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2  Geographic Data Mining and Knowledge Discovery

1.1 INTRODUCTION

Similar to many research and application fields, geography has moved from a data-
poor and computation-poor to a data-rich and computation-rich environment. The 
scope, coverage, and volume of digital geographic datasets are growing rapidly. Public 
and private sector agencies are creating, processing, and disseminating digital data on 
land use, socioeconomic conditions, and infrastructure at very detailed levels of geo-
graphic resolution. New high spatial and spectral resolution remote sensing systems 
and other monitoring devices are gathering vast amounts of geo-referenced digital 
imagery,  video, and sound. Geographic data collection devices linked to location- 
ware technologies (LATs) such as global positioning system (GPS) receivers allow 
field researchers to collect unprecedented amounts of data. LATs linked to or embed-
ded in devices such as cell phones, in-vehicle navigation systems, and wireless Internet 
clients provide location-specific content in exchange for tracking individuals in space 
and time. Information infrastructure initiatives such as the U.S. National Spatial Data 
Infrastructure are facilitating data sharing and interoperability. Digital geographic data 
repositories on the World Wide Web are growing rapidly in both number and scope. 
The amount of data that geographic information processing systems can handle will 
continue to increase exponentially through the mid-21st century.

Traditional spatial analytical methods were developed in an era when data collec-
tion was expensive and computational power was weak. The increasing volume and 
diverse nature of digital geographic data easily overwhelm mainstream spatial anal-
ysis techniques that are oriented toward teasing scarce information from small and 
homogenous datasets. Traditional statistical methods, particularly spatial statistics, 
have high computational burdens. These techniques are confirmatory and require 
the researcher to have a priori hypotheses. Therefore, traditional spatial analytical 
techniques cannot easily discover new and unexpected patterns, trends, and relation-
ships that can be hidden deep within very large and diverse geographic datasets.

In March 1999, the National Center for Geographic Information and Analysis 
(NCGIA) — Project Varenius held a workshop on discovering geographic knowl-
edge in data-rich environments in Kirkland, Washington, USA. The workshop 
brought together a diverse group of stakeholders with interests in developing and 
applying computational techniques for exploring large, heterogeneous digital geo-
graphic datasets. Drawing on papers submitted to that workshop, in 2001 we pub-
lished Geographic Data Mining and Knowledge Discovery, a volume that brought 
together some of the cutting-edge research in the area of geographic data mining and 
geographic knowledge discovery in a data-rich environment. There has been much 
progress in geographic knowledge discovery (GKD) over the past eight years, includ-
ing the development of new techniques for geographic data warehousing (GDW), 
spatial data mining, and geo-visualization. In addition, there has been a remarkable 
rise in the collection and storage of data on spatiotemporal processes and mobile 
objects, with a consequential rise in knowledge discovery techniques for these data.

The second edition of Geographic Data Mining and Knowledge Discovery is a 
major revision of the first edition. We selected chapters from the first edition and 
asked authors for updated manuscripts that reflect changes and recent developments 
in their particular domains. We also solicited new chapters on topics that were not 
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Geographic Data Mining and Knowledge Discovery 3

covered well in the first edition but have become more prominent recently. This 
includes several new chapters on spatiotemporal and mobile objects databases, a 
topic only briefly mentioned in the 2001 edition.

This chapter introduces geographic data mining and GKD. In this chapter, we pro-
vide an overview of knowledge discovery from databases (KDD) and data mining. 
We identify why geographic data is a nontrivial special case that requires distinctive 
consideration and techniques. We also review the current state-of-the-art in GKD, 
including the existing literature and the contributions of the chapters in this volume.

1.2 KNOWLEDGE DISCOVERY AND DATA MINING

In this section, we provide a general overview of knowledge discovery and data 
mining. We begin with an overview of KDD, highlighting its general objectives and 
its relationship to the field of statistics and the general scientific process. We then 
identify the major stages of KDD processing, including data mining. We classify 
major data-mining tasks and discuss some techniques available for each task. We 
conclude this section by discussing the relationships between scientific visualization 
and KDD.

1.2.1 KNOWLEDGE DISCOVERY FROM DATABASES

Knowledge discovery from databases (KDD) is a response to the enormous volumes 
of data being collected and stored in operational and scientific databases. Continuing 
improvements in information technology (IT) and its widespread adoption for process 
monitoring and control in many domains is creating a wealth of new data. There is 
often much more information in these databases than the “shallow” information being 
extracted by traditional analytical and query techniques. KDD leverages investments 
in IT by searching for deeply hidden information that can be turned into knowledge 
for strategic decision making and answering fundamental research questions.

KDD is better known through the more popular term “data mining.” However, 
data mining is only one component (albeit a central component) of the larger KDD 
process. Data mining involves distilling data into information or facts about the 
domain described by the database. KDD is the higher-level process of obtaining 
information through data mining and distilling this information into knowledge 
(ideas and beliefs about the domain) through interpretation of information and inte-
gration with existing knowledge.

KDD is based on a belief that information is hidden in very large databases in the 
form of interesting patterns. These are nonrandom properties and relationships that 
are valid, novel, useful, and ultimately understandable. Valid means that the pattern 
is general enough to apply to new data; it is not just an anomaly of the current data. 
Novel means that the pattern is nontrivial and unexpected. Useful implies that the 
pattern should lead to some effective action, e.g., successful decision making and 
scientific investigation. Ultimately understandable means that the pattern should be 
simple and interpretable by humans (Fayyad, Piatetsky-Shapiro and Smyth 1996).

KDD is also based on the belief that traditional database queries and statistical 
methods cannot reveal interesting patterns in very large databases, largely due to the 
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4  Geographic Data Mining and Knowledge Discovery

type of data that increasingly comprise enterprise databases and the novelty of the 
patterns sought in KDD.

KDD goes beyond the traditional domain of statistics to accommodate data not 
normally amenable to statistical analysis. Statistics usually involves a small and clean 
(noiseless) numeric database scientifically sampled from a large population with spe-
cific questions in mind. Many statistical models require strict assumptions (such as 
independence, stationarity of underlying processes, and normality). In contrast, the 
data being collected and stored in many enterprise databases are noisy, nonnumeric, 
and possibly incomplete. These data are also collected in an open-ended manner 
without specific questions in mind (Hand 1998). KDD encompasses principles and 
techniques from statistics, machine learning, pattern recognition, numeric search, 
and scientific visualization to accommodate the new data types and data volumes 
being generated through information technologies.

KDD is more strongly inductive than traditional statistical analysis. The gen-
eralization process of statistics is embedded within the broader deductive process 
of science. Statistical models are confirmatory, requiring the analyst to specify a 
model a priori based on some theory, test these hypotheses, and perhaps revise 
the theory depending on the results. In contrast, the deeply hidden, interesting 
patterns being sought in a KDD process are (by definition) difficult or impos-
sible to specify a priori, at least with any reasonable degree of completeness. 
KDD is more concerned about prompting investigators to formulate new predic-
tions and hypotheses from data as opposed to testing deductions from theories 
through a sub-process of induction from a scientific database (Elder and Pregibon 
1996; Hand 1998). A guideline is that if the information being sought can only be 
vaguely described in advance, KDD is more appropriate than statistics (Adriaans 
and Zantinge 1996).

KDD more naturally fits in the initial stage of the deductive process when the 
researcher forms or modifies theory based on ordered facts and observations from 
the real world. In this sense, KDD is to information space as microscopes, remote 
sensing, and telescopes are to atomic, geographic, and astronomical spaces, respec-
tively. KDD is a tool for exploring domains that are too difficult to perceive with 
unaided human abilities. For searching through a large information wilderness, the 
powerful but focused laser beams of statistics cannot compete with the broad but 
diffuse floodlights of KDD. However, floodlights can cast shadows and KDD cannot 
compete with statistics in confirmatory power once the pattern is discovered.

1.2.2 DATA WAREHOUSING

An infrastructure that often underlies the KDD process is the data warehouse (DW). 
A DW is a repository that integrates data from one or more source databases. The 
DW phenomenon results from several technological and economic trends, including 
the decreasing cost of data storage and data processing, and the increasing value of 
information in business, government, and scientific environments. A DW usually 
exists to support strategic and scientific decision making based on integrated, shared 
information, although DWs are also used to save legacy data for liability and other 
purposes (see Jarke et al. 2000).
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The data in a DW are usually read-only historical copies of the operational 
databases in an enterprise, sometimes in summary form. Consequently, a DW is 
often several orders of magnitude larger than an operational database (Chaudhuri 
and Dayal 1997). Rather than just a very large database management system, a DW 
embodies database design principles very different from operational databases.

Operational database management systems are designed to support transactional 
data processing, that is, data entry, retrieval, and updating. Design principles for 
transactional database systems attempt to create a database that is internally consis-
tent and recoverable (i.e., can be “rolled-back” to the last known internally consis-
tent state in the event of an error or disruption). These objectives must be met in an 
environment where multiple users are retrieving and updating data. For example, the 
normalization process in relational database design decomposes large, “flat” rela-
tions along functional dependencies to create smaller, parsimonious relations that 
logically store a particular item a minimal number of times (ideally, only once; see 
Silberschatz et al. 1997). Since data are stored a minimal number of times, there is 
a minimal possibility of two data items about the same real-world entity disagreeing 
(e.g., if only one item is updated due to user error or an ill-timed system crash).

In contrast to transactional database design, good DW design maximizes the effi-
ciency of analytical data processing or data examination for decision making. Since 
the DW contains read-only copies and summaries of the historical operational data-
bases, consistency and recoverability in a multiuser transactional environment are not 
issues. The database design principles that maximize analytical efficiency are con-
trary to those that maximize transactional stability. Acceptable response times when 
repeatedly retrieving large quantities of data items for analysis require the database 
to be nonnormalized and connected; examples include the “star” and “snowflake” 
logical DW schemas (see Chaudhuri and Dayal 1997). The DW is in a sense a buffer 
between transactional and analytical data processing, allowing efficient analytical 
data processing without corrupting the source databases (Jarke et al. 2000).

In addition to data mining, a DW often supports online analytical processing 
(OLAP) tools. OLAP tools provide multidimensional summary views of the data 
in a DW. OLAP tools allow the user to manipulate these views and explore the data 
underlying the summarized views. Standard OLAP tools include roll-up (increasing 
the level of aggregation), drill-down (decreasing the level of aggregation), slice and 
dice (selection and projection), and pivot (re-orientation of the multidimensional data 
view) (Chaudhuri and Dayal 1997). OLAP tools are in a sense types of “super-que-
ries”: more powerful than standard query language such as SQL but shallower than 
data-mining techniques because they do not reveal hidden patterns. Nevertheless, 
OLAP tools can be an important part of the KDD process. For example, OLAP tools 
can allow the analyst to achieve a synoptic view of the DW that can help specify and 
direct the application of data-mining techniques (Adriaans and Zantinge 1996).

A powerful and commonly applied OLAP tool for multidimensional data sum-
mary is the data cube. Given a particular measure (e.g., “sales”) and some dimen-
sions of interest (e.g., “item,” “store,” “week”), a data cube is an operator that 
returns the power set of all possible aggregations of the measure with respect to the 
dimensions of interest. These include aggregations over zero dimension (e.g., “total 
sales”), one dimension (e.g., “total sales by item,” “total sales by store,” “total sales  
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per week”), two dimensions (e.g., “total sales by item and store”) and so on, up to 
N dimensions. The data cube is an N-dimensional generalization of the more com-
monly known SQL aggregation functions and “Group-By” operator. However, the 
analogous SQL query only generates the zero and one-dimensional aggregations; 
the data cube operator generates these and the higher dimensional aggregations all 
at once (Gray et al. 1997).

The power set of aggregations over selected dimensions is called a “data cube” 
because the logical arrangement of aggregations can be viewed as a hypercube in 
an N-dimensional information space (see Gray et al. 1997, Figure 2). The data cube 
can be pre-computed and stored in its entirety, computed “on-the-fly” only when 
requested, or partially pre-computed and stored (see Harinarayan, Rajaman and 
Ullman 1996). The data cube can support standard OLAP operations including roll-
up, drill-down, slice, dice, and pivot on measures computed by different aggregation 
operators, such as max, min, average, top-10, variance, and so on.

1.2.3 THE KDD PROCESS AND DATA MINING

The KDD process usually consists of several steps, namely, data selection, data pre-
processing, data enrichment, data reduction and projection, data mining, and pattern 
interpretation and reporting. These steps may not necessarily be executed in linear 
order. Stages may be skipped or revisited. Ideally, KDD should be a human-centered 
process based on the available data, the desired knowledge, and the intermediate 
results obtained during the process (see Adriaans and Zantinge 1996; Brachman and 
Anand 1996; Fayyad, Piatetsky-Shapiro and Smyth 1996; Han and Kamber 2006; 
Matheus, Chan and Piatetsky-Shapiro 1993).

Data selection refers to determining a subset of the records or variables in a 
database for knowledge discovery. Particular records or attributes are chosen as foci 
for concentrating the data-mining activities. Automated data reduction or “focusing” 
techniques are also available (see Barbara et al. 1997, Reinartz 1999). Data pre-pro-
cessing involves “cleaning” the selected data to remove noise, eliminating duplicate 
records, and determining strategies for handling missing data fields and domain vio-
lations. The pre-processing step may also include data enrichment through combin-
ing the selected data with other, external data (e.g., census data, market data). Data 
reduction and projection concerns both dimensionality and numerosity reductions 
to further reduce the number of attributes (or tuples) or transformations to determine 
equivalent but more efficient representations of the information space. Smaller, less 
redundant and more efficient representations enhance the effectiveness of the data-
mining stage that attempts to uncover the information (interesting patterns) in these 
representations. The interpretation and reporting stage involves evaluating, under-
standing, and communicating the information discovered in the data-mining stage.

Data mining refers to the application of low-level functions for revealing hidden 
information in a database (Klösgen and Żytkow 1996). The type of knowledge to be 
mined determines the data-mining function to be applied (Han and Kamber 2006). 
Table 1.1 provides a possible classification of data-mining tasks and techniques. See 
Matheus, Chan and Piatetsky-Shapiro (1993) and Fayyad, Piatetsky-Shapiro and 
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Smyth (1996), as well as several of the chapters in this current volume for other 
overviews and classifications of data-mining techniques.

Segmentation or clustering involves partitioning a selected set of data into mean-
ingful groupings or classes. It usually applies cluster analysis algorithms to examine 
the relationships between data items and determining a finite set of implicit classes 
so that the intraclass similarity is maximized and interclass similarity is minimized. 
The commonly used data-mining technique of cluster analysis determines a set of 
classes and assignments to these classes based on the relative proximity of data items 
in the information space. Cluster analysis methods for data mining must accommo-
date the large data volumes and high dimensionalities of interest in data mining; this 
usually requires statistical approximation or heuristics (see Farnstrom, Lewis and 
Elkan 2000). Bayesian classification methods, such as AutoClass, determine classes 
and a set of weights or class membership probabilities for data items (see Cheesman 
and Stutz 1996).

Classification refers to finding rules or methods to assign data items into pre-
existing classes. Many classification methods have been developed over many years 
of research in statistics, pattern recognition, machine learning, and data mining, 
including decision tree induction, naïve Bayesian classification, neural networks, 
support vector machines, and so on. Decision or classification trees are hierarchi-
cal rule sets that generate an assignment for each data item with respect to a set of 
known classes. Entropy-based methods such as ID3 and C4.5 (Quinlan 1986, 1992) 

TABLE 1.1
Data-Mining Tasks and Techniques

Knowledge Type Description Techniques

Segmentation or clustering Determining a finite set of implicit 
groups that describe the data. 

Cluster analysis

Classification Predict the class label that a set of 
data belongs to based on some 
training datasets

Bayesian classification
Decision tree induction
Artificial neural networks
Support vector machine (SVM)

Association Finding relationships among 
itemsets or association/correlation 
rules, or predict the value of some 
attribute based on the value of 
other attributes 

Association rules
Bayesian networks

Deviations Finding data items that exhibit 
unusual deviations from 
expectations 

Clustering and other data-mining 
methods

Outlier detection
Evolution analysis

Trends and regression 
analysis

Lines and curves summarizing the 
database, often over time

Regression
Sequential pattern extraction

Generalizations Compact descriptions of the data Summary rules
Attribute-oriented induction
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derive these classification rules from training examples. Statistical methods include 
the chi-square automatic interaction detector (CHAID) (Kass 1980) and the classi-
fication and regression tree (CART) method (Breiman et al. 1984). Artificial neural 
networks (ANNs) can be used as nonlinear clustering and classification techniques. 
Unsupervised ANNs such as Kohonen Maps are a type of neural clustering where 
weighted connectivity after training reflects proximity in information space of the 
input data (see Flexer 1999). Supervised ANNs such as the well-known feed forward/
back propagation architecture require supervised training to determine the appropri-
ate weights (response function) to assign data items into known classes.

Associations are rules that predict the object relationships as well as the value 
of some attribute based on the value of other attributes (Ester, Kriegel and Sander 
1997). Bayesian networks are graphical models that maintain probabilistic depen-
dency relationships among a set of variables. These networks encode a set of con-
ditional probabilities as directed acyclic networks with nodes representing variables 
and arcs extending from cause to effect. We can infer these conditional probabilities 
from a database using several statistical or computational methods depending on the 
nature of the data (see Buntine 1996; Heckerman 1997). Association rules are a par-
ticular type of dependency relationship. An association rule is an expression X Y
(c%, r%) where X and Y are disjoint sets of items from a database, c% is the confi-
dence and r% is the support. Confidence is the proportion of database transactions 
containing X that also contain Y; in other words, the conditional probability P Y X( | ) .  
Support is proportion of database transactions that contain X and Y, i.e., the union of 
X and Y, P X Y( )  (see Hipp, Güntzer and Nakhaeizadeh 2000). Mining associa-
tion rules is a difficult problem since the number of potential rules is exponential 
with respect to the number of data items. Algorithms for mining association rules 
typically use breadth-first or depth-first search with branching rules based on mini-
mum confidence or support thresholds (see Agrawal et al. 1996; Hipp, Güntzer and 
Nakhaeizadeh 2000).

Deviations are data items that exhibit unexpected deviations or differences from 
some norm. These cases are either errors that should be corrected/ignored or rep-
resent unusual cases that are worthy of additional investigation. Outliers are often 
a byproduct of other data-mining methods, particularly cluster analysis. However, 
rather than treating these cases as “noise,” special-purpose outlier detection meth-
ods search for these unusual cases as signals conveying valuable information (see 
Breuing et al. 1999).

Trends are lines and curves fitted to the data, including linear and logistic regres-
sion analysis, that are very fast and easy to estimate. These methods are often com-
bined with filtering techniques such as stepwise regression. Although the data often 
violate the stringent regression assumptions, violations are less critical if the esti-
mated model is used for prediction rather than explanation (i.e., estimated parame-
ters are not used to explain the phenomenon). Sequential pattern extraction explores 
time series data looking for temporal correlations or pre-specified patterns (such as 
curve shapes) in a single temporal data series (see Agrawal and Srikant 1995; Berndt 
and Clifford 1996).

Generalization and characterization are compact descriptions of the database. 
As the name implies, summary rules are a relatively small set of logical statements 
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that condense the information in the database. The previously discussed classifica-
tion and association rules are specific types of summary rules. Another type is a 
characteristic rule; this is an assertion that data items belonging to a specified con-
cept have stated properties, where “concept” is some state or idea generalized from 
particular instances (Klösgen and Żytkow 1996). An example is “all professors in 
the applied sciences have high salaries.” In this example, “professors” and “applied 
sciences” are high-level concepts (as opposed to low-level measured attributes such 
as “assistant professor” and “computer science”) and “high salaries” is the asserted 
property (see Han, Cai and Cercone 1993).

A powerful method for finding many types of summary rules is attribute-ori-
ented induction (also known as generalization-based mining). This strategy per-
forms hierarchical aggregation of data attributes, compressing data into increasingly 
generalized relations. Data-mining techniques can be applied at each level to extract 
features or patterns at that level of generalization (Han and Fu 1996). Background 
knowledge in the form of a concept hierarchy provides the logical map for aggregat-
ing data attributes. A concept hierarchy is a sequence of mappings from low-level 
to high-level concepts. It is often expressed as a tree whose leaves correspond to 
measured attributes in the database with the root representing the null descriptor 
(“any”). Concept hierarchies can be derived from experts or from data cardinality 
analysis (Han and Fu 1996).

A potential problem that can arise in a data-mining application is the large num-
ber of patterns generated. Typically, only a small proportion of these patterns will 
encapsulate interesting knowledge. The vast majority may be trivial or irrelevant. A 
data-mining engine should present only those patterns that are interesting to particu-
lar users. Interestingness measures are quantitative techniques that separate inter-
esting patterns from trivial ones by assessing the simplicity, certainty, utility, and 
novelty of the generated patterns (Silberschatz and Tuzhilin 1996; Tan, Kumar and 
Srivastava 2002). There are many interestingness measures in the literature; see Han 
and Kamber (2006) for an overview.

1.2.4 VISUALIZATION AND KNOWLEDGE DISCOVERY

KDD is a complex process. The mining metaphor is appropriate — information is 
buried deeply in a database and extracting it requires skilled application of an inten-
sive and complex suite of extraction and processing tools. Selection, pre-processing, 
mining, and reporting techniques must be applied in an intelligent and thoughtful 
manner based on intermediate results and background knowledge. Despite attempts 
at quantifying concepts such as interestingness, the KDD process is difficult to auto-
mate. KDD requires a high-level, most likely human, intelligence at its center (see 
Brachman and Anand 1996).

Visualization is a powerful strategy for integrating high-level human intelligence 
and knowledge into the KDD process. The human visual system is extremely effec-
tive at recognizing patterns, trends, and anomalies. The visual acuity and pattern 
spotting capabilities of humans can be exploited in many stages of the KDD pro-
cess, including OLAP, query formulation, technique selection, and interpretation of 
results. These capabilities have yet to be surpassed by machine-based approaches.
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Keim and Kriegel (1994) and Lee and Ong (1996) describe software systems 
that incorporate visualization techniques for supporting database querying and data 
mining. Keim and Kriegel (1994) use visualization to support simple and complex 
query specification, OLAP, and querying from multiple independent databases. Lee 
and Ong’s (1996) WinViz software uses multidimensional visualization techniques 
to support OLAP, query formulation, and the interpretation of results from unsuper-
vised (clustering) and supervised (decision tree) segmentation techniques. Fayyad, 
Grinstein and Wierse (2001) provide a good overview of visualization methods for 
data mining.

1.3 GEOGRAPHIC DATA MINING AND KNOWLEDGE DISCOVERY

This section of the chapter describes a very important special case of KDD, namely, 
GKD. We will first discuss why GKD is an important special case that requires 
careful consideration and specialized tools. We will then discuss GDW and online 
geographic data repositories, the latter an increasingly important source of digital 
geo-referenced data and imagery. We then discuss geographic data-mining tech-
niques and the relationships between GKD and geographic visualization (GVis), an 
increasingly active research domain integrating scientific visualization and cartog-
raphy. We follow this with discussions of current GKD techniques and applications 
and research frontiers, highlighting the contributions of this current volume.

1.3.1 WHY GEOGRAPHIC KNOWLEDGE DISCOVERY?

1.3.1.1 Geographic Information in Knowledge Discovery
The digital geographic data explosion is not much different from similar revolutions 
in marketing, biology, and astronomy. Is there anything special about geographic 
data that requires unique tools and provides unique research challenges? In this sec-
tion, we identify and discuss some of the unique properties of geographic data and 
challenges in GKD.

Geographic measurement frameworks. While many information domains of 
interest in KDD are high dimensional, these dimensions are relatively independent. 
Geographic information is not only high dimensional but also has the property that 
up to four dimensions of the information space are interrelated and provide the mea-
surement framework for all other dimensions. Formal and computational represen-
tations of geographic information require the adoption of an implied topological 
and geometric measurement framework. This framework affects measurement of 
the geographic attributes and consequently the patterns that can be extracted (see 
Beguin and Thisse 1979; Miller and Wentz 2003).

The most common framework is the topology and geometry consistent with 
Euclidean distance. Euclidean space fits in well with our experienced reality and 
results in maps and cartographic displays that are useful for navigation. However, 
geographic phenomena often display properties that are consistent with other topolo-
gies and geometries. For example, travel time relationships in an urban area usually 
violate the symmetry and triangular inequality conditions for Euclidean and other 
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distance metrics. Therefore, seeking patterns and trends in transportation systems 
(such as congestion propagation over space and time) benefits from projecting the 
data into an information space whose spatial dimensions are nonmetric. In addition, 
disease patterns in space and time often behave according to topologies and geome-
tries other than Euclidean (see Cliff and Haggett 1998; Miller and Wentz 2003). The 
useful information implicit in the geographic measurement framework is ignored in 
many induction and machine learning tools (Gahegan 2000a).

An extensive toolkit of analytical cartographic techniques is available for estimat-
ing appropriate distance measures and projecting geographic information into that 
measurement framework (see Cliff and Haggett 1998; Gatrell 1983; Müller 1982; 
Tobler 1994). The challenge is to incorporate scalable versions of these tools into 
GKD. Cartographic transformations can serve a similar role in GKD as data reduc-
tion and projection in KDD, i.e., determining effective representations that maxi-
mize the likelihood of discovering interesting geographic patterns in a reasonable 
amount of time.

Spatial dependency and heterogeneity. Measured geographic attributes usu-
ally exhibit the properties of spatial dependency and spatial heterogeneity. Spatial 
dependency is the tendency of attributes at some locations in space to be related.* 
These locations are usually proximal in Euclidean space. However, direction, con-
nectivity, and other geographic attributes (e.g., terrain, land cover) can also affect 
spatial dependency (see Miller and Wentz 2003; Rosenberg 2000). Spatial depen-
dency is similar to but more complex than dependency in other domains (e.g., serial 
autocorrelation in time series data).

Spatial heterogeneity refers to the nonstationarity of most geographic processes. 
An intrinsic degree of uniqueness at all geographic locations means that most geo-
graphic processes vary by location. Consequently, global parameters estimated from 
a geographic database do not describe well the geographic phenomenon at any par-
ticular location. This is often manifested as apparent parameter drift across space 
when the model is re-estimated for different geographic subsets.

Spatial dependency and spatial heterogeneity have historically been regarded as 
nuisances confounding standard statistical techniques that typically require inde-
pendence and stationarity assumptions. However, these can also be valuable sources 
of information about the geographic phenomena under investigation. Increasing 
availability of digital cartographic structures and geoprocessing capabilities has 
led to many recent breakthroughs in measuring and capturing these properties (see 
Fotheringham and Rogerson 1993).

Traditional methods for measuring spatial dependency include tests such as 
Moran’s I or Geary’s C. The recognition that spatial dependency is also subject to 
spatial heterogeneity effects has led to the development of local indicators of spa-
tial analysis (LISA) statistics that disaggregate spatial dependency measures by  

* In spatial analysis, this meaning of spatial dependency is more restrictive than its meaning in the GKD 
literature. Spatial dependency in GKD is a rule that has a spatial predicate in either the precedent or 
antecedent. We will use the term “spatial dependency” for both cases with the exact meaning apparent 
from the context. This should not be too confusing since the GKD concept is a generalization of the 
concept in spatial analysis.
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location. Examples include the Getis and Ord G statistic and local versions of the I 
and C statistics (see Anselin 1995; Getis and Ord 1992, 1996).

One of the problems in measuring spatial dependency in very large datasets is 
the computational complexity of spatial dependency measures and tests. In the worst 
case, spatial autocorrelation statistics are approximately O n( )2  in complexity, since 
n n( )1 calculations are required to measure spatial dependency in a database with 
n items (although in practice we can often limit the measurement to local spatial 
regions). Scalable analytical methods are emerging for estimating and incorporat-
ing these dependency structures into spatial models. Pace and Zou (2000) report 
an O n n( log( ))  procedure for calculating a closed form maximum likelihood esti-
mator of nearest neighbor spatial dependency. Another complementary strategy is 
to exploit parallel computing architectures and cyber-infrastructure. Fortunately, 
many spatial analytic techniques can be decomposed into parallel and distributed 
computations due to either task parallelism in the calculations or parallelism in the 
spatial data (see Armstrong and Marciano 1995; Armstrong, Pavlik and Marciano 
1994; Densham and Armstrong 1998; Ding and Densham 1996; Griffith 1990; Guan, 
Zhang and Clarke 2006).

Spatial analysts have recognized for quite some time that the regression model is 
misspecified and parameter estimates are biased if spatial dependency effects are not 
captured. Methods are available for capturing these effects in the structural compo-
nents, error terms, or both (see Anselin 1993; Bivand 1984). Regression parameter 
drift across space has also been long recognized. Geographically weighted regression 
uses location-based kernel density estimation to estimate location-specific regres-
sion parameters (see Brunsdon, Fotheringham and Charlton 1996; Fotheringham, 
Charlton and Brunsdon 1997).

The complexity of spatiotemporal objects and rules. Spatiotemporal objects 
and relationships tend to be more complex than the objects and relationships in non-
geographic databases. Data objects in nongeographic databases can be meaningfully 
represented as points in information space. Size, shape, and boundary properties of 
geographic objects often affect geographic processes, sometimes due to measure-
ment artifacts (e.g., recording flow only when it crosses some geographic bound-
ary). Relationships such as distance, direction, and connectivity are more complex 
with dimensional objects (see Egenhofer and Herring 1994; Okabe and Miller 1996; 
Peuquet and Ci-Xiang 1987). Transformations among these objects over time are 
complex but information bearing (Hornsby and Egenhofer 2000). Developing scal-
able tools for extracting spatiotemporal rules from collections of diverse geographic 
objects is a major GKD challenge.

In their update of Chapter 2 from the first edition of this book, Roddick and Lees 
discuss the types and properties of spatiotemporal rules that can describe geographic 
phenomena. In addition to spatiotemporal analogs of generalization, association, and 
segmentation rules, there are evolutionary rules that describe changes in spatial enti-
ties over time. They also note that the scales and granularities for measuring time 
in geography can be complex, reducing the effectiveness of simply “dimensioning 
up” geographic space to include time. Roddick and Lees suggest that geographic 
phenomena are so complex that GKD may require meta-mining, that is, mining large 
rule sets that have been mined from data to seek more understandable information.
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Diverse data types. The range of digital geographic data also presents unique 
challenges. One aspect of the digital geographic information revolution is that geo-
graphic databases are moving beyond the well-structured vector and raster formats. 
Digital geographic databases and repositories increasingly contain ill-structured 
data such as imagery and geo-referenced multimedia (see Câmara and Raper 1999). 
Discovering geographic knowledge from geo-referenced multimedia data is a more 
complex sibling to the problem of knowledge discovery from multimedia databases 
and repositories (see Petrushin and Khan 2006).

1.3.1.2 Geographic Knowledge Discovery  
in Geographic Information Science

There are unique needs and challenges for building GKD into geographic informa-
tion systems (GIS). Most GIS databases are “dumb.” They are at best a very simple 
representation of geographic knowledge at the level of geometric, topological, and 
measurement constraints. Knowledge-based GIS is an attempt to capture high-level 
geographic knowledge by storing basic geographic facts and geographic rules for 
deducing conclusions from these facts (see Srinivasan and Richards 1993; Yuan 
1997). The semantic web and semantic geospatial web attempt to make information 
understandable to computers to support interoperability, findability, and usability 
(Bishr 2007; Egenhofer 2002).

GKD is a potentially rich source of geographic facts. A research challenge is build-
ing discovered geographic knowledge into geographic databases and models to sup-
port information retrieval, interoperability, spatial analysis, and additional knowledge 
discovery. This is critical; otherwise, the geographic knowledge obtained from the 
GKD process may be lost to the broader scientific and problem-solving processes.

1.3.1.3 Geographic Knowledge Discovery in Geographic Research
Geographic information has always been the central commodity of geographic 
research. Throughout much of its history, the field of geography has operated in a 
data-poor environment. Geographic information was difficult to capture, store, and 
integrate. Most revolutions in geographic research have been fueled by a technologi-
cal advancement for geographic data capture, referencing, and handling, including 
the map, accurate clocks, satellites, GPS, and GIS. The current explosion of digital 
geographic and geo-referenced data is the most dramatic shift in the information 
environment for geographic research in history.

Despite the promises of GKD in geographic research, there are some cautions. 
In Chapter 2, Roddick and Lees note that KDD and data-mining tools were mostly 
developed for applications such as marketing where the standard of knowledge is 
“what works” rather than “what is authoritative.” The question is how to use GKD as 
part of a defensible and replicable scientific process. As discussed previously in this 
chapter, knowledge discovery fits most naturally into the initial stages of hypothesis 
formulation. Roddick and Lees also suggest a strategy where data mining is used as 
a tool for gathering evidences that strengthen or refute the null hypotheses consistent 
with a conceptual model. These null hypotheses are kinds of focusing techniques that 
constrain the search space in the GKD process. The results will be more acceptable 
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to the scientific community since the likelihood of accepting spurious patterns is 
reduced.

1.3.2 GEOGRAPHIC DATA WAREHOUSING

A change since the publication of the first edition of this book in 2001 is the dramatic 
rise of the geographic information market, particular with respect to web-mapping 
services and mobile applications. This has generated a consequent heightened interest  
in GDW.

A GDW involves complexities that are unique to standard DWs. First is the sheer 
size. GDWs are potentially much larger than comparable nongeographic DWs. 
Consequently, there are stricter requirements for scalability. Multidimensional GDW 
design is more difficult because the spatial dimension can be measured using nongeo-
metric, nongeometric generalized from geometric, and fully geometric scales. Some 
of the geographic data can be ill structured, for example remotely sensed imagery 
and other graphics. OLAP tools such as roll-up and drill-down require aggregation 
of spatial objects and summarizing spatial properties. Spatial data interoperability 
is critical and particularly challenging because geographic data definitions in legacy 
databases can vary widely. Metadata management is more complex, particularly 
with respect to aggregated and fused spatial objects.

In Chapter 3, also an update from the first edition, Bédard and Han provide an 
overview of fundamental concepts underlying DW and GDW. After discussing key 
concepts of nonspatial data warehousing, they review the particularities of GDW, 
which are typically spatiotemporal. They also identify frontiers in GDW research 
and development.

A spatial data cube is the GDW analog to the data cube tool for computing and 
storing all possible aggregations of some measure in OLAP. The spatial data cube 
must include standard attribute summaries as well as pointers to spatial objects at 
varying levels of aggregation. Aggregating spatial objects is nontrivial and often 
requires background domain knowledge in the form of a geographic concept hierar-
chy. Strategies for selectively pre-computing measures in the spatial data cube include 
none, pre-computing rough approximations (e.g., based on minimum bounding rect-
angles), and selective pre-computation (see Han, Stefanovic and Koperski 2000).

In Chapter 4, Lu, Boedihardjo, and Shekhar update a discussion of the map cube 
from the first edition. The map cube extends the data cube concept to GDW. The 
map cube operator takes as arguments a base map, associated data files, a geographic 
aggregation hierarchy, and a set of cartographic preferences. The operator gener-
ates an album of maps corresponding to the power set of all possible spatial and 
nonspatial aggregations. The map collection can be browsed using OLAP tools such 
as roll-up, drill-down, and pivot using the geographic aggregation hierarchy. They 
illustrate the map cube through an application to highway traffic data.

GDW incorporates data from multiple sources often collected at different times 
and using different techniques. An important concern is the quality or the reliability 
of the data used for GKD. While error and uncertainty in geographic information 
have been long-standing concerns in the GIScience community, efforts to address 
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these issues have increased substantially since the publication of the first edition of 
this book in 2001 (Goodchild 2004).

Chapter 5 by Gervais, Bédard, Levesque, Bernier, and DeVillers is a new contri-
bution to the second edition that discusses data quality issues in GKD. The authors 
identify major concepts regarding quality and risk management with respect to GDW 
and spatial OLAP. They discuss possible management mechanisms to improve the 
prevention of inappropriate usages of data. Using this as a foundation, Chapter 5 
presents a pragmatic approach of quality and risk management to be applied dur-
ing the various stages of a spatial data cube design and development. This approach 
manages the potential risks one may discover during this development process.

1.3.3 GEOGRAPHIC DATA MINING

Many of the traditional data-mining tasks discussed previously in this chapter have 
analogous tasks in the geographic data-mining domain. See Ester, Kriegel and 
Sander (1997) and Han and Kamber (2006) for overviews. Also, see Roddick and 
Spiliopoulou (1999) for a useful bibliography of spatiotemporal data-mining research. 
The volume of geographic data combined with the complexity of spatial data access 
and spatial analytical operations implies that scalability is particularly critical.

1.3.3.1 Spatial Classification and Capturing Spatial Dependency
Spatial classification builds up classification models based on a relevant set of attri-
butes and attribute values that determine an effective mapping of spatial objects into 
predefined target classes. Ester, Kriegel and Sander (1997) present a learning algo-
rithm based on ID3 for generating spatial classification rules based on the properties 
of each spatial object as well as spatial dependency with its neighbors. The user pro-
vides a maximum spatial search length for examining spatial dependency relations 
with each object’s neighbors. Adding a rule to the tree requires meeting a minimum 
information gain threshold.

Geographic data mining involves the application of computational tools to reveal 
interesting patterns in objects and events distributed in geographic space and across 
time. These patterns may involve the spatial properties of individual objects and 
events (e.g., shape, extent) and spatiotemporal relationships among objects and events 
in addition to the nonspatial attributes of interest in traditional data mining. As noted 
above, ignoring spatial dependency and spatial heterogeneity effects in geographic 
data can result in misspecified models and erroneous conclusions. It also ignores a 
rich source of potential information.

In Chapter 6, also an updated chapter from the first edition, Shekhar, Vatsavai and 
Chawla discuss the effects of spatial dependency in spatial classification and predic-
tion techniques. They discuss and compare the aspatial techniques of logistic regres-
sion and Bayesian classification with the spatial techniques of spatial autoregression 
and Markov random fields. Theoretical and experimental results suggest that the 
spatial techniques outperform the traditional methods with respect to accuracy and 
handling “salt and pepper” noise in the data.

Difficulties in accounting for spatial dependency in geographic data mining 
include identifying the spatial dependency structure, the potential combinatorial 
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explosion in the size of these structures and scale-dependency of many dependency 
measures. Further research is required along all of these frontiers. As noted above, 
researchers report promising results with parallel implementations of the Getis-Ord 
G statistic. Continued work on implementations of spatial analytical techniques and 
spatial data-mining tools that exploit parallel and cyber infrastructure environments 
can complement recent work on parallel processing in standard data mining (see 
Zaki and Ho 2000).

1.3.3.2 Spatial Segmentation and Clustering
Spatial clustering groups spatial objects such that objects in the same group are sim-
ilar and objects in different groups are unlike each other. This generates a small set 
of implicit classes that describe the data. Clustering can be based on combinations 
of nonspatial attributes, spatial attributes (e.g., shape), and proximity of the objects 
or events in space, time, and space–time. Spatial clustering has been a very active 
research area in both the spatial analytic and computer science literatures. Research 
on the spatial analytic side has focused on theoretical conditions for appropriate clus-
tering in space–time (see O’Kelly 1994; Murray and Estivill-Castro 1998). Research 
on the computer science side has resulted in several scalable algorithms for clus-
tering very large spatial datasets and methods for finding proximity relationships 
between clusters and spatial features (Knorr and Ng 1996; Ng and Han 2002).

In Chapter 7, Han, Lee, and Kamber update a review of major spatial cluster-
ing methods recently developed in the data-mining literature. The first part of their  
chapter discusses spatial clustering methods. They classify spatial clustering methods  
into four categories, namely, partitioning, hierarchical, density-based, and grid-
based. Although traditional partitioning methods such as k-means and k-medoids 
are not scalable, scalable versions of these tools are available (also see Ng and Han 
2002). Hierarchical methods group objects into a tree-like structure that progres-
sively reduces the search space. Density-based methods can find arbitrarily shaped 
clusters by growing from a seed as long as the density in its neighborhood exceeds 
certain thresholds. Grid-based methods divide the information spaces into a finite 
number of grid cells and cluster objects based on this structure.

The second part of Chapter 7 discusses clustering techniques for trajectory data, 
that is, data collected on phenomena that changes geographic location frequently with 
respect to time. As noted above, these data have become more prevalent since the 
publication of the first edition of this book; this section of the chapter is new material 
relative to the first edition. Although clustering techniques for trajectory data are not 
as well developed as purely spatial clustering techniques, there are two major types 
based on whether they cluster whole trajectories or can discover sub-trajectory clusters. 
Probabilistic methods use a regression mixture model to cluster entire trajectories, 
while partition-and-group methods can discover clusters involving sub-trajectories.

Closely related to clustering techniques are medoid queries. A medoid query selects 
points in a dataset (known as medoids) such that the average Euclidean distance 
between the remaining points and their closest medoid is minimized. The resulting 
assignments of points to medoids are clusters of the original spatial data, with the 
medoids being a compact description of each cluster. Medoids also can be interpreted 
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as facility locations in some problem contexts (see Murray and Estivill-Castro 1998). 
Mouratidis, Papadias, and Papadimitriou discuss medoids in Chapter 8.

1.3.3.3 Spatial Trends
Spatial trend detection involves finding patterns of change with respect to the neigh-
borhood of some spatial object. Ester, Kriegel and Sander (1997) provide a neigh-
borhood search algorithm for discovering spatial trends. The procedure performs a 
breadth-first search along defined neighborhood connectivity paths and evaluates a 
statistical model at each step. If the estimated trend is strong enough, then the neigh-
borhood path is expanded in the next step.

In Chapter 9, a new chapter solicited for the second edition of this book, 
Fotheringham, Charlton, and Demšar describe the use of geographically weighted 
regression (GWR) as an exploratory technique. Traditional regression assumes that 
the relationships between dependent and independent variables are spatially constant 
across the study area. GWR allows the analyst to model the spatial heterogeneity and 
seek evidence whether the nonstationarity found is systematic or noise. This allows 
the analyst to ask additional questions about the structures in the data. GWR is also a 
technique that benefits greatly from GVis, and Fotheringham, Charlton, and Demšar 
use GVis analytics to examine some of the interactions in the GWR parameter sur-
faces and highlight local areas of interest.

1.3.3.4 Spatial Generalization
Geographic phenomena often have complex hierarchical dependencies. Examples 
include city systems, watersheds, location and travel choices, administrative regions, 
and transportation/telecommunications systems. Spatial characterization and gen-
eralization is therefore an important geographic data-mining task. Generalization-
based data mining can follow one of two strategies in the geographic case. Spatial 
dominant generalization first spatially aggregates the data based on a user-provided 
geographic concept hierarchy. A standard attribute-oriented induction method is 
used at each geographic aggregation level to determine compact descriptions or pat-
terns of each region. The result is a description of the pre-existing regions in the 
hierarchy using high-level predicates. Nonspatial dominant generalization generates 
aggregated spatial units that share the same high-level description. Attribute-oriented 
induction is used to aggregate nonspatial attributes into higher-level concepts. At each 
level in the resulting concept hierarchy, neighboring geographic units are merged if 
they share the same high-level description. The result is a geographic aggregation 
hierarchy based on multidimensional information. The extracted aggregation hier-
archy for a particular geographic setting could be used to guide the application of 
confirmatory spatial analytic techniques to the data about that area.

1.3.3.5 Spatial Association
Mining for spatial association involves finding rules to predict the value of some 
attribute based on the value of other attributes, where one or more of the attributes 
are spatial properties. Spatial association rules are association rules that include 
spatial predicates in the precedent or antecedent. Spatial association rules also have 
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confidence and support measures. Spatial association rules can include a variety of 
spatial predicates, including topological relations such as “inside” and “disjoint,” 
as well as distance and directional relations. Koperski and Han (1995) provide a 
detailed discussion of the properties of spatial association rules. They also present 
a top-down search technique that starts at the highest level of a geographic concept 
hierarchy (discussed later), using spatial approximations (such as minimum bound-
ing rectangles) to discover rules with large support and confidence. These rules form 
the basis for additional search at lower levels of the geographic concept hierarchy 
with more detailed (and computationally intensive) spatial representations.

Chapter 10 by Malerba, Lanza, and Appice discusses INGENS 2.0, a prototype GIS 
that incorporates spatial data-mining techniques. Malerba and his co-authors reported 
on INGENS in the first edition of this book; their updated chapter indicates the progress 
that has been made on this software since 2001. INGENS is a Web-based, open, exten-
sible architecture that integrates spatial data-mining techniques within a GIS environ-
ment. The current system incorporates an inductive learning algorithm that generates 
models of geographic objects from training examples and counter-examples as well 
as a system that discovers spatial association rules at multiple hierarchical levels. The 
authors illustrate the system through application to a topographic map repository.

1.3.4 GEOVISUALIZATION

Earlier in this chapter, we noted the potential for using visualization techniques 
to integrate human visual pattern acuity and knowledge into the KDD process. 
Geographic visualization (GVis) is the integration of cartography, GIS, and scien-
tific visualization to explore geographic data and communicate geographic informa-
tion to private or public audiences (see MacEachren and Kraak 1997). Major GVis 
tasks include feature identification, feature comparison, and feature interpretation 
(MacEachren et al. 1999).

GVis is related to GKD since it often involves an iterative, customized process 
driven by human knowledge. However, the two techniques can greatly complement 
each other. For example, feature identification tools can allow the user to spot the 
emergence of spatiotemporal patterns at different levels of spatial aggregation and 
explore boundaries between spatial classes. Feature identification and comparison 
GVis tools can also guide spatial query formulation. Feature interpretation can help 
the user build geographic domain knowledge into the construction of geographic 
concept hierarchies. MacEachren et al. (1999) discuss these functional objects and a 
prototype GVis/GKD software system that achieves many of these goals.

MacEachren et al. (1999) suggest that integration between GVis and GKD should 
be considered at three levels. The conceptual level requires specification of the high-
level goals for the GKD process. Operational-level decisions include specification 
of appropriate geographic data-mining tasks for achieving the high-level goals. 
Implementation level choices include specific tools and algorithms to meet the oper-
ational-level tasks.

In Chapter 11, Gahegan updates his chapter from the first edition and argues that 
portraying geographic data in a form that a human can understand frees exploratory 
spatial analysis (ESA) from some of the representational constraints that GIS and 

© 2009 by Taylor & Francis Group, LLC



Geographic Data Mining and Knowledge Discovery 19

geographic data models impose. When GVis techniques fulfill their potential, they 
are not simply display technologies by which users gain a familiarity with new data-
sets or look for trends and outliers. Instead, they are environments that facilitate the 
discovery of new geographical concepts and processes and the formulation of new 
geographical questions. The visual technologies and supporting science are based 
on a wide range of scholarly fields, including information visualization, data mining, 
geography, human perception and cognition, machine learning, and data modeling.

Chapter 12 by Guo is a new chapter solicited for the second edition. In this chap-
ter, Guo introduces an integrated approach to multivariate analysis and GVis. An 
integrated suite of techniques consists of methods that are visual and computational 
as well as complementary and competitive. The complementary methods examine 
data from different perspectives and provide a synoptic view of the complex pat-
terns. The competitive methods validate and crosscheck each other. The integrated 
approach synthesizes information from different perspectives, but also leverages 
the power of computational tools to accommodate larger data sets than typical with 
visual methods alone.

1.3.5 SPATIOTEMPORAL AND MOBILE OBJECTS DATABASES

Perhaps the most striking change in GKD and data mining since the publication of 
the first edition of this book in 2001 is the rise of spatiotemporal and mobile objects 
databases. The development and deployment of LATs and geosensor networks are 
creating an explosion of data on dynamic and mobile geographic phenomena, with a 
consequent increase in the potential to discover new knowledge about dynamic and 
mobile phenomena.

LATs are devices that can report their geographic location in near-real time. LATs 
typically exploit one or more georeferencing strategies, including radiolocation 
methods, GPS, and interpolation from known locations (Grejner-Brzezinska 2004). 
An emerging LAT is radiofrequency identification (RFID) tags. RFID tags are cheap 
and light devices attached to objects and transmit data to fixed readers using passive 
or active methods (Morville 2005).

LATs enable location-based services (LBS) that provide targeted information to 
individuals based on their geographic location though wireless communication net-
works and devices such as portable computers, PDAs, mobile phones, and in-vehicle 
navigation systems (Benson 2001). Services include emergency response, navigation, 
friend finding, traffic information, fleet management, local news, and concierge ser-
vices (Spiekermann 2004). LBS are widely expected to be the “killer application” for 
wireless Internet devices; some predict worldwide deployment levels reaching one 
billion devices by 2010 (Bennahum 2001; Smyth 2001).

Another technology that can capture data on spatiotemporal and mobile phe-
nomena is geosensor networks. These are interconnected, communicating, and 
georeferenced computing devices that monitor a geographic environment. The geo-
graphic scales monitored can range from a single room to an entire city or eco-
system. The devices are typically heterogeneous, ranging from temperature and 
humidity sensors to video cameras and other imagery capture devices. Geosensor 
networks can also capture the evolution of the phenomenon or environment over  
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time. Geosensor networks can provide fixed stations for tracking individual vehi-
cles, identify traffic patterns, and determine possible stops for a vehicle as it travels 
across a given domain in the absence of mobile technologies such as GPS or RFID 
(Stefanidis 2006; Stefanidis and Nittel 2004).

In the first edition of this book, we included only one chapter dedicated to mining 
trajectory data (Smyth 2001). Recognizing the growth in mobile technologies and 
trajectory data, the second edition includes five new chapters on knowledge discov-
ery from spatiotemporal and mobile objects databases.

In Chapter 13, Yuan proposes spatiotemporal constructs and a conceptual 
framework to lead knowledge discovery about geographic dynamics beyond what 
is directly recorded in spatiotemporal databases. Recognizing the central role of 
data representation in GKD, the framework develops geographic constructs at a 
higher level of conceptualization than location and geometry. For example, higher-
level background knowledge about the phenomena in question can enhance the 
interpretation of an observed spatiotemporal pattern. Yuan’s premise is that activi-
ties, events, and processes are general spatiotemporal constructs of geographic 
dynamics. Therefore, knowledge discovery about geographic dynamics ultimately 
aims to synthesize information about activities, events, or processes, and through 
this synthesis to obtain patterns and rules about their behaviors, interactions, and 
effects.

Chapter 14 by Wachowicz, Macedo, Renso, and Ligtenberg also addresses the 
issue of higher-level concepts to support spatiotemporal knowledge discovery. The 
authors note that although discovering spatiotemporal patterns in large databases is 
relatively easy, establishing their relevance and explaining their causes are very dif-
ficult. Solving these problems requires viewing knowledge discovery as a multitier 
process, with more sophisticated reasoning modes used to help us understand what 
makes patterns structurally and meaningfully different from another. Chapter 14 
proposes a multitier ontological framework consisting of domain, application, and 
data ontology tiers. Their approach integrates knowledge representation and data 
representation in the knowledge discovery process.

In Chapter 15, Cao, Mamoulis, and Cheung focus on discovering knowledge 
about periodic movements from trajectory data. Discovering periodic patterns (that 
is, objects following approximately the same routes over regular time intervals) is 
a difficult problem since these patterns are often not explicitly defined but rather 
must be discovered from the data. In addition, the objects are not expected to follow 
the exact patterns but similar ones, making the knowledge discovery process more 
challenging. Therefore, an effective method needs to discover not only the patterns 
themselves, but also a description of how they can vary. The authors discuss three 
algorithms for discovering period motion: an effective but computationally burden-
some bottom-up approach and two faster top-down approaches.

Chapter 16 by Laube and Duckham discusses the idea of decentralized spatiotem-
poral data mining using geosensor networks. In this approach, each sensor-based 
computing node only possesses local knowledge of its immediate neighborhood. 
Global knowledge emerges through cooperation and information exchange among 
network nodes. Laube and Duckham discuss four strategies for decentralized spatial 
data mining and illustrate their approach using spatial clustering algorithms.
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In the final chapter of the book, Kraak and Huisman discuss the space–time cube 
(STC) an interactive environment for the analysis and visualization of spatiotemporal 
data. Using Hägerstrand’s time geographic framework as a conceptual foundation, 
they illustrate the STC using two examples from the domain of human movement 
and activities. The first example examines individual movement and the degree to 
which knowledge can be discovered by linking attribute data to space–time move-
ment data, and demonstrates how the STC can be deployed to query and investigate 
(individual-level) dynamic processes. The second example draws on the geometry of 
the STC as an environment for data mining through space–time query and analysis. 
These two examples provide the basis of a broader discussion regarding the common 
elements of various disciplines and research areas concerned with moving object 
databases, dynamics, geocomputation, and GVis.

1.4 CONCLUSION

Due to explosive growth and wide availability of geo-referenced data in recent years, 
traditional spatial analysis tools are far from adequate at handling the huge volumes 
of data and the growing complexity of spatial analysis tasks. Geographic data min-
ing and knowledge discovery represent important directions in the development of a 
new generation of spatial analysis tools in data-rich environment. In this chapter, we 
introduce knowledge discovery from databases and data mining, with special refer-
ence to the applications of these theories and techniques to geo-referenced data.

As shown in this chapter, geographic knowledge discovery is an important and 
interesting special case of knowledge discovery from databases. Much progress 
has been made recently in GKD techniques, including heterogeneous spatial data 
integration, spatial or map data cube construction, spatial dependency and/or asso-
ciation analysis, spatial clustering methods, spatial classification and spatial trend 
analysis, spatial generalization methods, and GVis tools. Application of data mining 
and knowledge discovery techniques to spatiotemporal and mobile objects databases 
is also a rapidly emerging subfield of GKD. However, according to our view, geo-
graphic data mining and knowledge discovery is a promising but young discipline, 
facing many challenging research problems. We hope this book will introduce some 
recent works in this direction and motivate researchers to contribute to developing 
new methods and applications in this promising field.
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2 Spatio-Temporal Data 
Mining Paradigms 
and Methodologies

John F. Roddick

Brian G. Lees

2.1 INTRODUCTION

With some significant exceptions, current applications for data mining are either 
in those areas for which there are little accepted discovery methodologies or in 
those areas that are being used within a knowledge discovery process that does not 
expect authoritative results but finds the discovered rules useful nonetheless. This 
is in contrast to its application in the fields applicable to spatial or spatio-temporal 
discovery, which possess a rich history of methodological discovery and result 
evaluation.

Examples of the former include market basket analysis, which, in its simplest 
form (see Agrawal, Imielinski and Swami 1993), provides insight into the correspon-
dence between items purchased in a retail trade environment, and Web log analysis 
(see also Cooley, Mobasher and Srivastava 1997; Viveros, Wright, Elo-Dean and 
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Duri 1997; Madria, Bhowmick, Ng and Lim 1999), which attempts to derive a broad 
understanding of sequences of user activity on the Internet. Examples of the latter 
include time series analysis and signal processing (Weigend and Gershenfeld 1993; 
Guralnik and Srivastava 1999; Han, Dong and Yin 1999). The rules resulting from 
investigations in both of these areas may or may not be the result of behavioral or 
structural conditions but, significantly, it is the rule* itself rather than the underlying 
reasons behind the rule, which is generally the focus of interest.

An alternative approach originated in the field of medical knowledge discovery, 
where a procedure in which the results of data mining are embedded within a process 
that interprets the results as being merely hints toward further properly structured 
investigation into the reasons behind the rules (Lavrac 1999). This latter approach 
has been usefully employed by knowledge discovery processes over geographic data 
(Pei et al. 2006; Jankowski, Andrienko, and Andrienko 2001; Duckham and Worboys 
2005). The whole field of geo-visualization has grown out of this approach (Kousa, 
Maceachren, and Kraak 2006; Bertolotto et al. 2007). Map-centered approaches, 
where the map becomes a visual index (Jankowski et al. 2001), and other types of 
geo-visualization are areas of very active research (Adrienko et al. 2007).

A third, and in some cases more useful approach may be appropriate for many 
of those areas for which spatial and spatio-temporal rules might be mined. This 
last approach accepts a (null) hypothesis and attempts to refine it (or disprove it) 
through the modification of the hypothesis because of knowledge discovery. This  
latter approach is carried out according to the principles of scientific experimenta-
tion and induction and has resulted in theories being developed and refined accord-
ing to repeatable and accepted conventions.

The promises inherent in the development of data-mining techniques and knowl-
edge discovery processes are manifold and include an ability to suggest rich areas of 
future research in a manner that could yield unexpected correlations and causal rela-
tionships. However, the nature of such techniques is that they can also yield spurious 
and logically and statistically erroneous conjectures.

Regardless of the process of discovery, the form of the input and the nature and 
allowable interpretation of the resulting rules can also vary significantly for knowl-
edge discovery from geographic/spatio-temporal data, as opposed to that produced 
by “conventional” data-mining algorithms. For example, the complexity of the rule 
space requires significant constraints to be placed on the rules that can be generated 
to avoid either excessive or useless findings. To this end, some structuring of the 
data (Lees 1996; Duckham and Worboys 2005; Leung et al. 2007; Jones and Purves 
2008) will often enhance the generation of more relevant rules.

This chapter presents a discussion of the issues that make the discovery of spatial 
and spatio-temporal knowledge different with an emphasis on geographical data. 
We discuss how the new opportunities of data mining can be integrated into a cohe-
sive and, importantly, scientifically credible knowledge discovery process. This is 
particularly necessary for spatial and spatio-temporal discovery, as the opportunity 

*  Although each form of data-mining algorithm provides results with different semantics, we will use 
the term “rule” to describe all forms of mining output.
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for meaningless and expensive diversions is high. We discuss the concepts of spatio-
temporal knowledge discovery from geographic and other spatial data, the need to 
re-code temporal data to a more meaningful metric, the ideas behind higher order or 
meta-mining, as well as scientific theory formation processes and, briefly, the need 
to acknowledge the “second-hand” nature of much collected data.

2.2 MINING FROM SPATIAL AND SPATIO-TEMPORAL DATA

Current approaches to spatial and spatio-temporal knowledge discovery exhibit a 
number of important characteristics that will be discussed in order to compare and 
contrast them with possible future directions. However, space precludes a full sur-
vey of the manner in which spatial and spatio-temporal knowledge discovery is cur-
rently undertaken. Therefore, readers are directed to a number of other papers with 
reviews of the area (Bell, Anand and Shapcott 1994; Koperski, Adhikary and Han 
1996; Abraham and Roddick 1998, 1999; Adrienko et al. 2007; Jones and Purves, 
2008). In addition, a survey of temporal data-mining research is available (Roddick 
and Spiliopoulou 2002).

2.2.1 RULE TYPES

As discussed by Abraham and Roddick (1999), the forms that spatio-temporal rules 
may take are extensions of their static counterparts and at the same time are uniquely 
different from them. Five main types can be identified:

 1. Spatio-Temporal Associations. These are similar in concept to their static 
counterparts as described by Agrawal et al. (1993). Association rules* are 
of the form X ® Y (c%, s%), where the occurrence of X is accompanied 
by the occurrence of Y in c% of cases (while X and Y occur together in a 
transaction in s% of cases).† Spatio-temporal extensions to this form of 
rule require the use of spatial and temporal predicates (Koperski and Han 
1995; Estivill-Castro and Murray 1998). Moreover, it should be noted that 
for temporal association rules, the emphasis moves from the data itself to 
changes in the data (Chen, Petrounias and Heathfield 1998; Ye and Keane 
1998; Rainsford and Roddick 1999).

 2. Spatio-Temporal Generalization. This is a process whereby concept hierar-
chies are used to aggregate data, thus allowing stronger rules to be located 
at the expense of specificity. Two types are discussed in the literature (Lu, 
Han and Ooi 1993): spatial-data-dominant generalization proceeds by first 
ascending spatial hierarchies and then generalizing attributes data by region, 
while nonspatial-data-dominant generalization proceeds by first ascend-
ing the aspatial attribute hierarchies. For each of these, different rules may 

* For a recent survey on association mining, see the paper by Ceglar and Roddick (2006).
† Note that while support and confidence were introduced in 1993 (Agrawal et al. 1993), considerable 

research has been undertaken into the nature of “interestingness” in mining rules (see also Silberschatz 
and Tuzhilin 1996; Dong and Li 1998; Bayardo Jr. and Agrawal 1999; Freitas 1999; Sahar 1999; Geng 
and Hamilton 2006).

© 2009 by Taylor & Francis Group, LLC



30 Geographic Data Mining and Knowledge Discovery

result. For example, the former may give a rule such as “South Australian 
summers are commonly hot and dry,” while the latter gives “Hot, dry sum-
mers are often experienced by areas close to large desert systems.”

 3. Spatio-Temporal Clustering. While the complexity is far higher than its 
static, nonspatial counterpart, the ideas behind spatio-temporal clus-
tering are similar; that is, either characteristic features of objects in a 
spatio-temporal region or the spatio-temporal characteristics of a set of 
objects are sought (Ng and Han 1994; Ng 1996; Guo 2007).

 4. Evolution Rules. This form of rule has an explicit temporal and spatial 
context and describes the manner in which spatial entities change over 
time. Due to the exponential number of rules that can be generated, it 
requires the explicit adoption of sets of predicates that are usable and 
understandable. Example predicates might include the following:*

 5. Meta-Rules. These are created when rule sets rather than data sets are 
inspected for trends and coincidental behavior. They describe observations 
discovered among sets of rules; for example, the support for suggestion 
X is increasing. This form of rule is particularly useful for temporal and 
spatio-temporal knowledge discovery and is discussed in more detail in 
Section 2.3.

2.2.2 SPATIAL VS. SPATIO-TEMPORAL DATA

There are some fundamental issues for data mining in both spatial and spatio-
temporal data. All spatial analyses are sensitive to the length, area, or volume 
over which a variable is distributed in space. The term used for these elements is 

* This is by no means an exhaustive list, but it gives some idea as to what useful predicates may 
resemble.

 
follows One cluster of objects traces the same (or similar) spatial route as another 

cluster later (i.e., spatial coordinates are fixed, time is varying). Other 
relationships in this class might include the temporal relationships discussed 
by Allen (1983) and Freksa (1992).

coincides One cluster of objects traces the same (or similar) spatial path whenever a 
second cluster undergoes a specified activity (i.e., temporal coordinates are 
fixed, spatial activity varies). This may also include a causal relationship in 
which one cluster of objects undergoes some transformation or movement 
immediately after a second set undergoes some transformation or movement.

parallels One cluster of objects traces the same (or a similar) spatial pattern but offset 
in space (i.e., temporal coordinates are fixed, spatial activity varies). This 
class may include a number of common spatial translations (such as rotation, 
reflection, etc.).

mutates One cluster of objects transforms itself into a second cluster. See the work of 
Hornsby and Egenhofer (1998) and others that examine change in geographic 
information.
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“support” (Dungan 2001). Support encompasses more than just scale or granular-
ity; it also includes orientation. This is not a new concept; scaling effects on spatial 
analyses have been understood since Gehlke and Biehl (1934) and, more recently 
Openshaw (1984). Often termed the Modifiable Areal Unit Problem (MAUP), or the 
Ecological Fallacy, it is an important characteristic of spatial analysis. Put simply, 
the scale, or support, chosen for data collection determines which spatial phenomena 
can be identified (Dale and Desrochers 2007). If spatial data is aggregated, then the 
larger the unit of aggregation the more likely the attributes will be correlated. Also 
by aggregating into different groups, you can get different results. Most importantly 
for data mining, attributes that exist in the data at one level of support can van-
ish at coarser or finer scales, or other orientations (Manley, Flowerdew and Steel 
2006; Schuurman et al. 2007). U.S. elections are a perfect example of the problem in 
operation where the candidate who captures the majority of votes may not win the 
presidency.

To try to avoid this effect, an understanding of the scale, or support level, of the 
phenomenon being searched for is important. Searching a database at other levels is 
unlikely to be successful and re-scaling data has its own problems. Altering the scale 
of coarse data to fine is nearly always impossible, as the information lost in the prior 
generalization is usually not recoverable without complex modeling.

The MAUP also has implications for temporal support. An important phenom-
enon apparent at an hourly scale, such as the diurnal cycle, disappears at scales 
longer than one day. The seasonal cycle disappears in data aggregated to years, and 
so on. The difference between support and scale, where the former considers orienta-
tion, is less important for temporal data. Strategies for overcoming this problem in 
data mining and knowledge discovery include changing the scale of measurement, 
nonstationary modeling, dynamic modeling, conditional simulation, and constrained 
optimization (Tate and Atkinson 2001).

The dimensioning-up of the spatial dimension to include time was originally seen 
as a useful way of accommodating spatio-temporal data. However, the nature of time 
results in the semantics of time in discovered rules needing to be coded according 
to the relevant process aspect of time in order to make them useful. In most sys-
tems development, time is generally considered unidirectional and linear. Thus, the 
relational concepts (before, during, etc.) are easily understood, communicated, and 
accommodated. Conversely, space is perceived as bi-directional and, particularly in 
spatial/geographic applications, commonly nonlinear.

Although both time and space are continuous phenomena, it is common to encode 
time as discrete and isomorphic with integers, and a larger granularity is often 
selected (days, hours, etc.). Space, on the other hand, while a specific granularity is 
sometimes adopted, is often considered as isomorphic with real numbers, and the 
granularity relative to the domain is generally smaller. Consider, for example, a land 
titles system in which spatial accuracy to a meter or less is required across cities 
or states that can be hundreds of kilometers or more wide (an area ratio typically 
of the order of 1:1012). Time is commonly captured to the day over possibly three 
centuries (a granularity of 1:106). A counter-example might be Advanced Very High 
Resolution Radiometer (AVHRR) data, captured within a couple of seconds, on a 
grid of 1.1 km, and commonly reported with a spatial resolution of about 4 km.
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There is often an agreement that recent events and the current state of the system 
are of more interest than past events. While one user may focus on a particular loca-
tion, it is unlikely that all users of a system will focus on a particular geographic 
region. Indexing schemes are thus able to be oriented to the “now” point in time but 
not to the “here” point in space.

Thus, when one is trying to extract new relationships from a database, simple 
dimensioning-up strategies work poorly. There have been numerous attempts to deal 
with time in the context of spatio-temporal data (see Egenhofer and Golledge 1994, 
for a review) and the importance of recognizing the differences between the spatial 
and temporal dimensions cannot be overstated, even when examining apparently 
static phenomena.

Consideration of the temporal characteristics of some typical datasets used in 
data mining will highlight this. For example, spectral data represents an instant in 
time. The time slice is a very narrow and constrained sample of the phenomenon 
being observed. These data are often included in databases with environmental data 
of various sorts.

In contrast to the spectral data, environmental data typically represent long-
term estimates of mean and variance of very dynamic environmental variables. 
The time scale of this data is quite different from that of the spectral data. Spatial 
data (in geographic space) has characteristics that differ from both of these. It is 
reasonable to question whether this gross scale difference means that our accepted 
data-mining procedures are flawed. This is not the case, however, as the time scale 
differences between the data types generally match the characteristics we wish 
to include in most analyses of land cover. For example, the spectral time slice 
provides discrimination between vegetation types while the environmental data 
provides long-term conditions that match the time scale of germination, growth, 
and development of the largest plants. When we are concerned with forecasting, 
say, crop production, then shorter time scales would be necessary, as is common 
practice. Very often, too little consideration is given to the appropriate temporal 
scales necessary. An example might be the monitoring of wetlands in the dry trop-
ics. The extent of these land-cover elements varies considerably through time, both 
on a seasonal basis and from year to year. In many years, the inter-annual vari-
ability in extent is greater than the average annual variability. This means that a 
spectral image of wetland extent, without a precise annual and seasonal labeling in 
the database, and without monthly rainfall and evaporation figures, is a meaning-
less measurement.

The temporal scales used in conjunction with spatial data are often inconsistent 
and need to be chosen more carefully. As discussed previously, time, as normally 
implemented in process models, is a simple, progressive step function. This fails to 
capture the essence of temporal change in both environmental and many cultural 
processes and is scale dependent. While our normal indices of time are either cat-
egorical or linear, “process time” is essentially spatial in character. The mismatch in 
the data model for time may well underlie the difficulties that many data miners are 
experiencing in trying to incorporate spatial and temporal attributes into their inves-
tigations. For many spatio-temporal data mining exercises, better results will be 
achieved by a considered recoding of the temporal data. The work of palaeo-climate 
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reconstruction demonstrates this. In order to make sense of deep-ocean cores and 
ice cores, the results of down-core analyses are usually analyzed using Fourier, or 
spectral, analysis to decompose the time series data into a series of repeating cycles. 
Most, if not all, of the cycles thus identified can be associated with the relative posi-
tioning of the Earth, the sun, and the major planets in space. Consideration of this 
makes it clear that our useful assumption that geographic space is static and time 
invariant is flawed.

The Cartesian description of location defined by latitude, longitude, and elevation 
is not only an inaccurate representation of reality; it is an encumbrance to under-
standing the relationship between time and space. Time is a spatial phenomenon. 
A fuller understanding of this leads to a resolution of some of the conceptual prob-
lems that bedevil the literature on spatio-temporal GIS modeling (Egenhofer and 
Golledge 1994). Properties of time concepts such as continuous/linear, discrete, 
monotonic, and cyclic time tend to deal only with limited aspects of time and, as 
such, have limited application. In data mining, the process aspects of time are par-
ticularly important.

In order to progress this discussion, it is worth first returning to consider the 
Cartesian representation of space using latitude, longitude, and elevation. A point 
on the Earth’s surface defined by this schema is not static in space. It is moving, in 
a complicated but predictable way, through a complex energy environment. This 
movement, and the dynamics of the energy environment itself, is “time.”

There are three main components to the environmental energy field: gravity, radi-
ation, and magnetism. These fluctuate in amplitude and effectiveness. The effective-
ness of gravity, radiation, and magnetism is almost entirely due to the relationships 
between bodies in space. Interaction between these forces and the internal dynamics 
of a body such as the sun can alter the amplitude of its radiation and magnetism. 
These feedback relationships sound complex, but are predictable. The most impor-
tant relationships have already been indexed as clock and calendar time. These are

The relative positions of a point on the surface of the Earth and the sun, 
the diurnal cycle. This is a function of the rotation of the Earth, and the 
tilt of the Earth’s axis relative to the plane of the ecliptic (the declination 
of the sun).
The orbit of the moon around the Earth.
The orbit of the Earth around the sun.

Each of these relationships has a very significant relationship with the dynam-
ics of both our natural, cultural, and even economic environments. These dynamic 
spatial relationships are the basis of the index we call time, but do not include all the 
important phenomena we now understand to influence our local process environ-
ment. Others include

The solar day, which sweeps a pattern of four solar magnetic sectors past 
the Earth in about 27 days. Alternating sectors have reverse polarity and 
the passage of a sector boundary only takes a few hours. This correlates 
with a fluctuation in the generation of low-pressure systems.
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The lunar cycle. The lunar cycle is a 27.3-day period in the declination of 
the moon during which it moves north for 13.65 days and south for 13.65 
days. This too correlates with certain movements of pressure systems on 
the Earth.
The solar year. The sun is not the center of the solar system. Instead, it 
orbits the barycenter of the solar system, which at times passes through the 
sun. The orbit is determined by the numerous gravitational forces within 
the solar system, but tends to be dominated by the orbits of the larger plan-
ets, Jupiter and Saturn, at about 22 to 23 years. This orbit appears to affect 
solar emissions (the sunspot cycle). Notoriously, this cycle correlates with 
long-term variation in a large number of natural, cultural, and economic 
indices from cricket scores and pig belly futures to a host of other, more 
serious, areas.

There are much longer periods that can be discussed, but the above relate to both 
the Earth’s energy environment and time on the sorts of scales we are most con-
cerned with in data mining. Lees (1999) has reviewed these. Time coded as position 
using these well-understood astrophysical relationships is not an abstract concept. 
Such a coding correlates with energy variability, which both drives our natural sys-
tems and influences many of our cultural systems. This coding also links directly 
to variations in spectral space. Illumination is a function of season (apparent decli-
nation of the sun) and time of day (diurnal cycle) modified by latitude. The simple 
process of recoding the time stamp on data to a relevant continuous variable, such 
as solar declination or time of the solar year, rather than indices such as Julian day, 
provides most “intelligent” data-mining software a considerably better chance of 
identifying important relationships in spatio-temporal data.

2.2.3 HANDLING SECOND-HAND DATA

A significant issue for many systems, and one that is particularly applicable to geo-
graphical data, is the need to reuse data collected for other purposes (Healey and 
Delve 2007). While few data collection methodologies are able to take into account 
the nondeterministic nature of data mining, the expense and in many cases the diffi-
culty in performing data collection specifically for the knowledge discovery process 
results in heterogeneous data sources, each possibly collected for different purposes, 
commonly being bought together. This requires that the interpretation of such data 
must be carefully considered (Jones and Purves 2008). Possible errors that could 
result might include

The rules reflecting the heterogeneity of the data sets rather than any dif-
ferences in the observed phenomena.
The data sets being temporally incompatible. For instance, the data col-
lection points may render useful comparison impossible. This is also an 
issue in time series mining in which the scales of the different data sets 
must first be reconciled (see Berndt and Clifford 1995).
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The collection methods being incompatible. For example, the granulari-
ties adopted or the aggregation methods of observations may differ. More 
severe, the implicit semantics of the observations may be different.
The MAUP discussed earlier.

This puts particular emphasis on either or both of the quality of the data cleaning and 
the need for the mining process to take account of the allowable interpretations.

2.3 META-MINING AS A DISCOVERY PROCESS PARADIGM

The target of many mining operations has traditionally been the data itself. With 
the increase in data and the polynomial complexity of many mining algorithms, the 
direct extraction of useful rules from data becomes difficult. One solution to this, 
first suggested in the realm of temporal data mining (Abraham and Roddick 1997, 
1999; Spiliopoulou and Roddick 2000) is to mine either from summaries of the data 
or from the results of previous mining exercises as shown in Figure 2.1.

Consider the following results (possibly among hundreds of others) of a mining 
run on U.K. weather regions as follows:*

SeaArea (Hebrides), Windspeed (High), Humidity (Medium/High)® Forecast 
(Rain), LandArea (North Scotland)

SeaArea (Hebrides), Windspeed (Medium), Humidity (Medium/High)® 
Forecast (Rain), LandArea (North Scotland)

SeaArea (Hebrides), Windspeed (Low), Humidity (Medium/High)® Forecast 
(Fog), LandArea (North Scotland)

*  Hebrides, Malin, and Rockall are geographic “shipping” regions to the west of Scotland.

DB(a1) DB(a2) DB(a3) DB(a4) DB(a5) DB(a1) DB(a2) DB(a3) DB(a4) DB(a5)

S(R1–5) S(R1–5)

R(DB(a1)) R(DB(a2)) R(DB(a3)) R(DB(a4)) R(DB(a5))

FIGURE 2.1 Mining from data and from rule sets.
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SeaArea (Hebrides), Windspeed (High), Humidity (Low)® Forecast 
(Windy), LandArea (North Scotland)

SeaArea (Hebrides), Windspeed (Medium), Humidity (Low)® Forecast (Light  
Winds), LandArea (North Scotland)

SeaArea (Malin), Windspeed (High), Humidity (Medium/High)® Forecast 
(Rain), LandArea (South Scotland)

SeaArea (Malin), Windspeed (Medium), Humidity (Medium/High)® Forecast 
(Rain), LandArea (South Scotland)

SeaArea (Malin), Windspeed (Low), Humidity (Medium/High)® Forecast 
(Fog), LandArea (South Scotland)

SeaArea (Malin), Windspeed (High), Humidity (Low)® Forecast 
(Windy), LandArea (South Scotland)

SeaArea (Malin), Windspeed (Medium), Humidity (Low)® Forecast 
(Light Winds), LandArea (South Scotland)

SeaArea (Rockall), Windspeed (High), Humidity (Medium/High)® Forecast 
(Rain), LandArea (Scotland)

SeaArea (Rockall), Windspeed (Medium), Humidity (Medium/High)® 
Forecast (Rain), LandArea (Scotland)

SeaArea (Rockall), Windspeed (Low), Humidity (Medium/High)® Forecast 
(Fog), LandArea (Scotland)

SeaArea (Rockall), Windspeed (High), Humidity (Low)® Forecast 
(Windy), LandArea (Scotland)

SeaArea (Rockall), Windspeed (Medium), Humidity (Low)® Forecast 
(Light Winds), LandArea (Scotland)

These rules may be inspected to create higher-level rules such as

SeaArea (West of Scotland), Windspeed (Medium/High), Humidity (Medium/
High)® Forecast (Rain), LandArea (Scotland)

or even

SeaArea (West of LandArea), Windspeed (Medium/High), Humidity 
(Medium/High)® Forecast (Rain)

These higher-level rules can also be produced directly from the source data in a 
manner similar to the concept ascension algorithms of Cai, Cercone, and Han (1991) 
and others. However, the source data is not always available or tractable.

Note that the semantics of meta mining must be carefully considered (see 
Spiliopoulou and Roddick 2000). Each rule generated from data is generated accord-
ing to an algorithm that, to some extent, removes “irrelevant” data. Association 
rules, for example, provide a support and confidence rating, which must be taken 
into account when meta-rules are constructed. Similarly, clusters may use criteria 
such as lowest entropy to group observations that may mask important outlying 
facts. Fundamental to all of this is some resolution to the confusion surround-
ing location, which prevails in many spatial datasets (Overell and Ruger 2008; 
Leveling 2008).
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2.4 PROCESSES FOR THEORY/HYPOTHESIS MANAGEMENT

Analyses into geographic, geo-social, socio-political, and environmental issues com-
monly require a more formal and in many cases strongly ethically driven approach. 
For example, environmental science uses a formal scientific experimentation process 
requiring the formulation and refutation of a credible null hypothesis.

The development of data mining over the past few years has been largely oriented 
toward the discovery of previously unknown but potentially useful rules that are in 
some way interesting in themselves. To this end, a large number of algorithms have 
been proposed to generate rules of various types (association, classification, char-
acterization, etc.) according to the source, structure, and dimensionality of the data 
and the knowledge sought. In addition, a number of different types of interestingness 
metrics have also been proposed (see Silberschatz and Tuzhilin 1996) that strive to 
keep the exponential target rule space to within tractable limits.

More recently, in many research forums, a holistic process-centered view of 
knowledge discovery has been discussed and the interaction between tool and user 
(and, implicitly, between the rules discovered and the possibly tacit conceptual 
model) has been stressed. To a great extent, the ambition of totally autonomous data 
mining has now been abandoned (Roddick 1999). This shift has resulted in the real-
ization that the algorithms used for mining and rule selection need to be put into a 
process-oriented context (Qui and Zhu 2003; Moran and Bui 2002). This in turn 
raises the question of which processes might benefit from data-mining research.

One of the motivations for data mining has been the inability of conventional 
analytical tools to handle, within reasonable time limits, the quantities of data that 
are now being stored. Data mining is thus being seen as a useful method of provid-
ing some measure of automated insight into the data being collected. However, it has 
become apparent that while some useful rules can be mined and the discipline has 
had a number of notable successes, the potential for either logical or statistical error 
is extremely high and the results of much data mining is at best a set of suggested 
topics for further investigation (Murray and Shyy 2000; Laffan et al. 2005).

2.4.1 THE PROCESS OF SCIENTIFIC INDUCTION

The process of investigation (or knowledge discovery) can be considered as hav-
ing two distinct forms — the process modeling approach in which the real world is 
modeled in a mathematical manner and from which predictions can be in some way 
computed, and the pattern matching or inductive approach in which prediction is 
made based on experience.

It is important to note that the process of rule generation through data mining is 
wholly the latter (in Figure 2.2, the right-hand side), while scientific induction starts with 
the latter and aims to translate the process into one that is predominantly the former.

Another view of the scientific induction process can be considered the following. 
Given a set of observations and an infinitely large hypothesis space, rules (i.e., trends, 
correlations, clusters, etc.) extracted from the observations constrain the hypothesis 
space until the space is such that a sufficiently restrictive description of that space can 
be formed.
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Experiments are commonly constructed to explore the boundaries between the 
known regions (i.e., those parts definitely in or out of the solution space). Of course, 
the intuition and experience of the scientist plays a large part in designing adequate 
experiments that unambiguously determine whether a region is in or out of the final 
hypothesis. The fallacy of induction comes into play when the hypothesis developed 
from the observations (or data) resides in a different part of the space from the true 
solution and yet it is not contradicted by the available data.

The commonly accepted method to reduce the likelihood of a false assumption 
is to develop alternative hypotheses and prove these are false, and in so doing, to 
constrain the hypothesis space. An alternative process, which we outline briefly in 
this chapter, aims to support the development of scientific hypotheses through the 
accepted scientific methodology of null hypothesis creation and refutation.

To continue with the visual metaphor provided by the hypothesis space described 
previously, data mining can be considered a process for finding those parts of the 
hypothesis space that best fit the observations and to return the results in the form of 
rules. A number of data-mining systems have been developed which aim to describe 
and search the hypothesis space in a variety of ways.

Unfortunately, the complexity of such a task commonly results in either less than 
useful answers or high computational overhead. One of the reasons for this is that 
the search space is exponential to the number of data items, which itself is large. A 
common constraint, therefore, is to limit the structural complexity of a solution, for 
example, by restricting the number of predicates or terms in a rule. Data mining also 
commonly starts with a “clean sheet” approach and while restartable or iterative 
methods are being researched, little progress has been made to date.

Conceptualization of current knowledge-
i.e., conceptual model or model of behavior

Hypothesis formed/revised to 
explain observed facts 

Observations Pattern matching/
visualization

Process modeling
(Mathematical-based

computation)

Prediction 

FIGURE 2.2 Investigation paths in discovery.
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Another significant problem is that the data has often been collected at different 
times with different schemata, sometimes by different agents and commonly for an 
alternative purpose to data mining. Data mining is often only vaguely considered (if 
at all) and thus drawing accurate inferences from the data is often problematic.

2.4.2 USING DATA MINING TO SUPPORT SCIENTIFIC INDUCTION

An alternative solution is to develop (sets of) hypotheses that will constrain the 
search space by defining areas within which the search is to take place. Significantly, 
the hypotheses themselves are not examined; rather, (sets of) null hypotheses are 
developed which are used instead. Figure 2.3 shows a schematic view of such a data-
mining process.

In this model, a user-supplied conceptual model (or an initial hypothesis) pro-
vides the starting point from which hypotheses are generated and tested. Generated 
hypotheses are first tested against known constraints and directed data-mining rou-
tines then validate (to a greater or lesser extent) the revised theory. In cases where 

Rules conforming to null hypothesis 

Null hypothesis Conceptual model

Data mining 
routines 

Mining “Success” (i.e.,
data was found to
support the null

hypothesis)

Mining “Failure” (i.e. 
data did not support 
the null hypothesis) 

Alternative  
Hypotheses 

Alternative 
hypotheses 

Database

Conceptual model 
supported 

Conceptual model 
must be changed 

FIGURE 2.3 Data mining for null hypotheses.
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the hypothesis is generally supported, weight is added to the confidence of the con-
ceptual model in accordance with the usual notion of scientific induction. In cases 
where the hypothesis is not supported, either a change to the conceptual model or a 
need for external input is indicated.

Note that the process provides three aspects of interest:

 1. The procedure is able to accept a number of alternative conceptual models 
and provide a ranking between them based on the available observations. 
It also allows for modifications to a conceptual model in cases where the 
rules for such modification are codified.

 2. The hypothesis generation component may yield new, hitherto unexplored, 
insights into accepted conceptual models.

 3. The process employs directed mining algorithms and thus represents a 
reasonably efficient way of exploring large quantities of data, which is 
essential in the case of mining high-dimensional datasets such as those 
used in geographic systems.

As this model relies heavily on the accepted process of scientific induction, the 
process is more acceptable to the general science community.

2.5 CONCLUSION

The ideas outlined in this chapter differ, to some extent, from conventional research 
directions in spatio-temporal data mining and emphasize that the process into which 
the mining algorithm will be used can significantly alter the interpretation of the 
results. Moreover, the knowledge discovery process must take account of this to 
avoid problems. Johnson-Laird (1993) suggested that induction should come with a 
government warning; this is particularly true of spatio-temporal mining because the 
scope for error is large.

It should be noted that many of the ideas discussed in this chapter need further 
examination. For example, while the ideas of using data mining for hypothesis refu-
tation have been discussed in a number of fora, only recently has there been serious 
investigation of the idea in a scientific setting (Jones and Purves 2008; Adrienko  
et al. 2007). These are starting to establish a strong framework, but a credible method 
of hypothesis evolution still needs to be defined. Similarly, in their recent attempt to 
set a research agenda for geovisual analytics, Adrienko et al. (2007) identified a need 
for concerted cross-disciplinary efforts in order to make useful progress. They noted 
that existing methods are still far from enabling the necessary synergy between the 
power of computational techniques and human analytical expertise.
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Data Warehousing 
for Geographic 
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3.1 INTRODUCTION

Recent years have witnessed major changes in the geographic information (GI) market,  
from interoperable technological offerings to national spatial data infrastructures, 
Web-mapping services, and mobile applications. The arrival of new major play-
ers such as Google, Microsoft, Nokia, and TomTom, for instance, has created 
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tremendous new opportunities and geographic data have become ubiquitous. 
Thousands of systems are geo-enabled every week, including data warehouses. As 
a special type of databases, a data warehouse aims at providing organizations with 
an integrated, homogeneous view of data covering a significant period in order to 
facilitate decision making. Such a view typically involves data about geographic, 
administrative, or political places, regions, or networks organized in hierar-
chies. Data warehouses are separated from transactional databases and are struc-
tured to facilitate data analysis. They are built with a relational, object-oriented, 
multidimensional, or hybrid paradigm although it is with the two latter that they 
bring the most benefits. Data warehouses are designed as a piece of the overall 
technological framework of the organization and they are implemented according 
to very diverse architectures responding to differing users’ contexts. In fact, the 
evolution of spatial data warehouses fits within the general trends of mainstream 
information technology (IT).

Data warehouses provide these much-needed unified, global, and summarized 
views of the data dispersed into heterogeneous legacy databases over the years. 
Organizations invest millions of dollars to build such warehouses in order to effi-
ciently feed the decision-support tools used for strategic decision making, such 
as dashboards, executive information systems, data mining, report makers, and 
online analytical processing (OLAP). In fact, data warehouse emerged as the uni-
fying solution to a series of individual circumstances impacting global knowledge 
discovery.

First, large organizations often have several departmental or application-oriented 
independent databases that may overlap in content. Usually, such systems work 
properly for day-to-day operational-level decisions. However, when one needs to 
obtain aggregated or summarized information integrating data from these different 
systems, it becomes a long and tedious process that slows down decision making. 
It then appears easier and much faster to process a homogeneous and unique data-
set. However, when several decision makers build their own summarized data-
bases to accelerate the process, incoherencies among these summarized databases 
rapidly appear, and redundant data extraction/fusion work must be performed. 
Over the years, this leads to an inefficient, chaotic situation (Inmon, Richard and 
Hackathorn 1996).

Second, past experiences have shown that fully reengineering the existing sys-
tems in order to replace them with a unique corporate system usually leads to failure. 
It is too expensive and politically difficult. Then, one must find a solution that can 
cope as much as possible with existing systems but does not seek to replace them. 
In this regard, data warehouses add value to existing legacy systems rather than 
attempting to replace them since the unified view of the warehouse is built from an 
exact or modified copy of the legacy data.

Third, the data structure used today by most decision-support solutions adopts, 
partly or completely, the multidimensional paradigm. This paradigm is very dif-
ferent from the traditional, normalized relational structure as used by most  
transaction-oriented, operational-level legacy systems. The problem is that with 
transactional technologies, it is almost impossible to keep satisfactory response 
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times for both transaction-oriented and analysis-oriented operations within a unique 
database as soon as this database becomes very large. One must then look for a dif-
ferent solution, which provides short response times for both analytical processing 
and transaction processing. This has resulted in the concept of the data warehouse, 
that is, an additional read-only database typically populated with analysis-oriented 
aggregated or summarized data obtained from the extraction, transformation, and 
loading (ETL) of the detailed transactional data imported from existing legacy 
systems. After the ETL process and the new structuring of the resulting data, one 
typically finds only aggregated data in the warehouse, not the imported detailed 
legacy data.

Fourth, strategic decision making requires not only different levels of aggregated 
and summarized data but also direct access to past data as well as present and future 
data (when possible) to analyze trends over time or predictions. The multidimensional 
paradigm frequently used in data warehouses efficiently supports such needs.

Finally, decision makers are also hoping for fast answers, simple user interfaces, 
a high level of flexibility supporting user-driven ad hoc exploration of data at dif-
ferent levels of aggregation and different epochs, and automatic analysis capabilities 
searching for unexpected data patterns.

In other words, the needed solution must support the extraction of useful knowl-
edge from detailed data dispersed in heterogeneous datasets. Such a goal appears 
reasonable if we consider data warehousing and automatic knowledge discovery as 
the “common-sense” follow-up to traditional databases. This evolution results from 
the desire of organizations to further benefit from the major investments initially 
made into disparate, independent, and heterogeneous departmental systems. Once 
most operational-level needs are fulfilled by legacy systems, organizations wish 
to build more global views that support strategic decision making (the frequent  
bottom-up penetration of innovations). In fact, this evolution is very similar to the 
situation witnessed in the 1970s where organizations evolved from the management 
of disparate flat files to the management of integrated databases.

The goal of this chapter is to introduce fundamental concepts underlying spa-
tial data warehousing. It includes four sections. After having presented the “raison 
d’être” of spatial data warehousing in the previous paragraphs of this section, we 
introduce key concepts of nonspatial data warehousing in the second section. The 
third section deals with the particularities of spatial data warehouses, which in fact 
are typically spatiotemporal. In the last section, we conclude and present future 
R&D challenges.

3.2 KEY CONCEPTS AND ARCHITECTURES 
FOR DATA WAREHOUSES

This section provides a global synthesis of the actual state of data warehousing and 
the related concepts of multidimensional databases, data marts, online analytical 
processing, and data mining. Specialized terms such as legacy systems, granular-
ity, facts, dimensions, measures, snowflake schema, star schema, fact constellation, 
hypercube, and N-tiered architectures are also defined.
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3.2.1 DATA WAREHOUSE

An interesting paradox in the world of databases is that systems used for day-to-day 
operations store vast amounts of detailed information but are very inefficient for 
decision support and knowledge discovery. The systems used for day-to-day opera-
tions usually perform well for transaction processing where minimum redundancy 
and maximum integrity checking are key concepts; furthermore, this typically takes 
place within a context where the systems process large quantities of transactions 
involving small chunks of detailed data. On the other hand, decision makers need 
fast answers made of few aggregated data summarizing large units of work, some-
thing transactional systems do not achieve today with large databases. This difficulty 
to combine operational and decision-support databases within a single system gave 
rise to the dual-system approach typical of data warehouses.

Although the underlying ideas are not new, the term “data warehouse” originated 
in the early 1990s and rapidly became an explicit concept recognized by the com-
munity. It has been defined very similarly by pioneers such as Brackett (1996), Gill 
and Rao (1996), Inmon, Richard and Hackathorn (1996), and Poe (1995). In general, a 
data warehouse is an enterprise-oriented, integrated, nonvolatile, read-only collection 
of data imported from heterogeneous sources and stored at several levels of detail to 
support decision making. Since this definition has been loosely interpreted and imple-
mented in several projects and, consequently, has not always delivered the promised 
returns on investments, it is highly important to explain every key characteristic:

Enterprise-oriented: One of the aims of data warehouses is to become 
the single and homogeneous source for the data that are of interest to 
make enterprise-level strategic decision making. Usually, no such homo-
geneous database exists because system development tends to happen in a  
bottom-up manner within organizations, resulting in several disparate, spe-
cialized systems. Similarly, such single source does not exist because the 
data stored within operational systems describe detailed transactions (e.g., 
the amount of cash withdrawn by one person at a given ATM at a precise 
moment), while enterprise-level strategic decision making requires sum-
marized data (e.g., increase in monetary transactions by our clients in all 
of our ATMs for the last month), resulting in costly and time-consuming 
processing to get global information about an enterprise’s activities.
Integrated: This crucial characteristic implies that the data imported from 
the different source systems must go through a series of transformations so 
that they evolve from heterogeneous semantics, constraints, formats, and 
coding into a set of homogeneous results stored in the warehouse. This 
is the most difficult and time-consuming part of building the warehouse. 
In a well-regulated application domain (e.g., accounting or finance), this 
is purely a technical achievement. However, in other fields of activities, 
severe incompatibilities may exist among different sources, or within the 
same source through several years due to semantics evolutions, making 
it impossible to integrate certain data or to produce high quality results. 
To facilitate this integration process, warehousing technologies offer ETL 
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capabilities. Such ETL functions include semantics fusion/scission, iden-
tification matching, field reformatting, file merging/splitting, field merg-
ing/splitting, value recoding, constraints calibration, replacing missing 
values, measurement scales and units changing, updates filtering, adaptive 
value calculation, detecting unforeseen or exceptional values, smooth-
ing noisy data, removing outliers, and applying integrity constraints to 
resolve inconsistencies. These ETL capabilities are sometimes called data 
cleansing, data scrubbing, data fusion, or data integration. Adherence to 
standards and to interoperability concepts helps minimize the integration 
problem. Of particular interest is the so-called “data reduction” process, 
where one produces a reduced volume of representative data that provides 
the same or similar analytical results that a complete warehouse would 
provide (Han and Kamber 2006).
Nonvolatile: The transactional source systems usually contain only cur-
rent or near-current data because their out-of-date data are replaced by 
new values and afterwards are destroyed or archived. On the other hand, 
warehouses keep these historic (also called “time-variant”) data to allow 
trends analysis and prediction over periods of time (a key component of 
strategic decision making). Consequently, legacy data are said to be vola-
tile because they are updated continuously (i.e., replaced by most recent 
values) while, on the other hand, warehouse data are nonvolatile, that is, 
they are not replaced by new values; they are kept for a long period along 
with the new values. However, to be more precise, one can specify about 
nonvolatile data that, “once inserted, [it] cannot be changed, though it 
might be deleted” (Date 2000). Reasons to delete data are usually not 
of a transactional nature but of an enterprise-oriented nature such as the 
decision to keep only the data of the last five years, to remove the data 
of a division that has been sold by the enterprise, to remove the data of a 
region of the planet where the enterprise has stopped to do business, etc. 
Thus, a data warehouse can grow in size (or decrease in rare occasions) 
but never be rewritten.
Read-only: The warehouses can import the needed detailed data but they 
cannot alter the state of the source databases, making sure that the origi-
nal data always rest within the sources. Such requirement is necessary 
for technical concerns (e.g., to avoid update loops and inconsistencies) 
but is mandatory to minimize organizational concerns (such as “Where 
is the original data?” “Who owns it?” “Who can change it?” and “Do we 
still need the legacy system?”). Thus, by definition, data warehouses are 
not allowed to write back into the legacy systems. However, although a 
data warehouse is conceptually not meant to act as an online transaction 
processing (OLTP) system oriented toward the entering, storing, updating, 
integrity checking, securing, and simple querying of data, it is sometimes 
built to allow direct entry of new data that is of high value for strategic 
decision making but which does not exist in legacy systems.
Heterogeneous sources: As previously mentioned, the data warehouse is 
a new, additional system that does not aim at replacing, in a centralized 
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approach, the existing operational systems (usually called “legacy sys-
tems”). In fact, the implementation of a data warehouse is an attempt to 
get enterprise-level information while minimizing the impact on existing 
systems. Consequently, the data warehouse must obtain its data from vari-
ous sources and massage these data until they provide the desired high-
er-level information. Usually, the data warehouse imports the raw data 
from the legacy systems of the organization, but it does not have to be 
limited to these in-house systems. In all cases, collecting metadata (i.e., 
data describing the integrated data and integration processes) is necessary 
to provide the required knowledge about the lineage and quality of the 
result. Recently, the quality of the produced high-level analytical data has 
become one of the main concerns of warehouse users; consequently, meta-
data have become more important and recent projects have introduced 
risk management approaches in data-warehouse design methods as well as 
automatic context-sensitive user warnings (see Chapter 5).
Several levels of detail (also called “granularity” or “abstraction” levels): 
Decision makers need to get the global picture, but when they see unex-
pected trends or variations, they need to drill down to get more details to 
discover the reason for these variations. For example, when sales drop in 
the company, one must find if it is a general trend for all types of prod-
ucts, for all regions, and for all stores or if this is for a given region, a 
given store, or a specific category of products (e.g., sport equipment). If 
it is for a specific category such as sport equipment, one may want to 
dig further and find out if it is for a certain brand of products since a 
specific week. Thus, in order to provide fast answers to such multilevel 
questions, the warehouse must aggregate and summarize data by brand, 
category, store, region, periods, etc. at different levels of generalization. 
One such hierarchy could be store-city-region-country, another could be 
day-week number-quarter-year with a parallel hierarchy date-month-year. 
The term “granularity” is frequently used to refer to this hierarchical con-
cept. For example, average sales of an individual salesperson is a fine-
grained aggregation; average sales by department is coarser; and the sales 
of the whole company is the most coarse (i.e., a single number). The finest 
granularity refers to the lowest level of data aggregation to be stored in the 
database (Date 2000) or, in other words, the most detailed level of infor-
mation. This may correspond to the imported source data or to a more 
generalized level if the source data have only served to calculate higher-
level aggregations and summarizations before being discarded. Inversely, 
when talking about the most summarized levels, users sometimes talk 
about “indicators,” especially when the quality of the source data is low. 
Such indicators give an approximate view of the global picture, which is 
often sufficient for decision-making purposes.
Support of decision making: The sum of all the previous characteristics 
makes a data warehouse the best source of information to support decision 
making. Data warehouses provide the needed data stored in a structure, 
which is built specifically to answer global, homogeneous, multilevel, and 
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multiepoch queries from decision makers. This allows for the use of new 
decision-support tools and new types of data queries, exploration, and 
analyses, which were too time-consuming in the past.

The characteristics of data warehouses, in comparison to the usual transaction-
oriented systems are presented in Table 3.1.

3.2.2 MULTIDIMENSIONAL DATA STRUCTURE

Data warehouses are typically structured using the multidimensional paradigm. Such 
a structure is preferred by decision-support tools, which dig into the data warehouse 
(e.g., OLAP, dashboards, and data mining tools). The multidimensional paradigm is 
built to facilitate the interactive navigation within the database, especially within its 
different levels of granularity, and to instantly obtain cross-tab information involv-
ing several themes of analysis (called dimensions) at multiple levels of granularity. It 
does so with simple functions such as drill-down (i.e., go to finer granularity within 
a theme), drill-up (i.e., go to coarser granularity), and drill-across (i.e., show another 
information at the same level of granularity). The term multidimensional results 
from the extension to N-dimensions of the usual matrix representation where the 
dependant variable is a cell within a 2-D space defined by two axes, one for each 
independent variable (e.g., purchases could be the cells, while countries and years 
the axes, giving immediately in the matrix all the purchases per country per year). 
In the literature, a multidimensional database is usually represented by a cube with 
three axes (since it is not possible to represent more dimensions), and accordingly the 
multidimensional database is usually called a data cube (or hypercube when N > 3).

The data models of the multidimensional paradigm are based on three fundamen-
tal concepts: (1) facts, (2) dimensions, and (3) measures (Rafanelli, 2003, Kimball 

TABLE 3.1
Legacy System vs. Data Warehouse

Legacy Systems Data Warehouse

Built for transactions, day-to-day repetitive 
operations

Built for analysis, decisions, and exploratory 
operations

Built for large number of simple queries 
using few records

Built for ad hoc complex queries using millions of 
records

Original data source with updates Exact or processed copy of original data, in a 
read-only mode

Detailed data Aggregated/summary data

Application-oriented Enterprise-oriented

Current data Current + historic data

Normalized data structure and built with the 
transactional paradigm/concepts

Denormalized data structure and typically built with 
the multidimensional paradigm/concepts

Top performance for transactions Top performance for analysis
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and Ross 2002). A measure (e.g., total cost, number of items) is the attribute of a 
fact (e.g., sales), which represents the state of a situation concerning the themes or 
dimensions of interest (e.g., region, date, product). Thus, one can look at the mea-
sures of a fact for a given combination of dimensions ( e.g., sales of 123,244 items 
and $25,000,000 for Canada in 2006 for sport equipment) and say that a measure 
is the dependent variable while the dimensions are the independent variables. Such 
an approach appears to be cognitively more compatible with the users’ percep-
tion, thus facilitating the exploration of the database (i.e., selecting the independent 
variables first, then seeing what the dependent variable is). “The major reason why 
multidimensional systems appear intuitive is because they do their business the way 
we do ours” (Thomsen 2002). One can simply define a multidimensional query by say-
ing “I want to know this (a measure) with regards to that (the dimensions elements)”.

Each dimension has members; each member represents a position on the dimen-
sional axis (e.g., January, February, March ...). The members of a single dimension 
may be structured in a hierarchical manner (e.g., year subdivided into quarters, quar-
ters subdivided into months, months subdivided into weeks, weeks subdivided into 
days), creating the different levels of granularity of information. Alternative hier-
archies can also be defined for the same dimension (e.g., year-month-day vs. year-
quarter-week). A hierarchy where every child member has only one parent member 
is called a strict hierarchy. A nonstrict hierarchy has an M:N relationship between 
parent members and child members, leading to implementation strategies that create 
summarizability constraints. A hierarchy can be balanced or not; it is balanced when 
the number of aggregation levels remains the same whatever the members selected 
in the dimension.

Such a multidimensional paradigm can be modeled using three data structures: 
the star schema, the snowflake schema, and the fact constellation. A star schema 
contains one central fact table made of the measures and one foreign key per dimen-
sion to link the fact with the dimension’s members (cf. using the primary key of 
the dimension tables), which are stored in one table per dimension, independent of 
a member’s hierarchical level. A snowflake schema contains one central fact table 
similar to the star fact table, but the fact table foreign keys are linked to normalized 
dimension (typically, one table per hierarchical level). A fact constellation contains a 
set of fact tables, connected by some shared dimension tables. It is not uncommon to 
see hybrid schemas where some dimensions are normalized and others are not.

Since a data warehouse may consist of a good number of dimensions and each 
dimension may have multiple levels, there could be a large number of combina-
tions of dimensions and levels, each forming an aggregated multidimensional “cube” 
(called cuboids). For example, a database with 10 dimensions, each having 5 levels  
of abstraction, will have 610 cuboids. Due to limited storage space, usually only a 
selected set of higher-level cuboids will be computed as shown by Harinarayan, 
Rajaraman, and Ullman (1996). There have been many methods developed for effi-
cient computation of multidimensional multilevel aggregates, such as Agarwal et al.  
(1996), and Beyer and Ramakrishnan (1999). Moreover, if the database contains a 
large number of dimensions, it is difficult to precompute a substantial number of 
cuboids due to the explosive number of cuboids. Methods have been developed for 
efficient high-dimensional OLAP, such as the one by Li, Han, and Gonzalez (2004). 
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Furthermore, several popular indexing structures, including bitmap index and join 
index structures have been developed for fast access of multidimensional databases, 
as shown in Chaudhuri and Dayal (1997). Han and Kamber (2006) give an overview 
of the computational methods for multidimensional databases.

3.2.3 DATA MART

It is frequent to define data mart as a specialized, subject-oriented, highly aggre-
gated mini-warehouse. It is more restricted in scope than the warehouse and can 
be seen as a departmental or special-purpose sub-warehouse usually dealing with 
coarser granularity. Typically, the design of data marts relies more on users’ analysis 
needs while a data warehouse relies more on available data. Several data marts can 
be created in an enterprise. Most of the time, it is built from a subset of the data 
warehouse, but it may also be built from an enterprise-wide transactional database 
or from several legacy systems. As opposed to a data warehouse, a data mart does 
not aim at providing the global picture of an organization. Within the same organiza-
tion, it is common to see the content of several data marts overlapping. In fact, when 
an organization builds several data marts without a data warehouse, there is a risk 
of inconsistencies between data marts and of repeating, at the analytical level, the 
well-known chaotic problems resulting from silo databases at the transactional level. 
Figure 3.1 illustrates the distinctions between legacy systems, data warehouses, and 
data marts, whereas Table 3.2 highlights the differences between data warehouses 
and data marts.

In the face of the major technical and organizational challenges regarding the 
building of enterprise-wide warehouses, one may be tempted to build subject- 
specific data marts without building a data warehouse. This solution involves smaller 

Local

heterogeneous

data

Enterprise wide

integrated

data

Legacy
systems

Data
warehouse

Data mart

Not
possible

Detailed data

Analysis oriented

(OLAP/current and

historical data)

Transaction oriented

(OLTP/current data)

Summarized/

aggregated data

FIGURE 3.1 Comparison between legacy systems, data marts, and data warehouses.
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investments, faster return on investments, and minimum political struggle. However, 
there is a long-term risk to see several data marts emerging throughout the organiza-
tion and still have no solution to get the global organizational picture. Nevertheless, 
this alternative presents several short-term advantages. Thus, it is frequently adopted 
and may sometimes be the only possible alternative.

3.2.4 ONLINE ANALYTICAL PROCESSING (OLAP)

OLAP is a very popular category of decision-support tools that are typically used 
as clients of the data warehouse and data marts. OLAP provides functions for the 
rapid, interactive, and easy ad hoc exploration and analysis of data with a multi-
dimensional user interface. Consequently, OLAP functions include the previously 
defined drill-down, drill-up, and drill-across functions as well as other navigational 
functions such as filtering, slicing, dicing, and pivoting (see OLAP Council 1995, 
Thomsen 2002, Wrembel and Koncilia 2006). Users may also be helped by more 
advanced functions such as focusing on exceptions or locations that need special 
attention by methods that mark the interesting cells and paths. Sarawagi, Agrawal, 
and Megiddo (1998) have studied this kind of discovery-driven exploration of data. 
Also, multifeature databases that incorporate multiple, sophisticated aggregates can 
be constructed, as shown by Ross, Srivastava, and Chatziantoniou (1998), to further 
facilitate data exploration and data mining.

OLAP technology provides a high-level user interface that applies the multi-
dimensional paradigm not only to the selection of dimensions and levels within data 
cubes, but also to the way in which we navigate the different forms of data visual-
ization (Fayyad, Grinstein, and Wierse 2001). Visualization capabilities include, for 
instance 2D or 3D tables, pie charts, histograms, bar charts, scatter plots, quantile 
plots, and parallel coordinates where the user can navigate (e.g., drill-down in a bar 
of a bar chart).

There are several possibilities to build OLAP-capable systems. Each OLAP client 
can be directly reading the warehouse and it can be used as a simple data exploration 
tool, or it can have its own data server. Such an OLAP server may structure the data 
with the relational approach, the multidimensional approach, or a combination of 

TABLE 3.2
Data Warehouse vs. Data Mart

Data Warehouse Data Mart

Built for global analysis Built for more specific analysis

Aggregated/summarized data Highly aggregated/summarized data

Enterprise-oriented Subject-oriented

One per organization Several within an organization

Usually multidimensional data structure Always multidimensional data structure

Very large database Large database

Typically populated from legacy systems Typically populated from warehouse
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both (based on granularity levels and frequency of the uses of dimensions) (Imhoff, 
Galemmo, and Geiger 2003). These are then respectively called ROLAP (relational 
OLAP), MOLAP (multidimensional OLAP) and HOLAP (hybrid OLAP) although 
most users do not have to care about such distinctions because they are at the under-
lying implementation techniques Alternatively, one may use specialized SQL servers  
that support SQL queries over star/snowflake/constellation schemas (Han and 
Kamber 2006).

One may also encounter so-called “dashboard” applications with capabilities that 
are similar to OLAP. Although a dashboard can use OLAP components, it is not 
restricted to present aggregated data from a data cube, and it may also display data 
from transactional sources (e.g., from a legacy system), Web RSSs, streaming videos, 
Enterprise Resource Planning (ERP) systems, sophisticated statistical packages, etc. 
Dashboards wrap different types of data from diverse sources and present them in 
very simple, pre-defined panoramas and short repetitive sequences of operations to 
access, day-after-day, the same decision-support data. Strongly influenced by perfor-
mance management strategies such as balanced scorecards, they are typically used 
by high-level strategic decision makers who rely on indicators characterizing the phe-
nomena being analyzed. Being easier to use than OLAP, dashboards are not meant to 
be as flexible or as powerful as OLAP because they support decision processes that 
are more structured and predictable. They are very popular for top managers but are 
highly dependent on the proper choice of performance indicators.

3.2.5 DATA MINING

Another popular client of the data warehouse server is a category of software pack-
ages or built-in functions called data mining. This category of knowledge discov-
ery tools uses different techniques such as neural network, decision trees, genetic 
algorithms, rule induction, and nearest neighbor to automatically discover hidden 
patterns or trends in large databases and to make predictions [see Berson and Smith 
(1997) or Han and Kamber (2006) for a description of popular techniques]. Data 
mining really shines where it would be too tedious and complex for a human to use 
OLAP for the manual exploration of data or when there are possibilities to discover 
highly unexpected patterns. In fact, we use data mining to fully harness the power 
of the computer and specialized algorithms to help us discover meaningful patterns 
or trends that would have taken months to find or that we would have never found 
because of the large volume of data and the complexity of the rules that govern their 
correlations. Data mining supports the discovery of new associations, classifications, 
or analytical models by presenting the results with numerical values or visualization 
tools. Consequently, the line between OLAP and data mining may seem blurred in 
some technological offerings, but one must keep in mind that data mining is algorithm- 
driven while OLAP is user-driven and that they are complementary tools. Kim 
(1997) compares OLTP with DSS, OLAP, and data mining. A good direction for 
combining the strengths of OLAP and data mining is to study online analytical 
mining (OLAM) methods, where mining can be performed in an OLAP way, that 
is, exploring knowledge associated with multidimensional cube spaces by drilling, 
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dicing, pivoting, and using other user-driven data-exploration functions (Han and 
Kamber 2006).

3.2.6 DATA WAREHOUSE ARCHITECTURES

Data warehouses can be implemented with different architectures depending on tech-
nological and organizational needs and constraints (Kimball and Ross 2002). The 
most typical one is also the simplest, called the corporated architecture (Weldon 
1997) or the generic architecture (Poe 1995). It is represented in Figure 3.2. In such 
an architecture, the warehouse imports and integrates the desired data directly from 
the heterogeneous source systems, stores the resulting homogeneous enterprise-wide 
aggregated/summarized data in its own server, and lets the clients access these data 
with their own knowledge discovery software package (e.g., OLAP, data mining, 
query builder, report generator, dashboards). This two-tiered client-server architec-
ture is the most centralized architecture.

There is a frequently used alternative called federated architecture. It is a partly 
decentralized solution and is presented in Figure 3.3. In this example, data are aggre-
gated in the warehouse and other aggregations (at the same or a coarser level of 
granularity) are implemented in the data marts. This is a standard three-tiered archi-
tecture for data warehouses.

While the original concept of the data warehouse suggests that its granularity 
is very coarse in comparison with that of transaction systems, some organizations 
decide to keep the integrated detailed data in the warehouses in addition to gener-
ating aggregated data. In some cases, for example in the four-tiered architecture 
shown in Figure 3.4, two distinct warehouses exist. The first stores the integrated 
data at the granularity level of the source data, while the second warehouse aggre-
gates these data to facilitate data analysis. Such architecture is particularly useful 
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FIGURE 3.2 Generic architecture of a data warehouse.
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when the fusion of detailed source data represents an important effort and that the 
resulting homogeneous detailed database may have a value of its own besides feed-
ing the second warehouse.

Many more alternatives exist such as the no-warehouse architecture (Figure 3.5), 
which may have two variations to support the data marts: with and without OLAP 
servers. Similarly, some variations of the previous architectures could also be made 
without an OLAP server. In this case, a standard Data Base Management Systems 
(DBMS) supports the star/snowflake schemas and the OLAP client does the mapping 
between the relational implementation and the multidimensional view offered to the 
user. In the short term, it results in easier data cube insertion within the organiza-
tion (such as no software acquisition, smaller learning curve) but on the longer term, 
it results in increased workloads when building and refreshing data cubes (such as 
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workmanship cost, repetitive tasks). Short-term contingencies, used technologies, 
personnel expertise, cube refreshment frequencies, existing workloads, and long-run 
objectives must be considered when building the warehouse architecture. Further 
variations exist when one takes into account the possibility of building virtual data 
warehouses. In this latter case, integration of data is performed on the fly and not 
stored persistently, which results in slower response times but smaller data cubes.

Finally, we believe that the data warehouse is a very useful infrastructure for 
data integration, data aggregation, and multidimensional online data analysis. The 
advances of new computer technology, parallel processing, and high-performance 
computing as well as the integration of data mining with data warehousing will 
make data warehouses more scalable and powerful at serving the needs of large-
scale, multidimensional data analysis.

3.3 SPATIAL DATA WAREHOUSING

Spatially enabling data warehouses leads to richer analysis of the positions, shapes, 
extents, orientations, and geographic distributions of phenomena. Furthermore, maps 
facilitate the extraction of insights such as spatial relationships (adjacency, connectiv-
ity, inclusion, proximity, exclusion, overlay, etc.), spatial distributions (concentrated, 
scattered, grouped, regular, etc.), and spatial correlations (Bédard, Rivest, and Proulx 
2007). When we visualize maps displaying different regions, it becomes easier to 
compare; when we analyze different maps of the same region, it becomes easier to 
discover correlations; when we see maps from different epochs, it becomes easier to 
understand the evolution of a phenomena. Maps facilitate understanding of the struc-
tures and relationships contained within spatial datasets better than tables and charts, 
and when we combine tables, charts, and maps, we increase significantly our poten-
tial for geographic knowledge discovery. Maps are natural aids to making the data 
visible when the spatial distribution of phenomena does not correspond to predefined 
administrative boundaries. Maps are active instruments to support the end-user’s 
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thinking process, leading to a more efficient knowledge discovery process (more 
alert brain, better visual rhythm, more global perception) (Bédard et al. 2007).

Today’s GIS packages have been designed and used mostly for transaction process-
ing. Consequently, GIS is not the most efficient solution for spatial data warehousing 
and strategic analytical needs of organizations. New solutions have been developed; 
in most cases, they rely on a coupling of warehousing technologies such as OLAP 
servers with spatial technologies such as GIS. Research started in the mid-1990s in 
several universities such as Laval (Bédard et al. 1997, Caron 1998, Rivest, Bédard 
and Marchand 2001), Simon Fraser (Stefanovic 1997, Han, Stefanovic and Koperski 
1998), and Minnesota (Shekhar et al. 2001), and nowadays several researchers  
and practitioners have become active in spatial data warehousing, spatial OLAP, 
spatial data mining, and spatial dashboards. Several in-house prototypes have been 
developed and implemented in government and private organizations, and we have 
witnessed the arrival of commercial solutions on the market.

This coupling of geospatial technologies with data warehousing technologies has 
become more common. Some couplings are loose (e.g., import-export-reformatting 
of data between GIS and OLAP), some are semi-tight (e.g., OLAP-dominant spatial 
OLAP, GIS-dominant spatial OLAP), while others are tight (e.g., fully integrated 
spatial OLAP technology) (Rivest et al. 2005, Han and Kamber 2006). See the 
other chapters in this book and these recent publications for a description of these 
solutions: Rivest et al. (2005), Han and Kamber (2006), Damiani and Spaccapietra 
(2006), Bédard, Rivest and Proulx (2007), and Malinowski and Zimanyi (2008). For 
the remainder of this chapter, we focus on some fundamental spatial extensions of 
warehousing concepts: spatial data cubes, spatial dimensions, spatial measures, spa-
tial ETL, and spatial OLAP operators (or spatial multidimensional operators).

3.3.1 SPATIAL DATA CUBES

Spatial data cubes are data cubes where some dimension members or some facts are 
spatially referenced and can be represented on a map. There are two categories of 
spatial data cubes: feature-based and raster-based (Figure 3.6). Feature-based spatial 
data cubes include facts that correspond to discrete features having geometry (vec-
tors or cells) or having no geometry (in which case dimension members must have a 
vector-based or raster-based geometry). Such fact geometry may be specific to this 
fact (in which case it may be derived from the dimensions) or it may correspond 
to the geometry of a spatial member. Raster spatial data cubes are made of facts 
that correspond to regularly subdivided spaces of continuous phenomena, each fine-
grained fact being represented by a cell and every fine-grained cell being a fact.

Traditionally, transactional spatial databases consisted of separated thematic and 
cartographic data (e.g., using a relational database management system and a GIS). 
Nowadays, it is frequent to have both thematic and cartographic data stored together 
in a universal server or spatial database engine. Similarly, spatial data cubes can use 
thematic and cartographic data that are separated into different datasets (e.g., using 
an OLAP server and a GIS) or they can store natively cartographic data and offer 
built-in spatial aggregation/summarization operators. Insofar as practical spatial 
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warehousing applications have been based on the coupling of spatial and nonspatial 
technologies, this is still the only solution commercially available.

3.3.2 SPATIAL DIMENSIONS

In addition to the usual thematic and temporal dimensions of a data cube, there are 
spatial dimensions (in the multidimensional sense, not the geometric sense) that can 
be of three types according to the theory of measurement scales (cf. qualitative = 
nominal and ordinal scales, quantitative = interval and ratio scales, each scale allow-
ing for richer analysis than the precedent one). These three types of dimension are 
as follows:

Nongeometric spatial dimension contains only nominal or ordinal loca-
tion of the dimension members, such as place names (e.g., St. Lawrence 
River), street addresses (134 Main Street), or hierarchically structured 
boundaries (e.g., Montreal  Quebec  Canada  North America). 
Neither shape nor geometry nor cartographic data are used. This is the 
only type of spatial dimension supported by nonspatial warehousing 
technology (e.g., OLAP). Caron (1998) has demonstrated the possibilities 
and limitations of such dimensions; they can only offer a fraction of the 
analytical richness of the other types of spatial dimensions (Bédard et al. 
2007).
Geometric spatial dimension contains a vector-based cartographic rep-
resentation for every member of every level of a dimension hierarchy to 
allow the cartographic visualization, spatial drilling, or other spatial oper-
ation of the dimension members (Bédard et al. 2007). For example, every 

Watershed
names

Feature-based Spatial Datacube Raster-based Spatial Datacube

FIGURE 3.6 Feature-based and raster-based spatial data cubes. (Adapted from McHugh, 
R. 2008. Etude du potentiel de la structure matricielle pour optimizer l’analyse spatial de 
données géodécisionnelles. M.Sc. thesis (draft version), Department of Geomatics Sciences, 
Laval University, Quebec City, Canada.)
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city in North America would be represented by a point, every province/
state of Canada, the United States, or Mexico would be represented as 
polygons, every North American country would also be represented as 
polygons, as well as North America itself. Similarly, polygons could rep-
resent equi-altitude regions in British Columbia, and every generalization, 
such as regions covering 0 to 500 m, 500 to 1000 m, and so on, would also 
be represented by a polygonal geometry.
Mixed geometric spatial dimension contains a cartographic representa-
tion for some members of the dimension, and nominal/ordinal locators 
for the other members. For example, this could be all the members of cer-
tain levels of a dimension hierarchy (e.g., a point for every city, a polygon 
for every province/state, but only names for the countries and for North 
America, that is, no polygon for these latter two levels of the hierarchy). 
Then, the nongeometric levels can be the finest grained ones (to reduce 
the map digitizing efforts), the most aggregated ones (when users know 
exactly where they are), or anywhere in between, in any number and in 
any sequence. A mixed spatial dimension can also contain a cartographic 
representation for only some members of the same hierarchy level (e.g., all 
Canadian cities, but not all Mexican cities). The mixed spatial dimension 
offers some benefits of the geometric spatial dimension while suffering 
from some limitations of the nongeometric spatial dimension, all this at 
varying degrees depending on the type of mixes involved.

Furthermore, spatial dimensions relate to different ways to use geometry to repre-
sent a phenomenon: discrete feature-oriented topological vector data vs. continuous 
phenomena-oriented raster data (McHugh 2008). Depending on the type of geom-
etry used, the users’ potential to perform spatial analysis and geographic knowledge 
discovery changes significantly. As a result, users have the choice among seven cat-
egories of spatial dimensions as presented in Figure 3.7.

Spatial Dimensions 

Geometric 

Mixed 

geometric 

Basic spatial 
dimensions 

Mixed 
dimensions

Hybrid 
dimensions 

Mixed 

hybrid 

Mixed 

raster 

Nongeometric

Raster 

Hybrid 

FIGURE 3.7 Raster-based and feature-based spatial data cubes with different examples of 
spatial dimensions.
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The four additional categories of spatial dimensions are presented hereafter:

 1. Raster spatial dimension: Every level of the dimension hierarchy uses the 
raster structure, the highest spatial resolution is used for the finest-grained 
level of the hierarchy. For instance, one could use 100-km cells for North 
America, 10-km cells for countries, and 1-km cells for province/states.

 2. Hybrid spatial dimension: Some levels of the dimension hierarchy use the 
raster structure while other levels use the vector structure. For instance, 
this can be polygonal geometries for North America and for countries, 
while the raster structure is used for province/states. Inversely, this could 
be points for cities, polygonal geometries for provinces/states, 100-km 
raster cells for countries, and 1000-km cells for North America. All levels 
must be represented cartographically.

 3. Mixed raster spatial dimension: Such a dimension contains raster data 
for some members of the dimension and nominal/ordinal locators for the 
other members (i.e., no geometry). For instance, this can be all the mem-
bers of certain levels of a dimension hierarchy (e.g., cells for the province/
state level, names for the country and North America levels, that is, no 
cartographic representation for these latter two levels of the hierarchy). 
Then, the same mixing possibilities exist as for the mixed geometric spa-
tial dimension. A mixed raster spatial dimension can also contain raster 
cells for only some members of the same hierarchy level (e.g., all Canadian 
provinces, but not all American states). The mixed raster dimension offers 
some benefits of the raster spatial dimension while suffering from some 
limitations of the nongeometric spatial dimension, all this at varying 
degrees depending on the type of mixes involved.

 4. Mixed hybrid spatial dimension: Such a dimension contains raster data 
for some members of the dimension, vector data for other members, and 
nominal/ordinal locators for the remaining ones (i.e., no geometry). For 
instance, this can be all the members of certain levels of a dimension hier-
archy (e.g., names for cities, polygons for the province/state level, raster 
cells for the country level, and a name only for the North America level, 
that is, no cartographic representation for the finest and most aggregated 
levels of the hierarchy). Then, the same types of mixing possibilities exist 
as for the mixed geometric spatial dimension, without restriction. A mixed 
hybrid spatial dimension can also contain raster cells for some members 
of the same hierarchy level, polygons for other members, and no geometry 
for the remaining ones of this level (e.g., all Canadian provinces using 
raster cells, all American states using polygons, and Mexican states using 
names). The mixed-hybrid dimension offers some benefits of the raster 
and the geometric spatial dimensions while suffering from some limita-
tions of the nongeometric spatial dimension, all this at varying degrees 
depending on the type of mixes involved.

More than one spatial dimension may exist within a spatial data cube (see 
Figure 3.7).

© 2009 by Taylor & Francis Group, LLC



Fundamentals of Spatial Data Warehousing 63

3.3.3 SPATIAL MEASURES

In addition to the nonspatial measures that still exist in a spatial data warehouse, we 
may distinguish three types of spatial measures (in the multidimensional sense):

 1. Numerical spatial measure: Single value obtained from spatial data 
processing (e.g., number of neighbors, spatial density). Such measure 
contains only a numerical data and is also called nongeometric spatial 
measure.

 2. Geometric spatial measure: Set of coordinates or pointers to geometric 
primitives that results from a geometric operation such as spatial union, 
spatial merge, spatial intersection, or convex hull computation. For 
example, during the summarization (or roll-up) in a spatial data cube, the 
regions with the same range of temperature and altitude will be grouped 
into the same cell, and the measure so formed contains a collection of 
pointers to those regions.

 3. Complete spatial measure: Combination of a numerical value and its asso-
ciated geometry. For example, the number of epidemic clusters with their 
location.

3.3.4 SPATIAL ETL

In spite of all these possibilities, it rapidly becomes evident that integrating and 
aggregating/summarizing spatial data requires additional processing in compari-
son to nonspatial data. For example, one must make sure that each source dataset is 
topologically correct before integration and that it respects important spatial integ-
rity constraints, that the overlay of these maps in the warehouse is also topologi-
cally correct (e.g., without slivers and gaps) and coherent with regard to updates, 
that the warehouse maps at the different scales of analysis are consistent, that 
spatial reference systems and referencing methods are properly transformed, that 
the geometry of objects is appropriate for each level of granularity, that there is no 
mismatch problem between the semantic-driven abstraction levels of the dimen-
sion hierarchies and the cartographic generalization results (Bédard et al. 2007), 
that we deal properly with fuzzy spatial boundaries, etc. Consequently, spatial 
ETL requires an expertise about the very nature of spatial referencing (e.g., spatial 
reference systems and methods, georeferencing and imaging technologies, geo-
processing, and mapping) and one must not assume this process can be executed 
100% automatically. Furthermore, there are issues related to the desire of users to 
clean and integrate spatial data from different epochs. Trade-offs have to be made 
and different types of decision-support analyses have to be left out because basic 
spatial units have been redefined over time, historical data have not been kept, 
data semantics and codification have been modified over time and are not directly 
comparable, legacy systems are not documented according to good software engi-
neering practices, spatial reference systems have changed because of the fuzziness 
in spatial boundaries of certain natural phenomena that are re-observed at dif-
ferent epochs, the spatial precision of measuring technologies has changed, and  
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so on (see Bernier and Bédard 2007 for problems with spatial data, and Kim 1999 
for nonspatial data). One must realize that building and refreshing the multisource, 
multiscale, and multiepoch spatial data warehouse is feasible but requires efforts, 
strategic trade-offs, and a high level of expertise. In some cases, properly dealing 
with metadata, quality information, and context-sensitive user warnings becomes 
a necessity (Levesque et al. 2007).

Spatial ETL technologies are emerging. One may combine a warehouse-oriented 
nonspatial ETL tool or the built-in functions of OLAP servers with a spatial tech-
nology such as a GIS, an open-source spatial library, or a commercial transaction-
oriented spatial ETL. One may also look for fully integrated spatial ETL prototypes 
that are in development in research centers. This new category of spatial ETL tools 
will include spatial aggregation/summarization operators to facilitate the calculation 
of aggregated spatial measures.

In spite of these difficulties, it remains possible to develop simple spatial ware-
housing applications if one keeps the cartographic requirements at a reasonable 
level. Many applications are running today and succeeded to minimize the above 
issues. For example, it is the case with administrative data that are highly regulated 
and are not redefined every five to ten years (e.g., cadastre, municipalities) or with 
data that have always been collected according to strictly defined procedures of 
known quality (e.g., topographic databases). With such datasets, the problems are 
minimal. However, with databases about natural phenomena or with databases that 
do not keep track of historical data, we must face some of the above-mentioned 
issues and choose to develop nontemporal data warehouses, semi-temporal data 
warehouses (historical data exist for given epochs but the data are not comparable 
over time), warehouses displaying nonmatching maps of different scales, and ware-
houses of varying data quality. It is our experience that a majority of the efforts to 
build spatial data warehouses goes to spatial ETL, and that the quality of exist-
ing legacy spatial data has an important impact on the design and building of the 
warehouse.

3.3.5 SPATIAL OLAP OPERATORS

Spatial data cubes can be explored and analyzed using spatial OLAP operators. Spatial 
operations allow the navigation within the data cube concerning the spatial dimen-
sions while keeping the same level of thematic and temporal granularities (Bédard 
et al. 2007). The SOLAP operators are executed directly on the maps and behave the 
same way as nonspatial operators. Basic operators include spatial drill-down, spa-
tial roll-up, spatial drill-across, and spatial slice and dice, while the most advanced 
operators include spatial open, spatial close, views synchronization, etc. A detailed 
definition with examples is provided in Rivest et al. (2005). A recent survey of the 
commercial technologies proposed to develop spatial OLAP applications (Proulx, 
Rivest, and Bédard 2007) has shown that only the most tightly integrated SOLAP 
technologies properly support the basic spatial drill operations; the loosely coupled 
technologies use traditional “zoom” or “select layer” functions of the traditional trans-
actional paradigm to simulate a change of abstraction level in a spatial dimension.

© 2009 by Taylor & Francis Group, LLC



Fundamentals of Spatial Data Warehousing 65

3.4 DISCUSSION AND CONCLUSION
We have presented an overview of the fundamental concepts of spatial data warehous-
ing in the context of geographic knowledge discovery (GKD). Such spatial data ware-
houses have become important components of an organization infrastructure. They 
meet the needs of data integration and summarization from dispersed heterogeneous 
databases and facilitate interactive data exploration and GKD for power analysts 
and strategic decision makers. Spatial data warehouses provide fast, flexible, and 
multidimensional ways to explore spatial data when using the appropriate client tech-
nology (e.g., SOLAP, spatial dashboards). Several applications have been developed in 
many countries. However, as it is still the case with transactional geospatial systems, 
there remain challenges to populate efficiently such warehouses. Recent research is 
making significant progress along this direction as there are several universities, gov-
ernment agencies, and private organizations now involved in spatial data warehous-
ing, SOLAP, and spatial dashboard. Today’s research issues include the following:

Spatial data cube interoperability (Sboui et al. 2007, 2008)
 Spatially enabling OLAP servers and ETL tools for spatial data cube (e.g., 
open-source GeoMondrian and GeoKettle projects by Dube and Badard)
Developing spatial aggregation/summarization operators for spatial data 
cubes
Improving spatial data cube and SOLAP design methods and modeling 
formalism
Developing Web services for spatial warehousing (Badard et al. 2008)
Quasi real-time spatial warehousing
Mobile wireless spatial warehousing and on the fly creation of spatial 
mini-cubes (Badard et al. 2008, Dube 2008)
Formal method to select the best quality legacy sources and ETL processes
Formal methods and legal issues to properly manage the risk of ware-
house data misuse (see Chapter 5)
Improving the coupling of spatial and nonspatial technologies for spatial 
warehousing
Improving the client tools that exploit the spatial warehouses
Enriching spatial integrity constraints for aggregative spatial measures
Improving spatial data mining approaches and methods
Improving the coupling between spatial data mining and SOLAP
Facilitating the automatic propagation of legacy data updates toward spa-
tial data warehouses
Increasing the capacities of raster spatial data cubes for interactive SOLAP 
analysis (McHugh 2008)
Integrating spatial data mining algorithms, such as spatial clustering, 
classification, spatial collation pattern mining, and spatial outlier analysis 
methods, with spatial OLAP mechanisms
Handling high dimensional spatial data warehouse and spatial OLAP, 
where a data cube may contain a large number of dimensions on categori-
cal data (such as regional census data) but other dimensions are spatial 
data (such as maps or polygons)
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Integrating data mining methods as preprocessing methods for construct-
ing high quality data warehouses, where data integration, data cleansing, 
clustering, and feature selection can be performed first by data mining 
methods before a data warehouse is constructed
Integrating space with time to handle spatial temporal data warehouses 
and sensor-based or RFID-based spatial data warehouses

As it is the case with information technology in general, this field is evolving rap-
idly as new concepts are emerging, new experimentations are successful, and a larger 
community becomes involved. If one looks back five years ago, Googling “spatial 
data warehouse” or “SOLAP” did not return hundreds of hits, while nowadays this 
is the case. The scientific community is adopting the datacube paradigm to exploit 
spatial data and the number of papers is rapidly increasing. In a similar manner, the 
industry has recently started to offer commercial solutions and their improvements 
will drive the more general adoption by users in the short term.
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4.1 INTRODUCTION 

A DW is a repository of subject-oriented, integrated, and nonvolatile information, 
aimed at supporting knowledge workers (executives, managers, and analysts) to 
make better and faster decisions (Chaudhuri and Dayal 1997; Immon 1993; Immon 
and Hackathorn 1994; Immon, Welch, and Glassey 1997; Kimball et al. 1998; Widom 
1995). Data warehouses contain large amounts of information, which is collected 
from a variety of independent sources and is often maintained separately from the 
operational databases. Traditionally, operational databases are optimized for online 
transaction processing (OLTP), where consistency and recoverability are critical. 
Transactions are typically small and access a small number of individual records 
based on the primary key. Operational databases maintain current state information. 
In contrast, DWs maintain historical, summarized, and consolidated information, 
and are designed for online analytical processing (OLAP) (Codd 1995; Codd, Codd, 
and Salley 1993). The data in the warehouse are often modeled as a multidimen-
sional space to facilitate the query engines for OLAP, where queries typically aggre-
gate data across many dimensions in order to detect trends and anomalies (Mumick, 
Quass, and Mumick 1997). There is a set of numeric measures that are the subjects 
of analysis in a multidimensional data model. Each of the numeric measures is deter-
mined by a set of dimensions. In a traffic DW, for example, a fundamental traffic 
measure is vehicle flow where dimensions of interest are segment, freeway, day, and 
week. Given N dimensions, the measures can be aggregated in 2N different ways. 
The SQL aggregate functions and the group-by operator only produce one out of 2N 
aggregates at a time. A data cube (Gray et al. 1995) is an aggregate operator which 
computes all 2N aggregates in one shot.  

Spatial DWs contain geographic data, for example, satellite images, and aer-
ial photography (Han, Stefanovic, and Koperski 1998; Microsoft 2000) in addi-
tion to nonspatial data. Examples of spatial DWs include the U.S. Census data-set 
(Ferguson 1999; USCB 2000), Earth Observation System archives of satellite 
imagery (USGS 1998), Sequoia 2000 (Stonebraker, Frew, and Dozier 1993), and 
highway traffic measurement archives. The research in spatial DWs has focused 
on case-studies (ESRI 1998; Microsoft 2000) and on the per-dimension concept 
hierarchy (Han, Stefanovic, and Koperski 1998). A major difference between con-
ventional and spatial DWs lies in the visualization of the results. Conventional 
DW OLAP results are often shown as summary tables or spreadsheets of text and 
numbers, whereas in the case of spatial DW the results may be albums of maps. 
It is not trivial to convert the alpha-numeric output of a data cube on spatial DWs 
into an organized collection of maps. Another issue concerns the aggregate opera-
tors on geometry data types (e.g., point, line, polygon). Neither existing databases 
nor the emerging standard for geographic data, OGIS (OGIS 1999), has addressed 
this issue. In this chapter we present the map cube, an operator based on the con-
ventional data cube but extended for spatial DWs. With the map cube operator, 
we visualize the data cube in the spatial domain via the superimposition of a set 
of alpha-numeric measures on its spatial representation (i.e., map). The unified 
view of a map with its (nonspatial) alpha-numeric measures can help minimize the 
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complexity associated with viewing multiple and related conceptual entities. For 
spatial applications, for example, traffic data, which require aggregation on different  
dimensions and comparison between different categories in each attribute, the map 
cube operator can provide an effective mode of visualization.

A map cube is an operator which takes a base map, associated data tables, aggre-
gation hierarchy, and cartographic preferences to produce an album of maps. This 
album of maps is organized using the given aggregation hierarchy. The goal is to 
support exploration of the map collection via roll-up, drill-down, and other opera-
tions on the aggregation hierarchy. We also provide a set of aggregate operators for 
geometric data types and classify them using a well-known classification scheme for 
aggregate functions. In summary, the proposed map cube operator generates a set of 
maps for different categories in the chosen dimensions, thus providing an efficient 
tool for pattern analysis and cross-dimension comparison. At its foundation, traffic 
data is composed of temporally aggregated measures (e.g., vehicle speed) associated 
with a set of static spatial properties. The importance of a particular traffic measure 
is dependent on its spatial location; hence, the task of traffic analyses will necessitate 
the inclusion of its corresponding spatial information. For example, a typical incident 
detection scheme employs information at both the upstream and downstream traffic 
to determine the occurrence of an incident at a particular location. Given the nature 
of traffic data, the concept of a map cube can be applied to provide an effective tool 
for the visualization and analyses of traffic information. 

This chapter is organized as follows. Section 4.2 discusses some basic concepts 
of DWs and geographic information systems (GIS). In Section 4.3, the definition 
and operation of the map cube are introduced. Section 4.4 introduces an application 
of the map cube for traffic data. Section 4.5 presents a case study of the map cube 
application for traffic incident analysis. Finally, Section 4.6 includes a summary and 
a discussion of future research directions.

4.2 BASIC CONCEPTS

4.2.1 AN EXAMPLE OF GEOGRAPHIC INFORMATION SYSTEM 

A GIS (Chrisman 1996; Worboys 1995) is a computer-based information system 
consisting of an integrated set of programs and procedures which enable the capture, 
modeling, manipulation, retrieval, analysis, and presentation of geographically refer-
enced data. We would define common concepts in GIS via the entities in Figure 4.1.  
The purpose is to provide a context for a map cube and to show how it may relate to 
other concepts in GIS. Figure 4.1 is not designed to capture all the concepts in all 
popular GIS. A map is often organized as a collection of vector and raster layers as 
shown in Figure 4.1. Each map has its own visual representation, including graphics, 
layout, legend, and title.

In a raster layer representation, the space is commonly divided into rectangular 
grid cells, often called pixels. The locations of a geographic object or conditions 
can be defined by the row and column of the pixels they occupy. The area that each 
pixel represents may characterize the spatial resolution available. The raster layer is 
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a collection of pixels and may represent raw images collected directly from satellites, 
aerial photography, etc. The raster layer may also represent interpreted images show-
ing a classification of areas.

Information associated with the raster layer representation includes statistics, 
training samples, training statistics, and histograms for the classified images, 
among other things. Mean, standard deviation, variance, minimum value, maxi-
mum value, variance-covariance matrix, and correlation matrix are some exam-
ples of statistical information. Training samples and training statistics are used 
by supervised classification, which is performed when the analyst has the knowl-
edge about the scene, or has identity and location information about the land cover 
types, for example, forest, agriculture crops, water, urban, etc. Training samples 
are collected through a combination of fieldwork, existing maps, or interpretation 
of high resolution imagery. Based on these training samples, multivariate training 
statistics are computed from each band for each class of interest. Each pixel is 
then classified into one of the training classes according to classification decision 
rules (e.g., minimum distance to means, maximum likelihood, etc.).  Vector lay-
ers are collections of vector elements. The shape of a vector element may be zero 
dimensional (point), one dimensional (curves, lines) or two dimensional (surface, 
polygons). For example, in a vector layer representation, an object type house may 
have attributes referencing further object types: polygon, person name, address, 
and date. The polygon for the house is stored as a “vector element” in Figure 4.1. 
A vector layer may have its own cartographic preferences to display the elements. 
These cartographic preferences include text, symbol, and some visual properties 
such as color, texture, and thickness. The elements and attributes in the vector 
layers may be associated with nonspatial attributes managed by a database system 
which consists of many tables.

A network layer is a special case of a vector layer in Figure 4.1. It is composed of 
a finite collection of points, the line-segments connecting the points, the location of 

GUI/Cartography GIS Domain Domain-Independent

Legend
Symbol Meaning

FIGURE 4.1 Concepts in Geographic Information Systems.
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the points, and the attributes of the points and line-segments. For example, a network 
layer for transportation applications may store road intersection points and the road 
segments connecting the intersections.  

Maps are also associated with reference systems and control points. A spatial 
reference system is a coordinate system attached to the surface of the earth, which 
allows users to locate the map element on the surface of the earth. Different map 
layers can be geo-registered to a common spatial reference system, thus producing 
a composite overlay for analysis and display. Control points are common to the base 
map and the slave map being prepared. The exact locations of the control points are 
well defined. Examples include intersection of roads and railways or other landmarks 
or monuments. The control points are used to geo-register newly acquired maps to 
the well-defined base map at different scales.  

4.2.2 AGGREGATE FUNCTIONS 

A data cube consists of a lattice of cuboids, each of which represents a certain level 
of hierarchy. Aggregate functions compute statistics for a given set of values within 
each cuboid. Examples of aggregate functions include sum, average, and centroid. 
Aggregate functions can be grouped into three categories, namely, distributive, alge-
braic, and holistic as suggested by Gray et al. (1995). We define these functions in 
this section and provide some examples from the GIS domain. Table 4.1 shows all of 
these aggregation functions for different data types.  

Distributive: An aggregate function F is called distributive if there exists 
a function G such that the value of F for an N-dimensional cuboid can 
be computed by applying a G function to the value of F in an (N 1)- 
dimensional cuboid. For example, when N 1, F(Mij)  G(F(Cj))  G(F(Ri)), 
where Mij represents the elements of a two-dimensional matrix, Cj denotes 
each column of the matrix, and Ri denotes each row of the matrix. Consider 
the aggregate function Min and Count as shown in Figure 4.2. In the 
first example, F  Min, then G  Min, since Min(Mij)  Min(Min(Cj))   
Min(Min(Ri)). In the second example, F Count, G Sum, since Count(Mij) 

TABLE 4.1 
Aggregation Operations

Aggregation Function

Data Type Distributive Function Algebraic Function Holistic Function

Set of numbers Count, min, max, sum Average, standard 
deviation, MaxN, 
MinN()

Median, most frequent, 
rank

Set of points, lines, 
polygons

Minimal orthogonal 
bounding box, 
geometric union, 
geometric intersection

Centroid, center of 
mass, center of 
gravity

Nearest neighbor 
index, equi-partition
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 Sum(Count(Cj))  Sum(Count(Ri)). Other distributive aggregate func-
tions include Max and Sum. Note that “null” valued elements are ignored 
in computing aggregate functions. Distributive GIS aggregate operations 
include minimal orthogonal bounding box, geometric union, and geomet-
ric intersection. The geometric union is a binary operation that takes two 
sets of geometric areas and returns the set of regions that are covered by 
at least one of the original areas. For all of these aggregations, the opera-
tor aggregates the computed regions of the subset, and then computes the 
final result.  
Algebraic: An aggregate function F is algebraic if F of an N-dimensional 
cuboid can be computed using a fixed number of aggregates of the  
(N 1)-dimensional cuboid. Average, variance, standard deviation, MaxN, 
and MinN are all algebraic. In Figure 4.3, for example, the computations of 
average and variance for the matrix M are shown. The average of elements 

FIGURE 4.2 Computation of distributive aggregate function.

FIGURE 4.3 Computation of algebraic aggregate function.

Algebraic Aggregate Function: Average Algebraic Aggregate Function: Variance 
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in the two-dimensional matrix M can be computed from sum and count 
values of the 1-D sub-cubes (e.g., rows or columns). The variance can 
be derived from count, sum (i.e., i Xi), and sum of Sq (i.e., i Xi

2), of 
rows or columns. Similar techniques apply to other algebraic functions. 
An algebraic aggregate operation in GIS is center. The center of n geomet-
ric points V V Vi

x
i

y
i( , ) ) is defined as Center V C Cn

i
x

V

n y

V

n
x y1 , , .   

Both the center and the count are required to compute the result for the 
next layer. The center of mass and the center of gravity are other examples 
of algebraic aggregate functions.  
Holistic: An aggregate function F is called holistic if the value of F for 
an N-dimensional cuboid cannot be computed from a constant number of 
aggregates of the (N 1)-dimensional cuboid. To compute the value of F 
at each level, we need to access the base data. Examples of holistic func-
tions include median, most frequent, and rank. 

Holistic GIS aggregate operations include equi-partition and nearest-neighbor 
index. Equi-partition of a set of points yields a line L such that there are the same 
number of point objects on each side of L. Nearest-neighbor index measures the 
degree of clustering of objects in a spatial field. If a spatial field has the property that 
like values tend to cluster together, then the field exhibits a high nearest-neighbor 
index. When new data are added, many of the tuples in the nearest neighbor rela-
tionship may change. Therefore, the nearest-neighbor index is holistic. The line 
of equi-partition could be changed with any new added points. To compute the 
equi-partition or nearest  neighbor-index in all levels of dimensions, we need the 
base data.

The computation of aggregate functions has graduated difficulty. The distributive 
function can be computed from the next lower level dimension values. The alge-
braic function can be computed from a set of aggregates of the next lower level 
data. The holistic function needs the base data to compute the result in all levels of 
dimension.  

4.2.3 AGGREGATION HIERARCHY 

The CUBE operator (Gray et al. 1995) generalizes the histogram, cross-tabulation, 
roll-up, drill-down, and sub-total constructs. It is the N-dimensional generalization 
of simple aggregate functions. Figure 4.4 shows the concept for aggregations up to 
three dimensions. The dimensions are year, company, and region. The measure is 
sales. The 0-D data cube is a point that shows the total summary. There are three 1-D 
data cubes: group-by region, group-by company, and group-by year. The three 2-D 
data cubes are cross tabs, which are a combination of these three dimensions. The 
3-D data cube is a cube with three intersecting 2-D cross tabs.

Figure 4.5 shows the tabular forms of the total elements in a 3-D data cube after a 
CUBE operation. Creating a data cube requires generating a power set of the aggre-
gation columns. The cube operator treats each of the N aggregation attributes as a 
dimension of the N-space. The aggregate of a particular set of attribute values is a 
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point in this space. The set of points forms an N-dimensional cube. If there are N 
attributes, there will be 2N – 1 super-aggregate values. If the cardinalities of the N 
attributes are C1, C2, , CN, then the cardinality of the resulting cube operation is 

(Ci 1). The extra value in each domain is ALL. Each ALL value really represents 
a set over which the aggregate was computed.  

A tabular view of the individual sub-space datacubes of Figure 4.4 is shown in Figure 
4.6. The union of all the tables in Figure 4.6 yields the resulting table from the data 
cube operator. The 0-dimensional sub-space cube labeled “Aggregate” in Figure 4.4  
is represented by Table “SALES-L2” in Figure 4.6. The one-dimensional sub-space 
cube labeled “By Company” in Figure 4.5 is represented by Table “SALES-L1-C” in 
Figure 4.6. The two-dimensional cube labeled “By Company & Year” is represented 
by Table “SALES-L0-C” in Figure 4.6. Readers can establish the correspondence 
between the remaining sub-space cubes and tables.  

The cube operator can be modeled by a family of SQL queries using GROUP 
BY operators and aggregation functions. Each arrow in Figure 4.6 is represented 
by an SQL query. In Table 4.2, we provide the corresponding queries for the five 
arrows labeled Q1, Q2, ,Q5 in Figure 4.6. For example, query Q1 in Table 4.2 
aggregates “Sales” by “Year” and “Region,” and generates Table “SALES-L0-A” 
in Figure 4.6. 

FIGURE 4.4 The 0-d, 1-D, 2-D, and 3-D data cubes (Gray, Bosworth et al. 1995).
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FIGURE 4.5 An example of data cube (Gray, Bosworth et al. 1995).
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FIGURE 4.6 An example of group-by.
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The GROUP BY clause specifies the grouping attributes, which should also appear 
in the SELECT clause, so that the value resulting from applying each function to a 
group of tuples appears along with the value of the grouping attributes. 

4.2.4 THE ROLE OF AN AGGREGATION HIERARCHY 

To support OLAP, the data cube provides the following operators: roll-up, drill-
down, slice and dice, and pivot. We now define these operators.  

Roll-up: Increasing the level of abstraction. This operator generalizes 
one or more dimensions and aggregates the corresponding measures. For 
example, Table SALES-L0-A in Figure 4.6 is the roll-up of Table SALES-
Base on the company dimension.  
Drill-down: Decreasing the level of abstraction or increasing detail. It 
specializes in one or a few dimensions and presents low-level aggrega-
tions. For example, Table SALES-L0-A in Figure 4.6 is the drill-down of 
Table SALES-L1-A on the year dimension.  
Slice and dice: Selection and projection. Slicing into one dimension is 
very much like drilling one level down into that dimension, but the num-
ber of entries displayed is limited to that specified in the slice command. 
A dice operation is like a slice on more than one dimension. On a two-
dimensional display, for example, dicing means slicing on both the row 
and column dimensions. Table 4.3 shows the result of slicing into the 
value of “America” on the year dimension from the Table SALES-L2 in 
Figure 4.6.  

TABLE 4.2
Table of GROUP BY Queries

Q1 SELECT ‘ALL’, Year, Region, SUM(Sales) FROM SALES-Base GROUP BY Year, Region

Q2 SELECT ‘ALL’, ‘ALL’, Region SUM(Sales) FROM SALES-L0-A GROUP BY Region

Q3 SELECT ‘ALL’, ‘ALL’, ‘ALL’ SUM(Sales) FROM SALES-L1-A

Q4 SELECT ‘ALL’, ‘ALL’, Region, SUM(Sales) FROM SALES-Base GROUP BY Region

Q5 SELECT ‘ALL’, ‘ALL’, ‘ALL’, SUM(Sales) FROM SALES-Base

 

TABLE 4.3
Slice on the Value America of the Region Dimension

Company Year Region Sales

ALL ALL America 78
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  Table 4.4 shows the result of dicing into the value of “1994” on the 
year dimension and the value of “America” on the region dimension from 
Table SALES-L2 in Figure 4.6.  
Pivoting: Re-orienting the multidimensional view of data. It presents the 
measures in different cross-tabular layouts  

4.3 MAP CUBE 

In this section, we define the map cube operator, which provides an album of maps 
to browse results of aggregations. We also provide the grammar and the translation 
rules for the map cube operator.  

4.3.1 DEFINITION 

We extend the concept of the data cube to the spatial domain by proposing the “map 
cube” operator as shown in Figure 4.7. A map cube is defined as an operator which 
takes the input parameters, that is, base map, base table, and cartographic prefer-
ences, and generates an album of maps for analysis and comparison. It is built from 

TABLE 4.4
Dice on Value 1994 of Year Dimension and Value 
America of Region Dimension

Company Year Region Sales

ALL 1994 America 35

 

FIGURE 4.7  Concepts in GIS with data cube and map-cube.
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the requirements of a spatial DW, that is, to aggregate data across many dimensions 
looking for trends or unusual patterns related to spatial attributes. The basis of a map 
cube is the hierarchy lattice, either a dimension power-set hierarchy or a concept 
hierarchy, or a mixture of both. In this chapter, we focus on the dimension power-set 
hierarchy. Figure 4.8 shows an example of a dimension power-set hierarchy. This 
example has three attributes: Maker(M), Type(T), and Dealer(D). There are eight 
possible groupings of all the attributes. Each node in the lattice corresponds to one 
group-by. Figure 4.9 shows a three-dimensional concept hierarchy. The car makers 
can be classified as American, European, or Japanese. American car makers include 
Ford, GM, and Chrysler. The car type dimension can be classified as Sedan and 
Pickup Trucks. The Sedan can go down one detail level and be classified as Small, 
Medium, Large, or Luxury.  

Let the number of dimensions be m, each dimension be Ai, i  1,2, , m, and Am 
be the geographic location dimension. Then we have (m 1) different levels of lat-
tice for the dimension power-set hierarchy. Let the level with only one dimension Ai,  
i  1,2, , m  1, be the first level, the level with two dimensions, Aij, where i  j, i 
1,2, m 1, let j 1,2, m 1 be the second level, and the level with the complete 
set of dimensions A1 A2 A3, , Am 1 be the (m 1)th level. The total number of 

FIGURE 4.9 The Concept Hierarchies of (a) MAKER and (b) VEHICLE TYPE, and (c) 
DEALER.

FIGURE 4.8 The Dimension Power-Set Hierarchy.
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cuboids is i 1
m – 1 (im – 1). Let the cardinality of each dimension Ai be ci. Then for each 

cuboid, such as, AiAj Ak , we have an album of ci  cj    ck maps.
In other words, a map cube is a data cube with cartographic visualization of each 

dimension to generate an album of related maps for a dimension power-set hierarchy, 
a concept hierarchy, or a mixed hierarchy. A map cube adds more capability to tradi-
tional GIS where maps are often independent (Bédard 1999). The data-cube capabil-
ity of roll-up, drill-down, and slicing and dicing gets combined with the map view. 
This can benefit analysis and decision making based on spatial DWs.  

4.3.2 STEPS IN GENERATING A MAP CUBE 

To generate the map cube, first we issue the map-cube query, as shown in Figure 4.10.  
This query is decomposed into the DB engine and the geometry engine. The rela-
tional database (DB) engine processes the 2n group-by SQL queries and generates 
2n tables, where n is the number of attributes in the “Reclassify by” clause. The 
geometry engine processes the map reclassify queries on the base map and generates 
2n maps. These maps and tables are in one-to-one correspondence with each other. 

FIGURE 4.10  Steps in Generating a Map Cube.
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Finally, the cartographic preferences are dealt with in the cartographic visualization 
step, and an album of maps is plotted.  

4.3.3 THE GRAMMAR FOR THE MAP CUBE OPERATOR 

We have used “yacc” (Levine, Mason, and Brown 1992) like syntax to describe the 
syntax of a map cube via the grammar and translation rules, as listed in Figure 4.11. 
Words in angular brackets, for example,  carto-value , denote nonterminating 
elements of the language. For example, the  carto-value  will be translated into 
either  name  or  num  . The vertical bar ( ) means “or,” and the parentheses 
are used to group sub-expressions. The star (*) denotes zero or more instances of 
the expression, and the plus ( ) denotes one or more instances of the expression. The 
unary postfix operator (?) means zero or one instance of the expression. These trans-
lations will continue until we reach a terminating element. For example,  letter   
will eventually be translated into one character.

FIGURE 4.11 The grammar for the map cube operator.
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Base-map =  <base-map name>

<base-map name> <name> (, <name> )*

<name> <operator> <name>

<name>|<num>
<digit>+ (, <digit>+)? (E(+ | –)? <digit>+)?
<letter> (<letter>|<digit>|<symbol>)*
A | B | ... |Z| a | b | ... | z
0 | 1 | 2 | 3 | 4 | .... | 9
– | _ | , | . | : 
= | > | < | + | – | * | / 

<name>? | <name> (, <name>)*
<carto-attribute-value pair>
(, <carto-attribute-value pair>)*

<carto-attribute> = <carto-value>
Color | Thickness | Texture | Annotation |
Text | Symbol | Layout | Legend | Title |
No-of-map-per-cuboid | Normalize

<name>

Base-table =  <base-table name>

<base-table name>

(Where <join attribute list>
(And <join attribute list>) *)?

Aggregate by <aggregate list>

<aggregate list> <aggregate unit> (<operator> <aggregate unit>)?
<aggregate func>:<name>
SUM | MAXN | MINN | COUNT | MEDIAN

<aggregate unit>
<aggregate func>

<attribute list>
<carto attribute list>

<carto-attribute-value pair>

<carto-value>
<num>
<name>
<letter>
<digit>
<symbol>
<operator>

<carto-attribute>

<join attribute list>

Reclassify by <attribute list>
Data cube dimension <attribute list>
Cartographic preference <carto attribute list>

Map Cube
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4.4 APPLICATION OF MAP CUBE IN TRANSPORTATION DATA  

Transportation and the highway network are critical elements of the public infra-
structure system (FHWA 2005; Paniati 2002). A crucial component in sustaining 
and developing the roadway network is the availability of a traffic information 
system that allows for the monitoring and analysis of travel behaviors and condi-
tions. It is for these reasons that the transportation roadway is selected for the case 
study of this chapter. Based on map cube, we have developed an effective traffic 
visualization system, AITVS – Advanced Interactive Traffic Visualization System  
(http://spatial.nvc.cs.vt.edu/traffic), for observing the summarization of spatiotempo-
ral patterns and travel behavior in loop-detector data. AITVS is designed for brows-
ing the spatiotemporal dimension hierarchy via the integrated roll-up and drill-down 
operations. AITVS visualization techniques give traffic organizations and personnel 
powerful tools for extracting practical and insightful information from large col-
lections of roadway data, thus vastly improving their ability to make effective deci-
sions. The identified traffic patterns can assist transportation network management 
decisions, establish traffic models for researchers and planners, and allow travelers 
to select commuting routes. Traffic data from Interstate 66 and 95 in metropolitan 
Washington, D.C. are used to demonstrate the functionalities of AITVS. 

Traffic measures and base map: In a traffic DW, the primary measures are vol-
ume (number of vehicles passing a given detector), speed (vehicle velocity at a given 
detector), and occupancy (percentage of time a vehicle is detected within a given 
detector), and the dimensions are time and space. Traffic dimensions are hierarchical 
by nature. For example, the time dimensions can be grouped into “Week”, “Month”, 
“Season”, or “Year”. Similarly, the space dimensions can be grouped into “Station”, 
“County”, “Freeway”, or “Region”. Given the dimensions and hierarchy, the mea-
sures can be aggregated into different combinations.  For example, for a particular 
highway and a chosen month, the weekly traffic speeds can be analyzed. For our 
transportation data, we employed the one-dimensional highway milepost locations 
as our base map. The mileposts are spatially ordered location identifiers which cor-
respond to the relative distances to an entry point within the highway. For example 
in I-66, mileposts 48 and 75.25 indicate the start and end of traffic detection, respec-
tively, which provides 27.25 miles of total detection.

AITVS visualization components: Figure 4.12 gives the map cube operations of 
AITVS which provides six distinct visualization components to comprehensively 
cover the various performance aspects of a roadway system. Each node of the figure 
represents a cube operation and a view of the data. Here, SHS is the highway station 
(logical representation of a group of detectors with identical mileposts), TTD is the time 
of day, and TDW is the day of week. These nodes are combined to form the following 

FIGURE 4.12  Map cube dimension lattice as applied to traffic data.

SHS

SHSTTD SHSTDW

TTD

TTDTDW

TDW
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views: SHSTTD, SHSTDW, and TDWTTD. For example, SHS gives the speed of each high-
way station for all the time and SHSTTD provides the daily traffic speed of each station. 
The views are partitioned into two visualization sets, one-dimensional and two-dimen-
sional views. The one-dimensional views are composed of time of day plot (TTD), day 
of week Plot (TDW), and highway station plot (SHS). The two-dimensional views are 
composed of highway stations vs. time of day plot (SHSTTD), highway stations vs. day 
of week plot (SHSTDW), and time of day vs. day of week plot (TDWTTD). The following 
subsections provide the details of each visualization component. 

4.4.1 ONE-DIMENSIONAL MAP CUBE VIEWS 

A. Time of Day Plot (TTD) 
In Figure 4.13(a), the x-axis represents the day intervals, Monday to Sunday, and the 
y-axis shows volume, speed, and occupancy, respectively, from top to bottom. The 
graph plot represents the I-66 eastbound traffic behavior for the week of November 1, 
2004 to November 7, 2004 on station 121 at Milepost 53.2. The graph shows morning 
and afternoon rush hour patterns on the weekdays (November 1 to November 5) and 
lighter traffic flow on the weekends. A more detailed view of this behavior can be 
studied by invoking a drill-down operation to show traffic behavior on a specific day. 
The user adjustable attributes are the highway station nodes and the date duration.

Figure 4.13(b) shows identical value types for its xy-axes as in Figure 4.13(a) but 
exemplifies not only the current traffic trend, but also provides the predicted traf-
fic behavior for Wednesday, June 29, 2005. AITVS calculates the prediction model 
based on a user-specified time length (e.g., 4,5,6... weeks) and invokes statistical 
methods to extrapolate the predicted behavior. For Figure 4.13(b), the user is able 
to select his or her choice of highway station node and the span of historical data 
used to generate the prediction graph. Daily, weekly, and monthly patterns can be 
analyzed with this component.

B. Day of Week Plot (TDW) 
In Figure 4.14, the x-axis represents days and the y-axis shows volume, speed, and 
occupancy, respectively, from top to bottom. The figure shows the I-66 eastbound 
traffic at 8:30 am for each day of March 2004 on station 121 where I-66 crosses 
Route 28 at Milepost 53.2. This plot shows a recurrent weekly pattern that the traffic 
volume of weekends (February 29, March 7, March 14, March 21, and March 28) is 
lower than that of Monday to Friday.  It is also noticed that as volume and occupancy 
decreases, speed increases, which reflects another traffic behavior pattern. For this 
visualization component, the highway station number, date duration, and time can 
be dynamically selected by the user. Weekly, monthly, and yearly patterns for each 
station can be analyzed with this component.

C. Highway Station Plot (SHS) 
In Figure 4.15, the x-axis shows the consecutive mileposts along the route and the 
y-axis denotes the volume, speed, and occupancy, respectively. The graph represents 
the I-66 inbound traffic at 8:30 am on Tuesday, October 26, 2004. The stations at 
Milepost 60 and mileposts after 65 were malfunctioning with zero volume, speed, 
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and occupancy. Between Mileposts 62 and 64.5, the occupancy graph produces a 
boundary around its local maximum and, conversely, the speed produces a bound-
ary around its local minimum. These boundaries indicate the morning rush hour 
in the Oakton/Vienna region. The steady incremental behavior in occupancy from 
Milepost 47.5 to 64.5 and the simultaneous reduction in speed is a travel behavior 
pattern associated with congestion. The user-adjustable criteria for this component 
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FIGURE 4.13 Time of day plots (TTD). (a) Weekly pattern of volume, speed, and occupancy 
on a given week. (b) Volume, speed, and occupancy on a given day. See color insert after 
page 148.
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are date, time, highway, and traffic direction (i.e., east- or westbound). Monthly pat-
terns along the route span can be analyzed with this component. 

4.4.2 TWO-DIMENSIONAL MAP CUBE VIEWS 

D. Highway Station vs. Time of Day Plot (SHSTTD) 
In Figure 4.16(a), the x-axis denotes the time, the y-axis shows the milepost, and the 
gray scale represents the speed value. Each row of the graph corresponds to the traffic 

FIGURE 4.14 Day of week plots (TDW). Volume, speed, occupancy in a given month.

FIGURE 4.15 Highway station plots (SHS). Volume, speed, and occupancy along all mile-
posts in a highway.
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speed of one station on the selected date. This figure depicts the I-66 eastbound traf-
fic on Saturday, November 6, 2004. Notice that in the morning during 9:30 am to 
10:15 am, traffic congestion occurred for a span of 45 minutes, an unusual event for 
the regular commuters. We recognize a distinct incident pattern, an upside-down 
triangle. Figure 4.16(b) shows the volume for the same traffic data where we can 
observe that the volume corresponding to the triangle in Figure 4.16(b) is abnormally 
low. This observation supports the presence of a traffic incident. The user-adjustable 
properties for this component are date, highway, and traffic direction.

E. Highway Stations vs. Day of Week Plot (SHSTDW) 
In Figure 4.17(a), the x-axis depicts the mileposts along the route and the y-axis 
shows volume, speed, and occupancy, respectively. The graph represents a series 
plot of all days of a week for February 2005 at 6:00 pm westbound (outbound), where 
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(a) Speed of a traffic incident along all mileposts on a given day

6 AM 12 PM 6 PM 0 PM Time

630
540
440
360
270
180
90

Milepost-

74.7
Spatial/Time Plot-Volume

64.4

62.0

59.6

57.5

55.4

52.6

50.0

47.4

0 AM

(b) Volume of a traffic incident in all mileposts on a given day

6 AM 12 PM 6 PM 0 PM Time

FIGURE 4.16 Highway station vs. time of day plots (SHSTTD). (a) Speed of a traffic incident 
along all mileposts on a given day. (b) Volume of a traffic incident in all mileposts on a given 
day.
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each line represents each average day of the week. From this superimposed plot, we 
observe that weekdays show heavier traffic activity as compared to the weekends 
as marked by the ovals. The ovals signify the malfunctioning detectors, which are 
revealed as having zero values for volume, speed, and occupancy. Figure 4.17(b) 
shows the same westbound traffic data for February 2005 at 6:00 pm, but represented 
as a gray scale value graph. The x-axis shows the milepost, the y-axis denotes the 
days of the week, and the colors represent occupancy values. Figure 4.17(b) provides 
a much clearer representation through its gray scale plot where heavy traffic activity 

(b) Occupancy condition of all mileposts in a given week
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FIGURE 4.17  Highway station vs. day of week plots (SHSTDW).  (a) Superimposed graphs of 
average volume, speed, occupancy of all mileposts for all days of the week. (b) Occupancy 
condition of all mileposts in a given week. See color insert after page 148.
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is shown as two red clusters. Depending on the subject of analysis, the series [Figure 
4.17(a)] plot may find more utility than the xy-plot [Figure 4.17(b)]. AITVS offers 
these various modes of visualizations to accommodate different analysis require-
ments. For both visualization components, the date range, time, highway, and traffic 
direction are user-adjustable. Average weekly, monthly, and yearly patterns along a 
particular highway can be evaluated with this component.

F. Time of Day vs. Day of Week Plot (TTDTDW)
In Figure 4.18(a), the x-axis indicates the time and the y-axis shows volume, speed, 
and occupancy, respectively. This graph amalgamates values for each day of the week 
for February 2005 on westbound station 62. An afternoon (4:00 to 7:00 pm) rush hour 
commute is observed during the weekdays as indicated by the large hump and valleys 
(circled in blue) on the series graph. Figure 4.18(b) depicts the identical traffic data using 
the color-base value graph, with the x-axis as time, the y-axis as the days of the week, 
and the colors as speed values. Here, the red region at around 4:00 to 7:00 pm indicates 
afternoon rush hour, which corresponds to the humps mentioned in Figure 4.18(a). The 
graph also indicates that for an average Friday during February 2005, afternoon rush 
hour begins early at 1:45 pm. For both visualization components, users may select the 
highway station node and aggregate date range.  This component supports analyses of 
average traffic patterns for each selected station during a particular period of time.

4.5 CASE STUDY — TRAFFIC INCIDENT ANALYSIS  

Traffic planners and engineers can make use of spatial and incident patterns to evalu-
ate current incident response strategies, quantify their economic impact (e.g., loss of 
productivity), and propose new incident response plans. We utilize the map cube as 
applied to traffic data to analyze the effects of a vehicular incident on northbound 
Interstate-95 on Wednesday, February 8, 2006. The incident was of an overturned 
tractor trailer which occurred at 8:06 am at Milepost 158.

SHSTTD View: In Figure 4.19(a), we give the spatiotemporal speed plot with the 
incident region circled in blue. We also provide a normal operating situation with 
the speed spatiotemporal plot of the prior Wednesday, February 1, 2006 in Figure 
4.19(b). It can be observed from these two sets of figures that the incident caused 
the average speed between Mileposts 153.8 and 158.6 to fall below 15 mph and the 
occupancy level to rise above 40%. The horizontal lines are due to malfunctioning 
detectors or missing data caused by transmission errors.

TTD View: Figure 4.20 provides the traffic metrics of the affected and neighboring 
stations of the incident. This figure is a drill-down representation of the spatiotem-
poral speed plot of Figure 4.19. For example, if we were to obtain the horizontal 
cross-section view of Figure 4.19(a) at Milepost 157.44, then we obtain the graph 
of Figure 4.20(a). The boxes highlight the area of interest (i.e., incident). These fig-
ures show the traffic behavior at the stations located close to the incident and at the 
peripheries (i.e., spatial neighborhoods). In Figure 4.20(a), traffic begins to form con-
gestion as shown by the sharp increase in occupancy and decrease in speed. Figure 
4.20(b) shows the worsening congestion as traffic approaches the incident location 
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at Milepost 158.28. This visualization can also provide an estimation on the incident 
duration, which spans from 8:00 am to 12:00 pm. In the downstream station [Figure 
4.20(c)] it is observed that traffic resumes with normal speed and occupancy but 
reduced volume.

FIGURE 4.18 Time of day vs. day of week plots (SHSTTD).  (a) Volume, speed, occupancy 
conditions of all days in a week on a given time. (b) Speed condition for all days in a week on 
a given milepost. See color insert after page 148.
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SHS View: Figure 4.21 shows the spatial plot of the traffic incident Wednesday 
[Figure 4.21(a)] against the nonincident traffic condition of the prior Wednesday 
[Figure 4.21(b)]. Combined, these figures show a detailed view of traffic patterns 
along northbound I-95 at 8:30 am. These figures are essentially drilled-down repre-
sentations of the spatiotemporal plots of Figure 4.19 that depict a specific time and 
give more fine-grained views of the traffic metric values at each milepost.

SHSTDW View: Figure 4.22 gives an aggregated view, which displays the entire traffic 
incident week’s (2/6/2006 to 2/12/2006) traffic patterns. These visualizations allow 
a single-view and direct comparison of the incident pattern against the other days. 
The green lines in Figure 4.22 show the traffic patterns at the day of the incident. As 
highlighted by the blue boxes, one can easily attain approximate quantifications (e.g., 
percent volume reduction) relative to another day’s traffic.
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FIGURE 4.19 SHSTTD views of incident day against a nonincident day. (a) Incident (2/8/2006) 
marked in with the circle. (b) Nonincident (2/1/2006).
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FIGURE 4.20 TTD views for drilled-down analysis of surrounding mileposts. (a) Milepost 
157.44 (2/8/2006). (b) Milepost 158.26 (2/8/2006). (c) Milepost 159.63 (2/8/2006). See color 
insert after page 148. 
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TTDTDW View: Figure 4.23 is a drilled-down view of Figure 4.22, which shows 
the effect of the incident at various times of the day against all days of the week. 
Compared to the nonincident days, it can be observed that the incident at 8:00 am 
to 12:00 pm introduced a drastic and quantifiable reduction in speed and volume. 
Results of the approximate loss in speed, volume, and occupancy can be used to 
estimate the incident cost (e.g., productivity loss).

TDW View: Figure 4.24 provides the TDW view of the incident on Milepost 158.26 at 
8:30 am. From this figure, rapid observations can be made about the impacts of the 
incident when compared to the surrounding days’ traffic patterns. For example, from 
the graph it can be seen that the incident caused a tremendous decrease (approxi-
mately 66%) in volume against its neighboring days’ traffic.

This case study demonstrates the capabilities of map cube to provide a broad and 
complete analysis of an event under investigation. The visualization module allows 
users to analyze traffic occurrences at the macro level through roll-up operations, 
at the micro level through drill-down operations, and a direct comparative analysis 
through combined visualizations.  
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FIGURE 4.21 SHS views of incident day against nonincident day. (a) I-95 NB of incident at 
8:30AM (2/8/2006). (b) I-95 NB of nonincident (prior Wednesday) at 8:30AM (2/1/2006).
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FIGURE 4.22 SHSTDW view of I-95 NB for the week of the incident at 8:30AM (2/6/2006-
2/12/2006). See color insert after page 148.

FIGURE 4.23 TTDTDW view of milepost 158.26 for the week of the incident at 8:30AM 
(2/6/2006-2/12/2006). See color insert after page 148.
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4.6 CONCLUSION AND FUTURE WORK 

The cube operator generalizes and unifies several common and popular concepts: 
aggregation, group-by, histogram, roll-up, drill-down, and cross-tab. Maps are the 
core of the GIS. In this chapter, we extended the concept of the data cube to spatial 
domain via the proposed “map cube” operator, which is built from the requirements 
of spatial DWs. We defined the “map cube” operator, provided grammar and trans-
lation rules, and developed AITVS as an application of the map cube for traffic 
data. As demonstrated in the case study, the map cube visualizations can be useful 
for identifying and analyzing patterns in large traffic data. The employed visual-
ization techniques make the knowledge discovery process much less burdensome 
and facilitate the usage of the transportation data. Future directions include issues 
in supporting adaptive user interfaces based on user’s expertise and requirements. 
Additionally, proposals have been made to develop 3-D map representations. Such a 
representation will provide users with an immersive experience.

We also aim to extend the implementation and application of the map cube to 
other spatial domains. The map cube can be applied to any spatial application that 
requires comparisons between different attributes and requires some aggregate 
functions within each attribute. Therefore, to provide extensions of the map cube to 
other spatial fields, the aggregate measures will need to be defined and any aggregate 
functions that are not natively supported by the conventional data cube will need to 
be developed for the specific domain.
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FIGURE 4.24 TDW view of milepost 158.26 from 2/1/2006 to 2/15/2006 at 8:30AM.
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5.1 INTRODUCTION

Geographical data warehouses contain data coming from multiple sources potentially 
collected at different times and using different techniques. One of the most important 
concerns about geographical data warehouses is the quality or reliability of the data 
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used for knowledge discovery, decision making, and, finally, action. In fact, this is 
the ultimate objective aimed by using this type of database. On the other hand, with 
increasing maturity and the proliferation of data warehouses and related applications 
(e.g., OLAP, data mining, and dashboards), a recent survey indicated that for the 
second year in a row, data quality has become the first concern for companies using 
these technologies (Knightsbridge 2006). Similarly, a recent survey of Canadian 
decision makers using spatial data has identified data quality as the third most impor-
tant obstacle in increasing the use of spatial data (Environics Research Group 2006). 
Thus, while data quality has become the number one concern for users of nonspatial 
data warehouses, it is also recognized as an emerging issue for spatial data (Sonnen 
2007, Sanderson 2007) and the quality of spatial datacubes is being investigated seri-
ously within university laboratories. In this context, the concept of data quality is 
making its way into the realm of geographic knowledge discovery, leading us to think 
in terms of risks for the users, for the developers, and for the suppliers of data, espe-
cially in terms of prevention mechanisms and possible legal consequences.

This chapter first introduces the readers to theoretical concepts regarding quality 
management and risk management in the context of spatial data warehousing and spa-
tial online analytical processing (SOLAP). Then, it identifies possible management 
mechanisms to improve the prevention of inappropriate usages of data. Based on this 
theoretical foundation, this chapter then presents a pragmatic approach of quality and 
risk management to be applied during the various stages of a spatial datacube design 
and development. This approach aims at identifying and managing in a more rigor-
ous manner the potential risks one may discover during this development process. 
Such approach has the merit to (1) be applicable in a real context, (2) be based on 
recognized quality and risk management models, (3) take into account lessons previ-
ously learned, (4) encourage proper documentation and, finally, (5) help clarify the 
responsibilities for each partner involved in the data warehouse development project. 
To complete the chapter, associations between these mechanisms and the legal rules 
governing the relationship between developers and users are presented.

5.2 FUNDAMENTAL CONCEPTS OF SPATIAL DATA 
QUALITY AND UNCERTAINTY IN A GEOGRAPHIC 
KNOWLEDGE DISCOVERY CONTEXT

Though data quality has always been an important aspect of geospatial applications, 
the proliferation of spatial business intelligence (BI) applications in the context of 
geographic knowledge discovery (GKD) has brought new concerns and raised new 
issues related to data quality. Their strategic position in organizations is such that 
these applications may have important impacts on the organization (Ponniah 2001). 
In order to make informed decisions, decision makers must be aware of the data 
characteristics and limitations. Otherwise, there is a risk of data misuses or mis-
interpretations that may cause severe legal, social, and economical impacts on the 
organization (Devillers et al. 2002). Unfortunately, in the context of GKD and espe-
cially with spatial BI applications, several factors increase the risk of data misuses 
and misinterpretation.
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First is the ease with which users interact with the data. As opposed to GIS tools 
that require specialized knowledge, spatial BI applications are usually based on user 
interfaces that are easier and do not assume any specific a priori knowledge. There is 
no need to know a query language such as SQL to explore the data or to have specific 
knowledge about spatial reference methods or internal database structures. By low-
ering technical skills to operate such applications, they become available to a larger 
group of users who may not have a complete understanding or knowledge about the 
spatial, thematic, and temporal characteristics and limitations of the data (Levesque 
et al. 2007). Also, “the rapidity and ease of data use may lead users to mistakenly 
feel that data are made-to-order for their decision analysis needs, and hence to deter 
them from adopting an informed behavior towards data” (Sboui et al. 2008).

Second is the nature of the underlying data warehouses or datacubes. Because 
GKD applications are often based on data warehousing architectures, the data used 
have typically undergone several transformations. Building data warehouses or data-
cubes involves complex data integration and transformation processes (known as 
ETL procedures, for extract-transform-load) that may affect the meaning of their 
content (Levesque et al. 2007). Knowing that data sources may also have undergone 
such processes, it becomes difficult to evaluate the resulting data quality and reli-
ability. Actually, end users of such technologies are rarely aware of these issues, and 
when they are they rarely receive a robust answer.

Third are the data aggregation methods. GKD and decision makers need aggre-
gated or summarized data to perform their analyses. Hence, aggregation methods 
must be defined and applied to provide data that will help decision makers and GKD 
experts to have a global understanding of a phenomenon. This aggregation adds 
another level of complexity of interpretation (Sboui et al. 2008). Thus, to interpret 
correctly the data, decision makers must first understand the aggregation method 
and its impacts on the data.

In short, although spatial BI applications support GKD and the decision- 
making process, they do not ensure properly informed decisions or quality knowl-
edge. Geospatial data users and decision makers must be aware of data quality in 
order to reduce the risks of data misuse and misinterpretation (Devillers, Bédard, and 
Gervais 2004).

5.2.1 GEOSPATIAL DATA QUALITY AND UNCERTAINTY

In the geospatial literature, the notion of “quality” often mistakenly refers to data 
precision, uncertainty, or error. Data with good spatial precision are thus often seen 
as high-quality data. However, the notion of quality goes well beyond the unique 
concept of spatial precision. In fact, it is usually recognized as including two parts: 
internal quality and external quality.

Internal quality refers to the respect of data production standards and specifica-
tion. It is based on the absence of errors in the data and is thus a matter of data 
producers. According to several standard organizations (such as ISO, ICA, FGDC, 
and CEN), internal quality is defined using five aspects, also known as the “famous 
five”: (1) positional accuracy, (2) attribute accuracy, (3) temporal accuracy, (4) logical 
consistency, and (5) completeness (Guptill and Morrison 1995, ISO/TC-211 2002). 
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Information about internal quality is usually communicated to the users using meta-
data files transmitted with datasets by data producers (Devillers et al. 2007).

External quality evaluates if a dataset is suited for a specific need and hence 
refers to the notion of “fitness for use” (Juran, Gryna, and Bingham 1974; Chrisman 
1983; Veregin 1999; Morrison 1995; Aalders and Morrison 1998; Aalders 2002; 
Dassonville et al. 2002; Devillers and Jeansoulin 2006). From a user’s point of view, 
a dataset of quality meets or exceeds his expectations (Kahn and Strong 1998). This 
second definition has reached an official agreement by standardization organizations 
(e.g., ISO) and international organizations (e.g., IEEE).

Several researchers break down the concept of quality into sub-classes. Veregin 
(1999), inspired by the work of Berry (1964) and Sinton (1978), defines three compo-
nents for geospatial data quality: position, time, and theme. He associates these axes 
to the notion of precision and resolution (spatial, temporal, and thematic precision, 
etc.). Bédard and Vallière (1995) propose six aspects that can be used to evaluate 
spatial data quality:

  1. Definition is used to evaluate the nature of the data and the object it 
describes, i.e., the “what” (semantic, spatial, and temporal definitions).

 2. Coverage provides information about the space and the time for which the 
data is defined, i.e., the “where” and “when”.

 3. Genealogy is related to the data origin, its acquisition methods, and objec-
tives, i.e., the “how” and “why”.

 4. Precision is used to evaluate the value of a data and if it is acceptable for 
the expressed need (semantic, temporal, and spatial precision of the object 
and its attributes).

 5. Legitimacy is associated with the official recognition and the legal extent 
of a data (de facto standards, approved specifications, etc.).

 6. Accessibility provides information about the facility with which the user 
can obtain the data (costs, delivery time, confidentiality, copyrights, etc.).

Uncertainty is another inherent aspect of geospatial data and should be taken into 
account during their exploration and analysis. In fact, any cartographic representa-
tion of a phenomenon is an abstraction of the reality according to a specific goal. 
Given such abstraction and simplification processes, spatial data are, at different 
levels, inexact, incomplete, and not actual (Devillers 2004). According to Longley  
et al. (2001), it is impossible to produce a perfect representation of the reality and 
thus, this representation is inevitably associated with a certain uncertainty. Hence, 
there is always a risk associated with the use of spatial data that may be inadequate 
for some decision-making processes.

Bédard (1987) classifies uncertainty into four categories, which combine to pro-
vide the global uncertainty associated with an observed reality:

(1st order) Conceptual, which relates to the fuzziness in the identification 
of an observed reality
(2nd order) Descriptive, which relates to the uncertainty associated with 
the attributes values of an observed reality
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(3rd order) Locational, which relates to the uncertainty associated with 
the space and time localization of an observed reality
(4th order) Meta-uncertainty, which relates to the level to which the previ-
ous uncertainties are unknown

Though uncertainty cannot be eliminated in spatial databases, mechanisms can 
be used to (1) reduce it, and (2) absorb the residuals (Bédard 1987, Hunter 1999). 
According to Epstein, Hunter, and Agumya (1998), uncertainty may be reduced 
by acquiring additional information and improving the data quality. According to 
Bédard (1987), the residual uncertainty is absorbed when an entity, such as the data 
producer or the distributor, provides a guarantee for the dataset and will cover poten-
tial damages resulting from their use for a given purpose or when the user accepts the 
potential consequences of using the dataset. Absorption can be shared with insur-
ance companies or by contracting professionals with liability insurance. Uncertainty 
absorption relates to the monetary risk (e.g.,. in case of damages or a legal pursuit) 
and makes use of different combinations of the previous means depending on local 
laws and practices. In all cases, good professional practices and legal liability guide-
lines require using prevention mechanisms.

5.3 EXISTING APPROACHES TO PREVENT USERS 
FROM SPATIAL DATA MISUSES

Different mechanisms can be used to improve the prevention of inappropriate usages 
of spatial data. Existing methods are mostly intended to communicate information 
regarding data quality, characteristics, and limitations to the users. The traditional 
method consists of transmitting metadata along with spatial datasets. They are usu-
ally provided in separate files and contain highly technical information intended 
for geographic information system (GIS) specialists. However, such information is 
too cryptic to be understandable by typical users (Timpf, Raubal, and Werner 1996; 
Harvey 1998; Boin and Hunter 2007) and one is justified to assume the situation 
worsens with decision makers or data warehouse users who are further away from the 
technical details of the data acquisition and ETL processes. Furthermore, metadata 
are rarely integrated with the data, limiting their consultation and analysis as often 
required for GKD. In fact, it reduces the possibility of easily exploiting this informa-
tion directly during the analysis process (Devillers et al. 2007). As an alternative to 
the actual metadata format, some researchers propose different techniques to com-
municate data quality information based on different colors, textures, opacities, 3D 
representations, etc. (McGranaghan 1993, Beard 1997, Drecki 2002, Devillers and 
Beard 2006). Other researchers propose to provide end users with meaningful warn-
ings when they perform illogical GIS operations (e.g., measure a distance without 
having first set the geographical reference system) (Beard 1989, Hunter and Reinke 
2000). This is related to the concept of error-sensitive or error-aware GIS (Unwin 
1995, Duckham 2002).

Other researchers have tackled the fitness for use aspect by improving exist-
ing tools to select data that will best fit users’ needs (Lassoued, Jeansoulin, and 
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Boucelma 2003), performing risk analysis (Agumya and Hunter 1997), getting opin-
ions from experts (Levesque 2007), and even developing GKD tools to help these 
experts formulate their opinion by giving them the possibility to integrate, manage, 
and visualize data quality information at different levels of detail (Devillers 2004; 
Devillers, Bédard, and Jeansoulin 2005; Devillers et al. 2001; Levesque 2007).

From a data-warehousing point of view, few researchers have tackled the issue 
of data misuse and misinterpretation. Some have first identified cases where spe-
cific online analytical processing (OLAP) operators may lead to inappropriate usages 
(Lenz and Shoshani 1997, Lenz and Thalheim 2006). Others have suggested restrict-
ing the navigation or informing the user when results may be incorrect (Horner, Song, 
and Chen 2004). Those solutions, however, remain at a theoretical stage and contrib-
ute only partially to a global strategy to prevent datacube misuses. They address a 
subset of the issues related to data warehousing architectures and, above all, they 
do not consider the spatial aspect of the data. For example, they cannot be used to 
describe and illustrate the numerous conflicts that must be faced when integrating 
heterogeneous spatial datasets coming from different producers, or the semantic and 
geometric aggregations aspects that must be considered for an informed use of data-
cubes. In fact, most of these solutions are intended for experts in spatial information 
and data quality rather than the typical users of GKD or BI applications.

5.4 AN APPROACH BASED ON RISK MANAGEMENT 
TO PREVENT DATA MISUSES IN DATA 
WAREHOUSING AND GKD CONTEXTS

We suggest using a risk-management approach to face the complexity of the overall 
data quality issues during the design and feeding of the warehouse datacube. According 
to ISO/IEC (1999), a risk is defined as a “combination of the probability of occurrence 
of harm and the severity of that harm.” Risk management refers to the reduction of 
a risk to a level considered acceptable (Morgan 1990, Renn 1998). Our approach is 
inspired from the risk management approach proposed by ISO/IEC Guide 51 (1999) 
and considers the notion of “harm” as a data misuse or misinterpretation. Such an 
approach was proposed by Agumya and Hunter (1999) for transactional geospatial 
data and is here geared toward multithemes, multiscales, and multiepochs decision-
support data underlying GKD applications, and in particular a datacube/SOLAP con-
text. However, the most noticeable difference with the approach proposed by Agumya 
and Hunter is that the proposed solution takes place during the design process, that is, 
in a more preventive mode. This key difference relies on the fact that the raison d’être 
and capabilities of datacubes allow us to identify a priori the data that will be com-
pared thematically, spatially, temporally, and at different levels of granularity. Several 
datacubes are typically built from the same data warehouse according to the users’ 
demands and data quality must be analyzed for each application using these cubes. 
Consequently, the star or snowflake schemas must be designed and populated with 
data quality in mind to reduce the risks of misuses. As a result, we advocate enriching 
system development methods (e.g., OMG-MDA or IBM rational unified process) with 
risk-management processes specific to the prevention of spatial data misuses.
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The proposed approach is a continuous and iterative process that fits with the 
whole datacube development cycle (needs analysis, design, implementation, feeding). 
Figure 5.1 shows the different steps proposed: identify risks, analyze them, evaluate 
potential dangers, prepare responses toward these risks of misuse or misinterpreta-
tion, and document the risk-management process as required for quality audits.

Risk identification: This critical step determines the efficiency and quality of the 
subsequent phases. It aims at finding what could go wrong when using the data, in a 
way that is as exhaustive as possible. This phase typically involves analyzing (1) the 
documentation about the data to be integrated (i.e., metadata, data dictionary, source 
data models), (2) the documentation about the designed datacubes (datacube models, 
ETL processes, aggregation functions), (3) the material used to train the users, and (4) 
the existing warnings (e.g., footnotes in reports, tables, and charts, report forewords, 
restricted accesses, etc.). Once identified, we suggest classifying the risks according 
to their origin (source) to facilitate further the definition of actions to be undertaken 
to control them. These categories are (1) data sources (e.g., missing data), (2) ETL 
procedures (e.g., erroneous aggregation formula), (3) datacube structure (e.g., not 
satisfying summarizability integrity constraints), and (4) SOLAP functionalities and 
operators (e.g., adding on the fly a new measure with faulty formula).

Risk analysis: The second step consists of analyzing, for each risk, its probability 
of occurrence and the severity of the consequences if it occurs. Risk analysis can 
rely on different techniques such as simulation techniques or probabilistic analysis. 
We can also look at relevant lessons learned during past projects, consult experts 
and specialists, etc. These two parameters, that is, the probability of occurrence and 
the severity of the consequences, are usually evaluated according to an ordinal scale 
composed of three to five levels (e.g., low, moderate, and high).

Risk identification

Risk analysis

Acceptable
risk?

Avoidance
transfer
control

Risk response

No
Yes

Risk audit

Risk evaluation

FIGURE 5.1 Proposed steps of the formal risk analysis method.

© 2009 by Taylor & Francis Group, LLC



106 Geographic Data Mining and Knowledge Discovery

Like other risk-based approaches, the risk evaluation step is not a simple task; 
because it demands that we look in a certain way in the future, it often requires expe-
rience, judgment, and sometimes intuition. In addition to these, we also consider that 
an excellent knowledge and understanding of the datacube users’ needs and skills, 
which represent a legal duty of the datacube producer, are necessary to have the best 
risk analysis possible.

Risk evaluation: The previous results are combined in a matrix to determine the 
overall level of danger related to each risk (see Table 5.1).

Risk acceptability: Based on the global level of danger previously defined, we must 
decide whether a risk is acceptable. This analysis is sensitive and should be done very 
carefully as it may lead to legal consequences. For instance, in front of an accept-
able risk (e.g., a risk with an overall level of danger at low), a datacube producer may 
accept it as it is without communicating the risk to the end-user. In case of damages 
for the end-user, the data producer can then be legally declared liable to have chosen 
to ignore it. If the risk is considered unacceptable, the producer must then choose a 
response mechanism in order to manage it (see risk response in the following).

At this stage, it is recommended to involve end-users and to select with them 
the appropriate response mechanisms. When users are involved, they understand the 
risks and approve the mechanisms proposed; they become directly involved in 
the uncertainty absorption process. Consequently, the datacube designers/providers 
are better protected in case of problems related to data quality and legal actions.

Risk response: This step is required to manage the risks that are unacceptable to 
the users. This is where the datacube producer suggests how to cope with those risks. 
Several mechanisms can be used, such as

Avoidance: This mechanism aims at reducing an unacceptable risk 
by eliminating the source from which it emerges. For example, a data 
producer may decide not to provide data considered too sensitive or not 
reliable for the users and their intended usages. Such action is frequent 
when data are associated with a coefficient of variation above a certain 
threshold. It is usually applied to moderate to high risks that appear late in 
the development cycle (Kerzner 2006).

TABLE 5.1
General Hierarchy Matrix

Probability of Occurrence

Low Moderate High

Severity level High M H H

Moderate L M H

Low L L M

Note: L = Low, M = Moderate, H = High.

Adapted from Kerzner, H., 2006. Project Management: A Systems 
Approach to Planning, Scheduling, and Controlling, 9th ed., John Wiley & 
Sons, New York.
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Transfer: The transfer mechanism is used to move or share a risk with 
another entity in order to reduce it to a lower level for the datacube pro-
ducer. For instance, the datacube producer can transfer a risk to a third 
party (such as an insurance company) who will become liable for the end-
user in part or in totality.
Control: The control mechanism suggests reducing the risk by taking pre-
ventive actions. The ISO/IEC Guide 51 standard states that risk reduction 
must first take place in the design phase, for example by modifying the con-
ceptual model of the datacube or implementing integrity constraints. This 
is a key step to minimize risks. In addition, Guide 51 suggests producing 
information for security purposes, that is, “warnings.” General warnings 
can be communicated to datacube users in a user manual while specific 
ones (i.e., context-sensitive warnings) can be automatically prompted in 
the SOLAP application when users are facing a risky query.
We propose warnings according to the ISO 3864-2 (2004) standard for 
product safety labels. This standard proposes to communicate (1) the dan-
ger level of the risk with standardized alert words (e.g., danger, warning, 
or caution), (2) the nature of the risk with a symbol, (3) the consequence 
of the risk, and (4) how to avoid the risk. Figure 5.2 shows such a warning 
message that could be prompted when analyzing the data.

The remaining risks must be treated at the end-user level, for example by provid-
ing training, limiting access, building user profiles, etc. Defining the category of 
controls to apply and when to apply them require an excellent collaboration between 
the datacube producer and the users.

Risk audit: The last step is to document the previous steps as if preparing for an 
audit. Ideally, this documentation is made while designing and feeding the data-
cube as it is mainly during these steps that we think about or discover the potential 
problems. The documentation about a warning must include the message itself, the 

FIGURE 5.2 Example of context-sensitive warning in a SOLAP application.
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involved elements, and the triggering elements (e.g., before the SOLAP query or 
once the results are displayed). This is helped by a series of forms implemented into a 
Unified Modeling Language (UML)-based CASE (computer-assisted software engi-
neering) tool, and by a dictionary of terms and definitions describing these processes 
(Levesque 2008). Such documentation is very important from a legal standpoint 
because (1) this documentation can help prove the designer/producer complied with 
their legal duties, (2) it is helpful to prepare training material, and (3) it is an impor-
tant source of information to manage risks in future datacube developments. More 
generally, it also helps system designers to build systems that are more robust.

5.5 LEGAL ISSUES RELATED TO THE DEVELOPMENT 
OF SPATIAL DATACUBES

Using a risk management approach to prevent data misuse is not only a matter of 
satisfying users’ requirements, it is also a matter of legal liability principles. This 
section summarizes the legal principles that apply to the datacube producers and 
datacube users who are linked by a business relationship. First, we describe legal 
criteria related to the internal quality of data. Second, we describe the criteria related 
to the external quality when developing a datacube for a given purpose. Third, we 
summarize the legal duties of datacube users. Finally, we conclude with the perti-
nence of using a risk-management approach that involves both datacube producers 
and users during production of the datacube.

5.5.1 LEGAL CRITERIA FOR SPATIAL DATACUBE PRODUCERS 
RELATED TO THE INTERNAL QUALITY OF DATA

Spatial datacubes are a special category of spatial database. They are not yet sold 
as commercial datasets per se, they are still designed as ad hoc custom services 
for a given need, and they are populated under the supervision of a professional. 
In general, it is recognized in many countries (such as in Canada and France) that 
database production is under the same legal liability regime as information produc-
tion by agencies (Le Tourneau 2001, 2002; Le Tourneau and Cadiet 2002; Vivant  
et al. 2002; Dubuisson 2000; Côté et al. 1993). When offering services, the datacube 
producer must care about internal data quality (quality of the content) and external 
quality (fitness-for-use and quality of the presentation).

Regarding internal quality, unless specified, database producers are expected 
to deliver data that are exact, complete, and up-to-date because these are the three 
most important legal criteria used to assess internal quality (i.e., a subset of the ISO/
TC211 data quality indicators). Applying these criteria to spatial datacubes raises 
some issues (e.g., cascading updates from source databases, completeness of aggre-
gation and summarization of data, exactness of statistical indicators and multiscale 
generalized maps, time-varying maps, etc.), especially as spatio-temporal data are 
known to convey inherent uncertainty that cannot be eliminated (Gervais et al. 
2007, Gervais 2004, Bédard 1987). Consequently, as it is the case for databases 
in general (Lucas 2001), one cannot always expect an internally perfect database 
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as it is often impossible to achieve. Rather, it is expected for the data producer to 
use appropriate means to achieve the required internal quality. Database produc-
ers are thus typically facing an obligation of means as opposed to an obligation 
of results. Obligation of means refers to the obligation of the provider to act care-
fully to meet the expectations of the client and consequently to use all reasonable 
means to achieve the desired result, without warranting a perfect result (Baudouin 
and Jobin 1998). Consequently, it is expected for a datacube producer to formally 
adopt procedures especially tailored toward ensuring the internal quality of data, 
but without imposing the production of perfect data. Legally, the emphasis is given 
to the verification procedures that are used rather than the result obtained. In par-
ticular, in a datacube design or an ETL process, the datacube producer should not 
perform a task without knowing its impact on the resulting values (e.g., measures 
in the fact table).

5.5.2 LEGAL CRITERIA FOR SPATIAL DATACUBE PRODUCERS 
RELATED TO THE EXTERNAL QUALITY OF DATA

From a legal standpoint, the external quality is directly related to the diffusion and 
method of presenting data to the users. When the producer cannot guarantee the 
exactness of the data (as is typically the case with spatial data), there is an obligation 
to properly inform the users. Such obligation of proper information is in fact the legal 
mechanism to deal with imperfect products. It is expected that a producer provide all 
the information necessary to the users so they can properly assess the adequateness 
of a product concerning their needs. The level of information to provide is directly 
proportional to the incompetency of the user and to the level of complexity, tech-
nicality, and dangerousness of the product when being used. Consequently, from a 
legal point of view, evaluating the external quality of a spatial datacube becomes the 
evaluation of the information delivered with the spatial datacube.

Depending on the level of the uncertainty inherent to the datacube or on the level 
of dangerousness regarding the use of the datacube, one finds three types of such 
obligations: typical information, advice, and warning. Typical information does not 
require influencing the decision of the user (Lefebvre 1998) but it must be provided 
in a language and level of detail compatible with the expected typical users’ level 
of knowledge. For example, providing only the metadata of a datacube could be 
sufficient if the user has the necessary knowledge to understand the technical terms 
related to spatial metadata and their impact on the proper use of the data (e.g., a well-
trained and experienced user). The obligation of advising becomes important when 
the producer estimates that the provided datacube is complex and highly technical, or 
that the users need specific information because they do not have the necessary back-
ground to understand the characteristics of the datacubes or the consequences related 
to the planned usage (Lucas 2001). Such obligations may lead the datacube producer 
to perform additional research or analysis or to modify the datacube (Le Tourneau 
2002). Finally, the obligation to provide warnings is always there (Baudouin and 
Deslauriers 1998), especially when one estimates that there are potential dangers to 
using the datacube. Such warnings must be clearly written, complete and up-to-date, 
and presented to users as soon as a danger is seen as potential (even before a final 
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conclusion). This is an obligation of prevention that may direct the users away from 
erroneous usages or toward good usages.

Preventing dangerous usages by providing warnings requires identifying and 
communicating the anticipated risks (Rousseau 1999). A risk-management approach 
geared toward users’ needs and level of tolerance to risks is mandatory. When 
uncertainty is high, the datacube producer must increase the degree of awareness 
of users. Considering the higher level of knowledge of the datacube producer, it is 
expected that he or she will make up for the users’ lack of appropriate knowledge. 
Several court decisions regarding spatial data support this conclusion (e.g., breaking 
underground infrastructures,* marine charts depth errors,† erroneous transportation 
costs calculation, ‡ airplane crashes with deaths,§,¶ shipwrecks,**,†† unreasonable fire 
truck delay, ‡‡ hunting in the wrong area,§§ cross-country skier death,¶¶ and building a 
house in a forbidden area***).

5.5.3 LEGAL CRITERIA FOR USERS OF SPATIAL DATACUBES

Users of datacubes also have legal obligations to ensure data are properly used. The 
most important obligations are those of collaboration with the datacube producer, 
constancy when defining the needs, and consistency when using the datacube (i.e., 
in accordance to the conditions emitted by the datacube producer) (Le Tourneau 
2002). Collaboration must take place continuously when negotiating, defining the 
expectations, providing the required documentation and information, identifying the 
potential risks, designing and populating the datacube, and defining the means to 
deal with the identified risks of usage.

5.5.4 LEGAL PERTINENCE OF A RISK-MANAGEMENT APPROACH

From a legal perspective, using a risk-management approach is necessary to protect 
both the datacube producers and users, in particular.

Implementing formally such an approach within the datacube develop-
ment method indicates the producer’s will to take the necessary means 
to control rigorously the development of the cube and the decisions made 
during this phase.

* Bell Canada v. Québec (Ville), [1996) A.Q. 172 (C.S.); Excavations Nadeau & Fils. v. Hydro-Québec, 
[1997) A.Q. 1972 (C.S.).

† Fraser Burrard Diving Ltd. v. Lamina Drydock Co. Ltd., [1995) B.C.J. 1830 (B.-C.S.C.).
‡ Côté v. Consolidated Bathurst, [1990) A.Q. 64 (Qué. C.A.).
§  Aetna Casualty & Surety Co. v. Jeppesen & Co., 642 F.2d 339 (1981).
¶ Brocklesby v. United States of America, 767 F.2d. 1288 (9th. Cir., 1985); Times Mirror Co v. Sisk, 593 

P.2d. 924 (Ariz.1978).
** Algoma Central and Hudson Bay Railway Co. v. Manitoba Pool Elevators Ltd. [1966) S.C.R. 359; 

Warwick Shipping Ltd. v. Canada [1983) C.F. 807 (C.A.).
†† Iron Ore Transport Co. v. Canada, [1960) Ex. C.R. 448.
‡‡ Bayus v. Coquitlam (City), [1993) B.C.C.S. 1751; Bell v. Winnipeg (City), [1993) M.J. 256.
§§ R. v. Rogue River Outfitters Ltd. [1996) Y.J. 137 (Y.T.C.).
¶¶ Rudko v. Canada, [1983) C.F. 915 (C.A.).
*** Sea Farm Canada v. Denton, [1991) B.C.J. 2317 (B.-C.S.C.).
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Continuously communicating with users allows the datacube producer to 
better assess their tolerance to risk and to adapt the solutions accordingly. 
It also increases users’ awareness.
Involving users’ collaboration in the complete process helps them to fulfill 
their duty of collaboration.
Producing proper documentation helps datacube producers to meet their 
legal duty for information, advices, and warnings. The documents can be 
used for users’ training or for further reference, and they become tangible 
proof that the work has been done.

A detailed description of the proposed method is beyond the goal of this chapter; 
however, it can be found in Levesque (2008). Overall, such an approach helps to 
clearly share the responsibilities between datacube producers and datacube users 
with regard to the risks of potential misuses. In addition, it adds rigour in the data-
cube development cycle, and increased users’ satisfaction as well as a higher level of 
professionalism for the datacube producer.

5.6 CONCLUSION

This chapter focused on spatial datacube quality and, more specifically, on an 
approach to manage the risks of data misuse. We have synthesized issues related 
to internal and external data quality and presented how they have impacts on the 
design, populating, and use of spatial datacubes. This is a very recent concern in the 
GKD and spatial data warehousing community and indicates a new level of maturity. 
In particular, we have introduced the basis for adopting a risk management approach 
while developing datacubes. Such an approach allows reduction of the risks of data 
misuse, improves the involvement of users in the development of datacubes, and 
helps identify the responsibilities of the involved participants. Finally, we have made 
an overview of the legal motivations to adopt such a risk-management approach. 
Although such an approach cannot prevent all risks of data misuse, it is a means to 
prevent such risks and to increase users’ awareness, leading to spatial datacubes with 
higher internal and external quality.
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6.1 INTRODUCTION

Widespread use of spatial databases [42], an important subclass of multimedia data-
bases, is leading to an increased interest in mining interesting and useful but implicit 
spatial patterns [23, 29, 18, 40]. Traditional data mining algorithms [1] often make 
assumptions (e.g., independent, identical distributions) which violate Tobler’s first 
law of geography: everything is related to everything else but nearby things are more 
related than distant things [45]. In other words, the values of attributes of nearby 
spatial objects tend to systematically affect each other. In spatial statistics, an area 
within statistics devoted to the analysis of spatial data, this is called spatial autocor-
relation [12]. Knowledge discovery techniques that ignore spatial autocorrelation 
typically perform poorly in the presence of spatial data. The simplest way to model 
spatial dependence is through spatial covariance. Often the spatial dependencies 
arise due to the inherent characteristics of the phenomena under study, but in partic-
ular they arise due to the fact that imaging sensors have better resolution than object 
size. For example, remote sensing satellites have resolutions ranging from 30 m 
(e.g., Enhanced Thematic Mapper of Landsat 7 satellite of NASA) to 1 m (e.g., 
IKONOS satellite from SpaceImaging), while the objects under study (e.g., urban, 
forest, water) are much bigger than 30 m. As a result, the per-pixel-based classifi-
ers, which do not take spatial context into account, often produce classified images 
with salt and pepper noise. These classifiers also suffer in terms of classification 
accuracy. 

There are two major approaches for incorporating spatial dependence into classifi-
cation/prediction problems. They are spatial autoregression models (SAR) [3, 24, 26, 
36, 37, 25, 28] and Markov random field (MRF) models [15, 11, 21, 44, 8, 48, 27, 2].  
Here we want to make a note on the terms spatial dependence and spatial context. 
These words originated in two different communities. Natural resource analysts and 
statisticians use spatial dependence to refer to spatial autocorrelation and the image 
processing community uses spatial context to mean the same. We use spatial context, 
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spatial dependence, and spatial autocorrelation interchangeably to relate to readers of 
both communities. We also use classification and prediction interchangeably. Natural 
resource scientists, ecologists and economists have incorporated spatial dependence 
in spatial data analysis by incorporating spatial autocorrelation into logistic regres-
sion models (called SAR). The SAR model states that the class label of a location is 
partially dependent on the class labels of nearby locations and partially dependent 
on the feature values. SAR tends to provide better models than logistic regression 
in terms of achieving higher confidence (R2). Similarly MRFs is a popular model 
for incorporating spatial context into image segmentation and land-use classification 
problems. Over the last decade, several researchers  [44, 21, 48, 33] have exploited 
spatial context in classification using MRF to obtain higher accuracies over their 
counterparts (i.e., noncontextual classifiers). MRFs provide a uniform framework 
for integrating spatial context and deriving the probability distribution of interacting 
objects. 

We compare the SAR and MRF models in this chapter using a common proba-
bilistic framework. SAR makes more restrictive assumptions about the probability 
distributions of feature values as well as the class boundaries. We show that SAR 
assumes the conditional probability of a feature value given a class label that belongs 
to an exponential family, for example, Gaussian, binomial, etc. In contrast, MRF 
models can work with many other probability distributions. SAR also assumes the 
linear separability of classes in a transformed feature space resulting from the local 
smoothing of feature values based on autocorrelation parameters. MRFs can be 
used with nonlinear class boundaries. Readers familiar with classification models 
which ignore spatial context may find the following analogy helpful. The relation-
ship between SAR and MRF is similar to the relationship between logistic regression 
and Bayesian classification. 

Recent advances in remote sensors have resulted in a huge collection of high 
temporal, spatial, and spectral resolution images. The high-resolution digital imag-
ery acquired by remote sensing technology has applications in areas such as natural 
resource monitoring, thematic mapping, flood and fire disaster monitoring, target 
detection, and urban growth modeling. There is a great demand for accurate land 
use and land cover classification derived from remotely sensed data in the appli-
cations mentioned previously. However, increasing spatial and spectral resolution 
puts several constraints on supervised classification. The increased spatial resolution 
invalidates the most widely used assumption of the traditional data mining algo-
rithms (e.g., independent, identical distributions). Often used maximum likelihood 
estimation requires large amounts of training data for accurate estimation of model 
parameters and increasing spectral resolution further compounds this problem. We 
present a novel spatial semisupervised algorithm that addresses spatial autocorrela-
tion as well as parameter estimates with small learning samples. 

6.1.1 OUTLINE AND SCOPE OF THIS CHAPTER

The rest of the chapter is organized as follows. In Section 6.2.1 we introduced two 
motivating examples which will be used throughout the chapter. In Section 6.2.3 we 
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formally define the location prediction problem. Section 6.3 presents a comparison of 
classical approaches that do not consider spatial context, namely logistic regression and 
Bayesian classification. In Section 6.4 we present two modern approaches that model 
spatial context, namely SAR [24] and MRFs [27]. In Section 6.5 we compare and 
contrast the SAR and MRF models in a common probabilistic framework and provide 
experimental results. In Section 6.6 we introduce a spatial semisupervised learning 
scheme, and provide conclusions and future research directions in Section 6.7. 

6.2 ILLUSTRATIVE APPLICATION DOMAINS

6.2.1 BIRD NESTING LOCATION PREDICTION

First we introduce an example to illustrate the different concepts in spatial data min-
ing. We are given data about two wetlands, named Darr and Stubble, on the shores 
of Lake Erie in Ohio in order to predict the spatial distribution of a marsh-breeding 
bird, the red-winged blackbird (Agelaius phoeniceus) [34, 35]. The data were col-
lected from April to June in two successive years, 1995 and 1996. 

A uniform grid was imposed on the two wetlands and different types of measure-
ments were recorded at each cell or pixel. In total, values of seven attributes were 
recorded at each cell. Domain knowledge is crucial in deciding which attributes are 
important and which are not. For example, Vegetation Durability was chosen over 
Vegetation Species because specialized knowledge about the bird-nesting habits of the 
red-winged blackbird suggested that the choice of nest location is more dependent on 
plant structure and plant resistance to wind and wave action than on the plant species. 

An important goal is to build a model for predicting the location of bird nests in 
the wetlands. Typically the model is built using a portion of the data, called the learn-
ing or training data, and then tested on the remainder of the data, called the testing 
data. For example, later on we will build a model using the 1995 data on the Darr 
wetland and then test it on either the 1996 Darr or 1995 Stubble wetland data. In the 
learning data, all the attributes are used to build the model and in the training data, 
one value is hidden, in our case the location of the nests. Using knowledge gained 
from the 1995 Darr data and the value of the independent attributes in the test data, 
we want to predict the location of the nests in Darr 1996 or in Stubble 1995. 

In this chapter we focus on three independent attributes, namely Vegetation 
Durability, Distance to Open Water, and Water Depth. The significance of these 
three variables was established using classical statistical analysis [35]. The spatial 
distribution of these variables and the actual nest locations for the Darr wetland in 
1995 are shown in Figure 6.1. These maps illustrate the following two important 
properties inherent in spatial data. The value of attributes that are referenced by 
spatial location tend to vary gradually over space. While this may seem obvious, 
classical data-mining techniques, either explicitly or implicitly, assume that the data 
is independently generated. For example, the maps in Figure 6.2 show the spatial 
distribution of attributes if they were independently generated. One of the authors 
has applied classical data mining techniques like logistic regression [35] and neural 
networks [34] to build spatial habitat models. Logistic regression was used because 
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the dependent variable is binary (nest/no-nest) and the logistic function “squashes” 
the real line onto the unit-interval. The values in the unit-interval can then be inter-
preted as probabilities. The study concluded that with the use of logistic regression, 
the nests could be classified at a rate of 24% better than random [34]. The fact that 
classical data-mining techniques ignore spatial autocorrelation and spatial hetero-
geneity in the model-building process is one reason why these techniques do a poor 
job. A second, more subtle, but equally important reason is related to the choice of 
the objective function to measure classification accuracy. For a two-class problem, 
the standard way to measure classification accuracy is to calculate the percentage of 
correctly classified objects. This measure may not be the most suitable in a spatial 
context. Spatial accuracy — how far the predictions are from the actuals — is as 
important in this application domain due to the effects of discretization of a con-
tinuous wetland into discrete pixels, as shown in Figure 6.3. Figure 6.3(a) shows the 

FIGURE 6.1 (a) Learning dataset: The geometry of the wetland and the locations of the 
nests. (b) The spatial distribution of vegetation durability over the marshland. (c) The spatial 
distribution of water depth. (d) The spatial distribution of distance to open water.
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actual locations of nests and Figure 6.3(b) shows the pixels with actual nests. Note 
the loss of information during the discretization of continuous space into pixels. 
Many nest locations barely fall within the pixels labeled “A” and are quite close to 
other blank pixels, which represent “no-nest”. Now consider two predictions shown 
in Figure 6.3(c) and Figure 6.3(d). Domain scientists prefer the prediction that in 
Figure 6.3(d) over Figure 6.3(c), since predicted nest locations are closer on average 
to some actual nest locations. The classification accuracy measure cannot distin-
guish between Figure 6.3(c) and Figure 6.3(d), and a measure of spatial accuracy is 
needed to capture this preference. 

A simple and intuitive measure of spatial accuracy is the average distance to  
nearest prediction (ADNP) from the actual nest sites, which can be defined as 

 

ADNP A P
K

d A A nearest Pk k

k

K

( , ) ( , . ( )).
1

1

Here Ak represents the actual nest locations, P is the map layer of predicted nest loca-
tions and Ak.nearest(P) denotes the nearest predicted location to Ak. K is the number 
of actual nest sites. 

FIGURE 6.2 Spatial distribution satisfying random distribution assumptions of classical 
regression.
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6.2.2 REMOTE SENSING IMAGE CLASSIFICATION

Land management organizations and the public have a need for more current regional 
land cover information to manage resources and monitor land cover change. Remote 
sensing, which provides inexpensive, synoptic-scale data with multitemporal cover-
age, has proven to be very useful in land cover mapping, environmental monitoring, 
and forest and crop inventory. A common task in analyzing remote sensing imagery 
is supervised classification, where the objective is to construct a classifier based on a 
few labeled training samples and then to assign a label (e.g., forest, water, urban) to 
each pixel (vector, whose elements are spectral measurements) in the entire image. 
There is a great demand for accurate land use and land cover classification derived 
from remotely sensed data in various applications. Classified images (thematic infor-
mation) are also important inputs to geographic information systems (GIS). 

A satellite image consists of n-bands or channels. Each band corresponds to mea-
surements in a particular wavelength of the electromagnetic spectrum. Table 6.1 
shows Landsat 7 image bands and corresponding wavelengths. Sample raw satellite 
image and corresponding classified image are shown in Figure 6.4. A typical clas-
sification process involves several steps: (1) randomly generate samples (roughly 10 
to 100  number of bands per class) from satellite image, (2) collect ground truth 
for each sample (by field visits, or expert knowledge derived from several ancillary 
sources), (3) divide the labeled samples into training and test datasets, (4) select 
appropriate classification model and train the classifier using training dataset, (5) 
evaluate model performance on test dataset, and (6) finally classify the entire image 
using the classification model generated in step (4). Figure 6.4(b) shows an MLC 
classification output generated by following these six steps. 

6.2.3 LOCATION PREDICTION: PROBLEM FORMULATION

The location prediction problem is a generalization of the nest location prediction 
problem. It captures the essential properties of similar problems from other domains 

TABLE 6.1
Landsat 7 Spectral Bands

Band
Number

Wavelength
Interval m Spectral Response

1 0.45-0.52 Blue-Green

2 0.52-0.60 Green

3 0.63-0.69 Red

4 0.76-0.90 Near-IR

5 1.55-1.75 Mid-IR

6 10.40-12.50 Thermal-IR

7 2.08-2.35 Mid-IR
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including crime prevention and environmental management. The problem is for-
mally defined as follows: 

Given: 

A spatial framework S consisting of sites {s1,  , sn} for an underlying 
geographic space G. 
A collection of explanatory functions fXk : S Rk, k  1,  , K. Rk is the 
range of possible values for the explanatory functions. 
A dependent class variable fL : S  L  {l1,  lM}.
Value for parameter , relative importance of spatial accuracy. 

Find: Classification model: f̂L : R1 Rk  L. 

Objective: Maximize similarity ( ( ˆ ( , , )( ( )) ( )map s f f f map fsi L X Xk L1
1  

classification_accuracy spatial_( ˆ , ) ( )f fL L aaccuracy(( ˆ , )f fL L

Constraints: 

 1. Geographic space S is a multidimensional Euclidean space.† 
 2. The values of the explanatory functions, fX1, fXk and the response func-

tion fL may not be independent with respect to those of nearby spatial sites, 
i.e., spatial autocorrelation exists. 

 3. The domain Rk of the explanatory functions is the one-dimensional domain 
of real numbers. 

 4. The domain of the dependent variable, L  {0, 1}. 

The previous formulation highlights two important aspects of location prediction. 
It explicitly indicates that (1) the data samples may exhibit spatial autocorrelation 

† The entire surface of the Earth canot be modeled as a Euclidean sapce but locally the approximation 
holds true.

FIGURE 6.4 Sample Red, Green, Blue, (RGB) image (a) and corresponding maximum likelihood 
classified Maximum Likelihood Classifier (MLC) image (b). See color insert after page 148.
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and (2) an objective function, i.e., a map similarity measure is a combination of 
classification accuracy and spatial accuracy. The similarity between the dependent 
variable fL and the predicted variable f̂L

 is a combination of the “traditional clas-
sification” accuracy and a representation dependent “spatial classification” accuracy. 
The regularization term  controls the degree of importance of spatial accuracy and 
is typically domain dependent. As 0, the map similarity measure approaches 
the traditional classification accuracy measure. Intuitively,  captures the spatial 
autocorrelation present in spatial data. 

The study of the nesting locations of red-winged black birds [34, 35] is an instance 
of the location prediction problem. The underlying spatial framework is the collec-
tion of 5m  5m pixels in the grid imposed on marshes. Explanatory variables are, 
for example, water depth, vegetation durability index, distance to open water, map 
pixels to real numbers. Dependent variables are, for example, nest locations, map 
pixels to a binary domain. The explanatory and dependent variables exhibit spatial 
autocorrelation, for example, gradual variation over space, as shown in Figure 6.1. 
Domain scientists prefer spatially accurate predictions which are closer to actual 
nests, that is,  > 0. 

6.3 CLASSIFICATION WITHOUT SPATIAL DEPENDENCE

In this section we briefly review two major statistical techniques that have been com-
monly used in the classification problem. These are logistic regression modeling 
and Bayesian classifiers. These models do not consider spatial dependence. Readers 
familiar with these two models will find it easier to understand the comparison 
between SAR and MRF. 

6.3.1 LOGISTIC REGRESSION MODELING

Given an n—vector y of observations and an n m matrix X  of explanatory data, 
classical linear regression models the relationship between y and X  as 

 y  X   

Here X  [1, X] and m
t. The standard assumption on the error vector 

 is that each component is generated from an independent, identical, zero-mean and 
normal distribution, that is, i  N(0, 2). 

When the dependent variable is binary, as is the case in the “bird-nest” example, 
the model is transformed via the logistic function and the dependent variable is inter-
preted as the probability of finding a nest at a given location. Thus,

 
Pr( | ) .l y e

e

y

y1

This transformed model is referred to as logistic regression [3]. 
The fundamental limitation of classical regression modeling is that it assumes 

that the sample observations are independently generated. This may not be true in 
the case of spatial data. As we have shown in our example application, the explana-
tory and the independent variables show a moderate to high degree of spatial auto-
correlation (see Figure 6.1). The inappropriateness of the independence assumption 
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shows up in the residual errors, the i ’s. When the samples are spatially related, the 
residual errors reveal a systematic variation over space, that is, they exhibit high spa-
tial autocorrelation. This is a clear indication that the model was unable to capture 
the spatial relationships existing in the data. Thus, the model may be a poor fit to the 
geospatial data. Incidentally, the notion of spatial autocorrelation is similar to that of 
time autocorrelation in time series analysis but is more difficult to model because of 
the multidimensional nature of space. A statistic that quantifies spatial autocorrela-
tion is introduced in the SAR model. 

Also the logistic regression finds a discriminant surface, which is a hyperplane in 
feature space as shown in Figure 6.5. Formally, a logistic regression based classifier 
is equivalent to a perceptron [19, 20, 41], which can only separate linearly separable 
classes. 

6.3.2 BAYESIAN CLASSIFICATION

Bayesian classifiers use Bayes’ rule to compute the probability of the class labels 
given the data: 

 
Pr

Pr

Pr
( | )

( | )Pr( )

( )
l X

X l l

Xi
i i

 
(6.1)

In the case of the location prediction problem, where a single class label is pre-
dicted for each location, a decision step can assign the most-likely class chosen by 
Bayes’ rule to be the class for a given location. This solution is often referred to as 
the maximum a posteriori (MAP) estimate. 

Given a learning data set, Pr(li) can be computed as a ratio of the number 
of locations sj with fL(sj )  li to the total number of locations in S. Pr(X | li) 
also can be estimated directly from the data using the histograms or a kernel 

FIGURE 6.5 Two-dimensional feature space, with two classes ( : nest, : no-nest) that can 
be separated by a linear surface.
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density estimate over the counts of locations sj in S for different values X of 
features and different class labels li. This estimation requires a large training set 
if the domains of features  fXk allow a large number of distinct values. A pos-
sible approach is that when the joint-probability distribution is too complicated 
to be directly estimated, then a sufficiently large number of samples from the 
conditional probability distributions can be used to estimate the statistics of the 
full joint probability distribution. Pr(X) need not be estimated separately. It can 
be derived from estimates of Pr(X | li) and Pr(li) Alternatively it may be left as 
unknown, since for any given dataset, Pr(X) is a constant that does not affect the 
assignment of class labels. 

Table 6.2 summarizes key properties of logistic regression based classifiers and 
Bayesian classifiers. Both models are applicable to the location prediction prob-
lem if spatial autocorrelation is insignificant. However, they differ in many areas. 
Logistic regression assumes that the Pr(X  li) distribution belongs to an expo-
nential family (e.g., binomial, normal) whereas Bayesian classifiers can work with 
arbitrary distribution. Logistic regression finds a linear classifier specified by  
and is most effective when classes are not linearly separable in feature space, since 
it allows nonlinear interaction among features in estimating Pr(X | li). Logistic 
regression can be used with a relatively small training set since it estimates only 
(k  1) parameters, that is, . Bayesian classifiers usually need a larger training set 
to estimate Pr(X | li) due to the potentially large size of feature space. Within the 
machine learning community, logistic regression is considered as an example of 
discriminative learning and Bayesian classification as an instance of generative 
learning [31]. In many domains, parametric probability distributions (e.g., nor-
mal [44], Beta) are used with Bayesian classifiers if large training datasets are not 
available. 

TABLE 6.2
Comparison of Logistic Regression and Bayesian Classification

Classifier

Criteria Logistic regression Bayesian

Input
f f fx x ik1

, , , f f fx x ik1
, , ,

Intermediate result Pr(li), Pr(X|li) using kernel estimate

Output Pr(li|X) based on Pr(li|X)  based on Pr(li) and Pr(X|li) 

Decision Select most-likely class Select most-likely class

for a given feature value for a given feature value

Assumptions

- Pr(X |li) Exponential family —

- Class boundaries Linearly separable —

in feature space

- Autocorrelation in class labels None None
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6.4 MODELING SPATIAL DEPENDENCIES

Modeling of spatial dependency (often called context) during the classification pro-
cess has improved overall classification accuracy in several previous studies. Spatial 
context can be defined by the correlations between spatially adjacent pixels in a 
small neighborhood. The spatial relationship among locations in a spatial framework 
is often modeled via a contiguity matrix. A simple contiguity matrix may repre-
sent the neighborhood relationship defined using adjacency, Euclidean distance, etc. 
Example definitions of a neighborhood using adjacency include four-neighborhood 
and eight-neighborhood. Given a gridded spatial framework, the four-neighborhood 
assumes that a pair of locations influence each other if they share an edge. The eight-
neighborhood assumes that a pair of locations influence each other if they share 
either an edge or a vertex. 

Figure 6.6(a) shows a gridded spatial framework with four locations, namely A, 
B, C, and D. A binary matrix representation of a four-neighborhood relationship is 
shown in Figure 6.6(b). The row normalized representation of this matrix is called 
a contiguity matrix, as shown in Figure 6.6(c). Other contiguity matrices can be 
designed to model a neighborhood relationship based on distance. The essential idea 
is to specify the pairs of locations that influence each other along with the relative 
intensity of interaction. More general models of spatial relationships using cliques 
and hypergraphs are available in the literature [48]. 

6.4.1 SPATIAL AUTOREGRESSION MODEL (SAR)

We now show how spatial dependencies are modeled in the framework of regres-
sion analysis. In spatial regression, the spatial dependencies of the error term, or 
the dependent variable, are directly modeled in the regression equation [3]. If the 
dependent values yi  are related to each other, that is, yi  f(yj) i  j, then the regres-
sion equation can be modified as 

 y  Wy  X    (6.2)

Here W is the neighborhood relationship contiguity matrix and  is a parameter 
 that reflects the strength of spatial dependencies between the elements of the dependent 

FIGURE 6.6 A spatial framework and its four-neighborhood contiguity matrix.
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variable. After the correction term Wy is introduced, the components of the residual 
error vector  are then assumed to be generated from independent and identical stan-
dard normal distributions. As in the case of classical regression, the SAR equation has 
to be transformed via the logistic function for binary dependent variables. 

We refer to this equation as the SAR. Notice that when   0, this equation col-
lapses to the classical regression model. The benefits of modeling spatial autocor-
relation are many. The residual error will have much lower spatial autocorrelation, 
that is, systematic variation. With the proper choice of W, the residual error should, 
at least theoretically, have no systematic variation. If the spatial autocorrelation 
coefficient is statistically significant, then SAR will quantify the presence of spatial 
autocorrelation. It will indicate the extent to which variations in the dependent vari-
able (y) are explained by the average of neighboring observation values. Finally, the 
model will have a better fit, that is, a higher R-squared statistic. We compare SAR 
with linear regression for predicting nest location in Section 4. 

A mixed model extends the general linear model by allowing a more flexible 
specification of the covariance matrix of . The mixed model can be written as 

 y  X   X   (6.3)

where  is the vector of random-effects parameters. The name mixed model comes 
from the fact that the model contains both fixed-effects parameters, , and random-ef-
fects parameters, . The SAR model can be extended to a mixed model that allows for 
explanatory variables from neighboring observations  [25]. The new model (MSAR) 
is given by 

 y  Wy X   WX    (6.4)

The marginal impact of the explanatory variables from the neighboring observa-
tions on the dependent variable y can be encoded as a k * 1 parameter vector . 

6.4.1.1  Solution Procedures

The estimates of  and  can be derived using maximum likelihood theory or 
Bayesian statistics. We have carried out preliminary experiments using the spa-
tial econometrics Matlab package,‡ which implements a Bayesian approach using 
sampling-based Markov chain Monte Carlo (MCMC) methods [26]. Without any 
optimization, likelihood-based estimation would require O(n3) operations. Recently 
several authors [36, 37, 25, 9] have proposed several efficient techniques to solve 
SAR. Several techniques have been studied and compared in Reference [22]. 

6.4.2 MARKOV RANDOM FIELD CLASSIFIERS

A set of random variables whose interdependency relationship is represented by a 
undirected graph (i.e., a symmetric neighborhood matrix) is called an MRF [27]. 
The Markov property specifies that a variable depends only on the neighbors and is 
independent of all other variables. The location prediction problem can be modeled 

‡ We would like to thank James Lesage (http://www.spatial-econometrics.com/) for making the Matlab 
toolbox available on the Web.
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in this framework by assuming that the class label, fL(si), of different locations, si, 
constitutes an MRF. In other words, random variable fL(si) is independent of fL(sj)  if 
W(si, sj)  0. 

The Bayesian rule can be used to predict fL (si) from feature value vector X and 
neighborhood class label vector LM as follows: 
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The solution procedure can estimate Pr(l(si)|L\l(si)) from the training data by 
examining the ratios of the frequencies of class labels to the total number of loca-
tions in the spatial framework. Pr(X(si)|l(si), L\l(si)) can be estimated using kernel 
functions from the observed values in the training dataset. For reliable estimates, 
even larger training datasets are needed relative to those needed for the Bayesian 
classifiers without spatial context, since we are estimating a more complex distribu-
tion. An assumption on Pr(X(si)|l(si), L\l(si)) may be useful if a large enough training 
dataset is not available. A common assumption is the uniformity of influence from all 
neighbors of a location. Another common assumption is the independence between 
X and LN, hypothesizing that all interaction between neighbors is captured via the 
interaction in the class label variable. Many domains also use specific parametric 
probability distribution forms, leading to simpler solution procedures. In addition, 
it is frequently easier to work with the Gibbs distribution specialized by the locally 
defined MRF through the Hammersley-Clifford theorem  [6]. 

6.4.2.1   Solution Procedures

Solution procedures for the MRF Bayesian classifier include stochastic relax-
ation  [15], iterated conditional modes  [4], dynamic programming  [13], highest 
confidence first  [11], and graph cut  [8]. We have used the graph cut method; more 
details can be found in Reference  [43]. 

6.5 COMPARISON OF SAR AND MRF BAYESIAN CLASSIFIERS

SAR and MRF Bayesian classifiers both model spatial context and have been used 
by different communities for classification problems related to spatial datasets. We 
compare these two approaches to modeling spatial context in this section using a 
probabilistic framework as well as an experimental framework. 

6.5.1 COMPARISON OF SAR AND MRF USING A PROBABILISTIC FRAMEWORK

We use a simple probabilistic framework to compare SAR and MRF in this section. 
We will assume that classes L  l1, l2, , lM are discrete and the class label estimate 
ˆ ( )f sL i for location si is a random variable. We also assume that feature values (X) are 

constant since there is no specified generative model. Model parameters for SAR are 
assumed to be constant, that is,  is a constant vector and  is a constant number. 
Finally, we assume that the spatial framework is a regular grid. 
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We first note that the basic SAR model can be rewritten as follows: 

 y  X   Wy  

 (I  W)y  X   

 y  (I  W) 1 X   (I  W) 1   (QX)   Q  (6.6)

where Q  (I  W) 1 and ,  are constants (because we are modeling a particular 
problem). The effect of transforming feature vector X to QX can be viewed as a 
spatial smoothing operation. The SAR model is similar to the linear logistic model 
in the transformed feature space. In other words, the SAR model assumes linear 
separability of classes in a transformed feature space. 

Figure 6.7 shows two datasets with a salt and pepper spatial distribution of the 
feature values. There are two classes, l1 and l2, defined on this feature. Feature  
values close to 2 map to class l2 and feature values close to 1 or 3 will map to l1. These 
classes are not linearly separable in the original feature space. Spatial smoothing can 
eliminate the salt and pepper spatial pattern in the feature values to transform the 
distribution of the feature values. In the top part of Figure  6.7, there are few values 
of 3 and smoothing revises them close to 1 since most neighbors have values of 1. 

FIGURE  6.7 Spatial datasets with salt and pepper spatial patterns.
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SAR can perform well with this dataset because classes are linearly separable in the 
transformed space. However, the bottom part of Figure 6.7 show a different spatial 
dataset where local smoothing does not make the classes linearly separable. Linear 
classifiers cannot separate these classes even in the transformed feature space. 

Although MRF and SAR classification have different formulations, they share 
a common goal, estimating the posterior probability distribution: p(li X). However, 
the posterior for the two models is computed differently with different assumptions. 
For MRF, the posterior is computed using Bayes’ rule. On the other hand, in logistic 
regression, the posterior distribution is directly fit to the data. For logistic regression, 
the probability of the set of labels L is given by

 

Pr( | ) ( | )L X p l Xi

i

N

1  

(6.7)

One important difference between logistic regression and MRF is that logistic 
regression assumes no dependence on neighboring classes. Given the logistic model, 
the probability that the binary label takes its first value l1 at a location si is

 
Pr( | )

exp( )
l X

Q Xi
i

1
1  

(6.8)

where the dependence on the neighboring labels exerts itself through the W matrix, 
and subscript i denotes the ith row of the matrix Q. Here we have used the fact that y 
can be rewritten as in Equation (6.6). 

To find the local relationship between the MRF formulation and the logistic 
regression formulation, at point si,

 

Pr
Pr Pr

(( )| , )
( | , \ ) ( , \ )

l X L
X l L l l L l

i
i i i i1

1 1

PPr Pr Pr( | , \ ) ( , \ ) ( | , \X l L l l L l X l L li i i i i1 1 0 ii i i

i

l L l

Q X

) ( , \ )

exp( )

Pr 0

1
1

  
 

 (6.9)

which implies

 

Q X
X l L l l L l

X li
i i i i

i

ln
( | , \ ) ( , \ )

( |

Pr Pr

Pr

1 1

00 0, \ ) ( , \ )L l l L li i iPr
 

(6.10)

This last equation shows that the spatial dependence is introduced by the W 
term through Qi. More importantly, it also shows that in fitting  we are trying to 
simultaneously fit the relative importance of the features and the relative frequency 
( )Pr( , \ )

Pr( , \ )

l L l

l L l
i i

i i

1

0
 of the labels. In contrast, in the MRF formulation, we explicitly model 
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the relative frequencies in the class prior term. Finally, the relationship shows that 
we are making distributional assumptions about the class conditional distributions 
in logistic regression. Logistic regression and logistic SAR models belong to a more 
general exponential family. The exponential family is given by 

 Pr( | ) ( ) ( , )x l eA B x xi
T

1
 

(6.11)

This exponential family includes many of the common distributions as special 
cases such as Gaussian, binomial, Bernoulli, Poisson, etc. The parameters l and  
control the form of the distribution. Equation (6.10) implies that the class conditional 
distributions are from the exponential family. Moreover, the distributions Pr(X li  1, 
L\li) and Pr(X li  0, L\li)  are matched in all moments higher than the mean (e.g., 
covariance, skew, kurtosis, etc.), such that in the difference ln(Pr(X li  1, L\li))  
ln(Pr(X li  0, L\li)), the higher-order terms cancel out leaving the linear term  ( )i

T x  
in Equation (6.11) on the left-hand side of Equation (6.10). 

6.5.2 EXPERIMENTAL COMPARISON OF SAR AND MRF

We have carried out experiments to compare the classical regression, SAR  [10], and 
the MRF-based Bayesian classifiers. 

The goals of the experiments were

 1. To evaluate the effect of including an SAR term Wy in the logistic regres-
sion equation. 

 2. To compare the accuracy and performance of a graph-partitioning-based 
MRF approach with spatial logistic regression on a synthetic image cor-
rupted with Gaussian noise. 

 3. To compare the accuracy and performance of MRF and spatial logistic 
regression to predict the location of bird nests. 

The experimental setup is shown in Figure 6.8. The bird habitat datasets described 
as in Section 6.1 are used for the learning portion of the experiments, that is, to pre-
dict locations of bird nests, as shown in Figure 6.1. Explanatory variables in these 
datasets are defined over a spatial grid of approximately 5000 cells. The 1995 data 
acquired in the Stubble wetland served as the testing datasets. This data is similar to 
the learning data except for the spatial locations. We have also generated a few syn-
thetic datasets over the same marshlands using original feature values and synthetic 
class labels for each location to control the shape of class boundaries. 

6.5.2.1   Metrics of Comparison for Classification Accuracy 

In a binary prediction model (e.g., nests/no-nests), there are two types of error pre-
dictions: the false-negative ratio (FNR) and the false-positive ratio (FPR). The clas-
sification accuracy of various measures for such a binary prediction model is usually 
summarized in an error (or confusion) matrix as shown in Table 6.3. 

We compared the classification accuracy achieved by classical and spatial logis-
tic regression models on the test data. Receiver operating characteristic (ROC)[14] 
curves were used to compare classification accuracy. ROC curves plot the relation-
ship between the true-positive rate (TPR) and the false-positive rate (FPR). For each 
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cut-off probability b, TPR(b) measures the ratio of the number of sites where the nest 
is actually located and was predicted, divided by the number of actual nest sites, that 
is, TPR AP

APn AnPnn
n .  The FPR measures the ratio of the number of sites where the 

nest was absent but predicted, divided by the number of sites where the nests were 
absent, that is, FPR AnnPn

AnnPn APnn .  The ROC curve is the locus of the pair (TPR(b), 
FPR(b)) for each cut-off probability. The higher the curve above the straight line TPR 

 FPR, the better the accuracy of the model. We also calculated the total error (TE), 
which is TE  AnPnn  AnnPn.

6.5.2.2 Metrics of Comparison for Spatial Accuracy

We compared spatial accuracy achieved by SAR and MRF by using ADNP (average 
distance to nearest prediction), which is defined as 

 

ADNP A P
K

d A A nearest Pk k

k

K

( , ) ( , . ( )).
1

1

FIGURE 6.8 Experimental method for evaluation of SAR and MRF.
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TABLE 6.3
Confusion Matrix Measures

Predicted Nest (present) Predicted No-Nest (absence)

Actual nest (present) APn AnPnn

Actual no-nest (absence) AnnPn APnn
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Here Ak stands for the actual nest locations, P is the map layer of predicted nest loca-
tions, and Ak.nearest(P) denotes the nearest predicted location to Ak. K is the number 
of actual nest sites. The units for ADNP are the number of pixels in the experiment. 
The results of our experiments are shown in the following subsection. 

6.5.3 EVALUATION OF CLASSICAL ACCURACY ON SAR AND CLASSICAL 
REGRESSION MODELS FOR GENUINE BIRD DATASETS

Figure 6.9(a) illustrates the ROC curves for SAR and classical regression models 
built using the real surveyed 1995 Darr learning data and Figure 6.9(b) displays 
the ROC curve for the real Stubble test data. It is clear that using spatial regres-
sion resulted in better predictions at all cut-off probabilities relative to the classical 
regression model. 

6.5.4 NONLINEAR CLASS BOUNDARY SIMULATION BY SYNTHETIC BIRD DATASETS

We created a set of synthetic bird datasets based on nonlinear generalization. We 
carried out experiments on these synthetic bird nesting datasets. Table 6.10 is the 
confusion matrix via the SAR and MRF models for these nonlinear generalization 
synthetic datasets. From Table 6.10, we can easily calculate the TE for the synthetic 
testing data. The TE of MRF for the testing data is 563, which is significantly less 
than that of SAR (665). 

6.5.4.1   Spatial Accuracy Results (SAR and MRF Comparision)

The results of spatial accuracy for the nonlinear class boundary simulation via SAR 
and MRF models are shown in Table 6.4. As can be seen, MRF achieves better spa-
tial accuracy on both learning and test datasets.

We also draw maps, shown in Figure 6.11 and Figure 6.12, to visualize the results 
of the comparison between the SAR and MRF approaches. Figure 6.11 shows the 

FIGURE 6.9 (a) Comparison of classical regression model with the SAR model on the Darr 
learning data. (b) Comparison of the models on the testing data.
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TABLE 6.4
Spatial Accuracies for the Nonlinear 
Generalized Synthetic Datasets via SAR 
and MRF

Dataset SAR MRF

Learning Spatial accuracy   2.8a 1.5

Testing Spatial accuracy 2.1 1.7

a The result is measured in pixel units, 1 pixel  5 5m.

Note:  1000 for MRF, # of predicted nests are identical 
in both models.

 

FIGURE 6.10 Error matrix of nonlinear generalized synthetic data via MRF and SAR  
models (   1000 for MRF, # of predicted nests are identical in both models).
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FIGURE 6.11 Maps of predicted nest locations via SAR and MRF for nonlinear generalized 
synthetic learning datasets.
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actual nonlinear generalized synthetic learning data. Maps of the nest predictions 
for the nonlinear generalized synthetic learning dataset via the SAR and MRF  
models are displayed, respectively, in Figure 6.11(a) and Figure 6.11(c). 

Figure 6.11(c) illustrates the nest locations predicted by the MRF approach. As 
can be seen, these are significantly closer to the actual nest locations compared to 
the locations predicted by the SAR model shown in Figure 6.11(a). The results of 
the prediction maps via SAR and MRF models for the synthetic testing datasets are 
shown in Figures 6.12(a) and 6.12(c). The trend of the predicted nests via the MRF 
approach also shows that the predicted nests are located near the actual nest sites. 
For our synthetic dataset, the MRF model gives a better prediction than the SAR 
model for both the learning and testing datasets. 

6.5.5 LINEARLY SEPARABLE SYNTHETIC BIRD DATASET

We have created another synthetic bird dataset using linearly separable class bound-
aries and used a similar experimental structure as that used to evaluate the SAR and 
MRF models. The error matrix of these linear generalized synthetic datasets are 
shown in Figure 6.13. For both learning and testing, the TEs of the MRF approach 
are less than but comparable to that of the SAR model. 

6.5.5.1   Spatial Accuracy Result of Comparison SAR and MRF 
Models for Linearly Separable Synthetic Datasets

 The spatial accuracy results on this simulated dataset for SAR and MRF models are 
shown in Table 6.5. As can be seen, MRF achieves better spatial accuracy on learn-
ing datasets. For the testing datasets, MRF achieves slightly better spatial accuracy 
than SAR. 

The prediction maps, shown in Figure 6.14 and Figure 6.15 visually illustrate the 
results of the comparison between the SAR and MRF approaches for the linearly 

Predicted Nests Map via SAR for

Synthetic Testing Data (y2)

Actual Nests Locations for

Synthetic Testing Data (y2)

Predicted Nests Map via MRF for

Synthetic Testing Data (y2)

FIGURE 6.12 Results of predicted nest sites via SAR and MRF for nonlinear generalization 
synthetic testing datasets.
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Predicted Nest Predicted No-nest Predicted Nest Predicted No-nest

SAR

MRF

Actual
Nest

Actual
No-nest

Actual
No-nest

Actual
Nest

1016 2436

679 1241

943 2509

160

357 943

167 350

354 946

Learning Testing

606 1314 367

FIGURE 6.13 Error matrix of synthetic data with linearly separable classes via MRF and 
SAR models. ( 700 for MRF, # of predicted nests are identical in both models).

TABLE 6.5
Spatial Accuracies for the Linear Generalized 
Synthetic Datasets via SAR and MRF

Dataset SAR MRF

Learning Spatial accuracy 3.31 1.075

Testing Spatial accuracy 2.96 2.02

Note:  700 for MRF, # of predicted nests are identical in 
both models.

 

FIGURE 6.14 Maps of predicted nest locations via SAR and MRF for linearly separable 
synthetic learning datasets.
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separable synthetic datasets. Figure 6.14 shows the actual linearly separable syn-
thetic learning data. Maps of the nest predictions for this synthetic learning data-
set via the SAR and MRF models are displayed, respectively, in Figure 6.14(a) and 
Figure 6.14(c). As can be seen, the nest locations predicted by the MRF approach 
illustrated in Figure 6.14(c) are closer to the actual nest locations compared to the 
locations predicted by the SAR model shown in Figure 6.14(a). The results of the 
prediction maps via SAR and MRF models for the linearly separable synthetic test-
ing datasets are shown in Figures 6.15(a) and 6.15(c). The trend of the predicted nests 
via the MRF approach also shows that the predicted nests are located near the actual 
nest sites. For this linearly separable synthetic dataset, the MRF model gives a better 
prediction than the SAR model for both the learning and testing datasets. 

6.6 SPATIAL SEMISUPERVISED CLASSIFICATION

We mentioned in the Introduction that increasing spatial and spectral resolutions 
put several constraints on supervised classification. The increased spatial resolution 
invalidates the most widely used assumption of the traditional data mining algo-
rithms (e.g., independent, identical distributions). Often used maximum likelihood 
estimation requires large amounts of training data (10 to 100  number of dimen-
sions per class) for accurate estimation of model parameters and increasing spectral 
resolution further compounds this problem. 

Recently, semisupervised learning techniques that utilize large unlabeled train-
ing samples in conjunction with small labeled training data are becoming popular 
in machine learning and data mining [30, 16, 32]. This popularity can be attributed 
to the fact that several of these studies have reported improved classification and 
prediction accuracies, and that the unlabeled training samples come almost for free. 
This is also true in the case of remote sensing classification, as collecting samples is 
almost free, although assigning labels to them is not. Many semisupervised learning 
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FIGURE 6.15 Results of predicted nest sites via SAR and MRF for linear generalization 
synthetic testing datasets.
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algorithms can be found in the recent survey article [49]. In this section, we briefly 
present a semisupervised learning scheme [46] and its spatial extension via MRF 
[47]. 

6.6.1 SEMISUPERVISED LEARNING

In many supervised learning situations, the class labels (yi)’s are not readily avail-
able. However, assuming that the initial parameters k can be guessed (as in cluster-
ing), or can be estimated (as in semisupervised learning), we can easily compute the 
parameter vector  using the expectation maximization (EM) algorithm. In brief, 
the EM algorithm consists of two steps. The EM algorithm at the first step (called the 
E-step) maximizes the expectation of the log-likelihood function (Equation 6.12), 
using the current estimate of the parameters and conditioned upon the observed 
samples. 

 

L P X L P x l P li i i li
( ) ln( ( , ) | )) ln( ( | ) ( )) ln( pp xl i l
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i i
( | )).

11  

(6.12)

In the second step of the EM algorithm, called maximization (or the M-step), the 
new estimates of the parameters are computed. The EM algorithm iterates over these 
two steps until the convergence is reached. The log-likelihood function is guaranteed 
to increase until a maximum (local or global or saddle point) is reached. For multi-
variate normal distribution, the expectation E[.], which is denoted by pij, is nothing but 
the probability that Gaussian mixture j generated the data point i, and is given by
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The new estimates (at the kth iteration) of parameters in terms of the old estimates 
at the M-step are given by the following equations: 
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(6.14)

A more-detailed derivation of these equations can be found in Reference [7]. 

6.6.2 SPATIAL EXTENSION OF SEMISUPERVISED LEARNING

In this section we provide an extension of semisupervised learning algorithm (Section 
6.1) to model spatial context via the MRF model. MRF exploits spatial context 
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through the prior probability p(li) term in the Bayesian formulation (Section 3.2).  
Since MRF models spatial context in the a priori term, we optimize a penalized 
log-likelihood  [17] instead of the log-likelihood function [see Equation (6.12)]. The 
penalized log-likelihood can be written as 

 

ln( ( , | )) ( , ) ln ( ) ln ( | )P X L V l C L p xC ij j i i

jjiC  

(6.15)

where Vc(l) is called clique potential. Then the E-step for a given k reduces to 
computing 
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(6.16)

However, exact computation of the quantities E(Vc(L, )|x, k) and E(Lij | x, k) 
in Equation (6.16) are impossible  [38]. Also the maximization of Equation (6.16) 
with respect to  is also very difficult because computing z  C( ) is intractable 
except for very simple neighborhood models. Several approximate solutions for this 
problem in unsupervised learning can be found in [38, 39]. An approximate solution 
for semisupervised learning via an extension of MRF [38] is provided in [47]. The 
E-step is divided into two parts: first, we compute the complete data log-likelihood 
for all data points; second, for the given neighborhood, we iteratively optimize con-
textual energy using the iterative conditional modes (ICM) [5] algorithm. Since the 
estimation of  is difficult [38], we assume that it is given a priori, and proceed with 
the M-step as described in the semisupervised learning algorithm. This basic spatial 
semisupervised learning scheme is summarized in Table 6.6. 

TABLE 6.6
Spatial Semisupervised Learning Algorithm

Inputs: Training data set D  Dl  Du, where Dl consists of labeled samples and Du contains 
unlabeled samples, s a neighborhood model, and  a homogeneity weight.

Initial Estimates: Build initial classifier (MLC or MAP) from the labeled training samples, Dl. 
Estimate initial parameter using MLE, to find ˆ.

Loop: While the complete data log-likelihood improves [see Equation (6.16)]:

E-step: Use current classifier to estimate the class membership of each unlabeled sample, that 
is, the probability that each Gaussian mixture component generated the given sample point, pij 
[see Equation (6.13)].

ICM-step: Optimize contextual energy using the ICM [5] algorithm. 

M-step: Re-estimate the parameter, ˆ,  given the estimated Gaussian mixture component 
membership of each unlabeled sample [see Equation (6.14)]. 

Output: An MAP-MRF classifier that takes the given sample (feature vector), a neighborhood model, 
and predicts a class label.

 

© 2009 by Taylor & Francis Group, LLC



142 Geographic Data Mining and Knowledge Discovery

6.6.3 EXPERIMENTAL RESULTS

We used a spring Landsat 7 scene, taken on May 31, 2000 over the town of Cloquet 
located in Carlton County, Minnesota. For all experiments, we considered the fol-
lowing 10 classes: water, bare soil, agriculture, upland conifer, upland hardwood, 
lowland conifer, lowland hardwood, wetlands, low-density urban, and high-density 
urban. For discussion purposes we summarized key results as graphs for easy under-
standing. We applied all four classifiers, namely, MLC/MAP, MRF, semisupervised, 
and spatial semisupervised (SSSL). The training data consisted of 20 labeled plots, 
and 100 unlabeled plots, and the test data consisted of 85 labeled plots. From each 
plot, we extracted exactly nine feature vectors by centering a 3  window on the plot 
center. The classification performance (accuracy) results are summarized in Figure 
6.16. Individual class (labeled 1 to 10) accuracies along with the two-tailed 95% 
confidence intervals are shown for each classifier. As can be seen, the overall classi-
fication accuracy of the spatial semisupervised algorithm is about 72%, as compared 
to the BC (60%), MAP-MRF (65%), and semisupervised (68%) classifiers on the 
test dataset. The overall accuracy obtained from the efficient spatial semisupervised 
algorithm is about 71%. Figure 6.17 shows the classified images generated by each 
of the four methods for a small area from the northwest corner of the full image. 

FIGURE 6.16 Comparison of accuracies (10 classes); (a) MLC/MAP (60%), (b) semisuper-
vised (68%), (c) MRF (65%), and (d) spatial semisupervised (72%).
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This figure clearly shows the superior performance of spatial semisupervised learn-
ing over the BC (MLC), MAP-MRF, and semisupervised algorithms. In addition to 
superior classification accuracy, the output generated by the spatial semisupervised 
learning algorithm is also more preferable (less salt and pepper noise) in various 
application domains. 

6.7  CONCLUSIONS AND FUTURE WORK

In this chapter, we presented two popular classification approaches that model spa-
tial context in the framework of spatial data mining. These two models, SAR and 
MRF, were compared and contrasted using a common probabilistic framework [43]. 
Our study shows that the SAR model makes more restrictive assumptions about the 
distribution of features and class shapes (or decision boundaries) than MRF. We also 
observed an interesting relationship between classical models that do not consider 
spatial dependence and modern approaches that explicitly model spatial context. The 
relationship between SAR and MRF is analogous to the relationship between logistic 

(a) MAP (b) Semisupervised

(c) MRF (d) Contextual Semisupervised

FIGURE 6.17 Small portion from the classified image (Carleton, Minnesota). (a) Bayesian 
(MAP), (b) semisupervised (EM-MAP), (c) MRF (MAP-MRF), and (d) contextual semisu-
pervised (EM-MAP-MRF). See color insert after page 148.
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regression and Bayesian classifiers. We have provided theoretical results using a 
probabilistic framework and as well as experimental results validating the compari-
son between SAR and MRF. We also described a spatial semisupervised learning 
scheme that overcomes small sample problems and also models spatial context via 
MRF [47]. This approach showed improved accuracy and also eliminated salt-and- 
pepper noise, which is common to noncontextual classification schemes. 

In the future we would like to study and compare other models that consider spa-
tial context in the classification decision process. We would also like to extend the 
graph cut solution procedure for SAR. 
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Time Plot

COLOR FIGURE 4.13 Time of day plots (TTD). (b) Volume, speed, and occupancy on a given 
day (Blue - predicted traffic; Red - current traffic).
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COLOR FIGURE 4.17  Highway station vs. day of week plots (SHSTDW).  (a) Superimposed 
graphs of average volume, speed, occupancy of all mileposts for all days of the week.
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COLOR FIGURE 4.18 Time of day vs. day of week plots (SHSTTD).  (a) Volume, speed, occu-
pancy conditions of all days in a week on a given time. (b) Speed condition for all days in a 
week on a given milepost.
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(a) Milepost 157.44 (2/8/2006)
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COLOR FIGURE 4.20 TTD views for drilled-down analysis of surrounding mileposts. (a) 
Milepost 157.44 (2/8/2006). (b) Milepost 158.26 (2/8/2006). (c) Milepost 159.63 (2/8/2006).
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(b) Milepost 158.26 (2/8/2006)
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COLOR FIGURE 4.20 (Continued).
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COLOR FIGURE 4.22 SHSTDW view of I-95 NB for the week of the incident at 8:30AM 
(2/6/2006-2/12/2006).
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(a) RGB (b) MLC

COLOR FIGURE 6.4 Sample RGB image (a) and corresponding maximum likelihood clas-
sified (MLC) image (b).

COLOR FIGURE 6.17 Small portion from the classified image (Carleton, Minnesota). (a) 
Bayesian (MAP), (b) semisupervised (EM-MAP), (c) MRF (MAP-MRF), and (d) contextual 
semisupervised (EM-MAP-MRF).
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COLOR FIGURE 9.5 Rescaled parallel coordinates plot showing relationship between vari-
ables in the regression colored by quintile. Red: high turnout; yellow: middle turnout; green: 
low turnout.

COLOR FIGURE 9.10 Visualizing the structure of the GWR space with (a) a self-organizing 
map (SOM) and (b) a map.

(a)
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COLOR FIGURE 9.10 (Continued)

(b)
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COLOR FIGURE 9.11 (a) The map and (b) the parallel coordinates plot (PCP) showing the 
selection of the two clusters from the SOM (violet and yellow, respectively) that represent 
two areas in the center of Dublin. River Liffey (running through the center in the east-west 
direction) divides the center in the north yellow area and south violet areas where the social 
processes behind voting mechanisms have different characteristics. This can be clearly seen 
by comparing the violet and yellow trajectories in the PCP.
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COLOR FIGURE 9.12 (a) The map and (b) the PCP showing the selection of the two clusters 
in SOM (red and blue) that represent two areas north of city center. Blue EDs are located 
around Howth and are the most affluent areas in Dublin. Red EDs, on the other hand, repre-
sent one of the more problematic areas in Dublin (Ballymun). The two different trajectories in 
the PCP again capture the differences between areas with different social situations.
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COLOR FIGURE 11.3 An example of a map-based visualization technique. A bivari-
ate choropleth map shows cancer incidence by county for the conterminous United States. 
Redness increases with the rate for cervical cancer, blueness with the rate for breast cancer. 
Thus, counties colored light gray have low rates for both cancers, dark purple indicates places 
with high rates for both. See text for further details.

© 2009 by Taylor & Francis Group, LLC



C
O

R
W

F
Z

L
U

R
W

F
Z

M
D

R
A

T
IO

C
E

R
W

F
Z

B
R

R
W

F
Z

CORWFZ LURWFZ MDRATIOCERWFZBRRWFZ

COLOR FIGURE 11.4 A matrix of maps and scatterplots, relating incidence rates for differ-
ent kinds of cancer (first four rows and columns) to the ratio of doctors per 1000 population, 
for the Appalachian region of the United States (MD ratio, the right hand column and bottom 
row). This shows every pair of bivariate displays as both a scatterplot (above and right) and a 
map (below and left). The on-diagonal elements of the matrix simply show the distribution of  
values for each variable in isolation. A bivariate color scheme is used throughout.
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COLOR FIGURE 11.5 An example of a compositional landscape, created using a self-organizing 
map (SOM) that projects a high-dimensional dataset into a form that can be visualized in 2 or 3 
dimensions — shown here as a surface. See text for a full explanation of how to read this figure.
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COLOR  FIGURE 11.9 A screenshot of the Improvise visualization system, used to investigate 
symptoms and spread of vector-borne diseases. The display shows a mixture of many visual-
ization techniques, to emphasize the point that techniques can be easily combined, to provide 
alternative views onto the same data in a coordinated manner. See text for further details.
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Clustering with SOM Multivariate Mapping

Multivariate Visualization of Clusters Multivariate Visualization of Data Items

COLOR FIGURE 12.3 This is the overview of multivariate (seasonal) and spatial patterns 
of global climate (temperature) change. The multivariate mapping component (top right) 
is the central view, while other views can assist the understanding of the map. From such 
an integrated overview, one can easily perceive the major patterns in the data even without 
user interactions.
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COLOR FIGURE 12.5 Two regionalization results. The small map shows five regions 
derived without a size constraint while the top (larger) map shows five regions under a size 
constraint (i.e., a region must be larger than 200 grid cells).
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COLOR FIGURE 14.3 The visualization of (a) spatial clusters of stops and (b) the temporal 
clusters of moves of a group of 50 people (Blue Team) moving around the city of Amsterdam.
(Data Source: Waag Society, Netherlands.)
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7.1 INTRODUCTION

Clustering is the process of grouping a set of physical or abstract objects into classes 
of similar objects. A cluster is a collection of data objects that are similar to one 
another within the same cluster and are dissimilar to the objects in other clusters. 
Although classification is an effective means for distinguishing groups or classes of 
objects, it often requires costly collection and labeling of a large set of training tuples 
or patterns, which the classifier uses to model each group. In contrast, clustering does 
not require such labeling at all. 

Cluster analysis has been widely used in numerous applications, including market 
research, pattern recognition, data analysis, and image processing. In business, clus-
tering can help marketers discover distinct groups in their customer bases and char-
acterize customer groups based on purchasing patterns. In biology, it can be used 
to derive plant and animal taxonomies, categorize genes with similar functionality, 
and gain insight into structures inherent in populations. Clustering may also help in 
the identification of areas of similar land use in an earth observation database; in the 
identification of groups of houses in a city according to house type, value, and geo-
graphical location; and in the identification of groups of automobile insurance policy 
holders with a high average claim cost. It can also be used to help classify documents 
on the Web for information discovery. 

Clustering is also called data segmentation in some applications because clustering 
partitions large data sets into groups according to their similarity. As a data mining func-
tion, cluster analysis can be used as a stand-alone tool to gain insight into the distribution 
of data, to observe the characteristics of each cluster, and to focus on a particular set of 
clusters for further analysis. Alternatively, it may serve as a preprocessing step for other 
algorithms, such as characterization, attribute subset selection, and classification, which 
would then operate on the detected clusters and the selected attributes or features. 
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For the geographical community, data mining promises many new and valuable 
tools for geographic data analysis. Spatial clustering is one of these tools. Owing to 
the huge amounts of geographic data collected in databases, spatial clustering has 
become a highly active topic in geographic data analysis. The immense applications 
of spatial clustering has resulted in tremendous growth of the field, making it worth 
a dedicated and comprehensive overview. 

There are various forms of geographic data. The most popular form is point data. 
The location of a spatial object or an event is represented as a point. Examples of 
point data include the locations of buildings, the centers of roads or lands, and the 
locations of outbreaks of epidemics. On the other hand, recent improvements in  
satellites and tracking facilities have made it possible to collect a large amount of 
trajectory data of moving objects. Examples include vehicle position data, hurricane 
track data, and animal movement data. 

Our survey of spatial clustering proceeds as follows. First, we study traditional 
clustering methods developed for point data. Second, we study recent clustering 
methods developed for trajectory data. For each part, we first introduce interesting 
applications to facilitate understanding of the reader, and then we present representa-
tive clustering methods. 

7.2 CLUSTERING OF POINT DATA

In this section, we present an overview of clustering methods developed for point data. 
First, we introduce some interesting applications of point data clustering in Section 
7.2.1. Next, we provide a categorization of major clustering methods in Section 7.2.2. 
Each application introduced represents a possible usage scenario of each category. 
Then, the major clustering methods are explained in Sections 7.2.3 through 7.2.5. 

7.2.1 APPLICATIONS

7.2.1.1 Classical Example: John Snow’s Analysis

In the 1850s, Dr. John Snow performed pioneering data analysis to prove his 
hypothesis that cholera was spread by the drinking of water infected with cholera 
bacteria. This analysis, if performed today, would come under the realms of GIS 
(geographic information system) and data mining. Some have claimed his Broad 
Street map as being the first example of GIS, even though it was performed with a 
pen and paper. 

The cholera outbreak occurred in the Soho District of London, in and around 
Broad Street. As shown in Figure 7.1, Dr. Snow plotted each cholera case on a map 
and also plotted houses with multiple cases. The cases were not distributed uniformly, 
but rather were distributed in a tight cluster around a water pump located on Broad 
Street (now Broadwick Street). Dr. Snow disabled the water pump by removing its 
handle. The Broad Street cholera outbreak stopped almost literally overnight. 

7.2.1.2 Geographic Customer Segmentation

People living within the same geographical boundaries often exhibit similar buy-
ing patterns. This is in part due to similarities in demographic and psychographic 
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characteristics of residents. This phenomena is further enforced by local weather, 
environment, and cultural differences. Geographic segmentation is useful if market-
ing or promotion medium is mass media or mass public gatherings. Spatial clustering 
is a common method for geographic segmentation. In this application, the locations 
of customer points (spatial objects) supplied by Harbin dairy in Heilongjiang, China 
are used. A total of 1229 customer points are collected and then a clustering method 
is applied to this data set [21]. 

Figure 7.2 shows the clustering result. There are 16 obvious clusters, while the 
others are isolated points. This result shows a very high correlation with the actual 
population of Heilongjiang. For example, the Harbin-Daqing-Suihua-Minghui-Nehe 
cluster is the biggest one. The next biggest ones are the Qiqihaer town cluster and the 
Jiamusi-Shuangyashan town cluster. 

Partitioning methods are the most suitable for this application because they parti-
tion a set of spatial objects based on closeness between objects. In addition, some-
times the number of desired clusters can be predetermined according to the budget 
for mass marketing (e.g., television, radio, and leaflet dropping). Partitioning methods  
are explained in detail in Section 7.2.3. 

7.2.1.3 Crime Hot-Spot Analysis

Much of crime mapping is devoted to detecting crime hot spots, i.e., geographic 
areas of elevated criminal activity. Hot-spot analysis helps police identify high-crime 
areas, types of crimes being committed, and the best way to respond. In many cases, 
a crime hot spot is defined as an area where crime incidents are geographically con-
centrated. Thus, spatial clustering can be used for crime hot-spot analysis. In this 
application, the locations of crime incidents in Brisbane, Australia are collected, and 
then a clustering method is applied to this data set [8]. 

FIGURE 7.1 Original map by Dr. John Snow showing the clusters of cholera cases in the 
London epidemic of 1854.
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Figure 7.3 shows the clustering result. Cluster A is identified in the first level, 
directly overlaying the main urban area. This active cluster is further divided into 
two clusters AA and AB in the second level. Again, cluster AB is further divided into 
two clusters ABA and ABB in the third level. In this way, hot spots are discovered in 
a hierarchical manner, i.e., ranging from the largest one to smaller ones. 

Hierarchical methods are the most suitable for this application because they can 
discover a hierarchical structure of data. One of the unique characteristics of geo-
graphical data is its generic complexity. Clusters may contain several numbers of 
subclusters; these subclusters may, in turn, consist of smaller subclusters. This kind 
of hierarchy can be easily found in the real world due to its hierarchical nature. For 
example, a county encloses several cities, and each city may enclose several small 
towns. Hierarchical methods are explained in detail in Section 7.2.4. 

7.2.1.4 Land Use Detection

Spatial clustering is one of the basic methods for automatic land use detection from 
remote sensing data. In this application, a five-dimensional feature space is cre-
ated from several satellite images of a region on the surface of the earth cover-
ing California. These images are taken from the raster data of the SEQUOIA 2000 
Storage Benchmark. Through some preprocessing, a feature vector of a point is 
generated to have 1,024,000 intensity values each for five spectral channels—one 
visible, two reflected infrared, and two emitted (thermal) infrared. Here, a point 
represents an earth surface area of 1000 by 1000 meters. Then, a clustering method 
is applied to this data set. 

FIGURE 7.2 Geographic customer segmentation for Harbin dairy in Heilongjiang, China. 
(From Wan, L.-H., Li, Y.-J., Liu, W.-Y., and Zhang, D.-Y., Application and study of spatial clus-
ter and customer partitioning. In Proc. 2005 Intl. Conf. Machine Learning and Cybernetics, 
Guangzhou, China, August 2005, pp. 1701–1706.) © 2005 IEEE.
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Figure 7.4 shows the clustering result. Nine clusters are obtained with sizes rang-
ing from 2,016 points to 598,863 points. Each cluster is displayed using a different 
color. That is, a point in the image is colored according to the cluster to which the 
point belongs. We can easily know that there is a high degree of correspondence 
between Figure 7.4 and a physical map of California. 

Density-based methods are the most suitable for this application because they 
can discover clusters of arbitrary shape. The image in Figure 7.4 is, in fact, obtained 
by DBSCAN [7], which is the representative density-based method. Density-based 
methods are explained in detail in Section 7.2.5. 

7.2.2 CATEGORIZATION OF MAJOR CLUSTERING METHODS

A large number of clustering methods are reported in the literature. It is difficult to 
provide a crisp categorization of clustering methods because these categories may 
overlap so that a method may have features from several categories. In general, the 
major clustering methods can be classified into the following categories: 

Partitioning methods: Given a database of n objects or data tuples, a par-
titioning method constructs k( n) partitions of the data, where each par-
tition represents a cluster. That is, it classifies the data into k groups, 
which together satisfy the following requirements: (1) each group must 

FIGURE 7.3 Crime hot spots generated from a crime data set in Brisbane, Australia. (From 
Estivill-Castro, V. and Lee, I., Amoeba: Hierarchical clustering based on spatial proximity 
using delaunty diagram, in Proc. 9th Intl. Symp. Spatial Data Handling (SDH ’00), Beijing, 
China, August 2000, pp. 26–41.)
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contain at least one object, and (2) each object must belong to exactly 
one group. Notice that the second requirement can be relaxed in some 
fuzzy partitioning techniques. Such a partitioning method creates an 
initial partitioning. It then uses an iterative relocation technique that 
attempts to improve the partitioning by moving objects from one group 
to another. Representative algorithms include k-means [16], k-medoids 
[14], CLARANS [18], and the EM algorithm [6]. These algorithms are 
studied in Section 7.2.3. 

Hierarchical methods: A hierarchical method creates a hierarchical decom-
position of a given set of data objects. Hierarchical methods can be clas-
sified as agglomerative (bottom-up) or divisive (top-down), based on how 
the hierarchical decomposition is formed. AGNES and DIANA [14] are 
examples of agglomerative and divisive methods, respectively. Hierarchical 
methods suffer from the fact that once a step (merge or split) is done, it can 
never be undone. Two approaches are developed to alleviate this problem. 
Representative algorithms include BIRCH [23] and Chameleon [13]. These 
algorithms are studied in Section 7.2.4. 

Density-based methods: Most partitioning methods cluster objects based on 
the distance between objects. Such methods can find only spherical-shaped 
clusters and encounter difficulty in discovering clusters of arbitrary shape. 
Other clustering methods have been developed based on the notion of den-
sity. Their general idea is to continue growing a given cluster as long as 
the density (the number of objects or data points) in the “neighborhood” 
exceeds a threshold. Such a method is able to filter out noises (outliers) 
and discover clusters of arbitrary shape. Representative algorithms include 
DBSCAN [7], OPTICS [3], and DENCLUE [12]. These algorithms are 
studied in Section 7.2.5. 

FIGURE 7.4 Visualization of the clustering result for the SEQUOIA 2000 raster data.
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Grid-based methods: Grid-based methods quantize the object space into 
a finite number of cells that form a grid structure. All of the clustering 
operations are performed on the grid structure (i.e., on the quantized 
space). The main advantage of this approach is its fast processing time, 
which is typically independent of the number of data objects and depen-
dent only on the number of cells in each dimension in the quantized space. 
Representative algorithms include STING [22], WaveCluster [20], and 
CLIQUE [1]. 

The choice of clustering algorithm depends both on the type of data available and 
on the particular purpose of the application. If cluster analysis is used as a descrip-
tive or exploratory tool, it is possible to try several algorithms on the same data to 
see what the data may disclose. 

7.2.3 PARTITIONING METHODS

Given D, a data set of n objects, and k, the number of clusters to form, a partition-
ing algorithm organizes the objects into k partitions (k n), where each partition 
represents a cluster. The clusters are formed to optimize an objective partitioning  
criterion, such as a dissimilarity function based on distance, so that the objects within 
a cluster are “similar,” whereas the objects of different clusters are “dissimilar.” 

7.2.3.1 Centroid-Based Technique: The k-Means Method

The k-means algorithm takes the input parameter, k, and partitions a set of n objects 
into k clusters so that the resulting intracluster similarity is high, but the intercluster 
similarity is low. Cluster similarity is measured with respect to the mean value of 
the objects in a cluster, which can be viewed as the cluster’s centroid or center of 
gravity. 

How does the k-means algorithm work? The k-means algorithm proceeds as  
follows. First, it randomly selects k of the objects, each of which initially represents 
a cluster mean or center. For each of the remaining objects, an object is assigned to 
the cluster to which it is the most similar, based on the distance between the object 
and the cluster mean. It then computes the new mean for each cluster. This process 
iterates until the criterion function converges. Typically, the square-error criterion 
is used, defined as 

 

E p mi

p Ci

k

i

| | ,2

1  

(7.1)

where E is the sum of the square-error for all objects in the data set; p is the point 
representing a given object; and mi is the mean of a cluster Ci (both p and mi are 
multidimensional). In other words, for each object in each cluster, the distance from 
the object to its cluster center is squared, and the distances are summed up. This 
criterion tries to make the resulting k clusters as compact and as separate as possible. 
The k-means procedure is summarized in Figure 7.5. 
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EXAMPLE 7.1

Suppose there is a set of objects shown in Figure 7.6(a). Let k = 2; that is, the user 
would like the objects to be partitioned into two clusters. In Figure 7.6(a), two objects 
marked by “ ” are randomly selected as initial cluster centers. In Figure 7.6(b), each 
object is distributed to the nearest cluster. Objects in one cluster are represented by 
circles, and those in the other by rectangles. Next, the cluster centers are moved as 
depicted by arrows. This process iterates nine times, leading to Figure 7.6(c). The 
process of iteratively reassigning objects to clusters to improve the partitioning is 
referred to as iterative relocation. Eventually, no redistribution of the objects in any 
cluster occurs and so the process terminates. 

The algorithm attempts to determine k partitions that minimize the square-error 
function. It works well when the clusters are compact clouds that are rather well 
separated from one another. The method is relatively scalable and efficient in pro-
cessing large data sets because the computational complexity of the algorithm is 
O(nkt), where n is the total number of objects, k is the number of clusters, and t is 

FIGURE 7.5 The k-means partitioning algorithm.

Input: 
k: the number of clusters, 
D: a data set containing n objects. 

Output: A set of k clusters. 

Method: 
 (1) arbitrarily choose k objects from D as the initial cluster centers;
 (2) repeat;
 (3) (re)assign each object to the cluster to which the object is the most similar, 

based on the distance between the object and the cluster mean;
(4) update the cluster means, i.e., calculate the mean value of the objects for 

each cluster;
(5) until no change;

FIGURE 7.6 Clustering of a set of objects based on the k-means method. (The mean of each 
cluster is marked by “ ”.)

(a) (b) (c) 
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the number of iterations. Normally, k << n and t << n. The method often terminates 
at a local optimum. 

Algorithm: k-means.  The k-means algorithm for partitioning, where each 
cluster’s center is represented by the mean value of the objects in the 
cluster. 

The necessity for users to specify k, the number of clusters, in advance can be 
seen as a disadvantage. The k-means method is not suitable for discovering clusters 
with nonconvex shapes or clusters of very different size. Moreover, it is sensitive to 
noise and outlier data points because a small number of such data can substantially 
influence the mean value. 

7.2.3.2 Representative Object-Based Technique: The k-Medoids Method

The k-means algorithm is sensitive to outliers because an object with an extremely 
large value may substantially distort the distribution of data. This effect is particu-
larly exacerbated due to the use of the square-error function (Equation 7.1). 

How might the algorithm be modified to diminish such sensitivity? Instead of 
taking the mean value of the objects in a cluster as a reference point, we pick an 
actual object to represent each cluster. This representative object, called a medoid, 
is meant to be the most centrally located object within the cluster. Each remaining 
object is clustered with the representative object to which it is the most similar. The 
partitioning method is then performed based on the principle of minimizing the sum 
of the dissimilarities between each object and its corresponding reference point. That 
is, an absolute-error criterion is used, defined as 

 

E p oj

p Cj

k

j

| |,
1

 

(7.2)

where E is the sum of the absolute-error for all objects in the data set; p is the point 
representing a given object in cluster Cj; and oj is the representative object of Cj. 

The overall procedure of k-medoids clustering is as follows. Initial representative 
objects (or seeds) are chosen arbitrarily. The iterative process of replacing repre-
sentative objects by nonrepresentative ones continues as long as the quality of the 
resulting clustering is improved. Here, the quality of a clustering is measured by the 
average dissimilarity between an object and the representative object of its cluster. 
When replacing a current representative object by a nonrepresentative one, the fol-
lowing four cases are examined as illustrated in Figure 7.7. 

Suppose there are two representative objects oi and oj. If oi is replaced with a 
nonrepresentative object oh, for all the objects  that are originally in the cluster 
represented by oi, we need to find the most similar representative object. In Case 1,  
p   moves to the cluster represented by oj that was the second most similar one. 
In Case 2, p   moves to the new cluster represented by oh, and the cluster repre-
sented by oj is not affected. In addition, we need to examine all the objects  that are 
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originally in the cluster represented by oj. Due to the replacement, q   stays with 
oj (Case 3) or moves to the new cluster represented by oh (Case 4). 

The k-medoids method computes the difference in the absolute-error value if a 
current representative object is swapped with a nonrepresentative object. The total 
cost of swapping is the sum of differences incurred by all nonrepresentative objects. 
If the total cost is negative, oi is replaced or swapped with oh since the actual absolute- 
error E would be reduced. Otherwise, the current representative object oi is consid-
ered acceptable, and nothing is changed in the iteration. 

PAM (partitioning around medoids)  was one of the first k-medoids algorithms 
introduced. The PAM algorithm is summarized in Figure 7.8. Initial k representative 
objects are selected arbitrarily. It next computes the total cost TCih of a swapping for 

FIGURE 7.7 Four cases of the cost function for k-medoids clustering.

oi oi 

oj 

orandom orandom 

oj 

Case 1 

Case 2 

p 
Case 4 

Case 3 q 

FIGURE 7.8 PAM, a k-medoids partitioning algorithm.

Input: 
k: the number of clusters, 
D: a data set containing n objects. 

Output: A set of k clusters. 

Method: 
 (1) arbitrarily choose k objects in D as the initial representative objects or 

seeds;
 (2) repeat
 (3) for each nonrepresentative object oh do;
 (4) for each representative object oi do;
 (5) calculate the total cost TCih of a swapping between oi and oh;
 (6) find i and h where TCih is the smallest;
  (7) if TCih < 0 then replace oi with oh;

 (8) until TCih  0;
(9) assign each nonrepresentative object to the cluster with the nearest repre-

sentative object;

;

© 2009 by Taylor & Francis Group, LLC



160 Geographic Data Mining and Knowledge Discovery

every pair of objects oi and oh, where oi is a representative one, and oh is not. It then 
selects the pair of oi and oh that achieves the minimum of TCih. If the minimum is 
negative, oi is swapped with oh, and the same procedure is repeated until no swap-
ping occurs. The final set of representative objects are the respective medoids of the 
clusters. The complexity of each iteration is O(k(n k)2). For large values of n and k, 
such computation becomes very costly. 

Algorithm: k-medoids.  PAM, a k-medoids algorithm for partitioning based 
on medoids or central objects.

7.2.3.3 A Model-Based Method: Expectation-Maximization (EM)

In practice, each cluster can be represented mathematically by a parametric prob-
ability distribution. The entire data is a mixture of these distributions, where each 
individual distribution is typically referred to as a component density. We can 
therefore cluster the data using a finite mixture density model of M probabil-
ity distributions, where each distribution represents a cluster. The problem is to 
estimate the parameters of the probability distributions so as to best fit the data. 
Figure 7.9 is an example of a simple finite mixture density model. There are two 
clusters. Each follows a normal or Gaussian distribution with its own mean and 
standard deviation. 

The mixture model is formalized as Equation (7.3), where the parameters are 
 = ( 1, , M, 1, , M) such that i

M
i1 1, and each pi is a density function  

parameterized by i. That is, M component densities are mixed together with M mix-
ing coefficients i. 

 

p x p xi i i

i

M

( | ) ( | )
1  

(7.3)

FIGURE 7.9 Each cluster can be represented by a probability distribution, centered at a mean, 
and with a standard deviation. Here, we have two clusters, corresponding to the Gaussian dis-
tributions g( ) and g( ).

g(m2, s2)
g(m1, s1)

© 2009 by Taylor & Francis Group, LLC



An Overview of Clustering Methods in Geographic Data Analysis 161

The log-likelihood expression for this density from observed data  is given by 
Equation (7.4), if we posit the existence of unobserved data { }yi i

N
1

 whose values 
inform us which component density “generated” each data item. That is, if the i-th 
sample was generated by the k-th mixture component, yi = k (yi  {1, , M}). Now, 
the goal is to find  that maximizes . Often, log( ( , )) is maximized because 
it is analytically easier. A variety of techniques can be used for this optimization. 
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(7.4)

The (Expectation-Maximization) EM algorithm  is one of such techniques. The 
EM algorithm is a general method of finding the maximum-likelihood estimate of 
the parameters of an underlying distribution from a given data set when the data 
is incomplete. It can be viewed as an extension of the k-means paradigm. Instead 
of assigning each object to a dedicated cluster, EM assigns each object to a cluster 
according to a weight representing the probability of membership. In other words, 
there are no strict boundaries between clusters. 

EM starts with an initial estimate or “guess” of the parameters of the mixture 
model. It iteratively re-scores the objects against the mixture density produced by the 
parameters. The re-scored objects are then used to update the parameter estimates. 
The algorithm is described as follows [4]. 

 1. Make an initial guess of the parameters ( , , , , , ).1 1
g

M
g g

M
g  

 2. Iteratively refine the parameters (or clusters) based on the following two 
steps: 

 (a) Expectation Step: Given g, compute p xj i j
g( | ) for each i and j. 

Notice that j can be considered as prior probabilities of each mixture 
component, i.e., j = p (component j). 
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  In other words, this step calculates the probability of cluster member-
ship of an object xi, for each of the clusters. These probabilities are the 
“expected” cluster memberships for the object xi. 

 (b) Maximization Step: Use the probability estimates from above to re-
estimate (or refine) the parameters. The estimates of the new parameters 
in terms of the old parameters are as follows: 
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  This step is the “maximization” of the likelihood of the distributions given 
the data. 

The EM algorithm is simple and easy to implement. In practice, it converges 
fast, but may not reach the global optimum. Convergence is guaranteed for cer-
tain forms of optimization functions. The computational complexity is linear in 
d (the number of input features), n (the number of objects), and t (the number of 
iterations). 

How is spatial information taken into account? Ambroise and Govaert [2] pro-
posed the neighborhood EM (NEM) algorithm. The likelihood is penalized using 
a regularizing term, which takes into account the spatial information relative to the 
data. Let V be the neighborhood matrix, where vij > 0 if xi and xj are neighbors, and 
vij = 0 otherwise. Besides, cik denotes the probability of xi belonging to a cluster k, i.e., 
p(k | xi, ). The regularizing term is defined as follows: 
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(7.9)

Then, the penalized likelihood is constructed by adding  . G (c) to the original 
likelihood. Here,  is a coefficient given by a user. At each iteration of the NEM 
algorithm, the spatial information modifies the partitioning according to the impor-
tance of the  coefficient. 

7.2.3.4 Partitioning Methods in Large Databases: 
From k-Medoids to CLARANS

How efficient is the k-medoids algorithm on large data sets? A typical k-medoids 
algorithm like PAM works effectively for small data sets, but does not scale well 
for large data sets. To deal with larger data sets, a sampling-based method, called 
CLARA (Clustering LARge Applications), can be used. 

The idea behind CLARA is as follows: Instead of finding representative objects 
for the entire data set, CLARA draws a sample of the data set, applies PAM on 
the sample, and finds the medoids of the sample. The point is that, if the sample is 
drawn in a sufficiently random way, the medoids of the sample would approximate 
the medoids of the entire data set. To come up with better approximations, CLARA 
draws multiple samples and gives the best clustering as the output. Here, for accu-
racy, the quality of a clustering is measured based on the average dissimilarity of all 

© 2009 by Taylor & Francis Group, LLC



An Overview of Clustering Methods in Geographic Data Analysis 163

objects in the entire data set, not only of those objects in the samples. Experiments 
indicate that five samples of size 40 + 2k give satisfactory results. The time complex-
ity of each iteration is O(k(40  k)2  k(n  k)). However, CLARA cannot find the best 
clustering if any of the best k medoids are not selected during sampling. 

How might we improve the quality and scalability of CLARA? Another algorithm 
called CLARANS (Clustering Large Applications based on RANdomized Search)  
was proposed, which combines the sampling technique with PAM. Unlike CLARA, 
CLARANS does not confine itself to any sample at any given time. Conceptually, 
the clustering process can be viewed as a search through a graph, where each node 
is a potential solution (a set of k medoids). Two nodes are neighbors (that is, con-
nected by an arc in the graph) if their sets differ by only one object. Each node can 
be assigned a cost that is defined by the total dissimilarity between every object and 
the medoid of its cluster. At each step, PAM examines all neighbors of the current 
node in its search for a minimum cost solution. The current node is then replaced by 
the neighbor with the largest descent in costs. Because CLARA works on a sample 
of the entire data set, it examines fewer neighbors and restricts the search to sub-
graphs that are smaller than the original graph. Whereas CLARA draws a sample of 
nodes at the beginning of a search, CLARANS dynamically draws a random sample 
of neighbors in each step of a search. The number of neighbors to be randomly 
sampled is restricted by a user-specified parameter. In this way, CLARANS does 
not confine the search to a localized area. If a better neighbor is found (i.e., having a 
lower error), CLARANS moves to the neighbor’s node, and the process starts again. 
Otherwise, the current clustering produces a local minimum, and CLARANS starts 
with new randomly selected nodes in search for a new local minimum. Once a user-
specified number of local minima has been found, the algorithm outputs the best 
local minimum. 

CLARANS has been experimentally shown to be much more efficient than PAM. 
In addition, given the same amount of time, CLARANS is able to find clusterings of 
better quality than CLARA. 

7.2.4 HIERARCHICAL METHODS

A hierarchical clustering method works by grouping data objects into a tree of clus-
ters. Hierarchical clustering methods can be further classified as either agglomera-
tive or divisive, depending on whether the hierarchical decomposition is formed in 
a bottom-up (merging) or top-down (splitting) fashion. The quality of a pure hier-
archical clustering method suffers from its inability to perform adjustment once a 
merge or split decision has been executed. That is, if a particular merge or split 
decision later turns out to have been a poor choice, the method cannot backtrack and  
correct it. Recent studies have emphasized the integration of hierarchical agglomera-
tion with iterative relocation methods. 

7.2.4.1 Agglomerative and Divisive Hierarchical Clustering

AGNES and DIANA are two earlier hierarchical clustering algorithms. AGNES 
(AGglomerative NESting) is an agglomerative (bottom-up) algorithm which starts 

© 2009 by Taylor & Francis Group, LLC



164 Geographic Data Mining and Knowledge Discovery

by placing each object in its own cluster and then merging these atomic clusters into 
larger and larger clusters until all of the objects are in one cluster or until a certain 
termination condition is satisfied. On the other hand, DIANA (DIvisive ANAlysis) 
is a divisive (top-down) algorithm that does the reverse of AGNES by starting with 
all objects in one cluster. It subdivides the cluster into smaller and smaller pieces 
until each object forms a cluster on its own or until a certain termination condition is 
satisfied. In either AGNES or DIANA, one can specify a desired number of clusters 
as a termination condition. 

EXAMPLE 7.2

Figure 7.10 shows the application of AGNES and DIANA to a data set of five objects 
{p, q, r, s, t}. Initially, AGNES places each object into a cluster of its own. At each 
stage, the algorithm joins the two clusters that are closest together (i.e., most similar). 
The cluster merging process repeats until all of the objects are eventually merged to 
form one cluster. DIANA does the reverse of AGNES. 

Four widely used measures for the distance between clusters are formulated by 
Equation (7.10) through Equation (7.13). Here, |p  p | is the distance between two objects 
or points, p and p ; mi is the mean for a cluster, Ci; and ni is the number of objects in Ci. 

 
Minimum distance : ( , ) min |min ,d C C pi j p C p Ci j

p |
 (7.10)

 
Maximum distance : ( , ) max |max ,d C C pi j p C p Ci j

p |
 

(7.11)

 
Mean distance : ( , ) | |d C C m mmean i j i j  

(7.12)

 

Average distance : ( , ) | |d C C
n n

p pavg i j
i j p C

1

jjip C
 

(7.13)

When an algorithm uses the minimum distance, dmin(Ci, Cj), to measure the dis-
tance between clusters, it is called a single-linkage algorithm. It is also known as a 
nearest neighbor clustering algorithm. On the other hand, when an algorithm uses the 
maximum distance, dmax(Ci, Cj) , it is called a complete-linkage algorithm. It is also 

FIGURE 7.10 Agglomerative and divisive hierarchical clustering on a set of data objects 
{p, q, r, s, t}.

© 2009 by Taylor & Francis Group, LLC

p q r s t 

s, t 

p, q 

r, s, t 

p, q, r, s, t 
Agglomerative 
(AGNES) 

Divisive 
(DIANA) 



An Overview of Clustering Methods in Geographic Data Analysis 165

known as a farthest neighbor clustering algorithm. The above minimum and maxi-
mum measures represent two extremes in measuring the distance between clusters. 
They tend to be overly sensitive to outliers or noisy data. The use of mean or aver-
age distance is a compromise between the minimum and maximum distances and 
overcomes the outlier sensitivity problem. 

What are some of the difficulties with hierarchical clustering? The hierarchical clus-
tering method, though simple, often encounters difficulties regarding the selection of 
merge or split points. Such a decision is critical because once a group of objects is 
merged or split, the process at the next step will operate on the newly generated clusters. 
It will neither undo what was done previously, nor perform object swapping between 
clusters. Thus, merge or split decisions, if not well chosen at some step, may lead to 
low-quality clusters. Moreover, the method does not scale well because each decision of 
merge or split needs to examine and evaluate a good number of objects or clusters. 

One promising direction for improving the clustering quality of hierarchical 
methods is to integrate hierarchical clustering with other clustering techniques, 
resulting in multiple-phase clustering. Two such methods are introduced in the fol-
lowing subsections. The first, called BIRCH, begins by partitioning objects hier-
archically using tree structures, where the leaf or low-level nonleaf nodes can be 
viewed as “microclusters” depending on the scale of resolution. It then applies other 
clustering algorithms to perform macroclustering on the microclusters. The second 
method, called Chameleon, explores dynamic modeling in hierarchical clustering. 

7.2.4.2 BIRCH: Balanced Iterative Reducing  
and Clustering Using Hierarchies

BIRCH is designed for clustering a large amount of numerical data by integration 
of hierarchical clustering (at the initial microclustering stage) and other clustering 
methods such as iterative partitioning (at the later macroclustering stage). It over-
comes the two difficulties of agglomerative clustering methods: (1) scalability and 
(2) the inability to undo what was done in the previous step. 

BIRCH introduces two concepts, clustering feature (CF) and clustering feature 
tree (CF tree), which are used to summarize cluster representations. These structures 
help the clustering method achieve good speed and scalability in large databases, and 
also make it effective for incremental and dynamic clustering of incoming objects. 

A clustering feature is a triple summarizing the information about a cluster. Given 
N d-dimensional data points in a cluster, { }X i , where i  1, 2, , N, the CF vector of 
the cluster is defined as a tuple: 

 CF = (N, LS, SS) (7.14)

where N is the number of data points in the cluster, LS is the linear sum of the N 
data points, i.e., i

N
iX1 , and SS is the square sum of the N data points, i.e., i

N
iX1

2
. 

CFs are sufficient for calculating all of the measurements that are needed for making 
clustering decisions in BIRCH. This avoids the necessity of storing all objects. An 
important property is that the CF vectors are additive. Suppose that the CF vectors of 
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two disjoint clusters are CF1 = (N1, LS1, SS1)  and CF2 = (N2, LS2, SS2), respectively. 
Then, the CF vector of the cluster formed by merging the two clusters is 

 CF1 + CF2 = (N1 + N2, LS1 + LS2, SS1 + SS2) (7.15)

EXAMPLE 7.3

Suppose that there are three points, (2, 5), (3, 2), and (4, 3), in a cluster, C1. The CF 
of C1 is 

 CF1 = (3, (2 + 3 + 4, 5 + 2+ 3), (22 + 32 + 42 +, 52 + 22 + 32)) = (3, (9, 10), (29, 38)).

Suppose that the CF of another cluster, C2, is CF2 = (3, (35, 36), (417, 440)). The CF 
of a new cluster, C3, that is formed by merging C1 and C2, is derived by adding CF1 
and CF2. That is, 

 CF3 = (3 + 3, (9 + 35, 10 + 36), (29 + 417, 38 + 440)) = (6, (44, 46), (446, 478)).

A CF tree is a height-balanced tree with two parameters: branching factor (B for 
nonleaf nodes and L for leaf nodes) and threshold T. Each nonleaf node contains at 
most B entries of the form [CFi, childi] (i = 1, 2, , B), where childi is a pointer to its 
i-th child node, and CFi is the sum of the CFs of their children. A leaf node contains 
at most L entries, and each entry is a CF. In addition, each leaf node has two pointers, 
prev and next, which are used to chain all leaf nodes together for efficient scans. All 
entries in a leaf node must satisfy a threshold requirement: the diameter of each leaf 
entry has to be less than T. The tree size is a function of T. The larger T is, the smaller 
the tree is. Figure 7.11 shows an example of a CF tree. 

The CF tree is built dynamically as objects are inserted. An object is inserted to 
the appropriate leaf entry by recursively descending the CF tree and choosing the 
closest child node according to a chosen distance metric. Next, it is checked if the 
leaf entry can absorb the node without violating the threshold. If there is no room, 
the node is split. After inserting an object to a leaf, the CF information for each non-
leaf entry on the path to the leaf should be updated. 

BIRCH tries to produce the best clusters with the available resources. Given a 
limited amount of main memory, an important consideration is to minimize the time 
required for I/O. BIRCH applies a multiphase clustering technique: a single scan 
of the data set yields a basic good clustering, and one or more additional scans can 

FIGURE 7.11 A CF tree structure.
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(optionally) be used to further improve the quality. BIRCH performs the following 
four phases: 

Phase 1: Load data into memory by building a CF tree. 
Phase 2 (optional): Condense the initial CF tree into a desirable range by 
building a smaller CF tree. 
Phase 3: Perform global clustering. 
Phase 4 (optional): Perform cluster refining. 

For Phase 1, the CF tree is built dynamically as objects are inserted. Thus, the 
method is incremental. The size of the CF tree can be changed by modifying the 
threshold. If the size of the memory that is needed for storing the CF tree is larger than 
the size of the main memory, a smaller CF tree is rebuilt by increasing the threshold. 
The rebuild process is performed by building a new tree from the leaf nodes of the old 
tree. Thus, the process of rebuilding the tree is done without the necessity of rereading 
all of the objects or points. Therefore, for building the tree, data has to be read just 
once. Some heuristics and methods have been introduced to deal with outliers and 
improve the quality of CF trees by additional scans of the data. Once the CF tree is 
built, an existing clustering algorithm can be used with the CF tree in Phase 3. 

How effective is BIRCH? The computation complexity of the algorithm is O(n), 
where n is the number of objects to be clustered. Experiments have shown the linear 
scalability of the algorithm with respect to the number of objects, and good qual-
ity of clustering of the data. However, since each node in a CF tree can hold only a 
limited number of entries due to its size, a CF tree node does not always correspond 
to what a user may consider a natural cluster. Moreover, if the clusters are not spheri-
cal in shape, BIRCH does not perform well because it uses the notion of radius or 
diameter to control the boundary of a cluster. 

7.2.4.3 Chameleon: A Hierarchical Clustering 
Algorithm Using Dynamic Modeling

Chameleon is a hierarchical clustering algorithm that uses dynamic modeling to 
determine the similarity between two clusters. It was derived based on the observed 
weaknesses of the agglomerative algorithms: one set of schemes ignores the infor-
mation about the aggregate interconnectivity of objects in two clusters, whereas the 
other set of schemes ignores the information about the closeness of two clusters as 
defined by the similarity of the closest objects across two clusters. Chameleon deter-
mines the pair of most similar sub-clusters by taking into account both the intercon-
nectivity as well as the closeness of the clusters, and thus it overcomes the limitations 
above. It does not depend on a static, user-supplied model and can automatically 
adapt to the internal characteristics of the clusters being merged. 

EXAMPLE 7.4

Figure 7.12 explains the weaknesses of existing agglomerative algorithms. In Figure 
7.12(a), an algorithm that focuses only on the closeness of two clusters will incor-
rectly prefer to merge clusters C3 and C4  over clusters C1  and C2. In Figure 7.12(b), 
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an algorithm that focuses only on the interconnectivity of two clusters will incor-
rectly prefer to merge a cluster C5  with a cluster C7 rather than with C6. 

How does Chameleon work? The main approach of Chameleon is illustrated in 
Figure 7.13. Chameleon models the data using a k-nearest neighbor graph, where 
each vertex of the graph represents a data object, and there exists an edge between 
two vertices (objects) if one object is among the k-most similar objects of the other. 
The edges are weighted to reflect the similarity between objects. Chameleon uses an 
algorithm that consists of two distinct phases. In the first phase, it uses a graph parti-
tioning algorithm to partition the k-nearest neighbor graph into a large number of rel-
atively small subclusters. In the second phase, it uses an agglomerative hierarchical 
clustering algorithm that repeatedly merges subclusters based on their similarity. 

Note that the k-nearest neighbor graph captures the concept of neighborhood 
dynamically: the neighborhood radius of an object is determined by the density 
of the region in which the object resides. In a dense region, the neighborhood is 
defined narrowly; in a sparse region, it is defined more widely. This tends to result 
in more natural clusters, in comparison with density-based methods like DBSCAN 

FIGURE 7.12 Examples of clusters for merging choices.
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FIGURE 7.13 Chameleon: Hierarchical clustering based on k-nearest neighbors and dynamic 
modeling. (Based on Karypis, G., Han, E.-H., and Kumar, CHAMELEON: A hierarchical 
clustering algorithm using dynamic modeling, Computer, 32:68–75, 1999.) © 1999 IEEE.
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(described in Section 7.2.5.1) that instead use a global neighborhood. Moreover, the 
density of the region is recorded as the weight of the edges. That is, the edges of a 
dense region tend to weigh more than that of a sparse region. 

The graph partitioning algorithm partitions the k-nearest neighbor graph into sev-
eral partitions such that the edge cut, i.e., the sum of the weight of the edges that 
straddle partitions, is minimized. Since each edge in the k-nearest neighbor graph 
represents the similarity among objects, a partitioning that minimizes the edge cut 
effectively minimizes the relationship (affinity) among objects across the resulting 
partitions. Edge cut is denoted EC(Ci, Cj) and assesses the absolute interconnectivity 
between clusters Ci  and Cj . 

Chameleon determines the similarity between each pair of clusters Ci  and Cj  
according to their relative interconnectivity, RI(Ci , Cj ), and their relative closeness, 
RC(Ci , Cj ): 

The relative interconnectivity, RI(Ci, Cj), between two clusters, Ci and Cj, 
is defined as the absolute interconnectivity between Ci and Cj , normalized 
with respect to the internal interconnectivity of the two clusters, Ci  and 
Cj. That is, 

 

RI C C
EC

i j

C C

EC EC

i j

Ci C j

( , ) ,
{ , }

2  

(7.16)

  where EC C Ci j{ , } is the edge cut as defined above for a cluster containing both 

Ci  and Cj . Similarly, ECCi
( )or ECC j

 is the minimum sum of the cut edges 
that partition Ci  (or Cj ) into two roughly equal parts. 

The relative closeness, RC(Ci, Cj), between two clusters, Ci and Cj, is 
the absolute closeness between Ci and Cj, normalized with respect to the 
internal closeness of the two clusters, Ci and Cj. That is, 
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(7.17)

 where SEC Ci C j{ , }
 is the average weight of the edges that connect vertices in Ci 

to vertices in Cj , and SEC Ci{ ,
 ( )or SECC j

 is the average weight of the edges that 
belong to the min-cut bisector of cluster Ci (or Cj ). 

Chameleon decides to merge the pair of clusters for which both RI(Ci, Cj) and 
RC(Ci, Cj) are high; i.e., it selects to merge clusters that are well interconnected as 
well as close together with respect to the internal interconnectivity and closeness 
of the clusters. In fact, it selects the pair of clusters that maximizes RI(Ci, Cj)  RC 
(Ci, Cj) , where  is a user-specified parameter. If , Chameleon gives a higher 
importance to the relative closeness; otherwise, it gives a higher importance on the 
relative interconnectivity. 
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Chameleon has been shown to have greater power at discovering arbitrarily 
shaped clusters of high quality than several well-known algorithms such as BIRCH 
and the density-based algorithm DBSCAN (Section 7.2.5.1). However, the process-
ing cost for high-dimensional data may require O(n2) time for n objects in the worst 
case. 

7.2.5 DENSITY-BASED METHODS

To discover clusters with arbitrary shape, density-based clustering methods have 
been developed. They typically regard clusters as dense regions of objects in the data 
space that are separated by regions of low density (representing noise). 

7.2.5.1 DBSCAN: A Density-Based Clustering Method Based on 
Connected Regions with Sufficiently High Density

DBSCAN (density-based spatial clustering of applications with noise) is a density-
based clustering algorithm. The algorithm grows regions with sufficiently high den-
sity into clusters and discovers clusters of arbitrary shape in spatial databases with 
noise. It defines a cluster as a maximal set of density-connected points. 

The basic ideas of density-based clustering involve a number of new definitions. 
We intuitively present these definitions, and then follow up with an example. 

The neighborhood within a radius  of a given object is called the -neigh-
borhood of the object. 
An object is a core object if its -neighborhood contains at least a mini-
mum number, MinPts, of objects. 
Given a set of objects, D, we say that an object p is directly density-
reachable from object q if p is within the -neighborhood of q, and q is a 
core object. 
An object p is density-reachable from object q with respect to and 
MinPts in a set of objects, D, if there is a chain of objects p1, , pn, p1 = q, 
and pn = p such that pi + 1 is directly density-reachable from pi with respect 
to  and MinPts, for 1 i n, pi  D. 
An object p is density-connected to object q with respect to  and MinPts 
in a set of objects, D, if there is an object o  D such that both p and q are 
density-reachable from o with respect to  and MinPts. 

Density reachability is the transitive closure of direct density reachability, and 
this relationship is asymmetric. Only core objects are mutually density reachable. 
Density connectivity, however, is a symmetric relation. 

EXAMPLE 7.5

Consider Figure 7.14 for a given  represented by the radius of the circles, and let 
MinPts = 3. Based on the above definitions, 
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Of the labeled points, m, p, o, and r are core objects since each is in an 
-neighborhood containing at least three points. 

q is directly density-reachable from m. m is directly density-reachable 
from p and vice versa. 
q is (indirectly) density-reachable from p since q is directly density-reach-
able from m, and m is directly density-reachable from p. However, p is not 
density-reachable from q since q is not a core object. Similarly, r and s are 
density-reachable from o, and o is density-reachable from r. 
o, r, and s are all density-connected. 

A density-based cluster is a set of density-connected objects that is maximal 
with respect to density-reachability. Every object not contained in any cluster is con-
sidered to be noise. 

How does DBSCAN find clusters? DBSCAN searches for clusters by checking the 
-neighborhood of each point in the database. This process starts with an arbitrary point 

p. If the -neighborhood of a point p contains more than MinPts, a new cluster with p 
as a core object is created. DBSCAN then iteratively collects directly density-reachable 
objects from these core objects, which may involve the merge of a few density-reachable 
clusters. The process terminates when no new point can be added to any cluster. 

If a spatial index is used, the computational complexity of DBSCAN is  
O(n log n), where n is the number of database objects. Otherwise, it is O(n2). With 
appropriate settings of the user-defined parameters,  and MinPts, the algorithm is 
effective at finding arbitrary shaped clusters. However, DBSCAN still leaves the user 
with the responsibility of selecting parameter values that will lead to the discovery 
of acceptable clusters. Actually, this is a problem associated with many other cluster-
ing algorithms. Such parameter settings are usually empirically set and difficult to 
determine, especially for real-world, high-dimensional data sets. Most algorithms 
are very sensitive to such parameter values. 

Many spatial databases contain extended objects such as polygons rather than 
points. Then, any reflexive and symmetric predicate (e.g., two polygons have a 

FIGURE 7.14 Density reachability and density connectivity in density-based clustering. 
(Based on Ester, M. et al., A density-based algorithm for discovering clusters in large spa-
tial databases, in Proc. 1996 Intl. Conf. Knowledge Discovery and Data Mining (KDD’96), 
Portland, OR August 1996, pp. 226–231.) Used with permission, Association for the 
Advancement of Artificial Intelligence. © 1996 AAAI Press.
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nonempty intersection) suffices to define a neighborhood. Additional measures (e.g., 
nonspatial attributes such as the average income of a city) can be used to define the 
cardinality of the neighborhood. These two generalizations lead to the algorithm 
GDBSCAN, which uses the two parameters NPred and MinWeight. 

7.2.5.2 OPTICS: Ordering Points to Identify the Clustering Structure

An important property of many real-world data sets is that their intrinsic cluster 
structure cannot be characterized by global density parameters. Very different local 
densities may be needed to reveal clusters in different regions of the data space. 
Thus, DBSCAN may fail to find the optimal clustering when the data space has both 
dense and sparse regions. A possible solution is to use a density-based clustering 
algorithm with different parameter settings. However, there are an infinite number 
of possible parameter values. 

To help overcome this difficulty, a cluster analysis method called OPTICS  was 
proposed. Rather than produce a data set clustering explicitly, OPTICS computes 
an augmented cluster ordering for automatic and interactive cluster analysis. This 
ordering represents the density-based clustering structure of the data. It contains 
information that is equivalent to density-based clustering obtained from a wide range 
of parameter settings. The cluster ordering can be used to extract basic clustering 
information (such as cluster centers, or arbitrary-shaped clusters), as well as provide 
the intrinsic clustering structure. 

To introduce the notion of a cluster ordering, we first make the following obser-
vation. Density-based clusters with respect to a higher density (i.e., a lower value 
for ) are completely contained in density-connected sets obtained with respect 
to a lower density (i.e., a higher value for ). Thus, in order to produce a set or 
ordering of density-based clusters, we can extend the DBSCAN algorithm to pro-
cess a set of distance parameter values at the same time. To construct the dif-
ferent clusterings simultaneously, the objects should be processed in a specific 
order. This order selects an object that is density-reachable with respect to the 
lowest value so that clusters with higher density (lower ) will be finished first. 
Based on this idea, two values need to be stored for each object—core-distance 
and reachability-distance: 

The core-distance of an object p is the smallest  value that makes p a 
core object. If p is not a core object, the core-distance of p is undefined. 
The reachability-distance of an object q with respect to another object 
p is the greater value of the core-distance of p and the Euclidean dis-
tance between p and q. If p is not a core object, the reachability-distance 
between p and q is undefined. 

EXAMPLE 7.6

Figure 7.15 illustrates the concepts of core-distance and reachability-distance. 
Suppose that  = 6 mm and MinPts = 5. The core-distance of p is the distance, , 
between p and the fourth closest data object. The reachability-distance of q1 with 
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respect to p is the core-distance of p (i.e.,  = 3 mm) since this is greater than the 
Euclidean distance from p to q1. The reachability-distance of q2  with respect to p 
is the Euclidean distance from p to q2 since this is greater than the core-distance 
of p. 

How are these values used? The OPTICS algorithm creates an ordering of 
the objects in a database, additionally storing the core-distance and a suitable 
reachability-distance for each object. An algorithm was proposed to extract clusters 
based on the ordering information produced by OPTICS. Such information is suf-
ficient for the extraction of all density-based clusterings with respect to any distance 

 that is smaller than the distance  used in generating the order. 
The cluster ordering of a data set can be represented graphically, which helps in 

its understanding. For example, Figure 7.16 is the reachability plot for a simple two-
dimensional data set, which presents a general overview of how the data are struc-
tured and clustered. The data objects are plotted in cluster order (horizontal axis) 
together with their respective reachability-distance (vertical axis). The three Gaussian 
“bumps” in the plot reflect three clusters in the data set. Methods have also been 
developed for viewing clustering structures of high-dimensional data at various levels 
of detail. 

Due to the structural equivalence of the OPTICS algorithm to DBSCAN, the 
OPTICS algorithm has the same run-time complexity as that of DBSCAN, i.e.,  
O(n log n) if a spatial index is used, where n is the number of objects. 

7.2.5.3 DENCLUE: Clustering Based on Density Distribution Functions

DENCLUE (DENsity-based CLUstEring) is a clustering method based on a set of 
density distribution functions. The method is built on the following ideas: (1) the 
influence of each data point can be formally modeled using a mathematical function, 
called an influence function, which describes the impact of a data point within its 
neighborhood; (2) the overall density of the data space can be modeled analytically 
as the sum of the influence function applied to all data points; and (3) clusters can 
then be determined mathematically by identifying density attractors, where density 
attractors are local maxima of the overall density function. 

FIGURE 7.15 OPTICS terminology. 
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Let x and y be objects or points in Fd, a d-dimensional input space. The influence 
function of data object y on x is a function, f F RB

Y d: ,0 which is defined in terms 
of a basic influence function fB: 

 f x f x yB
Y

B( ) ( , )  (7.18)

This reflects the impact of y on x. In principle, the influence function can be an 
arbitrary function that can be determined by the distance between two objects in 
a neighborhood. The distance function, d(x, y), should be reflexive and symmetric, 
such as the Euclidean distance function. Two examples of an influence function are 
a square wave influence function and a Gaussian influence function: 
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The density function at an object or point x  Fd is defined as the sum of influ-
ence functions of all data points. That is, it is the total influence on x of all of the 
data points. Given n data objects, D = {x1, , xn} = Fd, the density function at x 
is defined as 
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FIGURE 7.16 Cluster ordering in OPTICS. (Based on Ankerst, M. et al., OPTICS: Ordering 
points to identify the clustering structure, in Proc. ACM-SIGMOD Intl. Conf. Management of 
Data (SIGMOD’99), Philadelphia, PA, June 1999, pp. 49–60.) © 1999 ACM, Inc. Reprinted 
by permission.
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For example, the density function that results from the Gaussian influence function 
(7.20) is 
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Figure 7.17 shows an example of a set of data points in a 2-dimensional space, 
together with the corresponding overall density functions for the square wave influ-
ence function and the Gaussian influence function. 

From the density function, one can define the gradient function at a point x which 
is in fact a vector that indicates the strength and direction where most of x’s influence 
comes from. The density function is also used to locate the density attractor, which 
is the local maxima of the overall density function. A point x is said to be density 
attracted to a density attractor x* if there exists a set of points x0, x1,  , xk such 
that x0 = x, xk = x* and the gradient of xi 1 is in the direction of xi for 0 < i < k + 1. 
For a continuous and differentiable influence function, a hill-climbing algorithm 
guided by the gradient can be used to determine the density attractor of a set of data 
points. 

In general, points that are density attracted to x* may form a cluster. Based on 
the above notions, both center-defined clusters and arbitrary-shape clusters can 
be formally defined. A center-defined cluster for a density attractor, x*, is a sub-
set of points, C  D, that are density-attracted by x*, and where the density func-
tion at x* is no less than a threshold, . Points that are density-attracted by x*, but 
for which the density function value is less than , are considered outliers. That is, 
intuitively, points in a cluster are influenced by many points, but outliers are not. An 
arbitrary-shape cluster for a set of density attractors is a set of C’s, each being density- 
attracted to its respective density-attractor, where (1) the density function value at 
each density-attractor is no less than a threshold, , and (2) there exists a path, P, 
from each density-attractor to another, where the density function value for each 
point along the path is no less than . Examples of center-defined and arbitrary-shape 
clusters are shown in Figure 7.18. 

FIGURE 7.17 Possible density functions for a 2-D data set. (From Hinneburg, A. and Keim, 
D.A., An efficient approach to clustering in large multimedia databases with noise, in Proc. 
1998 Intl. Conf. Knowledge Discovery and Data Mining (KDD’98), New York, August 1998, 
pp. 58–65.) Used with permisson, Association for the Advancement of Artificial Intelligence, © 
1998 AAAI Press.
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7.3 CLUSTERING OF TRAJECTORY DATA

In this section, we present an overview of clustering methods developed for trajec-
tory data. First, we introduce an application of trajectory data clustering in Section 
7.3.1. Then, we explain the major clustering methods. Notice that very few clustering 
methods have been developed thus far. We study earlier methods that do not use tra-
jectory partitioning in Section 7.3.2. These methods, however, have limited capabil-
ity in discovering clusters of sub-trajectories. Very recently, the partition-and-group 
framework [15] has been proposed to overcome this drawback. As the final topic, in 
Section 7.3.3 we study the partition-and-group framework. 

7.3.1 APPLICATION: TROPICAL CYCLONE TRAJECTORY ANALYSIS

Tropical cyclones (TCs) are crucial dynamical ingredients of the atmospheric circu-
lation, directly impacting local weather. A better understanding of the behavior of 
TCs in the context of climate variability and change could have important societal 
implications. Cluster analysis of TC trajectories provides a natural way to extract the 
common behavior of TCs. 

Camargo et al. [5] and Gaffney et al. [9] performed cluster analysis of TC tra-
jectories. They applied a probabilistic clustering technique [10] to the best track 
data set of the Joint Typhoon Warning Center for the period 1950 to 2002. The 
best track contains the TC’s latitude, longitude, maximum sustained surface wind, 

FIGURE 7.18 Examples of center-defined clusters (top row) and arbitrary-shape clusters (bot-
tom row). (From Hinneburg, A. and Keim, D. A., An efficient approach to clustering in large 
multimedia databases with noise, in Proc. 1998 Intl. Conf. Knowledge Discovery and Data 
Mining (KDD’98), New York, August 1998, pp. 58–65 .) Used with permisson, Association for 
the Advancement of Artificial Intelligence, © 1998 AAAI Press.
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and minimum sea-level pressure at 6-hour intervals. Only TCs with tropical storm 
intensity or higher were included, a total of 1393 TCs. The aim of this analysis is to 
identify different types of track, their seasonality, and their relationship to the large-
scale circulation and El Nino-Southern Oscillation (ENSO). 

The clustering technique consists of building a mixture of polynomial regres-
sion models (i.e., curves), which are used to fit the geographical “shape” of trajec-
tories. The model is fit to the data by maximizing the likelihood of the parameters, 
given the data set. The mixture model framework allows the clustering problem to 
be posed in a rigorous probabilistic context. This technique will be explained in 
Section 7.3.2.1. 

Figure 7.19 shows seven underlying regression models, relative to their starting 
points. Two main trajectory types are “straight-movers” and “recurvers.” Two tropical 
cyclone clusters A and G are are shown in Figure 7.20. Thin lines are trajectories, and 
thick lines are mean regression trajectories. The main variables analyzed per cluster 

FIGURE 7.19 Mean regression trajectories relative to the initial positions. (From Camargo, 
S. et al., Cluster analysis of western north pacific tropical cyclone tracks, in Technical Report, 
International Research Institute for Climate and Society, Columbia University, 2005.)
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FIGURE 7.20 Two tropical cyclone clusters A and G in Figure 7.19. (From Camargo, S. 
et al., Cluster analysis of western north pacific tropical cyclone tracks, in Technical Report, 
International Research Institute for Climate and Society, Columbia University, 2005.)
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are the number of tropical cyclones; number of tropical cyclones with tropical storm 
(TS), typhoon (TY—Dvorak’s scale 1–2), and super-typhoon (STY—Dvorak’s scale 
3–5) intensities; location and distribution of first position (genesis); track types and 
density; ACE (accumulated cyclone energy); and lifetime. 

7.3.2 WHOLE TRAJECTORY CLUSTERING

7.3.2.1 Probabilistic Method

This method is based on probabilistic clustering. In probabilistic clustering, it is 
assumed that the data are being produced in the following “generative” manner [10]: 

 1. An individual is drawn randomly from the population of interest. 
 2. The individual has been assigned to a cluster k with probability wk, 

k
K

kw1 1.  These are the “prior” weights on the K clusters. 
 3. Given that an individual belongs to a cluster k, there is a density function 

fk(yj | k) which generates an observed data item yj for the individual j. 

From the generative model above, the probability density function of observed 
trajectories is a mixture density, Equation (7.23), where fk(yj|xj, k) is the density 
component, wk is the weight, and k  is the set of parameters for the k-th component. 

 

P y x f y x wj j k j j k k

k

K

( | , ) ( | , )

 
(7.23)

Due to conditional independence between trajectories, they are regarded as a ran-
dom sample from a population of individuals. This property allows the full joint 
density to be written as Equation (7.24). The log-likelihood of the parameters  given 
the data set S, Equation (7.25), is directly derived from Equation (7.24). 
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Here, k and wk can be estimated from the trajectory data using the EM 
algorithm. The EM algorithm allows us to estimate the hidden data so that the 
log-likelihood ( | S) is guaranteed to never decrease. The expectation and max-
imization steps are repeated until a stopping criterion is satisfied. In practice, 
the procedure is stopped when the marginal change in the log-likelihood falls 
below a certain threshold. Finally, the estimated density components fk(yj|xj, k) 
are interpreted as clusters. Please refer to the original paper [10] for details of 
the EM algorithm. 
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7.3.2.2 Density-Based Method

This method relies on density-based clustering. In this method, a trajectory is repre-
sented as a sequence of the location and timestamp. Then, the distance between two 
trajectories 1 and 2  is defined as the average distance between objects, Equation 
(7.26), where d() is the Euclidean distance over 2, T is the time interval over which 
the trajectories 1 and 2 exist, and i (t) (i  {1, 2}) is the position of the object of i 
at time t. Using this distance function, the density-based clustering method OPTICS 
(explained in Section 7.2.5.2) is applied to clustering of trajectory data. This method 
is called T-OPTICS. 

 
D

d t t dt

TT
T( , ) |

( ( ), ( ))

| |1 2
1 2

 
(7.26)

Figure 7.21 shows an execution result of T-OPTICS over a synthetic data set. The 
data set in Figure 7.21(a) is composed of 250 trajectories organized into four natural 
clusters plus noise. As indicated by the resulting reachability plot in Figure 7.21(b), 
T-OPTICS finds the four natural clusters, which can be easily isolated by selecting a 
proper value for the  parameter (  in this example). 

Next, the concept of temporal focusing is introduced. In a real environment, not 
all time intervals have the same importance. A meaningful example is urban traffic: 
in rush hours, many people move from home to work, and vice versa. Thus, it would 
be interesting if trajectory clustering is performed with a focus on the temporal 
dimension. In other words, clustering trajectories only in meaningful time intervals 
can produce more interesting results. An algorithm called TF-OPTICS is presented 
for this temporal focusing. TF-OPTICS aims at searching the most meaningful time 
intervals, which allows us to isolate the (density-based) clusters of higher quality. 

The first issue is to define a quality function. The quality function used in this 
work takes account of both high-density clusters and low-density noise. To compute 
the quality function, the reachability plot generated by OPTICS is used. R(D, I, ) 

FIGURE 7.21 An execution result of T-OPTICS. (a) A synthetic data set. (b) The correspond-
ing reachability plot. (From Nanni, M. and Pedreschi, D., Time-focused clustering of trajec-
tories of moving objects, Journal of Intelligent Information Systems, 27: 267–289, 2006.) © 
2006 Springer.
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denotes the average reachability-distance of nonnoise objects, where D is an input 
data set, I is a time interval, and is a density threshold parameter. Then, the qual-
ity measure Q1 is defined as Q1(D, I, ) = R(D, I, ). Dispersed clusters yield high 
reachability distances, and thus highly negative values of Q1, whereas compact clus-
ters yield values of Q1 closer to zero. In practice, a variation of Q1  is used to promote 
larger intervals as follows: Q2(D, I, ) = Q1(D, I, )/ log10 (10 + |I|) . 

A basic approach for finding the time interval that maximizes Q2 is an exhaustive 
search over all possible intervals. Such an approach is obviously very expensive. A 
natural alternative is to find a local optimum, adopting a greedy search paradigm. 
The procedure is described in the following, where t0 is the chosen temporal granu-
larity, and IALL is the largest time interval. 

 1. Choose an initial random time interval I  IALL. 
 2. Let I argmax T Neigh1, Q2 (D, T, ), where I = [Ts, Te] and NeighI = 

{[Ts  t0, Te], [Ts, Te  t0]}. 
 3.  If Q2(D, I , ) > Q2(D, I, ), then let I := I  and return to Step 2; otherwise, stop. 

7.3.3 PARTIAL TRAJECTORY CLUSTERING: THE PARTITION-AND-GROUP FRAMEWORK

A key observation is that clustering trajectories as a whole could not detect simi-
lar portions of the trajectories. Even though some portions of trajectories show a 
common behavior, the whole trajectories may not. For example, consider the five 
trajectories in Figure 7.22. It is obvious that there is a common behavior, denoted 
by the thick arrow, in the dotted rectangle. In earlier clustering methods, however, 
this common behavior cannot be detected because the trajectories move to totally 
different directions. 

The solution is to partition a trajectory into a set of line segments and then group 
similar line segments. This framework is called partition-and-group framework. The 
primary advantage of the partition-and-group framework is the discovery of common 
sub-trajectories from a trajectory database. As indicated by its name, trajectory cluster-
ing based on this framework consists of two phases: the partitioning and grouping 
phases. We give an overview of the partition-and-group framework in Section 7.3.3.1. 
Then, we explain the partitioning and grouping phases in Sections 7.3.3.2 and 7.3.3.3. 

7.3.3.1  Overall Procedure

We first define necessary terminology. A trajectory is a sequence of multidimen-
sional points. A cluster is a set of trajectory partitions. A trajectory partition is a line 

FIGURE 7.22 An example of a common sub-trajectory.
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segment pi pj (i < j), where pi and pj  are the points chosen from the same trajectory. A 
representative trajectory is an imaginary trajectory that indicates the major behavior 
of the trajectory partitions (i.e., line segments) belonging to the cluster. 

Figure 7.23 shows the overall procedure of trajectory clustering in the partition-
and-group framework. First, each trajectory is partitioned into a set of line segments. 
Second, line segments that are close to each other according to the distance mea-
sure are grouped together into a cluster. The distance measure is composed of three 
components: the perpendicular (d ), parallel (d||), and angle (d ) distances. Then, a 
representative trajectory is generated for each cluster. 

Figure 7.24 shows the skeleton of the trajectory algorithm TRACLUS. Notice 
that TRACLUS can discover the superset of the clusters that can be discovered by 
earlier methods. 

FIGURE 7.23 The overall procedure of trajectory clustering in the partition-and-group frame-
work. (From Lee, J.-G., Han, J., and Whang, K.-Y., Trajectory clustering: A partition-and-group 
framework, in Proc. 2007 ACM-SIGMOD Intl. Conf. Management of Data (SIGMOD’07), 
Beijing, China, June 2007, pp. 593–604.) © 2007 ACM, Inc. Reprinted by permission.
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FIGURE 7.24 The skeleton of the trajectory clustering algorithm TRACLUS.
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7.3.3.2 The Partitioning Phase

What properties should be satisfied in trajectory partitioning? The optimal par-
titioning of a trajectory should possess two desirable properties: preciseness and 
conciseness. Preciseness means that the difference between a trajectory and a set 
of its trajectory partitions should be as small as possible. Conciseness means that 
the number of trajectory partitions should be as small as possible. Preciseness and 
conciseness are contradictory to each other. Hence, it is required to find an optimal 
tradeoff between the two properties. 

How is the optimal tradeoff between preciseness and conciseness found? The 
proposed method uses the minimum description length (MDL) principle. The MDL 
cost consists of two components: L(H) and L(D|H). Here, H means the hypothesis, 
and D the data. The two components are informally stated as follows [11]: “L(H) is 
the length, in bits, of the description of the hypothesis; and L(D|H) is the length, in 
bits, of the description of the data when encoded with the help of the hypothesis.” 
The best hypothesis H to explain D is the one that minimizes the sum of L(H) and 
L(D|H). 

The MDL principle fits the trajectory partitioning problem very well. A set of 
trajectory partitions corresponds to H, and a trajectory to D. Most importantly, L(H) 
measures conciseness, and L(D|H)  preciseness. Thus, finding the optimal trajectory 
partitioning translates to finding the best hypothesis using the MDL principle. 

Figure 7.25 shows the formulation of L(H) and L(D|H). L(H) is formulated by 
Equation (7.27). L(H) represents the sum of the length of a trajectory partition. 
On the other hand, L(D|H) is formulated by Equation (7.28). L(D|H) represents 
the sum of the difference between a trajectory and a trajectory partition. The sum 
of the perpendicular distance and the angle distance is considered to measure this 
difference. 
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FIGURE 7.25 Formulation of the MDL cost.
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The optimal trajectory partitioning is generated so as to minimize L(H) + L(D|H). 
This is exactly the tradeoff between preciseness and conciseness. In practice, an O(n) 
greedy algorithm is adopted for the sake of efficiency. 

7.3.3.3 The Grouping Phase

Which clustering methods are the most suitable for line segment clustering? Density-
based clustering methods are the most suitable for this purpose because they can 
discover clusters of arbitrary shape and can filter out noises. We can easily see that 
line-segment clusters are usually of arbitrary shape, and a trajectory database typi-
cally contains a large amount of noise (i.e., outliers). 

Among density-based methods, the algorithm DBSCAN [7] is adopted. The defini-
tions for points, originally proposed in the context of DBSCAN, are changed to those for 
line segments. The procedure for line-segment clustering is summarized as follows. 

 1. Select an unprocessed line segment L. 
 2. Retrieve all line segments density-reachable from L w.r.t.  and MinLns. If L 

is a core line segment, a cluster is formed. Otherwise, L is marked as a noise. 
 3. Continue this process until all line segments have been processed. 
 4. Filter out clusters whose trajectory partitions have been extracted from too 

few trajectories. 

How is a representative trajectory generated? Figure 7.26 illustrates the approach 
of generating a representative trajectory. A representative trajectory is a sequence of 
points obtained by a sweep line approach. While sweeping a vertical line across line 
segments in the direction of the major axis of a cluster, the number of the line segments 
hitting the sweep line is counted. If this number is equal to or greater than MinLns, the 
average coordinate of those line segments with respect to the major axis is inserted into 
the representative trajectory; otherwise, the current point (e.g., the 5th and 6th positions 
in Figure 7.26) is skipped. Besides, if a previous point is located too close (e.g., the 3rd 
position in Figure 7.26), then the current point is skipped to smooth the representative 
trajectory. 

7.3.3.4 Clustering Result

Figure 7.27 shows the clustering result for the Atlantic hurricane (1950 to 2004) data 
set. The data set contains 570 trajectories and 17736 points. The result in Figure 7.27 

sweep

MinLns = 3

1
2 3 4 5 6 7 8

FIGURE 7.26 An example of a cluster and its representative trajectory.
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is quite reasonable. We know that some hurricanes move along a curve, changing 
their direction from east-to-west to south-to-north, and then to west-to-east. On the 
other hand, some hurricanes move along a straight east-to-west line or a straight 
west-to-east line. The lower horizontal cluster represents the east-to-west move-
ments, the upper horizontal one the west-to-east movements, and the vertical ones 
the south-to-north movements. 

7.4 SUMMARY

We have presented an overview of clustering methods in geographic data analysis. In 
the first part, the major clustering methods for point data are presented. Partitioning 
methods, hierarchical methods, and density-based methods are often used for geo-
graphic data. 

A partitioning method first creates an initial set of k partitions, where 
the parameter k is the number of partitions to construct. It then uses an 
iterative relocation technique that attempts to improve the partitioning by 
moving objects from one group to another. Typical partitioning methods 
include k-means, k-medoids, CLARANS, and their improvements. 
Whereas k-means and k-medoids perform hard clustering, the EM algorithm 

FIGURE 7.27 Clustering result for the Atlantic hurricane data. (From Lee, J.-G., Han, J., 
and Whang, K.-Y., Trajectory clustering: A partition- and -group framework, in Proc. 2007 
ACM-SIGMOD Intl. Conf. Management of Data (SIGMOD’07), Beijing, China, June 2007, 
pp. 593–604. © 2007 ACM, Inc. Reprinted by permission.
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performs fuzzy clustering: each object is assigned to each cluster accord-
ing to a weight representing its probability membership. 
A hierarchical method creates a hierarchical decomposition of a given set 
of data objects. The methods can be classified as being either agglomerative 
(bottom-up) or divisive (top-down), based on how the hierarchical decom-
position is formed. To compensate for the rigidity of merge or split, the 
quality of hierarchical agglomeration can be improved by analyzing object 
linkages at each hierarchical partitioning (such as in Chameleon), or by first 
performing microclustering and then operating on the microclusters with 
other clustering techniques, such as iterative relocation (as in BIRCH). 
A density-based method clusters objects based on the notion of density. 
It either grows clusters according to the density of neighborhood objects 
(such as in DBSCAN) or according to some density function (such as in 
DENCLUE). OPTICS is a density-based method that generates an aug-
mented ordering of the clustering structure of the data. 

In the second part, the major clustering methods for trajectory data are pre-
sented. They are categorized depending on whether they can discover clusters of 
sub-trajectories. 

A probabilistic method clusters trajectories based on a regression mix-
ture model. The EM algorithm is employed to determine cluster member-
ships. A density-based method applies OPTICS to trajectory clustering. 
To achieve this, the distance function is defined between two trajectories. 
These methods have limited capability in discovering clusters of sub- 
trajectories because they cluster trajectories as a whole. 
The partition-and-group framework goes through two phases. In the 
partitioning phase, each trajectory is optimally partitioned into a set of 
line segments. These line segments are provided to the next phase. In the 
grouping phase, similar line segments are grouped into a cluster. Here, a 
variation of DBSCAN is exploited. The clustering algorithm TRACLUS is 
implemented based on this framework. TRACLUS allows us to discover 
clusters of sub-trajectories. 
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8 Computing Medoids  
in Large Spatial Datasets
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8.1 INTRODUCTION

In this chapter, we consider a class of queries that arise in spatial decision mak-
ing and resource allocation applications. Assume that a company wants to open a 
number of warehouses in a city. Let P be the set of residential blocks in the city. P 
represents customer locations to be potentially served by the company. At the same 
time, P also comprises the candidate warehouse locations because the warehouses 
themselves must be opened in some residential blocks. In this context, an analyst 
may ask any of the following questions:

 Q1. k-Medoid query: If the number k of warehouses is known, in which resi-
dential blocks should they be opened, so that the average distance from 
each location in P to its closest warehouse is minimized?
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 Q2. Medoid-aggregate query: If the average distance should be around a 
given value, what is the smallest number of warehouses (and their loca-
tions) that best approximates this value?

 Q3. Medoid-optimization query: If the warehouse opening/maintenance 
overhead and the transportation cost per mile are given, what is the num-
ber of warehouses (and their locations) that minimizes the total cost?

The warehouse locations correspond to the medoids. Since the k-medoid problem 
(Q1) is NP-hard (Garey and Johnson, 1979), research has focused on approximate 
algorithms, most of which are suitable only for datasets of small and moderate sizes. 
On the contrary, this chapter focuses on very large databases. In addition to conven-
tional k-medoids, we introduce and solve the alternative queries Q2 and Q3, which 
have practical relevance.

To formalize, given a set P of data points, we wish to find a set of medoids R  P, 
subject to certain optimization criteria. The average (avg) Euclidean distance 
||p – r(p)|| between each point p  P and its closest medoid r(p)  R is denoted by

 

C R
P

p r p
p P

( )
| |

|| ( )||.
1

 

Letting |R| represent the cardinality of R, the k-medoid query can be formally 
stated as: “Given dataset P and integer parameter k, find R  P, such that |R|  k and 
C(R) is minimized.” Figure 8.1 shows an example, where the dots represent points 
in P (e.g., residential blocks), k  3 and R  {h, o, t}. The three medoids h, o, t are 
candidate locations for service facilities (e.g., warehouses or distribution centers), so 
that the average distance C(R) from each block to its closest facility is minimized.

The medoid-aggregate (MA) query is defined as: “Given P and a value T, find  
R  P, such that |R| is minimized and C(R)  T.” In other words, k is not specified in 
advance. Instead, a target value T for the average distance is given, and we want to 
select a minimal set R of medoids, such that C(R) best approximates T. Finally, the 
medoid-optimization (MO) query is formalized as: “Given P and a cost function f 
that is monotonically increasing with both the number of medoids |R| and with C(R), 

FIGURE 8.1 Example of 3-medoids.
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find R  P such that f(C(R), |R|) is minimized.” For example, in Q3 above, function 
f may be defined as f(C(R), |R|)  C(R) + Costpm × |R|, where Costpm is the opening/
maintenance cost per warehouse. The goal is to achieve the best tradeoff between the 
number of warehouses and the average distance achieved.

Interesting variants of the above three query types arise when the quality of a 
medoid set is determined by the maximum distance between the input points and 
their closest medoid; i.e., when

 C(R)  maxp P ||p r(p)|| .

For instance, the company in our example may want to minimize the maximum 
distance (instead of the average one) between the residential blocks and their closest 
warehouse, potentially achieving a desired C(R) with the minimal set of warehouses 
(MA), or minimizing a cost function (MO).

In this chapter, we present Tree-based PArtition Querying (TPAQ) (Mouratidis, 
Papadias, and Papadimitriou, 2008), a methodology that can efficiently process all 
of the previously mentioned query types. TPAQ avoids reading the entire dataset 
by exploiting the grouping properties of a data partition method on P. It initially 
traverses the index top-down, stopping at an appropriate level and placing the cor-
responding entries into groups according to proximity. Finally, it returns the most 
centrally located point within each group as the corresponding medoid. Compared 
to previous approaches, TPAQ achieves solutions of comparable or better quality, 
at a small fraction of the processing cost (seconds as opposed to hours). The rest of 
the chapter is organized as follows. Section 2 reviews related work. Section 3 intro-
duces key concepts and outlines the general TPAQ framework. Section 4 considers 
k-medoid queries, while Section 5 and Section 6 focus on MA and MO queries, 
respectively. Section 7 presents experimental results and Section 8 concludes the 
chapter.

8.2 BACKGROUND

Although TPAQ can be used with any data partition method, we assume R*-trees 
(Beckmann, et al., 1990) due to their popularity. Section 8.2.1 overviews R*-trees 
and their application to nearest neighbor queries. Section 8.2.2 presents existing 
algorithms for k-medoids and related problems.

8.2.1 R-TREES AND NEAREST NEIGHBOR SEARCH

We illustrate our examples with the R*-tree of Figure 8.2 that contains the data 
points of Figure 8.1, assuming a capacity of four entries per node. Points that are 
nearby in space (e.g., a, b, c, d) are inserted into the same leaf node (N3). Leaf nodes 
are recursively grouped in a bottom-up manner according to their proximity, up to 
the top-most level that consists of a single root. Each node is represented as a mini-
mum bounding rectangle (MBR) enclosing all the points in its sub-tree. The nodes 
of an R*-tree are meant to be compact, have small margin, and achieve minimal 
overlap among nodes of the same level (Theodoridis, Stefanakis, and Sellis, 2000). 
Additionally, in practice, nodes at the same level contain a similar number of data 
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points, due to a minimum utilization constraint (typically 40%). These properties 
imply that the R*-tree (or any other data partition method based on similar concepts) 
provides a natural way to partition P according to data proximity and group cardi-
nality criteria. Furthermore, the R*-tree is a standard index for spatial query pro-
cessing. Specialized structures may yield solutions of better quality for k-medoid 
problems, but would have limited applicability in existing systems, where R-trees 
are prevalent.

The R-tree family of indexes has been used for spatial queries such as range 
search, nearest neighbors, and spatial joins. A nearest neighbor (NN) query retrieves 
the data point that is closest to an input point, q. R-tree algorithms for processing 
NN queries utilize some metrics to prune the search space. The most common such 
metric is mindist(N,q), which is defined as the minimum possible distance between q 
and any point in the sub-tree rooted at node N. Figure 8.2 shows the mindist between 
q and nodes N1 and N2. The algorithm of Roussopoulos, Kelly, and Vincent (1995), 
shown in Figure 8.3, traverses the tree in a depth-first manner: starting from the root, 
it first visits the node with the minimum mindist (i.e., N1 in our example). The pro-
cess is repeated recursively until a leaf node (N4) is reached, where the first potential 
nearest neighbor (point e) is found. Let bestNN be the best NN found thus far (e.g., 
bestNN e) and bestDist be its distance from q (e.g., bestDist ||e q||). Subsequently, 
the algorithm only visits entries whose minimum distance is less than bestDist. In 
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the example, N3 and N5 are pruned since their mindist from q is greater than ||e q||. 
Similarly, when backtracking to the upper level, node N2 is also excluded and the 
process terminates with e as the result. The extension to k ( 1) NNs is straight-
forward. Hjaltason and Samet (1999) propose a best-first NN algorithm that is I/O 
optimal (i.e., it only visits nodes that may contain NNs) and incremental (the number 
k of NNs does not need to be known in advance).

8.2.2 K-MEDOIDS AND RELATED PROBLEMS

A number of approximation schemes for k-medoids and related problems appear in 
the literature (Arora, Raghavan, and Rao, 1998). Most of them, however, are largely 
theoretical in nature. Kaufmann and Rousseeuw (1990) propose partitioning around 
medoids (PAM), a practical algorithm based on the hill climbing paradigm. PAM 
(illustrated in Figure 8.4) starts with a random set of k medoids R0  P. At each 
iteration i, it updates the current set Ri of medoids by exhaustively considering all 
neighbor sets Ri’ that result from Ri by exchanging one of its elements with another 
data point. For each of these k∙(|P|  k) alternatives, it computes the function C(Ri’) 
and chooses as Ri+1 the one that achieves the lowest value. It stops when no further 
improvement is possible. Since computing C(Ri’) requires O(|P|) distance calcula-
tions, PAM is prohibitively expensive for large |P|. Clustering large applications 
(CLARA) (Kaufmann and Rousseeuw, 1990) alleviates the problem by generating 
random samples from P and executing PAM on them. Ng and Han (1994) propose 
clustering large applications based on randomized search (CLARANS) as an exten-
sion to PAM. CLARANS draws a random sample of size maxneighbors from all the 
k∙(|P|  k) possible neighbor sets Ri’ of Ri. It performs numlocal restarts and selects 
the best local minimum as the final answer.

Although CLARANS is more scalable than PAM, it is inefficient for disk-resident 
datasets because each computation of C(Ri’) requires a scan of the entire database. 

Algorithm NN (q,N)

1. If N is a leaf node

2. For each point p   N

3. If ||p-q||<bestDist

4. best NN = p; bestDist =||p-q||

5. Else // N is an internal node

6. For each child Ni of N do

7. If mindist(q, Ni) < bestDist

8. NN(q, Ni)

FIGURE 8.3 The NN algorithm. (From Roussopoulos, N., Kelly, S., and Vincent, F. Nearest 
neighbor queries. SIGMOD, 1995.)
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Assuming that P is indexed with an R-tree, Ester, Kriegel, and Xu (1995a,b) devel-
oped focusing on representatives (FOR). FOR takes the most centrally located point 
of each leaf node and forms a sample set, which is considered as representative of 
the entire set P. Then, it applies CLARANS on this sample to find the k medoids. 
FOR is more efficient than CLARANS, but it still has to read the entire dataset in 
order to extract the representatives. Furthermore, in very large databases, the leaf 
level population may still be too high for the efficient application of CLARANS (the 
experiments of Ester, Kriegel, and Xu use R-trees with only 50,559 points and 1,027 
leaf nodes).

To the best of our knowledge, no existing method for the max case is suitable 
for disk-resident data. For in-memory processing, the k-centers algorithm (CTR) of 
Gonzales (1985) answers max k-medoid queries in O(k×|P|) time with an approxima-
tion factor of 2; i.e., the returned medoid set is guaranteed to achieve a maximum dis-
tance C(R) that is no more than two times larger than the optimal one. The algorithm 
is shown in Figure 8.5. The first medoid is randomly selected from P and forms set 
R1. The second medoid is the point in P that lies furthest from the point in R1. These 
two medoids form R2. In general, the i-th medoid is the one that has the maximum 
distance from any point in Ri 1. Finally, set Rk is returned as the result. The algorithm 
is simple and works well in practice. However, its adaptation to large datasets would 
be very expensive in terms of both CPU and I/O cost, since in order to find the i-th 
medoid it has to scan the entire dataset and compute the distance between every data 
point and all elements of Ri 1.

A problem related to k-medoids is min-dist optimal-location (MDOL) computa-
tion. Given a set of data points P, a set of existing facilities, and a user-specified 

FIGURE 8.4 The PAM algorithm. (From Kaufman, L. and Rousseeuw, P. Finding Groups in 
Data. Wiley-Interscience, 1990.)

Algorithm PAM (P, k)

1. Initialize R0 = {r1, r2, ..., rk} to a random subset of P with k elements, and set i = 0

2. Repeat

3. bestNeighbor = Ri

4. For each position j = 1 to k do

5. For each point p   P do

6. Ri' = Ri – {rj}   {p}

7. If C(Ri') < C(bestNeighbor)

8. bestNeighbor = Ri'

9. Ri+1 = bestNeighbor; i = i + 1

10. Until Ri = Ri–1 // no improvement was made

11. Return R
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spatial region Q (i.e., range for a new facility), an MDOL query computes the 
location in Q which, if a new facility is built there, minimizes the average distance 
between each data point and its closest facility. The main difference with respect 
to k-medoids is that the output of an MDOL query is a single point (as opposed to 
k) that does not necessarily belong to P, but it can be anywhere in Q. Zhang et al. 
(2006) propose an exact method for this problem. This technique is complemen-
tary to the proposed algorithms because it can be used to increase the cardinality 
of an existing medoid set when there is a need for incremental processing (e.g., the 
company of our example may decide to open an additional warehouse in a given 
area).

The k-medoid problem is related to clustering. Clustering methods designed 
for large databases include DBSCAN (Ester et al., 1996), BIRCH (Zhang, 
Ramakrishnan, and Livny, 1996), CURE (Guha, Rastogi, and Shim, 1998), and 
OPTICS (Ankerst et al., 1999). However, the objective of clustering in general and 
of these techniques in particular is inherently different. Extensive work on medoids 
and clustering has been carried out in the areas of statistics (Hartigan, 1975; 
Kaufman and Rousseeuw, 1990; Hastie, Tibshirani, and Friedman, 2001), machine 
learning (Pelleg and Moore, 1999, 2000; Hamerly and Elkan, 2003), and data min-
ing (Ester et al., 1996; Fayyad et al., 1996). However, the focus there is on assessing 
the statistical quality of a given clustering, usually based on assumptions about the 
data distribution (Hastie et al., 2001; Kaufman and Rousseeuw, 1990; Pelleg and 
Moore, 2000). Only few approaches aim at dynamically discovering the number 
of clusters (Pelleg and Moore, 2000; Hamerly and Elkan, 2003). Besides tackling 
problems of a different nature, these algorithms are computationally intensive and 
unsuitable for disk-resident datasets.

8.3 FRAMEWORK OVERVIEW AND BASIC DEFINITIONS

The TPAQ framework traverses the R-tree in a top-down manner, stopping at the 
topmost level that provides enough information for answering the given query. In 
the case of k-medoids, this decision depends on the number of entries at the level. 

FIGURE 8.5 The CTR algorithm for max k-medoids. (From Gonzalez, T. Clustering to mini-
mize the maximum intercluster distance. Theoretical Computer Science, 38: 293–306, 1985.)

Algorithm CTR (P, k) 

1. Choose a point p    P randomly, and set R1 = {p} 

2. For i = 2 to k do 

3. Let p be the point in P – Ri–1 that is furthest from any medoid in Ri–1

4. Ri = Ri–1    {p}

5. Return Rk 
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On the other hand, for MA and MO queries, the selection of the partitioning level is 
also based on the spatial extents and (in the avg case) on the expected cardinality of 
its entries. Next, TPAQ groups the entries of the partitioning level into slots. For a 
given k, this procedure is performed by a fast slotting algorithm. For MA and MO, 
multiple calls of the slotting algorithm might be required. The last step returns the 
NN of each slot center as the medoid of the corresponding partition. We first provide 
some basic definitions, which are used throughout the chapter.

Definition 1 [Extended entry]: An extended entry e consists of an R-tree entry 
N, augmented with information about the underlying data points, i.e., e  c, w, N , 
where the weight w is the expected number of points in the sub-tree rooted at N. The 
center c is a vector of coordinates that corresponds to the geometric centroid of N, 
assuming that the points in the sub-tree of N are uniformly distributed.

Definition 2 [Slot]: A slot s consists of a set E of extended entries, along with 
aggregate information about them. Formally, a slot s is defined as s  c, w, E , where 
w is the expected number of points represented by s,

 

w e w
e E

. .

In the avg case, vector c is the weighted center of s,

 

c
w

e w e c
e E

1
. . .

In the max case, vector c is the center of the minimum enclosing circle of all the 
entry centers e.c in s; i.e., c is the center of the circle enclosing e.c e E that has the 
minimum possible radius.

A fundamental operation is the insertion of an extended entry e into a slot s. The 
pseudo-code for this function in the avg case is shown in Figure 8.6. The insertion 
computes the new center, taking into account the relative positions and weights of 
the slot s and the entry e, e.g., if s and e have the same weights, the new center is at 
the midpoint of the line segment connecting s.c and e.c. In the max case, the new slot 
center is computed as the center of the minimum circle enclosing e.c and all the entry 
centers currently in s. We use the incremental algorithm of Welzl (1991), which finds 
the new slot center in expected constant time.

Function InsertEntry (extended entry e, slot s)

1. s.c = (e.w·e.c + s.w·s.c)/(e.w + s.w)

2. s.w = e.w + s.w

3. s.E = s.E    {e} 

FIGURE 8.6 The InsertEntry function for avg.
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In the subsequent sections, we describe the algorithmic details for each query 
type. For every considered medoid problem, we first present the avg case, followed 
by max. Note that, similar to PAM, CLARA, CLARANS, and FOR, TPAQ aims at 
efficient processing without theoretical guarantees on the quality of the medoid set. 
Meaningful quality bounds are impossible because TPAQ is based on the underlying 
R-trees, which are heuristic-based structures. Nevertheless, as we show in the experi-
mental evaluation, TPAQ computes medoid sets that are better than those of the exist-
ing methods at a small fraction of the cost (usually several orders of magnitude faster). 
Furthermore, it is more general in terms of the problem variants it can process.

8.4 k-MEDOID QUERIES

Given an avg k-medoid query, TPAQ finds the top-most level with k’  k entries. For 
example, if k  3 in the tree of Figure 8.2, TPAQ descends to level 1, which contains 
k’  7 entries, N3 through N9. The weights of these entries are computed as follows. 
Since |P|  23, the weight of the root node Nroot is wroot  23. Assuming that the entries 
of Nroot are equally distributed between the two children N1 and N2, w1  w2  N/2  
11.5 (the true cardinalities are 11 and 12, respectively). The process is repeated for 
the children of N1 (w3  w4  w5  w1/3  3.83) and N2 (w6  w7  w8  w9  w2/4  
2.87). Figure 8.7 illustrates the algorithm for computing the initial set of entries. 
Note that InitEntries assumes that k does not exceed the number of leaf nodes. This 
is not restrictive because the lowest level typically contains several thousand nodes 
(e.g., in our datasets, between 3,000 and 60,000), which is sufficient for all ranges of 
k that are of practical interest. If needed, larger values of k can be accommodated by 
conceptually splitting leaf level nodes.

FIGURE 8.7 The InitEntries function.

Function InitEntries (P, k) 

1. Load the root of the R-tree of P 

2. Initialize list = {e}, where e = (Nroot.c, |P|, Nroot) 

3. While list contains fewer than k extended entries do 

4. Initialize an empty list next_level_entries 

5. For each e = (c, w, N) in list do 

6. Let num be the number of child entries in node N  

7. For each entry Ni in node N do 

8. wi = w/num // the expected cardinality of Ni 

9. Insert extended entry (Ni.c, wi, Ni) into next_level_entries

10. Set list = next_level_entries 

11. Return list 
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The next step merges the k’ initial entries in order to obtain exactly k groups. 
First, k out of the k’ entries are selected as slot seeds, i.e., each of the chosen 
entries forms a singleton slot. Clearly, the seed locations play an important role 
in the quality of the final answer. The seeds should capture the distribution of 
points in P, i.e., dense areas should contain many seeds. Our approach for seed 
selection is based on space-filling curves, which map a multidimensional space 
into a linear order. Among several alternatives, Hilbert curves best preserve the 
locality of points (Korn, Pagel, and Faloutsos, 2001; Moon et al., 2001). Therefore, 
we first Hilbert-sort the k’ entries and select every m-th entry as a seed, where 
m  k’/k. This procedure is fast and produces well-spaced seeds that follow the data 
distribution. Returning to our example, Figure 8.8a shows the level 1 MBRs (for 
the R-tree of Figure 8.2) and the output seeds s1  N4, s2  N9, and s3  N7 according 
to their Hilbert order. Recall that each slot is represented by its weight (e.g., s1.w 

 w4  3.83), its center (e.g., s1.c is the centroid of N4), and its MBR. Then, each of 
the remaining (k’ – k) entries is inserted into the k slots, based on proximity. More 
specifically, for each entry e, we choose the slot s whose weighted center s.c is 
closest to the entry’s center e.c. In the running example, assuming that N3 is con-
sidered first, it is inserted into slot s1 using the InsertEntry function of Figure 8.6. 
The center of s1 is updated to the midpoint of N3 and N4’s centers, as illustrated 
in Figure 8.8b. TPAQ proceeds in this manner, until the final slots and weighted 
centers are computed as shown in Figure 8.8c.

After grouping all entries into exactly k slots, we find one medoid per slot by 
performing an NN query. The query point is the slot’s weighted center s.c, and the 
search space is the set of entries s.e. Since all the levels of the R-tree down to the par-
tition level have already been loaded in memory, the NN queries incur very few node 
accesses and negligible CPU cost. Observe that an actual medoid (i.e., a point in P 
that minimizes the average distance) is more likely to be closer to s.c than simply to 
the center of the MBR of s. The intuition is that s.c captures information about the 
point distribution within s. The NN queries on these points return the final medoids 
R  {h, o, t}.

Figure 8.9 shows the complete TPAQ k-medoid computation algorithm. The prob-
lem of seeding the slot table is similar to that encountered in spatial hash joins, 
where the number of buckets is bounded by the available main memory (Lo and 
Ravishankar, 1995, 1998; Mamoulis and Papadias, 2003). However, our ultimate 
goals are different. First, in the case of hash joins, the table capacity is an upper 
bound. Reaching it is desirable in order to exploit available memory as much as pos-
sible, but falling slightly short is not a problem. In contrast, we want exactly k slots. 
Second, in our case, slots should minimize the average distance C(R) on one dataset, 
whereas slot selection in spatial joins attempts to minimize the number of intersec-
tion tests that must be performed between points that belong to different datasets.

TPAQ follows similar steps for the max case. The function InitEntries proceeds 
as before, but without computing the expected cardinality for entries and slots; in 
the max version of the problem, we use only the geometric centroids of the R-tree 
entries. Let E be the set of entries in the partitioning level. We apply the CTR algo-
rithm (described in Section 8.2.2) to select k slot seeds among the entry centers e.c 
in E. Then, we insert the remaining entries in E one by one into the slot with the 

© 2009 by Taylor & Francis Group, LLC



Computing Medoids in Large Spatial Datasets  199

FIGURE 8.8 Insertion of entries into slots.
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closest center. Finally, we perform an NN search at the center of each slot to retrieve 
the actual corresponding medoid. Recall that the center of each slot is the center of 
the minimum circle enclosing its entries’ centers. Returning to our running example, 
if a 3-medoid query is given in the tree of Figure 8.2, level 1 is chosen as the parti-
tioning level. Among the entries of level 1, assume that CTR returns the centers of 
N4, N6, and N9 as the seeds. The insertion of the remaining entries into the created 
slots (s1, s2, and s3) results in the partitioning shown in Figure 8.10. The three circles 

FIGURE 8.9 The TPAQ algorithm.

Algorithm TPAQ (P, k)

1. Initialize a set S = Ø, and an empty list 

2. Set E = the set of entries returned by InitEntries (P, k)

3. Hilbert-sort the centers of the entries in E and store them in a sorted list sorted_list

4. For i = 1 to k do // compute the slot seeds

5. Form a slot containing the (i.|E|/k)-th entry of sorted_list and insert it into S

6. For each entry e in E (apart from the ones selected as seeds) do

7. Find the slot s in S with the minimum distance ||e.c – s.c||

8. InsertEntry (e, s)

9. For each s   S do

10. Perform a NN search at s.c on the points under s.E

11. Append the retrieved point to list

12. Return list
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s1.c

r1

r3

r2

N3

N4

N5

N8
N9

N6

n

N9

v

FIGURE 8.10 3-medoids in the max case.
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correspond to the minimum circles enclosing the centers of nodes in each slot. The 
final step of the TPAQ algorithm retrieves the NNs of s1.c, s2.c, and s3.c, which are 
points d, v, and n, respectively. The returned medoid set is R  {d, v, n}.

8.5 MEDOID-AGGREGATE QUERIES

A medoid-aggregate (MA) query specifies the desired distance T (between points 
and medoids), and asks for the minimal medoid set R that achieves C(R)  T. The 
proposed algorithm, TPAQ-MA, is based on the fact that as the number of medoids 
|R| increases, the corresponding C(R) decreases, in both the avg and the max case. 
TPAQ-MA first descends the R-tree of P down to an appropriate partitioning level. 
Next, it estimates the value of |R| that achieves the average distance C(R) closest to T 
and returns the corresponding medoid set R. Consider first the avg case. The initial 
step of TPAQ-MA is to determine the partitioning level. The algorithm selects for 
partitioning the top-most level whose minimum possible distance (MPD) does not 
exceed T. The MPD of a level is the smallest C(R) that can be achieved if partitioning 
takes place in this level. According to the methodology of Section 8.4, MPD is equal 
to the C(R) resulting if we extract one medoid from each entry in the level. Since 
computing the exact C(R) requires scanning the entire dataset P, we use an estimate 
of C(R) as the MPD. In particular, for each entry e of the level, we assume that the 
underlying points are distributed uniformly* in its MBR, and that the corresponding 
medoid is at e.c. The average distance C

_
(e)between e.c and the points in e is given 

by the following lemma.
Lemma 8.1: If the points in e are uniformly distributed in its MBR, then their 

average distance from e.c is

 

C e
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A
D A
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where A and B are the side lengths of the MBR of e, and D is its diagonal length.
Proof: If we translate the MBR of e so that its center e.c falls at the origin (0,0), 

C
_

(e) is the average distance of points (x,y)  [ A/2, A/2] × [ B/2, B/2] from (0,0). 
Hence,
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which evaluates to the quantity of Lemma 8.1.
The MPD of each level is estimated by averaging C

_
(e) over all e E, where E is 

the set of entries at the level:

 

MPD
1

| |
. ( ).

P
e w C e

e E

*  This is a reasonable assumption for low-dimensional R-trees (Theodoridis et al., 2000).
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TPAQ-MA applies the InitEntries function to select the top-most level that has 
MPD  T. The pseudo-code of InitEntries is the same as shown in Figure 8.7, after 
replacing the while-condition of line 3 with the expression: “the estimated MPD is 
more than T.” Returning to our running example, the root node Nroot of the R-tree of 
P has MPD C

_
(Nroot), which is higher than T. Therefore, InitEntries proceeds with 

level 2 (containing entries N1 and N2), whose MPD is also higher than T. Next, it 
loads the level 1 nodes and computes the MPD over entries N3 to N9. The MPD is less 
than T, and level 1 is selected for partitioning. InitEntries returns a list containing 
seven extended entries corresponding to N3 up to N9.

The next step of TPAQ-MA is to determine the number of medoids that best approxi-
mate value T. If E is the set of entries in the partitioning level, the candidate values for |R| 
range between 1 and |E|. TPAQ-MA assumes that C(R) decreases as |R| increases, and 
performs binary search in order to find the value of |R| that yields the average distance 
closest to T. This procedure considers O(log|E|) different values for |R|, and creates 
slots for each of them as discussed in Section 8.4. Since the exact evaluation of C(R) for 
every examined |R| would be very expensive, we produce an estimate C

_
(S) of C(R) for 

the corresponding set of slots S. Particularly, we assume that the medoid of each slot s is 
located at s.c, and that the average distance from the points in every entry e s is equal 
to distance ||e.c – s.c||. Hence, the estimated value for C(R) is given by the formula

 

C S
P

e w e c s c
e ss S

( )
| |

. || . . ||,
1

where S is the set of slots produced by partitioning the entries in E into |R| groups. 
Note that we could use a more accurate estimator assuming uniformity within each 
entry e s, similar to Lemma 8.1. However, the derived expression would be more 
complex and more expensive to evaluate, because now we need the average distance 
from s.c (as opposed to the center e.c of the entry’s MBR). The TPAQ-MA algorithm 
is shown in Figure 8.11.

In the example of Figure 8.2, the partitioning level contains entries E  {N3, 
N4, N5, N6, N7, N8, N9}. The binary search considers values of |R| between 1 and 7. 
Starting with |R|  (1 + 7)/2  4, the algorithm creates S with four slots, as shown 
in Figure 8.12. It computes C

_
(S), which is lower than T. It recursively continues the 

search for |R| [1,4] in the same way, and decides that |R|  4 yields a value of C
_

(S) 
that best approximates T. Finally, similar to TPAQ, TPAQ-MA performs an NN 
search at the center s.c of the slots corresponding to |R|  4, and returns the retrieved 
points ( f, k, t, and o) as the result.

Consider now the max version of the MA problem. InitEntries chooses for parti-
tioning the top-most level with MPD less than or equal to T. The MPD of a level is 
an estimated upper bound for the maximum distance C(R), assuming that we return a 
medoid at the center of each of the level’s entries. Given an R-tree entry e and assum-
ing that we can find a medoid at e.c (i.e., the crossing point of its MBR diagonals), then 
the maximum possible distance of any point in e from the medoid is half the MBR 
diagonal length. Therefore, the MPD of a level is computed as the half of the maxi-
mum entry diagonal in the level. In other words, C

_
(e)  D/2 (where D is the diagonal 

of e), and MPD  maxe EC
_

(e) (where E is the set of entries in the given level).

© 2009 by Taylor & Francis Group, LLC



Computing Medoids in Large Spatial Datasets  203

Similar to the avg case, in order to determine the number of medoids that best 
approximate the target distance T, we perform a binary search. If E is the set of entries 
in the partitioning level, then the candidate |R| values range between 1 and |E|. For 
each considered |R|, we use the max slotting algorithm (described in Section 8.4).  
Let S be the set of slots for a value of |R|. To estimate the achieved C(R) [i.e., to 

FIGURE 8.11 The TPAQ-MA algorithm.

Algorithm TPAQ-MA (P, T)

1. Initialize an empty list

2. Set E = set of the entries at the topmost level with MPD≤T

3. low = 1; high = |E| 

4. While low ≤ high do 

5. mid = (low + high)/2 

6. Group the entries in E into mid slots

7. S = the set of created slots

8. If C(S) < T, set high = mid

9. Else, set low = mid

10. For each s   S do

11. Perform a NN search at s.c on the points under s.E

12. Append the retrieved point to list

13. Return list

–

FIGURE 8.12 Entries and final slots.

N3

N4

N5

N6
N7

N8

N9

a
b

c

d

e

f

g

h

i

j

k

l

m

n

o
q

r

s

t

u

v

w

s1

s2

s3

s4

© 2009 by Taylor & Francis Group, LLC



204  Geographic Data Mining and Knowledge Discovery

compute C
_

(S)], we assume that the maximum distance within each slot s is equal to the 
radius of the minimum circle enclosing the entry centers in s. For example, if level 1 
is selected for partitioning and |R|  3, the slotting produces the grouping shown in 
Figure 8.10. C(R) is estimated as the maximum radius of the three circles, that is, C

_
(S)  

max{r1, r2, r3}  r1. Formally, if MincircRadius(s) is the radius of the smallest circle 
enclosing e.c e s, then C

_
(S)  maxs S MincircRadius(s). When the binary search ter-

minates, we retrieve the medoids corresponding to the best value of |R|. The algorithm 
of Figure 8.11 directly applies to max MA queries, by using the max versions of MPD 
and C

_
(S), and by implementing line 6 with the max slotting algorithm.

8.6 MEDOID-OPTIMIZATION QUERIES

In real-world scenarios, opening a facility has some cost. Thus, users may wish to 
find a good tradeoff between overall cost and coverage (i.e., the average or maximum 
distance between clients and their closest facilities). If the relative importance of 
these conflicting factors is given by a user-specified cost function f(C(R), |R|), the aim 
of an MO query is to find the medoid set R that minimizes f. The TPAQ methodology 
applies to this problem, provided that f is increasing on both C(R) and |R|. Consider 
the example of Figure 8.1 in the avg case, and let f(C(R), |R|) be C(R) + Costpm × |R|, 
where Costpm is the cost per medoid. Assume that we know a priori all the optimal 
i-medoid sets Ri and the corresponding C(Ri), for i 1,...,23. If the plot of f(C(Ri), |Ri|) 
vs. |Ri| is shown in Figure 8.13, then the optimal |R| is 3 and the result of the query 
is {h, o, t} (as in Figure 8.1). TPAQ-MO is based on the observation that f(C(Ri), |Ri|) 
has a single minimum. Hence, it applies a gradient descent technique to decide the 
partitioning level and the optimal number of medoids |R|.

In both the avg and max cases, TPAQ-MO initially descends the R-tree of P and 
for each candidate level, it computes its cost. We define the cost of a level as the value 
f(MPD, |E|), where E is the set of its entries. TPAQ-MO selects for partitioning the 
top-most level whose cost is greater than the cost of the previous one (i.e., at the first 

FIGURE 8.13 f(C(Ri), |Ri|) versus number of medoids.
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detected increase in the curve of Figure 8.13). If the MPD estimations are accurate, then 
the medoid set that minimizes f has size |R| between 1 and |E| (the number of entries 
at the partitioning level). The traversal of the R-tree down to the appropriate level is 
performed by the InitEntries function of Figure 8.7 by modifying the while-condition 
in line 3 to “the cost of the current level is less than the cost of the previous one.” In 
Figure 8.2, InitEntries compares the costs of the root entry (1 medoid) and level 2 (two 
medoids — one for each root entry). Since the cost of level 2 is less than that of the root, 
it proceeds with level 1, whose cost is larger than level 2. Thus, level 1 is selected for 
partitioning and InitEntries returns the set of extended entries from N3 to N9.

Given the set of entries E at the partitioning level, the next step of TPAQ-MO is to 
compute the optimal value for |R|, which lies between 1 and |E|. To perform this task, 
TPAQ-MO uses a gradient descent method which considers O(log3/2|E|) different 
values for |R|. Consider the example of Figure 8.14, where we want to find the value 
xopt [low, high] that minimizes a given function h(x). We split the search interval 
into three equal sub-intervals, defined by mid1  (2·low + high)/3 and mid2  (low + 
2·high)/3. Next, we compute h(mid1) and h(mid2). Assuming that h(mid1)  h(mid2), 
we distinguish two cases; either xopt [low, mid1] (as shown in Figure 8.14a), or xopt 

[mid1, mid2] (Figure 8.14b). In other words, the search interval is restricted to [low, 
mid2]. Symmetrically, if h(mid1)  h(mid2), then the search interval becomes [mid1, 
high]. Otherwise, if h(mid1)  h(mid2), the search is restricted to interval [mid1, mid2]. 

FIGURE 8.14 Computing the minimum of a function h.
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The xopt can be found by recursively applying the same procedure to the new search 
interval. If xopt is an integer, then the search terminates in O(log3/2(high-low)) steps.

We use the above technique to determine the optimal value of |R|, starting with 
low  1 and high  |E|. For each considered |R|, we compute the set of slots S in the 
way presented in Section 8.4, and estimate the corresponding C(R) as the quantity 
C
_

(S) discussed in Section 8.5. The gradient descent method returns the value of 
|R| that minimizes f(C

_
(S), |R|). Finally, the result of TPAQ-MO is the set of points 

retrieved by an NN search at the center of each slot s S of the corresponding par-
titioning. TPAQ-MO is illustrated in Figure 8.15. The algorithm works for both avg 
and max MO queries, by using the corresponding MPD and C

_
(S) functions, and the 

appropriate slotting strategies. In our running example, for the avg case, level 1 is the 

FIGURE 8.15 The TPAQ-MO algorithm.
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Algorithm TPAQ-MO (P,  f )

1. Initialize an empty list

2. Set E = set of the entries at the topmost level with cost greater than that of the previous level

3. low = 1; high = |E| 

4. While low + 2 <high do 

5. mid1 = (2·low + high)/3; mid2 = (low + 2·high)/3 

6. Group the entries in E into mid1 slots 

7. S1 = the set of created slots 

8. Group the entries in E into mid2 slots 

9. S2 = the set of created slots 

10. If f (C(S1), mid1) < f (C(S2), mid2) 

11. Set high = mid2 and S = S1

12. Else, if f(C(S1), mid1) > f (C(S2), mid2)

13. Set low = mid1 and S = S2

14. Else, if f(C(S1), mid1) = f(C(S2), mid2)

15. Set low = mid1, high = mid2 and S = S1

16. For each s   S do

17. Perform a NN search at s.c on the points under s.E

18. Append the retrieved point to list

19. Return list

–

– –

– –

–
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partitioning level and |R|  3 is selected as the best medoid set size. The slots and the 
returned medoids (i.e., h, o, and t) are the same as in Figure 8.8.

8.7 EXPERIMENTAL EVALUATION

In this section we evaluate the performance of the proposed methods for k-medoid, 
medoid-aggregate, and medoid-optimization queries. For each of these three prob-
lems, we first present our experimental results for avg, and then for max, using both 
synthetic and real datasets. The synthetic ones (SKW) follow a Zipf distribution with 
parameter   0.8, and have cardinality 256K, 512K, 1M, 2M and 4M points (with 
1M being the default). The real dataset (LA) contains 1,314,620 points (available 
at www.rtreeportal.org). All datasets are normalized to cover the same space with 
extent 104 × 104 and indexed by an R*-tree (Berchtold, Keim, and Kriegel, 1996) with 
a 2Kbyte page size. For the experiments, we use a 3GHz Pentium CPU.

8.7.1 K-MEDOID QUERIES

First, we focus on k-medoid queries and compare TPAQ against FOR, which as dis-
cussed in Section 2.2, is the only other method that utilizes R-trees. For TPAQ, 
we use the depth-first algorithm of Roussopoulos et al. (1995) to retrieve the near-
est neighbor of each computed slot center. In the case of FOR, we have to set the 
parameters numlocal (number of restarts) and maxneighbors (sample size of the pos-
sible neighbor sets) of the CLARANS component. Ester et al. (1995a) suggest setting 
numlocal  2 and maxneighbors  k × (M k)/800, where M is the number of leaf 
nodes in the R-tree of P. With these parameters, FOR terminates in several hours for 
most experiments. Therefore, we set maxneighbors  k × (M k)/(8000 × logM) and 
keep numlocal  2. These values speed up FOR considerably, while the deterioration 
of the resulting solutions is small (with respect to the suggested values of numlocal 
and maxneighbors). Regarding the max case, there is currently no other algorithm 
for disk-resident data. For the sake of comparison, however, we adapted FOR to 
max k-medoid queries by defining C(R) to be the maximum distance between data 
points and medoids; that is, the CLARANS component of FOR exchanges the cur-
rent medoid set Ri with a neighbor one Ri’, only if the maximum distance achieved 
by Ri’ is smaller than that of Ri. All FOR results presented in this section are average 
values over 10 runs of the algorithm. This is necessary because the performance of 
FOR depends on the random choices of CLARANS. The algorithms are compared 
for different data cardinality |P| and number of medoids k; for k, the tested values are 
from 1 to 512, and its default is 32. In each experiment we fix either parameter (i.e., 
|P| or k) to its default value and vary the other one.

We first measure the effect of |P| in the avg case. Figure 8.16a shows the CPU 
time of TPAQ and FOR for SKW, when k  32 and |P| ranges between 256K and 
4M. TPAQ is 2 to 4 orders of magnitude faster than FOR. Even for |P|  4M points, 
our method terminates in less than 0.04 sec (while FOR needs more than 3 min). 
Figure 8.16b shows the I/O cost (number of node accesses) for the same experiment. 
FOR is approximately 2 to 3 orders of magnitude more expensive than TPAQ because 
it reads the entire dataset once. Both the CPU and the I/O costs of TPAQ are rela-
tively stable and small because partitioning takes place at a high tree level. The cost 
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FIGURE 8.16 Performance versus |P| (SKW, avg).
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improvements of TPAQ come with no compromise in answer quality. Figure 8.16c 
shows the average distance C(R) achieved by the two algorithms. TPAQ outper-
forms FOR in all cases. An interesting observation is that the average distance for 
FOR drops when the cardinality of the dataset |P| increases. This happens because 
a higher |P| implies more possible “paths” to a local minimum. To summarize, the 
results of Figure 8.16 verify that TPAQ scales gracefully with the dataset cardinality 
and incurs much lower cost than FOR, without sacrificing medoid quality.

The next set of experiments studies the performance of TPAQ and FOR in the 
avg case, when k varies between 1 and 512, using an SKW dataset of cardinality 
|P|  1M. Figure 8.17a compares the CPU time of the methods. In all cases, TPAQ 
is three orders of magnitude faster than FOR. It is worth mentioning that for k  512 
our method terminates in 2.5 sec, while FOR requires approximately 1 hour and 
20 min. For k  512, both the partitioning into slots of TPAQ and the CLARANS 
component of FOR are applied on an input of size 14,184; the input of the TPAQ par-
titioning algorithm consists of the extended entries at the leaf level, while the input of 
CLARANS is the set of actual representatives retrieved in each leaf node. The large 
difference in CPU time verifies the efficiency of our partitioning algorithm.

Figure 8.17b shows the effect of k on the I/O cost. The node accesses of FOR are 
constant and equal to the total number of nodes in the R-tree of P (i.e., 14,391). On 
the other hand, TPAQ accesses more nodes as k increases. This happens because (1) it 
needs to descend more R-tree levels in order to find one with a sufficient number (i.e., 
k) of entries, and (2) it performs more NN queries (i.e., k) at the final step. However, 
TPAQ is always more efficient than FOR; in the worst case, TPAQ reads all R-tree 
nodes up to level 1 (this is the situation for k  512), while FOR reads the entire data-
set P for any value of k. Figure 8.17c compares the accuracy of the methods. TPAQ 
achieves lower C(R) for all values of k. In order to confirm the generality of our 
observations, Figure 8.18 repeats the above experiment for the real dataset LA. TPAQ 
outperforms FOR by orders of magnitude in terms of both CPU time (Figure 8.18a) 
and number of node accesses (Figure 8.18b). Regarding the average distance C(R), the 
methods achieve similar results (Figure 8.18c), with TPAQ being the winner.

Next, we focus on max k-medoid queries. We perform the same experiments as in 
the avg case, with identical test ranges and default values for |P| and k. Figure 8.19 
compares TPAQ and FOR on 32-medoid queries over SKW datasets of varying car-
dinality. As in Figure 8.16, our method significantly outperforms FOR in terms of 
both CPU and I/O cost because FOR reads the entire input dataset and its CLARANS 
component is much more expensive than our max slotting algorithm. TPAQ is also 
considerably better on the quality of the retrieved medoids (Figure 8.19c). This is 
expected because FOR is originally designed for the avg k-medoid problem. FOR 
converges to poor local minima when CLARANS considers swapping a current 
medoid with another representative because it selects the latter randomly among 
the set of representatives. Since the representatives follow the data distribution, the 
choices of CLARANS are biased toward dense areas of the workspace. Even though 
this behavior is desirable in avg k-medoid queries, it is clearly unsuitable for the max 
case because even a single point in a sparse area can lead to a large C(R).

Figure 8.20 and Figure 8.21 examine the effect of k on TPAQ and FOR over the 
SKW and LA datasets. The CPU cost of both methods increases with k. Larger values  
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FIGURE 8.17 Performance versus k (SKW, avg).
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FIGURE 8.18 Performance versus k (LA, avg).
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FIGURE 8.19 Performance versus |P| (SKW, max).
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FIGURE 8.20 Performance versus k (SKW, max).
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FIGURE 8.21 Performance versus k (LA, max).
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of k incur higher I/O costs for TPAQ for the reasons explained in the context of 
Figure 8.17b. FOR performs a constant number of node accesses because it always 
reads the entire dataset. Regarding the quality of the returned medoid sets, our algo-
rithm achieves much lower maximum distance C(R).

8.7.2 MEDOID-AGGREGATE QUERIES

In this section we study the performance of TPAQ-MA, starting with the avg case. We 
use datasets SKW (with 1M points) and LA, and vary T from 100 to 1500 (recall that 
our datasets cover a space with extent 104 × 104). Since there is no existing algorithm 
for processing such queries on large indexed datasets, we compare TPAQ-MA against 
an exhaustive algorithm (EXH) that works as follows. Let E be the set of entries at the 
partitioning level of TPAQ-MA. EXH computes and evaluates all the medoid sets for 
|R|  1 up to |R|  |E|, by performing partitioning of E into slots with the technique 
presented in Section 4. EXH returns the medoid set that yields the closest average 
distance to T. Note that EXH is prohibitively expensive in practice because, for each 
examined value of |R|, it scans the entire dataset P in order to exactly evaluate C(R). 
Therefore, we exclude EXH from the CPU and I/O cost charts.

Figure 8.22a shows the C(R) for TPAQ-MA versus T on SKW. Clearly, the aver-
age distance returned by TPAQ-MA approximates the desired distance (dotted line) 

FIGURE 8.22 Performance versus T (SKW, avg).
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very well. Figure 8.22b plots the deviation percentage between the average distances 
achieved by TPAQ-MA and EXH. The deviation is below 9% in all cases, except for 
T  300 where it is equal to 13.4%. Interestingly, for T  1500, TPAQ-MA returns 
exactly the same result as EXH with |R|  5. Figure 8.22c and Figure 8.22d illustrate 
the CPU time and the node accesses of our method, respectively. For T  100, both 
costs are relatively high (100.8 sec and 1839 node accesses) compared to larger val-
ues of T. The reason is that when T  100, partitioning takes place at level 1 (i.e., the 
leaf level, which contains 14,184 entries) and returns |R|  1272 medoids, incurring 
many computations and I/O operations. In all the other cases, partitioning takes 
place at level 2 (containing 203 entries), and TPAQ-MA runs in less than 0.11 sec and 
reads fewer than 251 pages.

Figure 8.23 repeats the above experiment for the LA dataset. Figure 8.23a and 
Figure 8.23b compare the average distance achieved by TPAQ-MA with the input 
value T and the result of EXH, respectively. The deviation from EXH is always 
smaller than 8.6%, while for T  1500 the answer of TPAQ-MA is the same as 
EXH. Concerning the efficiency of TPAQ-MA, we observe that the algorithm has, 
in general, very low CPU and I/O cost. The highest cost is again in the case of 
T  100 for the reasons explained in the context of Figure 8.22; TPAQ-MA partitions 

FIGURE 8.22 (Continued).
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FIGURE 8.23 Performance versus T (LA, avg).
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19,186 entries into slots and extracts |R|  296 medoids, taking in total 105.6 sec and 
performing 781 node accesses.

In Figure 8.24 and Figure 8.25 we examine the performance of TPAQ-MA in the 
max case, using datasets SKW and LA. We compare again with the EXH algorithm. 
It is implemented as explained in the beginning of the subsection, the difference 
being that now it uses the max k-medoid TPAQ algorithm. For max, the range of T is 
from 500 to 1500. We do not use the same range as in the previous two experiments 
(i.e., 100 to 1500) because for T 500 the number of required medoids becomes very 
high and EXH requires several hours to terminate. As shown in Figure 8.24a and 
Figure 8.25a, the maximum distance of TPAQ-MA is close to the desired value T. In 
general, the deviation from EXH (illustrated in Figure 8.24b and Figure 8.25b) is low, 
and in the worst case it reaches 6.1% for SKW and 11.6% for LA. The algorithm ter-
minates in less than 21 sec in all cases, and incurs a small number of node accesses.

8.7.3 MEDOID-OPTIMIZATION QUERIES

Finally, we experiment on the performance of TPAQ-MO, using datasets SKW (with 1M 
points) and LA. We process medoid-optimization queries with f(C(R),  |R|)   C(R) + Costpm ×  
|R|, where Costpm is the cost per medoid and ranges between 1 and 256. TPAQ-MO is 
again compared with an exhaustive algorithm (EXH), which in the MO case (1) computes 
all the medoid sets with |R| from 1 to |E|, by performing partitioning into slots in the same 
level as TPAQ-MO, (2) calculates the (average or maximum) distance C(R) achieved for 
each considered set, and (3) returns the one that minimizes function f.

First, we experiment on avg MO queries using the SKW dataset. Figure 8.26a plots 
the deviation percentage (between the values of f achieved by TPAQ-MO and EXH) as 
a function of the cost Costpm per medoid. The deviation does not exceed 1.8% in any 
case. Interestingly, TPAQ-MO returns exactly the same medoid sets as EXH for many 
values of Costpm, verifying the effectiveness of the gradient descent technique and the 
accuracy of the estimators described in Section 6. Figure 8.26b and Figure 8.26c show 
the CPU and I/O costs of the algorithm. In both charts, the cost of TPAQ-MO is much 
higher when Costpm  8. In these cases, the CPU time is between 147 and 157 sec and 
the number of node accesses ranges between 251 and 430. The returned medoid sets 
have size |R| between 33 and 174. On the other hand, when Costpm 8 the CPU time 
is less than 0.1 sec and the incurred node accesses are fewer than 60. The answer con-
tains from 3 to 24 medoids. This large difference is explained by the fact that when 
Costpm  8 partitioning takes place in level 1 (with 14,184 entries), while for Costpm 8 
the partitioning level is level 2 (with 203 entries).

In Figure 8.27 we repeat the above experiment for the LA dataset. The perfor-
mance of TPAQ-MO is very similar to the SKW case. The deviation of TPAQ-MO 
from EXH is 0.07% and 1.82% for Costpm equal to 4 and 8, respectively. For all the 
other values of Costpm, our algorithm retrieves the same medoid set as EXH. The 
cost of TPAQ-MO is plotted in Figure 8.27b and Figure 8.27c. There is a large dif-
ference in both the CPU time and the node accesses for Costpm  4 and Costpm 4. 
The reason for this behavior is the same as in Figure 8.26.
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FIGURE 8.24 Performance versus T (SKW, max).
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FIGURE 8.25 Performance versus T (LA, max).
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FIGURE 8.26 Performance versus Costpm (SKW, avg).
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FIGURE 8.27 Performance versus Costpm (LA, avg).
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FIGURE 8.28 Performance versus Costpm (SKW, max).

In the last two experiments we focus on max MO queries. Figure 8.28 and 
Figure 8.29 illustrate the performance of TPAQ-MO when Costpm varies between 
1 and 256, using datasets SKW and LA, respectively. The deviation from EXH is 
usually small. For SKW, the maximum deviation is 7.5%. For LA, the deviation 
is in general higher; on the average it is around 10% with maximum value 22.3% 
(for Costpm  8). TPAQ-MO performs worse for LA because it contains large empty 
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areas. On the other hand, SKW (even though it is very skewed) covers the whole 
workspace. Concerning the CPU time of TPAQ-MO, it does not exceed 43 sec in any 
case. As in Figure 8.26 and Figure 8.27, both the I/O and the CPU costs drop when 
partitioning takes place at a higher level. For SKW (for LA), the partitioning level is 
level 1 for Costpm  16 (for Costpm  4), while for higher Costpm it is level 2.

FIGURE 8.29 Performance versus Costpm (LA, max).
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8.8 CONCLUSION

This chapter studies k-medoids and related problems in large spatial databases. In 
particular, we consider k-medoid, MA, and MO queries. We present TPAQ, a frame-
work that efficiently processes all three query types, and is applicable to both their 
avg and max versions. TPAQ provides high-quality answers almost instantaneously, 
by exploiting the data partitioning properties of a spatial access method on the input 
dataset. TPAQ is a three-step methodology that works as follows. Initially, it descends 
the index, and stops at the topmost level that provides sufficient information about 
the underlying data distribution. Next, it partitions the entries of the selected level 
into a number of slots. Finally, it performs a NN query to retrieve one medoid for 
each slot. Extensive experiments with synthetic and real datasets demonstrate that 
(1) TPAQ outperforms the state-of-the-art method for k-medoid queries by orders of 
magnitude, while achieving results of better or comparable quality, and (2) TPAQ is 
also very efficient and effective in processing MA and MO queries. TPAQ relies on 
spatial indexing, which is known to suffer from the dimensionality curse (Korn, Pagel, 
and Faloutsos, 2001). A challenging direction for future work is to extend it to high-
dimensional spaces, using appropriate data partition indexes (Berchtold et al., 1996).
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9 Looking for a 
Relationship? Try GWR*

A. Stewart Fotheringham

Martin Charlton

Urška Demšar

9.1 INTRODUCTION

It is often desirable in an analysis to examine the relationship between two or more 
variables. By relationship, we mean the manner in which one variable changes given 
change in another variable, ceteris paribus. An increase in the value of one variable 
might be associated with an increase in another; conversely, an increase in one vari-
able might be associated with a decrease in another. It is very tempting when faced 

* Research presented in this chapter was funded by a Strategic Research Cluster grant (07/SRC/I1168) 
by Science Foundation Ireland under the National Development Plan. The authors gratefully acknowl-
edge this support.
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with a large number of variables, perhaps for thousands of observations, to reach 
for the principal components option in a statistical package and let the computer 
report the relationships it has found. Such a course of action would be abrogating 
one’s responsibility as an analyst to a computer and, more importantly, the resulting 
analysis would be partial, at best.

We shall assume that, long before you start using any of the regression techniques 
that appear in this chapter, you have carried out a substantial univariate analysis. 
What are the properties of each variable’s distribution? What shape are the distribu-
tions — symmetrical or skew? Are there any outliers? If so, where are they? Some 
simple descriptive statistics and graphical devices such as maps, histograms, and 
boxplots will go a long way toward helping you understand your data although they 
will probably be limited in their ability to convey information about relationships, 
particularly in a multivariate context.

Thinking about relationships between variables involves complexity. We shall 
assume that there is one variable of interest and some suggestions that the changes in 
its values are associated in some systematic way with changes in one or more other 
variables. The former we shall refer to as the “dependent” variable and the latter as the 
“independent” variable(s). Dependent variables are sometimes also known as response 
variables or regressands; independent variables are sometimes known as explanatory 
or predictor variables, or regressors. A convenient way of summarizing the relationship 
between a dependent variable and a set of independent variables is via regression.

A common technique for fitting regression models is known as ordinary least 
squares (OLS). The assumptions behind OLS can be violated when modeling with 
spatial data; the potential nonindependence of the observations is a particular con-
cern. Spatial dependency can exist within the individual variables — they exhibit spa-
tial autocorrelation; it can also exist in the residuals from the model itself. Spatial lag 
and spatial error models have been developed to deal with these situations (Anselin, 
1988). Alternative models have also been proposed to deal with situations where the 
model structure is not spatially stationary — early attempts include parameter expan-
sion (Casetti, 1972) and spatial adaptive filtering (Forster and Gorr, 1986), and more 
recently locally weighted regression (McMillen, 1996). Geographically weighted 
regression (GWR) (Brunsdon, Fotheringham, and Charlton, 1996; Fotheringham, 
Brunsdon, and Charlton, 2002) is perhaps the most well known of the methods that 
produce locally varying parameter estimates.

GWR is a useful exploratory technique. A “classic” regression implies that the 
model structure is spatially constant across the study area. With a large and com-
plex dataset, this may not be the case. GWR allows the analyst to model the spatial 
nonstationarity, and then seek evidence for whether what has been found is system-
atic or not. In doing so, the analyst has the opportunity of asking further questions 
about the structures in the data. In this chapter, we use some techniques from the 
field of geovisual analytics (GA) to examine some of the interactions in the GWR 
parameter surfaces and highlight some local areas of interest. As well as spatially 
varying parameters, the outputs from GWR include local estimates of parameter 
standard error, goodness of fit, and influence. GWR can also be used to validate a 
model that has been fitted to a subsample of the data on another subsample of the 
data.
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The rest of this chapter examines GWR as a data-mining tool. In Section 2, we 
present a brief outline of linear regression. In Section 3, we then consider briefly some 
of the problems that face the analyst when using OLS regression with spatial data 
and some possible solutions. Section 4 presents GWR in some detail. Section 5 intro-
duces GA techniques and shows how they might be used with GWR. In Section 6,  
we present an example of the use of GA and GWR in a case study of voter turnout 
in Dublin in the 2004 general election. Finally, we draw some conclusions about the 
interplay of GA and GWR in data mining.

9.2 LINEAR REGRESSION

It is worth rehearsing briefly an outline of linear regression before we consider 
GWR. Regression is a technique that allows us to model the relationship between a 
dependent variable and a set of independent variables. A typical linear model will 
take the following form:

 y x x xi i i n in i0 1 1 2 2  (9.1)

where for the ith observation yi is the dependent variable, xi is the vector of inde-
pendent variables,  is the vector of unknown parameters, and i is a residual. The 
residuals should be independent, they should have a mean of zero, they should be 
normally distributed, and they should have constant variance. The parameters can be 
estimated from the sample data using the estimator,

 ˆ ( )X X X yT T1  (9.2)

This approach, OLS, yields unbiased estimates of the parameters, if the condi-
tions for the residuals are met. The parameter estimates are those for which the 
quantity i

n
i iy y1

2( ˆ ) is minimized (this is sometimes written as T ), where ŷi is the 
predicted value of yi using the estimated parameters in the model.

If the predictions of the model were identical to the sample y values, a plot of y 
against ŷ would be a straight line. This is rarely the case; a measure of the goodness 
of fit is the R2 value: 1

1
2

1
2

i
n

i i
n

iy y y yi( ˆ ) / ( ) . This is 1 less the ratio between 
the error sum of squares and the total sum of squares. If the predicted values are 
close to the sample values, then residuals will be small and the numerator in the 
expression for R2 will be close to zero, with the result that R2 is close to 1. If the fit 
is poor, the residuals will be large, the ratio approaches 1, and R2 approaches 0. The 
R2 statistic is commonly interpreted as the proportion of variance in the independent 
variable explained (“accounted for”) by the model.

The parameter estimates may also be tested against a particular value. The OLS meth-
odology also yields a standard error for the parameter estimates. The parameter estimate 
divided by its standard error gives a T statistic for the null hypothesis that the param-
eter is zero. If the parameter estimate for a particular variable is insignificantly different 
from zero, then the variation in that variable does not contribute to the variation in the y  
values — that is, it has no effect. Parameter estimates for which the null hypothesis of no 
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relationship can be rejected are said to be significant — we should note that this does not 
mean important, merely that the unknown parameter is unlikely to be zero.

9.3 REGRESSION WITH SPATIAL DATA

The consequences of ignoring any undesirable characteristics in the parameters are 
unfortunate. Nonindependence can lead to biased parameter estimates — they may 
be too high or too low. Nonnormality and nonuniform variance (heteroscedasticity) 
can produce underestimates of the standard errors; the misleading T statistics may 
indicate spuriously significant variables.

Unfortunately, spatial data may exhibit some particularly awkward characteristics 
— samples that are spatially proximate are likely to be more similar than those that 
are distant. This phenomenon was neatly aphorized by Tobler (1970), who observed 
that “everything is related to everything else, but near things are more related than 
distant things.”

If spatial dependence is one problem, then another associated problem is spatial 
heterogeneity. Spatial heterogeneity exists when the structure of some spatial pro-
cess is not uniform over a study area — in other words, the parameters of the spatial 
process are not spatially uniform. This might seem a rather strange thing to assert, 
but consider orographic precipitation. Rainfall generally increases with elevation. 
However, the west sides of mountain ranges are frequently subjected to wetter condi-
tions than the east sides because of the upward movement of the air masses. A unit 
increase in elevation on the west side of a range yields greater rainfall than a cor-
responding unit increase on the east side. A model that attempted to predict rainfall 
from elevation would show a distinct spatial pattern in the residuals, with positive 
ones on the west side (where the model will under predict) and negative ones on the 
east side (where the model will over predict). What would be desirable for such a 
model would be one in which the parameters might be allowed to vary spatially to 
reflect the different processes being modeled.

There have been numerous attempts to produce models with spatially varying 
parameters. The study area may be divided into spatial subsets and the same model 
fitted to data for those subsets. Dummy variables may be used — one for each region 
in the study area; these may be combined with suitable interaction terms. Perhaps 
most notable among these is Casetti’s expansion method (Casetti, 1972), in which 
the parameter estimates are conditioned on the coordinates of the observations. The 
analyst must specify the nature of the functional form for the coordinate expansions. 
As Jones (1984) illustrates, this can quickly lead to a rather complex model for an 
apparently simple process. If z and w are the dependent and independent variables 
measured at locations with coordinates x and y in the study area, and we assume a 
quadratic expansion, then the nonspatial model,

 z a bw,  (9.3)

metamorphoses into

 z a b b x b y b x b y b xy w( )0 1 2 3
2

4
2

5  (9.4)
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where a, b0 …b5 are the parameters to be estimated. Jones (1984) shows how a three-
variable model was initially estimated with a cubic expansion, leading to 30 initial 
parameters estimates of which 4 were significant in the final model.

9.4 GEOGRAPHICALLY WEIGHTED REGRESSION

An alternative approach is offered by GWR (Brunsdon et al. 1996; Fotheringham 
et al., 1998, 2002). We assume that spatial coordinates are available for the sample 
observations, that the ith observation is given by the vector i. We shall refer to the 
locations where data are sampled as sample points, and those where parameters are 
to be estimated as regression points. We will also term a model fitted using OLS as 
global, and one fitted using GWR OLS as local.

Initially we shall consider the case where the sample points and regression points 
are coincident. Fitting a GWR model using OLS involves estimating the location 
specific parameters (i), where there will be one set of parameter estimates for each 
regression point.

 y x x xi i i i i i in in i0 1 1 2 2( ) ( ) ( ) ( )i i i i  (9.5)

The estimator is a weighted OLS estimator:

 ˆ( ) ( ( ) ) ( )i i iX W X X W yT T1  (9.6)

The geographical weighting for the ith observation is given by a kernel — for example,  
a Gaussian-like kernel. This is a square matrix whose leading diagonal contains the 
weights for the observations j relative to location i, the current regression point. The 
weights are obtained thus,

 w ej
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2

2

 (9.7)

where dj(i) is the distance from observation j to observation i and h is a smoothing param-
eter known as the bandwidth. There are other kernels that can be used with GWR.

Parameter estimates are obtained by solving the estimator for each regression 
point. Standard errors are a little more involved and the interested reader is directed 
to Fotheringham et al. (2002) for more detail. The same dependent and independent 
variables are used each time; only the weights change. As the regression points and 
sample points are identical, a prediction of y may be made from the observation spe-
cific parameter estimates and a residual computed.

9.4.1 HOW WELL DOES THE MODEL FIT?

We have to consider two aspects here — first the complexity of the model and sec-
ond how well the model replicates the sampled y values. In regression, there exists a 
matrix, the hat matrix, which maps the predicted ys onto the sampled ys, thus

 ŷ yS  (9.8)
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The trace of this matrix gives us the number of independent parameter estimates in the 
model — for global OLS this is equivalent to the number of independent variables plus 
one. For a local model, it yields the effective number of parameters. Each row ri is

 
r i ii i

T TX X W X X W( ( ) ) ( )1

 (9.9)

If v1 = tr(S) and v2 = tr(STS), then the effective number of parameters in the model is 
2v1–v2; as v1 and v2 are often very similar in value, tr(S) is a reasonable approxima-
tion to the effective number of parameters.

It should be clear that if there are n observations in the dataset, there will be n sets of 
parameter estimates, the hat matrix will have n rows, and the estimator will have been 
evaluated n times. However, we do not run out of degrees of freedom because we are 
re-using the sample data during each estimation — the contribution of an individual 
observation i is approximately the value found in Sii. The effective number of param-
eters will always be larger than or equal to that for an equivalent global model.

Now we can turn to measuring how well the model fits. In a global model, the R2 
can often be increased by the addition of extra variables. It is usual to report the R2 
as computed above, and an adjusted R2 that incorporates a correction for the number 
of variables in the model, relative to the number of observations used to fit it:

 
R R

n

n p
2 21

1
1  

(9.10)

However, this can no longer be interpreted as a percentage in the way that the R2 
may be.

An alternative measure of goodness of fit is provided by a version of the informa-
tion criterion originally proposed by Akaike (1973) modified by Hurvich, Simonoff, 
and Tsai (1998):
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(9.11)

where n is the number of observations, ˆ is the estimated standard deviation of the 
error term, and tr(S) is the trace of the hat matrix. This combines the badness of fit 
measure with a penalty for model complexity. We refer to this measure as the cor-
rected Akaike information criterion (AICc). It has the advantage that for the same y 
variable different models with very different structures may be compared; for exam-
ple, a global model and a local model fitted to the same data.

When two or more models are being compared for goodness of fit using the AICc, 
the model with the lowest AICc is taken as the “best” model — it is closer to the 
unknown “true” model. Two models are held to be similar if the difference in the 
AICcs is three or less (Burnham and Anderson, 2002). The AICc is a relative mea-
sure, not an absolute measure, and is proportional, inter alia, to the sample size n. 
Therefore, to compare the fit of the global and local models, all that is necessary is 
to compare with the AICc values — if the global model’s value is lower by three or 
more, then there is reasonable evidence that the local model is a better fit to the data, 
given the different model structures.
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9.4.2 WHAT IS THE BEST BANDWIDTH?

In the discussion of the kernel above, we introduced the concept of the bandwidth 
and described it as a smoothing parameter. From the equation, we can see that a 
very large bandwidth (relative to the size of the study area) will result in weights 
that are almost 1 — a global model. Very small bandwidths will give undue promi-
nence to the values at or very close to the regression point — the resulting parameter 
estimates will not be a smooth surface. There will be one bandwidth at which the 
predicted and observed values will be closest; this is the “optimal” bandwidth. There 
are various automatic techniques for determining the minimum of a function; in 
our case, a function that fits a GWR to a set of data with a given bandwidth and that 
returns a goodness of fit measure should be used.

As well as the AICc, an alternative is the cross-validation score i
n

i iy y h1
2( ˆ ( )) ; 

each fitted value is computed with the weight for the observation at the regression point 
set to zero. When h is very small, any “wrap-around” is avoided as the predicted value 
at i includes only nearby observations but not the observation itself.

The AICc has some slight advantages over the cross-validation score in that it 
can be used to compare the local and global models, and can also be used with other 
model forms, such as Poisson or logistic.

9.5 GEOVISUAL ANALYTICS AND GWR

Spatial variability of the GWR parameters is usually examined by producing a 
choropleth map of each separate parameter surface and the statistical summaries for 
parameter estimates (local t-values, standard residuals, local R2). These univariate 
maps are then scrutinized for patterns that give an idea about the spatial behavior 
of parameter values (Fotheringham et al., 2002). To identify multivariate spatial and 
nonspatial patterns, relationships, and other structures in the GWR result space that 
might provide crucial information about the causes of nonstationarity of spatial pro-
cesses that the GWR models, the GWR results space might be treated as a highly 
dimensional spatial dataset and visually explored using a GA environment. GA is a 
subdiscipline of visual analytics (NVAC, 2005), an emergent research area in infor-
mation visualization. It has evolved from geovisualization (MacEachren and Kraak, 
2001), provides theory, methods, and tools for the visual exploration of geospatial data 
and includes pattern discovery, knowledge construction, and analytical reasoning.

Visual exploration of a spatial dataset in a GA environment is performed as a 
perceptual-cognitive process of alternatively interpreting and interacting with or 
manipulating multiple georeferenced visual displays. This means that the user is vir-
tually looking and interactively searching for relationships and patterns in the data. 
Linked displays can include geographic visualizations, such as maps or cartograms, 
as well as any other multivariate visualizations or even constructs containing sev-
eral visualizations, such as bivariate matrices or similar multidisplays. All displays 
are normally interactively connected by the concept of brushing and linking, which 
means that data elements that are interactively selected in one display are simultane-
ously highlighted or selected everywhere, which facilitates visual pattern recogni-
tion across multiple displays (Dykes, MacEachren, and Kraak, 2005).
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In order to examine the GWR results space, the parameter estimates can be visu-
alized using different techniques for different purposes. Correlations between pairs 
of parameter estimates can be examined in a matrix of bivariate visualizations, such 
as scatterplots or spacefills. A combination of a map with multivariate visualizations 
helps with the analysis of multivariate spatial patterns. A computational data mining 
method, such as for example a self-organizing map, can be linked with a map for 
a cluster analysis of the parameter-space and to see if eventual nonspatial clusters 
have a particular spatial distribution that is related to the underlying geographical 
processes. With such tasks in mind, visual exploration of the GWR results space can 
provide new insights into the result space of a statistical method that would other-
wise remain unnoticed. The approach facilitates interpretation of the GWR results 
and supports analytical reasoning about the underlying spatial processes (Demšar, 
Fotheringham, and Charlton, 2008). How looking for patterns in the GWR space 
actually works is presented in the next section.

9.6 AN EXAMPLE — VOTER TURNOUT IN DUBLIN

To demonstrate both GWR and GA in tandem, we work through an example that is 
concerned with modeling variation in voter turnout in Greater Dublin for the general 
election held in Ireland in 2002. The turnout for an election is the proportion of the 
electorate that casts a vote. It is desirable that the turnout should be as high as pos-
sible; low turnouts are an indication of the electorate’s withdrawal from the political 
process and are a cause for concern. There is some evidence that there is a socio-
economic dimension to turnout variation, and this forms the underlying rationale for 
our model. There is extensive analysis of Irish electoral participation (for example, 
Kavanagh, 2004, 2005; Kavanagh, Mills, and Sinnott, 2004).

9.6.1 THE DATA

For confidentiality reasons, the data on voter turnout have been aggregated to elec-
toral divisions (ED). There are 322 EDs in the four counties that make up Greater 
Dublin: Fingal, Dublin City, South Dublin, and Dun Laoghaire-Rathdown. The area 
had a population of 1,122,821 in 2002, representing about 29% of the population of 
the Republic of Ireland. Figure 9.1 shows the four counties together with the areas 
mentioned in this chapter.

The turnout data are taken from the marked voting registers, which are used at 
each polling station. Every elector who casts a vote has a mark placed against his or 
her name in the register. From this, the totals for each polling station are available. 
For the study, counts for the individual polling stations inside each ED have been 
aggregated to provide an ED level count. The ED is the finest spatial unit for which 
census data are released, so this aggregation is appropriate.

The variation in turnout is shown in Figure 9.2. The highest turnouts are in the mid-
dle class parts of Dublin — Clontarf, Druncondra, Clonskeagh, and Dundrum — as 
well as in the more rural parts of Fingal. The lower turnouts in are in the more deprived 
areas — inner city Dublin, Ballymun, North Clondalkin, and West Tallaght.
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FIGURE 9.1 Index map showing counties and other locations mentioned in the text.
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FIGURE 9.2 Percentage turnout by electoral division in Greater Dublin.
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Turnout variation may be related to a number of social and economic factors. 
Directly measuring disenchantment with the political process is not easy, so we are 
forced toward proxies from the census. Eight regressors have been chosen:

 1. Proportion of persons whose address was different 12 months previously
 2. Proportion of households in property rented from the council
 3. Proportion of persons in social class 1
 4. Proportion of the labor force that is unemployed
 5. Proportion of residents aged 15+ with no formal education, or education 

to primary or lower secondary level
 6. Proportion of the electorate aged 18–24
 7. Proportion of the electorate aged 25–44
 8. Proportion of the electorate aged 45–64

The data were extracted from the 2002 Small Area Population Statistics made 
available by the Central Statistics Office, Ireland. The turnout counts were normal-
ized by the count of the electorate (persons aged 16 or over) in each ED.

GWR requires location coordinates for each observation. The EDs in Dublin have 
simple shapes so it was appropriate to take the geometric centroid as the location of 
both the sample points and the regression points.

9.6.2 GENERAL PATTERNS IN THE DATA

An initial correlation analysis reveals moderate levels of correlation between the depen-
dent and independent variables. Two variables have significant positive correlations 
(Social Class 1 0.35, Electorate 45–64 0.42). The rest of the independent variables have 
significant negative correlations (Different Address –0.31, Local Authority Renters 
–0.64, Unemployment –0.63, Educational Disadvantage –0.32, Electorate 18–24 –0.39, 
Electorate 25–44, –0.47). Largely these are in agreement with some of the theoretical 
views of the drivers of voter turnout — the affluent are more likely to participate in the 
voting process than the more disadvantaged. There are some relationships, at a global 
level, between the independent variables. Unemployment and Local Authority Renters 
are strongly positively correlated (0.85), and there are a few pairs of moderate negative 
correlations: Educational Disadvantage with Social Class 1 (–0.87), Different Address 
with Electorate 45-64 (–0.71) and Electorate 25–44 with Electorate 45–64.

These are to some extent expected. Residents in local authority property are more 
likely to be in low earning jobs or unemployed; members of higher social classes 
are less likely to have low educational attainment; the older electorate tend not to 
be recent migrants; and stages in the family life cycle might well be responsible for 
those in older age groups not to be mixed with those in younger age groups. One 
might transform the variables to principal components before entering them into the 
model, but the interpretation of the regression coefficients becomes a problem.

Two interesting variables are the percentage of residents in Social Class 1 and 
the percentage of the electorate with educational disadvantage. Figure 9.3 shows the 
variation in the percent of residents in Social Class 1: this group is concentrated in the 
southern parts of Dublin City and the northern parts of Dun Laoghaire-Rathdown.
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FIGURE 9.3 Variation in the percentage of residents in Social Class 1.
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Figure 9.4 shows that within Dublin City there are pockets of educational disad-
vantage, mostly in peripheral EDs in the northern and west parts of the city. Parts of 
Blanchardstown in Fingal, and Clondalkin in South Dublin are also notable as areas 
of deprivation.

Some initial visual exploration of the relationships in the data is desirable, and the 
parallel coordinates plot is an ideal tool for this. In Figure 9.5, the eight independent 
variables are presented on the first eight parallel ordinates. The turnout is shown on 
the rightmost parallel ordinate. Each polygonal line in the plot represents a single 
ED. Although the data are in percentage form, there is quite a wide variety in the 
mean values and variances, so to aid clarity, the values have been rescaled so that 
the maximum and minimum of each variable corresponds to the top and bottom of 
its ordinate. The lines have been colored by their turnout quintile with red lines indi-
cating a high turnout, and green lines indicating a low turnout. Low turnouts would 
appear to be associated with high values of Different Address, Local Authority 
Renters, Unemployment, Educational Disadvantage, and Electorate 18–24; it also 
appears to be associated with low values of Electorate 45–64. However, while the 
plot hints at some relationships, it does not give an idea of how these relationships 
vary across Dublin itself.

We begin a more formal identification of the relationships by fitting a global 
model; that is, a multiple linear regression using OLS. This provides a baseline 
against which to compare the GWR model.

9.6.3 GLOBAL MODEL

The global model has an adjusted R2 of 0.61 (R2 = 0.62). The AICc is 2012.20. The 
parameter estimates are in the following table (significant variables are shown in 
normal type):

Variables that do not contribute significantly to explain the variation in the model 
because their parameters are not significantly different from zero are Social Class 1, 
Educational Disadvantage, and Electorate Aged 18–24. The other variables all have a 
negative sign; this is not unexpected in the case of migrants, council renters, and the 
unemployed. The interpretation of the negative signs on the electorate variables suggests 
some interesting interactions with the other variables, and perhaps some colinearity.

 
Parameter Estimate T

Intercept 86.19 14.90

Different Address –0.56 –5.73

Local Authority Renters –0.19 –4.26

Social Class 1 0.18 1.55

Unemployment –0.86 –3.61

Educational Disadvantage –0.03 –0.60

Electorate 18–24 –0.13 –1.77

Electorate 25–44 –0.27 –4.97

Electorate 45–64 –0.21 –2.44
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FIGURE 9.4 Variation in percentage of residents with an educational disadvantage.
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9.6.4 LOCAL MODEL

The local model was fitted with OLS GWR. An adaptive kernel was used — in the less 
urbanized parts of the county, the EDs are larger, so we need a larger kernel for these 
areas. We elected to find the bandwidth that minimized the AICc. The local sample size 
for the kernel was 61 — each kernel covers approximately 20% of the sample points.

The initial results suggest that the local model is a “better” model, in that it pro-
vides a closer fit to the original data. The residual sum of squares (RSS) is 3302 
compared with the 9149 in the global model. The adjusted R2 is 0.80, which is further 
evidence of more accurate predictions, and the AICc was reduced from 2012.20 to 
1972.84 — strong evidence that we are closer to the “true” model for the turnout 
variable. The number of degrees of freedom has increased from 9 to 103.19.

9.6.5 RESULTS

While the AICc change suggests that the GWR model is an improvement over the 
global model, the next question to ask is whether there is any evidence for spatial vari-
ability in the parameter estimates. A Monte Carlo test is used to determine whether the 
observed variance in the parameter estimates could have arisen by chance — the test is 
based on Hope (1968). A separate test is carried out for each of the regressors, with the 
observed variance compared with the results from 99 simulations. The p values from 
the tests are shown in the table below with the global model’s t value for comparison.

FIGURE 9.5 Rescaled parallel coordinates plot showing relationship between variables in 
the regression colored by quintile. Red: high turnout; yellow: middle turnout; green: low 
turnout. See color insert after page 148.

 
Variable p Global t

Different Address 0.41 –5.73

Local Authority Renters 0.65 –4.26

Social Class 1 0.00 1.55

Unemployment 0.48 –3.61

Educational Disadvantage 0.01 –0.60

Electorate 18–24 0.28 –1.77

Electorate 25–44 0.00 –4.97

Electorate 45–64 0.02 –2.44
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Four sets of local parameter estimates exhibit significant spatial variabil-
ity. These are those associated with Social Class 1, Educational Disadvantage, 
Electorate 25–44 and Electorate 45–64. The remaining local parameter estimates 
do not exhibit any significant spatial variation and hence the global estimates are 
appropriate. It is interesting that two of the parameters, those associated with Social 
Class 1 and Educational Disadvantage, that are not significant globally exhibit sig-
nificant local variation suggesting that quite different relationships exist over the 
study area.

9.6.6 LOCAL PARAMETER ESTIMATE MAPS

Many of the applications of GWR that have appeared show maps of the local param-
eter variation. This is a useful first step toward interpreting the results. This has 
always been the intention of the developers of GWR and is strongly evident from 
their work (e.g., Brunsdon et al., 1996; Fotheringham et al., 1998, 2002). However, 
the processes are sometimes a little difficult to unravel in the local maps and require 
the comparison of multiple maps.

The parameter surface for Social Class 1 shown in Figure 9.6 has both negative 
and positive values — the positive values are intuitive, we might expect relatively 
affluent and educated individuals to wish to take part in the democratic process. 
However, the negative values are perplexing — why should an increase in the pro-
portion of the residents in Social Class 1 lead to a decrease in voter turnout?

The parameter surface for Educational Disadvantage shown in Figure 9.7 has 
some counter-intuitive elements as well. We might expect there to be a negative 
relationship — low educational attainment implies poorer awareness of political pro-
cesses and their effects, and perhaps contributes toward an unwillingness to take 
part in those processes. The positive parts of this surface are in areas with low pro-
portions of residents with educational disadvantage. However, not everyone with a 
poor educational attainment refuses to take part in the electoral processes, and this is 
suggested by the positive values in the inner city, and parts of rural Fingal.

The t surface map in Figure 9.8 provides the clue to the interpretation of the 
Social Class parameter estimates. In examining parameter variation we need to take 
into account the variability of the parameter estimates themselves, which variability 
is measured by the standard error of the individual parameter estimates? The con-
struction and visualization of a 95% confidence interval would be rather complex, 
but if the interval included locally zero, we would have some evidence that the vari-
able in that location was contributing to the variability of the dependent variable. 
This would appear to be the case in areas where the proportion in Social Class 1 is 
high or moderately high. The t surface for the negative areas would suggest that the 
local estimates are not dissimilar to zero — in other words, the variation in Social 
Class 1 has no influence in these areas.

Figure 9.9 shows the general distribution of the t surface for the Educational 
Disadvantage parameter estimate. Again, in examining parameter variation we need 
to be aware of the variability of the estimates themselves. An interesting issue is 
raised here. If we regard the surfaces as 322 significance tests, then some adjustment 
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FIGURE 9.6 GWR parameter estimates for Social Class 1.
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FIGURE 9.7 GWR parameter estimates for Educational Disadvantage.
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FIGURE 9.8 Local t statistics for Social Class 1.
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FIGURE 9.9 Local t statistics for Educational Disadvantage.
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of the percentage points of the test statistic might be appropriate. Bonferroni adjust-
ment may be too crude. Further research is needed in this area of GWR.

However, what the examination of the parameter surfaces for two variables out of 
the eight regressors shows is the difficulty of addressing one variable at a time, when 
the results of multivariate analysis where the outputs are as complex as the inputs or 
more so demand multivariate methods of exploration. This is where GA has a useful 
role to play.

9.6.7 VISUALIZING THE RESULTS — FURTHER INSIGHTS

The GWR result space was explored using a geovisual exploratory environment 
based on GeoVISTA Studio, which is a collection of various geographic and other 
visualizations and computational data mining methods (Gahegan et al., 2002). The 
environment consisted of three interactively linked visualizations: a map, a parallel 
coordinates plot (PCP) and a visualization of a computational data mining method 
— the self-organizing map (SOM).

The SOM is an unsupervised neural network, which projects the multidimen-
sional data onto a two-dimensional lattice of cells while preserving the topology and 
the probability density of the input data space. This means that similar input data 
elements are mapped to neighboring cells and the similarity patterns that exist in the 
higher dimensional space correspond to patterns in the SOM lattice (Kohonen, 1997, 
Silipo, 2003), which is easy to visualize because of its two-dimensionality (Vesanto, 
1999). The SOM visualization in GeoVISTA Studio, which was used in this example, 
is a hexagonal U-matrix, where a grey shade is assigned to each hexagonal lattice 
cell according to the cell’s distance from its immediate neighbors. Light areas in the 
lattice indicate areas with similar cells and represent clusters of similar elements. 
Dark areas indicate borders between clusters. The distribution of data in the SOM 
lattice is represented by the size of the circles that are projected in a regular pattern 
over the grey hexagonal cells. The color of the circles helps to transfer the informa-
tion about clusters to other visualizations through visual brushing. It is defined by 
draping a smooth color map over the circles in the SOM lattice. Through visual 
brushing the hue of each circle is then inherited by graphic entities belonging to the 
same data elements in other visualizations (Vesanto, 1999, Takatsuka, 2001), in our 
case in the map and in the PCP.

Figure 9.10 shows two visualizations of the subspace of the GWR result space, 
consisting of parameter estimates for all eight GWR variables. Other attributes, such 
as t-values, s-values, etc. could also be visualized, but to keep this example simple, we 
limited the subspace to parameter estimates only. Figure 9.10a shows the SOM clus-
tering based on these eight parameter estimates. The EDs in the map in Figure 9.10b 
inherited their colors from their respective location in the SOM, as explained above. 
There are several light areas in the SOM that define clusters: the green cluster in the 
top-left corner, the yellow cluster in the center on the top, the orange-red cluster in 
the top-right corner, the violet cluster in the bottom-right corner, the light blue cluster 
in the bottom-left corner, and the turquoise cluster on the left. It should be pointed 
out that these are nonspatial clusters, meaning that they are based only on attribute 
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data (i.e., the parameter estimates) and not on geographical location. Yet once the 
clusters are transferred to the map in Figure 9.10b with the help of visual brushing 
using color, it becomes apparent that similarly colored EDs (which are similar to 
each other in the attribute space and are located in neighboring cells in the SOM) are 
mostly also adjacent to each other in the geographical space.

FIGURE 9.10 Visualizing the structure of the GWR space with (a) a self-organizing map 
(SOM) and (b) a map. See color insert after page 148.

(a)

(b)

© 2009 by Taylor & Francis Group, LLC



Looking for a Relationship? Try GWR 249

In the following, we look at two selections of clusters that identify different areas 
in Dublin in the third visualization, the PCP, to attempt to explain the differences in 
processes that are at work in each of the selected areas. In a PCP, each axis repre-
sents one variable of the input data space, in our case one parameter estimate. Axes 
are linearly scaled from the minimum to the maximum value of each dimension. 
Each data element is displayed as a polygonal line intersecting each of the axes 
at the point that corresponds to the respective attribute value for this data element 
(Inselberg, 2002). The colors of the polygonal lines in the GeoVISTA PCP used in 
our example are again inherited from the SOM as described above. Additionally, the 
GeoVISTA PCP has boxplots assigned to each axis, for a better impression of how 
the values at each axis are distributed.

We have used the PCP in conjunction with selection of clusters in the SOM in 
order to try to describe the characteristics of each cluster. This can be achieved by 
looking at the trajectory that the lines belonging to each cluster form in the PCP. 
Figure 9.11 shows a selection of two clusters that identify the central area of Dublin: 
the yellow and the violet cluster. The map of the EDs belonging to these two clusters 
is shown in Figure 9.11a. Figure 9.11b shows the PCP of the same selection. In this 
PCP, there are clearly two different trajectories: a group of yellow polygonal lines for 
the areas in the northern part of the city center and a group of violet polygonal lines 
for the southern areas (and a few spatial outliers located northwest from the center).  
The trajectories are most clearly separated at parm_5 axis, which is the parame-
ter estimate for the percentage of unemployment and at parm_8 axis, which is the 
parameter estimate for population of 25–44 years of age. At these two axes, the  
yellow and violet lines lay on different sides of the quartile box. Looking at the values 
of the parameter estimates on the respective two axes, we can conclude that percent-
age of unemployment (parm_5) has a strongly positive influence on voter turnout 
in yellow areas (north city center) and a strongly negative influence in violet areas 
(south city center). Conversely, the percentage of population of age 25–44 (parm_8) 
has a strongly negative influence on voter turnout in the north and a strongly positive 
influence in the south. At other parameter estimates, both the yellow and the violet 
group of lines intersect the respective axis inside or near the quartile box of the box-
plot and mostly on the same side of the average.

Another interesting pattern can be seen in the selection of red and blue clusters 
in the SOM. The map of this selection is shown in Figure 9.12a and the PCP is 
shown in Figure 9.12b. The EDs in the red cluster are located in the Ballymun 
area, which is known as one of the problematic areas in Dublin. Blue EDs are 
located along the coast north of Dublin city center and on the Howth peninsula — 
these are the most affluent areas in Dublin. The GWR results space clearly cap-
tures these differences: the red and blue clusters are located very far from each 
other in the SOM in Figure 9.12a and the PCP in Figure 9.12b shows different red 
and blue trajectories. In this PCP the biggest difference in parameter estimates 
between these two trajectories is at parm_4 (percentage of social class 1) and 
at parm_6 axis (low education). Social class 1 (parm_4) has a strongly negative 
influence on voter turnout in Howth and surrounding blue areas, but a strongly 
positive influence in the red Ballymun and surroundings. The same is true for 
parm_6, i.e., percentage of low education. The red and blue trajectories differ in 
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most of the other parameter estimates as well, but interestingly not at parm_5, 
which represents the influence of percentage of unemployment. Both in the afflu-
ent blue Howth and in poorer red Ballymun this variable has a strongly negative 
influence on voter turnout.

FIGURE 9.11 (a) The map and (b) the parallel coordinates plot (PCP) showing the selection 
of the two clusters from the SOM (violet and yellow, respectively) that represent two areas 
in the center of Dublin. River Liffey (running through the center in the east-west direction) 
divides the center in the north yellow area and south violet areas where the social processes 
behind voting mechanisms have different characteristics. This can be clearly seen by compar-
ing the violet and yellow trajectories in the PCP. See color insert after page 148.
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9.7 CONCLUSIONS

The inputs to any modeling exercise require thorough exploration — not just singly but 
where necessary in combination. This helps to establish what is unusual in a multivari-
ate sense over and above what is unusual when the variables of interest are taken singly. 

FIGURE 9.12 (a) The map and (b) the PCP showing the selection of the two clusters in SOM 
(red and blue) that represent two areas north of city center. Blue EDs are located around 
Howth and are the most affluent areas in Dublin. Red EDs, on the other hand, represent one 
of the more problematic areas in Dublin (Ballymun). The two different trajectories in the PCP 
again capture the differences between areas with different social situations. See color insert 
after page 148.
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The outputs from a technique such as GWR are often voluminous and the analyst needs 
to make sense of them. Clearly one can map the surfaces for parameter estimates, and 
standard errors for individual variables. One can map residuals, leverage statistics, and 
local measures of goodness of fit. The generating process for the dependent variable is 
multivariate, the modeling is multivariate, and the results are multivariate.

This chapter has demonstrated that the methods and techniques of GA allow us 
to understand the structure in the outputs from GWR. When faced with a number 
of univariate displays, the analyst may be misled or slowed in his or her ability to 
comprehend the structures and interactions in the outputs.

We are familiar with the concept of data reduction — reducing the complexity of 
the data to something manageable. We often use boxplots, scatterplots, and parallel 
coordinate plots to help us understand and explore the data space. This chapter has 
shown how we can also use the techniques of GA to explore the result space from a 
modeling procedure such as GWR.

In a “classic” regression, we assume spatial stationarity. If this is not the case, 
any evidence will be apparent in the residuals — structure in the residuals is a 
problem. The assumption that a single global model is sufficient is not always war-
ranted — with GWR the assumption is that the structures vary locally — there 
are suitable tests to determine whether individual variable parameter surfaces are 
spatially stationary. GWR helps to reveals patterns that are local and, coupled 
with multivariate visualization, we can examine how the interactions between the 
variables vary locally. These are local exploratory approaches designed to help 
reveal patterns in the datasets and suggest further directions for analysis. Not 
all spatial processes are heterogeneous. Nakaya et al. (2005) have developed a 
semi-parametric model that they use to model variation in premature mortality in 
Tokyetropolitan Area. In this model form, some variables are assumed to have sta-
tionary parameters, while others have spatially varying parameters. This opens an 
interesting problem in model selection where variables to be entered into a model 
can be tested with either fixed or varying parameters to assess their contribution to 
the improvement in model fit.

The techniques reveal the importance of looking at results from techniques 
such as GWR in a multivariate context rather than a univariate context. Rather 
than looking at maps of one local parameter estimate distributed across the study 
region, for example, and looking for areas of stability or change in that one rela-
tionship, we have shown how we can now investigate areas where sets of param-
eter estimates are relatively stable or where differences between sets of parameter 
estimates are most noticeable. In this way, we are exploring ever deeper into the 
measurement and understanding of spatial relationships and, ultimately, spatial 
processes.

REFERENCES

Akaike, H., 1973, Information theory as an extension of the maximum likelihood principle. In 
B.N. Petrov and F. Csaksi, Eds., 2nd International Symposium on Information Theory. 
Akademiai Kiado, Budapest, Hungary, pp. 267–281.

© 2009 by Taylor & Francis Group, LLC



Looking for a Relationship? Try GWR 253

Anselin, L., 1988, Spatial Econometrics: Methods and Models, Springer, Berlin.
Brunsdon, C., Fotheringham, A.S., and Charlton, M.E., 1996, Geographically weighted 

regression: A method for exploring spatial nonstationarity, Geographical Analysis, 
28(4), 281–298

Burnham, K.P. and Anderson, D.R., 2002, Model Selection and Multimodel Inference: A 
Practical Information Theoretic Approach, 2nd ed., Springer, Berlin.

Casetti, E., 1972, Generating models by the expansion method: Applications to geographic 
research. Geographical Analysis, 4, 81–91.

Demšar, U., Fotheringham, A.S., and Charlton, M., 2008, Combining geovisual analytics with 
spatial statistics: The example of geographically weighted regression. Under review 
for a special issue of The Cartographic Journal.

Dykes, J.A., MacEachren, A.M., and Kraak, M.-J. (Eds.), 2005, Exploring Geovisualization. 
Elsevier, Amsterdam.

Foster, S.A. and Gorr, W.L., 1986, An adaptive filter for estimating spatially varying param-
eters: Application to modeling police hours spent in response to calls for service. 
Management Science 32, 878–889.

Fotheringham, A.S., Brunsdon, C., and Charlton, M.E., 1998, Geographically weighted 
regression: A natural evolution of the expansion method for spatial data analysis, 
Environment and Planning A, 30(11), 1905–1927.

Fotheringham, A.S., Brunsdon, C., and Charlton, M., 2002, Geographically Weighted 
Regression: The Analysis of Spatially Varying Relationships. Wiley, Chichester.

Gahegan, M., Takatsuka, M., Wheeler, M., and Hardisty, F., 2002, Introducing Geo-VISTA 
Studio: an integrated suite of visualization and computational methods for explora-
tion and knowledge construction in geography, Computers, Environment and Urban 
Systems, 26, 267–292.

Hope, A.C.A., 1968, A simplified Monte Carlo significance test procedure, Journal of the 
Royal Statistical Society, Series B, 30(3), 582–598.

Hurvich, C.F., Simonoff, J.S., and Tsai, C.-L., 1998, Smoothing parameter selection in non-
parametric regression using an improved Akaike information criterion, Journal of the 
Royal Statistical Society series B, 60, 271–293.

Inselberg, A., 2002, Visualization and data mining of high-dimensional data, Chemometrics 
and Intelligent Laboratory Systems, 60, 147–159.

Jones III, J.P., 1984, A spatially varying parameter model of AFDC participation: Empirical 
analysis using the expansion method, Professional Geographer, 36(4), 455–461.

Kavanagh, A., 2004, The 2004 local elections in the Republic of Ireland, Irish Political Studies, 
19(2), 64–84.

Kavanagh, A., 2005, The 2005 Meath and Kildare North by-elections, Irish Political Studies, 
20(2), 201–211.

Kavanagh, A., Mills, G., and Sinnott, R., 2004, The geography of Irish voter turnout: A case 
study of the 2002 general election, Irish Geography, 37(2), 177–186.

Kohonen, T., 1997, Self-Organizing Maps, 2nd ed., Springer Verlag, Berlin.
MacEachren, A.M. and Kraak, M.-J., 2001, Research challenges in geovisualization, 

Cartography and Geographic Information Science, 28(1), 3–12.
McMillen, D.P., 1996, One hundred fifty years of land values in Chicago: a nonparametric 

approach, Journal of Urban Economics, 40, 100–124.
Nakaya, T., Fotheringham, A.S., Brunsdon, C., and Charlton, M.E., 2005, Geographically 

weighted Poisson regression for disease association mapping, Statistics in Medicine, 
24(17), 2695–2717.

National Visualization and Analytics Center (NVAC), 2005, Illuminating the path: Creating 
the R&D agenda for visual analytics. Available at: http://nvac.pnl.gov/agenda.stm.

Silipo, R., 2003, Neural networks, in: Berthold, M. and Hand, D.J. (Eds.), Intelligent Data 
Analysis, 2nd ed., Springer Verlag, Berlin, 269–320.

© 2009 by Taylor & Francis Group, LLC

http://nvac.pnl.gov


254 Geographic Data Mining and Knowledge Discovery

Takatsuka, M., 2001, An application of the self-organizing map and interactive 3-D visual-
ization to geospatial data, in: Proceedings of the Sixth International Conference on 
Geocomputation, Brisbane, Australia.

Tobler, W., 1970, A computer model simulation of urban growth in the Detroit region, 
Economic Geography, 46(2), 234–240.

Vesanto, J., 1999, SOM-based data visualization methods, Intelligent Data Analysis, 3, 
111–126.

© 2009 by Taylor & Francis Group, LLC



255

10 Leveraging the Power of 
Spatial Data Mining to 
Enhance the Applicability 
of GIS Technology 
Donato Malerba 

Antonietta Lanza 

Annalisa Appice 

CONTENTS

10.1 Introduction  ................................................................................................256
10.2 Spatial Data Mining and GIS ...................................................................... 258
10.3 INGENS 2.0 Architecture and Spatial Data Model ....................................260
10.4 Spatial Data Mining Process in INGENS 2.0 .............................................264

10.4.1 Conceptual Description Generation ..............................................264
10.4.2 Classification Rule Discovery........................................................266
10.4.3 Association Rule Discovery  ......................................................... 270

10.5 SDMOQL  ................................................................................................... 272
10.5.1 Data Specification  ......................................................................... 273
10.5.2 The Kind of Knowledge to be Mined  ........................................... 274
10.5.3 Specification of Primitive and Pattern Descriptors  ...................... 275
10.5.4 Syntax for Background Knowledge and Concept 

Hi erarchy Specification  ................................................................ 277
10.5.5 Syntax for Interestingness Measure Specification ........................ 278

10.6 Mining Spatial Patterns: A Case Study  ..................................................... 278
10.6.1 Mining Classification Rules  ......................................................... 278
10.6.2 Association Rules  .........................................................................282

10.7  Concluding Remarks and Directions for Further Re search  .......................284
References  .............................................................................................................286

© 2009 by Taylor & Francis Group, LLC



256 Geographic Data Mining and Knowledge Discovery

10.1 INTRODUCTION 

In a large number of application domains (e.g., traffic and fleet management, envi-
ronmental and ecological modeling), collected data are measurements of one or 
more attributes of objects that occupy specific locations with respect to the Earth’s 
surface. Collected geographic objects are characterized by a geometry (e.g., point, 
line, or polygon) which is formulated by means of a ref erence system and stored 
under a geographic database management system (GDBMS). The geometry implic-
itly defines both spatial properties, such as orientation, and spatial relationships of 
a different nature, such as topological (e.g., intersects), distance, or direction (e.g., 
north of) relations. 

A GIS is the software system that pro vides the infrastructure for editing, storing, 
analyzing, and displaying geo graphic objects, as well as related data on geoscientific, 
economic, and environmental situations [11]. Popular GISs (e.g., ArcView, MapInfo, 
and Open GIS) have been designed as a toolbox that allows planners to explore geo-
graphic data by means of geo-processing functions, such as zooming, overlaying, 
con nectivity measurements, or thematic map coloring. Consequently, these GISs are 
provided with functionalities that make the geographic visualization of in dividual 
variables effective, but overlook complex multivariate dependencies. Traditional GIS 
technology does not address the requirement of complex ge ographic libraries which 
search for relevant information, without any a priori knowledge of data set organiza-
tion and content. In any case, GIS vendors and researchers now recognize this limita-
tion and have begun to address it by adding spatial data interpretation capabilities to 
the systems. 

A first attempt to integrate a GIS with a knowledge-base and some rea soning 
capabilities is reported in [43]. Nevertheless, this system has a limited range of appli-
cability for a variety of reasons. First, providing the GIS with operational definitions 
of some geographic concepts (e.g., morphological en vironments) is not a trivial task. 
Generally only declarative and abstract definitions, which are difficult to compile 
into database queries, are available. Second, the operational definitions of some 
geographic objects are strongly dependent on the data model adopted for the GIS. 
Finding relationships be tween density of vegetation and climate is easier with a raster 
data model, while determining the usual orientation of some morphological elements 
is sim pler in a topological data model [15]. Third, different applications of a GIS will 
require the recognition of different geographic elements in a map. Pro viding the sys-
tem in advance with all the knowledge required for its various application domains 
is simply illusory, especially in the case of wide-ranging projects like those set up by 
governmental agencies. 

The solution to these difficulties can be found in spatial data mining [22], which 
investigates how interesting, but not explicitly available, knowledge (or pattern) can 
be extracted from spatial data. This knowledge may include classification rules, 
which describe the partition of the database into a given set of classes [22], clusters of 
spatial objects [19, 42], patterns describing spatial trends, that is, regular changes of 
one or more nonspatial attributes when moving away from a given start object [26], 
and subgroup patterns, which identify subgroups of spatial objects with an unusual, 
an unexpected, or a deviating distribution of a target variable [21]. 
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Following the mainstream of research in spatial data mining, there have been 
several atttempts to enhance the applicability of GIS technology by lever aging the 
power of spatial data mining [6, 16, 18, 32, 34]. In all these cases, the GIS users 
are not interested in processing the geometry of geographic ob jects collected in 
spatial database, but in working at higher conceptual levels, where human-inter-
pretable properties and relationships between geographic objects are expressed.1 To 
bridge the gap between geometrical representation and conceptual representation of  
geographic objects, GISs are provided with facilities to compute the properties and 
relationships (features), which are im plicit in the geometry of data. In most cases, 
these features are then stored as columns of a single double entry data table (or 
relational table), such that a classical data mining algorithm can be applied to trans-
formed data within the GIS platform. Unfortunately, the representation in a single 
double entry data table offers inadequate solutions with respect to spatial data anal-
ysis requirements. Indeed, information on the original heterogeneous structure of 
geographic data is partially lost: for each unit of analysis, a single row is con structed 
by considering the geographic objects which are spatially related to the unit of analy-
sis. Properties of objects of the same type are aggregated (e.g., by sum or mode) to 
be represented in a single value.

In this chapter, we present a prototype of GIS, called INGENS 2.0, that dif fers 
from most existing GISs in the fact that the data mining engine works in a first-order 
logic, thus providing functionalities to navigate relational structures of geographic 
data and generate potentially new forms of evidence. Originally built around the 
idea of applying the classification patterns induced from geo referenced data to the 
task of topographic map interpretation [31], INGENS 2.0 now extends its prede-
cessor INGENS [32] by combining several technologies, such as spatial Data Base 
Management System (DBMS), spatial data mining, and GIS within an open extensi-
ble Web-based architecture. Vectorized topographic maps are now stored in a spatial 
database [40], where mechanisms for accessing, filtering, and indexing spatial data 
are available free of charge for the GIS requests. Data mining facilities include the 
possibility of discovering operational definitions of geographic objects (e.g., fluvial 
landscape) not directly stored in the GIS database, as well as regularities in the spatial 
arrangement of geographic ob jects stored in the GIS database. The former are discov-
ered in the form of classification rules, while the latter are discovered in the form of 
association rules. The operational definitions can then be used for predictive purpose, 
that is, to query a new map and recognize instances of geographic objects not directly 
modeled in the map itself. Efficient procedures are implemented to model spatial 
features not explicitly encoded in the spatial database. Such features are associated 
with clear semantics and represented in a first-order logic formalism. In addition, 
INGENS 2.0 integrates a spatial data mining query language, called SDMOQL [28], 
which interfaces users with the whole system and hides the different technologies. 
The entire spatial data mining process is condensed in a query written in SDMOQL 
and run on the server side. The query is graphically composed by means of a wizard 

1 A typical example is represented by the possible relations between two roads, which either cross each 
other, or run parallel, or can be confluent, independently of the fact that they are geometrically repre-
sented as lines or regions in a map.
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on the client side. The GUI (graphical user interface) is a Web-based application 
that is designed to support several categories of users (administrators, map manag-
ers, data miners, and casual users) and allows them to acquire, update, or navigate 
vectorized maps stored in the spatial database, formulate SDMOQL queries, explore 
data mining results, and so on. Logging data and the history of users are maintained 
in the database. 

The chapter is organized as follows. In the next section, we discuss issues and 
challenges of leveraging the power of spatial data mining to enhance the applicabil-
ity of GIS technology. We present the architecture and data model of INGENS 2.0 
in Section 10.3 and the spatial data mining process in Section 10.4. The syntax of 
SDMOQL is described in Section 10.5. An application of INGENS 2.0 is reported 
and discussed in Section 10.6. Finally, Section 10.7 gives conclusions and presents 
ideas for further work.

10.2 SPATIAL DATA MINING AND GIS

Empowering a GIS with spatial data mining facilities presents some difficulties, 
since the design of a spatial data mining module depends on several aspects. The 
first aspect is the representation of spatial objects. In the literature, there are two 
types of data representations for the spatial data, that is, tessellation and vector [39]. 
They differ in storage, precision, and complexity of the spatial relation computa-
tion. The second aspect is the implicit definition of spatial relationships among 
objects. The three main types of spatial relationships are topological, distance, 
and directional relationships, for which several models have been proposed for the 
definition of their semantics (e.g., “9-intersection model” [14]). The third aspect is 
the heterogeneity of spatial objects. Spatial patterns often involve different types 
of objects (e.g., roads or rivers), which are described by completely different sets 
of features. The fourth aspect is the interaction between spatially close objects, 
which introduces different forms of spatial autocorrelation: spatial error (correla-
tions across space in the error term), and spatial lag (the dependent variable in space 
i is affected by the independent variables in space i, as well as those, dependent or 
independent, in space j ).

Classical data mining algorithms, such as those implemented in Weka [45], offer 
inadequate solutions with respect to these aspects. In fact, they work under the single 
table assumption [46], that is, units of analysis are represented as rows of a classical 
double-entry table (or database relation), where columns correspond to elementary 
(nominal, ordinal, or numeric) single-valued attributes. In any case, this represen-
tation neither deals with geographic data characterized by geometry, nor handles 
observations belonging to separate re lations, nor naturally represents spatial rela-
tionships, nor takes them into account when mining patterns. Differently, geographic 
(or spatial) data are naturally modeled as a set of relations R1,...,Rn, such that each Ri 
has a number of elementary attributes and possibly a geometry attribute (in which 
case a relation is a layer). In this perspective, a multirelational data mining approach 
seems the most suitable for spatial data mining tasks, since multirelational data min-
ing tools can be applied directly to data distributed on several relations and since 
they discover relational patterns [13].
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Example. To investigate the social effects of public transportation in a British city, a 
geographic data set composed of three relations is considered (see Figure 10.1). The 
first relation, ED, contains information on enumeration districts, which are the smallest 
areal units for which census data are published in the U.K. In particular, ED has two 
attributes, the identifier of an enumeration district and a geometry attribute (a closed 
polyline), which describes the area covered by the enumeration district. The second rela-
tion, BL, describes all the bus lines which cross the city. In this case, relevant at tributes 
are the name of a bus line, the geometry attribute (a line) represents the route of a bus 
and the type of bus line (classified as main or secondary). The third relation, CE, con-
tains some census data relevant for the problem, namely, the number of households with 
0, 1, or “more than 1” cars. This relation also includes the identifier of the enumeration 
district, which is a for eign key for the table ED. A unit of analysis corresponds to an 
enumeration district (the target object), which is described in terms of the number of 
cars per household and crossing bus lines (bus lines are the task-relevant objects). The 
relationship between reference objects and task-relevant objects is estab lished by means 
of a spatial join, which computes the intersection between the two layers ED and BL.

Although several spatial data mining methods have already been designed by resort-
ing to the multirelational approach [4, 7, 21, 29, 30], most GISs which integrate data 
mining facilities [6, 16, 18] continue to frame the requests made by the spatial dimen-
sion within the classical data mining solution. Spatial properties and relationships of 
geographic objects are computed and stored as columns of a classical double-entry table, 
such that a classical data mining algorithm can be applied to the transformed data table.

At present, only two of the GISs reported in the literature integrate spatial data min-
ing algorithms designed according to the multirelational approach. They are SPIN! 
[34] and INGENS [32]. SPIN! is the spatial data mining platform developed within the 
European Union (EU) research project of the same name. SPIN! assumes an object- 
relational data representation and offers facilities for multirelational sub-group discovery 
and multirelational association rule discovery. Subgroup discovery [21] is approached 
by taking advantage of a tight inte gration of the data mining algorithm with the data-
base environment. Spatial relationships and attributes are then dynamically derived by 
exploiting spatial DBMS extension facilities (e.g., packages, cartridges, or extenders) 
and used to guide the subgroup discovery. Association rule discovery [4] works in first-
order logic and is only loosely integrated with a spatial database by means of some 

FIGURE 10.1 Representation of geographic data on the social effects of public transporta-
tion in a British city.
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middle layer module that extracts spatial attributes and relationships independently of 
the mining step and represents these features in a first-order logic formalism. INGENS 
is our first attempt to empower a GIS with induc tive learning capabilities. Indeed, it 
integrates the inductive learning system, ATRE, which can induce first-order logic 
descriptions of some concepts from a set of training examples. INGENS assumes an 
object-oriented representa tion of data organized in topographic maps. The geographic 
data collection is organized according to an object-oriented data model and is stored in 
the object store object-oriented DBMS. Since object store does not provide au tomatic 
facilities for storing, indexing, and retrieving geographic objects, these facilities are 
completely managed by the GIS.  In addition, INGENS integrates a Web-based GUI, 
where the user is simply asked to provide a set of (counter-) examples of geographic 
concepts of interest and a number of parameters that define the classification task more 
precisely. First-order descriptions learned by ATRE are only visualized in a textual 
format. The data mining process is condensed in a query written in SDMOQL [28], but 
the textual composition of the query is completely managed by the user.

10.3 INGENS 2.0 ARCHITECTURE AND SPATIAL DATA MODEL

The architecture of INGENS 2.0 is illustrated in Figure 10.2. It is designed as an 
open, highly extensible, Web-based architecture, where spatial data mining services 
are integrated within a GIS environment. The GIS functionalities are distributed 
among the following software components:

a Web-based GUI for supporting users in all activities, that is, user log-in 
and log-out, acquisition and editing of a topographic map, visualization 
and exploration of a topographic map, execution of a data mining request 
formulated by means of a spatial data mining query;

FIGURE 10.2 INGENS 2.0 software architecture.
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the User Management module for managing the access to the GIS (user 
creation, authentication, and history) for the different categories of users;
the Map Management module for managing requests of map creation, 
acquisition, update, delete, visualization, and exploration;
the Query Interpreter module for running user-composed SDMOQL que-
ries and performing a spatial data mining task of classification or associa-
tion rule discovery;
the Feature Extractor module for automatically generating concep-
tual descriptions (in first-order logic) of geographic objects, by making 
ex plicit (spatial) properties and relationships, which are implicit in the 
spatial dimension of data;
the Data Mining Server for running data mining algorithms;
the Spatial Database for storing both map data and information on the 
user history (logging user identifier and password, privileges, and spatial 
data mining queries executed in the past).

The GUI can be accessed by four categories of users, namely, the GIS adminis-
trators, the map maintenance users, the data miners, and the casual end users. User 
profiles (e.g., authentication information, list of privileges) are stored in the database. 
The profile lists the topographic maps and the GIS functionalities to be accessed by 
the user. The administrator is the only user authorized to create, delete, or modify 
profiles of all other users of the GIS. The map maintenance user is in charge of 
upgrading the map repository stored in the spatial database by creating, updating, 
or deleting a map. The data miner can ask the GIS to discover either the operational 
definition of a geographic object or a spatial arrangement of geographic objects that 
are frequent on the topographic map under analysis. Finally, the casual end user is 
provided with geo-processing functionalities to navigate the topographic map, visu-
alize geographic objects, belonging to one or more map layers (roads, parcels, and so 
on), and perform zooming operations.

The user management module is in charge of the activities of creating, modifying, 
or deleting a user profile. Users are authorized to use only the GIS functionalities 
that match the privileges provided in their profiles.

The map management module executes the requests of the map mainte nance 
users. This component interfaces with the spatial database in order to create or drop 
an instance of a topographic map, as well as retrieve and display ge ographic objects 
belonging to one or more layers of a map.

The query interpreter runs the SDMOQL queries composed by data min ers. 
A query refers to one of the topographic maps accessible to the data miner and 
specifies the set of objects relevant to the task at hand, the kind of knowledge 
to be discovered (classification or association rules), the set of descriptors to be 
extracted from the map, the set of descriptors to be used for pattern description and 
optionally the background knowledge to be used in the discovery process, the geo-
graphic hierarchies, and the interestingness measures for pattern evaluation. The 
query interpreter’s responsibility is to ask the feature extractor to generate con-
ceptual descriptions of the geographic objects extracted from the spatial database 
and then to invoke the inference engine of the data mining server. The conceptual 
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descriptions are conjunctive formulae in a first-order logic language, involving 
both spatial and nonspatial descriptors specified in the query. SDMOQL queries 
are maintained in the user workspace and can be reconsidered in a new data min-
ing process. Due to the complexity of the SDMOQL syntax, a user-friendly wizard 
is designed on the GUI side to graphically support data miners in formulating 
SDMOQL queries.

The data mining server provides a suite of data mining systems that can be run 
concurrently by multiple users to discover previously unknown, useful patterns in 
geographic data. Currently, the data mining server provides data miners with two 
systems, ATRE [27] and SPADA [24]. ATRE is an inductive learning system that 
generates models of geographic objects from a set of training examples and counter- 
examples. SPADA is a spatial data mining system to discover multilevel spatial asso-
ciation rules, that is, association rules involving spatial objects at different granular-
ity levels. In both cases, discovered patterns are returned to the GUI to be visualized 
and interpreted by data miners.

The spatial database (SDB) can run on a separate computational unit, where topo-
graphic maps are stored according to an object-relational data model. The object-
relational DBMS used to store data is a commercial one (Oracle 10g) that includes 
spatial cartridges and extenders, so that full use is made of a well-developed, techno-
logically mature spatial DBMS. Moreover, the object-relational technology facilitates 
the extension of the DBMS to ac commodate management of geographic objects.

At a conceptual level, the geographic information is modeled according to an 
object-based approach [41], which sees a topographic map as a surface littered with 
distinct, identifiable, and relevant objects that can be punctual, linear, or surfacic. 
Interactions between geographic objects are then described by means of topologi-
cal, directional, and distance-based operators. In addi tion, geographic objects are 
organized in a three-level hierarchy expressing the semantics of geographic objects 
independently of their physical represen tation (see Figure 10.3). The entity object is 
a total generalization of eight distinct entities, namely, hydrography, orography, land 
administration, vege tation, administrative (or political) boundary, ground transpor-
tation network, construction, and built-up area. Each of these is in turn a generaliza-
tion, for example, administrative boundary generalizes the entity’s city, province, 
county, or state.

At a logical level, geographic information is represented according to a hybrid 
model, which combines both a tessellation and a vector model [39]. The tessellation 
model partitions the space into a number of cells, each of which is associated with 
a value of a given attribute. No variation is assumed within a cell and values cor-
respond to some aggregate function (e.g., average) computed on the original values 
in the cell. A grid of square cells is a special tessellation model called raster. In the 
vector model the geometry is represented by a vector of coordinates, which define 
points, lines, or polygons. Both data structures are used to represent geographic 
information in INGENS 2.0. The partitioning of a map into a grid of square cells 
simplifies the localization and indexing process. For each cell, the raster image in GIF 
format is stored, together with its coordinates and compo nent geographic objects. 
These are represented by a vector of coordinates stored in the field Geometry of the 
database relation PHYSICAL_OBJECT (see Figure 10.4), while their semantics are 
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defined in the field LogicalObject of the database relation LOGICAL_OBJECT. A 
foreign key constraint relates each tuple of PHYSICAL_OBJECT to one tuple of 
LOGICAL_OBJECT. Type inheritance is exploited to represent the conceptual hier-
archy in Figure 10.3 at the logical level. Indeed, the type of the attribute LogicalObject 
(LOGICAL_OBJECT_TY) has eight subtypes, namely, HYDROGRAPHY_
TY, OROGRAPHY_TY,  LAND_ADMINISTRATION_TY,  VEGETATION_TY, 
ADMINISTRATIVE_BOUNDARY_TY, GROUND_TRANSPORTATION_TY, 

FIGURE 10.3 Hierarchical representation of geographic objects at different levels of 
granularity.
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CONSTRUCTION_TY, and BUILDUP_AREA_TY. Each of these is in turn a gen-
eralization of new types according to the conceptual hierarchy.

Spatial and nonspatial features can be extracted from geographic objects stored 
in the SDB. Feature extraction requires complex data transformation processes to 
make spatial properties and relationships explicit. This task is performed by the fea-
ture extractor module, which makes possible a loose coupling between data mining 
services and the SDB. The feature extractor module is implemented as an Oracle 
package of PL/SQL functions to be used in the spatial SQL queries.

10.4 SPATIAL DATA MINING PROCESS IN INGENS 2.0

In INGENS 2.0 the spatial data mining process is activated and controlled by means 
of a query expressed in SDMOQL (see Figure 10.5). Initially, the query is syntacti-
cally and semantically validated. Then the feature extrac tor generates the conceptual 
representation of the geographic objects selected by the query. This representation, 
which is in a first-order logic language, is input to multirelational data mining sys-
tems, which return spatial classifica tion rules or association rules. Finally, the results 
of the mining process are presented to the user.

10.4.1 CONCEPTUAL DESCRIPTION GENERATION

A set of descriptors used in INGENS 2.0 is reported in Table 10.1. They are either 
spatial or nonspatial. According to their nature, spatial descriptors can be classified 
as follows:

 1. Geometrical, if they depend on the computation of some metric/distance. 
Their domain is typically numeric, for example, “extension.” 

 2. Topological, if they are invariant under the topological transformations 
(translation, rotation, and scaling). The type of their domain is nominal, 
for example, “region_to_region” and “point_to_region.” 

FIGURE 10.5 Spatial data mining process in INGENS 2.0.
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 3. Directional, if they concern orientation. The type of their domain can be 
either numerical or nominal, for example, “geographic_direction.” 

 4. Locational, if they concern the location of objects. Locations are repre-
sented by numeric values that express coordinates. There are no examples 
of locational descriptors in Table 10.1.

Some spatial descriptors are hybrid, in the sense that they merge prop erties of 
two or more of the above categories. For instance, the descriptor “line_to_line” that 
expresses conditions of parallelism and perpendicularity is both topological (it is 
invariant with respect to translation, rotation, and scaling) and geometrical (it is 
based on the angle of incidence). 

In INGENS 2.0, geographic objects can also be described by two nonspatial 
descriptors, namely “type_of” and “color.” The former describes the type of a geo-
graphic object, according to the layer (street, parcel, river, and so on) it belongs to, 
while the latter describes the color (blue, black, or brown) used in the visualization 
of a geographic object. The descriptor “part_of” describes the structure of complex 
geographic objects, i.e., a geographic object can be formed by physical component 
objects, represented by separate geometries. 

TABLE 10.1
Set of Descriptors Extracted by the Feature Extractor

Feature Meaning Value 

contain(C,L) Cell C contains a logical  
object L

{true, false}

part_of(L,F) Logical object L is composed of 
physical object F

{true, false}

type_of(L) Type of L 33 nominal values (e.g.,  river, road, ...)

color(L) Color of L {blue, brown, black}

area(F)  
extension(F) 

Area of F  
Extension of F 

[0..MAX_AREA]  
[0..MAX_EXT] 

geographic_direction(F) Geographic direction of F {north-east, north-west, east, north}

line_shape(F) Shape of the linear object F {straight, curvilinear, cuspidal}

altitude(F) Altitude of F [0.. MAX_ALT]

line_to_line(F1,F2)  Spatial relation between lines  
F1 and F2

{almost parallel, almost perpendicular} 

distance(F1,F2) Distance between lines   
F1 and F2

[0..MAX_DIST] 

region_to_region(F1,F2) Spatial relation between regions 
F1 and F2

{disjoint, contains, inside, equal, meet,  
covers, covered by, over lap}

line_to_region(F1,F2) Spatial relation between a line 
F1 and a region F2

{along edge, intersect}

point_to_region(F1, F2) Spatial relation between  
a point F1 and a region F2

{inside, outside, on  boundary, vertex  
(i.e., F1 is a vertex of F2)}
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There is no common mechanism to express the semantics of such different fea-
tures. The semantics of topological relationships are based on the 9-intersection 
model [14], while the semantics of other features are based on mathematical methods 
of 2D-graphics [37] as described in [23]. 

Example (Geographic Direction). Let o be a geographic object associated with a 
line, that is, 

 o : {P1  = (x1, y1), , Pn  (xn, yn)}. 

If  is the angle defined by the straight line L connecting P1 and Pn, that is,
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then the geographic direction of o is computed as follows:
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This feature is computed only for geographic objects physically represented as 
lines. 

10.4.2 CLASSIFICATION RULE DISCOVERY

Classification of geographic objects is a fundamental task in spatial data mining 
and GIS, where training data consist of multiple target geographic objects (reference 
objects), possibly spatially related with other nontarget geographic objects (task- 
relevant objects). The goal is to learn the concept associated with each class on the 
basis of the interaction of two or more spatially referenced objects or space-depen-
dent attributes [22].

While a lot of research has been conducted on classification, only a few works 
deal with geographic classification. GISs empowered with classification facil ities are 
reported in [6, 18]. These systems allow the learning of a classifier from data stored in 
a classical double-entry table (single-table assumption [46]). This is a severe restric-
tion in GIS applications, where different geographical objects have different features 
(properties and relationships), which are properly modeled by as many data relations 
as the number of object types. To map the natural multirelational form of geographic 
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data into a single double-entry data table, GISs must integrate a transformation  
module that is in charge of computing the spatial features of geographic objects (e.g., 
a street crosses a river) and store them as columns of the double-entry table. This 
table can then be input to a wide range of robust and well-known classi fication meth-
ods which operate on a single table. This transformation (known as propositionaliza-
tion) presents some drawbacks. In fact, the full equivalence between the original and 
the transformed training sets is possible only in spe cial cases. However, even when 
possible, the output table size is unacceptable in practice [10] and some form of fea-
ture selection is required. Therefore, the transformed problem is different from the 
original one, for pragmatic reasons [7].

On the other hand, INGENS 2.0 overcomes the limitations of single table assump-
tion by integrating a classification system, named ATRE [27], which resorts to a 
multirelational data mining approach [13] to classify geographic objects. Indeed, a 
multirelational approach to data mining (or MRDM) looks for patterns that involve 
multiple relations of a relational data representation. Thus, data taken as input by these 
approaches typically consist of several relations and not just a single one, as is the case 
in most existing data mining approaches. Patterns found by these approaches are called 
relational and are typically stated in a more expressive language than patterns defined 
in a single data table. Typically, subsets of first-order logic, which is also called predi-
cate calculus or relational logic, are used to express relational patterns. In this way, the 
expressive power of predicate logic is exploited to represent both spatial relationships 
and background knowledge, thus providing functionalities to navigate relational struc-
tures of geographic data and generate potentially new forms of evidence, not readily 
available in flattened single double-entry data table representation. 

The problem solved by ATRE is formalized as follows: 

Given 

a set of concepts C1, C2, , Cr  to be learned; 
a set of units of analysis (or observations) O described in a language O; 
a background knowledge BK described in a language BK ; 
a language of hypotheses H that defines the space of hypotheses SH ; 
a user’s preference criterion PC. 

a logical theory T  SH , defining the concepts C1, C2, , Cr, such that T is 
complete and consistent with respect to the set of observations and sat isfies the pref-
erence criterion PC. 

The logical theory T is a set of first-order definite clauses [25], such as: 

cell(X1)=fluvial_landscape 
 contain(X1,X2)=true, type_of(X2)=river, part_of(X2,X3)=true, 
 line_to_line(X4,X3)=almost_parallel, part_of(X5,X4), type_of(X5)=street 

This clause can be interpreted easily as follows: If a cell X1 contains a river X2 
with X2 represented by the line X3 and X3 almost parallel to the line X4 that rep-
resents a street X5, then the cell X1 can be classified as a “flu vial landscape.” This 
clause contains an operational definition of the fluvial landscape morphology. This 
definition can be used to recognize the unknown morphology for the cells of a new 
topographic map. 
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The units of analysis are represented by means of a ground clause2 called objects. 
For example, if the units of analysis are the cells (reference objects) of a topographic 
map, then the body of an object describes the spatial arrangement of the geographic 
objects (task-relevant objects) within the cell, while the head may describe the land-
scape morphology (class) associated with the cell. The literal in the head of the clause 
is an example (either positive or negative) of the concepts C1, C2, , Cr. 

An instance of an object is reported in Figure 10.6, where the constant c8 denotes 
the whole cell, while the remaining constants (e.g., rv1_8, pc473_0, x20_8, ) denote 
the logical (river, street, parcel) or geometrical (line, point or polygon) component 
of the geographic objects in the cell. The descriptor cell(X) in the head denotes the 
known value of the morphology of the territory covered by the cell. 

The background knowledge BK can be defined in the form of first-order definite 
clauses, which allow the definition of new descriptors not explicitly encoded in a 
conceptual description of objects. An example of a clause that is part of a BK is the 
following: 

parcel_to_parcel(A,B)=C type_of(A)=parcel, 
 type_of(B)=parcel, part_of(A,D)=true, 
 part_of(B,E)=true, region_to_region(D,E)=C 

This clause allows the relationship C between two regions D and E to be auto-
matically renamed as “parcel_to_parcel,” when D and E are parts of two parcels A 
and B. 

The completeness property of the output theory T holds when T explains all 
observations in O of the r concepts Ci, while the consistency property holds when T 

2 A ground clause contains no variables.

FIGURE 10.6 Raster and vector representation (left) and symbolic descrip tion of a cell (right). 
The cell is an example of a territory where there is a fluvial landscape. The cell is extracted 
from a topographic chart (Canosa di Puglia 176 IV SW—Series M891) produced by the Italian 
Geographic Military Institute (IGMI) at scale 1:25,000 and stored in INGENS 2.0.
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explains no counter-example in O of any concept Ci. The sat isfaction of these prop-
erties guarantees the correctness of the induced theory with respect to O, but not 
necessarily with respect to new unseen observa tions. The selection of the clause in T 
is made on the grounds of an inductive bias [35], expressed in the form of preference 
criterion (PC). For example, clauses that explain a high number of positive examples 
and a low number of negative examples can be preferred to others. 

At the high-level, the learning strategy implemented in ATRE is sequential cov-
ering (or separate-and-conquer) [35], that is, one clause is learned (con quer stage), 
covered examples are removed (separate stage), and the process is iterated on the 
remaining examples. The conquer stage of this algorithm aims to generate a clause 
that covers a specific positive example, called seed. The most important novelty of 
the learning strategy implemented in ATRE is embedded in the design of the conquer 
stage. Indeed, the separate-and-conquer strategy is traditionally adopted by single 
concept learning systems that generate clauses with the same literal in the head at 
each step. In ATRE, clauses generated at each step may have different literals in their 
heads. In addition, the body of the clause generated at the i-th step may include all 
literals corresponding to those target concepts C1, C2, , Cr for which at least a clause 
has been added to the partially learned theory in previous steps. In this way, depen-
dencies between target concepts can be automatically discov ered. An example of a 
logical theory, where the dependency between concepts “downtown” and “residen-
tial” is handled, is reported in the following:

class(X)=downtown 
on_the_sea(X)=true, business_activity(X)=high. 

class(X)=residential 
contain(X,Y)=true, type_of(Y)=kindergarten, shopping_activity(X)=high. 

class(X)=residential 
close to(X,Y)=true, class(Y)=downtown, business_activity(X)=low. 

The order in which clauses of distinct target concepts have to be generated is not 
known in advance. This means that it is necessary to generate clauses with different  
literals in the head and then to pick one of them at the end of each step of the  
separate-and-conquer strategy. Since the generation of a clause depends on the cho-
sen seed, several seeds have to be chosen, such that at least one seed per incomplete 
concept definition is kept. Therefore, the search space is actually a forest of as many 
search-trees (called specialization hierarchies) as the number of chosen seeds. A 
directed arc from a node (clause) C to a node C  exists if C  is obtained from C by 
adding a literal (single refinement step). 

The forest can be processed in parallel by as many concurrent tasks as the number 
of search-trees (hence, the name of separate-and-parallel-conquer for this search 
strategy). Each task traverses the specialization hierarchy top-down (or general-to-
specific), but synchronizes traversal with the other tasks at each level. Initially, some 
clauses at depth one in the forest are exam ined concurrently. Each task is actually 
free to adopt its own search strategy, and to decide which clauses are worth testing. 
If none of the tested clauses is consistent, clauses at depth two are considered. The 
search proceeds to ward deeper and deeper levels of the specialization hierarchies 
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until at least a user-defined number of consistent clauses is found. Task synchroniza-
tion is performed after all “relevant” clauses at the same depth have been examined. 
A supervisor task decides whether the search should carry on or not, on the basis 
of the results returned by the concurrent tasks. When the search is stopped, the 
supervisor selects the “best” consistent clause according to the user’s preference  
criterion. This separate-and-parallel-conquer search strategy provides us with a 
solution to the problem of interleaving the induction process for distinct concept 
definitions. It has the advantage that simpler consistent clauses are found first, inde-
pendently of the predicates to be learned. Moreover, the synchronization allows 
tasks to save much computational effort when the distribution of consistent clauses 
in the levels of the different search-trees is uneven. A more detailed description of 
the search strategy implemented in ATRE and its optimization through caching tech-
niques is reported in [5, 27]. 

10.4.3 ASSOCIATION RULE DISCOVERY 

Association rules are a class of regularities introduced by Agrawal and Srikant [1], 
which can be expressed by an implication of the form, 

 A C (s, c), 

where A(antecedent) and C(consequent) are sets of atoms, called items, with A  B = .  
s is called support and estimates the probability p(A  C), while c is called confidence 
and estimates the probability p(C|A). A pattern P (s%) is frequent if s  minsup. An 
association rule A  C (s%, c%) is strong if the pattern A  C (s%) is frequent and 
c  minconf. We call an association rule A  C spatial, if A  C is a spatial pattern, 
that is, it expresses a spatial relationship among spatial objects. 

The problem of mining spatial association rules was originally tackled by  
Koperski [22], who implemented the module geo-associator of the spatial data min-
ing system GeoMiner [18]. Similar to the classification task, the method implemented 
in geo-associator suffers from the limitations due to adapting the restrictive single-
table data representation to the case geographic data. Weka-GPDM [6] is a further 
example of a GIS that includes facilities to discover spatial association rules. Once 
again, spatial features are extracted in a pre processing step and stored as features 
of a single double-entry data table. Association rules are discovered in another step 
by applying the conventional association rule discovery algorithm included in Weka 
[45] to the single double-entry data table. 

Similar to the classification case, INGENS 2.0 overcomes limitations of single 
table assumption by integrating an association rule discovery system, named SPADA 
[24], which exploits the expressive power of a predicate logic to deal with spatial rela-
tionships in the original relational form. In addition, SPADA automatically supports 
a multiplelevel analysis of geographic data. Indeed, geographic objects are organized  
in hierarchies of classes. By descend ing or ascending through a hierarchy, it is pos-
sible to view the same geographic object at different levels of abstraction (or granular-
ity). Confident patterns are more likely to be discovered at low granularity levels. On 
the other hand, large support is more likely to exist at higher granularity levels. In 
general, the discovery of multilevel patterns (e.g., the most supported and confident) 
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can be performed by forcing users to repeat independent experiments on different 
representations. In this way, results obtained for high granularity levels are not used at 
low granularity levels (or vice versa). Conversely, SPADA is able to explore altogether 
the search space at different granularity levels, such that patterns obtained for high 
granularity levels are used to control search at low granularity levels. 

The problem solved by SPADA is formalized as follows: 

Given 

a set S of reference objects, which is the main subject of the analysis, 
some sets Rk, 1  k  m of task-relevant objects, 
a background knowledge BK including spatial hierarchies Hk on objects 
in Rk, 
M granularity levels in the descriptions (1 is the highest, while M is the 
lowest), 
a set of granularity assignments k, which associate each object in Hk with 
a granularity level to deal with several hierarchies at once, 
a couple of thresholds minsup[l] and minconf[l] for each granularity level l, 
a language bias LB which constrains the search space. 

Find strong spatial association rules for each granularity level. 

The reference objects are the main subject of the description, while task-relevant 
objects are geographic objects that are relevant for the task at hand and are spatially 
related to the reference objects. For example, the cells may be the reference objects 
of our analysis, while the geographic objects within the cells are the task-relevant 
objects. In this case, properties and relationships of task relevant objects within each 
cell are computed by the feature extractor and stored as ground atoms, e.g., the spa-
tial perpendicularity between the geographic objects g1 and g2 is represented by the 
ground atom almost_perpendicular(g1, g2). If g is a task-relevant object of the set 
Rk, then is_a(g, nj) establishes the association between a geographic object g and cor-
responding objects at the level j (j  = 1, , M) of the hierarchy Hk. Finally, for each 
cell c, the ground atom cell(c) identifies the unique reference object in the units of 
analysis. 

The task of spatial association rule discovery performed by SPADA is split into 
two sub-tasks: find frequent spatial patterns and generate highly confident spatial 
association rules. The discovery of frequent patterns is performed according to the 
levelwise method described in [33], that is, a breadth-first search in the lattice of 
patterns spanned by a generality order between patterns. In SPADA the generality 
order is based on  substitution [38]. The pattern space is searched one level at a 
time, starting from the most general patterns and iterating between candidate genera-
tion and evaluation phases. Once large patterns have been generated, it is possible 
to generate strong spatial association rules. For each pattern P, SPADA generates 
antecedents suitable for rules being derived from P. The consequent, corresponding 
to an antecedent, is simply obtained as the complement of atoms in P and not in the 
antecedent. Rule constraints are used to specify literals which should occur in the 
antecedent or consequent of discovered rules. In a more recent release of SPADA 
(3.1) [3], new pattern (rule) constraints have been introduced in order to specify 
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exactly both the minimum and maximum number of occurrences for a literal in a 
pattern (antecedent or consequent of a rule). An additional rule constraint has been 
introduced to eventually specify the maximum num ber of literals to be included in 
the consequent of a rule. In this way, we are able to constrain the consequent of a rule 
requiring the presence of only the literal representing the class label and obtain use-
ful patterns for classification purposes. Finally, the generation of patterns also takes 
into account a BK expressed in the form of first-order definite clauses. In this way, 
it is possible to simulate inferential mechanisms defined within a spatial reasoning 
theory. Moreover, by specifying both a BK and some suitable pattern constraints, it 
is possible to change the representation language used for spatial patterns, making it 
more abstract (human-comprehensible) and less tied to the physical representation 
of geographic objects. 

An example of a spatial pattern discovered by SPADA is the following: 

cell(A), contain(A,B), contain(A,C), is a(B,object), 
is_a(C,object), extension(C,[100..200.5]) (40%), 

which expresses a spatial containment relation between a cell A and some ge ographic 
objects B and C, where C is represented by a line with an extension between 100 and 
200.5 m. This pattern occurs in 40% of the cells. The following spatial association rule, 

cell(A), contain(A,B), contain(A,C), is_a(B,object), 
 is_a(C,object)  extension(C,[100..200.5]) (40%, 60%), 

states that “in 60% of the cells (A), containing two geographic objects B and C, C is 
a line whose extension is between 100 and 200.5.” Since SPADA, like many other 
association rule mining algorithms, cannot process numerical data properly, these 
are discretized in equal-width intervals which are treated as ground terms. 

By taking into account hierarchies on task-relevant objects, we obtain descrip-
tions at different granularity levels. For instance, by considering a portion of the logi-
cal hierarchy on geographic objects, in which both hydrography and administrative 
boundary are considered, specialization of objects is as follows: 

 

hydrography  
    object
administrative boundary 

A finer-grained spatial association rule can be the following: 

cell(A), contain(A,B), contain(A,C),
 is_a(B,administrativeBoundary), is_a(C,hydrography) 
  extension(C,[100..200.5]) (35%, 70%), 

which provides better insight into the nature of the geographic objects B and C. 

10.5 SDMOQL 

The syntax of SDMOQL is designed according to a set of data mining primi-
tives designed to facilitate efficient, fruitful spatial data mining in INGENS 2.0. 
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Seven primitives have been considered as guidelines for the design of SDMOQL. 
They are

 1. the set of geographic objects relevant to a data mining task, 
 2. the kind of knowledge to be discovered, 
 3. the set of descriptors to be extracted from a digital map (primitive 

descriptors), 
 4. the set of descriptors to be used for pattern description (pattern 

descrip tors), 
 5. the background knowledge to be used in the discovery process, 
 6. the concept hierarchies, 
 7. the interestingness measures and thresholds for pattern evaluation. 

These primitives correspond directly to as many nonterminal symbols of the 
definition of an SDMOQL statement, according to an extended Backus Normal Form 
(BNF) gram mar. Indeed, the SDMOQL top-level syntax is the following: 

<SDMOQL> ::= <SDMOQLStatement>; 
 {<SDMOQLStatement>;}

<SDMOQLStatement> ::= <SDMStatement>
 |<BackgroundKnowledge>
 |<Hierarchy> 

<SDMStatement> ::= <ObjectQuery> 
 mine <KindOfPattern> 
 analyze <PrimitiveDescriptors> 
 with descriptors <PatternDescriptors> 
 [<BackgroundKnowledge>] 
 {<Hierarchy>}
 [with <InterestingnessMeasures>], 

where “[]” represents 0 or one occurrence and “{}” represents 0 or more occurrences, 
and words in bold type represent keywords. In Sections 10.5.1 to 10.5.5 the detailed 
syntax for each data mining primitive is both formally specified and explained 
through various examples of possible mining problems. 

10.5.1 DATA SPECIFICATION 

The first step in defining a spatial data mining task is the specification of the geographic 
objects on which mining is to be performed. Geographic ob jects are selected by 
means of a query with a SELECT-FROM-WHERE structure, that is, 

<Object_Query> ::= <Query_Statement> 
 {UNION <Query_Statement>} 
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<Query_Statement> ::= 
 SELECT <Object> {, <Object>}
 FROM <Class> {, <Class>}
 [WHERE <Conditions>] 

The SELECT clause should return a cell or objects of a layer (hydrogra phy, orog-
raphy, and so on), or logical objects of a specific type (river, street, and so on). Hence, 
the selected geographic objects must belong to the same symbolic level, namely, cell, 
layer, or logic object. More formally the FROM clause can contain either a group of 
cells, a set of layers, or a set of logic objects, but never a mixture of them. Whenever 
the generation of the descriptions of objects belonging to different symbolic levels 
is necessary, the user can obtain it by means of the UNION operator. The following 
are examples of valid data queries: 

Example 1 (Cell-level query). The user selects cell 26 from the topographic map of 
Canosa (Apulia) and the feature extractor generates the description of all the geo-
graphic objects in this cell. 

SELECT x 
FROM x in Cell 
WHERE x- num_cell = 26 AND x- part map- map_name = “Canosa” 

Example 2 (Layer-level query). The user selects the orography layer from the topo-
graphic map of Canosa and the construction layer from any map. The feature extractor 
generates the description of the objects in these layers for all cells of the map of Canosa. 

SELECT x, y 
FROM x in Orography, y in Construction 
WHERE x- part_map- map_name = “Canosa” 

Example 3 (Logical object-level query). The user selects the objects of the logic 
type river, from cell 26 of the topographic map of Canosa. The feature extractor 
generates the description of the rivers in this cell. 

SELECT x 
FROM x in River 
WHERE x- part_map- map_name = “Canosa” 
 AND x- log_incell- num_cell = 26 

10.5.2 THE KIND OF KNOWLEDGE TO BE MINED 

The kind of knowledge to be discovered determines the data mining task in hand. 
Currently, SDMOQL supports the generation of either classification rules or associa-
tion rules. The former are used for a predictive task, while the latter are used for a 
descriptive task. The top-level syntax is defined as follows: 

<KindOfPattern> ::= <ClassificationRules>|<AssociationRules> 

<ClassificationRules> ::= classification as <PatternName> 
 for <ClassificationConcept> 
 {, <ClassificationConcept>} 

© 2009 by Taylor & Francis Group, LLC



Leveraging the Power of Spatial Data Mining 275

<AssociationRules> ::= association as <PatternName> 
 key is <Descriptor> 

The <PatternName> denotes the name to be associated to the set of (clas sification or 
association) patterns to be discovered in the data mining task formulated within the 
SDMOQL statement. In a classification task, the user may be interested in inducing 
a set of classification rules for a subset of the classes (or concepts) to which training 
examples belong. In this case, the subset of interest for the user is specified in the 
<ClassificationConcept> list. 

As pointed out, spatial association rules define spatial patterns involving both ref-
erence objects and task-relevant objects [4]. For instance, a user may be interested in 
describing a given area by finding associations between large towns (reference objects) 
and geographic objects in the road network, hydrography, and administrative boundary 
layers (task-relevant objects). The atom denoting the reference objects is called the key 
atom. The predicate name of the key atom is specified in the key is clause. 

10.5.3 SPECIFICATION OF PRIMITIVE AND PATTERN DESCRIPTORS 

The analyze clause specifies which descriptors, among those automatically gener-
ated by the feature extractor, can be used to describe the geographic objects extracted 
by means of the first primitive. The syntax of the analyze clause is the following: 

analyze <PrimitiveDescriptors>, 

where:

<PrimitiveDescriptors> ::= <Descriptor>{, <Descriptor>}
 parameters <ParameterSpecs>{, <ParameterSpecs>} 

<Descriptor> ::= <Predicate>/<Arity> 
<ParameterSpecs> ::= <ParameterName> threshold <Integer>. 

The specification of a set of parameters is required by the feature extractor to 
automatically generate some primitive descriptors. The language used to describe 
generated patterns is specified by means of the following clause: with descriptors 
<PatternDescriptors> where: 

<PatternDescriptors> ::= <DescriptorSpecification>{; <DescriptorSpecification>}
<DescriptorSpecification> ::= <Descriptor> [cost <Integer>] | <Descriptor> 
 [with <TermsSpec>] 
<TermsSpec> ::= <TermSpec>{, <TermSpec>} 
<TermSpec> ::= <ConstantType> | <VariableType> 
<ConstantType> ::= constant [<Value>] 
<VariableType> ::= variable mode <VariableMode> role <VariableRole> 
<VariableMode> ::= old | new | diff 
<VariableRole> ::= ro | tro 

The specification of descriptors to be used in the high-level conceptual descrip-
tions can be of two types: either the name of the descriptor and its relative cost, or 
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the name of the descriptor and the full specification of its arguments. The former is 
appropriate for classification. 

The (classification or association) rules are expressed by means of descrip tors 
specified in the with descriptors list. They are specified by Prolog programs on the 
basis of descriptors generated by the feature extractor. For instance, the descriptor 
“font_to_parcel/2” has two arguments which denote two logical objects, a font and a 
parcel. The topological relation between the two logical objects is defined by means 
of the clause 

font_to_parcel(Font,Parcel) = TopographicRelation : -
 type_of(Font) = font, part_of(Font,Point) = true, 
 type_of(Parcel) = parcel, part_of(Parcel,Region) = true, 
 point_to_region(Point,Region) = TopographicRelation. 

In association rule mining tasks, the specification of pattern descriptors cor responds 
to the specification of a collection of atoms: “predicateName(t1, , tn),” where the 
name of the predicate corresponds to a <Descriptor>, while <TermSpec> describes 
each term ti, which can be either a constant or a variable. When the term is a variable, 
the mode and role clauses indicate, respec tively, the type of variable to add to the atom 
and its role in a unification process. Three different modes are possible: old when the 
introduced vari able can be unified with an existing variable in the pattern, new when it 
is not already present in the pattern, or diff when it is a new variable but its values must 
be different from the values of a similar variable in the same pattern. Furthermore, 
the variable can fill the role of reference object (ro) or task-relevant object (tro) in a 
discovered pattern during the unification process. The is key clause specifies the atom 
that has the key role during the discovery process. The first term of the key object must 
be a variable with mode new and role ro. The following is an example of specification 
of pattern descriptors defined by an SDMOQL statement: 

with descriptors
 contain/2 with variable mode old role ro, 
  variable mode new role tro; 
 type_of/2 with variable mode old role tro, 
  constant; 
 fluvial_landscape/1 with is key with variable mode new role ro; 

This specification helps to select only association rules where the descriptors 
fluvial_landscape/1, contain/2, and type_of/2 occur. The argument of “cell” is a new 
variable that plays the role of ro. The argument of the predicate “fluvial landscape” 
is always a new variable that plays the role of ro. The predicate “contain” links the ro 
with other geographic objects contained in the “fluvial_landscape.” Finally, the first 
argument of the predicate “type_of” is always an old variable, denoting a geographic 
object that plays the role of tro, whereas the second argument is a constant value that 
denotes the type of object (e.g., river, street, parcel). The following association rule,

fluvial_landscape(X), contain(X,Y), type_of(Y,river), X Y 

contain(X,Z), type_of(Z,font), X Z, Y X 
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satisfies the constraints of the specification and expresses the co-presence of both a 
river and a font in a cell classified as a fluvial landscape. 

10.5.4 SYNTAX FOR BACKGROUND KNOWLEDGE AND 
CONCEPT HI ERARCHY SPECIFICATION 

Many data mining algorithms use background knowledge or concept hierar chies to 
discover interesting patterns. Background knowledge is provided by a domain expert 
on the domain to be discovered. This can be useful in the discovery process. 
The SDMOQL syntax for background knowledge specifi cation is the following: 

<BackgroundKnowledge> ::= [<NewKnowledge>] {<UseKnowledge>} 
<NewKnowledge> ::= define knowledge <Clause> {; <Clause>} 
<UseKnowledge> ::= use background knowledge of users <User> {, <User>}
 on <Descriptor> {, <Descriptor>} 

In INGENS 2.0, the user can define a background knowledge expressed as a set 
of definite clauses; alternatively, the user can specify a set of rules explic itly stored 
in a deductive database and possibly discovered in a previous step. An example of a 
background knowledge definition is reported in the following: 

Example (Definition of close_to).
close_to(X,Y)=true :_region_to_region(X,Y)=meet. 
close_to(X,Y)=true :_close_to(Y,X)=true. 

while an example of the use of this background knowledge is reported in the 
following: 

Example (Import of close_to). 
use background knowledge of users UserName1 on close_to/2.

Concept hierarchies allow knowledge mining at multiple abstraction levels [17]. 
In SDMOQL, a specific syntax is defined for the hierarchy: 

<Hierarchy> ::= [<NewHierarchy>] [<UseHierarchy>] 
<NewHierarchy> ::= define hierarchy <Schema_Hierarchy> |
define hierarchy for <SetGroupingHierarchy> 
<UseHierarchy> ::= use hierarchy <NameHierarchy> of user <User>. 

The following example shows how to define some hierarchies in SDMOQL: 

Example (Logical hierarchy on geographic objects). 
define hierarchy LogicalObject as 
 level1: {Hydrography,Orography, ...} < level0: Object; 
 level2: {River,Lake,See,Font,Canal...} <level1:Hydrography; 
 level1: {Slope,Contour slope, Level Point ...} < level0: Orography; 
 

In INGENS 2.0, this hierarchy is automatically extracted from the GIS data model 
and used to discover multilevel spatial association rules. 
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10.5.5 SYNTAX FOR INTERESTINGNESS MEASURE SPECIFICATION

The user can control the data mining process by specifying interestingness measures 
for data patterns and their corresponding thresholds. The SDMOQL syntax is the 
following:

<InterestingnessMeasures> ::= [<Criteria>] [<Settings> 

<Criteria> ::= criteria 
 (intermediate | final)(minimize | maximize) <Parameter> 
 with tolerance <Value> {,(intermediate | final) 
 (minimize | maximize) <Parameter> with tolerance <Value>} 

<Settings> ::= <Parameter> := <StringValue> 

Interestingness measures may include: threshold values, weights, search biases 
in the hypotheses space, and algorithm-specific parameters. In particular the user 
can bias the search in the hypotheses space by a number of preference criteria, such 
as the maximization of the number of covered examples or the minimization of the 
number of variables in the body of a learned clause. The user can also set thresholds 
such as confidence, support, or number of learned concepts. Finally, the user can set 
the value of a generic input parameter of a data mining algorithm. 

10.6 MINING SPATIAL PATTERNS: A CASE STUDY 

To show the potential of the integration of spatial data mining tools with GIS tech-
nology, we extend and elaborate on the case study on topographic map interpreta-
tion reported in [31]. The goal is to characterize and recog nize some morphologies, 
which are not explicitly represented in the GIS data model. 

The area considered in this application covers 90 km in the surrounding area of 
the Ofanto River of Apulia, Italy (see Figure 10.7). The map of this area, stored in 
INGENS 2.0, is produced at a scale of 1:25000 by the Italian Military Geographic 
Institute (IGMI). The map is segmented into 90 square observation units of 1 km . 
A map maintenance user has created the vec torized map and stored it in the SDB, 
according to the data model reported above. 

The geomorphology considered in the following sections is the fluvial land scape, 
which is characterized by the presence of waterways, fluvial islands, and embank-
ments. The classification rule provides an operational definition which can be used to 
retrieve this geomorphology in other similar topographic maps, while spatial asso-
ciation rules can be used to describe the area and support the implementation of an 
environmental policy. 

10.6.1 MINING CLASSIFICATION RULES 

The data miner user graphically composes an SDMOQL query to mine the concept 
of a fluvial landscape, by using, as training data, all the cells of the map. The query 
interpreter analyzes the SDMOQL query and verifies its syntactic and semantic 
correctness. The feature extractor generates a symbolic description for each cell by 
computing descriptors listed in the analyze clause. In this study, all descriptors in 
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Table 10.1 are extracted. The data miner then associates the conceptual description 
of each cell with a concept (fluvial land scape or others), thus completely defining the 
training data. Association is made by binding variable terms of one of the concepts 
to be discovered to the constants that represent the cells. This binding function is 
supported by the GUI of the system (see Figure 10.8). 

The classification rules induced by the learning system ATRE are reported as 
follows: 

R1: class(X1)=fluvial_landscape type_of(X1)=cell, 
 contain(X1,X2)=true, color(X2)=blue, 
 type_of(X2)=river, part_of(X2,X3)=true, 
 extension(X3) [653.495..1642.184], 
 line_to_line(X4,X3)=almost_perpendicular, 
 extension(X4) [325.576..1652.736]. 

R2: class(X1)=fluvial_landscape type_of(X1)=cell, 
 contain(X1,X2)=true, type_of(X2)=province, 
 part_of(X2,X3)=true, 
 line_to_line(X4,X3)=almost_parallel, 
 part_of(X5,X4)=true, type of(X5)=contour_slope. 

R1 covers 10 examples, while R2 covers 5 examples, two of which are different from 
those covered by R1. 

FIGURE 10.7 Surroundings of the Ofanto River. The boundary of fluvial land scape cells is 
blue.
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According to R1, a cell is an instance of fluvial landscape if it contains geographic 
objects in blue classified as river, which is represented as a line (X3) with an exten-
sion between 653.495 and 1642.184 m. This line is almost perpendicular to another 
line (X4) with an extension between 325.576 and 1652.736 m. Unfortunately, the 
logical type of X4 is not specified by the rule. This is because the representation 
of a cell is related to the physical objects that it contains. To move from a physical 
to a logical level in the conceptual descriptions of the cells, some new descriptors 
are de fined as background knowledge (see Figure 10.9). For example, the following 
<BackgroundKnowledge> statement

parcel_to_parcel(A,B)=C type_of(A)=parcel, 
 type_of(B)=parcel, part_of(A,D)=true, 
 part_of(B,E)=true, region_to_region(D,E)=C 

describes the topological relation between the regions that physically repre sent the 
“parcels” here referred to as the variables A and B, respectively. This BK state-
ment can be stored in the GIS repository and re-used in a new data mining task. By 
defining other similar descriptors and then constraining the search space only to 

FIGURE 10.8 Associating a cell with a concept in INGENS 2.0.
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the definite clauses including these new descriptors, it is possible to discover a more 
abstract, human-interpretable operational defini tion of a fluvial landscape: 

R3: class(X1)=fluvial_landscape 
 contain(X1,X2)=true, 
 river_extension(X2) [653.495..1642.184], 
 river direction(X2)=north east. 

R4: class(X1)=fluvial_landscape 
 contain(X1,X2)=true, 
 road_to_province(X2,X3)= almost_perpendicular, 
 road_to_river(X2,X4)= almost_perpendicular, 
 river_extension(X4) in [653.495..1642.184]. 

Rule R3 covers eight examples, while R4 covers five examples, four of which are dif-
ferent from those covered by R1. Both rules capture the presence of a river as a char-
acterizing geographic object. In addition, rule R4 describes the spatial arrangement 
of other logical objects (road and administrative bound ary) in the surroundings. The 
presence of an administrative boundary in this rule is not surprising because the River 

FIGURE 10.9 Specifying a new pattern descriptor in INGENS 2.0. 
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Ofanto partially overlaps the boundary between the provinces of Bari and Foggia in 
Apulia. 

A different analysis is done by randomly selecting only four positive ex amples 
(8, 16, 17, 53) and nine negative examples (5, 11, 15, 27, 29, 34, 84, 88, 89 ) of the 
fluvial landscape concept and using only this training data to discover an operational 
definition of a fluvial landscape. By ignoring the BK, the following rule is discovered: 

R5: class(X1)=fluvial_landscape type_of(X1)=cell, 
 contain(X1,X2)=true, type_of(X2)=river, 
 part_of(X2,X3)=true, 
 line_to_line(X4,X3)=almost_perpendicular, 
 part_of(X5,X4)=true, type_of(X5)=road, 

while considering new descriptors defined in the BK, the following rule is dis-
covered: 

R6: class(X1)=fluvial_landscape 
 contain(X1,X2)=true, 
 road_to_river(X2,X3)= almost_perpendicular, 
 river_extension(X3) in [141.623..1642.184]. 

Discovered rules are used to query the entire map and recognize fluvial land scape 
cells. Several statistics are collected in Table 10.2. “TP” is the number of true posi-
tives (correctly classified cells). “FP” is the number of false positives. “FN” is the 
number of false negatives. “Prec” is the precision of the concept (Prec = TP/(TP + 
FP)). “Recall” is the recall of concepts (Recall = TP/(TP + FN)). 

10.6.2 ASSOCIATION RULES 

A purely descriptive analysis of the fluvial landscape is performed when the 
data miner extracts the frequent spatial association rules which compactly de scribe 
the morphology of the fluvial landscape cells in the topographic map. Similar to the 
classification case, INGENS 2.0 GUI offers facilities to graph ically compose the 
SDMOQL query. In addition, INGENS 2.0 allows users to visualize the portion 
of the logical hierarchy matching at least one of the geographic objects extracted 
within the <ObjectQuery> statement (see Fig ure 10.10) and to translate it in a 

TABLE 10.2 
Classification of the Surroundings of the Ofanto River Map 
(90 cells)

Rule Time (sec) TP FP FN Prec Recall 

R5 832 12 5 1 0.706 0.923 

R6 68 12 4 1 0.750 0.923 

Note: The experiments are performed on Intel Pentium 4 -2.00 GHz CPU RAM 
532Kb running Windows Professional 2000.
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<NewHierarchy> statement to be added to the user-composed SDMOQL query. The 
logical hierarchy is then exploited to discover association rules at multiple levels of 
granularity without forcing data miners to repeat independent experiments on differ-
ent representations. Once again, the BK is defined to move from a physical descrip-
tion to a logical description of the reference objects. 

SPADA is run by setting min_sup = 0.9 and min_conf = 0.9 for each granu larity 
level, and the maximum pattern length is set to eight. 

Despite the above constraints, SPADA generates 25830 confident rules from a set 
of 15048 candidate patterns, in 1819 sec. Confident rules and frequent patterns are 
visualized to data miners in separate views: one view for each hierarchy level and 
pattern length. 

An association rule discovered by SPADA at the second level of granularity is 
the following: 

fluvial_landscape(A) 
 contain(A,B), is_a(B,administration_boundary), 
 almost_perpendicular(B,C), C =B ,is_a(C,hydrography) 
        (92.3%, 92.3%) 

FIGURE 10.10 A portion of logical hierarchy that is automatically derived from a database. 
The hierarchy is visualized in the GUI of INGENS 2.0.
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At a granularity level 3, SPADA specializes the task-relevant objects B and C by 
generating the following rule, which preserves both support and confi dence values: 

fluvial_landscape(A) 
 contain(A,B), is a(B,province), 
 almost_perpendicular(B,C), C =B, is_a(C,river) 
        (92.3%, 92.3%) 

The rule states that A is an instance (a cell) of a fluvial landscape, then A is crossed 
by a province boundary B that is almost perpendicular to a river C. Once again, the 
frequent pattern underlying this rule suggests a correlation between a fluvial land-
scape and a province boundary. 

10.7  CONCLUDING REMARKS AND DIRECTIONS 
FOR FURTHER RE SEARCH 

Empowering a GIS with spatial data mining capabilities is not a trivial task. First, 
the geometrical representation and relative positioning of geo graphic objects implic-
itly define spatial properties and relationships, whose efficient computation requires 
an integration of the data mining system with the GDBMS. Second, the interac-
tions between spatially close objects intro duce different forms of autocorrelation, 
whose effect should be considered to improve predictive accuracy of induced models 
and patterns. Third, the units of analysis are typically composed of several geo-
graphic objects with different properties, and their structure cannot be easily accom-
modated by classical double entry tabular data. In INGENS 2.0, these challenges 
have been dealt with by integrating (multi)relational data mining systems, which are 
able to navigate the relational structure of data and to generate relational patterns 
expressed in first-order logic or expressively equivalent formalisms. In partic ular, 
INGENS 2.0 integrates the MRDM systems ATRE and SPADA, which discover 
spatial classification rules and association rules, respectively. Differ ent technologies, 
such as spatial database, data mining, and GIS, are hidden from users by means of 
a spatial data mining query language, SDMOQL, that permits condensing a data 
mining task in a query. Some constraints on the query language are identified by the 
particular mining task. 

Although resorting to MRDM enables the INGENS 2.0 users to perform a sophis-
ticated topographic map process, there are still several challenges that must be over-
come and issues that must be resolved before the relational approach can effectively 
enhance GIS applicability. 

First, several MRDM methods exploit knowledge on the data model (e.g.,  
foreign keys), which is obtained free of charge from the database schema, in order 
to guide the search process. However, this approach does not fit spa tial databases 
well, because the database navigation is also based on the spatial relationships which 
are not explicitly modeled in the schema. To solve this problem, a feature extrac-
tion module is implemented in INGENS 2.0 to pre compute spatial properties and 
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relationships which are converted into Prolog facts used by ATRE and SPADA. The 
pre-computation is justified by the fact that geographic maps are rarely updated. 
However, the number of spatial re lationships between two layers can be very large 
and many of them might be unnecessarily extracted. The alternative is to dynami-
cally perform spatial joins only for the part of the hypothesis space that is really 
explored during the search by a data mining algorithm. This approach has been 
implemented in two MRDM systems, namely SubgroupMiner for subgroup mining  
[21] and Mrs-SMOTI for regression analysis [30]. Both systems realize a tight 
integra tion with a spatial DBMS (namely, Oracle Spatial), but have been applied to 
datasets where few spatial relationships are actually computed. Hence, scala bility 
remains a problem when many spatial predicates have to be computed. 

Second, the presence of autocorrelation in spatial phenomena strongly mo tivates 
an MRDM approach to spatial data mining. In any case, it also in troduces additional 
challenges. In particular, it has been proven that the combined effect of autocorrela-
tion and concentrated linkage (i.e., high con centration of objects linked to a com-
mon neighbor) can bias feature selection in relational classification [20]. In fact, the 
distribution of scores for features formed from related objects with concentrated 
linkage presents a surprisingly large variance when the class attribute has a high 
autocorrelation. This large variance causes feature selection algorithms to be biased 
in favor of these fea tures, even when they are not related to the class attribute, that 
is, they are randomly generated. Most MRDM algorithms, such as ATRE, do not 
account for this bias. A solution to be investigated in INGENS 2.0 is the generation 
of pseudo samples from the relational data by retaining the linkage present in the 
original sample and the autocorrelation among the class labels, and, at the same 
time, by destroying the correlation between the original attributes and the class 
labels [36]. 

Third, an inductive learning algorithm designed for the predictive tasks typically 
requires large sets of labeled data. However, a common situation in geographic data 
mining is that many unlabeled geographic objects (e.g., map cells) are available and 
manual annotation is fairly expensive. Inductive learning algorithms would actu-
ally use only the few labeled examples to build a prediction model, thus discard-
ing a large amount of information potentially conveyed by the unlabeled instances. 
The idea of transductive inference (or transduction) [44] is to analyze both the 
labeled (training) data and the un labeled (working) data to build a classifier and clas-
sify (only) the unlabeled data as accurately as possible. Transduction is based on a 
(semisupervised) smoothness assumption, according to which if two points in a high- 
density re gion are close, then the corresponding outputs should also be so [9]. In spatial 
domains, where closeness of points corresponds to some spatial distance mea sure, this 
assumption is implied by (positive) spatial autocorrelation. There fore, the transductive 
setting seems especially suitable for classification and regression in GIS, and more in 
general, for those relational learning problems characterized by autocorrelation on the 
dependent variables. Only recently, a work on the transductive relational learning has 
been reported in the lit erature [8], and some preliminary results on spatial classification 
tasks show the effectiveness of the transductive approach [2]. No results are available 
on another class of predictive tasks, namely spatial regression. 
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Fourth, a large amount of knowledge is available in the case of geographic knowl-
edge discovery, where relationships among geographic objects express natural geo-
graphic dependencies (e.g., a port is adjacent to a water body). These dependencies 
are expressed in nonnovel or uninteresting patterns but with a very high level of 
support and confidence. If this geographic knowl edge were used to constrain the 
search for new patterns, the scalability of the spatial data mining algorithms would 
greatly increase. Actually, these dependencies are represented either in geographic 
database schema, through one-to-one and one-to-many cardinality constraints, or 
in geographic ontolo gies. Therefore, their usage can be done at no additional cost in 
MRDM perspective, thus moving a step forward toward knowledge-rich data min-
ing [12]. In INGENS 2.0, SPADA uses knowledge to constrain the search space for 
spatial association rules. In any case, the use of background knowledge can be inves-
tigated in several data mining tasks. 

A final consideration on spatial reasoning can be made on spatial data mining meth-
ods in general. Spatial reasoning is the process by which infor mation about objects in 
space and their relationships is gathered through measurement, observation, or infer-
ence, and is used to reach valid conclu sions regarding the objects’ relationships. For 
instance, in spatial reasoning, the accessibility of a site A from a site B can be recursively 
defined on the basis of the spatial relationships of adjacency or contiguity. Principles of 
spatial reasoning have been proposed for both quantitative and qualitative approaches to 
spatial knowledge representation. Embedding spatial reason ing in spatial data mining is 
crucial to make the right inferences, either when patterns are generated or when patterns 
are evaluated. Surprisingly, there are few examples of data mining systems that support 
some form of spatial reasoning. In INGENS 2.0, SPADA supports a limited form of 
spatial infer ence if rules of spatial reasoning are encoded in the background knowledge. 
However, although a general-purpose theorem prover for predicate logic can be used for 
spatial reasoning (as in SPADA), constraints that characterize spatial problem solving 
have to be explicitly formulated in order to make the semantics consistent with the target 
domain space. Therefore, embed ding specialized spatial inference engines in the GIS 
seems to be the most  promising, but still unexplored, solution.
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11 Visual Exploration 
and Explanation in 
Geography Analysis 
with Light

Mark Gahegan

11.1 INTRODUCTION

Sir Francis Bacon, in Book II of his Novum Organum (The New Organon; 1620) 
states “Truth will sooner come out from error than from confusion.” This famous 
epithet describes the idea that we understand the world by imposing conceptual 
structure upon the confusion of data we receive. Our mistakes in doing so eventu-
ally lead us to a deeper understanding. Staying with the confusion will not, by itself, 
bring about new insights. Methods used at the heart of knowledge discovery and 
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data mining in essence operationalize Bacon’s insight; they impose structure on col-
lections of data, and attempt to reduce confusion by progressively modifying this 
structure. Structures that help simplify the data, or that describe patterns that are 
often repeated are likely to be favored, whereas structures that add to the confusion 
will be rejected. The search for useful structure typically terminates when the gains 
accrued from the next iteration of structure changes imposed become smaller than 
a given threshold.

The conceptual structures we may wish to impose on data can take many forms, 
but some of the most common are (1) rules, (2) categories, and (3) hypotheses or 
explanations. For example, “professors are absent-minded” is a rule; “the absent-
minded are people with the property that they forget the details of ordinary life” 
might be the underlying category; and “the mind of a professor is too focused on 
higher questions to remember where he put his car keys” is a possible hypothesis or 
explanation to connect rule and category together in a chain of inference.

It is our ability as humans to quickly impose — and withdraw — conceptual 
structures that makes us so adept at discovery. However, to be successful, visualiza-
tion to support knowledge discovery must achieve two consecutive goals:

 1. Present data to humans, via the visual senses, that would not ordinarily be 
available or directly observable. This is not straightforward because the 
human visual system is fickle — very powerful but easily misled.

 2. Provide the means to experiment with imposing different kinds of concep-
tual structure on the visual display, via the mechanisms that control which 
data are visualized and how the data attributes are mapped into visual 
variables (such as color, position, size, shape, and movement).

This chapter presents an alternative form of exploratory analysis and data min-
ing, based around the use of visualization, as opposed to computational or statistical 
approaches. Rather than attempt to process the data in a language that a machine can 
understand, the visualization approach attempts to portray the data in a form that a 
human can understand — perhaps free from many of the representational constraints 
that GIS and geographic models impose. The main aim of this chapter is to show 
how various forms of geographic visualization can also support exploratory data 
analysis (sometimes called data mining or knowledge discovery). When geovisu-
alization techniques fulfill their potential, they are not simply display technologies 
by which users gain a familiarity with new datasets or look for trends and outliers; 
they are instead environments by which new geographical concepts and processes 
might be uncovered or defined (providing the foundations for later data analysis) and 
new geographical questions formulated (hypothesis generation). Several techniques 
are described for visually led exploratory analysis tasks and the tasks they facilitate 
are characterized within the context of the cognitive reasoning that underpins the 
scientific discovery process. A brief discussion of the transformation from visual 
form to constructed knowledge is then given, following from which conclusions and 
challenges are presented. The technologies and supporting science are drawn from 
information visualization, data mining, geography, human perception and cognition, 
machine learning, and data modeling.
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Prior to this though, two issues that are more pressing are briefly discussed by 
way of justification: (1) Why do we need visually led approaches to exploration and 
discovery? (2) Are such methods really any different from their computational and 
statistical counterparts?

11.1.1 WHY IS THERE A NEED FOR VISUALLY LED EXPLORATION?

To begin, it is worth examining why there is a need for discovery, and what might 
be gained by using these technologies. At one level, the answer is that datasets may 
contain important trends and relationships of which we are ignorant, so discovery 
offers the possibility of finding new knowledge about the world and the people in it. 
At a deeper level, some of the datasets and problems confronting geographers are 
so complex that we are not currently equipped to discover or learn all the various 
patterns and knowledge artifacts they contain. In this case, knowledge discovery 
offers mechanisms for searching and learning that can turn intractable problems into 
solvable forms (although as yet not perfectly so). Exploratory analysis addresses data 
that are not yet fully understood, classified, summarized, or otherwise formed into 
high-level (semantically abstract) structures. Indeed, the purpose is often to uncover 
structures or patterns in the data in the first instance so that they might later be 
formed into useful concepts and relations that later play a role in spatial analysis. A 
simplified overview of the process of discovery-based science, divided into a number 
of stages, is shown in Figure 11.1 (the details surrounding this figure are given in 
later sections of the chapter).

The need for these exploratory approaches has arisen in part as a consequence 
of the massive digital datasets now being gathered for a wide variety of applications 
such as marketing, sales, telecommunications, medicine, finance, and geography 
(Koperski, Han, and Adhikary, 1999; Roddick and Spiliopoulou, 1999; Pal and 
Mitra, 2004), where significant trends must first be uncovered before they can be put 
to use. Such datasets are considered too large for textual browsing and may contain 
structure (patterns and relationships) that is unexpected or hitherto unrecognized. 
Geographic datasets may contain huge numbers of such patterns and relationships 
(Bryson et al., 1999); for example, impacts of global climate change, census demo-
graphics, eco-region analysis, and epidemiology. Some of these patterns are subtle 
while others are more obvious, but they must be recognized before they can be used 
(Ester et al., 1996; 1998). Many will be entirely meaningless for a given analysis 
goal and unless removed will distract from, or even hide, those that might be useful.  
Patterns may also comprise many more data dimensions than can be displayed simul-
taneously using conventional map-based methods, or indeed than can be analyzed 
with current parametric statistical techniques (Landgrebe, 1999).

There are three immediate reasons why visualization might be useful in tackling 
such large datasets. First, a scene or immersive virtual reality can make a large volume  
of data more accessible to a human observer than can tables of figures.* Second, the 
process of rendering provides a number of data transformations (described later) that 

* A picture really is worth a thousand words; perhaps even a million (see the description of pixel-based 
methods).
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act as querying and focusing operators, helping promote the search for, and discov-
ery of, specific patterns. A third, deeper reason (discussed in more detail near the 
end of this chapter) is that the inclusion of the human expert within this activity may 
lead to greater insight being brought to bear. Because of this reliance on the indi-
vidual, what is seen and what is inferred will be determined in part by an observer’s 
visual system, experience, culture, and education that together form an unspecified 
bias (e.g. MacEachren, 1995; Mark et al., 1999; Slocum et al., 2001). This is both 
problematic and advantageous. Problematic because we cannot guarantee a visual 
stimulus will actually be observed as we might plan, and any insights gained are not 
represented explicitly. Advantageous because the human observer can employ much 
richer forms of reasoning and experience in the task of interpreting what they see. In 
addition, for recognition of pattern and structure, the human visual system has yet 
to be surpassed.

In addition, it is worth remembering that knowledge construction, for exam-
ple defining categories, instances and relationships, is a fundamental activity in  
geography. Most, arguably all, of the concepts and relationships we use to describe 
and model the earth and its social systems we construct ourselves — sometimes 
individually, sometimes via agreements and conventions. We need help in discov-
ering, describing, agreeing, and sharing these social constructs. Yet most existing 
analysis tools and systems for geographic data do not cater well to discovery and 
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FIGURE 11.1 An overview of discovery activities as they might fit together when exploring 
an unfamiliar problem, positing an initial hypothesis, defining suitable conceptual structures 
by which to test it, performing analysis using these structures, and then evaluating the results. 
At any stage, if the process fails, the analyst must backtrack and begin again. The x axis also 
suggests some of the roles in this process that visualization techniques might fulfill.
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knowledge construction, being “locked in” to the cartographic paradigm. For many 
geographic applications, this paradigm relates best to the final stages of analysis, it 
presupposes that data have already been collected and processed, with the under-
lying categories and relationships extracted and labeled. Therefore, although the 
cartographic paradigm is a perfectly valid setting, it is not the only setting within 
which geographic information must be examined, just as GIS is not the only sys-
tem that we can use.

11.1.2 IS A VISUALIZATION SYSTEM THAT DIFFERENT 
FROM A DATABASE OR A GIS?

Since many of the operations that visualization systems support involve selections 
and projections on data, it may be tempting to think that visualization systems are 
rather like databases, where the query language consists of similar logical operators 
to those we would find in, say, SQL, but expressed via a visual interface. There is 
some truth in this (for example, see Stolte, 2003). However, it is not the full story. 
The power of visualization comes from the fact that it provides a more direct con-
nection to the conceptual structures in our minds and, largely, circumnavigates the 
logical organization of data in a database.* For example, it is quite a simple matter 
in a relational database to add in a new tuple (row) that might represent a recently 
uncovered new rule or fact, but harder to add or retract a new category, as this would 
involve at the very least the addition of new attributes (columns), possibly even the 
creation of new tables and reapportioning of the tuples between them. Finally, a new 
theory is likely to add or modify the connections between relations, hence modify 
the primary and foreign key structures that govern the way tables are designed and 
joined. These last two kinds of updates are difficult and time-consuming to achieve 
in current databases, often prohibitively. Therefore, while humans can suggest and 
retract conceptual structures with ease, databases struggle to keep up when their 
schemas are in constant flux!

11.1.3 RESEARCH TO DATE

Good, early accounts of exploratory analysis in a geographic setting are provided 
by Cleveland and McGill (1988), MacDougall (1992), Cook et al. (1995) and Wise, 
Haining, and Signoretta (1998). By now, visual approaches to data exploration are 
well-established, stemming from the pioneering work of Tukey (1977), Chernoff 
(1978), Asimov (1985), Tufte (1990) and Haslett et al. (1991), who all championed 
the idea of “pictures describing data,” and Bertin (1985), Mackinlay (1986), and 
Treisman (1986) who, along with many others, studied the perception of visual 
variables (such as shape, position, hue, and saturation) and how they can be used 
in combination when building a map or a graphical display. The term exploratory 
visual analysis (EVA) has been coined to describe exploratory methods that are con-
ducted primarily in the visual domain. EVA has been applied to a wide range of 

* To what degree discovery is aided or hindered by the way data are initially organized is an interesting 
and underexplored question. 
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geographic settings in the work of Tang (1992), Dykes (1997), Gahegan (1998), and 
others (e.g., see the edited volumes by MacEachren and Kraak, 1997; and Kraak and 
MacEachren, 1999). Examples of specific visualization techniques used in the search 
for structure are shown in Figure 11.3 through Figure 11.9.

In more recent times, there has been a move toward more rigorous treatment of 
the process of geovisualization as it relates to exploration and discovery (Fayyad and 
Grinstein, 2001; Andrienko, Andrienko, and Gatalsky, 2003; Dykes, MacEachren, 
and Kraak, 2005), and to the activities involved in knowledge construction (Shrager 
and Langley, 1990; MacEachren, Gahegan, and Pike, 2004; Andrienko and 
Andrienko, 2005; Gahegan, 2005). A useful cross-section of the breadth of the field 
of visualization for data mining and knowledge discovery can be found in the 31 
contributed chapters of Fayyad, Grinstein, and Wierse (2002).

Largely the aims of data mining and knowledge discovery are very similar to 
those of exploratory analysis: to find useful and valid structure in large volumes of 
data, and to provide some means of explaining it. Fayyad, Piatetsky-Shapiro, and 
Smyth (1996) describe the data mining and knowledge construction process as com-
prising five stages: (1) data selection, (2) pre-processing, (3) transformation, (4) data 
mining, and (5) interpretation/evaluation. These stages progressively refine a large 
dataset to the point where it makes sense to propose new concepts and relationships, 
and their instances (Piatetsky-Shapiro, Fayyad, and Smith, 1996). The stages and 
aims are in close agreement with approaches to exploratory visualization, where data 
is also selected, transformed, and interpreted in an effort to uncover structure and 
meaning (as shown in Figure 11.1), although in the case of visualization, the analyti-
cal workflow is less well recognized and understood.

In the past dozen or so years, many new visualization tools have been proposed 
to aid in knowledge discovery activities (e.g., Lee and Ong, 1996; Keim and Kriegel, 
1996) under the heading of “Visual Data Mining” (VDM), and research has more 
recently progressed toward visually supported methods of knowledge discovery (e.g. 
MacEachren et al., 1999, Gahegan et al., 2001, de Oliveira and Levkowitz, 2003). Since 
data mining is typically performed on very large databases, the volume of data to be 
represented brings challenges of its own (Keim et al., 2004; Compieta et al., 2007). 
Any useful visualization method must be able to project key relationships or clusters, 
or to summarize the data by aggregation since it is not always possible to render each 
item individually. In addition, geographical datasets may also contain attribute spaces 
with high dimensionality, for example the U.S. census, which contains over 100 attri-
butes for each region in its longer form. Visualization can help because it offers a vari-
ety of geometric and graphic devices to present more dimensions to the user than the 
typical two or three provided by today’s GIS (e.g., MacEachren et al., 2003; Johansson, 
Treloar, and Jern, 2004). Even so, it is often not viable or sensible to depict all dimen-
sions and all data instances; they must be either sampled or summarized. Otherwise 
the resulting scene will be too dense with visual information to be comprehendible.

To date, much of the research stemming from the GIScience community tends 
to concentrate on providing high levels of interactivity, interlinked and dynamic 
tools to encourage an exploration of the data, and draw heavily from the literature 
on perception and cognition (e.g., Slocum et al., 2001). Methods are often human-
led or highly interactive, but without rigid control over the exact search strategies 
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and exploratory methods used. By contrast, approaches from the database and com-
puter science communities generally use very specific algorithms so that uncovered 
objects or patterns will have a pre-defined visual appearance. Such methods rely 
on statistical theory, pattern recognition, and machine learning, and thus are more 
structured and rigorous, but less flexible and perhaps less geographically intuitive. 
However, any current distinction is unlikely to last long as researchers work to bring 
these two approaches into some kind of harmony (Ribarsky, Katz, and Holland, 
1999; Gahegan and Brodaric, 2002; Kovalerchuk and Schwing, 2004; MacEachren 
et al., 2004). Recently, the field of visual analytics (http://nvac.pnl.gov/) has arisen to 
cover the union of data exploration, computational discovery methods, knowledge, 
and workflow management (Thomas and Cook, 2005) The field is an effort to forge 
much stronger links between these themes, since their disconnection acts as a barrier 
to current investigation (Keim et al., 2006).

Having now addressed these preliminary matters, we can turn our attention to the 
cognitive processes and computational technologies that underpin visualization. In 
order to understand how best to support the act of visual discovery, we must appreci-
ate two things:

 1. What it is that humans do when they discover — how the various thought 
processes interconnect to support lines of investigation, and how it is that 
we recognize the good (useful) conceptual structures from the bad.

 2. The visualization approaches and techniques available and the degree to 
which they can be used to support the human process of discovery.

These two topics, taken in reverse order, form the major themes of the following 
two sections.

11.2 TECHNIQUES AND APPROACHES  
FOR EXPLORATORY VISUALIZATION

11.2.1 VISUALLY ENCODING DATA

There is a lot more to exploratory visualization than simply selecting among the 
many available techniques for creating a visual display from some dataset. The pri-
mary goal for successful data exploration is that of searching for, and finding, some 
unknown signal or pattern. Gaining insight and constructing knowledge demand care-
ful consideration of how the data is to be displayed or visually encoded (Ware, 2000). 
In order to be observed, concepts of interest in the data require a visual stimulus  
that allows the observer to perceive patterns that are relevant and avoid those that are 
not (Grinstein and Levkowitz, 1995). So, the task of trying to locate occurrences of a 
certain target pattern in the data (comprising values from n data dimensions) can be 
expressed in the visual domain as follows:

Display the relevant values from each supporting data dimension in such a way that 
their conjunction defines an observable and unique visual stimulus.

Of course, the complication here is that such a strategy presupposes that we know 
what we are looking for, but since this is discovery, we typically will not know 
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beforehand what the target pattern actually is! Thus, visualization tools need to sup-
port the rapid reconfiguration of the visual display, to allow the user to search through 
different mappings between the information and its visualization, for the emergence 
of potentially useful patterns. This search is typically ad-hoc, but governed by the 
user’s expertise and intuition — thus, subjective. More structured methods do exist 
though, such as the grand tour and projection pursuit strategies (see projection tech-
niques described later).

In the following section, a number of different information visualization tech-
niques are described (maps, scatterplots, iconographs, etc.) that might lead to the pro-
duction of a useful visual stimulus, that is, one that relates to some concept of interest. 
First, it is important to understand the basic functionality that visualization systems 
can provide and upon which these different techniques are based. In other words, 
what are the available building blocks with which visualizations of data can be con-
structed? In cartography, the static visual (retinal) variables (Bertin, 1985) are often 
considered separately from dynamic variables because temporal behavior is a rela-
tively new concept (and is still largely absent from many GIS). Taking this approach, 
visualization functionality might be divided into the following four groups:

 1. The appearance of data (visual encoding). This is the realm of tradi-
tional cartography, and covers how data values are transformed into visual 
properties such as color, shape and size of symbols, contouring, and so 
forth. Individual data items can be displayed using the different visual 
variables that a visualization environment supports (e.g., shape, size, 
color, texture, location and so forth. Generally, visualization systems pro-
vide a greater diversity of visual variables and methods than can be found 
in conventional GIS.

 2. The temporal behavior. The usefulness of time as a variable in carto-
graphic presentation has been long understood, (e.g., DiBiase et al., 1992) 
but difficult to realize due to the increased computational demands and 
runtime complexities that animation brings. However, there are a growing 
number of systems of temporal behavior added via scripts that are associ-
ated with basic objects (e.g., Flash, VRML, Java3D). Viz5D (www.ssec.
wisc.edu/~billh/vis5d.html) uses a data model specifically designed for 
geoscientific applications that supports the animation of temporal image 
sequences.

 3. Properties of the entire scene. Certain functionality applies to the whole 
of the scene, affecting the rendering of all graphical objects within the 
display. The most common examples are the viewpoint (i.e., the position 
of the observer relative to the scene), the resolution (or granularity), and 
the various forms of lighting that are employed to illuminate the con-
tained objects from various positions. The power of scene-level prop-
erties is illustrated in the pair of displays shown in Figure 11.2, where 
simply adjusting the angle of illumination over a surface (here showing 
magnetic anomalies measured over a landscape) uncovers structures that 
could be easily overlooked or simply not observed if using a fixed color 
assignment.
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 4. Interactions supported within the visualization system. In many cur-
rent systems, a high level of user interaction is supported within individual 
displays, and between displays, such that interaction with data in one dis-
play causes the system to perform some related behavior in a different 
display. The improvise visualization environment (Weaver, 2004) shows 
this functionality in its richest form, where any kind of event in one dis-
play can trigger any kind of corresponding event in another. For example, 
selecting a set of points in a map might cause a scatterplot to zoom to the 
extent of these same points.

For future visualization environments, these groups may represent rather false 
divides; the temporal properties are becoming an integral part of the behavior of any 
object (or group of objects) in the scene and the more global types of functionality 
can in fact be applied to arbitrary groups of objects as well as to the entire scene. The 
only really useful distinction seems to be that some properties can be used directly 
to construct a stimulus (the visual and temporal variables associated with individual 
scene objects and their groupings) and others can be used to draw attention to a 
stimulus (the scene lighting and viewpoint, the interactions with the data).

Visual encoding strategies need to consider the following properties that together 
determine what might be observed in the resulting scene:

 1. The choice of data to display.
 2. The assignment of the data to the visual, temporal, or scene properties that 

the chosen visualization techniques and environment provide.
 3. The mappings used to transform data values to these visual, temporal, or 

scene variables.
 4. The nonlinear perceptual hardware in the human visual system and its 

inherent biases and inadequacies.

(a) (b)

FIGURE 11.2 Examples of the effect of moving a single light source on the perception of 
structure in a scene. In the left images, the light source is in the northwest; for the right 
image, the light is in the northeast. Notice that these pairs differ markedly in the trends that 
are immediately discernible. The underlying data for all images is an artificial surface con-
structed from a gridded magnetics coverage. The images use grayscale light and shadows to 
show structure.
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 5. The difficulty in differentiating patterns because they may visually inter-
fere with each other.

 6. The very large number of irrelevant patterns that a complex geographic 
dataset may contain.

 7. The varying biases, assumptions, and expertise that different analysts 
might bring.

Gahegan (1999) provides further discussion of some of these issues and a more 
formal treatment of the visual assignment process by which data are transformed 
into graphics.

11.2.2 VISUALIZATION TECHNIQUES FOR DATA EXPLORATION

Here, the word “techniques” is employed to refer to the different kinds of visual 
displays used, so that the wide selection currently on offer might be categorized and 
some generalizations made. Techniques for exploratory visualization are many and 
varied, making the choice of a suitable technique problematic (Robertson, 1997). 
Hinneburg, Keim, and Wawryniuk (1999) provide a useful categorization under the 
heading of “visual data mining,” defining four distinct categories: (1) geometric pro-
jection techniques, (2) iconographic techniques, (3) pixel techniques, and (4) hier-
archical techniques. Many of these outdate the term visual data mining by quite 
a number of years, but it is perhaps a useful banner under which some approaches 
might be subsumed. These four categories are augmented here to cover the range of 
exploratory visual techniques common in geovisualization, resulting in six distinct 
visual styles.

 1. Map-based techniques: Maps are considered as a separate case from ordi-
nary graphs, largely because they require sophisticated graphical primitives 
and they do not use a Cartesian space (or rather they should not, given that 
some visualization systems still offer only unprojected maps). The map 
itself can, and often does, act as an exploratory tool. Commonly supported 
functionality allows the user to switch the underlying data attributes being 
mapped, for example, by changing from one attribute to another (Dykes, 
1997), or to alter the mapping to the visual variables used, for example, by 
modifying the assignment of values to colors. This technique works espe-
cially well with map legends, as shown by Peterson (1999) and Andrienko 
and Andrienko (1999). Not surprisingly, maps often form the center of 
geovisualization environments. The choropleth map in Figure 11.3 shows 
rates for breast cancer and cervical cancer for all counties in the contermi-
nous United States. The map uses a bivariate color scheme (blue for breast 
cancer, red for cervical cancer), so that the color used for any county is 
determined by both cancer rates acting together. The user can choose 
which data to map, which color combinations to use, how many classes to 
divide the data into, and how those classes are determined.

 2. Chart-based techniques: Charts and other more formal graphing meta-
phors have proven highly successful in conveying multivariate data, with 

© 2009 by Taylor & Francis Group, LLC



Visual Exploration and Explanation in Geography Analysis with Light 301

the advantage that they foster perception of “quantity” due to their numeric 
axes. One of the most established forms, the scatterplot, uses a simple 2D 
or 3D graph with dots or some other symbols to mark the position of 
individual data items (Cleveland and McGill, 1988). Where the number 
of variables under investigation exceeds the capacity of the scatterplot, 
linking and brushing methods have been added to effectively re-join data 
that have been disaggregated into many graphs (e.g. Buja et al., 1991). 
This leads to tools like the scatterplot matrix, and many other matrix-
based (multiform) displays that offer a mix of techniques (MacEachren 
et al., 2003), an example of which is shown in Figure 11.4. Another popu-
lar graph-based method is the parallel coordinate plot (Inselberg, 1997; 
Edsall, Harrower, and Mennis, 1999), which uses a number of parallel 
axes through which a trace of each data item can be made.

 3. Projection techniques: Transformations such as principal component anal-
ysis, multidimensional scaling, and the self-organizing map (SOM) are 
used to project out of the data some subset of the structure — often the 
dominant statistical trends (e.g., Haslett et al., 1991). The idea is often to 
take a high-dimensional dataset and, via projection, reduce it to a sim-
pler form with (typically) two dimensions, which is often displayed as a 

FIGURE 11.3 An example of a map-based visualization technique. A bivariate choropleth 
map shows cancer incidence by county for the conterminous United States. Redness increases 
with the rate for cervical cancer, blueness with the rate for breast cancer. Thus, counties col-
ored light gray have low rates for both cancers, dark purple indicates places with high rates 
for both. See text for further details. See color insert after page 148.
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surface. On such a surface, similar items should appear close together, and 
dissimilar items far apart — although it is not possible to preserve all the 
topology of the original dataset. In Figure 11.5, a SOM has been used to 
create a surface from a complex environmental dataset (various spectral 
bands, geology, elevation, surface water accumulation, and so forth). The 
larger round symbols represent known field sites for a specific type of tree; 
notice that they fit quite neatly into the bottom left corner of the SOM 
surface (the white numbers represent other vegetation classes). One might 
(correctly) conclude that this tree class is characterized well in the data and 
is separable from the other classes.

 4. Space-filling or pixel-based techniques: Efforts to perform data mining in 
a visual setting have produced some interesting and imaginative ways to 
take advantage of one of the most abundant system resources, that of the 
pixel (Keim, 1996). A typical display device now provides 1 to 2 million 
pixels, each one treated as a separate cartographic symbol, with a unique 

CORWFZ
LURWFZ
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CORWFZ LURWFZ MDRATIOCERWFZBRRWFZ

FIGURE 11.4 A matrix of maps and scatterplots, relating incidence rates for different kinds 
of cancer (first four rows and columns) to the ratio of doctors per 1000 population, for the 
Appalachian region of the United States (MD ratio, the right hand column and bottom row). 
This shows every pair of bivariate displays as both a scatterplot (above and right) and a map 
(below and left). The on-diagonal elements of the matrix simply show the distribution of  
values for each variable in isolation. A bivariate color scheme is used throughout. See color 
insert after page 148.
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and directly observable location and color.* Data values for one attribute 
are mapped to pixel color via some classification method. Values for a dif-
ferent attribute are then used to order the pixels into the display using some 
kind of tiling method (for example a spiral or Peano curve). (If the two 
variables were perfectly correlated, then the colors would change in step 
with the ordering.) Figure 11.6 shows a pixel-based rendering of disease 
incidence data, with a scatterplot showing the same two variables. The 
screen can be divided into separate regions if several attributes are to be 
visualized concurrently, resulting in several orderings being shown. Keim 
and Kriegel (1994, 1996) describe sorting schemes on the data values and 
2D orderings on the display space to localize groups of similar values in 
the scene. Jerding and Stasko (1998) instead describe a “mural” technique 
where data from very dense information spaces are merged together and 
mapped to the pixel properties of color and position — so a single pixel 
might be “aliased” to a number of data values. Such techniques present 
a useful overview of all the data. In the case of the mural technique, all 

* While color may be available in even greater numbers (approximately 16 million are again typical), it 
can be difficult for humans to differentiate; our poor ability to quantify color values effectively reduces 
this dynamic range by several orders of magnitude.

FIGURE 11.5 An example of a compositional landscape, created using a self-organizing map 
(SOM) that projects a high-dimensional dataset into a form that can be visualized in two or three 
dimensions — shown here as a surface. See text for a full explanation of how to read this figure. 
See color insert after page 148.
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FIGURE 11.6 A space filling or pixel visual visualization, which orders data in one data dimension but colors it using another (left) is contrasted 
with a scatterplot showing the same data (right). The speckled nature of the plot on the left, and the cloud of points in the scatterplot  show a weak 
but definite correlation between the two variables. See text for further details.
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values in the data contribute to the scene, even if they cannot be rendered 
directly.

 5. Iconographic/compositional techniques: By choosing a symbol more com-
plex than a pixel, we gain access to a greater number of visual variables, 
allowing more data dimensions to be displayed simultaneously. Perhaps 
the most famous examples are the “faces” proposed by Chernoff (1973) 
and used so emotively with election data by Dorling (1994). Pickett and 
Grinstein (1988) propose a simple stick figure, where color, number of 
limbs, limb length, limb orientation, and figure position can be used to 
encode a different data value. Many other types of icon have been proposed 
as having desirable perceptual properties, including ribbons and arrows. 
The aim of iconographic displays is to promote perception of the “whole” 
while still allowing some differentiation of individual variables. Icons have, 
of course, been used a great deal in traditional cartography; for example, 
proportional circles used to convey the sizes of cities. The example in 
Figure 11.7 shows a complex visualization of a toxic plume and many 

FIGURE 11.7 Toxic plumes (shown at two time intervals as yellow and red clouds) are draped 
over a region colored according to population. The complex target-shaped glyphs or symbols 
encode additional variables relating to expected dosage, uncertainty, and time to impact. 
Thus, the display contains a great deal of data, but all contained within a single scene, and 
integrated via its geography and careful mixing of graphic devices.
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“target-like” circular symbols that summarize several aspects of how the 
plume might affect the resident population (including expected dosage, time 
to impact, and population total). Similar to iconographic techniques, com-
positional techniques typically combine a number of distinct data values 
into a single integrated whole — typically a surface or landscape. Gahegan 
(1998) and Treinish (1999) use compositional approaches on environmen-
tal data, with the advantage that several variables can be displayed together 
within a single scene, enabling their interactions to be studied.

 6. Hierarchical and network (graph) techniques: In these displays, items are 
strictly organized according to a specific data structure, such as a tree or 
network (Robertson, 1991), with progressive levels refining the display into 
subspaces. In the life and earth sciences, taxonomies are often presented as 
a hierarchy (Tufte, 1990). Another common example of a hierarchy is the 
scenegraph,* which is often visualized to explore the structure and design 
of the visualization itself. Hierarchical techniques require knowledge of the 
parent–sibling relationships between data items, encoded in the metadata or 
as aggregation (part-of) relationships between objects. Network (or graph) 
techniques require similar connections to be pre-defined. Network visualiza-
tion increasingly finds application in displaying ontologies, concept maps, 
citation links, and social networks (e.g., Mutton, and Golbeck, 2003). Such 
displays may well be useful tools by which to represent the knowledge dis-
covered during exploration, as discussed later. Figure 11.8 shows an example 
of the ConceptVista concept-mapping tool (www.geovista.psu.edu/concept-
vista) used to display a concept map of the GIS&T Body of Knowledge, 
recently developed to describe the knowledge and skills that comprise an 
education in the GIS field (http://www.ucgis.org/prior ities/education/model-
curriculaproject.asp).

All techniques are limited in the number of data items that can be displayed. If 
the screen becomes crowded, the density of information can become a barrier to 
comprehension. Similarly, all techniques are limited in the number of attributes 
that can be directly mapped. Even the most complex icons cannot hope to portray 
highly multivariate data. Most techniques try to present data in an integrated fash-
ion, where related attributes are all presented together. Some approaches, such as 
compositional and iconographic methods, go to extreme measures to ensure visual 
integration. Other techniques require multiple windows (e.g., pixel-based, graph-
based) and use interactive linking and brushing to connect data back together. 
Many of the reported techniques do not directly address any of the geographical 
properties of data; some are designed to uncover only one- or two- dimensional 
structures in isolation (e.g., pixel techniques), whereas geography usually demands 
a minimum of three dimensions for analysis: x, y and at least one attribute. Without 
this minimal spatial context, trends in attribute data can be very difficult to inter-
pret in a geographical sense. In addition, of course, techniques tend to be combined 

* The scenegraph is the supporting internal data structure in many visualization environments, describ-
ing the objects in a scene and how they are to be rendered.
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together in all kinds of interesting ways and it is becoming common for systems 
to offer a wide palette with highly customizable interfaces for creating bespoke 
displays that suit specific tasks. Figure 11.9 shows a screenshot from a combined 
Improvise and ConceptVista application built for exploring and tracking vector-
borne diseases such as West Nile Virus. It contains a map, a concept graph, several 
charts, a hierarchy of concepts (right panel), and even a Web browser for textual and 
pictorial information.

Given the previous descriptions of techniques and the process of visual encoding, 
it follows that a visual stimulus might take many forms, for example: (1) As a single 
striking feature, strongly differentiated from others due to a large difference in some 
visual property such as color or size; iconographic techniques often produce this 
kind of a stimulus. (2) As a cluster of similar objects forming a perceptual grouping, 
a structure that is perceived together; maps, space filling, projection, and chart-based 
techniques facilitate these kinds of patterns. (3) As a localized trend or anomaly, for 
example, a dip in a surface; compositional techniques and charts are examples. (4) 
As a result of some form of dynamic behavior, for example objects that all originate 
from, or converge on, the same location.

Table 11.1 summarizes this discussion, showing techniques against the charac-
teristics that affect the exploratory process, that is, the visual stimulus provided, the 
types of data exploration supported, and the main instigator. There are bound to be 
a number of techniques that do not neatly fit these categories, but instead combine 

FIGURE 11.8 A graph-based visual display, showing concepts and relations contained within 
the GIS&T Body of Knowledge for GIS education. A hierarchical view of the concepts is 
shown in the left panel. Colors are used to group the major thematic areas.
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facets of several techniques to provide alternative views on the data. For example, a 
scatterplot can use icons rather than dots to increase the number of data dimensions 
that can be displayed concurrently, fusing ideas from chart-based and iconographic 
or compositional methods.

Notice that each of these techniques relies heavily on visual variables, as opposed 
to temporal behavior, to produce the stimulus. Future techniques may concentrate 
more on the untapped temporal properties that new visualization environments can 
now provide.

TABLE 11.1
Summary of the Characteristics of Exploratory Visualization Techniques

Method
Display  

Created by
Usual Exploratory 

Mode Usual Visual Stimuli

Map-based User Interactive Patterns in geographic space

Chart-based User Interactive Clusters of points, outliers

Projection-based Algorithm Static, animated tour Clusters of points, outliers

Iconographic/compositional User Static Patterns in icons and surfaces

Pixel-based Algorithm Interactive Clusters in dense pixel arrays

Hierarchical Metadata Interactive Patterns in nodes and links

 

FIGURE 11.9 A screenshot of the Improvise visualization system, used to investigate symp-
toms and spread of vector-borne diseases. The display shows a mixture of many visualiza-
tion techniques, to emphasize the point that techniques can be easily combined, to provide 
alternative views onto the same data in a coordinated manner. See text for further details. See 
color insert after page 148.
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11.3 HOW DO HUMANS DISCOVER NEW KNOWLEDGE?

The application of the scientific method (e.g., Leedy, 1993) encompasses a number of 
stages, from data exploration and hypothesis generation to analysis and final evaluation 
of results, as Figure 11.1 shows. To move us through these various stages, three distinct 
modes of inference have been recognized for over a century (deduction, induction, and 
abduction), thanks in large part to the pioneering work of Peirce (1891), whose meta-
physical writings separated them out and showed the quite different roles they play in 
science and in everyday life. We need to understand these modes: what they use as 
inputs, what they produce, to what extent they can be validated or challenged, how best 
to support them visually, and how to verify their effectiveness. Baker (1999) gives a 
useful description of how modes determine what can be known in geoscientific analy-
ses. Within the artificial intelligence community, specific tools have been constructed 
to operate within these three modes (Sowa, 1999; Luger and Stubblefield, 1998). A 
description of each inference mode is given next. Following from this, some ideas are 
presented about how they might be better supported within visual displays.

11.3.1 DEDUCTION

Deductive logic applies a set of pre-defined rules that are assumed to be true to all 
specific instances or individual cases. The rules dictate both the questions that can be 
asked (hypotheses) and the answers that will be provided (interpretation). Deduction 
is often seen as the most reliable and rigorous mode of scientific reasoning because it 
relies on provable logical expressions, often in the form of syllogisms such as

Major premise: All professors are absent-minded.
Minor premise: X is a professor.
Conclusion: X is absent-minded.

Such logic fits well with most established statistical and computational approaches 
to analysis. A deductive expression can be directly mapped to programming and 
query languages such as Java or SQL so they are easy to operationalize in visual 
displays — they represent predefined knowledge about possible patterns of inter-
est that we may choose to examine. However, a “closed world” assumption must be 
made; deduction does not produce new categories or relationships, so in the case of 
discovery we must suppose that the targets of interest are indeed all discoverable 
by the pre-defined set of expressions. We must further assume that the targets can 
be adequately described from existing knowledge and that there is consequently no 
need to learn from further examples or adapt our logic to new data.

In some of the visualization techniques described previously (e.g., projection and 
pixel-based techniques) the hypotheses presented to the user are pre-defined in the 
behavior of the system and the user plays an essentially static role (Table 11.1), so 
the reasoning has a strongly deductive component. If a particular pattern or shape 
emerges via such a transformation, then we can treat that transformation as a descrip-
tion that causes a pattern to emerge, and investigate it further. We then turn to induc-
tion to learn the patterns and rules underpinning such transformations.
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11.3.2 INDUCTION

Induction relaxes the “closed world” assumption, replacing it with a mechanism to 
learn from a (usually small) set of examples, and then generalizes their characteris-
tics to a larger population. The inductive process is split into three parts: (1) a user 
detects the training examples, (2) the machine or the user builds a general visual 
model of the category, and (3) a (possibly different) user identifies further examples 
from this generalized form. To support induction it is necessary to present training 
examples, so that a model can be constructed to represent their generalized char-
acteristics and then used to extract or locate additional examples. Induction forms 
the primary reasoning mechanism in many supervised machine-learning tech-
niques, including neural networks and decision trees (Mitchell, 1997). Compared to 
deduction, this mode is more flexible because it does not rely only on pre-defined 
knowledge but also learns from specific cases. However, it introduces uncertainty 
because learning by generalization requires a form of bias to be introduced into 
the data (Gahegan, 2003). In addition, since the hypothesis is learned rather than 
pre-defined, it cannot be tested in the same objective manner using logical proofs. 
Instead, the validity of induction must be established in less deterministic ways, 
such as by the ability to correctly identify or classify a certain percentage of a 
sample.

However, induction is very natural for humans (a point that is taken up later) and 
our internal understanding of categories, their members, and how to differentiate them 
is exceptionally well developed. Visually based knowledge construction tools often 
rely on the analyst’s inductive learning and generalization capabilities to characterize 
the kinds of patterns and clusters of interest. Therefore, in theory at least, it should 
be possible for the analyst to locate training examples for the system to “learn” from  
(for example, a category or a pattern of interest). The resulting generalized class 
description could enable an automated search for further patterns of the same type. 
An alternative would be to keep the analysis within the visual domain, where the 
training examples provided by the human expert could be used to produce a kind 
of generic visual representation. The resulting general form would then be suitable 
for use in a legend or key, and would support other users in finding further examples 
visually.

11.3.3 ABDUCTION

This final mode of inference aims to connect patterns within the data with expla-
nations (or hypotheses) by which the patterns might have come to be. It is thus the 
most open of the three modes because both target and hypothesis are undefined at 
the outset, and the explanation may require additional concepts and relationships to 
be defined or re-purposed. Therefore, rather than reasoning from known theory to a 
specific case (deduction), abduction reasons from cases to theory. To be successful, 
abduction requires the following:

 1. The ability to posit new fragments of theory.
 2. A massive set of knowledge to draw on, everything from common sense 

to domain expertise, by which explanations can be constructed.
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 3. A means of searching for connections between patterns and possible expla-
nations, through this vast collection of knowledge (Sowa and Majumdar, 
2003).

 4. Complex problem-solving strategies such as using analogy, approxima-
tion, best guess, and so on.

It is no wonder then that computational abduction has been largely unsuccessful 
to date in any general sense (Psillos, 2000). But as with induction, humans are in 
fact well suited to this task, being biologically predisposed to store massive amounts 
of knowledge, to search efficiently through it using complex strategies, and thus to 
explain their observations. The trick is to find ways to present data to the analyst that 
allows this machinery (wetware) to be put to effective use.

In computational data mining, we might generally say that explanations can be 
constructed if we allow these explanations to take very abstract (statistical or math-
ematical) forms. For example, the findings of data mining are usually expressed 
as some kind of classification scheme or set of association rules (e.g., Han, 1999; 
Agrawal, Imielinski, and Swami, 1993) by which useful structure can be imposed 
on the data. These explanations are weak in the sense that they are not expressed 
in (or mapped to) the language of the domain of investigation — in this case geog-
raphy. They can only describe the cluster in a mathematical sense; the expert must 
still translate this low-level explanation into something meaningful to humans. In 
most techniques for visual exploration, such as maps, scatterplots, and composi-
tional displays, an abductive task is performed collaboratively between the observer 
and the creator of the visualization, since patterns are observed because of the way 
the display is constructed, and the way the observer perceives and comprehends it. 
The simultaneous task of hypothesis generation is also similarly split; the mappings 
used to create the scene themselves provide some form of loose hypothesis, and 
an observer may generate more specific internal theories to explain the observed 
structure.

11.3.4 FORMING CHAINS OF INFERENCE

All three modes of inference are useful. Deduction allows us to apply rules and to 
test them, induction lets us construct more generic categories from a few cases, and 
abduction allows us to put forward explanations that connect categories and rules 
together. However, by itself, this understanding is not sufficient to support knowl-
edge discovery. We also need to know how different modes of reasoning connect 
together to form “inferential chains” — lines of inference that connect causes and 
effects, hypotheses and concepts together into theories by which we can understand 
and model the world. When human experts show their flair for discovery, they are 
demonstrating their ability to move rapidly between different modes of inference, to 
connect their findings together into inferential chains, and to drop lines of investiga-
tion that appear to be flawed. From this point of view, it is not so much the ability to 
support each kind of inference in isolation that is needed, but a deeper understanding 
of how they connect together, and the development of visual tools that aid the user 
in establishing and maintaining logical connections among ideas. This is a different 
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way of thinking about visualization, which is to some extent captured in the recent 
focus on visual analytics described earlier. The work of Yang et al. (2007) shows 
how visualization can be used to marshal supporting and refuting evidence (in their 
case via snapshots of visual displays called “nuggets”).

Earlier attempts to understand the interplays in the discovery process typically 
place deduction, induction, and abduction into some kind of free-form cycle (Gahegan 
and Brodaric, 2002; Sowa, 1999). In the knowledge discovery from databases (KDD) 
field, we see similar linear arrangements in the work of Fayadd et al. (1996). But how 
do these activities really connect together? What follows is a deeper examination of 
the connections between them, with an emphasis on their interactions. Figure 11.10 
shows such a free-form cycle of inference, with the more typical activities of science 
(analysis, verification, communication) in the center, surrounded by the conceptual 
structures (e.g., rules, categories, and explanations) that drive them.

The first thing to notice about the diagram is that a circle unites the various modes 
of inference: deduction, induction, and abduction connect together continuously, and 
an analyst may choose to move backward or forward from one to another at will. 
Ideally, any kind of system built to support discovery should not place any restric-
tions on such conceptual refocusing, but they often do (Gahegan, 2005). Note also 
in the diagram that each inferential mode is depicted close to a specific kind of con-
ceptual structure: deduction uses rules, induction creates categories, and abduction 

Deduction 

Abduction Induction 

Categories Explanations 

Rules 

“Normal science”

analysis

verification

communication

Data 

FIGURE 11.10 The “normal science” activities of analysis, verification, and communica-
tion are shown at the center of concentric wheels of inference. The three inferential modes 
connect together, via the conceptual structures that they create and employ. See text for full 
details.
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links categories (and rules) together via relationships. This is not meant to imply that 
these conceptual structures belong only in one place, but that there is a dominant 
pattern to the way they are used. Additionally, many more conceptual structures 
than are shown here play a role in the process of knowledge discovery [e.g., a law, 
a methodology, a hypothesis; see Langley (2000) for a thorough account] but for 
brevity only three are shown here. Second, note that all of the artifacts produced 
(rules, categories, explanations) are typically anchored somewhere in the data; their 
creation depends on the act of discovery, their persistence depends on not uncovering 
counter-examples. All are subject to verification, although never more so than when 
they are first proposed. Third, a number of other faint circles are shown around the 
cycle to emphasize the point that inferences occur at many levels of abstraction — 
sometimes concurrently. In other words, explanations, categories, and rules are con-
ceptual structures that connect together recursively, themselves building in turn on 
lower level rules, categories, and explanations. So, in theory at least, some higher 
level notions used in geography could be anchored via progressively more abstract 
forms, until they reach the more basic structures used in, say, physics (Wilson, 1998). 
However, in Popper’s (1959: p. 111) words, it is far more typical for our conceptual 
structures to be anchored much more loosely, if at all:

The empirical basis of objective science has thus nothing “absolute” about it. Science 
does not rest upon rock-bottom. The bold structure of its theories rises, as it were, 
above a swamp. It is like a building erected on piles. The piles are driven down from 
above into the swamp, but not down to any natural or “given” base; and when we cease 
our attempts to drive our piles into a deeper layer, it is not because we have reached 
firm ground. We simply stop when we are satisfied that they are firm enough to carry 
the structure, at least for the time being.

Finally, central to each activity is the act of verification, since the results from each 
stage must be tested before they can be safely woven in. Verification may fail either 
within the current inferential task or when the results are carried over for integration 
into some larger inferential chain or conceptual structure. When failure occurs, some 
part of this structure must be retracted; the conceptual structures used in science fail 
periodically, so we rebuild around them. These failures often become known via 
new evidence that contravenes existing rules, categories, or theories. As Kuhn (1962) 
would have it: “Discovery commences with the awareness of anomaly, i.e., with the 
recognition that nature has somehow violated the paradigm-induced expectations 
that govern normal science.” To return to the previous example, if one encounters 
a professor who is not absent-minded, then the rule given above fails and must be 
replaced or further qualified. Perhaps a new category is needed for less befuddled 
scholars and additional rules to tell them apart. (Then again, perhaps not.)

A more detailed version of the inference diagram is shown in Figure 11.11, con-
centrating only on those activities that lead to conceptual modification, that is, where 
discovery or learning occurs outside the bounds of “normal science.”

The more typical science activities of applying established rules, categories, and 
theories to data are not shown. Three examples of Kuhn’s notion of a “paradigm 
induced anomaly” are included: dashed arrows (a), (d), and (e), where the analyst dis-
covers an instance in the data that contravenes an existing category (a) or explanation 
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(d), or a mismatch between category and explanation (e). Such failures are usually 
the triggers for further conceptual changes to occur, as when rules, categories, and 
explanations are revised to address the problems uncovered. Arrows (b), (c), and (f) 
show the corresponding activities of rebuilding the rules, categories, and explana-
tions brought into question by (a), (d), and (e). Thus, retraction triggers creation, 
which in turn triggers evaluation. A key question is therefore: How might visualiza-
tion techniques support these mental activities better?

Local failures of conceptual structures are commonplace, as when a brushing 
operation in a visual display fails to separate the data into useful groups. Breakdowns 
deep within the structure can have wide reverberations, such as when an old law is 
disproved or a new theory becomes dominant. A good example of a new develop-
ment with substantial impacts on conceptual structures is the theory of plate tecton-
ics, which revolutionized much geoscientific understanding in the 1930s through the 
1960s (Shrager and Langley, 1990). The interaction between categories and theories, 
shown by arrows (e) and (f), represents the struggle to match the emergent properties 
of the data under investigation with the established wisdom of a discipline. There is 
sometimes a healthy tension between these two ends of a problem, exacerbated by 
the fact that each geographical setting is unique, and thus established categories and 
theory may not perfectly fit any current situation.

Finally, one should not forget that the model described in this section is itself a 
hypothesis — an explanation put forward to help understand a complex and opaque 
process, built on lower-level conceptual structures, experience, and literature, and 
presented via diagrams and rhetoric. It too will be replaced in time by a model that 
is shown to be stronger.

Deduction

Abduction
Induction 

Categories Explanations 

Rules

(a) Exception to
category discovered 

(d) Exception to
explanation
discovered 

(c) Models of expected
behavior are constructed

(e) Discovered
categories are

evaluated
against theory 

(f ) Hypothesized
categories are created

and tested 

(b) Membership
criteria developed for

category 

FIGURE 11.11 A roadmap for discovery-based science. Transformations such as these occur 
when normal science breaks down. They result in the creation, modification, and retirement 
of conceptual structures such as rules, categories, and explanations. Constructive activities 
are shown as solid arrows, revision activities as dashed arrows.

© 2009 by Taylor & Francis Group, LLC



Visual Exploration and Explanation in Geography Analysis with Light 315

11.4 COMBINING THE TECHNIQUES WITH THE PHILOSOPHY

The production of a visual display implies the creation of certain visual stimuli that 
are predisposed toward some aspects of the underlying data, but not others. As we 
have seen, this bias can be supplied by the user, the system, or the data itself. However, 
in all cases, the task of recognizing these stimuli rests entirely with the user and all 
modes of reasoning fail completely if target patterns are not observed. It is perhaps 
this single aspect that separates visual approaches from analytical approaches, since 
the observation of a stimulus cannot be modeled as a function of the data (except 
in a probabilistic sense based on a post-hoc study). In most simple analytic systems, 
the same data arrangement will produce the same response. The predisposition and 
nonsystematic behavior of the human analyst make it impossible to ensure that the 
most significant trends in the data are always the most visually striking, to guarantee 
that a bias-free perspective on the data is presented, or even to make certain that all 
the underlying data are actually explored.

As described previously, many exploratory visualization techniques rely heavily 
on one or more predefined hypotheses by which targets might be uncovered. When 
only pre-defined hypotheses are presented to the user, one could argue that the mode 
of inference is primarily deduction (the user is recognizing a pattern known by the 
creator of the visual display) and the display is restricted from providing further 
insights. However (and as noted previously), the degree of discovery depends largely 
on the knowledge, engagement, and imagination of the analyst; it is therefore dif-
ficult to predict in advance.

Putting these insights together with the description of exploratory techniques 
given previously, we begin to see that to be effective, techniques must support very 
specific cognitive tasks, with quite definable goals. We can therefore start to under-
stand visualization techniques according to: (1) how a stimulus is defined and pre-
sented, (2) whether the set of targets is pre-defined (closed) or open ended, (3) if the 
space of possible targets is searched, and if so, how, and (4) whether explicit support 
for knowledge construction can be provided by the system. Thus, it is possible to 
propose a number of specific approaches to exploratory visualization, which can be 
differentiated by the roles that the system and the user adopt, and particularly how 
the stimulus is constructed, and whether by the system or the user. These roles influ-
ence the scientific process and can encourage or prohibit different ways of thinking.

 1. Static Exploratory  User as observer: The exploratory mode is consid-
ered static if the visual display is fixed. Display properties and behavior are 
pre-defined, with the user playing the role of a passive observer who is pre-
sented with an array of stimuli to interpret. Web mapping applications are 
often of this type, as are the pixel-based techniques described previously. 
Graph-based and hierarchical methods that do not support interactive 
activities, such as zooming and brushing, would also be grouped here.

 2. Dynamic Exploratory  User as initiator: The exploratory mode is con-
sidered dynamic if the visual variables can be interactively changed to 
shift the focus of attention to different kinds of patterns in the data. This 
implies some user control over the formation of a visual stimulus, by being 
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able to change the appearance of data. Map-based methods and some 
compositional techniques fall into this category, as do graph and hier-
archical methods that support interaction. The U.S. Census FactFinder 
mapping application falls into this category (http://factfinder.census.gov/
servlet/ThematicMapFramesetServlet?_bm=y&-_lang=en).

 3. Adaptive Exploratory  Data or task as initiator: Instead of being pre-
defined, scene construction is influenced by the data under consideration, 
as well as possibly some declared purpose. Languages and task-specific 
approaches for exploratory visualization have been proposed by Duclos 
and Grave (1993), Spitaleri (1993) and Gahegan and O’Brien (1997), and 
typically relate the data to suitable representational structures according 
to the statistical scale of the data (nominal, ordinal, interval, ratio*) and 
the notion of generic visual tasks, such as to “explore” or to “contrast” 
the data. Task-based approaches might use a variety of visualization tech-
niques; they are differentiated here because of the way they automate the 
process of scene construction rather than any underlying difference in 
visualization metaphor. The resulting scene is likely to depend heavily on 
the type of data being displayed (i.e., data-driven), and possibly the task 
to be undertaken, so is not pre-defined as in static approaches. The pro-
jection techniques defined previously fall into this category because their 
appearance is ultimately a function of the data used.

 4. Knowledge Construction  Knowledge construction requires the fur-
ther step of extracting relevant structures or relationships from the scene 
and learning them, that is, representing them in some machine-based or 
human-readable form for later use. Knowledge discovery can be either 
expert-led or machine-led. It is fair to say that to date, no system perfectly 
addresses the challenge of knowledge construction, whereby identified 
structures in the data can be represented, retained, retrieved, compared, 
and revised. To date we do have systems that can remember (record) spe-
cific visual patterns (Chen, MacEachren, and Guo, 2006), connect pat-
terns together into evidence chains (Yang et al., 2007), and represent the 
process of concept formation (Pike and Gahegan, 2007) — all useful steps 
in this direction.

The major question here concerns how humans and machines might best collabo-
rate in discovery and knowledge construction. The richest source of knowledge con-
structs in geography is clearly still the human experts because they are able to create, 
organize, and reason with concepts and relationships that extend far beyond the 
simple schemas of geographic databases and ontologies. This observation strongly 
supports the inclusion of the human expert in the abductive, concept formation stage 
and in the interpretative/evaluative stage of the scientific process. The reasoning 
processes that underpin the exploratory visualization approaches described before 

* Most approaches treat interval and ratio data identically, under the heading of quantitative data, the 
reason being that the presence or absence of a real zero point is largely irrelevant to the perceptual task 
of observing quantity.
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are clearly different. Understanding this is crucial because modes of inference dic-
tate the tasks that the system and the observer are asked to carry out, and implicitly 
define the limits on what might be observed and how it might be explained.

11.5 CONCLUSIONS AND CHALLENGES FOR GEOVISUALIZATION

There is no “magic bullet” for data exploration and knowledge discovery, no single 
algorithm or approach can be guaranteed as the best. Successful techniques will 
be those that can make use of a wide variety of strategies, that can involve human 
experts, and that can “learn” or adapt to a particular problem over time. Knowledge 
discovery is complex because it forces us to think deeply about how concepts and 
relationships are identified, defined, and represented and poses new challenges 
related to data modeling, semantics, and ontology. The benefits are clear though — 
insight into complex datasets and a better understanding of the process by which 
knowledge is created.

For the present, exploring geographic datasets remains a complex task and, despite 
efforts to the contrary, still requires the skills and experience of a geographer. In rec-
ognition of this fact, here the role of the computer is to provide insight into the struc-
ture of the data via visual display. Visualization is chosen as the medium because 
of its capacity to depict large quantities of data in a variety of new ways that can 
increase accessibility and promote understanding. This flexibility differs from the 
objective approach taken by GIS in that there are more degrees of freedom relating 
to representation and categorization. While it is possible now to show results that 
demonstrate some success, it remains to be seen whether this extra freedom can, in 
general, be used constructively or whether it acts to further confound the problem. 
Basic research is required here to firmly establish proof of concept.

The various visualization techniques described previously employ a number of 
implicit mechanisms to construct a scene. Some use pre-defined mappings to auto-
mate the process; others attempt to define mappings from objects identified by the 
user or from trends observed in the data. What is not clear yet is how these different 
modes of inference (deduction, induction, and abduction) can be used together for 
maximum effect, making exploration as flexible, robust, and repeatable as possible. 
Specific research is required here to establish the suitability of different approaches 
and techniques for distinct application areas and datasets.

There are many caveats to visual analysis. The processing activity becomes 
largely the responsibility of the human visual system, which can be easily misled, 
does not behave linearly (or even straightforwardly) for many basic tasks, and is 
adept only under certain paradigms (e.g., Gordon, 1989). In addition, embracing a 
visual approach to analysis does not remove the representational question, but it does 
change it. Instead of attempting to build a formal model of the data in a language that 
a machine can understand, we must instead build a visual model of the data in a form 
that a human can understand. Cartographic theory needs further extension into the 
science of visualization to meet this challenge (as argued by MacEachren, 1995).

Three specific sets of challenges follow, relating to the themes introduced in 
this chapter.
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 1. The need for deeper representation of the discovery process. The major 
focus of this chapter, and the challenge for exploratory geovisualization, is 
that the activities comprising the process of discovery and the connections 
between them (as shown in Figure 11.11) are what our systems must sup-
port if they are to be truly effective and intuitive to use.

   As described previously, some of the basic functionality to build more 
effective visual displays, to support the analyst moving back and forth 
between different inference tasks, to record what is done, and to pass 
findings back into a knowledge representation system, is available — but 
currently in various disjoint and experimental systems. This functionality 
does not yet connect together. Thus far, with few exceptions we attempt to 
engage the analyst’s deep conceptual understanding, but do not record the 
process or the findings. As examples of what we might aspire to, imagine 
a system that makes explicit the conceptual structures developed during 
exploration, with the facility to import the stable findings into domain 
ontologies, while checking for consistency. One might also imagine a sys-
tem that responds to user interactions by creating and retracting appropri-
ate conceptual structures automatically. For example, if the analyst creates 
a discrete color scheme and imposes it on a set of observations (a kind 
of visual classification), the system could respond by creating a category 
for each of the groups so defined. If the analyst abandons this scheme in 
favor of a new one, these categories are destroyed; otherwise, they are 
retained, at least for the time being. Table 11.2 suggests some immediate 
goals related to each of the inferential modes described before.

 2. The reliability of the search for structure. As with all searches, visual or 
computational, you only find useful structures where you look! There are 
two aspects to this challenge, the first being that it is the nature of the human 
visual system to find patterns, even where they do not exist. Our visual 

TABLE 11.2
Some Ideas for Supporting Closer Ties between the Process of Discovery 
and Its Support in Visualization Systems, Organized by Inference Mode

Functionality to Support this Mode of Inference in Visual Displays

Deduction Visually applying and evaluating rules, e.g., “brushing” rules

Conditioning displays based on rules

Locating and emphasizing exceptions to rules

Induction Collecting learning examples of some category or process

Learning a general model from such examples

Evaluating and exploring the categories so formed

Abduction Representing arguments and chains of reasoning visually

Importing constructed knowledge directly into concept maps or ontologies

Communicating and challenging arguments, finding alternative explanations
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systems are designed to impose meaning on even the most bizarre of visual 
displays, so that the absence of any significant patterns in the data does not 
mean we will not discover some. The second aspect involves the complete-
ness of any search for structure. If we think of a search space comprising 
all the ways in which we might visualize the data we have, then our prob-
lem is to find instances in this space that are useful, and that tell us things 
about the data that we do not yet know. We also want to avoid searching 
in parts of this space where the probability of success is low. The math-
ematics and machine learning communities have developed sophisticated 
techniques to explore such large “combinatorial landscapes” of possibilities 
(Reidys and Stadler, 2002) and to address the problem of overlooking one 
part of a search space, or spending too much effort on another. However, 
with visualization systems, there are no such tight controls or optimizations. 
Now we rely wholly upon the analysts to judge where to look, what visual 
techniques to use, and for how long. What guarantees do we have that they 
will be diligent, they know where best to look, and alternative explanations 
for discoveries will be sought? The answer thus far is “none,” though as 
mentioned previously, there are some projection techniques developed to 
systematically explore large attribute spaces visually, such as the grand tour. 
Some key challenges are therefore

Providing better tools for systematic exploration, rather than the 
very ad hoc and unstructured approaches we currently employ.
Conveying to the user the combinatorial landscape of possibilities, 
and which regions have been explored — this equates to how hard 
we have looked for alternative explanations for our findings.
Providing some kind of assessment of the strength of our findings, 
based on the diligence employed in finding them.

 3. Paying attention to the user. Finally, much current work in visualiza-
tion is focused on providing large quantities of information in graphs or 
other chart-like structures, with consistent and perceptually defensible 
use of color and symbolization, and often using multiple, coordinated 
displays. This would seem to be a logical, structured way to proceed. 
However, we could put the task another way: what is it that grabs and 
holds the visual attention of humans? The answer might vary from  
person to person, and culture to culture, but nevertheless there may be 
some universal principles we can uncover; a disengaged user is not likely 
to discover much!

  Relevant questions here might be

How is it that we can engage and extend attention spans so that the 
analyst is drawn into visual exploratory tasks with relish?
Do multiple, but separate, displays truly aid cognition? Alternatively, 
do they confuse the analyst with too complex a visual task?
What are the cognitive costs of interpreting these displays? Can 
they be lowered?
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  At present, I suspect we rely too much on low-level research concerning 
visual variables to determine how we build our systems, and not enough 
on the visual allure of the fine arts (Landa, 2004).
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12 Multivariate Spatial 
Clustering and 
Geovisualization*

Diansheng Guo

12.1 INTRODUCTION

The study and understanding of complex geographic phenomena often depends on 
the analysis of multivariate spatial data to discover complex structures and gain new 
knowledge. Figure 12.1 shows a conceptual representation of a typical data set that 
contains multiple variables and geographic information, which can be viewed as 
a spatial data matrix (Haining 2003), lattice data (Cressie 1991), or a “map cube” 
[a simple case of the map cube model introduced in Shekhar et al. (2001) and Chapter 
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4 of this book]. Such data sets are commonly encountered in various spatial research 
fields such as socioeconomic analysis, public health, climatology, and environmental 
studies, among others. For example, to study global climate patterns and their change 
over time, we not only examine temporal trends or patterns of climate variables  
(e.g., temperature) at a specific location, but we are also interested in the geographic 
variation of such trends or patterns. It is a challenging task to explore large multivari-
ate spatial data sets and tease out complex (and often unexpected) patterns, which 
may take various forms (linear or nonlinear) and involve multiple spaces (e.g., multi-
variate space and geographic space) (National Research Council 2003).

To detect the unexpected and understand the data in its entirety, it is important 
to support an exploratory analysis process and let the data speak for themselves 
(Gould 1981; Gahegan 2003). Existing methods for exploratory spatial analysis and 
spatial data mining span across three main groups: computational, statistical, and 
visual approaches. Computational approaches resort to computer algorithms to search 
large volumes of data for specific types of patterns such as spatial clusters (Han, 
Kamber, and Tung 2001), spatial association rules (Han, Koperski, and Stefanovic 
1997), homogeneous regions (Openshaw and Rao 1995; Assunção et al. 2006; Guo 
2008), co-location patterns (Huang, Shekhar, and Xiong 2004), and spatial outliers 
(Shekhar, Lu, and Zhang 2003). Statistical approaches include spatial scan statistics 
or models (Openshaw, Cross, and Charlton 1990; Jona-Lasinio 2001; Kulldorff 2006), 
geographically weighted regression (Fotheringham, Brunsdon, and Charlton 2002), 
multivariate lattice models (Saina and Cressie 2007), and spatial association tests 
(Getis and Ord 1992; Anselin 1995). Visualization-based methods for multivariate 
spatial analysis include, for example, multivariate mapping (Chernoff and Rizvi 1975; 
Zhang and Pazner 2004), conditioned choropleth map (Carr, White, and MacEachren 
2005), spatial statistics graphics (Anselin 1999), and other geovisualization tech-
niques (MacEachren et al. 1999; Andrienko, Andrienko, and Gatalsky 2003; Dykes, 
MacEachren, and Kraak 2005).

Different methods have their own strengths and weaknesses. In general, computa-
tional methods are able to search for structures in large datasets with great efficiency but 
lack the ability to interpret and attach meaning to patterns. Statistical methods are rigor-
ous and verifiable but often assume a priori model and relation form. Visual methods 
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FIGURE 12.1 A multivariate spatial data set is often conceptually represented as a spatial data 
matrix (left) or a map cube (right), which can be transformed from one to the other.
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can facilitate the discovery and understanding of complex patterns by presenting data 
visually to allow human experts to interact directly with the data. However, visualiza-
tion-based methods alone usually can only handle relatively small data sets and primar-
ily rely on users to pick up patterns, which can be very time consuming (to visually 
sort and summarize massive amounts of information across multiple dimensions) and 
sometime biased (e.g., users may only see what they expect or what the visual repre-
sentation allows). Given the increasingly large volume and complexity of multivariate 
spatial data sets, it is not likely that any individual method can adequately support an 
exploratory process to detect, interpret, and present complex information lurking in 
the data (Figure 12.1). To leverage the power of different analysis approaches, there are 
recent research efforts that focus on the integration of visualization with statistical and/
or computational methods (for example, Swayne et al. 2003; Guo et al. 2005, 2006).

Built upon several recent developments in geovisualization and computational 
approaches (Guo et al. 2005, 2006; Guo 2008), this chapter introduces an integrated 
approach to multivariate analysis and geovisualization, which couples a suite of meth-
ods that are either complementary or competitive to each other. Complementary methods 
examine the data from different perspectives and together present an overview of complex 
patterns. On the opposite side, competitive methods focus on the same perspective or anal-
ysis task and their results can validate and crosscheck each other. The integrated approach 
couples a self-organizing map (SOM, which is a multivariate clustering and projection 
method), a regionalization method (which is based on spatially constrained hierarchical 
clustering), a multidimensional visualization component, and a multivariate mapping 
component. On one hand, the SOM and the regionalization method are competitors as 
they both seek clusters (with different cluster formulation algorithms and under different 
constraints). On the other hand, they both are complemented by the multivariate visualiza-
tion and mapping components so that information can be examined and understood. The 
integrated approach not only supports user interactions and multiple linked views but also 
merges or overlays results of different components (views) into a single view (overview). 
Such an overview facilitates an overall understanding of major patterns and efficiently 
guides user interactions toward the hot spots that warrant closer attention.

The remainder of the chapter is organized as follows. Related work is briefly 
reviewed in the next section, primarily focusing on clustering, regionalization, and 
geovisualization. Section 12.3 elaborates on the methodologies adopted in the research, 
including SOM-based clustering and color encoding; regionalization based on spatially 
constrained hierarchical clustering; and their integration with multivariate visualiza-
tion and mapping techniques. Section 12.1.4 presents an application of the approach 
for global climate change analysis. Finally, there is discussion and conclusion. The 
implemented software package is available at www.SpatialDataMining.org.

12.2 RELATED WORK

12.2.1 CLUSTER ANALYSIS

Cluster analysis is a widely used data analysis approach, which organizes a set of 
data items into groups (or clusters) so that items in the same group are similar to 
each other and different from those in other groups (Jain and Dubes 1988; Gordon 
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1996; Jain, Murty, and Flynn 1999). Many different clustering methods have been 
developed in various research fields such as statistics, pattern recognition, data min-
ing, machine learning, and spatial analysis. Different methods, or even the same 
method with different parameter configurations, can give quite different clustering 
results. Clustering methods may differ in many ways, including (1) the definition of 
distance (or dissimilarity) between data items (and between clusters), (2) the defini-
tion of “cluster,” (3) the strategy to group or divide data items into clusters, (4) the 
data types that can be analyzed (e.g., numerical, categorical, and spatial), and (5) 
application-specific context and constraints. It is beyond the scope of this chapter to 
provide a comprehensive review of clustering methods. Readers are referred to the 
surveys provided by Jain et al. (1999, 2000), Han et al. (2001) and Chapter 7 of this 
book. Below is a brief review of relevant methods for this chapter.

Clustering methods can be broadly classified into two groups: partitioning clus-
tering and hierarchical clustering. Partitioning clustering methods, such as K-means 
and maximum likelihood estimation (MLE), divide a set of data items into a number 
of nonoverlapping clusters. A data item is assigned to the “closest” cluster based on 
a proximity or dissimilarity measure. Hierarchical clustering, on the other hand, 
organizes data items into a hierarchy with a sequence of nested partitions or group-
ings. Hierarchical clustering can be represented with dendrograms, which consist of 
a hierarchy of nodes, each of which represents a cluster at a certain level (Jain and 
Dubes 1988). Commonly used hierarchical clustering methods include the Ward’s 
method (Ward 1963), single-linkage clustering, average-linkage clustering, and com-
plete-linkage clustering (Jain and Dubes 1988; Gordon 1996).

SOM (Kohonen 1997, 2001) is a unique partitioning clustering method, which 
not only segments data into clusters but also orders the clusters in a two-dimen-
sional layout so that nearby clusters are similar to each other. Therefore, SOM is also 
considered both a visualization method and a dimension reduction technique that  
projects multidimensional data to a 2-D space. SOMs are widely used in various 
research fields and application areas (see Kaski, Kangas, and Kohonen 1998; Oja, 
Kaski, and Kohonen 2003 for comprehensive reviews). There are also numerous 
applications of SOM in geographic analysis, for example, the visualization of census 
data (Skupin and Hagelman 2003), spatialization of nonspatial information (Skupin 
and Fabrikant 2003), and exploration of health survey data (Koua and Kraak 2004).

Clustering in general can be used to summarize or compress large data sets by aggre-
gating similar data items into clusters while preserving the overall data distribution and 
patterns. However, clusters (especially those derived with multivariate data) are not easy 
to interpret and understand unless they can be examined in the original multivariate data 
space and the geographic space (when the data also contains geographic information). 
Guo et al. (2005, 2006) present an approach that couples the SOM and geovisualization 
methods through color encoding and multiple linked views. This approach is adopted in 
this research as part of the integrated system (see Section 3.1).

12.2.2 REGIONALIZATION

General-purpose clustering methods, as those introduced in the previous section, 
normally do not consider geographic information or spatial constraints. Therefore, 
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data items in a cluster are not necessarily close or contiguous in the geographic 
space. In contrast, regionalization is a special form of clustering that seeks to group 
data items (or spatial objects) into spatially contiguous clusters (i.e., regions) while 
optimizing an objective function (e.g., a homogeneity measure based on multivari-
ate similarities within regions). Regionalization has long been an important analysis 
task for a large spectrum of research and application domains, for example, climatic 
zoning (Fovell and Fovell 1993), eco-region analysis (Handcock and Csillag 2004), 
map generalization (Tobler 1969), census reengineering (Openshaw and Rao 1995), 
and public health analysis (Haining, Wise, and Blake 1994; Osnes 1999).

Regionalization is a combinatorial problem. Given a large set of spatial objects, 
it is not feasible to enumerate all possible partitions or groupings to find the best set 
of regions (according to the objective function). Existing regionalization methods 
can be classified into four groups: (1) optimization through a trial-and-error search, 
(2) multivariate (nonspatial) clustering followed by spatial processing, (3) cluster-
ing with a spatially weighted dissimilarity measure, and (4) contiguity constrained 
clustering and partitioning. The first group, represented by the Automatic Zoning 
Procedure (AZP) method (Openshaw 1977; Openshaw and Rao 1995), starts with a 
random regionalization and iteratively improves the solution by switching boundary 
objects between neighboring regions. The second group uses a general clustering 
method to derive clusters based on multivariate similarity and then divides or merges 
the clusters to form regions (Fovell and Fovell 1993; Haining et al. 1994). The third 
type of regionalization method incorporates spatial information explicitly in the 
similarity measure for a general clustering method (e.g., K-means; Wise, Haining, 
and Ma 1997). The latest group of methods,  represented by SKATER (Assunção 
et al. 2006), a scale-space method (Mu and Wang 2008), and REDCAP (Guo 2008), 
explicitly considers spatial contiguity constraints (rather than spatial similarities) 
in a hierarchical clustering process. Particularly, both SKATER and REDCAP can 
optimize an objective function while partitioning the cluster hierarchy to obtain a 
given number of regions.

As the latest development, REDCAP is a family of six regionalization methods, 
which respectively extend the single-linkage, average-linkage, and complete-linkage 
hierarchical clustering methods to enforce spatial contiguity constraints during the 
clustering process (Guo 2008). These six methods are similar in that they all itera-
tively merge clusters (which must be spatial neighbors) until all data items are in 
one cluster. However, they differ in their definitions of “similarity” between two 
clusters. Among the six methods, the one based on the complete-linkage clustering 
[named Full-Order-CLK, see Guo (2008) for algorithms and evaluations] consis-
tently produces better regionalization results than existing methods in the literature. 
This regionalization method is included in the approach presented in this chapter 
(see Section 12.3.4).

12.2.3 GEOVISUALIZATION

Geovisualization concerns the development of theory, methods, and tools for the 
visual analysis and presentation of geographic data (i.e., any data with geographic 
information). As an emerging domain, geovisualization has drawn interests from 
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various cognate fields and evolved along a diverse set of research directions, as evi-
denced in a recent edited volume on geovisualization by Dykes, MacEachren, and 
Kraak (2005). To analyze multivariate spatial data, geovisualization research often 
draws upon approaches from related disciplines such as cartography, information 
visualization, and exploratory data analysis.

In the literature of information visualization, many techniques have been devel-
oped to visualize multivariate data, for example, stacked histograms and charts 
(Harris 1999), scatterplot matrices (Andrews 1972), glyphs (Pickett et al. 1995), pixel- 
oriented approaches (Keim and Kriegel 1996), and parallel coordinate plots (PCP) 
(Inselberg 1985). One of the major challenges for multidimensional (or multivariate) 
visualization is related to the number of dimensions (variables). The more dimen-
sions a dataset has, the more challenging to visualize the data and the more difficult 
for the analyst to recognize patterns across dimensions. To alleviate this problem, 
multivariate data are often projected to a lower dimensional space using dimensional 
reduction techniques such as multidimensional scaling (Wong and Bergeron 1997; 
Williams and Munzner 2004), principle component analysis (PCA), RadViz spring 
visualization (Bertini, Aquila, and Santucci 2005), SOM (Kohonen 1997, 2001), or 
other projection pursuit methods (Cook et al. 1995; Wong and Bergeron 1997).

In addition to high dimensionality, large data volume can also cause serious prob-
lems for most visualization techniques. A large number of data items often lead 
to a cluttered visual display (e.g., points overlapping in a scatter plot or line seg-
ments overlapping in a PCP) and thus make it very difficult (if possible at all) for the 
analyst to visually perceive patterns (Keim and Kriegel 1996). Several solutions to 
such overlapping problems have been proposed. One type of solution is to resolve 
the overlapping by data sampling, density mapping (Johansson et al. 2005), or re-
positioning (or shifting) data points (Keim et al. 2004). A second type of solution 
relies on user interactions to dynamically filter, select, zoom, and adjust detail levels 
in the visualization (reference). A third type of solution is to aggregate data items to 
a relative small number of clusters, visualize the clusters instead of data items, and 
then provide details (data items) for each cluster upon user request (Guo et al. 2003, 
2005; Ward 2004). This latter solution — data abstraction with drill down — is used 
in this chapter.

Maps are essential for visualizing geographic patterns. Multivariate mapping has 
long been an interesting and challenging research problem. One of the best-known 
approaches for multivariate mapping is the Chernoff face (Chernoff and Rizvi 1975), 
which visualizes multivariate data by relating different variables to different facial 
features to form a face icon for each data item and then draw each face icon on a map. 
Generally, multivariate mapping methods can be classified into three types. The first 
type, with the Chernoff face being an example, depicts each dimension (variable) 
independently through some attribute of the display and then integrates all variable 
depictions into one map using composite glyphs, attributes of color, or other methods 
(Grinstein et al. 1992; DiBiase et al. 1994; Wittenbrink et al. 1995; Gahegan 1998; 
Zhang and Pazner 2004). The second type uses multiple linked views (or maps) that 
show one (or more) variables per view (Monmonier 1989; Dykes 1998; MacEachren 
et al. 1999; Andrienko and Andrienko 2001). For example, Carr et al. (2005) pro-
posed the conditioned choropleth maps (CCmaps) that uses a two-way layout of 
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maps (arranged by two potential explanatory variables) to facilitate the exploration 
of potential associations between a dependent variable (as represented in colors) and 
the two explanatory variables. The third type projects data to a lower-dimensional 
(normally 1D or 2D) space through clustering, encodes the clusters with colors, and 
then uses the colors to generate a multivariate map (Guo et al. 2003, 2005).

There are three major challenges for multivariate mapping, including large data 
volume, high dimensionality, and the understandability (or perception) of complex 
patterns. The first type of mapping (e.g., composite glyphs and Chernoff faces) can-
not deal with either large datasets or many variables. The second type (e.g., multiple 
linked views) alone is not very effective in presenting an overview of major patterns 
as it relies on human interactions to visually detect connections and structures. The 
third type (with clustering, projection, coloring, and mapping) uses computational 
algorithms to summarize patterns and thus it can handle larger datasets and more vari-
ables. However, it needs visualization techniques to help understand the patterns.

12.3 AN INTEGRATED APPROACH TO MULTIVARIATE 
CLUSTERING AND GEOVISUALIZATION

12.3.1 A THEORETICAL FRAMEWORK

To build an integrated approach, it is necessary to examine the relations between dif-
ferent methods, which can be either complementary or competitive. Complementary 
methods usually analyze the data from different perspectives and help each other over-
come weaknesses. For example, multidimensional visualization can be complemented 
by a cartographic map to explore multivariate spatial data interactively (Andrienko 
and Andrienko 2001). Computational and visual approaches are usually complemen-
tary to each other as the former process and summarize large data sets while the latter 
can help present and understand the findings (Guo et al. 2003). In contrast, competi-
tive methods usually focus on the same analysis task (e.g., clustering). For example, 
two different clustering methods often produce different clusters from the same data 
due to different searching strategies or underlying constraints. It would be useful and 
often critical to be able to compare the results of such competitive methods, find 
commonalities, examine differences, crosscheck each other’s validity, and thus better 
understand the data and patterns. Although there are considerable efforts on integrat-
ing complementary methods, few have focused on competitive approaches.

The strategies to couple different methods may be classified into four groups (see 
Table 12.1):

 1. Different time and different view, for example, independently applying 
different methods to analyze the same data and examine their results 
separately

 2. Different time and same view, for example, one method’s output being anoth-
er’s input so that the final output is a joint outcome of the two methods

 3. Same time and different view, for example, simultaneously feeding the 
data into multiple linked views and examining their results side by side 
through brushing and linking
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 4. Same time and same view, for example, immersing or overlaying (Roberts 
2005) the results of different methods in a unified view to facilitate a holistic 
understanding across all perspectives (for complementary methods) and to 
support precise comparison and crosschecking (for competitive methods)

This classification scheme is borrowed from the research in collaborative deci-
sion making or group work, which distinguishes four different types of collaboration 
among people according to location and time (Jankowski et al. 1997).

The primary difference between the third group and fourth group is that the former 
has to rely on human interactions (e.g., brushing and linking) to perceive the connec-
tion between multiple views, while the latter merges different results into the same 
view so that one can perceive an overview of major patterns even without human inter-
actions. However, interactive exploration and multiple linked views remain important 
when it comes to concise understanding and detailed inspection of specific patterns.

The integrated approach presented in this section (1) couples both complimentary 
approaches and competitive methods, and (2) supports both the same-time-different-
view and same-time-same-view coupling strategies. The design framework for the 
approach is illustrated in Figure 12.2. A SOM is extended to perform multivari-
ate clustering, dimension reduction, and pattern encoding with colors. The clusters 
(with association to data items) and their colors are passed on to a multivariate map-
ping component and a multivariate visualization component. The multivariate map 
uses the colors (assigned by the SOM) to represent multivariate information and the 
multivariate visualization signifies the meaning (i.e., multivariate characteristic) of 

TABLE 12.1
A Scheme for Classifying Integrated Approaches

Different View Same View

D
if

fe
re

nt
 T

im
e

Independent application of different 
methods and examine their results 
separately.

Sequential application of two different methods 
and one method’s output is the other method’s 
input.

Example: Performing two cluster 
analyses (separately) with two different 
methods.

Example: Principle Component Analysis  using 
principle components to render a scatterplot 
matrix.

Relation: Competitive Relation: Complementary

Sa
m

e 
T

im
e

Parallel application of different methods 
and comparing results in different views 
with user interactions such as brushing 
and linking.

Parallel application of different methods and 
immersing or overlaying results in a unified 
overview.

Example: Multiple linked views (e.g., 
PCP + Scatterplot + Map + user 
interactions)

Example: Multivariate patterns are coded with 
colors and shown in a map, which also overlays a 
regionalization result (polygons).

Relation: Complementary and/or 
competitive

Relation: Complementary and/or competitive

 

© 2009 by Taylor & Francis Group, LLC



Multivariate Spatial Clustering and Geovisualization 333

those colors. In other words, the multivariate visualization component serves as the 
“legend” for the multivariate map. A regionalization method, as a competitor to the 
SOM, takes the same data input and derives homogeneous regions, which are over-
laid in the multivariate map. Thus, one can easily perceive an overall picture of how 
the multivariate patterns (colors) change over the geographic space and how the two 
clustering results (polygons and colors) agree with or differ from each other. With 
interactions (e.g., brushing and linking across different views), the analyst may focus 
on specific patterns (e.g., a cluster, a region, or a specific data item) and examine 
details (e.g., showing all the data items contained in a cluster).

The following subsections focus on individual components in the framework, that 
is, clustering with SOM, multivariate visualization and mapping, and regionaliza-
tion. User interactions will be demonstrated through the global climate analysis pre-
sented in Section 12.4.

12.3.2 MULTIVARIATE CLUSTERING AND PATTERN ENCODING

A SOM is a special clustering method that seeks clusters in multivariate data and 
orders the clusters in a two-dimensional layout so that nearby clusters are similar in 

FIGURE 12.2 The framework for the integrated approach, which can be naturally expanded 
by adding new components or replacing current components.
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terms of multivariate characteristics (Kohonen 2001). Each cluster (node) is associ-
ated with a multivariate vector (or codebook vector), which represents the centroid of 
the cluster in the multivariate space. A SOM first arranges a user-specified number 
of nodes in a regularly spaced grid and then initializes each node by assigning its 
codebook vector randomly (or using any specific initialization method). During the 
learning process, the SOM iteratively adjusts each codebook vector according to the 
data items falling inside the node (cluster) and the codebook vectors of its neighbor-
ing nodes. Once the learning is complete, each node has a position in the multivariate  
space and all the nodes in the SOM form a nonlinear surface in the multivariate 
space. Then data items are projected onto the surface by assigning each item to its 
nearest cluster (whose codebook vector is most similar to the data item). Although 
SOM nodes are equally spaced in the two-dimensional layout, their codebook vec-
tors are not equally spaced in the multivariate space. Rather, the distribution of nodes 
adapts to the actual data density — dense areas (in the multivariate space) tend to 
have more clusters.

Figure 12.3 (top left) shows the implementation of a SOM in this research. Each 
SOM node (cluster) is represented with a circle, whose size (area) is linearly scaled 

Clustering with SOM Multivariate Mapping

Multivariate Visualization of Clusters Multivariate Visualization of Data Items

FIGURE 12.3 This is the overview of multivariate (seasonal) and spatial patterns of global 
climate (temperature) change. The multivariate mapping component (top right) is the cen-
tral view, while other views can assist the understanding of the map. From such an inte-
grated overview, one can easily perceive the major patterns in the data even without user 
interactions. See color insert after page 148.
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according to the number of data items that it contains. Nodes (circles) are equally 
spaced in a two-dimensional space. Behind the nodes (circles), there is a layer of 
hexagons, which are shaded to show the multivariate dissimilarity between neigh-
boring nodes — darker tones represent greater dissimilarity. Such a view is called 
the U-matrix (Kohonen 2001), which can reveal natural clusters and data distribu-
tions in the multivariate space. Clusters (nodes) in a brighter area are more similar 
to each other than those in a darker area are. Dark ridges in the U-matrix signify 
natural divides in the data. For example, the SOM in Figure 12.3 has 49 nodes and 
the U-matrix indicates that there are three high-level clusters: the top-left corner (in 
green colors), top-right corner (in red colors), and the bottom triangular area (in blue, 
purple, and white colors).

With the U-matrix, a SOM is also considered a visualization method that can show 
inherent structures in the data. However, as is true with most multivariate clustering or 
dimension reduction methods, it is not easy to find out the meaning (i.e., multivariate  
characteristics) of each cluster (node). Traditionally each SOM node is labeled (using 
item names or keywords) to indicate the kind of data items that are covered by the 
node. However, such a labeling strategy becomes less useful when the data set is 
large or it is not convenient to summarize data items with keywords. This research 
adopts the strategy proposed by Guo et al. (2005), which uses a two-dimensional 
color scheme to assign a unique color to each SOM node so that nearby (and therefore 
similar) clusters have similar colors (see Figure 12.3, top left). In other words, the 
SOM surface is folded onto a color surface so that colors represent the multivariate  
patterns (clusters). Colors are then passed on to other visualization components where 
multivariate meanings of colors (and thus clusters) can be understood.

12.3.3 MULTIVARIATE VISUALIZATION AND MAPPING

To reveal the multivariate meaning of SOM clusters (which are now represented by 
colors), an extended version of a PCP (Guo et al. 2005, 2006) is used. The PCP can 
visualize the data at two different levels: the cluster level or the data item level. At 
the cluster level, the PCP shows each cluster as a single entity (string) and thus par-
tially avoids the overlapping problem. Each string (which represents a cluster with its 
mean vector) has the same color as the cluster does in the SOM. Figure 12.3 (bottom 
left) shows a PCP at the cluster level. The thickness of each string is proportional 
to the cluster size. At the data item level, each string in the PCP represents an indi-
vidual data item (see the bottom-right plot in Figure 12.3). Each string (data item) 
has the same color as that of its containing cluster. Evidently, the colors dramati-
cally improve the visual effectiveness of the PCP in presenting multivariate patterns. 
Without colors, it would be very difficult to track each string across many dimen-
sions (variables). By comparing the PCP at the two different detail levels, we can 
also see that the aggregation of data items into clusters significantly helps accentuate 
major patterns.

With the clusters (and colors) derived by the SOM, it is straightforward to create a 
multivariate map (see Figure 12.3, top right), which is similar to a univariate chorop-
leth map except that colors now represent multivariate information. This map is an 
overview of the spatial distribution of multivariate patterns. The PCP introduced 
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previously serves as the legend for interpreting the meaning of colors (e.g., what does 
a green color represent in the map?).

The three visual components (i.e., SOM, PCP, and map) allow a variety of user 
interactions such as selection-based brushing and linking. A selection made in one 
component will be highlighted in all other components simultaneously. A selection 
can be progressively refined by, for example, adding or subtracting new selections. 
The user may select at either the cluster level or the data item level. For example, one 
may show data at the item level in the PCP and select a single data item to read its 
exact variable values. To respond to this single item selection, the SOM will high-
light the cluster that contains the selected data item and change the circle to a wedge 
accordingly if that item is not the only one in that cluster. Some of these interactive 
features will be demonstrated in Section 12.4.

12.3.4 REGIONALIZATION WITH SPATIALLY CONSTRAINED 
HIERARCHICAL CLUSTERING

Regionalization is a unique multivariate spatial analysis task that seeks to group 
data items (or spatial objects) into spatially contiguous regions while optimizing an 
objective function. Among the six regionalization methods in the REDCAP family 
(Guo, 2008), this research adopts the full-order-CLK regionalization method, 
which extends the traditional complete linkage clustering method to consider geo-
graphic contiguity constraints. Readers are referred to Guo (2008) for detailed algo-
rithms and evaluations. In the following is a brief and conceptual explanation of the 
method.

The complete linkage clustering (CLK) defines the distance (or dissimilarity) 
between two clusters as the longest distance (dissimilarity) between all possible pairs 
of data items across the two clusters. Therefore, CLK considers two clusters similar 
only if all the observations in the two clusters are similar to each other. At the begin-
ning of the clustering, each individual data item is a cluster by itself. With an iterative 
merging process, the most similar pair of clusters is merged into one cluster at each 
step. This merging process repeats until all data items are in the same cluster.

To extend the CLK clustering to consider spatial contiguity constraints, the full-
order-CLK regionalization method requires that two clusters cannot be merged if 
they are not spatially contiguous. At each iteration step, the most similar pair of  
spatially neighboring clusters will be merged. A contiguity matrix of clusters is 
maintained and updated during the clustering process. With this extended CLK algo-
rithm, it is guaranteed that each cluster (at any level in the hierarchy) occupies a spa-
tially contiguous region. Although this may seem simple conceptually, it demands a 
rather complicated algorithm to achieve an acceptable efficiency. The algorithm pro-
posed in Guo (2008) achieves a time complexity of O(n2logn) and space (i.e., RAM 
memory) complexity of O(n2).

Deriving a hierarchy of spatially contiguous clusters is only halfway to the final 
regionalization result. The hierarchy of clusters will be re-partitioned from the top 
down to obtain a number of regions while optimizing an objective function. This 
partitioning step is necessary especially when the objective function includes other 
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criteria (e.g., region size limit) besides multivariate similarity within regions. In this 
research, the objective function is to minimize the overall heterogeneity and (option-
ally) to satisfy a minimum region size threshold (i.e., a region cannot be smaller than 
the threshold size). The heterogeneity of a region is defined as the sum of squared 
differences between each data item in the region and the region mean vector. The 
overall heterogeneity for a regionalization result is the total of the heterogeneity val-
ues of all regions. The partitioning process is iterative — one region is selected 
(according to the objective function) to cut into two at each step until a specified 
number of regions is obtained. The detail of this partitioning algorithm is available 
in (Guo 2008).

12.4 APPLICATION IN GLOBAL CLIMATE CHANGE ANALYSIS

12.4.1 DATA SOURCE AND PREPROCESSING

The climate data being analyzed is a spatio-temporal data set of monthly mean surface 
air temperature for 60 years (Jan. 1948–Dec. 2007). It has a global coverage based on a 
matrix of 2.5  latitude by 2.5  longitude grid, ranging from 90N to 90S and from 0E to 
357.5E. This data set is part of the NCEP/NCAR re-analysis data archive (Kalnay et al. 
1996), which is available at: ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/. 
The analysis task is to discover global climate change patterns with a focus on surface 
air temperature and global warming.

To analyze temperature changes (i.e., warming or cooling), an anomaly value is 
calculated for each month and each grid cell following three steps. First, a 40-year 
average temperature (1948–1987) is calculated for each grid cell and month. Then the 
10-year average temperature for 1998–2007 (i.e., the most recent 10 years) is calcu-
lated for each grid cell and each month. Finally, an anomaly value is derived by tak-
ing the difference between the 40-year average (1948–1987) and the 10-year average 
(1998–2007). A positive anomaly value represents a temperature increase (warming) 
for a specific month and grid cell during the last 10 years (compared to the average 
temperature during the 40-year period, for the same month and location). To smooth 
the data and remove some noise, the grid cells are aggregated to a 5° × 5° resolution by 
merging each 2 × 2 block of original cells. Thus, the original data is transformed to a 
12 × 72 × 37 cube. In other words, the data set has 2664 spatial objects (grid cells) and 
12 variables (monthly anomalies). For the regionalization method, two grid cells are 
considered neighbors if they share a side (i.e., the rook type of contiguity).

12.4.2 DISCOVERING CLIMATE CHANGE PATTERNS

There have been extensive research efforts on global climate change (Houghton  
et al. 2001). To understand global temperature changes (warming or cooling), exist-
ing analyses usually examine the data from a selected perspective, for example, 
analyzing temporal trends of global annual temperatures (ignoring geographic and 
seasonal variations) or mapping spatial distributions of annual temperature anoma-
lies (ignoring their seasonal variations). The integrated approach introduced here 
offers a more comprehensive methodology that can examine seasonal trends and 

© 2009 by Taylor & Francis Group, LLC

ftp://ftp.cdc.noaa.gov


338 Geographic Data Mining and Knowledge Discovery

geographic variations simultaneously, which enables a more effective and efficient 
exploratory process for more complex patterns.

Figure 12.3 shows the overview of patterns in the data (without using the region-
alization method). The SOM derives 49 clusters and the shaded U-matrix suggests 
that there are three high-level groups of clusters: the green/light-green nodes at the 
top left corner, the red-reddish nodes at the top right corner, and the rest (blue/white/
purple) nodes at the bottom and the center. The PCPs and map can then help in under-
standing the meaning of these groups. The green and light green clusters, which are 
mainly in the Antarctic area, had high positive anomaly values for winter months 
(April–September) and negative values for summer months (January, February, 
November, and December). In other words, for the last 10 years the Antarctic area 
became much warmer in winter but cooler in summer. In contrast, the red/reddish 
clusters, located primarily in the Arctic area, had very high positive values for win-
ter and around zero for summer (June, July, and August). This means that, for the 
last 10 years, the Arctic areas were much warmer in winter but relatively stable for 
summer. The difference in patterns for the Arctic and Antarctic areas for the last 10 
years is very interesting — both showed a warming trend in winter but the Antarctic 
area actually was cooler than before during winter. This may potentially and par-
tially explain why the ice cap in the Arctic diminishes while the Antarctic ice cap 
recently grew to a historical maximum since 1979 (see http://arctic.atmos.uiuc.edu/
cryosphere/, which updates snow and ice extent for both hemispheres daily).

One may notice that in the cluster-level PCP (Figure 12.3, lower left), a red cluster  
represents the highest positive values (i.e., the most severe warming trend) in January 
and December. To examine this cluster in detail, we select the string of that cluster in 
the PCP or select the node in the SOM (see Figure 12.4). The PCPs (one at the cluster 
level and the other at the data item level), SOM, and the map all highlight the selected 
cluster/items by hiding other clusters and items. Then we can examine all the data 
items covered by this cluster in the item-level PCP and understand that those places, 

FIGURE 12.4 Human interaction with multiple linked views. A cluster is selected in the 
SOM and other components respond by highlighting the cluster or data items are selected.

Mean vector of the selected cluster Data items contained in the cluster

Select a Cluster ... Geographic Distribution of the Cluster
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which have experienced the most dramatic warming effect in winter, are exclusively in 
the coastal area along the Arctic Ocean. Guided by the overview and facilitated by user 
interactions, one can efficiently obtain a variety of new knowledge from the data.

12.4.3 COMPARING REGIONALIZATION AND SOM RESULTS

The regionalization method is also applied to the data to search regions of similar 
climate change patterns. Figure 12.5 shows two 5-region results: one has no region 
size limit (bottom right map) and the other result requires that each region be larger 
than 200 grid cells. The plot at the lower left corner shows the relationship between 
the number of regions and the overall heterogeneity value. For the first two cuts (to 
get two or three regions), the heterogeneity value drops dramatically. Further cuts 
(i.e., more regions), however, cannot significantly reduce the heterogeneity value. 
This suggests that there are three natural regions, which are the Arctic (region 1 
in the top map), the Antarctic (region 5 in the top map), and the rest of the world. 
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FIGURE 12.5 Two regionalization results. The small map shows five regions derived without 
a size constraint while the top (larger) map shows five regions under a size constraint (i.e., a 
region must be larger than 200 grid cells). See color insert after page 148.
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With a size constraint, the regionalization method will not divide a region if one 
of the resultant regions is smaller than the size constraint. For example, if the size 
constraint is 200, the method can only produce at most nine regions because having 
more regions will result in a region that is smaller than the size limit (see the plot in 
the lower left corner in Figure 12.5).

By examining how the regions match the colors in the map, we can make two 
interesting observations. On one hand, a region tends to contain similar colors and 
region boundaries approximately follow color discrepancies (i.e., where colors change 
dramatically). This indicates that the regionalization and the SOM clustering are in 
good agreement. On the other hand, when there is no size constraint (see the smaller 
map in Figure 12.4), the regionalization method divides the Antarctic area into two 
regions (regions 4 and 5 in the small map) before partitioning region 3 (which is 
visually more heterogeneous — in terms of colors — than the Antarctic region). 
This reflects the methodological differences between the SOM and the CLK cluster-
ing. As explained in Section 12.3.2, the SOM can adapt to the data distribution and 
tend have more nodes (and thus more colors) in a dense (but similar) data area. The 
complete linkage clustering, however, does not adapt to data distribution and strictly 
follows the distance measure. Thus, it will produce large clusters in dense areas and 
many smaller clusters in sparse areas.

Through the integration of SOM and regionalization, one can better understand 
both the methods and their results. The integrated approach makes it possible for the 
user to inspect in detail how a regionalization method works, understand the meaning 
of regions, and gain insights. Figure 12.6 shows a selection of the Antarctic region 
(as derived by the regionalization method) to take a closer look at its multivariate 

FIGURE 12.6 An example of user interactions with regions and multivariate information.

Select a region in the map
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characteristic and internal variation. The data items (i.e., grid cells) contained in 
this region belong to several SOM clusters and some of the clusters are only being 
partially selected (shown as wedges, proportional to the percentage of items being 
selected in that cluster). The cluster-level PCP (Figure 12.6, lower right) will re-
calculate the mean vector for each partially selected cluster based on selected items 
only. From the PCPs and the map, we can see how the multivariate (seasonal) pat-
terns change within the region. From the SOM, we can see that the data items con-
tained in the selected region are also recognized by the SOM as a similar group 
(which occupies the top left corner of the SOM — see Figure 12.6, top right).

12.5 CONCLUSION AND DISCUSSION

This chapter introduces an integrated approach to multivariate clustering and 
geovisualization, which builds upon the synergy of multiple computational and 
visual methods. As demonstrated with its application for climate data analysis, the 
approach can effectively facilitate the exploration and understanding of complex 
patterns in multivariate spatial data sets. Its unique strength is evident in several 
aspects. First, by leveraging the power of computational methods (e.g., clustering), 
it can handle larger datasets and more variables than would be possible with visual 
methods alone. Second, it effectively synthesizes different perspective informa-
tion (e.g., multivariate relations and geographic variations) to enable an overview 
of complex patterns across multiple spaces. Third, its component-based design 
provides flexibility to extend the system by adding new components or replacing 
current components.

Through the static linking (via colors and overlay) and user interactions (via 
brushing and linking), complex relationships can be perceived and understood 
easily. The consistent use of colors across all visual components significantly 
improves the presentation of connections between different views. However, there 
is a limitation on the color configuration — it is not always possible to assign a 
cognitively meaningful color to each cluster. The color surface must be smooth 
and continuous, meaning that the user may not always be able to assign a desir-
able color to a cluster, for example, a red color to represent a warming trend and 
a blue color to represent a cooling trend. The software allows the user to rotate or 
flip the two-dimensional color surface to find a reasonable match between clusters 
and colors. Another potentially confusing factor is that when the user interactively 
changes the size of the SOM (i.e., the number of nodes), the resultant clusters are 
different, and thus the multivariate meaning of colors will change. In other words, 
the same color may represent two different groups of data items for different runs 
of the SOM (with different parameters).

Spatial analysis tasks are often application-dependent and the data may vary 
dramatically. The set of methods introduced in this chapter is only suitable for the 
analysis of lattice data, which contains a set of spatial objects and a multivariate  
vector for each object. It is not applicable, for example, to the analysis of point pat-
terns or network-based phenomena. However, the general concept and framework 
for the integration of different methods will remain a viable direction for addressing 
other complex spatial analysis problems.
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13 Toward Knowledge 
Discovery about 
Geographic Dynamics in 
Spatiotemporal Databases

May Yuan

13.1 INTRODUCTION

This chapter proposes spatiotemporal constructs and a conceptual framework to 
lead geospatial knowledge discovery beyond what is directly recorded in databases. 
While knowledge discovery is fundamentally a data-driven approach to elicit novel, 
previously unknown patterns from massive, heterogeneous data, what we can dis-
cover from a database is constrained by what can be conceptualized and therefore 
represented in the database. Just as analytical possibilities for the data depend on 
the chosen representation schemes (Miller and Wentz 2003), the knowledge that can 
be discovered from data records is limited to patterns and rules of the data objects 
represented in the employed data models. Conventional geospatial data models adopt 
space-centric representations. Geospatial facts are recorded based on geometry and 
location, and, therefore, the knowledge that can be discovered is constrained to pat-
terns and relationships derived from geometry and location.
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Going beyond what is directly recorded in spatiotemporal databases, geospatial 
knowledge discovery seeks geographic constructs at a higher level of conceptualiza-
tion than location and geometry. In addition to discerning spatiotemporal clustering 
of points representing locations of infected cases, for example, higher-level concepts, 
such as the spread of infectious disease and movements of infected individuals in 
relation to the spatiotemporal behavior of the spread, can provide a richer field for 
knowledge discovery to facilitate understanding and decision making.

Geographic dynamics are considered here as the umbrella concept of high-level 
spatiotemporal constructs. Dynamics is a common term used to characterize the 
work of forces that drive the behavior of a system and the system’s components 
individually and collectively. Dynamics in an ecological system, for example, are 
reflected by interactions among species and habitats, and their feedback mechanisms 
across spatial and temporal scales. Dynamics result in change. Changes to one sys-
tem component may trigger adjustments to the behavior and interactions of the other 
components and, ultimately, the system’s dynamics. Likewise, geographic dynamics 
give rise to the spatiotemporal behavior of components and their interactions and 
consequently produce changes in a geographic system.

Nevertheless, geographic dynamics are a complex concept, and it is challenging 
to categorize spatiotemporal constructs that are universal to serve the knowledge 
needs for all domains. The premise here is that activities, events, and processes are 
general spatiotemporal constructs of geographic dynamics. Attempts to understand 
geographic dynamics can be achieved by formulating knowledge about activities, 
events, or processes involved in the domain of interest. Therefore, discovery of 
knowledge about geographic dynamics eventually aims at synthesizing information 
about activities, events, or processes, and through this synthesis to obtain patterns 
and rules about their behaviors, interactions, and effects.

While there are no unified definitions for activities, events, and processes among 
disciplines, the next section (Section 13.2) discusses the key distinctions and con-
cepts associated with each spatiotemporal construct with attempts to highlight the 
needed information for each construct. With the spatiotemporal constructs, the con-
cept of geographic dynamics are extended from geographic space in a general GIS 
analysis framework (Section 13.3). Considerations are elaborated to ensure a mean-
ingful assemblage of these constructs (Section 13.4), and a conceptual framework is 
proposed to guide the elicitation of geographic dynamics from spatiotemporal data-
bases (Section 13.5). The concluding section synthesizes key ideas, contributions, 
and research challenges (Section 13.6).

13.2 SPATIOTEMPORAL CONSTRUCTS OF GEOGRAPHIC 
DYNAMICS: ACTIVITY, EVENT, AND PROCESS

Philosophical, conceptual, cognitive, and methodological fundamentals of space 
and time have been discussed broadly in temporal GIS literature (Langran 1992; 
Egenhofer and Golledge 1998; Peuquet 2002). Important concepts are examined 
extensively, such as the continuous, discrete, fuzzy, linear, cyclic intermittent, instan-
taneous, and persistent nature of space and time. While the current GIS technology 
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lacks robust representations and functions to adequately handle the full spectrum of 
geographic dynamics, many researchers have proposed spatiotemporal data models 
over the last two decades to capture information about activities (Wang and Cheng 
2001; Frihida et al. 2002), events (Peuquet and Duan 1995; Worboys and Hornsby 
2004; Worboys 2005; Beard 2007), and processes (Yuan 2001; Pang and Shi 2002; 
Reitsma and Albrecht 2007). Most publications, however, only address one of the 
three spatiotemporal constructs. This section attempts to discuss the three constructs 
in the context of geographic dynamics exploration.

A geospatial activity is an action taken by one or more agents, such as going to 
school, shopping, or jogging. Agents may be any active beings, including entities or phe-
nomena. Humans, animals, volcanoes, rivers, and cultural groups are a few examples. 
Information about an activity provides a summary of an agent and actions that invoke 
the activity. Key information to characterize an activity may include activity type, agent, 
action, when, duration, frequency, where, and outcome. Many organizations or clubs 
provide templates for members to keep activity logs for time management analysis or 
other applications (Figure 13.1). With the combined popularity of global positioning 
systems (GPS), GIS services, and agent-based modeling, activity-based research has 
grown significantly over the last five years by tracking the movement of individuals, 
including animal movements (Bennett and Tang 2006). Activity-based analysis is also 
particularly common in travel pattern analysis and transportation research (Kwan 2004; 
Charypar and Nagel 2005; Chen et al. 2006; Davidson et al. 2007).

Some geographic activities are stationary, but others may be mobile. Stationary 
activities may be held simultaneously at multiple locations. For example, votes may 
be cast simultaneously at multiple polling stations. Other stationary activities are 
doing homework, sewing, and cooking. Points or a group of points can serve as the 
spatial representation of stationary activities. For mobile activities, like shopping 
or jogging, chains of points or point groups will be needed to denote locations over 
time. However, whether an activity is stationary or mobile depends on the scale of 
observation. Cleaning a house is a stationary activity at the scale of houses but is a 
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mobile activity at the scale of rooms. Likewise, the temporality of an activity depends 
upon the scale of observation. Daily activities may be overlooked when data are col-
lected monthly, for example. Knowledge about activities emphasizes the agents, their 
actions, and outcomes of their actions. Exploring activities taken by an individual 
can reveal the whatabouts and whereabouts of the individual over a period. Besides 
tracking applications, results can help individuals with time management. Exploring 
activities among a group provides information about the location and frequency of 
the group activities, as well as opportunities for additional group activities.

A geospatial event is a notable occurrence when certain conditions have been met. 
Notability depends upon the scale of observation in space and time. These conditions 
may be environmental and activity-oriented. To hold a meeting, we need conditions 
in which participants can exchange ideas and discuss issues; a game requires condi-
tions to enable competitors to participate in a contest; or a traffic accident happens  
when conditions trigger a vehicle collision. Information about an event provides 
a spatiotemporal summary of what has happened. The summary may include the 
preconditions, the components involved, and the consequences. As an example, 
Figure 13.2 shows a tornado event report archived at the U.S. National Climate Data 
Center (http://www.ncdc.noaa.gov).

Key information to characterize an event may include event type, cause or trig-
ger, participants, when, duration, periodicity, where, and consequence. Event-based 

FIGURE 13.2 An example of event reports.
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approaches are common in geosciences (Guo and Adams 1998; Minocha et al. 2004), 
operation research (Glen 1996), computer architecture and programming (Galdámez 
et al. 1999; Hermanns et al. 2005; Belli et al. 2007), linguistics and media analysis 
(Lund 2000; Zelnik-Manor and Irani 2001; Ou et al. 2006), political science and  
history (McLaughlin et al. 1998; Boehmke 2005), and many other fields.

While an activity requires one or more active beings to act, events take place 
when conditions permit. Exploring events seeks notable happenings that generate 
outcomes. While outcomes may not be apparent right after an event, outcomes are 
as important as the event itself. Like activities, events can be stationary or mobile; 
events can be intermittent or continuous; and events can reoccur in space and time. 
These spatiotemporal characteristics are also applicable to the consequences of an 
event or interactions of events. Discovery of knowledge about events can help us 
understand what happened, where it happened, how often it happened, what initial or 
boundary conditions afford the happening, and what outcome was produced.

A geospatial process is a progression of continuous or discrete states and phases 
of a dynamic system. A carbon cycle process, for example, is driven by primary 
production, respiration, and fossil fuel emission. Carbon fluxes cycle through several 
carbon reservoirs in plants, soils, fossil fuels, atmosphere, and ocean where defores-
tation, land use change, and industrial combustion provide the forcing necessary to 
carry out the cycle (Figure 13.3). Being carried out by a series of actions or events, 
a geospatial process may transform the system continuously from one state-phase to 
another with smooth transitions. In contrast, a geospatial process may exhibit step-
wise development or stochastic behavior. Information about a process needs to cap-
ture every sequence of state-phases and transitions over space and time to elaborate 
on the sequential changes of states and phases in a geographic system.

Key information to characterize a process may include process type, drivers, state, 
phase, phase duration, phase transition, when, where, and becoming. Understanding 

Source: Intergovernmental panel on climate change, climate change 2001: The scientific basis (U.K., 2001) 
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processes is arguably one of the key motivators to all scientific inquiries. Process-based 
modeling is fundamental to all natural (Casalí et al. 2003), biological and ecological 
(Friend et al. 1997), social and political (Szayna 2002), and behavioral sciences (Bloch 
et al. 2005). In addition, sociologists and historians also aim to understand historical 
processes (Clemens 2007; Dreassi and Gottard 2007; Johnson 2007), and business 
managers strive to understand production and sales processes (Moreno and Roberto 
1995; Greasley 2003).

Compared to activities and events, processes emphasize the path of becoming. 
Along the path, there are states and phases that transition from one to the next. The 
path can be linear (e.g., lifelines), cyclic (e.g., carbon cycle), or spiral (e.g., commu-
nity planning). States summarize the characteristics of a process at a given time or 
period. Phases indicate the developmental stages of distinct periods. The distinction 
may be determined by significant changes in states or functions of the process.

While research usually addresses activities, events, or processes separately, the 
three spatiotemporal constructs are scale-dependent in the context of geographic 
dynamics (Yuan and Hornsby 2007). Activities, events, and processes can be con-
sidered as different levels of abstraction and they interact. For example, jogging is 
considered as an activity when we emphasize the action (e.g., we went jogging two 
hours ago). Jogging can be an event, if the emphasis is on happening (e.g., someone 
jogged across the street). Likewise, jogging can be considered a process with an 
emphasis on stages of jogging (e.g., Mary has a good jogging technique. She begins 
at a slow pace, raises her knees with each step, lands on her heel and pushes off for 
the next step with the ball of her foot, keeping her arms relaxed, bent at no less than 
a 90° angle, and swings them gently with each step, breaths easily and deeply, and 
keeps her head up). A jogging event (such as a marathon) involves many joggers 
doing jogging activities, and each jogger may practice different processes of jog-
ging techniques. In addition, a process may consist of many events that drive phase 
transitions in the process, such as a community planning process that is driven by 
several stakeholder meetings and activities within each and between each meeting. 
On the other hand, an event may consist of many processes and activities such as 
a holiday parade that has different stages of floats with activities to entertain the 
bystanders.

With the three spatiotemporal constructs, knowledge discovery of geographic 
dynamics can inquire as to what happened (event), how did it happen (process), and 
what were the agents and actions involved (activities). For example,

What are the geospatial activities, events, and processes in the geographic 
system of interest? How do they relate?
What are the geographic components that may be influenced by these 
activities, events, and processes? How do the influences manifest them-
selves in space and time? How can the influences be observed and mea-
sured quantitatively or qualitatively?
What are similar activities? What are the common settings in which simi-
lar activities take place? (Similar questions to events and processes.)
In retrospect, what synthesis of geospatial activities, events, and processes 
is needed to improve understanding of their behavior and relationships?
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A conceptual model integrating activities, events, and processes will free any 
implicit or explicit pre-assumptions of what geographic dynamics are to be dis-
cerned from a spatiotemporal database. Depending upon one’s emphasis in under-
standing geographic dynamics, discovery of knowledge about geographic dynamics 
can explore activities, events that trigger these activities, and processes in which 
these activities evolve. Alternatively, one can center on processes to explore events 
that perturb these processes and activities that system components take to adjust the 
perturbations. The following section incorporates activities, events, and processes 
into an existing conceptual framework for spatial analysis of geographic space and 
suggests a logical extension of the conceptual framework to geographic dynamics.

13.3 EXTENDING GEOGRAPHIC SPACE TO GEOGRAPHIC 
DYNAMICS IN A GIS ANALYSIS FRAMEWORK

Similar to the inherent tension between spatial analysis and representation (Miller 
and Wentz 2003), knowledge discovery is also restricted by the selective approxima-
tion of reality captured by the chosen representation scheme. Expanding upon the 
representation framework proposed by Miller and Wentz (2003), Figure 13.4 illus-
trates a conceptual framework for geographic dynamics. The geographic measure-
ment framework provides locations and spatial measurements based on geographic 
observations. When summarizing locations and measurements at locations over attri-
butes, higher-level spatial constructs emerge as forms (or features) and relationships 
that give meaning to geography. The expanded conceptual framework of geographic 
dynamics takes what is identified in geographic space as project activities, events, and 
processes through sequencing footprints (e.g., forms and relationships in geographic 
space) to recognize change and movement over space and time. Activities, events, 
and processes drive change and movement. Change and movement meanwhile serve 
as observables of geographic dynamics. Nevertheless, observations of change and 
movement result from comparisons of differences in footprints over time.

As the geographic measurement framework supports geographic space where 
geographic forms and relationships emerge, geographic space supports geographic 
dynamics where geographic footprints of forms and relationship change (or move) 
over time and suggest driving forces motivated by activities, events, or processes. 
Implicitly, the support of the geographic measurement framework to geographic 
space relies on prior identification of phenomena or entities and associated sets of 
measurable attributes. There is a rich set of GIScience literature that provides in-depth 
discussion on geographic phenomena and entities (Couclelis 1992; Goodchild 1992; 
Burrough and Frank 1996; Peuquet et al. 1998; Smith and Mark 1998; Mark et al. 
1999; Bennett 2001). For the support of geographic space to geographic dynamics, 
activities, events, and processes provide the necessary links from spatial to dynamic 
constructs.

Activities, events, and processes create footprints in space and time, and by 
sequencing these footprints, the space–time path and evolution of the geographic 
dynamics can be reconstructed. For activities, footprints indicate the locations of 
an agent, and sequencing these footprints therefore follows the agent. For an event, 
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footprints are aggregates of all locations where the event occurred. Aggregated foot-
prints provide a space–time composite view of the happening, and summarize its 
outcomes and consequences in the environment. As to processes, footprints repre-
sent states. Footprints of a process should be sequenced based on the spatiotemporal 
resolution of the data and spatiotemporal characteristics of the process. A two-stage 

FIGURE 13.4 A general GIS analysis framework for geographic dynamics and geographic 
space (expanded from Miller and Wentz 2003).
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strategy may be useful: first, connect sets of similar footprints to form phases, and 
second, connect phases of footprints to reconstruct the development of the process.

Once footprints are established and sequenced, information about change and 
movement can be synthesized to characterize the geographic dynamics. Change 
has been a key concept in temporal GIS research. Key categories of change include 
no change, appearance, disappearance, expansion, contraction, deformation, split, 
merge, displacement, rotation, convergence, and divergence. These categorization 
schemes serve as the foundation for change analysis. A next step is to address how to 
sequence footprints to facilitate the recognition of changes resulting from activities, 
events, and processes and investigation of their behaviors and interactions.

Nevertheless, determination of footprints from the same geographic dynamics is 
a nontrivial task. The next section suggests considerations useful to sequence foot-
prints for the development of knowledge discovery algorithms. Effective algorithms 
for knowledge discovery of geographic dynamics will first probe footprints resulting 
from the same geographic dynamics and order them in proper sequences to assemble 
spatiotemporal traces of the geographic dynamics. Next, the conceptual framework 
will provide guidelines to characterize spatiotemporal characteristics of the sequential 
footprints and to discern connections of geographic dynamics of different kinds in an 
automatic means.

13.4 SEQUENCING CONSIDERATIONS IN 
ASSEMBLING SPATIOTEMPORAL CONSTRUCTS 
OF GEOGRAPHIC DYNAMICS

There are three broad dimensions in the consideration of sequencing legibility: prop-
erty, existence, and structure. The three dimensions assume predefined geographic 
systems or system components with which property, existence, and structure can be 
associated. Geographic dynamics are perceived and interpreted through recognition 
of changes to any of the dimensions. Therefore, legible sequencing footprints are 
critical to identify change. As geographic observations and measurements are taken 
at a discrete space and time, knowledge construction about geographic dynamics 
builds upon internal and external changes to property, existence, and structure to 
develop computational solutions for discovery of geographic dynamics knowledge.

The three board dimensions of property, existence, and structure are used here 
to determine footprint sequential legibility. Each of the dimensions has internal and 
external components. Internal components are essential to identifying the continu-
ation of an activity, an event, or a process. External components, on the other hand, 
provide situational characteristics of the focal geographic dynamics and its environ-
ment. For example, some internal properties of a hurricane include a well-defined 
surface circulation and sustained winds exceeding 119 km/h (74 mph). Change to 
internal properties requires a definition change, which should only be led by domain 
experts. Internal properties are critical to the identification of footprints for the geo-
graphic dynamics of interest. Based on the internal properties listed here, footprints 
of a hurricane can be identified based on delineations of wind fields from weather 
balloon data, radar data, Geostationary Satellite Server (GEOS), and other satellite 
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images. The speed constraint of a hurricane offers a logical basis for linking hur-
ricane footprints to form a sequence of the hurricane and show its extent over space 
and time.

Hurricane forecasts, hurricane path, and socio-economic damage are examples 
of external properties. Change to external properties has no effect on the definition 
and identification of the focal geographic dynamics. External properties characterize 
the environment and effects external to the dynamics of interest. For example, timely 
and accurate hurricane forecasts are critical to preparedness and emergency plan-
ning. However, changing hurricane forecasts only reflects a change in the forecaster’s  
judgment but does not change the hurricane being forecasted. When following fore-
casts along the development of a hurricane, lessons can be learned to improve hur-
ricane forecasts as well as emergency responses to forecasts. Similarly, hurricane 
paths and socio-economic damage data are important for hurricane impact analysis. 
Both are outcomes of a hurricane, not what defines the hurricane.

An internal existence specifies the location and time of possible existence of the 
geographic dynamics of interest. For example, hurricanes occur during the sum-
mer or early fall over the North Atlantic Ocean, the Caribbean Sea, or the Gulf 
of Mexico. When a hurricane moves toward higher latitudes or over land, colder 
air, less moisture, and greater wind shear can weaken and eventually dissipate the  
hurricane. Internal existence sets spatial and temporal bounds for geographic 
dynamics. Derivation of the bounds may be empirical or theoretical. Hurricanes are 
examples of geographic dynamics with theoretically defined bounds. In contrast, 
many habitats or forge ranges of species are mostly empirically defined.

An external existence denotes the development of geographic dynamics such that 
a hurricane starts with a tropical disturbance with building rain clouds, grows to 
a tropical depression with a circular pattern, develops into a tropical storm with 
winds exceeding 61 km/h (38 mph), and eventually becomes a hurricane. In other 
words, internal existence characterizes the spatial and temporal constraints for the 
geographic dynamics of interest to operate. External existence highlights the spa-
tiotemporal context in which the focused geographic dynamics exist as part of a 
greater existence of other geographic dynamics.

An eye, circular bands of dense clouds, and counter-clockwise rotation in the 
Northern Hemisphere and clockwise rotation in the Southern Hemisphere characterize  
the internal structure of a hurricane. In addition, internal structure addresses tempo-
ral relationships among the spatial components. When the eye of a hurricane widens, 
the winds decrease and the hurricane becomes less organized. In addition to spatial 
and temporal relations among components, internal structures also consider spatial 
and temporal variances within geographic dynamics. For example, the spatial vari-
ances of precipitation and winds within a hurricane are part of the internal struc-
ture of the hurricane. Increased spatial variances reflect the hurricane becoming less 
organized and therefore weakening.

An external structure depicts spatial or temporal connections between geo-
graphic dynamics and their environment. For example, a hurricane can cause 
damaging winds, flooding, mudslides, and storm surges. External structures are par-
ticularly important for chain effects, which are critical to multihazard modeling. 
Similar to hurricanes, wildfires can cause consequent damage to the environment by 
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removing vegetation cover and leaving land vulnerable to surface erosion. External 
structures also include atmospheric teleconnections associated with multiple types 
of geographic dynamics to form a large-scale, lasting pattern of highly positively or 
negatively correlated regions in temperature and pressure that reflect changes in the 
atmospheric wave and jet stream patterns due to pressure and circulation anomalies 
(Schneider 1996). The concept of teleconnections was developed to describe how 
patterns that last for several weeks or months may become prominent for several con-
secutive years and contribute to intra-annual and inter-decadal climate variability.  
Much potential remains to apply the concept of teleconnections to address social and 
economic dynamics.

Internal property, existence, and structure provide the basis for sequencing foot-
prints of geographic dynamics by facilitating identification of footprints from the 
same geographic dynamics. Every activity, event, and process is defined according 
to domain knowledge. While the same geographic dynamics may have distinct defi-
nitions among different domains, internal properties may vary according to domain 
needs. Hence, spatiotemporal data may be re-purposed in knowledge discovery 
based on the domain interest. Snow intensity for a severe snowstorm in Buffalo, New 
York will be much higher than what is considered as a severe snowstorm in Norman, 
Oklahoma. On the other hand, definitions of traffic accidents or shopping activities 
are likely to be comparable anywhere.

While internal properties determine if the data meet the requirements to be con-
sidered in a footprint, internal existence ensures that the footprint is within the rea-
sonable realm of consideration. Shopping activities can only take place when stores 
are open. Two people can only meet if their space–time prisms overlap (Miller 1991). 
Furthermore, the internal structure within a footprint suggests the development of 
geographic dynamics. A certain degree of continuity or systematic discrete patterns 
can be assumed as the internal structure of geographic dynamics holds all compo-
nents together. Component features and their structure can be used to signal the state 
or phase taking place. When the internal structure can no longer hold, the activity, 
event, or process will end consequently.

TABLE 13.1
Internal and External Investigations to Discover Knowledge about 
Geographic Dynamics

Property Existence Structure Facility to KDD

Internal Definitions Spatiotemporal 
constraints

Components, 
variances, and 
connections

Identity, 
footprints, and 
sequences

External Consequences and 
impacts

Developments 
and associated 
geographic 
dynamics

Other geographic 
dynamics across 
spatial and 
temporal scales

Connections and 
interactions 
among 
geographic 
dynamics
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External property, existence, and structure, on the other hand, support connec-
tions to other activities, events, and processes. No geographic dynamics exist in 
isolation. Activities, events, and processes evolve with each other and with the envi-
ronment. Geographic dynamics may leave spatiotemporal footprints in physical, 
biological, social, economic, historical, or cultural environments. These footprints 
may last long after the geographic dynamics have ended and therefore leave clues 
for retrospective investigations of the responsible activities, events, and processes. 
External existence exhibits the support and context of other geographic dynamics to 
sustain the focal activity, event, or process. Geographic dynamics at a large scale set 
the boundary conditions for dynamics at a small scale, such that climate processes 
bound weather events. On the other hand, small-scale dynamics collectively sustain 
large-scale dynamics. Daily activities afford lifelong accomplishments. Moreover, 
external structure broadly connects geographic dynamics at one space–time loca-
tion that are positively or negatively correlated with dynamics at another space–time 
location.

The internal and external characterizations of property, existence, and structure 
address both intrinsic and environmental characteristics of geographic dynamics 
to determine the sequencing legibility of footprints. Such a conceptual approach 
facilitates knowledge discovery by identifying and sequencing footprints from the 
same geographic dynamics, then situating the dynamics in physical and human envi-
ronments, and making connections to other geographic dynamics. Subsequent logi-
cal and computational implementations need to incorporate domain definitions and 
knowledge of the geographic dynamics of interest to construct property, existence, 
and structure frames of activities, events, and processes.

13.5 FROM SPATIOTEMPORAL DATABASES TO 
KNOWLEDGE OF GEOGRAPHIC DYNAMICS

The previous sections discussed two central ideas in the chapter: (1) activity, event, 
and process are three basic types of geographic dynamics constructs; and (2) each 
of the geographic dynamics constructs can be recognized from spatiotemporal data-
bases and furthermore analyzed by their property, existence, and structure both 
internally and externally. Based on these two ideas, discovery of knowledge about 
geographic dynamics from spatiotemporal databases builds on procedures to iden-
tify activities, events, and processes and discern their behavior, interactions, and 
effects. This section outlines an approach to synthesize the two ideas for developing 
such procedures.

Figure 13.5 illustrates an approach that builds geographic dynamics constructs 
from spatiotemporal databases. Internal and external characterizations of property, 
existence, and structure guide the construction of activities, events, and processes 
from spatiotemporal data. Ontology of the geographic dynamics constructs of inter-
est should be determined a priori so that property, existence, and structure can be 
determined according to existing domain knowledge.

Internal characterization is weighted heavier than external characterization 
in data subsetting that potentially include footprints of the activities, events, and 
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processes of interest. In particular, specifications of internal properties and internal 
existence largely determine the potential data range for the activities, events, and 
processes. When a data set is compiled for specific activities, such as GPS points 
for the movements of individuals, data subsetting is not necessary. In other cases, 
data subsetting can be as easy as selecting an area and period that meet the identi-
fied bounding conditions of the focal geographic dynamics or as challenging as 
including all possible data sets when the bounding conditions are uncertain or very 
broad. In the challenging situation, data may need to be subset into similar areas and 
periods based on factors of the bounding conditions, e.g., spatiotemporal regions 
of possible existence. In the case of crime events, data sets may be subset based on 
social and economic variables in space and time. Crime events identified from each 
subset are likely to exhibit distinct internal or external structures, but all identified 
crime events will be incorporated into the final event data set ({Ei} in Figure 13.5) 
for further analysis.

Once the potential data set has been identified, specifications of internal prop-
erty, existence, and structure are used to extract footprints of the chosen activities, 
events, and processes. Identifying footprints should be a two-step procedure. First, 
internal property and existence are used to identify features that meet the prop-
erty and existence criteria. Internal structural specifications should be applied to 
determine whether these features are part of the activities, events, or processes. 
Exceptions are point-based footprints to which there is no internal structure. 
Second, external property, existence, and structure should be used to refine these 
footprints. Refinements may include repositioning or reshaping footprints. For 
example, automobile trips should be along a road, and therefore, an off-road point 
should be repositioned to the nearest road. All confirmed footprints correspond-
ing to the same type of geographic dynamics would be extracted and organized 
into footprint sets according to the types of activities, events, and processes. For 
example, there may be fundraising footprint sets, parade footprint sets, ice storm 
footprint sets, and others.

Within each footprint set, internal and external specifications should be consid-
ered to sequence footprints. Internal specifications ensure the dynamics consistency. 
Nevertheless, external specifications have heavier weights than internal specifica-
tions in determining whether footprints result from the same instance of geographic 

Subset

Property Existence

Internal

Structure

External

Extract Sequence
Spatiotemporal

data

Data set potentially
imprints the activities,
events, and processes

of interest

Activity footprints set {AFPi}
Event footprints set {EFPi}
Process footprints set {PFPi}

Activities {Ai}
Events {Ei}
Processes {Pi}

FIGURE 13.5 A conceptual framework to elicit geographic dynamics constructs from spa-
tiotemporal databases.
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dynamics. External properties describe environmental conditions and effects, exter-
nal existence depicts paths and developmental stages, and external structure makes 
connections to other geographic dynamics. Footprints can be attributed to the same 
instance of geographic dynamics when they share similar external property, exis-
tence, and structure or are in a logical transition based on the external specifica-
tions. Once determined, the outcome is a dataset with different types of activities, 
events, and processes, each of which consists of instances of activities, events, or 
processes. Each instance is a sequence of footprints. For activities of jogging, an 
instance will include a sequence of points to show the jogging path. For events of an 
oil spill, an instance will include a sequence of areas of contamination, clean-up, and 
broader impacts. For processes of urban sprawl, an instance will include a sequence 
of urbanized and suburban areas and the physical infrastructure and socioeconomic 
compositions within the areas.

As a result, the proposed conceptual framework represents all activities, events, 
and processes as sequences of footprints. As discussed in Section 13.2, activities, 
events, and processes emphasize distinct aspects of geographic dynamics. Their spa-
tiotemporal constructs exhibit a progression of complexity from stationary points 
to mobile fields (Galton 2004; Goodchild et al. 2007), in which a stationary point 
can be considered as the simplest case of a mobile field with spatial and temporal 
extents condensed to a point. Moving objects or geospatial lifelines are commonly 
represented by sequences of points (Kwan 1998; Mark and Egenhofer 1998; Martin 
et al. 1999; Kwan 2004; Sinha and Mark 2005). Analytically, the most complicated 
form of spatiotemporal constructs will be a moving field with changing boundar-
ies, capable of splitting, merging, and reincarnation, and in need of maintaining 
a spatial and temporal structure (which may vary over space and time) with other 
entities or dynamics in a large environment. Rainstorms are examples of such com-
plicated cases (Yuan 2001). In fact, most geographic processes fall in this category. 
Migration, desertification, erosion, and many other geographic processes exhibit 
fields of spatially varied properties and progress in space and time. The idea of foot-
print sequences has been used to develop representation and computation solutions 
to analyze and mine such complicated processes (Martin et al. 1999; Stefanidis et al. 
2003; McIntosh and Yuan 2005a, 2005b).

Individual sequences of footprints can be used to analyze the spatiotemporal 
behaviors of the chosen instance of geographic dynamics. Analysis of footprint 
sequences of instances from the same type of geographic dynamics can reveal 
trends and re-occurring patterns. Interactions among geographic dynamics of differ-
ent types can be discerned from spatial and temporal correlations of their footprint 
sequences or spatiotemporal buffers of their footprint sequences. Furthermore, their 
interdependence with environmental factors can be examined along the footprint 
sequence (Mennis and Liu 2005; Sinha and Mark 2005).

13.6 CONCLUDING REMARKS

This chapter advocates for a step toward discovery knowledge about geographic dynam-
ics beyond what is directly recorded in spatiotemporal databases. In addition to mining 
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spatiotemporal clusters or other interesting patterns, knowledge discovery should move 
to extract high-level concepts that help us understand geographic dynamics.

Two main ideas are proposed to making the step forward. First, activities, 
events, and processes are basic spatiotemporal constructs of geographic dynamics. 
To enable discovery of knowledge about geographic dynamics, these geographic 
dynamics constructs need to be extracted from spatiotemporal databases and serve 
as the basis for spatiotemporal analysis and mining. While definitions for activities, 
events, and processes are diverse, this chapter outlines distinctions among the three 
types of geographic dynamics constructs. Activities emphasize agents and actions 
taken intentionally, events emphasize occurrences, and processes emphasize tran-
sitions and operations. Spatiotemporal representation of geographic dynamics 
depends on the scale of observation and emphases, just as the spatial representation 
of a geographic feature is scale-dependent. A vehicle collision can be considered as 
an event with the emphasis on happening. On the other hand, it can be considered 
as a process with the emphasis on how it happened. Another example of jogging is 
discussed in Section 13.2. The idea of activities, events, and processes can extend 
Miller and Wentz’s (2003) conceptual model of geographic space to geographic 
dynamics.

The second idea is the use of internal and external characterizations of activities, 
events, and processes to identify and sequence footprints in building the constructs 
of geographic dynamics from spatiotemporal databases. Both internal and exter-
nal characterizations consider the property, existence, and structure of geographic 
dynamics. Internal characterization specifies the essential properties, boundary 
conditions of existence, and internal structure of component features that define the  
chosen geographic dynamics. Specifications of internal characterization are deter-
mined by domain knowledge. External characterization denotes environmental 
properties, developmental stages, and connections to other geographic dynamics 
in space and time. Internal characterization facilitates mostly the determination 
of footprints from a particular type of geographic dynamics. Complementarily, 
external characterization assists largely in the identification of footprints from a 
specific instance of geographic dynamics. Composed of both internal and external 
characterization, spatiotemporal data sets can be transformed into various types 
of activities, events, and processes as well as instances within each type of these 
geographic dynamics.

The types and instances of activities, events, and processes serve as the spatiotem-
poral constructs for discovery knowledge about geographic dynamics. Sequences 
of footprints at varying degrees of complexity are common structures of activi-
ties, events, and processes. Several researchers have developed analytical or visual  
methods to explore sequences of footprints in the form of lifelines (Mark and 
Egenhofer 1998), trajectories (Pfoser et al. 2003), helixes (Stefanidis et al. 2003), and 
field-objects (McIntosh and Yuan 2005b). Knowledge discovery of these footprint 
sequences can be considered at four levels: (1) mining instances to reveal spatiotem-
poral behavior, (2) mining types to uncover trends and re-occurring patterns in space 
and time, (3) mining multiple types of geographic dynamics to identify their inter-
actions, and (4) mining instances with environmental variables to recognize inter-
dependence between the type of geographic dynamics and the environment.
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While the proposed framework is only one of many possible approaches to advanc-
ing knowledge discovery of geographic dynamics, the approach is based on a gen-
eral consideration of activities, events, and processes, expands upon an established 
conceptual framework of geographic space, and extends it to geographic dynamics. 
Specific frameworks of activities, events, and processes are necessary to satisfy par-
ticular domain applications. However, the proposed framework is intended to pro-
vide a common conceptual basis for most, if not all, domain applications to support 
large-scale data integration of all types of geographic dynamics. Subsequently, ana-
lytical or computational methods can be developed to mine relationships and inter-
actions among multiple types of geographic dynamics. Nevertheless, the proposed 
conceptual framework is only one step toward advancing discovering knowledge of 
geographic dynamics. Research challenges remain to test and refine the conceptual 
framework, compile existing methods, and develop new algorithms to analyze and 
mine footprint sequences.
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14.1 INTRODUCTION

Geographical knowledge of nature must come from a systemic interpretation of patterns 
as well as from the exploration of different data sources that contain empirical observa-
tions in time and space (Tiezzi 2004). Currently, a geographical knowledge discovery 
process is supported by computer-based environments that provide a narrow view of 
patterns by allowing users to be interactive, and automated information processing with 
many decisions made by the users about how to uncover the meaning of these patterns, 
or how to determine the interesting patterns from different data sources.

It is important to recognize that the discovery of a vast number of unknown patterns 
alone do not explain the meaning of interesting trends, relationships, and dynamics 
of empirical observations over space and time (Gendlin 1995). On the contrary, it is a 
metaphor, and only after it makes sense can an unknown set of patterns from a GKDD 
process be interpreted and understood by an expert of an application domain. In gen-
eral, metaphors have been proposed as artifacts of understanding, specifically under-
standing one kind of conceptual domain in terms of another. They are not just a pattern 
or a logical form. Johnson (1987) proposes metaphors as a “concrete and dynamic, 
embodied imaginative schemata,” which are surely not just logical patterns, images, or 
diagrams. Moreover, Lakoff (1987) argues that metaphors are something “nonpropo-
sitional,” which should not be thought of as if they were commonalities, classes, struc-
tures, or image schemata, although we might be interested to formulate those.

In a GKDD context, metaphors can help the comprehension of what makes one pat-
tern structurally and meaningfully different from another. Ideally, metaphors would be 
inferred classes by a domain expert, having a high-level or abstract reason that makes 
sense within a geographical knowledge domain. Metaphors will lead to the “discov-
ery” and explanation of interesting higher-level abstraction concepts, entities, relation-
ships, or processes within some application domain of interest. Poore and Chrisman 
(2006) draw attention to the fact that information metaphors do not relate directly to 
reality, but instead they are more successful when they can have the effect of structur-
ing reality to fit a hypothesis. For example, in GIS, the landscape-as-layer metaphor 
has structured the landscape into a set of layers and, nowadays, software packages 
encourage organizations to collect their data according to layers. Although researchers 
have proposed new information metaphors such as objects (Wachowicz 1999, Peuquet 
2002) and agents (Deadman 1999, Ligtenberg et al. 2004), numerous practitioners are 
locked into the layer metaphor for geographical representation and reasoning.

What will be the information metaphors of a GKDD process for a geographical 
knowledge domain as sustainable mobility? The movement-as-trajectories metaphor 
is already being used to structure the history of the past and current locations of 
mobile entities. Pfoser and Jensen (2001) have implemented the metaphor of trajec-
tory as polylines consisting of connected line segments, which can be grouped accord-
ingly to two movement scenarios, termed as unconstrained movement (vessels at sea) 
and constrained movement (cars and pedestrians). Another example is given by the 
account of the movement-as-balance metaphor that provides an interpretive artifact 
of a balance scale for analyzing the traffic flow of cars in the presence of transpor-
tation problems (Richmond 1998). A transportation system that operates under the 
conditions of free-flow will be in balance. On the contrary, if the components such 
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as road and rail are in wrong proportions, they are out of balance, having as a result 
traffic that is unbearable with a need to remove the load from the roads.

The research challenge lies in mapping the discovered patterns with information 
metaphors of movement. For example, how movement metaphors can be used to 
explain the discovered patterns, in such a way so that “discovered” clusters could be 
understood as representing those patterns that occurred in low-density fringe growth 
in urban developments, which show the reduced effectiveness of public transport 
and increased reliance on the private car. It is still to be proven that information 
metaphors will enhance the likelihood that experts will “see” not only the discov-
ered patterns of movement, but instead, they will understand their meaning, and as 
a result, they will “see” the interesting ones as well. However, it is already clear that 
information metaphors can generate a chain of commonalities and differences, not 
a single pattern. A better account of the role of information metaphors in a GKDD 
process will allow the experts to form and operate on semantic concepts of space 
and time, and not only on the GKDD steps (i.e., data cleaning, data mining, and 
interpretation of the results).

The complex relationship between information metaphors of movement and the 
discovered patterns of a GKDD process will remain a topic for further research. In 
this chapter, we outline our first effort to understand such a relationship by developing 
a multitier ontological framework that consists of three tiers for bringing together 
movement metaphors and patterns of a GKDD process. It is important to emphasize 
the role of metaphors in clarifying, naming, and structuring what might otherwise 
be vague and inapplicable patterns within the context of an application domain. 
Therefore, reasoning becomes an integral part of the discovery process, and we pro-
pose that discovery and reasoning should be studied together. This will facilitate not 
only the extraction of patterns from very large databases, but also exploration of the 
use of metaphors to infer geographical knowledge from these patterns.

Using movement metaphors to infer geographical knowledge from patterns in 
the context of a multitier ontological framework means that each tier should have 
a formal representation and a formal logical theory that support an inference task. 
A formal representation of concepts requires a “specification of a conceptualiza-
tion,” according to Gruber’s definition of ontology (Gruber 1993). Formal ontologies 
have been studied extensively in the last decades especially in artificial intelligence 
(Guarino 1998, Sowa 1999). Recently, they have been exploited in several other 
research fields such as semantic web, bioinformatics, GIS, and many others (Fonseca 
and Egenhofer 1999, Smith 1998, Yuan et al. 2000). Moreover, a formal ontology 
is based on “a conceptualization of objects, concepts and other entities that exist 
in a given domain and their relationships” (Gruber 2007). They rely upon a logical 
theory that defines the basic concepts along with their relations, and formal axioms 
to constrain the possible interpretation of terms. Concepts are defined as taxonomic 
hierarchies of classes; thus, the most important type of relation is the subsumption, 
commonly known as an is-a relationship. An ontology may also include individuals, 
the ground facts or concrete objects that are instances of a class. The set of individu-
als represents the knowledge base of a formal ontology. A logical theory supporting 
ontological definitions by means of classes, relationships, and axioms typically also 
provides a reasoning engine to perform inferences.
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Previous research on spatio-temporal reasoning has primarily dealt with hierar-
chical concepts based on static and well-defined closed environments, and unfor-
tunately, without having them associated to a geographical knowledge discovery 
process. Some examples include the spatio-temporal granularity description of spa-
tial regions (Stell 2003), and the concept of perceptual hierarchical spatial units for 
representing people behavior in urban environments (Reginster and Edwards 2001). 
The dominant view has been that these representations are hierarchically organized 
(McNamara, Hardy and Hirtle 1989), and the locations, objects, circumstances, 
and factors may be perceived and understood in separate representations, which are 
required accordingly to a particular situation or task (Huttenlocher et al. 1991). Most 
of the studies have been conducted at a specific scale level by building scenarios on 
the variations in urban form characteristics such as urban morphology, transporta-
tion network, availability of facilities, and density of a city and the relative location 
of neighborhoods. The reasoning task involved has been of deriving the most likely 
explanations of the known facts and assumptions about urban form characteristics, 
and their influence on travel behavior. Such explanations have usually pointed out to 
four major factors that have explained such an influence on a specific scale. They are 
density of development, land use mix, transport networks, and layout development 
(Stead and Marshall 2001).

This chapter proposes a multitier ontological framework as a geographical 
knowledge base for the integration of movement metaphors, reasoning tasks, and 
discovered patterns within a GKDD process. Section 14.2 describes the ontologi-
cal foundation of a GKDD process. The multitier ontological framework is also 
described using the domain, application, and data ontology tiers. The formalization 
of the data ontology tier is described in more detail using the movement-as-trajectory 
metaphor. Section 14.3 provides an overview of the framework architecture and the 
description of the data ontology tier implementation. Section 14.4 illustrates the 
deductive reasoning on movement-as-trajectory metaphor by focusing on a query-
ing reasoning task. Section 14.5 concludes this chapter and points to our future 
research work.

14.2 THE ONTOLOGICAL FOUNDATION FOR A GKDD PROCESS

Many different styles of GKDD processes have been proposed in the literature 
(see Roddick and Spiliopoulou, 1999 for a wide-ranging bibliography). The GKDD 
methods currently available concentrate on pre-processing and mining techniques to 
discover categories, clusters, outliers, and other kinds of patterns that might occur 
in data, rather than on mapping these patterns into knowledge structures such as 
information metaphors proposed in this chapter. The role of geographical knowl-
edge representation has already been pointed out as one of support for the iterative 
and interactive nature of the GKDD processes (Mennis and Peuquet 2003). Parallel 
efforts have emphasized the complex aspects of different forms of inference (i.e., 
abductive, deductive, and inductive inference modes) that are required to perform 
the steps of a GKDD process such as pre-processing, data mining, and interpreta-
tion of the results (Gahegan et al. 2001, Wachowicz et al. 2008, Zimmerman 2000). 
The consensus is when patterns are uncovered it is impossible to represent that 
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geographic knowledge formally because there is nowhere to put them after a GKDD 
process is finished.

This section describes the conceptualization of a multitier ontological framework 
to formally represent and infer geographic knowledge with a GKDD process. A 
GKDD process constructed from an ontological perspective aims to integrate dif-
ferent reasoning tasks in a framework by mapping the complex relationship between 
movement metaphors and discovered patterns. The main advantage of this proposed 
framework is the possibility to focus on the spatial and temporal semantics of a 
geographical knowledge domain rather than on the GKDD steps. Geographic knowl-
edge discovery is not a trivial process, it requires the examination of similarities 
and differences, interrelations, behavior, and evolution of what experts believe the 
world is like. This will lead to uncovering new and innovative patterns that can be 
understood by experts through the conceptualization of movement metaphors, which 
in turn can be used to infer a chain of commonalities and differences between these 
discovered patterns. Therefore, a multitier ontological framework plays an important 
role in the support of different geographical knowledge backgrounds as well as the 
integration of different inference modes (i.e., abductive, deductive, and inductive 
inference modes).

14.2.1 THE GKDD ONTOLOGICAL TIERS

The formal ontologies counterpart of the multitier vision is the so-called ontolog-
ical layers. Indeed, the definition of a formal ontology can be given at different 
abstraction levels and typically, more of them can coexist in a single ontology. The 
domain ontology represents the canonical descriptions of a given domain, or the 
associated classification theories in domains such as sustainable mobility, spatial 
planning, hydrology, or any other domain of interest. Domain ontology represents 
all the concepts of interest in a given domain, abstracting away from implementation 
and data details. What is commonly called application (or task) ontology represents 
a vocabulary or classification system that describes concepts operating in a given 
domain through definitions that are sufficiently detailed for capturing the semantics 
of that domain. GIS software designers can build systems that are tailored to users’ 
needs based on appropriate application ontologies. For example, all the concepts 
representing kinds of car traffic behavior related to a specific urban area can be con-
sidered as an application ontology, and they can be used to build up explicit services 
to a mobility agency of such an urban area. In several applications, a formal ontology 
is built on top of a database or a given dataset. In this case, the ontology represents 
a conceptual abstraction of a data structure, analogously to a database conceptual 
model. These kinds of ontologies are called data ontologies because they are more 
dependent on data with respect to other ontology types. Figure 14.1 illustrates these 
three ontological levels of abstractions.

Another abstraction level that can possibly be on top of the domain ontology is 
the upper ontology (or foundation ontology) that models the common objects that 
are generally applicable across a wide range of domain ontologies. There are several 
standardized upper ontologies such as Dublin Core, GFO, OpenCyc/ResearchCyc, 
SUMO, and DOLCE (Wikipedia).
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Therefore, the proposed multitier ontological framework consists of layers of 
space and time semantic abstractions that can be described as one of the following:

Domain Ontology Tier is based upon information metaphors as possibly 
defined in spatial theory.
Application Ontology Tier is based upon information metaphors as dif-
ferent notions of spatial, temporal, and spatio-temporal continuity of geo-
graphical phenomena.
Data Ontology Tier is based upon the information metaphors that time is 
constant, distance is relative, and there are observed states of which the 
only true state is that which an empirical observation is possible.

These layers also represent abstraction levels, from concrete data concepts up to 
more abstract conceptual notions. It is worth noticing that the border between each 
layer is far from clear because the same concept can be intended at different abstrac-
tion layers. Therefore, these layers are not to be intended as built one upon the other, 
but they represent the ontological abstraction view of a GKDD process. Indeed, a 
concept definition in a given layer may result from a logical expression that involves 
concepts belonging to other layers. For example, let us consider a traffic management 
application, where data include GPS positions collected from cars and a road net-
work. A data ontology over these data may represent basic concepts such as the 
trajectory concept (see Section 14.2.2), the road concept, and the relations between 
them, i.e., a trajectory passes through a set of roads. An application ontology may 
represent specific concepts and definitions related to a particular traffic manage-
ment application, such as the definition of traffic jam or home–work movements. The 
domain ontology represents all concepts typical from a traffic management domain, 
such as concepts representing accessibility and network infrastructure.

The main research challenge is how to formalize this multitier ontological frame-
work for the integration of metaphors, reasoning tasks, and patterns between these 

Upper ontology

Domain ontology

Application ontology

Data ontology

Database

FIGURE 14.1 The three ontological tiers of a GKDD process.
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layers and, in turn, to expand a GKDD process into the realms of human knowledge, 
information systems, and the geospatial world. Our first attempt was to establish the 
types of concepts, relations, and axioms at the data ontology tier, from which the 
mapping between the complex relationship between movement metaphors and pat-
terns can be defined within a GKDD process. Next, we describe in detail the onto-
logical formalism that allows representing in a uniform way this data ontology tier. 
The chosen formalism for representing the formal ontology is OWL (2004), which 
is a well-known standard that has arisen from the semantic Web. Another interest-
ing feature of OWL is that it relies upon a family of languages known as descrip-
tion logics (DL), which provides an inference system based on formal well-founded 
semantics (Baader et al. 2003). The basic components of DL are concepts, roles, and 
individuals. Concepts describe the common properties of a collection of individuals 
and roles are binary relations between objects. Furthermore, a number of language 
constructs, such as intersection, union, and role quantification, can be used to define 
new concepts and roles. The main reasoning tasks are classification and satisfi-
ability, subsumption, and instance checking. Classification is the computation of a 
concept hierarchy based on subsumption, whereas instance checking verifies that an 
individual is an instance of a concept. Finally, DL programs are split in two parts, the 
terminological box (TBox) and the assertional box (ABox). The TBox contains sen-
tences describing concept hierarchies and relations, whereas the ABox contains the 
ground facts, for example, the individuals and their relations with concepts. Indeed, 
some inferences are related to Tbox or Abox only.

14.2.2 THE FORMALIZATION OF THE DATA ONTOLOGY TIER

A question that comes up is “Why not put all database data inside an ontology (i.e., 
as ABox individuals)?” This question may be answered by looking from the perspec-
tive of reasoning. Data complexity of reasoning in DL estimates the performance 
of reasoning algorithms measured in the size of the ABox only. Even for the very 
expressive DL SHIQ, satisfiability checking is data complete for Nonpolynomial 
(NP). Very expressive DLs such as SHIQ are interesting mainly due to their high 
expressivity combined with the clearly defined model-theoretic semantics and 
known formal properties, such as the computational complexity of reasoning. In 
particular, for applications with large ABoxes, the combined complexity of checking 
satisfiability of a SHIQ knowledge base (KB) is EXPTIME-complete in size of KB. 
EXPTIME-completeness is a rather discouraging result since trajectory applications 
have large |KB| in practice (Calvanase et al. 2007).

Before explaining the data ontology tier, it is important to notice that this tier is 
based on a local-as-view-based query processing approach. More specifically, we 
extend the approach proposed by Calvanase et al. 2007, which addresses the problem 
of establishing sound mechanisms for linking existing data to the instances of the 
concepts and the roles in the ontology. In this paper, Calvanese et al. (2007) propose 
a new DL, called DL-Lite +, which is the largest fragment of DL that allows for 
answering complex queries (namely, conjunctive queries, i.e., SQL select-project join 
queries, and unions of conjunctive queries) in LOGSPACE with respect to data com-
plexity (i.e., the complexity measured only with regard to the size of the data). More 
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importantly, they allow for delegating query processing, after a preprocessing phase, 
which is independent of the data, to the relational Data Base Management System 
(DBMS) managing the data layer.

Our proposal differentiates from the Calvanese et al. (2007) approach in two 
aspects. First, we map an ontology to a conceptual data model, instead of mapping to 
a logical relational model. Second, we do not translate an ontology query to an SQL 
query; by contrast, we map an ontology query into a conceptual query. Both con-
ceptual schema and conceptual language are based on the Modelisation de Donnees 
Pour Applications Spatio-Temporelles (MADS) model (Parent et al. 2006a), which 
is a spatio-temporal conceptual model that provides algebra operators taking into 
account spatial, temporal, and multirepresentation features. Basically, our idea is to 
use a query rewriting mechanism that permits us to translate query over an ontology 
(i.e., which uses concepts defined within the ontology) into a conceptual query, which 
is a query that uses the conceptual schema vocabulary and takes advantage of spatial 
and temporal operators already defined. Thus, this idea permits us to reduce the 
semantic gap between database query language (e.g., SQL) and ontology language 
(e.g., OWL) since a conceptual data language is closer to the user’s mental model and 
an ontology language is the generalization of both the object-oriented data model 
(e.g., UML) and the extended entity-relationship (EER) semantic data model.

14.2.2.1 The Movement-as-Trajectory Metaphor 
within the Data Ontology Tier

While developing a rich body of work for managing moving objects, the database 
research community has shown very little interest in the ontological viewpoint on 
moving objects, i.e., providing support for the movement metaphor of trajectories. 
From the ontological point of view, trajectory is the most important metaphor within 
the data ontology tier, and as a result, it should be manipulated as first class citizens 
within databases.

We propose representing trajectories from a spatio-semantic abstraction point of 
view (Figure 14.2). Since traveling objects do not necessarily continuously move 
during a trajectory (this is the case, for example, of traffic management applications), 

FIGURE 14.2 The formalization of movement-as-trajectory within the data ontology tier.
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trajectories may themselves be semantically segmented by defining a temporal 
sequence of time sub-intervals where alternatively the object position changes and 
stays fixed. The former is called the moves and the latter is called the stops. Thus, a 
trajectory can be viewed as a sequence of moves going from one stop to the next (or 
as a sequence of stops separating the moves). For example, a car will stop in some 
locations along the city due to traffic congestion or traffic lights.

Definition 14.1 (Trajectory): A trajectory is the user-defined record of the evolution 
of the position (perceived as a point) of an object that is moving in space during a given 
time interval in order to achieve a given goal. trajectory : [tbegin , tend]  space

Definition 14.2 (Stop): A stop is a part of a trajectory, such that

The user has explicitly defined this part of the trajectory ([tbeginstopx, 
tendstopx]) to represent a stop.
The temporal extent [tbeginstopx, tendstopx] is a nonempty time interval.
The traveling object does not move (as far as the application view of this 
trajectory is concerned), i.e., the spatial range of the trajectory for the 
[tbeginstopx, tendstopx] interval is a single point. All stops are temporally 
disjoint, i.e., the temporal extents of two stops are always disjoint.

Definition 14.3 (Move): A move is a part of a trajectory, such that

The part is delimited by two extremities that represent either two consecutive 
stops, or tbegin and the first stop, or the last stop and tend, or [tbegin, tend].
The temporal extent [tbeginmovex, tendmovex] is a nonempty time 
interval.
The spatial range of the trajectory for the [tbeginmovex, tendmovex] inter-
val is the spatio-temporal line (not a point) defined by the trajectory function 
(in fact, it is the polyline built upon the sample points in the [tbeginmovex,  
tendmovex] interval).

The formalization of such concept classes for the inference of movement-as- 
trajectory metaphor can be used to deduce some a priori knowledge from patterns, such 
as density clusters of points in space and time that represent stops with a very short dura-
tion of some minutes due to traffic light or stop signs. On the other hand, time-windows 
can be deduced from clustering the point data that represents moves, and a sequential 
temporal snapshot can be inferred using the linear patterns of move points. Figure 14.3 
illustrates the concepts of stops and moves of the movement-as-trajectory metaphor.

14.3 ARCHITECTURE OVERVIEW OF THE DATA ONTOLOGY TIER

Before describing the framework architecture, the following section will introduce the 
conceptual database model used for the implementation of the data ontology tier.

14.3.1 CONCEPTUAL DATABASE MODELING FOR TRAJECTORY

Since conceptual database models are adequate for representing concepts that are 
closer to the data ontology tier, they are the best tools for specifying applications 
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requirements in terms of data. However, considering complex domain applications 
(e.g., spatio-temporal applications), the creation of conceptual schemas becomes a 
hard task due to the limit expressive power of generic conceptual models. Thus, 
specialized conceptual models are required in order to give more comfort to the user 
in specifying those conceptual schemas. The MADS model (Parent et al. 2006b) 
is an example of this attempt in creating a model adequate for representing spatio-
temporal data.

MADS is an object+relationship spatio-temporal conceptual data model. In this 
model, the real world of interest that is to be represented in the database is com-
posed of complex objects and relationships between them; both characterized by 
properties (attributes and methods), and both may be involved in a generaliza-
tion hierarchy (is-a links). Data structuring capabilities of MADS are orthogonally 
complemented with space and time modeling concepts, i.e., spatiality and tem-
porality may be associated at the various structural levels: object, attribute, and 
relationship. The spatiality of an object conveys information about its location and 
its extent; the temporality describes its lifecycle. A set of predefined spatial and tem-
poral abstract data types is used to describe the spatial and temporal extents of data.

The abstract data types are organized in a generalization hierarchy where 
generic data types are used to describe domains whose values may be of different, 
more specific types, e.g., small rivers may be described as lines, bigger ones as 
areas; hence, their domain should be of the generic type Geo. Attributes may also 
be space- or time-varying, supporting in this way the continuous view of space. 
Relationships are either classical n-ary relationships among individual objects or 
n-ary relationships among sets of objects (multiassociation). Relationships may 
be enhanced with one or several specific semantics, such as aggregation, topo-
logical, synchronization, and inter-representation semantics. Topological and syn-
chronization semantics define constraints between spatial and temporal objects, 
respectively.

FIGURE 14.3 The visualization of (a) spatial clusters of stops and (b) the temporal clusters 
of moves of a group of 50 people (Blue Team) moving around the city of Amsterdam. (Data 
Source: Waag Society, Netherlands.) See color insert after page 148.
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Multirepresentation has been added in MADS as an additional orthogonal  
dimension. Multirepresentation allows the definition in the same schema of several 
representations for the same real world objects. Those multiple representations may 
be the consequence of diverging requirements during the database design phase or, 
in the particular context of spatial data, of the description of data at various levels 
of detail. The MADS multirepresentation feature may also be used in the context of 
spatial database integration where the full integration, possibly based on different 
levels of detail, is not possible.

Therefore, MADS, as a spatio-temporal conceptual data model, is a natural can-
didate for supporting the movement-as-trajectory metaphor at the data ontology tier. 
Two alternative approaches for trajectory modeling were developed based on data 
types and design patterns. The former is inspired by MADS conceptual model exten-
sion using a new kind of data type. The latter resumes an old idea of creating a pre-
defined schema that can be instantiated according to some rules. The two approaches 
may be used together if the application requirements suggest that both are useful in a 
specific reasoning task. Figure 14.4 illustrates these two different approaches.

The modeling goal of the first solution (Figure 14.4a) is to hide as much trajectory 
data as possible into a dedicated TrajectoryType data type, equipped with methods 
providing access to trajectory components (stops, moves, begin, and end). The defi-
nition of dedicated data types is a well-known technique to extend a data model to 
take into account new types of data. It is the technique we have used to embed sup-
port of spatial and temporal features into MADS.

FIGURE 14.4 Trajectory conceptual database modeling approaches.
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The trajectory design pattern approach (Figure 14.4b) holds object types for rep-
resenting trajectories and their begin, end, stops, and moves. In the design pattern 
approach, it is proposed an object type group’s begin, end, and stop (B.E.S) objects 
as instances of the same type because of their similar features. Each B.E.S object has 
a lifecycle, which is a simple time interval, and a geometry, which is a point. A rela-
tionship type hasComponents relates trajectories to their components. Its cardinali-
ties enforce that each component belongs to a single trajectory, and each trajectory 
has at least two components (begin and end). The object type Move has a lifecycle, 
which is a simple time interval, and a geometry, which is a time-varying point. The 
two object types B.E.S and Move are related by two relationship types, From and 
To, materializing the fact that each move starts and ends in a stop. Both From and 
To bear a topological (adjacency) and a synchronization (meet) constraint enforcing 
that each move is linked to stops that are adjacent to it in both space and time. The 
lifecycle of Trajectory objects is a time interval that is inferred from the lifecycles 
of the first and last instances of B.E.S to which they are linked (i.e., the instants of 
its begin and end).

In addition to expressing the internal structure of a trajectory, the pattern includes 
the hooks used for its connection to application objects. In Figure 14.4, the names 
of the hooks are written in italics. Trajectories are linked to a hook object type 
TravelingOT that represents the traveling objects covering the trajectories. B.E.S 
may be linked to a hook spatial object type SpatialOT1 that represents the corre-
sponding location in terms of application objects. The IsIn relationship bears a topo-
logical inside constraint. As this hook is optional, it is drawn with dotted lines in 
Figure 14.4. Similarly, moves may be related to a hook object type SpatialOT2 by 
another topological inside relationship, called IsIn, which may be used to model 
network-constrained trajectories.

14.3.2 IMPLEMENTATION

Figure 14.5 illustrates the main components of our proposed architecture for com-
bining the data ontology tier and a spatio-temporal database. This architecture is 
composed of four components identified by letters A, B, C, and D. The component 
A represents any ontology management system (e.g., Protégé) that has a query inter-
face for end users. This component stores and manages the data ontology tier, which 
describes the concepts of the movement-as-trajectory metaphor, for instance, in a 
traffic management application; the instance of the stop concept could be a “traffic 
jam.” In this architecture, every concept defined in the data ontology tier must be 
based on the movement-as-metaphor. This is a pre-requisite for using our frame-
work because the movement-as-trajectory metaphor has a pre-defined mapping to a 
MADS constructor (e.g., concepts, relationships, etc.).

The component B is responsible for translating an ontology query written in 
OWL-DL syntax to a MADS query. Since this component is conscious about the 
MADS model, it knows how to translate each spatial, temporal, or spatio-temporal 
concept into the MADS concept. In addition, it knows how to build a MADS 
query according to its internal mapping. Clearly, this component is a quite simple 
component because the MADS model contains each constructor defined in MADS 
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conceptual language. It is worth noting that the MADS model also includes new 
concepts for semantic trajectory specification because our main objective is to 
support applications that manipulate trajectory data. The concepts defined for the 
movement-as-trajectory metaphor (i.e., trajectory, stops, and moves) are defined 
also using MADS concepts. The component C stands for the conceptual query 
engine. This component receives a conceptual query, which is written using 
MADS-compliant query language syntax that translates it into a MADS query 
and submits it to the underlying database (component D). Then, the results are col-
lected and sent to the user.

Figure 14.5 also illustrates a typical querying scenario where an end-user sends 
a query using a graphical interface. This query is sent to an ontology management 
system being translated to a specific ontology query language (e.g., OWL DL Query). 
Then, this ontology query is dispatched to the ontology-MADS Mapper where the 
ontology query is translated to a conceptual MADS query and sent to a MADS query 
engine. Then, the underlying relational database executes an SQL query return-
ing the results, which are processed by a MADS query engine and returned to the 
user interface. We could mention many applications that would be benefit from our 
framework. Analysts and decision makers in the field, as well as end users would 
benefit from writing sophisticated queries without worrying about underlying data-
base schema.

FIGURE 14.5 Framework for combining ontology and spatio-temporal database.
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14.3.2.1 Mapping Assertions

Now we turn our attention to the problem of mapping objects in the ontology to 
the conceptual view of data in a database. Our approach mainly differentiates from 
the Calvanese et al. (2007) approach by the fact that we are mapping an ontology 
into MADS objects and relationships, instead of mapping to a relational database. 
Clearly, we will map queries using MADS algebraic operators, which implement 
spatial, temporal, and multirepresentation features. The mappings are composed by 
a set of assertions, called mapping assertions, each one of the form F  Y where F is 
a MADS query over conceptual schema of arity n, and Y is a DL-LiteA+ conjunctive 
query over DL-LiteA+ knowledge base of arity n.

A conjunctive query (CQ) q over a knowledge base K is an expression of the form 
q(x) y.conj (x, y), where x are the so-called distinguished variables, y are exis-
tentially quantified variables called the nondistinguished variables, and conj (x, y) is 
a conjunction of atoms of the form A(x), D(x), P(x, y), UC(x, y), UR(x, y, z), or x = y, 
where x, y, z are either variables in x or y or constants in an alphabet of constants. A 
union of conjunctive queries (UCQ) is a query of the form q(x)  Wi yi.conj (x, yi).

Table 14.1 illustrates four mappings, which model the situation where every tuple 
(i, s, d) c trajectory, which is an object defined in the conceptual schema presented in 
Section 14.2.1. This tuple corresponds to a trajectory of a car whose identification is 
id, whose source is s, and whose destination is d. Besides, we denote that this trajec-
tory is identified into the ontology by its id. To assist the creation of an identity for 
trajectory objects, a domain of object identifiers is considered that is built starting 
from data values, in particular as logic terms over data items. In other words, object 
terms are constructed by function symbols applied to data value constants. In our 
example, we use a function symbol trj, whereas trj(id), which is called a variable 
term, defines the identity of a trajectory.

Similarly, we model every tuple (id, name, geo) that corresponds to a building 
described by an identification, a name, and a geometry, which is a point. Following, 

TABLE 14.1
Some Examples of Mapping Assertions

F Y

MADS Query Over Conceptual 
Schema Conjunctive Query Over DL-LiteA+ KB

M1 projection [id, s, d] Trajectory Trajectory(trj(id), s, d)

M2 projection [id, n, geo] Building Building(bd(id), pt(geo)), hasName(bd(id), n),

Point(pt(geo), geo),

M3 projection [m] 
selection [ m  Move m.stopsVarying 
= t.stopsVarying] Trajectory

Trajectory(trj(id), s, d), Move(mv(m)), 
has_Move(trj(id),mv(m))

M4 projection [x, y] has_distance_greater(x, y, z)

selection [ x, y  Geometry 
x.geometry.distance(y.geometry) > z]

 

© 2009 by Taylor & Francis Group, LLC



The Role of a Multitier Ontological Framework in Reasoning 381

concerning the mapping assertion M3, we describe a MADS query that corresponds 
to the moves of a trajectory. This MADS query represents a set of tuples (t, m) whose 
trajectory is t, and whose move is m. Note that we use the method stopsVarying 
of trajectory concept, which returns a set of stops belonging to the trajectory. This 
method permits us to compare if a move has the same set of stops of one trajectory. 
Finally, we describe the mapping 4 that models every tuple (x, y) where x and y are 
geometries. In this case, this mapping corresponds to each pair of spatial objects 
that distances more than z units from each other do. The corresponding DL conjunc-
tive query is represented by a role attribute. This last mapping shows clearly that 
this approach can separate the semantic of concept or role in the ontology from its 
computation.

14.4 REASONING AND QUERYING

The reasoning task has been focused on query answering. Basic classical inferences 
that an ontological formalism should provide are consistency and querying knowledge.  
Consistency means to check whether a given concept C subsumes a concept D. 
Querying knowledge means to check whether a given individual is an instance to a 
given class. Formally, given a knowledge base K and a union of conjunctive queries 
q(x) over K, return the certain answers to q(x) over K, i.e., all tuples t of elements of q 
such that for every model I of K. First, the query answering method consists of com-
piling the TBox into a finite reformulation of the query that is evaluated afterward 
over the minimal model db (A) of the ABox. The technique for query answering over 
a DL-Lite+A ontology with mappings is implemented as follows:

Each mapping assertion F  Y is split into several assertions of the form  
F  p, one for each atom p in Y.
The atoms in the query q are unified in all possible ways to be evaluated 
with the right-hand side atoms of the (split) mappings, thus obtaining a 
(bigger) union of conjunctive queries containing variable object terms.
Then we unfold each atom with the corresponding left-hand side-mapping 
query. Observe that, after unfolding, we obtain an SQL query that can be 
evaluated over DB, and possibly return terms built from values extracted 
from DB.

For example, refer to the previous example and consider now the following query over 
the TBox, asking for the trajectories within a distance of 1 km from any hospital:

 Q(id)  Move(m), Hospital(h, geo), has_distance_greater(m, geo, 1000), 
 Trajectory(id, s, d), has_Move(id, m)

The first step is to expand the previous query into a union of queries containing 
all possible concepts, roles, and role attributes, according to the knowledge specified 
in ontology ABox, that could provide objects to satisfy this query.

 Q(id)  Trajectory(id, s, d)
 Q(id)  has_Move(id, m)
 Q(id)  has_Stop(id, m)
 Q(id)  …
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These expanded queries will be used further for describing the union of all possible 
sets of individuals defined by tuples corresponding to some database query answering.

The second step concerns splitting each mapping assertion  into several 
assertions of the form  p, one for each atom p in . Table 14.2 illustrates some of 
the mapping assertions that undergo the splitting process.

In the third step, the expanded queries showed in Table 14.2 are joined in all possi-
ble ways with the left-hand side of (split) mapping assertions presented in Table 14.2. 
Then, a new query over ontology TBox is generated by unifying the atoms in the 
query with the left-hand side atoms in the split mapping, thus obtaining:

 Q(id)  Move(mv(m)), Hospital(bd(h), pt(geo)), 
 has_distance_greater(m, geo, 1000), Trajectory(trj(id), s, d),
 has_Move(trj(id), mv(m))

Then, we unfold each atom with the corresponding left-hand side of the mapping 
query, and obtain the MADS query:

 Projection[t]
 selection[ m  Move h  Hospital 
 (m.geometry.distance(h.geometry) > 1000)  [ t  Trajectory (m.stopsVarying 
 t.stopsVarying)]

which can be simply evaluated over the database to get certain answers to q. Table 14.3 
summarizes the process of rewriting a conjunctive query over a DL-Lite+A ontology 
into a MADS query using mappings. The former query is translated into an interme-
diate query that permits its translation to a MADS query.

TABLE 14.2
DB Query Mapping Assertions

Atom From Mappings Corresponding DB Query

Trajectory(trj(id),s,d) Q1(id,s,d)

Building(bd(id),pt(geo) Q2(id,n,geo)

hasName(bd(id),n) Q2(id,n,geo)

Point(pt(geo),geo) Q2(id,n,geo)

Trajectory(trj(id),s,d), Q3(m)

Move(mv(m)) Q3(m)

has_Move(trj(id),mv(m)) Q3(m)

mv(m) Q3(m)

has_distance_greater(x,y,z) Q4(x,y)
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14.5  CONCLUSIONS

The development of a multitier ontological framework for a GKDD process is a 
research challenge because it addresses the integration of movement metaphors, rea-
soning tasks, and data management using different perspectives. In other words, 
the challenge is in integrating knowledge representation and data representation. 
The former is oriented to the semantic organization of data and powerful reasoning 
tasks. The latter focuses on efficient data storage and access. In particular, a GKDD 
process needs to cope with these two perspectives of data management because of 
the following reasons. First, large data sets of positioning data delivered by GPS 
devices must pass through an extracting, transforming, and loading process in order 
to remove data error and uncertainty, which will permit us to make these data avail-
able for use. Second, due to the lack of semantics in positioning raw data, which is 
represented by timestamp and position coordinates, there is a need for a semantic 
enrichment of this data. Enriching data means, for instance, associating them with 
existing data available at legacy systems (e.g., GIS, thematic information system, 
etc.). Third, a GKDD process is fundamental for extrapolating the limits imposed by 
the query answer process of traditional databases. To this end, positioning data must 
be annotated semantically using a geographical, application domain (e.g., traffic 
management) and background knowledge (e.g., sustainable mobility). The semantic 
enrichment by association and annotation of collected data is the key to support-
ing both efficient querying answering and reasoning tasks. Thus, a GKDD process 
requires efficient mechanisms for integrating knowledge representation and data 
representation in a seamless way.

TABLE 14.3
Examples of Conjunctive Queries

Queries

QUERY Return the trajectories within a distance of 1 
km from any hospital

DL CONJUNCTIVE QUERY Q(id)  Move(m), Hospital(h,geo), 
has_distance_greater(m,geo,1000), 
Trajectory(id,s,d), has_Move(id,m)

Rewrote Query Q(id)  Move(mv(m)), 
Hospital(bd(h),pt(geo)), has_distance_
greater(m,geo,1000), Trajectory(trj(id),s,d), 
has_Move(trj(id),mv(m))

MADS QUERY Projection[t]

selection[ m  Move h  Hospital 
(m.geometry.distance(h.geometry)>1000)  

 [ t  Trajectory (m.stopsVarying  
t.stopsVarying)]
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The multitier ontological framework described in this chapter is our first attempt 
toward supporting both efficient querying answering and reasoning tasks on the  
movement-as-trajectory metaphor. Ontology languages, such as DLs, are the state-
of-the-art of knowledge representation with application domains, while relational 
database technology is nowadays the best technology for efficient management 
of very large quantities of data. In addition, relational databases are the habitual 
destination for positioning raw data; thus, combining ontological representation 
with database querying mechanisms is fundamental for the use of ontologies in 
GKDD processes. The data ontological tier has been used to illustrate our proposed 
approach.

Although, we may find in the literature some solutions for combining ontolo-
gies with database (Calvanase et al. 2007; Poggi 2006), none of them cope with the 
problem of representing and reasoning on spatio-temporal data. More specifically, 
there is no logic language in the literature that provides a good expressiveness for 
representing spatio-temporal concepts/relationships and provides query answering 
over it in LogSpace with respect to data complexity. Consequently, there is a need 
for developing methods to permit seamless integration with spatio-temporal ontolo-
gies (i.e., domain, application, and data ontology tiers) and databases. Our approach 
proposes to exploit an ontological formalism that allows representing and reason-
ing on movement in a uniform way within different tiers, such as the data, applica-
tion, and domain ontology tiers. Furthermore, adopting a logical formalism, such as 
DLs, allows us to perform inferences on these amalgamated data with an improved 
expressive power.

Our proposal focuses on the combination of spatio-temporal databases and a 
multitier ontology framework. In this respect, this chapter describes the results of the 
integration of the data ontology tier and a spatio-temporal conceptual schema. Our 
approach relies on two well-known formalisms: description logics and conceptual 
models. Spatio-temporal conceptual schemas to be integrated are specified using 
the MADS conceptual data model (Parent et al. 2008), which can represent rich 
spatio-temporal semantics. DLs are then used to model the intentional knowledge 
needed in real-world applications. Thus, reasoning that deals with the data (e.g., 
ABox reasoning) is delegated to a DBMS via a particular query answering service, 
while DL reasoning is used for the terminological part of the data ontology (e.g., 
TBox reasoning).

In summary, the main contribution of our approach is twofold, which aims at (1) 
reducing the semantic gap between ontological and database representation by using 
mappings between an ontology and a conceptual database model, and (2) permitting 
definition of spatio-temporal relationships within an ontology, which can be trans-
lated to spatio-temporal conceptual queries.

The conceptualization of a multitier ontological framework is meant to formally 
represent and infer geographic knowledge with a GKDD process. A GKDD process 
constructed from an ontological perspective aims to integrate different reasoning 
tasks in a framework by mapping the complex relationship between movement meta-
phors and discovered patterns. The main advantage of this proposed framework is the 
possibility to focus on the spatial and temporal semantics of a geographical knowl-
edge domain rather than on the GKDD steps. Therefore, our further research will be 
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focused on the application ontology tier where the reasoning task is characterized by 
inferring descriptive knowledge such as the trajectory characteristics (e.g., work-home 
and recreational trajectories), the geographical context where the trajectory occurs 
(i.e., landscape structure, transportation mode), the topological relations between the 
trajectories (e.g., branching, converging), and the association between the trajectories 
and specific features of a landscape. Such information can be a set of properties that 
are associated with individual trajectories themselves, or a pre-defined group of tra-
jectories. The overall goal will be to help the experts to deduce the consequences for 
the existence of linear patterns of the movement of the trajectories.
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15.1 INTRODUCTION 

The rapid advances in telecommunications (e.g., GPS, cellular networks, etc.) 
facilitate the collection of large amounts of trajectory data. To make good use of 
such data, effective and efficient methods are needed to manage and analyze them. 
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Management and analysis of moving object trajectories is challenging due to the vast 
amount of collected data and novel types of queries and analysis tasks. The relational 
model cannot directly be deployed for managing trajectory data because of its insuf-
ficient representation ability. Because of this, the efficient management of such data 
has gained a lot of interest during the past few years [19, 23, 11, 22]. 

In the knowledge discovery and data mining (KDD) area, we face a similar prob-
lem: methods that work well for traditional relational and transactional data have 
their limitations in analyzing trajectory data. Furthermore, the lack of a consistent 
theoretical framework in the KDD field renders the trajectory data analysis harder. 
These challenges triggered a lot of work (see [18, 17, 13, 5, 8]) on analyzing trajectory 
data. In this chapter, we focus our discussion on one of these exploratory efforts; the 
discovery of trajectory periodic patterns, which capture regular movement of objects 
in space and time. 

This chapter is organized as follows. We overview some efforts in mining trajec-
tory data in Section 15.2. In Section 15.3, we present the model of trajectory periodic 
patterns and algorithms to discover them. Section 15.4 discusses some open issues in 
mining trajectory data. Finally, the chapter is concluded in Section 15.5. 

15.2 LITERATURE OF MINING TRAJECTORY DATA 

Clustering is a long-standing technique to group objects showing similar behav-
ior and differentiate objects performing differently. For identifying trajectories 
of similar shapes, Gaffney and Smyth [7] propose a probabilistic mixture regres-
sion model so that routes in one cluster follow the trends of a core representative 
trajectory and vary a little from it. The same objective motivated Vlachos et al. 
[24] to formalize a similarity function for trajectories based on the longest com-
mon subsequence (LCSS). Besides these efforts, Li et al. [17] and Kalnis et al. [13] 
have studied the moving cluster model. Reference [17] focuses on maintaining mov-
ing micro-clusters, each of which contains objects moving close in a time period, 
whereas Reference [13] finds clusters with unchangeable density during their life-
time while the objects in a group may vary (with some objects leaving it and others  
entering it). 

Pattern discovery is another intensively studied topic in trajectory data min-
ing. Frequent patterns reflect the regular behavior of moving objects. Mamoulis 
et al. [18] enrich the time-series periodic pattern model to capture periodic move-
ments in space; for example, somebody regularly visits place A and then place B 
at 8:00 a.m. and 9:00 a.m., respectively, every day. References [2] and [8] present 
different models and techniques for extracting sequential trajectory patterns. One 
example pattern of Reference [2] is a region list r1…rm, where each automatically 
discovered region ri contains sub-trajectories with similar shapes. In Reference 
[8], patterns model regular routes by tourists (e.g., Railway Station 15min  Castle 
Square 2 15h min  Museum), where the time intervals between sequential regions 
are captured. Discovery of motion similarity (e.g., flock, leadership, conver-
gence, and encounter patterns) has been studied in [16, 9]. With different inter-
estingness measurements, References [26], [25], [3], and [5] have extended the 
spatial collocation model [20] to include temporal aspects such that the discovered 
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patterns represent object types whose instances move close to each other in the  
history.

The discovered clusters or patterns could help to predict the future locations of 
objects. Yavas et al. [27] present a three-stage algorithm to find historical mobil-
ity patterns and predict future positions of mobile users from them. To improve 
location-based services, Karimi and Liu [14] propose a model to predict locations 
in the road-level granularity. Laasonen [15] has devised online algorithms to learn 
routes (clusters of cell sequences) between important locations. From these clus-
ters, destination probabilities can be derived to help predict a user’s future location. 
References [10] and [21] have investigated the prediction of objects number (density) 
in an area.

15.3 PERIODIC PATTERNS 

In many applications, the movements obey periodic patterns; that is, the objects  
follow the same routes (approximately) over regular time intervals. Such objects  
following approximate periodic patterns include transportation vehicles (buses, 
boats, airplanes, trains, etc.), animals, mobile phone users, etc. For example, Bob 
wakes up at the same time and then follows, more or less, the same route to his work 
every day.

The problem of discovering periodic patterns from historical object movements 
is very challenging. Usually, the patterns are not explicitly specified, but have to be 
discovered from the data. The patterns can be thought of as (possibly noncontiguous) 
sequences of object locations that reappear in the movement history periodically. In 
addition, since an object is not expected to visit exactly the same location at every 
time instant of each period, the patterns are not rigid but differ slightly from one 
occurrence to the next. The approximate nature of patterns in the spatio-temporal 
domain increases the complexity of the mining tasks. The proposed method needs to 
discover, along with the patterns, a flexible description of how they variate in space 
and time.

In what follows, Section 15.3.1 motivates the necessity to propose a new model to 
represent periodic patterns. Section 15.3.2 models formally the concept of periodic 
pattern. The algorithms that discover such patterns are presented in Section 15.3.3. 
Finally, Section 15.3.4 briefly shows two variants of this problem.

15.3.1 MOTIVATING EXAMPLE AND NAIVE METHOD

This section motivates the research on periodic pattern discovery by showing that 
previous work on event sequences is not expected to perform well when applied to 
trajectories.

Definition 15.1 An object trajectory is an n-length sequence  of spatial loca-
tions, one for each timestamp in the history, of the form {(l0, t0), (l1, t1), , (ln−1, tn−1)}, 
where li is the object’s location at time ti and is expressed in terms of spatial coor-
dinates. If the difference between consecutive timestamps is fixed,  is simplified to 
{l0, l1, , ln−1}.
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Figure 15.1a, for example, illustrates the movement of an object in three consecu-
tive days (as suming that it is tracked only during specific hours, e.g., working hours). 
It can be modeled with a sequence  = {<4, 9>, <3.5, 8>, }.

Given a sequence , a minimum support min_sup (0 < min_sup  1), and an 
integer T, called period, our problem is to discover movement patterns that repeat 
themselves every T timestamps. A discovered pattern P is a T-length sequence of 
the form r0r1 rT−1, where ri is a spatial region or the special character *, indicating 
the whole spatial universe. For instance, pattern AB*C** implies that at the begin-
ning of the cycle the object is in region A, at the next timestamp it is found in region 

FIGURE 15.1 Periodic patterns with respect to pre-defined spatial regions.
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B, then it moves irregularly (it can be anywhere), then it goes to region C, and after 
that it can go anywhere, until the beginning of the next cycle, when it can be found 
again in region A. The patterns are required to be followed by the object in at least 

( _ )min sup n
T periodic intervals in .

Existing algorithms for mining periodic patterns (e.g., [12]) operate on event 
sequences and discover patterns of the above form. However, in this case, the ele-
ments ri of a pattern are events (or sets of events). As a result, these techniques can-
not directly be applied to our problem, unless the exact locations li’s are treated as 
discrete categorical values. Nevertheless, it is highly unlikely that an object repeats 
an identical sequence of <x, y> locations precisely either because of the imprecise 
spatial routes or due to unsynchronized location transmissions. Thus, the object can-
not reach the same location at the same time every day, and as a result the sampled 
locations at specific timestamps (e.g., at 9:00 a.m. sharp, every day), are different. In 
Figure 15.1a, for example, the first daily locations of the object are very close to each 
other; however, they are treated differently by a straightforward mining algorithm.

One way to handle the noise in object movement is to replace the exact locations 
by the regions (e.g., districts, mobile communication cells, etc.) which contain them. 
Figure 15.1b shows an example of an area’s division into such regions. Sequence  
{A, A, C, C, C, G, A,...} can now summarize the object’s movement, and peri-
odic pattern mining algorithms, like Reference [12], can directly be applied. Figure 
15.1c shows three (closed) discovered patterns for T = 6, and min_sup = 2

3
. A disad-

vantage of this approach is that the discovered patterns may not be very descriptive if 
the space division is not very detailed. For example, regions  and  are too large to 
capture in detail the first three positions of the object in each periodic instance. On 
the other hand, with detailed space divisions, the same (approximate) object location 
may span more than one different region. For example, in Figure 15.1b, observe that 
the third object positions for the three days are close to each other, however, they 
fall into different regions (  and ) at different days. Therefore, we should aim at the 
automated discovering of patterns and their descriptive regions.

15.3.2 MODEL 

Let  = {l0, l1, , ln−1} represent the movement of an object. Let T << n be a user-
specified integer called period (e.g., day, week, month). A periodic segment s is 
defined by a subsequence lili+1 li+T −1 of , such that i modulo T = 0. Thus, seg-
ments start at positions 0, T, , ( n

T − 1) .T, and there are exactly m =
n
T periodic 

segments in .1 Let sj denote the segment starting  at position lj·T of , for 0  j < m, 
and let sj

i

   

= lj·T i, for 0  i < T .

Definition 15.2 A periodic pattern P is defined by a sequence r r rT − of length 
T, such that ri is either a spatial region or . The length of a pattern P is the number 
of non- regions in P.

1 If n is not a multiple of T , then the last n modulo T locations are truncated, and the length n of sequence 
S is reduced accordingly.
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A segment sj is said to comply with P , if for each ri  P, ri = or s ji
 

 is inside region ri.

Definition 15.3 The support |P| of a pattern P in  is defined by the number of 
periodic segments in  that comply with P.

In the rest of the discussion, P may refer to a pattern or the set of segments that 
comply with it. Let min_sup be a fraction in the range (0, 1] (minimum support). A 
pattern P is frequent if its support is larger than min_sup . m.

A problem with the definition above is that it has no control over the density of 
the pattern region ri. In other words, if the pattern regions are too relaxed (e.g., each 
ri is the whole map), the pattern may always be frequent. Therefore, an additional 
constraint is imposed as follows. Let P 

be the set of segments that comply with a 
pattern P. Each region ri of P is valid if the set of locations R Pi

 

 
 
:= {s ji

 

 | sj P} form a 
dense cluster, which is initially defined in Reference [6] using two parameters  and 
MinPts. A point p in the spatial dataset R Pi

 
  is a core point if the circular range centered 

at p with radius  contains at least MinPts points. If a point q is within distance  
from a core point p, it is assigned in the same cluster as p. If q is a core point itself, 
then all points within distance  from q are assigned in the same cluster as p and q. 
If R Pi

 

 forms a single, dense cluster with respect to some values of  and MinPts, then 
region ri is valid. If all non- regions of P are valid, then P is a valid pattern.

Figure 15.2a shows an example of a valid pattern, if  = 1.5 and MinPts = 4. Each 
region at positions 1, 2, and 3 forms a single, dense cluster and is therefore a dense 
region. Notice, however, that it is possible that two valid patterns P and P  of the 
same length (1) have the same positions, (2) every segment that complies with P , 
complies with P, and (3) |P | < |P |. In other words, P implies P . For example, the 
pattern of Figure 15.2a implies the one of Figure 15.2b (denoted by the three circles). 
A frequent pattern P  is redundant if it is implied by some other frequent pattern P.

FIGURE 15.2 Redundancy of patterns.
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Definition 15.4 The mining periodic patterns problem searches for all valid 
periodic patterns P (“frequent pattern” for short) in , which are frequent and 
nonredundant with respect to a minimum support min_sup.

15.3.3 ALGORITHMS 

This section presents techniques for mining frequent periodic patterns and their 
associated regions in object trajectories. First, we discuss how to find frequent 
1-patterns (i.e., of length 1). Then, three algorithms that identify longer patterns; a 
bottom-up, level-wise technique, denoted by STPMine1 (SpatioTemporal periodic 
Pattern Min(e)ing 1), a faster top-down approach, referred to as STPMine2, and 
a simplified version of the top-down approach STPMine2-V2, which solves the 
problem approximately but efficiently.

15.3.3.1 Obtaining Frequent 1-Patterns

To discover frequent 1-patterns, the following methodology is applied. The sequence 
 is divided into T spatial datasets, one for each offset of the period T. In other words, 

locations {li, li T , , li m− ·T} go to set Ri, for each 0  i < T. Each location is tagged 
by the id j  [0, , m−1] of the segment that contains it. Figure 15.3a shows the spa-
tial datasets obtained after decomposing the object trajectory of Figure 15.1a.

Observe that a dense cluster r in dataset Ri corresponds to a frequent pattern, 
having r at position i and at all the other positions. Figure 15.3b shows examples 
of five clusters discovered in datasets R , R , R , R , and R . These correspond to 
five 1-patterns (i.e., r11 , r21 , etc.). In order to identify the dense clusters 
for each Ri, a density-based clustering algorithm like DBSCAN [6] can be applied. 
Clusters with less than  (  = min_sup . m) points are discarded, since they are not 
frequent 1-patterns according to our definition. The original DBSCAN algorithm has 
quadratic cost to the number of clustered points; therefore, a hash-based method is 
utilized to reduce its cost (see [4] for details).

FIGURE 15.3 Locations and regions per periodic offset.
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15.3.3.2 A Level-Wise, Bottom-Up Approach

Starting from 1-patterns (i.e., clusters for each Ri), the bottom-up approach applies a 
variant of the level-wise a priori-TID algorithm [1] to discover longer ones, as shown 
in Algorithm STPMine1. The input of the algorithm is a collection 1 of frequent 
1-patterns, discovered as described in Section 15.3.3.1. Pairs <P1,P2> of (k − 1)- 
patterns in k−1, with their first k − 2 non- regions in the same position and dif-
ferent (k − 1)-th non- position create candidate k-patterns (lines 4 to 6). For each 
candidate Pcand, a segment-id join is performed between P1 and P2, and if the number 
of segments that comply with both patterns is at least min_sup . m, a pattern valida-
tion function checks whether the regions of Pcand are still clusters. After the patterns 
of length k have been discovered, the patterns at the next level are found, until there 
are no more patterns at the current level, or there are no more levels.

 Algorithm STPMine1( 1, T , min_sup); 
 1). k:=2; 
 2). while ( k−1  0/ ^ k < T ) 
 3).  k := 0/ ; 
 4).  for each pair of patterns (P1,P2) k−1 
 5).    such that P1 and P2 agree on the first k − 2 
 6).    and have different (k − 1)-th non-  position 
 7).   Pcand := candidate_gen(P1, P2); 
 8).   if (Pcand null) then 
 9).     Pcand := P1 P1

.sid  P2.sid P2
; //segment-id join 

 10).   if (|Pcand|  min_sup · m) then 
 11).     validate-pattern(Pcand, k, min_sup); 
 12).  k:=k + 1; 
 13). return := k, 1  k < T;

To facilitate fast and effective candidate generation, STPMine1 uses the MBRs 
(i.e., minimum bounding rectangles) of pattern regions. For each common non-
position i, the intersection of the MBRs of the regions for P1 and P2 must be  
nonempty; otherwise, a valid superpattern cannot exist. Function validate_pattern 
computes a number of actual k-patterns from Pcand. The rationale is that the points at 
all non-  positions of Pcand may no longer form a cluster after the join of P1 and P2. 
Thus, for each non-  position of Pcand the points are re-clustered. If for some posi-
tion the points can be grouped to more than one cluster, a new candidate pattern is 
created and validated for each cluster. Note that, from a candidate pattern Pcand, it is 
possible to generate more than one actual pattern eventually. If no position of Pcand 

is split to multiple clusters, the non-  positions of Pcand may need to be re-clustered, 
since some points (and segment-ids) may be eliminated during clustering at some 
position.

EXAMPLE 15.1

Consider the 2-patterns P1 = r1xr2y  and P2 = r1w r3z of Figure 15.4a. Assume 
that MinPts = 4 and  =1.5. The two patterns have common first non- position 
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and MBR(r1x) overlaps MBR(r1w). Therefore, a candidate 3-pattern Pcand is gener-
ated. During candidate pruning, STPMine1 verifies that there is a 2-pattern with 
non- positions 2 and 3 which is in 2. Indeed, such a pattern can be spotted at the 
figure (see the dashed lines). After joining the segment-ids in P1 and P2 at line 9 of 
STPMine1, Pcand contains the trajectories shown in Figure 15.4b. Notice that the 
locations of the segment-ids in the intersection may no longer form clusters at some 
positions of Pcand. This is why validate_pattern has to be called, in order to identify 
the valid patterns included in Pcand. Observe that the segment-id corresponding to the 
lowermost location of the first position is eliminated from the cluster as an outlier. 
Then, while clustering at position 2, two dense clusters are identified, which define 
the final patterns r1ar2br3c and r1dr2er3f .

15.3.3.3 A Two-Phase, Top-Down Algorithm

Although STPMine1 can find all periodic patterns correctly, it can be very slow due 
to the huge number of region combinations to be joined. If the actual patterns are 
long, all their subpatterns have to be computed and validated. So, a top-down method 
(STPMine2) is proposed to discover long patterns more efficiently.

After applying clustering on each Ri (Section 15.3.3.1), the frequent 1-patterns with 
their segment-ids are discovered. The first phase of STPMine2 algorithm replaces each 
location in  with the cluster-id it belongs to or with an “empty” value (e.g., ) if the 
location belongs to no cluster. For example, assume that the following clusters have 
been discovered: {r11, r12} at position 1, {r21} at position 2, and {r31, r32} at position 3. A 
segment {l1, l2, l3}, such that l1  r12, l2 r21, and l3  r31 is transformed to subsequence 
{r12*r31}. Therefore, the original trajectory  is transformed to a symbol sequence .

The algorithm in Reference [12] can be used to discover quickly all frequent pat-
terns of the form r0r1 rT−1, where each ri is a cluster in Ri or . However, it is unknown 
whether the results of the sequence-based algorithm are actual patterns, since the 
contents of each non-  position may not form a cluster. For example, {r12 *r31} may 
be frequent, however if the algorithm considers only the segment-ids that qualify 

FIGURE 15.4 Example of STPMine1.
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this pattern, r12 may no longer be a cluster or may form different actual clusters (as 
illustrated in Figure 15.4). The patterns P  which can be discovered by the algorithm 
of Reference [12] are called pseudo-patterns, since they may not be valid.

To discover the actual patterns, some changes are applied in the original algo-
rithm of Reference [12]. While creating the max-subpattern tree, each tree node is 
stored with the segment-ids that corre spond to the pseudo-pattern of the node. In this 
way, one segment-id goes to exactly one node of the tree. However,  could be too 
large to manage in memory. In order to alleviate this problem, while scanning , for 
every segment s, the following operations are performed.

First, the segment is inserted to the max-subpattern tree, as in Reference 
[12], increasing the counter of the candidate pseudo-pattern P  that s cor-
responds to after the transformation. An example of such a tree is shown in 
Figure 15.5. This node can be found by finding the (first) maximal pseudo- 
pattern that is a superpattern of P  and following its children, recursively. 
If the node corresponding to P  does not exist, it is created (together with 
any nonexistent ancestors). Notice that the dotted lines are not imple-
mented and not followed during insertion (thus, STPMine2 materializes 
the tree instead of a lattice). For instance, for segment with P  = { r21r31}, 
STPMine2 increases the counter of the corresponding node at the second 
level of the tree. 
Second, an entry <P .id, s.sid> is inserted to a file F , where P .id is the 
node id that corresponds to a pseudo-pattern P  and s.sid is the id of seg-
ment s. At the end, file F is sorted on P .id to bring together segment-ids 
that comply with the same (maximal) pseudo-pattern. For each pseudo-
pattern with at least one segment, STPMine2 inserts a pointer to the file 
position, where the first segment-id is located.

Instead of finding frequent patterns in a bottom-up fashion, the tree is traversed in 
a top-down, breadth-first order. For every pseudo-pattern with at least min_sup . m  
segment-ids, the validate_pattern function is applied to recover potential valid 
patterns. All segment-ids that belong to a discovered pattern are removed from the 

FIGURE 15.5 Example of a max-subpattern tree.
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current pseudo-pattern because the interested patterns are those not spatially con-
tained in some superpattern. The segment-ids that are not included in a pattern are 
used to verify its subpatterns. 

Thus, after scanning the first level of the lattice, some patterns may be discovered, 
and segment-id lists of the pseudo-patterns may be shrunk. Then, STPMine2 moves 
to the next level. The support of a pseudo-pattern P  at each level is the recorded 
support of P  plus the supports of all its superpatterns (recall that a segment-id is 
assigned to the maximal pattern it complies with). The supports of the superpatterns 
can be immediately accessed from the lattice. If the total support of the candidate 
is at least min_sup . m, then the segment-ids have to be loaded for application of  
validate_pattern. The segment-ids of a superpattern may already be in memory 
from previous level executions. If not, they are loaded from the file F. After valida-
tion, only the disqualified segment-ids are kept to be used at lower level patterns. 

The fact that segment-ids are clustered in F according to the breadth-first traversal 
of the lattice minimizes random accesses and restricts the number of loaded blocks 
to memory. The segment-ids for a superpattern remain in memory to be used at 
lower-level validations. If the algorithm runs out of memory, the segment-ids of the 
uppermost lattice levels are rewritten to disk, but this time possibly to a smaller file 
if there were some deletions. 

 Algorithm STPMine2( 1, T , min_sup); 
 1). build max-subpattern tree  and pattern-file F; 
 2). sort F on P .id and connect it to the nodes of  ; 
 3). for k:=T down to 2 
 4).  for each pattern P  at level k of  
 5).   |P |:=P.counter +

P P ,length(P ) = k+1 
|P |; 

 6).   if (|P |≥ min_sup · m) then 
 7).    Pcand := 

P P  P .sids; 
 8).    validate-pattern(Pcand, , min_sup); 
 9).    if (  has changed) then 
 10).     remove from P  those sids in new patterns of ; 
 11).     if (unassigned sids less than min_sup · m) then 
 12).      return ; 
 13). return ; 

A pseudocode for STPMine2 (top-down pattern mining) is shown in Algorithm 
STPMine2. Initially, the tree and the segment-ids file are created and linked. Then 
for each level, it finds the support of a pseudo-pattern |P | at level k by accessing only 
the supports of its superpatterns P   P at level k + 1, since the tree is accessed in 
breadth-first order. If |P |  min_sup . m, the pattern is validated as in STPMine1, 
and if some pattern is discovered, STPMine2 removes from P  all those segment-ids 
that comply with the discovered pattern. Thus, the number of segment-ids decreases 
as STPMine2 goes down the levels of the tree, until it is not possible to discover any 
more patterns, or there are no more levels. Notice that the patterns discovered here 
are only maximal, as opposed to STPMine1, which discovers all frequent patterns. 
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In real applications, these maximal patterns are more useful, compared to the huge 
set of all patterns.

15.3.3.4 A Simplified Algorithm: STPMine2-V2 

A pattern P is valid if (1) its frequency exceeds min_sup . m; and (2) the locations in 
RP

i
 form a single dense cluster for all non- positions in P. Property (2) incurs a high 

computational burden to the mining algorithms, because it requires repetitive appli-
cations of the clustering algorithm and maintenance of the segment-ids that comply 
with each tree node. 

A simplified version of the mining algorithm is proposed to consider the second prop-
erty only in the discovery of frequent 1-patterns. After computing the dense regions at 
each Ri, no clusters are re-validated. As a result, the segment-id lists are not used at each 
node, only the node counters are considered to measure the pattern frequency. This min-
ing technique is identical to STPMine2, excluding the validation and re-assignment of 
segment-ids, thus it is denoted by STPMine2-V2. 

STPMine2-V2 is less accurate than STPMine2, since it may discover patterns 
that are invalid according to the strict definition. In addition, the regions that define 
the patterns discovered by STPMine2-V2 are identical to the regions of the clusters 
forming frequent 1-patterns (e.g., the region refinement of the example in Figure 15.4 
is not performed). On the other hand, STPMine2-V2 is expected to be significantly 
faster than STPMine2. 

15.3.3.5 Effectiveness 

To demonstrate the effectiveness of STPMine1, STPMine2, and STPMine2-V2, a 
short trajectory with n = 1000 locations is generated. T is set to 20, and the object 
follows a single periodic pattern P at 39 out of 50 segments, whereas the move-
ment is irregular in 11 segments. Figure 15.6a shows the object trajectory, where 
the periodic movement can roughly be observed. For this dataset  = 10, i.e., there 
are 10 non- positions in P. Figure 15.6b shows the maximal frequent pattern P of 
length 10, successfully discovered by STPMine1 and STPMine2, when min_sup = 
0.6. The object’s movement is plotted, interpolated using only the non- positions. 
The discovered pattern is identical to the generated one. The dense regions are suc-
cessfully detected by the clustering module, and the spatial extents of the pattern are 
minimal. 

A grid-based mining method is developed to directly apply the mining algorithm in 
Reference [12]. The space is divided using a regular M × M grid. Each location of  is 
transformed to the cell-id which encloses the location. Then, the algorithm of Reference 
[12] is used to find partial patterns of cell-ids. Figure 15.6c shows a maximal pattern P  

 

discovered by this grid-based technique, when using a 10 × 10 grid. P  has the largest 
length among all discovered patterns, however it is only 4 (whereas the actual pattern 
P has 10 non- positions). With a grid with fine granularity, frequent regions that span 
multiple cells cannot be identified (e.g., the cluster r[19][1] is split between cells c47 and 
C57 and neither of these cells has higher support than min_sup . m), whereas with a grid 
of low granularity the patterns are formed by very large regions. 

STPMine2-V2 also finds the maximal pattern with length 10 shown in  
Figure 15.6d. The region for each non- position is represented with the MBR of 
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its associated initial cluster. Thus, STPMine2-V2 retrieves comparative results to 
STPMine1 and STPMine2 in finding the descriptive regions and patterns, except that 
the non- regions are a little larger (i.e., a little less descriptive) than the ones in the 
pattern of Figure 15.6b. 
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15.3.4 VARIANTS 

In practice, the model presented thus far may fail to identify some noncrisp periodic 
patterns. This section discusses two variants of this model that relax the definition 
of frequent periodic patterns and allow for the discovery of additional trends in the 

FIGURE 15.6 (Continued).
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data. The first variant captures periodic patterns that may not be frequent in the 
whole sequence. For instance, assume that Bob changes his route to work after being 
transferred from department A to department B. In this case, his route to depart-
ment A is frequent only during the time interval he works there. This variant mines 
frequent patterns and their validity eras; that is, the (maximal) time ranges (eras) 
during which these patterns are frequent. 

The second variant discovers patterns whose instances may be shifted or dis-
torted. For example, if Bob wakes up late on a certain day, the movement to his work 
is shifted on that day (e.g., for 10 minutes). Or, Bob gets up at the usual time, but 
arrives at the company a little late due to traffic congestion. Although Bob follows 
the same route (pattern) to the company in the above two cases, the corresponding 
pattern instances are shifted and/or distorted. In both cases, in the counting of a pat-
tern’s frequency, its shifted and/or distorted instances should be included. 

This section defines the above two variants and briefly describes appropriate 
techniques for their discovery. 

15.3.4.1 Patterns with Validity Eras 

Given a trajectory , a period T , and a segment sj starting from lj·T and spanning T 
consecutive locations in , an era [b, e] is the subsequence of , from the beginning 
of segment sb until the end of se. The time span of the era [b, e] is e − b + 1. An era  
[b, e] is a superset of the era [b ,e ] if b  b  and e  e ; accordingly, [b ,e ] is a subset 
of [b, e]. 

A periodic pattern with a validity era, era pattern for short, refers to a periodic 
pattern asso ciated with some era, P = r0r1 rT−1[b, e]. In Figure 15.1c, the era of 
subsequence AACBDG AAACHG is [1,2] (T = 6), whereas the era of the whole 
sequence is [0, 2]. Examples of era patterns are AA***G[0, 2] and AAC**G[0, 1]. 

Recall that P 
is the set of segments that comply with a pattern P. Let bmin and emax 

be the minimum and maximum segment-ids in P, respectively. Given [b, e], a subset 
of [bmin, emax], let P

[b,e]  contain all the segments in P with segment-ids in [b, e], and 
| P

[b,e] | denote the number of segments in P
[b,e] .

Definition 15.5 Given min_sup and MinPts, the era pattern P [b, e] is a valid era 
pattern if | |[ , ]

| |[ , ]S Pts andb e
P s

e b
b e

PMin 1 min_sup.

Consider two era patterns P = r0r1 rT −1[b, e] and P  = r0r 1 
r T [b ,e ]. P is a 

super-pattern of P  if (1) ri = ri or ri = * for 0  i T and (2) [b, e] is superset of 
[b , e ]. An era pattern P is maximal if it has no proper valid superpattern.

Definition 15.6 The mining era patterns problem aims to find all the maximal 
valid era pat terns, given a sequence , a period T, a minimum support min_sup (0 < 
min_sup  1), and cluster parameters  and MinPts.

The discovery of era patterns involves two steps: detecting valid 1-patterns and dis-
covering the patterns with longer length. In finding valid 1-patterns, the era pattern 
mining algorithm (EP-Mine) first employs the procedure in Section 15.3.3.1 to find 
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candidate 1-patterns. Then, for each candidate P, it computes the maximal era that 
makes P valid.

For each candidate pattern P, its initial era is [bmin, emax]. The maximal valid era 
is a subset [b, e] of [bmin, emax] such that no superset of [b, e] makes P valid. This 
can be computed by recursively checking the subsets of [bmin, emax] from eras with 
longer length to those of shorter length. The first reported valid era is the maxi-
mum one.

For finding longer era patterns, STPMine2-V2 is adapted. A max-subpattern Pmax 

is formed by combining the valid 1-patterns, and its era is the union of the eras from 
the 1-patterns that define P. For example, the union of a set of eras {[b1, e1], [b2, e2],  
[bk,ek]} is defined by [mink

i=1 
bi, maxk

i=1 
ei]. In addition, the eras of the 1-patterns that 

form a max-subpattern P have nonempty intersection; otherwise, there can be no 
valid instance of P. From the candidate max-patterns, EPMine builds the max- 
subpattern tree for each of them. The max-subpattern trees are traversed in a breadth-
first order and longer patterns with valid maximal eras are reported.

15.3.4.2 Shifted and Distorted Patterns 
Recall that sj denotes a segment starting at position j . T . Given a tolerance integer 
(0    T/2 ), a segment starting at position j . T + d, −   d  , is denoted by sj[d] 

(note that sj [0] = sj).

Definition 15.7 Given a sequence  and an integer , a segment sj[d], −   d  
, is a shifted pattern instance of a pattern P if it complies with P, i.e., P’s occur-

rence in  is shifted at most  timestamps forward or backward from its expected 
position j . T.

EXAMPLE 15.2 

Let T  = 5 and = r0r1r2r3r4 r0r0r1r4r3 r2r0r1r3r3 be the transformed sequence, 
after replacing the locations in  by spatial regions. The pattern r0r1 * r3 * has one  
nonshifted instance, s0, starting at position 0, and two shifted pattern instances, 
s1[1] and s2[1], starting at positions 6 (1 . T  + 1) and 11 (2 . T + 1).

Definition 15.8 A segment sj[d], −   d  , is a distorted instance for a pattern 
P = r0r1 rT −1 with length Plen, with respect to , if there exist Plen ordered locations 
in sj

 
[d] such that (1) these locations follow the order of non-  elements in P; and (2) 

for every non-  element in P, its period offset differs at most  from the period offset 
of its related location in sj

 
[d].

EXAMPLE 15.3

Consider a segment s0= l0l1l2l3l4 and let  =1. If l1  r0, l2  r2, and l4  r3, s0 is a 
distorted instance of pattern P = r0 * r2r3*.

Two pattern instances (segments) overlap if they have some locations in common. 
For example, s0[1] = {l1, l2, l3, l4, l5} overlaps with s1 = {l5, l6, l7, l8, l9} since they have 
l5 in common.
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Definition 15.9 If a pattern P has more than min_sup.m (shifted/distorted) pattern 
instances in , such that no two instances overlap, then P is a frequent pattern with 
shifted/distorted instances. Given a sequence , minimum support min_sup (0 < 
min_sup  1), cluster parameters  and MinPts, and the maximum shifting/distortion 
parameter (0    T/2 ), the problem of dis covering shifted/distorted patterns  
aims at finding all frequent patterns with shifted/distorted instances from .

The discovery of frequent patterns with shifted/distorted instances also involves 
two stages. In the first stage, a similar procedure in Section 15.3.3.1 is applied to 
find 1-patterns. Different from Section 15.3.3.1, which generates a single point in 
the corresponding dataset Ri and applies clustering to each Ri, this stage generates 
points for an object location at offset position i at all -neighbor positions R(i− ) mod T ,  
R(i− +1) mod T , , R(i+ ) mod T . Consider the 5th position of day 1 in Figure 15.3a and 
assume that  = 1. Instead of generating a single ‘ ’ point at that location, the algo-
rithm generates one ‘ ’ point (to file R5), one ‘+’ point (to file R4), and one ‘×’ point 
(to file R6). In the second stage, STPMine2-V2 is adopted to facilitate counting of 
longer (shifted/distorted) pattern instances. The algorithm works in a top-down man-
ner by starting the pattern validation from the max-subpattern Pmax. The subpatterns 
of Pmax are examined level-by-level. For each candidate subpattern P at a level, the 
algorithm sequentially fetches one location from the segment-id set for every non-  
position. If the set of locations forms a valid shifted/distorted pattern instance, these 
locations contribute one to the support of P. The support of P is the total number of 
nonoverlapping location sets, which intrinsically form pattern instances. The details 
of finding nonoverlapping location sets can be found in Reference [4].

EXAMPLE 15.4 

Assume two clusters r0 ={l0, l5, l10} and r1 ={l1, l5, l6, l7, l11}. Consider a candidate 
pattern P = r0r1 *** and let  =1. (l0, l1) is the first point-id pair from the two sets, 
falling into the same segment, so they contribute 1 to |P|. Then, (l5, l6) forms another 
segment and adds 1 to P’s frequency. The final contributing pair is (l10, l11).

15.4 OPEN ISSUES

The current research on trajectory analysis is still at a starting stage due to the lack 
of a consistent theoretical model for representing and accessing such data. Therefore 
data mining on such data is ad-hoc; analysis tasks are defined from application 
requirements and appropriate algorithms are designed for them. In the following, we 
outline some open issues for future research in this field.

A fundamental theory for modeling trajectory data and their access/analy-
sis should be defined. Modeling is not an easy process; therefore, it should 
be done gradually. To begin with, a set of typical analysis tasks should be 
defined and benchmark data should be provided for them.
Similar to the management of other types of complex data (e.g., spa-
tial, temporal, multi media, etc.), it is necessary to develop a systematic 
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framework that combines the dominant methods in managing and analyz-
ing trajectory data.
The current trajectory data mining algorithms require users to provide 
values for several parameters. This is neither desirable nor applicable in 
many cases. In addition, different parameters may cause instability to the 
system. Due to these reasons, for typical tasks, some heuristics or models 
for setting and tuning parameters are required. Benchmark datasets and 
mining tasks should be provided to allow for the testing of such models.
Real applications impose additional requirements to data trajectory analy-
sis. For example, the locations of objects may not be certain due to transla-
tion delay or collection granularity. It is desirable to consider uncertainty 
in analyzing trajectory data.

15.5 CONCLUSION

In this chapter, we discussed the problem of periodic pattern discovery from trajec-
tory data. Such patterns capture movement regularities for objects that periodically 
visit specific places at specific times. We presented three algorithms, which not only 
discover the patterns but also find the pattern regions automatically. Two variants 
of the basic periodic patterns definition are discussed. In the first variant, the objec-
tive is to find the patterns and the maximal time interval in which the patterns are 
of interest, while patterns in the second variant get supported by shifted/distored 
instances of the core pattern description. Finally, we discussed open issues in trajec-
tory data mining, which will hopefully stimulate future research in the field.
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16.1 INTRODUCTION 

Conventional approaches to geographic knowledge discovery and spatial data min-
ing are founded on powerful, centralized algorithms that screen large data sets for 
interesting patterns and rules. Such global algorithms allow fast detection of interest-
ing patterns if centralized access to the whole data set can be guaranteed. 

However, new technologies for distributed spatial data capture and processing, 
such as geosen sor networks, present new challenges to conventional knowledge dis-
covery and data mining al gorithms. Increasingly, access to the whole data set can-
not be guaranteed; instead, multiple computing units, none of which possess global 
knowledge, must cooperate in knowledge discovery. 

This chapter investigates the structure and design of decentralized algorithms for 
spatial data mining. Our increasing ability to collect data at finer and finer spatiotem-
poral granularities has the potential to generate such overwhelming volumes of data 
that the paradigm of central pro cessing is no longer practicable (Kargupta and Chan 
2000). Instead, knowledge discovery must descend into the network, detecting pat-
terns as the spatial data is captured. 

Specifically, the chapter contributes to the theory of geographic knowledge dis-
covery and spatial data mining by

identifying spatial data mining and knowledge discovery as a crucial 
application layer for geosensor networks, the latest technology for spatial 
data capture,
exploring the notion of decentralized spatial data mining (DSDM) for 
geographic knowl edge discovery, and 
presenting an overview of techniques for DSDM, including an investiga-
tion of the potential of DSDM for classical spatial data mining applica-
tions, such as clustering. 

The remainder of this chapter is organized as follows. Section 16.2 surveys the 
relevant back ground literature for DSDM. Section 16.3 presents the concept of 
decentralized spatial data mining and proposes a set of generic strategies for DSDM 
algorithms. The chapter then investigates a specific case study of different decentral-
ized algorithms for spatial clustering (Sections 16.4 and 16.5). Finally, the chapter 
concludes with a discussion of the results in Section 16.6 and the formulation of a 
research agenda for DSDM (Section 16.7). 

16.2 BACKGROUND 

16.2.1 DISTRIBUTED AND DECENTRALIZED SPATIAL COMPUTING 

A distributed system is defined as a collection of multiple information system units 
that syn chronously cooperate via a communication network to complete some com-
puting task (Worboys and Duckham 2004). A wireless sensor network (WSN, ad-
hoc wireless networks of sensor-enabled miniature computing platforms, Zhao and 
Guibas 2004) is a form of distributed system, where individual sensor nodes coop-
erate to ensure the network as a whole can meet the require ments of the specific 
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application. Applications of WSN in the spatial domain include environ mental moni-
toring (Duckham et al. 2005, Werner-Allen et al. 2006), smart farming (Wark et al. 
2007), traffic management (Kellerer et al. 2001), and robotics (Correll and Martinoli 
2006). Considerable recent research activity in the area of WSN has focused on the 
issues surround ing the establishment and maintenance of the communication net-
works necessary for distributed computing (e.g., Braginsky and Estrin 2002, Cheng 
and Heinzelman 2005), including many in genious techniques using the spatial char-
acteristics of the network for that purpose (e.g., Karp and Kung 2000, Mauve et al. 
2001, Yu et al. 2001, Xu et al. 2001). 

In many systems that are commonly referred to as “distributed,” the cooperat-
ing information systems each take responsibility for logically or functionally dis-
tinct sub-tasks. For example, the architecture of distributed client-server systems 
is typically founded on a clear delineation of the distinct services provided and 
consumed by different logical units (e.g., the classic three-tier client-server archi-
tecture of Web browser, Web server, and spatial database server used in Web map-
ping applications, Worboys and Duckham 2004). However, in some distributed 
systems, such as peer-to-peer networks, there is no such partitioning of sub-tasks; 
multiple units in the distributed system may have similar or equivalent responsi-
bilities. In such systems, specific pro cessing tasks may be distributed throughout 
the network, each individual unit performing a small part of the required process-
ing. Here we reserve the term decentralized for describing these dis tributed sys-
tems and algorithms, where the processing task itself is distributed throughout the 
network and no component of the distributed system “knows” the entire system 
state (Lynch 1996). 

A geosensor network is defined by Nittel et al. (2004) as a WSN that monitors 
phenomena in geographic space. A geosensor network is, therefore, also a type of 
distributed system. There are four main reasons why decentralized algorithms are 
important in geosensor networks: 

Energy resources: WSN are highly resource-constrained systems, espe-
cially with respect to sensor node energy resources (Zhao and Guibas 
2004). Wireless communication is one of the most energy-intensive activi-
ties of a sensor node, so continually relaying data to a central system can 
dramatically shorten the useful lifetime of a WSN. 
Information overload: The fine-grained detail becoming available from 
larger sensor net works means that individual data items become less and 
less meaningful. Transmitting all data can lead to high levels of redun-
dancy and ultimately information overload (Rabiner et al. 1999, Datta  
et al. 2006a). 
Scalability: As networks scale from tens to thousands to millions of nodes, 
effective cen tralized control of the network becomes impossible. The issue 
of scalability is especially important in geosensor networks, which must 
by definition contain a large number of nodes in order to provide enough 
spatial detail to monitor geographic phenomena (Estrin et al. 1999). 
Sensor/actuator networks: The results of the analysis of sensor network 
data are often required by the network itself in order to modify the behavior 
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of the network (e.g., activate or deactivate sensors to adapt the granular-
ity of monitoring of important events, Duckham et al. 2005). Removing 
information from the network, processing it centrally, and then returning 
it to the network is an inefficient drain on network resources. 

The key challenge of decentralized, in-network processing is to use “decentral-
ized coordina tion with local decision making to achieve the intended global goal” 
(Estrin et al. 2000, p. 40); in other words, to generate global knowledge using local 
processes (local in this context refers to a node and its immediate neighborhood 
or locality). Thus, in decentralized spatial comput ing we are interested in develop-
ing algorithms that can operate using purely local knowledge, but are still able to 
monitor geographic phenomena with global extents. This is a very different approach 
from conventional spatial computing paradigms (exemplified by GIS) where pro-
cesses (e.g., spatial analysis routines) operate upon entire data sets (e.g., stored in a 
spatial database). 

16.2.2 CENTRALIZED (GEOGRAPHIC) KNOWLEDGE DISCOVERY AND DATA MINING 

Conventional knowledge discovery in databases (KDD) and its most prominent step, 
data mining, rely on data available at a single location. Association rule mining, for 
example, is based on global counts of frequent item sets in order to compute sup-
port for and confidence in a rule (Gidofalvi and Pedersen 2005). Similarly, many 
point pattern measures used for clustering pur poses depend on globally fixed criteria 
such as “nearest neighbor” or “neighbors within 50m” (O’Sullivan and Unwin 2003). 
Even though classical spatial data mining patterns fundamentally depend on local 
spatial relations (Shekhar et al. 2003), the vast majority of current algorithms for 
detecting these patterns rely on global data structures and algorithms. 

For example, clustering is a classic spatial data mining technique that organizes 
observa tions into coherent and contrasted groups. Clustering approaches are normally 
classified into two categories: hierarchical and partitional clustering. Hierarchical 
clustering techniques es tablish a nested hierarchy of clusters by successively building 
new clusters based on previously merged leaves in the clustering tree (O’Sullivan and 
Unwin 2003). At every step, merging the closest clusters requires finding the smallest 
distance of any pair in the distance matrix for the whole data set, and hence relies 
on global knowledge. The most common partitional algorithm is k-means cluster-
ing. The algorithm is based on an initial assignment of all observation to k ran domly 
seeded cluster heads followed by successive improvement of the partitioning by itera-
tive reassessment of computed mean centers of the partitions. In its conventional vari-
ants, k-means clustering assumes global knowledge (however, see Section 16.2.3). 

Spatial and spatiotemporal clustering often takes a different perspective and first 
asks if there are clusters at all in some given point distribution. In the field of spatial 
statistics, a series of techniques have been developed to quantify the randomness of 
a point distribution, including density-based methods (quadrat count, kernel estima-
tion) and distance-based methods (nearest neighbor, distance functions, O’Sullivan 
and Unwin 2003). The locations of potential clusters are then the focus of a second 
stage. A common application would be the identification of crime hot spots or the 
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origin of an infectious disease (Shekhar et al. 2003). Again, these centralized algo-
rithms require global access to data to operate. 

In summary, conventional data mining approaches allow efficient screening for 
patterns and rules, given the proviso that all data is available at a single location, data 
structures are central ized, and algorithms are omniscient. 

16.2.3 DISTRIBUTED DATA MINING 

The emergence of network-based distributed computing environments has added a 
new dimen sion to knowledge discovery in databases and data mining. Distributed 
data mining (DDM) has evolved over the last decade in an attempt to develop distrib-
uted versions of many stan dard data mining algorithms (Datta et al. 2006a). DDM 
embraces the growing trend of merging computation with communication. DDM 
aims at finding patterns and rules from distributed and heterogeneous data using 
minimal communication (Kargupta and Chan 2000). Privacy concerns, as well as 
bandwidth and resource constraints in distributed systems, often dictate that data 
col lected at different nodes be analyzed in a decentralized fashion, without collect-
ing everything to a central site (Datta et al. 2006a). The limitations of using purely 
local knowledge means distributed data mining often focuses on approximate algo-
rithms that may not always match the exact answers provided by conventional cen-
tralized data mining algorithms (Datta et al. 2006a). The goal remains to derive new 
and useful information, but potentially to sacrifice a small degree of certainty for 
substantial computational gains. 

Taking for instance clustering, there exists ample research on distributed cluster-
ing algo rithms (see Bandyopadhyay et al. 2006 for an introductory overview). For 
example, clustering of sensor nodes can be used for communication load balancing 
in ad hoc sensor networks (Younis and Fahmy 2004). Other authors have explicitly 
focused on distributed clustering for data min ing purposes (Bandyopadhyay et al. 
2006) and even dynamic distributed networks (Datta et al. 2006b). However, most 
distributed clustering approaches thus far focus on partitional clustering, assigning 
the nodes of a network to a given number of k cluster heads. Apart from clustering 
there also exists work on distributed in-network association rule mining (Wolff and 
Schuster 2004) and outlier detection (Branch et al. 2006). 

The distributed data mining field shows a growing interest in distributed parti-
tional cluster ing. However, decentralized spatial data mining, for example decentral-
ized cluster detection and localization in spatial point distributions, remains an open 
research task. 

16.3 DECENTRALIZED SPATIAL DATA MINING (DSDM) 

This section discusses the concept of decentralized spatial data mining (DSDM). 
Many of the patterns and rules of interest in conventional spatial data mining are 
defined based on local inter-object relationships, including density clusters and co-
location patterns. This spatial locality is exploited by decentralized algorithms for 
DSDM. The section first defines the problem addressed by DSDM, then proposes a 
series of general strategies for DSDM. 
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16.3.1 PROBLEM DEFINITION 

DDM is the attempt to develop distributed versions of standard data mining algo-
rithms (Datta et al. 2006a). Similarly, the aim of DSDM is the introduction of decen-
tralized algorithms for spatial data mining. Like spatial data mining, DSDM gains 
its strength from exploiting the special characteristics of spatial information (primar-
ily, spatial autocorrelation). Hence, DSDM is not about functionally distributing a 
complex task among cooperating sub-systems. Instead, DSDM attempts to spatially 
distribute a global task throughout a decentralized network, each individual comput-
ing unit relying on local data and processes to operate. 

Consequently, DSDM can be defined as the process of discovering new spatial 
patterns within a distributed system using decentralized algorithms with no central 
coordination operating upon locally defined spatial data. 

For example, consider the simple spatial cluster detection illustration in Figure 16.1. 
The black observations lie in two distinctive density clusters. The task of DSDM is 
to detect these clusters using decentralized data mining algorithms that operate in 
computing nodes themselves. Each node is expected to be able to perceive only local 
information about its own and its immediate neighbors’ geographic environment, but 
there exists no node that can perceive the entire geo graphic space. 

FIGURE 16.1 Decentralized clustering. A set of V observations features two clusters of 
hot nodes. Detecting such a clustering is easier given a larger neighborhood N1 covering the 
whole cluster, but more difficult in a smaller neighborhood N2 that only covers parts of the 
cluster. Applied to a geosensor network scenario, where the observations represent the nodes, 
the DSDM task is the decentralized detection of the clusters.

N1

N2

r

c1

c2
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Environmental monitoring using a geosensor network would be one specific appli-
cation of the previous example. The observations represent sensor nodes in a geosen-
sor network, physically distributed in space, and monitoring some environmental 
variable, such as temperature. Given some threshold t, then the clusters of “hot” 
nodes might represent temperature “hot spots,” where the temperature is above t. 
Each individual sensor node is expected to possess only partial spatial knowledge 
about its own temperature and the temperature of its immediate neighbors. The 
DSDM task for this geosensor network is then to detect the temperature hot spots 
using only its local knowledge about its own and its neighbors’ observations. 

Obviously, the size of the neighborhood is a central parameter in this example. 
The larger the neighborhood, the more the problem resembles a conventional cen-
tralized, global spatial data mining problem. Neighborhood N1 , for example, covers 
the entire cluster bottom left and it should potentially be straightforward for a node 
with only local knowledge of that neighborhood still to detect the pattern. By con-
trast, neighborhood N2 only covers a fraction of the whole cluster top right, making 
decentralized detection of this cluster much harder. In the context of a geosensor 
network, the size of the neighborhood will be determined to a large extent by the 
communication range of individual nodes. The technical and physical limitations 
of communi cation in geosensor networks means that in general it is to be expected 
that each sensor node can only communicate with a tiny fraction of the nodes in the 
entire network: those in its immediate spatial vicinity. 

16.3.2 FORMAL PROBLEM DEFINITION 

In this section we more precisely specify the problem outlined before using a formal 
model of geosensor networks. For simplicity we assume only a static geosensor net-
work, where nodes are immobile. However, later sections indicate how this model 
can be extended to deal with dynamism.

16.3.2.1 Geosensor Networks 

As indicated previously, the key features of a geosensor network are the nodes and 
short-range radio frequency (RF) communication links between nearby nodes. The 
most commonly used model of such a network is a graph, where vertices in the graph 
model nodes in the geosensor network and edges in the graph model the potential 
for communication between neighboring nodes. Such a graph is static (nodes do not 
move and edges are fixed), and can be formally defined as in Definition 16.3.2.1. 

Definition 16.3.2.1 A geosensor network may be modeled as a graph G  (V, E), 
where V is the set of vertices (sensor nodes) and E  V × V is the set of edges  
(communication links) between neighboring nodes. For a node v  V, its neighbor-
hood {v   V | {v, v }  E} is written nbr(v).

Note that by adopting an undirected graph to model a geosensor network (as in 
Definition 16.3.2.1), we are implicitly assuming symmetric bidirectional communi-
cation: If node a can com municate with node b, then node b can communicate with 
node a. While this is a natural and common simplifying assumption in geosensor 
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networks, in actuality it does not always hold (Min and Chandrakasan 2003). In 
more sophisticated situations, a directed graph might be re quired to model any com-
munication asymmetry. 

We can further model the location of a sensor node as a locator function 
(Definition 16.3.2.2).

Definition 16.3.2.2 A (static) locator is a function l : V  n, where for any ver-
tex v  V, l(v) maps to the coordinate location of that node (where n is 2 or 3). The 
distance function  : V × V   is the usual metric for Euclidean distance between 
nodes.

An implicit assumption is commonly made that no two nodes occupy the same 
location (i.e., the locator function is an injection). Because the communication links 
between nodes are con strained by the physical limitations of RF communication, the 
locator function can be used to generate the set of edges E for a particular set of ver-
tices V assuming a maximum communica tion range c. For example, the unit distance 
graph (UDG) is the graph formed when all nodes that are within communication 
range may potentially communicate (Definition 16.3.2.3).

Definition 16.3.2.3 Given a maximum communication distance c, the UDG is the 
geosensor network G (V, E) where E  {(u, v)  V × V|0 < d(u,v)  c}.

Note that in addition to assuming symmetric, bi-directional communication, the 
UDG also assumes a constant communication distance across the entire network. 
Again, the actual situation may in practice be more complex.

Often in spatial applications it is more useful to assume that only a subset of the 
communi cation links in the UDG are available. In particular, subsets of the UDG 
that form planar graphs (such as triangulations) are commonly used in specific spa-
tial applications (e.g., Karp and Kung 2000, Worboys and Duckham 2006). Common 
planar subsets of the UDG include the relative neighborhood graph (RNG) and the 
Gabriel graph (GG) (Zhao and Guibas 2004).

It is important to note that although the underlying communication graph is usu-
ally con structed with reference to a locator function l, we do not necessarily assume 
that an individual node is location-aware (i.e., has access to knowledge about its own 
location). In some geosensor networks, all nodes may be location aware. However, 
the technical limitations of achieving high precision and accuracy location of nodes 
in a geosensor network means that where possible it is safer to assume nodes are only 
able to determine their qualitative location in terms of the nodes in their immediate 
neighborhood. Despite this limitation, it is possible to generate many interesting 
spatial properties and behaviors using only such qualitative location information, as 
we will see later in Section 16.4.

Finally, the geosensor network is assumed to be monitoring some environmental 
variable in space using its sensors. The environmental variable may itself be highly 
structured and com plex; however, in this chapter we assume the most simple domain 
for an environmental variable: Boolean values.

Definition 16.3.2.4 The sensor data for the set of nodes V can be represented using 
a (static) sensor function s: V  D, where D is the domain for some environmental 
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variable. In this chapter we assume a Boolean domain D  {0,1}. Any node v where 
s(v)  1 (i.e., that can detect the environmental variable) is termed a “hot” node; any 
node v where s(v)  0 (i.e., that cannot detect the environmental variable) is termed 
a “cold” node. 

Figure 16.2 summarizes the formal model of the geosensor network, showing the 
UDG for a small group of hot (black) and cold (white) nodes.

16.3.2.2 Clusters

The decentralized algorithms introduced in later sections are designed to find clus-
ters, such as those in Figure 16.1. Here we adopt a simple definition of a cluster as a 
set of at least n related observations that lie within a circle of radius r spatial region 
(Definition 16.3.2.5).

Definition 16.3.2.5 Given a geosensor network G   (V, E), a locator function  
l : V  2, and a sensor function s : V {0,1}, an (nr) cluster is defined as a set of 
nodes V  V such that |V |  n; there exists some circle er of radius r such that for 
all v  V, l(v) is spatially contained within er; and for all  v  V , s(v)  1.

Note that this definition concerns only the static scenarios outlined before, 
although a more sophisticated dynamic clustering definition can also be defined 
based on the previous definitions.

The problem facing a DSDM algorithm is how to detect a cluster of n nodes 
within a circle of  radius r, when individual nodes v  V can only communicate 
with their immediate neighbors, v  such that {v,v }  E. If we assume the neighbor-
hood of a node is defined by the UDG, then the neighborhood of v depends on the 
communication radius c. Assuming c is substantially larger than r, then finding a 
cluster is relatively straightforward: each node can locally look for a cluster only in 

FIGURE 16.2 Summary of formal model. Geosensor network G  (V, E), where V   
{v1,…, v20} and E  {{v1, v2},…} is the UDG based on communication distance c. Hot nodes, 
where s(v)  1, are shown in black; cold nodes are shown in white. 
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its immediate neighborhood. However, when c and r are similar, or c is smaller than 
r, more sophisticated strategies are required.

16.3.3 COMPENSATION STRATEGIES

Based on the previous problem definition, it is possible to describe four classes of 
strategies for decentralized spatial data mining as follows.

16.3.3.1 Local Extrapolation

In local extrapolation, nodes infer knowledge about patterns that extend their local 
knowledge range. For example, if c r1

2  a node v can expect to receive knowledge 
only on approximately 1

2

2 1
4 of the entire pattern extent from its immediate neigh-

bors nbr(v). Thus, if a node detects 1
4
 of the required cluster (i.e., for all v   nbr(v), 

s(v )  1 but |nbr (v)|  1
4  

n), it may locally infer that the cluster has been detected. For 
example, the clusters in Figure 16.3 consist of 20 hot nodes. In the top left case, the 
node with communication range c has 5 hot neighbors and hence naively assumes 
that it has detected a cluster.

16.3.3.2 Local Absorption

Nodes can reach beyond the limits of their communication ranges by absorbing their 
neighbors’ knowledge. In other words, nodes propagate their knowledge by locally 
restricted flooding (Zhao and Guibas 2004). If c r1

2 , nodes may reach out to the 
edges of patterns by relaying knowledge about their neighbors to their other neigh-
bors (termed two-hop communication). If the central node in the example top right in 
Figure 16.3 receives knowledge from neighbors up to two hops away, it will be able 
to locally infer the presence of the clustering pattern. The logical extreme of local 
absorption is to flood knowledge throughout the network (multihop communication). 
In such a case, every node could possess knowledge about the state of all other nodes 
in the network. However, as already discussed, the physical and technical limitations 
of sensor networks makes such an approach unscalable and impractical. Hence, local 
absorption must typically be limited to only a few hops.

16.3.3.3 Selective Collaboration

A third compensation strategy is to invoke more targeted communication between nodes 
only if some pre-defined condition is met. Such conditions are similar to certificates 
used for kinetic data structures (Guibas 2002). In that context, data structures for 
dynamic systems only update when some local certificate (that is, some elementary 
relations among the objects involved) is violated. In a decentralized data mining con-
text, nodes do not communicate until they have good reason to believe that they might 
be involved in a pattern. Then nodes select other nodes (typically close neighbors) to 
solve collaboratively the task at hand. In Figure 16.3 (bottom right) the central node 
has detected a certain number of hot nodes within communication range and estab-
lished a collaboration with six nearby nodes in order to cover the pattern. Since the  
selected nodes may not necessarily be in the immediate neighborhood of a node (i.e., 
n   nbr(n)), selective collaboration may require more sophisticated routing protocols 
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to organize communication between remote nodes. Schemes for such routing protocols 
are legion in the literature, so in this chapter we do not consider this issue further.

16.3.3.4 Node Mobility

In more dynamic situations than considered thus far, an important possibility is for 
nodes to extend their spatially limited communication range through mobility. As 
mobile nodes move around the geographic space, they “see” different parts of the 
geographic area and can potentially communicate with different neighbors.

Given a set T of discrete, totally ordered times {t1, …, tn}, we can extend the for-
mal definitions presented in Section 16.3.2 to model mobility. Assuming the number 
of nodes in the geosensor network is constant, the mobility of nodes can be modeled 
with a dynamic locator function,  l : V × T  n, where for any vertex v  V and 
time t  T, l(v, t) maps to the coordinate location of that node at time t. The dynamic 
neighborhoods can be modeled as a dynamic graph, where the set of edges changes 
over time. For example, given a maximum communication distance c, the dynamic 
UDG can be defined as G(t)  (V, E(t)) where E(t)  {(u, v)  V × V|0 < (l(u, t), 
l(v, t))  c}. Similarly, the changing environmental variables sensed by a node can be 
modeled as a dynamic sensor function s : V × T {0, 1}.

Node mobility opens at least two options for exploiting mobility for knowledge 
discovery (Grossglauser and Vetterli 2006, Grossglauser and Tse 2002). First, nodes 
might “graze” infor mation while moving and store it in a constantly updated memory, 

FIGURE 16.3 Four compensation strategies. Clockwise from top left: local extrapolation, 
local absorption, selective collaboration, node mobility.
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termed mobility memory. Formally, an individual node v tracks its sensed values 
s(v, t) and potentially its location l(v, t) over a range of times t, and combines that 
knowledge in its pattern detection algorithm. Fig ure 16.3 (bottom left) illustrates a 
node passing through a pattern and thereby collecting enough information to reason 
about the presence of a pattern.

Mobility memory can operate even without any communication between nodes. 
However, knowledge discovery can clearly be improved by additionally enabling 
nodes to exchange infor mation with their constantly changing neighbors while mov-
ing, termed mobility diffusion. Formally, an individual node v may communicate 
information with its neighbors {v |{v, v }  E(t)} over a range of times t. In some senses, 
mobility diffusion can be regarded as inexpensive vari ant of local absorption, since 
mobility (rather than multihop communication) is used to move information around 
the system beyond a node’s immediate neighbors at a particular time (Gross glauser 
and Tse 2002). 

Combinations of these individual strategies can be used, and indeed are expected 
to be more effective than strategies used in isolation. An obvious combination is the 
use of local extrapo lation as a preliminary for other strategies. Local extrapolation 
can be used to establish a local state of belief about the presence of a pattern. If this 
state of belief reaches some threshold, it may trigger one of the other more involved 
methods in order to derive further information.

16.4 DECENTRALIZED SPATIAL CLUSTERING ALGORITHMS

In this section we present two algorithms implementing two of the previously men-
tioned compensation strate gies, local extrapolation and local absorption. Although 
work is ongoing on examples of algo rithms in all four categories, in this chapter we 
restrict the discussion to these two cases because they are relatively easy to grasp and 
representative of the issues faced in DSDM.

In both algorithms, nodes process locally collected knowledge about their neigh-
borhood in order to develop a state of belief as to whether they have detected a 
cluster. As we like to refer to agents that have detected a pattern as “happy,” our 
algorithms are termed happiness extrapolation clustering (HEC) and happiness 
absorption clustering (HAC), with a preliminary base-case algorithm termed naive 
clustering.

16.4.1 NAIVIE CLUSTERING (NC)

As discussed previously, where the communication range c is substantially greater 
than the cluster size r, it is potentially possible for a node to locally detect a cluster 
without any need for com pensation strategies. Algorithm 16.1 presents such a naive 
base-case algorithm, where each node simply examines those nodes in its immedi-
ate neighborhood to determine whether it can locally detect a cluster. The algorithm 
cycles through every node (line 1.1); checks whether enough hot nodes to form a 
cluster are within its neighborhood (line 1.3); and if so whether they lie inside a circle 
of radius r (line 1.5).
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Algorithm 16.1: NC: Naive cluster algorithm to check for each node whether it can 
sense a cluster in its local neighborhood 

Data:  Geosensor network graph G  (V, E); locator function l : V  E; sensor 
function 

   s : V {1, 0}; cluster radius r; cluster size n 
1.1 foreach v  V do
1.2   Xv  {v   V|s(v ) 1 and v   nbr (v)}; 
1.3    if |Xv |  n then
1.4     d  max v1 , v2  nbr (v) ( (l(v1), l(v2))); 
1.5   if d  r then 
1.6     Node v has detected a cluster of radius r and size n;

Several points are worth noting about this algorithm. First, the NC algorithm is 
obviously expected to fail in cases where c  r or even c  r. Second, in Algorithm 16.1 
several nodes may potentially detect the same cluster. The distinction between cases 
where a particular node detects a phenomenon, and where some node detects a 
phenomenon is an important one in DSDM. Normally in DSDM we are interested 
primarily in the latter situation, where some node detects a phenomenon because 
individual node behavior is not as important as the overall global network behav-
ior. In other words, an algorithm can be regarded as successful as long as some 
node detects a phenomenon, although it may not matter whether any particular node 
detects it.

Unfortunately, even Algorithm 16.1 is not guaranteed to detect a cluster in all 
cases. For larger communication ranges, certain configurations of nodes could result 
in clusters with a relatively small radius r being missed. A more sophisticated algo-
rithm to solve this would need to perform the computationally intensive process 
of checking the distances between different permutations of subsets of the entire 
set of neighbors. For simplicity, and in recognition of the limited process ing power 
of sensor nodes, this more simple algorithm has been preferred here. As already 
noted, decentralized algorithms are often approximate, in this case potentially miss-
ing some clusters (error of omission), although never incorrectly identifying a cluster 
(error of commission).

It is also important to note that the algorithm also relies on some quantitative 
information about each node’s location (location-awareness), or at the very least 
quantitative information about distances between nodes (e.g., using range-finding 
techniques). As already intimated, in many practical situations for geosensor net-
works, location-awareness may be unreliable or unavailable, limiting the applicabil-
ity of such an algorithm.

16.4.2 HAPPINESS EXTRAPOLATION CLUSTERING (HEC)

HEC implements a basic form of local extrapolation for decentralized cluster detec-
tion. HEC is based purely on instantaneous and local neighbor counts. Every node in 
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parallel extrapolates its local knowledge and computes its belief in having detected a 
cluster, or in “being happy” (as illustrated earlier in Figure 16.1).

In performing the extrapolation, an important observation is that it is unlikely 
that a node will be located exactly in the middle of a cluster. Thus, even when c  
r the naive clustering algorithm is likely to fail. In such cases although it would be 
possible for a single node to observe the entire cluster, there is no a priori reason 
for expecting any node to be so conveniently located. The problem is illustrated in 
Figure 16.4, where although c  r, there exists no node that can be located in such a 
way to be able to detect the cluster of radius r.

Algorithm 16.2 addresses this problem using a threshold t (line 2.1) that adjusts a 
node’s ex pectation of what proportion of a cluster size n it should see, given the known 
ratio between the communication and cluster areas (c2 /r2 ). Figure 16.5 illustrates the 
threshold t in a graph, plotting the ratio between communication and cluster areas 

FIGURE 16.4 Limits of naive clustering. Nodes randomly distributed within a cluster are 
unlikely to be in a position to observe a cluster using the naive cluster algorithm for c  r. Even 
though placed centrally, node v misses three hot nodes for c  r. 
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against the expected number of hot neighbors a node should see in a cluster where 
n  10. In practice, t can be empirically determined. For example, for a cluster size 
of about n  10 a t-value of approximately 0.8 provides the required adjustment (i.e., 
when communication range and cluster radius are the same, a node would expect to 
see at least 80% of the cluster).

If this adjusted expected number of hot neighbors is greater than the cluster size, 
then Algo rithm 16.2 (line 2.3) resorts to the naive cluster algorithm (since we expect 
some node to be able to observe the entire cluster). Otherwise, Algorithm 16.2 cycles 
through each node, checking whether it has enough hot nodes in its neighborhood to 
justify a belief that it can see a cluster and hence be happy (lines 2.5 through 2.8).

Clearly, the smaller the communication range (and so the smaller the number 
of hot neighbors must be detected for a cluster), the more likely it becomes that a 
node misidentifies a random constellation of nodes as a cluster. Consequently, for 
small communication ranges the number of errors of commission (false positives) 
is expected to increase. The final threshold for HEC algorithms is n  2 (line 2.8), 
since a “group” of one node provides no rationale to believe there are any other hot 
nodes nearby.

16.4.3 HAPPINESS ABSORPTION CLUSTERING (HAC)

Local absorption aims at extending a node’s limited communication range by 
absorbing knowl edge from its neighbors. In the HAC algorithm, this knowledge is 
again simple neighbor counts, that is, the number of hot nodes within communica-
tion range. This time, however, nodes pass their local counts on to their neighbors, 
and after a limited number of hops, the aggregated knowledge is analyzed and used 
to compute expectations about the presence or absence of clusters and a node’s hap-
piness, respectively.

Algorithm 16.3 begins as for the HEC algorithm, resorting to the naive cluster 
algorithm if the communication range is high enough to enable nodes to expect to 

Algorithm 16.2: HEC: Local extrapolation algorithm to check for each node if it can 
locally infer a cluster from its neighborhood

Data:  Geosensor network graph G  (V, E); locator function l : V  E; sensor 
function 

 s : V {1, 0}; cluster radius r; cluster size n
2.1 Set x  n * t * c

r

2

2 ;
2.2 if x  n then
2.3   Use NC algorithm (naive cluster) to determine whether cluster is detected;
2.4 else
2.5   foreach v  V do
2.6    Xv  {v   V|s(v )  1 and v   nbr (v)};
2.7    if |Xv |  x  2 then
2.8      Node v has detected a cluster of radius r and size n;
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see entire clusters (line 3.1 to 3.3). Otherwise, for each node v a new parameter zv 
is initialized as that node’s initial happy value (i.e., 1 if they are hot, 0 otherwise, 
line 3.6).

Next, nodes communicate and aggregate their neighbors’ zv values for a number 
of hops (lines 3.8 to 3.9). The number of hops depends solely on the ratio of com-
munication range r and the cluster radius p. Each time the (multihop) communication 
range drops below cluster radius, an extra hop is added in order to make sure that 
again an area of at least the cluster extent r2π is used for information collection and 
for reasoning about presence or absence of a pattern. If, for example, p > r > p

2
, one 

additional hop is added in order to cover the whole cluster (see Figure 16.6).

FIGURE 16.6 One additional absorption-hop in HAC. Additional hops result in overlap-
ping communication ranges and hence multiple counting of found hot neighbors. The one-hop 
constellation in (b) illustrates for all hot nodes in the cluster their degree of over-estimation. A 
divisor has to be applied in order to discard redundant counts. 
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Algorithm 16.3: HAC: Local absorption algorithm to check for each node if it can 
locally infer a cluster from its multihop neighborhood

Data:  Geosensor network graph G  (V, E); locator function l : V  E; sensor 
function 

 s : V  {1, 0}; cluster radius r; cluster size n, discount function d
3.1 Set x  n * t * c

r

2

2
;

3.2 if x  n then
3.3        Use NC algorithm (naive cluster) to determine whether cluster is detected; 
3.4  else
3.5       foreach v  V do 
3.6    zv  s(v);
3.7       for i  1 to ceiling ( r

c) do 
3.8     foreach v  V do 
3.9            zv  zv + v nbr(v) zv

3.10     foreach v  V do 
3.11     if zv /d(c, r, n) > n then 
3.12            Node v has detected a cluster of radius r and size n;
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Using this happiness absorption method, nodes within clusters accumulate counts 
of hot neighbors, then neighbors’ hot neighbors, and so on. Nodes not within clus-
ters accumulate many fewer hot neighbors counts, if any. Because this procedure 
will count shared neighbor nodes more than once, the final node count needs to be 
discounted when deciding if a node has actually detected a cluster. For example, 
Figure 16.6 shows a two-hop constellation with several overlapping communication 
ranges. Instead of the actual 20 two-hop hot neighbors, double-counts mean the cen-
tral node in fact observes 47 hot nodes. Consequently, a heuristic discount function d 
is used (line 3.11) to allow for the expected number of double counts. The discount 
function may depend on a number of factors, including the communication range c, 
and the cluster radius r and size n. As for the threshold t, the discount function can 
be empirically determined.

16.5 EXPERIMENTS

This section describes the results of experiments to compare the performance of the 
three algo rithms, NC, HEC, and HAC, for decentralized detection of node clusters. 
The experiments were conducted using a popular free and open-source agent-based 
simulation and modeling toolkit, called Repast. Repast is implemented in several 
languages and features various libraries for sim ulation, visualization, and analysis. 
Each of the three algorithms was implemented in Repast, with sensor nodes modeled 
as agents (see Figure 16.7).

FIGURE 16.7 Implementation in Repast. The framework features a map view (communi-
cation ranges as gray circles, clustering nodes connected with edges), error plots (for errors of 
omission and commission), and a system log window.
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16.5.1 DESIGN

For each set of experiments, 1000 nodes were located in the square simulation space 
(set to have side length 1 unit). Ten nonoverlapping, but otherwise randomly located 
clusters of nodes were also generated. Each cluster consisted of 10 hot nodes with 
a cluster radius of 0.05 units. A further 100 hot nodes were also randomly distrib-
uted outside the clusters in order to reach a total of 200 hot nodes. Finally, a further 
800 cold nodes were randomly distributed in the simulation space. Cold nodes were 
allowed to be located anywhere, including within existing hot clusters.

A set of experiments was then run, with each experiment varying the communica-
tion range r, starting from c  2r and decreasing step by step to 0. At each step the 
performance of the three algorithms was recorded. Performance was measured in terms 
of errors of omission (clusters that were placed in the simulation but not detected) and 
errors of commission (nonclusters that were incorrectly classified by a node as clusters) 
for each of the three algorithms. Errors of omission and commission were recorded 
against individual nodes (e.g., whether every node in a cluster correctly detected it 
was part of a cluster or not) as well as against individual clusters (e.g., whether some 
node in a cluster correctly detected it was part of a cluster). As discussed previously in 
Section 16.4.1, in the context of a distributed system it is the latter measure that is more 
important and so this measure is used in the following discussion of results.

16.5.2 RESULTS

Figure 16.8 presents the results for the average performance of the NC, HEC, and 
HAC algorithms over several simulations. The x-axis represents the ratio of com-
munication range c to cluster radius r, decreasing step-wise from c  2r, through  
c  r, to c 0. The y-axis shows error of commission (EOC, false positives) and error 
of omission (EOO, false negatives) expressed in number of clusters. As a conse-
quence, when algorithms are performing well they will have zero or low correspond-
ing values on the y-axis, and conversely high values when performing badly.

Figure 16.8 shows that the NC algorithm performs near-perfectly when the com-
munication range is strictly larger than the cluster radius, in the range of 2 to 1.25 
for the c/r ratio. However, below 1.25 for the c/r ratio, the performance of the NC 
algorithm degrades rapidly. This result is to be expected since at such high commu-
nication radii individual nodes can be expected to be able to detect entire clusters in 
their immediate neighborhood.

Since the HEC and HAC algorithms revert to the NC algorithm for larger c/r ratios, 
these algorithms similarly perform well in the 2 to 1.25 c/r ratio range. However, the 
HEC algorithm exhibits a clear improvement in performance over the NC algorithm, 
exhibiting on average less than two errors of omission or commission, in the 1.25 to 0.75 
c/r ratio range. The local extrap olation adopted by HEC helps to extend its operating 
range beyond that of the NC algorithm. Below the 0.75 c/r ratio range, HEC algorithm 
performance also degrades rapidly, mirroring the fact that with decreasing c/r ratio, 
there is a greater chance that small groups of two or three hot nodes can falsely trigger 
cluster detection. The HAC algorithm exhibits further improvement on the HEC algo-
rithm, finally degrading at beyond about the 0.4 c/r ratio mark. The local absorption 
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used in HAC is able to extend the range of the cluster detection into the zone where indi-
vidual nodes detect only a very small number of neighbors, and so where HEC fails.

16.6 DISCUSSION AND CONCLUSIONS

The experiments in the previous section provide specific examples of decentral-
ized algorithms for spatial data mining. The three algorithms presented illustrate 
how increasingly sophisticated DSDM algorithms can be designed to deliver step 
improvements in performance. For the spe cific example of clustering, a naive decen-
tralized algorithm is bettered by a local extrapolation algorithm, which in turn is 
outperformed by a local absorption algorithm. Current work is also investigating the 
further improvements that can be gained from using selective collaboration and, in 
cases where nodes are mobile, mobility memory and diffusion. 

Because DSDM is often focused on efficient but approximate algo rithms, (that 
may not match the solution generated using an exact centralized algorithm (Datta 
et al. 2006a), the performance of DSDM algorithms is primarily measured in terms 
of the cer tainty of its outcomes. Hence, we use the errors of omission and com-
mission to assess our algorithms’ performance. The results indicated the range of 
conditions under which the algo rithms generate reliable results, and those where the 
algorithms’ performance degrades. Dif ferent application domains may have differ-
ent requirements for DSDM algorithm performance. For example, in safety-critical 
applications, like for example volcano monitoring, it may be vital never to miss 
a salient event (e.g., Werner-Allen et al. 2006). In such applications, approximate 
DSDM algorithms can still be useful if configured to guarantee no errors of omis-
sion, since a small number of errors of commission can be filtered out by additional 
scrutiny (e.g., human expertise). 

FIGURE 16.8 Experiment results. Errors of omission and commission for NC, HEC, and 
HAC algorithms.
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The primary advantage of tolerating errors of omission and commission is compu-
tational. DSDM algorithms are computationally efficient and as a result highly scal-
able. Two of the three algorithms used in the previous experiments (NC and HEC) 
use only one one-hop communica tion, while the third (HAC) uses a small number 
of hops (up to three hops in practice). This dependence on local rather than global 
knowledge is what gives these algorithms scalability be cause their computational 
complexity depends not on the total number of nodes in the network, but rather on the 
number of neighbors a node has (which is expected to remain constant as t-size of the 
network increases, as long as node density remains constant). This contrasts strongly 
with centralized algorithms, where computational complexity typically increases 
with the number of observations (equivalent to nodes in the system). In moving from 
today’s geosensor networks of tens or hundreds of nodes, to the predicted future net-
works of thousands or millions of nodes, scalability is paramount. 

While centralized algorithms will long remain a core topic in knowledge discov-
ery, DSDM represents a new approach to geographic knowledge discovery and, as 
we have shown, comes with new challenges beyond those posed by centralized algo-
rithms. New technologies that blur the traditional separation between data capture 
and data processing (like geosensor networks) are driving the exploration of decen-
tralized processing of spatial data. Longer term, the promise of these techniques 
is to contribute to the development of what is sometimes termed ambient spatial 
intelligence: spatial data capture, processing, and actuating capabilities embedded 
throughout our natural and built environment.

16.7 OUTLOOK: A DSDM RESEARCH AGENDA 

To conclude, we identify four main research and development topics in DSDM:

 1. The development of a library of fundamental DSDM algorithms for 
decentralized com putation of classic spatial data mining tasks, including 
clustering, spatial outlier detection, co-location mining, and spatial asso-
ciation rule mining. 

 2. The investigation of robust and fault-tolerant methods for implementing 
DSDM in notori ously error-prone WSN environments. 

 3. The exploration of DSDM in mobile decentralized spatial computing sys-
tems, for example in the domain of traffic management or LBS. 

 4. The exploitation of decentralization as a means for providing geographic 
knowledge dis covery at the same time as enhancing the location privacy 
of individuals in scenarios where nodes are associated with human users, 
for example in traffic or LBS applications.
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17 Beyond Exploratory 
Visualization of 
Space–Time Paths

Menno-Jan Kraak

Otto Huisman

17.1 INTRODUCTION

Natural disasters are a phenomenon of all times. However, if one considers recent 
events, such as tsunamis, earthquakes, and the (predicted) climate changes, as well as 
highly contagious and rapidly spreading diseases like SARS and avian bird flu, and 
if one takes into account the magnitude of economic globalization that has affected 
our world, it is clear that understanding and solving problems resulting from these 
events is of prime interest to society. The geosciences obviously have a prominent 
role to play, but the complexity of these problems is beyond the scope of a single 
discipline. From a geo-information perspective, a comprehensive understanding of 
these problems requires multidisciplinary approaches, collaboration among experts 
in order to bring together knowledge, and suitable tools for dealing with the large 
amounts of complex spatio-temporal data that analytical solutions to these problems 
would generate.

This chapter aims to draw together developments in various related fields, and to 
situate these within a broader discussion and illustration of geovisual analytics — the 
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process of analytical reasoning using maps and other graphics. To do this, the chap-
ter demonstrates use of the space–time cube (STC) as an interactive environment for 
the analysis and visualization of spatiotemporal data, drawing on two examples from 
the domain of human movement and activities. The first of these examines individual 
movement and the degree to which knowledge can be “discovered” by linking mul-
tiple attribute data to space-time movement data, and demonstrates how the STC can 
be deployed to query and investigate (individual-level) dynamic processes. The second 
example draws on the geometry of the STC as an environment for data mining through 
space–time query and analysis, illustrating work that deals with both individual and 
aggregate phenomena in the domain of tertiary education. These two examples form 
the basis of a broader discussion of the common elements of various disciplines and 
research areas concerned with moving object databases, dynamics, geocomputation, 
and geovisualization.

17.2 TRADITIONAL SOLUTIONS: FRAMEWORKS, 
TOOLS, AND TECHNIQUES

Both the tools and frameworks for understanding dynamic phenomena have been 
slow to develop since the “quantitative revolution” of the 1960s. While dynamics and 
the importance of space and time in the study of both human and physical processes 
are now widely accepted, they were largely ignored in traditional models, for a vari-
ety of conceptual and computational reasons. Conceptually, the fundamental notions 
underlying structure and functioning of transport systems, the spread of disease and, 
more generally, the representation of space and time in models of geographic phe-
nomena differed considerably from those of today. The technology (hardware and 
software) for implementing enhanced concepts and models, particularly the soft-
ware, was also slow to develop.

Recently, GIScience tools have had both fundamental and profound impacts on 
our ability to model, analyze, and visualize scenarios and phenomena. In the domain 
of human movement and activities, the significance of Hägerstrand’s contribution 
to the modeling of spatiotemporal phenomena cannot be overlooked. Hägerstrand’s 
original concepts formed the basis for the field now known as time-geography, by 
providing a series of simple geometric concepts. The time-geographic framework, 
as introduced by his seminal paper “What About People in Regional Science?” 
(Hägerstrand 1970), introduced the lifeline or space–time path (STP) of an object or 
entity as a continuous vector through space and time. This and further work intro-
duced a range of other concepts, most notably the space-time prism (also known as 
the potential path area or PPA), and with these concepts, the notion that all move-
ment and activities can be viewed inside an “aquarium” of space defined by time. 
Hägerstrand’s original aim was to “invent a language which helps us to keep exis-
tents and events […] together under a unifying perspective” (Hägerstrand 1982: 
195), that of Newtonian or absolute space–time. One of the most notable features 
of these concepts is that they make use of time as the third dimension (z), col-
lapsing space into an x,y plane. These initial concepts were simple and potentially 
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powerful, but were unable to be made operational for significant sample size case 
studies due to a lack of computational tools. Aided by the “new” geographic infor-
mation systems and other spatial modeling tools, researchers continued to apply and 
extend components of the time-geographic framework as deployed in Lenntorp’s 
original PESASP simulation model (Lenntorp, 1978), and that of Burns (1979) on 
prism geometries. Early examples can be found in Forer and Kivell (1981) and 
Miller (1991), but more recently, better toolsets have become available to investi-
gate and examine geographic phenomena in explicit spatial and temporal contexts 
(see Andrienko et al., 2007).

These developments have also initiated a wider trend of research into moving or 
mobile objects, with a significant focus on human behavior and movement (Forer 
2002; Frihida, Marceau, and Theriault, 2004; Laube et al., 2005), as evidenced and 
supported by large-scale data collection exercises, including time budget surveys, 
and GPS-enabled tracking datasets (see Chapter 16 in this volume). Despite ongo-
ing limitations in existing GIS data models, research has utilized various ways to 
cope with time, including attribute-based methods (see Peuquet, 1994; 2002), data-
base approaches (Al-Taha et al., 1994; Varzigiannis and Wolfson, 2001), and hybrid 
rod-field data models (McDowall 2006). GIScience tools still only have limited ways 
to deal with time, and there is still no explicit spatio-temporal functionality in main-
stream GIS software. One popular solution to this issue has been to utilize time as the 
third dimension (see Langran, 1992; Forer, 1998) in the same way as the space-time 
aquarium proposed by Hägerstrand. The examples in this chapter presented in the 
following sections illustrate the attractiveness of mapping movement and movement 
possibilities into an absolute space-time environment for both analysis and visualiza-
tion. The STC — a computational version of the aquarium — facilitates x,y,z (plus 
attribute) investigation of the co-location of objects and events in space and time, and 
has been used successfully in a range of (geo-)visual and analytical studies (Kwan, 
1999; Forer and Huisman, 2000; Kraak and Kousoulakou, 2004; Sinha and Mark, 
2005; Ren and Kwan, 2007). One of the main reasons for its growing popularity is 
that it provides both a visual and analytical basis for linking objects and phenomena 
in space and time.

To summarize the trends just identified, Figure 17.1 presents a diagrammatic outline 
of the conceptual and operational developments in various diverse, yet related fields. In 
the 1970s and 1980s, although research was already informed by the notions of space 
and time, it was primarily application-driven, and little collaboration existed between 
these fields (Figure 17.1A). Furthermore, no specific “integrating technologies”  
existed, nor did any perspectives on how complementary aspects of some of these 
research fields might be aligned. At this stage, the notions of “visualization” and 
“analysis” were effectively two opposite ends of a spectrum of geo-information use. 
Several decades later (Figure 17.1B), we are witnessing a realignment of many dis-
ciplines and research fields, informed by one another and empowered by a com-
mon thread: toolsets that facilitate the combination of diverse data sets and provide 
a range of techniques for the investigation, summary, and analysis of spatial and, 
increasingly, spatio-temporal information.
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17.3 NEW AND IMPROVED: TIME-GEOGRAPHY 
AND GEOVISUAL ANALYTICS

17.3.1 BACKGROUND

Over the last decades, cartography has developed considerably. One of the more 
prominent changes has been the introduction of the notion of geovisualization. In 
the book Exploring Geovisualization (Dykes, MacEachren and Kraak, 2005), it can 
be read that

geovisualization can be described as a loosely bounded domain that addresses 
the visual exploration, analysis, synthesis, and presentation of geospatial data 
by integrating approaches from cartography with those from other information 

FIGURE 17.1 Developments around time-geography: Independent disciplines (A) either 
from the modelling or visualization domain each dealing with spatio-temporal data have over 
the years grown together (B) and can now offer an integrated approach to support solving 
geo-problems.
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representation and analysis disciplines, including scientific visualization, image 
analysis, information visualization, exploratory data analysis, and GIScience.

In a geovisualization context, maps are used to stimulate (visual) thinking about 
geospatial patterns, relationships, and trends, by offering interactive access to multiple 
alternative graphic representations of the data behind the map. As such, it supports 
knowledge construction, but this is not sufficient to deal with the global challenges 
mentioned before. Visualization has to be combined with analytics. The National 
Visualization and Analytics Center (NVAC) in the United States introduced the term 
visual analytics, which originates from their research agenda, “Illuminating the Path: 
The Research and Development Agenda for Visual Analytics” (Thomas and Cook, 
2005) (http://nvac.pnl.gov/agenda.stm). In this book, it is described as “the science of 
analytical reasoning facilitated by interactive visual interfaces. The interfaces can be 
the maps as described in a geovisualization context. In more detail it should lead to syn-
thesized information and derive insights from massive, dynamic, ambiguous, and often 
conflicting data,” in other words “detect the expected and discover the unexpected.”

According Thomas and Cook (2005), visual analytics helps solve problems because 
it offers methods and techniques that allow one to find, assimilate, and analyze continu-
ously changing data about time-critical, evolving, real-world situations. For instance, 
for coastal protection one is interested in wind speed, direction and strength, water and 
wave heights, as well as the current situation of the dykes protecting the land. The find-
ings of the analysis have to be communicated to a range of interest groups, including 
keepers of sluices and river barriers, but also to shipping control and local authorities, 
who will have to take necessary action. It is obvious that this is a process where dif-
ferent experts need to work together. In other words, it requires reasoning techniques 
that enable one to gain insight into the situation. Interactive visual representation and 
geocomputation techniques should be available depending on the situation — geocom-
putation for the number crunching (to process all weather data) and the human eye to 
explore and understand the resulting patterns. Maps and other graphics are there to 
offload memory. These might be annotated with thoughts and predictions supporting 
discussions and preparing decisions. Data integration functionality is crucial because 
the data will be obtained from all kinds of (different) sources. In many cases, this data 
will be both incomplete (a weather station fails due to the storms) and uncertain (not 
enough active sensors for trustworthy interpolations in both space and time).

The above trend made MacEachren (pers. comm., 2006) define the field of geo-
visual analytics as “the science of analytical reasoning and decision making with 
geospatial information, facilitated by interactive visual interfaces, computational 
methods, and knowledge construction, representation, and management strategies.”

17.3.2 STC IN GEOVISUAL ANALYTICS 1 — LINKING 
MOVEMENT AND ATTRIBUTE DATA

The first example discusses an elementary case of geovisual analytics to illustrate 
the process as such (see Figure 17.2). It is based on data of a single run. For data 
collection, a Garmin’s Forerunner 305 was used. For visualization of the data, the 
Garmin Training Center software and our STC software were used. The device 
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1
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1

1

2

2

FIGURE 17.2 Geo-visual analysis of running data. The upper diagram shows geography and 
attribute data over time of a run. The analysis of the attribute data shows different patterns (1) 
and (2) which can be partly explained by the map and for the other part only with additional 
reasoning. The lower diagrams show the same data in the Space–Time Cube environment 
with the attributes visualized via the space–time path.
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collects locations and heart rate values. From the first variable, others such as speed 
and pace are derived. One has to realize that the accuracy of the measurements is 
reasonable but the device is “sensitive” to noise, which should be filtered out before 
analysis.

The upper part of Figure 17.2 displays both speed and heart rate data for a short 
8-km run in a map and graph. It can be observed that the heart rate values (the 
lower line in the graph) “follow” the speed, e.g., running faster will soon result in 
a higher heart rate value. This is illustrated in the left of the graph (see [1]) where 
two trend lines are plotted at a point where the speed reduces. These downward 
peaks can be recognized at several places in the graph. Is this a runner in bad shape 
who has to stop every so many meters, or is something else happening? Without 
particular knowledge of the capabilities of the runner, the linked map provides the 
answer. The location of the slowdown events seem to happen at crossings (see [1]) 
where the runner obviously watches for traffic before crossing. This seems to be a 
plausible reason.

While studying the graph in more detail with the above in mind, some anoma-
lies can be observed. Around kilometer 2.8, the graph shows a high density in 
changes in both speed and heart rate (see [2]). However, if trend lines are plotted 
it can be seen that while the speed goes down, the heart rate increases. This is 
contradictory compared to earlier established trends. What goes on? Can the map 
assist? The map reveals no crossing around the 2.8 km and studying the track in 
more detail shows an up-and-down pattern along the road. With just common 
sense, it is not possible to find an explanation. More information, not available in 
the data collected, such as particular habits of the runner, is required. This is an 
example of the wide scope of geovisual analytics: one is often required to deal 
with incomplete data and the geo-expert often has to discuss or reason with other 
experts. In this particular example, the runner is accompanied by his dog. This 
might explain why at every crossing the runner slows down, but does not explain 
the above contradictory pattern. However, if we know the dog is a hunting dog 
and is running off-leash, and that at the location of the anomaly it observed and 
followed a rabbit, one will realize something different is going on. The runner 
slowed down, but his heart rate did not because he was yelling at the dog to follow 
him instead of chasing a rabbit.

Would an alternative view on the data have made the analytical reasoning sim-
pler? In context of this chapter, would the display of the data in the STC be useful? 
The bottom of Figure 17.2 shows the result of these thoughts. Here the data is dis-
played in a STC. Here it should be clarified that the STC is not a stand-alone view 
but is spatially and attribute-linked to maps and graphs. On the left, the figure’s full 
cube shows the run as a space-time path and its footprint is plotted on a photomap as 
well. This photomap can be moved up and down along the time axis of the cube, and 
one can zoom or pan. On the right, two details within the upper cube are an enlarge-
ment of the left cube. Here speed is represented by the path’s angle; a vertical path 
segment means no movement. The lower right detail shows heart rate as an attribute 
of the path, represented by its thickness. This approach would, as with the basic 
Garmin software, not reveal a dog, but it does provide a different view of the same 
data where, because of the path speed, is better integrated into the “map.” Seeing 
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the anomalies might be easier, although one can argue that extra effort is required to 
interpret the three-dimensional scene when it comes to details.

17.3.3 STC IN GEOVISUAL ANALYTICS 2 — ANALYZING 
POTENTIAL MOVEMENT AND ACTIVITIES

This second example is drawn from the domain of tertiary education. Specifically, 
it considers the case of university students in Auckland, New Zealand. While as in 
the first example, movement and activities can be considered (modeled and visu-
alized) in the form of space–time paths or timelines (x,y,t trajectories with attri-
butes), the research from which the current example comes considers “potential” 
movement and activities rather than observed movement. Original concepts of the 
aquarium and the space–time prism are implemented using customized GIScience 
tools, and the data on which these examples are based derives from previous work 
investigating issues of access and interaction in the context of student learning 
(Forer and Huisman, 2000; Huisman, 2006). The details of generating individual 
time-geographies are quite complex, but the general procedures are illustrated in 
Figure 17.3:

Modeling is based on actual lecture timetables and courses in which  
students were enrolled, and anonymized home locations. These are stored 
in database tables.
Database tables are used in conjunction with an SQL-based schedul-
ing algorithm to generate possible daily activity schedules for simulated 
individuals.
Individual activity schedules are used in conjunction with a GIS-based 
multimodal transportation model and standard network-based shortest-
path algorithms (implemented in ArcGIS workstation).
Output from the above procedure is used to populate the STC using tem-
porally referenced raster layers, and to assemble these into a 3D array of 
“taxels” (the space–time equivalent of voxels). This results in individual-
based space–time volumes (prisms) and activities representing potential 
individual movement options over a day.

Figure 17.4 represents the output of the general procedures outlined above, and 
illustrates potential realizations of individual student days. Figures 17.4A, B, and 
C illustrate three unique individual volumes from a total sample of 2500 individual 
records in a database. These were generated by modeling each student’s attendance 
at lectures, and modeling possible movement options between these fixed activities 
to and from a known (but anonymized) home and university campus location, using 
the concept of the STP. These three volumes (here termed “masks”) represent the 
potential space–time locations that each student can potentially occupy given manda-
tory attendance at scheduled activities, and modeled transport options.

It is possible to see that in Figure 17.4A and Figure 17.4C, the students are able 
to “access” significantly larger space–time volumes than the student represented by 
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Figure 17.4B. This is an illustration of the constraints for travel imposed by public 
transport, as the student in Figure 17.4B does not have a car at his or her disposal. 
Because of unique combinations of home location, transport mode availability, 
courses, and scheduled lecture times, each student mask is unique.

The STC can be used to combine any number of these masks, and various query 
and analysis functions have been developed specifically for their analysis and 
further aggregation to investigate resulting patterns (Forer and Huisman, 2000; 
Huisman, 2006). Figure 17.4D illustrates the three volumes in one single cube. 
From this figure, it is possible to identify common areas of space–time where the 
three students might meet. However, establishing exactly where and for how long 
these three individuals might meet requires further operations on this particular 
STC. As well as the linking of attribute information illustrated in the previous 
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FIGURE 17.3 Generalized procedures for creating individual space-time masks.
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example (Figure 17.2), various other functions can also be applied here to derive 
new information, including:

Intersecting the masks to identify areas of common space–time which the 
individuals can access.
Filtering or thresholding of particular values to illustrate space–time clus-
tering or potential space–time occupancy.
Drilling down through the temporal axis to calculate durations.
Slicing for examining patterns at specific temporal intervals.

A B C

D

F

E

G

FIGURE 17.4 Diagrams (A), (B), and (C) illustrate three unique student “masks,” each within 
its own space-time cube. These are intersected in (D) and (E). Examples of space-time query 
operations “drill” and “slice” are provided in (F). The map shown in (G) illustrates areas that 
the individual student in (A) might occupy for a given duration at 4:00 pm. The lightest areas 
are accessible for 10 min and dark areas in the middle of the figure for up to 3 h.
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The details of these functions are documented in Huisman (2006), but they all use 
the geometry of the space–time aquarium (the x,y,t data model) as their basis. Example 
outputs of intersecting masks and drilling down through the volumes are illustrated in 
Figure 17.4F and Figure 17.4G. Within the STC environment, transparency and filtering 
can be used to further segment the data and reveal hidden clusters or space–time patterns. 
Figure 17.4E illustrates the use of temporal clipping to view a specific time interval.

The functions just described can be combined in various ways to discover pat-
terns and create knowledge. As an example of both slicing and drilling, Figure 17.4G 
depicts the places that an individual student can occupy as a result of his or her study 
timetable, and for how long. The color-ramp in this map ranges from light areas, rep-
resenting areas where this individual can spend up to 10 min at this particular time 
of the day, to the dark areas, which represent places where the individual can spend 
up to 3 h of continuous free time. This output is generated through a simple time-
interval query on a derivative mask of cells containing durations that the individual 
can be present at a location, which is itself generated through known constraints of 
modeled choices and movement options.

17.4 DISCUSSION AND CONCLUSION

The content of this book deals with data mining and knowledge discovery in a range 
of research fields. Our chapter has discussed these in the context of an investiga-
tion of the movement, and potential movement, of individuals as mobile objects in 
time and space. As noted here and in other chapters, space–time approaches are 
steadily growing in popularity, enabled by technology and driven by (research) 
demand. Hägerstrand’s space–time aquarium provides a workable concept that is 
being deployed increasingly in various fields, including healthcare and the analysis 
of hazard and risk exposure (Loytonen, 1998; Forer and Huisman, 2000), as well as 
ongoing research into equity and accessibility (Kwan, 1999).

In attempting to draw together various approaches dealing with space–time visu-
alization and analysis, this chapter has noted that in the past, the “visual” and the 
“analytical” represent points on opposite ends of a continuum. It has attempted to 
demonstrate that the aquarium (as implemented here using customized STC soft-
ware) provides a flexible environment for the examination of space–time phenomena 
to support the study of moving objects and the dynamics of potential movement. The 
discovery of knowledge implies either accidental or planned confirmation of some 
kind of pattern or phenomenon revealed by (geo)data, as enabled by our tools, and 
(possibly) as expected or imagined by our minds. While some very powerful analyti-
cal and decision-support environments exist, and many more techniques have been 
developed for the analysis of large data sets, here we have emphasized the role of 
geovisual analytics in deriving new knowledge from data.

While there is a range of insights and analyses that could create new knowledge 
from detailed datasets, it should be noted that there are a number of issues relating 
to data quality and uncertainty to be dealt with in the context of human activities and 
behavior. For the purposes of this chapter, an acknowledgment of the complexity of 
modeling these is warranted. In the first example presented here, observed behavior 
was captured directly using GPS positioning. The key issue is to what degree x,y,t 
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movement data can be used to “discover” knowledge. In the context of the discussion 
presented here, the answer depends on a range of factors including the quality of the 
input data, the ability to link a range of attribute data, and support for multivariate 
queries/analyses and visualization. A range of (geo)statistical tools and techniques 
can be used to aid in the investigation of results, visualize clustering for large move-
ment data sets (Sinha and Mark, 2005), and inform hypothesis testing/generation 
algorithms or similar processes such as the detection of collective movement behav-
ior in data using movement detection and generalization algorithms (see, for exam-
ple, Laube et al., 2005). To enable wider insights, data that are more detailed might 
be required, and this could be linked to other visualization tools such as interactive 
3D scatterplots (Kosara et al., 2004), for example, in order to be able to classify what 
types of people might take specific journeys at particular times of the day.

For potential behavior, there are processes at work that are even more complex. 
While these types of analyses steer clear of attempting to account for human agency 
or directly predicting behavior, achieving a degree of robustness at the daily or micro-
scale requires significantly more detailed data (such as data describing the tasks to 
be undertaken during the day). For the student example presented in Section 17.3.3, 
data on space–time activities was readily available; however, in other cases, it needs 
to be “mined” from databases, such as time–budget surveys, and other approaches 
employed to generate realistic activity schedules. The mandatory lecture attendance 
assumed in this example is perhaps not directly representative of real-world events, 
but can be adjusted to reflect choice factors relatively easily, and results once again 
explored to determine possible outcomes.

In the wider domain of moving objects, as the scale of inquiry moves from exam-
ining individual-level to aggregate phenomena, there is an associated transition in 
research purpose from explaining and understanding behavior to the understanding 
and interpretation of patterns of behavior. This implies extended techniques for pro-
cessing and generalization, which can be managed within the current environment 
of the STC for analysis and visualization.
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