زمين و ميدان ثقل ان $F = G \frac{Mm}{\Lambda r^2}$ ميدان ثقل:

g = ?Enter data into any of the boxes to recalculate. g = r

 $F_{gravity} = m \frac{GM_{Earth}}{R_{Earth}^2} = mg$ $M_E = 5.98 x 10^{24} kg$ $R_E = 6.38 x 10^6 m \text{ (Average)}$ $G = 6.67259 x 10^{-11} Nm^2 \text{ / } kg^2$

Newton's First Law

 Newton's First Law states that an object will remain at rest or in uniform motion in a straight line unless acted upon by an external force. It may be seen as a statement about inertia, that objects will remain in their state of motion unless a force acts to change the motion. Any change in motion involves an acceleration, and then <u>Newton's Second Law</u> applies; in fact, the First Law is just a special case of the Second Law for which the net external force is zero.

Newton's Second Law

Newton's Third Law

Force	F =	F
Impulse	$F_t =$	F_t
Change in momentum	$m_{\Delta v} =$	$m\Delta v$

Acceleration $M_a = ma$

 gm is the weight of the mass, and g is the acceleration due to gravity, or just gravity. g = 9.80 ms-2 on average.

•Units of Gravity:

1 Gal = 1 cm s⁻²

$$F_{B\to A} = F(r_A) = Gm \int \int \int \frac{\partial(r)}{|r - r_A|^3} (r - r_A) dB$$

•To study the gravitation, the density distribution $\sigma(r)$ with in the earth must be known.

•The density of the Earth is 5.513 g/cm3. This is an average of all of the material on the planet. The density of Earth is calculated by dividing the planet's mass by its volume,

$$m\frac{v^{2}}{r} = \frac{GmM_{Sun}}{r^{2}}$$
$$v^{2} = \frac{GM_{Sun}}{r}$$
$$v = \sqrt{\frac{GM_{Sun}}{r}} = \frac{2\pi r}{T}$$
$$\frac{T}{2\pi r} = \sqrt{\frac{r}{GM_{Sun}}}$$
$$T^{2} = \frac{4\pi^{2}r^{3}}{GM_{Sun}}$$

Applying Newton's 2nd Law for the case of circular motion, the required centripetal force is supplied by gravity.

The application of Newton's 2nd law gives you the velocity. For a circular orbit, the period T can be found from the orbit velocity.

Solving for the period gives you Kepler's Law of Periods for the special case of a circular orbit.

The expressions for velocity and period are seen to follow from Newton's 2nd law and the law of gravity.

$$v = \sqrt{\frac{GM_{Sun}}{r}} \qquad T = \frac{2\pi r^{3/2}}{\sqrt{GM_{Sun}}}$$

Calculations based on		Average rad	dii of planetary
a circular orbit at			A
average radius.		Mercury	0.389 A _O
0		Venus	0.725
(Not very meaningful	r	Earth Mars	1.000 1.53
for the highly eccentric		Jupiter	5.22
orbit of Pluto.)	$v = \left[\frac{GM_{sun}}{M_{sun}} \right]$	Saturn	9.57
	$v = \sqrt{\frac{G_{III}}{S_{III}}}$	Uranus	19.255
	V r	Neptune	30.168
		Pluto	39.597
	$T = \frac{2\pi r^{3/2}}{\sqrt{GM_{sun}}}$		
	$\sqrt{GM_{em}}$	Approximate ex	
	V Sun	for velocity and	
1	/	assuming a cire	cular orbit.
$M_{Sun} = 1.99 \times 10^{30} kg$,		10 1011
$r_{Sun} = 6.96 \times 10^8 m$	$A_{\odot} = 1$ astronom	ical unit $=1$	$49x10^{11}m$

Gravity force

Gravity force direction

Variation in gravity on the earth's surface

- These variations is more than 5 Gal
- These variations have several sources
 - -Different heights of observation points
 - -The oblateness of the earth
 - –uneven lateral distribution of masses
 with in the earth
 - -Other factors

Gravity anomaly $\Delta g = g - \gamma$

- International Union of Geodesy and Geophysics (IUGG) is a non-governmental, scientific organization, established in 1919.
 - •The global range of the variations on the surface of the earth is more than 5 Gal, i.e., more than 0.5% of the avarage g.

• Modern instruments measure accurately to with in fraction of a μ Gal (10^-6) Gal, i.e., to about 10^-10 "g".

Gravity Variation with height (free-air correction)

$$g = \frac{GM}{R^2}$$
$$\frac{dg}{dR} = -\frac{2GM}{R^3} = -\frac{2g}{R}$$

•At the equator 2g/R = 0.3086 mGal/m

Bouguer anomaly $dg \doteq -0.308 [mGal m^{-1}] dH.$

- Note that dg is negetive for a positive H
- g decreases 1% with increases H about 32 KM
- The correction to gravity for the hieght effect is called " *free air correction*"

Normal gravity

- Analytically defined
- Normal gravity vector denoted by §
- Function of R and ϕ
- Independed from $\boldsymbol{\lambda}$

1914:

 $\gamma = 980.624(1 - 0.002644\cos 2\phi + 0.000007\cos^2 2\phi)$ $-0.3086h - 0.0002h\cos 2\phi + 7.1 \times 10^{-8}h^2 \text{ Gal},$ $\gamma_0 = 980.624(1 - 0.002644\cos 2\phi + 0.000007\cos^2 2\phi)$ Gal.

The newest International Gravity Formula 1980 by International Association of Geodesy(IAG)

Accuracy 0.7 µGal

 $\gamma_0 \doteq 978.0327(1 + 0.0052790414 \sin^2\phi)$

 $+0.0000232718 \sin^4 \phi + 0.0000001262 \sin^6 \phi$) Gal.

Effect of oblateness

Variatons of gravity due to irregular distribution of masses

- g > \forall positive gravity anomaly shows that there are relatively denser masses

$$g(r) = -\frac{GM(r)}{r^2}$$
, $g(r) = \frac{4\pi}{3}G\rho r$.

•If the density decreased linearly with increasing radius from a density ρ_0 at the centre to ρ_1 at the surface, then $\rho(r) = \rho_0 - (\rho_0 - \rho_1) r / r_e$, and the dependence would be

$$g(r) = \frac{4\pi}{3} G\rho_0 r - \pi G \left(\rho_0 - \rho_1\right) \frac{r^2}{r_e}.$$