$$
F=G \frac{M m}{\Delta r^{2}}
$$

$$
\begin{array}{ll}
& F_{g r a v i t y}=m \frac{G M_{\text {Earrh }}}{R_{\text {Earth }}^{2}}=m g \\
\begin{array}{l}
\text { Enter data into } \\
\text { any of the boxes } \\
\text { to recalculate. }
\end{array} & g_{\text {surtace }}
\end{array} \quad \begin{aligned}
& M_{E}=5.98 \times 10^{24} \mathrm{~kg} \\
& \\
&
\end{aligned}
$$

Newton's First Law

- Newton's First Law states that an object will remain at rest or in uniform motion in a straight line unless acted upon by an external force. It may be seen as a statement about inertia, that objects will remain in their state of motion unless a force acts to change the motion. Any change in motion involves an acceleration, and then Newton's Second Law applies; in fact, the First Law is just a special case of the Second Law for which the net external force is zero.

Newton's Second Law

$$
=M
$$

The same force exerted on a larger mass produces a correspondingly smaller acceleration.

Newton's Third Law

Force

$$
\begin{aligned}
& F=F \\
& F_{t}=F_{t}
\end{aligned}
$$

Impulse
Change in
$m_{\Delta v}=$
${ }_{m} \Delta v$ momentum

Acceleration $\boldsymbol{M}_{a}={ }_{m} a$

- gm is the weight of the mass, and g is the acceleration due to gravity, or just gravity. $\mathrm{g}=\mathbf{9 . 8 0} \mathbf{~ m s} \mathbf{- 2}$ on average.
-Units of Gravity:

$$
1 \mathrm{Gal}=1 \mathrm{~cm} \mathrm{~s}^{-2}
$$

$$
F_{B \rightarrow A}=F\left(r_{A}\right)=G m \iiint \frac{\partial(r)}{\left|r-r_{A}\right|^{3}}\left(r-r_{A}\right) d B
$$

-To study the gravitation, the density distribution $\sigma(r)$ with in the earth must be known.

-The density of the Earth is 5.513 $\mathrm{g} / \mathrm{cm} 3$. This is an average of all of the material on the planet. The density of Earth is calculated by dividing the planet's mass by its volume,

Centrifugal force

$$
f=p \omega^{2} m
$$

$$
\text { نيروى فوقد در حدود جاذبه } 0.35
$$

$\omega=72.92115^{*} 10^{\wedge}-6 \mathrm{rad} / \mathrm{s}$

$$
a_{c}=\left(\frac{2 \pi}{86164 \mathrm{sec}}\right)^{2} \times 6378000 \mathrm{~m}=0.0339 \mathrm{~m} / \mathrm{s}^{2}=3.39 \mathrm{~cm} / \mathrm{s}^{2}
$$

$$
\begin{array}{ll}
m \frac{v^{2}}{r}=\frac{G m M_{S u n}}{r^{2}} & \begin{array}{l}
\text { Applying Newton' s 2nd Law } \\
\text { for the case of circular motion, } \\
\text { the required centripetal force } \\
\text { is supplied by gravity. }
\end{array} \\
v^{2}=\frac{G M_{S u n}}{r} & \begin{array}{l}
\frac{G M_{S u n}}{r}=\frac{2 \pi r}{T} \\
\begin{array}{l}
\text { The application of Newton's } \\
\text { 2nd law gives you the velocity. }
\end{array} \\
\begin{array}{l}
\text { For a circular orbit, the } \\
\text { period T can be found from } \\
\text { the orbit velocity. }
\end{array} \\
2 \pi r \\
T^{2}=\frac{4 \pi^{2} r^{3}}{G M_{S u n}}
\end{array} \quad \begin{array}{l}
\text { Solving for the period gives } \\
\text { you Kepler's Law of Periods } \\
\text { for the special case of a } \\
\text { circular orbit. }
\end{array}
\end{array}
$$

The expressions for velocity and period are seen to follow from Newton's 2nd law and the law of gravity.

$$
v=\sqrt{\frac{G M_{S u n}}{r}} \quad T=\frac{2 \pi r^{3 / 2}}{\sqrt{G M_{S u n}}}
$$

Calculations based on a circular orbit at average radius.
(Not very meaningful for the highly eccentric orbit of Pluto.)

Approximate expressions for velocity and period, assuming a circular orbit.

$$
\begin{aligned}
& M_{S u n}=1.99 \times 10^{30} \mathrm{~kg} \\
& r_{\text {Sun }}=6.96 \times 10^{8} \mathrm{~m}
\end{aligned}
$$

$$
A_{\odot}=1 \text { astronomical unit }=1.49 \times 10^{11} \mathrm{~m}
$$

Gravity force

The sum of the gravitational and centrifugal forces is called the gravity force.

$$
\begin{aligned}
\vec{F}^{\prime}\left(\vec{r}_{A}\right) & =\vec{F}_{\Phi \rightarrow A}+\vec{f}_{A} \\
& =\left\{G \iiint_{\mathscr{B}} \frac{\sigma(\vec{r})}{\left|\vec{r}-\vec{r}_{A}\right|^{3}}\left(\vec{r}-\vec{r}_{A}\right) \mathrm{d} \mathfrak{B}+\vec{p}_{A} \omega^{2}\right\} m .
\end{aligned}
$$

Gravity force direction

Variation in gravity on the earth's surface

- These variations is more than 5 Gal
- These variations have several sources
-Different heights of observation points
-The oblateness of the earth
- uneven lateral distribution of masses with in the earth
-Other factors

Gravity anomaly
 $$
\Delta g=g-\gamma
$$

- International Union of Geodesy and Geophysics (IUGG) is a non-governmental, scientific organization, established in 1919.
-The global range of the variations on the surface of the earth is more than 5 Gal, i.e., more than 0.5% of the avarage g .
- Modern instruments measure accurately to with in fraction of a $\mu \mathrm{Gal}\left(10^{\wedge}-6\right) \mathrm{Gal}$, i.e ., to about 10^-10 " g ".

Gravity Variation with height (free-air correction)

$$
\begin{aligned}
g & =\frac{G M}{R^{2}} \\
\frac{d g}{d R} & =-\frac{2 G M}{R^{3}}=-\frac{2 g}{R}
\end{aligned}
$$

- At the equator $\quad 2 g / R=0.3086 \mathrm{mGal} / \mathrm{m}$

Bouguer anomaly $\mathrm{d} g \doteq-0.308\left[\mathrm{mGalm}^{-1}\right] \mathrm{d} H$.

- Note that dg is negetive for a positive H
- g decreases 1% with increases H about 32 KM
- The correction to gravity for the hieght effect is called " free air correction"

Normal gravity

- Analytically defined
- Normal gravity vector denoted by γ
- Function of R and φ
- Independed from λ

1914:

$$
\begin{aligned}
\gamma= & 980.624\left(1-0.002644 \cos 2 \phi+0.000007 \cos ^{2} 2 \phi\right) \\
& -0.3086 h-0.0002 h \cos 2 \phi+7.1 \times 10^{-8} h^{2} \mathrm{Gal},
\end{aligned}
$$

$\gamma_{0}=980.624\left(1-0.002644 \cos 2 \phi+0.000007 \cos ^{2} 2 \phi\right) \mathrm{Gal}$.

The newest International Gravity Formula 1980 by International Association of
Geodesy(IAG)
Accuracy $0.7 \mu \mathrm{Gal}$
$\gamma_{0} \doteq 978.0327\left(1+0.0052790414 \sin ^{2} \phi\right.$
$\left.+0.0000232718 \sin ^{4} \phi+0.0000001262 \sin ^{6} \phi\right) \mathrm{Gal}$.

Effect of oblateness

A Available data
8700 nts

Variatons of gravity due to irregular distribution of masses

- $g>\gamma$ positive gravity anomaly shows that there are relatively denser masses
- $g<\gamma$ negative gravity anomaly

$$
g(r)=-\frac{G M(r)}{r^{2}} . \quad g(r)=\frac{4 \pi}{3} G p r .
$$

-If the density decreased linearly with increasing radius from a density ρ_{0} at the centre to ρ_{1} at the surface, then $\rho(r)=\rho_{0}-\left(\rho_{0}-\rho_{1}\right) r / r_{\mathrm{e}}$, and the dependence would be

$$
g(r)=\frac{4 \pi}{3} G \rho_{0} r-\pi G\left(\rho_{0}-\rho_{1}\right) \frac{r^{2}}{r_{e}} .
$$

