ANGLE MODUIATION AND
DEMODULATION

lating the amplitude, frequency, and phase of a sinusoidal carrier of frequency f..

n that chapter, we focused on various linear amplitude modulation systems and their

demodulations. Now we discuss nonlinear frequency modulation (FM) and phase modulation
(PM), often collectively known as angle modulation.

ﬁ s discussed in the previous chapter, a carrier modulation can be achieved by modu-

5.1 NONLINEAR MODULATION

In AM signals, the amplitude of a carrier is modulated by a signal m(t), and, hence, the
information content of m(f) is in the amplitude variations of the carrier. As we have seen,
the other two parameters of the carrier sinusoid, namely its frequency and phase, can also
be varied in proportion to the message signal as frequency-modulated and phase-modulated
signals, respectively. We now describe the essence of frequency modulation (FM) and phase
modulation (PM).

False Start

In the 1920s, broadcasting was in its infancy. However, there was an active search for techniques
to reduce noise (static). Since the noise power is proportional to the modulated signal band-
width (sidebands), efforts were focused on finding a modulation scheme that would reduce the
bandwidth. More important still, bandwidth reduction also allows more users, and there were
rumors of a new method that had been discovered for eliminating sidebands (no sidebands, no
bandwidth!). The idea of frequency modulation (FM), where the carrier frequency would be
varied in proportion to the message m(t), was quite intriguing. The carrier angular frequency
w(¢) would be varied with time so that w(#) = w,. + km(t), where k is an arbitrary constant.
If the peak amplitude of m(z) is my, then the maximum and minimum values of the carrier
frequency would be w, + kmy, and @, — kmp, respectively. Hence, the spectral components
would remain within this band with a bandwidth 2km, centered at«,. The understanding was
that controlling the constant parameter k can control the modulated signal bandwidth. While
this is true, there was also the hope that by using an arbitrarily small k, we could make the
information bandwidth arbitrarily small. This possibility was seen as a passport to communi-
cation heaven. Unfortunately, experimental results showed that the underlying reasoning was
seriously wrong. The FM bandwidth, as it turned out, is always greater than (at best equal to)

202



Figure 5.1
Concept of
instantaneous
frequency.

5.1 Nonlinear Modulation 203

the AM bandwidth. In some cases, its bandwidth was several times that of AM. Where was
the fallacy in the original reasoning? We shall soon find out.

The Concept of Instantaneous Frequency

While AM signals carry a message with their varying amplitude, FM signals can vary the
instantaneous frequency in proportion to the modulating signal m(z). This means that the
carrier frequency is changing continuously every instant. Prima facie, this does not make
much sense, since to define a frequency, we must have a sinusoidal signal at least over one
cycle (or a half-cycle or a quarter-cycle) with the same frequency. This problem reminds us
of our first encounter with the concept of instantaneous velocity in a beginning mechanics
course. Until the presentation of derivatives via Leibniz and N ewton, we were used to thinking
of velocity as being constant over an interval, and we were incapable of even imagining that
velocity could vary at each instant. We never forget, however, the wonder and amazement that
was caused by the contemplation of derivative and instantaneous velocity when these concepts
were first introduced. A similar experience awaits the reader with respect to instantaneous
frequency.

Let us consider a generalized sinusoidal signal ¢(z) given by

@(1) = Acos 8(7) (5.1)

where (1) is the generalized angle and is a function of 7. Figure 5.1 shows a hypothetical
case of 6(¢). The generalized angle for a conventional sinusoid A cos (wet + Gp) is a straight
line wct + G, as shown in Fig. 5.1. A hypothetical case general angle of 6(r) happens to be
tangential to the angle (w.¢ + 6;) at some instant 7, The crucial point is that, around 7, over
a small interval At — 0, the signal ¢(7) = A cos 0(z) and the sinusoid A cos (w.f + 6) are
identical; that is,

(1) = Acos (wct + ) H<t<t
We are certainly justified in saying that over this small interval At, the angular frequency of
@(1) is wc. Because (w.t + 6g) is tangential to 8(z), the angular frequency of ¢(¢) is the slope

of its angle 6(r) over this small interval. We can generalize this concept at every instant and
define that the instantaneous frequency w; at any instant ¢ is the slope of 8(¢) at ¢. Thus, for

6(1)4




204

ANGLE MODULATION AND DEMODULATION

@(t) in Eq. (5.1), the instantaneous angular frequency and the generalized angle are related via

wi(t) = C—gj— ~ (5.2a)
t
8(t) = f wi(a) da (5.2b)

Now we can see the possibility of transmitting the information of m(t) by varying the angle 6 of

-a carrier. Such techniques of modulation, where the angle of the carrier is varied in some manner

with a modulating signal m(#), are known as angle modulation or exponential modulation.
Two simple possibilities are phase modulation (PM) and frequency modulation (FM). In
PM, the angle 8(¢) is varied linearly with m(z):

8(t) = wct + 6o + kpm(r)

where k, is a constant and w. is the carrier frequency. Assuming 8y = 0, without loss of
generality,

0(f) = wet + kpm(r) (5.3a)
The resulting PM wave is
Qo (1) = A cos [wct + kpm(D)] (5.3b)

The instantaneous angular frequency w;(r) in this case is given by
do
wi(t) = = = w, + kpn(t) (5.3¢)

Hence, in PM, the instantanecous angular frequency w; varies linearly with the derivative of
the modulating signal. If the instantaneous frequency w; is varied linearly with the modulating
signal, we have FM. Thus, in FM the instantaneous angular frequency w; is

wi(t) = we + kym(t) (5.4a)

where ky is a constant. The angle () is now

t
00 = [ fwe +lymie))do
I3
= wct + kf / mx) da

Here we have assumed the constant term in 8(z) to be zero without loss of generality. The FM
wave is

¢

Py (1) = A cos [a)ct + kp / mia) da] (5.5)

—00
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Relationship between FM and PM

From Eqs. (5.3b) and (5.5), it is apparent that PM and FM not only are very similar but are
inseparable. Replacing m(?) in Eq. (5.3b) with Jm(x)da changes PM into FM. Thus, a signal
that is an FM wave corresponding to m(¢) is also the PM wave corresponding to f m(a) da
(Fig. 5.2a). Si.ailarly, a PM wave corresponding to m(t) is the FM wave corresponding to
(1) (Fig. 5.2b). Therefore, by looking only at an angle-modulated signal ¢ (¢), there is no way
of telling whether it is FM or PM. In fact, it is meaningless to ask an angle-modulated wave
whether it is FM or PM. It is analogous to asking a married man with children whether he is
a father or a son. This discussion and Fig. 5.2 also show that we need not separately discuss
methods of generation and demodulation of each type of modulation.

Equations (5.3b) and (5.5) show that in both PM and FM the angle-of a carrier is varied
in proportion to some measure of m(7). In PM, it is directly proportional to m(¢), whereas in
FM, it is proportional to the integral of m(¢). As shown in Fig. 5.2b, a frequency modulator
can be directly used to generate an FM signal or the message input m(f) can be processed
by a filter (differentiator) with transfer function # (s) = s to generate PM signals. But why
should we limit ourselves to these cases? We have an infinite number of possible ways of
processing m(t) before FM. If we restrict the choice to a linear operator, then a measure of
m(t) can be obtained as the output of an invertible linear (time-invariant) system with transfer
function H (s) or impulse response /(¢). The generalized angle-modulated carrier ey (1) can be
expressed as

P (8) = A coswet + ¥ ()] (5.6a)
I3
=A cos [a)cr -+ / m{a) h(t — ) da] (5.6b)

- As long as H(s) is a reversible operation (or invertible), m(f) can be recovered
from ¢ (#) by passing it through a system with transfer function [H(s)]™! as shown in
Fig. 5.3. Now PM and FM are Jjust two special cases with A(f) =kpd(t) and h(z) = kru(t),
respectively.

This shows that if we analyze one type of angle modulation (such as FM), we can readily
extend those results to any other kind. Historically, the angle modulation concept began with
FM, and here in this chapter we shall primarily analyze FM, with occasional discussion of
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PM. But this does not mean that FM is superior to other kinds of angle modulation. On the
contrary, for most practical signals, PM is superior to FM. Actually, the optimum performance

is realized neither by pure PM nor by pure FM, but by something in between.

Power of an Angle-Modulated Wave

Although the instantaneous frequency and phase of an angle-modulated wave can vary with

time, the amplitude A remains constant. Hence, the power of an angle-modulated wave
(PM or FM) is always A?/2, regardless of the value of kp or ky.

Example 5.1

Figure 5.4
FM and PM

waveforms.

Sketch FM and PM waves for the modulating signal m(¢) shown in Fig. 5.4a. The constants
ke and k), are 27 x 10° and 107, respectively, and the carrier frequency fe is 100 MHz.
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Dividing throughout by 2, we have the equation in terms of the variable f (frequency im -
hertz). The instantaneous frequency f; is

k
fi=fe+ 5-m()
b4
=10% + 10°m(»)
(Fdmin = 10% + 10° [m(1)] = 99.9 MHz
(Fmax = 10° + 10 [7(£) |y = 100.1 MHz
Because m(#) increases and decreases linearly with time, the instantaneous frequency
increases linearly from 99.9 to 100.1 MHz over a half-cycle and decreases linearly from
100.1 to 99.9 MHz over the remaining half-cycle of the modulating signal (Fig. 5.4b).

PM for m(r) is FM for 7(¢). This also follows from Eq. (5.3¢).
For PM:

kp .
fi=fe+ é——m(t)
7T
= 10% + 5 /i(r)
(Fdmin = 10% + 5 (1) Iy = 108 — 10° = 99.9 MHz
(fImax = 108 + 5 [h(0) ey = 100.1 MHz
Because () switches back and forth from a value of —20,000 to 20,000, the carrier

frequency switches back and forth from 99.9 to 100.1 MHz every half-cycle of #(z), as
shown in Fig. 5.4d.

This indirect method of sketching PM [using ri(z) to frequency-modulate a carrier] works
as long as m(z) is a continuous signal. If m(r) is discontinuous, it means that the PM sig-
nal has sudden phase changes and, hence, #1(¢) contains impulses. This indirect method
fails at points of the discontinuity. In such a case, a direct approach should be used at the
point of discontinuity to specify the sudden phase changes. This is demonstrated in the next
example.

Example 5.2 Sketch FM and PM waves for the digital modulating signal m(z) shown in Fig. 5.5a. The
constants ky and k, are 27 x 10° and 7/2, respectively, and f; = 100 MHz.

For FM:
ky 8 . 1nd
fi=Jfe + =—m(@) = 10° + 10°m(?)
2

- Because m(f) switches from 1 to —1 and vice versa, the FM wave frequency switches
back and forth between 99.9 and 100.1 MHz, as shown in Fig. 5.5b. This scheme of carrier
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' frequency modulation by a digital signal (Fig. 5.5b) is called frequency shift keying
(FSK) because information digits are transmitted by keying different frequencies (see
Sec. 7.8).

For PM:

e kot Ly
fi=f+ an(t) =10° + 4m(t)

The derivative m(f) (Fig. 5.5¢) is zero except at points of discontinuity of m(t) where
impulses of strength +2 are present. This means that the frequency of the PM signal stays
the same except at these isolated points of time! It is not immediately apparent how an
instantaneous frequency can be changed by an infinite amount and then changed back to
the original frequency in zero time. Let us consider the direct approach:

Ppy (1) = A cos [t + kym(1)]
= A cos [wct + zm(t}]
2

_ A sin w;f when m(t) = —1
—A sin w;t when m(t) =1

This PM wave is shown in Fig. 5.5d. This scheme of carrier PM by a digital signal is
called phase shift keying (PSK) because information digits are transmitted by shift-
ing the carrier phase. Note that PSK may also be viewed as a DSB-SC modulation
by m(z).

The PM wave @, (¢) in this case has phase discontinuities at instants where impulses
of ri(z) are located. At these instants, the carrier phase shifts by 7 instantaneously. A finite
phase shift in zero time implies infinite instantaneous frequency at these instants. This
agrees with our observation about (7).

The amount of phase discontinuity in @y, () at the instant where m(t) is discontinuous
is kpmg, where my is the amount of discontinuity in m(z) at that instant. In the present
example, the amplitude of m(f) changes by 2 (from —1 to 1) at the discontinuity. Hence,
the phase discontinuity in @py (1) is kpmg = (T/2) X 2 == rad, which confirms our
earlier result.
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When m(z) is a digital signal (as in Fig. 5.5a), ¢, (t) shows a phase discontinuity
where (1) has a jump discontinuity. We shall now show that to avoid ambiguity in
demodulation, in such a case, the phase deviation kpm(f) must be restricted to a range
(—m, m). For example, if k, were 377/2 in the present example, then

3n
Pppy (1) = A cos [:wct + —i-m(r)]
In this case @, (f) = Asin w. when m(f) = 1 or —1/3. This will certainly cause
ambiguity at the receiver when A sin wct is received. Specifically, the receiver cannot
decide the exact value of m(t). Such ambiguity never arises if k,m(¢) is restricted to the
range (—m, 7).

What causes this ambiguity? When m(¢) has jump discontinuities, the phase of ¢y, (?)
changes instantaneously. Because a phase ¢, + 2am is indistinguishable from the phase ¢,
ambiguities will be inherent in the demodulator unless the phase variations are limited to the
range (—, 7). This means k, should be small enough to restrict the phase change k,m(z) to
the range (—m, ).

No such restriction on kj, is required if m(¢) is continuous. In this case the phase change is
not instantaneous, but gradual over time, and a phase ¢, + 2n will exhibit n additional carrier
cycles in the case of phase of only ¢,. We can detect the PM wave by using an FM demodulator
followed by an integrator (see Prob. 5.4-1). The.additional n cycles will be detected by the
FM demodulator, and the subsequent integration will yield a phase 2nm. Hence, the phases ¢,
and ¢, + 2nm can be detected without ambiguity. This conclusion can also be verified from
Example 5.1, where the maximum phase change A = 10x.

Because a band-limited signal cannot have jump discontinuities, we can also say that when
m(t) is band-limited, k, has no restrictions.

5.2 BANDWIDTH OF ANGLE-MODULATED WAVES

Unlike AM, angle modulation is nonlinear and no properties of Fourier transform can be
directly applied for its bandwidth analysis. To determine the bandwidth of an FM wave, let us
define

at) = fr m(a) do (5.7
0
and define
Py (1) = A Ot aOT = pgilya(t) gioset (5.82)
such that its relationship to the FM signal is
@MG):ReWmAﬂ] (5.8b)

Expanding the exponential ¢/ of Eq. (5.8a) in power series yields
k? kP .
¢Wm=A®+mm0~%£m+m+ﬂ%wm+m}wﬂ (5.9a)
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and
P (1) = Re [Py ()]

k2 k2
=A [cos wet — kpa(t) sin @t — —szaz(t) COS wet + gf'-cﬁ (f) sin @t + - - } (5.9b)

The modulated wave consists of an unmodulated carrier plus various amplitude-modulated
terms, such as a(t) sin wct, a*(f)cos wet, a>(f)sin wet, . ... The signal a(t) is an integral
of m(t). If M(f) is band-limited to B, A(f) is also band-limited* to B. The spectrum of
a?(t) is simply A(f) s A(f) and is band-limited to 2B. Similarly, the spectrum of a”*(t) is
band-limited to nB. Hence, the spectrum consists of an unmodulated carrier plus spectra of
a(t), a®(), ..., a*(1), ..., centered at w.. Clearly, the modulated wave is not band-limited.
It has an infinite bandwidth and is not related to the modulating-signal spectrum in any simple
way, as was the case in AM.

Although the bandwidth of an FM wave is theoretically infinite, for practical signals with
bounded |a(#)], |kra(t)| will remain finite. Because n! increases much faster than lkra()|", we
have

k]?a” (1)

n!

~0 for large n

Hence, we shall see that most of the modulated-signal power resides in a finite bandwidth.
This is the principal foundation of the bandwidth analysis for angle-modulations. There are
two distinct possibilities in terms of bandwidths—narrowband FM and wideband FM.

Narrowband Angle Modulation Approximation
Unlike AM, angle modulations are nonlinear. The nonlinear relationship between a(t) and ¢(r)
is evident from the terms involving a"(z) in Eq. (5.9b). When ks is very small such that

lkra(n)] < 1

then all higher order terms in Eq. (5.9b) are negligible except for the first two. We then have a
good approximation

Pen (1) ~ A [cos ot — kra(?) sin wet] (5.10)
This approximation is a linear modulation that has an expression similar to that of the AM
signal with message signal a(r). Because the bandwidth of a(¢) is B Hz, the bandwidth of
Paq (1) in Eq. (5.10) is 2B Hz according to the frequency-shifting property due to the term
a(t) sin w.t. For this reason, the FM signal for the case of lkra(t)| < 1is called narrowband
FM (NBFM). Similarly, the narrowband PM (NBPM) signal is approximated by

Pers (1) & A [c08 et — kym(p) sin o] (5.11)

NBPM also has the approximate bandwidth of 2B.

* This is because integration is a linear operation equivalent to passing a signal through a transfer function 1/j2xf.
Hence, if M (f) is band-limited to B, A(f) must also be band-limited to B,
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A comparison of NBFM [Eg. (5.10)] with AM [Eq. (5.9a)] brings out clearly the similarities
and differences between the two types of modulation. Both have the same modulated bandwidth
2B. The sideband spectrum for FM has a phase shift of 77 /2 with respect to the carrier, whereas
that of AM is in phase with the carrier. It must be remembered, however, that despite the
apparent similarities, the AM and FM signals have very different waveforms. In an AM signal,
the oscillation frequency is constant and the amplitude varies with time, whereas in an FM
signal, the amplitude stays constant and the frequency varies with time.

Wideband FM (WBFM) Bandwidth Analysis: The Fallacy Exposed
Note that an FM signal is meaningful only if its frequency deviation is large enough. In other
words, practical FM chooses the constant ks large enough that the condition |kfa(t)| <1
is not satisfied. We call FM signals in such cases wideband FM (WBFM). Thus, in ana-
lyzing the bandwidth of WBFM, we cannot ignore all the higher order terms in Eq. (5.9b).
To begin, we shall take here the route of the pioneers, who by their intuitively simple rea-
soning came to grief in estimating the FM bandwidth. If we could discover the fallacy in
their reasoning, we would have a chance of obtaining a better estimate of the (wideband) FM
bandwidth. '

Consider a low-pass m(f) with bandwidth B Hz. This signal is well approximated by a
staircase signal /(t), as shown in Fig. 5.6a. The signal m(#) is now approximated by pulses of
constant amplitude. For convenience, each of these pulses will be called a “cell.” To ensure
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