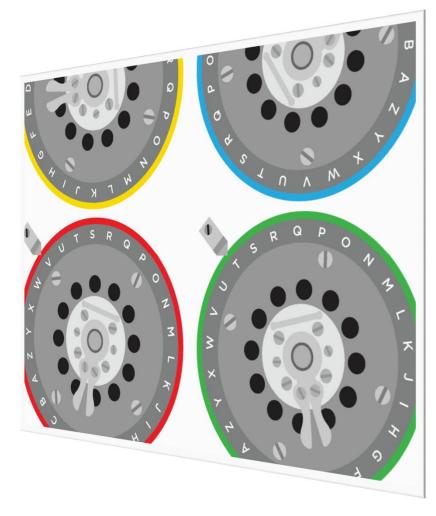


Computability Theory

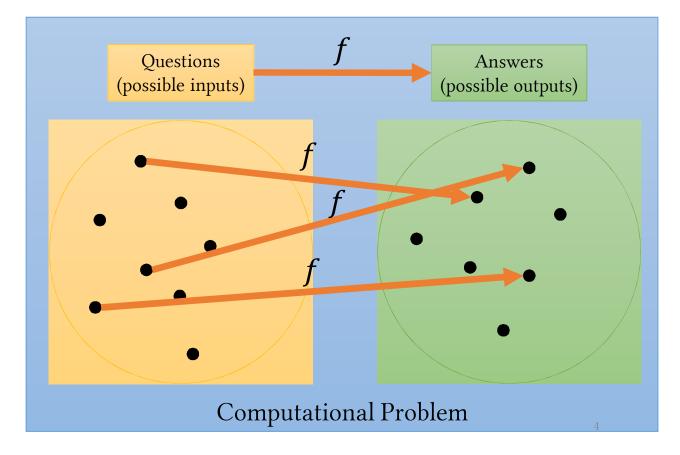
Ali Shakiba Vali-e-Asr University of Rafsanjan ali.shakiba@vru.ac.ir

What is Computation?



The Functional Model

Assumes Computations:
1. Read an input, think for a while, write an output, and halt
2. Just the "relation between input and output" is important



The Imperative Model

- What about computations that do not "compute a function"?
 - deleting a file, anti-lock break system, ...

sequences of imperatives which manipulate representations

Hard to reason about programs at this level

dis-advantageous

Computability

- A function is called *computable* if there is a computer program which executes it.
- What are the limits of computational power?
 - We need to abstract the essentials.
 - The answer needs to be independent of hardware advances.
 - No limits on time and memory use in advance.

Essential components

- Memory
 - with read/write capability
- Arithmetic
- if ... then
- looping (for, while)

• Extra tools make it easier for humans to use

A program in PASCAL

```
Program Sample_Program;
Var
    Num1, Num2, Sum : Integer;
Begin
    Write('Input number 1:');
    Readln(Num1);
    Writeln('Input number 2:');
    Readln(Num2);
    Sum := Num1 + Num2; // addition
    Writeln(Sum);
    Readln;
```

End.

A program in QBASIC

CLS

INPUT "Enter a number: ", Number

IF Number < 100 THEN

PRINT "Your number was less than 100"

ELSE

PRINT "Your number was greater than or equal to 100"
END IF

A program in C++

```
#include <iostream>
#include <iostream>
#include <cmath>
using namespace std;
int main()
{
    int num;
    double sq_root;
    for(num=1; num < 10; num++) {
        sq_root = sqrt((double) num);
        cout << num << " " << sq_root << '\n';
    }
    return 0;
}</pre>
```

Commonalities

- Finite sequence of symbols out of a finite alphabet.
- Could be ordered in some way and assign a number to each of them.

Enumeration (Listing)

• Sequences on alphabet {*a*, *b*} may be enumerated as follows:

1. a	6. bb	11. baa
2. b	7. aaa	12. bab
3. aa	8. aab	13. bba
4. ab	9. aba	14. bbb
5. ba	10. abb	

• Some of them are not valid programs, however that is fine. We just consider invalid programs as the ones which do nothing.

A counting argument

- There are as many programs in a given language as there are natural numbers (contably many)
- There are as many functions on the natural numbers as there are real numbers (uncountably infinite)

The latter is strictly larger!

• So, there are uncountably many non-computable functions.

The Halting Problem

• Fix an enumeration of programs P_0, P_1, \dots The following function is not computable by any program on the list.

$$f(x) = \begin{cases} 1, & \text{if } P_x(x) \text{ halts} \\ 0, & \text{if } P_x(x) \text{ goes into an infinite loop} \end{cases}$$

We are not just limited to functions, we can use sets ...

Sets, Sequences, Functions

- The function $f: \mathbb{N} \to \{0,1\}$ is associated with the sequence with entries f(0), f(1), f(2), ..., in order.
- A binary sequence *S* is associated with the set *A* where $n \in A$ if the n^{th} entry of *S* is 1 and $n \notin A$ otherwise.

 $f(n) \mapsto n \mod 2$ 0101010101... The set of odd numbers

Comparing Non-computability

• If we choose some set *A* and allow our programs to include statements of the form

"if $n \in A$, then ...",

we are working with *oracle programs*.

If *B* can be computed by a program with oracle *A*, we say that *B* is Turing reducible to *A* and write $B \leq_T A$.

- If *A* is ...
 - non-computable, then we can compute more sets than we could do before.
 - computable, then nothing is added.

If I allow "halting problem H" as an oracle ...

- Let's add H as an oracle to every program in our enumeration, i.e. P_0^H, P_1^H, \dots
- Consider the following function *f* :

 $f(x) = \begin{cases} 1, & \text{if } P_x^H(x) \text{ halts} \\ 0, & \text{if } P_x^H(x) \text{ goes into an infinite loop} \end{cases}$

Halting problem

relativized to H

it is non-computable by any P_e^H

No matter what oracle *A* is chosen, there are always sets, uncountably many, *B* which $B \leq_T A$.

Turing Degrees

- Let H' be the set associated with the Halting problem relativized to H, then we have $H \leq_T H'$.
 - This can be iteratively continued as $H \leq_T H' \leq_T H'' \leq_T \dots$, since we have uncountably many left at each iteration.

The relation $A \equiv_T B$ defined as $(A \leq_T B) \land (B \leq_T A)$ partitions the subsets of N into equivalence classes called *Turing degrees*.

Each Turing degree contains countably many sets.

There are uncountably many Turing degrees.

Computable Enumerable Sets

• The collection of "Computable Enumerable Sets" is the next-larger set than "Computable Sets"

Set *A* is *computable enumerable* if its elements may be listed out computably, but not necessarily in order.

Some Basic Facts on Computable Enumerable Sets

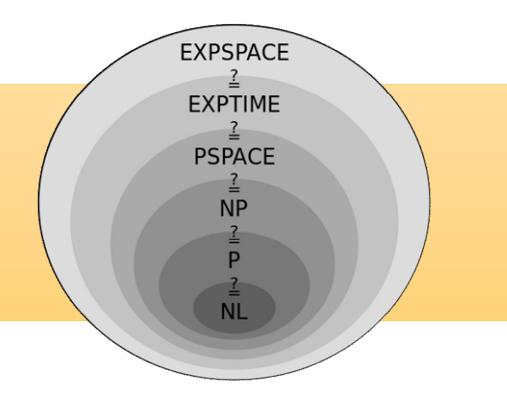
- A set is "computable" if and only if its elements may be enumerated in order.
- A set *B* is computable if and only if both *B* and B^c are computable enumerable.
- All the computable enumerable sets are Turing reducible to the Halting problem.

Some Basic Facts on Computable Enumerable Sets

- A set is "computable" if and only if its elements may be enumerated in order.
- A set *B* is computable if and only if both *B* and B^c are computable enumerable.
- All the computable enumerable sets are Turing reducible to the Halting problem.
- The halting problem is itself computably enumerable.
- The are non-computable enumerable sets *B* such that $B \leq_T H$.

Computational Complexity

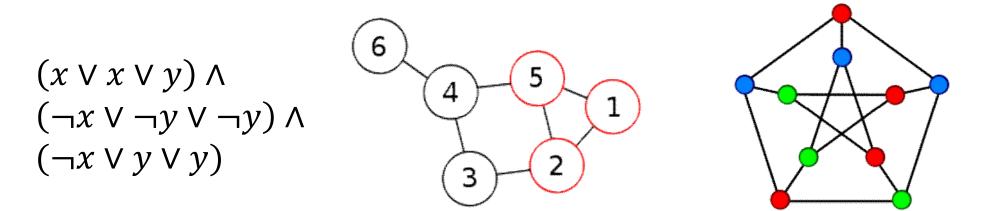
general study of what can be achieved within limited time and/or other limitations on natural computational resources



Two Concerns of Complexity

- determination of the complexity of any well-defined task
- 2. obtaining an understanding of the relations between various computational phenomena

P, NP, and NP-completeness



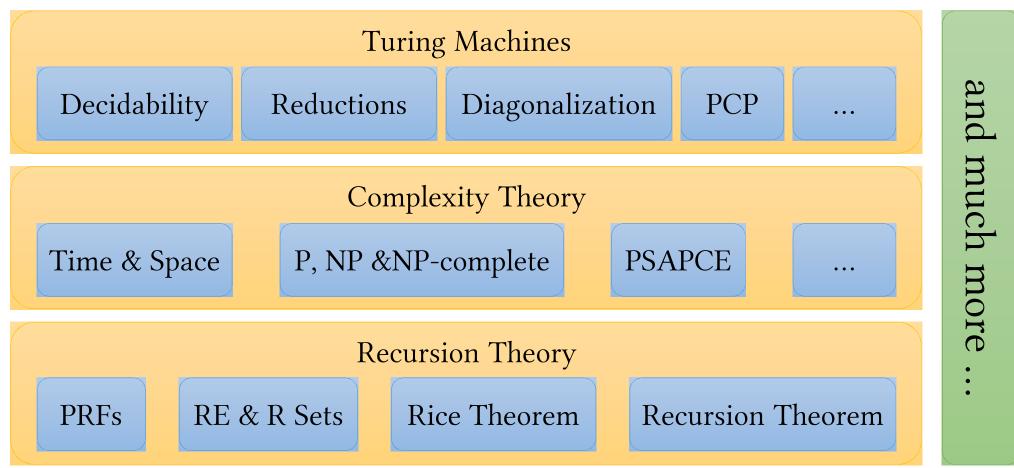
These two seemingly different computational tasks are computationally equivalent.

Precise Mathematical Models of Computing

- Turing machines
- Kleene's partial recursive functions
- Church's lambda calculus

Any computable function is computable by a Turing machine.

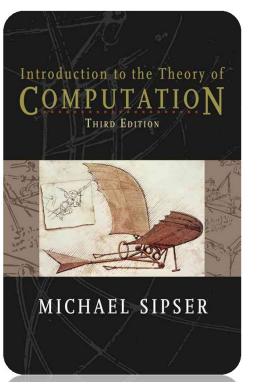
Our Plan



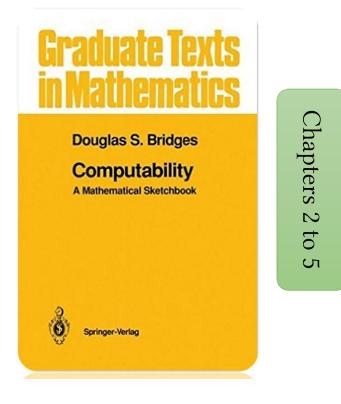
Our References

[S12] Sipser, Michael. Introduction to the Theory of Computation, 3rd edition. Cengage Learning, 2012.

Chapters 5 to 8



[B94] Bridges, Douglas S. Computability: a mathematical sketchbook. Vol. 146. Springer Science & Business Media, 1994.



Evaluation

Title	Grade	Description
Exercises	5	At least 12 series
First Mid-term	3	Sunday, Aban 2 nd , 1395 Chapters 3-5 of [S12]
Second Mid-term	3	Tuesday, Azar 16 th , 1395 Chapters 7 and 8 of [S12]
Final	9	All of the topics
Excellence	+2	
Total	20+2	

10% penalty for every late day.100% penalty after 72 hours.

We have a great emphasis on PROOFS.

A good mathematical proof should be

Clear – easy to understand Correct

In proofs, we will provide **three** levels of detail

- a short phrase/sentence giving a hint for the proof
 - e.g. "The proof is by contradiction", "The proof is by induction", "The proof uses the Pigeonhole principle", "The proof is by construction", etc.
- a short paragraph describing the main ideas
- the full proof

Please write your solutions in this way.

An example

Proposition: Suppose $A \subseteq \{1, 2, ..., 2n\}$ with |A| = n + 1. There are **always** two numbers in A such that one number divides the other number.

odd

part

Level 1:

- We use the Pigeonhole principle.
- We also use the fact that "Every integer *a* can be written as $a = 2^k m$ where *m* is an odd integer and *k* is also an integer".

Level 2:

The proof idea is as follows. We will show using the Pigeonhole principle that there are $a_1 \neq a_2$ of A such that $a_1 = 2^i m$ and $a_2 = 2^k m$ for some odd integer k and integers i and k.

An example

Proposition: Suppose $A \subseteq \{1, 2, ..., 2n\}$ with |A| = n + 1. There are **always** two numbers in A such that one number divides the other number.

TRY! ③

Level 2:

The proof idea is as follows. We will show using the Pigeonhole principle that there are $a_1 \neq a_2$ of A such that $a_1 = 2^i m$ and $a_2 = 2^k m$ for some odd integer k and integers i and k.

Proofs in class ...

• During the lectures, I generally provide proofs of the first two levels and only some parts of the third level.

- The reasons for this:
 - In this course, usually, the second level is more important than the third,
 - You can master the material by thinking and trying to fill the missing parts,
 - It is a matter of time! We have a limited time.

Now, let's begin our journey!