SolidWorkse2006 Advanced Part Modeling

© 1995-2005, SolidWorks Corporation
300 Baker Avenue
Concord, Massachusetts 01742 USA
All Rights Reserved
U.S. Patents 5,815,154; 6,219,049; 6,219,055;

6,603,486; 6,611,725; and 6,844,877 and certain other foreign patents, including EP 1,116,190 and JP $3,517,643$. U.S. and foreign patents pending.
SolidWorks Corporation is a Dassault Systemes S.A. (Nasdaq:DASTY) company.

The information and the software discussed in this document are subject to change without notice and should not be considered commitments by SolidWorks Corporation.
No material may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose without the express written permission of SolidWorks Corporation.
The software discussed in this document is furnished under a license and may be used or copied only in accordance with the terms of this license. All warranties given by SolidWorks Corporation as to the software and documentation are set forth in the SolidWorks Corporation License and Subscription Service Agreement, and nothing stated in, or implied by, this document or its contents shall be considered or deemed a modification or amendment of such warranties.
SolidWorks, PDMWorks, and 3D PartStream.NET, and the eDrawings logo are registered trademarks of SolidWorks Corporation.
SolidWorks 2006 is a product name of SolidWorks Corporation.
COSMOSXpress, DWGeditor, DWGgateway, eDrawings, Feature Palette, PhotoWorks, and XchangeWorks are trademarks, 3D ContentCentral is a service mark, and FeatureManager is a jointly owned registered trademark of SolidWorks Corporation.
COSMOS, COSMOSWorks, COSMOSMotion, and COSMOSFloWorks are trademarks of Structural Research and Analysis Corporation.
FeatureWorks is a registered trademark of Geometric Software Solutions Co. Limited.
ACIS is a registered trademark of Spatial Corporation.
GLOBEtrotter and FLEXIm are registered trademarks of Globetrotter Software, Inc. Other brand or product names are trademarks or registered trademarks of their respective holders.

COMMERCIAL COMPUTER
SOFTWARE - PROPRIETARY
U.S. Government Restricted Rights. Use, duplication, or disclosure by the government is subject to restrictions as set forth in FAR 52.227-19 (Commercial Computer Software - Restricted Rights), DFARS 227.7202 (Commercial Computer Software and Commercial Computer Software Documentation), and in the license agreement, as applicable.
Contractor/Manufacturer:
SolidWorks Corporation, 300 Baker Avenue,
Concord, Massachusetts 01742 USA
Portions of this software © 1988, 2000 Aladdin Enterprises.
Portions of this software © 1996, 2001 Artifex Software, Inc.
Portions of this software © 2001 artofcode LLC.
Portions of this software © 2005 Bluebeam
Software, Inc.
Portions of this software © 1999, 2002-2005
ComponentOne
Portions of this software © 1990-2005 D-Cubed Limited.
Portions of this product are distributed under license from DC Micro Development, Copyright © 19942002 DC Micro Development, Inc. All rights reserved
Portions © eHelp Corporation. All rights reserved.
Portions of this software © 1998-2005 Geometric Software Solutions Co. Limited.
Portions of this software © 1986-2005 mental images GmbH \& Co. KG
Portions of this software © 1996 Microsoft Corporation. All Rights Reserved.
Portions of this software © 2005 Priware Limited
Portions of this software © 2001, SIMULOG.
Portions of this software © 1995-2005 Spatial Corporation.
Portions of this software © 2003-2005, Structural Research \& Analysis Corp.
Portions of this software © 1997-2005 Tech Soft America.
Portions of this software are copyrighted by and are the property of UGS Corp. © 2005.
Portions of this software © 1999-2005 Viewpoint Corporation.
Portions of this software © 1994-2005, Visual Kinematics, Inc.
This software is based in part on the work of the Independent JPEG group.
All Rights Reserved.

Table of Contents

Introduction 1

About This Course 3
Prerequisites. 3
Course Design Philosophy 3
Using this Book 3
About the CD 4
Windows ${ }^{\circledR} 2000$ and Windows ${ }^{\circledR}$ XP 4
Conventions Used in this Book 4
Multibody Solids 7
Creating a Multibody 7
Multibody Techniques 8
Bridging 9
Extrude From 11
Local Operations 13
Combined Bodies 14
Combine Tool 14
Examples of Combined Solids 16
Using Local Operations to Solve Filleting Problems 17
Common Bodies 19
Focus on Features 20
Solid Bodies Folder Options 21
Tool Body 21
Patterning Bodies 24
Symmetry 25
Indent Feature 27
Lesson 1:
Using Indent 27
Using Multiple Tool Bodies 29
Indent with Multiple Target Regions 30
Using Cut to Create Multibodies 35
Saving Solid Bodies as Parts and Assemblies 36
Feature Scope 38
Splitting a Part into Multibodies 42
Creating an Assembly 44
Summary 45
Using Split Part with Legacy Data 46
Filling the Gap 48
Exercise 1: Combining a Multibody Part 49
Exercise 2: Bridging a Multibody Part 50
Exercise 3: Creating a Multibody with Mirror Pattern 52
Exercise 4: Creating a Multibody with Linear Pattern 55
Exercise 5: Positioning Inserted Parts 56
Exercise 6: Using Indent 59
Exercise 7: Copying Bodies 60
Exercise 8: Split Part 63
Intersection Curves 89
Show Minimum Radius 91
Show Inflection Points 91
Zebra Stripes 93
Curvature Continuous Fillets 94
Filleting the Label Outline 96
Selecting Edges 96
What is a Loop? 96
Multi-thickness Shell 97
Performance Considerations 98
Performance Settings 98
Suppressing Features 99
Interrupt Regeneration 99
Modeling Threads 100
Creating a Helix 100
Procedure 100
Using Twist. 103
Align with End Faces 104
Sweeping Along Model Edges 105
Propagate Along Tangent Edges. 105
What if the Edges Aren't Tangent? 105
3D Sketches 107
Plane At Angle 107
Multiple Contours in a Sweep 110
Using the Hole Wizard on Non-planar Faces 111
Exercise 9: Sweeps without Guides 113
Cotter Pin 113
Paper Clip 113
Mitered Sweep 114
Exercise 10: Attachment 115
Exercise 11: Hanger Bracket 124
Exercise 12: Tire Iron 127
Dome Feature 129
Exercise 13: 3D Sketching 130
Exercise 14: 3D Sketching with Planes 133
Exercise 15: Hole Wizard and 3D Sketches 135
Lesson 3:
Lofts
Basic Lofting 139
Stages in the Process 140
Merge Tangent Faces 142
Start and End Constraints 142
Merging a Multibody with Loft 144
Using Derived and Copied Sketches 145
Copying a Sketch 145
Derived Sketches 147
Creating a Derived Sketch 147
Locating the Derived Sketch 147
Loft Viewing Options 149
Advanced Lofting 150
Preparation of the Profiles 151
Sharing Sketches 153
Other Techniques 159
Stages in the Process 160
Advanced Face Blend Fillets 161
Using Flex 166
Triad and Trim Planes 166
Flex Options 168
Exercise 16: Poker 173
Exercise 17: Derived Sketch. 178
Exercise 18: Copy Sketch 179
Exercise 19: Funnel 181
Lesson 4: Surface Modeling
Working with Surfaces 191
What are Surfaces? 191
Stages in the Process. 191
Using Sketch Picture to Capture Design Intent 192
Similarities Between Solid and Surface Modeling 196
Splines 197
Trimming Surfaces 198
Ruled Surfaces 199
Lofting Surfaces 201
Modeling the Lower Half 205
Filling in Gaps 208
Preparation for Using Filled Surface 208
Creating a Knit Surface 212
Design Changes 213
Dynamic Feature Editing 214
Replacing a Face 216
Finishing Touches 218
Splitting the Part 218
Modeling the Keypad 219
Appearance Gap 224
Draft Analysis 226
Fastening Features 228
Saving the Bodies and Creating an Assembly 233
Rapid Prototyping 233
Print3D 234
Intersection Curves and Splines 235
Stages in the Process 235
Exercise 20: Stapler 243
Exercise 21: Surface Modeling 244
Delete Face 245
A Different Approach: Trim 246
Filleting Surfaces 247
Making it Solid 249
Exercise 22: Halyard Guide 250
Exercise 23: Using Import Surface and Replace Face 255
Exercise 24: Using Surfaces 258
Exercise 25: Inserting a Picture and Combining 262
Lesson 5: Core and Cavity
Case Study: A Simple Two Plate Mold Design 267
Stages in the Process 267
Problematic File Translations 269
Analyzing Draft on a Model 271
Checking the Mold-ability of a Plastic Part 272
Determining the Direction of Pull 272
Draft Analysis Colors 273
Positive Draft 274
Negative Draft. 274
Requires Draft 275
Straddle Faces 275
Positive Steep Faces 276
Negative Steep Faces 276
Scale the Plastic Part to Allow for Shrinkage 276
Scale the Plastic Part 276
Determine the Parting Lines 277
Establish the Parting Lines 277
Manual Selection Of Parting Lines 279
Manual Selection of Parting Line Edges 280
Shutting Off Holes or Windows in the Plastic Part 280
Automation 282
Modeling the Parting Surfaces 283
Parting Surfaces 283
Smoothing the Parting Surface 284
Interlocking the Mold Tooling 286
Automatic Interlock Surface Creation 286
Creating the Mold Tooling 286
Automatic Tooling Separation 286
Case Study: Plastic Bezel of a Cordless Drill. 288
Creating New Drafted Faces 289
Delete Faces that Do Not Have Draft 289
Create New Drafted Surfaces 290
Trim the New Surfaces 292
Thicken the Surface Body 293
Fixing the Steep Faces 294
Complex Shut-off Surfaces 298
Interlock Surfaces 300
Modeling the Interlock Surfaces 301
Select Partial Loop 301
Fill in the Gaps With Lofted Surfaces 303
Completing the Interlock Surfaces 304
Knit the Interlock Surfaces to the Parting Surfaces 306
Preparations for the Tooling Split. 306
Case Study: Multiple Parting Directions 311
Trapped Molding Areas 313
Side Cores 313
Lifters 315
Core Pins 317
Case Study: Electrode Design 318
Electrode Clearances 320
Over-burn 320
Orbiting. 320
Keeping the Sharp Edges 323
Flash 323
Exercise 26: Tooling for Plastic Power Strip 325
Exercise 27: 80mm Fan Bezel 329

About This Course

Prerequisites

Course Design

 Philosophy
Using this Book

Laboratory
 Exercises

A Note About Dimensions

The goal of this course is to teach you how to build freeform shapes using SolidWorks mechanical design automation software.

The tools for modeling advanced, freeform shapes in SolidWorks 2006 are quite robust and feature rich. During this course, we will cover many of the commands and options in great detail. However, it is impractical to cover every minute detail and still have the course be a reasonable length. Therefore, the focus of this course is on the fundamental skills, tools, and concepts central to successfưlly building multibody and freeform shapes. You should view the training course manual as a supplement to, not a replacement for, the system documentation and on-line help. Once you have developed a good foundation in the skills covered in this course, you can refer to the online help for information on less frequently used command options.
Students attending this course are expected to have the following:

- Mechanical design experience.

■ Completed the course SolidWorks Essentials: Parts and Assemblies.

- Experience with the Windows ${ }^{\mathrm{TM}}$ operating system.

This course is designed around a process-based (or task-based) approach to training. Rather than focus on individual features and functions, a process-based training course emphasizes the processes and procedures you follow to complete a particular task. By utilizing case studies to illustrate these processes, you learn the necessary commands, options and menus in the context of completing a design task.

This training manual is intended to be used in a classroom environment under the guidance of an experienced SolidWorks instructor. It is not intended to be a self-paced tutorial. The examples and case studies are designed to be demonstrated "live" by the instructor.

Laboratory exercises give you the opportunity to apply and practice the material covered during the lecture/demonstration portion of the course. They are designed to represent typical design and modeling situations while being modest enough to be completed during class time. You should note that many students work at different paces. Therefore, we have included more lab exercises than you can reasonably expect to complete during the course. This ensures that even the fastest student will not run out of exercises.

The drawings and dimensions given in the lab exercises are not intended to reflect any particular drafting standard. In fact, sometimes dimensions are given in a fashion that would never be considered acceptable in industry. The reason for this is the labs are designed to encourage you to apply the information covered in class and to employ and reinforce certain techniques in modeling. As a result, the drawings and dimensions in the exercises are done in a way that compliments this objective.

[^0]Upon successful completion of this lesson, you will be able to:

- Create various multibody solids.

■ Identify the different uses of a multibody solid.

- Combine solid bodies with add, subtract and common.

Create an assembly from a multibody part.

- Modify a multibody cut using feature scope.

Multibody Solids

Creating a Multibody

Multibody solids occur when there is more than one continuous solid in the same part file. Often times, multibody techniques are useful for designing parts that require specific distance separation of features. These bodies can be accessed and modified separately and later merged into a single solid.
Multibody solids are created in several ways. The following commands have the option of creating multiple solid bodies from a single feature:

- Extruded bosses and cuts (including thin features).
- Revolved bosses and cuts (including thin features).
- Swept bosses and cuts (including thin features).
- Lofted cuts.
- Thickened cuts.
- Cavities.

The most direct way to create a multibody solid is by clearing the Merge result check box for specific boss and cut features.

Howeyer, this option does not appear for the first feature.

Multibody Techniques

There are several classes of parts that are well suited for working in the multibody solid environment. To accomplish successful multibody design, we will explore the following techniques:

Bridging

The Bridging technique is used to build connecting geometry between multiple bodies. This example creates a multibody solid where multiple bodies are connected and merged by a new boss feature.

1 New part.

Create a new part with units set to inches.

Create a cylinder as the first feature using the Front reference plane as the sketch plane.

2 Create a multibody.

Create a second cylinder as shown.

Note

Introducing:
Solid Bodies Folder

Where to Find It

When boss features are created without intersecting the first feature, they are saved as multiple bodies. The Merge result check box remains checked by default, and the bodies will merge if they intersect through a later change.

The Solid Bodies folder holds all solid bodies in the part. Each solid body may be hidden from the folder. The names are taken from the last feature added to that body.

- From the FeatureManager expand the
(T) Solid Bodies(2) Solid Bodies folder.

3 Explore the Solid Bodies folder.

The second cylinder causes the creation of another solid body. In the FeatureManager, expand the Solid Bodies folder to view these features.

If the part contains one solid, the folder will contain a single feature.

4 Create a bridge.

Create a boss using the edges of each cylinder.

Extrude the sketch 0.375" and check Merge result.
The solid Bodies folder now displays only one solid, Extrude3.

Finish the part.
Complete the part by adding the following features:

- Fillets $=\mathbf{0 . 1 2 5}$
- Cuts = $\mathbf{1 . 5}$ " and $\mathbf{1 "}$ diameter
- Chamfers $=0.0625^{\prime \prime} \times 45^{\circ}$

Extrude From

The Extrude From option can be used with extrusions to move the starting position of a sketch by moving it's "plane". Options include:

- Sketch Plane

The default sketch plane is used.

- Surface/Plane/Face

The sketch plane is moved to the selected surface, plane or (planar) face.

■ Vertex
The sketch plane is positioned at the vertex or point.

- Offset

The sketch plane is offset parallel a specified distance.

1 Open the part Extrude From.
The part contains two ends of a wrench.

The Centerline sketch runs between bodies with a point at the midpoint of the line.
The Bridge Profile sketch is on the Right Plane.

2 Up to body.
Extrude the sketch Up To Body, selecting the Right Sphere body as the end of the extrusion.

A problem occurs as the extrusion fills in some of the open volume of the Left Sphere.

3 Extrude From.
Use Edit Feature and expand the From group box. Choose Start Condition: Vertex and select the point in the Centerline sketch.

4 Direction 2.
Select Direction 2 and
Up To Body, using the Left Sphere body.

5 Fillets.
Adding 7mm and $\mathbf{0 . 5 m m}$ fillets completes the part.
6 Save and close the part.

Local Operations

The Local Operations technique is used to make specific modifications on one body without affecting another body. A common example of this technique is a variation on shelling. The shelling operation, by default, affects all features of the solid body that precede it. In this example, a shelling problem will be solved using Merge result and Combine.

1 Open part.
Open the part
Local Operations.

Create a section view.
Use section view and this new plane to display how the shell command affects the entire part.
Create a section plane using Offset Distance -42mm from the Front Plane.

3 Shell part.

Add a 4mm shell that removes the bottom face.

4 Modify each boss feature.
Use Edit Definition on these three bosses:

Vertical_Plate, Circular_Boss, and Rib_Under.
Clear the Merge result check box for each boss and click OK.

5 Explore the solid bodies.
After clearing the Merge result check box for each boss, the model breaks into four solid bodies.
Expand the SolidBodies folder to view.
回 Solid Bodies(4)

6 Hide solid bodies. Hold down Shift and select:
Rib_Under, D Hole [1] and D_Hole [2].
Right-click and select

Hide Bodies.

The Shell body remains visible.

Combined Bodies

Combine Tool

The Combined Bodies technique is used to create a single solid by adding, subtracting or intersecting the volumes of solid bodies.

The Combine tool is used to combine the volumes of multibody solids into a single solid body. The bodies can be combined in different ways using different operations. The combine tool has three options:

- Add.

The Add operation uses the Bodies to Combine list to merge the bodies into a single solid by adding all volumes. This operation is also known as a union in other systems.

- Subtract.

The Subtract operation uses the Main Body and Bodies to Combine list to merge the bodies into a single solid by subtracting the bodies to combine from the main body.

－Common．

The Common operation uses the Bodies to Combine list to merge the bodies into a single solid by finding the volume that is common to all． This operation is also known as a intersection in other systems．

Where to Find It

Note
■ Click Combine 圆 on the Features toolbar．
－Or，click Insert，Features，Combine．
－Or，select solid bodies and right－click Combine．
Another method of selection is to filter solid bodies with the Solid Bodies filter 廻．

7 Combine the solid bodies．
Click Combine 㘣 on the Features toolbar．
Use the Add option for Operation Type．

Select all four bodies from the Solid Bodies folder for
Bodies to Combine．
Click Show Preview and OK．

8 Explore the single solid．
The part now exists as a single solid body Combine1．

The name is assumed from the last feature added to the body．

Tip

Features，such as fillets，using the edges formed by merged solid bodies，will fail if Merge result is unchecked in a later operation． The following rebuild error will appear：

[^1]Examples of Combined Solids

The following table displays the results from various combining techniques available.

Using Local Operations to Solve Filleting Problems

Many time success in filleting depends on the order in which you apply the fillets. Multibody solids and local operations give you the ability to alter the sequence in which fillets are applied. This can be very helpful with particularly difficult filleting problems.

1 Open the part named Fillet Problem.

2 Attempts at filleting.

Various attempts to apply a 0.25 "
fillet do not yield satisfactory results. This is because the fillets are affected by adjacent faces. The solution is to fillet the bodies separately.

Thanks to Keith Pedersen at Computer-Aided Products, Inc. for submitting this example.

3 Unmerge the solids.
Right-click the Angled Piece feature and select Edit Feature.
Clear the Merge results check box and click OK.

4 Fillet the Angled Piece feature.
Apply a 0.25 " fillet to the uppermost face of the Angled Piece.

5 Combine the solids.
Click Combine 㘣 on the Features toolbar.

Merge the two solids using the Add option.

Click OK.

6 Fillet.
Apply the remaining 0.25 " fillet as shown.

7 Save and close the part.

Common Bodies

There are a variety of ways to combine multiple bodies into a single solid body. This example uses one of the more appealing options, Common, or intersecting volumes.

1 Open the part Combine1.

2 Create a sketch.
Using the Right reference plane, sketch the profile shown.

3 Create boss extrusion.
Extrude the sketch using the Up To Surface end condition for each direction.

Make sure that Merge result is cleared.

4 Combine the solid bodies.
Click Combine 圆 on the Features toolbar.

Use the Common option for Operation Type and select both bodies.

Click Show Preview and OK.

5 Complete the part.
Add 1/16" fillets to complete the part.
6 Save and close the part.

Consider a part where the placement of holes, relative to each other and the origin, are of primary importance. In this example, the "plate" that the holes remove volume from is based on their location.

1 Open the part Focus
Features.
The part contains multiple solid bodies.

Solid Bodies Folder Options

The appearance of the Solid Bodies folder can be modified for ease of use.

Right-click the Solid Bodies folder (left) and choose Show
Feature History to see the features used to create the body.
Select one or more features (right) and right-click Add to New Folder to place them in a user defined folder. The folder includes a count of the solid bodies.

2 Combine the solid bodies.
Using the base as the Main Body and the remaining solid bodies as the Bodies to Subtract, combine with a Subtract operation.

3 Save and close the part.

Tool Body

Introducing: Insert Part

Where to Find It

The Tool Body technique is used to add or remove model volume using specialized "tool" parts.

You can use the Insert Part tool to add one or more solid bodies into the active part, placing the origin of the inserted part on that of the active part. The inserted parts are then oriented using the Locate Part dialog.
■ Click Insert, Part.

- Or, click Insert Part 圈 on the Features toolbar.

1 Open part.

Open the part Cover without Tabs. Rollback to just before the Fillet1 feature.

2 Insert a part. Click Insert, Part and select the part Tool Body Tab.
Make sure Launch Move Dialog is, checked and click OK.

The part being inserted is simply a standard part file.

3 Results.
The Locate Part menu appears and an instance of the Tool Body Tab is added to the active part.
The Insert Part command inserts an instance of a part into another part. Multiple parts and/or multiple instances of the same part can be inserted into the active part.

Introducing:
Move/Copy Bodies

Where to Find It

Use Move/Copy Bodies to orient solid bodies within a part. Bodies can moved be using two different methods:

1. Mates, similar to the way components are mated in an assembly
2. Specifying translation and/or rotation with respect to the X, Y, and Z axes.

The Locate Part dialog is the same as the Move/Copy Bodies dialog.
■ Click Insert, Features, Move/Copy.
■ Or, click Move/Copy Bodies 图 on the Features toolbar.
This example illustrates using mates to locate the solid body. For an example using explicit translation and rotation, see Exercise 6: Using Indent on page 59.

4 Select the faces.
Select the rear face of the tab and the upper face of the cover as shown.

5 Mate the body. The system selects Coincident as the default mate type. In cases when this is not what you want, you can select a different type.
Verify the orientation of the Tool Body Tab. If it is upside down, as in the upper picture, change the Mate Alignment.

Coincident mates can be either Aligned or Anti-Aligned.

Click Add to apply the mate.
For more information about mates, see the Essentials: Parts and Assemblies manual.

6 Additional mates.

Add two more Coincident mates, selecting the faces as shown in the illustration below. This completes positioning the tab.

7 Examine the feature.
Expand the Tool Body Tab feature listing. The feature representing the Locate Body command is listed as a child of the Tool Body Tab.

Tool Body Tab ->
Solid Bodies(1)
1 (Tool Body Tab>-<Extrude1>
Body-Move/Copy1
Coincident1 (Tool Body Tab,Extrude1)
Coincident2 (Tool Body Tab,Extrude1)
Coincident3 (Tool Body Tab,Extrude1)
8 Explore the solid bodies.
A second solid body is listed in the folder.

Patterning Bodies

Each pattern feature can be used to create instances of solid bodies. The Bodies to Pattern field is used to set which body or bodies will be patterned.

The Bodies to Pattern field exists in the following pattern tools:
■ Linear.

- Circular.
- Mirror.

■ Table Driven.
■ Sketch Driven.
■ Curve Driven.

9 Mirror body. Insert a Mirror pattern using the Front reference plane and the Tool Body Tab as the body to mirror.
Keep Merge solids cleared.

Click OK.

10 Mirror again.
Mirror both tabs, this time using the Right reference plane as shown.

11 Combine the solid bodies.
Combine the solid bodies into one using Add.

12 Save and close the part.

Symmetry
The Symmetry technique is used to help create parts faster by using patterns. In this example, solid bodies, rather than features, are patterned and combined.

1 Open part.
Open the part Symmetry.
It contains the part PowerCordEnd as a feature.

2 Insert a part.

Insert the part PowerBlock.
Clear the Launch Move Dialog check box, and click OK.

It drops in the proper position, the Origin, by default.

3 Create a linear pattern.
Using the Linear Pattern tool, create 4 instances of the solid body PowerBlock 40 mm apart.

4 Insert and locate part.

Insert the part PowerSwitchEnd and mate it to the last instance in the linear pattern.

5 Combine the solid bodies.
Combine the solid bodies into one using Add.

Indent Feature

Where to Find It

The Indent feature is used to reshape thin walls of the Target Body to the shape of one or more intersecting Tool Bodies. The indentation thickness and optional clearance can be controlled by numeric values.

- Target Body

The Target Body is the body being indented.

- Tool Body Region

The Tool Body Region is a selection of both a solid body (tool) and a region as the tool body is divided by the target body.

- Click Indent on the Features toolbar.

■ Or, click Insert, Features, Indent.

Using Indent

In this example, Indent is used to reshape an existing thin walled feature for a hole, fastener and clearance for tools. The selection of the tool body region determines to which side of the target body the indent feature is applied.

1 Open Indent1.
Open the part Indent1. It includes two intersecting solid bodies.

2 Target and tool.

Click Indent and select the large solid as the Target body.
Select the revolved solid body as the Tool body region.
The blue preview shows the indent.

Important! ${ }^{\circ}$

Make the tool body region selection from the underside of the target body as shown.

3 Parameters.

Under Parameters, set the Thickness to $\mathbf{0 . 2 5}$ " and Clearance to 0 " as shown.

Click OK.

4 Hide body.
Hide the tool body to see the results.

5 Section View.

Use the Section View tool with the Front Plane to cut the display.

Using Multiple Tool Bodies

Multiple tool bodies can be used with Indent. Since the Indent feature cannot be patterned, the tool bodies themselves must be patterned.

6 Rollback and pattern.
Use Roll to Previous to position the rollback bar between the Fillet1 and Indent1 features. Add a Circular Pattern of the tool body as shown.

7 Edit Feature. Use Roll to End and edit the IndentI feature. Click in
Tool Body Region
and select the additional bodies as shown. Change the
Clearance to 0.050" and click OK.

8 Section View.
Use the Section View tool with the Front Plane to cut the display.
Note how the Clearance is applied. It can be reversed π if necessary.

Indent with Multiple Target
 Regions

When the Target Body contains features (such as ribs) that subdivide the Tool Body, multiple target regions are created. In this example, the base of a blender is used as the target. A solid body representing the cup and a drain is used as the tool.

In the chart that follows, the yellow body represents the Target Body and the red block represents the Tool Body. In this example there are six possible Tool Body Regions to select.

Target Selections and Options

1 Open part Indent2．
The Indent2 part is a multi－ body part with solid bodies （lower＿base and upper＿cup）representing a blender base and mixing glass． The features used to make the base are collected in the folder base．The cup folder contains features for the other body．

5 Indent2
A Annotations
A Annotations
D
8．Material＜not specifier
T－Lights and Cameras
T \rightarrow Surface Bodies（3）
－ 0 Solid Bodies（2）

－upper＿cup
人）Front Plane
＊Top Plane
＊．Right Plane
$\stackrel{\text {＊Origin }}{ }$
＊．Plane 1
\square Base
＋S Surface－Extrude 1 ＋Surface－Extrude2
$\pm)^{3}$ Surface－Extrude 3
（ + S Surface－Fill \％Mirror 1 \％Mirror2 \square Surface－Plane1 ［1］Surface－Knit1
－圆Cut－Extrude （－）Sketch5
8 Fillet1
图 Shell
\forall Plane？ Cup

－${ }^{\text {® }}$ Extrude
\rightarrow ค Revolvez
（7）圆 Cut－Extrude2
F Fillet2

2 Interference between bodies. Select the solid bodies and use Combine 圆 with the Common option to view the interfering volume of geometry. Use the Show Preview button and click Cancel to avoid adding the feature.

Note

The Interference Detection tool can only be used in an assembly.
3 Select Tool Body Region.
Click Indent and select the Target Body as shown. Select the Tool Body Region by clicking the face indicated by the callout. The preview identifies the face and region to indent.

Set the Thickness and Clearance values as shown.

P.

4 Additional selections.
Additional regions can be selected provided that the selections are unique faces.
Selecting a face that has already been selected, even in a different region, deselects it.

In a case such as this, with multiple regions dividing the same faces, another approach is more efficient.

5 Selections.

Right-click in the Tool Body
Region and select Clear Selections.

Select the region of the tool body outside the target.

6 Using Remove Selections.
Click Remove Selections to reverse the entity selection.
All regions of the tool body inside the target are now selected.

Click OK.

7 Results.

After hiding the tool body solid, the results can be seen.

Note
The tool body can be removed using Delete Body . It creates a Body-Delete1 feature.

Using Cut to
Create Multibodies

Certain cut features will split a part into multiple solid bodies. If this happens the Bodies to Keep dialog box appears. You can control how to split the part.

1 Open part Cut into Bodies.

2 Create multibodies.

Using Sketch3, create a Through All cut with the All bodies option.

3 Explore the Solid Bodies folder. The cut feature creates two solid bodies.

Saving Solid Bodies as Parts and Assemblies
 Default Templates
 into New Part

Note

Where to Find It

You can save one or more of the solid bodies in a multibody part as separate part files. There are several commands to do this, each with different characteristics. Some commands give you the option to also generate an assembly from the saved parts.
The commands in this section create new SolidWorks documents either a part or an assembly or both as appropriate. You have the option of specifying a document template or allowing the system to use the default template. This choice is determined by the settings in Tools, Options, System Options, Default Templates.
Insert into New Part allows you to save individual solid bodies as part files. Each resulting part file is linked by an external reference back to the source part. A Stock-<source part name> feature appears in the saved part. This features carries the external reference. For more information about external references, refer to the Advanced Assembly Modeling training course.

If you select multiple bodies or the Solid Bodies folder, the saved part will be a multibody part with a Stock feature for each body.

Insert into New Part does not create a feature in the source part. The solid bodies are saved as they are after the last part feature is rebuilt. Any changes you make to the source part will propagate to the saved parts.

■ Expand the Solid Bodies folder and right-click the body you want to save. Select Insert into New Part.

4 Insert the solid bodies into new parts.
Expand the Solid Bodies folder. Use Insert into New Part to create the parts as shown below, one part for each body.

The new parts are opened automatically.

5 Create an assembly.

Open a new assembly. Add the saved parts. Name the assembly clamp_assy.

6 Newly created part.
Switch to one of the newly created parts. Examine the FeatureManager. Note the Stock feature. This carries the external reference.

7 Make changes to the source part.
Switch back to the source part.
Insert a sketch on the planar face on the underside of the bottom half of the clamp as shown.

8 Through All cut.

Click Extruded Cut 圆. Set the end condition to Through AlI.

9 Click Detailed Preview (8). Under Options, select Show only new or modified bodies.

Clear the Highlight new or modified faces check box.

Examine the preview. It shows that the feature will cut through both bodies.

Do not click OK yet.
10 Turn off Detailed Preview.

The Feature Scope allows you to select which bodies are affected by a feature. The Feature Scope option exists in the following tools:

- Extrude
- Revolve
- Sweep
- Loft
- Cut with Surface
- Thicken

11 Set the feature scope.

Expand the Feature Scope group box.
Clear the Auto-select check box.
Select the bottom half of the clamp and click OK.

12 Results.

The cut feature only affects the selected body.

13 Second Through All cut feature.
Create another Through All cut feature as shown. Use the Feature Scope to limit its effect to just the upper half of the clamp.

14 Examine the individual parts.

The changes made to the source part propagated to the saved files.

15 Save and close the files.

Introducing: Save Bodies

Save Bodies also allows you to save individual solid bodies as part files. You can indicate which bodies you want to save. Optionally you can generate an assembly from the saved parts.

Save Bodies adds a Save Bodies feature in the FeatureManager of the source part.
The bodies are saved at the point in the part history where the Save Bodies feature appears. Any subsequent features added to the source part will not propagate to the saved files.

Where to Find It

Each resulting part file is linked by an external reference back to the source part. A Stock-<source part name> feature appears in each saved part. This features carries the external reference.

■ Click Insert, Features, Save Bodies.
■ Right-click the Solid Bodies folder and select Save Bodies.

1 Open part.
Open the part Boat Cleat. There are two solid bodies representing the core and the pattern. One body is shown semi-transparent for illustration purposes.

2 Edit color.

Select the topmost feature in the
 FeatureManager.
Click Edit Color ${ }^{\text {mi }}$. Remove the transparency.

3 Saving the bodies.

Click Insert, Features, Save Bodies. The PropertyManager appears.
As you move the cursor over the model, the individual bodies highlight.

Tip

Sometimes it is hard to tell which callout points to which body. Changing the view usually helps.

4 Saving the bodies.

There are two ways to save the bodies as separate part files:

■ In the PropertyManager, under Resulting Parts, double-click the name field. The Save As dialog appears.

- In the graphics area, click the name field of the callout Eady 1: 1 -Nones. The Save As dialog appears.

Save the bodies as Core and Pattern.

Note
When you save the bodies you can specify an origin location. If you do not, the saved parts have the same origin as the source part.

5 Resultant bodies state.

Click Show bodies. This will keep the solid bodies in the source part visible. The default is Hide bodies.

Creating an Assembly

If you want to create an assembly do the following:

1. In the Create Assembly group box, click Browse. The Save As dialog opens.
2. Browse to where you want to save the assembly.
3. Give the assembly a name and click Save.

In this example it is not necessary to save the assembly. If later you decide you need an assembly you can always create one from the saved parts using traditional bottom-up assembly modeling techniques.

6 Click OK.
The saved parts open.
7 FeatureManager.
Examine the FeatureManager design tree of the source part. A Save Bodies feature has been added. This records the point in the part's history when the bodies were saved. Changes made to the source part after this feature will not propagate to the saved parts.
8 Make changes to the source part. Make sure the source part, Boat Cleat, is active.
Click Combine 圆. Subtract the core from the pattern.
The results are shown in a section view for clarity.

9 Examine the Pattern part.
The change made to the source part did not propagate to the saved files.

10 Save and close the files.

Splitting a Part into Multibodies

Sometimes it is easier to start a design as a single part. Then, after form, fit, and function are defined, the part is split into its individual components. This is particularly handy when aesthetics are important.

Split allows you to break a part into multiple solid bodies using splitting tools such as faces, planes, or surfaces. In the Split command you have the option to save the resulting bodies as individual part files.
The Split command creates a Split feature in the FeatureManager of the source part. This means the bodies are saved at the point in the part history where the Split feature appears. Any subsequent features added to the source part will not appear in the saved files.
If you delete the Split feature in the original part, the new parts still exist, but the status of the external reference in the new parts is dangling.

- Click Split 000 on the Features toolbar.
- Or, click Insert, Features, Split.

1 Open part named Handle.

2 Split the part.
Click Split 國 or click Insert, Features, Split.

3 Trim tools.

Select the Front reference plane as the trim tool.

4 Cut the part.
Click Cut Part. The system computes the intersection of the trim tools with the part and calculates the results.

As you move the cursor over the model, the individual bodies highlight. Click on the bodies you want to create. In this case, click both resulting bodies.

5 Saving the bodies.

There are two ways to save the resulting bodies as separate part files:
■ In the PropertyManager, under Resulting bodies state, double-click the name field. The Save As dialog appears.

- In the graphics area, click the name field of the callout Eady i:l 1 - Nones. The Save As dialog appears.

When you save the bodies you can specify an origin location. If you do not, the saved parts have the same origin as the source part.
6 Resultant bodies state.
Click Show bodies. This will keep the solid bodies in the source part visible. The default is Hide bodies.

7 Click OK.
The new part files are created. Open them in their own windows.
You would now finish modeling the details of each part.

Creating an Assembly

Once the solid bodies have been saved as part files, you can use them to create an assembly just as you would with any other parts. You can create an assembly manually using traditional bottom-up assembly modeling techniques, or you can automate the process.

Create Assembly collects the part files saved by one or more split features and creates a new assembly from them.

- Right-click the Split feature in the FeatureManager design tree and select Create Assembly.
■ Or, click Insert, Features, Create Assembly.

8 Create Assembly.

Right-click the Split feature and select Create Assembly. The PropertyManager opens. If you want you can select more than one Split feature.

9 Click Browse.
The Save As dialog box appears.
Browse to the folder where you want to save the assembly, and type a name for the assembly in the File name box.

10 Click Save.

The Save As dialog box closes and the file name appears under Assembly file in the PropertyManager.
11 Click OK.
The new assembly document opens.
There are no mates in this assembly. Both components are fixed with their origins at the assembly origin.

12 Save and close the files.

Summary

There is quite an assortment of tools and techniques for saving individual solid bodies as part files and for creating assemblies from multibody parts. All of the techniques create an external reference between the saved part file and the original source part.

The various commands and techniques are summarized in the table below.

Technique	Results
Insert into New Part	If you use Insert into New Part on the Solid Bodies folder instead of an individual body, you will create a multibody part that is Allows you to create new parts from the bodies in the Solid Bodies folder.
linked back to the original part. Each body will be represented by its own Stock feature. Insert into New Part does not add a feature in the FeatureManager of the source part. Therefore, any features you add to the bodies in the source part will propagate to the saved files.	

Split Part Allows you to split a single solid body into multiple bodies.	Adds a Split feature in the FeatureManager of the source part. The bodies are saved at the point in the part history where the Spl it feature appears. Any subsequent features added to the source part will not appear in the saved files. Any features added before the Split feature will propagate to the saved files.
Save Bodies Like Split Part without the splitting tools. It the part and lets you write them out as parts.	Adds a Save Bodies feature in the FeatureManager of the source part. The bodies are saved at the point in the part history where the Save Bodies feature appears. Any subsequent features added to the source part will not appear in the saved files. Optionally you can generate an assembly from the saved parts.
Create Assembly Collects the part files saved by one or more Spl it features and creates a new assembly from them.	This is a convenience tool that automates generating an assembly from a Split feature. You could do exactly the same thing by manually opening a new assembly and adding all the saved parts. Create Assembly does not add a feature in the FeatureManager of the source part. Therefore, it is not parametric in the sense that if you create more solid bodies later, they do not automatically appear in the assembly.

Using Split Part with Legacy Data

Before

After

1 Import an IGES file.
Click Open or click File, Open.
For Files of type, select IGES (*.igs, *.iges).
Select the files Legacy Data.igs and click Open.

2 Cutting plane.
Define a reference plane that is parallel to the Front plane and that passes through the vertex shown.

This will be used as the cutting plane in the Split Part command.

Using the plane created in the previous step, split the part into two separate bodies.

The bodies are shown here in different colors for illustration purposes.

3 Split Part.

4 Move/Copy Body.

Click Move/Copy Bodies 图 or click Insert, Features, Move/Copy.

Use Coincident and Distance mates to rotate the body $\mathbf{1 8 0}{ }^{\circ}$ and move the body $\mathbf{0 . 7 5 "}$ with respect to the Z axis as indicated by the reference triad.

Filling the Gap

How you fill in the gap depends on the shape on the part geometry. In this example a simple extrude feature will work. For an example of how a loft feature can be used to fill in a gap, see Merging a Multibody with Loft on
 page 144.

5 Bridge the gap with an extruded boss. Create a sketch on the flat face of the rear body. Use Convert Entities to copy the edges of the face.

Extrude the sketch using the end condition Up To Next.

Be sure the Merge results check box is selected.

This is a variation of the bridging technique shown on page 9.

6 Results.

7 Save and close the part.

Exercise 1: Combining a Multibody Part

Create this part by following the steps as shown.

This lab reinforces the following techniques:

- Multibody solids
- Combining
- Hole Wizard

Units: inches
Procedure
1 Sketch first profile.
Use lines, fillets and offsets.

Extrude the profile 2.25".

Open a new part using the Part IN template and name it Mbody1.

2 Sketch second profile.
Extrude as required.

3 Combine bodies.
Combine the two solid bodies into one.

4 Add features.
Add boss, cut, hole wizard and fillet features.

Finish part with 0.0625 " radius fillets and rounds.

5 Save and close part.

Exercise 2:
Bridging a Multibody Part

Create this part by following the steps as shown.
This lab reinforces the following techniques:

- Multibody solids
- Bridging

Units: millimeters

The design intent for this part is as follows:

1. Part is not symmetrical.
2. Holes are through all.
3. All fillets and rounds are $\mathbf{5 m m}$ radius.

Procedure
1 Create a multibody part.

2 Finish part with bridge technique.

Exercise 3:
 Creating a
 Multibody with
 Mirror Pattern

Create this part by following the steps as shown.
This lab reinforces the following techniques:
■ Multibody solids

- Patterning
- Combining

Units: inches

Open a new part using the Part _IN template and name it Mbody3.
1 Create a multibody part.

2 Create feature. Sketch and extrude the feature shown as a third body.

Procedure

3 Create feature.
Extrude sketch as shown.

4 Combine bodies.
Combine the last two solid bodies.

5 Insert mirror. Mirror the combined body and add a centered boss that merges the bodies into

one.

6 Add mounting lugs.

Add a boss and a cut for the mounting lug. Mirror the body across the model. Merge the lugs.

7 Add features.
Add holes and cuts.

8 Add fillets and rounds.
Finish part with $\mathbf{0 . 0 6 2 5 "}$ radius fillets and rounds.

9 Save and close part.

Exercise 4:
 Creating a
 Multibody with Linear Pattern

Design Intent

Procedure

Create this part by following the steps as shown.

This lab reinforces the following techniques:

- Multibody solids
- Patterning
- Combining

Units: inches
The design intent for this part is as follows:

1. Part is symmetrical.
2. All bars circular section are same radius.
3. Equal spacing of bars.

Open a new part using the Part_IN template and name it Mbody4.
1 Create a multibody part.

2 Save and close part.

Exercise 5: Positioning Inserted Parts

Create this part by following the steps as shown.

This lab reinforces the following techniques:

- Inserting parts
- Move/Copy bodies

■ In context editing

Open an existing part named Base.
1 Insert part.
Insert the part Lug and rotate it as shown.

2 Move body.
Position the part Lug on the part Base as shown.

3 Copy body.
Add another instance of the Lug.

4 Continue.
Add two more copies of the Lug, placed as shown.

5 Combine bodies and add fillets.
Combine all the solid bodies into one. Add fillets as shown.

6 Modify sketch.
Open the Lug part and change a dimension.

7 Propagate change.
Return to the main part.

8 Save and close part.

Exercise 6: Using Indent

Procedure

Create this part by following the steps as shown.

This lab reinforces the following techniques:

- Inserting parts

■ Move/Copy bodies

- Combine feature

■ Indent feature

Open an existing part named Target Body.
1 Insert part.
Insert the part Tool Body and position it as shown in the Front and Top views.

2 Interference.
Check to see that there is an interference between the solid bodies. The volume of interference should look like this.

3 Indent.
Indent the Tool Body into the Target Body using the settings shown below for Thickness and Clearance.

4 Save and close parts.

Exercise 7:
Copying Bodies

Create this part by following the steps as shown.
This lab reinforces the following techniques:

- Inserting parts
- Move/Copy bodies
- Patterning

■ In context editing
Procedure

Open a new part using the Part _IN template and name it Mbody6.
1 Insert parts.
Insert and position $1 \mathrm{~A}, 1 \mathrm{~B}, 2 \mathrm{~A}$ and 2 B parts as shown.

2 Add patterns.
Pattern the solid bodies as shown.

3 Connect bodies.
Create a bridge that connects the bodies without merging.
Pattern bridge with 3 instances.

4 Create plate.
Sketch on the top reference plane to create the plate feature.

Extrude the feature $\mathbf{0 . 2 5 "}$ and Merge result.
5 Add fillets and rounds.
Finish part with $\mathbf{0 . 1 2 5 "}$ radius fillets and rounds.

6 Modify referenced part.

Right-click the feature 2B and choose Edit in Context.

Change the depth of the extrusion to $\mathbf{2 . 2 5 0}$ ".

7 Propagate change.
Return to the main part.

8 Save and close part.

Exercise 8: Split Part

Using the part provided, create multiple parts that are related to the original.
This lab uses the following skills:

- Split Part

Procedure
Use the following procedure:
1 Open the part named USB Flash Drive.
This part represents the conceptual design of the product.
2 Split the part.
Split the part to separate the cap from the remainder of the body.
Name the saved part
Cap - USB Drive.sldprt.

3 Resultant bodies state.
Click Hide bodies. This will hide the cap making it easier to split the remaining body along the parting line.
Click OK.

4 Add a boss.
Create the sketch shown below and extrude a boss a distance of $\mathbf{0 . 1 6 0}$ ".

5 Split the part.

Split the part to create the upper and lower halves of the body. Use the Parting Surface as the trim tool. The surface is hidden. It does not have to be visible in order to use it as a trim tool.

Name the parts as shown in the illustration below.

6 Open the individual parts.
Add any additional design details needed.

7 Create an assembly.

8 Save and close all files.

Upon successful completion of this lesson, you will be able to:

- Explain the difference between sweeping and lofting.
- Create a curve through a set of data points.
- Create a multi-thickness shell.

Create a non-planar curve by projecting a sketch onto a surface.

- Create a variable radius fillet and a face fillet.
- Create boss and cut features by sweeping.

■ Analyze sketches for curvature, minimum radius and inflection points.

- Analyze surfaces with zebra stripes.

■ Model threads.

- Create an axis.

■ Create a 3D sketch.

- Create a hole using Hole Wizard on a non-planar face.

Introduction

Case Study: Bottle

Stages in the Process

This lesson contains case studies that explore different modeling techniques that can be applied to modeling advanced, free-form shapes. Some of the commands and techniques that will be explored are:

■ Sweeping
■ Variable-radius filleting capabilities
■ Analyzing sketches and surfaces

- 3D sketching

Modeling free-form shapes requires some techniques for creating features that are quite unlike the extruded or revolved shapes built in the basic course. This example will go through the steps of creating the molded plastic bottle shown at the top of the page.

Some of the key stages in the modeling process of this part are given in the following list:

- Create the basic shape of the bottle.

This will be done by sweeping an ellipse in such a way that the major and minor axes will be controlled by two guide curves.

- Create a raised outline for the label.

We will sketch the outline of the label area and then project it onto the surface of the bottle. This projected curve will be used as the path for sweeping the raised outline.

- Add the neck.

This is a simple boss extruded upwards from the top of the swept body.

- Fillet the bottom.

The radius fillet on the bottom of the bottle varies from 0.375 " at the two sides to 0.25 " at the center of the front and back.
■ Shell the bottle.
The bottle has two different wall thicknesses. The neck has to be thicker (.060") because of the threads. The body is thinner (.020").

■ Model the threads.

This is another sweeping operation. However, this time a different sort of path is used: a helix.

Sweeping and Lofting: What's the Difference?

Both sweeping and lofting are capable of creating many complex shapes. Which tool you use to build a particular part depends primarily on what design information you have to work with. There are also some general differences between sweeping and lofting that will influence which method to use. In essence:

- Sweeping uses a single profile sketch.
- Lofting uses multiple profile sketches.

Consider the first feature of a plastic bottle such as the one shown in the illustration at the right. If the design data you are working with consists of the two curves that describe the outline of the bottle as seen from the front and side, and the cross section is similar throughout the shape, you can create the feature using sweep, with guide curves controlling the major and minor axes of the elliptical section.

If the design data you are working with consists of a set of cross sections, you can use loft to build the part. This is especially useful when the cross sections are dissimilar although that is not the case in this example.

Starting with this? Use Sweep.

Starting with this?
Use Loft.

Sweeping

Sweep Components

Sweeping can be simple or complex. For example, the spoke of the handwheel in the illustration at the right is swept using a 2D sketch for the path and an ellipse for the sweep section. The sweep section does not vary along the length of the path.

Sweeping can be much more complex than this simple example. Swept features can also incorporate 3-dimensional curves or model edges as paths, and the sweep section can be made to vary as it moves along a set of other curves called guide curves.

Below is a list of the major components used in sweeping, including descriptions of their functions.

- Profile.

Sweeping only supports a single profile sketch. It must be a closed, non-self-intersecting boundary. However, the sketch can contain multiple contours - either nested or disjoint.

- Guide Curves.

Sweeps can contain multiple guide curves which are used to shape the solid. As the profile is swept, the guide curves control its shape. One way to think of guide curves is to visualize them driving a parameter such as a radius. In this illustration, the profile is attached to the guide curve. As the profile is swept along the path, the radius of the circle changes, following shape of the guide.

Creating a Curve Through a Set of Points

Where to Find It

Entering Points "On the Fly"

Curve Through XYZ Points enables you to create a 3-dimensional curve through a series of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ locations. You can enter these locations directly into a spreadsheet-like dialog or you can read them from an ASCII text file. The file should have the file extension *. SLDCRV or * . txt. The curve will pass through the points in the same order as they are entered or listed in the file.

- Click Insert, Curve, Curve Through XYZ Points.

■ Or, click Curve Through XYZ Points on the Curves toolbar.
If you haven't created a text file containing the locations beforehand, you can enter the X, Y, Z coordinates directly into the Curve File dialog. In addition, once you have done that, you can save the point list as a file for reuse. To do this, follow this procedure:

Note
The curve is created outside of a sketch. Therefore, the X, Y, and Z are
interpreted with respect to the Front (XY) coordinate system.
Double-click in the upper-left cell (top row, under the heading Point) and the system will open a row for the first coordinate point using the default values of $\mathrm{X}=0.0, \mathrm{Y}=0.0$, and $\mathrm{Z}=0.0$.

Type in the appropriate values. Use the Tab key on the keyboard to
 move from one cell to another or just double-click each cell in turn.
Double-click in the next cell below Point \#1 to add more rows. If you need to, you can insert a row in the middle of the list. Highlight the row by single-clicking the number in the point column and click the Insert button.

If you anticipate using this data set again, you can save it to a file using the Save button. If you are editing an existing file, Save will overwrite the original file; Save As will save a copy of it.

Reading Data
From a File

Instead of entering the point data directly, we will browse for a file and read the data from it.

The files used here must be ASCII text files. You can use spaces or tabs between the columns of X, Y and Z coordinates. One easy method of creating the file is to use the Notepad accessory that comes with Windows.

Remember: the curve is created outside of a sketch. Therefore, the X, Y, and Z are interpreted with respect to the Front
 coordinate system.
Editing the Curve
If you need to modify the data points associated with a curve created through a data point set, use Edit Feature, the same as you would for any feature. When editing the definition of the curve, you have several options:

- Browse for and substitute a replacement file.
- Edit the existing point list.
- Edit the original file and read it in again.

Procedure Begin by opening a new part using the Part_IN template.
1 Insert curve.
On the Curves toolbar, click Curve Through XYZ Points \mathfrak{Z}.
2 Select the file.
Click on Browse and select the file Bottle from Front.sldcrv from the directory.

The file contents are read into the dialog and separated into columns.

The browser can be set to search for Curves (*. SLDCRV) or Text Files (*.txt).

3 Add the curve.
Click OK to add the curve to the part. A smooth spline curve is created using the points contained in the file as shown at the right in an Front view. A feature named Curve1 appears in the FeatureManager design tree.

4 Create the second guide curve.
Click Curve Through XYZ Points \because again.
From the browser, select the file Bottle from Side.sldcrv.
Click OK to create the second guide curve. This curve represents the shape of the bottle when viewed from the side.

The illustration at the right shows both guide curves in a Trimetric view orientation.

5 Sweep path.

Select the Front reference plane and open a sketch.

Sketch a vertical line, starting at the Origin. Dimension this line to a length of $\mathbf{9 . 1 2 5 "}$.

This will be used as the sweep path.

Introducing: Insert Ellipse

Important!

Sketching an ellipse is similar to sketching a circle. Position the cursor where you want the center and drag the mouse to establish the length of the major axis. Then release the mouse button. Next, drag the outline of the ellipse to establish the length of the minor axis.

To fully define an ellipse you must dimension or otherwise constrain the lengths of the major and minor axes. You must also constrain the orientation of one of the two axes. One way to do this is with a Horizontal relation between the ellipse center and the end of the major axis.

Where to Find It Click Tools, Sketch Entity, Ellipse.

Or, click Ellipse (0) on the Sketch toolbar.

6 Sweep section.

Select the Top reference plane and open a sketch.

On the Sketch toolbar, click the Ellipse tool (3) and sketch an ellipse with its center at the Origin.
7 Relating the sweep section to the guide curves.
We want the profile of the sweep section to be related to the guide curves. This way the guide curves will control the size of the ellipse. We can do this using a Pierce or a Coincident relation. This is why we created the guide curves before the profile.
Press the Ctrl key, and select the point at
 the end of the major axis and the first guide curve. Right-click, and select Pierce. Repeat this procedure for the minor axis and the second guide curve.
8 Fully defined.
Since the Pierce relation on the major axis defines its size and orientation, we do not need to further constrain it. If we had used a dimension to control the size of the major axis, we would need to control the orientation of the major axis in some way.
9 Exit the sketch.
The sweep section is now fully defined so you can exit the sketch. We are now ready to sweep the first feature.

Unlike extruded or revolved features, swept features cannot be created while active in a sketch. You must exit the sketch first. This is because swept features require multiple sketches which you identify individually.

Sweeping

Introducing:

Insert, Boss, Sweep

Where to Find It

Sweep Dialog

The Sweep option creates a cut or boss that uses at least two pieces of geometry, a Profile and a Path. The profile (usually a closed sketch) is the cross sectional shape that is pushed along the path. The path (usually an open contour sketch or curve) is used to orient the profile in space. Other components can be added to further define the sweep. One or more Guide curves can be used to shape the profile as it moves along the path. There are several options for the profile sketch.

Closed Contour	Nested Contours	Disjoint Contours

Insert, Boss, Sweep creates a feature from two sketches: a sweep section and sweep path. The section is moved along the path, creating the feature.

Click Sweep Boss/Base on the Features toolbar. - Or, click Insert, Base/Boss, Sweep.

The Sweep dialog contains selection lists for several types of objects: Profile, Path and Guide Curves. It also has options to determine how the system orients the sections while sweeping.
The dialog is divided into five sections or group boxes:

- Profile and Path
- Options
- Guide Curves
- Start/End Tangency
- Thin Feature

Options The Options group box contains one or more of the following controls

 depending whether the sweep is a boss or a cut, a base feature, or a multibody:
- Orientation/twist type

With a simple sweep, the orientation of the profile is controlled by choosing either Follow path, Keep normal constant, Twist along path or Twist along path with normal constant.
If the sweep includes guide curves, the orientation of the profile can be controlled by choosing either: Follow path and 1st guide curve, Follow 1st and 2nd guide curves. This is optional.

■ Merge tangent faces

With this option on, it merges tangent faces together, creating an approximation. Planar, cylindrical and conic faces are not merged.

Show preview

With this option on, it displays a shaded preview of the sweep, changing as each component is added. The more complex the sweep, the longer a preview takes.

- Merge result

With this option off, the sweep generates an additional solid body.
Align with end faces
With this option on, it will continue the sweep beyond the geometric end. For more information, see Align with End Faces on page 104.

10 Sweep PropertyManager.

Click Sweep Boss/Base (5), or click Insert, Base, Sweep to access the Sweep PropertyManager.
11 Select profile and path.
Make sure the Profile box is active, and select the ellipse. When you select the profile, the Path box automatically becomes active. Select the vertical line for the path. Callouts appear on each selection.

The preview displays the result without the effect of any guide curves.

12 Guide curves.
Expand the Guide
Curves group box.
Click in the selection list, and select the two curves indicated.

A callout appears only on the last guide you select.

Showing

 Intermediate SectionsWhen sweeping a complex shape, you can see how the intermediate sections will be generated by clicking the Show Sections option. When the system computes the sections, it displays a spin box listing the number of the intermediate section. You can click the up and down arrows to display any of them.

13 Showing Sections.

Click the Show Sections button 四, and use the spin box to display the intermediate sections. Notice how the shape of the ellipse is driven by its relationship with the guide curves.

14 Options.

Expand the Options group box, and make sure that the default Follow Path is selected.

Click OK.

15 Finished sweep.

The swept feature is shown at the right in a Trimetric view.

The Label Shape

The shape of the label is created using a sketch that is projected onto the face of the bottle. The curve that is generated will be used as the Sweep Path of another swept feature. The sketch is already built and has been stored as a library feature.

Library Features
 Library Features are generally applied using the Design Library (see

 the Essentials: Parts and Assemblies manual) but can also be dragged and dropped from the File Explorer or Windows Explorer.
File Explorer

The File Explorer is used to search drives and folders for SolidWorks file types. The files can be dragged and dropped into SolidWorks.

16 File Explorer.
Click the File Explorer tab
Q) of the Task Pane.

Double-click the folders Lesson 2 and Case Study to find the library feature label.

17 Drag and drop.

Show the Front Plane of the part. Drag the label from the File Explorer and drop it on the Front Plane.

18 References.

Select the Sketch Point reference and click the part's Origin. Although this reference is not required, selecting it avoids having to repair the dangling relation. Click OK.

The Library Feature

 FolderTip

The sketch appears in the FeatureManager design tree in a folder named label <1>. The actual sketch cannot be used in this form, it must be removed from the library feature folder.

Dissolve Library Feature can be used to break down the LibFeat folder. This removes the library feature icon and causes each of the features it contained to be listed individually in the FeatureManager design tree.

Working with a Non-planar Path

There are several techniques for creating non-planar paths. During the remainder of this example we will examine the two techniques:

■ Projecting a sketch onto a surface.

- Creating a helix.

Projecting a
Sketch onto a Surface

Introducing:
Insert Projected Curve

Where to Find It

In the next part of this example, we will create a projected curve to use as the sweep path for the label outline on the bottle. We will do this by projecting a 2D sketch onto the curved surface of the bottle. The sketch was created using a Library Feature.

Projected Curve projects a sketch onto a face or faces of the model. When these faces are curved, the result is a 3-dimensional curve. This command can also merge two orthogonal sketches into one 3D curye.

■ Click Project Curve 圆 on the Curves toolbar.
■ Or, click Insert, Curve, Projected.

19 Projected Curve dialog and preview.
Click Project Curve 回, or click Insert, Curve, Projected.
Select the Sketch onto Face(s) option from the list.

20 Selections.

Click in the Sketch to Project list and select the sketch. Click in the Projection Faces list and select the model face.

By default, the system projects the sketch normal to the sketch plane (along the positive Z axis). If you want to project the curve onto the back of the bottle, click Reverse Projection. Click OK.

21 Projected curve.

The system projects the sketch onto the front surface of the bottle. This curve will be used as the sweep path to create a boss to outline the area the label area on the bottle.

22 Sketch the profile.

Change to a Right view and select the Right reference plane. Open a sketch and draw a circle in any convenient location.

23 Pierce relation.

Add a Pierce relation between the center of the circle and the projected curve to define its location. Dimension the circle to 0.125 " diameter.

The projected curve pierces the sketch plane in two places: at the top and the bottom. The system chooses the pierce point closest to where you select the curve. If you
 want the circle located at the top, select the projected curve near the top. It's that simple.

24 Sweep the boss for the label outline. Exit the sketch.

Click Sweep Boss/Base ©. Select the circle as the Profile and the projected curve as the Path.

Click OK.
Notice the system has no difficulty sweeping a feature with the profile located at the middle of a closed path.

25 Add the neck.

Select the top face of the bottle and open a sketch. Use Convert Entities to copy this edge into the active sketch. Extrude the sketch upward a distance of $\mathbf{0 . 6 2 5}$ ".

Variable Radius Filleting

A variable radius fillet runs around the bottom of the bottle. Variable radius fillets are defined by specifying a radius value for each vertex along the filleted edges and optionally, at additional control points along the edges. Variable radius control points operate as follows:
■ The system defaults to three control points, located at equidistant increments of $25 \%, 50 \%$, and 75% along the edge between the vertices. You can increase or decrease the number of control points.

- You can change the position of any control point by changing the percentage assigned to that control point. You can also drag any control point, and its assigned percentage will update accordingly.
- Although there is a visual display of the control points, they are only active if you select them and assign a radius value.
- Inactive control points are red. Active control points are black, and have a callout attached to them indicating the assigned radius and percentage values.

In this case there only a single vertex on the bottom edge of the bottle. Therefore, we will use control points.

26 Fillet the bottom.

Click Fillet 0 on the Features toolbar. For Fillet Type, choose Variable radius.

27 Select the edge.

Select the bottom edge of the bottle. A callout appears at the vertex, and three control points appear along the edge.

For yariable radius filleting, you must select an edge. You cannot select a face.

28 Assign radius value to the vertex.
Click the callout and enter a radius value of $\mathbf{0 . 3 7 5 "}$ "
The assigned radius also appears in the vertex list in the PropertyManager.
The buttons Set Unassigned and Set All are used to assign one radius value to many vertices (not control points) at once. If most, but not all, vertices have the same radius, it is faster to assign the same value
 to all of them, and then change only those that require a different value.

29 Radius values.

Click the control points and use the callouts to set the radius \mathbf{R} to $\mathbf{0 . 2 5 "}$ and $\mathbf{0 . 3 7 5 "}$ as shown. Leave the positions \mathbf{P} at their default values of $\mathbf{2 5 \%}, \mathbf{5 0 \%}$, and 75% as shown in the illustration at the right.

Click OK to create the fillet.

30 Result.

The result of the variable radius fillet is shown at the right. The fillet forms a closed loop varying smoothly from 0.375 " to 0.25 " to 0.375 " to 0.25 " and back to 0.375 " at the start.

Another Approach to Filleting

This portion of the example was based on the assumption that the design intent called for exact radius values at specific locations around the base of the bottle. Let's consider a different approach based on a different design requirement.
Look at the bottle from the front. The edge of the fillet, also called the rail, is not straight across the front of the bottle. Let's examine how we would fillet the edge if the design requirement specified this edge must be straight and located 0.375 " from the bottom face. In other words, rather than have the fillet define the rails, we will define where the rails should be, and let the system compute the fillet radius.

A split line is used to divide model faces into two. Split lines are created like any other sketched feature. They can be one or more connected sketch entities. They must be oriented so that they will pass through model faces when projected normal to the sketch plane.
Insert, Curve, Split Lines uses one or more curves to split one model face into two. The curves are sketched on a plane and projected onto the faces to be split.

Where to Find It ■ Click Insert, Curve, Split Line.

- Or on the Curves toolbar, click Split Line 图.

Right-click the variable radius fillet, and select Delete Feature.

32 Sketch the split line.

Select the Front reference plane, and open a sketch. Sketch a horizontal line making its ends coincident to the silhouette edges of the bottle. Dimension it as shown in the illustration.

33 Projection split line.

Click Split Line 图, or click Insert, Curves, Split Line. Since we are still active in the sketch, the Projection option is automatically chosen, This option projects the curve through the model onto the selected faces.

34 Select faces.

Click in the Faces to Split list to activate it, and select the face that forms the main body of the bottle.
Make sure the Single direction check box is cleared. Since the sketch is on the Front plane, it is "inside" the bottle. The sketch must be projected in both directions to completely split the face. Click OK to complete the command.

35 Results.
The horizontal sketch line breaks the single face into two faces.

Face Fillets
Introducing:
Face Fillet

Where to Find It

A face fillet differs from an edge fillet in that instead of selecting a edge, you select two sets of faces. The advanced options enable you to use geometry to define the radius of the fillet instead of specifying a numeric radius value. This is very powerful.

The Fillet command has an additional group box, Fillet Options, where a Hold Line can be assigned to define the fillet's tangent edge or rail. Defining the rail of the fillet defines the fillet's radius. In this example, the edge created by the split line will be used.

- Face Fillet is located on the Fillet PropertyManager.

36 Insert Fillet.
Click Fillet (190. In the Fillet Type group box, choose the Face Fillet option.

Since the Hold line will define the radius, you do not need to enter a radius value. Also, when you expand the Fillet Options group box and select the hold lines, the radius field disappears.

37 Select the faces.
Verify that the Face Set 1 selection list is active and select the bottom face of the bottle.

Activate the selection list for Face Set 2 and select the face created by the split line.

38 Fillet Options.

Expand the Fillet Options group box. Click in Hold line selection list, and select the edge created by the split line.
Click OK to create the fillet.

39 Results.
The face created by the split line (Face Set 2) is completely removed. The fillet is created with a variable radius defined
 such that the fillet ends exactly on the hold line.

Analyzing Geometry

What is Curvature?

Introducing: Display Curvature

SolidWorks has several tools that are used to obtain information and to assess the quality of curves and surfaces. They include:

- Display Curvature

- Show Curvature Combs

Show Minimum Radius
Show Inflection Points

Zebra Stripes

To avoid getting too deep into mathematics, we will use this working definition: Curvature is the reciprocal of the radius.

If a surface has a local radius of 0.25 , it has a curvature of 4 . The smaller the curvature value, the flatter the surface.

Displays the faces of the model rendered in different colors according to their local curvature values. You can assign different curvature values to the scale of colors. Red represents the largest curvature (smallest radius) and black represents the smallest curvature (largest radius).

Where to Find It	Click Curvature \square on the View toolbar. Or, click View, Display, Curvature. You can display the curvature for selected faces by right-clicking the face, and selecting Curvature.

Displaying the curvature can be system resource intensive. In many cases you can improve performance by displaying the curvature only on the face or faces that you want to evaluate.

40 Display Curvature. Click View, Display, Curvature. The part is rendered in colors according to the curvature of the faces. As you move the cursor over a face, a print out appears giving both the curvature and radius of curvature values.

41 Look at the fillet.

Notice the dramatic change
in color from the body of the bottle to the fillet around the bottom. This indicates that although the fillet is tangent to the body, it is not curvature continiuous. This means the faces do not have the same curvature at the edge where they meet.

42 Turn off curvature display.
Click View, Display, Curvature to turn off the curvature display.

Show Curvature Combs

Introducing: Show Curvature Combs

Provides visual representation of the slope and curvature of most sketch entities. You can use Show Curvature Combs to evaluate splines before they are used to sweep or loft solid features. You can also indirectly evaluate curved faces by generating intersection curves and then evaluating the curves.
Show Curvature Combs gives a graphic representation of the curvature in the form of a series of lines called a comb. The length of the lines represents the curvature. The longer the line, the greater the curvature (and smaller the radius).

When the comb crosses the
 curve, it indicates an inflection point. An inflection point is where the curve changes direction. This only applies to splines.

You can use Show Curvature Combs to learn other things about how curves are connected．Look at the illustration at the right．The two sketch entities are a circular arc and a quarter of an ellipse．
 The two curves are tangent but not matched in curvature．This is indicated by the fact that the curvature lines are the common endpoint are：
－Collinear（indicates tangency）．
－Not the same length（different curvature values）．
In the illustration at the right，the two entities are not tangent as indicated by the fact that the curvature lines at the
 The curvature comb remains visible when you close the sketch（unless the sketch has been made into a feature）．To remove the display，right－click the sketch entity，and select Show Curvature Combs again from the shortcut menu to remove the check mark．

Where to Find It

Intersection Curves

Introducing： Intersection Curve

Where to Find It
－Click Show Curvature Combs $⿴ 囗 㐅$ on the Spline Tools toolbar． －Or，right－click the sketch entity，and select Show Curvature Combs．

Show Curvature Combs only works on sketch entities．In situations where you do not have a sketch entity，you will have to apply other techniques．For example，to evaluate a face or surface，one technique is to generate an intersection curve．
Intersection Curve opens a sketch and creates a sketched curve at the following kinds of intersections：
■ A plane and a surface or a model face．
－Two surfaces．
－A surface and a model face．
－A plane and the entire part．
－A surface and the entire part．
－Click Intersection Curve ${ }_{0}$ on the Sketch toolbar．
■ Or，click Tools，Sketch Tools，Intersection Curve．

43 Intersection curve.

Select the Front Plane reference plane and open a sketch.

Click Intersection Curve on the Sketch toolbar.

Select the face of the fillet and the main body of the bottle.

44 Results.

The system generates intersection curves between the sketch pane and the selected faces. Two sets of intersection curves are created because the reference plane intersects the faces in two locations. Only one set is needed for this example.

45 Turn off the intersection curve tool.

Click Intersection Curve again to turn off the tool.

46 Show Curvature Combs.

Right-click one set of the intersection curves and select Show Curvature

Combs.

Note the following:

- The fillet has a circular cross section as indicated by the curvature comb.
- The fillet and the side of the bottle are matched in tangency.
- The fillet and the side of the bottle are not matched in curvature as indicated by the different lengths of the curvature combs.

The color of the curvature comb is controlled by Temporary Graphics, Shaded which is listed under Tools, Options, System Properties, Color, Depending on the color of the viewport background, you may want to change the temporary graphics color for maximum visibility.
47 Modify Curvature Scale.
Right-click the intersection curve and choose Modify Curvature Scale. Slide the bar right (decrease) or left (increase) to change the scale of the curvature combs.

Show Minimum Radius

Where to Find It

Show Inflection

Points

Show Minimum Radius (of curvature) can be used to graphically display the position and value of the minimum radius of curvature on the curve. This is important information for shelling and offset geometry.

■ Click Show Minimum Radius $⿴ 囗 \rightarrow$ on the Spline Tools toolbar.
■ Or, right-click the sketch entity, and select Show Minimum Radius.

Inflection Points are those points on a curve where the curvature changes direction, shown in the curvature comb display as a crossover. These points can be shown on the curve.

Where to Find It ■ Click Show Inflection Points $\not 母$ on the Spline Tools toolbar.

- Or, right-click the sketch entity, and select Show Inflection Points.

48 Minimum Radius.

Right-click the curve and select
Show Minimum Radius. A graphic circle, tangent to the curve, appears on the screen. A radius value is attached to the circle.

49 Inflection Points.
Right-click again turn off Show Curvature Combs.

Turn on the Show Inflection Points option.
A small double facing arrow symbol appears at each inflection point in the curve.
50 Turn off the displays.
Right-click the intersection curves, and select Show Inflection Points and Show Minimum Radius.

51 Exit the sketch.

52 Rollback.

Right-click the sketch, and select Rollback.

Introducing: Zebra Stripes

What is a Singularity?

Boundary

 Conditions
Where to Find It

Zebra Stripes simulate the reflection of long strips of light on a very shiny surface. Using zebra stripes you can see wrinkles or defects in a surface that may be hard to see with a standard shaded display. Also, you can verify that two adjacent faces are in contact, are tangent, or have continuous curvature.

Properly interpreting the zebra stripe display requires some explanation. To illustrate, we will look at some examples using a box with a fillet.

The first point to consider is the pattern of the stripes. By default, the part appears to be inside a large sphere that is covered on the inside with strips of light. The zebra stripes are always curved (even
 on flat faces) and display singularities.
A singularity is where the zebra stripes appear to converge to a point.

The next point to consider is how the zebra stripes are displayed where they cross the boundaries of faces. Evaluating the zebra stripe display will give you information about how the faces within a part are blended one into the other.

There are three boundary conditions:

- Contact - the stripes do not match at the boundary.
- Tangent - the stripes match, but there is an abrupt change
 in direction or a sharp corner.
- Curvature continuous - the stripes continue smoothly across the boundary. Curvature continuity is an option for face fillets.
- Click Zebra Stripes \mathbf{N} on the View toolbar.
- Or, click View, Display, Zebra Stripes.

53 Zebra stripes.

Click View, Display, Zebra Stripes.
Rotate the view and watch how the pattern of stripes changes. Pay particular attention to how the stripes blend from the face of the bottle to the fillet. The fillet is matched in tangency, but not curvature.

Tip
Save this view display state so you can return to it later.

Curvature Continuous Fillets

The Curvature continuous option for face fillets can create a smoother transition between adjacent surfaces. Only face fillets can be curvature continuous. There are two ways to specify the radius of a curvature continuous, face fillet:

1. Specify a Radius value.
2. Use the Hold line option. This requires two hold lines, one for each set of faces.
Where to Find It

54 Turn off zebra stripes.

55 Rollback.

Right-click the fillet, and select Rollback.
56 Second split line.
Open a sketch on the bottom face and create an offset of $\mathbf{0 . 3 7 5}$ ". Use this sketch to split the bottom face.

Note

This will cause an error in the next step because the split line eliminates one of the faces that was selected for the face fillet.

57 Roll forward and Edit Feature.

One of the face set lists will be empty. Click in that list, and select the face created by the split line.

Click in the Hold line list, and select the edge
 of the face for the second hold line.

Click Curvature continuous, and OK.

58 Inspect the curvature.

Roll forward and examine the curvature of the intersection curves. Notice particularly how the curvature display for the fillet has changed. The unequal lengths of the curvature comb indicate that the fillet is not circular in cross section. This is understandable.
Gurvature continuous fillets are not circular. Also, the last comb element on the body and the first element on the fillet are the same length. This indicates that the fillet is curvature continuous with the body of the bottle.

59 Delete the sketch.
Delete the sketch which contains the intersection curves. We do not need it any more.

60 Zebra stripes.

Click View, Display, Zebra Stripes.
Examine how the stripes blend from the body of the bottle to the fillet.
61 Turn off zebra stripes display.

Filleting the Label Outline

The next step is to create a fillet around the inside and outside edges of the label outline, shown here in red.

Selecting Edges Filleting (other than a face blend fillet) depends on selecting edges. There are a number of different ways to select edges. You can:

- Select individual edges. If Tangent Propagation is enabled, selecting one edge will select other edges that form a tangent chain.
■ Select a face. Selecting a face will fillet all the edges of that face.
- Select a loop.

Consider the examples below:

Select Face	Select Edge	Select Loop	Select Loop Click the handle to select the edges of the adjacent face.

What is a Loop?
A loop is a set of connected edges in a face. In a solid, an edge is always the boundary between two faces. Therefore, when you use loop selection on an edge, there are always two possible results. A handle points to the face whose edges are being selected. Clicking the handle selects the edges of the adjacent face.

Introducing: Select Loop

Where to Find It

Select Loop can be used to select multiple, connected edges that constitute one loop of a face.

- Right-click the edge, and select Select Loop.

62 Fillet the label outline.
Run a 0.060" radius fillet around the inside and outside edges of the swept label outline. This fillet, shown here in red, has to be added before the bottle is shelled.
Experiment with different ways of selecting the edges to be filleted:

- Selecting tangent edges
- Selecting a face
- Selecting a loop

Multi-thickness Shell

The Shell Feature command gives you the option of creating a multithickness shell, in which some walls are thicker (or thinner) than others. You should decide what thickness represents the usual case, which is applied to most faces. Then, you should determine what thickness represents the exceptions, applied to fewer faces. In the case of the bottle, all faces are 0.020 " thick except the neck, which is 0.060 ".

Shell the Bottle

Create a multi-thickness shell, removing the top of the bottle neck. Use a wall thickness of $\mathbf{0 . 0 6 0}$ " for the neck and $\mathbf{0 . 0 2 0}$ " for all the other faces.

63 Shell command.
Click Shell 圆 on the Features toolbar, or click Insert, Features, Shell.

Set the Thickness to $\mathbf{0 . 0 2 0 "}$ as the default.

For the Faces To Remove, select the top face of the bottle neck.

64 Multiple thickness.

Expand the Multi-thickness Settings section. Face selections here will not be the default thickness.

65 Select thicker faces. Click in the Multi-thickness Faces field and select the outside face of the bottle neck. Set the thickness to $\mathbf{0 . 0 6 0 "}$.

Click OK to create the shell.

66 Results shown in section view.

The illustration at the right shows a section view, viewed from the back.

67 Save your work.

We have invested a lot of time into this case study. Now would be a good time to save the file.

Performance Considerations

When working on a part like this one, performance tends to slow as the geometry gets more complex. Sweeps, lofts, variable radius fillets, and multi-thickness shells in particular have an impact on system resources and performance. There are, however, some steps you can take to minimize this impact and optimize system performance.
Performance Settings

The Performance tab for Tools, Options, System Options contains settings which affect all documents.

「 Update mass properties while saving document
U Use shaded preview
Г Use Software OpenG.

Turning off shaded/dynamic previewing and limiting updates to affected faces can speed up the process.

Image Quality settings for Shaded and Wireframe also have an impact on system performance. Use the lowest possible settings that still give acceptable image quality.

Suppressing
Features

Parent/Child
Relationships

Accessing the Suppress Command

Suppressing a feature causes the system to ignore it during any calculations. Not only is it removed from the graphic display, the system treats suppressed features as if they aren't even there. This will significantly improve system response and performance when working with complex parts.
Parent/child relationships affect suppressing features. If you suppress a feature, its children will automatically be suppressed also. When you unsuppress a feature (turn it back on again) you have the option of leaving its children suppressed or unsuppressing them as well.

The second implication of parent/child relations and suppressed features is that you cannot access or reference any of the geometry of a suppressed feature. Therefore, you need to give careful consideration to modeling technique when you suppress something. Don't suppress a feature if you will need to reference its geometry later.

There are several ways to access the Suppress command:

- On the Features toolbar click Suppress 凧.
- On the pull-down menu click Edit, Suppress.
- On the right-mouse menu click Feature Properties.

On the right-mouse menu click Suppress.
Press Esc to interrupt the regeneration of a part. This also works when opening parts, during rollback, and so on.
When you interrupt the regeneration of a part, the system completes regeneration of the current feature and then places the rollback bar after that feature.

68 Suppress features. In the FeatureManager design tree, select the features for the label outline (Sweep2), the split line features (Split Line1 and Split Line2), the face blend fillet (Fillet1), the fillet around the label outline (Fillet2) and the multi-thickness shell (Shell1).

Click Suppress ${ }^{\text {D }}$ on the Features toolbar, or click Edit, Suppress. The features are removed from the graphics window and grayed out in the FeatureManager tree.

Modeling Threads

Creating a Helix

Introducing: Helix and Spiral

Models can contain two types of threads: standard or cosmetic threads, and nonstandard threads. Standard threads are not modeled in the part. Instead, they are represented in the model and on the drawing using thread symbols, drawing annotations, and notes.

Nonstandard threads should be modeled. These threads, like the threads on the neck of this bottle, cannot simply be specified by a note on a drawing. Model geometry is needed because downstream applications such as NC machining, rapid prototyping, and FEA require it.
A thread is modeled by sweeping a profile along a helical path. The helix can also be used to sweep springs and worm gears.

The major steps in modeling threads are:
■ Create the helix.
The helix is based on a sketched circle tied to the diameter of the neck.

- Create the sketch for the cross section of the feature.

The sketch is oriented with respect to the helix and penetrates the neck.

- Sweep the sketch along the path (helix) either as a boss or a cut feature.
In this example, the threads are a swept boss.
Insert, Curve, Helix/Spiral creates a helical 3D curve based on a circle and definition values such as pitch and number of revolutions. The curve can then be used as a sweep path.
- Click Helix and Spiral on the Curves toolbar. Or, click Insert, Curve, Helix/Spiral.

Procedure

In the remainder of this example, we will build the threads on the neck of the bottle as shown at the right.

69 Offset plane.

Create a reference plane offset 0.10" below the top of the bottle neck. This is where the threads will start.

70 Insert sketch.

With this plane selected, open a new sketch.

71 Copy the edge.

Copy the edge of the bottle neck into the active sketch using Convert Entities This circle will determine the diameter of the helix.

72 Create the helix.

Click Helix and Spiral 8 . The Helix Curve dialog is used to specify the definition of the helix. The threads have a Pitch of $\mathbf{0 . 1 5}$ " for $\mathbf{1 . 5}$ Revolutions. The threads are Clockwise and go down the neck from a Starting Angle of $\mathbf{0}^{\circ}$.

As you change the parameters of the helix, the preview graphics update to show the result.

Click OK to create the helix.

73 Insert a sketch.
Using another library feature, insert the sketch used for the thread profile. Insert the library feature thread.sldlfp onto the Right reference plane.

74 Relations.

Edit the sketch of the library feature.
Create a relation of Collinear between the horizontal centerline of the sketch and the plane Plane1.

Use a silhouette edge to add a Collinear relation between the vertical centerline and the outer edge of the model. The sketch is now fully
 defined. Exit the sketch.
75 Sweep the threads. Click Sweep Boss/Base Select the sketch as the sweep section, and the helix as the sweep path.

Click OK.
If you are wondering what the
 option Align with End Faces is used for, we will cover a simple example explaining its purpose after we finish with the bottle. See Align with End Faces on page 104.

76 Results.

The results of sweeping the thread are shown at the right.

77 Add the finishing details.
An easy way to round off and finish the ends of the thread is to create a revolved feature. Do this for both ends of the thread.

An easy way to create the centerline that is needed for the revolved feature is to use Convert Entities to copy the vertical edge where the thread meets the body of the neck. Then change the line's properties to

Construction Line and you have your centerline.

78 The finished bottle.

The bottle in this illustration has an added lip around the base of the neck. This is a simple extruded boss. Many bottles have this lip to provide a secure grip for those shrink-wrapped, tamper-evident seals that are so common.

Using Twist

The Twist Along Path option can be used with Sweep to twist the Profile around the Path and move along it.

The twist can be defined by a value of Degrees, Radians or Turns along the entire length of the path.

1 Open part.
Open the part Twisted Ring. It contains two sketches:

- Sketch2 is the Profile

■ Sketch3 is the Path

2 Sweep.

Click Cut Sweep 圆 and create a simple cut sweep using the default Follow Path option.

3 Edit Cut-Sweep1 feature.
Edit the Cut-Sweep1 feature and set the Orientation/twist type to Twist Along Path. Use Define by: Turns and 15 turns.
Click OK.

Completed.

Complete the model by adding a R0.013"fillet to the edges of the cut feature.

Align with End Faces

You are probably wondering what the option Align with End Faces is used for. Consider this simple example. Suppose you wanted to create a cut by sweeping a profile along the edge of a model as illustrated at the right.

If you use Align with End Faces, the cut continues all the way through to the end face of the model. This is similar to the Through All end condition used in extruded features. This is usually desirable and is why this option is selected by default - when you are sweeping a cut.

If you do not use Align with End Faces, the cut terminates when the profile reaches the end of the path, leaving a small lip of uncut material.

The reason we did not use Align with End Faces when sweeping the threads is because there were no end faces for the boss to align with. Using it in that case could have forced the system to give an
 incorrect result. Fortunately, Align with End Faces is deselected by default when sweeping a boss.

Sweeping Along Model Edges
Propagate Along Tangent Edges

There is something else this example shows: model edges are valid entities for a sweep path. They can be selected directly, without copying them into a sketch.

When you select a model edge as a sweep path, an additional option becomes available in the Sweep dialog. This option is Tangent propagation and it serves the same function as the similar option in filleting. If you select a single segment of the edge, this option causes the sweep to continue along the adjacent, tangent edges.
The sweep command only allows you to select a single entity for the path. Therefore, you cannot use the right-mouse menu option Select Tangency.

What if the Edges Aren't Tangent?

Consider a situation where you want to run a swept feature around a number of edges, not all of which are tangent. The Sweep Path selection list only accepts one selection. There is no way to select multiple edges. And since some of the edges are not tangent, they won't propagate.

Introducing:
Composite Curve

Where to Find It

A Composite Curve enables you to combine reference curves, sketch geometry, and model edges into a single curve. This curve can then be used as a guide or path when sweeping or lofting.

■ On the Insert menu, click Curve, Composite.

- Or, click Composite Curve on the Curves toolbar.

1 Composite Curve dialog.
Click Composite Curve ra on the Curves toolbar.

Introducing:

Select Tangency

Where to Find It

Select Tangency is used to select a tangent-continuous chain of edges.

■ Right-click an edge and select Select Tangency from the shortcut menu.

2 Select the edges

Right-click one of the side edges, and choose Select Tangency. All the tangent edges are chosen.

3 Select remaining edges.

Do the same for the other side and add the single edges.

4 Create curve.
Click OK to create the composite curve. The curve is listed in the FeatureManager design tree with its own
 unique icon - \hbar_{1} compaurvel . You can edit the definition of the curve to add or remove edges.

5 Sweep the cut.

Click Swept Cut 圆 or click Insert, Cut, Sweep. Select the circle as the Profile. Select the composite curve for the Path.

Click OK.

3D Sketches

Plane At Angle

You can create 3D sketches by sketching on reference planes or planar faces in a model or assembly. In this example, the 3D sketch will be used as the path in a sweep.

An angled plane will be created using the Plane At Angle option. Note that planar model faces or user-defined coordinate systems can also be used, as this plane is, to orient the geometry of the 3D sketch.

1 New part.

Open a new part using the Part_IN template.

Introducing: Insert Axis

Where to Find It
Insert, Reference Geometry, Axis creates an axis that appears in the FeatureManager. The axis can be renamed and dragged to any length. They are useful when any vector information is required.

- Click Axis on the Reference Geometry toolbar.

■ Or, click Insert, Reference Geometry, Axis.

2 Axis tool.

Click the Axis tool and click the Two Planes ${ }^{6}$ option.

3 Plane geometry.

Select the Right Plane and Top Plane reference planes.

Click OK to add the axis.
The axis appears as Axis1 and will be used to define an angled plane.

4 Angled plane.
Click the Plane tool 图. Select the Right Plane reference plane and the axis. Set the Angle to $\mathbf{3 5}^{\circ}$ and click Reverse Direction if necessary. Click OK.

Name the new reference plane Angle.

5 Open a new 3D Sketch.

Click the 3D Sketch tool 圂 to start a new sketch. Change to the Isometric view. Click View, Axes to see the axis.

6 Sketching a line.

Click the Line tool and start sketching at the Origin of the sketch. Drag the line using the Horizontal marker - to keep it on the X axis of the default $\mathbf{X Y}$ plane. Make the line about $\mathbf{5 0}$ " long.

7 Switch sketch planes.
Deselect the Line tool. Press the Ctrl key and click the plane named Angle in the FeatureManager design tree.
When you start sketching the next line, the XY plane will be aligned with the reference plane named Angle.
8 Continue sketching.
Sketch the next line from the endpoint at the Orig in and move along the axis of the selected plane. Make the line about $\mathbf{2 0 "}$ long.
Depending on how the plane named Angle was defined, you will be sketching along either the X or the Y axis. In the illustration at the right, the line is sketched along the horizontal X axis.

9 Continue to sketch in the plane.
Continue to sketch the lines on the reference plane named Angle. The horizontal line should be about $\mathbf{2 5 "}$ long.
Stop the last line on the axis. This adds a Coincident relation between the end of the line and the axis.

10 Switch sketch planes.

Deselect the Line tool. Hold down Ctrl and select the Top plane.
Click the Line tool again and sketch along the X axis of Top, stopping near the end of the first line.

Tip
To switch between standard planes (Top, Front and Right) you can also press the Tab key.

11 Along Z Relation.

Add a relation between the endpoints of the first and last lines. Use the Along Z $\underset{\star}{*}$ relation because they should both be aligned along the \mathbf{Z} axis of the default plane, Front.

12 Dimensions.

Add dimensions as shown.
Dimension the true length of three lines. Because of the relations, the sketch will be fully defined.

13 Fillets.

Add fillets to the set of lines using the sketch fillet tool.
Add two pairs of fillets radius
$5 "$ and 10 " as shown.
14 Exit the 3D sketch.

Multiple Contours in a Sweep

Sweep can use a multiple contour sketch as the Profile. The rules are similar to those used for an extrusion.

15 Profile.

Create a plane at the end of the sketch line and create two circles to represent the ID and OD of the tube.

16 Sweep.
Sweep a boss feature using the circles as the profile and the 3D sketch as the path.

Using the Hole Wizard on Nonplanar Faces

The Hole Wizard is used to create cuts in the form of standard holes. It can also be applied to non-planar faces with a 3D Sketch.

17 Zoom in.
Zoom in on the left open end of the model. Select the cylindrical face.

18 Hole Wizard. Click the Hole Wizard and set the properties for the counterbore as shown.
Click Next.

19 Hole center.
A point is located on the face of the model, Coincident to it. The sketch is a 3D sketch.

20 Location.

Locate the point Coincident to the Top reference plane and 1 " from the end face.
In a 3D sketch, you can dimension directly to faces and edges of the model. To create the dimension, dimension between the point and the flat, end face of the model. Click Finish.

21 Save and close the file.

Exercise 9:

Sweeps without Guides

Cotter Pin

Paper Clip

Create these three parts using swept features. These require only a path and a section, no guide curves.
Units: millimeters
The Cotter Pin uses a path that describes the inner edge of the sweep.

The Paper Clip is defined by a path that describes the centerline of the sweep.

The Mitered Sweep is defined by a path that describes the outer edge of the sweep.

Exercise 10:

 AttachmentDesign Intent

Procedure

Note

2 Plane normal to curve.
Create a plane that is normal to the endpoint of the upper line of the Layout sketch.
cylplane
3 Plane through 3 points.
Create another sketch on the Top reference plane and add a short yertical line from the origin.

Exit the sketch.
Using the Through Lines/ Points method, select the endpoints of this line and the sharp corner of the Layout sketch, to define another plane.

Name this plane intake.

4 Sketch the profile.

Sketch on the intake plane to create the profile of the nozzle.

Use symmetry to create the sketch and tie it to the Layout sketch.

5 Axis.
Create an axis defined by the intersection of the Front and Top reference planes.
This will be the vector for the extrude direction.

6 Extrude.
Extrude the profile sketch using the Blind end condition. Select the axis for the Direction of Extrusion. Set the Depth to $\mathbf{2 8 m m}$.

7 Cylinder.
On the cyl plane, sketch a $\mathbf{3 4 m m}$ diameter circle, centered on the end of the upper line in the Layout sketch.
This circle will be used to extrude a cylinder.

End Condition: Up to Surface

On-line Help

Ideally, the end condition of the cylinder should be such that it stops exactly flush with the front face of the first feature. The end condition most people think of in this type of situation is Up to Next. However, that will not work in this case.

On-line help is a vital resource for learning more about the SolidWorks software. Refer to it whenever you need to find the answer to a particular question. In this case, use the on-line help to look up the text string "end condition extrude". This will give you a concise explanation of the different end conditions for extruded features.

When you extrude a profile, you need to select a Type from the Extrude Feature dialog box.

Up to Surface
From the on-line help it is easy to see that the end condition Up to Surface meets our needs. Up to Surface extends the extrusion from the sketch plane to the selected surface. The surface can be a face, a reference plane, or a stand-alone surface.

8 Up to Surface. Click Insert, Boss, Extrude. Verify from the preview that the boss is extruding in the correct direction. If it is not, click Reverse Direction.

From the End Condition: list, select Up to Surface.

Select the front face of the swept first feature.

Select Draft, and set the angle to $\mathbf{2}^{\circ}$, and check Merge result.
Click OK.
9 Multiple-thickness Shell.
Shell the solid 2mm to the inside, selecting the end faces for removal. Select the cylindrical face and set it to 4 mm .

10 Fillets and rounds.

Add fillets and rounds to the outside of the solid body as shown.

11 Variable radius fillet.

Add a variable radius fillet to the set of tangent edges shown. The fillet varies from $\mathbf{5 m m}$ to 10 mm at the middle, and back to 5 mm .

This technique simplifies assigning the values to the yertices:

1 Click Fillet
2 Click Variable radius.
3 Right-click an edge, and pick Select Tangency.
4 Set the Radius to 5mm, and click Set AlI.
5 Set the number of control points to 1.
6 Click in the Items To Fillet list.
7 Use the arrow keys on the keyboard to cycle through the list of selected edges. As you do so, the control point will move from one edge to another.

8 When the control point appears on the correct edge, click it in the graphics area. Then, use the callout to assign the $\mathbf{1 0} \mathbf{m m}$ radius.
9 Click OK.

10 Fillet.
Add $\mathbf{5 m m}$ radius fillets to the edges shown.

11 Inner fillets and rounds.
Add fillets and rounds of $\mathbf{3 m m}$ on the inner edges of the part as shown in the section view at the right.

12 Save and close the part.

Exercise 11: Hanger Bracket

Design Intent

Create this by following the steps as shown.
This lab uses the following skills:

- Multibody solids

■ Sweep using guide curves

- Merging bodies

Units: inches

The design intent for this part is as follows:

1. All fillets and rounds are 0.125 ".
2. Part is symmetrical with respect to the parting line.

3. Draft is 3°.

Open a new part using the Part_IN template and name it Hanger Bracket.

1 Create sweep ends.
Create two extruded solid bodies to represent the ends of the sweep.

2 Create sweep path.
The path and the guide curve must each be in separate sketches.

Create the path sketch using the existing geometry.

3 Create guide curve.
Create the guide curve sketch using the existing geometry including the path sketch.

Tip
If you sketched all the geometry in one sketch, it can still be used. Change the two lines and the arc that form the guide curve to construction geometry. Open a new sketch for the guide curve. Use Convert Entities to copy the guide geometry into the new sketch.
4 Create sweep section.
Create the sweep section as a sketch using the dimensions shown at the right.

5 Insert sweep.

Using the sketches, sweep the feature. Use the Merge result option to combine all the solid bodies.

6 Create through holes.
Add two through holes cuts to the model.

7 Insert fillets and rounds.
Add $\mathbf{0 . 1 2 5 "}$ fillets and rounds, shown here in red, to complete the model.

Filleting by feature works best.
8 Save and close the part.

Exercise 12:
Tire Iron

Design Intent

Procedure

Create this by following the steps as shown.

This lab uses the following features:

- Sweep feature
- Revolve feature
- Sketch fillets
- Polygon tool
- Dome feature
- Reference planes

The design intent for this part is as follows:

1. Regular end is symmetrical using angled cuts.
2. Wrench end is created using a hexagon cut.
3. Section is constant diameter.

Open a new part using the Part_IN template and name it Tire Iron.
1 Create the sweep path.
Create the sketched lines then add the fillet.

2 Insert sweep.

Create a new reference plane and use it to sketch the sweep section sketch. Sweep the profile along the path.

3 Revolved feature.
Create a revolved feature on the angled end of the sweep feature. This boss will hold the hexagon cut.

4 Hexagonal cut.

Create a hexagonal cut using the Polygon tool ©

Dome Feature	The Dome feature lets you deform the face of a model creating either a convex (default) or concave shape.
Introducing: Dome \quadTo create a dome, select the face or faces you wish to deform. Specify a distance and optionally, a direction. By default the dome is created normal to the selected faces. You can select faces whose centroid lies outside the face. This allows you to apply domes to irregularly shaped faces.	
Where to Find lt	■ Click Dome 国 on the Features toolbar.

5 Round the bottom of the cut using the Dome feature.
Click Dome on the Features toolbar.
Clear the Continuous dome check box.
Select the hexagonal face at the bottom of the cut.

Specify a Distance of $\mathbf{0 . 2 5 "}$.
Click Reverse Direction to make the dome
 concave.

Click OK.
6 Through all cut.
Create the flat end of the part using a sketch and a through all cut.

7 Save and close the part.

Exercise 13: 3D Sketching

Procedure

Create this by following the steps as shown. This lab uses the following skills:

- 3D sketching
- Lines and fillets

■ Sweep

Open a new part using the Part_MM template and name it 3D Sketching.
1 New 3D sketch.
Create a new 3D Sketch and change the view orientation to Isometric.
2 Sketch lines.
Click the Line tool and start the first line at the Origin. Sketch the line in the \mathbf{X} direction.

3 Switch planes.

Begin dragging the second line to see the axes. Press the Tab key to switch from the default Front plane to the others. Switch to the Right plane orientation and sketch along the \mathbf{Z} axis.

4 Continue lines.
Continue sketching lines and switching planes so that you are always sketching on \mathbf{X}, \mathbf{Y} or \mathbf{Z} in the appropriate direction.

5 Relation.
Add a Coincident relation between the endpoint and line shown at the right.

6 Dimensions.
Dimension the true length of the lines as shown to fully define the sketch. Select the endpoints of the lines or the lines themselves.

7 Fillets.
Add $\mathbf{2 0 m m}$ fillets at the vertex points.

8 Profile sketch.
Create a new plane using Normal to Curve at the endpoint of the 3D sketch. Sketch a circle of diameter 15mm.

9 Sweep.

Sweep the circle section along the 3D path.

Optional
Edit the profile sketch of the sweep to create a thin wall.
10 Edit sketch.
Edit the profile sketch and add a concentric circle, diameter $\mathbf{2 0 m m}$. Exit the sketch.

11 Modified sweep. The concentric circles form a thin wall in the sweep.

12 Save and close the part.

Exercise 14: 3D Sketching with Planes

Create this part by following the steps as shown.
This lab uses the following skills:

- 3D sketching
- Lines and fillets
- Sweep

Procedure

Open an existing part named 3DSketchAngle.
1 New 3D sketch.
Create a new 3D Sketch and change the view orientation to Isometric.

2 Sketch lines.

Click the Line tool and start the first line at the Origin.
Use the planes Angle 15, Angle 60 and Top to orient and constrain the lines of the sketch.

Add fillets. Use
Link Values to
 make the fillet radii equal.

3 Sweep.
Create a circle profile and use the sweep command to complete the exercise.

4 Save and close the part.

Exercise 15:

 Hole Wizard and 3D SketchesCreate this by following the steps as shown.

This lab uses the following skills:
■ Hole Wizard

- Reference planes
- 3D sketching
- Patterning

Open an existing part named HoleWizard.
1 Reference planes.
Create two new reference planes as follows:
■ Offset Distance - offset 25mm from the Front plane.

At Angle - angle of $\mathbf{1 0}{ }^{\circ}$ using a temporary axis and a model face.

2 Hole size.

Select the curved face of the model and click Hole Wizard 圄.
Choose the settings for the description "CBORE for M6 Hex Head Bolt".

Use the Up To Next end condition.

3 Placement.

Position the hole's locating point in the 3D sketch by making it coincident to both the 25 off and the 10 deg planes.

The axis of the hole is now perpendicular to the face at that point.

Question

Optional

4 Patterns.

The objective is to have 5 holes equally spaced through a total angle of 160°, on both the front and back of the part, for a total of 10 holes. Do this by patterning the hole.
Should you mirror the hole, and then make a circular pattern of the mirror feature? Or should you
 make a circular pattern, and then mirror the circular pattern?
Write an equation that determines the proper angle for the circular pattern based on the plane angle. At right, the plane angle is 20°.

5 Save and close the part.

Upon successful completion of this lesson, you will be able to:

- Create a boss by lofting between profile sketches.
- Model free-form shapes using advanced lofting and filleting techniques.
Use Split Entities to divide a sketch curve.
Use the Deviation Analysis tool to compare faces along edges.
Modify solid bodies using Flex.

Lofting enables you to create features that are defined by multiple sketches. The system constructs the feature either a boss or a cut - by building the feature between the sketches. We are given the dimensions of the bottom, top, and an intermediate section of the part, as well as its height. This sort of problem lends itself very well to lofting.

Stages in the Process

The major steps in this operation are:

- Create the sketches.

For best results they should be made up of the same number of entities and you should give some thought to how the entities will map one to the other during the loft. To save time, the sketches have already been created for this example.

- Optionally create guide curves. Guide curves can optionally be used with lofting to give more control over the transitions between the profiles.
- Insert loft between profiles.

Where you select each profile and the order in which you select them is important.

Inserting a Loft creates a boss, cut or surface using profiles and optionally, guide curves. The loft is first created between the profiles and optional guides provide additional control over how the shape in between the profiles is generated.
Where to Find It \quad Click Lofted Boss/Base on the Features toolbar.
Or, click Insert, Boss/Base, Loft.
Or, click Insert, Cut, Loft.

Consider the following procedure:
1 Open the part Defroster Vent.
The part consists of three sketches as shown.

2 Insert a loft.
Click Insert, Boss/Base, Loft, or click Lofted Boss/Base 0 on the Features toolbar.

3 Loft PropertyManager.

Click in the Profiles list and select the two sketches in the graphics window. You should pick in roughly the same location on corresponding entities in each sketch.

When lofting three or more sketches they have to be in the proper sequence. If the profiles are not in the correct order in the list, you can reposition them using the Up and Down buttons.
Although Show preview improves visualization as you select the profiles, with complex shapes, the preview tends to slow the system response.

4 Preview.
As you select the sketches, the system generates a preview showing which vertices on the sketches will be connected during the loft. Pay close attention to this preview because it will show you if the loft is going to twist. A callout also appears to identify the profiles.

5 Click Thin Feature.
Set the Thickness to 0.090 inches. Make sure the thickness is added to the outside of the profiles.
Click OK to create the feature.

Merge Tangent The Merge tangent faces option causes the surfaces in the loft feature

Faces

 to be tangent if the corresponding segments in the profiles are tangent. Faces that can be represented as planes, cylinders, or cones are maintained. Other adjacent faces are merged, and the sections are approximated. Sketch arcs may be converted to splines.6 Edit the feature.
Edit the definition of the Loft feature.
Under Options, click Merge tangent faces.
Click OK.
Notice that the edges that corresponded to the ends of the lines and arcs in the profiles are now gone. Compare this to the results in step 5.

Start and End Constraints

When lofting, you can control how the feature is built by using options that influence how the system starts and ends the loft at the beginning and ending profiles. You can also control the length and direction of the influence at each end.

7 Edit the feature.
Edit the definition of the loft feature. Expand the Start/End Constraints group box. By default, no special tangency options were applied to the start and end of the loft.

8 Normal to Profile.

Select the options Normal to Profile for both the start and end of the loft. The tangent vector arrows should point in the directions shown.

If they do not, click Reverse Direction to reverse the direction.
Leave the start and end tangent length values at the default 1. Changing the tangent length change the influence on the shape of the loft. You can change all the Tangent Length values by typing a value and clicking Apply to all. Individually, a single tangent vector arrow can by dragged.

Pay attention to the preview. If the tangent arrows are in the incorrect direction, the preview will look something like the illustration below.

Click OK.

9 Results.
The result is that the shape of the loft is altered so that the faces of the feature start and end normal (perpendicular) to the plane of the profile sketches.

Note The Draft Angle option
© \lceil 0.00deg $-\dot{3}$ with
Normal to Profile
applies draft with respect to the planes of the profiles. If it is used with the Direction Vector option, the draft is applied with respect to the direction vector.
10 Save and close the part.

Merging a Multibody with Loft

The Merge result check box can be used on any boss feature aside from the first feature. In this example, we will create the transitional feature from the head of a golf club into the shaft using a multibody.

1 Open Lofted Merge.
The part contains two solid bodies that cannot be merged.
2 Insert a loft feature.
Insert a loft feature between the planar faces of the two bodies.
Select the faces in similar areas.

3 Start/End constraints.
The two tangency options used are Tangency To Face for the selection on the head and Normal to Profile for the selection on the shaft.

The Next Face button is used to resolve any ambiguity as to which set of faces is used.

Merge result must also be checked.

Note
The option Curvature To Face could be used in place of Tangency To Face to make the faces match in curvature.

4 Merged feature.
Once the feature is added, the part contains only one solid.

Using Derived and Copied Sketches

Lofted features may have many sketches to describe the Profiles, Guide Curves or Centerlines. Many of the sketches may be similar or exactly the same. Derived and copied sketches can help reduce the amount of sketching required.

- Derived Sketches are exact duplicates of the original sketch and retain the link from the original to the derived. They can only be placed, not changed.
- Copied Sketches are also duplicates of the original sketch but can be changed in any way. There is no link back to the original.
Consider a decorative shape

like the one shown in the illustration. Two sketches of the loft are the same (the original sketch and derived sketch) while the third is similar, but not identical.

1 Open part.
Open the part Derive\&Copy. It contains a single sketch named Source.

Copying a Sketch

To create another profile of similar shape, copy and paste the existing sketch onto the desired sketch plane. Copied sketches can be edited in any way and are not linked back to the original. In this example, the sketch Source will be copied onto the plane Right and edited.

2 Select sketch.

Select the sketch Source. The sketch geometry will highlight on the screen.

3 Copy sketch.
Using CtrI+C, or Edit, Copy or the Copy tool 掐 on the Standard toolbar, copy the sketch to the clipboard.
4 Select plane and paste.
Select the plane Right from the FeatureManager design tree and click Ctrl+V, or Edit, Paste or the Paste tool 圖 on the Standard toolbar. The sketch will be pasted from the clipboard to the selected plane. It will appear on the screen in the plane's orientation.

5 Edit sketch.
Select the new sketch and Edit Sketch. Use Modify Sketch to rotate and move the sketch geometry. Relations and dimensions will be needed to fully define the sketch.

6 Add relations.
Add Collinear and Coincident relations between the profiles. The sketch is fully defined.

7 Make changes. Make some changes to the dimensions in the sketch. Change the bold, red, underlined dimensions as shown. Note that two of them are also changed from Diameter dimensions.

Exit the sketch and rename it Copied.

Derived Sketches

Introducing: Insert Derived Sketch

A Derived Sketch is used to create a copy of the Source sketch on a different plane and location. The derived sketch will be a child of the original sketch.
Insert Derived Sketch is also used to create a copy of a sketch. Derived sketches are dependent on the original for size and shape but not location and usage. You cannot edit the geometry or dimensions of a deriyed sketch. You can only locate it with respect to the model. Changes to the original sketch propagate to the derived copies.

Where to Find It Creating a Derived Sketch

8 Select sketch and plane.
Hold down Ctrl and select the sketch Source and the plane you want it copied to (Top). The sketch will be copied to the selected plane in the next step.
Insert a derived sketch.
Click Insert, Derived Sketch. The sketch is inserted onto the selected plane, but it is under defined.
Unlike Copy and Paste, the system automatically puts you into the Edit Sketch mode. Also, notice that derived sketches are identified as such by the derived suffix appended to their names in the FeatureManager design tree.

Locating the Derived Sketch

 orientation.10 Modify the sketch.
Click Modify Sketch Position the cursor over the black origin symbol as indicated. Click the rightmouse button to mirror the sketch.

11 Drag.
Move the sketch to the right and close the Modify Sketch dialog.

12 Fully define.

Add Collinear and Coincident relations similar to those used in step 6.

13 Insert a loft.

Click Loft Boss/Base 0 . Select Merge tangent faces.

Loft the three profiles without using guide curves or centerlines. Select the profiles near a common vertex.

Loft Viewing

 Options
Where to Find It

Loft features can be viewed with Connectors or Mesh previewed. By default, only the selection connectors are shown in the loft and no mesh is displayed.

■ Right-click in the graphics window while editing a Loft feature and choose Show All Connectors or Hide All Connectors.

- Right-click in the graphics window while editing a Loft feature and choose Mesh Preview, Mesh All Faces or Mesh Preview, Clear All Meshed Faces.

1 Open part.
Open the part Heat Shield. To save time, we will start with this part that already has the basic geometry defined.

Preparation of the Profiles

When lofting, you have to give special consideration to the way you sketch the profiles, and how you subsequently select them in the Loft command. In general, there are two rules you should follow for good results:

- Pick the same corresponding spot on each profile.
The system connects to points you pick. If you are careless, the resulting feature will twist.
If the profiles are circles there are no ends to pick such as there are on rectangles. That makes picking corresponding spots tricky at best. In this situation, put a sketch point on each circle and pick them when you select the profiles.

- Each profile should have the same number of segments.

In the example at the right, a closed semicircle (2 segments) was lofted to a rectangle (4 segments). As you can see, the system blended one side of the rectangle into part of the arc, another side into the remainder of the arc, and so on. This does not give a good result.

You have two options:

- Interactively add or move connector points during the Loft command.
- Subdivide the arc manually so you can control exactly which portion of the arc corresponds to each side of the rectangle.

2 Insert a loft.

Click Loft Boss/Base [日], or click Insert, Base, Loft.

3 Preview.

Select the two profiles and notice the preview. Be careful to pick the same relative corner of each profile.

Because of the importance of where you pick the profiles, it is usually not a good idea to select them
 from the FeatureManager design tree.
4 Centerline.
Expand the Centerline Parameters group box.

Select the centerline (Sketch3).
Click OK to create the feature.

5 Results.

Sharing Sketches

Sketches that have been absorbed when used to create extrudes, revolves, sweeps and lofts can be used again to create additional features. They can simply be selected from the Feature Manager to become part of the new feature.

6 Insert another loft.
Loft between Profiles Sketch5 selected on the lower corner and the absorbed Sketch4 selected from the Feature Manager. Use Sketch2 as the Centerline.

7 Shared sketch.

Sketch4 is shared by both loft features, as indicated by the name and the symbol. Editing the sketch would change both features.
Unfortunately the loft shape, although valid, is not desirable. The fact that the profiles have different numbers of edges adversely influences the shape of the feature.

8 Show Connectors.

Right-click the Loft 2 feature and select Edit Feature. Rightclick in the graphics area and select Show All Connectors. Colored circles appear at the endpoints of the segments of the profiles. Notice that a connector has been added to the semicircular profile. This is because both profiles must have the same number of segments. If you did not sketch them that way, the system breaks them for you.

9 Synchronize the profiles.
Drag the connectors to improve how the rectangular profile maps to the semicircular profile.
Click OK to rebuild the feature.

10 Results.
Although dragging the connectors is very interactive, it may not be precise enough for some applications. If precise control is needed over how the profiles map to each other, you should manually subdivide the profile.
11 Delete.
Delete the Loft 2 feature and use a modified sketch with equal numbers of segments.

12 Recreate the sketch.

Select the flat face and open a sketch. Click Convert Entities to create copies of the arc and line edges in the sketch.

Introducing:
Split Entities
Where to Find It

Split Entities breaks a single sketch curve into multiple pieces at selected locations.

- On the Sketch toolbar click the Split Entities tool \triangle.

■ Or, click Tools, Sketch Tools, Split Entities.
■ Or, right-click a sketch segment and choose Split Entities.

13 Split entities.

Divide the arc into three pieces by using Split Entities at two locations along its length. Position the breaks on either side of the center. All three arcs are coradial but their arc angles are under defined.

14 Angular dimensions.
Dimension the arcs at 35° using 3 point angular dimensions. If you want, you can link the values of the angles so when you change one, they both change.

15 Exit the sketch.

16 New Loft.
Create a second centerline loft between the two four-sided sketches using the centerline curve. Right-click Show All Connectors to display the matching endpoints.

17 Results.

The second loft merges into the first, forming a single solid.

Introducing: Deviation Analysis

The Deviation Analysis tool can be used to determine the angular difference between faces along common edges. A 90 degree value indicates perpendicular faces, 0 degrees indicates tangency.

Where to Find It

- From the Tools toolbar click the Deviation Analysis tool
- Or, click Tools menu choose Deviation Analysis.

18 Analysis parameters.

Click Deviation Analysis and select the model edge shown. Set the number of sample points slider control to halfway.
Click Calculate.

19 Deviation Analysis graphics.
The results of the deviation analysis appear as pairs of 3D arrows on the edge. They are color coded to show the change in angle between the faces along the common edge.

20 Color settings.

The color settings used for the arrows can be changed.

21 Add fillets.

Run a 25 mm fillet down the two sharp edges of the second loft. Run a 55 mm radius fillet up the edge between the two lofts. You can use a multiple radius fillet if you wish, or create two separate fillets.

Note

Fillets shown in color for clarity.

22 Create an offset plane.

Create a plane offset $\mathbf{1 0 0} \mathbf{m m}$ from the Top reference plane. This will be used to sketch the profile of the rectangular inlet tube.

23 Sketch profile.

Sketch a rectangular profile as shown. Fillet the corners with sketch fillets. The profile is centered left-to-right with respect to the Origin.

24 Extrude.

Extrude a boss using the end condition Up to Next, and 5° of Outward Draft.

25 Add fillet.
Run a $\mathbf{1 2 . 5 m m}$ radius fillet around the base of the boss.

26 Shell part.

Shell the part towards the inside using a wall thickness of 1.5 mm .

Save and close the part.

Other
Techniques

Sometimes the best approach to modeling a free-form shape is not to use sweeping or lofting. Consider, for example, the two part assembly shown below. This is a weather-proof service head for an electrical conduit.

The cover presents an interesting modeling problem. Let's take a look at just its basic shape which is shown below in a simplified drawing.

We can see from the drawing that the shape is defined by two "teardrop" profiles that are blended together along the path shown in the front view.

Stages in the Process

Procedure

Some of the key stages in the modeling process of this part are given in the following list:

- Extrude up to surface.

Having defined the basic profile and the angled plane, we extrude a boss up to the plane.

- Advanced filleting.

We will use some advanced filleting techniques to round off the part creating the smooth, blended transition between the two teardrop shapes.

■ Symmetry.
Given the symmetry of the part, we want to take advantage of mirroring. We will model half of it and then mirror everything using Mirror All.

- Shell.

After mirroring the basic shape, we will shell it out to the desired wall thickness.

Begin by opening an existing part.
1 Open part.
Open the part
Cover Sketches.
There are three sketches used to form the profiles of the "teardrop" shape.

The plane Up To is generated from three endpoints of sketches and therefore is skewed.

2 Up to Surface.
Using Sketch1, create an extrusion Up To Surface using the plane Up To as the surface.

Click OK.

This makes the basic shape.
Next, we have to round off the edge.

Advanced Face Blend Fillets

Introducing: Face Fillet

A face blend fillet differs from an edge fillet in that instead of selecting a edge, you select two sets of faces. The advanced options enable you to use geometry to define the radius of the fillet instead of specifying a numeric radius value. This is very powerful.
The Fillet command has an additional group box, Fillet Options, where a Hold Line can be assigned to define the fillet's tangent edge or rail. Defining the rail of the fillet defines the fillet's radius. In this case the bottom edge of the part will be used.

Where to Find It ■ Face Fillet is located on the Fillet PropertyManager.

3 Insert fillet.
Click Fillet (0). In the Fillet Type group box, choose the Face Fillet option.

Note
Since the Hold line will define the radius, you do not need to enter a radius value. Also, when you expand the Fillet Options group box and select the Hold lines, the radius field disappears.

4 Select faces.
Verify that the Face Set 1
 selection list is active and select the top face of the part.

Activate the selection list for
Face Set 2 and select one of the three side faces.

With the default condition

Tangent propagation enabled, picking one face will select all three.

5 Add fillet options.

 Expand the Fillet Options group box. Click in Hold line selection list, and select the three edges as shown in the illustration.Click OK to create the fillet.

6 Results.

The three vertical faces (Face Set 2) are completely removed. The fillet is created with a variable radius defined such that the fillet ends exactly on the hold lines.

7 Convert and drag.
Switch to a Front view and open a new sketch on the Front reference plane. Select and convert the two straight edges of the first feature.
Although converted edges are fully defined, you can drag the endpoints, making the lines
 longer and therefore, under defined.

8 Offset sketch geometry.

Click Offset Entities 团, and select one of the two converted edges.

Set the offset value to
12.7 mm and use Select chain to offset both connected edges.
Click OK.

9 Dimensions.
Add lines to close off the ends and dimensions to fully define the sketch.

10 Exit sketch.

11 Offset plane.
Create a new plane named 2.5 offset that is offset $\mathbf{2 . 5 m m}$ from the Up To plane that was used for the base extrusion.

This plane will serve as the termination surface for the boss.

12 Extrude using blind.
Extrude the new sketch $\mathbf{5 0 m m}$ or more.

Introducing:
Cut With Surface

Where to Find It

Solids can be cut with a surface, that is a true surface, a face or a reference plane. In this example a blind extrusion will be cut using a reference plane.

- On the Insert menu click Cut, With Surface.

13 Cut with surface. From the Insert menu, choose Cut, With Surface and select the plane 2.5 offset.

14 Direction.
Flip the direction arrow to point in the direction indicating the portion to remove.
Click OK.

15 Add fillet.
Fillet the two ends using the same Face Fillet technique that you used in Steps 3 through 5 .
Note
Face blend fillets do not work across discontinuous faces. Therefore, you will have to create these fillets in two operations, one for each end.

Introducing: Mirror

Not counting mirroring within sketches, there are four types of mirroring in SolidWorks:

■ Mirror Part: Creates a new part that is the mirror image of a previously constructed (and saved) part. The copy has an external reference back to the original (like a derived part) so that changes to the original propagate to the copy.

- Mirror Feature: Creates a copy of a feature (or multiple features), mirrored about a plane.
■ Mirror Faces: Allows you to mirror features by selecting all of their faces. This is ideal for imported, non-parametric parts.
- Mirror Body: Creates a symmetrical part by mirroring an existing solid body with respect to a planar face.

Since this part is symmetrical, we will use Mirror Body.

Where to Find It	- Click Mirror 國 on the Features toolbar.
	- Or, click Insert, Pattern/Mirror, Mirror.

16 Mirror body.

From the Insert menu, choose Pattern/Mirror, Mirror and select the planar face to mirror about. Under Bodies to Mirror, select the solid. Click OK.

17 Shell part.

Remove the two flat faces by shelling the part with a wall thickness of

2.5 mm .

Conclusion

The rest of the features are fairly simple and basic so we will not take the time to go into them here. In fact, if we were to complete building this part, we would probably postpone the mirroring operation until the end. This would simplify the process of creating the fillets and the hole and
 boss on the side.

Using Flex

Where to Find It

Triad and Trim Planes

The Flex feature is used to bend, twist, taper or stretch selected solid bodies. The feature is applied to the geometry between the Trim Planes.

■ Click Flex 蜀 on the Features toolbar.

- Or, click Insert, Features, Flex.

The Flex is controlled using the Triad and Trim Planes. These components appear during the command.

- Trim Planes

Trim Planes are created at the extents the part but can be moved by dragging the $4 *$ arrow.

- Triad

The Triad is a coordinate system that sets the center of the flex and the orientations of the Trim Planes.

Flex Input
The Flex Input determines how the geometry is flexed. The options are shown in the chart below.

Bending	Twisting	Tapering	Stretching
Bending occurs about the (red) Bend Axis between the Trim Planes.	Twisting occurs about the (blue) Z axis between the Trim Planes.	Tapering occurs along the (blue) Z axis between the Trim Planes.	Stretching occurs along the (blue) Z axis between the Trim Planes.

1 Open part.
Open the existing part named Flex. The part is an imported solid body.

2 Flex Input.

Click Flex 国 and select the solid body. Select Bending as the Flex Input.

Select Hard edges to avoid creating splinebased geometry whenever possible.
The Trim Planes appear at the upper and lower extents of the part with the Triad and Bend
Axis between them.

\square

3 Bend.

Position the cursor over Trim Plane 1 or Trim Plane 2 to display the bending cursor 5 . Drag the plane to produce a bend similar to that show at right.

Flex Options

Note

There are several useful options available to you while the Flex preview is active. These options are available by right-clicking the centerpoint of the Triad.

- Reset Flex

Removes the bending, twisting, tapering or stretching and resets the graphics to the predrag state.

- Align Trim Plane Axis to Selection Aligns the trim plane normal to selected geometry: normal to a planar face, parallel to a line or though a point and the origin.
- Align Bend Axis to Selection

Aligns the bend axis to selected geometry: normal to a planar face or parallel to a line.

Select Other
Zoom/Pan/Rotate
Reset Flex
OK
Cancel
Clear Selections
Redraw
Align Trim Plane Axis to Selection
Align Bend Axis to Selection
Center and Align to Component
Center and Align to Principle
Move Triad to Plane 1
Move Triad to Plane 2
Customize Menu

- Center and Align to Component

Move the triad to the centroid position and align the axes to the global axes.

- Center and Align to Principle

Move the triad to the centroid position and align the axes to the principal axes.

- Move Triad to Plane 1 or 2

Move the triad to align with the Trim Plane 1 or 2 position to place the bend axis on the trim plane.
The Triad can also be dragged and dropped onto faces and edges to change its orientation. It can also assume the orientation and position of an existing coordinate system.

4 Reset.
Right-click the Triad and choose Reset Flex to remove the bending created by the drag.

5 Alignment.

Change the view orientation to Front. A closer look at the trim planes and axes shows that they are not aligned to the principal axes of the part. The next steps will set the alignment and reposition the trim planes.

6 Align Trim Planes.

Right-click the Triad and choose Align Trim Plane Axis to Selection. Select the planar face as shown.

7 Move Trim Planes.

Drag Trim Planes 1 and 2 to the approximate positions shown using the 44: handles.

Tip

The trim planes can also be located to a specific location by selecting a vertex or endpoint, or by entering a Trimming Distance value.

8 Move Triad.

Right-click the Triad and select Move
Triad to Plane 1. The Triad is aligned to the trim plane position.

9 Bending.

Drag Trim Plane 2 to bend the model.

Because the bend axis is on the trim plane, the portion of the model below the trim plane remains fixed.

10 More precise control.
You can set either the Angle or Radius option to achieve more precise control over the bend.
Click OK to create the flex feature.

Controlling

 DirectionThis command does not have a Reverse Direction button like other commands do. Instead, enter a negative or positive value to control the flex direction.
11 Save and close the file.

The Hard Edges option creates analytical surfaces (cones, cylinders, planes, and so on) whenever possible, and often results in split faces where the trim planes intersect the bodies. If this option is cleared, the results are spline-based, so surfaces and faces may appear smoother and original faces remain intact.

Exercise 16:

Poker

Design Intent
Create this part using the dimensions provided. Use relations and equations where applicable to maintain the design intent.
This lab uses the following skills:

■ Sketching

- Up To Next extrusion
- Face and Edge Fillets
- Mirror All

Units: millimeters
The design intent for this part is as follows:

1. The part is symmetrical.
2. Circular hole is on the centerline.

1 Open part. Open the part Poker.sldprt.

2 Points for the plane.
Create three points located above the sketch positions as shown (these are reference dimensions only). Create the required planes and use one sketch for each point.
Instead of creating reference planes and individual sketches, can you create one 3D sketch containing all the necessary points?

3 Up to surface plane.
Using the three points, create a plane that passes through them.

The
Isometric and Front views are illustrated.

4 Extrusion.
Extrude the sketch Up
To Surface, selecting the plane as the surface. The extrusion is terminated by the plane.

5 Fillet.

Add a fillet, radius $\mathbf{2 m m}$, on the inner edge. This fillet could also have been added in the profile.

6 Draft.

Add draft to selected faces using the Top reference plane as the neutral plane. Use 7° of draft. Note the arrow indicating the pull direction.

7 Face fillet.

Using faces of the model, create a Face Fillet that includes Hold Lines.

Select the faces in two sets as shown in the illustration. Use the outer edges to stop the fillets.

8 Variable radius fillet. Select the two inner edges and use a variable radius fillet. Vary the fillet from 7.3 mm to 2 mm along the selected edges.

9 Edge fillet.
Add $\mathbf{1 . 5 m m}$ fillet along the edges indicated in the illustration.

10 Extend the

 handle.Using the flat face as a sketch plane, copy the edges and extrude them 40mm to extend the handle.

11 Mirror body.
Use Mirror to create the other half of the part.

12 Cut.

Create a cut diameter
$9 \mathrm{~mm}, 12 \mathrm{~mm}$ deep to complete the model.

13 Save and close the part.

Exercise 17: Derived Sketch

Create this part using the dimensions provided. Use relations and equations where applicable to maintain the design intent.
This lab uses the following skills:

- Derived Sketch
- MidPlane Extrusion

Units: millimeters

Design Intent

Dimensioned Views

The design intent for this part is as follows:

1. All material thickness for flanges is equal to that of the square plate.
2. Part is symmetrical.
3. Round holes are equal diameter and placement.
4. All fillets and rounds 3 mm .

Use the following graphics with the design intent to create the part.

Three views.

Exercise 18:

 Copy SketchDimensioned Views

Create this part using the dimensions provided. Use relations and equations where applicable to maintain the design intent.
This lab uses the following skills:

- Up To Next Extrusion

■ Copy Sketch for similar features
Units: millimeters

The design intent for this part is as follows:

1. Part is not symmetrical.
2. Vertical holes are though all.
3. All fillets and rounds 3 mm .

Use the following graphics with the design intent to create the part.

Front view.

Right view

Cutaway view

Optional

Build this part using
a different approach:

1. Use multibodies.
2. Use selected contours.
3. Add a full round fillet.

Exercise 19: Funnel

Procedure
Create this part using the information and dimensions provided. This lab reinforces the following skills:

- Lofting
- Shelling

■ Sweeping

Open a new part using the Part_IN template and name it Funnel.
1 Sketch the first profile.
Use ellipses, lines and arcs to create this profile.

2 Second profile.

Create a new plane that is parallel to the Top reference plane 3.25" below it. Sketch a circle lined up with the Origin.

This circle will be used as the second profile in a loft, after it is divided up into sections that match the first profiles endpoints. If the circle is not broken up, the loft will decide what the breakup of
 the circle should be.

3 Breakup.

Add centerlines radially from the circle's center to the endpoints of the first profile. This geometry will cross the circle's circumference at several places.

4 Divide circle.
Using the Split Entities \square command, add six split points, breaking the arc into pieces. Make each split point coincident with a centerline. You can add Coincident relations or you can drag and drop them onto the centerlines.

Important!

Note

5 First loft.

Exit the sketch and loft between the two profiles. Select two endpoints that will match position, one from each sketch. This will ensure that the "start point" of the loft will be positioned correctly.
The option Merge Tangent Faces should be used.

An extra callout was added to the illustration for clarity.

6 Resulting loft.

The loft solid should look like this when completed.

7 Initial neck sketch. The funnel neck is formed by another loft, this time using two sketched circles. Flip the model over and sketch a circle on the end face, making it Coradial with the circular, outer edge. Add a point related to the Origin with a Vertical relation on the edge.

8 Neck end sketch.
Create a new reference plane offset from the circular face by $\mathbf{2 "}$. Sketch a circle that is lined up with the Origin. Add a point on the circumference of the circle that is related to the Origin with a Vertical relation. The points are used to "line up" the profiles just as the centerlines were used in the first loft.

9 Neck loft.

Using the point entities to select the sketches, loft between the profiles.

10 Shell the funnel. The dimensions are given for the inside of the funnel. Create a thin walled part by shelling to the outside, a thickness of $\mathbf{0 . 0 6}$ ".

11 Build the rim.

Sketch the outline of the rim using the dimensions given. Use Convert Entities to create the inner outline. Extrude the rim to a depth of $\mathbf{0 . 0 6 "}$. If desired, use Link Values to tie the two thickness values together.

12 Sweep a lip on the underside of the rim. The cross-section of the lip is a semi-circle, 0.060 " in diameter. Use the model edge of the rim as the sweep path.

13 Make a rib on the neck of the funnel.
Funnels don't work well if air can't get out of the bottle. Sweep the section along a curve that lies on the inner face of the funnel neck.

An easy way to construct this curve is to sketch a line and constrain it with Pierce relations to model edges at the opening and where the inside of the neck meets the main body.

14 Pattern the rib.

Make a total of three ribs, equally spaced, using a circular pattern.

15 A hole in the rim.

Using the dimensions provided, sketch a profile to cut through the rim so the funnel can be hung on a hook. Notice the use of an angular dimension on an arc. This can be created by picking the arc's centerpoint and
 its two ends.

Upon successful completion of this lesson, you will be able to:

- Create extruded, ruled, lofted, and planar surfaces.

■ Modify surfaces by trimming.

- Create filled surfaces for blending.

Convert surfaces into solids.

- Use surface intersections to create 3D curves.

Create surfaces to fill gaps in imported models.
■ Delete and patch model faces.

Working with Surfaces

There are a number of different situations when it is necessary to work with surfaces. One is when you import data from another CAD system and the result is a collection of surfaces, not a solid model. Another situation is when the shape you want to create is best modeled using free-form surfaces that are then knit together to form a solid. In this case study we will explore using surfaces to model a shape - a remote control - that would be difficult to model using only solid modeling techniques.

The outer skin of a solid model is made up of surfaces. Surfaces are what define the shape of the faces of a solid - whether they are flat or curved. The difference between a surface model and a solid model is one of intelligence and completeness. Solid models are always closed. There are not any gaps or overlapping edges. Surface models can be open. Multiple surfaces may not meet along their edges. They might overlap or fall short.
Solid models are intelligent. The system knows what space lies "inside" the solid and what lies "outside". Surface models lack that intelligence. You might consider a surface to be the ultimate "thin feature". It has a shape, but no thickness. When multiple surfaces are put together so that the edges all meet and there are no gaps, the result can be "filled", transforming it into a solid.

Stages in the Process

Some of the key stages in the modeling process of this part are given in the following list:

- Capture the design intent.

The industrial designer provided concept sketches of the remote control. These were scanned to create image files that can be inserted into a sketch. The sketch pictures will serve as a guide when modeling the remote control.

- Parting lines and draft angles.

As a general rule you should begin modeling by defining the parting line and setting up the draft angles using reference surfaces. With the vast majority of free-form parts, you must build draft in as you model. Generally you cannot add draft later as a local feature.

Surfaces Toolbar

Using Sketch Picture to Capture Design Intent

Where to Find It

- Splines.

Consumer products are characterized by smooth, curvature continuous shapes that cannot be modeled using lines and arcs. Splines are the curves that in turn create the surfaces.

- Lofted and swept surfaces.

One portion of the remote control will be lofted using a series of profiles and guides. Another portion will be swept using guide curves.

- Blending surfaces to fill in gaps.

Not all the necessary surfaces can be created using loft or sweep. The remaining portion will be created as a filled surface.

- Knitting.

Once the surface model is complete, the surfaces are knitted into a solid.

- Symmetry.

The knitted solid is mirrored.

- Associativity and design changes.

After evaluating the model, we will change the underlying curves.

- Breaking the master model into separate parts.

From the master model we will break out individual piece parts.
Specialized features for plastic parts.
Mounting bosses, snap hooks, and snap hook grooves can be built easily using specialized fastening features.
The Surfaces toolbar contains shortcuts for all the surfacing commands. These commands can also be accessed via the Insert, Surface menu.

```
Surfaces
```


We will start the modeling process with a couple of sketches of the design concept provided by the industrial designer. These will be used as guides as we create the basic curves.

■ Click Tools, Sketch Tools, Sketch Picture.

- Click Sketch Picture on the Sketch toolbar.

Procedure

Begin by opening a new part with units set to inches.
1 Side view sketch.
Open a sketch on the Right reference plane.

Sketch a horizontal line as shown. This reference line will be used to in subsequent operations.

2 Sketch picture.

Click Tools, Sketch Tools, Sketch Picture.

In the Case Study folder for this lesson, browse to the Remote Control \Sketches from ID folder.

Select the image Remote-side-view.tif and click Open.

The picture will come in very large. Note that the Width is over 42 inches.

3 Resize the picture.

Make sure Lock aspect ratio is selected and scale the image to approximately the correct size by setting the Width to 5.75in.

 The objective is to line the picture up with the sketched reference line.

4 Transparency.
Expand the Transparency options. Select User defined and click the white background area of the picture to define the transparent color.

Set the Transparency slider to 1.00.

Click OK.

5 Top view sketch.

This one will also come in large. And it is rotated.

Rotate the image by setting the Angle to $\mathbf{9 0}^{\circ}$.
Make sure Lock aspect ratio is selected and scale the image to approximately the correct size by setting the Width to 5.75in.

Fine tune the position of the picture by dragging and resizing it.

Line it up with the reference line in the first sketch.

Set the Transparency to 1.00 and select the white background of the picture as the transparent color.

6 Sketch the parting line.

Open a new sketch on the Right reference plane.
Use Convert Entities \quad to copy the reference line from Sketch1 into the active sketch.

Using tangent arcs and lines, sketch the parting line shown here in green for clarity.

7 Dimension the sketch.
Sketch1 is hidden for clarity. Do not worry about the values of the dimensions. Your values may vary. The goal right now is to constrain the sketch.

Note
The dimensions are shown in 6 decimal places just to illustrate that we are not worrying about the exact dimension values at this time.

Introducing:
Fit Spline

Fit Spline creates a spline that follows, or fits, sketch segments within a tolerance that you specify. Fit splines are parametrically linked to underlying geometry so that changes to the geometry update the spline.

Where to Find It ■ Click Tools, Spline Tools, Fit Spline.

- Click Fit Spline Δ on the Spline Tools toolbar.

8 Fit spline.
Click Fit Spline on the Spline Tools toolbar.
Clear the Closed spline check box.
Right-click the line and select Select Chain.
The system creates a spline and converts the original sketch entities to construction geometry.
The spline is related to the original sketch entities by a FitSpline relation as indicated by the ■ symbol.

9 Change the dimensions.
Fine tune the parting line geometry by editing the dimension values as shown below. Notice that the spline updates accordingly.

While surface modeling has many unique and specialized commands, a

Similarities Between Solid and Surface Modeling
number of surface commands are identical to their solid modeling counterparts. for example:

■ Insert, Boss, Extrude = Insert, Surface, Extrude

- Insert, Boss, Revolve = Insert, Surface, Revolve Insert, Boss Sweep = Insert, Surface, Sweep Insert, Boss, Loft = Insert, Surface, Loft

10 Extrude a surface.
Extrude the parting line sketch so that it extends beyond what will be the edge of the model. A distance of $\mathbf{1 . 5 "}$ works well.

It is only necessary to extrude in a single direction because we are
 going to take advantage of the part's symmetry and use mirroring.

Introducing:
 Hide/Show Surface Body

When you model using surfaces, it is not uncommon for you to create extra surfaces as reference geometry or construction aids; surfaces that are not part of the finished
 model but rather are a means to an end. These surfaces are grouped in the Surface Bodies folder. These surfaces can sometimes get in the way. Hide/Show Surface Body is used to control the visibility of these surfaces.

Where to Find It ■ Right-click on surface in the graphics area, and select Body, Hide.

- Expand the Surface Bodies folder in the FeatureManager design tree. Right-click the surface and select either Hide Surface Body or Show Surface Body.
- Right-click the Surface Bodies folder to hide or show everything in the folder.

Splines

Introducing: Spline

A spline is a curve that can have a locally very simple form, yet at the same time be globally flexible and smooth. Splines are very useful for modeling free-form shapes that are smooth and fair. [Fair is a term often used in boat building. A "fair curve" is one that is as smooth as it can be as it follows the path it must take around the hull of a boat; it is free of extraneous bumps or hollows.]
Splines are used to sketch curyes that are not arcs, or conic sections such as ellipses or parabolas. Splines are defined by a series of interpolant points. Interpolant means that the curve passes through the points. You can modify a spline by adding or deleting points, moving the points, dimensioning the points or adding geometric relations. The spline can also be changed by modifying the spline handles
 (arrows) that control the tangency of the curve at the interpolant points.

Where to Find It

- Click Spline N on the Sketch toolbar.
- Or, click Tools, Sketch Entities, Spline.

11 Hide surface.

In the graphics area, right-click the extruded surface and select Body, Hide from the shortcut menu. This will make it easier to see what we are sketching in the next step.

12 Sketch a 4-point spline for top view of parting line.
Make both ends Coincident to the ends of the reference line in Sketch1.

Make the tangent handles at both ends Perpendicular to the reference line in Sketch1.

Turn on the curvature combs. Adjust the positions of the points and drag handles until you are satisfied with the spline and how it fits the sketch. When finished, exit the sketch.

Trimming

 Surfaces
Where to Find It

When you add features to a solid model, all the overlapping faces are automatically trimmed. When you work with a surface model, the trimming has to be done manually.
Surfaces can be trimmed to their intersection with other surfaces, the face of a solid, or reference planes. Additionally, you can select a sketch that will be projected onto the surface to create a trim boundary. The system highlights the various solutions to the trimming operation. You have the option to select what you want to keep or what you want to remove.

■ Click Insert, Surface, Trim.

- Or, click Trim Surface on the Surfaces toolbar.

13 Trim the parting surface.
Click Trim Surface
For Trim Type, click Standard.
For the Trim tool, select the sketch we just created in step 12.
Click Keep selections and click in the selection list. Identify the portion of the parting surface that you want to keep.

Click OK to complete the trimming operation.

Ruled Surfaces

Introducing:
Ruled Surface
Where to Find It

In general, a Ruled Surface can be thought of as an infinite number of line segments connecting corresponding points on opposite sides of the surface. In the case of a SolidWorks ruled surface, one edge is defined by the edges or edges of existing surfaces. The
 other edge is calculated by the system based on the options you choose. Unlike other types of surfaces, for the Ruled Surface, you do not need to create sketches.
Use the Ruled Surface to create surfaces that are either perpendicular or tapered away from the selected edges.

- Click Ruled Surface 图 on the Surfaces toolbar.

■ Or click Insert, Surfaces, Ruled Surface.

14 Ruled surface.

In this case we want to create a reference surface that follows the edge of the parting surface and that has 3° of draft with respect to the Top reference plane. We will use this surface in subsequent steps to help define the geometry of the part.

For Type, select Tapered to Vector.
For Distance enter $\mathbf{0 . 5}$ ". The distance is not critical. We just need something big enough to work with easily.

For the Reference Vector, select the Top reference plane and click Reverse Direction.

Set the Angle to $\mathbf{3 . 0 0}$.
For Edge Selection, select the edge of the trimmed surface.

Verify that the ruled surface tapers outward. If it does not, click Alternate Side.

Click OK.
15 Offset plane.
Create a plane offset from the Top plane. This will be used for sketching the area around the keypad.

In this case, the offset was 0.480 ". Depending on how you scaled the sketch picture, your results may differ.

Note From the looks of the sketch picture, it appears the upper face of the remote control is angled with respect to the Top plane. However, we checked with the industrial designer and were told that the two should indeed be parallel.

Lofting

Surfaces

The surface that will actually be part of the finished model is one half of the upper part of the housing. This will be a lofted surface and to create it, we need several profile and guide curves.

16 Sketch a 3-point spline for outline of the keypad area.

Make both ends Coincident to the ends of the reference line in Sketch1.
Make the handles at both ends Perpendicular to the reference line in Sketch1.

Turn on the curvature combs. Adjust the positions of the points and drag handles until you are satisfied with the spline and how it fits the sketch. When finished, exit the sketch. This will be the guide curve.

Note

Since the spline is not dimensioned, it is under defined and appears blue in the sketch. It is shown here highlight in green for clarity.

17 First profile curve.

Create a new sketch on the Right reference plane.
The profile is a 2-point spline. Creating this is a multistep process:

1. Sketch the spline. The ends are Coincident to the end of the guide curve (step 16) and the corner of the ruled surface.

Note: For clarity, the sketch picture is not shown.

2. Make the spline tangent to the edge of the ruled surface. This is necessary to maintain the 3° draft angle when we loft the surface.

3. Sketch a construction line tangent to the other end of the spline. Create an angular dimension between it and the plane the guide curve is on (step 15).

Set the angle to $\mathbf{2 . 0 0}$.
4. Display the curvature combs and show the sketch picture.
Adjust the lengths of the tangent handles until you are satisfied with the shape of the spline.

The PropertyManager is very useful for making small adjustments to the length of the tangent handles.
5. Exit the sketch.

18 Second profile curve.
Repeat the preceding procedure for the profile curve on the front end of the remote control.

19 Offset plane.

Create a plane offset $\mathbf{0 . 7 5}$ " from the Front plane. This will be used for sketching a third profile curve.

20 Third profile curve.

Create a new sketch on Plane2.
Switch to a Front view orientation.
Sketch a 2-point spline. Add Pierce relations between the ends and the guide curve and the edge of the ruled surface.

Sketch two construction lines
tangent to the spline and dimension their angles as shown.

Display the curvature combs and
 adjust the lengths of the tangent
handles until you are satisfied with the shape of the curve. In this case, the sketch pictures do not offer any guidance use your best judgement.

21 Loft the surface.
Select the three profile curves.

For Start/End Constraints, select Normal To Profile for both.

For Guide Curves, select Sketch6 (step 16) and the edge of the ruled surface.

For the edge tangency, select

Tangency to Face. For Sketch6, select None. Click OK.

22 Evaluate the results.

Use any of the techniques that were introduced in Analyzing Geometry on page 87 to evaluate the resulting loft. These include Display Curvature and Zebra Strips.
Sometimes it is also helpful to add another directional light to give more illumination to the side of the model.

Looking at the Front view, the surface does not look rounded enough in the area indicated.

23 Add a loft section.

Right-click the lofted surface, and select Add Loft Section from the shortcut menu.

The system generates a section plane and a profile curve through the surface.
You can move and rotate the plane by dragging it.

24 Use selected plane.
In the PropertyManager, select the Use selected plane check box.
Select the Front reference plane and click OK.

25 Show sketch.

In the next step we will edit the new loft section. Before we do that, show the sketches for the second profile and the guide curve.

26 Edit the new loft section.

View the sketch relations. If there are not already Pierce relations between the ends and the guide curve and the edge of the ruled surface, add them.

Sketch construction lines tangent to each end of the spline. Add Parallel relations between them and the construction lines in the second profile.

Display the curvature combs and adjust the spline until you are satisfied with the
 shape.

Exit the sketch to rebuild the lofted surface.

Modeling the Lower Half

We will use a similar approach modeling the lower half as we did for the upper half. Namely, we will use the sketch picture as a guide to help establish the shape of the part. However, instead of lofting, we will use Sweep with Guide Curves and Fill Surface.

27 Ruled surface.

Create a second ruled surface also with 3° of draft. This time, it should extend upwards from the edge of the parting surface.
This will be used as a reference when modeling the lower half of the remote control.

28 Spline.

Open a new sketch on the Right reference plane. Show the side view sketch picture.

Create a 5-point spline. You need Coincident relations between the endpoints and the corners of the ruled surface. Add Tangent relations between the spline and the edges of the ruled surface.
Display the curvature combs and adjust the shape of the spline until you are satisfied. Then exit the sketch.

This is the guide curve for the sweep.

29 Offset plane．

Create a plane offset $\mathbf{1 . 7 5 0}$＂from the Front plane．This will be used for sketching a the sweep profile．

30 Sketch the sweep path． Open a new sketch on the Right reference plane．Sketcha horizontal line through the origin．

One end of the line is coincident with the end of the spline．The other end is coincident with Plane 3.

Exit the sketch．

Introducing：

 Partial EllipseImportant！

Where to Find It

Sketching a partial ellipse is similar to sketching a centerpoint arc：
－Position the cursor where you want the center and drag the mouse to establish the length of the major axis．Then release the mouse button．
Next，drag the outline of the ellipse to establish the length of the minor axis．
Finally，click where you want the ellipse to start，and drag the mouse to establish the length of the circumference．

To fully define an ellipse you must dimension or otherwise constrain the lengths of the major and minor axes．You must also constrain the orientation of one of the two axes．One way to do this is with a Hori－ zontal relation between the ellipse center and the end of the major axis．
－Click Tools，Sketch Entities，Partial Ellipse．
－Or，click Partial Ellipse（⿴囗玉 on the Sketch toolbar．

31 Sketch the sweep profile.

Open a new sketch on Plane3.
The sweep profile is a partial ellipse. Sketching this is a multistep process:

1. Click Partial Ellipse on the Sketch toolbar. Sketch a partial ellipse as shown. It should be approximately the lower-right quarter of a complete ellipse.
It is good if the start point of the ellipse is below the end of the minor axis.

Sketch it out in space so as not to inadvertently capture and unwanted relations.
2. Add a Horizontal relation between the center and the point at the end of the minor axis.

Note: Sketch relations have been viewed on for illustration purposes.
3. Sketch construction lines from the end of the minor axis to the center and then to the end point of the ellipse.

Dimension the angle between them and set the value to 3.00°.

4. Add a Pierce relation between the end point of the ellipse and the bottom edge of the ruled surface.

5. Add a Coincident relation between the other end point of the ellipse and the end of the major axis.

Then add a Pierce relation between the end point of the ellipse and the sketched guide
 curve.

32 Sweep the surface.
Select the profile, path, and both guide curves to sweep the surface.

Note
An extra guide curve callout has been shown for illustration purposes.

Filling in Gaps

There are situations where special tools are needed to fill in areas of a model with surfaces. For example:

- Blending shapes.

Sometimes the shape you need cannot easily be created using fillets, sweeps, or lofts.

- Repairing gaps or incorrect geometry in imported surfaces. Sometimes imported surfaces lack the completeness or precision to be knit into a solid. In these situations a tool is needed to fill in missing surface patches.

■ Closing holes in a part.

In preparation for modeling a core and cavity mold, through holes in the part have to be closed off. Surfaces are used to do this. However, when the edges of the hole are not planar, creating a surface patch requires a special tool.

Introducing:
Filled Surface

The Filled Surface feature constructs a surface patch with any number of sides, within a boundary defined by existing model edges, sketches, or curves.

Where to Find It

- Click Filled Surface on the Surfaces toolbar.
- Or, click Insert, Surface, Fill.

Preparation for
Using Filled
Surface

To properly blend the filled surface to its adjacent boundaries, you should not rely on using curves for boundaries. It is much better to use the edges of surfaces. This however, usually requires you to create reference surfaces prior to using the Filled Surface command.

33 Trim surface.

Trim the 3° draft reference surface using Plane 3 as the trimming tool.

This will serve as one of the reference surfaces for the filled surface.

34 Extrude a surface for the second reference.
Open a new sketch on the Right reference plane.

Use Convert Entities 回 to copy the sketched guide curve into the active sketch.
Sketch a vertical construction line, coincident to Plane3, and use it to trim the converted curve.

Extrude a surface $\mathbf{0 . 5}$ " in the direction shown. Do not use draft.

35 Filled surfce.
Click Filled Surface 图 on the Surfaces toolbar.

For Edge settings, select Tangent.
Select the edges of the three
 Click OK.

36 Hide and show surfaces.
Hide the reference surfaces and show the lofted surface. surfaces.

37 Zebra stripes.

Click Zebra Stripes : on the View toolbar. Evaluate the quality and smoothness of the surfaces. Pay particular attention to the filled surface and how it blends with the swept surface.

To review Zebra Stripes, see Zebra

Stripes on page 93. To review other techniques for evaluating the quality of surfaces, see Analyzing Geometry on page 87.

Introducing:
Planar Surfaces
Where to Find It

Introducing:
Curve Through
Reference Points
Where to Find It

You can create a planar surface from either a closed single contour nonintersecting sketch, or a closed set of planar edges.

- Click Insert, Surface, Planar.

■ Or, click Planar Surface \square on the Surfaces toolbar.
Curve Through Reference Points creates a spline through sketch points, vertices, or both.

■ Click Insert, Curve, Curve Through Reference Points.

- Or, click Curve Through Reference Points on the Curves toolbar.

38 Click Curve Through Reference Points.
Select the two vertices shown, creating a straight spline.

Note

We could just as easily have sketched a
 line.

39 Planar surface.

Click Insert, Surface, Planar or click
Planar Surface on the Surfaces toolbar.

Select the curve you just created and
the open edge of the lofted surface.
Select the curve you just created and
the open edge of the lofted surface.
Click OK.

40 Results.
The resulting planar surface fits exactly across the opening of the lofted surface.

41 Another planar surface.

Open a new sketch on the Right reference plane and sketch a rectangle somewhat larger than the outline of the part.

Click Planar Surface \square. The system automatically creates a planar surface using hte active sketch. Click OK.

Click Trim Surface. For Trim Type, click Mutual.
For Trimming Surfaces, select all five surfaces: the lofted surface, the swept surface, the filled surface, and both planar surfaces.

Click Remove selections and click in the selection list. Identify the portion of the planar surface that you want to remove.

43 Results.

Note In this particular example, instead of creating an oversized planar surface and trimming it, we could have simply created the planar surface by selecting the edges of the existing surfaces. However, sometime those edges might not be planar, or they might extend beyond where they should. In those cases it is better to create an oversized surface and use Mutual Trim.

It's Not a Solid - Yet Although the collection of surfaces looks solid, it is not. It is hollow. To transform these surfaces into a solid, two more steps are required:

1. All the surfaces must be combined into a single composite surface.
2. The resulting composite surface must be filled to make a solid.

Creating a Knit Surface

Introducing: Knit Surface

Where to Find It

Knit Surface is used to combine or sew several surfaces into one composite surface. If the knit surface encloses a complete volume, with no gaps, it can be filled to become a solid.

Use Knit to combine two or more reference surfaces or faces into one. The edges of the surfaces or faces must be adjacent and not overlapping. Use the option Try to form solid to form the knit surface into a solid provided the surfaces form a closed volume.

Click Insert, Surface, Knit. Or, click Knit Surface ${ }^{\circ}$ on the Surfaces toolbar.

44 Knit surfaces.

Click Insert, Surface, Knit or click Knit Surface
(䀏 on the Surfaces toolbar. Select the trimmed surface and the two planar surfaces by either clicking them in the graphics window or the FeatureManager design tree.
Select the Try to form solid check box.
Click OK.

45 Results.

The resulting solid doesn't look much different from the surfaces. However, the FeatureManager design tree indicates that a solid body now exists in the part.
A Solid Bodies folder appears.

46 Mirror.

Click Mirror 㔽 on the Features toolbar. Select the planar face (step 41) as the Mirror Face/Plane.
Expand the Bodies to Mirror list and select the solid body.
Make sure Merge solids is selected and click OK.

Design Changes

Let's evaluate the design so far. There are three areas that don't look quite right.

1. The curves of the parting line and the edge of the area where the keypad goes do not compliment each other well.
2. Also, the front end of the remote control isn't rounded enough.
3. The area where the keypad goes is boring - it is flat.

Dynamic Feature Editing

Introducing: MovelSize Features

The curve that ultimately controls the outline of the remote surfee-Trim1 control is the parting line and it is embedded under the
(-) sketch4 trimmed surface.

When you edit this sketch, the part is rolled back and all the geometry disappears. Fixing the overall
 shape of the remote control would take a long process of trial and error because you would be working blind.

Dynamic feature editing enables you to make changes to features and sketches without rolling back the part. This way you can see the effects of the changes as you make them.
Move/Size Features enables you to dynamically edit features. When you drag the entities of a sketch, either with or without opening the sketch itself. The preview updates when you release the mouse button after dragging.

Click Move/Size Features 娄 on the Features toolbar.

1 Click Move/Size Features 䀨.

Expand the trimmed surface and show the underlying sketch. Adjust the shape of the spline by dragging the interpolant points.

2 Dynamically edit a sketch.
Expand the lofted surface feature and double-click the sketch that defines the edge of the flat area where the keypad will go.
Use viewports to see the top and front views at the same time.

Tip

Note

If you decide to dimension the sketch, turn off MovelSize Features for improved performance. With MovelSize Features on, the model will rebuild each time you add a dimension.

3 Edit the other sketches.
Repeat this procedure as necessary to edit the other sketches that make up the lofted surface.
This is an exercise in judgement and atheistics. There is no unique right or wrong solution.

Replacing a Face We will create a new, concave face to replace the planar face.

4 Sketch an arc.
Open a new sketch on the Right reference plane.

Sketch a 3 Point Arc and dimension it as shown.

The endpoints have Coincident relations with the vertices at the ends of the planar face.
Exit the sketch.
5 Create a plane.
Create a reference plane parallel to the Front plane, passing through the centerpoint of the arc you just sketched in step 4.

6 Sketch a second arc.

Create a new sketch on Plane4, the plane you just created.

Sketch a Centerpoint Arc (3). The two endpoints have Pierce relations with the edges of the planar face.
Create a reference point on the arc. Relate it to the arc in the previous sketch with a Pierce relation.

Add a Coincident relation between the arc's centerpoint and the Right reference plane.

7 Exit the sketch.

8 Filled surface.

Click Filled Surface on the Surfaces toolbar.

For Edge settings, select Contact.
Select the two edges of the planar face.

Under Constraint Curves, select the two arcs.

Under Options, select Merge result.

Click OK.
The planar face is replaced with the concave face.

Merge Result

11 Dome.

Create a Dome feature about $\mathbf{0 . 0 6 5}$ " deep. The exact depth is not critical.

To review the Dome feature, see Dome Feature on page 129.

Finishing

 TouchesIn this next section we will:

- Split the part into separate bodies, each representing a major component of the remote control;
- Shell the part;
- Define the basic geometry and shape of the keypad;
- Create specialized features called fastening features;
- Save the individual bodies as part files.

Splitting the Part Splitting a part into multiple bodies was covered in Lesson 1: Multibody Solids. To review this topic, see Splitting a Part into Multibodies on page 42.

1 Extrude the parting surface.
Reuse the original parting sketch

- $0 \gg$ Surface.Extuder extrude a surface.

Use Mid Plane as the end condition and set the Depth is such that it
 extends beyond the body of the part.

2 Split the part.
Click Split 包 or click Insert, Features, Split.

Select the parting surface as the trim tool.

Click Cut Part. The system computes the intersection of the trim tool with the part and
 calculates the results.

We want to create both bodies but we do not want to save them as separate part files at this time.

Select the check boxes for both bodies but leave the file name set to <None>.

For Resultant bodies state, select Show bodies.
Click OK.

3 Hide the parting surface.

4 Rename the solid bodies.
Expand the Solid Bodies folder.
Rename the bodies Upper
Housing and Lower Housing.
Change the colors of the upper and lowers housing so it will be easier to tell them apart.

5 Hide the Lower Housing.

Modeling the Keypad

To save time we will use a library feature for the sketch of the holes for the keypad. The sketch is straightforward and creating it step-by-step contributes nothing to this case study about surfacing.

1 Reference plane.
Show the Top reference plane. This is the plane onto which we will insert the library features (sketch).

2 Library Feature.
Drag the library feature named Sketch for Keypad from the Design Library and drop it onto the Top reference plane.

Associate the external references to the target part's Right reference plane and origin.

Click OK.

3 Dissolve the library feature.
Right-click the library feature and select Dissolve Library Feature from the shortcut menu.

4 Extrude a cut.
Extrude a cut Through All in both directions. Use 1.00° of draft.

A sliver face is left if the cut is not extruded in both directions.

5 Shell.

Shell the Upper Housing using a Thickness of 0.080 inches.

6 Reference plane.

Create a reference plane offset
$\mathbf{0 . 2 4 0 "}$ from the plane that was used to sketch the area around the keypad (step 15 on page 200).

Note

Note

The 0.240 " dimension was obtained by adding 0.010 " to the sum of 0.080 " (the shell thickness) and 0.150 " (the dimension on the arc in step 4 on page 216).
7 Intersection curves.
Open a sketch on Plane5.
Click Intersection Curve on the Sketch toolbar.
Select the two faces as shown on the inside of the Upper Housing.

Turn off the Intersection Curve tool and hide Plane5.

8 Keypad.

Change the two intersection curves to construction geometry and sketch the outline of the keypad as shown. Use an ellipse and a rectangle and trim as necessary.

The intersection curves are used as a guide to make sure the keypad doesn'tinterfere with the inside of the housing.

9 Planar surface.
Click Planar Surface \square on the Surfaces toolbar.

Create a planar surface using the active sketch.

Question:

Answer:

Since the surface we are using is planar, why not just cut using the reference plane?

The advantage of using a surface rather than a plane is that the extent of the cut is limited by the boundaries of the surface. If we cut with the reference plane, the entire body would have been cut, not just the areas around the keypad holes.

Creates a solid feature by thickening one or more adjacent surfaces. If the surface you want to thicken is comprised of multiple adjacent surfaces, you must first knit the surfaces together before you thicken the surface.

- Click Thicken on the Features toolbar.

■ Click Insert, Boss/Base, Thicken.

11 Thicken.

Click Thicken on the Features toolbar.
Select the planar surface.
Set the Thickness to $\mathbf{0 . 0 8 0}$ inches and clear the Merge result check box.

Examine the preview.

Select either Thicken Side 1 or Thicken Side 2 as necessary so that the surface is thickened away from the solid body.

Click OK.

12 Rename.

Name the solid body
Keypad.

13 Offset the edges.
Open a new sketch on the uppermost face of the Keypad. This will be the sketch for the buttons. transparent for illustration purposes.

Click Offset Entities 固. Offset the
 edges of the keypad holes $\mathbf{0 . 0 1 0}$ ".

Press the Enter key to repeat the previous command.

14 Extrude.

Extrude the sketch using Offset From Surface and an Offset Distance of 0.100".

Set the Draft Angle to 1.00° and make sure the draft is inward.

Select Merge result and use the

Feature Scope to select the Keypad.

15 Dome.

Create a $\mathbf{0 . 0 5 0}$ " dome on the top of the round button.

16 Fillet.

Add $\mathbf{0 . 0 2 0 "}$ radius fillets to the edges of the keypad buttons, shown here in red for illustration purposes.

Appearance Gap The next step in the process is to sweep a cut to create an appearance gap between the upper and lower housings.
First we will create two 3D curves:

- The sweep path
- The guide curve

Then we will sketch the sweep profile.

1 Hide the Keypad body.

2 3D sketch.
Click 3D Sketch 图 on the Sketch toolbar to open a new 3D sketch.
3 Fit spline.
Click Fit Spline \triangle on the Spline Tools toolbar.
Right-click the outermost edge of the Upper Hous ing and select Select Tangency from the shortcut menu.

Tighten the Tolerance until the Actual Deviation is less than 0.001".
Click OK. This is the path for the sweep.

Note

The resulting spline is shown here in red for illustration purposes only. It does not mean the spline is over defined.

4 Exit sketch.

Draft

Introducing: Draft The Draft features tapers selected faces in the model by a specified angle with respect to the pull direction of a mold. You can add draft using a Neutral Plane or a Parting Line.

[^2]1 Parting line draft.
Click Draft 固 on the Features toolbar.
For Type of Draft, select Parting Line.
For the Draft Angle, enter $\mathbf{1 . 0 0}$.
For Direction of Pull, select the Top reference plane.

Click Reverse Direction.

For Parting Lines, select the model edge
 shown and click OK.

Draft Analysis

The Draft Analysis tool is useful in determining whether the part has sufficient draft to be removed from the mold based on a set draft angle.

Where to Find It Click Draft Analysis 图 on the Mold Tools toolbar. Or, click Tools, Draft Analysis....

2 Draft analysis.
Click Draft Analysis 圆 on the Mold Tools toolbar, or click
Tools, Draft Analysis.
For Direction of Pull, select the Top reference plane.
Click Reverse Direction.
Set the Draft Angle to $\mathbf{1 . 0 0}{ }^{\circ}$.
Select the Face classification check box.

Click Calculate.
The green faces have positive draft with respect to the pull direction. The red faces have negative draft.

Click Cancel.

Note
For a more in-depth discussion of draft analysis, see Analyzing Draft on a Model on page 271.
3 Hide and show bodies.
Hide the Upper Housing. Show the Lower Housing.
4 Hole for fastener.
Open a sketch on the Top reference plane and sketch a $\mathbf{0 . 2 5 0}$ " diameter circle as shown. The distance from the origin is not critical but it should be located near the rear of the remote.

Adda Coincident relation between the circle's center and the Right reference plane.

Extrude a cut as follows:

- The From position is Offset $\mathbf{0 . 7 5}$ " from the sketch plane.

- The End Condition is Through All.
- The Draft Angle is $\mathbf{1 . 0 0 ^ { \circ }}$.
- Select the Draft outward check box.
- For Feature Scope, select the Lower Housing.

5 Shell．
Shell the Lower Housing using a Thickness of $\mathbf{0 . 0 8 0}$ inches．

6 Clearance hole．

Click Hole Wizard 圆 on the Features toolbar．，
－Standard＝ANSI Inch
－Type＝Screw Clearances
－Size＝\＃4
－Fit＝Normal
－End Condition＝Through All
－Feature Scope $=$ Lower Housing
Add a Concentric relation between the locating point and the edge of the cut feature．

Fastening Features

Fastening Features streamline creation of common features for plastic parts．You can create：

Mounting Boss
Snap Hook
Snap Hook Groove
Vent（also useful in sheet metal parts）
Where to Find It

■ Click Mounting Boss（⿴囗十⿱八刀口圆，or Vent 疄 on the Fastening Features toolbar．
■ Click Insert，Fastening Feature，and select either Mounting Boss，Snap Hook，Snap Hook Groove，or Vent．

1 Appearance．
Show the Upper Housing．
Make the Lower Housing semi－transparent．A transparency of 0.75 works well．

2 Mounting boss.

Click Insert, Fastening Feature, Mounting Boss. Creating a mounting boss is a multistep process:

1. Change to a bottom view orientation and select the inside face of the Upper Housing. One technique is to select the face through the fastener clearance hole.
2. To define the direction of the mounting boss, select the Top reference plane and click Reverse Direction. This orients the mounting boss correctly with respect to the pull direction of the mold.

3. To position the mounting boss, select the edge of the clearance hole.

4. To define the height of the mounting boss, select the planar face on the inside of the Lower Housing as shown.

Set the Diameter to $\mathbf{0 . 3 5 0}$ " and the Draft Angle to $\mathbf{2 . 0 0}$.
5. To orient the fins, select the Right reference plane. Set the other Fins options as follows:
■ Height $=0.375^{\prime \prime}$

- Width $=0.060$ "

■ Length $=0.3125^{\prime \prime}$

- Draft Angle $=2.00^{\circ}$
- Number of fins = 4

6. A mounting boss can have a pin or a hole. In this case we want a hole.

■ Select Hole

- Select Enter diameter
- Diameter $=0.086^{\prime \prime}$
- Depth $=0.825$ "
- Draft Angle $=1.00^{\circ}$

7. Click OK.

3 Results.

The mounting boss is added to the inside of the Upper Housing.

The mounting boss is shown in red for illustration purposes.
4 Appearance.
Hide the Upper Housing.
Remove the transparency from the Lower Housing.

5 Offset plane.

Show the sketch that was inserted as a library feature for the keypad cutout (step 2 on page 220).

Create a plane that is parallel to the Front reference plane and that passes through the point at the center of the circular keypad.

6 3D sektch.

Open a new 3D sketch.
Insert two points. Make them Coincident with the inside edges of the Lower Housing and also coincident (On Surface) with the offset plane.

Plane 6

7 Snap hook.
Click Insert, Fastening Feature, Snap Hook.
Select one of the points in the 3D sketch.
Select the Top reference plane to define the vertical direction of the snap hook.
Select the Right reference plane to define the direction of the hook.

Set the Body height at 0.070".
Enter the Snap Hook Data as shown.
Click OK.

8 Repeat.

Create a second snap hook using the second point in the 3D sketch.

9 Show solid body.

Show the Upper Housing.

10 Snap hook groove.

You must create a snap hook before you can create a snap hook groove.

Click Insert, Fastening Feature, Snap Hook Groove.

Select the Snap Hook1 feature.
Select the Upper Housing as the solid body that the groove will be applied to.

Enter the dimension values as shown.
The dimensions of the snap hook groove are driven by the snap hook. The values in the
PropertyManager are offsets, or clearances, so you can make the groove slightly larger than the hook.

Click OK.

11 Second snap hook groove.

Repeat this process for Snap Hook2. The results are shown below.

Note
The cut faces of the section view have been colored for clarity.

Saving the Bodies and Creating an Assembly

Save Bodies allows you to save individual solid bodies as part files. You can indicate which bodies you want to save. Optionally you can generate an assembly from the saved parts.

To review Save Bodies and Create Assembly, see Introducing: Save Bodies on page 39.

12 Save bodies.

Right-click the Solid Bodies folder and select
Save Bodies from the shortcut menu.
Save the three solid bodies as:

- Upper Housing
- Lower Housing
- Keypad

If you want to create an assembly do the following:
1 In the Create Assembly group box, click Browse. The Save As dialog opens.
2 Browse to where you want to save the assembly.
3 Give the assembly a name and click Save.

13 Save and close all the files.

Rapid Prototyping

By using rapid prototypes early in the product development cycle, you can receive critical feedback early in the design process. Rapid prototyping is sometimes called 3D printing. The 3D printing process often takes advantage of a rapid prototyping process known as stereolithography, or layered object manufacture. 3D printers come with special software that imports the CAD file and slices it into thin horizontal layers 0.003 inches to 0.01 inches thick. Each thin crosssection is sent to the 3D printer, which builds up the model, layer by layer, starting from the bottom of the part and moving upward. In a matter of minutes or hours, the model is complete.

Print3D

Where to Find It
Note

Print3D is a web portal linked to the SolidWorks software. Using Print3D, you can contact selected rapid part and prototype vendors to request price quotes or place an order for rapid prototypes of the currently open part document. Some vendors provide instant price quotes; others will contact you via e-mail.

Print3D automates the process of requesting a quote or ordering a prototype, eliminating the need to search for reliable services, save parts as STL files, FTP the files to vendors, or perform other operations. Model data is encrypted prior to transmission, so your data is always secure.

- Click Print3D 園 on the Standard toolbar,

You may have to use Tools, Customize to add the Print 3D icon to the Standard toolbar.

Intersection

 Curves and SplinesOne of the keys to any sweep operation is creating the required curves to use as the path or guides. In this example, a decorative piece of wrought iron is modeled by sweeping a circle along a curved path. The path is created by finding the intersection between two reference surfaces.

Thanks to Jason Pancoast at Computer-Aided Products, Inc. for submitting this example.

Stages in the Process

The major steps in this operation are:

Create a revolved surface.
This will use a sketched spline.

- Create a helical surface.

This is done by sweeping a line along a straight path, with a helical guide curve.

Generate intersection curve.

Find the intersection between the two reference surfaces. This is the path for the twisted sweep.

■ Sweep one of the "spokes".
A circular profile is swept along the intersection curve.

- Pattern the "spokes".

A circular pattern of the swept feature completes the part.
Some of the design intent we have to consider includes:

1. The diameter of the helix has to be equal to or greater than the diameter of the revolved surface.
2. The height of the helix and the height of the revolved surface have to be equal.
3. The helix is defined by its height and the number of turns. The system will calculate the pitch.

Procedure To save time, we will begin by opening an existing part.
1 Open part.
Open the existing part named Wrought Iron. This represents the base of an ornamental object such as the base of a lamp. A sketch is also included.

2 Hide solid.

Right-click the revolve feature, and select Hide Solid Body.
3 Edit an existing sketch.
Edit the sketch spline_grid.

4 Create spline.

Click Spline \sim and sketch a spline whose shape is approximately the same as the one shown in the illustration at the right, attaching to lines and endpoints. The spline should have 7 interpolant points.

5 Dimension.

Use ordinate dimensions to dimension the spline points. To maintain symmetry in the spline, you can use Link Values on the pairs of vertical ordinate dimensions.

6 Vertical relation. Select the upper end spline handle (arrow) and add a Vertical relation.

Repeat the procedure for the lower end spline handle.

7 Revolve surface. Select the vertical centerline at the zero datum, and click on the Surfaces toolbar.
Set the Angle to 360°.
Click OK.

8 Circle for the helix.
Open a sketch on the Top reference plane, and sketch a circle.
Dimension it so that it is larger than the diameter of the revolved surface.

Note

An equation can be used to ensure that the diameter of the circle is always greater than the diameter of the revolved surface.

9 Add helix.
With the sketch active, click Helixl Spiral 8 .
Insert a helix with the following parameters:

- Defined by = Height and Revolution
■ Height = 8.00"
- Revolution = 1
- Starting angle $=90^{\circ}$
- Clockwise

This helix will be used as the guide curve for a swept surface.

Note
An equation can be used to set the height of the helix equal to the height of the reyolved surface.

10 Sketch the sweep path.
Open a new sketch on the Front reference plane. Show the sketch of the revolved surface.

Select the vertical centerline, and click Convert Entities to copy it into the sketch.

11 Exit the sketch.

12 Sketch the sweep profile.
Open a new sketch on the Top reference plane. Sketch a line from the bottom end of the sweep path to the end of the helix.

Be sure to add a Pierce relation between the end of the line and the helix. Add the line without

13 Exit the sketch.

14 Sweep a surface.

Sweep a surface using the path, section, and guide as shown below.

15 Intersection curve.
Open a new 3D Sketch. Hold down Ctrl and select the two surfaces.

Click Intersection Curve
The system generates the intersection in a 3D sketch, and automatically puts you into Edit Sketch mode.
16 Exit the sketch.
Exit the 3D sketch and hide the two surface bodies.

17 Show the solid body.

Right-click Revolve1 and select Show Solid Body.
18 Sketch the sweep profile.
Create a plane normal to the top end of the intersection curve, and sketch a 0.25 " circle.

19 Sweep.
When sweeping the boss, use the option Align with end faces and Merge result to ensure that the boss completely merges with the revolve feature.

20 Circular pattern.
Create a circular pattern with six equally spaced instances.

21 Save and close the file.

Exercise 20:

Stapler

Under Construction

May not be suitable for class. Building the initial loft using a 3D sketch with a 3D spline may be too daunting a task.

Exercise 21: Surface Modeling

Use surface commands to create a thin walled solid model.

Disclaimer: The primary purpose of this exercise is to give you the opportunity to practice using some of the surfacing commands. In reality, there is no compelling reason to build this part using surfaces. The steps in the procedure may be somewhat contrived so that certain commands will be utilized.

This lab reinforces the following skills:

- Surface extrude, revolve and sweep
- Knit surface
- Surface fillet

Trim and extend surface Thicken surface

Open a new part using the Part_IN template and name it Baffle.
1 Sketch for extrude. Create a sketch on the Front reference plane using this geometry.

2 Extruded surface.
Extrude a surface 5" using the end condition: MidPlane.

3 Split line.
Create a sketch on the Top reference plane as shown.
Using the sketch, project a Split Line onto the extruded surface.

This creates four additional faces.

Delete Face

If you click the surface and press Delete, you will delete the split line feature. To delete selected faces of a surface, right-click a surface and select
Delete Face. The

PropertyManager
will open and you can select the faces you want to delete.

4 Delete faces.

Delete the faces that fall outside the split line shape. Use the Delete option, not Delete and Patch.

A DeleteFace1 feature (x) DeleteFace is added to the FeatureManager design tree.

A Different
Approach: Trim

Instead of manually splitting the faces of the extruded surface and then deleting them, you could have used Trim Surface to achieve the same result in a single operation. You would have clicked Trim
Surface and selected the sketch as the Trim tool. The technique of splitting the surface and then deleting the unwanted faces was used in this exercise to illustrate how to delete selected faces from a surface.

5 Revolved surface.
Sketch on the Front reference plane and revolve the geometry as a surface.

6 Extend surface.
Extend the top edge of the revolved surface so that it extends well beyond the extruded surface.

7 Trim surface.
Trim both the extruded and revolved surfaces, leaving the portions shown.

Tip
Mutual Trim can be used.

8 Sweep surface.

Create a reference plane normal to the surface edge and sketch a line as shown.

Using the line as the sweep section and the surface edge as the sweep path, create the surface shown.

Create a composite curve from the edges of the surfaces.

Tip

Filleting Surfaces

Surfaces are filleted using the same command as for solids. However, surfáce behave a little different than solids. The difference depends on whether the surfaces are separate, discrete surfaces, or whether they have been knit together.

Rules
There are a couple of simple rules that make filleting surfaces very straightforward:

■ If the surfaces are knit, select and fillet the edge, just like you would with a solid. This is the simplest, most straightforward case.
■ If the surfaces are not knit, use a Face Fillet between the individual surfaces.

- If the surfaces are not knit, after they are filleted, the result is knit. Filleting will automatically trim the filleted surfaces and knit them together with the fillet, forming a single, composite surface.
- When using a Face Fillet on surfaces, preview arrows will appear indicating the side of the surface to which the fillet will be applied. This is because when filleting untrimmed surfaces, there can be multiple solutions. Click Reverse Face Normal to reverse the
arrows. For example, as illustrated on the following page, an intersecting cylinder and curved surface can yield four different results, depending on which side of the surfaces the fillet is located.

9 Knit surface.
Combine the trimmed and swept surfaces into a single surface using Knit Surface.

10 Surface fillets.

Add a fillet of $\mathbf{0 . 1 2 5}$ " radius to the surface edges as shown in the illustration.

Exercise 22: Halyard Guide

Use surface commands to model the halyard guide.
This lab reinforces the following skills:

■ Surface Sweep

- Surface Trim

■ Creating Planar Surfaces
■ Knit Surface

- Surface Fillet
- Thicken Surface

Procedure

Open a new part using the Part_IN template and name it Halyard Guide.

1 Sketch first guide curve. Open a sketch on the Right reference plane, and create the sketch shown at the right.

2 Offset plane.
Create a plane offset $\mathbf{0 . 2 5 "}$ below the Top reference plane.

3 Sketch second guide curve.
Open a sketch on the offset plane (Plane1 in the illustration above), and create the sketch shown at the right.

4 Sketch third guide curve.
Open another sketch on the offset plane, and sketch a vertical centerline from the Origin.

Sketch a second vertical centerline whose lowermost end is aligned with the Origin.

Sketch an arc tangent to the centerline.

Add Symmetric relations between the arc in this sketch and the arc in the sketch of the second guide curve.
5 Sketch the path.
Open a sketch on the Top reference plane, and sketch a vertical line starting at the Origin. Add a relation so the length of the line is driven by the guide curve sketches.

6 Sketch the sweep profile.
Open a sketch on the Front reference plane, and sketch an arc centered on the Origin. Sketch two tangent lines as shown.

7 Add relations.

Add Pierce relations between the ends of the tangent lines and the second and third guide curves.
Add a Coincident relation between the arc and the end of the first guide curve. The sketch should be fully defined.

88	Sweep a surface. Using the profile, path, and three guide curves, sweep a surface.
Important!	Use Path Tangent for the Start tangency type.

9 Trim the surface.
Trim the swept surface using the Top reference plane as the trim tool. Keep the uppermost portion of the surface.

10 Sketch.
Open a sketch on the Top reference plane. Convert the edge of the trimmed surface, and complete the sketch using the dimensions given.

11 Planar surface.

Click Planar Surface \square to create a planar surface using the active sketch.

12 Second planar surface.
Mirror the first planar surface to create the second one.

13 Knit the surfaces and fillet the edges. Knit the three surfaces together, and then fillet the edges shown with a 532 " radius fillet.

14 Thicken.

Create the first feature by thickening the surface $\mathbf{0 . 0 8}$ ". Check the preview to ensure the material is added to the correct side.

15 Mirror body. Use Insert, Pattern/ Mirror, Mirror to create the other half of the guide and Merge result.

16 Countersunk hole.
Add 4 countersunk holes. Select the flat face of the model and click 圄.
Choose the settings for the description "ANSI \#10 Flat Head Machine Screws (100)".

Use mirroring in the sketch to facilitate creating all four holes in one feature.

17 Fillet the edges.
Add a $\mathbf{0 . 0 2 0}$ " radius fillet to the edges of the part.
18 Save and close the file.

Exercise 23: Using Import Surface and Replace Face

This demonstrates some techniques for modifying imported models. The lab uses a surface imported from a Parasolid (x_t) file. The surface is moved to a new position and used to replace a face in the solid.

This lab uses the following skills:

- Delete Face

■ Import Surface
■ Move Surface

- Replace Face

1 Open existing file.
Open the existing Parasolid file named Button.x_t. It is found in the Replace Face folder.

If you are prompted to select a template, choose Part_IN.
The face to be replaced is highlighted in green.

2 Delete faces.

Before we can replace the face, some fillets have to be deleted. Click
 Select the faces shown.

Be sure to zoom in on the corners. There are some small faces there.

Tip
Drag a selection box around the corners to be sure to select the small faces.

Select the option Delete and Patch, and click OK.

3 Import surface.
Import a surface into the part using Insert,
Features, Imported. Select the Parasolid file named New Surface.

The surface color was changed for clarity.

4 Move the surface.
Click Insert, Features,
Move/Copy, or click Movel
Copy Bodies 图 on the Surfaces toolbar.

Use the Translate option.
Enter $\mathbf{2 . 5 "}$ " for Delta Y.
Click OK.

5 Replace face.
Replace the top face of the part with the imported surface.
Click Insert, Face, Replace, or click Replace Face 6 国 on the Surfaces toolbar.

6 Hide the surface.
Right-click the surface, and select Hide Surface Body.

7 Fillet.
Add a 0.025" fillet as shown.

8 Save and close the file.

Exercise 24: Using Surfaces

Lofting Between Surfaces

This lab includes two small exercises in using surfaces to create solids.

- The first one creates a solid by lofting between two surfaces.
- The second uses the method of knitting surfaces to combine multiple bounding surfaces into a solid.

This lab uses the following skills:

- Lofting between surfaces
- Importing an IGES file
- Repairing missing surfaces
- Knitting surfaces

Lofting can be accomplished using sketches, faces or surfaces. In this example, lofting is performed between two surfaces to form a solid.

1 Open the part.
Open the existing part named LOF'T_SURF. The part consists of two imported surfaces.

2 Insert loft.
Using Insert, Boss/ Base, Loft, select the two surfaces as the Profiles of the loft.

Pick the surfaces near mating corners, like you would using sketches.
The result is a single solid body.

3 Fillets and shell.
Add fillets of radius $\mathbf{0 . 5}$ " and a shell of $\mathbf{0 . 1 2 5 "}$ to complete the body.

4 Save and close the file.

Repair and Knit Surface

Knit surface allows you to combine several surfaces into a single, larger surface or in some cases, a solid. For a solid, the surfaces must comprise a closed volume. If surfaces are missing from the imported data, the gaps must be filled.

1 Import an IGES file.
Click File, Open, or click Open 图. Set Files of type: to IGES Files (*.igs;*.iges). Select the file Surface Repair.IGS.

2 Click Options.

Verify that the option Try forming solid(s) is selected and click OK.

3 Click Open from the Open dialog．
If you are prompted to select a template，choose Part＿IN．

4 Results．

The individual surface patches are knit into a single imported surface．However， there are some gaps．

Th Surface Repair
A Annotations
\otimes Design Binder
8ミ Plain Carbon Steel
He Lighting
Sol Surface Bodies（1）
除 Front Plane
Top Plane
$>$ Right Plane
$\stackrel{\star}{*}$ Origin
Surface－Imported1

5 Click Filled Surface 匈． Set Edge settings to Tangent．
Select the Apply to all edges check box．
6 Select edges．
Right－click one of the edges of the opening，and select Select Open Loop．

Select the Merge result check box．

Click OK．

7 Results．
A surface patch is created to fill in the opening．It is shown here in a different color for illustration purposes．

Since the Merge result option was selected，the new patch has automatically been knit to the existing surface．

8 Repeat．
Repeat this process for the remaining three openings．

When doing the last opening，also select the option Try to form solid． This will thicken the resulting knit surface into a solid．

9 Results．
Although the graphics look the same，a solid has been formed．Only by looking at the Solid Bodies folder can you tell the model is now a solid．

10 Save and close the file．

Exercise 25: Inserting a Picture and Combining

Procedure

Note

This lab demonstrates a technique for using image files in a sketch. The lab uses a JPEG file that is "traced" in a sketch using splines and other geometry.
This lab uses the following skills:

- Insert picture

■ Splines

- Combine

Open a new part using the Part_IN template and name it Fork.
1 Images.
Create a new sketch on the Front
reference plane.
From the Tools menu, choose,
Sketch Tools, Sketch Picture and
insert the FORK SIDE. jpg image file.
Set the Width (the X dimension) to $\mathbf{6}$ ".
Using the Top plane and the
FORK TOP.jpg file, create another sketch.

Size the image to the same width.
2 Front sketch.
Edit the sketch with the
 FORK SIDE.jpg
image and "trace" the lower edge of the image with a spline.
Zoom in after creating the spline to move or add more spline points. The sketches can be fully defined at a later time, if necessary.
3 Extrude.
Using a thin feature, extrude the sketch with a thickness of $\mathbf{0 . 0 6 2 5}$ ".

The image file in the sketch can be suppressed.

4 Top sketch.
Using lines, arcs and splines, trace the image shape. Use symmetry where it is
 appropriate.
5 Extrude and combine.
Extrude the boss feature and combine the solid bodies into one.
6 Save and close the part.

Upon successful completion of this lesson, you will be able to:

- Apply shrinkage to resize a plastic part.

■ Analyze a model to check the draft angles of model faces.

- Fix un-drafted faces on the plastic part.

Determine parting line edges to build parting line surfaces.

- Create shutoff surfaces.
- Create parting surfaces.

■ Create interlock surfaces.

- Create a tooling split.
- Utilize multiple parting lines and parting surfaces
- Create side cores, lifters, and core pins.
- Model an electrode.

Case Study: A Simple Two Plate Mold Design

Designing mold tooling is a multi-step process. Once you create the model for which you want to design a mold, you need to follow several steps to create the core and cavity. This case study demonstrates how to create a simple two plate mold for this plastic dust pan.

Stages in the Process

The key steps in this lesson are listed below. Each of these topics describes a section in the lesson.

Fixing File Translation Errors.

Many times mold designers will need to build a mold for a plastic part that was designed in another CAD system. Use the Import
Diagnostics command to find and fix errors on translated CAD models.

- Check the plastic part for correct draft.

A solid model of a plastic part is provided to create the mold tooling. The model must be drafted correctly or the molded part will not eject from the tooling. Use the Draft Analysis command to determine if the part can eject from the mold.

- Fix the un-drafted faces.

When a plastic part is not drafted properly, the mold designer must fix the plastic part model to ensure that the part ejects from the mold.

- Scaling the plastic part.

When the hot injected plastic cools during the molding process, it hardens and shrinks. Before creating the mold tooling, the plastic part is scaled slightly larger to compensate for plastic shrinkage.

- Establish the parting lines.

Parting lines must be established on the plastic part. The parting lines are the edges of the plastic part from which the parting surfaces are created. They are the boundary edges between the core and the cavity surfaces.

■ Create shut-off surfaces for holes in the plastic part.
After the parting lines are established, shut-off areas on the plastic part are sealed with surfaces. A shut-off area is where two pieces of mold tooling contact each other to form a hole or a window in the plastic part. Holes molded in the plastic require a shut-off surface. Not all plastic parts require this.

- Create the parting surfaces.

Once the shut-off surfaces are created, parting surfaces can be created. The parting surfaces are projected away from the parting line edges all around the parting lines' perimeter. Typically, these surfaces are perpendicular to the direction of pull, although there are other techniques to model them. These surfaces are used to define and separate the tooling boundaries.

- Develop the interlock surfaces.

Around the perimeter of the parting surfaces, tapered surfaces are created to help lock the tooling components together when the mold is closed. These tapered surfaces are tapered 5° from the direction of pull. This angle keeps the steel from galling as the mold closes and opens. Not all tooling requires these special surfaces. If you do create interlock surfaces, these surfaces are knitted to the parting line to help separate and establish the boundaries between the tooling bodies.

- Separate the tooling into separate solid bodies.

The last step of the tooling design is to separate the solid bodies of the mold tooling from the plastic part and from the parting surfaces.

■ Side Cores and Lifters can be established.
When necessary, an optional design step is applied to separate "side cores" and "lifters" from the core and cavity bodies. This creates tooling that does not travel in the same direction as the primary parting direction of the tooling.

- Electrode modeling.

Surface modeling techniques are demonstrated to model electrodes that are used to burn complicated geometry on the tooling. The Move Face command is used to quickly clear back an electrode.

Problematic File Translations

A common problem for mold designers is data translation errors. Sometimes a plastic part is designed in one brand of CAD system and then sent to another brand of CAD system for the tooling to be designed in. Many times the translation is not successful. To successfully design the tooling, the translated data must be free of gaps and errors. The SolidWorks application has tools to help find and repair these problematic areas on translated models. The dustpan in this case study is not a water-tight solid model. The tooling cannot be created until the model is fixed and becomes a solid body.

Introducing: Import Diagnostics

Where to Find It

The Import Diagnostics command is used to fix problems with the geometry on an imported body or surface body.

- Click Import Diagnostics 国 on the Tools toolbar.
- Click Tools, Import Diagnostics..
- Right-click the imported body in the Feature Manager design tree and choose Import Diagnostics.

1 Open the file named Translated_Dustpan.
This part was imported from an IGES file. It could not be knit into a solid body.

Right-click Surface-Imported1 and click Import Diagnostics from the popup menu.

2 Examine the results.

Right-click the first face in the Faulty face list.

The popup menu allows several options for working with faulty faces.
Click Zoom To Selection from the popup

3 Click What's Wrong.
Right-click again the first face in the Faulty face list and click What's Wrong from the popup menu.
The message indicates that this face is overlapping other faces in the model. This is preventing the model from knitting into a water tight solid body.

4 Inspect the Gap.

Right-click Gap<1> in the Gaps between faces list.
Click Zoom To Selection from the popup menu.
Inspect the highlighted edges on the model.
Zoom in closer if necessary.
Notice the gaps where these edges come together.

5 Repair the face.
Right-click the first face in the Faulty face list.
Click Repair Face from the popup menu.
Inspect the edges.
The edges between the faces are more precise and the gap has been closed.

Notice also the model is now a water tight solid body.

 in the geometry.

Attempt to Heal All

Tip
Use the Attempt to Heal All button to automatically fix the problems on an imported model. If the results are not satisfactory, use the commands on the popup menus for the Faulty faces list, or the Gaps between faces list to fix the problems individually.

Analyzing Draft on a Model

To create the tooling for a mold, the plastic part must be engineered and drafted properly so that it ejects from the surrounding tooling. To analyze the draft on a molded part, use the Draft Analysis command to help find draft and design errors.

Checking the Mold-ability of a Plastic Part

Determining the
Direction of Pull

Note

Introducing:
 Draft Analysis

If the faces of the plastic part are not drafted properly, a plastic part may be scored or even get stuck in the tooling when it is ejected from the mold. To determine if a part is moldable, an analysis of all the faces on the model must be done to verify that the part was properly drafted, and also to see if enough draft was applied.
In the following diagram, a cupcake is used as a simple illustration to explain the direction of pull. Notice that the bottom of the cupcake is drafted. That is done so that the cupcake does not get stuck in the pan. The same idea is used on plastic parts. They must be drafted properly or the part may get stuck in the surrounding tooling. To run a Draft Analysis on a plastic part, the term direction of pull needs to be explained.

The direction of pull is the direction in which the plastic part is going to be ejected from the tooling. A simple way to think of this, is to think of a cup cake and the direction it falls out of the cupcake pan. The direction vector of the top plane of the pan represents the direction of pull. The direction of pull is also analogous to the "path of least resistance." Keeping this in mind, mold designers design a mold so that the plastic part easily comes out of the mold with the least amount of tooling as possible. This will help

Cupcake and cupcake pan.
 The direction of pull is shown by the arrow. keep the cost of the mold down.

Complicated molds can have more than one direction of pull. This situation will be covered in Case Study: Multiple Parting Directions on page 311.
The Draft Analysis command is used to make sure that all faces on the plastic part have enough draft on them. When the Draft Analysis is run, all of the faces in the plastic part are traversed and colors are assigned to the faces to show the amount of draft, and to specify the peice of tooling that the face should be molded by.

The Draft Analysis displays:

- Faces that are not drafted.
- Faces that are drafted incorrectly.
- Faces that do not have enough draft on them.
- Faces that straddle the parting line.

■ Faces that have draft, but include areas with insufficient draft.

Where to Find It
 ■ Click Draft Analysis 圆 on the Mold Tools toolbar.
 - Or click Tools, Draft Analysis.

6 Check the part for proper draft.
Click Draft Analysis 圆 on the Mold Tools tool bar.

Select the top planar face of the dust pan for the Direction of Pull.

Set the Draft Angle tolerance to $\mathbf{1}^{\circ}$.
Select the Face Classification check box.

Select the Find Steep Faces check box.
Click the Calculate button.

Draft Analysis Colors

In the PropertyManager for the Draft Analysis command, six Color Settings are used to display what the draft looks like on the model.

The default colors are shown in the illustration at the right and they are used and described in this example. Click Edit Color to change any of the colors.

The color settings are described in detail over the next pages.

In the Draft Analysis command, use the Show/Hide buttons in the Color Settings area to hide or show the faces with different types of draft. Sometimes these surfaces are very small and hard to find on the part when all the surfaces are visible.

Positive draft displays the faces that can be ejected away from the positive side of the parting plane.

Imagine shining a beam of light at the plastic part, parallel to the direction of pull. If the light can illuminate the face, it has positive draft. The green faces in the illustration below all get hit with the light beam. They have positive draft. The red faces do not get hit with the light beam because the green faces block the light from the surfaces under the part.

Negative Draft

Negative draft displays the faces that can be ejected away from the negative side of the parting plane.
Imagine a light beam shining in the opposite direction. All of the red faces of the model now get hit with the light beam. They have negative draft.

Requires Draft

Note

Straddle Faces

Note

When Draft Analysis identifies a face that has less than the required draft angle, that face is colored yellow and is classified as Requires draft. The face either has no draft, or needs to have more draft added. The plastic part must be adjusted to ensure that it ejects properly from the tooling.

The plastic part in the previous diagram shows a face that requires draft. The next case study will analyze this plastic cordless electric drill cover and explain how to deal with faces that do not have the correct amount of draft on them.

Straddle faces are faces that straddle the parting line. You must split straddle faces into two pieces to separate the tooling surfaces. Splitting the face can be done manually with the Split Face command or it can be done with the Parting Line command, automatically, by clicking on the Split Faces option.

There are no straddle faces in the dustpan example.
An example of a part with a straddle face, the Forged Ratchet Body, is shown in the following diagram.

This face must be split into two faces where the parting plane bisects it.

One piece will be formed by the cavity and the other will be formed by the core.

Positive Steep
Faces

Negative Steep Faces

Scale the Plastic Part to Allow for Shrinkage
Scale the Plastic
Part Part

Introducing: Scale

Note

Important!

Where to Find It

These faces include portions of the face that have less than the required draft. If the entire face had less than the required draft, it would be classified as Requires draft. These faces are found on the positive side of the mold.

These faces include portions of the face that have less than the required draft. These faces are found on the negative side of the mold.

Mold tooling is manufactured slightly larger than the plastic part produced from the mold. This is done to compensate for the shrinkage that results after the hot, ejected plastic cools. Before the tooling is created from the plastic part, mold designers scale the plastic part larger to account for shrinkage. Different plastics, geometry, and molding conditions all have an effect on the shrink factor.

You can use the Scale command to grow or shrink the model geometry.
Scale the part slightly larger so that when the molded part cools and shrinks, all of the molded features are the correct size.
The Scale command applies a scaling factor. The scaling can be
Uniform or vary in the \mathbf{X}, \mathbf{Y}, and \mathbf{Z} directions. In this example, the body is uniformly scaled larger by 5%.

The Scale command changes the size of the part, but it does not change the dimensions of preceding features.

When scaling a part with non-uniform scaling, remember that cylindrical holes may no longer be cylindrical. You may have to make changes to the model to compensate for this before you create the mold tooling.

- From the Insert menu, click Features, Scale.
- Or, click Scale 운 on the Mold Tools toolbar.

7 Scale the plastic part.
Click Scale 60 on the Features toolbar.
The scaling type can be either about the Centroid, about the Origin, or about a Coordinate System.
Select Centroid
Select the Uniform Scaling Factor check box.
Set the Scale Factor to 1.05 (5\% larger). Click OK.

Determine the Parting Lines

Establish the Parting Lines

Lines

Parting Lines are the edges of the molded plastic part that border the cavity and the core surfaces. The edges of the parting line are the edges used to separate the surfaces that belong to the core and to the cavity. They are also the edges that form the inside perimeter of the parting surfaces.

Now that the part is properly drafted and scaled, the parting line can be established. After another Draft Analysis is run, the parting lines are typically identified as the edges on the model that share two faces, classified as positive and negative draft.
In the next illustration, the cavity surfaces (positive draft) are green and the core (negative draft) surfaces are red. Any edge that shares a red and green face is a parting line edge.

The Parting Line command allows the designer to automatically or manually establish the parting edges. Later, this Parting Line feature will be used to create parting surfaces. In case the plastic part geometry was changed, the Draft Analysis is done as part of the Parting Line command.

- Click Insert, Molds, Parting Lines.
- Or, click Parting Lines on the Mold Tools toolbar.

8 Establish the parting lines.
Click Parting Lines on the Mold Tools toolbar.
Click in the Direction of Pull field.
Select the top face of the dustpan.
Set the Draft Angle to $\mathbf{1}^{\circ}$.
Click the Use for Core/Cavity Split option.
Clear the Split Faces option.
Click Draft Analysis.

Use the Split faces option to automatically split straddle faces into two pieces before selecting your parting line.

9 Selecting all of the parting edges.
When the Draft Analysis is complete, all of the edges that are shared by green and red faces are automatically selected and added to the Parting Lines list.
Click OK.
The parting line feature is added to the model.

Note
There may be more than one parting line feature in a model. The option Use for Core/Cavity Split is used to specify which parting line should be used as the primary parting line for the Tooling Split command.

Manual
Selection Of Parting Lines

In this example, the parting line edges are automatically selected when the Parting Lines command is run. Because this is a simple parting line boundary, the edges are automatically added to the Edges list in the Parting Line PropertyManager.
Sometimes the parting line may be more complex and the software will not automatically find the parting line. When this happens, use the edge selection buttons that appear next to the Edges list box to manually select the parting line.

- uts Add selected edge.
- \quad Select next edge.
- Go Zoom to the selected edge.
- Undo
- Redo

Remember that the Select Tangency, Select Loop, and Select Partial Loop commands can all be used when establishing parting lines.
Access these commands from the shortcut menu when right-clicking in the graphics area.

10 Edit the parting line feature.

Edit the Parting Line1 feature. Right-click in the Parting Lines list box and select Clear Selections from the shortcut menu.

11 Select an edge on the model.
Select an edge on the model that shares a red and a green surface.
Notice that the message at the top of the PropertyManager has changed to instruct the designer to select the edges that represent the parting line. Notice also that the edge selection buttons appear in the Parting Lines list box.

When you select the edge, the edge is added to the list box.

Manual Selection of Parting Line Edges

Designers will use the buttons next to the Parting Lines list to select the next edge, or pick another candidate. The message at the top of this PropertyManager provides feed back to let them know when thay have a continuous parting line selected.

Additionally, the next edge that is a candidate for the Parting Lines list will be marked with a 3D arrow in the model view. If the next edge is acceptable, click Add selected edge ths. If the next candidate is not satisfactory, use the Select next edge Θ button to select a different edge that shares the same end point as the last edge added to the list.

A designer can use the Zoom to the Selected Edge of button, and the model view continues zooming into the next edge selection automatically as they continue selecting edges.
If a completed loop is selected, the message on the ProperyManager changes to inform the designer that they have completed selecting a closed loop that can be used for a complete parting line.

12 Cancel the dialog.
Click Cancel to discard the changes.

Note

A complete loop is not required to create a parting line feature. Parting lines can be incomplete and finished later in the mold design process.

Shutting Off Holes or Windows in the Plastic Part

Shut-off Surface Patch Types

After the parting lines are established, the next step is to determine any open molding areas on the plastic part that need Shut-off Surfaces. An open molding area is either a hole or window in the molded part where two pieces of tooling touch coincidentally to form the hole. The illustration shows a simple shut-off surface. It is created on the smaller end of the tapered window.
The Shut-Off Surfaces command automatically shuts off the open holes in a plastic part.

Callouts are used to choose what type of shut-off surface to create.
Tangent

- Contact

■ No Fill

The following table shows the results of the different patch types.

Introducing: Shutoff Surfaces

Where to Find It

The Shut-off Surfaces command allows designers to automatically or manually shut-off any open holes or windows in the plastic part. The shut-off surfaces are stored as a feature in the FeatureManager design tree. Shut-off surfaces are later used to help separate the mold tooling surfaces. To select the different options click the callout in the graphics area. The patch types can be globally changed by selecting the appropriate type from the Reset All Patch Types options.

- Click Shut-off Surfaces 图 on the Mold Tools toolbar. ■ Or, click Insert, Molds, Shut-off Surfaces.

13 Create the shut-off surfaces. Click Shut-off Surfaces 붕 on the Mold Tools toolbar.

Rotate the part and zoom in on the area in the handle that requires a shut-off surface.

If necessary, manually select the loop shown in the diagram.

Set the Patch Type as Tangent.
Toggle the tangency arrow if needed.
Click OK.
The shut-off surface is created.
The surface bodies for the cavity
 and core are created and organized in the Surface Bodies folder.
Note Established parting line features may be used to define the boundaries for the shut off surface.

A great deal of automation was built into the process of creating tooling for a molded part. Some examples already examined include:

■ Automatically selecting the edges for the parting line based on the common edges between the positive and negative draft faces.

- Automatically knitting two surface bodies - one for the core and one for the cavity.

Note
If shut-off surfaces were not needed, the knit core and cavity surface bodies would be created when a complete Parting Line feature is added. In this example, shut-off surfaces are required, and the Shut-Off Surfaces command knit the surfaces and organized them in the Surface Bodies folder.

Later in this chapter, the Tooling Split command is used to automatically create the tooling. This command requires that three surface body folders, each with the appropriate surface bodies in them, must exist. The folders are:

■ Cavity Surface Bodies

- Core Surface Bodies
- Parting Surface Bodies

At this point two folders and surfaces exist that represent the core and cavity surfaces. This third required surface is created with the Parting Surfaces command.

Modeling the Parting Surfaces

Parting Surfaces

Introducing: Parting Surfaces

Where to Find It

The next step is to create parting surfaces around the perimeter of the parting lines. Currently the surfaces are organized into two core and cavity surface bodies. The Shut-off Surfaces command separated the knit surfaces. Another knit surface body, the Parting Surface, needs to be added.
Parting surfaces are ribbon-like, knit surface bodies that generally extrude perpendicular to the pull direction, away from the parting line edges on the plastic part. This parting surface helps split the tooling blocks where the cavity and core faces touch around the perimeter of the plastic part. Use the Parting Surfaces command to create this knit surface geometry that separates the mold tooling blocks.

The Parting Surfaces command allows designers to automatically create parting surfaces. The Parting Surfaces command creates surfaces that extrude from the parting line in a perpendicular direction to the direction of pull. The parting surfaces form the splitting surfaces that separate the mold cavity faces from the mold core faces.

- Click Parting Surfaces 圈 on the Mold Tools tool bar. - Or, click Insert, Molds, Parting Surfaces.

Smoothing the Parting Surface

When creating mold tooling, remember that the tooling is manufactured directly from the design. There are several processes that take place in the machining of the tooling. Two of these processes are CNC milling and EDM machining.
CNC milling requires end-mills with rounded tips, called ball-mills, to machine the 3D shapes into the metal. When there are tight or sharp transitions in the 3D shape, a ball-mill cutter may not fit in the area to machine it. When an end-mill cannot fit into the more complicated geometry transitions, another manufacturing process called EDM machining is used to eliminate the material that the end-mill could not remove. EDM machining is a very time consuming process. The more EDM machining you can eliminate from the manufacturing process, the faster the mold can be manufactured.

To address this, the Parting Surfaces command includes a Smoothing option to adjust the parting line geometry, minimizing sharp corners that are inaccessible to the ball-mill. Although it may not completely remove the sharp areas, it can drastically cut down on the amount of EDM machining needed to create the tooling.

Smoothing Allows Ball-mill Into Corner

Another benefit of smoothing the parting surfaces is to eliminate the sharp edges on the parting surfaces. Sharp edges on the tooling wear out faster than rounded corners. The smoothing process allows longer lasting tooling to be designed.

14 Create the parting surfaces.
Click Parting Surfaces on the Mold Tools toolbar.

Select Perpendicular to pull from the Mold Parameters options.

Set the Distance to 0.5". The default Smoothing option is set to Sharp.
Select the Knit all surfaces and the Show preview check boxes.

The preview of the parting surfaces is displayed around the perimeter of the parting lines.

15 Examine the sharp corners.

Zoom to view the sharp corners on the parting surfaces.

16 Use the smoothing option.
Under the Smoothing options, click
Smooth $\bar{\square}]$. Set the Distance to $\mathbf{0 . 2 5 "}$.
Now examine the same area.
The sharp corners have been rounded.
This option provides better machining conditions, and makes the parting surfaces last longer when the mold is in production.

Click OK.

Automatic
 Interlock Surface Creation

Creating the Mold Tooling

Automatic Tooling Separation

Introducing: Tooling
Split

The next step is to create interlock surfaces around the perimeter of the parting surfaces. The interlock surfaces are tapered from the parting surfaces, usually at a 5° angle. Tapered surfaces help the mold seal properly and they help guide the tooling into place when the mold closes. The interlocks also keep the tooling aligned when the mold is closed. This ensures that the tooling does not shift, creating uneven, unpredictable wall thicknesses on the parts created in the mold. The 5° taper also keeps the steel that forms these surfaces from galling when the mold is open or shut.
When using the Tooling Split command, select the Interlock surfaces option to automatically create the interlock surfaces. This works well when the parting line doesn't include any sudden radical jogs that require extra surface modeling to fill.

All the surfaces required to create the mold tooling are now organized in the correct surface body folders. You can now create the mold tooling.

The Tooling Split command automates the creation of the solid bodies that represent the cavity and core of the mold tooling. In a few mouse clicks, the tooling bodies are created and organized as multi-body solids in the Solid Bodies folder.

The Tooling Split command creates solid bodies from the tooling blocks based on the surfaces in the Surface Bodies folder.

The core surface bodies and the parting surface bodies are combined and used to cut a solid block that encompasses these surface bodies.

Simultaneously, a mold cavity is created by combining the cavity surface bodies with the parting surface bodies. These surface bodies are cut from the same solid block.

- Click Tooling Split 圆 on the Mold Tools toolbar.

■ Or, click Insert, Molds, Tooling Split.

17 Create an offset plane.

Select the planar top face of the dustpan and create an offset plane 1.00" above it.

18 Split the tooling.

Click Tooling Split 图 on the Mold Tools toolbar.

Create a rectangular sketch around the perimeter of the dustpan on the plane that was just created.

19 Use the Interlock Surface option.
Set the block sizes to $\mathbf{3 . 0 0 "}$ and 5.00 ".
Select the Interlock Surface check box.
Set the Draft Angle to 5°
Notice that the surface bodies for the core, cavity and parting surface have automatically been placed in their appropriate list boxes.

20 Examine the preview.

Notice the interlock surfaces are generated automatically.

Click OK.

21 Hide all surface and solid bodies.

Show the solid bodies one at a time to examine the tooling.

Case Study: Plastic Bezel of a Cordless Drill

The objective of this case study is to create the tooling for the plastic bezel of a cordless drill. The parting line for this plastic part is more complex than the last example.

The following topics will be explained:
■ Fixing un-drafted faces on imported geometry.

- Using the Ruled Surface command.
- Thickening the surface body into a solid
- Fixing steep model faces.
- Inverting the current selection.
- Creating complex shut-off surfaces.
- Creating interlock surfaces manually.

■ Selecting a partial loop.

- Using the Lofted Surface command.

1 Open the part named Cordless Drill.
Click Draft Analysis 圆 on the Mold Tools tool bar.
Select the Top Plane for the Direction of Pull.
Set the Draft Angle tolerance to $\mathbf{1}^{\circ}$.
Select the Face Classification and the Find Steep Faces check boxes.

Click Calculate.
2 Examine the draft analysis results.
The arrow in the illustration shows a face that requires draft.

The draft analysis found two faces that must be fixed.

Rotate the part and find the other yellow face. It is parallel to the yellow face in the illustration.

Click OK to exit the
 PropertyManager.

When closing the PropertyManager a message asks you if you want to keep the face colors. Click Yes.

Creating New Drafted Faces

Delete Faces that Do Not Have Draft

Disclaimer

The yellow faces cannot be molded. The part designer added a strengthening rib to this model, but did not apply draft to the rib. If this file were engineered with SolidWorks software, you could just edit the rib feature and add draft. However, many mold designers work with data that is imported from other CAD software. When using an imported file, all of the design history is lost, and you must resort to surface modeling. To fix this part designers will:

■ Delete the un-drafted faces.

- Construct new faces with draft.
- Trim them back to the faces of the engineered part.

The first step to fix the draft, is to delete the un-drafted faces from the solid body. This process turns the solid model into a surface model.

In this example, the geometry of the rib is simple enough that you can add draft using the Draft command. Typically, things are rarely this simple. The more general approach to this situation is to delete and to surface model the faces that require more draft.

3 Delete face.

Click Delete Face \times on the Surfaces toolbar.
Select the two yellow faces. Select the Delete option and click OK.

4 Examine the Surface Bodies folder.
When the un-drafted faces were deleted from the part, the part became a surface body. Look in the FeatureManager design tree, and notice that now there is one body in the Surface Bodies folder named DeleteFace1. The Solid Bodies folder is gone.

Color

The part has lost all of the colors assigned to the model faces during the draft analysis. The draft analysis colors are no longer valid because the geometry of the body has changed. Another draft analysis will be required after the new faces are built and knit back to the model.

Create New Drafted Surfaces
 Introducing: Ruled Surface

Where to Find It

To create new drafted surfaces, use the Ruled Surface command.

Use the Ruled Surface to create surfaces that are either perpendicular or tapered away from the selected edges. The ruled surface tool has many uses for mold design. In this step, it is used to create new drafted faces that were deleted them from the model. Later, this command will be used to create interlock surfaces around the parting surfaces perimeter.

■ Click Ruled Surface 图 on the Mold Tools toolbar.
■ Or click Insert, Molds, Ruled Surface.

5 Create new ruled surfaces.
Click Ruled Surface 图 on the Mold Tools toolbar.

Select the Tapered To Vector option.
Set the Distance to $1 . \mathbf{0}^{\prime \prime}$.
Click in the Reference Vector field.
Select the Top Plane from the FeatureManager design tree.

Set the Draft Angle to $\mathbf{2 . 0 ^ { \circ }}$.
Click in the Edge Selection list.
Select the two horizontal edges on the remaining face of the rib.

Do not click OK yet.

6 Preview.

Examine the preview and verify that the surfaces draft outward. If one or both do not, select the edge or edges in the Edge Selection list and click Alternate Side.

7 Choose Ruled Surface options.
At the bottom of the
PropertyManager, clear the Trim and Knit check box.

Clear the Connecting Surface check box.

Click OK.
Two surfaces are created.

Trim the New Surfaces

Now trim back the two new ruled surfaces to the underside of the drill housing. Then trim back the surfaces on the drill housing to the new ruled surfaces. This is done using the Mutual option in the Trim Surface command. Trimming these surfaces requires two steps.

8 Trim the ruled surfaces.

Click Trim Surface on the Surfaces tool bar.
Select Standard from the Trim Type options.
Click in the Trim Tool field.
Select an inside face of the surface body.
Select Keep selections and select the two ruled surfaces by clicking on the portion you want to keep, and click OK.

Tip

9 Mutual trim the surfaces. Switch to wire-frame mode to better view the trimming operation.

Click Trim Surface on the Surfaces toolbar.

Select Mutual from the Trim Type options.
Click in the Trimming Surfaces list.
Select the two ruled surfaces and the inside face of the drill housing.

10 Select the surface pieces to keep.
Select Keep selections and identify the portions of the three surfaces you wish to keep.
Select the two trimmed ruled surfaces and the inside face of the drill housing.

Click OK and examine the results.

Thicken the Surface Body

The surface modeling required to correct the faces with insufficient draft is complete. Note that the Trim Surface command automatically knit all of the surfaces into a single surface body. The surface body will now be converted back into a solid body by thickening the surface body. After thickening, the Draft Analysis will be repeated.

11 Thicken the surface body.

Select the Surface-Trim2 feature from the FeatureManager design tree.

Click Insert, Base/Bosss, Thicken.
Click Create solid from enclosed volume and Merge result.
Click OK.

12 Fillet the rib.
Put a Full round fillet on the top of the new rib.
Run a $\mathbf{0 . 0 3 0 " ~ r a d i u s ~ f i l l e t ~}$ around where the rib intersects with the body of the drill housing.

13 Check the part for draft.

Click Draft Analysis 圆 on the Mold Tools toolbar.

Use the same analysis settings that were used in step 1 on page 289.

The faces of the rib are now classified as having negative draft.

Click OK and click Yes to save the face colors when prompted.

Fixing the Steep Faces

During the Draft Analysis some steep faces were found. Sometimes these can be ignored as long as they have some draft on them. In other cases, modifications are needed if the steep face is going to be part of the parting line that is also an interlock surface. In this model the barrel has a steep face that should be adjusted. A draft angle of 5° is usually required on a surface that will be part of an interlock surface. This keeps the steel from one side of the tooling from galling the steel on the other side of the tooling when the tooling opens and closes. See Automatic Interlock Surface Creation on page 286 for a thorough explănation of interlock surfaces.

14 Find the negative steep face on the model.
The steep face in the opening of the barrel must be adjusted because it is right on the parting line, and it is also used to develop the interlock surfaces.

15 Create an offset

 plane.Create an offset plane 7.0" away from the Right Plane so that it is in front of the barrel.

16 Fix the steep faces.

Open a sketch on the new reference plane. Create the sketch as shown in the illustration. The intent is to create some draft at the very bottom of the circular edge.

Use the Convert Entities 回 command to convert the arc. Then create angled lines tangent to the converted arc.

17 Cut the sketch into the model.

Extrude a cut a Depth of $\mathbf{1 . 0 0}$ " into the part. This will create faces with draft on the inside of the barrel.

18 Recheck the draft.

The face was divided into three separate faces. All three faces are now classified as negative draft and are no longer classified as steep faces.

The part can now be molded and the tooling can be created.

19 Scale the Part.
Scale the part larger by 1.05\% to allow for shrinkage
20 Examine the results.
Look in the FeatureManager design tree and see that the Scale1 feature was added.

21 Create the Parting Lines.

Click Parting Lines on the Mold Tools toolbar.
Click in the Direction of Pull field.
Select the Top Plane from the FeatureManager design tree.
Set the Draft Angle to $\mathbf{1}^{\circ}$.
Click the Use for Core/Cavity Split option.
Clear the Split Faces option.
Click Draft Analysis.
All the parting lines are automatically found.

Click OK.

Introducing：Invert Selection

The Invert Selection command will un－select the currently selected objects and then select every un－selected object on the model document．Invert Selection will be used to select all of the faces on the model so that the colors can be removed from them．The appropriate selection filter should be used when using the Invert Selection command．

■ Click Tools，Invert Selection．
■ Click Invert Selection from the right mouse button popup menu．

22 Remove the colors assigned by Draft Analysis．

Click Filter Faces 盢 on the Selection Filter toolbar．
Select any face on the model．
Remember what face you selected．
Right－click that face and click Invert Selection from the popup menu．
Hold down the control key and reselect the original selected face．
Click Edit Color 国。
Click Remove Color and then click OK．
All of the colors are removed from the model faces．

23 Find the shut－off surface areas．

Click Shut－off Surfaces 图 on the Mold Tools toolbar．

The solid model is analyzed for areas that require shut－off surfaces．The colors assigned by the Draft Analysis were removed to make the selected green loops more visible．

The All Contact patch type is used by default．

If the All Tangent \oplus patch type is used, potential shut-off loops are displayed with red arrows and a callout. Use the red arrows to toggle the faces that you want the shut-off surfaces to be tangent to.

24 Create the shut-off surfaces.

The shut-off areas on this part are all planar. Therefore, the Tangent option is not needed.

Click the All Contact patch type.
Make sure that you select the Knit option, and then click OK.

25 Examine the results.

Shut-off surfaces were created for the three vent holes in the side of the bezel. Also, there are shut-off surfaces for all of the through holes in the part. pat.

Note

You may also use Parting Line features as the boundaries for shut-off surfaces.

26 Examine the surface bodies.

The FeatureManager design tree now contains a Solid Bodies and a Surface Bodies folder. The Surface Bodies folder in turn includes two other
 folders.

27 Expand the Surface Bodies folder and its sub-folders.
Expand the Cavity Surface Bodies and the Core Surface Bodies folders. Note that the Shut-off Surfaces command created two surface bodies: one representing the core and one representing the cavity of the mold.

28 Hide the solid bodies.

The model contains both surface and solid bodies. To work on the surfaces only, right-click the solid body in the Solid Bodies folder and select Hide Solid Body from the shortcut menu.

To hide all of the surface bodies in the Surface Bodies folder, right-click on the folder named Surface Bodies, and select Hide Bodies from the shortcut menu. This technique can also be used to hide all the bodies in the Solid Bodies folder.

29 Hide the surface bodies.

Hide all of the surface bodies and show the solid body again.

Complex

Shut-off Surfaces

The Shut-off Surfaces command automatically found all of the shut off surfaces on this part. There are many cases where shut-off surfaces are more complex. In such cases, use the selection tools from the Edges list box to select shut-off surface boundaries. If an edge is selected that is not a closed loop, the selection buttons appear next to the Edges list.

These buttons work the same way as they do in the Parting Line PropertyManager. See Manual Selection Of Parting Lines to review how these buttons work.

Important! Sometimes a shut-off surface is too complex to use this command. When this happens, choose the No-Fill shut-off surface type. After the shut-off surfaces are established, manually surface model the complex shut-off.

If a tooling split is created from a part where there were manually created shut-off surfaces, a copy of the manually created shut-off surfaces must be created. This is done with the Move/Copy Body command.

Drag one copy into the Cavity Surface Bodies folder, and the other copy into the Core Surface Bodies folder. These surface folders are referenced when using the Tooling Split command.

Any surface in the Cavity Surface Bodies folder is automatically added to the cavity surfaces list when the Tooling Split command is used. The same is true for core surfaces and any parting surfaces that were created manually.

Tip
The Ruled Surface command has many options for creating complex shut-off surfaces. The Tapered to Vector option and Sweep options are particularly useful for creating complex shut-off surfaces. Refer to Exercise 27: 80mm Fan Bezel for a complete example of how ruled surfaces were used to model complex shut-off surfaces. This example also shows how the surfaces were copied and placed in the appropriate surface bodies folder.

30 Create the parting surfaces.
Click Parting Surfaces on the Mold Tools toolbar.
Under Mold Parameters select Perpendicular to pull.
Set the Distance to 0.1875".
Select the Knit all surfaces and the Show preview check boxes.

31 Examine the preview.

Note

The parting surfaces are created and the Parting Surface1 feature is added to the FeatureManager design tree.

Note

In certain cases, the distance or other Parting Surface options may need to be adjusted to achieve an acceptable parting surface.

32 Click OK.

 is added to the FeatureManager design tree.Although this process is automated, some manual surface modeling is sometimes required to adjust the surfaces created in this step. SolidWorks software allows you to trim, model, and knit new surfaces to this parting surface feature.

Interlock

Surfaces
Sometimes, depending upon the complexity of the parting surface, interlock surfaces cannot be created automatically. In this example, They are created manually because of the sudden changes in parting surface geometry. The battery pack mounts, the trigger, and the barrel areas of the bezel are areas where some simple surface modeling can create interlock surfaces

Modeling the Use the Ruled Surface command to create the tapered, ribbon like, Interlock Surfaces

Select Partial Loop surfaces that form the interlocks.

The parting surfaces can contain many small edges. To construct ruled surfaces along edges of parting surfaces, a series of connecting edges will need to be selected. To facilitate this process, use Select Partial Loop to select a chain of connecting edges. The chain direction is based on where you select the second edge:

■ Left of midpoint - chain moves left

- Right of midpoint - chain moves right

33 Create a ruled surface.
Click Ruled Surfaces 因 on the Mold Tools toolbar.
Select the Tapered to Vector option.
Set the Distance to 0.625".
Click in the Reference Vector field and select the Top Plane from the FeatureManager design tree.

Set the Angle to 5°.
34 Select a partial loop of edges.
Click in the Edges selection list. Select the first edge on the parting surface as shown in the illustration.

Right-click on the second edge as shown. Select it near the end that is closest to the first edge you selected.

Click Select Partial Loop from the shortcut menu.

2.) Right-click second edge

Click the Trim and knit option.
Clear the Connecting Surface check box.

Tip When selecting the first edge, examine the preview. If the preview of the ruled surface points in the wrong direction with respect to the pull direction, click Reverse Direction. If the preview tapers inward towards the parting surfaces instead of outward, click Alternate Side.

35 Examine the preview.

Make sure that the surfaces are drafted outwards.
Click OK. The results are shown in color below.

36 Create two more ruled surfaces.

Use the same technique to create the remaining interlock surfaces around the perimeter of the parting line.

Fill in the Gaps
With Lofted

Surfaces

Introducing: Lofted Surface

Where to Find It

Now that the ruled surfaces are complete, fill the gaps in the interlock surfaces. Use the Lofted Surface command to create surfaces that connect the open edges of the ruled surfaces.

Use the Lofted Surface command to create more interlock surfaces. Create lofted surfaces using the two edges of the ruled surfaces that are open. Select the two edges near the same starting point to keep the surface from twisting.

■ Click Lofted Surface \square on the Surfaces toolbar.

- Or, click Insert, Surface, Loft....

37 Create a lofted surface.

Click Lofted Surface \square on the Surfaces toolbar.

Select the two edges as shown in the illustration.

Select both the edges near their bottom or top endpoints to prevent the surface from twisting.
Click OK.
38 Create two more lofted surfaces. This completes the all of ribbon-like interlock surfaces.

Completing the Interlock Surfaces

There are three more open areas that need to be filled with surfaces. These areas are where a major jog in the parting line occurs. The next few steps use the Extend Surface and Trim Surface
 commands.

39 Fill in the open interlock areas. Click Extend Surface on the Surfaces toolbar.
Select the uppermost edge of the surface.

Drag the handle so that the surface extends past the highest point on the parting surface. The exact distance is not critical.

Click OK.

40 Repeat.

Repeat this procedure for the other open areas with lofted surfaces.

41 Examine the results.

The resulting surfaces should extend past the highest points of the parting surfaces.

42 Trim the extended surfaces.
Click Trim Surface on the Surfaces toolbar.
Under Trim Type select Mutual.
Click in the Trimming Surfaces list.
Select each of the extended surfaces from the graphics area and the Parting Surface1 feature.
Select the Keep Selections option.
Click in the Pieces to Keep list.
Now reselect the same surfaces in the appropriate areas to mutually trim them.
Click OK.

43 Results.
Examine the results of the Trim Surface command.

Knit the Interlock Surfaces to the Parting Surfaces

All of the interlock surfaces are now complete. The next step is to knit the interlock surfaces and the parting surfaces together. Knitting the interlock surfaces and the parting surfaces creates a complete surface body to split the mold tooling. The Mutual trim option knit the three extended surfaces to the parting surfaces. However, the other portions of the interlock surfaces are still separate surface bodies.

44 Knit the all of the surfaces together.
Click Knit Surface ${ }^{(0)}$ on the Surfaces toolbar.

Select all the surfaces in the Surface Bodies folder.

Clear the Try to form solid check box.
Click OK.

45 Examine the Surface Bodies folder.

The Surface Bodies folder is updated to show the knit surface body.

- Surface Bodies(6)
\pm Cavity Surface Bodies(1)
+

(5) Parting Surface Bodies

Ruled Surface2 Ruled Surface3 Ruled Surface 4 ϕ Surface-Trim3

Select these surfaces

- 0 Surface Bodies(3)
\pm Cavity Surface Bodies(1)
\pm Core Surface Bodies(1)
Parting Surface Bodies
Surface-Knit1

Preparations for

 the Tooling SplitTo create the tooling split, the perimeter of the parting surface body must be larger than the outside profile of the tooling blocks. A planar face is created that is larger than the tooling blocks and the parting surfaces. This face is used to cut and form the top faces of the tooling.

46 Create an offset plane.
Create a reference plane offset 0.5" below the Top plane.
Use this plane to create a large planar surface

Name this plane
Tooling Plane.
47 Sketch the outside Create a new sketch on the Tooling Plane.
Sketch a rectangle that is $\mathbf{1 . 0 "}$ larger than the edges of the interlock surfaces.

perimeter of the tooling.

48 Create a planar surface.
Click Planar Surface \square on the Surfaces toolbar to create the surface using this sketch profile. Click OK.

49 Trim the planar surface.

Use the Mutual option to trim the new planar surface to the bottom of the interlock surfaces. The result is the surfaces are knit together.

50 Parting Surface folder.
Drag and drop the resulting surface into the Parting Surface folder.
-
\pm Cavity Surface Bodies(1)
\pm Core Surface Bodies(1)

- Parting-Surface Surface Bodies(1) \bigcirc Surface-Trim4

51 Create the tooling.

Click Tooling Split 图 on the Mold Tools toolbar.
The PropertyManager appears prompting you to choose a plane, surface, or a sketch to use for the perimeter of the tooling.

Select the large planar surface from the graphics area.
The part is now in sketch mode.

52 Create an offset

 sketch.Create an offset $\mathbf{0 . 5}$ " to the inside of the planar surface as shown.

Click Exit Sketch to continue.

The Tooling Split
PropertyManager appears.

53 Adjust the sizes of the tooling blocks. Change the tooling Block Sizes.

Set the Depth in Direction 1 to 3.0".
Set the Depth in Direction 2 to 2.0".
Make sure the Interlock Surface check box is cleared.

The Core, Cavity, and Parting Surfaces selection lists are automatically populated by their corresponding surfaces in the Surface Bodies folder.

Change the view to an *Isometric or *Front view to get a better angle of the tooling blocks.

Click OK.

54 Examine the tooling. The Tooling Split is finished.

The core, cavity and plastic part bodies are organized in the Solid Bodies folder.

Additionally, the Tooling Split1 feature was added to the end of the FeatureManager design tree.

55 Hide the surface bodies.
Hide all the surface and solid bodies. Show them one at a time to examine the results.

56 Save and close all files.

Tip
An assembly of the tooling can be created by right-clicking on the Solid Bodies folder and selecting Create Assembly. Refer to the topic Saving Solid Bodies as Parts and Assemblies on page 36 for more information.

Case Study:
 Multiple Parting Directions

The previous exercises created molds with only two pieces of tooling. Molds can be more complicated. Some molding areas require tooling that does not travel in the same direction that the plastic part ejects from the mold. This requires engineering more than just a cavity and a core. Other pieces of tooling such as side cores and lifters are required to form molding areas that cannot be ejected from the primary parting line. SolidWorks software provides commands to help create tooling that travels in a different direction than the primary parting plane.

1 Open the part that requires side cores.
Open Power Saw with Side Actions.
The tooling split for this part was already created.
In the next steps, you roll back the model, and determine how the tooling split was created.

An Undercut Analysis will be done to find molding areas where additional tooling needs to be created.

2 Rollback the part. Right-click Scale1 in the FeatureManager design tree and select Rollback from the shortcut menu.

Tip
The body for the plastic part is shown with transparency. Right-click the body in the solid bodies folder and choose Appearance, Color....
In the Optical Properties group box, use the transparency slider to remove the transparency from the part.

Introducing: Undercut Detection

Where to Find It

The Undercut Detection command helps determine where there are trapped molding areas. A trapped molding area is an area on the plastic part that cannot be released from the tooling using the primary direction of pull. This command will help locate areas that will need tooling such as lifters and side cores.

- Click Undercut Detection on the Mold Tools toolbar.
- Or, click Tools, Undercut Detection.

3 Check the model for undercuts. Click Undercut Detection
(10) on the Mold Tools toolbar. Choose the Top Plane as the Direction of Pull. Press Calculate.

Zoom in to the battery pack and the trigger location to see the faces that are colored red.
These areas require tooling that travel perpendicular to the direction of pull. Close the dialog without saving the face colors.

4 Examine the parting lines.
Right-click Curve1 in the FeatureManager design tree and select Roll Forward from the shortcut menu.
5 Examine the parting surfaces
Notice that this part has two parting lines and two parting surfaces.
SolidWorks allows the use of multiple parting lines.

6 Roll to end
Right-click anywhere in the FeatureManager design tree and select Roll to End from the shortcut menu.

Trapped Molding Areas

Side Cores

Introducing: Side Core

After the undercut analysis is complete, SolidWorks software colors certain faces on the model red. These areas trap the plastic part from coming out of the tooling. Ideally plastic parts should not include any trapped areas. When there are no side cores or lifters, the mold is less expensive to design and manufacture. However, trapped molding areas cannot always be avoided. In such cases, additional tooling needs to be created to form the trapped molding areas.

A side core is a piece of tooling that slides out of the mold perpendicular to the direction that the part is ejected from the mold.
The Core command creates side cores based on the active sketch. Sketch around the area that requires new tooling. Create the sketch on a plane or a face parallel or perpendicular to the direction in which the tooling travels away from the plastic part.

- Click Core 風 on the Mold Tools tool bar.

■ Or, click Insert, Molds, Core.

7 Examine the Side Core Sketch. Select and edit the sketch named Side Core Sketch.

This sketch was created on an inside face of the cavity body. The face is drafted 5° from the direction that this side core travels This side core travels perpendicular to the direction of pull.

This sketch can be created on a face that is not parallel to the direction that the side core will travel.

8 Exit the sketch.
Exit the sketch without changes.
9 Create the side core.
Select the Side Core Sketch from the FeatureManager design tree.

Click Core ${ }^{\text {a }}$ 0 on the Mold Tools tool bar.
Click the Front plane for the extraction direction.

Set the first Distance to 4.5".

Set the second End Condition to Blind.

Set the second Distance to 0.3 ".

Click OK.

10 Examine the Solid Bodies folder.

Notice that there is now a new folder named Core bodies.
The Side Core command created a new solid body for the side core.
This command created the body, and then subtracted it from the cavity body.
Any bodies created by the side core command are stored in this new folder in the FeatureManager design tree.

The cavity was hidden to show the resulting body of the side core command

Lifters

Lifters need to be created when there is a trapped molding area that not even a side core can create. Look to the trigger area of the saw bezel. There is a key shaped opening that is used for a safety lock. Because there is limited room in the trigger area, adding a side
 core is problematical. In this situation, mold designers create a mechanical device called a lifter.

This piece of tooling is moved by the ejector box. As the ejector box strokes forward, it pushes the lifter upwards and backwards on an angle, leaning away from the molding area. As it slides up and away from the molding area, it helps to lift the plastic part off of the core.

11 Edit the Lifter Sketch.
The shank of the lifter is leaned back 15°
from the direction of pull.
Notice also the 5° angle on the front of the profile.

This acts as an interlock, and keeps the part from sliding all the way through the bottom of the core.

Exit the sketch without changes.

Hide the cavity body and the plastic part body.
Show the core body.

12 Create the lifter.
Select the Lifter Sketch from the FeatureManager design tree.

Click Core 風 on the Mold Tools tool bar.
Select the core for the Core/Cavity body.
Click Draft off.
Clear the Draft outward option.
Set both End Conditions to Blind.
Set both of the Depth along extraction direction values to .500".

Click OK.

13 Examine the results.

Hide all of the bodies except for the new lifter.

Notice that this new body is listed in the Core bodies folder.

Rename this feature Lifter.

Core Pins

The Side Core command can also be used to separate the core pin molding areas from the tooling. Core pins are created to form detail areas in the plastic part. These molding areas are areas that can wear faster than the other faces of the
 tooling. By creating molding areas with core pins, the mold can be easily repaired by switching out core pins, rather than replacing an entire piece of tooling.

14 Core pins.

Show the cavity body and make it transparent.
Select the Core Pin Sketch. Click Core 風 on the Mold Tools tool bar.

Click the top face of the cavity as the Extraction Direction.

Click the cavity as the Core/Cavity body.
Click Draft off.
Set the first End Condition to Blind and set the Depth along extraction direction to 1.000 ",

Set the second End Condition to Through All.
Click the Cap Ends option.

Note
It may be necessary to reverse the extraction direction.

15 Examine the results.

All of the core pins (10 solid bodies) are added to the model and the Core bodies folder.

Rename the last feature to CorePins and hide all of the solid bodies except the plastic part and the core pins.

16 Save and close all files.

Case Study: Electrode Design

Electrode design is another challenging part of a mold design and manufacturing. Electrodes are used to remove steel from areas on the tooling that cutting tools like end-mills and ball-mills cannot reach or fit into. SolidWorks provides great modeling tools to produce accurate and complicated electrodes. This case study demonstrates how to use multi-body solids to create electrodes. Afterwards the Move Face command is demonstrated to show how to quickly clear back the material on the electrodes that will interfere with the areas of tooling that should not get EDM machined.

1 Open the part named Electrode.
This part has two solid bodies. One represents the cavity for the power saw bezel mold, and the other represents an electrode.

The electrode is needed here because there are sharp internal corners into which an end-mill cannot fit to machine this tooling properly.

2 Hide the electrode blank.
Zoom in to view the Electrode Body.
Right-click the Electrode Body in the Solid Bodies folder.
Click Hide Solid Body from the popup menu.
3 Examine the area that the electrode will burn.
End mill cutters cannot be used to machine the highlighted edges.
The cutters are round and these corners are dead sharp. Electrode machining is the only way to accurately machine these parts of the cavity.
Show the Electrode Body.

4 Make a copy of the cavity body. Use the Move ICopy command to make a copy of the cavity body.
Note
A copy is needed because in the next step, the Subtract option in the Combine command is used to subtract the copied cavity geometry from the electrode blank. This eliminates the copied cavity body from the Solid Bodies folder. Later, the original cavity body will be used to visualize the clearance between the cavity and the electrode.

5 Subtract the copied cavity body from the electrode body. Click Insert, Features, Combine... from the menu.

Use the Electrode Body as the main body, and subtract the copied cavity body from it.
Examine the resulting body.
More work needs to be done to finish the electrode.

Electrode clearances will need to be modeled.

Electrode Clearances

Over-burn

Orbiting

Now that the electrode shape has been extracted from the cavity, certain areas of this electrode need to be removed. Other areas require clearance between the electrode and the tooling.

The highlighted faces in the diagram to the right are faces that can be cleared back, or in other words, "pushed away from the tooling." These faces can be cleared back because they can easily be machined on the cavity without using
 EDM machining.
Even though the electrode geometry is the reverse of the cavity, the electrode faces that contact the tooling should be offset away from the tooling because of over-burn. Over-burn allowance must be considered because EDM machining requires that clearance exists between the electrode and the tooling to allow for flushing. As the electrode burns the shape into the metal, EDM fluid is used to flush out the burned metal. There should be clearance between the electrode and part to allow the flushing to get in and clear the scrap metal.
To make up for the offset geometry, the electrodes are orbited in the area that they are to machine. Orbiting the electrode will help the machinist achieve the exact dimensions of the shape in the steel being machined. Also, the wider the orbit, the faster the unwanted metal can be removed from the tooling.

The section views below shows different ways this electrode might be orbited. As the orbit is made larger, more steel will be removed wherever the electrode makes contact with the steel.

Tip
Moving Back the
Faces

Offsetting the electrode geometry can either be done on the CAD model, or the tool paths can be offset in the CAM system to achieve the same effect.
The Move Face command moves or rotates model faces. It will be used to clear back the faces that do not need to be burned in the cavity. The adjacent surfaces will be automatically extended and trimmed to the new position of the moved faces.

6 Remove the pins.

Use the Delete Face command to remove the faces that make up the pins and the radii around them.
Use the Delete and Patch option to heal the model into a solid.
There are 6 faces total to delete.

7 Move the faces.
Click Insert, Face, Move...

Click Offset.

Set the Distance to .875.
Select the 3 faces in the diagram below and flip the direction if necessary.

8 Inspect the adjacent faces.
Notice how the adjacent faces were extended and trimmed to the new moved faces.

If the electrode was cleared back by extruding cuts straight down without extending the angled surfaces, witness lines could appear in the cavity where these surfaces originally ended. The witness lines would show up in the cavity after the EDM machining was completed.

9 Move two more faces.

Move the two highlighted faces down another .875".
This electrode can now be orbited with out burning the lands for the interlocks.

Show the cavity again and inspect the electrodes clearances.

Keeping the Sharp Edges

Flash

One more thing to keep in mind when modeling electrodes is that sharp edges on the tooling must be kept sharp. This electrode is currently burning too much of the cavity, and will cause some critical sharp edges to become dull, or rolled over. If this electrode was orbited from the top plane, these critical edges would become rounded or dulled.

The highlighted edges in the previous diagram are critical tooling edges. These edges need to be kept sharp or the plastic part may acquire flash around it's edges during the molding process.

Flash is unwanted plastic that forms around the parting lines when the sharp edges are not created properly or when the mold does not seal properly.

To avoid this situation, this electrode will be cleared back so that it only burns one area of this cavity. The area that is not burned by this electrode would then have to be modeled on another electrode and then burned separately. Burning these areas separately will ensure that these edges stay sharp. To keep the edges sharp, the first electrode can be orbited from the top plane, and then the secondary electrode can be orbited from the side plane.

10 Clear back the electrode.
Open a sketch on this face and convert the edges.

Cut-Extrude specifying the
Through All end condition using the highlighted edge as the Direction of Extrusion.

11 Examine the finished Electrode. The electrode can now be used to machine this area in the cavity and the critical edges will remain sharp.

12 Save and close all files.

Exercise 26:
 Tooling for Plastic Power Strip

Create the tooling for the plastic power strip.

This lab reinforces the following skills:

- Checking for correct draft.
- Establishing the parting line edges.
- Closing off open windows and holes.
■ Creating parting surfaces.
- Creating interlock surfaces.

- Splitting the tooling into separate bodies.

Procedure

Open the part named Power Strip.
1 Check the part for the correct draft. Use Draft Analysis to check the draft on the part. Make sure all surfaces have at least 2° of draft on them. Use the Top Plane for the Direction of Pull.

2 Determine the parting line edges.
Use the Parting Lines command to establish the parting lines around the perimeter of the part.

3 Fill in the open areas on the plastic part. Click Shut-off Surfaces 图 on the Mold Tools tool bar and examine the patch callouts on the model. Set all patches to Contact by clicking the button from the Reset All Patch Types options.

4 Create the parting surface geometry.
Create the Parting Surfaces with a Distance of 0.5". Make them perpendicular to the pull direction of the mold.

5 Create tapered interlocks.
Create Ruled Surfaces around the perimeter of the parting line.
Set the Angle to 5°.
Set the Distance to 0.625".
You can create all four ruled surfaces in one step.

6 Complete the interlock surfaces.
Use the Lofted Surface command to fill in the openings in the interlock surfaces.

7 Fill in the remaining gaps.
Extend the ruled surfaces to fill the remaining openings where the parting line jogs upward.

8 Mutual trim the surfaces.
Use the Trim Surface command to trim the excess surfaces back to the parting surfaces.

9 Knit all the surfaces together.
Select all the surfaces in the Parting Surface Bodies folder and Knit them together.

10 Create a planar surface.
Create a planar surface on a reference plane $\mathbf{0 . 5}$ " below the Top plane.

11 Mutual trim the surfaces.
Rotate the part and mutually trim the planar surface to the interlock surfaces.

12 Split the tooling into separate bodies.

Use the Tooling Split command and create the core and the cavity for this tooling.

Optionally, create an assembly from the resulting bodies.

Exercise 27: 80mm Fan Bezel

This exercise is an excellent example of a mold with multiple parting directions. The tooling, already created from the Tooling Split command, consists of a cavity and a core. In this case think of the tooling as an upper and lower core. This example also shows how you can create complex shut-off surfaces to shut off the primary tooling. These shut-off surfaces are used to interlock the upper and lower cores.

This lab reinforces the following skills:

- Checking for undercut.
- Creating side cores.

Open the tooling already created for the 80 mm Fan Bezel.
1 Open an existing part.
Open the 80 mm Fan Bezel. The tooling for this part was created except for the side cores.

2 Roll back to the Parting Line1 feature.

Rolling the model back to this position puts the model back to the state it was in before any tooling was created.

3 Undercut analysis.
Perform an undercut analysis on this model. Use the Top Plane as the Direction of Pull. The analysis finds several areas with red faces. The red faces on the outside faces of the part require side cores. The red faces on the inside of the part are formed by the core and cavity, consequently, side cores are not necessary in these areas.
Click OK and keep the face colors when prompted.

4 Show Surface Bodies

Roll the FeatureManager design tree forward past the Complex Shut off folder. Show all of the surface bodies in the Surface Bodies folder to understand how this complex shut-off was surface modeled.

5 Roll to End.
Roll the model forward to the end of the FeatureManager design tree.
6 Create a side core.
Select Side Core Sketch1 and create a side core with the Core command. Use the main core as the solid body to subtract the side core.

Important!
Notice how the side core sketch was created. Seemingly, 4 side cores
are required. However, this geometry is forgiving enough, allowing you to create two side cores instead of four.
Creating less tooling will reduce the engineering and manufacturing costs needed to create the mold.

7 Create another side core.
Select Side Core Sketch2 and create another side core using the same settings in the previous step.
8 Examine the solid bodies.
Use the Move I Copy command to move the side cores away from the tooling.

Rendered with Real View Graphics

Index

Numerics

3D curves 80, 89, 210
See also curves
3D sketch 107-110, 130, 133, 135, 240

A

advanced filleting 86, 161
advanced lofting 150
analyzing geometry 87
draft analysis 269, 273-277, 294

B

bending 166
blends, See fillets
bodies
add to folder 21
hide/show 14
bodies to keep dialog 35
boolean operations 8
bridging 8-9

C

colors
draft analysis 273
combine tool 14
combined bodies 14
examples 16
common bodies 19
composite curves 106
convert entities $48,82,101-102,125$, 154, 162, 185, 238, 295
copy sketch 145
See also derived sketch
core and cavity 267-288
core pin 317
side core 313
tooling split 269, 286
counterbore, See hole wizard
curvature
definition of 87
display 87
inspect 87
show combs 88
curve file 70
curves
composite 106
editing 71
from a file 70-72
helix 100
intersection 89
projected 80
split lines 84
through reference points 210
through XY Z locations 70
through XYZ locations 70-72

D

datum plane, See planes
delete
selected faces of a surface or solid $245,255,290$
derived sketch 147
See also copy sketch
detailed preview 38
display curvature 87
dissolve library feature 79
dividing a curve, See split entities
dividing an entity 155
dome feature 129
draft
in extruded features 158
draft analysis 269, 273-277, 294
colors 273
negative draft 274
positive draft 274
steep faces 276, 294
straddle faces 275
drag and drop
library feature 79
drill, See hole wizard

E

edge selection
loop 97, 301
partial loop 301
tangency 105-106
edit
curve data read from file 71
suppress 99
ellipse 73
ellipse, partial 206
end conditions
up to next 158
up to surface 119-121, 160
entities
convert 48, 82, 101-102, 125, 154,
162, 185, 238, 295
offset 162, 308
split 155
explode, See dissolve library feature
extend surface 304
extrude from 11
F
face
delete 245, 255, 290
replace 256
face fillets 86,161
feature scope 38
FeatureManager design tree
library feature folder 79
solid bodies folder 9-10, 14-15, 3637, 40, 45, 213
surface bodies folder 196-197, 290, 298
features
dome 129
fillet 82,157
flex 166
helix 100
history by solid body 21
holes 111, 135
indent 27
library 78-79
loft 68, 139-155
multi-thickness shell 97
parting lines 277
scale 276
shell 97,158
split line 84-85
suppress 98-99
sweep 68-69, 75-78, 104-105
thicken 249
thread 100
tooling split 269, 286
variable radius fillets 82
file extensions
SLDCRV 70
SLDLFP 79
TXT 70
filled surface 208
fillets
advanced face blend 86,161
curvature continuous 94
hold lines 87, 162
multiple radii 157
surface 247
variable radius 82
finding undercuts 312
flex 166
bending 166
controlling direction 170
hard edges 171
options 168
stretching 166
tapering 166
triad 166
trim planes 166
twisting 166
folders
solid bodies 9-10, 14-15, 36-37, 40, 45, 213
surface bodies 196-197, 290, 298

G

geometric relations
along Z 110
coincident 109
collinear 102
pierce 74, 81

H

helix 100
hide/show bodies 14
hold line, fillets 87, 162
hole wizard 111, 135
hollowing a part, See shelling a part

I

import surface 256
indent 27
inflection points show 91
insert
base/boss, thicken 249, 293
boss, sweep 75
composite curve 106
curve through XYZ points 70-72
derived sketch 147
ellipse 73
ellipse, partial 206
fillet 86,161
helix 100
loft 140
part into an existing part 21
partial ellipse 206
pattern, mirror 165
projected curve 80
shell 97
solid body into new part 36
spline 197
split line 84
surface, fill 208
surface, knit 212
surface, planar 210
surface, trim 198
inspect curvature 87
interlock surfaces 286-306
intersection curves 89

K

knit surface 212, 306

L
library features 78-79
dissolve 79
feature folder 79
light lines, See zebra stripes
local operations 8,13
loft 140
advanced 150
basic 139
blending between two bodies 144
center line 152
compared to sweep 68
merging a multibody 144
preparing the profiles $151-152$
reorder profiles 141
rules for profiles 151-152
surfaces 258
tangency control 142-144
loop 97, 301
M
merge result $7,9-10,13-15,19$
minimum radius
show 91
mirror
all 164
feature 164
part 164
sketch 148
modify sketch 146, 148
mold cavity 267-288
move surface 256
move/copy body 23
multibody parts $7-45$
bridging 9
combined bodies 14
common bodies 19
creating 7
creating with cuts 35
feature scope 38
local operations 13
merge result $7,9-10,13-15,19$
merging 14
merging using loft 144
saving as assemblies 36
saving bodies as parts 36
sweep 76
symmetry 25
techniques 8
tool body 21
multiple parting directions 311, 318
multi-thickness shell 97

N

n-sided patch, See filled surface

0

offset
entities 162, 308
plane 157, 163
options 36

P
parent/child relationships 99
partial ellipse 206
partial loop 301
parting lines 277
parting surfaces 283-300
smoothing 284-285
parts
inserting 21
inserting a solid body into a new part 36
performance considerations 98-99
planar surface 210,307
planes
3 point 116, 160
at angle 107
offset 157, 163
switch sketch planes in 3D
sketch 109
preview, detailed 38
projected curves 80
propagate along tangent edges 105
properties
feature 99

R
reading curve data from a file 71
reference geometry
composite curve 106
curve through XYZ points 70-72
helix 100
projected curves 80
reference plane, See planes
relationships, parent/child 99
replace face 256
rounds, See fillets
ruled surfaces 199, 290, 301

S

saving solid body as a part 36
scaling a part 276
section views 98
select loop 97, 301
select tangency 105-106
selecting items
edge loops 97, 301
propagate along tangent edges 105
tangent edges 106
sew surface, See knit surface
sharing sketches 153
shelling a part 97,158
show curvature combs 88
show inflection points 91
show minimum radius 91
show/hide bodies 14
shrink, See scaling a part
shut-off surfaces 280, 282
silhouette edges 102
sketch
3D 107-110, 130, 133, 135, 240
convert entities 48, 82, 101-102,
125, 154, 162, 185, 238, 295
copying 145
See also derived
derived 147
See also copy
ellipse 73
modify 146, 148
offset entities 162, 308
partial ellipse 206
split entities 155
start position 11
switch planes in 3D sketch 109
sketches
sharing 153
solid bodies folder 9-10, 14-15, 3637, 40, 45, 213
spline 197
split entities 155
split line 84-85
splitting
faces 85
splitting curves, See split entities
stock feature 36
stretching 166
suppress
features 98-99
surface bodies folder 196-197, 290, 298
surfaces 191
deleting a face $245,255,290$
extend 304
filled 208
filleting 247
importing 256
interlock 286-306
knit 212, 306
loft 258
moving 256
parting 283-300
planar 210, 307
replacing a face 256
ruled 199, 290, 301
shut-off 280, 282
thicken 249, 293
toolbar 192
trimming 198, 292-293, 305
what are they? 191
sweep
align with end faces 104
along model edges 105
compared to loft 68
components 69
guide curves 70,74
multibody 76
options 75
path $70,73,79$
profile 69
propagate along tangent edges 105
section 69, 74-75, 110
show intermediate profiles 77
show preview 76
twist 103
symmetry 8,25
T
tangent edges 105-106
tap, See hole wizard
tapering 166
thicken surface 249, 293
threads, modeling 100
tool body 8, 21
tooling 267-288
draft analysis 269, 273-277, 294
interlock surfaces 286-306
parting lines 277
parting surfaces 283-300
shut-off surfaces 280,282
split 269, 286
tooling split 269, 286
tools, options 36
trim surface 198, 292-293, 305
twisting 166
twisting along a sweep path 103

U

undercut detection 312

V
variational sweep, See sweep, guide

w-Z

weldments 8
work plane, See planes
zebra stripes $87,93-94$

Question: What do you call an elite SolidWorks user?

Get trained, get tested, and join our worldwide community of proven talent.
See reverse for more details.

SolidWorks 2006

Certified SolidWorks Professional (CSWP) Planning Sheet

Authorized Training
 Testing \& Support

 Center

CSWPs receive each of the following:

For more information contact your SolidWorks Reseller or visit www.solidworks.com.

[^0]: About the CD Bound inside the rear cover is a CD containing copies of the various files that are used throughout this course. They are organized by lesson number. The Case Study folder within each lesson contains the files your instructor uses while presenting the lessons. The Exercises folder contains any files that are required for doing the laboratory exercises.

 Windows ${ }^{\circledR} 2000$ and Windows ${ }^{\circledR}$ XP

 Conventions Used in this Book

 The screen shots in this manual were made using SolidWorks 2006 running on Windows ${ }^{\circledR} 2000$ and Windows ${ }^{\circledR}$ XP. You may notice differences in the appearance of the menus and windows. These differences do not affect the performance of the software.

 This manual uses the following typographic conventions:

 | Convention | Meaning |
 | :--- | :--- |
 | Bold Sans Serif | SolidWorks commands and options appear in
 this style. For example, Insert, Boss means
 choose the Boss option from the Insert menu. |
 | Typewriter | Feature names and file names appear in this
 style. For example, Sketch1. |
 | $\mathbf{1 7}$ Do this step | Double lines precede and follow sections of
 the procedures. This provides separation
 between the steps of the procedure and large
 blocks of explanatory text. The steps
 themselves are numbered in sans serif bold. |

 ## Use of Color

 The SolidWorks 2006 user interface makes extensive use of color to highlight selected geometry and to provide you with visual feedback. This greatly increases the intuitiveness and ease of use of SolidWorks 2006. To take maximum advantage of this, the training manuals are printed in full
 color.

 Also, in many cases, we have used additional color in the illustrations to communicate concepts, identify features, and otherwise convey important information. For example, we might show the result of an operation in a different color, even though by default, the SolidWorks software would not display the results in that way.

[^1]: Fillet1：Multiple bodies not supported for this feature．

[^2]: Where to Find It ■ Click Draft 团 on the Features toolbar.
 ■ Click Insert, Features, Draft.

