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Abstract
Let G = (V,E) be a simple and undirected graph. For some real number α with 0 < α ≤ 1,

a set D ⊆ V is called an α-dominating set in G if every vertex v outside D has at least α · dv
neighbor(s) in S where dv is the degree of v. The cardinality of a minimum α-dominating set
in a graph G is called the α-domination number of G and denoted by γα(G). In this paper,
we introduce a generalization of α-dominating set, that we call it fdeg-dominating set. Given a
function fdeg where fdeg is as fdeg : N → R where N = {1, 2, 3, . . .}, and fdeg may not be an
integer-value function. A set D ⊆ V is called an fdeg-dominating set in G if for every vertex
v outside D, |N(v) ∩D| ≥ fdeg(dv). In this paper, for this new concept, we will present some
results on the its NP-completeness, APX-completeness and inapproximability.

1 Introduction
Let G = (V,E) be an undirected and simple graph. A set D ⊆ V is called a dominating set if
every vertex outside D has at least one neighbor in D. The cardinality of a minimum dominating
set is called the domination number of G denoted by γ(G). In 2000, Dunbar et al. [5], introduced
the concept of α-domination. Let α be a real number with 0 < α ≤ 1. A set D ⊆ V is called an
α-dominating set in G if for every vertex v outside D, |N(v)∩D| ≥ α× dv where N(v) is the set of
all neighbors of v in G, and dv := |N(v)| is the degree of v. Also, let k be a real number with k ≥ 1.
A set D ⊆ V is called a k-dominating set in G if for every vertex v outside D, |N(v) ∩D| ≥ k.

Now consider the definition of α-dominating. One generalization of this concept is that instead of
having at least α × dv neighbors in D for each vertex v ̸∈ D, we have at least f (dv) neighbors in D,
for some special function f . By selecting f (x) = αx, the definition match the α-dominating. It seems
that this generalization is much near to the reality. Hence, in this paper, we define the fdeg-dominating
set. Given a function fdeg where fdeg is as fdeg : N → R where N = {1, 2, 3, . . .}, and fdeg may not
be an integer-value function. A set D ⊆ V is called an fdeg-dominating set in G if for every vertex
v outside D, |N(v) ∩D| ≥ fdeg(dv). In this paper, we consider the graphs with no isolated vertices.
We can easily extend the results for the graphs with isolated vertices. In this paper, we prove the
NP-completeness of the following problem: given a graph G and a positive integer k, decide whether
G has an fdeg-dominating set S with |S| ≤ k. Moreover, we prove that the problem of finding a
minimum fdeg-dominating set when fdeg(x) = k (in the other words, the k-dominating set) for any
integer k ≥ 1 is APX-complete (there is no PTAS). Also, we present some inapproximability result
for the problem of finding a minimum fdeg-dominating set for constant function fdeg(x) = k.

2 NP-completeness result
In this section, we will prove that the problem of finding the fdeg-domination number of a graph
is NP-complete, for every given function fdeg with some special properties. It is well known that
the following decision problem, denoted by 3-REGULAR DOMINATION (3RDM), is NP-complete
[6]: given a 3-regular graph G = (V,E) and a positive integer k, does G has a dominating set S with
|S| ≤ k? Now, consider the following decision problem, denoted by f -DOMINATION (fDM): given
a graph G = (V,E) without isolated vertices and a positive integer k, does G has an fdeg-dominating
set S with |S| ≤ k?

We will show that fDM is NP-complete for some special functions. We will extend the proof of the
result in which that α-domination is NP-complete (see [5]).

Theorem 2.1. . If an increasing function fdeg with domain N satisfies
a. ∀x ∈ N, 0 < fdeg(x) ≤ x,
b. ∃x0 > 0 such that ∀x ≥ x0, x + 1 ≥ fdeg(x + 3).
c. For every two integers x and y, fdeg(y + x) ≤ fdeg(y) + fdeg(x),
d. For a given x ∈ N, there is y ∈ N, such that y > x and fdeg(y) ≤ x,
then, the problem fDM is an NP-complete problem.

Sketch of Proof. Let fdeg be an arbitrary function that has the conditions of the theorem. We fix the
function f . We can easily see that fDM ∈ NP . Now, we proof the completeness. We make a trans-
formation from 3RDM to fDM. Suppose that x is the smallest integer such that (x+1) ≥ fdeg(x+3),
and y is the largest integer with y > x and x ≥ fdeg(y). Consider the complete graph Ky+1 and as-
sume that U = {v1, v2, . . . , vx} is a subset of vertices of Ky+1 with x elements. We call the vertex
set of Ky+1 by W .

We transform a 3-regular graph G to a graph denoted by Ĝ by joining each vertex of set U to all
vertices of G. Assume that S is a dominating set in G such that |S| ≤ k. Consider the set D = S∪U .
Using the conditions b and d, it is easy to see that D is an fdeg-dominating set in Ĝ with |D| ≤ x+k.

Now, we assume that D is an fdeg-dominating set in Ĝ with |D| ≤ x+k. Among all fdeg-dominating
set in Ĝ with |D| ≤ x + k, we suppose that D is the one with maximum |D ∩ U |. Also, without loss
of generality we can suppose that there is a vertex in W −U that is outside D. Using conditions a, b,
c, and d, it is not hard to prove that the set D ∩ V (G) is a dominating set in G with |D ∩ V (G)| ≤ k.
Because 3RDM is NP-complete [6], fDM is also NP-complete for the function f that satisfies the
conditions of Theorem 2.1.

There are many functions that satisfy the conditions of Theorem 2.1, such as
√
x, lnx and x

2 .

3 APX-completeness result
In this section, we prove that the problem of finding a minimum fdeg-dominating set of a graph with
maximum degree k + 2 and fdeg(x) = k for any k ≥ 1 is APX-complete (there is no PTAS). We
denote the problem of finding a minimum fdeg-dominating set of a graph where fdeg(x) = k by MIN

k-DOM SET, and when the problem is restricted to the graphs with maximum degree k + 2, we call it
MIN k-DOM SET-(k + 2).

At first, we recall the L-reduction.

Definition 3.1. (L-reduction)[2]. Given two NP optimization problems F and G and a polynomial
transformation f from instances of F to instances of G, we say that f is an L-reduction if there are
two positive constants α and β such that for every instance x of F

1. optG(f (x)) ≤ αoptF (x)

2. for every feasible solution y of f (x) with objective value mG(f (x), y) = c2 we can, in polynomial
time, find a solution y′ of x with mF (f (x), y

′) = c1 such that |optF (x)− c1| ≤ β|optG(f (x))− c2|.
To prove that a problem F is APX-complete, it is sufficient to prove that F ∈APX and there is an

L-reduction from some APX-complete problem to problem F .

Theorem 3.2 ([?]). For a graph G, MIN k-DOM SET can be approximated in polynomial time by a
factor of ln(2∆(G)) + 1 where ∆(G) is the maximum degree of G.

Theorem 3.3. MIN k-DOM SET-(k + 2) is an APX-complete problem for any k ≥ 1.

Sketch of Proof. The case k = 1 proved in [1]. Consider k > 1. Clearly, by Theorem 3.2, if the degree
of vertices of the graph is bounded by a constant then the approximation ratio is constant. Thus the
problem MIN k-DOM SET-(k + 2) is in APX. Suppose that G = (V,E) is a graph of bounded degree
3. Construct a graph Gk = (Vk, Ek) of bounded degree k+2 as follows. Create a set Sv of k− 1 new
vertices for each vertex v. Join each vertex v ∈ V to k−1 vertices of Sv. Given a k-dominating set Dk
of Gk = fk(G) (fk is a transformation from G to Gk. Recall Definition 3.1), we can find a dominating
set D in G as D = Dk −

(∪
v∈V (G) Sv

)
. So γ(G) ≤ |D| = |Dk| − (k − 1)n, where n = |V |. Also,

given a dominating set D of G, clearly the set Dk =
(∪

v∈V (G) Sv

)
∪D is a k-dominating set in Gk.

So γk(Gk) ≤ |Dk| = |D|+ (k− 1)n. Hence, we can easily conclude that γk(Gk) = γ(G) + (k− 1)n.
Finally, using the above argument, we can find an L-reduction with parameters α = 4k − 3 and

β = 1. So, the problem MIN k-DOM SET-(k + 2) is APX-complete.

4 Inapproximability result on MIN k-DOM SET

In this section, we presents some inapproxmabillity result for MIN k-DOM SET.

Theorem 4.1 ([3]). For any constant ϵ > 0 there is no polynomial time algorithm approximating MIN

1-DOM SET within a factor of (1− ϵ) lnn unless NP ⊆ DTIME(nO(log log n)). The same result holds
for bipartite graphs.

Theorem 4.2. For every k ≥ 1 and every ϵ > 0, there is no polynomial time algorithm ap-
proximating ṡc Min k-DOM SET for bipartite graphs within a factor of (1 − ϵ) lnn, unless NP ⊆
DTIME(nO(log log n)).

Sketch of Proof. It is sufficient that, we make some modifications in the proof of Theorem 4.1. We
make a reduction from domination on a bipartite graph G with n vertices such that n+2k− 2 ≤ n1+ϵ

and γ(G). ≥ 2(k−1)(1+2ϵ)
ϵ2

. Then we transform the bipartite graph G = (V1, V2, E) into a bipartite
graph G′ by adding to it two sets K1 and K2 each have k − 1 new vertices inducing a graph with no
edges. Join each vertex of V1 to each vertex of K2 and join each vertex of V2 to each vertex of K1. We
can easily prove that γk(G′) ≤ γ(G)+2k−2. Now, suppose that there is a polynomial time approxima-
tion algorithm that computes a k-dominating set D′ for G′ such that |D′| ≤ (1− ϵ) ln(|V (G′)|)γk(G′).
It is easy t.o see that D := D′ ∩ V (G) is a dominating set in G. So,

|D| ≤ |D′|
≤ (1− ϵ)(ln |V (G′)|)γk(G′) (suppose that n := |V (G′)|)
≤ (1− ϵ)(lnn)(1 + ϵ + ϵ2)γ(G)

= (1− ϵ′)(lnn)γ(G),

. where ϵ′ = ϵ3 > 0. Therefore, the set D approximates a minimum dominating set in G within factor
(1− ϵ′) lnn. But this contradicts Theorem 4.1. This completes the proof.

5 Figure and Table

A
Figure 1: A sample figure caption

Here goes a table. Tables are “float” objects. It means that LATEX does not generally place them on
the same location in the source code as on the output. You can place them anywhere in the source
code and then simply refer to them, like Table 1.

First column head Second column head Third column head
N/A x2 + 1 6
−20 y 11
−12 x + y 7

Table 1: A sample table caption
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