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Preface

Spatial analysis methods have seen a rapid rise in popularity due to demand from a
wide range of fields. These include, among others, biology, spatial economics, im-
age processing, environmental and earth science, ecology, geography, epidemiology,
agronomy, forestry and mineral prospection.

In spatial problems, observations come from a spatial process X = {Xs, s ∈ S}
indexed by a spatial set S, with Xs taking values in a state space E. The positions
of observation sites s ∈ S are either fixed in advance or random. Classically, S is a
2-dimensional subset, S ⊆R

2. However, it could also be 1-dimensional (chromatog-
raphy, crop trials along rows) or a subset of R

3 (mineral prospection, earth science,
3D imaging). Other fields such as Bayesian statistics and simulation may even re-
quire spaces S of dimension d ≥ 3. The study of spatial dynamics adds a temporal
dimension, for example (s, t) ∈ R

2×R
+ in the 2-dimensional case.

This multitude of situations and applications makes for a very rich subject. To
illustrate, let us give a few examples of the three types of spatial data that will be
studied in the book.

Geostatistical data

Here, S is a continuous subspace of R
d and the random field {Xs, s ∈ S} observed

at n fixed sites {s1, . . . ,sn} ⊂ S takes values in a real-valued state space E. The
rainfall data in Figure 0.1-a and soil porosity data in Fig. 0.1-b fall into this cate-
gory. Observation sites may or may not be regularly spaced. Geostatistics tries to
answer questions about modeling, identification and separation of small and large
scale variations, prediction (or kriging) at unobserved sites and reconstruction of X
across the whole space S.

Lattice data and data on fixed networks

Here, S is a fixed discrete non-random set, usually S ⊂ R
d and X is observed at

points in S. Points s might be geographical regions represented as a network with

v
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Fig. 0.1 (a) Rainfall over the Swiss meteorological network on May 8, 1986 (during the passage
of Chernobyl’s radioactive cloud. This is the sic dataset from the geoR package of R (178)); (b)
Soil porosity (soil dataset from the geoR package). For both (a) and (b), the size of symbols are
proportional to the value of Xs.
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Fig. 0.2 (a) Percentage of people with blood group A in the 26 counties of Ireland (eire dataset
from the spdep package); (b) Image of John Lennon (256×256 pixels in a 193-level grayscale,
lennon dataset from the fields package).

given adjacency graph G (cf. the 26 counties of Ireland, Fig. 0.2-a) and Xs some
value of interest measured at s. The state space E may or may not be real-valued. In
image analysis, S is a regularly spaced set of pixels (cf. Fig. 0.2-b). Goals for these
types of data include constructing and analyzing explicative models, quantifying
spatial correlations, prediction and image restoration.
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Point data

Figure 0.3-a shows the location of cell centers in a histological section seen under
a microscope and Figure 0.3-b the location and size of pine trees in a forest. Here,
the set of observation sites x = {x1,x2, . . . ,xn}, xi ∈ S ⊂ R

d is random, along with
the number n = n(x) of observation sites; x is the outcome of a spatial point process
(PP) observed in window S. The process X is said to be marked if at each xi we
record a value, for example the diameter of the pine trees found at xi. A central
question in the statistical analysis of PPs is to know if the distribution of points is
essentially regular (Figure 0.3-a), completely random (Poisson PP) or aggregated
(Figure 0.3-b).
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Fig. 0.3 (a) 42 cell centers of a histological section seen under a microscope (cells dataset from
the spatstat package); (b) Position and diameter of 584 pine trees in a forest (longleaf
dataset from the spatstat package).

As is the case for time series, spatial statistics differ from classical statistics due
to non-independence of observations; throughout this book, we will generally call
X a spatial process or random field.

This dependency structure means there is redundancy in available information
that can be exploited when making predictions, though it also modifies statistical
behavior. Unbiasedness, consistency, efficiency and convergence in distribution of
estimators all have to be reexamined in this context. The originality of spatial statis-
tics is to make use of non-causal modeling; in this sense, spatial statistics is radically
different to time series statistics where causal models use the passage of time and a
notion of the “past” (modeling river flows, stock prices, evolution of unemployment
rates, etc.). Markov spatial modeling works with the idea of the spatial neighbor-
hood of site s “in all directions.” This includes dimension d = 1: for example, if
S ⊆ Z

1 and Xs is the quantity of corn harvested from each corn stalk along a row, a
reasonable model would compare Xs with its two neighbors, the stalks to the “left”
Xs−1 and “right” Xs+1. We see that causal autoregressive modeling of Xs based on
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Xs−1 has no obvious meaning. If the crop is in a field, we could let the harvested
quantity Xs,t at site (s, t) depend on that of its 4 nearest neighbors Xs−1,t , Xs+1,t ,
Xs,t−1 and Xs,t+1, or even perhaps its 8 nearest neighbors.

These three types of spatial structure (cf. Cressie, (48)) provide the framework
to this book. The first three chapters are devoted to modeling each in turn (Chapter
1: Second-order models, geostatistics, intrinsic models and autoregressive models;
Chapter 2: Gibbs-Markov random fields over networks; Chapter 3: Spatial point pro-
cesses). Due to the importance of simulation in spatial statistics, Chapter 4 presents
Monte Carlo Markov Chain (MCMC) methods for spatial statistics. Chapter 5 then
brings together the most important statistical methods for the various models and
data types and investigates their properties. Four appendices round things off with a
presentation of the most useful probabilistic and statistical tools in spatial statistics
(simulation, limit theorems and minimum contrast estimation) as well as software
packages for performing analyses presented in the book.

Numerous examples, most of them treated with the R software package (178),
shed light on the topics being examined. When the data being studied are not directly
available in R or from some other specified location, descriptions, relevant program
scripts and links can be found at the website of the book:

www.dst.unive.it/∼gaetan/ModStatSpat .

Each chapter ends with a set of exercises.
The bibliography gives the reader the chance to enrich their knowledge of no-

tions only briefly presented here as well as several technical results whose proofs
have been omitted. We also list reference books that fill gaps remaining after our
intentionally reduced and non-exhaustive treatment of this multi-faceted subject un-
dergoing great development (69).

Our thanks go to all our colleagues who have given us a taste for spatial anal-
ysis, for their ideas, remarks, contributions and those who have allowed us to use
data collected from their own work. We would equally like to thank the R Develop-
ment Core Team and authors of spatial packages for R (178) who have made their
powerful and efficient software freely available to the public, indispensable when
working with methods and tools described here. We thank reviewers for their care-
ful rereading of the first draft; their remarks have helped to significantly improve the
present version. Thanks to Bernard Ycart for encouraging us to expand an initially
more modest project. Of course, we could never have undertaken this work without
the patience and support of our families and the backing of our respective research
teams, Dipartimento di Statistica - Università Ca’ Foscari Venezia and Laboratoire
SAMOS - Université Paris 1. Lastly, many thanks to Kevin Bleakley for the transla-
tion and English adaptation, done with much competence. Any remaining errors are
ours.

Venice and Paris, Carlo Gaetan
August 2009 Xavier Guyon
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Chapter 1
Second-order spatial models and geostatistics

Suppose S ⊆ R
d is a spatial set. A random field X on S taking values in a state space

E means a collection X = {Xs, s ∈ S} of random variables (r.v.) indexed by S taking
values in E. This chapter is devoted to the study of second-order random fields,
i.e., real-valued random fields where each Xs has finite variance. We also study the
broader class of intrinsic random fields, that is, random fields with increments of
finite variance. We consider two approaches.

In the geostatistics approach, S is a continuous subset of R
d and we model X in a

“second-order” way with its covariance function or its variogram. For example, for
d = 2, s = (x,y) ∈ S is characterized by fixed geographic coordinates and if d = 3,
we add altitude (or depth) z. Spatio-temporal evolution in space can also be modeled
at space-time “sites” (s, t) ∈ R

3 ×R
+, where s represents space and t time. Initially

developed for predicting mineral reserves in an exploration zone S ⊆ R
3, geostatis-

tics is today used in a variety of domains (cf. Chilès and Delfiner (43); Diggle and
Ribeiro (63)). These include, among others, earth science and mining exploration
(134; 152), epidemiology, agronomy and design of numerical experiments (193). A
central goal of geostatistics is to predict X by kriging over all of S using only a finite
number of observations.

The second approach involves autoregressive (AR) models, used when S is a
discrete network of sites (we will also use the word “lattice”). S may have a regu-
lar form, for example S ⊂ Z

d (images, satellite data, radiography; (42), (224)) or it
may not (econometrics, epidemiology; (45), (7), (105)). Here, the spatial correlation
structure is induced by the AR model chosen. Such models are well adapted to sit-
uations where measurements have been aggregated over spatial zones: for example,
in econometrics this might be the percentages of categories of a certain variable in
an administrative unit, in epidemiology, the number of cases of an illness per district
s and in agronomy, the total production in each parcel of land s.

C. Gaetan, X. Guyon, Spatial Statistics and Modeling, Springer Series in Statistics, 1
DOI 10.1007/978-0-387-92257-7_1, c© Springer Science+Business Media, LLC 2010



2 1 Second-order spatial models and geostatistics

1.1 Some background in stochastic processes

Let (Ω ,F ,P) be a probability space, S a set of sites and (E,E ) a measurable state
space.

Definition 1.1. Stochastic process
A stochastic process (or process or random field) taking values in E is a family

X = {Xs, s ∈ S} of random variables defined on (Ω ,F ,P) and taking values in
(E,E ). (E,E ) is called the state space of the process and S the (spatial) set of sites
at which the process is defined.

For any integer n ≥ 1 and n-tuple (s1,s2, . . . ,sn) ∈ Sn, the distribu-
tion of (Xs1 ,Xs2 , . . . ,Xsn) is the image of P under the mapping ω 
−→
(Xs1(ω),Xs2(ω), . . . ,Xsn(ω)): that is, for Ai ∈ E , i = 1, . . . ,n,

PX (A1,A2, . . . ,An) = P(Xs1 ∈ A1,Xs2 ∈ A2, . . . ,Xsn ∈ An).

The event (Xs1 ∈ A1,Xs2 ∈ A2, . . . ,Xsn ∈ An) of E is a cylinder associated with the
n-tuple (s1,s2, . . . ,sn) and events Ai, i = 1, . . . ,n belonging to F . The family of all
finite-dimensional distributions of X is called the spatial distribution of the process;
if S ⊆ R, we say time distribution. More generally, the distribution of the process
is uniquely defined as the extension of the spatial distribution to the sub-σ -algebra
A ⊆ F generated by the set of cylinders of E (32, Ch. 12), (180, Ch. 6).

For the rest of the chapter, we will be considering real-valued processes, E ⊆ R

endowed with a Borel σ -field E = B(E).

Definition 1.2. Second-order process
X is a second-order process (random field) if for all s ∈ S, E(X2

s ) <∞. The mean
of X (which necessarily exists) is the function m : S → R defined by m(s) = E(Xs).
The covariance of X is the function c : S× S → R defined for all s, t by c(s, t) =
Cov(Xs,Xt).

With L2 = L2(Ω ,F ,P) representing the set of real-valued and square integrable
random variables on (Ω ,F ), X ∈ L2 means that X is a second-order process. A
process X is said to be centered if for all s, m(s) = 0.

Covariances are characterized by the positive semidefinite (p.s.d.) property:

∀m ≥ 1, ∀a ∈ R
m and ∀(s1,s2, . . . ,sm) ∈ Sm :

m

∑
i=1

m

∑
j=1

aia jc(si,s j) ≥ 0.

This property is a consequence of non-negativity of the variance of linear combina-
tions:

Var

(
m

∑
i=1

aiXsi

)
=

m

∑
i=1

m

∑
j=1

aia jc(si,s j) ≥ 0.

We say that the covariance is positive definite (p.d.) if furthermore, for every m-tuple
of distinct sites, ∑m

i=1∑
m
j=1 aia jc(si,s j) > 0 whenever a �= 0. Gaussian processes are

an important class of L2 processes.
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Definition 1.3. Gaussian process
X is a Gaussian process on S if for every finite subset Λ ⊂ S and real-valued

sequence a = (as, s ∈Λ), ∑s∈Λ asXs is a Gaussian random variable.

If mΛ = E(XΛ ) is the mean of XΛ = (Xs, s ∈Λ) and ΣΛ its covariance, then if ΣΛ
is invertible, the density (or likelihood) of XΛ with respect to the Lebesgue measure
on R

�Λ is

fΛ (xΛ ) = (2π)−�Λ/2(detΣΛ )−1/2 exp

{
−1

2
t(xΛ −mΛ )Σ−1

Λ (xΛ −mΛ )
}

,

where �U is the cardinality of U and xΛ possible values of XΛ . Such densities
are well-defined and Kolmogorov’s theorem ensures that for any mean function
m and p.d. covariance c there exists a (Gaussian) random field with mean m and
covariance c.

Example 1.1. Brownian motion on R
+ and Brownian sheet on (R+)2

X is a Brownian motion (180) on S = R
+ if X0 = 0, if for all s > 0, Xs follows a

N (0,s) (Xs ∼N (0,s)) and if increments X(]s, t]) = Xt −Xs, t > s ≥ 0 are indepen-
dent for disjoint intervals. The covariance of Brownian motion is c(s, t) = min{s, t}
and the increment process ΔXt = Xt+Δ −Xt , t ≥ 0 is stationary (cf. Ch. 1.2) with
marginal distribution N (0,Δ).

This definition can be extended to the Brownian sheet (37) on the first quadrant
S = (R+)2 with: Xu,v = 0 if u× v = 0, Xu,v ∼ N (0,u× v) for all (u,v) ∈ S and
independence of increments for disjoint rectangles; the increment on rectangle ]s, t],
s = (s1,s2), t = (t1, t2), s1 < t1, s2 < t2 is given by

X(]s, t]) = Xt1,t2 −Xt1s2 −Xs1t2 +Xs1s2 .

Brownian sheets are centered Gaussian processes with covariance c(s, t) =
min{s1,s2} ×min{t1, t2}.

1.2 Stationary processes

In this section, we suppose that X is a second-order random field on S = R
d or Z

d

with mean m and covariance c. The notion of stationarity of X can be more generally
defined when S is an additive subgroup of R

d : for example, S could be the triangular
lattice of R

2, S = {ne1 +me2, n and m ∈ Z} with e1 = (1,0) and e2 = (1/2,
√

3/2);
another example is the finite d-dimensional torus with pd points, S = (Z/pZ)d .

1.2.1 Definitions and examples

Definition 1.4. Second-order stationary process
X is a second-order stationary process on S if it has constant mean and translation-

invariant covariance c:
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∀s, t ∈ S: E(Xs) = m and c(s, t) = Cov(Xs,Xt) = C(t − s).

C : S → R is the stationary covariance function of X . Translation-invariance of c
means:

∀s, t,h ∈ S: c(s+h, t +h) = Cov(Xs+h,Xt+h) = C(s− t).

The correlation function of X is the function h 
→ ρ(h) = C(h)/C(0). The following
properties hold:

Proposition 1.1. Let X be a second-order stationary process with stationary covari-
ance C. Then:

1. ∀h ∈ S, |C(h)| ≤C(0) = Var(Xs).
2. ∀m ≥ 1, a ∈ R

m and {t1, t2, . . . , tm} ⊆ S: ∑m
i=1∑

m
j=1 aia jC(ti − t j) ≥ 0.

3. If A : R
d −→ R

d is linear, the process XA = {XAs, s ∈ S} is stationary with
covariance CA(s) = C(As). CA is p.d. if C itself is and if A has full rank.

4. If C is continuous at the origin, then C is everywhere uniformly continuous.
5. If C1, C2, . . . are stationary covariances, the following functions are as well:

a. C(h) = a1C1(h)+a2C2(h) if a1 and a2 ≥ 0.
b. More generally, if C(·;u), u ∈ U ⊆ R

k is a stationary covariance for each u
and if μ is a positive measure on R

k such that Cμ(h) =
∫

U C(h;u)μ(du) exists
for all h, then Cμ is a stationary covariance.

c. C(h) = C1(h)C2(h).
d. C(h) = limn→∞Cn(h), provided that the limit exists for all h.

Proof. Without loss of generality, suppose that X is centered.
(1) is a consequence of the Cauchy-Schwarz inequality:

C(h)2 = {E(XhX0)}2 ≤ {E(X2
0 )E(X2

h )} = E(X2
0 )2.

(2) follows from the fact that covariances are p.s.d. (3) can be shown directly. (4) can
be inferred from the fact that C(s + h)−C(s) = E[X0(Xs+h −Xs)] and the Cauchy-
Schwarz inequality,

|C(s+h)−C(s)| ≤
√

C(0)
√

2[C(0)−C(h)].

(5) It is easy to show that the functions C defined by (a), (b) and (d) are p.s.d. Then,
if X1 and X2 are stationary and independent with covariances C1 and C2, covariance
C given in (5-a) (resp. (5-b)) is that of Xt =

√
a1X1,t +

√
a2X2,t (resp. Xt = X1tX2t).

��
The notion of stationarity can defined in two ways in L2. The first, weaker, is that
of stationary increment processes or intrinsic processes and is presented in Section
1.3. The second, stronger, is known as strict stationarity. We say that X is strictly
stationary if for all k ∈N, all k-tuples (t1, t2, . . . , tk)∈ Sk and all h∈ S, the distribution
of (Xt1+h, Xt2+h, . . ., Xtk+h) is independent of h. In a sense, X is strictly stationary if
the spatial distribution of the process is translation-invariant.
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If X is strictly stationary and if X ∈ L2, then X is stationary in L2. The converse
is generally not true but both notions represent the same thing if X is a Gaussian
process.

Example 1.2. Strong White Noise (SWN) and Weak White Noise (WWN)

X is a Strong White Noise if the variables {Xs, s ∈ S} are centered, independent
and identically distributed (i.i.d.). X is a Weak White Noise if the variables {Xs, s ∈
S} are centered and uncorrelated with finite constant variance: if s �= t, Cov(Xs,Xt) =
0 and Var(Xs) = σ2 < ∞. A SWN on S is strictly stationary; a WWN on S is a
stationary process in L2.

We denote ‖·‖ the Euclidean norm in R
d : ‖x‖ = ‖x‖2 =

√
∑d

i=1 x2
i , x =

(x1,x2, . . . ,xd).

Definition 1.5. Isotropic covariance
X has isotropic covariance if for each s, t ∈ S, Cov(Xs,Xt) depends only on

‖s− t‖:

∃C0 : R
+→ R s.t.: ∀t,s ∈ S, c(s, t) = C0(‖s− t‖) = C(s− t).

Isotropic covariances are therefore stationary but isotropy imposes restrictions on
the covariance. For example, if X is isotropic and centered in R

d and if we consider
d +1 points mutually separated by distance ‖h‖,

E{
d+1

∑
i=1

Xsi}2 = (d +1)C0(‖h‖)(1+dρ0(‖h‖) ≥ 0 ,

where ρ0 : R
+ → [−1,1] is the isotropic correlation function. Therefore, for all h,

this correlation satisfies
ρ0(‖h‖) ≥−1/d. (1.1)

1.2.2 Spectral representation of covariances

Fourier theory and Bochner’s theorem (29; 43) together imply a bijection between
stationary covariances C on S and their spectral measure F . It is thus equivalent to
characterize a stationary model in L2 by its stationary covariance C or its spectral
measure F .

The S = R
d case

We associate with C a symmetric measure F ≥ 0 bounded on the Borel sets B(Rd)
such that:

C(h) =
∫

Rd
eit huF(du), (1.2)
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where thu = ∑d
i=1 hiui. If C is integrable, F is absolutely continuous with density f

(with respect to the Lebesgue measure ν on R
d). f is called the spectral density of

X . The inverse Fourier transform lets us express f in terms of C:

f (u) = (2π)−d
∫

Rd
e−i t huC(h)dh.

If X has isotropic covariance C, its spectral density f does too and vice versa. Denote
r = ‖h‖, h = (r,θ) where θ = h‖h‖−1 ∈ Sd gives the direction of h in the unitary
sphere Sd in R

d centered at 0, ρ = ‖u‖ and u = (ρ,α), with α = u‖u‖−1 ∈ Sd . For
the polar coordinates h = (r,θ) and u = (ρ,α) of h and u, note cd(r) = C(h) and
fd(ρ) = f (u) the covariance and isotropic spectral density. Integrating (1.2) over Sd

with surface measure dσ , then over ρ ∈ [0,∞[, we get:

C(h) = cd(r) =
∫

[0,∞[

[∫
Sd

cos(rρ tθα)dσ(α)
]
ρd−1 fd(ρ)dρ

=
∫

[0,∞[
Λd(rρ)ρd−1 fd(ρ)dρ. (1.3)

The Hankel transform fd 
→ cd , analogous to a Fourier transform when deal-
ing with isotropy shows that the variety of isotropic covariances is the same
as that of the bounded positive measures on [0,∞[. Furthermore (227), Λd(v) =
Γ (d/2)(ν/2)−(d−2)/2J(d−2)/2(v), where Jκ is the Bessel function of the first kind
of order κ (2). For n = 1, 2 and 3, we have:

c1(r) = 2
∫

[0,∞[
cos(ρr) f1(ρ)dρ ,

c2(r) = 2π
∫

[0,∞[
ρJ0(ρr) f2(ρ)dρ ,

c3(r) =
2
r

∫

[0,∞[
ρ sin(ρr) f3(ρ)dρ .

Using (1.3), we obtain lower bounds:

C(h) ≥ inf
v≥0
Λd(v)

∫

]0,∞[
ρd−1 fd(ρ)dρ = inf

v≥0
Λd(v)C(0).

In particular, we get the lower bounds (227; 184), tighter than those in (1.1):
ρ0(‖h‖) ≥ −0.403 in R

2, ρ0(‖h‖) ≥ −0.218 in R
3, ρ0(‖h‖) ≥ −0.113 in R

4 and
ρ0(‖h‖) ≥ 0 in R

N.

Example 1.3. Exponential covariances in R
d

For t ∈ R, α,b > 0, C0(t) = bexp(−α |t|) has the Fourier transform:
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f (u) =
1

2π

∫

]−∞,∞[
be−α|t|−iutdt =

αb
π(α2 +u2)

.

As f ≥ 0 is integrable over R, it is a spectral density and C0 therefore a covariance
on R. Also, as

∫

]0,∞[
e−αxJκ(ux)xκ+1dx =

2α(2u)κΓ (κ+3/2)
π1/2(α2 +u2)κ+3/2

,

we see that

φ(u) =
αbΓ [(d +1)/2]

[π(α2 +u2)](d+1)/2

is an isotropic spectral density of a process on R
d with covariance

C(h) = C0(‖h‖) = bexp(−α ‖h‖).

For any dimension d, C is therefore a covariance function, given the name exponen-
tial, with parameter b for the variance of X and a = α−1 the range.

The S = Z
d case

Note T
d = [0,2π[d the d-dimensional torus. According to Bochner’s theorem, any

stationary covariance C on Z
d is associated with a measure F ≥ 0 bounded on the

Borel sets B(Td) such that:

C(h) =
∫

Td
eit uhF(du).

If C is square summable (∑h∈Zd C(h)2 < ∞), the spectral measure F is absolutely
continuous with density f (w.r.t. the Lebesgue measure) in L2(Td):

f (u) = (2π)−d ∑
h∈Zd

C(h)e−i t uh. (1.4)

Furthermore, if ∑h∈Zd |C(h)| < ∞, we have uniform convergence and f is continu-
ous. Also, the greater the differentiability of f , the faster the convergence of C to
0 in the limit and vice versa: for example, if f ∈ C k(Td) where k = (k1, . . . ,kd)
∈ N

d ,

lim sup
h−→∞

hk |C(h)| < ∞,

where h = (h1,h2, . . . ,hd) −→ ∞ means at least one coordinate hi → ∞ and hk =
hk1

1 × . . .× hkd
d . In particular, if f is infinitely differentiable, C goes to zero faster

than any power function. This is the case for ARMA models (cf. §1.7.1) which have
rational spectral density f .
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1.3 Intrinsic processes and variograms

1.3.1 Definitions, examples and properties

The stationarity property in L2 may not be satisfied for various reasons: for example
when Xs = Ys + Z, where Y is stationary in L2 but Z /∈ L2, or equally when X is in
L2 but not stationary, whether that be second-order (Brownian motion) or first-order
(Xs = a + bs + εs for a stationary centered residual process ε). A way to weaken

the L2 stationarity hypothesis is to consider the increment process {ΔX (h)
s = Xs+h −

Xs, s ∈ S} of X , which may be stationary in L2 even when X is not stationary or not
in L2.

Definition 1.6. Intrinsic process
X is an intrinsically stationary process (or intrinsic process) if for each h ∈ S,

the process ΔX (h) = {ΔX (h)
s = Xs+h −Xs : s ∈ S} is second-order stationary. The

semi-variogram of X is the function γ : S → R defined by:

2γ(h) = Var(Xs+h −Xs).

Every stationary process in L2 with covariance C is clearly an intrinsic process
with variogram 2γ(h) = 2(C(0)−C(h)). However, the converse is not true: Brow-
nian motion in R, with variogram |h|, is intrinsic but not stationary. Furthermore,
processes with affine means and stationary residuals are intrinsic, differentiation
having the effect (as for time series) of absorbing affine trends and rendering the
process first-order stationary. If we differentiate k times, polynomial trends of de-
gree k can be removed, the process X being called k-intrinsic if Δ kX (h) is stationary
(cf. (43); in Z, so-called ARIMA models are a generalization of ARMA). For in-
stance, the Brownian sheet on (R+)2 is not intrinsic as it can be easily verified that
Var(X(u,v)+(1,1)−X(u,v)) = u+ v+1 depends on h = (u,v).

If X is an intrinsic process and if the function m(h) = E(Xs+h−Xs) is continuous
at 0, then m(·) is linear: ∃a ∈ R

d s.t. m(h) = 〈a,h〉. In effect, m is additive, m(h)+
m(h′) = E{(Xs+h+h′ −Xs+h′)+(Xs+h′ −Xs)} = m(h+h′) and continuity of m at 0
implies linearity.

From now on, we will concentrate on intrinsic processes with centered incre-
ments: ∀h, m(h) = 0.

Proposition 1.2. Properties of variograms

1. γ(h) = γ(−h), γ(h) ≥ 0 and γ(0) = 0.
2. Variograms are conditionally negative definite (c.n.d.): ∀a ∈ R

n s.t. ∑n
i=1 ai = 0,

∀{s1, . . . ,sn} ⊆ S, we have:

n

∑
i=1

n

∑
j=1

aia jγ(si − s j) ≤ 0.

3. If A is a linear transformation in R
d and γ a variogram, then h 
→ γ(Ah) is too.
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4. Properties 5-(a,b,d) of covariances (cf. Prop. 1.1) remain true for variograms.
5. If γ is continuous at 0, then γ is continuous at every site s where γ is locally

bounded.
6. If γ is bounded in a neighborhood of 0, ∃a and b ≥ 0 such that for any x, γ(x) ≤

a‖x‖2 +b.

Proof. (1) is obvious. To prove (2), set Ys = (Xs −X0). Y is stationary in L2 with
covariance CY (s, t) = γ(s)+γ(t)−γ(s−t). Then, if ∑n

i=1 ai = 0, we get ∑n
i=1 aiXsi =

∑n
i=1 aiYsi and

Var

(
n

∑
i=1

aiXsi

)
=

n

∑
i=1

n

∑
j=1

aia jCY (si,s j) = −
n

∑
i=1

n

∑
j=1

aia jγ(si − s j) ≥ 0.

(3) If X is an intrinsic process with variogram 2γ , then Y = {Ys = XAs} is intrinsic
with variogram:

2γY (h) = Var(XA(s+h) −XAs) = 2γ(Ah).

(4) The proof is similar to that of Prop. 1.1. (5) 2{γ(s + h)− γ(s)} = E(A) where
A = (Xs+h −X0)2 − (Xs −X0)2. It is easy to show that A = B+C where B = (Xs+h −
Xs)(Xs+h −X0) and C = (Xs+h −Xs)(Xs −X0). Applying the Cauchy-Schwarz in-
equality to each of the products B and C, the result follows from the upper bound:

|γ(s+h)− γ(s)| ≤
√
γ(h)[

√
γ(s)+

√
γ(s+h)].

Also, γ is uniformly continuous on any set over which γ is bounded. (6) We prove
by induction that for each n ∈ N and h ∈ R

d , γ(nh) ≤ n2γ(h). This is true for n = 1;
then, since

2γ((n+1)h) = E{(Xs+(n+1)h −Xs+h)+(Xs+h −Xs)}2 ,

the Cauchy-Schwarz inequality gives

γ((n+1)h) ≤ γ(nh)+ γ(h)+2
√
γ(nh)γ(h) ≤ γ(h){n2 +1+2n} = (n+1)2γ(h).

Suppose next that δ > 0 satisfies sup‖u‖≤δ γ(u) = C < ∞ and x ∈ R
d satisfies nδ ≤

‖x‖ ≤ (n + 1)δ , n ≥ 1. Setting x̃ = δ ‖x‖−1, the decomposition x = nx̃ + τ defines
some τ satisfying ‖τ‖ ≤ δ . We conclude by remarking that

γ(x) = γ(nx̃+ τ) ≤ γ(nx̃)+ γ(τ)+2
√
γ(nx̃)γ(τ)

≤Cn2 +C +2Cn = C(n+1)2 ≤C

(‖x‖
δ

+1

)2

. ��

Unlike covariances, variograms are not necessarily bounded (for example, the
variogram γ(h) = |h| for Brownian motion). However, the previous proposition
shows that variograms tend to infinity at a rate of at most ‖h‖2. One such example
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of quadratic growth γ(t) = σ2
1 t2 is that of the variogram of Xt = Z0 + tZ1, t ∈ R,

where Z0 and Z1 are centered and independent and Var(Z1) = σ2
1 > 0.

Characterizations exist to ensure a function γ is a variogram, one of them being
the following (43): if γ is continuous and if γ(0) = 0, then γ is a variogram if and
only if, for every u > 0, t 
→ exp{−uγ(t)} is a covariance. For example, as t 
→
exp{−u‖t‖2} is a covariance on R

d for each u > 0 and dimension d, γ(t) = ‖t‖2 is
a variogram on R

d that goes to infinity at a quadratic rate.

1.3.2 Variograms for stationary processes

If X is stationary with covariance C, then X is intrinsic with variogram

2γ(h) = 2(C(0)−C(h)). (1.5)

In particular, variograms of stationary processes are bounded. Matheron (153) par-
tially proved the converse, that is, if the variogram of intrinsic process X is bounded,
then Xt = Zt +Y where Z is a stationary process of L2 and Y some general real ran-
dom variable.

If C(h)→ 0 as ‖h‖→∞, then γ(h)→C(0) as ‖h‖→∞. The variogram therefore
has a sill at height C(0) =Var(X) as ‖h‖→∞. The range (resp. the practical range)
is the distance at which the variogram reaches its sill (resp. 95% the value of the sill),
cf. Fig. 1.1.

h
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Fig. 1.1 (a) Semivariogram of a stationary model with a nugget effect component; (b) variogram
models that have the same range.

Statistical methods for second-order stationary processes can be considered in
terms of covariances or in terms of variograms. Statisticians prefer the first way,
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geostatisticians the second. We note that the advantage of working with variograms
is that, unlike covariances, the mean does not have to be pre-estimated (cf. §5.1.4).

1.3.3 Examples of covariances and variograms

Isotropic variograms

The following examples are isotropic variograms on R
d traditionally used in geo-

statistics. Other models are presented in Yaglom (227), Chilès and Delfiner (43),
Wackernagel (221) and the review article (195). The first five variograms, associated
with stationary covariances C(h) = C(0)− γ(h) are bounded with range parameter
a > 0 and sill σ2. Remember that ‖·‖ is the Euclidean norm on R

d .

-Nugget effect: γ(h;σ2) = σ2 when h > 0, γ(0) = 0, associated with WWNs.
-Exponential: γ(h;a,σ2) = σ2{1− exp(−‖h‖/a)}.
-Spherical (d ≤ 3):

γ(h;a,σ2) =
{
σ2
{

1.5‖h‖/a−0.5(‖h‖/a)3
}

if ‖h‖ ≤ a
σ2 if ‖h‖ > a

.

-Generalized exponential, Gaussian : γ(h;a,σ2,α) = σ2(1−exp(−(‖h‖/a)α) if
0 < α ≤ 2; α = 2 represents the Gaussian model.

-Matérn:

γ(h;a,σ2,ν) = σ2{1− 21−ν

Γ (ν)
(‖h‖/a)νKν(‖h‖/a)},

where Kν(·) is the modified Bessel function of the second kind with parameter
ν > −1 (2; 227; 200).

-Power: γ(h;b,c) = b‖h‖c, 0 < c ≤ 2.

The variogram shown in Figure 1.1-(a) can be interpreted as being from a process
Ys = Xs + εs where ε is a white noise in L2 (nugget effect at the origin) uncorrelated
with X whose variogram is continuous and with sill

2γY (h) = 2σ2
ε (1−δ0(h))+2γX (h).

Comments

1. Spherical covariance can be interpreted in the following way: the volume V (a,r)
of the intersection of two spheres in R

3 having the same diameter a and centers
at a distance r apart is:
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Fig. 1.2 Graph showing triangular, spherical and circular covariances with σ2 = 1 and a = 0.8.

V (a,r) =
{
ν(Sa)

{
1−1.5(r/a)+0.5(r/a)3

}
if r ≤ a

0 if r > a
,

where ν(Sa) is the volume of a sphere of radius a. An example of a process lead-
ing to a spherical covariance is the process Xs = N(Sa(s)) counting the number
of points of a homogeneous Poisson point process with intensity σ2/ν(Sa) in the
sphere Sa(s) of diameter a centered at s ∈ R

3 (cf. Ch. 3, §3.2).
2. The circular covariance Ccirc on R

2 is obtained in the same way by replacing
spheres in R

3 by disks in R
2:

Ccirc(h;a,σ2) =

⎧⎪⎨
⎪⎩

2σ2

π

(
arccos ‖h‖

a − ‖h‖
a

√
1−
( ‖h‖

a

)2
)

if ‖h‖ ≤ a

0 otherwise

. (1.6)

Similarly, the triangular covariance Ctri on R
1 can be obtained by simply replac-

ing spheres in R
3 by intervals [−a,+a] in R

1:

Ctri(h;a,σ2) =

{
σ2
(

1− |h|
a

)
if |h| ≤ a

0 otherwise
.

Triangular, spherical and circular covariances are shown in Fig. 1.2.
3. As covariances on R

d remain positive semidefinite on any vectorial subspace, the
restriction of a covariance to any subspace is still a covariance. In particular, the
restriction of a spherical covariance to R

d′ , d′ ≤ 3, is still a covariance. However,
extending an isotropic covariance from R

d to R
d′ for d′ > d does not gener-

ally give a covariance. Exercise 1.5 gives an example of this with respect to the
triangular covariance.
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Fig. 1.3 Matérn semivariograms with the same range but different ν .

4. Our interest in Matérn covariance is due to its parameter ν which controls the var-
iogram’s regularity at 0 (cf. Fig. 1.3), which in turn controls the quadratic mean
(q.m.) regularity of the process X (cf. §1.4) and its prediction X̂ using kriging (cf.
§1.9): increasing ν increases regularity of γ at 0 and regularity of the process X
(the kriging surface X̂). Taking ν = 1/2 gives an exponential variogram which is
continuous but not differentiable at 0, the associated process X being continuous
but not differentiable in q.m.; ν = ∞ corresponds to the infinitely differentiable
Gaussian variogram associated with an infinitely differentiable process X . For
integer m ≥ 1 and taking ν > m, the covariance is differentiable 2m times at 0
and X is differentiable m times in q.m. For example, if ν = 3/2 and r = ‖h‖,
C(h) = C(r) = σ2(1+(r/a))exp−(r/a) is twice differentiable at r = 0 and the
associated random field differentiable in q.m.

5. The power model is self-similar, i.e., scale invariant: ∀s > 0, γ(sh) = sαγ(h). It is
therefore naturally associated with scale-free spatial phenomena and is the only
model among those presented that has this property.

6. The generalized exponential model is identical to the exponential model when
α = 1 and the Gaussian model when α = 2. Regularity of this type of vari-
ogram increases with α but the associated random field is only differentiable in
quadratic mean when α = 2.

7. Each of the previous models can be extended by taking positive linear combina-
tions (or by integrating with respect to positive measures), in particular by adding
a nugget effect variogram to any other variogram.

If X is a sum of K uncorrelated intrinsic processes (resp. stationary processes in
L2), it has the nested variogram (resp. covariance):
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2γ(h) =
K

∑
j=1

2γ j(h) (resp. C(h) =
K

∑
j=1

Cj(h)).

This model can be interpreted as having independent spatial components acting on
different scales with different sills. Statistically speaking, small-scale components
can only be identified if the sampling grid is fairly dense and large-scale components
only if the diameter of the sampling domain in S is relatively large.

1.3.4 Anisotropy

For a direction −→e in R
d such that ‖−→e ‖= 1, the directional variogram of an intrinsic

random field in direction −→e is defined as

2γ(h) = Var(Xs+h−→e −Xs) for h ∈ R.

We say that a variogram is anisotropic if at least two directional variograms
differ.

We distinguish essentially two types of anisotropy: the first, geometric anisotropy
is associated with a linear deformation of an isotropic model; the second corre-
sponds to a nested variogram model over many subspaces of R

d (43; 77; 194).

Geometric anisotropy

The variogram 2γ on R
d exhibits geometric anisotropy if it results from an A-linear

deformation of an isotropic variogram 2γ0:

γ(h) = γ0(‖Ah‖),

i.e., if γ(h) = γ0(
√

thQh), where Q = tAA. Such variograms have the same sill in
all directions (cf. Fig. 1.4-a) but with ranges that vary depending on the direction.
In the orthonormal basis of eigenvectors of Q associated with eigenvalues (λk, k =
1, . . . ,d), γ(h̃) = γ0(∑d

k=1λkh̃k) in these new coordinates h̃.
For example, if A is a rotation of angle φ around the origin in R

2 followed by
dilation by factor 0 ≤ e ≤ 1 with respect to the new y axis, the set of ranges forms
an ellipse with eccentricity e in this new basis. Figure 1.4-a gives an example of
geometric anisotropy in R

2 when γ0 is an exponential model with parameters a = 0.5
and σ2 = 1, with deformation A the parameters φ = 450 and e = 0.7.

We note that Sampson and Guttorp (192) propose a non-stationary model

Var(Xs −Xs′) = 2γ0(g(s)−g(s′)),

where g is a bijective (or anamorphic) deformation of the space S (cf. (170; 171) for
examples of such deformations).
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Fig. 1.4 (a) Geometric anisotropy and (b) zonal (or stratified) anisotropy.

Stratified anisotropy

We talk of support anisotropy if variogram h → 2γ(h), possibly after a change of
coordinates, depends only on certain coordinates of h: for example, if R

d = E1⊕E2,
where dim(E1) = d1 and if 2γ0 is an isotropic variogram on R

d1 , γ(h) = γ0(h1) for
h = h1 + h2, h1 ∈ E1, h2 ∈ E2. The sill (and possibly the range) of γ will thus be
direction-dependent (cf. Fig. 1.4-b). We say we have zonal anisotropy or stratified
anisotropy if γ is the sum of several components, each with support anisotropy. For
example,

γ(h) = γ1
(√

h2
1 +h2

2

)
+ γ2(|h2|)

has a sill of height σ2
1 +σ2

2 in the (0,1) direction and σ2
1 in the (1,0) direction,

where σ2
i are the sills of γi, i = 1,2.

Chilès and Delfiner (43) suggest to avoid using separable models like γ(h) =
γ1(h1)+ γ1(h2) in R

2 or γ(h) = γ1(h1,h2)+ γ2(h3) in R
3 as certain linear combi-

nations of X can end up with zero variance: for example, if Xs = X1
x + X2

y , with
Cov(X1

x ,X2
y ) = 0 and s = t(x,y), then γ(h) = γ1(h1)+ γ1(h2) and for hx = t(dx,0),

hy = t(0,dy), Xs −Xs+hx −Xs+hy +Xs+hx+hy ≡ 0.

More generally, anisotropy can be obtained by combining other anisotropies.
Figure 1.4-b gives an example where γ1 is the exponential model with geometric
anisotropy and parameters a1 = 0.5, σ2

1 = 0.7, φ = 450, e = 0.7 and γ2 a different
exponential model with parameters a2 = 0.05, σ2

2 = 0.3.

1.4 Geometric properties: continuity, differentiability

Let us now associate the set of L2 processes with the following notion of mean
square convergence:
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Definition 1.7. Quadratic mean (q.m.) continuity
We say that a second-order process X = {Xs, s ∈ S} on S ⊆ R

d is quadratic mean
continuous at s ∈ S if for any converging sequence sn −→ s in S, E(Xsn −Xs)2 → 0.

The following proposition characterizes q.m. continuity.

Proposition 1.3. Let X be a centered L2 process with covariance C(s, t) =
Cov(Xs,Xt). Then X is everywhere q.m. continuous iff its covariance is continuous
on the diagonal of S×S.

Proof. If C(s, t) is continuous at s = t = s0, then E(Xs0+h −Xs0)
2 → 0 as h → 0. In

effect:

E(Xs0+h −Xs0)
2 = C(s0 +h,s0 +h)−2C(s0 +h,s0)+C(s0,s0).

To show the converse, we write:

Δ = C(s0 +h,s0 + k)−C(s0,s0) = e1 + e2 + e3,

with e1 = E[(Xs0+h −Xs0)(Xs0+k −Xs0)], e2 = E[(Xs0+h −Xs0)Xs0 ] and e3 = E[Xs0

(Xs0+k −Xs0)]. If X is q.m. continuous, then e1, e2 and e3 → 0 if h and k → 0 and C
is continuous on the diagonal. ��

Almost sure (a.s.) continuity of trajectories is a result of a different nature and
much harder to obtain. We have for example the following result (3): if X is a cen-
tered Gaussian process with continuous covariance, a.s. continuity of trajectories
on S ⊆ R

d is assured if

∃c < ∞ and ε > 0 s.t. ∀s, t ∈ S: E(Xs −Xt)2 ≤ c |log‖s− t‖|−(1+ε) .

When X is an intrinsic Gaussian process, this continuity holds if γ(h) ≤
c |log‖h‖|−(1+ε) in a neighborhood of the origin. Apart from the nugget effect
model, all variograms presented in §1.3.3 satisfy this property and the associated
(Gaussian) models therefore have a.s. continuous trajectories.

We now examine differentiability in L2 in given directions, or, equivalently, dif-
ferentiability of processes in R

1.

Definition 1.8. Quadratic mean differentiability
We say the process X on S ⊂ R

1 is q.m. differentiable at s if there exists a real

random variable (r.r.v.)
·
Xs such that

lim
h→0

Xs+h −Xs

h
=

·
Xs in L2.

We note that all trajectories of a process X might be extremely regular without X
being q.m. differentiable (cf. Ex. 1.11).

Proposition 1.4. Let X be a centered L2 process with (not necessarily stationary)

covariance C(s, t) = Cov(Xs,Xt). If
∂ 2

∂ s∂ t
C(s, t) exists and is finite on the diagonal



1.4 Geometric properties: continuity, differentiability 17

of S× S, then X is everywhere q.m. differentiable, the second-order mixed partial

derivative
∂ 2

∂ s∂ t
C(s, t) exists everywhere and the covariance of the derived process

is Cov(
·

Xs,
·
Xt) =

∂ 2

∂ s∂ t
C(s, t).

Proof. Let Ys(h) = (Xs+h−Xs)/h. To show existence of
·

Xs, we use Loève’s criterion
((145), p. 135) which says that Zh → Z in L2 iff E(ZhZk) → c < ∞ whenever h and
k → 0 independently. Next let Δs,t(h,k) = E (Ys(h)Yt(k)). It is easy to show that:

Δs,t(h,k) = h−1k−1{C(s+h, t + k)−C(s+h, t)−C(s, t + k)+C(s, t)}. (1.7)

Therefore, if
∂ 2

∂ s∂ t
C(s, t) exists and is continuous at (s,s),

lim
h→0

lim
k→0

E (Ys(h)Ys(k)) =
∂ 2

∂ s∂ t
C(s,s).

Loève’s criterion thus ensures convergence of (Ys(h)) towards a limit denoted
·

Xs

whenever h → 0 and the process
·

X = { ·
Xs, s ∈ S} is in L2. Let C∗ be the covariance

of
·

X . Using (1.7), C∗(s, t) is the limit of Δs,t(h,k) when h,k −→ 0 and therefore
∂ 2

∂ s∂ t
C(s, t) = C∗(s, t) exists everywhere. ��

1.4.1 Continuity and differentiability: the stationary case

Continuity

We can deduce easily from the previous results that an intrinsic (resp. stationary in
L2) process is q.m. continuous if its variogram 2γ (resp. covariance C) is continu-
ous at h = 0; in such cases the variogram 2γ (resp. covariance C) is continuous on
any set where γ is bounded (resp. everywhere continuous; cf. Prop. 1.2). Matérn
(154) has shown more precisely that if a random field allows a variogram that is
everywhere continuous except at the origin, then this random field is the sum of two
uncorrelated random fields, one associated with a pure nugget effect and the other
with an everywhere continuous variogram.

Differentiability

t 
−→ Xt is q.m. differentiable in R if the second derivative γ ′′(0) of the variogram

exists. In this case, the second derivative γ ′′ exists everywhere,
·

X is stationary with

covariance γ ′′ and the bivariate process (X ,
·
X) ∈ L2 satisfies (227):
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E(
·
Xs+τXs) = γ ′(τ) and E(Xs+τ

·
Xs) = −γ ′(τ).

In particular, as γ ′(0) = 0, Xs and
·

Xs are uncorrelated for all s and independent if
X is a Gaussian process. We remark that if X is stationary and supposing C(s, t) =

c(s− t), C′′
s,t(s, t) =−c′′(s− t) and c′′(0) exists, then

·
X is stationary with covariance

−c′′.
For integer m ≥ 1, we say that X is mth-order q.m. differentiable if X (m−1) ex-

ists in q.m. and if X (m−1) is q.m. differentiable. If we suppose X is stationary with
covariance C, then X is mth-order differentiable if C(2m)(0) exists and is finite. In this
case, X (m) is stationary with covariance t 
→ (−1)mC(2m)(t). For example, a Matérn
process is mth-order q.m. differentiable whenever ν > m (200).

If γ is infinitely differentiable at the origin, X is infinitely q.m. differentiable. In

this case, Xt = limL2∑n
k=0 tkX (k)

0 /k! (200). X is “purely deterministic” as it suffices
to know X is a (small) neighborhood of 0 to know it everywhere. This may lead us to
put aside an infinitely differentiable variogram model (i.e., the Gaussian variogram)
if we are not sure about the deterministic nature and/or hyperregularity of X .

Example 1.4. Quadratic mean regularity for processes on R
2

Figure 1.5 gives an idea of process regularity for three different variograms. Sim-
ulations were performed using the RandomFields package (cf. §4.7).

(a) X is a GWN (Gaussian WN) with a nugget effect variogram γ that is not
continuous at 0. X is not q.m. continuous, trajectories are extremely irregular.

(b) γ is exponential, isotropic and linear at the origin: γ(h) = a+b‖h‖+o(‖h‖),
continuous but not differentiable at 0. X is q.m. continuous but not differentiable.

(c) γ is a class C 2 (in fact, C ∞) isotropic Gaussian variogram at the origin. Trajec-
tories are q.m. continuous and differentiable. We would have the same regularity
for any variogram of the form a+b‖h‖α at the origin, for α ≥ 2.

Example 1.5. Separable covariances with cubic components

Separable covariances C(h) = ∏d
k=1 Ck(hk), where h = (h1,h2, . . . ,hd) ∈ R

d

are used for kriging due to ease of manipulation (cf. §1.9), particularly
when performing simulations. They also help us to easily verify directional
differentiability of the associated process. Separable covariances with cubic com-
ponents (132) are associated with correlations in [0,1] of the following type: for ρ,γ
and h ∈ [0,1],

C(h) = 1− 3(1−ρ)
2+ γ

h2 +
(1−ρ)(1− γ)

2+ γ
h3. (1.8)

C is p.d. if ρ ≥ (5γ2 + 8γ−1)(γ2 + 4γ+ 7)−1 (158). In this case, a process X with

covariance C is q.m. differentiable and its derivative
·

X has affine covariance in [0,1]:

C ·
X
(h) = −C′′(h) = τ2{1− (1− γ)h},
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Fig. 1.5 Three Gaussian simulations for different variograms: (a) nugget effect, (b) isotropic
exponential and (c) isotropic Gaussian.

where τ2 = 6(1 − ρ)/(2 + γ). Parameters ρ = Cor(X0,X1) = C(1) and γ =

Cor(
·
X0,

·
X1) =C ·

X
(1)/C ·

X
(0) can be respectively interpreted as correlations between

the final observations and between their derivatives.

1.5 Spatial modeling using convolutions

1.5.1 Continuous model

A natural way to construct (Gaussian) models X = (Xs, s ∈ S) over subsets S of R
d

is to consider the convolution

Xs =
∫

Rd
k(u,s)W (du), (1.9)
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where K = {u → k(u,s), s ∈ S} is a family of non-random real-valued kernels on
R

d and W a centered latent (Gaussian) random field with orthogonal increments on
R

d , that is: for δ the Dirac delta function,

E(W (du)W (dv)) = δ (u,v)du×dv.

A classic choice for W when d = 1 is Brownian motion (in this case, the convolution
is a Wiener integral) or the Brownian sheet when d = 2 (cf. Example 1.1, (37) and
Ex. 1.14). Convolution (1.9) is well-defined in L2 if for any s ∈ S, k(·,s) is square
integrable (227, p. 67-69). Xs is therefore a centered process with covariance:

C(s, t) = Cov(Xs,Xt) =
∫

S
k(u,s)k(u, t)du.

This model can be second-order characterized either by kernel family k or by its
covariance C as X is a Gaussian process if W is. If S = R

d and if kernel family k is
translation-invariant, k(u,s) = k(u− s) and

∫
k2(u)du <∞, then X is stationary with

covariance
C(h) = Cov(Xs,Xs+h) =

∫

S
k(u)k(u−h)du.

If k is isotropic, X is too and the mapping between C and k is bijective. Examples of
such mappings C ↔ k can be found in (219; 43, p. 646):

Gaussian covariance C, d ≥ 1, a > 0:

k(u) = σ exp{−a‖u‖2}↔C(h) = σ2
( π

2a

)d/2
exp
{
−a

2
‖h‖2

}
;

Exponential covariance C, d = 3, a > 0:

k(u) = 2σa−1/2
(

1− ‖u‖
a

)
exp

(
−‖h‖

a

)
↔C(h) = σ2 exp

(
−‖h‖

a

)
;

Spherical covariance C, d = 3, a > 0:

k(u) = c1
{
‖u‖ ≤ a

2

}
↔C(h) = Vd

(a
2

)(
1− 3

2

∥∥∥∥
h
a

∥∥∥∥+
1
2

∥∥∥∥
h
a

∥∥∥∥
3
)

1{‖h‖ < a}.

Such mappings are no longer bijective if X is stationary and non-isotropic as several
different kernels k can give the same covariance C.

We now describe several advantages of representing X using convolutions (112):

1. Formula (1.9) allows us to deal with all second-order models without having to
satisfy the positive definiteness condition for covariances (219).

2. With (1.9) we can generate non-Gaussian models whenever the convolution is
well-defined. For example, if W is a Poisson process (cf. §3.2) (resp. Gamma
process (225)) with independent increments, convolution allows us to model a
process X with values in N (resp. values in R

+).
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3. For non-stationary but slowly-varying kernel families k we can propose parametrized
types of non-stationarity for X (cf. (113) for modeling environmental data).

4. If we choose the latent process W to be a function of time t, convolution allows
us to construct spatio-temporal models where the kernel k may or may not be
a function of time. For example, a time-dependent model with a kernel that is
constant for given t is Xs(t) =

∫
S k(u,s)W (du, t).

5. When observing a multivariate phenomenon X ∈ R
p, multivariate convolution

allows construction of spatially correlated components by choosing in (1.9) a
kernel k ∈ R

p. For example, if S0 ∪S1 ∪S2 is a partition of S (112),

X1,s =
∫

S0∪S1

k1(u− s)W (du) and X2,s =
∫

S0∪S2

k2(u− s)W (du).

1.5.2 Discrete convolution

In practice, we have to use discrete convolutions of W at m sites U =
{u1,u2, . . . ,um} of S: U is a convolution support that allows us to get reasonably
close to spatial integral (1.9). Denoting w = t(w1,w2, . . . ,wn) where wi = w(ui),
i = 1, . . . ,m, this model is written

Xw
s = (K ∗w)s =

m

∑
i=1

k(ui,s)wi, s ∈ S, (1.10)

where w is a WWN with variance σ2
w. Such models thus depend on the choice of

support U , though the spatial index s remains continuous. Though this formulation
can be interpreted as a moving average (MA, cf. §1.7.1), the difference here is that
there is no notion of closeness between s and the sites of U , (1.10) being interpreted
as an approximation to the continuous model (1.9).

Given n observations X = t(Xs1 ,Xs2 , . . . ,Xsn) of X at O = {s1,s2, . . . ,sn}, a model
that incorporates exogenous variables z ∈ R

p and a WWN measurement error ε can
be written, for each site,

Xs = t zsβ +Xw
s + εs, s ∈ O, β ∈ R

p. (1.11)

This can be put in matrix form as:

X = Zβ +Kw+ ε,

where K = (Kl,i), Kl,i = k(ui,sl), l = 1, . . . ,n and i = 1, . . . ,m. The model’s param-
eters are U , k(·) and (β ,σ2

w,σ2
ε ). Using statistics vocabulary, we say we are dealing

with a random effects linear model where w is the cause of the random effect Kw
and the deterministic trend is modeled using covariates z.

A possible choice for U is the regular triangular network with spacing δ ; δ is
a compromise between giving a good data fit (small spacing) and simple calcula-
tions (larger spacing). A compromise is to use a multiresolution model with two or
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more spacings. For example, the random component of a two-resolution model with
triangular spacings δ and δ/2 is written,

Xw = X1w +X2w,

where X1w (resp. X2w) is component (1.10) associated with this δ -spacing and ker-
nel k1 (resp. δ/2-spacing and kernel k2).

In this context, a Bayesian formulation (cf. for example (143)) might be consid-
ered as it can incorporate uncertainty in the parameters determining the convolution.

Discrete convolutions equally allow us to construct non-stationary, non-Gaussian
and multivariate models as well as spatio-temporal ones (208; 112). For example,
(112) models the random component of the temporal evolution of ozone concentra-
tion over T = 30 consecutive days in a region of the United States by

Xw
s (t) =∑k(ui − s)wi(t), s ∈ S, t = 1, . . . ,T ,

with {wi(t), t = 1, . . . ,T} as T independent Gaussian random walks on a spatial
support U of 27 sites.

1.6 Spatio-temporal models

We now present several spatio-temporal geostatistics models. This subject is
undergoing significant expansion, in particular for applications in climatology and
environmental sciences (136; 133; 142; 91). (126; 36) give models derived from
stochastic differential equations, (148; 223; 208; 112) develop discrete-time
approaches and (202) compare discrete and continuous-time approaches.

Suppose X = {Xs,t , s ∈ S ⊆ R
d and t ∈ R

+} is a real-valued process with s
representing space and t time. X is second-order stationary (resp. isotropic)
if:

Cov(Xs1,t1 ,Xs2,t2) = C(s1 − s2, t1 − t2) (resp. = C(‖s1 − s2‖, |t1 − t2|)).

As (s, t) ∈ R
d ×R = R

d+1, one possible approach is to consider time as an addi-
tional dimension and to reuse definitions and model properties studied earlier, this
time in dimension d + 1. However, this strategy does not take into account the fact
that spatial and temporal variables work on different scales and have different mean-
ings. For example, the isotropic exponential model C(s, t) = σ2 exp{−‖(s, t)‖/a},
where s ∈ R

d and t ∈ R is far from ideal; it is more natural to consider a geometric
anisotropy model of the type C(s, t) = σ2 exp{−(‖s‖/b + |t|/c)}, b,c > 0. Propo-
sition 1.1 then provides necessary tools to define more flexible stationary models
in which spatial and temporal variables are treated separately. Furthermore, it may
be pertinent to suggest semi-causal spatio-temporal models in which the concept of
time has a well-defined meaning.
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Covariances can be separable, as in these two examples:

(i) additive: C(s, t) = CS(s)+CT (t);
(ii) factorizing: C(s, t) = CS(s)CT (t),

where CS(·) is a spatial covariance and CT (·) a temporal one. Type (i) includes
zonal anisotropy cases; these spatial and temporal anisotropies can be uncovered by
performing variographic analysis (cf. §5.1.1) separately for space (considering pairs
of sites (s1,s2) at the same time t) and time (considering pairs of times (t1, t2) at the
same site s).

Separable space×time covariance

Case (ii) covers what are known as covariances that are separable in space and
time.

The advantage of separable models is that they simplify the calculation of the co-
variance matrix, its inverse and its spectrum when X is observed on the rectangle S×
T = {s1,s2, . . . ,sn}× {t1, t2, . . . , tm}. More precisely, if X = t(Xs1,t1 , . . . ,Xsn,t1 , . . . ,
Xs1,tm , . . . ,Xsn,tm) is the vector of the n×m observations, Σ = Cov(X) is the Kro-
necker product of ΣT , an m×m temporal covariance matrix with ΣS, the n×n spatial
covariance matrix:

Σ = ΣT ⊗ΣS.

The product Σ is thus an mn×mn matrix made up of m×m blocks Σk,l of size n×n
equal to CT (k− l)ΣS. The inverse and determinant of Σ are then easily calculated:

(Σ)−1 = (ΣT )−1 ⊗ (ΣS)−1, |Σ | = |ΣT ⊗ΣS| = |ΣT |n|ΣS|m

and the spectrum of Σ is the termwise product of the spectra of ΣT and ΣS. These
properties simplify prediction, simulation and estimation of such models, especially
when the spatial (n) or temporal (m) domain of observation is large.

The downside of separable models is that they do not allow spatio-temporal
interactions CS(s1 − s2;u) between future instants of time u since C(s1 − s2, t1 −
t2) = CS(s1 − s2)CT (u). Also, separability implies reflective symmetry C(s, t) =
C(−s, t) = C(s,−t) of the covariance, a condition that is not generally needed.

Non-separable models

Cressie and Huang (50) propose constructing a non-separable model using the spec-
tral density g:

C(h,u) =
∫

ω∈Rd

∫

τ∈R

ei( t hω+uτ)g(ω,τ)dωdτ. (1.12)

If we express g(ω, ·) as the Fourier transform on R of some function h(ω, ·),

g(ω,τ) =
1

2π

∫

R

e−iuτh(ω,u)du,
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where h(ω,u) =
∫
R

eiuτg(ω,τ)dτ , the spatio-temporal covariance can be
written

C(h,u) =
∫

Rd
eit hωh(ω,u)dω.

However, we can always write:

h(ω,u) = k(ω)ρ(ω,u), (1.13)

where k(·) is a spectral density on R
d and where for each ω , ρ(ω, ·) is an autocor-

relation function on R. Thus, under the following conditions:

1. For each ω , ρ(ω, ·) is a continuous autocorrelation function on R satisfying∫
R
ρ(ω,u)du < ∞ and k(ω) > 0;

2.
∫
Rd k(ω)dω < ∞,

the function C defined as:

C(h,u) =
∫

Rd
eit hωk(ω)ρ(ω,u)dω (1.14)

is a spatio-temporal covariance. If ρ(ω,u) is independent of ω , this model is
separable.

Example 1.6. The Cressie-Huang model: if we take,

ρ(ω,u) = exp

(
−‖ω‖2u2

4

)
exp
(−δu2) , δ > 0 and

k(ω) = exp

(
−c0‖ω‖2

4

)
, c0 > 0,

then:

C(h,u) ∝
1

(u2 + c0)d/2
exp

(
− ‖h‖2

u2 + c0

)
exp
(−δu2) . (1.15)

The condition δ > 0 is needed to ensure that
∫
ρ(0,u)du <∞, but the limit as δ → 0

of (1.15) remains a spatio-temporal covariance function.
The weakness of this approach is that it requires calculation of Fourier trans-

forms on R
d . Gneiting (90) proposes a different approach: let ψ(t), t ≥ 0 be a

strictly monotone function and t 
→ φ(t) > 0, t ≥ 0 a function for which φ ′(t) is
strictly monotone. Then the following function is a spatio-temporal
covariance:

C(h,u) =
σ2

φ(|u|2)d/2
ψ
( ‖h‖2

φ(|u|2)
)

. (1.16)
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Example 1.7. Gneiting’s spatio-temporal covariance

If ψ(t) = exp(−ctγ), φ(t) = (atα + 1)β , with a ≥ 0, c ≥ 0, α,γ ∈]0,1], β ∈
[0,1] and σ2 > 0, the following function is a spatio-temporal covariance on R

d×R

(separable if β = 0):

C(h,u) =
σ2

(a|u|2α +1)βd/2
exp

(
− c‖h‖2γ

(a|u|2α +1)βγ

)
. (1.17)

We can then infer non-separable covariances using covariance mixtures (cf. Prop.
1.1): if μ is a non-negative measure on some space W and for all w ∈ W , CS(·,w)
and CT (·,w) are stationary covariances for which:

∫

W
CS(0,w)CT (0,w)μ(dw) < ∞,

then (58; 147):

C(h,u) =
∫

W
CS(h,w)CT (u,w)μ(dw) < ∞

is a stationary covariance function that is in general non-separable. For example,

C(h, t) =
γn+1

(
‖h‖α

a + |t|β
b + γ

)n+1 , 0 < α, β ≤ 2 (1.18)

is a mixture of this type for a Gamma distribution with mean (n + 1)/γ and
spatial and temporal covariances respectively proportional to exp(−‖h‖α/a) and
exp(−|t|β/b).

1.7 Spatial autoregressive models

Spatial autoregressive models (AR) are useful for analyzing, characterizing and in-
terpreting real-valued spatial phenomena X = {Xs, s∈ S} defined on discrete spatial
networks S that have neighborhood geometry.

In domains like econometrics, geography, environmental studies and epidemiol-
ogy, S does not have to be regular, because sites s ∈ S represent centers of geograph-
ical units dispersed in space and observations Xs denote the value of the variable
of interest at the site s. The irregularity of such networks S is an initial difference
between spatial and temporal autoregressions, the latter usually having for S some
interval in Z

1.
In other domains such as imaging, radiography and remote sensing, S is indeed

regular, typically being a subset of Z
d . This property allows us to define stationary

models and to bring the study of AR random fields on Z
d closer to that of time

series on Z
1. There is nevertheless a fundamental difference: spatial models are

inherently non-causal in the sense that, unlike time series, they are not defined with
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respect to some order relation on S. While the use of temporal causality is entirely
justified when modeling variables Xt such as inflation rate, stock price and rate of
river flow, this is not so in the spatial case where autoregressive dependency exists
in all directions in space. For example, presence/absence of a plant in some parcel
of land can depend on the presence/absence of the plant in neighboring parcels, in
all directions.

We begin by rapidly presently the stationary models known as MA, ARMA and
AR on Z

d (cf. (96) for a more in-depth treatment). After this, we consider ARs on
finite general networks and in particular two important classes of AR: SAR (S for
Simultaneous AR) and CAR (C for Conditional AR) models.

1.7.1 Stationary MA and ARMA models

MA models

Let (cs, s ∈ Z
d) be a sequence in l2(Zd) (i.e., satisfying: ∑Zd c2

s < ∞) and η a SWN
on Z

d with variance σ2
η . An MA(∞) model on Z

d (MA for Moving Average) is a
linear process defined in L2 by:

Xt = ∑
s∈Zd

csηt−s. (1.19)

X is the infinite moving average of the noise η with respect to weights c.

Proposition 1.5. The covariance and spectral density of the MA process (1.19) on
Z

d are respectively:

C(h) = σ2
η ∑

t∈Zd

ctct+h and f (u) =
σ2
η

(2π)d

∣∣∣∣∣∑
t∈Zd

cte
i t ut

∣∣∣∣∣
2

.

Proof. C can be calculated using bilinearity of covariances and the fact that η is a
SWN. As for the spectral density, it can be found using the Fourier inversion formula
(1.4):

f (u) =
σ2
η

(2π)d ∑
h∈Zd
∑

t∈Zd

ctct+hei t ut =
σ2
η

(2π)d

∣∣∣∣∣∑
t∈Zd

cte
i t ut

∣∣∣∣∣
2

.

��

We say we have an MA model if the support M = {s ∈ Z
d : cs �= 0} of the

sequence of weights is finite. The covariance C is zero outside of its support
S(C) = M −M = {h : h = t − s for s, t ∈ M}. Even though when d = 1 any co-
variance process with finite support has an MA representation, this is not the case
when d ≥ 2 (cf. Prop. 1.8).
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ARMA models

These models are an extension of temporal (d = 1) ARMA models: let P and Q be
the following two polynomials of the d-dimensional complex variable z ∈ C

d ,

P(z) = 1−∑
s∈R

asz
s and Q(z) = 1+ ∑

s∈M
csz

s,

with R (resp. M) the support of the AR (resp. MA) being finite subsets of Z
d not

containing the origin and for s = (s1,s2, . . . ,sd), zs = zs1
1 . . .zsd

d . Let BsXt = Xt−s

denote the s-translation operator in L2. In formal terms, an ARMA is associated
with polynomials P and Q and an SWN η in L2 by:

∀t ∈ Z
d : P(B)Xt = Q(B)ηt , (1.20)

or alternatively,

∀t ∈ Z
d : Xt = ∑

s∈R
asXt−s +ηt + ∑

s∈M
csηt−s.

Let T = {ξ ∈ C, |ξ | = 1} be the 1-dimensional torus. We have the following exis-
tence result:

Proposition 1.6. Suppose that P has no zeros on the torus T
d. Then equation (1.20)

has a stationary solution X in L2. Denoting eiu = (eiu1 , . . . ,eiud ), the spectral density
of X is:

f (u) =
σ2

(2π)d

∣∣∣∣
Q
P

(eiu)
∣∣∣∣
2

,

and its covariance is given by the Fourier coefficients of f .

Proof. As P has no zeros on the torus T
d , P−1Q has Laurent series development,

P−1(z)Q(z) = ∑
s∈Zd

csz
s,

which converges in a neighborhood of the torus T
d and whose coefficients (cs)

decrease exponentially fast to 0. This ensures that Xt = ∑s∈Zd csηt−s exists in L2,
that it satisfies (1.20) and has spectral density

f (u) =
σ2

(2π)d

∣∣∣∣∣ ∑
s∈Zd

cse
it su〉
∣∣∣∣∣
2

=
σ2

(2π)d

∣∣∣∣
Q
P

(eiu)
∣∣∣∣
2

.

��
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MA models correspond to the choice P ≡ 1 and AR models to Q ≡ 1. As
with time series, interest in ARMA models is due to the fact that they can get
“close” to random fields that have continuous spectral densities: in effect, for any
dimension d, the set of rational fractions is dense (e.g., for the sup norm) in the
space of continuous functions on the torus T

d .
As the spectral density of ARMA processes is rational, its covariance decreases

exponentially fast to zero in the limit. Here again, as with time series, after a certain
rank the covariances satisfy the linear recurrence relationships known as the Yule-
Walker equations. In Z, these equations can be solved analytically and provide a tool
to identify the ranges R and M of the AR and MA parts and estimate parameters a
and c. However, in dimension d ≥ 2, the Yule-Walker equations cannot be solved
analytically. Furthermore, unlike time series ARMA models generally do not have
a finite unilateral (or causal) representation with respect to the lexicographic order
when d ≥ 2 (cf. (1.8)).

Even though there is no theoretical reason limiting their use (cf. for example
(119)), the preceding remarks explain why, unlike for time series ARMA models
are rarely used in spatial statistics.

Nevertheless we note that semi-causal spatio-temporal models (non-causal in
space but causal in time) can turn out to be well adapted to studying spatial dy-
namics: STARMA (Spatio-Temporal ARMA) models, introduced by Pfeifer and
Deutsch (76; 174) fall into this category (cf. also (48, §6.8)).

Two types of autoregressive model, SAR and CAR models are frequently used
in spatial analyses. First, let us take a look at stationary models.

1.7.2 Stationary simultaneous autoregression

To simplify, suppose that X is centered. Let R be a finite subset of Z
d not containing

the origin. A stationary SAR (Simultaneous AR) model relative to the SWN η and
with parameters a = {as, s ∈ R} is:

Xt = ∑
s∈R

asXt−s +ηt . (1.21)

Xt is the weighted sum of the values Xu at the R-neighbors of t along with added
noise ηt . X exists if the characteristic polynomial P of the autoregression has no
zero on the torus T

d , where

P(eiλ ) = 1−∑
s∈R

ase
itλ s.

Equations (1.21) can be interpreted as a system of simultaneous AR equations with
the usual econometrical meaning: {Xt−s, s ∈ R} are “spatially lagged” endogenous
variables influencing the response Xt at t with site u having influence on t when
t − u ∈ R. This relation defines the oriented graph R of the SAR model. We now
present some examples.
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T

S

(s,t)
(s,t)

T
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(a) (b)

Fig. 1.6 (a) Semi-causal model; (b) Semi-causal model with lexicographic order.

Example 1.8. Several SAR models

Semi-causal Space×Time models

s∈Z gives the spatial coordinate and t ∈N the temporal one; an example of Markov
dynamics at time t and location s is:

∀t ∈ N and s ∈ Z: Xs,t = αXs,t−1 +β (Xs−1,t +Xs+1,t)+ εs,t .

The temporal connection (s, t − 1) → (s, t) has a direction whereas instantaneous
spatial links (s, t) ←→ (s± 1, t) do not. The lexicographic causal representation of
this SAR is infinite (cf. Fig. 1.6). More precisely, for α = β = δ/(1 + δ 2), this
semi-causal model has the following infinite causal representation for the lexico-
graphic order (defined by (u,v) � (s, t) if v < t or if v = t and u ≤ s; (24)):

Xs,t = 2δXs−1,t +δ 2Xs−2,t −δXs−1,t−1 +δ (1−δ 2)∑
j≥0
δ jXs+ j,t−1 + εs,t .

Isotropic four nearest neighbor SAR models on Z
2

Xs,t = α(Xs−1,t +Xs+1,t +Xs,t−1 +Xs,t+1)+ εs,t .

Here, R is a symmetric graph; X exists if and only if

∀λ ,μ ∈ [0,2π[, P(λ ,μ) = 1−2α(cosλ + cosμ) �= 0,

ensuring that spectral density f (λ ,μ) = σ2
ε P(λ ,μ)−2 ∈ L2(T2); this condition is

satisfied iff |α| < 1/4.

Factorizing SAR(1) models

An example of a factorizing SAR on Z
2 is

Xs,t = αXs−1,t +βXs,t−1 −αβXs−1,t−1 + εs,t , |α| and |β | < 1. (1.22)
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Noting B1 and B2 the lag operators relative to coordinates s and t, equation (1.22)
can be written:

(1−αB1)(1−βB2)Xs,t = εs,t .

We deduce that the covariance c of X is separable:

c(s− s′, t − t ′) = σ2α|s−s′|β |t−t ′|,

where σ2 = σ2
ε (1−α2)−1(1−β 2)−1 is the product of a 1-dimensional AR(1) co-

variance with parameter α and a covariance of the same type with parameter β .
It is easy to generalize these models to autoregressions of any order p = (p1, p2)

and any dimension d ≥ 2. Being able to factorize the AR polynomial and the co-
variance makes these models easy to work with (cf. §1.6).

SAR models are frequently used for their simplicity and because they involve
few parameters. However, the following two problems must be dealt with:

1. Without imposing constraints, SAR models are not (in general) identifiable. Re-
call that we say model M (θ) is identifiable if the distributions it defines for two
different θ are different; for example, in Z, it is simple to show that the following
three SAR models:

(i) Xt = aXt−1 +bXt+1 +ηt , t ∈ Z
1, a �= b, |a|, |b| < 1/2,

(ii) Xt = bXt−1 +aXt+1 +η∗
t and

(iii) Xt = a1Xt−1 +a2Xt−2 + εt

are identical for appropriate choices of a1, a2 and variances of the WN errors η ,
η∗ and ε (it suffices to identify each of their spectral densities and to realize that
we can impose constraints allowing us to make equal the three of them). This
said, if we impose the constraint a < b, the model becomes identifiable.

2. As with simultaneous equations in econometrics, estimation of SAR models by
ordinary least squares (OLS) on the residuals is not consistent (cf. Prop. 5.6).

1.7.3 Stationary conditional autoregression

Suppose X is a centered stationary second-order process on Z
d with spectral den-

sity f . If f−1 ∈ L1(Td), X has the infinite non-causal linear representation (96, Th.
1.2.2):

Xt = ∑
s∈Zd\{0}

csXt−s + et .

In this form, cs = c−s for all s and et is a conditional residual, i.e., for any s �= t, et

and Xs are uncorrelated.
This leads us to the following definition of an L-Markov random field or CAR(L)

model: let L be a finite symmetric subset of Z
d not containing the origin 0 and L+

the positive half-space of L with respect to the lexicographic order on Z
d .
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Definition 1.9. A stationary CAR(L) model in L2 is given by, for any t ∈ Z
d ,

Xt =∑
s∈L

csXt−s + et with, if s ∈ L+ : cs = c−s; (1.23)

∀s �= t : Cov(et ,Xs) = 0 and E(et) = 0.

The absence of correlation between Xs and et when s �= t translates the fact that
∑s∈L csXt−s = ∑s∈L+ cs(Xt−s + Xt+s) is the best linear prediction in L2 of Xt using
all other variables {Xs,s �= t}; here, X is an L-Markov random field in the linear
prediction sense. If X is a Gaussian random field, it is the best possible prediction
and we say that X is an L-Markov Gaussian process. CAR and SAR models differ
in several respects:

1. CAR models require parametric constraints: L must be symmetric and for all s,
cs = c−s.

2. The conditional residuals et do not represent a white noise. We say that {et} is a
colored noise.

3. Residuals et are uncorrelated with Xs when s �= t.

Proposition 1.7. The model X defined in (1.23) exists in L2 if the characteristic
polynomial of the CAR models,

P∗(λ ) = (1−2 ∑
s∈L+

cs cos( t su))

is non-zero on the torus T
d. In this case, the spectral density is

fX (u) = σ2
e (2π)−dP∗(λ )−1

and the conditional residuals form a correlated noise with covariance:

Cov(et ,et+s) =
{
σ2

e if s = 0,
−σ2

e cs if s ∈ L
and Cov(et ,et+s) = 0 otherwise.

Proof. We first remark that E(e0Xu) = 0 if u �= 0 and E(e0X0) = σ2
e when u = 0.

Since e0 = X0− ∑s∈L csX−s, this orthogonality becomes, in the frequency
domain:

∀u �= 0 :
∫

T d
e−i〈λ ,u〉[1−∑

s∈L
cse

−i〈λ ,s〉] fX (λ )dλ = 0.

Plancherel’s theorem implies that fX (u) = σ2
e (2π)−dP∗(u)−1. As residual et = Xt −

∑s∈L csXt−s is a linear filter spectral density of X , it has spectral density

fe(u) = σ2
e (2π)−dP(u)−1 |P(u)|2 = σ2

e (2π)−dP(u).

The result is thus proved. ��
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Note that whereas the spectral density of a CAR model is proportional to
P∗(u)−1, that of a SAR model is proportional to |P(u)|−2. In dimension d ≥ 3, the
condition “P∗ has no zeros on the torus” is not necessary (cf. Ex. 1.12).

As for SAR models, the Yule-Walker equations for covariance of CAR models
can be obtained by multiplying the equation defining Xt by Xs and then taking the
expectation: for example, for an isotropic four nearest neighbor (4-NN) CAR model
in Z

2, these equations are:

∀s: r(s) = σ2
e δ0(s)+a ∑

t:‖t−s‖1=1

r(t).

There are three reasons justifying modeling using CAR models:

1. CAR representations are intrinsic: they give the best linear prediction of Xt from
its other values {Xs,s �= t}.

2. Estimating CAR models using OLS is consistent (cf. Prop. 5.6).
3. The family of stationary CAR models contains that of the SAR models, strictly

so when d ≥ 2.

Proposition 1.8. Stationary SAR and CAR models on Z
d.

1. Every SAR model is a CAR model. In Z, both classes are identical.
2. When d ≥ 2, the family of CAR models is larger than that of the SAR models.

Proof. 1. To get the CAR representation of a SAR model: P(B)Xt = εt , we write
the spectral density f of X and see that it is the spectral density of a CAR model

by expanding
∣∣P(eiλ )

∣∣2 =
∣∣1−∑s∈R asei〈λ ,s〉∣∣2. We thus obtain the support L of

the CAR model and its coefficients after imposing the normalization c0 = 0:

f (u) =
σ2
ε

(2π)d |P(eiu)|2
=

σ2
e

(2π)dC(eiu)
, with c0 = 1.

For A−B = {i− j : i ∈ A and j ∈ B}, we get:

L = {R∗ −R∗}\{0}, where R∗ = R∪{0} and

if s ∈ L, cs = (σ2
e /σ2

ε ) ∑
v,v+s∈R

avav+s if s �= 0 and 0 otherwise.

When d = 1 the SAR and CAR classes are identical due to Fejer’s theorem which
states that any trigonometric polynomial P∗(eiλ ) of one complex variable for
which P∗ ≥ 0 is the square modulus of a trigonometric polynomial: if P∗(eiλ ) ≥
0, ∃ P such that P∗(eiλ ) =

∣∣P(eiλ )
∣∣2. Thus the CAR-P∗ model can be equated

with the SAR-P one.
2. We show that over Z

2 the CAR model Xt = c∑s:‖s−t‖1=1 Xs + et , c �= 0 has no
SAR representation. The spectral density of X satisfies:

f−1
X (λ1,λ2) = c(1−2c(cosλ1 + cosλ2)). (1.24)
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If some SAR had spectral density fX , its support R would satisfy R ⊆ L. Noting
(as) the coefficients of the SAR, we must either have a(1,0) �= 0 or a(−1,0) �= 0,
say a(1,0) �= 0; similarly, either a(0,1) or a(0,−1) �= 0, say a(0,1) �= 0. This implies

that a non-zero term that depends on cos(λ1 −λ2) has to appear in f−1
X , which is

not the case. Thus, CAR model (1.24) has no SAR representation.
��

MA processes with finite support have covariances with bounded range. When
d = 1, Fejer’s theorem ensures that the converse is true: processes on Z having
covariances with bounded range are MAs. This is no longer true for d ≥ 2: for
example, the random field with correlation ρ at distance 1 and 0 at distances > 1
has no MA representation; this can be proved using similar arguments to those in
part (2) of the previous proposition.

Let us present several examples of CAR representations of SAR models
on Z

2.

Example 1.9. SAR →CAR mappings

1. The causal AR (cf. Fig. 1.7-a) with support R = {(1,0),(0,1)}:

Xs,t = αXs−1,t +βXs,t−1 + εs,t

is a CAR(L) model with half-support L+ = {(1,0), (0,1), (−1,1)} and co-
efficients c1,0 = ακ2, c0,1 = βκ2, c−1,1 = −αβκ2 and σ2

e = κ2σ2
ε , where

κ2 = (1+α2 +β 2)−1.
2. The non-causal SAR model:

Xs,t = a(Xs−1,t +Xs+1,t)+b(Xs,t−1 +Xs,t+1)+ εs,t

is a CAR(L) model (cf. Fig. 1.7-b) with half-support L+ = {(1,0),(2,0), (−1,1),
(0,1),(0,2),(1,1), (0,2)} and coefficients:

c1,0 = 2aκ2, c0,1 = 2bκ2, c2,0 = 2a2κ2, c0,2 = 2b2κ2

c−1,1 = −2abκ2, σ2
e = σ2

ε κ2 where κ2 = (1+2a2 +2b2)−1.

3. The factorizing SAR model:

Xs,t = αXs−1,t +βXs,t−1 −αβXs−1,t−1 + εs,t , |α| and |β | < 1

is an 8-NN CAR model with coefficients:

c1,0 = α(1+α2)−1, c0,1 = β (1+β 2)−1, c1,1 = c−1,1 = −c1,0 × c0,1

σ2
e = σ2

ε κ2, where κ2 = (1+α2)−1(1+β 2)−1.

In these three examples, κ2 < 1 is the gain in variance of the CAR prediction of
X with respect to the SAR prediction.



34 1 Second-order spatial models and geostatistics

R

L+

L

R

L

(a) (b)

L+

Fig. 1.7 (a) Support R = {(1,0),(0,1)} of the causal SAR model and support L of the associated
CAR model; (b) Support R = {(1,0),(0,1),(−1,0),(0,−1)} of the non-causal SAR model and
support L of the associated CAR model.

1.7.4 Non-stationary autoregressive models on finite networks S

A real-valued process on S = {1,2, . . . ,n} is a vectorial r.v. X∗ ∈R
n. Non-stationarity

of X∗ can influence the vector of expectations μ = E(X∗), the network S and the
covariance matrix Σ = Cov(X∗). We only deal with second-order non-stationarity
here, working with the centered process X = X∗ − μ for which Σ = Cov(X∗)
= Cov(X).

Let ε = (εt , t ∈ S) be a centered noise in L2. MA, AR and ARMA representa-
tions of X , either site by site or in matrix notation in the basis ε are defined by the
equations:

MA : Xt =∑
s∈S

bt,sεs , or X = Bε,

AR : Xt = ∑
s∈S:s �=t

at,sXs + εt , or AX = ε,

ARMA : Xt = ∑
s∈S:s �=t

at,sXs +∑
s∈S

bt,sεs, or AX = Bε,

where, for s, t ∈ S, we have Bt,s = bt,s, As,s = 1, At,s = −at,s when t �= s. The MA
representation always exists; the AR and ARMA ones do too as long as A is in-
vertible. Noting Γ = Cov(ε), these models are second-order characterized by their
covariances Σ :
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MA : Σ = BΓ tB;

AR : Σ = A−1Γ t(A−1);

ARMA : Σ = (A−1B)Γ (t(A−1B)).

Suppose we choose ε to be a WWN with variance 1 (Γ = In) and denote < an
arbitrary total order enumerating the points of S. If X is centered with invertible
covariance Σ , then X has a unique causal AR representation relative to ε and order
<; this representation is associated with the lower triangular matrix A∗ from the
Cholesky factorization Σ = tA∗A∗. The fact that A∗, like Σ , depends on n(n+1)/2
parameters confirms identifiability of the causal AR model. Equivalent AR represen-
tations, generally non-identifiable are written ÃX = η , where for some orthogonal
matrix P, η = Pε (η still a WWN with variance 1) and Ã = PA∗.

In practice, AR models are associated with not necessarily symmetric influence
graphs R: s → t is a (directed) edge of R if Xs influences Xt with some weight at,s

and the neighborhood of t is defined as Nt = {s ∈ S : s → t}.

Local one-parameter SAR representation

Let W = (wt,s)t,s∈S be a weights matrix or influence graph measuring the influence
of s on t where, for each t, wt,t = 0: for example, W could be the spatial contiguity
matrix made up of ones where s has influence over t and zeros elsewhere. Other
choices of W are presented in Cliff and Ord’s book (45) (cf. §5.2 also). Once W
has been chosen, a classical choice of spatial model for econometrics or spatial
epidemiology is a SAR with parameter ρ . If t ∈ S and if ε is a SWN(σ2

ε ),

Xt = ρ ∑
s:s �=t

wt,sXs + εt , or X = ρWX + ε.

This model is well-defined as long as A = I −ρW is invertible.

Markov CAR representation

Once again, consider the centered vector X . CAR representations are written in
terms of linear conditional expectation (conditional expectation if X is a Gaussian
random field):

Xt = ∑
s∈S:s �=t

ct,sXs + et , ∀t ∈ S, (1.25)

with E(et) = 0, Var(et) = σ2
t > 0 and Cov(Xt ,es) = 0 when t �= s. In this intrinsic

representation, e is a conditional residual.
CAR representations are associated with a neighborhood graph G of S defined in

the following way: s → t is an edge of G if ct,s �= 0. As we will see, G is symmetric.
Denote C the matrix with coefficients Cs,s = 0 and Ct,s = ct,s when s �= t and let
D be the diagonal matrix with coefficients Dt,t = σ2

t . The Yule-Walker equations
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Σ = CΣ + D can be obtained by multiplying (1.25) by Xs for s ∈ S, then taking the
expectation. Σ then satisfies:

(I −C)Σ = D.

Hence, (1.25) defines a CAR model with regular covariance matrix Σ iff Σ−1 =
D−1(I −C) is symmetric and positive definite. In particular, representation (1.25)
has to satisfy the constraints:

ct,sσ2
s = cs,tσ2

t , ∀t �= s ∈ S. (1.26)

Hence, ct,s �= 0 when cs,t �= 0, implying that the CAR’s graph G is symmetric. For
algorithms that estimate CAR models, it is necessary to include these constraints. If
X is stationary (for example on the finite torus S = (Z/pZ)d), we can reparametrize
the model with ct−s = ct,s = cs,t = cs−t for t �= s. Under Gaussian hypotheses, (1.25)
entirely characterizes this model.

We note that unlike stationary models on Z
d (cf. Prop. 1.8), when S is finite the

family of SAR models is the same as the CAR one.

Markov Gaussian random fields

Suppose X is a Gaussian process on S, X ∼ Nn(μ ,Σ) with invertible Σ and where
S is associated with a symmetric graph G without loops. Let 〈s, t〉 mean s and t are
neighbors in G . We say that X is a G -Markov random field if, noting Q = (qs,t) =
Σ−1, qst = 0 except when 〈s, t〉. In this case, we have for all t ∈ S,

L (Xt |Xs,s �= t) ∼ N (μt −q−1
t,t ∑

s:〈t,s〉
qt,s(Xs −μs),q−1

t,t )

and X follows a CAR model: for all t ∈ S,

Xt −μt = −q−1
t,t ∑

s:〈t,s〉
qt,s(Xs −μs)+ et , Var(et) = q−1

t,t . (1.27)

Let [Q] be the n× n matrix with diagonal 0 and [Q]t,s = qt,s if t �= s, and Diag(Q)
the diagonal matrix whose diagonal is the same as that of Q. (1.27) can be written

X −μ = −(Diag)−1[Q](X −μ)+ e.

As we will see in Chapter 2, Gaussian CAR models are Gibbs models with quadratic
potentials (189).

The Markov graph G of a SAR model

Let ε be a Gaussian WN with variance σ2. The Gaussian SAR model AX = ε exists
if A−1 exists and has inverse covariance Σ−1 = Q = σ−2( tAA) and SAR graph:
〈t,s〉R ⇐⇒ at,s �= 0. Its CAR representation (1.27) is:



1.7 Spatial autoregressive models 37

(a) (b)

Fig. 1.8 (a) Directed graph R of a SAR; (b) Associated CAR model, graph G (new edges repre-
sented by dotted line) and conditional neighborhood (◦) of point (•).

1. CAR coefficients are: ct,s = −qt,s/qt,t , where qt,s = ∑l∈S al,tal,s;
2. The graph G of the Markov CAR representation of X is:

〈t,s〉G ⇐⇒
⎧
⎨
⎩

either 〈t,s〉R ,
〈s, t〉R
or ∃l ∈ S s.t. 〈l, t〉R and 〈l,s〉R .

G is undirected with “double” the range of R (cf. Fig. 1.8).

Example 1.10. CAR representation of nearest neighbor SAR models.

Let W = (wt,s)t,s∈S be a weights matrix representing the influence of s on t with,
for all t, wt,t = 0; consider the SAR with one parameter ρ:

X = ρWX + ε,

where ε is a WWN(σ2
ε ). The CAR model associated with this SAR model is given

by (1.27) with μ = 0 and precision matrix Q = Σ−1
X :

Q = σ−2
ε (I −ρ(W + tW )+ρ2 tWW ).

As for the best linear prediction of X , it is given by the vector

X̂ = −(Diag)−1[Q]X .

1.7.5 Autoregressive models with covariates

These types of models are especially used in spatial econometrics. Suppose that Z
is a real-valued n× p matrix of observable exogenous conditions. SARX models (X
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for eXogenous) propose, in addition to regression of X onto Z, a weights structure
W acting separately on the endogenous X and exogenous Z (7):

X = ρWX +Zβ +WZγ+ ε , ρ ∈ R, β and γ ∈ R
p. (1.28)

X has three explicative factors: the usual regression variables (Zβ ), the endogenous
(ρWX) and spatially lagged exogenous variables (WZγ) with the same weights vec-
tor W but their own parameters.

A sub-model with common factors, also known as a spatial Durbin model is
associated with the choice of constraint γ = −ρβ , i.e., with the regression model
with SAR errors:

(I −ρW )X = (I −ρW )Zβ + ε or X = Zβ +(I −ρW )−1ε . (1.29)

The spatial lag sub-model corresponds to the choice γ = 0:

X = ρWX +Zβ + ε . (1.30)

Note that these models offer three different ways to model the mean: respectively,

E(X) = (I −ρW )−1[Zβ +WZγ], E(X) = Zβ and E(X) = (I −ρW )−1Zβ ,

but the same covariance structure Σ−1 ×σ2 = (I −ρ tW )(I −ρW ) if ε is a WWN
with variance σ2. An estimation of these models using Gaussian maximum like-
lihood can be obtained by expressing the mean and variance of X in terms of the
model’s parameters.

Variants of these models are possible, for example by choosing ε to be a SAR
model associated with weights matrix H and some real-valued parameter α . We can
also let different weights matrices be associated with the endogenous and exogenous
variables.

1.8 Spatial regression models

We talk of spatial regression when the process X = (Xs, s ∈ S) is made up of a
deterministic part m(·) representing large scale variations, drift, trend or mean of X ,
and ε a centered residuals process:

Xs = m(s)+ εs, E(εs) = 0.

Depending on the context of the study and available exogenous information, there
are many ways to model m(·), whether it be by regression (linear or otherwise),
analysis of variance (qualitative exogenous variables), analysis of covariance (ex-
ogenous variables with quantitative and qualitative values) or with generalized lin-
ear models:
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Response surface: m(s) = ∑p
l=1βl fl(s) belongs to a linear space of known func-

tions fl . If { fl} is a polynomial basis, the spanned space is invariant with respect
to the coordinate origin. If s = (x,y)∈R

2, a quadratic model in these coordinates
is associated with the monomials { fl} = {1, x, y, xy, x2, y2}:

m(x,y) = μ+ax+by+ cx2 +dxy+ ey2.

Exogenous dependency: m(s,z) = ∑p
l=1αlz

(l)
s is expressed in terms of observable

exogenous variables zs.
Analysis of variance: if s = (i, j) ∈ {1,2, . . . , I} × {1,2, . . . ,J}, we consider an

“additive” model: m(i, j) = μ+αi +β j, where ∑iαi = ∑ j β j = 0.
Analysis of covariance: m(·) is a combination of regressions and components of

analysis of variance:

m(s) = μ+αi +β j + γzs, with s = (i, j).

Cressie (48) suggested the following decomposition of the residuals εs:

Xs = m(s)+ εs = m(s)+Ws +ηs + es. (1.31)

Ws is a “smooth” component modeled by an intrinsic process whose range is in the
order of c times (c < 1) the maximum distance between the observation sites; ηs is
a micro-scale component independent of Ws with a range in the order of c−1 times
the minimum distance between observation sites and es is a measurement error or
nugget component independent of W and η .

Generally speaking, if X is observed at n sites si ∈ S, linear models with linear
spatial regressions are written:

Xsi = t zsiδ + εsi , i = 1, . . . ,n, (1.32)

where zsi and δ ∈ R
p, zsi is a covariate (qualitative, quantitative, mixed) observed

at si and ε = (εsi , i = 1, . . . ,n) spatially correlated centered residuals. Denoting
X = t(Xs1 , . . . ,Xsn), ε = t(εs1 , . . . ,εsn) and Z = t(zs1 , . . . ,zsn) the n× p matrix of
exogenous variables, (1.32) can be written in matrix form as:

X = Zδ + ε,

with E(ε) = 0 and Cov(ε) = Σ .
The second step consists of modeling Σ using a covariance function, variogram

or spatial AR model.

Example 1.11. Rainfall in the State of Parana (parana dataset from the geoR
package in R (181))

These data give the average rainfall during May-June over a number of years at
143 meteorological stations in the State of Parana, Brazil. The amount of rainfall
can be influenced by various exogenous factors, climatic or otherwise, e.g., orog-
raphy, though taking time-averages helps to diminish their effect. Upon examining
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Fig. 1.9 (a) Rainfall data from 143 meteorological stations in the State of Parana, Brazil (parana
dataset in geoR); (b) estimating a linear trend m(s).

the cloud of points shown in Figure 1.9-a, we notice that the phenomena is not,
on average, stationary and suggest that an affine model of the response surface
m(s) = β0 + β1x + β2y, s = (x,y) ∈ R

2 is a reasonable choice. It then remains to
suggest a covariance on R

2 for the residuals that would allow us to quantify the
covariance Σ of the 143 observations and validate the model in first and second-
order (cf. §1.3.3).

Example 1.12. Modeling controlled experiments

The Mercer and Hall (156) dataset (cf. mercer-hall dataset on the website)
gives the quantity of harvested wheat from an untreated field trial on a rectangular
domain cut up into 20× 25 parcels (i, j) of the same size 2.5 m× 3.3 m. A first
glance at Fig. 1.10-a showing amounts of harvested wheat does not easily help us
determine whether the mean m(·) is constant or not. To try to come to a decision,
we can use the fact that the data is on a grid to draw boxplots by row and column
and attempt to discover if there is a trend (or not) in either direction.

A graphical analysis (cf. Fig. 1.10-b and 1.10-c) suggests that there is no trend
with respect to rows (i). We thus propose a model that only includes a column
trend ( j):

Xi, j = β j + εi, j, i = 1, . . . ,20, j = 1, . . . ,25.

Example 1.13. Percentage of gross agricultural produce consumed locally

Cliff and Ord (45) analyzed spatial variability of the percentage X of gross agri-
cultural output consumed where it was made in Ireland’s 26 counties S (eire
dataset in the spdep package). These percentages have been linked with an in-
dex z measuring the quality of road access of each county (cf. Fig. 1.11-a). The
dispersion diagram (Fig. 1.11-b) shows that the linear model,

Xs = β0 +β1zs + εs, s ∈ S, (1.33)

is a reasonable choice. A preliminary analysis of the residuals of (1.33) estimated
by OLS shows that there is spatial correlation in the data. We model this using a
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Fig. 1.10 (a) Mercer and Hall dataset: quantity of wheat harvested from a field divided into 20×
25 parcels of the same size; the dimension of symbols is proportional to quantity harvested; (b)
boxplots by row; (c) boxplots by column; (d) histogram of the data giving a nonparametric density
estimation.

weights matrix W = (wt,s)t,s∈S with known weights representing the influence of s
on t. Figure 1.11-d shows the influence graph associated with the symmetric binary
specification and we choose wt,s = 1 if s and t are neighbors, wt,s = 0 otherwise.

A first choice of model is the spatial lag model (1.30):

Xs = β0 +β1zs + γ ∑
t∈S

ws,tXt + εs.

A second possibility is to consider a regression with SAR residuals:

Xs = β0 +β1zs + εs, εs = λ ∑
t∈S

ws,tεt +ηs,

where η is a WWN. A model that generalized both choices is (cf. Ex. 1.21):
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Fig. 1.11 (a) Percentage X of gross agricultural produce consumed in each of the 26 counties of
Ireland where it was produced; (b) road access index Y ; (c) diagram showing dispersion between
X and Y ; (d) influence graph associated with the binary specification.

Xs = β0 +β1zs + γ ∑
t∈S

ws,tXt + εs,

where εs = λ ∑t∈S ws,tεt +ηs.

1.9 Prediction when the covariance is known

Our goal is to create a prediction map for X over all S when X is only observed
at a finite number of points of S. Kriging, introduced by Matheron, deals with this
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prediction problem. It builds on the work of Krige (134), a South African mining
engineer.

1.9.1 Simple kriging

Given n observations {Xs1 , . . . ,Xsn} in S, kriging aims to give a linear prediction
of Xs0 at unobserved sites s0. We suppose that the covariance (variogram) of X is
known. If, as is the case in practice, it is not, it must be pre-estimated (cf. §5.1.3).

Denote: X0 = Xs0 , X = t(Xs1 , . . . ,Xsn), Σ =Cov(X), σ2
0 = Var(X0) and

c =Cov(X ,X0), c ∈ R
n the second-order characteristics (known or estimated) of X

and consider the linear predictor of X0:

X̂0 =
n

∑
i=1
λiXsi = tλX .

We keep the predictor that minimizes the mean of the square of errors e0 = X0 − X̂0

(MSE),
MSE(s0) = E{(X0 − X̂0)2}. (1.34)

Simple kriging can be used when the mean m(·) of X is known. Without loss of
generality, we suppose that X is centered.

Proposition 1.9. Simple kriging: The linear predictor of X0 minimizing (1.34) and
the variance of the prediction error are, respectively:

X̂0 = t cΣ−1X , τ2(s0) = σ2
0 − t cΣ−1c. (1.35)

X̂0 is the Best Linear Unbiased Predictor (BLUP) of X0, i.e., the one having the
smallest mean square error.

Proof.
MSE(s0) = σ2

0 −2 tλc+ tλΣλ =Ψ(λ );

the minimum is located at some λ for which the partial derivatives ofΨ are zero.
We find λ = Σ−1c and it can be easily shown that it is a minimum. Substituting, we
obtain the variance of the error given in (1.35). ��

Remarks

The optimal value of λ is none other than c = Σλ , i.e.,

Cov(Xsi ,X0 − X̂0) = 0 for i = 1, . . . ,n.

These equations can be interpreted as showing that X̂0 is the orthogonal projection
(with respect to the scalar product of the covariance of X) of X0 onto the space
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spanned by the variables Xs1 , . . . ,Xsn . The predictor is identical to X0 whenever s0 is
one of the observation sites. If X is a Gaussian process, X̂0 is exactly the conditional
expectation E(X0 | Xs1 , . . . ,Xsn); the distribution of this predictor is Gaussian and the
error X0 − X̂0 ∼ N (0,τ2(s0)).

1.9.2 Universal kriging

More generally, suppose that X = Zδ + ε follows a spatial linear regression model
(1.32). Given z0 and the covariance Σ of the residual ε (but not the mean parameter
δ ), we want to make an unbiased linear prediction of X0, i.e., satisfying tλZ = t z0,
which minimizes the mean square error (1.34). If Σ is unknown, it first must be
estimated (cf. §5.1.3).

Proposition 1.10. Universal kriging: the best unbiased linear predictor of X0 is

X̂0 = {t cΣ−1 + t(z0 − tZΣ−1c)(tZΣ−1Z)−1tZΣ−1}X . (1.36)

The variance of the prediction error is

τ2(s0) = σ2
0 − t cΣ−1c+ t(z0 − tZΣ−1c)(tZΣ−1Z)−1(z0 − tZΣ−1c). (1.37)

Proof. The MSE of the predictor tλX is:

MSE(s0) = σ2
0 −2 tλc+ tλΣλ .

We consider the quantity:

φ(λ ,ν) = σ2
0 −2tλc+t λΣλ −2ν(tλZ − t z0),

where ν is a Lagrange multiplier. The minimum of φ is found where the partial
derivatives of φ at λ and ν are zero. For λ , we find λ = Σ−1(c+Zν). To obtain ν ,
we substitute λ into the unbiased condition and find

ν = (tZΣ−1Z)−1(z0 − tZΣ−1c),

λ = Σ−1c+Σ−1Z(tZΣ−1Z)−1(z0 −t ZΣ−1c).

By substitution into MSE(s0), we obtain (1.36) and (1.37). ��

An interpretation of the universal kriging prediction (1.36) is as follows: we
rewrite (1.36) as

X̂0 = t z0δ̂ + cΣ−1(X −Zδ̂ ), where

δ̂ = (tZΣ−1Z)−1tZΣ−1X .



1.9 Prediction when the covariance is known 45

We will see in Chapter 5 that δ̂ is the (optimal) generalized least squares (GLS)
estimator of δ (cf. §5.3.4). Universal kriging of X is thus the sum of the (optimal)
estimation t z0δ̂ of E(X0) = t z0δ and the simple kriging cΣ−1(X−Zδ̂ ) with residuals
ε̂ = (X −Zδ̂ ) estimated by GLS.

When Xs = m + εs with unknown but constant m, we say we are performing
ordinary kriging.

Kriging formulae can be written analogously in terms of variograms if ε is an in-
trinsic process (cf. Ex. 1.10); in effect, stationarity plays no part in obtaining results
(1.36) and (1.37).

Kriging is an exact interpolator as X̂s0 = Xs0 if s0 is an observation site: in effect,
if s0 = si and if c is the i th column of Σ , then Σ−1c = t ei where ei is the i th vector of
the canonical basis of R

n and tZΣ−1c = t z0.

Regularity of kriging surfaces

Regularity at the origin of covariance C (variogram 2γ) determines the regularity of
the kriging surface s 
→ X̂s, especially at the data sites (cf. Fig. 1.12):

1. For the nugget effect model, if s0 �= si, then Σ−1c = 0, δ̂ = n−1∑n
i=1 Xsi and the

prediction is none other than the arithmetic mean of the (Xsi) if s0 �= si, with peaks
X̂s0 = Xsi when s0 = si. More generally, if C(h) is discontinuous at 0, s 
→ X̂s is
discontinuous at the data sites.

2. If C(h) is linear at the origin, s 
→ X̂s is everywhere continuous but not differen-
tiable at the data sites.

3. If C(h) is parabolic at 0, s 
→ X̂s is everywhere continuous and differentiable.

If in dimension d = 1 kriging is done with cubic covariance (1.8), the interpola-
tion function is a cubic spline. In higher dimensions and for separable cubic covari-
ances, predictions are piecewise cubic in each variable (43, p. 272). Laslett (140)
gives empirical comparisons between spline functions and kriging predictions.

Example 1.14. Kriging the rainfall data for the State of Parana (continued).

After preliminary analyses, we estimate (cf. §5.3.4) the affine regression model
m(s) = β0 + β1x + β2y, s = (x,y) ∈ R

2 using a Gaussian covariance and a nugget
effect for the residuals. Figure 1.13-a shows the prediction map using universal krig-
ing with this model and Figure 1.13-b shows its standard error.

1.9.3 Simulated experiments

Simulated experiments are procedures aiming to learn a program (metamodel) y =
f (x) that associates input x ∈ S = [0,1]d to output y ∈ R

q (132; 193). Here, the
“spatial” dimension d of input x is generally ≥ 3. Existing spatial statistics methods
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Fig. 1.12 Regularity (right) of the kriging surface (here, S = R, X2 = 1, X3 =−0.4) as a function of
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Fig. 1.13 Kriging of the rainfall data for the State of Parana showing in grayscale the prediction X̂s

across the whole state: (a) contours associated with X̂s; (b) contours associated with the standard
deviation of the prediction error.

suppose that y is random and associated with x via a spatial model, for example a
spatial regression

y = t z(x)β + ε(x),

where z(x) is known, β ∈ R
p unknown and ε is a stationary Gaussian process with

covariance C. Usually, we choose a separable C to have quick algorithms. If we
have observations (calculations) xi 
→ yi at points of some experimental design O =
{x1,x2, . . . ,xn} of S, universal kriging ŷO = {ŷO(x),x∈ S} with covariance C gives a
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prediction of y over all of S. If the covariance depends on some unknown parameter
θ , we must first pre-estimate θ and use universal kriging with Cθ̂ . For a fixed budget
and given prediction criteria, our goal is to choose the optimal O that minimizes the
criteria over all S.

Choosing a sampling scheme for selecting observation sites

Suppose that X is a random field with constant mean and that we want to choose an
experimental design O = {x1,x2, . . . ,xn} of n points that minimizes the integral of
the variance over a region of interest A ⊂ R

d ,

V (O,A) =
∫

A
E[Xs − X̂s(O)]2ds =

∫

A
τ2(s,O)ds. (1.38)

In this set-up, X̂s(O) and τ2(s,O) are respectively the prediction and variance of the
prediction using ordinary kriging. An approximation of (1.38) can be calculated by
discretizing A at a finite subset R ⊂ A of cardinality M > m. Minimizing (1.38) over
R necessitates an exhaustive search over a set with

(M
m

)
elements. In practice, we use

the following sequential algorithm:

1. Let Ok−1 = {x∗1, . . . ,x
∗
k−1} be the first k − 1 chosen points and Rk = R\Ok−1.

Choose x∗k = argminx∈Rk V (Ok−1 ∪ s,A).
2. Repeat until k = m.

This V criteria can be generalized to non-stationary mean processes. Other crite-
ria may also be considered.

Exercises

1.1. Effect of spatial correlations on the variance of empirical means.
Suppose X = {Xs, s ∈ Z

d} is a stationary random field on Z
d with mean m and

covariance C(h) = σ2ρ‖h‖1 , where ‖h‖1 = ∑d
i=1 |hi| and |ρ| < 1.

1. For d = 1 and X = ∑9
t=1 Xt/9, show that:

V1(ρ) = Var{X} =
σ2

81
{9+ 2

8

∑
k=1

(9−k)ρk}.

2. For d = 2 and X = ∑3
s=1∑

3
t=1 Xs,t/9, show that:

V2(ρ) = Var(X) =
σ2

81
{9+24ρ+28ρ2 +16ρ3 +4ρ4}.

Compare V1(0), V1(ρ) and V2(ρ). Show that for ρ = 1/2, these three values are
respectively proportional to 9, 15.76 and 30.25.
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3. Denote N = nd and Vd = Var(XN) where XN = N−1∑t∈{1,2,...,n}d Xt . Show that:

Vd(ρ) = Var(XN) =
σ2

N2

{
n

1+ρ
1−ρ − 2ρ

1−ρ2 +on(1)
}d

.

Compare the width of the confidence intervals for m under ρ-correlation and
under independence.

1.2. Three methods of prediction for factorizing ARs on Z
2.

Let X be a stationary centered Gaussian process on Z
2 with covariance C(h) =

σ2ρ‖h‖1 . Consider the following three predictions of X0:

1. The predictor via 0 = E(X0).
2. The optimal causal SAR predictor using X1,0, X0,1 and X1,1.
3. The optimal CAR predictor using {Xt , t �= 0}.

Give explicit representations of the last two predictors. Show that when ρ = 1/2,
the variances of the prediction errors are respectively proportional to 1, 0.5625 and
0.36.

1.3. Krige’s formula.
Let X = {Xt , t ∈ R

d} be a centered stationary process in L2 with covariance C. For
a bounded Borel set V ∈ Bb(Rd), note:

X(V ) =
1

ν(V )

∫

V
X(z)dz and C(u,U) =

1
ν(u)ν(U)

∫

u

∫

U
C(y− z)dydz,

where u,U ∈ Bb(Rd) have volumes ν(u) > 0 and ν(U) > 0.

1. The extension variance of X from v to V is defined as σ2
E(v,V ) = Var(X(v)−

X(V )): i.e., it is the variance of the prediction error of X(V ) when using X̂(V ) =
X(v). Show that σ2

E(v,V ) = C(v,v)+C(V,V )−2C(v,V ).
2. Suppose that D ⊂ R

d is partitioned into I subdomains Vi and each Vi in turn is
divided into J equally sized subdomains vi j in such a way that we pass from
partition Vi to Vj via a translation. We denote by v the shared generating form of
the vi j and V that of the Vi. Noting Xi j = X(vi j) and Xi· = 1

J ∑
J
j=1 Xi j, we define

the empirical dispersion variance and dispersion variance of X for v in V , v ⊂V ,
by:

s2(v |V ) =
1
J

J

∑
j=1

(Xi j −Xi·)2 and σ2(v |V ) = E{s2(v |V )}).

a. Show that σ2(v |V ) = C(v,v)−C(V,V ).
b. Show that σ2(v | D) = σ2(v |V )+σ2(V | D).

1.4. A sufficient p.s.d. condition for matrices.

1. Show that C is p.s.d if C is diagonally dominant, i.e., if for all i: Cii ≥∑ j: j �=i

∣∣Ci j
∣∣.
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2. Investigate this condition for the two covariances:

a. C(i, j) = ρ |i− j| on Z;
b. C(i, j) = 1 if i = j, ρ if ‖i− j‖∞ = 1 and 0 otherwise, on Z

d .

Show that the converse of 1 is not true.

1.5. Product covariance, restriction and extension of covariances.

1. Show that if Ck(·) are stationary covariances on R
1, the function C(h) =

∏d
k=1 Ck(hk) is a covariance on R

d .
2. Show that if C is a covariance on R

d , then C is a covariance on any vectorial
subspace of R

d .
3. Consider the function C0(h) = (1−|h|/√2)1{|h| ≤ √

2} on R.

a. Show that C0 is a covariance on R.
b. For (i, j) ∈ A = {1,2, . . . ,7}2, suppose si j = (i, j) and ai j = (−1)i+ j. Show

that ∑(i, j),(k,l)∈A ai jaklC0(
∥∥si j − skl

∥∥) < 0. Deduce that C(h) = C0(‖h‖) is not
a covariance on R

2.
c. Show that ∑u,v∈{0,1}d (−1)‖u‖1+‖v‖1C0(‖u− v‖) < 0 when d ≥ 4. Deduce that

C(h) = C0(‖h‖) is not a covariance on R
d when d ≥ 4.

d. Show that C(h) =C0(‖h‖) is not a covariance on R
3. Deduce that no isotropic

extension of C0 is a covariance on R
d if d ≥ 2.

1.6. χ2 random fields.

1. If (X ,Y ) is a pair of Gaussian variables, show that:

Cov(X2,Y 2) = 2{Cov(X ,Y )}2.

Hint: if (X ,Y,Z,T ) is a Gaussian vector in R
4, then

E(XY ZT ) = E(XY )E(ZT )+E(XZ)E(Y T )+E(XT )E(Y Z).

2. Suppose that X1, . . . ,Xn are n centered i.i.d. Gaussian processes on R
d , each

with covariance CX . Show that the random field Y defined by

Y = {Ys =
n

∑
i=1

[Xi
s ]

2, s ∈ R
d}

is stationary with covariance CY (h) = 2nCX (h)2.

1.7. Markov property of exponential covariances.
Consider a stationary process X on R with covariance C(t) = σ2ρ |t|, with |ρ| < 1.
X is observed at n sites {s1 < s2 < .. . < sn}.

1. Show that if s0 < s1, the kriging of X at s0 is X̂s0 = ρs1−s0Xs1 .
2. Show that if sk < s0 < sk+1, the kriging X̂s0 only depends on Xsk and Xsk+1 and

give an explicit formulation of this kriging.
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1.8. For a stationary process X on R with covariance C, we observe: X0 = −1 and
X1 = 1. Show that simple kriging gives

X̂s =
C(s−1)−C(s)

C(0)−C(1)

and that the variance of the prediction error at s is

τ2(s) = C(0)
(

1− (C(s)+C(s−1))2

C(0)2 −C(1)2

)
+2

C(s)C(s−1)
C(0)−C(1)

.

Draw the graphs of s 
→ X̂s and s 
→ τ2(s) for s ∈ [−3,3] when C is Matérn’s covari-
ance with parameters C(0) = 1, a = 1, ν = 1/2 (resp. ν = 3/2). Comment on these
graphs.

1.9. Models with zero correlation for distances > 1.
Consider the stationary process X = (Xt , t ∈Z) with correlation ρ at a distance 1 and
correlation 0 at distances > 1. Denote X(n) = t(X1,X2, . . . ,Xn) and Σn =Cov(X(n)).

1. Under what condition on ρ is Σ3 p.s.d.? Same question for Σ4.
Find the correlation function of the MA(1) process: Xt = εt +aεt−1, where ε is a
SWN. Deduce that the condition |ρ| ≤ 1/2 ensures that for all n ≥ 1, Σn is p.s.d.

2. Calculate the kriging of X0 using X1 and X2. Same question when:

a. E(Xt) = m is unknown.
b. E(Xt) = at.

3. Try to answer similar questions when X = (Xs,t ,(s, t)∈Z
2) is a stationary random

field with correlation ρ at (Euclidean) distance 1 and 0 at distances > 1.

1.10. If Xs = m + εs, where {εs, s ∈ S} is an intrinsic process with variogram 2γ ,
give the kriging predictions (1.36) and kriging variances (1.37) as a function of γ .

1.11. Consider the process Xs = cos(U + sV ), s ∈ R, where U is the uniform distri-
bution U (0,2π), V a Cauchy variable on R (with density 1/π(1 + x2)) and U and
V independent. Show that E(Xs) = 0 and Cov(Xs,Xt) = 2−1 exp{−|s− t|}. Deduce
that the trajectories of X are infinitely differentiable but that X is not L2 differen-
tiable.

1.12. “Boundary” CAR models.
Show that the equation Xt = 1

d ∑s:‖s−t‖1=1 Xs +et defines a CAR model on Z
d if and

only if d ≥ 3.

1.13. Give explicit CAR representations of the following SAR models (graph, coef-
ficients, variance ratio κ2):

1. Xs,t = aXs−1,t +bXs,t−1 + cXs+1,t−1 + εs,t , (s, t) ∈ Z
2.

2. Xs,t = a(Xs−1,t +Xs+1,t)+b(Xs,t−1 +Xs,t+1)+c(Xs−1,t−1 +Xs+1,t+1)+εs,t , (s, t)∈
Z

2.



Exercises 51

3. Xt = aXt−1 +bXt+2 + εt , (s, t) ∈ Z.

1.14. Simulating factorizing SAR models on Z
2.

Consider the factorizing centered Gaussian SAR model:

Xs,t = αXs−1,t +βXs,t−1 −αβXs−1,t−1 + εs,t , 0 < α,β < 1.

If Var(ε) = σ2
ε = (1 − α2)(1 − β 2), the covariance of X is C(s, t) = α |s|β |t|.

We propose three ways to simulate X on the rectangle S = {0,1,2, . . . ,n− 1}×
{0,1,2, . . . ,m−1}, of which the first and third are exact simulations:

1. Using the Cholesky decomposition of Σ = Σ1 ⊗Σ2, give this decomposition and
the associated simulation algorithm.

2. Using Gibbs sampling with the associated CAR model (cf. §4.2; give the associ-
ated CAR model and the simulation algorithm).

3. Using a recursive formulation that exactly defines X on S: let W be the Brownian
sheet on (R+)2 (cf. (1.1)) and define variables

Zs,0 = αs ×W ([0,α−2s]× [0,1]) for s = 0, . . . ,n−1 and

Z0,t = β t ×W ([0,1]× [0,β−2t ]) for t = 0, . . . ,m−1.

Show that Z has the same covariance as X in the directions of the two axes.
Deduce an exact simulation method for X on a subgrid of S.

1.15. The Yule-Walker equations.
Give the Yule-Walker equations for the stationary models with spectral density:

1. f (u1,u2) = σ2(1−2acosu1 −2bcosu2).
2. g(u1,u2) = (1+2cosu1) f (u1,u2).

1.16. Identify in series form the variance of the isotropic 4-NN CAR model on Z
2

with parameter a, |a| < 1/4. Determine the correlation at distance 1 of this model
and draw the correlation graph a → ρ(a). Same question in dimension d = 1 with
|a| < 1/2.

1.17. Behavior of CAR models at their parametric boundary.

1. Consider the isotropic 4-NN CAR model on Z
2 with parameter a = 1/4 −

ε , with ε ↓ 0. What equation satisfies ρε = ρX (1,0)? Show that 1 − ρε ∼
−(π/2)(logε)−1 when ε is close to 0. For what values of a do we get ρε = 0.9,
0.95 and 0.99?

2. Attempt the same questions for the (isotropic) 2-NN model on Z
1. Compare the

behavior of ρ(ε) when d = 1 and d = 2 for small ε .

1.18. The restriction of a Markov random field in Z
2 to Z

1.
Suppose X is the isotropic 4-NN CAR model on Z

2. What is the spectral density of
the one parameter process {Xs,0, s ∈ Z}? In Z, is this model still a Markov random
field?
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1.19. Exchangeable Gaussian models on S = {1,2, . . . ,n}.
Consider the following SAR model on R

n :

X = αJX + ε,

where ε is a Gaussian WN and J the n×n matrix with coefficients Ji j = 1 if i �= j,
Jii = 0 otherwise. We say that the set {aI +bJ, a,b ∈ R} is stable under multiplica-
tion and inversion if aI +bJ is invertible.

1. Under what condition on α is the model well-defined? Show that Cov(X) = r0I +
r1J and find r0 and r1.

2. After identification of β and Cov(e), show that X can be written in the following
CAR form:

X = βJX + e.

1.20. Suppose that X is a non-stationary Gaussian SAR model over the sites S =
{1,2, . . . ,n}. Give its CAR representation: graph, joint distribution, conditional dis-
tributions and prediction of Xi using the other observations.

1.21. Two SARX models with covariates.
Let Y be an n × p matrix of deterministic covariates that influence some spatial
variable X ∈ R

n, W a spatial contiguity matrix on S = {1,2, . . . ,n} and η a Gaus-
sian WN with variance σ2. Suppose we are interested in the following two models:
first, the spatial lag model defined as the SAR model: X = Yβ +αWX +η with
exogenous Y ; second, the Durbin model, defined as the SAR model on the residuals
X −Yβ = αW (X −Yβ )+η . If I −αW is invertible, calculate the distribution of X
for each model. How do the results change if η is itself a SAR model, η = ρΔη+e,
where Δ is a known proximity matrix and e a Gaussian WN with variance σ2

e ? Cal-
culate the log-likelihood of each model.



Chapter 2
Gibbs-Markov random fields on networks

Throughout this chapter, X = (Xi, i ∈ S) will denote a random field defined on a dis-
crete set of sites S with values inΩ = ES, where E is some general state space. The
discrete set S may be finite or infinite, regular (S ⊆ Z

2 in imaging and radiography)
or irregular (regions in epidemiology). We denote by π either the distribution of X
or its density. Instead of describing X using some of its global characteristics (e.g.,
mean or covariance), we are interested here in characterizing π using its conditional
distributions, useful when the observed phenomenon is given in terms of its local
conditional behavior. In particular, we attempt to answer the following question:
given a family {νi(·|xi), i ∈ S} of distributions on E indexed by the configuration xi

of x outside of i, under what conditions do these distributions represent conditional
distributions of a joint distribution π?

Being able to reply in some way to this question means being able to specify
either wholly or partially the joint distribution π using its conditional distributions.
Furthermore, if νi(·|xi) is only locally dependent, the complexity of the model is
greatly reduced. In this case we say that X is a Markov random field.

Without additional hypotheses, conditional distributions {νi} are not generally
compatible in this way. In this chapter, we will begin by describing a general family
of conditional distributions called Gibbs specifications that are compatible without
further conditions; Gibbs specifications are characterized by potentials. Their im-
portance is enhanced by the Hammersley-Clifford theorem showing that Markov
random fields are Gibbs random fields with local potentials. Besag’s auto-models
are a particularly simple subclass of Markov random fields that are useful in spatial
statistics.

Unlike second-order models for which E = R or R
p (cf. Ch. 1), the state space E

of a Gibbs-Markov random field can be general, quantitative, qualitative or mixed.
For example, E = R

+ for a positive-valued random field (exponential or Gamma
random field), E = N for count variables (Poisson random fields in epidemiology),
E = {a0,a1, . . . ,am−1} for categorical random fields (spatial pattern of m plant types
in ecology), E = {0,1} for binary random fields (presence/absence of an illness or
species), E = Λ ×R

p for random fields combining categorical labels ν with quan-
titative multivariate values x (in remote sensing, ν represents a landscape texture

C. Gaetan, X. Guyon, Spatial Statistics and Modeling, Springer Series in Statistics, 53
DOI 10.1007/978-0-387-92257-7_2, c© Springer Science+Business Media, LLC 2010
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and x a multispectral signature), E = {0}∪]0,+∞[ for mixed states (in pluviometry,
X = 0 if it does not rain, X > 0 otherwise), or even, as before, E = R or E = R

p

for Gaussian random fields. We suppose that measurable state spaces (E,E ) are
associated with some reference measure λ > 0: E the Borel σ -algebra and λ the
Lebesgue measure when E ⊂ R

p, or E the set of subsets of E and λ the counting
measure when E is discrete. Definitions and results from this chapter can be easily
extended to cases where the state space Ei may depend on i ∈ S.

2.1 Compatibility of conditional distributions

Without supplementary hypotheses, conditional distributions {νi} are generally not
compatible. Exercise 2.3 uses a parametric dimension argument to show simply why
this is the case. A different approach involves examining the condition of Arnold,
Castillo and Sarabia (8) that guarantees two families of conditional distributions
(X |y) and (Y |x) with states x ∈ S(X) and y ∈ S(Y ) are compatible: let μ and ν
be two reference measures on S(X) and S(Y ), a(x,y) the density of (X = x|y) with
respect to μ , b(x,y) that of (Y = y|x) with respect to ν , Na = {(x,y) : a(x,y) > 0} and
Nb = {(x,y) : b(x,y) > 0}; then, the two families are compatible iff Na = Nb(= N)
and if:

a(x,y)/b(x,y) = u(x)v(y), ∀(x,y) ∈ N, (2.1)

with
∫

S(X) u(x)μ(dx) < ∞.
This factorization condition is necessary because the conditional densities are

written a(x,y) = f (x,y)/h(x) and b(x,y) = f (x,y)/k(y), with f , h and k the densities
of (X ,Y ), X and Y . Conversely, it is sufficient to show that f ∗(x,y) = b(x,y)u(x) is,
up to a multiplicative constant, a density whose conditional densities are a and b.

Hence, Gaussian distributions (X |y)∼N (a+by,σ2 +τ2y2) and (Y |x)∼N (c+
dx,σ ′2 +τ ′2x2), σ2 and σ ′2 > 0 are not compatible if ττ ′ �= 0. If τ = τ ′ = 0, the dis-
tributions are compatible if dσ2 = bσ ′2 as the joint distribution is Gaussian. We will
come back to this example, which belongs to the class of Gaussian auto-models (cf.
§2.4.2) and also to the CAR class studied in Chapter 1 (cf. §1.7.3). An example of
compatible Gaussian conditional distributions that lead to compatible non-Gaussian
joint distributions is examined in Exercise 2.4 (cf. (8)).

Another example of compatible conditional distributions is that of the auto-
logistic distributions on E = {0,1}. These distributions,

νi(xi|xi) =
expxi(αi +∑ j �=iβi jx j)
1+ exp(αi +∑ j βi jx j)

, i ∈ S, xi ∈ {0,1}

are compatible on Ω = {0,1}S if βi j = β ji for all i �= j. In this case, the associated
joint distribution is that of an auto-logistic model (cf. §2.4) with joint energy:

U(x) = C exp{∑
i∈S

αixi + ∑
i, j∈S, i< j

βi jxix j}.
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Defining conditions that ensure compatibility of conditional distributions is not easy
(8). To see why, set x∗ = (x∗1,x

∗
2, . . . ,x

∗
n) as a reference state of ES and suppose that

π has conditional distributions ν = {νi}. Then (Brook’s lemma (35)):

π(x1, . . . ,xn)
π(x∗1, . . . ,x∗n)

=
n−1

∏
i=0

π(x∗1, . . . ,x
∗
i ,xi+1,xi+2, . . . ,xn)

π(x∗1, . . . ,x
∗
i ,x

∗
i+1,xi+2, . . . ,xn)

=
n−1

∏
i=0

νi(xi+1|x∗1, . . . ,x∗i ,xi+2, . . . ,xn)
νi(x∗i+1|x∗1, . . . ,x∗i ,xi+2, . . . ,xn)

.

This shows that if the distributions νi are compatible for π , then π can be recon-
structed from the νi. However, this reconstruction has to be invariant, both by co-
ordinate permutation (1,2, . . . ,n) and with respect to the choice of reference state
x∗: these invariances represent constraints on the {νi} ensuring coherency of the
conditional distributions.

Let us now begin our study of Gibbs random fields, which are defined by condi-
tional distributions without compatibility constraints.

2.2 Gibbs random fields on S

We suppose in this section that the set of sites S is countable, typically S = Z
d if S

is regular. Denote S = PF(S) the family of finite subsets of S, xA = (xi, i ∈ A) the
configuration of x on A, xA = (xi, i /∈ A) the exterior of A, xi = x{i} the exterior of
site i, ΩA = {xA,y ∈ Ω} and ΩA = {xA,x ∈ Ω}. Furthermore, let F = E ⊗S be the
σ -field on Ω and dxΛ the measure λ⊗Λ (dxΛ ) on (EΛ ,E ⊗Λ ) restricted to ΩΛ .

2.2.1 Interaction potential and Gibbs specification

Gibbs random fields are associated with families πΦ of conditional distributions
defined with respect to interaction potentials Φ .

Definition 2.1. Potential, admissible energy and Gibbs specification

1. An interaction potential is a family Φ = {ΦA,A ∈ S } of measurable mappings
ΦA :ΩA 
−→ R such that, for every subset Λ ∈ S , the following sum exists:

UΦ
Λ (x) = ∑

A∈S :A∩Λ �= /0

ΦA(x). (2.2)

UΦ
Λ is the energy of Φ on Λ , ΦA the potential on A.

2. Φ is admissible if for all Λ ∈ S and yΛ ∈ΩΛ ,

ZΦΛ (xΛ ) =
∫

ΩΛ
exp UΦ

Λ (xΛ ,xΛ )dxΛ < +∞.
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3. If Φ is admissible, the Gibbs specification πΦ associated with Φ is the family
πΦ = {πΦΛ (·|xΛ );Λ ∈PF(S), xΛ ∈ΩΛ} with conditional distributions πΦΛ (·|xΛ )
of density with respect to λ⊗Λ :

πΦΛ (xΛ |xΛ ) = {ZΦΛ (xΛ )}−1 exp UΦ
Λ (x), Λ ∈ S .

The family πΦ is well-defined because if Λ ⊂Λ ∗, the conditional distribution πΛ
can be obtained by restricting the conditional distribution πΛ∗ to Λ . Summability
(2.2) is guaranteed if (S,d) is a metric space and if the potential Φ has finite range,
i.e., if there exists some R > 0 such that ΦA ≡ 0 as soon as the diameter of A,
δ (A) = supi, j∈A d(i, j) is larger than R. In this case only a finite number of potentials
ΦA �= 0 contribute to the energy UΦ

Λ .

Conditional specifications πΦ and Gibbs measures G (Φ)

A Gibbs measure associated with the potential Φ is a distribution μ on (Ω ,F )
whose conditional distributions coincide with πΦ : we write μ ∈ G (Φ). If S is finite,
π(x) = πS(x) and G (Φ) = {π}. If S is infinite the question arises as to whether
there is existence and/or uniqueness of a global distribution with specification πΦ .
This is not necessarily the case without additional hypotheses and answering this
question is one of the goals of statistical mechanics (cf. (85)). For a large class
of spaces E (E Polish, for example a Borel set in R

d , a compact set of a metric
space or a finite set) and if the measure λ is finite, Dobrushin (66) showed that
G (Φ) �= /0; thus there exists at least one global distribution with specification πΦ .
However, this distribution is not necessarily unique: if �G (Φ) > 1, we say that there
is a phase transition, namely two different distributions could represent the same
conditional distributions. Thus, on an infinite network S, a Gibbs specification does
not necessarily specify a joint distribution model on S. This situation shows one of
the difficulties encountered in the study of statistical asymptotics of Gibbs random
fields. Dobrushin (66) gives a sufficient condition ensuring uniqueness of the Gibbs
measure associated with πΦ (also cf. (85) and §B.2).

Identifiability of potential Φ

Without additional constraints, the mapping Φ 
→ πΦ is not identifiable: for exam-
ple, for any constant c, if a potential ΦA is modified to Φ̃A =ΦA +c, then πΦ ≡ πΦ̃ .
In effect, increasing the energy by a constant c does not modify the conditional
distribution πΦΛ . One way to make this mapping identifiable is as follows: fix a ref-
erence state τ of E; then, the following constraints make Φ identifiable:

∀A �= /0,ΦA(x) = 0 if for some i ∈ A, xi = τ. (2.3)

This result follows from the Moëbius inversion formula:
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ΦA(xA) = ∑
V⊆A

(−1)�(A\V )U(xA,τA), (2.4)

a formula that uniquely associates potentials satisfying (2.3) with the energy U .
Following analysis of variance terminology we say that theΦA are the A-interactions
in the decomposition of U ; for example, for S = {1,2}, this decomposition is written
U −U(τ,τ) =Φ1 +Φ2 +Φ12, where

Φ1(x) = U(x,τ)−U(τ,τ), Φ2(y) = U(τ,y)−U(τ,τ),
Φ1,2(x,y) = U(x,y)−U(x,τ)−U(τ,y)+U(τ,τ).

Φ1 is the main effect of the first factor (the potential associated with {1}), Φ2 that
of the second factor (the potential associated with {2}) and Φ1,2 the second-order
interaction effect.

2.2.2 Examples of Gibbs specifications

Modeling random fields via potentials Φ = {ΦA,A ∈ C }, where C is a family of
finite subsets of S, needs specialist knowledge. The model’s parameters are made up
of the subsets A ∈ C that index the potential Φ and the potential functions ΦA for
A ∈ C . If the ΦA have parametric form ΦA(x) = θAφA(x) where the φA are known
real-valued functions, π belongs to the exponential family

π(x) = Z−1(θ)exp tθT (x) ,

with parameter θ = (θA,A ∈ C ) and sufficient statistic T (x) = (φA(x),A ∈ C ). The
explicit forms of the conditional distributions allow us to:

1. Use Markov Chain Monte Carlo algorithms such as Gibbs sampling and the
Metropolis algorithm (cf. Ch. 4).

2. Use conditional pseudo-likelihood (CPL) estimation methods which are easy to
implement and which retain good asymptotic properties in situations where max-
imum likelihood (ML) is more difficult to implement (cf. Ch. 5 and §5.4.2).

Ising models on S ⊂ Z
2

Introduced by physicists to model spin configurations E = {−1,+1} on networks,
these binary-state models are also widely used in imaging and in statistics with state
space E∗ = {0,1}. They can be defined both on regular and irregular networks.

Isotropic 4-nearest neighbor model on Z
2

The only non-zero potentials are the singleton potentials Φ{i}(x) = αxi, i ∈ S and
the pair potentials Φ{i, j}(x) = βxix j when i and j are neighbors at a distance of 1,
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‖i− j‖1 = |i1 − j1|+ |i2 − j2| = 1. Denoting this relationship by 〈i, j〉, the condi-
tional specification on finite Λ has energy:

UΛ (xΛ |xΛ ) = α ∑
i∈Λ

xi +β ∑
i∈Λ , j∈S: 〈i, j〉

xix j.

The conditional distribution πΦΛ is given by:

πΛ (xΛ |xΛ ) = Z−1
Λ (α,β ;xΛ )exp UΛ (xΛ ;xΛ ),

where
Z(α,β ;xΛ ) = ∑

xΛ∈EΛ
exp UΛ (xΛ ;xΛ ).

The parameters can be interpreted in the following way: α controls the marginal
distribution and β the spatial correlation. If α = 0, the marginal configurations
{Xi = +1} and {Xi = −1} are equiprobable whereas α > 0 increases the proba-
bility of +1 appearing and α < 0 the probability of −1. β is a parameter related to
spatial dependency: β = 0 corresponds to independent Xi, β > 0 encourages neigh-
bors to be equal and β < 0 encourages opposite-valued neighbors. For example,
generating a model with parameters α = 0 and a fairly large positive value of β
leads to geometrically regular groupings of +1s and −1s, increasingly regular as
the value of β increases. On the other hand, models generated with large negative
values of β lead to an alternating chequered pattern of +1s and −1s, more and more
so as |β | increases.

The normalization constant ZΛ (α,β ;xΛ ), a sum of 2�Λ terms, is impossible to
calculate when Λ is large. This poses a problem both for simulating Y on Λ and
model estimation by maximum likelihood because the constant ZΛ depends on the
parameter (α,β ) being estimated. For example, if Λ is the (small) 10× 10 grid,
then there are 2100 " 1.27×1030 terms contributing to ZΛ ! Nevertheless, the condi-
tional distribution at a site i, depending on the configuration of the 4-NN, is easy to
calculate:

πi(xi|xi) = π(xi|xi) =
expxi(α+βvi(x))
2ch(α+βvi(x))

,

where vi(x) = ∑ j:〈i, j〉 x j. It is simple to show that the parametrization of π(·|·) by
(α,β ) is well-defined, that is, two different sets of parameters lead to two different
families π(·|·). As the state space is finite, G (Φ) �= /0. Thus, there always exists a
global distribution with specification π(Φ). However, this distribution is not always
unique: for example, with α = 0 there is uniqueness only if β < βc = log(1+

√
2)/4

(Onsager, (166); (85)). When α = 0 and β > βc, there are several distributions with
the same conditional specifications. There is thus a phase transition.

Ising model on finite subsets S ⊂ Z
2

For a given potential, a global model π always exists and is unique. The model
on the torus S = T 2 = {1,2, . . . ,m}2 can be obtained by considering the neighbor
relation as being defined modulo m, i.e., 〈i, j〉 ⇐⇒ |i1 − j1| + |i2 − j2| ≡ 1
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(a) (b) (c)

Fig. 2.1 Simulation of an isotropic 4-NN Ising model on {1, . . . ,100}2 shown after 3000 iterations
using Gibbs sampling: α = 0 and (a) β = 0.2, (b) β = 0.4, (c) β = 0.8. Simulations were performed
using the program AntsInFields.

(modulo m). Figure 2.1 gives three simulation results using an isotropic 4-NN Ising
model on the 100× 100 torus: α = 0 ensures that the two states +1 and −1 are
equiprobable. Parameters in Figs 2.1-b and -c correspond, for infinite networks,
to phase transitions. These simulations were performed using the program AntsIn-
Fields (cf. Winkler (224) and www.antsinfields.de).

The binary space E∗ = {0,1} corresponds to absence (xi = 0) and presence
(xi = 1) of a species (or illness) at site i. The mapping yi 
→ 2xi − 1 from E∗ to
E = {−1,+1} and the mapping a = 2α − 8β and b = 4β associate with the Ising
model with y ∈ E the model with x ∈ E∗:

πΛ (xΛ |xΛ ) = Z−1(a,b,xΛ )exp{a ∑
i∈Λxi

+b ∑
i∈Λ , j∈S:〈i, j〉

xix j}.

States 0 and 1 are equiprobable when a+2b = 0, whereas a+2b > 0 favors state 1
and a + 2b < 0 state 0. b can be interpreted in the same way as β in Ising models,
b > 0 corresponds to “cooperation”, b < 0 to “competition” and b = 0 to spatial
independence.

Generalizations of the Ising model

Generalizations of the Ising model cover a large number of real-world situations.

1. We can introduce anisotropy by choosing a parameter βH for horizontal neigh-
bors and βV for vertical ones.

2. Non-stationary models; these have potentials:

Φ{i}(x) = αixi, Φ{i, j}(x) = β{i, j}xix j,

with αi and β{i, j} depending on i and (i, j) and/or being defined with respect to
known weights and/or covariates. An example on Z

2 is the log-linear model with
potentials
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0. 0 1 . 0 0 .0

− 1.0 2.0 − 1.0
0. 0 1 . 0 0 .0

3. 0 1 . 0 0 .0

− 1.0 0.0 − 1.0
0. 0 1 . 0 3 .0

− 0. 4 0 .4 − 0.4

0.4 0.0 0.4
− 0. 4 0 .4 − 0.4

Fig. 2.2 Three 8-NN binary textures on {1, . . . ,150}2. Simulations were performed with
3000 iterations of Gibbs sampling. Below each pattern we show the local model relative to
the central pixel and given parameters. Simulations were performed using the AntsInFields
program.

Φ{i}(x) = α+ γ1i1 + γ2i2 + tδ zi, Φ{i, j}(x) = βxix j,

where i = (i1, i2).
3. The neighbor relation 〈i, j〉 can be associated with a general symmetric graph

G without loops: for example, on Z
2, an 8-NN graph can be defined with

the neighbor relation: 〈i, j〉 if ‖i− j‖∞ ≤ 1, where ‖(u,v)‖∞ = max{|u| , |v|}.
Fig. 2.2 gives results of simulations of three 8-NN binary textures for various
local parameters.

4. Potentials involving more than pairs can also be considered: for example, for
an 8-NN Gibbs random field, it is possible to introduce potentials over triplets
{i, j,k} or quadruplets {i, j,k, l} for sets of neighboring sites.

5. The number of states can be increased, either qualitatively (Potts model) or quan-
titatively (grayscale for imaging).

6. Lastly, these types of models can be defined over general networks S without
regularity conditions as long as S is associated with a graph G defining a neighbor
relation.

Other examples on real-valued textures (estimation and simulation) are given in
Chapter 5 (cf. Fig. 5.13). These show the significant variety of configurations that
these models are able to generate and their usefulness in representing real-valued
patterns (cf. (224)).

Potts model

This model, also known as a Strauss model (207) generalizes the binary Ising model
to situations with K ≥ 2 qualitative states E = {a0,a1, . . . ,aK−1} (colors, textures,
features). Its potentials are:
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Φ{i}(x) = αk, if xi = ak,
Φ{i, j}(x) = βk,l = βl,k, if {xi,x j} = {ak,al} for neighbors i and j.

These models are particularly useful as prior models in Bayesian image segmenta-
tion. If S is finite, the energy associated with Φ is

U(x) =∑
k

αknk +∑
k<l

βklnkl , (2.5)

where nk is the number of sites with state ak and nkl the number of neighboring
sites with states {ak,al}. For these types of models, the larger the value of αk, the
greater the marginal probability of state ak; βkl in turn controls the likelihood of
configuration {ak,al} at neighboring sites. For example, to forbid the configuration
{ak,al} at neighboring sites, we choose a large −βkl > 0; if we want the marginal
probability of ak to be bigger than that of al , we set αk > αl .

As they stand, the parameters (α,β ) are not identifiable. By taking τ = a0 as a
reference state, constraints: α0 = 0 and for all k, β0,k = 0, the potential Φ is identi-
fiable. If the K states are exchangeable, i.e., for all k �= l, αk ≡ α and βkl ≡ β , the
model depends only on the interaction parameter β :

π(x) = Z−1 exp{−βn(x)}, (2.6)

where n(x) is the number of pairs of neighboring sites with the same state. In ef-
fect, ∑kαknk ≡ αn is a constant independent of x and ∑k<l βklnkl ≡ β (N − n(x)),
where N, the total number of edges in the neighbor graph, does not depend on x.
In Bayesian image reconstruction, β plays the role of regularization parameter: the
larger −β is, the more the reconstructed regions with constant label are geometri-
cally regular (cf. Fig. 2.3).

(a) (b) (c)

Fig. 2.3 3-level exchangeable grayscale Potts model on {1, . . . ,200}2: (a) −β = 0.5, (b) −β =
0.6, (c) −β = 0.7. Simulations were performed using Gibbs sampling of 5000 iterations with
AntsInFields.
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Example 2.1. The role of regularization parameter β in Bayesian imaging.

A central goal in image processing or signal processing is to reconstruct an object
x based on a noisy observation y = Φ(x,e). Bayesian methods involve prior mod-
eling of x and then propose to reconstruct x̂ from its posterior distribution π(·|y)
(cf. the pioneering article of Geman and Geman (82) and (96; 42; 224)). Several
approaches are possible. The MAP or maximum a posteriori selects

x̂ = argmax
x∈Ω

π(x|y),

where π(·|y) is the conditional distribution of X given y. The distribution of Y
given x is known if the degradation process is well-defined. However, that of X ,
indispensable for calculating the posterior distribution π(·|y), is generally unknown.
This is why we have to choose a prior distribution π(x) for X . This step, partially
ad hoc requires specialist knowledge of the problem being considered. Once π is
chosen, the joint distribution (X ,Y ) and the conditional distribution of (X |y) are
given by

π(x,y) = π(y|x)π(x) and π(x|y) =
π(y|x)π(x)
π(y)

,

and the MAP reconstruction of x is:

x̂MAP = argmax
x∈Ω

π(y|x)π(x).

Figure 2.4 shows a simulated example of such a reconstruction: (a) is the binary
64× 64 image x to be reconstructed; (b) is the observed image y of x degraded by
an i.i.d. channel noise P(Yi = Xi) = 1−P(Yi �= Xi) = p = 0.25. The distribution y is
thus

π(y|x) = cexp

{
n(y,x) log

1− p
p

}
,

where n(y,x) = ∑i∈S 1(yi = xi). We choose the Potts distribution (2.6) with two in-
terchangeable states and parameter β as the prior distribution on x. We obtain:

π(x|y) = c(y)exp

{
−βn(x)+n(y,x) log

1− p
p

}
.

As we are maximizing π(x|y) with respect to x, we do not need to know the normal-
ization constant c(y), so we have:

x̂MAP = argmax
x∈{0,1}S

{
−βn(x)+n(y,x) log

1− p
p

}
.

To resolve this combinatorial optimization problem, (94) use an exact Ford-Fulkerson
algorithm, though it is also possible to use simulated annealing (82; 96; 224). Im-
ages 2.4-c, 2.4-d and 2.4-e give respectively exact MAP reconstructions for increas-
ing values β = 0.3, 0.7 and 1.1. Increasing the value of the regularization parameter
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(d) (e)(c)

(a) (b)

Fig. 2.4 Bayesian reconstruction of a noisy image: (a) original image (b) image with 25 % noise;
exact MAP reconstructions with: (c) β = 0.3, (d) β = 0.7, (e) β = 1.1. Source: Greig, Porteous
and Seheult (94), reproduced with permission of Blackwell Publishing.

β increases the regularity of the reconstructed zones of each state up to the point
where, for β = 1.1, only the black zones remain!

Gaussian specification on S = {1,2, . . . ,n}

If Σ−1 = Q exists, the Gaussian distribution X = (Xi, i ∈ S) ∼ Nn(μ ,Σ) is a Gibbs
random field with energy

U(x) =
1
2

t(x−μ)Q(x−μ),

with singleton potentials Φ{i} and pair potentials Φ{i, j} given by

Φ{i}(x) = xi ∑
j: j �=i

qi jμ j − 1
2

qiix
2
i and Φ{i, j}(x) = −qi jxix j if i �= j.

It is easy to get the conditional distributions LA(XA|xA) by fixing the conditional
energy UA(·|xA) on A. X is a G -Markov random field if, for all i �= j: qi j �= 0 ⇐⇒
〈i, j〉 is an edge in the graph G (cf. §2.3).

Translation-invariant potential

For S = Z
d and Ω = EZ

d
, an i-translation τi on Ω is defined as:
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(τi(x)) j = xi+ j, ∀ j ∈ Z
d .

Let V be a finite subset of Z
d andΦV : EV →R a measurable and bounded mapping.

The translation-invariant specification associated with ΦV is

πΦV
Λ (xΛ |xΛ ) = {ZΦV

Λ (xΛ )}−1 exp{ ∑
i∈Zd :{i+V}∩Λ �= /0

ΦV (τi(x))},

where Φ = {ΦV+i, i ∈ Z
d}, with ΦV+i(x) =ΦV (τi(x)) the translation-invariant po-

tential defining π .
Let Vk, k = 1, . . . , p be p finite non-empty subsets of Z

d and suppose φk :
EVk → R are p known, measurable and bounded potentials. Furthermore, let θ =
t(θ1,θ2, . . . ,θp) be a parameter in R

p. The translation-invariant specification asso-
ciated with (φk) is the exponential family with energy parameter θ ,

UΛ (x) =
p

∑
k=1

θk{ ∑
i:{i+Vk}∩Λ �= /0

φk(τi(x))}. (2.7)

For example, the translation-invariant 2d-NN Ising model on Z
d is associated with

the p = d +1 potentials φ0(x) = x0 (V0 = {0}), φk(x) = x0xek (Vk = {0,ek}), where
ek is the k th unitary vector of the canonical basis of R

d , k = 1, . . . ,d. The parameter
θ in this representation is identifiable. The isotropic sub-model has potentials φ0

and φ ∗ = ∑d
k=1 φk.

Hierarchical model on product spaces E =Λ ×R
p

Imaging and remote sensing are examples where product spaces are useful: Y =
(X ,Z) where Xi ∈Λ is a texture label at i (forest, cultivated fields, wasteland, water,
etc.) and Zi ∈ R

p a quantitative multispectral measure. A hierarchical model can be
obtained for example by modeling X using a Potts model, then, conditionally on X ,
modeling Z as a Gaussian multispectral grayscale texture (cf. Ex. 2.6).

2.3 Markov random fields and Gibbs random fields

Gibbs random fields are useful because they are able to represent simply coher-
ent conditional specifications and also because they have the Markov random field
property. We now give some relevant definitions.

2.3.1 Definitions: cliques, Markov random field

Suppose that S = {1,2, . . . ,n} has a symmetric neighbor graph G without loops.
Two sites i �= j are neighbors if (i, j) is an edge of G , noted 〈i, j〉; the neighborhood
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boundary of A is

∂A = {i ∈ S, i /∈ A : ∃ j ∈ A s.t. 〈i, j〉}.

We note ∂ i = ∂{i}.

Definition 2.2. Markov random fields and graph cliques

1. X is a Markov random field on S for the graph G if, for each A ⊂ S and xA ∈ΩA,
the distribution of X on A conditional on xA only depends on x∂A, the configura-
tion of x on the neighborhood boundary of A, i.e.,

πA(xA|xA) = πA(xA|x∂A).

2. A non-empty subset C of S is a clique of the graph G if C is a singleton or if
all pairs of elements of C are neighbors in G . The set of cliques of G is denoted
C (G ).

For example, for the 4-NN graph on Z
2, cliques are either singletons {i} or sub-

sets {i, j} with ‖i− j‖1 = 1. In the 8-NN graph, cliques also include triplets {i, j,k}
and quadruplets {i, j,k, l} of sites u and v such that ‖u− v‖∞ ≤ 1.

Fig. 2.5 The 10 types of clique for the 8-NN graph in Z
2.

2.3.2 The Hammersley-Clifford theorem

To a family C of subsets of S containing all singletons we associate the neighbor
graph G (C ) defined as: sites i �= j are neighbors in G (C ) if there exists a C ∈ C
s.t. {i, j} ⊂C. The following result relates Markov random fields to Gibbs random
fields.

Theorem 2.1. Hammersley-Clifford theorem (Besag, (25)).

1. Let π be a Markov G -random field on E satisfying:

πA(xA|xA) > 0, ∀A ⊂ S and x ∈ ES. (2.8)

Then there exists a potential Φ = {ΦA,A ∈ C } defined on the set of cliques C of
the graph G such that π is a Gibbs random field with potential Φ .
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2. Conversely, let C be a family of subsets of S containing all singletons. Then a
Gibbs random field with potentials Φ = {ΦA,A ∈ C } is a Markov random field
for the neighbor graph G (C ).

Proof:

1. Denote 0 some reference state of E. We want to characterize the potentials ΦA

using the function U(x) = log{π(x)/π(0)} and then check thatΦA ≡ 0 whenever
A /∈ C . The Moëbius formula (2.4) says that the energy U(x) is:

U(x) = ∑
A⊆S

ΦA(x), where ΦA(x) = ∑
B⊂A

(−1)�(A\B)U(xA,0).

We show that ΦA = 0 when A ⊇ {i, j} and i �= j are not neighbors. To begin,
choose {i, j} = {1,2}, A = {1,2} ∪C with C ∩ {1,2} = ∅: ΦA can again be
written:

ΦA(x) = ∑
B⊂C

(−1)�(C\B){U(x1,x2,xC,0)−U(x1,0,xC,0)

−U(0,x2,xC,0)+U(0,0,xC,0)}.

As sites 1 and 2 are not neighbors,

U(x1,x2,xC,0)−U(x1,0,xC,0) = log
π(x1,x2,xC,0)
π(x1,0,xC,0)

= log
π(x2|x1,xC,0)
π(0|x1,xC,0)

= log
π(x2|xC,0)
π(0|xC,0)

.

Then, as the resulting quantity does not depend on x1, we have thatΦA ≡ 0. Thus,
ΦA ≡ 0 if A is not a clique in G .

2. The distribution π conditional on xA is given by:

πA(xA|xA) = Z−1
A (xA)exp UA(x),

where
UA(x) = ∑

C :C∩A�= /0

ΦC(x),

UA(x) depending only on {xi : i ∈ A∪∂A} as π is a Markov G (C )-random field.
�

Denote π{i}(·) the marginal distribution of π at i. Condition (2.8) of the theorem
can be weakened to a condition known as “π positivity”:

“if for x = (xi, i ∈ S), we have ∀i ∈ S: π{i}(xi) > 0, then π(x) > 0.” (2.9)

Exercise 2.8 gives an example of a distribution π which does not satisfy this posi-
tivity condition.



2.4 Besag auto-models 67

2.4 Besag auto-models

These Markov models are characterized by conditional densities belonging to a cer-
tain exponential family (25). A little further on, we will present the result that this
definition is based on.

2.4.1 Compatible conditional distributions and auto-models

Let X be a Markov random field on S = {1,2, . . . ,n} with pair potentials:

π(x) = C exp{∑
i∈S

Φi(xi)+ ∑
{i, j}

Φi j(xi,x j)}. (2.10)

For each x ∈ En, π(x) > 0. Suppose furthermore that the identifiability constraints
(2.3) are satisfied, denoting 0 the reference state of E. The following property allows
us to find the potentials of X from its conditional distributions.

Theorem 2.2. (Besag (25)) Suppose that each conditional distribution πi(·|xi) of π
belongs to the exponential family:

logπi(xi|xi) = Ai(xi)Bi(xi)+Ci(xi)+Di(xi), (2.11)

where Bi(0) = Ci(0) = 0. Then:

1. For any i, j ∈ S, i �= j, there exists αi and βi j = β ji such that:

Ai(xi) = αi +∑
j �=i

βi jB j(x j), (2.12)

Φi(xi) = αiBi(xi)+Ci(xi), Φi j(xi,x j) = βi jBi(xi)B j(x j). (2.13)

2. Conversely, conditional distributions satisfying (2.11) and (2.12) are compatible
for a joint distribution that is a Markov random field with potentials (2.13).

Proof:

1. Denoting 0i the state 0 at i, we have for the random field (2.10):

U(x)−U(0i,x
i) =Φi(xi)+∑

j �=i

Φi j(xi,x j) = log
πi(xi|xi)
πi(0i|xi)

.

Setting xi = 0, i.e., the configuration 0 everywhere on S\{i}, this equation gives
Φi(xi) = Ai(0)Bi(xi)+Ci(xi). Choose x so that x{i, j} = 0 for i = 1, j = 2. A closer
look at U(x)−U(01,x1) and U(x)−U(02,x2) gives:

Φ1(x1)+Φ12(x1,x2) = A1(0,x2,0, . . . ,0)B1(x1),
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Φ2(x2)+Φ12(x1,x2) = A2(x1,0, . . . ;0)B2(x2),

Φ12(x1,x2) = [A1(0,x2,0)−A1(0)]B1(x1) = [A2(x1,0)−A2(0)]B2(x2),

and

A2(x1,0)−A2(0) =
A1(0,x2,0)−A1(0)

B2(x2)
B1(x1) if B2(x2) �= 0.

We deduce that B2(x2)−1[A1(0,x2,0)−A1(0)] is constant with respect to x2 and
equal to β21. By permuting indices 1 and 2, we can analogously define β12 and
show that β12 = β21 andΦ12(x1,x2) = β12B1(x1)B2(x2). Equating the conditional
distributions then gives (2.12) with αi = Ai(0).

2. It suffices to show that the random field of potentials (2.13) has itself the condi-
tional distributions associated with (2.11) and (2.12). We have that

U(xi,x
i)−U(0i,x

i) =Φi(xi)+∑Φi j(xi,x j)

= αiBi(xi)+Ci(xi)+∑βi jBi(xi)B j(x j)

= Ai(xi)Bi(xi)+Ci(xi)〉 = log
πi(xi|xi)
πi(0i|xi)

.

�
An important class of Markov random fields is that of Gibbs random fields with

values in E ⊆ R and with potentials over at most pairs of points, with the pair po-
tentials being quadratic.

Definition 2.3. Besag auto-models
X is an auto-model if X is real-valued and if its distribution π is given by:

π(x) = Z−1 exp{∑
i∈S

Φi(xi)+∑
〈i; j〉
βi jxix j}, (2.14)

with βi j = β ji, ∀i, j.

We now give an important corollary of the previous theorem that allows us to
define a joint model starting from conditional distributions whose compatibility is
automatically assured.

Corollary 2.3 Let ν = {νi(·|xi), i ∈ S} be a family of real-valued conditional dis-
tributions satisfying (2.11) such that for each i ∈ S, Bi(xi) = xi. Then, these dis-
tributions are compatible as an auto-model with distribution π given by (2.14) if,
whenever i �= j, βi j = β ji.

2.4.2 Examples of auto-models

Logistic auto-model: E = {0,1}

For each i, the conditional distribution πi(·|xi) is a logit model with parameter θi(xi):
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θi(xi) = {αi + ∑
j:〈i, j〉

βi jx j},

πi(xi|xi) =
expxi{αi +∑ j:〈i, j〉βi jx j}

1+ exp{αi +∑ j:〈i, j〉βi jx j} .

If, whenever i �= j, βi j = βi j, these conditional distributions are compatible with the
joint distribution π with energy U :

U(x) =∑
i
αixi +∑

〈i, j〉
βi jxix j.

Binomial auto-model: E = {0,1,2, . . . ,N}

Let us now consider a family of conditional binomial distributions πi(·|xi) ∼
Bin(N,θi(xi)) for which the θi(xi) satisfy:

Ai(xi) = log{θi(xi)/(1−θi(xi))} = αi + ∑
j:〈i, j〉

βi jx j.

Then, if for each i �= j, βi j = β ji, these distributions are compatible with the joint
distribution π with energy U :

U(x) =∑
i
(αixi + log

(N
xi

)
)+∑

〈i, j〉
βi jxix j.

The conditional binomial parameter is given by

θi(xi) = [1+ exp−{αi + ∑
j∈S:〈i, j〉

βi jx j}]−1.

In these two preliminary examples, as E is finite, U is always admissible. This is no
longer the case in the two next examples.

Poisson auto-model: E = N

Suppose the conditional distributions πi(·|xi) are Poisson P(λi(xi)), i ∈ S with pa-
rameters satisfying log-linear models:

logλi(xi) = Ai(xi) = αi + ∑
j:〈i, j〉

βi jx j.

If βi j = β ji ≤ 0 when i �= j, define the associated joint energy by

U(x) =∑
i
(αixi + log(xi!))+ ∑

j:〈i, j〉
βi jxix j.

U is admissible iff βi j ≤ 0 when i �= j. In effect, in this case,
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exp U(x) ≤∏
i∈S

exp(αixi)
xi!

and ∑NS exp U(x) converges. Otherwise, if for example β1,2 > 0, we have for x1 and
x2 large enough,

exp U(x1,x2,0, . . . ,0) =
exp{α1x1 +α2x2 +β1,2x1x2}

x1!x2!
≥ exp{β1,2x1x2/2}

x1!x2!
.

As the lower bound is a divergent series, U is not admissible.
This admissibility condition βi j ≤ 0 can be seen as competition between neigh-

boring sites. If we want to allow cooperation between sites, we can do one of the
following:

1. Bound the state space E by some value K < ∞, E = {0,1, , . . . ,K}, for example
by considering the right-censored variables Zi = inf{Xi,K}.

2. Restrict the conditional Poisson distributions to {X ≤ K}.

Then, as the state spaces are now finite, these models are always admissible and
allow us to deal with cooperation as well as competition (127; 9).

Exponential auto-model: E =]0,+∞[

These models have conditional exponential distributions:

πi(xi|xi) ∼ E xp(μi(xi)), μi(xi) = {αi + ∑
j:〈i, j〉

βi jx j}.

If for all i �= j, αi > 0 and βi j = β ji ≥ 0, these distributions are compatible with a
joint distribution with admissible energy:

U(x) = −∑
i
αixi −∑

〈i, j〉
βi jxix j.

βi j ≥ 0 represents competition between sites i and j. We can allow cooperation
between neighboring sites (βi j < 0) either by truncating E to [0,K] or by restricting
the conditional exponential distributions to X ≤ K.

Arnold, Castillo and Sarabia (8) have generalized these models to cliques of more
than 2 points: the joint distribution

π(x) = Z−1 exp−{∑
A∈C

βA∏
l∈A

xl}

is admissible if, for each i ∈ S, β{i} > 0 and if βA ≥ 0 whenever �A ≥ 2. It is easy to
show that the conditional distributions at each site are exponential. (8) also general-
ize to potentials over more than pairs for conditional Gaussian, Gamma and Poisson
distributions.
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Gaussian auto-model: E = R

Gaussian distributions X ∼ Nn(μ ,Σ) on S = {1,2, . . .n} with invertible covariance
Σ and precision matrix Σ−1 = Q are Gibbs energy models with singleton and pair
potentials:

U(x) = −(1/2) t(x−μ)Q(x−μ),

Φi(xi) = −1
2

qiix
2
i +αixi,

where αi = ∑ j qi jμ j and Φi j(xi,x j) = −qi jxix j. This specification is admissible iff
Q is p.d. The conditional distribution of Xi|xi, with conditional energy Ui(xi|xi) =
Φi(xi)+∑ j �=iΦi j(xi,x j) is normal with variance q−1

ii and mean

μi(xi) = −q−1
ii ∑

j �=i

qi j(x j −μ j).

Such models are also Gaussian CARs.

Auto-model with covariates

Without additional constraints, non-stationary models have parametric dimensions
which are too large to be useful in practice. In each of the previous auto-models, we
can reduce the dimension by modeling the parameter θ = {(αi,βi j), i �= j, i, j ∈ S}
using the observable covariates z = (zi, i∈ S) and/or the known weights {(ai),(wi j)},
with w a symmetric matrix: for example, choosing βi j = δwi j and αi =∑p

j=1 γ jaizi j,

where zi = T (zi1, . . . ,zip) ∈ R
p is an observable covariate, leads to a model with

p+1 parameters.

Mixed-state auto-model

Theorem (2.2) was generalized by (109) to exponential families (2.11) with multidi-
mensional parameter Ai(·) ∈ R

p. In this case, the product Ai(·)Bi(xi) is replaced by
the scalar product 〈Ai(·),Bi(xi)〉. This generalization allows us to define mixed-state
auto-models in the following way.

Suppose that X is a random variable taking values in the mixed-state space E =
{0}∪]0,∞[ with mass p at 0 and density gϕ over ]0,∞[ if X > 0. For example, X
could be the absolute speed of an object, equal to 0 if the object is at rest and > 0
otherwise; equally, X could be the amount of rainfall on a given day at a weather
station, equal to 0 if it did not rain and > 0 otherwise. The parameter (p,ϕ) ∈ R

1+k

is multidimensional whenever ϕ ∈ R
k, k ≥ 1. Denote δ0 the Dirac delta function at

0 and suppose that gϕ belongs to the exponential family:

gϕ(x) = gϕ(0)exp tϕt(x).

A few simple calculations show that, relative to the reference measure λ (dx) =
δ0(dx)+ν(dx) on the mixed-state space, X has probability density
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fθ (x) = (1− p)gϕ(0)exp tθB(x),

where B(x) = ( tδ0(x), t(x)) and θ = − log
(1− p)gϕ(0)

p
ϕ .

To construct mixed-state auto-models, we thus work with conditional distribu-
tions πi(xi|x∂ i) of density fθ (·|x∂ i) whose compatibility is guaranteed by the gen-
eralization of Theorem (2.2) to the multidimensional parameter case. These models
are used by (31) in motion analysis, taking the absolute value of a Gaussian auto-
model as the random field of conditional velocity, allowing positive probability for
zero velocities.

Example 2.2. Cancer mortality in the Valence region (Spain)

Following Ferrándiz et al. (78), we present a model that allows us to analyze
epidemiological cancer data (bladder, colon, prostate and stomach) in the Valence
region of Spain. The goal is to see if the nitrate concentration in drinking water
has an effect on cancer incidence, a relevant question as this is a region of intense
agricultural activity using large quantities of fertilizer. The Valence region is made
up of 263 districts, i being the main town of the district and Xi the aggregated number
of deaths from a given type of cancer in that district over the years 1975-1980. Two
covariates were kept: z1, the percentage of the population over 40 years old and z2,
the concentration of nitrates in drinking water.

Usually, a statistical analysis of the X = {Xi, i ∈ S} would use a log-linear Pois-
son regression incorporating the appropriate covariates zi = T (zi1, . . . ,zip) (here,
p = 2):

(Xi|xi,zi) ∼ P(λi),

where log(λi) = αi +∑p
k=1βkzik. This model assumes independence of counts, not

necessarily true in the present example.
Poisson auto-models allow us to remove this hypothesis: the Xi are still charac-

terized using covariates z but they are allowed to depend on the values of neighbor-
ing variables x∂ i. Such models allow the detection of potential spatial dependency
between the {Xi} and/or detection of other covariates and risk factors, containing
spatial dependencies, that may be missing in the model. The Poisson auto-model
we select is the following:

(Xi|xi,zi) ∼ P(λi), log(λi) = αi +
p

∑
k=1

βkzik + ∑
j :〈i, j〉

γi, jx j. (2.15)

The parameters (αi) represent disposition to disease at each specific site i ∈ S, (βk)
the influence of covariates (zk) and (γi, j, j ∈ ∂ i, i ∈ S) the influence of the x∂ i at
neighboring sites of Xi.

There are two possible interpretations of parameters γ :

1. They can measure a direct, real influence between neighboring variables, a natu-
ral interpretation when studying outbreaks (not the case in Ferrándiz et al. (78)).

2. They can measure other risk factors with spatial structure that are unaccounted
for in the model: at site i, these hidden effects are supposed to be taken into
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account inside the observable (auto)covariates x∂ i. Testing whether γ �= 0 means
trying to discover if these factors are significant. In general, there is confusion
between these two interpretations.

In order for the model to be admissible, the model parameters γ need to be
≤ 0, though positive values can be accepted on condition that the response vari-
ables xi be truncated, which is reasonable here as xi cannot be larger than district i’s
population.

Under (2.15), the model specification is useless because there are more parame-
ters than observations. Moreover, we have to characterize the spatial neighbor rela-
tion between districts.

As for γ and neighbor relations, Ferrándiz et al. (78) suggest the following model:
let ui be the population of district i and di j the distance between the main centers
of districts i and j. The neighbor relation 〈i, j〉 and parameters γi j are then deduced
from the following proximity indices (ai j):

〈i, j〉 if ai j =
√

uiu j

di j
> a and γi j = γai j.

a > 0 is either a chosen constant or left as a model parameter.
The parameters αi are modeled using a single parameter α:

αi = α+ log(ui).

The coefficient 1 in front of log(ui) can be interpreted based on the supposition
that the mean number of deaths λi is proportional to the size of the population ui

of district i. We end up with a p + 2 parameter model (here 4 parameters), θ =
(α,(βk),γ):

(Xi|xi,zi) ∼ P(λi), log(λi) = α+ log(ui)+
p

∑
k=1

βkxik + γ ∑
j:〈i, j〉

ai, jx j. (2.16)

If γ = 0, we have none other than a log-linear Poisson regression with intercept α ,
covariates x and individual effects log(u).

2.5 Markov random field dynamics

This section gives an illustration of the use of Gibbs random fields in modeling
spatial dynamics. The models we present are semi-causal and well adapted to sim-
ulation and estimation: Markov chains (that may or may not be homogeneous) of
(conditional) spatial Markov random fields (98). Another family is the STARMA
(for Spatio-Temporal ARMA) linear models of Pfeifer and Deutsch (76; 174), easy
to manipulate and often used in spatial econometrics (also cf. Cressie, (48, §6.8)).
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2.5.1 Markov chain Markov random field dynamics

Let X = {X(t), t = 1,2, . . .}, X(t) = (Xi(t), i ∈ S) with S = {1,2, . . . ,n} be a homo-
geneous Markov chain onΩ = ES. Denoting y = x(t−1) and x = x(t) two successive
states of the chain, the transition y 
→ x can be written:

P(y,x) = Z−1(y)exp U(x|y),

where Z(y) =
∫
Ω exp U(z|y)dz <∞ if the conditional energy U(·|y) is almost surely

admissible at y. If furthermore, conditional on y, X(t) is a Markov random field on
S, we can model U(·|y) with respect to potentials ΦA and ΦBA:

U(x|y) = ∑
A∈C

ΦA(x)+ ∑
B∈C−,A∈C

ΦB,A(y,x), (2.17)

where C and C− are families of subsets of S that characterize two types of interac-
tions associated with two graphs G and G−:

1. Instantaneous interaction potentials {ΦA,A ∈ C }; C defines the undirected
graph of instantaneous neighbors G (C ).

2. Temporal interaction potentials {ΦB,A(y,x),B ∈ C−,A ∈ C }; C− defines a di-
rected graph G−: 〈 j, i〉− for j ∈ B and i ∈ A means that site j at time (t −1) has
an influence on site i at time t. In general, 〈 j, i〉− does not imply 〈i, j〉−.

Site i ∈ S therefore has instantaneous neighbors ∂ i = { j ∈ S : 〈i, j〉} and neigh-
bors from the past ∂ i− = { j ∈ S : 〈 j, i〉−}. Arrows representing dependencies are:
( j, t) ←→ (i, t) if 〈i, j〉 and ( j, t − 1) −→ (i, t) if 〈 j, i〉−. Model (2.17) is semi-
causal, that is, a Markov chain with respect to time and a conditional Markov ran-
dom field with respect to space. The distribution of XΛ (t), Λ ⊂ S, conditional on
(y = x(t −1),xΛ = xΛ (t)) has energy:

UΛ (xΛ |y,xΛ ) = ∑
A∈C :A∩Λ �= /0

{ΦA(x)+ ∑
B∈C−

ΦB,A(y,x)}.

Extending these models to inhomogeneous temporal contexts and/or cases with
larger memory is not difficult.

2.5.2 Examples of dynamics

Auto-exponential dynamics

The conditional energy:

U(x|y) = −∑
i∈S

(δi +αi(y))xi − ∑
{i, j}∈C

βi j(y)xix j
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defines an admissible auto-exponential dynamic if, for all i, j ∈ S, δi > 0, αi(·) ≥ 0
and βi j(·) = β ji(·) ≥ 0. It is possible to specify the functions αi(·) and βi j(·), for
example: αi(y) = ∑ j∈∂ i− α jiy j and βi j(y) = βi j.

Auto-logistic dynamics

These dynamics, shown graphically in Figure 2.6-a have conditional transitions:

P(y,x) = Z−1(y)exp{∑
i∈S

(δ +α ∑
j∈S:〈 j,i〉−

y j)xi +β ∑
i, j∈S:〈i, j〉

xix j}. (2.18)

t − 1 t

i

t t + 1

i

t − 1

(a) (b)

Fig. 2.6 (a) Graph showing auto-logistic dynamics: ©, neighbors of (i, t) from the past; %, present
neighbors of (i, t). (b) Graph of contamination dynamics of rubber tree roots: �, neighbors of state
× = (i, t +1), given state © = (i, t) is healthy.

Example 2.3. Contamination dynamics of rubber tree roots

A simplified form of the model proposed by Chadoeuf et al. (41) to study con-
tamination dynamics of rubber tree roots is the following: suppose that spatial local-
ization is unidimensional, i ∈ S = {1,2, . . . ,n} ⊂ Z and that the binary-state process
{Zi(t), i ∈ S and t = 0,1,2, . . .} satisfies:

1. Zi(t) = 0 if the rubber tree root at (i, t) is healthy, otherwise Zi(t) = 1.
2. Contamination is definitive, the root cannot be healed: if Zi(t) = 0, then Zi(t ′) = 0

for t ′ < t and if Zi(t) = 1, then Zi(t ′) = 1 for t ′ > t.
3. Contamination is a Markov random field with respect to nearest neighbors, with

temporal memory 2. Figure 2.6-b shows the set of neighboring sites ( j, t ′) of site
(i, t +1).

Consider the vector X̃i(t) = (Zi(t −2),Zi(t −1),Zi(t)). We can associate X̃i(t) with
Xi(t), a Markov chain with 4 states {0,1,2,3} defined by: (i) Xi(t) = 0 if Zi(t) = 0;
(ii) Xi(t) = 1 if Zi(t) = 1 and Zi(t − 1) = 0; (iii) Xi(t) = 2 if Zi(t − 1) = 1 and
Zi(t −2) = 0; (iv) Xi(t) = 3 if Zi(t −2) = 1.

It remains to model the transition P(y,x) from y = x(t) to x = x(t +1). A possible
choice of energy is:
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U(y,x) = ∑
i: yi=0

α(xi)+ ∑
〈i, j〉: yiy j=0

β (xi,x j),

with imposed identifiability constraints α(0)= 0 and, for all a,b, β (a,0)= β (0,b)=
0.

In the definition of U , it is sufficient to limit the sum to singleton potentials
α(yi,xi) at sites i for which yi(t) = yi = 0 (we note α(xi) = α(0,xi)): in effect,
if yi(t) ≥ 1, the tree at i is sick and will remain so. Similarly, the sum over pair
potentials is limited to neighboring sites 〈i, j〉 such that yi(t)× y j(t) = 0: in effect,
if this is not the case, the trees at i and j are sick at time t and will remain sick. The
parametric dimension of this model is 12.

Exercises

2.1. Constraints on compatibility of conditional distributions.
Suppose S = {1,2, . . . ,n}, E = {0,1,2, . . . ,K −1} and F = {νi(xi|xi), i ∈ S} is an
unconstrained family of conditional distributions with states in E.

1. What is the parametric dimension of F ? What number of constraints must we
impose on F so that F is equivalent to the conditional distributions of a joint
distribution π defined on ES?

2. Consider the 2-NN kernel on Z for a process with states in E = {0,1, . . . ,K−1}:

Q(y|x,z) = P(X0 = y|X−1 = x,X+1 = z).

What is the parametric dimension of Q? Under what conditions are these condi-
tional distributions those of a 2-NN Markov random field?

2.2. Compatibility of a bivariate distribution (8).

1. Using characterization (2.1), show that the two families of conditional densities,

fX |Y (x|y) = (y+2)e−(y+2)x1(x > 0),

fY |X (y|x) = (x+3)e−(x+3)y1(y > 0),

are compatible as a joint distribution (X ,Y ). Identify the marginal and joint den-
sities.

2. Do the following two densities have a compatible joint distribution?

fX |Y (x|y) = y1(0 < x < y−1)1(y > 0),

fY |X (y|x) = x1(0 < y < x−1)1(x > 0).

2.3. Parametric dimension of a complete model.
Let f : ES → R be a real-valued function defined on E = {0,1, . . . ,K − 1}, S =
{1,2, . . . ,n} such that f (0) = 0. f is therefore associated with potentials Φ =
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{ΦA,A ⊂ S and A �= /0} by the Moëbius inversion formula. These potentials are
identifiable and satisfy (2.3). Show that the Kn − 1 parameters of f can be found
among those of Φ .

2.4. Compatibility of conditional Gaussian distributions.
Consider the energy U on R

2 defined by:

U(x,y) = −{a1x+a2y+b1x2 +b2y2 + cxy+d1xy2 +d2x2y+ ex2y2}.

1. Show that if e > 0, b1 > 0 and d2 < 4eb1, the conditional energy U(x|y) is ad-
missible and is that of a Gaussian distribution. Find the parameters of this distri-
bution. Same question for U(y|x).

2. Define δ1 = infx{b2 + d1x + (e/2)x2}, δ2 = infy{b1 + d2y + (e/2)y2} and δ =
inf{δ1,δ2}. Show that U(x,y) is admissible under the conditions:

b1,b2, e > 0, d1 < 2b2e, d2 < 2b1e, |c| < δ .

Deduce an example of a distribution on R
2 which is non-Gaussian but which has

conditional Gaussian distributions.

2.5. Gibbs models on the planar triangular network.

1. Characterize the 6-NN stationary model with 3 states E = {a,b,c} over the pla-
nar triangular network: find the cliques, potentials, parametric dimension, condi-
tional distributions at individual sites and conditional distributions over subsets
of sites. Characterize the model if, instead, E ⊂ R.

2. Same question, but: (i) with an isotropic model; (ii) with the model of at least
pair potentials; (iii) when the potentials ΦA are permutation-invariant on A.

3. Same questions for a two-state model.

2.6. Markov random fields for texture segmentation.
Let (X ,Λ) be a field over S = {1,2, . . . ,n}2 taking values in E = R×{1,2, . . . ,K},
defined hierarchically as follows: the “texture” Λ is the result of an 8-NN Potts
model (2.6). Conditionally on λ , we choose one of the following models (X |λ ):

1. (Xi|λi = k) ∼ N (0,σ2
k ), a Gaussian texture measuring roughness.

2. (Xi|λi = k) ∼ N (μk,σ2), a grayscale texture.
3. On constant-labeled zones with label k, X is a covariation texture modeled by a

4-NN isotropic Gaussian CAR model with parameter (αk,σ2
e ), 0 ≤ αk < 1/4.

1. Give details of each of the above models (cliques, potentials).
2. Suppose we observe X . Find the distributions (Λ |X) and (Λi|Λ i,X). Use Gibbs

sampling (cf. §4.2) to simulate (Λ |X).

2.7. Restoration of a Gaussian signal.

1. Y = h ∗X + ε is an observation resulting from the h-convolution of a Gaussian
signal X = {Xi, i ∈ S} where ε is an additive Gaussian WN with variance σ2

independent of X . Characterize the distributions: (X ,Y ), (X |y) and (Xi|xi,y), i∈ S
in the two following situations:
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a. S = {1,2, . . . ,n}, X the 2-NN stationary CAR model and (h ∗ x)i = a(Xi−1 +
Xi+1)+bXi.

b. S = {1,2, . . . ,n}2, X the 4-NN stationary CAR model and h∗X = X .

2. Suppose we observe Y = y. Simulate (X |y) using Gibbs sampling (cf. §4.2).

2.8. A distribution not satisfying positivity condition (2.9).
Consider the temporal process {X(t), t ≥ 0} on S = {1,2,3} that takes the values
{0,1}3. Xi(t) gives the state of site i ∈ S at time t ≥ 0 with: Xi(t) = 0 if the state is
healthy and Xi(t) = 1 otherwise. Suppose that an infected state remains infected. If
x(0) = (1,0,0) and if contamination from t to (t +1) happens to nearest neighbors
independently with probability δ , find the distribution π(2) of X(2). Show that π(2)
does not satisfy the positivity condition, i.e., show that there exists x = (x1,x2,x3)
such that πi(2)(xi) > 0 for i = 1,2,3, yet π(2)(x) = 0.

2.9. Causal models and corresponding bilateral model representations.

1. Let Y be a Markov chain on E = {−1,+1} with transitions p = P(Yi = 1|Yi−1 =
1) and q = P(Yi = −1|Yi−1 = −1).

a. Show that Y is a 2-NN bilateral Markov random field.
b. Deduce that the bilateral conditional kernel can be written

Q(y|x,z) = Z−1(x,z)exp{x(α+β (y+ z)},

where α = (1/2) log(p/q) and β = (1/4) log{pq/[(1− p)(1−q)]}.
c. Interpret the cases: α = 0 ; β = 0.

2. For the state space E = {0,1} on Z, give the bilateral Markov representation of
the homogeneous second-order Markov chain with transition

P(Yi = 1|Yi−2 = a,Yi−1 = b) = p(a,b).

Can it be shown in general that a 4-NN Markov random field on Z is a second-
order Markov chain?

3. Consider, on S = {1,2, . . . ,n} the energy model:

U(y) = a
n

∑
i=1

yi +b
n−1

∑
i=1

yiyi+1 + c
n−2

∑
i=1

yiyi+2.

Partition S as I ∪P, where I is the set of odd indices and P the even ones. Show
that (YI/yP) is a Markov chain.

4. Consider on Z
2 a causal binary random field Y with respect to the lexicographic

order, whose conditional distribution at (i, j) depends only on the past sites (i−
1, j) and (i, j−1). Give the bilateral model for Y .
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2.10. Sampled Markov chains and random fields.

1. The distribution of a Markov chain Y = (Y1,Y2, . . . ,Yn) with initial distribution
Y1 ∼ ν and transitions {qi, i = 1, . . . ,n−1} is:

Pν(y) = ν(y1)
n−1

∏
i=1

qi(yi,yi+1).

Show that Y observed only at every second time instant is still a Markov chain.
Give its transitions and potentials for the state space E = {0,1} if the transition
is homogeneous.

2. Suppose a 4-NN Markov random field Y on the torus S = {1,2, . . . ,n}2 is ob-
served at S+ = {(i, j) ∈ S : i + j even}. Show that YS+ is a Markov random
field with maximal cliques {Ci j = {(i, j), (i+2, j), (i+1, j +1), (i+1, j−1)},
(i, j) ∈ S}. Find the distribution of YS+ if Y is stationary and E = {0,1}.

3. Show that the Markov property in (2) is lost: (i) if Y is an 8-NN Markov random
field; (ii) if we sample Y at S2 = {(i, j) ∈ S : i and j even}.

2.11. Noisy Markov random field models.
Let Y be a 2-NN binary Markov random field on S = {1,2, . . . ,n}. Suppose that Yi

is transmitted with noise, that is, we observe Zi with probability 1− ε:

P(Yi = Zi) = 1− ε = 1−P(Yi �= Zi).

Give the joint distribution of (Y,Z). Is the observed signal Z a Markov random
field? Show that (Y |Z) is a conditional Markov random field. Give the conditional
distributions (Yi|Y i,Z).

2.12. Restoration of a color image.
On S = {1,2, . . . ,n}2, given an observation y, we would like to reconstruct an image
x = {xi, i∈ S} that has four states xi ∈E = {a1,a2,a3,a4}. By passing through noisy
channels, the signal x has been degraded by an i.i.d. noise at some rate p < 1/4:

P(Yi = Xi) = 1−3p and P(Yi = ak|Xi = al) = p, ∀i ∈ S, k �= l.

1. Show that, with n(y,x) = ∑i∈S 1(xi = yi),

π(y|x) = c(p)exp

{
n(y,x) log

1−3p
p

}
.

2. Choose the four-state Potts model (2.6) with parameter β for the prior distribu-
tion on x. Show that:

a. π(x|y) = c(y, p)exp

{
−βn(x)+n(y,x) log

1−3p
p

}
.

b. πi(xi|y,xi) = ci(y, p,xi)expU(xi|y,xi), with
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U(xi|y,xi) = −β
{
∑

j∈S : 〈i, j〉
1(xi = x j)+ log

1−3p
p

×1(yi = xi)

}
.

3. Reconstruction of x by the Marginal Posterior Mode method (MPM, (150); also
cf. (96; 224)). This reconstruction method involves keeping, at each site i ∈ S,
the marginal mode of (Xi|y):

x̂i = argmax
xi∈E

πi(xi|y).

As the marginal distribution πi(xi|y) of the Gibbs distribution (X |y) can be an-
alytically evaluated, we calculate this mode with Monte Carlo methods. Using
Gibbs sampling (cf. Ch. 4) to simulate (X |y) from its conditional distributions
πi(xi|y,xi), describe an algorithm to restore x with the MPM method.
Application: For some choice of S and partition S = A1∪A2∪A3∪A4 defining x,
introduce the channel noise x 
→ y with p = 1/5. Restore x̂β (y) using MPM for
various choices of regularization parameter β .



Chapter 3
Spatial point processes

Whereas in Chapters 1 and 2 observation sites S ⊆ R
d were placed on a predeter-

mined non-random network, here it is the random spatial pattern x = {x1,x2, . . .}
of these site which is of interest. We say that x is the output of a point process (PP)
X with state space defined over locally finite subsets of S. For what are known as
marked PPs, a mark mi is also attached to each observation site xi.

PPs are used in a variety of situations (Diggle, (62)), in ecology and forestry (spa-
tial distribution of plant species; (154)), spatial epidemiology (pointwise location of
sick individuals; (141)), materials science (porosity models; (197)), seismology and
geophysics (earthquake epicenters and intensities) and astrophysics (locations of
stars in nebulae; (163)).

Figure 3.1 gives three examples of PPs: (a) a “random” distribution of ants’ nests
in a forest, where no spatial structure appears to exist; (b) a more regular distribution,
showing the centers of cells in a histological section with each center surrounded by
an empty space; (c) the distribution of pine saplings in a Finnish forest, where trees
tend to aggregate around their parent tree.

The probabilistic theory of point processes is quite technical and we will not go
into every last detail here. Our goal is to give a description of the most often used
PP models as well as their most important statistics. We will heuristically present
notions such as distributions of PPs, the Palm measure of PPs, Papangélou’s con-
ditional intensity and the Markov nearest neighbor property, all of which require
deeper theoretical justifications, found for example in the books of Daley and Veres-
Jones (56), Stoyan, Kendall and Mecke (204), van Lieshout (217) and Møller and
Waagepetersen (160). Our approach is partly inspired by the review article by Møller
and Waagepetersen (161) which gives a modern, concise and non-technical descrip-
tion of the main PP models and their statistics.

C. Gaetan, X. Guyon, Spatial Statistics and Modeling, Springer Series in Statistics, 81
DOI 10.1007/978-0-387-92257-7_3, c© Springer Science+Business Media, LLC 2010
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Fig. 3.1 Examples of point distributions: (a) 97 ants’ nests (ants data in the spatstat pack-
age); (b) 42 cell centers of a histological section seen under a microscope (cells data in
spatstat); (c) 126 pine saplings in a Finnish forest (finpines data in spatstat).

3.1 Definitions and notation

Let S be a closed subset of R
d , B (resp. B(S), Bb(S)) the set of all Borel sets of

R
d (resp. Borel sets of S, bounded Borel sets of S) and ν the Lebesgue measure on

B. The output x of a point process X on S is a locally finite set of points of S,

x = {x1,x2, . . .}, xi ∈ S,

i.e., a subset x ⊂ S such that x∩B is finite for any bounded Borel set B. Denote
NS the set of locally finite configurations, x,y, . . . configurations on S and xi,yi,ξ ,η
points of these configurations. Following Daley and Vere-Jones (56) (cf. also (217)),
we have:

Definition 3.1. A point process on S is a mapping X from a probability space
(Ω ,A ,P) to the set NS of locally finite configurations such that for each bounded
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Borel set A, the number of points N(A) = NX (A) of X falling in A is a random
variable.

For example, if S = [0,1]2 and if U and V : (Ω ,A ,P) → [0,1] are independent
uniform random variables, X = {(U,V )} and X = {(U,U),(U,V ),(U2,V )} are PPs
on S but X = {(Un,V m), n,m ∈ N} is not since 0 is a.s. a limit point of X .

In this definition, S can be replaced by a general complete metric space. Note that
the output of a point process is at most countably infinite and without limit points.
If S is bounded, NX (S) is almost surely finite and the PP is said to be finite. Here we
will only consider simple PPs that do not allow multiple points; in such cases, the
output x of the PP is merely a subset of S.

3.1.1 Exponential spaces

When S is bounded, the space E of configurations of a PP X on S is equivalent to
the union of spaces En of configurations of n points of S, n ≥ 0. E =

⋃
n≥0 En is

called the exponential space and is associated with the σ -field E for which all count
variables N(A) : E −→ N, N(A) = �(x∩A) (where A ∈Bb(S)), are measurable. The
σ -field En on En is the trace of E on En. Examples of events of E include: “there are
at most 50 points in configuration x,” “points of x are all at least a distance r apart,
for some given r > 0,” “0 is a point of x” and “there is no point in A ⊂ S.”

The distribution of a point process X is the induced probability P on (E,E ) of P.
This distribution is characterized, on the sub σ -field of A that induces measurability
of all count variables N(A), A ∈ Bb(S), by the finite-dimensional joint distributions
of these variables.

Definition 3.2. The finite-dimensional distribution of a point process X is defined by
the choice of, for each m≥ 1 and m-tuple (A1,A2, . . . ,Am) of Bb(S), the distributions
(N(A1),N(A2), . . . ,N(Am)) on N

m.

If S is not a compact space, the distribution of a PP can still be defined in a similar
way since configurations x (potentially infinite) are finite on every bounded Borel
set.

Stationary and isotropic point processes

We say that a PP X on R
d is stationary if for each ξ ∈ R

d , the distribution of the
translated PP Xξ = {Xi + ξ} is the same as that of X . We say X is isotropic if the
distribution of ρX , obtained by rotating X by any ρ , has the same distribution as X .
Isotropy implies stationarity.
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Marked point process

Let K be a metric space (usually K ⊆ R
m). A marked point process (MPP) (X ,M)

on S×K is a PP on S×K such that X is a PP on S: (x,m) = {(x1,m1),(x2,m2), . . .},
where mi ∈ K is the mark associated with site xi. Examples of mark spaces include:
K = {m1,m2, . . . ,mK} (K types of points, cf. Fig. 3.2-a), K = R

+ (the mark is a
measure r ≥ 0 associated with each point, cf. Fig. 3.2-b) and K = [0,2π[×R

+ (the
mark is a segment centered at x with orientation θ ∈ [0,2π[ and length l ≥ 0).

Denote B(x,r) ⊂ S the ball in R
2 with center x and radius r > 0. An example of

a marked PP is one that generates the set of centers X = {xi} ⊂ R
2, with marks the

closed balls B(xi,ri) centered at xi with i.i.d. radii independent of X . In mathemat-
ical morphology (197; 204), the closed random set X = ∪xi∈X B(xi,ri) is called a
Boolean process.

Fibre marked point processes (204) are associated with curvilinear marks mi

attached to xi, for example, segments centered at xi of length li ∼ E xp(l−1) and
at angle θi uniformly generated on [0,2π[ and independent of li, with (θi, li) i.i.d.
and independent of X . Such MPPs are used in earth science to model the spatial
distribution of root networks within a volume S ⊂ R

3.
Multivariate PPs X = (X(1),X(2), . . . ,X(M)) can be seen as MPPs with a fi-

nite number M of marks: for each m = 1, . . . ,M, X(m) is the subset of S giving
the positions of species m. X can thus be equated with the MPP X̃ = ∪M

m=1X(m),
a superposition of the X(m). Figure 3.2-a shows a two-state (healthy and sick)
MPP giving the geographic distribution of cases of child leukemia (cf. (53) and
Exercise 5.14).
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Fig. 3.2 (a) Example of a PP with 2 marks (humberside data from the spatstat pack-
age): location of 62 cases (•) of child leukemia (North-Humberside district, Great Britain, from
1974-82) and 141 houses (×) of healthy children randomly drawn from the birth register. (b) Ex-
ample of a PP with continuous marks (longleaf data from spatstat): positions and sizes
of 584 pine trees in a forest, with the size of pine trees proportional to the radii of the given
circles.
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3.1.2 Moments of a point process

In the same way that first-order (expectation) and second-order (variance) moments
are fundamental quantities for studying real-valued processes, here the notions rel-
evant to PPs are moment measures of order p, with p ≥ 1. The moment of order p
of a PP is the measure on (S,B(S))p defined for products B1 × . . .×Bp by:

μp(B1 × . . .×Bp) = E(N(B1) . . .N(Bp)).

Moment of order 1 and intensity of a point process

The intensity measure λ of X is the moment measure of order 1:

λ (B) = μ1(B) = E(N(B)) = E{ ∑
ξ∈X

1(ξ ∈ B)}.

In general, λ (dξ ) can be interpreted as the probability that there is a point of X
in the infinitesimal volume dξ around ξ and is modeled using an intensity density
ρ(ξ ), λ (dξ ) = ρ(ξ )dξ . If X is stationary, λ is translation-invariant: λ (B) = τν(B),
where τ , the constant intensity of X is the mean number of points of X per unit
volume.

Factorial moment and intensity of order 2

The covariance between count variables is expressed with respect to the moment
measure of order 2, μ2(B1 ×B2) = E(N(B1)N(B2)). However, denoting ∑�=

ξ ,η∈X the

sum extended over distinct sites ξ �= η of X , the decomposition

μ2(B1 ×B2) = E{∑
ξ∈X

1(ξ ∈ B1)× ∑
η∈X

1(η ∈ B2)}

= E{ ∑
ξ ,η∈X

1((ξ ,η) ∈ (B1,B2)) }

= E{∑
ξ∈X

1(ξ ∈ B1 ∩B2)}+E{
�=
∑

ξ ,η∈X

1((ξ ,η) ∈ (B1,B2))}

shows that μ2 has a measure component on B(S) and another on the product B(S)×
B(S). This situation disappears if we consider the factorial moment measure α2 of
order 2 defined on events B1 ×B2 by:

α2(B1 ×B2) = E{
�=
∑

ξ ,η∈X

1((ξ ,η) ∈ (B1,B2))}

= μ2(B1 ×B2)−λ (B1 ∩B2).
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α2 is the same as μ2 over products of disjoint events as (Λ ,α2) gives the same
information on X as (Λ ,μ2).

For two measurable mappings h1 : R
d → [0,∞) and h2 : R

d ×R
d → [0,∞) a stan-

dard result from measure theory (160, Appendix C) leads to the results:

E{∑
ξ∈X

h(ξ )} =
∫

Rd
h1(ξ )λ (dξ ),

and

E{
�=
∑

ξ ,η∈X

h2(ξ ,η)} =
∫

Rd

∫

Rd
h(ξ ,η)α2(dξ ,dη).

Furthermore, if B1 and B2 are measurable bounded subsets of S, it is easy to see that:

Cov(N(B1),N(B2)) = α2(B1 ×B2)+μ1(B1 ∩B2)−μ1(B1)μ1(B2).

When ξ �= η , α2(dξ × dη) gives the probability that X outputs a point in the
infinitesimal volume dξ around ξ and a point in the infinitesimal volume dη
around η . If α2 is absolutely continuous with respect to the Lebesgue measure on
(S,B(S))2, its density ρ2(ξ ,η) is the intensity density of order two of X . If X is
stationary (resp. isotropic), ρ2(ξ ,η) depends only on ξ −η (resp. ‖ξ −η‖).

Reweighted pair correlation

One of the main issues in the study of spatial point patterns is to know whether
points tend to be attracted or repelled by each other, or neither. This third possibil-
ity, representing a spatial independence hypothesis denoted Complete Spatial Ran-
domness (CSR), says that points are distributed independently of each other in S,
though not necessarily uniformly. A Poisson PP exactly corresponds to this class of
processes and a stationary Poisson PP to the case where the density ρ is constant.

Without supposing stationarity, Baddeley, Møller and Waagepetersen (13) define
a function g(ξ ,η) known as the reweighted pair correlation function which is a
good summary of second-order spatial dependency: if ρ(ξ ) and ρ(η) > 0,

g(ξ ,η) =
ρ2(ξ ,η)
ρ(ξ )ρ(η)

. (3.1)

It is easy to see that

g(ξ ,η) = 1+
Cov(N(dξ ),N(dη))
ρ(ξ )ρ(v)dξdη

,

leading to the following interpretation:

1. g(ξ ,η) = 1 if point locations are independent (CSR hypothesis).
2. g(ξ ,η) > 1 represents attraction between points (positive pair covariance).
3. g(ξ ,η) < 1 represents repulsion between points (negative pair covariance).
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We say that PP X is second-order stationary with respect to reweighted correla-
tions if:

∀ξ ,η ∈ S : g(ξ ,η) = g(ξ −η). (3.2)

Further on we will see examples of PPs (e.g., log-Gaussian Cox PPs) that can be
second-order stationary with respect to reweighted correlations without being first-
order stationary. The correlation g allows us to construct spatial independence tests
without supposing stationarity of the intensity of the PP.

As for real-valued processes, first and second-order moment measures of two
PPs can be the same even if their spatial configurations are quite different: in effect,
distributions of PPs also depend on higher-order moment measures.

3.1.3 Examples of point processes

Model defined by its densities conditional on n(x) = n ≥ 0

When S is bounded, the distribution of X can be characterized by defining:

1. The probabilities pn = P(N(S) = n) that a configuration has n points, n ≥ 0.
2. The densities gn of x on En, the set of configurations with n points, n ≥ 1.

Each density gn over En is in a one-to-one correspondence with a density fn (rel-
ative to the Lebesgue measure) on Sn that is invariant with respect to coordinate
permutation:

fn(x1,x2, . . . ,xn) =
1
n!

gn({x1,x2, . . . ,xn}).
Denoting B∗

n = {(x1,x2, . . . ,xn) ∈ Sn s.t. {x1,x2, . . . ,xn} ∈ Bn} the event associated
with Bn ∈ En, the probability of B =

⋃
n≥0 Bn is given by:

P(X ∈ B) = ∑
n≥0

pn

∫

B∗
n

fn(x1,x2, . . . ,xn)dx1dx2 . . .dxn.

The disadvantage of this approach is that the probabilities pn must be given, which is
unrealistic in practice. Later we will see that when X is defined by an unconditional
joint density f (cf. §3.4), the pn are implicitly given by f .

Independent points: binomial processes with n points

Let S be a bounded subset of R
d with volume ν(S) > 0. A binomial PP on

S with n points is made up of n uniformly generated i.i.d. points on S. If
{A1,A2, . . . ,Ak} is a partition of Borel subsets of S, then the random variable
(N(A1),N(A2), . . . ,N(Ak)) is a multinomial random variable M (n;q1,q2, . . . ,qk)
with parameters qi = ν(Ai)/ν(S), i = 1, . . . ,k (cf. Fig. 3.3-a). This model can be
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Fig. 3.3 Comparison of two spatial patterns with n = 70 points on S = [0,40]2. (a) Random: data
distributed according to a binomial PP; (b) More regular: data generated by a hard-core PP that
disallows pairs of points closer than 3.5 units.

extended to i.i.d. distributions of n points on S with not-necessarily uniform density
ρ . Such conditional distributions of n(x) = n points correspond to Poisson PPs with
n points and intensity ρ (cf. §3.2).

The hard-core model

One way to “regularize” spatial configurations is to disallow close points (cf.
Fig. 3.3-b). This modeling strategy is well adapted to situations in which individual
i located at xi requires its own unique space, such as impenetrable sphere models in
physics, tree distributions in forests, animal distributions in land zones, cell centers
of cellular tissue and distribution of shops in towns. These models are special cases
of Strauss models, that is, Gibbs models defined via their unconditional densities
(cf. §3.4.2).

Aggregated patterns: the Neyman-Scott point process

Consider the following population dynamics context:

1. The positions of parents X is a Poisson PP.
2. Each parent xi ∈ X generates Kxi descendants Yxi at positions Yxi around xi, where

the (Kxi ,Yxi) are i.i.d. random variables that are independent of X .

Neyman-Scott processes (163) are thus the superposition D = ∪xi∈xYxi of first
generation descendants (cf. Fig. 3.4). These models give aggregation around par-
ents if the spatial configuration of descendants is concentrated close to the parents.
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Fig. 3.4 (a) Real data: location of 126 pine saplings in a Finnish forest (finpines data from
spatstat); (b) simulation of a Neyman-Scott process fitted to the data in (a) where: the number
of descendants K ∼ P(μ); positions of descendants (•) around parents (&) follow a N2(0,σ2I2).
Estimated parameters using the method described in §5.5.3 are μ̂ = 0.672, λ̂ = 1.875 and σ̂2 =
0.00944.

Many generalizations of these models are possible: different choices of spatial con-
figuration of parents X , interdependence of descendants (competition), nonidentical
distributions for descendants (variable parental fertility), etc. We will see further on
that these models belong to the class of Cox PPs (cf. §3.3).

Overall, we distinguish three main classes of point process:

1. Poisson PPs model “random” spatial distributions (CSR, cf. Fig. 3.3-a). These
are characterized by their not necessarily homogeneous intensity ρ(·).

2. Cox PPs are Poisson PPs that are conditional on some random environment.
These are used to model less regular spatial distributions representing, for
example, aggregation as in Neyman-Scott PPs (cf. Fig. 3.4).

3. Gibbs PPs are defined with respect to some conditional specification. These are
useful for modeling more regular spatial patterns than Poisson PPs, for example
the configuration of a hard-core model where each point retains a surrounding
clear space (cf. Fig. 3.3-b and §3.4).

3.2 Poisson point process

Let λ be a positive measure on (S,B(S)) with density ρ such that λ is finite on
bounded Borel sets. A Poisson point process (Poisson PP) with intensity measure
λ (·) > 0 and intensity ρ(·) (we write PPP(λ ) or PPP(ρ)) is characterized by:

1. For any A ∈ Bb(S) with measure 0 < λ (A) <∞, N(A) has a Poisson distribution
with parameter λ (A).
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2. Conditional on N(A), the points of x∩A are i.i.d. with density proportional to
ρ(ξ ), ξ ∈ A:

pn = P(N(A) = n) = e−λ (A) (λ (A))n

n!

and
gn({x1,x2, . . . ,xn}) ∝ ρ(x1)ρ(x2) . . .ρ(xn).

This characterization implies that, if Ai, i = 1, . . . , p are p disjoint Borel sets, the
random variables N(Ai), i = 1, . . . , p are independent. The Poisson PP is said to be
homogeneous with intensity ρ if λ (·) = ρν(·); thus uniformity of the spatial distri-
bution is added to independence in the spatial distribution.

A standard choice for modeling ρ(·)≥ 0 is to use a log-linear model that depends
on covariates z(ξ ),ξ ∈ S:

logρ(ξ ) = t z(ξ )β , β ∈ R
p.

Simulation of a Poisson point process.

A PPP(ρ) on some bounded subset S (cf. Fig. 3.5) can be simulated using an inde-
pendent thinning of X (cf. Appendix A), also known as a rejection sampling tech-
nique: if the density ρ(·) is bounded above by c < ∞ on S, the following algorithm
simulates a PPP(ρ) on S (cf. Ex. 3.8):

1. Simulate Xh = {xi}, a homogeneous Poisson PP on S with
intensity c.

2. Remove each xi with probability (1−ρ(xi)/c).
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Fig. 3.5 Data generated from an inhomogeneous Poisson PP on [0,1]2 with intensity: (a) λ (x,y) =
400e−3x (E(N(S)) = 126.70); (b) λ (x,y) = 800 |0.5− x| |0.5− y| (E(N(S)) = 50).
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3.3 Cox point process

Suppose Λ = (Λ(ξ ))ξ∈S is a locally integrable ≥ 0 process on S. Almost surely,
for any bounded Borel set B, we have

∫
BΛ(ξ )dξ < ∞. A Cox point process X

driven by Λ = (Λ(ξ ))ξ∈S is a Poisson PP with random density Λ , where Λ models
some random environment. If the density Λ is stationary, X is too. The simplest
example of a Cox process is the mixed Poisson PP withΛ(ξ ) = ξ a positive random
variable that is constant on S. Cox processes appear naturally in Bayesian contexts
where the intensity λθ (·) depends on some parameter θ following a prior distri-
bution π .

3.3.1 log-Gaussian Cox process

Introduced by Møller, Syversveen and Waagepetersen (159), these models involve
log-linear intensities with random effects:

logΛ(ξ ) = t z(ξ )β +Ψ(ξ ), (3.3)

whereΨ = (Ψ(ξ ))ξ∈S is a centered Gaussian random field with covariance c(ξ ,η)=
Cov(Ψ(ξ ),Ψ(η)) ensuring local integrability of Λ . Fig. 3.6 gives examples of such
models for two choices of covariance for the underlying field. Moment measures of
these processes are easy to derive. In particular, we have (159):

logρ(ξ ) =t z(ξ )β + c(ξ ,ξ )/2, g(ξ ,η) = exp(c(ξ ,η)),
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Fig. 3.6 Two spatial patterns of log-Gaussian Cox PPs with t z(ξ ) = 1 and β = 1. The grayscale
background gives the intensity of a simulated underlying Gaussian random field with covariance
(a) c(ξ ,η) = 3exp{−‖ξ −η‖/10}; (b) c(ξ ,η) = 3exp{−‖ξ −η‖2/10}.
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where g is the reweighted pair correlation (3.1), with a bijection between c and g.
WhenΨ is stationary (resp. isotropic), X is second-order stationary (resp. isotropic)
with respect to the reweighted correlation g.

3.3.2 Doubly stochastic Poisson point process

Also called a shot-noise process, this is a Cox process X with intensity

Λ(ξ ) = ∑
(c,γ)∈ϕ

γk(c,ξ ), (3.4)

where ϕ is the output of a Poisson PP on S×R
+ and k(c, ·) a density on S centered at

c. Thus, X is the superposition of independent Poisson PPs with intensity γk(c, ·) for
the configuration (c,γ) issued from a Poisson PP. These doubly Poisson PPs model
configurations with aggregation, such as for the spatial pattern of plant species due
to a certain seed sowing process.

For Neyman-Scott processes ((163) and §3.1.3), centers c come from a station-
ary Poisson PP of intensity τ with constant γ corresponding to the mean number
of descendants of each parent located at c. Neyman-Scott processes are stationary
with intensity τγ . Thomas PPs (213) correspond to Gaussian dispersion distribu-
tions k(c, ·) ∼ Nd(c,σ2Id) around each center c. Thomas processes are isotropic
with reweighted correlations on R

2 (160):

g(ξ ,η) = g(‖ξ ,η‖), g(r) = 1+
1

4πκσ2 exp

{
− r2

4σ2

}
.

We can also consider inhomogeneous models for which the measure Λ driving X
depends on covariates z(ξ ),ξ ∈ S (220):

Λ(ξ ) = exp(t z(ξ )β ) ∑
(c,γ)∈ϕ

γk(c,ξ ).

This model, which has the same reweighted pair correlation g as (3.4), allows us to
study second-order dependency properties while simultaneously allowing first-order
inhomogeneity (cf. Example 5.15).

3.4 Point process density

In this section we suppose that S is a bounded subset of R
d . One way to model a PP

is to define its probability density f relative to that of a homogeneous Poisson PP
with density 1. This approach allows us in particular to define Gibbs PPs.

In most cases, the density f of a PP is known only up to a multiplicative con-
stant, f (x) = cg(x), where g is analytically known. This is inconsequential when
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simulating PPs by MCMC methods as they only require knowledge of g (cf. §4.4).
However, for maximum likelihood estimation of the model fθ (x) = c(θ)gθ (x), c(θ)
is an analytically intractable constant and can be estimated by Monte Carlo Markov
chain methods (cf. §5.5.6).

3.4.1 Definition

Let S ⊂ R
d be a bounded Borel set and Yρ a Poisson PP with intensity measure

λ > 0, where λ induces a density ρ . The following Poisson representation gives the
probability of each event (Yρ ∈ F):

P(Yρ ∈ F) =
∞

∑
n=0

e−λ (S)

n!

∫

Sn
1{x ∈ F}ρ(x1)ρ(x2) . . .ρ(xn)dx1dx2 . . .dxn,

where x = {x1,x2, . . . ,xn}. This formula lets us define the density of a PP with
respect to the distribution of Y1, a PPP(1). In the following we denote by ν the
Lebesgue measure on S.

Definition 3.3. We say that X has density f with respect to Y1, the Poisson PP with
intensity 1, if for each event F ∈ E , we have:

P(X ∈ F) = E[1{Y1 ∈ F} f (Y1)]

=
∞

∑
n=0

e−ν(S)

n!

∫

Sn
1{x ∈ F} f (x)dx1dx2 . . .dxn.

The probability of a configuration of n points is thus:

pn = P(n(S) = n) =
e−ν(S)

n!

∫

Sn
f (x)dx1dx2 . . .dxn.

Conditional on n(x) = n, the n points of X have a symmetric joint density
fn(x1,x2, . . . ,xn) ∝ f ({x1,x2, . . . ,xn}): fn is only known up to a multiplicative con-
stant and pn is analytically intractable due to the complexity of calculating the mul-
tiple integral. A very special case that can be completely characterized is that of the
PPP(ρ):

f (x) = eν(S)−λ (S)
n

∏
i=1
ρ(xi), (3.5)

with x = {x1,x2, . . . ,xn}. In general, we write f (x) = cg(x), where g(x) is known
and c is an unknown normalization constant.

Papangélou conditional intensity

We say that a density f is hereditary if, for any finite configuration of points x ⊂ S,

f (x) > 0 and y ⊂ x =⇒ f (y) > 0. (3.6)
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This condition, satisfied for the most frequently encountered densities means that
every subconfiguration of a configuration with positive density is itself a positive
density.

For hereditary f , the Papangélou intensity (168) for ξ /∈ x conditional on x is
defined by:

λ (ξ ,x) =
f (x∪{ξ})

f (x)
if f (x) > 0, λ (ξ ,x) = 0 otherwise. (3.7)

If f (x) = cg(x), λ (ξ ,x) does not depend on the normalization constant c. Fur-
thermore, (3.7) shows that there is a bijection between f and λ ; a PP can thus be
modeled using its conditional intensity and this intensity is used both in the Monte
Carlo Markov chain simulation procedure and the parametric estimation by condi-
tional pseudo-likelihood.
λ (ξ ,x) can be interpreted as the probability density of there being a point of X

at ξ , conditional on the fact that the rest of the points of X are located at x, where
the expectation with respect to X of this conditional probability is the density ρ(ξ )
of X at ξ (160),

E(λ (ξ ,X)) = ρ(ξ ).

For a PPP(ρ), λ (ξ ,x) = ρ does not depend on x; for Markov PPs, the conditional

intensity λ (ξ ,x) = λ (ξ ,x∩∂ξ ) only depends on the configuration x in a neighbor-
hood ∂ξ of ξ (cf. §3.6.1).

3.4.2 Gibbs point process

Suppose that X has density f > 0:

f (x) = exp{−U(x)}/Z, (3.8)

where the energy U(x) is admissible, i.e., satisfies for each n ≥ 0:

qn =
∫

Sn
exp(−U(x))dx1dx2 . . .dxn < ∞,

∞

∑
n=0

e−ν(S)

n!
qn < ∞.

To be admissible, U must be admissible conditional on n(x) = n, for all n. A suffi-
cient condition is that n(x) be bounded by some n0 < ∞ and that U be conditionally
admissible for all n ≤ n0; for example, hard-core models, which exclude configu-
rations x with pairs of sites closer than r, r > 0 always have a bounded number of
points n(x): in effect, in R

2, if n(x) = n, the surface of the union of n balls centered
at xi ∈ x with radius r can not be larger than that of Sr, the set enlarged by dila-
tion by a circle of radius r: n(x)×πr2 ≤ ν(Sr). A different condition that ensures
admissibility of U is that U be bounded.
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Strauss and hard-core point processes

A standard example of Gibbs energy is associated with singletons and pair poten-
tials with energy:

U(x) =
n

∑
i=1
ϕ(xi)+

n

∑
i=1

n

∑
j>i
ψ(‖xi − x j‖).

For fixed radius r > 0, Strauss PPs (206) correspond to the choice ϕ(xi) = a
and ψ{xi,x j}(x) = b1(

∥∥xi − x j
∥∥ ≤ r), with density fθ (x) = c(θ)exp( tθ T (x)), θ =

(a,b) ∈ R
2, where:

T1(x) = n(x), T2(x) = s(x) =∑
i< j

1(
∥∥xi − x j

∥∥≤ r).

T2 counts the number of “r-neighbor” pairs of points. Denoting β = ea and γ = eb,
the density f can also be written:

fθ (x) = c(θ)β n(x)γs(x), θ = t(β ,γ). (3.9)

Homogeneous Poisson PPs correspond to γ = 1 while γ = 0 defines a hard-core
model with density:

fβ ,r(x) = cβ n(x)1{∀i �= j,
∥∥xi − x j

∥∥> r}.

The indicator function in the hard-core density excludes configurations with pairs
of points at distance ≤ r (impenetrable sphere models); as S is bounded, the number
of points n(x) of the configuration is necessarily bounded.

We now describe the conditional (cf. Fig. 3.7-a-b) and unconditional
(cf. Fig. 3.7-c-d) distributions of Strauss PPs.

Conditional on n(x) = n, fθ ,n(x) ∝ γs(x):

(i) If γ < 1, the process X is more regular than a binomial PP, increasingly so
as γ gets closer to 0.
(ii) γ = 1 corresponds to a binomial process with n points.
(iii) If γ > 1, X is less regular than binomial PPs, with regularity decreasing
as γ increases. In this case, aggregates appear.

Unconditionally, fθ is admissible only if γ ≤ 1. In effect:

(i) If γ ≤ 1 and if n(x) = n, fθ (x) ≤ c(θ)β n and:

∑
n≥0

1
n!

∫

Sn
fθ (x)dx1 . . .dxn ≤ c(θ)∑

n≥0

1
n!
β n(ν(S))n = eβν(S) < +∞.

(ii) If γ > 1, fθ is not admissible: in effect, denoting En the expectation of the
uniform distribution on Sn, Jensen’s inequality gives:
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Fig. 3.7 Results of a Strauss PP on S = [0,10]2, r = 0.7: conditional on n = 80, (a) γ = 0, (b)
γ = 1.5; unconditional with β = 2, (c) γ = 0 (hard-core), (d) γ = 0.8.

1
ν(S)n

∫

Sn
γs(x)dx1 . . .dxn = En(γs(X))

≥ expEn(bs(X)) = exp
n(n−1)

2
bp(S),

where p(S) = P(‖X1 −X2‖ < r) if X1 and X2 are uniform i.i.d. on S. It is easy
to see that p(S) > 0 and that ∑un diverges, where

un =
(ν(S)β )n

n!
γn(n−1)bp(S)/2.

Several generalizations of Strauss PPs are possible:

1. By not allowing pairs of distinct points to be closer than some r0, 0 < r0 < r
(hard-core Strauss process):
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s(x) =∑
i< j

1(r0 ≤
∥∥xi − x j

∥∥≤ r).

As the number of points generated in any event x is bounded, the density is always
admissible.

2. By “saturating” the statistic nxi(x) =∑ξ∈x:ξ �=xi
1‖xi−ξ‖≤r at some fixed value 0 <

δ <∞, i.e., putting an upper bound on the influence of any single point. If g(x) =
∑xi∈x min{δ ,nxi(x)}, the density:

fθ (x) = c(θ)β n(x)γg(x)

is always admissible (Geyer’s saturation process; (87)).
3. By modeling the pair potential by a step function with k steps:

φ(xi,x j) = γk if d(xi,x j)∈ (rk−1,rk], φ(xi,x j) = 0 otherwise, k = 1, . . . , p,

for some predetermined choice of thresholds r0 = 0 < r1 < r2 < ... < rp = r,
p ≥ 1. Letting sk(x) be the number of distinct pairs of points of x separated by a
distance found in (rk−1,rk], k = 1, . . . , p, the density belongs to the exponential
family:

fθ (x;β ,γ1, ...,γp) = c(θ)β n(x)
p

∏
k=1

γsk(x)
k .

fθ is admissible iff γ1 ≤ 1.
4. By including triplets of points of x that are pairwise closer than r. If t(x) is the

count of the number of triplets, the density

fθ (x) = c(θ)β n(x)γ
s(x)
δ t(x)

is admissible iff {γ and δ ≤ 1}.

Area interaction and connected component Gibbs point process

Gibbs PPs with area interaction or connected component interaction are further
alternatives which allow us to model, without constraints on the parameters, distri-
butions of varying regularity (17; 217). Their density is of the form:

fθ (x) = cβ n(x)γh(x),

with h left to be defined. For r > 0, denote B(x) =
⋃

xi∈x B(xi,r/2)∩ S the union
(restricted to S) of balls with centers xi ∈ x and radius r, a(x) the area of B(x) and
c(x) its number of connected components (cf. Fig. 3.8). An area interaction PP
corresponds to the choice h(x) = a(x), whereas a connected component interaction
PP corresponds to the choice h(x) = c(x).

As S is bounded and r > 0, the functions a and c are bounded and both densities
are admissible without constraints on the parameters (β ,γ). For each of the two
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Fig. 3.8 A random generation of the set B(x) that allows us to define the area a(x) and the number
of connected components c(x) (here c(x) = 19).

models, the spatial distribution will be more (resp. less) regular if γ < 1 (resp. γ >
1), with γ = 1 corresponding to a homogeneous Poisson PP of intensity β . One
difficulty in the use of these models is the numerical calculation of a(x) and c(x),
requiring appropriate discretization techniques.

3.5 Nearest neighbor distances for point processes

Nearest neighbor distances (NN) are useful statistics for testing the CSR hypothesis
for independence of points in spatial PPs. Their distributions are linked to the notion
of Palm measures for PPs, which we now present heuristically.

3.5.1 Palm measure

Suppose X is a PP on S with distribution P. The Palm probability Pξ of X at point ξ
is the distribution of X conditional on the presence of a point of X at ξ :

∀F ∈ E : Pξ (F) = P(F |{ξ ∈ X}).

Palm measures Pξ allow us to define statistics which are conditional on the pres-
ence of a point of X at ξ : for example, distance to the nearest neighbor of ξ ∈ X ,
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d(ξ ,X) = inf{η ∈ X and η �= ξ |ξ ∈ X}, or perhaps the number of points of the
configuration found in the ball B(ξ ,r), given that ξ ∈ X .

The difficulty in defining Pξ is due to the fact that the conditioning event {ξ ∈
X} has zero probability; the heuristic approach involves conditioning on the event
{X ∩B(ξ ,ε) �= /0}, with probability > 0 if ε > 0 and the first-order density of X is
> 0, then to see if for an event F “outside” ξ , the conditional probability

Pξ ,ε(F) =
P(F ∩{X ∩B(ξ ,ε) �= /0})

P({X ∩B(ξ ,ε) �= /0})
converges as ε → 0. If such a limit exists, it is what we mean by the Palm mea-
sure Pξ ; for example, for X a Poisson PP, the two events seen in the numerator are
independent when ε is small and thus Pξ ,ε equals P; this can be interpreted as saying
that for a Poisson PP, conditioning (or not) on the presence of a point of X at ξ has
no consequence on probabilities of events away from ξ .

3.5.2 Two nearest neighbor distances for X

We distinguish between two different NN distances for X : distance from a point
belonging to X to its nearest neighbor and distance from a given point in S to its NN
in X (cf. Fig. 3.9).

Fig. 3.9 The two NN distances. (•) are observations from the point process (here n(x) = 7), (◦) are
the selected points (here, 2 sites). The solid line shows the distance from each event to the closest
other event. The dashed line gives the distance from a selected point to the closest event.

Distance from a point ξ ∈ X to its nearest neighbor in X

The distance d(ξ ,X\{ξ}) of a point ξ ∈ X to its nearest neighbor in X has the
cumulative distribution function Gξ :

Gξ (r) = Pξ (d(ξ ,X\{ξ}) ≤ r), ξ ∈ X , r ≥ 0.



100 3 Spatial point processes

If X is stationary, Gξ = G is independent of ξ . If X is a homogeneous PPP(λ ) on R
2

and N(B(ξ ,r)) a Poisson distribution with parameter λπr2, G(r) = P(N(B(ξ ,r)) =
0) = 1−exp{−λπr2}. G has expectation (2

√
λ )−1 and variance λ−1(π−1 −0.25).

Distance from a point u to its nearest neighbor in X

The distance d(ξ ,X\{ξ}) from a point ξ ∈ X to its NN in X must be distinguished
from the distance d(u,X) of a point u ∈ R

d (not necessarily in X) to its NN in X .
The distribution of this second distance is:

Fu(r) = P(d(u,X) ≤ r), u ∈ S, r ≥ 0. (3.10)

If X is stationary, Fu = F . If furthermore X is a homogeneous Poisson PP, G(r) =
F(r). A summary statistic giving an indication of the closeness of X to a Poisson PP
is given by the statistic J:

J(r) =
1−G(r)
1−F(r)

.

If X is a stationary PP, J > 1, J = 1 and J < 1 indicate respectively that X is more,
equally or less regular than a Poisson PP. An estimation of J provides a test statistic
for the CSR hypothesis.

3.5.3 Second-order reduced moments

Ripley’s K function

Suppose X is an isotropic PP on R
d with intensity ρ . An alternative second-order

indicator of the spatial distribution of points of X is Ripley’s K function (183) or
second-order reduced moment:

K(h) =
1
ρ

Eξ [N(B(ξ ,h)\{ξ})], h ≥ 0,

where Eξ is the expectation of Palm’s distribution Pξ . The function K can be inter-
preted in two ways:

1. ρK(h) is proportional to the mean number of points of X in the ball B(ξ ,h), not
including ξ and conditional on ξ ∈ X .

2. ρ2K(h)/2 is the mean number of (unordered) pairs of distinct points at distance
≤ h, provided that one point belongs to a subset A of unit surface.

This second-order reduced mean is invariant by uniform random thinning of
points. If points of the PP X with moment K are thinned following an i.i.d.
Binomial, the resulting process still has the second-order reduced moment K.
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Denoting ρ2(ξ ,η) = ρ2(‖ξ −η‖) the second-order density of X and bd the vol-
ume of the unit sphere in R

d , we have:

K(h) =
d ×bd

ρ

∫ h

0
ξ d−1ρ2(ξ )dξ .

In particular, in dimension d = 2,

ρ2K(h) = 2π
∫ h

0
uρ2(u)du, ρ2(h) =

ρ2

2πh
K′(h). (3.11)

More generally, Baddeley, Møller and Waagepetersen (13) have extended the
moment K to the second-order reduced factorial moment measure K for stationary
PPs X with intensity ρ by the formula:

ρ2K (B) =
1
ν(A)

E ∑
ξ ,η∈X

1[ξ ∈ A,η−ξ ∈ B], B ⊆ R
d . (3.12)

K (B) does not depend on A ⊆R
d if 0 < ν(A) <∞. K is linked to the second-order

factorial moment measure by the formula:

α2(B1 ×B2) = ρ2
∫

B1

K (B2 −ξ )dξ , B1,B2 ⊆ R
d . (3.13)

If ρ2, like K is related to the distribution of the distance between pairs of points,
equation (3.12) shows that it can be considered a natural nonparametric estimator of
K (where A is an observation window; cf. §5.5.3).

If X is a homogeneous Poisson PP, the graph of h 
→ L(h) = h is a straight line;
a concave function L indicates patterns with aggregates; convex L indicates more
regular patterns than that of a Poisson PP. Estimation of L provides another statistic
for testing the CSR hypothesis.

K can also be used to set up parametric estimation methods (for example, least
squares, cf. §5.5.4) provided we have its analytic representation.

For example, if X is a homogeneous Poisson PP on R
d , K(h) = bd ×hd ; if X is a

Neyman-Scott PP on R
d for which the position of parents follows a homogeneous

PPP(ρ) with each parent generating a random number N of offspring, with disper-
sion distributions around each parent having isotropic density k(ξ ) = g(‖ξ‖), then,
setting G(h) =

∫ h
0 g(u)du (48):

K(h) = bdhd +
E(N(N −1))G(h)

ρ[E(N)]2
.

A further summary statistic useful for checking the CSR hypothesis is the
function:

L(h) =
{

K(h)
bd

}1/d

.
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The Baddeley-Møller-Waagepetersen KBMW function

Suppose that X is a second-order stationary PP for the reweighted correlation g
(cf. (3.1) and (3.2)): g(ξ ,η) = g(ξ −η). Baddeley, Møller and Waagepetersen (13)
extended Ripley’s second-order reduced moment function to:

KBMW (h) =
∫

Rd
1{‖ξ‖ ≤ h}g(ξ )dξ =

1
ν(B)

E

[ �=
∑

ξ ,η∈X∩B

1{‖ξ −η‖ ≤ h}
ρ(ξ )ρ(η)

]
.

(3.14)

The equality on the left can be compared with equations (3.11) (in dimension d = 2)
and (3.13) (in general). The equality on the right suggests a natural nonparametric
estimator of KBMW (h) (cf. (5.5.3)).

3.6 Markov point process

The notion of Markov PPs was introduced by Ripley and Kelly (186). Its general-
ization to nearest neighbor Markov properties was given by Baddeley and Møller
(12).

3.6.1 The Ripley-Kelly Markov property

Let X be a PP with density f with respect to some PPP(λ ), where λ is a positive
density measure with finite mass on the set of bounded Borel sets. Let ξ ∼ η be
a symmetric neighbor relation on S: for example, for some fixed r > 0, ξ ∼r η if
‖ξ −η‖ ≤ r. The neighborhood of A ⊂ S is

∂A = {η ∈ S and η /∈ A : ∃ξ ∈ A s.t. ξ ∼ η}.

We denote ∂{ξ} = ∂ξ if ξ ∈ S.

Definition 3.4. A process X with hereditary (3.6) density f is Markov for the re-
lation ∼ if, for each configuration x with density > 0, the Papangélou conditional
intensity (3.7) λ (ξ ,x) = f (x∪{ξ})/ f (x) depends only on ξ and ∂ξ ∩ x :

λ (ξ ,x) =
f (x∪{ξ})

f (x)
= λ (ξ ;x∩∂ξ ).

The Markov property translates that this conditional intensity depends only on
neighboring points of ξ belonging to x.
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Examples of Markov point processes

1. The Poisson PP with intensity ρ and conditional intensity λ (u,x) ≡ ρ(ξ ) is
Markov for any neighbor relation on S.

2. The Strauss PP (3.9) with conditional intensity

λ (ξ ,x) = β exp{logγ ∑
xi∈x

1{‖xi −ξ‖ ≤ r}

is ∼r-Markov; its generalizations to hard-core Strauss processes and/or those
with step potential functions or saturated pair interaction potentials (cf. §3.4.2)
are also ∼r-Markov.

3. The hard-core process with conditional intensity λ (ξ ,x) = β1{∂ξ ∩ x = /0} is
∼r-Markov.

However, as we will see in §3.6.2, for all r > 0, the PP with connectivity-
interaction (cf. §3.4.2) is not ∼r-Markov: in effect, as two points of S can be con-
nected in B(x) =

⋃
xi∈x B(xi,r/2)∩S whilst being arbitrarily far apart, the conditional

intensity λ (ξ ,x) can depend on points of x arbitrarily far from ξ .
The Markov property (3.4), local at ξ , can be extended to any Borel set A of S.

If X is Markov, the distribution of X ∩A conditional on X ∩Ac is dependent only on
X ∩∂A∩Ac, the configuration of X on ∂A∩Ac.

Like Markov random fields on networks (cf. §2.3.2), we can give a Hammersley-
Clifford theorem characterizing Markov PP densities in terms of potentials de-
fined on graph cliques. For the neighbor relation ∼, a clique is some configuration
x = {x1,x2, . . . ,xn} such that for each i �= j, xi ∼ x j, with the convention that single-
tons are also considered cliques. We note C the family of cliques of (S,∼).

Proposition 3.1. (186; 217) A PP with density f is Markov for the relation ∼ if and
only if there exists a measurable function Φ : E → (R+)∗ such that:

f (x) = ∏
y⊂x,y∈C

Φ(y) = exp ∑
y⊂x,y∈C

φ(y).

φ = logΦ is the Gibbs interaction potential and the Papangélou conditional in-
tensity is:

λ (ξ ,x) = ∏
y⊂x,y∈C

Φ(y∪{ξ}), ξ ∈ S\{x}. (3.15)

An example of a Markov PP density with pair interactions is:

f (x) = α ∏
xi∈x
β (xi) ∏

xi∼x j , i< j
γ(xi,x j).

The Strauss process corresponds to the potentials

β (xi) = β and γ(xi,x j) = γ1{‖xi−x j‖≤r}.
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Markov property for a marked point process

The definition of the Markov property and the Hammersley-Clifford theorem remain
unchanged if Y = (X ,M) is a marked PP on S×K with symmetric neighbor relation
∼ on S×K. If (X ,M) has independent marks and X is Markov for some neighbor
relation ∼ on S, (X ,M) is a Markov marked PP for the relation (x,m) ∼ (y,o) ⇐⇒
x ∼ y on S. An example of an isotropic model with pair interactions and a finite
number of marks M = {1,2, . . . ,K} is given by the density in y = {(xi,mi)}:

f (y) = α∏
i
βmi∏

i< j
γmi,m j(

∥∥xi − x j
∥∥).

If for fixed real rkl > 0, k, l ∈ K and k �= l, γkl(d) ≡ 1 when d > rk,l , then conditions
(1) and (2) are satisfied for the neighbor relation:

(ξ ,m) ∼ (ξ ′,m′) ⇐⇒ ∥∥ξ −ξ ′∥∥≤ rm,m′ .

Y is a Markov marked PP.
Further examples of Markov point models are presented in (160; 11).

Example 3.1. Canopy interaction in forestry

Suppose that the zone of influence of a tree centered at xi is defined by a cir-
cle B(xi;mi) centered at xi with radius mi > 0 bounded by some m < ∞. A pair
interaction representing competition between trees i and j can be modeled by pair
potentials:

Φ2((xi;mi),(x j;m j)) = b×ν(B(xi;mi)∩B(x j;m j)),

with singleton potentials for K predetermined values 0 = r0 < r1 < r2 < .. . < rK−1 <
rK = m < ∞ of:

Φi(xi;mi) = α(mi) = ak if rk−1 < mi ≤ rk, k = 1, . . . ,K.

The associated energy is admissible if b < 0 (competition between trees) and defines
a Markov marked PP on R

2×R
+ with conditional intensity

λ ((u,h);(x,m)) = exp{α(h)+b ∑
j:‖x j−u‖≤2m

ν(B(u;h)∩B(x j;m j))}

for the neighbor relation (x,m) ∼ (x′,m′) ⇐⇒‖x− x′‖ ≤ 2m.

3.6.2 Markov nearest neighbor property

A more general Markov property, known as the Markov nearest neighbor property
was developed by Baddeley and Møller (12). We are going to briefly present this
for the special case of PPs with connectivity-interactions (cf. §3.4.2), not Markov in
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the Ripley-Kelly sense but instead for a new neighbor relation that depends on the
configuration x, the x-plus nearest neighbor relation ∼x.

Let x be some configuration on S, r > 0 fixed and B(x) =
⋃

xi∈x B(xi,r/2)∩ S.
We say that two points ξ and η of x are connected for x if ξ and η are in the same
connected component of B(x). We note ξ ∼x η this neighbor relation. Thus, ∼x is a
relation between points of x that depends on x. We remark that two points of S can
be neighbors for ∼x whilst being arbitrarily far apart with respect to the euclidean
distance: in effect, connectivity by connected components joins pairs of points if
there exists a chain of r-balls centered on points of x that joins each point to the
next.

Let c(x) be the number of connected components of B(x). If S is bounded, the
density of the PP with connectivity-interactions is f (x) = cαn(x)β c(x), α and β > 0.
The Papangélou conditional intensity is:

λ (ξ ,x) = αβ c(x∪{ξ})−c(x).

To see that λ (ξ ,x) can depend on points η ∈ x arbitrarily far from u in S, we can
choose a configuration z such that for x = z∪{η}, c(z) = 2, c(x) = 1, c(x) = c(x∪
{ξ}) = 1. Thus, for any R > 0, X is not Markov in the Ripley-Kelly sense for the
usual R-neighbor relation.

However, if η ∈ x is not connected to ξ in B(x∪{ξ}), η does not contribute to
the difference c(x∪{ξ})−c(x) and λ (ξ ,x) is independent of η . Then, X is Markov
for the connected components NN relation.

Markov nearest neighbor property

Let ∼x be a family of relations between points of x, x ∈ E, with the neighborhood
of z ⊂ x given by:

∂ (z|x) = {ξ ∈ x : ∃η ∈ z s.t. ξ ∼x η}.

A process with density f is called Markov nearest neighbor if f is hereditary
and if the conditional density λ (ξ ,x) = f (x∪{ξ})/ f (x) only depends on ξ and
(∂x∪{ξ}{ξ}) ∩ x. The density of a Markov NN process is characterized by a
Hammersley-Clifford theorem.

As the neighbor relation ∼x depends on x, it makes it more difficult to prove
the Markov nearest neighbor property: for example, consider the following density
associated with singleton and pair potentials:

f (x) = c(α,β )αn(x) ∏
xi∼xx j

β (xi,x j). (3.16)

In general, further constraints must be imposed on the relation ∼x so that f is
Markov nearest neighbor (12). These constraints are implicitly satisfied when, as
we have just seen, ∼x is the connected component neighbor relation, but also if
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{ξ ∼x η} ≡ {ξ ∼ η}, where ∼ is a symmetric relation on S and independent
of x.

We now give another example of Markov NN PPs.

Example 3.2. Nearest neighbor relations for Delaunay triangulations

Let x be a locally finite configuration of points of S ⊂R
2. To each site xi associate

a zone of influence Pi(x) defined as the following subset of R
2:

ξ ∈ Pi(x) ⇐⇒∀ j �= i, ‖ξ − xi‖ ≤
∥∥ξ − x j

∥∥ .

For x = {x1,x2, . . . ,xn}, the decomposition S = ∪n
i=1Pi(x) is called the Voronoi

diagram. Except possibly on the boundary of the observation window S, Pi(x)
is a convex polygon. What we call the Delaunay triangulation of x can be as-
sociated with this decomposition: two distinct points xi and x j are defined to be
neighbors if Pi(x) and P j(x) share a common edge. This defines a neighbor
relation ∼t(x), i.e., the NN relation for the Delauney triangulation t(x) of x (cf.
Fig. 3.10).

(a) (b)

Fig. 3.10 (a) Example showing a Voronoi diagram (dotted line) and a Delaunay triangulation
(dashed line) associated with a configuration x of n = 10 points; (b) modification of the trian-
gulation when we add the point �.

For φ and ψ bounded singleton and pair potentials, a PP model for this NN
relation is defined by the Gibbs density

f (x) = cexp{
n

∑
i=1
φ(xi)+ ∑

xi∼t(x)x j

ψ(xi,x j)}.

It can be shown that f is a Markov NN density with respect to ∼t(x).
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3.6.3 Gibbs point process on R
d

The study of Gibbs PPs is important in the effort to characterize asymptotic prop-
erties of estimators of PP models observed over all R

d . Given a symmetric relation
∼ on R

d and a locally finite configuration x, the definition of the Papangélou condi-
tional intensity can be extended by setting

λ (ξ ,x) = exp

{
− ∑

y⊂x∪{ξ},y∈C

φ(y∪{ξ})
}

, ξ ∈ R
d ,

where C is the family of cliques with respect to ∼ and φ a potential on N
Rd . There

are several ways to define stationary Gibbs PPs on R
d (84; 165; 160):

1. Starting from local specifications (Georgii, (84)): for each bounded Borel set A of
R

d , the distribution of X ∩A conditional on X ∩Ac is independent of X ∩∂A∩Ac,
the configuration of X on ∂A∩Ac with density with respect to a PPP(1) of:

π(xA|x∂A) = Z−1(x∂A)exp{− ∑
y⊂xA∪x∂A,y∩xA �= /0

φ(y)}.

2. Starting from integral representations (Nguyen and Zessin (165)): for any func-
tion h : R

d ×N
Rd → [0,∞),

E[∑
ξ∈X

h(ξ ,X\{ξ})] =
∫

Rd
E [h(η ,X)λ (η ,X)]dη . (3.17)

This integral representation is the basis of the definition of PP “residuals” (cf.
§5.5.7).

Specifying PPs using local representations introduces the same problems we met
for Gibbs random fields on networks: existence and/or uniqueness, stationarity, er-
godicity and weak dependency. There are two strategies for dealing with these is-
sues. Denote G (φ) the set of distributions of Gibbs PPs with potential φ .

1. For φ a translation-invariant singleton and pair interaction potential: φ(xi) = α ,
φ({xi,x j}) = g(‖xi − x j‖), Ruelle (190) and Preston (176) showed that G (φ) is
non-empty for a large class of functions g. It suffices for example that there exists
two positive and decreasing functions g1 and g2, g1 on [0,a1[ and g2 on [a2,∞[
with 0 < a1 < a2 < ∞, such that g(t) ≥ g1(t) for t ≤ a1 and g(t) ≥ −g2(t) for
t ≥ a2 that satisfy:

∫ a1

0
g1(t)dt = ∞ and

∫ ∞

a2

g2(t) < ∞.

2. A second approach (Klein, (131)) uniquely associates with X a lattice process
X∗ with potential φ ∗ (cf. §5.5.5.2) and uses results on Gibbs lattice random fields
(Georgii, (85)) ensuring G (φ ∗) �= /0.
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Exercises

3.1. Uniform simulation in balls.

1. Let U1 and U2 be uniform i.i.d. on [0,1]. Show that the polar coordinate (R,Θ) =
(
√

U1,2πU2) is uniformly distributed over the disk B2(0,1) ⊂ R
2. How much is

gained by this circular procedure compared to the square method consisting of
retaining (U1,U2) only if U2

1 +U2
2 ≤ 1?

2. Suggest a “spherical” simulation strategy for uniformly generating points in the
sphere B3(0,1)⊂ R

3. How much is gained compared to the cube-based method?

3.2. Uniform simulation on a Borel set.
Show that the following algorithm simulates a uniform distribution on a bounded
Borel set W ⊂R

2: start by including W ⊂ R =∪K
k=1Rk in a finite union of rectangles

Rk with pairwise measure zero intersections, then:

1. Choose Rk with probability ν(Rk)/ν(R).
2. Generate a point x uniformly in Rk.

If x ∈W, keep it. Otherwise, repeat from step 1.

3.3. Cox processes.
Let X be a Cox process on S.

1. Show that X is overdispersed, i.e., show that var(NX (B)) ≥ E(NX (B)).
2. Calculate the distribution of NX (B) when B ⊂ S if X is driven by Z ≡ ξ , where ξ

follows a Γ (θ1,θ2).

3.4. Simulation of a Poisson point process on R.
Let X = {Xi} be a homogeneous PPP(λ ) on R

1 such that X0 = inf{Xi,Xi ≥ 0} and
for all i ∈ Z, Xi ≤ Xi+1.

1. Show that variables Xi −Xi−1 are i.i.d. ∼ E xp(λ ).
2. Find the distributions of the following r.v.: (i) X0 and X1; (ii) D1 = inf{X1 −

X0,X0 −X−1}; (iii) D′
1 = inf{X0,−X−1}; (iv) D2 = distance to the 2nd-nearest

neighbor of X0.
3. Suggest possible methods for simulating X on [a,b].

3.5. Second-nearest neighbor distance.
Let X be a homogeneous Poisson PP on R

2 with intensity ρ .

1. If x0 ∈ X and if x1 ∈ X is the closest point to x0, find the distribution of D2 =
inf{d(x0,x),x ∈ X\{x0,x1}}.

2. Same question if x0 is some point in R
2.

3.6. The Matérn-I model.
Matérn-I models (154; 48, p. 669) are “hard-core” models obtained in the following
way. Let X0 be a homogeneous PPP(ρ0) on R

2 and r > 0. Looking at all pairs of
points of X0, we remove all points of X0 appearing in (at least) one pair of points
≤ r apart. The resulting process X1 is called a Matérn-I model, it is more regular
than the initial Poisson PP and has no points closer than r to each other.
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1. Show that X1 is a homogeneous PP with intensity ρ1 = ρ0 exp{−πρ0r2}.
2. Show that the second-order intensity of X1 is α2(h) = ρ2

0 k(‖h‖), where
k(‖s−u‖) = exp{−ρ0Vr(‖s−u‖)} if ‖s−u‖ ≥ r, k(‖s−u‖) = 0 otherwise,
with Vr(z) the surface of the union of two spheres of radius r a distance of z apart.

3. Deduce K, Ripley’s second-order reduced moment for X1.

3.7. The Bernoulli lattice process and the Poisson point process.

1. Let Sδ = (δZ)d be the d-dimensional δ -skeleton in R
d . A Bernoulli process

Y (δ ) = {Yi(δ ), i ∈ Sδ} with parameter p is a set of i.i.d. Bernoulli variables with
parameter p. Show that if p = pδ = λδ d , the Bernoulli process converges to a
PPP(λ ) as δ → 0.

2. Let X be a homogeneous PPP(ρ) on R
d and Yi = 1((X ∩ [i, i + 1[) �= /0), where

for i ∈ Z
d , [i, i+1[ is the cube with sides of length 1 and base i. Show that Y is a

Bernoulli process.
3. Let X be a homogeneous PPP(ρ) on R

2. Define Z = {Zi, i ∈ Z
2}, where Zi =

N(i+A) for A =]−1,1]2. Calculate E(Zi) and Cov(Zi,Z j).

3.8. Simulation of point processes.
Simulate the following point processes on S = [0,1]2:

1. An inhomogeneous Poisson PP with intensity ρ(x,y) = 1+4xy.
2. 20 points of a hard-core process with r = 0.05.
3. The following Neyman-Scott process: (i) parents come from a PPP(20); (ii) the

distribution of the number of descendants is given by Bin(10,1/2); (iii) dis-
persion around xi uniformly on B2(xi,0.1); also, suppose independence of all
distributions.

4. A marked PP {(xi,mi)} where X = (xi) is a PPP(20) with mark:
(a) A ball B2(xi,ri) with radius ri ∼ U ([0,0.1]).
(b) A segment centered at xi of length E xp(10) and uniformly oriented.

3.9. Bivariate point process models (217).
Suppose Y = (X1,X2) is a bivariate PP such that X1 and X2 are independent PPP(α)
on S ⊂ R

2, conditional on d(X1,X2) ≥ r for some fixed r > 0.

1. Show that Y has, with respect to the product of two independent PPP(1) the
density: f (x1,x2) = cαn(x1)+n(x2)1{d(x1,x2) ≥ r}.

2. Show that the Papangélou conditional intensity for Y when adding a point ξ1 to
x1 is: λ (ξ1,(x1,x2)) = α1{d(ξ1,x2) ≥ r}. Deduce that Y is a Markov process
with respect to the relation: (ξ , i) ∼ (η , j) ⇐⇒ i �= j and ‖ξ −η‖ < r: Y is
Markov with range r.

3. Show that X1 is the area interaction PP: f1(x1) = c1αn(x1)eαa(x1).
4. Show that X = X1∪X2 has density g(x) = c′∑∗ f (x1,x2) = c′′αn(x)k(x) where ∑∗

(resp. k(x)) is the set (resp. the number) of partitions of x into x1 ∪ x2 so that the
distance from x1 to x2 is ≥ r.

5. Let B(x) = ∪xi∈xB(x,r/2) and let c(x) be the number of connected components
of B(x). Show that k(x) = 2c(x). X is thus a connectivity-interaction PP with
parameter β = 2.

6. Show that these properties hold true when X1 and X2 have different parameters.



Chapter 4
Simulation of spatial models

Being able to simulate probability distributions and random variables is useful
whenever we lack an analytic solution to a problem, be it combinatorial (number
of ways to put 32 dominoes on an 8×8 grid), a search for maxima (Bayesian im-
age reconstruction, cf. §2.2.2) or calculating integrals. For example, calculating the
expectation of real statistics g(X) of the random variable X with distribution π:

π(g) =
∫

Ω
g(x)π(dx),

becomes impractical if X is high-dimensional. Monte Carlo simulation involves es-
timating π(g) with

gn =
1
n

n

∑
i=1

g(Xi)

using n values {Xi, i = 1, . . . ,n} sampled from the distribution π . The Strong Law
of Large Numbers (SLLN) ensures that gn → π(g) if n → ∞ and g(X) is integrable.
Furthermore, if Var{g(X)} < ∞, the Central Limit Theorem (CLT) shows that con-
vergence occurs at a rate n−1/2.

A further example that uses Monte Carlo simulation is the empirical calculation
of the distribution of a statistic (e.g., real-valued) T (X). If the distribution of T is
unknown (difficulty of calculation, lack of knowledge of asymptotic results), we can
estimate its cumulative distribution function F from its empirical distribution over
n samples from T :

Fn(t) =
1
n

n

∑
i=1

1(T (Xi) ≤ t).

In particular, the quantile t(α) of T , defined by P(T ≤ t(α)) = α can be estimated
by T([nα]) as n increases, where T(1) ≤ T(2) ≤ . . . ≤ T(n) is the order statistic for the
(Ti = T (Xi), i = 1, . . . ,n) and [r] the integer part of the real-valued r. This method is
therefore based on simulating n times from X . For large n, T([nα]) is a good approx-
imation of t(α). We can thus calculate statistical tables or approximate confidence
intervals for the statistic T that are asymptotically exact.

C. Gaetan, X. Guyon, Spatial Statistics and Modeling, Springer Series in Statistics, 111
DOI 10.1007/978-0-387-92257-7_4, c© Springer Science+Business Media, LLC 2010
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When X can be simulated using a standard method (inverting the cumulative
distribution function or using the acceptance-rejection method (cf. (59; 188) and
Appendix A), it is easy to approximately calculate the desired quantile.

However, if π is “complex”, these standard methods are impractical. The follow-
ing are two examples in the case of spatial random fields:

1. For an Ising model X on S = {1,2, . . . ,10}2 (cf. §2.2.2), inversion of the cumula-
tive distribution function, classically used for simulating r.v. with a finite number
of states (here Ω = {−1,+1}S is finite) can not be implemented because Ω is
too big (�Ω = 2100 " 1.27× 1030). First, the distribution π(x) = c−1 exp U(x),
c = ∑y∈Ω exp U(y) cannot be evaluated; second, dividing [0,1] into �Ω subin-
tervals, necessary for inverting the cumulative distribution function, is entirely
impractical.

2. Suppose we want to simulate a hard-core point process X (cf. §3.4.2) on S =
[0,1]2 with the hard-core radius r = 0.1, conditional on n = 42 generated points.
To do this, we propose the following acceptance-rejection method: simulate n
uniform i.i.d. points on S and keep the configuration if all pairs of points are at
least a distance r apart. As the probability that a pair of points be ≤ r apart is
πr2, the mean total number of pairs ≤ r apart is of the order n2πr2. When n is
not too large, this number approximately follows a Poisson distribution (33) and
the probability that a generated configuration is an r-hard-core is approximately
exp(−n2πr2), that is, 1.48× 10−22 for our particular case (n = 42). This value
becomes 5.2×10−13 when n = 30, 4×10−6 when n = 20 and 0.04 when n = 10.
That is, the reject method is useless if n ≥ 20.

To get around these problems, algorithms using Markov chain dynamics have
been introduced. If a Markov chain (Xn) “converges” in distribution to π , Xn gives an
asymptotic simulation from the distribution π for large n. Such methods are called
Monte Carlo Markov Chains (MCMC). We are going to present here the two prin-
cipal algorithms, Gibbs sampling for sampling distributions on product spaces ES

and the Metropolis-Hastings algorithm (MH) for general spaces.
Let us begin by recalling some basic definitions and properties of Markov chains

that are useful for constructing MCMC algorithms and controlling their conver-
gence. For additional details, we suggest taking a look at (157; 72; 103; 229).

4.1 Convergence of Markov chains

Let π be a probability distribution that is absolutely continuous with respect to a ref-
erence measure μ defined on (Ω ,E ). With a slight abuse of notation, we also denote
π the density of this distribution. In order to simulate π we construct a Markov chain
X = (Xk,k ≥ 0) on Ω with transition P such that the distribution of Xn converges to
π . Thus for large k, Xk is close to π . We now recall some useful details on Markov
chains.
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Let X = (Xn,n≥ 0) be a process with values in (Ω ,E ) and distribution P. We say
that X is a Markov chain if, for all n≥ 1, each event A∈ E and sequence x0,x1,x2, . . .
from Ω ,

P(Xn+1 ∈ A|Xn = xn, . . . ,X0 = x0)
= P(Xn+1 ∈ A|Xn = xn) = Pn(xn,A).

The conditional probability Pn represents the chain transition at the nth step. we say
the chain is homogeneous if Pn ≡ P for all n. P will simply be called the transition
(probability) from now on. Roughly speaking, X is a Markov chain if its temporal
memory is 1.

Definitions and examples

The transition P of a homogeneous Markov chain on (Ω ,E ) is a mapping P :
(Ω ,E ) → [0,1] such that:

1. For all A ∈ E , P(·,A) is measurable.
2. For all x ∈Ω , P(x, ·) is a probability on (Ω ,E ).

If X0 ∼ ν0, the distribution of (X0,X1, . . . ,Xn) for a homogeneous chain is char-
acterized by:

Pn(dx0,dx1, . . . ,dxn) = ν(dx0)
n

∏
i=1

P(xi−1,dxi).

For k ≥ 1, the marginal distribution νk of Xk is

νk(dxk) =
∫

Ω
ν0(dx)Pk(x,dxk),

where Pk(x, ·) =
∫
Ω k−1 ∏k

i=1 P(xi−1,dxi) is the transition after k steps of the chain.
In particular, the distribution of X1 if X0 ∼ ν is

(νP)(dy) =
∫

Ω
ν(dx)P(x,dy). (4.1)

For finite state spaces Ω = {1,2, . . . ,m}, distributions ν on Ω are represented by
vectors in R

m and Markov chain transitions by the m×m matrix of probabilities
Pi, j = Pr(Xn+1 = j|Xn = i). The i th row represents the initial state and the j th column
the final state. We say that P is a stochastic matrix in the sense that each row of P is
a discrete probability distribution on Ω : for each i ∈ {1,2, . . .m} : ∑m

j=1 P(i, j) = 1.

Under this notation, the transition Pk for k steps of a discrete, homogeneous chain
can simply be found by taking the kth power of P. The distribution of Xk is thus νPk.
This formulation (and these properties) can be easily extended to discrete countable
spaces Ω = {1,2,3, . . .}.

The following processes are Markov chains:
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1. Real-valued random walks defined by the recurrence relation: Xn+1 = Xn + en,
n ≥ 0 where e = (en) is an i.i.d. sequence in R.

2. AR(1) processes with i.i.d. noise.

3. If X is an AR(p), the sequence of vectors X (p)
n = (Xn,Xn+1, . . . ,Xn+p−1) is a

Markov chain on R
p. X has memory p and X (p) memory 1.

4. Xn+1 = Φ(Xn,Un), where Φ : Ω × [0,1] −→ Ω is measurable and (Un) a uni-
formly distributed i.i.d. sequence of random variables on [0,1]. If Ω is discrete,
any Markov chain can be written in this way (cf. Appendix A2).

5. Random walks on graphs: Let S = {1,2, . . . ,m} be a finite state space endowed
with a symmetric graph G in which there exists a path between all pairs of points.
Then, denote di > 0 the number of neighbors of point i and 〈i, j〉 the fact that i
and j are neighbors. The following transition defines a random Markov walk
on S:

P(i, j) =
1
di

if 〈i, j〉 and P(i, j) = 0 otherwise. (4.2)

6. Birth and death processes: Suppose S is finite and associated with a symmetric
graph G without loops and x ∈ Ω = {0,1}S some configuration of {0,1} on
S. Consider the dynamics Xn = x 
→ Xn+1 = y defined by: choose uniformly at
random a site s ∈ S.

a. If Xn(s) = 1, retain Xn+1(s) = 1 with probability α > 0; otherwise, Xn+1(s) =
0.

b. If Xn(s) = 0 and if a neighboring site has the value 1, then let Xn+1(s) = 1
with probability β > 0; otherwise Xn+1(s) = 0.

c. Lastly, if Xn(s) = 0 and all neighbors of i have the value 0, let Xn+1(s) = 1
with probability γ > 0; otherwise, Xn+1(s) = 0.

Irreducibility, aperiodicity and P-invariance of a Markov chain

Suppose π is a distribution on (Ω ,E ). Convergence of Markov chains is linked to
the following three properties:

1. P is said to be π-irreducible if for each x ∈ Ω and A ∈ E such that π(A) > 0,
there exists k = k(x,A) such that Pk(x,A) > 0.

2. π is said to be P-invariant if πP = π , with πP defined as in (4.1).
3. P is periodic if there exists some d ≥ 2 and some partition {Ω1,Ω2, . . ., Ωd} of
Ω such that for all i = 1, . . . ,d, P(X1 ∈ Ωi+1|X0 ∈ Ωi) = 1, with the convention
d +1 ≡ 1. If this is not the case, we say the chain is aperiodic.

π-irreducibility means that any event with positive π-probability can be reached
from any initial state in a finite number of steps with positive probability. When Ω
is finite, we say that the transition (matrix) P is primitive if there exists some integer
k > 0 such that, for each i, j, Pk(i, j) > 0. That is, we can pass from any state i to
any state j in k steps. For finite Ω , P being primitive implies irreducibility.

If Ω is discrete, finitely or countably and if π is positive (noted π > 0 : ∀i ∈
Ω , π(i) > 0), π-irreducibility is equivalent to there being communication between
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all states: we say that i communicates with j if there exists k(i, j) > 0 such that
Pk(i, j)(i, j) > 0.

d-periodicity means that the transition Pd lives separately in d disjoint state sub-
spaces Ωl , l = 1, . . . ,d. A sufficient condition ensuring aperiodicity of chains is that
the transition (density) satisfies P(x,x) > 0 for some set of x’s with μ-measure > 0.

The random walk (4.2) is irreducible. The same is true for the birth and death
process (6) as long as α,β , γ ∈]0,1[. The random walk is aperiodic if G has at least
one loop but is no longer so if there are m = 2 sites and no loops.

Stationary distribution of a Markov chain

If π is a P-invariant distribution, we say that π is a stationary distribution of X
because if X0 ∼ π , Xk ∼ π for all k. In this case, the process X = (Xk) is stationary.

Convergence of a Markov chain

It is easy to show that if (Xk) is a Markov chain with transition P such that:

for all x ∈Ω and A ∈ E : Pn(x,A) → π(A) if n → ∞,

then π is P-invariant and P is π-irreducible and aperiodic. The remarkable property
giving the foundation of MCMC algorithms is the converse of this result. Before
describing this property, let us define the total variation norm (TV) between two
probabilities ν1 and ν2 on (Ω ,E ) :

‖ ν1 −ν2 ‖TV = sup
A∈E

|ν1(A)−ν2(A)| .

If the sequence νn → ν with respect to the TV norm, then νn → ν in distribution.
When Ω is discrete, the TV norm is none other than the half-norm l1 :

‖ ν1 −ν2 ‖TV =
1
2
‖ν1 −ν2‖1 =

1
2 ∑i∈Ω

|ν1(i)−ν2(i)| .

Theorem 4.1. Convergence of Markov chains (Tierney, (214))

1. Let P be a π-irreducible and π-invariant aperiodic transition. Then, π-a.s. for
x ∈Ω ,

∥∥Pk(x, ·)−π∥∥TV → 0 when k → ∞.
2. If furthermore for all x ∈ Ω , P(x, ·) is absolutely continuous with respect to π ,

this convergence happens for all x ∈Ω .

Under conditions (1-2) we have for any initial distribution ν ,
∥∥νPk −π∥∥V T → 0. If

Ω is finite, we have, more precisely (129):

Theorem 4.2. Convergence of a Markov chain with a finite state space
Let P be a transition on Ω . The following statements are equivalent:
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1. For all ν , νPk → π , and π > 0 is the unique invariant distribution of P.
2. P is irreducible and aperiodic.
3. P is primitive.

Furthermore, if for some k > 0, ε = infi, j Pk(i, j) > 0, then, defining m = �Ω and [x]
the integer part of x, we have:

‖νPn −π‖TV ≤ (1−mε)[n/k]. (4.3)

To construct an MCMC algorithm for simulating π , it is thus necessary to pro-
pose a transition P that is “easy” to simulate, π-irreducible and aperiodic. Also, π
must be P-invariant. π-irreducibility and aperiodicity must be verified on a case by
case basis. Finding a P such that π is P-invariant is not easy in general. If for ex-
ample Ω is finite, this question is linked to the search for a left eigenvector of P
associated with the eigenvalue 1, which is difficult to find when Ω is large.

A simple strategy that ensures π is P-invariant is to propose a P that is
π-reversible.

Definition 4.1. π-reversible chains
P is π-reversible if

∀A,B ∈ E ,

∫

A
P(x,B)π(dx) =

∫

B
P(x,A)π(dx).

If π and P are distributions with densities, π-reversibility of P is written:

∀x,y ∈Ω : π(x)p(x,y) = π(y)p(y,x).

If the transition P of a chain X is π-reversible, then the distributions of pairs
(Xn,Xn+1) and (Xn+1,Xn) are identical if Xn ∼ π . The chain’s distribution remains
unchanged when time is reversed. Furthermore, we have:

Proposition 4.1. If P is π-reversible, then π is P-invariant.

Proof. π-reversibility of P gives directly:

(πP)(A) =
∫

Ω
π(dx)P(x,A) =

∫

A
π(dx)P(x,Ω) = π(A).

��

Example 4.1. Simulating hard-core models on discrete networks

Let S = {1,2, . . . ,m} be a finite set of sites associated with a symmetric neighbor
graph G without loops. A hard-core configuration on (S,G ) is a configuration of
xi ∈{0,1} at each site i∈ S (xi = 1 if i is busy, xi = 0 if i is free) such that neighboring
sites of S cannot be simultaneously busy. The space of possible configurations is
thus:

Ω0 = {x ∈ {0,1}S such that xix j = 0 if i and j are neighbors}.
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Hard-core models are used in 3-dimensional physics to analyze behavior of gases
over networks where particles of non-negligible radius cannot physically overlap.
For uniform π on Ω0, we can for example investigate the mean number of occupied
sites of particular hard-core configurations or confidence intervals for this number.
As Ω0 has a large cardinal number, simulation of this uniform distribution is per-
formed using the following algorithm (Häggström, (103)):

1. Choose uniformly at random a site i of S.
2. Flip an unbiased coin.
3. If it comes up “Heads” and if the neighboring sites

of i are free, then xi(n+1) = 1; otherwise xi(n+1) = 0.
4. For j �= i, xn+1( j) = xn( j). Return to 1.

We now show that P is π-reversible. As π is uniform, reversibility of P is equiv-
alent to P being symmetric: P(x,y) = P(y,x) when x �= y. Let i be the site where the
change xi �= yi occurs (no other changes occur elsewhere). There are two possibil-
ities: (i) xi = 1 
→ yi = 0 occurs with probability 1/2 because only flipping ‘Tails’
gives this result (if we had flipped ‘Heads’ and all neighboring sites of i were un-
occupied, we would have had yi = 1); (ii) xi = 0 
→ yi = 1 can only happen if we
flip ‘Heads’ and if all neighboring sites are vacant. This transition thus occurs with
probability 1/2. P is therefore symmetric and hence π-reversible.

Furthermore, P is irreducible: let x,y ∈Ω0; we show that we can move from any
x to any y in Ω0 in a finite number of steps; this is for example possible by moving
from x to 0 (the configuration with 0 everywhere) by deleting one by one the points
where x equals 1, then from 0 to y by adding one by one the points where y equals 1.
If n(z) is defined as the number of sites occupied by z, moving from x to 0 is possible
in n(x) steps, each with probability ≥ 1/2m, moving from 0 to y is similarly possible
in n(y) steps, each with probability ≥ 1/2m. We thus obtain

Pn(x)+n(y)(x,y) ≥ (1/2m)n(x)+n(y) > 0, ∀x,y ∈Ω0.

To prove aperiodicity, it is sufficient to remark that for any configuration x,
P(x,x) ≥ 1/2. The Markov chain with transition P therefore gives us a way to (ap-
proximately) simulate from π .

To calculate the mean number M0 of points in a hard-core configuration, we begin
by generating the sequence X0,X1,X2, . . . ,XM with respect to transition P (with for
example the initial state X0 = 0). Denoting n(X) the number of points in trial X ,
M0 can be estimated by M̂0 = M−1∑M

k=1 n(Xk). If we are interested in the variability
of this distribution around M0, we can use the estimation σ̂2 = M−1∑M

k=1 n(Xk)2 −
(M̂0)2.

4.1.1 Strong law of large numbers and central limit theorem for a
homogeneous Markov chain

The rate of convergence of gn = n−1∑n
i=1 g(Xi) → π(g) can be quantified using the

following notion of geometric ergodicity (157; 71; 188):
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∃ρ < 1, ∃M ∈ L1(π) s.t. ∀x ∈Ω ∀k ≥ 1 : ‖Pk(x, ·)−π(·)‖TV ≤ M(x)ρk.

Theorem 4.3. Strong law of large numbers and central limit theorem for Markov
chains

1. SLLN: if X is π-irreducible with invariant distribution π and if g ∈ L1(π), then
π-a.s.:

gn =
1
n

n−1

∑
k=0

g(Xk) → πg =
∫

g(x)π(dx).

We denote

σ2(g) = Var(g(X0))+2
∞

∑
k=1

Cov(g(X0),g(Xk)),

provided that this quantity exists. In this formula, the covariances are evaluated
under the stationary distribution.

2. CLT: if P is geometrically ergodic, then σ2(g) exists. If furthermore σ2(g) > 0,
we have: √

n(gn −πg) d−→ N (0,σ2(g))

if one of the following conditions is satisfied: (i) g ∈ L2+ε(π) for some ε > 0; (ii)
P is π-reversible and g ∈ L2(π).

4.2 Two Markov chain simulation algorithms

Let π be a distribution with density π(x) with respect to a measure μ on (Ω ,E ).
If Ω is discrete, we choose μ to be the counting measure. Suppose positivity, i.e.,
for all x ∈ Ω , π(x) > 0, if necessary shrinking the state space until this is true. To
simulate π , we aim to construct a π-irreducible aperiodic chain with transition P for
which π is P-invariant.

Gibbs sampling is only applicable when working with product spaces: Ω = ES.
In contrast, the Metropolis algorithm is applicable for general state spaces.

4.2.1 Gibbs sampling on product spaces

Let X = (Xi, i ∈ S) be a variable on S = {1,2, . . . ,n} with distribution π on Ω =
∏i∈S Ei. For each x = (x1,x2, . . . ,xn) ∈Ω , suppose that the conditional distributions
πi(·|xi), where xi = (x j, j �= i), can be easily simulated. We consider transitions

Pi(x,y) = πi(yi|xi)1(xi = yi) (4.4)

which allow a change at one site i only, this being xi 
→ yi, with probability πi(yi|xi),
x being unchanged elsewhere (xi = yi). We now take a look at two types of sampling.
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Gibbs sampling with sequential sweep

Suppose that we sequentially visit S, for example in the order 1 → 2 → . . . →
(n−1)→ n. A sequence of visits covering all sites of S is called a sweep or scan of S.
At each step, the value xi at i is relaxed, i.e., drawn randomly with respect to πi, con-
ditional on the current state. The transition (density) from state x = (x1,x2, . . . ,xn)
to state y = (y1,y2, . . . ,yn) after sweeping S is given by:

PS(x,y) =
n

∏
i=1
πi(yi|y1, . . . ,yi−1,xi+1,xi+2, . . . ,xn).

At the i th sweep step, πi is conditioned by the (i−1) already simulated values y and
the (n− i) values of x than are yet to be simulated.

Gibbs sampling with random sweep

Let p = (p1, p2, . . . , pn) be a positive probability distribution on S (for all i, pi > 0).
At each step, a site i is chosen at random following the distribution p and the value
at this site is simulated following the distribution πi conditional on the current state.
The transition for one sweep is thus

PR(x,y) =
n

∑
i=1

piπi(yi|xi)1(xi = yi).

Theorem 4.4. Convergence of Gibbs sampling.
Suppose that for all x ∈ Ω , π(x) > 0. Then, the transitions PS of the sequential

sampler and PR of the random sampler are π-irreducible and aperiodic with invari-
ant distribution π . Furthermore, for any initial distribution ν , νPk → π .

Proof. Sequential sampler PS: Positivity of π implies positivity of the conditional
densities:

πi(xi|xi) > 0, ∀x = (xi,x
i).

We deduce that for all x,y, PS(x,y) > 0. PS is thus π-irreducible and aperiodic. Next
we show that π is PS-invariant. As PS is made up of transitions Pi (4.4), it suffices to
show that each Pi is π-invariant. Remark that each Pi is π-reversible as, in effect,

π(x)Pi(x,y) = π(xi,x
i)πi(yi|xi)1(xi = yi)

=
π(xi,xi)πi(yi,xi)

π i(xi)
1(xi = yi)

= π(y)Pi(y,x)

is symmetric for (x,y). π is thus PS-invariant. As PS(x, ·) is absolutely continuous
with respect to π , we deduce that for any initial distribution ν , νPk → π .
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If Ω is finite, η = infi,xπi(xi|xi) > 0 and ε = infx,y P(x,y) ≥ ηn > 0. From (4.3),
we have the inequality:

∀ν ,
∥∥∥νPk −π

∥∥∥
V T

≤ (1−mε)k, m = �Ω .

Random sampler PR: n transitions PR must be lined up to show π-irreducibility and
aperiodicity of PR: if for example we first choose site 1, then 2 and on to n, we obtain
the lower bound

∀x,y ∈Ω : Pn
R(x,y) ≥ p1 p2 . . . pnPS(x,y) > 0.

PR is π-reversible since

π(x)PR(x,y) =
n

∑
i=1

piπ(xi,x
i)πi(yi|xi)1(xi = yi)

=
n

∑
i=1

pi
π(xi,xi)πi(yi,xi)

π i(xi)
1(xi = yi)

= π(y)PR(y,x).

π is thus PR-invariant and the absolute continuity of PR(x, ·) with respect to π
ensures convergence of the random sampler. If Ω is finite, δ = infx,y Pn(x,y) ≥
ν1ν2 . . .νnηn > 0 and ∥∥∥νPk −π

∥∥∥≤ 2(1−mδ )[k/n].

��

To construct P, all that is needed is to know π up to a multiplicative constant. In
effect, if π(x) = ce(x), the conditional distributions πi are independent of c. This
is an important remark as usually (for example for Gibbs random fields), π is only
known up to a multiplicative constant.

Different ways to sweep S that possibly lead to repeated visits, periodicity etc. of
sweeping, or simulation on subsets of S other than single site visiting can also lead
to convergence of νPn → π . The only condition required to ensure convergence of
a sampler is that the sweep sequence visits infinitely often every site in S (81).

4.2.2 The Metropolis-Hastings algorithm

Proposed by Metropolis in 1953, this algorithm was stated in its general form by
Hastings (110; 188) in 1970. The property of optimality in terms of asymptotic vari-
ance of the Metropolis algorithm within the family of Metropolis-Hastings (MH) al-
gorithms was shown by Peskun ((172) and cf. §4.2.2). An important difference with
Gibbs sampling is that here the state space Ω is not necessarily a product space.
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Description of the Metropolis-Hastings algorithm

The MH algorithm is founded on the idea of constructing a transition P that is π-
reversible, making P thus π-invariant. This is done in two steps:

1. Proposal transition: we start by proposing a change x 
→ y according to a transi-
tion Q(x, ·).

2. Acceptance probability: we accept the change with probability a(x,y), where a :
Ω ×Ω →]0,1].

The two choices needed in the algorithm are Q, the transition for the proposed
change and a the probability of accepting the change. Denoting by q(x,y) the density
of Q(x, ·), the MH transition P is written:

P(x,y) = a(x,y)q(x,y)+1(x = y)
[

1−
∫

Ω
a(x,z)q(x,z)dz

]
. (4.5)

The choice (Q,a) ensures π-reversibility of P if the following detailed balance
equation is satisfied:

∀x,y ∈Ω : π(x)q(x,y)a(x,y) = π(y)q(y,x)a(y,x). (4.6)

By imposing reversibility, we get that q satisfies the weak symmetry condition
q(x,y) > 0 ⇔ q(y,x) > 0. Q must be such that the change x 
→ y is allowed, it must
also allow the change y 
→ x. For such couples (x,y), we define the MH ratio as

r(x,y) =
π(y)q(y,x)
π(x)q(x,y)

.

If q is symmetric, r(x,y) = π(y)/π(x).
For it to be true that P provides a simulation of π , it remains to show that P is

irreducible and aperiodic. For P to be irreducible, Q must be too, but this is not
sufficient: irreducibility, like aperiodicity of P, must be examined case by case. IfΩ
is finite, aperiodicity is ensure if one of the following conditions holds:

1. There exists x0 s.t. Q(x0,x0) > 0 (for at least one state, we allow no change).
2. There exists (x0,y0) s.t. r(x0,y0) < 1: for the Metropolis algorithm (4.8), this

signifies that a change can be refused.
3. Q is symmetric and π is not uniform.

For (1) and (2), it suffices to show that P(x0,x0) > 0. Let us examine (3): as Q is
irreducible, all states communicate under the relation: x ∼ y ⇔ q(x,y) > 0; as π
is not uniform and all states communicate, there exists x0 ∼ y0 s.t. π(x0) > π(y0).
Aperiodicity thus results from the lower bound:

P(x0,x0) ≥ Q(x0,y0)
{

1− π(y0)
π(x0)

}
> 0.
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As is the case for Gibbs sampling, it suffices to know π up to a multiplicative con-
stant in order to construct the MH transition P.

The detailed balance equation (4.6) that ensures π-reversibility of P is satisfied
if the probability of accepting changes a is written a(x,y) = F(r(x,y)) for some
function F : ]0,∞[→]0,1] satisfying:

∀ξ > 0: F(ξ ) = ξF(ξ−1). (4.7)

In effect, under this condition,

a(x,y) = F(r(x,y)) = r(x,y)F(r(x,y)−1) = r(x,y)a(y,x).

Two classical dynamics satisfy (4.7): Barker dynamics (19) and Metropolis dy-
namics. Barker dynamics are associated with the function F(ξ ) = ξ

1+ξ . If q is sym-
metric,

F(r(x,y)) = F

(
π(y)
π(x)

)
=

π(y)
π(x)+π(y)

.

We accept the proposed change x 
→ y if y is more probable than x.

The Metropolis algorithm

Metropolis dynamics correspond to the choice F(ξ ) = min{1,ξ}. In this case,

a(x,y) = min

{
1,
π(y)q(y,x)
π(x)q(x,y)

}
(4.8)

and

a(x,y) = min

{
1,
π(y)
π(x)

}

if q is symmetric.
If so, the Metropolis algorithm is:

1. Let x be the initial state, choose y according to the
distribution Q(x, .).

2. If π(y) ≥ π(x), keep y. Return to 1.
3. If π(y) < π(x), generate a uniform variable U on [0,1]:

a. If U≤ p = π(y)/π(x), keep y.
b. If U> p, keep the initial value x.

4. Return to 1.

Gibbs sampling is a special case of the Metropolis algorithm, the one for which
the proposed change consists of randomly drawing a site i, relaxing xi to yi with
respect to the density qi(x,yi), then accepting yi with probability
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ai(x,y) = min

{
1,
π(y)qi(y,xi)
π(x)qi(x,yi)

}
.

The choices qi(x,yi) = πi(yi|xi) lead to a(x,y) ≡ 1 and thus reduce to Gibbs sam-
pling.

Example 4.2. A max cut problem for graphs

Let S = {1,2, . . . ,n} be a set of sites, w = {wi, j, i, j ∈ S} a family of real-valued
symmetric weights on S × S, Ω = P(S) the set of subsets of S and U : Ω → R

defined by:

U(A) = ∑
i∈A, j/∈A

wi, j if A �= S and A �= /0, U(A) = +∞ otherwise.

Consider the following combinatorial problem: “Find the subset Ωmin of subsets
A ∈Ω that gives the minimum for U,”

Ωmin = {A ∈Ω : U(A) = min{U(B) : B ⊆ S}}.

It is not possible to resolve this problem by listing the possible values of U as the
cardinality of Ω is too large. One way to get around this problem is the following:
simulate a variable whose distribution πβ on Ω is:

πβ (A) = c(β )exp{−βU(A)}. (4.9)

In effect, if β > 0 is quite small, the mode of πβ will be found at configurations
A ∈Ωmin. Thus, simulating πβ for small β is a way to get close to Ωmin. We remark
that this algorithm mimics another algorithm used to resolve this kind of optimiza-
tion problem called Simulated Annealing (SA): SA simulations are performed on a
sequence of parameters βn → 0+. Convergence of βn to 0 must be slow in order to
ensure convergence of Xn to the uniform π0 on Ωmin (82; 106; 1; 10; 40).

To simulate πβ , we propose the following Metropolis algorithm:

1. The only changes A 
→B allowed are: (i) B = A∪{s} if A �=
S and s /∈ A; (ii) B = A\{s} if A �= /0 and s ∈ A.

2. The proposal transition Q is created by uniformly
choosing s in S: Q(A,B) = 1/n for (i) and (ii);
otherwise, Q(A,B) = 0.

3. Evaluate

• ΔU = U(B)−U(A) = ∑ j/∈B ws, j −∑i∈A wi,s if (i),
• ΔU = ∑i∈B wi,s −∑ j/∈A ws, j if (ii).

4. If ΔU ≤ 0, keep B.
5. If ΔU > 0, generate uniformly U on [0,1].

If U ≤ exp{−βΔU}, keep B; otherwise stay at A.
6. Return to 1.
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Q is symmetric and P is irreducible: in effect, if E and F are two subsets of S with
respectively n(E) and n(F) points, paths from E to F consist in deleting one by one
the points of E to get to the empty set /0, then adding one by one the points in F ; this
path involves nE +nF steps and can be obtained with probability PnE+nF (E,F) > 0.

The transition is aperiodic if U is not constant: in effect, in this case there exists
two configurations A and B which are Q-neighbors such that U(A) < U(B). The
proposed change A 
→ B is refused with probability p = [1− exp{−βΔU}] > 0.
P(A,A) = p/n > 0 and P is thus aperiodic. This version of the Metropolis algorithm
therefore represents a simulation giving convergence to πβ .

Variance optimality of the Metropolis algorithm

ForΩ a finite state space and H a transition defining a chain (X0,X1, . . .) converging
to π , the limit

v( f ,H) = lim
n→∞

1
n

Var{
n

∑
i=1

f (Xi)}

exists and is independent of the initial distribution of the chain (128). Variance op-
timality of the Metropolis kernel PM within the family of all MH kernels represents
the fact that for any f and any MH kernel PMH , we have (172):

v( f ,PM) ≤ v( f ,PMH). (4.10)

A heuristic explanation of this property is that the Metropolis kernel promotes to
a greater extent state changes than the other MH kernels (PM “mixes” more than
PMH ). This optimality result remains true for general state spaces (215).

4.3 Simulating a Markov random field on a network

4.3.1 The two standard algorithms

Let X be a Markov random field on S = {1,2, . . . ,n} with states in Ω =∏i∈S Ei (for
example Ω = ES) and density:

π(x) = Z−1 expU(x), U(x) = ∑
A∈C

ΦA(x), (4.11)

where C is the family of cliques of the Markov graph (cf. Ch. 2, Definition 2.2) and
Φ = (ΦA,A ∈ C ) the Gibbs potential of X . We can simulate π in two ways:

1. Using Gibbs sampling for the conditional distributions:

πi(xi|xi) = Z−1
i (x∂ i)expUi(xi|xi),
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where Ui(xi|xi) = ∑A:A(iΦA(x) and Zi(x∂ i) = ∑ui∈Ei
expUi(ui|xi). As the space

Ei does not have the complexity of a product space, it is sufficient to know the
conditional energies Ui(xi|xi) in order to simulate the distribution Xi conditional
on xi.

2. Using Metropolis dynamics: if the proposal transition Q has a density denoted q
and if q is symmetric, then defining a+ = max{a,0}, the Metropolis transition
has density p given by:

p(x,y) = q(x,y)exp−{U(x)−U(y)}+ if x �= y.

For Metropolis dynamics, changes can occur site by site or in other ways.
Further MCMC algorithms exist: Exercise 4.11 studies the set of MCMC tran-

sitions able to simulate X when relaxation at each step occurs site by site; Gibbs
sampling and the Metropolis algorithm are two particular cases of such transitions.

4.3.2 Examples

4-nearest neighbor isotropic Ising model

For S = {1,2, . . . ,n}2 and E = {−1,+1}, the joint distribution and conditional
distributions are respectively, where vi = ∑ j∈∂ i x j is the contribution of the 4-NN
of i,

π(x) = Z−1 exp{α∑
i

xi +β ∑
<i, j>

xix j}, (4.12)

πi(xi|xi) =
expxi(α+βvi)
2ch(α+βvi)

. (4.13)

Spin-flip Metropolis dynamics

The proposal transition Q for the change x 
→ y is the following: randomly choose
two sites i �= j, swap the spins of i and j and change nothing else: yi = x j, y j = xi

and y{i, j} = x{i, j}. The proposal transition is thus:

Q(x,y) =

{
2

n2(n2−1) for such swaps,

0 otherwise.

We emphasize that if x(0) is the initial configuration, the algorithm evolves in the
subspaceΩx(0) ⊂ {−1,+1}S of configurations having the same number of spins +1
(and thus of spins −1) as x(0). The simulation will therefore be of π , restricted to
the subspace Ωx(0).

We must calculate ΔU(x,y) = U(y)−U(x) in order to identify the Metropolis
transition. This is a local calculation if X is Markov: for example, for the 4-NN
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isotropic Ising model (4.12), we have:

ΔU(x,y) =
{
β (x j − xi)(vi − v j) if ‖i− j‖1 > 1,
β (x j − xi)(vi − v j)−β (x j − xi)2 otherwise.

One iteration of the spin-flip Metropolis algorithm is thus:

1. Draw from two independent uniform distributions
on {1,2, . . . ,n}2, thus selecting two sites i and j.

2. We make the move x 
→ y by swapping xi and x j.
3. Calculate ΔU(x,y): if ΔU(x,y) > 0, accept y.
4. Otherwise, draw U ∼ U ([0,1]) independently from 1:

a. If U < expΔU(x,y), keep y.
b. If U ≥ expΔU(x,y), stay with x.

Q is irreducible on Ω0 because any two configurations of Ω0 are related by a per-
mutation and all permutations are finite products of transpositions. The Metropolis
transition P is irreducible because at each elementary step, we accept the change
with probability > 0.

If β �= 0, U is not constant; if furthermore x(0) is not constant, there exist two
configurations x and y that are Q-neighbors such that U(y) > U(x). Thus the change
x 
→ y is refused with probability P(x,x)≥ 2{1−expΔU(x,y)}/n2(n2−1) > 0. The
chain is therefore aperiodic and the algorithm simulates π restricted to Ω0.

Simulation of auto-models

For auto-models (cf. §2.4), as the product of the conditional distributions πi is ab-
solutely continuous with respect to π , Gibbs sampling converges to π for any initial
distribution. Figure 4.1 shows this evolution for two auto-logistic binary textures π .

Simulating Gaussian vectors

We now consider Gibbs sampling of Gaussian vectors X ∼ Nn(m,Σ), where
Σ is invertible. Noting Q = Σ−1, the transition associated with the sweep-
ing 1 
→ 2 
→ . . . 
→ n is the product of the i th relaxations conditional on
zi = (y1, . . . ,yi−1,xi+1, . . . ,xn), i = 1, . . . ,n, with respect to

πi(xi|zi) ∼ N1(−q−1
ii ∑

j: j �=i

qi jz j,q
−1
ii ) .

If the random field is Markov, πi(xi|xi) = πi(xi|x∂ i).
A comparison of this simulation method with the standard method using Cholesky

decomposition Σ = T tT of Σ does not lead to a conclusive advantage of one method
over the other. For example, for S = {1,2, . . . ,100}2, Σ is a matrix of dimension
104 ×104:
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(1-a) (1-b) (1-c)

(2-a) (2-b) (2-c)

Fig. 4.1 Simulation using Gibbs sampling of two auto-logistic binary textures on the
{1,2, . . . ,100}2 grid. The initial configuration is 1 on the left half and 0 on the right. Simula-
tions: (a) after one sweep, (b) after 10 sweeps, (c) after 1000 sweeps. The two models considered
are: (1) 4-NN isotropic model with α = −3, β = 1.5; (2) 8-NN model with α = 2, β0,1 = −1.2,
β1,0 = −1.2, β1,1 = −0.8 and β1,−1 = 1.4. Configurations 1 and 0 are equiprobable for both
models.

1. Via a Cholesky decomposition: if ε is a sample of 104 Gaussian random variables
with unit variance, X = Tε ∼ N104(0,Σ). Calculating T is costly but does not
need to be repeated if we want to generate X again; furthermore, the simulation
is exact.

2. Via Gibbs sampling: this method requires a large number N of sweeps so that (we
judge that) the algorithm has entered its stationary phase (cf. §4.5.1 and (89)). If
for example N = 100 sweeps is “sufficient,” 100×104 Gaussian simulations are
necessary in order to generate X . It is not necessary to know the Cholesky form
of Σ , nor to be able to diagonalize Σ . However, in order to generate a new X , we
must start from scratch and perform another 100×104 simulations. Furthermore,
the obtained simulated result is an approximation (i.e., not exact).

Product state spaces

Gibbs sampling is well adapted to simulating models which have product state
spaces, E = Λ ×R

n. This type of space can be found in numerous applications:
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for example, spatial remote sensing, λ ∈Λ = {1,2, . . . ,r} representing a qualitative
texture label (cultivated land, forest, water, arid zones, etc.) and x ∈ R

n the quan-
titative multispectral value associated with each site. Examples of such models are
given in Exercise 2.6.

4.3.3 Constrained simulation

Suppose for a given distribution π(x) = cexpU(x) on Ω with known energy U we
would like to simulate πC, i.e., π restricted to the subsetΩC = {x ∈Ω : C(x) = 0} ⊂
Ω defined by the constraint C :Ω → R

+,

πC(x) = 1ΩC(x)Z−1
C expU(x).

An example of this type of simulation, used in constrained reconstruction of a sys-
tem of geological faults can be found in Exercise 4.13.

We now briefly present two results, one related to Gibbs sampling onΩ = En and
the other to Metropolis dynamics. Here, as for the simulated annealing algorithm,
the Markov dynamics used are inhomogeneous with transitions (Pk,k ≥ 0) that vary
with respect to time. Their convergence is a consequence of an ergodicity criteria
for inhomogeneous chains (cf. Isaacson and Madsen, (120)).

The algorithm is as follows: let (λk) be a real-valued positive sequence, (πk) the
sequence of distributions with penalized energy Uk with respect to U defined by:

Uk(x) = U(x)−λkC(x),

and πk the distribution with energy Uk. If λk → +∞, configurations x not satisfying
C(x) = 0 will be progressively eliminated and it is easy to see that πk(x) −→ πC(x)
for all x ∈Ω . We have the results:

1. Inhomogeneous Gibbs dynamics (81): let Pk be the Gibbs transition associated
with πk for the k th sweep of S. If λk = λ0 logk for some small enough λ0, the
inhomogeneous chain (Pk) converges to πC.

2. Inhomogeneous Metropolis dynamics (228): let Q be a proposal transition that is
homogeneous in time, irreducible and symmetric. Let Pk be the Metropolis kernel
with energy Uk:

Pk(x,y) = q(x,y)exp−{Uk(x)−Uk(y)}+ if y �= x.

Then, if λk = λ0 logk and if λ0 is sufficiently small, the inhomogeneous chain
(Pk) converges to πC.

The necessary conditions for slow convergence of λk → ∞ are analogous (with
βk = T−1

k ) to the slow convergence of Tk → 0 for the sequence of temperatures
Tk of the simulated annealing algorithm. These conditions ensure ergodicity of the
inhomogeneous chain (Pk) (120; 82; 1).
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4.3.4 Simulating Markov chain dynamics

Suppose that the dynamic X = {X(t), t = 1,2, . . .} of a Markov random field X(t) =
(Xi(t), i ∈ S), S = {1,2, . . . ,n} is characterized as follows (cf. §2.5). We are given:

1. An initial distribution X(0) with energy U0.
2. Temporal transitions Pt(x,y) from x = x(t −1) to y = x(t) with energy Ut(x,y).

The simulation can be performed recursively with successive Gibbs sampling: we
simulate X(0), then X(t), t ≥ 1 conditional on x(t −1), for t = 1,2, . . .. For random
fields that are conditionally Markov, conditional distributions at space-time “sites”
(i, t) are easily expressed using conditional energies Ut,i(·|x,y∂ i): for example, for
auto-logistic dynamics (2.18) with potentials:

Φi(x,y) = yi{αi + ∑
j∈∂ i−

αi jx j(t −1)} and Φi j(x,y) = βi jyiy j if i ∈ S and j ∈ ∂ i,

Ut,i(yit |x,y∂ i) = yit{αi + ∑
j∈∂ i−

αi jx j(t −1)}+ ∑
j∈∂ i

βi jy j.

Gibbs sampling is easy to use whenever we are dealing with a model that is
Markov in both time and space, allowing us to simulate either homogeneous or
inhomogeneous Markov dynamics in time: for example, growing stain models, fire
or spatial diffusion models and systems of particles (74; 73).

Example 4.3. Simulating growing stain models
Consider the following growing stain model in Z

2: let the random field X(t) =
(Xs(t), s ∈ Z

2) take states in {0,1}Z
2

where 0 represents healthy and 1 sick. Sup-
pose that X is incurable, i.e., if Xs(t) = 1, then Xs(t ′) = 1 for t ′ > t. Next, let the state
x represent the subset of Z

2 where we have a 1. One possible model is the speci-
fication of an initial state (for example X(0) = {0}) along with a nearest neighbor
spatio-temporal transition X(t) = x 
→ y = X(t +1) for only y ⊆ x∪∂x, with energy
transition:

U(x,y) = α ∑
i∈∂x

yi +β ∑
i∈∂x, j∈x s.t. 〈i, j〉

x jyi.

Gibbs sampling conditional on x thus sweeps the set of sites of ∂x with a simulation
distribution at site i ∈ ∂x of conditional energy

Ui(yi|x,yi ∩∂x) = yi{α+βvi(x)},

where vi(x) is the number of neighbors of i in x.

4.4 Simulation of a point process

Suppose X is a point process (PP) on a bounded Borel set S in R
d . If X is a Cox

PP or a shot-noise PP (cf. §3.3), simulation methods follow directly from those for
Poisson PPs (cf. §4.4.3).
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If X is defined by its unconditional density f (cf. §3.4), it can be simulated using
MH dynamics (88; 160). An implementation of these dynamics can be found in the
R package spatstat. Let us first take a look at simulations conditional on a fixed
number of points n(x) = n.

4.4.1 Simulation conditional on a fixed number of points

Suppose we fix n(x) = n. Writing (x∪ξ )\η to mean (x∪{ξ})\{η}, the MH algo-
rithm is written:

1. Change x → y = (x∪ξ )\η, η ∈ x and ξ ∈ S, with density q(x,y)=
q(x,η ,ξ ).

2. Accept y with probability a(x,y) = a(x,η ,ξ ).

One possible acceptance probability a(x,y) ensuring that the kernel is π-reversible
is

a(x,y) = min{1,r(x,y)}, where r(x,y) =
f (y)q(y,x)
f (x)q(x,y)

.

If the change x 
→ y is obtained upon uniformly deleting a point in x and then uni-
formly generating an ξ in S, the algorithm gives irreducibility and aperiodicity and
converges to π; aperiodicity results from positivity of the transition density, irre-
ducibility from the fact that we can pass from x to y in n steps by changing, step by
step, xi (death) into yi (birth) with positive probability density.

4.4.2 Unconditional simulation

Suppose that the density of f is hereditary, i.e., satisfying:

if for x ∈Ω and ξ ∈ S, f (x∪ξ ) > 0, then f (x) > 0.

In this context, as the algorithm allows one birth or death at each step, it visits
different spaces En of configurations with n points. If x ∈ En, n ≥ 1, one loop of the
algorithm is:

1. With probability αn,n+1(x), add a point ξ ∈ S that has
been chosen with respect to the density b(x, ·) on S.

2. With probability αn,n−1(x) = 1−αn,n+1(x), delete a point η
of x with probability d(x,η).

When n = 0, we stay in the empty configuration with probability α0,0( /0) = 1−
α0,1( /0). The MH ratio is:

r(x,x∪ξ )=
f (x∪ξ )(1−αn+1,n(x∪ξ ))d(x,ξ )

f (x)αn,n+1(x)b(x,ξ )
and r(x∪ξ ,x)= r(x,x∪ξ )−1.
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The general condition for reversibility of the MH algorithm is given by (4.6). For
the Metropolis algorithm, the acceptance probability is:

• a(x,x∪ξ ) = min{1,r(x,x∪ξ )} of accepting the birth: x → y = x∪ξ .
• a(x,x\η) = min{1,r(x,x\η)} of accepting the death: x → y = x\η .

Proposition 4.2. Ergodicity of the MH algorithm
Suppose that the two following conditions hold:

1. For the birth and death distributions b and d: if n(x) = n, f (x∪ξ ) > 0, αn+1,n(x∪
ξ ) > 0 and αn,n+1(x) > 0, then d(x,ξ ) > 0 and b(x,ξ ) > 0.

2. The probabilities of visiting different spaces En satisfy: ∀n ≥ 0 and x ∈ En, 0 <
αn+1,n(x) < 1, and (4.6) is satisfied.

Then, the previously described MH algorithm simulates a PP with density f .

The first condition is satisfied when b(x, ·) = b(·) is uniform on S and if d(x, ·) = d(·)
is uniform on x.

Proof. The chain is π-invariant. It is also aperiodic since α0,1( /0) is > 0, imply-
ing a probability > 0 to stay in the empty configuration. Lastly, the algorithm is
π-irreducible: in effect, we move from x = {x1,x2, . . . ,xn} to y = {y1,y2, . . . ,yp}
with a positive probability density by first deleting the n points of x and then adding
the p points of y. ��
For the uniform choices αn+1,n = 1/2, b(x, ·) = 1/ν(S), d(x,η) = 1/n if x =
{x1,x2, . . . ,xn} and η ∈ x, we have:

r(x,x∪ξ ) =
ν(S) f (x∪ξ )

n(x) f (x)
.

If n(x) > 0, one loop of the Metropolis algorithm x → y is as follows:

1. With probability 1/2, a birth ξ ∈ S is proposed
uniformly; it is retained with probability
inf{1,r(x,x∪ξ )}: y = x∪{ξ}; otherwise, configuration x
stays the same: y = x.

2. With probability 1/2, a death occurs at η, a uniformly
chosen point of x; this death is retained with
probability min{1,r(x\η ,x)−1} : y = x\{η}; otherwise,
configuration x stays as it was: y = x. If n(x) = 0, only
the first step is performed with probability 1.

4.4.3 Simulation of a Cox point process

Simulation of Cox PPs (cf. §3.3) follows naturally from how we simulate Poisson
PPs. Simulation of a PPP(ρ) with intensity ρ occurs as follows: denoting λ (S) =∫

S ρ(u)du < ∞:
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1. Generate a non-negative integer n from the Poisson
distribution P(λ (S)).

2. Draw n points x1,x2, . . . ,xn i.i.d. with density ρ on S.

x = {x1,x2, . . . ,xn} is then the result of a PPP(ρ) on S.
Simulation of a Cox PP of random intensity (Λ(u))u∈S is achieved by simulating

a conditional Poisson PP with intensityΛ . Simulation of the random field of density
Λ , continuous on S, depends on the Cox process under consideration. For example,
simulating the conditional log-intensity logρ(u) = t z(u)β+Ψ(u) of a log-Gaussian
Cox PP (3.3) is performed using the observable covariates (z(u))u∈S and a simulated
Gaussian processΨ along with one of the methods proposed in §4.7.

Simulation of a doubly stochastic Poisson PP (3.4) is performed in two steps:
first, determine the positions c and intensities γ of the “parent” Poisson PPs; second,
simulate the cluster around each parent using spatial densities γk(c, ·). As parents
c outside S can have descendants in S, we have to make sure that the simulation
method takes into account this boundary effect (cf. (160)).

4.5 Performance and convergence of MCMC methods

The difficulty both in theory and practice with MCMC algorithms is to know at
what instant n0 (burn-in time) we can suppose that the associated chain X = (Xn)
has entered its stationary regime. Should we choose n0 as a function of when the
distribution of Xn, n ≥ n0 is close to the stationary distribution π of the chain? By
bounding ‖Xn −π‖V T ? We consider only briefly this question here and refer the
reader to (89; 188) among others, as well as to the articles mentioned in the follow-
ing paragraphs for more details.

4.5.1 Performance of MCMC methods

Two criteria are useful for evaluating the performance of MCMC methods:

1. The rate of convergence to 0 of the total variation norm ‖Xk −π‖V T =∥∥νPk −π∥∥V T , where X0 ∼ ν .
2. The variance v( f ,P) = limn→∞ 1

nVar(∑n
i=1 f (Xi)) of an empirical mean along the

chain’s trajectory.

Peskun (4.10) showed that for the variance criteria v( f ,P), the Metropolis algo-
rithm is the best of all MH algorithms. The variance v( f ,P) can be characterized
using the spectrum of P if Ω is finite with m points. In this case, as the chain
is reversible, P is self-adjoint in l2(π), where the space R

m is endowed with the
scalar product 〈u,v〉π = ∑m

1 ukvkπ(k). P can thus be diagonalized in R. If we note
λ1 = 1 > λ2 > .. . > λm >−1 its spectrum and e1 = 1, e2, . . . ,em the associated basis
chosen to be orthonormal of l2(π), we have (128):
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v( f ,P) =
m

∑
k=2

1+λk

1−λk
〈 f ,ek〉2

π .

In order for this to be useful, the spectral decomposition of P needs to be known,
which is rarely the case.

Quantifying the rate of convergence of
∥∥νPk −π∥∥V T → 0 is a fundamental ques-

tion that in theory allows us to propose a stopping rule for the algorithm. While sev-
eral results exist (ifΩ is finite, the Perron-Frobénius Theorem gives

∥∥νPk −π∥∥V T ≤
C(ν)(sup{|λ2| , |λm|})k for transitions that are reversible), even here effective eval-
uation of the rate of convergence of the algorithm is in general impossible because
it is linked to having a precise description of the spectrum of P, possible only in
rare cases (61; 191). Furthermore, when explicit bounds exist ((4.3), bounding the
transition using Dobrushin’s contraction coefficient (65; 120; 96, §6.1)), they are
generally impractical, bounds of the type

∥∥νPk −π∥∥V T ≤ (1−mε)k (cf. Th. 4.2)
being useful only if mε is not too small. However, to take an example, for se-
quential Gibbs sampling for 4-NN isotropic Ising models on S = {1,2, . . . ,10}2

and with parameters α = 0 and β = 1, m = 2100, we have ε = {infi,xi,xi πi(xi|xi)}m

and mε ∼ (6.8×10−4)100!
An alternative approach, presented in §4.6, consists of using an exact simulation

algorithm (177).
In practice, when simulating using MCMC methods, several aspects need to be

considered: choice of algorithm, ease of implementation, processing time, choice of
initial state, use of a single chain or several independent chains, time n0 to chain
stationarity and subsampling at every K steps to guarantee near independence of
subsequences (XKn)n. We limit ourselves here to giving responses to the question of
choosing the time to stationarity n0 and suggest (89) and (188) for a more thorough
coverage.

4.5.2 Two methods for quantifying rates of convergence

A first approach consists in following the evolution in k of summary statistics h(Xk)
of the chain X = (Xk). For example, if π belongs to an exponential family, we could
choose h to be the exhaustive statistic of π . Figure 4.2 shows both evolution of
n(Xk) and s(Xk) in an MH simulation of a Strauss process as well as empirical
autocorrelations for each statistic. A choice of n0 = 300 to mark the entry time into
the stationary regime seems reasonable and a time lag of K = 100 approximately
removes the correlation between h(Xt) and h(Xt+K) (cf. Fig. 4.3).

A second approach (80) consists of generating m independent chains in parallel
after having initialized the chains in various different states and then comparing

their variability. We thus follow the m trajectories {h(i)
k = h(X (i)

k ),k ≥ 0}. When the
chains reach their stationary regimes, their variance should be similar. We analyze
this set of m variances by calculating B (between) and W (within) the inter- and
intra-chain variability:
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Fig. 4.2 Unconditional simulation of a Strauss process X with parameters β = 40, γ = 0.8, r = 0.4
on S = [0,1]2 using the Metropolis algorithm with the uniform choices: (a) X0 ∼ PPP(40), (b)
X1000, after 1000 iterations. Checking of the convergence of the algorithm is done using summary
statistics nS(Xk) (c) and s(Xk) (d) over time and their autocorrelation functions (e) and (f).
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Fig. 4.3 Subsampling the simulation chain of a Strauss process (cf. Fig. 4.2): to the left, the statis-
tics nS(Xsk) and s(Xsk), k = 0,1,2, . . . , with s = 100; to the right, the corresponding autocorrela-
tions.

B =
1

m−1

m

∑
i=1

(h(i) −h)2, W =
1

m−1

m

∑
i=1

S2
i ,

where S2
i = (n−1)−1∑n−1

k=0(h
(i)
k −h

(i))2 and h
(i)

is the empirical mean of h for the i th

chain, h the mean across all chains. We can either estimate Varπ(h) using V =W +B

or W . The choice of V gives an unbiased estimate of this variance when X (i)
0 ∼ π but

otherwise it overestimates the variance. As for W , it underestimates the variance if
n is finite as the chain has not reached all states of X . Nevertheless, both estimators
converge to Varπ(h). We can therefore quantify convergence of chains based on the
statistic R = V/W : when the chain has entered the stationary regime, R ∼= 1; if not,
R ) 1 and we should perform further iterations.



136 4 Simulation of spatial models

4.6 Exact simulation using coupling from the past

The difficulty in using MCMC methods resides in bias coming from the initiation
step ‖ νPk −π ‖V T . Propp and Wilson (177) proposed an exact simulation method
based on coupling from the past (CFTP), a simulation technique that removes this
problem. Their simple yet powerful idea revolutionized the field.

For a general overview, we suggest http://dbwilson.com/exact/ as
well as the article by Diaconis and Freedman (60).

4.6.1 The Propp-Wilson algorithm

We limit ourselves here to describing the Propp-Wilson algorithm for finite spaces
Ω = {1,2, . . . ,r}, where P is an ergodic transition such that π is P-invariant. The
ingredients of the CFTP method are the following:

(a) The simulator S = (S t)t≥1 with St = { f−t(i), i ∈ Ω}, where f−t(i) fol-
lows the distribution P(i, ·). The generators (St) are i.i.d. for different t but the
{ f−t(i), i ∈Ω} are potentially dependent. An iteration from −t to −t +1 (t ≥ 1)
is:

1. For each i ∈Ω, simulate i 
→ f−t(i) ∈Ω.
2. Memorize the transitions {i 
→ f−t(i), i ∈Ω} from −t to

−t +1.

The simulation moves back in time, starting from t = 0.
(b) The map Ft2

t1 :Ω →Ω from t1 to t2, t1 < t2 ≤ 0, is the transformation

Ft2
t1 = ft2−1 ◦ ft2−2 . . .◦ ft1+1 ◦ ft1 .

Ft2
t1 (i) is the state at t2 of the chain initialized at i at time t1. F0

t , t < 0 satisfies:

F0
t = F0

t+1 ◦ ft , with F0
0 = Id. (4.14)

F0
t is obtained recursively using a stack of length r.

(c) A coupling time for (S ) is some T < 0 for which F0
T is constant:

∃i∗ ∈Ω s.t.: ∀i ∈Ω ,F0
T (i) = i∗.

An example of running this algorithm is given in Figure 4.4. We start by choosing
the random arrows i 
→ j that link states i at time t =−1 to states j at time t = 0 ( j is
chosen with distribution P(i, ·)), this for all i ∈ Ω . If all arrows have the same final
state j = i∗, i∗ is the coupling state for the coupling time T = −1. If not, we repeat
the same process between times t = −2 and t = −1 and draw all paths of length 2
leaving states i at time t =−2 and using any of the two families of previously drawn
arrows. Again, either all the paths (of length 2) end at the same state i∗ and hence i∗
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Fig. 4.4 Examples of trajectories of the Propp-Wilson algorithm in a 4-state space: the coupling
time is T∗ = −3, the coupling state is i∗ = 2; the retained paths of the algorithm are shown as
(——).
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is the coupling state for the coupling time T = −2; or, this is still not the case and
we iterate the algorithm between t = −3 and t = −2. In this way, we continue until
we find the first coupling time. In the given example, the coupling time is T = −3
and the coupling state is i∗ = 2, i.e., we had to go back 3 steps into the past in order
that all paths issued from ((i, t), i ∈Ω) couple at time t = 0.

If, independent of the initial state at T < 0 the r-chains couple at i∗ at time 0, T is
called a coupling time from the past and i∗ a coupling state. The result (4.14) shows
that if T ′ < T , then T ′ is also a coupling time with the same coupling state. When

T∗ = sup{−t < 0 : F0
−t(·) is constant}

is the first coupling time, we denote by F0−∞ = F0
−T∗ = F0

−M this shared coupling
state. The exact simulation result is the following:

Proposition 4.3. The coupling time T∗ is almost surely finite. The coupling state
F0
−T∗ follows the distribution π .

Proof: As the chain is ergodic, there exists some k ≥ 1 such that for all i, j,
Pk(i, j) > 0. Thus, Ft

t−k has some probability ε > 0 to be constant. As the vari-
ables F0

−k, F−k
−2k, F−2k

−3k , . . . are i.i.d. with probability ε > 0 of being constant, the
Borel-Cantelli Lemma gives that at least one of these events occurs with probability
1: P(T∗ < ∞) = 1.

As the sequence St = { f−t(i), i ∈ I}, t = −1,−2, . . . is i.i.d., F−1
−∞ and F0−∞ have

the same distribution ν . Furthermore, we know that F−1
−∞P = F0−∞. We have thus

νP = ν , that is, ν = π due to uniqueness of the invariant distribution. �
S1 = { f−1(i), i ∈ Ω} is the starting point for the simulation. As the stopping

rule of the procedure is implicitly given, there is no initiation bias in this kind of
simulation.

4.6.2 Two improvements to the algorithm

To get the map F0
t , (−t)× r operations have to be performed (−t > 0 steps back in

time and at each instant, r simulations). This is unrealistic as r, the number of points
in Ω is generally quite large. Not only that, a stack of length r is needed. Propp
and Wilson proposed two improvements to get around these difficulties: the first
is a simulator St = { f−t(i), i ∈ Ω} obtained from a unique uniform starting point
U−t . The second, useful whenΩ is endowed with a partial ordering, is to construct a
“monotone” algorithm for which it suffices to test the partial coupling F0

T (i) = F0
T (i)

at two extremum states, as it turns out this effectively tests coupling for all states.

A unique starting point for defining S−t

Let (U−t , t ≥ 1) be a uniform i.i.d. sequence of variables on [0,1] and Φ : E ×
[0,1] → [0,1] a measurable function generating the transition P (cf. Ex. 4.2):
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∀i, j : P{Φ(i,U−1) = j} = P(i, j).

Thus, f−t(i) = Φ(i,Ut) generates P(i, ·). At each instant, only one simulation is
necessary but all values Φ(i,Ut), i ∈ Ω , must be calculated and compared. Having
a monotone chain helps to overcome this problem.

Monotone Monte-Carlo algorithm

Suppose that Ω is a partially ordered set with respect to the relation ≺ that has a
minimal element 0 and maximal element 1:

∀x ∈Ω : 0 ≺ x ≺ 1.

We say that algorithm S is monotone if the update rule preserves the partial order
≺:

∀x,y ∈Ω s.t. x ≺ y,∀u ∈ [0,1] :Φ(x,u) ≺Φ(y,u).

In this case, Ft2
t1 (x,u) = Φt2−1(Φt2−2(. . .Φt1(x,ut1), . . . ,ut2−2),ut2−1), where u =

(. . . ,u−1, u0) and the monotone property ensures that:

∀x ≺ y and t1 < t2,F
t2
t1 (x,u) ≺ Ft2

t1 (y,u).

In particular, if u−T ,u−T+1, . . . ,u−1 satisfy F0
−T (0,u) = F0

−T (1,u), then −T is a cou-
pling time from the past: it suffices to follow the two trajectories starting from 0 and
1 in order to characterize the coupling time as all other trajectories {Ft

−T (x),−T ≤
t ≤ 0} are found in between {Ft

−T (0),−T ≤ t ≤ 0} and {Ft
−T (1),−T ≤ t ≤ 0}.

It is possible to perform the simulation algorithm in the following way: succes-
sively initialize the two chains at times −k, where k = 1,2,22,23, . . ., until the first
value 2k that satisfies F0

−2k(0,u) = F0
−2k(1,u). Values of ut are progressively stored

in memory. The number of operations necessary is 2×(1+2+4+ . . .+2k) = 2k+2.
As −T∗ > 2k−1, at worst the number of operations is 4 times the optimal number of
simulations −2T∗.

Example 4.4. Simulation of an attractive Ising model

Suppose S = {1,2, . . . ,n},Ω = {−1,+1}S (r = 2n) is endowed with the ordering:

x ≺ y ⇔{∀i ∈ S,xi ≤ yi}.
There is a minimal state, 0 = (xi = −1, i ∈ S) and a maximal state 1 = (xi = +1, i ∈
S). We say the Ising distribution π is attractive if for all i,

∀x ≺ y ⇒ πi(+1|xi) ≤ πi(+1|yi). (4.15)

It is easy to see that if π is associated with the energy

U(x) =∑
i
αixi +∑

i< j
βi, jxix j,
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then π is attractive if, for all i, j, βi, j ≥ 0. Attractive Ising models have monotone
dynamics: choose some site i and note by x ↑ (resp. x ↓) the configuration (+1,xi)
(resp. (−1,xi)); (4.15) is equivalent to:

x ≺ y ⇒ π(x ↓)
π(x ↓)+π(x ↑) ≥ π(y ↓)

π(y ↓)+π(y ↑) .

The dynamics defined by:

ft(x,ut) =

{
ft(x,ut) = x ↓ if ut < π(x↓)

π(x↓)+π(x↑) ,
ft(x,ut) = x ↑ otherwise

are monotone whenever π is attractive.
The Propp-Wilson algorithm takes advantage of the existence of a minimal ele-

ment 0 and maximal element 1 under the order relation ≺ on Ω . This condition is
not always satisfied: for example, if for some PP on S the inclusion relation over
configurations has the empty configuration as minimal element, there is no maxi-
mal element. For such cases, (104; 130) generalize the CFTP algorithm by creating
the “dominated CFTP” exact simulation algorithm for distributions defined on more
general state spaces.

4.7 Simulating Gaussian random fields on S ⊆ R
d

We are interested here in simulating centered Gaussian random fields Y on S ⊂ R
d ,

where S is finite or continuous.
If S = {s1, . . . ,sm} ⊆ R

d is finite, Y = (Ys1 ,Ys2 , . . . ,Ysm) is a Gaussian random
vector; if its covariance Σ = Cov(Y ) is p.d., then there exists some lower diagonal
matrix T of dimension m×m such that Σ = T tT , i.e., the Cholesky decomposition
of Σ . Thus, Y = Tε ∼Nm(0,Σ) if ε ∼Nm(0, Im). The simulation method associated
with this decomposition is the standard one, as long as we know how to calculate
T , which is difficult if m is large; though, once T is given, it is simple to perform
new simulations of Y using new sampled values of ε . As we saw before (cf. §4.3.2),
an alternative method that is well adapted to Gaussian Markov random fields is to
simulate using Gibbs sampling.

If S is a continuous subset S ⊆R
d , other methods useful in geostatistics enable us

to simulate the random field. We now present some of these methods and invite the
reader to consult Lantuéjoul’s book (139) for a more comprehensive presentation of
the subject.

4.7.1 Simulating stationary Gaussian random fields

Suppose that we know how to simulate over S ⊆ R
d a stationary random field X in

L2 that is not necessarily a Gaussian random field, though centered with variance 1
and with correlation function ρ(·). Let {X (i), i ∈ N} be an i.i.d. sequence of such
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random fields and

Y (m)
s =

1√
m

m

∑
i=1

X (i)
s .

Then, for large m, Y (m) gives approximately a stationary, centered Gaussian random
field with correlation ρ . Now let us consider how to simulate the generating random
field X . We note that the online help of the RandomFields package gives details
on how to implement this.

The spectral method

The formula C(h) =
∫
Rd ei〈u,h〉F(du) linking covariance and spectral measure shows

that F is a probability if Var(Xs) = 1. If V , a random variable with distribution F
and U ∼ U (0,1) are independent, we consider the random field X = (Xs) defined
by:

Xs =
√

2cos(〈V,s〉+2πU).

Since
∫ 1

0 cos(〈V,s〉+2πu)du = 0, E(Xs) = E(E(Xs|V )) = 0 and

C(h) = 2
∫

Rd

∫ 1

0
cos(〈v,s〉+2πu)cos(〈v,(s+h)〉+2πu)duF(dv)

=
∫

Rd
cos(〈v,h〉)F(dv).

X is therefore a centered random field with covariance C(·). This leads us to the
following algorithm:

1. Generate u1, . . . ,um ∼ U (0,1) and v1, . . . ,vm ∼ F, all
independently.

2. For s ∈ S, output values

Y
(m)
s =

√
2
m

m

∑
i=1

cos(〈vi,s〉+2πui).

We choose m based on the quality of convergence of the 3rd and 4th order moments

of Y (m)
s towards those of a Gaussian random variable. This simulation is feasible

if we know how to get close to the spectral measure F . This is the case if F has
bounded support or when F has a density that decreases rapidly to zero in the limit.
If not, we can use the following method, known as the turning bands method.

The turning bands method

This method, suggested by Matheron (139) simulates an isotropic process on R
d

starting from a stationary process on R
1 (cf. §1.2.2). Let Sd = {s∈R

d : ‖s‖= 1} be
the sphere with radius 1 in R

d , Z a centered stationary process on R
1 with covariance
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CZ and V a uniformly generated direction on Sd . Set Ys = Z〈s,V 〉, s∈ S. Ys is centered
as E(Z〈s,V 〉|V = v) = E(Z〈s,v〉) = 0, with covariance

CY (h) = EV [E(Z〈(s+h),V 〉Z〈s,V 〉|V )]

= EV [CZ(〈h,V 〉)] =
∫

Sd

CZ(〈h,v〉)τ(dv),

where τ is the uniform distribution on Sd . We thus consider the algorithm:

1. Generate m directions v1, . . . ,vm ∼ U (Sd).
2. Generate z(1), . . . ,z(m), m independent processes with

correlations CZ(〈h,vi〉), i = 1, . . . ,m.

3. For s ∈ S, output values: Y (m)
s = m−1/2∑m

i=1 z(i)
〈s,vi〉.

Denoting CY (h) =C1(‖h‖) =C(〈h,v〉) with C =CZ , we have that the relationship
between C1 and C for d = 2 and d = 3 is given by:

d = 2 : C(r) =
1
π

∫ π

0
C1(r sinθ)dθ and C1(r) = 1+ r

∫ π/2

0

dC
dr

(r sinθ)dθ ;

(4.16)

d = 3: C(r) =
∫ 1

0
C1(tr)dt and C1(r) =

d
dr

(rC(r)) . (4.17)

For example, for the exponential covariance C(h) = σ2 exp{−‖h‖/a} on R
3,

C1(r) = σ2(1− r/a)exp(−r/a),r ≥ 0.
In practice, C is given and we must start by calculating C1 (cf. Chilès and Delfiner

(43, p. 648) for relationships between C et C1). A closer look at (4.16) and (4.17)
explains why, when simulating random fields on R

2 we would rather use the trace
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Fig. 4.5 Two simulated Gaussian random fields with exponential covariance obtained using m
turning bands: (a) m = 2, (b) m = 10. The simulation is over the 100×100 grid.
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Fig. 4.6 (a) Simulation on a regular 100×100 grid over [0,1]2 of a centered Gaussian process with
covariance C(h) = exp(−‖h‖); (b) 25 sampled points; (c) kriging based on the 25 points of (b); (d)
simulation conditional on these 25 values; (e) simulation conditional on 50 values; (f) simulation
conditional on 100 values.
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on R
2 of a turning bands simulation on R

3 than directly use turning bands on R
2.

For example, the simulations shown in Figure 4.5 are traces on R
2 of turning bands

simulations of a random field on R
3 with exponential isotropic covariance with pa-

rameters σ2 = 4 and a = 10.

4.7.2 Conditional Gaussian simulation

For Y a centered Gaussian random field on R
d , we would like to generate Y on

S∪C ⊆ R
d conditional on some observation yC of Y on a finite set C (cf. Fig. 4.6).

To do this, we generate independently X = {Xs, s∈ S} but with the same distribution
as Y , {X̂s, s ∈ S} the simple kriging of X at values XC = {Xc, c ∈C} along with the
following decompositions:

Xs = X̂s +(Xs − X̂s), Ys = Ŷs +(Ys − Ŷs), s ∈ S.

We propose the following algorithm:

1. Given YC, calculate the simple kriging predictor Ŷs,
s ∈ S.

2. Generate X on S∪C with the same distribution as Y,
independent of Y.

3. Given XC, calculate the simple kriging predictor X̂s,
s ∈ S.

4. Output values Ỹs = Ŷs +(Xs − X̂s) for s ∈ D.

Ỹs provides the required conditional simulation. In effect, Ỹc = yc + Xc −Xc = yc if
s ∈C. Furthermore, {(Xs− X̂s), s ∈ S} and {(Ys−Ŷs), s ∈ S} have the same distribu-
tion, that of the conditional residual of Y at s which is no other than the recentered
distribution of Y conditional on yC.

Exercises

4.1. Necessary conditions for Markov chain convergence.
Show that if a Markov chain with transition P is such that for any x and event A,
Pn(x,A) → π , then π is P-invariant and P is π-irreducible and aperiodic.

4.2. Simulating Markov chains on a discrete state space.

1. Suppose P = (Pi j) is a transition on Ω = {1,2, . . .} and Φ : Ω × [0,1] → Ω is

defined by Φ(i,u) = j if u ∈ [∑ j−1
l=1 Pi,l ,∑

j
l=1 Pi,l [, i, j ∈ Ω , with the convention

∑0
l=1 Pi,l = 0 and, if Ω is finite, the last half-open interval is right closed.

Show that if (Un) is an i.i.d. sequence of U (0,1) random variables, the sequence
{X0,Xn+1 =Φ(Xn,Un),n ≥ 1} gives a simulation of a Markov chain with transi-
tion P.
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2. Show that the chain on {1,2,3,4} with transition P(1,1) = P(1,2) = 1/2 =
P(4,3) = P(4,4), P(2,1) = P(2,2) = P(2,3) = 1/3 = P(3,2) = P(3,3) = P(3,4)
is irreducible and aperiodic. What is its invariant distribution π? Choose as initial
value X0 = 1 and simulate to obtain the chain. Verify that the empirical estimate
π̂n (resp. P̂n

i, j) of π (resp. of Pi, j) based on X1,X2, . . . ,Xn converges to π (resp. Pi, j)
when n → ∞.

4.3. Simulating hard-core models (cf. Example 4.1).
With the choice of the torus S = {1,2, . . . ,20}2 and the 4-NN relation, simulate the
uniform distribution over the hard-core configuration space. Calculate:

1. The mean number of occupied sites for a hard-core configuration.
2. The centered 90% confidence interval around this number.

4.4. Simulating bivariate Gibbs models.
Consider the 4-NN Gibbs process Zi = (Xi,Yi) ∈ {0,1}2 on S = {1,2, . . . ,n}2 with
energy:

U(z) =∑
i∈S

Φ1(zi)+∑
〈i, j〉
Φ2(zi,z j),

where
Φ1(zi) = αxi +βyi + γxiyi and Φ2(zi,z j) = δxix j +ηyiy j.

1. Calculate the distributions πi(zi|zi), π1
i (xi|xi,y), π2

i (yi|x,yi).
2. Construct Gibbs sampling based on {π1

i ,π2
i , i ∈ S}.

4.5. Matérn-I and Matérn-II models.

1. Let X be a homogeneous PPP(λ ). A Matérn-I model (154; 48) can be obtained
by deleting, in X , all pairs of points that are ≤ r apart:

XI = {s ∈ X : ∀s′ ∈ X ,s′ �= s,
∥∥s− s′

∥∥> r}.

Show that the intensity of the resulting process is λ ∗ = λ exp{−λπr2}. Imple-
ment a simulation of this type of process on [0,1]2 with r = 0.02 and λ = 30.

2. Suppose X is a homogeneous PPP(λ ). To each point s of X associate an indepen-
dent and continuous mark Ys with density h(·). A Matérn-II model is obtained
from X by deleting points s ∈ X whenever there is some s′ ∈ X that is ≤ r away
and if furthermore Ys′ < Ys. Simulate such a process on [0,1]2 with r = 0.02,
λ = 30 and h the exponential distribution with mean 4.

4.6. Simulating bivariate Gaussian random fields.
Suppose we are interested in simulating a bivariate Gaussian distribution on S with
energy:

U(x,y) = −∑
i∈S

(x2
i + y2

i )−β ∑
〈i, j〉

(xiy j + x jyi), |β | < 1/2.

Calculate the conditional distributions πi(zi|zi), π1
i (xi|xi,y) and π2

i (yi|x,yi). Suggest
two simulation methods.
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4.7. Suppose Σn is the set of permutations of {1,2, . . . ,n} and π the uniform distri-
bution over Σn. Show that the chain with transition P on Σn that randomly permutes
indices i and j is π-reversible and converges to π .

4.8. Simulating spatio-temporal dynamics.
Let X = (X(t), t ≥ 0) be a Markov chain onΩ = {0,1}S, S = {1,2, . . . ,n} ⊂Z, with
transition from x = x(t −1) to y = x(t) of:

P(x,y) = Z(x)−1 exp{∑
i∈S

yi[α+βvi(t)+ γwi(t −1)]},

with vi(t) = yi−1 + yi+1, wi(t −1) = xi−1 + xi + xi+1 and x j = y j = 0 if j /∈ S.

1. Simulate these dynamics using Gibbs sampling.
2. With α =−β = 2 and n = 100, study the evolution of stains Nt = {i ∈ S : Xi(t) =

1} as a function of γ .
3. Propose an analogous model on S = {1,2, . . . ,n}2 ⊂ Z

2 and give a simulation of
it.

4.9. Using spin-flips, simulate the 4-NN Ising model with parameters α = 0 and β
on the torus {1,2, . . . ,64}2, with the initial configuration having an equal number
of +1 and −1 spins. Calculate the empirical correlation ρ(β ) at a distance 1 and
construct the empirical curve β 
→ ρ(β ). Answer the same questions using Gibbs
sampling.

4.10. Simulating grayscale textures.
A Φ-model with grayscale textures {0,1, . . . ,G−1} has energy:

U(x) = θ ∑
〈i, j〉
Φd(xi − x j), Φd(u) =

1
1+(u/d)2 .

For such models, the grayscale contrast increases with d and θ controls the spatial
correlation. Simulate various textures using Gibbs sampling by varying the param-
eters θ and d as well as the number of levels of gray G.

4.11. Dynamics of site by site relaxation for simulation of π .
Consider the Ising model π(x) = Z−1 exp{β ∑〈i, j〉 xix j} on {−1,+1}S, where S =
{1,2, . . . ,n}2 is associated with the 4-NN relation. We are interested in sequen-
tial dynamics where, at each step, the relaxation Ps occurs at only one site s, i.e.,
Ps(x,y) = 0 if xs �= ys. Furthermore, if m = m(s)∈ {0,1,2,3,4} counts the number of
+1 neighbors of s, we impose that Ps depends only on m (Ps(x,y) = Ps(xs → ys|m))
and is symmetric: (Ps(−xs →−ys|4−m) = Ps(xs → ys|m)).

1. Show that Ps depends on 5 parameters, a0 = Ps(+1 →−1|m = 2), a1 = Ps(+1 →
−1|m = 3), a2 = Ps(−1 → +1|m = 3), a3 = Ps(+1 → −1|m = 4) and a4 =
Ps(−1 → +1|m = 4).

2. Show that Ps is π-reversible if and only if a3 = a4 exp(−8β ) and a1 = a2 exp(−4β ).
Thus, we note a = (a0,a2,a4) ∈]0,1]3.
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3. Give the values of a corresponding to the choices of Gibbs sampling and
Metropolis dynamics.

4. Show that the dynamic associated with Ps for uniform s is ergodic.

4.12. Use Metropolis dynamics to simulate a Strauss process on [0,1]2 with n = 50
points. Comment on the resulting configurations for γ = 0.01, 0.5, 1, 2, 10 and
r = 0.05.

4.13. Reconstruction of a system of faultlines.
A faultline on S = [0,1]2 is represented by a straight line d that cuts S. Each faultline
d has an associated value Vd : S −→ {−1,+1} that is constant on each half-space
generated by d. Suppose that S is cut by n faultlines R = {d1,d2, . . . ,dn} (we know
n but not R); these n faults generate a resulting value VR(z) = ∑n

i=1 Vdi(z) for each
z ∈ S. The following information is available to us: we have m wells located at m
known locations in S, X = {z1,z2, . . . ,zm} and we have observations Vi = VR(zi) on
X . Our goal is to reconstruct R. We can consider this problem from the point of
view of simulating n straight lines intersecting S under the following constraint (C):

C(R) =
m

∑
i=1

(VR(zi)−Vi)2 = 0.

Simulate R under the constraint (C) with the following prior distribution π: (i) the n
straight lines are uniform i.i.d. and cut across S; (ii) independently, values associated
with each are uniform i.i.d. on {−1,+1}.
Hints: (i) a straight line d(x,y) = xcosθ + ysinθ − r = 0 can be parametrized by
(θ ,r); characterize the subset Δ ⊆ [0,2π[×[0,+∞[ of straight lines that can cut S;
a random straight line corresponds to the random choice of a point in Δ ; (ii) the
value associated with d can be characterized by Vd(0) = εd ×d(0,0), where the εd

are uniform i.i.d. on {−1,+1} and independent of the randomly generated straight
lines.

4.14. Suppose S = {s1,s2, . . .} is a discrete subset of R
2. Using simple kriging, im-

plement a recursive simulation algorithm on S for a centered Gaussian process with
covariance C(h) = e−‖h‖/4.

4.15. Simulating binary Markov textures.
Consider the 2-dimensional torus S = {1,2, . . . ,n}2 given the following neighbor
relation: (i, j) ∼ (i′, j′) if either i− i′ is congruent to n and j = j′ or if i = i′ and
j− j′ is congruent to n. Consider an Ising random field X on S with states {−1,+1}
for which translation-invariant potentials are associated with four families of pair
potentials:

Φ1,i, j(x) = β1xi, jxi+1, j, Φ2,i, j(x) = β2xi, jxi, j+1,

Φ3,i, j(x) = γ1xi, jxi+1, j+1 and Φ4,i, j(x) = γ2xi, jxi+1, j−1.

X is an 8-NN Markov random field with parameter θ = (β1,β2,γ1,γ2).

1. Show that the marginal distribution at each site is uniform: P(Xi =−1) = P(Xi =
+1).
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2. Describe an algorithm for simulating X using Gibbs sampling.

4.16. Confidence intervals for spatial correlations.
Consider the isotropic Ising model for the 2-dimensional torus S = {1,2, . . . ,n}2

with energy U(x) = β ∑〈s,t〉 xsxt , where 〈s, t〉 represents the 4-NN relation (modulo
n for boundary points).

1. Show that E(Xi) = 0 and Var(Xi) = 1.
2. Denote by ρ(β ) = E(Xi, jXi+1, j) the spatial correlation at distance 1. A natural

estimator of this correlation is:

ρ̂(β ) =
1
n2 ∑

(i, j)∈S

Xi, jXi+1, j,

where Xn+1, j is taken to be equivalent to X1, j. Show that ρ̂(β ) is an unbiased
estimator of ρ(β ).

3. As is the case for marginal distributions of Gibbs random fields, the mapping
β 
→ ρ(β ) is analytically unknown. One way to get near it is to generate N i.i.d.
examples of X using an MCMC method, for example Gibbs sampling. Implement
this procedure and find both the empirical distribution of ρ̂(β ) and the symmetric
95% bilateral confidence interval for ρ(β ). Implement the method for values
from β = 0 to 1 in step sizes of 0.1.

4. Suppose now that we have independence β = 0. Show that Var(ρ̂(0)) = n−2.
Prove, noting Zi j = Xi, jXi+1, j, that Zi j and Zi′ j′ are independent if j �= j′ or if
|i− i′|> 1. Deduce that it is reasonable to believe that, when we have independent
{Xi j}, ρ̂(β ) is close to some variable N (0,n−2) for relatively large n. Test this
using N samples of X .

4.17. Hierarchical modeling.
Suppose we have a random field Y = {Yi, i ∈ S} over a discrete subset S endowed
with a symmetric neighbor graph G without loops. Consider the following hierar-
chical model:

1. (Yi|Xi), i ∈ S, conditionally independent Poisson random variables with mean
E(Yi|Xi) = exp(Ui +Xi).

2. Ui ∼ N (0,κ1) independent and X = {Xi, i ∈ S} an intrinsic auto-Gaussian ran-
dom field with conditional distributions (CAR model):

(Xi|Xi−) ∼ N (|∂ i|−1 ∑
j∈∂ i

Xj,(κ2|∂ i|)−1),

where ∂ i is the neighborhood of i.
3. κ−1

i ∼ Γ (ai,bi) independent.

Suggest an MCMC algorithm to simulate the posterior distribution of X given
Y = y.



Chapter 5
Statistics for spatial models

In this chapter we present the main statistical methods used to deal with the three
types of data seen in earlier chapters. As well as general statistical methods that
can be applied to various structures (maximum likelihood, minimum contrast, least
squares, estimation of generalized linear models, the method of moments), we have
specific techniques for each type of structure: variogram clouds in geostatistics,
conditional pseudo-likelihood, Markov random field coding, nearest-neighbor dis-
tances, composite likelihood for PPs, etc. We will present each method in turn.

For further details and results, we suggest consulting the books cited in the
text. We also recommend the online help for R, which can be freely downloaded
from the website: www.R-project.org ((178) and cf. Appendix D). This well-
documented help is frequently updated and contains useful references.

We also remark that when the model being examined is easily simulated, Monte
Carlo techniques (testing, model validation) are useful in the absence of theoretical
results.

When there are a large number of observations, we distinguish two kinds of
asymptotics (Cressie, (48)). Increasing domain asymptotics are used when the num-
ber of observations increases with the size of the domain of observation. This ap-
proach is adopted when the observation sites (districts, measuring stations, parcels
of agricultural land) are spatially distinct, such as in epidemiology, spatial geogra-
phy, environmental modeling, ecology and agronomy. The other type, infill asymp-
totics are for when the number of observations increases inside a fixed and bounded
domain S. This might be the case in mineral exploration or radiographic analysis (in-
creasing image resolution). These two research areas remain relatively open as the
“spatial” context here is more technical, probabilistic results are lacking (ergodic-
ity, weak dependency, CLT) and/or it is difficult to verify hypotheses necessary for
useful theorems. On the other hand, the extensive development of MCMC meth-
ods, valid in many cases, does not exactly encourage spending time on such difficult
problems. Here we will only mention a few results related to increasing domain
asymptotics and invite the reader to consult Stein’s book (200) or (231) for more
about infill asymptotics.

C. Gaetan, X. Guyon, Spatial Statistics and Modeling, Springer Series in Statistics, 149
DOI 10.1007/978-0-387-92257-7_5, c© Springer Science+Business Media, LLC 2010
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In spatial statistics, boundary effects are more important than in temporal statis-
tics. For a time series (d = 1), the percentage of points on the boundary of the do-
main SN = {1,2, . . . ,N} is in the order of N−1, which has no effect on the bias (the
asymptotic distribution) of a renormalized classical estimator

√
N(θ̂N −θ). This is

no longer true if d ≥ 2: for example, for d = 2, the fraction of points on the boundary
of the domain SN = {1,2, . . . ,n}2 with N = n2 points is in the order of 1/

√
N, lead-

ing to bias in the renormalized estimator. A nice solution, proposed by Tukey (216)
consists of tapering the data on the boundary of the spatial domain (cf. §5.3.1), a
further advantage is that this gives less importance to observations on the domain
boundary, which are often not consistent with the postulated model. For spatial PPs,
a correction for boundary effects was proposed by Ripley (184) (cf. §5.5.3).

We first present statistical methods for geostatistics, followed by those suited
to second-order models or applicable to Markov random fields, and finish with a
look at statistics for point processes. Four appendices containing additional infor-
mation round off the chapter: Appendix A describes classical simulation methods;
Appendix B provides details on ergodicity, the law of large numbers and the central
limit theorem for spatial random fields; Appendix C develops the general methodol-
ogy for minimum contrast estimation, as well as its asymptotic properties; technical
proofs for several results in Chapter 5 are also collected here. Lastly, Appendix D
presents useful software packages and gives examples of their use.

5.1 Estimation in geostatistics

5.1.1 Analyzing the variogram cloud

Let X be an intrinsic real-valued random field on S ⊂ R
d with constant mean

E(Xs) = μ and variogram:

2γ(h) = E(Xs+h −Xs)2 for all s ∈ S.

We suppose that X is observed at n sites O = {s1, . . . ,sn} of S and we note X(n) =
t(Xs1 , . . . ,Xsn).

Suppose to begin with that γ is isotropic. The variogram cloud is the set of
n(n−1)/2 points

NO = {(∥∥si − s j
∥∥ ,(Xsi −Xs j)

2/2), i, j = 1, . . . ,n and si �= s j}

of the first quadrant of R
2. As (Xsi −Xs j)

2/2 is an unbiased estimator of γ(si − s j),
this cloud is the correct representation of h 
→ 2γ(h). Note that pairs (si,s j) of sites
with large squared value (Xsi −Xs j)

2 can turn up next to pairs the same distance
apart but with small squared value (cf. Fig. 5.1-a). This may indicate local data
outliers (175). Thus, in its initial form the cloud does not allow us to effectively
analyze the variogram’s characteristics such as its range or sill, nor does it let us
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look for the existence of a nugget effect. To correct for this, a smoothing of the
cloud is superimposed onto the cloud itself; this smoothing is sometimes performed
by moving averages, though more commonly by using a convolution kernel.

A priori, the variogram 2γ is not isotropic and it is prudent to consider several
orientations of the vector h and evaluate the variogram cloud in each direction using
the vectors si − s j “close” to that direction. In this way we can empirically detect
possible anisotropy in the variogram. A common way to proceed is to use the 4
directions S, SE, E and NE with an angular tolerance of ±22.5 degrees about each.

Example 5.1. Rainfall in the State of Parana (continued)

We return to Example 1.11 on rainfall X = (Xs) in the State of Parana (Brazil). As
the isotropic variogram cloud calculated on this raw data is very noisy, we perform
smoothing using a Gaussian kernel with a smoothing parameter (here the standard
deviation) of 100 (cf. Fig. 5.1-a). This smoothing, calculated in the 4 suggested di-
rections, reveals obvious anisotropy (cf. Fig. 5.1-b). Note that this anisotropy could
be due to a non-stationary mean: for example, if Xs,t = μ+as+εs,t where ε is intrin-
sic and isotropic, 2γX (s,0) = a2s2 + 2γε(s,0) and 2γX (0, t) = 2γε(s,0); this shows
that there can be confusion between first-order non-stationarity and non-isotropy.

As the variograms in the 0◦ and 45◦ directions appear to have quadratic shapes,
it seems that an affine trend in these directions has been missed. As this non-
stationarity seems to be confirmed by Figure 1.9, we propose an affine response
surface, E(Xs) = m(s) = β0 +β1x+β2y, s = (x,y)∈R

2. However, the residuals cal-
culated by OLS remain anisotropic (cf. Fig. 5.1-c). For a quadratic response surface
m(s) = β0 +β1x+β2y+β3x2 +β4xy+β5y2, the variogram cloud obtained suggests
we should retain a model with stationary errors and isotropy close to white noise
(cf. Fig. 5.1-d).

5.1.2 Empirically estimating the variogram

The natural empirical estimator of 2γ(h) is the moments estimator (Matheron
(152)):

γ̂n(h) =
1

#N(h) ∑
(si,s j)∈N(h)

(Xsi −Xs j)
2, h ∈ R

d . (5.1)

In this formula, N(h) is a lag class of pairs (si,s j) at distance h (h ∈ R
d) within a

certain tolerance Δ . In the isotropic case, we take for example, with r = ‖h‖ > 0:

N(h) = {(si,s j) : r−Δ ≤ ∥∥si − s j
∥∥≤ r +Δ ; i, j = 1, . . . ,n}.

In practice, we estimate the variogram 2γ(·) at a finite number k of lags:

H = {h1,h2, . . . ,hk},
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Fig. 5.1 Variographic analysis of Parana rainfall data: (a) variogram cloud for the raw data
and smoothed isotropic variogram; (b) smoothed variograms in each of the four directions; (c)
smoothed variograms of residuals under an affine model; (d) smoothed variograms of residuals
under a quadratic model.

in such a way that each class contains at least 30 pairs of points (48). The choice of
family of lags H must cover “adequately” the domain of γ(·) whilst ensuring each
class has sufficient points (cf. Fig. 5.2-a). When estimating a parametric model (cf.
§5.1.3), H must also allow us to identify the parameter. More generally, without
supposing isotropy and for the vector h = r(cosα,sinα) with direction α in R

2, we
take (cf. Fig. 5.2-b):

N(h) = {(si,s j) : si − s j ∈ VΔ ,δ (h,α) ; i, j = 1, . . . ,n},
VΔ ,δ (h) = {v = u(cosβ ,sinβ ) ∈ R

2, where |u− r| ≤ Δ and |β −α| ≤ δ}.
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Fig. 5.2 (a) Variogram cloud and isotropic spacings for rainfall data from the State of Parana
showing the number of pairs of points falling in each division; (•) indicates the empirical estimation
of the variogram 2γ; (b) sites s j (∗) such that si − s j ∈ VΔ ,δ (h,α) for a site si (+), with ‖h‖ =
109.15, α = 0, Δ = 15.59 and δ = π/8 .

If X is second-order stationary, the covariance can be empirically estimated by

Ĉn(h) =
1

#N(h) ∑
si,s j∈N(h)

(Xsi −X)(Xs j −X), h ∈ R
d , (5.2)

where μ̂ = X = n−1∑n
i=1 Xsi is an unbiased estimator of the mean μ .

An advantage of 2γ̂n(h) in comparison to Ĉn(h) is that it does not require a prior
estimate of the mean μ . Furthermore, under the intrinsic stationarity hypothesis,
2γ̂n(h) is an unbiased estimator of 2γ(h), which is not the case for Ĉn(h).

The following proposition gives the distribution of 2γ̂n(h) when X is a Gaus-
sian process (without the Gaussian hypothesis, see Prop. 5.3), which can be de-
duced from properties of quadratic forms of Gaussian vectors. In effect, 2γ̂(h) can
be written tXA(h)X where A(h) is an n×n symmetric p.s.d. matrix with coefficients
Asi,s j = −1/#N(h) if si �= s j and Asi,si = (#N(h)−1)/#N(h) otherwise. As the ma-
trix A(h) is rank ≤ �N(h), we note λi(h) the �N(h) non-zero eigenvectors of A(h)Σ .
Since A(h)1 = 0, we may suppose μ = 0.

Proposition 5.1. Distribution of empirical variograms for Gaussian processes

If X ∼ Nn(0,Σ), then γ̂(h) ∼ ∑�N(h)
i=1 λi(h)χ2

i1 for some χ2 i.i.d. with 1-df. In par-
ticular:

E(γ̂(h)) = Trace(A(h)Σ) and Var(γ̂(h)) = 2×Trace{A(h)Σ}2.

Proof. The proof is standard:

1. Y = Σ−1/2X follows a Nn(0, In) and γ̂(h) = tYΓY where Γ = tΣ 1/2A(h)Σ 1/2.
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2. If Γ = tPDP is the spectral decomposition of Γ (P orthogonal, D the matrix of
eigenvalues (λi) of Γ ), then tYΓY = ∑n

i=1λiZ2
i where the variables (Zi) are i.i.d.

standardized Gaussian random variables: in effect, tYΓY = tZDZ if Z = PY and
Z ∼ Nn(0, In).

3. The proposition follows from the fact that tΣ 1/2A(h)Σ 1/2 and A(h)Σ have the
same eigenvalues and that E(χ2

i1) = 1 and Var(χ2
i1) = 2.

��

As the estimation γ̂(h) is not very robust for large values of Xsi −Xs j , Cressie and
Hawkins (49; 48, p. 74) propose the robustified estimator:

γn(h) =
{

0.457+
0.494
#N(h)

}−1
⎧⎨
⎩

1
#N(h) ∑

(si,s j)∈N(h)
|Xsi −Xs j |1/2

⎫⎬
⎭

4

.

|Xsi −Xs j |1/2 , with expectation proportional to γ(si−s j)1/4, is in effect less sensitive
to large values of |Xsi −Xs j | than (Xsi −Xs j)

2 and the denominator corrects asymp-
totically the bias for 2γn when #N(h) is large. Moreover, Cressie and Hawkins show
that the mean quadratic error of γn is less than that of γ̂n.

5.1.3 Parametric estimation for variogram models

The variogram models γ(·;θ) presented in Chapter 1 (cf. §1.3.3) depend on a pa-
rameter θ ∈ R

p which is generally unknown. We now present two methods for esti-
mating θ , least squares and maximum likelihood.

Least squares estimation

The estimation of θ by ordinary least squares (OLS) is a value

θ̂OLS = argmin
α∈Θ

k

∑
i=1

(γ̂n(hi)− γ(hi;α))2, (5.3)

where k is the number of classes chosen for the empirical estimation γ̂n of γ at lags
H = {h1,h2, . . . ,hk}. In this expression, we have the option of replacing γ̂n(hi) by
the robustified estimator γn(hi).

As in regression, the OLS method generally performs poorly as the γ̂n(hi) are
neither independent nor have the same variance. We might instead prefer to estimate
θ by generalized least squares (GLS) :

θ̂GLS = argmin
α∈Θ

t(γ̂n − γ(α)){Covα(γ̂n)}−1(γ̂n − γ(α)), (5.4)
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where γ̂n = t(γ̂n(h1), . . . , γ̂n(hk)) and γ(α) = t(γ(h1,α), . . . ,γ(hk,α)). As calculating
Covα(γ̂n) is often difficult, the weighted least squares (WLS) method is a compro-
mise between OLS and GLS where the squares are weighted by the variances of the
γ̂n(hi). For example, in the Gaussian case, since Varα(γ̂n(hi)) " 2γ2(hi,α)/#N(hi),
we obtain:

θ̂WLS = argmin
α∈Θ

k

∑
i=1

#N(hi)
γ2(hi;α)

(γ̂n(hi)− γ(hi;α))2 . (5.5)

Simulation studies (232) show that the performance of the WLS estimator remains
relatively satisfactory with respect to GLS.

These three methods operate under the same principle, least squares estimation
(LSE): for Vn(α) a k × k p.d. symmetric matrix with known parametric form, we
want to minimize the distance Un(α) between γ(α) and γ̂n:

θ̂LSE = argmin
α∈Θ

Un(α), where Un(α) = t(γ̂n − γ(α))Vn(α)(γ̂n − γ(α)). (5.6)

The LSE method is a special case of the minimum contrast estimator (cf.
Appendix C). As the following proposition shows, the consistency (resp. asymptotic
normality) of θ̂n = θ̂LSE follows from the consistency (resp. asymptotic normality)
of the empirical estimator γ̂n. We note:

Γ (α) =
∂
∂α
γ(α)

the k× p matrix of the p derivatives of the vector γ(α) ∈ R
k and suppose:

(V-1) For all α1 �= α2 inΘ , ∑k
i=1(2γ(hi,α1)−2γ(hi,α2))2 > 0.

(V-2) θ is interior toΘ and α 
→ γ(α) is C 1.
(V-3) Vn(α)→V (α) in Pα -probability where V is symmetric, p.d. and α 
→V (α)

is C 1.

Proposition 5.2. Convergence and asymptotic normality of the LSE (Lahiri, Lee
and Cressie (138))

Suppose conditions (V1-2-3) are satisfied and note θ the true unknown parameter
value.

1. If γ̂n −→ γ(θ) Pθ -a.s., then θ̂n −→ θ a.s.
2. Suppose further that, for a sequence (an) tending to infinity,

an(γ̂n − γ(θ)) d−→ Nk(0,Σ(θ)), (5.7)

where Σ(θ) is p.d. and that the matrix Γ (θ) has full rank p. Then:

an(θ̂n −θ) d−→ Np(0,Δ(θ)),

where
Δ(θ) = B(θ) tΓ (θ)V (θ)Σ(θ)V (θ)Γ (θ) tB(θ),
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with B(θ) = (tΓ (θ)V (θ)Γ (θ))−1.

Comments:

1. Convergence (5.7) is studied in the following section in the broader context of
models with linear trends.

2. (V-1) is an identification condition for the parameters of the model: if α1 �= α2,
the k lags H = {h1,h2, . . . ,hk} allow us to distinguish between two variograms
γ(·,α1) and γ(·,α2). This condition requires that there are at least p identification
vectors hi: k ≥ p.

3. The proof of the consistency of θ̂n uses continuity of the functions α 
→ γ(α)
and α 
→ V (α); differentiability is needed to establish the asymptotic normality
of θ̂n −θ .

4. For the OLS method (V (α) ≡ Idk), if we can choose k = p, then Δ(θ) =
Γ−1(θ)Σ(θ) t(Γ−1(θ)).

5. The method is efficient if we take for Vn(α) the inverse of the variance matrix of
γ̂n. As this matrix is difficult to obtain, Lee and Lahiri (144) propose to estimate
it by a subsampling procedure that remains asymptotically efficient.

6. This result allows us to construct a subhypothesis test on the parameter θ .

5.1.4 Estimating variograms when there is a trend

It remains to see under what conditions the empirical estimator γ̂n is asymptotically
normal as supposed in (5.7). We present here a result of Lahiri, Lee and Cressie
(138) which guarantees this property in the more general context of linear models:

Xs = t zsδ + εs, δ ∈ R
p, (5.8)

with a zero mean error intrinsic random field

E(εs+h − εs)2 = 2γ(h,θ), θ ∈ R
q.

This model, with parameter (δ ,θ) ∈ R
p+q, can be considered from two points of

view. If δ is the parameter of interest as is the case in econometrics, we read (5.8)
as a spatial regression. In this case, θ is an auxiliary parameter that must be pre-
estimated (by θ̃ ) so that we can then efficiently estimate δ using GLS with the
estimated variance Varθ̃ (ε) (cf. §5.3.4).

If instead we are largely interested in the dependency parameter θ as is the case
in spatial analysis, δ becomes the auxiliary parameter, estimated for example by
OLS. The variogram is then estimated as follows:

1. Estimate δ by δ̂ using a method that does not require knowledge of θ , for exam-
ple OLS.

2. Calculate the residuals ε̂s = Xs− t zsδ̂ .
3. Estimate the empirical variogram for ε̂ on H with (5.1).
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We now fix the asymptotic framework to be used. Let D1 ⊂ R
d be an open set

with Lebesgue measure d1 > 0 containing the origin and with regular boundary
(∂D1 a finite union of rectifiable surfaces with finite measure, for example D1 =
]− 1/2,1/2]d , or D1 = B(0,r), r > 0). We suppose that the domain of observation
is:

Dn = (nD1)∩Z
d .

In this case, dn = �Dn ∼ d1nd and due to the geometry of D1, �(∂Dn) = o(�Dn).
Suppose now that the following conditions hold:

(VE-1) ∃η > 0 s.t. E |εs|4+η < ∞; X is α-mixing (cf. B.2), satisfying:

∃C < ∞ and τ >
(4+η)d
η

such that, ∀k, l,m : αk,l(m) ≤Cm−τ .

(VE-2) suph∈H sup{‖zs+h − zs‖ : s ∈ R
d} < ∞.

(VE-3) ‖δ̂n −δ‖ = oP(d−1/4
n ), where δ̂n is an estimator of δ .

Proposition 5.3. Asymptotic normality of empirical variograms (138)
Under conditions (VE-1-2-3),

d−1/2
n (γ̂n − γ(θ)) d−→ Nk(0,Σ(θ)),

where

Σl,r(θ) = ∑
i∈Zd

covθ ([εhl − ε0]2, [εi+hr − εi]2), l,r = 1, . . . ,k.

Comments:

1. (VE-1) ensures normality if the mean of X is constant. This is a consequence of
the CLT for the random field of squares {[εi+hr − εi]2} that is mixing (cf. §B.3
for this result and for certain other mixing random fields). If X is a stationary
Gaussian random field with an exponentially decreasing covariance, (VE-1) is
satisfied.

2. (VE-2) and (VE-3) ensure that if δ̂n → δ at a sufficient rate, the previous result
remains valid when working with residuals. A parallel can be drawn between this
condition and a result of Dzhaparidze ((75); cf. §5.3.4) showing the efficiency of
the estimator ψ̂1 in the first step of the Newton-Raphson algorithm for resolving
a system of equations F(ψ̂) = 0 under the condition that the initial estimator ψ̂0

is consistent at a sufficient rate.
3. Some standard conditions on the sequence of regressors and the error model

allow us to control the variance of the OLS estimator for β (cf. Prop. 5.7) and
thus to verify condition (VE-3).

4. If we add conditions (V) to (VE) we obtain asymptotic normality for the LSE θ̂
(5.8).

5. Lahiri, Lee and Cressie (138) examine a mixed asymptotics framework where,
in conjunction with increasing domain asymptotics, the set of points in Dn also
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becomes denser. For example, for successively finer resolutions with stepsize
hn = m−1

n in each direction, mn ∈ N
∗ and mn −→ ∞, the domain of observation

becomes:
D∗

n = nD1 ∩{Z/mn}d .

Though we multiply the number of observation points by a factor of (mn)d , the
rate of convergence remains the same as for increasing domain asymptotics, that
is, at the rate

√
dn ∼

√
λ (nD1), the asymptotic variance being:

Σ ∗
l,r(θ) =

∫

Rd
covθ ([εhl − ε0]2, [εs+hr − εs]2)ds, l,r = 1, . . . ,k.

This echoes the classical setting in diffusion statistics (d = 1), whether we mea-
sure diffusion at a discrete set of points (Dn = {1,2, . . . ,n}) at greater and greater
definition with stepsize m−1

n (D∗
n = {k/mn,k = 1, . . . ,nmn}), or continuously on

Dn = [1,n], n → ∞; in both cases, we have convergence at the rate
√

n and only
the factor modulating this rate varies from one case to the next.

Maximum likelihood

If X is a Gaussian vector with mean μ and covariance Var(X) = Σ(θ), the log-
likelihood is:

ln(θ) = −1
2

{
log |Σ(θ)|+ t(X −μ)Σ−1(θ)(X −μ)

}
. (5.9)

To maximize (5.9), we iterate the calculation of the determinant |Σ(θ)| and the
inverse of the covariance Σ−1(θ), which requires O(n3) operations (149). If θ̂ is the
ML estimation of θ , that of the variogram is 2γ(h, θ̂).

The asymptotic properties of the maximum likelihood estimator in the Gaussian
case are presented in §5.3.4, which deals with the estimation of Gaussian spatial
regressions.

5.1.5 Validating variogram models

Choosing a variogram model from within a family of parametric models can be
done using the LS Akaike criterion (4; 114) (cf. §C.3). Once a model M has been
chosen, it must be validated. One way to do so is to immerse M in a dominating
model M max and test M ⊂M max. Two “nonparametric” alternatives are as follows.

Cross-validation

The underlying idea in cross-validation is to put aside each observation in turn and
use kriging (cf. §1.9) to predict its value using the other observations without again
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estimating the variogram model. For each site we then have an observed value Xsi

and predicted value X̂si . Validation is via the mean square normalized error criteria:

MSNE =
1
n

n

∑
i=1

(Xsi − X̂si)
2

σ̃2
si

,

where σ̃2
si

is the kriging variance. If the variogram model is correctly identified and
well-estimated, then the MSNE should be close to 1. If as a first approximation we
suppose the normalized residuals (Xsi − X̃si)/σ̃si are independent Gaussian variables
with variance 1, the model can be validated if, noting q(n,β ) the β -quantile of a χ2

n ,

q(n,α/2) ≤ nMSNE ≤ q(n,1−α/2).

Looking at a graph of the renormalized residuals can be useful to validate the
model. A homogeneous spatial distribution of the positive and negative residuals
indicates an adequate model (cf. Fig. 5.5-a). In contrast, Fig. 5.5-b indicates residual
heteroscedasticity.

Validation via Monte Carlo methods: parametric bootstrap

Let θ̂ be an estimator of θ for the variogram γ(·,θ) being validated. Gener-
ate m i.i.d. samples (X ( j), j = 1, . . . ,m) of an intrinsic random field on S =
{s1,s2, . . . ,sn} with variogram γ(·; θ̂). For each sample j, calculate the empirical

estimates {γ̂( j)
n (hi), i = 1, . . . ,k} on H as well as their empirical lower bounds

γ̂in f (hi) = min j=1,...,m γ̂
( j)
n (hi) and upper bounds γ̂sup(hi) = max j=1,...,m γ̂

( j)
n (hi),

i = 1, . . . ,k. Allotting the same weight to each sample, these two bounds define
an approximate empirical confidence interval of level 1−2/(m+1):

P(γ̂( j)
n (hi) < γ̂in f (hi)) = P(γ̂( j)

n (hi) > γ̂sup(hi)) ≤ 1
m+1

.

Next we represent graphically the functions hi → γ̂in f (hi) and hi → γ̂sup(hi),
i = 1, . . . ,k. If the initial empirical estimates γ̂n(hi) are contained within the con-
fidence envelope {[γ̂in f (hi), γ̂sup(hi)], i = 1, . . . ,k}, we can reasonably conclude that
X is an intrinsic process with variogram γ(·,θ) (cf. Fig. 5.4-b). Otherwise, we reject
the model γ(·,θ). By examining the reasons for doing so, we may find a path to
an alternative model. Nevertheless note that this procedure is relatively conservative
and tends not to reject the hypothesis we seek to validate.

Example 5.2. The radioactive cloud from Chernobyl and daily rainfall in Switzer-
land

We consider daily cumulative rainfall data from the Swiss meteorological service
measured on May 8, 1986, the day Chernobyl’s radioactive cloud traveled across
Europe. As daily rainfall is a good indicator of the effect of radioactive fallout, these
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Fig. 5.3 (a) Rainfall data for 100 Swiss weather stations: size of symbols is proportional to rainfall
intensity; (b) 2 nonparametric estimates of the semivariogram for 13 classes of distance.

data allowed contamination risk to be evaluated after the Chernobyl disaster. These
data were used in a competition where researchers were invited to propose models
and prediction methods. 100 data points from the Swiss network (cf. Fig. 5.3) were
made available (dataset sic.100 in the geoR package) out of a total of 467, the
challenge was to best predict the remaining 367 values (known but hidden) with
respect to the square error criteria (70).

While estimators (5.1) and (5.2) do not guarantee the c.n.d. condition that vari-
ograms must satisfy (cf. Prop. 1.2), they nevertheless allow us to estimate a paramet-
ric model (§1.3.3): Table 5.1 gives estimations obtained using geoR with a Matérn
variogram with three parameters (a,σ2,ν) (cf. §1.3.3).

Fig. 5.4-a gives a comparison of semivariograms obtained using OLS, WLS and
ML under a Gaussian hypothesis on the distribution. The MSNE (cf. Table 5.1)
obtained using cross-validation suggests validity of the Matérn model and WLS
estimation. Confirmation is given in Fig. 5.4-b, showing that the 13 empirical esti-
mations of γ are all contained within the empirical 95% confidence interval obtained
from 40 simulations of the estimated Matérn model. Figures 5.5-a and 5.5-b, show-
ing the distribution of residuals, also support this model.

Table 5.1 Parametric OLS, WLS and ML estimates of the Matérn semivariogram for the Swiss
rainfall data and the MSNE cross-validation error.

â σ̂2 ν̂ MSNE
OLS 17.20 15135.53 1.21 1.37
WLS 18.19 15000.57 1.00 1.01
ML 13.40 13664.45 1.31 1.09
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Fig. 5.4 (a) Three parametric estimates of the semivariogram; (b) empirical estimates of γ com-
pared with the upper and lower confidence levels (dotted lines) obtained by generating 40 samples
from the estimated Matérn model (parameters â = 18.19, σ̂2 = 15000.57 and ν̂ = 1.0).
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Fig. 5.5 Swiss rainfall data: (a) spatial distribution of positive (+) and negative (x) normalized
residuals; (b) graph of normalized residuals as a function of predicted values.

Lastly, Fig. 5.6 gives the map of predictions (a) by kriging for rainfall over the
whole landmass and (b) its standard deviation, both calculated using the estimated
model.

Example 5.3. Rainfall in the State of Parana (cont.)

We now continue our modeling of rainfall in the State of Parana. The vario-
graphic analysis carried out in Example 5.1 led to the supposition of either an affine
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Fig. 5.6 Kriging of Swiss rainfall data: (a) predictions X̂s and (b) standard deviation of prediction
error.

Table 5.2 Results of Gaussian maximum likelihood estimation for the rainfall data from the State
of Parana. l is the value of the log of the Gaussian likelihood and m the number of parameters.

Model l m AIC MSNE
A -663.9 6 1340 0.98
B -660.0 8 1336 1.14
C -660.2 9 1338 0.99

response surface with anisotropic variogram or a quadratic response surface and a
white noise variogram. We now propose to choose among three models:

1. Model A: m(s) = β0 + β1x + β2y and exponential isotropic covariance with
nugget effect:

C(h) = σ2 exp(−‖h‖/φ)+ τ2 10(h).

2. Model B: m(s) = β0 +β1x +β2y and exponential covariance with nugget effect
and geometric anisotropy:

C(h) = σ2 exp(−‖A(ψ,λ )h‖/φ)+ τ2 10(h),

where A(ψ,λ ) is the rotation around the origin in R
2 of angle ψ followed by a

dilation of 0 ≤ 1/λ ≤ 1 along the new y axis.
3. Model C: m(s) = β0 +β1x+β2y+β3x2 +β4xy+β5y2 and

C(h) = σ2 exp(−‖h‖/φ)+ τ2 10(h).

We remark that A is a submodel of B and C. If we let l represent the Gaussian
log-likelihood of the observations and m the number of model parameters, we get the
results in Table 5.2. Formally speaking (i.e., by applying the likelihood ratio test),
model B is better than A whereas A and C are not significantly different. Using the
AIC criteria leads to the choice of the anisotropic model B, whereas the MSNE cri-
teria (measuring the mean quadratic error (by kriging) between the predicted values
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and real values) suggests keeping model C. Models B and C are thus both potential
choices.
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Fig. 5.7 Ozone level data at 106 stations in 3 U.S. states: (a) spatial distribution of stations: the
size of symbols is proportional to the mean annual level in parts per billion (PPB); (b) temporal
evolution of the mean over the 106 stations and estimated periodic components.

Example 5.4. Analyzing spatio-temporal data for ozone levels

The data we refer to here are maxima of hourly means over eight con-
secutive hours of ozone levels measured at 106 stations in the U.S. states of
Ohio, Pennsylvania and Virginia (cf. Fig. 5.7-a) from May 1 to October 31,
1995–1999, giving 184 observations per site per year. The original data, available at
http://www.image.ucar.edu/GSP/Data/O3.shtml, were centered by
removing a seasonal component from the data at each station s (cf. Fig. 5.7-b),

μs,t = αs +
10

∑
j=1

[β j cos(2π jt/184)+ γ j sin(2π jt/184)].

We limit ourselves here to an analysis of May–September data of the final year,
putting aside the October data to use for testing and validating the model. We are
left with 15,133 observations after excluding missing data.

Selection of a spatio-temporal model begins by a visual inspection of the em-
pirical estimation of the spatio-temporal variogram 2γ(h,u) = Var(Xs+h,t+u −Xs,t),
(h,u)∈R

2×R. In the case of a second-order stationary process, γ(h,u) = (C(0,0)−
C(h,u)). The moment estimator for stationary and isotropic processes is:

2γ̂n(h,u) =
1

#N(h,u) ∑
(si,s j ;ti,t j)∈N(h,u)

(Xsi,ti −Xs j ,t j)
2, h ∈ R

d ,

with
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N(h,u) = {(si,s j; ti, t j) : ‖h‖−ΔS ≤
∥∥si − s j

∥∥≤ ‖h‖+ΔS,

|u|−ΔT ≤ ∣∣ti − t j
∣∣≤ |u|+ΔT ; i, j = 1, . . . ,n}.

We plot (cf. Fig. 5.8) the empirical estimates of γ for various choices of spacing
hk, ul . Fig. 5.8-a shows that the instantaneous spatial correlation decreases with dis-
tance, as does the temporal correlation at individual sites. We therefore consider the
following four models of spatio-temporal covariance C(h,u) that are both flexible
and coherent with respect to the plotted empirical variograms:
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Fig. 5.8 Empirical (•) and parametric estimates of the spatio-temporal semivariogram of the ozone
level data for models A, B, C and D and distance classes: (a) γn(hk,0); (b) γn(0,ul); (c) γn(hk,1);
(d) γn(hk,2).

-Model A:
C(h,u) = σ2(1+ |u/ψ|a +‖h/φ‖b)−3/2,
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with 0 < a,b ≤ 2, φ ,ψ > 0 (a special case of model (1.18)).
-Model B:

C(h,u) = σ2(1+ |u/ψ|a)−3/2 exp

{
− ‖h/φ‖

(1+ |u/ψ|a)b/2

}
,

with 0 < a ≤ 2, 0 ≤ b ≤ 1 (this is model (1.17) from Ex. 1.7).
-Model C: model B with b = 0 (C is thus a separable model).
-Model D:

C(h,u) = σ2(1+ |u/ψ|a)−bMc

( ‖h/φ‖
(1+ |u/ψ|a)b/2

)
,

with 0 < a ≤ 2, 0 ≤ b ≤ 1, where Mc(v) = (2b−1Γ (c))−1vcKc(v), c > 0 is the
Matérn model. Model D comes from the class (1.16).

We estimate parameters using WLS, minimizing the criteria:

W (θ) =
mt

∑
k=1

ms

∑
l=1

|N(hk,ul)|
γ(hk,ul ;θ)2 (γ̂(hk,ul)− γ(hk,ul ;θ))2

, (5.10)

where ms (resp. mt ) is the number of spatial (resp. temporal) divisions used for a
given fit. This is the most commonly used method as calculating Gaussian likeli-
hoods (5.9) is costly (requiring O(N3) operations for N observations; note however
that one way to get around this is to approximate the likelihood (126; 201; 79)).

We consider two approaches to choosing the model. The first simply uses W (θ̂),
the WLS criteria (5.10). The second is based on the quality of predictions of the
model: using simple kriging for October 1999, we calculate the prediction x̂s,t

for one day for each station using data from the three previous days. Quality of
prediction on the 3075 available observations is evaluated using the mean square
error MSE = ∑s,t(xs,t − x̂s,t)2/3075. Table 5.3 shows the results: the non-separable
models are better, in particular D. Under the prediction criteria, C is the best model.

Table 5.3 Parametric estimates of the semivariogram using the WLS method on the ozone level
data.

Model â b̂ ĉ σ̂2 φ̂ ψ̂ W (θ̂) MSE
A 0.67 0.32 − 461.87 1920.20 11.58 134379.3 161.46
B 2.00 0.21 − 310.15 347.13 1.34 200141.4 151.84
C 2.00 − − 309.70 347.30 1.36 200303.0 152.03
D 1.69 0.23 0.29 392.69 1507.78 0.77 110462.1 155.61

5.2 Autocorrelation on spatial networks

In this section we suppose that X is a real-valued random field defined over a discrete
network S ⊂ R

d that is not necessarily regular, endowed with an influence graph R
(a priori directed), (i, j) ∈ R signifying that j influences i, j �= i.
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Furthermore, suppose we have a positive and bounded weights matrix W = {wi j,
(i, j)∈R} that quantifies the amount of influence j has on i, such that for all i, wii =
0 and wi j = 0 if (i, j) /∈ R. The choice of W , left to an expert, is an important step
in modeling R and depends on the problem under consideration. When i represents
a geographical region (district, county, state, etc.), Cliff and Ord (45) propose to
let wi j depend on quantities such as the Euclidean distance d(i, j) = ‖i− j‖, the
percentage fi( j) of the border of i shared with j, the strength ci, j of communication
networks passing between i and j when we have urban areas, etc. For example,

wi j = f b
i( j)d(i, j)−a

with a,b > 0 gives large weights wi j for neighboring states, even more so if i shares
a large part of its border with j. W is the contiguity matrix of the graph R if wi j = 1
for (i, j) ∈ R and 0 otherwise. A normalized contiguity matrix is one associated
with the normalized weights w∗

i j = wi j/∑k∈∂ i wik.
Classically we distinguish between two indices for measuring global spatial de-

pendency on a network (S,R): Moran’s index calculates a spatial correlation and
Geary’s index a spatial variogram.

5.2.1 Moran’s index

Let X be a second-order real-valued random field observed on a subset Dn ⊂ S of car-
dinality n. Suppose to begin with that X is centered and note σ2

i =Var(Xi). Let W be
an n×n matrix with known weights. A W -measure of global spatial autocovariance
is defined by:

Cn = ∑
i, j∈Dn

wi, jXiXj.

This autocovariance has to be normalized to provide an autocorrelation.
Under the hypothesis (H0) of spatial independence of the Xi, it is easy to see that:

Var(Cn) = ∑
i, j∈Dn

(w2
i j +wi jw ji)σ2

i σ2
j .

Thus, under (H0), In = {Var(Cn)}−1/2Cn is a centered variable with variance 1.
If the σ2

i are known, we can get an asymptotic test of (H0) if we have a central
limit theorem for Cn. If the variances are known up to a multiplicative constant,
σ2

i = aiσ2, ai > 0 known, we can estimate σ2 by σ̂2 = 1
n ∑i∈Dn X2

i /ai and then
work with the index Cn renormalized by its estimated standard deviation.

Moran’s index is the generalization of In to the case where X has constant but
unknown mean and variance, E(Xi) = μ and Var(Xi) = σ2. Estimating these pa-
rameters respectively by X = n−1∑i∈Dn Xi and σ̂2 = n−1∑i∈Dn(Xi −X)2, Moran’s
index is given by:
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IM
n =

n ∑i, j∈Dn wi j(Xi −X)(Xj −X)
s0,n ∑i∈Dn(Xi −X)2

, (5.11)

where s0n = ∑i, j∈Dn wi j. Setting s1n = ∑i, j∈Dn(w
2
i j +wi jw ji), we have

IM
n =

s1/2
1n

s0n
{V̂ar(Cn)}−1/2Cn =

s1/2
1n

s0n
În.

As s0n and s1n are of order n and under (H0), E(Cn) = 0 and σ̂2 Pr−→ σ2, we have
under (H0) :

E(IM
n ) = o(1) and Var(IM

n ) =
s1n

s2
0n

(1+o(1)).

Though it looks like a correlation coefficient, IM
n can be outside the interval

[−1,+1] (cf. Ex. 5.2). The more similar the values are at neighboring sites, the
larger IM

n is, and vice versa. In the first case we talk of aggregation or spatial co-
operation and the second case of repulsion or spatial competition. If we are dealing
with independent variables, IM

n will be close to 0.
We remark that Moran’s index can also be calculated if data are binary or ordinal

(45).

Moran’s index at distance d

Suppose that W is the spatial contiguity matrix of graph R,

wi j = 1 if (i, j) ∈ R, wi j = 0 otherwise.

For integer d ≥ 1, we say that j is a d-neighbor of i if a sequence i1 = i,
i2, . . ., id = j exists such that wil ,il+1 �= 0 for l = 1, . . . ,d − 1 and if this path has
minimal length. Thus, i2 is a neighbor of i, i3 of i2, . . . and so on up to j being a
neighbor of id−1. To this relation we can associate the neighbor graph R(d) and its
contiguity matrix W (d) for the distance d. Relative to W (d), we can define Moran in-
dices IM(d) at distance d ≥ 1 in the same way as in (5.11). Note that W (d) ≡{W d}∗,
where M∗

i j = 0 (resp. 1) if Mi j = 0 (resp. Mi j �= 0).
In order to test the spatial independence hypothesis (H0), we can either use an

asymptotic test or permutation test.

5.2.2 Asymptotic test of spatial independence

Suppose that S is an infinite set of sites no closer to each other than some minimum
distance > 0. Let (Dn) be a strictly increasing sequence of finite subsets of S ⊂ R

d

and W a known bounded weights matrix on the graph R ⊂ S2 having range R to
neighborhoods of uniformly bounded size,

W = (wi j, i, j ∈ S) with wii = 0 and wi j = 0 if ‖i− j‖ > R,

∃M < ∞ such that ∀i, j :
∣∣wi j
∣∣≤ M and �∂ i ≤ M.
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The following asymptotic normality result does not require X to be a Gaussian ran-
dom field.

Proposition 5.4. Asymptotic distribution of Moran’s index under (H0)
Suppose that:

∃δ > 0 such that sup
i∈S

E(|Xi|4+2δ ) < ∞ and liminf
n

s1n

n
> 0.

Then, under the spatial independence hypothesis (H0), Moran’s index is asymptoti-
cally Gaussian:

s0n√
s1n

IM
n

d−→ N (0,1).

Proof : We prove the result in the simplified context of centered variables Xi. It
suffices to show asymptotic normality of Cn. Indeed:

Cn = ∑̃
Sn

Zi, where Zi = XiVi, Vi =∑
j

wi jXj

and S̃n = {i ∈ Dn s.t. ∂ i ⊆ Dn}. It is true that under (H0), variables Zi = XiVi are 2R-
dependent, i.e., independent as soon as ‖i− j‖ > 2R. Furthermore, their moments
of order 2 + δ are uniformly bounded. Thus, Z satisfies the conditions of the CLT
for mixing random fields (cf. §B.3). Under (H0), In is therefore asymptotically a
Gaussian random variable. ��

Exact calculation of expectation and variance of IM
n for Gaussian random fields

If the Xi are i.i.d. N (μ ,σ2), then the previous result can be stated more precisely as
we are able to analytically calculate the moments of IM

n . Under (H0) and Gaussian
hypothesis (45), we have:

E(IM
n ) = − 1

n−1
and Var(IM

n ) =
n2s1n −ns2n +3s2

0n

(n2 −1)s2
0n

− 1
(n−1)2 ,

where s2n = ∑i∈Dn(wi· + w·i)2, wi· = ∑i∈Dn wi j and w· j = ∑ j∈Dn wi j. Calculation of
these two moments relies on the following result of Pitman:

Proposition 5.5. Let X = (X1,X2, . . . ,Xn) be sampled from N (0,1), h(X) a homo-
geneous real-valued function of X with degree 0 and Q(X) = ∑n

i=1 X2
i . Then the

variables h(X) and Q are independent.

Proof. If v < 1/2, we have

M(u,v) = E(exp{iuh(X)+ vQ(X)})

= (2π)−n/2
∫

Rn
exp{iuh(x)− 1

2
(1−2v)Q(x)} dx1dx2 . . .dxn.
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Make the following change of variable: for j = 1, . . . ,n, x j = y j
√

1−2v. As h is
homogeneous and has degree 0, h(x) = h(y) and

M(u,v)=(2π)−n/2 × (1−2v)−n/2
∫

Rn
exp{iuh(y)− (1/2)Q(y)}dy1dy2 . . .dyn

= (1−2v)−n/2
E(exp{iuh(X)})

h(X) and Q(X) are therefore independent. ��

This result allows us to calculate moments for Moran’s index I = P/Q, a ratio
of quadratic forms: I, homogeneous with degree 0 is independent of Q(X) and thus,
for all p ≥ 1,

E(Pp) = E(I pQp) = E(I p)E(Qp), i.e., E(I p) =
E(Pp)
E(Qp)

.

It only remains to calculate the moments of the quadratic forms in the numerator
and denominator. We remark that this result remains true if (X1,X2, . . . ,Xn) is a
sample from N (μ ,σ2). It suffices to replace ∑n

i=1 X2
i by Q(X) =∑n

i=1(Xi−X)2. To
calculate the moments, we note that in the present case Q(X) is distributed according
to the random variable σ2χ2

n−1.

5.2.3 Geary’s index

Geary’s index measures spatial dependency in the same way as variograms:

IG
n =

(n−1)∑i, j∈Dn wi j(Xi −Xj)2

2s0n ∑i∈Dn(Xi −X)2
.

The more similar values are at neighboring points, the smaller IG, and vice versa.
IG is sensitive to large differences between neighboring points in the same way that
IM is sensitive to extreme values of X .

Under the hypotheses of Proposition 5.4 and under (H0), IG
n is asymptotically a

Gaussian random variable:
√

s0n

2s1n + s2n
(IG

n −1) ∼ N (0,1).

When X is a Gaussian random field, we have:

E(IG
n ) = 1, Var(IG

n ) =
(2s1n + s2n)(n−1)−4s2n

2(n+1)s0n
.
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5.2.4 Permutation test for spatial independence

Generally speaking, the permutational distribution of a real-valued statistic I(X) of
X = (Xi, i = 1, . . . ,n) conditional on n observed values (xi, i = 1, . . .n) is uniform
over the set of values Iσ = I(xσ ) of I for the n! permutations σ of {1,2, . . . ,n}. The
associated bilateral (resp. unilateral) significance level is:

pa =
1
n!∑σ

1{|Iσ | > a} (resp. p∗a =
1
n!∑σ

1{Iσ > a}).

If enumerating all possible permutations is impossible, we use instead Monte Carlo
methods and choose at random, for m relatively large, m permutations {σ1, σ2, . . .,
σm} for which we calculate the values Iσ and the associated Monte Carlo signifi-
cance levels pMC

a and pMC∗
a .

To test the independence hypothesis (H0): the Xi are i.i.d. without knowing
the common distribution of the Xi, we could use the permutational distribution of
Moran’s index and/or Geary’s index. This test can be justified by the fact that under
(H0) permuting the {Xi} does not change the global distribution of X ,

(Xi, i = 1, . . . ,n) ∼ (Xσ(i), i = 1, . . . ,n).

The advantage of using a permutation method is that it provides a non-asymptotic
test without hypotheses on the distribution of X .

If the n observed values (xi, i = 1, . . . ,n) are all different, the expectation EP of
Moran’s index IM under the permutational distribution is, under (H0) (cf. Ex. 5.3):

EP(IM
n ) = − 1

n−1
.

Example 5.5. Percentage of people with blood group A in 26 Irish counties

Fig. 5.9 shows the percentage of people with blood group A in Ireland’s 26 coun-
ties (cf. (45) and the eire dataset in the spdep package).

Fig. 5.9-a clearly shows similarities between neighbors, that is, counties sharing
a common border (cf. Fig. 5.9-b). We calculate (cf. Table 5.4) Moran’s index and
Geary’s index ta = (Ia−E(Ia))/

√
Var(Ia), a = M,G (cf. spdep) for this neighbor

relation and wi j = 1/|∂ i| for (i, j) ∈ R, 0 otherwise, as well as significance levels
pa (for the Gaussian distribution) and pa

MC (for the permutational distribution with
m = 1000). The results confirm this spatial dependency.

Other permutation test statistics for spatial independence

Statistics other than Moran’s index and Geary’s index can also be used to test spatial
independence. In the spirit of Peyrard et al. (173), consider the random field X =
{Xi, j,(i, j) ∈ S} observed over the regular grid S = {(i, j) : i = 1, . . . , I ; j = 1, . . . ,J}
with X measuring the severity of the illness of a plant species in S. Even though
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plus petit que 27.32
27.32 − 28.38
28.38 − 30.18
30.18 − 31.04
plus grand que 31.04

(a) (b)

Fig. 5.9 (a) Percentage of the population with blood group A in each of the 26 counties of Ireland;
(b) (symmetric) influence graph R over the 26 counties.

Table 5.4 Percentage with blood group A: Moran and Geary indices and their associated statistics.

Index ta pa pa
MC

Moran 0.554 4.663 0 0.001
Geary 0.380 -4.547 0 0.001

S is regular, this does not necessarily mean that the grid is equally spaced. If the
distance between rows i is larger than between columns j we might consider as our
statistic for evaluating spatial dependency the variogram for distances d along rows,
estimated by:

Γ (d) = γ̂(0,d) =
1

I(J−1)

I

∑
i=1

J−d

∑
j=1

(Xi, j −Xi, j+d)2, d ≥ 1.

To test the overall independence (HG
0 ) among all sites, we can take into account

permutations σ on the set S of all sites and the associated values

Γσ (d) =
1

I(J−1)

I

∑
i=1

J−d

∑
j=1

(Xσ(i, j) −Xσ(i, j+d))
2, d ≥ 1.

A Monte Carlo test of (HG
0 ) can be performed for any distance d by constructing

a confidence interval for γ(0,d) using predetermined quantiles obtained using m
global permutations σ chosen at random (cf. Fig. 5.11-a). If γ̂(0,d) is outside this
interval, we reject (HG

0 ).
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To test independence between rows i, (HL
0 ), we calculate variograms for distances

d along columns and compare them to those calculated using only permutations σ
of row indices i:

Δ(d) = γ̂(d,0) =
1

J(I −1)

I−d

∑
i=1

J

∑
j=1

(Xi+d, j −Xi, j)2, d ≥ 1,

γ̂σ (d,0) =
1

J(I −1)

I−d

∑
i=1

J

∑
j=1

(Xσ(i)+d, j −Xσ(i), j)
2, d ≥ 1.

The Monte Carlo test of (HL
0 ) is thus constructed using m row permutations σ cho-

sen at random (cf. Fig. 5.11-b). Other types of permutation are also possible for
testing this hypothesis.

Example 5.6. Decaying lavender

Various permutation methods are applied to tests (spatial homogeneity, inde-
pendence of pairs of random fields X and Y , conditional independence, etc.) in
(173) for exploring data on regular grids. We now take a look at one of their
studies.

A field has I = 11 rows and J = 80 columns of lavender plants. Consecutive
plants in the same row are 20cm apart whereas rows themselves are spaced 1m
apart. The field has a certain quantity of decaying plants (caused by mycoplasma),
we give a score from 0 (healthy, black pixel) to 5 (extremely sick, white pixel) for
the state of health of each plant (cf. Fig. 5.10).

Test results are given for m = 200 permutations and the confidence levels 2.5%
and 97.5%. For the test of global independence (HG

0 ) (cf. Fig. 5.11-a), Γ (d) almost
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Fig. 5.10 Spatial distribution of scores (1–5) denoting the amount of decay of lavender plants
grown on the Sault Plateau; (b) histogram of decay scores (Peyrard et al. (173)).
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Fig. 5.11 (a) Permutation test of total independence; (b) test of independence of rows. Dashed
lines correspond to 2.5% and 97.5% confidence levels.

always lies outside of the constructed confidence region. Thus, there is not global
independence. For the second test (HL

0 ) of independence between rows (cf. Fig.
5.11-b), Δ(d) is out of the confidence region for d = 1,6,7 and 9 and is found on
its extremes for d = 2,3 and 5. Here too we reject the hypothesis of independence
between rows.

5.3 Statistics for second-order random fields

Suppose that X is a real-valued second-order random field defined on a discrete
network S. First we examine the case of stationary X on S = Z

d , followed by X
as an AR field on a not necessarily regular network and last, the spatial regression
case X = Zδ + ε , where ε is a second-order centered spatial error random field. We
present asymptotic results for when X is a Gaussian random field.

5.3.1 Estimating stationary models on Z
d

Suppose that X is a centered and stationary second-order real-valued random field
over Z

d . To make things simpler, suppose that observations X(n) of X are made
on the cube Dn = {1,2, . . . ,n}d , with the number of observations being N = nd =
�(Dn). Except for having to deal with boundary effects, the results we present here
generalize naturally those obtained for stationary time series (d = 1).

Empirical covariance and tapered data

The empirical covariance at distance k ∈ Z
d is:
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Ĉn(k) =
1
N ∑

i,i+k∈Dn

XiXi+k, k ∈ Z
d . (5.12)

Normalizing by the same N−1 for all k means that Ĉn(·) becomes a p.s.d. function
with support Δ(n) = {i− j : i, j ∈ Dn}.

In spatial statistics, boundary effects on Dn increase as the dimension d of the
network increases: in effect, for a fixed number of observations N = nd , the per-
centage of points of Dn found on the boundary scales with dn−1 = dN−1/d , thus
increasing as d does. Hence, for empirical covariances, a simple calculation shows
that:

lim
n

√
NE(Ĉn(k)−C(k)) =

⎧⎨
⎩

0 if d = 1
−{|k1|+ |k2|} if d = 2
+∞ if d > 2 and k �= 0

.

In Z, the boundary effects of order n−1 = N−1 have no consequence on asymptotic
bias. In Z

2 they are of the order of N−1/2 and begin to have a significant effect. For
d ≥ 3 they have a dominant effect.

To remove this bias, an initial solution is to replace the normalization term N−1

in the expression for the empirical covariance by N(k)−1, where N(k) is the number
of pairs (Xi,Xi+k) found in (5.12). This said, there is no longer any guarantee that
the estimated covariance is p.s.d.

To deal with such difficulties, Tukey (216) defined data Xw(n) tapered on the
boundary Dn by some tapering function w. For d = 1,2,3 and a suitable tapering
function, such estimators no longer have the previously described problems, and
manage to retain their efficiency. Tapering can also improve statistical analyses as
it decreases weights of boundary points which are often not representative of the
model being studied.

We now give a definition of tapering. Let w : [0,1] −→ [0,1], w(0) = 0, w(1) = 1
be an increasing tapering profile of class C 2. The w-tapering function that tapers
100(1−ρ)% of boundary points is defined for 0 ≤ ρ ≤ 1 by:

h(u) =
{

w(2u/ρ) if 0 ≤ u ≤ ρ/2
1 if ρ/2 ≤ u ≤ 1/2

and

h(u) = h(1−u) if 1/2 ≤ u ≤ 1.

For example, the Tukey-Hanning tapering function is defined as w(u) = 2−1

(1− cosπu). The tapered data Xw(n) are given by:

Xw
i = an(i)Xi, where an(i) =

d

∏
k=1

h

(
ik −0.5

n

)
, i ∈ Dn.

The tapered empirical covariance Ĉw
n can be found using the tapered data Xw(n). For

d = 1,2,3 and the choice ρn = o(n−1/4), the bias of a tapered estimator is negligible
(Dalhaus and Künsch (57); (96, Ch. 4)).
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Whittle’s Gaussian pseudo-likelihood

Suppose that X is parametrized by its spectral density fθ , where θ is in the interior
of a compactΘ in R

p. The tapered spectrogram

Iw
n (λ ) =

1
(2π)d ∑

k

Ĉw
n (k)eiλk

is none other than the estimation of fθ (λ ) associated with the tapered empirical
covariances. As with time series, Iw

n (λ ) is a poor estimator of fθ (λ ) for a fixed fre-
quency. On the other hand, in integral form, the (tapered) spectrogram leads to good
estimations. In particular, for a Gaussian random field X , Whittle (222) showed that
a good approximation of the log-likelihood of X(n) is, up to an additive constant,
equal to −2Un(θ), where

Un(α) =
1

(2π)d

∫

T d

{
log fα(λ )+

Iw
n (λ )
fα(λ )

}
dλ , T = [0,2π[. (5.13)

Furthermore, whether or not X is a Gaussian random field, minimizing Un leads to
a good estimation of θ under reasonable hypotheses. −2Un(θ) is known as Whit-
tle’s pseudo log-likelihood or the Gaussian pseudo log-likelihood of X . When the
(ck(θ),k ∈ Z

d) are Fourier coefficients of f−1
θ , another way to write Un can be ob-

tained from the relationship:

(2π)−d
∫

T d
Iw
n (λ ) f−1

α (λ )dλ = ∑
k

ck(θ)Ĉw
n (k).

Suppose that θ̂n = argmin
α∈Θ

Un(α) is a minimum contrast estimator (cf. Appendix C).

We now give asymptotic properties of θ̂n when X is a Gaussian random field. For
this, denote:

Γ (θ) = (2π)−d
∫

T d
{(log f )(1)

θ
t(log f )(1)

θ }(λ )dλ ,

e(h) =
[∫ 1

0
h4(u)du

][∫ 1

0
h2(u)du

]−2

and suppose that

(W1) There exists 0 < m ≤ M < ∞ such that m ≤ fθ ≤ M.
(W2) θ is identifiable, i.e., θ 
→ fθ (.) is one-to-one.

(W3) fθ (λ ) is infinitely differentiable at λ and that f (2)
θ exists and is continuous

at (θ ,λ ).

Theorem 5.1. (57; 96) If X is a stationary Gaussian random field satisfying (W),

then θ̂n
Pr−→ θ . Furthermore, if Γ−1(θ) exists, we have for dimensions d ≤ 3,
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nd/2(θ̂n −θ) d−→ Np(0,ed(h)Γ−1(θ)).

Comments:

1. Hypotheses (W) are satisfied if X is an identifiable ARMA, SAR or CAR model.
2. Hypothesis (W3) implies that X is exponentially α-mixing: in effect, if f is ana-

lytic, the covariances of X decrease exponentially and as X is a Gaussian random
field, this implies that X is exponentially mixing (cf. Appendix B, §B.2). This
weak dependency combined with the CLT for α-mixing random fields (§B.3)

allows us to obtain asymptotic normality of the gradient U (1)
n (θ) of the contrast

(condition (N2) in §C.2.2). The hypothesis f ∈ C ∞ at λ can also be weakened.
3. This result also holds without tapering (e(h) = 1) when d = 1. In dimension d = 2

and 3, it is possible to choose a hn-tapering such that e(hn) ↓ 1. In these cases, θ̂n

is asymptotically efficient.
4. A test of a subhypothesis defined with constraint (H0) : C(θ) = 0, where C :

R
k −→ R

l is regular and of class C 2 can be performed upon noticing that C(θ̂n)
is asymptotically a centered Gaussian random variable under (H0).

5. If X is not a Gaussian random field, we still have asymptotic normality of θ̂n if X
is 4th order stationary such that X0 has a moment of order 4 +δ for some δ > 0
and if the α-mixing coefficient of X decreases fast enough (57; 96). If so, the
asymptotic variance of θ̂n is

Var(nd/2θ̂n) ∼ ed(h)Γ−1(θ)[Γ (θ)+B(θ)]Γ−1(θ),

with

B(θ) =
(2π)d

4

∫

T 2d

f4,θ (λ ,−λ ,μ)
fθ (λ ) fθ (μ)

(log fθ )(1)(λ ) t(log fθ )(1)(μ)dλdμ ,

where f4,θ is the spectral density of the 4th order cumulants (cf. (96)), zero if X
is a Gaussian random field.

Identifying Gaussian CAR(M) models with penalized Whittle contrast

Suppose M ⊂ (Zd)+ is the positive half-plane of Z
d with respect to the lexicographic

order and m = �M. If X is a Gaussian CAR(P0) model where P0 ⊆ M, the goal is
to identify P0 in the CAR family with supports P ⊆ M, �P = p. Identification by
penalized contrast (cf. Appendix C, §C.3) consists of estimating P0 by:

P̂n = argmin
P⊆M

{
Un(θ̂P)+

cn

n
p
}

,

where θ̂P = argmin
θ∈ΘP

Un(θ).ΘP is the set of θ ∈R
p such that the spectral density fθ of

the associated CAR(P) model is everywhere strictly positive. Here, Un is Whittle’s
contrast and cn the rate of penalization brought to act on the model dimension. From
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(102, Prop. 8) we have the following identification result: if

2C0 log logn ≤ cn ≤ c0n

for some small enough c0 > 0 and large enough C0 < ∞, then

P̂n −→ P0 in Pθ0 -probability.

5.3.2 Estimating autoregressive models

A centered real-valued second-order random field observed on S = {1,2, . . . ,n} is
a centered random vector X = X(n) = t(X1,X2, . . . ,Xn) ∈ R

n characterized by its
covariance matrix Σ = Cov(X). Let us take a look at two spatial autoregressive
cases (cf. §1.7.4):

1. Simultaneous autoregressive (SAR) model:

Xi = ∑
j∈S: j �=i

ai, jXj + εi,

where ε is a WN with variance σ2. If A is the matrix Ai,i = 0 and Ai, j = ai, j if
i �= j, i, j ∈ S, then X = AX + ε is well-defined as long as (I −A) is invertible,
with covariance:

Σ = σ2{t(I −A)(I −A)}−1. (5.14)

For estimation, it is necessary to be sure of the identifiability of parameters A of
a SAR.

2. Conditional autoregressive (CAR) model:

Xi = ∑
j: j �=i

ci, jXj + ei, where Var(ei) = σ2
i > 0 and Cov(Xi,e j) = 0 if i �= j.

If C is the matrix Ci,i = 0 and Ci, j = ci, j if i �= j, i, j ∈ S and if D is the diagonal
matrix with coefficients Di,i = σ2

i , the model is given by (I −C)X = e and

Σ = D(I −C)−1. (5.15)

In the estimation procedure, we must not forget to impose the constraints: for
all i �= j : ci, jσ2

j = c j,iσ2
i . If σ2

i = σ2 for all i (resp. if X is stationary), these
constraints become ci, j = c j,i (resp. ci− j = c j−i).

SAR models (resp. CAR models) are linear models in A (resp. C). Furthermore,
SAR models are CAR models, with C = tA+A+ tAA, but here we lose linearity in
A. For such models, two estimation methods can be envisaged:

1. Maximum likelihood if X is a Gaussian random field, with covariance of either
(5.14) or (5.15) depending on the situation. If the model is not Gaussian, this
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“Gaussian” likelihood remains a good estimating function. This method is further
examined in Section 5.3.4 in the context of spatial regression estimation.

2. Ordinary Least Squares estimation (OLS), following naturally from the fact that
AR models are linear models in θ = A for SAR models and in θ = C for CAR
models. OLS minimizes ‖ε(θ)‖2 for SAR models and ‖e(θ)‖2 for CAR mod-
els. One advantage of OLS is that it gives an explicit estimator that is easy to
calculate.

Nevertheless, in OLS estimation an important difference exists between SAR and
CAR modeling:

Proposition 5.6. OLS estimation of SAR models is not in general consistent. CAR
model OLS estimation is consistent.

Proof. Lack of convergence of OLS for SARs is a classical result for linear models
Y = Zθ + ε when errors ε are correlated with regressors Z (simultaneous equations
in econometrics). To prove this point, consider the bilateral SAR model on Z

1 given
by

Xt = a(Xt−1 +Xt+1)+ εt , |a| < 1/2.

If X is observed over {1,2, . . . ,n}, the OLS estimation of a is

ân =
∑n−1

t=2 Xt(Xt−1 +Xt+1)

∑n−1
t=2 (Xt−1 +Xt+1)2

.

Denote r(·) the covariance of X . As X is ergodic, it is easy to show that, if a �= 0,

ân −→ r1 −a(r0 + r2)
r0 + r2

�= a.

Consistency of OLS for CAR models is a consequence of standard properties of
linear models: here, conditional errors ei are not correlated with the variable Z(i) =
{Xj, j �= i} characterizing Xi, i = 1, . . . ,n. ��

Asymptotic properties of OLS for Gaussian CAR models with error variances all
equal to σ2 will be given in §5.4.2. In such cases, OLS coincides with the maximum
of the conditional pseudo-likelihood as X is also a Markov Gaussian random field
(cf. §5.4.2).

5.3.3 Maximum likelihood estimation

When X is a centered Gaussian vector in R
n with covariance Σ(θ), the maximum

likelihood estimator θ̂n of θ maximizes

ln(θ) = −1
2

{
log |Σ(θ)|+ tXΣ−1(θ)X

}
.
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Calculating θ̂n requires an iterative optimization technique. The numerical difficulty
lies in calculating the determinant |Σ(θ)| and the quadratic form tXΣ−1(θ)X . When
using AR modeling, we know the parametric form of the inverse covariance Σ−1 and
thus the form of tXΣ−1(θ)X :

1. For SARs: tXΣ−1(θ)X= σ−2 ‖(I −A)X‖2; the ML estimation is:

σ̂2 = σ2(θ̂n) = n−1
∥∥∥(I −A(θ̂n))X

∥∥∥
2
, where

θ̂n = argmin
θ

{−2n−1 log |I −A(θ)|+ log(σ2(θ))}.

An iterative calculation of |Σ(θ)| is quite straightforward for some models. For
example, in the case of SARs with a single parameter ρ: (I −ρW )X = ε , as W
is symmetric and I − ρW invertible, |Σ(θ)| = σ2n|I − ρW |−2 and |I − ρW | =
∏n

i=1(1−ρwi). Eigenvalues w1 ≤ w2 ≤ . . . ≤ wn do not have to be recalculated
during the series of iterations and Σ(ρ̂) is p.d. if: (a) ρ̂ < w−1

n when 0 ≤ w1, (b)
ρ̂ > w−1

1 when wn ≤ 0 and (c) w−1
1 < ρ̂ < w−1

n when w1 < 0 < wn.
2. For CAR models, tXΣ−1(θ)X= σ−2

e
tX(I −C)X if σ2

i = σ2
e for i = 1, . . . ,n:

σ̂2
e = σ2

e (θ̂n) = n−1tX(I −A(θ̂n))X , where

θ̂n = argmin
θ

{−2n−1 log |I −A(θ)|+ log(σ2
e (θ))}.

For CAR models with one parameter ρ: (I−ρW )X = e, |Σ(θ)|= σ2n
e |I−ρW |−1

and |I −ρW | = ∏n
i=1(1−ρwi).

5.3.4 Spatial regression estimation

Spatial regressions (cf. §1.8) are written, for a centered second-order random field
ε = (εs),

X = Zδ + ε, (5.16)

where the n×q matrix Z is the design matrix and δ ∈ R
q.

Linear models of the trend E(X) are provided by analysis of variance models
(quantitative exogenous Z with one or more factors), regression models (quantitative
Z in R

q), response surfaces E(Xs) = f (s) and analysis of covariance models (Z with
a mixed form). For example:

1. Additive models with two factors I × J (q = I + J−1):

E(Xi, j) = μ+αi +β j, i = 1, . . . , I and j = 1, . . . ,J,

α· = 0, β· = 0.

2. Quadratic response surfaces in (x,y) ∈ R
2 (q = 6):
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E(Xx,y) = μ+ax+by+ cx2 +dy2 + exy.

3. For exogenous zi,
E(Xi) = tg(zi)δ ,

where g : E −→ R
q is known.

4. The model combining a response surface, a regression and an analysis of vari-
ance:

E(Xs | i,z) = μi +ax+by+ tg(z)δ .

Regression estimation using ordinary least squares

The OLS estimate of δ is:

δ̃ = (tZZ)−1 tZX .

This estimator is unbiased with variance, if Σ = Var(ε), of

Var(δ̃ ) = Δ = (tZZ)−1 tZΣZ (tZZ)−1.

When X is a Gaussian random field, δ̃ ∼ Nq(δ ,Δ). We note that:

1. δ̃ is not efficient (the GLS estimator is the one that is, cf. (5.18) and §5.3.4).
2. If for all i, Var(εi) = σ2, the standard estimator of σ2 based on the residuals
ε̃ = X −Zδ̃ is in general biased.

3. The usual statistic for tests F of subhypotheses dealing with δ deduced from this
estimation does not generally follow a Fisher distribution.

4. The interest in OLS is that it is a good estimator that does not require knowl-
edge of the spatial structure Σ . It can serve as an initial estimator in an iterative
estimation procedure (cf. §5.3.4).

If δ̃ is consistent, OLS allows us to estimate Σ and thus makes a GLS procedure
“feasible.” We now give conditions ensuring consistency and give the rate of con-
vergence. For A a p.s.d. matrix, note λM(A) (resp. λm(A)) the largest (resp. small-
est) eigenvalue of A. By letting our representation of matrices Z as in (5.16) and
Σ = Cov(ε) depend on n, we have the following property:

Proposition 5.7. The OLS estimator δ̃n is consistent if the following two conditions
hold:

(i) λM(Σn) is uniformly bounded in n.
(ii) λm(tZnZn)→ ∞ or (tZnZn)−1 → 0, i f n → ∞.

Proof: As δ̃ is unbiased, it suffices to show that the trace (noted tr) of Var(δ̃ ) tends
to 0. Using the identity tr(AB) = tr(BA), we have for A = (tZZ)−1 tZ and B = ΣZ
(tZZ)−1:
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tr(Var(δ̃ )) = tr(ΣZ(tZZ)−2 tZ) ≤ λM(Σ)tr(Z(tZZ)−2 tZ)

= λM(Σ)tr((tZZ)−1) ≤ q
λM(Σ)
λm(tZZ)

−→
n→∞ 0.

The first inequality is a consequence of, for two symmetric n× n p.s.d. matrices Σ
and V , the upper bound:

tr(ΣV ) ≤ λM(Σ)tr(V ).

��
Comments:

1. Condition (ii) relies on the covariates (Zn). If for example (tZnZn)/n −→ Q,
where Q is p.d., then (ii) is satisfied and the variance goes to zero as n−1. This
condition is satisfied if, for n = m× r, Zn is the m-fold repetition of an experi-
mental design R0 of dimension r×q and full rank q (Q = (tR0R0)/m).

2. (i) is related to the spatial model Σ and is satisfied if the covariance γ of X is
such that:

sup
i∈S
∑
j∈S

|γ(i, j)| < ∞.

This is true if X is an ARMA, SAR or stationary CAR model.

Proof : First, write Σn ≡ Σ = (γ(i, j)). Let v = (v1,v2, . . . ,vn) be a non-zero eigen-
vector associated with an eigenvalue λ ≥ 0 of Σ , with i0 satisfying

∣∣vi0

∣∣= maxi |vi|.∣∣vi0

∣∣ is > 0 and the result Σv = λv means that for coordinate i0,

λvi0 = ∑
j∈S

γ(i0, j)v j.

By dividing both sides by vi0 , the triangle inequality can be applied to the previous
formula, giving:

sup{λ : eigenvalue of Σ} ≤ sup
i∈S
∑
j∈S

|γ(i, j)| < ∞.

��

Regression estimation by quasi-generalized least squares

We now consider model (5.16) and suppose initially that Σ = Cov(X) = σ2R is
known and invertible. By premultiplying by R−1/2: X∗ = R−1/2X and Z∗ = R−1/2Z,
model (5.16) becomes a regression with white noise errors ε∗:

X∗ = Z∗δ + ε∗, (5.17)

with E(ε∗) = 0 and Var(ε∗) = σ2I.
Model (5.17) is thus a standard linear model and we know (Gauss-Markov theo-

rem) that the best linear estimator, unbiased and with minimal variance for δ is none
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other than the Generalized Least Squares (GLS) estimator:

δ̂MCG = (tZ∗Z∗)−1 tZ∗X∗ = (tZΣ−1Z)−1tZΣ−1X , (5.18)

with Var(δ̂MCG) = (tZΣ−1Z)−1. If X is a Gaussian random field, the GLS estimate
coincides with the maximum likelihood one.

This said, in general Σ is not known. If Σ = Σ(θ) has a known parametric form,
then as θ ∈ R

p is unknown, estimating η = (δ ,θ) ∈ R
q+p using quasi-generalized

least squares (QGLS) uses the following algorithm:

1. Estimate δ by OLS: δ̃ = (tZZ)−1 tZX.
2. Calculate the OLS residuals: ε̃ = X −Zδ̃.
3. Based on ε̃, estimate θ̃ using a previously

developed method (for example (5.3) and (5.4) for
variograms).

4. Estimate Σ by Σ̃ = Σ(θ̃), then δ by GLS(Σ̃).

Steps 2–4 can be iterated until convergence of estimations, giving δ̂QGLS. Under cer-
tain conditions (75; 6), if the OLS estimation δ̃ of δ converges sufficiently quickly
(for example, n1/4, cf. Prop. 5.7 and (75)), one iteration suffices as the GLS and
QGLS are asymptotically equivalent:

lim
n

√
n(δ̂QGLS − δ̂GLS) = 0 in probability

and √
n(δ̂QGLS −δ ) ∼ Np(0, lim

n
n t(ZnΣ−1

n Zn)−1).

QGLS are therefore, for large n, good estimators. Let us now take a look at the
Gaussian regression case.

ML for Gaussian spatial regression

Suppose that X ∼ Nn(Zδ ,Σ(θ)). If Σ(θ) = σ2Q(τ), θ = (σ2,τ), the negative of
the log-likelihood of X(n) can be written, up to an additive constant,

2l(δ ,θ) = log |Σ(θ)|+ t(X −Zδ )Σ−1(θ)(X −Zδ )

= n logσ2 + log |Q(τ)|+ t(X −Zδ )Q−1(τ)(X −Zδ )/σ2.

The ML estimation with known τ is thus:

δ̂ = (tZQ−1(τ)Z)−1 tZQ−1(τ)X , (5.19)

σ̂2 = (X −Zδ̂ )Q−1(τ)(X −Zδ̂ )/n. (5.20)

The profile l∗(τ) of the log-likelihood at τ can be obtained by replacing (δ ,σ2) by
their estimates in l(δ ,(σ2,τ)):
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l∗(τ) = −n
2
{log[tXQ−1(τ)(I −P(τ))X ]+ log |Q(τ)|+n(1− logn)}, (5.21)

P(τ) = Z(tZQ−1(τ)Z)−1tZQ−1(τ), (5.22)

where P is the orthogonal projection with respect to the norm ‖·‖Q−1 onto the space
generated by the columns of Z. We therefore estimate τ with τ̂ by maximizing
(5.21), then δ and σ2 using (5.19) and (5.20) with τ̂ .

With the help of a result of Sweeting (210) on the asymptotic normality of ML,
Mardia and Marshall (149) and Cressie (48, p. 484–485) show that under certain
conditions, the ML estimator of the regression X ∼ Nn(Zδ ,Σ(θ)), η̂ = (δ̂ , θ̂) of
η is consistent and asymptotically Gaussian, with asymptotic variance given by the
inverse of the Fisher information of the model J(δ ,θ) = Eδ ,θ{l(2)(δ ,θ)}.

Define the following matrices:

Σi = ∂Σ/∂θi, Σ j = ∂Σ−1/∂θ j, Σi j = ∂ 2Σ/∂θi∂θ j, Σ i j = ∂ 2Σ−1/∂θi∂θ j

and ti j = tr(Σ−1ΣiΣ−1Σ j) for i, j = 1, . . . , p. We also denote by (λl , l = 1, . . . ,n)
(resp. (|λi;l | ; i = 1, . . . , p and l = 1, . . . ,n), (

∣∣λi, j;l
∣∣ ; i, j = 1, . . . , p and l = 1, . . . ,n))

the eigenvalues of Σ (resp. Σi, Σi j) put into increasing order and ‖G‖= tr(G tG) the
Euclidean norm of matrix G.

Theorem 5.2. (Mardia-Marshall (149))
Suppose that the spatial regression X ∼ Nn(Zδ ,Σ(θ)), δ ∈ R

q and θ ∈ R
p sat-

isfies the following conditions:

(MM-1) λn → e < ∞, |λi;n| → ei < ∞ and
∣∣λi, j;n

∣∣→ ei j < ∞ for i, j = 1, . . . , p.

(MM-2) ‖Σ‖−2 = O(n−1/2−κ) for some κ > 0.
(MM-3) ti j/

√
tit j −→ ai j for i, j = 1, . . . , p and A = (ai j) is regular.

(MM-4) (tZZ)−1 −→ 0.

Then:
J1/2(δ ,θ){(δ̂ , θ̂)− (δ ,θ)} d−→ Nq+p(0, Iq+p),

where J(δ ,θ) = (Jδ 0
0 Jθ

) for Jδ = tZΣ−1(θ)Z and (Jθ )i j = (2−1tr(−Σ jΣi)).

Comments:

1. Calculation of the analytic form of J(δ ,θ) is given in §C.4.1.
2. J(δ ,θ) depends only on θ ; in practice, we must estimate J(δ ,θ) either by re-

placing θ with θ̂ or by using the observed information matrix l(2) (δ̂ , θ̂).
3. δ̂ and θ̂ are asymptotically independent.
4. As Σ j = −Σ−1Σ jΣ−1 and Σi = −ΣΣ iΣ ,

(Jθ )i j = 2−1tr(Σ−1Σ jΣ−1Σi) = 2−1tr(Σ jΣΣ iΣ) = −2−1tr(Σ iΣ j).

We use the first expression for Jθ if Σ(θ) has a known parametric form (covari-
ance or variogram model), the second if Σ−1(θ) has a known parametric form
(SAR and CAR models).
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5. This asymptotic normality result allows us to construct tests and both joint
and individual confidence regions for (δ ,θ). For example, the confidence re-
gion with approximate level α for δ is, with q(p;α) denoting the α-quantile
of a χ2

p ,

{δ : (δ̂ −δ )Jδ̂ (δ̂ −δ ) ≤ q(p;α)}.

We now give an example of identifying J(δ ,θ): Ord (167) considers the spatial
regression with SAR errors:

X = Zδ + ε, ε = (I −θW )e, e ∼ Nn(0,σ2I),

where θ ∈ R and W is a known weights matrix. The model parameters are
(δ ,(σ2,θ)) ∈ R

q+2. Denoting F = I −θW , G = WF−1 and

ν = −
n

∑
1

w2
i

1−θw2
i

,

where (wi) are eigenvalues of W , the information matrix J(δ ,θ) is block diagonal
with coefficients:

J(δ ) =
1
σ2

t(FZ)FZ, J(σ2) =
n

2σ4 ,

J(θ) = tr(tGG−ν), J(σ2,θ) =
tr(G)
σ2 .

Mardia and Marshall (149) also deal with the case of stationary errors on Z
d with

covariance:

γ(i, j;θ) = σ2ρ(i− j;ψ).

Denote ρi = ∂ρ/∂θi and ρi j = ∂ 2ρ/∂θi∂θ j for i, j = 1, . . . , p. If ρ , the ρi and the ρi j

are summable over Z
d and if X is observed on {1,2, . . . ,n}d , then under conditions

(MM-3-4), the result of Theorem 5.2 is also true.

Corollary 5.1. (149) Suppose that X, observed on {1, . . . ,n}d ⊂ Z
d has station-

ary Gaussian errors and that correlations ρ and their derivatives ρi and ρi j,
i, j = 1, . . . , p are summable on Z

d. Then, under conditions (MM-3) and (MM-4),
the result of the previous theorem remains true.

Example 5.7. Percentage of people with blood group A in the 26 counties of Ireland
(cont.)

For the data displayed in Fig. 5.9, Moran’s test indicated spatial dependency for
the “percentage” variable. This dependency could perhaps be a product of other ex-
plicative variables that might account for these percentages, such as for example the
percentage being higher in regions colonized by anglo-saxons. To examine this, we
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consider two explicative variables, one quantitative, towns, the number of towns
per unit area, the other qualitative, pale, indicating whether or not the county was
under anglo-saxon control.

Table 5.5 Results of ML estimations of various spatial regressions for the eire data: (a) two
covariate model, towns and pale with i.i.d. Gaussian errors; (b) model with only the variable
pale and SAR errors (standard errors shown in parentheses.

Models
Coefficient (a) (b)
Intercept 27.573 (0.545) 28.232 (1.066)
towns −0.360 (2.967) −
pale 4.342 (1.085) 2.434 (0.764)
ρ − 0.684 (0.148)

Regressing the percentage onto these two variables with i.i.d. errors (model (a))
shows that only pale is significant (cf. Table 5.5, model (a)).

The spatial correlation between residuals remains: for Moran’s index of the resid-
uals IR = t rWr/ t rr, we have (7, pg. 102) that if there is spatial independence, T =
(IR −E(IR))/

√
Var(IR) ∼ N (0,1) with E(IR) = tr(MW )/(n− p) and

Var(IR) =
tr(MWM (tW +W ))+{tr(MW )}2

(n− p)(n− p+2)
−{E(IR)}2,

where M = I−P, with P being the orthogonal projection onto the space generated by
covariates Z. As the value of T was calculated as t = 1.748, the correlation between
residuals remains significant at the 10% level. We therefore prefer the regression
model (b) with only the covariate pale and the SAR error model:

r = ρWr + ε,

where W is the spatial contiguity matrix of the neighbor graph. ML results (cf.
Table 5.5, model (b)) show that the dependency parameter ρ is significantly different
to zero.

Example 5.8. Influence of industrial locations and tobacco use on lung cancer

This example considers a spatial epidemiology study by Richardson et al. (182)
(cf. cancer-poumon on the website) looking at lung cancer mortality and its links
with metallurgy (metal), engineering (meca) and textile (textile) industries on the
one hand and cigarette use (tabac) on the other.

Whenever epidemiological data shows spatial autocorrelation, the interpretation
is not the same when considering infectious diseases (local spatial diffusion pro-
cesses) as opposed to chronic illnesses, the case here. In the present situation, cor-
relation may originate in covariates that themselves exhibit spatial dependency. If
some of these variables are observable, we can introduce them into the regression
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while simultaneously trying to propose a parametrically “parsimonious” model. If
the residuals in this regression are still correlated, one reason may be that these
residuals “include” other hidden spatial risk factors (geographic variation, environ-
mental influences, etc).

The explicative variable Y (cf. Fig. 5.12) is the standardized mortality rate for
lung cancer (number of deaths per cancer/number of inhabitants) for men aged be-
tween 35 and 74 in the two years 1968–1969, measured in 82 French regions (data
from INSERM-CépicDc IFR69).

< 0.05
0.05 − 0.07
0.07 − 0.08
0.08 − 0.1
> 0.1

(a)
(b)

Fig. 5.12 (a) Rate (in percent) of standardized mortality due to lung cancer in 82 French regions;
(b) (symmetric) influence graph R over the 82 regions.

We take data for cigarette sales (SEITA) from 1953, with the 15 year lag allowing
us to take into account the influence of tobacco use on lung cancer. The regression
we consider is

Y = Xβ +u, Y and u ∈ R
82,

denoted (A) if we only take into account the 3 industrial variables and (B) if we
also include the variable tabac. We propose five spatial models (with parameter θ )
for errors: the first two involve ARs on networks and the three others have spatial
covariance Σ = Cov(u) with isotropic parametric structures:

1. Gaussian CAR model ui = c∑ j∈∂ i wi jx j +ei, Var(ei) =σ2
e , where W is the spatial

contiguity matrix of the 82 regions.
2. Gaussian SAR model ui = b ∑ j∈∂ i w∗

i jx j + εi, Var(εi) = σ2
ε , where W ∗ is the

matrix W but with each row normalized to 1.
3. Disk model: Σi, j = σ2 fa(‖i− j‖2).
4. Matérn model with parameters (a,σ2,ν) (cf. §1.3.3).
5. Exponential nugget effect model: if i �= j, Σi, j = σ2γ exp{−λ ‖i− j‖2}, γ ≤ 1

and = σ2 otherwise.
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The disk model is the 2-dimensional equivalent of the spherical model (cf. §1.3.3)
with the sphere of radius a replaced by a disk of the same radius.

Table 5.6 Improvement in fit by using ML (χ2) and prediction (PRESS) for 5 error models and
regressions (A) and (B) compared with OLS.

Regression A A B B
Model χ2 PRESS χ2 PRESS
OLS − 1.90×10−6 − 0.96×10−6

CAR χ2
1 = 25.6 1.44×10−6 χ2

1 = 2.1 0.94×10−6

SAR χ2
1 = 32.0 1.37×10−6 χ2

1 = 8.2 0.87×10−6

Disk χ2
1 = 9.7 1.40×10−6 χ2

1 = 9.4 0.88×10−6

Expo+nugget χ2
2 = 30.4 1.34×10−6 χ2

2 = 8.4 0.86×10−6

Matérn χ2
2 = 25.5 1.41×10−6 χ2

2 = 8.6 0.86×10−6

Table 5.7 ML estimation of the parameters of the 5 spatial models under (A) and (B) (s.e. for
standard error).

Regression A A B B
Model Parameters s.e. Parameters s.e.
CAR ĉ = 0.175 0.005 ĉ = 0.077 0.057
SAR b̂ = 0.613 0.103 b̂ = 0.353 0.138
disk â = 94.31 5.66 â = 35.73 4.92
expo+nugget γ̂ = 0.745 0.091 γ̂ = 0.554 0.265

λ̂ = 0.0035 0.0018 λ̂ = 0.012 0.008
Matérn ν̂ = 0.305 − ν̂ = 0.228 −

â = 112.36 16.41 â = 75.19 23.74

Note that the 5 models are not nested and the first three are 2-dimensional, the
last two 3-dimensional.

Moran’s index calculated for the normalized weights matrix W ∗ indicates that all
variables are spatially correlated (0.53 for Y , 0.58 for tabac, 0.41 for metal and 0.26
for textile) except meca (0.12). Also, the OLS regression residuals (A) and (B) are
significantly correlated.

Table 5.6 shows the gain in log-likelihood of each of the residual models for (A)
and (B) compared with OLS (i.i.d. errors ui). This gain is also evaluated using the
prediction sum of squares (PRESS) criterion, the sum of squares of conditional er-
rors (εi) of the model, estimated by ε̂i = ui −∑ j: j �=i

σ̂ i j

σ̂ ii u j where (σ̂ i j)−1 = Σ̂(β̂ , θ̂).
As the quantile of a χ2

1 at 95% is 3.841 (resp. 5.911 for a χ2
2 ), all the spatial

models offer a significant improvement over the i.i.d. error model except for the
CAR-(B) model. The improvement in prediction is in the order of 30% for (A) and
10% for (B), with the tabac variable as expected decreasing the value of the χ2

statistic and the PRESS criteria.
Table 5.7 gives ML estimates of the spatial parameters as well as standard errors.

All parameters are significant for (A) but show weaker dependency for (B). For
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the CAR-(B) model, c is no longer significant. For the SAR model associated with
W ∗, b can be interpreted as the weight of influence of the neighborhood. Parameter
2â " 188 km of the disk model represents the distance above which correlations
disappear. Parameter ν̂ = 0.305 of the estimated Matérn model suggests a linear
decrease at the origin.

Table 5.8 Estimates (and standard errors) of regression coefficients (A) and (B) for three error
models: (i) independence, (ii) SAR and (iii) Matérn.

Regression and model u Metallurgy Engineering Textile
(A) and OLS 2.46 (0.39) 1.88 (0.63) 1.12 (0.53)
(A) and SAR 1.39 (0.42) 2.11 (0.55) 0.38 (0.49)

(A) and Matérn 1.35 (0.43) 1.90 (0.57) 0.38 (0.50)
(B) and OLS 1.50 (0.27) 1.29 (0.46) 0.84 (0.38)
(B) and SAR 1.11 (0.32) 1.37 (0.45) 0.61 (0.39)
(B) and Matérn 1.05 (0.32) 1.24 (0.44) 0.62 (0.38)

Table 5.8 gives estimations of regressions (A) and (B) for three error mod-
els, (i) independent (OLS), (ii) SAR and (iii) Matérn covariance. We see that the
type of spatial model heavily influences parameter estimates but not their preci-
sion: for example, for (A) and metal, spatial modeling reduces by half the slope
(β̂MCO/β̂SAR = 1.77) and the associated statistic t (tβMCO

/tβSAR
= 1.95). Also, spatial

modeling renders the variable textile non-significant. As we might have expected,
taking into account the variable tabac significantly decreases the values of the esti-
mates as well as their standard errors.

In conclusion, taking into account the spatial structure of errors significantly in-
fluences our estimations of regressions (A) and (B) and the variables metal and
meca are significant, though not textile.

5.4 Markov random field estimation

Let X be a Markov random field on the discrete set of sites S ⊂ R
d taking values

in Ω = ES, where S is endowed with a symmetric neighbor graph G . Suppose that
the distribution Pθ of X is known via its conditional specifications πθ (cf. §2.2.1),
these in turn associated with a parametric potential Φθ = {ΦA,θ ,A ∈ S }, where θ
is an interior point of a compact Θ ⊂ R

p. Denote by G (πθ ) the set of distributions
on Ω having specification πθ and Gs(πθ ) those which are stationary when S = Z

d .
Suppose that the graph G does not depend on θ and that X is observed on Dn ∪
∂Dn ⊂ S, where ∂Dn is the neighborhood boundary of Dn.

We now present three procedures for estimating both θ and certain asymptotic
properties: maximum likelihood (ML), maximum conditional pseudo-likelihood
(MCPL) and C-coding estimation. We also give results on the identification of the
support of the neighborhood of Markov random fields.
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5.4.1 Maximum likelihood

If X has distribution Pθ ∈ G (πθ ), the distribution of X on Dn conditional on x(∂Dn)
has energy density Hn (cf. §2.2.1):

πn(x;θ) = Z−1
n (x∂Dn ;θ)exp{Hn(x;θ)},

where Hn(x;θ) = ∑A:A∩Dn �= /0ΦA(x;θ).

Consistency of ML: S = Z
d with invariant πθ

Suppose that S = Z
d and that πθ is translation-invariant and belongs to the expo-

nential family Hn(x;α) = t α hn(x),

hk,n(x) = ∑
i∈Dn:(i+Ak)∩Dn �= /0

ΦAk(τi(x)), for k = 1, . . . , p , (5.23)

where τi is the translation on Z
d defined by: ∀ j, (τi(x)) j = xi+ j. With this notation,

theΦ = {ΦAk ,k = 1, . . . , p} are p measurable and bounded generating potentials and

α = t(α1,α2, . . . ,αp) ∈ R
p is the model parameter. Let θ̂n = Argmaxα∈Θ πn(x;α)

be the ML estimator on Θ . To simplify things, we suppose that Dn = [−n,n]d . We
then have the following result:

Theorem 5.3. Suppose that X has translation-invariant specification (5.23) πθ and
is stationary. Then, if the generating potentials are measurable and bounded and if
the parametrization in α of π0,α , the conditional distribution at 0, is well-defined,

the ML estimation θ̂n is consistent.

A proof of this result is given in Appendix C, §C.4.2.

Comments

1. One of the difficulties in using ML is having to calculate the normalization con-
stant Zn(x∂Dn ;α). In §5.5.6 we give an MCMC method allowing an approximate
calculation of Zn(x∂Dn ;θ) for Gibbs processes.

2. Consistency still holds if conditioning (here, on x∂Dn ) occurs with respect to
an arbitrary exterior condition y∂Dn or even a sequence of external conditions
(ML with fixed boundary conditions). It is similarly the case for ML with free
boundary conditions which make the contribution of potentials disappear as
soon as their support spreads out of Dn (in this case, the energy is Hn(x;θ) =
∑A⊂DnΦA(x;θ)).

3. Let us give a sufficient condition ensuring the parametrization α 
→ π0,α is well-
defined, where:

π0,α(x|v) = Z−1(v;α)exp( tα h(x,v)), with hk(x,v) =ΦAk(x,v).
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Without putting restrictions on the generality of the model, suppose that the iden-
tifiability constraint for potentials ΦAk is satisfied (cf. (2.3)). Then, the represen-
tation in terms of α of π0,α is well-defined if:

∃wi = (xi,vi), i = 1, . . . ,K such that H = (h(w1), . . . ,h(wK)) is of rank p.

(5.24)

In effect, if α �= θ , ∃(x,v) such that t(α−θ)h(x,v) �= 0 and we can deduce that

π0,α(x|v)
π0,α(a|v) = exp( tα h(x,v)) �= exp( tθ h(x,v)) =

π0,θ (x|v)
π0,θ (a|v) .

Consider for example the 8-NN binary model (E = {0,1}) on Z
2 with conditional

energy

H0(x0,v) = x0{α+β1(x1 + x5)+β ,2 (x3 + x7)+ γ1(x2 + x6)+ γ(x4 + x8)},

where 1,2, . . . ,8 is the enumeration in the trigonometric sense of the 8-NN of 0.
Noting x = (x0,x1, . . . ,x8), it is easy to see that the following 5 configurations
satisfy (5.24): (1,0), (1,1,0), (1,0,0,1,0), (1,0,1,0) and (1,0,0,0,1,0) (here, 0
is the vector of 0s defined so that each configuration belongs to R

9).
4. ML consistency is retained if πθ is translation-invariant, without requiring hy-

potheses of belonging to an exponential family as long as the potentials φA,α ,
0 ∈ A are uniformly continuous in α , this uniformly in x (96).

5. When the state space E of X is compact, Comets (46) showed consistency of
ML without stationarity hypotheses on X . The proof uses a large deviations in-
equality for Gibbs random fields (46; 85; 96) as well as compactness of Gs(πθ ).
The interest in this result comes from the fact that it makes no hypotheses on the
distribution of X except requiring translation-invariance of its conditional spec-
ification. Furthermore, (46) showed that convergence occurs at an exponential
rate, i.e.,

∀δ > 0,∃δ1 > 0 s.t. for large n, Pθ (
∥∥∥θ̂n −θ

∥∥∥≥ δ ) ≤C exp−δ1(�Dn).

6. Obtaining general results on the asymptotic distribution of the ML estimator for
Gibbs random fields is difficult. One of the reasons is that as the distribution
Pθ ∈ G (πθ ) of X is only known via its conditional specifications, we do not
known if there is a phase transition or not if the distribution Pθ of X is weakly
dependent, for example if Pθ is α-mixing (cf. §B.2). If Pθ is characterized by its
specifications and is α-mixing, then θ̂n is asymptotically Gaussian if the mixing
is fast enough (96).

Asymptotic normality of ML and subhypothesis tests when X is weakly dependent

Let dn = �Dn and suppose that �∂Dn = o(dn). Asymptotic normality of the ML
estimator θ̂n can be shown under conditions where X is weakly dependent and the
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potentials ΦA(α),α ∈Θ are bounded C 2 functions (96, Th. 5.3.2). The asymptotic
variance of θ̂n can be characterized in the following way. Define the mean energy at
site i by:

Φ i(x;θ) = ∑
A: i∈A

ΦA(x;θ)
�A

and for μθ , the distribution of X under θ , Fisher’s information matrix:

In(θ) = ∑
i, j∈Dn

Covμθ (Φ
(1)
i (x;θ),Φ(1)

j (x;θ)).

Then, if there exists a non-random positive-definite symmetric matrix I0 such that
liminf

n
d−1

n In(θ) ≥ I0, then for large n,

(θ̂n −θ) ∼ Np(0, In(θ)−1).

A value for In(θ) can be found using Monte Carlo methods under θ̂n.
Denote by (Hp) the hypothesis: θ ∈ Θ ⊂ R

p and let (Hq) be a subhypothesis
of class C 2 and dimension q parametrized by ϕ ∈ Λ ⊂ R

q. Letting ln = logπn(x)
represent the log-likelihood conditional on x(∂Dn), we have the following result for
the log-likelihood ratio statistic: under (Hq),

2{ln(θ̂n)− ln(ϕ̂n)} d−→ χ2
p−q.

5.4.2 Besag’s conditional pseudo-likelihood

The conditional pseudo-likelihood (CPL) of a Markov random field X is the product
over sites i ∈ Dn of the conditional densities at i. The log-pseudo-likelihood and
estimation of the CPL maximum are respectively:

lCPL
n (θ) = ∑

i∈Dn

logπi(xi | x∂ i,θ) and θ̂CPL
n = argmax

α∈Θ
lCPL
n (α).

This estimation method, proposed by Besag in 1974 (25) is easier to put into practice
than ML as it avoids having to calculate the normalizing constant of a Markov ran-
dom field. Also, when it can be calculated, efficiency of CPL compared with ML is
quite good if the spatial correlation is relatively weak (cf. §5.4.4). As an illustration,
let us give details of this method in two particular contexts.

Estimating grayscale textures

Let X be a Markov texture on Z
2, with states E = {0,1}, potentials Φ{i}(x) = β0xi

and Φk
{i, j}(x) = βkxix j if i− j = ±k, i, j ∈ Z

2, where k ∈ L ⊂ Z
2 for finite and
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symmetric L, 0 /∈ L. If X is observed over the square Dn∪∂Dn, the CPL is given by:

LPL
n = ∏

i∈Dn

expxi(β0 +∑k �=0βkxi+k)
1+ exp(β0 +∑k �=0βkxi+k)

.

Fig. 5.13 gives three examples of binary real textures studied by Cross and Jain (51).
These textures were modeled using Markov random fields and then estimated using

(a) (b)

Estimation

Simulation

(c)

Fig. 5.13 64× 64 grid of binary real textures: estimated and simulated. (a) pebbles, (b) cork, (c)
curtain (Cross and Jain (51), c©1983 IEEE).

CPL. Then, the estimated models were simulated using Gibbs sampling. The visual
similarity between the original textures and those simulated shows both the quality
of modeling and also that of estimation by CPL.

Gaussian CAR model with one parameter

Consider the following CAR model with one real-valued parameter β :

Xi = β ∑
j: j �=i

wi jXj + ei, Var(Xi | ·) = κ, i = 1, . . . ,n,
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where W is a symmetric matrix with zeros on the diagonal. An associated model
exists if C = I −βW is positive definite, i.e., if β |λ | < 1 for all eigenvalues λ of
W . In the Gaussian case, CPL estimation of β is identical to OLS on the conditional
errors e: in effect, Xi|x∂ i ∼ N (βvi,κ), where vi = ∑ j:〈i, j〉 wi jx j and the negative of
the conditional log-likelihood is:

lCPL
n (β ) = constant +

�Dn

2
logκ+

RSSn(β )
2κ

,

where

RSS(β ) = ∑
i∈Dn

(Xi −βvi)2.

As this model is linear in β , we obtain:

β̂ =
tXWX

tXW 2X
, κ̂ =

tXX − (tXWX)2/tXWX
n

.

As for large n, residuals ei are not correlated with vi for i = 1, . . . ,n, we have
(26): E(β̂n) ∼ β , E(κ̂) ∼ κ , Var(β̂n) = 2tr(W 2){tr(C−1W 2)}−2 and Var(κ̂) =
2κ2tr(C2)/n2.

We are now going to present three asymptotic results dealing with maximum
CPL estimation: the first is a consistency result for random fields X defined on not
necessarily regular networks S; the next two are asymptotic normality results for
when the specification on Z

d is translation-invariant, first in the bounded potentials
case and then for Gaussian potentials.

Consistency of CPL estimation

Suppose that S is a not necessarily regular countable discrete network, G a symmet-
ric graph on S and X a Markov random field on (S,G ) taking values in Ω =∏i∈S Ei

(different state spaces for different sites are allowed). X , with distribution Pθ and
specification πθ (here, θ is in the interior of a compactΘ ⊂ R

p) is observed over a
strictly increasing sequence (Dn ∪ ∂Dn), dn = �{Dn}. We now give several defini-
tions and conditions.

Coding subset

• C is a coding subset of S if, for all i �= j in C, j /∈ ∂ i.
• A is a strong coding subset if, for all i �= j in A, we have ∂ i∩∂ j = /0.

Let πi and π∂ i represent the specifications at i and ∂ i,

mi(θ ,α;x∂ i) = −Ex∂ i
θ

{
log(πi(Xi|x∂ i,α)
πi(Xi|x∂ i,θ)

}
( ≥ 0)

and suppose the following conditions (C):
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(C1) On the graph (S,G ): there exists a coding subset C of S which is a disjoint
union of K strong coding subsets {Ck} such that, defining An = A ∩ Dn,
cn = �(Cn) and cn,1 = �(C1,n):

(i) liminf
n

c1,n/cn > 0 and liminf
n

cn/dn > 0.

(ii) χ = ∏i∈∂ i Ei is a fixed space of neighborhood configurations when
i ∈C1.

(C2) Lower bounds for πα : ∃c > 0 such that ∀i ∈C1, ∀xi, x∂ i, x∂∂ i and α ∈Θ we
have πi(xi|x∂ i,α) and π∂ i(x∂ i|x∂∂ i,α) ≥ c, where πi is uniformly (in i, xi

and x∂ i) continuous at α.
(C3) Identifiability at θ of πθ : there exists m(θ ,α;z) ≥ 0, (α,z) ∈ Θ × χ , λ -

integrable for all α such that:

(i) mi(θ ,α;z) ≥ m(θ ,α;z) if i ∈C1.
(ii) α 
→ K(θ ,α) =

∫
χ m(θ ,α;z)λ (dz) is continuous and has a unique min-

imum at α = θ .

Theorem 5.4. Consistency of CPL estimation (96)
Let X be a Markov random field on S satisfying conditions (C1–3). Then the

maximum CPL estimator on Dn is consistent.

Proof. We start by showing consistency of the C1-coding estimator (cf. (5.25)). The
property providing the key to the proof is the independence of {Xi, i ∈ C1} condi-
tional on xC1 , the random field outside C1. First, we prove the following subergod-
icity result:

Lemma 5.1. (83; 121; 96) Let A be a measurable subset of χ and the empirical
frequency of A on C1 defined by

Fn(A;C1) =
1

c1,n
∑

i∈C1,n

1(x∂ i ∈ A).

Then:
liminf

n
Fn(A;C1) ≥ c

2
λ (A) Pθ -a.s.

Proof of the Lemma: From (C2), variables 1(X∂ i ∈ A) have expectation ≥ cλ (A),
variance ≤ 1 and, conditional on x∂C1 , are independent. The strong law of large
numbers for independent variables in L2, conditional on x∂C1 , gives (Breiman (32,
Th. 3.27)):

liminf
n

Fn(A;C1) ≥ c
2
λ (A) Px∂C1

θ -a.s.

As the upper bound is independent of x∂C1 , it is true Pθ -a.s. ��
Proof of Theorem (cont.): Consider now the coding C1-contrast:

UC1
n (α) = − 1

c1,n
∑

i∈C1,n

logπi(xi | x∂ i;α) (5.25)
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and write UC1
n (α)−UC1

n (θ) = An +Bn, where:

An = − 1
c1,n
∑

i∈C1,n

{
log
πi(xi | x∂ i;α)
πi(xi | x∂ i;θ)

+mi(θ ,α;x∂ i)
}

.

An is the sum of centered variables with bounded variance (condition (C2)) and in-
dependently conditional on xC1 , limn An = 0 Pθ -a.s. We deduce Pθ -a.s. the following
sequence of inequalities:

liminf
n

(UC1
n (α)−UC1

n (θ)) = liminf
n

Bn (5.26)

≥ liminf
n

∫

χ
m(θ ,α;z)Fn(C1,dz) (C3)

≥
∫

χ
m(θ ,α;z)liminf

n
Fn(C1,dz) (as m ≥ 0)

≥ c
2

∫

χ
m(θ ,α;z)λ (dz) � K(θ ,α) (Lemma (5.1)).

As the coding estimator is associated with UC
n (α) = ∑K

k=1 ck,nc−1
n UCk

n (α), its con-
sistency follows from (5.26), conditions (C) and the corollary of the general consis-
tency properties of minimum contrast methods (cf. Appendix C, §C.2). Consistency
of the CPL estimator is a consequence of the same corollary.

��
Conditions (C1–3) have to be verified case by case. Let us take a look at two

examples, one associated with irregular graphs (S,G ), the other with translation-
invariant random fields on S = Z

d .

Example 5.9. Ising models on irregular graphs

Consider an Ising model with states {−1,+1} on a graph (S,G ) such that (C1)
holds, with the specification for i ∈C expressed as:

πi(xi | x∂ i;α) =
expxivi(x∂ i;α)
2ch{vi(x∂ i;α)} ,

where vi(x∂ i;α) = βui + γ ∑ j∈∂ i wi jx j with known weights (ui), (wi j) and symmet-
ric w satisfying for all i : ∑∂ i wi j = 1. The model parameter is α = t(β ,γ). Suppose
that weights u and w are bounded. As the potentials are bounded, it is easy to see that
(C2) is satisfied. Furthermore, we see that mi(θ ,α;x∂ i) = m(vi(θ),vi(α)), where

m(a,b) = (a−b)th(a)− log
ch(a)
ch(b)

≥ 0,

with m(a,b) equal to 0 if and only if a = b. If θ = (β0,γ0),

vi(x∂ i;θ)− vi(x∂ i;α) = (β0 −β )ui +(γ0 − γ) ∑
j∈∂ i

wi jx j.
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If there exists δ > 0 such that infi∈C ui ≥ δ , (C3) is satisfied: in effect, for the con-
stant configuration x∗∂ i on ∂ i (−1 if (β0 −β )(γ0 − γ) < 0 and +1 otherwise),

∣∣vi(x∗∂ i;θ)− vi(x∗∂ i;α)
∣∣≥ δ ‖θ −α‖1 .

Example 5.10. Markov random fields on Z
d with invariant specification

Let X be a Markov chain on Z
d with invariant specification that belongs to the

exponential family (5.23), where the potentials {ΦAk ,k = 1, . . . ,K} are measurable
and uniformly bounded. If the parametrization of α 
→ π{0},α is identifiable, then
conditions (C1–3) are satisfied and the CPL method is consistent. In effect, if R =
sup{‖i‖1 , i∈ ∂0}, C = {aZ}d is a coding set if a is an integer ≥ 2R. Also, the choice
of b-translations of C1 = {2aZ}d for the 2d vectors b = (b1,b2, . . . ,bd), where bi = 0
or a, i = 1, . . . ,d, defines a partition of C into 2d strong coding subsets for which
(C1) is satisfied. As for (C2), the result comes directly from the uniform upper bound
in (x,α) of the energy: |HΛ (x,α)| ≤ c(Λ).

Asymptotic normality of CPL

Markov random fields with translation-invariant specification: Suppose that X is a
Markov random field on S = Z

d with distribution Pθ ∈ G (πθ ) that has a translation-
invariant specification and belongs to the exponential family (5.23). Write:

Jn(θ) = ∑
i∈Dn

∑
j∈∂ i∩Dn

Yi(θ) tYj(θ), In(θ) = ∑
i∈Dn

Zi(θ), (5.27)

with Yi(θ) = {logπi(xi/x∂ i;θ)}(1)
θ and Zi(θ) = −{logπ(xi/x∂ i;θ)}(2)

θ2 .

Theorem 5.5. Asymptotic normality of the CPL estimator (Comets and Janzura
(47))

Suppose that X is a Markov random field on S = Z
d with translation-invariant

specification that belongs to the exponential family (5.23), with measurable and
bounded generating potentials {ΦAk}. Then, if πi,θ is identifiable at θ ,

{Jn(θ̂n)}−1/2In(θ̂n){θ̂n −θ} d−→ Np(0, Ip).

The interest in this result is that it needs no hypotheses on the global distribution
of X , nor any of the following: uniqueness of Pθ in G (πθ ), stationarity and/or ergod-
icity or weak dependency. The random normalization {In(θ̂n)}−1/2 Jn(θ̂n) does not
necessarily become stable as n increases but gives asymptotic normality to {θ̂n−θ}.
This itself results from a CLT dealing with conditionally centered functionals of
Markov random fields (cf. Appendix B, §B.4). The functional used here is the gra-
dient Yi(θ) of the conditional log-density (cf. (47) for the general case and (99) for
ergodic random fields).
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Stationary Gaussian CAR model on Z
d

Suppose we have the Gaussian CAR model: Xi =∑ j∈L+ c j(Xi− j +Xi+ j)+ei, i ∈ Dn,
Var(ei) = σ2. This can also be written in matrix form as

X(n) = Xnc+ e(n),

where Xn is an n× p matrix with i th row (X (i) = (Xi− j + Xi+ j), j ∈ L+), i ∈ Dn

and c = (c j, j ∈ L+) .= θ ∈ R
p. The maximum CPL estimate ĉn, here equal to the

OLS estimate can be explicitly derived because the model is linear:

ĉn = (XnXn)−1XnX(n) and σ̂2
n =

1
n− p ∑i∈Dn

e2
i (ĉn).

Setting Vj = Cov(X (0),X ( j)), denote:

G = σ2{V0 +σ2I −2∑
L+

c jVj} and Δ = V−1
0 GV−1

0

and suppose that ∑L+
∣∣c j
∣∣< 1/2. Under this hypothesis, the distribution of X is thus

completely characterized and is that of an ergodic Gaussian field with exponen-
tially decreasing covariance. X is therefore exponentially α-mixing (cf. Appendix
B, §B.2; (96)) and so we can deduce:

√
n(ĉn − c) d−→ Np(0,Δ).

This result can be extended to other models where c = (cs, s ∈ L+) is constant on
subsets of L+, such as submodels exhibiting isotropy.

We note that asymptotic normality of the CPL estimator can be obtained without
invariance conditions on the specification of X as long as X is α-mixing with the
required mixing rate (96, §5.3.2).

Characterizing the asymptotic variance of CPL estimations

The CPL estimation θ̂CPL
n can be obtained using software for generalized linear

model (GLM) estimation as long as the conditional specifications {πi(· | x∂ i,θ), i ∈
S} follow log-linear models. In effect, in these cases the neighbor covariances x∂ i
are added to standard covariates of GLMs and, when optimizing the estimation
functional, there is no difference between CPL and GLM likelihoods when vari-
ables are independent.

However, the standard errors given by a “GLM” routine are incorrect. In effect,
unlike the standard GLM case, the variables (Xi | x∂ i) are not independent and ar-
guments invoked to find the variance of the ML estimator for GLMs are not longer
valid. Let us now show how to find the asymptotic variance of θ̂CPL

n .
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As already stated in Comets and Janzura’s result, this asymptotic variance is
expressed using two pseudo-information matrices In and Jn (cf. (5.27) and Appendix
C, Hypotheses (C.2.2)).

Consider now the case of a weakly dependent Markov random field X (96, Th.
5.3.3). For the conditional energies:

hi(xi | x∂ i,α) = ∑
A: i∈A

ΦA(x;α), i ∈ S,

define the two pseudo-information matrices In(θ) and Jn(θ):

Jn(θ) = ∑
i, j∈Dn

Covμθ (h
(1)
i (θ),h(1)

j (θ)),

In(θ) = ∑
i∈Dn

Eμθ {VarX∂ i
θ

hi(Xi | X∂ i,θ)}. (5.28)

If there exists a non-random symmetric p.d. matrix K0 such that liminf
n

d−1
n Jn(θ) and

liminf
n

d−1
n In(θ) ≥ K0, then, for large n:

Var(θ̂CPL
n ) " I−1

n (θ)Jn(θ)I−1
n (θ).

A value for the variance of θ̂CPL
n can be obtained in three ways:

1. Using result (47) after calculating the two pseudo-information matrices (5.27).
2. Estimating the expectations and variances in (5.28) by Monte Carlo simulation

under θ̂CPL
n .

3. By parametric bootstrap, where asymptotic arguments are not necessary.

5.4.3 The coding method

Suppose that X is a Markov random field on (S,G ). Recall that C is a coding subset
of (S,G ) if pairs of points of C are never neighbors. In this case, the conditional
variables {(Xi|x∂ i), i ∈ C} are independent. The coding log-pseudo-likelihood lCn
on Cn = C∩Dn and the associated coding estimator are respectively,

lCn (θ) =∑
Cn

logπi(xi | x∂ i,θ) and θ̂C
n = argmax

θ∈Θ
lCn (θ).

Conditional on a random field xC observed outside of C, lCn is the log-likelihood
of non-identically distributed independent variables. However, compared with CPL
estimation we lose information found at sites i ∈ Dn\Cn. We nevertheless retain
the expression for a global likelihood (conditional on xC). This means that under a
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certain subergodicity condition we can hold on to the asymptotic properties of ML
for non-identically distributed independent variables.

Also, if the specification (πi) follows a generalized linear model (GLM), we are
able to use GLM software to calculate coding estimations. While the estimation θ̂C

n
provided by GLM software of the calculated variance is indeed correct, the differ-
ence with CPL is that here, variables {(Xi|x∂ i), i ∈ C} are, as for standard GLMs,
independent.

Consider now the context in §5.4.2 and suppose that X satisfies conditions (C1–

3). Denote by π(k)
i , k = 1,2,3 the kth-order derivatives at α of πi,α and for i ∈ C,

set:

Zi = − ∂
∂θ

{logπi(Xi,x∂ i;θ)}(1)
θ ,

Ii(x∂ i;θ) = Varθ ,x∂ i
(Zi) and IC

n (θ) =
1
cn
∑
Cn

Ii(x∂ i;θ).

Define the conditions:

(N1) ∀i ∈ S, πi,α is C 3(V ) at α in a neighborhood of θ and π−1
i ,π(k)

i , k = 1,2,3
are uniformly bounded in i,xi,x∂ i and α ∈V .
(N2) ∃ a positive-definite symmetric non-random p× p matrix I(θ) such that:

liminf
n

IC
n (θ)
cn

≥ I(θ). (5.29)

(5.29) is a subergodicity condition on X . We have:

Theorem 5.6. Normality of θ̂C
n and coding test (97; 96)

Suppose that X is a Markov random field on (S,G ) that satisfies conditions (C1–
3) and (N1-2). Then:

1. {IC
n (θ)}1/2(θ̂C

n −θ) d−→ Np(0, Idp).
2. If θ = r(ϕ), ϕ ∈R

q is a subhypothesis (H0) of rank q and class C 2(V ), we have:

2{lCn (θ̂C
n )− lCn (ϕ̂C

n )} d−→ χ2
p−q under (H0).

Comments:

1. The first result says that under subergodicity condition (5.29), ML results for i.i.d.
observations are preserved by taking the Fisher information IC

n (θ) conditional on
xC. IC

n (θ) can be estimated using In(θ̂C
n ) or Monte Carlo empirical variances

under θ̂C
n .

2. To show (5.29), we could use the result giving lower bounds for empirical fre-
quencies in Lemma 5.1: (5.29) is satisfied if there exists V : χ → R

p such that
for i ∈C,

Eθ ,x∂ i
({logπi}(1)

θ
t{logπi}(1)

θ ) ≥VtV (x∂ i) and
∫

χ
VtV (y)λχ(dy) is p.d.
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3. The proof is similar to that of Th. C.2 in Appendix C (see (108; 96) for further
details). We have:

0 =
√

cnU (1)
n (θ)+Δn(θ , θ̂C

n )
√

cn(θ̂C
n −θ), with

√
cnU (1)

n (θ) =
1√
cn
∑

i∈Cn

Zi,

where Δn(θ , θ̂C
n ) =

∫ 1
0 U (2)

n (θ + t(θ̂C
n − θ))dt. As the variables {Zi, i ∈ C} are

centered, bounded and independent conditionally on xC, we apply under (5.29)
the CLT for independent non-identically distributed bounded variables (32, Th.

9.2). It is straightforward to show that Δn(θ , θ̂C
n )+ IC

n (θ)
Pθ−→ 0 and under (N1),

IC
n (θ) ≡ JC

n (θ). Combining asymptotic normality of
√

cnU (1)
n (θ) with this result

gives the required result for the coding likelihood ratio test.
4. Several choices of coding C of S are possible: for example, for S = Z

2 and the
4-NN graph, C+ = {(i, j) : i + j even} and C− = {(i, j) : i + j odd} are two
maximal codings. To each coding C corresponds an estimator θ̂C

n , but estimators
associated with different codings are not independent.

Example 5.11. Subergodicity for inhomogeneous Ising random fields

Let us go back to the example (5.9) of an inhomogeneous Ising model. The con-
ditional energy at i ∈C is tθhi(xi,x∂ i), where

hi(xi,x∂ i) = xi

(
ui

vi

)
and vi = ∑

j∈∂ i

wi jx j.

First we show that IC
n (θ) = c−1

n ∑i∈Cn Varθ ,x∂ i
(Xi(

ui
vi )). We begin by finding a lower

bound on the conditional variance of Xi. Noting pi(x∂ i,θ) = Pθ (Xi = −1 | x∂ i), it is
easy to see that there exists 0 < δ < 1/2 such that, uniformly in i ∈ C, x∂ i and θ ,
δ ≤ pi(x∂ i,θ) ≤ 1− δ and thus Varθ ,x∂ i

(Xi) ≥ η = 4δ (1− δ ) > 0. Therefore, let
us consider a vector t(c,d) �= 0, where c and d have the same sign. Even if it means
removing the contribution of certain sites, we have:

(c,d)IC
n (θ) t(c,d) ≥ η ∑i∈Cn:vi=+1(cai +d)2

cn
. (5.30)

As the empirical frequency over Cn of the constant configuration x∂ i = 1 (which
gives vi = +1) has a positive lower bound for large n (cf. Lemma 5.1), we deduce
that liminf

n
{(c,d)IC

n (θ) t(c,d)} > 0; if c and d have opposite signs, we can get the

same lower bound by replacing ∑i∈Cn:vi=+1(cai + d)2 by ∑i∈Cn:vi=−1(cai − d)2 in
(5.30). Thus, (5.29) holds.
Example 5.12. Tests for isotropy for Ising models

Let X be the Ising model observed on {1,2, . . . ,n}2 with conditional energy at (i, j)
of

(H) : h(xi, j,x∂ (i, j);θ) = xi, j(h+β1(xi−1, j + xi+1, j)+β2(xi, j−1 + xi, j+1)).
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Table 5.9 Mercer and Hall data: coding and ML estimation.

Coding (even) Coding (odd) ML

ĉ10 ĉ01 lCn ĉ10 ĉ01 lCn ĉ10 ĉ01 ln
L(0) − − −104.092 − − −116.998 − − 488.046
Liso(1) 0.196 − −69.352 0.204 − −88.209 0.205 − 525.872
L(1) 0.212 0.181 −69.172 0.260 0.149 −86.874 0.233 0.177 526.351

To test for isotropy (H0) : β1 = β2, we use the statistic for coding difference on C =
{(i, j) : i+ j is even}: asymptotically, under (H0) this statistic has a χ2

1 distribution.
Further examples of coding tests are given in Exercise 5.8.

Example 5.13. Modeling blank experiments (continuation of Example 1.12)

Let us take another look at Mercer and Hall’s data giving harvested wheat data
from a blank experiment in a rectangular field divided into 20× 25 equally sized
parcels. As the initial graphical analysis (cf. Fig. 1.10-b) suggested there was no
effect with respect to rows, we propose modeling the quantity of harvested wheat
using a spatial regression with only a mean effect with respect to columns and a
stationary CAR(L) error model:

Xt = β j + εt , t = (i, j),

εt = ∑
s∈L(h)

csεt+s + et , Var(et) = σ2,

this for neighborhoods L(h) = {(k, l) : 0 < |k|+ |l| ≤ h} with range h = 0 (indepen-
dence) and h = 1 (4-NN model). We also estimate the 4-NN isotropic Liso(1) model.
Table 5.9 gives coding and ML estimations for each of the three models.

Next, we test L(0) against Liso(1). The two tests (coding and ML) with statis-
tic T a

n = 2{la
n(θ̂n,a)− la

n(ϕ̂n,C)} reject independence (H0) at 5%. The two tests of
Liso(1) against L(1) accept isotropy.

5.4.4 Comparing asymptotic variance of estimators

While it seems intuitive that we lose information on passing from ML to MCPL and
from MCPL to Coding, this can only be justified if we know how to calculate the
asymptotic variance of each of the three methods. This is indeed possible when X is
an ergodic Ising model (99) or if X is the 2d-NN isotropic Markov Gaussian random
field on Z

d ,

Xt = β ∑
s:‖s−t‖1=1

Xs + et , |β | < 1
2d

. (5.31)

Let us consider further this second example. This specification is associated with
a unique exponentially-mixing ergodic Gaussian random field X (cf. §B.2). If ρ1

denotes the correlation at distance 1 and if X is observed on the cube with sides
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of n points, the asymptotic variance of ML, MCPL and coding estimators of β are
respectively (26):

lim
n

(n×Varβ̂ML) =
1

2(2π)d

∫

T d

(
∑d

i=1 cosλi

1−2β ∑d
i=1 cosλi

)2

dλ1 . . .dλd ,

lim
n

(n×Varβ̂MCPL) =

{
2β 2(1−2dρ1)2

2dρ2
1

if β �= 0

1/d otherwise
,

lim
n

(n×Varβ̂C) =

{
β (1−2dβρ1)

dρ1
if β �= 0

1/d otherwise
,

the retained coding set being C = {i = (i1, i2, . . . , id) ∈ Z
d such that i1 + i2 + . . .+ id

is even}. Table 5.10 gives for d = 2 the relative efficiencies e1(β ) = ML/coding
and e2(β ) = ML/MCPL as well as the NN correlation ρ1(β ) for 0 ≤ β < 1/2d.
We see that the loss of efficiency of MCPL compared with ML is small if β < 0.15
(remember that for d = 2, we must impose |β | < 0.25).

Table 5.10 Relative efficiencies e1 = ML/Coding, e2 = ML/MCPL and NN correlation ρ1 for the
4-NN isotropic Gaussian random field as a function of β .

4β 0.0 0.1 0.2 0.3 0.4 0.6 0.8 0.9 0.95 0.99
ρ1 0.0 0.03 0.05 0.08 0.11 0.17 0.27 0.35 0.60 0.73
e1 1.00 0.99 0.97 0.92 0.86 0.68 0.42 0.25 0.15 0.04
e2 1.00 1.00 0.99 0.97 0.95 0.87 0.71 0.56 0.42 0.19

We also see that β 
→ ρ1(β ) initially increases slowly, then rapidly when β ↑ .25,
ρ1 equaling 0.85 when (1− 4β ) = .32× 10−8 (20; 21). An explanation for this
behavior is given in Exercise 1.17.

Under independence (β = 0), ML, MCPL and coding have the same efficiency.
While this is easy to explain between ML and MCPL, the coding efficiency is more

Table 5.11 Efficiency e1(0) = ML/coding for a ν-NN isotropic CAR model in the independent
case (β = 0) and for various regular networks of nodes with ν neighbors.

Regular network S ν τ−1 e1

linear 2 2 1
square 4 2 1
square+diagonals 8 4 1/2
triangular 6 3 2/3
hexagonal 3 2 1
Body-centered cubic 8 2 1
Face-centered cubic 12 4 1/2
tetrahedral 4 2 1
d-dimensional cubic 2d 2 1
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surprising. In fact, e1(0) = 1 is unique to regular lattices whose geometry allows
asymptotic rates of optimal coding τ = limn(�Cn/�Dn) = 1/2. This is the case in
Z

d . Table 5.11 (27) shows that for isotropic ν-NN CAR models Xi = β ∑∂ i Xj + ei,
i ∈ S, |β | < 1/ν on regular networks, but that this is no longer true for graphs with
optimal coding rates τ < 1/2.

5.4.5 Identification of the neighborhood structure of a Markov
random field

The goal here is to identify the neighborhood structure L of a Markov random field
with local specification πi(xi | xi) = πi(xi | xi+L) using a τ(n)-penalized contrast (cf.
Appendix C, §C.3). If Lmax denotes an upper bounding neighborhood, we select the
L̂n minimizing:

L̂n = argmin
L⊆Lmax

{
Un(θ̂L)+

τ(n)
n

�L

}
.

We now give two results.

Identification of a Gaussian CAR model on Z
d

Let Lmax be a finite subset of (Zd)+, the positive half-space of Z
d with respect to

the lexicographic order and, for m = �Lmax,

Θ = {c ∈ R
m : [1−2 ∑

l∈Lmax

cl cos( tλ l)] > 0 for all λ ∈ T
d}.

If θ ∈Θ , the equations Xi =∑l∈Lmax cl(Xi−l +Xi+l)+ei with E(eiXj) = 0 when i �= j
define a CAR(Lmax) model. Suppose that the true model is a Gaussian CAR(L0),
L0 ⊆ Lmax. If X is observed on Dn = {1,2, . . . ,n}d , then using for Un Whittle’s
Gaussian contrast (cf. (5.13)), we have the following result: if

T log log(n) < τ(n) < τ×n,

then L̂n = L0 for large n if τ > 0 is small enough and if T is large enough, for
example if τ(n) = log(n) or τ(n) =

√
n (102, Prop. 8). More precisely, Guyon

and Yao (102) give bounds on the probability of two sets related to an incorrect
parametrization of the model, these being the overfitted set M+

n = {P̂n � P0} and the
underfitted one M−

n = {P̂n � P0}.

Neighborhood of a Markov random field with a finite number of states

For a finite and symmetric Lmax ⊂ Z
d , 0 /∈ Lmax, consider an Lmax-Markov random

field X with finite state space E and translation-invariant specification belonging to
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the exponential family (5.23). For (x,v) ∈ E ×ELmax , note by 〈θ ,h(x,v)〉 the con-
ditional energy at 0, where θ ∈ Θ ⊂ R

m and h = t(hl(x,v), l = 1, . . . ,m) ∈ R
m.

We know (cf. (5.24)) that if the matrix H = (h(x,v)) with columns h(x,v), (x,v) ∈
E ×ELmax has full rank m, then the parametrization by θ is identifiable. Suppose
that the neighborhood support of X is L0 ⊆ Lmax. By considering the penalized
conditional log-pseudo-likelihood contrast, it is possible to show that if the rate of
penalization satisfies:

τ(n) → ∞ and τ(n) < τ×n

for a small enough τ > 0, then L̂n = L0 for large n (102, Prop. 9). We remark that
the search for the support of Markov random fields is also studied in (124; 52); in
particular, (52) do not suppose known an upper bound for Lmax.

Example 5.14. Modeling spatial distribution of agricultural land use

The data studied here (5) come from satellite images of the Nebrodi region of
Sicily, Italy (cf. http://stat.uibk.ac.at/smij). The image (cf. Fig. 5.14) covers a surface
of 2.016 km2 and is divided into 40×56 = 2240 pixels, each representing a parcel
of land of 30×30 m2. The output variable considered is binary, Xs = 1 (resp. Xs = 0)
representing cultivated (resp. uncultivated) land. The cultivated parts can be divided
into arable land, citrus, olive and almond plantations whereas the uncultivated parts
include fields, forests, scrub and all other land types.

Also available to us are covariates describing certain characteristics of each par-
cel: soil density (DS) in grams per cubic centimeter, thickness of the layer of topsoil
(HT) in centimeters, annual rainfall (AR), soil permeability under saturated condi-
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Fig. 5.14 (a) satellite image X with 40×56 pixels of the Nebrodi region (Sicily, Italy): cultivated
(�) and uncultivated (�) land; (b) prediction of X using land covariates, including the neighbor-
hood auto-covariate and altitude DT M (model (5.34)) using the estimated ML parameter.
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tions (SP) and numerical data giving the altitude in meters (DTM). The goal of the
analysis is to find out whether these land characteristics influence land use.

To do this, we are going to work with two auto-logistic models, the first with 4-
NN and the second with 8-NN where, noting v1(x∂ i) = ∑ j:‖i− j‖=1 x j and v2(x∂ i) =
∑ j:‖i− j‖=√

2 x j,

P(Xi = 1|x j, j �= i) = exp(ηi +δi)/{1+ exp(ηi +δi)},
with: ηi = β0 +β1DSi +β2HTi +β3PMi +β4PCi +β5DT Mi

and
δi = β6v1(x∂ i) (5.32)

or
δi = β6v1(x∂ i)+β7v2(x∂ i). (5.33)

Model (5.32) is one of those studied by Alfó and Postiglione (5). We are also
going to consider the model where, apart from the two neighbor covariates, only
altitude (DTM) is significant among the land covariates:

ηi = β0 +β5TAi +β6v1(x∂ i)+β7v2(x∂ i). (5.34)

As for maximum CPL, coding estimates of β (cf. Table 5.12) are found using the
function glm in R: in effect, the minimum contrast associated with each method cor-
responds to maximization of the likelihood function of a generalized linear model,
the logistic model for which we had added one (resp. two) neighbor covariates.

For the (5.32) (resp. (5.33)) model, there are two (resp. four) possible codings.

Table 5.12 Coding estimates of the 4- and 8-NN auto-logistic models characterizing spatial dis-
tribution of land use.

Model 5.32 Model 5.33 Model 5.34
C0 C1 C∗

0 C∗
1 C∗

2 C∗
3 C∗

0 C∗
1 C∗

2 C∗
3

β̂0 0.361 7.029 0.829 −0.888 1.508 13.413 1.998 5.221 0.223 5.643
s.e. 10.351 10.197 14.317 14.807 15.239 14.797 3.080 3.123 3.245 3.009

β̂1 −1.975 −1.625 −1.640 −2.645 −0.168 −1.171 − − − −
s.e. 1.691 1.647 2.419 2.213 2.742 2.301 − − − −
β̂2 0.069 0.045 0.039 0.077 0.020 0.038 − − − −
s.e. 0.051 0.050 0.073 0.067 0.083 0.069 − − − −
β̂3 0.008 −0.001 0.006 0.015 −0.006 −0.012 − − − −
s.e. 0.018 0.018 0.026 0.026 0.027 0.026 − − − −
β̂4 1.360 1.418 1.658 2.461 −0.165 0.969 − − − −
s.e. 1.298 1.273 1.859 1.734 2.069 1.778 − − − −
β̂5 −0.010 −0.011 −0.009 −0.014 −0.002 −0.010 −0.006 −0.010 −0.004 −0.010
s.e. 0.004 0.004 0.005 0.006 0.006 0.005 0.004 0.004 0.004 0.003

β̂6 1.303 1.203 1.150 0.851 1.254 1.015 1.139 0.873 1.248 1.024
s.e. 0.095 0.089 0.156 0.161 0.166 0.158 0.155 0.160 0.165 0.156

β̂7 − − 0.194 0.515 0.359 0.203 0.177 0.489 0.378 0.206
s.e. − − 0.155 0.166 0.154 0.159 0.153 0.159 0.152 0.157
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Estimated variances V̂ar(β̂ (k)
i ) for each coding are those given in the output of the

R function glm: in effect, coding contrasts are associated with exact (conditional)
likelihoods which are in turn associated with (conditional) Fisher information. For
stationary models, estimated variances V̂ar(β̂ (k)

i ) converge to the true values.

Though we can summarize the coding estimation by taking the mean β̂i of es-

timates (β̂ (k)
i ,k = 1, . . . ,m) over the different codings, it is important to note that

these different coding estimates are not independent; therefore
√
∑m

k=1 V̂ar(β̂ (k)
i )/m

is not the standard error of β̂i.
There are three ways to calculate standard errors of maximum CPL estimators:

we use here parametric bootstrap by simulating m = 100 times X (i) from the model
β̂CPL, estimating parameters β (i) for each X (i) and calculating the square root of the
empirical variance over these 100 estimations.

For ML, we use a Newton-Raphson Monte Carlo algorithm (cf. §5.5.6) with N =
1000 simulations X (i) of a model under the initial estimator ψ = β̂CPL to calculate
a value close to the actual likelihood. This choice should be examined more closely
if the simulated exhaustive statistics T (1), . . . ,T (1000) do not contain the observed
statistic T obs in their convex envelope (in such cases, there is no ML solution). One
possible choice is to take the output of the first iteration of the Newton-Raphson
algorithm as the new initial value ψ and simulate again the random field X (i) under
ψ . The estimator obtained in this way was suggested by Huang and Ogata (115).

Table 5.13 Estimates (coding, CPL and ML) of 4- and 8-NN auto-logistic models describing the
spatial distribution of land use and their standard errors (s.e.). The bottom row of the table gives
the residual sum of squares (RSS) of predictions of X by each of the three methods.

Model 5.32 Model 5.33 Model 5.34
C CPL ML C CPL ML C CPL ML

β̂0 3.695 4.115 -5.140 3.715 3.086 -4.764 3.271 3.394 -0.614
s.e. 7.319 5.618 4.510 7.397 5.896 3.066 1.558 1.936 1.124

β̂1 -1.800 -1.810 -1.230 -1.406 -1.495 -0.950 − − −
s.e. 1.196 0.972 0.670 1.213 1.048 0.721 − − −
β̂2 0.057 0.057 0.039 0.043 0.047 0.029 − − −
s.e. 0.036 0.030 0.020 0.037 0.032 0.021 − − −
β̂3 0.003 0.003 0.009 0.001 0.002 0.008 − − −
s.e. 0.013 0.009 0.007 0.013 0.010 0.005 − − −
β̂4 1.389 1.387 0.897 1.231 1.279 0.660 − − −
s.e. 0.918 0.745 0.455 0.932 0.798 0.520 − − −
β̂5 -0.010 -0.010 -0.005 -0.009 -0.009 -0.004 -0.007 -0.008 -0.003
s.e. 0.003 0.002 0.002 0.003 0.003 0.002 0.002 0.002 0.001

β̂6 1.253 1.240 1.409 1.068 1.055 1.109 1.071 1.061 1.097
s.e. 0.067 0.092 0.090 0.080 0.142 0.128 0.079 0.099 0.123

β̂7 − − − 0.318 0.303 0.294 0.313 0.308 0.319
s.e. − − − 0.079 0.132 0.118 0.078 0.059 0.113
RSS − − − − − − 350.111 347.815 308.118
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Table 5.13 gives estimations for the three models using each of the three methods,
coding (C), CPL and ML. These results show that the two autoregressive parameters
of the 8-NN model (5.33) are significant and that among the land covariates, only al-

titude is significant. Model selection based on the values of statistics β̂ a/

√
V̂ar(β̂ a

k ),
a = C,CPL,ML chooses model (5.34) for each method.

For this model, let us compare the three estimation methods with respect to their
predictive qualities (226). Using Gibbs sampling, we simulate m = 100 times a ran-

dom field X (i) under β = β̂ and note by mk the number of times we observe X (i)
k = 1

at site k. An empirical estimation of the probability P(Xk = 1) is p̂k = mk/m and
the sum of the squares of residuals RSS = ∑k(Xk − p̂k)2 gives a measure of the pre-
diction error for the estimation β̂ . We notice that for this criteria, ML is better than
MCPL which is in turn better than coding.

5.5 Statistics for spatial point processes

5.5.1 Testing spatial homogeneity using quadrat counts

Suppose that x = {xi, i = 1, . . . ,n} is generated by a PP over a set A, itself inside an
larger observation window in order to remove boundary effects. The first modeling
step is to test the CSR hypothesis:

(H0) X is a homogeneous Poisson PP on A.

There are many techniques for testing (H0), including: (i) statistics based on quadrat
counts, elements of a partition of A (62; 48; 194) and (ii) statistics based on distances
between pairs of points of x (cf. §5.5.3).

We divide the observation window A into m disjoint quadrats Ai, i = 1, . . . ,m
having the same measure ν(Ai) = ν and count the number of points Ni = n(Ai) of x
in each Ai. We then calculate the statistic:

Q =
m

∑
i=1

(Ni −N)2

N

with N = ∑m
i=1 Ni/m. If X is a homogeneous Poisson PP with intensity τ , the Ni

are independent Poisson variables with mean τν and the distribution of Q can be
approximated by a χ2 with m−1 degrees of freedom. This approximation is judged
to be reasonable if E(Ni) ≥ 1 and m > 6 (Diggle (62)).

Fig. 5.15 gives an illustration of this method on the finpines dataset. We
find Qobs = 46.70 and as P(χ2

15 > Qobs) " 0, we reject the homogeneous Poisson
hypothesis for the pine distribution.

This method can be extended to testing the inhomogeneous case. If X is a Poisson
PP with intensity ρ(·,θ), we can use ML to estimate θ (cf. §5.5.2), then estimate
the expected totals per block by Ni(θ̂) =

∫
Ai
ρ(u, θ̂)du. The test statistic for spatial
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Fig. 5.15 Statistics of the 4× 4 quadrats for the Finnish pines data (finpines). To the left, the
16 quadrats and the associated counts Ni; to the right, the empirical distribution of the Ni (solid
line) and the fitted theoretical Poisson distribution (dotted line).

independence is now

Q =
m

∑
i=1

(Ni −Ni(θ̂))2

Ni(θ̂)
.

For large enough m and if each Ni(θ̂) ≥ 1, the distribution of (Q−m)/2m is close
to a Gaussian random variable with variance 1 if there is spatial independence.

5.5.2 Estimating point process intensity

5.5.2.1 Estimating parametric models for a Poisson PP

Let X be a PP observed on a measure positive compact subset A of R
d and let

x = {x1, . . . ,xn} be n = n(A) points generated by this PP. If X is stationary, the
intensity τ can be estimated by:

τ̂ =
n(A)
ν(A)

.

τ̂ is an unbiased estimator of τ . Furthermore, if X is a homogeneous Poisson PP, τ̂
is in fact the maximum likelihood estimator of τ .

If X is ergodic (cf. §B.1) and if (An) is an increasing sequence of bounded convex
sets such that d(An) −→ ∞, where d(A) = sup{r : B(ξ ,r) ⊆ A} denotes the interior
diameter of A, then

τ̂n =
n(An)
ν(An)

→ τ a.s.
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Homogeneous Poisson PPs as well as Neyman-Scott PPs derived from homoge-
neous Poisson PPs are themselves homogeneous.

If X is an inhomogeneous Poisson PP with intensity ρ(·;θ) parametrized by θ ,
the ML estimator of θ can be found by maximizing the log-density of X on A (cf.
(3.5)):

lA(θ) = ∑
ξ∈x∩A

logρ(ξ ;θ)+
∫

A
{1−ρ(η ;θ)}dη . (5.35)

If ρ(·;θ) follows a log-linear model, maximizing lA(θ) is done in the same way as
for the log-likelihood of generalized linear models (cf. also §5.5.5.1). Baddeley and
Turner (14) suggest approximating

∫
Aρ(η ;θ)dη by ∑m

j=1ρ(η j;θ)w j for η j ∈ A
and suitable integration weights wi, leading to the log-likelihood:

lA(θ) " ∑
ξ∈x∩A

logρ(ξ ;θ)−
m

∑
j=1
ρ(η j;θ)w j. (5.36)

If the set of η j contains x∩A, (5.36) can be rewritten

lA(θ) "
m

∑
j=1

{y j logρ(η j;θ)−ρ(η j;θ)}w j, (5.37)

where y j = 1[η j ∈ x∩A]/w j. The term on the right hand side of (5.37) is formally
equivalent to a log-likelihood reweighted by weights w j for independent Poisson
variables with mean ρ(η j;θ) and (5.37) can be maximized using GLM software
(cf. the spatstat package in R).

Consistency and asymptotic normality of this ML estimator are studied in Rath-
bun and Cressie (179) and Kutoyants (135).

We present briefly Rathbun and Cressie’s result. Suppose X is an inhomogeneous
Poisson PP with log-linear intensity

logρ(ξ ;θ) = t z(ξ )θ , θ ∈ R
p,

where the z(ξ ) are observable covariates. Suppose furthermore that the sequence of
bounded domains of observation (An) is increasing in that d(An) −→ ∞ and:

(L1)
∫

Aρ(ξ ;θ)dξ < ∞ for every Borel set A satisfying ν(A) < ∞.
(L2) There exists K < ∞ such that ν(ξ ∈ S : max1≤i≤p |zi(ξ )| > K) < ∞.
(L3) The matrix Mn =

∫
An

z(ξ )z(ξ )tdξ is p.d. and satisfies limn M−1
n = 0.

Then, θ̂n = argmax
θ∈Θ

lAn(θ) is consistent and for large n:

(θ̂n −θ) ∼ Np(0, In(θ)−1), where In =
∫

An

z(ξ ) t z(ξ )exp{ t z(ξ )θ}dξ .
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Estimating PP intensity

When the Poisson hypothesis is no longer valid, Møller and Waagepetersen (160)
still use the functional lA(θ) (5.35) to estimate the parameter θ of the density ρ(·;θ).
In this case, lA(θ) is known as a “Poisson pseudo-likelihood” or “composite likeli-
hood” and is useful for evaluating intensity parameters.

5.5.2.2 Nonparametric intensity estimation

Nonparametric estimation of intensity functions x 
→ ρ(x) is a similar task as that
for probability densities. Diggle (62) suggests the estimator

ρ̂σ (x) =
1

Kσ (x)

n

∑
i=1

1
σd k

(
x− xi

σ

)
,

with k : R
d →R

+ a symmetric kernel integrating to 1, σ > 0 a smoothing parameter
and

Kσ (x) =
∫

A

1
σd k

(
x−ξ
σ

)
ν(dξ ).

The choice of σ is important and we suggest trying several values. On the other
hand, the choice of k(·) is less so, some classical choices being the Gaussian kernel
k(x) = (2π)−d/2e−‖x‖2/2 and the Epanechnikov kernel k(x) = c(d)1 (‖x‖ < 1)(1−
‖x‖2).

Fig. 5.16 gives the location of 514 maple trees in a Michigan forest (lansing
data from the spatstat package). These data, scaled to fit in a unit square, exhibit
a non-constant intensity. This intensity has been estimated with a Gaussian kernel
for three values of the smoothing parameter, σ = 0.01, 0.05 and 0.1.

5.5.3 Estimation of second-order characteristics

5.5.3.1 Empirically estimating NN distributions

If X is a stationary PP, the distribution G(·) of the distance of the point ξ ∈ X to its
nearest neighbor in X is (cf. §3.5.2):

G(h) = Pξ (d(ξ ,X\{ξ}) ≤ h), r ≥ 0.

Let n be the number of points of X in A,h = {ξ ∈ A : B(ξ ,h) ⊆ A}, the h-interior
of A, where B(ξ ,h) is the ball of center ξ and radius h, and hi the distance from
an observation xi ∈ x, i = 1, . . . ,n, to its nearest neighbor in x. A nonparametric
estimator of G is the empirical cumulative distribution function
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(a)

(c) (d)

(b)

Fig. 5.16 (a) Locations of 514 maple trees in a Michigan forest. Nonparametric estimates of
intensity, with (b) σ = 0.01, (c) σ = 0.05 and (d) σ = 0.1.

Ĝ(h) =
1
n

n

∑
i=1

1(0,hi](h).

The distribution of the distance of a point ξ ∈ R
d to its NN in X is

F(h) = P(d(ξ ,X\{ξ}) ≤ h), h ≥ 0.

To estimate F , we start by choosing independently of X a regular grid of points over
A,h. Let m be the number of points of the grid and h∗i the distance from a point on
the grid to its nearest neighbor in XA, i = 1, . . . ,m. A nonparametric estimator of F
is the empirical cumulative distribution function

F̂(h) =
1
m

n

∑
i=1

1(0,h∗i ](h).
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A nonparametric estimator of the index J of a Poisson PP is thus:

Ĵ(h) =
1− Ĝ(h)
1− F̂(h)

, if F̂(h) < 1.

The first column in Fig. 5.17 gives estimates of J for the ants, cells and
finpines data (cf. Fig. 3.1-a–c). The null hypothesis is accepted for the ants data
and rejected for the other two, the cells data having higher regularity and the pines
lower.

Another useful tool for testing if a PP is Poisson uses an estimate of the
function K.

5.5.3.2 Nonparametric estimation of Ripley’s K function

Let us begin by providing nonparametric estimators of the second-order reduced
moment, Ripley’s K function or its extension. This function, defined by (3.12)
suggests that a natural estimator of τ2K (B) is, for X homogeneous with intensity
τ observed on A,

τ2K̂ (B) =
1
ν(A)

�=
∑

ξ ,η∈X∩A

1B(ξ −η).

This estimator underestimates τ2K as boundary points of A have less neighbors in
A than interior points. We can limit this bias by “enlarging” A but this is not always
possible. A possible way to decrease the bias of this estimator is to consider (160):

K̂A(B) =
�=
∑

ξ ,η∈X∩A

1B(ξ −η)
ν(Wξ ∩Wη)

if ν(Wξ ∩Wη) > 0, where Wξ = ξ +W is the ξ -translation of W . In effect:

E

(
K̂A(B)

)
= E

( �=
∑

ξ ,η∈X

1B(ξ −η)1A(ξ )1A(η)
ν(Wξ ∩Wη)

)

=
∫ 1B(ξ −η)1A(ξ )1A(η)

ν(Wξ ∩Wη−ξ )
α2(dξ ×dη)

= τ2
∫ ∫ 1B(u)1A(ξ )1A(ξ +ζ )

ν(Wξ ∩Wξ+ζ )
dξK (dζ )

= τ2
∫

1B(ζ )K (dζ ) = τ2K (B).

For X an isotropic PP on R
2 and B = B(0,h) the ball with center at 0 and radius

h, Ripley (184) proposes the estimator:
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Fig. 5.17 Two second-order summary statistics: left, h 
→ Ĵ(h) and right, h 
→ (L̂(h)− h), for the
ants, cells and finpines spatial distributions (cf. Fig. 3.1-a–c). When X is a homogeneous
Poisson PP, L(h)−h ≡ 0 and J ≡ 1.
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K̂A(h) =
ν(A)
n(A)

�=
∑

ξ ,η∈X∩A

w(ξ ,η)1[0 < ‖ξ −η‖ < h],

where w(ξ ,η)−1 is the proportion of the perimeter of the circle C(ξ ;‖ξ −η‖) with
center at ξ and with the point η on its boundary that is found in A. This estimator
is unbiased if h < h∗, where h∗ is the largest radius r for a circle C(ξ ;r) centered
at some ξ ∈ A with a boundary cutting A. For example, if A = [0,1]2, h∗ =

√
2. In

d = 2 dimensions, we can deduce an estimator of L:

L̂(h) =
√

K̂(h)/π.

Theorem 5.7. (Heinrich (111)) Suppose that X is an ergodic PP and (An) an
increasing sequence of bounded convex sets with interior diameters satisfying
d(An) −→ ∞. Denote k̂n(h) = K̂An(B(0,h)) and k(h) = K (B(0,h)). Then, for any
fixed h0,

lim
n

sup
0≤h≤h0

∣∣∣k̂n(h)− k(h)
∣∣∣= 0 a.s.

Proof : By the ergodic theorem (cf. §B.1), for all h,

lim
n

k̂n(h) = k(h) a.s.

An argument in the style of Glivenko-Cantelli (cf. (55)) then gives the required
result.

��
In the same way as homogeneous PPs, inhomogeneous PPs may exhibit aggre-

gation, regularity and independence tendencies. In order to identify this behavior,
Baddeley et al. (13) extended Ripley’s K function to second-order stationary inho-
mogeneous PPs with respect to the reweighted correlation g (cf. (3.1)) by introduc-
ing the function (cf. (3.14)):

KBMW (h) =
1
ν(A)

E

[ �=
∑

ξ ,η∈X

1{‖ξ−η‖≤h}
ρ(ξ )ρ(η)

]
,

whose natural empirical estimator is:

K̂BMW (h) =
1
ν(A)

�=
∑

ξ ,η∈X∩A

1{‖ξ−η‖≤h}
ρ̂(ξ )ρ̂(η)

.

Here again, it is possible to correct for boundary effects.
For inhomogeneous Poisson PPs in 2 dimensions, we still have: KBMW (h) = πh2.

Thus, by looking at K̂BMW (h)−πh2, we could test the hypothesis that a process is
an inhomogeneous Poisson PP, just as Ripley’s K function allows us to test whether
a process is a homogeneous Poisson PP.



5.5 Statistics for spatial point processes 215

5.5.3.3 Monte Carlo tests

In general, the distribution of the previous estimators, useful for constructing tests
and confidence intervals, is unknown. Monte Carlo approximation of the null dis-
tribution of the test provides a convenient tool for testing model fit. Here are the
details of the method.

Suppose that xA represents the configuration in window A of a homogeneous
Poisson PP X on R

2 with intensity τ (hypothesis (H0)). We want to construct a
confidence interval for G(h), the cumulative distribution function of the distance of
a point in X to its NN as a function of h. Conditional on n = n(x), we generate m

independent data points x(i)
A of X on A, a PPP(λ̂ ) with intensity λ̂ = n/ν(A) and

for each x(i)
A we calculate Ĝi(h), i = 1, . . . ,m. We then approximate the quantiles

of Ĝ(h) using the empirical distributions of the {Ĝi(h), i = 1, . . . ,m}. To test (H0),
it remains to compare these quantiles with the statistic Ĝ0(h) calculated using the
data xA. If calculating Ĝ is not quick and simple, we can choose a smaller m so that
the bounds Ĝin f (h) = mini Ĝi(h) and Ĝsup(h) = maxi Ĝi(h) define under (H0) the
confidence interval of level 1−2/(m+1),

P(Ĝ0(h) < Ĝin f (h)) = P(Ĝ0(h) > Ĝsup(h)) ≤ 1
m+1

,

with equality if the values Ĝi are all different. We could also calculate the func-
tions Ĝin f , Ĝ0, Ĝsup and compare them with πh2. If Ĝ0 is in the confidence band
{[Ĝin f (h), Ĝsup(h)] : h ≥ 0}, we can conclude that X is a homogeneous Poisson PP.

Other Poisson-type test functions can also be used, for example:

T = sup
h1≤h≤h2

|K̂(h)−πh2| or T =
∫ h3

0
(Ĵ(h)−1)2dh,

where the hi, i = 1,2,3 are certain chosen radii. We could then compare the value
T0 = T (xA) obtained for observation xA with the ordered sample T (1) ≤ T (2) . . . ≤
T (m) obtained by generating m independent values x(i)

A of X . A bilateral rejection
region at level α = 2k/(m+1) is

R = {T0 ≤ T (k)}∪{T0 ≥ T (m−k+1)}.

Analyzing the same data as in Fig. 3.1 using L̂ leads again to the previous conclu-
sions (cf. Fig. 5.17, second column).

These types of Monte Carlo procedures can be easily extended to other situations
including validation of general models.

Example 5.15. Biodiversity in tropical rainforests

We turn to a dataset analyzed by Waagepetersen (220) giving the spatial distri-
bution of 3605 trees of the species Beilschmiedia pendula Lauraceae in the tropical
rainforests of Barro Colorado Island (cf. Fig. 5.18-a).
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Fig. 5.18 (a) Locations of 3605 trees in a part of the Barro Colorado forest; covariates altitude
(elev, (b)) and slope (grad (c)).

Tropical rainforests are characterized by tall and densely distributed vegetation
in a warm and humid climate. One question is to know whether the spatial dis-
tribution is linked to altitude (elev) and land gradient (grad). An initial model
to consider is a Poisson PP with log-linear intensity logρ(ξ ;θ) = t z(ξ )θ , where
z(ξ ) = t(1,zelev(ξ ),zgrad(ξ )). The ML of the parameters and their standard errors
are, in order, -8.559 (0.341), 0.021 (0.002) and 5.841 (0.256). Thus, elevation and
slope are significant as the forest density increases with both. As for the nonpara-
metric estimation of KBMW based on ρ(ξ ; θ̂) (cf. Fig. 5.19):

K̂BMW (h) =
1
ν(A)

�=
∑

ξ ,η∈X∩A

1{‖ξ−η‖≤h}
ρ(ξ ; θ̂)ρ(η ; θ̂)

,
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Fig. 5.19 Estimated function K̂BMW (solid line) and lower and upper confidence bands (95%) after
40 trials of a homogeneous Poisson PP with the same estimated intensity.

it is significantly different to πh2, that of a Poisson PP with intensity ρ(·; θ̂).
This leads us to doubts about using a Poisson PP model, either for modeling
intensity or in terms of spatial independence of the tree distribution. More pre-
cisely, Waagepetersen (220) proposed modeling these data using an inhomogeneous
Neyman-Scott PP.

Example 5.16. Differences in spatial distribution depending on plant species

This example comes from a study of Shea et al. (198) on the spatial distribu-
tion of the aquatic tulip species Nyssa aquatica with respect to three characteristics
(male, female, not mature) in three swamps of size 50× 50 m2 in South Carolina
(cf. nyssa dataset on the website). We take a look here at data for only one swamp
and the trait “sex” (male or female, cf. Fig. 5.20). The random distribution of males
and females is a priori judged optimal as it facilitates reproduction. Aggregation of
males or females can be explained by different resource needs. The distribution of
each sex can be seen as a MPP (Marked Point Process) Y = (xi,mi), where mi is the
binary variable “sex.”

We choose to evaluate spatial aggregation via Ripley’s K function. If the male (1)
and female (0) populations have the same spatial aggregation, then
D(h) = K1(h)−K0(h) will be exactly zero. To test this hypothesis, we consider the
statistic D̂(h) = K̂1(h)− K̂0(h). As the distribution of D̂ under the null hypothesis is
difficult to obtain, we take a Monte Carlo approach conditional on the superposition

of male and female locations. To this end, we generate k MPPs Y ( j) = (xi,m
( j)
i ),

j = 1, . . . ,k, where m( j) = (m( j)
i ) is a random permutation of marks m = (mi), fol-

lowed by calculating D̂( j)(h) = K̂( j)
1 (h)− K̂( j)

0 (h). For k = 40 trials, the obtained
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confidence envelopes (cf. Fig. 5.20-b) show that, without considering population
density, differences between the sexes is not seen in the spatial pattern.

5.5.4 Estimation of a parametric model for a point process

If X follows a parametric model M (θ) that allows us to calculate Kθ , we can esti-
mate θ with OLS by minimizing

D(θ) =
∫ h0

0
{K̂(h)c −K(h;θ)c}2 dh. (5.38)

for some chosen power c > 0 and range h0. Diggle (62, p. 87) recommends h0 = 0.25
if A = [0,1]2, c = 0.5 for regular PPs and c = 0.25 for PPs with aggregation. For
calculations, D(θ) must be approximated by the sum

D∗(θ) =
k

∑
i=1

wi{K̂(hi)c −K(hi;θ)c}2

for suitable weights wi. If the analytic form of Kθ is unknown, we can use a Monte
Carlo approximation KMC(θ) = ∑m

i=1 K̂i(θ)/m by performing m independent trials

x(i)
A for X under the model M (θ) and then calculating K̂i(θ) for each i.

Consistency of this OLS estimator was studied by Heinrich (111) for ergodic
X . Guan and Sherman (95) established asymptotic normality of estimators under
a mixing condition that is satisfied if X is a Neyman-Scott PP or log-Gaussian
Cox PP.

Example 5.17. Estimation and validation of a parametric model
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Fig. 5.20 (a) Spatial pattern of the species Nyssa aquatica in terms of male (•) and female (+);
(b) (continuous) estimate of D(h) = K1(h)−K2(h) and upper and lower confidence bands (dashed
lines) at 95% obtained from 40 simulations.
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Fig. 5.21 Estimation of D(h) = L(h)− h for the finpines data (cf. Fig. 3.1-c): solid line (a
and b), nonparametric estimation of D; in (b) the dotted line is a parametric estimation using the
Neyman-Scott model. These estimates are then compared with upper and lower confidence bands
(95%) obtained after 40 simulations: (a) of a homogeneous Poisson PP of the same intensity; (b)
of a Neyman-Scott process with the given estimated parameters.

We remark that Fig. 5.17-c, representing the finpines data seems to show
that the spatial pattern has aggregates. We therefore propose modeling X using a
Neyman-Scott process with location of parents given by a homogeneous PPP(λ ),
with the number of descendants following a Poisson distribution with mean μ and
position of descendants around a parent a N2(0,σ2I2). We estimate parameters by
minimizing (5.38) with h0 = 2.5, c = 0.25, performing the integration over a regular
grid with 180 points. Under this model, the function K is:

K(h;θ) = πh2 +θ−1
1 {1− exp(−h2/4θ2)},

with θ1 = μ and θ2 =σ2. We find μ̂ = 1.875, σ̂2 = 0.00944 and λ̂ = n(x)/(μ̂ν(A))=
0.672. We then validate the model using parametric bootstrap by generating m = 40

values from a Neyman-Scott PP with parameters (μ̂, σ̂2, λ̂ ). The confidence region
(cf. Fig. 5.21) shows that this model is a reasonable choice as K̂0(h) is inside the
region for h > 0.2.

5.5.5 Conditional pseudo-likelihood of a point process

5.5.5.1 Definition and evaluation of the conditional pseudo-likelihood function

As the notion of conditional density of PPs at individual sites makes no sense, we
have to create a new notion of conditional pseudo-likelihood. Intuitively, this can
be developed based on the one for random fields on a network in the following way
(184):
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1. For a finely-spaced partition of X , we associate a counting process with the PP
on each node of the partition.

2. We then define the CPL of this counting process.
3. We study the limit of this CPL as the area of each partition element goes to 0.

This limit is identifiable if the density fθ of X is hereditary (cf. (3.6)) and if fθ is
stable, i.e., if:

∃cθ and Kθ > 0 finite such that : ∀x, fθ (x) ≤ cθKn(x)
θ .

We thus consider a sequence of nested partitions of S, Ai, j ⊆Ai−1, j, (S =
⋃mi

j=1 Ai, j, i =
1,2, . . .) satisfying, if δi = max{ν(Ai, j), j = 1,mi},

mi → ∞, miδ 2
i → 0 . (5.39)

Theorem 5.8. Pseudo-likelihood of a point process (Jensen-Møller (121))
Note μS the measure of the PPP(1). If the density fθ of X is hereditary and stable,

then, under (5.39):

lim
i→∞

mi

∏
j=1

fθ (xAi, j |xS\Ai, j
) = exp{λν(S)−Λθ (S,x)}∏

ξ∈x

λθ (ξ ,x\{ξ}), μS a.s.,

where

λθ (ξ ,x) =
fθ (x∪{ξ})

fθ (x)
1{ fθ (x) > 0} and Λθ (A,x) =

∫

A
λθ (η ,x)dη .

If A ∈ B(Rd), the CPL of X on A is defined as:

plA(x,θ) = exp{−Λθ (A,x)}∏
ξ∈x

λθ (ξ ,x\{ξ}). (5.40)

The CPL of a PP is proportional to the product across sites xi ∈ X of the Pa-
pangélou conditional intensities. If ξ ∈ xA, the definition of λθ (ξ ,x) does not change
if the joint density on S is replaced by the conditional density fθ (xA|xS\A). This is
important to note as it means we can decide to model a set of points observed in
an observation window A either without needing to take into account what happens
outside or, instead, conditionally on S\A. The second approach avoids boundary
effects.

The maximum CPL estimator on S is

θ̂S = argmax
θ∈Θ

plS(x,θ).

If fθ (x) = Z(θ)−1h(x)exp{tθv(x)} belongs to an exponential family, the CPL is
concave and strictly so if the model is identifiable at θ :

if θ �= θ0, μS{(ξ ,x) : λθ (ξ ,x) �= λθ0(ξ ,x)} > 0. (5.41)
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Example 5.18. Strauss process

For a Strauss PP (3.9) with density fθ (x) = α(θ)β n(x)γs(x), β > 0, γ ∈ [0,1], the
conditional intensity and CPL are respectively,

λθ (ξ ,x) = βγs(ξ ;x)

and

plS(x,θ) = β n(x)γs(x) exp

(
−β

∫

S
γs(ξ ,x)dξ

)
,

where s(ξ ,x) = ∑n
i=1 1{‖ξ − xi‖ ≤ r}.

If mini �= j |xi − x j| > r, then s(x) = 0 and the CPL is maximal when γ = 0. Also,

γ̂ > 0 and we get (β̂ , γ̂) by solving pl(1)
S (x, θ̂) = 0, i.e.,

n(x) = β
∫

S
γs(ξ ,x)dξ and ∑

ξ∈x

s(ξ ,x\{ξ}) = β
∫

S
s(η ,x)γs(η ,x)dη .

If γ̂ > 1, we take γ̂ = 1 and β̂ = n(x)/ν(S).
The advantage of CPLs is that they avoid having to calculate the normalizing

constant of joint densities. It nevertheless remains necessary to calculate the fac-
tor Λθ (S,x) =

∫
S λθ (ξ ,x)dξ . Baddeley and Turner (14) propose approximating this

integral by:

log plS(x,θ) "
n(x)

∑
i=1

logλθ (xi,x\{xi})−
m

∑
i=1
λθ (u j,x)w j, (5.42)

where u j, j = 1, . . . ,m are points of S and wi the weights associated with the inte-
gration formula. If the set of u j contains x, (5.42) can be rewritten

log plS(x,θ) "
m

∑
j=1

(y j logλ ∗
j −λ ∗

j )w j, (5.43)

where λ ∗
j = λθ (u j,x\{u j}) if u j ∈ x and λ ∗

j = λθ (u j,x) otherwise, and y j = 1l[u j ∈
x]/w j. The expression on the right hand side of (5.43) is analogous to (5.37) and can
therefore be maximized using GLM estimation software.

5.5.5.2 Asymptotic properties of the conditional pseudo-likelihood estimator
for Gibbs point processes

Consistency of the conditional pseudo-likelihood estimator

For X a PP observed in a sequence of windows (S(n)), Jensen and Møller (121)
establish consistency of estimation by maximum CPL when X is a Markov PP with
bounded range R (the range of a potential ϕ is R if ϕ(x)=0 as soon as two points
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in x are more than R apart) with a translation-invariant conditional specification
belonging to the exponential family:

fθ (xS|x∂S) =
1

Z(θ ;x∂S)
∏

/0 �=y⊆xS

∏
z⊆x∂S

ψ(y∪ z)exp{ tθφ(y∪ z)}.

Here, ∂S is the R-neighborhood of S, ψ(x) ≥ 0, φ(x) ∈ R
k, with ψ(x) = 1 and

φ(x) = 0 if x is not a clique. Furthermore, one of the two following conditions has
to hold:

(P1) ∀ x such that n(x) ≥ 2, ψ(x) ≤ 1 and tαφ(x)≥ 0 for α in the neighborhood
of the true value θ .

(P2) ∃N and K <∞ such that if n(x)≥ 2, ψ(x)≤ K, ‖φ(x)‖ ≤ K and n(xAi)≤ N,
where {Ai} is a partition of bounded Borel sets that cover S(n).

(P1) means that interactions are repulsive; (P2) allows consideration of attractive
potentials in the case of Markov processes with hard-core potentials.

5.5.5.3 Asymptotic normality of the conditional pseudo-likelihood estimator

Exploiting a property that resembles that of a martingale difference sequence,
Jensen and Künsch (123) proved that even under phase transition we have asymp-
totic normality of the CPL estimator. We now present their framework. Let X be a
Gibbs PP with pair interactions, finite range R and density

fθ (xS|x∂S) =
1

Z(θ ;x∂S)
exp{−θ1n(xS)−θ2 ∑

xi,x j∈xS∪x∂S

φ(xi − x j)}.

We associate with X a lattice process X∗ = (X∗
i ), where X∗

i = X ∩ Si is a partition
R

d =
⋃

i∈Zd Si, with Si = R̃× (i+]−1/2,1/2]d), R̃ > R. If Dn ⊆ Z
d is an increasing

sequence such that �∂Dn/�Dn → 0 with ∂Dn = {i ∈ Dn|∃ j /∈ Dn : | j− i|= 1}, and if
X is observed in the window

⋃
i∈Dn∪∂Dn

Si, the estimated value is the one maximizing
the pseudo-likelihood plS(n)(x,θ) of X calculated over S(n) =

⋃
i∈Dn

Si.
We suppose that θ2 > 0 and that one of the two following conditions on φ holds:

(J1) 0 ≤ φ(ξ ) < ∞.
(J2) φ(ξ ) = κ(‖ξ‖), where κ : R

+ → R satisfies:

1. κ(r) ≥ −K for K < ∞, κ(r) = ∞ if 0 ≤ r < r1 for some r1 > 0 and κ(·) is a
C 1 function except at a finite number of points.

2. For all θ > 0, the function κ ′(r)exp{−θκ(r)} is bounded.
3. κ(r) → k0 �= 0 if r → R and its derivative κ ′(r) → k1 �= 0 if r → R.

If furthermore X is stationary, Jensen and Künsch (123) showed that:

J−1/2
n (θ)In(θ)(θ̂n −θ) d−→ N (0, I2),



5.5 Statistics for spatial point processes 223

where the pseudo-information matrices are given by:

In(θ) = −∂
2 plS(n)(θ)
∂ tθ∂θ

,

Jn(θ) = ∑
i∈Dn

∑
| j−i|≤1, j∈Dn

∂ plSi(θ)
∂θ

t
(∂ plS j(θ)

∂θ

)
.

Mase (151) extended these results to second-order pseudo-likelihoods and to marked
point processes.

5.5.6 Monte Carlo approximation of Gibbs likelihood

Let X be a Gibbs random field (pointwise or lattice) with distribution Pθ and density

π(x;θ) = Z−1(θ)g(x;θ),

where Z(θ) =
∫

g(x;θ)μ(dx) <∞. Using ML estimation is problematic if it is hard
to calculate Z(θ). This is the case for Gibbs random fields. We now describe a Monte
Carlo method to asymptotically calculate Z(θ). Let θ be the value of the parameter
and ψ ∈Θ some other fixed value of the parameter. We then estimate the ratio:

Z(θ)
Z(ψ)

= Eψ

[
g(X ;θ)
g(X ;ψ)

]

using the strong law of large numbers under the distribution π(·;ψ). If we do not
have access to an exact simulation method, we can use an MCMC method which like
Gibbs sampling and the Metropolis-Hastings algorithm does not require knowledge
of Z(ψ). If x is generated from X , a Monte Carlo approximation of the logarithm of
the likelihood ratio

l(θ) =
f (x;θ)
f (x;ψ)

=
Z(ψ)g(x;θ)
Z(θ)g(x;ψ)

can be obtained by simulating N samples from X under ψ ,

lN(θ) = log
g(x;θ)
g(x;ψ)

− log
1
N

N

∑
j=1

g(Xj;θ)
g(Xj;ψ)

. (5.44)

This approximation converges to l(θ) when N −→ ∞. Importance sampling theory
shows that the approximation improves with proximity of ψ to θ . We thus obtain
lN(θ) and θ̂N , the Monte Carlo approximations of l(θ) and θ̂ , the ML estimator. If
π(x;θ) = Z(θ)−1 exp{tθv(x)}, (5.44) and its derivative are given by:
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lN(θ) = t(θ −ψ)v(x)− logN − log
N

∑
j=1

exp
[t(θ −ψ)v(Xj)

]
,

l(1)
N = v(x)−

N

∑
j=1

v(Xi)wN,ψ,θ (Xi),

where wN,ψ,θ (Xi) = exp{t(θ −ψ)v(Xi)}{∑N
j=1 exp[t(θ −ψ)v(Xj)]−1.

θ̂N , the value maximizing lN(θ) depends on observation x and simulated
X1, . . . ,XN under ψ . However, it is possible to show that for large N, if θ̂ is the
exact ML estimator, the Monte Carlo error eN =

√
N(θ̂N − θ̂) is approximately nor-

mal (86). Thus, for a large number N of simulations, θ̂N tends to θ̂ . One step in the
Newton-Raphson algorithm is given by:

θk+1 = θk − [l(2)
N (θk)]−1

{
v(x)−

N

∑
j=1

v(Xi)
N

}
,

where

−l(2)
N (θk) =

N

∑
j=1

v(Xi) t v(Xi)
N

−
N

∑
j=1

v(Xi)
N

t{ N

∑
j=1

v(Xi)
N

}
.

In effect, wN,ψ,θ (Xi) = 1/N if ψ = θ and −[l(2)
N (θk)]−1 estimates Cov(θ̂).

As the approximation (5.44) improves the closer ψ is to θ , we can iterate starting
from the maximum CPL estimation of θ .

5.5.6.1 Recursive algorithm for calculating the maximum likelihood estimate

Penttinen (169) applied the Newton-Raphson method to the Strauss process case.
When there are a fixed number n = n(x) of points of x and the density belongs to an
exponential family, Moyeed and Baddeley (162) suggest resolving the ML equation
Eθ [v(X)] = v(x) by a stochastic approximation method,

θk+1 = θk +ak+1 [v(x)− v(Xk+1)] , (5.45)

where ak is a sequence of positive numbers satisfying ak → 0 and Xk+1 ∼ fθk (cf.
Younes (230) for Gibbs random fields on a regular network and Duflo (71) for gen-
eral properties of such algorithms). If we do not have access to an exact simulation
of Xk, we can use MCMC methods, which belong to the class of Markov stochastic
algorithms (23).

Example 5.19. The Strauss process

For fixed n(x) = n, the density at x = {x1,x2, . . . ,xn} is proportional
to exp{−θs(x)}, with θ = logγ . Equation (5.45) becomes

θk+1 = θk +ak+1 [s(Xk+1)− s(x))] .
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We can couple this equation with the MCMC algorithm for the purpose of simu-
lating Xk. If Xk = x, the transition towards Xk+1 = y is the following:

1. Delete one point η ∈ x chosen uniformly in x.
2. Generate ξ from a density conditional on (x\{η})

proportional to f ((x\{η})∪{ξ}) and keep y = x\{η})∪{ξ}.

This transition is that of Gibbs sampling with random sweeping on indices {1, . . . ,n}
and density conditional on (x\{η}) proportional to f (x\{η})∪{ξ}).

5.5.6.2 Asymptotic properties of the maximum likelihood estimator for point
processes

There are few results dealing with consistency and asymptotic normality of ML esti-
mation. Jensen (122) gives a partial response to the question of asymptotic normality
of ML when X is a PP with pair interactions and density

fθ (x) =
1

Z(θ)
exp{−θ1n(x)−θ2∑

i< j
φ(xi − x j)},

with −∞< θ1 < ∞, θ2 > 0 and when either:

(J1) X is a Markov process whose potential has bounded range.
(J2) X is a hard-core process.

Then if X satisfies a certain weak dependency condition, the ML estimator of θ is
asymptotically normal.

Example 5.20. Model characterizing the spatial distribution of pine trees

The swedishpines dataset in the spatstat package gives the spatial dis-
tribution of 71 pine trees in a Swedish forest. Ripley (185) analyzed these using the
Strauss model

fθ (x) = c(θ)exp{θ1n(x)+θ2s(x)},
where s(x) = ∑i< j 1(

∥∥xi − x j
∥∥≤ r). We conclude the study by estimating the inter-

action radius r by the value r̂ maximizing the pseudo-likelihood profile

plA(r) = max
θ

plA(x,θ ;r),

(cf. Fig. 5.22-a): we find r̂ = 7.5. The maximum conditional pseudo-likelihood (cf.
Table 5.14) is then calculated using approximation (5.42). For the maximum likeli-
hood, we perform 1000 trials of X (i) obtained using the Metropolis-Hastings algo-
rithm and stopping after 10000 iterations.

To finish, we validated the model by generating X 40 times from fθ̂MV
(cf. Fig. 5.22-b).
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Table 5.14 Maximum CPL and ML estimates of the Strauss model (with r = 7.5) for describing
the location of 71 pine trees in a Swedish forest. Values in brackets are the estimated standard
deviations. For the maximum CPL, the standard error was calculated using parametric bootstrap
with 1000 trials.

θ̂1 θ̂2

MCPL -3.937 -1.245
(0.211) (0.286)

ML -3.760 -1.311
(0.252) (0.321)
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Fig. 5.22 Estimation and validation of the Strauss model for describing the spatial distribution
of 71 pine trees: (a) value as a function of r of the profile pseudo-likelihood; (b) nonparametric
estimation of L(h)− h =

√
K(h)/π − h (solid line) compared with upper and lower confidence

levels (dotted lines) obtained from 40 samples from a Strauss model with parameters θ̂1 =−3.794,
θ̂2 = −1.266 and r = 7.5.

5.5.7 Point process residuals

Baddeley et al. (16) introduced h-residuals of Gibbs PPs for any test function h : E →
R defined on the sample space. These residuals are particularly useful for model
validation. We now briefly present their definition and properties and refer the reader
to (16) for a more in-depth presentation.

The definition of these residuals relies on the integral representation (3.17) of
Gibbs PPs whose Papangélou intensity is λ (ξ ,x). For a chosen h, we define the
h-innovation on a set B by:

I(B,h,λ ) = ∑
ξ∈x∩B

h(ξ ,x\{ξ})−
∫

B
h(η ,x)λ (η ,x)dη , B ⊆ S.

If h depends on the choice of model, it must be estimated before calculating residu-
als.
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Baddeley et al. (16) look at the special case of three functions: h=1, h = 1/λ
and h = 1/

√
λ representing respectively raw, λ -inverse and Pearson innovations:

I(B,1,λ ) = N(B)−
∫

B
λ (η ,x)dη ,

I(B,
1
λ

,λ ) = ∑
ξ∈x∩B

1
λ (ξ ,x)

−
∫

B
1[λ (η ,x) > 0]dη ,

I(B,
1√
λ

,λ ) = ∑
ξ∈x∩B

1√
λ (ξ ,x)

−
∫

B

√
λ (η ,x)dη .

Using (3.17), it can be shown that I(B,h,λ ) is centered. If X is an inhomogeneous
Poisson PP with intensity ρ(η), then λ (η ,x) = ρ(η) and the variances of these
innovations are:

Var(I(B,1,ρ)) =
∫

B
ρ(η)dη ,

Var

(
I(B,

1
ρ

,ρ)
)

=
∫

B

1
ρ(η)

dη and Var

(
I(B,

1√ρ ,ρ)
)

= |B|.

Note that the first equation equates the mean with the variance of N(B).
For ĥ and λ̂ estimators of h and λ , the h-residuals are defined by:

R(B, ĥ, λ̂ ) = ∑
ξ∈x∩B

ĥ(ξ ,x\{ξ})−
∫

B
ĥ(η ,x)λ̂ (η ,x)dη , B ⊆ S.

As for standard linear models (with intercepts) where the sum of residuals is zero,

we have the same “centered” property for the raw residuals R(B,1, ρ̂) = N(x∩B)−
|B|ρ̂ of a homogeneous Poisson PP with intensity ρ: if ρ is being estimated by ML,
ρ̂ = N(x)/|S| and R(S,1, ρ̂) = 0.

The use of λ -inverse residuals was proposed by Stoyan and Grabarnik (203)
while Pearson residuals are defined as in log-linear Poisson regression models.

Similarly, we can define innovations and residuals by replacing Papangélou’s
intensity λ by the PP intensity ρ for any test function h(·) such that

∫

S
h(η)ρ(η)dη < ∞.

The following example gives some graphical tools useful for model validation.
The heuristic behind these tools is based on the similarity of the logarithm of the
likelihood of log-linear regression models for Poisson variables and the discretized
version of the logarithm of the pseudo-likelihood of Gibbs PPs (cf. (5.43) and
(5.37)).



228 5 Statistics for spatial models

0 200 400 600 800

0
20

0
40

0
60

0
80

0
10

00

x

y

0 200 400 600 800 1000

−
50

0
0

50
0

y

cu
m

ul
at

iv
e 

P
ea

rs
on

 r
es

id
ua

ls

(a) (b)

(d)(c)

0 200 400 600 800

−
50

0
0

50
0

10
00

x

cu
m

ul
at

iv
e 

P
ea

rs
on

 r
es

id
ua

ls

0 200 400 600 800

−
40

0
−

20
0

0
20

0
40

0

x

cu
m

ul
at

iv
e 

P
ea

rs
on

 r
es

id
ua

ls

Fig. 5.23 (a) Spatial distribution of on (+) and off (−) ganglionic cells in the retina of a cat’s eye;
diagnostic graphs: (b) in y and (c) in x for a homogeneous Poisson PP model; (d) for inhomoge-
neous Poisson PP model (5.46). Dotted lines indicate the confidence band C(v)±2

√
Var(C(v)).

Example 5.21. Spatial pattern of ganglionic cells in a cat’s retina

Fig. 5.23-a (betacells dataset in spatstat) shows locations of beta-type
ganglionic cells of a cat’s retina. Ganglionic cells are sensitive to contrasts of light,
some react to a thin beam of light surrounded by darkness (cell on), others to the
opposite (cell off ). The observation window is a [0,1000]× [0,753.3] μm2 rectangle.

A study by van Lieshout and Baddeley (218) showed that there is repulsion be-
tween cells of the same type and that the on and off configurations are independent.
Suppose therefore that both sets of locations are results of the same process to be
modeled. As for standard linear models, diagnostic tools use the graph of residu-
als (y-axis) as a function of an observable spatial covariate or spatial coordinate of
observation sites (x-axis). If in the graph there appears some pattern, this indicates
inadequacy of the model. Associated with a spatial covariate u(η), η ∈ B, let us
define the subset of level B(v) = {η ∈ B : u(η) ≤ v} and the cumulative residual
function:

C(v) = R(B(v), ĥ, λ̂ ), v ∈ R.
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If the model is correct, C(v) will be approximately equal to 0. Figures 5.23-b
and c give diagnostic curves of Pearson residuals obtained from an estimated ho-
mogeneous Poisson PP, respectively as a function of y and x. Confidence bands
C(v) ± 2

√
Var(C(v)) can be calculated using the approximation Var(C(v)) ≈

Var(I(B(v), ĥ, λ̂ ), where ĥ and λ̂ have been estimated under the hypothesis that
X is a Poisson PP. Values outside of these bands for the curve relative to x suggest
a spatial trend in x. Estimation of a second inhomogeneous Poisson PP model with
intensity

ρ(η ;θ) = exp{θ1 +θ2xη}, η = t(xη ,yη), (5.46)

improves the results (cf. Fig. 5.23-d).

(a) (b)

Fig. 5.24 Graphical representation of smoothed raw residuals for: (a) the homogeneous Poisson
PP model; (b) the inhomogeneous Poisson PP model (5.46).

A second diagnostic tool is the smoothed residuals field (cf. Fig. 5.24):

l(η ,x) =
∑xi∈x k(η− xi)ĥ(xi,x\{xi})−

∫
S k(η−ξ )λ̂ (ξ ,x)ĥ(ξ ,x)dξ∫

S k(η−ξ )dξ
,

where k is a smoothing kernel and the denominator a normalizing factor. In the case

of raw residuals, the expectation of l(η ,x) is proportional to
∫

S k(η−ξ )E[λ (ξ ,X)−
λ̂ (ξ ,X)]dξ ; positive values (resp. negative) suggest that the model has underesti-
mated (resp. overestimated) the intensity function. Fig. 5.24-a shows that the homo-
geneous Poisson PP is inadequate and that the inhomogeneous Poisson PP model is
better (cf. Fig. 5.24-b).

A Q-Q plot is a tool introduced by Baddeley et al. (16) for validating the in-
teraction component of PPs. It works as follows: we simulate m examples x(i),
i = 1, . . . ,m from the estimated model. For a grid of points η j, j = 1, . . . ,J and
for each trial x(i), i = 0, . . . ,m (with x(0) = x), we calculate the smoothed residu-
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als l(i)j = l(η j,x(i)) and the ordered sample l(i)[1] ≤ . . . ≤ l(i)[J] . The observed quantiles

l(0)
[ j] are then compared with the means of the simulated quantiles ∑m

i=1 l(i)[ j]/m. If the
model is well adapted, the two quantiles should be almost equal. Fig. 5.25 gives a
Q-Q plot for two different models: the previous inhomogeneous Poisson PP model
and the Strauss model with conditional intensity:

λ (η ,x;θ) = exp{θ1 +θ2xη +θ3 ∑
xi∈x

1(‖η− xi‖ ≤ r)}, θ = t(θ1,θ2,θ3). (5.47)

The intersection radius r̂ = 74 is identified as the point at which the profile of the
CPL is maximal. Fig. 5.25 invalidates the inhomogeneous Poisson PP model and
suggests that the Strauss model is more appropriate.
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Fig. 5.25 Q-Q plot of Pearson residuals for: (a) the inhomogeneous Poisson PP model (5.46); (b)
the Strauss model (5.47). Dotted lines show the 2.5 and 97.5 percentiles of the simulated quantiles,
over one hundred simulations.

5.6 Hierarchical spatial models and Bayesian statistics

Given three random variables U , V and W , we can always decompose the joint
distribution of the triplet (U,V,W ) by successive conditioning,

[U,V,W ] = [W |U,V ][V |U ][U ],

where [a] denotes the distribution of the variable a. This decomposition forms the
basis of hierarchical modeling.

If the process of interest X is not observed and if observations Y are generated
conditional on X , we can consider the hierarchical model:
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[Y,X ,θY ,θX ] = [Y |X ,θY ,θX ][X |θX ][θY ,θX ].

In this decomposition there are three levels of hierarchy. At level 1, we specify how
observations Y are generated from X by giving the distribution of Y conditional on
the process X and model parameters (θY ,θX ). For level 2 we give the distribution
of the process of interest X conditional on the parameters (θX ). As for level 3, it
specifies uncertainty we have on the parameters (θY ,θX ). This methodology gives
a certain liberty to the modeling, allowing us to incorporate simultaneously uncer-
tainties and a priori knowledge on the observed phenomenon. When combined with
developments in numerical MCMC methods we can understand the use and popu-
larity of spatial Bayesian models.

The most common approach, which we follow here, supposes that observations
Y = t(Ys1 , . . . ,Ysn) are, conditional on X , independent:

[Y |X ,θY ,θX ] =
n

∏
i=1

[Ysi |X ,θY ,θX ],

where the distribution of X is that of a spatial process. X is usually some unobserved
signal (image, shape, covariates) that we would like to extract (reconstruct) from
observations Y . As in Bayesian image reconstruction (cf. (82)), we endow X with
information in the form of a prior distribution.

For this type of model, Bayesian inference is oriented towards obtaining various
posterior distributions [X |Y ], [θY |Y ] and predictive distributions [Ys|Y ] when no ob-
servation has been made at s. In many models, analytic forms of these distributions
are impossible to obtain and it is the conditional structure of the hierarchical model
which allows them to be empirically evaluated using Monte Carlo methods and the
MCMC algorithm (cf. Ch. 4).

Our goal here is not to give a general overview of such models but rather to sketch
a description based on two examples: Bayesian kriging for spatial regressions and
Bayesian analysis of GLMs with random spatial effects. We point the reader to the
book of Banerjee et al. (18) for a complete treatment of spatial hierarchical models
and (187) or (68) for Bayesian statistics in general.

5.6.1 Spatial regression and Bayesian kriging

Consider the regression with random spatial component X :

Ysi = t zsiδ +Xsi + εsi , i = 1, . . . ,n, δ ∈ R
p, (5.48)

with X = {Xs} an unobserved, centered Gaussian random field. Suppose for sim-
plicity that X is stationary with covariance c(h) = σ2ρ(h,φ) and that ε = {εs} is a
Gaussian WN with variance τ2 representing small-scale local variability (cf. (1.31)
for other possible choices of ε).

The first two levels of model (5.48) are specified by:

[Y |X ,θY ,θX ] = Nn(Zδ +X ,τ2I) and [X |θX ] = Nn(0,σ2R(φ)),
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where R(φ) = (ρ(si − s j,φ))i, j=1,n is a correlation matrix.
Choosing Gaussian prior distributions on parameters allows explicit analytic

calculations of posterior distributions and predictive distributions without requir-
ing MCMC simulations (in this case we say we have conjugate distributions, cf.
(187; 68)). Suppose for example that σ2, φ and τ2 are known and δ ∼ Np(μδ ,Σδ ).
In this case, the distribution of δ conditional on Y is:

[δ |Y,σ2,φ ,τ2] = Np(δ̃ ,Σδ̃ ),

where δ̃ = (Σ−1
δ + tZΣ−1Z)−1(Σ−1

δ μδ + tZΣ−1Y ), Σδ̃ = (Σ−1
δ + tZΣ−1Z)−1 and

Σ = σ2R(φ)+ τ2I. Furthermore, the predictive distribution of Ys at an unobserved
site s is given by:

[Ys|Y,σ2,φ ,τ2] =
∫

[Ys|Y,δ ,σ2,φ ,τ2][δ |Y,σ2,φ ,τ2]dδ .

If {(Ys,Xs)|δ ,σ2,φ ,τ2} is a Gaussian process, the universal kriging formula (1.36)
gives:

[Ys|Y,δ ,σ2,φ ,τ2] = N (Ŷs,σ2
Ŷs

), with:

Ŷs = t zsδ̂ + t cΣ−1(Y −Zδ̂ ), c = Cov(Xs,X) and

σ2
Ŷs

= σ2 − t cΣ−1c+ t(zs − tZΣ−1c)(tZΣ−1Z)−1(zs − tZΣ−1c).

We deduce that [Ys|Y,σ2,φ ,τ2] is a Gaussian distribution with mean and variance:

μ∗ = ( t zs − t cΣ−1Z)(Σ−1
δ + tZΣ−1Z)−1Σ−1

δ μδ +[ t cΣ−1 +( t zs − t cΣ−1Z)(Σ−1
δ + tZΣ−1Z)−1 tZΣ−1]Y,

σ∗2 = σ2 − t cΣ−1c

+( t zs − t cΣ−1Z)(Σ−1
δ + tZΣ−1Z)−1 t( t zs − t cΣ−1Z).

We remark that if we choose a relatively uninformative prior distribution on the
parameter δ (Σδ ≥ kI for large k), these formulae are merely those of universal
kriging (set Σ−1

δ = 0).

5.6.2 Hierarchical spatial generalized linear models

The model (5.48) described in the previous paragraph is not useful for non-continuous
data (number of ill people per region, reaching a certain level of pollution or not,
binary presence/absence variables), nor for continuous data with strong asymme-
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try (maximum rainfall data). The model can be naturally extended by considering
generalized linear models for the likelihoods (cf. (155)).

When studying geostatistical data, Diggle et al. (64) suggest examining the GLM

f (ysi |Xsi ,δ ,ψ) = exp

{
ysiηsi −b(ηsi)

ψ
+ c(ysi ,ψ)

}
, i = 1, . . . ,n, (5.49)

with b′(ηsi) = E(Ysi |Xsi ,δ ,ψ) and for a link function g (to be chosen),

g(E(Ysi |Xsi ,δ ,ψ)) = t zsiδ +Xsi . (5.50)

Other specifications are possible (cf. (38)). Equations (5.49) and (5.50) characterize
the first level of the hierarchical model. For the second level, we suppose that {Xs}
is a centered stationary Gaussian process with covariance c(h) = σ2ρ(h,φ).

By taking a look at linear (5.48) and nonlinear models, we can see how intro-
ducing random spatial effects X on the mean (the transformed mean) induces a
relationship between the conditional means of (Ysi |Xsi) at neighboring sites with-
out inducing correlations between these variables. In this sense, spatial hierarchical
models are significantly different to spatial auto-models that do indeed induce spa-
tial correlation.

In general, posterior and predictive distributions are not analytically tractable.
We must therefore use MCMC algorithms that exploit the hierarchical conditional
structure of models in order to evaluate these distributions. Without going too much
into the details of the choice of proposed change distributions (cf. (64) and (44) for
modifications to create specific models), let us describe a Metropolis algorithm for
dealing with model (5.49). With the symbol ∝ signifying “proportional to,” we will
use the results:

[σ2,φ |Y,X ,δ ] ∝ [X |σ2,φ ][σ2,φ ],
[Xsi |Y,Xs j ,δ ,σ2,φ ;s j �= si] ∝ [Y |X ,δ ][Xsi |Xs j ;σ

2,φ ,s j �= si] =
n

∏
i=1

[Ysi |Xsi ,δ ][Xsi |Xs j ;σ
2,φ ,s j �= si],

[δ |Y,X ,β ,s j �= si] ∝ [Y |X ,δ ][δ ] =
n

∏
i=1

[Ysi |Xsi ,δ ][δ ].

One iteration of the Metropolis algorithm for simulating ((σ2,φ),X ,δ | Y ) is given
by the following three steps:

1. For (σ2,φ) with current values σ2′,φ ′:

(a) Propose σ2′′,φ ′′ each from independent uniform
distributions.

(b) Accept σ2′′,φ ′′ with probability
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r(X ,(σ2′,φ ′),(σ2′′,φ ′′)) = min

{
1,

[X |σ2′′,φ ′′]
[X |σ2′,φ ′]

}
.

2. For XSi , for i = 1, . . . ,n,

(a) Propose X ′′
si
sampled from the distribution

[Xsi |X ′
s j

;σ2,φ ,s j �= si] (this is the same as simulating a conditional Gaussian
random variable with simple kriging (cf. (1.35)).

(b) Accept X ′′
si
with probability

r(Xsi
′,Xsi

′′,Y ;δ ) = min

{
1,

[Ysi |Xsi
′′,δ ]

[Ysi |Xsi
′,δ ]

}
.

3. For δ , with current value δ ′,

(a) Propose δ ′′ following the distribution [δ ′′|δ ′].
(b) Accept δ ′′ with probability

r(δ ′,δ ′′) = min

{
1,
∏n

i=1[Ysi |Xsi ,δ ′′][δ ′|δ ′′]
∏n

i=1[Ysi |Xsi ,δ ′][δ ′′|δ ′]
}

.

Initial values of σ2,φ and δ are chosen to be compatible with the prior distribu-
tions. As for the initial values {Xsi , i = 1, . . . ,n}, we could choose Xsi = g(Ysi)− t zsiδ
for i = 1, . . . ,n.

Evaluating the predictive distribution of Xs at an unobserved site s necessitates
an extra step: as [Xs|Y,X ,δ ,σ2,φ ] = [Xs|X ,σ2,φ ], we proceed by simulating a con-
ditional Gaussian variable whose mean is calculated by simple kriging at s, this for
values X (k),σ2(k) and φ (k) once the algorithm has entered its stationary regime.

Example 5.22. Spatial distribution of animal species

Studies of spatial distribution of animal species can be used to measure the im-
pact of human activity on the environment. The data investigated here (cf. indigo
data on the website) come from a study by Strathford and Robinson (205) whose
goal was to determine what were the “environmental parameters” able to predict oc-
cupancy across a region by a migratory bird species, Indigo Buntings. Four land use
factors, measured in the neighborhood of sites where birds were counted were kept:
natural woodlands, denoted M, open parks, hayfields and pasture, denoted G, early
successional forests, denoted T and impervious surfaces (roads, houses, carparks),
denoted U . The sampling map is shown in Fig. 5.26.

For a hierarchical model, we consider that the number of birds Ys at s is a Poisson
random variable conditional on the observed factors (G,M,T,U) and on an unob-
served spatial process X :

[Ys|δ ,Xs] = P(μs),

where
μs = δ1 +δ2Gs +δ3Ms +δ4Ts +δ5Us +Xs,
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Fig. 5.26 Bird observation sites. The 3 sites • are the ones kept for prediction, with site 1 being
where the largest number of birds was seen.

with X an isotropic centered Gaussian process with covariance

c(h) = σ2 exp{−‖h‖/φ},

with unknown σ2 > 0 and φ > 0. The prior distributions on δ and σ2 are chosen to
be uninformative, i.e., with large variance, and independent. A preliminary analysis
led to the choice of a uniform distribution φ on [0.03,0.20]. To obtain the provisional
posterior distributions, we use the MCMC algorithm from the geoRglm package
with a “time to stationarity” of 1000 iterations for each simulation, of which there
are 50000 with subsampling at every 50 steps. Estimations displayed in Fig. 5.27
show that all the “soil” factors as well as the spatial factor are significant, though
the spatial effect is not huge.

We also give the predicted distributions at sites 1, 2 and 3, with site 1 being
that with the largest observed number of birds. We see in Fig. 5.28 that the model
characterizes well possible absence of birds but has problems where there are large
numbers (as at site 1).

GLM (5.49) has been successfully applied in a variety of situations: epidemiol-
ogy (spatial distribution of disease risk), image analysis (reconstruction) and ecol-
ogy (spatial distribution of species).

We now take a look at an epidemiological example, that of the study of spatial
variations in the risk of rare diseases or the risk of a disease in a small geographic
area. This is a realistic example as neighboring zones tend to have similar risks as
they are likely to share common risk factors.

For level 1, we model the number of cases (Yi) of the disease in region i by
independent Poisson variables
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Fig. 5.27 Estimation of posterior distributions of parameters δG, δM , δT , δU as well as σ2 and φ .

Yi ∼ P(θiEi),

with Ei representing the expected number of cases expected in region i, precalcu-
lated using known socio-demographic covariates for each region. We could equally
use a binomial model for Yi with the maximum possible value being the population
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Fig. 5.28 Estimation of the predictive distributions of the number of birds at sites 1, 2 and 3. •
represents the observed value.

size ui in the region. The parameter θi, representing the relative risk specific to zone
i is unknown and is the subject of the study. The maximum likelihood estimator
of θi, θ̂i = Yi/Ei, which does not take into account spatial structure, has variability
proportional to 1/Ei.

At level 2, the parameter θi incorporates either spatial heterogeneity or spatial
dependency. Let us take a look at the model proposed by Besag et al. (28): the
parameter θi of the Poisson regression is considered in a log-linear model

log(θi) = αi +
p

∑
k=1

βkxik + γi, (5.51)

with random effects αi and γi representing certain interpretations of the observable
covariates (xk):

• αi ∼N (0,1/τ2) i.i.d. represent an unstructured spatial heterogeneity compo-
nent.

• (γi, i ∈ S) follow a structured spatial model, for example an intrinsic Gaussian
CAR model:

L (γi|γ i) ∼ N {(�∂ i)−1 ∑
j∈∂ i

γ j,(κ2�∂ i)−1}.

In this formulation, κ2 > 0 is a parameter controlling the spatial smoothness of the
γi and thus the smoothness of the θi too. This model is identifiable if the exogenous
x have no constant term. If they do, we add the constraint ∑i∈S γi = 0.

At level 3, we model τ2 and κ2 with prior distributions that are either Gamma or
χ2 distributions with fixed hyperparameters. Using this conditional Markov formu-
lation then allows us to work with MCMC algorithms.

Under this model, the parameters τ2 and κ2 characterizing spatial dependency
have a global effect that can potentially hide possible discontinuities due to overly
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strong “spatial smoothing.” For this reason, Green and Richardson (93) developed a
model that replaces the CAR model with a Potts model (2.5), thus allowing inclusion
of spatial discontinuity.

Example 5.23. Lung cancer in Tuscany (Italy)

The data presented here (cf. the Tuscany cancer data on the website) come from
an epidemiological study of Catelan et al. (39) on lung cancer in men living in
the 287 municipalities of Tuscany (Italy) born between 1925 and 1935 and dying
between 1971 and 1999. A goal of the study was to see whether risk of cancer
is linked to environmental effects and/or lifestyle. We denote by Yi the observed
number of deaths in municipality i and Ei the expected number of deaths. The spatial
pattern of risk is estimated by R̂i = Yi/Ei, the standardized mortality ratio. This
estimate is the maximum likelihood estimate for a Poisson log-linear model for
independent random variables with unknown parameters Ri,

Yi ∼ P(θi), (5.52)

log(θi) = log(Ri)+ log(Ei). (5.53)

Fig. 5.29-a shows higher estimates in the north and south-west but there are
nevertheless large fluctuations. These may be due to local heterogeneity linked to
environment and lifestyle. We therefore use a random effects model:

log(θi) = αi +β1 + γi + log(Ei), (5.54)

with i.i.d. αi ∼ N (0,1/τ2) representing unstructured spatial heterogeneity com-
ponents and the (γi, i ∈ S) following an intrinsic Gaussian CAR model (5.51) with
constraint ∑i∈S γi = 0. Lastly, we model β1 as a centered Gaussian random variable
with variance 1000002 and τ2 and κ2 by Gamma prior distributions with parameters
0.5 and 0.0005 corresponding to uninformative distributions.

In this model, the marginal posterior distributions of parameters are approxi-
mated using MCMC. To do this, we use Gibbs sampling in OpenBUGS (212),
the open source version of WinBUGS (146) as well as the R2WinBUGS inter-
face (209), allowing the MCMC algorithm to run in R. To have some control over
convergence of Gibbs sampling, we use two independent chains and the proce-
dure suggested by Gelman and Rubin (80) as described in §4.5.2. The ‘burn-in’
period used here was 2000 iterations for each simulation with each estimation
made up of 8000 simulations. Fig. 5.29-b shows clearly the smoothing effect of
model (5.54).

Models with covariates: among lifestyle indicators, that which is retained here is
the education score EDi, representing the quotient of the number of illiterate people
divided by the number of people knowing how to read but not having successfully
finished school (no school certificate received). The larger this is, the lower the level
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Fig. 5.29 (a) Spatial distribution of standardized mortality rates from lung cancer in the 287 mu-
nicipalities of Tuscany (Italy); (b) median posterior risks estimated using model (5.53); (c) spatial
distribution of the education score in 1951; (d) median posterior risks estimated by model (5.54)
that includes the education score.

of school achievement. We also suppose that there is no exposure risk to cancer
before the age of 20. Here, mortality is associated with the education score observed
20 years later and derived from the 1951 census.

Fig. 5.29-c shows the spatial distribution of the ED score. It is obvious that
places with higher levels of school achievement in the northwest correspond to
places where industrialization took place earlier and where the mortality rate is
higher. However, the empirical correlation between R̂i and EDi of -0.20 is relatively
weak.
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We therefore consider a log-linear model integrating the covariate ED,

log(θi) = αi +β1 +β2EDi + γi + log(Ei), (5.55)

where β2 is a centered Gaussian random variable with variance 100000. Results
obtained using MCMC (cf. Fig. 5.29-d) show median posterior risks that are less
smooth but more realistic than those given in model (5.53); estimation of β2 (cf.
Fig. 5.30) shows a negative link between lung cancer mortality rate and education
level.
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Fig. 5.30 MCMC estimates of posterior distributions of parameters β1 and β2 in model (5.55).

Exercises

5.1. Soil retention potentials.
The potentials dataset (see website) comes from an experiment in which soil
samples from zone S are saturated with water at three different pressures and mea-
sure the retention potentials (W5, W200 and W1500). We also have data on each
sample corresponding to particle size fractions of clay (ARG) and four types of silt
going from finest to coarsest (LF, F3, F4.5, F6.7). We aim to link the retention
potential variables with the easily measured porosity variables (granulometry). We
first consider the variable W1500.

1. Empirically estimate the variogram for various directions.
2. Correct any discovered anisotropy by introducing granulometric covariates.
3. Suggest variogram models and estimate them. Choose one model using the AIC

criterion.
4. Propose methods for drawing a map of retention potential.
5. Are there differences between the potentials measured at each of the 3 pressures?
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5.2. Moran’s index.
The sample (4,−2,−4,0,−1,3) is generated from X on the set S = {1,2, . . . ,6} en-
dowed with the symmetric graph with 10 edges G = {〈1,2〉,〈1,3〉, 〈1,4〉, 〈1,6〉,〈2,3〉,
〈3,6〉,〈2,6〉, 〈3,4〉, 〈4,5〉,〈5,6〉}. Calculate Moran’s index IM when we have weights
wi, j = 1 if 〈i, j〉, wi, j = 0 otherwise. Calculate the mean and variance of IM under
the permutation distribution. Compare with results from a normal approximation.

5.3. Calculating E(IM) and Var(IM) under Gaussian hypotheses.

1. Let X = (X1,X2, . . . ,Xn) be n samples from N (μ ,σ2) and Zi = Xi −X for i =
1, . . . ,n. Show that for distinct indices i, j, k and l:

E(Zi) = 0, E(Z2
i ) =

(
1− 1

n

)
σ2, E(ZiZ j) = −σ

2

n
,

E(Z2
i Z2

j )=
n2 −2n+3

n2 σ2, E(Z2
i Z jZk) = −n−3

n2 σ4, E(ZiZ jZkZl) =
3
n2σ

4.

2. Use Proposition 5.5 to deduce the expectation and variance of Moran’s index
under independence hypotheses.

3. Suppose that X is a sample but without hypotheses supposing that the Xi follow
the same distribution. Denoting EP the expectation of the permutation distribu-
tion, show that:

EP(Zi) = 0, EP(Z2
i ) = m2 =

1
n

n

∑
i=1

z2
i , EP(ZiZ j) = − m2

n−1
, if i �= j.

Deduce that

EP(IM
n ) = − 1

n−1
.

5.4. Limit distribution of Moran’s index.
Find the asymptotic distribution of Moran’s index under independence hypotheses
and with weights wi, j = 1 if 〈i, j〉, wi, j = 0 otherwise for the following graphs:

1. S = Z
2 and the 4-NN relation (resp. 8-NN).

2. S the regular triangular network in R
2 with the 6-NN relation.

3. S = Z
d and the 2d-NN relation.

5.5. Test for factorizing covariances.
Suppose X is an 8-NN stationary centered Gaussian CAR model on Z

2.

1. Characterize this model and the factorizing covariance submodel denoted (F).
2. Suppose that X is observed over the square with side n. Give ML and MCPL

equations for each model. Test (F). Determine under (F) the asymptotic distri-
bution of

Δ = n{(r̂00r̂11 − r̂10r̂01)2 +(r̂00r̂1,−1 − r̂−1,0r̂01)2}.
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5.6. Estimating 4-NN CAR models.
Suppose that X is a 4-NN stationary centered Gaussian CAR model with parameter
θ = (α,β ,σ2), where σ2 is the conditional residual variance and |α|+ |β | < 1/2.
Suppose that X is observed on the square of side n.

1. Find the asymptotic distribution of the ML (resp. MCPL) estimator of θ if the
data are sufficiently tapered at the boundary. Test for isotropy.

2. Same question if Y = X + ε , with ε a Gaussian WN(σ2) independent of X .

5.7. Auto-logistic modeling of the spatial distribution of a plant species.

A We measure presence (Xs = 1) or absence (Xs = 0) of the sedge (plant species)
in a swamp subdivided into a regular 24× 24 grid (cf. laiche dataset on the
website). We would like to fit the following translation-invariant auto-logistic
models: (i) 8-NN (5 parameters); 4-NN (3 parameters); (iii) isotropic 4-NN (2
parameters).

1. Estimate these models (parameters and variance) using ML, MCPL and cod-
ing estimators. Test for 4-NN isotropy in the 8-NN model using deviation of
the likelihood and a χ2 coding test. Test for this same isotropy in the 4-NN
model.

2. Which model would you choose after using the CPL penalized contrast at rate√
n (in the case of n observations)?

B Wu and Huffer (226) studied the spatial distribution of presence/absence of
plant species as a function of climate covariates on a domain S with n = 1845
sites, a subset of a regular 68×60 network (cf. castanea dataset on the web-
site). The 9 covariates are: T MM (minimum annual temperature, in Celsius), T M
(mean temperature for the coldest month), TAV (mean annual temperature), LT
(lowest temperature in the period 1931–1990), FZF (number of days with frost),
PRCP (mean annual precipitation in mm), MI (annual index of mean humidity),
PMIN (mean precipitation in the driest months) and ELV (altitude in feet).

1. Plot the network S and show presence/absence of Castanea pumila.
We now look at regression/autoregression models with the climate covariates
xi and the 4-NN covariate vi = ∑ j∼i y j:

P(Yi = 1 | yi,x) =
expηi

1+ expηi
,

where ηi = a+ t xib+ cvi.
2. Fit a logistic regression using the climate covariates xi. Using AIC, which

ones would you keep?
3. Fit a complete logistic regression/autoregression model using ML, CPL and

coding estimators. Is the neighbor covariate v significant? Using penalized
log-CPL, which climate covariates would you keep? (hint: notice that intro-
duction of the neighbor variable simplifies the model).
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4. Suppose we keep model 3, the one with only the covariates TAM, PR, MI and
v. In order to compare ML, CPL and coding estimates, Wu and Huffer suggest
measuring the distance DMA = ∑i |yi − ŷi| between observations y and their
predictions ŷ obtained by each estimation method (ŷi is the empirical mean at
i of Gibbs sampling simulations at the estimated parameter value). Compare
the quality of prediction of the three methods.

5.8. Several χ2 coding tests.
Suppose that X is a Markov random field with translation-invariant specification on
S = {0,1, . . . ,n−1}2 ⊂ Z

2.

1. Give the test for isotropy if X is the 4-NN Ising model.
2. Suppose that a 4-NN isotropic model with K states E = {1,2, . . . ,K} has the

following conditional energy at i: if xi = k,

hi(k,x∂ i) = αk + ∑
l:l �=k

βklni(l),

where ni(l) = ∑ j∈∂ i 1(Xj = l).
We impose the following identifiability conditions: αK = 0, for k �= l, βkl = βlk

and for all l, βKl = 0. Test the interchangeability hypothesis (E) : βkl is constant
at all k �= l.

3. Suppose X is a V -Markov random field with K states and translation-invariant
specification, where V = ∂0 ⊂ Z

2 is finite and symmetric, 0 /∈V .

(a) Give a general model for X (make some choice of V and K).
(b) Characterize the following submodels: (a) cliques have at most 2 points; (b)

the model is isotropic; (c): (a)∩(b); (d) the model is auto-binomial on E =
{0,1, . . . ,K −1}.

(c) Propose tests of these submodels with respect to the general model.

5.9. Estimating Markov random field dynamics.
Suppose we have X = (X(t), t ∈ N), X(t) = (Xi(t), i ∈ S) ∈ {0,1}S some dynamic
on S = {1,2, . . . ,n} modeled by a homogeneous and ergodic Markov chain. The
transition x 
→ y of these dynamics is defined by:

p(x,y;θ) = Z−1(x,θ)expU(x,y,θ), with

U(x,y;θ) =
n

∑
i=1

yi{αxi +β (xi−1 + xi+1)+ γ(yi−1 + yi+1)}.

1. Calculate the conditional distributions L (Xi(t) | xi(t),x(t − 1)). Deduce the as-
sociated CPL.

2. For some choice of network S and some θ , simulate these dynamics at T succes-
sive instants of time, then estimate θ by CPL.

5.10. A Markov growing stain model.
A growing stain model involves defining an increasing sequence A = {A(t), t =
0,1,2, . . .} of finite subsets of Z

2. Markov dynamics can be characterized by the
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distribution of the initial stain A(0) �= /0 and the Markov transitions P(a(t −1),a(t))
for t ≥ 1. These dynamics are of the NN kind if a(t −1) ⊆ a(t) ⊆ a(t)∪∂a(t −1),
where ∂B is the NN boundary of B. These NN dynamics are local and independent
if the transition satisfies:

P(a(t −1),a(t)) = ∏
i∈∂a(t−1)

P(a∂ i(t −1),ai(t)).

1. Propose a NN Markov dynamic. Simulate it for a given stain a(0). Give the CPL
of this model.

2. Same question for local and independent dynamics. Show convergence of the
CPL estimation and give the rate of convergence.

3. Test whether a NN Markov dynamic is local and independent.

5.11. Independence of bivariate spatial random variables.
Suppose that (U,V ) is a 4-NN isotropic Markov random field on S = {1,2, . . . ,n}
with states (Ui,Vi) ∈ {0,1}2. This model is translation-invariant.

1. Show that the general model has 12 parameters, with singleton and pair poten-
tials:

φ1(u,v) = αu+βv+ γuv,

φ2((u,v),(w, t)) = δ1uw+δ2vt +δ3ut +δ4vw+δ5uwt +δ6vwt

+δ7uvw+δ8uvt +δ9uvwt.

2. Present and then test the submodel for independence of U and V .
3. Let (ω) be the submodel where, in φ2, only δ1 and δ2 are non-zero. Find the

conditional distributions πi(ui,vi | ·) and νi(ui | ·) with conditioning on all the
other observations. Construct a χ2 coding test of the independence subhypothesis
for U and V based on the conditional distributions νi(· | ·).

5.12. Gaussian spatial regression.
Consider the Gaussian spatial regression model Z = Xβ +δ , Z and δ ∈R

n, β ∈R
p,

where δ is the SAR model

(I −ϕW )δ = ε,

with ε a Gaussian WN with variance σ2.
Give the information matrix Jp+2(θ) of θ = (β ,σ2,δ ). Same question if δ is a

CAR model.

5.13. Experimental design on random fields.
Suppose that p treatments with mean effects μ = t(μ1,μ2, . . . ,μp) are applied, each
r times, thus covering n = r× p zones of a field S = {1,2, . . . ,n}. We observe Y with
mean Dμ , where D is the n× p matrix defining the coordinates of applied treatments
(D satisfies: tDD = rIp). Suppose that the error process X =Y −Dμ is a spatial CAR
model:
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X = βWX + e,

where Wi j = 1 if |i− j| = 1 and Wi j = 0 otherwise.

1. Estimate μ by OLS. Deduce an estimation X̂ of the residuals.
2. Estimate β by LS conditional on the basis X̂ .
3. Deduce the GLS(β̂ ) estimation of μ and interpret the result.

5.14. Pointwise spatial distribution of child leukemia.
An important question in spatial epidemiology is to know whether or not the spatial
distribution of sick individuals (cases) is the same as that of the general population
(controls). The humberside dataset in the spatstat package gives the location
of 62 cases of child leukemia and 141 homes of healthy children randomly chosen
from the birth register in the study zone for a fixed time period (North-Humberside,
G.B., 1974–1982). These data, representing a MPP with two marks (1 ill and 0
healthy) were first studied by Cuzick and Edwards (53) (cf. Diggle (62)). Using the
Monte Carlo method, test whether the function D(h) = K1(h)−K0(h) equals zero,
i.e., that except for a spatial intensity factor of location of children, there is no spatial
risk influencing leukemia cases.

5.15. CPL for soft-core (interaction) point processes.
Suppose that X is a PP with density:

fω(x) = α(θ)β n(x) ∏
1≤i< j≤n

exp−
(

σ
‖xi − x j‖

)2/κ

on S = [0,1]2, where θ = (β ,σ)′ with β > 0 and 0 ≤ σ < ∞ unknown, 0 < κ < 1
known and α(θ) the normalization constant. Analyze the influence of σ and κ on
the distribution of the spatial configuration. Give the model in an exponential form
and calculate its pseudo-likelihood.

5.16. ML for hard-core processes.
Let X be the hard-core PP on [0,1]2 with density

fθ (x) = α(θ)h(x)β n(x),

where h(x) =∏1≤i< j≤n 1l{‖xi −x j‖ ≥ γ}, θ = (β ,γ)′, β > 0, γ > 0 and α(θ) is the
normalizing constant. Show that it is possible to find an explicit expression for the
ML estimate of γ but not of β .

5.17. An analysis of the lansing and spruce datasets.
The lansing dataset in the spatstat package gives spatial location of three
types of oak: red, white and black.
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1. Estimate the second-order characteristics K and J for the three sets of locations.
2. Test the CSR hypothesis using a Monte Carlo method.

The spruce dataset, also in the spatstat package gives location and diameters
of trees in a forest in Saxony. In the present question we will only consider the
location variable.

1. Estimate the Strauss model using MCPL by making a preliminary estimation of
the interaction radius r.

2. Validate this choice of model by performing 40 simulations of the estimated
model and using the K function.

3. Would working with a model having a second-order potential modeled by a step
function be better?

The following exercises look at asymptotic behavior of estimators in a framework
that is not necessarily spatial. They require properties of the minimum contrast es-
timation method given in Appendix C.

5.18. Convergence of OLS for regression models.
Consider the following regression model:

yi = f (xi,θ)+ εi, i = 1, . . . ,n

with i.i.d. errors (εi) from N (0,σ2), where f is continuous at (x,θ) and X = (xi)
are i.i.d. data generated from a distribution g on R

k with compact support. Suppose
also that θ is an interior point of a compact Θ in R

p. Give a condition that ensures
convergence of the OLS estimator. Can we weaken the hypothesis on X ?

5.19. CPL for bivariate Gaussian distributions.
Let Z = (X ,Y ) be a centered bivariate Gaussian distribution where X and Y have
variance 1 and correlation ρ . Suppose we have a sample Z(n) = (Z1,Z2, . . . ,Zn )
drawn from Z. Give the CPL of Z(n). Show that the maximum CPL estimator of ρ
converges and is asymptotically normal. What is its efficiency compared to the ML
estimator?

5.20. Estimating inhomogeneous Markov chains.
Suppose that Y = {Yi, i ∈ N} is a Markov chain with finite state space E and tran-
sition P(Yi+1 = z | Yi = y) = p(y,z;θ ,xi), where xi ∈ X is a covariate and X some
measurable compact space (X ,X ). Suppose that p is a C 2 function with respect to
θ . Let μ be a positive measure on (X ,X ) such that:

(C1) α 
→ ∑y∈E
∫

X p(y, ·;α,x)μ(dx) is one-to-one.

(C2) ∀A ∈ X , liminf
n

(n−1∑n
i=1 1(xi ∈ A)) ≥ μ(A).

1. Show that under (C), the ML estimator converges.
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2. Find the asymptotic distribution of the likelihood ratio test.
3. Example: Suppose that X ⊂ R, E = {0,1} and F is a C 2 cumulative distribu-

tion function such that f = F ′ > 0 and the transition y 
→ z = y is given by
p(y,y;x,α,β ) = F(αxy + βy). Check conditions (C) and test the hypothesis
α = 0.

5.21. Marginal pseudo-likelihood estimation.
Suppose that X is an exponentially-mixing ergodic real-valued random field on S =
Z

d whose distribution depends on θ ∈ Θ , a compact in R
p. Suppose we have a

finite subset M of S, Mi = M + i for i ∈ S, g : R
|M| ×Θ 
→ R continuous, Dn =

{1,2, . . . ,n}d and the marginal contrast:

Un(α) = d−1
n ∑

i∈Dn

g(X(Ai,α)).

1. Give conditions on (X ,g) ensuring convergence of the minimum contrast estima-
tor.

2. Examine asymptotic normality of this estimator.
3. Example: consider a Markov chain Y with states {−1,+1} and transition p =

P(Yi �= Yi−1 | Yi−1). We add i.i.d. noise so that the noisy response variable Xi

satisfies: P(Xi = Yi) = 1−ε = 1−P(Xi �= Yi). Is it possible to identify θ = (p,ε)
using the distribution of pairs (X0,X1)? Estimate θ using the marginal contrast
of triplets (Xi,Xi+1,Xi+2). Test for independence of the chain Y .

5.22. Estimating Markov random field dynamics with CPL.
Let X = (X(t), t ∈ N), X(t) = (Xi(t), i ∈ S) ∈ {0,1}S, S = {1,2, . . . ,n} be modeled
using an ergodic homogeneous Markov chain. We define the transition x 
→ y of
these dynamics as:

P(X(t +1) = y | X(t) = x) = p(x,y;θ) = Z−1(x,θ)expU(x,y,θ),

where

U(x,y;θ) =
n

∑
i=1

yi{αxi +β (xi−1 + xi+1)+ γ(yi−1 + yi+1)}.

1. What difficulty do we encounter when calculating the likelihood?
2. Calculate the conditional distributions Xi(t) | xi(t),x(t − 1). Deduce the associ-

ated CPL.
3. Study the asymptotic properties of the maximum CPL estimator (resp. cod-

ing). Test for temporal independence (α = β = 0). Test for spatial independence
(γ = 0).

5.23. Consistency of ML estimation of the parametric intensity of a Poisson
point process.
Let X be a Poisson PP with intensity ρ(·,α) on R

d , α ∈Θ a compact in R
p and

suppose that the unknown true value θ of the parameter is an interior point of Θ .
Suppose that X is observed in a window Dn = [0,n]d of measure dn.

1. Using the result
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E ∑
ξ∈X∩S

h(ξ ,X\{ξ}) =
∫

S
Eh(ξ ,X)ρ(ξ )dξ ,

true when X is a PPP(ρ) (160), deduce that the log-likelihood ln(α) of X ob-
served on Dn is:

E[ln(θ)− ln(α)]=Kn(α,θ)=
∫

Dn

{[
ρ(η ,α)
ρ(η ,θ)

−1

]
− log

ρ(η ,α)
ρ(η ,θ)

}
ρ(η ,α)dη .

2. Suppose that ρ(ξ ,α) is uniformly bounded in (ξ ,α). Deduce that for some con-
stant M < ∞, we have uniformly at α:

Varθ (ln(α)) ≤ Mdn.

Noting Un(α) = −ln(α)/dn, show that:

liminf
n

[Un(α)−Un(θ)] ≥ K(α,θ) = liminf
n

Kn(α,θ) in probability.

3. Give an identifiability condition on the representation α 
→ ρ(·,α) ensuring that
K(α,θ) �= 0 if α �= θ . Deduce that the ML estimation of θ is consistent if n →∞.



Appendix A
Simulation of random variables

We present several well-known methods for simulating random variables. For sup-
plementary details, we suggest the book by Devroye (59).

In the following we suppose that we have a random generator U of the uniform
distribution U ([0,1]) on [0,1] and that, on a loop, this generator outputs i.i.d. values
(Un) following U ([0,1]).

A.1 The inversion method

Let X be a real-valued random variable with cumulative distribution function F :
R → [0,1] defined for x ∈ R by F(x) = P(X ≤ x). F is increasing, with limits 0 at
−∞ and 1 at +∞. Furthermore, F is everywhere continuous if X has a density g. In
such cases, F(x) =

∫ x
−∞ g(u)du.

Define F−1 : [0,1] → R to be the pseudo-inverse of F :

F−1(u) = inf{x : F(x) ≥ u} when u ∈ [0,1].

The following property is crucial for the inversion method: if U is uniform on [0,1],
then X = F−1(U) has the cumulative distribution function F . In effect:

P(X ≤ u) = P(F−1(U) ≤ x) = P(U ≤ F(x)) = F(x). (A.1)

Each time that F is explicitly given, (F−1(Un),n ≥ 1) is a sequence of i.i.d. random
variables from the distribution of X . Let us give some examples.

Simulating Bernoulli variables with parameter p

Suppose X ∈ {0,1} with p = P(X = 1) = 1−P(X = 0). We generate a variable U ∼
U ([0,1]): if U < 1− p we keep X = 0; otherwise we take X = 1. This methodology

C. Gaetan, X. Guyon, Spatial Statistics and Modeling, Springer Series in Statistics, 249
DOI 10.1007/978-0-387-92257-7, c© Springer Science+Business Media, LLC 2010
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is valid any time that we are simulating distributions that take two possible values
X ∈ {a,b}, a �= b.

Simulating variables that take a finite numbers of values

Suppose that X takes K values {a1,a2, . . . ,aK} each with probability pk = P(X =
ak), k = 1, . . . ,K, ∑K

1 pk = 1. We construct a partition of [0,1[ into K adjacent inter-
vals Ik = [ck−1,ck[, k = 1, . . . ,K where c0 = 0, ck = ∑k

1 pi for k = 1, . . . ,K and we
draw U ∼ U ([0,1]): if U ∈ Ik, we take X = ak. This method simulates X because

P(ck−1 ≤U < ck) = pk = P(X = ak) for k = 1, . . . ,K. (A.2)

Variables taking a countably infinite number of values

If X ∈ E takes a countably infinite number of values, we begin by finding, for some
small fixed value α > 0 (for example, α = 10−3) a finite subset Eα ⊂ E such that
P(X ∈ Eα) ≥ 1−α . Then, we simulate X over the finite set of states Eα ∪{E\Eα},
where {E\Eα} regroups all states outside Eα into a single state.

For example, to simulate a Poisson distribution with parameter λ , we first find
the value n0 satisfying P(X > n0) < 10−3, then simulate X over {0,1,2, . . . ,n0}∪
{larger} as described above, with probabilities:

P(X = n) = pn = e−λ
λ n

n!
if 0 ≤ n ≤ n0 and P(X ∈ {larger}) = 1−

n0

∑
0

pn.

Note also that the value of X can be qualitative.

Simulating an exponential distribution

Equation (A.1) allows us to simulate distributions whose state space E ⊆ T is con-
tinuous whenever F−1 is given. If X ∼ E xp(λ ) is exponential with parameter λ > 0,
then F(x) = 0 if x < 0 and F(x) = 1− e−λx if x ≥ 0 and we deduce that, for any
u ∈ [0,1],

F−1(u) = − log(1−u)
λ

.

As both U and 1−U are uniform on [0,1] when U ∼ U ([0,1]), X = −log(U)/λ
simulates an exponential variable with parameter λ . Similarly,

X = −∑
N
n=1 logUn

λ

simulates a Gamma distribution Γ (λ ,N) for any integer N ≥ 1. We will show later
how to simulate such distributions when this parameter is not an integer.
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A.2 Simulation of a Markov chain with a finite number of states

Let X = (X0,X1,X2, . . .) be a homogeneous Markov chain taking values in a finite
state space E = {a1,a2, . . . ,aK} with transition P = (pi j) (120; 103; 229):

pi j = P(Xn+1 = j | Xn = i).

With the convention pi,0 = 0, we define for each i = 1, . . . ,K the partition of [0,1[
into K adjacent intervals Ii( j):

Ii( j) = [c j−1(i),c j(i)[, j = 1, . . . ,K

where c j(i) = ∑ j
l=0 pi,l .

Consider next the mapping Φ : E × [0,1] → E defined for any i = 1, . . . ,K and
u ∈ [0,1] by:

Φ(ai,u) = a j if u ∈ Ii( j).

If U ∼ U ([0,1]), we thus have for any i, j = 1, . . . ,K:

P(Φ(ai,U) = a j) = P(U ∈ Ii( j)) = pi j.

The sequence {x0,Xn+1 = Φ(Xn,Un),n ≥ 0} simulates a Markov chain with tran-
sition P and initial condition X0 = x0. If X0 ∼ ν0 is generated using (A.2), the se-
quence (Un,n ≥ 0) allows us to simulate a Markov chain with initial distribution ν0

and transition P.

A.3 The acceptance-rejection method

This method simulates a random variable X with density f on R
p when there exists

some easily simulated distribution with density g on R
p such that, for all x, f (x) ≤

cg(x) for some c < ∞. In effect, consider a random variable Y with density g and
suppose U ∼U ([0,1]) is independent of Y . Then, the following conditional variable
has the distribution of X :

(Y | if cUg(Y ) < f (Y )) ∼ X .

Indeed, as c =
∫

cg(y)dy ≥ ∫ f (y)dy > 0 and f (y) = 0 if g(y) = 0, we have:

P(Y ∈ [x,x+dx] | cUg(Y ) < f (Y )) =
g(x)dxP(U < f (x)

cg(x) )

P(U < f (Y )
cg(Y ) )

=
g(x) f (x)

cg(x)dx
∫ f (y)

cg(y)g(y)dy

= f (x)dx = P(X ∈ [x,x+dx]).
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For the method to be practical, Y has to be easily simulated and c not too large
(so that rejection is infrequent). When possible, the optimal choice for c is c =
supx f (x)/g(x).

Example: simulation of Gamma and Beta distributions

A Gamma distribution Γ (λ ,a), λ > 0, a > 0 has density

f (x) =
λ a

Γ (a)
e−λxxa−11(x > 0),

where Γ (a) =
∫ +∞

0 e−xxa−1dx.
If Y ∼Γ (1,a), then X =Y/λ ∼Γ (λ ,a). Also, the sum X +Z of two independent

Γ (λ ,a) and Γ (λ ,b) gives a Γ (λ ,a+b). It therefore suffices to be able to simulate
Γ (1,a) with a∈]0,1] in order to be able to simulate anyΓ (λ ,a∗) with λ > 0, a∗ > 0.

Simulating a random variable Y followingΓ (1,a), a∈]0,1] can be done using the
acceptance-rejection method: we remark that for density f (x) = Γ (a)−1e−xxa−11
(x > 0) of Y ,

f ≤ a+ e
aeΓ (a)

g ,

where g(x) = (a + e)−1[eg1(x) + ag2(x)], with g1(x) = axa−11(0 < x < 1) and
g2(x) = e−x+11(1 < x <∞). g1 is a density on ]0,1[, g2 on ]1,+∞[ with both able to
be simulated using the inversion method and g the mixture of these two distributions
with weights (e/(a+ e),a/(a+ e)). An initially generated uniform variable lets us
choose whether the simulation of g is in ]0,1[ or ]1,+∞[, after which we simulate
the retained variable with density gi using the inversion method, the simulation of
Y thus being obtained by acceptance-rejection. Three U ([0,1]) are therefore used
during this simulation. Other methods can bring this down to two, in particular by
directly simulating the distribution with density g using the inversion method.

The Beta distribution with parameters a,b > 0 is noted β (a,b) and has density

f (x) =
Γ (a+b)
Γ (a)Γ (b)

xa−1(1− x)b−11(0 < x < 1).

Simulating such distributions can be done using simulated Γ distributions and
the following property: if X ∼ Γ (λ ,a) and Y ∼ Γ (λ ,b) are independent, then
X/(X +Y ) ∼ β (a,b).

A.4 Simulating normal distributions

Simulating N (0,1)

Statistics software packages have functions that can generate a N (0,1). This can
be done starting from two independent U1 and U2 ∼ U ([0,1]) in the following way
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(Box-Muller method): the two following variables X1 and X2 follow a N (0,1):

X1 =
√

−2logU1 cos(2πU2), X2 =
√

−2logU2 cos(2πU1).

Simulation of Y ∼N (m,σ2) can be obtained by calculating Y = m+σX starting
from a X ∼ N (0,1). Also, log-normal, χ2, Student and Fisher distributions are
easily simulated starting from a N (0,1).

Simulating Gaussian random vectors

If Σ has full rank and if p is not too large (p < 5000), we can look for a decom-
position (for example, the Cholesky decomposition) Σ = A tA of Σ . Then, if X =
t(X1,X2, . . . ,Xp) is an i.i.d. sample of dimension p from a N (0,1), μ + AX simu-
lates Z. If r = rank(Σ) < p, we begin by finding the subspace S of dimension r that
is the support of Z, then, using an orthonormal basis of S, we simulate the Gaussian
vector using the previous method.



Appendix B
Limit theorems for random fields

B.1 Ergodicity and laws of large numbers

We recall here several ergodicity results and laws of large numbers (LLN) for spatial
processes: a strong law (SLLN), i.e., almost sure (a.s.) convergence and a weak law,
i.e., L2 convergence.

B.1.1 Ergodicity and the ergodic theorem

Let X = {Xs, s ∈ S} be a real-valued random field on S = R
d or S = Z

d . Er-
godicity is a property that strengthens the idea of stationarity and allows us to
obtain a.s. convergence of spatial empirical means when the domain of obser-
vation “tends to infinity.” If we limit ourselves to L2 convergence, second-order
ergodicity suffices. Ergodicity is important in statistics as it allows us to estab-
lish a.s. consistency of estimators given in the form of spatial means. Neverthe-
less, it is not always necessary to invoke the (very strong) ergodicity property in
order to prove consistency. Subergodicity conditions or even L2 conditions may
be sufficient (consistency of the CPL estimator or Coding estimator, cf. Th. 5.4
and Th. 5.6; consistency of the minimum contrast estimator, cf. Appendix C,
Th. C.1).

Noting Ω = R
S the state space of X and E its Borel σ -algebra, we say that an

event A ∈ E is translation-invariant if for any i ∈ S, τi(A) = A where τi is the i-
translation on Ω defined as: for all i ∈ S and ω ∈ Ω , (τi(ω)) j = ω j−i. The set of
invariant events forms a sub-σ -algebra I ⊆ E .

Stationary processes X are characterized by the fact that their distribution P is
translation-invariant: for any event A = {ω : Xs1(ω)∈B1,Xs2(ω)∈B2, . . . ,Xsn(ω)∈
Bn} generating the Borel σ -algebra, we have:

∀i ∈ S : P(A) = P(τi(A)).

255
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Ergodicity strengthens this property.

Definition B.1. A stationary process X is ergodic if for any invariant event A ∈ I ,
P(A) = 0 or P(A) = 1.

If X is ergodic, the σ -algebra I of invariants is trivial. The heuristic interpreta-
tion of this is that if an invariant event A has probability > 0, then it has probability
1 since the set of translations of A generates the space of all trajectories.

The standard example of an ergodic process is that of a sequence of i.i.d. vari-
ables. Ergodicity can be seen as a combined property of stationarity and asymptotic
independence.

We now state the ergodic theorem. With B(x,r) the ball centered at x with radius
r, define the interior diameter d(D) of D ⊆ R

d by:

d(D) = sup{r : B(x,r) ⊆ D}.

Theorem B.1. (Birkhoff (32) if d = 1; Tempelman (211) and Nguyen and Zessin
(164) if d ≥ 2)

Suppose that X is a stationary real-valued Lp process on R
d for some p ≥ 1.

Suppose that (Dn) is an increasing sequence of bounded convex sets such that
d(Dn) −→ ∞. Then:

1. Xn = |Dn|−1 ∫
Dn

Xudu −→ E(X0 | I ) in Lp and a.s. if S = R
d .

2. If furthermore X is ergodic, Xn −→ E(X0) a.s.

On S = Z
d , we have: Xn = �Dn

−1∑i∈Dn Xi −→E(X0 |I ) in Lp and a.s. if S = Z
d ,

where the a.s. limit is E(X0) if X is ergodic.

B.1.2 Examples of ergodic processes

Let us give several examples of ergodic processes:

• X = {Xi, i ∈ S} an i.i.d. sequence of real-valued random variables in L1 over a
countable set S.

• Y = {Yi = g(X ◦ τi), i ∈ S}, where X is ergodic on S and g : EV −→ R, for finite
V ⊂ S, is a measurable mapping.

• X a strongly-mixing stationary random field (116; 67):

lim
‖h‖→∞

P(τh(A)∩B) = P(A)P(B), ∀A,B ∈ E .

• X an m-dependent stationary random field, i.e., ∀U ⊂ S and V ⊂ S at least a
distance m apart, there is independence between {Xu,u ∈U} and {Xv,v ∈V}.
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• X a stationary Gaussian random field on R
d (Zd) whose covariance C tends to 0

at infinity (3):
lim

‖h‖−→∞
C(h) = 0.

• X a Gibbs random field on Z
d with translation-invariant potential and satisfying

Dobrushin’s uniqueness condition (85).
• N = {N([0,1[d+i), i∈Z

d}, where N(A) is the number of points in A of an ergodic
PP on R

d (for example a homogeneous Poisson PP, homogeneous Neyman-Scott
PP or a Cox PP driven by an ergodic random field Λ (204)).

• Y a random subset of R
d : Y = ∪xi∈X B(xi,r) where X is a homogeneous Poisson

PP (an ergodic PP) on R
d ; Y is a Boolean random field on R

d , Ys = 1 if s ∈Y and
0 otherwise (43).

Ergodicity of PPs (and closed random sets of R
d including the class of PPs) is

studied in (125; 204; 56) and (135) (the Poisson PP case). Heinrich (111) and Guan
and Sherman (95) use these properties to prove consistency of parametric estimators
of PPs. One way to get at the ergodicity of PPs is to associate them with the lattice
process X̃ of their configurations on the partition R

d = ∪i∈Zd Ai, where Ai = [i, i+1[
and 1 is the vector in R

d with entries 1, then verify ergodicity of X̃ .

B.1.3 Ergodicity and the weak law of large numbers in L2

Suppose that X is a second-order stationary random field on R
d with covariance C.

We say that X is ergodic in L2 if for any sequence (Dn) of bounded convex sets such
that d(Dn) −→ ∞, we have

Xn =
1

|Dn|
∫

Dn

Xudu −→ E(X0) in L2.

Let F be the spectral measure of X . We have the following weak law of large num-
bers [227, Ch. 3; 96, Ch. 3; 43]:

Theorem B.2. The following conditions are equivalent:

(i) X is ergodic in L2.
(ii) F has no mass at 0: F({0}) = 0.

(iii) |Dn|−1 ∫
Dn

C(u)du −→ 0.

In particular, these conditions are satisfied if lim‖h‖−→∞C(h) = 0 or if F is
absolutely continuous.

These results can be directly adapted to Z
d : for example, if F is absolutely con-

tinuous on T d ,
lim

n
Xn = E(X0) in L2.

If furthermore the spectral density f is bounded and continuous at 0, then
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lim
n→∞�DnVar(Xn) = (2π)d f (0),

with the asymptotic distribution of
√

�DnXn being Gaussian if X is itself a Gaussian
random field.

B.1.4 Strong law of large numbers under L2 conditions

We also have SLLNs under L2 conditions. A first result (cf. (32), §3.4) deals with
sequences of variables that are independent but not necessarily from the same dis-
tribution (cf. Lemma 5.1): if X = {Xi, i ∈ N} are independent centered real-valued
random variables in L2, then ∑n

i=1 Xi −→ 0 a.s. whenever ∑∞i=1 Var(Xi) < ∞.
Another result deals with empirical estimates of the mean μ and covariance

CX (k) of second-order stationary processes X on Z
d ((96), §3.2): if ∑h∈Zd |CX (h)|<

∞, then Xn → μ a.s. If furthermore X is 4th order stationary, i.e., Y = {Yi =
(Xi − μ)(Xi+k − μ), i ∈ Z

d} satisfies ∑h∈Zd |CY (h)| < ∞, then Y n → CX (k) a.s. If
X is a Gaussian random field, this last condition is satisfied if X has a square inte-
grable spectral density.

B.2 Strong mixing coefficients

Suppose that Z = {Zi, i ∈ S} is a random field on a network S endowed with a metric
d and that A and B are two subsets of S. Let F (Z,H) be the σ -algebra induced by
Z on the subset H of S. The strong mixing coefficient αZ(E,F) of Z on E and F ,
defined by Ibragimov and Rozanov (117) (cf. also Doukhan (67)) is:

αZ(E,F) = sup{|P(A∩B)−P(A)P(B)| : A ∈ F (Z,E), B ∈ F (Z,F)}.

The random field is α-mixing if αZ(E,F) −→ 0 as dist(E,F) −→ ∞, where
dist(E,F) = inf{d(i, j), i ∈ E, j ∈ F}.

We can equally use coefficients α parametrized by the sizes k and l ∈ N∪{∞}
of E and F : for n ∈ R,

αk,l(n) = αZ
k,l(n) = sup{αZ(E,F) : �E ≤ k, �F ≤ l and dist(E,F) ≥ n}.

Examples of α-mixing random fields

1. If Z is α-mixing, any measurable functional ZW = ( fi(ZWi)) that is locally de-
pendent on Z is also α-mixing: more precisely, if for any i ∈ S, (Wi) is a family
of subsets such that i ∈Wi and the diameter δ (Wi) of Wi is uniformly bounded by
Δ , then ZW = ( fi(ZWi)) is α-mixing, where αZW

k,l (n) = αZ
k,l(n−2Δ) if n > 2Δ .
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2. R-dependent random fields: Z is an R-dependent random field if, for any pair
(i, j) separated by a distance greater than R, Zi and Z j are independent. For
R-dependent random fields, αZ(E,F) = 0 if d(E,F) ≥ R and, for any k, l, αZ

k,l is
zero if n ≥ 2R.

3. Gaussian random fields: Let Z be a stationary Gaussian random field on Z
d with

spectral density f , f (λ ) ≥ a > 0 on the torus T
d . Note DK( f ) the distance from

f to its best approximation by a trigonometric polynomial with degree (K −1),

DK( f ) = inf{| f −P| : P(λ ) = ∑
|t|<K

ct exp〈λ , t〉}, where |t| =
d

∑
i=1

|ti| .

We have therefore ((117) for d = 1; (96, §1.7) for random fields) that:

α∞,∞(k) ≤ 1
a

DK( f ).

If f is continuous, this coefficient tends to 0 if k → ∞ and at an exponential rate
if f is analytic (for example, if Z is an ARMA model). If Z can be put into the
linear form Zt = ∑Zd bt−sεt where ε is a Gaussian WN, we have more precisely
that:

α∞,∞(k) ≤ 2
a
‖b‖∞ { ∑

|s|≥k/2

|sbs|}.

There are also ways to find mixing coefficients for non-Gaussian linear random
fields (67; 96).

4. Gibbs random fields under Dobrushin’s uniqueness condition (Dobrushin (66);
Georgii (85); Guyon (96)): Dobrushin’s influence measure γa,b(π) of site a on
site b, a �=b of a Gibbs specification π (noted γa,b(φ) if the specification is de-
rived from a potential φ ) is defined by:

γa,b(π) = sup
1
2

∥∥πb(· | ω)−πb(· | ω ′)
∥∥

V T ,

where ‖·‖V T is the total variation norm and the sup is taken over configurations
ω and ω ′ that are identical everywhere except at a. If a = b, we set γa,b(π) = 0.
We say that the Gibbs potential satisfies Dobrushin’s condition if

(D) : α(φ) = sup
a∈S
∑
b∈S

γa,b(φ) < 1. (B.1)

(D) is a sufficient (but not necessary) condition ensuring that there is no more
than one Gibbs measure in G (φ). For example, in the 4-NN isotropic Ising model
on Z

2 with specification at i:

πi(zi | zi) =
expβ zivi

exp−βvi + expβvi
, vi = ∑

j:‖i− j‖1=1

z j,
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the exact uniqueness condition (Onsager (166); Georgii (85)) is β < βc =
1
2 log(1 +

√
2) " 0.441 whereas Dobrushin’s condition, easily expressed in this

case, is β < 1
4 log2 " 0.275.

If furthermore the state space of the Gibbs random field is Polish (for example,
finite or compact), endowed with a finite positive reference measure λ and the
potential φ is summable, then there is existence and uniqueness of the Gibbs
measure μ associated with π: G (φ) = {μ}. In this case, if φ is bounded and
has bounded range, the unique Gibbs measure μ satisfies an exponential uniform
mixing condition:

ϕ(A,B) ≤C (�A) αd(A,B),

where ϕ(A,B)= sup{|μ(E |F )−μ(E)|, E ∈F (A), F ∈F (B), μ(F) > 0 }. μ is
also strongly-mixing as we still have 2α(·) ≤ ϕ(·) (67).
One difficulty in asymptotic statistics for Gibbs random fields μ known in the
form of their specification π(φ) is that we do not know in general whether or
not μ is unique in G (φ). Therefore, we usually do not have a weak dependency
property. Similarly, if the potential φ is translation-invariant (S = Z

d), we do
not know if μ is ergodic or even stationary. Thus, classical tools of asymptotic
statistics (ergodicity, weak dependency, CLT) are not always useful.

5. Mixing property for spatial point processes: A Poisson PP X , whether homoge-
neous or not is α-mixing because X exhibits independence. This mixing property
extends to Neyman-Scott PPs if the distributions for descendancy are spatially
bounded by R. In such cases, PPs are 2R-dependent.

Other examples of α-mixing random fields are given in Doukhan (67).

B.3 Central limit theorem for mixing random fields

Suppose (Dn) is a strictly increasing sequence of finite subsets of Z
d , Z a real-valued

centered random field with finite variance, Sn = ∑Dn Zi and σ2
n = Var(Sn). Note by

(αk,l(·)) the mixing coefficients of Z. We have the following result (Bolthausen (30);
Guyon (96) without stationarity):

Proposition B.1. Central limit theorem for real-valued random fields on Z
d

Suppose the following conditions are satisfied:

(i) ∑m≥1 md−1αk,l(m) < ∞ if k + l ≤ 4 and α1,∞(m) = o(m−d).
(ii) There exists δ > 0 such that: supi∈S E |Zi|2+δ < ∞ and

∑
m≥1

md−1α1,1(m)δ/2+δ < ∞.

(iii) liminf
n

(�Dn)
−1σ2

n > 0.

Then σ−1
n Sn

d−→ N (0,1).
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Comments

1. The mixing conditions are satisfied by stationary Gaussian random fields with
sufficiently regular spectral densities and for Gibbs random fields under Do-
brushin’s uniqueness condition (B.1).

2. If we only want to use one mixing coefficient, we can keep α2,∞ and the condi-
tion:

∑
m≥1

md−1α2,∞(m) < ∞.

3. The conclusion of the theorem still holds if S ⊂ R
d is a locally finite countably

infinite network: ∃δ0 > 0 s.t. for any two sites i �= j of S, ‖i− j‖ ≥ δ0. In effect,
here and for the regular network Z

d , the key property is that for any i ∈ S, the ball
centered at i with radius m satisfies, uniformly in i and m: �{B(i,m)∩S}= O(md).

4. As for any CLT, the positivity condition (iii) may be difficult to check.
5. If Z ∈ R

k is a multidimensional random field, Σn = Var(Sn) and (iii) is replaced
with

(iii)′ : liminf
n

(�Dn)−1Σn ≥ I0 > 0

for some positive definite matrix I0, then: Σ−1/2Sn
d−→ Nk(0, Ik).

6. The mixing conditions given by Bolthausen seem minor. However, we bring at-
tention to the work of Lahiri (137) who establishes a CLT using only the coef-
ficients α∗

k (n) ≡ αk,k(n), k < ∞. The conditions required are of the same type
as for Bolthausen but without the need to calculate coefficients αk,∞(·). Lahiri
(137) also gives CLTs when observation sites are randomly chosen with possible
infilling of observation sites (mixed increasing-domain infill asymptotics).

B.4 Central limit theorem for a functional of a Markov random
field

Suppose that Z is a Markov random field on S = Z
d taking values in E and with

translation-invariant specification π . Note Vi = {Z j, j ∈ ∂ i} the m values that the
local specification depends on, πi(· | Z{i}) ≡ πi(· | Vi) and consider a measurable
functional h : Em+1 −→ R such that Yi = h(Zi,Vi) satisfies for all i the conditional
centering condition:

E(Yi | Z j, j �= i) = 0. (B.2)

The standard example for which this condition is satisfied is the case where Y is the
gradient (in θ ) of the conditional pseudo-likelihood of a Markov random field.

To keep things simple, suppose that Dn = [−n,n]d is the sequence of domains of
observation of Z and note Sn = ∑Dn Yi.

We present here two CLTs for the functional Y : the first (99; 123) uses ergod-
icity of the random field Z, replacing the mixing property. The second (Comets
and Janzura (47)) is more general, supposing only translation-invariance of the



262 B Limit theorems for random fields

conditional specification π of Z and gives a Studentized version of the CLT. Comets
and Janzura’s result therefore applies without ergodicity or stationarity hypotheses,
whether or not there is a phase transition of the specification π .

Proposition B.2. (99; 123; 96)
Suppose that Z is a Markov random field on Z

d with an ergodic and translation-
invariant specification, where the bounded functional h satisfies centering condition
(B.2). Then, if σ2 = ∑ j∈∂0 E(Y0Yj) > 0, we have:

(�Dn)−1/2Sn
d−→ N (0,1).

As is usual for CLTs, the condition σ2 > 0 may be difficult to check. This con-
dition is shown to hold in (99) for the 4-NN isotropic Ising model on Z

d .
We now come to result (47). Define An = ∑i∈Dn∑ j∈∂ i YiYj and for δ > 0, Aδn =

max{An,δ × �Dn}. Notice that An is an unbiased estimator of the variance of Sn.

Proposition B.3. (Comets-Janzura (47))
Suppose that Z is a Markov random field on Z

d with translation-invariant speci-
fication and that the functional h satisfies: supi

∥∥Y 4
i

∥∥< ∞ as well as centering con-
dition (B.2). Define the Studentized version of Sn:

ζn = A−1/2
n Sn if An > 0 and ζn = 0 otherwise.

Then, under the condition:

∃δ > 0 such that (�Dn)−1E
∣∣∣An −Aδn

∣∣∣ −→
n→∞ 0, (B.3)

ζn
d−→ N (0,1).



Appendix C
Minimum contrast estimation

We present here the minimum contrast estimation method for parametric (or semi-
parametric) models (Dacunha-Castelle and Duflo (54)). Some authors still call this
pseudo-likelihood estimation (Whittle (222); Besag (25)), quasi-likelihood estima-
tion (McCullagh and Nelder (155)) or extremum estimation (Amemiya (6); Gourier-
oux and Monfort (92)). However, the underlying principle is the same through-
out: the estimated parameter value maximizes some “pseudo-likelihood” functional.
This functional replaces the likelihood when it is unavailable, either because the
model is semi-parametric and incompletely specified or because the likelihood is
impossible to calculate.

Under regularity conditions on the pseudo-likelihood functional and the observa-
tion design, the maximum pseudo-likelihood estimation procedure has some good
statistical properties: convergence, asymptotic normality and a test for the parame-
ter of interest. After suitable penalization of these functionals, we also obtain model
identification criteria.

Two pseudo-likelihood functionals play a central role in statistics for spatial pro-
cesses:

1. Gaussian pseudo-likelihood for second-order models. This is obtained by cal-
culating the likelihood (or approximation of) by supposing that the model is
Gaussian. This contrast was introduced by Whittle (222) for time series and for
random fields on Z

2 (cf. §5.3.1).
2. Conditional pseudo-likelihood (CPL) of Markov random fields on networks (cf.

§5.4.2), a product of conditional densities at each site (Besag (25); Guyon (96)).
If we restrict this product to a coding subset, we obtain the coding pseudo-
likelihood. The notion of CPLs also exists for Markov point processes (cf.
§5.5.5.1).

The standard example of a contrast is the least squares functional (spatial re-
gression estimation (cf. §5.3.4), variogram model estimation (cf. §5.1.3) and point
process estimation (cf. §5.5.4)). Contrasts for spatio-temporal models are given in
(41; 98; 100).

263
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Generally speaking, pseudo-likelihood functionals should have the following fea-
tures:

1. Encode in a simple way the information of interest in the model.
2. Be numerically simple to calculate.
3. Enable the model parameters to be identified.
4. Tentatively allow checking of statistical properties of estimators.

C.1 Definitions and examples

Consider the process X = {Xi, i∈ S} defined on a finite or countably finite set of sites
S. Whether our knowledge of X is partial (semi-parametric models) or complete
(parametric models), we denote θ ∈Θ ⊆ R

p the parameter of interest.
The goal is to estimate θ using observations X(n) = {Xi, i ∈ Dn}, where Dn is a

finite subset of sites. Our asymptotic study is associated with a strictly increasing
sequence (Dn) of domains of observation. To simplify things, we suppose that θ ,
the true unknown value of the parameter, is an interior point of a compactΘ of R

p.
α ∈Θ denotes a point inΘ .

A contrast function for θ is a non-random function

K(·,θ) :Θ → R, α 
→ K(α,θ) ≥ 0

that has a unique minimum at α = θ . The value of K(α,θ) can be interpreted as a
pseudo-distance between the model under θ and the one under α .

A contrast process associated with the contrast function K(·,θ) and observations
X(n) is a sequence of random variables (Un(α),n ≥ 1) related to X(n), Un(α) =
Un(α,X(n)), defined for all α ∈Θ such that:

∀α ∈Θ : liminf
n

[Un(α)−Un(θ)] ≥ K(α,θ) in Pθ -probability. (C.1)

This subergodicity condition (C.1) translates the fact that the value Un(α)−Un(θ)
estimating the contrast of α on θ on the basis X(n) asymptotically separates the
parameters. Condition (C.1) can be strengthened by the “ergodic” condition, giving:

lim
n

[Un(α)−Un(θ)] = K(α,θ) in Pθ -probability. (C.2)

Definition C.1. The minimum contrast estimator is the value θ̂n ofΘ that minimizes
the contrast Un:

θ̂n = argmin
α∈Θ

Un(α).

Let us give some examples.
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Example C.1. Likelihood of a Bernoulli model

Suppose that the Xi are independent Bernoulli random variables with parameters
pi = p(α,Zi) = (1 + expαZi)/(expαZi), where Zi is a real-valued covariate and
α ∈ R. The contrast of the likelihood is the negative of the likelihood, Un(α) =
−∑n

1 log fi(Xi,α). If the covariate (Zi) and α are bounded, the contrast function:

K(α,θ) = liminf
n

1
n

n

∑
1

log
fi(Xi,θ)
fi(Xi,α)

satisfies (C.1) whenever liminf
n

n−1∑n
i=1 Z2

i > 0.

Example C.2. Least squares contrast for regression

Consider the regression model (linear or otherwise)

Xi = m(Zi,θ)+ εi, i = 1, . . . ,n

expressing Xi ∈ R as functions of covariate Zi and error (εi) forming a WN with
variance σ2 < ∞. This model is semi-parametric as no hypothesis is made on the
distribution of the errors except that they be a WN. The ordinary least squares (OLS)
contrast is defined as:

Un(α) =
n

∑
i=1

(Xi −m(Zi,α))2.

Now let us define K(α,θ) = liminf
n
∑n

i=1{m(xi,α)−m(xi,θ)}2/n. If the experi-

mental design Z = {Zi, i = 1,2, . . .} is such that K(α,θ) > 0 for α �= θ , then (Un)
is a contrast process associated with the contrast function K(·,θ). This condition is
satisfied for example when:

1. Zi are i.i.d. with distribution Z: Z is ergodic.
2. The model θ 
→ m(·,θ) is identifiable, i.e.,

if θ �= θ ′, then PZ{z : m(z,θ) �= m(z,θ ′} > 0.

If the errors are Gaussian, Un(α) is, up to a multiplicative constant, the negative
of the log-likelihood.

If errors are correlated and have a known invertible covariance matrix Rn, the
generalized least squares (GLS) contrast is

UGLS
n (α) = ‖X(n)−mn(α)‖2

R−1
n

,

where mn(α) = {m(Z1,α), . . .,m(Zn,α)} and ‖u‖2
Γ = tuΓ u is the norm associated

with the positive-definite matrix Γ . The weighted least squares contrast corresponds
to the norm associated with the diagonal covariance matrix

UW
n (α) =

n

∑
i=1

(Xi −m(Zi,α))2

Var(εi)
.
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Example C.3. The moment method, marginal pseudo-likelihood

Suppose that X1,X2, . . . ,Xn are real-valued observations each with the same dis-
tribution μθ that depends on a parameter θ ∈ R

p. Note (μk(θ),k = 1, . . . ,r) the
first r moments of this shared distribution and (μ̂n,k(θ),k = 1, . . . ,r) the empirical
estimates of these moments. If D is a metric on R

r, one contrast for estimating θ is

Un(θ) = D((μk),(μ̂n,k(θ))).

A necessary condition allowing this contrast to make θ identifiable is that r ≥ p. To
construct a contrast leading to an identifiable parameter, we may have to consider
more than the identifiable marginal distribution μθ of X1, such as for example dis-
tributions of pairs, triplets, etc. This method can be extended to cases where X takes
values in a general state space E.

If for example pairs (Xi,Xi+1) have the same distribution and if such pairs allow
us to identify θ , we can use the marginal pseudo-likelihood of pairs:

ln(θ) =
n−1

∑
i=1

log f (xi,xi+1;θ).

Example C.4. Gaussian contrast of second-order processes

Suppose that X = (Xt , t ∈ Z) is a second-order stationary centered time series
with spectral density fθ . The periodogram associated with the empirical covariances
r̂n(k) of the observations X(n) = (X1,X2, . . . ,Xn) is the estimation of the spectral
density:

In(λ ) =
1

2π

n−1

∑
k=−n+1

r̂n(k)eiλk ,

where r̂n(k) = r̂n(−k) = n−1∑n−|k|
i=1 XiXi+k.

The periodogram In(λ ) is a poor estimator of f (λ ). However, Whittle’s contrast,
defined by the following regularization of In:

Un(α) =
1

2π

∫ 2π

0

{
log fα(λ )+

In(λ )
fα(λ )

}
dλ

is a good functional for estimating θ . Under Gaussian hypotheses, −2Un(α) ap-
proximates the log-likelihood. Without Gaussian hypotheses, Un leads to a good
estimation under quite general conditions (Dalhaus and Künsch (57); Guyon (96);
cf. §5.3.1). The contrast function associated with Un is:

K(α,θ) =
1

2π

∫ 2π

0

{
log

fα(λ )
fθ (λ )

−1+
fα(λ )
fθ (λ )

}
dλ , K(α,θ) > 0 if α �= θ .

The condition K(α,θ) �= 0 if α �= θ is satisfied if the parametrization of fθ by θ is
identifiable.
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Example C.5. Conditional pseudo-likelihood of a Markov random field

While the likelihood of Markov chains can be calculated recursively, this is no
longer true for spatial Markov random fields, which are fundamentally non-causal
models. The reason for this comes partially from difficulty in calculating the nor-
malizing constant. The same difficulty appears in general Gibbs models.

For this reason, Besag proposed in the context of Markov random fields on net-
works to use the conditional pseudo-likelihood (CPL), the product of conditional
densities at each i of Dn:

lPV
n (θ) =∏

Dn

πi(xi | x∂ i,θ). (C.3)

If we limit this product to a coding set C, we talk of pseudo-likelihood on the coding
C. For both of these functionals, we require subergodicity condition (C.1) to be
satisfied. However, if ergodicity of the random field suffices, this is not necessary.
This is an important remark as in general we do not know whether a given Gibbs
random field is ergodic.

Example C.6. Least squares estimation of variogram models

If we are modeling geostatistical data using an intrinsic variogram process
γ(·,θ), a classical way to estimate θ is to minimize the least squares contrast

ULS
n (θ) =

k

∑
i=1

(γ̂n(hi)− γ(hi,θ))2.

In this expression, γ̂n(hi) are empirical estimates of the variogram at hi for k prese-
lected vectors hi (cf. §5.1.3). Note that the least squares method is also used in the
estimation of parametric models of spatial point processes (cf. §5.5.4).

Example C.7. Marginal pseudo-transitions of a dynamical system of particles

Consider as an example the presence/absence dynamics Xi(t) ∈ {0,1}, i ∈ Z
2,

t = 0,1, . . . of a plant species on the spatial network Z
2. Durrett and Levin (74)

studied a discrete time contact process with two parameters (γ,λ ) characterized as
follows (cf. Fig. C.1): let x and y be configurations at successive instants of time t
and (t +1) and suppose:

1. The plant at site i survives with probability (1− γ).
2. If a plant survives, it seeds independently in each of the 4 neighboring locations

with probability λ .
3. yi = 1 if at least one plant is present in position i at time (t +1).

We suppose furthermore that all seeding defined in this dynamical system is in-
dependent in space and time.

After the first two steps, note zi ∈ {0,1,2,3,4,5} the number of plants at i at time
(t + 1). For example, zi = 5 if xi = 1 and survives and if every neighboring plant
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(a) (b)
1 2 2 1 3 2 1

1 2 3 1 3 2

1 2 3 3 1 1

1 2 1 1 2 1 2

4 1 4 1 1 3 1

2 1 2 1 1 3

2 3 2 2 1 4 3

1 2 3 1 1 1

(c) (d)

Fig. C.1 An example of the evolution t → t + 1 of a contact process on a regular network: (a)
configuration X(t) at time t (the • represent living plants); (b) plants (×) that die with probability
γ = 0.3; (c) number of seeds at each location after i.i.d. sowing in the four neighboring locations
with probability λ = 0.25; (d) configuration X(t +1) at time t +1.

at sites j survives and spreads to i. The third step tells us that yi = 1{zi ≥ 1} = 1.
While it is simple to simulate such dynamics, calculating the transition PS(x,y) is
impossible when S is large: in effect, the first thing to notice is that we have to
consider every single configuration x in order to calculate the joint probability of the
trial z = {zi, i ∈ S}, which has complexity 2�(S). Secondly, we are in a missing data
situation as only variables 1{zi ≥ 1} are observed and calculating the distribution of
the observation at time (t +1) is quite complicated.

To get around this, (101) suggest replacing the transition with the marginal
pseudo-transition

MS(x,y) = ∏
i∈I(x,S)

Pθ (Xi(t +1) = yi | x), (C.4)

a product of marginal transitions on I(x,S) = {s ∈ S : xs +∑ j∈∂ s x j ≥ 1}. The afore-
mentioned probabilities are easy to calculate in this case:

Pθ (Xi(t +1) = yi | x) = Pθ (Xi(t +1) = yi | x{i}∪∂ i).
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I(x,S) is the set of only the sites x that carry information as in effect, if xs +
∑t∈∂ s xt = 0 at time t, then Xt+1(s) = 0.

The marginal pseudo-likelihood of temporal observations {xS(0),xS(1),. . . ,
xS(T )} is thus defined by the product

MS,T (θ) =
T−1

∏
t=0

MS(x(t),x(t +1)).

Conditional on survival of the process, Guyon and Pumo (101) show consistency
and asymptotic normality of the estimator associated with this marginal pseudo-
likelihood.

Example C.8. Further examples

In definition (C.3), logπi(xi | xi,α) can be replaced by other functionals
hi(x(Vi);α) that may be better-adapted and that allow model identification. If
the conditional dependency πi is unbounded and/or not given, we can replace it
with an ad hoc functional: for example, if Xi ∈ R and we are able to calculate
gi(x(Wi),α) = Eα(Xi | x(Wi)), then

hi(x(Vi),α) = {xi −gi(x(Wi),α)}2, with Vi = {i}∪Wi

leads to a conditional least squares (CLS) pseudo-likelihood. A marginal pseudo-
likelihood for which hi(x(Vi),α) is the marginal log-density of X(Vi) under α is
another example of a contrast.

C.2 Asymptotic properties

Results in the “ergodic” form are due to Dacunha-Castelle and Duflo (54). Other
proofs are given by Amemiya (6) and Gourieroux-Montfort (92). The non-ergodic
form of the asymptotic properties of minimum contrast estimation is given in ((96),
Ch. 3).

C.2.1 Convergence of the estimator

We have the following convergence result (Hardouin (108); Guyon (96)):

Theorem C.1. θ̂n
Pr−→ θ under the following conditions:

(C1) α 
→ K(α,θ) and the contrasts α 
→Un(α) are Pα -a.s. continuous.
(C2) (Un) satisfies subergodicity condition (C.1).
(C3) If Wn(η) is the modulus of continuity of Un(·), ∃εk ↓ 0 s.t. for each k:

lim
n

Pθ (Wn(1/k) ≥ εk) = 0. (C.5)
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Corollary C.1. Let Un = ∑p
i=1 an,iUn,i, an,i ≥ 0 be a contrast process such that:

1. Un,1 satisfies (C1-C2-C3).
2. Each Un,i satisfies (C3).
3. a = liminf

n
an,1 > 0.

Then the minimum contrast estimator converges.

This corollary shows why conditions ensuring convergence of the estimator of
a Markov random field for a given coding C implies convergence of the condi-
tional pseudo-likelihood estimator Un (cf. §5.4.2). In effect, in this case, Un =
Un,C +∑l Un,Cl for a given partition {C,(Cl)} of S into coding subsets and the con-
ditions of the corollary are indeed satisfied.

For convex contrast processes, we have the following a.s. convergence result
(Senoussi (196); Guyon (96)):

Proposition C.1. If Θ is an open convex set in R
p, if contrasts θ 
→ Un(θ) are

convex and if (C.2) holds, then θ̂n
a.s.−→ θ .

Using the Newton-Raphson algorithm to get efficient estimators

Consider an estimator θ̂n of θ ∈ R
p, the solution to a system of p equations:

F(x(n);θ) = 0, θ ∈ R
p, (C.6)

where F takes values in R
p. Minimum contrast estimators fall into this category

when F(θ) = U (1)
n (θ), the gradient of Un.

As finding the solution to (C.6) is not always easy, it is useful to use the Newton-
Raphson algorithm initialized with a “good” estimator θ̃n that is easy to obtain. After
one step, the algorithm leads to θ ∗n :

θ ∗n = θ̃n −F−1(θ̃n)F(θ̃n), (C.7)

where F (α) is the p× p matrix with entries F(1)
i,α j

(α) representing the derivative at
α j of component i of F , i, j = 1, . . . , p.

If F is fairly regular and if θ̃n is consistent at a sufficient rate, Dzhaparidze (75)
showed that θ ∗n is asymptotically equivalent to θ̂n. More precisely, let (υ(n)) be a
real-valued sequence going to infinity. We say that an estimator θ n of θ is υ(n)-
consistent if

υ(n)(θ n −θ) = OP(1).

Two estimators θ n and θ ∗n are said to be asymptotically ν(n)-equivalent if

lim
n
υ(n)(θ n −θ ∗n ) = oP(1).

Define the following conditions:
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(DZ-1) Equation (C.6) has a τ(n)-consistent solution θ̂n.
(DZ-2) F is a C 2(V (θ)) vector function where V (θ) is a neighborhood of θ and

there exists a non-stochastic regular matrix W (θ) such that

lim
n

(F (θ)−W (θ))
Pθ= 0.

(DZ-3) The second derivatives satisfy:

∀δ > 0, ∃M < ∞ s.t. lim
n

Pθ{sup{
∥∥∥F(2)(α)

∥∥∥ ,α ∈ V (θ)} < M} ≥ 1−δ .

Proposition C.2. (Dzhaparidze (75)) Suppose conditions (DZ) are satisfied. Then,
if θ̃n is a τ̃(n)-consistent initial estimator of θ with rate τ̃(n) = o(

√
τ(n)), the esti-

mator θ ∗n from (C.7) is asymptotically τ(n)-equivalent to θ̂n:

lim
n
τ(n)(θ̂n −θ ∗n ) = oP(1).

C.2.2 Asymptotic normality

Preliminary notation

If h is a real-valued C 2 function in a neighborhood of θ , let h(1)(θ) denote the
gradient of h (vector of first derivatives at θ) and h(2)(θ) the Hessian matrix of
second derivatives at θ . If A and B are symmetric p× p matrices, we note:

• ‖A−B‖ = ∑i, j

∣∣Ai j −Bi j
∣∣ .

• A ≥ B (resp. A > B) if A−B is p.s.d. (resp. p.d.).
• If A > 0 has a spectral decomposition A = PDtP where P is orthogonal and D

diagonal, we choose R = PD
1
2 as the matrix representing the square root of A:

RtR = tRR = A.

Hypotheses (N) ensuring asymptotic normality

(N1) There exists a neighborhood V of θ in which Un is a C 2 function and a
real-valued Pθ -integrable random variable h satisfying:

∀α ∈V,
∥∥Un,α2(α,x)

∥∥≤ h(x).

(N2) Matrices Jn = Var(
√

anU (1)
n (θ)) exist, as does a sequence (an) −→ ∞ such

that:

(N2-1) There exists a p.d. matrix J such that Jn ≥ J for large n.
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(N2-2)
√

anJ−1/2
n U (1)

n (θ) d−→ Np(0, Ip).

(N3) There exists a sequence of non-stochastic matrices (In) such that:

(N3-1) There exists a non-stochastic and p.d. matrix I such that for large n,
In ≥ I.

(N3-2) (U (2)
n (θ)− In)

Pr−→ 0.

Theorem C.2. Asymptotic normality of θ̂n (108; 96)
If θ̂n converges and if conditions (N) hold, then:

√
anJ−1/2

n In(θ̂n −θ) d−→ Np(0, Ip).

Corollary C.2. If Un is the likelihood contrast, then:

1. Under the hypotheses of the previous theorem, we can chose for In = Jn the Fisher
information matrix:

√
anI−1/2

n (θ̂n −θ) d−→ Np(0, Ip).

2. Under ergodicity condition In
Pr−→ I(θ) > 0,

√
an(θ̂n −θ) d−→ Np(0, I(θ)−1).

Comments

1. Jn and In are pseudo-information matrices that must be positively “lower bounded.”
2. Asymptotic normality (N2-2) comes from a CLT for weakly-dependent variables

and conditionally centered random fields (cf. Th. B.2).

Example C.9. Additive contrast for mixing random fields on a network (108; 96)

The following conditions (A1–A3) imply (N). They are given relative to a weakly
dependent random field defined over a discrete network S in R

d that is not necessar-
ily regular with additive contrast:

Un(α) =
1
dn
∑

s∈Dn

gs(X(V (s)),α).

Un is the sum of local functionals {gs, s ∈ S}, where {V (s), s ∈ S} is a family of
bounded neighborhoods of s ∈ S and dn the cardinality of Dn. For example, gs is the
(negative of the) log of a conditional or marginal (pseudo) density.

(A1) For the network S ⊂ R
d :

S is infinite, locally finite: ∀s ∈ S and ∀r > 0, �{B(s,r)∩S} = O(rd).
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(A2) For the random field X : X is an α-mixing random field with mixing coeffi-
cient α(·) = α∞,∞(·) (Doukhan (67); Guyon (96), §B.2) satisfying:

(A2-1) ∃δ > 0 s.t. ∑i, j∈Dn α(d(i, j))
δ

2+δ = O(dn).
(A2-2) ∑l≥0 ld−1α(l) < ∞.

(A3) For the functionals (gs, s ∈ S):

(A3-1) (N1) is uniformly satisfied on V by the gs, s ∈ S.

(A3-2) ∀s ∈ S, Eθ (g
(1)
s (θ)) = 0 and sups∈S,α∈Θ ,k=1,2

∥∥∥g(k)
s (α)

∥∥∥
2+δ

< ∞.

(A3-3) There exists two symmetric p.d. matrices I and J such that for large n:

Jn = Var(
√

dnU (1)
n (θ)) ≥ J > 0 and In = Eθ (U

(2)
n (θ)) ≥ I > 0.

C.2.2.1 Pseudo-likelihood ratio tests

Let (Hp) be the hypothesis θ ∈Θ ⊂ R
p with dimension p and (Hq), q < p a subhy-

pothesis defined by the functional specification:

(Hq) : α = r(ϕ),ϕ ∈Λ an open set of R
q, θ = r(φ), (C.8)

where r : Λ −→Θ is C 2(W ) in a neighborhood W of the true value φ of the pa-
rameter under (Hq). Suppose that (Hq) has dimension q and that R = ∂ r

∂α (φ) is of
rank q.

There are two ways to deal with the problem of testing the subhypothesis (Hq):
the first is to construct a contrast difference test; the second is the Wald test that
α = r(ϕ) can be expressed in the constrained form C(θ) = 0.

Test statistic based on difference of contrasts

Note Un(ϕ) = Un(r(ϕ)) the contrast under (Hq) and ϕ̂n the associated minimum
contrast estimator, θ n = r(ϕ̂n). The contrast difference test uses the statistic:

Δn = 2an

[
Un(θ n)−Un(θ̂n)

]
.

Let In, Jn, I and J be matrices defined analogously to In, Jn, I and J but for Un and:

An = J1/2
n (I−1

n −RIn
−1 tR)J1/2

n .

An is a rank (p − q) p.s.d. matrix whose positive eigenvalues we note {λi,n, i =

1, . . . , p−q}. Let (Xn
d∼Yn) mean that the random variables Xn and Yn have the same

limiting distribution as n goes to infinity.

Theorem C.3. Asymptotic test for contrast difference (22; 96)
Suppose that θ̂n converges and that (Un) (resp. (Un)) satisfies hypotheses (N)

under (Hp) (resp. under (Hq)). Then, for large n and for independent χ2
1 :
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under (Hq) : Δn = 2an

[
Un(θ n)−Un(θ̂n)

]
d∼

p−q

∑
i=1
λi,nχ2

i,1.

Comments

1. If we can choose In = Jn, An is idempotent with rank (p−q): we therefore obtain,
under not necessarily ergodic hypotheses, the χ2

p−q likelihood ratio test. We have
In = Jn for the following contrasts:

(a) The likelihood of independent observations.
(b) The likelihood of not necessarily homogeneous Markov chains.
(c) The coding contrast of a Markov random field.
(d) More generally, a model with conditionally independent variables and a suber-

godicity condition on the conditioning variables.

2. If the model is ergodic, noting I (resp. J, I) the limit of (In) (resp. (Jn), (In)) and

{λi, i = 1, . . . , p−q} the positive eigenvalues of A = J1/2(I−1−RI
−1 tR)J1/2, we

have Δn
d∼ ∑p−q

i=1 λiχ2
i,1 under (Hq).

C.2.2.2 Specification tests with constraints

Suppose that (Hq) can be written in the constrained form:

(Hq) : ψ = C(θ) = 0,

where C : R
p → R

p−q is a C 2 constraint in a neighborhood of θ with rank (p−q)
at θ : rank(C(1)

α (θ)) = p− q. A direct method for testing (Hq) is to use the Wald
statistic associated with the constraint: ψ is estimated by ψ̂n = C(θ̂n) and the test of
(Hq) relies on the statistic

Ξn = tψ̂nΣ−1
n ψ̂n

d∼ χ2
p−q under (Hq),

where Σn = C(1)(θ̂n)V̂ar(θ̂n) tC(1)(θ̂n) is the estimated variance of ψ̂n under (Hp).

C.3 Model selection by penalized contrast

Suppose that the parameter space satisfies Θ ⊆ R
M , where R

M corresponds to an
upper-bounding model, M < ∞. A standard choice of family E of possible models
is the family of non-empty subsets of M = {1,2, . . . ,M},

δ = {θ = (θi)i∈M s.t. θi = 0 if i /∈ δ},

or perhaps an increasing sequence of spaces δ . Other choices may be useful for
testing random field isotropy hypotheses.
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Model selection is the choice of an element δ ∈ E using the data X(n). To do this,
if (an) is the rate associated with contrast (Un) (cf. (N2)), we use as decision function
the (pseudo-likelihood) contrast penalized at rate c(n) by the model dimension |δ |:

Wn(α) = Un(α)+
c(n)
an

|δ (α)| .

Note:

W n(δ ) = Un(δ )+
c(n)
an

|δ |
with Un(δ ) = argmin

α∈Θδ
Un(α).

According to the Akaike parsimony principle (4) we choose the model:

δ̂n = argmin
δ∈E

W n(δ ).

This choice represents a compromise between goodness of fit (necessitating a rela-
tively “large” model, Un(δ ) decreasing with respect to δ ) and a simple, interpretable
model.

We say that such a criteria selects the true model if δ̂n → δ0: for example, pe-
nalized likelihood allows us to select a convex model with i.i.d. observations (196).
Similarly, under appropriate conditions, Whittle’s contrast for stationary time series
selects the true model (199; 107; 34). Selection is also possible without the need for
ergodicity hypotheses.

Tools for these types of result rest on a bound on the probability of selecting
a ‘bad’ model and a version of the law of the iterated logarithm for the gradient

U (1)
n of the contrast process. Such conditions and results are presented in a general

framework in [96, §3.4]. More precisely, Guyon and Yao (102) give, for a large class
of models and associated contrasts (regression and least squares, AR and Whittle’s
contrast, Markov random fields and conditional pseudo-likelihood, infinite variance
models) a characterization of the sets of over and under-parametrizations of the
models and calculation of their probabilities, leading to conditions ensuring consis-
tency of criteria for each model type. Results on the selection of Markov models via
penalized pseudo-likelihood functions are also given in (124) and (52).

C.4 Proof of two results in Chapter 5

C.4.1 Variance of the maximum likelihood estimator for Gaussian
regression

Let l be the log-likelihood of a Gaussian regression (§5.3.4), l(1) = (l(1)
δ , l(1)

θ ). After

directly calculating that l(1)
δ = tZΣ−1(Zδ −X), we use the result ∂/∂θi log(|Σ |) =

tr(Σ−1Σi) to obtain:
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(l(1)
θ )i = 2−1{tr(Σ−1Σi)+t (X −Zδ )Σ i(X −Zδ )}.

Next, we find both the four blocks of the matrix of second derivatives and their
expectations:

(i) l(2)
δ 2 = tZΣ−1Z is constant and equal to Jδ .

(ii) The i th column of l(2)
(δ ,θ) is tZΣ i(Zδ −X), E(l(2)

(δ ,θ)) = 0.

(iii) (l(2)
θ2 )i j = 2−1{tr(Σ−1Σi j +Σ iΣ j)+ t(X −Zδ )Σ i j(X −Zδ )}; but

E{t(X −Zδ )Σ i j(X −Zδ )} =∑
kl

Σ i j(k, l)cov(Xk,Xl)

=∑
kl

Σ i j(k, l)Σ(k, l) = tr(Σ i jΣ).

We deduce that E(l(2)
θ2 )i j = 2−1tr(Σ−1Σi j +Σ iΣ j +Σ i jΣ). Differentiating at θi ×θ j

the product Σ−1Σ ≡ I, we find

Σ−1Σi j +Σ iΣ j +Σ jΣi +Σ i jΣ = 0,

and therefore: E(l(2)
θ2 )i j = −2−1tr(Σ jΣi).

��

C.4.2 Consistency of maximum likelihood for stationary Markov
random fields

We give here a proof of consistency of the ML estimator for stationary Markov
random fields on Z

d (cf. §5.4.1). The proof involves verifying the general conditions
that ensure convergence of minimum contrast estimators (cf. §C.2). To do this, we
invoke several properties of Gibbs random fields. The first is that if μ = Pθ ∈ Gs(πθ )
is stationary, then μ can be expressed as a convex linear combination of extremal
elements μ∗ of Gs(πθ ), distributions which are in fact ergodic [85, §7.3 and §14.2].
If we can show the consistency of each component μ∗, we can deduce μ-consistency
of the ML estimator as the extremal elements are mutually singular. It therefore
suffices to show consistency of one such distribution μ∗ (which is ergodic), i.e.,
show consistency of ML if μ is stationary and ergodic. To this end, noting Un the
contrast equal to the negative of the log-likelihood of X on Dn:

Un(x;α) =
1

�Dn
{logZn(x∂Dn ;α)−Hn(x;α)},

we will have proved consistency of ML after:

1. Identifying the contrast function: K(μ ,α) = limn Un(α).
2. Showing its continuity at α and that α = θ is its unique minimum.
3. Showing that the condition on the modulus of continuity of Un is satisfied.
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In order to study limit behavior of Un, we make the following preliminary remark:
for general potential φ = (φA,A ∈ S), define the mean energy at a site by

φ i = ∑
A:i∈A

φA

�A
, i ∈ S.

It can be shown that the energy HΛ (x) = ∑A:A∩Λ �= /0 φA(x) of x on Λ satisfies:

HΛ (x) = ∑
i∈Λ
φ i(x)+ εΛ (x),

where

εΛ (x) = − ∑
A:A∩Λ �= /0 and A�Λ

φA(x)
{

1− �(A∩Λ)
�A

}
.

For specification (5.23) induced by the {ΦAk ,k = 1, . . . , p}, we have:

|εΛ (x)| ≤ ∑
A:A∩Λ �= /0 and A�Λ

|φA(x)| ≤ p× (�∂Λ)× sup
k

∥∥ΦAk

∥∥
∞ . (C.9)

In effect, the potentials are bounded and �{A : φA �= 0,A∩Λ �= /0 and A � Λ} ≤
p× �∂Λ . Also, if φ is translation-invariant, φ i(x) ≡ φ 0(τi(x)). We infer that:

Un(x;α) = pn(x;α)− 1
�Dn
∑

i∈Dn

Φi(x;α)+
1

�Dn
εDn(x;α), (C.10)

where pn(x;α) = 1
�Dn

logZn(x;α). The first term of (C.10) converges independently
of x to the pressure p(α) of the potential φα (cf. (85), §15.3). Furthermore, due to the
upper bound (C.9), the third term tends to 0 uniformly at x because �∂Dn/�Dn → 0.
As for the second term, it tends to −Eμ(Φ{0}(α)) as μ is ergodic and the potential
is bounded. We thus obtain:

Un(x;α)−Un(x,θ) −→ K(μ ,α) = p(α)−Eμ(Φ{0}(α))+h(μ) ≥ 0,

where h(μ) is the specific entropy of μ ((85), §15.4). As representation α 
−→ π{0},α
is well-defined, G (πθ )∩G (πα) = /0 if α �= θ ; the variational principle ((85), §15.4)
therefore gives that K(μ ,α) > 0 if α �= θ .

It remains to show continuity of α 
→ K(μ ;α) and to verify the condition on the
modulus of continuity of Un. First, we look to bound the pn term. We have:

pn(x;α)− pn(x;β ) =
1

�Dn
log

∫
EDn expHn(x;α)λn(dxDn)∫
EDn expHn(x;β )λn(dxDn)

=
1

�Dn
log
∫

EDn
exp{Hn(x;α)−Hn(x;β )}πDn(dxDn/x;β )

≥ 1
�Dn

EπDn (·/x;β ){Hn(x;α)−Hn(x;β )} (Jensen)

= t(α−β )hn(x;β ),
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where hn(x;β ) = t(hk,n(x;β ),k = 1, . . . , p), hk,n(x;β )= 1
�Dn

EπDn (·/x;β ){hk,n(x)}. We
deduce that:

t(α−β )hn(x;β ) ≤ pn(x;α)− pn(x;β ) ≤ t(α−β )hn(x;α).

Remarking that if a≤ u≤ b, |u| ≤max{|a| , |b|} and that for each (x;β ), hk,n(x;β )≤
‖Φk‖∞, we have:

|pn(x;α)− pn(x;β )| ≤
p

∑
k=1

|αk −βk|‖Φk‖∞ . (C.11)

As the same upper bound holds in the limit p(α)− p(β ), K(μ ,α) is continuous at
α . As for the condition on the modulus of continuity of Un, it results from uniform
continuity at (α,x) of Un, which itself is a consequence of (C.11) and the formula-
tion of the energy as a scalar product:

Hn(x;α)−Hn(x;β ) = t(α−β )hn(x). ��



Appendix D
Software

We use three software packages to perform calculations illustrating examples in this
book: R, OpenBUGS and AntsInFields.

R is a statistical analysis and graphics package created by Ihaka and Gentleman
(118). It is both a software package and a language originating from the S soft-
ware created by AT&T Bell Laboratories. More precisely, R is an interpreted object
oriented language.

R is freely available under the terms of the GNU General Public License (GPL)
(see www.r-project.org). Its development and distribution are managed by
the R Development Core Team. R is available in several forms: the code is prin-
cipally written in C (though with some Fortran programs) for use with Unix
and Linux systems and as precompiled executable versions for Windows, Mac-
intosh and Alpha Unix. Code and executables are available from the internet site
cran.r-project.org of the Comprehensive R Archive Network (CRAN).

Various manuals are available alongside R in CRAN. To get a rapid overview of R,
we suggest reading “R for beginners” by Emmanuel Paradis. Several functions for
data analysis are found in the R base package but the majority of statistical methods
for spatial data analysis in R are available in the form of supplementary packages.

Such packages constitute one of the strong points of R: they are collections of
functions most often developed by the statisticians who proposed the corresponding
methodology. For our spatial data examples, we used the following packages: geoR,
RandomFields, spatstat and spdep. Other packages are also available and
can be browsed by following the ‘Spatial’ link in the CRAN task views (http://cran.r-
project.org/web/views/).

Let us present a short example to give some idea of syntax used in R. Consider
Example 5.16 examining the spatial distribution of aquatic tulips. We suppose that
the data are saved in file nyssa.txtwhose first two columns give the spatial coor-
dinate and the third the sex (male or female) of the tulip. Reading files with columns
of data either in standard ASCII or CSV (comma-separated values) is performed by
the function read.table. Running this function creates an “object” nyssa in a
data table format (data.frame). This object is made up of a list:

nyssa <- read.table("nyssa.txt", header = TRUE)

279
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Each object in the list is equivalent to a vector and each element of a vector repre-
sents an individual. To discover the names of these objects, the function names can
be run:

names(nyssa)

[1] "x" "y" "genre"

and to see the content of the item (for example, x), we type nyssa$x.
The user can perform operations (arithmetic, logical, comparative) on objects

and functions (which are themselves objects):

library(spatstat)
X <- ppp(nyssa$x, nyssa$y, marks = nyssa$genre,

window = owin(xrange = c(-1, 53),
yrange = c(0, 53)))

plot(X)

The first line makes the spatstat package available for use. This package,
created by Baddeley and Turner (15), contains functions for manipulating and rep-
resenting data as well as statistical functions for analyzing point data. The second
line creates the object X of the class ppp representing a 2-dimensional spatial dis-
tribution in a [−1,53]× [0,53] window. Lastly, we apply the function plot to this
object, giving the representation of the configuration shown in Fig. D.1.

To calculate Ripley’s K function, we use the Kest function. The flexibility of R
means that if we now apply the plot function, we get a graphical representation of
the K function. The final line gives the legend.
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Fig. D.1 (a) Spatial distribution of the species Nyssa aquatica based on sex: male (&) or female
©; (b) theoretic K function of a homogeneous Poisson PP and estimates under various boundary
effect corrections.
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Kfun <- Kest(X)
plot(Kfun)
legend(2, 400, legend = c("iso", "trans", "border",

"theo"))

BUGS (Bayesian inference Using Gibbs Sampling) and its Windows version Win-
BUGS (146) is a program developed for Bayesian statistical analysis using MCMC
simulation methods, notably Gibbs sampling. We have used OpenBUGS (212),
the open-source version (available at mathstat.helsinki.fi/openbugs).
It is easy to specify and estimate spatial hierarchical models with BUGS using the
GeoBUGS module. As an example, we can look at specifications of models (5.52),
(5.53) and (5.54) from Example 5.23 on lung cancer in Tuscany:

model {
gamma[1:N] ~ car.normal(adj[], weights[], num[],

kappa)
for (i in 1 : N) {

alpha[i]~dnorm(0.0,tau)
O[i] ~ dpois(mu[i])
log(mu[i]) <- log(E[i]) + beta1 + gamma[i]+

alpha[i]
SMRhat[i] <- mu[i]/E[i]

}
beta1 ~ dnorm(0.0, 1.0E-5)
tau ~ dgamma(0.5, 0.0005)
kappa ~ dgamma(0.5, 0.0005)

}

R packages BRugs and R2WinBUGS also provide interfaces linking R to BUGS.
AntsInFields is a program developed by Felix Friedrich to simulate and estimate

Gibbs random fields on networks as well as for image analysis. It is both a good ed-
ucational resource on simulating and estimating Gibbs random fields and a research
tool. Object oriented and modular, it is available at www.antsinfields.de un-
der the terms of the GNU Less General Public License (LGPL). AntsInFields en-
ables us to simulate using Gibbs sampling and Metropolis-Hastings dynamics, as
well as exact simulation and optimization by simulated annealing. It also performs
CPL estimation for Ising models, Potts models and Besag auto-models and includes
Bayesian methods for image reconstruction.
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density, 92, 97
potential, energy, 55, 74

Algorithm
inhomogeneous Metropolis, 128
Markov, 118
Metropolis, 120, 233
monotone Monte Carlo, 139
Propp-Wilson, 136
simulated annealing, 123, 128

Analysis of variance, 39, 57, 179
Anisotropy

geometric, stratified, 14
of a variogram, 14, 151
textural, 59

Aperiodic (chain), 114, 117, 121
AR, 28

conditional (CAR), 30, 177
estimation of, 177
factorizing, 29, 48
simultaneous (SAR), 28, 177

ARMA, 25
non-stationary, 34
stationary, 26

Asymptotic, 218
for CPL of PPs, 221
for Gaussian CARs, 178
for invariant specification, 196
for ML of PPs, 225
for Moran’s index, 167
for spatial regression, 183
for stationary fields, 175
in geostatistics, 157
increasing domain, 149
infill, 149, 157

minimum contrast, 269
mixed, 157
ML for Markov fields, 190
ML for Poisson PPs, 209
of CPL for Markov fields, 193
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Auto-model, 67

binomial, 69
exponential, 70
Gaussian, 71
logistic, 68, 242
mixed-state, 71
Poisson, 69
with covariates, 71
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imaging, 62
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statistics, 230

Boolean process, 84
Boundary effects, 174, 212
Brownian (motion, sheet), 3, 8
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Gibbs model, 71
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intrinsic, 237
Markov Gaussian, 36
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Cholesky (decomposition), 126, 140
CLT, 111

for functionals of fields, 261
for Markov chains, 117
for mixing fields, 260

Coding, 198

293



294 Index

Chi-2 test, 199, 243
set, 193

Coherent (family of distributions), 56
Comparative efficiency, 202
Compatibility of distributions, 54, 76
Conditional centering of fields, 261
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Contrast

additive, 272
estimation of minimum, 246, 263
Gaussian, 266
penalized, 158, 176, 203, 274
process, 264
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model, 19
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time, 138
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Matérn, 13
separable, 18, 23
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spectral representation, 5
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stationary, 2, 4
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Cross-validation, 158
CSR (Complete Spatial Randomness), 86, 89,

98, 207

Delaunay triangulation, 106
Differentiability (in q.m.), 16
Discrete network, 1, 25, 116, 165, 261
Durbin spatial (model), 52
Dynamics

Barker, 122
estimation of, 243
Markov chain, 112
Markov field, 73, 247
Metropolis, 122
of site by site relaxation, 146
spatio-temporal, 146
system of particles, 267

Energy, 55
admissible, 55, 69
mean, 191, 277

Ergodicity, 115, 255

Estimation
of ARs, 177
of autocorrelation, 165
of Gaussian fields, 178
of Markov fields, 188
of spatial regressions, 179
of stationary fields, 173
of texture, 191
point process, 207

Estimation of a variogram
parametric, 154

Experimental design, 47, 265
Exponential space of a PP, 83

Fisher information, 272
conditional, 199
for spatial regression, 183
of Markov fields, 191

Free boundary (conditions), 189

Gaussian
continuity of processes, 16
process, 2

Geary (Autocorrelation index), 169
Generalized linear model (GLM), 197
Geometric ergodicity, 117
Geostatistics, 1

estimation, 150
modeling, 11
simulation, 140

Gibbs (model), 53
bivariate, 145
lattice, 55
network, 77
point, 94

Gibbs field, 55, 77, 94
Gibbs sampling, 118, 125

random, 119
sequential, 119

Gibbs specification, 56, 57, 94
translation-invariant, 63, 189, 196, 204, 261

Graph clique, 64, 77, 103, 124
of PPs, 103

Growing stain model, 129, 244

Hammersley-Clifford, 65, 103, 105
Hard-core, 145

on discrete network, 116
PP, 88, 95, 245

Hereditary (PP density), 93, 130
Hierarchical (model), 64, 148, 230

generalized linear, 232
Homogeneous (PP), 90
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Identifiability, 30, 35, 56, 152, 194, 220
Image segmentation, 61, 77, 79
Influence graph, 35, 165
Intrinsic (process), 8, 148, 150

CAR, 237
Ising (model), 57

attractive, 139
estimation, 200
on irregular graphs, 195
simulation, 125, 146

Isotropic, 5, 57, 83

Kernel smoothing, 151, 210
Kriging, 43, 50, 159

Bayesian, 231
map, 45, 161
ordinary, 45
simple, 144
universal, 44, 232

Kronecker (product), 23

Law of large numbers, 111, 117, 223, 255
second-order, 194

Least squares, 265
conditional (CLS), 269
for a variogram, 154
for PPs, 218
for spatial regressions, 179
generalized (GLS), 45, 154, 182, 265
ordinary (OLS), 30, 154
quasi-generalized (QGLS), 181
weighted (WLS), 155, 265

Lexicographic order, 29
Locally finite (subset), 82
Log-linear (model), 72, 90, 91, 197
Logit (model), 68

MA, 26, 33
MAM, 68
MAP (maximum a posteriori), 62
Map of predictions, 161
Marginal pseudo-transition, 268
Marked point process, 84
Markov chain, 79, 112, 144

aperiodic, 114
inhomogeneous, 128, 246
irreducible, 114
of a Markov field, 74
reversible, 116
transition, 113

Markov field, 64, 77, 79
dynamics, 73

Markov Gaussian field, 36
Markov Gaussian process, 31

Markov graph, 36, 64
Markov point process, 102

Baddeley-Møller, 104
conditional intensity, 94, 102
Ripley-Kelly, 102

Matérn (variogram), 11
Maximum likelihood

for Gaussian regression, 182
for Markov chains, 189
for Poisson PPs, 208
of Gaussian fields, 178

MCMC, 115, 231
Metropolis, 120, 122, 233

optimality, 124
with spin-flips, 146

Mixing
coefficient, 258
field, 157

Mixture
field, 258
of fields, 176
of PPs, 218

Moëbius (formula), 56
Model identification

CAR, 176
Markov, 203

Model selection, 274
Model validation

for variograms, 158
PP, 219, 225

Moments of a point process, 85
Monte Carlo, 111, 159, 170, 215, 223
Monte Carlo approximation

of likelihood, 223
of quantiles, 111, 215

Moran (autocorrelation index), 166, 241
MPM (marginal posterior mode), 80
MSNE, 159

Nearest neighbor distance, 99, 108, 210
Neyman-Scott (PP), 88
Noise

colored, 31
white, 5, 181

Notation, xiii
Nugget effect (variogram), 11

Palm measure for PPs, 98
Papangélou (conditional intensity), 94, 102
Parametric bootstrap, 159, 198, 219
Periodogram, 266
Phase transition, 56, 58
Point process, 81, 89, 207, 257

area interaction, 97
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binomial, 87
connectivity-interaction, 97
Cox, 91, 131, 218
doubly Poisson, 92
doubly stochastic Poisson, 132
fibre, 84
Geyer’s saturation, 97
Gibbs, 94
hard-core, 88, 95
log-Gaussian, 91, 132
multivariate, 84
Neyman-Scott, 88, 218
second-order characterization, 85
Strauss, 95, 221
Thomas, 92

Point process density, 130, 220
conditional, 87
unconditional, 92

Point process intensity, 85
conditional, 94, 102, 220
order 2, 86

Point process residuals, 226
Poisson point process

estimation, 208, 247
homogeneous, 89
inhomogeneous, 90
intensity, 89

Positive semidefinite, 2, 48
Potential, 55, 65, 244

admissible, 55
bounded range, 56
identifiability, 56
interaction, 55, 77

Potts (model), 60, 77, 238
Prediction map, 42
Process

birth and death, 114
contact, 267
continuity, 16
differentiability, 16
Gaussian, 2
intrinsic, 8
linear, 26
second-order, 2, 173
stationary, 4

Pseudo-information (matrix), 198, 223, 272
Pseudo-likelihood, 263

conditional, 191, 246
Gaussian, 175
marginal, 247, 266
of Gaussian CARs, 192
of point processes, 219
penalized, 204, 275
Poisson, 210

Whittle, 175, 203

Quadrat (method), 207

Random walk, 114
Regularization (parameter), 62
Rejection sampling for Poisson PPs, 90
Remote sensing, 64, 128
Repulsion between points in PPs, 86
Reweighted correlation of PPs, 86, 214
Ripley’s K function, 100

estimation, 212

Sampling scheme, 47
SAR, 28, 32

estimation, 177
factorizing, 51
nearest neighbor, 37

SARX (SAR with exogenous variables), 37
Second-order reduced moment, 100

estimation, 212
Semi-causal (model), 28
Separable (covariance), 23
Shot-noise process, 92
Simulated annealing, 62
Simulated experiment, 45
Simulation, 111, 249

acceptance-rejection method, 251
conditional (for PPs), 130
conditional Gaussian, 144
constrained, 128, 147
exact, 136
inversion method, 249
Markov chain, 251
of auto-models, 126
of field dynamics, 129
of Gaussian random fields, 140
of Markov fields, 124
of PPs, 129
with turning bands, 141

Simultaneous equations, 28, 30
Spatial competition, 167
Spatial contiguity (matrix), 166

normalized, 166
Spatial cooperation, 167
Spatial Durbin (model), 38
Spatial lag (model), 38
Spatial regression, 38, 201

Bayesian estimation, 231
estimation of, 178

Spatial shift (model), 41
Spatio-temporal (model), 21, 22, 28, 73
Spectral density, 6, 7, 24, 31, 175, 257, 266

of 4th order cumulants, 176
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of an ARMA, 27
Spectral measure, 5, 141, 257
Spectral representation, 5
Spectrogram, 175
Spin-flip, 125
STARMA, 28
Stationary (field), 3

estimation, 173
second-order, 3
strict, 4

Stationary PP, 83
with respect to reweighted correlations, 87

Strauss (PP), 95
hard-core, 96

Subergodicity, 194, 199, 255, 269
Sweep

random, 119
sequential, 119

Tapered data, 174
Test

coding Chi-2, 199
isotropy, 200, 243
minimum contrast, 273
Monte Carlo, 171, 215
of spatial independence, 170
permutation, 170
PL ratio, 273
spatial homogeneity, 207
subhypothesis, 156, 176, 184, 201

Texture, 60, 64, 77, 128, 146, 147
estimation of, 191

Thinning, 90
Total variation

distance, 259
norm, 115, 132

Transform
Fourier, 6
Hankel, 6

Transition, 113, 118
invariant, 114
irreducible, 114
matrix, 113
primitive, 114
proposed change, 121, 123
reversible, 116

Transition matrix, 113
primitive, 114

Variogram, 8
empirical, 151
estimation, 151
exponential, 11
Matérn, 11, 160
nested, 13
nugget effect, 11
power, 11
range, 10
robust estimation, 154
robustified, 154
self-similar, 13
sill, 10
spherical, 11

Variogram cloud, 150
Variographic analysis, 150
Voronoi diagrams, 106

Yule-Walker (equations), 28, 32, 51
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