Algorithmic Complexity of Proper Labeling Problems

Ali Dehghana, Mohammad-Reza Sadeghia, Arash Ahadib

aFaculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
bDepartment of Mathematical Sciences, Sharif University of Technology, Tehran, Iran

Abstract

A proper labeling of a graph is an assignment of integers to some elements of a graph, which may be the vertices, the edges, or both of them, such that subject to some conditions we obtain a proper vertex coloring via the labeling. The problem of proper labeling offers many variants and received a great interest during these last years. In this work, we consider the computational complexity of some variants of the proper labeling problems such as: multiplicative vertex-coloring, fictional coloring and gap coloring. For instance, we show that, for a given bipartite graph G, determining whether G has a vertex-labeling by gap from $\{1,2\}$ is \textbf{NP}-complete. Also, we prove that there is a polynomial time algorithm for determining whether a given planar bipartite graph G has a vertex-labeling by gap from $\{1,2\}$. In sharp contrast, it is \textbf{NP}-complete to decide whether a given planar 3-colorable graph G has a vertex-labeling by gap from $\{1,2\}$.

Key words: Proper Labeling; Multiplicative vertex-coloring weightings; Gap vertex-distinguishing edge colorings; Fictional Coloring; Computational Complexity.

Subject classification: 05C15, 05C20, 68Q25

1 Introduction

A proper labeling of a graph is an assignment of integers to some elements of a graph, which may be the vertices, the edges, or both of them, such that subject to some conditions we obtain a proper vertex coloring via the labeling. Karoński, Luczak and Thomason initiated the study of proper-labelings \cite{16}. They introduced an edge-labeling which is additive vertex-coloring that means for every edge uv, the sum of labels of the edges incident to u...
is different than the sum of labels of the edges incident to \(v \) [16]. The problem of proper labeling offers many variants and received a great interest during these last years, for instance see [1, 7, 8, 15, 16, 20]. First, consider the following two famous variants.

(P1) Edge-labeling by sum.

An edge-labeling \(f \) is edge-labeling by sum if \(c(v) = \sum_{e \ni v} f(e) \), \(\forall v \in V \) is a proper vertex coloring. This parameter was introduced by Karoński et al. and it is conjectured that three integer labels \{1, 2, 3\} are sufficient for every connected graph, except \(K_2 \) (1, 2, 3-Conjecture, see [16]). This labeling have been studied extensively by several authors, for instance see [1, 2, 6, 17, 20]. Currently, we know that every connected graph has an edge-labeling by sum, using the labels from \{1, 2, 3, 4, 5\} [15]. Also, it is shown that determining whether a given graph has a edge-labeling by sum from \{1, 2\} is NP-complete [12].

(P2) Vertex-labeling by sum (Lucky labeling and sigma coloring).

A vertex-labeling \(f \) is vertex-labeling by sum if \(c(v) = \sum_{u \sim v} f(u) \), \(\forall v \in V \) is a proper vertex coloring. vertex-labeling by sum is a vertex versions of the above problem, which was introduced recently by Czerwiński et al. [8]. It was conjectured that every graph \(G \) has a vertex-labeling by sum, using the labels \{1, 2, \cdots, \chi(G)\} [8] and it was shown that every graph \(G \) with \(\Delta(G) \geq 2 \), has a vertex-labeling by sum, using the labels \{1, 2, \cdots, \Delta^2-\Delta+1\} [4], also, it was shown that, it is NP-complete to decide for a given planar 3-colorable graph \(G \), whether \(G \) has a vertex-labeling by sum from \{1, 2\} [3]. Furthermore, it is NP-complete to determine for a given 3-regular graph \(G \), whether \(G \) has a vertex-labeling by sum from \{1, 2\} [10]. A similar version of this labeling was introduced by Chartrand et al. [7].

In this work, we consider the algorithmic complexity of the following proper labeling problems.

(P3) Edge-labeling by product. (Multiplicative vertex-coloring)

An edge-labeling \(f \) is edge-labeling by product if \(c(v) = \prod_{e \ni v} f(e) \), \(\forall v \in V \) is a proper vertex coloring. This variant was introduced by Skowronek-Kaziów and it is conjectured that every non-trivial graph \(G \) has an edge-labeling by product, using the labels from \{1, 2, 3\} (Multiplicative 1, 2, 3-Conjecture, see [21]). Currently, we know that every non-trivial graph has an edge-labeling by product, using the labels from \{1, 2, 3, 4\} [21]. Also, every non-trivial, 3-colorable graph \(G \) permits an edge-labeling by product from \{1, 2, 3\} [21]. We will prove that determining whether a given planar 3-colorable graph has an edge-labeling by product from \{1, 2\} is NP-complete.

(P4) Vertex-labeling by product.

A vertex-labeling \(f \) is vertex-labeling by product if \(c(v) = \prod_{u \sim v} f(u) \), \(\forall v \in V \) is a proper vertex coloring. For a given graph \(G \), let \{\(V_1, V_2, \cdots, V_k \)\} be the color classes of a proper
vertex coloring of G. Label the set of vertices of V_1 by 1; also, for each i, $1 < i \leq k$ label the set of vertices of V_i by the $(i - 1)$-th prime number; this labeling is a \textit{vertex-labeling by product}. In number theory, the prime number theorem describes the asymptotic distribution of the prime numbers. The prime number theorem implies estimates for the size of the n-th prime number p_n (i.e., $p_1 = 2$, $p_2 = 3$, etc.): up to a bounded factor, p_n grows like $n \log(n)$. As a consequence of the prime number theorem we have the following bound: $p_n < n \ln n + n \ln \ln n$, for $n \geq 6$ (see [5] p. 233). So, every graph G has a \textit{vertex-labeling by product}, from $\{1, 2, \cdots, \chi(G)\}$. Here, we ask the following question.

\textbf{Problem 1.} \textit{Does every graph G have a vertex-labeling by product, using the labels $\{1, 2, \cdots, \chi(G)\}$?}

We shown that, every planar graph G has a \textit{vertex-labeling by product} from $\{1, 2, \cdots, 5\}$. We will prove that determining whether a given planar 3-colorable graph has a \textit{vertex-labeling by product} from $\{1, 2\}$ is \textbf{NP}-complete. Furthermore, for every k, $k \geq 3$ we show that determining whether a given graph has a \textit{vertex-labeling by product} from $\{1, 2, \cdots, k\}$ is \textbf{NP}-complete.

\textbf{(P5) Edge-labeling by gap.}

An edge-labeling f is \textit{edge-labeling by gap} if
\[
c(v) = \begin{cases}
 f(e) & \text{if } d(v) = 1, \\
 \max_{e \ni v} f(e) - \min_{e \ni v} f(e) & \text{otherwise},
\end{cases}
\]
is a proper vertex coloring. Every graph G has an \textit{edge-labeling by gap} if and only if it has no connected component isomorphic to K_1 or K_2 (put the different powers of two $(1, 2, \cdots, 2^{|E(G)|-1})$ on the edges of G; this labeling is a vertex-labeling by gap). A similar definition was introduced by Tahraoui et al. [22]. They introduced the following variant: Let G be a graph, k be a positive integer and f be a mapping from $E(G)$ to the set $\{1, 2, \cdots, k\}$. For each vertex v of G, the label of v is defined as
\[
c(v) = \begin{cases}
 f(e) & \text{if } d(v) = 1, \\
 \max_{e \ni v} f(e) - \min_{e \ni v} f(e) & \text{otherwise},
\end{cases}
\]
The mapping f is called \textit{gap vertex-distinguishing labeling} if distinct vertices have distinct labels. Such a coloring is called a \textit{gap-k-coloring} and is denoted by $\text{gap}(G)$ [22]. It was conjectured that for a connected graph G of order n with $n > 2$, $\text{gap}(G) \in \{n-1, n, n+1\}$ [22]. They purpose study of the variant of the gap coloring problem that distinguishes the adjacent vertices only.

Let f be an \textit{edge-labeling by gap} form $\{1, 2, \cdots, k\}$ for a graph G, we have $k \geq \chi(G) - 1$. First, consider the following example.
Remark 1. Every complete graph \(K_n \) of order \(n \) with \(n > 2 \), has an edge-labeling \(f_n \) by gap form \(\{1, 2, \cdots, \chi(K_n) + 1\} \). Suppose that \(K_3 = v_1v_2v_3 \) and let \(f_3 \) be the following function: \(f_3(v_1v_2) = 4, f_3(v_1v_3) = 1 \) and \(f_3(v_2v_3) = 2 \). Define \(f_n \) recursively.

\[
f_n(v_iv_j) = \begin{cases}
 f_{n-1}(v_iv_j) + 1 & \text{if } i, j < n, \\
 1 & \text{if } i = n \text{ and } j \neq 2, \\
 2 & \text{otherwise},
\end{cases}
\]

Now, we state the following problem:

Problem 2. Does every connected graph \(G \) of order \(n \) with \(n > 2 \), have an edge-labeling by gap form \(\{1, 2, \cdots, \chi(G) + 1\} \)?

We will prove that determining whether a given planar bipartite graph has an edge-labeling by gap from \(\{1, 2\} \) is \(\text{NP} \)-complete. Also, we show that for every \(k, k \geq 3 \), it is \(\text{NP} \)-complete to determine whether a given graph has an edge-labeling by gap from \(\{1, 2, \cdots, k\} \).

(P6) Vertex-labeling by gap. A vertex-labeling \(f \) is vertex-labeling by gap if

\[
c(v) = \begin{cases}
 f(u)_{u \sim v} & \text{if } d(v) = 1, \\
 \max_{u \sim v} f(u) - \min_{u \sim v} f(u) & \text{otherwise},
\end{cases}
\]

is a proper vertex coloring. A graph may lack any vertex-labeling by gap. Here we ask the following:

Problem 3. Does there is a polynomial time algorithm to determine whether a given graph has a vertex-labeling by gap?

We show that, for a given bipartite graph \(G \), determining whether \(G \) has a vertex-labeling by gap from \(\{1, 2\} \) is \(\text{NP} \)-complete. Also, we prove that there is a polynomial time algorithm for determining whether a given planar bipartite graph \(G \) has a vertex-labeling by gap from \(\{1, 2\} \). In sharp contrast, it is \(\text{NP} \)-complete to decide whether a given planar 3-colorable graph \(G \) has a vertex-labeling by gap from \(\{1, 2\} \).

Every bipartite graph \(G = [X, Y] \) has a vertex-labeling by gap, label the set of vertices \(X \) by 1 and label the set of vertices of \(Y \) by different powers of two \((2^1, \cdots, 2^{|Y|}) \). Here we ask the following:

Problem 4. Does there is a constant \(k \) such that every bipartite graph \(G \), have a vertex-labeling by gap form \(\{1, 2, \cdots, k\} \)?

4
It was shown by Thomassen [23] that, for any \(k \)-uniform and \(k \)-regular hypergraph \(H \), if \(k \geq 4 \), then \(H \) is 2-colorable. For every \(r \)-regular bipartite graph \(G = [X, Y] \) with \(r \geq 4 \), label the set of vertices of one of the color classes in part \(X \) by 1 and label other vertices by 2. This labeling is a vertex-labeling by gap from \(\{1, 2\} \) for \(G \).

(P7) Vertex-labeling by degree. (Fictional coloring) A vertex-labeling \(f \) is vertex-labeling by degree if \(c(v) = f(v)d(v) \), where \(d(v) \) is the degree of vertex \(v \) is a proper vertex coloring. This parameter was introduced by Bosek, Grytczuk, Matecki and Żelazny [26]. They conjecture that every graph \(G \) has a vertex-labeling by degree from \(\{1, 2, \ldots, \chi(G)\} \). Let \(p \) be a prime number and let \(G \) be a graph such that \(\chi(G) \leq p-1 \), they proved that \(G \) has a vertex-labeling by degree from \(\{1, 2, \ldots, p-1\} \). For every \(k \) greater than two it is clear that determining whether a given graph has a vertex-labeling by degree from \(\{1, 2, \ldots, k\} \) is NP-complete. We will prove that determining whether a given graph has a vertex-labeling by degree from \(\{1, 2\} \) is in \(P \).

(P8) Vertex-labeling by maximum. A vertex-labeling \(f \) is vertex-labeling by maximum if \(c(v) = \max_{u \sim v} f(u) \), \(\forall v \in V \) is a proper vertex coloring. A graph \(G \) may lack any vertex-labeling by maximum and it has a vertex-labeling by maximum from \(\{1, 2\} \) if and only if \(G \) is bipartite. We present a nontrivial necessary condition that can be checked in polynomial time for a graph to have a vertex-labeling by maximum.

Remark 2 Let \(k \) be the minimum number such that \(G \) has a vertex-labeling by maximum from the set \(\{1, 2, \ldots, k\} \), then \(\chi(G) - k \) can be arbitrary large. For instance, for a given \(t > 3 \) consider the graph \(G \) with vertex set \(V(G) = \{a_i : 1 \leq i \leq t\} \cup \{b_j : 1 \leq j \leq t-2\} \) and edge set \(E(G) = \{a_ia_{i+1} : 1 \leq i \leq t-1\} \cup \{a_jb_j, b_ja_{j+1} : 1 \leq j \leq t-2\} \). Clearly \(k - \chi(G) = t - 3 \).

We will show that determining whether a given 3-regular graph has a vertex-labeling by maximum from \(\{1, 2, 3\} \) is NP-complete.

Throughout this paper all graphs are finite and simple. We follow [13, 25] for terminology and notation not defined here, and we consider finite undirected simple graphs \(G = (V, E) \). We denote the induced subgraph \(G \) on \(S \) by \(G[S] \). Also, for every \(v \in V(G) \) and \(S \subseteq V(G) \), \(N(v) \) and \(N(S) \) denote the neighbor set of \(v \) and the set of vertices of \(G \) which has a neighbor in \(S \), respectively. A proper vertex coloring of \(G = (V, E) \) is a function \(c : V(G) \rightarrow L \), such that if \(u, v \in V(G) \) are adjacent, then \(c(u) \) and \(c(v) \) are different. A proper vertex \(k \)-coloring is a proper vertex coloring with \(|L| = k \). The smallest integer \(k \) such that \(G \) has a proper vertex \(k \)-coloring is called the chromatic number of \(G \).
Table 1: Graph Labeling Results

<table>
<thead>
<tr>
<th>Edge-labeling by</th>
<th>{1, 2}</th>
<th>{1, 2, 3}</th>
<th>Current Upper Bound</th>
<th>Conjecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum</td>
<td>NP-c</td>
<td>-</td>
<td>{1, 2, 3, 4, 5}</td>
<td>{1, 2, 3}</td>
</tr>
<tr>
<td>Product</td>
<td>NP-c</td>
<td>-</td>
<td>{1, 2, 3}</td>
<td>{1, 2, 3}</td>
</tr>
<tr>
<td>Gap</td>
<td>NP-c</td>
<td>NP-c</td>
<td>{1, 2, \ldots, 2^{</td>
<td>E(G)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vertex-labeling by</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum</td>
<td>NP-c</td>
<td>NP-c</td>
<td>\Delta^2 - \Delta + 1</td>
<td>{1, 2, \ldots, \chi}</td>
</tr>
<tr>
<td>Product</td>
<td>NP-c</td>
<td>NP-c</td>
<td>{1, \ldots, \chi \ln \chi + \chi \ln \ln \chi + 2}</td>
<td>{1, 2, \ldots, \chi}</td>
</tr>
<tr>
<td>Degree</td>
<td>P</td>
<td>NP-c</td>
<td>{1, 2, \ldots, 2\chi}</td>
<td>{1, 2, \ldots, \chi}</td>
</tr>
<tr>
<td>Maximum</td>
<td>P</td>
<td>NP-c</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gap</td>
<td>NP-c</td>
<td>NP-c</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

and denoted by $\chi(G)$. Similarly, for $k \in \mathbb{N}$, a proper edge k-coloring of G is a function $c : E(G) \to \{1, \ldots, k\}$, such that if $e, e' \in E(G)$ share a common endpoint, then $c(e)$ and $c(e')$ are different. The smallest integer k such that G has a proper edge k-coloring is called the edge chromatic number of G and denoted by $\chi'(G)$. By Vizing’s theorem [24], the edge chromatic number of a graph G is equal to either $\Delta(G)$ or $\Delta(G) + 1$. Those graphs G for which $\chi'(G) = \Delta(G)$ are said to belong to Class 1, and the others to Class 2.

2 Results

2.1 Edge-labeling by product

Theorem 1 For a given planar 3-colorable graph G, determining whether G has an edge-labeling by product from $\{1, 2\}$ is NP-complete.

Proof Clearly, the problem is in NP. We reduced Cubic Planar 1-In-3 3-Sat to our problem. Moore and Robson [18] proved that the following problem is NP-complete.

Cubic Planar 1-In-3 3-Sat.

INSTANCE: Set X of variables, collection C of clauses over X such that each clause $c \in C$ has $|c| = 3$ and every variable appears in exactly three clauses, there is no negation in the formula, and the bipartite graph obtained by linking a variable and a clause if and only if the variable appears in the clause, is planar.

QUESTION: Is there a truth assignment for X such that each clause in C has exactly one
true literal?

Figure 1: The two gadgets H_x and I_c. I_c is on the left hand side of the figure.

Consider an instance Φ, we transform this into a graph G_Φ such that G_Φ has an edge-labeling by product from \{1, 2\} if and only if Φ has a 1-in-3 assignment. We use two gadgets H_x and I_c which are shown in Figure 1. The graph G_Φ has a copy of H_x for each variable $x \in X$ and a copy of I_c for each clause $c \in C$. Also, for each clause $c = y \lor z \lor w$ add the edges cy, cz and cw. First, suppose that G_Φ has an edge-labeling by product from \{1, 2\}. In every copy of H_x and I_c the label of every edge is determined uniquely. See Figure 1 (the label of each edge is written on the edge and the color of each vertex induced by edge labels is written on the vertex). Every variable x appears in exactly three clauses, suppose that x appears in c_i, c_j and c_k. By attention to the structure of H_x the set of labels of edges $c_i x$, $c_j x$ and $c_k x$ are \{1, 1, 1\} or \{2, 2, 2\}. Furthermore, by attention to the H_x and I_c, for every clause $c = x \lor y \lor z$, the set of labels of edges cx, cy and cz is \{2, 1, 1\}. Now, for every variable x, which is appeared in c_i, c_j and c_k put $\Gamma(x) = True$ if and only if the set of labels of edges $c_i x$, $c_j x$ and $c_k x$ is \{2, 2, 2\}. Clearly, Γ is an 1-in-3 satisfying assignment. Next, suppose that Φ has an 1-in-3 satisfying assignment $\Gamma : X \rightarrow \{true, false\}$, for every variable x, which is appeared in c_i, c_j and c_k, label $c_i x$, $c_j x$ and $c_k x$ by 2 if and only if $\Gamma(x) = True$. The labels of other vertices are determined uniquely and it is clear the this labeling is an edge-labeling by product from \{1, 2\}.

2.2 Vertex-labeling by product

In the next, we consider the computational complexity of vertex-labeling by product.
Theorem 2 For a given planar 3-colorable graph \(G \), determining whether \(G \) has a vertex-labeling by product from \(\{1, 2\} \) is NP-complete.

Proof Clearly, the problem is in NP. We reduced Cubic Planar 1-In-3 3-Sat to our problem. First, we construct an auxiliary graph \(H_c \). Put a copy of triangle \(K_3 = z_1^c z_2^c z_3^c \). For every vertex \(z_j^c \), 1 \(\leq \) \(j \) \(\leq \) 2, put 2\(i \) new isolated vertices \(t_{i1}^c, t_{i2}^c, \ldots, t_{i2i}^c \) and join \(z_j^c \) to all of them. Also, add the edges \(t_{11}^c t_{21}^c, t_{12}^c t_{22}^c, \ldots, t_{2i-1}^c t_{2i}^c \). Next, put 2\(i \) new isolated vertices \(t_{1i}^c, t_{2i}^c, \ldots, t_{2i-2i}^c \) and join \(z_j^c \) to all of them. Finally, add the edges \(t_{1i}^c t_{1i}^c, t_{12}^c t_{3i}^c, \ldots, t_{2i-2i}^c t_{2i-2i}^c \).

Call the resulting graph \(H_c \). Now, consider an instance \(\Psi \), we transform this into a graph \(G_\Psi \) such that \(G_\Psi \) has a vertex-labeling by product from \(\{1, 2\} \) if and only if \(\Psi \) has a 1-in-3 assignment. Our construction consists of three steps.

Step 1. For each clause \(c \in C \) put a vertex \(c \) and a copy of \(H_3^c, H_5^c \) and \(H_6^c \). Connect the vertex \(z_j^c \) of \(H_3^c \) to \(c \), also, join the vertex \(z_j^c \) of \(H_5^c \) to \(c \) and finally, connect the vertex \(z_j^c \) of \(H_6^c \) to \(c \).

Step 2. For each variable \(x \in X \) put a vertex \(x \).

Step 3. For each clause \(c = x \lor y \lor w \) add the edges \(cx, cy \) and \(cw \).

First, suppose that \(G_\Psi \) has a vertex-labeling \(f \) by product from \(\{1, 2\} \) and let \(\ell \) be the induced coloring by \(f \). In every copy of \(H_3^c \) the label of vertex \(z_j^c \) is 2. We have the similar property for \(H_5^c \) and \(H_6^c \). By attention to the structure of \(H_3^c \), we have \(f(c) = 1 \) and \(\ell(z_j^c) = 8 \); similarly for \(H_5^c \), we have \(\ell(z_j^c) = 32 \) and for \(H_6^c \), we have \(\ell(z_j^c) = 64 \). So for every clause vertex \(c \) we have \(\ell(c) = 16 \). Now, for every variable \(x \), put \(\Gamma(x) = \text{True} \) if and only if \(f(x) = 2 \). Since for every clause \(c \), \(\ell(c) = 16 \), \(\Gamma \) is an 1-in-3 satisfying assignment. Next, suppose that \(\Psi \) is 1-in-3 satisfiable with the satisfying assignment \(\Gamma : X \rightarrow \{\text{true, false}\} \), for every variable \(x \), label the vertex \(x \) by 2 if and only if \(\Gamma(x) = \text{True} \). The labels of other vertices are determined uniquely and it is clear the this labeling is a vertex-labeling by product from \(\{1, 2\} \).

\(\square \)

Theorem 3 For every \(k, k \geq 3 \), it is NP-complete to determine whether a given graph has a vertex-labeling by product from \(\{1, 2, \ldots, k\} \).

Proof We present a polynomial time reduction from 3-colorability to our problem.

3-Colorability. Given a graph \(G \); is \(\chi(G) \leq 3 \)?

First define the following sets: \(A_k = \{mn : m, n \in \mathbb{N}_k\} \), \(B_k = \{m/n : m, n \in \mathbb{N}_k\} \), where \(\mathbb{N}_k = \{1, 2, \ldots, k\} \). Also, define \(\alpha(k) = \max_{D_k \in C_k} |D_k| \), where \(C_k \) is the set of sets such that for every set \(D_k \in C_k \), we have \(D_k \subseteq A_k \) and \(\{d, d' \in D_k \} \cap B_k = \emptyset \). Since \(k \) is constant, so we can compute \(\alpha(k) \) in \(O(1) \). Now, for a given graph \(G \) with \(n \)
vertices \(v_1, v_2, \ldots, v_n \), join all vertices of \(G \) to the all vertices of complete graph \(K_{\alpha(k)-3} \) with vertices \(v_{n+1}, \ldots, v_{n+\alpha(k)-3} \). Call the resulting graph \(G^* \). Now consider the graph \(G^{**} \) with the vertex set \(\{v^j_i : i \in \mathbb{N}_{n+\alpha(k)-3}, j \in \mathbb{N}_k\} \) such that \(v^j_i \) is joined to \(v^w_x \) if and only if \(x = z \) or \(v_x v_z \in E(G^*) \). Finally, consider a copy of graph \(G^{**} \), for every \(i, 1 \leq i \leq n+\alpha(k)-3 \), put two new isolated vertices \(v'_i \) and \(v''_i \) and join them to the set of vertices \(\{v^1_i, \ldots, v^k_i\} \). Call the resulting graph \(\tilde{G} \) (see Figure 2). We show that \(\tilde{G} \) has a vertex-labeling by product from \(\{1, 2, \ldots, k\} \) if and only if \(G \) is 3-colorable. Let \(f \) be a vertex-labeling by product for \(\tilde{G} \). Clearly, \(f(v^1_i), \ldots, f(v^k_i) \) should be different numbers. For every \(i, i \in \mathbb{N}_{n+\alpha(k)-3} \), we have: \(\{f(v^j_i) : j \in \mathbb{N}_k\} = \mathbb{N}_k \). Furthermore, for every \(i_1, i_2, 1 \leq i_1 < i_2 \leq n+\alpha(k)-3 \), we have: \(f(v'^{i_1}_{i_1}), f(v'^{i_2}_{i_1}), f(v'^{i_1}_{i_2}), f(v'^{i_2}_{i_2}) \in A_k \). Also, for every \(i_1 \) and \(i_2 \), if \(v_{i_1} v_{i_2} \in E(G) \), then

\[
\frac{f(v'^{i_1}_{i_1})f(v'^{i_2}_{i_2})}{f(v'^{i_2}_{i_1})f(v'^{i_2}_{i_2})} \notin B_k.
\]

Therefore, \(\{f(v'^{i}_{i}) : 1 \leq i \leq n+\alpha(k)-3\} \geq \alpha(k) - 3 + \chi(G) \). So, \(\tilde{G} \) has a vertex-labeling by product from \(\{1, 2, \ldots, k\} \) if and only if \(\chi(G) \leq 3 \). The proof is complete.
2.3 Edge-labeling by gap

Theorem 4 For a given planar bipartite graph G, determining whether G has an edge-labeling by gap from $\{1,2\}$ is NP-complete.

Proof Let Φ be a 3-SAT formula with clauses $C = \{c_1, \ldots, c_k\}$ and variables $X = \{x_1, \ldots, x_n\}$. Let $G(\Phi)$ be a graph with the vertices $C \cup X \cup (\neg X)$, where $\neg X = \{-x_1, \ldots, -x_n\}$, such that for each clause $c_j = y \lor z \lor w$, c_j is adjacent to y, z and w, also every $x_i \in X$ is adjacent to $\neg x_i$. Φ is called planar 3-SAT type 2 formula if $G(\Phi)$ is a planar graph. It was shown that the problem of satisfiability of planar 3-SAT type 2 is NP-complete [11].

Planar 3-SAT type 2.

Instance: A 3-SAT type 2 formula Φ.

Question: Is there a truth assignment for Φ that satisfies all the clauses?

We reduce planar 3-SAT type 2 problem to our problem. In planar 3-SAT type 2, if we only consider the set of formulas such that the bipartite graph G obtained by linking a variable and a clause if and only if the variable appears in the clause, is connected and it does not have any vertex of degree one, the problem remains NP-complete. We reduce this version to our problem. Consider an instance Φ, we transform this into a graph G_Φ such that G_Φ has an edge-labeling by gap from $\{1,2\}$ if and only if Φ has a satisfying assignment. For each variable $x \in X$ put a copy of path $P_3 = xtx_\neg x$, also, for each clause $c \in C$ put a copy of gadget $P_4 = cc'd'e''m$. Now, put a copy C_6. Also, for each clause $c = y \lor z \lor w$ add the edges cy, cz and cw. Finally, let x be an arbitrary literal, connect x to one of the vertices of C_6. G_Φ is connected, bipartite and planar. First, suppose that G_Φ has an edge-labeling f by gap from $\{1,2\}$ and l is the induced proper coloring by f. Since for every variable x the degrees of vertices x and $\neg x$ are greater than one, also for every clause c the degree of vertex c is 4 and G_Φ is connected, hence in the induced coloring l by f, for the set of variables $\{x_1, \ldots, x_n\}$ and the set of clauses $\{c_1, \ldots, c_m\}$ we have $l(x_1) = l(\neg x_1) = \cdots = l(x_n) \neq l(c_1) = l(\neg c_1) = \cdots = l(\neg c_m)$ and $l(x_1) \neq 2 \neq l(c_1)$. First, suppose that $l(x) = 1$. Since x is adjacent to one of the vertices of C_6, in this situation G_Φ does not have any edge-labeling f by gap from $\{1,2\}$. So $l(x) = 0$ and $l(c) = 1$. Hence, the labels of all edges incident with x_1 are same. Also, for every variable x, because of t_x, the labels of all edges incident with x are different from the labels of all edges incident with $\neg x$. Now, for every variable x, which is appeared in c_i, c_j, \cdots, c_k put $\Gamma(x) = True$ if and only if the labels of edge $c_i x$ is 2. For every clause $c = x \lor y \lor w$, $l(c) = 1$, if the set of labels of edges $\{cx, cy, cw\}$ is $\{1\}$, then since $l(c) = 1$ and by attention to the gadget $cc'd'e''m$, G does not have any edge-labeling f by gap from $\{1,2\}$. So, $2 \in \{f(cx), f(cy), f(cw)\}$.

Therefore, Γ is an satisfying assignment. Now, let Γ be an satisfying assignment for Φ.

10
For every variable \(x \), label all the edges incident with \(x \) by 2 if and only if \(\Gamma(x) = \text{True} \). It is easy to extend this labeling to an edge-labeling \(f \) by gap from \(\{1, 2\} \). This completes the proof. \(\square \)

Theorem 5 For every \(k, k \geq 3 \), it is \(\text{NP} \)-complete to determine whether a given graph has an edge-labeling by gap from \(\{1, 2, \cdots, k\} \).

Proof We present a polynomial time reduction from \(k \)-colorability, to our problem.

\(k \)-Colorability: Given a graph \(G \); is \(\chi(G) \leq k \)?

For a given graph \(G \), we construct a graph \(G^* \) such that \(\chi(G) \leq k \) if and only if \(G^* \) has an edge-labeling by gap from \(\{1, 2, \cdots, k\} \). Let \(G \) be a graph, for every vertex \(v \in V(G) \), put a copy \(P_3 = vv'v'' \) and join \(v \) to \(u \) if and only if \(uv \in E(G) \). Call the resulting \(G^* \). First, suppose that \(G^* \) has an edge-labeling \(f \) by gap from \(\{1, 2, \cdots, k\} \) and \(\ell \) is the induced coloring by \(f \). for every vertex \(v \), \(v \in V(G^*) \) of degree more than one, we have \(\ell(v) \in \{0, 1, \cdots, k - 1\} \), so \(\ell \) is also a proper vertex coloring for \(G \). Now, let \(c \) be a proper vertex coloring for \(G \). For every vertex \(v \) in \(V(G^*) \), label all edges incident with \(v \) except \(vv' \) by 1 and label \(vv' \) by \(c(v) \). Finally for every edge \(v'v'' \), label \(v'v'' \) by 1 if \(c(v) \neq 1 \), otherwise label \(v'v'' \) by \(k \). This labeling is an edge-labeling by gap from \(\{1, 2, \cdots, k\} \). \(\square \)

2.4 Vertex-labeling by gap

Theorem 6 For a given bipartite graph \(G \), determining whether \(G \) has a vertex-labeling by gap from \(\{1, 2\} \) is \(\text{NP} \)-complete.

Proof We reduce Not-All-Equal-3-Sat to our problem in polynomial time. It is shown that the following problem is \(\text{NP} \)-complete [13].

Not-All-Equal-3-Sat

Instance: Set \(X \) of variables, collection \(C \) of clauses over \(X \) such that each clause \(c \in C \) has \(|c| = 3 \).

Question: Is there a truth assignment for \(X \) such that each clause in \(C \) has at least one true literal and at least one false literal?

For a given \(\Phi \), we transform \(\Phi \) into a graph \(G_\Phi \) such that \(G_\Phi \) has a vertex-labeling by gap from \(\{1, 2\} \) if and only if \(\Phi \) has a satisfying assignment. Construction of \(G_\Phi \) is similar to the proof Theorem 4, except the gadget \(P_4 = cc'c''c''' \). For each clause \(c \in C \) instead of \(P_4 = cc'c''c''' \), put a isolated vertex \(c \). First, suppose that \(G_\Phi \) has an edge-labeling \(f \) by gap from \(\{1, 2\} \) and \(l \) is the induced proper coloring by \(f \). By an argument similar to argument of proof of Theorem 4, for every clause \(c = x \lor y \lor w, l(c) = 1 \). So
\(\{f(x), f(y), f(w)\} = \{1, 2\} \), therefore \(\Gamma \) is a NAE satisfying assignment. Now, let \(\Gamma \) be an satisfying assignment for \(\Phi \). For every variable \(x \), label the vertex \(x \) by 2 if and only if \(\Gamma(x) = True \). This completes the proof.

\[\square \]

Theorem 7 For a given planar bipartite graph \(G \), determining whether \(G \) has a vertex-labeling by gap from \(\{1, 2\} \) is in \(\mathbf{P} \).

Proof First we show that every tree \(T \) with more than two vertex has a vertex-labeling by gap from \(\{1, 2\} \). Let \(T \) be a tree with more than two vertex and \(v \in V(T) \) be an arbitrary vertex, define:

\[
f(u) = \begin{cases}
1 & \text{if } d(u,v) \equiv 0 \pmod{4}, \\
2 & \text{otherwise},
\end{cases}
\]

We call this kind of labeling as good labeling by center \(v \). It is easy to see that good labeling by center \(v \) is a vertex-labeling by gap from \(\{1, 2\} \). Now, consider the following problem.

Planar Not-All-Equal 3-Sat.

Instance: Set \(X \) of variables, collection \(C \) of clauses over \(X \) such that each clause \(c \in C \) has \(|c| = 3 \) and the following graph obtained from 3-Sat is planar. The graph has one vertex for each variable, one vertex for each clause; all variable vertices are connected in a simple cycle and each clause vertex is connected by an edge to variable vertices corresponding to the literals present in the clause.

Question: Is there a Not-All-Equal truth assignment for \(X \)?

It was proved in [19] that Planar Not-All-Equal 3-Sat is in \(\mathbf{P} \) by a reduction to a known problem in \(\mathbf{P} \), namely Planar(Simple) MaxCut. By a simple argument it was shown that the following problem is in \(\mathbf{P} \) (for more information see [10]).

Planar Not-All-Equal 3-Sat Type 2.

Instance: Set \(X \) of variables, collection \(C \) of clauses over \(X \) such that each clause \(c \in C \) has \(|c| \geq 3 \) and the bipartite graph obtained by linking a variable and a clause if and only if the variable appears in the clause, is planar.

Question: Is there a Not-All-Equal truth assignment for \(X \)?

Now, consider the following:

Planar Not-All-Equal Sat Type 2.

Instance: Set \(X \) of variables, collection \(C \) of clauses over \(X \) such that each clause \(c \in C \) has \(|c| \geq 2 \) and the bipartite graph obtained by linking a variable and a clause if and only if the variable appears in the clause, is planar.

Question: Is there a Not-All-Equal truth assignment for \(X \)?

We can transform any instance of \(\Phi \) Planar Not-All-Equal Sat Type 2 to an instance \(\Psi \) of Planar Not-All-Equal 3-Sat Type 2 in polynomial time. For a given instance \(\Phi \), for each clause with exactly two literals like \(c = (x \lor y) \), put two clauses \(x \lor y \lor t \) and
Let $G = [X, Y]$ be a planar bipartite graph, remove all vertices of degree one, repeat this procedure to obtain a graph $G' = [X', Y']$ such that G' does not have a vertex of degree one. For every vertex $v \in X'$, consider a variable v in Φ and for every vertex $u \in Y'$ with $d_G(u) = d_{G'}(u)$ put a clause $(\lor_{v \sim u} v)$ in Φ. Now determine whether Φ has a Not-All-Equal truth assignment. If Φ has a Not-All-Equal truth assignment Γ, for every vertex $v, v \in X'$ label v by 1 if and only if $\Gamma(v) = \text{False}$. Label other vertices of G' by 2, call this labeling by f. The induced graph on $V(G) \setminus V(G')$ is a forest, call this forest by F. Suppose that $F = T_1 \cup \cdots \cup T_k$, where T_i is a tree. For every i, $1 \leq i \leq k$ let v_i, $v_i \in V(G')$ be a vertex with minimum distance from T_i. Now for every T_i four cases can be considered:

Case 1: $v_i \in Y'$ and $\{ \cup_{v \sim u} f(u) \} = \{1, 2\}$. Let $z \in N_{G'}(v_i)$ such that $f(z) = 1$ and $T_i' = T_i \cup v_i \cup z$. Suppose that f_i is a good labeling by center z for T_i'.

Case 2: $v_i \in Y'$ and $\{ \cup_{v \sim u} f(u) \} = \{2\}$. Let $z \in N_{T_i'}(v_i)$. Suppose that f_i is a good labeling by center z for T_i'.

Case 3: $v_i \in Y'$ and $\{ \cup_{v \sim u} f(u) \} = \{1\}$. Let $z \in N_{G'}(v_i)$ such that $f(z) = 1$ and $T_i' = T_i \cup v_i \cup z$. Suppose that f_i is a good labeling by center z for T_i'.

Case 4: $v_i \in X'$ and $\{ \cup_{v \sim u} f(u) \} = \{2\}$. Let $T_i' = T_i \cup v_i \cup t$, where t is anew vertex and t is joined to v_i in T_i'. Suppose that f_i is a good labeling by center t for T_i'.

It is easy to see that the union of good labelings f, f_1, f_2, \cdots, f_k is a vertex-labeling by gap from $\{1, 2\}$ for G. If Φ does not have a Not-All-Equal truth assignment. Then, for every vertex $v \in X'$, consider a variable v in Ψ and for every vertex $u \in X'$ with $d_G(u) = d_{G'}(u)$ put a clause $(\lor_{v \sim u} v)$ in Ψ. Now determine whether Ψ has a Not-All-Equal truth assignment. If Φ has a Not-All-Equal truth assignment Γ by a similar method we can find vertex-labeling by gap from $\{1, 2\}$ for G. Otherwise, G does not have any vertex-labeling by gap from $\{1, 2\}$.

\[\square\]

Theorem 8 For every k, $k \geq 3$, it is NP-complete to determine whether a given graph has a vertex-labeling by gap from $\{1, 2, \cdots, k\}$.

Proof The proof is similar to the proof of Theorem 5. \[\square\]
It was shown that 3-colorability of planar 4-regular graphs is NP-complete [9]. So we have the following:

Theorem 9 It is **NP-complete** to decide whether a given planar 3-colorable graph G has a vertex-labeling by gap from $\{1, 2\}$.

2.5 Vertex-labeling by degree

For every k greater than three it is clear that determining whether a given graph has a vertex-labeling by degree from $\{1, 2, \cdots, k\}$ is NP-complete.

Theorem 10 Determining whether a given graph has a vertex-labeling by degree from $\{1, 2\}$ is in **P**.

Proof We reduce our problem to 2-SAT problem in polynomial time.

2-SAT.

Instance: A 2-SAT formula Φ.

Question: Is there a truth assignment for Φ that satisfies all the clauses?

For a given graph G of order n we construct a 2-SAT formula Φ with n variables v_1, v_2, \cdots, v_n such that G has a vertex-labeling by degree from $\{1, 2\}$ if and only if there is a truth assignment for Φ. For every edge $e = v_i v_j$, if $d(v_i) = d(v_j)$, add the clauses $v_i \lor v_j$ and $\neg v_i \lor \neg v_j$ and if $d(v_i) = 2d(v_j)$, add the clause $v_i \lor \neg v_j$, otherwise if $2d(v_i) = d(v_j)$, add the clause $\neg v_i \lor v_j$. First, suppose that Γ is satisfying assignment for Φ. For every vertex v_i, label v_i by 2 if and only if $\Gamma(v_i) = true$. It is easy to see that this labeling is a vertex-labeling by degree from $\{1, 2\}$. Next, let f be a vertex-labeling by degree from $\{1, 2\}$, for every variable v_i, put $\Gamma(v_i) = true$ if and only if $f(v_i) = 2$. As we know 2-SAT problem is in **P** [13]. This completes the proof.

2.6 Vertex-labeling by maximum

A graph may lack any vertex-labeling by maximum, in the next we consider the complexity of vertex-labeling by maximum; also, we present a necessary condition that can be checked in polynomial time for a graph to have a vertex-labeling by maximum.

Theorem 11 For a given 3-regular graph G, determining whether G has a vertex-labeling by maximum from $\{1, 2, 3\}$ is **NP-complete**.
Figure 3: Transformation in constructing G'.

Proof Clearly, the problem is in NP. It was shown that it is NP-hard to determine the edge chromatic number of a cubic graph [14]. Let G be a 3-regular graph. We construct a 3-regular graph G' from G such that G' has a vertex-labeling by maximum from $\{1, 2, 3\}$ if and only if G belongs to Class 1. In order to construct G', for every vertex $v \in V(G)$ with the neighbors x, y and z consider two disjoint triangles $v_xv_yv_z$ and $v'_xv'_yv'_z$ in G'.

Also, for every edge $e \in E(G)$, consider two vertices e and e' in G'. Finally, for every edge $e = uv \in E(G)$, join e to v_u and u_v; also join e' to v'_u and u'_v. Name the constructed graph G' (see Figure 3). Since G' has triangles, so every vertex-labeling by maximum needs at least 3 distinct labels. First suppose that G' has a vertex-labeling f by maximum from $\{1, 2, 3\}$ and let ℓ be the induced vertex coloring by f. For every vertex $v \in V(G)$ with the neighbors x, y and z in G, we have $\{\ell(v_x), \ell(v_y), \ell(v_z)\} = \{1, 2, 3\} = \{\ell(v'_x), \ell(v'_y), \ell(v'_z)\}$.

Suppose that there are u and v such that $\ell(v_u) = \ell(v'_u) = 3$, then $f(vu) = f((vu)') = 3$. Since f can not assign 3 to the vertices in a triangle, hence $\ell(vu) = \ell((vu)') = 3$ and this is a contradiction. so we have the following fact:

There are no u and v such that $\ell(v_u) = \ell(v'_u) = 3$ (Fact 1).

Now, consider the following proper 3-edge coloring for G: $g : E(G) \rightarrow \{1, 2, 3\}$,

\[
g(uv) = \begin{cases}
1 & \text{if } f(uv) = 3, \\
2 & \text{if } f((uv)') = 3, \\
3 & \text{otherwise.}
\end{cases}
\]

By Fact 1, g is well-defined and G belongs to Class 1. On the other hand, assume that $g : E(G) \rightarrow \{1, 2, 3\}$ is a proper 3-edge coloring. Define $f : V(G') \rightarrow \{1, 2, 3\}$ such that for every edge $uv \in E(G)$, $f(v_u) = f(v'_u) = 1$, $f(uv) = g(uv)$ and $f((uv)') \equiv g(uv) + 1 \pmod{3}$. It is easy to see that f is a vertex-labeling by maximum. \square
For a given graph G, put a new vertex v and join it to the all vertices of G, next put a new vertex u and join it to v. Name the constructed graph G'. We can construct G' in polynomial time and G has a vertex-labeling by maximum from $\{1, 2, \ldots, k\}$ if and only if G' has a vertex-labeling by maximum from $\{1, 2, \ldots, k + 1\}$, so we have the following:

Theorem 12 For every $k \geq 3$, it is NP-complete to decide whether G has a vertex-labeling by maximum from $\{1, 2, \ldots, k\}$ for a given k-colorable graph G.

Every triangle-free graph has a vertex-labeling by maximum (put different numbers on vertices) and if G is graph such that every vertex appears in some triangles then G does not have vertex-labeling by maximum. Here, we present a nontrivial necessary condition for a graph to have a vertex-labeling by maximum. First consider the following definition.

Definition 1 For a given graph G the subset S of vertices is called kernel if every $v \in S$ appears in a triangle in $G[S]$ and for every two adjacent vertices v and u, where $v \in S$ and $u \in N(S) \setminus S$, there exists a vertex $z \in S$ such that z is adjacent to v and u.

Let S be a kernel for G. To the contrary, assume that f is a vertex-labeling by maximum for G and $v \in S \cup N(S)$ is a vertex that gets the maximum of $\{f(u) : u \in S \cup N(S)\}$. Then v has two neighbors x and y in S with $\max_{u \sim x} f(u) = \max_{u \sim y} f(u) = f(v)$. This is a contradiction. Therefore, if G has a kernel, then G does not have a vertex-labeling by maximum. Now, consider Algorithm 1.

When Algorithm 1 terminates, if it returns "G has the kernel S", then S is a kernel, so G does not have vertex-labeling by maximum. Suppose that Algorithm 1 returns "G has no kernel", but G has a kernel S'. In the lines 2 – 3 of algorithm, the set of vertices S' are added to S. Now, consider the line 5 of algorithm and let $v \in S'$ be the first vertex form the set S' that is eliminated from S. When Algorithm 1 chooses the vertex v, v is in a triangle in $G[S']$, so is in a triangle in $G[S]$. Therefore, there is a vertex u such that $uv \in E(G)$, $v \in S'$, $u \in N(S) \setminus S$ and there is no vertex $z \in S$ such that z is adjacent to v and u. So S' is not kernel. It is a contradiction. So when Algorithm 1 returns "G has no kernel", G does not have any kernel. Here, we ask the following question: Is the necessary condition, sufficient for a given graph to have a vertex-labeling by maximum?

Problem 5. Does there is a polynomial time algorithm to determine whether a given graph has a vertex-labeling by maximum?
Algorithm 1 (Kernel)

\[S = \emptyset \]
\[\textbf{for} \ (\text{Every vertex } u \text{ in a triangle}) \ \textbf{do} \]
\[S \leftarrow S \cup \{u\} \]
\[\textbf{end for} \]
\[\textbf{while} \ (\text{There are two adjacent vertices } u \text{ and } v \text{ such that } v \in S, u \in N(S) \setminus S \text{ and there is no vertex } z \in S \text{ such that } z \text{ is adjacent to } v \text{ and } u.) \text{ or } (v \text{ is not in any triangle in } G[S]) \ \textbf{do} \]
\[S \leftarrow S \setminus \{v\} \]
\[\textbf{end while} \]
\[\textbf{if} \ (S \neq \emptyset) \ \textbf{then} \]
\[\quad \text{Return } "G \text{ has the kernel } S." \]
\[\textbf{else} \]
\[\quad \text{Return } "G \text{ has no kernel."} \]
\[\textbf{end if} \]

3 Acknowledgment

We would like to thank Wiktor Żelazny for his valuable answers to our questions about the definition of fictional coloring.

References

