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Adaptive  directed  mutation  (ADM)  operator,  a novel,  simple,  and  efficient  real-coded  genetic  algorithm
(RCGA)  is  proposed  and  then  employed  to solve  complex  function  optimization  problems.  The suggested
ADM  operator  enhances  the  abilities  of  GAs  in  searching  global  optima  as  well  as  in  speeding  convergence
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by  integrating  the  local  directional  search  strategy  and  the  adaptive  random  search  strategies.  Using  41
benchmark  global  optimization  test  functions,  the performance  of  the  new  algorithm  is  compared  with
five  conventional  mutation  operators  and  then  with  six  genetic  algorithms  (GAs)  reported  in literature.
Results  indicate  that  the  proposed  ADM-RCGA  is fast, accurate,  and  reliable,  and outperforms  all  the  other
GAs  considered  in the  present  study.
daptive directed mutation

. Introduction

Many real-life applications can be modeled as nonlinear opti-
ization problems and, often, their global optimal solution is

ought [1].  A typical nonlinear global optimization problem follows
he form

maximize
minimize

f (x = x1, x2, . . . xN) subject to x ∈ ˝ (1)

here x is a continuous variable vector with search space  ̋ ⊆ RN,
nd f(x) is a continuous real-valued function having N variables.
he domain  ̋ is defined within the upper and lower limits of
ach dimension. The problem is to find the global optimal solution
* with its corresponding global optimal function value f(x*). Two
ajor classes of optimization techniques for solving general non-

inear optimization problems can be found in the literature, namely,
radient-based optimizers and evolutionary algorithm optimizers
1,2].

All gradient-based optimizers (also called deterministic opti-
izers) are point-by-point algorithms and are therefore local

ptimization techniques in nature. Gradient-based optimization
echniques start the search procedure with an initial guess solution.
f this guess solution does not come close enough to the global opti-

al  solution, the gradient-based optimization techniques are likely

o be trapped in the local optimal solution. In practice, finding such

 suitable starting solution is the major difficulty when trying to
ptimize automatically. Gradient-based optimizers with about 20
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variables are usually impractical [2] because as the number of vari-
ables increases, so does the number of evaluations. Most of them
are designed to solve a particular class of optimization problems
with few variables.

In other words, all evolutionary algorithm optimizers work
with random sets of potential solutions—they are stochastic
searching algorithms and therefore global optimization meth-
ods. Evolutionary algorithm optimizers generally scale well to
solve higher dimensional optimization problems by comparing
with gradient-based optimizers. Evolutionary algorithms con-
sist of three population-based heuristic methodologies: genetic
algorithms (GAs), evolutionary programming, and evolutionary
strategies. GAs are perhaps the most popular evolutionary algo-
rithms [3].

In traditional GA implementations [4,5], the decision variables
were encoded as binary strings, namely, binary coded genetic algo-
rithm (BCGA). The performance of BCGA has been satisfactory on
small- and moderate-size problems requiring less precision in the
solution, but BCGA entails huge computational time and memory
[6] for high-dimensional problems that call for greater precision.
To improve these drawbacks when applying BCGA to multidi-
mensional and high-precision numerical problems, the decision
variables can be encoded as real numbers, namely, real-coded
genetic algorithm (RCGA), which has become increasingly popu-
lar [1,7]. The superiority of RCGA to BCGA has been established for
continuous optimization problems [8] and medical data mining [9].

The performance of GAs relies on efficient search operators to

guide the system toward global optima. One problem afflicting GAs
is premature convergence. To mitigate or even avoid trapping into
the local optima, the mutation operator provides a mechanism to
explore new solutions and maintains the diversity of the population

dx.doi.org/10.1016/j.asoc.2012.08.035
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:mht@csmu.edu.tw
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n GAs search, but it does so at the cost of slowing down the learn-
ng process. In GAs literature, relatively less effort has been put
nto designing a new mutation operator for RCGAs [1].  The step
ize and search direction are major factors that determine the per-
ormance of mutation operator [10]. The present study seeks to
ropose a novel, simple, and efficient RCGA based on the adap-
ive directed mutation (ADM) operator, and whose performance is
emonstrated on a set of complex function optimization problems.

The remainder of this paper is organized as follows: Section 2
ives a brief review of the mutation operator in RCGAs. Section

 provides a detailed description of the proposed methodology.
he set of benchmark problems, the compared algorithms, and the
xperimental results are reported in Section 4. Finally, Section 5
resents a number of conclusions from the present study.

. Review of literature on mutation operator

In general, a typical RCGA involves three main
perators—selection, crossover, and mutation—to evolve the
tness of a population of guesses over a sequence of generations
oward convergence at the global optimum. The method can be
iewed as an evolutionary process. The mutation operation is
sed to change the offspring genes. Mutation is a key operator
o increase the diversity of the population, hence enabling GAs
o explore promising areas of the search space [10]. For common

utation operations, the random mutation (RM), uniform muta-
ion, non-uniform mutation (NUM), polynomial mutation (PLM),
nd Gaussian mutation can be found [1,11].

Research effort has recently been spent to improve GAs per-
ormance by using different mutation techniques. Following the
oncept of induced mutation in biological systems, Bhandari et al.
12] first used directed mutation technique to improve BCGAs.
ased on gradient or extrapolation, the directed mutation deter-
inistically introduces a new point in the population guided by

he information acquired in the previous generations. Zhou and Li
13] proposed a directed variation technique for mutation opera-
or to adjust some individuals by using the feedback information
rom the current population. Berry and Vamplew [14] suggested

 co-evolutionary technique where each component of a solution
ector is added one extra bit to determine the direction of muta-
ion by using the feedback information from the current population.
emby et al. [15] introduced a directed mutation based on momen-
um, where each component of an individual is attached a standard
aussian mutation and the current momentum to mutate that com-
onent. Korejo et al. [10] proposed a directed mutation operator
o improve the directed variation technique [13], in which the
tatistics information regarding the fitness and distribution of indi-
iduals over intervals of each dimension is calculated according to
he current population and is used to guide the mutation of an indi-
idual toward the neighboring interval that has the best statistics
esult in each dimension.

Srinivas and Patnaik [16] described an adaptive BCGA for multi-
odal function optimization. In this adaptive GA, the probabilities

f crossover and mutation are varied depending on the fitness val-
es of the solutions. High-fitness solutions are protected while
olutions with sub-average fitness are totally disrupted. Accord-
ng to the information of population evolutions in the impact of
hanges on fitness level, Chen and Liao [17] suggested an adaptive
utation operator to appropriate adjustment searching policies

n RCGAs by using the simulation of gradient or counter-gradient
irection. Tseng and Liao [18] proposed two adaptive strategies

 
 

 

o improve the evolutionary efficiency of GAs. One strategy is to
hange crossover operators, which can randomly substitute the
urrent crossover operator for another crossover operator at any
ime. The other strategy is to implement an adaptive adjustment
Computing 13 (2013) 600–614 601

of the crossover and mutation rates to increase the level of genetic
diversity and guide the system toward global optimum if the sys-
tem sinks into the local optimum. A state-of-the-art method for
adaptive mutation is Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) [19]. CMA-ES outperforms many other parametric
optimization algorithms, as witnessed in the 2005 CEC algorithm
contest, and is recommended by experts [20].

Ling and Leung [7] suggested the wavelet mutation, which is
based on wavelet theorem. Deep and Thakur [1] designed the power
mutation (PM) operator for RCGAs based on power distribution.
By applying the underlying biological and mathematical idea to
the generic framework of RCGAs, Vafaee and Nelson [21] proposed
an adaptive mutation method based on the frequency of the best
chromosomes’ genes.

3. Methodology

3.1. The proposed ADM

The objective of the present study is to introduce a new mutation
operator, namely, ADM, and to evaluate its performance against
other mutation operators existing in literature. The ADM opera-
tor was  designed to avoid both concentration of each chromosome
caused by a crossover operator and an unsystematic search of the
system due to RM.  The ADM operator will introduce a new solution
in the population. The new searching point is guided by the solu-
tions obtained earlier based on the adaptive direction of gradient,
hence its name. The direction of gradient is derived from the evolu-
tion of fitness value for each individual. The definition of �f(t − 1)
and �f(t) are variations of the fitness value for each chromosome
x in the three consecutive generations (t − 2, t − 1, and t):

�f  (t) = f (x(t)) − f (x(t − 1)) (2)

�f (t − 1) = f (x(t − 1)) − f (x(t − 2)) (3)

where x = {x1, x2,. . .xk,. . .xN}is a chromosome, f(x(t)) is the fitness
value of chromosome x at the t generation. The variations of the
k-dimensional gene for chromosome x in the three consecutive
generations (t − 2, t − 1, and t) are defined as

�xk(t) = xk(t) − xk(t − 1) (4)

�xk(t − 1) = xk(t − 1) − xk(t − 2) (5)

Combining (2) with (5),  the new solution of xk will be iteratively
updated as

xk(t + 1) = xk(t) + (�f (t), �f  (t − 1),  �xk(t), �xk(t − 1),  xk(t),

xUB
k , xLB

k ) · pm (6)

where xUB
k

and xLB
k

are the upper bound and lower bound of xk,
respectively. pm is the adaptive probability of mutation [16]. It
makes the bad chromosomes undergo a more substantial change
in the population, and it can be expressed as follows:

pm =

⎧⎨
⎩ 0.5 · fmax(t) − f (x(t))

fmax(t) − f (t)
, if f (x(t)) ≥ f̄  (t)

0.5, if f (x(t)) < f̄ (t)

⎫⎬
⎭ (7)

where fmax(t) is the maximum fitness value of the population, f̄ (t)
is the average fitness value of population.

In Eq. (6),  the function of g(·) can be termed as an accelera-
tion function which controls the directed mutation. In the present

study, four guided strategies were proposed based on nine differ-
ent evolution trends for any chromosomes. These are “directional
small-scale mutation,” “random small-scale mutation,” “random
medium-scale mutation,” and “random large-scale mutation.” The
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For the case of �f(t − 1) = 0 and �f(t) /= 0 (cases E), the strat-
egy of the directional small-scale mutation [as Eq. (8)]  was  used
to improve system convergence. On the other side, the strategy of
random small-scale mutation [as Eq. (9)] was  employed to increase

Table 2
Mutation strategies for �f(t − 1)·�f(t) < 0.

 
 

 

Fig. 1. Evolutionary trends of fitness value for �f(t − 1)·�f(t) > 0.

ine different evolution trends for any chromosomes can be cate-
orized into the following three conditions:

ondition(1) : �f  (t − 1) · �f  (t) > 0

The chromosome in the population sustains convergence or
ivergence of its fitness value to the global maximum as shown

n Fig. 1. For the trend of continuous convergence as shown in case
, we increase the amount of mutation to accelerate the improve-
ent of the fitness value. In contrast with case A, we move the

olution in the opposite direction to suppress the divergent evolu-
ion of system for case B. Table 1 summarizes the three strategies
f ADM for the case of �f(t − 1)·�f(t)  > 0.

For the case of �xk(t − 1)·�xk(t) > 0, the new solution xk(t + 1) of
he k-dimensional gene in chromosome x is designed to follow the
ame or opposite direction of the original solution xk(t) to enhance
he possibility of system convergence. The new point xk(t + 1) can
e generated as

k(t + 1) = xk(t) + sign(�f (t)) · �xk(t) · pm (8)

here sign(z) = 1, if z > 0; sign(z) = −1, if z < 0; and sign(z) = 0, if z = 0.
For the case of �xk(t − 1)·�xk(t) < 0, it means that the fitness

alue of the chromosome continues convergence (case A) or diver-
ence (case B) even though the k-dimensional gene changes in
ifferent directions during the recent three generations. We  used

 small amount of mutation in the random direction because it is
ifficult to evaluate the effect between the k-dimensional gene and

ts corresponding fitness value. The new solution xk(t + 1) can be
efined as

k(t + 1) = xk(t) + |�xk(t)| · rs · pm (9)

n which rs is a uniformly distributed random number between −1
nd 1.

In addition, when �xk(t − 1)·�xk(t) = 0, the variation of the k-
imensional gene is zero at least one time during the recent three
enerations. We  employed a medium amount of mutation in the
andom direction to mitigate or even avoid trapping local optima
or this situation. The new solution xk(t + 1) can be mutated as
k(t + 1) = xk(t) + xk(t) · rs · pm (10)

ondition(2) : �f  (t − 1) · �f  (t) < 0

able 1
utation strategies for �f(t − 1)·�f(t) > 0.

Condition (1): �f(t − 1)·�f(t) > 0 Mutation strategy

�xk(t − 1)·�xk(t) > 0 Directional small scale
�xk(t − 1)·�xk(t) < 0 Random small scale
�xk(t − 1)·�xk(t) = 0 Random medium scale
Fig. 2. Evolutionary trends of fitness value for �f(t − 1)·�f(t) < 0.

Fig. 2 shows that the system is likely moving toward conver-
gence (case C) and divergence (case D) when �f(t − 1)·�f(t) < 0; it
means that the chromosome solution is just over the region of hill
or valley. Table 2 lists the three proposed strategies of ADM for the
case of �f(t − 1)·�f(t)  < 0.

For case C, �f(t − 1) > 0 and �f(t) < 0, the system may  start to
converge. To continue testing whether the search direction can
improve the fitness value, the directional small amount of muta-
tion will be used for the chromosomes that are better than the
average of the fitness value in population. To take into account
the system diversity and to improve the fitness value of the chro-
mosome when f (x(t)) < f̄  (t), the strategies of random small-scale
mutation [as Eq. (9)] and random medium-scale mutation [as Eq.
(10)] were also employed for the cases of �xk(t − 1)·�xk(t) < 0 and
�xk(t − 1)·�xk(t) = 0, respectively.

Condition(3) : �f (t − 1) · �f  (t) = 0

Fig. 3 shows three evolution trends (cases E, F, and G) for the con-
dition of �f(t − 1)·�f(t)  = 0. The corresponding strategies of ADM
are listed in Table 3. For case G, �f(t − 1) = 0 and �f(t) = 0, there are
no variations of the fitness value, thus resulting in very low system
diversity. We  implemented a large amount of mutation to aid the
original individual to escape this smooth region and avoid trapping
local optima. The large-scale mutation is defined as

xk(t + 1) =
{

xk(t) + (xUB
k

− xk(t)) · rs · pm, if r < 0.5

xk(t) + (xk(t) − xLB
k

) · rs · pm, if r ≥ 0.5

}
(11)

where r is a uniformly distributed random number between 0 and
1.
Condition (2): �f(t − 1)·�f(t) > 0 Mutation strategy

f (x(t)) ≥ f̄ (t) Directional small scale
f  (x(t)) < f̄ (t) and �xk(t − 1) · �xk(t) < 0 Random small scale
f  (x(t)) < f̄ (t) and �xk(t − 1) · �xk(t) = 0 Random medium scale

Table 3
Mutation strategies for �f(t − 1)·�f(t) = 0.

Condition (3):�f  (t-1)·�f (t) = 0 Mutation strategy

�f(t − 1) = 0 and �f(t) /= 0 Directional small scale
�f(t  − 1) /= 0 and �f(t) = 0 Random small scale
�f(t  − 1) = 0 and �f(t) = 0 Random large scale
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3.3.1. Stochastic universal sampling (SUS)
SUS is an elaborately named variation of roulette wheel selec-

tion. Instead of the single selection pointer used in roulette wheel
methods, SUS employs a single random number to provide a

Procedure ADM-RCGA 

{ 

t = 0; 

Randomly ge nerate  initia l p opulation  P(t); 
repeat{ 

Evaluate P(t ) to o btain it s fitness;  

Scale th e fitnes s val ues  of P(t); 
whi le (not  done) { 

Select two pare nts  p1 and p2from P(t ) based on  theirfitnes s; 

Perf orm crossover f or  p1, p2 to produce  c1 and  c2 based onpr obabilit y pc; 

Mutate c1 or c2using  ADM based on  probabilit y pm; 

Put c1 and c2 into  P(t+ 1); 
} 

Put the  elite  member s of  P(t ) i nto P(t+1 ) based  onprobabilit y pe; 

Generate the ne w ge neration P(t+1)  to  rep lace  P(t ); 
t = t + 1; 

 
 

 

Fig. 3. Evolutionary trends of

ystem diversity for the case of �f(t − 1) /= 0 and �f(t) = 0 (cases F)
as Eq. (10)].

.2. The proposed ADM-RCGA

This section describes the real-coded genetic evolution pro-
ess based on the proposed mutation operator ADM for function
ptimization. GA is basically an iterative population-based search
echnique that works on the concept of probability. Genetic oper-
tors, including selection, crossover, and mutation, are the kernels
f GAs. Their primary job is to produce new combinations of
arameters in line with the fitness function of each parameter’s
ombination to achieve the purpose of evolution.

First, an initial population of chromosomes, where each gene is
enoted by a real number, P, is randomly created from the lower and
pper bounds of each decision variable. Second, each chromosome

s evaluated by a defined fitness function; in this process, higher
tness-function values represent better chromosomes. Third, to

mprove the performance of convergence and to avoid reducing
he level of genetic diversity within the population during the evo-
ution process, a scaling method is needed whereby particularly
ood strings can be stopped from running away with the popula-
ion in the earlier stages, while a degree of selection pressure can
till be maintained in the final stages [5].  In the present study, a
inear fitness scaling mechanism is applied. Fourth, some of the
hromosomes are selected to undergo genetic operations for selec-
ion through stochastic universal sampling (SUS) [22]. Selection is

 process by which pressure is applied on a population in a manner
imilar to that of natural selection found in biological systems. The
hromosomes with high fitness values are chosen for reproduction,
hereas poor-performance chromosomes may  not be chosen at all.

ifth, genetic operation of crossover is performed. Crossover allows
nformation to be exchanged in a way similar to that used by a natu-
al organism undergoing sexual replication. Crossover operates by
wapping a corresponding segment of a genetic representation of
he parents and extends the search for new solutions in far-reaching
irections. The crossover operator occurs with only some probabil-

ty, which is called the crossover rate (pc). A variant blend crossover
BLX-�) [23] incorporated with a crossover mask was  implemented
n the present study. Sixth, the mutation operation follows after the
rossover operation. Mutation is used to randomly choose a mem-
er of the population and to change one randomly chosen aspect in

ts string representation. Although selection and crossover produce
any new strings, they do not introduce any new information into

he population at the gene level. The mutation process ensures that
he probability of reaching any point in the search space is never

ero. Mutation occurs with a certain level of probability, called the
utation rate (pm). In the present study, we propose a new mutation

perator, namely, ADM. Seventh, an elitism strategy is applied after
erforming the mutation operator. An elitism strategy may  increase
s value for �f(t − 1)·�f(t) = 0.

the speed with which a super individual dominates a population.
For many applications, the search speed can be greatly improved
by not losing the best, or elite, member between generations [5].
This study therefore presents a multi-elites mechanism based on
probability pe. The strategy not only keeps the best individual in the
population, but also permits some secondary individuals to survive.
After the processes of selection, crossover, mutation, and elitism
have been applied to the initial population, a new population will
have formed following the replacement step. After replacement,
the new population will be evaluated based on its fitness in the next
evolution. This process of selection, crossover, mutation, elitism,
and replacement is continued until a fixed number of generations is
reached or some form of convergence criterion is met. Fig. 4 demon-
strates the working cycle of the proposed ADM-RCGA process. In
the present study, these evolution processes involve programming
using a Microsoft.NET framework. The details of the remaining
operators are given below.

3.3. The remaining operators used in the present study

In this section, we define the selection, crossover, and other
mutation operators employed in the present study, for example,
SUS, BLX-� with crossover mask, RM,  PLM, NUM, multi-non-
uniform mutation (MNUM), and PM operators.
}until ( termination i s met) 

} 

Fig. 4. The working cycle of ADM-RCGA.
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Table  4
Summary of simulation conditions.

Experiment Name of GA Benchmark functions Dimension Population size Maximum generations Number of runs

Exp. 1 ADM–RCGA Benchmark functions I 30 300 30,000 30
RM–RCGA
PLM–RCGA
NUM–RCGA
MNUM–RCGA
PM–RCGA

Exp.  2 ADM-RCGA Benchmark functions II 2, 10, 20, 30 100 40,000 100
CMA-ES [19]
HYK-GA [21]

Exp. 3 ADM-RCGA
LX-PM [1]

Benchmark functions I 30 300 5000 30

Exp.  4 ADM-RCGA Benchmark functions III 10, 100 30 12,000 30
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IEA  [28]
BOA [29]
OGA [30]

tarting position and the first selected individual. The selection
rocess then proceeds to advance all the way around the wheel

n equal-sized steps, in which the step size is determined by the
umber of individuals to be selected. SUS ensures that the observed
election frequencies of each individual are in line with the
xpected frequencies, thus achieving minimum spread. Standard
oulette wheel selection does not make this guarantee. In addition,
ny individual can be selected entirely based on its position in the
opulation; SUS has zero bias. For these reasons, SUS has become
ne of the most widely used selection algorithms in current GAs
24].

.3.2. Blend crossover (BLX-˛) with crossover mask
BLX-� [23] is defined as a combination of two selected parents

1 and p2. It creates the children solutions lying in the range of
min(p1, p2) − ˛|p1 − p2|, max(p1, p2) + ˛|p1 − p2|), where the con-
tant  ̨ is to be selected, so that the children solutions do not come
ut of the range. In the present study,  ̨ is set to 0.25. The resulting
ffspring c1 and c2 are determined as follows:

c1 = max(p1, p2) + ˛|p1 − p2| · rs

c2 = min(p1, p2) − ˛|p1 − p2| · rs

}
(12)

To select which variable would be mating in the two  selected
ndividuals, we employ crossover mask before performing the BLX-

 operator. A binary string, called a crossover mask and equal
n length to the solution strings, is randomly generated. If the
rossover mask contains 1 on a specific bit position, then the off-
pring’s value on that position will be calculated based on BLX-�
rom the two selected parents.

.3.3. Random mutation (RM)
RM is also called uniform mutation. The mutated solution is

btained from the original solution using the rule given below [11].

k(t + 1) = xk(t) + �(r  − 0.5) (13)

here r is uniform random numbers between 0 and 1, and � is the

aximum value of perturbation defined by the user. In the present

tudy, � is designed as follows:

 = max[2(xk(t) − xLB
k ), 2(xUB

k − xk(t))] (14)
3.3.4. Non-uniform mutation (NUM)
NUM is an operation with a fine-tuning capability. Its action

depends on the generation number of the population [25]. From an
original point xk(t), the muted point xk(t + 1) is created as follows:

xk(t + 1) =
{

xk(t) + h(t, xUB
k

− xk(t)), if r < 0.5

xk(t) + h(t, xk(t) − xLB
k

), if r ≥ 0.5

}
(15)

The function h given below takes value in the interval [0, y].

h(t, y) = y(1 − r(1−(t/tmax))b
) (16)

where tmax is the maximum generation number of population, and b
is a system parameter that determines the strength of the mutation
operator. In the initial generations, NUM tends to search the space
uniformly; in the later generations, it tends to search the space
locally [1].

3.3.5. Multi-non-uniform mutation (MNUM)
A mutation operator increases the genetic diversity of a candi-

date individual. MNUM [26] was  employed in the present study
because it can perform uniform search with local fine-tuning and
increase the capability to exploit a search space. The operator can
be expressed by

xk(t + 1) =
{

xk(t) + (xUB
k

− xk(t)) · A(t), if r < 0.5

xk(t) + (xk(t) − xLB
k

) · A(t), if r ≥ 0.5

}
(17)

A(t) =
[

r1

(
1 − t

tmax

)]b
(18)

Both r and r1 are uniform random numbers between 0 and 1,
and b is the shape parameter. In this study, parameter b is set to 2
in Eqs. (16) and (18).

3.3.6. Polynomial mutation (PLM)
Deb and Goyal [27] proposed a mutation operator based on poly-

nomial distribution. The mutated solution is determined from the
original solution as follows:

xk(t + 1) = xk(t) + ı̄ · ımax (19)

ı̄ =
{

(2r)(1/q+1) − 1, if r < 0.5

(1/q+1)

}
(20)
1 − [2(1 − r)] if r ≥ 0.5

where q is a positive real number, r is a uniformly distributed
random number between 0 and 1, and ımax is the user-defined
maximum value of perturbation allowed between the original and
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Table  5
Benchmark functions I. [1].

Test functions xi domain Optimum

f1 = −20exp

(
−0.02

√
1
N

N∑
i=1

x2
i

)
− exp

(
1
N

N∑
i=1

cos(2�xi)

)
+ 20 + e [−30, 30] 0 (min)

f2 = 0.1

N∑
i=1

cos(5�xi) −
N∑

i=1

x2
i

[−1, 1] 0.1N (max)

f3 = exp

(
−0.5

N∑
i=1

x2
i

)
[−1, 1] 1 (max)

f4 = 1 + 1
4000

N∑
i=1

x2
i

−
N∏

i=1

cos

(
xi√

i

)
[−600, 600] 0 (min)

f5 = �
N

(
10 sin2(�y1) +

N−1∑
i=1

(yi − 1)2[1 + 10 sin2(�yi+1)] + (yi − 1)2

)
, where yi = 1 + 1

4 (xi + 1) [−10, 10] 0 (min)

f6 = 0.1

(
sin2(3�x1) +

N−1∑
i=1

(xi − 1)2[1 + sin2(3�xi+1)] + (xn − 1)2[1 + sin2(2�xn)]

)
[−5, 5] 0 (min)

f7 =

(
N∏

i=1

xi

)0.2

−
N∑

i=1

[(ln(xi − 2))2 + (ln(10 − xi))
2] [2, 10] ≈997867.469 (max)

f8 = 10N +
N∑

i=1

[x2
i

− 10 cos(2�xi)] [−5.12, 5.12] 0 (min)

f9 =
N−1∑
i=1

[100(xi+1 − x2
i
)
2 − (xi − 1)2] [−30, 30] 0 (min)

f10 =
N∑

i=1

xi sin(
√

|xi |)  [−500, 500] 12569.487 (max)

f11 =

[
2.5

N∏
i=1

sin
(

xi − �
6

)
+

N∏
i=1

sin
(

5
(

xi − �
6

))]
[0, �] 3.5 (max)

f12 =
N∑

i=1

x2
i

+

(
N∑

i=1

i
2 xi

)2

+

(
N∑

i=1

i
2 xi

)4

[−5.12, 5.12] 0 (min)

f13 =
N∑

i=1

x2
i

[−5.12, 5.12] 0 (min)

f14 =
N∑

i=1

ix2
i

[−5.12, 5.12] 0 (min)

f15 =
N∑

i=1

|xi | +
N∏

i=1

|xi | [−10, 10] 0 (min)

f16 = max
i

{|xi |, 1 ≤ i ≤ N} [−100, 100] 0 (min)

f17 =
N∑

i=1

(x4
i

+ rand(0, 1)) [−10, 10] 0 (min)

f18 =
N∑

i=1

(xi − i)2 [−N, N] 0 (min)

f19 = �
N (10 sin2(�y1) +

∑N−1

i=1
(yi − 1)2[1 + 10 sin2(�yi+1)] + (yi − 1)2) +

∑N

i=1
u(xi, 10,  100, 4), where yi = 1

4 (xi + 1) [−50, 50] 0 (min)

f20 = 0.1

(
sin2(3�x1) +

N−1∑
i=1

(xi − 1)2[1 + sin2(3�xi+1)] + (xn − 1)2[1 + sin2(2�xn)]

)
+

N∑
i=1

u(xi, 10,  100, 4) [−50, 50] 0 (min)

In  problem number 19 and 20, the value of penalty function u is given by the following expression u(x, a, k, m) =

{
k × pow((x − a), m) if x > a,
−k  × pow((x − a), m) if x < −a,
0 otherwise.
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Table  6
Benchmark functions II [19,21].

Test functions xi domain Optimum

g1 =
N∑

i=1

x2
i

[−100, 100] 0 (min)

g2 =
N∑

i=1

|x| +
N∏

i=1

|x| [−10, 10] 0 (min)

g3 =
N−1∑
i=1

[100(xi+1 − x2
i
)
2 − (xi − 1)2] [−29, 31] 0 (min)

g4 =
N∑

i=1

ix4
i

+ random[0, 1] [−1.28, 1.25] 0 (min)

g5 = 1
4000

N∑
i=1

x2
i

−
N∏

i=1

cos

(
xi√

i

)
+ 1 [−100, 100] 0 (min)

g6 =
N∑

i=1

[x2
i

− 10 cos(2�xi + 10)] [−5.12, 5.12] 0 (min)

g7 = −20 exp

(
−0.2

√
1
n

n∑
i=1

x2
i

)
− exp

(
n∑

i=1

cos(2�xi )
n

)
[−5.12, 5.12] 0 (min)

g8 = −4x2
1 + 2.1x4

1 − 1
3 x6

1 − x1x2 + 4x2
2 − 4x4

2 x1∈[−4.91017, 5.0893]x2∈[−5.7126, 4.2874] 1.031 (max)[
25∑ ]−1 [

 . . . 

 . . . 3

]

m
i

ı

3

p
x

x

w
d
b

s

w
f
i
e
a

4

A
m
f
r
t
w

 
 

 

g9 = 1
500 +

j=1

1

j+
∑2

i=1
(xi−ai,j )

6
, ai,j = −32 −16 0 16 32 −32

−32 −32 −32 −32 −32 −16

utated solutions. In the present study, q = 2 is employed and ımax

s designed as follows:

max = max[xk(t) − xLB
k , xUB

k − xk(t)] (21)

.3.7. Power mutation (PM)
Deep and Thakur [1] proposed a mutation operator based on

ower distribution. The PM is used to create the muted solution
k(t + 1) in the vicinity of a parent solution xk(t) as follows:

k(t + 1) =
{

xk(t) − s · (xk(t) − xLB
k

), if u < r

xk(t) + s · (xUB
k

− xk(t)), if u ≥ r

}
(22)

here u = (xk(t) − xLB
k

)/(xUB
k

− xLB
k

), r is a uniformly distributed ran-
om number between 0 and 1, and a random number s is created
ased on the power distribution as follows:

 = p · sp−1
r , 0 ≤ sr ≤ 1 (23)

here p is the index of the power distribution, and sr is a uni-
orm random number between 0 and 1. The strength of mutation
s governed by the index p. For large values of p more diversity is
xpected; for small values of p, less perturbation in the solution is
chieved. In the present study, p = 0.5 is employed.

. Experiments and results

The present study aims to introduce a new mutation operator,
DM, and to evaluate its performance against five conventional
utation operators and six GAs existing in literature. Therefore,
our experiments were conducted in this work. Table 4 summa-
izes the simulation conditions used in the four experiments. All
he experiments are done on an Intel Xeon X5570 2.93 GHz machine
ith 16 GB RAM under WINXP platform.
0 32
2 32

[−98, 34] 0.998 (min)

4.1. Test functions

To investigate the performance of the proposed ADM-RCGA
algorithm, 41 real-valued, well-known benchmark test functions
were employed in the four experiments by comparing with five
conventional mutation operators and six existing GAs. These global
optimization test problems consist of different levels of complexity
and multimodality, including continuous and discontinuous func-
tions, as well as unimodal and multimodal functions. They are
divided into three groups for four experiments in the present study,
as shown in Table 4: functions f1 to f20 [1] group as benchmark func-
tions I, functions g1 to g9 group as benchmark functions II [19,21],
and functions h1 to h12 [28–30] group as benchmark functions III.
The corresponding test function, parameter domain, and global
optimum for each function are corrected and listed in Tables 5–7
for benchmark functions I to III, respectively.

4.2. Simulation settings

In the present study, the original RCGA has been augmented
with ADM operator, in which each gene is represented by a 64-
bit floating-point number. Meanwhile, selection and crossover and
mutation are operated on the real-valued genes and the offspring
are generated by SUS, BLX-� with crossover mask, and ADM oper-
ator. There are three different stop criteria: (1) the maximum
number of generations has been reached; (2) 1000 or 2000 iter-
ations remain in the same fitness value; and (3) the absolute error
between the obtained solution and the global optimum is less than a
threshold (in general, 10−8). As long as any of the three conditions

is met, the evolution process will be terminated in the proposed
ADM-RCGA approach. Due to the stochastic nature of evolution-
ary algorithms, the performance of all compared algorithms on
each test function is evaluated based on statistics obtained from
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Table  7
Benchmark functions III [28–30].

Test functions xi domain Optimum

h1 =
N∑

i=1

∣∣ sin(10xi�)
10xi�

∣∣ [−0.5, 0.5] 0 (min)

h2 =
N−1∑
i=1

[
sin(xi + xi+1) + sin

(
2xixi+1

3

)]
[3, 13] ≈2N (max)

h3 =
N∑

i=1

[xi + 0.5]2 [−100, 100] 0 (min)

h4 =
N∑

i=1

[x2
i

− 10 cos(2�xi) + 10] [−5.12, 5.12] 0 (min)

h5 =
N∑

i=1

x2
i

[−5.12, 5.12] 0 (min)

h6 =
N∑

i=1

(xi sin(10�xi)) [−1, 2] ≈1.85N (max)

h7 = −
N∑

i=1

[
sin(xi) + sin

(
2xi )

3

)]
[3, 13] ≈1.21598N (max)

h8 = 20 exp

⎛
⎝−0.2

√√√√ 1
N

N∑
i=1

x2
i

⎞
⎠+ exp

(
N∑

i=1

cos(2�xi )
N

)
− 20 − e [−30, 30] 0 (max)

h9 = 418.9828N −
N∑

i=1

xi sin(
√

|xi|)  [−500, 500] 0 (min)

h10 =
N−1∑
i=1

[100(xi+1 − x2
i
)
2 − (xi − 1)2] [−5.12, 5.12] 0 (min)

h11 = 6N +
N∑

i=1

|xi| [−5.12, 5.12] 0 (min)

h12 = 1
4000

N∑
i=1

x2
i

−
N∏

i=1

cos

(
xi√

i

)
+ 1 [−600, 600] 0 (min)

Table 8
Mean and standard deviation of fitness values and ranks achieved by 6 different mutation operators for 30 variables in 30 runs.

Test functions ADM RM PLM

Mean (SD) |Mean–f*| Rank Mean (SD) |Mean–f*| Rank Mean (SD) |Mean–f*| Rank

f1 3.279E−01 3.279E−01 5 1.424E−03 1.424E−03 3 3.471E−04 3.471E−04 1
(2.737E−02)  (4) (7.777E−04) (2) (1.173E−04) (1)

f2 3.00000 3.333E−07 1 2.99995 4.717E−05 3 2.99998 2.350E−05 2
(4.714E−07)  (1) (2.627E−05) (3) (9.229E−06) (2)

f3 1.000000 2.200E−07 1 0.999994 5.660E−06 4 0.999996 3.557E−06 3
(6.000E−08)  (1) (2.387E−06) (4) (1.120E−06) (2)

f4 4.432E−03 4.432E−03 1 1.362E−02 1.362E−02 3 5.736E−03 5.736E−03 2
(7.872E−03)  (1) (1.582E−02) (3) (7.968E−03) (2)

f5 0.000E+00 0.000E+00 1 2.925E−07 2.925E−07 4 8.635E−08 8.635E−08 3
(0.000E+00) (1) (2.685E−07) (4) (8.852E−08) (3)

f6 0.000E+00 0.000E+00 1 1.018E−06 1.018E−06 4 3.397E−07 3.397E−07 3
(0.000E+00) (1) (1.394E−06)  (4) (6.662E−07) (3)

f7 997867.15 3.190E−01 1 997842.93 2.454E+01 4 997854.04 1.343E+01 3
(1.258E−01)  (1) (1.596E+01) (4) (7.871E+00) (3)

f8 1.360E+01 1.360E+01 5 1.296E−02 1.296E−02 2 4.310E−03 4.310E−03 1
(2.482E+00) (4) (1.062E−02) (2) (2.389E−03) (1)

f9 6.584E+00 6.584E+00 2 6.981E+01 6.981E+01 5 5.126E+01 5.126E+01 3
(4.512E+00) (2) (4.075E+01) (4) (3.432E+01) (3)

f10 1.192E+04 6.514E+02 6 1.257E+04 1.487E−01 2 1.257E+04 9.467E−02 1
(5.996E+02) (6) (7.399E−02) (2) (3.263E−02) (1)
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Table  8 (Continued)

Test functions ADM RM PLM

Mean (SD) |Mean–f*| Rank Mean (SD) |Mean–f*| Rank Mean (SD) |Mean–f*| Rank

f11 3.50000 0.000E+00 1 3.49939 6.123E−05 4 3.499962 3.837E−05 3
(0.000E+00) (1) (3.642E−05) (4) (2.605E−05) (3)

f12 0.000E+00 0.000E+00 1 4.052E+00 4.052E+00 4 3.076E−01 3.076E−01 3
(0.000E+00) (1) (5.574E+00) (4) (3.246E−01) (3)

f13 0.000E+00 0.000E+00 1 3.310E−06 3.310E−06 5 5.618E−07 5.618E−07 3
(0.000E+00) (1) (1.811E−06) (5) (3.460E−07) (3)

f14 0.000E+00 0.000E+00 1 7.572E−05 7.572E−05 5 5.361E−06 5.361E−06 3
(0.000E+00) (1) (1.083E−04) (5) (5.511E−06) (3)

f15 0.000E+00 0.000E+00 1 1.771E−03 1.771E−03 4 3.358E−04 3.358E−04 3
(0.000E+00) (1) (6.387E−03) (4) (7.331E−04) (3)

f16 0.000E+00 0.000E+00 1 2.431E−01 2.431E−01 4 4.765E−02 4.765E−02 3
(0.000E+00) (1) (2.371E−01)  (4) (1.578E−02) (3)

f17 5.832E−04 5.832E−04 1 1.062E−01 1.062E−01 4 5.003E−02 5.003E−02 3
(2.638E−04)  (1) (4.176E−02) (4) (2.161E−02) (2)

f18 0.000E+00 0.000E+00 1 3.977E−04 3.977E−04 4 6.360E−05 6.360E−05 3
(0.000E+00) (1) (2.793E−04) (4) (6.003E−05) (3)

f19 0.000E+00 0.000E+00 1 3.337E−06 3.337E−06 5 2.112E−06 2.112E−06 3
(0.000E+00) (1) (4.186E−06) (4) (3.811E−06) (3)

f20 0.000E+00 0.000E+00 1 5.660E−05 5.660E−05 5 3.864E−06 3.864E−06 3
(0.000E+00) (1) (7.331E−05)  (5) (3.075E−06) (3)

Averaged rank 1.7 3.9 2.6
(1.6) (3.75) (2.5)

Final  rank 1 4 3
(1)  (4) (2)

Test  functions NUM MNUM PM

Mean (SD) |Mean–f*| Rank Mean (SD) |Mean–f*| Rank Mean (SD) |Mean–f*| Rank

f1 5.908E−04 5.908E−04 2 1.816E−01 1.816E−01 4 4.459E−01 4.459E−01 6
(8.682E−04)  (3) (6.085E−02) (5) (2.104E−01) (6)

f2 2.99985 1.473E−04 4 2.98028 1.972E−02 6 2.99358 6.420E−03 5
(1.355E−04)  (4) (5.024E−02) (6) (5.855E−03) (5)

f3 0.999986 1.389E−05 5 0.999997 2.663E−06 2 0.999560 4.396E−04 6
(9.881E−06)  (5) (1.724E−06) (3) (3.657E−04) (6)

f4 2.447E−02 2.447E−02 4 3.655E−02 3.655E−02 5 1.021E+00 1.021E+00 6
(2.351E−02)  (4) (3.490E−02) (5) (8.691E−02) (6)

f5 6.430E−07 6.430E−07 5 0.000E+00 0.000E+00 1 5.924E−04 5.924E−04 6
(9.436E−07)  (5) (0.000E+00) (1) (1.555E−03) (6)

f6 3.772E−06 3.772E−06 5 0.000E+00 0.000E+00 1 1.425E−03 1.425E−03 6
(1.094E−05)  (5) (0.000E+00) (1) (3.002E−03) (6)

f7 997817.27 5.020E+01 5 997866.54 9.290E−01 2 997452.45 4.150E+02 6
(1.962E+01) (5) (3.470E−01) (2) (1.371E+02) (6)

f8 4.432E−02 4.432E−02 3 1.801E+01 1.801E+01 6 8.233E+00 8.233E+00 4
(3.624E−02)  (3) (7.725E+00) (6) (6.066E+00) (5)

f9 6.670E+01 6.670E+01 4 4.032E+00 4.032E+00 1 4.043E+03 4.043E+03 6
(4.945E+01) (5) (4.002E+00) (1) (1.617E+04) (6)

f10 1.257E+04 2.827E−01 3 1.200E+04 5.726E+02 5 1.255E+04 1.726E+01 4
(3.200E−01)  (3) (4.659E+02) (5) (5.940E+01) (4)

f11 3.499794 2.056E−04 5 3.499995 4.733E−06 2 3.495383 4.617E−03 6
(1.602E−04)  (5) (1.526E−06) (2) (4.471E−03) (6)

f12 4.877E+01 4.877E+01 5 0.000E+00 0.000E+00 1 7.091E+01 7.091E+01 6
(3.077E+01) (6) (0.000E+00) (1) (3.038E+01) (5)

f13 1.128E−06 1.128E−06 4 0.000E+00 0.000E+00 1 1.195E−02 1.195E−02 6
(1.701E−06)  (4) (0.000E+00) (1) (9.260E−03) (6)

f14 2.504E−05 2.504E−05 4 0.000E+00 0.000E+00 1 4.649E−01 4.649E−01 6
(4.956E−05)  (4) (0.000E+00) (1) (3.203E−01) (6)

f15 7.410E−03 7.410E−03 5 0.000E+00 0.000E+00 1 4.600E−02 4.600E−02 6
(3.535E−02)  (5) (0.000E+00) (1) (1.101E−01) (6)

f16 9.551E−01 9.551E−01 6 5.888E−08 5.888E−08 2 8.571E−01 8.571E−01 5
(1.646E+00) (6) (1.378E−07) (2) (1.087E+00) (5)

f17 2.609E−01 2.609E−01 5 3.240E−02 3.240E−02 2 2.756E+00 2.756E+00 6
(1.365E−01)  (5) (2.250E−02) (3) (2.349E+00) (6)

f18 7.913E−04 7.913E−04 5 1.798E−08 1.798E−08 2 6.917E−01 6.917E−01 6
(1.287E−03)  (5) (4.834E−08) (2) (1.018E+00) (6)

f19 2.565E−06 2.565E−06 4 0.000E+00 0.000E+00 1 6.102E−02 6.102E−02 6
(4.507E−06)  (5) (0.000E+00) (1) (7.037E−02) (6)

f20 3.032E−05 3.032E−05 4 0.000E+00 0.000E+00 1 5.891E−01 5.891E−01 6
(5.318E−05)  (4) (0.000E+00) (1) (3.165E−01) (6)

Averaged rank 4.35 2.35 5.7
(4.55) (2.5) (5.7)

Final  rank 5 2 6
5 (2) (6)
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Table  9
t-Test result achieved by 6 different mutation operators for 30 variables in 30 runs.

Test functions ADM–RM ADM–PLM ADM–NUM ADM–MNUM ADM–PM

p (t-test) (%) Result p (t-test)) (%) Result p (t-test)) (%) Result p (t-test)) (%) Result p (t-test)) (%) Result

f1 0.00 − 0.00 − 0.00 − 0.00 − 0.00 +
f2 0.00 + 0.00 + 0.00 + 0.02 + 0.00 +
f3 0.00 + 0.00 + 0.00 + 0.00 + 0.00 +
f4 0.67 + 52.60 ∼ 0.01 + 0.00 + 0.00 +
f5 0.00 + 0.00 + 0.08 + ∼ ∼ 0.02 +
f6 0.04 + 0.93 + 6.90 ∼ ∼ ∼ 0.00 +
f7 0.00 + 0.00 + 0.00 + 0.00 + 0.00 +
f8 0.00 − 0.00 − 0.00 − 0.00 + 0.00 −
f9 0.00 + 0.00 + 0.00 + 0.00 − 1.42 +
f10 0.00 − 0.00 − 0.00 − 30.02 ∼ 0.00 −
f11 0.00 + 0.00 + 0.00 + 0.00 + 0.00 +
f12 0.04 + 0.00 + 0.00 + ∼ ∼ 0.00 +
f13 0.00 + 0.00 + 0.11 + ∼ ∼ 0.00 +
f14 0.07 + 0.00 + 0.97 + ∼ ∼ 0.00 +
f15 13.97 ∼ 1.80 + 26.03 ∼ ∼ ∼ 0.01 +
f16 0.00 + 0.00 + 0.35 + 0.00 + 0.00 +
f17 0.00 + 0.00 + 0.00 + 0.00 + 0.00 +
f18 0.00 + 0.00 + 0.21 + 0.03 + 0.00 +
f19 0.01 + 0.50 + 0.41 + ∼ ∼ 0.00 +
f20 0.02 + 0.00 + 0.40 + ∼ ∼ 0.00 +

Table 10
Average execution time, average number of generations and efficiency ranks achieved by 6 different mutation operators for 30 variables in 30 runs.

Test functions ADM RM PLM NUM MNUM PM

Time(s)
(generation)

Rank Time(s)
(generation)

Rank Time(s)
(generation)

Rank Time(s)
(generation)

Rank Time(s)
(generation)

Rank Time(s)
(generation)

Rank

f1 91.25 1 3389.03 6 3053.57 5 874.63 3 453.05 2 933.23 4
(2348) (1) (29824) (5) (30000) (6) (29590) (4) (17290) (2) (25554) (3)

f2 40.05 1 963.21 6 752.63 4 301.56 3 182.97 2 876.98 5
(1041)  (1) (8186) (4) (6458) (3) (11582) (5) (4991) (2) (23647) (6)

f3 39.37 1 902.13 6 658.11 4 280.31 3 151.59 2 675.49 5
(1077) (1) (7692) (4) (5549) (3) (11162) (5) (4427) (2) (20142) (6)

f4 20.47 1 3278.67 6 2987.69 5 819.56 3 478.1 2 900.25 4
(519)  (1) (28743) (5) (27288) (3) (27915)) (4) (15118) (2) (28864) (6)

f5 9.98 1 2667.24 6 2121.33 5 813.14 3 245.73 2 942.46 4
(244)  (1) (22001) (4) (19733) (3) (25761) (5) (7677) (2) (29677) (6)

f6 11.27 1 3113.87 6 2136.9 5 719.52 3 266.36 2 864.48 4
(276)  (1) (25075) (4) (19808) (3) (26649) (5) (8988) (2) (28725) (6)

f7 48.38 1 1766.65 6 1250.83 5 363.62 4 97.58 3 52.14 2
(1205)  (1) (9835) (6) (7566) (4) (9387) (5) (2489) (3) (1332) (2)

f8 57.03 1 1638.42 6 971.72 5 516.03 3 214.95 2 709.02 4
(1456) (1) (12978) (4) (10467) (3) (16410) (5) (6468) (2) (20712) (6)

f9 1025.65 3 3198.19 6 2355.1 5 778.72 1 853.46 2 1074.35 4
(30000)  (3) (29863) (2) (29625) (1) (30000) (3) (30000) (3) (30000) (3)

f10 41.46 1 1491.56 6 647.87 5 379.56 3 173.61 2 404.41 4
(1091)  (1) (8555) (4) (6837) (3) (10171) (5) (4991) (2) (11487) (6)

f11 45.72 1 1086.02 6 853.5 5 474.1 3 144.82 2 748.96 4
(1174)  (1) (10573) (4) (8706) (3) (14122) (5) (3887) (2) (23201) (6)

f12 70.38 1 1249.5 5 1306.32 6 239.33 3 687.27 4 203.16 2
(1769)  (1) (14286) (4) (15252) (5) (6536) (3) (27744) (6) (5454) (2)

f13 11.45 1 2577.08 6 2538.16 5 899.87 3 336.02 2 994.49 4
(285) (1) (29500) (4) (29678) (5) (29788) (6) (11585) (2) (28498) (3)

f14 12.91 1 2588.35 6 2543.91 5 955.39 4 417.93 2 953.51 3
(323)  (1) (29472) (4) (29697) (6) (29575) (5) (15230) (2) (29286) (3)

f15 2.77 1 383.62 5 633.16 6 77.59 2 172.34 3 175.85 4
(70)  (1) (3001) (3) (6001) (6) (2124) (2) (4862) (5) (4811) (4)

f16 347.17 1 2438.82 6 2325.47 5 809.03 4 723.57 2 806.3 3
(8980)  (1) (21243) (2) (25803) (5) (23514) (3) (29944) (6) (25296) (4)

f17 89.96 1 400.49 6 318.77 5 158.56 3 98.91 2 215.53 4
(2305)  (1) (3153) (4) (2677) (2) (4486) (5) (2922) (3) (5859) (6)

f18 16.57 1 3165.91 6 2131.37 5 833.26 4 327.69 2 726.3 3
(418)  (1) (23108) (4) (20009) (3) (24005) (5) (12157) (2) (27452) (6)

f19 15.76 1 3095.71 6 2259.14 5 886.22 4 269.46 2 782.56 3
(386)  (1) (27337) (4) (25014) (3) (29374) (6) (10005) (2) (28467) (5)

f20 15.4 1 3376.56 6 2480.88 5 905.79 4 318.89 2 753.72 3
(386)  (1) (28599) (5) (28435) (4) (29014) (6) (12509) (2) (28202) (3)

Averaged rank 1.1 5.9 5 3.15 2.2 3.65
(1.1) (4) (3.7) (4.6) (2.7) (4.6)

Final  rank 1 6 5 3 2 4
(1) (4) (3) (5) (2) (5)
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Table  11
Performances comparison of ADM, HEY-GA and CMA-ES in 100 runs.

Test functions Dim. N ADM HEY-GA [21] CMA-ES [19]

Mean (SD) |Mean–f*| Rank Mean (SD) |Mean–f*| Rank Mean (SD) |Mean–f*| Rank

g1 10 0.000E+00 0.000E+00 1 0.000E+00 0.000E+00 1 0.000E+00 0.000E+00 1
(0.000E+00) (1) (0.000E+00) (1) (0.000E+00) (1)

20 0.000E+00 0.000E+00 1 0.000E+00 0.000E+00 1 0.000E+00 0.000E+00 1
(0.000E+00) (1) (0.000E+00) (1) (0.000E+00) (1)

30 0.000E+00 0.000E+00 1 0.000E+00 0.000E+00 1 0.000E+00 0.000E+00 1
(0.000E+00) (1) (0.000E+00) (1) (0.000E+00) (1)

g2 10 0.000E+00 0.000E+00 1 0.000E+00 0.000E+00 1 1.206E+00 1.206E+00 3
(0.000E+00) (1) (0.000E+00) (1) (8.443E+00) (3)

20 0.000E+00 0.000E+00 1 2.000E−02 2.000E−02 2 7.600E−02 7.600E−02 3
(0.000E+00) (1) (7.000E−03)  (2) (2.350E−01) (3)

30  0.000E+00 0.000E+00 1 4.800E−02 4.800E−02 2 1.514E+00 1.514E+00 3
(0.000E+00) (1) (1.000E−02) (2) (8.026E+00) (3)

g3 10 5.183E+00 5.183E+00 3 8.800E−02 8.800E−02 1 3.990E−01 3.990E−01 2
(1.715E+01) (3) (8.770E−01) (1) (1.196E+00) (2)

20  9.242E+00 9.242E+00 3 1.158E+00 1.158E+00 2 7.570E−01 7.570E−01 1
(2.372E+01) (3) (4.459E+00) (2) (1.564E+00) (1)

30  1.911E+01 1.911E+01 3 3.018E+00 3.018E+00 1 3.660E+00 3.660E+00 2
(2.542E+01) (3) (8.640E+00) (1) (8.745E+00) (2)

g4 10 0.000E+00 0.000E+00 1 9.000E−03 9.000E−03 2 2.100E−02 2.100E−02 3
(0.000E+00) (1) (1.000E−02) (2) (1.100E−02) (3)

20  0.000E+00 0.000E+00 1 9.000E−03 9.000E−03 2 4.300E−02 4.300E−02 3
(0.000E+00) (1) (1.300E−02) (2) (1.700E−02) (3)

30  0.000E+00 0.000E+00 1 2.100E−02 2.100E−02 2 6.200E−02 6.200E−02 3
(0.000E+00) (1) (3.100E−02) (3) (1.400E−02) (2)

g5 10 5.419E−02 5.419E−02 2 1.600E−02 1.600E−02 1 1.227E+00 1.227E+00 3
(2.800E−02)  (1) (9.000E−02) (2) (2.998E+00) (3)

20  2.297E−02 2.297E−02 3 0.000E+00 0.000E+00 1 2.000E−03 2.000E−03 2
(2.800E−02)  (3) (0.000E+00) (1) (5.000E−03) (2)

30  1.265E−02 1.265E−02 3 0.000E+00 0.000E+00 1 1.000E−03 1.000E−03 2
(1.500E−02)  (3) (0.000E+00) (1) (4.000E−03) (2)

g6 10 0.000E+00 0.000E+00 1 1.760E−01 1.760E−01 2 8.931E+01 8.931E+01 3
(0.000E+00) (1) (2.800E−02) (2) (2.282E+01) (3)

20  4.079E−01 4.079E−01 1 5.670E−01 5.670E−01 2 1.724E+02 1.724E+02 3
(1.100E+00) (2) (3.500E−02) (1) (3.434E+01) (3)

30  3.136E+00 3.136E+00 2 9.930E−01 9.930E−01 1 2.536E+02 2.536E+02 3
(4.536E+00) (2) (5.100E−02) (1) (4.335E+01) (3)

g7 10 0.000E+00 0.000E+00 1 0.000E+00 0.000E+00 1 0.000E+00 0.000E+00 1
(0.000E+00) (1) (0.000E+00) (1) (0.000E+00) (1)

20  0.000E+00 0.000E+00 1 1.342E+00 1.342E+00 3 0.000E+00 0.000E+00 1
(0.000E+00) (1) (7.120E−01) (3) (0.000E+00) (1)

30  0.000E+00 0.000E+00 1 1.729E+00 1.729E+00 3 0.000E+00 0.000E+00 1
(0.000E+00) (1) (2.000E−03) (3) (0.000E+00) (1)

g8 2 1.031E+00 0.000E+00 1 1.031E+00 0.000E+00 1 9.390E−01 9.200E−02 3
(0.000E+00) (1) (0.000E+00) (1) (2.560E−01) (3)

g9 2 9.980E−01 0.000E+00 1 1.000E+00 2.000E−03 2 1.069E+01 9.688E+00 3
(0.000E+00) (1) (0.000E+00) (1) (6.575E+00) (3)

Averaged rank 1.52 1.57 2.22
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(1.52) 

Final  rank 1 

(1)  

0 or 100 independent runs set in different experiments, as shown
n Table 4. In addition, to provide a fair assessment among the
ompared algorithms, the dimension of variables, the number of
opulation size, and the maximum number of fitness evaluations
f all the test algorithms are fixed within each experiment, as given
n Table 4.

.3. Performance comparisons of ADM-RCGA

In GA literature, the performance of a GA is usually measured

n the basis of three criteria: accuracy, reliability, and efficiency
f the algorithm [1].  Accuracy evaluates the degree of precision
n locating the global maximum, reliability measures the level of
cattering in obtained solutions, and efficiency assesses the rate
(1.57) (2.17)

2 3
(2) (3)

of convergence. The present study uses a distance value |Mean–f*|
to describe the accuracy between the global optimum f* and the
mean of obtained solutions Mean. A better result is represented
by a |Mean–f*|, which is closer to zero. The standard deviation of
obtained solutions is employed to compare the reliability of a GA.
Smaller standard deviations indicate steadier and, consequently,
more reliable ultimate solutions [21]. The average number of func-
tion evaluations and computer execution time are shown for the
efficiency of a GA. Smaller average number of function evaluations
and lower computer-execution time denote a more efficient GA.
4.3.1. Comparisons with five conventional mutation operators
To verify that the proposed mutation operator ADM is a generic

improvement over conventional mutations existing in literature,
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Table 12
Performances comparison of ADM, HEY-GA and CMA-ES using t-test resultsin 100
runs.

Test functions Dim. N ADM–HEY-GA ADM–CMA-ES
Result(t-test) Result(t-test)

g1 10 ∼ ∼
20  ∼ ∼
30  ∼ ∼

g2 10 ∼ ∼
20 + +
30 + ∼

g3 10 − −
20  − −
30  − −

g4 10 + +
20  + +
30 + +

g5 10 − +
20 − −
30  − −

g6 10 + +
20  ∼ +
30  − +

g7 10 ∼ ∼
20  + ∼
30 + ∼

g8 2 ∼ +
P.-H. Tang, M.-H. Tseng / Applie

ncluding RM,  PLM, NUM, MNUM,  and PM,  the present study
nvestigates ADM behavior across a wide range of well-recognized
est functions as shown in Exp. 1 of Table 4, which summarizes the
eneral problem characteristics indicative of real-world optimiza-
ion [1].

The comparisons of average performance of mean fitness val-
es and accuracy ranks achieved by 6 different mutation operators
or benchmark functions I with 30 variables in 30 runs are listed in
able 8. It shows 16 cases in which ADM completely outperforms
he 5 other conventional mutation operators, and the proposed

utation operator ADM has the best performance with final rank
. More precisely, the distance value |Mean–f*| between the global
ptimum and the mean of obtained solutions by ADM does not
xceed 1.0 for all test functions, with the exception of three cases
test functions f8, f9, and f10).

Table 8 also shows the corresponding comparisons of standard
eviations of fitness values and reliability ranks in parentheses. In
6 out of 20 cases, ADM exhibits the best performances with final
ank 1. According to Table 8, ADM is the most accurate and reliable
lgorithm alongside the other five conventional mutation opera-
ors. In addition, MNUM is slightly superior to PLM, and MNUM
omes in second based on the averaged rank. On the other hand,
UM and PM have the worst performances with final ranks 5 and
, respectively.

To illustrate the significance of the winning algorithm, Table 9
lso lists the p-value of a t-test (in terms of %) and the t-test result
or benchmark functions I with 30 variables in 30 runs achieved by
DM against those obtained from other five conventional mutation
perators. By using the two-tailed t-test with a 58 degree of free-
om at a 5% level of significance, the t-test result is presented as
+”, “−”, or “∼” [1]. A “∼” sign indicates that there is no significant
ifference in the mean fitness values found by both compared algo-
ithms, and a “+” or “−” sign indicates that the mean fitness values
btained by ADM are significantly better or worse than the mean
tness values achieved by other algorithms.

Clearly, the statistics displayed in Table 9 demonstrate that
DM, with more than 95% confidence, significantly outperforms
M and PLM in 16 out of 20 test cases. The proposed ADM also
eats MNUM in 9, NUM in 15, and PM in 18 out of 20 test cases,
espectively. It can be observed that the comparisons of ADM with
he other five conventional mutation operators are statistically sig-
ificant for most of the test cases in benchmark functions I.

The average execution time, average number of function eval-
ations (=average number of generations), and efficiency ranks
chieved by six different mutation operators for benchmark func-
ions I with 30 variables in 30 runs are shown in Table 10.  From the
esults of Table 10,  we find that ADM has both the least execution
ime and the lowest number of function evaluations (as shown in
arentheses) in 19 out of 20 cases in comparison with the other

 conventional mutation operators. In addition, MNUM has the
econd-best performance in terms of average execution time and
veraged fitness evaluations. On the contrary, RM has the worst
erformance, with final rank 6, in terms of average function eval-
ations. From Tables 8–10, we can conclude that ADM provides
reater accuracy, more reliability, and higher efficiency than the
ther five conventional mutation operators.

.3.2. Comparisons with CMA-ES and HYK-GA
The present study is also interested in comparing the proposed

DM-RCGA method with some other leading adaptive evolutionary
lgorithms, besides the conventional mutation operators. We  chose
tate-of-the-art adaptive mutation methods CMA-ES [19] and HKY-

 
 

 

A [21]—two of the strongest rivals. CMA-ES uses a clever learning
ethod to adapt the full covariance matrix of a normal mutation

istribution. The core idea of this method is to gather informa-
ion about successful search steps, and to use that information
g9 2 ∼ +

to deterministically modify the covariance matrix of the mutation
distribution. On the other hand, HKY-GA employs one of the latest
Markov models of nucleotide substitution rates—the HKY evolu-
tion model—to apply to a RCGA. The HKY-GA method not only aims
to adapt the mutation rates, but also tries to determine the types
of genes to be subjected to mutation. To provide a fair compari-
son between HEY-GA, CMA-ES, and the proposed ADM-RCGA, the
simulation conditions (same as [21]) are given in Exp. 2 of Table 4.

Comparisons of the average performance of mean fitness values
and accuracy ranks achieved by ADM-RCGA, HEY-GA, and CMA-
ES for benchmark functions II in 100 runs are listed in Table 11.
It shows that the proposed ADM-RCGA has the best performance,
with final rank 1, and that in 16 out of 23 cases ADM-RCGA performs
with rank 1. More precisely, the distance value |Mean–f*| between
the global optimum and the mean of obtained solutions by ADM-
RCGA does not exceed 1.0 for all test functions, with the exception
of four cases (test functions g3 and g6). On the opposite side, HEY-
GA and CMA-ES perform with rank 1 in 12 and 7 out of 23 cases,
respectively. The distance value |Mean–f*| exceeds 1.0 for four cases
(test functions g3 and g7) in HEY-GA, and eight cases (test functions
g2, g3, g5, g6, and g9) in CMA-ES.

Table 11 also shows the corresponding comparisons of standard
deviations of fitness values and reliability ranks in parentheses. In
16 out of 23 cases, ADM-RCGA has the best performances, with final
rank 1. In other words, there are 13 and 7 out of 23 cases in rank 1
for HEY-GA and CMA-EA, respectively. Table 11 indicates that ADM-
RCGA is the most accurate and reliable algorithm, better than HEY-
GA and CMA-ES. In addition, HEY-GA has competitive performance
than CMA-GA while CMA-GA has the worst performance, with final
rank 3.

By applying the two-tailed t-test with a 198 degree of free-
dom at a 5% level of significance, the statistics shown in Table 12
demonstrate that ADM-RCGA, with more than 95% confidence, sig-

nificantly outperforms HEY-GA and CMA-ES in eight and ten test
cases, respectively. On the opposite side, the mean fitness values
by ADM-RCGA are significantly poorer than HEY-GA and CMA-ES
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Table  13
Performances comparison of ADM and LX-PM for 30 variablesin 30 runs.

Test functions ADM LX-PM [1] ADM–LX-PM

Mean (SD) |Mean–f*| Rank Mean (SD) |Mean–f*| Rank Result(t-test)

f1 3.225E−01 3.225E−01 2 1.010E−10 1.010E−10 1 −
(2.518E−02)  (2) (1.040E−10) (1)

f2 3.000E+00 0.000E+00 1 3.000E+00 0.000E+00 1 ∼
(0.000E+00) (1) (0.000E+00) (1)

f3 1.000E+00 0.000E+00 1 1.000E+00 0.000E+00 1 ∼
(5.160E−16)  (1) (1.730E−08) (2)

f4 8.532E−03 8.532E−03 2 1.940E−03 1.940E−03 1 −
(1.035E−02)  (2) (1.570E−03) (2)

f5 1.971E−32 1.971E−32 1 3.200E−19 3.200E−19 2 +
(4.947E−33) (1) (2.890E−19) (2)

f6 2.426E−32 2.426E−32 1 7.950E−23 7.950E−23 2 +
(5.612E−33)  (1) (9.920E−23) (2)

f7 9.979E+05 2.402E−04 1 9.980E+05 1.325E+02 2 +
(9.688E−10)  (1) (5.590E+00) (2)

f8 1.224E+01 1.224E+01 2 0.000E+00 0.000E+00 1 −
(3.487E+00) (2) (0.000E+00) (1)

f9 4.760E+01 4.760E+01 2 1.580E+01 1.580E+01 1 −
(2.834E+01) (2) (2.150E+00) (1)

f10 1.203E+04 5.369E+02 2 1.260E+04 3.051E+01 1 −
(4.024E+02) (2) (1.850E−12) (1)

f11 3.500E+00 0.000E+00 1 3.500E+00 0.000E+00 1 ∼
(5.220E−15)  (1) (2.980E−08) (2)

f12 4.193E−22 4.193E−22 1 1.950E−20 1.950E−20 2 ∼
(6.280E−22)  (1) (6.830E−20) (2)

f13 0.000E+00 0.000E+00 1 4.750E−11 4.750E−11 2 +
(0.000E+00) (1) (3.340E−11) (2)

f14 0.000E+00 0.000E+00 1 2.820E−12 2.820E−12 2 +
(0.000E+00) (1) (2.090E−12) (2)

f15 0.000E+00 0.000E+00 1 3.030E−08 3.030E−08 2 +
(0.000E+00) (1) (1.310E−08) (2)

f16 3.618E−04 3.618E−04 2 3.600E−05 3.600E−05 1 −
(4.507E−04)  (2) (1.700E−04) (2)

f17 3.410E−04 3.410E−04 2 2.320E−04 2.320E−04 1 −
(1.165E−04)  (1) (1.950E−04) (2)

f18 0.000E+00 0.000E+00 1 9.260E−11 9.260E−11 2 +
(0.000E+00) (1) (1.030E−10) (2)

f19 1.872E−32 1.872E−32 1 9.480E−32 9.480E−32 2 +
(4.362E−E−33) (1) (1.700E−31) (2)

f20 2.508E−32 2.508E−32 1 6.070E−31 6.070E−31 2 ∼
(7.954E−33)  (1) (2.240E−30) (2)

Averaged rank 1.35 1.5
(1.3) (1.75)

Final  rank 1 2
(1) (2)

Table 14
Performances comparison of ADM, IEA, BOA and OGA for 10 variables in 30 runs.

Test functions ADM IEA [28] BOA [29] OGA [30]

Mean |Mean–f*| Rank Mean |Mean–f*| Rank Mean |Mean–f*| Rank Mean |Mean–f*| Rank

h1 3.898E−16 3.898E−16 1 5.400E−02 5.400E−02 3 1.900E−02 1.900E−02 2 7.200E−02 7.200E−02 4
h2 1.675E+01 3.255E+00 1 1.532E+01 4.680E+00 2 1.229E+01 7.710E+00 4 1.524E+01 4.760E+00 3
h3 0.000E+00 0.000E+00 1 5.130E+00 5.130E+00 3 7.700E−01 7.700E−01 2 5.300E+00 5.300E+00 4
h4 1.066E−15 1.066E−15 1 1.542E+01 1.542E+01 3 5.320E+00 5.320E+00 2 1.762E+01 1.762E+01 4
h5 0.000E+00 0.000E+00 1 3.000E−04 3.000E−04 2 7.700E−03 7.700E−03 4 3.000E−04 3.000E−04 2
h6 1.850E+01 2.738E−03 1 1.460E+01 3.900E+00 3 1.810E+01 4.000E−01 2 1.401E+01 4.490E+00 4
h7 1.216E+01 2.175E−05 1 1.212E+01 4.380E−02 3 1.215E+01 8.800E−03 2 1.211E+01 5.080E−02 4
h8 1.471E−14 1.471E−14 1 1.000E+00 1.000E+00 3 9.300E−01 9.300E−01 2 1.700E+00 1.700E+00 4
h9 3.978E+01 3.978E+01 2 6.674E+02 6.674E+02 4 8.400E+00 8.400E+00 1 5.842E+02 5.842E+02 3
h10 2.632E+00 2.632E+00 1 1.164E+02 1.164E+02 4 8.930E+00 8.930E+00 2 9.457E+01 9.457E+01 3
h11 0.000E+00 0.000E+00 1 3.380E−01 3.380E−01 2 1.007E+01 1.007E+01 4 9.000E−01 9.000E−01 3
h12 8.624E−02 8.624E−02 1 9.990E−01 9.990E−01 2 1.008E+00 1.008E+00 4 1.002E+00 1.002E+00 3

Averaged rank 1.08 2.83 2.58 3.42

Final  rank 1 3 2 4
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Table  15
Performances comparison of ADM, IEA and OGA for 100 variables in 30 runs.

Test functions ADM IEA [28] OGA [30]

Mean |Mean–f*| Rank Mean |Mean–f*| Rank Mean |Mean–f*| Rank

h1 1.490E−05 1.490E−05 1 6.500E−01 6.500E−01 2 1.630E+00 1.630E+00 3
h2 1.697E+02 3.031E+01 1 1.532E+02 4.685E+01 2 1.397E+02 6.029E+01 3
h3 3.333E−02 3.333E−02 1 6.210E+02 6.210E+02 2 6.107E+03 6.107E+03 3
h4 7.988E+01 7.988E+01 1 2.135E+02 2.135E+02 2 3.675E+02 3.675E+02 3
h5 0.000E+00 0.000E+00 1 1.600E+00 1.600E+00 2 1.496E+01 1.496E+01 3
h6 1.325E+02 5.249E+01 1 1.313E+02 5.369E+01 2 1.155E+02 6.952E+01 3
h7 1.216E+02 2.174E−04 1 1.204E+02 1.158E+00 2 1.167E+02 4.888E+00 3
h8 3.239E+00 3.239E+00 1 3.690E+00 3.690E+00 2 9.470E+00 9.470E+00 3
h9 1.463E+04 1.463E+04 3 8.011E+03 8.011E+03 1 1.229E+04 1.229E+04 2
h10 1.007E+02 1.007E+02 1 2.081E+03 2.081E+03 2 5.282E+03 5.282E+03 3
h11 5.647E+01 5.647E+01 2 4.394E+01 4.394E+01 1 6.519E+01 6.519E+01 3
h12 2.629E−03 2.629E−03 1 3.286E+01 3.286E+01 2 4.825E+01 4.825E+01 3
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Averaged rank 1.25 

Final  rank 1 

n seven and five cases, respectively. It can be observed that the pro-
osed ADM-RCGA is statistically significant and slightly superior to
EY-GA and CMA-ES. From Tables 11 and 12,  we  can conclude that
DM-RCGA provides more accuracy, greater reliability, and higher
fficiency than HEY-GA and CMA-ES.

.3.3. Comparison with LX-PM
Deep and Thakur [1] introduced a new mutation operator

alled PM for RCGAs and compared six generational real-coded
As on a set of 20 benchmark global optimization test problems.
heir results showed that the RCGA using the PM in conjunction
ith Laplace crossover (LX-PM) outperforms all other five GAs. To
rovide a fair comparison between LX-PM and the proposed ADM-
CGA, the simulation conditions (same as [1]) are given in Exp. 3 of
able 4.

The comparisons of average performance of mean fitness values
nd accuracy ranks achieved by ADM-RCGA and LX-PM for bench-
ark functions I in 30 runs are listed in Table 13.  It shows that the

roposed ADM-RCGA has the best performance, with final rank 1,
nd in 13 out of 20 cases ADM-RCGA performs with rank 1. On the
ontrary, LX-PM performs with rank 1 in 10 out of 20 cases.

Table 13 also shows the corresponding comparisons of standard
eviations of fitness values and reliability ranks in parentheses. The
esults in Table 13 demonstrate that ADM-RCGA has the best per-
ormances, with final rank 1, and ranks first in 14 out of 20 cases.
n addition, there are only 5 out of 20 cases in rank 1 for LX-PM.

By using the two-tailed t-test with a 58 degree of freedom at
 5% level of significance, the statistics also displayed in Table 13
emonstrate that ADM-RCGA, with more than 95% confidence, sig-
ificantly outperforms LX-PM in eight test cases. On the opposite
ide, the mean fitness values by ADM-RCGA are significantly poorer
han LX-PM in seven cases. The proposed ADM-RCGA is statistically
ignificant and slightly superior to LX-PM. From Table 13,  we  can
onclude that ADM-RCGA provides more accuracy, greater reliabil-
ty, and higher efficiency than LX-PM.

.3.4. Comparison with BOA, IEA, and OGA
Ho et al. [28] suggested an intelligent evolutionary algorithm

IEA) based on orthogonal experimental design for solving large
arameter optimization problems. They compared some existing
As on a set of 12 benchmark global optimization test problems.
heir results showed that BOA [29] has the best performance for 10

ariables by comparing with 6 other EAs, and IEA outperforms all
ther 5 EAs for 100 variables. To provide a fair comparison among
EA, BOA, and OGA [30], and the proposed ADM-RCGA, the simula-
ion conditions (same as [28]) are given in Exp. 4 of Table 4.
1.83 2.92

2 3

The comparisons of average performance of mean fitness values
and accuracy ranks achieved by ADM-RCGA, IEA, BOA, and OGA for
benchmark functions III with 10 variables in 30 runs are listed in
Table 14.  From this table, it is observed that the proposed ADM-
RCGA has the best performance with final rank 1, and there are 11
out of 12 cases in which ADM-RCGA performs with rank 1. On the
contrary, BOA performs with rank 1 only in a single case and there
is no case with rank 1 for IEA.

Table 15 shows the comparisons of average performance of
mean fitness values and accuracy ranks achieved by ADM-RCGA,
IEA, and OGA for benchmark functions III with 100 variables in 30
runs. Due to the long computation time, BOA is tested on the 12 test
functions with only 10 variables [28]. The results of Table 15 show
that ADM-RCGA has the best performances, with final rank 1 and
first rank in 10 out of 12 cases. In addition, there are only 2 out of 12
cases in rank 1 for IEA and no case for OGA. From Tables 14 and 15,
we can conclude that ADM-RCGA provides more accuracy, greater
reliability, and higher efficiency in achieved results than IEA, BOA,
and OGA.

5. Conclusion

The current study has presented a new mutation operator to
ADM that focuses on simplicity, robustness, and efficiency within
the context of RCGAs. To evaluate the performance of the proposed
algorithm, we  conducted a series of experiments on a set of 41 well-
known real-valued benchmark global optimization test functions.

When compared with five conventional mutation operators,
including RM,  PLM, NUM, MNUM,  and PM, the proposed ADM
approach shows a significant improvement in the quality of the
global optimum solution found under the same simulation condi-
tions.

The present study also compared the performance of the pro-
posed ADM-RCGA with that of six leading evolutionary algorithms,
besides the conventional mutation operators. Against the state-
of-the-art adaptive evolutionary methods, HYK-GA and CMA-ES,
the proposed ADM-RCGA shows superior performance. Further-
more, ADM-RCGA also outperforms all other GAs, including BOA,
IEA, LX-PM, and OGA. Finally, we  can conclude that the proposed
ADM-RCGA provides more accuracy, greater reliability, and higher
efficiency than all the other GAs considered in the present study.

The experiment outcome for the proposed ADM-RCGA is excel-
lent in most cases, but it still performed worse in some functions

due to increasing the risks of local optima traps. As our future per-
spective, we  plan to further improve the evolutionary efficiency by
integrating the approach of design of experiment with the proposed
ADM-RCGA algorithm.
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