⇒ Z :=
k∑
i=1

X2
i ∼ χ2

k. (2.62)

IfXi ∼ N(μi, 1), i = 1, . . . , k, we obtain the noncentral chi-square distribution
χ2
k(δ) with noncentrality parameter δ =

∑k
i=1 μ

2
i as the distribution of Z :=∑k

i=1X
2
i ∼ χ2

k(δ). These considerations lead us to an Algorithm 2.18 for
sampling RNs with chi-square distribution and even noncentral chi-square
distribution. If k is large, this method might be rather slow. Generally for all
k < 0, we can decompose a noncentral RV into a noncentral chi-square part
and a standard chi-square part with one degree of freedom less:

χ2
k(δ) = χ2

1(δ) + χ2
k−1, k > 0. (2.63)
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Algorithm 2.18 Chi-square-distributed RNs with the help of normally
distributed RNs
Let δ > 0, k ∈ N \ {0} be given.

1. Sample k independent RNs n1, . . . , nk with ni ∼ N(0, 1).

2. Set n̂1 := n1 +
√
δ so that n̂1 ∼ N(

√
δ, 1).

3. Then x := n̂2
1 + n2

2 + . . .+ n2
k is χ2

k(δ)-distributed.

This in particular means that we have to sample a normally distributed RN
and a chi-square-distributed RN.

2.6 Multivariate random variables

The multivariate generation problem can be reduced to the univariate gen-
eration problem. But then we have to know a lot about the distributions,
especially the conditional ones. When working with densities we should know
the decomposition of the density f of the multivariate RV X into

f(x1, . . . , xd) = f1(x1)f2(x2|x1) · · · fd(xd|x1, . . . , xd−1) (2.64)

where the fi’s are conditional densities, i.e. f1 is the marginal density of X1,
f2 is the conditional density of X2 given X1, and so on. So we have to know
a whole series of conditional densities. The same applies when working with
distribution functions, we have to know all the conditional distributions.

2.6.1 Multivariate normals

A d-dimensional multivariate normal RV Z ∼ N (μ,Σ) is described by its
mean vector μ and its covariance matrix Σ. If we know a decomposition of the
matrix Σ = ATA, we can concentrate on generating normal random vectors
X ∼ N(0, I), I the identity matrix, as with the transformation

Z = AX + μ (2.65)

we obtain Z ∼ N (μ,Σ). So we can simply work with d independent standard
normal RVs, Xi, i = 1, . . . , d.

There are several possibilities to obtain a decomposition of Σ, it is not
uniquely determined. One method is the Cholesky factorization, which
gives us a lower triangular matrix. This half-filled matrix has the advantage
that the transformation of the standard normal vector is done nearly twice as
fast as with a full matrix.
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Algorithm 2.19 Cholesky factorization
Let a positive-definite matrix Σ be given. We find a lower triangular matrix
A with ATA = Σ, ai,j = 0 for j > i by:

1. a11 =
√
σ11,

2. aij =
(
σij −∑j−1

k=1 aikajk

)
/ajj for 1 ≤ j < i ≤ d,

3. aii =
√
σii −

∑i−1
k=1 a

2
ik, 1 < i ≤ d.

Other factorizations: Another possibility to get a suitable matrix A is
the Eigenvector factorization. When the covariance matrix is symmetric and
positive definite it has d real eigenvalues λ1, . . . λd > 0. Corresponding to it
we can find a set of orthonormal eigenvectors v1, . . . ,vd, vTi vi = 1, vTi vj = 0
for i �= j, vi = Σλivi. Then Σ = VΛVT , where V = (v1 . . . vd), Λ =
diag (λi, . . . , λi), and we can choose A := VΛ1/2. Usually this matrix is
dense, so there is no computational advantage. If the eigenvalues are ordered
λ1 ≥ λ2 ≥ . . . ≥ λd, then this factorization can be useful for variance reduction
techniques in Monte Carlo simulations, as one can focus these techniques on
the first k components of X ∼ N(0, I), which explain the fraction of

λ1 + . . .+ λk
λ1 + . . .+ λd

(2.66)

of the variance.

2.6.2 Remark: Copulas

Sometimes we want to generate multivariate RVs with a certain dependence
structure. This can be achieved with copula functions. Copulas are a way to
extend one-dimensional distributions to multidimensions. They are practical
if one has a knowledge of the marginal distributions but one is not so sure
about the dependencies, especially when working with multivariate RVs which
are not multivariate normal. For more on copulas see Chapter 8, Section 8.4.

2.6.3 Sampling from conditional distributions

If the RV X has c.d.f. F , the RV X given X ∈ [a, b), −∞ < a < b < ∞,
has c.d.f.

H (x) =
F (x) − F (a)
F (b) − F (a)

for x ∈ [a, b] , (2.67)

provided that F (b) − F (a) > 0. With RNs u ∼ U [0, 1) the RNs v := F (a) +
(F (b) − F (a)) u are uniformly distributed between F (a) and F (b). If the
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inverse of F on the interval [a, b) has been given, RNs with the conditional
distribution can easily be generated as

H−1 (u) = F−1 (F (a) + [F (b) − F (a)]u) . (2.68)

Assume that we have got a density f that is log-concave and differentiable
in a. We want to generate a RV conditioned to [a, b), −∞ < a < b < ∞. As
the density is log-concave, it is bounded by

f(a)
F (b) − F (a)

eβ(x−a) (2.69)

where β = f ′(a)/f(a). This function can be used as a comparison function in
the acceptance-rejection method, as it is easy to sample from it by inversion.

More general: If we want to sample X , conditioned on X ∈ A for some set A,
we can use the crude procedure: “Sample X until X ∈ A, return X .”This is
some kind of acceptance-rejection method with

f(x)/g(x) = 1/P (X ∈ A), x ∈ A, (2.70)

so the acceptance factor depends on P (A). If this value is rather small, then
a lot of RNs will be rejected with this method. In that case this might not be
the method of choice.

Conditioning with multivariate normals: Suppose we have got a multi-
variate normal variable and we are interested in the distribution of one random
vector given the other. We can write

(
X1

X2

)
∼ N

((
μ1

μ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
(2.71)

with the matrix Σ22 having full rank. The conditioned distribution can be
described as

(X1|X2 = x) ∼ N
(
μ1 + Σ12Σ−1

22 (x − μ2) ,Σ11 − Σ12Σ−1
22 Σ21

)
, (2.72)

and so it is still a normal distribution.

2.7 Quasirandom sequences as a substitute for random
sequences

Quasirandom sequences are not random at all. They do not look random
and they do not pass statistical tests. But they are nearly perfectly evenly
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distributed. Quasirandom sequences give vectors for a special dimension,
which is comparable to a grid. But it is usually not necessary to decide in
advance how many points are needed. The sequences build up a pattern which
becomes finer from point to point. Also the collection of points is optimized in
such a way that there are no double values, no clusters, and no big gaps. Those
sequences of t-dimensional vectors are also called low-discrepancy sequences
as the discrepancy is used as a measurement for evenness.

DEFINITION 2.9 Discrepancy

The discrepancy of a finite set Φt =
{
xi ∈ [0, 1)t , i = 1, . . . , n

}
of t-dimen-

sional points is defined as

D (x1, . . . , xn) := sup
A∈A

∣∣∣ |Φt ∩A|
n

− volume(A)
∣∣∣ (2.73)

where A =
{∏t

j=1 [aj , bj) |0 ≤ aj < bj ≤ 1
}
.

The star discrepancy D∗ (x1, . . . , xn) restricts the set of rectangles A to the
ones with vertices aj = 0, j = 1, . . . , t.

It is widely believed that the best rate that can be achieved is
(
(lnn)t−1/n

)
for point sets of fixed size n > 1. Methods for constructing t-dimensional se-
quences are usually considered as low-discrepancy methods if the star discrep-
ancy of the first n points is aboutO ((lnn)t/n). Because low-discrepancy point
sets are no longer random, the error estimates of the Monte Carlo method,
which are based on stochastic arguments, are no longer applicable. But as all
points are evenly distributed, quasirandom sequences often deliver much bet-
ter results in some Monte Carlo simulations. The Koksma-Hlawka inequality
makes this plausible for small dimensions (see Niederreiter [1995]):

THEOREM 2.10 Koksma-Hlawka inequality
For smooth functions f with finite variation V (f) in the sense of Hardy and
Krause we have

∣∣∣
∫

[0,1)t

f (x) dx − 1
n

n∑
i=1

f (xi)
∣∣∣ ≤ V (f)D∗ (x1, . . . , xn) . (2.74)

This means that the quality of the quasi-Monte Carlo approximation of the
integral of the function f depends on the variation and the star discrepancy
of the integration points. As the variation of the function is fixed we have to
choose a suitable low-discrepancy set to improve the approximation.

This error bound has advantages and disadvantages. Using quasirandom
sequences in Monte Carlo simulations gives us a strict error bound, in contrast
to the probabilistic error bounds of usual Monte Carlo methods, which only
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produce confidence intervals. But experience has shown that the error bound
often overestimates the integration error. Convergence is usually much better.
Further this bound is difficult to compute and often the variation is unknown
or sometimes even infinite. Indeed, convergence with quasirandom numbers is
often very good. One reason is that some of the functions that are integrated
have special smoothness properties which can be effectively exploited by the
regular grids of quasirandom numbers. Another reason is that in financial
applications nominal dimensions are often very large, but the functions can
be approximated well by functions of low dimensions. In this case, grids,
which have projections with a good uniform distribution in lower dimensions,
especially in two dimensions, seem to work very effectively.

Well-known quasirandom sequences include: the Halton, the Faure, the
Niederreiter, and the Sobol sequences.

2.7.1 Halton sequences

Halton sequences use the representation of integers in another base to pro-
duce numbers between 0 and 1. For each dimension another base is used. As

Algorithm 2.20 One-dimensional Halton sequences (Van-der-Corput
sequences)
indexVan-der-Corput sequences

1. Select a prime number b as base.

2. For the j-th number in the Halton sequence write j ∈ N in base b,
j =
∑∞

i=0 aib
i, where ai ∈ {0, . . . , b− 1}.

3. Obtain the Halton grid number as Hj =
∑∞

i=0 aib
−i−1 ∈ [0, 1).

an example consider j = 17 in base b = 5 which is 32. Then, the output would
be 2 · 1/5 + 3 · 1/25 = 0.52. Van-der-Corput sequences are low-discrepancy
sequences.

For generating grid point number j it is not necessary to use exactly the
number j, there exist choices that work as well, e.g. the Gray codeG(j). With
the help of the Gray code, Halton grids can be calculated efficiently. But when
the dimensions get larger the Halton sequences begin to deteriorate. The
two-dimensional projections of higher dimensions reveal gaps and clusters. So
Halton sequences are only useful for numerical integration in lower dimensions.
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Algorithm 2.21 t-dimensional Halton sequences

1. Select t different prime numbers bk, k = 1, . . . , t as bases, typically the
first t primes.

2. For the j-th point in the Halton sequence write j ∈ N in each base bk,
j =
∑∞

i=0 ak,ib
i
k, where ak,i ∈ {0, . . . , bk − 1}.

3. Obtain the t-dimensional Halton grid point as Hj = (h1, . . . , ht) with
hk =

∑∞
i=0 ak,ib

−i−1
k , k = 1, . . . , t.

2.7.2 Sobol sequences

In contrast to the Halton sequences, the Sobol ones use only base 2 for
the expansion of integers. This makes the Sobol grids more regular in higher
dimensions, as the large prime numbers in the Halton grids are responsible for
the big gaps in the projections of higher dimensions. Working in base 2 also
has the advantage that the binary structure of computers can be exploited.

Each coordinate of the t-dimensional vectors of a Sobol sequences follows
the same construction principle, but each one has its own generator matrix
C ∈ {0, 1}w,w. The columns of C consist of the binary expansions of so-called
direction numbers cj , 1, . . . , w.

In the k-th iteration step the number k is represented in base 2,

k =
w−1∑
i=0

ak,i2i, ak := (ak,0, . . . , ak,w−1)T ∈ {0, 1}w , (2.75)

where the number w is chosen large enough for all necessary iteration steps.
The integer w often corresponds to the number of bits used to represent an
integer in the computer. After that, a binary vector yk is computed

yk = Cak, (2.76)

which is the basis for one coordinate of the k-th grid point

x =
w−1∑
i=0

yk,i2−i−1. (2.77)

This algorithm has similarities with the algorithm for the Halton sequences,
but the generator matrix C, which mixes the bits, is an important difference.
For a t-dimensional Sobol sequence we need t matrices Ci, i = 1, . . . , t, each
of it consisting of the binary expansion of w direction numbers. For these
Sobol chooses a primitive polynomial in the field F2 of degree q, q ∈ N,

P (z) = zq + α1z
q−1 + . . .+ αq−1z

1 + 1, αq := 1. (2.78)
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This polynomial is the basis for a recurrence relation

mj = α121mj−1 ⊕ . . .⊕ αq2qmj−q ⊕ mj−q, (2.79)

where mj is a binary vector, representing the binary expansion of an integer,
and ⊕ the bitwise exclusive XOR. The direction numbers can be described as

cj =
mj

2j
, j = 1, . . . , w. (2.80)

The direction numbers, initialized with odd integers 0 < mj < 2j , j =
1, . . . , q, consequently lie in (0, 1). The columns of matrix C are then filled
with the binary expansions of those w different direction numbers. The special
polynomial of degree zero, P (z) ≡ 1, defines the identity matrix as generator
matrix.

One important aspect is the initialization of the Sobol sequences, which
has an enormous impact on the structure of the distribution and uniformity
properties. But we will not present it here as it goes too far. Large tables of
primitive polynomials in F2 can be found in the Internet or in several books.
Again, as in the case of Halton sequences, you can work in step k either with
the integer k or a variant of the Gray code G(k). An efficient implementation
has been described by Bratley and Fox (1988).

2.7.3 Randomized quasi-Monte Carlo methods

Because the points of the quasirandom sequences do not even try to mimic
randomness, we can no longer use the stochastic error bounds in the usual
Monte Carlo method. We have been given deterministic worst-case error
bounds by the Koksma-Hlawka inequality, but they overestimate the real er-
ror in such a way that some good stochastic bounds would be helpful. The
idea is now to reintroduce a little bit of randomness without destroying the
excellent structure too much. Then we are able to design methods that de-
liver confidence intervals and still take advantage of the fast convergence with
quasirandom sequences (see L’Ecuyer [2004]). Here we take a look at the
t-dimensional deterministic point set Φt = {u1, . . . ,uN} ⊆ [0, 1)t.

• One possibility to randomize the point set Φt is to add a random shift. Let x
be a random vector uniformly distributed in [0, 1)t, then the randomized set
is calculated as Φt(x) = {(ui + x) mod 1| i = 1 . . . , N}. The effect is that
each point of the set is now uniformly distributed over the hypercube, but
nevertheless, the points are not independent.

• Another idea is to mix up the digits of the components of each vector ran-
domly. Let uk,j be the j-th coordinate of point k, k = 1, . . . , N , j = 1, . . . , t.
The expansion in base b then is uk,j =

∑r−1
i=0 vib

−i−1, where r is chosen large
enough. Then r independent permutations πi on {0, . . . , b− 1} are selected
randomly and applied to the representation in base b, ũk,j =

∑r−1
i=0 πi(vi)b

−i−1.
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The same digit permutations are applied to the same coordinate of all vec-
tors in Φt. For the other coordinates independent permutations are randomly
drawn.

• The digits can be scrambled in many other ways. Another idea is the linear
permutation of digits: ũk,j =

∑r−1
i=0 ṽib

−i−1, with ṽi =
∑i

l=1 hl,ivl+gi mod b.
The integers hl,i and gi are drawn randomly from {0, . . . , b− 1}, hi,i �= 0.

2.7.4 Hybrid Monte Carlo methods

Quasirandom sequences and especially Sobol sequences usually work very
well in Monte Carlo simulations. The initial coordinates of these sequences
– for most methods only a few dimensions (Sobol usually offers much more,
but it depends on the implementation) – have a better distribution than those
in the higher dimensions. So, it is recommended to assign the more impor-
tant variables of the simulation to the lower dimensions. This can be done
e.g. by a change of variables, Brownian bridge construction, or a principal
component construction (see Chapter 4 or Section 2.6.1). Often only a few
variables influence the value that should be estimated, so we talk about the
effective dimension d̂, which is often much smaller than the real dimension
d (see Equation 2.66) where a few components explain most of the variance).
This idea can be spun even further. One uses a low-dimensional quasiran-
dom sequence, qk ∈ (0, 1)d̂, for the first components, and fills the rest of
the vector with independent, uniformly distributed pseudorandom numbers
pk ∈ (0, 1)d−d̂. This method is called the hybrid Monte Carlo method
(see Asmussen and Glynn [2007]). It has the advantage that projections of
the components in higher dimensions have a better structure compared to
quasirandom structures in higher dimensions. Another application of this
method is the possibility to use quasirandom sequences in situations where
the dimensionality of the problem is not clear in advance (as e.g. valuing of
path-dependent exotic options).

2.7.5 Quasirandom sequences and transformations into
other random distributions

Quasirandom sequences give us very evenly distributed grids in many di-
mensions, which are often a good substitute for uniformly distributed vectors
and even speed up convergence when working with smooth functions due to
the evenness. But if other distributions are needed, e.g. the normal distribu-
tion, then care must be taken not to destroy the excellent grid structure. Then
the only suitable method to transform the numbers is the inversion method.
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2.8 Parallelization techniques

It is often possible to work with more than one computer processor, espe-
cially when doing a large-scale simulation. Then we will need RNGs that can
be split up to be distributed on the different processors. There are several
ideas for such so-called parallel RNGs:

1. The sequence of RNs is split up into several very long disjoint sub-
streams and then each processor is fed with the seed of the appropriate
substream.

2. With the leap-frog technique the RN un·L+j is assigned to the j-th
processor, n ∈ N, 1 ≤ j ≤ L. L > 1 is called the lag and is usually the
same as the number of processors.

3. We could supply different processors with different RNGs.

4. Some RNGs have several independent, disjoint subcycles with large pe-
riods. Then we can feed each processor with the seed of a different
subcycle.

Parallel RNGs should have the following properties:

• The RNG should work for any number of processors up to an upper bound.

• The RNG should deliver the same RNs for any number of processors.

• The quality of the simulation should not depend on the number of proces-
sors.

• The RN sequences for each processor should satisfy the criteria for a good
RNG.

• The sequences on different processors should not be correlated.

• Communication between the processors should not be necessary; once started
the simulation on each processor runs by itself.

Finding a good RNG for parallelization is still a challenge. We require in-
dependence within streams and between the streams of different processors.
Small correlations can be inflated by distributing a previously good RN se-
quence on several processors. Also the method to initialize a RNG needs more
attendance, as seeding several similar RNGs with a seed that is also very sim-
ilar may lead to catastrophically correlated RNs which would have otherwise
been good.

2.8.1 Leap-frog method

The advantage of the leap-frog method is that we get the same stream of
RNs in every calculation independent of the number of processors. So, these
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simulations are reproducible without problems. Leap frogging is especially
easy with LCGs, combined LCGs, or shift-register generators. We only need
to know how to jump ahead a few steps. Jumping ahead for L steps in the
case of a LCG becomes

sn+L =
[(
aL mod m

)
sn +

aL − 1
a− 1

c

]
mod m (2.81)

One problem becomes obvious here: Although the multiplier a may have good
properties in the spectral test, the new multiplier (aL mod m) might have
bad properties, so the individual RN substream on each processor might be
quite unsuitable. Also, when using a modulus which is a power of 2, and the
number of processors is also a power of 2 (which is often the case), there are
serious correlations between the RN sequences on different processors. This
problem can be avoided by using a prime modulus.

The problem with MRGs or other recursions with matrices is that the
new matrix AL has to be computed in advance, which can be rather time-
consuming. But this step is only done once. The more serious drawback is
that a formerly sparse matrix can become full, and so the calculations in every
iteration step will no longer be fast.

2.8.2 Sequence splitting

For the sequence splitting method we divide the sequence of RNs into several
substreams. If we have got a RNG with period length ρ, we could split up the
whole sequence into L subsequences of equal length, where L is the number of
processors. If the RNG has an extremely long period, an alternative method
is to cut off several very long pieces with a length of ρ̃. In most cases the
jump-ahead step, with a jump of ρ/L or ρ̃, has to be done only once, in the
initialization, then the RNG runs as usual on the different processors. So,
just the setting-up time becomes longer. But here the jump is rather big and
precalculations can be very time-consuming. Efficient algorithms for jumping
ahead have to be found.

With jumping ahead a huge step, long-range correlations may become ap-
parent that would not have otherwise been significant. Another disadvantage
here is that with a different number of processors the RN sequences will be
different, the simulation becomes machine-dependent. One solution could be
to assign some streams to nonexisting virtual processors. But this only works
up to a certain limit, which is not very high.

The possibility of splitting the RN sequence into substreams is a very use-
ful feature for some simulation situations, not only for parallel processors.
For example consider the application to compare two different parameter set-
tings. Here it is an advantage to have mainly the same RNs. If the number
of RNs needed changes with every parameter setting, then with several RN
substreams you can make sure that every main simulation part starts with
the same RNs.
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2.8.3 Several RNGs

For the third method we need several reliable RNGs of nearly equal quality,
which must further deliver uncorrelated sequences. Usually, RNGs of the
same type but with different parameters are chosen. The task now is to find
enough good RNGs for all processors. The problem remains that unknown
correlations may exist.

A first approach is to use nonlinear RNGs, as the EICGs are so far consid-
ered to be uncorrelated. However, not much research has been done in this
direction yet.

A promising idea is to use a collection of Mersenne Twister type generators.
Matsumoto and Nishimura (2000) describe how to create them efficiently.
These generators seem to be independent, have long periods, good equidistri-
bution properties, are fast, and many of them exist. The disadvantage is the
long setting-up time before the simulation can be run.

2.8.4 Independent sequences

Multiplicative lagged Fibonacci generators are not usable in the two previ-
ous methods because jumping ahead in this case is much too time-consuming.
But they have lots of disjoint full-period RN cycles. Those cycles can be
distributed on several processors by careful initialization. The seeds for the
different cycles can be tabulated or it is even possible to choose a random
seed for each processor, as there are generators that have such a huge number
of disjoint cycles, so that the possibility of choosing overlapping cycles is very
small.

2.8.5 Testing parallel RNGs

If sequence splitting is the method of choice, the RNG must be submitted
to much larger tests as in the single processor case. In general, one has to test
for correlations within a RN stream the way it is used in a single processor
and for correlations between different streams. For the latter test the different
RN streams can be interweaved and can be submitted to the usual statistical
tests.





Chapter 3

The Monte Carlo Method: Basic
Principles

3.1 Introduction

The main idea of the Monte Carlo method is to approximate an expected
value E (X) by an arithmetic average of the results of a big number of inde-
pendent experiments which all have the same distribution as X . The basis
of this method is one of the most celebrated results of probability theory, the
strong law of large numbers. As expected values play a central role in various
areas of applications of probabilistic modelling, the Monte Carlo method has
a widespread use. Examples of such areas of application are the analysis and
design of queueing systems (such as in supermarkets or in large factories), the
design of evacuation schemes for buildings, the analysis of the reliability of
technical systems, the design of telecommunication networks, the estimation
of risks of investments or of insurance portfolios, just to name a few.

Historically, the Monte Carlo method dates back to 1949 when the article
“The Monte Carlo Method” by Metropolis and Ulam appeared in the Journal
of the American Statistical Association. However, it was already developed
during World War II. J. von Neumann and S. Ulam are commonly regarded as
the founders of the Monte Carlo method. The name Monte Carlo method
should indicate that one uses a sort of gambling to obtain an approximation
procedure.

Nowadays one performs no physical gambling in the Monte Carlo method.
The outcomes of the independent experiments, needed to perform the method,
are replaced by suitable random numbers that are generated by a computer.
As the amount of random numbers has to be very high to ensure that the
Monte Carlo estimate is close to the exact expected value, the method tends
to be quite slow when applied in its crude form. As the Monte Carlo esti-
mator is a random variable, each run of it typically produces new values. As
the estimator is unbiased, the variance of the estimator is a measure for its
accuracy. Reducing this variance by suitable methods is therefore the usual
way of speeding up the Monte Carlo method.

In this chapter we introduce the crude Monte Carlo method, give some first
simple applications, and then concentrate on various methods for obtaining
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variance reductions. While due to our focus on finance most our examples
and considerations are done in the context of probability distributions with
densities, nearly all ideas carry over to the discrete distribution setting in
the obvious way: Simply switch from the density function to the probability
function of the discrete distribution.

3.2 The strong law of large numbers and the Monte
Carlo method

3.2.1 The strong law of large numbers

The strong law of large numbers (together with its various variants) is one
of the most powerful theorems of probability theory and has been a central
object of research during the history of probability theory. It is the basis of
the Monte Carlo method and states that the arithmetic mean of a sequence
of independent, identically distributed random variables (Xn)n∈N converges
almost surely to the expected value μ = E (X1) which of course is the same
for all Xn. We will state it here in its simplest form which is also referred to
as Kolmogorov’s version of the strong law:

THEOREM 3.1 Strong law of large numbers

Let (Xn)n∈N
be a sequence of integrable, real-valued random variables that are

independent, identically distributed (i.i.d.), and defined on a probability space
(Ω,F ,P). Let further

μ = E (X1) . (3.1)

Then, we have for P-almost all ω ∈ Ω

1
n

n∑
i=1

Xi (ω) n→∞→ μ, (3.2)

i.e. the arithmetic mean of the (realizations of) Xi tends to the theoretical
mean of every Xi, its expectation μ.

Note that the convergence in the strong law is the almost sure convergence.
This is an ω-wise convergence, i.e. the convergence of the arithmetic mean in
the theorem can be reduced to the convergence of sequences of real numbers
1
n

∑n
i=1Xi (ω).

REMARK 3.2 1. The above form of the strong law is not the most general
one. One can, for example, relax the independence assumption and replace it
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by pairwise independence (i.e. all pairs Xi and Xj have to be independent for
i �= j). For this version of the strong law see Etemadi (1981).

2. One can also relax the assumption of having an identical distribution for
the different random variables Xn. In this case, one needs the independence
of the Xn, σ2

j = Var (Xj) < ∞ and that we have

∞∑
j=1

σ2
j

j2
< ∞. (3.3)

Then one obtains:

1
n

n∑
j=1

(Xj − E (Xj))
a.s−−→ 0 for n → ∞. (3.4)

3. There are also versions for stochastic processes such as the martingale
strong law which is not presented here. For nearly all our purposes with
regard to the Monte Carlo method, Kolmogorov’s strong law is sufficient.

3.2.2 The crude Monte Carlo method

Let X be a real-valued random variable with a finite expectation E (X).
One popular method to compute this expectation (approximately) is given in
Algorithm 3.1.

Algorithm 3.1 The (crude) Monte Carlo method

Approximate E (X) by the arithmetic mean 1
N

N∑
i=1

Xi (ω) for some N ∈ N.

Here, the Xi (ω) are the results of N independent experiments that have the
same probability distribution as X .

The method in this pure form is called the crude Monte Carlo method to
distinguish it from all its variants that are presented in the following.

For considering the accuracy of the Monte Carlo method, we have to point
out that as a stochastic method, different runs of the Monte Carlo method
typically lead to different results (although they might be quite close to each
other!) when approximating a certain expression. We therefore have to deal
with a stochastic error. Let us first state that the Monte Carlo method ap-
proximates the relevant expectation correctly in the mean.

THEOREM 3.3 Unbiasedness of the Monte Carlo estimator
Let (Xn)n∈N

be a sequence of integrable real-valued random variables that are
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independent and identically distributed as X. All random variables are defined
on a probability space (Ω,F ,P).

Then, the Monte Carlo estimator

X̄N :=
1
N

N∑
i=1

Xi, N ∈ N, (3.5)

is an unbiased estimator for μ = E (X), i.e. we have

E
(
X̄N

)
= μ. (3.6)

Although this already ensures that a Monte Carlo estimator is correct in
the mean, it does not help us to get a feeling for the absolute value of the
error. Therefore, we look at the standard deviation of the difference between
X̄N and μ. As we have

Var
(
X̄N − μ

)
= Var

(
X̄N

)
=

1
N2

N∑
i=1

Var (Xi) =
σ2

N
, (3.7)

the standard deviation of the error is of order O(1/
√
N). As the standard

deviation is a measure for the (mean) accuracy of the crude Monte Carlo
method, this calculation has the following important consequence:

Increasing the accuracy of the Monte Carlo estimator
Increasing the (mean) accuracy of the crude Monte Carlo estimate by one
digit (i.e. reducing its standard deviation by a factor 0.1) requires increasing
the number of Monte Carlo runs by a factor of 100.

This, in particular, means that simply repeating a Monte Carlo run a certain
number of times does not significantly improve the accuracy of the estimator.
In the sense of the above insight, if we want to achieve a higher accuracy, it
needs a significant effort. Methods to speed up this slow rate of convergence
will be one of the main subjects of this chapter.

One can justify the use of the standard deviation of the error as a measure
for the accuracy of the Monte Carlo estimator by the central limit theorem.

THEOREM 3.4 Central limit theorem (i.i.d. case)
Let (Xn)n∈N

be a sequence of independent real-valued random variables that
are identically distributed and are defined on a probability space (Ω,F , P ).
Assume also that they all have a finite variance σ2 = Var (X). Then, the
normalized and centralized sum of these random variables converges in distri-
bution towards the standard normal distribution, i.e. we have

N∑
i=1

Xi −Nμ

√
Nσ

D−→ N (0, 1) as N → ∞. (3.8)



The Monte Carlo Method: Basic Principles 59

From the central limit theorem one can infer that for large values of N
the crude Monte Carlo estimator is approximately N (μ, σ2/N

)
-distributed.

As the standard deviation σ uniquely characterizes the spread of the values
of a normal distribution around its mean μ, using the standard deviation
as a measure for the accuracy of the Monte Carlo estimator is justified. As
we know that the asymptotic distribution of the Monte Carlo estimator is
approximately normal, we obtain

An approximate (1−α)-confidence interval for the expectation μ

[
1
N

N∑
i=1

Xi − z1−α/2
σ√
N
,

1
N

N∑
i=1

Xi + z1−α/2
σ√
N

]
. (3.9)

Here, z1−α/2 is the 1 − α/2-quantile of the standard normal distribution. As
the 97.5%-quantile of the standard normal distribution is about 1.96, a pop-
ular choice for an approximative symmetric 95%-quantile for the expectation
estimated by the Monte Carlo method in applications is given by the

2σ-rule for an approximate 95%-confidence interval for μ

[
1
N

N∑
i=1

Xi − 2
σ√
N
,

1
N

N∑
i=1

Xi + 2
σ√
N

]
. (3.10)

REMARK 3.5 1. As the length of the confidence interval is proportional
to 1/

√
N , one has to increase the number N of simulation runs by a factor of

100 to reduce this length by a factor of 0.1. Again, this underlines the slow
convergence of the crude Monte Carlo method.

2. Typically, the standard deviation σ needed for setting up the confidence
intervals is unknown. So, to use them as approximate confidence intervals,
one has to estimate σ2 by the sample variance

σ̄N =

√√√√ 1
N − 1

N∑
i=1

(
Xi − X̄N

)2 =

√√√√ N

N − 1

(
1
N

N∑
i=1

X2
i − X̄2

N

)
(3.11)

and then obtains a usable 2σ-rule for an approximate 95%-confidence interval
for μ [

1
N

N∑
i=1

Xi − 2
σ̄N√
N
,

1
N

N∑
i=1

Xi + 2
σ̄N√
N

]
. (3.12)

Of course, one can in the same way establish a usable version for the general
confidence interval for μ. We will however in the following always use 1.96
instead of 2 when we compute an approximate 95%-confidence interval.

3. It has to be emphasized that the above confidence interval is an approxi-
mate, asymptotic confidence interval. As on one hand, we are only estimating
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the variance and on the other hand, we do not a priori know if N is suffi-
ciently large to make the central limit theorem work, we should still have a
careful look at the whole situation if the confidence interval seems to indicate
something surprising. In particular, there might occur situations (such as the
Monte Carlo estimation of expectations of functions that are only nonzero far
away from the center of the underlying distribution) where the approximation
for the 95%-confidence interval might not be valid.

3.2.3 The Monte Carlo method: Some first applications

The basis of applying the Monte Carlo method is to calculate or approxi-
mate certain expressions via guessing them with the help of drawing a usually
big amount of suitable random numbers. As we need the strong law of large
numbers for proving that this method works, it is necessary that the expression
under study can be related to an expectation which is then itself approximated
by the arithmetic mean of the above sequence of random numbers. We will
illustrate this idea by some easy examples.

Example 3.6 Monte Carlo calculation of π
An experimental way to calculate π approximately is to consider the part of
the unit circle C with center in the origin that intersects with the positive
unit square [0, 1]2 (see Figure 3.1).

1 

1 

 

C

FIGURE 3.1: Estimating π by Monte Carlo.

Our experiment consists of choosing randomly points P1, ..., PN of the unit
square and consider

Xi = 1Pi∈C , (3.13)

the functions indicating if Pi is inside the unit circle or not. By this, we
implicitly assume that the chosen points are uniformly distributed on [0, 1]2.
We then have

P (Pi ∈ C) = π/4 (3.14)
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as the hitting probability of C equals its area (note that the area of [0, 1]2

equals 1). Because the indicator function 1Pi satisfies

E (1Pi) = P (Pi ∈ C) = π/4, (3.15)

we can thus estimate π by the corresponding arithmetic mean over all Pi to
obtain the Monte Carlo estimate

π̂ (ω) =
4
N

N∑
i=1

1Pi∈C (ω) . (3.16)

The speed of the convergence of the method is illustrated by the results in
Table 3.1 where we have chosen the values of 100, 10,000, and 100,000 for N .

N 100 10,000 100,000
π̂ 2.84 3.1268 3.14144

Table 3.1: Crude Monte Carlo Estimates for π

Note that even for a seemingly high number of trials such as N=10,000 one
does not necessarily obtain the first three digits right!

This should be regarded as an impressive indicator that the Monte Carlo
method converges indeed quite slowly. However, one should also note that the
relative error of this estimate is below 0.5%. Compared to this, the estimate
for N=100,000 is then extraordinarily precise!

Even more, it might happen that due to the randomness of the Monte Carlo
estimator, one has a better performance for N = 100 than for N = 100, 000.
It is therefore absolutely necessary that also confidence bounds [π̂low, π̂up] for
the Monte Carlo estimate are computed.

N 100 10,000 100,000
π̂low 2.477 3.0938 3.13105
π̂up 3.203 3.1598 3.15183

Table 3.2: Monte Carlo 95%-Confidence Bounds for π

The bounds are shown in Table 3.2 for a 95%-confidence level. And indeed,
they all contain the value of π, but their lengths differ significantly.

As in the case of an estimator that is mainly based on estimating the prob-
ability of a specific event, we have a simpler formula as in the general case for
estimating the variance needed for the confidence interval. We will explain
how to obtain it in the next example.
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Example 3.7 Estimating the probability of an event
This example has already been hinted at in the preceeding one. We only
formalize it here as estimating the probability of an event is an important
application of the Monte Carlo method. Therefore, let A be a certain event.
We want to estimate the probability of its occurrence P (A). By using the
relation between the expectation of the indicator function 1A of A,

1A (ω) =
{

1, if ω ∈ A
0, if ω /∈ A

(3.17)

and the probability of A,
E (1A) = P (A) , (3.18)

the Monte Carlo estimate for P (A) simply is the relative frequency of the
occurrence of A in N independent experiments.

Formally, let Ai denote the occurrence of A in experiment i. We then define
the Monte Carlo estimator for P(A) as

rfN (A) =
1
N

N∑
i=1

1Ai . (3.19)

As one also has
Var (1A) = P (A) (1 − P (A)) , (3.20)

we introduce
σ̂2
N = rfN (A) (1 − rfN (A)) (3.21)

and obtain an approximate 95%-confidence interval for P (A) as
[
rfN (A) − 1.96√

N
σ̂N , rfN (A) +

1.96√
N
σ̂N

]
. (3.22)

REMARK 3.8 By noting that the Monte Carlo estimator for π in
Example 3.6 is just the relative frequency of the event C multiplied by 4,
we obtain an estimator for the variance of 4 ∗ 1C by simply multiplying
rfn (C) (1 − rfn (C)) by 16.

Example 3.9 Monte Carlo integration
A very simple, but often efficient application of the Monte Carlo approach is
to calculate the value of deterministic integrals of the form

∫
[0,1]d

g (x) dx (3.23)

with g a real-valued, bounded function. By introducing the density function
f (x) of the d-dimensional uniform distribution on [0, 1]d via
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f (x) = 1[0,1]d (x) , x ∈ R
d, (3.24)

we can rewrite the above integral artificially as an expected value of g (X)
where X is a random variable which is uniformly distributed on [0, 1]d, i.e.

I =
∫

[0,1]d
g (x) dx =

∫
g (x) f (x) dx = E (g (X)) . (3.25)

Again, this allows us to compute a Monte Carlo estimator Î for the above inte-
gral via simulating N random variables X1, . . . , XN which are all independent
and uniformly distributed on [0, 1]d, and then to obtain

În (ω) =
1
N

N∑
i=1

g (Xi (ω)) . (3.26)

REMARK 3.10 1. Although the integral has to be calculated over a
subset of R

d, the real-valued random variables Zi = g (Xi) allow the applica-
tion of the strong law of large numbers. The rate of convergence of O(N−

1
2 )

of the Monte Carlo estimator stays valid independent of the dimension d.
As deterministic quadrature formulae typically have a rate of convergence

of O(N−
2
d ), we expect the Monte Carlo method to outperform these formulae

(at least in the mean) for dimensions d > 4. This is often paraphrased as
Monte Carlo methods beat the curse of dimensionality.

2. Application of this Monte Carlo integration method is not limited to
the unit interval. Exactly the same method can be carried out for general,
bounded d-dimensional rectangles. Of course, then the random variables Xi

have to be uniformly distributed on the corresponding rectangle.
In the general case of an unbounded domain, one needs a suitable trans-

formation h−1 that maps this domain to the unit interval. Then, the integral
equals E(g(h(X))h′(X) with X uniformly distributed on the unit interval.

3. The method of Monte Carlo integration can be imitated for calculating
discrete sums of a function g (x) over a countable set A. Indeed, by

∑
x∈A

g (x) =
∑
x∈A

g (x)
p (x)

p (x) = E

(
g (X)
p (X)

)
(3.27)

where P is a discrete probability distribution on A with

P (X = x) = p (x) > 0 ∀ x ∈ A, (3.28)

every discrete sum can be interpreted as an expectation.
Again, the Monte Carlo method can be applied to sample a large number N

of random variables from this distribution P and then to calculate the crude
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Monte Carlo estimator for the sum

ŜN,P =
1
N

N∑
i=1

g (Xi)
p (Xi)

(3.29)

to approximate the expectation in Equation (3.27). Of course, the choice of a
suitable probability distribution in the infinite sum case is not straightforward
as there is no uniform distribution on a set with infinitely many elements.

For general, unbounded domains of integration D ⊂ R
d one can make use

of a probability distribution which ideally has a support exactly equal to
D. As, depending on the form of D, it might be quite hard to find such a
distribution, a very crude method would be to use a multidimensional normal
distribution with the identity matrix I as the variance-covariance matrix and
an expectation vector μ lying insideD (ideally in some central position). With
ϕμ,I (x) being the corresponding density function, we then obtain

∫
D

g (x) dx =
∫

Rd

1D (x)
g (x)

ϕμ,I (x)
ϕμ,I (x) dx = E (g̃ (X)) (3.30)

from which the construction of a Monte Carlo estimator works in the usual
way. However, note that because we now have to require that this last expec-
tation exists and is finite,

g̃ (x) := 1D (x)
g (x)

ϕμ,I (x)
(3.31)

is no longer bounded. For more on Monte Carlo integration we refer to the
monograph by Evans and Swartz (2000).
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FIGURE 3.2: Monte Carlo integration of g (x) = x2 on [0, 1], dots represent
the sampled values, N = 10.
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In Figure 3.2 we show an illustration of how the integral of g (x) = x2 on
[0, 1] is approximated by

1
10

10∑
i=1

g (Xi (ω)) =
1
10

10∑
i=1

Xi (ω)2, (3.32)

the mean over all the values calculated at 10 randomly chosen points. Note
that the dots denote the function values at the randomly generated points.
In particular, there are two points simultaneously close to the origin.

We also integrate this function on [0, 1] with the help of the Monte Carlo
method for further values ofN . The corresponding values together with upper
and lower 95%-confidence bounds are given in Table 3.3. Note the very bad
performance for N = 10 which results from the fact that there is no sampling
point close to 1. However, even in this case, the 95%-confidence interval
contains the correct value of 1/3. Still, only in the case of N=10,000 we
see a satisfying behaviour, again a hint on the slow convergence of the crude
Monte Carlo method. Further, this very simple example clearly highlights
one problem of Monte Carlo integration: If there is a small dominating region
(such as the neighbourhood of 1 in our example) then the crude Monte Carlo
method needs an enormous amount of sample points to deliver a satisfying
performance. From this, it should be clear that one should usually not use
crude Monte Carlo methods for one-dimensional integration.

N 10 100 10,000
Îlow 0.047 0.297 0.325
ÎN 0.192 0.360 0.331
Îup 0.338 0.423 0.337

Table 3.3: Monte Carlo Integration with 95%-Confidence Bounds for x2 on
[0, 1] (Exact Value = 1/3)

3.3 Improving the speed of convergence of the Monte
Carlo method: Variance reduction methods

The main disadvantage of the crude Monte Carlo method is its slow conver-
gence. In probabilistic terms, this is expressed by the fact that the standard
deviation of the error only decreases as a square root in terms of the required
number of simulations. Thus, if one is able to modify the method resulting
in a faster decrease of the variance, one could speed up the computations
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in the sense that achieving a desired accuracy requires less simulation runs.
Any such modification of the crude Monte Carlo method is called a variance
reduction method. In the following sections we will introduce some popular
variance reduction methods. As most of them are standard material in theory
and application of Monte Carlo methods we will often not explicitly refer to
the literature. Their treatment can also be found in the monographs by As-
mussen and Glynn (2007), Glasserman (2004), Hammersley and Handscomb
(1964), Ripley (1987), or Rubinstein (1981), just to name a few.

Before we will go into details we should keep some aspects in mind:

• Simulation procedures cannot only be speeded up by reducing the vari-
ance of the estimator. Careful implementation and storage management
should also be optimized to save computing time.

• Implementing and adapting some of the following variance reduction
methods requires quite some effort in programming and mathematical
considerations. The gain in variance reduction should also be judged
against this additional effort. To put it clearly, is it really worth using
a variance reduction method in a specific situation?

• If the computational work per sample under sampling method A de-
notes WA and under method B denotes WB , then we speak of a more
effective reduction of variance by using method A if we have

WA · Var
(
X̄A
N

)
< WB · Var

(
X̄B
N

)
(3.33)

with X̄Y
N denoting the Monte Carlo estimator used in method Y and

based on N samples. Indeed, this relation is meaningful as we have
already seen that the variance of a Monte Carlo estimator is proportional
to the number of samples needed to obtain an approximate confidence
interval of a given length for the expectation of interest (with the same
constant of proportionality for both methods!). For this, just recall that
the form of an approximate confidence interval is

[
X̄N − z1−α/2

σ√
N
, X̄N + z1−α/2

σ√
N

]
. (3.34)

So when talking about variance reduction, we should also keep the
amount of computational work per sample in mind. As the variance
reduction methods typically require a higher amount of work per sam-
ple (sometimes negligible, sometimes significant), it is only worthwhile
using them if they predict a substantial reduction of variance.

3.3.1 Antithetic variates

The method of antithetic variables is the easiest variance reduction method.
It is based on the idea to combine a random choice of points with a systematic
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one. Its main principle is variance reduction by introducing symmetry.
Assume we want to compute E (f (X)) with X a random variable uniformly
distributed on [0, 1]. While the crude Monte Carlo estimate would be

f̄ (X) =
1
N

N∑
i=1

f (Xi) , (3.35)

with Xi being independent copies ofX , in the method of antithetic variates we
would also use the numbers 1−X1, ..., 1−XN and introduce the antithetic
Monte Carlo estimator

f̄anti (X) =
1
2

(
1
N

N∑
i=1

f (Xi) +
1
N

N∑
i=1

f (1 −Xi)

)
. (3.36)

Note that as X and 1−X have the same distribution, both sums on the right-
hand side of Equation (3.36) are unbiased estimators for E (f (X)). Therefore,
the antithetic estimator is also unbiased. Let σ2 = Var (f (X)). Then the
variance of the antithetic estimator is given by

Var
(
f̄anti (X)

)
=

σ2

2N
+

1
2N

Cov (f (X) , f (1 −X)) , (3.37)

i.e. we have a reduction of the variance compared to the crude Monte Carlo
estimator based on 2N random numbers if f (X) and f (1 −X) are negatively
correlated. Further, we have to notice that we also save computational effort
as we only have to generate N random numbers instead of 2N .

A theoretical result that can often be used to justify the method of antithetic
variates is the following proposition (see Asmussen and Glynn [2007]):

PROPOSITION 3.11 Chebyschev’s covariance inequality
Let X be a real-valued random variable. Let f, g be nondecreasing functions
with Cov (f (X) , g (X)) being finite. Then we have:

E (f (X) g (X)) ≥ E (f (X)) E (g (X)) . (3.38)

Indeed, by choosing g (x) = −f (1 − x), this proposition directly implies:

PROPOSITION 3.12 Variance reduction in the uniform case
Let f be a nondecreasing or a nonincreasing function, let X be uniformly
distributed on [0, 1] with Cov (f (X) , f (1 −X)) being finite. Then we have:

Cov (f (X) , f (1 −X)) ≤ 0. (3.39)

In particular, the antithetic Monte Carlo estimator based on N random num-
bers has a smaller variance than the crude Monte Carlo estimator based on
2N random numbers.
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We demonstrate the usefulness of the method by looking at the integration
example from Figure 3.2. Its bad performance in the case of N = 10 mainly
was due to the lack of random numbers close to 1. If we add the points 1−Xi,
we obtain an antithetic Monte Carlo estimate of 0.340 which is even better
than the crude Monte Carlo estimate for N = 100. The reason for this is
that due to the symmetrized set of random numbers, now also the critical
neighbourhood of 1 is covered by the sample. Figure 3.3 illustrates this fact.
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FIGURE 3.3: Antithetic Monte Carlo integration of g (x) = x2 on [0, 1], dots
represent the sampled values, N = 10.

REMARK 3.13 Whenever we are generating random variables Y via the
inverse transformation method out of uniformly distributed random variables
X , the foregoing result can be used. To see this, note that the distribution
function F (.) of Y is a nondecreasing function and so is its inverse F−1 (.).
Thus, if we want to estimate an expectation of the form E (h (Y )) with a non-
decreasing (a nonincreasing function) h, we can simply apply the proposition
to the nondecreasing (nonincreasing) function f (x) := h

(
F−1 (x)

)
.

The introduction of antithetic variables is of course not only limited to
uniformly distributed random variables. Whenever one can easily generate
variables X̃i out of Xi such that

• X̃i has the same distribution as Xi

• Cov
(
f
(
X̃i

)
, f (Xi)

)
≤ 0

we can use the above method. Examples for this are symmetric distributions
such as the normal distribution: For Xi ∼ N (μ, σ2

)
the suitable antithetic
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variable is given by
X̃i = 2μ−Xi. (3.40)

In particular, for μ = 0 the antithetic variate is simply −Xi. Again, we can
use Chebyschev’s covariance inequality to prove a variance reduction if f is a
monotonic function.

PROPOSITION 3.14 Variance reduction in the normal case
Let f be a nondecreasing or a nonincreasing function, let X be N (μ, σ2

)
-

distributed with Cov (f (X) , f (2μ−X)) being finite. Then we have:

Cov (f (X) , f (2μ−X)) ≤ 0. (3.41)

REMARK 3.15 Here are some further aspects of applying the method
of antithetic variates.

1. Note that in both our examples the sample mean of the random variables
equals the population mean, i.e. we have

1
2N

N∑
i=1

(
Xi + X̃i

)
= E (X1) . (3.42)

We thus have an automatic moment matching for the first moment in the
sample of the used random numbers.

2. As can be seen in the above numerical example, the effect of using
antithetic variates normally does not dramatically improve the speed of con-
vergence of the Monte Carlo method. This behaviour is often observed in
practical techniques (see also Section 3.4).

3. If we want to compute an expectation of the form

E (Y ) = E (h (X1, ..., Xk)) (3.43)

where the Xi are independent on [0, 1] uniformly distributed random vari-
ables and h is a real-valued function, then one can use component-wise anti-
thetic variates. For example, for each simulated k-dimensional vector Xj =
(Xj

1 , ..., X
j
k) one can also use

X̃j =
(
1 −Xj

1 , ..., 1 −Xj
k

)

for constructing an antithetic variate Monte Carlo estimator as in the one-
dimensional case. It can be shown that if h is nondecreasing in each component
then this method yields a variance reduction.

4. Confidence intervals for the antithetic variate Monte Carlo
estimator. To obtain a confidence interval for the antithetic variate Monte
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Carlo estimator, one has to consider the confidence interval for the crude
Monte Carlo estimator for 1

2 (f(X) + f(X̃)) where X̃ is the antithetic variate
for X . This is an estimator based on only N observations

h (Xi) =
1
2

(
f (Xi) + f

(
X̃i

))
. (3.44)

The variance σ2 for the confidence interval in the antithetic method therefore
has to be estimated by

σ̄2
anti =

1
N − 1

N∑
i=1

(
1
2

(
f (Xi) + f

(
X̃i

))
− f̄anti (X)

)2

(3.45)

leading to the approximate 95%-confidence interval for E (f (X)) of
[
f̄anti (X) − 1.96

σ̄anti√
N
, f̄anti (X) + 1.96

σ̄anti√
N

]
. (3.46)

3.3.2 Control variates

The principle of control variates is based on the idea that if we want to
compute E (X), we should try to compute as much as possible exactly
and should only compute that part by Monte Carlo simulation that we cannot
avoid. More precisely, if we know a random variable Y which is (in some sense)
close to X and for which we can compute E (Y ) exactly, then this random
variable can be chosen as a control variate, i.e. we use the relation

E (X) = E (X − Y ) + E (Y ) , (3.47)

which motivates the following control variate Monte Carlo estimator

X̄Y =
1
N

N∑
i=1

(Xi − Yi) + E (Y ) (3.48)

for E (X) with Xi, Yi being independent copies of X and Y . By the relation

Var
(
X̄Y

)
=

1
N

Var (X − Y )

=
1
N

(Var (X) + Var (Y ) − 2Cov (X,Y )) (3.49)

we obtain a reduction of the variance for the control variate estimator com-
pared to the crude one if we have

Var (X) ≥ Var (X − Y ) . (3.50)
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The amount of reduction of Var (X) is given by

2Cov (X,Y ) − Var (Y ) . (3.51)

If Y is very close to X this can lead to the elimination of nearly all the vari-
ance of the crude Monte Carlo estimator by using its control variate variant.
However, the efficiency of the control variate also hinges on the fact

• that we are able to directly simulate the difference Xi−Yi as one random
variable (i.e. we know its exact distribution and it is enough to simulate
just one random number and use a suitable transformation)

• or that we have to use the inverse transformation method for both Xi

and Yi separately (but still use the same random number for both or can
at least draw Xi and Yi from their joint distribution) which of course
needs a higher amount of work than in the previous case.

In the worst case the introduction of Y can nearly double the computing time
(if we ignore the time for calculating the exact value E (Y )). Therefore, in
the worst case, the introduction of the control variate Y only increases the
efficiency of the Monte Carlo method if the variance of X − Y is at most
half as big as Var (X). Also, finding a suitable covariate often needs some
intuition and is not always based on a systematic search algorithm.

REMARK 3.16 To obtain a confidence interval for the control variate
Monte Carlo estimator, one has to use the confidence interval for the crude
Monte Carlo estimator for E (X − Y ) and then simply has to add E (Y ) to
this interval, i.e. we obtain an approximate 95%-confidence interval by[

X̄Y − 1.96
σ̂X−Y√
N

, X̄Y + 1.96
σ̂X−Y√
N

]
(3.52)

with

σ̂2
X−Y =

1
N − 1

N∑
i=1

⎛
⎝Xi − Yi − 1

N

N∑
j=1

(Xj − Yj)

⎞
⎠

2

. (3.53)

We first illustrate the method by our standard integration example. For
this, we simply choose Y to be uniformly distributed on [0, 1], hence we have
Xi = Y 2

i . As we know E (Y ) = 0.5 we only have to simulate

Xi − Yi = Y 2
i − Yi (3.54)

Looking at the graph of this difference and comparing it to the integrand,
we can clearly expect a variance reduction (see Figure 3.4). This is simply due
to the fact that g (x) = x2 has a much bigger variation than ĝ (x) = x2 − x.
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FIGURE 3.4: Function g (x) = x2 and control variate version ĝ (x) = x2 − x
(dotted line) on [0, 1].

Indeed, the numbers shown in Table 3.4 impressively indicate the reduction
of variance compared to the performance of the crude Monte Carlo estimator
(see Table 3.3). The length of the confidence bounds have been greatly reduced
which underlines the power of the control variate method when a suitable
control is at hand. Note that due to rounding, the confidence intervals are
not exactly symmetric. Further, the (point) estimate for N = 10 is slightly
better than the one forN = 100. However, the confidence interval forN = 100
is much shorter than the one for N = 10, which underlines that we have a
more reliable estimate in the case of N = 100.

N 10 100 10,000
Îlow 0.292 0.327 0.331
ÎN 0.340 0.343 0.333
Îup 0.389 0.359 0.334

Table 3.4: Monte Carlo Integration with Control Variate x with 95%-
Confidence Bounds for

∫ 1

0
x2dx on [0, 1] (Exact Value = 1/3)

Further aspects of applying the method of control variates

1. Optimizing the control variate:

If we have found a candidate Y then due to the construction of the control
variate estimator also aY can be used as a control variate for a > 0. This is
due to the fact that the new control variate estimator is still unbiased due to
the linearity of the expectation. It also generates a variance reduction for a
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positive a if Y has already lead to a variance reduction (note that a negative a
would have increased (!) the variance of the control variate estimator). So the
optimal use of the control variate Y is achieved via introducing a multiplicator
a∗ that minimizes

g (a) = Var (X − aY ) = Var (X) + a2
Var (Y ) − 2aCov (X,Y )

= σ2 + a2σ2
Y − 2aσX,Y . (3.55)

From this, one obtains
a∗ =

σXY
σ2
Y

(3.56)

with an actual variance reduction of

2a∗Cov (X,Y ) − (a∗)2 Var (Y ) =
σ2
XY

σ2
Y

. (3.57)

By denoting the correlation between X and Y as ρX,Y and using the relation

σXY = ρX,Y σXσY (3.58)

we obtain that the maximum relative variance reduction is given by

2a∗Cov (X,Y ) − (a∗)2 Var (Y )
Var (X)

= ρ2
X,Y . (3.59)

Note that the maximum achievable variance reduction decreases quadratically
with the correlation between X and its control variate Y . Thus, only using
a control variate with a high value of ρX,Y will help in making the control
variate method effective. If we have a control with, say, ρX,Y = 0.4 then the
maximum possible reduction of variance is only 16% of the original σ2

X !
If both the variance of Y and the covariance between X and Y are known

then we can directly use a∗Y as control variate. If this is not the case then one
either has the chance to estimate both (or only σXY if at least σ2

Y is known)
via a simulation procedure that can be performed before starting the control
variate procedure. We could also estimate the unknown parameters during
the performance of the control variate procedure as a by-product and then
update parameter a∗ continuously for the control variate estimator. In our
standard integration example with the control variate Y , the optimal choice
of a can explicitly be computed as a∗ = 1. So we have indeed used the best
linear control variate.

2. Multiple controls

Due to the way we have constructed the control variate estimator, we can
add another control variate, say Z, in the form

X̄Y,Z = X̄Y − 1
N

N∑
i=1

Zi + E (Z) . (3.60)
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This again yields an unbiased estimator for μ = E (X). Further, it leads to a
variance reduction if we have

Var (Z) < 2Cov (XY , Z) . (3.61)

In the particular case of uncorrelated Zi and Yi this reduces to requiring

Var (Z) < 2Cov (X,Z) . (3.62)

One can thus use as many control variates as one would like. A particular
application of multiple controls to a multivariate situation as

X = f (Y1, ..., Yd) (3.63)

will be the method of unconditional mean control variates (see below).

3. Control variates and series approximations

It is often not easy to find a good control variate. In our standard integration
example we have already seen that the control X is the best linear control
variate (as a function of X). One could also imagine best estimators of higher
polynomial degree. We thus assume that we would like to estimate

μ = E (f (X)) (3.64)

and that we have a Taylor approximation of order k of the form

fk (x) =
k∑
j=0

f (j) (x0)
j!

(x− x0)
j
. (3.65)

The main question then is whether we are able to determine an optimal value
x0 such that we obtain the highest possible reduction of variance when using
fk (X) as a covariate. Of course, this highly depends on our ability to compute
all kinds of moments of X up to order k and in particular to compute all the
covariances Cov

(
Xj , f (X)

)
. In our integration example we have implicitly

done that as we could replace the control X for f (X) = X2 by the control

f1 (X) = f ′
(

1
2

)(
X − 1

2

)
+ f

(
1
2

)
= X − 1

4
, (3.66)

because the constant −1/4 cancels out in the covariate part. So, actually the
best linear estimate that we achieved in this case is the Taylor approximation
of order 1 in the point x0 = 1/2 that is directly in the center of the range of
X (see Figure 3.5 for an illustration).

We note however that a Taylor approximation is only locally a good one.
So x0 should be in some sense in the center of the distribution of X . Further,
the quality of this covariate depends of course on the approximation quality of
the Taylor polynomial. We might have good bounds from the explicit form of
the Taylor remainder term in special cases such as convex/concave functions
f or for functions that have a series representation. On the other hand, we
cannot present a general result here.
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FIGURE 3.5: Integrand x2 (black) and best linear Taylor approximation of
order 1 (grey).

4. Unconditional mean control variates

The method of unconditional control variates is a natural one for approximat-
ing expectations of multivariate functions

E (g (X)) = E

(
g
(
X(1), ..., X(d)

))
(3.67)

by d univariate controls

Y UMj (X) = g
(
μ1, ..., μi−1,X

(i), μi+1, ..., μd

)
, j = 1, ..., d, (3.68)

with μj = E
(
X(j)

)
, the so-called unconditional mean control variates.

Thus, one is using the univariate versions of g (X) where only component
i is allowed to vary freely while the other components are set equal to the
component mean. For the method to work, we have to be able to calculate all
the expected values of the controls. We can then introduce the unconditional
mean control variate estimator as

X̄UMC
N =

1
N

N∑
i=1

⎛
⎝g (Xi) −

d∑
j=1

Y UMj (Xi)

⎞
⎠+

d∑
j=1

E
(
Y UMj (X)

)
. (3.69)

In the context of finance, this method has been introduced by Pellizzari (2001).
With regard to confidence intervals and the possible variance reduction all
that has already been said above when discussing multiple controls is valid as
the method is just a particular example of a multiple control variate strategy.
We illustrate it with a simple example where we have a random variable
X =

(
X(1), X(2), X(3)

)
with a multivariate normal distribution, i.e.

X ∼ N
⎛
⎝
⎛
⎝1

1
1

⎞
⎠ ,
⎛
⎝ 1 0.8 0.8

0.8 1 0.64
0.8 0.64 1

⎞
⎠
⎞
⎠ . (3.70)
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We want to estimate

E (g (X)) = E

(
X(1) ·X(2) ·X(3)

)
. (3.71)

This implies that now the control variates are simply the components X(i).
Thus, the unconditional mean control variate estimator is given by

X̄UMC
N =

1
N

N∑
i=1

(
X

(1)
i ·X(2)

i ·X(3)
i −X

(1)
i −X

(2)
i −X

(3)
i

)
+ 3. (3.72)

A simulation with N=10,000 resulted in the numbers reported in Table 3.5.
Note that the variance has been reduced by approximately 25% which also
resulted in a smaller confidence interval.

Method Mean Lower quantile Upper quantile
CMC 3.240 3.120 3.361
UMCV 3.201 3.096 3.306

Table 3.5: E
(
X(1) ·X(2) ·X(3)

)
Estimated with Crude (CMC) and Uncondi-

tional Mean Control Variate Method (UMCV), N=10,000

5. Control variates are not always good

It is actually trivial, but there do exist bad control variates. Whenever there
is a good control variate Y (measured in terms of a high value of ρX,Y ), there
is also a bad one, namely −Y . To see this simply note that we have

ρX,Y = −ρX,−Y , (3.73)

i.e. the use of −Y as a control variate would result in an increase of variance of
the corresponding estimator. The purpose of this artificial example however is
to highlight that one should have at least a heuristical argument that there is
a positive correlation between the random variable X and the control variate
Y if we do not know ρX,Y explicitly.

If one is indeed unsure about the variance reducing effect of a control vari-
able then one should sample a few realizations of both X and Y , estimate
the covariance σXY and σ2

Y from these realizations, and finally use aY with
a = σ̂XY /σ̂

2
Y as control variate. This is indeed the optimization suggested in

our first point on further aspects of control variates.

3.3.3 Stratified sampling

The main principle underlying stratified sampling is a natural one: sample
in a small subpopulation that mirrors the properties of the total
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population as much as possible. Of course, for this we need an indicator
of these properties of the population (this indicator will often be called Y in
the following). Indeed, this is quite a familiar method as it is the base for
opinion polls often met in newspapers (such as e.g. on the population’s atti-
tude towards the work of the government, or on the forecast of sports results).
An opinion poll is always based on a so-called representative sample of the
population. The reason behind this is that each (sufficiently large) subgroup
of the population should be present in the sample in the same fraction as it
is present in the full population. Mathematically, this means that one wants
to eliminate the variance caused by the sample population differing in its
characteristics from the whole population. Only the variance (= the different
opinions) inside the different subgroups should remain.

In the method of stratified sampling the distribution of a random variable
X is divided into d different parts that are determined by the values y1, ..., yd
of a second random variable Y . One can typically think about the purpose of
Y to indicate from which of the d different parts of the sample space Ω the
random variable X should be drawn. If

• the probability distribution of Y is known and easy to calculate and

• X |Y can easily be simulated

then one can use this information to calculate μ = E (X) via

E (X) =
d∑
i=1

E (X |Y = yi )P (Y = yi). (3.74)

If now all the probabilities pi = P (Y = yi) are known then one only has to
simulate the d different conditional expectations with the appropriate crude
Monte Carlo method. To show that this indeed leads to a reduction of vari-
ance, let us define for i = 1, ..., d:

X̄i,Ni :=
1
Ni

Ni∑
j=1

X
(i)
j , μi := E (X |Y = yi ) , σ2

i := Var (X |Y = yi ) .

All the random variables X(i)
j must have the same distribution as X |Y = yi .

We then introduce the stratified Monte Carlo estimator for μ by

X̄strat,N =
d∑
i=1

piX̄i,Ni (3.75)

with N = N1 + ... +Nd. Due to the above representation of the expectation
as a weighted sum of the conditional expectations, the stratified Monte Carlo
estimator is an unbiased estimator for μ. Even more, one can show that the
stratified estimator naturally has a smaller variance than the crude Monte
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Carlo estimator. To see this, note that due to the (conditional) independence
of the subestimators X̄i,Ni , i = 1, ..., d we have

Var
(
X̄strat,N

)
= Var

(
d∑
i=1

piX̄i,Ni

)
=

d∑
i=1

p2
i

σ2
i

Ni
=

d∑
i=1

pi
Ni
piσ

2
i . (3.76)

By using the relations

E (Var (X |Y )) =
d∑
i=1

Var (X |Y = yi )P (Y = yi) =
d∑
i=1

piσ
2
i , (3.77)

σ2 = Var (X) = E (Var (X |Y )) + Var (E (X |Y )) ≥ E (Var (X |Y )) (3.78)

with a strict inequality in the second relation if E (X |Y ) is not almost surely
constant, we obtain:

PROPOSITION 3.17 Variance reduction for well-chosen weights
(a) With the above notation there exist N1, ..., Nd such that the variance of
the stratified Monte Carlo estimator is smaller than that of the crude Monte
Carlo estimator for μ.
(b) Let us assume that all values of Npi are integers. Then, for the choice of
proportional stratification Ni = Npi the variance of the stratified Monte Carlo
estimator is strictly smaller than that of the crude estimator if E (X |Y ) is
not almost surely constant.
(c) The highest variance reduction is obtained for the choice of

N∗i := N
piσi∑d
j=1 pjσj

(3.79)

(where without loss of generality we have assumed that all σj are positive).

While the first two claims follow from the relations preceding the proposi-
tion, the third one can be obtained from minimizing the explict expression for
the variance of the stratified Monte Carlo estimator in the variables N1, ..., Nd
under the constraints of N1 + ...+Nd = N and Ni ≥ 0. This can be achieved
with the help of the Lagrangian method of constrained optimization.

REMARK 3.18 1. Note that the optimal weight N∗i /N of the subgroup
determined by Y = yi simply measures the contribution of this subgroup to
the total weighted variation in terms of

∑d
j=1 pjσj .

2. The performance of the stratified sampling method depends heavily on
the variation in the (conditional) expectation between the different subgroups
determined by Y = yi. If the values of E (X |Y = yi ) are significantly dif-
ferent then the reduction in variance can be tremendous; if E (X |Y = yi ) is
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close to being constant as a function of Y then there will be nearly no vari-
ance reduction by using the method of stratified sampling. For those familiar
with statistics, a comparison to the variance decomposition in the analysis of
variance is enlightening.

3. Note also that the applicability of the stratified sampling method cru-
cially relies on the availability of both the distribution of Y (or more precisely,
the probabilities pi) and the variances in the subgroups determined by Y = yi.
If the σi are not available then one could still use part (b) of the proposition
to obtain a variance reduction with the choices of Ni = Npi. An alternative
would be to estimate the σi in some preliminary simulations and then switch
over to the choices of the N∗i where the σi have to be replaced by the just
obtained estimate. This however introduces additional errors in the method
and it is a priori not clear if this method is efficient.

In many applications, the stratifying variable Y is only formally identified
as a random variable. To illustrate this, we use again our simple integra-
tion example of the preceding sections. Here, we choose Y as a random
variable that attains the values 1, 2, 3, 4 each with the same probability, and
Y = j means that one then samples the function g (x) = x2 in the interval
[0.25 (j − 1) , 0.25j].

                                          
 
 
 
 
 
 
 
 

  0      0,25   0,5   0,75     1                   

FIGURE 3.6: Stratifying U [0, 1] in four equally probable strata.

Indeed, we take a sample of size N/4 for each such interval (see Figure 3.6)
and use this to compute the crude Monte Carlo estimate for

∫ 0.25j

0.25(j−1)

x2dx, j = 1, ..., 4.

For N=100 we already obtain a very precise estimate,

X̄strat,100 = 0.332 with Var
(
X̄strat,100

)
= 0.008, (3.80)

as always rounded to the third digit.
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Further aspects of applying stratified sampling

1. Stratifying a general distribution

Let the variable X that we are going to simulate have a general, nondiscrete
distribution that can be generated out of the uniform distribution with the
help of the inverse transformation method. We can then easily create strata
of the distribution of X with given probabilities pi, i = 1, ..., d (i.e. we can
stratify the distribution). Therefore, let F be the distribution function of X .
Then we obtain the required strata Bi as

Bi =

⎛
⎝F−1

⎛
⎝i−1∑
j=1

pj

⎞
⎠ , F−1

⎛
⎝ i∑
j=1

pj

⎞
⎠
⎤
⎦ , , i = 1, ..., d (3.81)

where F−1 (.) is the inverse of the distribution function F . Note also that we
have implicitly used F−1 (0) = −∞ and also that for the right-hand side of
Bd we are using the open interval if we have F−1 (1) = +∞. The variable Y
is then again formally introduced with the interpretation that Y = i means
that we are (conditionally) sampling from stratum Bi.

2. Multidimensional stratification and the curse of dimensionality

The last example can also be generalized to more than one dimension when we
have a vector X = (X1, ..., Xd) of independent real-valued random variables
Xj . For this, we assume that we can generate the distribution of Xj out of the
uniform distribution Uj on [0, 1] with the help of the inverse transformation
method, i.e. we assume that we have the representation

X = (X1, ..., Xd) =
(
F−1

1 (U1) , ..., F−1
d (Ud)

)
. (3.82)

We can then directly imitate the method of the foregoing example to generate
the strata component-wise. It is thus enough to stratify the uniform distribu-
tion U on [0, 1]d. The straightforward choice is to use a product set approach
on [0, 1]d. For simplicity, we stratify each coordinate j into nj equally probable
sets and then define product sets

Ai1,...,id =
d∏
j=1

(
ij − 1
nj

,
ij
nj

]
, ij = 1, ..., nj, j = 1, ..., d (3.83)

(see Figure 3.7 for an illustration in the case of d = 2 and nj = 4) with

P (U ∈ Ai1,...,id) =
d∏
j=1

1
nj

=: p̄. (3.84)

We then obtain the desired sets Bi1,...,id that all have the same probability
p̄ under the distribution function F by applying the inverse transformation
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method, i.e. via

Bi1,...,id =
d∏
j=1

(
F−1
j

(
ij − 1
nj

)
, F−1

j

(
ij
nj

)]
,

ij = 1, ..., nj , j = 1, ..., d. (3.85)

The main problem with this approach is the number of strata Ai (respectively
Bi) that we are obtaining in this way. It equals n = n1 · ... · nd which gets
extremely large even for small values of nj if the dimension d is large. As one
needs at least one (but typically some more!) random number per strata, one
realizes that the number of required random numbers explodes with increasing
dimension d. This fact is usually called the curse of dimensionality. The same
problem has already been mentioned for product quadrature rules of numerical
integration.

                                         
 
 
 
 
            B22 
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FIGURE 3.7: Stratifying U [0, 1]2 in 16 equally probable strata.

3. Confidence intervals for stratified sampling

To obtain a confidence interval for the expected value μ = E (X) with the help
of stratified sampling, we take a look at the crude Monte Carlo estimators in
the different strata. For this, we assume that we have d strata A1, ..., Ad all
indicated by the random variable Y attaining the values y1, ..., yd. To avoid
trivial cases, we further assume that we have

P (Y = yi) = pi > 0, i = 1, ..., d, (3.86)

and that the sizes Ni of the subsamples in the strata are chosen to guarantee

Ni
N

N→∞−→ pi, i = 1, ..., d. (3.87)

This in particular ensures that all Ni tend to ∞ if the sample size N does.
Thus, by the central limit theorem, for each crude Monte Carlo estimator in
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the different strata we obtain

1√
Ni

Ni∑
j=1

(
X

(i)
j − μi

)
D−→ N

(
0, σ2

i

)
for Ni → ∞. (3.88)

Hence, for large N (and thus large Ni) we obtain that all subestimators X̄i,Ni

are approximately N
(
μi,

σ2
i

Ni

)
-distributed. As further all the subestimators

are independent, we have that the stratified Monte Carlo estimator X̄strat,N

is approximately N
(
μ, 1

N

∑d
i=1

σ2
i p

2
iN

Ni

)
-distributed. If we further use that for

large sample size N , the relative frequency Ni/N of strata Ai approximates
the probability pi, we can use a N

(
μ, 1

N

∑d
i=1 σ

2
i pi

)
distribution for the con-

struction of the confidence interval. It only remains to estimate the strata
variances σ2

i by the sample variances

σ̂2
i =

1
Ni − 1

Ni∑
j=1

(
X

(i)
j − X̄i,Ni

)2

.

This then results in an approximate 95%-confidence interval for μ of
⎡
⎣X̄strat,N − 1.96√

N

√√√√ d∑
i=1

σ̂2
i pi, X̄strat,N +

1.96√
N

√√√√ d∑
i=1

σ̂2
i pi

⎤
⎦ (3.89)

4. The method of poststratification

It might be possible that the probabilities pi of the different strata Ai are
known, but one is not interested in a conditional sampling on the different
strata. A reason for this might be that the transformation required for the
stratified sampling is not at hand. Then it is still possible to use a kind of
automatic stratification procedure. This is based on the fact that the
relative frequencies of occurrence of stratum Ai in a large sample tends to its
probability pi. The method of poststratified sampling then works as:

• Generate a sample X1, ..., XN in the usual way.

• Classify the different values of this sample in groups related to the dif-
ferent strata Ai, i.e. assign each Xj to the sample Ai that is related to
it. Set Ni = |Xj ∈ Aj : j = 1, ..., N |.

• On each Ai calculate the crude Monte Carlo estimator with the assigned
X values of the sample to obtain the strata means X̂i,Ni .

• Obtain the poststratified Monte Carlo estimator X̂strat,N as

X̂strat,N =
d∑
i=1

piX̂i,Ni (3.90)
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with pi = P (Ai).

We first have to emphasize that the absolute frequencies Ni of observations
related to stratum Ai are not chosen before the sampling. They are indeed
random variables and determined after (i.e. ex-post) X1, ..., XN have been
generated. The assignment of the X values to the different strata can be
formally expressed as we actually simulate pairs (Xj , Yj) and we assign Xj

to Ai if we have Yj = yi. However, in situations where the distribution of X
is already directly stratified, the assignment to the strata is straightforward.
For the question of the performance of the poststratified sampling, note that
we can represent the crude Monte Carlo estimator of the full sample as

X̄N =
1
N

N∑
i=1

Xi =
1
N

d∑
i=1

NiX̂i,Ni =
d∑
i=1

Ni
N
X̂i,Ni . (3.91)

Thus, the poststratified Monte Carlo estimator differs from the crude one by
the choice of the weights of the strata means. Note that the poststratified
estimator gives those strata means a higher weight that are underrepresented
in the total sample, i.e. for which we have Ni/N < pi. In the same way it
assigns a lower weight to the overrepresented strata means. Consequently, as
the strong law of large numbers implies the convergence

Ni
N

a.s.→ pi for n → ∞ (3.92)

poststratification obtains the same variance reduction as proportional strati-
fication asymptotically. However, it is not clear how large the sample size N
has to be such that the poststratification method can benefit from this large
sample size property. Thus, the advantage of using this method is not clear.

5. Latin hypercube sampling

As already discussed above, if the dimension d of the random variable X =(
X(1), ..., X(d)

)
is large then the use of stratified sampling is somewhat re-

stricted. Indeed, assume that all the components ofX are independent. Then,
stratifying each component with k equally likely strata would require gener-
ating kd samples of X to fill each of the resulting product strata (in the sense
of point 2 above) with just one sample Xi. Thus, eliminating all the vari-
ance between the different strata via stratified sampling is inefficient in such
a situation.

Latin hypercube sampling then is an idea of how to eliminate at least some
of this variance between the strata by a specific way of multidimensional
sampling if the sample size is already fixed. Assume for this that we are in the
situation of the d-dimensional random vector X above that has independent,
identically distributed components. Assume further that we will sample N
such random vectors X1, ..., XN . The main steps of Latin hypercube sampling
are then:
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• Stratify each component X(j), j = 1, ..., d with N equally likely strata
A1, ..., AN .

• Sample exactly one observation Y (j)
i from stratum Ai for all i = 1, ..., N

for each component j = 1, ..., d.

• Choose d permutations π1, ..., πd randomly from the set of permutations
of {1, 2, ..., N}.

• Set
X

(j)
i = Y

(j)
πj(i)

for i = 1, ..., N, j = 1, ..., d. (3.93)

We have thus perfectly stratified each componentX(j), i.e. eachAi is nonempty.
Further, we have first sampled inside each stratum component-wise and then
we have just randomly paired the components. If one is now arranging the
pairs of strata (Ai, Aj) of two diffferent dimensions in a cross table, then we
have exactly one entry per row and per column. This resembles a so-called
Latin square. As the method just presented is a multidimensional generaliza-
tion of the Latin square method known from experimental design, this justifies
the name Latin hypercube sampling. The Latin hypercube estimator of
μ = E (f (X)) is then given by the crude Monte Carlo estimator over the
sample X1, ..., XN obtained by Latin hypercube sampling:

X̄LHS,N =
1
N

N∑
i=1

f (Xi). (3.94)

To demonstrate the sampling procedure, we look at the following example
where we simulate 4 vectors Xi ∼ U [0, 1]3 by the Latin hypercube method:

• Each X(j) is stratified into
A1 = [0, 0.25] , A2 = (0.25, 0.5] , A3 = (0.5, 0.75] , A4 = (0.75, 1].

• We then sample all Y (j)
i by stratified sampling to obtain:

Y (1) = (0.095500046, 0.493293558, 0.701216163, 0.866725669)
Y (2) = (0.025170141, 0.349131748, 0.705786309, 0.897030549)
Y (3) = (0.149121067, 0.273186438, 0.546647542, 0.844218268)

• We use the permutations:

π1 = (1, 2, 3, 4) , π2 = (2, 1, 3, 4) , π3 = (4, 3, 1, 2) .

• This results in the sample

X1 = (0.095500046, 0.349131748, 0.546647542)
X2 = (0.493293558, 0.025170141, 0.844218268)
X3 = (0.701216163, 0.705786309, 0.273186438)
X4 = (0.866725669, 0.897030549, 0.149121067)
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Latin hypercube sampling was introduced by McKay et al. (1979) and was
further developed by Stein (1987) and Owen (1992). A proof that under
strong assumptions on the function f the (asymptotic) variance of X̄LHS,N is
smaller than that of the crude Monte Carlo estimator is given by Stein (1987).
Further, Stein (1987) and Loh (1996) provide work on large sample properties
and an examination of the efficiency of the method. We do not go into further
details, but refer the interested reader to the above given references.

3.3.4 Variance reduction by conditional sampling

A method that is at the first sight conceptually very similar to stratified
sampling is the conditional sampling approach. Again the aim is to estimate
μ = E (X) by a suitable variant of the Monte Carlo method. Here, variance
reduction is obtained with the help of a second variable Y and the use of
conditional expectations. However, in the stratified sampling approach, the
distribution of the Y variable was already known and the conditional expec-
tations E (X |Y ) had to be estimated by the (crude) Monte Carlo method. In
the conditional sampling approach the roles of the conditional expectations
and of the distribution of Y are reversed. We here assume that

• E (X |Y ) can be computed exactly by a given analytical formula,

• the distribution of Y is estimated by the (crude) Monte Carlo method.

By using the representation

μ = E (X) = E (E (X |Y )) , (3.95)

we obtain a Monte Carlo estimator for μ by sampling E (X |Y ). While in the
stratified sampling method we fixed Y = yi and then sampled E (X |Y = yi ),
we here simply sample Y to obtain various values of E (X |Y ). The condi-
tional Monte Carlo estimator is thus obtained by

• Sample Y N times to obtain Y1, ..., YN

• Compute E (X |Yi )
• Set

X̄cond,N =
1
N

N∑
i=1

E (X |Yi ) (3.96)

By construction, the conditional Monte Carlo estimator is unbiased. By the
conditional variance decomposition formula – already used in the stratified
sampling method – we obtain

σ2 = Var (X) = E (Var (X |Y )) + Var (E (X |Y ))
≥ Var (E (X |Y )) =: σ2

cond (3.97)
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with a strict inequality if X |Y is not almost surely constant. We thus have:

PROPOSITION 3.19 Variance reduction by conditioning
With the above notation, the variance of the conditional Monte Carlo estima-
tor never exceeds the variance of the crude Monte Carlo estimator. If X |Y is
not almost surely constant then there is a positive variance reduction by using
the conditional Monte Carlo estimator.

REMARK 3.20 1. This time, the Monte Carlo error by estimating
the mean in the subgroups characterized by the different values of Y is fully
eliminated. We will thus have a big variance reduction if the variation inside
the groups is large and the (conditional) group means do not differ much.

2. As the conditional Monte Carlo estimator is a crude Monte Carlo es-
timator constructed by using the different realizations E (X |Y = yi ) of the
conditional expectation, we can construct confidence intervals for E (X) in
the usual way with the help of the usual estimate for the variance of the
observations E (X |Y = yi ), i.e. as

[
X̄cond,N − 1.96

σ̄cond√
N
, X̄cond,N + 1.96

σ̄cond√
N

]
. (3.98)

We highlight the use of the method and its main difference to stratified
sampling by the following simple example.

Example 3.21 Conditional versus stratified sampling
Assume that one wants to estimate the average costs μ of a night spent in a
hotel in holiday (per person) of people from – say – Germany. Let us further
assume that there are two companies. Company A – which is specialized in
lifestyle – knows the exact fractions of pi of the n different countries C1, ..., Cn
where German people spend their holidays. To estimate μ, the company
should use the stratified sampling method. More precisely, given suitable
weights p̂i (such as p̂i = Ni/N assuming that this can be achieved with Ni
being an integer [otherwise use a suitable rounding procedure]) the company
should ask Ni people who spent their holidays in country Ci. From this, it
can estimate the hotel costs in country Ci by the crude Monte Carlo method
and then determine the stratified Monte Carlo estimator.

On the other hand, assume that company B – which specializes in tourist
offers – knows the average cost per person and night, C̄i, in each of the coun-
tries, but has no idea about the preferences, Y , of the German population with
respect to their holiday habits. Here, Y = i means that the relevant person
spent the holiday in country Ci. Company B should apply the conditional
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Monte Carlo method, i.e. it should simply ask N Germans about where they
spent their holidays. The answers Ci1 , ..., CiN can then be used to compute
the conditional Monte Carlo estimator

X̄cond,N =
1
N

N∑
j=1

Cij . (3.99)

3.3.5 Importance sampling

While in the two preceding variance reduction methods, we looked at trans-
formed distributions of X obtained by conditioning or stratifying the distri-
bution, importance sampling however builds upon a direct transformation of
the density function of X (or a transformation of the probability function, in
case of X being a discrete random variable). The main idea of importance
sampling simply is to find a distribution for the underlying random variable
that assigns a high probability to those values that are important for
computing the quantity of our interest, E (g (X)).

To motivate the method, we again have a look at the Monte Carlo inte-
gration of Example 3.9. There, with f(x) being the density of the uniform
distribution on U [0, 1]d, the relation

∫
[0,1]d

g (x) dx =
∫
g (x) f (x) dx = E (g (X)) (3.100)

enabled us to estimate the deterministic integral via the use of N independent,
on [0, 1]d uniformly distributed random variables X1, ..., XN to obtain a crude
Monte Carlo estimator

ĪN (ω) =
1
N

N∑
i=1

g (Xi (ω)) . (3.101)

However, we could imagine that if we closely examine the integrand g (x),
then we could improve the accuracy of the above estimate if we generate
more random numbers in the areas where g (.) has large values (in absolute
terms) while in areas where it is nearly 0, only a few samples are necessary to
predict the contribution of the function on this area to the integral. Clearly, to
take advantage of our knowledge of g (.) in the above way, we have to change
the distribution of the random variable X in a suitable way, as otherwise we
would change the value of the expectation.

As an example consider the case of d = 1, g (x) = x·(1 − x) which obviously
is nonnegative and symmetric on [0, 1], vanishes for x ∈ {0, 1}, and attains its
maximum of 0.25 in x = 0.5. In the spirit of the discussion above, instead of
using a uniform distribution on [0, 1], it would be better to use a triangular
distribution for the random variable X , i.e. it should have the probability
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density (see Figures 3.8 and 3.9):

f̃ (x) =

⎧⎨
⎩

0 , x ≤ 0 or x ≥ 1
4x , 0 < x < 1

2
4 − 4x, 1

2 ≤ x < 1
(3.102)
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FIGURE 3.8: Integrand x ((1 − x)).
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FIGURE 3.9: Sampling density f∗ (x).

As the value of the integral should not be changed when we sample accord-
ing to the new density f̃ , we have to divide g (x) by f̃ (x):

∫ 1

0

x (1 − x) dx =
∫ 1

0

x (1 − x)
f̃ (x)

f̃ (x) dx. (3.103)

This means that when we use the new distribution we actually have to sample
X (1 −X) /f̃ (X) to obtain the new Monte Carlo estimate

Īimp =
1
N

N∑
i=1

Xi (1 −Xi)
f̃ (Xi)

. (3.104)

Note that the Xi are now distributed according to the density f̃ (.). A simple
comparison of using the Monte Carlo estimate with N=1,000 between the
uniform approximation and the triangular approximation shows the superior-
ity of the new method, the new one resulting in 0.168 and a 95%-confidence
interval of [0.166, 0.170], the crude one in 0.163 with a 95%-confidence interval
of [0.158, 0.167] while the exact value is 1/6. The new method also leads to a
much smaller variance of the estimator as we have

Var
(
Īcrude

)
=

1
180N

, (3.105)

Var
(
Īimp

)
=

1
1152N

=
1

64 · 18N
. (3.106)
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We thus have reduced the variance to less than one sixth of the variance of
the original crude Monte Carlo estimator by using the suggested method.

For the general case we try to formalize this approach to apply the idea of
importance sampling to the computation of

E (g (X)) =
∫
g (x) f (x) dx, (3.107)

where the R
d-valued random variable X has the density f (x), and where we

assume that the expectation exists for the function g : R
d → R. For every

density function f̃ (x) on R
d with the property of

f̃ (x) > 0 for all x with f (x) > 0 (3.108)

and its associated probability measure P̃ we introduce g̃ (.) via the relation

E (g (X)) =
∫
g (x) f (x) dx =

∫
g (x)

f (x)
f̃ (x)

f̃ (x) dx

= Ẽ

(
g (X)

f (X)
f̃ (X)

)
= Ẽ (g̃ (X)) . (3.109)

Here, Ẽ (.) denotes the expectation with respect to P̃. The weight function
f (X) /f̃ (X) is called the likelihood ratio function of the above change of
measure from P to P̃. The importance sampling estimator (with respect
to f̃ (.)) for μ = E (g (X)) is defined as

Īimp,f̃ ,N (g (X)) =
1
N

N∑
i=1

g̃ (Xi) =
1
N

N∑
i=1

g (Xi)
f (Xi)
f̃ (Xi)

(3.110)

where the Xi are independent and are distributed according to the impor-
tance sampling density function f̃ . So the importance sampling estimator
is a weighted crude Monte Carlo estimator where the weights for each obser-
vation Xi are determined by the likelihood ratio function. Note that due to
the representation (3.109) the importance sampling estimator is unbiased and
consistent. Its variance is given by

σ2
imp,f̃ ,N

= ˜Var
(
Īimp,f̃ ,N (g (X))

)

=
1
N

˜Var (g̃ (X)) =
1
N

(
Ẽ

(
g̃ (X)2

)
− μ2

)

=
1
N

(∫
g (x)2 f (x)

f̃ (x)
f (x) dx− μ2

)
. (3.111)

As the importance sampling estimator is again an averaging over independent
identically distributed random variables, the central limit theorem yields an
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Approximate 95%-confidence interval for E (g (X))
[
Īimp,f̃ ,N (g (X)) − 1.96

σ̃imp,f̃,N√
N

, Īimp,f̃ ,N (g (X)) + 1.96
σ̃imp,f̃,N√

N

]
(3.112)

with σ̃imp,f̃ ,N denoting the sample standard deviation of the importance sam-
pling estimator. If we assume that we have g (x) ≥ 0 for all x ∈ R

d, then
there is one particularly striking feature in this representation. Namely, if we
choose

f̃ (x) = c · f (x) · g (x) =
f (x) · g (x)∫
f (y) · g (y) dy

(3.113)

then f̃ (x) is a density function on R
d and we would have g̃ (X) = 1/c, i.e.

˜Var
(
Īimp,f̃ ,N (g (X))

)
= 0. (3.114)

However, the drawback of this approach is that the constant c is essentially
the value we are trying to calculate by our Monte Carlo approach as we have
μ = 1/c. So, if we already know c, we would not be interested in performing
importance sampling anyway. On the positive side, the above choice has the
following consequence.

PROPOSITION 3.22 Variance reduction by importance sampling
Let g (.) be a nonnegative function. Then there exist choices of importance
sampling density functions f̃ such that we have

˜Var
(
Īimp,f̃ ,N (g (X))

)
< Var

(
Ī (g (X)N )

)
(3.115)

with Ī (g (X))N being the crude Monte Carlo estimator for E (g (X)). More-
over, for all functions f̃ with property (3.108) we obtain

Var
(
Ī (g (X))N

)− ˜Var
(
Īimp,f̃ ,N (g (X))

)

=
1
N

(∫
g (x)2

(
1 − f (x)

f̃ (x)

)
f (x) dx

)
. (3.116)

Note that the last relation follows from representation (3.111), the fact
that both estimators are unbiased and the usual representation of E(g(X)2).
Further, this last relation gives a hint on the structure of a good importance
sampling density f̃ . To obtain a variance reduction, we should have:

• f̃ (x) should be large (in the sense of f̃ (x) > f (x)) whenever g (x)2 f (x)
is large.

• f̃ (x) should be small (in the sense of f̃ (x) < f (x)) whenever g (x)2 f (x)
is small.
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Of course, there have to be values x with f̃ (x) < f (x). With regard to the
purpose of variance reduction, they should therefore only appear when the
product g (x)2 f (x) has no large impact. Besides the two requirements above,
an importance sampling density should also satisfy practical issues such as:

• f̃ (x) should be easy to evaluate.

• random variables with density f̃ should be easy to simulate.

Thus, a good importance sampling density should be a compromise between
being similar to g2 · f and being tractable.

Some popular methods to obtain an importance sampling density

We present easy, popular, and tractable methods which are based on shifting
the original density f (x) (translation) and on adjusting its shape by scaling.

1. Shifting the density and the maximum principle

The idea of this method is simply to replace f (x) by

f̃ (x) = f (x− c) (3.117)

for a constant c leading to

g̃ (x) =
f (x)

f (x− c)
g (x) . (3.118)

The so-called maximum principle consists of choosing c in such a way that
f̃ (x) and g (x) f (x) attain their maximum at the same point xmax. This, of
course, requires that we can explicitly determine this maximum point. Also,
if it is not unique, it is not always clear how to choose c. In the special case
of a multivariate normal density function

f (x) = ϕν,Σ (x) =
1

2d/2 |det (Σ)| exp
(
−1

2
(x− ν)′Σ−1 (x− ν)

)
(3.119)

one knows that its maximum point is the mean ν. So, one chooses

c = ν∗ − ν (3.120)

with
ν∗ = arg maxx {g (x) f (x)} . (3.121)

Such an approach is particularly suitable for computing expressions related
to extreme events. We illustrate this by the following example.

Example 3.23 Computing costs of extreme events for a normal
distribution
Suppose that we have X ∼ N (0, 1) and that we face costs of g (X) if we
observe values of X bigger than 10. This is extremely unlikely, but one might
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think of events such as a default of the United States or a serious accident in a
nuclear power plant. If we now use a crude Monte Carlo estimator then, even
for a very high number of N , we would typically not observe a single value of
Xi exceeding 10 and thus estimate the mean costs E (g (X)) to be zero. If we
use

g (x) = C · x · 1[10,∞) (x) (3.122)

with C a typically very large constant then it is easy to verify that we have

10 = arg maxx

{
C · x · 1[10,∞) (x)

1√
2π

exp
(−x2/2

)}
. (3.123)

Thus, we use

f̃ (x) = ϕ0,1 (x− 10) =
1√
2π

exp
(
− (x− 10)2 /2

)
(3.124)

which leads to the importance sampling estimator of

Īimp,f̃ ,N (g (X)) =
1
N

N∑
i=1

C ·Xi · 1Xi≥10 exp (50 − 10Xi) (3.125)

with all independent Xi ∼ N (10, 1). With N=10,000 and C = 109 we ob-
tained an estimate of 7.530 · 10−14 with an approximate 95%-confidence in-
terval of

[
7.029 · 10−14, 8.031 · 10−14

]
. Compare this to the exact value of

C · exp (−50)/
√

2 ∗ π = 7.695 · 10−14. This is an impressive performance, in
particular as the crude Monte Carlo estimator delivers a value of 0 with a zero
variance! See Figure 3.10 for an illustration of the shift of the sampling density.
The figure and the form of the importance sampling estimator nicely highlight
the way importance sampling works: The shift yields sampling values in the
area of importance for calculating the expectation while the likelihood ratio
functions assign these samples their probability weights. In the crude Monte
Carlo method this has already been done before the sampling which results
in (nearly) no samples in the region of interest.

2. Changing the shape of the density by scaling

Here, the idea is to steepen or flatten the density via replacing f (x) by

f̃ (x) =
1
c
f
(x
c

)
(3.126)

for a constant c > 0 leading to

g̃ (x) = c
f (x)
f
(
x
c

)g (x) . (3.127)
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FIGURE 3.10: Original density f (x) (grey) and shifted importance sampling
density f̃ (x) (black).

Choosing a big value of c >> 1 spreads out the distribution which can be
advantageous to estimate costs of extreme events. However, an obvious draw-
back is that this spreading is symmetric for symmetric distributions. So re-
gions far away from our region of interest obtain more weight, too. Further,
the variance of the distribution corresponding to f̃ equals the variance cor-
responding to the original density multiplied by c2. The use and the advan-
tages/disadvantages of this approach can again be illustrated by

Example 3.23 (continued)
In the unchanged situation of Example 3.23, we could choose the shape pa-
rameter c such that there is a significant probability to enter the region [10,∞)
when we simulate random numbers according the transformed density f̃ . As
for an N

(
0, σ2

)
-distributed random variable Xσ we have

P (Xσ ≥ σ) = 1 − Φ (1) = 0.159 ,

one could choose σ = 10. Then in the mean a sixth of the generated random
numbers Xi would enter [10,∞) and thus would make a nonzero contribution
to the so-obtained importance sampling estimator (see Figure 3.11).

However, by choosing σ = 10 we have increased the standard deviation of
the sampling distribution by a factor of 10 which is an undesirable feature.
This is also underlined by the estimate of 8.259 · 10−14 with an approximate
95%-confidence interval of

[
5.956 · 10−14, 1.056 · 10−13

]
. Although the true

value of 7.695 · 10−14 is inside the 95%-confidence interval, the estimator is
still quite unstable. Note also the much bigger confidence interval compared
to the one of the mean-shifting technique.
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FIGURE 3.11: Original density f (x) (grey) and scaled importance sampling
density f̃ (x) (black).

3. Exponential twisting

For a distribution with a density f on R
d, the method of exponential twist-

ing with parameter θ ∈ R
d is characterized by the relation

fθ (x) =
exp (θ′x)

E (exp (θ′X))
f (x) (3.128)

where X is distributed according to P. The function M(θ) = E (exp (θ′X)) in
the denominator is called the moment generating function ofX . By defin-
ing the cumulant generating function C(θ) = ln(M(θ)) one can directly
verify that we have

C′ (θ) = E (X exp (θ′X − C (θ))) = Eθ (X) (3.129)

where Eθ denotes the expectation under the transformed density fθ. So,
exponential twisting with parameter θ shifts the mean of X to the value
C′(θ). When C′(x) can easily be calculated, we thus know what to do if we
want to have an appropriate mean shift.

The same change of measure as above will be applied under the name
Esscher method in Chapter 7 in the context of option pricing in incomplete
financial markets.

4. Conditional sampling restricted to the important area

So far, our methods tried to bring more probability into the area that
is relevant for the calculation of the expectation of interest. We now make
a more radical move and bring all the probability into this area. We
do this by conditional sampling. The first problem however is that now the
importance sampling density f̃ is zero on an area where the original one might
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be positive. However, we repair this by requiring that

f̃ (x) > 0 for all x with g (x) f (x) �= 0 (3.130)

instead of requirement (3.108). Then the defining relation for the importance
sampling density is still true, and due to the relation between a density and
the conditional density on an interval [a, b] (with both a, b possibly equalling
−∞ respectively ∞)

f{X|X∈[a,b]}(x) =
f (x)

P (X ∈ [a, b])
(3.131)

we obtain a very simple form of the likelihood ratio function if we choose such
a conditional density as our importance sampling density:

f (x)
f̃ (x)

= P (X ∈ [a, b]) . (3.132)

This also makes the importance sampling estimator easier to calculate as we
then have the representation

Īimp,f̃ ,N (g (X)) =
1
N

N∑
i=1

g̃ (Xi) =
1
N

P (X ∈ [a, b])
N∑
i=1

g (Xi) (3.133)

where of course the Xi have to be sampled from the conditional density.
If the interval we are conditioning on has a very small probability then

calculation of this probability might be a hard numerical problem. One could
avoid this by performing a combined conditioned-shift method: First
move the density (partly) into the area of interest by an appropriate shifting,
and then use the shifted density as the basis for conditioning on the area of
interest. The price of this gain in numerical stability is that we now have a
conventional importance sampling estimator again, i.e.

Īimp,f̃cond,N
(g (X)) =

1
N

P̃ (X ∈ [a, b])
N∑
i=1

g (Xi)
f (Xi)

f̃cond (Xi)
(3.134)

with f̃cond (x) being the density obtained from the shifted density f̃ (x) by
conditioning. We highlight the differences between both approaches:

Example 3.23 (continued)
In the well-known situation of Example 3.23, a pure conditioning would lead
to an importance sampling estimator of

Īimp,f̃ ,N (g (X)) =
1
N

P (X ∈ [10,∞))
N∑
i=1

C ·Xi. (3.135)
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FIGURE 3.12: Shifted density (by the maximum method) f̃ (x) (grey) and
conditional shifted density f̃cond (x) (black).

However, the probability occurring in the estimator is extremely small and
very hard to distinguish from zero. For the combined approach, we first
perform a shift according to the maximum principle leading us to a normal
distribution with unit variance and mean 10. Then, conditioning on only
sampling values larger than 10 only results in a multiplying factor of two
to obtain the conditional density on [10,∞). We thus obtain the combined
importance sampling estimator of

Īimp,f̃cond,N
(g (X)) =

1
N

N∑
i=1

C ·Xi · 1Xi≥10 · 1
2

exp (50 − 10Xi) (3.136)

where now the Xi are sampled from the conditional distribution. Still, there
is a very small multiplying factor inside the importance sampling estimator,
but this one is much easier to calculate than the corresponding probability for
the direct conditioning. The way this combined estimator is obtained can be
seen in Figure 3.12. The result from performing the relevant simulation is the
most exact one of the three methods considered, as shown in the comparison
in Table 3.6.

Method Estimator Lower quantile Upper quantile
Crude MC 0 0 0
Mean Shift 7.530 · 10−14 7.029 · 10−14 8.030 · 10−14

Scaling 8.259 · 10−14 5.956 · 10−14 1.056 · 10−13

Comb. Conditioning 7.530 · 10−14 7.190 · 10−14 7.870 · 10−14

Table 3.6: Different Importance Sampling Methods with 95%-Confidence
Bounds (Exact Value = 7.695 · 10−14)
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5. Importance sampling for discrete random variables

So far, we have restricted ourselves to the case of probability distributions
with densities. However, the principle of importance sampling is also valid
for discrete distributions. Note that if X has a discrete distribution P with
pi = P (X = xi), we have the following relation (assuming that all expressions
appearing are well defined):

E (g (X)) =
∞∑
i=1

g (xi) pi =

=
∞∑
i=1

g (xi) pi
p̃i

p̃i = Ẽ

(
g (X)

p (X)
p̃ (X)

)
(3.137)

Here, the probability function p (x) is defined as

p (x) =
{
pi if x = xi for some i ∈ N

0 else . (3.138)

The above discussed methods and suggestions for finding a suitable impor-
tance sampling distribution can all easily be adapted to the discrete setting.
In particular, discrete exponential families such as the binomial distributions
or the Poisson distributions can use exponential changes of measure as a con-
venient transformation.

REMARK 3.24 If the importance sampling density f̃ becomes smaller
much faster in the tails than the original density f then the likelihood function
f (x) /f̃ (x) can attain very high values. As this is a tail event, it might happen
only very rarely but can totally bias the value of the importance sampling
estimator. To avoid this, one should try to use importance sampling densities
that do not have lighter tails than the original density f .

We will meet further applications of importance sampling in both finance
and insurance in Chapter 5 and Section 8.2.5. However, there are also numer-
ous examples of applications of importance sampling in other areas of science
such as biology, physics, information processing, and many others.

3.4 Further aspects of variance reduction methods

3.4.1 More methods

The last section did not contain all possible methods of variance reduction
in our survey. Indeed, there are many more, some of them efficient, some of
them with an unclear impact. One such method is moment matching.
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Moment matching

The idea of moment matching is that the samples generated for Monte
Carlo estimation should have the same statistical properties as the underlying
distribution. By this we mean that the empirical moments of the sample
should coincide with the theoretical moments of the distribution. While this
seems to be desirable at first sight, it also poses some important questions. To
underline this, let us have a look at a popular adjustment of the crude Monte
Carlo method that guarantees that the corrected sample has the same first
two moments as the underlying distribution, μ = E (X) and σ2 = Var (X).
To achieve this, replace the sample elements Xi by

Xc
i =
(
Xi − X̄N

) σ

σ̄N
+ μ (3.139)

with σ̄2
N being the usual sample variance based on N observations. It is easy

to verify that we have

X̄c
N =

1
N

∑
Xc
i = μ, (σ̄cN )2 =

1
N − 1

∑(
Xc
i − X̄N

)2 = σ2. (3.140)

However, this is paid for by the following two problems:

• The Xc
i are no longer independent.

• The Xc
i no longer have the same distribution as X . Note in particular

that dividing by σ̄N is a nonlinear transformation that can lead us to
completely different classes of distributions!

Further, in a lot of studies the impact of this method with regard to variance
reduction is unclear. Note also that the antithetic variates method is an
example of a mean matching method.

Weighted Monte Carlo estimation

A different method to match moments is to assign weights wi to the elements
X1, ..., XN of the sample of random variables from which the Monte Carlo
estimator for E (g (X)) is computed. Then the weighted Monte Carlo
estimator for E (g (X)) is computed as

Īw,N =
N∑
i=1

wig (Xi). (3.141)

What remains is to determine the weights to match the mean in the underlying
sample, i.e. we require

E (X) =
N∑
i=1

wiXi . (3.142)
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To have consistency with the usual weight of 1/N in the crude Monte Carlo
estimator, it makes sense to ask in addition for

N∑
i=1

wi = 1. (3.143)

As these two conditions do not uniquely determine the weights wi, one could

• introduce additional moment constraints (up to N − 2) similar to those
in Equation (3.142) or

• introduce an additional criterion such as the length of the weight vector
w and use that w which is optimal for this criterion under the additional
constraint (3.143).

In Glasserman (2004) and in Glasserman and Yu (2005) properties of such
estimators resulting from e.g. the solution of the least-squares criterion

min
w∈RN

‖w‖2
2 (3.144)

under the additional constraints (3.142) and (3.143) are examined in detail.
An interesting connection to the control variate method is presented there.
However, this connection also shows that there is no improvement over the
control variate method. So we do not go into details of the method.

Common random numbers

This method is not really a variance reduction method like the ones we have
presented so far. It is more a principle that if we compare two expressions
that are simulated by different Monte Carlo estimators then the variance of
the difference attains its minimum when we use the same random numbers
for computing the two Monte Carlo estimators. A particular example where
this is made more precise is the computation of option price sensitivities with
the help of finite differences in Chapter 5.

Combined variance reduction methods

Typically, the variance reduction methods we have presented here work as
a two-step procedure:

1. Apply a transformation to the problem (such as stratification, condi-
tioning, transformation of the distribution, or subtraction of a similar
random variable).

2. Use crude Monte Carlo estimators for estimating expected values in the
transformed problem.



100 Monte Carlo Methods and Models in Finance and Insurance

As the second step consists of the use of a crude Monte Carlo estimator, again
a variance reduction technique can be applied which reduces the variance in
the transformed problem. So, in principle, a second iteration of the above two-
step procedure is possible which itself could be followed by a third iteration,
and so on. In practice, many situations can be imagined where actually a
combination is justifiable such as

• using stratified sampling after the distribution has been transformed to
the important part of the distribution via importance sampling,

• using a control variate after the sample has been symmetrized by anti-
thetic sampling.

Other combinations are possible, and there are examples that support them
and others where the combination has no advantage over just using one of both
methods. Thus, there is no general rule for finding an efficient combination.

3.4.2 Application of the variance reduction methods

We have seen various methods to speed up the convergence of the crude
Monte Carlo method in the preceding section. Of course, the most interesting
questions are which method to use when, and which method is the best.
There is no clear answer to these questions. However, we try to formulate
some simple advice to help apply Monte Carlo methods:

• If there is an obvious good control variate at hand, then use it. Often,
in this situation using antithetic variates is beneficial before the control
variate method is applied.

• For computing expectations where rare events play an important role,
importance sampling is usually the preferable method, sometimes the
only one that works.

• If there is no obvious argument for a variance reduction method then
be careful in applying such a method as it can also lead to a waste of
computing time.

To judge if stratified sampling should be introduced depends on the problem.
In the one-dimensional setting it is often easy to introduce a stratification
that greatly reduces the variance when E (g (X)) has to be estimated. There
it is crucial to use both detailed knowledge on the distribution of X and the
behaviour of the function g (x). In such a case, it will typically be preferable
to a control variate approach. For higher dimensions, however, stratified
sampling suffers under the curse of dimensionality.

Another important role in deciding on the level of sophistication of the
variance reduction technique is the further use of the developed algorithm. If it
will be used very often on parametrically changing problems (such as an option
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pricing routine in financial software) where furthermore a reliable solution
should be computed fast, a detailed analysis of the problem is advisable.
There, even a combination of different variance reduction techniques to reduce
as much variance as possible should be considered. However, one should again
note that variance reduction is not the only aspect of efficiency. As already
said in the introducing part to Section 3.2, the computing and the variance
reduction factor have to be considered simultaneously. If on the other hand
one chooses a Monte Carlo approach just to compute one single expectation,
then sometimes the search for a suitable variance reduction method can take
longer than using a crude Monte Carlo estimator with a very high number of
replications N .

In the following chapters, we will often apply Monte Carlo methods to com-
pute expectations over paths of stochastic processes. There, high dimensions
are introduced by the discretization of a path of a stochastic process. We will
also comment on variance reduction techniques in these settings. Further,
there will be many examples where a particular variance reduction technique
will be tailored to the particular application in problems of finance or actuarial
problems.





Chapter 4

Continuous-Time Stochastic
Processes: Continuous Paths

4.1 Introduction

Stochastic processes are the main modelling tool when dynamically evolv-
ing phenomena with a random component are considered. Of course, we will
consider such phenomena as stock prices, interest rates, and premium pro-
cesses, but one can also think about examples from nature such as weather or
technical systems such as the flow of interacting particles through some filter.
We will therefore introduce the notion of a stochastic process in this chapter.

As the normal distribution plays a popular role in probabilistic modelling,
Brownian motion and the Itô integral as the corresponding stochastic process
versions of the normal distribution are surveyed. To deal with functionals of
Brownian motion and Itô integrals the so-called Itô calculus will be presented
in a comprehensive way (see i.e. Karatzas and Shreve [1991] for a rigorous
treatment). It is then a natural step to introduce stochastic differential equa-
tions as the modelling tool based on these building blocks. After collecting
some basic theoretical results about their existence and uniqueness, we then
mainly concentrate on discretization methods to simulate the solutions of
stochastic differential equations. Here, we mainly follow the standard refer-
ence, the monograph by Kloeden and Platen (1999), for presenting the basic
principles. However, we also introduce some very recent methods such as the
statistical Romberg method (see Kebaier [2005]) and the multilevel Monte
Carlo method (see Giles [2008]).

4.2 Stochastic processes and their paths: Basic
definitions

A stochastic process is an indexed family of random variables. Typically,
this index is interpreted as the running time. Thus, a stochastic process can be
seen as a model for describing the behaviour of a family of random experiments

103



104 Monte Carlo Methods and Models in Finance and Insurance

performed one after another in time. Alternatively, it can be thought of as
the result of a random experiment where the exact value is partly revealed
over time, one piece after another. This second interpretation explains that
the sets of possible events corresponding to the evolution of the stochastic
process changes over time. This flow of information over time leads to the
concept of a filtration which is the collection of all scenarios of the evolution
of the stochastic process. We put this together in the following definition.

DEFINITION 4.1

Let (Ω, F,P) be a probability space with sample space Ω, σ-field F , and prob-
ability measure P. Let I be an ordered index set.
(a) A family {Ft}t∈I of sub-σ-fields of F with Fs ⊂ Ft for s < t, s, t ∈ I, is
called a filtration.
(b) A family {(Xt, Ft)}t∈I consisting of a filtration {Ft}t∈I and a family of
Rn-valued random variables {Xt}t∈I such that Xt is Ft-measurable is called
a stochastic process with respect to the filtration {Ft}t∈I.
(c) For a fixed ω ∈ Ω, the set

X. (ω) := {Xt (ω)}t∈I = {X (t, ω)}t∈I (4.1)

can be interpreted as a function of time t and is called a sample path or a
realization of the stochastic process.

Standard examples of stochastic processes are temperature curves, the evo-
lution of a stock price index, the sequence of the wealth of a gambler taking
part in a series of games of chance, or the size of a population as a function
of time, just to present a few.

REMARK 4.2 1. We often simply writeX to denote a stochastic process.
We either do this if the filtration {Ft}t∈I is clearly identifiable from the current
context or if the filtration is the so-called natural filtration, i.e. if we have

Ft := σ {Xs : s ≤ t} . (4.2)

2. If the index set I in the definition of the stochastic process is an interval
I ⊂ R (or even more typically I ⊂ [0,∞)) then we speak of a continuous-
time stochastic process. If the index set I is a discrete subset of R (e.g. a
sequence in N) then we speak of a discrete-time stochastic process.

One of the main differences between a stochastic process describing tem-
perature curves and one showing the evolution of a population size above is
that temperature curves change continuously over time while population sizes
change by jumps of integer sizes. Such properties of the paths of a stochastic
process are very important for both theory and application.
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DEFINITION 4.3
If the sample paths of a stochastic process X. (ω) are all (but up to a set of
P -measure zero) continuous (right-continuous, left-continuous) then we speak
of a continuous (right-continuous, left-continuous) stochastic process.

We will in this chapter mainly concentrate on continuous-time stochastic
processes with continuous paths, i.e. on continuous stochastic processes. The
treatment of (continuous-time) stochastic processes with jumps and their ap-
plications in financial and actuarial models will be the subject of Chapters
6, 7, and 8. However, the next definitions are independent of the continuity
of the paths of the processes. They generalize the idea of performing one
experiment after another in time by introducing the notion of the increments
of a stochastic process as the difference between the values at two times.

DEFINITION 4.4
(a) A stochastic process {(Xt, Ft)}t∈I is said to have independent incre-
ments if for all r ≤ u ≤ s ≤ t with r, u, s, t ∈ I we have

Xt −Xs is independent of Xu −Xr. (4.3)

(b) A stochastic process {(Xt, Ft)}t∈I is said to have stationary increments
if for all s ≤ t with s, t ∈ I we have

Xt −Xs ∼ Xt−s. (4.4)

REMARK 4.5 Both these properties will simplify the analysis and in
particular the simulation of a stochastic process considerably. If a stochastic
process X has independent increments then to describe its future evolution,
only the current value Xt and the increments after time t are necessary. Thus,
no past values other than that of Xt have to be stored. If the process X has
stationary increments then the distributional properties of the process do not
change over time. This does not mean that each Xt has the same distribution
but that the distribution of the increments Xt−Xs only depends on the time
difference t− s. We will also introduce two fundamental classes of stochastic
processes that generalize these two properties. The first one is the class of
Markov processes where the distribution of the future values of the process
only depends on the past via its present value. The second concept is that of
the martingale that generalizes the idea of a fair game.

DEFINITION 4.6
An R

d-valued stochastic process {(Xt, Ft)}t∈I on a probability space (Ω, F,P)
is called a Markov process with initial distribution ν if we have

P (X0 ∈ A) = ν (A) ∀A ∈ B
(
R
d
)
, (4.5)

P (Xt ∈ A |Fs ) = P (Xt ∈ A |Xs ) ∀A ∈ B
(
R
d
)
, t ≥ s. (4.6)
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In particular, the distribution of future values of X only depends on the past
via the present value Xt.

A process Xt with independent increments is an example of a Markov pro-
cess. To see this, note that the Markov property is a consequence of the
independence of the increments from the past and the representation

Xt = Xs + (Xt −Xs) . (4.7)

Many processes that we will consider in our applications in finance and insur-
ance are indeed Markov processes.

DEFINITION 4.7
The real-valued process {(Xt, Ft)}t∈I with E |Xt| < ∞ for all t ∈ I is called
(a) a super-martingale, if we have

E (Xt |Fs ) ≤ Xs for all s, t ∈ I with s ≤ t P-a.s.; (4.8)

(b) a sub-martingale, if we have

E (Xt |Fs ) ≥ Xs for all s, t ∈ I with s ≤ t P-a.s.; (4.9)

(c) a martingale, if we have

E (Xt |Fs ) = Xs for all s, t ∈ I with s ≤ t P-a.s.. (4.10)

REMARK 4.8 Martingales in discrete time are often used to model games
of chance. Indeed, if the sequence Xn, n ∈ N denotes the evolution of the
wealth of a gambler taking part in a series of fair games then it should satisfy
the martingale condition E (Xn+1 |Fn ) = Xn. We show this in a special case.
Let therefore Fn be the natural filtration, i.e. the flow of information that is
generated by the values of the process X until time n. If the outcomes Yi
of the different games are independent and satisfy the fairness condition
E (Yi) = 0, then

Xn = x+
n∑
i=1

Yi (4.11)

is a stochastic process with independent increments (here, x is the player’s
initial wealth). We then obtain for n,m ∈ {0, 1, 2, ...}:

E (Xn+m |Fn ) = E

(
Xn +

(
m∑
i=1

Yn+i

)
|Fn
)

= E (Xn |Fn ) + E

(
m∑
i=1

Yn+i |Fn
)

= Xn + E

(
m∑
i=1

Yn+i

)
= Xn (4.12)

Thus, in the mean, the gambler is as rich after the game as he was before.
From his point of view, a sub-martingale is thus a favourable game, while a
super-martingale represents an unfavourable one.
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4.3 The Monte Carlo method for stochastic processes

As a stochastic process is just a family of random variables, its simulation
seems to be a straightforward task. However, there are some facts and aspects
that have to be considered first:

• The elements Xt, t ∈ I of a stochastic process are usually not indepen-
dent.

• The index set I can be noncountable which means that a completely
detailed simulation of a corresponding process is simply impossible.

• What is our aim when simulating a stochastic process? Do we want to
imitate the real process as well as possible or are we only interested in
consequences of the process such as the mean of a functional of it?

We deal with those facts and questions in some detail in the following sections.

4.3.1 Monte Carlo and stochastic processes

Let us start by answering the last questions. In this book, we are mainly
interested in calculating expected values by the Monte Carlo method. So, we
first generalize it to the stochastic process situation. Let X = {Xt, t ∈ I} be
a stochastic process and let g (X) = g (Xt (ω) , t ∈ I) be a functional on the
path of this stochastic process. We assume that

μ = E (g (X)) = E (g (Xt, t ∈ I)) (4.13)

is defined and is finite. If we are then able to simulate independent copies

Xi (ω) = {Xt,i (ω) , t ∈ I} (4.14)

of the path of the stochastic processX , then g (X) is just a real-valued random
variable and we can define

The (crude) Monte Carlo method for stochastic processes:

Approximate E (g (X)) by the arithmetic mean 1
N

N∑
i=1

g (Xi (ω)).

Note that in contrast to the definition of the crude Monte Carlo estimator
for real-valued random variables, we now have to use a functional g as other-
wise talking of an expectation would make no sense. We thus only have to be
able to simulate independent replications of paths of a stochastic process to
apply the crude Monte Carlo method. All the properties of the crude Monte
Carlo estimator then follow as in the situation of Section 3.2. These include
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the unbiasedness and strong consistency of the estimator. Also, the central
limit theorem yields asymptotic normality of the estimator and can be used for
calculating approximate confidence intervals. Of course, the variance reduc-
tion methods such as control variate, importance sampling, or stratification
now have to be adapted in a suitable way as we will see later.

One could distinguish the Monte Carlo estimation problems by considering
the main different types of functionals:

1. If the functional g (x) only depends on the value of the stochastic process
X at a particular time, i.e. if we have

g (X) = h (XT ) (4.15)

for a fixed time T and a real-valued function h (.), then we only have to
know the distribution of the stochastic process at time T . For processes
where this distribution is explicitly known, the Monte Carlo simulation
reduces to a simple one of ordinary random variables, and there is no ad-
ditional complexity due to the fact that XT is the result of a stochastic
process. If the distribution of XT is not known explicitly then simu-
lation of the paths of the stochastic process until time T will require
discretization methods. We comment on that in later sections.

2. If the functional g (x) depends on the values of the stochastic process X
at a finite set of fixed time points t1, ..., tn, i.e. if we have

g (X) = h (Xt1 , ..., Xtn) (4.16)

for a real-valued function h (.), then we are again in the situation of the
previous chapter. We now have a multidimensional problem as we have
to simulate realizations of the vectors (Xt1 , ..., Xtn) where the compo-
nents Xti are not independent. As in the previous chapter, knowledge
of their joint distribution is necessary for simulating them.

3. In the general case, i.e. if the functional g (x) cannot be reduced to
one of the two foregoing cases, one is often not able to determine the
distribution of g (X). This is new compared to the previous chapter,
and we thus have to use suitable approximation methods. They are
often tailored to the specific problem related to the functional and there
is no general method available.

4.3.2 Simulating paths of stochastic processes: Basics

The fact that the random variables Xt, t ∈ I that constitute a stochastic
process are related to each other has the consequence that we cannot just
independently simulate random numbers that have the same distribution as
the different Xt. We have to take care for the relation among the Xt which
can be extremely strong. Just imagine the requirement of continuity of the
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paths of a stochastic process. Then, it is clear that Xt+ε is nearly completely
determined by Xt for a small value of ε. We will deal with this in greater
detail when we look at particular examples of stochastic processes such as
Brownian motion or solutions of stochastic differential equations.

To motivate most of what follows with regard to the simulation of the paths
of stochastic processes, we have a look at a simple example in Algorithm 4.1.

Algorithm 4.1 Simulation of a discrete-time stochastic process with
independent increments
Let {Xt, t ∈ {1, 2, ..., n}} be a discrete-time stochastic process with indepen-
dent increments. Let Pk be the distribution of the k-th increment Xk −Xk−1

with X1 being the first increment by setting X0 = 0. Then, we obtain a path
X. (ω) via:

1. Set X0 (ω) = 0.

2. Simulate random numbers Yk (ω) , k = 1, ..., n with Yk ∼ Pk.

3. Set Xk (ω) = Xk−1 (ω) + Yk (ω), k = 1, ..., n.

Here, the independent increment assumption allows us to simulate the in-
crements by independent sampling. The value of the stochastic process at the
next time instants is obtained by summing up its current value plus the newly
simulated increment. The assumptions of this example can be relaxed. In-
deed, the simulation scheme for paths of such finite-step stochastic processes
goes through without modification if at time-step k − 1 we know the condi-
tional distribution of Xk−Xk−1. Then, the random numbers Yk above are
sampled from that conditional distribution to obtain the increments.

Simulation of continuous-time stochastic processes

Now what happens if instead of just a finite set I = {1, 2, ..., n} we would
have an uncountable index set, such as I = [0, T ], in particular, if we would
have a continuous-time stochastic process? Such an index set does not in
general allow a simulation of a path of the corresponding stochastic process at
each time t simultaneously. However, one could imitate the above construction
on a sufficiently fine grid 0 = t0 < t1 < ... < tn = T in [0, T ] and then continue
the process in a suitable way in between the grid points. In the special case of
a continuous stochastic process, it is reasonable to use a linear interpolation
between the simulated grid points. This guarantees that we approximate an
underlying continuous path by a continuous path. In the case that we know
the conditional distribution of the increments of the stochastic process at tk−1

given the valueXtk−1 at this grid point, we can state the simulation Algorithm
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Algorithm 4.2 Simulation of a continuous-time stochastic process with
continuous paths
Let 0 = t0 < t1 < ... < tn = T be a partition of [0, T ]. Let Pk denote the
conditional distribution of Xtk given Xtk−1 . We obtain a path X. (ω) via:

1. Set X0 (ω) = 0.

2. For k = 1 to n do

(a) Simulate a random number Yk (ω) with Yk ∼ Pk.

(b) Set Xtk (ω) = Xtk−1 (ω) + Yk (ω).

(c) Between tk−1 and tk obtain Xt via linear interpolation, i.e. set

Xt (ω) = Xtk−1 (ω) +
t− tk−1

tk − tk−1
Yk (ω) , t ∈ (tk−1, tk) .

4.2 that generalizes the above one for the finite-set process.
Of course, there remain the questions of how to discretize and of the con-

vergence of the discretized version towards the stochastic process. These will
be dealt with in the next sections.

Exact simulation versus approximate simulation.

If we know the distributions of X0 and of all the increments Xtk −Xtk−1

(given the past path of the process) then for every tk we can simulate random
variables with exactly the same distribution as Xtk . To do so, simulate X0

and all the increments Xtj −Xtj−1 for j = 1, ..., k. Adding all those random
numbers leads to a sum that has the distribution of Xtk . This is called an
exact simulation (at the times tk). We will also encounter situations where
we do not know the above distributions of the increments of the stochastic
process at time points different from t = 0. However, then the dynamics
of the evolution of the process over time are typically given by an equation
(such as a stochastic differential equation). In such a situation, discretization
methods are available that yield an approximation of the stochastic process.
While it is usually advisable to use exact simulation if the distributions are
known, there can occur situations when the exact simulation is so inefficient
that a sufficiently fine discretization method will be preferable.

4.3.3 Variance reduction for stochastic processes

If we can simulate a path of a stochastic process X then we are back at the
question of variance reduction of the crude Monte Carlo estimator of E (g (X)).
The methods developed in the preceding chapter can be used here, too. We
will not go too much into detail as many modifications are specific to the
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processes and problems dealt with in later sections and chapters. However,
here are some simple comments on the different methods.

Control variate techniques

Applications of control variate techniques that we will see, are often of the
type to approximate the functional g (X) by a functional h (X) that is simpler
to compute than using a different process as a control variate. A typical
situation occurs when an infinite-dimensional functional is approximated by
a finite-dimensional one of the form

E (g (X)) ≈ E (h (Xt1 , ..., Xtn)) (4.17)

for a suitable function h (.) and suitable times t1, ..., tn. For computing the
expectation of h (.) the unconditional mean control variate would be a possible
further variance reducing approximation method.

Stratified sampling

If the value of the expected value E (g (X)) depends strongly on the distribu-
tion of the underlying stochastic process X at some particular times t1, ..., tn,
then it might be a good idea to stratify the joint distribution of (Xt1 , ..., Xtn)
if n is not too big.

Importance sampling

Importance sampling is always a good candidate for variance reduction
when the functional g(X) is only nonzero if the process X does not leave a
specified area O on a given time interval [0, T ]. Applications of this method
are manifold. Two of them will be given for barrier option pricing in Section
5.6.2 and for estimating extreme events in Section 8.2.5.

4.4 Brownian motion and the Brownian bridge

The stochastic process that is the most important building block of financial
modelling and that also has applications in various other fields of science is
the so-called Brownian motion process:

DEFINITION 4.9

(a) The real-valued stochastic process {Wt}t≥0 with continuous paths and the
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properties

W0 = 0 P-a.s. (4.18)
Wt −Ws ∼ N (0, t− s) for 0 ≤ s < t (4.19)
Wt −Ws is independent of Wu −Wr for 0 ≤ r ≤ u ≤ s < t (4.20)

is called a one-dimensional Brownian motion.
(b) An n-dimensional Brownian motionis the R

n-valued process

W (t) = (W1 (t) , ...,Wn (t)) (4.21)

with components Wi being independent one-dimensional Brownian motions.

In the above definition, we could have relaxed the assumption that the
Brownian motion has normally distributed increments by only requiring that
it has stationary and independent increments. However, one can show that
this together with the assumption of continuous paths implies that Brownian
motion has the above normal distribution property. Thus, the above require-
ment can be made without loss of generality. Further, Brownian motion can
be associated with its natural filtration,

FWt := σ {Ws | 0 ≤ s ≤ t} , t ∈ [0,∞) . (4.22)

For technical reasons we shall typically work with the P-augmentation of
the natural filtration,

Ft := σ
{
FWt ∪N |N ∈ F,P (N) = 0

}
, t ∈ [0,∞) (4.23)

and call it the Brownian filtration. This has some technical advantages
which are not explained here (see Karatzas and Shreve [1991] or Korn and
Korn [2001] for details). In the literature, the requirement of independent
increments of a Brownian motion is often stated in a more general way as

Wt −Ws are independent of Fs for 0 ≤ s < t (4.24)

when the Brownian motion is associated with a given filtration {Ft}t≥0. If
{Ft}t≥0 is either the natural filtration or the Brownian filtration then this
is equivalent to the original requirement. When in the sequel we consider
a Brownian motion {(Wt, Ft)}t≥0 with an arbitrary filtration {Ft}t≥0, we
implicitly assume requirement (4.24) to be satisfied.

Correlated Brownian motion and the Cholesky decomposition

Above we have simply defined a multidimensional Brownian motion as a
vector of independent one-dimensional Brownian motions. However, for some
applications in finance sometimes a correlated multidimensional Brownian mo-
tion is assumed to be the underlying stochastic process. By this, one under-
stands a Brownian motion where the components have a given correlation
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structure. We demonstrate that for the purpose of simulation we can al-
ways restrict ourselves to the independent case. To see this, consider first
the two-dimensional situation. Assume that we are given a two-dimensional,
independent Brownian motion (W1 (t) ,W2 (t)). From this, we can obtain a
two-dimensional Brownian motion (W̃1(t), W̃2(t)) with

Corr
(
W̃1 (t) , W̃2 (t)

)
= ρ (4.25)

by setting

W̃1 (t) = W1 (t) , W̃2 (t) = ρW1 (t) +
√

1 − ρ2W2 (t) . (4.26)

Obviously, both components have the required correlation. Further, as the
sum of two independent normal random variables is again normally distributed
(where the means and the variances are simply added), it follows that the sec-
ond component also has the required distribution. This method of construc-
tion can be generalized to the multidimensional setting. Indeed, if we want
to generate an n-dimensional Brownian motion W̃ (t) with a given positive
definite covariance matrix Σ, then by using its Cholesky decomposition

Σ = LL′ (4.27)

(with L a lower triangular matrix with diagonal elements that are equal to
the square roots of the eigenvalues of Σ) and setting

W̃ (t) = LW (t) (4.28)

yields the desired process. L is obtained via Algorithm 2.19. It is usually
built-in in standard mathematical software.

4.4.1 Properties of Brownian motion

A (one-dimensional) Brownian motion has remarkable properties. In par-
ticular, its paths are extremely irregular (see Karatzas and Shreve [1991] for
proofs of most of what follows). More precisely, one can show that we have
the following theorem.

THEOREM 4.10
(a) P-almost all paths of the Brownian motion {Wt}t∈[0,∞) are nowhere dif-
ferentiable as functions of time t.
(b) With the definition of

Zn (ω) :=
2n∑
i=1

∣∣Wi/2n (ω) −W(i−1)/2n (ω)
∣∣, n ∈ N, ω ∈ Ω, (4.29)

we obtain
Zn (ω) n→∞−−−−→ ∞ P-a.s. , (4.30)
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i.e. the paths Wt(ω) of the Brownian motion admit infinite variation on the
interval [0, 1] P-almost surely. Even more: the paths Wt(ω) have infinite
variation on each nonempty interval [s1, s2] ⊂ [0,∞) P-almost surely.

Before we simulate some paths of a Brownian motion we will show the
important martingale property of the process and also introduce a simple
generalization, the Brownian motion with drift and volatility.

THEOREM 4.11
(a) A one-dimensional Brownian motion Wt is a martingale.
(b) A Brownian motion with drift μ and volatility σ with μ, σ ∈ R,

Xt := μt+ σWt , t > 0, (4.31)

is a martingale if and only if μ = 0, a super-martingale if and only if μ ≤ 0,
and a sub-martingale if and only if μ ≥ 0.

REMARK 4.12 1. The above theorem easily follows from the properties
of Brownian motion. For part (a), simply use the representation

Wt = Ws + (Wt −Ws) , (4.32)

and the fact that the independent increments have zero mean. The assertion
for the Brownian motion with drift μ and volatility σ is a consequence of the
linearity of (conditional) expectation. Note also that a Brownian motion Xt

with drift μ and volatility σ satisfies Xt ∼ N (μ, σ2
)
.

2. Similarly one can show: each stochastic process with independent, cen-
tered increments (i.e. the increments have zero mean) is a martingale with
respect to its natural filtration.

3. The independence of its increments ensures that a Brownian motion is a
Markov process. The independent increments property and the decomposition
(4.32) yield the joint distribution of (Wt1 , ...,Wtn) for 0 < t1 < .. < tn:⎛

⎜⎜⎜⎝
Wt1

Wt2
...

Wtn

⎞
⎟⎟⎟⎠ ∼ N

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

0
0
...
0

⎞
⎟⎟⎟⎠ ,
⎛
⎜⎜⎜⎝
t1 t1 . . . t1
t1 t2 . . . t2
...

... . . .
...

t1 t2 . . . tn

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ (4.33)

We will see more properties of a Brownian motion when we consider Itô
integrals and stochastic differential equations, but will now turn to the sim-
ulation of its paths. Although the paths of a Brownian motion are quite
irregular, the process itself is relatively easy to simulate as it has independent
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and stationary increments. As – in the spirit of our general discussion on
the simulation of continuous-time stochastic processes – it is impossible to
simulate a complete path of a Brownian motion, we can at least simulate it
exactly at each point t ∈ [0, T ]. So, choosing a sufficiently fine time grid on
which we simulate the process exactly and then do a linear interpolation in
between is an appropriate approximation. We present this as Algorithm 4.3.

Algorithm 4.3 Simulation of a Brownian motion
Let a partition 0 = t0 < t1 < ... < tn = T of [0, T ] be given. Then, we obtain
a path W. (ω) of a one-dimensional Brownian motion via:

1. Set W0 (ω) = 0.

2. For k = 1 to n

(a) Simulate a standard normally distributed random number Zk.

(b) Set Wtk (ω) = Wtk−1 (ω) +
√
tk − tk−1Zk.

(c) Between tk−1 and tk obtain Wt via linear interpolation, i.e. for
t ∈ (tk−1, tk) set

Wt (ω) = Wtk−1 (ω) +
t− tk−1

tk − tk−1

(
Wtk (ω) −Wtk−1 (ω)

)
.

Figure 4.1 shows some simulated paths of a one-dimensional Brownian mo-
tion with n = 500 equally spaced points ti. Actually, at this level it is hard to
realize that the remaining points are obtained by linear interpolation. Also,
the appearance of the paths gives a good impression of their (theoretical)
nondifferentiability. According to the properties of Brownian motion, if we
would zoom in on the time scale then the zoomed version of the paths would
admit exactly the same typical behaviour of nondifferentiability.

REMARK 4.13 A d-dimensional Brownian motion is obtained by simu-
lating d independent one-dimensional Brownian motions. In case a correlated
Brownian motion should be simulated, a multiplication of the just generated
independent Brownian motion with the triangular matrix L obtained from
the Cholesky decomposition of the covariance matrix Σ yields the desired re-
sult. To use the above one-dimensional algorithm, only the simulation of the
random number Zk has to be modified. Simply replace it by

• Simulate a random number Zk ∼ N (0, I)

in the standard, uncorrelated case (with I denoting the d-dimensional identity
matrix) and by
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FIGURE 4.1: Simulated paths of a Brownian motion on [0, 1], n = 500.

• Simulate a random number Zk ∼ N (0,Σ)

in the correlated case (with Σ denoting the given covariance matrix).

In light of the irregular path behaviour of the Brownian motion, linear inter-
polation between the time grid points seems to be a crude method. However,
we can show convergence of the simulated and linearized Brownian motion to
the real one if the diameter of the partition In = {t0, t1, ..., tn},

diam (In) = sup
i=1,..,n

{|ti − ti−1|} , (4.34)

approaches zero for n → ∞. For this, we first need a process version of weak
convergence and a corresponding process central limit theorem, which will be
the contents of the following excursion.

4.4.2 Weak convergence and Donsker’s theorem

As we would like to have a convergence result that rests on easily checkable
assumptions and is also valid for a wide class of approximation approaches
for stochastic processes, we introduce the framework of weak convergence
on metric spaces. The reader who is not interested in this framework can
directly go to the considerations of the consequences of the announced result,
Donsker’s theorem (see Theorem 4.17).

The theory can be expressed most conveniently if we view a stochastic
process (Xt, Ft)t∈[0,T ] with continuous paths on [0, T ] as a function-valued
random variable. This interpretation is quite a natural one: the outcome ω
of the “experiment” is the corresponding path X. (ω) of the stochastic process
which assigns a continuous function on [0, T ] to each ω ∈ Ω. For ease of
notation, we will from now on set T = 1 and introduce a probability space
that supports this interpretation of a stochastic process as a function-valued
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random variable. More precisely, we look at the probability space C [0, 1] of
continuous, real-valued functions on [0, 1] equipped with the corresponding
Borel σ-field B (C [0, 1]) and a probability measure P, i.e.

(Ω, F,P) = (C [0, 1] ,B (C [0, 1]) ,P) . (4.35)

The interpretation of a stochastic process X as a function-valued random
variable on (Ω, F,P) is now realized by defining

X(ω) := ω ∀ ω ∈ C[0, 1]. (4.36)

To obtain the valueXt (ω) of the process at time t ∈ [0, 1] we use the projection
on the t-th coordinate of ω,

X (t, ω) = ω (t) . (4.37)

Recalling equivalent characterizations of convergence in distribution (or weak
convergence) for random variables and realizing that (Ω, F ) is a metric space
when endowed with the supremum metric (to ensure that the limit of a se-
quence with respect to this metric has continuous paths!)

ρ (x, y) = sup
0≤t≤1

|x (t) − y (t), | (4.38)

it does not come as a surprise that we use the framework of weak convergence
on metric spaces (see Billingsley [1968]).

DEFINITION 4.14
Let (S,B(S)) be a metric space with metric ρ and the Borel-σ-field B(S) over
S. Let further P,Pn, n ∈ N be probability measures on (S,B(S)). Then we
say that the sequence Pn converges weakly towards P if for each continuous
and bounded real valued function f on S we have

∫
S

f dPn
n→∞−−−−→

∫
S

f dP . (4.39)

To translate this definition to the metric space we are interested in, the
space of continous stochastic processes, we introduce C(C[0, 1],R), the space
of uniformly continuous, bounded functionals on C[0, 1].

DEFINITION 4.15
Let Xn = {Xn(t)}t∈[0,1] be a sequence of continuous stochastic processes. We
then say that Xn converges weakly (or converges in distribution) to-
wards the continuous process X if we have

E (f (Xn))
n→∞−−−−→ E (f (X)) (4.40)
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for all f ∈ C(C[0, 1],R).

As we have

E (f (Xn)) =
∫
f dPn, E (f (X)) =

∫
f dP, (4.41)

weak convergence of the stochastic processes means weak convergence of the
underlying probability distributions Pn → P. To show that the usual con-
vergence in distribution of R

n-valued random variables is implied by the con-
vergence in distribution of stochastic processes, we cite the following theorem
which is a special case of Theorem 5.1 of Billingsley (1968).

THEOREM 4.16

Let P,Pn, n ∈ N be probability measures on the metric space (S,B(S)) endowed
with the metric ρ. Further, let h : S → S′ be a measurable mapping into a
metric space S′ with metric ρ′ and Borel-σ-field B(S′). Let us further assume
that the set Dh of points of discontinuity of h is a zero set, i.e.

P(Dh) = 0. (4.42)

Then convergence in distribution is preserved under the mapping h:

Pn
n→∞−−−−→ P in distribution ⇒ Pn·h−1 n→∞−−−−→ P·h−1 in distribution. (4.43)

In particular, continuous mappings preserve convergence in distribution.

Note that (Rk,B(Rk)) is also a metric space. Let then Xn, X be real-
valued, continuous stochastic processes. For the set of k fixed time points
0 ≤ t1 < ... < tk ≤ 1 we then obtain from Theorem 4.16:

Xn
n→∞−−−−→ X in distribution

⇒ (Xn (t1) , ..., Xn (tk))
n→∞−−−−→ (X (t1) , .., X (tk)) in distribution. (4.44)

Thus, the usual convergence in distribution of R
k-valued random variables

is implied by the convergence in distribution of the corresponding stochastic
processes. The converse is in general not true. So, it is not obvious that if
we choose a sequence In of partitions 0 = t0 < t1 < ... < tn = 1 of [0, 1],
that then our linear interpolation based-simulation approach of the Brownian
motion Xn will indeed converge in distribution towards the Brownian motion
W = {Wt}t∈[0,1]. However, the following theorem implies that our approach
indeed leads to the desired weak convergence (see Karatzas and Shreve [1991]
or Donsker [1952]).
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THEOREM 4.17 Donsker’s theorem

Let {ξn}n∈N
be a sequence of independent and identically distributed random

variables with E(ξi) = 0, 0 < V ar(ξi) = σ2 < ∞. Let

S0 = 0, Sn =
n∑
i=1

ξn. (4.45)

We construct a sequence Xn of stochastic processes by

Xn (t, ω) =
1

σ
√
n
S[nt] (ω) + (nt− [nt])

1
σ
√
n
ξ[nt]+1 (ω) (4.46)

for t ∈ [0, 1], n ∈ N. Then this sequence converges weakly towards the one-
dimensional Brownian motion {W (t)}t∈[0,1], i.e. we have

Xn
n→∞−−−−→ W in distribution. (4.47)

REMARK 4.18 1. The processXn constructed in Equation (4.46) can be
identified with our linear interpolation-based simulation approach to Brown-
ian motion. Indeed, if we take all ξi to be independent and standard normally
distributed, then for equally spaced partitions, i.e. tk = k

n , we have

Xn

(
k

n
, ω

)
=

1
σ
√
n
Sk (ω) ∼ N

(
0,
k

n

)
(4.48)

while for t ∈ ( kn , k+1
n

)
we obtain Xn (t) by linear interpolation. This is ex-

actly our approach specialized to an equally spaced partition. Thus, Donsker’s
theorem is the theoretical justification of our approach. Furthermore, it is
clear that for a multidimensional Brownian motion with independent compo-
nents Donsker’s theorem also justifies the use of the linear interpolation-based
approximation. Indeed, as weak convergence is preserved under continuous
mappings, we then also have a justification for the linear interpolation-based
approach for a general, correlated Brownian motion.

2. The convergence assertion and the limiting distribution in Donsker’s
theorem are independent of the particular choice of ξi. For this reason, the
theorem is also called Donsker’s invariance principle. It can thus be
viewed as a process version of the central limit theorem. Extending it to
arbitrary time intervals [0, T ] is only a question of notation.

3. Although we have used normally distributed random variables ξi as a
basis for constructing the approximating sequence of processes Xn, one could
imagine using simpler random variables. A possible suggestion would be

ξi = Yi − q (4.49)
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with Yi ∼ B(1, q), 0 ≤ q ≤ 1. Its sum

Sn =
N∑
i=1

ξi (4.50)

is called a random walk, in particular, a symmetric random walk for q = 1/2.
One can thus think of the Brownian motion as a limit of suitably scaled
random walks. Thus, Donsker’s theorem also extends the de Moivre-Laplace
theorem on the approximation of the normal distribution by binomial ones to
the stochastic process setting.

4. One can use Donsker’s theorem to obtain approximate distributions
for stochastic processes Sn constructed as above when n is large. Donsker’s
theorem then shows that an appropriately scaled version Xn converges in
distribution towards a Brownian motion, i.e. we have an asymptotic normal
distribution in each t ∈ [0, T ] for Sn (t).

Brownian motion has a lot more remarkable properties. Their presentation
is way beyond the scope of this book and we refer the interested reader to the
monographs by Hida (1980) and Karatzas and Shreve (1991) for more on this
topic. Here, we will state the following result, the law of iterated logarithm
for the Brownian path by Hincin (1933) and a useful corollary.

THEOREM 4.19
Let {Wt}t≥0 be a one-dimensional Brownian motion. Then, for P-almost all
ω ∈ Ω we have:

lim sup
t→∞

Wt (ω)√
2t log (log (t))

= 1, (4.51)

lim inf
t→∞

Wt (ω)√
2t log (log (t))

= −1 (4.52)

COROLLARY 4.20
Let Xt = μ · t+ σWt, t ≥ 0 be a Brownian motion with drift μ and volatility
σ. We then have

limt→∞
Xt

t
= μ P-a.s. (4.53)

This corollary in particular tells us that in a Brownian motion with drift,
the drift asymptotically dominates the fluctuations of the Brownian motion.

4.4.3 Brownian bridge

Here, we will get back to the question whether there are alternatives to
linear interpolation between two time points tk−1 and tk of a Brownian motion.
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Consider the situation when we cannot observe the Brownian motion between
these two points but can observe its values Wtk−1 and Wtk . Is it possible to
plug in a suitable stochastic process that can be used as an interpolation from
Wtk−1 and Wtk and that is similar to the unobserved Brownian motion? To
answer this, we first give the following definition.

DEFINITION 4.21
Let {Wt}t∈[0,T ] be a one-dimensional Brownian motion, let a, b ∈ R be two
real numbers. Then, the process

Ba,bt = a
T − t

T
+ b

t

T
+
(
Wt − t

T
WT

)
, t ∈ [0, T ] (4.54)

is called a Brownian bridge from a to b.

Obviously, the process Ba,bt starts in a at time t = 0 and ends in b at time
T . Some of its simulated paths are given in Figure 4.2. One can derive its
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FIGURE 4.2: Simulated paths of a Brownian bridge from −0.5 to 1.

distribution by the independent increments property of Brownian motion.

PROPOSITION 4.22
A Brownian bridge from a to b satisfies

Ba,bt ∼ N
(
a+

t

T
(b− a) , t− t2

T

)
(4.55)

For a d-dimensional Brownian motion (with independent components) a
definition of a d-dimensional Brownian bridge from a to b with a, b ∈ R

d
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is totally similar to the one in Equation (4.54). Also, a generalization of the
preceding proposition is straightforward.

Before we describe how to simulate a path of a Brownian bridge, we want
to relate it to a Brownian motion that is conditioned to pass through some
given values. For this, we need the following formula about the conditional
distribution in a multivariate normal setting.

PROPOSITION 4.23 Normal conditional distribution formula
Let Z =

(
Z(1), ..., Z(d)

)
be a d-dimensional random vector with Z ∼ N (μ,Σ).

We partition Z into its first d1 components X and the remaining d − d1

components Y . Then, with the notation
(
X
Y

)
∼ N

((
μX
μY

)
,

(
ΣX ΣXY
ΣY X ΣY

))
(4.56)

and assuming that Σ−1
Y exists, we have that the conditional distribution of

X |Y = y is d1-dimensional normal with

X |Y = y ∼ N (μX + ΣXY Σ−1
Y (y − μY ) ,ΣX − ΣXY Σ−1

Y ΣY X
)
. (4.57)

By noting that we have
(
Wt

WT

)
∼ N

((
0
0

)
,

(
t t
t T

))
, (4.58)

a direct consequence of this proposition is that we have

Wt |WT = b ∼ N
(
b
t

T
, t− t2

T

)
, (4.59)

i.e. with the help of Proposition 4.22 we obtain that a Brownian bridge from 0
to b is nothing else than a Brownian motion conditioned to arrive at b
at time T . By introducing a Brownian motion starting at a via W a

0 = a,
we have W a

t ∼ N (a, t) and thus

W a
t |W a

T = b ∼ N
(
a+ (b− a)

t

T
, t− t2

T

)
. (4.60)

This means that a Brownian bridge from a to b is a Brownian motion starting
at a conditioned to arrive at b at time T .

We have thus found a suitable process for our interpolation problem for an
unobserved period between two known values of a Brownian motion: Simply
use a Brownian bridge that starts at time tk−1 in Wtk−1 and ends at time tk
in Wtk . Of course, we then have to replace the total running time T of the
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Algorithm 4.4 Forward simulation of a Brownian bridge

1. Simulate a path of a Brownian motion Wt (ω) on [0, T ] .

2. Set Ba,bt = aT−tT + b tT +
(
Wt − t

TWT

) ∀ t ∈ [0, T ].

Brownian bridge above by tk− tk−1. What remains is to present a simulation
algorithm for a Brownian bridge. There are at least two techniques. Algorithm
4.4 simply simulates a path of a Brownian motion and then translates it into
a Brownian bridge from a to b by suitably adding the remaining parts.

While this algorithm is easy to programme and straightforward to under-
stand, it is the second construction method that can be used as an ingredient
of variance reduction techniques in connection with Brownian motion. In
contrast to the forward simulation method that starts at time 0, the second
method starts by sampling WT first and then constructs the remaining points
between W0 = 0 and WT by sampling a finite set of points Wt followed by
linear interpolation between them. For this, we need the conditional distribu-
tion of Wt given Wu and Ws. We obtain it as an application of Proposition
4.23 (simply use the joint distribution of (Ws,Wt,Wu)).

PROPOSITION 4.24
Let W be a one-dimensional Brownian motion, a, b ∈ R, 0 < s < t < u.
Then, the conditional distribution of Wt given (Wu,Ws) is given by

Wt |(Wu = b,Ws = a) ∼ N
(

(u−t)a+(t−s)b
u−s , (u−t)(t−s)

u−s
)
. (4.61)

The backward simulation approach identifies a Brownian bridge as a Brow-
nian motion starting in a and conditioned to end in b. Assume that we have
constructed the k points W0,Wt1 , ...,Wtk−2 ,WT and that we want to fill in
a further point at time s with ti < s < ti+1. If we assume that the set
t1, ..., tk−2 is increasing, then due to the Markov property and the indepen-
dent increments property of Brownian motion we have

Ws

∣∣(W0 = a, ...,Wti = x,Wti+1 = y, ...,WT = b
)

∼ Ws

∣∣(Wti = x,Wti+1 = y
)
. (4.62)

The conditional distribution on the right side is given by Proposition 4.24 as:

Ws

∣∣(Wti+1 = y,Wti = x
)

∼ N
(

(ti+1 − s)x+ (s− ti) y
ti+1 − ti

,
(ti+1 − s) (ti+1 − ti)

ti+1 − s

)
. (4.63)
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Equipped with these results we can set up a simulation algorithm given we
have fixed the rule to choose the time points where we do a conditional simu-
lation. A particularly suitable strategy for practical purposes is the so-called
dyadic partition of [0, T ]. It is built on a successive halving of the grid size.
More precisely, one first starts with T (which we call level 0), then contin-
ues with T/2, then T/4, 3T/4 followed by T/8, 3T/8, 5T/8, 7T/8 and so on.
Hence, at level k we are in the situation that all the values of the Brownian
bridge at times jT/(2k), j = 0, 1, ..., 2k are generated. As we do not generate
points twice, only the values (2j − 1)/(2k) are generated at level k of the
iteration. Thus, in this special case, it follows from relation (4.63) that for all
points which we have to generate at level k, we have:

Ws

∣∣(Wti+1 = y,Wti = x
) ∼ N

(
x+ y

2
,
T

2k+1

)
(4.64)

with s = (2j − 1)T/(2k) for a suitable index j and ti = 2(j − 1)T/(2k),
ti+1 = 2jT/(2k). As expected, the mean is the mean of the already simulated
neighbourhood values. The variance is just half of the length of the distance
of the new time point to the neighbourhood points. In this special case, the
corresponding Algorithm 4.5 has a particularly simple form.

Algorithm 4.5 Backward simulation of a Brownian bridge from a to b with
n = 2K time points

1. Simulate a standard normally distributed random variable Z and set
WT =

√
TZ. Further set W0 = 0, h = T .

2. For k = 1 to K do

(a) Set h = h/2.

(b) For j = 1 to 2k−1 do

i. Simulate a standard normally distributed random variable Z
and set

ii. W(2j−1)h = 1
2

(
W2(j−1)h +W2jh

)
+

√
hZ.

REMARK 4.25 1. We can simulate a d-dimensional Brownian bridge in
exactly the same way as in the above algorithm. The basis is the multidimen-
sional version of Proposition 4.24:

Wt |(Wu = b,Ws = a) ∼ N
(

(u− t) a+ (t− s) b
u− s

,
(u− t) (t− s)

u− s
Id

)
(4.65)
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with W (.) a d-dimensional Brownian motion, a, b ∈ R
d, 0 < s < t < u, and Id

the d-dimensional identity matrix. In the case of a Brownian motion with co-
variance matrix Σ we simply have to replace Id above by Σ. The only change
in the above algorithm is to replace the standard normally distributed ran-
dom variable Z in Step 2 (b) by a multivariate normally distributed random
variable Z ∼ N (0, Id), respectively Z ∼ N (0,Σ).

2. Of course, we can also simulate a Brownian bridge with a different
sequence of points ti than the above dyadic partition. Then, the relation
defining the “new” value of the Brownian bridge in the algorithm has to be
based on the more general conditional expectation representation (4.63) than
on its special case (4.64).

Variance reduction with the Brownian bridge construction

The Brownian bridge construction allows us to think about the methods
of stratified sampling, conditional sampling, or importance sampling. To il-
lustrate this, we consider the simplest case of variance reduction for the final
value WT of a Brownian motion by the two-step procedure of Algorithm 4.6.

Algorithm 4.6 Variance reduction by Brownian bridge
For i = 1 to N :

1. Apply a variance reduction method to WT that results in the simulation
of a realization WT,i (ω) = zi.

2. Simulate a path W.,i (ω) of the Brownian motion by simulating a Brow-
nian bridge from 0 to zi on [0, T ].

With this algorithm it is simple to simulate a Brownian path that ends in
a given region. One can even stratify the terminal wealth of the Brownian
motion via stratifying the uniform random numbers that are then transformed
into the normal distribution of WT .

REMARK 4.26 As the first elements of a sequence of quasirandom num-
bers are usually more evenly distributed than the later ones, it would be good
– in terms of variance reduction – to use them for simulating the important
points of a path of a stochastic process. Indeed, the Brownian bridge back-
ward sampling method ensures this. It first samples the value WT which has
the highest variance of all the Wt. Then, it generates the middle point WT/2

which has the highest (conditional) variance of the remaining points, and so
on. Thus, using the backward simulation fits perfectly to using quasirandom
number sequences. This is particularly true for the multidimensional case.
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4.5 Basics of Itô calculus

4.5.1 The Itô integral

For analyzing the performance of simulation methods for functionals of
Brownian motion g (Wt, t ∈ [0, T ]), we need to be able to work analytically
with those functionals. For this purpose and for modelling purposes in fi-
nancial and actuarial mathematics we introduce the so-called Itô calculus
(see Karatzas and Shreve [1991] for a detailed introduction). It is based on
the Itô integral and its properties. Before we develop it, we would like to
point out that due to the properties of the Brownian paths (especially their
nondifferentiability and infinite variation), a definition of an integral of the
form ∫ t

0

Xs (ω) dWs (ω) (4.66)

with a path of a Brownian motion as integrator does not exist in the usual
sense of a Lebesgue-Stieltjes integral. To show that there is a reasonable way
to define an integral

∫
XdW , we collect the main ideas of Itô’s approach.

First, for Xs ≡ 1 the integral should just be the Brownian motion itself.
The following steps are:

1. Introduce
∫
XdW for suitable simple integrands in a direct way.

2. Show that more general integrands X can be approximated by a se-
quence of simple integrands Xn in a suitable norm.

3. Show that one can define the integral
∫
XdW as a certain limit of the

integrals
∫
XndW .

As understanding the main steps of the construction of the Itô integral is
important for developing corresponding simulation approaches, we spend some
time on presenting these steps in some detail.

We start with the class of simple processes and their Itô integral (we refer
to Korn and Korn [2001] for the proofs of all results cited in this section). A
simple process has paths of step functions where the jump times are all fixed,
but the jump heights are random (see Figure 4.3).

DEFINITION 4.27
Let {(Wt, Ft) | t ∈ [0, T ]} be a one-dimensional Brownian motion on a proba-
bility space (Ω, F,P).
(a) A stochastic process {Xt}t∈[0,T ] is called a simple process if there exist
real numbers 0 = t0 < t1 < ... < tp = T , p ∈ N and bounded random variables
Φi : Ω → R, i = 0, 1, ..., p, with

Φ0 is F0-measurable, Φi is Fti−1 -measurable, i = 1, ..., p, (4.67)
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such that for each ω ∈ Ω Xt(ω) has the following representation

Xt (ω) = X (t, ω) = Φ0 (ω) · 1{0} (t) +
p∑
i=1

Φi (ω) · 1(ti−1,ti] (t). (4.68)

(b) For a simple process {Xt}t∈[0,T ] and t ∈ (tk, tk+1] the stochastic integral
or Itô integral I.(X) is defined by

It (X) :=

t∫
0

Xs dWs :=
∑

1≤i≤k
Φi
(
Wti −Wti−1

)
+ Φk+1 (Wt −Wtk), (4.69)

or more general for t ∈ [0, T ]:

It (X) :=

t∫
0

Xs dWs :=
∑

1≤i≤p
Φi
(
Wti∧t −Wti−1∧t

)
. (4.70)
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FIGURE 4.3: A path of a simple stochastic process.

REMARK 4.28 1. Note that Xt is Fti−1 -measurable for all t ∈ (ti−1, ti].
Further, the paths X(., ω) of the simple process Xt are left-continuous step
functions with height Φi(ω) · 1(ti−1,ti](t). This implies that the Itô integral
retains the measurability properties of the Brownian motion.

2. On each interval where X is constant, the increments of the Brownian
motion on that interval are multiplied with the corresponding value of Xt,
namely Φi, to obtain the value of the corresponding Itô integral. Compare
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this with the Lebesgue-Stieltjes integral for simple functions. Figure 4.4 il-
lustrates that an Itô integral of a simple process has irregular paths although
the integrand is simple. Here, we have plotted the integrand, the underlying
Brownian motion, and the resulting stochastic integral in one diagramme. It
is instructive to note the behaviour of the stochastic integral in dependence
of both ingredients, the integrand and the Brownian path.

3. Assume that the simple process X is deterministic, i.e. its jump heights
are all constant. Note then that by the construction of the Itô integral for
simple processes and the properties of Brownian motion, we have:

It (X) ∼ N
(

0,
∫ t

0

X2
s ds

)
. (4.71)

We will sometimes make use of this property.
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FIGURE 4.4: A simple process (step function), a path of a Brownian motion
(grey), and their corresponding Itô integral.

The main properties of the above defined Itô integral are summarized in
the following theorem.

THEOREM 4.29 Elementary properties of the stochastic integral

Let X be a simple process. Then we have:
(a) {(It(X), Ft)}t∈[0,T ] is a continuous martingale. In particular, we have

E (It (X)) = 0 for t ∈ [0, T ] . (4.72)
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(b) The variance of the Itô integral is finite with

E

(∫ t

0

Xs dWs

)2

= E

(∫ t

0

X2
s ds

)
for t ∈ [0, T ] . (4.73)

The theorem says that the Itô integral preserves the continuity and the mar-
tingale property of the underlying Brownian motion. The variance formula in
the second part will be used to extend the integral to more general integrands
with the help of results from L2-theory. To introduce this class of stochastic
processes, we need the concept of a progressively measurable stochastic pro-
cess. Although this notion of measurability is very technical, one can always
keep in mind that all processes with left-continuous (right-continuous) paths
are progressively measurable.

DEFINITION 4.30
Let {(Xt,Gt)}t∈[0,∞) be a stochastic process. It will be called progressively
measurable if for all t ≥ 0 the mapping

[0, t] × Ω → R
n, (s, ω) �→ Xs (ω) (4.74)

is B([0, t]) ⊗ Gt-B(Rn)-measurable.

Heuristically, an integrand that is progressively measurable with respect
to the filtration {Ft}t≥0, which corresponds to the Brownian motion, does
not depend on the increments of the Brownian motion Wt+ε − Wt for all
ε > 0. Equipped with this notion of measurability, we introduce the following
class of stochastic processes where (Ω, F,P) is a probability space on which a
Brownian motion (Wt, Ft)t∈[0,T ] is defined):

L2 [0, T ] := L2
(
[0, T ] ,Ω, F, {Ft}t∈[0,T ] ,P

)

:=
{
{(Xt, Ft)}t∈[0,T ] real-valued stochastic process |

X progressively measurable, E

(∫ T

0

X2
t dt

)
< ∞

}
(4.75)

It can be shown that all those processes X ∈ L2 [0, T ] can be approximated
by a sequence X(n) of simple processes such that we have

lim
n→∞E

T∫
0

(
Xs −X(n)

s

)2

ds = 0. (4.76)

We can then define a sequence of Itô integrals I.(X(n)) for those simple pro-
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cesses which converges with respect to the norm given by

∥∥∥I.(X(n)
)∥∥∥2

LT
:= E

⎛
⎝

T∫
0

Xs dWs

⎞
⎠

2

. (4.77)

The limit process Z of this sequence is called the Itô integral. We set

It (X) :=

t∫
0

Xs dWs := Zt. (4.78)

It can be shown that this definition is independent of the choice of the ap-
proximating sequence X(n) of simple processes. If the integrand X is a simple
process then the definition of the Itô just given coincides with the one for
simple processes. The integral retains all the important properties of the
stochastic integral, i.e. we have:

THEOREM 4.31
The Itô integral (It (X) , Ft)t∈[0,T ] as defined in Equation (4.78) is a continu-
ous martingale with

It (aX + bY ) = aIt (X) + bIt (Y ) for a, b ∈ R, X, Y ∈ L2 [0, T ] , (4.79)

E (It (X)) = 0 , E

(
It (X)2

)
= E

(∫ t

0

X2
s ds

)
. (4.80)

A multidimensional version of the just defined stochastic integral can be
obtained by a suitable reduction to a component-wise definition:

DEFINITION 4.32
Let {(W (t), Ft)}t∈[0,T ] be an m-dimensional Brownian motion with compo-
nents Wi(t),i = 1, ..,m. Let {(X(t), Ft)}t be an R

n,m-valued progressively
measurable process with each component Xij ∈ L2[0, T ]. Then the multidi-
mensional Itô integral of X with respect to W is defined by

t∫
0

X (s) dW (s) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m∑
j=1

t∫
0

X1j (s) dWj (s)

...

m∑
j=1

t∫
0

Xnj (s) dWj (s)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, t ∈ [0, T ], (4.81)

where all single integrals inside the sums of the right-hand side are one-
dimensional Itô integrals as defined in Equation (4.78).
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Note that by this definition all components of the multidimensional Itô
integral are again martingales.

For applications in finance we need a further extension of the Itô inte-
gral to processes that are limits of L2[0, T ]-processes. We give it in the one-
dimensional case (this extends to the multidimensional one as done above)
and introduce:

H2[0, T ] := H2
(
[0, T ],Ω, F, {Ft}t∈[0,T ], P

)
:=
{
(Xt, Ft)t∈[0,T ] real-valued stochastic process

∣∣∣
X progressively measurable,

∫ T

0

X2
t dt < ∞ a.s. P

}
(4.82)

By introducing a sequence of stopping times τn, n ∈ N, given by

τn (ω) := T ∧ inf

⎧⎨
⎩0 ≤ t ≤ T

∣∣∣∣∣∣
t∫

0

X2
s (ω) ds ≥ n

⎫⎬
⎭ , (4.83)

we define the sequence X(n) of stopped processes via

X
(n)
t (ω) := Xt (ω) · 1{τn(ω)≥t}. (4.84)

As the processes X(n), n ∈ N are members of L2[0, T ], their stochastic inte-
gral is given by the definition in Equation (4.78). We use this to define the
stochastic integral I(X) for processes X ∈ H2[0, T ] by

It (X) := It

(
X(n)

)
for 0 ≤ t ≤ τn. (4.85)

This is well-defined as we have

τn
n→∞−−−−→ +∞ P-a.s. (4.86)

for X ∈ H2[0, T ]. It can be shown that the above definition is consistent
for different members τn and τm of this sequence of stopping times. This
so-defined stochastic integral is still linear and possesses continuous paths.
However, as the expected value and the variance of the process X is only finite
among the above introduced sequence of stopping times, we do in general not
have the martingale property and the variance formula for the Itô integral of a
process X ∈ H2[0, T ]. That these properties are satisfied along a sequence of
stopping times ensures that the Itô integral is a (continuous) local martingale
as defined below:

DEFINITION 4.33
A stochastic process {(Xt, Ft)}t≥0 is called a local martingale if there exists
a sequence of stopping times τn, n ∈ N with

τn (ω) n→∞→ ∞ (4.87)
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for P-almost all ω ∈ Ω such that the stopped processes
{(
X̂

(n)
t , Ft

)}
t≥0

de-

fined by
X̂(n) (ω) = Xt∧τn(ω) (ω) (4.88)

are all martingales. Such a sequence of stopping times is called a localizing
sequence.

With this generalization of the Itô integral we introduce the class of Itô
processes which simply consist of a sum of a Lebesgue and an Itô integral and
which will play the central role for the rest of the chapter.

DEFINITION 4.34
Let {(W (t), Ft)}t∈[0,∞) be an m-dimensional Brownian motion, m ∈ N.
(a) A stochastic process {(X(t), Ft)}t∈[0,∞) of the form

X (t) = X (0) +

t∫
0

K (s) ds+
m∑
j=1

t∫
0

Hj (s) dWj (s) (4.89)

with X(0) F0-measurable, {K(t)}t∈[0,∞) and {H(t)}t∈[0,∞) progressively mea-
surable processes with

t∫
0

|K (s)| ds < ∞,

t∫
0

H2
i (s) ds < ∞ P-a.s. (4.90)

for all t ≥ 0, i = 1, ...,m is called a real-valued Itô process.
(b) An n-dimensional Itô process X = (X(1), ..., X(n)) consists of a vector

of components being real-valued Itô processes.

Before we state the main result of Itô calculus, the Itô formula in its different
versions, we introduce the notions of quadratic variation and covariation.

DEFINITION 4.35
Let X and Y be two real-valued Itô processes with representations

X (t) = X (0) +
∫ t

0

K (s) ds+
∫ t

0

H (s) dW (s), (4.91)

Y (t) = Y (0) +
∫ t

0

L (s) ds+
∫ t

0

M (s) dW (s). (4.92)

Then, the quadratic covariation of X and Y is defined by

〈X,Y 〉t :=
m∑
i=1

t∫
0

Hi (s) ·Mi (s) ds. (4.93)
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The special case of 〈X〉t := 〈X,X〉t is called the quadratic variation of X.

The name quadratic variation can also be justified by the fact that in-
deed the pathwise quadratic variation from calculus coincides with the above
defined quadratic variation in the case of Itô processes.

We further introduce the integral of a real-valued, progressively measurable
process Y with respect to the one-dimensional Itô process X via

t∫
0

Y (s) dX (s) :=

t∫
0

Y (s)K (s) ds+

t∫
0

Y (s)H (s) dW (s) (4.94)

if all the integrals on the right-hand side are defined.

4.5.2 The Itô formula

Now we have put all ingredients together to state the Itô formula in different
versions. We start with the one-dimensional case below.

THEOREM 4.36 One-dimensional Itô formula
Let W be a one-dimensional Brownian motion, X a real-valued Itô process
with representation

Xt = X0 +

t∫
0

Ks ds+

t∫
0

Hs dWs. (4.95)

Let f : R → R be a C2-function. Then, for all t ≥ 0 we have

f (Xt) = f (X0) +

t∫
0

f ′ (Xs) dXs + 1
2 ·

t∫
0

f ′′ (Xs) d 〈X〉s

= f (X0) +

t∫
0

(
f ′ (Xs) ·Ks + 1

2 · f ′′ (Xs) ·H2
s

)
ds

+

t∫
0

f ′ (Xs)Hs dWs P-a.s. . (4.96)

In particular, f (Xt) is again an Itô process and all integrals appearing above
are defined.

REMARK 4.37 To state Itô’s formula it is notationally convenient to
use the symbolic differential notation

df (Xt) = f ′ (Xt) dXt + 1
2 · f ′′ (Xt) d 〈X〉t . (4.97)
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However, one should remember that this does not indicate that an Itô process
has differentiable paths.

REMARK 4.38 Although the concept of Itô calculus is highly technical,
it is easy to work with the Itô formula. We highlight this by some simple
examples and encourage the reader to do some more of this kind.

1. Using the process Xt = t we can deduce from Itô’s formula that we have

f (t) = f (0) +
∫ t

0

f ′ (s) ds (4.98)

for a (twice) continuously differentiable function f . Hence, the fundamental
theorem of calculus can be regarded as a special case of Itô’s formula.

2. If we use the (still deterministic) process Xt = h(t) with a C1-function
h, then application of Itô’s formula leads to the well-known chain rule:

(f ◦ h) (t) = (f ◦ h) (0) +
∫ t

0

f ′ (h (s)) · h′ (s) ds (4.99)

3. Finally, with Xt = Wt and the choice of f(x) = x2, we obtain

W 2
t =

t∫
0

2 ·Ws dWs + 1
2 ·

t∫
0

2 ds = 2 ·
t∫

0

Ws dWs + t (4.100)

by the Itô formula. The additional term “t” on the right-hand side of the
equation has its origin in the nonvanishing quadratic variation of Wt.

THEOREM 4.39 Multidimensional Itô formula

Let X(t) = (X1(t), ..., Xn(t)) be an n-dimensional Itô process with

Xi (t) = Xi (0) +

t∫
0

Ki (s)ds+
m∑
j=1

t∫
0

Hij (s) dWj (s), i = 1, ..., n, (4.101)

and W (t) an m-dimensional Brownian motion. Let further f : [0,∞)×R
n →

R be a C1,2-function, i.e. f is continuous, continuously differentiable with
respect to the first variable (time) and twice continuously differentiable with
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respect to the last n variables (space). We then have

f (t,X1 (t) , ..., Xn (t)) = f (0, X1 (0) , ..., Xn (0))

+

t∫
0

ft (s,X1 (s) , ..., Xn (s)) ds+
n∑
i=1

t∫
0

fxi (s,X1 (s) , ..., Xn (s))dXi (s)

+
1
2

n∑
i,j=1

t∫
0

fxixj (s,X1 (s) , ..., Xn (s)) d 〈Xi, Xj〉s. (4.102)

Finally, we state the very useful product rule as a corollary to the multidi-
mensional Itô formula:

COROLLARY 4.40 Product rule or partial integration

Let Xt, Yt be one-dimensional Itô processes with representations

Xt = X0 +
∫ t

0

Ksds+
∫ t

0

HsdWs, Yt = Y0 +
∫ t

0

μsds+
∫ t

0

σsdWs. (4.103)

Then we have

Xt · Yt = X0 · Y0 +

t∫
0

XsdYs +

t∫
0

YsdXs +

t∫
0

d 〈X,Y 〉s

= X0 · Y0 +

t∫
0

(Xsμs + YsKs +Hsσs) ds+

t∫
0

(Xsσs + YsHs) dWs. (4.104)

4.5.3 Martingale representation and change of measure

In this section we present two more celebrated results on properties of the
Brownian motion which are related to Itô integrals (see Korn and Korn [2001]
for their proofs). The first one states that every so-called Brownian martin-
gale can be represented as an Itô integral with respect to the corresponding
Brownian motion.

DEFINITION 4.41

Let (Ω, F,P) be a probability space, (Wt, Ft)t≥0 a one-dimensional Brownian
motion defined on this space. Every real-valued martingale (Mt, Ft)t≥0 with
respect to the Brownian filtration Ft is called a Brownian martingale.
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THEOREM 4.42 Itô’s martingale representation theorem
Let M be a Brownian martingale which in addition satisfies

E
(
M2
t

)
< ∞ for all t ≥ 0. (4.105)

Then, there exists a stochastic process ψ ∈ L2 [0, T ] for all T < ∞ such that
we have

Mt = E (Mt) +
∫ t

0

ψsdWs for t ≥ 0. (4.106)

REMARK 4.43 1. The martingale representation theorem plays a deci-
sive role for the concept of replication in a Black-Scholes market model as we
will see in the next chapter. There exist multidimensional variants of it (i.e.
both the Brownian motion and the integrand ψ are of the same dimension d).
Further, one can relax the martingale requirement. However, if M is only a
Brownian local martingale then the integrand ψ can only be guaranteed to be
in H2[0, T ] (for all finite T ).

2. The integrand ψ in the theorem is unique in an L2 sense. We refer the
reader for details to Korn and Korn (2001).

3. As the martingale representation theorem says that each Brownian mar-
tingale equals a stochastic integral plus its expected value, this in particular
implies that each Brownian martingale has continuous paths!

The second result presented here shows in particular how a Brownian mo-
tion with drift can be transformed into a Brownian motion by changing to
another probability measure. It is also a basic result for option pricing (see
the next chapter).

We will consider a more general setting with a nonconstant drift. Let there-
fore {(X(t),Ft)}t≥0 be an m-dimensional progressively measurable process
where {Ft} is the Brownian filtration with

t∫
0

X2
i (s) ds < ∞ a.s. P for all t ≥ 0, i = 1, ...,m. (4.107)

Further, let

Z (t,X) := exp

⎛
⎝−

m∑
i=1

t∫
0

Xi (s) dWi (s) − 1
2

t∫
0

‖X (s)‖2 ds

⎞
⎠ . (4.108)

A sufficient condition for this process to be a martingale is the so-called
Novikov condition:

E

(
exp
(

1
2

∫ t

0

‖X (s)‖2
ds

))
< ∞. (4.109)
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If Z(t,X) is indeed a martingale, we have E(Z(t,X)) = 1 for all t ≥ 0, and
for all T ≥ 0 we can define a probability measure Q = QT on FT via

Q (A) := E (1A · Z (T,X)) for A ∈ FT . (4.110)

The following theorem shows how a Q-Brownian motion WQ(t) can be con-
structed from a P-Brownian motion W (t) with drift by a change of measure
from P to Q.

THEOREM 4.44 Girsanov’s theorem
Let Z(t,X) as above be a martingale. Define {(WQ(t),Ft)}t≥0 by

WQ

i (t) := Wi (t) +

t∫
0

Xi (s) ds , 1 ≤ i ≤ m, t ≥ 0. (4.111)

Then, for each fixed T ∈ [0,∞) the process {(WQ(t),Ft)}t∈[0,T ] is an m-
dimensional Brownian motion on (Ω,FT , Q) where the probability measure Q

is defined in Equation (4.110).

4.6 Stochastic differential equations

4.6.1 Basic results on stochastic differential equations

Having introduced Itô processes and also their differential notation, it is now
straightforward to introduce the notion of a stochastic differential equation
(SDE) and its (strong) solution.

DEFINITION 4.45
A (strong) solution X(t) to the stochastic differential equation

dX (t) = b (t,X (t)) dt+ σ (t,X (t)) dW (t) , X (0) = x (4.112)

for given functions b : [0,∞) × R
d → R

d, σ : [0,∞) × R
d → R

d,m is a
d-dimensional continuous process {(X(t), Ft)}t≥0 on (Ω, F,P) that satisfies

X (0) = x, (4.113)

Xi (t) = xi +
t∫
0

bi (s,X (s)) ds+
m∑
j=0

t∫
0

σij (s,X (s)) dWj (s), (4.114)

t∫
0

(
|bi(s,X(s)| +

m∑
j=1

σ2
ij (s,X (s))

)
ds < ∞ (4.115)
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P-a.s. for all t ≥ 0, i ∈ {1, ..., d}.

REMARK 4.46 A strong solution thus is a stochastic process that has the
integral representation (4.114) and is defined on the given probability space
(Ω, F,P) where the Brownian motion W is also already given. For the notion
of a weak solution, it is enough if there simply exists a process X satisfying
Equation (4.114) on some probability space for some Brownian motion. We
do not go into further details here but refer the interested reader to Karatzas
and Shreve (1991).

Two simple examples of SDEs with applications in finance include:

• the one-dimensional linear homogeneous equation

dX (t) = bX (t) dt+ σX (t) dW (t) , X (0) = x , (4.116)

with b, σ ∈ R and W (.) a one-dimensional Brownian motion,

• the one-dimensional linear equation with additive noise

dX (t) = (a+ bX (t)) dt+ σdW (t) , X (0) = x , (4.117)

with a, b, σ ∈ R and W (.) a one-dimensional Brownian motion.

Both these equations possess unique strong solutions that will be given below
in Section 4.6.2 when we concentrate on linear SDEs.

As in the case of deterministic differential equations there is an existence
and uniqueness result for SDEs similar to the well-known Picard and Lindelöf
theorem (see Korn and Korn [2001] for proofs of the results of this section).

THEOREM 4.47 Existence and uniqueness of solutions for SDEs
Let the coefficients b(t, x), σ(t, x) of the SDE (4.112) be continuous functions
satisfying both a Lipschitz and a growth condition

‖b (t, x) − b (t, y)‖ + ‖σ (t, x) − σ (t, y)‖ ≤ K ‖x− y‖ (4.118)

‖b (t, x)‖2 + ‖σ (t, x)‖2 ≤ K2
(
1 + ‖x‖2

)
(4.119)

for all t ≥ 0, x, y ∈ R
d and a constant K > 0 (where ‖.‖ denotes the Euclidean

norm of suitable dimension). Then there exists a continuous, strong solution
{(X(t), Ft)t≥0} of (4.112) with

E
(
‖X (t)‖2

)
≤ C ·

(
1 + ‖x‖2

)
· eC·T for all t ∈ [0, T ] (4.120)

for some constant C = C(K,T ) and T > 0. Further, X(.) is unique up to
indistinguishability, i.e. if Y (.) would be another solution to (4.112) then we
would have

P (X (t) = Y (t) , ∀t ≥ 0) = 1. (4.121)
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REMARK 4.48 It can be shown that the solution {(X(t), Ft)}t of (4.112)
is a Markov process. This in particular means that for all Borel measurable,
bounded functions f we have

E (f (X (s)) |Ft ) = E (f (X (s)) |X (t) ) = g (X (t)) (4.122)

for fixed t ≤ s with g(x) := E(f(X t,x(s))). Here, the use of the upper index
t, x implies that the process Xt,x solves the SDE (4.112) with initial condition
X(t) = x. For simplicity of notation, we often omit the upper indices in the
following, but mark corresponding expectations with this upper index instead:

E
(
...Xt,x (s) ...

)
= E

t,x (...X (s) ...) . (4.123)

4.6.2 Linear stochastic differential equations

As for ordinary differential equations, we know most about solutions in
the linear setting. We will start with the one-dimensional case where we can
present a completely explicit solution which is a generalization of the well-
known variation of constants formula.

THEOREM 4.49 Variation of constants

Let {(W (t), Ft)}t∈[0,∞) be an m-dimensional Brownian motion. Let x ∈ R

and A, a, Sj , σj be progressively measurable, real-valued processes with

∫ t

0

(|A(s)| + |a(s)|) ds < ∞,

∫ t

0

(
S2
j (s) + σ2

j (s)
)
ds < ∞ ∀t ≥ 0 (4.124)

P-a.s., j = 1, ...,m. Then the general one-dimensional linear SDE

dX (t) = (A (t)X (t) + a (t)) dt+
m∑
j=1

(Sj (t)X (t) + σj (t)) dWj (t), (4.125)

X(0) = x (4.126)

possesses the unique solution {(X(t), Ft)}t∈[0,∞)

X(t) = Z(t) ·
(
x+

t∫
0

1
Z(u)

⎛
⎝a(u) −

m∑
j=1

Sj(u)σj(u)

⎞
⎠ du

+
m∑
j=1

t∫
0

σj(u)
Z(u)

dWj(u)
)

(4.127)
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where

Z (t) = exp

⎛
⎝

t∫
0

(
A (u) − 1

2 · ‖S (u)‖2
)
du+

t∫
0

S (u) dW (u)

⎞
⎠ (4.128)

is the unique solution of the homogeneous equation

dZ (t) = Z (t)
(
A (t) dt+ S (t)′ dW (t)

)
, Z(0) = 1. (4.129)

Of particular interest for financial modelling will be the solution Z (t) of
the homogeneous equation in the variation of constants formula. Of course,
if we change the initial condition to Z(0) = z, we simply have to multiply the
solution by z. Another special case of interest is given by the equation

dX (t) = (a−AX (t)) dt+ σdW1 (t) , X (0) = x (4.130)

with nonzero A and real constants a, σ. Its unique solution

X(t) = xe−At +
a

A

(
1 − eAt

)
+ σ

t∫
0

e−A(t−u) dWj(u) (4.131)

satisfies

X(t) ∼ N
(
xe−At +

a

A

(
1 − e−At

)
,
σ2

2A
(
1 − e−2At

))
(4.132)

with an obvious limiting distribution for t → ∞ in the case of A > 0.
In the general n-dimensional setting we have a similar result, but cannot

always solve the homogeneous equation explicitly.

THEOREM 4.50 Multidimensional homogeneous linear SDE
Let {(W (t), Ft)}t∈[0,∞) be an m-dimensional Brownian motion. Let x ∈ R

n,
let A,Sj be n× n−matrices satisfying

ASj = SjA and SjSk = SkSj (4.133)

for j, k = 1, ...,m. Then the linear homogeneous SDE

dZ (t) = AZ (t) dt+
m∑
j=1

SjZ (t) dWj (t) , Z (0) = Z0 (4.134)

with constant coefficients possesses the unique solution

Z (t) = Z0 exp

⎛
⎝
⎛
⎝A− 1

2

m∑
j=1

(
Sj
)2
⎞
⎠ t+

m∑
j=1

SjWj (t)

⎞
⎠ (4.135)

= Z0

∞∑
k=0

((
A− 1

2

∑m
j=1

(
Sj
)2)

t+
∑m

j=1 S
jWj (t)

)k
k!

. (4.136)
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THEOREM 4.51 Multidimensional linear SDE
Let {(W (t), Ft)}t∈[0,∞) be an m-dimensional Brownian motion. Let x ∈ R

n,
let A,Sj be progressively measurable n×n−matrix-valued processes, and a, σj

R
n-valued processes with
∫ t

0

(|Aik(s)| + |ai(s)|) ds < ∞,

∫ t

0

(
Sjik

2
(s) + σji

2
(s))
)
ds < ∞ (4.137)

for all t ≥ 0 P-a.s., i, k = 1, ..., n, j = 1, ...,m. Then the general n-
dimensional linear SDE

dX (t) = (A (t)X (t) + a (t)) dt+
m∑
j=1

(Sj (t)X (t) + σj (t)) dWj (t) (4.138)

X(0) = x (4.139)

admits the unique solution {(X(t), Ft)}t∈[0,∞)

X(t) = Z(t) ·
(
x+

t∫
0

Z(u)−1

⎛
⎝a(u) −

m∑
j=1

Sj(u)σj(u)

⎞
⎠ du

+
m∑
j=1

t∫
0

Z(u)−1σj(u)dWj(u)
)

(4.140)

with Z (t) the unique solution of the homogeneous equation

dZ (t) = A (t)Z (t) dt+
m∑
j=1

Sj (t)Z (t) dW (t) , Z(0) = I. (4.141)

4.6.3 The square-root stochastic differential equation

A particular SDE without an explicit solution but where the distribution
of the solution is known is the so-called square-root equation

dX (t) = κ (θ −X (t)) dt+ σ
√
X (t)dW (t) , X (0) = x (4.142)

with x, κ, θ, σ positive constants. It will play a prominent role in stock price
modelling (especially in the local and the stochastic volatility models) and
in interest rate modelling. Its first treatment, however, goes back to Feller
(1951) and has no relation to finance whatsoever. The process has generated
a lot of interest since then, see e.g. Cox et al. (1985) or Dufresne (2001).
Note that the square-root SDE cannot be treated by our standard existence
and uniqueness results as the square-root function is neither differentiable in
the origin nor is it Lipschitz continuous on [0,∞). Thus, it typically needs a
separate treatment when one wants to state assertions on its properties. We
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summarize the main results of the above mentioned research in the following
theorem.

THEOREM 4.52
(a) For positive constants x, κ, θ, σ the square-root equation (4.142) has a
unique nonnegative solution X (t).
(b) With

d =
4κθ
σ2

, g (t) =
4κe−κt

σ2 (1 − e−κt)
(4.143)

eκtg (t)X (t) has a noncentral chi-square distribution with d degrees of freedom
and noncentrality parameter xg (t).
(c) We have

E (X (t)) = θ + (x− θ) e−κt, (4.144)

Var (X (t)) =
xσ2e−κt

κ

(
1 − e−κt

)
+
θσ2

2κ
(
1 − e−κt

)2
. (4.145)

(d) For 2κθ ≥ σ2 the solution X (t) is strictly positive. For 2κθ ≤ σ2 the
origin can be attained by X (t).

The simulation of this equation will be discussed further in Chapter 5.

4.6.4 The Feynman-Kac representation theorem

There is an in-depth relation between expectations of functionals of solu-
tions of SDEs and solutions to a special type of partial differential equations
(PDE). We first have to develop the necessary terms.

DEFINITION 4.53
Let X(t) be the unique solution of the SDE (4.112) under the conditions
(4.118) and (4.119). For f : R

d → R, f ∈ C2(Rd), the operator At, de-
fined by

(Atf) (x) := 1
2

d∑
i=1

d∑
k=1

aik (t, x)
∂2f

∂xi∂xk
(x) +

d∑
i=1

bi (t, x)
∂f

∂xi
(x) (4.146)

with

aik (t, x) =
m∑
j=1

σij (t, x)σkj (t, x) (4.147)

is called the characteristic operator corresponding to X(t).

REMARK 4.54 It is now easy to assign characteristic operators to
stochastic processes that are known to be explicit solutions of SDEs:
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1. X(t) = W (t) solves the equation dX(t) = dW (t), X(0) = 0. Hence,

1
2
Δ =

1
2

d∑
i=1

∂2

∂x2
i

(4.148)

is the characteristic operator of the d-dimensional Brownian motion.

2. X (t) = x · e
“
b− 1

2σ
2
”
t+σW (t) is the solution of the linear SDE

dX (t) = X (t) (b dt+ σ dW (t)) , X (0) = x (4.149)

and thus has the characteristic operator At given by

(Atf) (x) = 1
2σ

2x2f ′′ (x) + b x f ′ (x) . (4.150)

To state our desired result that relates SDEs and PDEs we now set up the
special type of problem, a so-called Cauchy problem.

DEFINITION 4.55
Let T > 0 be fixed. Then the Cauchy problem corresponding to the operator
At is to find a function υ(t, x) : [0, T ] × R

d → R satisfying

−υt + kυ = Atυ + g on [0, T ) × R
d (4.151)

υ (T, x) = f (x) for x ∈ R
d (4.152)

for given functions f : R
d → R, g : [0, T ] × R

d → R, k : [0, T ] × R
d → [0,∞).

To ensure the uniqueness of a solution of the Cauchy problem, we addition-
ally require that υ obeys a polynomial growth condition:

max
0≤t≤T

|υ (t, x)| ≤ M
(
1 + ‖x‖2μ

)
with M > 0, μ ≥ 1. (4.153)

Further, the functions f, g, k should be continuous. We assume that for
suitable constants L, λ we have

|f (x)| ≤ L
(
1 + ‖x‖2λ

)
, L > 0, λ ≥ 1 or f(x) ≥ 0 , (4.154)

|g (t, x)| ≤ L
(
1 + ‖x‖2λ

)
, L > 0, λ ≥ 1 or g(t, x) ≥ 0. (4.155)

THEOREM 4.56 The Feynman-Kac representation
Under assumptions (4.154) and (4.155), let υ(t, x) : [0, T ] × R

d → R be a
continuous solution of the Cauchy problem (4.151) with υ ∈ C1,2([0, T )×Rd).
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Denote by At in Equation (4.151) the characteristic operator of the unique
solution X(t) of the SDE (4.112) with continuous coefficients b, σ satisfying
condition (4.118), bi (t, x) , σij (t, x) : [0,∞) × R

d → R for i = 1, ..., d, j =
1, ...,m. If then υ(t, x) satisfies the polynomial growth condition (4.153), we
have the representation

υ (t, x) = Et,x

(
f (X (T )) · exp

(
−

T∫
t

k (θ,X (θ)) dθ
)

+

T∫
t

g (s,X (s)) · exp
(
−

s∫
t

k (θ,X (θ)) dθ
)
ds

)
. (4.156)

In particular, υ(t, x) is the unique solution of the PDE (4.151) which satisfies
the polynomial growth condition (4.153).

REMARK 4.57 1. Note the exact assertion of the theorem: If we can
show that the PDE (4.151) possesses a classical (i.e. sufficiently smooth) solu-
tion satisfying the polynomial growth condition (4.153) then it is given by the
above expectation as a function of the initial parameters of the solutions to
the SDE (4.112). However, in general we do not have the opposite direction.
More precisely, the above expectation need not necessarily be the solution of
PDE (4.151) as it simply may not be smooth enough. If on the other hand
we can calculate this expectation, then we can check if it solves the Cauchy
problem. If this is indeed the case, then it is the unique solution of PDE
(4.151) satisfying the polynomial growth condition (4.153).

2. It is further important to see that we now even have a possibility to solve
the Cauchy problem by Monte Carlo simulation. To do so, we have to:

1. Show that the Cauchy problem admits a classical solution that satisfies
the growth condition (4.153).

2. Approximate the expectation in (4.156) by the Monte Carlo method:

(a) Simulate N paths of the underlying SDE (4.112).

(b) Calculate the corresponding values of the functionals in Equation
(4.156).

(c) Estimate υ (t, x) by the arithmetic mean over those values.
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4.7 Simulating solutions of stochastic differential
equations

4.7.1 Introduction and basic aspects

As with ordinary differential equations (ODEs), most stochastic differential
equations do not admit explicitly given solutions. This makes it necessary to
consider numerical methods to solve them. However, there are fundamental
differences between deterministic ODEs and SDEs which are mainly due to
the following facts:

• A solution to an SDE is a (function-valued) random variable, and thus
we obtain different solutions for different ω ∈ Ω.

• A (strong) solution to an SDE is not smooth, as the underlying Brownian
motion is not smooth at all.

The second fact yields that numerical schemes for ODEs that rest on smooth-
ness properties of the solution are not automatically good when adapted to the
situation of an SDE. The first fact has an important consequence: it depends
on the purpose for what we need the solution of an SDE. Are we interested in

• obtaining a path Y (t, ω) , t ∈ [0, T ] that is as close as possible to the
(unknown) solution path X (t, ω) , t ∈ [0, T ],

• or in computing an expectation of a functional E (g (X)) of the SDE?

In the first case, the path Y obtained by a numerical scheme should perfectly
mimic the behaviour of X . In the second case, we have already seen in Section
3.3 that it might be useful to simulate a random variable that might be totally
different from X , but lead to a very efficient and accurate computation of
E (g (X)). These two aspects lead to two different notions of convergence
of numerical schemes for SDEs, the so-called strong and weak convergence.
Before we consider this, we make a short remark on the simulation of a solution
to an SDE when it has an explicitly known solution.

Simulating with explicit solutions

In the rare case of an SDE with a unique explicit solution it is typically
enough to simulate an underlying Brownian motion and plug it into the ex-
plicit formula. A standard example is the one-dimensional linear homogeneous
equation with constant coefficients

dX (t) = X (t) (a dt+ b dW (t)) , X (0) = x (4.157)

with x > 0. The unique solution

X (t) = x exp
((

a− 1
2
b2
)
t+ bW (t)

)
= f (t,W (t)) (4.158)
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is exactly of this form with a suitable function f . For each single time instant t
the exact distribution ofX (t) can be simulated by drawingN (0, t)-distributed
random numbers and plugging them into the explicit formula. More generally,
if the distribution of X (t) is explicitly known, then simulating the stochastic
process at a particular point of time is not different from simulating random
numbers as in Chapter 2.

The task becomes more involved when a functional of the whole path
{X (t, ω) : t ∈ [0, T ]} is considered. Even in the example of the geometric
Brownian motion above, we cannot simulate the whole path of a process. Only
a discretized version of it can be generated. But this problem has already been
dealt with when we introduced Brownian motion. As the geometric Brown-
ian motion is a continuous function of the Brownian motion, we still have
weak convergence of a discretized version combined with linear interpolation.
We simply choose an equally spaced partition 0 = t0 < T/n < 2T/n... <
nT/n = T of the interval [0, T ], simulate the values of the Brownian motion
W (ti), obtain the values X (ti) from it, and interpolate linearly in between
those time points. Then, Donsker’s theorem ensures weak convergence if we
choose a suitable sequence of partitions of [0, T ]. This means that (at least)
for bounded functionals g we have the following.

PROPOSITION 4.58
Assume that the real-valued SDE

dX (t) = a (t,X (t)) dt+ σ (t,X (t)) dW (t) (4.159)

has an explicit solution of the form X(t) = f(t,W (t)) with f a continuous,
real-valued function. Let Yn be the approximation to X that is constructed by

Yn (t) = f (t,W (t)) if t = iT/n for some i = 0, 1, ..., n (4.160)

and extended to all t ∈ [0, T ] by linear interpolation. Then, for each bounded,
measurable functional g : C [0, t] → R we have

E (g (Yn)) n→∞−−−−→ E (g (X)) . (4.161)

4.7.2 Numerical schemes for ordinary differential equations

If there is no explicit solution to the stochastic differential equation under
study, then – as in the deterministic case – we have to rely on numerical dis-
cretization schemes. For a survey on such numerical schemes, the monograph
by Kloeden and Platen (1999) is still the authoritative source. We refer the
reader to most of the proofs in the upcoming sections (if not otherwise stated)
to this excellent reference.

To obtain an idea about how to construct numerical discretization schemes,
we will survey some commonly used discretization methods for deterministic
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ODEs. More precisely, we will have a look at the initial value problem

x′ (t) = a (t, x) , x (t0) = x0 (4.162)

where we assume the function a to satisfy smoothness and growth conditions
to ensure both existence and uniqueness for the solution of the initial value
problem. To solve it numerically on [0, T ], we consider a time discretization
t0 < t1 < t2 < ... < tk ≤ T . Although it is often convenient to assume an
equidistant time spacing, we will not explicitly assume it and set

hn := tn+1 − tn. (4.163)

As x (t0) is explicitly known, we also know x′ (t0) = a (t0, x0). This could be
used to find an approximation for x (t1). With this approximation we could
then – again using the differential equation – try to compute an approximation
of x (t2) and so on. To obtain an approximation for x (t1) we could

• approximate x′ (t0) in a suitable way including x (t1) and solve for this,

• or use the Taylor expansion of x (t) in t = t0 and try to infer x (t1) from
it in an approximate way.

In doing so, making errors in our approximation cannot be avoided. To make
this more precise, we introduce the notation of

• x (t; t0, x0) = the true solution of the initial value problem starting in
t0 with x0,

• yn = an approximation for x (tn; t0, x0) generated by a numerical dis-
cretization algorithm that started with y0 = x0,

• x (t; tn, yn) = the true solution of the initial value problem if it would
start at time tn with initial value yn.

DEFINITION 4.59

With the above notation and an approximation scheme for the initial value
problem that produces the value yn at step n of the iteration, we call

ln+1 := x (t; tn+1, yn) − yn+1 (4.164)

the local discretization error at step n and

en+1 := x (t; tn+1, x0) − yn+1 (4.165)

the global discretization error at step n.
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Approximation procedures – I: Explicit one-step methods

The first obvious idea to construct an approximation scheme has already
been indicated above as approximating the derivative x′ (t0) via

x (t1) − x (t0)
t1 − t0

≈ x′ (t0) = a (t0, x0) . (4.166)

Taking this as an equality and solving for x (t1) leads to the Euler method
given by

y1 = y0 + a (t0, y0) · h0. (4.167)

Of course, for general n we just replace the subscripts 1 and 0 by n+ 1 and
n in the above equation. An obvious generalization of this is stated below.

DEFINITION 4.60
A numerical discretization procedure for solving the initial value problem that
is given by the iteration procedure

yn+1 = yn + g (t, yn, hn) · hn (4.168)

is called an explicit one-step procedure with incremental function g.

Examples of such one-step methods are

• the Euler method given by g (t, x, h) = a (t, x),

• the second-order Runge-Kutta method given by

g (t, x, h) = αa (t, x) + βa (t+ γh, x+ γa (t, x)h) (4.169)

with α+β = 1, γβ = 1
2 . This in particular means that we have one free

parameter. The choice α = β = 1
2 , γ = 1 is called the Heun method.

The more popular fourth-order Runge-Kutta method is given by

g (t, x, h) =
1
6

(
k

(n)
1 + 2k(n)

2 + 2k(n)
3 + k

(n)
4

)
(4.170)

with

k
(n)
1 = a (tn, yn) , k

(n)
2 = a

(
tn + 1

2hn, yn + 1
2k

(n)
1 hn

)

k
(n)
3 = a

(
tn + 1

2hn, yn + 1
2k

(n)
2 hn

)
, k

(n)
4 = a

(
tn+1, yn + k

(n)
3 hn

)
.

To explain the intuition behind the construction of the Runge-Kutta meth-
ods and to introduce the fundamental tool for determining the order of the
local discretization error, we look at the Taylor expansion up to order p

x (tn+1) = x (tn) + x′ (tn) · hn + ...+
1
p!
x(p) (tn) · hpn +O

(
h(p+1)

)
(4.171)
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which is valid if x is sufficiently differentiable in tn. As we know the function
a (t, x) explicitly and using the differential equation x′ (t) = a (t, x), we can
express all the derivatives of x in t in terms of derivatives of a. In particular,
for the first three derivatives we have

x′ (t) = a (t, x) , x′′ (t) = at (t, x) + ax (t, x) a (t, x) ,

x′′′ (t) = att (t, x) + ax (t, x) at (t, x) + a (t, x)
(
2atx (t, x) + ax (t, x)2

)
.

Replacing these terms in the Taylor formula yields discretization methods
with a local discretization error determined by the order of h of the remainder.
Truncating the Taylor expansion after the first derivative leads to the Euler
method (which thus has a local discretization error of 2). The Taylor method
truncated after the second derivative yields a one-step method of the form

yn+1 = yn+a (tn, yn) ·hn+
1
2

(at (tn, yn) + ax (tn, yn) a (tn, yn)) ·h2
n. (4.172)

Thus, in principle, we could obtain discretization schemes of any desired or-
der of h for the local discretization error (given sufficient smoothness of a).
However, the formula gets very lengthy as a depends on t and x. And, even
more important, evaluating all the derivatives of a can become very costly
from a computational point of view. One therefore tries to approximate the
derivatives of a in a suitable way. The intuition behind the second-order
Runge-Kutta method highlights this. Note therefore that a Taylor expansion
in (t, x) of the second term in this method yields

g (t, x, h) = αa (t, x) + βa (t+ γh, x+ γ (t, x) h)
= (α+ β) a (t, x) + γβh (at (t, x) + ax (t, x) a (t, x)) +O

(
h2
)

By comparing this with the Taylor formula truncated after the second deriva-
tive, we see that the requirements on α, β, γ in the second-order Runge-Kutta
method ensure an order of h3 of the local discretization error.

Approximation procedures – II: Implicit methods

If the right-hand side of an approximation scheme also depends on yn+1

we speak of an implicit method, as we have to solve this equation for yn+1

(typically by numerical methods) to obtain the next iterate. A simple example
would be the implicit Euler scheme

yn+1 = yn + a (tn+1, yn+1) hn (4.173)

or the so-called trapezoidal method

yn+1 = yn +
1
2

(a (tn, yn) + a (tn+1, yn+1))hn. (4.174)

In this last method, the average slope of x (t) on [tn, tn+1] is approximated by
the mean of the slope in the two endpoints of the interval. Although implicit
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methods require a solution procedure for a (typically) nonlinear equation,
they are applied to real problems due to their good behaviour with respect to
numerical stability (see Stoer and Bulirsch [1993]).

Approximation procedures – III: Multistep methods

While one-step methods try to achieve a high order of the local discretiza-
tion error by including (at least approximately) higher order derivatives to
describe the evolution of x (t), multistep methods try to achieve a good de-
scription by instead including information of the past evolution of x (t). For
simplicity, we assume an equidistant spacing, i.e. hn = h for all n:

DEFINITION 4.61
A numerical discretization method of the form

yn+1 =
k∑
j=1

αjyn+1−j +
k∑
j=0

βja (tn+1−j , yn+1−j)h (4.175)

with αi, βi ∈ R is called a multistep method to solve the initial value
problem. It is called explicit if we have β0 = 0 and implicit otherwise.

Note that these kinds of methods need k starting points y1, ..., yk which
have to be computed by another method. Examples are

• yn+1 = yn−1+2a (tn, yn)h, the so-called midpoint method, which can
be derived via approximating x′ (tn) by a central difference quotient

x (tn+1) − x (tn−1)
2h

.

From this, it is easy to see via Taylor expansion that this method has a
local discretization error of order O

(
h3
)
.

• yn+1 = yn + 1
12 (5a (tn+1, yn+1) + 8a (tn, yn) − a (tn+1, yn+1)), the (im-

plicit) Adams-Moulton method.

REMARK 4.62 A possibility to avoid implicit methods is to first calcu-
late an approximation ȳn+1 to yn+1 by some explicit method (a prediction
of yn+1) and then use this at the right-hand side of the discretization scheme
to calculate the final value of yn+1 (the correction). We will not go into
detail for such predictor-corrector methods as we will not use them in
the stochastic differential equation part.

Convergence considerations

Of course, the heuristical statements above concerning the order of the local
error of the discretization schemes considered so far do not ensure convergence
of the methods. We will therefore introduce some theoretical background:
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DEFINITION 4.63
(a) Let yn be a sequence generated by a discretization scheme starting with
y0 = x0. We say that the scheme is convergent if we have

lim
maxnhn→0

|x (tn+1; t0, x0) − yn+1| = 0 (4.176)

on any finite interval [t0, T ].
(b) We call a one-step method consistent for the initial value problem if its
incremental function g satisfies

g (t;x, 0) = a (t, x) . (4.177)

Consistency implies in particular that if we plug the exact solution x (t)
of the initial value problem into the discretization scheme, then for h → 0
convergence of the generated sequence towards x (t) is ensured. We only cite
one result characterizing the convergence behaviour of one-step methods for
initial value problems for ODEs (see Kloeden and Platen [1999]).

THEOREM 4.64
Assume that a one-step method given by

yn+1 = yn + g (tn, yn, hn)hn (4.178)

satisfies the global Lipschitz condition in (t, x, h) :

|g (t′, x′, h′) − g (t, x, h)| ≤ K (|t′ − t| + |x′ − x| + |h′ − h|) . (4.179)

(a) If in addition the one-step method obeys a global bound of the form

|g (t, x, 0)| ≤ L (4.180)

then it is convergent if and only if it is consistent.
(b) If the one-step method has a local discretization error of order O

(
hp+1

)
then it admits a global discretization error of order O (hp).

REMARK 4.65 As we have g (t, x, h) = a (t, x) in the Euler scheme, it
is obviously consistent. Of course, the Lipschitz and boundedness conditions
in the theorem depend on the function a in the case of the Euler scheme.

4.7.3 Numerical schemes for stochastic differential equations

In principle, the discretization methods for deterministic differential equa-
tions can also be used for solving stochastic differential equations of the type

dX (t) = a (t,X (t)) dt+ σ (t,X (t)) dW (t) (4.181)
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numerically. Here, for simplicity, we consider a one-dimensional SDE; modifi-
cations for the multidimensional case are given below. The main difference is
that besides replacing dt by a time difference Δt, one also has to replace the
infinitesimal increment of the Brownian motion dWt by the finite difference

ΔW (t) := W (t+ Δt) −W (t) . (4.182)

By this simple modification we already obtain the most basic numerical
scheme for solving SDEs, namely the Euler-Maruyama method.

The Euler-Maruyama method

We state it in Algorithm 4.7 and then comment on its usefulness.

Algorithm 4.7 The Euler-Maruyama scheme
Let Δt := T/N for a given N . Then approximate the SDE (4.181) via:

1. Set YN (0) = X (0) = x0.

2. For j = 0 to N − 1 do

(a) Simulate a standard normally distributed random number Zj .

(b) Set ΔW (jΔt) =
√

ΔtZj and

YN ((j + 1)Δt) = YN (jΔt) + a (jΔt, YN (jΔt))Δt
+ σ (jΔt, YN (jΔt))ΔW (jΔt) .

The Euler-Maruyama method is very popular in the applications in finance
due to its simplicity. We will see later that there are also good theoretical
reasons for its popularity when considering convergence aspects. A more
formal motivation for the method and also for a whole class of methods is
based on the Itô-Taylor expansion. This expansion formally resembles the
look of a classical Taylor expansion but is based on the Itô formula as the
underlying processes are Itô processes. We give its application for the one-
dimensional case when even the coefficient functions are of the autonomous
forms a (X (t)), σ (X (t)). Applying the Itô formula separately to the two
coefficient functions of the SDE (4.181) and using the notations

L0 = a (x)
∂

∂x
+

1
2
σ2 (x)

∂2

∂x2
, L1 = σ (x)

∂

∂x
(4.183)
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we obtain:

X (t) = X (0) +
t∫
0

a (X (s)) ds+
t∫
0

σ (X (s)) dW (s)

= X (0) +
t∫
0

{
a (X (0)) +

s∫
0

L0a (X (u))du+
s∫
0

L1a (X (u))dW (u)
}
ds

+
t∫
0

{
σ (X (0)) +

s∫
0

L0σ (X (u))du+
s∫
0

L1σ (X (u))dW (u)
}
dW (s)

= X (0) + a (X (0)) · t+ σ (X (0)) ·
t∫
0

dW (s) +R. (4.184)

Here, R denotes the rest containing all the terms of the second but last line
which are missing in the last one. By hoping that a small value of t yields a
negligible R, the last line above is then taken as an approximation for X (t).
We obtain the general step of the Euler-Maruyama method by replacing the
time interval [0, t] by [t, t+ Δt].

REMARK 4.66 1. Multidimensional Euler-Maruyama scheme:
The extension to a d-dimensional setting of the Euler-Maruyama method is
straightforward. One simply treats each component as a one-dimensional
approximation procedure of the corresponding component of the underlying
SDE. If the underlying Brownian motion is m-dimensional, the following two
modifications are needed:

• In each step generate an m-dimensional standard normal variable Zi ∼
N (0, Id) instead of just a univariate one.

• Replace the iteration procedure by the following d component iterations
(the upper index denotes the component of the corresponding vector)

Y
(i)
N ((j + 1)Δt) = Y

(i)
N (jΔt) + a(i) (jΔt, YN (jΔt))Δt

+
m∑
k=1

σ(i,k) (jΔt, YN (jΔt))ΔW (k) (jΔt). (4.185)

We will look at the performance of the Euler-Maruyama method and its con-
vergence properties after we have introduced more general schemes below.

2. The above Itô-Taylor expansion can be generalized to the case of:

• Time-dependent coefficients: Then all coefficients occurring in the L-
operators are time-dependent and the operator L0 has to include a time
derivative leading to

L0 =
∂

∂t
+ a (t, x)

∂

∂x
+

1
2
σ2 (t, x)

∂2

∂x2
. (4.186)
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• A multivariate setting: Then the L-operators have the forms that cor-
respond to the application of the n-dimensional Itô formula to C1,2-
functions.

3. For the validity of the Itô-Taylor expansion we need suitable smoothness
of the coefficient functions a and σ. However, the Euler-Maruyama method
in its final form can be applied without any smoothness requirement at all.

The Milstein method

The simplest idea to extend the Euler-Maruyama scheme is to include the
term of the biggest order in the remainder R (of course when t is small) of
Equation (4.184) for the approximation yielding the next iteration point. To
identify it, note that ΔW (t) is of order

√
Δt as can be seen from

Var (ΔW (t)) = Δt. (4.187)

Thus, the double stochastic integral

t∫
0

s∫
0

σ (X (u))σ′ (X (u)) dW (u)dW (s)

= σ (X (0)) σ′ (X (0))

t∫
0

s∫
0

dW (u)dW (s) + R̃

=
1
2
σ (X (0)) σ′ (X (0))

(
W (t)2 − t

)
+ R̃ (4.188)

is the dominating term in the remainder of the Itô-Taylor approximation for
the Euler-Maruyama approximation. If we add the last line to the iteration
procedure for obtaining the new value of Yn in each step (ignoring the new re-
mainder R̃) then we obtain the so-called Milstein scheme (see Milstein [1978]).
As the application of the Itô-Taylor formula for time-dependent coefficients
does not influence the fact that the double stochastic integral is the dominat-
ing term of the remainder, we can write the corresponding Algorithm 4.8 in
the more general form for time-dependent coefficients.

As with the Euler-Maruyama method, the Milstein method is very easy to
implement which is a reason that it is also quite popular among practition-
ers in finance. However, there is one particular problem. While one has the
intuitive feeling that by using a more sophisticated approximation function
(by including higher order terms) one could expect a better convergence be-
haviour, the implicit requirement of a differentiable function σ(., .) makes its
direct application to the square root process questionable. This fact and the
performance of both methods – Milstein and Euler-Maruyama – are illustrated
by applying them to the SDE

dX (t) = −0.5a2X (t) dt+ a

√
1 −X (t)2dW (t) , X (0) = x (4.189)
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Algorithm 4.8 The Milstein scheme
Let Δt := T/N for a given N . Then solve the SDE (4.181) via:

1. Set YN (0) = X (0) = x0.

2. For j = 0 to N − 1 do

(a) Simulate a standard normally distributed random number Zj .

(b) Set ΔW (jΔt) =
√

ΔtZj and

YN ((j + 1)Δt) = YN (jΔt) + a (jΔt, YN (jΔt))Δt
+ σ (jΔt, YN (jΔt))ΔW (jΔt)

+
1
2
σ (jΔt, YN (jΔt)) σ′ (jΔt, YN (jΔt))

(
ΔW (jΔt)2 − Δt

)
.

(with a ∈ R, −1 < x < 1) which has the explicit solution

X (t) = sin (aW (t) + arcsin (x)) . (4.190)

In Figure 4.5 the Milstein method seems to have problems whenever the real
process gets close to 1. Of course, this is the point where σ(.) is nondif-
ferentiable and the derivative of σ(.) for values of X (t) close to 1 gets very
large. This actually results in the fact that the approximating sequence of
the Yn of the Milstein scheme eventually leaves the region [−1, 1] where the
process X (t) is defined and where we terminate its application. Clearly, we
could have capped Yn by 1, but for demonstrational purposes did not do that.
In Chapter 5 we will deal in more detail with a comparable situation when
the simulation of the Heston model will be considered. The Euler-Maruyama
method performs much more satisfying, although we should remark that it
can produce values of Yn outside [−1, 1], too. However, as it is a derivative-
free method, it does not suffer as much here as the Milstein method when
X (t) gets large.

REMARK 4.67 It is tempting to say that a d-dimensional version of
the Milstein scheme can be obtained by extending it to a component-wise
iteration procedure as in the case of the Euler-Maruyama method. There is
however one point that prevents this. In a multidimensional version we would
also have to evaluate double stochastic integrals of the form

I(i,k) =
∫ (j+1)Δt

jΔt

∫ s

jΔt

dW (i) (u)dW (k) (s). (4.191)

As they can be easily evaluated in a simple closed form only for the case
of i = k, the only direct generalization of the Milstein scheme to the mul-
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FIGURE 4.5: Comparison between the Euler and Milstein methods.

tidimensional setting would occur if component i of the corresponding SDE
would solely depend on component i of the underlying Brownian motion and
on no other one (of course, here we are working with a standard Brownian
motion where the components are independent). In this special case, the mul-
tidimensional Milstein scheme can be identified as d one-dimensional Milstein
schemes working in parallel.

4.7.4 Convergence of numerical schemes for SDEs

We will now turn to the question of convergence and speed of convergence
of our proposed numerical schemes and also consider general theory of con-
vergence for numerical schemes for SDEs. Depending on the purpose of the
simulation of the solution of an SDE, we consider two fundamentally different
notions of convergence.

Strong convergence and pathwise approximation

Let δ be the maximum stepsize in a numerical scheme, i.e.

δ = max
i=1,...,n

(ti − ti−1) , t0 = 0 < t1 < ... < tn = T. (4.192)

We then denote by Y δ = Y δn the corresponding numerical scheme given by

Y δ (t0) = f0 (X (t0)) , (4.193)
Y δ (tj+1) = fj+1

(
Y δ (t0) , ..., Y δ (tj)

)
+ gj (Zj+1) . (4.194)

Here, fi, gi are measurable functions and Zi is assumed to be Fti-measurable.
Note in particular that we must have n ≥ T/δ. So, although we are in the
following omitting the index n, we always have an implicit n-dependence.
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DEFINITION 4.68
We say that a numerical scheme for solving the SDE (4.181) or more generally
(4.112) converges strongly on [0, T ] to the solution X of the SDE if for the
final time T we have

lim
δ→0

E
(∣∣X (T ) − Y δ (T )

∣∣) = 0. (4.195)

A strongly convergent scheme is said to have convergence rate γ if for some
constants C and δ0 > 0 we have

E
(∣∣X (T ) − Y δ (T )

∣∣) ≤ C · δγ ∀δ ∈ [0, δ0] . (4.196)

Thus, strong convergence means in particular that for almost every path of
the SDE, the numerical scheme approximates the (final value of the) SDE as
close as possible if the maximum stepsize approximates zero. We cite a well-
known result that completely determines the strong convergence behaviour of
the Euler-Maruyama method (see Kloeden and Platen [1999]).

THEOREM 4.69 Strong convergence: Euler-Maruyama scheme
Under the assumptions of Theorem 4.47 (i.e. Lipschitz coefficients and linear
growth conditions on the coefficients of the SDE) and additionally

|a (t, x) − a (s, x)| + |σ (t, x) − σ (s, x)| ≤ K (1 + |x|) |t− s|1/2 (4.197)

for some suitable constant K, the Euler-Maruyama scheme converges strongly
with a convergence rate of γ = 1/2. Even more, if we define Y δ (t) as the
process generated by the Euler-Maruyama method with a time stepsize of δ
and defined by linear interpolation at nontime-grid points, then we have

E

(
sup

0≤t≤T

∣∣X (t) − Y δ (t)
∣∣) < Cδ1/2. (4.198)

The uniform convergence result (4.198) is important for applications in
finance such as the computation of the prices of path-dependent options.

As we do not explicitly consider the multidimensional Milstein scheme, we
only state a theorem which is a special case of a result given in Kloeden and
Platen (1999) on the strong convergence behaviour of the Milstein scheme.

THEOREM 4.70 Strong convergence: Milstein scheme

In addition to the assumptions of Theorems 4.47 and 4.69, let σ(t, x)∂σ(t,x)
∂x

satisfy the conditions on the coefficients of Theorem 4.69. If further we have

a ∈ C1,1, σ ∈ C1,2, (4.199)

then the Milstein scheme converges strongly with a convergence rate of γ = 1.
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Thus, under stronger assumptions on the coefficient functions the Milstein
scheme shows indeed a significantly better performance with respect to the
speed of convergence than the Euler-Maruyama method. To state it in com-
pact form: For the Euler-Maruyama method we have

E
(∣∣X (T ) − Y δ (T )

∣∣) = O
(
δ1/2
)

for δ → 0 (4.200)

while for the Milstein method we have

E
(∣∣X (T ) − Y δ (T )

∣∣) = O (δ) for δ → 0. (4.201)

However, note that if the requirements of differentiability of the coefficients
are not satisfied then the Milstein method might show irregular performance.
Under suitable assumptions, it outperforms the Euler-Maruyama method and
is recommended when pathwise approximations are needed.

Weak convergence and approximation of expectations

For most of our applications in estimating expectations of functionals of an
SDE we do not need its exact paths. Then, we can drop the requirement that
the random numbers in a numerical scheme are connected to the paths of the
underlying SDE, i.e. we no longer require the Fti-measurability of the random
numbers Zi. In such a situation a convergence in the following weak sense is
sufficient for our quantity to estimate on one hand, and is the most we can in
general expect on the other hand.

DEFINITION 4.71
We say that a numerical scheme for the SDE (4.181) or more generally
(4.112) converges weakly on [0, T ] to the solution X of the SDE with respect
to the class of functions H if at the final time T we have

lim
δ→0

∣∣E (g (X (T ))) − E
(
g
(
Y δ (T )

))∣∣ = 0 (4.202)

for all g ∈ H. A weakly convergent scheme with respect to the class H is said
to have convergence rate γ if for some constants C and δ0 > 0 we have

∣∣E (g (X (T ))) − E
(
g
(
Y δ (T )

))∣∣ ≤ C · δγ ∀δ ∈ [0, δ0] ∀g ∈ H. (4.203)

The above notion of weak convergence allows us to consider a much wider
class of numerical schemes than the one corresponding to strong convergence.
As an example, we can introduce a weak Euler scheme by simply replacing
the standard normal random variable Zj in the Euler-Maruyama scheme by

Zj =
{

1
−1 each with a probability of 0.5. (4.204)
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For most of our problems, it is reasonable that the class of test functions H in
the definition of weak convergence contains the polynomials. Of course, the
rate of weak convergence depends on the class of test functionals. Here, we
only state a result for the Euler-Maruyama method, which is a corollary of
Theorem 14.5.1 in Kloeden and Platen (1999).

THEOREM 4.72 Weak convergence: Euler-Maruyama scheme
If we have Lipschitz continuous and polynomially bounded autonomous coeffi-
cient functions a (x) , σ (x) which are in C4

P (i.e. they are four times differen-
tiable and together with their derivatives at most polynomially growing) then
the Euler-Maruyama scheme is weakly convergent with a convergence rate of
γ = 1 with respect to the class H of all polynomials, i.e. we have∣∣E [g (X (T ))] − E

[
g
(
Y δ (T )

)]∣∣ = O (Δt) for δ → 0 (4.205)

for any polynomial g.

REMARK 4.73 1. Surprisingly, we gain an additional order of con-
vergence of 1/2 for the Euler-Maruyama scheme when considering weak con-
vergence. This is not true for the Milstein scheme which also has a weak
convergence order of 1 (see Kloeden and Platen [1999]). Thus, with respect to
weak convergence it will be more efficient to use the Euler-Maruyama scheme
as it is simpler than the Milstein method and obtains the same rate of con-
vergence.

2. The assumptions needed for the validity of the weak convergence theorem
above are quite strong. They can be somewhat relaxed. As this requires
additional technicalities, we refer the reader to Kloeden and Platen (1999).

3. We would also like to point out that the SDEs considered in finance
and insurance mathematics are often of a quite simple form. For simulating
them, more complicated discretization methods do not necessarily yield big
improvements in performance.

4. Consistency and convergence:
We have similar relations between consistency and convergence for numerical
schemes for SDEs as in the case of ODEs. They are again of the form

consistency + regularity assumptions =⇒ convergence

with respect to both weak and strong convergence. As the concept of consis-
tency is more technical than in the ODE setting, we do not introduce it here
(see Kloeden and Platen [1999] for the definition).

4.7.5 More numerical schemes for SDEs

So far, we have just considered two explicit examples of numerical schemes
for solving SDEs. There is however a vast amount of literature on this topic
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that deals with a lot of different approaches and methods. We cannot give a
full survey here, but mention just some aspects.

Strong Taylor approximations

If one performs an Itô-Taylor expansion such as (4.184) to a higher order,
then numerical schemes can be designed that converge strongly with higher
rates of convergence. In principle, every rate can be achieved by using an
Itô-Taylor expansion of appropriate order and using it to construct a corre-
sponding numerical scheme. However, the schemes get very lengthy already
for orders 1.5 and 2. As they all include multiple stochastic integrals, they
are also not easy to evaluate at each time discretization. Usually, the SDEs
considered in finance and insurance mathematics do not require their use.

A particular one-dimensional example that (under some regularity assump-
tions) is of strong convergence order 2 is another scheme due to Milstein (1978)
and described in Algorithm 4.9. It is a direct consequence of an Itô-Taylor ex-
pansion up to order 2 in the case of autonomous coefficients. Its performance
is analyzed in Duffie and Glynn (1995).

Algorithm 4.9 The Milstein order 2 scheme
Let Δt := T/N for a given N . Then solve the SDE (4.181) via:

1. Set YN (0) = X (0) = x0.

2. For j = 0 to N − 1 do

(a) Simulate a standard normally distributed random number Zj .

(b) Set ΔW (jΔt) =
√

ΔtZj and

YN ((j + 1)Δt) = YN (jΔt) + a (YN (jΔt))Δt
+ σ (YN (jΔt))ΔW (jΔt)

+ σ (YN (jΔt)) σ′ (YN (jΔt))
(

1
2
ΔW (jΔt)2 − Δt

)

+ ν (YN (jΔt))ΔtΔW (jΔt) + η (YN (jΔt)) (Δt)2

with

ν (x) =
1
2

(a (x) σ′ (x) + a′ (x) σ (x)) +
1
4
σ2 (x) σ′′ (x) ,

η (x) =
1
2
a (x) a′ (x) +

1
4
a′′ (x) σ2 (x) .



Continuous-Time Stochastic Processes: Continuous Paths 161

Note that this scheme requires many function evaluations per iteration step.
Also, we need the derivatives of a and σ. Using it will of course mainly depend
on the exact form of the SDE under consideration.

Implicit schemes for SDEs

As we already mentioned, for deterministic ODE often implicit schemes
are used due to their numerical stability. As there, an implicit scheme is
characterized by the fact that the right side of the iteration step also depends
on the (yet unknown) new iteration point Y ((j + 1)Δt). In the case of the
fully implicit Euler-Maruyama method we would have

YN ((j + 1)Δt) = YN (jΔt) + a ((j + 1)Δt, YN ((j + 1)Δt))Δt
+ σ ((j + 1)Δt, YN ((j + 1)Δt)) ΔW (jΔt) . (4.206)

One major problem here is that the solution for YN ((j + 1)Δt) might require
a division by an expression containing the Brownian increment ΔW (jΔt).
As, however, this expression might be 0 or very close to 0, one often uses the
term implicit scheme only for such schemes where the Brownian part is of
an explicit form. In the Euler-Maruyama case, this would then be

YN ((j + 1)Δt) = YN (jΔt) + a ((j + 1)Δt, YN ((j + 1)Δt))Δt
+ σ (jΔt, YN (jΔt)) ΔW (jΔt) . (4.207)

Application of such an implicit Euler-Maruyama scheme to the example SDE

dX (t) = −0.5a2X (t) dt+ a

√
1 −X (t)2dW (t) , X (0) = x (4.208)

(with a ∈ R, −1 < x < 1) results in the scheme

YN ((j + 1)Δt) =

2
2 + a2Δt

(
YN (jΔt) + a

√
1 − YN (jΔt)2ΔW (jΔt)

)
. (4.209)

An application of an implicit Milstein scheme is given by Kahl and Jäckel
(2006) for the simulation of the so-called Heston model.

Runge-Kutta type and predictor-corrector methods

Also, these types of methods can be generalized to applying them to SDEs.
This is of particular interest if one wants to avoid working with derivatives
of the coefficient functions. However, as they do not play a big role in the
applications in finance and insurance, we will not present them here but refer
the interested reader to the special literature (see Kloeden and Platen [1999]).
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4.7.6 Efficiency of numerical schemes for SDEs

Although we looked at the convergence and the rate of convergence of the
different numerical schemes for SDEs, this is only one component of the error
we are interested in. If we want to estimate E(g(X)) by the Monte Carlo
method, then indeed we have to consider the difference between the Monte
Carlo estimator and E(g(X)). A popular measure for this difference is the
mean-squared error, MSE, defined by

MSE
(
ḡN
(
Y δ
))

= E
(
ḡN
(
Y δ
)− E (g (X))

)2
(4.210)

with Y δ being the approximating stochastic process generated by a particular
discretization scheme with a (maximum) stepsize of δ and

ḡN
(
Y δ
)

=
1
N

N∑
i=1

g
(
Y δi
)

(4.211)

denoting the usual crude Monte Carlo estimator based on N independent
copies g

(
Y δi
)

of g
(
Y δ
)
. Note that due to the fact that ḡN

(
Y δ
)

is not an
unbiased estimator for g (X) (due to the discretization error), we cannot take
its variance as an indicator for its performance but have to use the MSE
instead. However, we can decompose the MSE via

MSE
(
ḡN
(
Y δ
))

= E
(
ḡN
(
Y δ
)− E (g (X))

)2
= E

(
ḡN
(
Y δ
)− E

(
ḡN
(
Y δ
))

+ E
(
ḡN
(
Y δ
))− E (g (X))

)2
= E

((
ḡN
(
Y δ
)− E

(
ḡN
(
Y δ
)))2)+

(
E
(
ḡN
(
Y δ
))− E (g (X))

)2
= Var

(
ḡN
(
Y δ
))

+ bias
(
ḡN
(
Y δ
))

(4.212)

into the sum of the variance of the crude Monte Carlo estimator plus the bias
caused by the use of a numerical scheme to approximate the stochastic process
X by Y δ. We also see by this decomposition of the MSE that we have two
possibilities to reduce the MSE:

• Reduce the Monte Carlo variance by using a higher number N of sam-
pled paths of the stochastic process.

• Reduce the bias by choosing a smaller stepsize δ.

Note that we are facing a trade-off between these two possibilities. If the
amount of computational time is given, then reducing the bias results in
a smaller stepsize, which on the other hand makes each sample path more
costly. Thus, the smaller bias can only be realized if N is reduced, which then
increases the Monte Carlo variance. Consequently, for a given amount of com-
putational time, the orders of the two errors should coincide to balance out
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this situation, i.e. if we would like to achieve a given accuracy expressed
by an MSE of O(ε2) then we require:

O
(
ε2
)

= O (1/N) +O
(
δ2
)
. (4.213)

We thus need a stepsize of δ = ε and N =
⌈
ε−2
⌉

sample paths. As the
computational work for each sample path is of order O(1/δ), we obtain a total
amount of computational work of O(ε−3), a fact that is often paraphrased as
follows.

COROLLARY 4.74
The computational complexity for estimating E(g(X)) by the crude Monte
Carlo method combined with the Euler-Maruyama scheme equals O(ε−3) for
a required MSE of O(ε2).

In the following sections we will present some methods to obtain a lower
computational complexity by using the same ingredients, the Euler-Maruyama
scheme and the Monte Carlo estimator, in a more sophisticated way.

4.7.7 Weak extrapolation methods

Talay-Tubaro extrapolation

The principle of extrapolation is based on the idea that one is not only
looking at a particular result from a discretization scheme but at the sequence
of those results for different, decreasing stepsizes. Information from previous
schemes with larger stepsizes should also be considered to give an impression
of the improvement of the error as a function of the stepsize. This principle
has been introduced to Monte Carlo methods for estimating expectations of
functions of an SDE by Talay and Tubaro (1990). It is based on the following
expansion result that we state in our terminology.

PROPOSITION 4.75
Let g be a C∞ function, let the coefficient functions of the SDE also be in C∞.
Then, for the approximating process Y δ (t) calculated by the Euler-Maruyama
scheme with stepsize δ, there exists a constant C such that we have

E (g (Y (T ))) − E
(
g
(
Y δ (T )

))
= Cδ +O

(
δ2
)
. (4.214)

The regularity requirements on both the functional g and the coefficient
functions of the SDE can be relaxed. As an example, if in addition to the
assumptions in the proposition above, we assume that the coefficient functions
a, σ of the SDE are bounded and σ is uniformly elliptic, i.e. it satisfies

x′σ(x)σ(x)′x ≥ cx′x ∀x ∈ R
d (4.215)
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for a suitable positive c, then the assertion of Proposition 4.75 stays valid if g
is only a bounded Borel measurable function (see also Bally and Talay [1996]).

A direct consequence of Proposition 4.75 is that the functional

Qδg = E
(
2g
(
Y δ (T )

)− g
(
Y 2δ (T )

))
(4.216)

obtained from an extrapolation of the two estimation functionals with step-
sizes δ and 2δ, respectively, has a weak convergence order of 2 as we have

Qδg = E(g(Y (T )) − E(g(Y 2δ(T ))) − 2(E(g(Y (T )) − E(g(Y δ(T )))). (4.217)

Using the extrapolation functional Qδg thus results in a significantly smaller
bias of O(δ2) for a given stepsize of δ compared to the Euler-Maruyama
scheme. As, further, the computational amount per sample path is compa-
rable to that of the Euler-Maruyama scheme (at most not higher than twice
the amount for generating a sample path of stepsize δ), we obtain a big gain
in efficiency. Actually, one could use independent Brownian motions for cal-
culating the two different approximations. However, it will be more efficient
to use one discretely sampled Brownian motion with stepsize δ to compute a
realization of 2g

(
Y δi (T )

) − g
(
Y 2δ
i (T )

)
in one attempt. This will in general

also reduce the variance of the corresponding Monte Carlo estimator. For
simplicity we choose a stepsize with 2δ = T/K in Algorithm 4.10.

We comment on the numerical performance of the Talay-Tubaro method in
Section 4.7.8.

The statistical Romberg method

The so-called statistical Romberg method is conceptually related to the
Talay-Tubaro extrapolation, but it has been introduced by Kebaier (2005)
with the aim to reduce the computational complexity of the combination
of Monte Carlo methods and numerical discretization schemes to compute
E (g (X (T ))). Here, we consider a d-dimensional SDE and a Lipschitz-con-
tinuous function g : R

d → R that satisfies the usual growth condition. Kebaier
introduced a control variate approach in the following way:

Q = g
(
Y 1/n (T )

)
− g
(
Y 1/m (T )

)
+ E

(
g
(
Y 1/m (T )

))
(4.218)

with m << n. The two functions above are expected to be positively cor-
related which is the basis for a good control variate approach. However, the
expectation on the right-hand side of (4.218) still has to be calculated. The
key observation of Kebaier (2005) is that the variance of Q is decreasing lin-
early in m, i.e. we have

σ2
Q = Var (Q) = O (1/m) . (4.219)

If we further note that we have E (Q) = E(g(Y 1/n(T ))) then we directly obtain

Var
(
Q̄N
)

= O

(
1
mN

)
(4.220)
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Algorithm 4.10 Talay-Tubaro extrapolation
Let δ = T/(2K), N and x be given.
For i = 1 to N

• Set Y δi (0) = Y 2δ
i (0) = x.

• For j = 1 to 2K simulate independent N (0, 1)-random numbers Zi,j .

• Simulate a path with stepsize δ, i.e. for j = 1 to 2K:

Y δi (jδ) = Y δi ((j − 1) δ) + a
(
(j − 1) δ, Y δi ((j − 1) δ)

)
δ

+ σ
(
(j − 1) δ, Y δi ((j − 1) δ)

)√
δZi,j .

• Simulate a path with stepsize 2δ, i.e. for j = 1 to K:

Y 2δ
i (2jδ) = Y 2δ

i (2 (j − 1) δ) + 2a
(
2 (j − 1) δ, Y 2δ

i (2 (j − 1) δ)
)
δ

+ σ
(
2 (j − 1) δ, Y 2δ

i (2 (j − 1) δ)
)√

δ (Zi,2j + Zi,2j−1) .

• Set g̃
(
Ỹi (T )

)
= 2g

(
Y δi (T )

)− g
(
Y 2δ
i (T )

)
.

Calculate the Talay-Tubaro Monte Carlo estimator

ḡN
(
Y δ
)

=
1
N

N∑
i=1

g̃
(
Ỹi (T )

)
.

which indeed is smaller by a factor 1/m compared to the crude Monte Carlo
estimator of E(g(Y 1/n(t))). However, there remain two problems:

• How to compute E
(
g
(
Y 1/m (T )

))
?

• How to choose n and m?

The answer to the first question is that we are going to estimate the expecta-
tion by the crude Monte Carlo approach, i.e. by

ḡNm

((
Y 1/m (T )

))
=

1
Nm

Nm∑
i=1

g
(
Y

1/m
i (T )

)
. (4.221)
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If we have then also chosen Nn, the number of samples related to Q, then we
can introduce the statistical Romberg estimator

Q̄Nn,Nm =
1
Nn

Nn∑
i=1

(
g
(
Y

1/n
i (T )

)
− g
(
Y

1/m
i (T )

))

+ ḡNm

((
Ŷ 1/m (T )

))
. (4.222)

Here, we should emphasize that using Ŷ in the last part of the right-hand side
of the equation means that to estimate E(g(Y 1/m(T ))), we should use new
paths of the SDE that are independent of those used for the first average. The
optimal choices for this approach are given in the following theorem, which is
a special case of Kebaier (2005).

THEOREM 4.76 Complexity of the statistical Romberg method

Let ε = 1/n be the required MSE of the statistical Romberg method (with
n ∈ N). Assume that the function f and the coefficients of the SDE (4.112)
satisfy conditions such that the Euler-Maruyama scheme has a weak conver-
gence order of 1. Then the minimal computational effort to obtain this MSE
by the statistical Romberg method based on the Euler-Maruyama scheme is
achieved for the choices of

m =
√
n, Nm = n2, Nn = n1.5. (4.223)

In particular, we obtain a total computational complexity CSR for this opti-
mally designed statistical Romberg method of

CSR = O
(
ε−2.5

)
. (4.224)

REMARK 4.77 1. At first sight, it seems to be counterintuitive that the
number of sample paths Nm = n2 needed to estimate E(g(Y 1/m(T ))) is higher
than Nn = n1.5, the number of sample paths that is generated to estimate the
expectation on the finer scale n. However, this small Nn is a consequence of
the control variate approach. In total, the effort for simulating E(g(Y 1/m(T )))
equals O(m · Nm) = O(n2.5), which is the same order of effort O(n · Nn) to
estimate E((g(Y 1/m(T )) − g(Y 1/m(T ))). We are thus working with the same
discretization ε = 1/n as in the corresponding crude Monte Carlo method,
but require much fewer of the expensive paths with stepsize ε.

2. The results of Kebaier (2005) are presented in a more general setting
than the one above. We refer the interested reader to this article.

The numerical performance of Algorithm 4.11 is described in Section 4.7.8.
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Algorithm 4.11 The statistical Romberg method
Assume that we are given an accuracy requirement of ε = 1/n (with n = k2

for some k ∈ N).

1. Set m = n0.5, Nm = n2, Nn = n1.5.

2. Simulate Nm paths of the Y -process by the Euler-Maruyama scheme
with stepsize δ = 1/m, and compute ḡNm

((
Ŷ 1/m (T )

))
from it.

3. Simulate Nn further paths of the Y -process by the Euler-Maruyama
scheme with stepsize δ = 1/n, each resulting in g

(
Y

1/n
i (T )

)
. From

those paths of the Y -process use the underlying Brownian motion at
times jT/m, j = 0, 1, ...,m to obtain g

(
Y

1/m
i (T )

)
, i = 1, .., Nn.

4. Calculate the statistical Romberg estimator

Q̄Nn,Nm =
1
Nn

Nn∑
i=1

(
g
(
Y

1/n
i (T )

)
− g
(
Y

1/m
i (T )

))
+ ḡNm

((
Ŷ 1/m (T )

))
.

4.7.8 The multilevel Monte Carlo method

The multilevel Monte Carlo method is a recent development introduced to
finance by Giles (2008) (see Heinrich [2001] for its introduction to paramet-
rical integration) and takes up ideas from multigrid methods for PDE. Its
aim is to reduce the computational complexity of the combined Monte Carlo
and discretization scheme approach when the expectation of a function(al) of
an SDE should be computed. It uses information from a sequence of com-
putations with decreasing stepsizes. By this, as many as possible expensive
samples simulated with the finest grid size should be avoided given a required
order of accuracy. We consider a d-dimensional SDE of the usual form

dX (t) = a (t,X (t)) dt+ σ (t,X (t)) dW (t) (4.225)

and assume that the coefficients satisfy conditions ensuring the existence of
a unique strong solution. Our aim is to compute E(g(X(T ))) by the Monte
Carlo method where g : R

d → R is Lipschitz-continuous. For a decreasing
sequence of stepsizes δi, let Y δi(T ) be approximations of X(T ) generated
by the Euler-Maruyama method. Then, a standard control variate approach
similar to the statistical Romberg method would use the relation

E
(
g
(
Y δL (T )

))
=

E
(
g
(
Y δL (T )

)− g
(
Y δL−1 (T )

))
+ E
(
g
(
Y δL−1 (T )

))
. (4.226)
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As, however, we do not have an analytical expression for the expected value
corresponding to the stepsize δL−1, we can again use a control variate tech-
nique to estimate it. By iterating this we obtain:

E
(
g
(
Y δL (T )

))
=

E
(
g
(
Y δ0 (T )

))
+

L∑
i=1

E
(
g
(
Y δi (T )

)− g
(
Y δi−1 (T )

))
. (4.227)

This relation can be seen as the basis for a multiple control variate ap-
proach to obtain the desired expected value by Monte Carlo simulation. In
line with our analysis of the MSE and the statistical Romberg method note:

• To achieve a required accuracy of O(ε2) we need δL = O(ε).

• The expectations of the above differences should have a small variance.

• The information obtained from larger stepsizes δi should help to save
samples on the δL-level.

The expectations on the right-hand side of Equation (4.227) are all estimated
by crude Monte Carlo estimators

I0 (g) =
1
N0

N0∑
i=1

g
(
Y δ0i (T )

)
, (4.228)

Ij (g) =
1
Nj

Nj∑
i=1

(
g
(
Y
δj

i (T )
)

− g
(
Y
δj−1
i (T )

))
(4.229)

for j = 1, ..., L. Here, it is important to point out that all these L+ 1 Monte
Carlo estimators have to be based on different, independent samples. We then
introduce the multilevel Monte Carlo estimator as

I (g) =
L∑
j=0

Ij (g). (4.230)

Due to the above independence assumption for the paths to obtain the Ij , the
variance of the multilevel estimator is given by

σ2
I = Var (I (g)) =

L∑
j=0

N−1
j σ2

j (4.231)

with σ2
j denoting the variance of g(Y δj

j (T )) − g(Y δj−1
i (T )). As the multilevel

Monte Carlo estimator requires a computational cost of roughly
∑L

j=0Njδ
−1
j ,

simple Lagrangian optimization shows that given a fixed computational cost,
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the variance of the estimator will be minimal when we choose Nj to be pro-

portional to
√
σ2
j δj . Giles (2008) suggests using a stepsize of

δj = M−jT for some integer M ≥ 2 (4.232)

(he actually choosesM = 4). Further, to obtain a desired MSE of O
(
ε2
)

Giles
(2008) proves a so-called complexity theorem. It states, in particular, that
for payoff functionals where the Euler-Maruyama method obtains its usual
weak and strong convergence rates, the multilevel Monte Carlo method has a
computational complexity of O

(
ε−2 (ln (ε))2

)
for the choices of

L =

⌈
ln
(
ε−1
)

ln (M)

⌉
, Nl =

⌈
2ε−2

√
σ2
l δl

(
L∑
i=0

√
σ2
i /δi

)⌉
. (4.233)

There is, however, one drawback of the above explicit formula for Nl, the
number of Monte Carlo paths at level l: the variances σ2

i of the differences
g(Y δj

j (T )) − g(Y δj−1
i (T )) are not known a priori. Thus, one has to include

an estimation loop on each level l to obtain a sufficiently reliable estimator
for σ2

l on which the subsequent calculations are based. Further, to calculate
the Monte Carlo estimator Ij(g), j ≥ 1, one uses the same normal random
numbers to generate the fine and the coarse paths (compare to the Talay-
Tubaro Algorithm 4.10; however, note that we here have to sum up four
normally distributed random numbers to obtain the coarse path).

Algorithm 4.12 Multilevel Monte Carlo simulation
Assume that ε and M are given; L is chosen according to Equation (4.233).

1. Variance estimation loop:
For each l = 0, 1, ..., L simulate Nl = 104 sample paths with stepsize δl
to obtain the usual estimate of σ̂2

l for σ2
l .

2. Define the optimal sample sizes Nl, l = 0, ..., L from Equation (4.233).

3. At each level l = 0, ..., L simulate Nl new, independent sample paths
to obtain the Monte Carlo estimators Ij(g) of Equations (4.228) and
(4.229).

4. Obtain the multilevel Monte Carlo estimator I(g) =
∑L
l=0 Ij(g).

REMARK 4.78 1. Algorithmic refinements: Instead of using an
already fixed L in Algorithm 4.12, Giles (2008) suggests building up the mul-
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tilevel Monte Carlo estimator starting from the coarser levels. Then, by esti-
mating the remaining bias of the estimator, one can decide after each level if
it is already fine enough to be used as the finest stepsize δL. When using such
a method, the required sample sizes Nl at each level are not a priori deter-
mined, as L is not yet fixed. However, the numbers Nl from Equation (4.233)
are increasing in L. We can therefore compute the necessary extra samples
when L is increased in each iteration step below. As a check for convergence,
Giles suggests stopping the iteration with L = l ≥ 2, if we have

max
{
M−1 |Il−1 (g)| , |Il (g)|

}
<

1√
2

(M − 1) ε. (4.234)

With this modification, we restate a new, adaptive version of the multilevel
Monte Carlo method in Algorithm 4.13 below.

2. In Giles (2007) a variant of the multilevel Monte Carlo algorithm based
on the Milstein method for one-dimensional SDEs is given.

Algorithm 4.13 Adaptive multilevel Monte Carlo simulation

1. Start with L = 0.

2. Simulate NL = 104 samples to estimate σ2
L.

3. Define the optimal sample sizes Nl, l = 0, ..., L from Equation (4.233).

4. Evaluate the extra samples at each level l = 0, ..., L as needed for Nl and
update the Monte Carlo estimators from Equations (4.228) and (4.229),
accordingly.

5. If L ≥ 2 then check the convergence condition (4.234). If it is satisfied
then stop.

6. If L < 2 or if the convergence check has failed, set L = L+ 1 and go to
Step 2.

Numerical performance of Talay-Tubaro extrapolation, statistical
Romberg, and multilevel Monte Carlo method

From a complexity point of view, the multilevel Monte Carlo method seems
to be the most promising among the recently introduced ones. We will high-
light this here in comparing the crude method, Talay-Tubaro extrapolation,
statistical Romberg extrapolation, and the multilevel Monte Carlo approach.



Continuous-Time Stochastic Processes: Continuous Paths 171

As a first test example, we take a two-dimensional SDE from Kebaier (2005):

dX (t) = −1
2
X (t) dt− Y (t) dW (t) , (4.235)

dY (t) = −1
2
Y (t) dt+X (t) dW (t) (4.236)

with Z(0) = (X(0), Y (0)) = (cos(θ), sin(θ)) for some θ ∈ [0, 2π]. It can
directly be checked that the unique solution to this equation is given by

Z (t) = (X (t) , Y (t)) = (cos (θ +W (t)) , sin (θ +W (t))) . (4.237)

Our aim will be to estimate the expectation

E

((
‖Z(T )‖2 − 1

))
= 0 (4.238)

with the above four methods and compare their performance. Note in par-
ticular that although Z(t) lives on the unit sphere, the discretized versions
obtained by one of the numerical schemes need not result in simulated paths
on the unit sphere at all.

For the choice of θ = 0, we obtained the following results for different
accuracy requirements given by ε (which is related to the choice of M = 4 in
the multilevel Monte Carlo method and which determines N = 1/ε2):

Method (time) ε = 4−2 CPU ε = 4−5 CPU
Crude MC 0.04 (1) 2 · 10−4 (1)
Talay-Tubaro −0.05 (2.76) 1 · 10−6 (1.82)
Stat. Romberg 0.004 (0.53) 2 · 10−3 (0.27)
Multilevel MC 0.01 (80.29) 9 · 10−4 (4.23)

Table 4.1: Comparison of Extrapolation MC Methods for SDEs (4.235) and
(4.236), Relative CPU Times (CPU), T = 1 (Exact Value = 0)

The results show that the Talay-Tubaro method seems to converge faster,
which indeed it should as it has a higher order of convergence. Also, the
statistical Romberg method is by far the fastest one. This is expected when
compared to the crude Monte Carlo method and to the Talay-Tubaro method.
However, the disappointing performance of the multilevel Monte Carlo method
calls for an explanation. First, it is clear that it is slow for a comparably large
ε, as then the extra runs for estimating the variances on each level l need more
computing time than the actual estimation steps for obtaining the desired
expectation. For ε = 4−5, the performance is comparably better, but still the
method is far away from being comparable. A close analysis shows that the
variance of the estimator on the coarsest level is much smaller than those on
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all other levels. This has the consequence that only very few observations are
used at this level which is in contrast to the idea that one should use more
paths here and save more expensive paths. In this sense, this explains why
there is no saving of CPU time. Such an effect cannot harm the statistical
Romberg method as it has already determined the distribution of the load
between fine and coarse grid paths before the problem is tackled.

For a more detailed analysis of the behaviour of the multilevel Monte Carlo
method in such examples we refer to Imkeller (2009).

To show the potential of the multilevel Monte Carlo method and to under-
line the above comments, we look at the computation of

E

((∫ 1

0

exp (0.2W (t) + 0.03t)dt− 1
)+
)

(4.239)

for a one-dimensional Brownian motion W (.). The corresponding SDE of the
integrand which we denote by S(t) reads as

dS (t) = S (t) (0.05dt+ 0.2dW (t)) , S (0) = 1.

We now use the adaptive variant of the multilevel Monte Carlo method for
M = 4 (the results for M = 2 are comparable but slightly inferior) and
compare its performance to the crude Monte Carlo method. In addition to
the CPU time relative to the crude Monte Carlo method, we also give the
level L on which the multilevel Monte Carlo method terminates in Table 4.2.

Method (time) ε = 0.01 CPU L ε = 0.001 CPU L
Crude MC 0.0608 (1) 0.0605 (1)
Multilevel MC 0.0603 (2.89) 2 0.0604 (0.015) 2

Table 4.2: Comparison of Crude MC and Adaptive Multilevel MC, Relative
CPU Times (CPU) (Exact Value = 0.0606)

Again, for a low accuracy requirement, the crude Monte Carlo method is
slightly faster. The reason is the dominance of the preestimation procedure
for the variance on the different levels in the multilevel method. However,
this time, there is an impressive improvement in efficiency by a factor of more
than 60 on the higher accuracy level by the multilevel method. And on top
of that, it needed the same time on the level of ε = 0.0001 as the crude
method for ε = 0.001. While in the two examples above, a level of L = 2 was
sufficient, for this very small ε a level of L = 3 was necessary. As a conclusion,
the multilevel Monte Carlo method has an enormous potential to reduce the
computational complexity, at least when the variance of the estimators on the
coarse level are not too small compared to the ones on the finer levels.
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4.8 Which simulation methods for SDE should be
chosen?

As in Section 3.4.2, it is now a natural question to ask which of the different
simulation and discretization methods should be used. Although there is no
universally valid recommendation, a rule of thumb is that whenever an exact
simulation is possible (i.e. the [conditonal] distribution of the increments of
the solution to the SDE under study are known) then one should use the
exact simulation. Of course, if the required distribution cannot be generated
in a convenient way or is not known in closed form, then one has to rely on
numerical schemes for discretizing the SDE.

If in this case the coefficient functions of the SDE are smooth enough to
apply a high order method such as the Milstein second order one, then it is
recommended to use it. However, in our applications in finance we will often
encounter situations where the coefficient functions of the SDE do not satisfy
the assumptions that ensure the successful application of even the Milstein
first order scheme. In such a situation the simple Euler-Maruyama method
is a robust alternative. This is in particular true when one is not interested
in the approximation of the solution paths of the SDE. Then, only weak
convergence is what we are looking for. Here, the Euler-Maruyama and the
Milstein scheme (of first order) have the same order of convergence and there
is no need to use the more complicated Milstein scheme.

If many paths of the underlying SDE are needed to obtain our MC esti-
mator (such as e.g. when high accuracy is required) then it is advisable to
use variance reduction methods such as the statistical Romberg method or
the multilevel Monte Carlo method. While the first one is conceptually much
simpler, the second one yields better performance with respect to variance
reduction. However, the statistical Romberg method is also more robust than
the multilevel method. The application of the multilevel method requires a
careful analysis of the problem to be dealt with if a bad performance, as in
the first numerical example of Section 4.7.8, should be avoided. Further, if
one has to perform a second simulation on a finer grid if one is not satisfied
with the performance of the actually done Monte Carlo estimation, then us-
ing the Talay-Tubaro estimator is a very convenient way to reuse the already
obtained results and at the same time increase the order of convergence.

More aspects of various algorithms, computational examples, or conver-
gence considerations can be found in Kloeden and Platen (1999).





Chapter 5

Simulating Financial Models:
Continuous Paths

5.1 Introduction

Modern financial mathematics is definitely among the most popular sub-
jects of applied mathematics today from both the academic and the industry
point of view. The attractivity of the research problems and methods paired
with enormous interest by students resulted in the creation of many master
programmes in financial mathematics including new chairs in this area. The
increasing complexity of derivatives traded at stock exchanges, the big de-
mand for sophisticated products, and the exact valuation methods required
by the banks, insurance companies, and investors at the financial markets
created a huge demand for mathematical methods and models that had not
been encountered before in this area.

Financial mathematics is mainly concerned with

• Modelling of the evolution of financial processes such as stock prices,
interest rates, inflation, exchange rates, or commodity prices.

• Pricing derivatives on basic underlyings such as stock prices, interest
rates, or commodities.

• Portfolio optimization, i.e. the search for optimal investment strategies.

• Risk measurement and management.

Many research papers have been written on the various subjects of financial
mathematics during recent decades. Its acceptance in both theory and prac-
tise is underlined by the Nobel prizes awarded to H. Markowitz in 1990, to
R. Merton and M. Scholes in 1997, and to R. Engle and C. Granger in 2003.
Various current monographs on the topics of financial mathematics exist. Just
to mention a few, we cite Björk (2004), Bingham and Kiesel (1998), Duffie
(2001), Karatzas and Shreve (1998), and Korn and Korn (2001).

In this chapter, we will present the main ideas of stock price modelling,
option pricing, and interest rate modelling together with applications of Monte
Carlo methods. We restrict ourselves to the case where the underlying driving
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uncertainty is modelled by a (multidimensional) Brownian motion. In many
situations, this makes the analysis of the corresponding problems tractable.
However, there are also arguments for considering models for stock prices or
interest rates that allow for noncontinuous changes, so-called jumps. We will
devote Chapter 7 to these models.

5.2 Basics of stock price modelling

In this section, we will explain the basics of stock price modelling. We con-
centrate on continuous-time stock price models admitting continuous paths,
i.e. the stock prices as a function of time have no jumps.

When we look at the evolution of a stock price or of a stock price index
over time we recognize certain remarkable features. Among them are:

• Stock prices do not change in a smooth way over time.

• Locally, (seemingly) random fluctuations dominate a clear tendency.

• The evolution looks similar over various parts of the time interval but
has no cycle or seasonality.

This also has implications for the modelling of stock prices. Indeed, if we insist
on a stock price model with continuous paths by economical (!) reasoning, the
stock price path should be nowhere differentiable as a function of time. If –
in contrast – the path would be differentiable at some point, then it would be
possible to predict with certainty that the stock price increases or decreases
(depending on the sign of the derivative) in the next time instant. Thus, one
could predict for sure whether an investment would lead to a gain or to a loss
over a short time horizon. Consequently, no one would buy the sure losers
and no one would sell the sure winners. Hence, we need a model where the
stock price path has no point of differentiability. An obvious ingredient for
such a model is the Brownian motion W (t) as introduced in the last chapter.

In fact, an (incomplete) history of stock price modelling starts with the
PhD thesis of Bachelier (1900), Théorie de la Spéculation. Ahead of his
time, he modelled stock prices as a Brownian motion with drift (although
at this time the technical term Brownian motion had not yet been coined)
via deducing a Fokker-Planck equation for their transition density. The fact
that a Brownian motion with drift can attain negative values was a clear
argument against this model. Further, the evolution of a stock price should
be multiplicative and not additive as its returns should be proportional to the
current value. Therefore, in the 1960s, Samuelson (1965) came up with the
introduction of the geometric Brownian motion as an appropriate stock
price model. Here, the problems of the Bachelier model were overcome by
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simply taking its exponential. The main breakthrough of this model came in
the 1970s when the famous Black-Scholes formulae for the price of European
call options and put options were developed by Black and Scholes (1973) and
by Merton (1973).

During the 1980s the imperfections of the geometric Brownian motion model
became clear. This was not only due to extreme events such as the 1987 crash
but also due to the characteristics of the prices observed at the option mar-
kets. To explain these prices in a better way, various new classes of stock price
models entered the scene in the 1990s. The two main streams were the class of
local volatility models (see e.g. Dupire [1997]) and the class of stochastic
volatility models (see e.g. Heston [1993]). Both approaches were devel-
oped with the aim to explain the nonuniformity in the intensity of the price
fluctuations (also known as volatility clustering). During the last decade,
models based on Lévy processes have been a popular subject in academia (we
will refer to this in detail in Chapter 7). The increasing complexity of traded
options (such as highly path-dependent options or options on realized stock
price volatility) led practitioners to develop generalizations of the local and
stochastic volatility models (see e.g. Bergomi [2005]).

As for many problems in finance (such as option pricing or risk manage-
ment) no explicit analytical solution formulae exist, the use of suitable Monte
Carlo methods is often the easy and obvious choice. Therefore, we will explain
the different stock price models and the way to simulate them below.

5.3 A Black-Scholes type stock price framework

The model framework we will present in this section is a slight generalization
of the famous Black-Scholes model. We will call it the linear model. We
assume that the dynamics of the prices of n different stocks are given by the
following n-dimensional stochastic differential equation (SDE):

dSi (t) = μi (t)Si (t) dt+
n∑
j=1

σi,j (t)Si (t) dWj (t) , Si (0) = si (5.1)

for i = 1, ..., n with {(W (t), Ft), t ∈ [0, T ]} an n-dimensional Brownian motion.
Here, the market coefficients μ (the drift) and σ (the volatility matrix)
are assumed to be Ft-progressively measurable, bounded processes. We also
assume that the matrix σ is uniformly positive definite, i.e. we have

x′σ (t, ω)σ (t, ω)′ x ≥ c · x′x ∀ (t, ω) ∈ [0, T ] × Ω (5.2)
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for some positive constant c. As a linear SDE, the stock price equation has
the unique solution Si (t) given by

Si (t) =

si exp

⎛
⎝∫ t

0

⎛
⎝μi (s) − 1

2

n∑
j=1

σ2
i,j (s)

⎞
⎠ ds+

n∑
j=1

∫ t

0

σi,j (s) dWj (s)

⎞
⎠ . (5.3)

In addition to the risky investment in stocks, there is the possibility of a
riskless investment in a bond (or better: a bank account). Its evolution over
time is governed by the equation

dB (t) = r (t)B (t) dt, B (0) = 1 (5.4)

which has the unique solution

B (t) = exp
(∫ t

0

r (s) ds
)
. (5.5)

Here, the interest rate process r (t) is assumed to be bounded and progressively
measurable with respect to the filtration Ft.

With this first stock price model, we will introduce the investors (or traders)
into our market by specifying their actions and behaviour. The possible ac-
tions of an investor are:

1. Rebalancing of his holdings, i.e. he can sell securities and invest the
money in other securities. This action will be modelled by the portfolio
process or by the trading strategy.

2. Consuming parts of his wealth which will be incorporated in our setting
via the consumption process.

Further, an investor should not have insider information. In particular, he
is not allowed to have knowledge of future prices. We consider only price
takers (so-called small investors) which are characterized by the fact that
their actions do not influence the stock price behaviour. Our investors are
endowed with an initial wealth and then have to act in a self-financing way.
Hence, their wealth only changes due to gains/losses from trading and due to
consumption. We ignore that stocks are not perfectly divisible and that there
are transaction costs. Also, we assume that our investors can hold negative
positions in bond and stocks. The possibility for a negative bond position
implies that we assume the same interest rate for borrowing and lending. We
formalize these standard assumptions in the following definition.

DEFINITION 5.1
Let {W (t) , Ft}t∈[0,T ] be an n-dimensional Brownian motion. Assume that we
are in a market where stocks and a bond are traded with price dynamics given
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by Equations (5.1) and (5.4).
(a) A trading strategy ϕ is an R

n+1-valued progressively measurable process

ϕ (t) := (ϕ0 (t) , ϕ1 (t) , ..., ϕn (t))′ (5.6)

such that the integrals

∫ T

0

ϕ0 (t) dB (t) ,
∫ T

0

ϕi (t) dSi (t) , i = 1, ..., n (5.7)

are all defined and finite. The value x := ϕ0 (0) +
∑n
i=1 ϕi (0) si is called

initial value of ϕ or initial wealth of the investor.
(b) Let ϕ be a trading strategy with initial value x > 0. The process

X (t) := ϕ0 (t)B (t) +
n∑
i=1

ϕi (t)Si (t) (5.8)

is called the wealth process corresponding to ϕ with initial wealth x.
(c) A nonnegative progressively measurable process c(t) with

∫ T

0

c (t) dt < ∞ P-a.s. (5.9)

is called a consumption rate process (for short: consumption process).
(d) A pair (ϕ, c) consisting of a trading strategy ϕ and a consumption rate
process c is called self-financing if the corresponding wealth process X(t),
t ∈ [0, T ] satisfies P-a.s.

X (t) = x+
∫ t

0

ϕ0 (s) dB (s) +
n∑
i=1

∫ t

0

ϕi (s) dSi (s) −
∫ t

0

c (s) ds. (5.10)

(e) Let (ϕ, c) be a self-financing pair consisting of a trading strategy and a
consumption process with corresponding wealth process X(t) > 0 P-a.s. for all
t ∈ [0, T ]. Then the R

n-valued process

π (t) := (π1 (t) , ..., πn (t))′ , t ∈ [0, T ] with πi (t) =
ϕi (t) · Si (t)

X (t)
(5.11)

is called a self-financing portfolio process corresponding to (ϕ, c).

REMARK 5.2 1. The portfolio process denotes the fractions of total
wealth invested in the different stocks. Therefore, the fraction of wealth in-
vested in the bond is given by

(
1 − π (t)′ 1

)
=
ϕ0 (t) · B (t)

X (t)
where 1 := (1, ..., 1)′ ∈ R

n. (5.12)
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2. Knowing the wealth X(t) and prices Si(t), the description of the trad-
ing/consumption activities of an investor by a self-financing pair (π, c) is
equivalent to the use of the pair (ϕ, c). We will always use the alternative
(portfolio process or trading strategy) which is more convenient.

3. The requirement that the integrals in Equation (5.7) are defined and
finite simply is a technical condition that ensures that the changes in wealth
from gains/losses of investment are defined. The requirements are in par-
ticular satisfied under our assumptions on the market coefficients if we have
P-a.s. ∫ T

0

|ϕ0 (t)| dt < ∞, (5.13)

n∑
j=1

∫ T

0

(ϕi (t) · Si (t))2 dt < ∞ for i = 1, ..., n. (5.14)

DEFINITION 5.3
A self-financing pair (ϕ, c) or (π, c) consisting of a trading strategy ϕ or a
portfolio process π and a consumption process c will be called admissible for
the initial wealth x > 0, if the corresponding wealth process satisfies

X(t) ≥ 0 P a.s. ∀t ∈ [0, T ]. (5.15)

The set of admissible pairs (π, c) with initial wealth x will be denoted by A(x).

5.3.1 An important special case: The Black-Scholes model

In the Black-Scholes model the market coefficients μi, σij are assumed to
be constant, which leads to bond and stock prices of the form:

B (t) = exp (rt) , (5.16)

Si (t) = si exp

⎛
⎝
⎛
⎝μi − 1

2

n∑
j=1

σ2
i,j

⎞
⎠ t+

n∑
j=1

σi,jWj (t)

⎞
⎠ . (5.17)

Here, we can further determine

E (Si (t)) = si exp (μit) , (5.18)

Var (Si (t)) = si
2 exp (2μit))

(
exp
(∑n

j=1 σ
2
ijt
)

− 1
)
, (5.19)

Cov (ln (Si (t)) , ln (Sj (t))) =
∑n
k=1 σikσjkt. (5.20)

Due to the explicit form of the stock price as a function of time and the
Brownian motion, f(t,W (t)), the simulation of the stock price S(t) or of a
component Si(t) in the Black-Scholes model causes no problems at all:
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• If we only need the value of S (t) at a particular time t then it is enough
to simulate N (0, t · I)-distributed random variables, obtain W (t) from
it, and evaluate f(t,W (t)).

• If the whole path of S (t) is needed then simulate a path of the Brownian
motion W (t) and obtain S (t) from it.

Formally, we have the simple Algorithm 5.1.

Algorithm 5.1 Simulating a stock price path in the Black-Scholes model
Let 0 = t0 < t1 < ... < tk = T be a partition of [0, T ], let S(0) be given.

1. Set aj = μj − 0, 5
∑n
i=1 σ

2
ji.

2. For j = 1 to k do

(a) δ = tj − tj−1.

(b) Simulate Z ∼ N (0, δ · I).
(c) For i = 1 to n do Si (tj) = Si (tj−1) · exp (ajδ +

∑n
m=1 σimZm).

3. Interpolate linearly in between the points of the partition.

We return to the linear model and derive a simple SDE for the wealth
process. It is based on switching from the trading strategy to the portfolio
process. For this, let (ϕ, c) be a self-financing pair consisting of a trading
strategy and a consumption process. We then obtain

dX (t) = ϕ0 (t) dB (t) +
n∑
i=1

ϕi (t) dSi (t) − c (t) dt

= ϕ0 (t)B (t) r (t) dt+
n∑
i=1

ϕi (t)Si (t)

(
μi (t) dt+

m∑
j=1

σij (t) dWj (t)

)
− c (t) dt

=
(
1 − π (t)′ 1

)
X (t) r (t) dt

+
n∑
i=1

X (t)πi (t)

(
μi (t) dt+

m∑
j=1

σij (t) dWj (t)

)
− c (t) dt

=
(
1 − π (t)′ 1

)
X (t) r (t) dt

+X (t)
(
π (t)′ μ (t) dt+ π (t)′ σ (t) dW (t)

)− c (t) dt. (5.21)

As this is again a linear SDE, the variation of constants formula ensures that
it admits a unique solution given some suitable integrability requirements for
π(t). As μ, r, σ are uniformly bounded and as the consumption process c is
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assumed to be integrable, we only have to require

∫ T

0

π2
i (t) dt < ∞ P-a.s. for i = 1, ..., n (5.22)

to ensure uniqueness and existence of the wealth Equation (5.21). This allows
a definition of the portfolio process without referring to a trading strategy.

DEFINITION 5.4

The progressively measurable R
n-valued process π(t) is called a self-financing

portfolio process for the consumption process c(t) if the wealth Equation
(5.21) has a unique solution X(t) = Xπ,c(t) with

∫ T

0

(X (t) · πi (t))2 dt < ∞ P-a.s. for i = 1, ..., d. (5.23)

Note that the integrability condition (5.23) on the portfolio process and the
wealth process is indeed exactly the integrability condition (5.7) on the trad-
ing strategy. Further, note that if the portfolio process satisfies the condition
(5.22) then continuity of the corresponding wealth process yields that condi-
tion (5.23) is satisfied, too. Thus, condition (5.23) is weaker than condition
(5.22). In particular, if there is no consumption then condition (5.22) implies
strict positivity of the wealth process (simply look at the explicit form of the
solution of Equation (5.21) under assumption (5.22)). However, the weaker
condition (5.23) allows for portfolio processes that can lead to the ruin of the
investor (i.e. for X(t) = 0 for some t ∈ [0, T ] or even negative values of X(t)).
This will be a typical situation in the replication approach to option pricing.

Constant portfolio process and proportional consumption

A simple but practically relevant example of a self-financing pair (π, c) ∈
A (x) is that of a constant portfolio process and a consumption rate that is
proportional to the current wealth, i.e.

π (t) ≡ π ∈ R
n constant, c (t) = γ ·X (t) , (5.24)

for some γ > 0 and X(t) the wealth process corresponding to (π, c). Hence,
the investor rebalances his holdings in such a way that the fractions of wealth
invested in the different stocks and in the bond remain constant over time.
Further, the velocity of the increase in consumption (“the consumption rate”)
is always proportional to the current wealth of the investor. The wealth
equation corresponding to this example has the form

dX (t) = X (t) ((r (t) − γ) dt+ π′ ((μ (t) − r (t) 1) dt+ σ (t) dW (t))) (5.25)
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resulting in

X(t) = x · exp

⎛
⎝

t∫
0

[
r(s) − γ + π′ (μ(s) − r(s) · 1) − 1

2 ‖π′σ (s)‖2
]
ds

+

t∫
0

π′σ(s) dW (s)
)
. (5.26)

In particular, X(t) is always strictly positive, and we have (π, c) ∈ A(x).

5.3.2 Completeness of the market model

We close this section on the linear market by stating the Theorem on
Complete Markets. For this, we need some abbreviations:

γ (t) := exp
(
−

t∫
0

r (s) ds
)
, θ (t) := σ−1 (t) (b (t) − r (t) 1) , (5.27)

Z (t) := exp
(
−

t∫
0

θ (s)′ dW (s) − 1
2

t∫
0

‖θ (s)‖2
ds

)
, (5.28)

H (t) := γ (t) · Z (t) . (5.29)

θ(t) can be interpreted as a kind of relative risk premium for stock investment.
The process H(t) will play a crucial role in connection with option pricing.
Note that H(t) is positive, continuous, and progressively measurable. Further,
it is the unique solution of the SDE

dH (t) = −H (t)
(
r (t) dt+ θ (t)′ dW (t)

)
, H(0) = 1. (5.30)

THEOREM 5.5 Completeness of the market
Assume that we are in the linear market model of this section.
(a) Let (π, c) ∈ A(x). Then the corresponding wealth process X(t) satisfies

E

⎛
⎝H (t)X (t) +

t∫
0

H (s) c (s) ds

⎞
⎠ ≤ x ∀t ∈ [0, T ]. (5.31)

(b) Let B ≥ 0 be an FT -measurable random variable and c(t), t ∈ [0, T ] a
consumption process satisfying

x := E

⎛
⎝H (T )B +

T∫
0

H (s) c (s) ds

⎞
⎠ < ∞. (5.32)

Then, there exists a portfolio process π(t), t ∈ [0, T ], with (π, c) ∈ A(x) and
the corresponding wealth process X(t) satisfies

X(T ) = B P-a.s.. (5.33)
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REMARK 5.6 1. In view of Part (a) of the theorem the process H(t)
can be regarded as the appropriate discounting process that determines the
initial wealth at time t = 0,

E

⎛
⎝

T∫
0

H (s) c (s) ds+H (T )B

⎞
⎠ ,

which is necessary to be able to attain future aims (such as living according
to a given consumption process or obtaining a wealth of B at time t = T ).
Thus, Part (a) puts bounds on the desires of an investor given his initial
capital x ≥ 0. Part (b) proves that future aims which are feasible in the
sense of Part (a) can indeed be realized. It thus says that each desired final
wealth B in t = T can be exactly attained via trading according to an
appropriate self-financing pair (π, c) if one possesses sufficient initial capital.
This, however, is exactly what we will call a complete market.

2. The main tool to derive the above theorem is the so-called Martingale
Representation theorem of Chapter 4 (see Korn and Korn [2001] for a proof).

3. By the Complete Markets Theorem we will obtain an explicit solution of
the option pricing problem in the linear market setting (see Section 5.5.2).

5.4 Basic facts of options

The star area of modern continuous-time finance is indeed that of option
pricing. It contains the most famous result of financial mathematics, the
Black-Scholes formula for pricing European put and call options. The impor-
tance of this formula for theory and practical applications is underlined by
the Nobel Prize for Economics awarded to Robert Merton and Myron Scholes
in 1997 to honour their contributions to option pricing. Fischer Black had
passed away two years before and therefore did not receive Nobel prize fame.

What are options?

Options are derivative securities, i.e. securities which are derived from
underlying assets. They have been traded for centuries, but finally gained
economic importance in the last century. This was mainly due to the start
of organized option trading with the opening of the Chicago Board Options
Exchange in 1973. Simple examples of options are call and put options.

A call option (call) is a contract that gives its holder the right (but not
the obligation!) to buy a certain fixed amount of an asset during a specified
future time period for an already agreed price, the strike price or exercise
price, from the seller or writer of the option. Its counterpart is a put option
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(put). Here, the holder has the right to sell a fixed amount of an asset to the
writer of the put for the strike price. One distinguishes between so-called
American options and European options. The holder of an American
option is free to sell or to buy the asset during the whole time span of the
contract, in contrast to a European option where the holder can only exercise
his option at the end of the lifetime of the option, the so-called expiry or
maturity.

Today, options are a trademark of modern financial markets, and they are
a kind of all-purpose securities. There exist options on equities, bonds, goods
such as oil, energy, weather, metals, corn, pork bellies, currencies, or even on
options (just to mention a few). They are traded in enormous volumes on
stock exchanges all over the world. Also, their explicit contractual form can
be very different from the above plain vanilla puts and calls. We will present
many examples of these exotic options below. We first give a formalization
of European calls and puts:

The European call and the European put as basic examples

A European call on one share of a stock gives its holder the right to buy this
share at time t = T for the strike price K ≥ 0 which was fixed at time t = 0.
Hence, if the final share price S1(T ) exceeds K, the holder of the option buys
the share for a price of K and can then sell it immediately at the market for
the price of S1(T ). This leads to a gain of S1(T ) − K (ignoring transaction
costs). In the case of S1(T ) < K, the holder does not make use of his right to
buy the share for a price K. Thus, in this case, there is no gain from holding
the option. Combining the two cases leads to a final payment of

(S1 (T ) −K)+ in t = T . (5.34)

The holder of a European put has the right to sell one share at time t = T
for the price K > 0. Hence, similar as in the case of a European call, one can
show that the possession of the European put leads to a payment of

(K − S1 (T ))+ in t = T . (5.35)

Practitioners often think of options in terms of their payoff diagrams. The
payoff diagram of an option is the graph of the final gain through this option
as a function of the underlying stock price S1(T ). This of course requires that
the final payment is a function of S1(T ). Figure 5.1 shows the payoff diagram
for the European call and the European put.

An easy way to generate new types of options is to combine these two types
of payoff diagrams to obtain different types of payoff profiles. This is very
popular among traders. Mathematically, it corresponds to holding a certain
combination of puts and calls.
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FIGURE 5.1: Payoffs of a call option (left) and of a put option (right).

A short history of option trading

At the beginning of the 17th century, the first use of option type contracts
took place in the Netherlands. During the so-called tulip mania, some kind
of put options were bought by tulip growers to insure themselves against high
price fluctuations. However, when in 1637 the Dutch tulip market crashed, the
option sellers were not able to keep their part of the agreements. This resulted
in a serious economic crisis in the Netherlands. To guarantee the safety of both
the writer and the seller in option contracts, it needs an institution that acts
as an intermediate that steps in if one of the two sides defaults. Organized
trading of options started in London in the 18th century. Still, due to the
absence of strict laws for option trading, irregularities frequently occurred.
This ended when in 1930, option trading received a legal framework. In the
beginning of the 1970s of the 20th century, trading in options started gaining
the economic importance it has today. With the opening of the Chicago Board
Options Exchange in 1973 as a starting point, organized option trading spread
all over the world. Nowadays, options are ubiquitous in financial markets.

Reasons for trading options

The trading of options is mainly justified by two reasons, protection and
speculation. An easy application is the protection of a stock position. An
investor that holds one share of a certain stock and wants to ensure that the
value of this position at time T will not fall below a specified value K simply
buys a European put on this stock with maturity T and strike K. The value
of the portfolio made up of the share and the put at time T then equals

S (T ) + (K − S (T ))+ ≥ K. (5.36)

Of course, the investor has to pay a certain price for the put option to obtain
this protection. Further examples to insure oneself against unfavourable price
evolutions can be easily constructed.

Options are also traded by speculators who hope for an overproportional
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increase of the option value compared to the price of the underlying asset. For
example, it is obvious that the price of an option increases by less than one
Euro if the price of the underlying stock increases by one Euro. However, the
relative price increase of the option will typically be higher than that of the
stock in this case. This is the so-called leverage effect. Further, options are
much cheaper and more liquid than the underlying asset itself which is again
very attractive for speculators. On the other hand, speculation with options
can lead to a total loss as options only have a finite lifetime, and a zero-payoff
is a natural event in options such as calls or puts.

5.5 An introduction to option pricing

5.5.1 A short history of option pricing

The modern theory of option pricing started with the dissertation Théorie
de la Spéculation of L. F. Bachelier (see Bachelier [1900]). There, with
stock prices modelled as a Brownian motion with drift, he wanted to derive
theoretical prices for options on these stocks to compare them with the ac-
tual market prices. He suggested using the expected value of the discounted
corresponding option payments as the option price. However, it is one of the
most spectacular results of modern option pricing theory that this suggestion
does in general not (!) yield a reasonable option price!

The decisive breakthrough of option pricing in its modern form was obtained
by Fischer Black and Myron Scholes in Black and Scholes (1973). They de-
rived a partial differential equation for the option price and solved it. At the
same time, Robert Merton obtained a generalization of the results of Black
and Scholes in Merton (1973). The perhaps most elegant approach to option
pricing is the so-called replication approach which is based on pure arbi-
trage considerations in a complete market setting. It simply states that two
financial assets should have the same price if their future payments coincide
in all states of the world. This approach, which is a direct application of
martingale theory, started with the work of Harrison and Pliska (1981). This
will be described in the next section.

5.5.2 Option pricing via the replication principle

Motivation: Option pricing in the one-period binomial model
We introduce the main idea of the replication approach in a one-period bino-
mial model. There, the market consists of a bond and a stock with trading
dates 0 and T . The bond price process is given by B(0) = 1, B(T ) = exp (rT ).
The stock price starts with an initial value of S(0) and can attain two possible
values, dS(0) or uS(0) with d < u. The probability for S(T ) = uS(0) is as-
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sumed to equal p ∈ (0, 1). Note further that we must have

d < exp (rT ) < u (5.37)

to avoid possibilities for riskless gains without the need for investing initial
capital, so-called arbitrage opportunities. To see this, assume first that we
have d ≥ exp(rT ). Then by borrowing money and investing it in the stock,
we always receive at least the amount of money at the terminal time T to pay
back the credit. However, in the case of S(T ) = uS(0), we even have money
left after paying back our initial credit. Hence, everyone would enter such an
investment. Therefore, the market would increase the initial stock price until
this possibility disappears. With a similar argument, we can show that the
relation exp(rT ) ≥ u cannot be satisfied.

We now consider a call option with strike K = 100 and maturity T = 1 in
the binomial model. Further, we choose u = 1.2, d = 0.95, and r = 0. This
results in the payment streams given in Figure 5.2.

100

(S(T )−K)+S(T )S(0 )

120

95

p 20

1-p 0

FIGURE 5.2: Payment streams for stock and call in the binomial model.

Bachelier’s suggestion to use the net present value

E

(
exp (−rT ) (S1 (T ) −K)+

)
(5.38)

as the option price would lead to a price of the above call of

E

(
(S1 (T ) −K)+

)
= (20) · p+ 0 · (1 − p) = 20 · p. (5.39)

As expected, this suggested price depends heavily on the probability of suc-
cess, p. However, two different traders would in general not agree on the
actual value of p. It is thus a nice feature of the replication approach to op-
tion pricing that p is not needed for calculating the option price at all. The
main reason for this is that the final payment of the option can be obtained
by following a suitable self-financing trading strategy in stock and bond. This
principle of synthetically constructing the option is called the replication
principle. For this we have to determine (ϕ0(0), ϕ1(0)) such that we obtain

X (T ) = ϕ0 (0)B (T ) + ϕ1 (0)S (T ) = (S (T ) −K)+ . (5.40)
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Then, we define the option price Ĉ of the call as the initial capital needed in
t = 0 to buy the replication strategy (ϕ0(0), ϕ1(0)),

Ĉ = ϕ0 (0)B (0) + ϕ1 (0)S (0) . (5.41)

This is the only reasonable price for the option. To see this, assume first that
the option price C̃ would be smaller than Ĉ. Then we could buy the option for
C̃ and sell (ϕ0(0), ϕ1(0)) for Ĉ (i.e. we hold the position (−ϕ0(0),−ϕ1(0)).
At time t = T the payments obtained from the option and from holding
the position (−ϕ0(0),−ϕ1(0)) neutralize each other. Hence, we would have
realized a gain of Ĉ− C̃ in t = 0 without the use of our own capital. In case of
C̃ > Ĉ we would sell the call and hold the position (ϕ0(0), ϕ1(0)) which only
costs Ĉ. Again, we would realize a riskless gain without the need for investing
initial capital. Thus, in both cases there exist arbitrage opportunities.

As an arbitrage opportunity would be realized by all market participants,
it would lead to immediate price adjustments wiping out the arbitrage oppor-
tunity. Hence, it is reasonable to assume the absence of arbitrage.

In our example requirement (5.40) yields the system of equations

ϕ0 (0) · 1 + ϕ1 (0) · 120 = 20 (5.42)
ϕ0 (0) · 1 + ϕ1 (0) · 95 = 0 (5.43)

with the unique solution

(ϕ0 (0) , ϕ1 (0)) =
(−76, 4

5

)
, (5.44)

leading to an option price of

Ĉ = −76 · 1 + 4
5 · 100 = 4. (5.45)

This price is independent of the unknown probability p. Note further that the
above calculated call price coincides with the expected value of the discounted
terminal payment of the call if and only if we have p = 1/5. In this case, S1(t)
is a martingale. This is no coincidence as we will see in Section 5.5.2.

Option pricing in the linear diffusion market model

We take up the idea of finding the option price in a complete market by
replication in the linear market model. Before we can do so, we introduce the
mathematical definition of an option, or more generally, a contingent claim,
and the notion of an arbitrage opportunity.

DEFINITION 5.7

A self-financing and admissible pair (ϕ, c), consisting of a trading strategy
ϕ and a consumption process c, is called an arbitrage opportunity if the
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corresponding wealth process satisfies:

X (0) = 0 , X (T ) ≥ 0 P-a.s., (5.46)

P (X (T ) > 0) > 0 or P

(∫ T
0
c (t) dt > 0

)
> 0. (5.47)

Thus an arbitrage possibility possibly generates money out of nothing, but
never leads to a negative payment. One can show that the linear market model
is free of arbitrage opportunities (see Korn and Korn [2001]). We introduce a
contingent claim as a generalization of an option.

DEFINITION 5.8
A (European) contingent claim (g,B) consists of an {Ft}t-progressively
measurable payout rate process g(t), t ∈ [0, T ] g(t) ≥ 0, and an Ft-measurable
terminal payment B ≥ 0 at time t = T with

E

((∫ T

0

g (t) dt+B

)μ)
< ∞ for some μ > 1. (5.48)

REMARK 5.9 1. Note that in addition to a general final payment B,
we have also introduced a payment process which can be used as a model for
a continuous dividend flow, a so-called dividend yield. As a slight misuse, we
shall often use the name option as a synonym for contingent claim.

2. A European contingent claim only generalizes European options as the
payment time is fixed. American type options will be treated separately.

To introduce the replication approach, we define a replication strategy and
the notion of the fair price.

DEFINITION 5.10
(a) (π, c) ∈ A (x) is called a replication strategy for the contingent claim
(g,B) if we have

g (t) = c (t) P-a.s.∀t ∈ [0, T ] , X (T ) = B P-a.s. (5.49)

where X(t) is the wealth process corresponding to (π, c).
(b) The set of replication strategies of price x is defined by

D (x) := D (x; (g,B)) := {(π, c) ∈ A (x) |
(π, c) replication strategy for (g,B)} (5.50)

(c) The fair price p̂g,B of the contingent claim (g,B) is defined as

p̂g,B := inf {p | D (p) �= ∅} . (5.51)
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The existence of a replication strategy is ensured by the Theorem on Com-
plete Markets. Its second part also suggests a candidate for the fair price,

x̃ = E

(
H (t)B +

∫ T

0

H (t) g (t) dt

)
. (5.52)

Indeed, one can show (see Korn and Korn [2001]) the following.

THEOREM 5.11 Fair price of a contingent claim
The fair price of the contingent claim (g,B) is given by

p̂g,B = E

⎛
⎝H (T )B +

T∫
0

H (t) g (t) dt

⎞
⎠ < ∞, (5.53)

and there exists a unique replication strategy (π̂, ĉ) ∈ D(p̂g,B). Its wealth
process X̂(t) (also called valuation process of (g,B)) is given by

X̂ (t) =
1

H (t)
E

⎛
⎝H (T )B +

T∫
t

H (s) g (s) ds |Ft
⎞
⎠ . (5.54)

This theorem leaves many aspects to work on:

• The explicit computation of the fair price for special choices of (g,B).

• The use of Monte Carlo methods for calculating the fair price if there is
no explicit formula.

• The interpretation of the pricing formula.

We will now deal with these topics.

The Black-Scholes formula

For the special cases of European call and put options, the expectations
in the fair price theorem can be calculated in a completely explicit form, the
so-called Black-Scholes formula (see Black and Scholes [1973]).

COROLLARY 5.12 Black-Scholes formula
Consider the Black-Scholes market model with n = m = 1, r(t) ≡ r, b(t) ≡ b,
σ(t) ≡ σ > 0 for all t ∈ [0, T ], T > 0, r, b, σ ∈ R. Then, we have:
(a) The price XC(t) at time t of a European call option with strike K > 0
and maturity T is given by

XC (t) = S1 (t) Φ (d1 (t)) −Ke−r(T−t)Φ (d2 (t)) , (5.55)

d1 (t) =
ln

„
S1(t)
K

«
+
“
r+

1
2σ

2
”
(T−t)

σ
√
T−t , d2 (t) = d1 (t) − σ

√
T − t (5.56)
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where Φ is the distribution function of the standard normal distribution.
(b) The price XP (t) of a European put option with strike price K > 0 and
maturity T is given by (with di(t) as in Equation (5.56))

XP (t) = Ke−r(T−t)Φ (−d2 (t)) − S1 (t) Φ (−d1 (t)) . (5.57)

Understanding the Black-Scholes formula and its scope

The Black-Scholes formula is a cornerstone of modern financial mathemat-
ics. It is a sound mathematical basis for option trading and paved the way
for the rapid growth of option markets and of the number of different, much
more complicated, so-called Exotic options. The main reason for its success
is also its main mystery: While the (in principle) observable riskless inter-
est rate r enters the pricing formula, the mean rate of stock return b does
not appear. As b is not observable at all (and also hard to estimate from
time series data!), it has been greatly appreciated by traders that no view
on b is needed to price calls and puts. Further, as b can be interpreted as
a preference parameter characterizing the attractiveness of stock investment,
the above valuation formulae for the European call and put are also called a
preference free valuation.

Of course, this fact needs an explanation. The answer is similar to the
explanation in the one-period binomial setting. There exists a probability
measure Q underlying the pricing mechanism that is different from the per-
sonal subjective probability measure P. We will give two ways to explain
this, the idea of market consistent pricing and the concept of change of
measure to the equivalent martingale measure.

To understand the idea behind the consistent pricing explanation, we look
at the net present value of the stock held at the future time T ,

E
(
e−rTS1 (T )

)
= s1e

(b−r)T . (5.58)

This net present value equals today’s price s1 of the stock if and only if we
choose b = r. Hence, if the market as a total has computed the actual price of
the stock via the principle of net present value, the market must have assumed
equality between b and r. It is now easy to verify by explicit integration that
for b = r the option pricing formulae obtained by Black and Scholes equal

E

(
e−rT (S1 (T ) −K)+

)
, E

(
e−rT (K − S1 (T ))+

)
.

Thus, the Black-Scholes formula can be explained by the fact that the market
simply uses the same assumption b = r for computing option prices that has
already been used for calculating the underlying stock price.

The concept of change of measure can be explained with the help of Gir-
sanov’s theorem (see Chapter 4). We introduce a new Brownian motion

WQ (t) := W (t) + θ · t (5.59)
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with θ = (b− r) /σ under the probability measure Q obtained via

Q (A) = E (1AZ (T )) ∀A ∈ FT (5.60)

with Z defined as in Equation (5.28). We then have

S1 (t) = s1 exp
((

r − 1
2
σ2

)
t+ σWQ (t)

)
. (5.61)

Thus, we obtain (remember the definition of H (T ))

XC (0) = E

((
s1 exp

[(
b− 1

2σ
2
)
T + σW (T )

]−K
)+
Z (T )

)

= EQ

(
exp(−rT )

(
s1 exp

[(
r − 1

2σ
2
)
T + σWQ(T )

]−K
)+)

(5.62)

where EQ(.) denotes the expected value with respect to the measure Q. This
last representation explains the independence of the Black-Scholes price from
b. Further, from Equation (5.61) we obtain that

1. The discounted stock price S1(t)/B(t) = s1 · exp
(
σWQ (t) − 1

2σ
2t
)

is a
Q-martingale. Therefore, Q is called an equivalent martingale mea-
sure, and we have

dS1 (t) = S1 (t)
(
r dt+ σ dWQ (t)

)
. (5.63)

2. The option price equals its net present value in the so-called risk-
neutral market (given by the use of Q) where all normalized security
prices Si(t)/Si(0) have the same expectation.

Option pricing and the equivalent martingale measure

As the use of equivalent martingale measures is a central concept in option
pricing, we give a general definition of an equivalent martingale measure.

DEFINITION 5.13
Consider a probability space (Ω, F,P) equipped with a filtration {Ft : t ∈ [0, T ]}.
Assume that on this probability space a financial market model consisting of
n+ 1 securities with price processes S0(t), ..., Sn(t) is defined where the price
process S0(t) is strictly positive. Then, a probability measure Q which is equiv-
alent to P (i.e. both probability measures have the same zero sets) is called an
equivalent martingale measure (EMM) for this market if all discounted
price processes

S̃i (t) =
Si (t)
S0 (t)

(5.64)

are martingales with respect to Q (and {Ft : t ∈ [0, T ]}).
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REMARK 5.14 One can show that the existence of an EMM implies
that the corresponding financial market is free of arbitrage opportunities.
Contrarily, the absence of arbitrage opportunities only implies the existence
of an EMM under some (mild) additional technical conditions. In a complete
market (i.e. a market where each contingent claim can be replicated) there
exists only one EMM (see e.g. Björk [2004]).

As our linear diffusion market model is complete, there is exactly one such
EMM Q. It can be calculated as in the Black-Scholes model above by

Q (A) = E (1AZ (T )) ∀A ∈ FT (5.65)

With its help we obtain a representation of the option price which is more
suitable for applying the Monte Carlo method:

THEOREM 5.15 Option pricing with the EMM

Assume that we are in the linear market model with EMM Q. Let (g,B) be a
contingent claim. Then for 0 ≤ t ≤ T its price process X̂(t)g,B is given by

X̂g,B (t) = EQ

⎛
⎝e−

TR
t

r(s)ds
B +

T∫
t

e
−

sR
t

r(u)du
g(s)ds |Ft

⎞
⎠ . (5.66)

A very important consequence of this theorem is the following: for the
purpose of option pricing we can always assume

bi (t) = r (t) for i = 1, ..., n. (5.67)

For completeness, we also present the Black-Scholes partial differential
equation (Black-Scholes PDE) as used in Black and Scholes (1973) to derive
the Black-Scholes formula in their original paper. It is based on the relation
between PDEs and SDEs given by the Feynman-Kac representation theorem.

THEOREM 5.16 Option pricing and the Black-Scholes PDE

Assume that we are in the one-dimensional Black-Scholes framework.
(a) The Black-Scholes PDE

1
2
σ2s2Css + rsCs + Ct − rC = 0, for (t, s) ∈ [0, T ) × (0,∞) (5.68)

C (T, s) = (s−K)+ , for s ≥ 0 (5.69)

has a unique solution C ∈ C ([0, T ] × (0,∞)) ∩C1,2 ([0, T ) × (0,∞)) given by

C (t, S1 (t)) = S1 (t) Φ (d1 (t)) −Ke−r(T−t)Φ (d2 (t)) (5.70)
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with di(t) as in Equation (5.56). In particular, the unique solution coincides
with the Black-Scholes formula.
(b) The unique replication strategy (ϕ0, ϕ1) for the European call is given by

ϕ0 (t) = (C (t, S1 (t)) − Cs (t, S1 (t))S1 (t)) e−rt, (5.71)
ϕ1 (t) = Cs (t, S1 (t)) . (5.72)

REMARK 5.17 1. To price other European options with a final pay-
ment of the form f(S1(T )) with the help of the Black-Scholes PDE, only the
boundary condition (5.69) has to be changed to

C (T, s) = f (s) , for s ≥ 0. (5.73)

2. The above theorem yields the representation of the stock part of the
replication strategy as the partial derivative of the option price with respect
to the underlying, the so-called delta of the option.

A very useful result for computing option prices is the so-called Log-
normal valuation formula.

PROPOSITION 5.18
Let X ∼ N (0, 1), m ∈ R, v,K ≥ 0. Then we have:

E

((
yem+vX −K

)+) = yem̃Φ (d1) −KΦ (d1 − v) , (5.74)

m̃ = m+ 1
2v

2, d1 = ln(y/K)+(m+v2)
v . (5.75)

5.5.3 Dividends in the Black-Scholes setting

In real markets, dividends are one attractive feature for a stock investment.
They are usually paid in lump sum at (approximately) fixed dates. For the
discussion of realistic modelling of dividend payments we refer to Korn and
Rogers (2005). A popular approximation used by practitioners is that of a
continuous dividend stream, i.e. there is a continuous payment stream given
by δS1(t)dt. This then leads to a stock price equation of

dS1 (t) = S1 (t) ((r − δ) dt+ σdW (t)) (5.76)

in the risk-neutral market. As the dividend stream is paid to the holder
of the stock and not to the holder of the option, one can show that the
modified Black-Scholes formula with continuous dividends is obtained
by replacing S1(t) by exp(−δt)S1(t):

XC (t) = e−δtS1 (t) Φ (d1 (t)) −Ke−r(T−t)Φ (d2 (t)) (5.77)

d1 (t) =
ln

„
S1(t)
K

«
+
“
(r−δ)+1

2σ
2
”
(T−t)

σ
√
T−t , d2 (t) = d1 (t) − σ

√
T − t. (5.78)
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As the replacement of S1(t) by exp(−δt)S1(t) is also valid for other models, we
will not consider a dividend rate separately in the following. For simulation
reasons, one can show that the correction term of −S1(t)δdt appearing in the
SDE (5.76) is also valid in other models, a reason for the popularity of the
use of continuous dividend streams.

5.6 Option pricing and the Monte Carlo method in the
Black-Scholes setting

Although the Black-Scholes model cannot explain all characteristics of real
market prices, it is still used as the benchmark in practical applications. Fur-
ther, it often serves as an orientation for the price of a very complicated,
high-dimensional option. Therefore, we introduce the Monte Carlo method in
a Black-Scholes setting. Note that due to the use of the unique EMM Q for
pricing options we can always assume

bi = r (5.79)

which is equivalent to assume P = Q, i.e. we are directly modelling under the
equivalent martingale measure. Indeed, for the purpose of applying Monte
Carlo methods to option pricing it is only necessary to know that an option
price is a (discounted) expected value of a random variable. We will
also mainly neglect the payout stream g for simplicity. For the payment B of
a (European) option the Monte Carlo task is to approximate EQ

(
e−rTB

)
.

Algorithm 5.2 Option pricing via Monte Carlo simulation

1. Simulate n independent realizations Bi of the final payoff B.

2. Choose the discounted mean as an approximation for the option price,
(

1
n

n∑
i=1

Bi

)
· e−rT ≈ EQ

(
e−rTB

)
.

While the second step of this algorithm causes no problems, simulating the
final payment B of the option depends on many aspects such as

• The form of the payoff: Does it depend only on one single point in time
or on the (whole) path of the underlying?

• The underlying: Do we have one or many underlying stocks?
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We will therefore consider multi- and single-asset options separately and will
also distinguish between the Monte Carlo valuation of path-dependent and
path-independent options.

The use of the Monte Carlo method for option pricing has been pioneered
by Boyle (1977). Boyle et al. (1997) can be viewed as the beginning of the
more recent research in applying sophisticated Monte Carlo techniques to the
pricing of complicated options.

5.6.1 Path-independent European options

Here, we always assume to have an option payoff of the form:

B = f (S (T )) = g (W (T )) (5.80)

with S(T ) = (S1(T ), ..., Sn(T )). To obtain g note that the explicit form of
the stock prices in the Black-Scholes model implies S(T ) = h(W (T )) with

hi (x) = si exp

⎛
⎝
⎛
⎝r − 1

2

n∑
j=1

σ2
ij

⎞
⎠T +

n∑
j=1

σijxj

⎞
⎠ . (5.81)

Of course, it is only worth using a Monte Carlo method for calculating the
option price if it has no closed-form analytical representation. In such a
situation, a simple algorithm for obtaining a Monte Carlo price p̂B,N is:

Algorithm 5.3 MC pricing of path-independent options
Let f (S (T )) = g (W (T )) be the final payoff of an option.

1. Set p̂B,N = 0.

2. For i = 1 to N do

(a) Simulate Z(i) ∼ N (0, I).

(b) Calculate B(i) = g
(√

TZ(i)
)
.

(c) Set p̂B,N = p̂B,N + B(i).

3. Set p̂B,N = 1
N e
−rT p̂B,N .

This is only a crude Monte Carlo framework. If, however, we consider a
particular class of options then we can use all kinds of variance reduction
methods from Chapter 3. We look at basket options as an example:
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Pricing basket options with moment matching and control variate
methods

The payment of a basket option depends on an average of a basket of stock
prices, i.e. a (European) basket call has a final payment of

B =

(
n∑
i=1

wiSi (T ) −K

)+

(5.82)

where the weights wi usually sum up to 1. As the distribution of this sum of
stock prices is not known, there is no closed formula for the basket call price.
There exist various approximation methods for pricing a basket option, but
they all have weaknesses (see Krekel et al. [2004]). The most popular one
is Lévy’s moment matching method (see Lévy [1992]). It replaces the
basket payment by a log-normally distributed random variable Z with the
same mean and variance, i.e. we define

Z = exp (m+ vX) (5.83)

with X ∼ N (0, 1) and m, v given by

m = 2 ln (M) − 1
2 ln
(
V 2
)
, v = ln

(
V 2
)− 2 ln (M) , (5.84)

M = E (
∑n

i=1 wiSi (T )) = erT
∑n

i=1 wisi, (5.85)

V 2 = E (
∑n

i=1 wiSi (T ))2 = e2rT
∑n

i,j=1 sisje
(Pn

k=1 σikσjk)T (5.86)

With this notation the approximation for the basket price is given by a Black-
Scholes type formula

p̂basket ≈ e−rT (MΦ (d1) −KΦ (d2)) , (5.87)

d1 = m+v2−ln(K)
v , d2 = d1 − v. (5.88)

While the Lévy approximation yields good results for a variety of parameters
r, σ, it performs weakly if the volatilities of the stocks are quite different. In
such a case, a Monte Carlo approach with a well-chosen control variate is a
good choice. There are two obvious candidates for a control variate:

• the geometric mean call with Bgeo =
(
(
∏n
i=1 nwiSi (T ))1/n −K

)+

,

• the weighted sum Bw =
∑n

i=1 wi (Si (T ) −K)+ of the single stock calls.

For both choices we can compute the explicit option prices. For the weighted
mean of the calls, the Black-Scholes formula yields

pBw =
∑n
i=1 wi

(
siΦ
(
d
(i)
1

)
−Ke−rTΦ

(
d
(i)
2

))
(5.89)

d
(i)
1 =

ln(si/K)+
“
r+

1
2ν

2
i

”
T

νi

√
T

, d
(i)
2 = d

(i)
1 − νi

√
T , ν2

i =
∑n

j=1 σ
2
ij . (5.90)
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The log-normal valuation formula (see Proposition 5.18) yields the price for
the geometric average call as follows.

THEOREM 5.19 Option price of a geometric average basket call
The price of a geometric average basket call with ωi = 1/n in the Black-Scholes
model is given by

pBgeo = e−rT
(
s̃em̃Φ

(
d̃1

)
−KΦ

(
d̃2

))
, (5.91)

ν = 1
n

√∑n
j=1

(∑n
i=1 σ

2
ij

)2
, m = rT − 1

2n

∑n
i,j=1 σ

2
ijT , (5.92)

m̃ = m+ 1
2ν

2, s̃ = (
∏n
i=1 si)

1/n
, d̃1 = ln(s̃/K)+m+ν2

ν , d̃2 = d̃1 − ν. (5.93)

As the geometric mean often differs a lot from the arithmetic mean, we also
apply a certain way of moment matching: We use a modified strike K̃ in the
geometric average basket option such that the moments of the linear versions
of the payoffs coincide, i.e. we require

E

((
1
n

n∑
i=1

Si (T ) −K

))
= E

⎛
⎝
(

n∏
i=1

Si (T )

)1/n

− K̃

⎞
⎠ (5.94)

which – with the notations of Theorem 5.19 – results in

K̃ = K − erT 1
n

n∑
i=1

si + s̃em̃. (5.95)

Example 5.20
We look at a basket call on four stocks with T = 5, K = 100, Si(0) = 100, and
equal weights of wi = 0.25. We assume r = 0, equal correlations between the
log-returns of 0.5, equal volatilities for each stock of 0.4 = (σ2

i1 + ...+ σ2
i4)

1/2,
and i = 1, .., 4. Table 5.1 clearly demonstrates the variance reduction obtained
by the above presented control methods. Although the use of the single calls
as control variate performs well here, it can lead to skewed results if the stock
prices have very different volatilities.

5.6.2 Path-dependent European options

For the pricing of path-dependent options we need simulations of (parts
of the) paths of the underlying price processes. We give examples of those
options and demonstrate the application of variance reduction techniques.

Asian options and moment matched control variates

Asian options have the feature that their payoff contains an averaging pro-
cedure over the path of the price of a stock. They are typically single-stock
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Method N 10,000 1,000,000
Price 95%-CI Price 95%-CI

Crude MC 27.07 [25.84, 28.29] 27.99 [27.86, 28.12]
MC with geom. mean 27.86 [27.46, 28.26] 27.99 [27.95, 28.03]
MC with corr. geom. mean 28.00 [27.68, 28.33] 27.97 [27.93, 28.00]
MC with single calls 28.13 [27.83, 28.43] 28.00 [27.97, 28.03]

Table 5.1: Monte Carlo Prices for a Basket Call (Exact Value 28.00)

options but are also traded on baskets. Typical examples of Asian options
(or: Average options) based on continuous averages are:

B =

⎛
⎝S1 (T ) − 1

T

T∫
0

S1 (s) ds

⎞
⎠

+

continuous Asian option, (5.96)

B =

⎛
⎝ 1
T

T∫
0

S1 (s) ds−K

⎞
⎠

+

continuous fixed-strike average. (5.97)

In actually traded options the continuous-time averages are replaced by dis-
cretized versions of the form

B =

(
S1 (T ) − 1

n

n∑
i=1

S1 (ti)

)+

discrete Asian option, (5.98)

B =

(
1
n

n∑
i=1

S1 (ti) −K

)+

discrete fixed-strike average. (5.99)

The main problem in pricing these options is the same as in basket option
pricing: the sum of log-normally distributed random variables is no longer
log-normal. This also implies that the integral over a set of log-normals is
in general not log-normal. Consequently, there is no closed analytical pricing
formula, for both the continuous and the discrete versions.

A first naive way is to simulate various paths of the stock prices, compute
the resulting payoffs, and estimate the option price by a discounted arithmetic
mean. As in the basket option case, we can use geometric mean-based versions
of the options as control variates. As the product of log-normally distributed
random variables is again log-normally distributed, the log-normal valuation
result, Theorem 5.18, yields the following.

THEOREM 5.21 Option price for geometric averages

In the one-dimensional Black-Scholes model the price of the discrete fixed-
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strike average option on the geometric mean with payoff

B =

⎛
⎝
(

n∏
i=1

S1 (ti)

)1/n

−K

⎞
⎠

+

geometric fixed-strike average (5.100)

and 0 = t0 < t1 < ... < tn is given by

pGFA = e−rTS1 (0) em+
1
2ν

2
Φ
(

(ln(S1(0)/K)+m+ν2)
ν

)

− e−rTKΦ
(

(ln(S1(0)/K)+m)
ν

)
, (5.101)

m =
(
r − 1

2σ
2
)

1
n

n∑
i=1

ti, ν = σ
n

√√√√ n∑
i=1

(n+ 1 − i)2 (ti − ti−1). (5.102)

Kemna and Vorst (1990) used this formula and the fact that the arithmetic
mean is at least as big as the geometric mean to obtain lower bounds for the
prices of the corresponding Asian options. Again, one can also use a corrected
strike K̃ in the geometric version to have a matching mean, i.e.

E

(
1
n

n∑
i=1

S1 (ti) −K

)
= E

⎛
⎝
(

n∏
i=1

S1 (ti)

)1/n

− K̃

⎞
⎠ . (5.103)

This value is given by

K̃ = K + S1 (0)
(
exp
((
r − 1

2σ
2
)
t̄n + 1

2
σ2

n2 t̃n

)
− 1

n

∑n
i=1 e

rti
)
, (5.104)

t̄n = 1
n

∑n
i=1 ti, t̃n =

∑n
i=1 (n+ 1 − i) (ti − ti−1), t0 = 0. (5.105)

For equidistant time spacing we have t̄n = (n+ 1)Δt/2. This idea is summa-
rized in Algorithm 5.4 with pGFA(K̃) denoting the price with strike K̃. In
contrast to the moment matching of Chapter 3, the control variate and not
the sample is corrected for the mean. Hence, we instead talk of moment
matched control variates.

Algorithm 5.4 Corrected geometric mean control for fixed-strike average
options

1. Simulate N payoffs: Bi=“Asian option − Geometric mean option”.

2. Approximate the Asian price by p̂NFSA := pGFA(K̃) + e−rT
∑N

i=1Bi.
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The numerical performance of both control variate methods is comparable
to the performance of the similar control variates in the basket option case.

REMARK 5.22 1. Note that we do not need a discretization method
for simulating the relevant stock price paths above, as their values are only
needed at a finite number of time points ti where we can sample from the
exact distribution of S(ti) (respectively from the increments S(ti)− S(ti−1)).
The situation would be different for the continuous-time average options.

2. There is much literature on Asian option pricing such as Rogers and Shi
(1995) who used a PDE approach which has been taken up by other authors
later. Further popular methods are a moment matching approach by Turnbull
and Wakeman (1991) and numerical inversion of the Laplace transform by
Geman and Yor (1993). A comparison between these analytical approaches
and Monte Carlo methods is given in Fu et al. (1999).

Barrier option pricing, importance sampling, and Brownian bridge
techniques

Barrier options are popular derivatives. They only provide a final payment,
usually a call or a put on the underlying, if the path of the underlying crosses
certain barriers (or not). Simple examples of barrier options are the (one-
sided) knock-out barrier option given by the final payments

BDOC = (S1 (T ) −K)+ 1{S1(t)>H∀t∈[0,T ]} down-and-out call , (5.106)

BUOC = (S1 (T ) −K)+ 1{S1(t)<H∀t∈[0,T ]} up-and-out call , (5.107)

BDOP = (K − S1 (T ))+ 1{S1(t)>H∀t∈[0,T ]} down-and-out put , (5.108)

BUOP = (K − S1 (T ))+ 1{S1(t)<H∀t∈[0,T ]} up-and-out put (5.109)

where K is the strike and H ≥ 0 the barrier of the option. By noting that,
e.g., the final payoff of a call (a put) is given as the sum of a down-and-out
call and a down-and-in call with the same strike K, we can obtain the price
of an in-barrier option as the difference of the corresponding option without
barrier and the out-barrier option (“in-out parity”). We can therefore in the
following concentrate on out-options.

Variants of the above barrier options with upper and lower barrier H1, H2

are also traded at the financial market and have payments similar to the
one-sided barrier options. As an example we consider the double-barrier
knock-out call with payoff

BDBKOC = (S1 (T ) −K)+ 1{H2>S1(t)>H1∀t∈[0,T ]}. (5.110)

While the above presented options contain a permanent barrier condition
in their payoff, we speak of continuous barrier options. In contrast, we will
also consider discrete barrier options where the barrier condition only has
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to hold at a finite set of time instants 0 ≤ t1 < ... < tm ≤ T . That is, the
discrete down-and-out call has a payoff of

BNDOC = (S1 (T ) −K)+ 1{S1(ti)>H ∀ti, i=1,...,m} (5.111)

As the joint distribution of the running maximum/minimum of a Brownian
motion with drift and its terminal value W (T ) at time T is explicitly known
(see Korn and Korn [2001]), there exist simple explicit pricing formulae for
one-sided (or single-barrier) options in a Black-Scholes type market.

PROPOSITION 5.23
In a Black-Scholes market the price of a down-and-out call on a single stock
a) with barrier H < S (0) and strike K < H is given by

XCall
do (0) = S (0)Φ (d1) −Ke−rTΦ

(
d1 − σ

√
T
)

− S (0)
(

H

S (0)

)2
r
σ2 +1

Φ (d2) + e−rTK
(

H

S (0)

)2
r
σ2−1

Φ
(
d2 − σ

√
T
)
,

(5.112)

d1 =
ln
(
S(0)
H

)
+
(
r + 1

2σ
2
)
T

σ
√
T

, d2 =
ln
(

H
S(0)

)
+
(
r + 1

2σ
2
)
T

σ
√
T

. (5.113)

b) with barrier H < S (0) and strike K ≥ H is given by

XCall
do (0) = S (0)Φ (d3) −Ke−rTΦ

(
d3 − σ

√
T
)

− S (0)
(

H

S (0)

)2
r
σ2 +1

Φ (d4) + e−rTK
(

H

S (0)

)2
r
σ2−1

Φ
(
d4 − σ

√
T
)
,

(5.114)

where we get d3 and d4 out of d1 and d2 by substituting H by K.

There are similar explicit formulae for all other types of single-barrier op-
tions (see Reiner and Rubinstein [1991]). They can be used to obtain approx-
imations for discrete barrier options later on. For double-barrier options such
explicit pricing formulae do in general not exist.

Monte Carlo (MC) pricing of discrete barrier options: The standard
method

As for discrete barrier options we only have to check the barrier conditions
at time points t1 < ... < tm, we only need to simulate the values of the price
path S(t) at those times ti and of course at the final time T . Even more, in
the case of an out-option, we only have to simulate until time T if the barrier
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condition is never violated. Otherwise, we stop the simulation path at the
first time when the barrier condition is violated and set the corresponding
payoff to zero. In the case of an in-option, we only have to simulate the final
payoff if the barrier condition has been fulfilled at some time instant ti before
T . Note that this standard approach can easily be adapted to every kind of
barrier conditions, whether they are double barriers, time-dependent barriers,
or a combination of in- and out-criteria. Further, it makes no problem to
apply it to a multiasset setting in a d-dimensional model of the Black-Scholes
type. To give a general formulation, we leave out the possibility to stop the
simulation if for an out-option the barrier condition is violated for the first
time.

Algorithm 5.5 Monte Carlo for discrete barrier options
For i = 1 to N

1. Simulate the stock prices at the barrier times S(i) (tj) , j = 1, ...,m.

2. If the barrier condition is satisfied at all times t1, ..., tm then compute
the final payoff B(i) = f

(
S(i) (T )

)
, else set B(i) = 0.

Obtain the Monte Carlo estimate for the discrete barrier option price as

p̂B,N =
1
N
e−rT

N∑
i=1

B(i).

MC pricing of discrete barrier options: Conditional survival

The standard method often delivers a quite satisfying performance in the
one-dimensional setting. However, when the initial stock price is close to the
barrier of an out-option, we are likely to simulate a lot of price paths that ac-
tually do not lead to the computation of a final payoff. They typically violate
the barrier condition early. To avoid this problem, we can use an importance
sampling approach that consists of generating only price paths that are condi-
tioned to survive until T (see also Glasserman and Staum [2001]). We achieve
this by stepwise conditional sampling.

We consider a discrete out-barrier option with a final payoff of B = f(S(T ))
and assume that at time ti the boundary condition is not violated if we have

S (ti) ∈ (H1 (ti) , H2 (ti)) , i = 1, ...,m. (5.115)

Note that we allow for time-dependent barriers. If we can explicitly compute
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the conditional survival probabilities pi(S(ti)) defined by

pi (s) = P (S (ti+1) ∈ (H1 (ti+1) , H2 (ti+1))) |S (ti) = s) (5.116)

then with the notation of the likelihood

Lj =
j∏
i=0

pi (S (ti)) (5.117)

suitable conditioning yields the representation

E

(
e−rTB

m∏
i=1

1{S(ti)∈(H1(ti),H2(ti))}

)
= E

(
e−rTLm−1B

)
. (5.118)

We will use the right side of this representation and simulate only paths that
are conditioned on survival and at the same time compute their conditional
survival probability along the path. Then, we average over the resulting
payoffs. We do this explicitly for double-barrier knock-out options with time-
dependent barriers. Due to Equation (5.118) this estimator is unbiased.

Conditional on S(ti) = s with Δi = ti+1 − ti and using

S (ti+1) = S (ti) e(r−1/2σ2)Δi+σ
√

ΔiΦ
−1(U) (5.119)

with U uniformly distributed on [0, 1], we obtain

S (ti+1) ∈ (H1 (ti+1) , H2 (ti+1)) ⇐⇒ U ∈ (1 − p−i , 1 − p+
i

)
(5.120)

with

p−i = P (S (ti+1) > H1 (ti+1) |S (ti) = s )

= Φ

(
ln (S (ti) /H1 (ti+1)) +

(
r − 1/2σ2

)
Δi

σ
√

Δi

)
(5.121)

and p+
i obtained from p−i by replacing the lower barrier H1(ti+1) by the upper

one H2(ti+1). Thus, to ensure that the survival condition (5.120) is always
satisfied, we replace U by the conditional random number

Ũ =
(
1 − p−i

)
+ V

(
p−i − p+

i+1

)
(5.122)

and obtain the conditional survival probability as

pi (s) = p−i − p+
i . (5.123)

From this, we obtain Algorithm 5.6.

REMARK 5.24 1. Glasserman and Staum (2001) prove that using the
conditional MC estimate results in a variance reduction compared to the stan-
dard method. This reduction can be high if the initial stock price is close to
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Algorithm 5.6 Conditional MC for double-barrier knock-out options
Set S(t0) = S(0) = s, L−1 = 1.
For i = 1 to N

1. Simulate a stock price path conditioned on survival, i.e.
For j = 0 to m− 1 do

• Calculate p−j , p+
j according to Equation (5.121).

• Simulate a random number Ũ according to Equation (5.122).

• Set S(i) (tj+1) = S(i) (tj) e(r−1/2σ2)Δj+σ
√

ΔjΦ
−1(Ũ).

• Set L(i)
j = L

(i)
j−1 · (p−j − p+

j

)
.

2. Simulate the final payoff at time T , i.e.

• Set S(i) (T ) = S(i) (tm) e(r−1/2σ2)(T−tm)+σ
√
T−tmΦ−1(U)

with U uniformly distributed on [0,1].

• Set B(i) = f
(
S(i) (T )

)
.

Obtain the conditional MC estimate for the double-barrier knock-out option

p̂cond,DBKNOB,N =
1
N
e−rT

N∑
i=1

L
(i)
m−1B

(i).

the barrier (judged with respect to the time to maturity and the volatility of
the stock). However, conditioning only reduces the variance caused by the
barrier condition. It does not affect the variance of the final payoff.

2. The conditional method can also be generalized to the multidimensional
setting. We only have to modify the definition and computation of the proba-
bilities p±j and the generation of the – now multidimensional – random number
Ũ in the algorithm in a suitable way. This, however, can be quite tedious when
looking at the details.

MC pricing of continuous barrier options: Brownian bridge
techniques

If we want to calculate the price of a continuous double-barrier knock-out
call by the standard Monte Carlo approach (i.e. simulate a discrete stock
price path, check the boundary conditions, compute the final payoff if the
boundary condition is satisfied, and average) then our estimator is no longer
unbiased. Indeed, we will systematically overestimate the option price as due
to the discretization of the price paths, the option knocks out too seldom in
the standard approach. To make this even more precise, imagine that we
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generate two prices S(ti) and S(ti+1) which are both very close to the barrier.
Then, in the standard approach we make no corrections at all as we have not
seen a crossing of the barrier. However, the price process could have crossed
the barrier between time ti and ti+1 or not. We also have a similar problem
for in-options. However, then the price is systematically underestimated by
the standard method. In general, we face a so-called monitoring bias which
is only disappearing slowly, i.e. it is of order O(m−1/2) if m is the number of
discretization points in the standard method (see Gobet [2009]).

An alternative to the (implicit) linear interpolation between the two simu-
lated values of the standard approach is to use a Brownian bridge for filling
the gap (for a survey on the full generality of this method see Gobet [2009]).
In simple examples this gap can be the whole interval [0, T ]. Let f(S(T )) be
the final payoff of the (continuous) barrier option. We then have

E
(
1{S(t)∈(H1,H2) ∀t∈[0,T ]}f (S (T ))

)
=

= E
(
E
(
1{S(t)∈(H1,H2) ∀t∈[0,T ]} |S (T ) , S (0)

)
f (S (T ))

)
= E ((1 − p (S (0) , S (T ) , H1, H2, T, σ)) f (S (T ))) (5.124)

with

p (s1, s2, H1, H2, T, σ) =
= P (∃t ∈ [0, T ] : S (t) /∈ (H1, H2) |S (0) = s1, S (T ) = s2 ) . (5.125)

Due to Equation (5.124), Algorithm 5.7 produces an unbiased estimate for
the price of a down-and-out option.

Algorithm 5.7 MC pricing of out-barrier options with the bridge technique
Consider a double-barrier knock-out option with a final payoff of B = f(S(T ))
and barriers H1, H2.
For i = 1 to N

• Simulate values S(i) (T ) for the stock price at time T .

• Compute B(i) =
(
1 − p

(
S (0) , S(i) (T ) , H1, H2, T,

))
f
(
S(i) (T )

)
Obtain the bridge MC estimate for the double-barrier knock-out option

Ibridge,DBKOB =
1
N
e−rT

N∑
i=1

B(i).

Of course, this algorithm only works if we can compute the relevant prob-
ability explicitly. This can be done in some examples (see Gobet [2009] or
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Karatzas and Shreve [1998] for the calculation of the probabilities).

Example 1: Single-barrier option
Here, we either have H1 = 0 or H2 = +∞. For simplicity we consider the
case of H2 = ∞. Then, we need to compute the probability that a Brownian
motion with drift that starts from ln(s1) and reaches ln(s2) at time T falls
below ln(H1) between 0 and T . On the one hand, this conditional process is
a Brownian bridge (we therefore talk of the Brownian bridge technique)
and on the other hand the probability is then given by

p (s1, s2, H1,+∞, T, σ) =

{
1 , if s1 < H1 or s2 < H1

exp
(
−2 ln(s1/H1)ln(s2/H1)

σ2T

)
, else . (5.126)

Again, this probability is obtained from the joint distribution of the final value
of a Brownian motion with drift and its running maximum. In the case of an
upper bound (i.e. H1 = 0) we have

p (s1, s2, 0, H2, T, σ) =

{
1 , if s1 > H2 or s2 > H2

exp
(
−2 ln(s1/H2)ln(s2/H2)

σ2T

)
, else . (5.127)

We can also use the above probabilities to obtain the price of the correspond-
ing in-option. We only have to modify the left side of Equation (5.124) in the
obvious way and on the right side replace 1 − p(.) by p(.).

Example 2: Piecewise constant single-barrier case
In this situation, we can still apply the methods of Example 1. As we have
a single barrier that is piecewise constant, we obtain the relevant knock-
out probability as a product of the knock-out probabilities computed along
the intervals of constancy of the barrier: Let the time-dependent barrier
H1(t) take on the values H1,1, ..., H1,m on the time intervals given by 0 =
t1 < .. < tm < tm+1 = T . Then, we have to simulate the values S(ti)
of the stock price process and obtain the knock-out probability (conditional
on this discrete stock price path) as the product of the probabilities (1 −
p(S(ti), S(ti+1), H1,i,+∞, ti+1 − ti, σ)), i = 1, ...,m. Compared to the stan-
dard method the Brownian bridge technique is unbiased. Further, the stock
price only has to be simulated at m+ 1 time instants.

Example 3: Double-barrier option
While in Example 1 we also have a simple explicit pricing formula, it is defi-
nitely not available in the situation of a double-barrier option. However, one
has at least an explicit formula for the probability required in the Brownian
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bridge algorithm above (see Gobet [2009]):

p (s1, s2, H1, H2, T, σ) =

=
+∞∑

k=−∞

(
exp
(
−2

k ln (H2/H1) (k ln (H2/H1) + ln (s2/s1))
σ2T

)

− exp
(
−2

(k ln (H2/H1) + ln (s1/H2)) (k ln (H2/H1) + ln (s2/H1))
σ2T

))

(5.128)

if neither s1 nor s2 are outside (H1, H2). If that would be the case the above
probability would equal 1. Of course, the numerical evaluation of the above
series is not trivial.

Moon (2008) considers a slight variant of the above approach and also ap-
plies it to single-asset double-barrier options and to multiasset barrier options
where the barrier condition is only relevant for one asset. An example of such
an option would be given by the payout of

Bout = (S1 (T ) −K)+ · 1S2(t)>H ∀t∈[0,T ]. (5.129)

Moon simulates each stock price path exactly on a discrete grid until the ma-
turity or until the first knock-out time. Moon’s idea is to treat each barrier
separately for computing the knock-out (or knock-in) probabilities. These
probabilities are explicitly given by Equation (5.126). Of course, the sum
over the probabilities of crossing a specific barrier is slightly higher than the
probability of crossing at least one barrier. However, given that the time dis-
cretization is sufficiently fine, this difference can be ignored as the probability
of the price process crossing the whole barrier interval in a short time step is
extremely small. After having calculated the knock-out probabilities, Moon
suggests drawing a U [0, 1]-distributed random number for each probability. If
all probabilities are below their corresponding U [0, 1] numbers then the sim-
ulation of the stock price path continues. If this is not the case the path is
considered to be knocked out and the next path simulation will start.

We give Moon’s algorithm for pricing a double-barrier knock-out call option
with piecewise constant barriers (L1, U1), . . . , (Lm, Um) as Algorithm 5.8.

REMARK 5.25 Modifications of the above algorithm for in-options, puts,
or other path-independent final payoffs B are straightforward and can be done
by modifying the relevant steps (in-out criteria, bridge probability computa-
tion, or computation of the final payoff). A variant of a multiasset final payoff
(such as a basket option) combined with a single-asset barrier criterion can
also easily be obtained (see Moon [2008]). Later, we will comment on the use
of the algorithm in more general stock price settings.
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Algorithm 5.8 Double-barrier knock-out call pricing using Moon’s method
for piecewise constant barriers
Let the strike K, barriers Li < Ui valid on [ti, ti+1] with 0 = t1 < . . . <
tm+1 = T , and maturity T be given. Set δi = ti+1 − ti.

For i = 1 to N do

1. Set Si0 = S(0).

2. For j = 1 to m do

(a) Set Vi = 0 and generate Yij ∼ N(0, 1).

(b) Set Sij = Sij−1e
((r−1/2σ2)δ+σ

√
δYij).

(c) If Sij /∈ (Lj , Uj) then go to Step 1.

(d) Else plow = e
−2

ln(Si
j/L1) ln(Si

j+1/L1)
|σ2|δi , pup = e

−2
ln(Si

j/U1) ln(Si
j+1/U1)

|σ2|δi .

(e) Simulate two independent random variables X1, X2 with Xi ∼
U [0, 1].

(f) If plow ≥ X1 or 1 − pup ≥ X2 then go to Step 1.

(g) If j = m then Vi = (Sim −K)+.

Obtain the Monte Carlo estimate for the option price as

IMoon,DBKO
B =

1
N
e−rT

N∑
i=1

Vi.

REMARK 5.26 Broadie et al. (1997, 1999) have shown that by suitably
shifting the barrier of a continuous single-barrier option, one obtains a good
approximation for the price of a corresponding discrete single-barrier option.
One can also use it in a reverse way, i.e. to price a continuous barrier option
approximately by a suitable discrete barrier option. This technique is further
developed in Gobet (2009) and in Gobet and Menozzi (2007) for the multiasset
case. As it is of a technical nature and beyond the scope of this book we refer
the reader to these references.

5.6.3 More exotic options

Due to the enormous number of different versions of exotic options, in this
book, we can only deal with some popular examples in great detail. However,
it should be clear that there is at least always a crude way to deal with any
kind of option:
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• Simulate the stock price paths many times and calculate the correspond-
ing payments along the paths.

• Average the simulated payments and discount them in a suitable way
to obtain a crude Monte Carlo estimate for the option price.

While this method always works, there are always possibilities for cleverly
adapted algorithms that make use of special properties of the particular option
type or that use suitable variance reduction methods. The literature on these
methods is far too big to give an exhaustive survey. We mention just some
types of options that are widespread:

• Lookback options which have payments based on the minimum/maximum
of a stock price on a certain time span can be of the form

Blookback =
(

max
t∈[0,T ]

S (t) −K

)+

.

• Cliquet options which typically consist of a guarantee against downside
movements, but still have some upside potential. They appear in various
forms such as e.g.

BNap = (a+ min
i=1,...,n

ri)+, a so-called Napoleon,

Brc = (b+
n∑
i=1

r−i )+, a reverse cliquet, or

Baccu = (c+
n∑
i=1

max (min (ri, cap) , f loor))+, an accumulator

where ri is the return of a stock or an index over period i, a, b, c and
cap, f loor are constants. Cliquet options are known to be particularly
sensitive with respect to changes in the volatility of the stock.

5.6.4 Data preprocessing by moment matching methods

We already mentioned a certain kind of moment matching when pricing bas-
ket options and Asian options above. There, we concentrated on the equality
of the expected value of the arithmetic average and of the approximating ge-
ometric average of stock prices. Here, we will take up the approach (already
discussed in connection with variance reduction methods in Chapter 3) of
modifying the generated sample to match its theoretical moments. The usual
way of doing this leaves some possibilities of choice such as:

• Matching of the moments of the underlying Brownian motion:
If the stock price processes are driven by a d-dimensional Brownian
motion W (t), then matching of the first two moments of its components
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with the empirical counterparts of the sampled values W (i)(t) at the
fixed time t are ensured by using the modified sample values

W̃
(i)
j (t) =

W
(i)
j (t) − W̄j (t)

s̄ (t) /
√
t

(5.130)

for each component j of the Brownian motion and where W̄ (t) and s̄ (t)
are the sample mean and standard deviation for fixed t.

• Matching of the moments of the asset prices: Here, one matches
the empirical moments of the stock prices that enter the relevant option
payment to their theoretical expectations. This is done by using for
each stock price the modified sample values

S̃
(i)
j (t) =

S
(i)
j (t) E (S (t))

S̄j (t)
(5.131)

where S̄j(t) is the sample mean of the generated stock prices at time t.

• Matching of the mean by antithetic sampling: The simplest way
to obtain a sample mean that matches the desired expectation is the
method of antithetic variates (see Section 3.3.1).

In contrast to the above presented methods, our aim here is to present a
new approach of Wang (2008) that focuses on matching the correlation of the
underlying Brownian motion in an exact way by the empirical means. We call
this sample data preprocessing. This is particularly interesting as for some
types of options the correlation structure has an enormous influence on their
price. A typical example is a maximum-call on n stocks given by

Bmax =
(

max
k=1,...,n

{Sk (T )} −K

)+

. (5.132)

It is immediately clear that the price of this option would be much higher for
independent stocks than for totally dependent stocks.

The sample preprocessing by Wang considers the sample of the uncorre-
lated, d-dimensional Brownian motion before it is used to generate the cor-
responding stock prices. Its main aim is to create a sample of size N for
a d-dimensional standard normal distribution with sample mean 0 and unit
sample covariance matrix I. The method is described in Algorithm 5.9.

One can then use the preprocessed data to construct a Brownian motion
sample from it. This can then be used for Monte Carlo option pricing. Wang
(2008) reports a significant improvement of the performance of Monte Carlo
option pricing for various option types when the above preprocessing method
is used. It performs particularly well when the exact correlation between the
log-returns of the stocks is small.
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Algorithm 5.9 Preprocessing a d-dimensional normal sample

1. Generate d independent samples of size N of independent standard nor-
mally distributed random numbers (z1, . . . , zd).

2. Introduce the mean-corrected samples z̃i = zi− z̄i · 1 with z̄i the sample
mean over the elements zij , j = 1, ..., N and 1 = (1, . . . , 1) ∈ R

N .

3. Calculate the empirical covariance matrix C̃ of the z̃-vectors, i.e.

C̃ij =
1

N − 1

N∑
k=1

z̃ikz̃jk, i, j = 1, . . . , d.

4. Compute the Cholesky decomposition C̃ = Ã′Ã.

5. Obtain the sample with the desired properties Z ′ = (z′1, . . . , z′d) via

Z ′ = (z̃1, . . . , z̃′d)Ã
−1.

5.7 Weaknesses of the Black-Scholes model

We have so far demonstrated the main methods and principles in option
pricing in a (multidimensional) Black-Scholes model. This model is still an
industry benchmark. However, there is common agreement among practition-
ers and academics that the Black-Scholes model is an oversimplification of the
real movements of stock and option prices. One can verify this by performing
statistical tests for the normality of the log-returns of stocks. There, the null
hypothesis of normally distributed log-returns is usually rejected with a small
p-value. Also other properties such as existing variances of the log-returns or
their independence are often questioned by looking at statistical properties
of suitable financial time series. We will not go into detail about those sta-
tistical issues. However, we will present another way of demonstrating that
the assumptions of the Black-Scholes model are not satisfied and which is an
important tool for practitioners. It is to use so-called volatility surfaces.

Implied volatility surfaces and the Black-Scholes formula

In the Black-Scholes formula for a call option on a single stock,

XC (t) = S1 (t) · Φ (d1 (t)) −K · e−r(T−t)Φ (d2 (t)) (5.133)

with di(t), i = 1, 2 as given in Equation (5.56) the only parameter that is not
directly observable is the volatility σ. One could of course try to estimate it
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from log-returns of real data via

Var

(
ln
(
S (t+ Δt)
S (t)

))
= σ2Δt, (5.134)

but one can also get it from a market price of a call option. As the Black-
Scholes formula is strictly increasing in σ (for positive values of σ), there is a
unique value σ∗ such that the Black-Scholes formula with this value delivers a
theoretical price that equals the market price of this particular call (of course
under the assumption that all other parameters such as K, r, T are fixed).
We then call σ∗ the implied volatility of this call price. Consequently, if
the Black-Scholes model would indeed describe the reality in an appropriate
way, we could take a market price of any other call option, invert the Black-
Scholes formula, and should obtain (at least approximately) the same implied
volatility σ∗. To judge how well the option pricing world is explained by the
Black-Scholes model, one can have a look at so-called implied volatility
curves or at implied volatility surfaces. For an implied volatility curve,
one typically considers calls (or puts) with either a fixed maturity T and varies
the strike K or fixes the strike K and varies the maturities. Then, one takes
all observable market prices and uses the Black-Scholes formula to calculate
the implied volatilities for – say – calls with a fixed maturity T given by

pmarketcall (Ki;T ) = Xc (0;σ∗ (Ki) ,Ki, T ) . (5.135)

On the left-hand side of this equation we have the market price of a call with
a strike of Ki. On the right-hand side we calculate the price by the Black-
Scholes formula for a strike of Ki, a maturity of T , and determine σ∗ (Ki)
implicitly by requiring equality between the left and the right sides. Then the
function

f (K) = σ∗ (K) (5.136)

is called a volatility curve for a fixed maturity T . Of course, we only have
points σ∗ (Ki) and usually have to interpolate between those points, but we
do not address this issue here. To illustrate the different behaviour of the
implied volatility as a function of the normalized strike K/s1, we show some
typical curves from the different markets of foreign exchange, commodities,
and stocks together with a constant Black-Scholes model curve in Figure 5.3.
Neither of the real curves is constant!

Depending on the form of the curve, one is speaking of a volatility skew
or a volatility smile. If instead of just a volatility curve, we also look at the
behaviour of the implied volatility as a function of the second variable (in our
case above, the maturity) then one obtains a volatility surface if one also lets
this variable vary. Figure 5.4 shows such a volatility surface.

In all the cases we have seen, the volatility curves or surfaces do not look
as if they were generated from a Black-Scholes model. To cope with this fact,
more complicated models have been introduced. The first two major streams
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FIGURE 5.3: (Schematic) implied volatility curves from different markets.
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FIGURE 5.4: (Schematic) implied volatility surface from an equity market.

of such models were the local volatility and the stochastic volatility models.
The aim of those models is to generate option prices that produce implied
volatility curves or surfaces that mimic the really existing ones. As a by-
product the volatility surfaces are another (however, artificial) justification
for the importance of the Black-Scholes formula as it is needed to invert both
the market prices and the theoretical option prices from the new models.
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5.8 Local volatility models and the CEV model

In local volatility models one replaces the constant volatility parameter σ of
the Black-Scholes model by a volatility function that depends on both the
running time and the stock price. We will only consider the case of a single
stock with dynamics given as the solution of

dS (t) = rS (t) dt+ σ (t, S (t)) dW (t) , S (0) = s (5.137)

with W (t) a one-dimensional Brownian motion. The function σ(t, s) is as-
sumed to have a form that ensures the existence of a unique solution to the
SDE (5.137). One can show that for a sufficiently regular volatility function
the market consisting of the usual bond and one stock is still complete and
that there is a unique EMM Q. As always, we assume that we are directly
modelling under this EMM, a fact that is expressed by using a drift of r. Of
course, the general form of the above SDE can also include a drift of μ.

Before we present a specific example of a volatility function, we state a
famous result by Dupire (1997). It says that given any set of observable
market prices of call options, there exists a volatility function such that these
prices coincide with the corresponding theoretical call prices.

THEOREM 5.27 (Dupire [1997])
If today’s market call prices pmarketc (0, S;K,T ) are known for all possible
strikes K ≥ 0 and all maturities T ≥ 0 then with the choice of

σ (K,T ) =

√√√√2∂p
market
c

∂T + rK
∂pmarket

c

∂K

K2 ∂
2pmarket

c

∂K2

(5.138)

the market prices coincide with the theoretical call prices in the corresponding
local volatility model, i.e. we have

pmarketc (0, S;K,T ) = E

(
e−rT (S (T ) −K)+

)
∀ (T,K) ∈ [0,∞)2 . (5.139)

In particular, we assume that all required partial derivatives of today’s market
price curves exist.

Although this result is very impressive, there are some problems with its
practical application:

• To obtain the volatility function, we need a continuous set of market
prices, which obviously is not available.

• The volatility function thus has to be obtained by inter- and extrapola-
tion, which can cause a lot of problems.
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• There are no closed-form solutions even for prices of simple options.

We refer the interested reader to Dupire (1997) for further discussion of this
general setting.

Instead, we would like to present the so-called constant elasticity of variance
CEV model as the most prominent parametric local volatility model. There,
the stock price is given as the unique solution to the SDE

dS (t) = rS (t) dt+ σS (t)α dW (t) , S (0) = s (5.140)

for α ∈ [0, 1] (for values of α /∈ [0, 1] we refer to Davydov and Linetsky [2001]),
r, σ given real constants. For special choices of α we obtain:

• α = 1: this is the Black-Scholes setting, i.e. the stock price is log-
normally distributed.

• α = 0: we can solve the stock price equation explicitly and obtain

S (t) = s exp (rt) + σ

∫ t

0

exp (r (t− u)) dW (u) (5.141)

which implies that the stock price is normally (!) distributed with

E (S (t)) = s exp (rt) , Var (S (t)) =
σ2

2r
(exp (2rt) − 1) . (5.142)

We will meet a generalizaton of this model (the Vasicek model) in the
area of interest rate modelling.

• α = 0.5: here, the SDE cannot be solved explicitly, but the stock price
stays nonnegative (see the section on the square-root equation in Chap-
ter 4). We will look in more detail at a generalization of this model (the
Cox-Ingersoll-Ross model) when modelling interest rates.

The CEV model thus is a generalization of the Black-Scholes model. The
extra parameter α can be used for approximating the shape of observed im-
plied volatility curves better than the Black-Scholes model. The name CEV
model stems from the fact that for the variance function σ(t, S)2 = σ2S2α the
elasticity of variance given by

dσ2/dS

σ2/S
= 2α (5.143)

is constant. Besides the special choices for α mentioned above, the stock price
is not given by an explicit analytical formula. Even more, for α ∈ [0, 1) there
is a positive probability that the stock price will attain the value of 0. In the
case of α = 0 we have already discussed this above. In the case of α ∈ (0, 1)
this simply means that the process stays at 0 from that time onwards due to
the form of SDE (5.140). However, given this situation, it is nearly a surprise
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that there exists an explicit formula for the price of European calls in the
CEV model (see Schroder [1989] or Davydov and Linetsky [2001]).

THEOREM 5.28

For α ∈ (0, 1) the price of a European call with strike K and maturity T in
the CEV model is given by

C (0, s;α, σ, T,K) = sQ (y; z, ζ) − e−rTKQ (ζ; z − 2, y) , (5.144)
z = 2 + 1

1−α , (5.145)

ζ = 2rs2(1−α)

σ2(1−α)(1−e−2r(1−α)T ) , y = 2rK2(1−α)

σ2(1−α)(e2r(1−α)T−1) , (5.146)

and Q(x;u, v) the complimentary noncentral chi-square distribution with u
degrees of freedom and noncentrality parameter v evaluated at point x.

Of course, a closed form solution for liquidly traded options such as calls
allows the calibration of the input parameters α, σ of the CEV model: Use
those parameters α∗, σ∗ that minimize the sum of squared differences

m∑
i=1

(
pmarketc (0, s;Ki) − C (0, s;α, σ, r, T,Ki)

)2
(5.147)

over all admissible values for σ and α. Figure 5.5 illustrates the skewness
behaviour of implied volatility curves for different values of α. Here, we have
always chosen S(0) = 100, r = 0 and a variable volatility σ(α) = σS(0)1−α

such that the initial volatility for all different values of α coincide.
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FIGURE 5.5: Implied volatility curves of the CEV model.
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5.8.1 CEV option pricing with Monte Carlo methods

Although we are now in a more complicated model than the Black-Scholes
one, calculating an option price still means calculating an expectation. There-
fore, the principle Monte Carlo methods used for this stay the same. This is
also true for the discussion of the variance reduction methods applied to the
pricing of certain exotic options in the Black-Scholes setting.

The main new aspect introduced by using the CEV model is that to obtain
values of S (t) we now have to rely on discretization schemes such as the Euler-
Maruyama or the Milstein one. Although the volatility function in the CEV
model is typically not Lipschitz-continuous in S = 0, one can still apply both
these methods as long as the stock price is far away from zero. Only when
the stock price is very close to 0, we might encounter problems in using these
discretization methods. Then, in the discretized versions it cannot be avoided
that the discretized price will go negative. For the case of α ∈ (0, 1) the stock
price path is then simply set to 0 from that time step onward.

As all the single steps (generating a stock price path, calculating a Monte
Carlo estimator with or without variance reduction) are already described in
detail, here we only give a rough description of an algorithm.

Algorithm 5.10 Monte Carlo pricing in the CEV model
Let the payoff B of the option be given. Then:
For i = 1 to N

1. Simulate CEV stock price paths S(i)(t), t ∈ [0, T ].

2. Calculate the option payoffs B(i) = B(S(i)(t), t ∈ [0, T ]).

Calculate a Monte Carlo estimate 1
N e
−rT ∑N

i=1 B
(i) for the option price.

REMARK 5.29 1. To make the framework more precise, one first has
to decide on the discretization scheme for simulating the stock price paths.
Then, one chooses the fineness of the discretization equal to ε, the required
accuracy (in the sense of the square root of the mean square error). Of course,
one also has to take care of the type of option payoff B. For example, in the
case of an average strike option the discretization has to include at least all
those points over which we are averaging. Finally, as we are in general not able
to perform an exact solution, extrapolation methods such as the multilevel
Monte Carlo method are well suited for this setting. It then only remains to
calculate N = N(ε), the number of stock price paths needed.

2. Note that neither the variance reduction methods we used in the Black-
Scholes setting nor our valuation methods for American options explicitly
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required the characteristics of this model. We can therefore use all these
methods developed in the Black-Scholes setting in the CEV case, too, only
the simulation of the stock prices that enter the options gets more involved.

3. A particular variance reduction method:
As long as we are considering an option with a closed pricing formula in
the Black-Scholes setting, it is convenient to use the Black-Scholes case as
a control variate, i.e. choose the volatility σBS = σsα−1 such that at t = 0
the volatilities in both models agree, compute the option price in the Black-
Scholes setting with this volatility, pBS , and use the control variate estimator

1
N e
−rT

N∑
i=1

B(i) −B
(i)
BS + pBS (5.148)

where the payoffs B(i)
BS are calculated from the geometric Brownian motion

paths with volatility σBS . Note in particular that we have to use the same
Brownian motion for both paths, B(i) and B(i)

BS .

A numerical example: Pricing a digital call

To demonstrate the variance reduction method of Remark 5.29 above, we
compare it to the crude Monte Carlo method. We look at the cases of a simple
digital call option that pays one unit of money if and only if the stock price
at maturity S(T ) is above the strike K. The parameters used are:

r = 0, α = 0.1, σ = 25, σBS = 0, 3962, S(0) = K = 100, T = 1.

For both methods we choose the Euler-Maruyama scheme to simulate the
stock price paths and require an accuracy of order ε = 0.01 which also requires
a number of simulation runs of N =10,000. The exact price of the digital call
equals 0.4915(±0.0005). Our simulation results are given in Table 5.2.

Method Price 95%-CI
Crude MC 0.4896 [0.4798, 0.4994]
MC with BS control 0.4920 [0.4869, 0.4970]

Table 5.2: MC Pricing of a Digital Call in the CEV Model (α = 0.1)

Note that the simple control variate method already leads to a variance
reduction of a factor of 2. This becomes more pronounced the closer the CEV
model is to a Black-Scholes model, i.e. for higher values of α. For an otherwise
identical digital call but with α = 0.5, σ = 3, σBS = 0.3, and an exact value
of 0.4698(±0.0004), we obtain a variance reduction of a factor of 3 (see Table
5.3).
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Method Price 95%-CI
Crude MC 0.4735 [0.4637, 0.4833]
MC with BS control 0.4685 [0.4652, 0.4717]

Table 5.3: MC Pricing of a Digital Call in the CEV Model (α = 0.5)

5.9 An excursion: Calibrating a model

One might ask why we have given the complicated call option pricing for-
mula in the CEV model. Obviously, it is straightforward to obtain the call
price by a crude Monte Carlo simulation with a sufficient accuracy which is
comparable to the numerical error that one is making when using the exact
formula. The main reason for this is a question that is also relevant for general
models.

How do we get the input parameters of a model?

The answer is that we have to calibrate the model. By this we mean that
we take market prices of securities and derivatives as input variables. We
then try to determine the parameters of our preferred model (e.g. for stock
prices) in such a way that the difference between the observed market prices
and the theoretical model prices are as close as possible. For this, an explicit
pricing formula for the securities we are looking at is extremely helpful. As
an example, we look at the Black-Scholes model and describe how to calibrate
the volatility parameter σ from call option prices in Algorithm 5.11.

Algorithm 5.11 Calibrating σ in the Black-Scholes model
Denote by CM (0, S(0), T1,K1), ..., CM (0, S(0), Tn,Kn) the market prices of
(European) call options on the stock with varying strikes and maturities.

Denote by C (0, S(0);T,K, σ) the prices of European calls with maturity T
and strike K obtained by the Black-Scholes formula under the assumption
that the volatility parameter is σ (r is assumed to be known).

Let ω1, ..., ωn be positive weights with
∑n

i=1 ωi = 1.

Solve the least-squares problem

min
σ>0

n∑
i=1

ωi
(
CM (0, S(0), Ti,Ki) − C (0, S(0);Ti,Ki, σ)

)2

to obtain the parameter σ that explains the observed market prices as good
as possible when using the Black-Scholes model.
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REMARK 5.30 1. The least-squares problem above is a highly nonlinear
problem due to the nonlinear dependence of the call prices on the volatility
σ. Its solution requires a nonlinear solver. One should in particular be aware
of the fact that one can end up in a local minimum. It is therefore strongly
advised that one should check the calibrated parameters for plausibility.

For other, more complicated models such as the CEV model or some interest
rate models, we need more model parameters than just σ. However, the
principal form of the algorithm remains the same. The minimization in the
least-squares problem then has to be done with respect to all those parameters.

2. Of course, one can also include other market prices apart from the usual
calls to calibrate a model. However, if the corresponding derivative does not
admit an explicit pricing formula as a function of the underlying parameters,
we need numerical methods (such as the Monte Carlo method) to compute
the model prices. This can then be very time-consuming. Therefore, closed
pricing formulae are the basis of a convenient model calibration.

3. In practical applications, some market derivative prices have different im-
portance (due to the liquidity or the size of the bid-ask spread of the contract)
for the calibration of the parameters. One takes care of this by assigning the
squared differences different weights (which add up to 1) according to their
importance in the calibration procedure.

5.10 Aspects of option pricing in incomplete markets

By definition, in an incomplete market there exists a contingent claim
that cannot be replicated by trading in the basic assets. A simple example
of an incomplete market is the one-period trinomial model with a stock
price that can change from s at time 0 to S(T ) ∈ {us, s, ds} at time T with

u > erT > d and u > 1 > d. (5.149)

It is now an easy exercise to show that for a call with strike K satisfying
s < K < us there is no replication strategy (ϕ0, ϕ1). Indeed, the three
equations that are equivalent to the replication property have no solution:

ϕ0e
rT + ϕ1us = us−K, ϕ0e

rT + ϕ1s = 0, ϕ0e
rT + ϕ1s = 0. (5.150)

Obviously, the unique solution to the last two equations is (ϕ0, ϕ1) = (0, 0),
which does not solve the first equation.

In such a situation the replication approach is no longer a great help to
determine an option price. Here and in the general case, however, one can
determine so-called arbitrage bounds for the option price. Let us therefore
consider an option with a final payment B at time T . Then, we have the
following arbitrage bounds:
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• the sub-hedging price p−B defined as the maximal amount of money
such that a trading strategy ϕ(.) exists that leads to a final wealth of
Xϕ(T ) that never exceeds the final payments of the option.

• the super-hedging price p+
B defined as the minimal amount of money

such that a trading strategy ϕ(.) exists that leads to a final wealth of
Xϕ(T ) that never is below the final payments of the option.

Obviously, a possible price pB of the option B that does not allow for an
arbitrage opportunity has to satisfy

p−B ≤ pB ≤ p+
B. (5.151)

So, the first consequence of these considerations is that the arbitrage approach
in general only yields bounds for option prices in an incomplete market. How-
ever, if the option is attainable (i.e. there exists a replication strategy for it)
then we have equality in relation (5.151) and the price of B is unique.

Our second tool for valuing contingent claims in a complete market was the
equivalent martingale measure. Again, in an incomplete market the situation
is more subtle. While in the one-period binomial model, only the probability p
of a stock price increase determined the probability measure, in the one-period
trinomial model we have to specify two probabilities to uniquely determine the
probability measure. However, the martingale condition in this example only
requires that the discounted future expected stock price equals its starting
value. This determines just one probability; the other one is at our disposal.
So, we have infinitely many EMM.

These two facts that replication is in general impossible (and should be
replaced by sub- and super-hedging to get price bounds) and that there ex-
ist infinitely many equivalent martingale measures are the generic situation
for incomplete markets. For a survey of the rigorous treatment of the differ-
ent aspects of option pricing in incomplete markets we refer to Delbaen and
Schachermayer (2006). There, in particular the Fundamental Theorems of
Asset Pricing are stated in a precise form. As this requires a lot of technical
details, we here only state their essential contents that we need:

• The existence of an EMM ensures the absence of arbitrage opportunities.

• If Q is an EMM then if we choose EQ(e−rTB) as an option price we do
not introduce an arbitrage opportunity by that.

Indeed, one can show that in all the models we are considering, there exists
at least one EMM. Thus, arbitrage-free option prices of the form EQ(e−rTB)
can be used. Of course, if this EMM is no longer unique, one has to decide
which EMM to use for option pricing. There are various suggestions in the
literature. It is beyond the scope of this book to discuss them all and in
particular to give advice on which one to use. However, for the purpose of
Monte Carlo option pricing, it is enough that we assume that the choice of
the pricing EMM Q has already been made.
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5.11 Stochastic volatility and option pricing in the
Heston model

Let us again consider the case of just one stock. While in the local volatility
models one tries to obtain a more realistic behaviour of the stock price by
introducing a nonlinear volatility function, in the stochastic volatility setting
the volatility is assumed to follow a separate stochastic process. This can
be motivated by the fact that on stock markets price changes are caused
by trading activities. Considering the volatility as a measure for the price
variations, one can think of it as being caused by the intensity or volume of
trading or by the demand for the stock.

We can put this in our diffusion framework by looking at a two-dimensional
stock price equation. However, to distinguish between stock price and volatil-
ity evolution, we will denote the stock price by S (t) and the volatility process
by ν (t). A stochastic volatility model is usually given by

dS (t) = μS (t) dt+
√
ν (t)S (t) dW1 (t) , S (0) = s, (5.152)

dν (t) = α (t) dt+ β (t)
(
ρdW1 (t) +

√
1 − ρ2dW2 (t)

)
, ν (0) = ν. (5.153)

Here, α (t), β (t) are stochastic processes that are progressively measurable
with respect to the filtration generated by the two-dimensional Brownian mo-
tion (W1 (t) ,W2 (t)). Further, we assume that they have a form such that a
unique solution to the two-dimensional SDE for price and volatility exists.

There are various specifications for the coefficient functions in the volatility
equation above (such as the model in Hull and White [1987] or the model
in Stein and Stein [1991]). However, the most popular one – especially in
real world applications – is the Heston model. To ensure that the volatility
process remains nonnegative, Heston (1993) used a square-root process (see
Section 4.6.3 for details on the square-root-diffusion process ) for the volatility.
Thus, we consider the model given by

dS (t) = rS (t) dt+
√
ν (t)S (t) dW1 (t) , (5.154)

dν (t) = κ (θ − ν (t)) dt+ σ
√
ν (t)dW2 (t) (5.155)

where the two Brownian motions have a correlation of

Corr (W1 (t) ,W2 (t)) = ρ. (5.156)

In reality this correlation between the Brownian motions driving the stock
price and the volatility is typically negative (sometimes close to −1!), an
effect which is also referred to as a leverage effect. θ is the long-term limit
of the volatility, κ determines the speed of the drift toward that long-term
value, and σ is the volatility of the volatility.
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A main reason for the success of the Heston model with practitioners is
a (semi-)explicit pricing formula for European calls and puts (see Andersen
[2007] for this version).

THEOREM 5.31 Heston call price formula
(a) In the Heston model specified by Equations (5.154) to (5.156) the price of
a European call with strike K and maturity T is given by

pC = S (0) −Ke−rT ·

· 1
2π

∫ ∞
−∞

exp
((

1
2 − iu

)
ln
(
S (0) erT /K

)
+ h1 − (u2 + 1

4

)
h2

)
ν (0)

u2 + 1
4

du

(5.157)

where i is the complex unit and where we have

h1 = −κθ
σ2

(
δ+T + 2 ln

(
δ−+δ+e

−ξT

2ξ

))
, h2 = 1−e−ξT

δ−+δ+e−ξT , (5.158)

κ̂ = κ− ρσ
2 , δ± = ξ ∓ (iuρσ + κ̂) , (5.159)

ξ =
√
u2σ2 (1 − ρ2) + 2iuσρκ̂+ κ̂2 + σ2/4. (5.160)

(b) Let
ϕ (u,w) = E

(
eiuν(T )+iwx(T )

)
(5.161)

be the joint characteristic function of x(T ) = ln(S(T )/S(0)) and of ν(T ).
Then we have:

ϕ (u,w) = eiwrT+C(T ;u,w)+D(T ;u,w)ν(0) (5.162)

with

d (w) =
√

(iwρσ − κ)2 + w2σ2 + σ2iw, (5.163)

Q (u,w) = α+(w)−iu
α−(w)−iu , α± (w) = κ−iwρσ±d(w)

σ2 , (5.164)

D (T ;u,w) = α+ (w)
1−Q(u,w)ed(w)T α−(w)

α+(w)

1−Q(u,w)ed(w)T , (5.165)

C (T ;u,w) = κθ
[
α+ (w) T + α−(w)−α+(w)

d(w) ln
(
Q(u,w)ed(w)T−1

Q(u,w)−1

)]
(5.166)

Although there is no closed-form solution for the volatility equation, we
know that ν (t) has a noncentral chi-square distribution with suitable degrees
of freedom and noncentrality parameter (see Theorem 4.52). It would there-
fore be tempting to use a direct exact simulation approach for the volatility.
Such an exact algorithm for simulating ν (t) is described in Broadie and Kaya
(2006). Then, given the simulated volatility process, one could use a suitable
discretization scheme (such as e.g. the Euler or the Milstein schemes) for the
stock price process. This will work fine as long as the two Brownian motions
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driving the stock price and the volatility process are independent. However, in
the general case there is one problem: How to obtain the required correlation
between the Brownian motion in the stock price and the volatility equation?
Broadie and Kaya (2006) describe a procedure that includes an inversion of
a Fourier transform and which is unbiased but also slow when compared to
simpler schemes (see Lord et al. [2008]).

A straightforward approach is to use a discretization algorithm to simulate
paths of both the stock price and the volatility. An obvious choice for an
algorithm based on the Euler-Maruyama scheme is the following algorithm.

Algorithm 5.12 Simulating price paths in the Heston model (naive way)

1. Initialize the volatility and the stock price process: ν (0) = ν0, S (0) = s.

2. Choose Δ = T
n with n the number of steps, T the maturity.

3. For j = 1 to n do

(a) Simulate independent random numbers Z ∼ N(0, 1),Y ∼ N(0, 1).

(b) Set W = ρZ +
√

1 − ρ2Y .

(c) Update the volatility:

ν (jΔ) = ν ((j − 1)Δ) + κ (θ − ν ((j − 1)Δ))Δ+

+ σ
√
ν ((j − 1)Δ)

√
ΔW.

(d) Update the log-stock price X(t) = ln(S(t)):

X (jΔ) = X ((j − 1)Δ) +
(
r − 1

2
ν ((j − 1)Δ)

)
Δ+

√
ν ((j − 1)Δ)

√
ΔZ.

4. Interpolate X(t) linearly between the times jΔ, j = 0, 1, ..., n.

Though at first sight the above algorithm seems to be a textbook application
of the Euler-Maruyama scheme, it contains an obvious flaw: While in the
continuous-time setting the volatility process is always nonnegative as the
solution of the above volatility equation, the discretized version in Step 3 (c)
of the algorithm above might attain negative values. Then, one cannot use
its square root in Step 3 (c) and (d) of the next iteration. To get around this
problem, there are various suggestions in the literature (see Lord et al. [2008]
for a systematic treatment of them):
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1. Absorption: Use the positive part of the previous iterate, i.e.

ν (jΔ) = ν ((j − 1)Δ)+ + κ
(
θ − ν ((j − 1)Δ)+

)
Δ+

+ σ

√
ν ((j − 1)Δ)+

√
ΔW,

and use ν ((j − 1)Δ)+ in the simulation step for X (jΔ).

2. Reflection: Use the absolute value of the previous iterate, i.e.

ν (jΔ) = |ν ((j − 1)Δ)| + κ (θ − |ν ((j − 1)Δ)|)Δ+

+ σ
√

|ν ((j − 1)Δ)|
√

ΔW,

and use |ν ((j − 1)Δ)| in the simulation step for X (jΔ).

3. Use the absolute value |ν ((j − 1)Δ)| only in the square-root part in
both the computation of the next iterate for the volatility and the stock
price. Otherwise, use the standard Euler scheme for both processes
(method of Higham and Mao [2005]).

4. Partial truncation: Use the positive part ν ((j − 1)Δ)+ for the square-
root part in both the computation of the next iterate for the volatility
and the stock price. Otherwise, use the standard Euler scheme for both
processes (see Deelstra and Delbaen [1998]).

5. Full truncation: Use the positive part of the previous iterate only in
the drift and the diffusion term, i.e.

ν (jΔ) = ν ((j − 1)Δ) + κ
(
θ − ν ((j − 1)Δ)+

)
Δ+

+ σ

√
ν ((j − 1)Δ)+

√
ΔW,

and use ν ((j − 1)Δ)+ in the simulation step for X (jΔ) (see Lord et al.
[2008]).

Lord et al. (2008) report that the full truncation method performs best. Thus,
if one wants to use the above algorithm in a way ensuring nonnegativity of
the volatility process one should simply use the full truncation modification
in Step 3 (c) and (d) of the algorithm. We will demonstrate its performance
at the end of the next section.

5.11.1 The Andersen algorithm for the Heston model

The intensive application of the Heston model in the financial world led to
a search for more accurate methods than the above Euler-Maruyama scheme.
While an algorithm in Kahl and Jäckel (2006) based on an implicit variant of
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the Milstein scheme promises positivity of the volatility process for a certain
parameter constellation, it performed poorly in a test series by Andersen
(2007). On the other hand the exact simulation algorithm by Broadie and
Kaya (2006) is quite slow and also has further problems when applied to the
Heston model. However, there is a recent algorithm by Andersen (2007) that
combines ideas of exact simulation with the speed of an Euler-Maruyama
discretization scheme. The main idea is to

• use a suitable (Gaussian) approximation of the noncentral chi-square
distribution for simulating the volatility process,

• use a suitable discretization scheme for the subsequent simulation of the
stock price.

Here, great care is taken to achieve a correct correlation between both sim-
ulated processes, volatility and stock price paths. The presentation of the
algorithm is quite involved. A detailed presentation of the derivation of all
results and modifications is beyond the scope of a textbook. We present the
main ideas step by step as they also give interesting insights.

Step 1: Approximation of the volatility process

As the volatility process is always nonnegative, the approximation should
also be. Further, as the volatility process has a (noncentral) chi-square dis-
tribution, one is tempted to use a displaced squared Gaussian as an approxi-
mation. Indeed, Andersen suggests the use of a combined method. For large
values ν̂ (t) he uses a square of a Gaussian distribution as an approximation
while for small values ν̂ (t) an expression obtained from an asymptotic expan-
sion of the density of ν̂ (t+ Δ) is the choice. More precisely, let

ν̂ (t+ Δ) = a (b+ Zν)
2
, (5.167)

with Zν ∼ N (0, 1) and a, b determined via matching the relevant first two
moments. The following lemma shows that a moment matching with this
choice can be obtained if the first two moments of the conditional distribution
for ν̂ (t+ Δ) given ν̂ (t) are suitably related. Indeed, it can be shown that this
requires that ν̂ (t) should not be too small. We need the explicit form of the
first two moments of the volatility process (see Theorem 4.52):

m := m (ν̂ (0)) := E (ν (Δ) |ν (0) = ν̂ (0)) = θ + (ν̂ (0) − θ) e−κΔ (5.168)

s2 := s2 (ν̂ (0)) := Var (ν (Δ) |ν (0) = ν̂ (0))

=
ν̂ (0)σ2 exp (−κΔ)

κ
(1 − exp (−κΔ)) +

θσ2

2κ
(1 − exp (−κΔ))2 (5.169)
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LEMMA 5.32
With the above notation let Ψ := s2/m2. In the case of Ψ ≤ 2 we set

b2 = 2Ψ−1 − 1 +
√

2Ψ−1
√

2Ψ−1 − 1 > 0, (5.170)

a =
m

1 + b2
. (5.171)

Then, for ν̂ (t+ Δ) generated as in Equation (5.167), we have matching of
the first two moments of the approximating and the exact distribution, i.e.

m = E (ν̂ (Δ)) , s2 = V ar (ν̂ (Δ)) . (5.172)

As the above lemma is only valid for a restricted choice of Ψ, we also
have to look for an approximation of the exact (conditional) distribution of
ν(t+Δ) given ν̂(t) is small. We therefore look at the density of the chi-square
distribution with η degrees of freedom, which has the form

fχ2 (x; η) = const · e−x/2xη/2−1. (5.173)

By noting that as the relevant value of the degrees of freedom for the distri-
bution of the volatility process

η = 4κθ/σ2 (5.174)

typically satisfy
η < 2 (5.175)

in practical applications, in this case the above density attains large values
around 0 (which corresponds to the behaviour of the noncentral chi-square
density for small values of ν̂(t)). Indeed, the cumulative distribution function
can in this case be well approximated by a distribution function having a
point mass in 0. Andersen (2007) chooses an approximation of the form

F (x) = p+ (1 − p)
(
1 − e−βx

)
, x ≥ 0 (5.176)

with p and β again determined by moment matching. With the inverse of F ,

F−1 (u) =

{
0 , 0 ≤ u ≤ p
1
β ln
(

1−p
1−u
)
, p < u < 1 , (5.177)

we can use the inverse transformation method to simulate the next step value
of the volatility process as

ν̂ (t+ Δ) = F−1 (UV ) , UV ∼ U (0, 1) . (5.178)

The moment matching to obtain p and β can be done for sufficiently small
values of ν̂ (t) as ensured by the following lemma.
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LEMMA 5.33
We use the notation of Lemma 5.32. In the case of Ψ ≥ 1 we set

p =
Ψ − 1
Ψ + 1

∈ [0, 1) , β =
1 − p

m
=

2
m (Ψ + 1)

> 0. (5.179)

Then, for ν̂ (t+ Δ) generated as in Equation (5.178) we have matching of the
first two moments of the approximating and the exact distribution, i.e.

m = E (ν̂ (Δ)) , s2 = Var (ν̂ (Δ)) . (5.180)

By the two lemmas above, for all possible values of Ψ (i.e. for all possible
values of ν̂ (t)) we have a method to generate the next step value ν̂ (t+ Δ)
of the volatility process. To decide which one to use in the overlapping area
[1, 2], Andersen (2007) suggests using Ψsw = 1.5 as a switching point, i.e.
above Ψsw we use the first and below Ψsw we use the second method.

Algorithm 5.13 Quadratic exponential (QE) method for simulating the
volatility in the Heston model

1. Given ν̂(t), compute m = m(ν̂(t)) and s2 = s2(ν̂(t)) as given in Equa-
tions (5.168) and (5.169).

2. Compute Ψ = s2/m2.

3. Draw a uniform random number Uv.

4. If Ψ ≤ Ψsw then

• Compute a, b as in Lemma 5.32

• Compute Zν = Φ−1 (Uv)

• Set ν̂ (t+ Δ) = a (b+ Zv)
2

5. Otherwise

• Compute b, p as in Lemma 5.33

• Set ν̂ (t+ Δ) = F−1 (UV )

As the variance s2 decreases with decreasing stepsize Δ, the parameter Ψ
approaches 0 with decreasing stepsize. Thus, for small stepsizes usually the
first method in Algorithm QE above is always used.

REMARK 5.34 Andersen (2007) also gives a volatility approximation
by a truncated Gaussian distribution which performs worse than QE.
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Step 2: Simulation of the stock price process

We now derive the recursion for the stock price process. It is clear that due
to the nonlinear appearance of the normal random number Zν in each step of
the volatility simulation, a standard log-stock price simulation of the form

ln
(
Ŝ (t+ Δ)

)
= ln

(
Ŝ (t)

)
− 1

2
ν̂ (t)Δ +

√
ν̂ (t)

√
ΔZs (5.181)

will lead to a correlation problem. Indeed, choosing Corr (Zs, Zν) = ρ will
not produce the required correlation between the two processes. We thus
need another approach, which relies on the exact correlation between the log-
stock price and the volatility process. From the joint characteristic function
in Theorem 5.31, Andersen (2007) inferred a limit for small values of Δ:

Corr (ln (S (Δ)) , ν (Δ)) = ρ+ o (Δ) . (5.182)

Thus, the conditional correlation between ln(Ŝ(t + Δ)) and ν̂(t + Δ) given
ln(Ŝ(t)) and ν̂(t) should also equal ρ. Using Itô’s formula we obtain

d ln (S (t)) =
(
r − 1

2
ν (t)
)
dt+

√
ν (t)dW1 (t)

=
(
r − 1

2
ν (t)
)
dt+ ρ

√
ν (t)dW2 (t) +

√
1 − ρ2

√
ν (t)dW̃ (t)

with W̃ (t) independent of W2 (t). Plugging in the representation for ν (t)

solved for
t+Δ∫
t

√
ν (u)dW2 (u) we arrive at

ln (S (t+ Δ)) = ln (S (t)) + rΔ +
ρ

σ
(ν (t+ Δ) − ν (t) − κθΔ) +

+
(
κρ

σ
− 1

2

) t+Δ∫
t

ν (u) du+
√

1 − ρ2

t+Δ∫
t

√
ν (u)dW̃ (u). (5.183)

In this formula, the two integrals involving the volatility have to be approxi-
mated. For the first one, the simplest form would be

t+Δ∫
t

ν (u)du ≈ Δ (γ1ν (t) + γ2ν (t+ Δ)) . (5.184)

Here, γ1 = 1, γ2 = 0 (left approximation) or γ1 = γ2 = 1
2 (central approx-

imation) are simple choices. The normal variable Zν used to simulate the
volatility step has to be independent of W̃ . This is essential for our method
below to generate the correct correlation between the two processes Ŝ and ν̂.
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Further, note that given ν̂(t) and given
∫ t+Δ

t
ν (u) du, we obtain

⎛
⎝

t+Δ∫
t

√
ν (u)dW̃u

∣∣∣∣∣∣ ν (t) ,

t+Δ∫
t

ν (u) du

⎞
⎠ ∼ N

⎛
⎝0,

t+Δ∫
t

ν (u) du

⎞
⎠ (5.185)

which allows an easy simulation of this integral. Thus, we can suggest a
discretization step for the stock price as

ln
(
Ŝ (t+ Δ)

)
= ln

(
Ŝ (t)

)
+ rΔ +

ρ

σ
(ν̂ (t+ Δ) − ν̂ (t) − κθΔ)+

+ Δ
(
κρ

σ
− 1

2

)
(γ1ν̂ (t) + γ2ν̂ (t+ Δ))+

+
√

Δ
√

1 − ρ2
√
γ1ν̂ (t) + γ2ν̂ (t+ Δ) · Z (5.186)

with Z ∼ N (0, 1) independent of the simulated volatility process. In Propo-
sition 10 of Andersen (2007) a weak consistency property of the algorithm is
shown. This in particular implies that for small values of Δ the conditional
correlation between the increments of the approximating processes for stock
price and the volatility are (approximately) of the right order. Thus, we can
give Algorithm 5.14.

Algorithm 5.14 Stock price paths in the Heston model

1. Given ν̂ (t) simulate ν̂ (t+ Δ) by the algorithm QE given above.

2. Generate a standard normally distributed random number Z.

3. Given ν̂ (t), ν̂ (t+ Δ) and ln
(
Ŝ (t)

)
simulate ln

(
Ŝ (t+ Δ)

)
as in Equa-

tion (5.186) with γ1,γ2 both nonnegative and γ1 + γ2 = 1.

Further refinements (such as martingale corrections, a variant of the algo-
rithm for dealing with time-dependent coefficients in the Heston model, or
refined approximations of the volatility process) are possible, but will not be
presented here. We refer the reader to Andersen (2007) for these details.

Some numerical illustrations will be given in Section 5.11.2 after the intro-
duction of the Heath-Platen estimator.

5.11.2 The Heath-Platen estimator in the Heston model

An algorithm that is particularly suited for barrier options (or other options
that contain payments related to exit or entry events) is the approach by
Heath and Platen (see Heath and Platen [2002]). Although it can deal with a
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more general setting, we will here present it in the framework of the Heston
model. The approach tries to approximate the local dynamics of the Heston
model as closely as possible while preserving analytical tractability of the
approximating process. To introduce it, we need some notation.

Let the stock price and the volatility process (under an already chosen
EMM) be given by

dS (t) = S (t)
(
rdt+

√
ν (t)dW1 (t)

)
, (5.187)

dν (t) = κ (θ − ν (t)) dt+ σ
√
ν (t)

(
ρdW1 (t) +

√
1 − ρ2dW2 (t)

)
(5.188)

and introduce the operator

L0f (t, s, ν) = ft (t, s, ν) + rsfs (t, s, ν) +
1
2
νs2fss (t, s, ν)

+ κ (θ − ν) fν (t, s, ν) +
1
2
νσ2fνν (t, s, ν) + νsσρfνs (t, s, ν) . (5.189)

For a suitably integrable and smooth function g(t, x, y) Itô’s formula implies

E (g (τ, S (τ) , ν (τ))) = g (0, s, ν) + E

(∫ τ

0

L0g (t, S (t) , ν (t)) dt
)

(5.190)

where τ is some exit time defined by

τ = inf {t ≥ 0 |(t, S (t)) /∈ [0, T ) × Γ} (5.191)

for Γ an interval (which is possibly unbounded). Examples of such stopping
times related to options are:

• A simple European option corresponding to τ = T .

• Barrier options corresponding to the general case of
τ = inf {t ≥ 0 |(t, S (t)) /∈ [0, T ) × (H1, H2)}.

For an option with a final payoff given by B = h(τ, S(τ)), we consider its
nondiscounted value (again, we assume that we are working under an EMM)

u (t, s, ν) = E
(t,s,ν) (h (τ, S (τ))) = E (h (τ, S (τ)) |Ft ) (5.192)

which is a martingale (with respect to the filtration Ft generated by (S(.), ν(.)))
given that we have t ≤ τ(ω) and that the option payoff h(., .) is sufficiently
integrable (which we will always assume). This in particular implies

L0u (t, s, ν) = 0, (t, s, ν) ∈ (0, T ) × Γ × [0,∞) . (5.193)

The main idea of Heath and Platen (2002) now is to find a function ũ(t, s, ν)
such that we have

h (τ, S (τ)) = u (τ, S (τ) , ν (τ)) = ũ (τ, S (τ) , ν (τ)) (5.194)
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and that allows for an easy calculation of ū(0, s, ν). Given sufficient inte-
grability of ũ(., ., .), we obtain by Itô’s formula and Equations (5.192), and
(5.194):

u (0, s, ν) = E (h (τ, S (τ)))

= ũ (0, s, ν) + E

(∫ τ

0

L0ũ (t, S (t) , ν (t)) dt
)
. (5.195)

Now the idea for a good choice of ũ(., ., .) in the Heston setting is coupled
to find a good approximating price process that mimics some properties of
the Heston model, but is analytically tractable. Therefore, one introduces a
Black-Scholes type Heston approximation with deterministic volatility

dS̃ (t) = S̃ (t)
(
rdt+

√
ν (t)dW1 (t)

)
, (5.196)

dν̃ (t) = κ (θ − ν̃ (t)) dt (5.197)

together with the operator

L̃0f (t, s, ν) =

ft (t, s, ν) + rsfs (t, s, ν) +
1
2
νs2fss (t, s, ν) + κ (θ − ν) fν (t, s, ν) . (5.198)

For a given initial value of ν̃(0) = ν, we now have

ν̃ (t) = θ + (ν − θ) e−κt. (5.199)

For the special case of a European call option we directly obtain the following.

PROPOSITION 5.35
With the choice of τ = T , h (T, s) = (s−K)+ for some K ≥ 0 we obtain

ũ (0, s, ν) := E

((
S̃ (T ) −K

)+
)

(5.200)

= erTBS (s,K, r, σ̄0, T ) (5.201)

where BS(s,K, r, σ, T ) denotes the Black-Scholes price of a European call with
strike K and maturity T when the underlying starts with initial price s and
has a drift of r and a volatility of σ. We further have

σ̄t :=
√

1
T−t
∫ T
t
ν̃(y)dy =

√
θ − (ν (t) − θ) exp(−κ(T−t))−1

κ(T−t) , (5.202)

L̃0ũ (t, s, ν) = 0, (t, s, ν) ∈ (0, T ) × [0,∞)2 . (5.203)

With the choice of ũ in the proposition we could now use relation (5.195)
to construct an unbiased estimator for u(0, s, ν) (and thus for the option
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price). However, relation (5.203) allows us to subtract L̃0ũ (t, s, ν) under the
integrand and preserve the unbiasedness of the estimator. Even more, by
subtracting it, some terms cancel out compared to Equation (5.195). We
therefore define the Heath-Platen estimator in this setting via the right-
hand side of

u (0, s, ν) = E

((
S̃ (T ) −K

)+
)

= ũ (0, s, ν) + E

(∫ T

0

(
L0 − L̃0

)
ũ (t, S (t) , ν (t)) dt

)
.(5.204)

To use this estimator we still have to compute the integrand:(
L0 − L̃0

)
ũ (t, s, ν) = σν

(
sρũsν (t, s, ν) + 1

2σũνν (t, s, ν)
)

= σνer(T−t)
(
sρBSsσ̄t (s,K, r, σ̄t, T − t) dσ̄t

dν

+ 1
2σ
[
BSσ̄tσ̄t (s,K, r, σ̄t, T − t)

(
dσ̄t

dν

)2
+ BSσ̄t (s,K, r, σ̄t, T − t) d2σ̄t

(dν)2

])
(5.205)

where all the subscripts denote the partial derivatives with respect to the
indicated variables. These partial derivatives are well known by practitioners
and are often calculated anyway. Due to their popularity they even have
special names and are known as the Greeks (see Section 5.15 for more on
them). In particular, they can be obtained in closed form for a European call
in the Black-Scholes setting. We will not state them explicitly here. However,
one should remark that this is the extra work needed for the Heath-Platen
estimator. To use it for a particular option requires that the relevant Greeks
for this option in the Black-Scholes model have to be calculated. In particular,
for barrier options this amounts to some additional work.

To put all this together in the form of an algorithm, one has to simulate N
paths of the stock price, the volatility process, and of

Z (t) = ũ (0, s, ν) + E

(∫ T

0

(
L0 − L̃0

)
ũ (t, S (t) , ν (t)) dt

)
(5.206)

where the explicit form of (5.205) has to be used. For the simulation of this
trivariate process (S, ν, Z), Heath and Platen (2002) use a weak predictor-
corrector scheme. We will use an Euler-Maruyama scheme with full truncation
below to keep the volatility process nonnegative, but of course any other
suitable scheme can be used.

Some numerical comparisons of crude MC, Heath-Platen, and
Andersen estimators

We will illustrate the different performance of the standard method (in par-
ticular, the Euler-Maruyama simulation with full truncation), the Andersen
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Algorithm 5.15 Call pricing with the Heath-Platen estimator
Let N and Δ = T/n be given.

For i = 1 to N do

1. S(i) (0) = s, ν(i) (0) = ν, Z(i) (0) = erTBS(s,K, r, σ̄T , T ).

2. For j = 1 to n do

(a) Generate two independent N(0, 1)-random numbers Y (ij)
1 , Y

(ij)
2 .

(b) Update (S, ν, Z):

S(i) (jΔ) = S(i) ((j − 1)Δ)
(

1 + rΔ +
√
ν(i) ((j − 1)Δ)

√
ΔY (ij)

1

)

ν(i) (jΔ) = ν(i) ((j − 1)Δ) + κ
(
θ − ν(i) ((j − 1)Δ)+

)
Δ +

+ σ

√
ν(i) ((j − 1)Δ)+

√
Δ
(
ρY

(ij)
1 +

√
1 − ρ2Y

(ij)
2

)

Z(i) (jΔ) = Z(i) ((j − 1)Δ) +

+
(
L0 − L̃0

)
ũ ((j − 1)Δ, S ((j − 1)Δ) , ν ((j − 1)Δ))Δ

Use relation (5.205) for the computation of the Z-update!

Estimate the call price by the Heath-Platen estimator

IHP,N =
1
N
e−rT

N∑
i=1

Z(i) (T )

algorithm, and the Heath-Platen estimator by two simple examples. For an
intensive numerical study in particular of the Andersen estimator we refer to
Andersen (2007). There, the excellent performance of the Andersen algorithm
is demonstrated especially for extreme settings of the market coefficients.

First, we will look at a short running European call (maturity T = 0.5)
with moderate market coefficients. We vary both the correlation between
stock price and volatility and the volatility of the volatility. For purposes of
seeing differences, we have chosen a moderate discretization of δ = 0.005 and
N=10,000 simulation runs. As one can see from Table 5.4, the Heath-Platen
estimator typically performs best and leads to a big variance reduction that
decreases with increasing volatility of volatility. However, for the last case,
the Andersen algorithm is closer to the true value which is even outside the
confidence bound for the Heath-Platen estimator. This can be explained by
the fact that due to the discretization scheme used for simulating the price
path, all the estimators are biased. Note in particular the short confidence
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intervals of the Heath-Platen estimator.

Method σ = 0.2 σ = 0.2 σ = 0.7
ρ = −0.15 ρ = −0.8 ρ = −0.8

Heath-Platen estimator 6.54602 6.59101 5.78902
Lower 95% bound 6.54542 6.58864 5.76593
Upper 95% bound 6.54661 6.59338 5.81211

Crude MC estimator 6.53499 6.58481 5.76985
Lower 95% bound 6.47678 6.53440 5.66188
Upper 95% bound 6.59319 6.63522 5.87781

Andersen estimator 6.49917 6.54820 5.83626
Lower 95% bound 6.43985 6.49720 5.72666
Upper 95% bound 6.55849 6.59920 5.94586

Exact value 6.54730 6.59440 5.82040

Table 5.4: Heston Call Prices with T = 0.5, S(0) = K = 100, r = 0.04,
θ = ν(0) = 0.04, and κ = 0.6

As a second example, we have chosen a longer-running European call (matu-
rity T = 5), δ = 0.01, N=50,000, a high volatility of volatility, and a negative
correlation between stock and volatility. Again, the Heath-Platen estimator
performs best, keeping the discretization bias in mind (see Table 5.5).

Method Estimator Lower 95% Upper 95%
Heath-Platen 34.8026 34.7736 34.8316

Crude MC 34.9887 34.5887 35.3886
Andersen 34.5734 34.1791 34.9677

Table 5.5: Heston Call Prices with Exact Value 34.8348, T = 5,
S(0) = K = 100, r = 0.05, θ = ν(0) = 0.09, κ = 2, σ = 1, and ρ = −0.7

To judge the three algorithms, these two examples are not enough. How-
ever, the advantages of the Heath-Platen estimator are obvious (high variance
reduction, best accuracy), but they come on the expense of having to calculate
option price sensitivities, which can be quite tedious and need to be adapted
to each special class of options that should be priced. Therefore, the other
two methods are good alternatives whereas for moderate coefficient choices
we could not see a clear advantage for the Andersen algorithm.
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5.12 Variance reduction principles in non-Black-Scholes
models

We would like to point out some general variance reduction principles in
stock price models that differ from the Black-Scholes one. They can usually
not compete with methods tailored to the particular stock price model (such
as the Heath-Platen estimator for the Heston model). However, they are often
useful for obtaining a first step in the direction of variance reduction.

Principle 1: Use a simpler, but not too simple, approximating price
process in the construction of control variates

When computing an option price by Monte Carlo methods, an obvious can-
didate for a control variate is to use the option payments based on an ap-
proximating Black-Scholes model. For this, the first two moments of the ap-
proximating Black-Scholes price processes should coincide with the first two
moments of the considered stock price process. As the Heath-Platen estimator
has demonstrated, it will be advantageous to imitate as much as possible of
the dynamics of the more complicated stock price process while still keeping
analytical tractability.

Principle 2: Use localized versions of methods developed for simpler
price processes

As generalized stock price processes behave locally like a Black-Scholes model,
localized versions of specialized Monte Carlo methods for pricing particular
types of options should also deliver good results. Even more, as option pricing
in more sophisticated stock price models typically require path simulations by
a numerical discretization scheme, they are dealt with as being local Black-
Scholes models. We give an application of this idea below.

An application: Barrier option pricing with approximating exit
probabilities
The standard method for barrier option pricing is to simulate discretized ver-
sions of stock price path with checks of the barrier condition at the simulated
time instants. As in the Black-Scholes case, this method overestimates the
prices of out-options as it is based on linear interpolation between the sim-
ulated stock prices. Instead, we could argue that between two discretization
points the (log-)stock price process can be well approximated by a Brownian
bridge. One could therefore use one of the Brownian bridge methods pre-
sented for barrier options in the Black-Scholes model in Section 5.6.2. For
example, the suitable variant of Moon’s algorithm (see Algorithm 5.8) would
simply contain a barrier condition check in Step 2 (d)−(f) between every dis-
cretization point of the stock price path. However, it is clear that the absolute
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volatility |σ| has to be replaced by the modulus of the volatility that is valid
for the discretized stock price process on the corresponding interval.

5.13 Stochastic local volatility models

For purposes of pricing highly path-dependent options, models have been
developed that combine the local and the stochastic volatility approaches.
One such model is the Bergomi model (see Bergomi [2005]). The Bergomi
model was developed to price options where the payment depends on different
parts of the stock price path, especially when the price of the option depends
highly on the stock volatility. It admits the following features:

• The volatility of the stock process can be determined by implied vari-
ances of forward variance swaps corresponding to the chosen timedis-
cretization (“market-conform volatility behaviour”).

• It is possible to decouple the evolution of these implied variance pro-
cesses from the spot price evolution.

The stock price model is based on an underlying time structure that is adapted
to the characteristics of the special type of option that has to be valued. Given
a time discretization 0 = T0 < T1 < ... < Tn with Ti = iΔ, the stock price is
assumed to follow a CEV model of the type

dS(t) = S(t) (rt − qt) dt+ S(t)σ(i)
0

(
S(t)
STi

)1−β(i)

dWt (5.207)

for each t ∈ [Ti, Ti + Δ]. The volatility parameters σ(i)
0 , β(i) are piecewise

constant on [Ti, Ti + Δ]. They are readjusted at the beginning of the time
interval. To obtain a price of a corresponding option, we have to model the
distribution of these volatility parameters. The suggestion of Bergomi is to
introduce volatility dynamics via the functions

σ
(i)
0 = σ0

(
ξ(i) (Ti)

)
, β(i) = β

(
ξ(i) (Ti)

)
(5.208)

where the underlying processes ξ(i) (t) are assumed to follow weighted expo-
nential Ornstein-Uhlenbeck (OU) processes, i.e.

ξ(i) (t) = ξ(i) (0) exp
(
ω
{
e−k1(Ti−t)Xt + θe−k2(Ti−t)Yt

})
·

exp
(
−ω

2

2

{
e−2k1(Ti−t)E

(
X2
t

)
+ θ2e−2k2(Ti−t)E

(
Y 2
t

)}) ·

exp
(
−ω

2

2

{
2θe−(k1+k2)(Ti−t)E (XtYt)

})
, (5.209)
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Xt =
t∫
0

exp (−k1 (t− u)) dUu, Yt =
t∫
0

exp (−k2 (t− u)) dZu, (5.210)

Corr (Ut, Zt) = ρ. (5.211)

One could of course use as much Brownian components as one has time
intervals, but the use of a two-dimensional instead of an n-dimensional one is
a compromise with respect to tractability. However, we need at least a two-
dimensional Brownian motion to be able to model short-term and long-term
influences on the volatility dynamics. In the above model the choice of

k1 > k2 (5.212)

implies that Xt can be seen as the short factor and Yt as the long factor.
The characteristic property of the Bergomi model is that the combination of
the CEV stock price model and the exponential OU volatility models allows
a decoupling of producing a good explanation of today’s skew/smile and the
dynamic evolution of the volatility structure over time. We will not go into
further details here but refer the interested reader to Bergomi (2005).

5.14 Monte Carlo option pricing: American and
Bermudan options

Until now, the options we have looked at were those of the European type.
However, at real option markets many traded options can be exercised at any
time before the maturity date (i.e. American type) or can be exercised at a
finite set of time instants (so-called Bermudan options). As the buyer of an
American or a Bermudan option is allowed to choose the exercise time of the
option, the exact time of the payment is not a priori clear to the seller of the
option. However, the payment Bτ for each fixed exercise strategy τ (where τ
is a stopping time with values in [0, T ]) is uniquely determined, as e.g.

Bτ = (K − S (τ))+ (5.213)

for an American put with exercise strategy τ . So, the option price for this
fixed exercising strategy τ is given by

pBτ = E
(
exp−rτ Bτ

)
(5.214)

where the expected value is computed under the unique EMM in the complete
market. As the seller of the option should be prepared against the worst such
strategy (from his point of view) and the buyer should choose that exercise
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strategy that maximizes the value of his option, the price of an American
option is given by

sup
τ∈S[0,T ]

E
(
exp−rτ Bτ

)
(5.215)

where S[0, T ] is the set of all stopping times (adapted to the filtration corre-
sponding to our market model) with values in [0, T ] almost surely.

REMARK 5.36 It is important to understand that as the buyer of the
option can choose any kind of – even strange or suboptimal – exercise strategy,
it is not possible for the seller to perfectly replicate the payment arising from
this strategy. However, it can be shown that in a complete market (such as
the Black-Scholes market), there is an admissible trading strategy with initial
wealth equalling the above defined price of the American option and admitting
a wealth process X∗ (t) satisfying

X∗ (t) ≥ Bt ∀t ∈ [0, T ] a.s. (5.216)

(see Karatzas and Shreve [1998]). Here, Bt denotes the payment resulting
from the American option exercised at time t. Note that we typically cannot
have equality at each time t ∈ [0, T ). This can be seen by an American put
option which at time 0 is out of the money: There K < S (0) yields

(K − S (T ))+ = 0. (5.217)

If we would insist on replication then the wealth process – and therefore the
price of the option – would have to equal zero. However, as it is still possible
that the put option ends up in the money, but never leads to a negative wealth,
a price of zero would therefore create an arbitrage opportunity!

Before continuing, let us define an American contingent claim.

DEFINITION 5.37

An American contingent claim consists of a progressively measurable stochas-
tic process B = {(Bt, Ft)}t∈[0,T ] with Bt ≥ 0 and a final payment Bτ at the
exercise time τ ∈ [0, T ] chosen by the holder of the contingent claim. We
assume in addition that τ is a stopping time, that {(Bt, Ft)}t∈[0,T ] possesses
continuous paths, and that

E

(
sup

0≤s≤T
(Bs)

μ

)
< ∞ for some μ > 1. (5.218)

The suitable analogue to a replication strategy is the term of a hedging
strategy for American contingent claims.
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DEFINITION 5.38
(a) A portfolio process π ∈ A(x) with corresponding wealth process Xπ(t) ≥ Bt
for all t ∈ [0, T ] is called a hedging strategy with price x > 0 for the
American contingent claim B. Let H(x) = H(x;B) be the set of hedging
strategies for B with price x > 0.
(b) p̂ = inf{x > 0 | H(x) �= ∅} is called the fair price of the American
contingent claim.

Equipped with this technical framework, we can now state a result on the
fair price of an American contingent claim.

THEOREM 5.39
The fair price p̂ of an American contingent claim B is given by

p̂ = sup
τ∈S[0,T ]

E
(
e−rτBτ

)
, (5.219)

and there exists a stopping time τ∗ such that the supremum will be attained
for the hedging strategy π∗ corresponding to τ∗.

REMARK 5.40 1. Showing the existence of the optimal stopping strat-
egy τ∗ and the form of the valuation process X∗ (t) (see Karatzas and Shreve
[1998]) is technically involved. However, simple arbitrage arguments yield that
every price for the American contingent claim below or above p̂ generates an
arbitrage opportunity (see Korn and Korn [2001]).

2. By Theorem 5.39 the optimal strategy is to exercise the contingent
claim at the first time τ∗ when the intrinsic value Bτ∗ of the option coincides
with the option price X∗(τ∗). Although this seems to be an explicit solution,
in general neither X∗(t) nor τ∗ have explicit representations. Even in the
simplest case of an American put, numerical methods are needed for their
computation. For further results we refer to Myneni (1992).

Bermudan options are discrete versions of American contingent claims.
Their owner has the right to exercise the option at a finite set of times
t1 < ... < tm.

DEFINITION 5.41
Consider time instants 0 ≤ t1 < ... < tm = T . A Bermudan option consists
of a set of Fti-measurable random variables Bti ≥ 0 and a final payment Bτ
at the exercise time τ ∈ {t1, ..., tm} chosen by the holder of the option. Here,
τ is assumed to be a stopping time and that

E

(
sup

s∈{t1,...,tm}
(Bs)

μ

)
< ∞ for some μ > 1. (5.220)



Simulating Financial Models: Continuous Paths 243

As for American contingent claims, one can state the corresponding theorem
on the fair price (defined similarly to the fair price of American contingent
claims) and the existence of an optimal exercising strategy.

THEOREM 5.42
The fair price p̂ of a Bermudan option B is given by

p̂ = sup
τ∈S{t1,...,tm}

E
(
exp−rτ Bτ

)
, (5.221)

where S {t1, ..., tm} is the set of stopping times with values in {t1, ..., tm}, and
there exists a stopping time τ∗ such that the supremum will be attained for
the hedging strategy (π∗, 0) corresponding to τ∗.

So, if we want to calculate the fair price of an American or a Bermudan
option, we cannot simply generate a large number of price paths by a suit-
able Monte Carlo procedure. We also have to know at each time instant if
exercising of the option would be profitable. But this can only be decided
if the optimal exercise strategy would be known in advance. This leads to
Algorithm 5.16.

Algorithm 5.16 Algorithmic framework for pricing American (Bermudan)
options by Monte Carlo methods

1. Determine the optimal exercise strategy τ∗ for the contingent claim B.

2. Determine the option price E
(
exp−rτ

∗
Bτ∗
)

by Monte Carlo simulation.

While the second step is straightforward (and similar to the pricing of Eu-
ropean options via Monte Carlo), the necessary action in the first step is new.
We will see in the following parts how to do this.

5.14.1 The Longstaff-Schwartz algorithm and regression-
based variants for pricing Bermudan options

The algorithm by Longstaff and Schwartz (2001) is the most popular one
used in real-life applications if we consider Bermudan options on more than
one underlying (for calculating American option prices on one underlying bino-
mial tree methods are typically the much more efficient and easier choice). The
algorithm makes use of the dynamic programming principle of stochas-
tic control (also called backwards induction). To understand this principle
corresponding to the valuation problem of a Bermudan option B with possible
exercise times {t1, ..., tm = T }, we introduce:



244 Monte Carlo Methods and Models in Finance and Insurance

• S (i) as the set of stopping times τ with values in {i, ...,m},
• V (i) = e−rtiBti .

As we do not know the optimal exercise strategy a priori, we start at time
T . Given that the option has not been exercised until then, its value at that
time simply equals its intrinsic value, BT . The net present value of it equals
E(V (m)). Note also that at time T the set S (m) consists of the constant time
m which then yields the optimal stopping time tm = T .

If we go one step backwards in time to the second but last possible exercise
time tm−1, we have to decide at each possible value of the underlying S(tm−1)
if we exercise the option or not. This decision is easy, as we only have to
comparing the value of keeping the option until time T with the value to
exercise it immediately and receive its intrinsic value Btm−1 . The value of
keeping the option is simply given by the net present value at time tm−1 of
the payment BT given the current stock price equals S(tm−1), i.e. it equals

E

(
e−r(T−tm−1)BT |S (tm−1)

)
. (5.222)

Comparing this value of keeping the option with its intrinsic value at time
tm−1 is equivalent to comparing V (m−1) with E (V (m) |S(tm−1)). Depending
on this comparison, the optimal exercise time tτ∗(m−1) (conditioned on not
having exercised before tm−1 and on the actual price Stm−1) equalsm or m−1.
As we now know how we can proceed in an optimal way from each possible
price vector S(tm−1), we can again go one step backwards in time and do the
same considerations to obtain the optimal strategy at time tm−2 and so on.
Thus, we arrive at Algorithm 5.17.

Algorithm 5.17 Dynamic programming for calculating the price of
Bermudan options

1. Set i = m, τ (i) = m.

2. At each time ti with i = m−1, ..., 0 determine the optimal (conditional)
exercise strategy τ (i) ∈ S (i) via:

τ (i) =
{

i , if V (i) ≥ E (V (τ (i+ 1)) |S (ti) )
τ (i+ 1) , else

3. At time t = 0 the stopping time tτ(0) is the optimal exercising strategy
and the fair price of the Bermudan option is given by E(V (τ(0))).

If we could calculate all the required conditional expectations in this algo-
rithm, we would have indeed solved the pricing problem for the Bermudan
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option B. However, this is typically not the case. On the other hand, as the
stock price S(t) is a Markov process, by assuming that Bt is of the form

Bt = f (S(t)) (5.223)

for some suitable function f , we know that we have the relations

V (i) = g (i, S (ti)) = e−rtif (S(ti)) , (5.224)
E (V (j) |S (ti) ) = u (S (ti)) for i < j (5.225)

with a suitable measurable function u. Note that this function depends on
i and j, but we omit this for ease of notation. If we choose a parametric
family U of functions u, we can set up a regression model to approximate the
conditional expectation in the least-squares sense by solving the problem

min
u∈U

E

[
E

(
g (i+ 1, S (ti+1)) |S (ti)

)
− u (S (ti))

]2
. (5.226)

We thus need a specification of the function space U and simulated data to
solve the above regression problem. Popular choices for the family U are:

• U :=
{
u : R

d → R
∣∣u (x) =

∑∞
i=1 aix

i, ai ∈ R
}
,

• U :=
{
u : R

d → R

∣∣∣u (x) =
∑k
i=1 aiHi (x) , ai ∈ R,

}
whereHi : R

d → R

are basis functions and k ∈ N.

The Laguerre polynomials used by Longstaff and Schwartz (2001) are ex-
amples of such basis functions. Note that both parameterizations of U are
linear in the coefficients ai. Therefore, the above least-squares problem is in-
deed a linear regression problem. Given we have N independent copies S(n)

tj ,
n = 1, ..., N , j = 1, ...,m of simulated stock price paths, we can explicitly
solve the regression problem

min
a∈Rk

1
N

N∑
j=1

(
g
(
i+ 1, S(j) (ti+1)

)
−

k∑
l=1

alHl

(
S(j) (ti)

))2

. (5.227)

Its solution is the optimal coefficient vector (a∗1, . . . , a
∗
N ) of the linear regres-

sion problem. We thus compute the pseudoinverse of the design matrix via

H (i, j) =
(
H1

(
S(j) (ti)

)
, ..., Hk

(
S(j) (ti)

))
, (5.228)

H (i) =
(
H (i, 1)′ , ..., H (i, N)′

)′
, (5.229)

H+ (i) =
(
H (i)′H (i)

)−1

H (i)′ , (5.230)

and obtain
a∗ (i) = H+ (i) g (i+ 1) (5.231)



246 Monte Carlo Methods and Models in Finance and Insurance

where g(i + 1) is the data vector, i.e. the vector containing all entries g(i +
1, S(j)(ti+1)). The solution of this problem also yields an estimate Ĉ (S; i) for
a functional description of the continuation value of the Bermudan option at
time ti (i.e. the value of not exercising the option and holding it further),

Ĉ (S; i) =
k∑
l=1

a∗l (i)Hl (S) (5.232)

with Hl (S) being component l in notation (5.228) with argument S.
In their original paper, Longstaff and Schwartz (2001) use only points Sj(ti)

in the regression problem (5.227) with a positive intrinsic value f(Sj(ti)). As
stated in Wendel (2009), numerical experiments show that it is advisable to
follow this strategy.

We have now put all the ingredients together to formulate the Longstaff-
Schwartz algorithm for pricing Bermudan options, Algorithm 5.18.

Variants, convergence, and additional aspects of the LS-algorithm

1. Showing convergence of the Longstaff-Schwartz algorithm is a subtle busi-
ness. There are two different sources for differences between the approximat-
ing option price V̂ (0) and the actual one:

• A discretization error due to the estimation of the conditional expecta-
tion by a projection on a finite set of basis functions H1, ..., Hk.

• A Monte Carlo error as the expected value (= the option price) is esti-
mated by an arithmetic mean.

This convergence issue is dealt with in a rigorous and detailed way in Clément
et al. (2002). There, the authors introduce

V k(0) = sup
τ∈S(H1,...,Hk)

E
(
e−rτBτ

)
(5.233)

where the set S(H1, ..., Hk) only contains exercise strategies based on the
solution of the regression problems with the basis functions H1, ..., Hk. As
a second value, they introduce V k,N (0) which equals the Longstaff-Schwartz
estimate V̂ (0) as computed above with the k basis functions and N simulated
stock price paths. Under some technical conditions Clément et al. (2002)
prove:

• With growing number k of basis functions the approximating option
price V k(0) converges towards the real option price, i.e. we have

V k(0) k→∞−−−−→ V (0) (5.234)

if the sequence of basis functions is total in a suitable L2-function space.
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Algorithm 5.18 Longstaff-Schwartz algorithm for pricing Bermudan options

1. Choose a set of basis functions H1, ..., Hk.

2. Generate N independent paths Sj(t1), ..., Sj(tm), j = 1, ..., N of the
stock price at the possible exercise times of the Bermudan option.

3. Fix the terminal values of the Bermudan option for each path, i.e. set

V̂ (m, j) := e(−rT )f
(
Sj (T )

)
, j = 1, ..., N.

4. Continue backward in time: For i = m− 1, ..., 1

• Solve the regression problem (5.227) at time ti, i.e. calculate the
vector of optimal weights â∗ (i) at time ti by

â∗ (i) = H+ (i) V̂ (i+ 1)

• Calculate the estimates of the continuation values as

Ĉ
(
Sj (ti) ; i

)
=

k∑
l=1

a∗ (i)lHl

(
Sj (ti)

)
, j = 1, ..., N.

• For j = 1 to N set

V̂ (i, j) :=
{
e−rtif

(
Sj (ti)

)
, if e−rtif

(
Sj (ti)

) ≥ C
(
Sj (ti) ; i

)
V̂ (i+ 1, j) , else

5. Set V̂ (0) := 1
N

∑N
j=1 V̂ (1, j).

• With growing number N of simulated stock price paths the Longstaff-
Schwartz value V k,N (0) converges almost surely towards the approxi-
mating option price V k(0), i.e. we have

V k,N (0) N→∞−−−−→ V k(0) P a.s. (5.235)

To state it again: For a fixed number k of basis functions the LS-algorithm
converges to the solution of the optimal stopping problem (5.233) and not to
the option price if we let the number N of simulated paths tend to infinity.
There remains the bias generated by the finite number k. Although the two
convergence results are very nice from a mathematical point of view, they
make it hard to give a direct implication how many basis functions to choose.
At least, the results in Clément et al. (2002) ensure that we have a con-
vergence rate of O(1/

√
N) for the Longstaff-Schwartz value towards V k(0).
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However, we do not have a similar result for the number of basis functions.
We therefore try to give some advice when we consider numerical examples
below.
2. Longstaff and Schwartz (2001) claim that the algorithm yields a lower
bound for the price of the Bermudan option as the computed exercise strat-
egy (given by the estimates of the continuation functions) is not necessarily
optimal. Given the convergence results of Clément et al. (2002), this is cer-
tainly asymptotically correct when the number N of simulated stock price
paths is large. However, as Glasserman (2004) points out, the LS-algorithm
above contains a mixing of a high and a low bias: As the optimization of the
exercise strategy is only done on a finite set of paths, the obtained option value
based on exactly these paths might be higher than the real value. Therefore,
to ensure a low biased estimate of the option price, the LS-algorithm should
contain a modified last step that is based on new, independently simulated
stock price paths:

• Simulate M new stock price paths and calculate

V̂ (0) :=
1
M

M+N∑
j=N+1

V̂ (1, j). (5.236)

In practical applications the LS-algorithm often already shows a low bias.
3. In Tsitsiklis and van Roy (1999, 2001) the authors introduced a variant of
the LS-algorithm where in Step 4 the following value iteration procedure is
used for V (i, j):

V̂ (i, j) :=
{
e−rtif

(
Sj (ti)

)
, if e−rtif

(
Sj (ti)

) ≥ Ĉj
(
Sj (ti) ; i

)
Ĉj
(
Sj (ti) ; i

)
, else

(5.237)

Using new stock price paths for estimating V̂ (0) yields a low biased estimator.
4. Further improvements of the LS-algorithm
a. The regression step in the LS-algorithm could also consist of nonlinear or
nonparametric regression methods that might better capture the functional
form of the conditional expectation (see Egloff [2005]). Indeed, this is a cur-
rent research topic.
b. If the value of a corresponding European option is available at each point
where a decision about exercising or not then this European value is a lower
bound for the real continuation value and can be higher than the one obtained
by the calculations based on the simulated paths. One should therefore only
exercise the option if the intrinsic value is above both, the computed contin-
uation and the European value.
c. Rasmussen (2005) uses European options as control variates.
5. Computational effort and choices of basis functions: As we will see
in the numerical example below, the LS-algorithm often works quite well with
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a simple choice of basis functions such as all monomials of the underlyings up
to the third order. Including the payoff function together with its square also
is often helpful. One could further recommend including the pricing formula
for the European version of the option under study. However, as this formula
might be quite hard to evaluate itself, this could lead to extremely long com-
puting times even for low dimensions.
6. Pricing with a parametric exercise boundary: An alternative simple
method that can be used to value American or Bermudan options is a param-
eterization of the exercise boundary. More precisely, we suggest a parametric
family for the form of the optimal exercise boundary and then try to deter-
mine the parameter that delivers the highest estimate of the option price. We
will demonstrate this method in more detail when dealing with Bermudan
interest rate options in Section 5.19.4.
7. Use of the LS-algorithms for pricing American options: In Bally
et al. (2005) a convergence result for the approximation of American option
prices by Bermudan option prices is given. It states that Lp-error bounds are
of the order 1/

√
m.

Numerical illustration of the LS-algorithm: A Bermudan max-call

We highlight the behaviour of the LS-algorithm by looking at the following
example of a Bermudan max-call on three stocks given by the payoff function

h (s1, s2, s3) = (max {s1, s2, s3} −K)+ (5.238)

where we have used a time horizon of T = 3, an interest rate of r = 0.1, and
a dividend rate of div = 0.1. Note that this results in an additional discount
factor of exp(−0.1t) that enters the stock price (compare to Section 5.5.3).
All stocks have a volatility of 0.2. Further, the log-returns between the stocks
have correlations of ρ12 = −0.25 = −ρ13, ρ23 = 0.3. This is achieved by using

σ =

⎛
⎜⎜⎝

1
5 0 0

− 1
20

√
15

20 0
1
20

29
100
√

15

√
3659

100
√

15

⎞
⎟⎟⎠ ≈

⎛
⎜⎝

0.2 0 0
−0.05 0.1936 0

0.05 0.0749 0.1561

⎞
⎟⎠

Our aim is to calculate price estimates for varying stepsizesm of the Bermudan
options. We also want to demonstrate the effect of different choices of the basis
functions. Although we have tested more basis sets (see Wendel [2009] for a
detailed study), we here only give the results for those listed in Table 5.6.

The first test case is for S1(0) = S2(0) = S3(0) = K = 100 and m = 4,
m = 50, i.e. the option is at the money. The results for N = 50,000 paths
(together with 95%-confidence intervals) are given in Table 5.7. The numbers
show some remarkable facts:

• The differences between the prices for different basis sets are much more
pronounced for large m.
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Set Basis functions
0 1 1 1
I s1, s2, s3 + set 0
II all monomials up to power 3
III all monomials up to power 3 + h (s1, s2, s3)
IV all monomials in one variable up to power 3 + h (s1, s2, s3)

+ s1s2, s1s3, s2s3, s1s2s3
V set IV + h (s1, s2, s3)

2
, h (s1, s2, s3)

3

VI all monomials in one variable up to power 7

Table 5.6: Sets of Basis Functions

• The two very simple basis sets 0 and I are clearly not suitable.

• The basis sets without mixed monomials yield smaller prices than those
with mixed monomials.

• The basis sets with mixed monomials and the payoff function (i.e. III,
IV, V) yield similar prices.

This behaviour returned through all our test sets and was even more pro-
nounced for higher values of m such as m = 250 or of N = 500,000 (see also
Wendel [2009]). For m = 4, N = 500,000, we also computed the price for a
basis that included all monomials up to power 3 and the European option
price. It could be verified for larger values of N (where the good basis sets
lead to nearly exactly the same value) that the resulting price was indeed the
best estimate for 50,000 paths. As it is already computationally intensive to
calculate this European price, the computing times for the Bermudan price
were often more than an hour (compared to some seconds for other basis sets).

The main consequence out of the numerical experiment is that the choice
of the basis set should include functions that resemble the form of the payoff
function and of the European option pricing function. However, the inclusion
of the European option pricing function hinges critically on the possibility of
an efficient computation of this function.

5.14.2 Upper price bounds by dual methods

As the suitable variant of the Longstaff-Schwartz algorithm yields a lower
bound for the Bermudan option price, there remains the question how much it
actually deviates from the exact price. Therefore, an upper bound to the price
is needed to judge the quality of the estimate. If then the difference between
those two estimates would be small, the price of the Bermudan option can be
predicted with high accuracy. Here, we will present the idea of upper bounds
via considering a dual optimization problem to the optimal stopping problem
which yields the price of the Bermudan option. This idea goes back to Rogers
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m = 4 m = 50
Set Price 95%CI Price 95%CI
0 16.838 [16.692, 16.983] 15.795 [15.699, 15.8903]
I 17.002 [16.649, 17.155] 16.732 [16.615, 16.850]
II 17.318 [17.163, 17.472] 17.842 [17.717, 17.966]
III 17.261 [17.104, 17.417] 18.172 [18.022, 18.323]
IV 17.446 [17.287, 17.605] 17.979 [17.829, 18.129]
V 17.479 [17.322, 17.637] 18.088 [17.939, 18.236]
VI 17.247 [17.095, 17.399] 17.620 [17.494, 17.740]

Table 5.7: Bermudan LS-Option Prices for Different m and Different Basis
Functions (at the Money Option)

(2002) and to Haugh and Kogan (2004) who looked at the dual optimization
problem of the optimal stopping problem which characterizes the price of a
Bermudan option.

We will continue to use the discounted terms of the previous section. The
starting point is the observation that due to the fact that not exercising the
Bermudan option at time ti may not be the optimal strategy, we obtain

V̂ (i) ≥ E

(
V̂ (i+ 1) |S (ti)

)
(5.239)

which means that the (discounted) value function process is a super-martingale.
Due to e.g. Myneni (1992) we even know that the value function is the min-
imal super-martingale dominating the (discounted) payoff process g(i, S(ti)),
the so-called Snell envelope of the payoff process. However, as the Snell
envelope is usually hard to compute, we have to look for another dominating
super-martingale. With it, we would have an upper bound for the option
price. Consider therefore a discrete-time martingale M(i), i = 0, 1, ..,m that
is defined at exactly the possible exercise times of the Bermudan option and
that starts with M(0) = 0. Using the optional sampling theorem results in

E (g (τ, S (tτ ))) = E (g (τ, S (tτ )) −M (τ))

≤ E

(
max

k=1,..,m
{g (k, S (tk)) −M (k)}

)
. (5.240)

As the inequality remains correct when we take the infimum over all possible
martingales on the right-hand side, we can then take the supremum over all
possible stopping times τ on the left part of the inequality and arrive at:

V (0) = sup
τ

E (V (τ)) ≤ inf
M

E

(
max

k=1,..,m
{V (k) −M (k)}

)
. (5.241)

Hoping that our lower bound for the option price is a good one, we introduce
the following martingale (which is also inspired by the Doob-Meyer decompo-
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sition of the super-martingale V̂ ):

M̂ (k) :=
k∑
i=1

Δ (i) :=
k∑
i=1

(
V̂ (i) − E

(
V̂ (i) |S (ti−1)

))
. (5.242)

Note that if we had used the optimal exercise strategy for the computation
of V̂ (i), then it would be a martingale and M̂ would be zero. Thus, the Δ(i)
measures the quality of the lower bound for the option price at each time. The
main problem of this approach is that we have to compute the conditional
expectations in relation (5.242). This will lead to a nested simulation (see the
Andersen-Broadie algorithm below). What remains to be done is to

• use the Longstaff-Schwartz stopping times τ̂ (i) ,

• estimate the expectations in relation (5.242) to obtain estimates for the
martingale M̂(.),

• use the estimations for a (crude) Monte Carlo estimation of the expec-
tation on the right-hand side of Equation (5.241) to estimate an upper
bound for the option price.

While it is a straightforward Monte Carlo task to estimate E(V̂ (i)|S(ti−1)),
we can obtain V̂ (i) in a nearly identical way, by noting that we have

V (i) = E
(
g
(
τi, S

(
tτ(i)
)) |S (ti)

)

=

{
g (i, S (ti)) , if g (i, S (ti)) ≥ Ĉ(S(ti); i),

E
(
g
(
τ(i+ 1), S

(
tτ(i+1)

)) |S (ti)
)

if g (i, S (ti)) < Ĉ (S (ti) ; i) .

=

{
g (i, S (ti)) , if g (i, S (ti)) ≥ Ĉ(S(ti); i),

E (V (i+ 1) |S (ti) ) if g (i, S (ti)) < Ĉ (S (ti) ; i) .
(5.243)

Having made these considerations we can set up the primal-dual algorithm
of Andersen and Broadie (2004), Algorithm 5.19. We use the same notation
and data as in the Longstaff-Schwartz algorithm. In particular: Let τ̂ (i) be the
stopping times obtained from the Longstaff-Schwartz algorithm characterized
by the continuation functions Ĉ (S; i) =

∑k
l=1 a

∗
l (i)Hl (S).

Further aspects of the Andersen-Broadie algorithm

1. Note that as we estimated the conditional expectations in the relation
defining the martingale M , we cannot use the martingale argument to deduce
that Ȳ upN1

is indeed an estimator for an upper bound of the option price.
However, Andersen and Broadie (2004) show that we are actually estimating
M(i) by M(i) + ε(i). The origin of ε(i) is the Monte Carlo error that we can
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Algorithm 5.19 Andersen-Broadie algorithm to obtain upper bounds for the
price of a Bermudan option
Repeat the following iteration independently for j = 1 to N1:

1. Simulate a path of the stock price Sj(t1), ..., Sj(tm) at the possible ex-
ercise times of the Bermudan option. Set Sj(t0) = S(0) and M j(0) = 0.

2. For i = 0 to m− 1:

• Compute V̂ (i, j) according to (5.243) if i > 0.

• Simulate N2 stock price subpaths Ŝk(ti),...,Ŝk(tτ(i+1)) that start
with Ŝk(ti) = Sj(ti).

• Estimate E(V̂ (i+ 1)
∣∣Sj(ti) )) by

E

(
V̂ (i+ 1, j)

∣∣Sj(ti) )
)

=
1
N2

N2∑
k=1

g
(
τ(i+ 1), Ŝk

(
tτ(i+1)

))
.

• For i > 0 set

Δj(i) = V̂ (i, j)−E

(
V̂ (i, j)

∣∣Sj(ti−1)
)
, M j(i) = M j(i−1)+Δj(i).

3. Set V̂ (m, j) = g(m,Sj(T )) and

Δj(m) = V̂ (m, j) − E

(
V̂ (m, j)

∣∣Sj(tm−1) )
)
,

M j(m) = M j(m− 1) + Δj(m).

4. Calculate Y up (j) = maxi=1,..,m

{
g
(
i, Sj (ti)

)−M j (i)
}
.

Finally, estimate the upper bound for the option price by

Ȳ upN1
=

1
N1

N1∑
j=1

Y up (j).

assume to be normally distributed with a zero mean. By noting that we have

E

(
max

i=1,...,m
(g (i, S (ti)) −M (i) − ε (i))

)
≥ E (g (i∗, S (ti∗)) −M (i∗) − ε (i∗))

= E (g (i∗, S (ti∗)) −M (i∗)) = E

(
max

i=1,...,m
(g (i, S (ti)) −M (i))

)
(5.244)

(where i∗ is the random index where the maximum is attained) by the op-
tional sampling theorem, we see that the estimator is indeed biased high.
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2. Confidence intervals for the Bermudan option price
As we now have upper and lower Monte Carlo estimators for the option price,
we could give a confidence interval that is based on the usual asymptotic nor-
mality assumption for large numbers of simulation runs. Let therefore L̄N
be a lower Monte Carlo estimator based on N simulated stock price paths
(such as the suitably modified Longstaff-Schwartz value) with a correspond-
ing sample variance of σ̄2

L. Further, let σ̄2
Y up denote the sample variance of

the Andersen-Broadie upper bound based on N1 simulated stock price paths.
We then obtain an approximate 95%-confidence interval for the price of the
considered Bermudan option as[

L̄N − 1.96
σ̄L√
N
, Ȳ upN1

+ 1.96
σ̄Y up√
N1

]
. (5.245)

Note that as both estimators are biased in the relevant direction, the confi-
dence interval is clearly conservative. With a lower and an upper estimator
at hand, one can also define the “real” estimator as the mean (L̄N + Ȳ upN1

)/2.
3. Computational effort for computing the upper bounds
It is clear that the nested simulation to obtain the Anderson-Broadie upper
bound is the bottleneck in the computation of the two bounds for the Bermu-
dan option price. Andersen and Broadie (2004) report that this computation
is responsible for 60% to 95% of the total CPU time. One can also obtain an
upper bound of simulation steps as

Nmax = N1 ·N2 ·m (5.246)

where of course the subpaths typically have a much smaller length than m.
4. Numerical illustration: A Bermudan put option on a single stock
We consider the simplest possible Bermudan option, a put on a stock with
just m = 2 exercise times. This is of course a toy example, but one which
gives a lot of insight. As parameters we took

T = 1 = t2, t1 = 0.5, r = 0.1, σ = 0.2, S(0) = K = 100.

First, we should think about a simple but efficient basis for the regression
approach. As the payoff is bounded, polynomials might not be a good choice.
Including the payoff itself seems to be a good idea. However, the payoff is
0 for S > K while the option value at time ti is strictly positive, even if we
have S(t1) > K. To take care of this, we introduced a multiple of a Gaussian
density with a mean of K into the basis. This is getting very small for large
S(t1), but remains positive and adds the additional value needed at the strike
of K. Not surprisingly, the very simple basis of

H1 (s) = 1, H2 (s) = (K − s)+ , H3 (s) = exp
(

1
2

(x−K)2
)

already showed an excellent performance. We look at the different steps:
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Step 1: Determining the regression coefficients
Here, we distinguished between the Longstaff-Schwartz approach of basing the
calculations only on those paths that are in the money in some time instants
and the approach that takes into account all paths. As for the first set of
paths the average value of payoffs is higher, the constant regression coefficient
is higher as in the second method. This is compensated in the second method
by higher coefficient for the other two basis functions, in particular for the
third one. Two typical representatives obtained by 100,000 paths are:

aLS = (1.8094, 0.6923, 2.1532) LS-approach
aAP = (1.0882, 0.7458, 2.8550) all paths used

Step 2: Obtaining the lower bound
With the above regression coefficients the lower bounds are very close to the
exact value of 4.313. We again present some typical values based on 100,000
paths, but the two methods performed similar:

priceLSlow = 4.3006, 95%-confidence interval [4.2594, 4.3418]
priceAPlow = 4.3092, 95%-confidence interval [4.2681, 4.3483]

Step 3: Obtaining the upper bound
For the upper bound, we used 1,000 paths that included the simulation of
1,000 “subpaths” at each time instant t1, t2 for obtaining the inner conditional
expectations. Again, both methods performed similarly well:

priceLSup = 4.3294, 95%-confidence interval [4.3155, 4.3434]
priceAPup = 4.3188, 95%-confidence interval [4.3060, 4.3317]

It is very important to point out that for more complicated options results
of such a quality cannot be obtained so easily. However, even in our simple
setting, a naive approach might lead to inferior results. If we consider the basis
consisting of all monomials up to the power of 3 then we obtain the following,
very bad lower bounds (based on the same number of paths, computed with
all paths), but acceptable upper ones:

priceAPlow = 3.4146, 95%-confidence interval [3.3701, 3.4512]
priceAPup = 4.3064, 95%-confidence interval [4.2445, 4.3684]

An explanation for the bad performance (even in this simple example) is the
use of a basis of unbounded functions for explaining a nonlinear bounded pay-
off.
6. Upper bounds with nonnested simulation by the variant of
Belomestny et al. (2009)
As already pointed out by Andersen and Broadie (2004), the nested simu-
lation for estimating the conditional expectations E(V̂ (i + 1)

∣∣Sj(ti) )) is the
main consumer of CPU time in the algorithm. The idea of Belomestny et al.
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(2009) is an alternative approach to compute the martingale M as defined in
relation (5.242). They assume that the payoff-function Bt of the Bermudan
option is Lipschitz continuous in the price and 1/2-Hölder continuous in the
time variable. With this, they refer to the martingale representation theorem
that results in the representation

M (i) =
∫ ti

0

U (s) dW (s) for i = 1, ...,m (5.247)

with a suitable progressively measurable integrand U . Instead of approxi-
mating the conditional expectations in Equation (5.242) of M , the idea is to
approximate the integrand U in Equation (5.247) by a simple process UP with
P a partition 0 = T0 < T1 < TJ = T that includes at least all the possible
exercise times ti of the Bermudan option. The suggestion for the process UP

now is

UPd (Tj) = E

(
Wd (Tj+1) −Wd (Tj)

Tj+1 − Tj
g
(
τ (i) , S

(
tτ(i)
)) | S (Tj))

)
(5.248)

for ti−1 ≤ Tj < ti. Here, d denotes component d of the relevant stochastic
processes. The stopping times τ(i) are the Longstaff-Schwartz stopping times
that we assume to be already given. The conditional expections in Equation
(5.248) are now estimated in the following way:

• Generate N3 paths of the n-dimensional Brownian motion W (Tj), j =
1, ...,J and infer the stock prices at the exercise times from them.

• For all j = 1, ...,J estimate the integrand process UP (Tj) by a least-
squares method from the simulated paths of the Brownian motion cor-
responding to the stock price.

• From the so-obtained estimator ÛPd (Tj, S) get an estimate for M by

M̂P (i, S) =
∑

Tj∈P,Tj<ti

n∑
d=1

ÛPd (Tj, S) (Wd (Tj+1) −Wd (Tj)). (5.249)

Then it only remains to perform a final estimation step:

• Simulate N4 paths Sj(t1), ..., Sj(tm) of the stock price at the exercise
times and estimate the upper bound for the Bermudan option price by

Ȳ up,BBSN4
=

1
N4

N4∑
j=1

max
i=1,...,m

(
g
(
i, Sj (ti)

)− M̂P
(
i, Sj
))
. (5.250)

The resulting algorithm is reported to be fast and accurate. For further de-
tails and numerical examples the reader is refered to Belomestny et al. (2009)
where also convergence considerations and the possibility to use their algo-
rithm as a control variate in the Andersen-Broadie algorithm are discussed.
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5.15 Monte Carlo calculation of option price sensitivities

5.15.1 The role of the price sensitivities

Calculating the price of an option is the central task when it comes to
purchasing or selling an option. However, after this initial transaction has
been performed, the main question is to judge and to hedge the risks that
one has incurred by entering this option position. If one ignores the risk of
having chosen a completely wrong model, then there still remains the risk of
having chosen wrong input parameters and the risk of the random evolution
of the security price itself. To obtain a feeling for the effect of small changes
in these input parameters on the value of an option, traders are calculating
the so-called Greeks. This name is reminiscent of the fact that most (but not
all!) option price sensitivities (i.e. the partial derivatives of the option price
with respect to the input parameters) are abbreviated by Greek letters. The
standard option price sensitivities are:

∂

∂S1(t)
X(t) Δ “delta”,

∂2

∂S1(t)2
X(t) Γ “gamma”

∂

∂t
X(t) Θ “theta”,

∂

∂r
X(t) ρ “rho”,

∂

∂σ
X(t) “vega”.

Here, X(t) can also represent the price of a portfolio of options. Note that Δ
and Γ measure the impact of price changes, Θ that of the decreasing time to
maturity. vega and ρ, on the other hand, are measures for the consequence of
possible errors in the input parameters volatility and interest rate.

To eliminate the influence of these possible errors or changes at least locally
(i.e. for small changes/errors), traders try to make a portfolio of options neu-
tral against changes in these parameters. They obtain this by buying/selling
appropriate further securities or derivatives such that the (portfolio) sensitiv-
ities with respect to the different parameters are zero. This can always be
obtained by setting up suitable linear portfolios.

While for all options with explicit price formulae one can do this analyti-
cally, a lot of exotic options (even in the Black-Scholes model) exist where this
cannot be done. Even more, in local or stochastic volatility models or even
more advanced models, there is only the chance for obtaining the sensitivities
numerically. We will therefore discuss some methods below.

REMARK 5.43 1. The most popular Greeks are of course those that
are derived from the Black-Scholes formula. We will only state the Δ of a
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European call option explicitly:

Δcall = Φ (d1 (t)) = Φ

(
ln (S1 (t) /K) +

(
r + 1

2σ
2
)
(T − t)

σ
√
T − t

)
. (5.251)

2. In the Black-Scholes model the Δ of an option always determines the
stock part in the replication strategy for the option.

3. The concept of the Greeks can be generalized to options on multiple
underlyings. Then we have a delta for each partial derivative with respect to
one of the underlyings. The same modification applies to the now even mixed
second partial derivatives with respect to the underlyings.

We will now present some methods to obtain the option price sensitivities,
but will compare their numerical performance in a separate subsection.

5.15.2 Finite difference simulation

The straightforward method to calculate a derivative f ′ (x) numerically is
to replace the corresponding differential quotient by a difference quotient

f (x+ h) − f (x)
f (x)

for a nonzero value of h. As h is small, but does not go to zero, one talks of a
finite difference. To state the method formally, let us assume that the price
of an option X (t) can be written as

X (t) = X (t;S (t) , r, σ) . (5.252)

Note that not all exotic options allow such a representation, as there are
options such as the Asian options whose value depends on the whole past of
the stock price movement before time t. They need a more involved notation,
but can in principle be treated similarly. However, having the above assumed
dependence, we can now approximate the sensitivities by a suitable difference
quotient. For example, the Δ of an option can be approximated by either

• the forward difference

Δ =
∂X (t)
∂s

≈ Δ̃for :=
X (t;S (t) + h, r, σ) −X (t;S (t) , r, σ)

h
(5.253)

• or the central difference

Δ ≈ Δ̃cen :=
X (t;S (t) + h, r, σ) −X (t;S (t) − h, r, σ)

2h
. (5.254)
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From a heuristical point of view, one would believe that the central difference
is a better approximation to the partial derivative as it takes into account
information of the option price from both sides of S (t) while the forward
difference only looks to the right. Indeed, the following estimates for the bias
for both methods support such an argument. For ease of notation, we consider
a function f (x) and assume it to be differentiable up to the third order with
bounded derivatives. Then, a Taylor series expansion in x yields

f (x+ h) = f (x) + f ′ (x)h+
1
2
f ′′ (x) h2 +

1
6
f ′′′ (x) h3 + o

(
h3
)
,(5.255)

f (x− h) = f (x) − f ′ (x)h+
1
2
f ′′ (x) h2 − 1

6
f ′′′ (x) h3 + o

(
h3
)
.(5.256)

Using these two relations we obtain the estimates for the bias of the forward
difference as

Bfor (f) =
∣∣∣∣f (x+ h) − f (x)

h
− f ′ (x)

∣∣∣∣+O (h) (5.257)

and those of the central difference as

Bcen (f) =
∣∣∣∣f (x+ h) − f (x− h)

2h
− f ′ (x)

∣∣∣∣+O
(
h2
)
. (5.258)

Of course, this advantage of the central difference having a higher order of ap-
proximation for the derivative than the forward difference has to be compared
to the effort of getting the additional term f (x− h). If this term (which in
our setting is an option price calculated with a different input parameter) is
easily available then central differences are certainly preferable.

How to compute the ingredients?

If we have decided which variant of the finite difference estimator we should
use, then the next question concerns the computation of the two ingredi-
ents. Let us again focus on the computation of Δ. All relevant values
X (t;S (t) , r, σ), X (t;S (t) + h, r, σ), and X (t;S (t) − h, r, σ) are expected
values. If we can calculate them analytically then no Monte Carlo methods
are needed at all. If, however, we need the Monte Carlo method to calculate
them, then there are multiple ways to do that. Note also that the finite differ-
ence estimator already has a bias. This should not be increased by the Monte
Carlo error. On the other hand, a Monte Carlo estimator that is more precise
than the order of the bias cannot correct for it. Of course, one can still try to
reduce the variance of the Monte Carlo estimator. If we look at the relevant
quantities to estimate,

Δ̃for =
X (t;S (t) + h, r, σ) −X (t;S (t) , r, σ)

h
, (5.259)

Δ̃cen =
X (t;S (t) + h, r, σ) −X (t;S (t) − h, r, σ)

2h
(5.260)
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then we can hope for a small variance if the two expressions in the denominator
are highly correlated. If X(.) is monotonic in S then by an argument that
we already used in the antithetic variate section, we could hope to have a
small variance if we use the same random numbers (i.e. the same simulated
Brownian paths) for the computation of both expectations. This principle is
called the principle of common random numbers (or path recycling)
and is also sometimes considered explicitly as a method for variance reduction.

Indeed, convergence of the finite difference estimators are well-studied (see
e.g. Glasserman [2004] and specialized literature on numerical methods for
partial differential equations). We will only highlight the fact that with the
choice of the central finite difference and a stepsize hn with

hn = O
(
n−1/5

)
(5.261)

one obtains an order of convergence of O(n−2/5) and has a bias of order
O(h2

n) = O(n−2/5). Note also that we cannot choose the stepsize h too small,
as then round-off errors might dominate the computations. A practical sug-
gestion to overcome this is given in Jäckel (2003): Given that ε is the machine
precision of the computer (this can be identified with the smallest possible
positive number in the computer) one should choose the stepsize

h∗ = 4
√
εS (t) . (5.262)

This is obtained by a heuristical error analysis and the argument that for this
choice bias and round-off error are of the same order. However, to obtain a
good overall performance, for given n relation (5.262) only tells us that we
should not choose hn < h∗. In total, we would recommend:
To compute the delta of an option with a finite difference method (and a given
number n of simulated stock price paths), use the central finite difference

Δ̃cen =
X (t;S (t) + h, r, σ) −X (t;S (t) − h, r, σ)

2h
, (5.263)

with path recycling for a stepsize of hn = n−1/5 (if it is not smaller than h∗).

Computations of other Greeks

As long as we only consider first derivatives, the above described method
(and recommendation) stays the same: Simply calculate the option prices for
two values θ1 and θ2 of the parameter of interest θ with

θ1 = θ − h, θ2 = θ + h (5.264)

via using path recycling. Then, form the corresponding central difference
estimator θ̃cen. This of course stays the same if we consider an option on
many assets where we e.g. have many deltas (i.e. one for each underlying).
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If we need a second order derivative such as gamma, then we can again
use a central difference. For this we simply use as input the corresponding
finite differences as estimates for the first derivatives needed, i.e. we obtain
(in simplified terms of the function f):

f(t+h)−f(t)
h − f(t)−f(t−h)

h

h
=
f (t+ h) − 2f (t) + f (t− h)

h2
(5.265)

Advantages and disadvantages of finite differences

The main strength of the finite difference method is that it is always ap-
plicable if the corresponding derivative exists. We only have to be able to
calculate the required option prices. There are no further requirements. Also,
they can be used in a multiasset setting with obvious modifications (in fact,
one only needs to use the notation of partial derivatives, nothing more).

Their main disadvantage is that their use introduces a bias into the calcu-
lations, the bias caused by the fact that we approach a derivative by finite
difference. Thus, in addition to the Monte Carlo error and the possible dis-
cretization error for simulating the stock price paths, a third source of error
enters the computations.

5.15.3 The pathwise differentiation method

The pathwise differentiation method is based on the ability to obtain a
corresponding derivative with respect to the required parameter for each path
of the functional of the stochastic process and on the validity of interchanging
this differentiation with the expectation. More precisely, if B = f (S (T )) is
the payoff of an option and B is differentiable with respect to the initial value
S (0) of the stock price, then the delta of this option can be obtained via

∂

∂S (0)
E (B) = E

(
f ′ (S (T ))

∂S (T )
∂S (0)

)
(5.266)

if it is allowed to interchange the differentiation of the left-hand side of this
equation with the expectation. This is obviously the case if f (.), f ′ (S (T )),
and ∂S(T )

∂S(0) are bounded. At least the last boundedness assumption is rarely
satisfied. So, one typically has to use a special justification argument for dif-
ferent options. Further, global differentiability of the option payoff is typically
not given. However, we will use the pathwise differentiability method very ef-
ficiently in connection with the likelihood ratio method in Section 5.15.5. For
the general case, we use the notation

∂

∂θ
E (B) = E

(
f ′ (S (T ))

∂S (T )
∂θ

)
. (5.267)
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Note that the corresponding pathwise differentiation Monte Carlo estimator

IPDE (θ;N) :=
1
N

N∑
i=1

f ′
(
S(i) (T )

) ∂S(i) (T )
∂θ

(5.268)

is unbiased if the representation (5.267) is valid.

The multidimensional case: The forward and the adjoint method

We now explictly consider the multidimensional case (see Giles and Glasser-
man [2006]). Think of an exotic option where the pathwise derivatives cannot
be easily calculated, and on top of this assume that the price of the underly-
ing follows an SDE that might not be solvable in closed form. Consider the
m-dimensional SDE

dS (t) = b (S (t)) dt+ σ (S (t)) dW (t) (5.269)

where b is R
m-valued, σ an m× d-matrix, and we assumed the SDE to have a

unique solution. With the stepsize of h = T/N we introduce the corresponding
Euler-Maruyama approximation at time (n+ 1)h by

Sh (n+ 1) = Sh (n+ 1) + b
(
Sh (n)

)
h+ σ

(
Sh (n)

)√
hZ (n+ 1) (5.270)

with Sh (0) = S (0) and Z(i) independent d-dimensional standard Gaussian
random vectors. Let f : R

m → R be a function that satisfies conditions such
that we can calculate the following delta by the chain rule:

∂

∂Sj (0)
E (f (S (T ))) = E

(
m∑
i=1

∂f (S (T ))
∂Si (T )

∂Si (T )
∂Sj (0)

)
(5.271)

If we have all those derivatives in closed form then we can start the Monte
Carlo simulation. If, however, we have to calculate them numerically, then we
use the above Euler-Maruyama scheme to approximate the sum in (5.271) by

m∑
i=1

∂f
(
Sh (N)

)
∂Shi (N)

Δij (N) , Δij (n) =
∂Shi (n)
∂Shj (0)

(5.272)

To obtain Δij (N) – if we do not already have an explicit form – we can
simulate it by the Euler-Maruyama scheme above and thus have to simulate

Δij (n+ 1) = Δij (n)+

+
m∑
k=1

∂bi

∂Shk
Δkj (n)h+

d∑
l=1

m∑
k=1

∂σil

∂Shk
Δkj (n)

√
hZl (n+ 1) (5.273)
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with the obvious component notation for the market coefficient functions b, σ
both evaluated at Sh(n) and with Δ(0) = Im (Im the m-dimensional identity
matrix). By introducing the matrix D(n) via

Dij (n) = δij +
∂bi

∂Shk
h+

d∑
l=1

∂σil

∂Shk

√
hZl (n+ 1) (5.274)

with δik = 1 for i = k and δik = 0 else, we obtain the relation

Δ (n+ 1) = D (n)Δ (n) = D (n) · ... ·D (0)Δ (0) . (5.275)

From this we get the representation for the vector of all pathwise deltas as

∂f
(
Sh (N)

)
∂Sh (0)

=
∂f
(
Sh (N)

)
∂Sh (N)

D (N − 1) · ... ·D (0)Δ (0) . (5.276)

There are now two main ways to calculate this vector of deltas.

(a) The forward method:
Use relation (5.275) to calculate the right side of representation (5.276). This
includes N matrix multiplications which require O(Nm3) operations.

(b) The adjoint method:
Look at the right side of representation (5.276), but start with its left-most
term. By introducing the adjoint relation

V (N) :=

(
∂f
(
Sh (N)

)
∂Sh (N)

)′
, V (n) = D (n)′ V (n+ 1) (5.277)

where ′ denotes the transposition, there is a second way to calculate

∂f
(
Sh (N)

)
∂Sh (0)

= V (0)′Δ (0) . (5.278)

Note that we have replaced the matrix multiplications by N matrix-vector
products which require only O(Nm2) operations.

Which method to use?

It is clear that both methods deliver exactly the same values. With regard
to the necessary operations, if we only want to calculate the deltas of a single
option, the adjoint method is much more efficient (compare the orders of
operations needed). Indeed, the savings are substantial. However, if we want
to calculate the deltas of many options on the same underlyings, then there
is an advantage for the forward method as it explicitly determines Δ(N − 1)
which can be reused for the delta calculation of all these options. So, in total,
the forward method should be used if many options (a whole book) on only
some underlyings are considered. If, however, we have only a few options but
written on many underlyings, then the adjoint method is preferable.
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More Greeks:

The above presented methods can be generalized to the computations of
pathwise vegas or pathwise gammas given the option payoff is sufficiently
smooth. We refer the reader for the detailed formulae in these cases to Giles
and Glasserman (2006).

5.15.4 The likelihood ratio method

While in the pathwise differentiation method the main property was the
differentiable dependence of each stock price path from the parameter of in-
terest, in the likelihood ratio method we make use of the differentiability of
the density of the stock price with respect to this parameter. More precisely,
assume that we have the relation

E (f (S (T ))) =
∫
f (S) g (S) dS (5.279)

with g(.) being the density of the stock price at time T . Then, the dependence
of the expectation on a parameter θ related to the stock price is summarized in
the density g(.). If we could now interchange the differentiation with respect
to the parameter θ with the integration, then we obtain

∂

∂θ
E (f (S (T ))) =

∫
f (S)

∂

∂θ
g (S) dS =

∫
f (S)

∂
∂θg (S)
g (S)

g (S) dS. (5.280)

With the definition of the likelihood ratio (or score function) as

w (S; θ) :=
∂
∂θg (S)
g (S)

=
∂ ln (g (S))

∂θ
(5.281)

we can thus – still assuming validity of the interchanging of limits – calculate
the partial derivative of the expectation as an expectation with a transformed
payoff function:

∂

∂θ
E (f (S (T ))) =

∫
f (S)w (S; θ) g (S) dS

=:
∫

Ψ (S; θ) g (S) dS = E (Ψ (S (T ) ; θ)) . (5.282)

From this representation we can deduce (by the law of large numbers) that
the likelihood ratio estimator

ILR (θ;N) :=
1
N

N∑
i=1

f
(
S(i) (T )

)
w
(
S(i) (T ) ; θ

)
(5.283)

is an unbiased and strongly consistent estimator for the desired derivative.
Note one particular advantage of this method: The weight function w (S; θ) on
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the right side of Equation (5.283) is independent of the form of the underlying
option! Thus, the weights (at least their functional form) can be reused when
the same price sensitivity of a different option shall be calculated. Of course,
to obtain Greeks of higher order such as the gamma, one can apply the method
in an iterative way.

To illustrate the method, we calculate the weights corresponding to the
delta and the rho in the one-dimensional Black-Scholes model. Here, the
density of the stock price process at time T is given by

g (S) =
1

S
√

2πσ2T
exp

(
−
(
ln(S/S(0)) − (r − 1

2σ
2)T
)2

2σ2T

)
(5.284)

which leads to the weights of

w
(
S(i) (T ) ; Δ

)
=
W (i)(T )
σS(0)T

, w
(
S(i) (T ) ; ρ

)
=
W (i)(T )

σ
(5.285)

where we have used the explicit form of the simulated stock price S(i) (T ).
Having derived these formulae, we can see that there are (at least) two good

reasons to use the likelihood ratio method for the computation of the Greeks
of an option when we compare it to the other two already presented methods:

(i) Comparison to finite difference methods:

Compared to the likelihood ratio method, the discretization error of the
derivative is a second source for errors entering the computation of the Greeks
in the finite difference method. In particular, it is well-known that numerical
differentiation is an ill-posed problem. This is avoided by the likelihood ratio
as it does not need a discretization of a derivative.

(ii) Comparison to the pathwise differentiation method:

An obvious advantage of the likelihood ratio method compared to the path-
wise differentiation method is the fact that no differentiability or continuity
assumption for the payoff function of the option is needed. This allows con-
sideration of even discontinuous payoffs such as digital options.

5.15.5 Combining the pathwise differentiation and the
likelihood ratio methods by localization

By having a close look at the likelihood ratio estimator for the delta of a
simple European call in the case of the Black-Scholes model,

ILR (Δ;N) =
1
N

N∑
i=1

(
S(i) −K

)+

w
(
S(i); θ

)
(5.286)
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one can realize that the presence of the weight in the estimator results in an
increase of the variance compared to the crude Monte Carlo estimator for the
call price. Indeed, the weight attains big values exactly when the stock price
estimator attains big values, thus amplifying the variance of the call payoff.
On the other hand, the call payoff is very smooth in all points different from
the strike, and its derivative is much simpler than the original payoff. We
thus use a combination of the likelihood ratio and the pathwise differentiation
method a localization procedure. We highlight it in the simple European
call example: we decompose the payoff function as

(S (T ) −K)+ =
[
(S (T ) −K)+ − φδ (S (T ))

]
+ φδ (S (T )) (5.287)

where φδ (S (T )) is a function that is differentiable and coincides with the call
payoff outside an interval of the form [K − δ,K + δ]. A possible choice of such
a smoothing function would be

φK (S (T )) =
1

4K
S (T )2 1{S(T )∈[0,2K]}+(S (T ) −K)+ 1{S(T )/∈[0,2K]}. (5.288)

We then only apply the likelihood ratio method to the first term in the repre-
sentation (5.287) (i.e. only locally around the strike K) and use the pathwise
differentiation method to value the (artificially introduced) option given by
the final payoff φδ (S (T )). This yields the following representation of the
delta of the call:

Δ = e−rT
∂

∂S (0)

[
E

(
(S (T ) −K)+ − φδ (S (T ))

)
+ E (φδ (S (T )))

]

= e−rTE

([
(S (T ) −K)+ − φδ (S (T ))

] W (T )
S (0)σT

)
+

+ e−rTE

(
φ′δ (S (T ))

∂S (T )
∂S (0)

)
. (5.289)

Note that in this way we avoid big products in the first expectation. For the
special choice of φK above we obtain

Δ = e−rTE

([
(S (T ) −K)+ − 1

4K
S (T )2

]
W (T )
S (0)σT

1{S(T )≤2K}

)
+

+ e−rTE

(
∂S (t)
∂S (0)

[
1

2K
S (T ) 1{S(T )≤2K} + 1{S(T )>2K}

])
(5.290)

which can easily be simulated in the usual way. It should also be noted
that the application of the localization approach gets more involved in higher
dimensions, as then the construction of smoothing functions is more involved.

REMARK 5.44 A technically very advanced method for computing rep-
resentations of the Greeks similar to the ones obtained by the likelihood ratio
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method is based on the application of the so-called Malliavin calculus (see
the excellent survey paper of Fournié et al. [1999]). However, as long as
there is an explicit form of the density of S there is no real need to introduce
the relevant technical machinery. If this is not the case, then it is typically
very hard to explicitly compute Malliavin derivatives that are needed to ob-
tain representations of the Greeks. We therefore omit the presentation of the
Malliavin calculus approach for the Greeks in this book.

5.15.6 Numerical testing in the Black-Scholes setting

To test the efficiency of the methods of the previous sections we consider
some examples in a Black-Scholes setting where analytical solutions serve as
a benchmark. We will compare finite differences, the likelihood ratio method,
and the combined localization method when it is applicable.

Example 1: European calls

With the test data of S (0) = 80,K = 100, r = 0.1, σ = 0.3, T = 1 we
computed the delta, the gamma, and the vega of a European call by the like-
lihood ratio method, the corresponding localized likelihood ratio method with
smoothing function φK as in Equation (5.288). The speed of the convergence
of the different methods is illustrated by the results in Table 5.8 where we
have chosen the values of 100, 10,000 and 100,000 for N .

Greek Method N 100 10,000 100,000 Exact value
Δ Likelihood ratio 0.3937 0.4111 0.3929
Δ Loc. Likel. ratio 0.3960 0.4000 0.3967 0.3972
Δ Finite Difference 0.4131 0.4031 0.3950
Γ Likelihood ratio 0.0143 0.0167 0.0156
Γ Loc. Likel. ratio 0.0167 0.0158 0.0161 0.0161
Γ Finite Difference 0.0090 0.0146 0.0165
vega Likelihood ratio 27.38 32.14 29.97
vega Loc. Likel. ratio 31.98 30.89 30.95 30.85
vega Finite Difference 30.58 31.37 30.18

Table 5.8: Estimates for Δ,Γ, and V ega of a European Call

In all cases of the estimates for the Greeks of the European call, the local-
ized likelihood ratio method performed best, followed by the finite difference
method. As could be expected, the finite difference method has the biggest
problem with the calculation of gamma.
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Example 2: Digitals

For digital options given by the final payment of

B = 1S(T )≥K (5.291)

the advantages of the localization method is becoming even clearer as we have
a noncontinuous payoff function. However, here a second order polynomial
is not enough as the smoothing function φδ (S (T )). To smooth the payoff
function we now need a third-order polynomial connecting the possible values
0 and 1 of the digital payments. Note in particular that for digitals the
pathwise differentiation method is definitely not available.

Greek Method N 100 10,000 100,000 Exact value
Γ Likelihood ratio 1.5*E-4 1.3*E-4 1.4*E-4
Γ Loc. Likel. ratio 1.2*E-4 1.4*E-4 1.4*E-4 1.4*E-4
Γ Finite Difference 0.0000 -7.2*E-4 3.9*E-4
vega Likelihood ratio 0.2854 0.2927 0.2631
vega Loc. Likel. ratio 0.2368 0.2628 0.2589 0.2679
vega Finite Difference 0.2805 0.2950 0.3153

Table 5.9: Estimates for Γ and vega of a European Digital Call

Our results computed in this situation (see Table 5.9 with identical test
data as in the call example above) clearly underline the comments given in the
European call example. Here, both likelihood ratio methods outperformed the
finite difference method. A particular critical behaviour was often shown by
the finite difference method for the calculation of gamma. The method needed
a long time to get at least the sign correct and then it still was unstable.

REMARK 5.45 For more details on the numerical performance of the
different methods for calculating the Greeks we refer the reader to Fournié
et al. (1999).

Computation of the Greeks for Bermudan options

In the above presentations, we implicitly restricted ourselves to European
options. For Bermudan options we can make use of the results of Piterbarg
(2004) for Bermudan interest rate derivatives. He examines the application of
the likelihood ratio method and of the pathwise derivative method for Bermu-
dan options. One of his results states that the application of the likelihood
ratio method for the computation of the Greeks can be done similarly to the
European setting. In particular, after an (approximately) optimal exercise
strategy has been determined, then one should identify the Bermudan option
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with a European one with a payment structure given by the optimal exercise
strategy which is now known. The application of the pathwise delta method
requires more technical results. We refer the reader to Piterbarg (2004).

5.16 Basics of interest rate modelling

So far in all financial models the interest rate was either assumed to be
constant or not explicitly modelled. However, there is a big need to have a
suitable model for the interest rate as:

• Interest rate-related trades (also called fixed income trades) have a
much higher volume than stock-related trades.

• Interest rates are not as volatile as stock prices, but a look at their
empirical dynamics shows that they are far from being constant.

It would now be tempting to use a suitably modified stock price model for
modelling interest rates, but there are many empirical and economical reasons
for not doing so, as such:

• Stock prices are (in tendency) increasing with time, interest rates tend
to move around some specific level.

• There are many interest rates around (for different maturities), not just
the interest rate.

• Interest rates are not traded, only derivatives on the interest rate are.

• It is not obvious which process to model.

• The value of a bond at maturity is already fixed, its value at any date
before maturity is random.

• There are bonds running up to 50 years.

• There is a huge variety of interest rate products.

Mainly, there are three approaches to interest rate modelling in the literature
(we often follow Björk [2004] and Brigo and Mercurio [2001] in the remaining
sections of this chapter).

1. The short rate approach where the evolution of the interest rate for
loans that only last an infinitesimal time span is modelled.

2. The forward rate approach (or Heath-Jarrow-Morton [HJM] frame-
work) where the evolution of a whole interest rate curve over time is
modelled.



270 Monte Carlo Methods and Models in Finance and Insurance

3. The market model approach where the evolution of a finite set of
simple market interest rates is modelled.

We will consider all three approaches in detail and in particular will comment
on the use of Monte Carlo methods.

5.16.1 Different notions of interest rates

The basic object in interest modelling is the so-called zero bond.

DEFINITION 5.46
A zero bond consists of a payment of 1 at maturity T . The set of all current
zero bond prices P (t, T ) with t ≤ T as a function of their maturities T is
called the discount curve or the term structure of bond prices.

The discount curve has to be distinguished from the price paths of a par-
ticular zero bond P (s, T ) for s ≤ T with a fixed maturity T . The discount
curve has to be decreasing, as money today has a higher value than receiving
the same amount tomorrow when the interest rate is positive. Empirical dis-
count curves contain nearly no visual information, which is the main reason
for looking at a transformation of the discount curve, the (simple) yield curve.

DEFINITION 5.47
(a) The simple yield r (0, T ) of a zero coupon bond with maturity T is defined
as the equivalent constant interest rate that yields the actual zero bond, i.e. it
is given by

P (0, T ) = (1 + r (0, T ))−T . (5.292)

(b) The simple forward rate f (0;T1, T2) on the interval [T1, T2] is today’s
simple yield for this period and is defined via

P (0, T2)
P (0, T1)

= (1 + f (0;T1, T2))
−(T2−T1) . (5.293)

The curve of all simple yields shows the market’s expectations of the be-
haviour of the interest rate in the future.

Some standard forms of it are presented in Figure 5.6. A flat term structure
of the yields means that there is no time preference. This is often a convenient
assumption for theoretical considerations but rarely observed in real life. The
normal structure is based on the idea that someone giving money away for a
longer time has to be compensated for this with a higher interest rate. With
an inverse structure the market is assuming that the interest rate today is too
high and that it will decrease in the future. A humped curve is a mixture of a
normal and an inverse situation. Also, combinations of these standard forms
can appear.
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Flat term structure Normal term structure 
 
 
 
 
 
 
 
Inverse term structure Humped term structure 
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FIGURE 5.6: Standard Forms of Yield Curves

One can deduce more notions of interest rates from the prices of zero bonds.

DEFINITION 5.48

(a) The (infinitesimal) forward rate f (t, s) at time t for the future time s is
defined as

f (t, s) = − ∂

∂s
ln (P (t, s)) for s ≥ t. (5.294)

(b) The (infinitesimal) short rate r (t) at time t is defined by

r (t) = f (t, t) . (5.295)

5.16.2 Some popular interest rate products

Besides zero bonds there is a vast amount of products on the interest rate
market. We will only present some popular ones.

DEFINITION 5.49

A coupon bond consists of a final payment of 1 at time T and coupon
payments c at the times 0 ≤ t1 < t2 < ... < tn ≤ T .

As a coupon bond is a portfolio of a zero bond with maturity T and c zero
bonds with maturities ti, i = 1, ..., n, we obtain its P c(0, T ) as

P c (0, T ) = P (0, T ) + c

n∑
i=1

P (0, ti). (5.296)
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DEFINITION 5.50
In a forward contract on a zero coupon bond party A agrees to deliver B at
time T0 a zero coupon bond with maturity T > T0. B in return pays the fixed
price of BF for this bond. BF will be chosen such that the initial value of the
forward contract equals zero. The value BF is then called the (T0−) forward
price of the T -bond.

The forward price is calculated via a replication argument:

• A has to buy the T -bond today for a price of P (0, T ) to be able to
deliver a T -bond at time T0.

• To be able to pay exactly BF at time T0, party B has to buy today BF
zero bonds maturing at time T0. This costs BFP (0, T0) at time t = 0.

The forward contract has zero initial value if both these strategies have the
same value which leads to:

BF =
P (0, T )
P (0, T0)

. (5.297)

It should be emphasized that the value of a forward contract equals zero only
at the start of its life. As then the zero bond prices change randomly the
value of the above replication strategy also changes. Thus, the forward price
at time t has also changed to (use the same replication argument as above!):

BF (t) =
P (t, T )
P (t, T0)

. (5.298)

Exchange traded forward contracts are called futures contracts. They have
special features such as daily payments into the so-called margin account that
should prevent losses from the default of party A or B.

Besides fixed coupon payments, we also consider floating rate payments.
They are typically linked to the evolution of a market rate such as the 3-
month LIBOR (London interbank offer rate) rate. This rate is the interest
rate for a 3-month loan between banks at the London stock exchange. Similar
rates exist for different maturities (6 months, 9 months, 12 months, ...) or
places (the EURIBOR corresponds to the same deals at the Deutsche Börse
in Frankfurt). They are changing continuously over time which is why they
are termed floating rates. Of course, they have to be related to zero bond
prices to prevent arbitrage opportunities:

DEFINITION 5.51
(a) The simply compounded spot rate at time t with maturity T (the so-called
(T − t) spot-LIBOR rate) is given by

L (t, T ) =
1 − P (t, T )

(T − t)P (t, T )
. (5.299)
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(b) The simply compounded forward rate at time t for the time interval [T, S]
with t ≤ T < S (the so-called (T − S) forward-LIBOR rate) is given by

L (t;T, S) =
P (t, T ) − P (t, S)
(S − T )P (t, S)

. (5.300)

Thus, the spot-LIBOR rate is just the equivalent simply compounded con-
stant interest rate that yields the market price of the T -bond at time t.

DEFINITION 5.52
A floating rate note with payment times k · a, k = 1, ..., n pays its owner
coupons Ck = a ·L((k−1)a, k ·a) at times k ·a and 1 unit of money at maturity
T = na.

A surprising result for the value of such a note follows by a simple replication
argument that uses the definition of the LIBOR rates.

THEOREM 5.53
The price Pf (0, T ) of a floating rate note with maturity T and coupon pay-
ments as defined above is given by Pf (0, T ) = 1. Further, the value of a
floating rate note equals 1 directly after each floating payment.

Interest rate swaps are among the most liquid interest rate products.

DEFINITION 5.54
In a (plain-vanilla) interest rate swap party A pays to party B fixed coupon
payments at rate p at times t1, ..., tn and receives in return from B floating
rate payments of a loan of duration α at times s1, s1 + α, ..., s1 + kα. At the
final time T , both parties (formally) exchange the face value of 1.

Swaps can occur in much more complicated forms and can contain any kind
of option-like payments and conditions. We only consider the above simple
interest rate swap. The main tasks we have to deal with are:

• Determine the swap rate, i.e. the fixed rate p such that the value of
the swap at its start equals 0.

• Determine the swap value, i.e. the value of the swap for a fixed rate p.

THEOREM 5.55
(a) The value S (0) of an interest rate swap – seen from the point of view of
the fixed rate payer – with a coupon rate of p at time 0 is given by

S (0) = 1 − p · α
n∑
i=1

P (0, iα) − P (0, T ) . (5.301)
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(b) The swap rate of an interest rate swap is given by

pswap =
1 − P (0, T )

α
∑n
i=1 P (0, iα)

. (5.302)

The first claim is valid as the value of a swap is the difference between the
value of a floating rate note (which initially equals 1) and a coupon bond with
coupon rate p. The second one follows from setting this value equal to 0.

Also, options on swaps, so-called swaptions, are popular securities. They
are options to enter a swap at some future time for an already fixed swap rate.
We will look at them in detail when dealing with market models. Besides
swaps the most popular class of interest rate products are the interest rate
options such as caps and floors.

DEFINITION 5.56
Let L(ti−1, ti) be the (ti − ti−1)-spot-LIBOR rates at times t0 < ... < tn−1.
(a) A cap at interest rate level L with face value V delivers at each time ti,
i = 1, ..., n, the payment of

V · (L (ti−1, ti) − L)+ (ti − ti−1) . (5.303)

A contract delivering only one such payment is called a caplet.
(b) A floor at interest rate level L with value V delivers at each time ti,
i = 1, ..., n, the payment of

V · (L− L (ti−1, ti))
+ (ti − ti−1) . (5.304)

A contract delivering only one such payment is called a floorlet.

The popularity of caps and floors stems from the fact that they are providing
insurance against rising interest rate payments and falling interest rate income
at times ti, respectively. They are typically used as an insurance component
in a floating rate deal.

In Black (1976) the methodology of the Black-Scholes formula is used to
suggest a pricing formula for caps and floors, the so-called Black formula. It
is widely used in interest rate markets and will be justified when we look at
LIBOR market modelling.

Black formula: The price of a cap with payment times t1 < ... < tn, face
value V , and level L is given by

Cap (0, V, L, σ) = CapBlack (0, V, L, σ) =

V

n∑
i=1

(ti − ti−1)P (0, ti) [L (0; ti−1, ti) Φ (d1 (ti)) −KΦ (d2 (ti))] (5.305)
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d1 (ti) =
ln (L (0; ti−1, ti) /L) + 1

2σ
2ti−1

σ
√
ti−1

, d2 (ti) = d1 (ti) − σ
√
ti−1 (5.306)

where σ is the common volatility of the corresponding forward-LIBOR rates.

To use the Black formula, only the volatility parameter σ has to be esti-
mated. As with the Black-Scholes formula, the Black formula can be used to
obtain implied cap-volatilities from quoted market prices of caps. A similar
formula is used for floors (with the obvious modifications for the change from
call to put option types).

Another approach to pricing caps/floors is to use their relation to bond
options. We therefore introduce a call/put with strike K and maturity T on
an S-zero bond with S ≥ T by the payments of

Call (T, S;K) = (P (T, S) −K)+ , Put (T, S;K) = (K − P (T, S))+ (5.307)

at time T . Let δi = ti − ti−1. As the payments of a caplet/floorlet at time ti
are already fixed at time ti−1, they then have a value of

Capi (ti−1;V, L) = P (ti−1, ti)V · δi (L (ti−1, ti) − L)+ , (5.308)
Floori (ti−1;V, L) = P (ti−1, ti)V · δi (L− L (ti−1, ti))

+
. (5.309)

We can thus directly verify (using the definition of LIBOR rates) that we have

Capi (ti−1;V, L) = V · δiL · Put
(
ti−1, ti;

1
1 + δiL

)
, (5.310)

Floori (ti−1;V, L) = V · δiL · Call
(
ti−1, ti;

1
1 + δiL

)
. (5.311)

Hence, the values of the caplets/floorlets and the (corresponding multiples of
the) bond puts/calls coincide at any time before ti−1, too. Thus, in every
interest rate model, we can price caps/floors if we can price bond puts/calls.

5.17 The short rate approach to interest rate modelling

The short rate approach focuses on the modelling of the instantaneous
short rate r (t), i.e. the yield for a loan that starts at time t (=now) and
ends immediately after that. A question that directly springs to one’s mind
then is if this is indeed enough to price interest rate products which are of
course living longer than just an instant! However, a zero coupon bond can
be interpreted as an option with a final payment of 1. From general option
pricing theory we know that its price is given as the discounted expectation
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of one unit of money paid at time T where Q is an equivalent martingale
measure, i.e. as

P (0, T ) = EQ

⎛
⎝exp

⎛
⎝−

T∫
0

r (s) ds

⎞
⎠ 1

⎞
⎠ , (5.312)

where r(s) is the instantaneous short rate. Consequently, for purposes of
zero bond pricing it is enough to model the short rate under an equivalent
martingale measure. Thus, the main ingredient of this approach is to model
the short rate as the solution of the SDE

dr (t) = μ (t, r (t)) dt+ σ (t, r (t)) dW (t) (5.313)

with W (t) a one-dimensional Brownian motion. This is the reason why such
a model is called a one-factor model. We will also comment on multifactor
models. First, we collect some desirable features of a short rate model:

• The short rate should be nonnegative.

• The short rate should be mean-reverting, i.e. there is a certain true or
natural level of the short rate and whenever the actual short rate differs
from it the short rate process should have a tendency toward this level.

• The model should allow deriving price formulae for bonds and (simple)
derivatives (such as bond options, caps/floors, or swaptions).

• Derived model prices of today should coincide with actually observable
market prices (“perfect fit of initial term structure”).

5.17.1 Change of numeraire and option pricing: The forward
measure

Compared to stock option pricing, a major complication arises in computing
contingent claim prices of the form

X (0) = EQ

⎛
⎝exp

⎛
⎝−

T∫
0

r (s) ds

⎞
⎠X

⎞
⎠ (5.314)

(with X denoting the terminal payoff) in the stochastic interest rate frame-
work by the presence of the random discount factor. If e.g. X is of the form
X = g(r(T )), then the discount factor is harder to simulate than X itself!

As the discount factor is positive, one can formally eliminate it by nor-
malization and then performing a suitable Girsanov type change of measure.
More precisely, we use the representation (5.312) of a T-zero bond price and
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the fact that P (T, T ) = 1 to obtain:

X (0) = EQ

⎛
⎝exp

⎛
⎝−

T∫
0

r (s) ds

⎞
⎠ P (0, T )
P (0, T )

P (T, T )X

⎞
⎠

= P (0, T )EQ

⎛
⎜⎝X

exp

 
−

TR
0
r(s)ds

!
P (T,T )

P (0,T )

⎞
⎟⎠ =: P (0, T )EQT (X) (5.315)

Here, the new probability measure QT is defined by

dQT = Z (T )dQ (5.316)

with

Z (t) = exp

⎛
⎝−

t∫
0

r (s) ds

⎞
⎠ P (t, T )
P (0, T )

(5.317)

(see also Theorem 4.44, Girsanov’s theorem). Note that for the above con-
siderations to be valid, we need Z(t) to be a Q-martingale, a fact that we
have always assumed (and will continue to assume in this section), and that
actually depends on the coefficients of the short rate equation. By Girsanov’s
theorem we can then introduce a QT -Brownian motion WT by

WT (t) = W (t) +
∫ t

0

β (s, T )σ (s, r (s)) ds (5.318)

where β(t, T ) has its origin in the SDE representation

dP (t, T ) = P (t, T ) [r (t) dt− β(t, T )σ (t, r (t)) dW (t)] (5.319)

of the T -bond price under Q (note that we can assume this representation as
P (t, T ) is positive and must have the drift rate r(t) under Q). Further, by
using the WT -representation for S-zero bond prices with S ≤ T ,

dP (t, S) = P (t, S)
[(
r (t) + β (t, S)β (t, T )σ2 (t, r (t))

)
dt
]

− P (t, S)β(t, S)σ (t, r (t)) dWT (t) , (5.320)

application of Itô’s formula to the quotient P (t, S)/P (t, T ) yields that it ac-
tually is a QT -martingale. As thus the use of QT as a pricing measure implies
that we have to change to the numeraire P (0, T ), it is called the T -forward
measure. Further, we have developed a simple method to calculate contin-
gent claim prices in the stochastic interest rate setting:

1. Introduce the T -forward measure QT by representation (5.316).

2. Calculate the contingent claim price as X(0) = P (0, T )EQT (X).
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This procedure also yields an unbiased Monte Carlo estimator to calculate an
interest rate option price when we have the T -zero bond price at hand,

X̃N (0) := P (0, T )
1
N

N∑
i=1

X(i) (5.321)

with X(i) the result of simulation run i. Note that here we have to simulate
under QT , which especially means that the SDE for r(t) is based on WT (.)
and has the form

dr (t) =
(
μ (t, r (t)) − β (t, T )σ2 (t, r (t))

)
dt+ σ (t, r (t)) dWT (t) . (5.322)

Of course, the efficiency of this method depends on the exact form of the
final payoff X . Finally, note that for a deterministic short rate, Q and QT

obviously coincide as we have β(t, T ) = 0.

5.17.2 The Vasicek model

The earliest, still well known and applied short rate model is the Vasicek
model (see Vasicek [1977]). Here, the short rate equation reads as

dr (t) = κ (θ − r (t)) dt+ σdW (t) (5.323)

with real, positive constants κ, θ, σ. This SDE admits the explicit solution

r (t) = r0e
−κt + θ

(
1 − e−κt

)
+ σ

t∫
0

e−κ(t−u)dW (u). (5.324)

Consequently, we have

r (t) ∼ N

(
r0e
−κt + θ

(
1 − e−κt

)
,
σ2

2κ
(
1 − e−2κt

))
.

Thus, the short rate is mean-reverting around the level θ as its drift is al-
ways negative if r (t) is above θ and positive if it is below. As θ equals the
asymptotic mean in the above normal distribution, it can be seen as the long
term limit of the short rate. The normal distribution of the short rate has
computational advantages (see the explicit pricing formulae below), but also
has the disadvantage that the short rate can become negative. Further, with
only three free parameters at hand, it is in general not possible to perfectly
explain an initial term structure of bond prices.

THEOREM 5.57 Bond and option prices in the Vasicek model
In the Vasicek model given by Equation (5.323) we have:
(a) T-zero bond prices of the form

P (t, T ) = e−B(t,T )r(t)+A(t,T ) (5.325)
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with A and B given by

B (t, T ) =
1
κ

(
1 − e−κ(T−t)

)
, (5.326)

A (t, T ) =
(
θ − σ2

2κ2

)
(B (t, T ) − T + t) − σ2

4κ
B (t, T ) . (5.327)

(b) Bond call and put option prices of the form

Call (t, T, S,K) = P (t, S)Φ (d1 (t)) −KP (t, T )Φ (d2 (t)) , (5.328)
Put (t, T, S,K) = KP (t, T )Φ (−d2 (t)) − P (t, S) Φ (−d1 (t)) (5.329)

with

d1/2 (t) =
ln
(

P (t,S)
P (t,T )K

)
± 1

2 σ̄
2 (t)

σ̄ (t)
, σ̄ (t) = σ

√
1−e−2κ(T−t)

2κ B (T, S) (5.330)

where K denotes the strike and T the maturity of the options, and S ≥ T is
the maturity of the underlying zero bond.
(c) Prices for caps with face value V, level L, payment times t1 < ... < tn

Cap (t;V, L, σ) =

V

n∑
i=1

(
P (t, ti−1)Φ

(
d̃1,i (t)

)
− (1 + δiL)P (t, ti)Φ

(
d̃2,i (t)

))
(5.331)

for t < t0 < t1 with

d̃1/2,i (t) =
1

σ̄i (t)
ln
(

P (t, ti−1)
(1 + δiL)P (t, ti)

)
± 1

2 σ̄i (t) , (5.332)

σ̄i (t) = σ

√
1−e−2κ(ti−1−t)

2κ B (ti−1, ti) , δi = ti − ti−1. (5.333)

We obtain the log-normal zero bond price formula by computing the ex-
pected value in Equation (5.312) using the joint distribution of the short rate
r (t) and the integral

∫ t
0
r(s)ds (see below). The form of the call option price

is then a direct application of the log-normal valuation formula, Proposition
5.1.

Of course, these pricing formulae allow for an efficient calibration of the
Vasicek model. Note also that today’s short rate r(0) is not observable. One
therefore has to calibrate it together with the model parameters θ, κ, σ. It is
important to point out that a calibration should always contain some nonlinear
product such as caps or bond options. If one only uses zero coupon bond prices
for calibration, then one might obtain an excellent fit with unreasonable model
parameters as the model might not be uniquely determined.
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Aspects of Monte Carlo simulation in the Vasicek model

There are various aspects in the Vasicek model that make Monte Carlo
simulation convenient. First, the normality of the short rate allows us to
derive the joint distribution of its final value and its integral as

(
r (t) ,

∫ t

0

r (s) ds
)

∼ N (m (t) ,Σ (t)) (5.334)

with

m1 (t) = θ + (r0 − θ) e−κt, m2 (t) = θt+ (r0 − θ) 1−e−κt

κ , (5.335)

Σ11 (t) = σ2

2κ2

(
1 − e−2κt

)
, Σ12 (t) = σ2

2κ2

(
1 + e−2κt − 2e−κt

)
, (5.336)

Σ22 (t) = σ2

κ2

(
t+ 1

2κ

(
1 − e−2κt

)− 2
κ (1 − e−κt)

)
. (5.337)

So to value a contingent claim with a payoff that depends only on r(T ), one can
simply use the crude Monte Carlo method and simulate both r(T ) and (the
logarithm of) the discount factor from a two-dimensional normal distribution
as in representation (5.334). This in fact is a very efficient method and even
avoids the change to the forward measure.

If in contrast we want to avoid the simulation of the discount factor, then
we can simulate under the forward measure QT introduced above. For this,
note that the bond prices in the Vasicek model satisfy the SDE

dP (t, T ) = P (t, T ) [r (t) dt−B (t, T )σ (t, r (t)) dW (t)] . (5.338)

This can be seen by applying Itô’s formula to the zero bond price formula in
Equation (5.325). One can thus simulate the payoff under QT with β(t, T ) =
B(t, T ). Note that with Equation (5.322) the short rate SDE under QT has
the form

dr (t) = κ
(
θ −B (t, T )σ2 − r (t)

)
dt+ σdWT (t) . (5.339)

Hence, the short rate is still normally distributed. This method can also be
used for valuing path-dependent options that only depend on a finite number
of values r(tj), j = 1, .., d. It is then enough to simulate just these values of
the path of the short rate under QT . For the Monte Carlo calculation of the
price of general path-dependent exotic options we have to simulate (a suitably
discretized version of) the whole path r(t), t ∈ [0, T ].

Multifactor generalizations

One can generalize the Vasicek model to a multifactor model by letting the
short rate be a linear combination of (possibly correlated) Ornstein-Uhlenbeck
processes of the form

dxi (t) = −aixi (t) dt+ σidWi (t) (5.340)
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as suggested in Brigo and Mercurio (2001). By the properties of the normal
distribution, one still has a normally distributed short rate and similar results
for bond prices and bond option prices. The gain of the introduction of the
additional parameters are better calibration results; the drawback is a higher
computational complexity (although the explicit pricing formulae retain their
principle form).

5.17.3 The Cox-Ingersoll-Ross (CIR) model

While keeping the mean-reversion property of the Vasicek model, the main
aim of the Cox-Ingersoll-Ross model is to guarantee a nonnegative short rate.
In Cox et al. (1985) it is therefore suggested to use a square-root process for
the short rate. Thus the short rate satisfies the SDE

dr (t) = κ (θ − r (t)) dt+ σ
√
r (t)dW (t) (5.341)

for given positive constants κ, θ, σ. We already know there is no explicit
solution to the above equation (see Chapter 4). However, by Theorem 4.52 the
distribution of eκtg(t)r(t) is known to be a noncentral chi-square distribution
with noncentrality parameter λ and d degrees of freedom with

g (t) =
4κe−κt

σ2 (1 − e−κt)
, λ = r0g(t), d = 4κθ/σ2. (5.342)

Further, we have

lim
t→∞E (r (t)) = θ , lim

t→∞V ar (r (t)) =
θσ2

2κ
(5.343)

and the short rate in the CIR model stays strictly positive if we have

2κθ > σ2. (5.344)

If this is not the case then the origin is attainable by the short rate process.
However, if the short rate process reaches the origin it will be reflected. Again,
a perfect fit of an arbitrary initial term structure is in general not possible.

Despite the nonexisting explicit solution of the short rate equation, we have
explicit formulae for the price of zero bonds and bond calls.

THEOREM 5.58 Bond and option prices in the CIR model

Under the assumption of a short rate that follows the CIR model we have:
(a) T-zero bond prices of the form

P (t, T ) = e−B(t,T )r(t)+A(t,T ) (5.345)
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with

B (t, T ) =
2 [exp ((T − t)h) − 1]

2h+ (κ+ h) [exp ((T − t)h) − 1]
, (5.346)

A (t, T ) = ln

([
2h exp ((T − t) (κ+ h) /2)

2h+ (κ+ h) [exp ((T − t)h) − 1]

]2κθ/σ2
)
, (5.347)

h =
√
κ2 + 2σ2. (5.348)

(b) bond call option prices of the form

C (t, T, S,K) = P (t, S)χ2 (a1; d, λ1) −KP (t, T )χ2 (a1; d, λ1) (5.349)

with χ2 (x; d, λ) the distribution function of a noncentral chi-square distribu-
tion with d degrees of freedom and noncentrality parameter λ. Here, K is
the strike of the call, T is its maturity, and S ≥ T is the maturity of the
underlying zero bond. Further, we have

d = 4κθ/σ2, a1 = 2r̄ (ρ+ ψ +B (T, S)) , a2 = a1 − 2r̄B (T, S) ,(5.350)

r̄ = ln(A(T,S)/K)
B(T,S) , ψ = κ+h

σ2 , ρ = 2h
σ2(exp(h(T−t))−1) , (5.351)

λ1 = 2ρ2r(t) exp(h(T−t))
ρ+ψ+B(T,S) , λ2 = 2ρ2r(t) exp(h(T−t))

ρ+ψ . (5.352)

Aspects of Monte Carlo simulation in the CIR model

In contrast to the Vasicek model, the joint distribution of the final value
and the integral of the short rate process does not admit an easy explicit form.
However, the Laplace transform of this distribution is explicitly known. In
principle one could therefore numerically invert it to simulate from the joint
distribution, but this is a comparatively slow procedure.

It is still possible to change to the T-forward measure QT for calculating
option prices with a payoff that only depends on a finite number of values
r(tj), j = 1, ..., d. Again, one can verify that we have

β (t, T ) = B (t, T ) (5.353)

which is given explicitly in the above theorem. Then, using Equation (5.322)
the short rate SDE has the form

dr (t) =
(
κθ − (κ+ B (t, T )σ2

)
r (t)
)
dt+ σ

√
r (t)dWT (t) . (5.354)

Note that the SDE now contains a time-dependent coefficient of r(t). For
pricing exotic options, this emphasizes what had been said in the Heston
model. In particular, when simulating a path of the short rate process, it is
in general much more efficient to use a numerical discretization scheme such
as the Euler scheme with full truncation instead of simulating from the exact
distribution (see Section 5.11 on the Heston model).
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5.17.4 Affine linear short rate models

There is an obvious generalization of the two presented short rate models
which is the class of affine linear models given by

dr (t) = (ν (t) r (t) + η (t)) dt+
√
γ (t) r (t) + δ (t)dW (t) (5.355)

with suitable deterministic functions ν (t), η (t), γ (t), and δ (t).
This class has the following properties.

• Vasicek and CIR are particular affine linear models.

• An explicit solution of the above equation is not always possible.

• Depending on the coefficient functions, the short rate is positive or not.

• Four deterministic coefficient functions allow the possibility of a perfect
fit of the initial term structure.

Further, there is a general representation of the bond prices.

THEOREM 5.59

In the affine linear short rate class, T-zero bond prices have the form

P (t, T ) = e−B(t,T )r(t)+A(t,T ) (5.356)

where A (t, T ) and B (t, T ) are the unique solutions of the system

Bt (t, T ) + ν (t)B (t, T ) − 1
2γ (t)B (t, T )2 + 1 = 0, B (T, T ) = 0,(5.357)

At (t, T ) − η (t)B (t, T ) + 1
2δ (t)B (t, T )2 = 0, A (T, T ) = 0.(5.358)

It is a question of taste to define the class of affine linear models by the
form of the short rate equation or by the form of the zero bond prices. Both
characterizations are indeed equivalent (see Björk [2004]).

5.17.5 Perfect calibration: Deterministic shifts and
the Hull-White approach

The Hull-White approach

We present the Hull-White approach for choosing coefficient functions of
an affine linear model to obtain perfect fit of an initial term structure (see
Hull and White [1990]). We limit ourselves to the Hull-White version of the
Vasicek model which is determined by the short rate equation

dr (t) = (δ (t) − ar (t)) dt+ σdW (t) , a > 0. (5.359)
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It has a slightly different form as the original Vasicek short rate equation, but
can easily be transformed into it when δ(t) is a constant. The explicit solution
to this SDE is given by

r (t) = r0e
−at +

t∫
0

e−a(t−s)δ (s) ds+ σ

t∫
0

e−a(t−u)dW (u) (5.360)

where the function δ (t) is chosen such that the zero bond prices in the model,
P (0, T ), coincide with the actually observed market prices PM (0, T ) (see
Theorem 5.61 for its form). Then, the (model) bond prices can be obtained
from the general theorem in the section on affine linear models, but will be
given explicitly together with the bond call option prices below

THEOREM 5.60 Prices in the Hull-White model

Under the assumption of a short rate that follows the Hull-White Vasicek
variant we have:
(a) T-zero bond prices of the form

P (t, T ) = e−B(t,T )r(t)+A(t,T ), (5.361)

B (t, T ) =
1
a

(
1 − e−a(T−t)

)
, (5.362)

A (t, T ) = ln
(
PM (0,T )
PM (0,t)

)
+fM (0, t)B (t, T )− σ2

4a
(
1 − e−2at

)
B (t, T )2 (5.363)

where fM (0, t) denotes today’s market forward rate at time t, PM (0, t) to-
day’s market price of a t-bond.
(b) Bond call option prices of the form

C (t, T, S,K) = P (t, S)Φ (d1 (t)) −KP (t, T ) Φ (d2 (t)) , (5.364)

d1/2 (t) =
ln

„
P (t,S)
P (t,T )K

«
±1/2σ̄2(t)

σ̄(t) , σ̄ (t) = σ

√
1−e−2a(T−t)

2a B (T, S) (5.365)

where K is the strike of the call, T is its maturity, and S ≥ T is the maturity
of the underlying zero bond.

Note that we still have log-normal bond prices and thus obtain a Black-
Scholes type formula for the price of the bond call option. So, we have obtained
a model that is analytically as tractable as the Vasicek model, but has the
additional feature of a perfect fit of the initial term structure if we choose δ (t)
appropriately (see Hull and White [1990]).
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THEOREM 5.61
Let fM (0, T ) : = −∂ lnPM (0,T )

∂T be today’s forward rate at time T obtained from
today’s zero bond market prices. With the choice of

δ (t) =
∂fM (0, t)

∂T
+ afM (0, t) +

σ2

2a
(
1 − e−2at

)
(5.366)

the theoretical bond prices P (0, T ) in the Hull-White variant of the Vasicek
model coincide with today’s zero bond market prices PM (0, T ).

Monte Carlo, calibration, and conceptual issues

1. There is one conceptual drawback of the Hull-White model. As the func-
tion δ (t) is introduced to obtain a perfect fit of the initial term structure, the
mean-reversion property is no longer explicitly present in the model as there
is no real long-term limit of the short rate.
2. Note that the calibration algorithm for the Vasicek model has to be signif-
icantly modified. As we have already obtained perfect fit between model and
market bond prices, we can no longer use the zero bond prices for calibrating
the model coefficients r (0), σ, and θ. For this, we now have to use theoretical
and market cap and bond option prices.
3. With regard to the Monte Carlo calculation of the prices of (exotic) op-
tions, the remarks made in the Vasicek case remain valid here, too. Of course,
the joint distribution of the terminal value and the integral of the short rate is
slightly more complicated as the product κθ is now replaced by the determin-
istic function δ(t). However, one can still show that they admit a joint normal
distribution. The simulation method with the help of the forward measure
QT can be applied without change. The main difference compared to the
Vasicek model is that we now have to use either numerical integration or a
discretization method to simulate the short rate paths as the time-dependent
function δ(t) enters Equation (5.360).

Perfect initial fit by deterministic shifts

A second method to obtain a perfect fit of the initial term structure is to
introduce a so-called deterministic shift of the short rate. More precisely,
given a short rate process r(t) and a deterministic function h(t), then the
shifted version rh(t) is obtained as the sum of both,

rh (t) = r (t) + h (t) . (5.367)

This method goes back to Dybvig (1997), Avellaneda and Newman (1998),
and Brigo and Mercurio (2001). It is applicable to general short rate models
that do not necessarily belong to the affine linear class. To introduce the
convenient choice of the shift function, we have to introduce the notation
P (t, T ; r) for the T -zero bond price in the intrinsic short rate model given
by r(.) when at time t we have r(t) = r. Similarly, we introduce the notation
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C(t, T, S,K; r) for the price of bond call option with strike K, maturity T on
an S-zero bond at time t with r(t) = r. And finally, let

f (0, t; r) = −∂ln (P (0, t; r))
∂t

(5.368)

be the corresponding instantaneous forward rate at time t. We then obtain
the following key result (see Brigo and Mercurio [2001]).

THEOREM 5.62
Let the short rate process be given by rh (t) = r (t) + h (t). We then have:
(a) The price P (t, T ) of a T-zero bond at time t is given by

P (t, T ) = exp

(
−
∫ T

t

h (s) ds

)
P (t, T ; rh (t) − h (t)) . (5.369)

(b) With fM (0, t) = ∂ln(PM (0, t))/∂t denoting the instantaneous market for-
ward rates at time t, the choice of

h (t) = fM (0, t) − f (0, t; r (0)) (5.370)

is the unique choice of the shift function such that we have a perfect agreement
between the market and the model prices of zero bonds at time 0.
3. The price at time t of a European call with maturity T and strike K on an
S-zero bond (with S > T ) is given by

C (t, T, S,K) = e−
R

S
t
h(s)dsC

(
t, T, S,Ke

R
S
T
h(s)ds; rh (t) − h (t)

)
. (5.371)

REMARK 5.63 1. Note that the construction of the deterministic shift
h(t) ensures a perfect initial fit for every parameter constellation that de-
termines the underlying intrinsic short rate model r(t). Thus, we have to
calibrate those parameters from other products such as cap prices.

2. If the shift function is differentiable then the shifted short rate obeys the
following SDE

drh (t) = (ht (t) + μ (t, rh (t) − h (t))) dt+ σ (t, rh (t) − h (t)) dW (t)
= : μh (t, rh (t)) dt+ σh (t, rh (t)) dW (t) (5.372)

with μ(., .), σ(., .) the coefficient functions of the intrinsic short rate process
r(t). One can further show that the shifted bond price satisfies the SDE

dP (t, T ) = P (t, T ) (rh (t) dt−B (t, T )σh (t, rh (t)) dW (t)) (5.373)

for the B(t, T ) of the intrinsic short rate model r(t). Hence, the Brownian
motion WT (.) under T -forward measure QT stays the same as in the intrinsic
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short rate model and is given by

WT (t) = W (t) +
∫ t

0

B (s, T )σh (s, rh (t)) ds. (5.374)

The short rate SDE under QT thus has the form

drh (t) =
(
μh (t, rh (t)) −B (s, T )σ2

h (t, rh (t))
)
dt+ σh (t, rh (t)) dW (t) .

(5.375)
It can be used to simulate paths of the shifted short rate by a suitable dis-
cretization procedure. Depending on the explicit form of B(t, T )σ2

h(t, rh(t)),
simulating a path under QT can be comparable to simulating under the mar-
tingale measure Q.

3. A new conceptual drawback of the introduction of a deterministic shift
is that it does not necessarily preserve positivity of the intrinsic short rate
process. This can be of particular importance in the case of a shifted CIR
model as in Brigo and Mercurio (2001).

5.17.6 Log-normal models and further short rate models

A class of models that automatically yield a positive short rate process are
the log-normal models. The most popular such model is the Black-Karasinski
model (see Black and Karasinski [1991]) where r(t) is given by

r (t) = exp (r̃ (t)) , (5.376)
dr̃ (t) = κ (t) (ln (θ (t)) − r̃ (t)) dt+ σ (t) dW (t) (5.377)

where κ(t), θ(t), σ(t) are deterministic functions chosen to match the initial
bond prices, the volatility of the bond price yields, and the cap curve (see
Black and Karasinski [1991] for the exact specification of these curves). As
there are no explicit price formulae for zero bonds, options, or caps, this
has to be done numerically. Black and Karasinski therefore describe a tree
procedure. With this procedure they achieve an excellent fit to market data,
a fact that is the main reason for the application of this model in real life.
However, there is one serious conceptual drawback with the Black-Karasinski
model (inherent in all log-normal short rate models): the expected value of
the money market account equals infinity, i.e. we have

EQ

(
e
R

t
0 r(s)ds

)
= +∞. (5.378)

This can easily be seen by approximating the integral by a finite sum and us-
ing the fact that E(exp(exp(Z))) = ∞ for a normally distributed Z. However,
as one has to do the relevant computations with the help of discretization pro-
cedures, the exploding average of the bank account does not cause problems
there. If one is only interested in fitting the initial bond prices, then a shifted
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version of the exponential Vasicek model given by

rh (t) = r (t) + h (t) , (5.379)
r (t) = exp (y (t)) , (5.380)
dy (t) = κ (θ − y (t)) dt+ σdW (t) (5.381)

is a good alternative to the Black-Karasinski model in its full generality, al-
though it cannot guarantee the positivity of the short rate anymore. To
calculate the required forward rates in Equation (5.370) that determine the
shift function h(t), one has to resort to a tree procedure similar to the one in
Black and Karasinski (1991).

Further positive short rate models

More recent models that guarantee a nonnegative short rate are the model
by Flesaker and Hughston (1996) and the potential approach by Rogers
(1997). We do not go into detail here, but remark that the potential approach
is a framework that in particular allows a multicurrency market modelling in
a sparse way.

5.18 The forward rate approach to interest rate
modelling

The forward rate approach pioneered by Heath et al. (1992) is based on
the relation

P (t, T ) = exp

(
−
∫ T

t

f (t, s) ds

)
(5.382)

between zero bond prices and forward rates. It implies that it is equivalent to
model the evolution of zero bond prices and of forward rates. Note that these
two modelling tasks are much more involved than the one of the short rate
models. There, we only modelled one (!) particular interest rate, the short
rate, evolving over time as a stochastic process. Here, we have to model the
evolution of a whole curve (i.e. an uncountable number of points!) through
time, no matter if we take the forward rate curve or the bond price curve.

In the HJM framework one decides to model the evolution of the forward
rate curve f(t, T ), t ≥ 0, T ≥ t by a family of stochastic processes. Before
we do this, we point out one very appealing feature of this framework: it
easily allows for a perfect calibration of the initial bond prices via choosing
the initial forward rates equal to the ones observed at the market, i.e.

f (0, t) = fM (0, t) ∀t ≥ 0 (5.383)
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lead to agreement between the model and the market zero bond prices

P (0, T ) = PM (0, T ) ∀T ≥ 0. (5.384)

However, we are heavily restricted with our choice of a forward rate process
by the so-called HJM drift condition. It is derived from the fact that we
must have equality between the two representations of a zero bond price,

exp

(
−
∫ T

t

f (t, s) ds

)
= P (t, T ) = EQ

(
exp

(
−
∫ T

t

r (s) ds

))
(5.385)

for a suitable martingale measure to prevent arbitrage opportunities. From
this relation, Heath et al. (1992) deduced that if we specify a forward rate
model as a stochastic process of the form

df (t, T ) = μf (t, T )dt+ σf (t, T )dW (t) (5.386)

for a d-dimensional Brownian motion W (.) and suitable stochastic processes
μf , σf , then we must have

μf (t, T ) = σf (t, T )
∫ T

t

σf (t, s) ds HJM drift condition (5.387)

under Q. This of course is a serious modelling restriction as it can be para-
phrased that we are only allowed to choose the volatility structure of the
forward rate curve freely. On the other hand, we still have a lot of freedom
with the choice of the volatility function.

5.18.1 The continuous-time Ho-Lee model

The historically first model in the HJM framework is a continuous-time
version of the Ho and Lee model (1986) that appeared as an example in
Heath et al. (1992). There the evolution of the forward rate is modelled as

f (t, T ) = fM (0, T ) + σW (t) + σ2t

(
T − 1

2
t

)
(5.388)

for a constant σ and a one-dimensional Brownian motion W (t). From this,
one directly obtains explicit formulae for the short rate and zero bond prices

r (t) = f (t, t) = fM (0, t) + σW (t) +
1
2
σ2t2, (5.389)

P (t, T ) = PM (0, T ) . (5.390)

As we have a normally distributed short rate and log-normal zero bond prices,
it is no surprise that we also have a Black-Scholes type formula for bond call
options which we do not present here, as the model is too simple to be applied
in reality. Note in particular that all forward rates for a given t but varying
maturity T are perfectly correlated! However, the model still serves as a good
simple introduction to the HJM framework.
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5.18.2 The Cheyette model

A practically relevant model that combines tractability with flexibility is
the Cheyette (1992) model. Before we present it, we would like to point out
one particular problem with an arbitrary specification of the forward rate
volatility. Assume for simplicity that we model the forward rate based on a
one-dimensional Brownian motion. Then the short rate is given by

r (t) = f (t, t)

= fM (0, t) +
∫ t

0

σf (s, t)
∫ t

s

σf (s, u) duds+
∫ t

0

σf (s, t) dW (s). (5.391)

As the integrand of the stochastic integral may depend on t in a general way,
the short rate r(t) may no longer be a Markov process. This, however, has se-
rious numerical consequences for the computation of option prices. Updating
the drift might require the recomputation of a whole set of volatilities, while
the whole path of the past short rate might be needed to calculate an op-
tion price. An easy criterion to guarantee that the short rate process has the
Markov property is given in Carverhill (1994), who assumes that the volatility
is given as the product of two deterministic functions,

σf (t, T ) = g (T )h (t) . (5.392)

This is also true in a multifactor forward rate model with a d-dimensional
Brownian motion and a d-dimensional volatility vector with components

σf,i (t, T ) = gi (T )hi (t) , i = 1, ..., d. (5.393)

However, it is possible to have a more general specification of such a product
form at the cost that the short rate is no longer a Markov process, but its
dependence on the past can be described by just a two-dimensional state
process. This insight led to the Cheyette (1992) model which has also been
independently developed in Ritchken and Sankarasubramanian (1995), who
show that the form

σf (t, T ) = σr (t) exp

(
−
∫ T

t

κ (x) dx

)
(5.394)

for a deterministic function κ(x) and a suitable adapted stochastic process
σr(t) is an equivalent condition for the term structure of interest rates being
determined by a two-dimensional Markov process. Moreover, they show that
the zero bond prices are given by

P (t, T )

=
P (0, T )
P (0, t)

exp
(
−1

2
β2 (t, T )φ (t) + β (t, T )

(
fM (0, t) − r (t)

))
(5.395)
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where we have used the abbreviations

β (t, T ) =
∫ T

t

e−
R u

t
κ(x)dxdu, φ (t) =

∫ t

0

σ2
f (s, t) ds. (5.396)

Note that by Equation (5.395), the term structure in the Cheyette model
depends only on the two state processes (r(t), φ(t)), the short rate and
the integrated volatility. Ritchken and Sankarasubramanian (1995) show that
they obey the differential representations

dr (t) = μr (t) dt+ σr (t) dW (t) , (5.397)
dφ (t) =

(
σ2
r (t) − 2κ (t)φ (t)

)
dt. (5.398)

In particular, differentiation of the short rate process given by Equation
(5.391) under the volatility specification (5.394) leads to

μr (t) = κ (t)
(
fM (0, t) − r (t)

)
+ φ (t) +

d

dt
fM (0, t) . (5.399)

Note that the short rate is no Markov process, as the drift depends also on
past values of the volatility via φ(t). However, the pair (r(t), φ(t)) constitutes
a Markov process.

A generalization of the above approach is given in Cheyette (1995) that
leads to a Markov process with a higher number of state variables.

PROPOSITION 5.64 (Cheyette [1995])
Assume that the forward rate volatility process can be written in the form of

σf (t, T ) =
N∑
i=1

βi (t)
αi (T )
αi (t)

(5.400)

for deterministic functions αi(t) and adapted processes βi(t). If we then in
the risk-neutral world define N(N + 3)/2 state variables xi, Vij by

xi (t) =
∫ t

0

(
N∑
k=1

βk (s)
Ak (t) −Ak (s)

αk (s)

)
βi (s)

αi (t)
αi (s)

ds

+
∫ t

0

βi (s)
αi (t)
αi (s)

dW (s), (5.401)

Vij (t) = Vji (t) =
∫ t

0

βi (s)βj (s)
αi (t)αj (t)
αi (s)αj (s)

ds (5.402)

with Ak(t) =
∫ t
0
αk(s)ds, the forward rate equation can be expressed as

f (t, T ) = f (0, T )+
N∑
j=1

αj (T )
αj (t)

(
xj (t) +

N∑
i=1

Ai (t) −Ai (s)
αi (s)

Vij (t)

)
. (5.403)
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Further, the state variables xi, Vij form a joint Markov process and admit the
differential representations

dxi (t) =

⎛
⎝xi (t) d

dt
ln (αi (t)) +

N∑
j=1

Vij (t)

⎞
⎠ dt+ βi (t) dW (t) , (5.404)

dVij (t) =
(
βi (t)βj (t) + Vij (t)

d

dt
(ln (αi (t)αj (t)))

)
dt. (5.405)

In particular, we obtain

r (t) = f (0, T ) +
N∑
j=1

xj (t), (5.406)

P (t, T ) =
P (0, T )
P (0, t)

exp

(
−

N∑
i=1

Ai (T ) −Ai (t)
αi (t)

xi (t)

)

exp

⎛
⎝−

N∑
i,j=1

(Ai (T ) −Ai (t)) (Aj (T ) −Aj (t))
2αi (t)αj (t)

Vij (t)

⎞
⎠ . (5.407)

Also, variations with a multidimensional Brownian motion are considered
in Cheyette (1995), together with empirical applications to the U.S. Treasury
bond market.

Volatility specifications and aspects of Monte Carlo simulation

Equipped with the above representations, one can now consider specifica-
tions of the volatility function. In the case of N = 1, a popular choice for a
flexible model is a CEV type volatility process, i.e.

σr (t) = σ · r (t)γ (5.408)

for some γ ∈ [0, 1] and positive constants σ, κ. One can also imagine other
choices of the volatility function such as a displaced diffusion or a Heston type
process. It is important to note the advantage of the sparse representation of
the Cheyette model. We only have to update a two-dimensional process to
obtain the evolution of the whole term structure. Compare this to the general
case of the HJM model when one has to update a whole forward rate curve!

To compute the prices of various (European) options on bonds or interest
rates we have to simulate the two state variable processes r(t), φ(t) and the
money market account B(t) = exp(

∫ t
0
r(s)ds) in a suitable discretized way.

This is demonstrated in Algorithm 5.20.
The option considered in the algorithm is implicitly assumed to be written

on a path of the short rate. It can also be an option on a path of a zero bond.
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Algorithm 5.20 Option pricing in the Cheyette model
Let an initial forward rate curve f(0, t) and an initial term structure P (0, t)
be given. Let further Δ = T/n be a given stepsize.

For i = 1 to N do

1. r(i)(0) = f(0, 0), φ(i)(0) = 0, B(i)(0) = 1.

2. For j = 1 to n do

(a) φ(i) ((j + 1)Δ) = e−2κΔφ (jΔ) + σ2r(i) (jΔ)2γ 1−exp(−2κΔ)
2κ .

(b) Generate a random number Y ij ∼ N(0, 1).

(c) r(i) ((j + 1)Δ) = r(i) (jΔ) + σr(i) (jΔ)γ
√

ΔY ij

+
(
κ
(
f (0, jΔ) − r(i) (jΔ)

)
+ φ(i) (jΔ) + f(0,(j+1)Δ)−f(0,jΔ)

Δ

)
Δ.

(d) B(i) ((j + 1)Δ) = B(i) (jΔ) er
(i)(jΔ)Δ.

3. Compute the discounted payoff Z(i) = f (r (t) , t ∈ [0, T ])/B(i) (T ) of an
option given by f along path i of (r(.), φ(.)).

Compute the Monte Carlo estimate of the option price via

IZ,N =
1
N

N∑
i=1

Z(i).

It might in this case also be useful to update the zero bond price directly via
the representation (5.395).

As with the CEV model, a possible variance reduction method is to use
a suitable short rate model with explicit valuation formulae for the option
under consideration. Possible candidates for such a control variate model are
the Vasicek model or the Hull-White model. Numerical examples are given
in Ritchken and Sankarasubramanian (1995) and Cheyette (1992).

5.19 LIBOR market models

The so-called LIBOR market models are nowadays an industry stan-
dard in the interest rate market. There are at least two good reasons for
that. One is that they deliver a rigorous derivation (“the story behind ...”)
of the Black formula for pricing caplets and thus justify the use of a standard
market rule. The other reason is that the basic objects that are modelled are
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directly observable market interest rates such as the 3-month LIBOR rate.
This is in particular in contrast to the (instantaneous) short rate and forward
rate models where artificial instantaneous rates are modelled. The modelling
framework has been introduced in Miltersen et al. (1997), Brace et al. (1997),
and in Jamshidian (1997), who all contributed to different aspects of the the-
ory.

5.19.1 Log-normal forward-LIBOR modelling

To present the modelling framework, we introduce some notation. Assume
that there is a given tenor structure t = t0 < t1 < .. < tN , and that zero
bonds maturing at the dates ti are traded. We recall the following definition.

DEFINITION 5.65
The δi-forward-LIBOR rate Li (t) is the simple yield for the time interval
[ti−1, ti], i.e. with δi = ti − ti−1 we define

Li (t) = L (t; ti−1, ti) =
1
δi

P (t, ti−1) − P (t, ti)
P (t, ti)

. (5.409)

By the definition of the ti-forward measure Qi := Qti , Equation (5.409) im-
plies that Li(t) is a Qi-martingale. Thus, it is an immediate consequence that
if we want to model log-normal forward-LIBOR rates in a diffusion setting,
we have to choose the following dynamics under Qi:

dLi (t) = Li (t)σi (t) dWi (t) (5.410)

Here, Wi(.) is a (for the moment one-dimensional) Qi-Brownian motion, σi (t)
a bounded and deterministic function. We further assume that we have mod-
elled all forward-LIBOR rates Lj(t), j = 1, ..., N in analogy to Li(t) under
the corresponding tj-forward measures Qj . Then, this log-normal modelling
of the forward-LIBOR rates supports the Black formula:

THEOREM 5.66 Cap pricing and the Black formula
Assume that for i = 1, ..., N the δi forward-LIBOR rates satisfy

dLi (t) = Li (t)σi (t) dWi (t) , t < ti. (5.411)

(a) Then today’s price Ci (t, σi (t)) of a caplet maturing at time ti with a
payment of δi · (Li (ti) − L)+ is given by

Ci (t, σi (t)) = δiP (t, ti) [Li (t) Φ (d1 (t)) − LΦ (d2 (t))] , (5.412)

d1 (t) =
ln

„
Li(t)
L

«
+ 1

2 σ̄
2
i (t)

σ̄i(t)
, d2 (t) = d1 (t) − σ̄i (t) , (5.413)

σ̄2
i (t) =

∫ ti−1

t σ2 (s) ds. (5.414)
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(b) Today’s price of a cap in the forward-LIBOR model CapFL(t;V, L) with
payment times t1 < ... < tN and level L is given by

CapFL(t;V, L) = V ·
N∑
i=1

Ci (t, σi (t)). (5.415)

In particular, if all volatility processes satisfy σi(t) = σ for some positive
constant σ then we have

CapFL(t;V, L) = CapBlack(t, V, L, σ), (5.416)

i.e. the price of the cap equals the one obtained with the Black formula.

REMARK 5.67 So far we have not specified the exact form of the volatil-
ity functions σi(t) of the forward-LIBOR rates. Actually, for agreement of a
single caplet price with one obtained from the Black formula we only need
to use the average (squared) volatility σ̄2

i (t) as input for the Black formula.
This on the other hand tells us that from a single market caplet price we can
only calibrate this average volatility. However, if we have a set of market cap
prices and a suitable parameterization of the volatility functions, then we can
use a kind of bootstrapping procedure.

Specifying the variance and covariance structure between different forward
rates such that it allows for an easy calibration is one of the most important
topics of the actual application of LIBOR models in practice. We do not
go into detail here, but remark that there is a whole industry of different
parameterizations of the covariance structure between the LIBOR rates (see
Schoenmakers [2007] for a deep survey of practical aspects and approaches).
As an example one can always imagine that the correlations are assumed to
be piecewise constant between two tenor times ti−1 and ti (see also Chapter
6 of Brigo and Mercurio [2001] for some examples of covariance structure
specifications used in the industry).

REMARK 5.68 As a cap has an additive payoff structure (although the
single payments are nonlinear functions of the underlying floating rate), its
caplets could be valued independently. However, it is clear that the forward-
LIBOR rates are in general not independent. Therefore, the Brownian motions
that drive them should be correlated. We model this by introducing the
N -dimensional Brownian motions W (k)(t) under Qk that have a correlation
matrix of ρ via

W (k) (t) =
(
W

(k)
1 (t) , ...,W (k)

N (t)
)′

∼ N (0, t · ρ) . (5.417)

Actually, so far we only needed component k of this vector for modelling Lk(t).
For simplicity, we will continue to denote it byWk(t) := W

(k)
k (t). However, the
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introduction of the Brownian vectors allows us to apply Girsanov’s theorem
when we need the representation of a particular component Wk(t) of the
Brownian motion under – say – the measure Qj. This is the case when we
have to price a more complicated derivative than a cap (see the examples
in Section 5.19.3 below) where we have to use one probability measure that
is responsible for the joint distribution of the LIBOR rates. It is therefore
necessary to derive the (joint) dynamics of the LIBOR rate under such a
measure. We will first present the dynamics of Lk(t) under a forward measure
Qi with i �= k. For deriving those dynamics we apply Girsanov’s theorem and
use the facts that we have

P (t, tk−j)
P (t, tk)

=
k∏

i=k−j+1

(1 + δiLi (ti)) (5.418)

which is a Qk-martingale, and that under Qk we have the representation

W
(k)
j (t) = ρjkWk (t) +

√
1 − ρ2

jkW̄j (t) (5.419)

for a one-dimensional Qk-Brownian motion W̄j(t) independent of Wk(t).

PROPOSITION 5.69
Under the forward measure Qi for t < t0 the log-normal forward-LIBOR rate
Lk(t) has the following dynamics in the cases i < k, i = k, and i > k:

dLk (t) = σk (t)Lk (t)

⎛
⎝dWk (t) +

k∑
j=i+1

δjρjkσj (t)Lj (t)
1 + δjLj (t)

dt

⎞
⎠ , (5.420)

dLk (t) = σk (t)Lk (t) dWk (t) , (5.421)

dLk (t) = σk (t)Lk (t)

⎛
⎝dWk (t) −

i∑
j=k+1

δjρjkσj (t)Lj (t)
1 + δjLj (t)

dt

⎞
⎠ . (5.422)

Here, Wk(t) = W
(i)
k (t) denotes a one-dimensional Qi-Brownian motion.

The philosophy behind the proposition is to choose one particular forward-
LIBOR rate Lk(t) as a reference rate and to express the dynamics of the others
in terms of the corresponding forward measure Qk. A natural alternative for a
convenient pricing measure which is more balanced is obtained by introducing
the so-called discrete bank account as numeraire. This is the wealth process
starting with one unit of money corresponding to a roll-over strategy in the
zero bond that matures at the next tenor time tj followed by a corresponding
reinvestment. It has a representation of

Bdisc (t) = P
(
t, tβ(t)−1

) β(t)−1∏
j=1

(1 + δjLj (tj−1)) (5.423)
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where we have tβ(t)−2 < t ≤ tβ(t)−1. Let Qdisc be the probability measure
such that all traded assets are martingales when Bdisc is used as numeraire.
This measure is called the spot-LIBOR measure. Then we have:

PROPOSITION 5.70

The dynamics of the forward-LIBOR rates under the spot-LIBOR measure
are given by

dLi (t) = σi (t)Li (t)

⎛
⎝dW disc

i (t) +
i∑

j=β(t)

δjρj,kσj (t)Lj (t)
1 + δjLj (t)

dt

⎞
⎠ (5.424)

where W disc(t) = (W disc
1 (t), . . . ,W disc

N (t))′ is a Qdisc-Brownian motion.

By comparing the way the different LIBOR rates enter the distribution of a
generic rate Lk(t) one realizes that choosing a fixed forward measure Qi will
result in a one-sided influence from the other rates, i.e. either only earlier
or only later rates enter the drift term. This is not the case when the
spot-LIBOR measure is used as the underlying pricing measure. Here, there
seems to be a more balanced mutual influence of the bias caused by each of
the simulated forward-LIBOR rates. It is therefore often advised to simulate
under the spot-LIBOR measure than under one of the forward measures.

5.19.2 Relation between the swaptions and the cap market

Besides caps, it is also a market practice to price options on interest rate
swaps (also called swaptions) by a suitably adapted Black formula. It is based
on the assumption of log-normally distributed forward swap rates. To set the
basis for our considerations, we consider an option to enter an interest rate
swap. We assume that payment times t1 < ... < tN are given and that the
floating rates are set at times t0 < ... < tN−1. We look at a payer swap, i.e.
at the payment times we have to pay δi · p and receive the floating payments
δi · L(ti−1; ti−1, ti). Today’s value of this (forward) swap contract is given by

S(t1,...,tN) (t) =
N∑
i=1

P (t, ti) δi (Li (t) − p)

=
N∑
i=1

(P (t, ti−1) − (1 + δip)P (t, ti)). (5.425)

Setting this value to zero yields the forward swap rate pforward(t; t1, ..., tN )

pfsr (t) := pfsr (t; t1, ..., tN ) =
P (t, t0) − P (t, tN )∑N

i=1 δiP (t, ti)
. (5.426)
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As a swaption is the right to enter the above swap contract at time t0 it
yields a payment of

Bswaption = (pfsr (t0) − p)+
N∑
i=1

δiP (t0, ti) (5.427)

at time t0. It is now easy to put the industry practice of using the Black
formula into a rigorous framework:

• Use the numeraire
∑N

i=1 δiP (t, ti) to construct the corresponding pric-
ing measure and call it Q1,N .

• Under this measure Q1,N , the forward swap measure, the forward swap
rate is a martingale.

• Model log-normal dynamics for the forward swap rate under Q1,N by

dpfsr (t) = σ(1,N) (t) pfsr (t) dW (1,N) (t) (5.428)

for a bounded, deterministic volatility function and a Q1,N -Brownian
motion W (1,N)(t).

Under this assumption, the same argument as in the log-normal forward-
LIBOR rate model leads to a Black type formula for swaption prices:

THEOREM 5.71 Swaption pricing with Black’s formula
Under the assumption of log-normal forward swap rate dynamics as in Equa-
tion (5.428), the price at time t (< t0) of a swaption with payment Bswaption
given by (5.427) at time t0 is represented by

Swapt (t; p, t1, ..., tN ; t0) = β (t) [pfsr (t) Φ (d1 (t)) − pΦ (d2 (t))] (5.429)

β (t) =
∑N
i=1 δiP (t, ti) (5.430)

d1 (t) = ln(pfsr(t)/p)+ 1
2 σ̄

2
i (t)

σ̄i(t)
, d2 (t) = d1 (t) − σ̄i (t) , (5.431)

σ̄2
i (t) =

∫ t0
t
σ(1,N) (s)2 ds. (5.432)

As forward-LIBOR rates and forward swap rates are connected via zero
bond prices, it is a natural question to ask how one can be expressed in terms
of the other. Indeed, a comparison between the representation of the forward-
LIBOR rates (5.409) and the forward swap rate representation (5.426) yields

pfsr (t) =
1 −∏N

j=1
1

1+δjLj(t)∑N
i=1 δi

∏i
j=1

1
1+δjLj(t)

. (5.433)

To obtain this equation the relation

P (t, ti)
P (t, t0)

=
i∏

j=1

1
1 + δjLj (t)

, t < t0 (5.434)
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is very useful. A second representation between the two types of rates is

pfsr (t) =
N∑
i=1

δiP (t, ti)∑N
j=1 δjP (t, tj)

Li (t) =:
N∑
i=1

ωi (t)Li (t), t < t0 (5.435)

which directly follows from setting the first representation for the value of a
forward contract in Equation (5.425) equal to 0. In applications, the approx-
imation

pfsr (t) ≈
N∑
i=1

ωi (0)Li (t), t < t0 (5.436)

is often used and seems to be supported by empirical evidence. The two
representations (5.434) and (5.435) have two important consequences:

• It is enough to have a model for the dynamics of the forward-LIBOR
rates Li(t) for also pricing forward swap rate derivatives.

• Using a log-normal diffusion model for the forward-LIBOR rates as e.g.
in Propositions 5.69 or 5.70 does not produce a log-normal forward swap
rate model and vice versa (see Brigo and Mercurio [2001], Section 6.8).

The usual way of dealing with the second fact is to

• assume log-normal forward-LIBOR rates and

• price swaptions (and related swap derivatives) numerically under the
log-normal forward-LIBOR rate assumption.

5.19.3 Aspects of Monte Carlo path simulations of forward-
LIBOR rates and derivative pricing

Propositions 5.69 or 5.70 on the dynamics of the forward-LIBOR rates have
one striking thing in common. Both SDEs contain in general highly nonlinear
drift terms. Further, the distribution of the resulting forward-LIBOR rate
Li(t) is in general only known under the forward measure Qi but not under
any other of the measures presented above. It is therefore clear that the only
way to simulate Li(T ) for some fixed future time is to use an approximation
obtained by a suitable discretization scheme such as the Euler-Maruyama or
the Milstein one. Note in particular that valuing derivatives on LIBOR rates
is in a natural way a multidimensional problem, a fact which – together with
the nonlinearity of the drift term in the LIBOR rate dynamics – makes Monte
Carlo simulation a natural, sometimes the only possible calculation method.

Besides the nonlinearity of the forward-LIBOR rate dynamics, we also have
to take care for the fact that the different rates are correlated. This in partic-
ular implies that they have to be simulated together in one go per path. To
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do so we take the logarithm of the forward-LIBOR rates and obtain its SDE
under – say – the spot measure

d ln (Li (t)) = σi (t) dW disc
i (t) − 1

2
σ2
i (t) dt+

+
i∑

j=β(t)

δjρi,jσj (t)Lj (t)
1 + δjLj (t)

dt for tβ(t)−2 < t ≤ tβ(t)−1. (5.437)

The use of the logarithm has the particular advantage that the diffusion co-
efficient of the SDE is deterministic and thus the Euler-Maruyama and the
Milstein schemes coincide. We give an algorithmic description of the simula-
tion of forward-LIBOR paths in Algorithm 5.21.

Algorithm 5.21 Simulation of paths of forward-LIBOR rates under the spot-
LIBOR measure
Consider the discretization grid 0 = s0 < s1 < . . . < sn = T with T < t0.
Let Li(0) = L(0, ti), i = 1, . . . , N be today’s LIBOR rates for a given tenor
structure. Set Zi(0) = ln(Li(0)).

For k = 1 to n

1. Simulate Y (k) ∼ N(0, ρ).

2. For i = 1 to N set

Zi (sk) = Zi (sk−1) + σi (sk−1)
√
sk − sk−1Y

(k)
i −

−
(

1
2
σ2
i (sk−1) −

i∑
j=1

δjρi,jσj (sk−1)Lj (sk−1)
1 + δjLj (sk−1)

⎞
⎠ (sk − sk−1) ,

Li (sk) = exp (Zi (sk)) .

REMARK 5.72 1. As σi (t) is deterministic, we know that we have∫ s

t

σi (r) dWi (r) ∼ N

(
0,
∫ s

t

σ2
i (r) dr

)
. (5.438)

As we also have a deterministic correlation between the stochastic integrals,
we know that the increments of the stochastic integrals in Algorithm 5.21 are
jointly distributed according to N(0,Σ(s− t)) with

Σ(s− t)ik =
∫ s

t

σi (r) σk (r) ρikdr, i, k = 1, . . . , N. (5.439)
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With this knowledge, if one can easily calculate the corresponding integrals,
one can modify Algorithm 5.21 by simulating Y (k) ∼ N(0,Σ(sk − sk−1)) in
Step 1. Then, in Step 2, we can use this Y (k)

i and can drop its multiplying
factor

√
sk − sk−1.

2. For simplicity, we have assumed sk < t0. However, the algorithm can
easily be modified to allow for sk > t0 for some k. In this case, at time sk
only the LIBOR rates that are not yet determined have to be simulated and
the sum of the drift then has to start with index β (sk).

3. Of course, the algorithm can easily be modified for the simulation under
a different, forward measure Qi. Then, we have to discretize the dynamics of
the logarithm of the forward-LIBOR rates given by Proposition 5.69.

4. If we simulate the (logarithm of the) LIBOR paths in the above form, we
can assume that we are doing this on a sufficiently fine grid such that linear
interpolation does not cause too big deviations if we need values in between
the discretization points.

5. Dimension of the underlying Brownian motion: In Algorithm 5.21
we have assumed that the dimension of the driving Brownian motion under-
lying the different forward-LIBOR rates equals the number of the different
forward-LIBOR rates. If, however, we think that the rates are so strongly
dependent that their movements can be explained by a Brownian motion of
a lower dimension, then it is easy to make the suitable modifications.

Drift approximations and upspeeding LIBOR simulations

Algorithm 5.21 is a standard method of simulating paths of forward-LIBOR
rates. However, as one typically has to simulate a lot of those rates simultane-
ously, the computational effort will be huge when one is actually using small
time steps in the Euler-Maruyama discretization. As it is the drift term that
actually does not allow an exact simulation of the final value of the forward-
LIBOR rates in just one large time step, there is a lot of focus on developing
approximation methods for this term. A particularly popular method is to
freeze the drift, i.e. to approximate the drift term (no matter if we consider
the logarithm under the spot measure or any other measure) by keeping the
forward-LIBOR rates that enter the drift terms at their initial values Li(0)
and calculating the remaining deterministic parts of the drift integral exactly.
That is, we use the approximation∫ T

S

δjρj,kσj (t)Lj (t)
1 + δjLj (t)

dt ≈ Lj (S)
1 + δjLj (S)

∫ T

S

δjρj,kσj (t) dt (5.440)

which actually corresponds to an Euler-Maruyama step over the time interval
[S, T ] with S, T being two generic times. Note that with this approximation,
we can exactly simulate the increment of the forward-LIBOR rates over [S, T ]
as the stochastic integrals entering the representations of the rates are all nor-
mally distributed with the already stated variance-covariance structure (see
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part 1 of Remark 5.72). Hull and White (2000) tested such an approximation
where S is set equal to the initial time and T equal to the maturity of a Eu-
ropean swaption and reported a very good performance for the usual interest
rates and volatility values usually encountered in North America and Europe.

Of course, this simulation with just one long step can still be improved.
Also, it might be necessary to incorporate intermediate times as the payment
of an exotic option might depend on the values of the forward-LIBOR rates at
those intermediate times. A popular way to do this is the use of a predictor-
corrector method (see Hunter et al. [2001]) where one is first calculating
approximate values L̂i(T ) by an Euler-Maruyama step above. Then, one is
using these values in approximating the drift terms with the help of

∫ T

S

δjρj,kσj (t)Lj (t)
1 + δjLj (t)

dt

≈ 1
2

(
Lj (S)

1 + δjLj (S)
+

L̂j (T )
1 + δjL̂j (T )

)∫ T

S

δjρj,kσj (t) dt. (5.441)

In Joshi and Stacey (2008) the performance of this and various other methods
of drift approximation is examined. The authors suggest a simple variant of
the predictor-corrector method that clearly performs better, the so-called it-
erative predictor-corrector method. It makes use of the special structure
of the forward-LIBOR dynamics when the final forward measure QN is used.
Then, one can simulate one rate after the other in starting with LN (T ) which
is driftless under QN . So, one obtains

ln
(
L̂N (T )

)
= ln

(
L̂N (S)

)
+ YN (T ) − 1

2

∫ T

S

σ2
N (t) dt (5.442)

with

Y (T ) ∼ N
(
0,Σ(S,T )

)
, Σ(S,T )

ij =
∫ S

T

σi (t)σj (t) ρijdt. (5.443)

This estimator yields a predictor-corrector estimator for the drift term μ̂N−1

of LN−1(T ) via

μ̂N−1 ≈

− 1
2

(
LN (S)

1 + δNLN (S)
+

L̂N (T )
1 + δN L̂N (T )

)∫ T

S

δNρN−1,NσN (t) dt. (5.444)

Repeating this for all the other forward-LIBOR rates with

μ̂i ≈ −1
2

N∑
j=i+1

(
Lj (S)

1 + δjLj (S)
+

L̂j (T )
1 + δjL̂j (T )

)∫ T

S

δjρi,jσj (t) dt. (5.445)
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constitutes the complete algorithm. This iterative predictor-corrector method
performed well in the numerical analysis in Joshi and Stacey (2008). Depend-
ing on the type of option, it is applicable as a long-stepping method (i.e.
just one predictor-corrector step until maturity) or as a discretization method
with step lengths given by the structure of the option payments.

For more refined variants of this method that also considers the correlations
between the different rates we refer again to Joshi and Stacey (2008).

Monte Carlo pricing of some popular LIBOR derivatives

As we now have algorithms to simulate paths of the forward-LIBOR rates,
pricing derivatives by Monte Carlo (MC) simulation is in principle exactly
the same task as in all other applications considered so far. We will therefore
concentrate on giving an example of popular LIBOR derivatives and comment
on some particularities for their valuation.

MC pricing of an auto-cap

An auto-cap with j payments consists of n caplets (j ≤ n) with strike K
on the forward-LIBOR rates Li, i = 1, . . . , n for the tenor structure t1, . . . , tn.
The caplets are always exercised if they are in the money and as long as not
more than j caplets have already been exercised. Thus, the payment at time
ti is given by

Bauto−cap,i = (ti − ti−1) (Li (ti−1) −K)+ · 1A(i) (5.446)

with A(i) = “at most (j − 1) of Lm(tm−1), m = 1, . . . , i − 1 have been
positive”. Note that this condition is always satisfied for i ≤ j. The price of
an auto-cap is therefore given by (with δi = ti − ti−1)

pauto−cap = E

(
n∑
i=1

e−
R ti
0 r(s)dsδi (Li (ti−1) −K)+ · 1A(i)

)

= pcap (t1, ..., tj ;K) + (5.447)

+ P (0, tn) EQn

⎛
⎝ n∑
i=j+1

δi
P (ti, tn)

(Li (ti−1) −K)+ · 1A(i)

⎞
⎠

where pcap (t1, ..., tj ;K) denotes the price of a cap with strike K and the j
first caplets of the auto-cap. To obtain an auto-cap price by Monte Carlo
simulation we have to simulate all the relevant forward-LIBOR rates until
their fixing times ti−1, together with the corresponding bond prices P (ti, tn),
and in addition keep track of the number of positive payments, which is the
only path-dependent feature of an auto-cap. Repeating this for sufficiently
many paths and averaging over all the obtained (discounted) payments yields
the Monte Carlo estimate for the auto-cap price.
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MC pricing of a target redemption note

A target redemption note guarantees a fixed total coupon psum on an
underlying face value during a maximum running time N . For ease of ex-
position, we assume a face value of 1, annual coupon payments and (actual)
12-month LIBOR rates as the underlying. Typically, the first coupon p1 at
time 1 is fixed. The next coupons are of the form (pi−Li(i− 1))+ if the sum
of the already paid coupons does not exceed psum and also the sum including
this last payment does not exceed psum. Further, this last payment plus the
already paid sum are capped by psum. If the sum does not exceed psum until
maturity, then at the last payment the remaining coupon is added. So, the
only uncertainty is the timing of the coupon and the timing of the repayment
of the face value. Formally, we have coupon payments of the form

Btrn,1 = p1, (5.448)

Btrn,N =

⎛
⎝psum − p1 −

N−1∑
j=2

(pj − Lj (j − 1))+
⎞
⎠

+

(5.449)

at the first and at the final payment times and

Btrn,i = min
(

(pi − Li (i− 1))+ ,

⎛
⎝psum − p1 −

i−1∑
j=2

(pj − Lj (j − 1))+
⎞
⎠

+⎞
⎠ , i = 2, . . . , N − 1 (5.450)

at the times i in between. In addition, there is the possible repayment of the
face value at time i given by

Bredtrn,i = 1Ai , Ai =

⎧⎨
⎩Btrn,i = psum − p1 −

i−1∑
j=2

(pj − Lj (j − 1))+

⎫⎬
⎭ . (5.451)

To value such a target redemption we only have to simulate paths of the
corresponding forward-LIBOR rates (as long as they are still alive!) and can
value the payments Btrn,i + Bredtrn,i at times i in the usual Monte Carlo way,
i.e. by discounting and averaging.

More LIBOR derivatives

There is an enormous diversity of further interest rate derivatives with
payments that can be expressed as functions of forward-LIBOR or forward
swap rates. They have a lot of different features and should sometimes cre-
ate opposite effects than the current yield curve admits. Among them are
so-called inverse floater or steepeners. There are other derivatives con-
sisting of a sequence of caplets or floorlets where the caps/floors change in
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a random way depending on already realized forward-LIBOR rates. Exam-
ples are so-called ratchets and snowballs. Another popular derivative is
a constant maturity swap which consists of an exchange of fixed for floating
rate payments with the floating rate being (a multiple of) a swap rate for
a constant maturity always settled at the payment times. All these deriva-
tives come along with different additional features. The only pricing method
that can be used for all of them right away is Monte Carlo simulation of the
underlying forward-LIBOR rates.

5.19.4 Monte Carlo pricing of Bermudan swaptions with a
parametric exercise boundary and further comments

A Bermudan swaption is the Bermudan variant of a European swaption,
i.e. it consists of a set of swaptions of maturity times ti, i = 1, . . . , n. The
holder of the Bermudan swaption can now choose one of these exercise times
ti and exercise the swaption or can choose not to exercise any swaption at all.
We are thus in the same situation as with Bermudan options on a stock.

Bermudan swaption pricing with the Longstaff-Schwartz algorithm

We have already presented the Longstaff-Schwartz algorithm for pricing
Bermudan options with the help of regression methods in Section 5.14. Note
that it does not depend on the actual form of the dynamics of the underly-
ing(s). The only requirements for it to work are

• that we are able to simulate paths of the underlying that connect the
different exercise times of the Bermudan option,

• that we can determine the intrinsic value of the option which is given
by the payment resulting from immediate exercise at the times ti.

If these two requirements are fulfilled we can start the backward algorithm of
the Longstaff-Schwartz algorithm in the usual way. As the payments of the
Bermudan swaption typically depend on all forward-LIBOR rates that enter
the underlying swap in the future, we are automatically faced with a multidi-
mensional underlying stochastic process. On the positive side, the dimension
of the underlying process is always reduced by one with every possible exercise
passed as then one of the forward-LIBOR rates is now fixed. However, while
in the Black-Scholes model we could easily use exact simulation to get from
one payment time to another (and thus only needed one simulation step per
payment time), the forward-LIBOR rates cannot be simulated exactly. One
can now simulate the required forward-LIBOR paths by either a discretization
scheme or with the help of a drift approximation method, both of which are
discussed in Section 5.19.3. The accuracy of the method used should always
be examined by the use of a dual upper bound method such as the one of
Andersen and Broadie (2004) or the variant of Belomestny et al. (2009).
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We do not go into more details here, but will instead present a simple alter-
native that is more suitable in the LIBOR rate setting than in the multiasset
stock option world.

Bermudan swaption pricing with a parametric exercise boundary

The method of pricing Bermudan swaptions by using a parametric exer-
cise boundary has been introduced in Andersen (1999). By exercise bound-
ary, we simply mean the boundary of the region of the underlying’s prices
where it is optimal to exercise the Bermudan swaption. To approximate it,
we suggest to use a parametric family for the form of the optimal exercise
boundary and then try to determine the best-suited parameter(s). Here, the
best parameter(s) are those that deliver the highest estimate of the option
price on the basis of a sufficiently large number of simulated forward-LIBOR
paths. This is based on the fact that every strategy that we are determining
can only be suboptimal and therefore the higher the option price estimate, the
closer – we believe – is the parametric boundary to the real exercise boundary.

However, to obtain a lower bound for the Bermudan swaption price, we have
to use an additional set of simulation runs to obtain a Monte Carlo estimate
for the option price on the basis of the just determined (suboptimal) exercising
strategy. Otherwise, the maximization over the first set of simulated paths
could have led to a higher price estimate as we have solved our maximization
of the option value on the basis of the simulated paths which introduces a
high bias into the price estimation.

To demonstrate how this method works, we take up an example of Ander-
sen (1999) where a Bermudan swaption is considered. To formalize this, we
assume that the Bermudan swaption is given by

• its possible exercise times T1 < ... < TN ,

• N swaps with identical fixed for floating payments and maturity Ts but
which start at the different times Ti,i = 1, . . . , N , N < s.

The decision problem for the holder of the Bermudan swaption at time ti is
to exercise the swaption and enter the corresponding swap starting at Ti or to
wait until a possibly better exercise time. A parametric form of the exercise
boundary might now be a deterministic function of the still alive forward-
LIBOR rates at time Ti. Indeed, a simple example proposed in Andersen
(1999) is the following suggestion for the exercise time τ∗:

τ∗ = inf {t ∈ {T1, . . . , TN} : I (t) = 1} , (5.452)

I (Ti) =
{

1 if Si,E (Ti) > H (Ti)
0 else (5.453)

where Si,E(t) is the value of the European swaption with maturity Ti and
H(t) is a deterministic function. Note in the example above that the holder
of the Bermudan swaption exercises it at time Ti in case the intrinsic value of
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the European swaption maturing at time Ti is larger than the value H(Ti).
So what remains is to determine the values H(Ti), i = 1, ..., N, and then the
parametric exercise strategy is fully determined.

For this, we are looking for those values that maximize the value of the
Bermudan swaption with exercise strategyH(.) as given above along a set ofK
simulated forward-LIBOR rate paths. We also have to decide which numeraire
we are actually using (such as i.e. the discrete money market account or some
particular zero bond). Let B(Ti, k) be the value of this numeraire at time Ti
in the simulated path k.

We determine the optimal parametric exercise values H(Ti) in a backward
fashion. Note that at time TN we must have

H (TN) = 0 (5.454)

as it is the last exercise time, and a swap should be entered then if and only
if it has a positive value. At time H(TN−1), we know the intrinsic values of
the European swaption maturing at TN−1 for each path. Also, along those
paths we can compute the discounted value according to the strategy if we
would not exercise as we have already determined H(TN ) = 0. H(TN−1) is
then determined in such a way that maximizes

VN−1 (H (TN−1)) :=
K∑
k=1

(
S

(k)
N−1,E (TN−1) · 1

S
(k)
N−1,E(TN−1)>H(Ti)

+

+
B (TN−1, k)
B (TN , k)

S
(k)
N,E (TN ) · 1

S
(k)
N,E(TN−1)>0, S

(k)
N−1,E(TN−1)≤H(Ti)

)
. (5.455)

We then continue in the same way at the exercise times TN−2, . . . , T1 and thus
obtain all the values H(Ti). As already indicated above, to obtain a lower
bound for the Bermudan swaption price by the crude Monte Carlo method,
we then have to simulate a new set of corresponding forward-LIBOR rates and
estimate the Bermudan swaption price in the usual way by discounting each
particular payment with its pathwise discount factor, followed by an averaging
over all these discounted payments.

Note that there are many more forms of an exercise rule that one can think
of besides the one given in Equation (5.452). As in Andersen (1999), one can
consider including the actual values of all the other European swaptions that
are still alive. This will, however, greatly increase the computational effort.
Further, one can specify particular parametric forms of the function H(.) that
depends on less than N parameters, and therefore leads to an even smaller
dimensional optimization problem than the iterated one solved above.

In Andersen (1999), good numerical performance is demonstrated for simple
piecewise linear functionals. On the down side, let us mention again that we
only obtain a lower bound for the price, that we have no real convergence
theory (opposed to the Longstaff-Schwartz framework). We are relying on
good numerical engineering and experience in guessing a possible form of the
exercise boundary.
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5.19.5 Alternatives to log-normal forward-LIBOR models

As with nearly all models for price processes on a financial market that
started with a log-normal distribution, it has been realized after some time
that there are empirical deviations of the prices from the log-normality hy-
potheses. Of course, one can consider the usual suspects when it comes to
more realistic modelling that takes care for volatility smiles or skews (see
Piterbarg [2003] for a survey). A general class introduced in Andersen and
Andreasen (2000) is given by

dLi (t) = f (Li (t))σi (t) dWi (t) , t < ti. (5.456)

for a general function f . Popular choices include:

f (x) = ax+ b “displaced diffusion model,” (5.457)
f (x) = xγ “CEV type model.” (5.458)

Further extensions include a stochastic volatility component into the forward-
LIBOR dynamics. A popular model among practitioners is the so-called
SABR-model (stochastic alpha beta rho) introduced by Hagan et al. (2002).
Giving a complete and detailed survey on the motivation and technical details
of these models is, however, beyond the scope of this book.



Chapter 6

Continuous-Time Stochastic
Processes: Discontinuous Paths

6.1 Introduction

Thus far, the continuous-time stochastic processes that we have presented
for stock price and interest rate modelling have all had continuous paths.
Hence, if we monitor such a process closely, we cannot be caught by sur-
prise by an exceptionally big move. However, there are many reasons such as
catastrophes or surprising news (unexpected political changes, an economic
scandal, and so forth) that can make a real-life process jump. More so, due to
discreteness of measurement, it can also be argued that processes modelling
the real world should allow for discontinuities in their paths, at least. Finally,
in the insurance business the evolution of the absolute number of insurance
cases is a fundamental issue that can only be modelled by a counting pro-
cess. This might be the most natural example of a continuous-time stochastic
process with piecewise constant paths that only increases by jumps.

We will now mainly concentrate on the class of Lévy processes as an obvi-
ous generalization of the Brownian motion concept. Although there are more
general jump processes than Lévy processes, they form a rich class for mod-
elling purposes. Their application and their numerical treatment is a very
active area of research where the last words are by far not yet spoken. For the
theoretical background on Lévy processes we recommend the monograph by
Applebaum (2004). Applications of financial modelling are treated in Cont
and Tankov (2003) or in Schoutens (2003).

This chapter begins with an important example of a Lévy process, the Pois-
son process. As it is possible to use Poisson processes for modelling actuarial
and financial data without the need of the full technicalities of Lévy processes,
we treat them separately. Combining Poisson processes with Itô processes will
give rise to the class of jump-diffusions, which is the second example of jump
type processes that we will examine. Finally, we will turn to the general class
of Lévy processes presenting the theoretical background, and collect examples
of such processes and methods to simulate them.

309
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6.2 Poisson processes and Poisson random measures:
Definition and simulation

Poisson processes are among the most simple jump processes. They can
easily be understood and simulated. In their simplest form, they are a funda-
mental building block of the class of Lévy processes. Also, they play a funda-
mental role in insurance mathematics that is similar to that of the Brownian
motion in financial mathematics.

DEFINITION 6.1
A stochastic process N(t) with N(0) = 0 is called an inhomogeneous Poisson
process with parameter process Λs,t if N(t) has independent increments with

N (t) −N (s) ∼ Pn (Λs,t) , t > s > 0 (6.1)

where Pn(λ) denotes a Poisson distribution with parameter λ > 0. If we have

Λs,t = λ · (t− s) , t > s > 0 (6.2)

for a positive constant λ then we speak of a homogeneous Poisson process
with intensity λ. If not stated otherwise, we mean the homogeneous case when
we simply speak of a Poisson process.

REMARK 6.2 1. The paths of a Poisson process are monotonically
increasing by jumps of size 1.

2. One can show that in the case of a homogeneous Poisson process with
intensity λ > 0 we have:

• The time between two jumps of a Poisson process is exponentially dis-
tributed with parameter λ.

• E (N (t)) = λt, i.e. the number of jumps of a Poisson process is propor-
tional to time, and λ is the average number of jumps per time unit.

• Var (N (t)) = λt, i.e. the variance of a Poisson process is also propor-
tional to time, a property that it shares with the Brownian motion.

3. We can and will always assume that the paths of a Poisson process are
right-continuous with left limits. This in particular means that the value of
the jump of the Poisson process actually is already added to the process at the
jump time. This is reasonable for applications in finance and insurance. To
see this, note that if instead we would have it required to be left-continuous,
then this would have allowed us to observe the jump and react on it before
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FIGURE 6.1: Poisson process with intensity λ = 2.

the consequence of it had already hit us. This clearly is not what we had in
mind when introducing jumps to our modelling framework.

Figure 6.1 shows a path of a Poisson process with a parameter of λ = 2.
An immediate generalization of the Poisson process is to allow arbitrary jump
heights, which leads to compound Poisson processes.

DEFINITION 6.3

Let N(t) be a Poisson process with parameter λ, let Zi, i = 1, 2, ... be a
family of independent, identically distributed random variables which are also
independent of the Poisson process N(t). Then the process X(t) defined by

X(t) :=
N(t)∑
i=1

Zi (6.3)

is called a compound Poisson process.

Note in particular that as negative jump heights are also allowed, a com-
pound Poisson process no longer needs to be an increasing process.

To simulate a compound Poisson process on a finite interval [0, T ], we sim-
ulate the jump times of a Poisson process Nt and then the jump heights
Z1, ...ZNt . In between two jumps the Poisson process is constant. These
simple facts yield Algorithm 6.1 to simulate a compound Poisson process.

REMARK 6.4 1. Simulation of a Poisson process: By replacing the
random number Z by the constant 1 in Algorithm 6.1, we simulate a plain
Poisson process. A drift a can be included by replacing X(R) := X(R−) +Z
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Algorithm 6.1 Simulation of a compound Poisson process
Let L be the distribution of the jump heights, λ be the jump intensity.

1. Set X(0) := 0, R := 0, R− := 0.

2. As long as we have R < T :

(a) Simulate S ∼ Exp (λ)

(b) Set R− := R, R := R+ S

(c) If R > T
then R := T ; X(R) := X(R−)
else

• Simulate a random number Z ∼ L

• Set X(R) := X(R−) + Z

(d) Set X(t) := X(R−) for t ∈ (R−, R)

by X(R) := X(R−) + Z + a · (R − R−). Further, we then obtain points
between jumps via X(t) := X(R−) + a · (t−R−).

2. Alternative jump time simulation: As it is known that given the
number N(T ) = k of jumps of a (compound) Poisson process on [0, T ] the
jump times are given as the ordered outcome of the simulation of k indepen-
dent random variables θi which are uniformly distributed on [0, T ], one can
also simulate the jump times ti by the following procedure:

1. Simulate the number of jumps N(T ) ∼ Pn(λT ).

2. Simulate N(T ) independent random numbers θi ∼ U [0, T ].

3. Set ti = θ(i) where the subscript (i) denotes the i-th order statistic, i.e.
we have θ(1) ≤ θ(2) ≤ .. ≤ θ(N(T )).

Then, at ti one adds the jump height Zi to the compound Poisson process.

3. A popular model in risk theory (see Section 8.5.2) is the combination of
a compound Poisson process with a drift,

Y (t) = y + c · t+X (t) . (6.4)

6.2.1 Stochastic integrals with respect to Poisson processes

As in the Brownian case we will also define an integral with respect to a
compound Poisson process to introduce a class of processes similar to Itô pro-
cesses. For this, it will be convenient to introduce so-called Poisson random
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measures. However, before doing so, we start with the simple Poisson process
to give an idea what we have to take care of. For a general real-valued stochas-
tic process Y we can introduce the stochastic integral of Y with respect to a
Poisson process N as

∫ t

0

Y (s)dNs :=
N(t)∑
i=1

Y (ti), (6.5)

t1, ..., tN(t) denoting the jump times of the Poisson process. Thus, the stochas-
tic integral equals the sum of the values of the Y process at the jump times.
If the integrand is a compound Poisson process, then the terms in this sum
have to be multiplied by the jump heights of the Poisson process to get

∫ t

0

Y (s)dX(s) :=
N(t)∑
i=1

Y (ti) · Zi (6.6)

where, in addition to the above example, Zi denotes the jump height of the
compound Poisson process at ti.

Obviously, the so-defined stochastic integral is in general not a martingale
(simply take X as a constant process, integrate with respect to a Poisson
process, and obtain a multiple of an increasing process). To obtain this, we
replace the integrator by a suitable martingale and also require that the inte-
grand is progressively measurable with respect to a filtration Ft that includes
the one generated by the integrator.

DEFINITION 6.5
Let (Ft)t≥0 be a given filtration. A stochastic process (X(t), Ft)t≥0 is called
predictable (with respect to the filtration F ) if the mapping

X : [0,∞) × Ω −→ R
d, (t, ω) �−→ X (t, ω) (6.7)

is measurable with respect to the smallest σ-algebra generated by the left-
continuous processes (Y (t), Ft)t≥0.

Predictability thus supports the idea that the value of the integrand should
be fixed at time t before one knows if there is a jump at time t. This is
in particular important for the interpretation of the integrand as a trading
strategy in finance. In the case of the Poisson process we obtain the required
martingale as an integrator by subtracting its expectation process. We thus
introduce the so-called compensated Poisson process Ñ (t) via

Ñ (t) := N (t) − λt . (6.8)

Then, one can show that if the integrand X is predictable (with respect to a
filtration F that contains the one generated by N(.)) and in L1 ([0, T ]) with
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respect to the Lebesgue measure, then the stochastic integral with respect to
the compensated Poisson process

∫ t

0

X (s) dÑ (s) :=
∫ t

0

X (s) dN (s) −
∫ t

0

X (s)λds (6.9)

is well defined and is a martingale on [0, T ] (with respect to F ).
Below, we will introduce a more general setting that will prove to be conve-

nient in the Lévy process framework and allow us to introduce some notation.

A short excursion: Marked point processes

The idea of a marked point process is simply to identify a jump process
with the sequence of pairs (ti, Yi) where the random times ti are the jump
times and the random variables Yi characterize the jump heights at time ti
of the process. This allows an easy representation of a compound Poisson
process, but also allows us to define a multivariate jump process

N (t) :=
(
N (1) (t) , ..., N (m) (t)

)
.

For this we use the interpretation that – as before – the ti-sequence determines
the jump times of the process, but the Yi-sequence identifies which of the m
components of the process actually jumps at time ti. More precisely, Yi = k
means that the k-th component N (k) of the jump process increases by 1 at
time ti while the others all remain constant. This can be formulated as

N (k) (t) =
∑
i≥1

1ti≤t1Yi=k . (6.10)

Note that the jump process does not necessarily need to be a Poisson process.
Both the above interpretations are special cases of the following definition.

DEFINITION 6.6
Let (E, E) be a measurable space with E ⊆ R. Let (ti, Yi) be a sequence of
pairs of

• nonnegative random variables 0 < t1 < t2 < ... and

• random variables Yi taking values in E.

Then this sequence (tn, Yn)n∈N
is called an E-marked point process.

Using this newly introduced terminology of an E-marked point process will
be the key to introduce stochastic integrals over point processes. Note that
for each set A ⊆ E with A ∈ E one can construct a new associated marked
point process via

N (t, A) =
∑
i≥1

1ti≤t1Yi∈A (6.11)
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out of the original marked point process (tn, Yn)n∈N
. By identifying N as a

two parameter family, we can define the filtration

FNt := σ {N (s,A) |0 ≤ s ≤ t, A ∈ E } , (6.12)

and an associated random measure

p ((0, t] , A) := N (t, A) , 0 ≤ t, A ∈ E . (6.13)

This random measure simply counts the “jumps” (with the possible interpre-
tation as choices of indices in the multivariate case) of sizes in A until time t.
By assuming that the stopping times ti do not accumulate before any finite
time T , we can now introduce the integral notation

∫ t

0

∫
E

H (s, y) p (ds, dy) =
∑
i≥1

H (ti, Yi) 1ti≤t =
N(t,E)∑
i=1

H (ti, Yi) (6.14)

for a given predictable process H (t, x) that can also depend on the value of
the jump height Yi (the “mark”) at the jump time.

In our setting of a compound Poisson process the above random measure
p((0, t], A) simply counts all jumps of the Poisson process N(t) on (0, t] with
jump height values in A. This is modelled by assuming independence between
the jump height distribution given by the probability measure m (dy) and
the Poisson process with a constant jump intensity λ. The corresponding
random measure p((0, t], A) is a Poisson random measure, i.e. p((0, t], A)
is a Poisson-distributed random variable for all t ≥ 0, A ∈ E. We then define
the compensated Poisson random measure

q ((0, t] , A) := Ñt (A) := p ((0, t] , A) − λ · t ·m (A) , 0 ≤ t, A ∈ R. (6.15)

Given then that the integrand H (t, x) is integrable with respect to the com-
pensated Poisson measure and that the jump height distribution has a support
of E and an expected value of E(Y ), we have that

∫ t

0

∫
E

H (s, y) q (ds, dy) =
∑
i≥1

H (ti, Yi) 1ti≤t − λtE (Y ) (6.16)

is indeed a martingale. As the integral with respect to a compound Poisson
process is still essentially only a sum, its simulation is straightforward as
described in Algorithm 6.2.

6.3 Jump-diffusions: Basics, properties, and simulation

Roughly speaking, a jump-diffusion is the generalization of the sum of a
Poisson process and a Brownian motion, or more precisely the combination
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Algorithm 6.2 Simulation of a stochastic integral with respect to a
compound Poisson process
Let Y (t) be a predictable process, X(t) a compound Poisson process with
jump height distribution L and intensity λ.

1. Set I (0) := 0.

2. Simulate a compound Poisson process Xt with jump times 0 < t1 <
... < tN(T ) ≤ T and jump heights Z1, ..., ZN(T ).

3. Set I (ti) := I (ti−1) + Y (ti) · Zi, i = 1, ..., N(T ).

4. Set I (t) := I (ti−1) for t ∈ [ti−1, ti), i = 1, ..., N(T + 1), tN(T+1) := T .

of a stochastic integral with respect to a (compound) Poisson process (or a
Poisson random measure) and a diffusion process. While the sum of a Poisson
process and a Brownian motion is a Lévy process, the second one is in general
not. Thus, jump-diffusions form no subclass of Lévy processes and are of
interest on their own.

Let us consider a probability space (Ω, F,P) on which both a (d-
dimensional) Brownian motion and a (compound) Poisson process are defined.

DEFINITION 6.7

Let {(X(t), Ft)}t∈[0,T ] be a stochastic process that can be represented as

X (t) = X (0)+
∫ t

0

f (s) ds+
∫ t

0

g (s) dW (s)+
∫ t

0

∫
E

h (s, y) p (ds, dy) (6.17)

with W (t) a one-dimensional Brownian motion independent of the Poisson
random measure p (., .) that corresponds to an underlying (compound) Poisson
process N(t). E contains the support of the jump height distribution. The
integrands f(s), g(s) are assumed to be progressively measurable, h (s, y) to
be a predictable process that all satisfy integrability conditions such that all
integrals are defined. Then, we call X(t) a jump-diffusion process.

Note that the jump integral in the definition above can be written as a sum

∫ t

0

∫
E

h (s, y) p (ds, dy) =
N(t)∑
i=1

h (ti, Yi) (6.18)

with the usual interpretation of ti as the jump times and Yi as the jump heights
of the compound Poisson process Nt, and thus also of the jump-diffusion Xt.
As in the diffusion setting, we use the differential notation for the integral
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representation of the jump-diffusion:

dX (t) = f (t) dt+ g (t) dW (t) +
∫
E

h (t, y) p (dt, dy) . (6.19)

Examples 6.8 Jump-diffusions
1. The simplest, nontrivial example of a jump-diffusion is given by

X (t) = W (t) +N (t) (6.20)

with N(t) a Poisson process with intensity λ, W (t) a Brownian motion, both
being independent. Conditioning on the number of jumps N(t) at time t
yields the distribution of X(t) as a Poisson mixture of normal distributions,

P (X (t) ≤ x) =
∞∑
k=0

e−λt
(λt)k

k!
Φ
(
x− k√

t

)
. (6.21)

2. A simple jump-diffusion which has no stationary increments (and is thus
no Lévy process (see the exact definition in the next section)) is given by

Xt = x+
∫ t

0

sdWs +Nt. (6.22)

Before we turn to the task of simulation we state the Itô formula for jump-
diffusion processes as the fundamental tool for working with them.

THEOREM 6.9 Itô formula for jump-diffusions
Let X(t) be a jump-diffusion process that admits a representation given by
(6.17), let F : [0,∞) × R → R be a C1,2-function. Then, we have

F (t,X (t)) = F (0, X (0)) +
∫ t

0

Fx (s,X (s)) g (s) dW (s)

+
∫ t

0

(
Ft (s,X (s)) + Fx (s,X (s)) f (s) +

1
2
Fxx (s,X (s)) g2 (s)

)
ds

+
N(t)∑
i=1

(F (ti, X (ti−) (1 + h (ti, Yi))) − F (ti, X (ti−))). (6.23)

In the above version we apply the Itô formula for Itô processes between the
jumps of X(t) and add the correcting differences at the jump times.

6.3.1 Simulating Gauss-Poisson jump-diffusions

In this section we will concentrate on the simulation of a simple class of
jump-diffusions, the Gauss-Poisson jump-diffusion processes, which are a sum
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of a Brownian motion with drift and a compound Poisson process,

X (t) = x+ μt+ σW (t) +
N(t)∑
i=1

Yi (6.24)

with W (t) a Brownian motion, N(t) a Poisson process with parameter λ >
0, and all Yi being independent, identically distributed (i.i.d.) real-valued
random variables. The advantage of these processes is that we can exactly
simulate their increments. This directly leads to a first simple simulation
procedure in Algorithm 6.3.

Algorithm 6.3 Simulation of a Gauss-Poisson jump-diffusion process with a
fixed time discretization
Let 0 = t0 < t1 < ... < tn = T be a fixed time discretization of [0, T ], let L be
a given jump height distribution, and μ, σ ∈ R.

1. Set X(0) := x.

2. For i = 1 to n do:

• Generate a random number P ∼ Pn (λ · (ti − ti−1)).

• If P > 0 then for j = 1 to P do:

– Simulate P random numbers Zj ∼ L.

– Set X (ti) := X (ti−1) +
∑P
j=1 Zj .

• Else: X (ti) := X (ti−1).

• Generate a random number Z ∼ N (0, 1).

• Set X (ti) := X (ti) + μ · (ti − ti−1) + σ · √ti − ti−1Z .

REMARK 6.10 1. Note that we do not perform a linear interpolation
between the time grid points in Algorithm 6.3. This would only make sense if
no jump had happened between two grid points. In all other cases, we could
neither identify the continuous pieces of the path nor the exact location of the
jumps. Thus, a linear interpolation would be misleading.

2. For some applications in finance and insurance it is indeed important
to simulate the jumps exactly at the jump times. To achieve this, one first
simulates the jump times, then the jump heights, and finally the Brownian
motion part on a time grid that is adapted to the jump times. As the times
between two jumps can vary quite a lot, we suggest using a given grid for
simulation of the Brownian motion and then simply add the jump times of
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the Poisson process as grid points as soon as they are known.

3. As in the case of a geometric Brownian motion, we can use the above
algorithm also to simulate a process that can be represented as a function
f(X(t)) of a Gauss-Poisson process X(t) by simulating X(t) first and then
evaluating the function at those simulated values.

4. One can generalize the above algorithm to simulate multidimensional
Gauss-Poisson jump-diffusions. For this, consider a d-dimensional Brown-
ian motion W (t) and k independent compound Poisson processes with differ-
ent jump height distributions. One can then simulate Gauss-Poisson jump-
diffusions of the form

Xi (t) = xi + μit+
d∑
j=1

σijWj (t) +
k∑
j=1

Nj(t)∑
m=1

Y jm, i = 1, ..., n (6.25)

on a fixed or on a suitably adapted time grid.

5. Note that as we can simulate the exact distribution of (the increments of)
the Gauss-Poisson jump-diffusions, there is no additional discretization error
when it comes to estimate an expectation of a functional that only depends
on the values of the process at finitely many time points,

E (g (X (t1) , ..., X (tk))) ≈ 1
N

N∑
i=1

g
(
X(i) (t1) , ..., X(i) (tk)

)
. (6.26)

Here, the upper index (i) simply indicates the relevant values of the X-process
in its i-th simulated path.

6.3.2 Euler-Maruyama scheme for jump-diffusions

As in the case of Itô processes, in general we do not know the exact dis-
tribution of jump-diffusion processes. Therefore, when simulating a path we
have to rely on discretization methods. As before, the simplest one is the
Euler-Maruyama method. We consider the one-dimensional jump-diffusion
X(t) given by the differential representation

dX (t) = a (X (t)) dt+ b (X (t)) dW (s) + c (X (t−)) dJ (t) (6.27)

with J(t) a compound Poisson process with intensity λ and jump height dis-
tribution L. Here, we assume that this SDE with jumps admits a unique
solution. Examples for this will be seen in the next chapter among the appli-
cations in finance.

The Euler-Maruyama described in Algorithm 6.4 has a weak convergence
order of 1, a strong convergence order of 1/2 (see Bruti-Liberati and Platen
[2007]). A multidimensional extension is straightforward in the sense of Re-
mark 4.66. As in the Gauss-Poisson jump-diffusion case, it is often useful
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Algorithm 6.4 Euler-Maruyama scheme for jump-diffusions
Let Δt := T/N for a given N . Simulate an approximate path YN (t) of the
jump-diffusion process X(t) given by the SDE with jumps (6.27) via:

1. Set YN (0) = X (0) = x.

2. For j = 0 to N − 1 do

(a) Simulate a standard normally distributed random number Zj .

(b) Simulate a random variable Ξj ∼ Pn(λΔt).

(c) Simulate a random variable Λ ∼ L.

(d) Set ΔW (jΔt) =
√

ΔtZj and

YN ((j + 1)Δt) = YN (jΔt) + a (YN (jΔt))Δt
+ σ (YN (jΔt))ΔW (jΔt) + c (YN (jΔt)) ΛjΞj .

to have an adapted time grid. This can be obtained in a similar way here.
We first have to simulate the jump times τi and the corresponding jump
heights Λi, i = 1, ..., N(T ). Then, the jump times are included in the time
discretization of [0, T ]. One can then use the following two step procedure in
the adapted Euler-Maruyama scheme where the time grid ti, i = 1, ..., N
already includes the jump times:

YN (tj+1−) = YN (tj) + a (YN (tj)) (tj+1 − tj) + σ (YN (tj))ΔW (tj) , (6.28)

YN (tj+1) = YN (tj+1−) + c (YN (tj+1−))ΔJ (tj+1) (6.29)

where ΔJ(tj+1) = J(tj+1) − J(tj+1−) equals 0 at times tj+1 where no jump
happens. This algorithm might have advantages when the jump intensity λ is
small. If, however, λ is large then there might not be big differences between
the simple, regular Euler scheme and the jump time-adapted one.

More one-dimensional schemes (such as predictor-corrector schemes in the
weak and strong sense) are presented and compared in Bruti-Liberati and
Platen (2007).

6.4 Lévy processes: Properties and examples

6.4.1 Definition and properties of Lévy processes

A Lévy process is the natural generalization of both the Brownian motion
and the Poisson process.
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DEFINITION 6.11
A stochastic process {X(t), Ft}t≥0 with X(0) = 0 and independent and sta-
tionary increments X(t) −X(s) for t > s is called a Lévy process.

One may always assume that a Lévy process has right-continuous paths
with existing left-hand limits (see Applebaum [2004]). For reasons already
explained in the case of a Poisson process, we will therefore in the following
always do this. Obviously, (multidimenisonal) Brownian motion and com-
pound Poisson processes are Lévy processes. Further, linear combinations of
independent Lévy processes are again Lévy processes.

The main technical problems when dealing with Lévy processes are caused
by the small jumps of the process. For instance, there do exist Lévy processes
X(t) that only change their value by jumps, but for which we have

X (t) �= X (0) +
∑
s≤t

ΔX (s) (6.30)

with the jump process of X(t) being defined by

ΔX (t) = X (t) −X (t−) . (6.31)

The reason for this behaviour is that the number of jumps is infinite and the
sum does not converge.

We recall the notion of a Poisson random measure from the Poisson process
section. For A ∈ B(Rd − {0}) and t ≥ 0 we introduce

N (t, A) := # {0 ≤ s ≤ t; ΔX (s) ∈ A} (6.32)

which counts the numbers of jumps of size in A that occur up to time t. One
can show (see Applebaum [2004]) that N(t, A) is a Poisson process if A is
bounded below (i.e. its closure does not contain 0). We further introduce the
following.

DEFINITION 6.12
Let X be a Lévy process with corresponding counting measure N (t, A) as de-
fined in (6.32). Then, the Lévy measure ν of X is a measure on (Rd,B(Rd))
defined by ν({0}) = 0 and by

ν (A) := E (N (1, A)) , A ∈ B(Rd − {0}). (6.33)

Note that by the properties of a Poisson random measure (in particular
that the Poisson distribution has a finite second moment) we have ν(A) =
E(N(t, A)) < ∞ for all A which are bounded below. Further, for a fixed A,
the process N(t, A) is a compound Poisson process with intensity λ and jump
height distribution L given by

λ = ν (A) , L (dx) =
ν (dx)
ν (A)

. (6.34)
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It can then be shown that we also have∫
Rd

min
{
|x|2 , 1

}
ν (dx) < ∞ (6.35)

which is the usual defining equation for a Lévy measure in the literature.
From this it follows that we have

ν
(
R
d − {x : |x| < 1}) < ∞, (6.36)

but that we might have ν ({x : |x| ≤ 1}) = ∞. This leads to the following
definition.

DEFINITION 6.13
Let X(t) be a Lévy process with Lévy measure ν.

(a) We say that X(t) has finite activity if we have

ν
(
R
d
)
< ∞. (6.37)

Then, each path of X(t) has finitely many jumps on an interval [0, T ].

(b) We say that X(t) has infinite activity if we have

ν
(
R
d
)

= ∞. (6.38)

Then, for T > 0 each path of X(t) has infinitely many jumps on [0, T ].

The definition highlights that the small jumps can cause the main problems
when dealing with a Lévy process. The choice of norm 1 for classifying a jump
as small is arbitrary. One could choose any positive number ε for this.

The fundamental result on the form of a path of a Lévy process is the
Lévy-Itô decomposition. It is the essential tool to understand the simulation
of Lévy processes, but also highlights their technical difficulties.

THEOREM 6.14 Lévy-Itô decomposition
Each d-dimensional Lévy process X(t) with a Lévy measure ν admits a de-
composition of the form

X (t) = γt+ σW (t) +
∫
|x|≥1

xN (t, dx) +
∫
|x|<1

x (N (t, dx) − tν (dx)), (6.39)

with γ ∈ R
d, W (t) a d-dimensional Brownian motion, σ ∈ R

d,d, N a Poisson
random measure on [0,∞)× (Rd−{0}) determined by the Lévy measure ν as
in Equation (6.34). Further, N and W are independent.

This decomposition directly shows that a Lévy process is a sum of
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• a linear deterministic component γt,

• a Brownian motion with covariance matrix σσ′,

• a jump process with jumps of absolute value bigger or equal to 1, and

• a compensated jump process with respect to the compensated Poisson
random measure Ñ(t, A) = N(t, A)−tν(A) with jumps of absolute value
smaller than 1.

Note that by the properties of a Poisson jump measure, the two jump processes
are also independent. Further, the fourth part has to be considered separately
as we might have ν ({x : |x| ≤ 1}) = ∞. Then, the sum of the small jump
would not converge. However, one can show that the compensated sum does.

Thus, when simulating a path of X , one can independently simulate the
Brownian motion and the two jump processes and then finally add them.
While the simulation of the Brownian motion causes no problem, our consid-
erations on the Lévy measure so far already indicate that simulating the small
jumps might become delicate.

We give a definition and some further path properties of a Lévy process
(see Cont and Tankov [2003]):

DEFINITION 6.15
Let X be a Lévy process that admits a decompositon (6.39). Then, the triplet
(γ, σσ′, ν) is called the Lévy triplet of X.

PROPOSITION 6.16
Let X(t) be a one-dimensional Lévy process with Lévy triple

(
γ, σ2, ν

)
.

(a) X(t) has paths of finite variation if and only if we have
(
γ, σ2, ν

)
= (γ, 0, ν) with

∫
|x|≤1

|x| ν (dx) < ∞. (6.40)

(b) In the case of (a) with b = γ − ∫|x|≤1
x ν (dx) we have the representation

X (t) = bt+
∑

s∈[0,t] : ΔX(s) �=0

ΔX (s). (6.41)

(c) We further have:

E (|X (t)|n) < ∞ ⇐⇒
∫
|x|≥1

|x|n ν (dx) < ∞ . (6.42)

In this particular case we have the explicit representations:

E (X (t)) = γt+ t

∫
|x|≥1

xν (dx), Var (X (t)) = σ2t+ t

∫
R

x2ν (dx). (6.43)
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For later use we also state a suitable version of Itô’s formula for Lévy
processes (see Applebaum [2004]):

THEOREM 6.17 Itô’s formula for Lévy processes
Let X(t) be a one-dimensional Lévy process with representation (6.39). Let
further f : R → R be a C2-function. Then we have:

f (X (t)) = f (x) +
∫ t

0

f ′ (X (s)) dX (s) +
1
2

∫ t

0

f ′′ (X (s))σ2ds

+
∑

0≤s≤t
[f (X (s)) − f (X (s−)) − f ′ (X (s−))ΔX (s)]. (6.44)

Note that the dX(s)-integral are indeed four integrals due to Equation (6.39).

6.4.2 Examples of Lévy processes

Of course, there are examples of Lévy processes that are different from
Brownian motion and Poisson processes. Some of them will be given below;
additional ones are presented in the next chapter as applications in finance.

Example 6.18 Lévy processes from infinitely divisible distributions

This is no particular example, but a general principle how to construct a Lévy
process. For this, we need the notion of an infinitely divisible distribution.

DEFINITION 6.19
A distribution L is called infinitely divisible if there exists an R

d-valued
random variable X with distribution L such that for every n ∈ N there exist
i.i.d. random variables Y (n)

1 , ..., Y
(n)
n with

X
D= Y

(n)
1 + ...+ Y (n)

n . (6.45)

By the definition above, one only has to check if for all n ∈ N the n-
th root of the characteristic function Φμ (.) of the distribution L is again a
characteristic function of a distribution. Popular examples of infinitely divisi-
ble distributions where this check is straightforward are the multidimensional
Gaussian distribution (where the Y (n)

i are again Gaussian with mean and vari-
ance scaled by 1/n) and the Poisson distribution with parameter λ (where the
Y

(n)
i are again Poisson-distributed but now with parameter λ/n).
If the result above can be extended from the exponent 1/n to a general

power t > 0, then we have a construction procedure for a Lévy process:

1. Let X(1) have an infinitely divisible distribution with characteristic
function Φ (u).
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2. Obtain the distribution of X(t) for general t by choosing the one corre-
sponding to the characteristic function Φ (u)t.

Hence, the property of independent and stationary increments follows by con-
struction. The existence of a Lévy process with the distributional properties
above can also be proved (see e.g. Applebaum [2004], p. 62). Of course,
the two straightforward examples resulting from the above procedure are the
Brownian motion and the Poisson process.

Indeed, this way is the generic one to construct a Lévy process. This can be
seen from the famous Lévy-Khinchine formula (see Applebaum [2004]) where
we use 〈x, y〉 =

∑d
i=1 xiyi to denote the scalar product:

THEOREM 6.20 Lévy-Khinchine formula and Lévy processes
(a) The characteristic function ΦL(u) of an infinitely divisible distribution L
on R

d is given by

ΦL (u) = exp
(
i 〈γ, u〉 − 1

2
〈u,Au〉

+
∫

Rd−{0}

(
exp (i 〈u, y〉) − 1 − i 〈u, y〉 1{|x|<1}

)
ν (dy)

⎞
⎟⎠ , u ∈ R

d (6.46)

for some γ ∈ R
d, a positive definite symmetric A ∈ R

d,d, and a Lévy measure
ν (i.e. a measure on R

d that satisfying condition (6.35)). Further, each such
mapping ΦL(u) is the characteristic function of an infinitely divisible distri-
bution.
(b) The characteristic function of a Lévy process X(t) with triplet (γ, σσ′, ν)

Φ(u; t) := E (exp (i 〈u,X (t)〉)) (6.47)

has the form
Φ (u; t) = (ΦL (u))t , t ≥ 0 (6.48)

with ΦL(u) as given in representation (6.46) for A = σσ′.

Example 6.21 The gamma process
A Lévy process with X(t) ∼ Gamma

(
μ2t/υ, υ/μ

)
with μ > 0, υ > 0 is called

a gamma process. We here use the somewhat strange choice of the scale
and the shape parameter a and θ (see Section 2.5.4 for the introduction of the
gamma distribution) as this is the one used in the literature on the variance
gamma model popular in finance (see Section 7.3.3). Its distribution at time
t is given by the density function

fμ,υ;t (x) =
(μ/υ)μ

2t/υ

Γ (μ2t/υ)
xμ

2t/υ−1e−xμ/υ, x > 0 (6.49)
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while its characteristic function has the form

Φμ,υ (u; t) = (1 − iuυ/μ)−μ
2t/υ

. (6.50)

Thus, the Lévy triplet equals
(
γ, σ2, ν

)
=
(
μ
(
1 − e−μ/υ

)
, 0, μ

2

υ x
−1e−μx/υ1{x>0}dx

)
. (6.51)

As the gamma distribution is concentrated on the positive half-line, X(t) is
an increasing process (its increments are gamma-distributed!). It thus has
paths of finite variation. Further, we have explicit expressions for the mean,
variance, skewness, and kurtosis of X(t):

E (X (t)) = μt , Var (X (t)) = υt , (6.52)

Skew (X (t)) =
2√
μ2t/υ

, Kurt (X (t)) = 3
(

1 +
2

μ2t/υ

)
. (6.53)

As we have ν(R) = ∞, the gamma process has infinite activity and thus does
not have piecewise constant paths. A simulated path of a gamma process is
given in Figure 6.2.
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FIGURE 6.2: A simulated path of a gamma process.

Example 6.22 The inverse Gaussian process
A Lévy process is called an inverse Gaussian (IG) process if we have X(t) ∼
IG (δt, γ) with δ > 0, γ > 0 and where IG (δt, γ) is the inverse Gaussian
distribution with parameters δt, γ. It is given by its probability density

fIG(δt,γ) (x) =
δt√
2π
x−

3
2 eδtγe−

1
2 ((δt)2x−1+γ2x), x > 0 . (6.54)
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The name of the process stems from the fact that the inverse Gaussian dis-
tribution IG (δ, γ) is the distribution of the first passage time of a Brownian
motion with drift γ through the level δ.

Again, the process is increasing, as the density of its increments is only
concentrated on the positive half-line. We have explicit forms for the charac-
teristic function of X(1) and the Lévy triple given by

ΦIG(δ,γ) (u; 1) = exp
(
−δ
√

2iu+ γ2 − γ
)
, (6.55)

(
γ, σ2, ν

)
=
(
δ

γ
(2N (γ) − 1) , 0,

1√
2π
δx−

3
2 e−

1
2 γ

2x1{x>0}dx
)
.(6.56)

The mean, variance, skewness, and kurtosis of X(t) read as:

E (X (t)) =
δt

γ
, Var (X (t)) =

δt

γ3
, (6.57)

Skew (X (t)) =
3√
δtγ

, Kurt (X (t)) = 3
(

1 +
5
δtγ

)
. (6.58)

As its Lévy measure of R is infinite, the IG process does not have piecewise
constant paths and the expected number of jumps in each nonempty time
interval is infinite. A simulated path of an IG process is given in Figure 6.3.
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FIGURE 6.3: A simulated path of an IG process.

If we compare this picture with the simulated path of a gamma process in
the Figure 6.2, then one observes more small jumps in the IG process path.
This can be explained by the fact that we have

∫
{x:|x|≤1}

|x| νgamma (dx) < ∞ =
∫
{x:|x|≤1}

|x| νIG (dx) (6.59)
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with νIG and νgamma being the Lévy measures of the IG and the gamma
process, respectively.

A generalization of both the gamma and the IG process is given in the
following definition and will play an important role as a stochastic clock in
the financial applications of the next chapter.

DEFINITION 6.23
A Lévy process X(t) with increasing paths is called a subordinator.

Another class of ditributions that are used to construct Lévy processes are
the stable distribution.

DEFINITION 6.24
A distribution L on R is called stable if for arbitrary n ∈ N, the sum of n
independent random variables Xi all with distribution L satisfy

X1 + ...+Xn ∼ cnX + dn (6.60)

for some X ∼ L, cn, dn ∈ R. It is called strictly stable if we have dn = 0
for all n ∈ N.

One can even show that cn must be of the form

cn = σn1/α for σ > 0, 0 < α ≤ 2. (6.61)

A further characterization of stable distributions is given in (see Sato [1999]).

THEOREM 6.25
A real-valued random variable X has a stable distribution if and only if there
exist σ > 0, μ ∈ R, −1 ≤ β ≤ 1 such that for all u ∈ R the characteristic
function of X is of one of the following forms:

ΦX (u) = exp
(
iμu− 1

2σ
2u2
)
, α = 2, (6.62)

ΦX (u) = exp
(
iμu− σα |u|α (1 − iβsgn (u) tan

(
πα
2

)))
, α ∈ (1, 2) ,(6.63)

ΦX (u) = exp
(
iμu− σ |u| (1 + iβ 2

π sgn (u) ln (|u|))) , α = 1. (6.64)

Popular examples are the normal distribution N (μ, σ2) for α = 2 and the
Cauchy distribution for α = 1, β = 0, and density f(x) = σ/(π((x−μ2)+σ2)).

One can then construct a stable Lévy process X(t) with distributions
given by the characteristic functions

Φ (u; t) = ΦX (u)t (6.65)

where ΦX(u) is of one of the three types given in Theorem 6.25.
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6.5 Simulation of Lévy processes

As already indicated, the main problems of simulating Lévy processes are
caused by the presence of the jump part. To be more precise, they are caused
by the small jumps in the case of an infinite Lévy measure. As a result, we
then have an infinite number of jumps in each interval, and exact simulation
of the jump part as in the jump-diffusion case is no longer possible. We will
present four different approaches to cope with this situation:

1. A time discretization method where the Lévy process is simulated ex-
actly on a given time grid.

2. An Euler-Maruyama method for Lévy processes.

3. A series representation approach where we use the fact that a Lévy pro-
cess can be represented as an infinite series of simpler random variables.

4. An approach where the small jumps of the Lévy process are approxi-
mated by a simpler process.

6.5.1 Exact simulation and time discretization

As always, the basic case is given when the exact distribution L
(

1
n

)
of the

increments ΔiX := X(ti)−X(ti−1) is known and can be simulated for a given
equidistant partition ti := iT/n, i = 0, 1, ..., n, of [0, T ]. We can simulate the
process exactly at the times ti and leave it constant in between them. This
directly leads to Algorithm 6.5, which is rather simple.

Algorithm 6.5 Exact simulation of discretized Lévy processes

1. Set X (0) := 0.

2. For i = 1 to n

• Simulate a random number ΔiX with distribution L
(

1
n

)
indepen-

dent on all previous such random numbers.

• Set X (ti) := X (ti−1) + ΔiX .

• Set X (t) := X (ti−1) ∀t ∈ (ti−1, ti).

However, two aspects should be taken into account for Algorithm 6.5:
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• The time discretization smoothes out the paths of the process. This
might be particularly problematic for the pricing of path-dependent op-
tions such as barrier options.

• As the distribution of the increments sometimes has very complicated
forms (involving special functions such as Bessel functions), it might
be more efficient to use a different simulation method, although the
discretized exact simulation is conceptionally very easy.

Example 6.26
A tractable example different from a compound Poisson process is the simu-
lation of a gamma process. The increments ΔiX can be simulated according
to an acceptance-rejection method as given in Chapter 2. See Figure 6.2 for
a gamma path simulated by the exact method.

Example 6.27
An example where the exact simulation is inefficient is the normal inverse
Gaussian process that we will consider in more detail in Section 7.3.4. There,
we will use the representation of such a process as a subordinated Brownian
motion which allows an easy way of simulating it.

6.5.2 The Euler-Maruyama scheme for Lévy processes

The Euler-Maruyama scheme for Lévy processes can be formulated in its
most convenient way for stochastic differential equations (SDEs) which are
driven by a (d-dimensional) Lévy process Z(t) instead of a Brownian motion
in the usual SDE setting. More precisely, we consider the (Lévy) SDE

dX (t) = μ (X (t)) dt+ σ (X (t)) dZ (t) (6.66)

with Z(t) a Lévy process. More details such as conditions for the unique
solvability of this equation are given in Protter (2004). To formulate the
Euler-Maruyama scheme of Algorithm 6.6, it is necessary that we are able to
simulate an increment of the driving Lévy process Z(t) for a given time grid,

ΔZi = Z (ti+1) − Z (ti) . (6.67)

Note that although the form of the SDE (6.66) looks simple, it is much
more complicated than that of a Brownian motion-driven SDE, as Z(t) can
be any kind of Lévy process with even very irregular jump behaviour. It is
thus not surprising that the convergence behaviour of the Euler-Maruyama
scheme depends on the structure of the jumps of Z(t). Therefore, results on
weak and strong convergence rates of the Euler-Maruyama scheme for Lévy
processes are manifold. The main assertion of Protter P. (1997) is that if
the jumps of X(t) are well-behaved (e.g. they are bounded) then the weak
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Algorithm 6.6 Euler-Maruyama scheme for Lévy processes
Let Δt := T/N for a given N . Simulate an approximate path YN (t) of the
Lévy process X(t) given by the SDE (6.66) on the time grid ti = iΔt via:

1. Set YN (0) = X (0) = x.

2. For j = 0 to N − 1 do
Simulate the increment ΔZj as given in Equation (6.67) and set

YN ((j + 1)Δt) =
YN (jΔt) + a (YN (jΔt))Δt+ σ (YN (jΔt))ΔZj

convergence order of 1 is preserved. However, there are also results that rely
in a subtle way on the jump characteristics (see Jacod [2004]).

6.5.3 Small jump approximation

The idea of this method is to use the Lévy-Itô decomposition

X (t) = X(1) (t) +X(2) (t) +X(3) (t) +X(4) (t) (6.68)

of a Lévy process with triplet (γ, σσ′, ν) and thus

X(1) (t) = γt, X(2) (t) = σW (t) , X(3) (t) =
∑
s≤t

ΔX (s) 1{|ΔX(s)|≥1} (6.69)

X(4) (t) =
∑
s≤t

ΔX (s) 1{|ΔX(s)|<1} − t

∫
|x|<1

xν (dx). (6.70)

The first three processes can easily be simulated as a deterministic part, a
Brownian motion, and a compound Poisson process with the finite Lévy mea-
sure ν(1) obtained from ν by restricting it to the set R

d
I := R

d−{x : |x| ≥ 1}.
In particular, we have that the compound Poisson process X(3) has an inten-
sity λ and a jump distribution L given by

λ = ν(1)
(
R
d
)

= ν
(
R
d
I

)
, L (dy) =

1
λ
ν(1) (dy) . (6.71)

The fourth component X(4) may cause problems, as the Lévy measure of the
small jumps might explode. We present two approximation methods:

1. Cutting away the small jumps

Here, the idea is to choose a small number ε and to cut away jumps of size
|ΔX(s)| < ε and thus use the approximation

X(4) (t) ≈ X(4,ε) (t) :=
∑
s≤t

ΔX (s) 1{ε≤|ΔX(s)|<1} − t

∫
ε≤|x|<1

xν (dx). (6.72)
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Let Bε =
{
x ∈ R

d : ε ≤ |x| < 1
}
, νε be the restriction of ν to Bε. Again, the

process X(4,ε) (t) can be simulated exactly as the difference of a compound
Poisson process with intensity λε and jump height distribution Lε given by

λ = νε(Bε), L (dy) =
1
λ
νε (dy) (6.73)

and of a deterministic integral. As X(4) (t) is a martingale with expectation
zero, so is the compensated process of all the small jumps we have now cut
away. Thus, ignoring this compensated small jump process simply means that
we are approximating this process by its mean.

2. Approximating the small jumps by a Brownian motion

Replacing the (compensated) small jumps by their mean can at most be jus-
tified if the Lévy measure of the corresponding set Bε(0) =

{
x ∈ R

d : |x| < ε
}

is small. If however we have ν(Bε(0)) = ∞, then ignoring the influence of
small jumps is a too crude approximation. In the univariate case d = 1
an approximation of the small jumps by a Brownian motion with a suitable
volatility is suggested by Asmussen and Rosiński (2001). With

σ2
ε :=

∫
|x|<ε

x2ν (dx), (6.74)

a naturally suggested approximation would be

X(4) (t) ≈ X(4,ε) (t) + σεZ (t) (6.75)

with Z(t) a Brownian motion that is independent of all the other random
sources in X(t). An easy to check condition for the validity of this approxi-
mation is given by Asmussen and Rosiński (2001).

THEOREM 6.28
If we have

limε→0
σε
ε

= ∞ (6.76)

then we obtain
X(4) −X(4,ε)

σε

D−→ Z for ε −→ 0, (6.77)

i.e. the normed process of the small jumps converges in distribution towards
a Brownian motion Z(t) (in D[0, T ]).

REMARK 6.29 1. Asmussen and Rosiński (2001) even give an equiv-
alence characterization of the above convergence of the normed small jumps
towards a Brownian motion for the condition

limε→0

σmin{cσε,ε}
σε

= 0 ∀c > 0. (6.78)
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They also show that if ν has no atoms in the neighbourhood of 0, then this
condition is equivalent to Equation (6.76).

2. One can easily check that the gamma process does not satisfy condition
(6.76) while for the IG process the approximation of the small jumps by a
Brownian motion as above is valid as condition (6.76) is satisfied.

6.5.4 Simulation via series representation

When approximating the small jumps of a Lévy process, we have used a
suitable compound Poisson process as the main approximation tool. Note
that a compound Poisson process can be represented as an infinite series

X (t) =
∞∑
j=1

Yj · 1{tj≤t} (6.79)

with Yj denoting the jump height of the compound Poisson process at the
jump time tj . While in this representation, all terms are of comparably the
same size and differ mainly by their time of appearance, we will below intro-
duce another series representation for subordinators. It will have the crucial
feature that the terms are ordered by the size of their corresponding jumps,
but are on the other hand uniformly distributed in time. We consider the
one-dimensional setting and need that the Lévy measure possesses a density,
i.e. ν(dx) = h(x)dx. Its tail integral is denoted by

ν̄ (x) =
∫ ∞
x

h (y) dy, x > 0. (6.80)

We can then state the following proposition (see Asmussen and Glynn [2007]).

PROPOSITION 6.30
Let the subordinator X(t), t ∈ [0, 1] have a Lévy triplet (0, 0, ν) with ν(dx) =
h(x)dx, h(x) > 0 for x > 0 and let τ1, τ2, ... be the jump times of a Poisson
process with intensity λ = 1. Let further U1, U2, ... be a series of independent
random variables that are uniformly distributed on [0, 1] and that are indepen-
dent from the jump times τi. Then we have equality in distribution between
X(t) and an almost surely converging series:

X (t) D=
∞∑
j=1

ν̄−1 (τj) 1{Uj≤t}, 0 ≤ t ≤ 1. (6.81)

REMARK 6.31 1. The above series representation can be used to set
up a simulation algorithm for X(t). For this, we first have to decide on a
truncation criterion. The natural one is to set N=N(ε) with

N (ε) = inf
{
j ∈ N : ν̄−1 (τj) < ε

}
. (6.82)
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Then, for each path of X(t) we simulate jump times τj and calculate the
values ν̄−1 (τj) up to N(ε). Finally, we use the approximation

X (t) ≈
N(ε)∑
j=1

ν̄−1 (τj) 1{Uj≤t}, 0 ≤ t ≤ 1. (6.83)

Instead of the random limiting sum index N(ε) one could also use a fixed
number N . By the law of large numbers we could choose N = ν(ε) to obtain
the same order as the random choice N(ε) in the mean.

2. Note that the approximation method described in the preceding remark
is nothing more than cutting away the jumps smaller than ε. It is therefore
typically not very efficient. There are many more sophisticated series approx-
imations that are conceptually more involved. As we do not need them for
our chosen applications in financial and actuarial mathematics, we refer the
reader to the survey paper by Rosiński (2001).



Chapter 7

Simulating Financial Models:
Discontinuous Paths

7.1 Introduction

The limitations of diffusion models in explaining observed stock price move-
ments and option prices have led to the introduction of various nondiffusion
stock price models. Among them are:

• Jump-diffusion models to explain the smile observed in option prices
and the leptokurtic behaviour of stock price returns.

• Lévy processes to fit observed leptokurtic behaviour of stock price re-
turns and skewness in option prices.

• Special subordinated Lévy processes to model an internal clock that
accounts for the influence of the speed and volume of trading.

Here, leptokurtic behaviour means that in real financial markets we observe a
more spiky and also more heavy-tailed behaviour of log-returns of stock prices
than those which can be explained by the normal distribution.

We will look at various nondiffusion models that fall into the above classes.
Again, we take the approach to consider some specific examples separately.
Our main arguments for this are historical reasons (such as in the Merton
jump-diffusion model) and the fact that often presentation of these special
cases does not need the full complexity of the general class of Lévy models.

7.2 Merton’s jump-diffusion model and stochastic
volatility models with jumps

7.2.1 Merton’s jump-diffusion setting

Already in Merton (1976), a model that allowed for sudden jumps is con-
sidered. The proposed stock price differential equation has the form

dS (t) = S (t−) ((μ− λκ) dt+ σdW (t) + (Y (t) − 1)dN (t)) . (7.1)

335
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Here, μ is the drift and σ the diffusion part of the volatility of the stock price.
The jump variables Y (t) are a family of independent random variables all
having the same log-normal distribution with

E (Y (t) − 1) = κ (7.2)

where λ is the intensity of the Poisson process N(t) and W (t) is a Brownian
motion. Note that using Y (t) − 1 in Equation (7.2) makes it easier to model
jump losses. The assumption of a log-normally distributed Y (t) on the one
hand ensures analytical tractability, and on the other hand guarantees

Y (t) − 1 > −1, (7.3)

which rules out bankruptcy of the company as the stock price never jumps
down to a nonpositive value. Indeed, by Itô’s formula for jump-diffusions, the
explicit solution of the stochastic differential equation (SDE) is given by

S (t) = S0 exp
((

μ− λκ− 1
2
σ2

)
t+ σW (t)

)
·
N(t)∏
i=1

Ỹi. (7.4)

Here, Ỹi = Y (ti) simply denotes the value of the jump at the i-th jump time.
We also introduce the expected value and the variance of the jumps in the
log-return, ln(S(ti)/S(ti−)) = ln(Ỹi) as

E

(
ln
(
Ỹi

))
= μJ − 1

2
σ2
J , Var

(
ln
(
Ỹi

))
= σ2

J . (7.5)

Note that this in particular implies the relation

κ = exp (μJ ) − 1. (7.6)

The multiplicative separation between the continuous and the jump parts in
the explicit solution formula allows for a very easy way to simulate the paths
of the stock price in the Merton jump-diffusion setting as in Algorithm 7.1.

Note that in this algorithm one still has to decide how to actually choose
the discretization. Depending on the final task, a fixed discrete time grid or
a jump-adapted one as explained in the jump-diffusion part of the previous
chapter can be chosen.

Option pricing in the Merton jump-diffusion model:
Merton’s approach

As the number of jumps is unbounded in Merton’s model, the corresponding
market model is incomplete (see Merton [1976]). Therefore, pure arbitrage
considerations do not lead to a unique option price. In Merton (1976) it is
assumed that the jumps of the stock prices are diversifiable (via holding a
suitable portfolio of shares) and therefore should not be priced at all. Merton
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Algorithm 7.1 A path in the Merton jump-diffusion model

1. Simulate the path B(t) =
(
μ− λκ− 1

2σ
2
)
t + σW (t) of a Brownian

motion with drift.

2. Simulate the path of a Poisson process N(t), t ∈ [0, T ].

3. SimulateN(T ) independent standard normally distributed random vari-
ables Z1, ..., ZNT and set

Ỹi = exp
(
μJ − 1

2
σ2
J + σ2

JZi

)
.

4. Obtain J (t) =
∏N(t)
i=1 Ỹi, t ∈ [0, T ] and set

S (t) = S0 exp (B (t)) · J (t) , t ∈ [0, T ] .

thus suggests a hedging strategy that hedges the diffusion risk completely
but does not care for the jump risk. Expressed in terms of the equivalent
martingale that he uses for calculating the price of an option, this means that
he uses the same transformation as in the simple Black-Scholes setting, i.e. the
diffusion drift μ is changed to r, and all other parameters remain unchanged.
With this choice, one can then simply calculate the price of a European call
option by conditioning on the number and on the heights of the jumps, then
make use of the fact that the remaining parts of the stock price process follow
an appropriate log-normal distribution. More precisely, by introducing the
Black-Scholes call price operator as

C
(
S,K, r, σ2;T

)
:= SΦ (d1) −Ke(−rT )Φ (d2) (7.7)

d1 =
ln (S/K) +

(
r + 1

2σ
2
)
T

σ
√
T

, d2 = d1 − σ
√
T , (7.8)

one obtains the following representation of the Merton price for a European
call in the above jump-diffusion setting:

CMerton (0, S0) =
∞∑
n=0

e−λ̃T
1
n!

(
λ̃T
)n
C
(
S,K, rn, σ

2
n;T
)
, (7.9)

λ̃ = λ (k + 1) , rn = r − λk + n
μJ
T
, σ2

n = σ2 + n
σ2
J

T
. (7.10)

With the help of formula (7.9), one can now calibrate the model in the usual
way, i.e. one determines the unknown parameters λ, σ2, μJ , σ2

J by fitting
the model to market prices of a set of traded call options. Having obtained
the parameters, one is then able to price more complicated exotic options by
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the Monte Carlo method. More precisely, one uses Algorithm 7.1 to simulate
paths in the Merton jump-diffusion models and then obtains from these the
price of an exotic option by averaging over the resulting discounted payoffs. Of
course, depending on the special type of options, variance reduction methods
and special modifications are possible.

REMARK 7.1 1. The pricing formula: To derive the pricing formula
(7.9), note that conditional on the number of jumps n, the stock price S(T )
is log-normal with additional terms (compared to the Black-Scholes case) of

(
−λκ+ n

μJ
T

)
T +

n∑
i=1

(
σJZi − 1

2
σ2
JT

)
. (7.11)

Here, the Zi are independent standard normally distributed random variables.
Having this in mind, similar calculations as in the Black-Scholes case lead to
the pricing formula if one additionally takes into account that we have

Q (N (T ) = n) = e−λT
1
n!

(λT )n . (7.12)

It should be noted that the (relative) jump drift μJ and the mean jump
size κ enter the option pricing formula. As these parameters are subjective
parameters of the investor, we can no longer talk of an objective valuation.

2. Why jumps anyway? A main reason for considering jump type mod-
els in option pricing is that diffusion-based continuous-path models cannot
explain the very skewed behaviour of the implied volatility of options that
are close to maturity. Indeed, there might only be the fear of a sudden jump
of the stock price close to maturity of the option that could be a reasonable
explanation for the observed behaviour of the implied volatility.

3. Further valuation approaches: In Grünewald (1998) the above val-
uation approach is compared to various other types of option pricing and
hedging approaches in the Merton jump-diffusion model. Among them are
the local risk-minimizing approach by Schweizer (1991) and an equilibrium
approach by Bates (1996). They lead to similar results but differ in the way
the jump risk is priced, and therefore yield different option prices.

4. Multiasset models: A multiasset formulation of the model is also
possible. For this, one can directly consider multidimensional Gauss-Poisson
processes as given in Equation (6.25). A particular case where the underly-
ing market model is even complete is given in Jeanblanc-Picqué and Pontier
(1990). There, the dynamics of n stock prices are modelled via

dSi (t) =

Si (t−)

⎛
⎝
⎛
⎝μi −

n−d∑
j=1

λjκij

⎞
⎠ dt+

d∑
j=1

σijdWj (t) +
n−d∑
j=1

κijdNj (t)

⎞
⎠ (7.13)
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where the (relative) jump heights of the stock prices are constant. Although
this model has the nice feature of leading to a complete market, the assump-
tion of such constant jump heights is not realistic.

7.2.2 Jump-diffusion with double exponential jumps

Another jump-diffusion model that allows explicit computations is the dou-
ble exponential model suggested by Kou (2002). It has also been used by Acar
(2006) in the context of the modelling of optimal capital structure. The main
difference to the Merton jump-diffusion model consists in the assumption that
instead of log-normal jump heights, it is assumed that the logarithm of the
jump height V = ln(Y ) has a double exponential distribution, i.e. V possesses
the density function

f (v) = p · η1e−η1v1{v≥0} + (1 − p) · η2eη2v1{v<0} (7.14)

with η1 > 1, η2 > 0, p ∈ [0, 1] leading to

E (Y ) = E
(
eV
)

= p
η1

η1 − 1
+ (1 − p)

η2
η2 + 1

. (7.15)

This motivates the surprising condition η1 > 1, which in particular guarantees
an average upward jump less than 1, indeed a reasonable assumption.

REMARK 7.2 For path simulation, we need a double exponential ran-
dom variable. It can be generated by inversion of the distribution function.
Another very intuitive method is to first simulate a uniform random variable
U ∼ U [0, 1), then to decide in a zero-one experiment with success probability
p if U should be transformed in an exponential distribution with parameter η1
(in case of “1”) or with parameter η2 (in case of “0”). From this one obtains a
double exponential random variable Zi. With this simple change of Step 3 of
the Algorithm 7.1 for a path of the Merton jump-diffusion model, we obtain
a path of the double exponential jump-diffusion model, too.

Option pricing in the double exponential model

Building upon work by Naik and Lee (1990), Kou (2002) used the frame-
work of a rational expectations equilibrium to obtain an option price in an
incomplete market setting. There, the utility of a representative investor is
maximized and the option price is then determined such that it is optimal for
this investor to hold a zero position in the option. We do not go into detail
here, but the consequences of this derivation are stated as follows:

• The pricing formula can be interpreted as being obtained in a market
equipped with an equivalent martingale measure Q such that the drift
and the jump characteristics of the stock price are suitably transformed.
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However, the transformed price process has a drift of r but otherwise
the same form as the original stock price process with different jump
parameters. For purposes of option pricing, we can adopt our usual
approach to assume that we directly model in this transformed market.
This in particular means that a simple Monte Carlo pricing can be based
on the path simulation algorithm indicated above.

• Kou (2002) derived an explicit pricing formula for European calls
(among others) that resembles the Black-Scholes formula. There, the
analogues to Φ(di(t)) are defined in terms of so-called Hn-functions that
appear due to the fact that the distribution of sums of normal and dou-
ble exponential random variables have to be calculated. Kou also gives
a detailed algorithm to compute the Hn-functions.

7.2.3 Stochastic volatility models with jumps

As mentioned previously, even stochastic volatility models of diffusion type
cannot explain the very skewed behaviour of the implied volatility of options
that are close to maturity. Therefore, in Bates (1996), the Merton jump-
diffusion model is combined with the Heston stochastic volatility model. Thus,
for the purpose of option pricing, the stock price and volatility equations are
given by

dS (t) = S (t−) ((r − λκ) dt+ σ (t) dW (t) + (Y (t) − 1)dN (t)) , (7.16)

dσ (t) = θ (σ∞ − σ (t)) dt+ ν
√
σ (t)dW̃ (t) (7.17)

with r, λ, κ, θ, ν, σ∞ suitable positive constants. The two Brownian motions
are independent from the Poisson process. However, they have a correlation
of ρ ∈ [−1, 1],

Corr
(
Wt, W̃t

)
= ρ. (7.18)

Due to the independence between the Brownian parts and the Poisson process,
one can use any method to simulate the Heston-like part of the stock price
(including the volatility process!) and then combine it with a jump part as in
the jump-diffusion setting. For this, we refer to the simulation algorithms for
the Heston stock price model and the Merton jump-diffusion model.

7.3 Special Lévy models and their simulation

The introduction of Lévy models into finance started in the mid 1990s with
a series of papers by Barndorff-Nielsen (1997), Eberlein and Keller (1995), and
Küchler et al. (1999), just to mention a few. All those papers were centred
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around the class of hyperbolic distributions that had already been introduced
by Barndorff-Nielsen (1977) in the context of turbulence.

In these models often the logarithm of stock prices is modelled by a Lévy
process to ensure a nonnegative stock price process. Further, all the mod-
els that we are going to present below lead to incomplete financial markets.
Thus, there are typically infinitely many equivalent martingale measures that
can serve as pricing measures. While in the jump-diffusion type models the
pricing measure used was satisfied by equilibrium considerations, in general
Lévy process models it is often quite involved to find at least one equivalent
martingale measure (EMM) that is analytically tractable. A popular way of
constructing such an EMM is the use of the so-called Esscher transform.

7.3.1 The Esscher transform

Using the Esscher method to construct an EMM is a convenient choice
which is mainly justified by its simplicity. To explain it, let us assume that
the stock price model we are considering is of the form

S (t) = S0e
Z(t) (7.19)

where Z(t) is a Lévy process that admits a density function f(x; t). Then,
the basic principle is a multiplication of the density by an exponential factor
eθx with θ ∈ R yielding the new density function

f (x; t, θ) :=
eθxf (x; t)∫∞

−∞ e
θyf (y; t) dy

(7.20)

where the denominator ensures that the integral of the new function is indeed
equal to one. By this transformation we can introduce a new probability
measure via

dP θt (x) :=
eθx∫

eθxdP1 (x)
dPt (x) (7.21)

with Pt being the original probability measure with the density f(x; t). The
constant θ is now determined such that the probability measure P θt is a mar-
tingale measure for S(t), i.e. e−rtSt has to be a P θt -martingale. For this, we
look at the moment generating function M(u; t) of Z(t),

M (u; t) = E

(
euZ(t)

)
(7.22)

and at the moment generating function under P θt given by

M (u; t, θ) =
∫ ∞
−∞

euxf (x;u, θ) dx

=

∫∞
−∞ e

uxeθxf (x;u) dx∫∞
−∞ e

θyf (y;u)dy
=
M (u+ θ; t)
M (θ; t)

. (7.23)
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The martingale requirement of

S0 = e−rtEθ (S (t)) = e−rtEθ
(
eZ(t)

)
= S0e

−rtM (1 + θ; t)
M (θ; t)

(7.24)

thus leads to an implicit equation for θ,

M (θ; t) = e−rtM (1 + θ; t) (7.25)

which due to the Lévy-Khinchine formula is equivalent to

M (θ; 1) = e−rM (1 + θ; 1) . (7.26)

If there is a solution θ∗ to Equation (7.26) then the so-determined probability
measure P θ

∗
, the Esscher measure, is indeed an EMM. It can then be used to

determine arbitrage-free prices of options. Besides convenience, there are also
equilibrium-based arguments for its use (see e.g. Gerber and Shiu [1994]).

7.3.2 The hyperbolic Lévy model

Although not the most general one, we will start the section of Lévy process
models by presenting the hyperbolic model which has been introduced by
Eberlein and Keller (1995) and by Küchler et al. (1999). Both works were
motivated by remarks by Barndorff-Nielsen (1977) who proposed the use of the
hyperbolic distribution in relation with turbulence and sand flow. In Eberlein
and Keller (1995) two possible ways of generalizing the geometric Brownian
motion are given, the replacement of the Brownian motion by a hyperbolic
Lévy motion in either the exponent of the geometric Brownian motion or as
the driving process of a linear SDE. Here, we will only consider the model of
the form

St = S0e
Zζ,δ(t). (7.27)

Zζ,δ(t) is the Lévy process generated by a symmetric form of the hyperbolic
distribution. It is uniquely determined by its density at time t = 1,

hζ,δ (x) =
1

2δK1 (ζ)
e−ζ

√
1+(x/δ)2 . (7.28)

Here, K1 (x) denotes the modified Bessel function of the third kind, i.e.

K1 (x) =
1
2

∫ ∞
0

e−
1
2x(u+ 1

u )du, (7.29)

for real constants ζ, δ. As Bessel functions play an important role in engi-
neering applications, they are implemented in many mathematical software
packages. A drawback of the model is that the hyperbolic distribution is in-
finitely divisible but not closed under convolution. This in particular means
that we have in general only exactly hyperbolic log-returns of the stock at
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times t which are integers. As a consequence of this, (simple) exact simula-
tion with the help of the hyperbolic density is only possible at these times,
which makes the use of this simulation method a very limited one.

The characteristic function of Zζ,δ(1) has the form of

φ1 (u) =
ζ

K1 (ζ)

K1

(√
ζ2 + δ2u2

)
√
ζ2 + δ2u2

(7.30)

(see Eberlein and Keller [1995]) from which we obtain φt (u) via

φt (u) = φ1 (u)t (7.31)

and the moment generating function as

M ζ,δ (u, 1) = E
(
euZ

ζ,δ
1

)
=

ζ

K1 (ζ)

K1

(√
ζ2 − δ2u2

)
√
ζ2 − δ2u2

(7.32)

for |u| < ζ/δ. With this explicit form we can determine the parameter θ∗

which is needed to obtain the Esscher measure P ∗ by an Esscher transforma-
tion as the unique solution of the consequence of Equation (7.26),

r = ln

⎛
⎜⎜⎝
K1

(√
ζ2 − δ2 (θ + 1)2

)

K1

(√
ζ2 − δ2θ2

)
⎞
⎟⎟⎠− 1

2
ln

(
ζ2 − δ2 (θ + 1)2

ζ2 − δ2θ2

)
. (7.33)

This equation can be solved numerically for θ for given values of r, δ, and ζ.
Thus, having obtained a parameter θ∗ that yields the Esscher measure

P ∗ = P θ
∗
, one can calculate option prices with the help of the P ∗-density

f ζ,δ (x; t, θ∗). In the case of a European call with strike K, Eberlein and
Keller (1995) obtain

E∗
(
e−rT (S (T ) −K)+

)
=

S0e
−rT
∫ ∞
c

exf ζ,δ (x;T, θ∗) dx− e−rTK
∫ ∞
c

f ζ,δT (x;Tθ∗) dx (7.34)

with c = ln (K/S0). Here, the density functions have no explicit representa-
tion, but have to be calculated numerically via inversion of the characteristic
function for P θ

∗
via the Fourier inversion formula

f ζ,δ (x; t, θ) =
1
π

∫ ∞
0

cos (ux)φ∗t (u) du (7.35)

from the characteristic function.
Although the hyperbolic model shows a very good fit to data, it has draw-

backs with respect to tractability. As the hyperbolic family is not closed under
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convolution, we typically know the density of the price increments only im-
plicitly which leads to the necessity of heavy numerical computations. Also,
generating hyperbolic random numbers is not an easy issue (see Hartinger
and Predota [2003] for some applications). Therefore, more tractable Lévy
models will be presented below.

7.3.3 The variance gamma model

If one looks at time series of stock price returns, then one often observes
phases of high frequency price changes followed by phases where the intensity
of price changes is comparably low. This is often referred to as volatility
clustering. To model this, one introduces a different clock where time moves
in velocity proportional to the trading activity. When there are a lot of
trades, the internal time of the process runs faster and thus formally enlarges
the observation interval. It runs slower if nearly nothing happens. In such a
way it is hoped to care for the main weakness of the Brownian motion-based
Black-Scholes model which moves in a too uniform way over time (by this, we
mean that the log-returns behave too similar over time). With this random
time change, a Brownian motion can again be used as the basic building block
for modelling the uncertainty of the future stock price evolution.

The appropriate class of Lévy processes to model such a random time evo-
lution are the subordinators introduced in Definition 6.23. There, we have
already seen some examples of subordinators: each compound Poisson process
with nonnegative jump heights, the gamma process, and the inverse Gaussian
process are subordinators. A simple recipe for generating a new Lévy process
is to use a subordinator as a model for the evolution of time and plugging
it into a Brownian motion. Adding a suitable drift term and correcting for
the quadratic variation of the stochastic part then yields a model for the
log-return of a stock.

We start to consider the variance gamma model introduced by Madan and
Seneta (1990), by Madan and Milne (1991), and generalized in Madan et al.
(1998). There, the so-called variance gamma (VG) process is used to model
the (log-) returns of the stock, i.e. we have

S(t) = S0e
μt+X(t)+ωt (7.36)

with X(t) a VG process, μ the stock price drift, and the compensation term

ωt = ln
(

1 − θν − σ2ν

2

)
t

ν
(7.37)

is introduced to ensure that we have

E (S (t)) = S0e
μt. (7.38)

We implicitly assumed the validity of the assumption

1 >
(
θ +

σ2

2

)
ν (7.39)
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and will do so for the rest of this section. As before, we are mostly interested
in option pricing and therefore assume that we are working in a risk-neutral
setting. We thus always assume

μ = r (7.40)

when option pricing problems are considered. However, we would like to point
out that if we want to switch to a risk-neutral setting starting from our original
model via a measure transformation, we also have to change the coefficients
σ, θ, and ν in a suitable way (see e.g. Madan et al. [1998] for details). As we
will never need this explicit change of measure here, we can however simply
assume that the parameters σ, θ, and ν are already the transformed ones
when we assume μ = r.

Before continuing with the application and properties of this stock price
model, we will first devote some time to the introduction of the VG process.
By doing this, we directly choose the three parameter variant of Madan et al.
(1998) that includes the earlier two parameter variant of Madan and Seneta
(1990) as a special case, the so-called symmetric VG process.

DEFINITION 7.3
Let B (t; θ, σ) := θt + σWt be a one-dimensional Brownian motion with drift
θ and volatility σ. Let also γ (t; ν) be a gamma process with parameter ν and
Gamma (t/ν, 1) distribution at time t. Then, the process

X (t) := X (t;σ, ν, θ) := B (γ (t; ν) ; θ, σ) (7.41)

is called a variance gamma process with parameters σ, ν, and θ.

REMARK 7.4 1. In addition to the usual volatility parameter σ, the
parameter θ is introduced to control the skew while the kurtosis of the stock
prices is cared for by ν. This can be seen by looking at the relevant moments
(see Madan et al. [1998]). While mean and variance have the simple form of

E (X (t)) = θt, Var (X (t)) =
(
θ2ν + σ2

)
t, (7.42)

this is only the case for the skewness and the kurtosis if we assume θ = 0:

Skew (X (t)) = 0, Kurt (X (t)) = 3
(
1 +

ν

t

)
for θ = 0. (7.43)

2. The characteristic function of the VG process is given by

ΦX(t) (u) =
(

1
1 − iθuν + (σ2ν/2)u2

)t/ν
. (7.44)

3. The name variance gamma process is directly derived from the above
representation of the process as a (subordinated) Brownian motion with drift
where a gamma process describes the evolution of the variance over time.
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This parameterization of the VG process now allows a very easy possibility
for simulation by subordination as in Algorithm 7.2.

Algorithm 7.2 Simulating a variance gamma process by subordination

1. Set X(0) = 0.

2. Choose a time discretization 0 = t0 < t1 < ... < tn = T of [0, T ].

3. For i = 1 to n

• Simulate a random number Gi ∼ Gamma ((ti − ti−1) /ν, 1) inde-
pendent of all other yet simulated random numbers.

• Simulate a standard normally distributed random number Yi.

• Set X(ti) := X(ti−1) +
√
GiYi +Giθ.

As the gamma process is strictly increasing by jumps and the Brownian
motion is continuous, the VG process only changes by jumps under the above
transformation. Figure 7.1 shows a simulated path of a VG process. Here,
we have drawn the paths as a continuous function for better visualization.
Actually, a VG process is a pure jump process with paths of infinite activity
but finite variation.
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FIGURE 7.1: A simulated path of a VG process.

This can be seen from a second representation of a VG process which will
be found by using the following product decomposition of the characteristic
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function of the VG process

ΦX (u; t) =
(

1
1 − iθuν + (σ2ν/2)u2

)t/ν

=
(

1
1 − iηpu

)t/ν ( 1
1 + iηnu

)t/ν
= Φγ+ (u; t) · Φγ− (u; t) (7.45)

where we have ηp − ηn = θν, ηpηn = 1
2σ

2ν. Thus, we obtain

ηp =
θν

2
+

√
θ2ν2

4
+
σ2ν

2
, ηn = −θν

2
+

√
θ2ν2

4
+
σ2ν

2
. (7.46)

Consequently, we have shown that the above VG process can be represented
as the difference of two independent gamma processes γ+(t) := γ(t;μp, νp)
and γ−(t) := γ (t;μn, νn) with

μp = ηp/ν, μn = ηn/ν, νp = μ2
pν, νn = μ2

nν. (7.47)

Consequently, we have

γ+(t) ∼ Gamma (t/ν, μpν) , γ−(t) ∼ Gamma (t/ν, μnν) (7.48)

and arrive at the difference of gamma representation

X (t) = γ+ (t) − γ− (t) (7.49)

of the VG process. With this representation, Algorithm 7.3 is straightforward
and represents another possibility for simulating paths of the VG process.

Algorithm 7.3 Variance gamma path by differences

1. X(0) = 0.

2. For i = 1 to n

• Generate the independent gamma processes γ+
i (t), γ−i (t).

• X(ti) = γ+
i (t) − γ−i (t).

• X(t) = X(ti−1) for all t ∈ (ti−1, ti).

REMARK 7.5 1. Option pricing in the VG model: As always, the
first ingredient for option pricing is the choice of an equivalent martingale
measure. As the market for a VG model is incomplete, Madan et al. (1998)
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used equilibrium arguments to figure out a particular risk measure. They
then derived an explicit pricing formula for European calls that resembles
the Black-Scholes formula. However, the computation of the probabilities
(i.e. the analogues to Φ(di(t)) in the Black-Scholes formula) is quite involved.
Therefore, we do not present it here.

2. Conventional Monte Carlo option pricing in the VG model. As
we have two possibilities for sampling VG paths, the Monte Carlo method for
option pricing is straightforward: sample a sufficiently big number of stock
price paths of the VG process to obtain VG stock price paths under the risk-
neutral measure, calculate the corresponding option payoffs, and estimate the
option price by the discounted average over these payoffs. Note in particular
that for path-independent options it is enough to generate the final value
X(T ) of the VG process and not the whole path. For computing the prices
of various exotic options, a combination of bridge sampling and of using the
difference of gamma representation to bound the option prices is, however,
far more efficient. We will present it in more detail below.

In Carr et al. (2002) the VG model is generalized to the so-called CGMY
model, which we do not consider here.

The difference of gamma bridge sampling method

We have already seen how to sample a path of a Brownian motion by the
Brownian bridge method in Section 4.4.3. In the case of the VG process a
similar bridge method is presented in Avramidis and L’Ecuyer (2006). There,
in addition, the authors make use of explicit properties of the VG process to
obtain very efficient (quasi-) Monte Carlo algorithms to calculate the price of
popular exotic options. They consider the difference of gamma representations

X (t) = γ+ (t) − γ− (t) (7.50)

of the VG process and sample both gamma processes by a bridge sampling
algorithm (as explained below). An important ingredient of their method is
the observation that for a fixed path ω of the VG process we always have

γ+ (t1, ω) − γ− (t2, ω) ≤ X (t, ω) ≤ γ+ (t2, ω) − γ− (t1, ω) (7.51)

for t1 ≤ t ≤ t2 due to the fact that both gamma processes are increasing. It
will later be used to obtain bounds for option payoffs along simulated paths.

For a bridge sampling algorithm we need conditional distributions of the
process in between two given times. Let therefore γ(t) be a gamma process
with parameters (μ, ν) as described in Example 6.21. Then, for 0 ≤ τ1 < t <
τ2 the conditional distribution of γ(t) given γ(τ1) and γ(τ2) equals that of
γ(τ1) + (γ(τ2) − γ(τ1))Y with

Y ∼ Beta
(
(t− τ1)μ2/ν, (τ2 − t)μ2/ν

)
. (7.52)
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Here, Beta (α, β) denotes the beta distribution with parameters (α, β). It is
defined on the unit interval (0, 1) and given by the density

f (x) =
xα−1 (1 − x)β−1

∫ 1

0 y
α−1 (1 − y)β−1

dy
=
xα−1 (1 − x)β−1

B (α, β)
. (7.53)

Given the values of a gamma process for two endpoints of a time interval,
one can thus generate the value of this gamma process at any time inside the
interval. An algorithm for a gamma bridge sampling on [0, T ] now starts with
γ(0) = 0 and by simulating γ(T ) and then fills the gaps inside the interval
in a suitable way by conditional sampling. The most convenient such way is
a dyadic partition, i.e. a successive halving of all the intervals that appear
during the bridge sampling process. It yields Algorithm 7.4, the difference of
gamma bridge sampling (DGBS) (see Avramidis and L’Ecuyer [2006]).

Algorithm 7.4 A VG path by the DGBS algorithm
Let N ∈ N with N = 2K , ν, νp, νn, μp, μn be given as in Equation (7.47). Set
h = T , γ+(0) = γ−(0) = 0 and

γ+(T ) ∼ γ (T/ν, νp/μp) , γ−(T ) ∼ γ (T/ν, νn/μn)

with the corresponding gamma-distributed random variables.
For k = 1 to K do

1. Set h = h/2.

2. For j = 1 to 2k−1 do

(a) Generate independent random numbers Z1, Z2 ∼ Beta(h/ν, h/ν)
and set

γ+((2j − 1)h) = γ+((2j − 2)h) +
(
γ+(2jh) − γ+((2j − 2)h)

)
Z1,

γ−((2j − 1)h) = γ−((2j − 2)h) +
(
γ−(2jh) − γ−((2j − 2)h)

)
Z2.

(b) X((2j − 1)h) = γ+((2j − 1)h) − γ−((2j − 1)h).

One can also set up the above algorithm for a nondyadic partition of [0, T ] a
more involved notation. As in the Brownian setting, the backward formulation
of the bridge algorithm has advantages when, instead of Monte Carlo methods,
the corresponding quasi-Monte Carlo methods are used.
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The truncated difference of gamma bridge option pricing method

We will now show how to construct an efficient option pricing algorithm
which makes use of payoff bounds that rely on the relation (7.51). For this
we look again at the stock price equation in the risk-neutral setting

S(t) = S0e
rt+ωt+X(t) = S0e

r̃t+γ+(t)−γ−(t). (7.54)

For a given time discretization 0 = tm,0 < tm,1... < tm,m = T , we now
introduce lower and upper bounds for the stock price process via

Lm (t) := S0e
r̃t+γ+(tm,i−1)−γ−(tm,i), tm,i−1 < t < tm,i, (7.55)

Um (t) := S0e
r̃t+γ+(tm,i)−γ−(tm,i−i), tm,i−1 < t < tm,i, (7.56)

Lm (tm,i) := Um (tm,i) := S (tm,i) , i = 0, 1, ...,m. (7.57)

Obviously, we then have

Lm (t) ≤ S (t) ≤ Um (t) , ∀ t ∈ [0, T ] (7.58)

by the difference of a gamma process representation of a VG process. Such
an estimation would not be possible for a process with a Brownian motion
component. We can make use of this relation if the payoff functional of an
option admits a monotonicity property in the stock price paths. Therefore let

C = e−rTf (S (t) , t ∈ [0, T ]) (7.59)

be the discounted option payoff while CU,m and CL,m be the counterparts
when S is replaced by Um and Lm, respectively. Let further

Fm =
(
tm,1, γ

+ (tm,1) , γ− (tm,1) , ..., tm,m, γ+ (tm,m) , γ− (tm,m)
)

(7.60)

be the (simulated) parts of the components of the VG process along the given
time discretization. Then we have the following (see Avramidis and L’Ecuyer
[2006]).

PROPOSITION 7.6
Suppose that conditional on Fm C is a monotone nondecreasing function of
S(t), t /∈ {tm,0, ..., tm,m}. Then we have

CL,m ≤ C ≤ CU,m. (7.61)

The inverse relation holds if C is nonincreasing instead.

Of course, the applicability of the proposition hinges critically on the mono-
tonicity assumption of the option payoff. However, it is easily verified that
many examples of traded options share this property. Among them are Asian
options, lookbacks, and barrier options.



Simulating Financial Models: Discontinuous Paths 351

Example 7.7 Pricing an up-and-in call
For an up-and-in call with the final payoff

CB = e−rT (S (T ) −K)+ · 1sup0≤t≤T S(t)>b (7.62)

we obtain lower and upper bounds as

CL,m = e−rT (S (T ) −K)+ · 1max1≤i≤m S(tm,i)>b, (7.63)

CU,m = e−rT (S (T ) −K)+ · 1max1≤i≤m Um,i>b (7.64)

where we have used the fact that the lower bounds for S(t) are attained at
the values tm,i and that the upper bounds are attained for

Um,i = sup
tm,i−1<t<tm,i

Um (t) . (7.65)

It is not hard to see that the lower and the upper bounds for the payoff CB
coincide in the cases of S(T ) ≤ K and when we have

max
1≤i≤m

Um,i ≤ b or max
1≤i≤m

S (tm,i) > b. (7.66)

While in the first two cases the final payoff vanishes, the option is “in”
in both the discrete and the continuous settings. For each path there is a
significantly big value of M such that the lower and the upper bounds CL,M ,
CU,M coincide. In such a case they also coincide with the payoff, but M is a
priori unknown and thus a random variable. Further, increasing the number
m above M will not change the option payoff for that given sample path. One
therefore fixes an upper bound m∗ and simulates paths of the VG process by
the difference of the gamma bridge sampling up to a fineness given by the
minimum of M and m∗.

One can then set up an example for a barrier option pricing algorithm by the
so-called truncated difference of gamma bridge sampling method (truncated
DGBS method) as in Algorithm 7.5.

Avramidis and L’Ecuyer (2006) calculate the prices of an up-and-in call (and
further options such as lookback or Asian options) by the truncated DGBS
method with both Monte Carlo and quasi-Monte Carlo methods (where the
random numbers are replaced by suitable quasirandom numbers). As the
usual dominating error in barrier option pricing is given by O(

√
1/m), they

also used extrapolation estimators via

CB,extra(N) =
20.5Cm

∗
B (N) − C

m∗/2
B (N)

20.5 − 1
. (7.67)

where the superscript indicates the fineness of the discretization of the sampled
stock price paths. These extrapolation estimators in particular showed an
excellent performance.
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Algorithm 7.5 Pricing up-and-in calls by the DGBS method
Let N be the number of path replications and m∗ be the number of discretiza-
tion points for the DGBS method. Set

CB(N) = Clow = Cup = 0.

For i = 1 to N do

1. Simulate a VG model path by the DGBS method with fineness m∗:

• At each stepM ∈ {1, ...,m∗} calculate C(i)
L,M and C(i)

U,M as in (7.64).

• If there is an M < m∗ with CL,M = CU,M then stop and set

C
(i)
L,m∗ = C

(i)
U,m∗ = C

(i)
L,M .

2. Set Clow = Clow + C
(i)
L,m∗ , Cup = Cup + C

(i)
U,m∗ .

Obtain the Monte Carlo estimates for the lower bound, the upper bound, and
the option price:

Clow =
1
N
Clow, Cup =

1
N
Cup, CB(N) =

1
2

(Clow + Cup) .

REMARK 7.8 1. More barrier options: With obvious changes and
modifications, the above way of applying the truncated DGBS method also
goes through for the other one-sided barrier option types (such as down-and-
out call/put, up-and-out call/put, ...).

2. The choice CB(0) = 1/2(Clow+Cup) is an obvious choice for an estimate
of the option price. However, it is not the only one. Alternatives would be
to use the upper and lower bounds on the stock price process to obtain an
estimate of the stock price, either as an arithmetic or a geometric mean. This
can then be used to obtain an estimate for the (pathwise) option payoff which
then has to be updated after each simulated path.

7.3.4 Normal inverse Gaussian processes

Another popular model from the class of subordinated Lévy processes is the
normal inverse Gaussian model (NIG model). It is defined similarly as the VG
model but is based on the inverse Gaussian process as the subordinator. More
precisely, we look at the stock price model as suggested by Barndorff-Nielsen
(1997), where we assume that we are already working under an equivalent
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martingale measure,

S (t) = S (0)
exp (rt+ σX (t))
E (exp (σX (t)))

(7.68)

where X(t) is an NIG process defined as

X (t) = W (G (t)) + βG (t) (7.69)

for a Brownian motion W (t) and an inverse Gaussian (IG) process G(t) ∼
IG(δt, γ). We then say that X(t) has an NIG(α, β, δt)-distribution with
α =

√
β2 + γ2 where it is required that we have

α > 0, δ > 0, α > |β| . (7.70)

The NIG(α, β, δ)-distribution has a probability density of the form

fNIG(α,β,δ) (x) =
αδ

π
eδ

√
α2−β2+βxK1

(
α
√
δ2 + x2

)
√
δ2 + x2

, x > 0 (7.71)

where again K1(x) is the Bessel function of third kind with index 1 as given
in Equation (7.29). Its characteristic function and its first two moments are
given by

ΦNIG(α,β,δ) (u) = exp
(
−δ
√
α2 − (β + iu)2 −

√
α2 − β2

)
, (7.72)

E (X (t)) = βδt√
α2−β2

, Var (X (t)) = δt

α
q

(1−(β/α)2)3 , (7.73)

Skew (X (t)) = 3 β
α
√
δγ
, Kurt (X (t)) = 3α

2+4β2

δα2γ (7.74)

(see Ribeiro and Webber [2003]). From these considerations we in particular
obtain that we have

E (X (t)) = exp
((

δγ − δ

√
α2 − (1 + β)2

)
t

)
(7.75)

which is needed to give the price model of Equation (7.68) an explicit form.
A property that makes the NIG-distribution suitable for a log-return model

is the fact that it is much more flexible than the normal distribution. Also,
it can produce a higher peak in the centre and at the same time more heavy
tails than the normal distribution while having the same mean and variance.

Of course, we could try to simulate the NIG process directly. However, as its
distribution is not easy to invert, we recommend in Algorithm 7.6 to use the
method via subordination (see also Rydberg [1997] for a detailed treatment
of the aspects of simulating the NIG process).

A path of an NIG process is simulated in Figure 7.2. Note that for various
parts it looks like a “Brownian motion with holes” and has an appearance
different from a VG process.
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Algorithm 7.6 Simulation of an NIG path
Let α, β, γ, δ satisfy requirement (7.70). Further, consider a time discretization
0 = t0 < ... < tN = T . Set X(0) = 0.
For i = 1 to N do

1. Simulate Gi ∼ IG (δ (ti − ti−1) , γ).

2. Simulate a standard normally distributed random number Yi.

3. Set X (ti) := X (ti−1) +
√
GiYi + βGi (ti − ti−1).

4. Set X (t) := X (ti−1) , t ∈ (ti−1, ti).
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FIGURE 7.2: A simulated path of an NIG process.

Putting the just simulated path of an NIG process into the stock price
representation (7.68) yields a path of the corresponding stock price. This
simulation method yields a crude Monte Carlo algorithm for option pricing.

More sophisticated alternatives to the above method that deliver promising
results can be found in Ribeiro and Webber (2003), who give a bridge sampling
algorithm similar to the one presented in the VG process framework, and in
Benth et al. (2006) who consider a quasi-Monte Carlo approach.

7.3.5 Further aspects of Lévy type models

Multivariate models

Thus far, different from jump-diffusions, we considered only univariate Lévy
processes. One could of course easily think about a direct generalization of
the subordinator idea: Just replace the one-dimensional Brownian motion by
a d-dimensional one. However, as pointed out by Cont and Tankov (2003)
the use of the same subordinator for all stock price processes automatically
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creates a certain dependence structure. So it is important to have independent
(nontrivial) assets in such a setting. A possibility out of this dilemma would
be the use of a factor model for the time evolution. More precisely, we need
more than one subordinator that determines the actual clock inherent in the
movement of asset prices.

Another alternative is the use of so-called Lévy copulas to model multiasset
markets. Again, we refer to Cont and Tankov (2003) for a survey on this issue.

More models

Another class of processes that has become popular recently is the class of
Meixner processes which was introduced by Schoutens and Teugels (1998). Its
construction is intimately related to orthogonal polynomials. As it does not
seem to be favourable when compared to the VG process or the NIG process,
we do not present it here in detail, but refer the interested reader to Schoutens
(2000).

A criticism of the Lévy models considered thus far is that they do not
include a stochastic volatility term. Due to the stationarity of the increments,
Lévy processes are too similar over time. Therefore, Barndorff-Nielsen and
Shephard (2001) introduced a Lévy model with an additional mean-reverting
volatility parameter. More precisely, they assumed a log-price Z(t) of the
form

dZ (t) = (r − λκ (−ρ) − σ (t) /2)dt+
√
σ (t)dW (t) + ρdL (λt) (7.76)

where the volatility process σ(t) is given as

dσ(t) = −λσ (t) dt+ λdL (λt) . (7.77)

Here, L(t) is a subordinator, λ > 0, −κ(u) = ln(E(exp(−uL(1)))), and W (t)
is a Brownian motion independent of L(t). Note that the form of the volatility
specification has a tendency to decrease to zero slowly with time while sudden
jumps increase it again. The parameter ρ models a correlation effect between
the stock price and the volatility.

Lévy models with stochastic volatility are further discussed in Schoutens
(2003).





Chapter 8

Simulating Actuarial Models

8.1 Introduction

In the preceding chapters we have been interested in pricing isolated fi-
nancial contracts. There, the main principle to deal with market risk, the
risk of losses due to unfavourable price moves, is to switch to an equivalent
market martingale measure and calculate the present value of a financial con-
tract. This approach is based on the assumption that assets underlying these
contracts can be traded to reduce or even eliminate the inherent risks.

In insurance mathematics, we look at the risks arising from insurance con-
tracts (such as in life insurance or car insurance). However, they cannot be
traded and the arbitrage argument often plays no role in their valuation. As
these contracts are often sold in high numbers, suitable variants of the law of
large numbers suggest the expected present value of the future payments as
an indicator for the value of a contract. To be on the safe side, safety loadings
are included in the premium calculations. Also, dependencies can play an
extremely important role in judging the risk arising from the whole portfo-
lio of sold contracts. We will therefore consider the two important topics of
premium principles and of dependence modelling. Further important types
of risks that we will explicitly look at are the risk of rare events in nonlife
insurance and the longevity risk in life insurance. In both cases Monte Carlo
methods are suitable tools. The concepts of copulas or quantiles that we are
dealing with in this chapter also have applications in finance.

As insurance mathematics is a classical subject, there are various mono-
graphs on different aspects and types of insurance. Among them are standard
and recent texts such as Bühlmann (2005), Gerber (1997), Mikosch (2004),
and Møller and Steffensen (2007), just to name a few.

8.2 Premium principles and risk measures

The premium of an insurance contract is that part of its price that should
be sufficient to cover the risk that the insurance company takes over with this

357
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contract. The actual price of the contract also contains parts that are needed
for covering administrational expenses and further costs. This is sometimes
called gross premium. We will not consider administrational costs and only
look at the premium as described above. To calculate this premium a so-called
premium principle is used.

As premium principles are used to judge the risk inherent in an insurance
contract, it is reasonable to present along with them so-called (financial) risk
measures that are developed for judging and managing financial risks.

We will introduce both concepts, comment on the aspects of their Monte
Carlo simulation, and comment on the relationship between risk measures and
premium principles.

8.2.1 Properties and examples of premium principles

To introduce a premium principle, we first have to introduce the notion of a
risk X as a random variable for which we always assume suitable integrability
properties when they are needed. We further assume that the considered
insurance contract starts right away, which implies that the risk is present
immediately. We will consider a different case in life insurance when contracts
might start in the future. For this, we then have to introduce a suitable
discounting. Formal definitions are given below.

DEFINITION 8.1
Let (Ω,F ,P) be a probability space.
(a) A risk X is a nonnegative random variable on (Ω,F ,P).
(b) A functional p(.) on the space of risks X is called a premium principle.

As there are many suggestions around for different premium principles to
use, there are also properties in the literature by which the suitability of a
premium principle should be judged. We state four of them (see Sundt [1993])
but refer the reader to an impressive collection of nearly 20 properties listed
in Laeven and Goovaerts (2008):

DEFINITION 8.2
Let X,Y be two risks. Then, some reasonable properties of a premium prin-
ciple p(.) are:

1. p(X + Y ) ≤ p(X) + p (Y ) subadditivity

2. p(X) ≤ p(X + Y )) monotonicity

3. p(X) ≥ E(X) nonnegative safety loading

4. p(X) ≤ sup
ω∈Ω

X (ω) no ripoff
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REMARK 8.3 The interpretations of the above properties are indicated
by their names:

1. Property 1 requires that it should not be profitable to split the risk
X + Y and sign two contracts, one for X and the other one for Y .
However, this property is at debate of being reasonable without further
assumptions on the dependence between X and Y .

2. Property 2 is a monotonicity requirement: Additional risk needs addi-
tional premium.

3. Property 3 is motivated by the law of large numbers: If the company
would charge less than the expected loss E(X) (“fair premium”), it
would for sure go bankrupt given the number of sold contracts is large.

4. Property 4 is reasonable as no customer would sign a contract that costs
more than the highest possible claim size.

With the choice of presenting these properties we do not claim that they
are the most important ones. They simply serve as popular examples.

We present some popular premium principles and check to see if they share
the above properties.

DEFINITION 8.4
The expectation principle pexp(X) for a claim X and a constant μ > 0 is
given by

pexp(X) = (1 + μ)E(X). (8.1)

The expectation principle satisfies Properties 1, 2, and 3 of Definition 8.2.
However, it obviously violates Property 4 for constant claims or for claims
with a maximum smaller than (1 + μ) · E(X). However, as in both cases such
a contract could not be sold, it is clear that such a value for μ would not be
used in practice. A further weakness seems to be that the fluctuations of the
risk X plays no role for its premium.

Principles that explicitly take the fluctuations of the claim sizes into account
are the variance and the standard deviation principles.

DEFINITION 8.5
Let μ > 0 be a given constant.
1. The variance principle pvar(X) for a claim X is given by

pvar(X) = E(X) + μ · Var(X). (8.2)

2. The standard deviation principle psd(X) for a claim X is given by

psd(X) = E(X) + μ ·
√

Var(X). (8.3)
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Although at first sight more sophisticated than the expectation principle,
both these premium principles might violate Property 2 of Definition 8.2
which is a serious defect. The reason for this is that expectation and vari-
ance/standard deviation are related in a nonlinear and nonmonotonic way. To
demonstrate this, we assume that we have a probability q for a claimX to arise
in the next period and that the height of the claim is Γ(1, 500)-distributed.
The premium arising for this configuration for the standard deviation principle
with μ = 1 is displayed in Figure 8.1.
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FIGURE 8.1: Premium from standard deviation principle.

Note that the resulting premium for q = 1, i.e. that a claim occurs for sure,
is lower than for one which only occurs with probability q = 0.856. This
violates the monotonicity requirement and is not acceptable. So one should
take great care when using one of those premium principles. On top of that
the variance principle also violates the subadditivity property.

A premium principle that avoids these problems (see Fischer [2003]) is the
semistandard deviation principle which incorporates only deviations from the
mean by high claims.

DEFINITION 8.6

The semistandard deviation principle pssd(X) for a claim X and a con-



Simulating Actuarial Models 361

stant 0 ≤ μ ≤ 1 is given by

pssd(X) = E(X) + μ ·
√

E

{
[max (0, X − E(X))]2

}
. (8.4)

All premium principles that we have considered so far were closely related
to the strong law of large numbers and the central limit theorem (which
motivates the use of standard deviation or variance as a measure for judging
the risk of deviation from the expectation of a claim) and explicitly added
some safety loadings. The following principle – which is known as the expected
utility principle – incorporates the attitude towards risk of the insurer by the
introduction of a utility function.

DEFINITION 8.7
Let U(x) be a utility function (i.e. a concave, strictly increasing function).
A premium peu(X) for a claim X is said to be calculated by the expected
utility principle if we have

U (c) = E (U (c−X + peu (X))) (8.5)

where c is a (positive) constant, e.g. the wealth of the insurer.

REMARK 8.8 1. The premium is such that the utility from signing the
new contract is equal to the utility of not signing it.

2. Property 1 of a premium principle is not fulfilled. However, this is
desired, because higher risk should lead to overproportionally increasing pre-
miums. The reasoning behind this can be seen when comparing the risks
corresponding to n customers of the same age having identical life insurance
contracts with the risk of a single customer insured on n-times the sum payable
at death and annuity rate. In the second case, the longevity risk and the early
death risk are much higher than n-times the risks in the first case, because
in the first case the longevity and early death risks average out over the n
customers.

3. Instead of the constant c one should insert the random variable C
representing the whole portfolio of claims and replace the left-hand side by
E (U (C)). This leads to a high premium for a claim being highly correlated to
C and a low premium for a claim leading to a diversification in the portfolio.

4. Note that for the particular choice of the utility function

U (x) =
1
α

(
1 − e−αx

)
, for a fixed α > 0 (8.6)

the premium calculated by the expected utility principle is independent of c
and is explicitly given by

peu (X) =
1
α

ln
(
E
(
eαX
))

(8.7)
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(see Laeven and Goovaerts [2008] for this and also for more premium princi-
ples). This principle only yields a finite premium for exponentially bounded
risks.

8.2.2 Monte Carlo simulation of premium principles

After the choice of a premium principle has been made, there remains the
task of explicitly calculating the premium of an insurance contract. If this
cannot be done explicitly, Monte Carlo simulation is a possible method of
choice. This is straightforward for the expectation principle (of course, be-
sides the fact that contracts with a complicated insurance payment structure
might require methods as sophisticated as for exotic options) and also for the
expected utility principle in case of the exponential utility function when the
explicit expression of Equation (8.7) is used.

However, there is a new aspect introduced by the premium principles that
include the variance in any form as an ingredient. To calculate the variance we
already need the expectation. Of course, for large values of N (the number of
Monte Carlo runs) one can use the Monte Carlo estimate of the expectation,
the arithmetic mean. As we can calculate the variance as

Var (X) = E
(
X2
)− (E (X))2 (8.8)

the Monte Carlo estimation of E(X) and of E(X2) can be done simultaneously.
However, for estimating the semivariance E([max (0, X − E(X))]2) such a
decomposition is not available. Thus, one could perform a two-step procedure:

1. Estimate the mean E(X) by X̄N1 based on N1 simulation runs.

2. Estimate the semivariance E([max (0, X − E(X))]2) based on N2 new
simulation runs by

1
N2

N2∑
i=1

(
max

(
0, X − X̄N1

))2
.

8.2.3 Properties and examples of risk measures

A risk measure is related to a financial position X̃ and a time horizon T .
Here, the position X̃ can be both positive or negative. In contrast to insurance
claims, X̃ > 0 describes a profit.

Föllmer and Schied (2002) state the requirement on a risk measure clearly:
“...a risk measure is viewed as a capital requirement: We are looking for the
minimal amount of capital which, if added to the position and invested in a
risk-free manner, makes the position acceptable.”
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DEFINITION 8.9
A risk measure ρ is a real-valued mapping defined on the space of random
variables.

As this definition is fairly weak, we present some requirements on a risk
measure that are popular in the literature.

DEFINITION 8.10
Let X̃, Ỹ be two financial positions. Some reasonable properties of a risk
measure ρ(.) are:

1. ρ(X̃ +m) = ρ(X̃) −m ∀m ∈ R translation invariance

2. X̃ ≥ Ỹ a.s. ⇒ ρ(X̃) ≤ ρ(Ỹ ) monotonicity

3. ρ
[
λX̃ + (1 − λ)Ỹ

]
≤ λρ(X̃) + (1 − λ)ρ(Ỹ ) for λ ∈ [0, 1] convexity

4. ρ(λX̃) = λρ(X̃) for λ ≥ 0 positive homogeneity

REMARK 8.11 The meaning of the properties of risk measures can
already be understood by their names:

1. Translation invariance means that riskless money changes the risk of a
position by exactly the same amount. In particular, we observe ρ(X̃ +
ρ(X̃)) = 0, i.e. if we invest the risk premium ρ(X) in a risk-free manner
then there is no risk anymore.

2. Monotonicity simply says that less risk requires less money set aside.

3. Convexity of the risk measure favours diversification.

4. Positive homogeneity implies that risk increases linearly in the units
owned of a particular risky good. This property is heavily discussed
in the literature as it totally ignores liquidity risk. From an insurance
point of view, it also means that insuring 10 high towers, in for example
San Francisco, against earthquakes bears the same risk as insuring 10
high towers in 10 different places. With regard to extreme risk, this is
not reasonable as an earthquake in San Francisco will likely damage all
high towers, whereas it is rather unrealistic that an earthquake happens
at all the 10 places at the same time.

To normalize the range of the risk measure one can also require

ρ(0) = 0 normalization

which has the reasonable interpretation that a zero position has no risk.

In the literature, mainly two types of risk measures are considered.
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DEFINITION 8.12
A risk measure is called convex if it satisfies the requirements 1 to 3 of
Definition 8.10.
A risk measure is called coherent if it satisfies the requirements 1 to 4 of
Definition 8.10.

Properties 3 and 4 imply that a coherent risk measure is also subadditive.
If it attains a finite value ρ(0) then it also has the normalization property
ρ(0) = 0.

We will look at some popular risk measures. The one which is mainly used
in banks and has become an industry standard is the value-at-risk.

DEFINITION 8.13
The value-at-risk of level α (V aRα) is the α-quantile of the loss of the
financial position X̃ at time T :

V aRα(X̃) = − inf
{
u ∈ R

∣∣∣P(X̃ ≥ u
)

≥ 1 − α
}

(8.9)

where α is a high percentage such as 95% or 99%.

As a quantile, V aRα is easy to understand and very popular in applications.
However, it does not give us an idea about the height of the actual loss above
that quantile. Further, it is not convex and so it does not necessarily support
diversification. To see this, consider the positions X,Y with:

X̃ = Ỹ =

⎧⎪⎨
⎪⎩

100 with probability 0.901
0 with probability 0.009
−200 with probability 0.09,

then for α = 90%, we obtain

V aR

(
1
2
X̃ +

1
2
Ỹ

)
= 50,

1
2
V aR(X̃) +

1
2
V aR(Ỹ ) = −100.

DEFINITION 8.14
The conditional value-at-risk (or average value-at-risk) is defined as

CV aRα(X̃) =
1

1 − α

∫ 1

α

V aRγ(X̃) dγ. (8.10)

The CV aRα coincides with the expected shortfall or tail conditional
expectation defined by

TCEα(X̃) = −E

(
X̃
∣∣∣X̃ ≤ V aRα

)
(8.11)
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if the probability distribution of X̃ has no atoms. CV aRα is indeed a coherent
risk measure (see Acerbi and Tasche [2002]).

As for premium principles there is a risk measure based on expected utility:

DEFINITION 8.15
Let U : R → R be a utility function (i.e. strictly increasing and concave).
Then, the risk measure based on utility of a financial position X̃ is given by

ρutility(X̃) = inf
{
m ∈ R

∣∣∣E [U(X̃ +m)
]
≥ U(0)

}
. (8.12)

It can be shown that the just defined risk measure based on a utility function
is a convex risk measure (see Föllmer and Schied [2002]).

8.2.4 Connection between premium principles and risk
measures

As both concepts are used to judge risks, they should have many features in
common (indeed, already in Deprez and Gerber [1985] convex premium prin-
ciples were discussed). However, before we comment on parallels one should
also keep in mind that a premium principle is closer to a pricing principle as
it is focused on a single contract. But the main concept behind this pricing
approach is the strong law of large numbers and not the arbitrage principle
of finance. Therefore, the classical premium principles such as the expecta-
tion (see Definition 8.4) or the variance principle as introduced in Definition
8.5 are not directly related to ideas of risk measures that have a tendency to
concentrate on valuing the extreme risks. Examples for this point of view are
the VaR, presented in Definition 8.13, or the CVaR, introduced in Definition
8.14. However, the semistandard deviation premium principle from Definition
8.6 also concentrates on the high claims.

An approach that connects both concepts is the one based on utility, the
expected utility approach for premium principles and risk measures as in
Definitions 8.7 and 8.15.

One can define a premium principle p out of a given risk measure ρ via the
requirement of

ρ(p(X) −X) != 0 (8.13)

for each claim X . Since p(X) is riskless, this leads to the identification

p(X) = ρ(−X) (8.14)

which would also allow us to extend the definition of a premium principle to
general random variables.

Further, we can then compare the conditions imposed on premium princi-
ples and on risk measures. Given that the risk measure is convex and nor-
malized, then it follows directly that the above defined premium principle is
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monotonic and also condition 4 of a premium principle is implied. Moreover,
the subadditivity of a coherent risk measure implies the subadditivity of the
premium principle. Condition 3 of a premium principle cannot be directly
verified, as a risk measure is a priori defined without reference to a probabil-
ity measure. However, for special choices of ρ such as CVaR and expected
utility, this condition can be explicitly verified.

For convex risk measures which are not coherent, the above premium prin-
ciple will also typically fail to be subadditive.

8.2.5 Monte Carlo simulation of risk measures

Quantile estimation and VaR

The first ingredient of estimating risk measures is the estimation of a quan-
tile. The natural Monte Carlo estimator for an α-quantile qα = F−1(α) of
a random variable X with distribution function F is obtained by generat-
ing N realizations of X and then using the α-quantile q̂α,N of the empirical
distribution FN (x).

Algorithm 8.1 Crude Monte Carlo simulation of the α-quantile
Let F be a given distribution function, α ∈ [0, 1].

1. Simulate N independent random numbers X1, . . . , XN , Xi ∼ F .

2. Compute the empirical distribution function

FN (x) =
1
N

N∑
i=1

1{Xi≤x}.

3. Estimate the quantile qα by

q̂α,N = F−1
N (α).

REMARK 8.16 1. Of course, if F is explicitly known, then one would
calculate the quantile via numerically solving F (x) = α. So the crude Monte
Carlo method of Algorithm 8.1 is only used when F is not available or hard
to compute. We have already seen such examples in Sections 5.6.1 and 5.6.2
in the case of basket or Asian options, where F has been the distribution
function of sums of log-normals which is not known explicitly. The above
inversion of the empirical distribution function is of course done in a simple
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way: Order the simulated values by their size and then pick out the one at
position k = min {n ∈ {1, ..., N} |n/N ≥ α}.

2. To obtain a confidence interval for qα, one can use the central limit
theorem for quantiles (see Glynn [1996]) that states

√
N (q̂α,N − qα) D→ N (0, σ2) (as N → ∞), σ2 =

α (1 − α)
f (qα)

(8.15)

where f(.) denotes the density of the distribution function F . This directly
gives us a 95%-confidence interval for qα as

[
q̂α,N − 1.96

α (1 − α)
f (qα)

√
N
, q̂α,N + 1.96

α (1 − α)
f (qα)

√
N

]
. (8.16)

Note that we have the usual 1/
√
N -convergence. However, the value f (qα)

is not under our control. It can become arbitrarily small, and typically is
also very hard to estimate, in particular for large or small values of α. As
an example, consider the simulation of a 0.995-quantile of a standard nor-
mally distributed random variable which is given by q0.995 = 3.2905. To ob-
tain a 95%-confidence interval of length 0.001 we already need approximately
N=1,215,492 if (!) the density value at q0.995 is known.

Note that to estimate the desired quantile accurately, it is necessary to
have many observations close to it. However, as quantiles like value-at-risk
are typically extreme quantiles, a crude Monte Carlo simulation leaves us with
exactly the opposite situation: We generate a lot of observations far away from
the quantile and only a few close to it. This directly calls for an application
of importance sampling (as presented in Section 3.3.5) to reduce the variance
of the quantile (and thus also to reduce the length of the confidence interval).

However, we then face a second problem. As we do not know the quantile
and typically also not the form of the distribution function F , we need at least
an approximation for F and f around the quantile. Here, a large deviations
result (see Bucklew [1990] or Glynn [1996]) of the form

P (X > x) ≈ exp (−xθx + C (θx)) , x >> E (X) , (8.17)

with C(.) the cumulant generating function ofX and θx is given by C′(θx) = x,
comes to our help. If we want to estimate a high quantile qα, α ≈ 1 then (in
the case of a continuous distribution) we can simply solve the equation

1 − α = P (X > qα) = exp
(
−qα (C′)−1 (qα) + C

(
(C′)−1 (qα)

))
. (8.18)

Note that there can be situations where the cumulant generating function
C(.) is easier to compute than the distribution function. It might therefore be
possible that the root of Equation (8.18) can be computed while it is nearly
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impossible to solve the equation F (qα) = α, indeed the only case where a
Monte Carlo simulation is useful.

If the large deviations result would be exact then the root of this equation
would equal the quantile qα. However, it is typically only a crude approxi-
mation q̃α. But as it is an approximation, it gives us an idea to where we
should shift the distribution F to obtain a new distribution function F̃ that
is (more) concentrated in the neighbourhood of the quantile.

Indeed, for this we can use the method of exponential twisting as presented
in Section 3.3.5. We change the original distribution from F to F̃ via

F̃ (dx) = exp (−xθq̃α + C (θq̃α))F (dx) . (8.19)

This new distribution has a mean of q̃α which is close to qα, and thus we
can use the modified quantile estimator

q̂imp,1α,N = F−1
N,imp,1(α), (8.20)

FN,imp,1 (x) =
1
N

N∑
i=1

L (Xi) 1Xi≤x, (8.21)

L(x) = exp (xθq̃α − C (θq̃α)) (8.22)

and where all the random variables Xi are generated under the distribution
function F̃ of Equation (8.19).

An obvious alternative is the estimator which considers only the high values:

q̂imp,2α,N = F−1
N,imp,2(α), (8.23)

FN,imp,2 (x) = 1 − 1
N

N∑
i=1

L (Xi) 1Xi>x. (8.24)

Note that in the nontransformed setting the two quantile estimators coin-
cide. As pointed out in Glynn (1996), q̂imp,1α,N should be used for estimating low
quantiles (i.e. for small values of α), while q̂imp,2α,N is the choice for estimating
high quantiles. Further, there is a generalized central limit theorem for this
transformed quantile estimator. However, we do not give it here as it does
not directly lead to an easy-to-compute confidence interval. We collect all the
above work in formulating Algorithm 8.2.

Example 8.17
We look at an artificial example where we assume that we have X ∼ N (0, 1)
and we want to compute V aR0.999(X) ≈ 3.0902 by the two Monte Carlo
variants given above. For reasons of comparison we also give the difference
between the values that are five positions higher and lower than the quantile
estimator. To do the explicit calculation we can use

C (θ) =
1
2
θ2 (8.25)
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Algorithm 8.2 Importance sampling for quantiles
Let the distribution function F , the level α ∈ (0, 1), and N ∈ N be given.

1. Compute an approximate quantile q̃α via solving Equation (8.18).

2. Generate random numbers Xi according to the distribution F̃ as
in Equation (8.19).

3. If α < 0.5 then use the estimator q̂imp,1α,N according to Equation (8.20).

4. If α ≥ 0.5 then use the estimator q̂imp,2α,N according to Equation (8.23).

for the cumulant generating function leading to the approximate value of

q̃0.999 =
√

−2 ln (1 − 0.999) = 3,7169. (8.26)

For the choices of N= 1,000 and 10,000 we obtain the results of Table 8.1.

Method N 1,000 10,000
Crude MC quantile 3.03815 3.03146
Importance sampling 3.09744 3.09044

Table 8.1: V aR0.999 Estimates for N (0, 1) (True Value = 3.0902)

Note that these choices are actually very risky ones for the use of the crude
method, as there the VaR is determined in its exact form by only a few num-
bers while for the importance sampling case the VaR lies close to the middle
of the range of the distribution and is much more stable against outliers. This
argument and the numerical results clearly demonstrate the advantages of the
importance sampling method.

REMARK 8.18 1. The importance sampling method for calculating
quantile performs very well if we can indeed compute all the necessary in-
gredients, in particular the cumulant generating function C. This is often a
nontrivial task and in particular when we are not able to calculate the distri-
bution function F . On the other side, if F is explicitly given then Monte Carlo
methods are not needed! Therefore, the direct application of this method for
calculating risk measures is quite limited.

2. As a second drawback, the calculation of an (asymptotic) confidence
interval requires the calculation of the density function f at the quantile qα
itself. One can replace the quantile by its estimate q̂imp,iα,N , i = 1, 2, whichever
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is more suitable. However, we still have the problem to estimate the density
value itself which is a delicate task when it comes to accuracy.

VaR via importance sampling and delta-gamma approximation

As we have seen in the previous section, the calculation of a quantile is not
possible if the cumulant generating function of the underlying distribution
is not known. This, however, is the typical case for a portfolio of a bank
or an insurance company that also contains complicated products such as
derivatives.

On the other hand, banks and insurance companies have to calculate risk
measures such as VaR for their portfolio (sometimes) daily. We will present
a workable way out of this that has been developed in a series of papers by
Glasserman et al. (1999, 2000a, 2000b, 2001). This method rests on:

1. Calculating the probability of losses above a given value x instead of
calculating V aRα.

2. Use of importance sampling to reduce computational effort.

3. Repeating Step 1 with varying levels until the obtained loss probability
is close to α.

To present it, we assume that the loss L over a given time horizon t is a
function of a vector of underlying risk factors (W1, . . . ,Wn),

L = f (0, . . . , 0) − f (t,W1, . . . ,Wn) . (8.27)

Such a function typically is the sum of many functions h(i)(t,W1, . . . ,Wn)
that describe the prices of the different securities (stocks, derivatives, ...),
that make up the portfolio of an investor, a bank, or an insurance company,
between times 0 and t. One is now interested in estimating the probability to
suffer a loss above a certain given value x,

P (L > x) = E (1L>x) . (8.28)

As we have a representation of an expectation, this is a standard problem
that can be dealt with by Monte Carlo simulation. Of course, there are two
particular problems. One problem is that we consider x to be large, which
means that with a crude Monte Carlo approach we will indeed not have a lot
of observations that help us to estimate the probability accurately.

The second problem is that the evaluation of the loss L will take a lot of time
if the underlying portfolio is large and contains a lot of functions h(i) which
are nonlinear in the risk factors. In particular, these functions can be prices
of exotic options and might themselves need separate Monte Carlo simula-
tions to obtain these prices. As the loss probabilities have to be calculated by
banks and insurance companies daily, approximations of L are popular. They
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typically rest on the assumptions that W has a multivariate normal distribu-
tion and that the loss function f(.) is approximated by a Taylor polynomial.
The so-called delta approximation rests on a linear approximation and is
too coarse for typical portfolios containing derivatives. The delta-gamma
approximation uses a second-order Taylor approximation

L = f (0, . . . , 0) − f (t,W )

≈ −ft (0) t− ∇f (0)W − 1
2
W ′Hessf (0)W, (8.29)

and is popular in applications. This is the starting point for the Monte Carlo
analysis in the above mentioned series of papers by Glasserman et al. (1999,
2000a, 2000b, 2001). Note that the gradient ∇f contains all the partial deriva-
tives ∂f/∂Wi (the deltas) and the Hesse matrix Hessf contains the second
order partial derivatives ∂2f/(∂Wi∂Wj) (the gammas). As both the deltas
and gammas are the sum of the deltas and gammas of the members of the
portfolio, they are usually calculated anyway by the traders and so do not
create additional effort. The same is typically true for the time derivative,
the theta.

The main idea of Glasserman et al. (1999, 2000a, 2000b, 2001) now is
to use the delta-gamma approximation (8.29) as a substitute for L, assume
W ∼ N (0,Σ), and then apply an importance sampling step by exponential
twisting (see Section 3.3.5) based on Equation (8.29). More technically, we
first introduce a matrix B with

Σ = BB′ and − 1
2
B′Hessf (0)B = D (8.30)

with D a diagonal matrix containing all the eigenvalues of −1/2B′Hessf (0)B.
Such a matrix exists as one can use a decomposition Σ = AA′, then diagonalize
−1/2AHessf(0)A′ = UDU ′, use the property that U is orthogonal, define
B = AU , and use D = −1/2B′Hessf(0)B. We can further assume (by
permuting the indices of Wi if necessary) that the eigenvalues satisfy

d1 ≥ . . . ≥ dn. (8.31)

Thus, with the definition of W = BX for some X ∼ N (0, I) we can write

L ≈ −ft (0) t− (B′∇f (0))′X − 1
2X
′B′Hessf (0)BX

=: f (0) + b′X +X ′DX = f (0) +
n∑
i=1

(
biXi + diX

2
i

)

=: f (0) +Q (X) . (8.32)

We then transform the distribution of Q(X) such that its mean under the
new importance sampling distribution equals x− f (0). There might be many
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possibilities to achieve this. We will use the exponential twisting method as
in the quantile estimation case, i.e. we use the importance sampling density

� (X) = exp (−θQ (X) + C (θ)) (8.33)

with C(.) the cumulant generating function of Q(X).
As Q(X) is a quadratic form in independent standard normals Xi, C(.) is

explicitly known and given by (see e.g. Imhof [1961] or Baldessari [1967])

C (θ) =
n∑
i=1

1
2

(
(θbi)

2

1 − 2θdi
− ln (1 − 2θdi)

)
=

n∑
i=1

C(i) (θ) . (8.34)

Under the importance sampling distribution the Xi remain independent,
normally distributed, but with means μi(θ) and variances σ2

i (θ) given by

σ2
i (θ) =

1
1 − 2θdi

, μi(θ) = θbiσ
2
i (θ). (8.35)

Note that we have an increase (decrease) of the variance for those Xi with
di > 0 (di < 0). For the μi we have a similar effect for the signs of the bi,
but this can get mixed with the variance effect. It remains to choose the
parameter θ as in the quantile estimation case, i.e. as the (unique) root of

C′ (θx) = x− f (0) (8.36)

which has to be done numerically and which ensures that we have

E (� (X ; θx)Q(X)) = C′ (θx) = x− f (0). (8.37)

Putting all our considerations together, we arrive at Algorithm 8.3.

REMARK 8.19 1. An approximate 95%-confidence interval for P(L > x)
can be obtained via the usual formula of p̂θx

N ± sN√
N

with s2N being the sample

variance of the �(X(j))1L(j)>x. This should always be compared with the
95%-confidence interval corresponding to the crude Monte Carlo estimator
p̂0
N given by

[
p̂0
N − 1.96

√
p̂0
N (1 − p̂0

N )√
N

, p̂0
N + 1.96

√
p̂0
N (1 − p̂0

N )√
N

]
. (8.38)

To illustrate the size of the N that is typically needed, assume that we know
p = 0.001 exactly. Of course a confidence interval should have a smaller order
than the estimate itself. So to obtain a confidence interval of length 0.0001,
we need N ≈ 106. This is particularly high as each evaluation of the portfolio
loss function is very costly in terms of computing time.
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Algorithm 8.3 Value-at-Risk via importance sampling of the delta-gamma
approximation
Let the loss function L = f(W ), W ∼ N (0,Σ) and the loss level x be given.
Assume further that f(0), ∇f(0), Hessf (0) are given together with the (for-
mal) delta-gamma approximation (8.29).

1. Preparation:

(a) Determine B,D, b and Q(X) as given in Equations (8.30) and
(8.32).

(b) Determine θx via solving Equation (8.36).

2. Simulation:
For j = 1 to N

(a) Simulate X(j) = (X(j)
1 , . . . , X

(j)
n ) where the X(j)

i are independent
with X

(j)
i ∼ N (μi(θx), σ2

i (θx)) as given in Equation (8.35).

(b) Obtain L(j) = f(0)−f(t, BX(j)) and �(X(j)) according to Equation
(8.33).

Obtain the loss probability estimator by: p̂θx

N = 1
N

∑N
j=1 �(X

(j))1L(j)>x.

2. Remember that our original intention was the calculation of a risk mea-
sure such as V aRα. For this problem we need a good initial guess of x, i.e.
we should have P(L > x) ≈ α. Then, one should iteratively change x until
the corresponding loss probability is close enough to α.

In particular, one should always be on the safe side, i.e. the 95%-confidence
interval for p̂θx

N should be above α. To start the iteration, we can again use
our knowledge on the delta-gamma approximation. As we have its cumulant
generating function C(θ), we obtain explicit forms for its mean and variance:

E (Q(X)) = C ′ (0) =
n∑
i=1

di, Var (Q(X)) = C′′ (0) =
n∑
i=1

(
bi + 2d2

i

)
. (8.39)

One can now start with an initial guess of

x = E (Q(X)) + y
√

Var (Q(X)) (8.40)

and then increase or decrease y depending on the resulting loss probability
estimate. A simple choice for a value of y to start with would be the α-quantile
of the standard normal distribution qα = Φ−1(α).

3. In Glasserman et al. (1999), the authors additionally apply a strat-
ification procedure to reduce the variance of the loss probability estimator
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even further. As the main factor of variance reduction is the above described
importance sampling, we skip the presentation of the stratification step here.

4. In Dunkel and Weber (2007) a similar Monte Carlo approach is applied
to the estimation of utility-based shortfall risk measures.

Some aspects of the practical applications

We will illustrate the main aspects of the performance of the importance
sampling method via simple examples. More detailed examinations of the
numerical performance are given in Glasserman et al. (1999) and other papers
by the same authors. There, it is shown that one can reduce the variance of
the crude Monte Carlo estimator by factors well above 10 and even more.

In contrast to showing the numerical performance of the method for large
portfolios, we will highlight some important aspects that one should be aware
of before (!) applying the method:

1. Computing risk measures versus pricing of derivatives. When
we are interested in calculating risk measures for the evolution of a portfolio
of securities at a fixed future time T , we have to simulate paths of the under-
lying factors (such as interest rates, stock prices, ...) under the real-world
probability measure. This is because we like to get a feeling for the height
of possible losses which of course occur in the real world and not in the risk-
neutral world. A particular consequence would be that we have to simulate
the evolution of a stock price – in say the Black-Scholes setting – with a drift
of μ which in general does not coincide with the riskless interest rate of r.

2. Time horizon and normal approximation. As the time horizon
when risk measures have to be calculated are usually quite small (such as a
day or a week), it is common practise to neglect the influence of the drift in
stock prices and assume that we have

ΔS := S (t+ Δt) − S (t) ≈ S (t)σ (W (t+ Δt) −W (t)) , (8.41)

an approximation obtained by neglecting the deterministic parts in the ex-
ponent of the stock price (justified by the fact that Δt is small compared to√

Δt which is the order of the standard deviation of the random change) and
using the first order approximation to the exponential function.

3. Accuracy of the delta-gamma approximation and its conse-
quences. It is crucial to understand that the delta-gamma approximation is
not (!) used as an approximation procedure in our method. It is used as an
orientation in the search for a good position for our importance sampling
transformation. So even if the approximation is poor the method might still
work. On the other hand, as we only approximate the (in general unknown)
distribution of the evolution of the value of the portfolio, we cannot automat-
ically expect to have a performance of the importance sampling method as
when the distribution is known. We highlight this by the following example:
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Numerical illustrations: The delta-gamma approximation for a call
option and for a portfolio of puts and calls. We start with a simple port-
folio of one European call option on a stock with maturity T in a Black-Scholes
setting. Our aim is to compute (an approximation of) the loss distribution
of the portfolio for a fixed time t + Δt. Assuming that Δt is small, we use
approximation (8.41). Denoting the value of the call at time t by C(t, S(t))
we like to compute the distribution function for the (possible) loss

L (Δt,ΔW ) = C(t, S(t)) − C(t+ Δt, S(t)σΔW ). (8.42)

Figure 8.2 shows its real distribution function F1(x) and the distribution func-
tion F2(x) based on the delta-gamma-approximation

C(t, S(t)) − C(t+ Δt, S(t) + ΔS)

≈ −∂C
∂t

(t, S(t))Δt− ∂C

∂S
(t, S(t))ΔS − 1

2
∂2C

(∂S)2
(t, S(t)) (ΔS)2 (8.43)

with ΔS given by Equation (8.41). Note that the two distribution functions
are nearly completely identical. Hence, one expects an importance sampling
procedure based on the delta-gamma approximation to be nearly as effective
as one based on the original (but in general unknown) distribution. This often
good approximation by the delta-gamma distribution is the main reason for
the good performance of the method by Glasserman et al. (1999). In our
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FIGURE 8.2: Exact loss distribution function F1(x) (black) and approxima-
tion F2(x) (grey) for Δt = 0.1, σ = 0.3, T = t+0.5, and strikeK = S(t) = 100.

example, the importance sampling approach consequently yields a big variance
reduction when applied at different loss probability levels. Table 8.2 contains
estimates of the loss probabilities for p = 0.05, 0.01, and 0.005 for both the



376 Monte Carlo Methods and Models in Finance and Insurance

crude Monte Carlo method and the importance sampling method based on
the delta-gamma approximation. Further, it contains the quotient of the
variance of the crude MC method divided by that of the importance sampling
approach. All computations are done for N= 100,000 simulation runs. As

p 0.05 0.01 0.005
Crude MC estimator 0.0502 0.0099 0.00489
Delta-gamma IS estimator 0.0502 0.0100 0.00496
Variance ratio 9.65 51.94 109.21

Table 8.2: Crude Monte Carlo and Delta-Gamma-Based Importance Sampling
(IS) for Estimating Loss Probabilities p

expected, the variance reduction (as a variance ratio much bigger than one)
gets larger for smaller loss probabilities. To illustrate the importance sampling
transformation we report that the N (0, 1)-distributed input for the crude MC
method is transformed to an N(−2.782, 0.1776)-distribution, i.e. the input is
transformed, making losses much more likely by shifting the mean in the
appropriate direction which is emphasized by reducing the variance.

We now consider the same characteristics for the loss of a portfolio consist-
ing of 10 calls as above and 5 puts with the same input data. Although the
loss of this portfolio is now no longer a monotonic function in the change of
the stock price ΔS, the delta-gamma approximation of the loss function is
still very accurate. We plot the distribution function of the loss together with
the distribution function corresponding to the loss based on the delta-gamma
approximation in Figure 8.3.
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FIGURE 8.3: Exact loss distribution function F1(x) (black) and approxima-
tion F2(x) (grey) for Δt = 0.1, σ = 0.3, T = t+0.5, and strikeK = S(t) = 100.
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Note that for high quantiles the delta-gamma approximation overestimates
the real losses while it is more accurate for low quantiles (i.e. for gains). How-
ever, the approximation is on both sides of the distribution good enough such
that we can base the importance sampling approach on the delta-gamma ap-
proximation. For N = 100,000 simulation runs we looked at the ruin probabil-
ities for the short version of the above portfolio. In Table 8.3, we compare the
performance of the crude Monte Carlo method with the importance sampling
approach. Note again the excellent behaviour of the importance sampling

p 0.05 0.01 0.005
Crude MC estimator 0.0494 0.0010 0.00494
Delta-gamma IS estimator 0.0501 0.0100 0.00500
Variance ratio 4.31 16.52 30.18

Table 8.3: Crude Monte Carlo and Delta-Gamma-Based Importance Sampling
for Estimating Loss Probabilities p

approach. The main difference to the single-call portfolio case is that for
the short call-put portfolio the big losses occur for both very high and very
low values of ΔS. Therefore, the importance sampling method goes for a
combination of shifting the distribution to the right (i.e. the mean of ΔS is
increased) but also increases the variance (for the 0.005 level we have a shifted
mean of 2.383 and a new variance of 2.625).

One has to keep in mind that in general we do not know the distribution
function of the portfolio loss. In this case, we also have to start the iterative
process to get into the region of the desired quantiles. Therefore, the above
computations should only serve as an orientation about the performance and
accuracy of the importance sampling method.

Of course, there are also situations when the delta-gamma approximation
might fail. A typical such case is a portfolio which is both delta and gamma
hedged. Then the delta-gamma approximation is simply the current value of
the portfolio and therefore does not help as an orientation for the importance
sampling distribution.

8.3 Some applications of Monte Carlo methods in life
insurance

Life insurance mathematics is a classical subject, maybe one of the oldest
applied mathematical subjects with an economic background. Also, nearly
everyone has had a contact with life insurance products. They, however, have
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many variants, far too many to deal with all of them in this book. There
is also a big number of monographs on the subject and we mention Gerber
(1997) as a standard reference for the classical approach.

The two main sources of uncertainty in life insurance are the duration of the
lifetime of the insured and the interest rate risk. Interest rate risk enters the
scene as typically every life insurance product consists of uncertain payments
in the future where time and/or height of the future payment are not known
in advance. Thus, suitable discounting is an essential part of calculating the
premium (“the price”) the insured customer has to pay. As interest rate
modelling has been dealt with in Chapter 5, we will here concentrate on the
modelling of the evolution of the force of mortality over time.

8.3.1 Mortality: Definitions and classical models

We consider a customer of the age of x today (at time t = 0). Then, by Dx

we denote the time of his death measured in years from now on. As the
time of his death is random, we look at its distribution.

DEFINITION 8.20
Let Gx : [0, ∞] → [0, 1] be the distribution of Dx, the time of death of a
customer of age x today, i.e.

Gx(t) = P(Dx ≤ t). (8.44)

Its survival probability for the next t years is denoted by

tpx := 1 −Gx(t). (8.45)

Further, the force of mortality μx(t) at time t is defined as

μx(t) := − d

dt
ln [1 −Gx(t)] = − d

dt
ln (tpx) . (8.46)

REMARK 8.21 The importance of the force of mortality lies in the
following facts. First, for a small time interval [t, t + Δt] the conditional
probability for a customer of age x to die within it satisfies

P (t < Dx ≤ t+ Δt|Dx ≥ t) ≈ μx(t) · Δt. (8.47)

Further, one can show that the distribution Gx of the time of death and its
density gx(t) are determined by the force of mortality as we have

gx(t) = μx(t) · [1 −Gx(t)] , (8.48)

Gx(t) = 1 − tpx = 1 − exp
(∫ t

0

−μx(s) · ds
)
. (8.49)
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Thus, it is convenient to specify a certain form of the force of mortality to
determine the distribution of the remaining lifetime of the customer. We will
review some of them below.

De Moivre (1724) introduced a maximal age Amax and assumed that the
time of death is uniformly distributed on [0, Amax], which corresponds to a
force of mortality of

μDe Moivre
x (t) =

1
Amax − x− t

, 0 < t ≤ Amax − x. (8.50)

As the force of mortality usually grows with age, Gompertz (1824)
dropped the assumption of a maximal age and suggested an exponentially
growing force of mortality

μGompertz
x (t) = b · exp (c · (x + t)) b, c positive constants. (8.51)

Makeham (1860) extended the Gompertz model by adding a positive con-
stant a (the so-called young mortality) to the force of mortality

μMakeham
x (t) = a+ b · exp (c · (x+ t)) . (8.52)

This model is still very popular in life insurance.
A popular model in material science is given by Weibull (1939) who sug-

gests a polynomially growing force of mortality

μWeibull
x (t) = a · (x + t)b, a, b positive constants. (8.53)

8.3.2 Dynamic mortality models

One of the main current problems of both life insurers and pension funds
is the continuing growth of the lifetime of the insured population. Underes-
timating the mean lifetime leads to too high costs of contracts compared to
the premium for which they have once been sold.

One reaction to the change in expected lifetime has been the introduction
of so-called generation life tables, i.e. there are different life tables for different
generations. This takes care of the fact that a 60-year-old today has a different
survival probability for the next year compared to that of a 60-year-old 20
years ago. On the academic side this evolution has caused an increasing
interest in developing so-called dynamic mortality models.

An easy way to incorporate calendar time is an extrapolation approach (see
Pitacco [2003]). It is based on the assumption that the survival probability
tpx (t) is a function of calendar time t for fixed age x. The basic idea of the
extrapolation approach is to use the realized survival probabilities (i.e. the
relative frequency of surviving members of the insured population of an age of
x) during recent years as input for setting up an interpolation function such as
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Algorithm 8.4 Modelling dynamic mortality by extrapolation

1. Interpret the realized survival probabilities of insured of age x at time t

ipx (t) =
No. of (x + i)-year old insured at time t+ i

No. of x-year old insured at time t
,

t ∈ {− (i+ 1) ,− (i+ 2) , ...,−Ni} as a function of calendar time t.

2. Use the realized survival probabilities to approximate this function by
an interpolation function such as a spline or a polynomial.

3. Using the just determined interpolation function f (i)
x (.) obtain estimates

ip̂x (0) for the current survival probabilities ipx (0) by

ip̂x (0) = f (i)
x (0) , i = 1, ..., N .

a spline function or a polynomial. Predictions for future survival probabilities
are then simply obtained by extrapolating the so-obtained function.

Below, we present a simulation approach that goes back to Lee and Carter
(1992) (see Algorithm 8.5). Its main idea is to take a parametric mortality
model such as the Gompertz-Makeham one and introduce uncertainty into it
by modelling some of its components as stochastic processes.

Algorithm 8.5 Stochastic dynamic mortality modelling

1. Choose a parametric stochastic form for the mortality model of choice.

2. Determine the realized mortality rates of the past from past data.

3. Calibrate the parameters of the stochastic process underlying the
stochastic mortality model of Step 1 to the time series of realized mor-
tality rates from Step 2.

4. Choose the obtained stochastic process for simulating future mortality
rates (or for calculating premiums).

Compared to the extrapolation method, the main advantages of this ap-
proach are the possibility to obtain error bounds via simulating many runs of
the future mortality rates and that we can now use Monte Carlo methods for
pricing all kinds of longevity products. Of course, one can also model survival
probabilities in this framework instead of mortality rates.

In the literature on longevity models, various models of different complex-
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ity that follow the Lee and Carter approach are suggested (see e.g. Cairns
et al. [2006]). As a particular example we look at the stochastic Gompertz
model as given in Korn et al. (2006).

Example 8.22 The stochastic Gompertz model
Here, the suggested dynamic mortality model is given by

μSGx (t) = α (t) eβ(t)x, (8.54)
dα (t) = −κα (t) dt, κ > 0, α (0) = α0 > 0, (8.55)
dβ (t) = νdt+ σdW (t), β (0) = β0 > 0 (8.56)

withW (t) a one-dimensional Brownian motion. Note that t now is also related
to the calendar time (although it does not necessarily have to equal it).

The reasoning behind the above form of the equations for α(t), β(t) are the
required positivity for α(t), the decrease of the overall mortality level over
calendar time, and the seemingly linear behaviour of β(t) as a function of
time when calibrated to data (see Korn et al. [2006]). Further, the empirical
evidence in the data considered by Korn et al. (2006) suggested that a one-
factor model would be sufficient to explain the randomness in the evolution of
the mortality rates over time. This is supported by the correlation structure
in the Cairns-Blake-Dowd two-factor model (see Cairns et al. [2006]).

To be able to set up a simulation algorithm at time t̄, we still have to
calibrate the parameters κ, ν, σ, α(0), and β(0). They can be obtained in a
two step procedure:

1. First, obtain α(0), κ and β(0) by fitting a standard Gompertz model
with these parameters to the realized mortality rates at past times t =
0, 1, ..., t̄− 1.

2. Estimate ν and σ from the time series β(0), ..., β(t̄ − 1).

With all necessary model parameters obtained above, the simulation of the
future mortality rates is now straightforward as described in Algorithm 8.6.

We will demonstrate in Section 8.3.4 how Algorithm 8.6 can be used when
pricing mortality related insurance products.

REMARK 8.23 1. Note that we simulated the mortality rates on a
yearly basis. As our model is a continuous-time one, it can be simulated on
a finer scale. We suggest adapting the scale to that of the publishing time
of the survival or mortality data to which the model is actually related. We
could easily incorporate this in the above algorithm.

2. As we have survival probabilities of the form

1px (t) = E

(
exp
{
−
∫ 1

0

μx+s (t+ s) ds
})

(8.57)
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Algorithm 8.6 Simulating dynamic mortality rates in the stochastic Gom-
pertz model
Let α (t̄) , β (t̄) be given.
For the future times t = t̄+ 1, t̄+ 2, ..., t̂ and all relevant age groups x do

1. α (t) = α (t− 1) e−k.

2. Simulate a random number Z ∼ N (0, 1).

3. β (t) = β (t− 1) + ν + σZ.

4. μx̄ (t) = α (t) eβ(t)x̄.

5. For x = x̄+ 1, ...x̂ set

μx (t) = μx−1 (t) eβ(t).

one could also argue for the need of a continuous-time simulation of the mor-
tality rate. However, this would also require a continuous-time simulation
along the age variable x. For this reason, we adopt the method of Korn et al.
(2006) to approximate the integral above by the value of the integrand on the
left-hand side. Simulating this value N times leads to the following estimate
for the 1-year survival probability of

1p̂x (t) =
1
N

N∑
j=1

μ(j)
x (t) (8.58)

where the upper index (i) denotes the simulated mortality rate from run j.
The i-year survival probability will then simply be a product of the 1-year
survival probabilities:

ip̂x (t) =
i∏

j=1

1p̂x+j−1 (t+ j − 1). (8.59)

3. Further dynamic mortality models: An example of a very detailed
but also technically demanding approach is the Cox-Ingersoll-Ross type ap-
proach of Dahl and Møller (2006). It is a natural suggestion that also infor-
mation about the future development of the life circumstances such as the
climate, the medical, and the social treatment should be included in a dy-
namic mortality model. A suggestion of a corresponding multifactor model is
made in Bauer and Russ (2006).



Simulating Actuarial Models 383

8.3.3 Life insurance contracts and premium calculation

There is a great variety of life insurance-related products around. We will
consider some basic ones and hint how to value more complicated variants.

Examples of simple life insurance contracts

We consider two basic subcases, payments at death, where a payment
happens after the customer’s death, and payments when alive, where pay-
ments happen (continuously) during the lifetime of the customer. Examples
of the first type are:

• Whole life insurance: One unit is paid at death of the customer.

• Term insurance of duration n: One unit is paid at death of the
customer if the death happens in the first n years.

• n years deferred whole life insurance: One unit is paid at death of
the customer if the customer is still alive after n years since the start of
the contract.

Examples of the second type are:

• Pure endowment of duration n: One unit is paid after n years if
the customer is still alive.

• Whole life annuity: The customer obtains an annuity rate of one as
long as the customer is alive.

• n year temporary life annuity: The customer obtains an annuity
rate of one as long as the customer is alive, but for a maximum of the
first n years.

• n years deferred whole life annuity: If the customer is alive after n
years, then the customer obtains a life-long annuity rate starting then.

Of course, any combinations of these types are possible.

Premium calculations

In the following, we use C(t) for a sum payable at the time of death t while
we use c(t) to denote an annuity rate (which may depend on t) that is paid
as long as the insured is alive. On the pricing side, Π(t) stands for a premium
that has to be paid at time t while π(t) denotes a premium rate at time t. If
not otherwise stated, we make the following assumption.

ASSUMPTION 8.24
Interest and mortality rates are deterministic.
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So, let all future interest rates be known today and assume that mortality
μx(t) is deterministic. We also introduce r0(t), t ≥ 0 as today’s yield curve,
which is determined by the relation

P (0, t) = e−r0(t)t (8.60)

where P (0, t) is today’s price of a zero bond maturing at time t.
As already indicated in the introduction of this chapter, the arbitrage prin-

ciple of pricing in finance, which is based on replication or at least on hedging
of the relevant payments, can in general not be used to value insurance con-
tracts. The reason is that (at least substantial parts of) the underlying risk
cannot be traded. Therefore, premium principles are used. We recall the so-
called net premium principle in a form suitable for life insurance products.

DEFINITION 8.25
Assume that Assumption 8.24 holds. We consider an insurance contract for
a customer of age x today (at time zero) that consists of a payment of C(Dx)
at the time of death and an annuity rate of c(t) during the lifetime of the
customer. We then say that this contract is valued by the net premium
principle if the single premium Π(t) payable at time t ≥ 0 and the premium
rate π(s) for s ≥ 0 until death are determined such that we have

Π(t) · e−r0(t)·t · (1 −Gx(t)) +
∫ ∞

0

π(s) · e−r0(s)s · (1 −Gx(s)) ds

=
∫ ∞

0

C (s) e−r0(s)sdGx(s) +
∫ ∞

0

c(s)e−r0(s)s (1 −Gx(s)) ds. (8.61)

REMARK 8.26 1. The net premium principle is equal to the expectation
principle of Definition 8.4 with the risk premium factor μ = 0.

2. By noting that under Assumption 8.24 we have for example

E

(
e−r0(Dx)DxC (Dx)

)
=
∫ ∞

0

C (s) · e−r0(s)sdGx(s), (8.62)

the net premium principle formulated above simply says that the net present
value of the payments have to equal those of the premiums. We can thus
directly generalize it also to the cases of dynamic (stochastic) mortality rates
and to stochastic interest rates.

3. Of course, all the other premium principles presented in Section 8.2 can
be applied to value life insurance products.

To obtain unique premium payments one first has to decide e.g. on the
time when the premium should be paid, if it should be paid upfront, or in
constant or varying rates. These properties are usually already fixed as part
of the insurance contract. Then, valuing such a contract under Assumption
8.24 is straightforward. If Assumption 8.24 is not satisfied then Monte Carlo
methods enter the scene.
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8.3.4 Pricing longevity products by Monte Carlo simulation

Longevity products are any kind of financial contracts that have payments
which are adapted to the survival behaviour of a specified cohort of insured
people. One can think of the population of e.g. all insured 65-year-old males in
Germany. Two prominent examples are the EIB/BNP-longevity bond offered
in 2004 and the launch of the LifeMetrics framework by JP Morgan in 2007.

We will only consider the pricing of the longevity bond, as the forward con-
tracts of the LifeMetrics framework are only linear contracts. The EIB/BNP-
longevity bond was launched in November 2004. It had a face value of 540
million Euro, 25-year duration, and its annual coupon payments should be
multiplied with the fraction of survivors of the cohort of English and Welsh
males aged 65 in 2003. The longevity bond was withdrawn in 2005 due to
insufficient interest and due to accounting problems. One reason for the in-
sufficient interest was the structure of the bond that did not supply enough
hedging against the longevity risk as only one cohort of 65-year-old males do
not cover the whole population of insured of a particular insurer. Also, it
offered no protection against longevity risk in the liabilities beyond 25 years.

For the pricing of a longevity bond of the type described above, let us
assume that a cohort is fixed and introduce

S (i) =
Number of survivors of the cohort at time i

Size of cohort at time 0
, (8.63)

the fraction of survivors i years after the start of the longevity bond. Let z be
the annual coupon payment of the longevity bond if the whole cohort would
survive. If we now take a financial mathematics valuation view then under a
suitable pricing measure Q, we would obtain the price of the longevity bond as
a discounted expectation. For this we assume independence of the evolution
of the mortality rate and the interest rate (under Q). Then the price of a
longevity bond with N coupon payment times 1, 2, ..., i (with zero denoting
the starting time of the bond) is given by

P (L) (t) = EQ

⎛
⎝ N∑
i=1

exp

⎛
⎝−

i∫
t

r (s) ds

⎞
⎠S (i) 1{t≤i} |ft

⎞
⎠

=
N∑
i=1

P (t, i) EQ (S (i) |ft ) 1{t≤i} (8.64)

where P (t, s) is the market price of a zero bond at time t maturing at time
s ≥ t. We thus can benefit from the fact that in principle we only have to
value the mortality risk as the fixed income market has already priced the
bond components of the longevity bond.

As a possible choice for the mortality component of the valuation measure
Q, one could use the measure P that underlies the modelling of the dynamic
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mortality process which would result in

P (L) (t) =
N∑
i=1

P (t, i) EP (S (i) |ft ) 1(t≤i). (8.65)

As, however, there is not yet a market for trading mortality risk, it remains
questionable if the application of the financial valuation principle which is
based on arbitrage considerations can be justified at all. A hint which points
in the direction of this question is the fact that the actual price P (L)

M (t) of the
offered longevity bond has been higher than the one computed with the above
pricing measure. There are (at least) two possible explanations for this:

• The issuer of the longevity bond has used an actuarial valuation prin-
ciple. Indeed, the expectation principle would have included a risk pre-
mium factor μ > 0 that leads to

P
(L)
M (t) = (1 + μ)P (L) (t) . (8.66)

• Another possible (but more restricted) explanation is that as mortality
cannot be traded, the market where the longevity bond is traded is
incomplete. One could therefore argue to replace the mortality measure
P by another measure P (μ) that is equivalent to P and that explains
the observed market price, i.e. that in our case satisfies

P
(L)
M (t) =

N∑
i=1

P (t, i) EP(μ) (S (i) |ft ) 1(t≤i) . (8.67)

The determination of μ from this equation is actually the usual calibra-
tion principle of financial valuation in incomplete markets.

We consider the longevity bond pricing in the framework of Korn et al.
(2006). There, the class of probability measures P(μ) is parameterized by a
parameter μ ∈ R. The change to the new measure P(μ) corresponds to a
change of the original drift λ of the underlying Brownian motion to λ − μσ.
We describe how we can obtain the suitable parameter μ∗ in Algorithm 8.7.

REMARK 8.27 Note that to obtain the probabilities ip
λ
x in Algorithm

8.7 at least approximately, we typically have to run a Monte Carlo simulation.
For this, we simply generate a large number of paths of the mortality process
μtx as described in Algorithm 8.6. Then, we determine (pathwise) estimates
of the survival probabilities by Remark 8.23 and average over all of them to
obtain our Monte Carlo estimates (for the different times i). As a change
to another μ means that the drift in the mortality process is changed by a
constant, we only have to generate the mortality process paths once and can
then simply change them by correcting for the difference in the drift.
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Algorithm 8.7 Measure calibration in the stochastic Gompertz model with
a traded longevity bond
Let PLM (0) be the market price of a traded longevity bond.

1. Calibrate the unknown parameters of a stochastic Gompertz model to
realized mortality rates.

2. Determine the parameter μ∗ such that we have

P
(L)
M (0) =

N∑
i=1

P (0, i) EP(μ∗) (S (i)) =
N∑
i=1

P (0, i) ipμ
∗
x .

REMARK 8.28 More complicated products such as variable annuities or
index fund-based contracts with possibly early exercise features can be valued
by the appropriately modified algorithms already presented in Chapter 5. We
do not go into detail here, but we mention a fundamental difference to the
financial market. It is by far not clear that the owners of such products
will exercise their contracts in an optimal way. There might be different
arguments than the pure value-based one that leads to seemingly unreasonable
early exercise. Knowledge of this type of (average) exercise behaviour of the
customers is therefore a crucial ingredient in the insurance setting.

8.3.5 Premium reserves and Thiele’s differential equation

As the equality between the net present values of the payments to the
customer and of the incoming premiums does not necessarily need to hold
after the insurance contract is sold, it is important to know how this possible
difference evolves over time. It is in particular important for the insurance
company to know the premium reserve, i.e. the amount of money it must
have invested in order to be able to fulfill the expected future liabilities to
the customer. This is the conditional expectation of the future payments,
conditioned on the survival of the customer until time u. It is called the
prospective premium reserve, because it considers only future payments.

DEFINITION 8.29

The prospective premium reserve Vx(u) at time u ≥ 0 of an insurance
contract of a customer aged x at the start of the contract at time zero and still
alive at time u is defined as the conditional expectation of the future payments
to the customer minus the conditional expectations of the future premiums
(conditioned on the event that the customer is alive at time u).
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Example 8.30 Prospective reserve of a term insurance contract
To calculate the representation of a term insurance contract for n years, we
assume that Assumption 8.24 is valid and that the contract consists of the
following payments:

• C(Dx), the death sum paid out if the customer dies before the n years,

• Ca, a lump sum paid out upon survival until time n,

• π(t) = π, the constant continuous premium rate paid as long as the
insured is alive.

We further assume that the interest rate is given by r and the force of
mortality is given by μx(t) and is deterministic. Under these assumptions we
obtain the prospective premium reserve as

Vx (t) = Ca · e−r(n−t) · n−tpx+t +
∫ n

t

e−r(s−t) · s−tpx+t (μx+sC(s) − π) ds.

(8.68)
Additional contractual payments lead to additional terms in this equation.

A celebrated result in life insurance mathematics is Thiele’s differential
equation that describes the evolution of the prospective reserve over time
given that the customer is still alive. Differentiating representation (8.68)
with respect to t yields the following theorem.

THEOREM 8.31 Thiele’s differential equation
We consider a term insurance contract as in Example 8.30 and assume that
the yield curve is flat, i.e. r0(t) = r for all t > 0. Further, we assume that
the distribution Gx(t) has a density and thus the mortality process μx(t) is
defined. Then, the prospective premium reserve Vx(t) solves

d

dt
Vx(t) = r · Vx(t) + π(t) + [Vx(t) − C(t)]μx(t) ∀t ∈ [0, n), (8.69)

Vx (n) = Ca. (8.70)

Use of Thiele’s differential equation, generalizations, and Monte
Carlo simulation

The main advantage of Thiele’s differential equation is that given the fea-
tures of the payment, we can use it to calculate the initial premium Π(0) by
equating it to Vx(0) using the net premium principle, or to (re-)design the
contract via choosing either the premium rate, the lump sum payment, or the
death sum. As, however, Thiele’s differential equation indeed describes the
dynamic evolution of expectations, we can also calculate these expectations
directly with the help of Monte Carlo simulation. More precisely, we can sim-
ulate the lifetime of the insured, calculate the relevant payment streams, do
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this N times, average over the results, and obtain an approximation V̂x(0) of
the prospective reserve, and then (re-)design the contract. An important point
of this approach is that we do not need the simplifying Assumption 8.24. In
this more general case and in situations such as equity-linked contracts there
exist generalizations of Thiele’s differential equation that are derived with the
help of a financial mathematics-based pricing approach. Steffensen (2000) is a
nice reference for this subject where Thiele’s differential equation actually has
the form of a partial differential equation which – in view of the Feynman-Kac
representation 4.56 – is not surprising.

However, note that in this generalized setting the so-calculated value of the
prospective reserves cannot be justified by the law of large numbers. Un-
der Assumption 8.24 only the uncertainty about the lifetime of the customer
remains for which it could be argued that the payment levels average out
over the many different customers due to the law of large numbers. If on the
other hand interest rate uncertainty and maybe even stock price uncertainty
enter into the future payments, then taking an expectation as a suggestion
for the value of the reserves can only be justified if all the payments can be
reproduced at the financial market. Thus, it is better to speak of the mean
prospective reserves. We give a Monte Carlo framework for calculating
these mean prospective premium reserves in Algorithm 8.8.

Algorithm 8.8 Simulation of the (mean) prospective reserve of an insurance
contract
For i = 1 to N do

1. Simulate the lifetime of the customer l(i)x .

2. Simulate a path r(i)(t), t ∈ [0,min{n, lix}].

3. Calculate all payments of the contract based on the lifetime l(i)x , discount
them with the suitable discount factor exp(− ∫ t0 r(s) ds), and add them
up to obtain V̂ (i)

x (0).

Calculate the approximation for the (mean) prospective reserve:

V̂x (0) =
1
N

N∑
i=1

V̂ (i)
x (0).

There are many more possible applications of Monte Carlo simulation in
life insurance problems. However, we only give the above framework as it
can easily be applied to all kinds of contracts without the need of a solution
of a suitable variant of Thiele’s differential equation. One should of course
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always think carefully if the risks of deviation from the (approximated) means
inherited in these computations are automatically hedged by the validity
of a law of large numbers (due to averaging personal properties, such as life
length, over many customers) or not (such as stock return risk).

8.4 Simulating dependent risks with copulas

Apart from the family of normal distributions, there do not seem to be other
popular families of distributions which allow a natural multivariate general-
ization such that one can easily simulate dependent random variables. Often
the joint distribution of random variables can only be explicitly computed if
the random variables are independent. The concept of copulas is a very useful
tool to overcome this problem. It has therefore become popular in recent years
in the areas of credit risk modelling and in e.g. nonlife insurance mathematics:
In the latter, dependence between different insurance contracts cannot be ne-
glected (think of a hail storm that might affect many car insurance contracts
in a given region in a similar way).

In this section, we introduce the concept of copulas together with their main
properties and ways to simulate dependent random variables (“dependent
risks”) with their help (see Embrechts et al. [2003] for most of the proofs of
the results given in this section; see McNeil et al. [2005] for further references).

8.4.1 Definition and basic properties

DEFINITION 8.32

A copula C is a distribution function on [0, 1]n for n ∈ N with uniformly
distributed marginals, i.e.

C(1, . . . , 1, xi, 1, . . . , 1) = xi ∀i ∈ {1, . . . , n}. (8.71)

A main result in the theory of copulas is the theorem by Sklar (1960).

THEOREM 8.33 Sklar’s theorem

Let X1, . . . , Xn be real-valued random variables with marginal distributions
F1, . . . , Fn and joint distribution function F . Then, there exists a copula C
such that

F (x1, . . . , xn) = C [F1(x1), . . . , Fn(xn)] . (8.72)

This copula is uniquely determined if the marginal distributions are contin-
uous. Otherwise, it is only unique on the range of (F1, . . . , Fn).
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Conversely, let C be a copula and let X1, . . . , Xn be real-valued random vari-
ables with distribution functions F1, . . . , Fn. Then, the function F as defined
in Equation (8.72) is an n-dimensional distribution function with marginal
distributions given by F1, . . . , Fn. It is called the joint distribution func-
tion F of (X1, . . . , Xn) generated by the copula C.

Sklar’s theorem has a clear message: The marginal distributions and the
dependence structure of an n-dimensional real-valued random vector can be
strictly separated. While the marginal distributions are determined by the
univariate distribution functions, the dependence structure is determined by
the copula.

With the generalized inverse H−1 of a univariate distribution function H ,

H−1 (y) = inf {x ∈ R |H(x) ≥ y } , (8.73)

we can also directly construct the copula from the joint distribution.

PROPOSITION 8.34
Let F be an n-dimensional distribution function with continuous marginals
F1, . . . , Fn and a copula C according to Sklar’s theorem.

Then, we have

C (u1, . . . , un) = F
(
F−1

1 (u1) , . . . , F−1
n (un)

)
for u ∈ [0, 1]n . (8.74)

We collect some more properties of copulas.

PROPOSITION 8.35
Let X1, . . . , Xn be real-valued random variables.
(a) If X1, . . . , Xn are independent then the copula generating their joint dis-
tribution is given as

C(z1, . . . , zn) =
n∏
i=1

zi “independence copula” (8.75)

(b) Transformation invariance: Let the functions h1, . . . , hn all be strictly
monotone increasing (decreasing) and denote by Yi = hi(Xi) the transformed
random variables. Then the copula corresponding to the joint distribution of
X1, . . . , Xn as described in Sklar’s theorem 8.33 coincides with the one for the
joint distribution of to Y1, . . . , Yn.
(c) For every n-dimensional copula C(u) we have

Wn (u) = max (u1 + . . .+ un − n+ 1, 0)
≤ C (u) ≤ min (u1, . . . , un) = Mn (u) . (8.76)
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Mn(u) is called the upper Frechet copula. For n = 2, Wn(u) is called the
lower Frechet copula. For general n, Wn(u) is in general no copula.

REMARK 8.36 1. The only one-dimensional copula is obviously equal
to C(x) = x for x ∈ [0, 1].

2. Due to the translation invariance of copulas we can concentrate on
standardized random variables (i.e. random variables with zero expectation
and unit variance) in connection with copulas.

Now, we introduce two concepts of dependency that are different from the
usual, linear concept of correlation. The first one is a concept of local depen-
dence, the so-called tail dependence.

DEFINITION 8.37

Let (X1, X2) be a random vector with marginal distributions F1, F2.
(a) The coefficient of upper tail dependence of (X1, X2) is defined by

λU (X1, X2) = limu↑1 P
(
X2 > F−1

2 (u)
∣∣X1 > F−1

1 (u)
)

(8.77)

if the limit exists.
(b) The coefficient of lower tail dependence of (X1, X2) is defined by

λL (X1, X2) = limu↓0 P
(
X2 ≤ F−1

2 (u)
∣∣X1 ≤ F−1

1 (u)
)

(8.78)

if the limit exists.
(c) In case of λU > 0 (λL > 0) we say that (X1, X2) admits upper tail
dependence (lower tail dependence).

REMARK 8.38 Note that it is possible to have both upper and lower
tail dependence. In contrast to the usual correlation that measures linear
dependence between two random variables, the tail dependence only concen-
trates on the dependence in the extreme values of two random variables. It
is thus a local measure. Positive tail dependence means that the probability
for both random variables to attain very high values simultaneously is of the
same order as for the single random variables separately. The same is true for
extremely small values in the case of negative tail dependence.

To measure global dependence between two random variables we introduce
the following.



Simulating Actuarial Models 393

DEFINITION 8.39
For the R

2-valued random pair (X,Y ) Kendall’s tau τ(X,X) is defined as

τ (X,Y ) =

= P

((
X − X̃

)(
Y − Ỹ

)
> 0
)

− P

((
X − X̃

)(
Y − Ỹ

)
< 0
)

(8.79)

where (X̃, Ỹ ) is an independent copy of (X,Y ).

REMARK 8.40 Kendall’s tau focuses on the monotone dependence of
X and Y . It checks how the order between X and Y is preserved. It is positive
if (in tendency) for randomly drawn pairs (x, y), (x′, y′) from the distribution
of (X,Y ), we observe that y is bigger than y′ if x has been bigger than x′. The
absolute size of the values does not enter Kendall’s tau. It obviously attains
values in [0, 1]. We further have (see Embrechts et al. [2003])

τ (X,Y ) = 1 ⇐⇒ C = M2; τ (X,Y ) = −1 ⇐⇒ C = W 2 (8.80)

where C is the copula corresponding to (X,Y ) and M2,W 2 are the Frechet
copulas. Also, Kendall’s tau can be directly related to the copula C via

τ (X,Y ) = 4
∫ ∫

[0,1]2
C (x, y) dC (x, y) − 1 (8.81)

(see Embrechts et al. [2003]).

Example 8.41 Kendall’s tau and correlation
An example highlighting the main differences between Kendall’s tau and the
usual correlation is given by the following setting:

Let X ∼ N (0, 1) and Y = exp(X) and obtain:

Corr(X,Y ) =
E (X · exp(X))
1 ·√Var(Y )

=
exp(1/2)√

exp(2) − exp(1)
≈ 0.763 �= 1

= P

((
X − X̃

)
·
(
exp(X) − exp(X̃)

)
> 0
)

= τ(X,Y ).

So, while Kendall’s tau directly realized the monotone, nonlinear dependence,
only its linear part is indicated by the correlation coefficient.

8.4.2 Examples and simulation of copulas

Gaussian copula

The Gaussian copula is derived from the multidimensional normal distribution
which explains the name. To introduce it, it suffices to consider standardized
random variables (see Remark 8.36).
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DEFINITION 8.42
Let X1, . . . , Xn be N (0,Σ)-distributed with Var(Xi) = 1. Let ΦnΣ be the cor-
responding joint n-dimensional normal distribution function, and denote the
standard normal marginal distributions by Φ. Then, the Gaussian copula
CGauss (with correlation matrix Σ) is given by

CGauss (x1, . . . , xn) = ΦnΣ
[
Φ−1(x1), . . . ,Φ−1(xn)

]
. (8.82)

THEOREM 8.43
The density of the n-dimensional Gaussian copula is given by

∂n CGauss

∂x1 · . . . · ∂xn (x1, . . . , xn) =
ϕ̃
[
Φ−1(x1), . . . ,Φ−1(xn)

]
ϕ [Φ−1(x1)] · . . . · ϕ [Φ−1(xn)]

(8.83)

where ϕ̃ is the density of the n-dimensional normal distribution ΦnΣ and ϕ is
the density of the standard normal distribution.

REMARK 8.44 If Σ is equal to the identity matrix, i.e. the random vari-
ables are independent, then the Gaussian copula is the independence copula
from Proposition 8.35 and the density coincides with the indicator function
of [0, 1]n, which coincides with the result above.

The density of the two-dimensional Gaussian copula for different correla-
tions ρ is given in Figure 8.4. It is important to notice the symmetry in each
density and the different heights of the density: the density for a correlation
close to −1 or 1 is more peaked. We cannot plot the density for the whole
range, because the theoretical value in the corners with the peaks is +∞.

The simulation of random variables with this dependence structure and
arbitrary marginal distributions is rather simple as shown in Algorithm 8.9.

REMARK 8.45 Instead of the Cholesky decomposition in Algorithm
8.9, one can also use the square root of Σ obtained by the singular value
decomposition.

If we use normally distributed marginals, then the resulting correlation
matrix of the newly constructed random variables equals Σ. However, for
e.g. binomial distributions, we obtain different correlations. For illustration,
we simulated 500,000 Monte Carlo runs where in each run we simulated two
binomially distributed random variables with the number of trials equal to 5
and equal probability of success. For the two-dimensional Gaussian copula
we used a correlation of 0.5. The number of trials of the binomial random
variables is restricted to five to avoid the validity of the asymptotics of the
central limit theorem. The resulting correlation curve for different success
probabilities can be seen in Figure 8.5.
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FIGURE 8.4: Density of Gaussian copula for different correlations ρ.

t-copula

The t-copula is closely related to the Gaussian copula.

DEFINITION 8.46
Let Y1, . . . , Yn be standard normally distributed random variables with cor-
responding correlation matrix Σ. Let Z be a χ2-distributed random variable
with m degrees of freedom. We denote by tm the distribution function of a
t-distribution with m degrees of freedom. Then, the joint distribution function
Ct(x1, . . . , xn) of the random variables

Xi = tm

(√
m · Yi√

Z

)
(8.84)

is called t-copula with m degrees of freedom and correlation matrix Σ.
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Algorithm 8.9 Simulating with a Gaussian copula
Let F1, . . . , Fn be the desired marginal distributions and Σ the n× n correla-
tion matrix of the desired Gaussian copula.

1. Compute the Cholesky decomposition of Σ as ΣChol · ΣtChol = Σ.

2. Simulate n independent random variables Yi ∼ N (0, 1).

3. Set ⎛
⎜⎝
Z1

...
Zn

⎞
⎟⎠ = ΣChol ·

⎛
⎜⎝
Y1

...
Yn

⎞
⎟⎠ .

4. The random variables Xi with the desired distribution are obtained via

Xi = F−1
i [Φ(Zi)]

where Φ is the standard normal distribution function and F−1
i is the

inverse of the desired marginal distribution function.
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FIGURE 8.5: Correlation between X1, X2 with X1, X2 ∼ B(5, p) and Gaus-
sian copula with correlation 0.5.

To justify calling Σ a correlation matrix, note that if for the marginal dis-
tributions we use Fi = tm, then it can be shown that the correlations between
the random variables are indeed given by Σ.
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THEOREM 8.47
The density of a t-copula with m ∈ N degrees of freedom and nonsingular
correlation matrix Σ is given by

∂n Ct
∂x1 · . . . · ∂xn (x1, . . . , xn) =

Γ
(
m+n

2

) · [Γ (m2 )]n−1

√
det(Σ) · [Γ (m+1

2

)]n ·

·

√[
[t−1

m (x1)]2
m + 1

]
· . . . ·

[
[t−1

m (x1)]2
m + 1

]m+1

√√√√√√ 1
m · (t−1

m (x1); . . . ; t−1
m (xn)

) · Σ−1 ·

⎛
⎜⎝
t−1
m (x1)

...
t−1
m (xn)

⎞
⎟⎠+ 1

m+n (8.85)

where t−1
m is the inverse of the distribution function of the t-distribution with

m degrees of freedom. det(Σ) denotes the determinant of Σ.

A graphical representation of the density of a two-dimensional t-copula for
different correlations is shown in Figure 8.6. The same limitations apply here
as for the Gaussian copula, i.e. the value in two of the four corners is +∞, i.e.
we plot only the range [0.03; 0.97]. Note that the density looks similar to the
density of the Gaussian copula. The main difference is that it is even more
peaked, but still symmetric.

REMARK 8.48 1. If the number of degrees of freedom m approaches
infinity, then the t-copula approaches the Gaussian copula. Further, from the
formula for the density we can observe that for Σ being the identity matrix,
the density does not become the density of the independence copula. In fact,
we can never obtain the independence copula when using the t-copula.

2. Both the t- and the Gaussian copulas are symmetric and very fast
to simulate. There is one striking difference between the two. While the
Gaussian copula has no tail dependence, the t-copula has both upper and
lower tail dependence. As it is symmetric we only state the upper one. For
σ12 = Corr(X,Y ) we have

λU = 2 ·
(

1 − tm+1

(√
(m+ 1) (1 − σ12)√

1 + σ12

))
(8.86)

where tm(x) denotes the distribution function of a t-distribution with m de-
grees of freedom.

From the definition of a t-copula it is easy to simulate random variables
with given marginal distributions (see Algorithm 8.10).
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FIGURE 8.6: Density of t-copula with 3 degrees of freedom for different
correlations ρ.

To illustrate the difference between a t-copula and a Gaussian copula, as
in Figure 8.5, we simulate again two binomially distributed random variables.
The resulting correlation curve is shown in Figure 8.7.

Archimedean copulas

An Archimedean copula is characterized by a single one-dimensional distribu-
tion. To introduce it, we recapitulate the notion of the Laplace transform in
a way that is suitable for us.

DEFINITION 8.49

Let Z : Ω → R+ be a nonnegative real-valued random variable with distribution
function F where F (0) = 0. The Laplace transform LZ : R+ → R of Z is
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Algorithm 8.10 Simulating with a t-copula
Let F1, . . . , Fn be the desired marginal distributions and Σ the desired n× n
correlation matrix of the t-copula with m degrees of freedom.

1. Compute the Cholesky decomposition of Σ as ΣChol · ΣtChol = Σ.

2. Simulate n independent random variables Ỹi ∼ N (0, 1).

3. Set ⎛
⎜⎝
Y1

...
Yn

⎞
⎟⎠ = ΣChol ·

⎛
⎜⎝
Ỹ1

...
Ỹn

⎞
⎟⎠ .

4. Simulate m independent random variables Z̃i ∼ N (0, 1) and set

Z = Z̃2
1 + . . .+ Z̃2

m.

5. The random variables Xi with the desired distribution are obtained via

Xi = F−1
i

[
tm

(√
m · Yi√

Z

)]

where tm is the t–distribution function with m degrees of freedom.

given by

LZ(x) = E [exp(−x · Z)] =
∫

R

exp(−xz)dF (z) (8.87)

If in addition the random variable Z has a density f , then we can reconstruct
it by the so-called inverse Laplace transform.

DEFINITION 8.50
The Laplace transform LZ can be extended to complex arguments with positive
real part. The inverse Laplace transform is given by

L−1
Z (x) =

1
2πi

∫ 1+i∞

1−i∞
exp(sx)LZ (s)ds. (8.88)

We can now return to the definition of an Archimedean copula.

DEFINITION 8.51
Let F be the distribution function of a one-dimensional random variable Z
with F (0) = 0. Let LZ be the Laplace transform of Z. We define ϕ(u) =
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FIGURE 8.7: Correlation between X1, X2 with X1, X2 ∼ B(5, p) and t-co-
pula with correlation 0.5 and 3 degrees of freedom.

inf{v|LZ(v) ≥ u} and call it the generator of the Archimedean copula. The
corresponding Archimedean copula CArchimedean is then given by

CArchimedean(x1, . . . , xn) := ϕ−1

(
n∑
i=1

ϕ(xi)

)
(8.89)

where ϕ−1 is the inverse function of the generator and coincides with the
Laplace transform of Z.

REMARK 8.52 An Archimedean copula has several advantages and
disadvantages compared to the t- and the Gaussian copulas:

Advantages: It is possible to obtain a nonsymmetric tail dependence.
This is in contrast to the t- and the Gaussian copulas, because the densities
of these are symmetric around the point (0.5, . . . , 0.5).

Disadvantages: The main disadvantages of the Archimedean copula can
be seen directly from its construction. First, the number of free parameters
is strongly limited, as one usually chooses for F a function with maximal
two or three parameters. Second, as the random components enter via a
(transformed) sum we have

CArchimedean(x1, . . . , xn) = CArchimedean

(
xΠ(1), . . . , xΠ(n)

)
(8.90)

for a permutation Π : {1, . . . , n} → {1, . . . , n}. Thus, the dependence struc-
ture between any finite subset of the random variables is identical. This is
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different to the Gaussian and the t-copulas where a correlation matrix allows
for different dependencies between the components.

Algorithm 8.11 shows the general framework for simulating with an
Archimedean copula (see Marshall and Olkin [1988]).

Algorithm 8.11 Simulating with an Archimedean copula
Let F1, . . . , Fn be the desired marginal distributions, ϕ the generator of the
Archimedean copula, and ϕ−1 the inverse function.

1. Simulate n independent random variables Yi ∼ U [0, 1].

2. Simulate another random variable Z independent of Y1, . . . , Yn with
Laplace transform equal to ϕ−1.

3. Define Zi = ϕ−1
[− 1

Z · ln (Yi)
]
.

4. The random variables with the desired distribution are obtained by

Xi = F−1
i (Zi) .

To specialize the above concept, we now introduce some specific examples
for Archimedean copulas.

Gumbel copula:
The Gumbel copula for α ≥ 1 is given by its generator

ϕ(t) = [− ln (t)]α , ϕ−1(u) = exp
(
−u 1

α

)
. (8.91)

For n = 2, the Gumbel copula has upper tail dependence with

λU = 2 − 21/α (for α > 1 ) (8.92)

and a Kendall’s tau of
τα(X,Y ) = 1 − 1/α. (8.93)

Clayton copula:
The Clayton copula for α > 0 is given by its generator

ϕ(t) =
1
α

· (t−α − 1
)
, ϕ−1(u) = (α · u+ 1)−

1
α . (8.94)

For n = 2, the Clayton copula has lower tail dependence with

λL = 2−1/α (for α > 1 ) (8.95)
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and a Kendall’s tau of
τα(X,Y ) =

α

α+ 2
. (8.96)

Frank copula:
The Frank copula for α > 0 is given by its generator

ϕ(t) = − ln
(

exp (−α · t) − 1
exp(−α) − 1

)
,

ϕ−1(u) = − 1
α

· ln {exp(−u) · [exp(−α) − 1] + 1} . (8.97)

The Frank copula has neither lower nor upper tail dependence. An explicit
formula for Kendall’s tau is available but lengthy (see Embrechts et al. [2003]).

8.4.3 Application in actuarial models

Suppose an insurance company is considering a set of possibly dependent
businesses X1, . . . , Xn and wants to calculate an expected value of a loss
functional of them, i.e.

E (f (X1, . . . , Xn)) =? (8.98)

The obvious way to do this would be to use a crude Monte Carlo estimate,
i.e. to sample N realizations of the random vector (X1, . . . , XN) and take the
average of the outcomes of f (X1, . . . , Xn) as an estimate. However, for doing
this, we need the joint distribution of the businesses. If we do not have it
then the approximation procedure of Algorithm 8.12, which is based on using
a family of copulas, is a workable approach.

To fill this framework with life, still some questions such as

• Which copula should one use in a particular application?

• How to fit a copula to given data?

have to be answered.
The answer to the first question is not obvious. Besides tractability (which

would favour the use of a Gaussian copula) an important point is of course the
power of explaining the empirically observed phenomena of the corresponding
data. One should therefore check the data for, e.g.

• tail dependence,

• symmetry,

• extreme values.

This should lead to a decision in favour of a particular copula family. Then, the
next step is to fit the family of copulas to existing data. As fitting univariate
distributions is well understood, we propose the following two step procedure
already indicated in the algorithmic framework above.
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Algorithm 8.12 Copula framework for dependent risks

1. Estimate the marginal distributions F1, . . . , Fn of X1, . . . , Xn from past
(univariate) data.

2. Decide on a family of copulas Cθ, θ ∈ Θ according to phenomena ob-
served in empirical data.

3. Determine the parameter θ∗ corresponding to the best copula from the
parametric family via estimating quantities characterizing the chosen
family of copulas (such as Kendall’s tau, upper/lower tail dependence,
or correlation).

4. Use the marginal distribution and the copula Cθ∗ to generate N inde-
pendent random samples (X(i)

1 , . . . , X
(i)
n ) according to the corresponding

copula simulation algorithms of the preceding section.

5. Obtain the crude Monte Carlo estimate from the just generated sample
for E (f (X1, . . . , Xn)) in the usual way.

1. Fit marginal distributions Fi to the Xi. This could be done by
looking at past data and using well-established univariate models for
the business under consideration. Often, assumptions about these uni-
variate distributions have already been made by past experience.

2. Fit the copula to the multivariate data. This depends on the
chosen family. In case of a Gaussian or a t-copula, one has to estimate
the correlation matrix. In case of an Archimedean family, one can use a
least squares approach by estimating – say – Kendall’s tau for all pairs
(Xi, Xj) and choose that parameter θ that leads to the smallest sum of
quadratic deviations between theoretical and estimated Kendall’s taus.
Also, lower and/or upper tail dependence can enter the decision.

8.5 Nonlife insurance

In nonlife insurance, the variation of the claims can be much higher than in
life insurance. Consequences of catastrophes such as hurricanes or earthquakes
often lead to extreme damages. These very rare events typically have a very
high impact on the risk of the insured portfolio and therefore also on the result
of the whole business of the insurance company. As new modelling ingredients
that take care of this situation, heavy-tailed distributions enter the scene.

Also, both occurrence and financial consequences cannot be as easily pre-
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dicted as in life insurance, simply because a law of large numbers does in
general not hold. Therefore, estimation of the probability of ruin of (at least
a particular part of) the business is an essential topic of nonlife insurance
mathematics. Closely related to this is the determination of the total claim
size within a prespecified time interval (normally 1 year). Modelling claim
sizes and the arrival process of these claims are central modelling questions.
A very recent monograph surveying this area is Mikosch (2004). Further,
modelling the impact of relations between different claims is an actual topic
with an emphasis on introducing copula models into simulation.

8.5.1 The individual model

In the individual model, the collective set of all insurance policies is inves-
tigated by modelling each contract separately.

DEFINITION 8.53
In the individual (risk) model contract i in the insurer’s portfolio is iden-
tified with the random variable Xi, the claim size of the contract in a given
time period (e.g. 1 year). The total claim Sn of the portfolio is given by

Sn =
n∑
i=1

Xi. (8.99)

Mainly, the insurance company is interested in the distribution of the total
claim Sn. To determine it, several simplifying assumptions are introduced:

ASSUMPTION 8.54

1. The claims X1, . . . , Xn of the individual contracts are independent.

2. X1, . . . , Xn are identically distributed according to an infinite divisible
distribution.

The first assumption yields that the distribution of the total claim is the
convolution of the distributions of the individual contracts. The second as-
sumption ensures that the distribution of the total claim is the same, except
for the parameters, as the distribution of the individual contracts.

These assumptions for the individual model are indeed very restrictive,
because the individual contracts normally have different characteristics. Fur-
thermore, we have to take into account that the claim size of an individual
contract may be zero. Thus, if the total claim size should be simulated, we
have to specify a probability mass for having a zero (individual) claim size
during the period.

Apart from this criticism, Monte Carlo simulation of the total claim size
simply amounts to simulating a fixed sum of random variables.
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8.5.2 The collective model

In the collective model (also often refered to as the Cramér-Lundberg
model), we switch from investigating each contract separately to investigating
each claim, i.e.Xi denotes the i-th occurring claim and is in general not related
to the i-th contract.

DEFINITION 8.55
The collective (risk) model consists of a stochastic process Nt that models
the number of claims occurring until time t. The nonnegative random variables
Xi, i = 1, . . . , Nt, denote the sizes of these individual claims.

The following assumptions are imposed in the collective model.

ASSUMPTION 8.56

1. The number of claims is independent of the claims.

2. The individual claims are independent and identically distributed.

These assumptions allow the derivation of some distributional properties of
the total claim, as e.g. the expectation and variance given these quantities are
known for the distribution of the number of claims and the individual claims:

THEOREM 8.57
If the individual claim Xi has expectation c and variance σ2

c and the number
of claims Nt has expectation n and variance σ2

n, then the total claim St until
time t has expectation n · c and variance n · σ2

c + c2 · σ2
n.

In the classical Cramér-Lundberg model (see Lundberg [1903]) the claim
occurrences are modelled as a Poisson process with intensity λ > 0.

We now focus on one of the main tasks within nonlife insurance mathemat-
ics, the computation of the ruin probabilities. For this, we need to introduce
the initial reserve h and the premium rate π(t) received at time t.

DEFINITION 8.58
Let s be the initial reserve, π(t) be the premium rate received at time t, and
X1, X2, . . . be the claims occurring at times t1, t2, . . ..

Then, the ruin probability is given by

pruin = P

(
∃t : h+

∫ t

0

π(s) ds−
∞∑
i=1

1{ti≤t} ·Xi < 0

)
. (8.100)

Its converse 1 − pruin is called the survival probability.
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Important results characterizing the collective model are seen below (see
Mikosch [2004]).

THEOREM 8.59
(a) If the premium rate π(t) is calculated according to the expectation principle
(see Definition 8.4), then the ruin probability is one if we choose a safetly
loading of μ = 0, i.e. a positive safety loading μ is necessary for the insurance
company to survive.
(b) Assume that we have a premium rate of π(t) = c · t, a i.i.d. sequence of
indenpendent, identically distributed (i.i.d.) claim interarrival arrival times
Wi with ti = W1 + ...+Wi satisfying

E (X1) − cE (W1) < 0.

Assume further that for Z1 = X1 − cW1 the moment generating function
mZ1(h) exists for all h ∈ (−h0, h0) and some h0 > 0. If then we have a
unique positive solution r to the equation

mZ1(r) = E

(
eR(X1−cW1)

)
= 1, (8.101)

then we obtain the Lundberg bound for the ruin probability with an initial
reserve of h:

pruin ≤ exp (−R · h) . (8.102)

The number R is called the adjustment coefficient.

For general distributions of the claim size Xi the determination of the ruin
probability is nearly impossible. Therefore, one specializes to certain distri-
butions for Xi, derives approximations, or uses Monte Carlo methods (see
Mikosch [2004] for a survey on various specifications of the claim size and
possible dependencies between the claims) to compute ruin probabilities.

Simulation and ruin probability in the Cramér-Lundberg model

To calculate the probability of ruin in the classical Cramér-Lundberg model
up to a fixed time T , one can simply use the algorithms to simulate paths of
compound Poisson processes given in Section 6.2. It is easy to include the
deterministic drift

∫ t
0
π(s) ds and to obtain paths of the reserve process

R(t) = h+
∫ t

0

π(s) ds−
∞∑
i=1

1{ti≤t}Xi for t ∈ [0, T ].

The ruin probability up to time T can then be estimated by

p̂ruin (T ) :=
1
M

M∑
i=1

1{R(i)(t)<0 for some t∈[0,T ]} (8.103)
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where R(i)(t), t ∈ [0, T ] is the i-th simulated path of the reserve process.
The application of more sophisticated Monte Carlo methods hinges criti-

cally on the distributional properties of both the claims arrival process Nt and
the claim sizes Xi. We will comment on this in Section 8.5.3.

Path simulation in the Cramér-Lundberg model: Generalizations

There is a number of good reasons why a homogeneous Poisson process can
be a quite crude approximation for a real life claims arrival process. Typically,
insured populations are formed of subpopulations that can be distinguished
but that are homogeneous inside themselves. A simple example are the sub-
populations of male and female drivers. For this, the suitable generalization
of a homogeneous Poisson process is a mixed Poisson process:

DEFINITION 8.60
Let Λ be a nonnegative random variable with finite first two moments. Then,
the stochastic process Nt is called a mixed Poisson process with structure
variable Λ if Nt conditional on Λ = λ is a homogeneous Poisson process with
intensity λ.

Conditioning on Λ and integrating over its possible values leads to

E (Nt) = t · E (Λ) , Var (Nt) = t · (E (Λ) + Var (Λ)) , (8.104)

a fact that in particular allows for a variance of the claims arrival process which
is higher than its expectation, indeed a property often empirically observed.

The path simulation of a mixed Poisson process is very easy (see Algorithm
8.13)

Algorithm 8.13 Simulating a path of a mixed Poisson process

1. Simulate a realization λ of the random variable Λ.

2. Simulate a path of a homogeneous Poisson process Nt, t ∈ [0, T ] with
an intensity of λ.

If, however, the intensity process varies randomly with time then the notion
of a Cox process is the appropriate concept.

DEFINITION 8.61
Let Λt be a nonnegative stochastic process satisfying∫ T

0

Λtdt < ∞ ∀T > 0. (8.105)
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Then, the stochastic process Nt (which is adapted to the same filtration as Λt)
is called a Cox process or a doubly stochastic process with intensity
process Λt if Nt conditional on Λt = λt is an inhomogeneous Poisson process
with intensity funtion λt.

Before we turn to special choices of the intensity process Λt, we will com-
ment on the way to simulate paths from it. Indeed, the Cox process is related
to an inhomogeneous Poisson process in the same way as a mixed Poisson
process is related to a homogeneous one. We therefore first explain how to
simulate a path of an inhomogeneous Poisson process (see Section 6.2 for its
definition).

There are (at least) two possibilities to simulate an inhomogeneous Poisson
process. One relies on knowledge of the exact distribution of the interarrival
times between two jumps. As this is rarely the case for nontrivial intensity
rate functions, the second variant which is based on the acceptance-rejection
method (see Chapter 2) is the preferable one (see Algorithm 8.14).

Algorithm 8.14 Simulating a path of an inhomogeneous Poisson process

1. Set t0 = 0 = t̂0, λ̄ = max {λt|0 ≤ t ≤ T }
2. While ti < T do

(a) Generate: Z ∼ Exp
(
λ̄
)
, U ∼ U (0, 1) .

(b) Set t̂ = t̂+ Z.

(c) If U ≤ λ
(
t̂
)
/λ̄ then ti = t̂, i = i+ 1 else go to Step 2a.

As we can now simulate a path of an inhomogeneous Poisson process, the
simulation of a path of a Cox process is straightforward (see Algorithm 8.15).

Algorithm 8.15 Simulating a path of a Cox process

1. Simulate a realization λt of the intensity rate process Λt, t ∈ [0, T ].

2. Simulate a path of an inhomogeneous Poisson process Nt, t ∈ [0, T ] with
the intensity rate function λt, t ∈ [0, T ] by Algorithm 8.14.

One can surely think of many types of an intensity process in the Cox
process. A particular one would be a mean-reverting processs which could
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model an intensity that randomly fluctuates around a typical value and is
attracted by it.

Another one that is popular in theory is the Poisson shot noise process
(see Cox and Isham [1980] and Klüppelberg and Mikosch [1995]). The idea
behind the concept of the shot noise process is that we have a mixture between
a normal business and extraordinary times, such as a dramatical increase of
incoming claims due to some catastrophe. After the catastrophe it takes
some time until all corresponding claims are reported and then the intensity
level tends back to normal. The same procedure then repeats after the next
catastrophe. As a particular example, we introduce the form of the shot noise
process introduced in Cox and Isham (1980),

λt = λ0e
−δt +

Kt∑
i=1

yie
−δ(t−si). (8.106)

Here, λ0, δ are positive numbers. The random variable yi is the shot in the
intensity caused by catastrophe i at time si, which itself is the i-th jump time
of the homogeneous Poisson process Kt with intensity ρ. To illustrate the
behaviour of a Poisson shot noise process, we refer to Figures 8.8 and 8.9.
The first one depicts the intensity process (with a jump height of 10 at the
jump time), the second one shows the claim numbers. Note the dramatic
increase of the claims frequency after the intensity jump.
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FIGURE 8.8: Shot noise intensity
process λt.
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FIGURE 8.9: Claim number process.

More general forms of the shot noise process and also analytical approxi-
mations of the ruin probability both for a finite and an infinite time horizon
can be found in Albrecher and Asmussen (2006).
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8.5.3 Rare event simulation and heavy-tailed distributions

An area which is closely related to the computation of a ruin probability
or to risk measures is the simulation of rare events. However, as these events
by definition occur very rarely, a crude Monte Carlo simulation of the corre-
sponding experiments followed by an estimation of the probability of the rare
event by its relative frequency of occurrence cannot be an efficient method.

As it is also clear that the tail behaviour of the underlying distribution is
the decisive characteristic for the occurrence of such a rare event, we give the
following classification of distributions.

DEFINITION 8.62
Let X be real-valued random variable with distribution function F . The tail
of the distribution is denoted by F̄ (x) := 1 − F (x).
(a) We say that a (univariate) distribution is light-tailed if its tail satisfies

F̄ (x) ≤ C · exp (−αx) for x > x0 (8.107)

for some x0 and some positive constants C,α.
(b) We say that a (univariate) distribution is heavy-tailed if its moment
generating function M(u) = E(exp(uX)) does not exist for any u > 0.

REMARK 8.63 1. At first sight, the different forms of the conditions
characzerizing light- and heavy-tailed distributions are surprising. However,
condition (8.107) implies that the moment generating function of a light-
tailed distribution M(u) = E(exp(uX)) exists for some u > 0. Also, the
nonexistence of the moment generating function for each u > 0 for a heavy-
tailed distribution implies that its tail must be heavier than every exponential
distribution.

2. Popular examples of light-tailed distributions are the exponential, the
gamma, and the normal distribution.

3. Popular examples of heavy-tailed distributions are

• the Pareto distribution with F̄ (x) =
(
x
b

)−α for α, b > 0 and x ≥ b,

• the well-known log-normal distribution, and

• the Weibull distribution with F̄ (x) = exp(−γxa) for a, γ, x > 0.

4. A popular class of heavy-tailed distributions are the subexponential
distributions (see e.g. Klüppelberg [1988]). The distribution F is a subexpo-
nential one if for each set of independent identically distributed nonnegative
random variables X1, ..., Xn (all distributed according to F ) we have:

lim
x→∞

P (max (X1, · · · , Xn) > x)
P (X1 + · · · +Xn > x)

= 1. (8.108)
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The interpretation of this property is that a large value for the sum of such
subexponentially distributed random variables is typically dominated by a sin-
gle very large value, a situation sometimes encountered for insured portfolios
in nonlife insurance.

In this section we will only consider the simulation of rare events or, more
precisely, the computation of the probabilities of their occurrence in the heavy-
tailed situation. For the light-tailed setting, importance sampling with expo-
nential twisting as described in detail in Section 8.2.5 and adapted to the
setting of random sums is the method of choice (see Chapter X in Asmussen
[2000]). We will therefore not consider this situation in detail here.

In the heavy-tailed setting, exponential twisting of the density function is by
definition of a heavy-tailed distribution not possible. Among the approaches
considered in the literature, two variants of an approach given in Asmussen
and Kroese (2006) show the best performance. We will limit our presentations
to these approaches. For general treatment and analytical approximations of
ruin probabilities we refer the interested reader to the monographs of As-
mussen (2000) and Mikosch (2004).

To judge the performance of a Monte Carlo estimator for small probabilities,
we introduce two performance criteria that are based on the relative length of
the corresponding confidence interval. They both require that for a sequence
of small probabilities, the variance of the estimator should converge faster to
zero than the sequence itself.

DEFINITION 8.64
We consider a sequence of events A(u) depending on a parameter u with
probabilities

P (A (u)) =: z (u) −→ 0 for u → ∞. (8.109)

An unbiased estimator Z(u) of z(u) is said to have a bounded relative
error if it satisfies

lim sup
u→∞

Var (Z (u))
Z (u)2

< ∞. (8.110)

An unbiased estimator Z(u) of z(u) is said to be logarithmically efficient
(or asymptotically efficient) if it satisfies

lim sup
u→∞

Var (Z (u))
Z (u)2−ε

= 0 ∀ ε > 0. (8.111)

The estimator given below is concerned with estimating the tail probability
of a sum of independent and identically distributed random variables Sn =
X1 + . . .+Xn. The Asmussen-Kroese estimator is based on the identity

P (Sn > u) = n · P (Sn > u,Mn = Xn) (8.112)
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for continuous distributions and where Mn = max {X1, . . . , Xn}. To further
reduce the variance of the Monte Carlo estimator of the right-hand side of this
equation, conditional Monte Carlo is invoked by introducing the Asmussen-
Kroese estimator as

nP (Sn > u,Mn = Xn|X1, . . . , Xn−1) = nF̄ (max {Mn−1, u− Sn−1})
(8.113)

where F̄ = 1 − F and F is the distribution of Xi.
If we now consider an insurance company with initial reserves of u at the

beginning of the period and no further premium payments before the end of
the period, then

z(u) := P (SN > u) (8.114)

indeed equals its ruin probability by the end of the period if N is the random
number of claims during the period. By replacing the fixed n in Equation
(8.113) by the random variable N , we obtain the Asmussen-Kroese estimator
for a compound sum,

Z(u) = NF̄ (max {MN−1, u− SN−1}) . (8.115)

Theoretical results in Asmussen and Kroese (2006) show that the estimator is
asymptotically efficient for a Weibull distribution with parameter a satisfying
21+a < 3. It is even of bounded relative error for distributions with regularly
varying tail. As reported in Asmussen and Kroese (2006), the estimator shows
a superior performance compared to other suggested estimators in the area.
We describe its simulation in Algorithm 8.16.

Algorithm 8.16 Simulating the Asmussen-Kroese estimator
Let N be a random variable with a given distribution, X1, X2, ... be i.i.d.
random variables with distribution function F , u > 0.
For i = 1 to K do

1. Simulate a realization N (i) of the random variable N .

2. Simulate X(i)
1 , . . . , X

(i)
N−1 independently according to the distribution F .

3. Calculate M (i)
N−1 = max

{
X

(i)
1 , . . . , X

(i)
N−1

}
, S

(i)
N−1 =

∑N−1
j=1 X

(i)
j .

4. Set Z(i)(u) = N (i)F̄
(
max

{
M

(i)
N−1, u− S

(i)
N−1

})
.

Set ZK(u) := 1
K

∑K
i=1 Z

(i)(u).

To improve the performance of the estimator even further, Asmussen and
Kroese (2006) propose the use of a control variate approach. As in the subex-
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ponential distribution case where the tail probability of the sum is asymp-
totically equal to n times the tail probability of each single random variable,
N · F̄ (u) is suggested as a control variate, leading to the Asmussen-Kroese
estimator with control variate of the form

Zcon(u) = N ·(F̄ (max {MN−1, u− SN−1}) − F̄ (u)
)
+E (N) · F̄ (u) . (8.116)

The performance of the Asmussen-Kroese estimator with and without control
variate is in detail analyzed in Asmussen and Kroese (2006). There, the
authors highlight the superior behaviour of the two estimators with a clear
advantage of the version including the control variate as given in Equation
(8.116).

8.5.4 Dependent claims: An example with copulas

The individual as well as the collective model are both based on indepen-
dence assumptions. This is unrealistic for earthquakes where the force and
intensity vary over time, because a large earthquake is often followed directly
by many small earthquakes. This can be dealt with if we define this as a single
claim. But we observe also that a large earthquake in a region is followed in
the future by small ones until the tension is high enough again for a large one.
While we have already introduced a Poisson shot noise model as a possible
framework for this in Section 8.5.2, we will here use a copula approach for
modelling the dependence structure between claims.

Example 8.65 Ruin probability due to earthquakes
Let us assume that every tenth earthquake is large and those in between are
smaller ones. We model an individual claim Xi by a gamma distribution with
shape 0.9 and scale 30. The dependence between different claims is modelled
by a Gaussian copula with a correlation matrix having a Toeplitz structure
with −0.1,−0.05 on the first side diagonals and 0.3 on the tenth side diagonal.

The waiting time between two earthquakes is modelled by an exponential
distribution with an intensity of 0.1, i.e. in the mean, an earthquake occurs
every tenth year. We also introduce a dependence between the claim size of
an earthquake and the waiting time until the next earthquake by a Gaussian
copula with correlation 0.7, i.e. a large earthquake increases the waiting time
until the next earthquake occurs. The reasoning is that a strong earthquake
reduces the tension much more.

We perform this simulation for the next 1,000 years. We set the premium
rate π(t) = 1.1 · E(Xi)

10 = 2.97. For reasons of comparison, we also perform
the same simulation under the independence assumption. The results can be
seen in Figures 8.10 through 8.12.

In Figure 8.10, we see the evolution of the reserve when starting with no
initial reserve. Between two earthquakes, the premiums lead to an increasing
reserve and in the event of an earthquake, the reserve drops down by the claim
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FIGURE 8.10: Paths of the reserve when starting with an initial reserve of
zero.
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FIGURE 8.11: Histograms of the necessary initial reserves to avoid
bankruptcy.

amount. If we compare the paths, then in the dependent case we observe that
after a large earthquake the waiting time is longer until the next earthquake
occurs, and also the claim size of the second one becomes smaller, which is
exactly as desired in our model.

The most interesting result is the difference in the needed initial reserves
for avoiding ruin or, vice versa, the ruin probability for a fixed initial reserve.
In Figures 8.11 and 8.12 we observe that the dependent case leads to a much
smaller needed initial reserve or to a much smaller ruin probability.
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FIGURE 8.12: Ruin probability depending on initial reserve.

8.6 Markov chain Monte Carlo and Bayesian
estimation

In this section we introduce the concepts of the Markov chain Monte Carlo
method (MCMC) and of Bayesian estimation. MCMC is a basic tool for
performing Bayesian estimation methods and for Monte Carlo methods when
the simulation of the underlying random numbers is inefficient or impossible
by conventional ways. For both situations, numerous applications in actuarial
mathematics and in financial mathematics exist.

8.6.1 Basic properties of Markov chains

The term Markov chain is used in various ways in the stochastic process
literature. This ranges from simply identifying Markov process and Markov
chain to the restriction that a Markov chain is a discrete-time Markov process
with a countable state space. We use the latter as seen below.

DEFINITION 8.66

Let {X(n), n ∈ N} be a discrete-time stochastic process such that X(n) only
attains values in a countable set S, the so-called state space. For conve-
nience we always identify S with (a subset of) N. It is called a (discrete-time)
Markov chain if we have

P (X(n+ 1) = j|X(n) = i,X(n− 1) = in−1, . . . , X(0) = i0)
= P (X(n+ 1) = j|X(n) = i) =: pij (n) ∀i, j, ik ∈ S. (8.117)
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The possibly infinite matrix (pij(n)) is called the transition matrix from
time n to time n+ 1.

REMARK 8.67 1. A customer of a life insurance company is often
identified with the “state” he is in, i.e. he can be “healthy,”“ill,” or “dead”.
A Markov chain is a model for the evolution of this state process over time.

2. Note that for the discrete state setting we can formulate the Markov
property (8.117) element-wise (compare to Definition 4.6 for the general case).
Of course, the interpretation stays the same: the future evolution of the pro-
cess solely depends on the present state and not on the past history. Further,
we typically choose F(n) to be the filtration generated by the elements of the
Markov chain up to time n.

3. Continuous state space. There is also a well-developed theory for
discrete-time Markov chains with a general state space. Indeed, it should
be natural that a Markov chain could have transitions from one time instant
to the next governed by – say – a normal distribution. In such a situation
the role of the transition matrix (pij(n)) is taken over by a transition kernel,
i.e. a mapping p(x,A) such that for each fixed x ∈ S p(x, .) is a probability
distribution with support in S. We do not elaborate on this case, but will
occasionally present examples with a noncountable state space such as R

d.
As we are performing all our simulations on a computer with its finite set of

numbers, one could also argue that restricting to a finite state space S would
not be a restriction at all.

Non-Markovian discrete-time stochastic processes that only depend on a
fixed part of the past can be turned into a Markov process by enlarging the
state space. It should then include all those parts of the past that determine
the future evolution of the time series. More precisely, we have the following
lemma that can easily be verified.

LEMMA 8.68

Let {X(n), n ∈ N} be a stochastic process such that X(n+1) can be expressed
by X(n), . . . , X(n− k) via the representation

X(n+ 1) = fn+1(X(n), . . . , X(n− k), ε(n+ 1)) (8.118)

with ε(n + 1) a random variable which is independent of X(l) for any l ≤ n
and fn+1 a sequence of deterministic functions.

Then the vector-valued stochastic process Y (n) = (X(n), . . . , X(n− k))′ is
a Markov chain.

An important and often practically relevant special case of a Markov chain
appears when its transition probabilities do not change over time.
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DEFINITION 8.69
A Markov chain {X(n)}n∈N with state space S is called homogeneous if for
any i, j ∈ S and any n ∈ N we have

P(X(n+ 1) = j|X(n) = i) = P(X(1) = j|X(0) = i) = pi,j . (8.119)

REMARK 8.70 It can directly be verified that the n-step transition
matrix p(n) from time 0 to time n defined by

p
(n)
i,j := P (X(n) = j|X(0) = i)

actually equals the n-th power of the transition matrix,

p(n) = pn. (8.120)

In our life insurance motivation, there are different types of states. Some
might only be visited such as “ill” and others can never be left such as
“dead.”We formalize this in the following definitions.

DEFINITION 8.71
Let i ∈ S be some state of the homogeneous Markov chain {X(n)}n∈N and
assume that X(0) = i. Denote by

τi = min{n > 0|X(n) = i} (8.121)

the first recurrence time, i.e. the first time of a revisit of the state i by X.
The state i is called transient if we have

P(τi < ∞) < 1. (8.122)

i is called recurrent if we have

P(τi < ∞) = 1. (8.123)

If a recurrent state satifies E(τi) < ∞ then we call it positive recurrent.

DEFINITION 8.72
Two states i, j ∈ S of the homogeneous Markov chain {X(n)}n∈N are called
connected, if for some n12, n21 ∈ N we have

P (X(n+ n12) = j|X(n) = i) · P (X(n+ n21) = i|X(n) = j) > 0. (8.124)

The Markov chain is called aperiodic if for all states i ∈ S we have

1 = g.c.d. {n ∈ N|P(X(n) = i|X(0) = i) > 0} (8.125)
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where g.c.d. denotes the greatest common divisor.

REMARK 8.73 1. It is allowed to have n12 = n21 = 0, i.e. that each
state is connected with itself. Further, it can easily be verified that the notion
of being connected defines an equivalence relation on the set of states. In
particular, we obtain a partition of the state space into different subsets each
consisting of either recurrent or transient states.

2. If we are in a recurrent state, then it is impossible to reach a state in
any other equivalence class in the future. In order to be able to reach any
possible state in a simulation, the homogeneous Markov chain should therefore
consist of a single equivalence class. If this is not the case, we must choose
the distribution of X(0) carefully to get into the desired class.

DEFINITION 8.74
A homogeneous Markov chain {X(n)}n∈N with state space S is called irre-
ducible if it has only one equivalence class of connected states. Otherwise we
call it reducible.

If we want to simulate a path of a Markov chain and if we do not know
its initial value, then we need a probability distribution μ(.) on the state
space from which we can draw the initial state X(0). A particular such initial
distribution that is persistent through time is the following one:

DEFINITION 8.75
A distribution π(.) on the state space S is called a stationary distribu-
tion of the homogeneous Markov chain {X(n)}n∈N if all X(n) are distributed
according to π(.) when the starting value X(0) is distributed according to π(.).

REMARK 8.76 Usually, a stationary distribution π of a Markov chain
is defined as a nonnegative solution of the equations

πp = π,
∑

π(i) = 1. (8.126)

Below, we will see that the two definitions are essentially equivalent. Al-
though not every homogeneous Markov chain possesses a stationary distri-
bution, there are many results that guarantee the existence of a (unique)
stationary distribution (see e.g. Haeggstrøm [2003] or Durrett [1999]), some
even give its explicit form.

A collection of standard results is summarized below (see Durrett [1999]).

THEOREM 8.77
(a) Let {X(n)}n∈N be a homogeneous, irreducible, and aperiodic Markov chain
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with positive recurrent states. Then it has a unique stationary distribution π
that satisfies

lim
n→∞ p

(n)
i,j = π (j) ∀i, j ∈ S (8.127)

and is the unique nonnegative solution to the Equation (8.126).
(b) If S is finite and the Markov chain {X(n)}n∈N is homogeneous, irre-
ducible, and aperiodic then the distribution of X(n) converges exponentially
fast towards its unique stationary distribution π in the following sense:

max
1≤i≤N

max
1≤j≤N

∣∣∣p(n)
i,j − π (j)

∣∣∣ ≤ C · e−nc (8.128)

for some c, C > 0 where N is the size of the state space.

Besides these convergence results for the distribution of a Markov chain,
there is another class of convergence theorems for Markov chains which relate
them to Monte Carlo simulation (see Durrett [1999] for a proof).

THEOREM 8.78 Strong law for Markov chains

Let {X(n)}n∈N be a homogeneous and irreducible Markov chain with a unique
stationary distribution π. Let f be a real-valued function such that E(f(X))
is defined and finite for X distributed according to π. We then have

1
n

n∑
k=1

f (X (k)) n→∞−→ E (f (X)) a.s. (8.129)

where X is distributed according to the stationary distribution π.

Note one particular aspect: We did not (!) need independence between the
X(k) for the convergence to hold, a fact that is also crucial for the convergence
of Monte Carlo estimates obtained by the MCMC method below.

8.6.2 Simulation of Markov chains

The simulation for a path of a Markov chain {X(t),∈ N} is quite easy if the
transition probabilities are known in advance. To have a unified framework,
we will always draw the initial state X(0) from some distribution D in the
algorithm below. If we already know the starting value then D is simply the
distribution that puts all mass in this particular value. We assume that we
know the transition matrix completely and that we are able to draw a random
number from all the discrete distributions that are induced by the rows of the
transition matrix. Then, we can give the simple Algorithm 8.17.

The Algorithm 8.17 can be inefficient if the state space is infinite and/or if
the transition probabilities have to be calculated from scratch at each state.
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Algorithm 8.17 Simulating a path of a homogeneous Markov chain with a
precalculated transition matrix

1. Set n = 0. Draw a random number X(0) from the distribution D.

2. For n = 1 to N draw a random number X(n) from the discrete distri-
bution given by {pX(n−1),j, j ∈ N}.

In such a situation it can be more efficient to use the inversion method for gen-
erating random numbers from the relevant discrete distribution in an iterative
way, as we will do in Algorithm 8.18.

Algorithm 8.18 Simulation of a Markov chain

1. Set n = 0. Draw a random number X(0) from the distribution D.

2. For n = 1 to N do

(a) Draw a random number u ∼ U(0, 1] and set j = 0, sum = 0.

(b) Calculate pX(n−1),j .

(c) Set sum = sum+ pX(n−1),j .

(d) If sum ≥ u then set X(n) = j else set j = j + 1 and go to (b).

8.6.3 Markov chain Monte Carlo methods

The basic idea behind Markov chain Monte Carlo methods (MCMC meth-
ods) is that one can obtain random numbers that are distributed – at least
approximately – according to a given distribution π by simulating a Markov
chain that has this distribution as its unique stationary distribution. Here, π
can either be a discrete distribution given by its probability function π(.) or
a continuous one given by its density function g(.). There exist a lot of intro-
ductions and survey papers on the properties and applications of MCMC. We
mention the monographs by Asmussen and Glynn (2007), Gilks et al. (1996),
and Liu (2001), to state a few.

The Metropolis-Hastings algorithm

The most popular MCMC algorithm is the Metropolis-Hastings algo-
rithm (MH algorithm), Algorithm 8.19 (see Metropolis et al. [1953] and
Hastings [1970]). It constructs a Markov chain that starts in an arbitrary
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state and has a transition probability pi,j such that the Markov chain is re-
versible, i.e. it satisfies the detailed balance equation

π(i)pi,j = π(j)pj,i. (8.130)

Hence, starting with the initial distribution π the probability of getting from
state i to j equals that for getting from state j to state i. Summing both
sides of Equation (8.130) over j shows that then π is indeed a stationary
distribution of the chain (which under suitable conditions is unique).

Algorithm 8.19 Metropolis-Hastings algorithm
Let π be a given probability distribution. Let q(x, y) be a given transition
matrix. Set further X(0) = x̄ for some value x̄ with π(x̄) > 0.
For k = 0 to N − 1 do

1. Draw a random number Y according to the transition probability
q(X(k), .) and draw a random number U ∼ U [0, 1].

2. Calculate α(X(k), Y ) = min
{
1, π(Y )q(Y,X(k))

π(X(k))q(X(k),Y )

}
.

3. If α(X(k), Y ) > U , then X(k + 1) = Y , k=k+1, go to Step 1.
Else go to Step 1.

REMARK 8.79 Properties/modifications of the MH algorithm
1. The transition probabilities in the MH algorithm are given by

pi,j =
{
q(i, j)α(i, j), i �= j,
q(i, i)α(i, i) +

∑
j∈S q(i, j) (1 − α(i, j)), i = j.

(8.131)

2. One can directly imitate the considerations leading to the algorithm for
a distribution π with a density. By slight misuse of notation, we denote this
density function again by π(x). Further, in this case the transition probability
q(x, y) is then replaced by a transition density q(x, y), i.e. for each fixed x
q(x, .) is a density function. Again, one obtains that the detailed balance
equation is satisfied, but now the transition probability of the chain is replaced
by a transition kernel p(x, y):

π(x)p(x, y) = π(y)p(y, x). (8.132)

Integrating over y yields the stationarity condition in the density case,

π(x) =
∫
π(y)p(y, x)dy. (8.133)
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Thus, it should be kept in mind that we also cover the density case below by
simply replacing point probabilities by densities. However, for simple nota-
tion, we will mainly restrict ourselves to the discrete state space setting.

3. How to choose the proposal function q(x, y)? There are two popular
choices of the transition probability q(x, y). One is that of a symmetric q, i.e.
one has

q (x, y) = q (y, x) ∀x, y ∈ S (8.134)

where S denotes the support of the distribution Π. This choice simplifies the
calculation of the acceptance function as we then have

α(x, y) = min
{

1,
π (y)
π (x)

}
. (8.135)

In particular, for this q a simulated state Y is always accepted if its probability
π(Y ) exceeds π(X(k)). On the other hand, if we use a proposal function q
which attains its highest value atX(k) (such as a normal distribution centered
around X(k)) then the acceptance probability is always below one.

A second popular choice is the independence sampler, i.e. the choice of

q (x, y) = g (y) ∀x, y ∈ S (8.136)

for some probability function (or density) g(.).
However, one should keep the following problem in mind when deciding

about which transition probability function q(x, y) to use: if q(x, y) has a
tendency to put too much probability mass to the near neighbourhood of x,
the chain might always stay very close to its initial state. If q(x, y) has a
tendency to put too much probability on large jumps away from x, one faces
the danger of ending up in the tails of the distribution, which leads to too
many nonrepresentative values of the MH chain.

4. Convergence properties and stationarity behaviour. To ensure
the convergence of the MH chain toward the desired stationary distribution,
we have to ensure that the relevant convergence results from the Markov chain
section can be used. In the discrete state space case, we have that the MH
chain is irreducible and aperiodic if we have

q(i, j) > 0 ∀ i, j ∈ S and (8.137)
p(i, i) > 0 for at least one i ∈ S. (8.138)

In the density case, we need p(x, x) > 0 for almost all x ∈ S instead of condi-
tion (8.138). Note that by our choice of q(i, j) we can keep those conditions
under control.

As the chain is also homogeneous, we then have verified the assumptions of
both convergence results, the distributional convergence theorem 8.77, and the
strong law for Markov chains. We thus have obtained the desired convergence
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toward the stationary distribution and the convergence of the Monte Carlo
estimator based on the MH algorithm.

As a special case, Asmussen and Glynn (2007) show a fast convergence for
the choice of the independence sampler if we have

A := sup
x

π(y)g(x)
π(x)g(y)

< ∞. (8.139)

So, in particular g(.) has to be very similar to π(.) to deliver good results.

5. The burn-in period. Although the required convergence of the Monte
Carlo estimator based on the MH chain can be ensured for the use of the whole
chain, this convergence is usually faster if one only includes those members
of the chain that are already close to the stationary distribution state. One
therefore lets the chain run for a burn-in period and only uses the members
of the MH chain afterward.

Various theoretical considerations for the optimal size of the burn-in period
exist. Some of them are hard to verify, some are only asymptotically valid.
A special recent example is Rudolf (2009), where an exact formula for the
optimal burn-in period length to obtain a given mean-square error between
the Monte Carlo estimator and the desired expected value is given. It is based
on the concepts of laziness and conductance of the MCMC chain. Both those
technical concepts will not be introduced here.

An empirically justified criterion that indicates a convergence of the chain
to the stationary state is the similarity of the generated data, i.e. we should
decide on a graphical basis about the data point from which onwards we be-
lieve the MCMC chain behaves stationary (see the example below). Note
however that this can only be a proof for nonstationarity in case the simu-
lated MCMC chain values look different from what we expect for the desired
stationary distribution.

6. Total chain length. An aspect that has to be considered to decide
upon the total chain length is the variance of the corresponding Monte Carlo
estimator based on the MCMC chain. To see this, let σ2 = Var(f(X)) with
X distributed according to π. Let ρk be the autocorrelation of order k of the
MCMC chain elements. Then we have

Var

(
N∑
k=1

f (X (k))

)
=

= σ2 ·
(

1 + 2
N∑
k=1

N − k

N
ρk

)
n→∞−→ σ2 ·

(
1 + 2

∞∑
k=1

ρk

)
. (8.140)

It thus depends on the autocorrelation function between the generated sam-
ple values if we have to generate more values by an MCMC chain than the
usual N to obtain an accuracy of O(1/N). Thus looking at the (sample)
autocorrelations is also a part of performing an MCMC simulation.
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7. Modifications. There exist various modifications of the MH algorithm
to improve the quality of the generated random numbers. A particular ex-
ample is to use only every k-th member of the MH chain to have at least
approximately independent random numbers. Of course, a high value of k
makes this method quite inefficient. For more variants see Liu (2001).

8. By construction of the MH algorithm, it is only necessary to know the
stationary distribution π(.) up to a norming constant, as only the quotients
π(x)/π(y) enter the computations. This fact will be important for the appli-
cation of MCMC methods in Bayesian estimation.

Example 8.80

To illustrate the behaviour of an MCMC chain we look at the toy example to
generate the Poisson distribution with intensity λ = 3 and use the transition
matrix of a simple random walk reflected in x = 0. More precisely, we use

q (x, y) =

⎧⎨
⎩

1/2 for y ∈ {x− 1, x+ 1} , x > 0,
1 for y = 1, x = 0,
0 else.

We simulated a MCMC chain of length 10,000 with a start inX(0)=1 and used
the first 1,000 members of the chain for the burn-in period. Figure 8.13 seems
to indicate that the chain becomes stationary quite soon. This is underlined by
Figure 8.14, where the simulated frequencies of the different values among the
9,000 MCMC chain members are compared to their theoretical counterparts.
The differences are as small as if one would simulate directly from the Poisson
distribution. This observation was independent from the starting value, even
for very high ones such as X(0) = 20.
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FIGURE 8.13: MCMC chain for a Poisson distribution (λ = 3).
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FIGURE 8.14: Actual frequencies (white) of the values of an MCMC chain
after burn-in for a Poisson distribution (λ = 3) and expected theoretical
frequencies (black).

The Gibbs sampler

In the case of a desired multivariate limit distribution of the MCMC chain, we
often face a situation where the marginal distribution of a component given
the remaining components of the state variable is easily available (such as
in the situation of a multivariate normal). One then updates the Markov
chain created by the MCMC method component by component, always using
the already available newly generated component and the remaining old ones,
a method which is known as the Gibbs sampler (see Algorithm 8.20 and
Geman and Geman [1984]).

Algorithm 8.20 Gibbs sampler
Let π(.) be a given probability distribution (or a given probability density
function). Set X(0) = (x1, ..., xd) for some value x with π(x) > 0.
For k = 0 to N − 1 do

1. GenerateX(k+1) = (X1(k+1), ..., Xd(k+1)) by generating the following
random numbers one after each other:
X1(k + 1) ∼ π (x |X2(k), ..., Xd(k)) ,
X2(k + 1) ∼ π (x |X1(k + 1), X3(k), ..., Xd(k)) ,
...
Xd(k + 1) ∼ π (x |X1(k + 1), X2(k + 1), ..., Xd−1(k + 1)) .

2. Set k=k+1 and go to Step 1.
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REMARK 8.81 1. The above variant of the Gibbs sampler is also called
the systematic-scan Gibbs sampler. Some authors argue that updating just
one randomly chosen component i at iteration k and leaving the remaining
ones unchanged (random-scan Gibbs sampler) can outperform systematic-
scan in terms of the speed of convergence (see Liu [2001] for this and the
discussion of further variants of the Gibbs sampler).

2. Gibbs sampling as a special case of Metropolis-Hastings. Note
that by construction of the Gibbs sampler π is a stationary distribution of
the corresponding MCMC chain. However, the marginal conditional distribu-
tions π(.|.) have to be known exactly to perform the Gibbs sampler. Under
these conditions the Gibbs sampler is indeed a special case of the Metropolis-
Hastings algorithm, with the choice of q(x−m, z) = π(z|x−m) as the proposal
transition probability in the update step for the chain. Here, x−m denotes the
vector x without its m-th component. Let y = (x1, ..., xm−1, ym, xm+1, ...xn).
We then obtain

α(x, y) =
π(y)q(y, xm)
π(x)q(x, ym)

=
π(ym|x−m)π (x−m)π(xm|x−m)
π(xm|x−m)π (x−m) π(ym|x−m)

= 1, (8.141)

i.e. the acceptance probability for the proposed value y that only differs from x
by its m-th component always equals 1. Also, the convergence considerations
of the Metropolis-Hastings algorithm apply for the Gibbs sampler.

3. As in many applications conditional distributions can often be specified
while the unconditional ones are not known, the use of the Gibbs sampler is
very popular. We will see particular applications in Bayesian statistics and in
actuarial mathematics later in this section.

Example 8.82

This simple application is taken from Liu (2001) where a two-dimensional
normal distribution with

X ∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
, −1 < ρ < 1

is the target distribution. As in this case, we can represent the two components
X1, X2 of this normal distribution via

X1 =
√

1 − ρ2Y1 + ρX2, X2 =
√

1 − ρ2Y2 + ρX1

for two independent standard normally distributed Y1, Y2, the construction of
the Gibbs sampler implies

X1(k + 1)|X2(k) ∼ N
(
ρX2(k), (1 − ρ2)

)
,

X2(k + 1)|X1(k + 1) ∼ N
(
ρX1(k + 1), (1 − ρ2)

)
.
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Hence, starting at (X1(0), X2(0)), the unconditional distribution at iteration
k is given by

X (k) ∼ N

((
ρ2k−1X2 (0)
ρ2kX2 (0)

)
,

(
1 − ρ4k−2 ρ− ρ4k−1

ρ− ρ4k−1 1 − ρ4k

))

which obviously converges to the desired target distribution.

8.6.4 MCMC methods and Bayesian estimation

The main principle of Bayesian estimation of a parameter θ(∈ R
d) consists

of three ingredients:

1. Preknowledge expressed by the fact that we assume that θ is a real-
ization of a distribution (the prior distribution):

θ ∼ G (θ) .

2. Combination of observations X = (X1, ..., Xn) with preknowl-
edge expressed by updating our view on the distribution of θ to obtain
the conditional distribution (the posterior distribution):

θ|X1, ..., Xn ∼ G (θ|X1, ..., Xn) .

3. Point estimation of θ as either the mean or the mode of the posterior
distribution.

Instead of just a point estimator for the unknown parameter θ, Bayesian
estimation yields a whole distribution of it, the posterior distribution. If we
choose an uninformative prior distribution (such as a uniform distribution on
the possible values for θ) then the mode of the posterior distribution coincides
with the familiar maximum likelihood estimator. The main tasks in Bayesian
estimation are therefore

• the computation of the posterior distributio and

• the computation of the posterior mode or the posterior mean.

In case of a discrete distribution or of a distribution with density we have

G (θ|x) =

⎧⎨
⎩

f(x|θ)g(θ)R
y
f(x|y)g(y)dy , density case
p(x|θ)g(θ)P
y p(x|y)g(y) , discrete case

(8.142)

where the likelihood functions f (x|y) and p (x|y) are assumed to be known.
While in both cases the computation of the numerator might be possible,

it is the norming constant in the denominator that in general is hard – if not
impossible – to compute (note that for a multivariate distribution this requires
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the computation of a high-dimensional integral!). Thus, in the general case,
we need efficient numerical methods to compute the posterior distribution.

To avoid this, in Bayesian statistics a big focus is laid on searching for so-
called conjugate priors. These are prior distributions G(θ) such that for a
given likelihood function the posterior distribution G(θ|x) belongs to the same
family of distributions as the prior. As an example, one can verify by direct
computation that the beta distribution is a conjugate prior for the Bernoulli
distribution (see e.g. Lee [1997] for an introduction to this and further aspects
of Bayesian statistics). We give an example that highlights the increase the
efficiency of MCMC methods for conjugate priors:

Example 8.83 MCMC with conjugate priors

There are indeed two critical aspects in the form of Equation (8.142) that can
make MCMC simulation of the posterior distribution really slow. One is the
tremendous task of computing the denominator numerically, the second one
is the evaluation of the likelihood function in the nominator. Both these tasks
can be avoided by a suitable choice of a conjugate prior distribution.

As an example, we consider the estimation problem of the mean θ for a
normal distribution with known variance σ2. Let us also assume that we have
a data set x1, ..., xn which then leads to a likelihood function of

f (x|θ) =
n∏
i=1

(
2πσ2

)−n/2
exp

(
− 1

2σ2

n∑
i=1

(xi − θ)2
)
.

If we now use the density of a normal distribution with mean ν and variance
τ2 as a prior distribution g(.) for θ, then we obtain a posterior distribution
proportional to

f (x|θ) g (θ) = const · exp
(
− 1

2σ̃2
(θ − μ̃)2

)

with

μ̃ = σ̃2 ·
(
ν

τ2
+
∑n

i=1 xi
σ2

)
, σ̃2 =

(
1
τ2

+
n

σ2

)−1

. (8.143)

Hence, the posterior distribution is again a normal distribution, but now with
the new parameters μ̃, σ̃2 as given above. This has two consequences:

1. We know the denominator of the posterior distribution without having
explictly computed it.

2. If we run an MCMC chain for the unknown parameter θ, then it is
only necessary to simulate the next element θ(i) at each step. It is not
necessary to evaluate the likelihood function, only the estimates for the
parameters of the prior have to be updated.
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The advantages of conjugate priors can be stressed even more for a multidi-
mensional parameter estimation when the complete conditional distributions
together with suitable conjugate priors are available. Then, Bayesian esti-
mation with the Gibbs sampler can be very efficient. Indeed, each updating
step only consists of the simulation from the complete conditional distribu-
tions followed by an update of the parameters that determine the distribution
family of the relevant parameter. There is no need to evaluate the likelihood
function, which saves a large amount of computation time.

REMARK 8.84 Bayesian estimation and MCMC methods 1. Nu-
merous applications of MCMC methods for Bayesian estimation of model
parameters in financial models are given in the excellent survey by Johannes
and Polson (2010). The models covered range from the Black-Scholes model
via stochastic volatility models to various interest rate models. As we will
present an actuarial application in detail below, we will not give details for
the financial applications here.

2. The software package WinBUGS is a highly useful and freely avail-
able tool (see www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml) that is
based on the application of Gibbs sampling for use in Bayesian statistics. The
basic reference for it is Lunn et al. (2000).

3. When the likelihood function of a particular model has no simple form,
the introduction of latent variables sometimes improves the MCMC-based
Bayesian estimation procedure. A possible example (also covered in Johannes
and Polson [2010]) to highlight this would be the introduction of the jump
times and jump heights in a Merton jump-diffusion model. Given their knowl-
edge, observed stock prices are log-normally distributed. So if we are able to
condition on the jump heights and jump times, we can use the log-normal dis-
tribution as a likelihood function. Of course, there is a price to pay for that.
As the jump times and heights are not available as observed data (at least,
we assume this for the moment), they are added to the unknowns and have
to be simulated in the MCMC procedure, too. However, if – by a suitable
choice of priors – we are able to generate a situation where the evolution of
the likelihood functions could be avoided, then this typically would lead to
an upspeeding of the whole computations although the number of variables
would be increased.

8.6.5 Examples of MCMC methods and Bayesian estimation
in actuarial mathematics

In the following we will present two specific applications of both MCMC
methods and Bayesian estimation in actuarial mathematics. However, this
will only be a small selection of such applications. Many more are presented
in e.g. Scollnik (2001) and the references given therein.
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Calibrating parameters and prediction in total claims models

We consider an example given in Czado (2004). Here, the total claim size in
year t is given by

St = Yt,1 + ...+ Yt,Nt (8.144)

with all single claim heights Yt,i being independent and identically distributed,
and Nt the number of claims in year t ∈ {t1, ..., tn}. We also assume that
the single claim heights Yt,i are independent of Nt. Further, the following
distributional assumptions are made:

Yt,i ∼ Pareto (a, 20) , (8.145)
Nt|λ ∼ Pn (λ) . (8.146)

The use of the Pareto and the Poisson distributions for (single) claim heights
and claim frequency are standard assumptions in actuarial mathematics. The
data used in Czado (2004) consist of claims above 20 million Danish crowns
from a well-documented data set.

We now look at the following two tasks:

1. Bayesian estimation of the parameters a and λ determining claim size
and claim frequency.

2. Predicting the claim frequency and claim height distribution of year
tn+1 given the information contained in the data set.

To deal with the estimation task note that the posterior distribution of λ
given the relevant data is

G (λ|Nt1 , ..., Ntn) = const · p (Nt1 , ..., Ntn |λ) g (λ) . (8.147)

As the Poisson likelihood function p (Nt1 , ..., Ntn |λ) possesses the gamma dis-
tribution as a conjugate prior, we choose the Gamma(0.001, 0.001) distribu-
tion as an (approximately) uniformative prior for the parameter λ.

The conditional independence of the N - and Y -variables leads to the pos-
terior density of

G
(
a|Yt1,1, ..., Ytn,Ntn

)
= const · f (Yt1,1, ..., Ytn,Ntn

|a) g (a) . (8.148)

Again, the choice of the Gamma(0.001, 0.001) distribution as an (approxi-
mately) uniformative prior for the parameter λ is also a conjugate prior.

Both corresponding chains are then run to generate 10,000 iterates (with
the help of WinBUGS). The estimation results are then based on the last 9,500
observations, which means that a burn-in period of 500 has been chosen. The
resulting parameters are summarized in Table 8.4 (see also Czado [2004]).

To predict the total claims characteristics for year tn+1 by Bayesian predic-
tion, one computes both the predictive distribution of the number of claims
and that of the total claims amount. For the number of claims, we can use



Simulating Actuarial Models 431

Mean St. dev. 2.5% Mean 97.5%
a 1.810 0.298 1.270 1.796 2.422
λ 3.305 0.577 2.273 3.267 4.550

Table 8.4: Bayesian Estimation for Total Claim Parameters

the just generated MCMC chain λ(i), i = 501, ..., 10,000 to obtain the approx-
imate predictive probabilities given the posterior distribution of λ:

P
(
Ntn+1 = n

) ≈ 1
9, 500

10,000∑
i=501

P

(
Ntn+1 = n|λ(i)

)

=
1

9, 500

10,000∑
i=501

e−λ
(i) (λ(i))n

n!
. (8.149)

As for the predictive for the total claims amount we would have to calculate
the double integral

f
(
Stn+1 |data

)
=
∫ ∞

0

∫ ∞
0

f
(
Stn+1 |λ, a

)
f (λ, a|data) dλda (8.150)

that in particular contains the density f
(
Stn+1 |λ, a

)
, which is based on a

convolution, but we prefer to use MCMC simulation again. Thus, with the
choice of a burn-in period length of 500 and a total chain length of 10,000 we
perform:

For i = 500 to 10,000:

1. Generate N (i)
tn+1

∼ Pn
(
λ(i)
)
.

2. If N (i)
tn+1

= 0 then set S(i)
tn+1

= 0.

3. If N (i)
tn+1

> 0 then

(a) Generate Y (i)
tn+1,k

∼ Pareto
(
a(), 20

)
, k = 1, .., N (i)

tn+1
,

(b) Set S(i)
tn+1

=
∑N

(i)
tn+1

k=1 Y
(i)
tn+1,k

.

Finally, estimate the predictive density by its empirical counterpart obtained
from just the simulated data.

Credibility and experience rating

Our next application only has a Bayesian component, not an MCMC aspect.
It is concerned with the theoretical background of a premium calculation
technique called experience rating. The need for experience rating arises from
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the fact that the whole portfolio of particular insurance contracts consists of
different homogeneous subpopulations. Typical examples for this can occur
in health insurance (male/female, young/old, ...) or car insurance (type of
car, type of driver).

If in such a situation one assigns every contract the same premium, then
the “good” risks (i.e. those contracts who would (at least in the mean) not
correspond to claims above average) would move to other insurance compa-
nies and the “bad” ones would stay (and happily enjoy a low premium). It
is thus reasonable to use a weighted average of a portfolio mean and an indi-
vidual mean of the claim height as a basis for constructing the premium. As
the individual component is based on the past experience that the insurance
company has had with the customer, this type of setting of a premium is
called experience rating. We will follow Norberg (2002) in our presentation
below.

If one interprets the claims arising from a single insurance contract as a
realization m(Θ) of a function of a random variable Θ (=the customer) and if
we have a data vectorX (the history) for Θ, then the so-called total accuracy
approach to experience rating postulates to use that function m̂(X) as a
premium based on the individual history of the customer that minimizes

MSE (m̂(X)) := E

(
(m (Θ) − m̂(X))2

)
. (8.151)

It then follows directly from

E

(
(m (Θ) − E (m (Θ|X)) + E (m (Θ|X)) − m̂(X))2

)
=

= E

(
(m (Θ) − E (m (Θ|X)))2

)
+ E

(
(E (m (Θ|X)) − m̂(X))2

)
(8.152)

that the optimal estimator in the above mean-square error (MSE) sense is

m̂(X) = E (m (Θ|X)) , (8.153)

the conditional mean of m(Θ) given the history X . Hence, it only remains
to compute this conditional expectation for a specified customer θ (i.e. we
condition on Θ = θ) given his history. To do this, we need the posterior
distribution of Θ given X , indeed a task that could be performed by running
a suitable MCMC chain. As we have seen, this could be done by choosing
efficiently a suitable conjugate prior distribution for Θ.

However, such a choice of prior distribution mainly for reasons of computa-
tional convenience is questionable here, as the preknowledge plays the main
conceptual part in experience rating. The alternative suggested in Bühlmann
(1967, 1969) is to restrict the set of Bayesian estimators to a specific linear
class of the form

m̂lin(X) = (1 − z)a+ zX̄n (8.154)

for data X = (X1, ..., Xn) and where X̄n denotes the arithmetic mean of the
observations. Here, the assumptions are that conditional on Θ the annual
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claims X1, ..., Xn are i.i.d. with a mean of m(Θ) and a variance of s2(Θ).
As stated in the above papers by Bühlmann (1967, 1969), the MSE-optimal
premium in this linear class is given by

a = E (m(Θ)) , z =
λn

λn+ h
, λ = Var (m(Θ)) , h = E

(
s2(Θ)

)
. (8.155)

The coefficient z is called the credibility factor. Note that it will tend to
1 if the number of observations n gets large. So if we have a lot of informa-
tion about the individual customer, our rating is nearly fully based on our
judgement of the customer and not so much on the behaviour of the total
portfolio.

To be able to give periods a different weight according to the insured vol-
umes pj in period j, Bühlmann and Straub (1970) assume that the conditional
variances have the form Var (Xj |Θ) = s2(Θ)/pj. This leads to an optimal lin-
ear estimator and a credibility factor of the forms

m̂lin(X) = (1 − z)E (m(Θ)) + z
∑n

i=1
piP

n
j=1 pj

Xj, (8.156)

z =
Pn

j=1 pjλPn
j=1 pjλ+h , λ = Var (m(Θ)) , h = E

(
s2(Θ)

)
. (8.157)

For further generalizations such as multidimensional credibility and aspects
of estimation we refer to Norberg (2002).

8.7 Asset-liability management and Solvency II

8.7.1 Solvency II

The key word Solvency II stands for the introduction of new regulations
for the risk calculations within insurance companies in Europe. The rules
of Solvency II are still not in force, but there are already different countries
having their own regulations like Switzerland and Great Britain. The main
principles of Solvency II are already installed and can be found at the home
page for the Committee of European Insurance and Occupational Pensions
Supervisors (CEIOPS) at www.ceiops.eu.

Main principles of Solvency II

The main principles underlying the concept of Solvency II include:

1. The economic value of assets and liabilities should be determined by
“mark to market,” i.e. the values should be equal to actual market prices
if they exist for the corresponding assets and liabilities. If these are
not observable, a reasonable model for the determination of the values
should be applied.
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2. The value of the technical provisions (i.e. the premium and claims re-
serves arising from unearned premiums and not fully paid out claims)
has to be given as the sum of a best estimate and a risk margin where:

• The best estimate should be based on all cash flows of current
contracts during their whole lifetime. The amounts are discounted
by the risk-free interest rate yield curve valid at the valuation date.

• The risk margin must take into account different risks such as op-
erational risk, underwriting risk, and counterparty default risk as
well as different risks for each line of business.

• The risk margins must be calculated separately for each line of
business and it is not allowed to assume any diversification.

3. The solvency capital requirement should equal the economic capital
that n insurance company should hold to ensure that ruin occurs with
a maximal probability of 0.05 during 1 year, i.e. the solvency capital
equals the Value-at-Risk at the 99.5%-level for a time horizon of 1 year
of the capital needed such that the insurance company can meet its
obligations to policy holders and beneficiaries.

• The calculation of the solvency capital requirement is split up into
several parts in the standard formula.

• The exact calculation of each part is exactly specified and reflects
the opinion of the commission about the quantiles. The market risk
for the yield curve is characterized by a prespecified shock down-
or upwards. For equities it is specified by a crash of 32% or 45%,
depending on the type of share.

• The individual parts are related by a prespecified correlation ma-
trix. Hence, some diversification effects are incorporated in the
rules.

4. Each insurance company can use an internal model for the calculation
of the solvency capital requirement. However, the rules for such internal
models are not specified yet.

5. Besides the solvency capital requirement, the insurer must determine
the minimal capital requirement, too. It represents the minimal
capital that is required to transfer the business to another insurance:

• The minimal capital requirement is not based on any quantile of
any risk.

• Its value is capped and floored by percentages of the solvency cap-
ital requirement.

We do not state exact formulae here, but again refer the reader to
www.ceiops.eu for more information on the different standard formulae for
different risks and businesses.
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Consequences of the calculations

The supervisory authority reacts as soon as the capital of the company
does not cover the solvency capital requirement. In that case the supervisory
authority will demand a plan from the insurance company with the aim to
fulfill the solvency capital requirement as soon as possible. This plan must
include several milestones and has to be accepted by the supervisory authority.
The supervisory authority can force the insurance company to reduce the risk,
to stop paying dividends, or to take a credit, too.

If the capital falls below the minimal capital requirement, then the insurance
company must present within 1 week a restructuring plan such that within 3
months the minimal capital requirement will be fulfilled again. However, the
time span for fulfilling the solvency capital requirement is not increased.

All these regulations will require a number of computations that often can
only be performed via extensive Monte Carlo simulations. From a theoret-
ical point of view, one can regard them as a special case of asset-liability
management.

8.7.2 Asset-liability management (ALM)

Asset-liability management (ALM) is the main challenge for Monte Carlo
simulations in finance and insurance as it can possibly rely on all the types of
methods and models we have presented thus far.

Aim of ALM

The aim of ALM is to determine an optimal long term investment strategy
for the assets in order to maximize the bonus for the customers (in the case of
life insurance) or to minimize the premiums for the customers (in the case of
nonlife insurance). One typically considers only constant portfolio strategies
such as to invest e.g. 30% of the capital into shares, 60% into bonds and
the remaining 10% into real estate. These proportions should then be kept
constant over time. Note that to do so at least approximately we have to
trade quite often, theoretically even at each time instant.

The determination of the bonus or premiums is based on the investigation of
the technical provisions, i.e. the optimal investment strategy thus depends on
the evolution of the assets and of the liabilities. Therefore, we must introduce
a constraint based on the riskiness of the investment strategy, taking into
account the distribution of the asset values and the technical provisions. This
can either be to limit the probability of default or to use a risk measure of
Section 8.2.3 for the difference of the value of the assets and the technical
provisions. Another possibility is to use the regulations of Solvency II as
constraints. It is reasonable to maximize the return under the constraint that
the company will fail to fulfill the solvency capital requirement at any time in
at most x% of the possible future scenarios.
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Connecting assets and liabilities

As ALM considers both the evolution of assets and liabilities, they should be
simulated together in a joint framework when they are used to determine the
optimal investment strategy. This is particularly reasonable as the evolution
of the liabilities also influences the capital reserve of the insurance company,
and the liabilities often move in parallel to factors influencing the asset side
(such as interest rates, inflation, and exchange rates).

Although the connection between the asset and the liability side is obvious,
the investment strategy is still often determined solely by the fund managers
of an insurance company. The actuaries only require a certain return without
taking into account the relation of the performance of the investment strategy
and the liabilities for the success of the company in total.

We collect some examples to illustrate the connection between assets and
liabilities. In a pension insurance the premiums are often coupled to the
income of the insured. In this case, we model the yield curve and the inflation
as part of the assets which steer the value of the bonds and real estate and
which influence the incomes, as the labor unions typically ask for a real income
increase. Since the premiums are directly coupled to the incomes, we have
modelled a connection between the assets and liabilities.

A weaker relation holds for life insurance, because the evolutions of bonds
and of liabilities directly depend on the yield curve. Therefore, life insurance
companies normally follow a rather conservative investment strategy with a
high percentage of the capital invested in bonds. The time to maturity of
these bonds should then match the so-called duration of the liabilities, i.e. the
mean time a unit of the premiums stays within the insurance company. This
strategy enables the life insurance company to fulfill the liabilities without the
risk of failing the solvency capital requirement as long as the relevant bond
yield is higher than the guaranteed interest rates of the insurance contracts.
However, this strategy fails as soon as the yield curve is below the guaranteed
interest rate as happened in Europe in 2002.

In nonlife insurance companies the damages are in general independent of
the evolution of the assets, but their absolute height is of course related to
inflation, again a possible relation between assets and liabilities.

Challenges and realization of ALM

An ALM study is done by Monte Carlo simulations of both the assets as
well as the liabilities. We must specify a time horizon for the ALM study, e.g.
15 years, and a time discretization for the simulation such as e.g. 1 month.
We have both challenges on the asset and on the liability side as explained
below.
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Challenges on the asset side

Many asset classes. Typically, an insurance company has a diversifica-
tion strategy to invest in many different assets such as e.g. bank accounts,
governmental bonds, corporate bonds with default risk, shares, options, real
estate, and inflation-linked bonds. Therefore, one has to simulate the evolu-
tion of many different assets using a lot of different models. This is typically
a high-dimensional problem.

Different countries. To diversify further, insurance companies do not
only invest in their home country, but also in other countries worldwide, such
as Germany as a home country, and as the other countries the United States,
Great Britain, Japan, and emerging markets.

As a consequence, we must model the exchange rates, too. This can be
based on the “Purchase-Power-Parity.” This principle states that the invest-
ment in different countries should lead in the mean to the same return as well
as the prices for goods should evolve in the same way in the mean.

Therefore, the exchange rate F for one unit of the foreign currency (indi-
cated with index f) denominated in one unit of the domestic (or “home”)
currency (indexed h) can be modelled in the risk-neutral world by

dF (t) = F (t)t {[(rh(t) − rf (t)) + (ih(t) − if(t))] dt+ σdW (t)} (8.158)

where rh(t), rf (t) are the short rates and ih(t), if (t) are the inflation rates in
the different countries. As we prefer a sparsely parameterized model, we often
assume that the inflation rates are already included in the short rates. Thus,
the term ih(t) − if (t) disappears in the model of the exchange rate.

With the help of bonds of both the domestic and the foreign country it is
then possible to hedge the exchange rate risk for the foreign currency.

Real and risk-neutral world: Which one has to be used? The
answer is easy, but we need to be very rigorous in ALM as we need models
and simulations in both worlds, the real and the risk-neutral one.

So far, we mainly considered pricing problems for derivatives. To calculate
prices, one can always assume to be in a risk-neutral world. However, when we
want to gain information about the future evolution of stock prices, interest
rates, or other quantities that evolve with time, then we have to do this in the
real world. This in particular means that we have to use our own subjective
views on the drift of the stock price or the short rate.

More precisely:
1. Whenever the evolution of price processes over time should be mod-
elled (may it be for risk calculations or for ALM) then the corresponding price
paths have to be simulated based on the real-world model.
2. Only for price calculations, paths of the underlying stock prices or
interest rates have to be simulated in the risk-neutral world.
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As a particular example, in a Black-Scholes framework, we would simulate
the stock price paths in the real world by

dS (t) = S (t) [μdt+ σdW (t)] , S (0) = s. (8.159)

If we want to calculate the price of a European call option at time t > 0,
then we would insert the simulated stock price S(t) with the real-world drift
μ into the standard Black-Scholes formula (see Corollary 5.12), i.e. we would
insert the simulated value from the real world into the pricing formula in the
risk-neutral world. However, if we want to price at time t > 0 an option with
issue date t that requires a Monte Carlo simulation itself (e.g. Asian or barrier
options as in Section 5.6.2), then we have to perform the Monte Carlo pricing
algorithm in the risk-neutral world by using S(t) coming from the simulation
in the real world, as price of the stock at time t. If the issue date t0 of this
path-dependent option lies before t, then we even have to use the simulated
values S

(
t̃
)

from the simulation in the real world in the pricing algorithm for
those time points t̃ that fulfill t0 ≤ t̃ ≤ t.

Which models to choose? This does not seem to be a particular ques-
tion related to ALM. Of course, one should always use realistic models that
are calibrated to market data. However, one also has to consider both the
behaviour of the model and its tractability when deciding which one to use.

A special aspect for ALM is that – as pointed out above – we often need
to simulate models in both the risk-neutral and the real world. We thus need
models where it is easy (and possible!) to switch between both worlds. In
the Black-Scholes model this is simply done by a change of drift from μ (the
subjective drift) to r, the risk-neutral drift. The most convenient way to
switch from the risk-neutral to the real world consists via the introduction of
a market price of risk. In the general one-dimensional diffusion setting of
the risk-neutral model

dS (t) = S (t) [r (t) dt+ σ (t, S (t)) dW (t)] , (8.160)

one can introduce this market price of risk as

λ (t) =
μ (t) − r (t)
σ (t, S (t))

, (8.161)

use Girsanov’s theorem (see Theorem 4.44) to define a Brownian motion W̃ (t)
under the real-world measure P via

W̃ (t) = W (t) −
∫ t

0

λ (s) ds, (8.162)

and obtain the real-world SDE representation with the desired drift μ(t)

dS (t) = S (t)
[
μ (t) dt+ σ (t, S (t)) dW̃ (t)

]
, (8.163)
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where we always assume sufficient integrability of the market price of risk.
By this approach we can show that many popular models stay in the same

model class in both worlds. A simple such example is the change of the
mean-reversion level of the short rate in the Vasicek model from θ to θ̃ by
introducing

λ (t) =
κ
(
θ̃ − θ

)
σ

(8.164)

and introducing the real-world Brownian motion W̃ as in (8.162). Further,
the measure changes introduced in Section 5.17.1 show how to introduce ad-
ditional drift parts for the zero bond prices.

Parameter calibration: Risk-neutral world or historical data? The
calibration of the parameters of the corresponding models in the real and
risk-neutral worlds highlights a positive (but also conflicting) aspect of the
existence of the two alternatives.

We can in principle calibrate all parameters to historical data. To use them
for pricing, we then have to take the short rate as drift in the risk-neutral
world. However, it is also a viable alternative to calibrate all parameters but
the drift to prices of derivatives (such as bonds for the yield curve or options
for shares). The (stock price) drifts then still have to be calibrated from real
world historical data, or they simply can be parameters that the investor can
forecast based on his expectations.

Including crash scenarios. As the relevant time horizon in ALM for
insurance companies is often around 15 years, one should also consider the
possibility of an economic crisis. Thus, it is important to include some crash
or stress scenarios. Examples for such scenarios can be the explicit inclusion of
a prespecified crash of a given height of the whole market at a predetermined
time, a shift of the complete yield curve, or other catastrophic events.

On the modelling side, one can use a jump-diffusion process to include
crash possibilities. One can also model a correlation structure that can change
over time. This is reasonable as one often observes that just before a crash,
correlations of stocks get close to one followed by a down jump of the market.

Challenges on the liability side

The main challenge on the liability side is to keep the model as represen-
tative as possible and on the other hand as small as possible in order to keep
the simulation effort small.

Aggregation of contracts. In this chapter, we have already discussed
approaches for life and nonlife insurance liabilities where the aggregation is the
main trick to keep the simulation effort as small as possible and as accurate
as necessary to simulate the liabilities in a reasonable time. However, to
aggregate the contracts to a representative one is only admissible if the law of
large numbers can be assumed to hold for the contracts. If the risks underlying
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the different contracts are very heterogeneous, then we must include several
representative contracts in our simulations to ensure that our sample cares
for all essential types of claim sizes.

New customers or run-off simulation? Another point to take into
account is the question whether we investigate the so-called run-off or allow
new customers. In the run-off case the investment strategy becomes irrelevant
as soon as no claims can occur any more and the value of the assets is positive,
i.e. it makes only sense to do a run-off investigation for a short time horizon.
If we allow for new customers and contracts, we also have to decide about
modelling their occurrence.

Performing an ALM study

After having set up the relevant models that are necessary to simulate
all the important evolutions on the asset and liability sides, one actually
has to simulate a large number of paths of all these relevant factors. So
a Monte Carlo simulation kernel such as the simulation engine ALMSim,
developed by the Fraunhofer Institute for Industrial Mathematics ITWM
(see www.itwm.fraunhofer.de/en/fm projects ALMSim/almsim/), is at the
heart of each ALM performance.

On the basis of these simulated paths, one can now evaluate the perfor-
mance of different investment strategies and thereby figure out the optimal
one (of course, one should have also clarified in which sense “optimal” should
be understood!). Of course, the consequences of choosing an investment strat-
egy such as the evolution of the total wealth, the assets, the liabilities,... of
a company are functionals of the simulated paths, they are also calculated
directly when each path is simulated. As usual, one obtains Monte Carlo esti-
mates of the distributions, the means, the variances, and/or the risk measures
via a suitable averaging over the different paths.

An ALM study is a tremendous task. It cannot be put together in just some
lines. Many considerations besides the ones already raised by us above will
enter into the task. Putting together all the details needed and also setting up
the simulation concept has to be done by a team and has to be well-organized.
We will not give a “toy” example here, as it would be too simplistic.
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B. Grünewald. Hedging in unvollständigen Märkten am Beispiel des Sprung-
Diffusionsmodells. PhD thesis, University of Mainz, Germany, 1998.

O. Haeggstrøm. Finite Markov Chains and Algorithmic Applications. Num-
ber 52 in Student Texts. London Mathematical Society, London, UK, 2003.

P. S. Hagan, D. Kumar, A. S. Lesniewski, and D. E. Woodward. Managing
smile risk. Wilmott Magazine, September:84–108, 2002.

J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Chapman
& Hall, CRC Press, Boca Raton, Florida, USA, 1964.

H. Haramoto, M. Matsumoto, T. Nishimura, F. Panneton, and P. L’Ecuyer.
Efficient jump ahead for F2-linear random number generators. Journal on
Computing, 20(3):385–390, 2008.

J. Harrison and S. R. Pliska. Martingales and stochastic integrals in the theory
of continuous trading. Stochastic Processes and Applications, 11:215–260,
1981.

J. Hartinger and M. Predota. Simulation methods for valuing Asian option
prices in a hyperbolic asset price model. IMA Journal of Management
Mathematics, 14(1):65–81, 2003.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, 57:97–109, 1970.

M. B. Haugh and L. Kogan. Pricing American options: A duality approach.
Operations Research, 52(2):258–270, 2004.

D. Heath and E. Platen. A variance reduction technique based on integral



References 449

representations. Quantitative Finance, 2(5):362–369, 2002.

D. Heath, R. A. Jarrow, and A. Morton. Bond pricing and the term struc-
ture of interest rates: A new methodology for contingent claims valuation.
Econometrica, 60(1):77–105, 1992.

S. Heinrich. Multilevel Monte Carlo methods. In S. Margenov, J. Wasniewski,
and P. Yalamov, editors, Large-Scale Scientific Computing. 3rd Interna-
tional Conference, 58–67, Lecture Notes in Computer Science, Springer,
Berlin, Germany, 2001.

P. Hellekalek. Inversive pseudorandom number generators: Concept, results
and links. In D. Goldsman, C. Alexopoulos, and K. Kang, editors, Proceed-
ings of the 1995 Winter Simulation Conference, 252–262, ACM, New York,
USA, 1995.

S. L. Heston. A closed-form solution for options with stochastic volatility with
applications to bond and currency options. Review of Financial Studies, 6
(2):327–343, 1993.

T. Hida. Brownian Motion. Applications of Mathematics. Springer, Berlin,
Germany, 1980.

D. J. Higham and X. Mao. Convergence of Monte Carlo simulations involving
the mean-reverting square root process. Journal of Computational Finance,
8(3):35–61, 2005.

D. Hincin. Asymptotische Gesetze der Wahrscheinlichkeitsrechnung. Ergeb-
nisse der Mathematik, 2(4), 1933.

T. S. Y. Ho and S.-B. Lee. Term structure and pricing interest rate contingent
claims. Journal of Finance, 41(5):1011–1029, 1986.

J. Hull and A. White. Forward rate volatilities, swap rate volatilities, and the
implementation of the LIBOR market model. Journal of Fixed Income, 10
(3):46–62, 2000.

J. Hull and A. White. The pricing of options on assets with stochastic volatil-
ities. Journal of Finance, 42(2):281–300, 1987.

J. Hull and A. White. Pricing interest rate derivative securities. Review of
Financial Studies, 3(4):573–592, 1990.
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P. J. Schönbucher. Credit Derivatives Pricing Models. Wiley, New York, USA,
2003.

W. Schoutens. Stochastic Processes and Orthogonal Polynomials. Springer,
Berlin, Germany, 2000.
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absorption, 227
acceptance-rejection method, 33
adapted Euler-Maruyama scheme,

320
admissible pair, 180
affine linear model, 283

Hull-White approach, 283
ALM, 435

real world, 437
risk-neutral world, 437

American contingent claim, 241
fair price, 242
hedging strategy, 242

American option, 185, 240
Andersen algorithm, 227
antithetic Monte Carlo estimator, 67
antithetic variates, 66

automatic moment matching,
69

confidence interval, 69
Monte Carlo estimator, 67

approximate factoring, 10
approximate simulation, 110
arbitrage, 187, 189
arbitrage bounds, 222
Archimedean copula, 399
Asian option, 200
Asmussen-Kroese estimator, 411
asset-liability management, see

ALM
asymptotically efficient, 411
auto-cap, 303
automatic moment matching, 69
average option, 200
average value-at-risk, 364

backwards induction, 243
barrier option, 202

double knock-out call, 202
knock-out, 202

basket option, 198
geometric average call, 199

Bayesian estimation, 427
conjugate prior, 428
posterior distribution, 427
prior distribution, 427

Bergomi model, 239
Bermudan option, 240, 242

fair price, 243
Longstaff-Schwartz algorithm,

243
Bermudan swaption, 305

parametric exercise boundary,
306

beta-distributed random number, 38
binomial model, 187
Black formula, 274
Black-Karasinski model, 287
Black-Scholes call price operator,

337
Black-Scholes formula, 191, 195

continuous dividends, 195
Black-Scholes formulae, 177
Black-Scholes model, 180

calibration, 221
drift, 177
generalization, 177
volatility matrix, 177

Black-Scholes partial differential
equation, 194

body of a function, 34
bounded relative error, 411
Brownian bridge, 121

d-dimensional, 121
Brownian filtration, 112

459
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Brownian martingale, 135
Brownian motion, 111

correlated multidimensional,
112

geometric, 176

calibration, 221
call option, 184
cap, 274
caplet, 274
Cauchy problem, 143
CEIOPS, 433
central difference, 258
central limit theorem, 58
CEV model, 217
change of measure, 192
characteristic operator, 142
Chebyschev’s covariance inequality,

67
Cheyette model, 290
chi-square test, 29
chi-square-distributed random num-

ber, 42
Cholesky factorization, 43
CIR model, 281
Clayton copula, 401
coherent risk measure, 364
collective model, 405
collision-free, 27
combined conditioned-shift method,

95
combined LCG, 12
combined random number genera-

tors, 15
Committee of European Insurance

and Occupational Pensions,
see CEIOPS

common random numbers, 99
compensated Poisson process, 313
compensated Poisson random mea-

sure, 315
complete market, 183
compound Poisson process, 311
conditional Monte Carlo estimator,

85

conditional sampling, 85
Monte Carlo estimator, 85

conditional value-at-risk, 364
connected states, 417
constant elasticity of variance model,

see CEV model
calibration, 218
Monte Carlo pricing, 219

constant portfolio process, 182
consumption process, 179
consumption rate process, 179
contingent claim, 190
continuous barrier option, 202
continuous dividends, 195
control variate

moment matched, 201
control variates, 70, 111

best linear, 73
confidence interval, 71
Monte Carlo estimator, 70
multiple controls, 73
series approximations, 74
unconditional mean, 75
unconditional mean estimator,

76
convex risk measure, 364
copula, 390

Archimedean, 399
Clayton, 401
Frank, 402
Gaussian, 394
Gumbel, 401
independence, 391
joint distribution, 390
lower Frechet copula, 392
Sklar’s theorem, 390
t-copula, 395
tranformation invariance, 391
upper Frechet copula, 392

coupon bond, 271
Cox process, 407
Cox-Ingersoll-Ross model, see CIR

model
Cramér-Lundberg model, 405
credibility, 431
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cumulant generating function, 94
curse of dimensionality, 63

d-dimensional Brownian bridge, 124
De Moivre, 379
delta approximation, 371
delta of an option, 195, 257
delta-gamma approximation, 371
difference

central, 258
forward, 258

difference of gammas representation,
347

diffusion capacity, 22, 27
discount curve, 270
discrepancy, 46
discrete bank account, 296
discrete barrier option, 202
distribution

heavy-tailed, 410
infinitely divisible, 324
light-tailed, 410
normal conditional, 122
posterior, 427
prior, 427
stable, 328
stationary, 418
strictly stable, 328

distribution of time point of death,
378

dividends
continuous, 195

Donsker’s invariance principle, 119
Donsker’s theorem, 119
double exponential jumps, 339
double-barrier knock-out call, 202
dyadic partition, 124
dynamic mortality models, 379
dynamic programming principle, 243

e-marked point process, 314
efficient

asymptotically, 411
logarithmically, 411

EICG, 23

EMM, 193
equidissection, 26
equidistribution, 26
equivalent martingale measure, 193
error

bounded relative, 411
global discretization error, 147
mean squared, 162

Esscher measure, 342
Euler method, 148
Euler-Maruyama scheme, 152, 319,

330
adapted, 320
multidimensional, 153

European option, 185
path-dependent, 199
path-independent, 197

exact simulation, 110
exercise price, 184
exotic option, 185
expectation principle, 359
expected shortfall, 364
expected utility principle, 361
experience rating, 431
explicit inversive congruential gener-

ator, 23
explicit one-step procedure, 148
exponential twisting, 94
exponential Vasicek model, 288
exponentially distributed random

number, 33

fair price, 190, 242, 243
fairness condition, 106
Feynman-Kac representation, 143
filtration, 104
fixed income trades, 269
fixed-strike average, 200
floating rate note, 273
floating rates, 272
floor, 274
floorlet, 274
force of mortality, 378

De Moivre, 379
Gompertz, 379
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Makeham, 379
Weibull, 379

forward difference, 258
forward price, 272
forward rate approach, 269, 288
Frank copula, 402
Frechet copula

lower, 392
upper, 392

frequency test, 29
full period, 9
full truncation, 227
future contracts, 272

gamma of an option, 257
gamma process, 325
gamma-distributed random number,

39
Gauss-Poisson jump-diffusion, 317

multidimensional, 319
Gaussian copula, 394
general n-dimensional linear SDE,

141
general one-dimensional linear SDE,

139
generalized feedback shift register

generator, 21
geometric average basket call, 199
geometric Brownian motion, 176
GFSR, 21
Gibbs sampler, 425

random-scan, 426
systematic-scan, 426

Girsanov’s theorem, 137
global discretization error, 147
Gompertz, 379

stochastic, 381
Greeks, 235, 257

delta, 195, 257
gamma, 257
likelihood ratio method, 264
localization, 266
Malliavin calculus, 267
pathwise differentiation

method, 261

rho, 257
theta, 257
vega, 257

gross premium, 358
Gumbel copula, 401

Halton sequences, 47
Heath-Jarrow-Morton framework,

see HJM framework
Heath-Platen estimator, 232, 235
heavy-tailed distribution, 410
hedging strategy, 242
Heston model, 224

absorption, 227
Andersen algorithm, 227
call price formula, 225
full truncation, 227
Heath-Platen estimator, 232,

235
leverage effect, 224
partial truncation, 227
reflection, 227
volatility of the volatility, 224

HJM drift condition, 289
HJM framework, 269
Ho-Lee model, 289
homogeneous Markov chain, 417
homogeneous Poisson process, 310
Hull-White approach, 283
hybrid Monte Carlo methods, 50
hyperbolic Lévy model, 342

ICG, 23
implicit schemes, 161
implied volatility, 214

curve, 214
surface, 214

implied volatility curve, 214
implied volatility surface, 214
importance sampling, 87, 111

combined conditioned-shift
method, 95

confidence interval, 90
discrete random variables, 97
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importance sampling density
function, 89

importance sampling estimator,
89

maximum principle, 91
importance sampling density func-

tion, 89
importance sampling estimator, 89
incomplete market, 222
increment, 9
independence copula, 391
individual model, 404
infinitely divisible, 324
inhomogeneous Poisson process, 310
initial reserve, 405
interest rate modelling, 269

affine linear model, 283
auto-cap, 303
Black formula, 274
Black-Karasinski model, 287
cap, 274
caplet, 274
Cheyette model, 290
CIR model, 281
coupon bond, 271
discount curve, 270
exponential Vasicek model, 288
fixed income trades, 269
floating rate note, 273
floating rates, 272
floor, 274
floorlet, 274
forward price, 272
forward rate approach, 269, 288
future contracts, 272
HJM drift condition, 289
HJM framework, 269
Ho-Lee model, 289
interest rate swap, 273
intrinsic short rate model, 285
iterative predictor-corrector

method, 302
LIBOR model, 293
log-normal forward-LIBOR

modelling, 294

log-normal model, 287
long-stepping method, 303
market model approach, 270
one-factor model, 276
predictor-corrector method, 302
short rate approach, 269
simple forward rate, 270
simple yield, 270
spot-LIBOR measure, 297
swap rate, 273
swap value, 273
swaptions, 274
target redemption note, 304
term structure of bond prices,

270
Vasicek model, 278
zero bond, 270

interest rate swap, 273
intrinsic short rate model, 285
inverse Gaussian process, 326
inverse Laplace transform, 399
inverse transformation method, 68
inversion method, 31
inversive congruential generators, 23
iterative predictor-corrector method,

302
Itô formula, 133

differential notation, 133
jump-diffusion process, 317
Lévy process, 324
multidimensional, 134
one-dimensional, 133

Itô integral, 127
multidimensional, 130
simple process, 127

Itô process
n-dimensional, 132
real-valued, 132

Itô’s martingale representation theo-
rem, 136

Itô-Taylor expansion, 152

jump process, 314
jump-diffusion process, 316
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adapted Euler-Maruyama
scheme, 320

double exponential jumps, 339
Euler-Maruyama scheme, 319
Gauss-Poisson jump-diffusion,

317
Itô formula, 317
Merton’s model, 335
multidimensional Gauss-

Poisson jump-diffusion,
319

Kendall’s tau, 393
knock-out barrier option, 202
Koksma-Hlawka inequality, 46
Kolmogorov-Smirnov test, 30

lagged Fibonacci generators, 16
Laplace transform, 398

inverse, 399
latin hypercube sampling, 83

latin hypercube estimator, 84
lattice structure, 11
law of large numbers

strong, 56
LCG, 8
leap-frog method, 51
Lee-Carter algorithm, 380
leverage effect, 187, 224
Lévy process, 320

Euler-Maruyama scheme, 330
hyperbolic model, 342
inverse Gaussian process, 326
Itô’s formula, 324
Lévy triplet, 323
Lévy-Itô decomposition, 322
Lévy-Khinchine formula, 325
multivariate models, 354
normal inverse Gaussian model,

352
small jump approximation, 331
stable, 328
subordinator, 328

Lévy triplet, 323

Lévy’s moment matching method,
198

Lévy-Itô decomposition, 322
Lévy-Khinchine formula, 325
LFG, 16
LFSR, 18
LIBOR model, 293

log-normal forward-LIBOR
modelling, 294

spot measure, 297
life insurance

deferred whole life annuity, 383
deferred whole life insurance,

383
mortality, 378
net premium principle, 384
pure endowment, 383
temporary life annuity, 383
term insurance, 383
whole life annuity, 383
whole life insurance, 383

likelihood ratio method, 264
likelihood ratio, 264
likelihood ratio estimator, 264
localization, 266
score function, 264

linear congruential generators, 8
linear feedback shift register genera-

tors, 18
local discretization error, 147
local martingale, 131
local volatility model, 177

Bergomi model, 239
CEV model, 217

localization, 266
localizing sequence, 132
log-normal

Black-Karasinski model, 287
log-normal forward-LIBOR mod-

elling, 294
log-normal model, 287
log-normal valuation formula, 195
logarithmically efficient, 411
long factor, 240
long-stepping method, 303
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Longstaff-Schwartz algorithm, 243
Lundberg bound, 406

m-tuple test, 30
Makeham, 379
Malliavin calculus, 267
mark to market, 433
marked point process, 314
market

complete, 183
incomplete, 222

market consistent pricing, 192
market model approach, 270
market price of risk, 438
Markov chain, 415

aperiodic, 417
connected states, 417
construction, 416
homogeneous, 417
irreducible, 418
positive recurrent state, 417
recurrent state, 417
reducible, 418
state space, 415
stationary distribution, 418
strong law, 419
transient state, 417
transition matrix, 416

Markov chain Monte Carlo, 420
burn-in period, 423
Gibbs sampler, 425
independence sampler, 422
Metropolis-Hastings algorithm,

420
Markov process, 105
martingale, 106

Brownian, 135
local, 131
sub-martingale, 106
super-martingale, 106

maturity, 185
maximally equidistributed, 26
maximum principle, 91
mean squared error, 162
Mersenne Primes, 9

Mersenne Twister, 21
Merton’s jump-diffusion setting, 335
Metropolis-Hastings algorithm, 420
Milstein scheme, 154

multidimensional, 155
order two, 160

minimal capital requirement, 434
mod 2 generators, 17
modulus, 9, 13
moment generating function, 94
moment matched control variate,

201
moment matching, 98

automatic, 69
Monte Carlo method, 55

confidence interval, 59
crude, 57, 107
hybrid, 50
randomized, 49
unbiased, 55, 57
variance reduction, see variance

reduction methods
Monte Carlo option pricing, 196

barrier shifting technique, 210
continuous barrier options

Brownian bridge, 206
discrete barrier options

conditional survival, 204
standard method, 203

Lévy’s moment matching
method, 198

monitoring bias, 207
path-dependent European op-

tions, 199
path-independent European op-

tions, 197
mortality, 378

De Moivre, 379
dynamic models, 379
force, 378
Gompertz, 379
Makeham, 379
stochastic dynamic model, 380
Weibull, 379

MRG, 12
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MRMM, 22
multidimensional Gauss-Poisson

jump-diffusion, 319
multidimensional homogeneous lin-

ear SDE, 140
multidimensional linear SDE, 141
multiple recursive generators, 12
multiple recursive matrix methods,

22
multiplier, 9
multipliers, 13
multistep method, 150
multivariate jump process, 314
multivariate Lévy models, 354
multivariate normally distributed

random numbers, 43

n-dimensional Brownian motion, 112
n-dimensional Itô process, 132
natural filtration, 104, 112

Brownian filtration, 112
P -augmentation, 112

nonlife insurance
collective model, 405
individual model, 404

normal conditional distribution, 122
normal inverse Gaussian model, 352
normally distributed random num-

ber, 35, 36
Novikov condition, 136
numerical schemes for SDE, 151

Euler-Maruyama scheme, 152
implicit schemes, 161
Milstein order two scheme, 160
Milstein scheme, 154
multidimensional Euler-

Maruyama scheme, 153
multidimensional Milstein

scheme, 155
predictor-corrector methods,

161
Runge-Kutta type, 161
strong Taylor approximations,

160

one-dimensional Brownian motion,
112

one-factor model, 276
one-period trinomial model, 222
option, 184

American, 185, 240
Asian, 200
average, 200
barrier option, 202
basket, 198
Bermudan, 240, 242
call, 184
continuous barrier option, 202
derivative security, 184
discrete barrier option, 202
double-barrier knock-out call,

202
European, 185
exercise price, 184
exotic, 185
expiry, 185
fixed-strike average, 200
knock-out barrier option, 202
leverage effect, 187
maturity, 185
payoff diagram, 185
plain vanilla, 185
put, 185
strike price, 184
Théorie de la Spéculation, 187
writer, 184

option pricing
replication principle, 187

order of the recursion, 13

P -augmentation of the natural filtra-
tion, 112

parallel random number generators,
51

parametric exercise boundary, 306
partial differential equation, 194
partial truncation, 227
partition

dyadic, 124
path recycling, 260
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path-dependent European options,
199

path-independent European options,
197

pathwise differentiation method, 261
adjoint method, 263
forward method, 263
localization, 266

payoff diagram, 185
PDE, see partial differential equa-

tion
period, 6, 8
Picard and Lindelöf theorem, 138
plain vanilla, 185
point process

e-marked, 314
Poisson process, 310

compensated, 313
compound, 311
Cox process, 407
homogeneous, 310
inhomogeneous, 310
mixed, 407

Poisson random measure, 315
portfolio process, 181

constant, 182
self-financing, 179, 182

positive recurrent state, 417
posterior distribution, 427
poststratified sampling, 82

poststratified Monte Carlo esti-
mator, 82

predictible, 313
predictive distribution, 430
predictor-corrector method, 150,

161, 302
preference free valuation, 192
premium, 357

gross, 358
premium principle, 358

expectation principle, 359
expected utility principle, 361
properties, 358
semistandard deviation princi-

ple, 360

standard deviation principle,
359

variance principle, 359
premium reserve

prospective, 387
price

fair, 190, 242, 243
forward, 272
market consistent, 192
market price of risk, 438
preference free, 192
sub-hedging, 223
super-hedging, 223

principle of common random num-
bers, 260

prior distribution, 427
progressively measurable, 129
prospective premium reserve, 387
pseudorandom number, 5
put option, 185

quadratic covariation, 132
quadratic variation, 133
quasi-Monte Carlo method, 45
quasirandom sequences, 6, 45

Halton, 47
Sobol, 48
Van-der-Corput, 47

random measure, 315
random number, 5

acceptance-rejection method, 33
beta-distributed, 38
chi-square-distributed, 42
discrete, 32
exponentially distributed, 33
gamma-distributed, 39
inversion method, 31
multivariate normally dis-

tributed, 43
normally distributed, 35, 36
Weibull-distributed, 38

random number generator, see RNG
random walk, 120
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randomized quasi-Monte Carlo
method, 49

real world, 437
real-valued Itô process, 132
realization, 104
recurrent state, 417
reflection, 227
replication principle, 187, 188
replication strategy, 190
reserve process, 406
resolution-stationary, 27
rho of an option, 257
risk measure, 358, 363

average value-at-risk, 364
coherent, 364
conditional value-at-risk, 364
convex, 364
expected shortfall, 364
properties, 363
utility based, 365
value-at-risk, 364

risk-neutral world, 437
RNG, 5

combined, 15
combined LCG, 12
diffusion capacity, 27
explicit inversive congruential

generator, 23
generalized feedback shift regis-

ter generator, 21
inversive congruential genera-

tors, 23
lagged Fibonacci generators, 16
linear congruential generators, 8
linear feedback shift register

generators, 18
Mersenne Twister, 21
mod 2 generators, 17
multiple recursive generators,

12
multiple recursive matrix meth-

ods, 22
nonlinear, 22
parallel, 51
period, 6, 8

quality criteria, 6
quasirandom sequences, 45
RANLUX, 24
seed, 8
state space, 8
Tausworthe generators, 18
test

0-1, 29
application-based, 31
chi-square, 29
frequency, 29
Kolmogorov-Smirnov, 30
maximum-of-t, 31
serial, 30
spectral, 25
statistical, 27

trinomial-based LFSR, 19
twisted GFSR generator, 22
WELL, 24
XORshift, 24

Romberg method
statictical, 164

ruin probability, 405
Runge-Kutta type methods, 161

sample path, 104
score function, 264
SDE, 137

general n-dimensional linear
SDE, 141

general one-dimensional linear
SDE, 139

multidimensional homogeneous
linear SDE, 140

multidimensional linear SDE,
141

numerical schemes, see numeri-
cal schemes for SDE

one-dimensional linear equation
with additive noise, 138

one-dimensional linear homoge-
neous equation, 138

square-root SDE, 141
variation of constants, 139

seed, 8, 9, 13
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self-financing portfolio process, 179,
182

semistandard deviation principle,
360

serial test, 30
short factor, 240
short rate approach, 269
simple forward rate, 270
simple process, 126
simple yield, 270
Sklar’s theorem, 390
small jump approximation, 331
Snell envelope, 251
Sobol sequences, 48
solvency capital requirement, 434
solvency II, 433

mark to market, 433
minimal capital requirement,

434
solvency capital requirement,

434
spectral test, 11, 25
spot-LIBOR measure, 297
square-root SDE, 141
stable distribution, 328

stable Lévy process, 328
strictly stable, 328

standard deviation principle, 359
star discrepancy, 46
state

connected, 417
positive recurrent, 417
recurrent, 417
transient, 417

state space, 8, 9, 415
state vector, 18
stationary distribution, 418
statistical Romberg method, 164

statistical Romberg estimator,
166

stochastic differential equation, see
SDE

stochastic integral, 127
stochastic process, 104

continuous-time stochastic pro-
cess, 104

discrete-time stochastic process,
104

increments, 105
stochastic volatility models, 177
stratified sampling, 76, 111

automatic stratification proce-
dure, 82

confidence interval, 81
latin hypercube estimator, 84
latin hypercube sampling, 83
multidimensional stratification,

80
poststratification, 82
poststratified Monte Carlo esti-

mator, 82
stratified Monte Carlo estima-

tor, 77
strike price, 184
strong law of large numbers, 56

Kolmogorov’s version, 56
strong Taylor approximation, 160
sub-hedging price, 223
sub-martingale, 106
subordinator, 328
super-hedging price, 223
super-martingale, 106
survival probability, 378, 405
swap rate, 273
swap value, 273
swaption, 274

Bermudan swaption, 305

t-copula, 395
tail dependence, 392
Talay-Tubaro extrapolation, 163
target redemption note, 304
Tausworthe generators, 18
Taylor approximation, 160
tempering, 18, 22
term structure of bond prices, 270
TGFSR, 22
Théorie de la Spéculation, 176, 187
theta of an option, 257
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Thiele’s differential equation, 388
time point of death, 378

distribution, 378
total claim, 404
trading strategy, 179
transient state, 417
transition function, 8
transition matrix, 18, 416
trinomial model, 222
trinomial-based LFSR, 19
twisted GFSR generator, 22

unconditional mean control variates,
75

utility based risk measure, 365
utility function, 361
utility premium principle, 361

valuation process, 191
value-at-risk, 364
variance gamma process, 345

conventional Monte Carlo op-
tion pricing, 348

difference of gammas represen-
tation, 347

option pricing, 347
variance principle, 359
variance reduction in the normal

case, 69
variance reduction in the uniform

case, 67
variance reduction methods, 65

antithetic variates, 66
combined methods, 99
common random numbers, 99
conditional sampling, 85
control variates, 70
importance sampling, 87, 111
latin hypercube sampling, 83
moment matching, 98
normal case, 69
poststratified sampling, 82
stratified sampling, 76
uniform case, 67
weighted estimation, 98

variation of constants, 139
Vasicek model, 278

calibration, 279
exponential, 288
Hull-White approach, 283
multifactor model, 280

vega of an option, 257
volatility, 213

Bergomi model, 239
CEV model, 217
curve, 214
function, 216
implied, 214
implied curve, 214
implied surface, 214
local, 177
matrix, 177
skew, 214
smile, 214
stochastic, 177
surface, 213

volatility clustering, 177, 344
volatility dynamics, 239

long factor, 240
short factor, 240

volatility of the volatility, 224

weak convergence, 116
wealth process, 179
Weibull, 379
Weibull-distributed random number,

38
weighted Monte Carlo estimation, 98
writer, 184

zero bond, 270
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