© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

1

SOLUTIONS MANUAL

DIGITAL DESIGN

FOURTH EDITION

M. MORRIS MANO

California State University, Los Angeles

MICHAEL D. CILETTI

University of Colorado, Colorado Springs

rev 01/21/2007

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

2

CHAPTER 1

1.1 Base-10: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Octal: 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37 40
Hex: 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20

Base-13 A B C 10 11 12 13 14 15 16 17 18 19 23 24 25 26
1.2 (a) 32,768 (b) 67,108,864 (c) 6,871,947,674
1.3 (4310)s=4*5"+3 * 52+ 1 * 5' =580,
(198),=1* 122+ 9 * 12" + 8 * 12°=260,,
(735)s=7*82+3*8'+5*8%=477,,
(525)s=5*6°+2*6' +5*6°=197,,
1.4 14-bit binary: 11_1111_1111_1111
Decimal: ~ 2'*-1=16,383
Hexadecimal: 3FFF ¢
1.5 Let b =base
(a) 142=(b+4)2=5,50b=6
(b) 54/4=(5*b+4)/4=b+3,505*b=52—-4,andb=8
(¢) 2*b+4)+(b+7)=4b,sob=11
1.6 (X —3)(x—-6)=x>—(6+3)x +6%3 =x*-11x + 22

Therefore: 6 +3=b+ Imsob=28
AlSO, 6*3 = (18)10 = (22)8

1.7 68BE=0110_1000 1011 1110=110_100_010_111_110 = (64276)s

1.8 (a) Results of repeated division by 2 (quotients are followed by remainders):

431,0=215(1); 107(1); 53(1); 26(1); 13(0); 6(1) 3(0) 1(1)
Answer: 1111 1010, =FAj¢

(b) Results of repeated division by 16:

431,0=26(15); 1(10) (Faster)
Answer: FA=1111_1010

1.9 (a) 10110.0101, = 16+ 4 + 2 + 25 + .0625 = 22.3125
(b) 16.5,6= 16 + 6 + 5*(.0615) = 22.3125

(€) 26.243=2* 8+ 6+ 2/8 +4/64 =22.3125

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

3

(d) FAFA.B,s = 15*16>+ 10*16* + 15*16 + 10 + 11/16 = 64,250.6875
() 1010.1010, =8 +2 +.5 +.125 = 10.625

1.10 (a) 1.10010, = 0001.1001, = 19,4 =1 + 9/16 = 1.563,
(b) 110.010, = 0110.0100, = 6.4, =6 + 4/16 = 6.25,,

Reason: 110.010, is the same as 1.10010, shifted to the left by two places.

1011.11
1.11 101|111011.0000
101
01001
_101
1001
101
1000
101
0110

The quotient is carried to two decimal places, giving 1011.11
Checking: 111011,/ 101, =599/ 5,9 = 1011.11,=58.75)

1.12 (a) 10000 and 110111

1011 1011

+101 x101

10000 =164 1011
1011

110111 = 55,
(b) 62, and 958,

2E, 0010 1110 2E,
434, 0011_0100 X34y
62, 0110 0010 =98, B’8
8’A
95 8h = 239210

1.13 (a) Convert 27.315 to binary:

Integer Remainder Coefficient
Quotient
2772 = 13 + Y ap=1
13/2 6 + Y a =1
6/2 3 + 0 =0
3/2 1 + Y a;=1
Y 0 + Y g = 1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

4
27,0=11011,
Integer Fraction Coefficient
315x2 = 0 + .630 a;=0
630x2 = 1 + .26 a,=1
26x2 = 0 + .52 az;=0
S2x2 = 1 + .04 as=1

315,0=.0101,=.25+.0625 = .3125
27.315=11011.0101,

(b) 2/3 = 6666666667

Integer Fraction Coefficient
6666 6666 67x2 = 1 + .3333 3333 34 a;=1
3333333334x2 =0 + 6666666668 a,=0
6666666668 x2 = 1 + 3333333336 az=1
3333333336 x 2 =0 + .6666666672 as=0
6666666672 x 2 =1 + 3333333344 as=1
3333333344x2 = 0 + 6666666688 ac=0
6666666688 x 2 = 1 + 3333333376 a;=1
3333333376 x 2 =0 + .6666666752 ag=0

66666666675 = .10101010,=.5+.125+.0313 +..0078 = .6641,

1101010102 = .1010_1010, = .AA s = 10/16 + 10/256 = .6641,, (Same as (b)).

1.14 (a) 1000_0000 (b) 0000 0000 (c) 1101_1010
Iscomp: 0111 1111 Iscomp: 1111 1111 Is comp: 0010 0101
2s comp: 1000 0000 2s comp: 0000 0000 2s comp: 0010 0110
(d) 0111_0110 (e) 1000 0101 () 1111 1111
Is comp: 1000 1001 Is comp: 0111 1010 Is comp: 0000 0000
2s comp: 1000 1010 2s comp: 0111 1011 2s comp: 0000 0001
1.15 (a) 52,784,630 (b) 63,325,600
9s comp: 47,215,369 9s comp: 36,674,399
10s comp: 47,215,370 10s comp: 36,674,400
(c) 25,000,000 (d) 00,000,000
9s comp: 74,999,999 9s comp: 99,999,999
10s comp: 75,000,000 10s comp: 00,000,000
1.16 B2FA B2FA: 1011 0010 1111 1010
15s comp: 4DO05 Is comp: 0100 1101 0000 0101
16s comp: 4D06 2s comp: 0100 1101 _0000 0110 =4D06

1.17 (a) 3409 — 03409 —96590 (9s comp) — 96591 (10s comp)
06428 — 03409 = 06428 + 96591 = 03019

(b) 1800 — 01800 — 98199 (9s comp) — 98200 (10 comp)
125 — 1800 = 00125 + 98200 = 98325 (negative)
Magnitude: 1675
Result: 125 — 1800 = 1675

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

5

(c) 6152 - 06152 — 93847 (9s comp) — 93848 (10s comp)
2043 — 6152 = 02043 + 93848 = 95891 (Negative)
Magnitude: 4109
Result: 2043 — 6152 = -4109

(d) 745 — 00745 — 99254 (9s comp) — 99255 (10s comp)
1631 -745 =01631 + 99255 = 0886 (Positive)
Result: 1631 — 745 = 886

1.18 Note: Consider sign extension with 2s complement arithmetic.
(a) 10001 (b) 100011
Is comp: 01110 Is comp: 1011100 with sign extension
2s comp: 01111 2s comp: 1011101
10011 0100010
Diff: 00010 1111111 sign bit indicates that the result is negative

0000001 2s complement
-000001 result

(©) 101000 (d) 10101
Is comp: 1010111 Is comp: 1101010 with sign extension
2s comp: 1011000 2s comp: 1101011
001001 110000
Diff: 1100001 (negative) 0011011 sign bit indicates that the result is positive
0011111 (2s comp) Check: 48 -21 =27

011111 (diff is -31)

119 +9286 — 009286; +801 — 000801; -9286 — 990714; -801 —> 999199
(a) (+9286) + (_801) = 009286 + 000801 = 010087
(b) (+9286) + (-801) = 009286 + 999199 = 008485
(¢) (-9286) + (+801)= 990714 + 000801 = 991515
(d) (-9286) + (-801) = 990714 + 999199 = 989913

1.20 +49 — 0 110001 (Needs leading zero indicate + value); +29 — 0 011101 (Leading 0 indicates + value)
-49 -1 001111;-29 — 1 100011

(a) (+29) +(-49)=0 011101 +1 001111 =1 101100 (1 indicates negative value.)
Magnitude = 0 _010100; Result (+29) + (-49) = -20

(®) (-29) + (+49)=1_100011 +0_110001 =0_010100 (0 indicates positive value)
(-29) + (+49) = +20

(c) Must increase word size by 1 (sign extension) to accomodate overflow of values:
(-29) + (-49)=11 100011+ 11 001111 =10 110010 (1 indicates negative result)
Magnitude: 1 001110 =78,
Result: (-29) + (-49) =-78

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

6

1.21 +9742 — 009742 — 990257 (9's comp) — 990258 (10s) comp
+641 — 000641 — 999358 (9's comp) — 999359 (10s) comp

(a) (+9742) + (+641) — 010383

(b) (+9742) + (-641) —009742 + 999359 = 009102
Result: (+9742) + (-641) = 9102

() -9742) + (+641) = 990258 + 000641 = 990899 (negative)
Magnitude: 009101
Result: (-9742) + (641) =-9101

(d) (-9742) + (-641) = 990258 + 999359 = 989617 (Negative)
Magnitude: 10383
Result: (-9742) + (-641) =-10383

1.22 8,723
BCD: 1000 0111 0010 0011
ASCII: 0 011 1000 011 0111 _011_0010_011_0001

1.23
1000 0100 0010 (842)
0101 0011 0111 (+537)
1101 0111 1001
0110
0001 0011 0111 0101 (1,379)
1.24 (a) (b)
6311 Decimal 6 421 Decimal
0000 O 0000 O
0001 1 0001 1
0010 2 0010 2
0100 3 0011 3
0110 4(ro0101) 0100 4
0111 5 0101 5
1000 o6 1000 6(or0110)
1010 7(orl1001) 1001 7
1011 8 1010 8
1100 9 1011 9
1.25 (a)5,137,, BCD: 0101_0011_0111
(b) Excess-3: 1000 0100 0110_1010
() 2421: 1011_0001 0011 0111
(d) 6311: 0111_0001_0100_1001

1.26 5,137 9s Comp: 4,862
2421 code: 0100 1110 1100 1000
I's comp: 1011 0001 0011 0111 same as (c) in 1.25

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

7

1.27 For a deck with 52 cards, we need 6 bits (32 < 52 < 64). Let the msb's select the suit (e.g., diamonds,
hearts, clubs, spades are encoded respectively as 00, 01, 10, and 11. The remaining four bits select the
"number" of the card. Example: 0001 (ace) through 1011 (9), plus 101 through 1100 (jack, queen, king).
This a jack of spades might be coded as 11 _1010. (Note: only 52 out of 64 patterns are used.)

1.28 G (dot) (space) B o o 1 e
01000111 11101111 01101000 01101110 00100000 11000100 11101111 11100101

1.29 Bill Gates
1.30 73 F4AE5 76 E5 4A EF 62 73

73: 0_111 0011
F4: 1_111 0100
ES: 1110 0101
76: 0 111 0110
E5: 1110 0101
4A: 0100 1010
EF: 1110 _1111
62: 0110 0010
73: 0 _111 0011

“n o= o < o

1.31 62 + 32 = 94 printing characters
1.32 bit 6 from the right
1.33 (a) 897 (b) 564 (c) 871 (d) 2,199
1.34 ASCII for decimal digits with odd parity:
(0): 10110000 (1): 00110001 (2): 00110010 (3): 10110011

(4): 00110100 (5): 10110101 (6): 10110110 (7): 00110111
(8): 00111000 (9): 10111001

1.35 (a)
abc
a [L LI LI 1
_:} U S e I B
c |
®c & f |_
¢
1.36
a b
a__ [1T 1

£ 7
S I

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

8

CHAPTER 2

2.1 (a)

Xyz | x+ty+z | (x+y+z) | x|y |z | x'y'z xyz | (xyz) | (xyz)' | x" |y | ' | x"+y' +Z
000 0 1 1|11 1 000 0 1 1|11 1
001 1 0 1| 1]0 0 001 0 1 1| 1]0 1
010 1 0 101 0 010 0 1 1101 1
011 1 0 110]0 0 011 0 1 110]0 1
100 1 0 0|1]1 0 100 0 1 01 |1 1
101 1 0 0| 1]0 0 101 0 1 o110 1
110 1 0 0011 0 110 0 1 001 1
111 1 0 0010 0 111 1 0 0,00 0
(b) (¢
xyz |x+yz| (x+y) | (x+tz) | x+ty(x+tz) xyz |x(y+z)| xy | xz | xy+xz
000 0 0 0 0 000 0 0 0 0
001 0 0 1 0 001 0 0 0 0
010 0 1 0 0 010 0 0 0 0
011 1 1 1 1 011 0 0 0 0
100 1 1 1 1 100 0 0 0 0
101 1 1 1 1 101 1 0 1 1
110 1 1 1 1 110 1 1 0 1
111 1 1 1 1 111 1 1 1 1
() (d)
xyz | x |\ytz|lx+t@y+tz) | (x+ty | (xty tz xyz | yz | x(yz) | xy| (x)z
000| O 0 0 0 0 000 0 0 0 0
001| O 1 1 0 1 00110 0 0 0
010| O 1 1 1 1 010 0 0 0 0
011| 0 1 1 1 1 0111 0 0 0
100 1 0 1 1 1 100] 0 0 0 0
101] 1 1 1 1 1 101] 0 0 0 0
110 1 1 1 1 1 110] 0 0 1 0
111] 1 1 1 1 1 1111 1 1 1
2.2 @ xy+xy'=x(y+y)=x

(d) x+y)(x+y) =x ' =xx+y) Ty +y) =xx+xp'+xy +yy'=x
(0) 3z + Xy + 2z’ =y +2) +xly =xy £ xy =y

(d) (A+B)(A'+ B') = (A'B")(A B) = (A'B")(BA) = A'(B'BA) = 0

() xyz' +x'yz +xyz +xyz' =xy(z +z) +xyz+z)=xy +xy=y

@ x+ty+z)x'+y' +tz)=xx"+xy' +xz+xy+yy tyz+x2'+yz' +zz' =
=xy' txz+xy+tyz+x7z'+yz' =x@y + xPz)'+ (yPz)'

2.3 (a) ABC+A'B+ABC'=AB+A'B=B

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

9

(b) xyz+xz=(Xy+x)z=2(x+x)x+y)=zx+y)

(© (x+y)'(x"+y) =xy'x"+y) =xy'

(d) xy +x(wz +wz') =x(y +wz + wz') =x(w + y)

(e) (BC'+ A'D)(AB' + CD') = BC'AB' + BC'CD' + A'DAB' + A'DCD' = 0

) x+y' +2)x'+z)=xx'+xz' +x'y' + 2 +xZ +zZ =z +y(x' +z) =z +xYy’
2.4 (a) A'C'+ ABC+AC'=C'+ ABC=(C+ C)(C'+ AB) =AB + '

b) xyY +z)+tz+xy+wz=xY)2'tz+xy+twz=[(x+y)z' +z] +txy+wz=
=Cz+zZ)z+x+y txy+twz=z+wztx+xy+ty=z(l+w +x(l+y +ty=x+y+z

(¢) A'B(D'+ C'D) + B(A + A'CD) = B(A'D' + A'C'D + A + A'CD)
=B(AD'+A+ADC+C)=B(A+A(D' +D))=BA+A4)=B

d A" +C)A'"+C)A+B+CD)=(A"+CC")A+B+CD)=A4'(A+B+C'D)
=AA'+ A'B+ A'C'D=A'(B+ C'D)

(e) ABCD + A'BD + ABC'D = ABD + A'BD = BD

25 (a)
1 " Fsimp/iﬁc’d

F

(b)
x oy
?7 Fsimp/i/iﬁd
) >
N
(©

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

10

X y z
Evlm[)l ified
F
()
A B 0
simplified
)
F
(e)
X y z
F\[mpl[/ied
F

®

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

11

X y z
|
|
)
) mepl[/[ed
\
])
/
2.6 (a)
A B C
|
% F pliicd
(b)
x y

z

(©

i

) Evimpli/ied

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

12

()

w X y z
/ F
%}D#Df>
\ F
L/
)
(e
A B C D
Fs[mpl[/ied =0
F
®
w X y z
)
) F
| ’ >—Fsimpiifiea
2.7 (a)
A B C D

simplified

%DF
BN

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

13
(b)
w X y z
F
F ompiificd
()
A4 B C D
F
F.
(d)
A4 B C D

U e

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

14
(e
4 B C D
F
}F simplified
2.8 F'=(wx +yz)' = (wx)'(yz)' = (W' + x)(y' + z))

FF'=wxw'+x")' +z) +yziw' +x)(y' +z) =0
F+F =wx+yz+(wx+yz)' =A+A' =1 withd = wx +yz

2.9 (@ F'=@y'+xy)' =) xy)'=x"+y(x+y)=xy+xy

(b) F'=[(A'B+ CD)E'+ E]' = [(A'B + CD) + E]' = (A'B + CD)'E' = (A'B)'(CD)'E"
F'=(4+B)(C' +D)E'= ACE'+ AD'E' + B'C'E' + BD'E’

(© F'=[(x'+y +2)(x +y)(x +2)]' = (' +y +2)'+ (x +)"+ (x +2)' =
F'=xy'z+x'y +x2'

2.10 (a) F] +F2:2m1i+2m2i:2(m1,—+m2i)
211 @F® 2 =3(1,4,5,6,7)

() F(x, y,z) =%(0,2,3,7)

F=xy+xy'+yZz F=xz"+yz

Xyz F Xyz F

000 0 000 1

001 1 001 0

010 0 010 1

011 0 011 1

100 1 100 0

101 1 101 0

110 1 110 0

111 1 111 1
2.12 A=1011 0001
B=1010_1100

(a) AANDB = 1010 0000
(b) AORB=1011 1101
(¢) AXORB=0001_1101

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

15

(d NOTA=0100 1110
(&) NOTB =010 0011

2.13 (a)
4B C
?7 ?7 3—|_Z>YA +B+B'a+C)
(b)
4 BC D
%D_FDP Y=A(B xorD) + C'
(©)
ABCD
3_;:5> Y=4+CD+4BC
B
L/
(d)
4 BC
>|_D Y=(4 xorC)' + B
)
(O]
4 B CD
—EDY(A'+B')C+DQ
®

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

16

2.14 (a)
X y z
F=xy+xy'+y=
(b)
)
) F=xy+xy'+ty'z
=@ Yy H @ty tz)
(©
D—
D‘D"—:D‘D’_F:xyw'y'w%
3 2 =[(xy)' (xy)' (2]
(@)

— F=xy+xy +y=z

=[0)" (xY) (D)

0

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

17

(e)

YIV]Y

) F=xy+x'y' +y'z

=@ HY) Y)Y
2.15 (@) Ty =A'B'C'"+ A'B'C+A'BC'=A'B'(C'+ C) +A'C'(B'+ B) =A'B'+4'C' = A'(B' + C')
(b) T, =T,'=A'BC + AB'C' + AB'C + ABC' + ABC
=BC(A'+A4) + AB'(C' + C) + AB(C'+ C)
=BC+AB'+ AB=BC+A(B'+B)=A4 +BC

2.(3,5,6,7)=11(0,1,2,4)

T, =AB'C'+ AB'C +A'BC' T,=A'BC+AB'C' + AB'C + ABC'+ ABC
A'B’ A'C’ AC’ AC

T, =AB" A'C'=A'(B"+ ()
BC
T,=AC'+ BC+ AC = A+ BC
2.16 (@) F(A, B, C) =A'B'C'+ A'B'C + A'BC'+ A'BC + AB'C' + AB'C + ABC" + ABC
=A'(B'C'+ B'C+ BC'+ BC) + A(B'C' + B'C + BC' + BC)

=(A'+A4)(B'C'+ B'C+BC'+BC)=B'C'+ B'C + BC' + BC
=B'({[C'+C)+B(C'+C)=B'"+B=1

(b) F(xy, x3, X3, ..., X,) = Zm; has 2"/2 minterms with x, and 2"/2 minterms with x';, which can be factored
and removed as in (a). The remaining 2™ product terms will have 2"'/2 minterms with x, and 2™'/2
minterms with x',, which and be factored to remove x, and x',. continue this process until the last term is
left and x,, + x', = 1. Alternatively, by induction, F' can be written as F' = x,G + x',Gwith G=1. So F =
(x, +x,)G=1.

2.17 @@y +z)(y+txz) =xy+yz+xyz+xz=2(3,5,6,7)=11(0, 1,2, 4)
(b) (A'+B)(B'+C)=A'B'+A'C+BC=%(0,1,3,7)=11(2,4,5,6)
©yz+wey' +wxz' +wxz=%2(1,3,5,9,12,13,14)=11(0,2,4,6,7, 8,10, 11, 15)

d) (xy +yz' +xZ)(x +z) =xy +xpz' +xyz + x'z
=2(1,3,9,11,14,15)=11(0,2,4,5,6,7, 8, 10, 12, 13)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

18

218 (a)

S

WXy Z F=xyz+xy'z + wxy + wx'y + wxy

F=3%(1,56,7,9,1011,13,14,15)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

—_ e O e e O = OO0~ O

(b)

5 - Three-input AND gates

2 - Three-input OR gates
Alternative: 1 - Five-input OR gate
4 - Inverters

o ox S oK% =< % =

) F=xyz+xyz+why+wx'y+wxy=yz+xy+wy=yz+yw+x)

@d F=yz+yw+)=%(1,5,9, 13,10, 11,13, 15,6,7, 14, 15)
=%(1,5,6,7,9, 10, 11, 13, 14, 15)

D)
») oO—

1 — Inverter, 2 — Two-input AND gates, 2 — Two-input OR gates

(e

N <

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

19

2.19 F=B'D+A'D + BD
ABCD ABCD ABCD
-B-D A'--D -B-D

0001 =1 0001 =1 0101 =5
0011 =3 0011 =3 0111 =7
1001 =9 0101 =5 1101 =13
1011 =11 0111 =7 1111 =15

F=%(1,3,5,7,9, 11,13, 15) =T1(0, 2, 4, 6, 8, 10, 12, 14)

2.20 (a) F(4, B, C, D) =£(3,5,9, 11, 15)
F'(4,B,C, D) =%(0,1,2,4,6,7,8, 10, 12, 13, 14)

(b) F(x, y,2) =11(2,4,5,7)
F'=3(2,4,5,7)

2.21 (@) F(x,y,z) = X(2,5,6)=T1(0, 1, 3,4, 7)
() F(4, B, C,D)=T1(0, 1,2, 4,7,9, 12) = 33,5, 6,8, 10, 11, 13, 14, 15)
2.22 (a) (4B + C)(B + C'D) = AB + BC + ABC'D + CC'D = AB(I + C'D) + BC
= AB + BC (SOP form)
= B(4 + C) (POS form)
(b) X'+ x(x +y)(y +2) = (' + '+ (x 4y + 2)] =
=(x'tx+y)x'+y+z)

=x"+y+7

2.23 (a) B'C +AB + ACD

v

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

20

(b)(A4 +B)(C+D)A'"+B+D)

A B c D

?7)
Bl

(¢c) (4B + A'B)(CD' + C'D)

A B C D

Kbk

.

sl
st

Fo

2.24 x@y=xy+x and(x @ y)' =(x+y)x'+y)

(d)4 +CD + (4 + D)(C'+ D)

A B c

VY

—T

Dual of x'y +xy' = (x' +))(x +) = (x @ y)’

2.25 @x|y=xy'#y|x=x'y Not commutative
x|y |z=xyz"#x|(|z) =x(yz')'=xy'+xz Not associative

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

21

®)(x @y)=xy' +xy=y Px=yx"+y«x Commutative

(x @y) Pz=3(1,2,4,7)=x @(y @z) Associative

2.26
NAND NOR
Gate (Positive logic) (Negative logic)
Xy z Xy z Xy z
LL H 00 1 11 0
LH H 01 1 10 0
HL H 10 1 01 0
HH L 11 0 00 1
NOR NAND
Gate (Positive logic) (Negative logic)
Xy z Xy z Xy z
LL H 00 1 11 0
LH L 01 0 10 1
HL L 10 0 01 1
HH L 11 0 00 1

2.27 fi=a'b'c +a'bc + abc' + abe

fo=a'bc' + a'bc + ab'c' + ab'c + abc’

a/
"4
'
a!
—
C
a P
c!
a
)
C

, £

6N a0 o]

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

22

2.28 (@)y=a(bcd)'e =ad'+c'+d)e

y=ab'+c'+d)e=ab’e+ac’e+ad’e
=2%(17,19,21, 23, 25,27, 29)

a bcde y a bcde y
0 0000 0 1 0000 0
0 0001 0 10001 1
00010 0 10010 0
00011 0 10011 1
0 0100 0 10100 0
00101 0 10101 1
00110 0 10110 0
00111 0 10111 1

0 0
0 1000 0 11000 0
0 1001 0 11001 1
01010 0 11010 0
01011 0 11011 1
01100 0 11100 0
01101 0 11101 1
01110 0 11110 0
01111 0 11111 0

b) i=a@(c+d+e)=a'(c+d+e) +a(c'de)=ac+ad+a'e+ac'de’

n=bllctd+te)f=bcf+bdf+Dbef

y,=a (ctd+e) =a'(c+d+e) +a(cde)=ac+ad+a'e+acde

y,=bl(c+d+e)f=>bcf+bdf +bef

a'-c---
001000 =8
001001 =9
001010 =10
001011 =11

001100 =12
001101 =13
001110 =14
001111 =15

011000 =24
011001 =25
011010 =26
011011 =27

011100 =28
011101 =29
011110=30
011111 =31

a'--d--
000100 =8
000101 =9
000110=10
000111 =11

001100 =12
001101 =13
001110=14
001111 =15

010100 =20
010101 =21
010110=22
010111 =23

011100 =28
011101 =29
011110=30
011111 =31

a'---e-

000010 =2
000011 =3
000110=16
000111 =7

001010=10
001011 =11
001110=14
001111 =15

010010 =18
010011 =19
010110 =22
010111 =23

011010 =26
011001 =27
011110=30
011111 =31

a-c'd'e’-

100000 = 32
100001 = 33
110000 = 34
110001 = 35

-b' c--f

001001 =9
001011 =11
001101 =13
001111 =15
101001 =41
101011 =43
101101 =45
101111 =47

-b'-d-f

001001 =9
001011=11
001101 =13
001111=15
101001 =41
101011 =43
101101 =45
101111 =47

-b' --ef

000011 =3

000111 =7

001011 =11
001111 =15
100011 =35
100111 =39
101011 =51
101111 =55

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

23

y,=22,3,6,7,8,9,10,11, 12, 13, 14, 15, 18, 19, 22, 23, 24, 25, 26, 27, 28,
Zb, 30,31, 32,33,34,35)

¥, =2(3,7,9,13,15, 35, 39,41, 43, 45,47, 51, 55)

abedef |y, v, | abcdef |y, y, | abcdef |y, y, | abedef |y, y,
000000 |0 0 010000 [0 0 100000 |1 0 110000 [0 ©
000001 |0 0 010001 [0 O 100001 |1 0 110001 [0 ©
000010 |1 0 010010 |1 0 100010 |1 0 110010 [0 ©
000011 |1 1 010011 |1 0 100011 |1 1 110011 [0 1
000100 |0 0 010100 [0 0 100100 [0 0 110100 [0 ©
000101 |0 0 010101 |0 O 100101 [0 0 110101 [0 ©
000110 |1 0 010110 |1 0 100110 [0 O 110110 [0 ©
000111 |1 1 010111 |1 0 100111 |0 1 110111 |0 1
001000 |1 0 011000 |1 0 101000 [0 0 111000 [0 ©
001001 |1 1 011001 |1 0 101001 |0 1 111001 [0 ©
001010 |1 0 011010 |1 0 101010 [0 O 111010 [0 ©
001011 |1 0 011011 |10 101011 |0 1 111011 |0 0
001100 |1 0 011100 |1 0 101100 [0 0 111100 [0 ©
001101 |1 1 011101 |1 0 101101 |0 1 111101 [0 ©
001110 |1 0 011110 |1 0 101110 |0 © 111110 |0 0
001111 |1 1 011111 |1 0 101111 |0 1 111111 |0 0

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,

or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.
24

Chapter 3

3.1
yz y yz y
* 00 0l 11 10 * 00 01 11 10
Wlﬂ m, le mz mo m, mj mz
0 1 1 0 1 1 1
m4 mj m7 mb m4 mj m7 Wl6
X 1 1 1 X 1 1 1
L 1 L
z z
(a) F=xy+xz (b) F=z'+x'
yz Y yz Y
T .
x 00 01 11 10 X 00 01 11 10
m, m; m; m, m, m; mg m,
0 1 1 1 1 0 1
m ms m m m, s m; mg
x [| S x [1 1l |
L L
z zZ
() F=x"+yz (d) F=xy+xz+yz
3.2
yz y yz Y
* 00 0l 11 10 * 00 01 11 10
m, iy my m, m, m; Mg 1ty
0 1 1 0 1 1 1
m, /5 ity mg m, s "z it
X 1 1 1 X 1 1 1
L 1 L
z z
(@) F=xYy"+xz (b) F=y+x%Z
vz y vz y
* 00 01 11 10 * 00 01 11 10
m, m, m; n, m, by m; m,
0 1 1 0 1 1 1
m m m m my mg m, mg
x [B A R N x [1 |
L L
z z
(c) F=xy"+xy (d) F=y'+x'z

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,

or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.
25
yz y yz y
X 00 0l 11 10 x 00 01 11 10
m, m, m; m, m, m; ms m,
0 1 1 0 1
m, ;g m, m, my {5 7 s
x| 1 1 1 x| 1 1 1 1 1
L | L |
z z
© e M F=xty:
33
vz y yz y
1
o 00 0l 11 10 x 00 01 11 10
Wlo m1 ”13 m2 m(‘ m] m3 m2
0 1 1 0 1 1 1 1
m, ms m; mg m, i, "y m,
X 1 1 1 X 1 1
| L
z z
(a) F=xy+xyz' +xyz' (b) F=x%"+yz+xyz'
F=xy+x'z F=x"+yz
yz Y yz y
X 00 0l 11 10 x 00 01 11 10
m, m, m; s m, m; m; m,
0 1 1 1 0 1
m, g m, m, m, ms K> s
X 1 1 1 b 1 1 1
N L |
z z
(c) F=xy+yz'+yZ' (d) F=xyz +x'z +xyz'
F==x'y+z F=xYyz+xy

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

26

34
CD C
1
4B 0 01 1110
m, m, m, m,
00
m, ms g mg
NZ e o1 1 1|1
00 01 11 10 B
m m, ms m, mp, m; ms my
0 1 1 11 1
m m m m 4 m m m m
4 5 7 6 $ 9 1 10
X [1 1 1 10
| |
z D
(a) F=y (b) F=BCD + A'BD’
CD C vz
1
4B 0 01 1110 wx 0 01 1110
m, m, m n, m, m, m, n,
00 1 00 1 1
m, I3 7y m, m, n; m, m,
01 1 01
mp, mys Whyy my B (i g i my *
11 1 1 1 11 1 1 1 1
A mg my my My w mg my my Ko7
10 1 10
N N
D z
(¢) F =CD + ABD + ABC (d) F=wk'y +wx
vz ’_;‘ yz
w 00 01 11 10 w 00 Oly 11 10
m, m my m, @ 27 ms m,
00 1 00 1 1
m, m; n, n, m, m; m, m,
01 1 1 1 1 01 1
mp, ms mis my * mp, ms mys my *
11 1 11
w mg my mp Lon) w Mg mny my Lon)
10 10 1 1
| |
z z
(e) F=wXx+why'z ® F=xy"+why'z

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

27

35
yz y CD ¢
1 1
wx 00 0l 11 10 AB 00 0l 11 10
mﬂ ml mj m, mﬂ ml]n-; m2
00 1 00 1
ﬂ’l4 m5 n‘l7 mﬁ m4 m5 m7 m6
01 1 1 1 01 1
Ly mps mys ™y mp, ms ms My
11 1 1 1 11 1 1
w mg my my on 4 mg my ki o)
10 10 1 1 1
N e
z D
(a) F=xz'+w'z+ wxy (b) F=A'C+A4'C'D+ B'C'D
vz y CD ¢
1
wx 00 011110 4B 00, 01 11 .40
m, m, m,) m, m, m,)
00 1 1 00 1 1
7n4 m5 m7 mﬁ m4 m5 m7 m6
01 1 1 1 1 01 1 1 1 1
mp, mis m;s my mp, ms mys my
11 11 1 1
w myg my my; Kon 4 mg my mp; K
10 1 1 10 1 1
| |
z D
(¢) F=wy"+wx'y"+wkxy (d) F=BD+A'B+ B'D'’
or=BD +B'D'+ A'D'’
3.6
CD C yz
1
4B 00. 01 11 .10 wx 00 0kl 10
m, m, m, i, m, m, m, m,
00 1 1 00 1 1
m4 ”15 m7 ”16 m4 m5 m7 m6
01 1 1 01 1 1
k' ey ms my o) U ms my
11 1 1 11 1 1
A iy my my My w mg my g LOT)
10 1 1 10 1 1 1
N e —
D z
(a) F=B'D'"+A'BD + ABC' (b) F=xy"+x'z + wx'y

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

28
CD C CD C
1 1
4B 00. 01 11 .10 4B 0 0l 11 10
m, m ms K m, m; ms m,
00 1 1 00 1 1
m4 m5 m7 ”16 m4 ”15 m7 mé
01 1 1 1 01 1
m, ms mis my B m, ms ms My B
11 1 11 1 1
A Mg my mp My 4 mg mny my on
10 1 1 10 1 1
| |
D D
(d) F=A4'B'D'+ BC'D + ACD' + AB'C
(c) F=B'D'"+BCD + A'BD + A'BC
3.7
vz y CD C
1
wx 00 01 uldedO AB 00 01 cddedO
In[) m] m3 mz ma m1 ms mz
00 1 1 1 00 1 1 1
m4 m5 m7 m6 m4 m5 m7 mé
01 1 1 01 1
m, E s my * [0 s ms my B
11 1 1 11 1 1
w mg my i g 4 mg my my My
10 1 1 1 10 1 1 1
L. = e
z D
(a) F=z +Xxly (b) F=CD+ B'C+ ABC’

CD C vz y
AB wx

00 01 11 10 00 01

m, m, n,) m, m,
00 1 1 1 00 1

m, s n, m, m, n; m, m,
01 1 1 01 1

mp, mps ms My, B m, mp ms my x
11 1 1 11 1 1 1 1

4 s my u My W mg
10 1 1 1 10
|
D

(c) F=B'D'"+AC+ A'BD + CD (or B'C) ()] F=wx+x'y+yz

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

29

3.8
(@) F(x,y,2z)=ZX(3,506,7)

vz y
X
00 01 11 10
m, m ms m,
0 1
m, m; m, m,
X 1 1 1 1
e
z

() F=%(1,3,59,12,13, 14)

CD C
1
4B 00 01 1110
m, m; ms m,
00 1 1
m, ;g m, m,
01 1
mp, mis mys my B
11 1 1 1
4 mg my my My
10 1
|
D
(c) F=%20,1,2,3,11, 12, 14, 15)
Yy
1
w 00 01 11 10
m m; ms m,
00 1 1 1 1
my ms m; Mg
01
mp, ms ms my *
11 1 1 1
W myg my m, 7]
10 1
|

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

30

@ F=33,4,5,7,11,12)

CD C
1
AB 00 0l 1110
mo m/ ”73 mz
00 1
l’l’l4 m5 1777 Wl6
01 1 1 1
m, ms ms my B
11 1
4 mg my my; my
10 1
N
D
3.9
(a) (b)
yz y CD C
I
wx 00 0l 11 ___10 AB 00 01 [I17710
i~ | my My U m; (£ L)
00 10 1 00 1 1 1
. A
i s s RN m, ms 7 mg
01|11 1 1 1 01 1 1
/ \ ;
B mp, mys mys my * mp, mys 15 my B
11 1 1 11 1 1
W s my my My 4 i my v SN
10 1 1 10 1 'y 11
- |
z D
Essential: xz, xz’ Essential: B'D’ AC, A'BD
Non-essential: w'x, w'z’ Non-essential: CD, B'C
F=xz+xZ'+Wxorwz) F=BD'+AC+ A'BD + (CD OR B'C)
(c) d)
CD C yz
1
AB 00 01 11 10 wr 00 01 11 10
}’ﬂ{) m1 Wlj I’nz m(, m1 ﬂ’lj mz
00 1 1 00 1 1
m4 mS m7 m5 Wl4 m5 ”17 m5
01 1 1 01 1 1
g U ms my B mp, s ms my *
11 1 1 1 1 11 1 1 1 1
4 mg my my Kan w mg g my, my,
10 1 1 10 1 1
| |
D z
Essential: BC', AC, A'B'D Essential: wy’, xy, wx'z
F=BC'"+AC+ A'B'D F=wy' +xy+wx'z

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

31

(¢ ®
CD C vz
———
AB 00 01 11 10 wx 0 0l 11 __10
m,, m] m3 m2 mo ml ”‘lj mz
00 1 1 1 00 1 1
Wl4 m5 m7 m6 m4 m5 m7 mé
01 1 1 01 1
mp, mps mys my B My mys ;s my *
11 1 1 11 1 1 1 1
4 mg my m;; m w nmy my m, Lo
10 1 1 1 10 1 1 1
Ly Ly
D z
Essential: BD, B'C, B'C'D' Essential: wy', wx, x'z', xyz
F=BD+B'C+B'CD' F=wy'+wx +x'z' + xyz
3.10
(a) (b)
vz CD C
—r— E——
wx 00 01 11 10 AB 00 01 11 10
my m; my my mg m; me my
00 1 1 00 1 1 1
7714 mj m7 m6 m4 m). m7 m5
01 1 1 1 1 01 1 1
m, mys m;s my * m, m; n;s my B
11 1 1 11 1 1
w m m m m A m m m m
8 9 11 10 8 9 11 10
10 1 1 10 1 1 1
L
z D

Essential: xz, w'x, x'z’
F=xz+wx+xZ

Essential: AC, B'D', CD, A'BD
F=AC+B'D'+ CD + A'BD

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

32

© (d
CD C yz
1
ABN 00 01 g4 10 MEON_00 oy 1110
™ s LER Y L) Mo il ey |
00 E 1 \ 1 :’E 00 i ‘\...1....»"" 1 E
Ty /\ m7 ------ - mp my ms 4 mg
01 1 1 01 1 1
(07 mu_»/ Hrs Blepsees, B mlv ny mr— - My, N X
T 18 O T I T I IRES N I
4 mg m, [/ — m, w mg mg (my, my,
10 1 10 1 1
L Ty e
D z
Essential: BC', AC Essential: wy’, xy
Non-essential: 4B, A'B'D, B'CD, A'C'D Non-essential: wx, x'y'z, w'wz, w'xz
F=BC'"+AC+ A'B'D F=wy' +xy+wkx'"
(e) ®
CD C vz
E—
ABN__00 01 il 10 MYNL_ 00 01 1110
m, m [7 70— m m, m, my m,
ol | [Tl 0| 1 1
m, ms i, mg my ms mz mg
01 1 1 01 1
B m m m m A
m m m 12 13 15 14
T 12 131 151 14 1 | | | 1
A myg my 11 my, W Mg (it my Kon
10 1 1 1 10 1 1 1
I — Ly
D z
Essential: BD, B'C, AB'C Essential: wy’, wx, xyz, x'yz'
Non-essential: CD F=wy'+wx +xyz +x=yz'

F=BD + B'C+ A4B'C

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

33

311 (a)F(A B, C D ,E)=%(0,1,4,5,16,17, 21, 25, 29

F=A'B'D'+AD'E + B'C'D’

my: A'B'C'D'E’ = 00000
my: A'B'C'D'E = 00001
my: A'B'CD'E' =00100
ms: A'B'CD'E =00101
mys. AB'C'D'E’ = 10000
my;: AB'C'D'E =10001
my. AB'CD'E =10101
mys: ABC'D'E =11001
my: ABCD'E =11101
A=0
| D
DE ‘
(BD BC 00 01 11 10
00 _ZT %
01 1 1
>< .
1
B
10
B'C'D'
E
A=1
[D |
DE : :
ADE BC 00 01 1 10
00 1 I
01 1
1 1 ¢
B
10 1
E

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

34

(b) F(4, B, C,D, E) = A'B'CE' + B'C'D'E' + A'B'D' + B'CD' + A'CD + A'BD
F(4, B, C, D, E) = A'B'D' + B'ID'E' + B'CD' + A'CD + A'BD

A'B'CE': AB'CDE'+ A'B'CD'E’

B'C'D'E": AB'C'D'E'+ A'B'C'D'E'

A'B'D': A'B'CD'E +A'B'CD'E'+ A'B'C'D'E + A'B'C'D'E'
B'CD': AB'CD'E + AB'CD'E'+ A'B'CD'E + A'B'CD'E’
A'CD: A'BCDE + A'BCDE' + A'B'CDE + A'B'CDE’
A'BD: A'BCDE + A'BCDE' + A'BC'DE + A'BC'DE'

A'B'D'

BDE' |
1 10
A'CD
1
c
B
1w\ A1 1
ABD
‘ \
E
A=1
[|
D
DE ‘ ‘

BC 00 01 1 10
001
01 1

11 ¢

B
19
E

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

35
3.12
(a)
vz ’_b‘ yz
w 00 01 11 40 wr 00 01 11 10
m, 7 m; m)) m, m, i m,
00 1 1 1 00 0
m, ms m, m, m, n, m, my
01 1 01 0 0 0
mp, mps mys my X W) ms | 18 my *
11 1 11 0 0 0
w mg my my o w mg mg Ui o)
10 1 1 10 0 0
| |
z z
F=X0,1 2528 10, 13) F'=yz+xz'+xy+wx'z
F=xZ'+wk'y +why'z F=@0"+z)x'"+z)x"+y)w' +x +2))
(b)
D c F=T1(1,3,5,7, 13, 15)
1
4B 0 01 1110 F'=AD +B'D
m iy] m, F:(A +DQ(B’+DQ
00 0 0 F = C'Df + ABI + CD’
n, m n, m,
01 0 0
mp, mys ms my B
11 0 0
4 mg m, my mpy
10
N
D
(©)
CD C
1
BN 00 0bedie 10 F=T1(1,3,6,9,11, 12, 14)
m, my ms m, F'=B'D + BCD'+ ABD'
00 010 F=(B+D)B'+C' +D)A'+B' +D)
Tt F=BD+BD'+ACD'
01 0
mp, mis ms my B
11 0 0
4 mg m, o my
10 0 0
|
D

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

36

313 (a) F=xy+z/=(x+z)(y+z)

(b)
CD C CD C
1
4B 0 01 11 10 4B 0 01 1110
m, m, m, m, m, m, g)
00 0 1 0 0 00 0 1 0 0
n, m n; m,) e) m,
01 0 1 0 0 01 0 1 0 0
my; ("13 s my B m, ms mys My B
11 1 1 1 0 11 1 1 1 0
4 Mg mg n, Ko 4 mg myg my Ko
10 1 1 1 1 10 1 1 1 1
N |
D D
F=AC'"+ AD + C'D + AB'C F'A'D'+ A'C + BCD'
F=(A+D)(A+C)B +C'+D)
(©)
CD C CD C
1 1
4B 00 0l 11 10 AB 00 0l 1110
m, m, g n, i n, m, m,
00 0 00 1 1 1
n, m;) m, m, IR n, m,
01 0 0l 1 1 1
mp, mys ms Kon B mp, mys mys My B
11 0 0 11 1 1
4 mg my fm LOo) A K<) my my Lo
10 0 0 0 10 1
| |
D D

F=A+C'+D)A'+B"+D)A'+B+D)A4"+B+C)
F'=A'CD + ABD + AB'D + AB'C
F=4'C+AD'+BD'+ C'D'

F' =A4AD + CD +4B'C
F=@A"+D)C+D)A +B+C)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

37
(d)
CD C CD C
1
AB 0 0l 11 10 4B 00 01 11 10
mo ’n1 mﬁ m_, mo ml m3 mZ
00 00 0 0 0 0
n, m m; m, m, m; n, m,
01 1 01 0 0 0
mp; oy i s my B m; ms ms My B
11 1 1 1 11 0
A Mg my Z My A My my my, Lon
10 1 1 10 0 0
| |
D D
F =4ABC'+ AB'D + BCD F'=A'C'"+A'B'+ CD'+ B'C'D'
F =AD + ABC' + BCD F=(4d+C)(4+B)C'+D)B+C+D)
3.14
CD C CD C
1
4B 00. 01 11 10 4B 00 01
m, m; ms m, m, my
00 1 00 0
m4]n5 m7]716 m4 m5
01 1 1 01 0
mp, mys mys my B m, mys ms My B
11 1 11 0 0 0
4 Mg myg mp My 4 mg my my, Kon
10 1 1 10 0 0
| e
D D

SOP form (using 1s). F=B'C'D'+ AB'D'+ BC'D + A'BD
F=BD'(4+C')+BDA'+ (")

POS form (using 0s): F'=BD'+ B'D + A'CD' + ACD
F=[(B'+D)(B +D)J[(4 + C'+ D)(A'+ C'+ D]

Alternative POS: F'=BD'+B'D+A'CD'+ A'B'C
F=[B"+D)B+D)][(A+C'+D)A"+B+C)]

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

38
3.15
(a) (b)
CD C
1
AB 0 0l 11 10
m, m, m, m,
00 1 X
y m4 m)- m7 m6
x Yz | 01 X 1
00 01 11 10
my 2y s " m, mp; ms my B
0 X x 1 1 11 1 1
A
my s m; mg m m, m m
x [1|1 | x| 1 1 wl 1 | oy
| L
z D
F=1 F=B'D'"+ ABC'D
F=3%(0,1,2,3,4,5,6,7) F=3(0,2,6,8, 10, 13, 14)
(© d
CD C CD C
1
AB 00 0l 11 10 AB 00 01 11 .10
mﬂ ml m-? mz m,, m] m3 ”12
00 X 00 X 1 1 X
m4 m5 ’n7 m6 m4 ”’1_7 m7 m6
01 1 1 1 01
my g g My B mp, my ms my B
11 1 1 X 1 11 1
4 mg myg my; My 4 mg my my on
10 X X 10 1 X 1
N N
D D
F=BC'"+BD + AB F=B'D'"+A'B'"+ ABCD
F=3(45,7, 12,13, 14, 15) F= F=%0,1,23,8,10,15)
316 (a)
CD C
1
AB 00 0l 11 10
;) m, m, m, F=4+A4B'
00 1 1 1 1 F=(4'4B))’
]n4 mj m7 mﬁ
01 "
mp, mys ms my B : F
11 1 1 1 1
AV
4 g myg By My B’
10 1 1 1 1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

39
(b)
CD C
1
4B 0 011110
m, m; m; m, F=BC+AB + A'B'C'D
00 1 F=(BC)'(AB)'(A'B'C'D)")’
m, m; m, 1,
01 1 1 B —3_
C —]
m, ms ms My B y
11 1 1 1 1 —
) s O —r
mg my my o)
10 A’
B'
|
D ¢
D'
(c)
CD C
AB
00 01 11 10
m, oy , R F'=A4'B'D
00| 1 1 F=(4'BD)’
AV
m, ; ; m,
o1 1 1 1 1 B %'} F
D
m, ms m;s my B
11 1 1 1 1
A mg my my My
10 1 1 1 1
N
D
(d)
BC B
AN 00 011110
m, m, m, m, F=A4AC+ AB
0 F=((AC)' (AB)')’
m, i, ez iy
A 1 1 1 1 A —
C —]
L F
c 4 <
B —

3.17

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

40

CD C CD C
1 1
4B 1110 AB 0 0l 1110
0 1 ity iy m, m ms m,
00 1 1 1 1 00
B
m, ms m, mg m, mg
01 1 01
mp, mps ms my B mp; I5 my B
11 1 11
4 m, m, 4 mg my @ My
g0 ’
| |
D D
F=A4'B'+ C'D'+ B'C' F'=BC+ AC + BD

F = (BC)'(AC)'(BD)’

A :}—:D— F

3.18 F=(4@)B'(C @D)=(AB' + A'B)(CD' + C'D) = AB'CD' + AB'C'D + A'BCD' + A'BC'D

CD C
1
4B 0 01 1110
Ty iy Py, A
00 i B
4 ms 7 mg A’
01 1 1 B'
712 3 75 T4 B i
i ! C
T ! D
4 s ny 11 (o) Fol
10 1 1 D'
./ J
N
D

F=AB'CD' + AB'C'D + A'BCD'+ A'BC'D and F' = A'B' + AB + C'D' + CD
F=(4'B)'(AB)(C'D")'(CD)' = (4 + B)(A' + B") (C'+D")(C + D)
F'=[(A+B)A'+B)]'+ [(C'+D)(C+D)]’
F=([(A+B)A'+B)]'+[(C'+D)C+D)])

F=({[A+B)+ A +B)]+[(C+D)+(C+D)])

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

41

319 (@) F=w+Z) +2HW +x' +))

yz
" 00 01 11 10
iy m ms m3
00 1 1 y
z
m4 m5 m7 m6
01 1 1 w
x X
mp, ms ms my F
11 1
w
w ms ey o o) z
10 1 1 1 1
|
z
F=yZ +wx'+w?Z'
F=[ly+2)+ w42+ (w+ 2]
F'=[y+2)'+w+x)'+w+2)]
(b)
yz
wr 00 01 11 10
m, m; ms m, w'
00 1 1 X
m, ms m; mg w
01 x'
x F
mp; ms ms My '
11 1 1 7,
z
w m m, m m
s 9 1 10
10 Y
z
|
z

F=3%(1,2,13, 14)
F'=wx+wx"+yZ' +yz=[(w+x)W' +x)(y +2)(»' +z)]'
F=(wx) + (W' +x) (v +2)'+ (¢ +2)

© F = [(x+ (' 2)]' = (x +3)' + (' +2)'
F'=[(x+y)'+ (& +2)]"
y

X
z

3.20 Multi-level NOR:
F=(4B'+ CD')E + BC(4 + B)
F'=[(AB'+ CD)E + BC(A + B)]'
F'=[[(AB'+CD")'+E'l'+ [(BC)'+ (A +B)]"]
F'=[[(A"+B)'+C"+D))+E]'+[((B +C)+A+B)]]

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

42

AV
B
C’
D
D>
E’

Br
CI

A
B

Multi-level NAND:

F=(4B'+ CD')E + BC(4 + B)

F'= [(AB'+ CD)E]' [BC(A + B)]'
F'= [((4B)'(CD))')'E]' [BC(A'B)]'

47,

¢ D,

C
A" —
B!

3.21 F=wx+y+z) +xyz
F'=[wix +y+2)]'[xyz]" = [wxy'z))]'(xy2)’

i}} :
-

\<‘ =N
!

)

z!
w

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

43
3.22
>, 2
I/'
D
¢) 3 D y
~ 4 D
5 .
) D)=
> O
d 1>
[D—— >+
A I'>-v
3.23
CD C
1
4B 00 0l 11 10
o m— " |
00 X 1 A
m, ns m; mgs B’
01 1 1
C' F
M 13 Mys Mg, B D
11 1 X | i
4 &5 9 my My
10 X X 1
|
D
F=AC"+ A'D'+ B'CD'’
F'=D + ABC
F=[D+4BC]'=[D+ (A'+B'+CJ)]’
3.24
CD C
1
AB 0 01 1110
ma m] mj mZ
00 1
m4 mi m7 ”16
01 1
) ms m;s my B
11 1 1
4 23 e iy @l
10 1 1 1 1

(a) F=C'D' + AB' + AD'

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

44

F'=(C'D)'(AB)'(AD")’
AND-NAND:
CY
DI

A
B’

A
D’

T
;

(b) F'=/C'D'+ AB' + AD'"]'
AND-NOR:

Cl

D(

A
B’

R

A
D’

(¢) F=CD'+AB'+ AD'=(C+D)'+ (A'+ B)' + (A'+ D)’
F'= (C'D")'(AB")'(AD")' = (C + D)(A' + B)(A' + D)
F=[(C+D)A'+B)A'+D)]’

OR-NAND:

(olo)

Y99

[

SN

(d) F=CD'+AB'+AD'=(C+D)'+ (4'+ B)' + (4'+ D)’

NOR-OR:
c
D
A’ F
y ID>—A>—
A,
b I>—
3.25
s 100, .
B B
c)~ 4BCD A+B+C+D
» 107 S
D
AND-AND — AND OR-OR — OR

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

45
4 y
_ ’ 4
c (4B CD) (A+B+C+D)
S C
D
AND-NAND > NAND OR-NOR — NOR
5 I 47
B 4
D j[:>f- A+B+C+D . ABCD
NOR-NAND —> OR NAND-NOR —> AND
A A/V A
4]
1 YaliaYi B
. AB'C'D B O D
’ C — ’
D iy (A+B+C+D) . (A+B+C+D)
NOR-AND — NOR NAND-OR — NAND

The degenerate forms use 2-input gates to implement the functionality of 4-input gates.

3.26
g=(a+tb+c'"+d)b' +c' +d)(a+tc+d)
f=abc'+c'd+ a'ed'+ bled’ g'=a'b'ed + bed' + ac'd
cd c cd c
1 1
ab 0 0111 10 ab 0 011110
m, 2y my iy m, iy ms 2
00 1 1 00 1 1 0 1
m4 m5 m7 l’l’l6 m4 m5 1717 m,y
01 1 1 01 1 1 1 0
m, ms m;s my b mp, ms ms my b
11 1 1 11 1 0 1 0
a mg my my M a mg my my o)
10 1 1 10 1 0 1 1
| L |
d d
feg=ac'd+ abc'd + b'cd'
3.27 xX@y=x'y+xy'; Dual = (x' +y)(x +y') = (xPy)'
3.28
X
y
X
y P C
z
z P
(a) 3-bit odd parity generator (b) 4-bit odd parity generator

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

46

3.29 D=A®B®C
E=ABC+AB'C =(4 @ B)C
F=ABC'+ (4'+ B)C = ABC' + (4B)'C = (4B) ®C

G =ABC
A ®B
A4 — S S D=4A®BoC
Half-Adder C Half-Adder
B — CH = C— E=(40BC
S F=(B) o C
Half-Adder
Cr— G=4BC
AB
3.30 F=AB'CD'+ A'BCD' + AB'C'D + A'BC'D

F=(4A®B)CD'+ (4 @B) C'D = (A @B)(C ®D)

A
B
F
C
D
331 Note: It is assumed that a complemented input is generated by another circuit that

is not part of the circuit that is to be described.

(a) module Fig_3_22a_gates (F, A, B, C, C_bar, D);

output F;

input A, B, C, C_bar, D;

wire w1, w2, w3, w4;

and (w1, C, D);

or (w2, w1, B);

and (W3, w2, A);

and (w4, B, C_bar);

or (F, w3, wd);
endmodule

(b) module Fig_3 22b_gates (F, A, B, C, C_bar, D);

output F;

input A, B, C, C_bar, D;
wire w1, w2, w3, w4;
not (w1_bar, w1);

not (B_bar, B);

not w3_bar, w3);

(
not (W4_bar, wé);
nand (w1, C, D);
or (W2, w1_bar, B_bar);
nand (W3, w2, A);
nand (w4, B, C_bar);
or (F, w3_bar, w4 _bar);
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

47

(¢) module Fig_3 23a_gates (F, A, A_bar, B, B_bar, C, D_bar);
output F;
input A, A bar, B,B bar, C, D _bar;
wire w1, w2, w3, w4;

and (w1, A, B_bar);

and (w2, A_bar, B);

or (W3, w1, w2);

or (w4, C, D_bar);

or (F, w3, wé);
endmodule

(d) module Fig_3_23b_gates (F, A, A_bar, B, B_bar, C_bar, D);

output F;
input A, A_bar, B, B_bar, C_bar, D;
wire w1, w2, w3, w4;

nand (w1, A, B_bar);
nand (w2, A_bar, B);

not (w1_bar, w1);

not (W2_bar, w2);

or (w3, w1_bar, w2_bar);
or (w4, C, D_bar);

not (w5, C_bar);

not (w6, D);

nand (F_bar, w5, wb);

not (F, F_bar);
endmodule

(¢) module Fig_3 26 gates (F, A, B, C, D, E_bar);
output F;
input A B,C,D, E bar;
wire w1, w2, wil_bar, w2_bar, w3_bar;
not (w1_bar, w1);
not (w2_bar, w2);
not (
nor (
nor (w2, C, D);
nand (
endmodule

® module Fig_3_27_gates (F, A, A_bar, B, B_bar, C, D_bar);

output F;

input A, A_bar, B, B_bar, C, D_bar
wire w1, w2, w3, w4, wb, we, w7, w8, w7_bar, w8_bar;
not (w1, A_bar);

not (W2, B_bar);

not (w3, A);

not (w4, B_bar);

not (W7_bar, w7);

not (w8_bar, w8);

and (W5 w1, w2);

and (W6, w3, w4);

nor (W7, w5, wb);

nor (w8, C, D_bar);

and (F, w7_bar, w8_bar);

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

48

3.32 Note: It is assumed that a complemented input is generated by another circuit that
is not part of the circuit that is to be described.

(a) module Fig_3_22a CA (F, A, B, C, C_bar, D);

output F;
input A, B, C, C_bar, D;
wire w1, w2, w3, w4;

assign w1=C&D;

assign w2 =w1|B;

assign w3 =w2 & A);

assign w4 =B & C_bar);

assign F =w3|w4);
endmodule

(b) module Fig_3 22b_CA (F, A, B, C, C_bar, D);

output F;
input A, B, C, C _bar, D;
wire w1, w2, w3, w4;

assign w1_bar = ~wf1;
assign B_bar =~B;
assign w3 _bar = ~w3;
assign w4_bar = ~w4;
assign w1 =~(C &D);
assign w2 =w1_bar | B_bar;
assign w3 =~(w2 & A);
assign w4 =~(B & C_bar);
assign F =w3_bar | w4_bar;
endmodule

(c) module Fig_3_23a_CA (F, A, A_bar, B, B_bar, C, D_bar);

output F;
inputA, A bar, B, B_bar, C, D_bar;
wire w1, w2, w3, w4;

assign w1 =A&B_bar;

assign w2 =A_bar &B;

assign w3 =w1 | w2);

assign w4 =C |D_bar;

assign F =w3|w4;
endmodule

(d) module Fig_3 _23b_CA (F, A, A_bar, B, B_bar, C_bar, D);

output F;
inputA, A bar, B, B_bar, C_bar, D;
wire w1, w2, w3, w4;

assign w1 =~(A & B_bar);
assign w2 =~(A_bar & B);
assign w1_bar = ~wf1;
assign w2_bar = ~w2;
assign w3 =w1_bar | w2_bar;
assign w4, C | D_bar;
assign w5 =~C_bar;
assign w6 = ~D;
assign F_bar = ~(w5 & wb);
assign F =~F_bar;
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

49

(¢) module Fig_3 26 _CA (F, A, B, C, D, E_bar);

output F;

input A, B, C, D, E_bar;

wire w1, w2, wi_bar, w2_bar, w3_bar;
not w1_bar = ~wf1;

not w2_bar = ~w2;

not w3_bar = ~E_bar;

nor w1 =(A|B;

nor w2 = (C | b;

nand F = ~(w1_bar & w2_bar & w3_bar);
endmodule

) module Fig_3_27_CA (F, A, A_bar, B, B_bar, C, D_bar);

output F;

input A A_bar, B, B_bar, C, D_bar

wire w1, w2, w3, w4, wb, we, w7, w8, w7_bar, w8_bar;
not w1 =~A_bar;

not w2 = ~B_bar;

not w3 = ~A;

not w4 = ~B_bar;

not w7_bar = ~w7;

not w8_bar = ~w8;

assign w5 =w1 & w2;
assign w6 = w3 & w4;
assign w7 = ~(w5 | wb);
assign w8 = ~(C | D_bar);
assign F =w7_bar & w8 _bar;

endmodule
3.32 (a)
— > :D_V
AW
y . DW

Initially, with xy = 00, wl = w2 =1, w3 = w4 =0 and F = 0. wl should change to 0 4ns after xy
changes to 01. w4 should change to 1 8 ns after xy changes to 01. F should change from 0 to 1 10 ns
after w4 changes from 0 to 1, i.e., 18 ns after xy changes from 00 to O1.

(b)

“timescale 1ns/1ps

module Prob_3_33 (output F, input x, y);
wire w1, w2, w3, w4;

and #8 (w3, x, w1);
not #4 (w1, x);
and #8 (w4, y, w1);
not #4 (W2, y);
or #10 (F, w3, w4);

endmodule
module t_Prob_3_33 ();

reg x, y;
wire F;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

50

Prob_3 33 MO (F, x, y);

initial #200 $finish;

initial fork
x=0;
y=0;
#20y =1;
join
endmodule

(¢) To simulate the circuit, it is assumed that the inputs xy = 00 have been applied sufficiently long for
the circuit to be stable before xy = 01 is applied. The testbench sets xy =00 att=0ns,and xy=1att=
10 ns. The simulator assumes that xy = 00 has been applied long enough for the circuit to be in a stable
state at t = 0 ns, and shows F = 0 as the value of the output at t = 0. The waveforms show the response to
xy =01 applied at t =10 ns.

0.000ns 39.290ns 78.580ns 117.870ns
Name 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1
X
wl
y
w2
w3
wé
F
t=28ns
t=18n:)
(= ldns Note: input change occurs at t = 10 ns.
t=10ns
“— A=18ns
3.34 module Prob_3 34 (Out_1, Out_2, Out_3, A, B, C, D);

output Out 1, Out_2, Out_3;

input A B, C,D;

wire A _bar, B_bar, C_bar, D_bar;

assign A_bar =~A;

assign B_Bar=~B;

assign C_bar =~C;

assign D_bar =~D;

assign Out 1=~((C|B)& (A_bar|D)&B);

assign Out 2= ((C*B_bar)|(A&B&C)|(C_bar &B)) & (A | D_bar);
assign Out 3=C&((A&D)|B)|(C & A_bar);

endmodule
3.35
module Exmpl-3(A, B, C, D, F) // Line 1
inputs A, B, C, Output D, F, /I Line 2
output B /l Line 3
and g1(A, B, B); /I Line 4
not (D, B, A), /I Line 5
OR (F, B; C); /l Line 6

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

51

endofmodule; /I Line 7

Line 1: Dash not allowed, use underscore: Exmpl 3. Terminate line with semicolon (;).

Line 2: inputs should be input (no s at the end). Change last comma (,) to semicolon (;). Qutput is
declared but does not appear in the port list, and should be followed by a comma if it is intended
to be in the list of inputs. If Output is a mispelling of output and is to declare output ports, C
should be followed by a semicolon (;) and F should be followed by a semicolon (;).

Line 3: B cannot be declared as input (Line 2) and output (Line 3). Terminate the line with a semicolon

G)-

Line 4: 4 cannot be an output of the primitive if it is an input to the module

Line 5: Too many entries for the not gate (only two allowed).

Line 6: OR must be in lowercase: change to “or”.

Line 7: endmodule is mispelled. Remove semicolon (no semicolon after endmodule).

3.36 (a)
¢ L—
c
I_ X
D Dodi) -
A DLDP
(b)
Al 40 B1 BO
wl
>, ——
e wb
— w2 Ly Alt B
L —~
S w3 A gt B
> »
—— = o
wé
/)) — A eq B
)
wS
(©)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

52

D
_Z>— ¥

3.37
UDP_Majority_4 (y, a, b, c, d);
outputy;
input a, b, cd;
table
/l a
0

coocoocoocoo
A~ aaas0co0co0oOUT
A0~ ~2000
~o0o-~0-_0-—0Q
£ oo oex

A A aaaAaaaa
_ A A a0 000
e N e RGN e Ne)
- O~ 0-~~0-~0
Dol

endtable
endprimitive

3.38
module t_Circuit_with_UDP_02467;
wire E, F;
reg A B,C,D;
Circuit_with_UDP_02467 mO (E, F, A, B, C, D);

initial #100 $finish;

initial fork
A=0;B=0;C=0;D=0;
#40A=1;
#20B =1,
#40B =0;
#60B =1;
#1I0C=1;#20C=0;#30C=1;#40C=0;#50C=1;#60C=0; #70C =1;
#20D =1;
join
endmodule

/I Verilog model: User-defined Primitive
primitive UDP_02467 (D, A, B, C);

output D;

inputA, B, C;
[/l Truth table forD=f (A, B, C)=%(0, 2, 4, 6, 7);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

53

table
/I A B C D // Column header comment

0 0O 1;
0 0 1 0;
010 1;
0o 1 1 0;
100 1;
10 1 0;
110 1;
17 1 1 1;

endtable

endprimitive
/I Verilog model: Circuit instantiation of Circuit_UDP_02467
module Circuit_with_UDP_02467 (e, f, a, b, c, d);

output e, f;

input a, b, c,d;

UDP_02467 MO (e, a, b, c);

and (f, e, d); //Option gate instance name omitted

endmodule
Name | 1 1% 1>
A J
B I | I
C e O) O)
D J
E [T O N R
F - 1 1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

54

CHAPTER 4

41 (a) T,=BC T,=A4AB, T:=4A+T, =4+ B'C,
T,=D &T,=D &(A'B) =A'BD'+ D(A + B') = A'BD' + AD + B'D
Fi=T3+T,=A+B'C+A'BD'+ AD + B'D
Withd +AD =Aand A + A'BD'=A + BD':
F,=A+B'C+BD'+B'D
Alternative cover. Fy =4 + CD' + BD' + B'D

F2:T2+D:AIB+D
ABCD| T, T, T, T, F, F,

L2 13 CD C
000110 O O 1 1 1 m, m, m;)
001011 0 1 0 1 O 00 1 1 1
001111 0 1 1 1 1 — — — —

4 s 7 5
010010 1 0 1 1 1 01 1 1
010110 1 0 0 0 1
01100 1 0 1 1 1 P P — T— B
ort11 0 1 0 0 0 1 11 1 1 1 1
1000[0 0 1 0 1 0 A [S
1001 {0 O 1 1 1 1 10 ! ! ! !
0101 0 1 0 1 0
oir|j1r o1 1 1 1 D
11000 0 1 0 1 O
11010 0 1 1 1 1 F,=A4+B'C+B'D+BD'
11100 0 1 0 1 O
11110 o0 1 1 1 1
CD C CD C
1 1
4B 00 0l 11 10 4B 00 0L 11 10
m, g ms m, m, m; iy 7y
00 1 1 00 1 1 1
m, ms m; Mg m, ms m; L3
01 1 1 1 1 01 1 1
mp, mys mys my B m, mys s my B
11 1 1 y 11 1 1 1 1
4 mg my 2 My [my il o)
10 1 1 10 1 1 1 1
N |
D D
F,=4B+D F =A+CD'+BD + BD'

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

55
4.2
' [(AD)'A']'=A4+D
A
A >
- D
B :1 > D—-BC+A’
¢ BC
L - G
D
(AD)'=A4+D’
F=(A+D)A'"+BC)=A'D+ ABC + BCD +=A'D + ABC
F=(+D)A +BC)=A4'D'+ ABC + BCD'=A'D' + ABC
CD C CD C
1 1
AB 00 0l 11 10 AB 00 0l 11 10
m,, Wl] m3 Wl_7 mo m/ le mz
00 1 1 00 1 1
m4 m5 m7 Wlﬁ m4 m5 ﬂ’l7 m6
01 1 1 01 1 1
mp, mps mys my B m, mys mys my B
11 1 1 11 1 1
4 mg my m, myy 4 mg my my, wn
10 10
| |
D D
F=A4'D + ABC + BCD = A'D + ABC G=A4A'D"+ ABC + BCD'=A'D'+ ABC
4.3 (@)Y, =MAS"+BS)E fori=0,1,2 3
(b) 1024 rows and 14 columns
4.4 (a)
T N\ !
1
! X 00 01 11 10
001 1 m, m, n; ms x"]
010 |1 0 1 1 1 "
011 0 F
100 | O m, ms m, myg ,
101 o x| 1 T
110 | 0 o
|
111 0
z
F=x%"+x7'

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

56
(b)
xyz | F y
1
0001 0 * 00 01 11 10
001 |1 m(, m, e B
010 (0O 0 1 1 -
011 |0 z
100 0 m4 m5 m7 Wl6
110 |0
L 1
111 |0
zZ
F=z
4.5
xyz | ABC A
000 | 010 * Y
X
001 | o11 mooo m101 m311 mzlo o
010 | 100 0]] 3y
011 | 101 ,
100 | 001 ", m; L7 g
101 | 010 x| 1 1 Y
110 | o011 z 7
L 1
111 | 100 Z
A=xy+yz
yz B Y
1
* 00 01 11 10
mﬂ ml m_? mz P
0 1 1 .
m4 m5 m7 m6 ,
.
L 1
z x—|_
B=xYy"+yz+xyz' Y _rj_
c z
vz Y
1
x 00 01 11 10
’”0 m, mj mZ
0 1 1
L)
m4 n15 m7 m6
x[l 1 1 z
L 1
z
C=x'z+xz'
4.6
F A
RN ’
X
001 0 muoo m]01 m311 m710 L
010 0 0 7 .
011 1 y -
100 0 m, ms ", m, z -
110 1 Y
e]
111 1 2

F=xz+yz+uxy

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

57

module Prob_4_6 (output F, input x, y, z);
assign F=(x&2z) | (y&z)| (x&Yy);

endmodule
4.7 (a)
ABCD | W0z cD C cD C
0000 | 0000 4B 00 ol 11 10 00 01 11 10
0001 | 0001 ", m, m, m, m, m, my m,
0011 | 0010 00 00
0010 | 0011
0110 | 0100 m, mg |m, |mg my—fmg—m, —mg
o111 | o101 01 01| 1 1 1 1
0101 | 0110 7S T o— r— B 7P T T T B
0100 [0111 11 1 1 1 1 11
oo | 1000 A R m [w A e
1101 | 1001 10| 1 1 1 1 10| 1 1 1 1
1111 | 1010
L 1 L 1
e o : :
_ =AB'+ A'B=A0B
1011 | 1101 w=4 g
1001 | 1110
1000 | 1111
CcD C CD C
AB 00 01 11 10 AB 00 01 11 10
V"ll7 Wll m3 mz Wlo Wll m3 m]
00 1 1 00 1 1
m4 m5 m7 m6 1714 m5 m7 mﬁ
o1 1 1 o1 1 1
m, s s Uy B mn, ms m;s my B
11 1 1 11 1 1
4 ng my my, m, A mg my m;, m;,
10| 1 1 10| 1 1
L 1 e 1
D D
y =A'B'C A'BC'+ ABC + AB'C' s—4®BO®CO®D
=A(A®B)+ABoC) — oD
=4 oBoC
—XecC
A w
C y
D) ‘
(b)

module Prob_4_7(output w, x, y, z, input A, B, C, D);
always @ (A, B, C, D)
case ({A, B, C, D})
4'b0000: {w, X, y, z} = 4'b0000;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

58

4'b0001: {w, X, y, 2} =4'b1111;
4'b0010: {w, x, y, z} =4'b1110;
4'b0011: {w, X, y, z} =4'b1101;
4'b0100: {w, X, y, z} =4'b1100;
4'b0101: {w, X, y, 2} =4'b1011;
4'b0110: {w, X, y, z} =4'b1010;
4'b0111: {w, X, y, z} =4'b1001;

4'b1000: {w, X, y, z} = 4'b1000;
4'b1001: {w, X, y, z} =4'b0111;
4'b1010: {w, X, y, z} =4'b0110;
4'b1011: {w, X, y, z} =4'b0101;
4'b1100: {w, X, y, z} = 4'b0100;
4'b1101: {w, X, y, z} = 4'b0011;
4'b1110: {w, X, y, z} = 4'b0010;
4'b1111: {w, X, y, z} = 4'b0001;
endcase
endmodule

Alternative model:

module Prob_4_7(output w, X, y, z, input A, B, C, D);
assign w = A;
assign x = A * B);
assigny =x " C;
assignz =y " D;

endmodule
4.8
WX
Iﬂ_yz CcD C CD C
000011 0000 ABN 00 o1 1110 0001 ~H-pmi0
0001 | 0001 my m, s ", iy , i, m,
0011 0010 00 X X X 00 X X X
0010 | 0011
0110 | 0100 (N L A ST R A
0111 | 0101 01 ory 1
0101 0110 mp, m; ms m, B Lon ms m;s my B
0100 | OI11 1| x X 1 X 1] x X X
1100 1000 4 mg my my my 4 myg mg ot My
1101 | 1001 10 1 10 1 1 1
1111 | 1010
| s
1110 | 1011
1010 | 1100 b b
1011 1101
1001 1110 AB cb ’C—‘
1000 | 1111 00 01 11 10
m(} m1 m3 mz
00 X X X w =AB+AC'D'’
x=B'C+ B'D +BC'D'’
m, ms m, mg y= cD'+C'D
01 1 1 2=D
mp, mys ms my B
11 X X X
A
myg my mp My
10 1 1
|
D

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

59
Alternative model:
module Prob_4 8(output w, x, y, z, input A, B, C, D);
assignw = (A&B) | (A & (~C)) & (~D) ;
assign x = ((~B) & C) | ((~B) & D) | (B & (~C)) & (~D);
assigny =C " D;
assign z =D;
endmodule
4.9
—5CD . 17 CD c CcD c
U — I ——
I e n e B 00.. 01 11 10 AB 00 0l 11 10
0000 | 1|11]1|1]1]0 m, m; &g ey g m; 3 m,
0001 lol1l1lolololo 00 ([1 1 1 00 [} 1 1 1 1
0010 [1[1]0[1|/1]0]|1 — T
0011 [1|[1|1|1][0]0]1 o1 | Tl Th o1 |6 | 0|
0100 (O |1 |1]0[|O0|1]|1 B B
0101 1|01]1|0]|1]1 mp, mps mys my mp, my; mgs mpy,
0110 [1 /0|1 [1|1|1]1 11 11
ottt {1|1f1jojojojo| 4 . 4 . I
1000 1 1 1 1 1 1 1 10 81 91 11 10 10 81 91 11 10
1001 |11 |1]1[0]|1]|1
Ly L
D D
a=A'C+ A'BD + B'C'D' + AB'C’ b=AB'+A'C'D'+ A'CD + AB'C'
CD C CD C
AB 00 01 11 10 AB 00 0l 11 10
mo mI m3 Wl2 mo i’ﬂ] }'nj m2
00 1 1 1 00 1 1 1
m4 ”l:7 m7 m6 m4 m5 m7 m6
01 1 1 1 1 01 1 1
m, m; ms mn, B m, ms m;s my B
11 11
4 myg mg my, my, A Y2 g my, m,
10 1 1 10 1 1
L L
D D
¢c=AB+A'D+B'C'D'+AB'C'’ d=A'CD'+A'B'C+ B'C'D'+ AB'C' + A'BC'D
CD C CD C CD C
AB 00= 01 11 10 AB 00 0l 11 10 AB 00 0l 11 __10
ma m ms m2 m0 m/ lﬂJ Wl_7 m,) ﬂ’ll le m_,
00 1 1 00 1 00 1 1
m4 m. m7 mﬁ m4 m5 m7 lﬂﬁ m4 m5 m7 m6
01 1 01 1 1 1 01 1 1 1
m;, m m;s m, B m, mn; m;s my B m, m; m;s m, B
11 11 11
4 mg m m;, m, 4 mg g my, m, 4 mg my m, mn,
10 1 10 1 1 10 1 1
Ly Ly Ly
D D D

e=A'CD'+ B'C'D’ f=ABC'+A'C'D' + A'BD + AB'C' g=A'CD'+ A'B'C + A'BC'+ AB'C'

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

60

4.10
1 1
0000 0000 4B 0 01 11 10 00 0l .1l._10
0001 | 1111 " T P [T T
0010 | 1110 00 r 1 1 1 00 1 1 1
0011 | 1101 ¥
0100 | 1100 M | T s |
o101 | 1011 01 1 1 1 1 01 1
0110 1001 mp, s m;s mny B) ms m;s my B
0111 | 1000 11 11 1
1000 | 1000 A [A e i
1010 | 0110
L (I —
o | oo :)
ot | oot w=A(B+C+D)+AB'CD' x=B'(C+D)+CBD'
= +C+ = +
1110 | o010 Ae®@B+C+D) B o (C+D)
1111 | 0001
CD C CD C
1 1
AB 0 011110 AB 0 0l 1110
m” ’”1 mj m2 11’10 mI ”1j }'ﬂz
00 1 1 00 1 1
ﬂ’l4 m5 m7 m6 l7’l4 m5 m7 m6
01 1 1 01 1 1
m, mys mys my B m, mys mys my B
11 1 1 11 1 1
A mg myg my Lon 4 mg myg my My
10 1 1 10 1 1
L L
D D
y=CD'+CD=C® D z=b
For a 5-bit 2's complementer with input E and output v:
v=E® (A+B+C+D)
4.11 (a)
Ay 4, 4, 4,
‘ l l]
x y X y X y X y
Half Adder Half Adder Half Adder Half Adder
C N C S C S C S

Note: 5-bit output

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

61
(b)
4, 4, 1 4, 4, 1
X y X y X y X y
Full Adder Full Adder Full Adder Half Adder
B D B D B D B D

Note: To decrement the 4-bit number, add -1 to the number. In 2's complement format (add F,) to
the number. An attempt to decrement 0 will assert the borrow bit. For waveforms, see solution to

Problem 4.52.
4.12
(a)
xy | BD
00 (00 D=xy+x
01 |11 By
10 |01 Y
11 loo
(b)
xyB | BD
000 (1)(1) Diff=x® ye z
8(1)(1) 11 B, =xy+xZz+yz
0111|160
100 |01
10100
110]00
111111
4.13 Sum C
(a 1101 0
(b) 0001 1
(¢) 0100 1
(@ 1011 0
(e) 1111 0
4.14 xor AND OR XOR
10 +5 +5 +10 =30ns

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

62

4.15 C4 = G3 + P3C3 = G3 + P3(G2 + P2G1 + PzP]GO + PzP]P()Co)

= G3 + P3G2 + P3P2Cll + P3P2P1G0 + P3P2P1P0C0

4.16 (a)

(C'Gi+pY)' = (Ci + G)P; = GiP; + PiC;
= ABi(A; + By + PiC;
=ABi + PiCi =G + PG
=ABi + (A + B)Ci = AB; + AiCi + BiCi = Ciyy
(PiG'i) @ Ci = (zq1 + Bi)(AiBi)' @ Ci = (Al + Bl)(zﬁ'1 + B'i) @® Ci
= (AviBi + AiB’i) ® Ci = Ai @ Bi @ Ci = Si

(d)

Output of NOR gate = (Ay + By)' =P
Output of NAND gate = (A¢By)' = G

S; = (PyG') ® Cy

C;=(CyG's+ PY)' asdefined in part (a)

417 ()
(CiG'i+PY)'=(Ci+ G)P; =GP + P,C; = ABi(A; + B) + PC;
=AB; +PiCi=G; + PG
=ABi + (Ai+ B)Ci = AB; + AiC; + BiC; = Ciyy

(P;GH®C; = (A; + B)(AB)'®C; = (A; + B)(A'; + Bh®@C;
= (A'iBi + AiB'i)@Ci = A,@B1®C1 = Si

(b)

Output of NOR gate = (Ay + By)' =P

Output of NAND gate = (A¢By)' = G

So = (PeG'9)®Cy
C; = (C'\G'y+P')" as defined in part (a)

4.18

Inputs | Outputs
ABCD| wxyz
0000 | 1001
0001 | 1000 d(A, b, c,d) =%(10, 11, 12,13, 14, 15)
0010 | 0111
0011 | 0110
0100 | 0101
0101 | 0100
0110 | 0011
0111 | 0010
1000 | 0001
1001 | 0000

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

63
CD C CD C
1 1
AB 00 0l 11 10 4 00 01 pddedO
m, m; ms m, m, m; m; m,
00 1 1 00 1 1
Wl4 m_; m7 mﬁ m4 m5)117 m6
01 01 1 1
mp, mys mys my B mp, ms mys my B
11 X X X X 11 X X X X
4 mg myg my Lon) 4 myg my my My
10 X X 10 X X
| e]
D D
w=A'B'C’ x=BC'+BC=B ®C
CD C CD C
1 1
00 01 11 10 4 00 01 11 10
mU m] m3 m2 m,] 7711 Wlj 7"2
00 1 1 00 1 1
m4 }’I‘lJ m7 m6 m4 m5 m7 m6
01 1 1 01 1 1 1
m, ms ms my B &z mps m;s my B
11 X X X X 11 X X X X
myg myg my; Kon 4 mg myg my My
10 X X 10 1 X X
| N
D D
y=C z=D'
4.19
Mode = 0 FOR Add
B, B, B, B, Mode = 1 for Subtract
9's Complementer
(See Problem 4.18)
— — _ Select
Select = 1 Select = ()
Ay 4, A, 4,
Quadruple 2 x 1 MUX
l l l Cin
>
BCD Adder (See Fig. 4.14)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

64

4.20 Combine the following circuit with the 4-bit binary multiplier circuit of Fig. 4.16.

A, G G G G G G G
R AR I
C |
o 4-bit Adder Augend
D, D D; D, D; D, D, D,
4.21
4, j§ >:
B,
4,
b D:
- -
A, |
B,
43
B >
x= (4,9 By)'(4,® B)'(4,® B,)'(4,® B,)’
4.22
XS-3 | Binary
ABCD| wxyz
0011 | 0000
0100 | 0001
0101 | 0010
0110 | 0011
0111 | 0100
1000 | o101
1001 [o110
1010 | o111
1011 | 1000
1100 | 1001

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

65
CD C CD C
1
AB 0 0l 1110 4 000l 11 10
m(, m] mj X m(} mI WIj m2
00 X X 00| X X X
m, ms m; mg m, ms mz mg
01 01 1
) R mis my B mp, ms m;s m,y B
11 1 X X X 11 X X X
4 myg my & m 4 mg my my, my
10 1 10 1 1 1
D D
w=AB + ACD x=B'C'+B'D' + BCD
y=CD +CD'’
z=D'
4.23
4,
A, 1 D_Doz(Al+Ao+E’)’=A’1A,oE
\—[> D—Dl=(A1+A’O+E')’=A’1AOE
’D_ D,=(4'\+4,+E") =AA\E
D_ Dy=(A"\+A",+E) =4 AE
>,
E | >
4.24
CD C
1
4B 00 01l 11 10
m{) m, Wlj X
00 | D, D, D, D,
Inputs: 4, B, C, D ;
Outputs: D, D, ..D, my ms m; m,
DO = A'B'C'D' D5 = BC'D 01| D, D, D, D
D,:A'B'C'D D6:BCD' — — — — B
D2 = B'CD'’ D7 = BCD 1 lzX IJX /5X 14X
Dj. = B'CD D8=AD'
D4 :BCD' Dg :AD A myg m, my,
m
10 | D D, X
|
D

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

66
4.25
A 8
0 3x8
—A——— D, -
jl Decoder Dy-D;
2
E
3x8 8
AN
Decoder Dg- D5
0 E
Ay ——— 20
2x4 1
Decoder
A 2! ? a5t ﬁL D, -D
4 3 Decoder 167723
E
8
3x8
I S
Decoder Dyy- Dy
E
4.26
A 20 4
O 1 ch);;er / Dy- Dy
4, 2
E
2 2x4 / 4
21 Decoder D,-D,
0 E
4, 20
2x4 1
Decoder 2 20 P 4
A3 2 7 D 8~ D 11
3 o1 Decoder
E
20 4
2xd 7 D 2" D 15
21 Decoder
E

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

67
4.27
0 —
g r }O—F1=Z(2,4,7)
2
4—2 348 5
I S 1
B 2' Decoder .): F,=%(0,3)
c—2°
5
6 o
; b F,=3(0.2,3,4,7)
(F'y=%(1,5, 6))
4.28 (a)

Fi=x(y+y)z=x"y2"=%(0,5,7)
F=xyz'+xy+xyz+2z)=%2,3,4)
F=xY2z+xyz+z)=2(1,6,7)

0
1 i; Fi
2
x 2 3x8 5
y — 2! Decoder \ F
20 4 ' ?
z
5
N —
7 _)Z>_ F3
(b)
vz Y yz y
I — I
* 00 01 11 10 * 00 01 11 10
Wl() Wl1 7713 mz mo m1 le le
0 1 0 1 1
m4 Wl5 m7 rnﬁ m4 m5 Wl7 m6
X 1 1 1 X 1 1 1 1
z z
Fi=y'z+xz=2%(1,5,7) F,=y'z'+xy'+yz'=%(0,2,4,5,6)
0 | @— F, vz y
1 YN 00 0l 1110
2 m, m, my m,
x —{22
3x8 0 1 1
v — 2 Decoder . \ F
20 4 I] 2 m, m; m, myg
z 5 (x| 1 1
6 L
7 D_ F3 z

Fy=x'z+yz=%(1,3,7)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

68
4.29
Inputs OQutputs DD, D,
1
Dy D, Dy Dy | XY 2 D,D, 00 01 11 10
mny m; ms m,
0 00 0]xx0 00 X
x xx 1 {001
x x1 0]011 "y s "y s
x 100|101 01 | b
1000 L1l |0) mps ms my 2
11 1
D3 mg my my My
10 1
|
D,
v=Dy+D +D,+D,
D\D, b,
1
D.D, 00 01 11 10
D N m, m; ms m,
0 L b——x 00 X 1
Dl E — m4 m5 m7 m6
v 01 1
— D
D2 > " mp, mys ms my 2
D,
D, 2 10 1 1
L
D,
y=D'D, +D'\D’,
4.30
Inputs Outputs
b, b, D, D, D, Dy, D, D, xyz V
6o 0 o0 0 0 0 0 xxx 0
I 0 0 0 0 0 0 000 1
x 1.0 0 0 0 0 001 1
x x 1 0 0 0 0 0101
x x x 1 0 0 0 0111
x x x x 1 0 0 100 1
x x x x x 1 0 101 1
x x x x x x 1 100 1
X X X X X X X 1111

[fD2 =], D6 = 1, all others = 0
Output xyz = 100 and V =1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

69
4.31
SU sO
Sl sl
S2 52
s, 0—1 0
; ; 8x1
s |5 Mux
4— 4
5—1 5
6—1 6
77— 7
2x 1
(1) MUX — 7
So
ol
9
8 —10
190 ; 8x1
3 Mux
12— 4
13— 5
14— 6
15— 7
4.32 @) F=%(0,2,57,11,14)
Inputs
4cp| F
0000 | 1 5 py
0001 | 0
0010] 1 _ 4 s
oot1| of =P B %
0100] 0 _ c B
otor| 1770 ¢
0110 0 ._ D 1
F=D F
11| 1 L|>°_ R S O
1000[0, _, |
1001] 0 o | 4
1010 0, _, 5
1011] 0 L] 6
1100[0 . _ 7
1101] 1
ol 1.
1| of =P

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

70

() F=T1(3,8,12)=(4'+B'+ C+D)(A+B'+ C'+D)(A + B+ C'+ D’
F'=ABC'D' + A'BCD + A'B'CD = (12, 7, 3)
F=%(0,1,2,4,5,6,8,9, 10, 11, 13, 14, 15)

Inputs
4Bcp| ¥
0000 | 1p_,
0001 | 1
oot 1. _ A s
oo11| of =P B 5
0100 1 _ c s
oto1| 1571 1 0
0110 1 ~_ 1
F=D F
0111] 0 D y 8xI ol 7
1000 1._, | | 3 MUX
1001 1 4
1010 1 . 5
o] 1771 6
1100[0, _ 7
1101| 1
11| 1
| 1771
4.33
X 0
Stx,y,2) =2(1,2,4,7) ,_|>Q_E]
Cix,y,z)=23,5,6,7) 2
S
3
Dual
s |11 11 I I LI 4x1 Y
o 11 f2 13 C o 1 12 13 MUX
xlo1 23 x |01 23 0— ¢ c
x 145 67 & 6 7 1
x x' x'x 0 x" x'1 2
1— 3
y VA
4.34 (a)
4 B Cc D|F cD C
1
AB 00 0l 11 10
=1 0 1 1 0 |1 e 7 s m
0 1 1 1 1 00 1
.1 0 1 o0 |1
=1 0 1 1 1 "y s "y &5
S, 0 0 0 00 01 1 1
0 0 0 0 1 1 i my mns my B
1 .0 0 00 1] 1
LDy 0o 0 1 |1
N 1 1 0 0 1 mg my g m,
=D 1 1 o 1 1o 10 1 1 1
L 1
D
Other minterms = 0
sincel, =1,=1,=0 F(4, B, C,D) =%(1,6,7,9,10,11, 12)

(b)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

71

4 B Cc DI|F CD c
AB 00 0ol 1110
71=0 0 0 1 0 0 g m, n, n,
: 0 0 1 110 00| 1 1
. 0 1 0 010
IZ - 0 0 1 0 1 0 01 1114 ”’l5 m7 1 Wl6 1
,_; 0 1 1 0|1
3 0 1 1 1 1 my e & My B
T 1 1 0|1 11 1 1 1
LI N T TR U I]
8 9 11 10
o oo el [
0 0 0 0 |1
Lh=D"o9 0o o 1|0 D
L L L 0 0[]
6 1 1 0 1|0 F@ABCD=x016709,13,14,15)

Other minterms = 0
sincel, =1,=0

4.35 (a)

Inputs
ABCD

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Y

AB =00

AB =01
F=CD’
=(C+D)

s>
rx o lor
— L
|

4x1
MUX

AB =11

e i == el (e e e R P e S)

(b)
Inputs
ABCD

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Y

AB =00
F=CD+CD'

AB =01

F:CD'+CDC D_

4x1
MUX

[B e N N ol === T Fa N S S Y

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

72

4.36

module priority_encoder_gates (output x, y, V, input DO, D1, D2, D3); // V2001
wire w1, D2_not;
not (D2_not, D2);
or (x,D2,D3);
or (V,DO0, D1, x);
and (w1, D2_not, D1);
or (y,D3,w1);

endmodule

Note: See Problem 4.45 for testbench)

4.37

module Add_Sub_4_bit (
output [3: 0] S,
output C,
input [3: 0] A, B,
input M
);
wire [3: 0] B_xor_M;
wire C1, C2, C3, C4;
assign C = C4; /I output carry
xor (B_xor_M][0], B[0], M);
xor (B_xor_M[1], B[1], M);
xor (B_xor_M[2], B[2], M);
xor (B_xor_M[3], B[3], M)
/I Instantiate full adders
full_adder FAO (S[0], C1, A[0], B_xor_M[0], M);
full_adder FA1 (S[1], C2, A[1], B_xor_M[1], C1);
full_adder FA2 (S[2], C3, A[2], B_xor_M[2], C2);
full_adder FA3 (S[3], C4, A[3], B_xor_M[3], C3);
endmodule

module full_adder (output S, C, input x, y, z); // See HDL Example 4.2
wire S1, C1, C2;
/l instantiate half adders
half_adder HA1 (S1, C1, x, y);
half_adder HA2 (S, C2, S1, z);
or G1 (C, C2, C1);
endmodule

module half_adder (output S, C, input x, y); /l See HDL Example 4.2
xor (S, x,Y);
and (C, x,y);

endmodule

module t_Add_Sub_4 bit ();
wire [3: 0] S;
wire C;
reg [3: 0] A, B;
reg M;

Add_Sub_4_bit MO (S, C, A, B, M);

initial #100 $finish;
initial fork

#10 M = 0;

#10 A = 4'hA;

#10 B = 4'h5;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

73
#50 M = 1;
#70 B = 4'h3;
join
endmodule
Name |° | 50 100
A3:0] | x X a
B[3:0] | x X 5 X 3
M
s[3:0] |_x A f X5 X 7
(o] I
4.38
module quad_2x1_mux (//'V2001
input [3:0] A,B, /I 4-bit data channels
input enable_bar, select, // enable_bar is active-low)
output [3:0] Y /I 4-bit mux output
);
/lassign Y = enable_bar ? 0 : (select ? B : A); /I Grounds output
assign Y = enable_bar ? 4'bzzzz : (select ? B : A); // Three-state output
endmodule

/I Note that this mux grounds the output when the mux is not active.

module t_quad_2x1_mux ();

reg [3: 0] A, B, C; /I 4-bit data channels
reg enable_bar, select; /l enable_bar is active-low)
wire [3:0] Y; /I 4-bit mux

quad_2x1_mux MO (A, B, enable_bar, select, Y);

initial #200 $finish;
initial fork
enable_bar = 1;
select = 1;
A =4'hA;
B = 4'h5;
#10 select = 0; /I channel A
#20 enable_bar = 0;
#30 A = 4'h0;
#40 A = 4'hF;
#50 enable_bar = 1;
#60 select = 1; /I channel B
#70 enable_bar = 0;

#80 B = 4'h00;
#90 B = 4'hA;
#100 B = 4'hF;

#110 enable_bar = 1;
#120 select = 0;
#130 select = 1;
#140 enable_bar = 1;
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

74
Name 0 ‘ \70‘ \14\0 !
A[3:0] a__ XoX f
BI3:0] 5 f
enable_bar I
select I LI
Y[3:0] 0 XaXoXfX o X5XoXaXf) 0

With three-state output:

A[3:0] a__ Yo f

B[3:0] 5 f
enable_bar | L [L]

select J LT

Y[3:0] z YafoXfX z X5Xo0XaXf) z

4.39 /I Verilog 1995
module Compare (A, B, Y);
input [3: 0] A, B; //4-bit data inputs.
output [5:0] YV; /Il 6-bit comparator output.
reg [5:0] Y; I EQ, NE, GT, LT, GE, LE

always @ (A or B)

if (A==B) Y =6'b10_0011; /I EQ, GE, LE

else if (A <B) Y =6'b01_0101; /I NE, LT, LE

else Y =6'b01_1010; /I NE, GT, GE
endmodule

I Verilog 2001, 2005

module Compare (input [3: 0] A, B, output reg [5:0] Y);
always @ (A, B)

if (A==B) Y =6'b10_0011; /I EQ, GE, LE

else if (A <B) Y =6'b01_0101; /INE, LT, LE

else Y =6'b01_1010; /I NE, GT, GE
endmodule

4.40
module Prob_4 40 (
output [3: 0] sum_diff, output carry_borrow,
input [3: 0] A, B, input sel_diff

assign {carry_borrow, sum_diff} = sel_diff ? A-B: A+ B;
endmodule

module t Prob_4 40;
wire [3: 0] sum_diff;
wire carry_borrow;
reg [3:0] A, B;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

75

reg sel_diff;

integer |, J, K;
Prob_4_40 MO (sum_diff, carry_borrow, A, B, sel_diff);
initial #4000 $finish;
initial begin
for(1=0;1<2;1=1+1)begin
sel_diff = [;
for (J=0;J<16;J=J+1)begin
A=J;
for (K=0; K<16; K=K+ 1) begin B =K; #5 ; end
end
end
end
endmodule

4.41
module Prob_4 41 (
output reg [3: 0] sum_diff, output reg carry_borrow,
input [3: 0] A, B, input sel_diff
);

always @ (A, B, sel_diff)
{carry_borrow, sum_diff} = sel_diff ? A-B: A+ B;

endmodule

module t_Prob_4 41;
wire [3: 0] sum_diff;
wire carry_borrow;
reg [3:0] A, B;
reg sel_diff;

integer |, J, K;
Prob_4 46 MO (sum_diff, carry_borrow, A, B, sel_diff);
initial #4000 $finish;
initial begin
for (1=0;1<2;1=1+1)begin
sel_diff = [;
for (J=0;J<16;J=J+ 1) begin
A=J;
for (K=0; K<16; K=K+ 1) begin B =K; #5 ; end
end
end
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

76

780 810 840 870
N
ame I I S A I I B I

sel_diff

A[3:0] X X b

9 a
Bis0] 3880008080 0006800800808N000E
7 f 3 7
I

sum_aif3:0] 200000080 0080808000000008¢

carry_borrow |—
2064 2094 2124 2154
Name I I I
T N T T T Ll
sel_diff
A[3:0] 9 X a X b
B0) a86008080000000000800081

p— S5EN00HB0D0HHBNONADBERNDI
carry_borrow I—l—

4.42 (a)
module Xs3_Gates (input A, B, C, D, output w, X, y, z);

wire B _bar, C_or_D bar;
wire CD, C_or_D;
or (C_or_D,C,D)
not (C_or_D_bar, C_or_D);
not (B_bar, B);
and (CD, C, D);
not (z, D)
or (y,CD, C_or_D_bar);
and (w1, C_or_D_bar, B);
and (w2, B_bar, C_or_D);
and (w3, C_or_D, B);
or (x, w1, w2);

or (w,w3, A);
endmodule
(b)

module Xs3_Dataflow (input A, B, C, D, output w, X, y, z);
assign {w, x, y, z} = {A, B, C, D} + 4'b0011;
endmodule
(©
module Xs3_Behavior_95 (A, B, C, D, w, X, y, z);
input A, B, C,D;
output w, x,y, z;
reg w,X\Y,Z

always @ (A or B or C or D) begin {w, x, y, z} = {A, B, C, D} + 4b0011; end
endmodule

module Xs3_Behavior_01 (input A, B, C, D, output reg w, x, y, z);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

77

always @ (A, B, C, D) begin {w, x, y, z} = {A, B,C, D} + 4b0011; end
endmodule

module t_Xs3_Converters ();
regA, B, C, D;
wire w_Gates, x_Gates, y_Gates, z_Gates;
wire w_Dataflow, x_Dataflow, y_Dataflow, z_Dataflow;
wire w_Behavior_95, x_Behavior_95, y_Behavior_95, z_Behavior_95;
wire w_Behavior_01, x_Behavior_01, y_Behavior_01, z_Behavior_01;
integer k;
wire [3: 0] BCD_value;
wire [3: 0] Xs3_Gates = {w_Gates, x_Gates, y_Gates, z_Gates};
wire [3: 0] Xs3_Dataflow = {w_Dataflow, x_Dataflow, y_Dataflow, z_Dataflow};
wire [3: 0] Xs3_Behavior_95 = {w_Behavior_95, x_Behavior_95, y Behavior_95, z_Behavior_95};
wire [3: 0] Xs3_Behavior_01 = {w_Behavior_01, x_Behavior_01, y_Behavior_01, z_Behavior_01};

assign BCD _value = {A, B, C, D};

Xs3_Gates MO (A, B, C, D, w_Gates, x_Gates, y_Gates, z_Gates);

Xs3_Dataflow M1 (A, B, C, D, w_Dataflow, x_Dataflow, y_Dataflow, z_Dataflow);
Xs3_Behavior_95 M2 (A, B, C, D, w_Behavior_95, x_Behavior_95, y_Behavior_95, z_Behavior_95);
Xs3_Behavior_01 M3 (A, B, C, D, w_Behavior_01, x_Behavior_01, y_Behavior_01, z_Behavior_01);

initial #200 $finish;

initial begin
k =0;
repeat (10) begin {A, B, C, D} =k; #10 k =k + 1; end
end
endmodule
Name 0 30 60 %0
K o X 1 X 2 X 3 X a4 X 5 X e X 7 X 8 X 9o 1
A —
B I .
c - o -
D L0 1 I 1 I 1 I I E—
BCD_value[3:0] o X 1+ X 2 X 3 X 4 X 5 ¥ e X 7 X &8 X o
w_Gates I
x_Gates 1 1 |
y_Gates - - ‘- /11—
z_Gates 1 J 1 J 1 J 1 —
Xs3_Gates[3:0] 0011 X 0100 X o101 X o110 X o111 X 1000 X 1001 X 1010 X 1011 X 1100
Xs3_Gates[3:0] 3 X 4 X 5 X & X 7 X 8 X 9 X a X b X ¢
Xs3_Dataflow[3:0] 3 X 4 X 5 X & X 7 X 8 X 9 X a X b X ¢
Xs3_Behavior_95[3:0] 3 X 4 X 5 X & X 7 X 8 X 9 X a X b X ¢
Xs3_Behavior_01[3:0] 3 X 4 X 5 X & X 7 X 8 X 9 X a X b X ¢
4.43 Two-channel mux with 2-bit data paths, enable, and three-state output.

4.44
module ALU (output reg [7: 0] y, input [7: 0] A, B, input [2: 0] Sel);
always @ (A, B, Sel) begin

y=0;

case (Sel)
3'b000: y=8'b0;
3'b001: y=A&B;
3'b010: y=A|B;
3b011: y=A"B;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained

from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,

or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

3'b100: y=A+B;
3b101: y=A-B;
3b110: y=~A;
3'b111: y=8hFF;
endcase
end
endmodule

module t_ALU ();

wire[7: Oly;
reg [7: 0] A, B;
reg [2: 0] Sel;

ALU MO (y, A, B, Sel);

initial #200 $finish;

initial fork
#5 begin A = 8'hAA; B = 8'h55; end // Expecty = 8'd0
#10 begin Sel = 3'b000; A = 8'hAA; B = 8'h55; end // y = 8'b000
#20 begin Sel = 3'b001; A =8hAA; B=8hAA;end //y=A&B
#30 begin Sel = 3'b001; A =8'h55; B=8h55;end //y=A&B
#40 begin Sel = 3'b010; A = 8'h55; B=8h55;end //y=A|B
#50 begin Sel = 3'b010; A = 8hAA; B =8hAA;end//y=A|B
#60 begin Sel = 3'b011; A = 8h55; B=8h55;end //y=A"B
#70 begin Sel = 3'b011; A= 8hAA; B=8h55;end //y=A"B
#80 begin Sel = 3'b100; A = 8'h55; B=8'h00;end //y=A+B
#90 begin Sel = 3'b100; A = 8hAA; B=8h55;end //y=A+B
#110 begin Sel = 3'b101; A= 8'hAA; B=8'h55;end //y=A-B
#120 begin Sel = 3'b101; A =8'h55; B =8hAA;end //y=A-B

Expect y = 8'd0

Expect y = 8hAA =81010_1010

Expect y = 8'h55 = 8'b0101_0101
Expect y = 8'h55 = 8'b0101_0101
Expect y = 8hAA = 8'b1010_1010
Expect y = 8'd0

Expecty = 8'hFF = 8'b1111_1111
Expect y = 8'h55 = 8'b0101_0101
Expect y = 8hFF =8'b1111_1111
Expect y = 8'h55 = 8'b0101_0101
Expect y = 8'hab = 8'b1010_1011

78

#130 begin Sel = 3'b110; A = 8'hFF; end Iy =~A Expect y = 8'd0
#140 begin Sel = 3'b110; A = 8'd0; end Iy =~A Expect y = 8'hFF = 8'b1111_1111
#150 begin Sel = 3'b110; A = 8'hFF; end Iy =~A Expect y = 8'd0
#160 begin Sel = 3'b111; end /l'y=8hFF Expecty=8hFF =8b1111_1111
join
endmodule
Nam o | | | | | | | | | |60\ | | | | | | | | |12\o | | | | | | | | |18\0 | |
se20] | N o001 X o0 J o Y 100)\ 101 X 10) R
ar) [f__aa Y 85 Jaa)fs5)ea(s5(aa)55 Yoo) ff
B |)55 5 55 5) aa
yrop [0 55 faajoo)fifss) ff J55)abfoo) fffo0) ff

Note that the subtraction operator performs 2's complement subtraction. So 8'h55 — 8'hAA adds the 2's
complement of 8'hAA to 8'h55 and gets 8'hAB. The sign bit is not included in the model, but hand
calculation shows that the 9™ bit is 1, indicating that the result of the operation is negative. The
magnitude of the result can be obtained by taking the 2's complement of 8'hAB.

4.45
module priority_encoder_beh (output reg X, Y, V, input DO, D1, D2, D3); // V2001
always @ (DO, D1, D2, D3) begin
X=0;
Y =0;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

79

V=0;

casex ({DO, D1, D2, D3})
4'b0000: {X,Y, V} = 3'bxx0;
4'b1000: {X,Y, V}=3b001;
4'bx100: {X,Y, V}=3b011;
4'bxx10: {X,Y, V}=3'b101;
4'bxxx1: {X, Y, V}=3b111;
default: {X,Y, V}=3b000;

endcase

end
endmodule

module t_priority_encoder_beh (); // V2001
wire X, Y, V;
reg DO, D1, D2, D3;
integer k;
priority_encoder_beh MO (X, Y, V, DO, D1, D2, D3);

initial #200 $finish;

initial begin
k = 32'bx;
#10 for (k = 0; k <= 16; k =k + 1) #10{DO, D1, D2, D3} = k;
end
endmodule
Name 0 ‘ |60‘ |12‘0 ‘ |13‘0
k 0o A1 X2X3)X4ks5) eK7X8XoNtop11)12{13f14 15 16} 17
DO [
o e gy —
i — — | I 1

p3 | 7o rerr

4.46 (a)
F=%0,2, 5,7, 11, 14)
See code below.

(b) From prob 4.32:
F=11(3,8,12)=(A'"+B'"+C+D)(A+B' +C'+D)A+B+C'+D))
F'=ABC'D'+ A'BCD + A'B'CD =%(12,7, 3)
F=%0,1,2,4,5,6,8,9,10,11, 13, 14, 15)

module Prob_4_46a (output F, input A, B, C, D);

assign F = (~A&~B&~C&~D) | (~A&~B&C&~D) | (~A&B&~C&D) | (~A&B&C&D) | (A&~B&C&D) |
(A&B&C&~D);

endmodule

module Prob_4 46b (output F, input A, B, C, D);
assign F = (~A&~B&~C&~D) | (~A&~B&~C&D) | (~A&~B&C&~D) | (~A&B&~C&~D) | (~A&B&~C&D) |

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

80

(~A&B&C&~D) | (A&~B&~C&~D) | (A&~B&~C&D) | (A&~B&C&~D) | (A&~B&C&D) | (A&B&~C&D) |
(A&B&C&~D) | (A&B&C&D);
endmodule

module t Prob_4 46a ();
wire F_a, F_b;

reg A, B, C, D;
integer k;
Prob_4 _46a MO (F_a, A, B, C, D);
Prob_4_46b M1 (F_b, A, B, C, D);
initial #200 $finish;
initial begin
k=0;
#10 repeat (15) begin {A, B, C, D} =k; #10 k=k + 1; end
end
endmodule
Name 19 60 |1zo |180
K 0 X1 X2)X3X4a)sXe6X7X8)o9 X10K11)X12)13)14X15 16X 17
DO J I
D1 - -
p2 |— 00 L 1 —

o3 | e re

4.47
module Add_Sub_4_bit_Dataflow (

output [3: 0] S,

output C,\V,

input [3: 0] A, B,

input M

);

wire C3;

assign {C3, S[2: 0]} = A[2: 0] + ({M, M, M} A B[2: 0]) + M;
assign {C, S[3]} = A[3] + M A B[3] + C3;
assignV=C"C3;

endmodule

module t_Add_Sub_4_bit_Dataflow ();
wire [3: 0] S;
wire C, V;
reg [3: 0] A, B;
reg M;

Add_Sub_4_bit_Dataflow MO (S, C, V, A, B, M);

initial #100 $finish;
initial fork
#10 M =0;
#10 A = 4'hA;
#10 B = 4'h5;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

81

#50M=1;
#70 B = 4'h3;
join
endmodule

Name (O | 50 100

A[3:0]
B[3:0]
M

X || %

s[3:0] |_x A\ f X s X 7

4.48
module ALU_3state (output [7: 0] y_tri, input [7: 0] A, B, input [2: 0] Sel, input En);
reg [7: O]y;
assigny_tri=En ?y: 8'bz;
always @ (A, B, Sel) begin
y=0;
case (Sel)
3'b000: y=8b0;
3'b001: y=A&B;
3'b010: y=A|B;
3b011: y=A~"B;
3'b100: y=A+B;
3b101: y=A-B;
3b110: y=~A;
3'b111: y=8hFF;
endcase
end

endmodule

module t_ALU_3state ();
wire[7: 0] y;
reg [7: 0] A, B;
reg [2: 0] Sel;
reg En;

ALU_3state MO (y, A, B, Sel, En);

initial #200 $finish;
initial fork
#5En =1;

#5 begin A = 8'hAA; B = 8'h55; end /I Expect y = 8'd0
#10 begin Sel = 3'b000; A = 8'hAA; B = 8'h55; end // y = 8'b000 Expecty = 8'd0
#20 begin Sel = 3'b001; A = 8'hAA; B=8hAA;end //y=A &B Expecty=8hAA=28"1010_1010
#30 begin Sel = 3'b001; A=8'h55; B=8h55;end //y=A&B Expecty=28h55=28b0101_0101
#40 begin Sel = 3'b010; A = 8'h55; B = 8'h55; end //y = A | BExpecty = 8h55 = 8'b0101_0101
#50 begin Sel = 3'b010; A = 8'hAA; B=8hAA;end//y=A|B Expecty=8hAA=28b1010_1010
#60 begin Sel = 3'b011; A=8'h55; B=8h55;end //y=A"B Expecty=28'd0
#70 begin Sel = 3'b011; A = 8hAA; B=8'h55;end //y=A*B Expecty=8hFF =8b1111_1111
#80 begin Sel = 3'b100; A = 8'h55; B=8'h00;end //y=A+B Expecty=28h55=28b0101_0101
#90 begin Sel = 3'b100; A = 8hAA; B=8'h55;end //y=A+B Expecty=8hFF =8b1111_1111
#100 En = 0;
#115En=1;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

82

#110 begin Sel = 3'b101; A = 8'hAA; B=8h55;end //y=A-B Expecty=8h55=8b0101_0101
#120 begin Sel = 3'b101; A = 8'h55; B =8'hAA;end //y=A—-B Expecty=8hab=28b1010_1011
#130 begin Sel = 3'b110; A = 8'hFF; end Iy=~A Expect y = 8'd0
#140 begin Sel = 3'b110; A = 8'd0; end Iy =~A Expecty = 8'hFF = 8'b1111_1111
#150 begin Sel = 3'b110; A = 8'hFF; end Iy =~A Expect y = 8'd0
#160 begin Sel = 3'b111; end /l'y=8hFF Expecty=8hFF =8b1111_1111
join

endmodule

4.49

/I See Problem 4.1

module Problem_4 49 Gates (output F1, F2, input A, B, C, D);
wire A_bar = lA;
wire B_bar = IB;

and (T1, B_bar, C);

and (T2, A_bar, B);

or (T3, A, T1);

xor (T4, T2, D);

or (F1, T3, T4);

or (F2, T2, D);
endmodule

module Problem_4_49 Boolean_1 (output F1, F2, input A, B, C, D);
wire A_bar = 1A;
wire B_bar = IB;
wire T1 = B_bar && C;
wire T2 = A_bar && B;
wire T3=A || T1;
wire T4 =T2 " D;
assign F1=T3 || T4;
assign F2=T2|| D;
endmodule

module Problem_4_49 Boolean_2(output F1, F2, input A, B, C, D);
assign F1=A|| (IB&&C) || (B && (!D)) || ('B && D);
assign F2 = (('A) && B) || D;

endmodule

module t_Problem_4_49;
reg A, B, C, D;
wire F1_Gates, F2_Gates;
wire F1_Boolean_1, F2_Boolean_1;
wire F1_Boolean_2, F2_Boolean_2;

Problem_4 48 Gates MO (F1_Gates, F2_Gates, A, B, C, D);
Problem_4 48 Boolean_1 M1 (F1_Boolean_1, F2_Boolean_1, A, B, C, D);
Problem_4_48 Boolean_2 M2 (F1_Boolean_2, F2_Boolean_2, A, B, C, D);

initial #100 $finish;

integer K;

initial begin

for (K=0; K< 16; K=K+ 1) begin {A, B, C, D} = K; #5; end

end

endmodule

4.50
/I See Problem 4.8 and Table 1.5.
/I Verilog 1995

module Prob_4 50 (Code_8 4 m2_m1, A, B, C, D),
output [3: 0] Code 8 4 m2_mf1;

input A B, C,D;
reg[3:0] Code 8 4 m2_m1;

Il Verilog 2001, 2005

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

83

module Prob_4_50 (output reg [3: 0] Code_8 4 m2_m1, input A, B, C, D);

always @ (A, B, C, D) /l always @ (A or B or C or D)
case ({A, B, C, D})

4'p0000: Code_8 4 _m2_m1 = 4'b0000; /10 0
4'p0001:Code_8 4 m2_m1 =4'b0111; /N1 7
4'p0010:Code_8 4 m2_m1 =4'b0110; /12 6
4'p0011:Code_8 4 m2 m1 =4'b0101; /13 5
4'b0100:Code_8 4 _m2_m1 =4'b0100; 114 4
4'b0101:Code_8 4 _ m2_m1 =4'b1011; 115 11
4'p0110:Code_8 4 m2_m1 =4'b1010; /16 10
4'n0111:Code_8 4 m2_m1 =4'b1001; nr7 9
4'p1000:Code_8 4 m2_m1 =4'b1000; /18 8
4'b1001:Code_8 4 m2_m1 =4'b1111; 119 15
4'p1010:Code_8 4 _m2_m1 =4'b0001; /110 1
4'p1011:Code_8 4 m2_m1 =4'b0010; 11 2
4'p1100:Code 8 4 2 1 =4'pb0011; /112 3
4'b1101: Code_8 4 2 1 =4'pb1100; 113 12
4'b1110:Code_8 4 2 1 =4'b1101; /114 13
4'p1111: Code_8 4 2 1 =4'b1110; 1115 14
endcase
endmodule

module t_Prob_4 50;
wire [3: 0] BCD;
reg A, B, C,D;
integer K;

Prob_4 50 MO (BCD, A, B, C, D); // Unit under test (UUT)
initial #100 $finish;
initial begin

for (K=0; K<16; K=K+ 1) begin {A, B, C, D} =K; #5 ; end

end
endmodule

4.51 Assume that that the LEDs are asserted when the output is high.

module Seven_Seg_Display_ V2001 (
output reg [6: 0] Display,

input [3: 0] BCD

);
1 abc_defg
parameter BLANK = 7'p000_0000;
parameter ZERO =7'b111_1110; /I h7e
parameter ONE =7'b011_0000; //'h30
parameter TWO =7'b110_1101; // héd
parameter THREE =7'b111_1001; /I'h79
parameter FOUR =7'b011_0011; /I h33
parameter FIVE =7'b101_1011; /I h5b
parameter SIX =7'b101_1111; // h5f
parameter SEVEN =7'b111_0000; /I'h70
parameter EIGHT =7b111_1111; /I h7f
parameter NINE =7'b111_1011; /' h7b

always @ (BCD)
case (BCD)
0: Display = ZERO;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

84

Display = ONE;
Display = TWO;
Display = THREE;
Display = FOUR,;
Display = FIVE;
Display = SIX;
Display = SEVEN;
Display = EIGHT;
: Display = NINE;
default: Display = BLANK;
endcase
endmodule

CeNoaRwN =

module t_Seven_Seg_Display V2001 ();
wire [6: 0] Display;
reg [3:0] BCD;

parameter BLANK = 7'b000_0000;
parameter ZERO =7b111_1110; /I h7e
parameter ONE =7'b011_0000; /1 h30
parameter TWO =7'b110_1101; // héd
parameter THREE =7'b111_1001; /I'h79
parameter FOUR =7'b011_0011; /I h33
parameter FIVE =7'b101_1011; // h5b
parameter SIX =7'b001_1111; /I h1f
parameter SEVEN = 7'b111_0000; /I 'h70
parameter EIGHT =7b111_1111; /' h7f
parameter NINE =7b111_1011; /I h7b
initial #120 $finish;
initial fork

#10 BCD = 0;

#20 BCD = 1;

#30 BCD = 2;

#40 BCD = 3;

#50 BCD = 4;

#60 BCD = 5;

#70 BCD = 6;

#80 BCD =7;

#90 BCD = 8;

#100 BCD =9;
join

Seven_Seg_Display_V2001 MO (Display, BCD);
endmodule

0 60 120
Name L I L I L

BCD[3:0] x X o)X 1X2X3X4aXs5) e 7X8) o
Display[6:0] | xx X 7e } 30 X 6d X 79 X 33 X5b X 5f X 70 X 7f {_ 7b

Alternative with continuous assignments (dataflow):

module Seven_Seg_Display_V2001_CA (
output [6: 0] Display,

input [3: 0] BCD

);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

85

I abc_defg

parameter BLANK = 7'b000_0000;

parameter ZERO =7'b111_1110; /I h7e
parameter ONE =7'b011_0000; //'h30
parameter TWO =7'b110_1101; // héd
parameter THREE =7'b111_1001; /I'h79
parameter FOUR =7'b011_0011; /I h33
parameter FIVE =7'b101_1011; // h5b
parameter SIX =7'b101_1111; /I h5f
parameter SEVEN = 7'b111_0000; /I'h70
parameter EIGHT =7'b111_1111; /' h7f
parameter NINE =7'b111_1011; /I 'h7b
wire A,B,C/D,a,b,cdefg;

assign A = BCD[3];

assign B = BCD[2];

assign C = BCD[1];

assign D = BCDI0];

assign Display = {a,b,c,d,e,f,g};

assign a = (~A)&C | (~A)&B&D | (~B)&(~C)&(~D) | A & (~B)&(~C);

assign b = (~A)&(~B) | (~A)&(~C)&(~D) | (~A)&C&D | A&(~B)&(~C);

assign ¢ = (~A)&B | (~A)&D | (~B)&(~C)&(~D) | A&(~B)&(~C);

assign d = (~A)&C&(~D) | (~A)&(~B)&C | (~B)&(~C)&(~D) | A&(~B)&(~C) | (~A)&B&(~C)&D;

assign e = (~A)&C&(~D) | (~B)&(~C)&(~D);

assign f = (~A)&B&(~C) | (~A)&(~C)&(~D) | (~A)&B&(~D) | A&(~B)&(~C);

assign g = (~A)&C&(~D) | (~A)&(~B)&C | (~A)&B&(~C) | A&(~B)&(~C);
endmodule

module t_Seven_Seg_Display V2001_CA ();
wire [6: 0] Display;
reg [3: 0] BCD;

parameter BLANK = 7'b000_0000;
parameter ZERO =7b111_1110; /I h7e
parameter ONE =7'b011_0000; /1 h30
parameter TWO =7'b110_1101; // héd
parameter THREE = 7'b111_1001; /I h79
parameter FOUR =7'b011_0011; /I h33
parameter FIVE =7'b101_1011; /I h5b
parameter SIX =7'b001_1111; /' h1f
parameter SEVEN = 7'b111_0000; /I 'h70
parameter EIGHT =7'b111_1111; /' h7f
parameter NINE =7b111_1011; /I h7b
initial #120 $finish;
initial fork

#10 BCD = 0;

#20 BCD = 1;

#30 BCD = 2;

#40 BCD = 3;

#50 BCD = 4;

#60 BCD = 5;

#70 BCD = 6;

#80 BCD =7;

#90 BCD = 8;

#100 BCD =9;
join

Seven_Seg_Display_V2001_CA MO (Display, BCD);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

86

endmodule

4.52 (a) Incrementer for unsigned 4-bit numbers

module Problem_4 52a Data_Flow (output [3: 0] sum, output carry, input [3: 0] A);
assign {carry, sum} = A + 1;
endmodule

module t_Problem_4 52a Data_Flow;
wire [3: 0] sum;

wire carry;

reg[3:0] A;

Problem_4 52a Data_Flow MO (sum, carry, A);

initial # 100 $finish;
integer K;
initial begin
for (K=0; K<16; K=K + 1) begin A = K; #5; end
end
endmodule

(b) Decrementer for unsigned 4-bit numbers

module Problem_4 52b Data_Flow (output [3: 0] diff, output borrow, input [3: 0] A);
assign {borrow, diff} = A - 1;
endmodule

module t_Problem_4 52b Data_Flow;
wire [3: 0] diff;
wire borrow;
reg [3: 0] A;
Problem_4 52b Data_Flow MO (diff, borrow, A);

initial # 100 $finish;

integer K;
initial begin
for (K=0; K<16; K=K+ 1) begin A = K; #5; end
end
endmodule
Nare 0 30 60 9%

mzop |0f1A2f3)4)5/6)7) 8k9fafbfcfdfef f
affzo] | fXof1f2f3)afs5k6) 7 8f9 akbhcfdf e

borow | |

4.53 |/ BCD Adder

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

87

module Problem_4_ 53 BCD_Adder (
output Output_carry,
output [3: 0] Sum,
input [3: 0] Addend, Augend,

input Carry_in);
supply0 gnd;
wire [3: 0] Z_Addend;
wire Carry_out;
wire C_out;

assign Z_Addend = {1'b0, Output_carry, Output_carry, 1'b0};
wire [3: 0] Z_sum;

and (w1, Z_sum[3], Z_sum[2]);
and (w2, Z_sum[3], Z_sum[1]);
or (Output_carry, Carry_out, w1, w2);

Adder_4_bit MO (Carry_out, Z_sum, Addend, Augend, Carry_in);
Adder_4_bit M1 (C_out, Sum, Z_Addend, Z_sum, gnd);
endmodule

module Adder_4_bit (output carry, output [3:0] sum, input [3: 0] a, b, input c_in);
assign {carry, sum}=a+b + c_in;
endmodule

module t Problem 4 53 Data_Flow;
wire [3: 0] Sum;

wire Output_carry;
reg [3: 0] Addend, Augend;
reg Carry_in;

Problem_4 53 BCD_Adder MO (Output_carry, Sum, Addend, Augend, Carry_in);

initial # 1500 $finish;
integer i, j, k;
initial begin
for(i=0;i<=1;i=i+1)begin Carry_in = i; #5;
for (j=0;j<=9;j=j+1) begin Addend = j; #5;
for (k=0; k<=9; k=k + 1) begin Augend = k; #5;

end
end
end
end
endmodule
Narne 68\ | | | | | | | | '98\ | L L L L L L L '12\8 L L L L L L L L '15\8 L L L L L L L L '18\8 L L L L L L L
Addend[3:0] 1 X 2 X 3
Augend3:0]| 12 34 5 e 7 8 9 NoX1k2K3Yaks5KeK7) 8k o fok1K2(3)f4) 5]
Carry_in
sump:0]| Y2 3)f4a)X5) e)f7 8 o oX1X2) 3 a s ez N8 oo 1 23 a5 e)7 X 8)
Output_carry

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

88

4.54
module Nines_Complementer (/1'V2001
outputreg [3: 0] Word_9s_Comp,
input [3: 0] Word_BCD
);
always @ (Word_BCD) begin
Word_9s_Comp = 4'b0;
case (Word_BCD)
4'p0000: Word _9s Comp = 4'b1001; //0to9
4'pb0001: Word_9s_Comp = 4'b1000; /I1t08
4'b0010: Word_9s_Comp =4'b1111; /I2t07
4'p0011: Word_9s_Comp = 4'b0110; //3t06
4'p0100: Word_9s_Comp = 4'b1001; /l4t05
4'n0101: Word_9s_Comp = 4'b0100; //5t0 4
4'p0110: Word_9s_Comp = 4'b0011; //6t03
4'b0111: Word_9s_Comp = 4'b0010; /7102
4'b1000: Word_9s_Comp = 4'b0001; /18101
4'p1001: Word_9s_Comp = 4'b0000; //9t0 0
default: Word 9s Comp =4'b1111; /I Error detection
endcase
end
endmodule

module t_Nines_Complementer ();
wire [3:0] Word_9s_Comp;
reg [3:0] Word_BCD;

Nines_Complementer MO (Word_9s_Comp, Word_BCD);

initial #11$finish;
initial fork
Word_BCD = 0;
#10 Word_BCD = 1;
#20 Word_BCD = 2;
#30 Word_BCD = 3;
#40 Word_BCD = 4;
#50 Word_BCD = 5;
#60 Word_BCD = 6;
#70 Word_BCD = 7;
#20 Word_BCD = 8;
#90 Word_BCD = 9;
#100 Word_BCD =4'b1100;
join
endmodule

Name

0
|
Word_BCD[3:0] 0 X1 X2X3)X4)

5
Word_9s_Comp[3:0] | 9 X 8 X f X 6) 4

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

89

4.55 From Problem 4.19:
Mode = 0 FOR Add

B, B, B, B, Mode = 1 for Subtract
9's Complementer
(See Problem 4.18)
e e St Select
Select = 1 Select =0
A3 AZ Al AO
Quadruple 2 x 1 MUX
C[n
BCD Adder (See Fig. 4.14)

// BCD Adder — Subtractor
module Problem_4 55 BCD_Adder_Subtractor (

output [3: 0] BCD_Sum_Diff,

output Carry_Borrow,

input [3: 0] B, A,

input Mode

wire [3: 0] Word_9s_Comp, mux_out;

Nines_Complementer MO0 (Word_9s_Comp, B);

Quad_2_x_1_mux M2 (mux_out, Word_9s_Comp, B, Mode);

BCD_Adder M1 (Carry_Borrow, BCD_Sum_Diff, mux_out, A, Mode);
endmodule
module Nines_Complementer (/' V2001

output reg [3: 0] Word_9s Comp,

input [3: 0] Word_BCD
).

always @ (Word_BCD) begin
Word_9s_Comp = 4'b0;
case (Word_BCD)
4'p0000: Word 9s Comp = 4'b1001; //0to9
4'b0001: Word_9s_Comp = 4'b1000; /1108
4'p0010: Word_9s_Comp = 4'b0111; 12t07
4'p0011: Word_9s_Comp = 4'b0110; //3t06
4'p0100: Word_9s_Comp = 4'b1001; /l4t05
4'n0101: Word_9s_Comp = 4'b0100; //5to4
4'0110: Word_9s_Comp = 4'b0011; //6t03
4'b0111: Word_9s_Comp = 4'b0010; /7102
4'b1000: Word_9s_Comp = 4'b0001; /8101
4'p1001: Word_9s_Comp = 4'b0000; //9t0 0
default: Word 9s Comp =4'b1111; /I Error detection
endcase
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

90

module Quad_2_x_1_mux (output reg [3: 0] mux_out, input [3: 0] b, a, input select);
always @ (a, b, select)
case (select)
0: mux_out = a;
1: mux_out = b;
endcase
endmodule

module BCD_Adder (
output Output_carry,
output [3:0] Sum,
input [3: 0] Addend, Augend,

input Carry_in);
supply0 gnd;

wire [3: 0] Z_Addend;
wire Carry_out;
wire C_out;

assign Z_Addend = {1'b0, Output_carry, Output_carry, 1'b0};
wire [3: 0] Z_sum;

and (w1, Z_sum[3], Z_sum[2]);
and (w2, Z_sum[3], Z_sum[1]);
or (Output_carry, Carry_out, w1, w2);

Adder_4_bit MO (Carry_out, Z_sum, Addend, Augend, Carry_in);
Adder_4_bit M1 (C_out, Sum, Z_Addend, Z_sum, gnd);
endmodule

module Adder_4_bit (output carry, output [3:0] sum, input [3: 0] a, b, input c_in);
assign {carry, sum}=a+b + c_in;
endmodule

module t_Problem_4_ 55 BCD_Adder_Subtractor();
wire [3: 0] BCD_Sum_Diff;

wire Carry_Borrow;
reg [3:0] B,A;
reg Mode;

Problem_4 55 BCD_Adder_Subtractor MO (BCD_Sum_Diff, Carry_Borrow, B, A, Mode);
initial #1000 $finish;

integer J, K, M;
initial begin
for(M=0;M<2;M=M + 1) begin
for (J=0;J<10;J=J+ 1) begin
for (K=0; K<10; K=K+ 1) begin
A=J;B=K; Mode =M; #5;
end
end
end
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

91

Nare | 28 ‘2% 318 38

M 0

A30

Faq
Word S5 God 30
mux_ouf3Q)

BD Sum Oifff30]
CayBorow] | L I

Note: For subtraction, Carry Borrow = 1 indicates a positive result; Carry Borrow = 0 indicates a
negative result.

Name

M 1

A[3:0]

5
aor| [+f s) o) 7fsfofolt)zfs)efsfefrfafofot)a)s]e)s]]
wora_9s_comprar| | 3) ¢ 3| 2| 1) ofofs)7)efsfafs)zfrjo)ofsfrfefofef]
el B S 0800000008000 0000000

sco_sum_oirtsar| [5} 0o af 7} o fsfefsfefrfofofsf 7 fefs|ef7)2]
Carry_Borrow —‘—, I—,

4.56
assign match = (A == B); // Assumes reg [3: 0] A, B;

4.57
/I Priority encoder (See Problem 4.29)
/I Caution: do not confuse logic value x with identifier x.
I/l Verilog 1995

module Prob_4 57 (x, vy, v, D3, D2, D1, DO0);
output x,y,v;

input D3, D2, D1, DO;

reg X, Y, V;

/I Verilog 2001, 2005

module Prob_4 57 (output reg X, y, v, input D3, D2, D1, DO);
always @ (D3, D2, D1, DO) begin // always @ (D3 or D2 or D1 or DO)

x=0;
y=0;
v=0;

casex ({D3, D2, D1, D0})
4'b0000:{x, y, v} = 3'bxx0;
4'bxxx1: {X, y, v} = 3'b001;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

92
4'bxx10: {x, y, v} = 3'b011;
4'bx100: {x, y, v} = 3'b101;
4'b1000:{x, y, v} = 3'b110;
endcase
end
endmodule
module t Prob_4 57;
wire X, Y, V;
reg D3, D2, D1, DO;
integer K;
Prob_4_57 MO (x, y, v, D3, D2, D1, DO);
initial #100 $finish;
initial begin
for (K=0; K< 16; K=K+ 1) begin {D3, D2, D1, D0} = K; #5 ; end
end
endmodule
4.58
lImodule shift_right_by 3 V2001 (output [31: 0] sig_out, input [31: 0] sig_in);
// assign sig_out = sig_in >>> 3;
llendmodule
module shift_right_by 3 V1995 (output reg [31: 0] sig_out, input [31: 0] sig_in);
always @ (sig_in)
sig_out = {sig_in[31], sig_in[31], sig_in[31], sig_in[31: 3]};
endmodule
module t_shift_right_by 3 ();
wire [31: 0] sig_out_V1995;
wire [31: 0] sig_out_V2001;
reg [31: 0] sig_in;
[Ishift_right_by_3_V2001 MO (sig_out_V2001, sig_in);
shift_right_by 3 V1995 M1 (sig_out_V1995, sig_in);
integer k;
initial #1000 $finish;
initial begin
sig_in = 32'hf000_0000;
#100 sig_in = 32'h8fff_ffff;
#500 sig_in = 32'hOfff_ffff;
end
endmodule
Name | 609 619 629 639
sig_in[31:0] 00001111111111111111111111111111
sig_out_\/1995[31:0] 00000001111111111111111111111111
Name %4 | e e
sig_in[31:0] 11110000000000000000000000000000
sig_out V1995[31:0] 11111110000000000000000000000000

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

93
4.59
/Imodule shift_left_by 3_V2001 (output [31: 0] sig_out, input [31: 0] sig_in);
/I assign sig_out = sig_in <<< 3;
llendmodule
module shift_left_by 3 V1995 (output reg [31: O] sig_out, input [31: 0] sig_in);
always @ (sig_in)
sig_out = {sig_in[28: O], 3'b0};
endmodule
module t_shift_left_by 3 ();
wire [31: 0] sig_out_V1995;
Ilwire [31: 0] sig_out_V2001;
reg [31: 0] sig_in;
[Ishift_left_by_3_V2001 MO (sig_out_V2001, sig_in);
shift_left_by 3 V1995 M1 (sig_out_V1995, sig_in);
integer k;
initial #500 $finish;
initial begin
#100 sig_in = 32'h0000_000f;
end
endmodule
0 50 100 150
’\HTE | | | | | | | | | ‘ | | | | | | | | | ‘ | | | | | | | | | ‘ | | | |
Sq 310 Y00 X 000000k
sig ot VASH310] 000000 X 00000078
4.60
module BCD_to_Decimal (output reg [3: 0] Decimal_out, input [3: 0] BCD_in);
always @ (BCD_in) begin
Decimal_out = 0;
case (BCD_in)
4'p0000: Decimal_out = 0;
4'b0001: Decimal_out = 1;
4'p0010: Decimal_out = 2;
4'b0011: Decimal_out = 3;
4'p0100: Decimal_out = 4;
4'b0101: Decimal_out = 5;
4'b0110: Decimal_out = 6;
4'b0111: Decimal_out = 7;
4'p1000: Decimal_out = 8;
4'p1001: Decimal_out = 9;
default: Decimal_out = 4'bxxxx;
endcase
end
endmodule
4.61

module Even_Parity_Checker_4 (output P, C, input x, y, z);
xor (W1, X, Y);
xor (P, w1, z);
xor (C, w1, w2);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

94

xor (W2, z, P);
endmodule

See Problem 4.62 for testbench and waveforms.

4.62
module Even_Parity_Checker_4 (output P, C, input x, y, z);
assignwl =x"y;
assign P =w1 "z
assign C = w1 *w2;
assignw2 =z " P;
endmodule
Name O | ‘ 14\0 | ‘ 28\0 | ‘ 42\0 |
X]
y | | |
z I [O I
P J J
C
CHAPTER 5
5.1 (a)
D
(b)
R=({D+C)'=D'C
b (i)
0
C
Ql
s=(D'+C)'=DC
(c)

§=(DC)'=D'+C'

o T

R=((DC)'C)'=DC + C'
=(D+C)=(D'C)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

95
5.2
2! e,
J 0 0
Y D 0
e
s C
53 Q+1)=UO' +K'Q) =" +Q)K+Q)=JQ"+KQ
KQ K
1
N 00 o1 11 10
gy m, my 5
0 0 1 0 0
m4 l’i’l5 m7 m6
Jl 1 1 1 0 1
e 1
0
5.4
@ P N |Q(t+1) b)) P N O | Ot+1)
0 0 0 00 0 0
0 1 o) 00 1 0
10 o' 01 0 0
11 1 01 1 1
10 0 1
10 1 0
11 0 1
11 1 1
NO N
1
P 0 ol 11 10
my m, g m,
0 1
m4 I’Vl5 m7 m6
Pl 1 1 1 1
|
0
O(r+1) = PQ"+ NQ
() Q9w Q@u+l) |P N (d) Connect P and N together.
0 0 0 x
0 1 1 x
1 0 x 0
1 1 x 1
5.5

The truth table describes a combinational circuit.

The state table describes a sequential circuit.

The characteristic table describes the operation of a flip-flop.

The excitation table gives the values of flip-flop inputs for a given state transition.
The four equations correspond to the algebraic expression of the four tables.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

5.6 (a)
N N,
| Xy’ + xA A
y D 0
O—
B
z
D 0
cP
® (©)
5 2 3 00/0
R S 3¢ § 00/1
£ §F 4% 8 o0
A B xy A B :z
00 00 00 0
00 01 10 0
00 1.0 00 0
00 1.1 00 0
01 00 01 1
o1 01 11 1
01 1.0 00 I
01 1.1 00 1
70 00 00 0
10 01 10 0 01/0 01/1
1o 10 11 0
10 11 11 0
11 00 01 1
11 01 11 1
1110 11 1
A B Y Y |
01/0 11/1
5.7
H o H] 1/0
3y T 00/0 01/0
£ § =28 &
0 xy 0 N
0 00 0 0
0 0 1 0 1
0 10 0 1
0 11 1 0
1 00 0 1
1 0 1 1 0
1 10 1 0
1 11 1 1
S§S=x@y®@0

ot+1)=xy+x0+y0

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

97

5.8 A counter with a repeated sequence of 00, 01, 10.
3
SR BX| FF 00 01
& § é ‘§ Inputs k
A4 BAB|T,T, t
0 00 0 01
0 11 0 1 1
7 0 0 0 1 0
11 0 0 1 1
T,=A+8B
— ’
T,=A'+B
Repeated sequence: 11 10

|—>00—> 01— IO-»I

5.9

A(t+1) =J A"+ K'A = xA' + BA
B(t+1) =J,B'+ K',B = xB'+ A'B

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

98
5.10 (a) J,=Bx +BYy' Jp =A%
K, =B'xy' Kg=A4+xy' z =Axy + Bx'y'
(b) (c)
5 2 g |FF xy X
= i 1
SY % 3% 3| Oupus 4B 00 0l 11 10
ST = = 5 O o m 7 7
A B ¥ 4B z JA KA JA JB 0 1 3 g
Y 00 1 1
00 00 10 01|10 00
00 01 00 0100 00 i s 7 s
o0 10 11 0 |11 11 01 1 1
00 11 01 010010 — — — — B
01 00 01 1 (00 00 1 ‘21 ‘31 ‘51 ‘41
01 01 01 0100 00
01 1 0 10 011010 A e e e [
0 1 1 1 1 1 0 1 0 1 0 10 1 1 1
710 00 10 01 00 1
10 01 10 0100 0 I
10 10 00 0|11 0 1
10 11 10 0|00 01 Y
I 1 00 10 1]0o0 0 1 ,
+1) =Ax'+ Bx + Ay +
11 01 10 0|00 01 A(tt]) =Ax"+ Bx + Ay + A'BYy
11 10 10 01100 1 v X
11 11 10 1110 0 1 AB 0 ol ﬁ
m, m; [Uty
00 1 1
m4 Wl5 m7 m6
4 01| 1 1 1
KOP) m ms My B
11
my my my my
10
L 1
y
B(t+1) =ABx + AB'(x"+y)
511 Present state: 00 00 01 00 01 110001 11100001 11 10 10

Input: 0601o011o0111011110
Output: 00100100O01O00O0O0O01
Next state: 0001000111000111100001 1110 1000

5.12 Present Next state Output
state 1

S = = O Oo@

0
0
0
1
1

09 ~ Q. o Q
e 0o QN |@
QU T Q8 o=

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

99

5.13 (a) State: afbcedghggha
Input: 01110010011
Output: 01000111010
(b) State: afbabdgdggda
Input: 01110010011
Output: 01000111010
5.14
Present Next
state state Output
A B C x=0x=1 x=1x=0
a 000 000 001 O O
b 001 011 010 O O
c 011 000 010 O O
d 010 110 010 0 1
e 110 000 010 O 1
5.15 Do=0J+ 0K
Present Invut Next
state nputs state JK J
Q I'K Q 00 01 11 10
0 00 0 No change 0 Moo M m31 mzl
0 01 0 Reset to 0
0 10 | Setto 1 | ”’41 s " ’”61
0 11 1 Complement 0
1 00 1 No change
1 01 0 Reset to 0 K
1 10 1 Setto 1
1 11 0 Complement Q(t+1) =D, + QU + OK'
L
J D 0 [
K—l>07
|_ clk 0 [
5.16 (a) Dy =Ax" + Bx

Dy =A'x + Bx'

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

100
B
Present Next Bx —
state Input state 4 00 01 11 10
m, m my my
A B X A B 0 1
0 0 0 0 0 m4 ﬂ’l5 m7 n16
00 1 01 A[1 1 1 1
01 0 01
01 1 11 %
10 0 10 ,
10 1 00 D,= Ax'+ Bx
11 0 11 Bx B
11 1 10 AN 00 01 1110
0 ’ l 1 ' 1 : 1
A [1 1
Ly
X
D, = Ax + Bx'
(b) D,=A% + Ax'
Dy =AB + Bx'
B
Present Next Bx —
state Input state 4 00 01 11 10
A B X A B 0 1 1
00 0 00 o s m e
00 1 11 A [1 1 1
01 0 01
01 1 10 %
10 0 10 . ,
10 1 00 D,= Ax + Ax
11 0 11 Bx %
11 1 01 AN 00 01 1110
m, m my mny
0 1 1
m4 mj 17’17 m6
A [1 1 1
L
X
D, = AB + Bx'
5.17 The output is 0 for all 0 inputs until the first 1 occurs, at which time the output is 1. Thereafter, the output

is the complement of the input. The state diagram has two states. In state 0: output = input; in state 1:
output = input'.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

5.18

101

cli
(@)
]
S
g % - reset_b
5§ o = S
§ §~ % § 0/1
j i j 3 0/0 reset b 1/0
0o 0 0 0
0o 1 1 1
7 0 1 1
1 1 1 0 /1
D,=4+x
y=Ax'+ A
Binary up-down counter with enable E.
Present Next . .
state Input state Flip-flop inputs
AB x AB YK, Jp K
00 01 00 O0x O x
00 01 00 O0x O x
00 10 11 1 x 1 x
00 11 01 0x 1 x
01 00 Ol 0x x 0
01 01 01 0x x 0
01 10 01 0 x x 1
01 11 10 1 x x 1
10 00 10 xO 10
10 01 10 xO0 10
10 10 01 x1 x1
10 11 11 x0 x1
11 00 11 x0 x 0
11 01 11 x0 x 0
11 10 11 10 x 1
11 11 11 x1 x 1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

102

Ex E Cx C
1
AB 00 01 11 10 4B 00 01 11 10
m, m; ms m, m, m, m, m,
00 1 00 X X X X
my ms my mg m, ms m, mg
01 1 01 X X X
12 13 15 14 ”’l]2 Wll3 I’Vl15 I‘I’l14
11 X X X X 11 1
4 myg My my, My 4 g m, my, s
10| x X X X 10 1
\—‘ \—1
X X
J,=(Bx+B%x)E K,=(Bx+Bx)E
Ex E Ex E
1 1
AB 00 0l 11 10 AB 00 0l 11 10
nlo m, m} 171_7 l’l’lo m, m3 mz
00 1 1 00 X X X X
m4 ”’l5 m7 m6 ﬂ’l4 ms m7 m6
01 X X X X 01 1 1
my, m3 ms my E mpy my5 s my E
11 X X X X 11 1 1
4 mg my my, my, 4 mg my myy "y
10 1 1 10 X X X X
| |
X X
Jy=E K,=FE
5.19 (a) Unused states (see Fig. P5.19): 101, 110, 111.
P t 1
resen Input Nex Output
State state
ABC X ABC y
000 0 011 0
000 1 100 1
001 0 001 0
001 1 100 1
010 0 010 0
010 1 000 1
011 0 001 0
011 1 010 1
100 0 010 0
100 1 011 1

di4, B, C, x) =% (10, 11, 12, 13, 14, 15)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

103
Cx C Cx C
1
4B 00 01 11 10 4B 00 01 11 10
m, my K& m, m, m, m, m,
00 1 1 00 1
my ms n, meg m, ms m, my
01 01| 1 1
m, my ms my B ® B
11 X X X X 11 X
4 mg my myy my 4 5
10 X X 10 1
|
X X
D, =A'Bx Dy =4+ Cx"+BCx
Cx C Cx C
1 1
AB 00 0l 11 10 AB 00 0l 11 10
m, m my s m, m,
00 1 1 00
m4 ﬂ'l5 m7 m6 "’l4 m6
01 1 01
My, B my My B
11 X 11 X X X X
4 myg 4 mg my my My
10 10 X X
|
X X
D= Cx'+ Ax +A'B%' y=A%

The machine is self-correcting, i.e., the
unused states transition to known states.

WWW.]oZve.org

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

104
(b) With JK flip=flops, the state table is the same as in (a).
Flip-flop inputs
Sy Ky I Ky Jo K
0x 1 x 1x J =B K =1
Il x 0x 0x A o A ,
0x 0x x0 J;=A+CX K;=Cx+Cx
J.=Ax+AB%X' K.=x
I x 0x x1 o ¢
0x xO0 O0x y=AX
The machine is self-correcting
0 x x 1 0x because K, =1
0x x1 x0 AT
0x xO0 x1
x1 1 x 0x
x 1 1 x 1 x
5.20 From state table 5.4: T, (4, B, x) =2 (2, 3, 6), T3(4, B, x) = Z (0, 3, 4, 6).
Bx B Bx B
ANC00 o1 1110 ANC 00 01 1110
mo ml m3 m2 mO }’ﬂl ﬂ’l3 le
0 1 1 0 1 1
Wl4 m5 ”17 m() Wl4 ms ”‘17 m6
Al 1 1 A 1 1 1
e — [
X X
T,=A'B+ Bx' T,=Bx"+ A%+ A'Bx
5.21 The statements associated with an initial keyword execute once, in sequence, with the activity expiring

after the last statment competes execution; the statements assocated with the always keyword execute
repeatedly, subject to timing control (e.g, #10).

5.22

T T T 1 1 1 1 T 1t
0 20 40 60 80 100 120 140 160

5.23 (a) Regd =125, RegB =125
(b) RegA =125, RegB =30

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

105

5.24 (a)
module DFF (output reg Q, input D, clk, preset, clear);
always @ (posedge clk, negedge preset, negedge clear)
if (preset ==0) Q <= 1'b1;
else if (clear == 0) Q <= 1'b0;
else Q<= D;
endmodule

module t_DFF ();

wire Q;
reg clk, preset, clear;
reg D;

DFF MO (Q, D, clk, preset, clear);

initial #160 $finish;

initial begin clk = 0; forever #5 clk = ~clk; end

initial fork
#10 preset = 0;
#20 preset = 1;
#50 clear = 0;
#80 clear = 1;
#10D=1;
#100D =0;
#200D =1;

join

endmodule

Name 0 150 120

clk

preset

clear
D

0

(b) module DFF (output reg Q, input D, clk, preset, clear);
always @ (posedge clk)
if (preset == 0) Q <= 1'b1;
else if (clear == 0) Q <= 1'b0;
else Q <=D;
endmodule

Name | L | L | L L

clk I [Yy s Yy Y S s Y I

preset

clear
D |
0 | I

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

106

5.25
module Dual_Input_DFF (output reg Q, input D1, D2, select, clk, reset_b);
always @ (posedge clk, negedge reset_b)
if (reset_b ==0) Q <=0;
else Q <=select ? D2 : D1;
endmodule

module t_Dual_Input_DFF ();
wire Q;
reg D1, D2, select, clk, reset_b;
Dual_Input_DFF MO (Q, D1, D2, select, clk, reset_b);
initial #350%finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork
select = 0;
#30 select = 1;
#60 select = 0;
join
initial fork
#2 reset_b=1;
#3 reset_b =0;
#4 reset_ b =1;
D1=0;
D2 =1;
join
endmodule

Name ‘ [

clk I | I | I | I | I
reset b L

select

N T I

526 (a)
ot+1)=J0Q' +KQ

When Q0 =0,0(t+1)=J
WhenQ=1,0@t+1)=K

module JK_Behavior_a (output reg Q, input J, K, CLK, reset_b);
always @ (posedge CLK, negedge reset_b)
if (reset_b == 0) Q <= 0; else
if(Q==0) Q<=J;
else Q <= ~K;
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

107

(b)

module JK_Behavior_b (output reg Q, input J, K, CLK, reset_b);
always @ (posedge CLK, negedge reset_b)
if (reset_b ==0) Q <=0;
else
case ({J, K})
2'v00: Q<=Q;
2'b01: Q<=0;
2'b10: Q<=1;
2b11: Q <=~Q;
endcase
endmodule

module t_Prob_5 26 ();
wire Q_a, Q_b;
reg J, K, clk, reset_b;
JK_Behavior_a MO (
JK_Behavior_b M1 (

o

, clk, reset_b);
, clk, reset_b);

a, J,
b, J

9]
P Wa

initial #100 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end

initial fork

#2 reset_b =1;

#3 reset_ b =0; /I Initialize to sO
#4 reset b =1;

J=0; K=0;

#20 begin J=1; K=0; end
#30 begin J=1;K=1; end
#40 begin J=0; K=1; end
#50 begin J=1; K=1; end
join
endmodule

Name 0 40 80

clk _ - r—rrrrrrerrrtrri

reset b U

J I L |
K

0a — | | |
0b — | | |

5.27

/I Mealy FSM zero detector (See Fig. 5.16)
module Mealy Zero_Detector (
output reg y_out,
input x_in, clock, reset
reg [1: O] state, next_state;
parameter SO0 =2'b00, S1=2'b01, S2 =2'b10, S3 =2'b11;

always @ (posedge clock, negedge reset) // state transition

if (reset == 0) state <= S0;
else state <= next_state;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

108

always @ (state, x_in) // Form the next state
case (state)
S0:begin y_out =0; if (x_in) next_state = S1; else next_state = SO; end
S1: beginy_out = ~x_in; if (x_in) next_state = S3; else next_state = S0O; end
S2:begin y_out = ~x_in; if (~x_in) next_state = SO; else next_state = S2; end
S3: beginy out=~x_in; if (x_in) next_state = S2; else next_state = SO; end
endcase

endmodule
module t_Mealy_Zero_Detector;
wire t_y out;
reg t x_in, t_clock, t_reset;
Mealy_Zero_Detector MO (t_y_out, t_x_in, t_clock, t_reset);

initial #200 $finish;
initial begin t_clock = 0; forever #5 t_clock = ~t_clock; end

initial fork
t_reset=0;
#2t reset=1;

#87 t_reset =0;
#89t reset = 1;

#10t_ x_in=1;
#30t x_in=0;
#40t x_in=1;
#50t x_in=0;
#52t x_in=1;
#54t x_in=0;
#70t_x_in=1;
#30t x_in=1;
#70t x_in=0;
#90t x_in=1;
#100 t_x_in =0;
#120t x_in=1;
#160t x_in=0;
#170t x_in=1;
join
endmodule

Note: Simulation results match Fig. 5.22.

Name 6 T % 126 166

tcock | LI LI LT L Lo L5 rerererirerereren
t reset LI

statef1:07]_0 X_1 X 3 X 0o X 1 X 0 0o 1 X 0 X1 X3 X 2 o Y1 [
txin | | I I IO | L

ty out ! mn ! !

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

109
5.28 (a)
module Prob_5 28a (output A, input x, y, clk, reset_b);
parameter sO =0, s1 = 1;
reg state, next_state;
assign A = state;
always @ (posedge clk, negedge reset_b)
if (reset_b == 0) state <= s0; else state <= next_state;
always @ (state, X, y) begin
next_state = s0;
case (state)
sO: case ({x, y})
2'b00, 2'b11: next_state = s0;
2'b01, 2'b10: next_state = s1;
endcase
s1: case ({x, y})
2'b00, 2'b11: next_state = s1;
2'b01, 2'b10: next_state = s0;
endcase
endcase
end
endmodule
module t_Prob_5 28a ();
wire A;
reg X, y, clk, reset_b;
Prob_5_28a MO (A, x, v, clk, reset_b);
initial #350 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork
#2 reset_ b =1;
#3 reset b =0; /I Initialize to sO
#4 reset b =1;
x=0;y=0;
#20 beginx=1;y=1; end
#30 begin x =0; y = 0; end
#40 begin x=1;y =0; end
#50 begin x =0; y = 0; end
#60 beginx=1;y=1; end
#70 beginx=1;y=0; end
#80 begin x=0;y=1; end
join
endmodule
0 80 160

Name ‘ 1°7 |

clk P Yy s Y I o I
reset_b [H

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

110

(b)
module Prob_5 28b (output A, input x, y, Clock, reset_b);
xor (w1, X, y);
xor (w2, w1, A);
DFF MO (A, w2, Clock, reset_b);
endmodule

module DFF (output reg Q, input D, Clock, reset_b);
always @ (posedge Clock, negedge reset_b)
if (reset_b ==0) Q <=0;
else Q <= D;
endmodule

module t Prob_5 28b ();
wire A;
reg X, y, clk, reset_b;
Prob_5_28b MO (A, x, v, clk, reset_b);
initial #350 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork
#2 reset_b=1;
#3 reset_b =0; /I Initialize to sO
#4 reset b=1
x=0;y=0;
#20 begin x=1; y=1; end
#30 begin x =0; y = 0; end
#40 begin x=1; y = 0; end
#50 begin x = 0; y = 0; end
#60 begin x=1;y=1; end
#70 begin x=1; y=0; end
#80 begin x=0; y=1; end
join
endmodule

' Q8 W I e e e I
reset b [T

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

111

() See results of (b) and (c).
module t Prob_5 28c ();
wire A _a, A b;
reg x, Y, clk, reset_b;
Prob_5 28a MO (A_a, x, y, clk, reset_b);
Prob_5 28b M1 (A_b, x, y, clk, reset_b);

initial #350 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork
#2 reset_b=1;
#3 reset_ b =0; /I Initialize to sO
#4 reset b =1
x=0;y=0;
#20 beginx=1;y=1; end
#30 begin x =0; y = 0; end
#40 begin x=1;y=0; end
#50 begin x =0; y = 0; end
#60 beginx=1;y=1; end
#70 beginx=1;y=0; end
#80 beginx=0;y=1; end
join
endmodule

0 121
Name 0 % 120

clk AN I Y e) e s S
reset b Ul

y [1 [
Aa T 07 7 7 7 7 17 1T
Ab T 07 7 7 7 7 17 1T

5.29
module Prob_5 29 (output reg y_out, input x_in, clock, reset_b);
parameter sO = 3'b000, s1 = 3'b001, s2 = 3'b010, s3 = 3'b011, s4 = 3'b100;
reg [2: 0] state, next_state;

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= s0;
else state <= next_state;

always @ (state, x_in) begin
y_out =0;
next_state = s0;
case (state)

s0: if (x_in) begin next_state = s4; y_out = 1; end else begin next_state = s3; y_out = 0; end
s1: if (x_in) begin next_state = s4; y_out = 1; end else begin next_state = s1; y_out = 0; end
s2: if (x_in) begin next_state = s0; y_out = 1; end else begin next_state = s2; y_out = 0; end
s3: if (x_in) begin next_state = s2; y_out = 1; end else begin next_state = s1;y_out = 0; end
s4: if (x_in) begin next_state = s3; y_out = 0; end else begin next_state = s2; y_out = 0; end
default: next_state = 3'bxxx;
endcase
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

112
module t_Prob_5 29 ();
wire y_out;
reg x_in, clk, reset_b;
Prob_5 29 MO (y_out, x_in, clk, reset_b);
initial #350%finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork
#2 reset_b=1;
#3 reset b =0; /I Initialize to sO
#4 reset_b = 1;
/I Trace the state diagram and monitor y_out
x_in=0; /I Drive from s0 to s3 to S1 and park
#40 x_in=1; /I Drive to s4 to s3 to s2 to s0 to s4 and loop
#90 x_in = 0; // Drive from s0 to s3 to s2 and part
#110 x_in=1; /I Drive sO to s4 etc
join
endmodule
0 40 80 120
Name | | | | | | | | | ‘ | | | | | | | | | ‘ | | | | | | | | | ‘ | | | | |
clk e r e rrrrrrerrrerrrerrn
reset b LI
x_in | I I
state2:0] | XX 3 X 1 (4 (3)2 04X 2 Yo)xs4x
y_out [1 [| — N

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

113

5.30

With non-blocking (<= assignment operator:

A
7t DT
B
C
CLK
With blocking (=) assignment operator:
A
D — 0
B
C
C
CLK

Note: The expression substitution implied by the sequential ordering with the blocking assignment operator results.

in the elimination of E by a synthesis tool. To retain E, it is necessary to declare E to be an output port of the
module.

5.31
module Seq_Ckt (input A, B, C, CLK, output reg Q);
reg E;
always @ (posedge CLK)
begin
Q=E|C;
E=A&B;
end
endmodule

Note: The statements must be written in an order than produces the effect of concurrent assignments.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

114

5.32

enable

B
c 1
D | I—
E | I
F | I
T T T T T T T T 1t
0 10 20 30 40 50 60 70 80
initial begin
enable=0;A=0;B=0;C=0;D=1,E=1;F=1;
#10 B=1;
c=1;
D=0;
#10 A=1;
B=0;
D=1;
E=0;
#10 B=1;
E=1;
F=0;
#10 enable = 1;
A=0;
B =0;
F=0;
#10 B=1;
#10 A=1;
B =0;
#10 B=1;
end
initial fork
enable=0;A=0;B=0;C=0;D=1,E=1;F=1;
#40 enable = 1;
#20A=1;
#40 A =0;
#60 A=1;
#10B =1,
#20B =0;
#30B =1;
#40B = 0;
#50B = 1;
#60B =0;
#70B =1;
#10C =1;
#10D =0;
#20D =1;
#20E =0;
#30E =1;
#30F = 0;
#40F =1;
join

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

115

5.33 Signal transitions that are caused by input signals that change on the active edge of the clock race with
the clock itself to reach the affected flip-flops, and the outcome is indeterminate (unpredictable).
Conversely, changes caused by inputs that are synchronized to the inactive edge of the clock reach
stability before the active edge, with predictable outputs of the flip-flops that are affected by the inputs.

5.34
module JK_flop_Prob_5_34 (output Q, input J, K, clk);
wire K_bar;
D_flop MO (Q, D, clk);
Mux M1 (D, J, K_bar, Q);
Inverter M2 (K_bar, K);
endmodule
module D_flop (output reg Q, input D, clk);
always @ (posedge clk) Q <=D;
endmodule
module Inverter (output y_bar, input y);
assign y_bar = ~y;
endmodule
module Mux (output y, input a, b, select);
assign y = select ? a: b;
endmodule
module t_JK_flop_Prob_5 34 ();
wire Q;
reg J, K, clock;
JK flop_Prob_5_34 MO (Q, J, K, clock);
initial #500 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork
#10 begin J=0; K=0;end // toggle Q unknown
#20 begin J =0; K=1; end /l'setQto0
#30 begin J =1; K=0; end Il setqto1
#40 begin J=1; K=1; end /I no change
#60 begin J=0; K=0;end //toggle Q
join
endmodule
Narne O | ‘30\ ‘60\ ‘90\
dock |— LI o I 17—’ 1’ ° & °L_’ °L_’ 1T 1
Jii 1
kb
b 1 | I
5.35
initial begin
enable=0;A=0;B=0;C=0;D=1E=1;F=1;
#10 beginB=1;C=1;D =0; end
#10 beginA=1;B=0;D=1;E=0; end
#10 beginA=1;B=0;E=1; F=0; end
=0;B=0;F=1;end

#10 begin enable = 1;
#10 begin B = 1; end
#10 begin A=1;B =0; end
#10B =1;

end

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

116

initial fork
enable = 0;
#40 enable = 1;
#20A=1;
#40 A =0;
#60A =1;
#10B =1;
#20B = 0;
#30B=1;
#40 B = 0;
#50B = 1;
#60 B = 0;
#70B =1;
#10C = 1;
#10D = 0;
#20D = 1;
#20 E = 0;
#30E =1;
#30F =0;
#40F =1;

join

5.36 Note: See Problem 5.8 (counter with repeated sequence: (A, B) =00, 01, 10, 00

I/l See Fig. P5.8
module Problem_5_36 (output A, B, input Clock, reset_b);

or (T_A, A, B);

or (T_B, A b, B);

T_flop MO (A, A_b, T_A, Clock, reset_b);

T_flop M1 (B, B_b, T_B, Clock, reset_b);
endmodule

module T_flop (output reg Q, output QB, input T, Clock, reset_b);
assign QB =~ Q;
always @ (posedge Clock, negedge reset_b)
if (reset_b ==0) Q <=0;
else if (T) Q <= ~Q;
endmodule

module t_Problem_5 36 ();
wire A, B;
reg Clock, reset_b;

Problem_5 36 MO (A, B, Clock, reset_b);

initial #350%finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial fork

#2 reset_ b =1;

#3 reset_ b =0;

#4 reset_b =1
join

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

117

30 60 90

dock }—I L L7 rJrrrrrrJr rr r—r 1
reset b LU

5.37
module Problem_5_37_Fig_5_25 (output reg y, input x_in, clock, reset_b);

parameter a = 3'b000, b = 3'b001, ¢ = 3'b010, d = 3'b011, e = 3'b100, f = 3'b101, g = 3'b110;
reg [2: 0] state, next_state;

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= a;
else state <= next_state;

always @ (state, x_in) begin
y=0;
next_state = a;
case (state)

a: begin y = 0; if (x_in == 0) next_state = a; else next_state = b; end
b: begin y = 0; if (x_in == 0) next_state = c; else next_state = d; end
c: begin y = 0; if (x_in == 0) next_state = a; else next_state = d; end
d: if (x_in == 0) begin y = 0; next_state = e; end

else begin y = 1; next_state = f; end

e: if (x_in == 0) begin y = 0; next_state = a; end
else begin y = 1; next_state =f; end

f: if (x_in == 0) begin y = 0; next_state = g; end
else begin y = 1; next_state =f; end

g if (x_in == 0) begin y = 0; next_state = a; end
else begin y = 1; next_state =f; end

default: next_state = a;
endcase
end
endmodule
module Problem_5_37_Fig_5_26 (output reg y, input x_in, clock, reset_b);
parameter a = 3'b000, b = 3'b001, ¢ = 3'b010, d = 3'b011, e = 3'b100;
reg [2: 0] state, next_state;

always @ (posedge clock, negedge reset_b)

if (reset_b == 0) state <= a;
else state <= next_state;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

118

always @ (state, x_in) begin
y=0;
next_state = a;
case (state)

a: begin y = 0; if (x_in == 0) next_state = a; else next_state = b; end
b: begin y = 0; if (x_in == 0) next_state = c; else next_state = d; end
c: begin y = 0; if (x_in == 0) next_state = a; else next_state = d; end
d: if (x_in == 0) begin y = 0; next_state = e; end

else begin y = 1; next_state = d; end

e: if (x_in == 0) begin y = 0; next_state = a; end
else begin y = 1; next_state = d; end

default: next_state = a;
endcase
end
endmodule

module t_Problem_5_37 ();
wirey Fig 5 25,y Fig 5 26;
reg x_in, clock, reset_b;

Problem_5_37_Fig_5_25 MO (y_Fig_5_25, x_in, clock, reset_b);
Problem_5_37_Fig_5_26 M1 (y_Fig_5_26, x_in, clock, reset_b);

wire [2: 0] state_25 = MO.state;
wire [2: 0] state_26 = M1.state;

initial #350 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork

x_in = 0;

#2 reset_ b =1;

#3 reset_ b =0;

#4 reset_b = 1;

#20 x_in=1;

#40 x_in =0; // abdea, abdea

#60 x_in=1;
#100 x_in = 0; // abdf....fga, abd ... dea

#120 x_in=1;
#160 x_in=0;
#170 x_in = 1;
#200 x_in = 0; // abdf....fgf...fga, abd ...ded...ea

#220 x_in=1;
#240 x_in=0;
#250 x_in = 1; // abdef... // abded...
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

119
Name 0 110 220
clock Hryyuyyyyyuryyyrrgyrrryyyyruuyyug
reset b I
X_in I L | L | L L L]

state_25/2:0] [_0 L3RR XIA3K 5 N6XOX N3N 5 X A5 XSAORIA N4X__5
stare_26/2:07 [{_0 JE3XaX OO YaXoXOC3 YO YaXo a3

) Fig 525 n — i L N
) Fig 5 26 n — LI L N

538 (a)
module Prob_5_38a (input x_in, clock, reset_b);
parameter sO = 2'b00, s1 = 2'b01, s2 = 2'b10, s3 = 2'b11;
reg [1: 0] state, next_state;

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= s0;
else state <= next_state;

always @ (state, x_in) begin
next_state = s0;
case (state)
s0: if (x_in == 0) next_state = s0;
else if (x_in == 1) next_state = s3;

s1: if (x_in == 0) next_state = s1;
else if (x_in == 1) next_state = s2;

s2: if (x_in == 0) next_state = s2;
else if (x_in == 1) next_state = s0;

s3: if (x_in == 0) next_state = s3;
else if (x_in == 1) next_state = s1;
default: next_state = s0;
endcase
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

120

module t_Prob_5 38a ();
reg x_in, clk, reset_b;

Prob_5_38a MO (x_in, clk, reset_b);

initial #350%finish;

initial begin clk = 0; forever #5 clk = ~clk; end

initial fork
#2 reset_b
#3 reset_b
#4 reset_b
#2 x_in =0;
#20 x_in = 1;
#60 x_in = 0;
#80 x_in = 1;
#90 x_in = 0;
#110 x_in=1;
#120 x_in = 0;
#140 x_in=1;
#150 x_in = 0;
#170 x_in=1;
join

endmodule

1
0; /I Initialize to sO
1

Neme ! | \

clk AN S e) e O o 0

reset b il

X in A I I I
staefl:0] [A__0 X3f1hk2X o X 3 } 1 K 2

(b)
module Prob_5_38b (input x_in, clock, reset_b);
parameter sO = 2'b00, s1 = 2'b01, s2 = 2'b10, s3 = 2'b11;
reg [1: 0] state, next_state;

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= s0;
else state <= next_state;

always @ (state, x_in) begin
next_state = s0;
case (state)
s0: if (x_in == 0) next_state = s0;
else if (x_in == 1) next_state = s3;

s1: if (x_in == 0) next_state = s1;
else if (x_in == 1) next_state = s2;

s2: if (x_in == 0) next_state = s2;
else if (x_in == 1) next_state = s0;

s3: if (x_in == 0) next_state = s3;
else if (x_in == 1) next_state = s1;
default: next_state = s0;
endcase
end

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

121

endmodule

module t_Prob_5 38b ();
reg x_in, clk, reset_b;
Prob_5_38b MO (x_in, clk, reset_b);

initial #350%finish;

initial begin clk = 0; forever #5 clk = ~clk; end

initial fork
#2 reset_b
#3 reset b
#4 reset_b
#2 x_in=0;
#20 x_in=1;
#60 x_in = 0;
#80 x_in = 1;
#90 x_in = 0;
#110 x_in=1;
#120 x_in=0;
#140 x_in=1;
#150 x_in =0;
#170 x_in=1;
join

endmodule

1
0; // Initialize to sO
1

)

Name

clk ey
reset b [l

X in I J
saeft0p [{_0_X3X1X2X o X 3 X 1 Y 2 foXskt1X2Yo]j

5.39
module Serial_2s_Comp (output reg B_out, input B_in, clk, reset_b);
/| See problem 5.17
parameter S 0=1b0, S _1=1b1;
reg state, next_state;
always @ (posedge clk, negedge reset_b) begin
if (reset_b == 0) state <= S_0;
else state <= next_state;
end

always @ (state, B_in) begin
B_out =0;
case (state)
S_0: if (B_in==0) begin next_state = S_0; B_out = 0; end
else if (B_in == 1) begin next_state =S_1; B_out=1; end

S _1: begin next_state =S_1; B_out = ~B_in; end
default: next_state =S _0;

endcase

end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

122

module t_Serial_2s Comp ();
wire B_in, B_out;
reg clk, reset_b;
reg [15: 0] data;
assign B_in = data[0];

always @ (negedge clk, negedge reset_b)
if (reset_b == 0) data <= 16'ha5ac; else data <= data >> 1; // Sample bit stream

Serial_2s_Comp MO (B_out, B_in, clk, reset_b);

initial #150 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end

initial fork
#10 reset_b =0;
#12 reset_b = 1;
join
endmodule
0 60 120
Name | ‘ | ‘ | |
clk
reset_b I
B_in I | LI
state |
B_out M1 L |

5.40

module Prob_5 40 (input E, F, clock, reset_b);
parameter sO = 2'b00, s1 = 2'b01, s2 = 2'b10, s3 = 2'b11;
reg [1: 0] state, next_state;

always @ (posedge clock, negedge reset_b)

if (reset_b == 0) state <= s0;
else state <= next_state;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

123

always @ (state, E, F) begin
next_state = s0;
case (state)
sO: if (E == 0) next_state = s0;
else if (F == 1) next_state = s1; else next_state = s3;

s1: if (E == 0) next_state = s1;
else if (F == 1) next_state = s2; else next_state = s0;

s2: if (E == 0) next_state = s2;
else if (F == 1) next_state = s3; else next_state = s1;

s3: if (E == 0) next_state = s3;

else if (F == 1) next_state = s0; else next_state = s2;
default: next_state = s0;
endcase
end
endmodule

module t_Prob_5 40 ();
reg E, F, clk, reset_b;
Prob_5_40 MO (E, F, clk, reset_b);

initial #350%finish;

initial begin clk = 0; forever #5 clk = ~clk; end

initial fork
#2 reset_ b
#3 reset_b
#4 reset_b
#2E=0;
#20 begin E=1; F =1; end
#60 E = 0;
#B0E =1;
#90 E =0;
#110E =1,
#120 E =0;
#140E = 1;
#150 E =0;
#170 E=1;
#170F = 0;

join

endmodule

1
0; / Initialize to sO
1

Name 0 ‘ \190

clk Uy

reset b I

E 1 1 1 1 [
F S I

statef1:07 |J_ 0 Y1X2)3X_0 X 1 X 2 X 3 X2X1XoxX3x2x1)

5.41

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

124
module Prob_5_41 (output reg y_out, input x_in, clock, reset_b);
parameter sO = 3'b000, s1 = 3'b001, s2 = 3'b010, s3 = 3'b011, s4 = 3'b100;
reg [2: 0] state, next_state;
always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= s0;
else state <= next_state;
always @ (state, x_in) begin
y_out =0;
next_state = s0;
case (state)
s0: if (x_in) begin next_state = s4; y_out = 1; end else begin next_state = s3; y_out = 0; end
s1: if (x_in) begin next_state = s4; y_out = 1; end else begin next_state = s1; y_out = 0; end
s2: if (x_in) begin next_state = s0; y_out = 1; end else begin next_state = s2; y_out = 0; end
s3: if (x_in) begin next_state = s2; y_out = 1; end else begin next_state = s1; y_out = 0; end
s4: if (x_in) begin next_state = s3; y_out = 0; end else begin next_state = s2; y_out = 0; end
default: next_state = 3'bxxx;
endcase
end
endmodule
module t_Prob_5 41 ();
wire y_out;
reg x_in, clk, reset_b;
Prob_5_41 MO (y_out, x_in, clk, reset_b);
initial #350%finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork
#2 reset_b = 1;
#3 reset_b =0; // Initialize to sO
#4 reset_b=1;
/I Trace the state diagram and monitor y_out
x_in =0; // Drive from s0 to s3 to S1 and park
#40 x_in = 1; // Drive to s4 to s3 to s2 to s0 to s4 and loop
#90 x_in = 0; // Drive from s0 to s3 to s2 and part
#110 x_in=1; /I Drive sO to s4 etc
join
endmodule
0 40 80 120
Name 1 1 1 1 1 1 1 1 1 ‘ 1 1 1 1 1 1 1 1 1 ‘ 1 1 1 1 1 1 1 1 1 ‘ 1 1 1 1 1
clk s rrrrrrrrirn
reset b LU
x_in | I I
state[2:0] :XX3X 1 X4X3X2XOX4X 2 XOX4X:
y_out [1 [| e R

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

125

5.42
module Prob_5_42 (output A, B, B_bar, y, input x, clk, reset_b);
/I See Fig. 5.29
wire w1, w2, w3, D1, D2;
and (w1, A, x);
and (w2, B, x);
or (D_A, w1, w2);

and (w3, B_bar, x);
and (y, A, B);
or (D_B, w1, w3);
DFF MO_A (A, D_A, clk, reset_b);
DFF MO_B (B, D_B, clk, reset_b);
not (B_bar, B);

endmodule

module DFF (output reg Q, input data, clk, reset_b);
always @ (posedge clk, negedge reset_b)
if (reset_b == 0) Q <= 0; else Q <= data;
endmodule

module t_Prob_5 42 ();
wire A, B, B_bar, y;
reg bit_in, clk, reset_b;
wire [1:0] state;
assign state = {A, B};
wire detect = y;

Prob_5_42 MO (A, B, B_bar, y, bit_in, clk, reset_b);
/I Patterns from Problem 5.45.

initial #350%finish;
initial begin clk = 0; forever #5 clk = ~clk; end

initial fork
#2 reset_b =1;
#3 reset_b =0;
#4reset b =1;

/I Trace the state diagram and monitor detect (assert in S3)
bit_in = 0; // Park in SO
#20 bit_in=1; /I Drive to SO
#30 bit_in = 0; /I Drive to S1 and back to SO (2 clocks)

#50 bit_in=1;
#70 bit_in = 0; /I Drive to S2 and back to SO (3 clocks)
#80 bit_in =1;
#130 bit_in = 0;// Drive to S3, park, then and back to SO
join

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

126

state[1:0]

detect

5.43
module Binary_Counter_3_bit (output [2: 0] count, input clk, reset_b)
always @ (posedge clk) if (reset_b == 0) count <= 0; else count <= next_count;
always @ (count) begin
case (state)
3'b000: count = 3'b001;
3'b001: count = 3'b010;
3'b010: count =3'b011;
3'b011: count = 3'b100;
3'b100: count = 3'b001;
3'b101: count = 3'b010;
3'b110: count = 3'b011;
3'b111: count = 3'b100;
default: count = 3'b000;
endcase
end
endmodule

module t_Binary_Counter_3_bit ()
wire [2: 0] count;
reg clk, reset_b;
Binary_Counter_3_bit MO (count, clk, reset_b)

initial #150 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end

initial fork
reset = 1;
#10 reset = 0;
#12 reset = 1;
endmodule
Name 0 ‘ ‘50‘ ‘ 109 ‘ ‘ 150
reset_b L
clk eI
countr2:07 |_x XoX 1 X 2 X3 X4 X5 X6 X7 X o X1t X2 X3 X 45 Xe

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

127

Alternative: structural model.

module Prob_5 41 (output A2, A1, A0, input T, clk, reset_bar);
wire toggle A2;

T_flop MO (AO, T, clk, reset_bar);
T_flop M1 (A1, AO, clk, reset_bar);
T_flop M2 (A2, toggle_A2, clk, reset_bar);
and (toggle_A2, A0, A1);
endmodule

module T_flop (output reg Q, input T, clk, reset_bar);
always @ (posedge clk, negedge reset_bar)
if (Ireset_bar) Q <= 0; else if (T) Q <= ~Q; else Q <= Q;
endmodule

module t_Prob_5 41;
wire A2, A1, AO;
wire [2: 0] count = {A2, A1, AO};
reg T, clk, reset_bar;
Prob_5_41 MO (A2, A1, AO, T, clk, reset_bar);

initial #200 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork reset_bar = 0; #2 reset_bar = 1; #40 reset_bar = 0; #42 reset_bar = 1; join
initial fork T=0; #20T=1;#70 T=0; #110 T = 1; join
endmodule

If the input to 40 is changed to 0 the counter counts incorrectly. It resumes a correct counting
sequence when 7 is changed back to 1.

/ 0 40 80 120 160 200
Narre covv v by e b e b b |

Defanlt
clk

reset_bar
T
A2
Al
A0
count{2:0]

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

128

5.44
module DFF_synch_reset (output reg Q, input data, clk, reset);
always @ (posedge clk)
if (reset) Q <= 0; else Q <= data;
endmodule

module t_DFF_synch_reset ();
reg data, clk, reset;
wire Q;

DFF_synch_reset MO (Q, data, clk, reset);

initial #150 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork

reset = 1;

#20 reset = 1;

#40 reset = 0;

#10 data = 1;
#50 data = 0;
#60 data = 1;
#100 data = 0;
join
endmodule

Name© ‘ ‘ ‘50‘ ‘ 10‘0 ‘ ‘ 150

reset |

clk

data L | |
0 J | J |

5.45
module Seq_Detector_Prob_5_45 (output detect, input bit_in, clk, reset_b);
parameter S0=0,S1=1,S2=2,S3=3;
reg [1: 0] state, next_state;

assign detect = (state == S3);
always @ (posedge clk, negedge reset_b)
if (reset_b == 0) state <= SO; else state <= next_state;

always @ (state, bit_in) begin
next_state = SO;
case (state)

0: if (bit_in) next_state = S1; else state = SO;
1: if (bit_in) next_state = S2; else next_state = S0;
2: if (bit_in) next_state = S3; else state = SO;
3: if (bit_in) next_state = S3; else next_state = S0;
default: next_state = SO;
endcase
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

129
module t_Seq_Detector_Prob_5 45 ();
wire detect;
reg bit_in, clk, reset_b;
Seq_Detector_Prob_5_ 45 MO0 (detect, bit_in, clk, reset_b);
initial #350%finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork
#2 reset_b=1;
#3 reset_ b =0;
#4reset_ b =1;
Il Trace the state diagram and monitor detect (assert in S3)
bit_in = 0; /I Park in SO
#20 bit_in=1; /I Drive to SO
#30 bit_in = 0; // Drive to S1 and back to SO (2 clocks)
#50 bit_in = 1;
#70 bit_in = 0; // Drive to S2 and back to SO (3 clocks)
#80 bit_in=1;
#130 bit_in = 0;// Drive to S3, park, then and back to SO
join
endmodule
Name 0 1* % Rl
reset b
clk e s erud
bit in I L |
PRt S SN R ST €3 G G G 3 o
detect | L

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

130

CHAPTER 6

6.1 The structure shown below gates the clock through a nand gate. In practice, the circuit can exhibit two
problems if the load signal is asynchronous: (1) the gated clock arrives in the setup interval of the clock
of the flip-flop, causing metastability, and (2) the load signal truncates the width of the clock pulse.
Additionally, the propagation delay through the nand gate might compromise the synchronicity of the
overall circuit.

Connect to the
clock input of each

Slip-flop.
Clock — 1
6.2 Modify Fig. 6.2, with each stage replicating the first stage shown below:
load —l>°——l>o— |_
/. N~
clear l/‘_
D Q 4,
1 |_
clk
Load Clear D Operation
0 0 A, No change
0 1 0 Clear to 0
1 X 1, Load input
Note: In this design, load has priority over clear.
6.3 Serial data is transferred one bit at a time. Parallel data is transferred n bits at a time (n > 1).

A shift register can convert serial data into parallel data by first shifting one bit a time into the register
and then taking the parallel data from the register outputs.

A shift register with parallel load can convert parallel data to a serial format by first loading the data in
parallel and then shifting the bits one at a time.

6.4 101101 = 1101; 0110; 1011; 1101; 0110; 1011
6.5 (a) See Fig. 11.19: IC 74194

(b) See Fig. 11.20. Connect two 74194 ICs to form an 8-bit register.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

131

6.6 First stage of register:
shift

load {>°—

serial input

I, — v 4
|_ clk|_
6.7 First stage of register:
Si—*
S 3
2 yx1
o 0 Mux Y D o Ai
—» 1 A,
) (¢
L » 3 clk
6.8 A4 =0010, 0001, 1000, 1100. Carry =1,1,1,0
6.9 (a) In Fig. 6.5, complement the serial output of shift register B (with an inverter), and set the initial
value of the carry to 1.
(b)
Present Next FF Xy a
state Inputs state Qutput inputs 0 00 _ 0l 11 10
Q X y Q D JQ KQ 0 0 l1 3 2
0 00 0 0 0 x , s ; g
0 00 1 1 1 x Q[1 X X X X
0 01 0 1 0 x
0 01 0 0 0 x e
1 10 1 1 x0 S Y
I 10 1 0 x0 o~ Y
1 11 0 0 x 1 Xy X
1 11 1 1 x 0 ON 00 01 11 10
0 0x lX 3x 2x
m4 m5 l’l’l7 m6
Q[1 1
L
X
K,=xys o
D= Qoexoy

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

132

6.10 See solution to Problem 5.7.
Note thaty =xif Q =0, and y =x"if Q = 1. Q is set on the first 1 from x.
Notethatx @ 0=x,andx ® 1 =x".

e . Serial output \;
——P Shift Register Yy
Serial input x

From
shift
control clk R

Reset to 0
initially

6.11 (a) A count down counter.
(b) A count up counter.
6.12 Similar to diagram of Fig. 6.8.
(a) With the bubbles in C removed (positive-edge).

(b) With complemented flip-flops connected to C.

6.13
0
Al
A2 !
4-Bit 0
Ripple Counter e
1
Clear A4
Asynchronous, active-low)
6.14 @4 ()9 (¢ 10
6.15 The worst case is when all 10 flip-flops are complemented. The maximum delay is 10 x 3ns =30 ns.

The maximum frequency is 10°/30 = 33.3 MHz

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

133

6.16 Q8Q4Q2Q1: 1010 1100 1110 Self correcting
Next state: 1011 1101 1111
Next state: 0100 0100 0000

1010 - 1011 — 0100
1100 - 1101 — 0100
1110 > 1111 — 0000

6.17 With E denoting the count enable in Fig. 6.12 and D-flip-flops replacing the J-K flip-flops, the toggling
action of the bits of the counter is determined by: Ty = E, T = AoE, T, = AyA\E, T5 = ApA1A>E. Since Dy =
A @ T, the inputs of the flip-flops of the counter are determined by: D,y = A¢®FE; D4 = A1®(AGE); Dy =
A,®(AvA\E); Dz = A3D(ApA1A4LE).

6.18 When up = down = 1 the circuit counts up.
up down x y Operation
up . 0 0 0 0 No change
Combinational Circuit 0 1 0 0 Count down
down y 1 0 1 0 Count up
1 1 0 0 No change
Add this to Fig. 6.13
“w x X =up (down)'

y = (up)'down

down) Y

6.19 (b) From the state table in Table 6.5:

DQ1 = Q'l

Dy, =2(1,2,5,6)

Dps=2(3,4,5,6)

DQ8 =2 (7, 8)

Don't care: d =2 (10, 11, 12, 13, 14, 15)

Simplifying with maps:

Dg, = 0,01 + 0's0%0,

Doy = 040" + Q402 + 04020,
Dos = 050" + 040,Q,

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

134

(@
Present Next . .
state state Flip-flop inputs
Ag A, 4y 4) A A, A A | s Kyg | JuKys | JoKp | Ju Ky
0000 0001 0 x 0 x 0 x 1 x Jy=
0001 0010 0 x 0 x 1 x x 1 K, =1
0010 0011 0 x 0 x x 0 I x J. =44
P Tk
0011 0100 0 x I x x 1 x 1 K, =4,
0100 0101 0 x x 0 0 x I x J =44
a4~ A
0101 0110 0 x x 0 I x x 1 K. =44
a4~ A
0110 0111 0 x x 0 x 0 I x J.=AAA
A8~ A%y
0111 1000 1 x x 1 x 1 x 1 K, =4,
1000 1001 x 0 0 x 0 x 1 x
1001 0000 x 1 0 x 0 x x 1
d(dy A, 4, 4) =% (10, 11,12, 13, 14, 15)
6.20 (a)
Block diagram of 4-bit circuit: T T T T
[&——— Count
. o C_out Fig. 6.14 le—— Load
16-bit counter needs 4 circuits D de— Ik
with output carry connected to pe—— Clear
the count input of the next
stage.
(b)
20=64
A A
" Count C_out Count = 1
Fig. 6.14 « Lood Fig. 6.14 Load
CLK CLK
9 Clear = 1 9 Clear = 1
pe———
A A A A A A A A
0
6.21 (a)
Jo=LIL+L'C KAdy=LI+L'C
(b)

J=[LAD'](L+C)=("+ L)L+ C)
LI+ L'C+ LIC=LI+L'C (use a map)
K=L)'(L+C)=L"+I)NL+C)=LI'+L'C

6.22

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

C out

[

< Count = 1
< Load
<Je— CLK
pe Clear =1

C out

135

<

Count sequence: 0, 1,2,3,4,5,6,7,8,9, 10, 11

C out

)

Count = 1
< Load =0
e CLK
Clear

A

A

Count sequence: 0, 1, 2, 3,4,5,6,7,8,9,10, 11

1

Count sequence: 4, 5, 6, 7, 8,9, 10, 11, 1,2 13, 14, 15

6.23 Use a 3-bit counter and a flip-flop (initially at 0). A start signal sets the flip-flop, which in turn enables
the counter. On the count of 7 (binary 111) reset the flip-flop to 0 to disable the count (with the value of

00 0).

6.24

Present Next))
state Flipflop inputs

State

ABC 4BC T, T T,
000 o001 o O 1
001 o11 o 1 0
010 XXX X X X
orr 1111 1 0
100 o0 1 1 0
101 XXX X X X
110 100 o 1 0
1t 110 o 0 1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

136

BC B BC B
A A
00 01 11 10 00 01 11 10
mo Wl1 "’l3 m2 mo ml Wl3 mz
0 1 X 0 1 X
n’l4 ms m7 mﬁ m4 ﬂ'l5 m7 m6
Al 1 1 X Al 1 X 1
L L
C C
T,=A®B T,=B&C
BC B BC B
A A
00 01 11 10 00 01 11 10
mo ml m3 m2 mo ml 7713 Wl2
0 1 X 0 1 X
ﬂ’l4 ms m7 mo m4 ﬂ’l5 m7 mﬁ
Al 1 X 1 Al 1 X 1
L L
C C
T.=AdoC T.=AC+ABC’
No self-correcting Self-correcting
6.25 (a) Use a 6-bit ring counter.
(b)
N 0f———5 70
Gl 12 3.s —n
ounter o, N 1 X 22— N2
Fig. 6.16 B " 22 Decoder I—> 7
A 2 Sp—»715
" —> 716
6.26 The clock generator has a period of 12.5 ns. Use a 2-bit counter to count four pulses.
80/4 = 20 MHz; cycle time = 1000 x 10" /20 = 50 ns.
6.27

Present Next
Flip-flop inputs

State State

ABC ABC J, K, J, K, J. K.
000 001 0x 0x 1x

001 010 0x 1 x x1

010 011 0x x 0 1x

011 100 1 x x1 x1

100 100 xx 00 1 x

101 110 x x 1 x x1

110 000 x x x 1 0x

111 XXX X X X X X X

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

137

BC B BC B
ANC 00 o1 11 10 ANC o0 o1 11 10
WID ml m3 Wl2 m() Wl] m3 m2
0 1 0 X X X X
WIA m5 m7 m6 n14 ﬂ’l5 Wl7 Wl6
A 1 X X X X A 1 X 1
.] .]
c c
J,=BC K,=B
BC B BC B
1 1
ANC 00 01 11 10 ANC 00 01 11 10
mo Wll f’i’lz m2 mO lnl m3 mz
0 1 X X 0 X X 1
I?’l4 mS m7 m6 m4 ”’l5 m7 Wl6
A 1 1 X X A 1 X X X 1
]]
c c
J,=C Ky=A4+C
BC B BC B
AN C 00 o1 11 10 AN 00 o1 11 10
mo ml Wl3 m2 mo m] i’i’l3 m2
0 1 X X 1 0 X 1 1 X
mA WI5 m7 m6 m4 ﬂ’l5 m7 WI6
A 1 1 X X A 1 X 1 X X
.] .]
c c
Jo=A'+B K.=1
Self-correcting

6.28
Present Next
State state

ABC ABC BC B
T nna A
000 001 00 01 11 10
001 010 0 0 ! 3X 21
010 100
011 XXX m, ms m, mg
100 110 41 TP x) x
101 XXX
110 000 C
111 XXX DA =40 B

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

138

BC B BC B
A A
00 01 11 10 00 01 11 10
mo ml m3 W‘l2 mO Wll m3 7712
0 1 X X 1 0 1 X
n14 Wl5 m7 m6 m4 ﬂ’li m7 1716
Al 1 1 X X A 1 X X
| |
C C
D,=4B'+C D.=AB'C'

Self-correcting ° @ °

6.29 (a) The 8 valid states are listed in Fig. 8.18(b), with the sequence: 0, 8, 12, 14, 15, 7,3, 1,0,

The 8 unused states and their next states are shown below:

Next

State state All
invalid
ABCE ABCE states
L

0000 1001 9
0100 1010 10
0101 0010 2
0110 1011 11
1001 0100 4
1010 1101 13
1011 0101 5
1101 0110 6

(b) Modification: D¢ = (A + C)B.

S 7 S z D— D 0 < D 0
e
a [— |[[I

fq|m

The valid states are the same as in (a). The unused states have the following sequences: 2— 9— 4— 8 and
10— 13— 6—>11— 5— 0. The final states, 0 and 8, are valid.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

139

6.30

L 4 B
b 0 DC_D_DQ(‘DQDDQE

a [[[teh”

The 5-bit Johnson counter has the following state sequence:

ABCDE 00000—+10000—11000—11100—>11110
decoded E___4B' BC" (D' DE
output:

11111—01111-—00111—00011—00001
AE' AB' BC’ CD’ DE'

6.31
module Reg_4 bit_beh (output reg A3, A2, A1, A0, input I3, 12, 11, 10, Clock, Clear);
always @ (posedge Clock, negedge Clear)
if (Clear == 0) {A3, A2, A1, A0} <= 4'b0;
else {A3, A2, A1, A0} <= {13, 12, I1, 10};
endmodule

module Reg_4 bit_Str (output A3, A2, A1, AQ, input I3, 12, I1, 10, Clock, Clear);
DFF M3DFF (A3, 13, Clock, Clear);
DFF M2DFF (A2, 12, Clock, Clear);
DFF M1DFF (A1, I1, Clock, Clear);
DFF MODFF (AQ, 10, Clock, Clear);
endmodule

module DFF(output reg Q, input D, clk, clear);
always @ (posedge clk, posedge clear)
if (clear == 0) Q <= 0; else Q <= D;
endmodule

module t_Reg_4_bit ();
wire A3 beh, A2 beh, A1_beh, AO_beh;
wire A3_str, A2_str, A1_str, AO_str;
reg 13, 12, 11, 10, Clock, Clear;
wire [3: 0] I_data = {13, 12, I1, 10};
wire [3: 0] A_beh = {A3_beh, A2_beh, A1_beh, A0_beh};
wire [3: 0] A_str = {A3_str, A2_str, A1_str, AO_str};

Reg_4_bit_beh M_beh (A3_beh, A2_beh, A1_beh, A0_beh, I3, 12, I1, 10, Clock, Clear);
Reg_4_bit_Str M_str (A3_str, A2_str, A1_str, AO_str, I3, 12, I1, 10, Clock, Clear);

initial #100 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial begin Clear = 0; #2 Clear = 1; end
integer K;
initial begin
for (K=0; K< 16; K=K+ 1) begin {I3, 12, 11, 10} = K; #10 ; end
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

140

Name 0 50 100

Clock /NN I I N Y Y O B
Clear a

Idata3:0]] 0 X 1 X 2 X 3 X 4 X5 X6 X7 X8 X9]

13 r—
12 I |
11 |
10 I l I l I | I | I I

Averzoll 0 X1 X2 X3)X 4 X5 X6 X7 X8 o

A3 beh r
A2 _beh I | I
Al beh |
AO_beh I | I | I | I | [

Aastzo] X0 X1 X2 X3 X4 X5 X6 X7 X8 o

A3 _str r
A2 str I | I
Alstr |\
A0_str I 1 I 1 I 1 I 1 [

6.32 (a)

module Reg_4 bit_Load (output reg A3, A2, A1, AQ, input I3, 12, 11, 10, Load, Clock, Clear);
always @ (posedge Clock, negedge Clear)
if (Clear == 0) {A3, A2, A1, A0} <= 4'b0;
else if (Load) {A3, A2, A1, A0} <={I3, 12, I, 10};
endmodule

module t Reg_4_Load ();
wire A3_beh, A2 _beh, A1_beh, AO_beh;
reg I3, 12, 11, 10, Load, Clock, Clear;
wire [3: 0] I_data = {I3, 12, 1, 10};
wire [3: 0] A_beh = {A3_beh, A2_beh, A1_beh, A0_beh};

Reg_4_ bit_Load MO (A3_beh, A2_beh, A1_beh, A0_beh, 13, 12, I1, 10, Load, Clock, Clear);

initial #100 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial begin Clear = 0; #2 Clear = 1; end
integer K;
initial fork
#20 Load = 1;
#30 Load = 0;
#50 Load = 1;
join
initial begin
for (K=0; K< 16; K=K+ 1) begin {I3, 12, 11, 10} = K; #10 ; end
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

141
Name ‘0 | 50 | 100
| |
Clock
Clear |
Load e R

|_data[3:0] 0o X1 X2 X3 X4X5 X6 X7 X8 X9]

|_data[3] —
|_dataf2] [

I dataft] pb0oo-— - 1 |
|_datafo] I | I | I | I l I |

A_beh[3:0] 0 X 2 X5 X6 X7 X8 Yo

A_beh([3] r
A_beh[2] I L
Abenf1] b— | | — | I
A_beh|[0] | | | —

(b)

module Reg_4 bit_Load_str (output A3, A2, A1, AO, input 13, 12, 11, 10, Load, Clock, Clear);
wire y3, y2, y1, yO;
mux_2 M3 (y3, A3, I3, Load)
mux_2 M2 (y2, A2, |12, Load);
mux_2 M1 (y1, A1, 11, Load);
mux_2 MO (y0, A0, 10, Load)

)

)

DFF M3DFF (A3, y3, Clock, Clear)

DFF M2DFF (A2, y2, Clock, Clear);

DFF M1DFF (A1, y1, Clock, Clear);

DFF MODFF (A0, y0, Clock, Clear)
endmodule

module DFF(output reg Q, input D, clk, clear);
always @ (posedge clk, posedge clear)
if (clear == 0) Q <= 0; else Q <= D;
endmodule

module mux_2 (output y, input a, b, sel);
assigny =sel ? a: b;
endmodule

module t_Reg_4_Load_str ();
wire A3, A2, A1, AO;
reg I3, 12, 11, 10, Load, Clock, Clear;
wire [3: 0] I_data = {13, 12, I1, 10};
wire [3: 0] A = {A3, A2, A1, AQ};

Reg_4 bit_Load_str MO (A3, A2, A1, AO, I3, 12, 11, 10, Load, Clock, Clear);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

142

initial #100 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial begin Clear = 0; #2 Clear = 1; end

integer K;
initial fork
#20 Load = 1;
#30 Load = 0;
#50 Load = 1;
#80 Load = 0;
join
initial begin
for (K=0; K< 16; K=K+ 1) begin {I3, 12, 11, 10} = K; #10 ; end
end
endmodule
Name 0 | \60‘
Clock N s s s I e I O
Clear il
Load
Ldatarzop | 0 X1 X 2 X3 X4 ks o X7 X8 Xo)
A[3:0] X s X 4
(c)

module Reg_4 bit_Load_beh (output reg A3, A2, A1, AQ, input I3, 12, I1, 10, Load, Clock, Clear);
always @ (posedge Clock, negedge Clear)
if (Clear == 0) {A3, A2, A1, A0} <= 4'b0;
else if (Load) {A3, A2, A1, A0} <={I3, 12, 1, 10};
endmodule

module Reg_4 bit_Load_str (output A3, A2, A1, AO, input 13, 12, I1, 10, Load, Clock, Clear);
wire y3, y2, y1, y0O;
mux_2 M3 (y3, A3, I3, Load);
mux_2 M2 (y2, A2, |12, Load);
mux_2 M1 (y1, A1, I1, Load);
mux_2 MO (y0, A0, 10, Load)

)

DFF M3DFF (A3, y3, Clock, Clear)

DFF M2DFF (A2, y2, Clock, Clear);

DFF M1DFF (A1, y1, Clock, Clear);

DFF MODFF (A0, y0, Clock, Clear)
endmodule

module DFF(output reg Q, input D, clk, clear);
always @ (posedge clk, posedge clear)
if (clear == 0) Q <= 0; else Q <= D;
endmodule

module mux_2 (output y, input a, b, sel);

assigny =sel ? a: b;
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

143

module t_Reg_4_Load_str ();
wire A3_beh, A2_beh, A1_beh, AO_beh;
wire A3_str, A2_str, A1_str, AQ_str;
reg 13, 12, I1, 10, Load, Clock, Clear;
wire [3: 0] |_data, A _beh, A_str;
assign |_data ={I3, 12, I1, 10};
assign A_beh ={A3 beh, A2_beh, A1_beh, AO_beh};
assign A_str = {A3_str, A2_str, A1_str, AO_str};

Reg_4 bit_Load_str MO (A3_beh, A2_beh, A1_beh, AO_beh, I3, 12, I1, 10, Load, Clock, Clear);
Reg_4 bit_Load_str M1 (A3_str, A2_str, A1_str, AO_str, I3, 12, I1, 10, Load, Clock, Clear);

initial #100 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial begin Clear = 0; #2 Clear = 1; end

integer K;

initial fork
#20 Load = 1;
#30 Load = 0;
#50 Load = 1;
#80 Load = 0;

join

initial begin
for (K=0; K< 16; K=K+ 1) begin {I3, 12, 11, 10} = K; #10 ; end

end

endmodule

Name ‘ |

Clock A I s Yy Yy Y I A I
Clear il
Load EEe .

Ldaazo) | 0 X1 X2 N3 K4 KXs X6 X7 X8 Ao|
A_beh([3:0] X X3 X 4
A_str[3:0] X X3 X 4

6.33
// Stimulus for testing the binary counter of Example 6-3

module testcounter;
reg Count, Load, CLK, ClIr;
reg [3: O] IN;
wire CO;
wire [3: 0] A;
Binary_Counter_4_Par_Load MO (
A, // Data output

Co, /I Output carry
IN, // Data input
Count, /I Active high to count
Load, /I Active high to load
CLK, /I Positive edge sensitive
Cir /I Active low

)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

144

always
#5 CLK = ~CLK;
initial
begin
CiIr=0; /I Clear de-asserted
CLK =1; /I Clock initialized high
Load = 0; Count = 1; /I Enable count
#5 Clr = 1; /I Clears count, then counts for five cycles
#50 Load = 1; IN = 4'b1100; /I Count is set to 4'b1100 (12.g)
#10 Load = 0;
#70 Count = 0; /I Count is deasserted att = 135
#20 $finish; /I Terminate simulation
end
endmodule

/I Four-bit binary counter with parallel load

/I See Figure 6-14 and Table 6-6

module Binary_Counter_4_Par_Load (
output reg [3:0] A_count, // Data output

output C_out, // Output carry
input [3:0] Data_in, // Data input
input Count, /I Active high to count

Load, // Active high to load
CLK, // Positive edge sensitive
Clear /I Active low

assign C_out = Count & (~Load) & (A_count == 4'b1111);

always @ (posedge CLK, negedge Clear)

if (~Clear) A_count <= 4'b0000;

else if (Load) A_count <= Data_in;

else if (Count) A _count <= A_count + 1'b1;

else A_count <= A_count; // redundant statement
endmodule

/I Note: a preferred description if the clock is given by:
/I initial begin CLK = 0; forever #5 CLK = ~CLK; end

0 60

120
Name | [| I

CIK (e Y Y Y o I I O
Cir —

Load
IN[3:0] X X c

Count
A[3:0]
co

6.34
modaule Shiftreg (SI, SO, CLK);
input S|, CLK;
output SO;
reg [3:0] Q
assign SO = QJ0];
always @ (posedge CLK)
Q={Sl, Q[3: 1]}
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

145

/I Test plan

I

/I Verify that data shift through the register

/I Set Sl =1 for 4 clock cycles

// Hold Sl =1 for 4 clock cycles

/l Set Sl = 0 for 4 clock cycles

/I Verify that data shifts out of the register correctly

module t_Shiftreg;
reg Sl CLK;
wire SO;

Shiftreg MO (SI, SO, CLK);

initial #130 $finish;
initial begin CLK = 0; forever #5 CLK = ~CLK; end
initial fork
Sl =1b1;
#80 SI =0;
join
endmodule

Name 19 60 120

(677 [I s B
SI I
S0 I

6.35 (a) Note that Load has priority over Clear.

module Prob_6_35a (output [3: 0] A, input [3:0] |, input Load, Clock, Clear);
Register_Cell RO (A[0], I[0], Load, Clock, Clear);
Register_Cell R1 (A[1], I[1], Load, Clock, Clear);
Register_Cell R2 (A[2], I[2], Load, Clock, Clear);
Register_Cell R3 (A[3], I[3], Load, Clock, Clear)
endmodule

module Register_Cell (output A, input |, Load, Clock, Clear);
DFF MO (A, D, Clock);
not (Load_b, Load);
not (w1, Load_b);
not (Clear_b, Clear);
and (w2, |, w1);
and (w3, A, Load_b, Clear_b);
or (D, w2, w3);
endmodule

module DFF (output reg Q, input D, clk);
always @ (posedge clk) Q <= D;
endmodule
module t_Prob_6_35a ();

wire [3: 0] A;

reg [3: 0] I;
reg Clock, Clear, Load;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

146

Prob_6_35a MO (A, I, Load, Clock, Clear);
initial #150 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial fork
| =4'b1010;Clear = 1;
#40 Clear = 0;
Load = 0;
#20 Load = 1;
#40 Load = 0;
join
endmodule

Name

Clock | LT 1L T L 7L rtrirererrererierifiefi

Clear L

Load |—— [1
1[3:0] a

Ao [X0 X a X 0

(b) Note: The solution below replaces the solution given on the CD.
module Prob_6_35b (output reg [3: 0] A, input [3:0] |, input Load, Clock, Clear);
always @ (posedge Clock)

if (Load) A<=1;

else if (Clear) A <= 4'b0;

llelse A <= A; /I redundant statement
endmodule

module t_Prob_6_35b ();

wire [3: 0] A;
reg [3: 0] I;
reg Clock, Clear, Load;

Prob_6_35b MO (A, I, Load, Clock, Clear);
initial #150 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end

initial fork
| =4'b1010; Clear = 1;
#60 Clear = 0;
Load = 0;
#20 Load = 1;
#40 Load = 0;
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

147

Name

Clock | LT LTI rirreriririreririeri

Clear |

Load |—— T 1
1/3:0] a

apop [X0 X a2 X 0

(c)

module Prob_6_35c (output [3: 0] A, input [3:0] |, input Shift, Load, Clock);
Register_Cell RO (A[Q], I[0], A[1], Shift, Load, Clock);
Register_Cell R1 (A[1], I[1], A[2], Shift, Load, Clock);
Register_Cell R2 (A[2], 1[2], A[3], Shift, Load, Clock);
Register_Cell R3 (A[3], I[3], A[0], Shift, Load, Clock);
endmodule

module Register_Cell (output A, input |, Serial_in, Shift, Load, Clock);
DFF MO (A, D, Clock);
not (Shift_b, Shift);
not (Load_b, Load);
and (w1, Shift, Serial_in);
and (w2, Shift_b, Load, I);

and (w3, A, Shift_b, Load_b);
or (D, w1, w2, w3);
endmodule

module DFF (output reg Q, input D, clk);
always @ (posedge clk) Q <= D;
endmodule

module t Prob_6_35c ();

wire [3: 0] A;
reg [3: 0] I;
reg Clock, Shift, Load;

Prob_6_35c MO (A, I, Shift, Load, Clock);
initial #150 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial fork
| =4'b1010;
Load = 0; Shift = 0;
#20 Load = 1;
#40 Load = 0;
#50 Shift = 1;
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

148

Name

Clock | LITLILrLriririririrrrrreri

Shifi
Load I I
1/3:0]

a
Af3:0] x b o X5 KaXs Xa s KaXs fa)s)

(d
module Prob_6_35d (output reg [3: 0] A, input [3:0] |, input Shift, Load, Clock, Clear);
always @ (posedge Clock)

if (Shift) A <= {A[0], A[3:1]};
else if (Load) A <=1,
else if (Clear) A <= 4'b0;
llelse A <= A, /I redundant statement

endmodule

module t_Prob_6_35d ();

wire [3: 0] A;
reg [3: 0] ;
reg Clock, Clear, Shift, Load,;

Prob_6_35d MO (A, I, Shift, Load, Clock, Clear);
initial #150 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end

initial fork
| =4'b1010; Clear = 1;
#100 Clear = 0;
Load = 0;
#20 Load = 1;
#40 Load = 0;
#30 Shift = 1;
#90 Shift = 0;

join

endmodule
Name O | ‘60\ ‘ 12\0

/777 N N [I N I O

Clear |

Shifi M
Load | —— [1
1/3:0]

a
ap0) [A0 ha Xs Kafs KaXsXa) 0

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

149

(e)
module Shift_Register

(output [3: 0] A_par, input [3: 0] |_par, input MSB_in, LSB_in, s1, sO, CLK, Clear);
wire y3, y2, y1, y0;

DFF D3 (A_par[3], y3, CLK, Clear);

DFF D2 (A_par[2], y2, CLK, Clear);

DFF D1 (A_par[1], y1, CLK, Clear);

DFF DO (A_par[0], y0, CLK, Clear);

MUX_4x1 M3 (y3, |_par[3], A_par[2], MSB_in, A_par[3], s1, s0);

MUX_4x1 M2 (y2, |_par[2], A_par[1], A_par[3], A_par[2], s1, s0);

MUX_4x1 M1 (y1, |_par[1], A_par[0], A_par[2], A_par[1], s1, s0);

MUX_4x1 MO (y0, |_par[0], LSB_in, A_par[1], A_par[0], s1, sO);
endmodule

module MUX_4x1 (output reg vy, input I3, 12, 11, 10, s1, s0);
always @ (I3, 12, I1, 10, s1, s0O)
case ({s1, s0})

2'b11: y=13;
2'b10: y = 12;
2'p01: y=11;
2'b00: y = 10;
endcase
endmodule

module DFF (output reg Q, input D, clk, reset_b);
always @ (posedge clk, negedge reset_b) if (reset_b == 0) Q <= 0; else Q <=D;
endmodule

module t_Shift_Register ();
wire [3: 0] A par;
reg [3:0]I_par;
reg MSB_in, LSB_in, s1, s0, CLK, Clear;

Shift_Register M_SR(A_par, |_par, MSB_in, LSB_in, s1, s0, CLK, Clear);
initial #300 $finish;
initial begin CLK = 0; forever #5 CLK = ~CLK; end

initial fork
MSB_in =0; LSB_in = 0;
Clear = 0; /I Active-low reset
s1 =0;s0=0; /I No change
#10 Clear = 1;
#10 |_par = 4'hA;
#30 begin s1 =1; s0 = 1; end // 00: load |_par into A_par
#50 s1 =0; /1 01: shift right (1010 to 0101 to 0010 to 0001 to 0000)
#90 begin s1=1; s0=1; end // 11: reload A with 1010
#100s0 = 0; /I 10: shift left (1010 to 0100 to 1000 to 000)
#140 begins1=1;s0=1; MSB_in=1; LSB_in=1; end // Repeat with MSB and LSB
#150 s1=0;
#190 begins1=1;s0=1; end //reload with A=1010
#200 s0 = 0; /I Shift left
#220 s1=0; /| Pause
#240 s1=1; /I Shift left
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

150

No Shift Shift

change Load right Load left
Name 0 | | | \\ | | | | | \90\ | | | | | | | | ‘ 18\0 | | | | | | | | ‘27\0 | |
CLK L] UWHJWWUWW
Clear | //
s] | —
50 U U

I par[3:0] zx a
MSB_in I
LSB in

I
A parf3:0] 0 Ja XsX2XiXoXaXaXs)X 0 XaXaXel ¢ Jals) o XaX— ¥

®
module Shift Register BEH

(output [3: 0] A_par, input [3: 0] |_par, input MSB_in, LSB _in, s1, sO, CLK, Clear);

always @ (posedge CLK, negedge Clear) if (Clear == 0) A_par <= 4'b0;

else case ({s1, s0})
2'b11: A _par <=|_par;
2'b01: A_par <= {MSB_in, A_par[3: 1]};
2'b10: A_par <= {A_par[2: 0], LSB_in};
2'b00: A _par <=A par;

endcase

endmodule

module t_Shift_Register ();
wire [3: 0] A_pair;
reg [3: 0]l par;
reg MSB_in, LSB_in, s1, s0, CLK, Clear;

Shift_Register BEH M_SR(A_par, |_par, MSB_in, LSB_in, s1, s0, CLK, Clear);
initial #300 $finish;
initial begin CLK = 0O; forever #5 CLK = ~CLK; end

initial fork

MSB_in=0; LSB_in = 0;

Clear = 0; /I Active-low reset
s1 =0;s0=0; /I No change
#10 Clear = 1;

#10 |_par = 4'hA;
#30 begin s1 =1; s0 =1; end // 00: load |_par into A_par

#50 s1=0; /1 01: shift right (1010 to 0101 to 0010 to 0001 to 0000)
#90 begin s1=1; s0=1; end // 11: reload A with 1010

#100 s0 = 0; /I 10: shift left (1010 to 0100 to 1000 to 000)

#140 begins1=1;s0=1; MSB_in=1; LSB_in=1; end // Repeat with MSB and LSB
#150 s1 =0;

#190 begins1=1;s0=1; end //reload with A=1010

#200 s0 = 0; /I Shift left

#220 s1=0; /| Pause

#240 s1=1; /I Shift left
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

151

Na’ng 0 | ‘90\ ‘ 18\0 | ‘ 27\0 |
CLK ey U LU
Clear -

sl L 1 L

50 I || |

Lparzo] | xX 2

MSB _in I

LSB in I

A_par[3:0] 0 N a XskeXihoXataksX o Xafafeh ¢ [) G

(€9)

module Ripple_Counter_4bit (output [3: 0] A, input Count, reset_b);
reg A0, A1, A2, A3;
assign A = {A3, A2, A1, A0}
always @ (negedge Count, negedge reset_b)
if (reset_b == 0) A0 <= 0; else A0 <= ~AOQ;

always @ (negedge A0, negedge reset_b)
if (reset_b == 0) A1 <=0; else A1 <= ~Af1;

always @ (negedge A1, negedge reset_b)
if (reset_b == 0) A2 <= 0; else A2 <= ~A2;

always @ (negedge A2, negedge reset_b)
if (reset_b == 0) A3 <= 0; else A3 <= ~A3;
endmodule

module t_Ripple_Counter_4bit ();
wire [3: 0] A;
reg Count, reset_b;

Ripple_Counter_4bit MO (A, Count, reset_b);

initial #300 $finish;
initial fork
reset_ b =0; /I Active-low reset
#60 reset_b =1;

Count =1;
#15 Count = 0;
#30 Count = 1;
#85 begin Count = 0; forever #10 Count = ~Count; end
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

152
Name 0 1, Rl A
Count L | L1 rerrrrrrrurowror
reset b I
A[3:0] 0 X 1 X 2 X3 X4 s Xe X7 X8 Xo)XaXb

(h) Note: This version of the solution situates the data shift registers in the test bench.

module Serial_Subtractor (output SO, input SI_A, SI_B, shift_control, clock, reset_b);
/| See Fig. 6.5 and Problem 6.9a (2s complement serial subtractor)

reg [1: 0] sum;

wire mem = sum[1];

assign SO = sum[0];

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) begin
sum <= 2'b10;
end
else if (shift_control) begin
sum <= SI_A + (ISI_B) + sum[1];
end
endmodule

module t_Serial_Subtractor ();
wire SI_A, SI_B;
reg shift_control, clock, reset_b;

Serial_Subtractor MO (SO, SI_A, SI_B, shift_control, clock, reset_b);

initial #250 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork
shift_control = 0;
#10 reset_b =0;
#20 reset_ b =1;
#22 shift_control = 1;
#105 shift_control = 0;
#112 reset_b =0;
#114 reset_ b =1;
#122 shift_control = 1;
#205 shift_control = 0;
join
reg [7: 0] A, B, SO_reg;
wire s7;
assign s7 = SO_reg[7];
assign SI_A = A[0];
assign SI_B = BJ[0];
wire SI_B _bar = ~S|_B;
initial fork
A = 8'hbA;
B = 8'h0A;
#122 A = 8'h0A;
#122 B = 8'h5A;
join

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

153

always @ (negedge clock, negedge reset_b)
if (reset_b == 0) SO _reg <= 0;

else if (shift_control == 1) begin
SO _reg <={S0O, SO_reg[7: 1]};
A<=A>>1;
B<=B>>1;

end

wire negative = IMO.sum[1];
wire [7: 0] magnitude = (Inegative)? SO_reg: 1'b1 + ~SO_reg;
endmodule

Simulation results are shown for 5Ah — 0Ah = 50h = 80 d and 0Ah — 5Ah = -80. The magnitude of the
result is also shown.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

- Y
] © o
3|~ ©
=R olle - -
N
- < S >< ==
— «© o
>< 3l ©
] S< >< L o S< >< ><
B ol|lo
S N <
i Sl >< 3 2 ©
- S>< S>< — S>< S>< ><
] © ©
SN IR
] > >< — L S< >< ><
|| w L L
S - 3 ><
=t
pa— S< >< S< >< —
B — ||~ ol —
o =11h=
I S>< ><< >< >< L =
[SIESY oflN
m o ||
ol|lo o
E S>< >< > >< — — 5 =}
1 wllw ol
o IE
I S>< >< >< >< L = o~
] ol S ol 2
8* oll~ ||
- >< S>< < ><T
E — S<< ><< <
N o o
] s|[° 3l| = ©
] S< >< SS=
] o o
(=}
— ><
n ol|lo °||= <
S>< >< S — ™ S< >< ><
I <t <
o ol ™] e 8 © ©
O S>< >< o~ S< >< ><
] © ©
SN | o
S >< 3| Y
>< S>< ™ S>< S>< ><
] 8 0 _— ><
E S >< > >< — L
B ol| — ||~
oll~ o
I S>< >< >< >< L =
7 [N [S11KsY
o — || N o
N >< > o> >< — — 8 o o
N
f ol wllw
o = o
I S>< >< >< >< =
E o
|| o g -
] >< S< >< ><
%
] x o3 <
o
)
I3 58 &
-~ . NN ko]
< © IS S 5 0 S
§ -Ql 8 -Ql o % %~> =
~ = ~ = A = =
gl e s B & 2R NN < @ IS 8 S
S| © S 3 = & &K I O o 3 O O @ ©
= Q S 2 & < < o Qo » w u n & & n »n < &

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

155

(i) See Prob. 6.35h.

®»
module Serial_Twos_Comp (output y, input [7: 0] data, input load, shift_control, Clock, reset_b);
reg [7: 0] SReg;
reg Q;
wire SO = SReg [0];
assigny =SO " Q;
always @ (posedge Clock, negedge reset_b)
if (reset_b == 0) begin
SReg <= 0;
Q<=0;
end
else begin
if (load) SReg = data;
else if (shift_control) begin
Q<=Q|S0;
SReg <= {y, SReg[7: 1]};
end
end
endmodule

module t_Serial_Twos_Comp ();
wire y;
reg [7: 0] data;
reg load, shift_control, Clock, reset_b;

Serial_Twos_Comp MO (y, data, load, shift_control, Clock, reset_b);
reg [7: 0] twos_comp;

always @ (posedge Clock, negedge reset_b)
if (reset_b == 0) twos_comp <= 0;
else if (shift_control && lload) twos_comp <= {y, twos_comp[7: 11};

initial #200 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial begin #2 reset_b = 0; #4 reset_ b =1; end

initial fork
data = 8'h5A;
#20 load = 1;
#30 load = 0;
#50 shift_control = 1;
#50 begin repeat (9) @ (posedge Clock) ;

shift_control = 0;

end

join

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

156

Clock

reset b |

data[7:0] 5a
load

shift_control |

— L—
SReg/[7:0] oo X (5a) Y 2d X 96 X cb 65 X 32 X 99 \ 4c Kab6
1 | | | L

i‘}wos_comp[7:0] X 00 {80 X c0 X 60 {30 X 98 X 4c Y(a6)

(k) From the solution to Problem 6.13:

0
Al
A2 !
4-Bit 0
Ripple Counter A3
1
Clear A4
Asynchronous, active-low)

module Prob_6_35k_BCD_Counter (output A1, A2, A3, A4, input clk, reset_b);
wire {A1, A2, A3, Ad} = A;
nand (Clear, A2, A4);
Ripple_Counter_4bit MO (A, Clear, reset_b);

endmodule

module Ripple_Counter_4bit (output [3: 0] A, input Count, reset_b);
reg A0, A1, A2, A3;
assign A = {A3, A2, A1, AO};
always @ (negedge Count, negedge reset_b)
if (reset_b == 0) A0 <= 0; else A0 <= ~A0;
always @ (negedge AO, negedge reset_b)
if (reset_b == 0) A1 <= 0; else A1 <= ~A1;
always @ (negedge A1, negedge reset_b)
if (reset_b == 0) A2 <= 0; else A2 <= ~A2;
always @ (negedge A2, negedge reset_b)
if (reset_b == 0) A3 <= 0; else A3 <= ~A3;
endmodule
module t_ Prob_6_35k_BCD_Counter ();
wire [3: 0] A;
reg Count, reset_b;

Prob_6_35k_BCD_Counter MO (A1, A2, A3, A4, reset_b);
initial #300 $finish;

initial fork
reset_ b =0; /I Active-low reset
#60 reset_b = 1;
/*
Count=1;
#15 Count = 0;
#30 Count = 1;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

157

#85 begin Count = 0; forever #10 Count = ~Count; end*/
join
endmodule

@
module Prob_6_35|_Up_Dwn_Beh (output reg [3: 0] A, input CLK, Up, Down, reset_b);

always @ (posedge CLK, negedge reset_b)
if (reset_b ==0) A <= 4'b0000;
else case ({Up, Down})
2'b10: A<=A+4'b0001; //Up
2'b01: A<=A-4'b0001; //Down
default: A <=A; // Suspend (Redundant statement)
endcase
endmodule

module t Prob_6_35|_Up_Dwn_Beh ();
wire [3: 0] A;
reg CLK, Up, Down, reset_b;

Prob_6_35I_Up_Dwn_Beh MO (A, CLK, Up, Down, reset_b);

initial #300 $finish;
initial begin CLK = 0; forever #5 CLK = ~CLK; end
initial fork
Down = 0; Up=0;
#10 reset_b =0;
#20 reset_b =1;
#40 Up = 1;
#150 Down = 1;
#220 Up = 0;
#280 Down = 0;
join
endmodule

Name 10 ‘ ‘90‘ ‘ 18‘0 ‘ ‘270

ax UL L L L L L
reset b —

Up I
Down J L

apo) X0 NikaRsfaksKefrXsko)a) b 800608

6.36 (a)

/I See Fig. 6.13., 4-bit Up-Down Binary Counter
module Prob_6_36_Up_Dwn_Beh (output reg [3: 0] A, input CLK, Up, Down, reset_b);

always @ (posedge CLK, negedge reset_b)
if (reset_b ==0) A <= 4'b0000;
else if (Up) A <= A + 4'b0001;
else if (Down) A <= A - 4'b0001;
endmodule

module t_Prob_6_36_Up_Dwn_Beh ();

wire [3: 0] A;
reg CLK, Up, Down, reset_b;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

158

Prob_6_36_Up_Dwn_Beh MO (A, CLK, Up, Down, reset_b);

initial #300 $finish;
initial begin CLK = 0; forever #5 CLK = ~CLK; end
initial fork
Down = 0; Up=0;
#10 reset_b =0;
#20 reset_b =1;
#40 Up = 1;
#150 Down = 1;
#220 Up = 0;
#280 Down = 0;
join
endmodule

0 80 160 240
Narme | ‘ | ‘ | | ‘ |

cak oo e e L e
reset b L

Up
Down

A[3:0]

(b)

module Prob_6_36_Up_Dwn_Str (output [3: 0] A, input CLK, Up, Down, reset_b);
wire Down_3, Up_3, Down_2, Up_2, Down_1, Up_1;
wire A_Ob, A_1b, A_2b, A_3b;

stage_register SR3 (A[3], A_3b, Down_3, Up_3, Down_2, Up_2, A[2], A_2b, CLK, reset_b);
stage_register SR2 (A[2], A_2b, Down_2, Up_2, Down_1, Up_1, A[1], A_1b, CLK, reset_b);
stage_register SR1 (A[1], A_1b, Down_1, Up_1, Down_not_Up, Up, A[0], A_Ob, CLK, reset_b);
not (Up_b, Up);
and (Down_not_Up, Down, Up_b);
or (T, Up, Down_not_Up);
Toggle_flop TFO (A[0], A_Ob, T, CLK, reset_b);

endmodule

module stage_register (output A, A_b, Down_not_Up_out, Up_out, input Down_not_Up, Up, A_in,
A_in_b, CLK, reset_b);

Toggle_flop TO (A, A_b, T, CLK, reset_b);
or (T, Down_not_Up_out, Up_out);
and (Down_not_Up_out, Down_not_Up, A_in_b);
and (Up_out, Up, A_in);
endmodule

module Toggle_flop (output reg Q, output Q_b, input T, CLK, reset_b);
always @ (posedge CLK, negedge reset_b) if (reset_ b==0)Q<=0;else Q<=Q" T,
assign Q_b =~Q;

endmodule

module t_Prob_6_36_Up_Dwn_Str ();

wire [3: 0] A;
reg CLK, Up, Down, reset_b;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

159

wire T3 = M0.SR3.T;
wire T2 = M0.SR2.T;
wire T1 = M0.SR1.T;
wire TO = MO.T;

Prob_6_36_Up_Dwn_Str MO (A, CLK, Up, Down, reset_b);

initial #150 $finish;

initial begin CLK = 0; forever #5 CLK = ~CLK; end

initial fork
Down = 0; Up=0;
#10 reset_b =0;
#20 reset_b = 1;
#50 Up = 1;
#140 Down = 1;
#120 Up = 0;
#140 Down = 0;

join

endmodule

0 70 140 210 280
Name | ‘ | ‘ | | ‘ | | ‘ |

CLK e e e L e e L e e L L L L L]
reset b I
Up

Down
A[3:0]

6.37
module Counter_if (output reg [3: 0] Count, input clock, reset);
always @ (posedge clock , posedge reset)

if (reset)Count <= 0;
else if (Count == 0) Count <= 1;
else if (Count == 1) Count <= 3; // Default interpretation is decimal
else if (Count == 3) Count <=7;
else if (Count == 4) Count <= 0;
else if (Count == 6) Count <= 4;
else if (Count == 7) Count <= 6;
else Count <=0;

endmodule

module Counter_case (output reg [3: 0] Count, input clock, reset);
always @ (posedge clock , posedge reset)
if (reset)Count <= 0;
else begin
Count <= 0;
case (Count)
: Count <= 1;
Count <= 3;
Count<=7;
Count <= 0;
Count <= 4;
: Count <= 6;
default: Count <=0;
endcase

Nohrw2ro

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

160

end
endmodule

module Counter_FSM (output reg [3: 0] Count, input clock, reset);
reg [2: 0] state, next_state;
parameter s0 =0,s1=1,s2=2,83=3,s4=4,s5=5,s6=6,s7 =7,

always @ (posedge clock , posedge reset)
if (reset) state <= s0; else state <= next_state;

always @ (state) begin

Count = 0;

case (state)
sO: begin next_state = s1; Count = 0; end
s1: begin next_state = s2; Count = 1; end
s2: begin next_state = s3; Count = 3; end
s3: begin next_state = s4; Count = 7; end
s4: begin next_state = s5; Count = 6; end
s5: begin next_state = s6; Count = 4; end
default: begin next_state = sO; Count = 0; end

endcase

end
endmodule
6.38 (a)

module Prob_6_38a_Updown (OUT, Up, Down, Load, IN, CLK); // Verilog 1995
output [3: 0] OUT;
input [3:0] IN;
input Up, Down, Load, CLK;
reg [3:0] OUT;

always @ (posedge CLK)

if (Load) OUT <= IN;

else if (Up) OUT <= OUT + 4'b0001;
else if (Down) OUT <= OUT - 4'b0001;

else OUT <= 0OUT;

endmodule

module updown (/I Verilog 2001, 2005

output reg[3: 0] OUT,

input [3:0] 1IN,

input Up, Down, Load, CLK

);
Name 0\\\\\\\\\Iﬂ\a\\\\\\\\Izz\o\\\\\\\\lsa\o\\\\\\\\IM\O\\\\\
clock U UUUUUUUrrUriUuuuruUrvrrrrur v vy oy iU
reset_b L
Load [
Down
Up
data[3:0]
count[3:0] 0 X ¢

(b)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

161

module Prob_6_38b_Updown (output reg [3: 0] OUT, input [3: 0] IN, input s1, sO, CLK);

always @ (posedge CLK)

case ({s1, s0})
2'b00: OUT <= OUT + 4'b0001;
2'b01: OUT <= OUT - 4'b0001;
2'b10: OUT <=IN;
2'b11: OUT <= OUT;

endcase

endmodule

module t_Prob_6_38b_Updown ();
wire [3: 0] OUT;
reg [3: O] IN;
reg s1, s0, CLK;
Prob_6_38b_Updown MO (OUT, IN, s1, s0, CLK);

initial #150 $finish;

initial begin CLK = 0O; forever #5 CLK = ~CLK; end
initial fork

IN =4'b1010;

#10 begins1=1;s0=0;end /I Load IN
#20 begins1=1;s0=1;end // no change
#40 begins1=0;s0=0;end /I UP;
#80 begins1=0;s0=1;end // DOWN
#120begin s1=1;s0=1; end
join

endmodule

Name L ‘ L ‘ L L

CLK VN I Yy) e Y S I

sl |
50 I [
INJ3:0]

a
OUT/[3:0] X X a ﬂﬂﬂﬂ c XEX a

6.39
module Prob_6_39 Counter_BEH (output reg [2: 0] Count, input Clock, reset_b);
always @ (posedge Clock, negedge reset_b) if (reset_b == 0) Count <= 0;
else case (Count)

: Count <= 1;
: Count <= 2;
: Count <= 4;
: Count <=5;
: Count <= 6;
: Count <=0;

endcase
endmodule

DB N-=220

module Prob_6_39 Counter_STR (output [2: 0] Count, input Clock, reset_b);
supply1 PWR;
wire Count_1_b = ~Count[1];

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

162
JK_FF M2 (Count[2], Count[1], Count[1], Clock, reset_b);
JK_FF M1 (Count[1], Count[0], PWR, Clock, reset_b);
JK_FF MO (Count[0], Count_1_b, PWR, Clock, reset_b);
endmodule
module JK_FF (output reg Q, input J, K, clk, reset_b);
always @ (posedge clk, negedge reset_b) if (reset_b == 0) Q <= 0; else
case ({J,K})
2'b00: Q<=Q;
2'b01: Q <=0;
2'b10: Q<=1;
2b11: Q <=~Q;
endcase
endmodule
module t_Prob_6_39 Counter ();
wire [2: 0] Count_BEH, Count_STR;
reg Clock, reset_b;
Prob_6_39 Counter_BEH MO_BEH (Count_STR, Clock, reset_b);
Prob_6_39 Counter_STR M0_STR (Count_BEH, Clock, reset_b);
initial #250 $finish;
initial fork #1 reset_b = 0; #7 reset_b = 1; join
initial begin Clock = 1; forever #5 Clock = ~Clock; end
endmodule
0 60 120
Name | ‘ | ‘ | |
Clock [5 A I e s Yy Y I I
reset b —

count gErp2o] ({0 X1 X2 X4 X5 Ko hoN1 X2hdahshohohtA2)(4)]
Count_sTrR2:07 ({0 X1 X2 4 ks X e XoX1 2 XaksNeNoXrf2)fah)

6.40
module Prob_6_40 (output reg [0: 7] timer, input clk, reset_b);

always @ (negedge clk, negedge reset_b)
if (reset_b == 0) timer <= 8'b1000_0000; else
case (timer)

8'b1000_0000: timer <= 8'b0100_0000;
8'b0100_0000: timer <= 8'b0010_0000;
8'b0010_0000: timer <= 8'b0001_0000;
8'b0001_0000: timer <= 8'b0000_1000;
8'b0000_1000: timer <= 8'b0000_0100;
8'b0000_0100: timer <= 8'b0000_0010;
8'b0000_0010: timer <= 8'b0000_0001;
8'b0000_0001: timer <= 8'b1000_0000;
default: timer <= 8'b1000_0000;
endcase
endmodule

module t_Prob_6_40 ();

wire [0: 7] timer;
reg clk, reset_b;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

163

Prob_6_40 MO (timer, clk, reset_b);

initial #250 $finish;

initial fork #1 reset_b = 0; #7 reset_b = 1; join

initial begin clk = 1; forever #5 clk = ~clk; end
endmodule

Name 0 ‘ ‘70‘ ‘ 14‘0 ‘ ‘210

clk

reset b
timer[0:7]
timer[0]
timer([1]
timer([2]
timer(3]
timer([4]
timer([5]
timer([6]
timer([7]

6.41

module Prob_6_41_Switched_Tail_Johnson_Counter (output [0: 3] Count, input CLK, reset_b);
wire Q_0b, Q_1b, Q_2b, Q_3b;

DFF M3 (Count[3], Q_3b, Count[2], CLK, reset_b);

DFF M2 (Count[2], Q_2b, Count[1], CLK, reset_b);

DFF M1 (Count[1], Q_1b, Count[0], CLK, reset_b);

DFF MO (Count[0], Q_0b, Q_3b, CLK, reset_b);
endmodule

module DFF (output reg Q, output Q_b, input D, clk, reset_b);

assign Q_b =~Q;

always @ (posedge clk, negedge reset_b) if (reset_b ==0) Q <= 0; else Q <= D;
endmodule

module t_Prob_6_41_Switched_Tail_Johnson_Counter ();

wire [3: 0] Count;

reg CLK, reset_b;

wire sO = ~ M0.Count[0] && ~MO0.Count[3];
wire s1 = MO0.Count[0] && ~MO0.Count[1];
wire s2 = MO0.Count[1] && ~M0.Count[2];
wire s3 = MO0.Count[2] && ~MO0.Count[3];
wire s4 = MO0.Count[0] && MO.Count[3];
wire s5 = ~ M0.Count[0] && MO0.Count[1];
wire s6 = ~ M0.Count[1] && MO0.Count[2];
wire s7 = ~ M0.Count[2] && MO.Count[3];

Prob_6_41_Switched_Tail_Johnson_Counter MO (Count, CLK, reset_b);
initial #150 $finish;
initial fork #1 reset_b = 0; #7 reset_b = 1; join
initial begin CLK = 1; forever #5 CLK = ~CLK; end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

164

Name

CLK

reset b
Count[3:0]
s0

s1

s2

s3

s4

55

56 1 1
s7 1

6.42 Because A is a register variable, it retains whatever value has been assigned to it until a new
value is assigned. Therefore, the statement 4 <= A4 has the same effect as if the statement was
omitted.

6.43
data
4
. Mux
D_in Mux HD 0
DFF

Shift_control L

load l_

Clock [

module Prob_6_43_Str (output SO, input [7: 0] data, input load, Shift_control, Clock, reset_b);
supply0 gnd;
wire SO_A;

Shift_with_Load M_A (SO_A, SO_A, data, load, Shift_control, Clock, reset_b);
Shift_with_Load M_B (SO, SO_A, data, gnd, Shift_control, Clock, reset_b);

endmodule

module Shift_with_Load (output SO, input D_in, input [7: 0] data, input load, select, Clock, reset_b);

wire [7: 0] Q;

assign SO = Q[0];

SR_cell M7 (Q[7], D_in, data[7], load, select, Clock, reset_b);

SR_cell M6 (Q[6], Q[7], data[6], load, select, Clock, reset_b);
SR_cell M5 (Q[5], Q[6], data[5], load, select, Clock, reset_b);
SR_cell M4 (Q[4], Q[5], data[4], load, select, Clock, reset_b);
SR_cell M3 (Q[3], Q[4], data[3], load, select, Clock, reset_b);
SR_cell M2 (Q[2], Q[3], data[2], load, select, Clock, reset_b);
SR_cell M1 (Q[1], Q[2], data[1], load, select, Clock, reset_b);
SR_cell MO (Q[0], Q[1], data[0], load, select, Clock, reset_b)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

165
endmodule
module SR_cell (output Q, input D, data, load, select, Clock, reset_b);
wire y;
DFF_with_load MO (Q, vy, data, load, Clock, reset_b);
Mux_2 M1 (y, Q, D, select);
endmodule
module DFF_with_load (output reg Q, input D, data, load, Clock, reset_b);
always @ (posedge Clock, negedge reset_b)
if (reset_b == 0) Q <= 0; else if (load) Q <= data; else Q <= D;
endmodule
module Mux_2 (output reg y, input a, b, sel);
always @ (a, b, sel) if (sel ==1) y = b; else y = a;
endmodule
module t_Fig_6_4_Str ();
wire SO;
reg load, Shift_control, Clock, reset_b;
reg [7: 0] data, Serial_Data;
Prob_6_43_Str MO (SO, data, load, Shift_control, Clock, reset_b);
always @ (posedge Clock, negedge reset_b)
if (reset_b == 0) Serial_Data <= 0;
else if (Shift_control) Serial_Data <= {M0.SO_A, Serial_Data [7: 1]};
initial #200 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial begin #2 reset_b = 0; #4 reset_b = 1; end
initial fork
data = 8'h5A;
#20 load = 1;
#30 load = 0;
#50 Shift_control = 1;
#50 begin repeat (9) @ (posedge Clock) ;
Shift_control = 0;
end
join
endmodule
1
Name ° 1 % |
Clock s rereru
reset b -
load
Shift_control [
data[7:0] 5a
SO A [|
SO '
0/[7:0] X o0 X 5a X 2d X 96 X 4b X a5 X d2 X 69 X b4 f 5a X 2d
0[7:0] X 00 X 80 X 40 X a0 X d0 X 68 X b4 X 5a \ 2d
Serial Data[7:0] |X 00 {80 Y40 X a0 X do X 68 X b4) 5a

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

166

Alternative: a behavioral model for synthesis is given below. The behavioral description implies
the need for a mux at the input to a D-type flip-flop.

module Fig_6_4 Beh (output SO, input [7: 0] data, input load, Shift_control, Clock, reset_b);
reg [7: 0] Shift_Reg_A, Shift_ Reg_B;
assign SO = Shift_Reg_BJ[0];
always @ (posedge Clock, negedge reset_b)
if (reset_b == 0) begin
Shift_Reg_A <= 0;
Shift_Reg_B <= 0;
end
else if (load) Shift_Reg_A <= data;
else if (Shift_control) begin
Shift_Reg_A <= { Shift_Reg_A[0], Shift_Reg_A[7: 11};
Shift_Reg_B <= {Shift_Reg_A[0], Shift_Reg_B[7: 1]};
end

endmodule

module t Fig 6 4 Beh ();
wire SO;
reg load, Shift_control, Clock, reset_b;
reg [7: 0] data, Serial_Data;

Fig_6_4_ Beh MO (SO, data, load, Shift_control, Clock, reset_b);

always @ (posedge Clock, negedge reset_b)
if (reset_b == 0) Serial_Data <= 0;
else if (Shift_control) Serial_Data <= {M0.Shift_Reg_A[0], Serial_Data [7: 1]};

initial #200 $finish;
initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial begin #2 reset_b = 0; #4 reset_ b =1; end

initial fork
data = 8'h5A;
#20 load = 1;
#30 load = 0;
#50 Shift_control = 1;
#50 begin repeat (9) @ (posedge Clock) ;
Shift_control = 0;

end

join

endmodule

Name 0 | ‘50\ ‘10\0 | ‘15\0 |
Clock AN [Y Y Y I I I Y I A
reset b -

load 1

Shift_control J
data[7:0] 5a

Shifi Reg A77:0] |X__00 X 5a X 2d X 96 X 4b X a5 X d2 X 69 X b4 X 5a X 2d
Shifi Reg B[7:0] |X 00 X 80 X 40 X a0 X do X 68 X b4 X 5a X 2d

SO —
Serial Dataf7:0] | X 00 X80 Y40 Y a0 Y do Y 68)\ b4 X 54

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

167

6.44
/I See Figure 6.5
/I Note: Sum is stored in shift register A; carry is stored in Q
/I Note: Clear is active-low.

module Prob_6_44 Str (output SO, input [7: 0] data_A, data_B, input S_in, load, Shift_control, CLK,
Clear);
supply0 gnd;
wire sum, carry;
assign SO = sum;
wire SO_A, SO_B;

Shift_Reg_gated_clock M_A (SO_A, sum, data_A, load, Shift_control, CLK, Clear);
Shift_Reg_gated_clock M_B (SO_B, S_in, data_B, load, Shift_control, CLK, Clear);
FA M_FA (carry, sum, SO_A, SO_B, Q);

DFF_gated M_FF (Q, carry, Shift_control, CLK, Clear);

endmodule

module Shift_ Reg_gated_clock (output SO, input S_in, input [7: 0] data, input load, Shift_control,
Clock, reset_b);
reg [7: 0] SReg;
assign SO = SReg[0];

always @ (posedge Clock, negedge reset_b)
if (reset_b == 0) SReg <= 0;
else if (load) SReg <= data;
else if (Shift_control) SReg <= {S_in, SReg[7: 1]};
endmodule

module DFF_gated (output Q, input D, Shift_control, Clock, reset_b);
DFF M_DFF (Q, D_internal, Clock, reset_b);
Mux_2 M_Mux (D_internal, Q, D, Shift_control);

endmodule

module DFF (output reg Q, input D, Clock, reset_b);
always @ (posedge Clock, negedge reset_b)
if (reset_b == 0) Q <= 0; else Q <= D;
endmodule

module Mux_2 (output reg y, input a, b, sel);
always @ (a, b, sel) if (sel ==1) y = b; else y = a;
endmodule

module FA (output reg carry, sum, input a, b, C_in);
always @ (a, b, C_in) {carry, sum}=a+ b + C_in;
endmodule

module t_Prob_6_44_Str ();
wire SO;
reg SI, load, Shift_control, Clock, Clear;
reg [7: 0] data_A, data_B;

Prob_6_44_ Str MO (SO, data_A, data_B, SlI, load, Shift_control, Clock, Clear);
initial #200 $finish;

initial begin Clock = 0; forever #5 Clock = ~Clock; end
initial begin #2 Clear = 0; #4 Clear = 1; end

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

168

initial fork
data_A = 8'hAA; //8h ff;
data_B = 8'h55; //8'h01;
SI=0;
#20 load = 1,
#30 load = 0;
#50 Shift_control = 1;
#50 begin repeat (8) @ (posedge Clock) ;
#5 Shift_control = 0;
end
join
endmodule

Name ° 1% 120

Clock Ay Y Y Yy Y I O

Clear -
load

Shift_control

aa, + 55, = {carry, sum} = {0, ff, }

data_A[7:0] (

aa M
SRegf7:0] [{__00 X //@\ ea fd i >
(0] ja

I |
data_B[7:0] |] 55
SReg[7:0] :K 00 X \ 55/ 15 m 02 00

SO I

60

0

Name

Clock
Clear -
load

Shift_control =
/ ff + 01, = {carry, sum} = {1, 00,}
1

data_A[7:0] ff

SReg[7:0] [{__00 X {/ ff \\ 3f
0 I

data_B[7:0] \ / 01

Sreg/7:0) [f__00 X o— X 00

SO

6.45

module Prob_6_45 (output reg y_out, input start, clock, reset_bar);
parameter sO =4'b0000,
s1=4'pb0001,
s2 =4'pb0010,
s3 =4'b0011,
s4 =4'p0100,
s5=4'pb0101,

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

169
s6 =4'b0110,
s7 =4'b0111,
s8 = 4'b1000;

reg [3: 0] state, next_state;

always @ (posedge clock, negedge reset_bar)
if (Ireset_bar) state <= s0; else state <= next_state;

always @ (state, start) begin
y_out = 1'b0;
case (state)
s0: if (start) next_state = s1; else next_state = s0;
s1: begin next_state =s2;y out=1; end
s2: begin next_state =s3;y out=1; end
s3: begin next_state =s4;y out=1; end
s4: begin next_state = s5;y_out=1; end
s5: begin next_state = s6;y_out=1; end
s6: begin next_state =s7;y _out=1; end
s7: begin next_state = s8;y_out=1; end
s8: begin next_state = s0; y_out=1; end
default: next_state = s0;
endcase
end
endmodule

/I Test plan

/I Verify the following:

/| Power-up reset

/l Response to start in initial state

/I Reset on-the-fly

/I Response to re-assertion of start after reset on-the-fly

/I 8-cycle counting sequence

/I lgnore start during counting sequence

// Return to initial state after 8 cycles and await start

/l Remain in initial state for one clock if start is asserted when the state is entered

module t Prob 6 45;
wire y_out;
reg start, clock, reset_bar;

Prob_6_45 MO (y_out, start, clock, reset_bar);

initial #300 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork
reset_bar = 0;
#2 reset_bar = 1;
#10 start = 1;
#20 start = 0;
#30 reset_bar = 0;
#50 reset_bar = 1;
#80 start = 1;
#90 start = 0;
#130 start = 1;
#140 start = 0;
#180 start = 1;
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

170

0 70 140 20 280
Name I I N I I I I N I I I Y | I I I N I I I I I N |
clock Uy U U LU
reset_ar I L
start LT 1 1 I
y_out I L L

6.46
module Prob_6_46 (output reg [0: 3] timer, input clk, reset_b);
always @ (negedge clk, negedge reset_b)
if (reset_b == 0) timer <= 4'b1000; else
case (timer)
4'b1000: timer <=4'b0100;
4'b0100: timer <=4'b0010;
4'b0010: timer <= 4'b0001;
4'b0001: timer <= 4'b1000;
default: timer <=4'b1000;
endcase
endmodule
module t Prob_6_46 ();
wire [0: 3] timer;
reg clk, reset_b;
Prob_6_46 MO (timer, clk, reset_b);
initial #150 $finish;
initial fork #1 reset_b = 0; #7 reset_b = 1; join
initial begin clk = 1; forever #5 clk = ~clk; end
endmodule
0 60 120
Name | ‘ | ‘ | |
clk
reset b
timer [0:3]
timer [0]
timer [1]
timer [2]
timer [3]
6.47

module Prob_6_47 (
output reg P_odd,
input D_in, CLK, reset
);

wire D;

assign D = D_in * P_odd;
always @ (posedge CLK, posedge reset)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

171

if (reset) P_odd <=0;
else P_odd <= D;
endmodule

module t Prob_6_47 ();
wire P_odd;
reg D_in, CLK, reset;

Prob_6_47 MO (P_odd, D_in, CLK, reset);

initial #150 $finish;

initial fork #1 reset = 1; #7 reset = 0; join

initial begin CLK = 0; forever #5 CLK = ~CLK; end
initial begin D_in = 1; forever #20 D_in = ~D_in; end

endmodule

Name L ‘ L ‘ L L

CLK I I Yy) Y Y I

reset T
D_in I e O) (S IS
P odd |— 1 L — L |

6.48 (a)

module Prob_6_48a (output reg [7: 0] count, input clk, reset_b);
reg [3: O] state;
always @ (posedge clk, negedge reset_b)
if (reset_b == 0) state <= 0; else state <= state + 1;
always @ (state)
case (state)
0,2,4,6,8,10,12: count =8'b0000_0001;

1: count = 8'b0000_0010;
3: count = 8'b0000_0100;
5: count = 8'b0000_1000;
7: count = 8'b0001_0000;
9: count = 8'b0010_0000;
11: count = 8'b0100_0000;
13: count = 8'b1000_0000;
default: count = 8'b0000_0000;
endcase
endmodule

module t Prob_6 48a ();
wire [7: 0] count;
reg clk, reset_b;

Prob_6_48a MO (count, clk, reset_b);

initial #200 $finish;

initial begin clk = 0; forever #5 clk = ~clk; end

initial begin reset_b = 0; #2 reset_b = 1; end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

172

(=]
(=)
(=]

Name 120 180

clk

reset_b
staref3:0] | X1 X2 X3 X4 ks X6 X7 X8 XoXaXbfeXaXerXoX1 X2)3)
countf7:07 |_X02 X 01 K04 X o1 K08 Xo1 f 10 Xor X20 X o1 K40 for X80 X 00 Xor o2 Kor f o4)
count[7] 1

count[6] 1

count([5] 1

count[4] 1

count[3] 1

count[2] 1 L
count[1]
count[0]

j
]

]
]

(b)

module Prob_6_48b (output reg [7: 0] count, input clk, reset_b);
reg [3: 0] state;
always @ (posedge clk, negedge reset_b)
if (reset_b == 0) state <= 0; else state <= state + 1;
always @ (state)
case (state)
0,2,4,6,8,10,12: count=38'b1000_0000;
1: count = 8'b0100_0000;

3: count = 8'b0010_0000;
5: count = 8'b0001_0000;
7: count = 8'b0000_1000;
9: count = 8'b0000_0100;
11: count = 8'b0000_0010;
13: count = 8'b0000_0001;
default: count = 8'b0000_0000;
endcase
endmodule

module t Prob_6 _48b ();
wire [7: 0] count;
reg clk, reset_b;

Prob_6_48b MO (count, clk, reset_b);

initial #180 $finish;

initial begin clk = 0; forever #5 clk = ~clk; end

initial begin reset_b = 0; #2 reset b =1; end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

173

Name 0 60 120 180

clk L rrrrrer e rerere e rererierere e rer
reset b i
state[3:1] o X 1 X2 X3 X 4 X s X6 X 7 X_o X:
countf7:0] | _X 40 X80 X 20 X 80 X 10 X80 X 08 K80 K04 X80 k02 X80 Y01 X 00)80 X40)
count[7] 1 I] I] I] I] I] I] 1 [
count[6] L1 | -
count[5] 1

count[4] 1

count[3] 1

count[2] 1

count[1] 1

count[0] 1

6.49

/I Behavioral description of a 4-bit universal shift register
/I Fig. 6.7 and Table 6.3

module Shift_Register_4_beh (//' V2001, 2005
outputreg [3:0] A_par, /I Register output
input [3: 0] I _par, [/l Parallel input
input s1, s0, // Select inputs

MSB_in, LSB_in, // Serial inputs
CLK, Clear /I Clock and Clear
).

always @ (posedge CLK, negedge Clear) // V2001, 2005
if (~Clear) A_par <= 4'b0000;

else

case ({s1, s0})
2'b00: A_par <= A_par; /I No change
2'b01: A_par <= {MSB_in, A_par[3: 1]}; /I Shift right
2'b10: A_par <= {A_par[2: 0], LSB_in}; /I Shift left
2'b11: A_par <=1|_pair; // Parallel load of input

endcase

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

174

/I Test plan:

/I test reset action load
/I test parallel load

I/ test shift right

/I test shift left

/I test circulation of data
/I test reset on the fly

module t_Shift_Register_4_beh ();

reg s1,s0, I/ Select inputs
MSB_in, LSB_in, /I Serial inputs
clk, reset_b; /l Clock and Clear

reg [3:0] I_par; [/l Parallel input
wire [3:0] A _par; /I Register output

Shift_Register_4_beh MO (A_par, I_par,s1, sO, MSB_in, LSB_in, clk, reset_b);

initial #200 $finish;
initial begin clk = 0; forever #5 clk = ~clk; end

initial fork
/I test reset action load
#3 reset b=1;
#4 reset_b =0;
#9reset_b=1;

/I test parallel load
#10 |_par = 4'hA;
#10 {s1, s0} = 2'b11;

I/ test shift right
#30 MSB_in = 1'b0;
#30 {s1, s0} = 2'b01;

/I test shift left
#80 LSB_in = 1'b1;
#80 {s1, s0} = 2'b10;

/I test circulation of data
#130 {s1, s0} = 2'b11;
#140 {s1, s0} = 2'b00;
/I test reset on the fly
#150 reset_b = 1'b0;
#160 reset_b = 1'b1;
#160 {s1, s0} = 2'b11;

join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

175

Name

clk

reset b T LA_I
1 parp3:0) | x X a |

MSB_in /
LSB_in

I
Apar30] [JO N _a Nsf2 N1 A o ki fskr)f ¢
sl /\ N I
e, |

/
Lo f o)X a
T
Reset A_par Shift left Load A_par Reset /

Load_A_par No change Load A_par
Shift right

s0 L

6.50 (a) See problem 6.27.

module Prob_8 50a (output reg [2: 0] count, input clk, reset_b);
always @ (posedge clk, negedge reset_b)
if (reset_b) count <= 0;
else case (count)
3'd0: count <= 3'd1;
3'd1: count <= 3'd2;
3'd2: count <= 3'd3;
3'd3: count <= 3'd4;
3'd4: count <= 3'd5;
3'd5: count <= 3'd6;
3'd4: count <= 3'd6;
3'd6: count <= 3'd0;
default: count <= 3'd0;
endcase
endmodule

module t_Prob_8_50a;
wire [2: 0] count;
reg clock, reset b ;

Prob_8_50a MO (count, clock, reset_b);

initial #130 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork
reset_b
#2 reset_b
#40 reset_|
#42 reset_|
join
endmodule

:O,
:'],

b=0;

b=1

Name

clock - 77—y rrerrrrr e rr rri
reset_b a LI

count[Z:()]zXIXzX?’1X2X3X4X5X6X0X1XZ

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

176

(b) See problem 6.28.

module Prob_8 50b (output reg [2: 0] count, input clk, reset_b);
always @ (posedge clk, negedge reset_b)
if (reset_b) count <= 0;
else case (count)
3'd0: count <= 3'd1;
3'd1: count <= 3'd2;
3'd2: count <= 3'd4;
3'd4: count <= 3'd6;
3'd6: count <= 3'd0;
default: count <= 3'd0;
endcase
endmodule

module t_Prob_8 50b;
wire [2: 0] count;
reg clock, reset_b ;

Prob_8_50b MO (count, clock, reset_b);

initial #100 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork
reset b
#2 reset b
#40 res
#42 res
join
endmodule

e_t_ =0;
et b=1;

reset b | LI
clock 7 I I LI LI 111
count[2:0] EX 1 X 2 X 4 1 X 2 X 4 X 6 X 0 XI

6.51
module Seq_Detector_Prob_5 51 (output detect, input bit_in, clk, reset_b);
reg [2: 0] sample_reg;
assign detect = (sample_reg == 3'b111);
always @ (posedge clk, negedge reset_b) if (reset_b ==0) sample_reg <= 0;
else sample_reg <= {bit_in, sample_reg [2: 1]};
endmodule

module Seq_Detector_Prob_5_45 (output detect, input bit_in, clk, reset_b);
parameter SO0 =0,S1=1,S2=2, S3 = 3;
reg [1: 0] state, next_state;

assign detect = (state == S3);
always @ (posedge clk, negedge reset_b)
if (reset_b == 0) state <= SO; else state <= next_state;

always @ (state, bit_in) begin

next_state = SO;
case (state)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

177

0: if (bit_in) next_state = S1; else state = SO;
1: if (bit_in) next_state = S2; else next_state = SO;
2: if (bit_in) next_state = S3; else state = SO;
3: if (bit_in) next_state = S3; else next_state = SO;
default: next_state = SO;
endcase
end
endmodule

module t_Seq_Detector_Prob_6_51 ();
wire detect 45, detect 51;
reg bit_in, clk, reset_b;

Seq_Detector_Prob_5 51 MO (detect_51, bit_in, clk, reset_b);
Seq_Detector_Prob_5_45 M1 (detect_45, bit_in, clk, reset_b);

initial #350%finish;
initial begin clk = 0; forever #5 clk = ~clk; end
initial fork

reset_b =
#4 reset_ b=
#10 bit_in=1;
#20 bit_in = 0;
#30 bit_in = 1;
#50 bit_in = 0;
#60 bit_in = 1;
#100 bit_in = 0;
join

endmodule

0;
1

Name

clk PR [Y Y Y Y Y I)y I I I
reset b |
bit_in = I L |
detect 51 1
detect 45 1

The circuit using a shift register uses less hardware.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

178

Chapter 7

7.1 (a) 8K x32=2"x16 A=13 D=16
b2Gx8=2"x8 A=31 D=8
(©) 16 Mx32=2"x32 A=24 D=32
(d)256 K x 64=2"x 64 A=18 D=64
()

7.2 (@ 2") 2" (¢) 2*° @) 2¥

7.3 723 =512+128+64+16+2+1

3451 =2048+ 1024 +256+64+32+16+8+2+ 1

Address: 101101 0011 =2D36
Data: 0000 1101 0111 1011 = 0D7Bs

7.4 f cpy = 100 MHz, Tepy = 1fepy = 108 HZz =10 x 10° Hz' = 10 ns
f———— 25ng —m»]
[——10 ns—»l¢——10 ns—>l¢——10 ns—>»|

CPU clock
Tl T2 T3

Address >< Address valid

Memory select

Data from CPU >< Data valid for write ><

Data from memory >< ><:

Data valid for read

7.5
/I Testing the memory of HDL Example 7.1.
module t_memory ();
reg Enable, ReadWrite;
reg [3:0] Dataln;
reg [5:0] Address;
wire [3: 0] DataOut;

memory MO (Enable, ReadWrite, Address, Dataln, DataOut);
initial #200 $finish;
initial begin
Enable = 0; ReadWrite = 0; Address = 3; Dataln = 5;
repeat (8) #5 Enable = ~Enable;
end
initial begin

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

179

#10 Address = 43; Dataln = 10;
#10 ReadWrite = 1;
#10 Address = 0;
end
initial
$monitor ("E = %b RW = %b Add = %b D_in = %b D_out = %b T = %d",
Enable, ReadWrite, Address, Dataln, DataOut, $time);

wire memO0 = MO0.Mem|[0];
wire mem1 =MO0.Mem[1];
wire mem2 =M0.Mem[2];
wire mem3 =M0.Mem[3];
wire mem4 =M0.Mem[4];
wire mem5 =M0.Mem[5];
wire mem40 =M0.Mem[40];
wire mem41 =M0.Mem[41];
wire mem42 =M0.Mem[42];
wire mem43 =M0.Mem[43];
wire mem44 =M0.Mem[44];
wire mem45 =M0.Mem[45];
endmodule

//Read and write operations of Mem
//Mem size is 64 words of 4 bits each.
module memory (Enable, ReadWrite, Address, Dataln, DataOut);
input Enable, ReadWrite;
input [3: 0] Dataln;
input [5: 0] Address;
output [3:0] DataOut;
reg [3:0] DataOut;

reg [3:0] Mem [0: 63]; /164 x 4 Mem
always @ (Enable or Read\Write)
if (Enable)
if (ReadWrite) DataOut = Mem[Address]; //[Read
else Mem[Address] = Dataln; /Write
else DataOut = 4'bz; /High impedance state
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

180

Neme 0 30 60 90

Address[5:0] 00 X 2b X 00
ReadWrite A
Enable I (N I N I S

Datalnf3:0] 5 X a

DataOui[3:0] z (a)z X5) z
\WMem[0] [3:0] | _x X 5

\Mem/1] [3:0] X

\Mem)2] [3:0] X

\Mem/3] [3:0]
\Mem/[4] [3:0]
\Mem/5] [3:0]
\Mem[40] [3:0]
\Mem[41] [3:0]
\Mem[42] [3:0]
\Mem[43] [3:0] x X a
\Mem[44] [3:0] X
\Mem[45] [3:0] X

>

LR IERIERIER

7.6

8 Data input lines

J(g

4 4
RW
A 4 A 4
3 3
4, > 7>
4, 4x 4RAM 4x4RAM
A",
Az——l>o— E A‘z E
4 4
4 4
A 4 A 4
3 3
—> —>
4 x4 RAM 4 x4 RAM
4 E A, E
4 4

ig

8 Data output lines

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

181

7.7 (a) 16 K=2"=2"x2"=128x128
Each decoder is 7 x 128
Decoders require 256 AND gates, each with 7 inputs

(b) 6,000=0101110_1110000
x=46 y=112

7.8 (a) 256 K /32 K =8 chips
(b) 256 K =2'® (18 address lines for memory); 32 K =215 (15 address pins / chip)

(c) 18 — 15 =3 lines ; must decode with 3 x 8 decoder

7.9 13 + 12 = 25 address lines. Memory capacity = 2*° words.
7.10 01011011=1 2 3 4 5 6 7 8 9 10 11 12 13
PP,O P, 1 01 Pg1 0 1 1 Py
P, =Xor of bits (3,5,7,9,11)=0,1,1,1,1=0 (Note: even # of 0s)
Pz—Xorofblts(367 10,11)=0,0,1,0,1=0
P, = Xor of bits (5, 6, 7, 12) 1,0,1,1=1 (Note: odd # of 0s)

Pg= Xor of bits (9, 10, 11,12)=1,0,1,1,=1

Composite 13-bit code word: 0001 1011 1011 1

7.11 11001001010=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PP,1 P,10O0P1O0O0 1 010
P; = Xor of bits (3,5,7,9, 11, 13,15)=1,1,0,1,0,0,0=1 (Note: odd # of 0s)
P, = Xor of bits (3, 6,7, 10, 11, 14, 15)=1,0,0,0,0, 1,0=0 (Note: even # of 0s)
P4 = Xor of bits (5, 6,7,12,13,14,15)=1,0,0,1,0,1,0=1
Pg= Xor of bits (9, 10, 11, 12, 13, 14,15)=1,0,0,1,0,1,0=1

Composite 15-bit code word: 101 110 011 001 010

7.12 @ 123456789 101112
000011101 010
C(1,3,57,9,11)=0,0,1,1,1,1=0
C(2,3,6,7,10,11)=0,0,1,1,0,1=1
Ci(4,5,6,7,12)=0,1,1,1,0=1
Cs(8,9,10,11,12)=0,1,0,1,0=0
C=0110
Error in bit 6.

Correct data: 0101 1010

M1 23 456789 101112
101110 00O0OT1T10
¢ (1,3,517911H)=1,1,1,0,0,1=0
¢ (2,3,6,7,10,11)=0,1,0,0,1,1=1
C4(4,5,6,7,12)=1,1,0,0,0=0
Cs(8,9,10,11,12)=0,0,1,1,0=0

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

182

C=0010
Error in bit 2 = Parity bit P,.

Correct 8-bit data:

123456738
101111

C = 0000)No errors)

c1(1357911)— 1,
C,(2,3,6,7,10,11)=0,1,0

Cs(4,5,6,7,12)=1,1, 0 0,0=0
Cs(8,9,10,11,12)=0,0,1,1,0=0
35679 1011 12
Correct 8-bit data: 111101 00
7.13 (a) 16-bit data (From Table 7.2): 5 Check bits
1 bit
6 parity bits
(b) 32-bit data (From Table 7.2): 6 Check bits
1 bit
7 parity bits
(6) 16-bit data (From Table 7.2): 5 Check bits
1 bit
6 parity bits
7.14 @1 2345¢67 P;=Xor(3,5,7)=0,0,0=1
PLP,OP40O 1 O P,=Xor(3,6,7)=0,1,0=0
Py=Xor(5,6,7)=0,1,0=1

7-bit word: 0101010

(b) No error:

C,=Xor (0,0,1,0)=1
Cy,=Xor (1,0,1,0)=0
Cy=Xor(1,1,1,0)=1
Error in bit 5: C =101

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

183
(d) 8-bit word 12345678
01 010T1O0T1
Errorinbits2and5:0 0 0 1 1 1 0 1
C,=Xor (0,0, 1,0)=1
C,=Xor (0,0,1,0)=1
C4=Xor(1,1,1,0)=1
P=0
C=(1, 1, 1) # 0 and P = 0 indicates double error.
7.15
[6
6 6 6 6
Address
(8 bits) l — 2 x4
: Decoder
y \ 4 \ 4 \ 4 h 4 A 4 h 4 h 4
En En En En
64 x 8 ROM 64 x § ROM 64 x 8 ROM 64 x § ROM
8 8 8 8
Data J 8 1 b 1
(8 bits)
Note: Outputs must be wired-OR or three-state outputs.
7.16

Note: 4096 = 212

Pwr ——
Gnd —p]
Inpum_‘__—/ﬁb 4(})1906]\)5[8 —rg;b Outputs
12,
cs |
i...

16 inputs + 8 outputs requires a 24-pin IC.
7.18 (a) 256 x8 (b) 512x5 (c) 1024x4 (d) 32x7

7.17
Input Address ~ Output of ROM

LLLLI, DDD, | D,D,D, Dy(2°) Decimal

00000 000 000 0,1 0,1
00001 000 001 0,1 2,3

16,17
18,19

01000 001 011
01001 001 100

—_—

11110 110 000 0,1 60, 61
11111 110 001 0,1 62,63

7.18 (a) 8 inputs 8§ outputs 2%x 8 256 x 8 ROM

(b)9inputs Soutputs 2°x5 512x5ROM

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

184

(c) 10inputs 4 outputs 2'°x 41024 x 4 ROM

(d) 5 inputs 7 outputs 2’x7 32 x 7ROM

7.19
vz Y ¥z y
1 1
o 00 01 11 10 x 00 01 11 10
mo ml Wl3 ”’l2 mO m] Wl3 mz
0 0 1 0 1 0 1 1 0 0
m4 ms m7 mﬁ m4 Wls m7 mﬁ
x| 1 1 0 0 1 x| 1 0 0 1 1
z z
A=yz' +xz' +x"z B=xy+xYy'
A'=yz +xz+xy'z' B'=x%"+x'y
vz y vz y
x X
00 01 11 10 00 01 11 10
nlo ml m3 ﬂ’l2 mo ml m3 m2
0 0 0 0 1 0 0 1 1 1
m4 m5 m7 I7’l6 ”’l4 ms m7 m6
x| 1 0 0 0 1 x| 1 0 1 1 0
z z
C=yz' D=z+x
C'=y'+z D'=y'z' +xz'
Outputs
Product Inputs 4B CD
term xyz
yz' 1 -10 1 - 1 -
xz' 2 1-0 1 - - -
xyz 3 001 1 - - -
xy 4 10- -1 - -
x'y 5 01- -1 -1
z 6 --1 D |
TCTT
7.20
Inputs Outputs
xyz |4, B, C D
000 1101
001 0111 M[001]=0111
010(f 0000
011 1000
100 1001 M[100] = 1001
101] 0011
110 1100
111 0101

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

185

7.21 Note: See truth table in Fig. 7.12(b).

A A, 4, A4, 4,
1 A 1
2N_00 0l 11 10 2N_00 0l 11 10
mn WlI Wl3 Wl2 Wl0 m] 1113 Wl2
ol o] o o] o ol o] o | o] o
m4 ms m7 ﬂ'l6 ﬂ’l4 }’l’l5 m7 Wl6
A 1] o [0 |1 1 A0 1] 1 1 1| o
| |
AO A()
Fy =44, Fy=A4,d' + 4,4,
Fl=A',+ 4" Fy =A',+ 44",
) A4, 4,) A4, A4,
2N_00 01 11 10 AN_00 01 11 10
mn WlI ”’l3 Wl2 mO m] 1113 m2
ol oo | 1] o ol o o | o |1
m4 ms m7 m6 m4 Wls m7 Wl6
41l o | 1o o0 a1l oo o] 1
e — e —
AO AO
Fy=ALA A, + A,A4' A, F,=AA,
Fy=Al + AL A" +AA, Fl,=A" +4,

Product Inputs Outputs
term A,4\4, F,F,F,F,

A4, 1 11- 1 - - -

A’ 2 0- - -1 - - Alternative: F'|, F',, F,, F,

44, 3 -10 - 1-1 (3 terms)

444, 4 -11 - -1 -

44 5 101 - - 1 -

TCTT
7.22

Decimal w x y z b, by by b, by b, b b,
0 0 0 000 0000 O0O0TO0OTO O
1 1 0 001 000 0 O0O0O0°1
2 4 0 010 000 0O0O1 00O
3 9 0 011 000 01001
4 16 0 100 0001 O00O0TO0
5 25 0101 0 001 100 I Noteby=zandb, =0.
6 36 0 110 001 001 0 0 ROMwouldhave 4 inputs
7 49 0 111 0 01 1 00 0 I and6outputs. A4x8
8 64 1 000 01 00 00 0 0O ROM wouldwaste two
9 81 1 001 01 01 00 0 1 outputs.
10 100 1 010 01 1001 00
11 121 1 011 01 1 1 10 01
12 144 1 100 1 001 0000
13 169 1 1 01 1 01 010 01
14 196 1 110 1 1.0 0 01 00
15 225 1 111 1 110 00 01

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,

or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.
186

vz y yz Y
1 1
wr 00 01 11 __ 10 wr 00 01 _11_ 10
m, m; ms m, m, m; s m,
00 1 00 1
m, my . mg m, s m, m,
01 1 01 1
mp my ms o mp my3 ms My
11 1 11 1
w mg My my Mo w mgy my My Mo
10 1 10 1
| |
z z
b, = yx' by=xyz+x'yz
yz y yz Yy
1
wr 00 01 11 10 W 00 01 11 10
m, m, m, m, m, m, m, m,
00 00
m, s m, m, m, g m, m,
01 1 1 1 01 1 1
m, M3 ms My my M3 ms My
11 1 11 1 1
w my my i My w mg my "2k My
10 1 1 10 1 1
| |
z z
by=whkxz+xyz' + wx'z by = w'xy + wxz + wx'y
vz y vz y
1
w 00 01 11 10 w 00 0l 11 10
m, m, m, m, m, m, m, m,
00 00
m, my n, mg m, e m, m,
01 01
mp m3 & Lo Zp g 2 My
11 1 1 11 1 1 1 1
w & My L2 Mo w mgy My my Mo
10 1 1 1 1 10
| |
z z
bg=wy +wx' by =wx

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

187
7.23
From Fig. 4-3: Product Inputs Outputs
w=A+BC+BD teerm ABCD F1F2F3F4
w'=A'B'+ A'C'D’ A 1 1-- - 1 - - -
x=B'C+B'D+ BC'D' BC 2 -11 - 11 - -
x'=B'C'D'+ BC BD BD 3 -1-1 11- -
y=CD+C'D' BCD" 4 -000 -1 - -
y'=C'D+CD' CD 5 --11 - -1 -
z=D' C'D’ 6 --00 - -1 -
z'=D D’ 7 ---0 - - -1
Usew, x', y, z (7 terms) TCTT
7.24

AND
Product Inputs
term A B CD Outputs

é 1 11 . w=A+BC+BD
3 -1 -1

4 -01 -

5 -0- 1 x=B'C+B'D+BCD'
6 -100

7 --11

8 --00 y=CD+CD'
9 o .-

10 ---0

11 - - - - z=D'

12 - - - -

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

188

7.25
vz y yz y
o 00 01 11 10 x 00 0L 11 10
mo ml WI3 le mO m] ﬂ’l3 ”’l2
0 0 1 0 1 0 1 1 1 0
I’Vl4 I’Vl5 m7 m6 ”14 ”15 m7 m6
x| 1 1 0 0 1 x| 1 0 0 1 1
z z
A=yz'+xz' +x"z B=xy"+xy+yz
yz J vz y
1 1
o 00 01 11 10 o 00 01 11 10
mo ml Wl3 ”‘l2 WIO ml Wl3 le
0 0 1 0 1 0 0 1 1 1
m4 mg m7 mﬁ my ms m7 mg
x| 1 1 0 1 1 x| 1 0 1 1 0
z z
C=4+xyz D=z+xy
AND
Product Inputs
term XyzA Outputs
1 - 1 O - 1 1 L.}
2 1-0- A=yz' +x7'+x'y'z
3 001 -
4 00- -
5 11-- B=xy+xy+tyz
6 011 -
7 0--1
8 111- C=A+xyz
9 0---
10 0-1-
11 01-- D=z+xy
2 ----

A=y +xz' +x'y'z
B=xy +xy+yz
C=4+xyz
D=z+x"y

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

189
7.26
x x y y A A CLK OE=1
)
¥ *—x¥
—
R
— sk N2) 4\ D™ Q A
L/ —7 >
—X *—% D— e O
R
L/
x —| > [<:|I
y—=
7.27
The results of Prob. 6.17 can be used to develop the equations for a three-bit binary counter with D-type
flip-flops.
DAO = AVO

DA1 = A'IAO + A]A'O
DA2 = A'z A]A() + AzA'] + AzA'o

Cou = A24:14,

out AO Al AZ
2 3 4 5 7 10 11 12 13 14 15
X X
X
X X
X

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

190

——— A'BC’

AC

AB

BC

L Y T) S .
— % —x%—T1—— AC’
— ——
))+
. O+
O
\/

Product Inputs Output
term xy A D,
xy4 1 001 1
xyA" 2 010 1
xy'4" 3 100 1
xyA 4 111 1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

191
CHAPTER 8
8.1 (a) The transfer and increment occur concurrently, i.e., at the same clock edge. After the transfer, R2
holds the contents that were in R/ before the clock edge, and R2 holds its previous value incremented
by 1.
(b) Decrement the content of R3 by one.
(¢) If(S; = 1), transfer content of R/ to RO. If (S; = 0 and S, = 1), transfer content of R2 to RO0.
8.2
clr R Datapath
* 7| Controller | jper g |[TT 1T =111
y , =
reset_b 1
clock
8.3
1
8.4
8.5 The operations specified in a flowchart are executed sequentially, one at a time. The operations specified

in an ASM chart are executed concurrently for each ASM block. Thus, the operations listed within a state
box, the operations specified by a conditional box, and the transfer to the next state in each ASM block
are executed at the same clock edge. For example, in Fig. 8.5 with Start = 1 and Flag = 1, signal Flush R
is asserted. At the clock edge the state moves to S_2, and register R is flushed.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

192

8.6

Note: In practice, the asynchronous inputs x
and y should be synchronized to the clock to
avoid metastable conditons in the flip-flops..

count <= ()
rese%

l count <= count + 1
e
10

an | G

01

v, x}

. ¢ e
o] Fr]

01 00 00 10
i, x} 1 v, x}

10 3 01
i1 S in_out T

1(())0 o incr Datapath
count
: G ¥ T Comtroller | goer |CLLIL =111
(decr) T (incr) y — >
reset_b_T

clock

S in S out

S idle

Note: To avoid counting a person more than
once, the machine waits until x or y is de-
asserted before incrementing or
decrementing the counter. The machine also
accounts for persons entering and leaving
simultaneously.

8.7 RTL notation:
S0: Initial state: if (start = 1) then (R4 < data A4, RB < data_B, go to S1).
S1: {Carry, RA} <~ RA + (2’s complement of RB), go to S2.
S2: If (borrow = 0) go to S0. If (borrow = 1) then R4 <« (2’s complement of RA4), go to SO.

Block diagram and ASMD chart:

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

193

reset b

data A data B done

borrow 8 8

Reg A <=data A
Reg B <=data B

~ %J
paiy

Datapath /
Load A B Reg A Load A B
s [TTTT 111 Reg A <=Reg A+~Reg B+ 1
Subtract Reo B S/ - - -
, 2
start Controller TTTT 1T Subtract /
Convert
> carry result
done +— OO Ir-111
reset b _#?
clock 8

Reg A <=~Reg A+ 1

result /
Convert
module Subtractor_P8_7

(output done, output [7:0] result, input [7: 0] data_A, data_B, input start, clock, reset_b);

150

Controller_P8_7 MO (Load_A_B, Subtract, Convert, done, start, borrow, clock, reset_b);
Datapath_P8_7 M1 (result, borrow, data_A, data_B, Load_A_B, Subtract, Convert, clock, reset_b);
endmodule

module Controller_P8_7 (output reg Load_A_B, Subtract, output reg Convert, output done,
input start, borrow, clock, reset_b);
parameter SO = 2'b00, S1 =2'b01, S2 = 2'b10;
reg [1: 0] state, next_state;
assign done = (state == S0);

always @ (posedge clock, negedge reset_b)
if (Ireset_b) state <= SO; else state <= next_state;

always @ (state, start, borrow) begin
Load_A B=0;
Subtract = 0;
Convert = 0;

case (state)
S0: if (start) begin Load_A_B = 1; next_state = S1; end
S1: begin Subtract = 1; next_state = S2; end
S2: begin next_state = SO; if (borrow) Convert = 1; end
default: next_state = SO;

endcase

end
endmodule

module Datapath_P8_7 (output [7: 0] result, output borrow, input [7: 0] data_A, data_B,
input Load_A_B, Subtract, Convert, clock, reset_b);
reg carry;

reg [8:0] diff;
reg [7: 0] RA, RB;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

194

assign borrow = carry;
assign result = RA;

always @ (posedge clock, negedge reset_b)
if (Ireset_b) begin carry <= 1'b0; RA <= 8'b0000_0000; RB <= 8'b0000_0000; end
else begin
if (Load_A_B) begin RA <= data_A; RB <= data_B; end
else if (Subtract) {carry, RA} <=RA + ~RB + 1;

/I In the statement above, the math of the LHS is done to the wordlength of the LHS

/I The statement below is more explicit about how the math for subtraction is done:

/I else if (Subtract) {carry, RA} <= {1'b0, RA} + {1'b1, ~RB } + 9'b0000_0001;

/I If the 9-th bit is not considered, the 2s complement operation will generate a carry bit,
/I and borrow must be formed as borrow = ~carry.

else if (Convert) RA <= ~RA + 8'b0000_0001;
end
endmodule

/I Test plan — Verify;

/| Power-up reset

/I Subtraction with data_A > data_B
I/l Subtraction with data_A < data_B
/l Subtraction with data_A = data B
/I Reset on-the-fly: left as an exercise

module t_Subtractor_P8_7;
wire done;
wire [7:0] result;
reg [7: 0] data_A, data_B;
reg start, clock, reset_b;

Subtractor_P8_7 MO (done, result, data_A, data_B, start, clock, reset_b);

initial #200 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork

reset b =0;

#2 reset_b =1;

#90 reset_b = 1;

#92 reset_ b =1;
join

initial fork
#20 start = 1;
#30 start = 0;
#70 start = 1;
#110 start = 1;
join

initial fork
data_A = 8'd50;
data_B = 8'd20;

#50 data_A = 8'd20;
#50 data_B = 8'd50;

#100 data_A = 8'd50;
#100 data_B = 8'd50;
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

195

Name 0 L L L L L L L L L I4O\ L L L L L L L L ISO\ L L L L L L L L |12\0 L L L L L L L

clock 1 rrrirrirrrrrrrrirrrrrrrrerirri

reset b H

state[1:0] o) = X0 X1 X2 ¥ 0 X2 o X)2 o X X2)

start I

Load A_B 1 1 I

Subtract |

carry — -

borrow — -

Convert

data_A[7:0] 50 X 20 X 50

RA[7:0] 00 32 X le Y14 2 X 1e X 32 00 Y32 X _

data_B[7:0] 20 X 50

RB[7:0] 00 X 14 X 32

done 1 J

borrow — -

result[7:0] 0 X 50) 30 X 20 Y226 X 30 X 50 X 0 o
8.8 RTL notation:

S0: if (start = 1) AR < input data, BR < input data, go to S/.

S1:if (AR [15]) = 1 (sign bit negative) then CR <— AR(shifted right, sign extension).
else if (positive non-zero) then (Overflow «— BR([15] @ [14]), CR <— BR(shifted left)
else if (AR = 0) then (CR « 0).

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

196
AR eq 0 data_AR data BR
AR gt 0
£ 16 16
AR It 0
|
Datapath
Ld AR BR AR
— Div AR x2 CR IIIII~--£I;RII
> Controller - = T oE
start —— MulfBRJcZﬁCR' CR
done «—— Clr CR LTTTT~TT1
reset b1
clock

reset_b

|

|
S0
done
!
@ AR <= data_A
BR<=data B
1 /

Ld AR BR Note: Division by 2 of a

57 negative number
represented in 16-bit 2s
complement format

CR <= {AR[15], AR[15:1]}

; —
Div_AR x2_CR Note: Multiplication by

2 of a positive number

/CR <=BR=<<I represented in 16-bit 2s
Mul BR x2 CR complement format

CR<=0

module Prob_8_8 (output done, input [15: 0] data_AR, data_BR, input start, clock, reset_b);

Controller_P8 8 MO (

Ld_AR_BR, Div_AR_x2_CR, Mul_BR_x2_CR, CIr_CR, done,
start, AR_It_0, AR_gt_0, AR_eq_0, clock, reset_b

);

Datapath_P8_8 M1 (

Overflow, AR_It_0, AR_gt 0, AR_eq_0, data_AR, data_BR,
Ld_AR_BR, Div_AR x2_CR, Mul_BR x2_CR, CIr_CR, clock, reset_b
);

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

197

module Controller_P8_8 (
output reg Ld_AR_BR, Div_AR x2_CR, Mul_BR_x2_CR, CIr_CR,
output done, input start, AR_It_0, AR_gt_0, AR_eq_0, clock, reset_b
);
parameter SO = 1'b0, S1 = 1'b1;
reg state, next_state;
assign done = (state == S0);

always @ (posedge clock, negedge reset_b)
if (Ireset_b) state <= S0; else state <= next_state;

always @ (state, start, AR_It_ 0, AR_gt_0, AR_eq_0) begin
Ld_AR BR=0;
Div_AR x2_CR =0;
Mul_BR_x2_CR =0;

Clir CR=0;

case (state)
SO: if (start) begin Ld_AR_BR = 1; next_state = S1; end
S1: begin

next_state = SO;
if (AR_It_0) Div_AR x2_CR =1;
else if (AR_gt_0) Mul_BR_x2_CR =1;
else if (AR_eq_0) CIr_ CR =1;
end
default: next_state = SO;
endcase
end
endmodule

module Datapath_P8 8 (
output reg Overflow, output AR_It 0, AR _gt_0, AR_eq_0, input [15: 0] data_AR, data_BR,
input Ld_AR_BR, Div_AR_x2_CR, Mul_BR_x2_CR, CIr_CR, clock, reset_b
reg [15: 0] AR, BR, CR;
assign AR It 0 = AR[15];
assign AR_gt_0 = ('AR[15]) && (| AR[14:0]); /I Reduction-OR
assign AR _eq_0 = (AR == 16'b0);

always @ (posedge clock, negedge reset_b)
if (Ireset_b) begin AR <= 8'b0; BR <= 8'b0; CR <= 16'b0; end
else begin
if (Ld_AR_BR) begin AR <= data_AR; BR <= data_BR; end
else if (Div_AR_x2_CR) CR <= {AR[15], AR[15:1]}; // For compiler without arithmetic right shift
else if (Mul_BR_x2_CR) {Overflow, CR} <= (BR << 1);
else if (CIr_CR) CR <= 16'b0;
end
endmodule

/I Test plan — Verify;

/I Power-up reset

/I If AR < 0 divide AR by 2 and transfer to CR
/I If AR > 0 multiply AR by 2 and transfer to CR
/I'lf AR = 0 clear CR

/I Reset on-the-fly

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

198

module t Prob_P8 8;

wire done;
reg [15: 0] data_AR, data_BR;
reg start, clock, reset_b;

reg [15: 0] AR_mag, BR_mag, CR_mag; // To illustrate 2s complement math

/I Probes for displaying magnitude of numbers
always @ (M0.M1.AR) /I Hierarchical dereferencing
if (M0.M1.AR[15]) AR_mag = ~M0.M1.AR+ 16'd1; else AR_mag = M0.M1.AR;
always @ (M0.M1.BR)
if (M0.M1.BR[15]) BR_mag = ~M0.M1.BR+ 16'd1; else BR_mag = M0.M1.BR;
always @ (M0.M1.CR)
if (M0.M1.CR[15]) CR_mag = ~M0.M1.CR + 16'd1; else CR_mag = M0.M1.CR;

Prob_8_8 MO (done, data_AR, data_BR, start, clock, reset_b);

initial #250 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork
reset_|
#2 reset_
#50 reset_|
#52 reset_
#90 reset_
#92 reset_|
join

/l Power-up reset

; Il Reset on-the-fly

L1 L | I VR | B [
N . e =)

T T OTCUTUTOT

initial fork
#20 start = 1;
#30 start = 0;
#70 start = 1;
#110 start = 1;
join

initial fork
data_AR = 16'd50; /AR >0
data_BR = 16'd20; // Result should be 40

#50 data_AR = 16'd20;
#50 data_BR = 16'd50; // Result should be 100

#100 data_AR = 16'd50;
#100 data_BR = 16'd50;

#130 data_AR =16'd0; // AR =0, result should clear CR

#160 data_AR =-16'd20; // AR <0, Verilog stores 16-bit 2s complement
#160 data_BR = 16'd50;// Result should have magnitude10

#190 data_AR = 16'd20;// AR < 0, Verilog stores 16-bit 2s complement
#190 data_BR = 16'hffff;// Result should have overflow
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained

from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,

or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

199
Reset on-the-fly
Name 0 60 120 180 240
| I I I N | | L | | | | I | I I I | |

reset b J ”/

clock

start |_| |

Mudltiply by 2 and xfer to CR Divide by 2 and xfer to CR

AR_It 0

AR gt 0 |—‘4| |\‘ I\-l

AR _eq_0 l e

state |_|

Ld_AR_BR ml

Div AR x2_CR [1

Mul_BR_x2_CR 1 L T 1

Cir_CR

done

data_AR[15:0] 0\ 20 I [essie) 20

AR[15:0]) X I X 0 X 20 X 50 X 0 X 65516 /X 20

AR[15:0] 0000 X 0032 X 0000 X 0014 X 0032 X 0000 X ffec X 0014
AR_mag[15:0] o [= | o | 20 e 0) 0 Y
data_BR[15:0] | 50 1 essss

BR[15:0] o X 50 X 0 X 50 X 65535

BR(15:0] 0000) o014 0000 | 0032 X it
BR_mag[15:0] 0 X 20 0 X 50 X 1 X
CR{15:0] 0 § wo) 0 100 0 { ess26 [} 65534 ¥
CRy15:0] T O 0064 o000 | s || fife
CR_mag]15:0] " | o) 0 100 0 L v’ :
Overflow

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

200

8.9
Design equations:
Ds ige=S_2 + S_idle Start'
Dg ;=S _idle Start +S_1 (A2 A3)'
Ds,=A2A3S_1

HDL description:

module Prob_8_9 (output E, F, output [3: 0] A, output A2, A3, input Start, clock, reset_b);

Controller_Prob_8 9 MO (set_E, cIr_E, set_F, clr_A_F, incr_A, Start, A2, A3, clock, reset_b);
Datapath_Prob_8 9 M1 (E, F, A, A2, A3, set_E, cIr_E, set_F, clr_A_F, incr_A, clock, reset_b);

endmodule

/I Structural version of the controller (one-hot)
/I Note that the flip-flop for S_idle must have a set input and reset_b is wire to the set
/I Simulation results match Fig. 8-13

module Controller_Prob_8 9 (

output set E,clr E, set F,clr_ A _F, incr_A,
input Start, A2, A3, clock, reset_b

);

wire D_S_ idle,D_S_1,D_S_2;
wire q_S_idle,q_S 1,q_S 2;
wire w0, w1, w2, w3;

wire [2:.0] state={q_S_2,q_S_1,q_S_idle};

/I Next-State Logic

or (D_S_idle, g_S_2, w0); /' input to D-type flip-flop for q_S_idle
and (w0, g_S_idle, Start_b);

not (Start_b, Start);

or (D_S_1, w1, w2, w3); /l input to D-type flip-flop forq_S_1
and (w1, g_S_idle, Start);

and (W2, q_S_1, A2_b);

not (A2_b, A2);

and (w3, g_S_1, A2, A3_b);

not (A3_b, A3);

and (D_S_2,A2,A3,q_S_1); /l input to D-type flip-flop forq_S 2

D_flop_S MO (g_S_idle, D_S_idle, clock, reset_b);
D_flop M1 (q_S_1, D_S_1, clock, reset_b);
D _flop M2 (q_S_2, D_S_2, clock, reset_b);

/I Output Logic

and (set_E, q_S_1, A2);

and (cIr_E, q_S_1, A2_b);

buf (set_F, q_S_2);

and (cIr_A_F, q_S_idle, Start);

buf (incr_A, q_S_1);
endmodule

module D_flop (output reg q, input data, clock, reset_b);
always @ (posedge clock, negedge reset_b)
if (Ireset_b) q <= 1'b0; else q <= data;
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

201

module D_flop_S (output reg q, input data, clock, set_b);
always @ (posedge clock, negedge set_b)
if (Iset_b) g <= 1'b1; else q <= data;
endmodule

/*
/I RTL Version of the controller
/I Simulation results match Fig. 8-13

module Controller_Prob_8 9 (

output reg set E, clr_E, set_F, cIr_A_F, incr_A,
input Start, A2, A3, clock, reset_b

);
parameter S idle = 3'b001, S_1=23'b010, S 2 = 3'b100; // One-hot
reg [2: O] state, next_state;

always @ (posedge clock, negedge reset_b)
if (Ireset_b) state <= S_idle; else state <= next_state;

always @ (state, Start, A2, A3) begin

set E =1b0;
cr E =1D0;
set_F =1D0;
cr_A_F =1D0;
incr_A = 1'b0;

case (state)
S_idle: if (Start) begin next_state =S_1; clr_A_F =1; end
else next_state = S_idle;

S_1: begin
incr A=1;
if (IA2) begin next_state =S_1; clr_E =1; end
else begin
set E=1;
if (A3) next_state = S_2; else next_state = S_1;
end
end

S _2: begin next_state = S_idle; set_ F =1; end
default: next_state = S_idle;
endcase
end

endmodule
*/
module Datapath_Prob_8_9 (
output reg E, F, output reg [3: 0] A, output A2, A3,
input set_E, clr_E, set_F, clr_A_F, incr_A, clock, reset b
);
assign A2 = A[2];
assign A3 = A[3];

always @ (posedge clock, negedge reset_b) begin
if (Ireset_b) begin E <=0; F <= 0; A<=0; end
else begin
if (set_E) E <=1;
if (clr_E) E<=0;
if (set_F) F <=1,
if (clr_A_F) begin A<=0; F <=0;end
if (incr A) A<=A+1;
end
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

202

/I Test Plan - Verify: (1) Power-up reset, (2) match ASMD chart in Fig. 8-9 (d),
/I (3) recover from reset on-the-fly

module t_Prob_8_9;
wire E, F;
wire [3: 0] A;
wire A2, A3;
reg Start, clock, reset_b;

Prob_8 9 MO (E, F, A, A2, A3, Start, clock, reset_b);

initial #500 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset_b = 0; #2 reset_b = 1; end
initial fork
#20 Start = 1;
#40 reset_b =0;
#62 reset_b =1;
join
endmodule

8.10

reset_b

module Prob_8 10 (input x, y, clock, reset_b);
reg[1:0] state, next_state;
parameter s0 =2'b00, s1=2'b01, s2 =2'b10, s3 =2'b11;
always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= s0; else state <= next_state;

always @ (state, X, y) begin
next_state = s0;
case (state)
s0: if (x == 0) next_state = s0; else next_state = s1;
s1:if (y == 0) next_state = s2; else next_state = s3;
s2:if (x == 0) next_state = s0; else if (y == 0) next_state = s2; else next_state = s3;
s3:if (x == 0) next_state = s0O; else if (y == 0) next_state = s2; else next_state = s3;
endcase
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

203
module t Prob_8 10 ();
reg x, Y, clock, reset_b;
Prob_8 10 MO (x, y, clock, reset_b);
initial #150 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork
reset_b =0;
#12reset_ b =1;
x=0;y=0; /I Remain in s0
#10y=1; /I Remain in sO
#20x=1; /| Go to s1to s3
#40reset b=0; //Gotos0
#42reset b=1; //Gotos2tos3
#60y = 0; /l Go to s2
#80y=1; /l Go to s3
#90 x =0; /I Go to sO
#100 x = 1; /I Go to s1
#110y =0; /l Go to s2
#130 x=0; /l Go to sO
join
endmodule
Name 9 50 100 150

clock e re e rerere eI

reset b | — | LI
] [I
I L 1

B X3 2 X3 o X 2 Yo

state[1:0] 0

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

204
8.11 D,s=A'B + Ax
Dg=A'B'x + A'By +xy
Xy X
_ next AB E——

state inputs state 00 01 11 10

m[, m1 mj m,
00 00 00 00
00 01 00
00 10 01 "y s "7 Mg
00 11 01 01 1 1 1 1

mp, ms 9% my B
01 00 10 11 1 1
01 01 11 y
01 10 10 s "y i Mg
01 11 11 10 1] 1
10 00 00
10 01 00
10 10 10
10 11 11
11 00 00
11 01 00
11 10 10
11 11 11

B
Dy =A'B'x + A'By + xy
8.12 Modify the counter in Fig. 6.12 to add a signal, Clear, to clear the counter synchronously, as shown in the

circuit diagram below.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

205

Count enable >\ > 5)
L/

L s

Clear D K OB
Ul .
—P

D>
)
J 0 4,
—>
D K OB
)
J 0 4,
—>
D— K OB

I: >7 To next stage

CLK

module Counter_4bit_Synch_CIr (output [3: 0] A, output next_stage, input Count_enable, Clear, CLK);
wire AO, A1, A2, A3;
assign A[3: 0] = {A3, A2, A1, AO};
JK_FF MO (A0, JO, KO, CLK);
JK_FF M1 (A1, J1, K1, CLK);
)
)

JK_FF M2 (A2, J2, K2, CLK
JK_FF M3 (A3, J3, K3, CLK

)

not (Clear_b, Clear);

and (JO, Count_enable, Clear_b);
and (J1, JO, AQ);

and (J2, J1, A1);

and (J3, J2, A2);

or (KO, Clear, J0)
or (K1, Clear, J1);
or (K2, Clear, J2);
or (K3, Clear, J3)

and (next_stage, A3, J3);

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

206

module JK_FF (output reg Q, input J, K, clock);
always @ (posedge clock)
case ({J,K})
2'b00: Q<=Q;
2'b01: Q<=0;
2'b10: Q<=1;
2b11: Q<=~Q;
endcase
endmodule

module t_Counter_4bit_Synch_ClIr ();
wire [3: 0] A;
wire next_stage;
reg Count_enable, Clear, clock;

Counter_4bit_Synch_CIr MO (A, next_stage, Count_enable, Clear, clock);

initial #300 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end

initial fork
Clear = 1;
Count_enable = 0;
#12 Clear = 0;
#20 Count_enable = 1;
#180 Clear = 1;
#190 Clear = 0;
#230 Count_enable = 0;
join
endmodule
0 50

100 2
Name e T e e e e P e Iy T

clock i rrrererririrererieririrrierierierirerererererereren
Clear [1 1

Count_enable ||

10 L
KO
A0

1
K1
Al

12
K2
A2

13
K3
A3

A[3:0]

next_stage

8.13
/I Structural description of design example (Fig. 8-10, 8-12)
module Design_Example_STR

(output [3:0] A,
output E, F,
input Start, clock, reset b

);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

207

Controller_STR MO (cIr_A_F, set_E, cIr_E, set_F, incr_A, Start, A[2], A[3], clock, reset_b);
Datapath_STR M1 (A, E, F, cIr_A_F, set_E, clIr_E, set_F, incr_A, clock);
endmodule

module Controller_STR
(output clr_A_F, set_E, cIr_E, set_F, incr_A,
input Start, A2, A3, clock, reset_b

)
wire GO, G1;
parameter S _idle =2'b00, S_1=2001,S 2 =2b11;
wire w1, w2, w3;

not (GO_b, GO0);

not (G1_b, G1);

buf (incr_A, w2);

buf (set_F, G1);

not (A2_b, A2);

or (D_GO0, w1, w2);

and (w1, Start, GO_b);

and (clr_A_F, GO_b, Start);

and (w2, GO, G1_b);

and (set_E, w2, A2);

and (clr_E, w2, A2_b);

and (D_G1, w3, w2);

and (w3, A2, A3);

D _flip_flop_AR MO (GO, D_GO, clock, reset_b);

D_flip_flop_AR M1 (G1, D_G1, clock, reset_b);
endmodule

/l datapath unit

module Datapath_STR

(output [3: 0] A,

output E, F,

input clr A _F,set E, cIr_E, set F, incr_A, clock

)
JK flip_flop_2 MO (E, E_b, set_E, cIr_E, clock);
JK flip_flop_2 M1 (F, F_b, set_F, clr_A_F, clock);
Counter_4 M2 (A, incr_A, clr_A_F, clock);

endmodule

module Counter_4 (output reg [3: 0] A, input incr, clear, clock);

always @ (posedge clock)
if (clear) A <=0;elseif (incr)A<=A+1,
endmodule

module D_flip_flop_AR (Q, D, CLK, RST);
output Q;
input D, CLK, RST;
reg Q;
always @ (posedge CLK, negedge RST)
if (RST ==0) Q <= 1'b0;
else Q <= D;
endmodule

module JK flip_flop_2 (Q, Q_not, J, K, CLK);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

208

output Q, Q_not;
input J, K, CLK;
reg Q;

assign Q_not=~Q

always @ (posedge CLK)
case ({J, K})
2'b00: Q<=Q;
2'b01: Q <=1'b0;
2'b10: Q <=1'b1;
211 Q<=~Q;
endcase
endmodule

module t_Design_Example_STR;

reg Start, clock, reset_b;
wire [3: 0] A;
wire E, F;

wire [1:0] state_STR = {M0.M0.G1, M0.M0.GO};

Design_Example_STR MO (A, E, F, Start, clock, reset_b);

initial #500 $finish;

initial
begin
reset b =0;
Start = 0;
clock = 0;

#5reset_b =1; Start = 1;
repeat (32)
begin
#5 clock = ~ clock;
end
end
initial
$monitor ("A = %b E = %b F = %b time = %0d", A, E, F, $time);
endmodule

The simulation results shown below match Fig. 8.13.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

209
Name °, >, P, 1, |20
clock AN I I Y) s e I e I O
reset b -
Start
A2 O [
A3 I -
state STRI1:0] |_0 X 1 (3 X 0) 1
cdr AF L1
set E
cr E - - 0 -
set F
incr A I |
Af3:0] x JoXrf2x3XaXs oek7X8foKaXbheX d X 0
E 1
P [
8.14 The state code 2'b10 is unused. If the machine enters an unused state, the controller is written with default

assignment to next_state. The default assignment forces the state to S idle, so the machine recovers from
the condition.

8.15 Modify the test bench to insert a reset event and extend the clock.
/I RTL description of design example (see Fig.8-11)
module Design_Example_RTL (A, E, F, Start, clock, reset_b);

/I Specify ports of the top-level module of the design
/I See block diagram Fig. 8-10

output [3: 0] A;
output E, F;
input Start, clock, reset_b;

/I Instantiate controller and datapath units

Controller_RTL MO (set_E, clr_E, set_F, clr_A_F, incr_A, A[2], A[3], Start, clock, reset_b);
Datapath_RTL M1 (A, E, F, set_E, clIr_E, set_F, cIr_A_F, incr_A, clock);

endmodule

module Controller_RTL (set_E, cIr_E, set_F, cIr_A_F, incr_A, A2, A3, Start, clock, reset_b);
outputreg set E,clr_E, set F, clr_A_F, incr_A;
input Start, A2, A3, clock, reset_b;
reg [1:0] state, next_state;
parameter S_idle =2'b00, S_1=2'b01, S_2 =2'b11; // State codes

always @ (posedge clock or negedge reset_b) /I State transitions (edge-sensitive)
if (reset_b == 0) state <= S_idle;
else state <= next_state;

/I Code next state logic directly from ASMD chart (Fig. 8-9d)

always @ (state, Start, A2, A3) begin /I Next state logic (level-sensitive)
next_state = S_idle;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

210

case (state)
S_idle: if (Start) next_state = S_1; else next_state = S_idle;
S_1: if (A2 & A3) next_state = S_2; else next_state =S_1;
S 2: next_state = S_idle;
default: next_state = S_idle;
endcase
end

/I Code output logic directly from ASMD chart (Fig. 8-9d)

always @ (state, Start, A2) begin

set_ E=0; /I default assignments; assign by exception

cr_E=0;

set F=0;

clr A F=0;

incr_A =0;

case (state)
S idle: if (Start) clr_A_F =1;
S_1: begin incr_A =1;if (A2) set E=1;elseclr_E=1; end
S_2: set F=1;

endcase

end
endmodule

module Datapath_RTL (A, E, F, set_E, clr_E, set_F, cIr_A_F, incr_A, clock);

outputreg [3: 0] A; /I register for counter
output reg E, F; /I flags
input set_E, cIr_E, set_F, cIr_A_F, incr_A, clock;

/I Code register transfer operations directly from ASMD chart (Fig. 8-9d)

always @ (posedge clock) begin

if (set_E) E <=1;
if (clr_E) E <=0;
if (set_F) F<=1;
if (clr_A_F) begin A<=0; F <=0; end
if (incr_A) A<=A+1;
end
endmodule

module t_Design_Example_RTL;

reg Start, clock, reset_b;
wire [3: 0] A;
wire E, F;

/I Instantiate design example
Design_Example_RTL MO (A, E, F, Start, clock, reset_b);
/I Describe stimulus waveforms

initial #500 $finish; /I Stopwatch

initial fork
#25 reset_b = 0; /I Test for recovery from reset on-the-fly.
#27 reset_ b =1;
join
initial
begin
reset_ b =0;
Start = 0;
clock = 0;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

21

#5reset_b =1; Start = 1;
/Irepeat (32)
repeat (38) /I Modify for test of reset_b on-the-fly
begin
#5 clock = ~ clock; /I Clock generator
end
end
initial
$monitor ("A = %b E = %b F = %b time = %0d", A, E, F, $time);
endmodule

Name
Default

clock W
reset b |—1 _l—’/

4 80 120 160 200
Lo b e e e P e b Ty

Start -

A2 [1 I
A3]
statef1:0] |0 Y1 CXo)YD 1 1

cr A F 1 1

set E

cr E
set F

incr A

A[3:0]
E
F

8.16 RTL notation:
s0: (initial state) If start = 0 go back to state s0, If (start = 1) then BR < multiplicand, AR < multiplier,
PR« 0,gotosl.

s1: (check AR for Zero) Zero = 1 if AR = 0, if (Zero = 1) then go back to s0 (done) If (Zero = 0) then go

tosl, PR < PR+ BR, AR < AR —1.
The internal architecture of the datapath consists of a double-width register to hold the product (PR), a
register to hold the multiplier (4R), a register to hold the multiplicand (BR), a double-width parallel adder,
and single-width parallel adder. The single-width adder is used to implement the operation of decrementing
the multiplier unit. Adding a word consisting entirely of 1s to the multiplier accomplishes the 2's
complement subtraction of 1 from the multiplier. Figure 8.16 (a) below shows the ASMD chart, block
diagram, and controller of the circuit. Figure 8.16 (b) shows the internal architecture of the datapath.
Figure 8.16 (c) shows the results of simulating the circuit.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

212

reset b

|

s0
done

data AR data_BR

AR <=data A
BR <=data B
PR<=10 16 V16

\] zero
N yl
T
v Ld regs AR
PR <= PR + BR sl (TTT1T 1711
AR <= AR -1 Add_decr BR

Controller
T~ 1 CTIIT 111

start ——

b PR
Add_decr) done «—1 (TTIT 111
reset_b4T 16
clock
PR

Note: Form Zero as the output of an OR gate whose inputs
are the bits of the register AR.

Controller Add_decr

s0 =sl'
Zero —| >So—— done

Start

clock —
reset b —T

: Ld regs

(a) ASMD chart, block diagram, and controller

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

213
1 0
| | Add decr —\ mux’/
16 ”
data AR =7 |L
A 4
= + Note: all registers h tive-l \/ 0
ote: all registers have active-low
asynchronous reset Ld_regs my
A3 16
PR Y AR
([T~ TTITTTIT--T1T1 ([T T TJ]TITT-TT]
32 16
16 J
[, Mux | Ld regs
32 +
0
/mux\ 1T
1 o N—— Add_decr 16
Al Is
(b) Datapath
0 40 80 120 160 200
Name |
T T N N N I B B B B
reset_b 4 I_l
clock
start |
Ld_regs l_l |_| |_|
Add_decr | I—I
zero |

state 4I_I_| I—I I_I

- S | .
- @ Y .

axgray :
- 0 I 2 I)

done I_l

-~ 0 [20] o) sof o] CiooD | of of wforf s | o

(c) Simulation results

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

214

module Prob_8 16_STR (
output [15: 0] PR, output done,
input [7: 0] data_AR, data_BR, input start, clock, reset_b

Controller_P8 16 MO (done, Ld_regs, Add_decr, start, zero, clock, reset_b);

Datapath_P8_16 M1 (PR, zero, data_AR, data_BR, Ld_regs, Add_decr, clock, reset_b);
endmodule

module Controller_P8_16 (output done, output reg Ld_regs, Add_decr, input start, zero, clock, reset_b);
parameter sO = 1'b0, s1 =1'b1;

reg state, next_state;

assign done = (state == s0);

always @ (posedge clock, negedge reset_b)
if (Ireset_b) state <= s0; else state <= next_state;

always @ (state, start, zero) begin

Ld_regs = 0;

Add_decr = 0;

case (state)

s0: if (start) begin Ld_regs = 1; next_state = s1; end

s1: if (zero) next_state = s0; else begin next_state = s1; Add_decr = 1; end
default: next_state = s0;

endcase

end

endmodule

module Register_32 (output [31: 0] data_out, input [31: 0] data_in, input clock, reset_b);
Register_8 M3 (data_out [31: 24] , data_in [31: 24], clock, reset_b);

Register_8 M2 (data_out [23: 16] , data_in [23: 16], clock, reset_b);

Register_8 M1 (data_out [15: 8], data_in [15: 8], clock, reset_b);

Register_8 MO0 (data_out [7: 0], data_in [7: 0], clock, reset_b);

endmodule

module Register_16 (output [15: 0] data_out, input [15: 0] data_in, input clock, reset_b);
Register_8 M1 (data_out [15: 8], data_in [15: 8], clock, reset_b);

Register_8 MO (data_out [7: 0], data_in [7: 0], clock, reset_b);

endmodule

module Register_8 (output [7: 0] data_out, input [7: 0] data_in, input clock, reset_b);
D_flop M7 (data_out[7] data_in[7], clock, reset_b);

D_flop M6 (data_out[6] data_in[6], clock, reset_b);

D_flop M5 (data_out[5] data_in[5], clock, reset_b);

D_flop M4 (data_out[4] data_in[4], clock, reset_b);

D_flop M3 (data_out[3] data_in[3], clock, reset_b);

D_flop M2 (data_out[2] data_in[2], clock, reset_b);

D_flop M1 (data_out[1] data_in[1], clock, reset_b);

D_flop MO (data_out[0] data_in[0], clock, reset_b);

endmodule

module Adder_32 (output c_out, output [31: 0] sum, input [31: 0] a, b);
assign {c_out, sum} =a + b;
endmodule

module Adder_16 (output c_out, output [15: 0] sum, input [15: 0] a, b);

assign {c_out, sum} =a + b;
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

215

module D_flop (output g, input data, clock, reset_b);
always @ (posedge clock, negedge reset_b)

if (Ireset_b) q <= 0; else q <= data;

endmodule

module Datapath_P8 16 (

output reg [15: 0] PR, output zero,

input [7: 0] data_AR, data_BR, input Ld_regs, Add_decr, clock, reset_b
);

reg [7: 0] AR, BR;
assign zero = ~(| AR);

always @ (posedge clock, negedge reset_b)

if (Ireset_b) begin AR <= 8'b0; BR <= 8'b0; PR <= 16'b0; end
else begin

if (Ld_regs) begin AR <= data_AR; BR <= data_BR; PR <=0; end
else if (Add_decr) begin PR <= PR + BR; AR <= AR -1; end

end

endmodule

/I Test plan — Verify;

/I Power-up reset

/I Data is loaded correctly

/I Control signals assert correctly
/I Status signals assert correctly
/I start is ignored while multiplying
// Multiplication is correct

/I Recovery from reset on-the-fly

module t Prob_P8 16;

wire done;

wire [15: 0] PR;

reg [7: 0] data_AR, data_BR;
reg start, clock, reset_b;

Prob_8 16_STR MO (PR, done, data_AR, data_BR, start, clock, reset_b);

initial #500 $finish;

initial begin clock = 0; forever #5 clock = ~clock; end
initial fork

reset_ b =0;
#12 reset_b
#40 reset_b
#42 reset_|
#90 reset_|
#92 reset_|
join

D'O'O'
| LI L N 1
—\—\—\O—\

initial fork
#20 start = 1;
#30 start = 0;
#40 start = 1;
#50 start = 0;
#120 start = 1;
#120 start = 0;
join

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

216

initial fork
data_AR = 8'd5; /AR >0
data_BR = 8'd20;

#80 data_AR = 8'd3;
#80 data_BR = 8'd9;

#100 data_AR = 8'd4;
#100 data_BR = 8'd9;
join

endmodule

8.17 Q-2 -1)<@2”"-1)forn>1

8.18 (a) The maximum product size is 32 bits available in registers 4 and Q.
(b) P counter must have 5 bits to load 16 (binary 10000) initially.
(¢) Z (zero) detection is generated with a 5-input NOR gate.

8.19

Multiplicand B = 11011, =27,
Multiplier Q=10111,=23
Product: CAQ =621,

C A 0 P
Multiplier in Q 0 00000 10111 101
00=1;add B 11011
First partial product 0 11011 10111 100
Shift right CAQ 0 01101 11011
00=1;add B 11011
Second partial product 1 01000 11011 011
Shift right CAQ 0 10100 01101
00=1;add B 11011
Third partial product 1 01111 01101 010
Shift right CAQ 0 10111 10110
Shift right CAQ 0 01011 11011
Fourth partial product 0 01011 11011 001
00=1;add B 11011
Fifth partial product 1 00110 11011 000
Shift right CAQ 0 10011 01101
Final product in AQ:

AQ=10011 01101 =621,

8.20 S idle =1t ns
The loop between S _add and S_shift takes 2nt ns)
Total time to multiply: (2n + 1)t

8.21

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

217

State codes: G, G,
S idle 0 0
S add 0 1
S shiftl 0
unused 0 0
0 — o
1 — ! G,
Mux 1 D —
Zero' — 2 Start D_
Load regs
0 5508 P> €

|7—4| Q[0] —L
— 6
p — Add regs

2 x 4 Decoder
2

—— Shift regs

3 —

Start —— o 51 S
0 — 1! G,
Mux 2 D —
0 — 2
0 —1 s P> ¢
clock
reset_b I

8.22 Note that the machine described by Fig. P8.22 requires four states, but the machine described byFig. 8.15
(b) requires only three. Also, observe that the sample simulation results show a case where the carry bit
regsiter, C, is needed to support the addition operation. The datapath is 8 bits wide.

module Prob_8 22 # (parameter m_size = 9)

output [2*m_size -1: 0] Product,

output Ready,

input [m_size -1: 0] Multiplicand, Multiplier,
input Start, clock, reset_b

);

wire [m_size -1: 0] A, Q;

assign Product = {A, Q};
wire QO, Zero, Load_regs, Decr_P, Add_regs, Shift_regs;

Datapath_Unit MO (A, Q, Q0, Zero, Multiplicand, Multiplier, Load_regs, Decr_P, Add_regs, Shift_regs,
clock, reset_b);

Control_Unit M1 (Ready, Decr_P, Load_regs, Add_regs, Shift_regs, Start, Q0, Zero, clock, reset_b);
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

218

module Datapath_Unit # (parameter m_size = 9, BC_size = 4)
(

output reg [m_size -1: 0] A, Q,

output QO, Zero,

input [m_size -1: 0] Multiplicand, Multiplier,

input Load_regs, Decr_P, Add_regs, Shift_regs, clock, reset_b
)
reg C;

reg [BC_size -1: 0] P;
reg [m_size -1: 0] B;

assign QO = Q[O];
assign Zero = (P == 0);

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) begin

B<=0;C<=0;
A<=0;
Q<=0;
P <= m_size;
end
else begin
if (Load_regs) begin
A<=0;
C<=0;
Q <= Multiplier;
B <= Multiplicand;
P <=m_size;
end

if (Decr_P)P <=P -1;
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q} <={C, A, Q}>>1;
end
endmodule

module Control_Unit (

output Ready, Decr_P, output reg Load_regs, Add_regs, Shift_regs, input Start, Q0, Zero, clock,
reset_b
);

reg[1:0] state, next_state;

parameter S_idle = 2'b00, S_loaded = 2'b01, S_sum = 2'b10, S_shifted = 2'b11;

assign Ready = (state == S_idle);

assign Decr_P = (state == S_loaded);

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= S_idle; else state <= next_state;

always @ (state, Start, Q0, Zero) begin
next_state = S_idle;

Load_regs = 0;
Add_regs = 0;
Shift_regs = 0;

case (state)
S_idle:if (Start == 0) next_state = S_idle; else begin next_state = S_loaded; Load_regs = 1; end
S_loaded: if (Q0) begin next_state = S_sum; Add_regs = 1; end
else begin next_state = S_shifted; Shift_regs = 1; end
S_sum: begin next_state = S_shifted; Shift_regs = 1; end
S_shifted: if (Zero) next_state = S_idle; else next_state = S_loaded;

endcase

end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

219

module t_Prob_8_22 ();

parameter m_size = 9; /I Width of datapath
wire [2* m_size -1: 0] Product;

wire Ready;

reg [m_size-1:0] Multiplicand, Multiplier;

reg Start, clock, reset_b;

integer Exp_Value;

reg Error;

Prob_8_22 MO (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #140000 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end
initial fork

reset b=1;

#2 reset_b =
#3 reset_b =
join
initial begin #5 Start = 1; end
always @ (posedge Ready) begin
Exp_Value = Multiplier * Multiplicand;
/[Exp_Value = Multiplier * Multiplicand +1; // Inject error to confirm detection
end
always @ (negedge Ready) begin
Error = (Exp_Value * Product) ;
end

0;
1

initial begin
#5 Multiplicand = 0;
Multiplier = O;
repeat (64) #10 begin Multiplier = Multiplier + 1;

repeat (64) @ (posedge M0.Ready) #5 Multiplicand = Multiplicand + 1;

end

end

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

220

76811 76861 76911 76961 77011

Name L L [Ly L

clock

reset b

Ready

Start

——
Load regs 1

Add regs 1

Shifi_regs I 1 I 1 111
Decr P
@
Zero
state[1:0]
P[3:0]
B[8:0]
c
A[8:0] X000 X X" oeb) X119 X osc X o046 X023 X oir X o008 X oo4) 000
058:0] X X 003 X 101 X080 X 10)J__0a0 X 050 X 128 X 194 X oOa N X__ 003
Productfi7:0] | J__X___ 3 96001 X X 72000 Y 36000 18000 X__ 9000 X_ 4500 J_ 2250 X__ X 3

Mudtiplicand[8:0] | _\ 35) Y 376
Mutiplier8:0] C6 D

Productf17:0) | XN 3 X X_9e001 J__ X X 72000 {36000) 18000 X_ 9000 X 4500 K 2250 X 3

Ready
Exp_Value 2244 X 2250)

Error

8.23 As shown in Fig. P8.23 the machine asserts Load regs in state S_load. This will cause the machine to
operate incorrectly. Once Load_regs is removed from S /load the machine operates correctly. The state
S load is a wasted state. Its removal leads to the same machine as dhown in Fig. P8.15b.

module Prob_8 23 # (parameter m_size = 9)

output [2*m_size -1: 0] Product,

output Ready,

input [m_size -1: 0] Multiplicand, Multiplier,
input Start, clock, reset_b

)

wire [m_size -1: 0] A, Q;

assign Product = {A, Q};
wire QO, Zero, Load_regs, Decr_P, Add_regs, Shift_regs;

Datapath_Unit MO (A, Q, QO, Zero, Multiplicand, Multiplier, Load_regs, Decr_P, Add_regs, Shift_regs,
clock, reset_b);

Control_Unit M1 (Ready, Decr_P, Shift_regs, Add_regs, Load_regs, Start, Q0, Zero, clock, reset_b);
endmodule

module Datapath_Unit # (parameter m_size = 9, BC_size = 4)
(

output reg [m_size -1: 0] A, Q,

output QO, Zero,

input [m_size -1: 0] Multiplicand, Multiplier,

input Load_regs, Decr_P, Add_regs, Shift_regs, clock, reset_b
)
reg C;

reg [BC_size -1: 0] P;
reg [m_size -1: 0] B;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

221

assign QO = Q[0];
assign Zero = (P == 0);

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) begin
A<=0;
C<=0;
Q<=0;
B <=0;
P <= m_size;
end
else begin
if (Load_regs) begin
A<=0;
C<=0;
Q <= Multiplier;
B <= Multiplicand;
P <= m_size;
end
if (Decr_P)P <=P -1;
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q} <={C, A, Q} >> 1;
end
endmodule

module Control_Unit (

output Ready, Decr_P, Shift_regs, output reg Add_regs, Load_regs, input Start, Q0, Zero, clock,
reset_b
)

reg[1:0] state, next_state;

parameter S_idle = 2'b00, S_load = 2'b01, S_decr = 2'b10, S_shift = 2'b11;

assign Ready = (state == S_idle);
assign Shift_regs = (state == S_shift);
assign Decr_P = (state == S_decr);

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= S_idle; else state <= next_state;

always @ (state, Start, QO, Zero) begin
next_state = S_idle;
Load_regs = 0;
Add_regs = 0;
case (state)
S_idle:if (Start == 0) next_state = S_idle; else begin next_state = S_load; Load_regs = 1; end
S_load: begin next_state = S_decr; end
S_decr: begin next_state = S_shift; if (Q0) Add_regs = 1; end
S_shift: if (Zero) next_state = S_idle; else next_state = S_load;
endcase
end
endmodule

module t_Prob_8_23 ();

parameter m_size = 9; /I Width of datapath
wire [2*m_size - 1: 0] Product;

wire Ready;

reg [m_size-1:0] Multiplicand, Multiplier;

reg Start, clock, reset_b;

integer Exp_Value;

reg Error;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

222

Prob_8_ 23 MO (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #140000 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end
initial fork

reset b =1;

#2 reset_b
#3 reset_b
join
initial begin #5 Start = 1; end
always @ (posedge Ready) begin
Exp_Value = Multiplier * Multiplicand;
/[Exp_Value = Multiplier * Multiplicand +1; // Inject error to confirm detection
end
always @ (negedge Ready) begin
Error = (Exp_Value * Product) ;
end

0;
1

initial begin
#5 Multiplicand = 0;
Multiplier = O;
repeat (64) #10 begin Multiplier = Multiplier + 1;

repeat (64) @ (posedge M0.Ready) #5 Multiplicand = Multiplicand + 1;

end

end

endmodule

21403 21433
L

e ‘ 242

reset b
Ready
Start
Load regs
Add regs
Shift_regs 1

Decr P J
Q0
Zero ﬁ
state[1:0] IR O G O O D O O O D O O O D O B D O D O
P[3:0] 5 X 4 X 3 X 2 X 1 X 0 X
B[8:0] 0de X _oad
c
A[80]

013)

QI8:0] 000) 100
X
X

clock -0’07 rr T rerr - r e rrr rr

002 001
060

608

130 X098 X o002
304 X 152 X 2

as X7

P
=
B
P
o
s
g
B
B

Product[17:0] 1216

0]
plier(8:0]
Product[17:0]

4864 X 2432 X 1216 X 608 X 304 &) 2

Ready
Exp_Value 150 X ()

Error

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

223

8.24

module Prob_8 24 # (parameter dp_width = 5)

(
output [2*dp_width-1:0] Product,
output Ready,
input [dp_width - 1: 0] Multiplicand, Multiplier,
input Start, clock, reset_b

).

wire Load_regs, Decr_P, Add_regs, Shift_regs, Zero, QO;

Controller MO (
Ready, Load_regs, Decr_P, Add_regs, Shift_regs, Start, Zero, QO,
clock, reset b

)

Datapath M1(Product, QO0, Zero,Multiplicand, Multiplier,
Start, Load_regs, Decr_P, Add_regs, Shift_regs, clock, reset_b);
endmodule

module Controller (

output Ready,

output reg Load_regs, Decr_P, Add_regs, Shift_regs,
input Start, Zero, QO, clock, reset_b

)
parameter S idle= 3'b001, // one-hot code
S_add = 3'b010,
S_shift= 3'b100;
reg [2:0] state, next_state; /I sized for one-hot
assign Ready = (state == S_idle);

always @ (posedge clock, negedge reset_b)
if (~reset_b) state <= S_idle; else state <= next_state;

always @ (state, Start, Q0, Zero) begin
next_state = S_idle;
Load_regs = 0;
Decr_ P =0;
Add_regs = 0;
Shift_regs = 0;
case (state)
S_idle:if (Start) begin next_state = S_add; Load_regs = 1; end
S_add:begin next_state = S_shift; Decr_P = 1; if (Q0) Add_regs = 1; end
S_shift: begin
Shift_regs = 1;
if (Zero) next_state = S_idle;
else next_state = S_add;

end
default: next_state = S_idle;
endcase
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

224

module Datapath #(parameter dp_width = 5, BC_size = 3) (
output [2*dp_width - 1: 0] Product, output QO, output Zero,
input [dp_width - 1: O] Multiplicand, Multiplier,
input Start, Load_regs, Decr_P, Add_regs, Shift_regs, clock, reset_b

)
/I Default configuration: 5-bit datapath

reg [dp_width-1:0] A, B, Q; /I Sized for datapath
reg ;
reg [BC_size- 1:0] P; /I Bit counter

assign Q0 = Q[0];
assign Zero = (P ==0); /I Counter is zero
assign Product = {C, A, Q};
always @ (posedge clock, negedge reset_b)
if (reset_b == 0) begin /I Added to this solution, but
P <= dp_width; /I not really necessary since Load_regs
B <=0; /l initializes the datapath
C<=0;
A<=0;
Q<=0;
end
else begin
if (Load_regs) begin
P <= dp_width;
A<=0;
C<=0;
B <= Multiplicand;
Q <= Multiplier;
end
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q} <={C, A, Q} >>1;
if (Decr_P)P <=P -1;
end
endmodule

module t Prob_8 24;

parameter dp_width = 5; /I Width of datapath
wire [2 *dp_width-1:0] Product;

wire Ready;

reg [dp_width-1:0] Multiplicand, Multiplier;

reg Start, clock, reset_b;

integer Exp_Value;

reg Error;

Prob_8_24 MO(Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #115000 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end
initial fork
reset b =1;
#2 reset_b
#3 reset_b
join
always @ (negedge Start) begin
Exp_Value = Multiplier * Multiplicand;
/[Exp_Value = Multiplier * Multiplicand +1; // Inject error to confirm detection
end
always @ (posedge Ready) begin
1 Error <= (Exp_Value * Product) ;
end

0;
1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

225

initial begin
#5 Multiplicand = 0;
Multiplier = 0;

repeat (32) #10 begin
Start =1;
#10 Start = 0;
repeat (32) begin
Start = 1;
#10 Start = 0;
#100 Multiplicand = Multiplicand + 1;
end
Multiplier = Multiplier + 1;
end
end
endmodule

Name 4? 429

clock L rrrrrrrrrrrrrerrerreerrrreererrrerra

reset_b

Start 1 1
Load regs 1 1

Add_regs
Shift_regs 1 I 1 I
Decr P 1 I 1 I 1
00
Zero _ 1 -
P[2:0] 1 X 0 s k4 3 2 X 1 o s X4)

B[4:0] 19 X la X 1b
C 1
A[4:0] 18 X 9 X 0 X 26 X 13 X 7 X 19 X 9 X 0

0[4:0] 18 X 0c X 06 X 03 X 01 X 10 X 18 X 0c |

Multiplicand[4:0] 25 X (26 L X 27
Multiplier[4:0] 2)

Product[9:0] 600 X 300 X 12 X 6 X 3 X 835 X 417 X 225 X 624 (312 X 12 X
Ready I L

Exp Value 300 X (312) X 324

Error

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

226
8.25 (a)
Ready Multiplicand ~ Multiplier
reset
Datapath
Empty — 4<=0
Load_regs C<=0
Shift_regs [I8 B <= Multiplicand
Controller ..
Start ——>| Add_regs [1o — O <= Multiplier
P <=m_size
Decr P -
- (dc[1P /
Load regs
l Product S add
Zero - DiecriP
0[0]
Register B (Multiplicand) Register P (Counter)
1({1]0[1]0]1]1]1 110010
7 0
8
®
16 15 8 8 7 0
S_shift
. ojofofofofofofojofofoOf1|{Of1|[1(1 Shift_regs
C Register 4 (Sum) Register Q (Multiplier) l\
{C 40} <={C4 0}>>1
A

(b)

/I The multiplier of Fig. 8.15 is modified to detect whether the multiplier or multiplicand are initially zero,
/l and to detect whether the multiplier becomes zero before the entire multiplier has been applied

/I to the multiplicand. Signal empty is generated by the datapath unit and used by the

/I controller. Note that the bits of the product must be selected according to the stage at which

/Il termination occurs. The test for the condition of an empty multiplier is hardwired here for

/l dp_width = 5 because the range bounds of a vector must be defined by integer constants.

/I This prevents development of a fully parameterized model.

/I Note: the test bench has been modified.

module Prob_8 25 #(parameter dp_width = 5)

output [2*dp_width-1:0] Product,

output Ready,
input [dp_width - 1: 0] Multiplicand, Multiplier,
input Start, clock, reset_b

).

wire Load_regs, Decr_P, Add_regs, Shift_regs, Empty, Zero, QO;
Controller MO (
Ready, Load_regs, Decr_P, Add_regs, Shift_regs, Start, Empty, Zero, QO,
clock, reset b

)i

Datapath M1(Product, Q0, Empty, Zero,Multiplicand, Multiplier,
Start, Load_regs, Decr_P, Add_regs, Shift_regs, clock, reset_b);

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

227

module Controller (

output Ready,

output reg Load_regs, Decr_P, Add_regs, Shift_regs,
input Start, Empty, Zero, QO, clock, reset_b

);
parameter BC_size= 3; /I Size of bit counter
parameter S idle= 3'b001, // one-hot code
S_add = 3'b010,
S_shift = 3'b100;
reg [2:0] state, next_state; /I sized for one-hot
assign Ready = (state == S_idle);

always @ (posedge clock, negedge reset_b)
if (~reset_b) state <= S_idle; else state <= next_state;

always @ (state, Start, Q0, Empty, Zero) begin
next_state = S_idle;
Load_regs = 0;
Decr P =0;
Add_regs = 0;
Shift_regs = 0;
case (state)
S_idle: if (Start) begin next_state = S_add; Load_regs = 1; end
S_add: begin next_state = S_shift; Decr_P = 1; if (Q0) Add_regs = 1; end
S_shift: begin
Shift_regs = 1;
if (Zero) next_state = S_idle;
else if (Empty) next_state = S_idle;
else next_state = S_add;

end
default: next_state = S_idle;
endcase
end
endmodule

module Datapath #(parameter dp_width = 5, BC_size = 3) (

output reg [2*dp_width - 1: 0] Product, output QO, output Empty, output Zero,
input [dp_width - 1: 0] Multiplicand, Multiplier,

input Start, Load_regs, Decr_P, Add_regs, Shift_regs, clock, reset_b

);
/I Default configuration: 5-bit datapath
parameter S idle= 3'b001, /I one-hot code
S_add = 3'b010,
S_shift= 3'b100;
reg [dp_width - 1:0] A, B, Q; /I Sized for datapath
reg C;
reg [BC_size-1:0] P; // Bit counter

wire [2*dp_width -1: 0] Internal_Product = {C, A, Q};

assign QO = Q[O};
assign Zero = (P == 0); /l Bit counter is zero

always @ (posedge clock, negedge reset_b)

if (reset_b == 0) begin /I Added to this solution, but
P <= dp_width; /I not really necessary since Load_regs
B <=0; /l initializes the datapath
C<=0;
A<=0;
Q<=0;

end

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

228

else begin
if (Load_regs) begin
P <= dp_width;
A<=0;
C<=0;
B <= Multiplicand;
Q <= Multiplier;
end
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q} <={C, A, Q} >>1;
if (Decr_P)P <=P -1,
end
Il Status signals
reg Empty_multiplier;
wire Empty_multiplicand = (Multiplicand == 0);
assign Empty = Empty_multiplicand || Empty_multiplier;

always @ (P, Internal_Product) begin// Note: hardwired for dp_width 5

Product = 0;
case (P) // Examine multiplier bits
0: Product = Internal_Product;
1: Product = Internal_Product [2*dp_width -1: 1];
2: Product = Internal_Product [2*dp_width -1: 2];
3: Product = Internal_Product [2*dp_width -1: 3];
4: Product = Internal_Product [2*dp_width -1: 4];
5: Product =0;
endcase
end
always @ (P, Q) begin /I Note: hardwired for dp_width 5
Empty_multiplier = 0;
case (P)
0: Empty_multiplier = 1;
1: if (Q[1] == 0) Empty_multiplier = 1;
2: if (Q[2: 1] == 0) Empty_multiplier = 1;
3: if (Q[3: 1] == 0) Empty_multiplier = 1;
4: if (Q[4: 1] == 0) Empty_multiplier = 1;
5. if (Q[5: 1] == 0) Empty_multiplier = 1;
default: Empty_multiplier = 1'bx;
endcase
end
endmodule

module t_Prob_8_25;

parameter dp_width = 5; // Width of datapath
wire [2 * dp_width - 1: 0] Product;

wire Ready;

reg [dp_width - 1:0] Multiplicand, Multiplier;

reg Start, clock, reset_b;

integer Exp_Value;

reg Error;

Prob_8 25 MO(Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #115000 $finish;

initial begin clock = 0; #5 forever #5 clock = ~clock; end

initial fork
reset_ b =1;
#2 reset_b
#3 reset_b

join

0;
1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

229

always @ (negedge Start) begin
Exp_Value = Multiplier * Multiplicand;
//[Exp_Value = Multiplier * Multiplicand +1; // Inject error to confirm detection
end
always @ (posedge Ready) begin
1 Error <= (Exp_Value * Product) ;
end

initial begin
#5 Multiplicand = 0;
Multiplier = 0;

repeat (32) #10 begin
Start = 1;
#10 Start = 0;
repeat (32) begin
Start = 1;
#10 Start = 0;
#100 Multiplicand = Multiplicand + 1;
end
Multiplier = Multiplier + 1;
end
end
endmodule

(c) Test plan: Exhaustively test all combinations of multiplier and multiplicand, using automatic error
checking. Verify that early termination is implemented. Sample of simulation results is shown below.

2 2 2 172
Na}'ne 69\0 L |69\9 L |7(\)8 L |7\7 L

reset b

clock ey e U L L L n
Start [—

state[2:0] 1 () 1 1
Early termination
Empty multiplicand I
Empty_nuiltiplier
Empty
Clr_CAQ

1
1
Load regs I
Decr P [1
Add regs [1
Shift_regs 1
00 1
P[4:0] 4 4 4 4
oo

Zero

B[4:0] 30
A[4:0] 15
C

0/4:0] 0 1 X 16 2 X 1 2 X

Multiplicand[4:0] 30 X 31 X 0)
Multiplier[4:0] [Py X 2

Product[9:0] 30 X XX — 31 X 0)
Ready | E—

Exp_Value 30 X 31 X 0 X 2

Error

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

230

8.26

A<=0

C<=0

B <= Multiplicand
O <= Multiplier
P<=m _size

P<=P-]

{C A Q}<={4+B, Q}>>1

module Prob_8 26 (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);
/I Default configuration: 5-bit datapath

parameter dp_width = 5; /I Set to width of datapath
output [2*dp_width-1:0] Product;

output Ready;

input [dp_width - 1: 0] Multiplicand, Multiplier;

input Start, clock, reset_b;

parameter BC_size = 3; /I Size of bit counter
parameter S idle= 2'b01, /I one-hot code

S_add_shit= 2'b10;

reg [2:0] state, next_state;

reg [dp_width-1:0] A, B, Q; /I Sized for datapath
reg C;

reg [BC_size-1: 0] P;

reg Load_regs, Decr_P, Add_shift, Shift;

assign Product = {C, A, Q};

wire Zero = (P == 0); /I counter is zero

wire Ready = (state == S_idle); // controller status

Il control unit
always @ (posedge clock, negedge reset_b)
if (~reset_b) state <= S_idle; else state <= next_state;

always @ (state, Start, Q[0], Zero) begin
next_state = S_idle;
Load_regs = 0;
Decr P =0;
Add_shift = 0;
Shift = 0;
case (state)
S_idle: begin if (Start) next_state = S_add_shift; Load_regs = 1; end

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

231

S_add_shift: begin
Decr P=1;
if (Zero) next_state = S_idle;
else begin
next_state = S_add_shift;
if (Q[0]) Add_shift = 1; else Shift = 1;

end
end
default: next_state = S_idle;
endcase
end

Il datapath unit
always @ (posedge clock) begin
if (Load_regs) begin
P <= dp_width;
A<=0;
C<=0;
B <= Multiplicand;
Q <= Multiplier;
end
if (Decr_P)P <=P -1,
if (Add_shift) {C, A, Q} <={C, A+B, Q} >> 1;
if (Shift) {C, A, Q} <={C, A, Q} >> 1;
end
endmodule

module t Prob_8 26;

parameter dp_width = 5; /I Width of datapath
wire [2 *dp_width - 1:0] Product;

wire Ready;

reg [dp_width-1:0] Multiplicand, Multiplier;

reg Start, clock, reset_b;

integer Exp_Value;

wire Error;

Prob_8_26 MO (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #70000 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end
initial fork
reset_ b =1;
#2 reset_b
#3 reset b
join
initial begin #5 Start = 1; end
always @ (posedge Ready) begin
Exp_Value = Multiplier * Multiplicand;

0;
1

end
assign Error = Ready & (Exp_Value * Product);
initial begin

#5 Multiplicand = 0;

Multiplier = O;

repeat (32) #10 begin Multiplier = Multiplier + 1;
repeat (32) @ (posedge M0.Ready) #5 Multiplicand = Multiplicand + 1;
end
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

232

Sample of simulation results.
23982 24042 24102 24162
Name | | | | | | |

clock [T Y I I S

reset b

Start
Load regs

Shift 1 1
Add shift L 1 1
Decr P L L L]

P[2:0]
B[4:0]
C

Af4:0] 0 -n-n-n-- 6 JoX 2

0[4:0] 8 21

Multiplicand[4:0] 2 X (23) X 24 X 25
Multiplier[4:0] (1)

Product[9:0]
Exp Value

Error

8.27 (a)
/I Test bench for exhaustive simulation
module t_Sequential_Binary_Multiplier;

parameter dp_width = 5; /I Width of datapath
wire [2*dp_width-1:0] Product;

wire Ready;

reg [dp_width-1:0] Multiplicand, Multiplier;

reg Start, clock, reset_b;

Sequential_Binary_Multiplier MO (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #109200 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end
initial fork

reset b=1;

#2 reset_

#3 reset_
join
initial begin #5 Start = 1; end
initial begin

#5 Multiplicand = 0;

Multiplier = O;

repeat (31) #10 begin Multiplier = Multiplier + 1;
repeat (32) @ (posedge M0.Ready) #5 Multiplicand = Multiplicand + 1;

=1

end
Start = 0;
end
/I Error Checker

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

233

reg Error;

reg [2*dp_width -1: 0] Exp_Value;

always @ (posedge Ready) begin
Exp_Value = Multiplier * Multiplicand;

/[Exp_Value = Multiplier * Multiplicand + 1; /I Inject error to verify detection
Error = (Exp_Value * Product);
end
endmodule

module Sequential_Binary_Multiplier (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);
/I Default configuration: 5-bit datapath

parameter dp_width = 5; // Set to width of datapath
output [2*dp_width-1:0] Product;
output Ready;
input [dp_width - 1: 0] Multiplicand, Multiplier;
input Start, clock, reset_b;
parameter BC_size = 3; /I Size of bit counter
parameter S idle = 3'b001, // one-hot code
S_add = 3'b010,
S_shift = 3'b100;
reg [2:0] state, next_state;
reg [dp_width-1:0] A, B, Q; /I Sized for datapath
reg C;
reg [BC_size - 1:0] P;
reg Load_regs, Decr_P, Add_regs, Shift_regs;

/I Miscellaneous combinational logic

assign Product = {C, A, Q};
wire Zero = (P == 0); /I counter is zero
wire Ready = (state == S_idle); /I controller status

/I control unit

always @ (posedge clock, negedge reset_b)
if (~reset_b) state <= S_idle; else state <= next_state;

always @ (state, Start, Q[0], Zero) begin
next_state = S_idle;
Load_regs = 0;
Decr P =0;
Add_regs = 0;
Shift_regs = 0;
case (state)
S_idle: begin if (Start) next_state = S_add; Load_regs = 1; end
S_add:begin next_state = S_shift; Decr_P = 1; if (Q[0]) Add_regs = 1; end
S_shift: begin Shift_regs = 1; if (Zero) next_state = S_idle;
else next_state = S_add; end
default: next_state = S_idle;
endcase
end

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

234

/[datapath unit

always @ (posedge clock) begin
if (Load_regs) begin
P <= dp_width;
A<=0;
C<=0;
B <= Multiplicand;
Q <= Multiplier;
end
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q} <={C, A, Q} >>1;
if (Decr_P) P <=P -1;
end
endmodule

Sample of simulation results:

1
Name 99539 99579 99619

clock e rrererrrrrorma

reset b

Start
state[2:0] e 10 X2 X4 X2 X4 X2 X4 X2 X4 X2 X4 X1 X2 X4
Load regs 1 [1

Decr P
Add regs
Shift_regs 1 I 1 I 1 I 1 I 1 I 1 1

Zero 1 I S —
Pp2:0] O G S S S S S G Y

B[4:0] 08 X 09 { 0a

A[4:0] [oe X 07 X 00 X 09 X 04 Y02 oo X 05 X 0e X 07 N 10 X 08 X 00 \]
c
0[4:0] 11 X 08 X 1d X le X of X 17 X 0b X o5 X 1d)

Mudtiplicand[4:0] 8 X @) X 10
Multiplier[4:0] C29)
Product[9:0] [465 X 232 X 29 X 317 X 158 X 79 X 367 X 183 N 471 N 235 \ 523 261 X 29 Y]

Ready

Exp Value[9:0] 203 X 232 | S @ID)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

235

(b) In this part the controller is described by Fig. 8.18. The test bench includes probes to display the
state of the controller.

/I Test bench for exhaustive simulation
module t_Sequential_Binary_Multiplier;

parameter dp_width = 5; /I Width of datapath
wire [2 * dp_width - 1: 0] Product;

wire Ready;

reg [dp_width-1:0] Multiplicand, Multiplier;

reg Start, clock, reset_b;

Sequential_Binary_Multiplier MO (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #109200 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end
initial fork
reset b =1;
#2 reset_b
#3 reset_b
join
initial begin #5 Start = 1; end
initial begin
#5 Multiplicand = 0;
Multiplier = 0;
repeat (31) #10 begin Multiplier = Multiplier + 1;
repeat (32) @ (posedge M0.Ready) #5 Multiplicand = Multiplicand + 1;
end
Start = 0;
end

0;
1

/I Error Checker
reg Error;
reg [2*dp_width -1: 0] Exp_Value;
always @ (posedge Ready) begin
Exp_Value = Multiplier * Multiplicand;

/[Exp_Value = Multiplier * Multiplicand + 1; /I Inject error to verify detection
Error = (Exp_Value " Product);
end

wire [2: 0] state = {M0.G2, M0.G1, M0.G0};
endmodule

module Sequential_Binary_Multiplier (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);
/I Default configuration: 5-bit datapath

parameter dp_width= 5; /I Set to width of datapath
output [2*dp_width-1:0] Product;

output Ready;

input [dp_width - 1: 0] Multiplicand, Multiplier;

input Start, clock, reset_b;

parameter BC_size= 3; /I Size of bit counter

reg [dp_width - 1: 0] A B, Q; /I Sized for datapath

reg C;

reg [BC_size-1:0] P;

wire Load_regs, Decr_P, Add_regs, Shift_regs;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

236

/I Status signals

assign Product = {C, A, Q};
wire Zero = (P == 0); /l counter is zero
wire Q0 = Q[0];

/I One-Hot Control unit (See Fig. 8.18)
DFF_S MO0 (GO0, DO, clock, Set);
DFF M1 (G1, D1, clock, reset_b);
DFF M2 (G2, G1, clock, reset_b);
or (DO, w1, w2);
and (w1, GO, Start_b);
and (w2, Zero, G2);
not (Start_b, Start);
not (Zero_b, Zero);
or (D1, w3, w4);
and (w3, Start, GO);
and (w4, Zero_b, G2);

and (Load_regs, GO, Start);
and (Add_regs, QO0, G1);
assign Ready = GO;
assign Decr_P = G1;
assign Shift_regs = G2;
not (Set, reset_b);

// datapath unit

always @ (posedge clock) begin
if (Load_regs) begin
P <= dp_width;
A<=0;
C<=0;
B <= Multiplicand;
Q <= Multiplier;
end
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q} <={C, A, Q} >> 1;
if (Decr_P)P <=P -1;
end
endmodule

module DFF_S (output reg Q, input data, clock, Set);
always @ (posedge clock, posedge Set)
if (Set) Q <= 1'b1; else Q<= data;
endmodule
module DFF (output reg Q, input data, clock, reset_b);
always @ (posedge clock, negedge reset_b)
if (reset_b == 0) Q <= 1'b0; else Q<= data;
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

237
Sample of simulation results:

ts:
o 0 Rl Rl 8
clock [S Y Y Y Y Sy Yy Y I Y I A
reset b
Start
state[2:0] 0 X2 Xa 2 Xa T2 X4 X2 X4 2 X4 JC1 X2 Y4
Load regs I
Decr P | | | | | | | | | | ——
Add regs J 1 I 1
Shift regs I | | | | | | | | | | 1
P2:0] S G B D D G O T
Zero L
B[4:0] 1 X 12 { 13
Af4:0] [o6 X 00 X122 Yoo X\ v X o Yos X 00
c
of4:0] { 0c X o0 X 03 X o X 0o Y18)Y o |
Mudtiplicandf4:0] | 17 X C 18> 19
Madtiplier(4:0] C12D
Product[9:0] [204 X 2 X 6 X 3 X 579 X 289 X 865 X 432 216 12]
Ready i
Exp Value[9:0] || 204 C216)

8.28
/I Test bench for exhaustive simulation
module t_Sequential_Binary_Multiplier;

parameter dp_width = 5; /I Width of datapath
wire [2 *dp_width - 1:0] Product;

wire Ready;

reg [dp_width-1:0] Multiplicand, Multiplier;

reg Start, clock, reset_b;

Sequential_Binary_Multiplier MO (Product, Ready, Multiplicand, Multiplier, Start, clock, reset_b);

initial #109200 $finish;

initial begin clock = 0; #5 forever #5 clock = ~clock; end

initial fork
reset b =1;
#2 reset_b
#3 reset b

join

0;
1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

238

initial begin #5 Start = 1; end
initial begin
#5 Multiplicand = 0;
Multiplier = O;
repeat (31) #10 begin Multiplier = Multiplier + 1;
repeat (32) @ (posedge M0.Ready) #5 Multiplicand = Multiplicand + 1;
end
Start = 0;
end

/I Error Checker
reg Error;
reg [2*dp_width -1: 0] Exp_Value;
always @ (posedge Ready) begin
Exp_Value = Multiplier * Multiplicand;

/[Exp_Value = Multiplier * Multiplicand + 1; /' Inject error to verify detection
Error = (Exp_Value * Product);
end
wire [2: 0] state = {M0.M0.G2, M0.M0.G1, M0.M0.GO}; // Watch state
endmodule

module Sequential_Binary_Multiplier
#(parameter dp_width = 5)

(
output [2*dp_width -1: 0] Product,
output Ready,
input [dp_width -1: 0] Multiplicand, Multiplier,
input Start, clock, reset_b
).

wire Load_regs, Decr_P, Add_regs, Shift_regs, Zero, QO;

Controller MO (Ready, Load_regs, Decr_P, Add_regs, Shift_regs, Start, Zero, QO, clock, reset_b);
Datapath M1(Product, QO0, Zero,Multiplicand, Multiplier, Start, Load_regs, Decr_P, Add_regs,
Shift_regs, clock, reset_b);
endmodule

module Controller (
output Ready,
output Load_regs, Decr_P, Add_regs, Shift_regs,
input Start, Zero, QO, clock, reset_b
);
/I One-Hot Control unit (See Fig. 8.18)
DFF_S MO (G0, DO, clock, Set);
DFF M1 (G1, D1, clock, reset_b);
DFF M2 (G2, G1, clock, reset_b);
or (DO, w1, w2);
and (w1, GO, Start_b);
and (w2, Zero, G2);
not (Start_b, Start);
not (Zero_b, Zero);
or (D1, w3, w4);
and (w3, Start, GO);
and (w4, Zero_b, G2);

and (Load_regs, GO, Start);

and (Add_regs, Q0, G1);

assign Ready = G0;

assign Decr_P = G1;

assign Shift_regs = G2;

not (Set, reset_b);
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

239

module Datapath #(parameter dp_width = 5, BC_size = 3) (

output [2*dp_width - 1: 0] Product, output QO, output Zero,

input [dp_width - 1: O] Multiplicand, Multiplier,

input Start, Load_regs, Decr_P, Add_regs, Shift_regs, clock, reset_b

);
reg [dp_width-1:0] A, B, Q; // Sized for datapath
reg ;
reg [BC_size-1:0] P;
assign Product = {C, A, Q};
/I Status signals
assign Zero = (P == 0); /l counter is zero
assign QO = Q[O];

always @ (posedge clock) begin
if (Load_regs) begin
P <= dp_width;
A<=0;
C<=0;
B <= Multiplicand;
Q <= Multiplier;
end
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q} <={C, A, Q} >>1;
if (Decr_P)P <=P -1;
end
endmodule

module DFF_S (output reg Q, input data, clock, Set);
always @ (posedge clock, posedge Set)
if (Set) Q <= 1'b1; else Q<= data;
endmodule
module DFF (output reg Q, input data, clock, reset_b);
always @ (posedge clock, negedge reset_b)
if (reset_b == 0) Q <= 1'b0; else Q<= data;
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

240
58738 58778 58818 58858
Nam | | | I | | | I | | | I | | |
clock T ree e e r e
reset b
Start

state[2:0] DO 2 e T2 Xa)2 Y4 X2)4 X2 Xa 1 X2 (4

Load regs L

Decr P | | | | | | | | | | —
Add regs N S
Shift regs M | | | | | | | | | | |
P2:0] o s X 4 X 3 X 2) 1 X o X5 X4
o)) 1 I L T |
Zero 1
B[4:0] 15 X 16 17

c

Af4:0] X oo X oo X 16 X oo X 05 Y02 X ot X 17 X ob oo X }
0/4:0] Xos X it X 8 Y 14 X 1ta X od K16 X 11|
Mudtiplicand[4:0] | 21 X (22) 23
Mudtiplier[4:0] C17)

Product[9:0] X 357 X 17 X 721 X 360 X 180 X 90 Y45 \ 79 37X 17 X)

Ready L
Exp Value[9:0] | X 357 (374)
@rror

829 (a)

Inputs: xyEF
00-- 01--

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

241

(b) DSy =x"y'Sp + S3 + S5 +S;
DS] = XSO
DSz = vaS() + Sl
DS3 = FSQ
DS, =F'S,
DS5 = E'S5
DS6 = EVS4
DS7 = SG
©
Present Next
state Inputs state
Output| G, G,G, | xy EF |G,G,G,
SO 000 00xx 000
S0 000 I x x x 001
S0 000 01xx 010

S1 001 X X X X 010

$2
S2 0

(=
—_
o o
>
>
>
(=)
—
—

S3 011 X X X X 000

S4 1
S4 1

o o
o o
=
>
=
_
—
o
—_

S5 101 X X X X 000

S6 110 X X X X 110

@

DG,

b 0
] Q'
DG, | = L
<]
10

Bl

S

N

o

Y ntn «

DG.

Clock

Reset
DG]ZF'S2+S4+S6
DG2 =x'ySo +S1 +FS2 +E,S4 +S6
DG3 :.)CS() +FS2 +ES4 +S6

(e)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

242

Present Next Tnput
state state con. dIi)tions Mux1 Mux?2 Mux3
G,G,Gy| GGG,
000 000 xy’
000 001 X 0 x'y X
000 010 X’y
001 010 None 0 1 0
010 10 F’ F F F
010 11 F’
011 000 None 0 0 0
100 11 E’
1 00 1 1 E’ 1 E E
101 000 None 0 0 0
110 110 None 1 1 1
111 000 None 0 0 0
®
[—]
0s2 sl sO
I 8x1
F 2
3 Mux o
o —41s 2
1 l 6 1 Q'
7 —
, | ——
x 052 sl s0 S —
y :1 > — 1 s—
F § 8x1 1 3x8 5 —
E 2 Mux D o— Decoders'
5 G, Sif—
1 6 Q' — S, F—
0 7 —1 D
| —
x 052 sl s0
0 1
F 15 8xI
E 4 Mux b G,
1 ._2 Q'
{7 —1
Clock
reset b
(2
module Controller_8_29g (input x, y, E, F, clock, reset_b);
supplyO GND;
supply1 VCC;

mux_8x1 M3 (m3, GND, GND, F_bar, GND, VCC, GND, VCC, GND, G3, G2, G1);
mux_8x1 M2 (m2, w1, VCC, F, GND, E_bar, GND, VCC, GND, G3, G2, G1);
mux_8x1 M1 (m1, x, GND, F, GND, E, GND, VCC, GND, G3, G2, G1);
DFF_8_28g DM3 (G3, m3, clock, reset_b);

DFF_8_28g DM2 (G2, m2, clock, reset_b);

DFF_8_28g DM1 (G1, m1, clock, reset_b);

decoder_3x8 MO_D (y0, y1, y2, y3, y4, y5, y6, y7, G3, G2, G1);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

243

and (w1, x_bar, y);

not (F_bar, F);

not (E_bar, E);

not (x_bar, x);
endmodule

/] Test plan: Exercise all paths of the ASM chart

module t_Controller_8_29g ();
reg x, Y, E, F, clock, reset_b;
Controller_8_29g MO (x, y, E, F, clock, reset_b);
wire [2: 0] state = {M0.G3, M0.G2, M0.G1};

initial #500 $finish;

initial begin clock = 0; forever #5 clock = ~clock; end

initial begin end

initial fork
reset_ b =0; #2reset_b =1;
#0 beginx=1;y=1;E=1;F=1;end //Path:S_0,S 1,S 2,S 34
#80 reset_b = 0; #92 reset_b = 1;
#90 beginx=1;y=1,E=1;F=0; end
#150 reset b =0;
#152 reset b =1;
#150 beginx=1;y=1,E=0;F=0;end //Path:S 0,S_1,S 2,S 4,S 5
#200 reset_ b =0;
#202 reset b =1;
#190 beginx=1;y=1,E=0;F=0;end //Path:S 0,S_1,S 2,S 4,S 6,S 7
#250 reset_b =0;
#252 reset b =1;
#240 beginx=0;y=0;E=0;F=0;end //Path:S_0
#290 reset_b =0;
#292 reset b =1;
#280 beginx=0;y=1;E=0;F=0;end //Path:S_0,S 2,S 4,S 6,S 7
#360 reset_b =0;
#362 reset_ b =1;
#350 beginx=0;y=1,E=1;F=0;end //Path:S_0,S 2,S 4,S 5
#420 reset_b =0;
#422 reset_ b =1;
#410 beginx=0;y=1,E=0;F=1;end //Path:S_0,S_2,S 3

join

endmodule

module mux_8x1 (output reg y, input x0, x1, x2, x3, x4, x5, x6, x7, s2, s1, s0);
always @ (x0, x1, x2, x3, x4, x5, x6, x7, s0, s1, s2)
case ({s2, s1, s0})
3'b000: y = x0;
3'b001: y = x1;
3'b010: y = x2;
3'b011: y = x3;
3'b100: y = x4;
3'b101: y = x5;
3'b110: y = x6;
3'b111: y = Xx7;
endcase
endmodule

module DFF_8 28g (output reg g, input data, clock, reset_b);
always @ (posedge clock, negedge reset_b)
if (Ireset_b) q <= 1'b0; else q <= data;
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

244

module decoder_3x8 (output reg y0, y1, y2, y3, y4, y5, y6, y7, input x2, x1, x0);
always @ (x0, x1, x2) begin
{y7,y6.y5, y4,y3, y2, y1, y0} = 8'b0;
case ({x2, x1, x0})
3'b000: yO= 1'b1;
3'b001: y1= 1'b1;
3'b010: y2= 1'b1;
3'b011: y3= 1'b1;
3'b100: y4= 1'b1;
3'b101: y5= 1'b1;
3'b110: y6= 1'b1;
3'b111: y7=1'b1;
endcase
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained

from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

245
Path: S 0,S 1,S 2,S 3and Path: S 0,S 1,S 2,S 4,S 5
Name O 1 1 1 1 1 1 1 1 1 |30| 1 1 1 1 1 1 1 1 |60| 1 1 1 1 1 1 1 1 Igol 1 1 1 1 1 1 1 1 |12|0 1 1 1 1 1 1 1
cock pf LT T Qe -rerererereeroerrru
reset b | | |
E
F 1
state[2:0] | 0 X+ X 2 X 3 X

T X2 X4 5 X))

Path: S 0,S 1,S 2,S 4,5 6,S 7
Name 120

150 180 210
P T T T S N T SN [M T S T T SN T S M Y1

240
1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1
clock

reset_b L L
x

y
E
F

stae2:0] 4N 5 J_ 0 Y1 XoX— 1 X2 X4 X

[&2 I G D B |

Path: S_0and Path, S 0,S 2,S 4,8 6,S 7
Name 24I0 1 1 1 1 1 1 1 1 |27I0 1 1 1 1 1 1 1 1 I3OI0

330 360

1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1
reset b L L

clock

M)

state[2:0] |_6 0

2 Xo X 2 X4 X 6 X 7 X

[

Path: S 0,S 2,S 4,S Sandpath S 0,S 2, S 3

Name 32|4|||||||||35|4|||||||||38|4|||||||||41|4|||||||||44;4|||||||
clock -+ r DT ren
reset b LI LI

x

y

E | |

F I

state[2:0] [7 X o X 2 XaXoX

2 4 5 o X2 X3XoX 2 X3 o X2

(h)
module Controller_8_29h (input x, y, E, F, clock, reset_b);
parameter S_0 = 3'b000, S_1 = 3'b001, S_2 = 3'b010,
S 3=3b011,S_4=3b100,S 5=3b101,S 6=3'b110,S_7 =3'b111;
reg [2: 0] state, next_state;

always @ (posedge clock, negedge reset_b)
if (Ireset_b) state <= S_0; else state <= next_state;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

246

always @ (state, x, y, E, F) begin
case (state)
S_O: if (x) next_state = S_1;
else next_state= y? S 2: S _0;

S 1: next_state =S _2;
S_2: if (F) next_state = S_3; else next_state = S_4;
S 3,S 5,S 7: next_state=S 0;
S 4: if (E) next_state = S_5; else next_state = S_6;
S _6: next_state = S_7;
default: next_state = S_0;
endcase
end
endmodule

/] Test plan: Exercise all paths of the ASM chart

module t_Controller_8_29h ();
reg x, Y, E, F, clock, reset_b;

Controller_8 29h MO (x, y, E, F, clock, reset_b);

initial #500 $finish;

initial begin clock = 0; forever #5 clock = ~clock; end

initial begin end

initial fork
reset_b =0; #2reset_b = 1;
#20 beginx=1;y=1,E=1;F=1;end//Path: S_0,S _1,S 2,S 34
#80 reset_b = 0; #92 reset_b =1,
#90 beginx=1;y=1,E=1;F=0; end
#150 reset_b = 0;
#152 reset_ b = 1;
#150 beginx=1;y=1,E=0;F=0;end //Path:S 0,S_1,S 2,S 4,S 5
#200 reset_b = 0;
#202 reset b = 1;
#190 beginx=1;y=1,E=0;F=0;end //Path:S 0,S_1,S 2,S 4,S 6,S 7
#250 reset_b = 0;
#252 reset b = 1;
#240 beginx=0;y=0; E=0; F=0;end // Path:S_0
#290 reset_b = 0;
#292 reset_ b = 1;
#280 beginx=0;y=1;E=0;F=0;end //Path:S_0,S 2,S 4,S 6,S 7
#360 reset_b = 0;
#362 reset_b = 1;
#350 beginx=0;y=1,E=1;F=0;end //Path:S_0,S 2,S 4,S 5
#420 reset_b = 0;
#422 reset_b = 1;
#410 beginx=0;y=1;E=0;F=1;end //Path:S_0,S 2,S 3

join

endmodule

Note: Simulation results match those for 8.39g.
8.30 (@ E=1 () E=0

8.31 A =0110, B=0010, C = 0000.

A*B=1100 A|B=0110 A&&C=0
A +B =1000 A AB=0100 |A=1
A-B=0100 &A =0 A<B=0
~C=1111 ~C=1 A>B=1
A & B =0010 AllB=1 Al B=1

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

247

8.32
4
R 2 Mux * oy 4
4 4-bit Rl
R2 > + > Counter
BNV 7| select
S1 S2 ‘§ 3
§|7 §|7 3
select = S,
load = S, + §'S',
count = §',S, \
L
—
clock
8.33
Assume that the states are encoded one-hot as T, o Iy T,
T,. The select lines of the mux are generated as:
s, =T+ T
so=T,+ T,
The signal to load R, can be generated by the host
processor or by:
load= Ty +T + T, T,
8
R0 # 0
8
Rl # 1 3 3
R 8 Mux | ————| Rogistcr m——
) # 2
R 8
3 # 3 5 SO
3
=
T,
T, —— 4x2
T, —— Encoder
T,
load
clock
8.34 (a)

module Datapath_BEH
#(parameter dp_width = 8, R2_width = 4)
(
output [R2_width -1: 0] count, output reg E, output Zero, input [dp_width -1: 0] data,
input Load_regs, Shift_left, Incr_R2, clock, reset_b);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

248

reg [dp_width -1: 0] R1;
reg [R2_width -1: 0] R2;

assign count = R2;

assign Zero = ~(| R1);

always @ (posedge clock) begin
E <= R1[dp_width -1] & Shift_left;
if (Load_regs) begin R1 <= data; R2 <= {R2_width{1'b1}}; end
if (Shift_left) {E, R1} <= {E, R1} << 1;
if (Incr_R2) R2 <= R2 + 1;

end

endmodule

/I Test Plan for Datapath Unit:

/l Demonstrate action of Load_regs

/I R1 gets data, R2 gets all ones

/ Demonstrate action of Incr_R2

/ Demonstrate action of Shift_left and detect E

/I Test bench for datapath

module t_Datapath_Unit
#(parameter dp_width = 8, R2_width = 4)

()
wire [R2_width -1: 0] count;
wire E, Zero;
reg [dp_width -1: 0] data;
reg Load_regs, Shift_left, Incr_R2, clock, reset_b;

Datapath_ BEH MO (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock, reset_b);

initial #250 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset b = 0; #2 reset b =1; end
initial fork
data = 8'haa;
Load_regs = 0;
Incr_ R2 =0;
Shift_left = 0;
#10 Load_regs = 1;
#20 Load_regs = 0;
#50 Incr_ R2 = 1;
#120 Incr_R2 = 0;
#90 Shift_left = 1;
#200 Shift_left = 0;
join
endmodule

Note: The simulation results show tests of the operations of the datapath independent of the control unit,
so count does not represent the number of ones in the data.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

249

Rlgets data and R2 gets all ones

0\ 60 120 180
Name N e e e

clock IWW
reset_b - r% R2 increments while

Load_regs —

Inc‘riRZ \ I | —

Shlﬁ_leﬁ \ ﬁ)te that E matches previous (r/ R —
Zero

E = \\ N e =

data[7:0] | |

R1[7:0] xx_) \‘ e) \ =

RI[7] — \ \

RI1[6]] ‘

RI[S] \ \

R1[4] I I

RI[3] \ \

RI[2] ! i |

RI[1] \ \

R1[0] 7

R2[3:0] x X (£) (o X 1 X2 3) 4)5)

count[3:0] X X f “

(b) // Control Unit
module Controller_BEH (

output Ready,

output reg Load_regs,

output Incr_R2, Shift_left,

input Start, Zero, E, clock, reset_b

);
parameter S idle=0,S 1=1,S 2=2,S 3=3;
reg [1:0] state, next_state;

assign Ready = (state == S_idle);
assign Incr_R2 = (state == S_1);
assign Shift_left = (state == S_2);

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= S_idle;
else state <= next_state;

always @ (state, Start, Zero, E) begin
Load_regs = 0;
case (state)
S_idle: if (Start) begin Load_regs = 1; next_state = S_1; end
else next_state = S_idle;

S_1: if (Zero) next_state = S_idle; else next_state = S_2;
S 2: next_state =S _3;
S_3: if (E) next_state = S_1; else next_state = S_2;
endcase
end

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

250

endmodule

/I Test plan for Control Unit

/I Verify that state enters S_idle with reset_b asserted.

/I With reset_b de-asserted, verify that state enters S_1 and asserts Load_Regs when
/I Start is asserted.

/I Verify that Incr_R2 is asserted in S_1.

/I Verify that state returns to S_idle from S_1 if Zero is asserted.
Il Verify that state goes to S_2 if Zero is not asserted.

/I Verify that Shift_left is asserted in S_2.

/I Verify that state goes to S_3 from S_2 unconditionally.

/I Verify that state returns to S_2 from S_3 id E is not asserted.
/I Verify that state goes to S_1 from S_3 if E is asserted.

/I Test bench for Control Unit

module t_Control_Unit ();
wire Ready, Load_regs, Incr_R2, Shift_left;
reg Start, Zero, E, clock, reset_b;

Controller_BEH MO (Ready, Load_regs, Incr_R2, Shift_left, Start, Zero, E, clock, reset_b);

initial #250 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset_b = 0; #2 reset_b = 1; end
initial fork
Zero=1;
E=0;
Start = 0;
#20 Start = 1; // Cycle from S_idleto S_1
#80 Start = 0;
#70Zero=0; //S_idletoS_1toS_2to S_3 and cycle to S_2.
#130E=1;/CycletoS_3toS_ 1t0 S 2t0o S_3
#150 Zero = 1; // Return to S_idle

join
endmodule
Go to S_1 and cyle to Go to S 2 and cyle Go to S_1 and cyle to .
S idle while Zero=1 1053 while E=0 S 3 while Zero = 0 Return'to S_idle
0 70 140 210
Name | | | I | | I | |
clock
reset b u) >)
I 1
Start ’ I /\/ I —~
Zero \ \ \/R
E | I
state[1:0] 0 ILAOANLTAOANLTN2AZA2ZASZAZASWLIAZAZAL) 0
Ready L 1L I
Load regs My L—r 1
Incr _R2
Shift_lefi -

Ready asserts while Load_regs asserts while — Incr_R2 asserts while state = S_1

state =S idle state =S idle and Start = 1 Shift_left asserts while state = §_2

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

251

(0

I Integrated system

module Count_Ones_BEH_BEH

(parameter dp_width = 8, R2_width = 4)

output [R2_width -1: 0] count,
input [dp_width -1: 0] data,

input Start, clock, reset_b
);
wire Load_regs, Incr_R2, Shift_left, Zero, E;

Controller_BEH MO (Ready, Load_regs, Incr_R2, Shift_left, Start, Zero, E, clock, reset_b);
Datapath_BEH M1 (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock, reset_b);
endmodule

/I Test plan for integrated system
/I Test for data values of 8'haa, 8'h00, 8'hff.

/I Test bench for integrated system

module t_count_Ones_BEH_BEH ();
parameter dp_width = 8, R2_width = 4;
wire [R2_width -1: 0] count;
reg [dp_width -1: 0] data;
reg Start, clock, reset_b;

Count_Ones_BEH_BEH MO (count, data, Start, clock, reset_b);
initial #700 $finish;

initial begin clock = 0; forever #5 clock = ~clock; end

initial begin reset_b = 0; #2 reset_b = 1; end

initial fork
data = 8'haa; /I Expect count = 4
Start = 0;
#20 Start = 1;
#30 Start = 0;
#40 data = 8'b00; // Expect count =0
#250 Start = 1;
#260 Start = 0;
#280 data = 8'hff;
#280 Start = 1;
#290 Start = 0;

join

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

252
Name 0 " il 12
clock
reset b u
Ready
Start () Il
Load regs [Il
Incr R2]
Shift left
Zero
E
state[1:0]
datal7:0] (aa) | 00
RI[7:0] xx_ N aa X 54 X a8 X 50 X a0 X 40 X so—X__ 00
R2[3:0] X o X 1 X 2 X 3) \‘t)
count[3:0] X X:X 0 X 1 X 2 X 3 r (4) |

Name

clock

reset b /\

Ready

Start

|
Load regs
Incr R2 1
Shift lefi |1
Zero - |
1
2

E

state[1:0]

datal7-0] X ff

riy70p | X 00 X

R2[3:0] 3 X 4 (f X0 o X 1 2 3
(15) (15)

count[3:0] 3 X 4 15X Coo1s 0 X 1 X 2 { 3

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

253

258 318 378 438 498 558

clock mrmm:—uu
reset_b \
Ready - # 1 < a_

Name

Start I

Load regs 1

Incr R2 1 1 1 1 1 1 1 1 1 1
Shift_left 1 1 1 1 1 1 1 1

Zero

E 1 1 1 1 1 1 1 1

state[1:0]

data[7:0]

RI[7:0]

R2/3:0]

counf3:0] |_J__0 o [G G G G T A (@D
(G))

/I One-Hot Control unit

module Controller BEH_1Hot

(

output Ready,

output reg Load_regs,

output Incr_R2, Shift_left,

input Start, Zero, E, clock, reset_b

);
parameter S_idle = 4'b001, S_1 =4'b0010, S_2 =4'b0100, S_3 = 4'b1000;
reg [3:0] state, next_state;

assign Ready = (state == S_idle);
assign Incr_R2 = (state == S_1);
assign Shift_left = (state == S_2);

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= S_idle;
else state <= next_state;

always @ (state, Start, Zero, E) begin
Load_regs = 0;
case (state)
S_idle:if (Start) begin Load_regs = 1; next_state =S_1; end
else next_state = S_idle;
S_1: if (Zero) next_state = S_idle; else next_state = S_2;

S_2: next_state = S_3;
S_3: if (E) next_state = S_1; else next_state = S_2;
endcase
end
endmodule

Note: Test plan, test bench and simulation results are same as (b), but with states numbered with one-hot
codes.

(e)

/I Integrated system with one-hot controller

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

254

module Count_Ones_BEH_1Hot
(parameter dp_width = 8, R2_width = 4)

output [R2_width -1: 0] count,
input [dp_width -1: 0] data,
input Start, clock, reset_b

);
wire Load_regs, Incr_R2, Shift_left, Zero, E;

Controller_BEH_1Hot MO (Ready, Load_regs, Incr_R2, Shift_left, Start, Zero, E, clock, reset_b);
Datapath_ BEH M1 (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock, reset_b);
endmodule

Note: Test plan, test bench and simulation results are same as (c), but with states numbered with one-hot
codes.

8.35 Note: Signal Start is initialized to 0 when the simulation begins. Otherwise, the state of the structural model

will become X at the first clock after the reset condition is deasserted, with Start and Load Regs having
unknown values. In this condition the structural model cannot operate correctly.

Name

clock I | I | I | I | I | I | I |
reset b U

Start 1
Load regs
Shift_left
Incr R2

Zero

Ready |

statef1:0] | xX_0_X X
dataf7:0] ff
count[3:0] X

module Count_Ones_STR_STR (count, Ready, data, Start, clock, reset_b);
/I Mux — decoder implementation of control logic

/I controller is structural

/l datapath is structural

parameter R1_size = 8, R2_size = 4;

output [R2_size -1: 0] count;

output Ready;

input [R1_size -1: 0] data;

input Start, clock, reset_b;

wire Load_regs, Shift_left, Incr_R2, Zero, E;

Controller_STR MO (Ready, Load_regs, Shift_left, Incr_R2, Start, E, Zero, clock, reset_b);
Datapath_STR M1 (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock);

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

255

module Controller_STR (Ready, Load_regs, Shift_left, Incr_R2, Start, E, Zero, clock, reset_b);
output Ready;
output Load_regs, Shift_left, Incr_R2;

input Start;
input E, Zero;
input clock, reset_b;

supply0 GND;
supply1 PWR;
parameter SO0 = 2'b00, S1=2'b01, S2 = 2'b10, S3 = 2'b11; // Binary code

wire Load_regs, Shift_left, Incr_R2;
wire G0, GO_b, D _in0, D_in1, G1, G1_b;
wire Zero_b = ~Zero;

wire E b=~E;

wire [1:0] select = {G1, GO0};
wire [0:3] Decoder_out;

assign Ready = ~Decoder_out[0];

assign Incr_R2 = ~Decoder_out[1];

assign Shift_left = ~Decoder_out[2];

and (Load_regs, Ready, Start);

mux_4x1_beh Mux_1 (D_in1, GND, Zero_b, PWR, E_b, select);

mux_4x1_beh Mux_0 (D_in0, Start, GND, PWR, E, select);
D flip_flop AR b M1 (G1, G1_b, D_in1, clock, reset_b);

D flip_flop AR_.b MO (GO, GO_b, D_in0, clock, reset_b);
decoder_2x4_df M2 (Decoder_out, G1, GO, GND);

endmodule

module Datapath_STR (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock);

parameter R1_size = 8, R2_size = 4;

output [R2_size -1: 0] count;

output E, Zero;

input [R1_size -1: 0] data;

input Load_regs, Shift_left, Incr_R2, clock;

wire [R1_size -1: 0] R1;

supply0 Gnd;

supply1 Pwr;

assign Zero = (R1==0);

Shift_Reg M1 (R1, data, Gnd, Shift_left, Load_regs, clock, Pwr);
Counter M2 (count, Load_regs, Incr_R2, clock, Pwr);

D_flip_flop_AR M3 (E, w1, clock, Pwr);

and (w1, R1[R1_size -1], Shift_left);
endmodule

module Shift_Reg (R1, data, SI_0, Shift_left, Load_regs, clock, reset_b);
parameter R1_size = 8;
output [R1_size -1: 0] R1;
input [R1_size -1: 0] data;
input S1_0, Shift_left, Load_regs;
input clock, reset_b;
reg [R1_size -1: 0] R1;

always @ (posedge clock, negedge reset_b)
if (reset_b ==0) R1 <=0;
else begin
if (Load_regs) R1 <= data; else
if (Shift_left) R1 <= {R1[R1_size -2:0], SI_0}; end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

256

module Counter (R2, Load_regs, Incr_R2, clock, reset_b);

parameter R2_size = 4;

output [R2_size -1: 0] R2;

input Load_regs, Incr_R2;
input clock, reset_b;

reg [R2_size -1: 0] R2;

always @ (posedge clock, negedge reset_b)
if (reset_b == 0) R2 <= 0;
else if (Load_regs) R2 <= {R2_size {1'b1}}; // Fill with 1
else if (Incr_R2==1) R2<=R2 + 1;
endmodule

module D_flip_flop_AR (Q, D, CLK, RST);

output Q;
input D, CLK, RST;
reg Q;

always @ (posedge CLK, negedge RST)
if (RST == 0) Q <= 1'b0;
else Q <=D;
endmodule

module D_flip_flop_AR_b (Q, Q_b, D, CLK, RST);

output Q, Q_b;
input D, CLK, RST;
reg Q;

assign Q_b=~Q;
always @ (posedge CLK, negedge RST)
if (RST ==0) Q <= 1'b0;
else Q <=D;
endmodule

/I Behavioral description of 4-to-1 line multiplexer
/I Verilog 2005 port syntax

module mux_4x1_beh

(outputreg m_out,

input in_0,in_1,in_2,in_3,
input [1: 0] select

);

always @ (in_0, in_1, in_2, in_3, select) // Verilog 2005 syntax
case (select)
2'b00: m_out = in_0;
2'b01:m_out =in_1;
2'b10: m_out = in_2;
2'b11:m_out =in_3;
endcase
endmodule
/I Dataflow description of 2-to-4-line decoder
/I See Fig. 4.19. Note: The figure uses symbol E, but the
I/l Verilog model uses enable to clearly indicate functionality.

module decoder_2x4_df (D, A, B, enable);
output [0:3] D;

input A, B;
input enable;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

257

assign DJ[0] = ~(~A & ~B & ~enable),
D[1] = ~(~A & B & ~enable),
D[2] = ~(A & ~B & ~enable),
D[3] = ~(A & B & ~enable);
endmodule

module t Count_Ones;
parameter R1_size = 8, R2_size = 4;
wire [R2_size-1:0] R2;

wire [R2_size -1: 0] count;

wire Ready;
reg [R1_size-1:0] data;
reg Start, clock, reset_b;

wire [1: 0] state; /l Use only for debug
assign state = {M0.M0.G1, M0.M0.G0};

Count_Ones_STR_STR MO (count, Ready, data, Start, clock, reset_b);

initial #4000 $finish;
initial begin clock = 0; #5 forever #5 clock = ~clock; end

initial fork
Start = 0;
#1reset b=1;
#3 reset_b = 0;
#4 reset_b =1;
data = 8'Hff;
25 Start = 1;
35 Start=0;
#310 data = 8'h0f;
#310 Start = 1;
#320 Start = 0;
#610 data = 8'hf0;
#610 Start = 1;
#620 Start = 0;
#910 data = 8'h00;
#910 Start = 1;
#920 Start = 0;

#1210 data = 8'haa;
#1210 Start = 1;
#1220 Start = 0;
#1510 data = 8'h0a;
#1510 Start = 1;
#1520 Start = 0;
#1810 data = 8'ha0;
#1810 Start = 1;
#1820 Start = 0;
#2110 data = 8'h55;
#2110 Start = 1;
#2120 Start = 0;
#2410 data = 8'h05;
#2410 Start = 1;
#2420 Start = 0;
#2710 data = 8'h50;
#2710 Start = 1;
#2720 Start = 0;
#3010 data = 8'hab5;
#3010 Start = 1;
#3020 Start = 0;
#3310 data = 8'h5a;
#3310 Start = 1;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

258

#3320 Start = 0;
join
endmodule

2184 2324 | 2464 | 2604 2744 2884
T T I

Name it . [[

clock nnnnhnnT R

reset b

Start 1 1

Load regs I I

0 A I o I I e I I I o o o o I I O I I I o I o
Incr R2
Zero
Ready

state[1:0]

data[7:0] 55 X 05 X 50

comg30] |1 X2 X3 X 4 XX 0 X1 X 2 O o X 1 X 2

8.36 Note: See Prob. 8.35 for a behavioral model of the datapath unit, Prob. 8.36d for a one-hot control unit.

(@) Ty, T, T, T; be asserted when the state is in S'_idle, S 1, S 2,and S 3, respectively. Let DO, D1, D2, and
D3 denote the inputs to the one-hot flip-flops.

Dy = T, Start' + T, Zero
D] = T()Sla}’f”‘ T3E
DZZTIZQI"O’"" T3E’
D3 = T2

(b) Gate-level one-hot controller

module Controller Gates_1Hot
(
output Ready,
output Load_regs, Incr_R2, Shift_left,
input Start, Zero, E, clock, reset_b
);
wire w1, w2, w3, w4, w5, wb;
wire TO, T1, T2, T3;
wire set;
assign Ready = TO;
assign Incr_R2 =T1;
assign Shift_left = T2;
and (Load_regs, TO, Start);
not (set, reset_b);
DFF_S MO (TO, DO, clock, set); /I Note: reset action must initialize S_idle = 4'b0001
DFF M1 (T1, D1, clock, reset_b);
DFF M2 (T2, D2, clock, reset_b);
DFF M3 (T3, D3, clock, reset_b);

not (Start_b, Start);
and (w1, TO, Start_b);
and (w2, T1, Zero);
or (DO, w1, w2);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

259

and (w3, TO, Start);
and (w4, T3, E);
or (D1, w3, w4);

not (Zero_b, Zero);
not (E_b, E);

and (w5, T1, Zero_b);
and (w6, T3, E_b);

or (D2, w5, wb);

buf (D3, T2);
endmodule

module DFF (output reg Q, input D, clock, reset_b);
always @ (posedge clock, negedge reset_b)
if (reset_b ==0) Q <=0;
else Q <=D;
endmodule
module DFF_S (output reg Q, input D, clock, set);
always @ (posedge clock, posedge set)
if (set==1)Q<=1;
else Q <=D;
endmodule

(c)

I/l Test plan for Control Unit

/I Verify that state enters S_idle with reset_b asserted.

/I With reset_b de-asserted, verify that state enters S_1 and asserts Load_Regs when
/I Start is asserted.

/I Verify that Incr_R2 is asserted in S_1.

/I Verify that state returns to S_idle from S_1 if Zero is asserted.
Il Verify that state goes to S_2 if Zero is not asserted.

/I Verify that Shift_left is asserted in S_2.

/I Verify that state goes to S_3 from S_2 unconditionally.

/I Verify that state returns to S_2 from S_3 id E is not asserted.
/Il Verify that state goes to S_1 from S_3 if E is asserted.

/I Test bench for One-Hot Control Unit

module t_Control_Unit ();
wire Ready, Load_regs, Incr_R2, Shift_left;
reg Start, Zero, E, clock, reset_b;
wire [3: 0] state = {M0.T3, M0.T2, M0.T1, MO.TQ}; /I Observe one-hot state bits
Controller_Gates_1Hot MO (Ready, Load_regs, Incr_R2, Shift_left, Start, Zero, E, clock, reset_b);

initial #250 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset_b = 0; #2 reset_b = 1; end
initial fork
Zero=1;
E=0;
Start = 0;
#20 Start = 1;// Cycle from S_idleto S_1
#80 Start = 0;
#70Zero=0; //S_idletoS 1t0S 2toS 3 andcycletoS_2.
#130E=1; /I CycletoS_ 3toS 1toS 2toS_3
#150 Zero=1; //Returnto S_idle
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

260

Note: simulation results match those for Prob. 8.34(d). See Prob. 8.34(c) for annotations.

Name 0 60 120 180

Default

clock I S Y S e Y e e Y S oy I I
reset b u

Start I |
Zero 1 J
E I

state[3:0]

Ready
Load regs I
Incr R2 [1 LTI 1 [1 [1
Shift_left [I I N 1

(d) Datapath unit detail:

s, = Shift_regs + Load_regs' Shift_regs’
s, = Load_regs + Load_regs' Shift regs’

Zero
8
R1 # 0
data —-8—> Uyl ¢ Register ¢
—— - R1
Rl <<] 8 Mux (D l'ype
2 Fllp-
$ flops) R1 7
R1 # 3 5,8, — P @ E
|_ O'lo
Shift_regs clk
Load regs
clock
4
g 2%l Register R
4'60001 Y)| (D-type
o+ . Mux Flip
L4 14 l -
N\, sel Jlops)
IncrﬁRZg

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

261

/| Datapath unit — structural model
module Datapath_STR
#(parameter dp_width = 8, R2_width = 4)
(
output [R2_width -1: 0] count, output E, output Zero, input [dp_width -1: 0] data,
input Load_regs, Shift_left, Incr_R2, clock, reset_b);
supply1 pwr;
supply0 gnd;
wire [dp_width -1: 0] R1_Dbus, R1;
wire [R2_width -1: 0] R2_Dbus;
wire DR1_0, DR1_1, DR1_2, DR1_3, DR1_4, DR1_5, DR1_6, DR1_7;
wire R1_0,R1_1,R1_2,R1_3,R1_4,R1_5,R1_6,R1_7;
wire R2_0,R2_1,R2_2, R2_3;
wire [R2_width -1: 0] R2 = {R2_3, R2_2, R2_1, R2_0};
assign count = {R2_3, R2_2, R2_1, R2_0};
assign R1={R1_7,R1_6,R1_5,R1_4,R1_3,R1_2,R1_1, R1_0};
assign DR1_0 = R1_Dbus][0];
assign DR1_1 =R1_Dbus[1];
assign DR1_2 = R1_Dbus[2];
assign DR1_3 = R1_Dbus][3];
assign DR1_4 = R1_Dbus[4];
assign DR1_5 = R1_Dbus|[5];
assign DR1_6 = R1_Dbus|[6];
assign DR1_7 = R1_Dbus|[7];

nor (Zero, R1_0,R1_1,R1_2,R1_3,R1_4,R1_5,R1_6, R1_7);
DFF D_E (E, R1_7, clock, pwr);

DFF DF_0 (R1_0, DR1_0, clock, pwr
DFF DF_1 (R1_1, DR1_1, clock, pwr
DFF DF_2 (R1_2, DR1_2, clock, pwr

DFF DF_3 (R1_3, DR1_3, clock, pwr);

); /l Disable reset
)
)
)
DFF DF_4 (R1_4, DR1_4, clock, pwr);
)
)
)

)

DFF DF_5 (R1_5, DR1_5, clock, pwr
DFF DF_6 (R1_6, DR1_6, clock, pwr
DFF DF_7 (R1_7, DR1_7, clock, pwr

)

DFF_S DR_0 (R2_0, DR2_0, clock, Load_regs
DFF_S DR_1 (R2_1, DR2_1, clock, Load_regs
DFF_S DR_2 (R2_2, DR2_2, clock, Load_regs
DFF_S DR_3 (R2_3, DR2_3, clock, Load_regs

; I/ Load_regs (set) drives R2 to all ones

)

— — — —

assign DR2_0 = R2_Dbus][0];
assign DR2_1 = R2_Dbus|[1];
assign DR2_2 = R2_Dbus[2];
assign DR2_3 = R2_Dbus|[3];

wire [1: 0] sel = {Shift_left, Load_regs};
wire [dp_width -1: 0] R1_shifted = {R1_6, R1_5, R1_4, R1_3, R1_2, R1_1, R1_0, 1'b0};
wire [R2_width -1: 0] sum = R2 + 4'b0001;

Mux8_4_x_1 MO (R1_Dbus, R1, data, R1_shifted, R1, sel);

Mux4_2 x_1 M1 (R2_Dbus, R2, sum, Incr_R2);
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

262

module Mux8_4 x_1 #(parameter dp_width = 8) (output reg [dp_width -1: 0] mux_out,
input [dp_width -1: 0]in0, in1, in2, in3, input [1: 0] sel);
always @ (in0, in1, in2, in3, sel)
case (sel)
2'b00: mux_out = in0;
2'b01: mux_out =in1;
2'b10: mux_out =in2;
2'b11: mux_out =in3;
endcase
endmodule

module Mux4_2_ x_1 #(parameter dp_width = 4) (output [dp_width -1: 0] mux_out,
input [dp_width -1: 0] in0Q, in1, input sel);
assign mux_out = sel ? in1: in0;

endmodule

/I Test Plan for Datapath Unit:

/ Demonstrate action of Load_regs

I R1 gets data, R2 gets all ones

/l Demonstrate action of Incr_R2

/l Demonstrate action of Shift_left and detect E

/I Test bench for datapath
module t_Datapath_Unit
#(parameter dp_width = 8, R2_width = 4)

()
wire [R2_width -1: 0] count;
wire E, Zero;
reg [dp_width -1: 0] data;
reg Load_regs, Shift_left, Incr_R2, clock, reset_b;

Datapath_STR MO (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock, reset_b);

initial #250 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset_b = 0; #2 reset_b = 1; end
initial fork
data = 8'haa;
Load_regs = 0;
Incr_R2 = 0;
Shift_left = 0;
#10 Load_regs = 1;
#20 Load_regs = 0;
#50 Incr_R2 = 1;
#120 Incr_R2 = 0;
#90 Shift_left = 1;
#200 Shift_left = 0;
join
endmodule

/Il Integrated system
module Count_Ones_Gates_1_Hot_STR
(parameter dp_width = 8, R2_width = 4)

output [R2_width -1: 0] count,
input [dp_width -1: 0] data,

input Start, clock, reset_b
)i
wire Load_regs, Incr_R2, Shift_left, Zero, E;

Controller_Gates_1Hot MO (Ready, Load_regs, Incr_R2, Shift_left, Start, Zero, E, clock, reset_b);
Datapath_STR M1 (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock, reset_b);
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

263

/I Test plan for integrated system
/I Test for data values of 8'haa, 8'h00, 8'hff.

/I Test bench for integrated system

module t_count_Ones_Gates_1_Hot_STR ();
parameter dp_width = 8, R2_width = 4;
wire [R2_width -1: 0] count;
reg [dp_width -1: 0] data;
reg Start, clock, reset_b;
wire [3: 0] state = {M0.M0.T3, M0.M0.T2, M0.MO0.T1, M0.MO.TO};

Count_Ones_Gates_1_Hot_STR MO (count, data, Start, clock, reset_b);
initial #700 $finish;

initial begin clock = 0; forever #5 clock = ~clock; end

initial begin reset_b = 0; #2 reset_b = 1; end

initial fork
data = 8'haa; /I Expect count = 4
Start = 0;
#20 Start = 1;
#30 Start = 0;
#40 data = 8'b00; // Expect count=0
#250 Start = 1;
#260 Start = 0;
#280 data = 8'hff;
#280 Start = 1;
#290 Start = 0;

join

endmodule

Note: The simulation results show tests of the operations of the datapath independent of the control unit,
so count does not represent the number of ones in the data.

Name 0 1 1 1 1 1 1 1 1 1 |60I 1 1 1 1 1 1 1 1 12IO 1 1 1 1 1 1 1 1 18I0 1 1 1 1 1 1 1
clock N S I e Y Y e s 6y B
reset b J

Load regs 1

Incr R2 I L

Shift_left ' S
Zero I

E I L I LI 1

data[7:0] aa

RI[7:0] xx_ X aa (54 X a8 } 50 X a0 40 X80) 00

RI[7] I L LI LTI 1

RIf6] L] 1

RI[S] I L LTI 1

RI[4] LT

R3] —1 L 1

RI[2] 1

RIjI] —] |

RI1J0]

rRo3:0] | x X f (o X1 X2 X3 X4 X5) 6

count(3:0] ZX f n 6

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

264

Simulations results for the integrated system match those shown in Prob. 8.34(e). See those results for
additional annotation.

150 300 450 600

0
Name oo e b e ey U ey e b e e L

clock LU iU iU Ui ririiu 1

reset_b

Ready
Start

Load regs
Shift_left
Incr R2
Zero

E

state[3:0]

data[7:0]
RI[7:0]
R2[3:0]

T~
A
countf3:0] X ((o)) (@)

8.37 (a) ASMD chart:

reset_b

-l
S idle
/Ready

RI <= data

/R2<=0

I —

R2 <=R2 + RI[0]

RI<=RI>>1
o=

(4dd shifi)

(b) RTL model:
module Datapath_Unit_2 Beh #(parameter dp_width = 8, R2_width = 4)
(
output [R2_width -1: 0] count,
output Zero,
input [dp_width -1: 0] data,
input Load_regs, Add_shift, clock, reset_b
).

reg [dp_width -1: 0] R1;
reg [R2_width -1: 0] R2;
assign count = R2;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

265

assign Zero = ~|R1;
always @ (posedge clock, negedge reset_b)
begin
if (reset_b == 0) begin R1 <= 0; R2 <= 0; end else begin
if (Load_regs) begin R1 <= data; R2 <= 0; end
if (Add_shift) begin R1 <= R1 >> 1; R2 <= R2 + R1[0]; end // concurrent operations
end
end
endmodule

Il Test plan for datapath unit
/I Verify active-low reset action
/I Test for action of Add_shift
Il Test for action of Load_regs

module t_Datapath_Unit_ 2 Beh();
parameter R1_size = 8, R2_size = 4;
wire [R2_size -1: 0] count;

wire Zero;
reg [R1_size -1: 0] data;
reg Load_regs, Add_shift, clock, reset_b;

Datapath_Unit_2 Beh MO0 (count, Zero, data, Load_regs, Add_shift, clock, reset_b);

initial #1000 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork
#1reset b=1;
#3 reset b =0;
#4 reset b=1
join
initial fork
data = 8'haa;
Load_regs = 0;
Add_shift = 0;
#10 Load_regs = 1;
#20 Load_regs = 0;
#50 Add_shift = 1;
#150 Add_shift =0;
join
endmodule

Note that the operations of the datapath unit are tested independent of the controller, so the actions of
Load regs and add_shift and the value of count do not correspond to data.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

266

Name

50

‘ 100
!

150

clock
reset b

Load regs

Add shift

g fLoad R1, flush R2
[
Zero]

R1 shifts, R2 adds

dataf7:0]

N

L1
(=
S
8

15

0a) 05 J 02

01

00

)

N

RI1[7:0]
R2/3:0]
count[7:0]

~—
P

(=)

—_— <

module Controller_2_Beh (

output Ready,
output reg Load_regs,
Add_shift,
input Start, Zero, clock, reset_b
);
parameter S_idle =0, S_running = 1;

reg state, next_state;
assign Ready = (state == S_idle);
always @ (posedge clock, negedge reset_b)
if (reset_b == 0) state <= S_idle;
else state <= next_state;

always @ (state, Start, Zero) begin
next_state = S_idle;
Load_regs = 0;
Add_shift = 0;

case (state)

S_idle: if (Start) begin Load_regs = 1; next_state = S_running; end
S_running: if (Zero) next_state = S_idle;
else begin Add_shift = 1; next_state = S_running; end
endcase
end
endmodule

module t_Controller_2_Beh ();
wire Ready, Load_regs, Add_shift;
reg Start, Zero, clock, reset_b;

Controller_2_Beh MO (Ready, Load_regs, Add_shift, Start, Zero, clock, reset_b);
initial #250 $finish;

initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset_b = 0; #2 reset_b = 1; end

initial fork
Zero = 1;
Start = 0;
#20 Start = 1; // Cycle from S_idle to S_1
#80 Start = 0;
#70 Zero=0; // S_idle to S_1to S_idle

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

267

#90 Zero =1; // Return to S_idle
join
endmodule

Note: The state transitions and outputs of the controller match the ASMD chart.

0 50 100
1

Narme 1 1 1 1 1 1 1 1 1 ‘ 1 1 1 1 1 1 1 1 1 ‘

clock AN B S B) B S R B B S S S S e

reset_b il

Ready ‘
Start] \
Load regs [l o [

Add shifi

Zero L

State

module Count_of Ones_2_Beh #(parameter dp_width = 8, R2_width = 4)

output [R2_width -1: 0] count,
output Ready,

input [dp_width -1: 0] data,
input Start, clock, reset b

)
wire Load_regs, Add_shift, Zero;

Controller_2_Beh MO (Ready, Load_regs, Add_shift, Start, Zero, clock, reset_b);
Datapath_Unit_2_Beh M1 (count, Zero, data, Load_regs, Add_shift, clock, reset_b);
endmodule

/I Test plan for integrated system
/I Test for data values of 8'haa, 8'h00, 8'hff.

/I Test bench for integrated system

module t_Count_Ones_2 Beh ();
parameter dp_width = 8, R2_width = 4;
wire [R2_width -1: 0] count;
reg [dp_width -1: 0] data;
reg Start, clock, reset_b;

Count_of_Ones_2_Beh MO (count, Ready, data, Start, clock, reset_b);

initial #700 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset_b = 0; #2 reset_b = 1; end
initial fork

data = 8'haa; /I Expect count = 4

Start = 0;

#20 Start = 1;

#30 Start = 0;

#40 data = 8'b00; // Expect count =0

#120 Start = 1;

#130 Start = 0;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

268
#140 data = 8'hff;
#160 Start = 1;
#170 Start = 0;
join
endmodule
Na}'ﬂ@ L L L L L L L L L ‘60\ L L L L L L L L ‘ 12\0 L L L L L L L L ‘ 18\0 L L L L L L L L ‘ L L L L L L L
clock I e e e e e e e e e Y Y Y I B A
reset_b i
Start [l 1 1
Load regs 1 1 1
Add shif |1 \ \
Zero [\ —
Ready 1 —
state 1 e | L
dataf7:0] Caa D | (@Y X [@D)
RI[7:0] 00 J(aa JT355(2a (15 { 0a 05 {02 {01 -m
R2[3:0] 0 1 2 3 4
count[3:0] 0 X 1 >< 2 3 \m

(c) T, T;are tobe asserted when the state is in S_idle, S _running, respectively. Let DO, D1 denote the inputs
to the one-hot flip-flops.

Dy = Ty Start' + T\ Zero
D] = To Start+ T[E'

(d) Gate-level one-hot controller

module Controller_2_Gates_1Hot

(
output Ready, Load_regs, Add_shift,
input Start, Zero, clock, reset_b
)
wire w1, w2, w3, w4;
wire TO, T1;
wire set;

assign Ready = TO;

assign Add_shift = T1;

and (Load_regs, TO, Start);

not (set, reset_b);

DFF_S MO (TO, DO, clock, set); // Note: reset action must initialize S_idle = 2'b01
DFF M1 (T1, D1, clock, reset_b);

not (Start_b, Start);
not (Zero_b, Zero);
and (w1, TO, Start_b);
and (w2, T1, Zero);
or (DO, w1, w2);

and (w3, TO, Start);

and (w4, T1, Zero_b);

or (D1, w3, wé);
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

269

module DFF (output reg Q, input D, clock, reset_b);
always @ (posedge clock, negedge reset_b)
if (reset_b ==0) Q <=0;
else Q <=D;
endmodule
module DFF_S (output reg Q, input D, clock, set);
always @ (posedge clock, posedge set)
if (set==1)Q <=1,
else Q <=D;
endmodule

/I Test plan for Control Unit

I Verify that state enters S_idle with reset_b asserted.

/I With reset_b de-asserted, verify that state enters S_running and asserts Load_Regs when
/ Start is asserted.

/I Verify that state returns to S_idle from S_running if Zero is asserted.

/I Verify that state goes to S_running if Zero is not asserted.

/I Test bench for One-Hot Control Unit

module t_Control_Unit ();
wire Ready, Load_regs, Add_shift;
reg Start, Zero, clock, reset_b;
wire [3: 0] state = {M0.T1, MO.TO}; /I Observe one-hot state bits

Controller_2_Gates_1Hot MO (Ready, Load_regs, Add_shift, Start, Zero, clock, reset_b);
initial #250 $finish;

initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset_b = 0; #2 reset_b = 1; end

initial fork
Zero=1;
Start = 0;
#20 Start = 1; // Cycle from S_idle to S_1
#80 Start = 0;

#70 Zero=0; //S idletoS_1to S_idle
#90 Zero =1; // Returnto S_idle
join
endmodule

Simulation results show that the controller matches the ASMD chart.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

270

Name

clock A Y Y Y I e e
reset b U

Start I |

Zero L
Load regs 1

Add shift I | I | I |
Zero L
Ready L LI 1 I

state[3:0] 1 2 X 1

/I Datapath unit — structural model

module Datapath_2 STR
#(parameter dp_width = 8, R2_width = 4)

(
output [R2_width -1: 0] count,
output Zero,
input [dp_width -1: 0] data,
input Load_regs, Add_shift, clock, reset_b);
supply1 pwr;
supply0 gnd;

wire [dp_width -1: 0] R1_Dbus, R1;

wire [R2_width -1: 0] R2_Dbus;

wire DR1_0, DR1_1, DR1_2, DR1_3, DR1_4, DR1_5, DR1_6, DR1_7;
wire R1_0,R1_1,R1_2,R1_3,R1_4,R1_5,R1_6,R1_7;

wire R2_0, R2_1,R2_2, R2_3;

wire [R2_width -1: 0] R2={R2_3, R2_2, R2_1, R2_0};

assign count = {R2_3, R2_2, R2_1, R2_0};

assign R1={R1_7,R1_6,R1_5,R1_4,R1_3,R1_2,R1_1, R1_0};
assign DR1_0 = R1_Dbus][0];

assign DR1_1 =R1_Dbus[1];

assign DR1_2 = R1_Dbus[2];

assign DR1_3 = R1_Dbus][3];

assign DR1_4 = R1_Dbus[4];

assign DR1_5 = R1_Dbus|[5];

assign DR1_6 = R1_Dbus|[6];

assign DR1_7 = R1_Dbus|[7];

nor (Zero, R1_0,R1_1,R1_2,R1_3,R1_4,R1_5,R1_6, R1_7);

not (Load_regs_b, Load_regs);

DFF DF_0 (R1_0, DR1_0, clock, pwr); // Disable reset

DFF DF_1 (R1_1, DR1_1, clock, pwr);

DFF DF_2 (R1_2, DR1_2, clock, pwr);

DFF DF_3 (R1_3, DR1_3, clock, pwr);
)
)
)
)

DFF DF_4 (R1_4, DR1_4, clock, pwr
DFF DF_5 (R1_5, DR1_5, clock, pwr
DFF DF_6 (R1_6, DR1_86, clock, pwr
DFF DF_7 (R1_7, DR1_7, clock, pwr

)
)

)

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

271

DFF DR_0 (R2_0, DR2_0, clock, Load_regs_b)
DFF DR_1 (R2_1, DR2_1, clock, Load_regs_b);
DFF DR_2 (R2_2, DR2_2, clock, Load_regs_b);
DFF DR_3 (R2_3, DR2_3, clock, Load_regs_b)

; I/ Load_regs (set) drives R2 to all ones

)

assign DR2_0 = R2_Dbus][0];
assign DR2_1 = R2_Dbus[1];
assign DR2_2 = R2_Dbus[2];
assign DR2_3 = R2_Dbus|[3];

wire [1: 0] sel = {Add_shift, Load_regs};
wire [dp_width -1: 0] R1_shifted = {1'00, R1_7, R1_6, R1_5, R1_4,R1_3, R1_2, R1_1};
wire [R2_width -1: 0] sum = R2 + {3'b000, R1[0]};

Mux8_4_x_1 MO (R1_Dbus, R1, data, R1_shifted, R1, sel);

Mux4_2 x_1 M1 (R2_Dbus, R2, sum, Add_shift);
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

272

module Mux8_4_x_1 #(parameter dp_width = 8) (output reg [dp_width -1: 0] mux_out,
input [dp_width -1: 0]in0, in1, in2, in3, input [1: 0] sel);
always @ (in0, in1, in2, in3, sel)
case (sel)
2'b00: mux_out =in0;
2'b01: mux_out =in1;
2'b10: mux_out = in2;
2'b11: mux_out =in3;
endcase
endmodule

module Mux4_2_ x_1 #(parameter dp_width = 4) (output [dp_width -1: 0] mux_out,
input [dp_width -1: 0] in0, in1, input sel);
assign mux_out = sel ? in1: in0;

endmodule

/I Test Plan for Datapath Unit:

/ Demonstrate action of Load_regs

/I R1 gets data, R2 gets all ones

/l Demonstrate action of Incr_R2

/I Demonstrate action of Add_shift and detect Zero

/I Test bench for datapath

module t Datapath_Unit
#(parameter dp_width = 8, R2_width = 4)

()
wire [R2_width -1: 0] count;
wire Zero;
reg [dp_width -1: 0] data;

reg Load_regs, Add_shift, clock, reset_b;
Datapath_2_STR MO (count, Zero, data, Load_regs, Add_shift, clock, reset_b);

initial #250 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset_b = 0; #2 reset_b = 1; end
initial fork
data = 8'haa;
Load_regs = 0;
Add_shift = 0;
#10 Load_regs = 1;
#20 Load_regs = 0;
#50 Add_shift = 1;
#140 Add_shift = 0;
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

273

Name

clock Wmmmw

reset b il

Load regs
Add_shifi
Zero

data[7:0] aa
RI[7:0] XX aa 55)\ 2a
X
X

00

R2[3:0] X
count[3:0] | X >< 0
I Integrated system

— <
~

module Count_Ones_2_ Gates_1Hot_STR
(parameter dp_width = 8, R2_width = 4)

output [R2_width -1: 0] count,
input [dp_width -1: 0] data,

input Start, clock, reset_b
)
wire Load_regs, Add_shift, Zero;

Controller_2_Gates_1Hot MO (Ready, Load_regs, Add_shift, Start, Zero, clock, reset_b);
Datapath_2_STR M1 (count, Zero, data, Load_regs, Add_shift, clock, reset_b);
endmodule

/I Test plan for integrated system
/I Test for data values of 8'haa, 8'h00, 8'hff.

/I Test bench for integrated system

module t_Count_Ones_2_Gates_1Hot_STR ();
parameter dp_width = 8, R2_width = 4;
wire [R2_width -1: 0] count;
reg [dp_width -1: 0] data;
reg Start, clock, reset_b;
wire [1: 0] state = {M0.M0.T1, M0.MO.TQ};

Count_Ones_2_Gates_1Hot_STR MO (count, data, Start, clock, reset_b);
initial #700 $finish;

initial begin clock = 0; forever #5 clock = ~clock; end
initial begin reset_b = 0; #2 reset_b = 1; end

initial fork
data = 8'haa; /I Expect count = 4
Start = 0;
#20 Start = 1;
#30 Start = 0;
#40 data = 8'b00; // Expect count=0
#120 Start = 1;
#130 Start = 0;
#150 data = 8'hff; // Expect count =8
#200 Start = 1;
#210 Start = 0;

join

endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

274
Name R . S B oS e B
clock Uy yryyyyyUyUyyyyyyuyyuyruuuan
reset b i
Start 1 1 1
Zero I ! I
Load regs I I I
Add shifp | ——1 I | 1
state[1:0] X 2 X 1
datal7:0] [@DN
RI[7:0] (eeX7eX3eX e orX X X) 00
R2[3:0] (1 X2 X3 X4 x50 6X7) 8
count[3:0] (X2 X3 X4 X506 X7) K@)

8.38
module Prob_8_38 (
outputreg [7: 0] Sum,

output reg Car_Bor,
input [7: 0] Data_A, Data_B);
reg [7: 0] Reg_A, Reg_B;

always @ (Data_A, Data_B)
case ({Data_A[7], Data_B[7]})
2'b00, 2'b11: begin /] ++, -
{Car_Bor, Sum[6: 0]} = Data_A[6: 0] + Data_B[6: 0];
Sum(7] = Data_A[7];
end

default: if (Data_A[6: 0] >= Data_B[6: 0]) begin Il +-, -+
{Car_Bor, Sum[6: 0]} = Data_A[6: 0] - Data_BI[6: 0];
Sum([7] = Data_A[7];
end
else begin
{Car_Bor, Sum|[6: 0]} = Data_B[6: 0] - Data_A[6: 0];
Sum(7] = Data_BJ7];
end
endcase
endmodule

module t_Prob_8_38 ();
wire [7: 0] Sum;
wire Car_Bor;
reg [7: 0] Data_A, Data_B;
wire [6: 0] Mag_A, Mag_B;

assign Mag_A = M0.Data_A[6: 0]; /I Hierarchical dereferencing
assign Mag_B = M0.Data_B[6: 0];

wire Sign_A = M0.Data_A[7];

wire Sign_B = M0.Data_B[7];

wire Sign = Sum([7];

wire [7: 0] Mag = Sum[6: 0];
Prob_8 38 MO (Sum, Car_Bor, Data_A, Data_B);

initial #650 $finish;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained

from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,

or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

275

initial fork

/I Addition A B

#0 begin Data_A = {1'b0, 7'd25}; Data_B = {1'b0, 7'd10}; end /1+25, +10

#40 begin Data_A = {1'b1, 7'd25}; Data_B = {1'b1, 7'd10}; end I1-25,-10

#80 begin Data_A = {1'b1, 7'd25}; Data_B = {1'b0, 7'd10}; end /I -25, +10

#120 begin Data_A = {1'b0, 7'd25}; Data_B = {1'b1, 7'd10}; end /125, -10

/I B A

#160 begin Data_B = {1'b0, 7'd25}; Data_A = {1'b0, 7'd10}; end /1+25, +10

#200 begin Data_B = {1'b1, 7'd25}; Data_A = {1'b1, 7'd10}; end /I -25, -10

#240 begin Data_B = {1'b1, 7'd25}; Data_A = {1'b0, 7'd10}; end /1 -25, +10

#280 begin Data_B = {1'b0, 7'd25}; Data_A = {1'b1, 7'd10}; end /l +25, -10

/I Addition of matching numbers

#320 begin Data_A = {1'b1,7'd0}; Data_B = {1'b1,7'd0}; end /-0, -0

#360 begin Data_A = {1'b0,7'd0}; Data_B = {1'b0,7'd0}; end // +0, +0

#400 begin Data_A = {1'p0,7'd0}; Data_B = {1'b1,7'd0}; end /I +0, -0

#440 begin Data_A = {1'b1,7'd0}; Data_B = {1'b0,7'd0}; end /I -0, +0

#480 begin Data_B = {1'b0, 7'd25}; Data_A = {1'b0, 7'd25}; end /I matching +

#520 begin Data_B = {1'b1, 7'd25}; Data_A = {1'b1, 7'd25}; end /I matching —

/I Test of carry (negative numbers)

#560 begin Data_A = 8'hf0; Data_B = 8'hf0; end /I carry - -

/I Test of carry (positive numbers)

#600 begin Data_A = 8'h70; Data_B = 8'h70; end Il carry ++
join

endmodule

Name O 1 1 1 1 1 1 1 1 1 | 19IO 1 1 1 1 1 1 1 1 38I0 1 1 1 1 1 1 1 1 57I0 1
Data A/7:0) | 19 X__ 99 X 19 X 0a X 8a X 0a X 8a f 80 X 00 X8 X 19 X 99 X fo X 70
Data B[7:0] | 0a X 8a X 0a X 8 X 19 X 99 X 19 X 80 X 00 X 80 X 00 X 19 X 99 X fo X 70
Sign A 1 | | | | | | |

Sign B I | I | I | I | I |

Mag A[6:0] 25 X 10 X X 25 X 112
Mag BJ6:0] 10 X 25 X X 25 X 112
Car_Bor

Sum/[7:0] 23 X a3 X 8f S of X 23 X a3 X 8 X of X80 X 00 X8 X32 X b2 X e0 X 60
Sign I e | | [| [| [L
Mag][7:0] 35 X 15 kX 3 X 15 X 0 X s0o X 9

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

276

8.39 Block diagram and ASMD chart:
data AR data BR

16 16
zero
|
Datapath
Ld regs AR
HEEEEEEN
Add decr BR
Controller — EEEE T
start ——» PR
done ~— HEREEEEN
reset b 1%
— 16
clock
PR
reset b
s0
done

AR <=data A
BR <=data B
PR<=0

PR <= PR + BR sl
AR <=AR-1

T~ 1
Add decr) ! |

module Prob_8_39 (
output [15: 0] PR, output done,
input [7: 0] data_AR, data_BR, input start, clock, reset_b

);
Controller_P8_39 MO (done, Ld_regs, Add_decr, start, zero, clock, reset_b);

Datapath_P8_39 M1 (PR, zero, data_AR, data_BR, Ld_regs, Add_decr, clock, reset_b);
endmodule

module Controller_P8_16 (output done, output reg Ld_regs, Add_decr, input start, zero, clock, reset_b);
parameter sO0 =1'p0, s1 =1'b1;
reg state, next_state;
assign done = (state == s0);

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

277

always @ (posedge clock, negedge reset_b)
if (Ireset_b) state <= s0; else state <= next_state;

always @ (state, start, zero) begin
Ld_regs = 0;
Add_decr =0;
case (state)
s0: if (start) begin Ld_regs = 1; next_state = s1; end
s1: if (zero) next_state = s0; else begin next_state = s1; Add_decr = 1; end
default: next_state = s0;
endcase
end
endmodule

module Datapath P8_16 (

outputreg [15: 0] PR, output zero,

input [7: 0] data_AR, data_BR, input Ld_regs, Add_decr, clock, reset_b
);

reg [7: 0] AR, BR;
assign zero = ~(| AR);

always @ (posedge clock, negedge reset_b)
if (Ireset_b) begin AR <= 8'b0; BR <= 8'b0; PR <= 16'b0; end
else begin
if (Ld_regs) begin AR <= data_AR; BR <= data_BR; PR <= 0; end
else if (Add_decr) begin PR <= PR + BR; AR <= AR -1; end
end
endmodule

/I Test plan — Verify;

/| Power-up reset

// Data is loaded correctly

/I Control signals assert correctly
/I Status signals assert correctly
/I start is ignored while multiplying
/I Multiplication is correct

/I Recovery from reset on-the-fly

module t Prob_P8 16;
wire done;
wire [15:0] PR;
reg [7: 0] data_AR, data_BR;
reg start, clock, reset_b;

Prob_8 16 MO (PR, done, data_AR, data_BR, start, clock, reset_b);

initial #500 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork
reset_ b =0;
#12reset_ b =1;
#40 reset_ b =0;
#42 reset_b
#90 reset_
#92 reset_|
join

='],
:1;
:1;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

278

initial fork
#20 start = 1;
#30 start = 0;
#40 start = 1;
#50 start = 0;
#120 start = 1;
#120 start = 0;

join

initial fork
data_AR = 8'd5; /Il AR>0
data_BR = 8'd20;

#80 data_AR = 8'd3;
#80 data_BR = 8'd9;

#100 data_AR = 8'd4;
#100 data_BR = 8'd9;

join

endmodule
Name 0 30 60 90 120

I I I | | I N I A | | I I I I | | I I N | | ||

reset_b I LJ
clock A Y I Y Y I Y s s s Y I O I BN O
start | | | | I_
Ld_regs [[l L
Add_decr I L] l [
zero [1 J L
state 0 LI L. T
data_AR[7:0] 5) 3| 4
data_BR/[7:0] 20 | 9
AR[7:0] o N s)4ofs Y4 3 2) 1] 0 [
BR/7:0] 0 [20 Jof 20 [
done 1 L
PR/15:0] 0 [X o)20) 40) 60 [80 | 100 [

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

279

8.40
Data_in[7: 0]

8
A 4

Shift in Datapath

Reads i —)
Got_Data Shift_regs
Done_Product Add _regs L I8
Controller
Start Decr P 0
Run Shift_out

Send_Data = [lc[_1r

reset b
T; clock 8

Zero

00 Note: 00 = 0[0]

A 4

Data_out[7: 0]

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

280
reset
i l {
B[7: 0] <= Data_in ... B[31: 24] <= Data_in
Q[7: 0] <= Data_in ... Q[31: 24] <= Data_in
S Ld 0.6 The bytes of data will be read sequentially. Registers
/Shifi_in 0 and B are organized to act as byte-wide parallel
1 shift registers, taking 8 clock cycles to fill the pipe.
SId 7] The least significant byte of the multiplicand enters
e . the most significant byte of Q and then moves
/ G‘”—e‘”" S_wait_1 through the bytes of Q to enter B, then proceed to
occupy successive bytes of B until it occupies the
least significant byte of B, and so forth until both B
1 and Q are filled. Wait states are used to wait for Run
131§ and Send_Data.
S add B
/ Decr P p<=p-1

§ | [C A <=A+B

S _shift
/Shift_regs

IS_product
/Done_Product

S Send 0...6
/Shift_out —
L ¥

Data_out <= P[7: 0] ... P[31: 24]

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

281

module Prob_8 40 (

output [7: 0] Data_out,

output Ready, Got_Data, Done_Product,
input [7:0] Data_in,

input Start, Run, Send_Data, clock, reset b

)i

Controller MO (
Ready, Shift_in, Got_Data, Done_Product, Decr_P, Add_regs, Shift_regs, Shift_out,
Start, Run, Send_Data, Zero, QO, clock, reset_b

);
Datapath M1(Data_out, QO, Zero, Data_in,

Start, Shift_in, Decr_P, Add_regs, Shift_regs, Shift_out, clock
);

endmodule

module Controller (
output reg Ready, Shift_in, Got_Data, Done_Product, Decr_P, Add_regs,
Shift_regs, Shift_out,
input Start, Run, Send_Data, Zero, QO, clock, reset_b

);
parameter S_idle = 5'd20,
S_Ld_0= 5'd0,
S Ld_1= 541,
S Ld 2= 5'd2,
S_Ld_3 = 5'd3,
S Ld 4= 5'd4,
S _Ld_5= 5'd5,
S Ld_6 = 5'd6,
S Ld_7= 5'd7,
S_wait_1 =5'd8, // Wait state
S _add = 5'd9,
S_Shift= 5'd10,
S_product = 5'd11,
S wait 2= 5'd12, // Wait state
S_Send 0= 5'd13,
S Send 1= 5'd14,
S Send 2= 5'd15,
S_Send_3 = 5'd16,
S Send_4 = 5'd17,
S _Send 5= 5'd18,
S Send 6= 5'd19;
reg [4:0] state, next_state;

always @ (posedge clock, negedge reset_b)
if (~reset_b) state <= S_idle; else state <= next_state;

always @ (state, Start, Run, QO0, Zero, Send_Data) begin

next_state = S_idle; /I Prevent accidental synthesis of latches
Ready = 0;

Shift_in=0

Shift_regs =0

Add_regs = 0;

Decr_P = 0;

Shift_out = 0;

Got_Data =0;

Done_Product = 0;

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

282

case (state) // Assign by exception to default values

S _idle: begin

Ready = 1;

if (Start) begin next_state =S_Ld_0; Shift_in = 1; end

end

S_Ld_O: begin next_state = S_Ld_1; Shift_in = 1; end
S Ld_1: begin next_state = S_Ld_2; Shift_in = 1; end
S_Ld_2: begin next_state = S_Ld_3; Shift_in =1; end
S Ld_3: begin next_state = S_Ld_4; Shift_in=1; end
S Ld_4: begin next_state = S_Ld_5; Shift_in = 1; end
S Ld_5: begin next_state = S_Ld_6; Shift_in=1; end
S Ld 6: begin next_state = S_Ld_7; Shift_in=1; end
S Ld_7: begin Got_Data = 1;

if (Run) next_state = S_add;
else next_state = S_wait_1;

end
S_wait_1: if (Run) next_state = S_add; else next_state = S_wait_1;
S add: begin next_state = S_Shift; Decr_P = 1; if (Q0) Add_regs = 1; end
S_Shift: begin Shift_regs = 1; if (Zero) next_state = S_product;

else next_state = S_add; end
S_product: begin
Done_Product = 1;
if (Send_Data) begin next_state = S_Send_0; Shift_out = 1; end
else next_state = S_wait_2; end
S wait_2: if (Send_Data) begin next_state =S_Send_0; Shift_out = 1; end
else next_state = S_wait_2;
S _Send_0: begin next_state = S_Send_1; Shift_out = 1; end
S _Send_1: begin next_state =S_Send_2; Shift_out = 1; end
S Send_2: begin next_state = S_Send_3; Shift_out = 1; end
S_Send_3: begin next_state = S_Send_4; Shift_out = 1; end
S Send_4: begin next_state = S_Send_5; Shift_out = 1; end
S Send_5: begin next_state = S_Send_6; Shift_out = 1; end
S _Send_6: begin next_state = S_idle; Shift_out = 1; end
default: next_state = S_idle;
endcase
end
endmodule

module Datapath #(parameter dp_width = 32, P_width = 6) (
output [7: 0] Data_out,

output QO, Zero,

input [7:0] Data_in,

input Start, Shift_in, Decr_P, Add_regs, Shift_regs, Shift_out, clock
)

reg [dp_width - 1: 0] A, B, Q; /I Sized for datapath

reg C;

reg [P_width-1:0] P;

assign QO = Q[OF;

assign Zero = (P == 0); /[counter is zero

assign Data_out = {C, A, Q};

always @ (posedge clock) begin
if (Shift_in) begin

P <= dp_width;

A<=0;

C<=0;

B[7: 0] <= B[15: 8]; /I Treat B and Q registers as a pipeline to load data bytes

B[15: 8] <= B[23: 16];
B[23: 16] <= B[31: 24];
B[31: 24] <=Q[7: 0];
Q[7: 0] <=Q[15: 8];

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

283

Q[15: 8] <=Q[23: 16];
Q[23: 16] <= Q[31: 24];
Q[31: 24] <= Data_in;
end
if (Add_regs) {C, A} <= A + B;
if (Shift_regs) {C, A, Q} <={C, A, Q} >>1;
if (Decr_P)P <=P -1,
if (Shift_out) begin {C, A, Q} <={C, A, Q} >> 8; end
end
endmodule

module t_Prob_8 40;

parameter dp_width = 32; /I Width of datapath
wire [7:0] Data_out;

wire Ready, Got_Data, Done_Product;

reg Start, Run, Send_Data, clock, reset_b;

integer Exp_Value;

reg Error;

wire [7:0] Data_in;

reg [dp_width -1: 0] Multiplicand, Multiplier;

reg [2*dp_width -1: Q] Data_register; I/l For test patterns
assign Data_in = Data_register [7:0];

wire [2*dp_width -1: 0] product;

assign product = {M0.M1.C, M0.M1.A, MO.M1.Q};

Prob_8 40 MO (
Data_out, Ready, Got_Data, Done_Product, Data_in, Start, Run, Send_Data, clock, reset_b
)

initial #2000 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial fork

reset b =1,

#2 reset_ b =0;

#3 reset_b =1;
join
initial fork

Start =0;

Run = 0;

Send_Data = 0;

#10 Start = 1;

#20 Start = 0;

#50 Run= 1; /I lgnored by controller
#60 Run = 0;

#120 Run = 1;

#130 Run =0;

#830 Send_Data = 1;
#840 Send_Data = 0;

join

/I Test patterns for multiplication

initial begin
Multiplicand = 32'h0f_00_00_aa;
Multiplier = 32'h0a_00_00_ff;
Data_register = {Multiplier, Multiplicand};

end

initial begin /I Synchronize input data bytes

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

284

@ (posedge Start)
repeat (15) begin
@ (negedge clock)
Data_register <= Data_register >> 8;
end
end
endmodule

Simulation results: Loading multiplicand (0f0000aay) and multiplier (0a0000£f};), 4 bytes each, in sequence,
beginning with the least significant byte of the multiplicand.

Note: Product is not valid until Done_Product asserts. The value of Product shown here (255,¢) reflects the
contents of {C, 4, O} after the multiplier has been loaded, prior to multiplication.

Note: The machine ignores a premature assertion of Run.
Note: Got_Data asserts at the 8" clock after Start asserts, 1.e., 8 clocks to load the data.

Note: Product, Multiplier, and Multiplicand are formed in the test bench.

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

285

[;a::frtlgfsig‘];Zf] Loading 8 bytes (Ignore RunJ (Waiting for Run) Resg:;d to

clock wifi
Name \ 1 1 1 1 1 \A 1 1 |4OI 1 1 1 1 1 1 1 1 8OI 1 1 1 1 12IO 1 1 1 1 1 1 1 1 I 16IO
clock m—mﬁm&w}m
reset b U ’ \ ‘ , l J
Start
Run \ ,_bH 'Jd_l
Send_Data \
Zero \
00
Ready
Got_Data \ (\i_\
Done_Product \'
Shift_in I 1
Shift_regs 1 |_
Add_regs 1 1
Decr P 1 1
Shift_out 5
state[4:0] 20 X o X1 X 2 X3 X 4 X 5 X 6 X 7X 3 X 9 X 10 X 9 X10
Data_in[7:0] 170 X 0 X 15 X 255 X 0 X 10 X 0
P[31:0] x__ X 32 X 31 X 30
B[31:0] XXXXXXXX | N S N\ ——C 0f0000aa_>
c
A[31:0] X 00000000 N X X
o131:0] X X X X X K KX . 0a0000fF > X
Maultiplicandf31:0] < 0f0000aa >
Maultiplicand(31:0] 251658410 /
Multiplier[31:0] < 0a0000ff >
Multiplier[31:0] 167772415
product[63:0] X X X X X X X X 0000000002000 X X
product[63:0] x L x X x X xX X X X X 167772415 X X X
Data_out[7:0] X X 170 X 0 X 15 X 255 X 127

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

286
Note: Product (64 bits) is formed correctly
Multiplication complete] [Waiting for Send_Data) [ffiiiszzgiﬂg Cnyes]
Name 73I5 1 1 1 1 1 1 /I 1 I 78I5 1 1 1 1 1 / 1 1 I 83I5 1 1 1 1 1 1 1 1 I 88I5 1 1 1 1 1 1 1 1 I 93I5
clock
reset_b / / (
Start
Run I l \ /
Send_Data ! ’I
Zero I / /
0 1 1
p / / —
Ready l I
Got_Data
Done_Product K \ l
Shift_in S~ |
Shift regs \ /
Add regs \ l
Decr_P \ I
Shifi_out \ ! I .
state[4:0] 10 X9 Y10) 11l) 12 (13 X 14)15 X 16 X 17 X 18 X 19) 20
Data_in[7:0] | 0
P[31:0] 1 X | 0
B[31:0] | 0£0000aa
c |
Af31:0] X) 00960015 X 00000000
o31:0] X 1 9500956 O X T X ooooo000
Multiplicand|31:0] | 0£0000aa
Multiplicand(31:0] | (251658410D
Multiplier[31:0] | 030000fF
Multiplier[31:0] | (167772415)
product[63:0] X X 10096001595002956 T X
product[63:0] X C42221339200760150 > O X X 0
Data_out|7:0] ss {172 X 86 (X oX XaXoX) 0

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

287

[Multiplication complete Waiting for Send Data) [Begm gl il J [Data = 6, 41, @0]

bytes of product. empty. State =S _idle

Name

735 / 785 / 835 /\ 885\\ 935
Coeovovovo o e b o v v oy e A b e ey 1S

clock
reset b
Start

Run

Send Data
Zero

Q0

Ready

Got Data
Done_Product
Shift_in
Shifi regs
Add _regs
Decr P
Shift_out
state[4:0]

Data_in[7:0]
P[31:0]

B[31:0]

C

A[31:0]

Qf31:0]
Multiplicand[31:0]
Multiplicand[31:0]
Multiplier[31:0]
Multiplier(31:0]
product[63:0]
product[63:0]

Data_out[7:0]

—
=<
-

0f0000aa

00960015

X JC X

(00000000)

| | —n
-

5N

\

95002956

OOOOOOOQ/

|

0f0000aa

'\

(251658410

'\

02000017

'\

(167772415)

X ‘LOO%OO 1595002956

Camiooreoiso> Y X YO YT X X 0

86

o)X XarX o)X) 0

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

288

8.41 (a)
Data
——» P[[7:0] » P0O[7:0] >
8 f 8
A {
Pi[7:0] PO[7: 0] RO[15: 0]

{P1, PO} <= {0, 0}

A 4
S | Clr_PI1_PO

h

Pl <= Data
PO<=PI /P1, PO} <= {0, 0
)1y /
Pl <=Data| § |
PO<=PI_|Ld Pl PO Clr_PI_PO |
\ l 7y
S full

P1 <= Data
PO <=PI

RO <= {P1, PO}
(b) HDL model, test bench and simulation results for datapath unit.

module Datapath_unit

(
output reg [15: 0] RO, input [7: 0] Data, input Cir_P1_PO0, Ld_P1_PO0, Ld_RO, clock, rst);
reg[7:0] P1,PO;

always @ (posedge clock) begin
if (Clr_P1_PO0) begin P1 <= 0; PO <= 0; end
if (Ld_P1_PO0) begin P1 <= Data; PO <= P1; end
if (Ld_RO0) RO <= {P1, PO};
end
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

289

/I Test bench for datapath

module t_Datapath_unit ();

wire [15: 0] RO;

reg [7: 0] Data;

reg Cir_P1_PO, Ld_P1_PO, Ld RO, clock, rst;

Datapath_unit MO (RO, Data, CIr_P1_P0, Ld_P1_PO0, Ld_RO, clock, rst);

initial #100 $finish;
initial begin clock = 0; forever #5 clock = ~clock; end
initial begin rst = 0; #2 rst = 1; end
initial fork
#20 CIr_P1_P0 =0;
#20Ld P1 PO =0;
#20 Ld_RO0 = 0;
#20 Data = 8'hab5;
#40Ld _P1_PO=1;
#50 Data = 8'hff;
#60 Ld_P1_P0=0;
#70 Ld_RO =1;
#80 Ld_RO =0;
join
endmodule

Name 0 /50 [100

clock _ I I 7 I 7 LI 7 11T
rst |

Clr_P1_PO
Ld _PI PO 1
Ld RO 1
Data[7:0] X X X as X ff
PI[7:0] XX X as X ff
PO[7:0] XX X as
RO[15:0] XXX X X ffas

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

290

(c¢) HDL model, test bench, and simulation results for the control unit.

module Control_unit (output reg Cir_P1_PO0, Ld_P1_PO0, Ld_RO, input En, Ld, clock, rst);
parameter S_idle = 4'b0001, S_1 =4'b0010, S_full =4'b0100, S_wait = 4'b1000;
reg [3: 0] state, next_state;

always @ (posedge clock)
if (rst) state <= S_idle;
else state <= next_state;

always @ (state, Ld, En) begin

Cir_P1_P0=0; /I Assign by exception
Ld_P1_P0=0;
Ld_RO = 0;

next_state = S_idle;
case (state)
S _idle: if (En) begin Ld_P1_PO = 1; next_state =S_1; end
else next_state = S_idle;

S 1: begin Ld_P1_PO0 = 1; next_state = S_full; end
S_full: if (ILd) next_state = S_wait;
else begin
Ld_RO = 1;

if (En) begin Ld_P1_PO0 = 1; next_state =S_1; end
else begin CIr_P1_PO = 1; next_state = S_idle; end
end

S_wait: if (ILd) next_state = S_wait;
else begin
Ld_RO = 1;
if (En) begin Ld_P1_PO0 = 1; next_state =S_1; end
else begin CIr_P1_PO0 = 1; next_state = S_idle; end

end
default: next_state = S_idle;
endcase
end
endmodule

/I Test bench for control unit

module t_Control_unit ();
wire CIr_P1_PO0, Ld_P1_P0, Ld_RO;
reg En, Ld, clock, rst;

Control_unit MO (CIr_P1_PO, Ld_P1_PO0, Ld_RO, En, Ld, clock, rst);
initial #200 $finish;

initial begin clock = 0; forever #5 clock = ~clock; end
initial begin rst = 0; #2 rst = 1; #12 rst = 0; end

initial fork
#20 Ld =0;
#20 En =0;

#30 En = 1;// Drive to S_wait
#70Ld =1;// Return to S_1 to S_full tp S_wait

#80 Ld = 0;
#100Ld =1; // Drive to S_idle
#100 En =0;
#110 En =0;
#120 Ld = 0;
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

291

Name | 1> | 150

clock PR Y) Y Y I Y Y I O I

rst 1

En I — | |

Ld 1 1
Clr P1_P0 1

Ld PI PO 1 1

Ld RO 1 1

stare[3:0] | xX 1 X2 X4 X 8 X2 X4aX38X I

(¢) Integrated system Note that the test bench for the integrated system uses the input stimuli from the
test bench for the control unit and displays the waveforms produced by the test bench for the
datapath unit.:

module Prob_8 41 (output [15: 0] RO, input [7: 0] Data, input En, Ld, clock, rst);
wire CIr_P1_PO, Ld_P1_PO, Ld_RO;

Control_unit MO (CIr_P1_PO, Ld_P1_PO0, Ld_RO, En, Ld, clock, rst);
Datapath_unit M1 (RO, Data, Cir_P1_PO0, Ld_P1_P0, Ld_RO, clock);

endmodule
module Control_unit (output reg Cir_P1_PO0, Ld_P1_PO0, Ld_RO, input En, Ld, clock, rst);
parameter S_idle = 4'b0001, S_1 = 4'b0010, S_full = 4'b0100, S_wait = 4'b1000;
reg [3: 0] state, next_state;
always @ (posedge clock)
if (rst) state <= S_idle;

else state <= next_state;

always @ (state, Ld, En) begin

Clr_P1_P0 = 0; /I Assign by exception
Ld_P1_PO =0;
Ld_RO =0;

next_state = S_idle;
case (state)
S idle: if (En) begin Ld_P1_PO = 1; next_state =S_1; end
else next_state = S_idle;

S 1: begin Ld_P1_PO = 1; next_state = S_full; end
S_full: if (ILd) next_state = S_wait;
else begin
Ld_RO = 1;

if (En) begin Ld_P1_PO = 1; next_state =S_1; end
else begin CIr_P1_PO = 1; next_state = S_idle; end
end

S_wait: if (ILd) next_state = S_wait;
else begin

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

292

Ld_RO = 1;
if (En) begin Ld_P1_PO = 1; next_state =S_1; end
else begin CIr_P1_PO = 1; next_state = S_idle; end

end
default: next_state = S_idle;
endcase
end
endmodule

module Datapath_unit

(
output reg [15: 0] RO,
input [7: 0] Data,
input Cir_P1_PO,
Ld_P1_PO,
Ld_RO,
clock);

reg[7:0] P1,PO;

always @ (posedge clock) begin
if (Clr_P1_PO0) begin P1 <= 0; PO <= 0; end
if (Ld_P1_PO0) begin P1 <= Data; PO <= P1; end
if (Ld_RO0) RO <= {P1, PO0};
end
endmodule

/I Test bench for integrated system
module t_Prob_8_41 ();

wire [15: 0] RO;

reg [7: 0] Data;

reg En, Ld, clock, rst;

Prob_8_41 MO (RO, Data, En, Ld, clock, rst);

initial #200 $finish;

initial begin clock = 0; forever #5 clock = ~clock; end
initial begin rst = 0; #10 rst = 1; #20 rst = 0; end
initial fork

#20 Data = 8'hab;
#50 Data = 8'hff;

#20 Ld =0;

#20 En = 0;

#30 En = 1;// Drive to S_wait

#70Ld =1;// Returnto S_1to S_full tp S_wait

#80 Ld =0;
#100 Ld =1; // Drive to S_idle
#100 En =0;
#110 En = 0;
#120 Ld = 0;
join
endmodule

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

293

Name 0 140 1% 1120
clock - s rrtr
rst I

En | |

Id] N I
Clr_P1_PO 1

Ld PI1 PO A SE—

Ld RO 1 M1

state[3:0] x L1 2 X4 X 8 Y2 4 X8 X I
Data[7:0] x X as X ff

PIf7:0] xx X a5 X ff X 00
PO[7-0] xx X a5 X7 X 00
ROJ15:0] 00K X a5as X iy

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

© 2007 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This publication is protected by Copyright and written permission should be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.

294

CHAPTER 9

9.1 (a) Asynchronous circutis do not use clock pulses and change state in response to input changes.

Synchronous circuits use clock pulses and a change of state occurs in reponse to the clock transition.

(b) The input signals change one at a time when the circuit is stable.

(¢) The circuit is in a stable state when the excitation variables (Y) are equal to the secondary variables
(y) (see F. 9.1). Unstable otherwise.

(d) The total state is the combination of binary values of the internal state and the inputs.

9.2 Yi=x1'%+yix; L=xy,tx

XX Y1

%2
BN 00 01 11

10
00 1| o
or| 0o | 1

x,x,: 00,10, 11,01, 11, 10, 00

X
:00,00,01, 11,11, 01, 00
o |[@|@| o e
Xy
10| 00 11 11 00
L
Y,
9.3 (a)
x— Y=xx'y + (x +xy
Xy —] z=Yy
Yy
(b)
Xy Xy
X% X1%a
Y 00 01 11 10 Y 00 01 11 10
Yo oonRE
NonocoREInnnE
X X
(©

Digital Design — Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

