

Computability Theory
Ali Shakiba

Vali-e-Asr University of Rafsanjan

ali.shakiba@vru.ac.ir

What is
Computation?

3

The Functional Model

Computational Problem

Questions
(possible inputs)

Answers
(possible outputs)

݂
݂

݂

݂
Assumes Computations:
1. Read an input, think

for a while, write an
output, and halt

2. Just the “relation
between input and
output” is important

4

The Imperative Model

• What about computations that do not “compute a function”?
• deleting a file, anti-lock break system, …

sequences of imperatives which manipulate representations

More inclusive
than

functional model

Hard to reason
about

programs at
this level

advantageous
di

s-
ad

va
nt

ag
eo

us

5

Computability

• A function is called computable if there is a computer program which
executes it.

• What are the limits of computational power?
• We need to abstract the essentials.
• The answer needs to be independent of hardware advances.
• No limits on time and memory use in advance.

Essential components

• Memory
• with read/write capability

• Arithmetic

• if … then

• looping (for, while)

• Extra tools make it easier for humans to use

A program in PASCAL

Program Sample_Program;
Var

Num1, Num2, Sum : Integer;
Begin

Write('Input number 1:');
Readln(Num1);
Writeln('Input number 2:');
Readln(Num2);
Sum := Num1 + Num2; // addition
Writeln(Sum);
Readln;

End.

A program in QBASIC

CLS

INPUT "Enter a number: ", Number

IF Number < 100 THEN

PRINT "Your number was less than 100"

ELSE
PRINT "Your number was greater than or equal to 100"

END IF

A program in C++

#include <iostream>
#include <cmath>
using namespace std;
int main()
{
int num;
double sq_root;
for(num=1; num < 10; num++) {
sq_root = sqrt((double) num);
cout << num << " " << sq_root << '\n';

}
return 0;

}

Commonalities

• Finite sequence of symbols out of a finite alphabet.

• Could be ordered in some way and assign a number to each of them.

Enumeration (Listing)

• Sequences on alphabet {ܽ, ܾ} may be enumerated as follows:

• Some of them are not valid programs, however that is fine. We just
consider invalid programs as the ones which do nothing.

1. a 6. bb 11. baa
2. b 7. aaa 12. bab
3. aa 8. aab 13. bba
4. ab 9. aba 14. bbb
5. ba 10. abb …

A counting argument

• There are as many programs in a given language as there are natural
numbers (contably many)

• There are as many functions on the natural numbers as there are real
numbers (uncountably infinite)

The latter is strictly larger!

• So, there are uncountably many non-computable functions.

The Halting Problem

• Fix an enumeration of programs ଴ܲ, ଵܲ, …. The following function is
not computable by any program on the list.

݂ ݔ = ቊ
1, if ௫ܲ ݔ halts
 0, if ௫ܲ ݔ goes into an infinite loop

We are not just limited to
functions, we can use sets …

Sets, Sequences, Functions

• The function ݂: ℕ → 0,1 is associated with the sequence with entries
݂ 0 , ݂ 1 , ݂ 2 , …, in order.

• A binary sequence ܵ is associated with the set ܣ where ݊ ∈ ܣ if the
݊௧௛ entry of ܵ is 1 and ݊ ∉ ܣ otherwise.

݂ ݊ ↦ ݊ mod 2 0101010101 … The set of odd numbers

Comparing Non-computability
• If we choose some set ܣ and allow our programs to include statements

of the form

“if ݊ ∈ ,”… then ,ܣ

we are working with oracle programs.

• If ܣ is …
• non-computable, then we can compute more sets than we could do before.
• computable, then nothing is added.

If ܤ can be computed by a program with oracle ܣ, we say that ܤ is Turing
reducible to ܣ and write ܤ ≤் .ܣ

If I allow “halting problem ܪ” as an oracle …

• Let’s add H as an oracle to every program in our enumeration, i.e.
଴ܲ
ு , ଵܲ

ு , ….

• Consider the following function ݂:

it is non-computable by any ௘ܲ
ு

݂ ݔ = ൝1, if ௫ܲ
ு ݔ halts

 0, if ௫ܲ
ு ݔ goes into an infinite loop

No matter what oracle ܣ is chosen, there are always sets, uncountably
many, ܤ which ܤ ≰் .ܣ

H
alting problem

relativized

to ܪ

Turing Degrees

• Let ܪᇱ be the set associated with the Halting problem relativized to ܪ,
then we have ܪ ≰் .ᇱܪ

• This can be iteratively continued as ܪ ≰் ᇱܪ ≰் ᇱᇱܪ ≰் …, since we have
uncountably many left at each iteration.

The relation ܣ ≡் ܤ defined as (ܣ ≤் (ܤ ∧ ܤ) ≤் (ܣ partitions the
subsets of ℕ into equivalence classes called Turing degrees.

Each Turing degree contains countably many sets.

There are uncountably many Turing degrees.

Computable Enumerable Sets

• The collection of “Computable Enumerable Sets” is the next-larger set
than “Computable Sets”

Set ܣ is computable enumerable if its elements may be listed out
computably, but not necessarily in order.

Some Basic Facts on Computable Enumerable Sets

• A set is “computable” if and only if its elements may be enumerated in
order.

• A set ܤ is computable if and only if both ܤ and ܤ௖ are computable
enumerable.

• All the computable enumerable sets are Turing reducible to the Halting
problem.

Some Basic Facts on Computable Enumerable Sets

• A set is “computable” if and only if its elements may be enumerated in
order.

• A set ܤ is computable if and only if both ܤ and ܤ௖ are computable
enumerable.

• All the computable enumerable sets are Turing reducible to the Halting
problem.

• The halting problem is itself computably enumerable.

• The are non-computable enumerable sets ܤ such that ܤ ≤் .ܪ

Computational Complexity

23

general study of what can be
achieved within limited time
and/or other limitations on

natural computational resources

Two Concerns of Complexity

1. determination of the
complexity of any well-defined
task

2. obtaining an understanding of
the relations between various
computational phenomena

24

P, NP, and NP-completeness

These two seemingly different computational tasks are computationally
equivalent.

25

ݔ ∨ ݔ ∨ ݕ ∧
ݔ¬ ∨ ݕ¬ ∨ ݕ¬ ∧

ݔ¬) ∨ ݕ ∨ (ݕ

Precise Mathematical Models of Computing

• Turing machines

• Kleene’s partial recursive functions

• Church’s lambda calculus

26

Any computable function is computable by a Turing machine.

Turing Machines

Our Plan

Decidability Reductions Diagonalization PCP …

Complexity Theory

Time & Space P, NP &NP-complete PSAPCE …

Recursion Theory

PRFs RE & R Sets Rice Theorem Recursion Theorem

and m
uch m

ore …

Our References
[S12] Sipser, Michael. Introduction to
the Theory of Computation, 3rd edition.
Cengage Learning, 2012.

[B94] Bridges, Douglas S. Computability: a
mathematical sketchbook. Vol. 146. Springer
Science & Business Media, 1994.

C
ha

pt
er

s
5

to
 8

C
hapters 2 to 5

Evaluation
Title Grade Description

Exercises 5 At least 12 series

First Mid-term 3
Sunday, Aban 2nd, 1395
Chapters 3-5 of [S12]

Second Mid-term 3
Tuesday, Azar 16th, 1395
Chapters 7 and 8 of [S12]

Final 9 All of the topics

Excellence +2

Total 20+2

10% penalty for every late day.
100% penalty after 72 hours.

We have a great emphasis on PROOFS.

A good mathematical proof should be

Clear – easy to understand
Correct

In proofs, we will provide three levels of detail

• a short phrase/sentence giving a hint for the proof
• e.g. “The proof is by contradiction”, “The proof is by induction”, “The proof

uses the Pigeonhole principle”, “The proof is by construction”, etc.

• a short paragraph describing the main ideas

• the full proof

Please write
your solutions
in this way.

An example

Proposition: Suppose ܣ ⊆ {1,2, … , 2݊} with ܣ = ݊ + 1. There are always
two numbers in ܣ such that one number divides the other number.

Level 1:
• We use the Pigeonhole principle.
• We also use the fact that “Every integer ܽ can be written as ܽ = 2௞݉ where ݉

is an odd integer and ݇ is also an integer”.

Level 2:
The proof idea is as follows. We will show using the Pigeonhole principle that there
are ܽଵ ≠ ܽଶ of ܣ such that ܽଵ = 2௜݉ and ܽଶ = 2௞݉ for some odd integer ݇ and
integers ݅ and ݇.

odd
part

An example

Proposition: Suppose ܣ ⊆ {1,2, … , 2݊} with ܣ = ݊ + 1. There are always
two numbers in ܣ such that one number divides the other number.

Proof: Suppose ܣ ⊆ {1,2, … , 2݊} with ܣ = ݊ + 1. By writing each
element ܽ of ܣ in the form ܽ = 2௞݉ where ݉ is an odd number in
{1, … , 2݊}.

It is easy to verify that there are ݊ odd numbers in 1, … , 2݊ . Since
ܣ = ݊ + 1, there must be two distinct numbers in ܣ with the same odd

part. Let call them ܽଵ and ܽଶ. So, they are the form ܽଵ = 2௜݉ and ܽଶ =
2௞݉. If ݇ > ݅, then ܽଵ divides ܽଶ.

TRY! 

Level 2:
The proof idea is as follows. We will show using the Pigeonhole principle that there
are ܽଵ ≠ ܽଶ of ܣ such that ܽଵ = 2௜݉ and ܽଶ = 2௞݉ for some odd integer ݇ and
integers ݅ and ݇.

Proofs in class …

• During the lectures, I generally provide proofs of the first two levels
and only some parts of the third level.

• The reasons for this:
• In this course, usually, the second level is more important than the third,
• You can master the material by thinking and trying to fill the missing parts,
• It is a matter of time! We have a limited time.

Now, let’s begin our journey!

