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LIGO-GW150914 (10 points)
In 2015, the gravitational-wave observatory LIGO detected, for the first time, the passing of gravitational
waves (GW) through Earth. This event, namedGW150914, was triggered bywaves produced by two black
holes that were orbiting on quasi-circular orbits. This problem will make you estimate some physical
parameters of the system, from the properties of the detected signal.

Part A: Newtonian (conservative) orbits (3.0 points)

A.1 Consider a system of two stars with masses 𝑀1, 𝑀2, at locations ⃗𝑟1, ⃗𝑟2, res-
pectively, with respect to the center-of-mass of the system, that is,

𝑀1 ⃗𝑟1 + 𝑀2 ⃗𝑟2 = 0 . (1)

The stars are isolated from the rest of the Universe and moving at non-
relativistic velocities. Using Newton's laws, the acceleration vector of mass 𝑀1
can be expressed as

d2 ⃗𝑟1
d𝑡2 = −𝛼 ⃗𝑟1

𝑟𝑛
1

, (2)

where 𝑟1 = | ⃗𝑟1|, 𝑟2 = | ⃗𝑟2|. Find 𝑛 ∈ ℕ and 𝛼 = 𝛼(𝐺, 𝑀1, 𝑀2), where 𝐺 is Newton's
constant [𝐺 ≃ 6.67 × 10−11Nm2 kg−2].

1.0pt

A.2 The total energy of the 2-mass system, in circular orbits, can be expressed as:

𝐸 = 𝐴(𝜇, Ω, 𝐿) − 𝐺𝑀𝜇
𝐿 , (3)

where

𝜇 ≡ 𝑀1𝑀2
𝑀1 + 𝑀2

, 𝑀 ≡ 𝑀1 + 𝑀2 , (4)

are the reduced mass and total mass of the system, Ω is the angular velocity of
each mass and 𝐿 is the total separation 𝐿 = 𝑟1 + 𝑟2. Obtain the explicit form of
the term 𝐴(𝜇, Ω, 𝐿).

1.0pt

A.3 Equation 3 can be simplified to 𝐸 = 𝛽𝐺 𝑀𝜇
𝐿 . Determine the number 𝛽. 1.0pt

Part B: Introducing relativistic dissipation (7.0 points)
The correct theory of gravity, General Relativity, was formulated by Einstein in 1915, and predicts that
gravity travels with the speed of light. The messengers carrying information about the interaction are
called GWs. GWs are emitted whenever masses are accelerated, making the system of masses lose
energy.

Consider a system of two point-like particles, isolated from the rest of the Universe. Einstein proved that
for small enough velocities the emitted GWs: 1) have a frequency which is twice as large as the orbital
frequency; 2) can be characterized by a luminosity, i.e. emitted power𝒫, which is dominated by Einstein's
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quadrupole formula,

𝒫 = 𝐺
5𝑐5

3
∑
𝑖=1

3
∑
𝑗=1

(d3𝑄𝑖𝑗
d𝑡3 ) (d3𝑄𝑖𝑗

d𝑡3 ) . (5)

Here, 𝑐 is the velocity of light 𝑐 ≃ 3 × 108 m/s. For a system of 2 pointlike particles orbiting on the 𝑥 − 𝑦
plane, 𝑄𝑖𝑗 is the following table (𝑖, 𝑗 label the row/column number)

𝑄11 =
2

∑
𝐴=1

𝑀𝐴
3 (2𝑥2

𝐴 − 𝑦2
𝐴) , 𝑄22 =

2
∑
𝐴=1

𝑀𝐴
3 (2𝑦2

𝐴 − 𝑥2
𝐴) , 𝑄33 = −

2
∑
𝐴=1

𝑀𝐴
3 (𝑥2

𝐴 + 𝑦2
𝐴) , (6)

𝑄12 = 𝑄21 =
2

∑
𝐴=1

𝑀𝐴 𝑥𝐴 𝑦𝐴 , (7)

and 𝑄𝑖𝑗 = 0 for all other possibilities. Here, (𝑥𝐴, 𝑦𝐴) is the position of mass A in the center-of-mass frame.

B.1 For the circular orbits described in A.2 the components of 𝑄𝑖𝑗 can be expressed
as a function of time 𝑡 as:

𝑄𝑖𝑖 = 𝜇𝐿2

2 (𝑎𝑖 + 𝑏𝑖 cos 𝑘𝑡) , 𝑄𝑖𝑗
𝑖≠𝑗= 𝜇𝐿2

2 𝑐𝑖𝑗 sin 𝑘𝑡 . (8)

Determine 𝑘 in terms of Ω and the numerical values of the constants 𝑎𝑖, 𝑏𝑖, 𝑐𝑖𝑗.

1.0pt

B.2 Compute the power 𝒫 emitted in gravitational waves for that system, and ob-
tain:

𝒫 = 𝜉 𝐺
𝑐5 𝜇2𝐿4Ω6 . (9)

What is the number 𝜉? [If you could not obtain 𝜉, use 𝜉 = 6.4 in the following.]

1.0pt

B.3 In the absence of GW emission the twomasses will orbit on a fixed circular orbit
indefinitely. However, the emission of GWs causes the system to lose energy
and to slowly evolve towards smaller circular orbits. Obtain that the rate of
change dΩ

d𝑡 of the orbital angular velocity takes the form

(dΩ
d𝑡 )

3
= (3𝜉)3 Ω11

𝑐15 (𝐺𝑀c)5 , (10)

where 𝑀c is called the chirp mass. Obtain 𝑀c as a function of 𝑀 and 𝜇. This
mass determines the increase in frequency during the orbital decay. [The name
"chirp" is inspired by the high pitch sound (increasing frequency) produced by
small birds.]

1.0pt
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B.4 Using the information provided above, relate the orbital angular velocity Ω with
the GW frequency 𝑓GW. Knowing that, for any smooth function 𝐹(𝑡) and 𝑎 ≠ 1,

d𝐹(𝑡)
d𝑡 = 𝜒𝐹(𝑡)𝑎 ⇒ 𝐹(𝑡)1−𝑎 = 𝜒(1 − 𝑎)(𝑡 − 𝑡0) , (11)

where 𝜒 is a constant and 𝑡0 is an integration constant, show that (10) implies
that the GW frequency is

𝑓−8/3
GW = 8𝜋8/3𝜉 (𝐺𝑀𝑐

𝑐3 )
(2/3)+𝑝

(𝑡0 − 𝑡)2−𝑝 (12)

and determine the constant 𝑝.

2.0pt

On September 14, 2015 GW150914 was registered by the LIGO detectors, consisting of two L-shaped
arms, each 4 km long. These arms changed by a relative length according to Fig. 1. The arms of the
detector respond linearly to a passing gravitational wave, and the response pattern mimics the wave.
This wave was created by two black holes on quasi-circular orbits; the loss of energy through gravita-
tional radiation caused the orbit to shrink and the black holes to eventually collide. The collision point
corresponds, roughly, to the peak of the signal after point D, in Fig. 1.

Figure 1. Strain, i.e. relative variation of the size of each arm, at the LIGO detector H1. The
horizontal axis is time, and the points A, B, C, D correspond to 𝑡 = 0.000, 0.009, 0.034, 0.040
seconds, respectively.

B.5 From the figure, estimate 𝑓GW(𝑡) at

𝑡AB = 𝑡B + 𝑡A
2 and 𝑡CD = 𝑡D + 𝑡C

2 . (13)

Assuming that (12) is valid all the way until the collision (which strictly speaking
is not true) and that the two objects have equal mass, estimate the chirp mass,
𝑀𝑐, and total mass of the system, in terms of solar masses 𝑀⊙ ≃ 2 × 1030 kg.

1.0pt

B.6 Estimate the minimal orbital separation between the two objects at 𝑡CD. Hence
estimate a maximum size for each object, 𝑅max. Obtain 𝑅⊙/𝑅max to compare
this size with the radius of our Sun, 𝑅⊙ ≃ 7 × 105 km. Estimate also their orbital
linear velocity at the same instant, 𝑣col, comparing it with the speed of light,
𝑣col/𝑐.

1.0pt
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Conclude that these are extremely fast moving, extremely compact objects indeed!
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Where is the neutrino? (10 points)
When two protons collide with a very high energy at the Large Hadron Collider (LHC), several particles
may be produced as a result of that collision, such as electrons, muons, neutrinos, quarks, and their
respective anti-particles. Most of these particles can be detected by the particle detector surrounding
the collision point. For example, quarks undergo a process called hadronisation in which they become a
shower of subatomic particles, called "jet''. In addition, the high magnetic field present in the detectors
allows even very energetic charged particles to curve enough for their momentum to be determined.
The ATLAS detector uses a superconducting solenoid system that produces a constant and uniform 2.00
Tesla magnetic field in the inner part of the detector, surrounding the collision point. Charged particles
with momenta below a certain value will be curved so strongly that they will loop repeatedly in the field
and most likely not be measured. Due to its nature, the neutrino is not detected at all, as it escapes
through the detector without interacting.

Data: Electron rest mass, 𝑚 = 9.11 × 10−31 kg; Elementary charge, 𝑒 = 1.60 × 10−19 C;

Speed of light, 𝑐 = 3.00 × 108 m s−1; Vacuum permittivity, 𝜖0 = 8.85 × 10−12 F m−1

Part A. ATLAS Detector physics (4.0 points)

A.1 Derive an expression for the cyclotron radius, 𝑟, of the circular trajectory of an
electron acted upon by a magnetic force perpendicular to its velocity, and ex-
press that radius as a function of its kinetic energy, 𝐾; chargemodulus, 𝑒; mass,
𝑚; and magnetic field, 𝐵. Assume that the electron is a non-relativistic classical
particle.

0.5pt

Electrons produced inside the ATLAS detector must be treated relativistically. However, the formula for
the cyclotron radius also holds for relativistic motion when the relativistic momentum is considered.

A.2 Calculate the minimum value of the momentum of an electron that allows it to
escape the inner part of the detector in the radial direction. The inner part of
the detector has a cylindrical shapewith a radius of 1.1meters, and the electron
is produced in the collision point exactly in the center of the cylinder. Express
your answer in MeV/𝑐.

0.5pt

When accelerated perpendicularly to the velocity, relativistic particles of charge 𝑒 and rest mass 𝑚 emitt
electromagnetic radiation, called synchrotron radiation. The emitted power is given by

𝑃 = 𝑒2𝑎2𝛾4

6𝜋𝜖0𝑐3

where 𝑎 is the acceleration and 𝛾 = [1 − (𝑣/𝑐)2]−1/2.

A.3 A particle is called ultrarelativistic when its speed is very close to the speed of
light. For an ultrarelativistic particle the emitted power can be expressed as:

𝑃 = 𝜉 𝑒4

𝜖0𝑚𝑘𝑐𝑛 𝐸2𝐵2 ,

where 𝜉 is a real number, 𝑛, 𝑘 are integers, 𝐸 is the energy of the charged par-
ticle and 𝐵 is the magnetic field. Find 𝜉, 𝑛 and 𝑘.

1.0pt
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A.4 In the ultrarelativistic limit, the energy of the electron as a function of time is:

𝐸(𝑡) = 𝐸0
1 + 𝛼𝐸0𝑡 ,

where 𝐸0 is the initial energy of the electron. Find 𝛼 as a function of 𝑒, 𝑐, 𝐵, 𝜖0
and 𝑚.

1.0pt

A.5 Consider an electron produced at the collision point along the radial direction
with an energy of 100 GeV. Estimate the amount of energy that is lost due to
synchrotron radiation until the electron escapes the inner part of the detector?
Express your answer in MeV.

0.5pt

A.6 Find an expression for the cyclotron frequency of the electron as a function of
time in the ultrarelativistic limit.

0.5pt

Part B. Finding the neutrino (6.0 points)
The collision between the two protons shown in Figure 1 leads to the production of a top quark (𝑡) and
an anti-top quark ( ̄𝑡), the heaviest elementary particles ever detected. The top quark decays into a 𝑊 +

boson and a bottomquark (𝑏), while the anti-top quark decays into a𝑊 − boson and an anti-bottomquark
(�̄�). In the case depicted in Figure 1, the 𝑊 + boson decays into a anti-muon (𝜇+) and a neutrino (𝜈), and
the 𝑊 − boson decays into a quark and an anti-quark. The task of this problem is to reconstruct the full
momentum of the neutrino using the momenta of some detected particles. For simplicity, all particles
and jets in this problem will be considered massless, except for the top quark and W± bosons.

The momenta of the top quark decay products can be determined from the experiment (see Table),
except for the neutrino momentum component along the (𝑧-axis). The total linear momentum of the
final state particles caught by the detector is only zero on the transverse plane (𝑥𝑦 plane), and not along
the collision line (𝑧-axis). As such, one can find the transverse momentum of the neutrino from the
missing momentum in the transverse plane.

On June 4, 2015, the ATLAS experiment at the LHC recorded a proton-proton collision at 00:21:24 GMT+1
like the one represented in Figure 1.
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Figure 1. Schematic representation of the ATLAS detector coordinate system (left) and proton-proton
collision (right).

The linear momenta of the three final-state particles coming from the top quark decay, including the
neutrino, is presented below for each component.

Particle 𝑝𝑥 (GeV/𝑐) 𝑝𝑦 (GeV/𝑐) 𝑝𝑧 (GeV/𝑐)
anti-muon (𝜇+) −24.7 −24.9 −12.4
jet 1 (𝑗1) −14.2 +50.1 +94.1
neutrino (𝜈) −104.1 +5.3 ---

B.1 Find an equation which relates the square of the 𝑊 + boson mass, 𝑚2
W, with

the neutrino and anti-muon momentum components presented in the table
above. Express your answer in terms of the neutrino and anti-muon transverse
momentum,

⃗𝑝 (𝜈)
T = 𝑝 (𝜈)

𝑥 ̂𝚤 + 𝑝 (𝜈)
𝑦 ̂𝚥 and ⃗𝑝 (𝜇)

T = 𝑝 (𝜇)
𝑥 ̂𝚤 + 𝑝 (𝜇)

𝑦 ̂𝚥,
and their 𝑧-axis momentum components, 𝑝 (𝜇)

𝑧 and 𝑝 (𝜈)
𝑧 .

1.5pt

B.2 Assuming a 𝑊 + boson mass of 𝑚W = 80.4 GeV/𝑐2 calculate the two possible so-
lutions for the neutrinomomentum along the 𝑧-axis, 𝑝 (𝜈)

𝑧 . Express your answer
in GeV/c.

1.5pt

B.3 Calculate the top quark mass for each one of the two previous solutions. Ex-
press your answer in GeV/𝑐2.
[If you did not obtain the two solutions in B.2, use

𝑝 (𝜈)
𝑧 = 70 GeV/𝑐 and 𝑝 (𝜈)

𝑧 = −180 GeV/𝑐.]

1.0pt

The normalised number of collision events for the measurement of the top quark mass (as determined
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from the experiment), has two components: the so-called "signal" (corresponding to the decay of
top quarks) and "background" (corresponding to events from other processes that do not include top
quarks). Experimental data include both processes, see Fig. 2.

Figure 2. Top quarkmass distribution as determined from the experiment, i.e. the normalised
number of events plotted against the top quark mass. The dots correspond to the data. The
dashed line corresponds to the "signal" and the shade to the "background".

B.4 According to the top quark mass distribution, which one of the two previous
solutions is more likely to be the right one? Estimate the probability for the
most likely solution.

1.0pt

B.5 Calculate the distance traveled by the top quark before decaying, using the
most likely solution. Assume the top quark has a mean lifetime at rest of
5 × 10−25 s.

1.0pt
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Physics of Live Systems (10 points)
Data: Normal atmospheric pressure, 𝑃0 = 1.013 × 105 Pa = 760 mmHg

Part A. The physics of blood flow (4.5 points)
In this part you will analyse two simplified models of blood flow in vessels.

Blood vessels are approximately cylindrical in shape, and it is known that for a steady, non turbulent flow
of an incompressible fluid in a rigid cylinder, the difference in pressure of the fluid at the two ends of the
cylinder is given by

Δ𝑃 = 8ℓ𝜂
𝜋𝑟4 𝑄 , (1)

where ℓ and 𝑟 are the length and radius of the cylinder, 𝜂 is the fluid viscosity and 𝑄 is the volumetric flow
rate, i.e. the fluid volume that passes the cylinder cross section per unit time. This expression is often
able to provide the correct order ofmagnitude for the pressure difference in a vessel, evenwithout taking
into account the pulsatile flow, the vessel's compressibility and irregular shape, and the fact that blood
is not a simple fluid but a mixture of cells and plasma. Moreover, this expression has the same form as
Ohm's law, with the volumetric flow rate being interpreted as a current, the difference in pressure as a
voltage, and the factor 𝑅 = 8ℓ𝜂

𝜋𝑟4 as a resistance.

Consider for example the symmetrical network of arterioles (small arteries) depicted in Figure 1 that
delivers blood to the capillary bed of a tissue. In this network, at each bifurcation a vessel is divided in
two identical vessels. However, the vessels of higher levels are thinner and shorter: consider that the
radii and lengths of vessels in two consecutive levels, 𝑖 and 𝑖 + 1, are related by 𝑟𝑖+1 = 𝑟𝑖/21/3 and by
ℓ𝑖+1 = ℓ𝑖/21/3.

Figure 1. Network of arterioles.
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A.1 Obtain an expression for the volumetric flow rate, 𝑄𝑖, in a vessel at any level 𝑖,
as a function of the total number of levels 𝑁 , of the viscosity 𝜂, of the radius 𝑟0
and length ℓ0 of the first vessel, and of the difference Δ𝑃 = 𝑃0 − 𝑃cap between
the pressure at the arteriole at level 0, 𝑃0, and the pressure at the capillary bed,
𝑃cap.

1.3pt

A.2 Calculate the numerical value of the volumetric flow rate 𝑄0 of the arteriole
at level 0, if its radius is 6.0 × 10−5 m and its length is 2.0 × 10−3 m. Consider
that the pressure at the arteriole inlet is 55 mmHg and the vessel network has
𝑁 = 6 levels linking this arteriole to the capillary bed at the pressure 30 mmHg.
Consider that the blood viscosity is 𝜂 = 3.5 × 10−3 kg m−1 s−1. Express your
result in ml/h.

0.5pt

A blood vessel as an LCR circuit

The approximation of rigid cylindrical vessels falls short for several reasons. It is particularly important
to include the time dependent flow and to take into account the change in vessel diameter that occurs
when the pressure varies during a blood pumping cycle done by the heart. Moreover, it is observed that
in the larger vessels the blood pressure varies significantly during a cycle, while in the smaller vessels
the amplitude of the oscillations in pressure is much smaller, and the flow is almost time independent.

When the pressure increases in a single elastic vessel, there will be an increase in its diameter, thus
permitting to storemore fluid in the vessel, and to deliver it when the pressure drops. For this reason, the
elastic behaviour of the vessel can be simulated by adding a capacitor to our initial description. Moreover,
when taking into account the time dependent blood flow rate, one has to consider the inertia of the fluid,
proportional to its density 𝜌 = 1.05 × 103 kg m−3. This inertia can be described by an inductance in our
model. In Figure 2 we represent the equivalent circuit for a single vessel in this model. The equivalent
capacitance and inductance are given by

𝐶 = 3ℓ𝜋𝑟3

2𝐸ℎ and 𝐿 = 9ℓ𝜌
4𝜋𝑟2 , (2)

respectively, where ℎ is the width of the vessel wall and 𝐸 is the artery Young's modulus, a coefficient
that describes the alteration in size of the vessel tissue when a force is applied. The Young's modulus
has units of pressure and is on the order of 𝐸 = 0.06 MPa for arterioles.

Figure 2. Equivalent electric circuit for a single vessel.
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A.3 Obtain, in the stationary regime, the pressure amplitude at the vessel outlet,
𝑃out, as a function of the pressure amplitude at the inlet, 𝑃in, the equivalent re-
sistance, 𝑅, inductance, 𝐿 and capacitance, 𝐶, for a flowwith angular frequency
𝜔. Establish the condition between 𝜂, 𝜌, 𝐸, ℎ, 𝑟 and ℓ so that, for low frequencies,
the pressure oscillation amplitude at the outlet is smaller than that of 𝑃in.

2.0pt

A.4 For the vessel network in A.2 estimate the maximum arteriole wall thickness
ℎ so that the condition established in A.3 is satisfied (consider that ℎ is level
independent).

0.7pt

Part B. Tumour growth (5.5 points)
Tumour growth is a very complex process where biological mechanisms such as cell proliferation and
natural selection are intertwined with physics. In this problem we will consider a simplified model of
tumour growth that addresses the increase in pressure commonly observed in solid tumors.

Consider a group of normal cells forming a tissue surrounded by an inextensible basement membrane,
which forces the tissue to maintain always the same form: a sphere of radius 𝑅 (Figure 3).

Figure 3. Simplified tumour.

Initially the tissue does not have residual stresses, i.e. the pressure at every point is equal to the atmo-
spheric pressure.

At time 𝑡 = 0, a tumour starts growing at the centre of this sphere and, as it grows, the pressure inside
the tissue increases. Consider that both tissues (normal, N, and tumour, T) are compressible such that
their densities, 𝜌N and 𝜌T, increase linearly with pressure:

𝜌N = 𝜌0 (1 + 𝑝
𝐾N

) , 𝜌T = 𝜌0 (1 + 𝑝
𝐾T

) , (3)

where 𝜌0 is the rest tissue density, 𝑝 is the pressure difference to the atmospheric pressure and 𝐾N , 𝐾T
are the compressibility moduli (bulk moduli) of the normal and tumour tissues, respectively. In general,
tumours are stiffer and so they have a higher bulk modulus.
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B.1 The mass of normal cells is not altered while the tumour is growing. Obtain
the ratio between the tumour volume and the total tissue volume, 𝑣 = 𝑉T/𝑉 ,
as a function of the ratio between the tumour mass (𝑀T) and the normal tissue
mass (𝑀N), 𝜇 = 𝑀T/𝑀N and the ratio of the bulk moduli, 𝜅 = 𝐾N/𝐾T.

1.0pt

Hyperthermia is sometimes used together with chemotherapy and radiotherapy in the treatment of can-
cer. In hyperthermia the cancer cells are selectively heated from the normal human body temperature,
37 oC, to temperatures above 43 oC, inducing their death. Researchers are currently developing carbon
nanotubes covered with special proteins capable of binding to tumour cells. When the tissue is irradi-
atedwith near-infrared radiation, the nanotubes absorb it in amuch greater extent than the surrounding
tissues and therefore can be selectively heated as well as the tumour cells to which they are attached.

Consider that the tumour, the normal cells and the surrounding tissue have a constant thermal conduc-
tivity 𝑘, i.e. in the geometry of this problem, the energy that crosses a spherical surface of radius 𝑟 per
unit time and per unit area is equal to 𝑘 times the derivative of the temperature with respect to 𝑟. The
nanotubes are uniformly distributed in the tumour volume and are able to deliver a power 𝒫 of thermal
energy per unit volume. Assume that the temperature is equal to the normal human body temperature
very far away from the tumour.

B.2 Obtain, for the stationary state, the temperature at the centre of the tumour as
a function of 𝒫, 𝑘, the human body temperature and the tumour radius, 𝑅T.

1.7pt

B.3 Obtain theminimumpower per unit volume,𝒫min, needed to heat up all tumour
cells in a tumour with 5.0 cm radius to a temperature larger than 43.0 oC. Take
the thermal conductivity of the tissue to be equal to 𝑘 = 0.60 W K−1m−1.

0.5pt

Consider that the tumour is irrigated by a vessel network with a branched structure like in question A.1.
As the tumour grows, when its pressure 𝑝 becomes larger than the pressure 𝑃cap at the thinnest vessels,
the radii of these vessels will decrease by a small amount 𝛿𝑟. If this pressure reaches a critical value 𝑝c
(which would correspond to a radius decrease of 𝛿𝑟c), the thinnest vessels would collapse, compromising
seriously the irrigation to the tumour. The pressure and the radius change can be related by the following
phenomenological relation:

𝑝
𝑃cap

− 1 = ( 𝑝c
𝑃cap

− 1) (2 − 𝛿𝑟
𝛿𝑟c

) 𝛿𝑟
𝛿𝑟c

. (4)

Consider that just the smallest vessels (of level𝑁 −1) have their radius alteredwhen the tumour increases
its pressure.

B.4 In the linear regime (i.e. consider that 𝑝 − 𝑃cap is very small), express the rela-
tive drop in the flow rate, 𝛿𝑄𝑁−1

𝑄𝑁−1
, in these thinnest vessels, as a function of the

tumour volume ratio 𝑣 = 𝑉T/𝑉 and 𝐾𝑁 , 𝑁 , 𝑝c, 𝛿𝑟c, 𝑟𝑁−1, 𝑃cap.

2.3pt
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GW150914 (10 points)

Part A. Newtonian (conservative) orbits (3.0 points)

A.1 Apply Newton’s law to mass 𝑀1:

𝑀1
d

2 ⃗𝑟1
d𝑡2 = 𝐺 𝑀1𝑀2

| ⃗𝑟2 − ⃗𝑟1|2
⃗𝑟2 − ⃗𝑟1

| ⃗𝑟2 − ⃗𝑟1|
. (1)

Use, from eq. (1) of the question sheet

⃗𝑟2 = −𝑀1
𝑀2

⃗𝑟1 , (2)

in eq. (1) above, to obtain
d2 ⃗𝑟1
d𝑡2 = − 𝐺𝑀3

2
(𝑀1 + 𝑀2)2𝑟2

1

⃗𝑟1
𝑟1

. (3)

A.1

𝑛 = 3, 𝛼 = 𝐺𝑀3
2

(𝑀1 + 𝑀2)2 .
1.0pt

A.2 The total energy of the system is the sum of the two kinetic energies plus the gravitational poten-
tial energy. For circular motions, the linear velocity of each of the masses reads

| ⃗𝑣1| = 𝑟1Ω , | ⃗𝑣2| = 𝑟2Ω , (4)

Thus, the total energy is

𝐸 = 1
2

(𝑀1𝑟2
1 + 𝑀2𝑟2

2)Ω2 − 𝐺𝑀1𝑀2
𝐿

, (5)

Now,
(𝑀1𝑟1 − 𝑀2𝑟2)2 = 0 ⇒ 𝑀1𝑟2

1 + 𝑀2𝑟2
2 = 𝜇𝐿2 . (6)

Thus,

𝐸 = 1
2

𝜇𝐿2Ω2 − 𝐺𝑀𝜇
𝐿

. (7)

A.2

𝐴(𝜇, Ω, 𝐿) = 1
2

𝜇𝐿2Ω2 .
1.0pt

A.3 Energy (3) of the question sheet can be interpreted as describing a system of a mass 𝜇 in a cir-
cular orbit with angular velocity Ω, radius 𝐿, around a mass 𝑀 (at rest). Equating the gravitational
acceleration to the centripetal acceleration:

𝐺 𝑀
𝐿2 = Ω2𝐿 . (8)

This is indeed Kepler’s third law (for circular orbits). Then, from (7),

𝐸 = −1
2

𝐺𝑀𝜇
𝐿

. (9)

A.3

𝛽 = −1
2

.
1.0pt
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Part B - Introducing relativistic dissipation (7.0 points)

B.1 Some simple trigonometry for the 𝑥, 𝑦 motion of the masses (in an appropriate Cartesian system)
yields:

(𝑥1, 𝑦1) = 𝑟1(cos(Ω𝑡), sin(Ω𝑡)) , (𝑥2, 𝑦2) = −𝑟2(cos(Ω𝑡), sin(Ω𝑡)) . (10)

Then,

𝑄𝑖𝑗 = 𝑀1𝑟2
1 + 𝑀2𝑟2

2
2

⎛⎜⎜⎜
⎝

4
3 cos

2(Ω𝑡) − 2
3 sin

2(Ω𝑡) 2 sin(Ω𝑡) cos(Ω𝑡) 0
2 sin(Ω𝑡) cos(Ω𝑡) 4

3 sin
2(Ω𝑡) − 2

3 cos
2(Ω𝑡) 0

0 0 − 2
3

⎞⎟⎟⎟
⎠

, (11)

or, using some simple trigonometry and (6),

𝑄𝑖𝑗 = 𝜇𝐿2

2
⎛⎜⎜⎜
⎝

1
3 + cos 2Ω𝑡 sin 2Ω𝑡 0
sin 2Ω𝑡 1

3 − cos 2Ω𝑡 0
0 0 − 2

3

⎞⎟⎟⎟
⎠

. (12)

B.1

𝑘 = 2Ω , 𝑎1 = 𝑎2 = 1
3

, 𝑎3 = −2
3

, 𝑏1 = 1, 𝑏2 = −1, 𝑏3 = 0 , 𝑐12 = 𝑐21 = 1, 𝑐𝑖𝑗
otherwise= 0 .

1.0pt

B.2 First take the derivatives:

d3𝑄𝑖𝑗

d𝑡3 = 4Ω3𝜇𝐿2
⎛⎜⎜⎜
⎝

sin 2Ω𝑡 − cos 2Ω𝑡 0
− cos 2Ω𝑡 − sin 2Ω𝑡 0

0 0 0

⎞⎟⎟⎟
⎠

. (13)

Then perform the sum:

d𝐸
d𝑡

= 𝐺
5𝑐5 (4Ω3𝜇𝐿2)2[2 sin2(2Ω𝑡) + 2 cos2(2Ω𝑡)] = 32

5
𝐺
𝑐5 𝜇2𝐿4Ω6 . (14)

B.2

𝜉 = 32
5

.
1.0pt

B.3 Now we assume a sequency of Keplerian orbits, with decreasing energy, which is being taken
from the system by the GWs.

First, from (9), differentiating with respect to time,

d𝐸
d𝑡

= 𝐺𝑀𝜇
2𝐿2

d𝐿
d𝑡

, (15)

Since this loss of energy is due to GWs, we equate it with (minus) the luminosity of GWs, given by (14)

𝐺𝑀𝜇
2𝐿2

d𝐿
d𝑡

= −32
5

𝐺
𝑐5 𝜇2𝐿4Ω6 . (16)

We can eliminate the 𝐿 and d𝐿/d𝑡 dependence in this equation in terms of Ω and dΩ/d𝑡, by using
Kepler’s third law (8), which relates:

𝐿3 = 𝐺 𝑀
Ω2 , d𝐿

d𝑡
= −2

3
𝐿
Ω
dΩ
d𝑡

. (17)
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Substituting in (16), we obtain:

(dΩ
d𝑡

)
3

= (96
5

)
3 Ω11

𝑐15 𝐺5𝜇3𝑀2 ≡ (96
5

)
3 Ω11

𝑐15 (𝐺𝑀c)
5 . (18)

B.3
𝑀c = (𝜇3𝑀2)1/5 .

1.0pt

B.4 Angular and cycle frequencies are related as Ω = 2𝜋𝑓. From the information provided above: GWs
have a frequency which is twice as large as the orbital frequency, we have

Ω
2𝜋

= 𝑓GW
2

. (19)

Formula (10) of the question sheet has the form

dΩ
d𝑡

= 𝜒Ω11/3 , 𝜒 ≡ 96
5

(𝐺𝑀c)5/3

𝑐5 . (20)

Thus, from (11) of the question sheet

Ω(𝑡)−8/3 = 8
3

𝜒(𝑡0 − 𝑡) , (21)

or, using (20) and the definition of 𝜒 gives

𝑓−8/3
GW (𝑡) = (8𝜋)8/3

5
(𝐺𝑀c

𝑐3 )
5/3

(𝑡0 − 𝑡) . (22)

B.4
𝑝 = 1 .

2.0pt

B.5 From the figure, we consider the two Δ𝑡’s as half periods. Thus, the (cycle) GW frequency is 𝑓GW =
1/(2Δ𝑡). Then, the four given points allow us to compute the frequency at the mean time of the two
intervals as

𝑡AB 𝑡CD
𝑡 (s) 0.0045 0.037

𝑓GW (Hz) (2 × 0.009)−1 (2 × 0.006)−1

Now, using (22) we have two pairs of (𝑓GW,𝑡) values for two unknowns (𝑡0,𝑀c). Expressing (22) for both
𝑡AB and 𝑡CD and dividing the two equations we obtain:

𝑡0 =
𝐴𝑡CD − 𝑡AB

𝐴 − 1
, 𝐴 ≡ (

𝑓GW(𝑡AB)
𝑓GW(𝑡CD)

)
−8/3

. (23)

Replacing by the numerical values, 𝐴 ≃ 2.95 and 𝑡0 ≃ 0.054 s. Now we can use (22) for either of the
two values 𝑡AB or 𝑡CD and determine 𝑀c. One obtains for the chirp mass

𝑀c ≃ 6 × 1031 kg ≃ 30 × 𝑀⊙ . (24)

Thus, the total mass 𝑀 is
𝑀 = 43/5𝑀c ≃ 69 × 𝑀⊙ . (25)

This result is actually remarkably close to the best estimates using the full theory of General Relativity!
[Even though the actual objects do not have precisely equal masses and the theory we have just used
is not valid very close to the collision.]
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B.5
𝑀c ≃ 30 × 𝑀⊙ , 𝑀 ≃ 69 × 𝑀⊙ .

1.0pt

B.6 From (8), Kepler’s law states that 𝐿 = (𝐺𝑀/Ω2)1/3. The second pair of points highlighted in the
plot correspond to the cycle prior to merger. Thus, we use (19) to obtain the orbital angular velocity
at 𝑡CD:

Ω𝑡CD ∼ 2.6 × 102 rad/s . (26)

Then, using the total mass (25) we find

𝐿 ∼ 5 × 102 km . (27)

Thus, these objects have a maximum radius of 𝑅max ∼ 250 km. Hence they have over 30 times more
mass and,

𝑅⊙
𝑅max

∼ 3 × 103 (28)

they are 3000 times smaller than the Sun and!

Their linear velocity is

𝑣col = 𝐿
2

Ω ≃ 7 × 104 km/s . (29)

They are moving at over 20% of the velocity of light!

B.6

𝐿collision ∼ 5 × 102 km ,
𝑅⊙

𝑅max

∼ 3 × 103 , 𝑣col
𝑐

∼ 0.2 .
1.0pt
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Where is the neutrino?

(Miguel C N Fiolhais and António Onofre)
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Where is the neutrino? (10 points)

Part A. ATLAS Detector physics (4.0 points)

A.1

The magnetic force is the centripetal force:

𝑚𝑣2

𝑟
= 𝑒𝑣𝐵 ⇒ 𝑟 = 𝑚𝑣

𝑒𝐵
.

First express the velocity in terms of the kinetic energy,

𝐾 = 1
2

𝑚𝑣2 ⇒ 𝑣 = √2𝐾
𝑚

,

and then insert it in the expression above for the radius to get

A.1

𝑟 =
√

2𝐾𝑚
𝑒𝐵

.
0.5pt

A.2

The radius of the circular motion of a charged particle in the presence of a uniform magnetic field is
given by,

𝑟 = 𝑚𝑣
𝑒𝐵

.

This formula is valid in the relativistic scenario if the mass correction, 𝑚 → 𝛾𝑚 is included:

𝑟 = 𝛾𝑚𝑣
𝑒𝐵

= 𝑝
𝑒𝐵

⇒ 𝑝 = 𝑟𝑒𝐵 .

Note that the radius of the circularmotion is half the radius of the inner part of the detector. One obtains
[1 MeV/𝑐 = 5.34 × 10−22 m kg s−1]

A.2
𝑝 = 330 MeV/𝑐 .

0.5pt

A.3

The acceleration for the particle is 𝑎 = 𝑒𝑣𝐵
𝛾𝑚 ∼ 𝑒𝑐𝐵

𝛾𝑚 , in the ultrarelativistic limit. Then,

𝑃 = 𝑒4𝑐2𝛾4𝐵2

6𝜋𝜖0𝑐3𝛾2𝑚2 = 𝑒4𝛾2𝑐4𝐵2

6𝜋𝜖0𝑐5𝑚2 .

Since 𝐸 = 𝛾𝑚𝑐2 we can obtain 𝛾2𝑐4 = 𝐸2

𝑚2 and, finally,
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𝑃 = 𝑒4

6𝜋𝜖0𝑚4𝑐5 𝐸2𝐵2.

Therefore,

A.3

𝜉 = 1
6𝜋

, 𝑛 = 5 and 𝑘 = 4.
1.0pt

A.4

The power emitted by the particle is given by,

𝑃 = −d𝐸
d𝑡

= 𝑒4

6𝜋𝜖0𝑚4𝑐5 𝐸2𝐵2 .

The energy of the particle as a function of time can be calculated from

∫
𝐸(𝑡)

𝐸0

1
𝐸2d𝐸 = − ∫

𝑡

0

𝑒4

6𝜋𝜖0𝑚4𝑐5 𝐵2d𝑡 ,

where 𝐸(0) = 𝐸0. This leads to,

1
𝐸(𝑡)

− 1
𝐸0

= 𝑒4𝐵2

6𝜋𝜖0𝑚4𝑐5 𝑡 ⇒ 𝐸(𝑡) = 𝐸0
1 + 𝛼𝐸0𝑡

,

with

A.4

𝛼 = 𝑒4𝐵2

6𝜋𝜖0𝑚4𝑐5 .
1.0pt

A.5

If the initial energy of the electron is 100 GeV, the radius of curvature is extremely large (𝑟 = 𝐸
𝑒𝐵𝑐 ≈ 167m).

Therefore, in approximation, one can consider the electron is moving in the inner part of the ATLAS
detector along a straight line. The time of flight of the electron is 𝑡 = 𝑅/𝑐, where 𝑅 = 1.1 m is the radius
of the inner part of the detector. The total energy lost due to synchrotron radiation is,

Δ𝐸 = 𝐸(𝑅/𝑐) − 𝐸0 = 𝐸0
1 + 𝛼𝐸0

𝑅
𝑐

− 𝐸0 ≈ −𝛼𝐸2
0

𝑅
𝑐

and

A.5
Δ𝐸 = −56 MeV .

0.5pt
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A.6

In the ultrarelativistic limit, 𝑣 ≈ 𝑐 and 𝐸 ≈ 𝑝𝑐. The cyclotron frequency is,

𝜔(𝑡) = 𝑐
𝑟(𝑡)

= 𝑒𝑐𝐵
𝑝(𝑡)

= 𝑒𝑐2𝐵
𝐸(𝑡)

A.6

𝜔(𝑡) = 𝑒𝑐2𝐵
𝐸0

(1 + 𝑒4𝐵2

6𝜋𝜖0𝑚4𝑐5 𝐸0𝑡) .
0.5pt
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Part B. Finding the neutrino (6.0 points)

B.1

Since the 𝑊 + boson decays into an anti-muon and a neutrino, one can use principles of conservation

of energy and linear momentum to calculate the unknown 𝑝 (𝜈)
z of the neutrino. Moreover, the anti-

muon and the neutrino can be consideredmassless, which implies that themagnitude of their momenta
(times 𝑐) and their energies are the same. Therefore, the conservation of linear momentum can be ex-
pressed as

⃗𝑝 (𝑊) = ⃗𝑝 (𝜇) + ⃗𝑝 (𝜈) ,

and the conservation of energy as,

𝐸(𝑊) = 𝑐𝑝(𝜇) + 𝑐𝑝(𝜈) .

In addition, one can also relate the energy and the momentum of the 𝑊 + boson through its mass,

𝑚2
𝑊 = (𝐸(𝑊))2/𝑐4 − (𝑝(𝑊))2/𝑐2

which leads to a quadratic equation on 𝑝 (𝜈)
𝑧 ,

𝑚2
𝑊 = [(𝑝(𝜇) + 𝑝(𝜈))2 − ( ⃗𝑝 (𝜇) + ⃗𝑝 (𝜈))2] /𝑐2

= (2𝑝(𝜇)𝑝(𝜈) − 2 ⃗𝑝 (𝜇) ⋅ ⃗𝑝 (𝜈)) /𝑐2

B.1

𝑚2
𝑊 = 1

𝑐2 (2𝑝(𝜇)√(𝑝(𝜈)
T )2 + (𝑝(𝜈)

𝑧 )2 − 2 ⃗𝑝 (𝜇)
T ⋅ ⃗𝑝 (𝜈)

T − 2𝑝(𝜇)
𝑧 𝑝(𝜈)

𝑧 ) .
1.5pt

B.2

The numerical substitution directly in the answer of B.1, using

𝑝(𝜇) = 37.2GeV/𝑐 𝑚2
𝑊𝑐2 = 6464.2 (GeV/𝑐)2 𝑝(𝜈) 2

T = 10 864.9 (GeV/𝑐)2

⃗𝑝 (𝜇)
T ⋅ ⃗𝑝 (𝜈)

T = 2439.3(GeV/𝑐)2 𝑝(𝜇)
𝑧 = −12.4GeV/𝑐 ,

leads to

6464.2 = 74.4√10 864.9 + 𝑝(𝜈) 2
𝑧 − 4878.6 + 24.8𝑝(𝜈) .

This is a quadratic equation, equivalent to

0.88889 𝑝(𝜈) 2
𝑧 + 101.64 𝑝(𝜈)

𝑧 − 12378 = 0

whose solutions are:
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B.2

𝑝(𝜈)
𝑧 = 74.0 GeV/𝑐 or 𝑝(𝜈)

𝑧 = −188.3 GeV/𝑐.

1.5pt

The general solution of the equation above in B.1 leads to

𝑝(𝜈)
𝑧 =

2 ⃗𝑝 (𝜇)
T ⋅ ⃗𝑝 (𝜈)

T 𝑝(𝜇)
𝑧 + 𝑚2

𝑊𝑐2𝑝(𝜇)
𝑧

2(𝑝(𝜇)
T )2

±
𝑝(𝜇) √−4(𝑝(𝜇)

T )2(𝑝(𝜈)
T )2 + 4( ⃗𝑝 (𝜇)

T ⋅ ⃗𝑝 (𝜈)
T )2 + 4 ⃗𝑝 (𝜇)

T ⋅ ⃗𝑝 (𝜈)
T 𝑚2

𝑊𝑐2 + 𝑚4
𝑊𝑐4

2(𝑝(𝜇)
T )2

Numerical substitution leads to the above mentioned values for 𝑝(𝜈)
𝑧 .

B.3

The final state particles of the top quark decay are the anti-muon, the neutrino and jet 1. Since the
neutrino is now fully reconstructed the energy and linear momentum of the top quark can be calculated
as,

𝐸(t) = 𝑐𝑝(𝜇) + 𝑐𝑝(𝜈) + 𝑐𝑝(𝑗1)

⃗𝑝 (t) = ⃗𝑝 (𝜇) + ⃗𝑝 (𝜈) + ⃗𝑝 (𝑗1) .

The top quark mass is,

𝑚t = √(𝐸(t))2/𝑐4 − ( ⃗𝑝 (t))2/𝑐2

= 𝑐−1√(𝑝(𝜇) + 𝑝(𝜈) + 𝑝(𝑗1))2 − ( ⃗𝑝 (𝜇) + ⃗𝑝 (𝜈) + ⃗𝑝 (𝑗1))2 .

The substitution of values leads to two possible masses:

B.3
𝑚t = 169.3 GeV/𝑐2 or 𝑚t = 311.2 GeV/𝑐2

1.0pt

B.4

According to the frequency distribution for signal (dashed line), the probability of the 𝑚t = 169.3 GeV/𝑐2

solution is roughly 0.1 while the probability of the 𝑚t = 311.2 GeV/c2 solution is below 0.01. Therefore,

B.4 The most likely candidate is the 𝑚t = 169.3 GeV/c2 solution. 1.0pt
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B.5

The top quark energy for the most likely candidate is 𝐸(t) = 𝑐𝑝(𝜇) + 𝑐𝑝(𝜈) + 𝑐𝑝(𝑗1) = 272.6 GeV .

𝑑 = 𝑣𝑡 = 𝑣𝛾𝑡0 = 𝑝(t)

𝑚t

𝑡0 = 𝑐𝑡0√ 𝐸(t)2

𝑚2
t 𝑐4 − 1 .

B.5
𝑑 = 2 × 10−16 m .

1.0pt
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Physics of Live Systems (10 points)

Part A. The physics of blood flow (4.5 points)

A.1

Since the vessel network is symmetrical, the flow in a vessel of level 𝑖 + 1 is half the flow in a vessel of
level 𝑖.

In this way, we can sum the pressure differences in all levels:

Δ𝑃 =
𝑁−1
∑
𝑖=0

𝑄𝑖𝑅𝑖 = 𝑄0

𝑁−1
∑
𝑖=0

𝑅𝑖
2𝑖 .

Introducing the radii dependences yields

Δ𝑃 = 𝑄0

𝑁−1
∑
𝑖=0

8ℓ𝑖𝜂
2𝑖𝜋𝑟4

𝑖
= 𝑄0

8ℓ0𝜂
𝜋𝑟4

0

𝑁−1
∑
𝑖=0

24𝑖/3

2𝑖2𝑖/3 = 𝑄0𝑁8ℓ0𝜂
𝜋𝑟4

0
.

Therefore

𝑄0 = Δ𝑃 𝜋𝑟4
0

8𝑁ℓ0𝜂
.

Hence, the flow rate for a vessel network in level 𝑖 is

A.1

𝑄𝑖 = Δ𝑃 𝜋𝑟4
0

2𝑖+3𝑁ℓ0𝜂
.

1.3pt

A.2

Replace values in the formula and change units appropriately

𝑄0 = Δ𝑃𝜋𝑟4
0

8𝑁ℓ0𝜂
=

= (55 − 30) × 1.013 × 105 × 3.1415 × (6.0 × 10−5)4

760 × 48 × 2.0 × 10−3 × 3.5 × 10−3 = 4.0 × 10−10 m3/s

to obtain the final value in the requested unites:

A.2
𝑄0 ≃ 1.5 mℓ/h .

0.5pt
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A.3

The current is given by

𝐼 = 𝑃ine
𝑖𝜔𝑡

𝑅 + 𝑖𝜔𝐿 + 1
𝑖𝜔𝐶

.

The pressure difference in the capacitor is

𝑃oute
𝑖(𝜔𝑡+𝜙) = 𝑃ine

𝑖𝜔𝑡

𝑅 + 𝑖𝜔𝐿 + 1
𝑖𝜔𝐶

1
𝑖𝜔𝐶

= 𝑃ine
𝑖𝜔𝑡

𝑖𝜔𝐶𝑅 − 𝜔2𝐿𝐶 + 1
.

The amplitude is

𝑃out = 𝑃in

√(1 − 𝜔2𝐿𝐶)2 + 𝜔2𝐶2𝑅2
.

To be smaller than 𝑃in, for 𝜔 → 0:

(1 − 𝜔2𝐿𝐶)2 + 𝜔2𝐶2𝑅2 > 1 ⟺ −2𝐶𝐿 + 𝐶2𝑅2 > 0 .

Replacing the expressions for 𝐿, 𝐶, and 𝑅 we get: 64𝜂2ℓ2

3𝐸ℎ𝑟3𝜌 > 1 .

A.3

𝑃out = 𝑃in

√(1 − 𝜔2𝐿𝐶)2 + 𝜔2𝐶2𝑅2
.

Condition:
64𝜂2ℓ2

3𝐸ℎ𝑟3𝜌
> 1 .

2.0pt

Alternative way to obtain 𝑃out:

The amplitude of the current in the equivalent circuit is 𝐼0 = 𝑃in

𝑍 , where

𝑍 = √𝑅2 + (𝜔𝐿 − 1
𝜔𝐶

)
2

is the modulus of the impedance. Hence, the voltage amplitude in the capacitor is

𝑃out = 1
𝜔𝐶

× 𝐼0 = 𝑃in

√𝜔2𝐶2𝑅2 + (𝜔2𝐿𝐶 − 1)2
.

A.4

The previous condition can also be expressed as

ℎ < 64𝜂2ℓ2

3𝐸𝑟3𝜌
.

For the network referred to in A.2

ℎ < 64𝜂2ℓ2
0 × 2𝑖

3 × 22𝑖/3𝐸𝑟3
0𝜌

= 64 × (3.5 × 10−3)2 × (2.0 × 10−3)2

3 × 0.06 × 106 × (6.0 × 10−5)3 × 1.05 × 103 × 2𝑖/3 = 7.7 × 10−5 × 2𝑖/3 .
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For 𝑖 = 0, in the worse case scenario,

ℎmax = 7.7 × 10−5 × 20 = 7.7 × 10−5 m

This value is certainly observed in these vessels since their radius range from 18 𝜇m to 60 𝜇m. A wall
width smaller than 80 𝜇m is certainly reasonable.

A.4 Maximum ℎ = 8 × 10−5 m 0.7pt

Part B. Tumor growth (5.5 points)

B.1

The expressions for the masses of tumour and normal tissue are written as:

⎧
{
⎨
{
⎩

𝑀T = 𝑉T𝜌T = 𝑉T𝜌0(1 + 𝑝
𝐾T

)

𝑀N = 𝑉 𝜌0 = (𝑉 − 𝑉T)𝜌0(1 + 𝑝
𝐾N

)

The pressure, 𝑝, can be expressed as

𝑝 = 𝑀T 𝐾T

𝑉T 𝜌0
− 𝐾T

and, then, used in the equation for 𝑀N:

𝑀N = (𝑉 − 𝑉T)
𝑀N

𝑉
[(1 − 𝐾T

𝐾N

) + 𝑀T 𝑉 𝐾T

𝑉T 𝑀N 𝐾N

]

Simplifying and rearranging the terms, the equation for 𝑣 becomes

(1 − 𝜅) 𝑣2 − (1 + 𝜇) 𝑣 + 𝜇 = 0 ,

for which the solution is (the other solution of the quadratic equation is not physically relevant since does
not lead to 𝑣 = 0 for 𝜇 = 0)

B.1

𝑣 =
1 + 𝜇 − √(1 + 𝜇)2 − 4𝜇 (1 − 𝜅)

2(1 − 𝜅)
.

1.0pt

B.2

For 𝑟 < 𝑅T, the conservation of energy implies that

4𝜋𝑟2(−𝑘)d𝑇
d𝑟

= 𝒫4
3

𝜋𝑟3 .
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Therefore, the temperature difference to 37 oC = 310.15 K, Δ𝑇 (𝑟), is given by

Δ𝑇 (𝑟) = −𝒫𝑟2

6𝑘
+ 𝐶 ,

where 𝐶 is a constant.

For 𝑟 > 𝑅T, the conservation of energy implies that

4𝜋𝑟2(−𝑘)d𝑇
d𝑟

= 𝒫4
3

𝜋𝑅3
T .

Therefore, the temperature difference to 37 oC is

Δ𝑇 (𝑟) =
𝒫𝑅3

T

3𝑘𝑟
.

In this case there is no constant, since very far away the increase in temperature is zero.

Matching the two solutions at 𝑟 = 𝑅T gives

𝐶 =
𝒫𝑅2

T

2𝑘
.

Therefore the temperature at the centre of the tumour, in SI units, is

B.2 Temperature: 310.15 + 𝒫𝑅2
T

2𝑘 . 1.7pt

B.3

The increase in temperature at the tumour surface (the lower temperature in the tumour) is

Δ𝑇 (𝑅T) =
𝒫𝑅2

T

3𝑘
.

This increase should be equal to 6.0 K. Therefore,

𝒫 = 3Δ𝑇 𝑘
𝑅2
T

= 3 × 6 × 0.6
0.052 = 4.3 kW/m

3.

B.3 𝒫min = 4.3 kW/m
3. 0.5pt

B.4

We can relate 𝛿𝑟 with the pressure in the tumour, using the relation given in the text up to leading order

in 𝑝 − 𝑃cap: 𝛿𝑟 = 𝑝−𝑃cap

2(𝑝c−𝑃cap) 𝛿𝑟c . Therefore, if 𝑝 − 𝑃cap is very small, also it is 𝛿𝑟.

The pressure can be related with the volume. We know that

𝑀N

𝑉N

= 𝜌0𝑉
𝑉 − 𝑉T

= 𝜌0
1 − 𝑣

= 𝜌0 (1 + 𝑝
𝐾N

) .
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And so 𝑝 = 𝐾N𝑣
1−𝑣 .

When the thinner vessels are narrower, the flow rate in the main vessel is altered:

Δ𝑃 = (𝑄0 + 𝛿𝑄0)
𝑁−1
∑
𝑖=0

8ℓ𝑖𝜂
2𝑖𝜋𝑟4

𝑖
= (𝑄0 + 𝛿𝑄0)8ℓ0𝜂

𝜋𝑟4
0

⎛⎜⎜
⎝

𝑁−2
∑
𝑖=0

24𝑖/3

2𝑖2𝑖/3 + 24(𝑁−1)/3

2𝑁−12(𝑁−1)/3 (1 − 𝛿𝑟
𝑟0/2(𝑁−1)/3 )

4
⎞⎟⎟
⎠

⟹ Δ𝑃 ≃ (𝑄0 + 𝛿𝑄0) Δ𝑃
𝑁 𝑄0

(𝑁 − 1 + 1 + 4 𝛿𝑟
𝑟𝑁−1

)

Noting that 𝛿𝑄𝑁−1
𝑄𝑁−1

= 𝛿𝑄0
𝑄0

, we obtain

1 + 𝛿𝑄𝑁−1
𝑄𝑁−1

= 1
1 + 4 𝛿𝑟

𝑁 𝑟𝑁−1

≃ 1 − 4 𝛿𝑟
𝑁 𝑟𝑁−1

.

And so:
𝛿𝑄𝑁−1
𝑄𝑁−1

≃ − 4
𝑁

𝛿𝑟
𝑟𝑁−1

.

Putting all together

B.4
𝛿𝑄𝑁−1
𝑄𝑁−1

≃ − 2
𝑁

𝐾N𝑣 − (1 − 𝑣)𝑃cap

(1 − 𝑣)(𝑝c − 𝑃cap)
𝛿𝑟c

𝑟𝑁−1
.

2.3pt
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