

800 East 96th St., Indianapolis, Indiana, 46240 USA

Laura Lemay
with revisions by Rafe Colburn

Perl
in 21 Days

Teach Yourself

SECOND EDITION

00 0355 fm 5/9/02 2:32 PM Page i

Sams Teach Yourself Perl in 21 Days,
Second Edition
Copyright © 2002 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the publish-
er. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number: 0-672-32035-5

Library of Congress Catalog Card Number: 00-105848

Printed in the United States of America

First Printing: June 2002

05 04 03 02 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams cannot attest to the accuracy
of this information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The authors and the publisher shall have neither liability or
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book.

ACQUISITIONS EDITORS

Mark Taber
Katie Purdum

DEVELOPMENT EDITOR

Scott D. Meyers

MANAGING EDITOR

Charlotte Clapp

PROJECT EDITOR

Anthony Lawrence Wesley
Reitz III

PRODUCTION EDITOR

Chip Gardner

INDEXER

Erika Millen

TECHNICAL EDITOR

Jason Pellerin

INTERIOR DESIGN

Gary Adair

COVER DESIGN

Aren Howell

LAYOUT TECHNICIANS

Rebecca Harmon
Susan Geiselman
Stacey Richwine-DeRome

00 0355 fm 5/9/02 2:32 PM Page ii

Contents at a Glance
Introduction 1

WEEK 1 Getting Started 5

Day 1 An Introduction to Perl 7

2 Working with Strings and Numbers (Scalar Data) 29

3 More Scalar Data and Operators 57

4 Working with Lists and Arrays 85

5 Working with Hashes 115

6 Conditionals and Loops 143

7 Exploring a Few Longer Examples 175

WEEK 2 Doing More 189

Day 8 Manipulating Lists and Strings 191

9 Pattern Matching with Regular Expressions 215

10 Doing More with Regular Expressions 243

11 Creating and Using Subroutines 269

12 Debugging Perl 299

13 Scope, Modules, and Importing Code 319

14 Exploring a Few Longer Examples 353

WEEK 3 Advanced Perl 379

Day 15 Working with Files and I/O 381

16 Using Perl for CGI Scripting 409

17 Managing Files and Directories 437

18 Perl and the Operating System 453

19 Working with References 481

20 Odds and Ends 523

21 Exploring a Few Longer Examples 559

00 0355 fm 5/9/02 2:32 PM Page iii

Appendixes 589

A Perl Functions 591

B Installing Perl on a Unix System 629

C Installing Perl for Windows 639

Index 645

00 0355 fm 5/9/02 2:32 PM Page iv

Contents
Introduction 1

WEEK 1 Getting Started 5

DAY 1 An Introduction to Perl 7

What Is Perl and Where Did It Come From?..8
Why Learn Perl? ..9
Getting Started Programming in Perl ..12

Installing Perl..12
Perl One-Liners and Perl Scripts..13

An Example: The Ubiquitous Hello World ..13
Creating the One-Liner ..14
What to Do if It Doesn’t Work ..14
How It Works..14

Another Example: Create Hello World As a Script ..15
Create Hello World as a Script ..15
Running the Hello World Script ..16
What to Do if the Hello World Script Doesn’t Work17
How Does It Work? ..17
A Note About Warnings ..18

Another Example: Echo ..19
A Third Example: The Cookie Monster ..20
Going Deeper ..21

Getting Perl Documentation ..22
Getting Help ..22

Summary ..23
Q&A ..23
Workshop ..25

Quiz ..25
Exercises ..26

Answers..26
Quiz Answers..26
Exercise Answers..28

DAY 2 Working with Strings and Numbers (Scalar Data) 29

Scalar Data and Scalar Variables ..30
Numbers..30
Strings ..31
Converting Between Numbers and Strings ..33
Scalar Variables ..33

00 0355 fm 5/9/02 2:32 PM Page v

Constructing Perl Scripts ..35
Arithmetic Operators ..36

Arithmetic and Decimal Precision ..37
One-Liners: Simple Calculator ..38
An Example: Converting Fahrenheit to Celsius ..39
Operators for Tests and Comparisons..40

The Meaning of Truth ..41
Equality and Relational Operators ..41
Logical Operators ..43
Pattern Matching ..45

Another Example: More Cookies ..46
Going Deeper ..48

Quoting Strings and Patterns..48
Unquoted Strings (Barewords) ..49
Upper and Lowercase Escapes ..49
More About Variable Interpolation in Strings ..50
Octal and Hexadecimal Numbers ..50

Summary ..50
Q&A ..51
Workshop ..52

Quiz ..52
Exercises ..53

Answers..53
Quiz Answers..53
Exercise Answers..54

DAY 3 More Scalar Data and Operators 57

Assignment Operators..58
Increment and Decrement Operators ..59
String Concatenation and Repetition ..60
Operator Precedence and Associativity ..61
Using Patterns to Match Digits..63
An Example: Simple Statistics ..64
Input and Output ..68

File Handles and Standard Input and Output ..68
Reading a Line from Standard Input with <STDIN>..68
Writing to Standard Output with print ..70
printf and sprintf ..70

Another Example: Stocks ..72
Getting and Verifying the Input..74
Calculating and Printing the Result..75

vi Sams Teach Yourself Perl in 21 Days

00 0355 fm 5/9/02 2:32 PM Page vi

A Note About Using Functions ..76
Going Deeper ..77

Useful Number and String Functions ..77
Bitwise Operators ..78
The cmp and <=> Operators ..78
Functions and Function-Like Operators ..79

Summary ..79
Q&A ..80
Workshop ..81

Quiz ..81
Exercises ..81

Answers..82
Quiz Answers..82
Exercise Answers..83

DAY 4 Working with Lists and Arrays 85

List Data and Variables ..85
Defining and Using Lists and Arrays ..86

Creating Lists..87
Creating Lists Using the Range Operator ..88
Assignment and Lists ..89
Accessing Array Elements..90
Growing Arrays ..91
Finding the Length of an Array..92
Sorting Lists and Arrays ..92
Processing Each Element of an Array..92
Finding the End of an Array ..93
Dealing with the Undefined Value ..94
Deleting Elements from an Array ..95
Testing for the Existence of an Element ..96

An Example: More Stats..96
List and Scalar Context..99

What Is Context? ..99
Finding the Number of Elements in an Array, Revisited100
Context and Assignment ..101
Other Contexts..102
The scalar Function ..103

Input, Output, and Lists ..104
Using <STDIN> in list context..104
Printing Lists ..104

Going Deeper ..105
Negative Array Indexes ..106
More About Ranges..106

Contents vii

00 0355 fm 5/9/02 2:32 PM Page vii

chomp and chop on Lists ..106
Output Field, Record and List Separators ..107
Void Context ..107

Summary ..108
Q&A ..109
Workshop ..110

Quiz ..110
Exercises ..111

Answers..111
Quiz Answers..111
Exercises ..112

DAY 5 Working with Hashes 115

Hashes Versus Arrays and Lists ..115
Defining and Using Hashes ..117

List Syntax and Hashes ..117
Converting Between Arrays, Lists, and Hashes ..118
Accessing Hash Elements ..119
Deleting Hash Elements ..120
Processing All the Values in a Hash ..121
Hashes and Context ..121

An Example: Frequencies in the Statistics Program ..122
Extracting Data into Arrays or Hashes Using the split Function126

Another Example: Alphabetical Lists of Names ..128
A Few More Patterns ..129
Yet Another Example: Stock Price Converter ..130
Going Deeper ..133
Summary ..134
Q&A ..134
Workshop ..135

Quiz ..135
Exercises ..136

Answers..136
Quiz Answers..136
Exercises ..137

DAY 6 Conditionals and Loops 143

Complex Statements and Blocks ..144
Conditionals ..145

if, if...else, and if...elsif ..145
unless ..147
Conditional Operator ?..: ..147
Using Logical Operators as Conditionals ..148

viii Sams Teach Yourself Perl in 21 Days

00 0355 fm 5/9/02 2:32 PM Page viii

while Loops..149
while..149
until..151
do ..151

An Example: Pick a Number ..152
Iteration with foreach and for Loops ..156

foreach ..156
for..158

Controlling Loops ..160
last, next, and redo ..161
Labeling Loops ..162

Using the $_ (default) Variable..164
Input from Files with while Loops and <> ..165
Going Deeper ..167

Conditional and Loop Modifiers ..168
Using continue blocks ..168
Constructing switch or case Statements ..169

Summary ..169
Q&A ..170
Workshop ..171

Quiz ..171
Exercises ..171

Answers..172
Quiz Answers..172
Exercise Answers..173

DAY 7 Exploring a Few Longer Examples 175

Statistics with a Better Histogram ..176
A Number Speller ..180
Text-to-HTML Converter Script ..182

How It Works..183
The Input File ..184
The Script ..185

Summary ..188

WEEK 2 Doing More 189

DAY 8 Manipulating Lists and Strings 191

Array and Hash Slices ..192
Sorting Lists ..193
Searching..194
An Example: More Names ..196

Contents ix

00 0355 fm 5/9/02 2:32 PM Page ix

x Sams Teach Yourself Perl in 21 Days

Modifying List Elements ..201
push and pop ..201
shift and unshift ..202
splice ..203

Other Ways to Mess with Lists..204
reverse ..204
join..205
map..205

Manipulating Strings..207
reverse ..207
index and rindex ..208
substr ..208

Going Deeper ..209
Summary ..210
Q&A ..210
Workshop ..211

Quiz ..211
Exercises ..212

Answers..212
Quiz Answers..212
Exercise Answers..213

DAY 9 Pattern Matching with Regular Expressions 215

The Whys and Wherefores of Pattern Matching ..216
Pattern Matching Operators and Expressions..217
Simple Patterns ..218

Character Sequences ..218
Matching at Word or Line Boundaries ..219
Matching Alternatives ..221

Matching Groups of Characters ..222
Character Classes..222
Ranges ..223
Negated Character Classes ..224
Special Classes ..224
Matching Any Character with . (Dot) ..225

Matching Multiple Instances of Characters ..226
Optional Characters with ? ..226
Matching Multiple Characters with * ..227
Requiring at Least One Instance with + ..228
Restricting the Number of Instances ..228

00 0355 fm 5/9/02 2:32 PM Page x

Contents xi

An Example: A Guessing Program..229
More About Building Patterns ..233

Patterns and Variables ..233
Patterns and Loops ..233

Another Example: Counting ..234
Pattern Precedence ..235
Going Deeper ..236

More Uses of Patterns ..236
Pattern Delimiters and Escapes ..236

Summary ..237
Q&A ..238
Workshop ..238

Quiz ..238
Exercises ..239

Answers..239
Quiz Answers..239
Exercise Answers..240

DAY 10 Doing More with Regular Expressions 243

Extracting Matches ..243
Using Parentheses for Backreferences ..244
Saved Match Variables ..246
Matches and Context ..246
A Note About Greed ..247

An Example: Extracting Attributes from HTML Tags..249
Using Patterns for Search and Replace ..251
More About split ..252
Matching Patterns over Multiple Lines ..253

Storing Multiple Lines of Input..253
Handling Input with Newlines ..254

A Summary of Options and Escapes ..255
An Example: Image Extractor ..256

Hints for Building Regular Expressions ..260
Going Deeper ..261

More Metacharacters, Variables, and Options..262
Summary ..264
Q&A ..264
Workshop ..265

Quiz ..265
Exercises ..266

Answers..267
Quiz Answers..267
Exercise Answers..268

00 0355 fm 5/9/02 2:32 PM Page xi

xii Sams Teach Yourself Perl in 21 Days

DAY 11 Creating and Using Subroutines 269

Subroutines Versus Functions ..270
Defining and Calling Basic Subroutines ..270

An Example of a Subroutine ..271
Defining Subroutines..271
Calling Subroutines ..272

An Example: Son of Stats..273
Returning Values from Subroutines ..275
Using Local Variables in Subroutines..276
Passing Values into Subroutines ..279

Passing Arguments ..279
Handling Arguments Inside Subroutines..280
A Note on Arguments Passed by Reference ..281

Subroutines and Context..282
Another Example: Stats with a Menu..282
Going Deeper ..289

Local Variables in Blocks ..289
Leaving Off the Parentheses for Arguments ..290
Using @_ to Pass Arguments to Subroutines..290
Anonymous Subroutines ..291
Using Subroutine Prototypes..291
The caller Function ..292

Summary ..292
Q&A ..292
Workshop ..293

Quiz ..293
Exercises ..294

Answers..295
Quiz Answers..295
Exercise Answers..296

DAY 12 Debugging Perl 299

Using the Debugger: A Simple Example ..300
Starting and Running the Debugger ..305

Tracing Execution ..306
Stepping Through the Script ..307
Listing the Source ..307
Printing Variables ..309
Setting Breakpoints ..310
Other Commands..310
One Other Thing ..311

00 0355 fm 5/9/02 2:32 PM Page xii

Perl Debugger Command Reference ..311
Using a Graphical Debugger ..312
Going Deeper ..314

Using Different Debuggers ..314
Running Perl Interactively..314
Common Pitfalls and FAQs..315

Summary ..315
Q&A ..315
Workshop ..315

Quiz ..315
Exercises ..316

Answers..316
Quiz Answers..317
Exercise Answers..317

DAY 13 Scope, Modules, and Importing Code 319

Global Variables and Packages ..320
The Problem with Globals..320
What’s a Package?..321
How Packages and Variables Work ..321
A Simple Package Example ..322
Using Non-Package Global Variables ..323

Local Scope and Variables ..325
Local Variables and Local Scope ..325
Local Variables with my and local ..326

Using Perl Modules ..327
Some Terminology ..327
Getting Modules ..328
Importing Modules ..329
Using Modules..330
Object-Oriented Modules ..331
Modules from the Inside Out ..332
Importing Symbols by Hand ..333
Import Tags ..334
Using Pragmas..335
The English Module ..336

An Example: Using the Text::Wrap Module..337
Using Modules from CPAN (The Comprehensive Perl Archive Network)339

A Note of Caution ..339
Acquiring Modules from CPAN ..339
Installing CPAN Modules on Windows Using PPM......................................340
Using Modules from CPAN ..341

Contents xiii

00 0355 fm 5/9/02 2:32 PM Page xiii

Going Deeper ..341
Typeglobs..342
One Other Difference Between local and my ..343
An Example of local Versus my ..343
Package Initialization and Finalization with BEGIN and END345
Importing Code with require ..345

Summary ..346
Q&A ..347
Workshop ..348

Quiz ..348
Exercises ..349

Answers..349
Quiz Answers..349
Exercise Answers..350

DAY 14 Exploring a Few Longer Examples 353

A Searchable Address Book (address.pl) ..354
How It Works..354
The Address File ..355
Inside the Script..356
The Code ..361

A Web Log Processor (weblog.pl) ..364
How It Works..364
What a Web Log Looks Like ..365
Building the Script..366
The Code ..374

Summary ..377

WEEK 3 Advanced Perl 379

DAY 15 Working with Files and I/O 381

Input and Output with File Handles ..382
Creating File Handles with open ..382
The die Function ..384
Reading Input from a File Handle..385
Writing Output to a File Handle ..386
Reading and Writing Binary Files..387
Closing a File Handle ..387

An Example: Extract Subjects and Save Them ..388
File Tests ..389
A File Test Example ..391
Working with @ARGV and Script Arguments..393

Anatomy of the @ARGV ..393
Script Switches and Fun with Getopt ..394

xiv Sams Teach Yourself Perl in 21 Days

00 0355 fm 5/9/02 2:32 PM Page xiv

Another Example ..398
Going Deeper ..399

More About open and File Handles ..399
Various Other File-Related Functions ..400
Expert-Level I/O ..400
DBM Files ..401
Timestamps ..402

Summary ..402
Q&A ..403
Workshop ..403

Quiz ..403
Exercises ..404

Answers..405
Quiz Answers..405
Exercise Answers..406

DAY 16 Using Perl for CGI Scripting 409

Before You Start ..410
How CGI Works ..410
Building a CGI Script, From Form to Response ..412

The Form ..412
Creating the Script..413

Testing the Script ..415
Developing CGI Scripts with CGI.pm ..416

Using CGI.pm ..417
Processing Form Input..417
Generating HTML..418
Debugging the Result ..420

An Example: Survey..421
The Form ..422
The Script ..423

Going Deeper ..427
Using CGI Variables ..427
POST Versus GET ..428
Redirection..428
Cookies and File Upload ..429
CGI Scripts and Security..429
Embedding Perl in Web Servers ..429

Summary ..430
Q&A ..431
Workshop ..432

Quiz ..433
Exercises ..433

Contents xv

00 0355 fm 5/9/02 2:32 PM Page xv

Answers..434
Quiz Answers..434
Exercise Answers..435

DAY 17 Managing Files and Directories 437

Managing Files ..437
Renaming Files ..438
Creating and Following Links ..438
Removing Files and Links..439
Other Operations ..439

Managing and Navigating Directories ..440
Navigating Directories..440
Listing Files ..441
Making and Removing Directories ..443

An Example: Creating Links ..444
Going Deeper ..445
Summary ..446
Q&A ..447
Workshop ..447

Quiz ..447
Exercises ..448

Answers..448
Quiz Answers..448
Exercise Answers..449

DAY 18 Perl and the Operating System 453

Unix Features in Perl ..454
Environment Variables..454
Running Unix Programs with system ..455
Input with Backquotes..456
Using Processes: fork, wait, and exec ..457
Other Unix-Related Functions..464

Perl for Windows ..465
Compatibility with Unix ..465
Built-in Win32 Subroutines..466
Win32::MsgBox ..467
Win32 Processes ..469
Working with the Win32 Registry..471
Other Win32 Modules ..473

Going Deeper ..474
Pipes..474
Signals ..474
Basic Networking ..475
Creating User Interfaces with Perl ..475

xvi Sams Teach Yourself Perl in 21 Days

00 0355 fm 5/9/02 2:32 PM Page xvi

Summary ..475
Q&A ..476
Workshop ..477

Quiz ..477
Exercises ..477

Answers..478
Quiz Answers..478
Exercise Answers..478

DAY 19 Working with References 481

What Is a Reference? ..482
The Basics: A General Overview of How to Use References482

Creating a Reference ..483
Printing and Using References ..484
Dereferencing References ..485
Changing Referenced-To Data ..486

Using References with Subroutine Arguments and Return Values487
Subroutine Arguments ..487
Passing References Back from Subroutines ..489
An Example ..490

Other Ways of Using References ..492
Dereferencing List Reference Elements ..492
References with Blocks ..493
The ref Function ..494
A Note About Memory and Garbage Collection ..495

Creating Nested Data Structures with References ..496
What Is a Nested Data Structure? ..496
Using Anonymous Data..497
Creating Data Structures with Anonymous Data ..498
Other Structures..502

Building Data Structures with Existing Data ..502
Accessing Elements in Nested Data Structures ..504
Another Example: A Database of Artists and Their Works505
Avoiding the Use of References ..510
Going Deeper ..511

Shorthand References to Scalars ..511
Symbolic References ..511
References to Typeglobs and Filehandles ..512
References to Subroutines ..513

Summary ..513
Q&A ..514
Workshop ..515

Quiz ..515
Exercises ..516

Contents xvii

00 0355 fm 5/9/02 2:32 PM Page xvii

Answers..517
Quiz Answers..517
Exercise Answers..518

DAY 20 Odds and Ends 523

Perl One-Liners..524
Object-Oriented Programming ..526

Getting Started and Learning More..526
The Basics (for Those Who Already Know OOP) ..527

An Example: Using Object-Oriented Modules ..534
Sockets ..536
POD (Plain Old Documentation) Files..539

Creating POD Files ..540
Embedding POD in Scripts ..541

Evaluating Code On-the-Fly..541
Commonly Used Modules ..542

LWP ..542
Sending E-mail with Net::SMTP ..543
Handling XML with Perl..545

Creating International Perl Scripts ..547
Script Security with Taint Checking..548
PerlScript..549
What’s Coming in Perl 6 ..549
Going Deeper ..550
Summary ..550
Q&A ..551
Workshop ..552

Quiz ..552
Exercises ..553

Answers..553
Quiz Answers..553
Exercise Answers ..555

DAY 21 Exploring a Few Longer Examples 559

A Stock Portfolio Manager..560
The Data File ..560
How the Program Works ..561
The Source Code ..566

A Web-Based To Do List (todolist.pl)..573
The Data File ..574
How the Script Works ..575
The Code ..579

Summary ..587

xviii Sams Teach Yourself Perl in 21 Days

00 0355 fm 5/9/02 2:32 PM Page xviii

Appendixes 589

APPENDIX A Perl Functions 591

For More Information ..591
Perl Functions, in Alphabetical Order ..592

APPENDIX B Installing Perl on a Unix System 629

Do You Need to Install Perl? ..629
Obtaining Perl ..630

Installing a Vendor Package ..630
Getting Binaries..631
Getting Source (and Related Tools) ..631

Extracting and Compiling Perl ..632
Running the Configure Program ..633
Run ..636

For More Information ..637

APPENDIX C Installing Perl for Windows 639

Downloading Perl for Windows ..640
Installing Perl for Windows ..640
Running Perl for Windows ..642
Downloading the Perl Source Code ..642
Getting More Information..643

Index 645

Contents xix

00 0355 fm 5/9/02 2:32 PM Page xix

About the Authors
LAURA LEMAY is a member of the gregarious, brightly colored species of computer-book
author known as tutorialis prolificus. Although she has been spotted writing in the wild
for numerous years, more public sightings have occurred frequently since 1995, including
several versions of Sams Teach Yourself HTML, Sams Teach Yourself Java in 21 Days, and
The Official Marimba Guide to Castanet.

When not writing books, her primary habitat is in Northern California. Should you
encounter her in person, do not make any sudden movements. Further field notes may be
found at http://www.lne.com/lemay/.

RAFE COLBURN is a programmer and author working in North Carolina. His previous
books include Sams Teach Yourself CGI in 24 Hours and Special Edition Using SQL. He
also has a Web site at

andO 1T32 23
 TTm
eni19 TTsf
0 T.1.3 Tddm 8 8 TmnR3nE

First of all, although this is one of the simplest examples of a Perl script, the idea for
larger Perl scripts is the same. A Perl script is a series of statements, executed one at a
time starting from the top and continuing to the bottom. (There are occasionally digressions
to subroutines, bits of code executed multiple times for loops, or code from programs
included from separate libraries and modules, but that’s the basic idea).

The first line in the Hello World script is a comment. You use comments to describe bits
of Perl code to explain what they do, as well as to add reminders for things you have yet
to do—basically, to annotate your script for any particular reason you’d like. Comments
are ignored by Perl, so they’re there exclusively for you and anyone else who might be
reading your code. Adding comments to a script is considered good programming style,
although generally you’ll use fewer comments than actual code in your script.

This particular comment in Listing 1.1 is a special kind of comment on Unix systems, but
it’s a comment none the less. Perl comments start with a hash mark (#), and everything
from the hash until the end of the line is ignored. Perl doesn’t have multiline comments;
if you want to use multiple lines you’ll have to start them all with a hash.

18 Day 1

Actually, Perl does have multiline comments, but those are used mostly for
included Perl documentation (called PODs), and not for actual comments.
Stick to hashes.

Note

The second line of in the file (line 3 in Listing 1.1), and the only line in the one-liner, is
an example of a basic Perl statement. It’s a call to the built-in function print, which simply
prints the phrase “Hello, World!” to the screen (well, actually, to the standard output,
but that’s the screen in this case. More about the standard output tomorrow). The \n
inside the quotes prints a newline character; that is, it shifts the cursor from the end of
the current line to the start of the next line. Without it your script will end with the cursor
still at the end of the Hello World phrase and not neatly on the next line.

Note also the semicolon at the end of the line. Most simple Perl statements end with a
semicolon, so that’s important—don’t forget it.

You’ll learn more about all these concepts—statements, comments, functions, output,
and so on, later on in this chapter and tomorrow in Day 2, “Working with Strings and
Numbers (Scalar Data).”

A Note About Warnings
Turning on warnings is an extremely good idea when you’re learning to write Perl scripts
(and often a good idea even when you’re experienced at it). Perl is very forgiving of

03 0355 ch01 5/9/02 2:33 PM Page 18

An Introduction to Perl 19

1
strange and sometimes wrong code, which can mean hours spent searching for bugs and
weird results in your scripts. Turning on warnings helps uncover common mistakes and
strange places in your code where you might have made mistakes. Get in the habit of it
and it’ll save you a lot of debugging time in the long run.

There are various ways of turning on Perl warnings depending on whether you are using
Perl one-liners or scripts, and sometimes depending on the platform you’re running on.

• For any Perl one-liner, use -w on the command line.

• On Unix, use the -w option in the shebang line.

• On Windows, call your Perl scripts using the perl command and use -w on the
command line, or, if .pl files are associated with Perl, use the -w option in the
shebang line.

• In MacPerl, choose “Compiler Warnings” from the Script menu.

Another Example: Echo
Let’s do another example. Here’s a script that prompts you for some input, and then
echoes that input to the screen, like this:

% echo.pl
Echo? Hi Laura
Hi Laura
%

Listing 1.2 shows the contents of the echo.pl script.

LISTING 1.2. The echo.pl Script

1: #!/usr/local/bin/perl -w
2: # echo the input to the output
3:
4: print ‘Echo? ‘;
5: $input = <STDIN>;
6: print $input;

You don’t have to understand all of this script right now; I’ll explain all the details tomorrow
on Day 2. But you should feel comfortable typing and running this script, and have a
general idea of how it works. Here’s a quick run-through of the code:

Lines 1 and 2 are both comments: The first for the shebang line, the second to explain
what the script does.

03 0355 ch01 5/9/02 2:33 PM Page 19

Line 4 prompts you to type something. Note that unlike “Hello World!\n” there’s no \n
in this string. That’s because you want the cursor to stay on the end of the line after you
finish printing, so your prompt actually behaves like a prompt.

Line 5 reads a line of input from the keyboard and stores it in the variable called $input.
You don’t have to keep track of the characters that get typed, or when the end of the line
occurs; Perl reads up until the user hits Return (or Enter) and considers that the line.

Finally, Line 6 prints the value of the variable $input back to the screen.

A Third Example: The Cookie Monster
Here’s one more example, just for fun. Back in the days of text-only computer terminals,
there was a practical-joke program that floated around for a while called “the cookie
monster.” The cookie monster program would lock up your terminal and endlessly prompt
you to “Give me a cookie.” (or, “I WANT A COOKIE.” or some variation), and no matter
what you typed, it would always insist it wanted a cookie. The only way out of the pro-
gram was to actually type cookie, something that only seemed obvious after you had
spent an hour trying to get out of the program.

Listing 1.3 shows a simple Perl version of the cookie monster program.

LISTING 1.3 The cookie.pl Script

1: #!/usr/local/bin/perl -w
2: #
3: # Cookie Monster
4:
5: $cookie = “”;
6:
7: while ($cookie ne ‘cookie’) {
8: print ‘Give me a cookie: ‘;
9: chomp($cookie = <STDIN>);
10: }
11:
12: print “Mmmm. Cookie.\n”;

This one’s slightly more complicated than either Hello World or Echo. Here’s a sample
of what it looks like when you run it:

% cookie.pl
Give me a cookie: asdf
Give me a cookie: exit
Give me a cookie: quit
Give me a cookie: stop
Give me a cookie: I mean it

20 Day 1

03 0355 ch01 5/9/02 2:33 PM Page 20

An Introduction to Perl 21

1Give me a cookie: @*&#@(*&@$
Give me a cookie: cookie
Mmmm. Cookie.
%

LISTING 1.3 continued

That last line is a bit of a variation on the traditional cookie monster pro-
gram. Note also that this one is pretty easy to get out of; a simple Ctrl+C
will break right out of it. The original program was not nearly so nice. But
hey, it’s only Day One; we can’t get that sophisticated yet.

Note

Here’s what is going on in the Cookie script, line by line:

• Line 2 and 3 are comments (you should be able to figure that out by now).

• Line 5 initializes the $cookie variable to be the empty string “”.

• Line 7 is the start of a while loop. As long as the test inside the parentheses is true,
the code inside the curly braces will be executed. Here, the test is to see if the
$cookie variable does not contain the word cookie. You’ll learn more about while
and other loops on Day 4, “Conditionals and Loops.”

• Line 8 prompts for the cookie. Note that there’s no newline character at the end.

• Line 9 looks really weird. The chomp function, which you’ll learn more about
tomorrow, simply strips the newline (return) character off the end of whatever it
was you typed (and stored in the $cookie variable).

Once again, if you don’t understand every line, don’t panic. This is the gentle tour. All
will become clear to you tomorrow.

Going Deeper
Going deeper? We’ve barely gone shallow! You’ll find this section at the end of each lesson
in this book. The idea behind these “Going Deeper” sections is that there’s stuff about
Perl that I don’t have the time to teach you, or additional ways of doing things (remember,
“there’s more than one way to do it”). The Going Deeper section in each chapter will give
you short overview of these features and pointers to places where you can learn more—
the online Perl documentation that comes with your Perl interpreter or the information
on http://www.perl.com/.

03 0355 ch01 5/9/02 2:33 PM Page 21

Getting Perl Documentation
Much of Perl’s online documentation is in the form of man pages (man being Unix short-
hand for manual). Throughout this book, I’ll be referring to those man pages, for exam-
ple, the perlfunc or perlop man pages. If you’re on a Unix system, you can usually
access these man pages using the man command, like this:

% man perlfunc

The contents of all the man pages are also available in pod format, a special form of Perl
documentation that can be read on any platform or converted to plain text or HTML using
conversion programs that come with Perl (pod stands for plain old documentation). The
pod pages themselves are stored in the pod directory of your Perl distribution; you can
read them on Unix or Windows using the perldoc command and the name of a Perl man
page, like this:

% perldoc perlfunc

If you want to know about a specific Perl function such as print or chomp, use the -f
option to perldoc, as follows:

% perldoc -f print

Finally, all the Perl man pages are also available on the Web at http://www.perldoc.com/.
Often, I find it easier to read and search the Perl man pages via the Web than with the
perldoc or man commands.

If you can’t take any of this silly online stuff, and you must have a paper document, one
the best ways to go deeper, in general, is in the book, Programming Perl (Wall, Christiansen
and Orwant, O’Reilly, 2000), also known as the Camel book (for the camel on its cover).
The camel book is the definitive reference bible for Perl, and describes Perl in almost
terrifying detail—although it’s also quite dense and hard to read. The goal of Sams Teach
Yourself Perl is that you’ll learn all the basics, but if you do want to explore some of the
more esoteric features of the language, you’ll probably find Programming Perl an impor-
tant volume to have. (My copy is quite well-thumbed and scribbled in.)

Getting Help
In addition to the man pages with Perl and online at www.perl.com, there are also a number
of places you can get help learning Perl from other people if you’re stuck.

The Web site http://learn.perl.org has a number of resources for beginners, including
a whole lot of articles on basics and common problems (with solutions). They also host a
number of E-mail mailing lists where you can ask questions.

22 Day 1

03 0355 ch01 5/9/02 2:33 PM Page 22

An Introduction to Perl 23

1
If you have access to Usenet news, the newsgroup comp.lang.perl.misc is a very high
volume group, but a lot of people who are very involved with Perl monitor that group. Be
forewarned that you should try to get your questions answered using resources on the Web
before asking on Usenet; if your question has already been answered in an FAQ you
might find the responses you get from a Usenet post to be quite abrupt.

Summary
Today was more of a “hello, how are you” day than a day of hard work. In this lesson,
you learned a little bit about Perl history and background, why it’s a fun language and
why it might be useful for you to learn. After all that background in the first half of the
lesson you got your first glimpse at what Perl scripts look like and how to get them to
run on your system. You also learned the difference between Perl one-liners and scripts,
some basic information about comments, Perl statements, and how Perl scripts run. At
this point, you should have Perl installed on your system and ready to go—from here on,
it’s all code.

Q&A
Q. If Perl is so easy to learn, why do I need 21 days to learn it?

A. You probably don’t. If you’ve got 21 days and nothing else to do, you can learn a
whole lot of Perl—more Perl than many people who call themselves Perl program-
mers know. But chances are good that you can pick up just enough Perl to get by
in the first week or two, and ignore the harder stuff until you feel more adventurous
or need to do more with the language. If you’ve already got a strong programming
background in some other language, you can probably rip through these earlier
chapters quite a bit faster than at the rate of a chapter a day. One of Perl’s basic
tenets is that you should be able to get your job done as quickly as possible with
the least amount of work. If you can get your job done after reading only a little bit
of this book, by all means go for it.

Q. I have no programming background, although I’ve worked with HTML a lot
and I know a little JavaScript. Can I learn Perl?

A. I don’t see why not. Although I’ve written this book for people who already have a
small amount of programming background, if you work slowly through the book,
do all the examples and exercises and experiment on your own, you shouldn’t have
too much trouble. Perl’s flexibility makes it a great language for learning program-
ming. And because you already know about other Web technologies, Perl fits right
in with what you already know.

03 0355 ch01 5/9/02 2:33 PM Page 23

Q. Is the code I write called a Perl program or a Perl script?

A. It depends on how nitpicky you want to get about semantics. One argument goes
that compilers compile programs and interpreters interpret scripts. So you have C
and Java programs (and C and Java compilers), but JavaScript or AppleScript scripts.
Because Perl is essentially an interpreted language, the code you write is a Perl
script and not a Perl program. Another argument is that because what you’re doing
is Perl programming, you’re creating a program as part of that process. A third
argument is that it really doesn’t matter. I like that last argument, but my editor
wants me to be consistent, so I’ll stick to that first argument and call them scripts.

Q. I typed in the Hello World one-liner and I can’t get it to work! Help!

A. Are you sure you have Perl installed on your system? Getting Perl installed and
working is the major task to do for today. If you flip to the back of the book, to the
Appendixes, you’ll find instructions on getting Perl installed and working on your
system (assuming that you’re on Unix, Windows, or a Mac). In addition, the docs
that come with your distribution can go a long way toward helping you get every-
thing working.

Q. I’m on Windows. When I double-click my hello.pl script, a window comes up
really quickly and then vanishes. I’m obviously doing something wrong, but
what?

A. You should be running these scripts from a command or DOS prompt, not from an
Explorer window. Start a command-prompt window first, CD to the appropriate
directory, and then try running your script using the examples earlier in this chapter.
For Windows 2000 you’d usually just type the name of your script. For Windows
ME type perl -w and the name of your script. Here’s a simple example:
C:\> cd ..\scripts
C:\scripts> perl -w hello.pl

Q. I’m on Windows. You mention that the #! (“shebang”) line at the start of the
file is a Unix thing. Why do I have to include it if I’m not on Unix and don’t
intend to ever be on Unix?

A. You don’t, if you don’t expect your Perl scripts to ever need to run on Unix
(although watch out, some Web servers might require it for Perl scripting). Because
the shebang line starts with a hash, it’s actually a Perl comment, so it’s ignored by
the Windows Perl interpreter. You don’t need to include it. But it’s a good habit to
get into, should you ever need to write Perl scripts on Unix, or worse, convert
everything you’ve ever written on Windows to Unix.

24 Day 1

03 0355 ch01 5/9/02 2:33 PM Page 24

An Introduction to Perl 25

1
Q. In your examples, some of your print commands use double-quotes, and others

use single quotes. Why?

A. Good catch! There’s a specific reason for that, involving whether or not you use \n
or variable names inside the thing you’re printing. You’ll learn about the difference
tomorrow.

Workshop
The workshop section, part of each chapter, has two parts:

• A Quiz, to make sure you’ve understood the concepts I covered in this chapter

• Exercises, so you can work with Perl on your own and gain experience actually
using what you’ve learned.

Answers to both the quiz and exercise questions are shown below.

Quiz
1. What does Perl stand for? What does it mean?

2. Who wrote Perl originally? Who maintains it now?

3. What’s the most recent version of Perl?

4. What are the basic differences between compiled and interpreted languages?
Which one is Perl? Why is this useful?

5. Which statement best describes Perl?

• Perl is a small, powerful, tightly defined language with a minimum of con-
structs to learn and use.

• Perl is a large, powerful, flexible language with lots of different ways of
doing different things.

6. What’s on the http://www.perl.com/ Web site?

7. What’s the difference between a Perl one-liner and a Perl script?

8. What do the -w and -e parts of a Perl one-liner do?

9. What does the shebang line in a Perl script do?

10. How do you create comments in Perl?

11. What are Perl warnings? How do you turn them on for one-liners? For scripts on
your platform? Why are they useful?

03 0355 ch01 5/9/02 2:33 PM Page 25

Exercises
1. Try modifying the hello.pl, echo.pl, and cookie.pl scripts in various small

ways. Don’t get carried away and try to develop an operating system or anything,
just try small things.

See what kind of errors you get if you try to introduce various errors into the script
(for example, try typing comments without the leading #, removing closing quote
marks, or forgetting a semicolon). Become familiar with the sorts of errors that
Perl complains about when you forget parts of a statement.

2. Modify the Hello World script to print the greeting twice.

3. Modify the Hello World script to print the greeting twice—on the same line.

4. BUG BUSTER: What’s wrong with this script?
!/usr/local/bin/perl -w
print “Hello, World!\n”;

5. BUG BUSTER: What’s wrong with this one? (Hint: there are two errors)
#!/usr/local/bin/perl -w
print ‘Enter your name: ‘
save the data $inputline = <STDIN>;
print $inputline;

6. (Extra Credit) Combine the Hello World and Cookie examples so that the script
prompts you for your name and then says hello to you, repeatedly, until you type
goodbye. Here’s some sample output from this script:

Enter your name: Laura
Hello Laura!
Enter your name: Anastasia
Hello Anastasia!
Enter your name: Turok the Almighty
Hello Turok the Almighty!
Enter your name: goodbye
hello goodbye!
%

Answers
Here are the answers to the Workshop questions in the previous section.

Quiz Answers
1. Perl stands for Practical Extraction and Report Language. That means it’s a lan-

guage for extracting things from files and creating reports on those things. The
practical part means it’s a useful language for these sorts of tasks.

26 Day 1

03 0355 ch01 5/9/02 2:33 PM Page 26

An Introduction to Perl 27

1
2. Larry Wall is the original author of Perl and continues to be intimately involved

with its development. Perl is maintained and supported primarily by a group of
volunteer developers.

3. The exact answer to this question will vary depending on the version of Perl you
have installed. The major current version, however, is Perl 5.6.

4. Compiled languages use a compiler program to convert the program source code
into machine code or bytecode. You then run that final version to execute the pro-
gram. With interpreted languages, however, the source code is the final code, and
the interpreter program reads the source file and executes it as is.

Perl is a combination of a compiled and an interpreted language. It behaves like an
interpreted language in that it’s fast to create, fast to change, and portable across
different platforms; but it also compiles the source before running it and, therefore,
has the speed and error-correcting features of a compiled language.

5. The second statement best describes Perl:

• Perl is a large, powerful, flexible language with lots of different ways of
doing different things.

6. The http://www.perl.com/ Web site is the central repository of all things Perl: it’s
the place to look for the most recent version of Perl, the Comprehensive Perl Archive
Network (tools, modules, and utilities relating to Perl), documentation, frequently
asked questions, and more information—just about anything you could want that
relates to Perl.

7. A Perl one-liner is a usually short (often one-line) script run directly from the com-
mand line (or, on the Mac, run from the One Liner dialog box). A Perl script is
usually a longer script contained in a separate file.

8. The -w option turns on Perl warnings. The -e indicates the next bit of text, inside
quotes, is a line of Perl code.

9. The shebang line is used on Unix to tell Unix which program to execute for a
given script. It contains the path name to the Perl interpreter on your platform.

On platforms other than Unix, the shebang line looks just like a regular comment
and is usually ignored.

10. Comments in Perl start with a #. Everything from the # to the end of the line is
ignored.

11. Perl warnings are special diagnostic messages that can help fix common errors and
point out places where you might be doing something that will result in behavior
you might not expect. Beginning Perl programmers are advised to turn on warnings
as you learn; to help understand how Perl behaves in different unusual situations.

03 0355 ch01 5/9/02 2:33 PM Page 27

To turn on warnings for Perl one-liners, use the -w option on the Perl command
line.

To turn on warnings on Unix, use the -w option in the shebang line.

To turn on warnings on Windows, use the -w option on the Perl command line.

Exercise Answers
1. No answers to Exercise 1.

2. Here’s one way to do it:
#!/usr/ bin/perl -w

print “Hello, World!\n”;
print “Hello, World!\n”;

3. Here’s one way to do it:
#!/usr/ bin/perl -w

print “Hello, World! Hello, World!\n”;

Here’s another way:
print “Hello, World!”;
print “Hello, World!\n”;

4. There’s a hash mark missing from the first line of that script. That line will produce
an error (or, on Unix, the script probably won’t run at all).

5. There are two errors:

• The first print statement is missing a semicolon at the end of the line.

• The line just after that starts with a comment—all the text after the hash
mark is considered a comment and is ignored.

6. Here’s one way to do it (given what you’ve learned today):

#!/usr/ bin/perl -w

$name = “”;

while ($name ne ‘goodbye’) {
print ‘Enter your name: ‘;
chomp($name = <STDIN>);
print “Hello, “;
print $name;
print “!\n”;

}

28 Day 1

03 0355 ch01 5/9/02 2:33 PM Page 28

DAY 2

WEEK 1

Working with Strings and
Numbers (Scalar Data)

Scalar data is a fancy Perl term that means data consisting of a single thing.
Numbers and strings are both forms of scalar data. In this chapter, you’ll learn
about scalar data, scalar variables, and various operators and functions that
operate on scalar data. All these things are the basic building blocks that you
will use in just about any Perl script you write.

Today’s topics include

• Using numbers and strings

• Scalar variables: defining, using, and assigning values to them

• Simple arithmetic

• Comparisons and tests

04 0355 ch02 5/9/02 2:33 PM Page 29

Scalar Data and Scalar Variables
Perl, for the most part, has a flexible concept of data types. Unlike languages such as C
or Java, which have distinct types for integers, characters, floating-point numbers, and
so on (and strict rules for using and converting between types), Perl only distinguishes
between two general kinds of data. The first type is scalar data, for single things such as
numbers and strings of characters; and the second is list data, for collective things such
as arrays. The distinction is not academic; Perl has both scalar and list variables to keep
track of, and different constructs in Perl might behave differently depending on whether
they operate on scalar or list data, or the context—scalar or list context— in which they are
operating. You’ll learn about all these things as the book progresses. For today, however,
let’s keep things simple and stick to only numbers and strings and the variables that can
hold them. We’ll leave list data for later on in the book.

30 Day 2

Although today I’ll refer exclusively to numbers and strings as scalar data,
there’s actually a third form: references are also a form of scalar data. But
you don’t need to know about references this early in your Perl education, so
I’ll ignore them for now. You’ll learn about references much later, on Day 19,
“Working with References.”

Note

Numbers
Numbers in the text of your Perl scripts can be used just about any way you’d like to type
them. All the of following are valid numbers in Perl:

4
3.2
.23434234
5.
1_123_456
10E2
45e-4
0xbeef
012

Integers are represented by whole numbers, and floating-point numbers with an integer and
decimal part. Floating points less than 1 can start with the decimal itself (as in .23434234),
or can contain a decimal with no actual decimal part (5.). Commas are not allowed; the
underscores in 1_123_456 are an optional way of expressing a longer number so that it’s
more readable (they’re removed from the number when it’s been evaluated). You indicate
exponents using an uppercase or lowercase e and a positive or negative number (for a

04 0355 ch02 5/9/02 2:33 PM Page 30

Working with Strings and Numbers (Scalar Data) 31

2

positive or negative exponent). Hexadecimal and octal numbers are represented by a lead-
ing 0x or a leading 0, respectively.

Perl does not differentiate between integers and floats, signed and unsigned, or short and
long numbers. A number is simply a type of scalar data and Perl converts between number
types as needed in your scripts.

Strings
In other languages, such as C, strings are considered a collection of characters and are stored
in collective arrays, but in Perl a string is a singular thing and is simply another form of
scalar data.

Strings can be represented in two ways: as zero or more characters surrounded by single
quotes (‘ ‘) or by double quotes (“ “). For example, all of the following are strings:

‘this is a string’
“this is also a string”
“”
“$fahr degrees Fahrenheit is $cel degrees Celsius”
“Hello, world!\n”

Strings can contain any kind of ASCII data, including binary data (both high and low ASCII
characters). However, text strings typically contain only low ASCII characters (regular
characters, no accents, or special characters). Strings also have no size limits; they can
contain any amount of data, limited only by the amount of memory in your machine.
Although reading the complete works of Shakespeare or a ten-megabyte Unix kernel
into a single Perl string might take a while and eat up a whole lot of memory, you could
certainly do it.

There are two differences between using single quotes and double quotes for strings.
The first is that a double-quoted string will perform variable interpolation on its contents,
that is, any variable references inside the quotes (such as $fahr and $cel in the previous
example) will be replaced by the actual values of those variables. A string with single
quotes, such as ‘$fahr degrees Fahrenheit is $cel degrees Celsius’, will print
just like you see it here with the dollar signs and variable names in place. (If you want an
actual dollar sign in a double-quoted string you’ll have to put a backslash in front of the
dollar sign: “that apple costs \$14 dollars”.) I’ll discuss variables more in a bit.

Variable interpolation also works with strings that contain list variables.
You’ll learn more about this on Day 4, “Working with Lists and Arrays.”

Note

04 0355 ch02 5/9/02 2:33 PM Page 31

The second difference between single and double-quoted strings is that double-quoted
strings can contain the escape characters shown in Table 2.1. These will look familiar
to you if you know C, but there are a number of other escapes special to Perl. In single-
quoted strings, escape sequences are, for the most part, printed as typed, so ‘Hello
World!\n’ will print as Hello World\n, instead of including a newline at the end. There
are two exceptions to that rule: \’ and \\ will enable you to put quotes and backslashes,
respectively, into single-quoted strings.

‘This is Laura\’s script’ # prints This is Laura’s script
‘Find the input in C:\\files\\input’ # prints Find the input in C:\files\input’

TABLE 2.1 Perl Escape Characters for Strings

Character Meaning

\n Newline

\r Carriage return

\t Tab

\f Formfeed

\b Backspace

\a Bell

\e Escape

\0nn Octal (where nn are digits)

\xnn Hexadecimal (where nn are digits, a-f or A-F)

\cC Control characters, where C is any character (for example, \cC is
equivalent to Control-C)

\u Make next letter uppercase

\l Make next letter lowercase

\U Make all following letters uppercase

\L Make all following letter lowercase

\Q Do not match patterns (regular expressions only)

\E End \U, \L or \Q sequences

32 Day 2

We’ll look at \u, \l, \U, \L, and \E in “Going Deeper” at the end of this
chapter. \Q will be covered as part of regular expressions on Day 9, “Pattern
Matching with Regular Expressions.”

Note

04 0355 ch02 5/9/02 2:33 PM Page 32

Working with Strings and Numbers (Scalar Data) 33

2

Empty strings, that is, strings with no characters, are represented simply with quotes and
no characters. Note that the empty string “” is not the same as a string with a space (“ “).

So which should you use, double- or single-quoted strings? It depends on what you need
the string for. If you need escapes and variable interpolation, use a double-quoted string.
If you’ve got a string with a lot of dollar signs in it (actual dollar amounts, for example);
then you might use a single-quoted string instead.

Converting Between Numbers and Strings
Because both numbers and strings are scalar data, you don’t have to explicitly convert
between them; they’re interchangeable. Depending on the context, Perl will automatically
convert a string to a number or vice versa. So, for example, the string “14” could be
added to the number 5 and you’d get the number 19 as a result.

This might sound kind of weird, at first, but it does make things like input and output very
easy. Need a number entered at the keyboard? You can just read what was typed and then
use it as a string. There’s no need to use special functions or procedures to convert
everything back and forth. Perl does it for you.

Perl will even attempt to do the right thing with seemingly nonsensical statements such
as “foo” + 5 or “23skidoo” + 5. In the former, a string without any numbers (“foo”)
will convert to 0, so “foo” + 5 evaluates to 5. For the latter, and a numeric string with
extra trailing characters “23skidoo” will just lose the extra characters, so, “23skidoo”

+ 5 evaluates to 28. If you use Perl warnings (via the -w option or by choosing Scripts,
Compiler Warnings in MacPerl), Perl will complain about these sorts of operations, as
well it should.

There’s one exception to the automatic conversion in Perl, and that’s with
strings that appear to contain octal and hexadecimal numbers. See “Going
Deeper” later in this chapter for details.

Note

Scalar Variables
To store a piece of scalar data, you use a scalar variable. Scalar variables in Perl start with
a dollar sign ($) and are followed by one or more alphanumeric characters or underscores,
like this:

$i
$length
$interest_compounded_yearly
$max
$a56434

04 0355 ch02 5/9/02 2:33 PM Page 33

The rules for picking a name for your variable (any Perl variables, not just scalar vari-
ables) are

• Variable names should start with a letter or underscore (after the initial $, of course).
Other numbers or characters such as %, *, and so on are usually reserved for special
Perl variables.

• After the first character, variable names can contain any other letters, numbers, or
underscores.

• Variable names are sensitive to upper and lowercase—that is, $var is a different
variable from $VAR and from $Var.

• Variables that start with a letter or an underscore cannot be longer than 255 characters
(I personally get a headache trying to imagine variable names that long, but hey,
knock yourself out).

You don’t have to declare or initialize variables in Perl; you can use them as you need
them. Scalar variables without initial values will have the undefined value. You don’t have
to worry about the undefined value—it’ll always show up as either an empty string or a
0 value, depending on where you use them (that interchangeability feature again). You
really should initialize your variables explicitly to something, however, and if you have
warnings turned on in Perl, you’ll get warnings that let you know when you’re trying to
use an undefined variable.

34 Day 2

I’m glossing over the undefined value here. At this point, you don’t have to
know much about it although later on in this book (on Day 4, “Working
with Lists and Arrays,” specifically), you’ll learn more about how to test for it
(using the defined function) or undefine a variable (using the undef function).

Note

To assign a value to a variable, use an assignment operator. The most common one is the
equal sign (=). This assignment operator simply assigns a value to a variable, with the
variable reference on the left and the value on the right, as follows:

$i = 1;

The assignment operator returns the value of the thing assigned, and assignment expressions
evaluate from right to left, so you can “cascade” assignments like this (where $b is assigned
the value 4, and then $a gets the value of that expression (also 4):

$a = $b = 4;

04 0355 ch02 5/9/02 2:33 PM Page 34

Working with Strings and Numbers (Scalar Data) 35

2

Perl also has a number of shortcut assignment operators that I’ll discuss tomorrow in
“More Scalar Data and Operators.”

If you’ve used other languages, you know that variables are usually considered to have a
global or local scope. Perl variables are no different: A variable used in the main body of
a Perl script—as we’re using it here, and as we’ll be using it for the time being—is global
in scope to that script (it’s available to all parts of the script).

Perl also allows you to create local variables inside subroutines and loops, and also allows
global variable namespace management across scripts via packages, but you have to
declare and use those variables in a special way to prevent them from being global.
You’ll learn more about local variables on Day 11, “Creating and Using Subroutines,”
and more about scope on Day 13, “Scope, Modules, and Importing Code,” but for now
we’ll stick with simple global variables.

Constructing Perl Scripts
In yesterday’s lesson, I explained a little bit about what a Perl script actually looks like,
and we looked at both a Perl one-liner and a Perl script. Let’s pause in this discussion
about data to go into a little more detail about that, and about the general ground rules
for combining data, variables, and other operations into Perl statements, and Perl state-
ments into Perl scripts.

Perl scripts, whether they are executed as one-liners or in separate files, consist of one
or more statements, usually executed in order. Perl statements can be simple statements,
such as variable assignment or the expressions you’ll learn about later today, or they can
be more complex statements like conditionals and loops, which you’ll learn about on
Day 6, “Conditionals and Loops.” Simple statements must end with a semicolon.

Beyond that semicolon rule, Perl doesn’t care a lot about whitespace (spaces, tabs, returns)
as long as it can figure out what you’re trying to do. You can write an entire Perl script
of multiple statements on a single line, all lumped together. Sometimes when Perl pro-
grammers are showing off they will write Perl one-liners that are like this; technically
one-liners because they’re run on the Perl command line, but made up of dozens or even
hundreds of Perl statements all lumped together (and therefore nearly unreadable).

Generally, however, Perl scripts are written on multiple lines, one statement per line, with
some form of indentation to improve readability. What form of indentation style you use
is up to you, although Perl programmers tend to conform to a C-like indentation style.
(The perlstyle man page contains further suggestions for how Larry Wall prefers to
format his code, and is worth a read even if you prefer a different formatting style).

04 0355 ch02 5/9/02 2:33 PM Page 35

Perl statements can also contain expressions, where an expression is simply something
that results in a value. 1 + 1 is an expression (that evaluates to 2). Variable assignment
($a = 1, for example) is an expression that evaluates to the value of the thing assigned.
Perl expressions can often be used anywhere a value is expected, including inside other
expressions.

Arithmetic Operators
Operators are not the most thrilling of Perl topics to read about, but you need them to
build expressions. Perl has a fairly robust set of operators for building expressions with
scalars. You’ll learn about some of these operators today, and most of the remainder of
them tomorrow in Day 3, “More Scalar Data and Operators.”

We’ll start with the arithmetic operators, which perform arithmetic operations on numeric
data. Strings are converted to numbers as needed. Perl includes the operators shown in
Table 2.2 for basic arithmetic operations, with the operands usually appearing on either
side of the operator, as you’d expect.

TABLE 2.2 Arithmetic Operators

Operator What it Does For Example Results In

+ Addition 3 + 4 7

- Subtraction (2 operands) 4 - 2 2

Negation (1 operand) -5 -5

* Multiplication 5 * 5 25

/ Floating-point division 15 / 4 3.75

** Exponent 4**5 1024

% Modulus (remainder) 15 % 4 3

Little of this should be a surprise to you, although the exponent operator might be new.
For exponents, the left-side operand is the base, and the right side is the exponent, so
10**3 is the same as 103 and evaluates to 1000.

Operator precedence—the order in which operators are calculated, if there are more than
one in a single expression, is for arithmetic as you learned it in Ninth grade: multiplication,
division, and modulus are performed first, then addition and subtraction. However, nega-
tion (unary -, as it’s sometimes called) has a higher precedence than multiplication, and
the exponent operator has an even higher precedence than that (higher precedence means
that those expressions are evaluated first). You’ll learn more about operator precedence
tomorrow on Day 3, “More Scalar Data and Operators.”

36 Day 2

04 0355 ch02 5/9/02 2:33 PM Page 36

Working with Strings and Numbers (Scalar Data) 37

2

Arithmetic and Decimal Precision
All arithmetic in Perl is done using floating-point numbers. Although this is convenient
for doing simple math (no worrying about converting between integers and floats), there
are a number of gotchas surrounding floating-point math that you might need to watch
out for.

First is that the division operator always uses floating-point division. The expression
15 / 4 results in 3.75, not 3 as it would be in integer division (and what you would expect
if you’re coming from C). If you really want an integer result, you can use the int func-
tion to remove the decimal part, like this:

$result_as_int = int 15 / 4; # result will be 3

Another side effect of floating-point division is that sometimes you end up with way more
precision than you want. For example, take the simple expression:

print 10 / 3;

This expression results in the number 3.33333333333333. This is fine if you want the
number 3.33333333333333, but not if all you want is, say, 3.33 or just 3.3.

Perl has no built-in mathematical rounding functions, but you can use its printing functions
to accomplish the same thing. The printf and sprintf functions, borrowed from C, are
used to format a numerical value inside a string. The printf function, like print, prints
the value to the screen, whereas sprintf just returns a string that you can assign to a vari-
able or use inside some other expression. Because Perl converts happily between numbers
and strings, you can use either of these functions to control rounding. For example, to
print 3.33333333333 to the screen as a value with only two decimal places, use this
expression:

printf(“%.2f”, 10/3);

The %.2f part of this expression is the important part; it says print a floating-point value
(f) with 2 decimal places after the decimal point (.2).

To convert a value to a rounded-off equivalent inside your Perl script, without printing
anything, use sprintf instead of printf:

$value = sprintf(“%.2f”, $value); # round $value to 2 decimals

You’ll learn a little more about printf and sprintf tomorrow.

The final gotcha to note about floating-point arithmetic is in what’s called a rounding-
off error. Because of the way floating-point numbers are stored, sometimes very simple
floating-point arithmetic might result in values that are extremely close to, but not quite,
what you’d expect. For example, a simple operation such as 4.5 + 5.7 might actually

04 0355 ch02 5/9/02 2:33 PM Page 37

result in the number 10.199999999999999, rather than 10.2 as you might expect. Most of
the time this isn’t a problem, as Perl can keep track of the numbers internally, and print
will cover up very small inaccuracies like this when you actually print the numbers. One
particular place it will show up is if you attempt to compare the value of an expression
like this to a constant—a test to see if the expression 4.5 + 5.7 is equal to 10.2 might
return false. Keep this rounding-off error in mind as you work with Perl—and particularly
watch out for it if you start getting results you don’t expect.

One-Liners: Simple Calculator
Ever needed to do a little math really quick, the sort of thing that’s too complex to do in
your head? I normally keep a calculator around for just these reasons, but my desk is really
messy (one of the occupational hazards of being a writer), and I’m lucky if I can find
stuff I really need. My computer, like all computers, comes with an online calculator, but
because I’m often sitting working with Perl at a command line I can type faster than I
can pull down a menu.

With one-liners, Perl enables your computer to become the most complicated basic
calculator in the world.

% perl -e ‘print 154/7’
22

38 Day 2

Don’t forget, on Windows, use double quotes, not single quotes after the -e.Note

This isn’t a very elegant one-liner. I left off the -w option, because we’re not doing anything
here that requires warnings. I also left off the double quotes on the item we’re printing
(the math being calculated) because they’re not necessary here—but it also means that
there isn’t a newline, so the next command prompt will show up right next to the result
(you’ll have to figure out what is result and what is prompt). Finally, I also left off the
semicolon because there’s a loophole in Perl that says that if there’s only one statement
in the script you don’t need the semicolon. And yet, it still works. If I wanted to make
this pretty and proper, it would look more like this:

% perl -w -e ‘print “154/7\n”;’

This would give you roughly the same result, but it would take a lot more characters,
and, therefore more opportunities to mistype. Sometimes with Perl it’s just fine to be lazy
and ugly (well, in your scripts, at least. Perl doesn’t care about your personal habits).

04 0355 ch02 5/9/02 2:33 PM Page 38

Working with Strings and Numbers (Scalar Data) 39

2

An Example: Converting Fahrenheit to Celsius
With numbers, strings, and scalar variables under your belt, you can now start to write
simple Perl scripts. Here’s a script that prompts you for a Fahrenheit number and then
converts it to Celsius. Here’s what it looks like when it’s run:

% temperature.pl
Enter a temperature in Fahrenheit: 212
212 degrees Fahrenheit is equivalent to 100 degrees Celsius
%

Listing 2.1 shows the Perl code for this script:

LISTING 2.1 The temperature.pl Script

1: #!/usr/local/bin/perl -w
2:
3: $fahr = 0;
4: $cel = 0;
5:
6: print ‘Enter a temperature in Fahrenheit: ‘;
7: chomp ($fahr = <STDIN>);
8: $cel = ($fahr - 32) * 5 / 9;
9: print “$fahr degrees Fahrenheit is equivalent to “;
10: printf(“%.0f degrees Celsius\n”, $cel);

This script is quite similar to the echo.pl script you did yesterday, but let’s go over it,
line by line, based on what you’ve learned so far today about scalars, numbers, strings,
and variables.

Lines 3 and 4 initialize the variables we’ll use in this script: $fahr for a Fahrenheit value,
and $cel for a Celsius one. Although we could have written this script without initializing
the variables, when it’s done this way we have a nice list of all the variables we use in
the script and what they do.

Line 6 prints the prompt. Here I used a single-quoted string because there are no variables
or escapes here to worry about; just characters.

Line 7 gets a line of input from the keyboard and stores that string in the scalar variable
$fahr. The chomp function pulls the newline off the response. This line is probably still
kind of puzzling, but stay tuned, tomorrow you’ll learn how input and the chomp function
work.

04 0355 ch02 5/9/02 2:33 PM Page 39

In Line 8, all the real work takes place. Here we do the conversion calculation to the value
in $fahr, and store the result in the scalar variable $cel. Note that even though the data
you read from the keyboard is in string form, Perl doesn’t care. You can go ahead and
perform calculations on that data as if it were numbers. Of course, if you enter something
nonnumeric like “philanthropic,” Perl will squawk about it, thanks to warnings.
Tomorrow, we’ll learn more about verifying input; for now, let’s assume that all the input
we get is in the form that we expect.

Note the use of the parentheses in line 8 as well. If the order in which expressions are eval-
uated in an expression is not what you want, you can use parentheses to group expressions
so they evaluate correctly. Here we used them to make sure 32 is subtracted from the
value in $fahr before it’s multiplied by 5 and then divided by 9. Without the parentheses,
the multiplication and division would happen first.

Finally, in lines 9 and 10, we print out the result. Line 9 uses the now familiar print
function (note that the $fahr variable will be replaced with its actual value using Perl’s
automatic variable interpolation). In line 10, however, we’re using the printf function to
control how the Celsius temperature is printed out. If we used a regular print, the value
of $cel would be a floating-point number—and could be a very large floating-point number,
depending on how the calculation turned out. Using printf with a format (here, %1.0f, a
floating-point format with no decimal places), we can limit the value of Celsius to a dec-
imal (integer) number. Why not just use a %d integer format, instead? Because %d would
simply truncate the Celsius result to the integer value—7.45 would print as 7, but so
would 7.89. The floating-point format rounds the Celsius to the nearest integer instead,
providing a more accurate result.

Note that although we have two print statements here (one print, one printf), the output
appears on a single line. The first string to print did not end with \n, which means that
the second string is printed on that same line.

You’ll learn more about print and printf tomorrow on Day 3, “More Scalar Data and
Operators.”

Operators for Tests and Comparisons
Perl’s comparison operators are used to test the relationship between two numbers or two
strings. You can use equality tests to see if two scalars are equal, or relational operators
to see if one is “larger” than another. Finally, Perl also includes logical operators for
making boolean (true or false) comparisons. You’ll commonly use the operators for tests
as part of conditional and loop operations—ifs and whiles—, which we’ll look at some
tomorrow and in detail on Day 6, “Conditionals and Loops.”

40 Day 2

04 0355 ch02 5/9/02 2:33 PM Page 40

Working with Strings and Numbers (Scalar Data) 41

2

The Meaning of Truth
No, we’re not going to digress into a philosophical discussion here, but before actually
going through the operators, you do need to understand just what Perl means by the
terms true and false.

First off, any scalar data can be tested for its truth value, which means that not only can
you test to see if two numbers are equivalent, you can also determine if the number 4 or
the string “Thomas Jefferson” is true. The simple rule is this: All forms of scalar data
(all numbers, strings, and references) are true except for three things:

• The empty string (“”)

• Zero (0), which can also be “0”

• The undefined value (which looks like “” or 0 most of the time anyhow).

With these rules in mind, let’s move onto the actual operators.

Equality and Relational Operators
Equality operators test whether two bits of data are the same; relational operators test to
see whether one value is greater than the other. For numbers, that’s easy: comparison is
done in numeric order. For strings, a string is considered less than another if the first one
appears earlier, alphabetically, than the other (and vice versa for greater than). Character
order is determined by the ASCII character set, with lowercase letters appearing earlier
than uppercase letters, and spaces count. If a string is equal to another string, it must
have the same exact characters from start to finish.

Perl has two sets of equality and relational operators, one for numbers and one for strings,
as listed in Table 2.3. Although their names are different, they are both used the same
way, with one operand on either side. All these operators return 1 for true and “” for
false.

TABLE 2.3 Equality and Relationship Operators

Test Numeric Operator String Operator

equals == eq

not equals != ne

less than < lt

greater than > gt

less than or equals <= le

greater than or equals >= ge

04 0355 ch02 5/9/02 2:33 PM Page 41

Here are a bunch of examples of both the number and string comparisons:

4 < 5 # true

4 <= 4 # true

4 < 4 # false

5 < 4 + 5 # true (addition performed first)

6 < 10 > 15 # syntax error; tests cannot be combined

‘5’ < 8 # true; ‘5’ converted to 5

‘add’ < ‘adder’ # use lt for strings; this is an error under -w

‘add’ lt ‘adder’ # true

‘add’ lt ‘Add’ # false; upper and lower case are different

‘add’ eq ‘add ‘ # false, spaces count

Note that none of the equality or relational expressions can be combined with other equality
or relational expressions. Although you can have an arithmetic expression 5 + 4 - 3,
which evaluates left to right, you cannot have an expression 6 < 10 > 15; this will pro-
duce a syntax error in Perl because there’s no way to evaluate it.

Be careful also to remember that == is the equals test, and is not to be confused with =,
which is the assignment operator. The latter is an expression that can return true or false,
so if you accidentally use = where you mean ==, it can be hard to track down the error.

It might seem odd to have to worry about two sets of comparison operators when Perl
can convert between numbers and strings automatically. The reason there are two sets is
precisely because numbers and strings can be automatically converted; you need a way
of saying “no, really, compare these as numbers, I mean it.”

For example, let’s say there was only one set of relationship operators in Perl, as in other
languages. And say you had an expression like ‘5’ < 100. What does that expression
evaluate to? In other languages, you wouldn’t even be able to make the comparison; it’d
be an invalid expression. In Perl, because numbers and strings can be converted from one
to the other, this isn’t invalid altogether. But there are two equally correct ways to evalu-
ate it. If you convert the ‘5’ to a number, you get 5 < 100, which is true. If you convert
100 to a string, you get ‘5’ < ‘100’, which is false, because in ASCII order, the charac-
ter 5 appears after the character 1. To avoid the ambiguity, we need two sets of operators.

Forgetting that there are two sets of comparison operators is one of the more common
beginning Perl programmer mistakes (and one which can be infuriatingly difficult to fig-
ure out, given that ‘this’ == ‘that’ converts both strings to 0 and then returns true).

42 Day 2

04 0355 ch02 5/9/02 2:33 PM Page 42

Working with Strings and Numbers (Scalar Data) 43

2

However, if you turn on warnings in Perl, it will let you know when you’ve made this
mistake (yet another good reason to keep warnings turned on in all your scripts, at least
until you’re feeling a bit more confident in your programming ability).

Logical Operators
Logical or boolean operators are those that test other tests and evaluate their operands
based on the rules of boolean algebra. That is, for the values of x and y:

• x AND y returns true only if both x and y are also true

• x OR y returns true if either a or y (or both) are true

• NOT x returns true if x is false and vice versa

I’ve capitalized AND, OR, and NOT in the preceding list to differentiate the
boolean algebra concepts from the actual operator names. Otherwise, things
can get confusing when we start talking about how you can use && or and to
deal with and, or || or or to deal with or, and/or not for not (I’ll try to avoid
talking this way for just this reason).

Note

In Perl’s usual way of making sure you’ve got enough syntax choices to hang yourself,
Perl has not just one set of logical comparisons, but two: one borrowed from C, and one
with Perl keywords. Table 2.4 shows both these sets of operators.

TABLE 2.4 Logical Comparisons

C-Style Perl Style What it means

&& and logical AND

|| or logical OR

! not logical NOT

There are also operators for logical XOR—^ and xor—but they’re not com-
monly used outside bit manipulations, so I haven’t included them here.

Note

The only difference between the two styles of operators is in precedence; the C-style
operators appear higher up on the precedence hierarchy than the Perl-style operators. The
Perl-style operators’ very low precedence can help you avoid typing some parentheses, if
that sort of thing annoys you. You’ll probably see the C-style operators used more often

04 0355 ch02 5/9/02 2:33 PM Page 43

in existing Perl code; the Perl-style operators are a newer feature, and programmers who
are used to C are more likely to use C-style coding where they can.

Both styles of logical AND and NOT are short-circuiting, that is, if evaluating the left side
of the expression will determine the overall result, then the right side of the expression is
ignored entirely. For example, let’s say you had an expression like this:

($x < y) && ($y < $z)

If the expression on the left side of the && is false (if $x is greater than $y), the outcome
of the right side of the expression is irrelevant. No matter what the result, the whole
expression is going to be false (remember, logical AND states that both sides must be
true for the expression to be true). So, to save some time, a short-circuiting operator will
avoid even trying to evaluate the right side of the expression if the left side is false.

Similarly, with ||, if the left side of the expression evaluates to true, then the whole
expression returns true and the right side of the expression is never evaluated.

Both forms of logical operators return false if they’re false. If they’re true, however, they
have the side effect of returning the last value evaluated (which, because it’s a nonzero or
nonempty string, still counts as true). Although this side effect would initially seem silly
if all you care about is the true value of the expression, it does allow you to choose between
several different options or function calls or anything else, like this:

$result = $a || $b || $c || $d;

In this example, Perl will walk down the list of variables, testing each one for “truth.”
The first one that comes out as true will halt the expression (because of short-circuiting),
and the value of $result will be the value of the last variable that was checked.

Many Perl programmers like to use these logical tests as a sort of conditional, as in this
next example, which you’ll see a lot when you start looking at other people’s Perl code:

open(FILE, ‘inputfile’) || die ‘cannot open inputfile’;

On the left side of the expression, open is used to open a file, and returns true if the file
was opened successfully. On the right side, die is used to exit the script immediately with
an error message. You only want to actually exit the script if the file couldn’t be opened—
that is, if open returns false. Because the || expression is short circuiting, the die on the
right will only happen if the file couldn’t be opened.

I’ll come back to this on Day 6, when we cover other conditional statements in Perl (and
you’ll learn more about open on Day 15, “Working with Files and I/O.”

44 Day 2

04 0355 ch02 5/9/02 2:33 PM Page 44

Working with Strings and Numbers (Scalar Data) 45

2

Pattern Matching
One last operator I’d like to introduce today enables you to do pattern matching in Perl.
Pattern matching, also called regular expressions, is a tremendously powerful feature in
Perl that will probably form the core of a lot of scripts you write; in fact in the middle of
this book, on Days 9 and 10, we’ll go into pattern matching with mind-boggling detail.
But pattern matching is so useful and so essential to Perl that it is worth introducing,
even in a very limited capacity, way up here in Day 2.

You’ve already seen a test that compares two strings for equality using the eq operator,
like this:

$string eq ‘foo’

That test will only return true if the value contained in the scalar variable $string is
exactly equal to the string ‘foo’. But what if you wanted to test to see if the value of
$string contained ‘foo’, or if the value of $string contained 123, or if it contained any
digits at all, or three spaces followed by three digits, or any other pattern of letters or
numbers or whitespace that you can think of? That’s pattern matching. If you’ve used
the * to refer to multiple filenames on a command line, it’s the same idea. If you’ve used
regular expressions in any form on Unix, it’s exactly the same thing (Perl’s are slightly
different, but follow many of the same rules).

To construct a pattern matching expression, you need two things: a comparison operator
and a pattern; like this:

$string =~ m/foo/

This expression tests to see if the value of $string contains the characters foo, and if it
does, it returns true. $string could be exactly ‘foo’ and the test would be true. $string
could also be ‘fool’, ‘buffoon’, or ‘foot-and-mouth disease’ and this test would still
return true. As long as the characters f o and o, in that order, are contained somewhere
inside $string, this test will return true.

The =~ operator is the actual pattern match operator; it says to do pattern matching on
the scalar thing on the left side of the operator with the pattern on the right side of the
operator. There is also an operator for negated patterns, that is, return true if the pattern
doesn’t match: !~. In this case, the test would only return true if $string did not contain
the characters foo.

The m/…/ operator, to the right of the pattern matching operator, is the pattern itself. The
part inside the slashes is the pattern you will match on. Here our pattern is foo. For now
we’ll stick to matching simple alphabetic and numeric characters, as we progress through

04 0355 ch02 5/9/02 2:33 PM Page 45

the book you’ll learn about special characters that match multiple kinds of things. Note
that you don’t have to include either single or double quotes around the characters you’re
looking for. If you want to include a slash in your pattern, preface it with a backslash:

$string =~ m/this\/that/

This pattern will match the characters this/that anywhere inside $string.

For these patterns, the m part is optional. Most of the time, you’ll see patterns written
without the m, like this:

$string =~ /foo/

There’s a major catch to watch out for with patterns that match specific characters, similar
to those you’ve learned about today: the characters you’re matching are case-sensitive.
This pattern, /foo/, will only match exactly the characters f o and o; it will not match
uppercase F or O. So if $string contains “Foo” or “FOO” the pattern matching test will
not return true. You can make the pattern case-insensitive by putting an i at the end of the
pattern, which means it will search both upper and lowercase.

/foo/i

You can use case-sensitive or insensitive pattern matching depending on what you’re looking
for in the test.

Table 2.5 shows a summary of the pattern-related operators and expressions. We’ll look
more at patterns as the book progresses.

TABLE 2.5 Operators for Patterns

Operator What it Means

=~ match test

!~ negated match test

m/…/ /…/ pattern

m/…/i /…/i case insensitive pattern

Another Example: More Cookies
Let’s make a simple modification to the cookie.pl script from yesterday to use pattern
matching. Listing 2.2 shows cookie.pl, to refresh your memory:

46 Day 2

04 0355 ch02 5/9/02 2:33 PM Page 46

Working with Strings and Numbers (Scalar Data) 47

2

LISTING 2.2 The cookie.pl Script

1: #!/usr/local/bin/perl -w
2: #
3: # Cookie Monster
4:
5: $cookie = “”;
6:
7: while ($cookie ne ‘cookie’) {
8: print ‘Give me a cookie: ‘;
9: chomp($cookie = <STDIN>);
10: }
11:
12: print “Mmmm. Cookie.\n”;

Line 7 is the important line we’re interested in here. The test in line 7 includes the string
comparison test ne (not equals), so that each time the $cookie variable does not include
the string cookie, the loop will repeat. (We’ll look at this kind of loop in a little more
detail tomorrow and at all kinds of loops on Day 6).

When you run this example, you have to type the string “cookie” exactly to get out of it.
Typing anything else will just repeat the loop.

A useful modification, then, would be to allow the user to type something that contains
the word “cookie”—for example, “cookies,” or “here’s a cookie, now shut up,” or any
other phrase.

All we need to do is modify that one line, line 7, and change the ne comparison to a pattern
match and the string to a pattern, like this:

while ($cookie !~ /cookie/i) {

Why are we using the !~ pattern matching operator, rather than =~? We need a negated
comparison here; one that returns true if the comparison does not work. Just as the original
nest was a negated comparison (ne, a not-equals string test), we need a negated pattern
match here.

The pattern here is simply the string cookie. Note that in simple patterns like this one you
don’t need the quotes around the string, and note also I am not using the m part of the pat-
tern operator (as I mentioned in the previous section, it’s very commonly omitted). I’ve
also included the i option at the end of the pattern so that the cookie won’t be case
sensitive—the user can type cookie or Cookie or COOKIE and that will be okay.

Listing 2.3 shows the final script, which I’ve called cookie2.pl:

04 0355 ch02 5/9/02 2:33 PM Page 47

LISTING 2.3 The cookie2.pl Script

#!/usr/local/bin/perl -w

$cookie = “”;

while ($cookie !~ /cookie/i) {
print ‘Give me a cookie: ‘;
chomp($cookie = <STDIN>);

}

print “Mmmm. Cookie.\n”;

Going Deeper
Perl is such a wide and deep language that I can’t hope to explain it all without ending
up with a phonebook-sized volume. In this section, then, are the things you can do with
scalar data that I haven’t covered in the previous sections. Some of these things we’ll
explore in more detail later on in this book, but for the most part these topics are parts of
the language you’ll have to explore on your own.

As I mentioned yesterday, throughout this book, when I refer to the perlop or perlfunc
man pages—or to any Perl man pages—you can find these pages as part of the documen-
tation for your Perl interpreter, or on the Web at http://www.perldoc.com/.

Quoting Strings and Patterns
The quote characters ‘’ and “” in Perl might seem like immutable requirements for cre-
ating strings, but, actually, they’re not. There are a number of ways you can create strings
in Perl besides using single and double quotes, some of which interpolate variables, and
some of which don’t. For example, instead of creating the string ‘Beware the ides of
March’ with single quotes, you could use the q// operator, like this:

q/Beware the ides of March/

Don’t like quotes or slashes? No problem. You can use the q// operator with any non-
alphanumeric or nonwhitespace character (that is, no letters, numbers, spaces, or tabs), as
long as you use the same character to begin and end the string and start the whole thing
with a q. The following examples are all equivalent in Perl:

‘Beware the ides of March’

q/Beware the ides of March/

q#Beware the ides of March#

q(Beware the ides of March)

48 Day 2

04 0355 ch02 5/9/02 2:33 PM Page 48

Working with Strings and Numbers (Scalar Data) 49

2

As with single quotes, the q// operator does not interpolate variables. For double quotes
and variable interpolation, you can use the qq// operator in the same way:

“stored $num reminders”
qq/stored $num reminders/
qq^stores $num reminders^

You might want to use these formats if, for example, you have a string with lots of quotes
in it that all need escaping. By substituting, say, a slash character for the quote, you can
put quotes inside your strings without having to escape them.

See the perlop man page for details on the various quote-like operators.

If you’re thinking q// and qq// look something like m//, you’re right; they’re both con-
sidered quoting operators: one for strings, the other for patterns. In fact, you can use m//
in the same way, with any nonalphanumeric character substituted for the slash:

m?foo?

m$cookie$

If you do use a pattern with a character other than the slash, note that you do have to
retain the m at the start of the pattern. If you leave it off you must use the slash.

Unquoted Strings (Barewords)
Single words in lowercase without quotes that have no other meaning in Perl are inter-
preted as strings. Perl calls them barewords, and they’re generally discouraged because
they make scripts very hard to read, are error-prone, and you never know when a bareword
you use a lot will end up being a reserved word in a future version of the language. Avoid
them. If you have Perl warnings turned on, it will complain about this sort of thing.

Upper and Lowercase Escapes
In Table 2.1, I summarized the escape characters available for interpolated (double-quoted)
strings. Amongst those were escapes for upper and lowercasing strings (\l, \u, \L, \U,
and \E). Use these escapes to force upper or lowercase values in strings.

The \l and \u escapes are used to make the next letter in the string lower or uppercase.
You could use \u, for example, to make sure the start of a sentence was capitalized. \L
and \U are used to make lower or uppercase a series of characters inside a string; they
will both convert the characters that follow in the string until the end of the string or until
a \E occurs. These escapes aren’t necessarily useful in ordinary quoted strings, but they’ll
become useful later on when you create patterns for search-and-replace procedures.

04 0355 ch02 5/9/02 2:33 PM Page 49

More About Variable Interpolation in Strings
Variable interpolation is the capability of Perl to replace variable references in strings
with their actual values. In some cases, however, it might be difficult for Perl to figure
out where the variable ends. For example, take the following string:

“now reading the $valth value\n”;

In this string, the variable to be interpolated is actually called $val and contains a number.
But because the final string will say something like “now reading 12th value”, the
name of the variable butts up against the th part and Perl looks for a variable called
$valth instead of $val. There are a number of ways around this sort of problem—not
the least of which is concatenating multiple strings to form the final one. But, Perl also
provides syntax to get around this problem, like this:

“now reading the ${val}th value\n”;

The curly braces ({}) in this case are simply delimiters so that Perl can figure out where
the variable name starts and ends; they are not printed in the final value. Using curly
braces in this way can help get around problems in variable interpolation.

Octal and Hexadecimal Numbers
The 0123 and 0xabc formats you learned about in the section on numbers apply only to
the numbers you actually type into the code for your scripts (literals in Computer Science
parlance). Input from strings or from the keyboard in octal or hex notation will remain as
strings; you can convert those strings to actual numbers using the oct function like this:

$num = ‘0x432’;
print $num; # prints 0x432
$hexnum = oct $num;
print $hexnum; # prints 1074 (decimal equivalent)
$num = ‘0123’;
print (oct $num); # prints 83

The oct function can tell from the context whether the string is an octal or hex number;
you can also use the hex function for hex numbers only.

Summary
Numbers and strings everywhere! Today you learned quite a lot about scalar data. Perl
uses the term scalar data to refer to single things, and most particularly numbers and
strings. Scalar variables, which start with $, hold scalar data.

With scalar data in hand, you can create Perl statements, perform arithmetic, compare
two values, assign values to variables, change the values of variables, and convert
between numbers and strings.

50 Day 2

04 0355 ch02 5/9/02 2:33 PM Page 50

Working with Strings and Numbers (Scalar Data) 51

2

Today you also learned a little about pattern matching, including the pattern matching
operators =~ and !~, and the pattern operator m//.

The built-in functions you learned about today include these (we’ll go into more detail
about some of these tomorrow; see the perlfunc man page for more details about these
functions):

• print takes a list of comma-separated values and strings to print and outputs those
values to the standard output (STDOUT).

• printf takes a formatting string and any number of values, and prints those values
according to the codes in the formatting string.

• sprintf does the same thing as printf, except it returns the formatted string with-
out printing anything.

• chomp with a string argument removes any trailing newlines from that string and
returns the number of characters it deleted.

• int takes a number and returns the integer part of that number (truncating any dec-
imal part).

Q&A
Q. How do I define a variable so that it’ll only contain a number?

A. You can’t. Perl doesn’t have strong number types the way other languages do; the
closest you can get is a scalar variable, and that can contain either a number or a
string.

Most of the time, this will not matter; Perl will convert strings to numbers for you
and vice versa.

Q. But what if I end up with data in string form that isn’t a number and I try to
do something numeric with it?

A. The default behavior is as I described in the section on “Converting Between Numbers
and Strings.” Strings with no numeric content will become 0. Strings that start with
numbers and then revert to characters will lose the characters.

If you have warnings turned on in your Perl script, then Perl will warn you when
you’re trying to do things to nonnumeric data so you can correct the operation of
your scripts before you have this problem.

If you’re worried about getting nonnumeric data from the user, you should be
checking their input when they make it. We did some of this today; I’ll show you
more tricks for verifying input on Day 6 and Day 9.

04 0355 ch02 5/9/02 2:33 PM Page 51

Q. My calculations are returning floating-point numbers with way too many
numbers after the decimal point. How do I round off numbers so they only
have two decimal places?

A. See the section on “Arithmetic Operators,” where I explain how to use printf and
sprintf to do this very thing.

Q. But printf and sprintf are string functions. I want to round off numbers.

A. Both numbers and strings are forms of scalar data in Perl. What you can do to one,
you can do to the other (in many cases). Use printf and sprintf. Really.

Workshop
The workshop provides quiz questions to help you solidify your understanding of the
material covered, and exercises to give you experience in using what you’ve learned. Try
and understand the quiz and exercise answers before you go on to tomorrow’s lesson.

Quiz
1. What are the two types of data you can use in Perl?

2. What kinds of data make up scalar data?

3. What are the differences between double- and single-quoted strings?

4. Which of the following are valid scalar variables?

$count

$11foo

$_placeholder

$back2thefuture

$long_variable_to_hold_important_value_for_later

5. What’s the difference between the = and == operators?

6. What’s the difference between a statement and an expression?

7. What does this expression evaluate to: 4 + 5 / 3**2 * 6?

8. How do you round off numbers in Perl?

9. What are the values that Perl considers false?

10. Why are there different operators for number and string comparisons?

11. Define what a short-circuiting logical operator does.

12. How is a pattern-matching test different from an equality test?

52 Day 2

04 0355 ch02 5/9/02 2:33 PM Page 52

Working with Strings and Numbers (Scalar Data) 53

2

13. You have a pattern /ing/. Which of the following strings does this pattern match to?

‘Singapore’

‘viking’

‘vainglorious’

‘intermingle’

‘Westinghouse’

‘Ingmar’

Exercises
1. Modify temp.pl to convert Celsius back to Fahrenheit.

2. Write a program that prompts you for the width and length of a room, and then
prints out the square footage.

3. BUG BUSTERS: What’s wrong with this program?
print ‘Enter the word Foo: ‘;
chomp($input = <STDIN>);
if ($input = ‘foo’) {

print “Thank you!\n”;
} else {

print “That’s not the word foo.\n”;
}

4. BUG BUSTERS: How about this version?
print ‘Enter the word foo: ‘;
chomp($input = <STDIN>);
if ($input == ‘foo’) {

print “Thank you!\n”;
} else {

print “That’s not the word foo.\n”;
}

5. Modify Exercise 6 from yesterday (the combination of hello world and cookie) so
that it will exit if you type any of the following: goodbye, good-bye, bye-bye, ok
bye, or just bye.

Answers
Here are the answers to the Workshop questions in the previous section.

Quiz Answers
1. The two types of data you can use in Perl are scalar data, for individual things such

as numbers and strings and list data, for collective things such as arrays.

04 0355 ch02 5/9/02 2:33 PM Page 53

2. Numbers, strings, and references. Full credit if you only said numbers and strings;
we haven’t talked about references yet.

3. There are two differences between single- and double-quoted strings:

• Double-quoted strings can contain any number of special character escapes;
single-quoted strings can only contain \’ and \\.

• Double-quoted strings will interpolate variables inside them (that is, replace
the variables with their values).

4. All the variables in that list except for $11foo are valid. $11foo is invalid because
it starts with a number (Perl does have variables that start with numbers, but
they’re all reserved for use by Perl).

5. The = operator is the assignment operator, to assign a value to a variable. The ==
operator is for testing equality between numbers.

6. A statement is a single operation in Perl. An expression is a statement that returns a
value; you can often nest several expressions inside a single Perl statement.

7. 7.33333333333333, give or take a 3 or two.

8. To round off numbers without printing them, use sprintf. To print numbers with
less precision, use printf.

9. Perl has three false values: 0, the empty string “”, and the undefined value.

10. Perl has different operators for numbers and strings because of its capability to
auto-convert scalar values and the differences in handling both those values.

11. Short-circuiting operators only evaluate their right-side operands when necessary.
If the value of the left-side operator determines the overall value of the expression
(for example, if the left side of a && operator is false), the expression will stop.

12. Equality tests return true if the scalars on both sides of the operator are exactly
equal. Pattern matching tests result true of the scalar on the left side of the operator
contains characters that match the pattern on the right side of the operator.

13. All the given strings match the pattern /ing/ except for the last one, ‘Ingmar’,
which does not match because of the capital I. If the pattern /ing/ had an i at the
end (/ing/i) then it would have matched the last pattern, as well.

Exercise Answers
1. Here’s one answer:

#!/usr/local/bin/perl -w

$cel = 0;
$fahr = 0;

54 Day 2

04 0355 ch02 5/9/02 2:33 PM Page 54

Working with Strings and Numbers (Scalar Data) 55

2

print ‘Enter a temperature in Celsius: ‘;
chomp ($cel = <STDIN>);
$fahr = $cel * 9 / 5 + 32;
print “$cel degrees Celsius is equivalent to “;
printf(“%d degrees Fahrenheit \n”, $fahr);

2. Here’s one answer:
#!/usr/local/bin/perl -w

$width = 0;
$length = 0;
$sqft = 0;

print ‘Enter the width of the room (feet): ‘;
chomp ($width = <STDIN>);
print ‘Enter the length of the room (feet): ‘;
chomp ($length = <STDIN>);
$sqft = $width * $length;
print “The room is $sqft square feet.\n”;

3. The test inside the parentheses for the if statement uses an assignment operator
instead of an equality operator. This test will always return true.

4. This time, the test inside the parentheses has a number equality test; because this
test compares strings, you need an eq test instead.

5. Here’s one answer:
#!/usr/local/bin/perl -w

$name = “”;

while ($name !~ /bye/) {
print ‘Enter your name: ‘;
chomp($name = <STDIN>);
print “Hello, “;
print $name;
print “!\n”;

}

04 0355 ch02 5/9/02 2:33 PM Page 55

04 0355 ch02 5/9/02 2:33 PM Page 56

DAY 3

WEEK 1

More Scalar Data and
Operators

Scalar data, as you learned yesterday, involves individual items such as numbers
and strings. Yesterday, you learned several things you could do with scalar data;
today, we’ll finish up the discussion, show you more operators you can play with,
and finish up with some related topics. The things you can expect to learn
today are

• Various assignment operators

• String concatenation and repetition

• Operator precedence

• Pattern matching for digits

• A short overview of input and output

05 0355 ch03 5/9/02 2:33 PM Page 57

Assignment Operators
Yesterday, we discussed the basic assignment operator, =, which assigns a value to a vari-
able. One common use of assignment is an operation to change the value of a variable
based on the current value of that variable, such as:

$inc = $inc + 100;

This does exactly what you’d expect; it gets the value of $inc, adds 100 to it, and then
stores the result back into $inc. This sort of operation is so common that there is a short-
hand assignment operator to do just that. The variable reference goes on the left side, and
the amount to change it on the right, like this:

$inc += 100;

Perl supports shorthand assignments for each of the arithmetic operators, for string oper-
ators I haven’t described yet, and even for && and ||. Table 3.1 shows a few of the short-
hand assignment operators. Basically, just about any operator that has two operands has a
shorthand assignment version, where the general rule is that

variable operator= expression

is equivalent to

variable = variable operator expression

There’s only one difference between the two: in the longhand version, the variable refer-
ence is evaluated twice, whereas in the shorthand it’s only evaluated once. Most of the time,
this won’t affect the outcome of the expression, just keep it in mind if you start getting
results you don’t expect.

TABLE 3.1 Some Common Assignment Operators

Operator Example Longhand equivalent

+= $x += 10 $x = $x + 10

-= $x -= 10 $x = $x - 10

*= $x *= 10 $x = $x * 10

/= $x /= 10 $x = $x / 10

%= $x %= 10 $x = $x % 10

= $x **= 10 $x = $x10

Note that the pattern matching operator, =~, is not an assignment operator and does not
belong in this group. Despite the presence of the equals sign (=) in the operator, pattern
matching and variable assignment are entirely different things.

58 Day 3

05 0355 ch03 5/9/02 2:33 PM Page 58

More Scalar Data and Operators 59

3

Increment and Decrement Operators
The ++ and -- operators are used with a variable to increment or decrement that variable
by 1 (that is, to add or subtract 1). And as with C, both operators can be used either in
prefix fashion (before the variable, ++$x) or in postfix (after the variable, $x++). Depending
on the usage, the variable will be incremented or decremented before or after it’s used.

If your reaction to the previous paragraph is “Huh?”, here’s a wordier explanation. The
++ and -- operators are used with scalar variables to increment or decrement the value of
that variable by 1, sort of an even shorter shorthand to the += or -= operators. In addition,
both operators can be used before the variable reference—called prefix notation, like
this:

++$x;

Or, in postfix notation (after the variable), like this:

$x++;

The difference is subtle and determines when, in the process of Perl’s evaluation of an
expression, that the variable actually gets incremented. If you used these operators as I
did in those previous two examples—alone, by themselves—then there is no difference.
The variable gets incremented and Perl moves on. But, if you use these operators on the
right side of another variable assignment, then whether you use prefix or postfix notation
can be significant. For example, let’s look at this snippet of Perl code:

$a = 1;
$b = 1;
$a = ++$b;

At the end of these statements, both $a and $b will be 2. Why? The prefix notation
means that $b will be incremented before its value is assigned to $a. So, the order of
evaluation in this expression is that $b is incremented to 2 first, and then that value is
assigned to $a.

Now let’s look at postfix:

$a = 1;
$b = 1;
$a = $b++;

In this case, $b still ends up getting incremented; its value at the end of these three
statements is 2. But $a’s value stays at 1. In postfix notation, the value of $b is used before
it’s incremented. $b evaluates to 1, that value is assigned to $a, and then $b is increment-
ed to 2.

05 0355 ch03 5/9/02 2:33 PM Page 59

String Concatenation and Repetition
String and text management is one of Perl’s biggest strengths, and quite a lot of the exam-
ples throughout this book are going to involve working with strings—finding things in
them, changing things in them, getting them from files and from the keyboard, and send-
ing them to the screen, to files, or over a network to a Web browser. Today, we started by
talking about strings in general terms.

There are just a couple more things I want to mention about strings here, however, because
they fit in with today’s “All Operators, All the Time” theme. Perl has two operators for
using strings: . (dot) for string concatenation, and x for string repetition.

To concatenate together two strings you use the . operator, like this:

‘four score’ . ‘ and seven years ago’;

This expression results in a third string containing ‘four score and seven years ago.’

It does not modify either of the original strings.

You can put together multiple concatenations, and they’ll result in one single long string:

‘this, ‘ . ‘that, ‘ . ‘and the ‘ . ‘other thing.’

Perl also includes a concatenate-and-assign shorthand operator; similar to the operators
I listed in Table 3.1:

$x .= “dog”;

60 Day 3

To be totally, rigorously correct, my ordering of how things happen here is
off. For a variable assignment, everything on the right side of the = operator
always gets evaluated before the assignment occurs, so in reality, $a doesn’t
get changed until the very last step. What actually happens is that the origi-
nal value of $b is remembered by Perl, so that when Perl gets around to
assigning a value to $a, it can use that actual value. But unless you’re work-
ing with really complex expressions, you might as well think of it as happen-
ing before the increment.

Note

Even though using assignment operators and increment operators in the
same statement can be convenient, you should probably avoid it because it
can cause confusion.

Caution

05 0355 ch03 5/9/02 2:33 PM Page 60

More Scalar Data and Operators 61

3

In this example, if $x contained the string “mad”, then after this statement $x would con-
tain the string “maddog”. As with the other shorthand assignment operators, $x .= ‘foo’

is equivalent to $x = $x . ‘foo’.

The other string-related operator is the x operator (not the X operator; it must be a lower-
case x). The x operator takes a string on one side and a number on the other (but will
convert them as needed), and then creates a new string with the old string repeated the
number of times given on the right. Some examples:

‘blah’ x 4; # ‘blahblahblahblah’

‘*’ x 3; # ‘***’

10 x 5; # ‘1010101010’

In that last example, the number 10 is converted to the string ‘10’, and then repeated five
times.

Why is this useful? Consider having to pad a screen layout to include a certain number of
spaces or filler characters, where the width of that layout can vary. Or consider, perhaps,
doing some kind of ASCII art where the repetition of characters can produce specific pat-
terns (hey, this is Perl, you’re allowed—no, encouraged—to do weird stuff like that). At
any rate, should you ever need to repeat a string, the x operator can do it for you.

Operator Precedence and Associativity
Operator precedence determines which operators in a complex expression are evaluated
first. Associativity determines how operators that have the same precedence are evaluated
(where your choices are left-to-right, right-to-left, or nonassociative for those operators
where order of evaluation is either not important, not guaranteed, or not even possible).
Table 3.2 shows the precedence and associativity of the various operators available in
Perl, with operators of a higher precedence (evaluated first) higher up in the table than
those of a lower precedence (evaluated later). You’ll want to fold down the corner of this
page or mark it with a sticky note; this is one of those tables you’ll probably refer to over
and over again as you work with Perl.

You can always change the evaluation of an expression (or just make it easier to read) by
enclosing it with parentheses. Expressions inside parentheses are evaluated before those
outside parentheses.

Note that there are a number of operators in this table you haven’t learned about yet (and
some I won’t cover in this book at all). I’ve included lesson references for those operators
I do explain later on in this book.

05 0355 ch03 5/9/02 2:33 PM Page 61

TABLE 3.2 Operator Precedence and Associativity

Operator Associativity What it means

-> left Dereference operator (Day 19, “Working with
References”

++ -- non Increment and decrement

** right Exponent

! ~ \ + - right Logical not, bitwise not, reference (Day 19),
unary +, unary -

=~ !~ left Pattern matching

* / % x left Multiplication, division, modulus, string
repeat

+ - . left Add, subtract, string concatenate

<< >> left Bitwise left shift and right shift

unary operators non Function-like operators (See today’s “Going
Deeper” section)

< > <= >= lt gt le ge non Tests

== != <=> eq ne cmp non More tests (<=> and cmp, Day 8, “Data
Manipulation with Lists”)

& left Bitwise AND

| ^ left Bitwise OR, bitwise XOR

&& left C-style logical AND

|| left C-style logical OR

.. non Range operator (Day 4, “Working with Lists
and Arrays”)

?: right Conditional operator (Day 6, “Conditionals
and Loops”)

= += -= *= /=, etc. right Assignment operators

, => left Comma operators (Day 4)

list operators non list operators in list context (Day 4)

not right Perl logical NOT

and left Perl logical AND

or xor left Perl logical OR and XOR

62 Day 3

05 0355 ch03 5/9/02 2:33 PM Page 62

More Scalar Data and Operators 63

3

Using Patterns to Match Digits
Yesterday I introduced you to the bare basics of pattern matching. You learned how to
look for strings contained inside other strings, which gives you some flexibility in your
scripts and what sort of input you can accept and test. Today, and in future days, you’ll
learn about new kinds of patterns you can use in the pattern operator /.../ and how to
use those to make your scripts more flexible and more powerful.

Today we’ll look at patterns that are used to match digits, any digit, from 0 to 9. Using
what you learned yesterday you could test for digits like this:

if ($input =~ /1/ or $input =~ /2/ or $input =~ /3/ or $input =~ /4/ or
$input =~ /5/ or $input =~ /6/ or … }

But that would be a lot of repetitive typing, and Perl has a much better way of doing that
same thing. The \d pattern will match any single digit character, from 0 to 9. So, the
statement $input =~ /\d/ would test $input to see if it contained any numbers, and
return true if it did. If input contained 1, it would return true. It would return true if input
contained “23skidoo” or “luckynumber123” or “1234567”.

Each \d stands for a single digit. If you want to match two digits, you can use two \d
patterns:

$input =~ /\d\d/;

In this case “23skidoo” would return true, but “number1” would not. You need two digits
in a row for the pattern to match.

You can also combine the \d pattern with specific characters:

$input =~ /\dup\d/;

This pattern matches, in order: any digit, the character u, the character p, and then any digit
again. So “3up4” would match; “comma1up1semicolon” would match; but “14upper13”

would not. You need the exact sequence of any number and specific characters.

You can also match any character that is not a digit using the \D pattern. \D matches all
the letters, all the punctuation, all the whitespace, anything in the ASCII character set that
isn’t 0 through 9. You might use this one specifically—as we will in the next section—to
test your input to see if it contains any nonnumeric characters. When you want your input
to be numeric, for example, if you were going to perform arithmetic on it, or compare it
to something else numeric, you want to make sure there are no other characters floating
around in there. \D will do that:

$input =~ /\D/;

05 0355 ch03 5/9/02 2:33 PM Page 63

This test will return true if $input contains anything nonnumeric. “foo” is true, as is
“foo34”, “23skidoo”, or “a123”. If the input is “3456” it will return false—there are
only numeric characters there.

Table 3.3 shows the patterns you’ve learned so far.

TABLE 3.3 Patterns

Pattern Type What it does

/a/ Character Matches a

/\d/ Any digit Matches a single digit

/\D/ Any character not a digit Matches a single character other than a digit

An Example: Simple Statistics
Here’s an example called stats.pl, which prompts you for numbers, one at a time. When
you’re done entering numbers, it gives you a count of the numbers, the sum, and the
average. It’s a rather silly kind of statistics script, but it’ll demonstrate tests, variable assign-
ment, and pattern matching for input verification (and we’ll be building on this script later
on). Here’s an example of what it looks like when run (including what happened when I
accidentally typed an r in the middle of entering the numbers):

% stats.pl
Enter a number: 3
Enter a number: 9
Enter a number: 3
Enter a number: r
Digits only, please.
Enter a number: 7
Enter a number: 4
Enter a number: 7
Enter a number: 3
Enter a number:

Total count of numbers: 7
Total sum of numbers: 36
Average: 5.14
%

Listing 3.1 shows the code behind the statistics script.

64 Day 3

05 0355 ch03 5/9/02 2:33 PM Page 64

More Scalar Data and Operators 65

3

LISTING 3.1 The stats.pl Script

1: #!/usr/local/bin/perl -w
2:
3: $input = ‘’; # temporary input
4: $count = 0; # count of numbers
5: $sum = 0; # sum of numbers
6: $avg = 0; # average
7:
8: while () {
9: print ‘Enter a number: ‘;
10: chomp ($input = <STDIN>);
11: if ($input eq ‘’) { last; }
12:
13: if ($input =~ /\D/) {
14: print “Digits only, please.\n”;
15: next;
16: }
17:
18: $count++;
19: $sum += $input;
20: }
21:
22: $avg = $sum / $count;
23:
24: print “\nTotal count of numbers: $count\n”;
25: print “Total sum of numbers: $sum\n”;
26: printf(“Average (mean): %.2f\n”, $avg);

This script has three main sections: an initialization section, a section for getting and
storing the input, and a section for computing the average and printing out the results.

Here’s the initialization section (with line numbers in place):

3: $input = ‘’; # temporary input
4: $count = 0; # count of numbers
5: $sum = 0; # sum of numbers
6: $avg = 0; # average

We’re using four scalar variables here: one to store the input as it comes in, one to keep
track of the count of numbers, one to hold the sum, and one to hold the average.

The next section is where you prompt for the data and store it:

8: while () {
9: print ‘Enter a number: ‘;
10: chomp ($input = <STDIN>);
11: if ($input eq ‘’) { last; }
12:
13: if ($input =~ /\D/) {

05 0355 ch03 5/9/02 2:33 PM Page 65

14: print “Digits only, please.\n”;
15: next;
16: }
17:
18: $count++;
19: $sum += $input;
20: }

This second part of the script uses a while loop and a couple if conditionals to read the
input repeatedly until we get a blank line. And also to test the input to make sure that we
didn’t get anything that wasn’t a number. I still haven’t discussed how loops and condi-
tionals are defined in Perl (and we won’t get around to it until Day 6). So, I’m going to
pause here and give you a very basic introduction so you will not be totally lost for the
next few days.

A while loop says “while this thing is true, execute this stuff.” With a while loop Perl
executes a test, and if the test is true it executes everything inside the curly braces (here,
everything in between lines 9 and 20). Then, it’ll go back and try the test again, and if
it’s true again, it’ll execute all that code again, and so on. The loop means it goes around
and around and around until the test is false.

Usually, the test is contained inside the parentheses (line 8), and can be any of the tests
you learned about yesterday. Here, there is no test, so this is an infinite loop; it never
stops, at least not here. We’ll find a way to break out of it from inside the loop.

An if conditional is simpler than a loop. An if conditional has a test, and if the test is
true, Perl executes some code. If the test is false, sometimes Perl executes some other
code (if the if conditional has a second part, called an else), and sometimes it just goes
onto the next part of the script. So, for example, in the if conditional in line 11, the test
is if the input is equal to the empty string ‘’. If the test is true, last is executed. The
last keyword is used to immediately break out of a while loop and stop looping. If the
test is false, Perl skips over line 11 altogether and continues onto line 13.

In the if conditional, lines 13 through 16, the test is a pattern match. Here we’re testing
the $input to see if it contains any nondigit characters. If it does, we execute the print
statement in line 14, and then call next. The next keyword skips to the end of the while
loop (in this case, skipping lines 18 and 19), and restarts the next loop at the top of the
while again. Just as with line 11, if the test in line 13 was false, Perl skips over every-
thing in line 13 to 16 and continues onto line 18 instead.

Now that you know about if and while, let’s start at the top and figure out what this bit
of code actually does. It’s a while loop with no test, so it’ll keep going forever until

66 Day 3

05 0355 ch03 5/9/02 2:33 PM Page 66

More Scalar Data and Operators 67

3

something breaks you out of it. Inside the body of the while, we use line 10 to grab the
actual input (and I know you’re still waiting to learn what chomp and <STDIN> do; it’s
coming up soon). Line 11, as I mentioned, tests for an empty string, and if we got one,
breaks out of the loop. The empty string in the input will only occur if the user hit return
without typing anything; that is the signal to the stats program that the end of input has
been reached. Note the string test (ne) here; a number test would convert the empty
string to 0, which is not what we want. 0 is valid input for the stats program.

When you get to line 13 we know we have something in $input, but we want to make
sure that you have valid input, that is, numeric data. You’re going to be performing arith-
metic on this data in lines 18 and 19, and if you end up with nonnumeric data in the
input, and warnings turned on, Perl is going to complain about that data. By verifying
and rejecting invalid input you can make sure your scripts do not do unfriendly things
like spew errors, or crash when your users are running them.

Lines 13 through 15 are the input validation test. If the input did contain nonnumeric
data, we print an error and the loop restarts by prompting for new data.

By the time we get to line 18 we now know that we have data to be handled in $input
and that data does not contain nonnumeric characters. Now we can add that new data to
our current store of data. In lines 18 and 19 we increment the $count variable, and modi-
fy the $sum variable to add the new value that was input. With these two lines we can
keep a running total of the count and the sum as each new bit of input comes along, but
we’ll wait until all the data has been entered to calculate the average.

And, finally, we finish up by calculating the average and printing the results:

22: $avg = $sum / $count;
23:
24: print “\nTotal count of numbers: $count\n”;
25: print “Total sum of numbers: $sum\n”;
26: printf(“Average (mean): %.2f\n”, $avg);

Line 22 is a straightforward calculation, and lines 24 through 26 print the count, the sum,
and the average. Note the \n at the beginning of the first print statement; this will print
an extra blank line before the summary. Remember that \n can appear anywhere in a
string, not just at the end.

In the third summary line, you’ll note we’re using printf again to format the number out-
put. This time, we used a printf format for a floating-point number that prints 2 decimal
places of that value (%.2f). You get more information about printf in the next section.

05 0355 ch03 5/9/02 2:33 PM Page 67

Input and Output
We’ll finish up today with two topics that initially might not seem to fit with everything
else we’ve talked about concerning scalar data: handling simple input and output. I’ve
included them here essentially for one reason: so you know what’s been going on in the
scripts you’ve been writing that read input from the keyboard and print output to the
screen.

In this section we’ll talk about simple input and output, and as the book progresses you’ll
learn more about input and output to disk files, culminating on Day 15, “Working with
Files and I/O.”

File Handles and Standard Input and Output
First, some terminology. In the scripts you’ve been looking at today and yesterday, you’ve
used Perl code to read input from the keyboard and to write output to the screen. In reality,
the keyboard and the screen aren’t the best terms to use because, actually, you’re reading
from a source called standard input, and writing to a destination called standard output.
Both of these concepts are borrowed from Unix systems, where using pipes and filters
and redirection are common, but if you’re used to Windows or the Mac, the idea of a
standard input or output might not make much sense.

In all cases, when you’re reading data from a source, or writing data to a destination, you’ll
be working with what are called file handles. Most often, file handles refer to actual files
on the disk, but there are instances where data might be coming from or going to an
unnamed source, for example, from or to another program such as a Web server. To
generalize data sources and destinations that are not actual files, Perl gives you built-in
file handles for standard input and standard output called STDIN and STDOUT (there’s also
STDERR, for standard error, but we’ll leave that for later). These two file handles happen
to include (and, in fact, are most commonly used for) input from the keyboard and output
from the screen.

Reading a Line from Standard Input with <STDIN>
In the scripts we’ve seen so far in this book, there’s usually been a line for reading input
from the keyboard that looks something like this:

chomp($inputline = <STDIN>);

You’ll see that line a lot in Perl code, although often it occurs on multiple lines, some-
thing like this (the two forms are equivalent):

$inputline = <STDIN>;
chomp($inputline);

68 Day 3

05 0355 ch03 5/9/02 2:33 PM Page 68

More Scalar Data and Operators 69

3

You know now that $inputline is a scalar variable, and that you’re assigning something
to it. But what?

The STDIN part of this line is the special built-in file handle for standard input. You don’t
have to do anything to open or manage this special file handle; it’s there for you to use.
In case you’re wondering why it’s in all caps; that’s a Perl convention to keep from con-
fusing file handles from other things in Perl (such as actual keywords in the language).

The angle brackets around <STDIN> are used to actually read input from a file handle.
The <> characters, in fact, are often called the input operator. <STDIN>, therefore, means
read input from the STDIN file handle. In this particular case, where you’re assigning the
<STDIN> expression to a scalar variable, Perl will read a line from standard input and stop
when it gets to a newline character (or a carriage return on the Macintosh). Unlike in C,
you don’t have to loop through the output and watch every character to make sure it’s a
newline; Perl will keep track of that for you. All you need is <STDIN> and a scalar variable
to store the input line in.

The definition of what a line is for <STDIN> is actually determined by Perl’s
input record separator, which is a newline character by default. On Day 9,
“Pattern Matching with Regular Expressions,” you’ll learn how to change
the input record separator. For now, just assume that the end of line character
is indeed the end of a line and you’ll be fine.

Note

All this talk about input and output brings us to the somewhat amusingly named chomp
function. When you read a line of input using <STDIN> and store it in a variable, you get all
the input that was typed and the newline character at the end as well. Usually, you don’t
want that newline character there, unless you’re printing the input right back out again and
it’s useful for formatting. The built-in Perl chomp function, then, takes a string as input, and
if the last character is a newline, it removes that newline. Note that chomp modifies the origi-
nal string in place (unlike string concatenation and other string-related functions, which cre-
ate entire new strings and leave the old strings alone). That’s why you can call chomp by
itself on its own line without reassigning the variable that holds that string.

Previous versions of Perl used a similar function for the same purpose called
chop. If you read older Perl code, you’ll see chop used a lot. The difference
between chomp and chop is that chop indiscriminately removes the last char-
acter in the string, whether it’s a newline or not, whereas chomp is safer and
doesn’t remove anything unless there’s a newline there. Most of the time,
you’ll want to use chomp to remove a newline from input, rather than chop.

Note

05 0355 ch03 5/9/02 2:33 PM Page 69

Writing to Standard Output with print
When you get input into your Perl script with <STDIN>, or from a file, or from wherever,
you can use Perl statements to do just about anything you like with that input. The time
comes, then, when you’ll want to output some kind of data as well. You’ve already seen
the two most common ways to do that: print and printf.

Let’s start with print. The print function can take any number of arguments and prints
them to the standard output (usually the screen). Up to this point we’ve only used one
argument, but you can also give it multiple arguments, separated by commas. Multiple
arguments to print, by default, will get concatenated together before they get printed:

print ‘take THAT!’;
print 1, 2, 3; # prints ‘123’
$a = 4;
print 1, ‘ ‘, $a; # prints “1 4”
print 1, “ $a”; # same thing

70 Day 3

I say by default because multiple arguments to print actually form a list, and
there is a way to get Perl to print characters in between list elements. You’ll
learn more about this tomorrow on Day 4, “Working with Lists and Arrays.”

Note

I mentioned the STDOUT file handle earlier, as the way to access the standard output. You
might have noticed, however, that we’ve been printing data to the screen all along with
print, and we’ve never had to refer to STDOUT. That’s because Perl, to save you time and
keystrokes, assumes that if you use print without an explicit file handle, you want to
use standard output. In reality, the following Perl statements do exactly the same thing:

print “Hello World!\n” ;

print STDOUT “Hello World!\n”;

More about the longer version of print when you learn more about file handles that
are attached to actual files, on Day 15.

printf and sprintf
In addition to the plain old workhorse print, Perl also provides the printf and sprintf

functions, which are most useful in Perl for formatting and printing numbers in specific
ways. They work almost identically to those same functions in C, but beware: printf is
much less efficient than print, so don’t just assume you can use printf everywhere
because you’re used to it. Only use printf when you have a specific reason to do so.

05 0355 ch03 5/9/02 2:33 PM Page 70

More Scalar Data and Operators 71

3

As you learned yesterday, you use the printf function to print formatted numbers and
strings to an output stream, such as standard output. sprintf formats a string and then
just returns that new string, so it’s more useful for nesting inside other expressions (in
fact, printf calls sprintf to do the actual formatting).

Both printf and sprintf take two or more arguments: the first, a string containing for-
matting codes, and then one or more values to plug into those codes. For example, we’ve
seen examples of printf that rounded off a floating-point number to two decimal places,
like this:

printf(“Average (mean): %.2f”, $avg);

We’ve seen one that truncates it to an integer, like this:

printf(“%d degrees Celsius\n”, $cel);

Yesterday, you also saw how to use sprintf to round a floating-point number to two digits
of precision:

$value = sprintf(“%.2f”, $value);

The format codes follow the same rules as the C versions (although the * length specifier
isn’t supported), and can get quite complex. A simple formatting code that you might use
in Perl looks like this:

%l.px

The x part is a code referring to the type of value; in Perl you’ll be most interested in the
d formatting code for printing integers, and the f formatting code for printing floating-
point numbers. The l and the p in the formatting code are both optional. l refers to the
number of characters the value should take up in the final string (padded by spaces if the
value as printed is less than l), and p is the number of digit precision of a floating-point
number. All numbers are rounded to the appropriate precision.

If you need to print an actual percent sign in your output, you’ll need to use two of them:

printf(“%d%% humidity \n”, $hum);

Here are some typical examples of how either sprintf or printf might be used:

$val = 5.4349434;
printf(“->%5d\n”, $val); # 5
printf(“->%11.5f\n”, $val); # 5.43494
printf(“%d\n”, $val); # 5
printf(“%.3f\n”, $val); # 5.435
printf(“%.1f\n”, $val); # 5.4

05 0355 ch03 5/9/02 2:33 PM Page 71

Multiple formatting codes are interpolated left to right in the string, each formatting code
replaced by an argument (there should be an equal number of formatting codes and extra
arguments):

printf(“Start value : %.2f End Value: %.2f\n”, $start, $end);

In this example, if $start is 1.343 and $end is 5.33333, the statement will print this:

Start value : 1.34 End Value: 5.33

If you’re unfamiliar with C’s printf formatting codes, you might want to refer to the
perlfunc man page (or the printf man page) for more details.

Another Example: Stocks
To cement what you’ve learned today, let’s work through another simple example that
uses assignment, while loops, if conditionals, pattern matching, input, and both print
and printf statements.

This example is a stock performance tracker. All you do is enter the purchase price of
your stock and its current price, and it tells you if your investment has lost money, made
money, or broken even, and by what percentage:

% stock.pl
Enter the purchase price: 45
Enter the current price: 48
Your investment has made money.
Your return on investment is 6.7%
% stock.pl
Enter the purchase price: 45
Enter the current price: 40
Your investment has lost money.
Your return on investment is -11.1%
% stock.pl
Enter the purchase price: 45
Enter the current price: 45
Your investment has broken even.
Your return on investment is 0.0%

Stock prices must be entered as decimals (not fractions such as 14 5/8), and must be
digits. We’ll check for both of these things in the script.

Listing 3.2 shows the code for our simple stock tracker. Before reading the following
description see if you can go through the code and understand what’s going on here.

72 Day 3

05 0355 ch03 5/9/02 2:33 PM Page 72

More Scalar Data and Operators 73

3

LISTING 3.2 The stock.pl Script

1: #!/usr/local/bin/perl -w
2:
3: $start = 0;
4: $end = 0;
5: $return = 0;
6:
7: while () {
8: print “Enter the purchase price: “;
9: chomp ($start = <STDIN>);
10:
11: print “Enter the current price: “;
12: chomp ($end = <STDIN>);
13:
14: if ($start eq ‘’ or $end eq ‘’) {
15: print “Either the purchase or current price is missing.\n”;
16: next;
17: }
18:
19: if ($start =~ /\D/ or $end =~ /\D/) {
20: if ($start =~ /\// or $end =~ /\//) {
21: print “Please enter prices as decimal numbers.\n”;
22: next;
23: } else {
24: print “Digits only, please.\n”;
25: next;
26: }
27: }
28:
29: last;
30: }
31:
32: $return = ($end - $start) / $start * 100;
33:
34: if ($start > $end) {
35: print “Your investment has lost money.\n”;
36: } elsif ($start < $end) {
37: print “Your investment has made money.\n”;
38: } else {
39: print “Your investment has broken even.\n”;
40: }
41:
42: print “Your return on investment is “;
43: printf(“%.1f%%\n”, $return);

This example has three main sections: an initialization section, a section for getting and
verifying input, and a section for calculating and printing the result. I’m going to skip the
initialization because you’ve already seen a bunch of them and you know what they look
like by now.

05 0355 ch03 5/9/02 2:33 PM Page 73

Getting and Verifying the Input
This while loop, in lines 7 to 30, is for getting the initial input from the user and is the
most complex part of this script:

7: while () {
8: print “Enter the purchase price: “;
9: chomp ($start = <STDIN>);
10:
11: print “Enter the current price: “;
12: chomp ($end = <STDIN>);
13:
14: if ($start eq ‘’ or $end eq ‘’) {
15: print “Either the purchase or current price is missing.\n”;
16: next;
17: }
18:
19: if ($start =~ /\D/ or $end =~ /\D/) {
20: if ($start =~ /\// or $end =~ /\//) {
21: print “Please enter prices as decimal numbers.\n”;
22: next;
23: } else {
24: print “Digits only, please.\n”;
25: next;
26: }
27: }
28:
29: last;
30: }

Initially this will look very similar to the while loop in the stats.pl script: same infinite
loop, same if test with pattern matching. But there are some significant differences here.

The most important difference to note is that stats.pl repeats over and over again until
the user is done inputting data, whereas this script only needs two pieces of correct data
and then it’s done. In fact, blank input here is an error, and should be tested for. The
other two errors we are checking for are nondigit input, and input made in fractional for-
mat (14 5/8, for example). We could lump the latter two together because the slash char-
acter / is a nondigit character, but printing a more specific error in that specific case
makes for a more user-friendly script.

Our infinite loop, then, will continue looping until we get two acceptable pieces of
numeric data. Then we can break out of the loop and move on.

Lines 8 through 12 enable you to look at things line by line. They prompt for the data,
and store that data in the scalar variables $start and $end. Note that we prompt for both
values before testing for validity, rather than doing one at a time. (One at a time would
make more sense, usability-wise, but given what you know so far about Perl we would
have to duplicate a lot of code, so this way is shorter).

74 Day 3

05 0355 ch03 5/9/02 2:33 PM Page 74

More Scalar Data and Operators 75

3

In lines 14 through 17 we test both $start and $end to see if they are empty, that is, if
the user pressed Return without entering any data. If they did, we call next, which skips
to the end of the loop and restarts again from the beginning, prompting again for the data.

In the if statement starting in line 19 things start getting weird. Line 19 is the same test
for nondigitness you saw in the stats program; this pattern checks for any input that con-
tains data that isn’t a number. This test will trap both data that is completely nonsensical
for the script, along with data that might make conceptual sense but that we can’t handle—
the fractional numbers that I mentioned earlier (14 5/8, 101 15/16, and so on, as stock
prices are sometimes listed).

If the test in line 19 is true, the code in line 20 and onward begins executing. That code in-
cludes the test in line 20. This test is a character pattern for a single slash—we have to back-
slash it here because its inside the pattern matching operator. This test, then, is here to trap
those fractional numbers. If this test returns true, lines 21 and 22 are executed; we print an
error (a hint, actually, and next is called to skip to the end of the loop and restart again).

If the test in line 20 is not true—that is, if we have data that contains something other that
a digit, but that doesn’t contain a slash—then the code in lines 23 through 26 gets exe-
cuted. The else clause is part of the if conditional. In an if conditional, if the test is
true, the first block of code inside the curly braces is executed. If the test is false, Perl
looks for the else clause, and if there is one, then that code gets executed instead.
Depending on the state of the test, you’ll get either one block or another—never both.

In this case, if we have nonnumeric data that doesn’t contain a slash, say, “rasberry”,
that data will return true for the test in line 19, so the block going from lines 19 to 27
will get executed. The test in line 20, however, will be false—no slash—so Perl will skip
lines 20 through 22 and instead execute the else block in lines 23 through 26; print an
error, and call next to again run through the same prompting-and-testing loop.

The else part of the if conditional is optional—if there isn’t one and the test is false,
Perl just goes on executing. So if the user does indeed enter the right data, then the tests
in lines 14 and 19 will be false. None of the code in lines 14 through 17 or lines 19
through 27 gets executed if the data is correct. Perl just goes straight down to line 29;
last, which breaks us out of the while loop to stop asking for data.

Calculating and Printing the Result
With correct data in hand, we can go ahead and perform some arithmetic without worrying
that what we’ve actually been given is a string or some weird combination of numbers
and strings. All that is behind us now. Line 32 computes the percentage return on invest-
ment and stores it in the variable $return.

32: $return = ($end - $start) / $start * 100;

05 0355 ch03 5/9/02 2:33 PM Page 75

Note that we need the parentheses around the subtraction here to change the operator
precedence. Without the parentheses, the division and multiplication would have been
performed first, and then the subtraction, which would not have been correct.

Lines 34 through 40 print our little report on how your investment is doing, and here you
can see more ifs and elses. The one in the middle—elsif—is just a shorthand notation
for nesting if conditionals inside else statements. You’ll learn more about it on Day 6.

Nested ifs, as this structure is called, is a way of cascading different tests and results.
You’ll see a lot of these sorts of structures. The tests start at the top, and if a test is true,
that result is printed, and the nested if is over. Perl skips to the bottom and doesn’t do
any more tests. If the test is false, another test is tried until one matches or the final else
at the end is the default result.

In this case, there are only three possible results: $start can be less than $end, start can
be greater than $end, or $start and $end can be equal. In the first two tests we check for
the first two cases. The last case doesn’t need a test because it’s the only possible remaining
outcome, so it gets caught in the final else in lines 38 through 40.

The final lines, 42 and 43, print out the percentage return on investment we calculated
in line 32. Here we use a printf instead of a print, so that we can format the floating-
point number to have a single digit of precision.

43: printf(“%.1f%%\n”, $return);

In this line, %.1f is the formatting code—.1 for the single digit after the decimal point,
f for a floating-point number. The two percents after the formatting code (%%) are used
to print out an actual percent character in the output. \n, as you know, is a newline,
therefore, the result looks something like this:

Your return on investment is 110.9%

A Note About Using Functions
Now that you’ve learned about the print and chomp functions, as well as had a glimpse
of other functions such as int and sprintf, this is a good time to go over how function
calls work. If you’ve been paying careful attention, you might have noticed that I’ve been
calling the print function like this:

print “Hello, World!\n”;

I’ve also been calling chomp and printf like this:

chomp($input = <STDIN>);
printf(“Average (mean): %.2f”, $avg);

76 Day 3

05 0355 ch03 5/9/02 2:33 PM Page 76

More Scalar Data and Operators 77

3

One form has parentheses around the arguments to the function, the other form doesn’t.
Which is correct? The answer is both. Parentheses around the arguments to a function are
optional; as long as Perl can figure out what your arguments are, either form works just
fine.

In this book, I’ve used a smattering of both. My general rule is that if a function takes one
argument—int or oct being good examples—I’ll leave off the parentheses. If it takes
multiple arguments or if its argument is an expression (printf or chomp), then I use
parentheses. The print function can go either way depending on the situation.

Depending on what you’re familiar with—and what looks right to you—feel free to
pick your own rule for parenthesizing functions in your own scripts. I should mention,
however, that the rule of parentheses being optional “as long as Perl can figure out what
your arguments are,” can occasionally be tricky to figure out, particularly with multiple
arguments and when some of them are parenthesized expressions or lists. To make it
even more complex, some of Perl’s built-in functions are actually operators, and have a
different precedence from actual function calls. (see the next section, “Going Deeper,”
for more information). There are rules of precedence to determine exactly how complex
function calls are to be evaluated, but the safest solution, if Perl appears to be ignoring
your arguments or producing weird results, is to include parentheses around all the argu-
ments. Turning on Perl warnings will also help catch some of these problems.

Going Deeper
Had enough of strings and numbers yet? Want to learn more? No problem. This section
has a number of other features to look at concerning scalar data before we forge on
ahead to lists.

Operators are all discussed in the perlop man page, whereas functions are discussed in
the perlfunc man page. As I mentioned before, you can get to all these pages through
the use of the perldoc command or on the Web at http://www.perl.com/pub/doc/
manual/html/pod/.

Useful Number and String Functions
Perl includes quite a few built-in functions for a variety of purposes. Appendix E, “Perl
Functions,” contains a summary of those functions, and the perlfunc man page also
describes them in further detail. In particular, Perl includes a number of useful functions
for numbers and strings, including those summarized in Table 3.4. We’ll explore some of
these in more detail in forthcoming chapters; others you’ll have to explore on your own.

05 0355 ch03 5/9/02 2:33 PM Page 77

TABLE 3.4 Number and String Functions

Function What it does

abs Absolute value

atan2 Arctangent

chr The character represented by a number in the ASCII character set

cos Cosine

exp e to the power of (use ** for exponentiation)

int Truncate decimal part of a float

index Returns the position of the first occurrence of the substring in string

lc Lowercase a string

lcfirst Lowercase the first character in a string

length Length (number of bytes)

log Logarithm

ord The number of a character in the ASCII character set

rand Random number

reverse Reverse a scalar

rindex Reverse index (starts from end of string)

sin Sine

sqrt Square root

substr Returns a substring starting at an offset of some length

uc Uppercase a string

ucfirst Uppercase the first letter in a string

Bitwise Operators
Perl provides the usual set of C-like operators for twiddling bits in integers: ~, <<, >>, &,
|, and ^, as well as assignment shortcuts for those operators. See the perlop man page
for specifics.

The cmp and <=> Operators
In addition to the relational operators I described in the section on comparisons, Perl also
has the <=> and cmp operators. The former is for numbers, and the latter for strings. Both
return -1, 0, or 1 depending if the left operator is greater than the right, the operators are
equal, or if the right operator is greater than the left, respectively. These operators are most
commonly used for creating sort routines, which you’ll learn more about on Day 8.

78 Day 3

05 0355 ch03 5/9/02 2:33 PM Page 78

More Scalar Data and Operators 79

3

Functions and Function-Like Operators
Perl’s built-in functions actually fall into two groups: functions that are functions, and
operators that take one argument and masquerade as functions. The function-like operators
fall in the middle of the precedence hierarchy and behave like operators in this respect
(whereas function calls with parentheses always have the highest precedence). See the
perlop man page under “Named Unary Operators” for a list of these functions.

Summary
Today was Part 2 of everything you ever wanted to know, and probably a whole lot you
didn’t, about scalar data. Today you got to look at more tables of operators, in particular
operators for assigning things to variables, or changing the values of variables, and for
concatenating and repeating strings. You also learned about operator precedence, which
determines which operators get to go first when you have an expression with lots of them
in it.

Along the way you also learned about pattern matching with digits and some about if
and while (although you’ll learn a whole lot more about them on Day 6).We finished
today’s lesson talking about input and output, and in particular using <STDIN> to get data
into a Perl script and the various print functions to print it out again. You also learned a
bit about calling functions with and without parentheses around their arguments.

The built-in functions you learned about today include (see the perlfunc man page for
more details about these functions):

• print takes a list of comma-separated values and strings to print and outputs those
values to the standard output (STDOUT).

• printf takes a formatting string and any number of values, and prints those values
according to the codes in the formatting string.

• sprintf does the same thing as printf, except it returns the formatted string with-
out printing anything.

• chomp with a string argument removes any trailing newlines from that string and
returns the number of characters it deleted.

• chop is the older version of chomp; it removes the last character from the string and
returns the character it removed.

05 0355 ch03 5/9/02 2:33 PM Page 79

Q&A
Q. I want to iterate over a string and count the occurrences of the letter t. How

can I do this in Perl?

A. Well, you could use a for loop and one of the string functions to work your way
through the string one character at a time, but that would be a terrible amount of
overkill (and expose you as a C programmer who still thinks of strings as null-
terminated arrays). Perl’s good with strings, and it has built-in mechanisms for
finding stuff in strings so you don’t have to do perverse character-by-character
comparisons. You’ll learn more about this sort of pattern matching on. Don’t
spend a lot of time iterating over strings until you read that.

Q. I don’t understand why in these scripts you are testing for nonnumeric data using
\D, when we could be testing for numeric data using \d. To me it would make
more sense to just test for numbers if you want numbers.

A. The problem is that both \d and \D stand for just one character. So you could test
for numeric data with \d and your pattern would match perfectly as long as your
input was 1, 2, 3, 4, and so on, through 9. But if your input was 10 or above, that
would be more than a single character, and would not match the pattern, and, there-
fore, produce an error. Theoretically you want your test to work for any number: 1
should be just as acceptable as 11 or 111111. Later on you’ll learn how to do a pat-
tern that matches one or more digits. For now, matching a single nondigit character
is an easy work around, the data itself can be any number of characters but all you
need is one character to be the wrong thing.

Q. Can I use printf just like I do in C?

A. Well, you can, but you should really get used to working with print instead. The
print function is more efficient, and helps cover up things like rounding-off errors
in floating-point numbers. It’s really a much better idea to use print for the vast
majority of cases and only fall back on printf for specific reasons (like rounding).

If you do use printf, you can use all the formatting codes you can in the C version
of printf except for *.

Q. Why is it important that some functions are functions and some functions are
actually operators? Don’t they all behave the same?

A. Nope. Functions and operators behave slightly different. Functions, for example,
have a higher precedence. And arguments to an operator might be grouped based
on precedence (giving you odd results) as well. In most cases, however, the differ-
ence between a function and an operator should not cause you to lie awake at night.

80 Day 3

05 0355 ch03 5/9/02 2:33 PM Page 80

More Scalar Data and Operators 81

3

Workshop
The workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience in using what you’ve learned. Try
and understand the quiz and exercise answers before you go on to tomorrow’s lesson.

Quiz
1. What’s the difference between the postfix increment operator ($x++) and the prefix

increment operator (++$x)?

2. What does operator precedence determine? How about associativity?

3. What is the difference between the following patterns?

/d/

/\d/

/\D/

/d\d/

4. You have the pattern /\d\d\D/. Which of the following strings does this pattern
match to?

‘456’

‘d55’

‘55+’

‘4aa’

‘4b’

5. What is a file handle? Why do you need one?

6. Define standard input and output. What are they used for?

7. What does the chomp function do?

8. What are the differences between print, printf, and sprintf? When would you
use each one?

9. What do the following operators do?

.
**
ne
||
*=

Exercises
1. Write a program that accepts any number of lines of any kind of input, ending with

a Return or Enter (similarly to how the stats.pl program works). Return the number
of lines that were entered.

05 0355 ch03 5/9/02 2:33 PM Page 81

2. BUG BUSTER: What’s wrong with this bit of code?
while () {
print ‘Enter a name: ‘;
chomp ($input = <INPUT>);
if ($input ne ‘’) {
$names++;

}
else { last; }
}

3. Write a program that accepts input as multiple words on different lines, and combines
those words into a single string.

4. Write a program that takes a string and then centers it on the screen (assume an
80-character line, and that the string is less than 80 characters). Hint: the length
function will give you the length in characters of a string.

5. Modify the Fahrenheit to Celsius converter program from yesterday to make sure
that the input is a valid digit. If the user enters something invalid, loop until the
input is valid. Watch out for negative numbers!

Answers
Here are the answers to the Workshop questions in the previous section.

Quiz Answers
1. The difference in prefix and postfix operators is when the variable reference is used

and when its value is evaluated. Prefix operators increment the value before using it;
postfix increments the variable afterward.

2. Operator precedence determines which parts of an expression are evaluated first
given expressions that contain other expressions. Associativity determines the order
in which operators that have the same precedence are evaluated.

3. The patterns are as follows:

• /d/ matches the single character d.

• /\d/ matches a single digit.

• \/D/ matches a single nondigit character.

• /d\d/ matches a d followed by a single digit.

4. The pattern /\d\d\D/ matches two digits and one nondigit, in that order. None of
the given strings match the pattern except for ‘55+’.

5. A file handle is used to read data from or write data to a source or a destination,
be it a file, the keyboard, the screen, or some other device. File handles provide a
common way for Perl to handle input and output with all those things.

82 Day 3

05 0355 ch03 5/9/02 2:33 PM Page 82

More Scalar Data and Operators 83

3

6. Standard input and output are generic input sources and output destinations (that is,
not specifically from or to files). They are most commonly used to get input from
the keyboard or to print it to the screen.

7. The chomp function removes the newline from the end of a string. If there is no
newline on the end of the string, chomp does nothing.

8. The print function is the general way of printing output to the screen or to some
other output destination. The printf function prints formatted strings to some output
destination; sprintf formats a string, but then simply returns that formatted string
value instead of printing it.

9. The answers are

. concatenates strings

** creates exponential numbers

ne “not equals” for strings

|| logical OR (C-style)

*= Multiply and assign; same as $x = $x * $y

Exercise Answers
1. Here’s one answer:

#!/usr/local/bin/perl -w

$input = ‘’; # temporary input
$lines = 0; # count of lines

while () {
print ‘Enter some text: ‘;
chomp ($input = <STDIN>);
if ($input ne ‘’) {
$lines++;
}
else { last; }
}

print “Total number of lines entered: $lines\n”;

2. The file handle for standard input is STDIN, not INPUT.

3. Here’s one answer:
#!/usr/local/bin/perl -w

$input = ‘’; # temporary input
$sent = ‘’; # final sentence;

05 0355 ch03 5/9/02 2:33 PM Page 83

while () {
print ‘Enter a word: ‘;
chomp ($input = <STDIN>);
if ($input ne ‘’) {
$sent .= $input . ‘ ‘;
}
else { last; }
}

print “Final sentence: $sent\n”;

4. Here’s one answer:
#!/usr/local/bin/perl -w

$input = “”; # temporary input
$space = 0; # space around
$length = 0 ; # length of string

print ‘Enter some text: ‘;
chomp ($input = <STDIN>);
$length = length $input;
$space = int((80 - $length) / 2);
print ‘ ‘ x $space;
print $input;
print ‘ ‘ x $space . “\n”;
print ‘*’ x 80;

5. Here’s one answer:

#!/usr/local/bin/perl -w

$fahr = 0;
$cel = 0;

while () {
print ‘Enter a temperature in Fahrenheight: ‘;
chomp ($fahr = <STDIN>);

if ($fahr =~ /\D/ and $fahr !~ /-/) {
print “Digits only, please.\n”;
next;

}

last;
}

$cel = ($fahr - 32) * 5 / 9;
print “$fahr degrees Fahrenheit is equivalent to “;
printf(“%.0f degrees Celsius\n”, $cel);

84 Day 3

05 0355 ch03 5/9/02 2:33 PM Page 84

DAY 4

WEEK 1

Working with Lists
and Arrays

Days 2 and 3 dealt primarily with individual things. Today, we’ll talk about
groups of things, namely, lists and arrays, and the various operations you can
do to manage (and mangle) them, including

• What arrays and lists are, and the variables for storing them

• Defining and using arrays

• List and scalar context, and why context is crucial to understanding Perl

• More about <STDIN> and reading input into lists

• Printing lists

List Data and Variables
If scalar data is defined as being made up of individual things, then you can
think of list data as a collective thing—or, more rightly, as a collection of scalar
things. Just as the term scalar data can include both numbers and strings, the
term list data usually refers to one of two specific things: arrays and hashes.

06 0355 ch04 5/9/02 2:33 PM Page 85

We’ll talk about arrays today and go deeper into hashes tomorrow on Day 5, “Working
with Hashes.”

An array is a collection of any number of scalar things. Each individual thing, or ele-
ment, can be accessed by referring to the number of its position in the array (its index).
Array indexes in Perl start from 0. Figure 4.1 shows an illustration of a simple array with
some numbers and strings in it.

86 Day 4

FIGURE 4.1.
Anatomy of an Array.

Indexes 0 1 2 3 4 5 6

Elements 103 "nut" 3.141 212 "abc" "foo" 0

Arrays are ordered, which means they have a first element, last element, and all the ele-
ments in between in a specific order. You can change the order of elements in an array
by sorting it, or iterate over the elements one at a time, from start to finish.

Arrays are stored in array variables, just like scalars are stored in scalar variables. An
array variable starts with the at sign (@). Beyond the first character, array variables have
the same rules as far as names go:

• Names can be up to 255 characters long, and can contain numbers, letters, and
underscores.

• Names are case sensitive; upper and lowercase characters are different.

• Array variables, unlike scalar variables, can start with a number, but can then only
contain other numbers.

In addition, scalar and array variable names do not conflict with each other. The scalar
variable $x is a different variable from the array variable @x.

In addition to list data being stored and accessed in an array, list data also has a raw
form called, appropriately, a list. A list is simply an ordered set of elements. You can
assign a list to a variable, iterate over it to print each of its elements, nest it inside anoth-
er list, or use it as an argument to a function. Usually, you’ll use lists to create arrays and
hashes, or to pass data between a list and other lists. In many cases, you can think of
lists and arrays being essentially interchangeable.

Defining and Using Lists and Arrays
The care and feeding of the wily Perl array includes defining it, assigning it to an array
variable, sticking elements in and taking them out, and finding out its length (the number
of elements). There are also a whole lot of things you can do to manipulate arrays and
their data, but let’s start with the basics.

06 0355 ch04 5/9/02 2:33 PM Page 86

Working with Lists and Arrays 87

4

Unlike other languages, in which arrays have to be carefully set up before you can use
them, arrays in Perl magically appear as you need them and happily grow and shrink to
the number of elements you have in them at any given time. They can also contain any
kind of scalar data: numbers, strings, or a mix of both, and as many elements as you
want, limited only by the amount of memory you have available.

Arrays can contain references, too, but you haven’t learned about those yet.
Be patient; all will become clear on Day 15, “Working with Files and I/O.”

Note

Creating Lists
As I mentioned earlier, a list refers to a general collective set of data; an array can be
considered a list that has been stored in an array variable. In reality, you can use lists
anywhere arrays are expected, and vice versa.

To create a list, type the initial elements separated with commas and surrounded by with
parentheses. This list syntax provides raw list data that can be used to create an array or
a hash, depending on the kind of variable the list is assigned to. Let’s look at a few array
examples now and we’ll cover hashes tomorrow on Day 5.

Here’s an example of list syntax used to create an array called @nums, which has four ele-
ments:

@nums = (1, 2, 3, 4);

Lists of strings work just as easily:

@strings = (‘parsley’, ‘sage’, ‘rosemary’, ‘thyme’);

List syntax can contain any mixture of strings, numbers, scalar variables, and expressions
that result in scalars, and so on:

@stuff = (‘garbonzo’, 3.145, $count, ‘defenestration’, 4 / 7, $a++);

An empty list is simply a set of empty parentheses:

@nothing = ();

You can nest lists within other lists, but those sublists are not retained in the final array;
all the elements are squished together in one single array with empty sublists removed:

@combine = (1, 4, (6, 7, 8), (), (5, 8, 3));

The final array in @combine will be (1, 4, 6, 7, 8, 5, 8, 3).

06 0355 ch04 5/9/02 2:33 PM Page 87

Similarly, nesting array variables will do the same thing; all the elements in the subarrays
will be concatenated into one larger list:

@nums = (1, 2, 3, 4);
@strings = (‘parsley’, ‘sage’, ‘rosemary’, ‘thyme’);
@combine2 = (@nums, @strings);
results in (1, 2, 3, 4, ‘parsley’, ‘sage’, ‘rosemary’, ‘thyme’)

@nums = (@nums, 5); # results in (1, 2, 3, 4, 5);

Say you’re defining an array of one-word strings, for example, for the days of the week,
or a list of names. A very common Perl trick for creating arrays of one-word strings is to
use the quoting function qw (“quote word.”) The qw operator lets you avoid typing all
those quote marks and commas, and might actually make the array easier to read:

@htmlcolors = qw(
black white red green
blue orange purple yellow
aqua grey silver fuchsia
lime maroon navy olive

);

You don’t need to surround all the words with parentheses; in fact, you can use any char-
acter you want:

@directions = qw/north south east west/;
@days = qw?mon tue wed thu fri sat sun?;

I prefer the parentheses because it reminds me that this is a list.

88 Day 4

The qw operator is in the same class of operators as the q// and qq// opera-
tors that I discussed in the going deeper section on Day 2, “Working with
Strings and Numbers,” as well as the m// operator for quoting patterns. All
these operators allow you to use any character to surround the text within
them.

Note

Creating Lists Using the Range Operator
Want to create a list containing numbers between 1 and 1000? It’d be pretty inefficient to
do it by typing all those numbers in. It’d be much easier to use a loop of some sort to
stick the numbers in one at a time, but that’s still kind of kludgy. (A kludge, by the way,
is old geek-talk for a less than optimal solution to a problem. Duct tape is a popular
kludgy solution for many real-world problems. Some misguided individuals might argue
that Perl itself is a kludge).

06 0355 ch04 5/9/02 2:33 PM Page 88

Working with Lists and Arrays 89

4

Anyhow, given any situation where you think, “There must be an easy way to do this,”
chances are really good that there is an easy way to do it in Perl. In this case, what you
need is the range operator (..). To create an array with elements from 1 to 1000, do this:

@lotsonums = (1 .. 1000);

That’s it, you’re done. The @lotsonums array now contains 1000 elements, from 1 to
1000. The range operator works by counting from the left side operand up to the right
side operand by 1 (you cannot use it to count down).

The range operator also magically works for characters:

@alphabet = (‘a’ .. ‘z’); # contains 26 elements for characters

We’ll come back to the range operator on Day 6, “Conditionals and Loops,” when we go
over iteration.

Assignment and Lists
Until now we’ve been using list syntax on the right side of assignment expression, to cre-
ate a list and assign it to an array. You can also use a list of variable references on the left
side of an assignment as well, and Perl will assign values to those variables based on the
list on the right.

For example, take this expression:

($a, $b) = (1, 2);

There’s a list on both sides of that expression, but the list on the left is still a valid place
to put variables. What Perl does with this expression is assign the values in the list on the
right to the variables in the list on the left, in the same order in which they appear. So $a
will get 1, and $b will get 2. This is, of course, equivalent to putting those values on sep-
arate lines, but it is a convenient way of setting values to variables. Note that the assign-
ments actually happen in parallel, so you can do something like this:

($x, $y) = ($y, $x);

This example swaps the values of $x and $y. Neither happens before the other, so it all
works out safely.

The rule when you have list syntax on both sides of an assignment operator is that each
variable on the left gets a value on the right. If there are more variables than values, then
the extra variables will be assigned the undefined value. If there are more values than
variables, the extra values will be ignored.

06 0355 ch04 5/9/02 2:33 PM Page 89

You can put array variables on the right, and that array will be expanded into its elements
and then assigned as per list syntax:

($a, $b) = @nums;

You can even nest arrays within lists on both sides, and they will get expanded into their
respective elements and assigned using the previous rules—with one exception:

($a, @more) = (10, 11, 12, 13, 14);

In this example, $a gets 10, and @more gets the list (11, 12, 13, 14). Array variables
on the left side of a list assignment are greedy—that is, they store all remaining members
of the list on the right side of the assignment. This is important when considering an
example like the following:

($a, @more, $b) = (10, 11, 12, 13, 14);

In this case, $a gets 10, @more gets the list (11, 12, 13, 14), and $b gets the undefined
value. Because arrays eat up all the remaining values on the right, there won’t be any val-
ues left for $b to be defined to.

Accessing Array Elements
So you have an array, perhaps with some initial elements via list syntax, or perhaps it’s
just an empty array you’re looking to fill with values later on (based on the standard
input, for example).

To access any array element, use the [] subscript syntax with the index position of the
element you want to access inside the brackets:

$nums[4];

This example will give you the value of the fifth element in the @nums array. The follow-
ing example will change that value to 10:

$nums[4] = 10;

Stop and look at that syntax for a bit. Does it look weird to you? It should. Here, we’re
referring to the fifth element of an array called @nums, but we’re using what appears to be
a scalar variable. That’s not a typo—that’s how the syntax works. You use @arrayname to
refer to the entire array, and $arrayname[index] to access or assign a value to an ele-
ment inside that array.

That doesn’t mean you can’t use $arrayname to refer to a regular scalar value;
$arrayname, $arrayname[], and @arrayname are all different things. The best way to
remember this is to remember that the elements of arrays are always scalar values, so

90 Day 4

06 0355 ch04 5/9/02 2:33 PM Page 90

Working with Lists and Arrays 91

4

you need a scalar variable to access them, even if they’re inside an array (and Perl warn-
ings will catch you if you forget).

Array indexes start from 0 and each index can only be a whole number (an integer, in
other words). So $arrayname[0] refers to the first element in an array, $arrayname[1]
refers to the second element, and so on. You don’t need to use an actual number as the
array index, you can use a variable reference or any other kind of expression:

$array[$count]; # the element at position $count;

What happens if you try to access an element that doesn’t exist—for example, to access
position 5 of a 3-element array? If you have warnings turned on in Perl, you’ll get an
error. Otherwise, you’ll get an undefined value (0 or “”, depending on the context).

Growing Arrays
An array in Perl is exactly as big as it needs to be, and no larger. If you need to add more
elements to an array, you can just add them, and Perl will expand the array to fit. You can
keep adding elements as long as you need to; you’re only limited by the amount of mem-
ory on your computer. Perl doesn’t care how many elements you need.

There are a number of ways to actually add new elements to an array. You could create a
list with an array variable and the new elements, and then assign that list to the original
array variable again:

@array = (@array, “more”, “elements”, “here”);

You could just add an element to the last position in the list:

@array = (0, 1, 2) # has elements in positions 0, 1, and 2
$array[3] = “foo”; # array is now (0, 1, 2, “foo”)

If you add an element beyond the last element of an array, Perl will grow the array to fit,
add the new element, and set the intervening elements to be undefined. So, for example:

@t = (1, 2, 3);
$t[5] = 6;

The array @t, after these two lines, will contain the elements (1, 2, 3, undefined,
undefined, 6). If you try to access those undefined values in the middle, Perl will give
you a warning (assuming you have warnings turned on). See the section, “Dealing with
the Undefined Value,” for how to avoid accidentally running into these values.

One of the easiest ways to add an element to an array—and the most commonly used—is
to use the push function. The push function takes a list and a scalar element as arguments
and sticks the element onto the end of that list.

06 0355 ch04 5/9/02 2:33 PM Page 91

@nums = (1,2,3,4);
push @nums, 5; # @nums is now (1,2,3,4,5);

Note that if you give push an array argument, it modifies its array in place; you don’t
have to reassign it back to the original variable.

Finding the Length of an Array
To get the number of elements in an array, use this statement:

$numelements = @arrayname;

Don’t think about that right now, just learn it: to get the number of elements in an array,
use a scalar variable and assign an array variable to it. I’ll explain why this works a bit
later on, in the section, “List and Scalar Context.”

Sorting Lists and Arrays
In other languages, if you want to sort the contents of an array, you might have to write
your own sort routine. That’s not so in Perl because it has one built in. To sort an array,
all you have to do is use the sort function:

@orderednums = sort @nums;

This assignment will sort the array @nums, and then assign the new list to the
@orderednums variable. The @nums array still remains unsorted.

That particular simple use of sort sorts the contents of @nums in ASCII order—that is, in
string order, so 5543 will appear lower in the array than 94 (because 5 comes before 9).
To sort the array in numeric order, use a special comparison in the middle:

@orderednums = sort { $a <=> $b } @nums;

The part of the sort routine determines how the array will be sorted using the comparison
operator <=>. We’ll go over customizing sort routines on Day 8, “Manipulating Lists and
Strings,” but for now you can learn that by rote: to sort an array by number, use sort with
a comparison in the middle. To sort an array by ASCII strings, use the short form without
the comparison.

Processing Each Element of an Array
Say you wanted to work through an array one element at a time, and do something with
each element for example, print it, double it, move it somewhere else—what you’re
doing doesn’t matter, the goal here is to process each element at a time and do something
with that element. This is often called iterating over a list or an array. There are a num-
ber of ways you can do this in Perl (of course). For example, because you already know

92 Day 4

06 0355 ch04 5/9/02 2:33 PM Page 92

Working with Lists and Arrays 93

4

how to do a while loop and you know how to get the number of elements in an array,
you could use a temporary counter starting from 0, test it against the number of ele-
ments, and increment it every time.

$numelements = @array; # get number of elements
$while ($counter < $numelements) {

process element $counter
increment #counter
repeat

}

On Day 6, you’ll learn about all kinds of other loops that do the same thing, but right
now there’s one simple loop that provides the quickest and easiest way to do this—use a
foreach loop, like this:

foreach $x (@list) {
do something to each element

}

The foreach loop executes once for each element in the list inside parentheses (here it’s
the @list array, but it could be a raw list, a range, or anything else that gives you a list as
a result—for example, the sort function). For each element in the list, the value of that
element is assigned to a scalar variable (here, $x), and the code inside the opening and
closing brackets is executed. You could, for example, use a foreach loop to print each
element of a list, to test them for some value (greater than 100? Contains nondigit char-
acters?), or to remove undefined values.

More about foreach tomorrow when we talk about hashes, and on Day 6.

Finding the End of an Array
Related to finding the length of an array in Perl is finding the end of the array. The end
of the array in Perl is indicated by the index number of its last element. Keep in mind at
all times that array indexes in Perl start from 0, so the length of the array is not the same
as its top-most index number. The end of the array is always one less than the length of
the array.

You could keep track of the end of the array by keeping a counter, or by taking the
length of the array and subtracting one, but Perl has syntax that gives you the index num-
ber of the last element in the array: $#arrayname.

With this index number it’s easy to write loops that iterate from index 0 to the last ele-
ment in the array:

$i = 0;
while ($i <= $#array) {

print $array[$i++], “\n”;
}

06 0355 ch04 5/9/02 2:34 PM Page 93

If you change the value of $#arrayname, you grow or truncate the length of the array.
Setting $#arrayname to a value larger than its current value sets all the intervening ele-
ments to the undefined value. Setting it smaller will discard all the elements at the end of
the array (it’s generally not a good idea to change $#arrayname for just this reason).

I will remind you again here that the $#arrayname syntax is not the correct way to find
out the length of (or number of elements in) the array. Because array indexes start from
0, the $#array syntax will give you one less than the total number of elements in the
array.

Dealing with the Undefined Value
I touched on the undefined value on Day 2, when I mentioned that scalar variables with-
out explicit values end up with the undefined value. If you do not initialize your variables
before you use them, they will have the undefined value.

The undefined value is no value; it is a hole, the absence of value. Perl will treat the
undefined value as a 0 or an empty string, and the undefined value is false in a test just
as those other values are. But if you have warnings turned on—which is always a good
idea—then the undefined values will provoke ugly warnings from Perl.

To avoid undefined values in your scalar variables, always initialize them before you use
them, as we have been doing in all our examples. There are often a few smaller cases
where you don’t really need to initialize your variables up front—counter and loop vari-
ables, for example, where the variable is used in that one loop and then discarded.

But this is the chapter on lists and arrays, and it is probably lists and arrays where the
undefined value is going to be most problematic. While looping and growing and putting
together arrays, it is not unusual for some of the places within an array to end up with
the undefined value. I showed you a simple example of how this might happen in the
section on growing arrays:

@t = (1, 2, 3);
$t[5] = 6;

The array @t now contains the elements (1, 2, 3, undefined, undefined, 6). If you
then try to print the array @t with warnings turned on, Perl will complain about those
undefined values.

To avoid the warnings, and make sure you’re only dealing with actual defined values in
your arrays, you can test for the existence of an undefined value using the defined func-
tion:

if (!defined $array[$index]) {
print “Element $index is undefined.\n”;

}

94 Day 4

06 0355 ch04 5/9/02 2:34 PM Page 94

Working with Lists and Arrays 95

4

if (defined $array[$index]) {
push @newarray, $array[$index];

}

The undef function can actually be used anywhere, inside or outside of array elements,
to undefine any variable location. It can also be used without any arguments, in which
case, it simply returns the undefined value, for example:

@holeinthemiddle = (1, undef, undef, undef, 5);

You an also use it to remove the value from a variable, like this:

undef $var;

Because of the former use of the undef function, as an easy way of using an undefined
value, the undefined value is commonly referred to simply as undef (and I’ll be referring
to it that way throughout the rest of this book).

Deleting Elements from an Array
Perl does not have a command to take any specific array element, remove it from an
array, and shorten the array by one, but there are a number of ways to accomplish rough-
ly the same thing.

The pop function (the opposite of push) will remove the last element in an array, modify-
ing the existing array in place:

pop @array;

Setting the $#arrayname variable to something less than its current value will also delete
elements from the end of the list. In both these cases, the elements you want to delete
must be at the end of the array, so you’ll have to arrange it appropriately.

One of the easiest ways to delete an element is simply to call the undef function for that
element and leave it in the array:

undef($array[$index]);

The array element that you undefined with undef will still be there in the array; it’ll just
hold the undefined value. Each time you process the array to print it or do something
with its elements you’ll have to test for undefined values (but you should probably do
that anyhow):

if (defined $array[$index]) {
do something with the value

}

06 0355 ch04 5/9/02 2:34 PM Page 95

If you explicitly want to remove the undef values you’ll have to reconstruct the array.
Perl does have an explicit delete function:

delete($array[$index]);

As with undef this will set the position of the deleted element to the undefined value, but
it will not move any of the other existing elements. However, delete works the same as
pop and if you delete the last element in the array it will indeed remove that element
altogether.

Testing for the Existence of an Element
You can find out if any particular array element exists using the exists function:

if (exists $array[$count]) {
…

}

Note that exists is different from defined. If an element is in the array but undef, for
example, defined will return false but exists will return true. An element must truly not
exist at all for exists to return false.

An Example: More Stats
Remember the script we did yesterday for simple statistics, where you entered numbers
in one at a time, and the script calculated the count, sum, and average? Let’s modify that
script today to store the numbers that get entered into an array. Having the numbers
around after the initial input means we can do more things with them, such as sorting
them or finding the median (a different number from the mean).

Here’s how the new version of the statistics script looks when it’s run:

% morestats.pl
Enter a number: 4
Enter a number: 5
Enter a number: 3
(many more numbers in here that I’ve deleted for space)
Enter a number: 47
Enter a number: 548
Enter a number: 54
Enter a number: 5485
Enter a number:

Total count of numbers: 49
Total sum of numbers: 10430
Maximum number: 5485
Minimum number: 2
Average (mean): 212.86
Median: 45

96 Day 4

06 0355 ch04 5/9/02 2:34 PM Page 96

Working with Lists and Arrays 97

4

There are two differences in obvious behavior between yesterday’s version of the statis-
tics script and this one:

• It calculates the maximum and minimum numbers that were entered.

• It finds the median number (the middle number in a sorted list of all the numbers).

In the code, however, there’s one other significant difference between this version and
the last: here we’re using an array to store the input data, rather than just discarding it
(when you run the script, you still end the input with a blank line). Listing 4.1 shows the
code for the new listing.

LISTING 4.1 The morestats.pl Script

1: #!/usr/local/bin/perl -w
2:
3: $input = ‘’; # temporary input
4: @nums = (); # array of numbers;
5: $count = 0; # count of numbers
6: $sum = 0; # sum of numbers
7: $avg = 0; # average
8: $med = 0; # median
9:
10: while () {
11: print ‘Enter a number: ‘;
12: chomp ($input = <STDIN>);
13: if ($input eq ‘’) { last; }
14:
15: if ($input =~ /\D/) {
16: print “Digits only, please.\n”;
17: next;
18: }
19:
20: push @nums, $input;
21: $count++;
22: $sum += $input;
23: }
24:
25: @nums = sort { $a <=> $b } @nums;
26: $avg = $sum / $count;
27: $med = $nums[$count / 2];
28:
29: print “\nTotal count of numbers: $count\n”;
30: print “Total sum of numbers: $sum\n”;
31: print “Minimum number: $nums[0]\n”;
32: print “Maximum number: $nums[$#nums]\n”;
33: printf(“Average (mean): %.2f\n”, $avg);
34: print “Median: $med\n”;

06 0355 ch04 5/9/02 2:34 PM Page 97

The morestats.pl version of the statistics script has four main sections: initialization,
data entry, sorting the data and calculating the statistics, and, finally, printing the results.

The initialization section, lines 3 through 8, is the same as it was in the previous script,
except that we’ve added two variables: an array variable (@nums) in line 4, to store the
numeric inputs, and a $med variable in line 8 for the median. As with the other variables,
we don’t have to initialize the @nums variable, but it looks nice and groups all our vari-
ables up at the top of the script.

Lines 10 through 23 are the new while loop for entering in the input. If you compare this
version to the version in yesterday’s lesson, you’ll see that there’s actually not much
that’s new here. We’re still accepting numbers one line at a time, still checking for digits
only, and still incrementing the $count and updating the $sum for each number. The dif-
ference is in line 20, where for each turn of the loop we append the input to the @nums
array using the push function.

With all the input in place, we move onto line 25, where we sort the @nums array using
the special numeric sort routine I described earlier. Note that I don’t have to define the $a
or $b variables—these variables are local to sort and are discarded as soon as the sort is
complete. Line 26 calculates the average (the mean), as it did in our previous version of
the script, and line 27 calculates the median value.

Some points about the median—given a sorted set of data, the median is roughly defined
as the value in the middle (it determines the true middle value, whereas the average can
be skewed if there are especially high or low values). In statistics, if the number of val-
ues in the set is odd, the median is simply the value in the middle. If the number of val-
ues is even, then the middle value is actually the mean of the two values surrounding the
actual middle. Here, I’ve simplified things; our median will be the middle value if the
data set has an odd number of values, and the largest value of the lower half if the data
set is even. That’ll be close enough for our purposes.

To find the value in the middle, we need to find the array index number for the middle.
The $count variable gives us the highest index number, so all we need to do is divide
that by two and use that to index the array. Note that if there is an odd number of ele-
ments, the result of this division will be a floating-point number. This is okay; array
indexes must be integers, and Perl will truncate the number before using it.

This brings us to the final summary in lines 29 to 34. Count, sum and average as the
same as before, but now we’ve also added maximum, minimum, and median. Maximum
and minimum are easy; because our array is sorted, we don’t even need to calculate any-
thing; we can just pull the first and last elements off of the array. And because we calcu-
lated the median earlier, all we need to do is print it as we have the other values.

98 Day 4

06 0355 ch04 5/9/02 2:34 PM Page 98

Working with Lists and Arrays 99

4

List and Scalar Context
Before we leave arrays behind, I’d like to pause significantly to discuss the subject of
context. Context, in Perl, is the notion that different bits of data act differently depending
on what you’re trying to do with them. Context can be particularly baffling to under-
stand, and if you’re confused about context you can end up with results that seem to
make absolutely no sense (or bits of other people’s scripts that produce results seemingly
out of nowhere). On the other hand, when you understand context in Perl, and how dif-
ferent operations use context, you can do very complex things very quickly, which would
take several lines of code in other languages.

If you’re an experienced programmer and you’ve been scanning the book
for the important stuff up to this point, stop it right now. Take the time to
read this section carefully and make sure you understand it. Context can trip
up both novice and experienced Perl programmers alike.

Note

What Is Context?
So just what does context mean? Let’s use an analogy from English: take the word con-
tract. Define it, in 25 words or fewer.

What’s the definition of the word contract? The correct answer is; actually, “It depends
on how you use it.” In the sentence, “I just signed the contract,” it’s a noun, and the defi-
nition of contract as a noun is “a legal agreement between two parties.” In another sen-
tence, “Extreme cold causes the rivets to contract,” it’s used as a verb, and the definition
is “to become smaller in size or length.” Same word, same spelling, but a different mean-
ing (and, actually a different pronunciation) depending on whether it’s used in a noun
context or a verb context.

“Okay,” you say, “but what does this have to do with Perl?” I’m getting to that. Take the
simple Perl expression 5 + 4. What does that expression evaluate to?

“Uh, 9,” you reply, wondering if there’s a catch. You bet there’s a catch. What if you
stick that expression into a test, like this:

if (5 + 4) { ...)

Now what does 5 + 4 evaluate to? Well, it still evaluates to 9. But then, because it’s
being used as a test, it also evaluates to true (remember, only 0 and “” are false). In the
context of a test—Perl folk call it a boolean context—the expression 5 + 4 evaluates to a
boolean value, not a number. The if construct expects a true or false value for the test,
so Perl happily gives it one.

06 0355 ch04 5/9/02 2:34 PM Page 99

When numbers and strings are automatically converted from one to the other, they’re
converted based on context. In arithmetic, Perl expects numeric operands (a numeric con-
text), so it converts any strings to numbers. The string operators, in turn, have a string
context, so Perl converts numeric values to strings to satisfy the context.

Numeric, string, and boolean contexts are all forms of the more general scalar context.
For the most part, you won’t have to worry a lot about differentiating between the three
because Perl can figure it out and convert it for you.

Where the complications arise is with differentiating between scalars and lists. Every
operation in Perl is evaluated in either a scalar or list context. Some operations in Perl
expect a scalar context, others expect lists, and you’ll get errors in Perl if you try to stick
the wrong kind of data where the other is expected. A third—and very common—class
of operations can be evaluated in either a scalar or list context and might behave differ-
ently in one context than they do in the other. And, to make matters even more complex;
there are no standard rules for how lists behave in a scalar context or vice versa. Each
operation has its own rules, and you have to keep track of them or look them up. For
every operation in Perl, then, if you’re mixing lists and scalars, you should be asking
yourself three questions:

• What context am I in (scalar or list)?

• What type of data am I using in that context?

• What is supposed to happen when I use that data in that context?

For the rest of this section, then, I’ll discuss a few instances of when context is impor-
tant. But this is definitely an area that will take further diligence on your part as you
develop your skills in Perl. Keep those three questions and the Perl documentation close
at hand, and you’ll be fine.

Finding the Number of Elements in an Array, Revisited
You’ve already seen one example of how context is important. Remember how to find
out the length of an array, using this line?

$numelements = @arrayname;

I told you then to just learn the rule and not worry about it. This is a classic example of
where context can be confusing in Perl. The $numelements variable is a scalar variable,
so the assignment to that variable is evaluated in a scalar context—a scalar value is
expected on the right-hand side of the = (that’s the answer to your first question: What
context am I in? You’re in a scalar context).

100 Day 4

06 0355 ch04 5/9/02 2:34 PM Page 100

Working with Lists and Arrays 101

4

In this example, you’ve put a list on the right side, in a scalar context (the answer to the
second question: What kind of data am I using?). So the only remaining question is,
“What’s supposed to happen to a list in this context?” In this case, what happens is that
the number of elements in the array @arrayname ends up getting assigned to the
$numelements variable. An array variable, evaluated in a scalar assignment context,
results in the number of elements in the list.

Don’t think of it as converting the list to a scalar; it doesn’t work that way. There’s no
conversion going on. The list simply behaves differently in this context than it does else-
where.

You can use this number-of-elements feature by supplying an array variable anywhere a
scalar value is expected—for example, in any of these expressions:

$med = $arrayname[@arrayname / 2]; # median value, remember?
$tot = @arrayname + @anotherarray + @athird;
if (@arrayname > 10) { ... }
while (@arrayname) { ... }

If this seems confusing or difficult to read, you can always stick to the simple assignment
of a scalar on one side and an array variable on the other. Or, if you’re only getting the
length of the array so that you can iterate over its values, you can use $#array as the
stopping value instead of the number of elements, and avoid the whole thing.

Context and Assignment
Assignment is probably the most common case in which context becomes important—or,
at least, it’s one of the places where context is easiest to explain. With the left and right
side of the assignment operator, you can have contexts that match (scalar = scalar, list =
list), or mismatched contexts (scalar = list, list = scalar). In this section, I’ll go over some
of the simple rules for how context works in assignments.

Let’s start with the easy cases, where the context matches. You’ve already learned all
these. Scalar to scalar is an individual thing to an individual thing, with numbers and
strings converted at will:

$x = ‘foo’; # scalar variable, scalar value

You’ve also learned about list-to-list assignments, with list syntax and array variables on
the left and right sides of the assignment operator, as well as nested inside other lists:

@nums = (10, 20, 30);
($x, $y, $z) = @nums;
($a, @nums2) = @nums;

06 0355 ch04 5/9/02 2:34 PM Page 101

Now let’s look at the cases where the context doesn’t match. Say you try to assign a
scalar in a list context, as in either of these examples:

@array = 3.145;

($a, $b) = $c;

This one’s easy! In these cases, the scalar value on the right is simply converted into a
list and then assigned using list assignment rules. @array becomes a list of a single
value, 3.145, $a gets the value of $c, and $b becomes undefined.

The hardest case is dealing with assigning a list on the right to a scalar on the left.
You’ve learned what happens when you assign an array variable to a scalar variable (you
get the number of elements in the array):

$numelements = @array;

You’ll also get the number of elements in the list if the value on the right is a raw list:

$numelements = sort @array;

When you use actual list syntax, however, the rule is different:

$x = (2, 4, 8, 16);

In this case, the rule is that all the values in the list except the last one are ignored. The
value of $x here will be 16. Note that this is also a different rule from assigning the list
($x) to that same list, as list-to-list assignment starts from the first element, 2, and dis-
cards unused elements.

The most important thing to remember about these contexts is that there is no general
rule for how a list behaves in a scalar context—you just have to know the rules. Keep
those three questions in mind and you should be fine.

Other Contexts
There are a few other contextual situations worth touching on—things that you should be
aware of as you work with lists and scalars.

First, there’s boolean context, where a value is tested to see if it’s true or false (as in the
test for an if or a while). You’ve already learned how a scalar value, in boolean context,
is true if it has any value except “”, 0, or undefined.

Lists in boolean context follow a similar rule—a list with any elements, including unde-
fined elements, is true in a boolean context. An empty list is false.

102 Day 4

06 0355 ch04 5/9/02 2:34 PM Page 102

Working with Lists and Arrays 103

4

The second situation where context might be important is with functions. Some functions
take a list as their argument, and all their arguments are combined and evaluated in that
context. If you use functions with parentheses around their arguments, as you learned
about yesterday, then there’s no problem—you’re giving the function a list of arguments.
If you don’t use parentheses, however, Perl will try and build a list from the arguments
you give it. If those arguments contain lists or parenthesized expressions, however, Perl
might get confused. Take this example with print, which is one of the functions that
expects a list context:

print 4 + 5, 6, ‘foo’;

In this case, the arguments to print are evaluated as if they were the list (9, 6, ‘foo’).
With this case, however, the rule is different:

print (4 + 5), 6, ‘foo’;

Because of that parenthesized expression, Perl will assume that the 4 + 5 expression is
its only argument, and become confused about what the 6 and the ‘foo’ are doing hang-
ing off the end. If you have Perl warnings turned on, it’ll catch these (and complain
about using constants in a void context). In this case, it’s best to solve the problem by
parenthesizing the entire list of arguments so there’s no ambiguity:

print ((4 + 5), 6, ‘foo’);

Most of the time, Perl can figure out whether parentheses mean a function call, an
expression, or a list. And, in most of the remaining cases, Perl warnings will help you
figure out what’s going on where there’s ambiguity. But keep the differences and context
in mind as you write your Perl scripts.

The scalar Function
Sometimes you really want to use a list in a scalar context, but it’s awkward to go out of
your way to create a scalar context for that operation (for example, creating a temporary
scalar variable just to force the list into a scalar context). Fear not, there is a shorthand
way. You can always force a list to be evaluated scalar context, using the scalar func-
tion. For example, take the following two statements:

print @nums;
print scalar(@nums);

The print function evaluates its arguments in a list context (this is why you can specify
multiple arguments to print separated by commas). The first of these statements, then,
expands the @nums array in a list context, and prints the values of that array. The second
forces @nums to be evaluated in a scalar context which, in this case, prints the number of
elements in @nums.

06 0355 ch04 5/9/02 2:34 PM Page 103

Input, Output, and Lists
We’ll finish up today’s lesson as we did yesterday: by talking a little more about input
and output, this time with list and array context in mind. There are two topics to cover
here that will help you work more with input and with files:

• Using <STDIN> in a list context

• Printing lists

Using <STDIN> in list context
Yesterday, you learned about <STDIN>, and how it’s used to read data from the standard
input. Up to now, we’ve been using it like this:

chomp($in = <STDIN>);

A close look at that line shows that you’re using <STDIN> here in a scalar context—
you’re assigning it to the scalar variable $in. Like many other Perl operations, the input
operator <> behaves differently in a list context than it does in a scalar one.

If you use <STDIN> in a scalar context, Perl reads a line of input up until the newline
character. In a list context, however, <STDIN> reads all the input it can get, with each line
stored as a separate element in the list. It only stops when it gets to an end-of-file.

That’s a rather confusing explanation, given that standard input wouldn’t seem to really
have an end-of-file. But it does, actually. Typing a Ctrl+D (Ctrl+Z on Windows) tells Perl
“this is the end of file” for standard input. If you use <STDIN> in a list context, then, Perl
will wait until you’ve entered all your data and hit Ctrl+D or Ctrl+Z, put all that data into
a list, and then continue with the script.

The use of input in a list context is much more useful when you’re reading input from
actual files, and you’ve got an explicit end-of-file. Generally you’ll use <STDIN> to read
individual lines of input from the keyboard in a scalar context. But it’s important to real-
ize the difference between input in a scalar context versus input from a list context; as
with many other parts of Perl, there are differences in behavior between the two, and if
you confuse them the bugs can get tricky.

Printing Lists
In the examples we’ve done in this chapter we’ve printed lists by using loops to examine
and print each element of the list. If you just want to print the elements of a list without
modifying them, however, there’s an easier way: just print them using the print func-
tion. Given that print assumes its arguments are in list context, this makes it easy.

104 Day 4

06 0355 ch04 5/9/02 2:34 PM Page 104

Working with Lists and Arrays 105

4

Well, sort of easy. Here’s a simple list from 1 to 9:

@list = (1..9);

If you print this list with just the print function, you’ll end up with this:

123456789

You won’t even get a newline character at the end. By default, by printing a list, all the
values of the list are concatenated together.

What if you want to print them with spaces in between them? You could use a while or
foreach loop to do that. But there is an easier way. You can use variable interpolation
for the list variable. You might remember yesterday we talked about variable interpola-
tion inside strings, where given a string “this is string $count”, the $count variable
would be replaced with its actual value. Variable interpolation also happens with array
and hash variables—the contents of the array are simply printed in order, separated by a
space. For example, if you include the @list variable inside quotes, with a newline char-
acter:

print “@list\n”;

These lines will result in the list being printed with spaces in between the elements, with
a newline at the end.Variable interpolation with list variables makes it easy to print out
the contents of a list without resorting to loops. Note, however, that this does mean if you
want to use the @ character inside a double-quoted string, you’ll often need to backslash
it to prevent Perl from searching for an array that doesn’t exist (and then complaining
that it doesn’t). Perl warnings will let you know if you’re making this mistake.

Another way to control the printing of lists is to set special global Perl vari-
ables for the output field separator and output record separator. More
about these special variables in today’s “Going Deeper” section.

Note

Going Deeper
We’ve covered a lot in this lesson, but there’s still more about arrays and hashes I
haven’t discussed (really!). This section summarizes some of the features of lists, arrays,
and hashes that I haven’t covered in the body of this lesson. Feel free to explore these
parts of Perl on your own.

06 0355 ch04 5/9/02 2:34 PM Page 105

Negative Array Indexes
In the array access expression $array[index], usually the index will be the position of
the element in the array, starting from 0. You can also use negative array subscripts, like
this:

$array[-1];

Negative array subscripts will count back from the end of the array—so an index of -1
refers to the last index in the array (same as $#array), -2 refers to the second to last
index, and so on. You can also assign to those positions, although it might be a better
idea to use syntax that’s more explicit and easier to read in that instance.

More About Ranges
Earlier in this lesson, we used the range operator .. to create a list of numeric elements.
Ranges also have several features I didn’t mention in that section. For example, you can
use ranges with characters, and the range will generate a list of all the characters in the
ASCII character set between the operands. For example, the range ‘a’ .. ‘z’ results in
a list of 26 characters from a to z.

You can also use this behavior in various magical ways, combining numbers and letters
or multiple letters, and the range will happily oblige with values between the upper and
lower values.

The range operator can also be used in a scalar context, and returns a boolean value. The
perlop man page describes it as “The operator is bistable, like a flip-flop, and emulates
the line-range (comma) operator of sed, awk, and various editors.” I suppose if you have
worked with sed or awk and understand what this means, you can use the range operator
in this way. (I don’t, and I haven’t.) There is also a three-dot range operator (...) which
more closely emulates sed’s behavior. See the perlop man page under Range Operator
for more information and examples.

chomp and chop on Lists
The chomp and chop functions, to remove newlines or characters from the end of strings,
also work with lists as their arguments. On lists, they work through each element in the
list and remove the newline or the last character from each element. This could be useful
for removing all the newline characters from input you read from a file into a list.

See the perlfunc man page for more information on chomp and chop.

106 Day 4

06 0355 ch04 5/9/02 2:34 PM Page 106

Working with Lists and Arrays 107

4

Output Field, Record and List Separators
Part of Perl’s built-in library is a set of global variables that can be used to modify Perl’s
behavior in many situations. You’ll learn about many of these variables as this book pro-
gresses, or you can see the perlvar man page for a list of them all.

Relevant to the discussion today are the output-field, output-record, and list-separator
variables. These three global variables can be set to change the default way that Perl
prints lists. Table 4.1 defines these variables.

TABLE 4.1 Output Global Variables

Variable Name What it does

$, Output field separator; the characters to print in between list elements.
Empty by default.

$\ Output record separator; the characters to print at the end of a list. Empty
by default.

$” Same as the output field separator, except only for list variables interpolated
inside strings. A single space by default.

As you learned in the section “Printing Lists,” when you print a bare list, Perl will con-
catenate all the values in the list together:

print (1,2,3); # prints “123”;

In reality, Perl actually prints the elements of the list with the value of the output field
separator between the elements and the output record separator at the end. Because both
those variables are empty by default, you get the previous behavior. You could set those
variables to get different printing behavior:

$, = ‘*’;
$\ = “\n”;
print (1,2,3); # prints “1*2*3\n”

The list field separator behaves similarly to the output field separator, but only when you
use a list variable inside a string. By default the list field separator contains a string—and
that’s the default printing behavior for list variables interpolated into strings. Change the
list field separator to change the printing behavior for array variables inside strings.

Void Context
In addition to list, scalar, and boolean context, Perl also has a void context, which is
defined as simply a place where Perl doesn’t expect anything. You’ll most likely see this
in warnings and errors when you included something where Perl didn’t expect it—
“unexpected constant in void context,” for example.

06 0355 ch04 5/9/02 2:34 PM Page 107

Summary
Today was list day. As you learned, a list is just a bunch of scalars, separated by commas
and surrounded by parentheses. Assign it to an array variable @array, and you can then
get at the individual elements of that array using array access notation $array[index].
You also learned about finding the last index in the array ($#array), and the number of
elements in the array ($elements = @array). We finished up that section with a couple
of notes on list syntax and assignment, which allows you to assign variables to values in
parallel in lists on either side of an assignment expression.

After arrays, we tackled context, which allows Perl to evaluate different things differently
in either scalar or list context. You learned the three questions for figuring out context:
What context is expected in an expression? What data have you given it? What is that
data supposed to do in that context?

Finally, we finished up with more information about simple input and output using lists.
Tomorrow, we’ll complete your basic list education by talking about hashes. (Actually,
way up on Day 19, “Working with References,” we’ll get into more advanced data struc-
tures, so we’re not completely done with lists yet, but lists, arrays, and hashes will get
you quite a lot for your Perl repertoire).

The built-in functions you learned about today (see the perlfunc man page for more
details about these functions) include

• qw takes a list of strings, separated by spaces, and returns a list of individual string
elements. qw allows you to avoid typing a lot of quote marks and commas when
you have a long list of strings to define.

• push and pop add and delete elements from the end of a list or array, respectively.

• defined takes a variable or list location and returns true if that location has a value
other than the undefined value.

• undef takes a variable or list location and assigns it the undefined value. With no
arguments, undef simply returns the undefined value, which means it can be used
to refer to that value.

• delete undefines an element in an array, or, if that element is the last element in
the array, deleted it altogether.

• exists tests for the existence of an element.

• sort takes a list as an argument and sorts that list in ASCII order, returning the
sorted list. Sort in numeric order with the statement { $a <=> $b } just before the
list.

• scalar evaluates a list in a scalar context.

108 Day 4

06 0355 ch04 5/9/02 2:34 PM Page 108

Working with Lists and Arrays 109

4

Q&A
Q. What’s the difference between the undefined value and undef?

A. Not a whole lot. The undefined value is what gets put in variables, or in array or
hash value locations when there isn’t an actual value—if you use one without ini-
tializing it, or if you add elements to an array past the boundaries of that array. If
you want to explicitly use the undefined value, for example, to undefine a variable
or to include that value in an array, you use the undef function. Because of the
close relationship between the undefined value and undef, it’s very common to see
undef used to mean the undefined value (as in “the last three elements of that array
are undef”). In real code, if you use undef anywhere you want an undefined value,
you won’t go wrong.

Q. I want to create an array of arrays.

A. You can’t do that. Well, not right now. To create arrays of arrays, or arrays of hash-
es, or any kind of nested data structures, you need to use references. You won’t
learn about references for a while yet, so just sit tight for now. We’ll cover refer-
ences in Chapter 19.

Q. Why, when you delete an element from an array using delete, does it just
undef the element? Why doesn’t it delete it and reconstruct the array? Delete
means delete, doesn’t it?

A. Not necessarily. Array elements are indexed by number, and the relationship
between an element and its index might be important. By deleting an element,
you’d end up renumbering all the elements in the farther down in the array, which
might not be what you want to do. The delete function does the safe thing and just
adds an undef placeholder (except if the element to be deleted is the last element,
in which case it’s considered safe to remove it). You can always reconstruct the
array if you really want those elements deleted.

Q. Augh! I don’t understand list and scalar context. If different operations can
do different things, and there are no rules for how lists and scalars behave in
each other’s contexts, doesn’t that mean I have to remember what every oper-
ation does for every context?

A. Uh, well, yes. No. Kind of. If list versus scalar context is totally abhorrent to you,
in any given script, you can usually avoid most of the more esoteric instances of
context. Remember how to use the few that are important (getting the length of an
array, for example), and look up the rest when something doesn’t work right.

If you end up having to read other people’s Perl code, however, chances are good
you’ll end up needing to keep context in mind and watch out for sneaky contexts.

06 0355 ch04 5/9/02 2:34 PM Page 109

Q. I want to find the number of elements in a list, so I did “length @array...”

A. Hold it right there! The length function is a fine function—for strings and num-
bers. To find the number of elements in a list, you should be using the array vari-
able in a scalar context: $numelements = @array.

Q. How do I search an array for a specific element?

A. One way would be to iterate over the array using a foreach or while loop, and test
each element of that array in turn. Perl also has a function called grep (after the
Unix search command) which will do this for you. You’ll learn more about grep on
Day 11, “Creating and Using Subroutines.”

Workshop
The workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience in using what you’ve learned. Try
and understand the quiz and exercise answers before you go on to tomorrow’s lesson.

Quiz
1. Define the differences between lists and arrays.

2. What do each of these variables refer to?
$foo
@foo
$foo[1]

3. What’s the result of this list:

@list = (1, (), (4, 3), $foo, ((), 10, 5 + 4), (), (‘’));

4. What are the results of the following Perl statements? Why does each expression
evaluate to the result it does?
($x, $y, $z) = (‘a’, ‘b’);
($u, @more, $v) = (1 .. 10);
$nums[4] = (1, 2, 3); # @nums previously contained (10,9,8)
undef $nums[4];
$nums[$#nums];
$foo = @nums;
@more = 4;

5. What’s the rule for converting a list into a scalar?

6. How do you sort an array?

7. What’s the difference between using <STDIN> in a scalar context and using it in a
list context? Why is this important?

110 Day 4

06 0355 ch04 5/9/02 2:34 PM Page 110

Working with Lists and Arrays 111

4

Exercises
1. Write a script that reads in numbers, one line at a time (similar to the stats pro-

gram), and stores them in an array. Then write a loop that prints out those same
numbers, one on each line.

2. Write a script that prompts the user for two numbers and then creates an array of
numbers between the lower and higher bound (make sure the user can enter either
the lower or higher number first).

3. You have an array with the following values:

(“foo”, 1, undef, 45, undef, undef, “atlas”, undef, 101, undef)

Write a script that iterates over that array and changes all the undefined values to
the string ‘*zot!*’.

4. BUG BUSTER: What’s wrong with this script? (Hint: there might be more than
one error!)
print ‘Enter list of numbers: ‘;
chomp($in = <STDIN>);
@nums = split(“ “, $in);

@sorted = sort @nums;
print “Numbers: @sorted\n”;

$totalnums = $#nums;
print “Total number of numbers: $totalnums\n”;

Answers
Here are the answers to the Workshop questions in the previous section.

Quiz Answers
1. A list is simply a collection of scalar elements. An array is an ordered list indexed

by position.

2. The answers are

$foo is a scalar variable

@foo is an array variable

$foo[1] is the second element in the array @foo

3. The result of the list is: (1, 4, 3, $foo, 10, 9, ‘’). Actually, $foo will be
expanded into whatever the value of $foo actually is.

06 0355 ch04 5/9/02 2:34 PM Page 111

4. The answers are

a. $x gets ‘a’, $y gets ‘b’, $z gets undefined. Assignment to lists on the left
side happens in parallel, each value on the right assigned to each variable on
the left.

b. $u gets 1, @more gets (2,3,4,5,6,7,8,9,10), and $v gets undefined. Array
variables on the left side of a list assignment eat up all remaining values on
the right.

c. $nums[4] gets 3. Assignment of list syntax to a scalar assigns only the last
value in the list and ignores all the previous values.

If the previous value of @nums was (10,9,8), the new value of @nums is
(10,9,8,undef,3). Assigning a raw list to a scalar ignores all but the last
value in the list.

d. $nums[4] will be set to the undefined value (it was previously 3).

e. $nums[$#nums] refers to the value at the last index in the list.

f. $foo gets the number of elements in the @nums array.

g. The 4 will be “promoted” to a list, and @more will be the list of one
element: (4).

5. Trick question! There is no rule for converting a list into a scalar. You can’t even
convert a list into a scalar. Lists behave differently in a scalar context depending on
how you use them.

6. Sort an array using the sort function:

@sorted = sort @array;

7. Using <STDIN> in a scalar context reads one line of input up until the user hits
Return and stores it in a scalar variable. Using <STDIN> in a list context reads all
the lines of input in the standard input up until end-of-file, and stores each line as a
separate element in the list. The difference is important because it changes the way
your program behaves and how you get input into that program.

Exercises
1. Here’s one answer:

#!/usr/local/bin/perl -w

$input = ‘’; # temporary input
@nums = (); # array of data (doesn’t have to be nums)

while () {
print ‘Enter data: ‘;
chomp ($input = <STDIN>);
if ($input eq ‘’) { last; }

112 Day 4

06 0355 ch04 5/9/02 2:34 PM Page 112

Working with Lists and Arrays 113

4

if ($input =~ /\D/) {
print “Digits only, please.\n”;
next;

}

push @nums, $input;
}

foreach $key (@nums) {
print “$key\n”;

}

2. Here’s one answer:
#!/usr/local/bin/perl -w

$one = 0;
$two = 0;

while () {
print ‘Enter a range boundary: ‘;
chomp ($one = <STDIN>);
print ‘Enter the other range boundary: ‘;
chomp ($two = <STDIN>);

if ($one eq ‘’ or $two eq ‘’) {
print “Either the beginning or ending boundary is missing.\n”;
next;

}

if ($one =~ /\D/ or $two =~ /\D/) {
print “Digits only, please.\n”;
next;

}

last;
}

if ($one < $two) {
@array = ($one .. $two);

} else {
@array = ($two .. $one);

}

print “@array\n”;

3. Here’s one way to do it:

#!/usr/local/bin/perl -w

@array = (“foo”, 1, undef, 45, undef, undef, “atlas”, undef, 101, undef);
@newarray = (); # new array;

06 0355 ch04 5/9/02 2:34 PM Page 113

foreach $key (@array) {
if (!defined $key) {

push @newarray, “*zot!*”;
} else {

push @newarray, $key;
}

}

print “@newarray\n”;

4. There is only one error in the line $totalnums = $#nums. The assumption here is
that $#nums contains the total number of elements, which it doesn’t (it contains the
highest index, which is one less than the total number of elements). Use
$totalnums = @nums instead, or $totalnums = $#nums+1.

Another assumption that could possibly be an error is that this script refers to
numbers repeatedly, prompting for numbers, sorting them in an array called @nums,
and so on, but the sorting routine in the middle of the script is an ASCII sort, not a
numeric sort. This could produce some interesting and not expected results if an
actual numeric sort was what was intended.

114 Day 4

06 0355 ch04 5/9/02 2:34 PM Page 114

DAY 5

WEEK 1

Working with Hashes
Arrays and lists provide a basic way of grouping together scalars, but they’re
pretty basic as far as data structures go. Perl provides a second form of list data
(or a third, if you count raw lists) called hashes. In many situations—depending
on the data you’ve got and what you want to do with it—hashes are better than
arrays for storing and accessing data.

Today, then, we’ll cover hashes. You’ll learn all about

• How hashes are different from arrays

• Defining hashes

• Accessing hash elements

• Hashes and context

• Using split to split a string into a list (or hash).

• Still more patterns

Hashes Versus Arrays and Lists
You learned yesterday that a list is a collection of scalars, and that an array is
an ordered list, indexed by element. A hash is also a way of expressing a col-
lection of data, but the way the data is stored is different.

07 0355 ch05 5/9/02 2:34 PM Page 115

A hash is an unordered collection of pairs of scalars, often called keys and values (See
Figure 5.1). You access an element (a value) in a hash by referring to it by its key.
Neither the keys or the values are in any kind of order; you cannot refer to the first or
last element in a hash, nor can you numerically iterate over the elements in that hash,
like you can an array (although you can get a list of the hash’s keys, of its values, or of
both in pairs, and access all a hash’s elements that way). Hashes are more useful than
arrays in many ways, most typically because it’s easier to keep track of elements in
named slots (keys in hashes) rather than by numbers (indexes in arrays).

116 Day 5

FIGURE 5.1
Hashes.

'Red'

'Green'

'Blue'

'Black'

'255,0,0'

'0,0,255'

'0,255,0'

'0,0,0'

Hash

Keys

Values

Hashes are sometimes called associative arrays, which is actually a better
description of what they do (the keys are associated with their values). In
fact, associative arrays are the original name for hashes, but today’s Perl pro-
grammers prefer to call them by the much shorter and less awkward name
hash.

Note

As with arrays, hashes have their own variables with their own symbol at the beginning.
Hash variables start with a percent (%), and follow all the same rules as array variables
do. As with all variables, the hash variable %x is a different thing than the array variable
@x or the scalar variable $x.

07 0355 ch05 5/9/02 2:34 PM Page 116

Working with Hashes 117

5

Defining and Using Hashes
Arrays and hashes can be created and used in many of the same ways. Hashes, however,
do have some peculiarities and extra features that result from the way data is stored in a
hash. For example, when you put data into a hash, you’ll have to keep track of two
scalars for each element (the key and the value). Because hashes are unordered, you’ll
have to do extra work to extract values from the hash, as well as to sort them and print
them. In addition, hashes perform differently than arrays in a scalar context. Read on to
learn about all these things.

List Syntax and Hashes
List syntax—enclosing the elements of a list inside parentheses, separated by commas—
works to create a hash just as well as it does an array. Just stick a hash variable on the
left side of the assignment, rather than an array variable, like this:

%pairs = (‘red’, 255, ‘green’, 150, ‘blue’, 0);

With an array variable on the left side of the assignment, this statement would create an
array of six elements. With a hash variable (%pairs), the elements are added to hash in
pairs, with the first element a key and the second its value, the third element the second
key, and the fourth element its value, and so on down the line. If there are an odd number
of elements in the list, the last element will be a key in the hash, and its value will be
undef. If you have Perl warnings turned on, you’ll also get a warning about this (“Odd
number of elements in hash assignment”).

With this kind of formatting, it’s sort of difficult to figure out at a glance what parts of
the list are the keys and which are the values, or if you do indeed have an odd number of
elements without counting them. (It only gets worse the larger the lists get.) Many Perl
programmers format list syntax for hashes like this, with the keys and values on their
own lines:

%temps = (
‘Boston’, 32,
‘New York’, 24,
‘Miami’, 78,
‘Portland’, 45,
and so on...

);

Even better is the => operator, which behaves exactly the same way as the comma, but
makes it easier to see the link between the keys and the values. So that first example up
there with the colors would look like this:

%pairs = (‘red’=>255, ‘green’=>150, ‘blue’=>0);

07 0355 ch05 5/9/02 2:34 PM Page 117

And the second, with the cities:

%temps = (
‘Boston’ => 32,
‘New York’ => 24,
‘Miami’ => 78,
‘Portland’ => 45,
and so on...

);

One other shortcut you can use for hashes: Perl expects the key part of each hash ele-
ment to be a string, so you can leave the quotes off the key to save yourself some typing
and Perl will figure out what you mean. If the key contains a space, however, you’ll have
to leave the quotes in place (Perl isn’t that smart):

%pairs = (red=>255, green=>150, blue=>0);

In an array or list, any of your elements can be duplicates of any others because the ele-
ments are ordered.You can also use the index number to look up those values in the
array. With hashes, however, because your keys are used to look up values in the hash, it
is important that you use unique keys, with no duplicates. In fact, Perl won’t allow you
to use duplicate keys, the value of the key farther in the list will overwrite the value clos-
er to the beginning, and there will only be one key/value pair for each unique key:

%temps = (
‘Boston’ => 32,
‘New York’ => 24,
‘Miami’ => 78,
‘Portland’ => 45,
‘Boston’ -> 30, # this value will overwrite 32
and so on...

};

Keys must be unique, but values, on the other hand, are entirely independent of each
other and can contain as many duplicates as you need.

As with lists, () assigned to a hash variable creates an empty hash:

%hash = (); # no keys or values

Converting Between Arrays, Lists, and Hashes
A second way to create a hash is to use an array or a list for its initial elements. Because
both hashes and arrays use lists as their raw form, you can copy them back and forth
between each other with no problems:

@stuff = (‘one’, 1, ‘two’, 2);
%pairsostuff = @stuff;

118 Day 5

07 0355 ch05 5/9/02 2:34 PM Page 118

Working with Hashes 119

5

In this example, assigning the array @stuff to the hash %pairsostuff causes the array
elements to be expanded into a list, and then paired off into two key/value pairs in the
hash. It behaves just the same as if you had typed all the elements in list syntax. Watch
out for those odd-numbered elements, however; you’ll end up with a key whose value is
undef (Perl warnings will let you know if this is happening. You might want to test an
array before assigning it to a hash to make sure that it contains an even number of ele-
ments to avoid printing a warning).

What about converting a hash back into a list? Here’s an example where you’re assigning
a hash to an array:

@stuff = %pairsostuff;When you put a hash on the right side of a list assignment, or in
fact use it in any situation where a raw list is expected, Perl will “unwind” the hash into
its component elements (key, value, key, value, and so on). The expanded list is then
assigned to the array @stuff.

There is a catch to this nifty unwinding behavior: because hashes are not ordered, the
key/value pairs you get out of a hash will not necessarily be in the same order you put
them in, or in any kind of sorted order. Hash elements are stored in an internal format
that makes them very fast to access, and are unwound in that internal order. If you must
create a list from a hash in a certain order, you’ll have to build a loop to extract them in a
specific order (more about this later).

Accessing Hash Elements
To get at or assign a value to a hash, you need to know the name of the key. Unlike
arrays, which just have bare values in a numeric order, hashes have key value pairs.
When you know the key, however, you can then use curly braces ({}) to refer to a hash
value, like this:

print $temps{‘Portland’};
$temps{‘Portland’} = 50;

Note that this syntax is similar to the array access syntax $array[]—you use a scalar
variable $ to get at a scalar value inside a hash, but here you use curly braces {} sur-
rounding the key name, as opposed to brackets. The thing inside the braces should be a
string (here we used a single-quoted string), although Perl will convert numbers to
strings for you. Also, if the key only contains a single word, you can leave off the quotes
and Perl will know what you mean:

$temps{Portland} = 50; # same as $temps{‘Portland’);

07 0355 ch05 5/9/02 2:34 PM Page 119

As with arrays, the variable name in the hash access syntax doesn’t interfere with scalar
variables of the same name. All the following refer to different things, even though the
variable name is the same:

$name # a scalar

@name # an entire array

%name # an entire hash

$name[$index] # a scalar value contained in the array name at $index

$name{key} # a scalar value contained in the hash name at the key ‘key’

Also, as with arrays (sensing the trend, here?), you can assign values to individual hash
elements using that same hash element-access syntax with an assignment statement, and
the old value at that key is replaced with the new value:

%hash{key} = $newvalue;

If you assign a value to a key that does not exist, that key/value pair is automatically cre-
ated for you.

Deleting Hash Elements
Use the delete function to delete elements, both keys and values, from a hash. Unlike
with arrays, where delete did roughly the same thing as undef—simply undefining a
value but leaving it there—with hashes, delete actually does delete every trace of the
element from the hash.

The delete function takes a reference to a hash element (commonly just the hash access
expression such as $hashname{‘key’}) and deletes both that key and value, returning the
value that was deleted. So, for example, to move an element from one hash to another
(deleting it from one hash and adding it to another), you could use syntax something like
this:

$hash2{$key} = delete $hash{$key};

As with arrays, you can also test to see if a particular key/value pair exists in a hash
using the exists function. The exists function tests to see if a given hash value exists in
a hash and returns the value if it does (note that the value attached to that key could very
well be undefined; exists only tests for the actual existence of the key). Use exists like
this:

if (exists $hashname{$key}) { $hashname{$key}++; }

This particular statement tests to see if the value at the key $key exists, and if it does, it
increments the value at that key (assuming, of course, that the value is a number).

120 Day 5

07 0355 ch05 5/9/02 2:34 PM Page 120

Working with Hashes 121

5

Processing All the Values in a Hash
To process all the elements in an array, you use a foreach or a while loop to iterate over
all the values, testing each one for some feature and then doing something to that value if
the test was true. But how do you do that for hashes? Hashes are unordered, so you can’t
just start from key zero and go on until the end. There is no key zero, and no end (well,
there is, internally, but you can’t get at that order).

The most commonly used answer to this problem is to use one of two functions: keys or
values. These functions both take a hash as an argument, and then return, respectively, a
raw list of all the keys in the hash, or a raw list of all the values in the hash. With either
of these lists, you can use foreach or another loop to process each element of the hash
without worrying about missing any.

So, for example, let’s say you had a hash containing a list of temperatures indexed by
city name (as we had in a previous example in this section) and you wanted to print a list
of those cities and temperatures, in alphabetical order. You could use keys to get a list of
all the keys, sort to sort those keys, and then a foreach loop to print the value of each
of those keys, like this:

foreach $city (sort keys %temps) {
print “$city: $temps{$city} degrees\n”;

}

This loop works by working through the list of elements and assigning each one to the
$city variable in turn (or any variable you pick). You can then use that variable in the
body of the loop as the key into the hash to get the value of the current element. This is
an extremely common group of lines for accessing and processing hash elements; you’ll
see this a lot as we write examples over the next few days.

Hashes and Context
Let’s return to context and go over how hashes behave in the various contexts. For the
most part, hashes behave just like lists, and the same rules apply, with a couple of wrin-
kles.

You’ve seen how to create a hash from list syntax, where the hash will match keys to
pairs, like this:

%pairs = (red=>255, green=>150, blue=>0);

In the reverse case, where you use a hash where a list is expected, the hash will unwind
back into its component parts (in some undetermined order), and then follow the same
rules for any list.

@colors = %pairs; # results in an array of all elements

07 0355 ch05 5/9/02 2:34 PM Page 121

($x, $y, $z) = %pairs; # first three elements of unwound hash assigned to vars,
remaining elements ignored

print %pairs; # prints unwound hash elements concatenated together

In all these instances, if you use a hash in a list context—for example, on the right side
of an assignment—then the hash will be “unwound” back into individual items, and then
the list behaves as it does in any list or scalar context. The one peculiar case is this one:

$x = %pairs;

At first glance, this would seem to be the hash equivalent of the way to get the number of
elements out of an array ($x = @array). However, Perl behaves differently with this one
than it does with arrays—the result in $x will end up being a description of the internal
state of the hash table (something like 3/8 or 4/100), which in 99% of cases is probably
not what you want. To get the number of elements (key/value pairs) in a hash, use the
keys function and then assign it to a scalar variable instead:

$x = keys %pairs;

The keys function returns a list of the keys in the hash, which is then evaluated in a
scalar context, and gives the number of elements.

122 Day 5

Curious about just what I mean by “a description of the internal state of the
hash?” Okay, then. The result of assigning a hash variable in a scalar context
gives you two numbers, separated by a slash. The second is the number of
slots that have been allocated for the internal hash table (often called
“buckets”), and the first is the number of slots actually used by the data.
There’s nothing you can do with this number, so if you see it, you’ve
probably done something wrong (probably you’re trying to get the number
of keys in your hash, and what you really wanted was to use %x = keys
%hash instead of $x = %hash.

Note

An Example: Frequencies in the Statistics
Program

Let’s modify our statistics script again, this time to add a feature that keeps track of the
number of times each number appears in the input data. We’ll use this feature to print
out a histogram of the frequencies of each bit of data. Here’s an example of what that
histogram will look like (other than the histogram, the output the script produces is the
same as it was before, so I’m not going to duplicate that here):

07 0355 ch05 5/9/02 2:34 PM Page 122

Working with Hashes 123

5

Frequency of Values:
1 | *****
2 | *************
3 | *******************
4 | ****************
5 | ***********
6 | ****
43 | *
62 | *

To keep track of each number’s frequency in our script, we use a hash, with the keys
being the actual numbers in the data and the values being the number of times that num-
ber occurs in the data. The histogram part then loops over that hash and prints out a
graphical representation of the number of times the data occurs. Easy!

Listing 5.1 shows the Perl code for our new script.

LISTING 5.1 stillmorestats.pl

1: #!/usr/local/bin/perl -w
2:
3: $input = ‘’; # temporary input
4: @nums = (); # array of numbers;
5: %freq = (); # hash of number frequencies
6: $count = 0; # count of numbers
7: $sum = 0; # sum of numbers
8: $avg = 0; # average
9: $med = 0; # median
10: $maxspace = 0;# max space for histogram
11:
12: while () {
13: print ‘Enter a number: ‘;
14: chomp ($input = <STDIN>);
15: if ($input eq ‘’) { last; }
16:
17: if ($input =~ /\D/) {
18: print “Digits only, please.\n”;
19: next;
20: }
21:
22: push @nums, $input;
23: $freq{$input}++;
24: $count++;
25: $sum += $input;
26: }
27:
28: @nums = sort { $a <=> $b } @nums;
29: $avg = $sum / $count;
30: $med = $nums[$count / 2];
31:

07 0355 ch05 5/9/02 2:34 PM Page 123

32: print “\nTotal count of numbers: $count\n”;
33: print “Total sum of numbers: $sum\n”;
34: print “Minimum number: $nums[0]\n”;
35: print “Maximum number: $nums[$#nums]\n”;
36: printf(“Average (mean): %.2f\n”, $avg);
37: print “Median: $med\n\n”;
38: print “Frequency of Values:\n”;
39:
40: $maxspace = (length $nums[$#nums]) + 1;
41:
42: foreach $key (sort { $a <=> $b } keys %freq) {
43: print $key;
44: print ‘ ‘ x ($maxspace - length $key);
45: print ‘| ‘, ‘*’ x $freq{$key}, “\n”;
46: }

This script hasn’t changed much from the previous one; the only changes are in lines 5,
10, line 23, and the section at the end, in lines 38 to 46. You might look over those lines
now to see how they fit into the rest of the script that we’ve already written.

Lines 5 and 10 are easy. These are just new variables that we’ll use later on in the script:
the %freq hash, which will store the frequency of the data; and $maxspace, which will
hold a temporary space variable for formatting the histogram (more about this when we
go over how the histogram is built).

Line 23 is much more interesting. This line is inside the loop where we’re reading the
input; line 22 is where we push the current input onto the array of values. In line 23,
what we’re doing is looking up the input number as a key in the frequencies hash, and
then incrementing the value referred to by that key by 1 (using the ++ operator).

The key is the number itself, whereas the value is the number of times that number
appears in the data. If the number that was input doesn’t yet appear as a key in the hash,
then this line will add it and increment the value to 1. Each time after that, it then just
keeps incrementing the frequency as the same number appears in the data.

At the end of the input loop, then, you’ll end up with a hash that contains, as keys, all
the unique values in the data set, and as values, the number of times each value appears.
All that’s left now is to print the usual sum, average and median, and a histogram of that
data.

Instead of going over lines 38 through 46 line by line as I’ve done in past examples, I’d
like to show you how I built this loop when I wrote the script itself, so you can see my
thinking in how this loop came out. This will actually give you a better idea of why I did
what I did.

124 Day 5

LISTING 5.1 continued

07 0355 ch05 5/9/02 2:34 PM Page 124

Working with Hashes 125

5

My first pass at this loop was just an attempt to get the values to print in the right order. I
started with a foreach loop not unlike the one I described in “Processing All the Values
in a Hash” earlier in this lesson:

foreach $key (sort { $a <=> $b } keys %freq) {
print “Key: $key Value: $freq{$key}\n”;

}

In this loop, I use foreach to loop over each key in the hash. The order in which the ele-
ments are presented, however, is controlled by the list in parentheses on the first line.
The keys %freq part extracts all the keys from the hash, sort sorts them (remember,
sort by default sorts in ASCII order, adding $a <=> $b forces a numeric sort). This
results in the hash being processed in order from lowest key to highest.

Inside the loop, then, all I have to do is print the keys and the values. Here’s the output
of the loop when I add some simple data to %freq:

Key: 2 Value: 4
Key: 3 Value: 5
Key: 4 Value: 3
Key: 5 Value: 1

That’s a good printout of the values of the %freq hash, but it’s not a histogram. My sec-
ond pass changes the print statement to use the string repetition operator x (you learned
about it on Day 3) to print out the appropriate number of asterisks for the frequency of
numbers:

foreach $key (sort { $a <=> $b } keys %freq) {
print “$key |”, ‘*’ x $freq{$key}, “\n”;

}

This is closer; it produces output like this:

2 | ****
3 | *****
4 | ***
5 | *

The problem comes when the input data is larger than 9. Depending on the number of
characters in the key, the formatting of the histogram can get really screwed up. Here’s
what the histogram looked like when I input numbers of one, two and three digits:

2 | ****
3 | *****
4 | ***
5 | *
13 | **
24 | *
45 | ***
2345 | *

07 0355 ch05 5/9/02 2:34 PM Page 125

So the thing to do here is to make sure there are the appropriate number of spaces before
the pipe character (|) to make sure everything in the histogram lines up correctly. I did
this with the length function, which returns the number of characters (bytes, actually), in
a scalar value, and that x operator again.

We start by finding out the maximum amount of space we’ll need to allow for. I got that
number from the largest value in the data set (because the data set is sorted, the largest
value is the last value), and I added 1 to it to include a space at the end:

$maxspace = (length $nums[$#nums]) + 1;

Then, inside the loop, we can add some print statements: The first one prints just the
key. The second one will pad out the smaller numbers to the largest number’s width by
adding an appropriate number of spaces. The third one prints the pipe and the stars for
the histogram:

foreach $key (sort { $a <=> $b } keys %freq) {
print $key; # print the key
print ‘ ‘ x ($maxspace - length $key); # pad to largest width
print ‘| ‘, ‘*’ x $freq{$key}, “\n”; # print the stars

}

This last version of the histogram is the version I ended up with in Listing 5.1.

126 Day 5

The way I did the formatting here is kind of a hack, and I don’t recommend
this method for anything more substantial than the few characters we’re
dealing with in this example. Perl has a set of procedures specifically for for-
matting data on ASCII screens (remember, it’s the Practical Extraction and
Report Language). In this age of HTML and Web-based reports, Perl ASCII
formatting isn’t as commonly used, but you can get a taste for it from the
perlform man page.

Note

Extracting Data into Arrays or Hashes Using the
split Function
When you read input from the keyboard, often that data is in a convenient form so that
you can just test it a little, assign it to a variable and then do whatever else you want to
with it. But a lot of the input you’ll deal with—particularly from files—is not often in a
form that’s so easy to process. What if the input you’re getting has ten numbers per line?
What if it came from Excel or a database and it’s in comma-separated text? What if
there’s one part in the middle of the line you’re interested in, but you don’t care about
the rest of it?

07 0355 ch05 5/9/02 2:34 PM Page 126

Working with Hashes 127

5

Often, the input you get to a Perl script will be in some sort of raw form, and then it’s
your job to extract and save the things you’re interested in. Fortunately, Perl makes this
very easy. One way to extract data out of a string is to split that string into multiple ele-
ments, and save those elements as an array or a hash. Then you can manipulate the ele-
ments in the array or hash individually. A built-in function, called split, does just this.

Let’s take the simplest and most common example: your input data is a single string of
elements, separated by spaces:

$stringofnums = ‘34 23 56 34 78 38 90’;

To split this string into an array of elements, you would use split with two arguments:

A string of one space, and the string you want to split. The split function will return a
list, so usually you’ll want to assign the list to something (like an array):

@nums = split(‘ ‘, $stringofnums);

The result of this statement is an array of seven elements, split from the original string:
(34, 23, 56, 34, 78, 38, 90).

Or you could assign it to a set of variables:

($x, $y, $z, undef, @remainder) = split(‘ ‘, $stringofnums);

In this case, the first three numbers in the string get assigned to the first three variables,
the fourth (34) gets thrown away (undef), and the last three are stored in @remainder.

This form of split, with a single-space argument, is actually a special case. The single
space tells split to split the string on any white space characters, including spaces or
tabs, to skip over multiple whitespace characters, and to ignore any leading or trailing
whitespace as well. It does it all for you, automatically.In fact, this form of split is so
common you could ignore the space argument altogether and just call split with the
string argument and it would automatically split on whitespace:

@nums = split $stringofnums;

I will use the string argument in all my examples to remind you what split is
splitting on.

If you want to split a string on anything other than whitespace; for example, if your data
is separated by commas, by pipe characters (|), or by anything else, you must use a pat-
tern. These are the same regular expression patterns you have seen before. Here’s an
example that splits on commas:

$commasep = “45,32,56,123,hike!”;
@stuff = split(/,/, $commasep);

07 0355 ch05 5/9/02 2:34 PM Page 127

Another Example: Alphabetical Lists of
Names

For another example, let’s put together hashes and split into a simple example that
reads a list of names, puts those names into a hash keyed by last name, and then prints
out the list in alphabetical order, last name first. Here’s an example of what it looks like:

Enter a name (first and last): Umberto Eco
Enter a name (first and last): Isaac Asimov
Enter a name (first and last): Fyodor Dostoyevski
Enter a name (first and last): Albert Camus
Enter a name (first and last): Bram Stoker
Enter a name (first and last): George Orwell
Enter a name (first and last):
Asimov, Isaac
Camus, Albert
Dostoyevski, Fyodor
Eco, Umberto
Orwell, George
Stoker, Bram

Listing 5.2 shows our short little script to read and adjust the data.

LISTING 5.2 The names.pl Script

1: #!/usr/local/bin/perl -w
2:
3: $in = ‘’; # temporary input
4: %names = (); # hash of names
5: $fn = ‘’; # temp firstname
6: $ln = ‘’; # temp lastname
7:
8: while () {
9: print ‘Enter a name (first and last): ‘;
10: chomp($in = <STDIN>);
11: if ($in eq ‘’) { last; }
12:
13: ($fn, $ln) = split(‘ ‘, $in);
14: $names{$ln} = $fn;
15: }
16:
17: foreach $lastname (sort keys %names) {
18: print “$lastname, $names{$lastname}\n”;
19: }

This script has three basic sections: initialize the variables, read in the data, and print it
back out again. I’ll skip the initialization part because that should be obvious by now.

128 Day 5

07 0355 ch05 5/9/02 2:34 PM Page 128

Working with Hashes 129

5

Lines 8 through 15 read the data in a way that should look familiar from the statistics
script, using a while loop, an if to test for an empty entry, and <STDIN> in a scalar con-
text. Unlike stats, where we put the elements into an array, line 13 uses split to sepa-
rate the name input into two temporary scalar variables, $fn and $ln. Then in line 14, we
add that first and last name pair to the $names hash, with the last name as the key.

With the hash all set up with the data, we can go ahead and print it. Again, you’ve seen
this syntax before, most recently in the histogram example previously in this lesson.
Here, we’re sorting the keys in alphabetical order, so we can use the simpler form of sort
here. And, finally, the print statement in line 18 uses the $lastname variable (which
contains the current key) and the hash lookup for that key to print out the first and last
names.

A Few More Patterns
To finish up—because we have a little space left over today—I’d like to tuck a couple
more patterns into your regular expressions repertoire, so that you can keep building on
what you’ve learned (and so that I can use them in the last example you’re about to work
through).

So far you’ve learned about patterns with individual characters:

/abc/

Patterns with digits:

/\d/

And patterns with nondigits:

/\D/

Here’s another one: \s is a whitespace character. Whitespace in Perl is a space, a tab, a
newline, a carriage return, or a formfeed. The \s pattern counts as any of these. Just as
with \d, however, \s only means a single whitespace character, so the pattern /\s/ will
match one and only one space, tab, newline, and so on. Grouping all the whitespace
characters together under one special character allows you to not worry about whether
your user is typing spaces or tabs, or whether the system your running on is using new-
lines or carriage returns or both. It’s just whitespace. The general rule is if its whitespace,
use \s in your pattern.

\S is the opposite of \s. Its any character that isn’t whitespace: any number or letter or
punctuation; anything that isn’t a space, a tab, a newline, and so on.

07 0355 ch05 5/9/02 2:34 PM Page 129

The problem with the \d, \D, \s and \S characters, as I’ve mentioned, is that they match
only a single character. Sometimes it would be useful to be able to match one or more of
these characters, so your pattern would be true if you had one digit or eight, or one space
or four. Either way would work. The pattern would be much more flexible that way.

You can do that by adding a + to the pattern. The + applies to the character just before it.
So this pattern matches one or more digits:

/\d+/

This pattern matches one or more whitespace characters:

/\s+/

But this pattern matches a single whitespace character, followed by one or more digits:

/\s\d+/

The + only applies to the pattern just before it. It can also apply to any pattern, not just
the \s or \d special patterns. This pattern, for example, matches one or more m’s:

/m+/

Table 5.1 shows our pattern summary so far.

TABLE 5.1 Patterns

Pattern Type What it does

/a/ Character Matches a

/\d/ Any digit Matches a single digit

/\D/ Any character not a digit Matches a single character other than a digit

/\s/ Any whitespace Matches a single space, tab, newline, carriage
return or formfeed

/\S/ Any character not whitespace Matches a single character other than
whitespace

+ One or more Matches one or more of the pattern just
before it

Yet Another Example: Stock Price Converter
This final example uses split and patterns. The script in Listing 5.3 is a bit of an
enhancement to the stock script on Day 3—the script where you typed in the beginning
and ending prices of a stock, and it calculated the return on your investment. In that

130 Day 5

07 0355 ch05 5/9/02 2:34 PM Page 130

Working with Hashes 131

5

version of the script, you weren’t allowed to enter stocks in the old-style format of frac-
tional prices (14 5/8); we tested for that using regular expressions and printed an error.

This script isn’t really a stock script; instead it’s more of a price-checking and fixing
script. It allows prices in plain numeric format. It checks for nondecimal characters and
prints an error, as before. But if you enter in a price in a fractional format, it converts that
price to a decimal format, rounding off to two decimal places. Pressing return with no
input exits the script:

% checkprice.pl
Enter a stock price: 14
Price: 14
Enter a stock price: 14.5
Price: 14.5
Enter a stock price: zbf
Digits only, please.
Enter a stock price: 14 7/8
Price: 14.88
Enter a stock price: 14 1/2
Price: 14.50
Enter a stock price: 14 15/16
Price: 14.94
Enter a stock price:
%

Listing 5.3 shows the code for this script.

LISTING 5.3 The checkprice.pl Script

1: #!/usr/local/bin/perl -w
2:
3: $price = 0; # stock price
4: $whole = 0; # temp whole number
5: $frac = “”; # temp fractional num
6: $numer = 0; # numerator
7: $denom = 0; # denominator
8:
9: while () {
10: print “Enter a stock price: “;
11: chomp ($price = <STDIN>);
12: if ($price eq ‘’) { last; }
13:
14: if ($price =~ /\//) { # process fractions
15: if ($price =~ /\d\s+/) { # “14 5/8” (numbers with whole part)
16: ($whole, $frac) = split(‘ ‘, $price);
17: } else { # “5/8” (no whole part)
18: $whole = 0;
19: $frac = $price;
20: }

07 0355 ch05 5/9/02 2:34 PM Page 131

21:
22: ($numer, $denom) = split(/\//,$frac);
23: $price = $whole + ($numer / $denom);
24: $price = sprintf(“%.2f”, $price);
25: }
26:
27: if ($price =~ /\D/ and $price !~ /\./) {
28: print “Digits only, please.\n”;
29: next;
30: }
31:
32: print “Price: $price\n”;
33: }

A lot of this structurewill look familiar to you. The while loop, the tests for the empty
string in line 12, and the nondigits tests in lines 27 through line 30 are all borrowed from
earlier examples. The part I want to focus on here is the big if test in lines 14 through 25.
This is where we check for fractional numbers, and if we find them, convert them to dec-
imal numbers.

The first test is the pattern in line 14, which tests for the slash in the fraction. This is the
same test we’ve used before. Note once again that the slash character is a special charac-
ter in patterns, so we have to backslash it to escape it.

Fractional numbers could be entered in two forms: with a whole number part (for exam-
ple, “12 1/2”), or as just the fraction, with no whole number (“15/16”). Because we’ll
treat both cases slightly different, there’s another test in line 15 to break them apart. The
test we use is one for the whitespace in between the whole number and the fraction. But
be careful here. I started out just testing for the whitespace and thought that was enough:

if ($price =~ /\s+/)

This pattern, as you just learned, tests for one or more whitespace characters. I figured
that would get the space in between the whole number and the fractional number, which
it did. But it also matched if I typed a space and then a fractional number with no whole
number at all. That was a bug.

So what I really want to match is some number, then some whitespace. I added a digit to
the pattern as you see in line 15, and this works better.

Given input with a whole number and a fractional part, the first thing to do is to split the
two into a list. Here our list is actually two scalar variables, $whole and $frac, and we’re
splitting on whitespace.

132 Day 5

LISTING 5.3 continued

07 0355 ch05 5/9/02 2:34 PM Page 132

Working with Hashes 133

5

If the input does not have a whole part, we drop to the else clause of the if (line 17),
and here the $whole variable gets set to 0, and $frac can contain the entire value of
$price. No splitting is needed. We’ll need these variables later, so this first block initial-
izes them from the data we’ve been given.

Line 22 is another split, this time of the fraction itself. Here we’re splitting the fraction
into a numerator and a denominator, an upper part and a lower part. The character we’re
splitting on is the slash, so we’ll put that into a split pattern, and once again the two parts
are assigned to scalar variables $numer and $denom.

Finally, with all the parts of the equation extracted from the input, we can do some math
in line 23. Divide the numerator by the denominator, and add it to the whole number to
get the decimal equivalent.

If this script was truly robust we should probably check to make sure $denom
did not contain 0, or that the fraction contained a smaller numerator than
denominator, but this is good enough for now. Later on, in the lessons on
patterns, you’ll learn how to do this same operation using just patterns.

Note

And finally, the result of our math is usually a floating-point number, and sometimes a
rather long floating-point number. Stock prices are usually quoted in decimal numbers
with only two numbers after the decimal points, so we’ll use a call to sprintf to round
off our numbers.

Going Deeper
Hashes have a lot of similarities to arrays and lists, so actually we don’t need to go
much deeper for this lesson. Hashes use one other function that might be useful: each.

The keys function takes a hash as an argument and returns a list of the hash’s keys. The
values function does the same thing with the values in the hash. The each function does
both: with a hash as an argument, it returns a list of two elements—the first a key and
the second a value. Calling each multiple times works through all the hash’s elements.
As with all hash elements, the pairs you get out of the hash are in some undetermined
order. After all the elements have been exhausted, each returns an empty list (). You can
learn more about each in the perlfunc man page.

07 0355 ch05 5/9/02 2:34 PM Page 133

Summary
Today, we completed your background in list data with a discussion of hashes, which are
similar to arrays and lists except that they arrange data into keys and values as opposed
to simply storing elements in a numeric order. You learned about the hash variable %hash,
and how to look up a value using hash access $hash{‘key’}. You also learned how to
delete keys from the hash, and how to process each element of a hash using a foreach
loop and the keys function. We finished up with some discussion about the split func-
tion, and you learned about a few more patterns for pattern matching.

The built-in functions you learned about today include (see the perlfunc man page for
more details about these functions):

• delete takes a hash key as an argument and deletes that key and value from the
hash. Unlike undef, which undefines a value in a hash or an array but preserves the
location, delete removes the key/value pair altogether.

• exists takes a hash key and returns true if the hash key exists (the corresponding
value might be undefined (undef)).

• keys takes a hash and returns a list of all the keys in that hash.

• values takes a hash and returns a list of all the values in that hash.

• split splits a string into a list of elements. The first argument to split can be a pat-
tern, a string of one character, or be omitted altogether. In the latter two cases,
split splits on whitespace.

Q&A
Q. All these different variable characters! How can I keep them straight!

A. The more you use them, the easier it’ll be to remember which one is used where. If
it helps, you can think of the scalar variable character $ as a dollar sign—dollars
are numbers, and are scalar. The at sign (@) is a sort of A character—A stands for
array. And the percent sign (%) for hashes has a slash with two dots—one dot for
the key, and one for the value. In array and hash element accesses, think of what
you want the result of the expression to be: if you want a single element, use $.

Q. Hashes are just plain associative arrays, aren’t they? They aren’t actual hash
tables?

A. Hashes are indeed sometimes called associative arrays, and were called that in
previous versions of Perl (the term hashes became popular because associative
arrays was kind of unwieldy to say and too many characters to type). They’re
called hashes, as opposed to keyed lists or associative arrays, because internally

134 Day 5

07 0355 ch05 5/9/02 2:34 PM Page 134

Working with Hashes 135

5

they are indeed implemented as real hash tables, and have all the speed advantages
of a hash table over a more basic keyed collection, particularly for really huge col-
lections.

Q. All the examples you showed for hashes used a key to get a value. If you have
a value is there any way to get at its corresponding key?

A. Nope. Well, there isn’t a function to do it. You could use a foreach loop and the
keys function, and then test each key to see if it matched the value you have. But
keep in mind that although hashes require unique keys, different keys can all have
the same value, so even though you have a value there’s no guarantee that only one
key will match with it. There isn’t the same correspondence between a value and
its key as there is the key to its value.

Q. You can print an array just with print “@array\n”. can you print a hash with
print “%hash\n”?

A. No, hash variables do not interpolate inside double quotes the way scalar and array
variables do. You will have to use a foreach loop and the keys function to iterate
over the hash and print each element.

Q. When I was running the names.pl script, I typed in two people with the same
last name (Ernest Hemingway and Fred Hemingway). Ernest Hemingway dis-
appeared! What’s going on here?

A. Hashes require unique keys. The names.pl script is keyed by last name. When you
entered Hemingway, Ernest, the key for Hemingway was created. But when you
entered Hemingway, Fred, the value for the Hemingway key was changed, and
Ernest was erased. I’ve included an exercise in the workshop so you can play with
methods for working around this little problem.

Workshop
The workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience in using what you’ve learned. Try
and understand the quiz and exercise answers before you go on to tomorrow’s lesson.

Quiz
1. Define the differences between lists, arrays, and hashes.

2. What do each of these variables refer to?
$foo
@foo
%foo

07 0355 ch05 5/9/02 2:34 PM Page 135

$foo{‘key’}
$foo[$key]
$foo{$key}

3. What are the results of the following Perl statements? Why does each expression
evaluate to the result it does?
%stuff = qw(1 one 2 two 3 three 4 four);
@nums = %stuff
$foo = %stuff;
$foo = keys %stuff;

4. What happens if you use a hash in a list context? In a scalar context?

5. How do you sort a hash?

6. Define the differences between the keys, values, and each functions.

7. What’s split good for?

Exercises
1. Modify stats so that the user can enter numbers all on one line.

2. Write a script that prompts you for a sentence, tells you the number of characters
in the sentence, the number of words, and prints the sentence in reverse word order.
(Hint: use the length, split, and reverse functions).

3. Modify the names.pl script to accept (and handle) names with middle names or
initials (for example, Percy Bysshe Shelley or William S. Burroughs).

4. A hash only works with unique keys. But the names script would be more useful if
it could store names with multiple duplicate last names (for example, Charlotte
Bronte, Emily Bronte, and Anne Bronte). How might you modify the names.pl
script to accommodate this?

Answers
Here are the answers to the Workshop questions in the previous section.

Quiz Answers
1. A list is just a collection of scalars; an array is an ordered list, indexed by position;

and a hash is an unordered list of key/value pairs, indexed by the keys.

2. The answers are

$foo is a scalar variable

@foo is an array variable

%foo is a hash variable

136 Day 5

07 0355 ch05 5/9/02 2:34 PM Page 136

Working with Hashes 137

5

$foo{‘key’} is the value that matches ‘key’ in the hash %foo.

$foo[$key] is the value at the index $key in the array @foo.

$foo{$key} is the value that matches $key in the hash %foo (which might not be
the same value as $foo{‘key’}).

3. The answers are

a. The %stuff hash gets four key/value pairs: ‘1’/’one’, ‘2’/’two’, ‘3’/’three’, and
‘4’/’four’. The qw function adds quotes around each element.

b. @nums gets the unwound version of the key/value pairs in %stuff (key, value,
key, value, and so on).

c. $foo gets a code referring to the internal state of the hash.

d. $foo gets the number of elements (keys) in %stuff. (keys %stuff results in a
list, which is evaluated in a scalar context, which then gives the number of ele-
ments in that list.)

4. Using a hash in a list context “unwinds” the hash into its component keys and val-
ues in some internal order. In a scalar context, the hash returns two numbers indi-
cating the internal structure of the hash.

5. You can’t sort a hash because a hash is unordered. You can, however, extract its
keys or its values and then sort that resulting list.

6. The keys function gives you a list of all the keys in the hash; the values function
does the same thing with the values. The each function returns a list of a key/value
pair in the hash; calling each multiple times eventually gives you all the elements
in that hash.

7. split breaks a string up into two or more elements in a list. split is commonly
used when the input you get isn’t a single thing that can be assigned directly to a
variable.

Exercises
1. This exercise is harder than it looks. When all the data gets entered on one line,

split that line into a list. This makes some things easier and some things harder. On
the one hand, you can move the processing of the data out of the while loop—it
can all happen later on, after the data has been entered, rather than as the data is
being entered.

On the other hand, because the data includes spaces you will run afoul of the error
checking because a space is a nondigit character. The easiest way around this is to

07 0355 ch05 5/9/02 2:34 PM Page 137

split the line inside the while loop and do the error checking on each individual
element in the list.

Here’s how I accomplished this script. I’ve included only the important parts of
the stats script, from the while loop up until where the print statements start:
while () {

print ‘Enter your numbers, all on one line, separated by spaces: ‘;
chomp ($input = <STDIN>);

if ($input eq ‘’) {
print “Please enter some input.\n”;
next;

}

@nums = split(‘ ‘, $input); # split into nums

foreach $key (@nums) {
if ($key =~ /\D/) {

print “$key contains a non-digit character. “;
print “Please enter your input again.\n”;
@nums = ();
next;

}
}

if (@nums) { last; }
}

$count = @nums; # get the count

foreach $num (@nums) { # count freqs, sum
$freq{$num}++;
$sum += $num;

}

@nums = sort { $a <=> $b } @nums;
$avg = $sum / $count;
$med = $nums[$count /2];

Here’s the part that starts with the while loop up until the part that prints the
results:
while () {

print ‘Enter your numbers, all on one line, separated by spaces: ‘;
chomp ($input = <STDIN>);

if ($input eq ‘’) {
print “Please enter some input.\n”;
next;

}

138 Day 5

07 0355 ch05 5/9/02 2:34 PM Page 138

Working with Hashes 139

5

@nums = split(‘ ‘, $input); # split into nums

foreach $key (@nums) {
if ($key =~ /\D/) {

print “$key contains a non-digit character.”;
print “Please enter your input again.\n”;
@nums = ();
next;

}
}

if (@nums) { last; }
}

$count = @nums; # get the count

foreach $num (@nums) { # count freqs, sum
$freq{$num}++;
$sum += $num;

}

2. Here’s one answer:
#!/usr/local/bin/perl -w

$in = ‘’ ; # temporary input
@sent = (); # sentence
$words = 0; # num words
@reversed = (); # reversed version

print ‘Enter a sentence: ‘;
chomp($in = <STDIN>);
print ‘Number of characters in the sentence: ‘;
print length $in;

@sent = split(‘ ‘, $in);
$words = @sent;
print “\nNumber of words in the sentence: $words\n”;

@reversed = reverse @sent;
print “Reversed version: \n”;
print “@reversed\n”;

3. Here’s one answer:
#!/usr/local/bin/perl -w

#in = “”; # temporary input
%names = (); # hash of names
@raw = (); # raw words
$fn = “”; # first name
$ln = “”; # last name

07 0355 ch05 5/9/02 2:34 PM Page 139

while () {
print ‘Enter a name (first and last): ‘;
chomp($in = <STDIN>);
if ($in eq ‘’) { last; }

@raw = split(“ “, $in);
if ($#raw == 1) { # regular case, two names

$names{$raw[1]} = $raw[0];
} else { # build a first name from all names

$ln = pop @raw; # remove last name
foreach $name (@raw) { # build up first name

$fn = $fn . ‘ ‘ . $name;
}
$names{$ln} = $fn;

}
$fn = $ln = “”; # reset each time

}

foreach $lastname (sort keys %names) {
print “$lastname, $names{$lastname}\n”;

}

4. Here’s one answer that tags each duplicate name with a unique number, and then
strips those numbers off when the names are printed:
#!/usr/local/bin/perl -w

$in = ‘’; # temporary input
%names = (); # hash of names
$fn = ‘’; # temp firstname
$ln = ‘’; # temp lastname
$count = 0; # for nums

while () {
print ‘Enter a name (first and last): ‘;
chomp($in = <STDIN>);
if ($in eq ‘’) { last; }

($fn, $ln) = split(‘ ‘, $in);

if (exists $names{$ln}) { # name is already there!
$ln = $ln . “_” . $count; # tag this name with a number

}

$names{$ln} = $fn;
$count++;

}

foreach $lastname (sort keys %names) {
if ($lastname =~ /_/) { # this is a tagged name

($ln, undef) = split(/_/, $lastname); #remove number for printing

140 Day 5

07 0355 ch05 5/9/02 2:34 PM Page 140

Working with Hashes 141

5

} else { $ln = $lastname }

print “$ln, $names{$lastname}\n”;
}

5. Another solution might be to keep the single last name as the key, and store the
first names as a string, adding on the new names to the end of the string, separated
by the character of your choice. Then, when printing the list, split apart all the indi-
vidual first names again. There are many different ways to solve this problem.

07 0355 ch05 5/9/02 2:34 PM Page 141

07 0355 ch05 5/9/02 2:34 PM Page 142

DAY 6

WEEK 1

Conditionals and Loops
Finally, we come to conditionals and loops! You’ve already learned a fair amount
about the more popular conditional, if, and about while loops, so you might
have already deduced that conditionals and loops are used to control the execu-
tion of blocks of statements in Perl script. Without these structures, your script
would run from top to bottom, executing each statement in turn until it got to
the end. No testing to see if a value is true, and then branching to a different bit
of code; no repeating the execution of a block of statements a number of times.
Scripts would be very boring indeed without conditionals and loops. They’re so
important you had to actually start learning about them two days ago, before
we even got to this lesson.

In this lesson, we’ll discuss in detail the various conditional and loop constructs
you have to work with in Perl, including

• An introduction to block statements

• The if and if...else, if...elsif, and unless... conditionals

• The while, do...while, and until loops

• The foreach and for loops

• Controlling loops with next, last, redo, and labels

08 0355 ch06 5/9/02 2:34 PM Page 143

In addition, we’ll also look at a two other topics that will build on your Perl knowledge,
including

• Using $_ (the default variable) as a shortcut for many operations

• Reading input from files with <>

Complex Statements and Blocks
Conditionals and loops are sometimes called complex statements. That’s because instead
of being a single statement like $x = 5 or $array[5] = “fifth” ending with a semi-
colon, conditionals and loops tend to be more, well, complex. Probably the biggest dif-
ference between simple and complex statements, however, is that the latter operate on
chunks of Perl code called blocks.

A block is, simply, a group of any Perl statements surrounded by curly braces ({}). Inside
the block, you can include other statements, other blocks, or anything that can appear out-
side the block. As with statements in a script, too, the statements inside the block are
executed in order. For example, here are two blocks, one that is associated with a while
loop, and one inside it that is associated with an if conditional:

while (test) { # start of while block
statement;
statement;
if (test) { # start of if block

statement;
} # end of if block
... more statements

} # end of while loop

Note that each closing curly brace ends the nearest enclosing block—the indenting doesn’t
matter to Perl. In larger scripts, a block might go on for lines and lines and you can easily
forget where a closing } is supposed to match to. In this case, an indenting style can really
help you figure out where your blocks begin and end. When in doubt, add a comment.

Blocks that are used outside the context of a conditional or a loop are called bare blocks,
and the statements inside them execute only once. Bare blocks have several uses, particu-
larly when they have labels (more about labels later in this chapter), but for now we’ll
focus on blocks that are attached to complex statements.

One other feature of blocks is that the last statement in the block doesn’t require a semi-
colon. If it’s the only statement in the block, it also doesn’t require a semicolon.
However, it’s probably a good idea to get used to using it anyhow; if you add other state-
ments to that block later, Perl will complain that you forgot the semicolon.

144 Day 6

08 0355 ch06 5/9/02 2:34 PM Page 144

Conditionals and Loops 145

6

Conditionals
Conditionals are used to execute different bits of code based on the value of a given test.
If the test is true, a block of code is executed; if the test is false, either execution continues
to the next part of the script, or a different block of code is executed. Unlike loops, each
block is executed only once.

if, if...else, and if...elsif
The most common form of conditional is the if, and its variant forms if...else and
if...elsif. As you’ve seen, the if statement looks like this:

if (test) {
statements

}

The test is any expression, evaluated in a boolean scalar context for its truth value.
Remember that everything except “”, 0, and undef is considered true. If the test is true,
the block is executed. If it’s false, nothing happens and execution continues onto the next
statement in the script.

Note that the block after the test (and, in the next two forms, after the else and the elsif)
is always required, even if you only have one statement inside that block. You must always
include the curly braces. The block doesn’t have to be on different lines, as I showed
here; you can format the brackets in any style you prefer. Short if statements tend to
look neater on one line:

if ($x) { print “true!” }

To execute one block if the test is true and a different block if the test is false, use
if...else:

if (test) {
statements to execute if test is true

} else {
statements to execute if test is false

}

A common operation in all languages with if...else-like constructs is that there are multiple
nested if’s and multiple else’s, like this:

if (test1) {
statements1

} else {
if (test2) {

statements2
} else {

if (test3) {

08 0355 ch06 5/9/02 2:34 PM Page 145

statements 3
} else {

and so on...}

To save a few keystrokes, or to avoid large amounts of indentation, Perl provides a third
form of if conditional, the elsif, to compress these sorts of operations:

if (test1) {
statements1

} elsif (test2) {
statements2

} elsif (test3) {
statements3

} else (
else statements

}

Note the difference between the nested if and separate if statements, like this:

if (test1) {
statements1

}
if (test2) {

statements2
}
if (test3) {

statements3
}

Use separate if statements, then, regardless of the outcome of test1, test2 is still tested,
and same with test3. Every test is independent of every other test. In the case of the
nested if, if test1 is true, then the statements in the following block are executed, and
then the entire block exits. The remaining tests are never executed—test2 is only exe-
cuted if test1 is false, and test3 is executed only if both test1 and test2 are false.

In some cases, you might want separate, independent if statements, but in a lot of cases,
you can group your tests in nested ifs instead.

If you’re familiar with other languages, you might know switch or case statements that
shorten nested ifs into a simpler syntax. Perl doesn’t have syntax for switch, per se (it’s
probably the only instance you’ll find where Perl doesn’t provide a syntax to do something
you can do in another language). However, there are various ways to use existing Perl
constructs to build switch-like constructs. We’ll go over a couple of these in “Going
Deeper,” at the end of this lesson.

146 Day 6

08 0355 ch06 5/9/02 2:34 PM Page 146

Conditionals and Loops 147

6

unless
The unless statement is sort of the reverse of an if. It came about because sometimes an
operation is only supposed to occur if a test is false—which means in a standard if...else
statement, all the good stuff would go into the else, like this:

if (test) {
do nothing

} else {
the good stuff

}

That’s not really the most optimal way to look at an if. You could, of course, just negate
the test (!test or not test), and then switch the blocks and leave off the else. This is
a classic case of having to change your thinking to fit the syntax. Perl would prefer that
you think the way you want to think, so it gives you alternative syntax. If you want to
perform an operation based a test being false, just use unless instead:

unless (test) {
the good stuff

}

With the unless here, the statements inside the block are only evaluated if the test is false
(“unless this is true, do that”) If it’s true, execution happily moves onto the next statement.
You can also add an else to an unless, if you like (but you can’t have an elsif).

Conditional Operator ?..:
Some conditionals are so short that it seems silly to waste all those brackets and words
on them. Sometimes, too, it makes sense to embed a conditional inside another expression
(something you can’t do with an if or an unless because they don’t return values). That’s
what the conditional operator does. Like if...else, it has a test, something to do if the
test is true, and something to do if the test is false:

test ? true_thing : false_thing;

Here, the test is evaluated for truth, just as with an if, and if the test is true the true_thing
expression is evaluated (and a value returned), otherwise, false_thing is evaluated and
returned. Unlike if and unless, true_thing, and false_thing are single expressions,
not blocks. So, for example, a quick way to find the maximum of two values might look
like this:

$max = $x > $y ? $x : $y;

08 0355 ch06 5/9/02 2:34 PM Page 147

This expression tests to see if the value of $x is larger than that of $y, and if so, it returns
$x. If the value of $x is less than or equal to $y it returns $y. The return value of the entire
conditional expression is then finally assigned to the $max variable. That same operation,
as an if...else, would look like this:

if ($x > $y) {
$max = $x;

} else {
$max = $y;

}

148 Day 6

The conditional operator is sometimes called the ternary operator because it
has three operands (unary operators have one, binary operators have two;
therefore, a ternary operator has three). Will knowing this impress anyone
except computer scientists? Probably not.

Note

Using Logical Operators as Conditionals
Back on Day 2, you learned about Perl’s logical operators &&, ||, and, and or, and I
mentioned at that time you can construct conditional statements with them. Let’s re-
examine those operators here so you can get a feel for how this works. Take the following
expression:

$val = $this || $that;

To understand how this expression works, you have to remember two features of logical
expressions: short-circuiting, and the fact that logicals return the value of the last thing
they evaluated. So, in this case, the left side of the || is evaluated for its truth value. One
of three things happens:

• If the value of $this is anything other than 0 or “”, it’s considered true. Because
the || operator short-circuits, this means the entire expression exits without even
looking at $that. It also returns the last thing it did evaluate—the value of $this,
which then gets assigned to the variable $val.

• If the value of $this is 0 or “”, it’s considered false. Perl then evaluates $that,
and if $that is true, then the expression exits with a truth value and returns the
thing that it evaluated last—$that.

• If both $this and $that are false, the entire expression returns false, and $val gets
a 0 or “” value.

08 0355 ch06 5/9/02 2:34 PM Page 148

Conditionals and Loops 149

6

Using an if...else expression, you could write that expression like this:

if ($this) { $val = $this; }
else {$val = $that; }

Using a conditional operator, you could write it like this:

$val = $this ? $this : $that

But both of those take more space and are sort of complex to figure out—or at least more
complex than the logical expression, which reads sort of like English: this or that. There,
you’re done.

As I mentioned on Day 2, probably the most common place you’ll see logicals used as
conditionals is when you open files, like this:

open(FILE, “filename”) or die “Can’t open\n”;

But that’s a topic for another day (Day 15, “Managing I/O,” to be exact).

while Loops
The various if statements in Perl are all used to control execution by branching to differ-
ent parts of a script. The second way to control execution is through the use of a loop, where
the same block of Perl statements are executed repeatedly, stopping only when some
condition is met. Perl has two general sets of loops, both of which do roughly the same
thing: while loops, which loop until a condition is met, and for loops, which loop a cer-
tain number of times. Generally, whiles can be rewritten to emulate fors, and vice versa,
but conceptually each one seems to lend itself to specific situations better than the other.

We’ll start with the while loops, of which Perl has three: while, do...while, and until.

while
You’ve already seen the while loop, but we’ll repeat the description here so you have it
all in one place. The basic form of the loop in Perl is the while, which takes a test and
block, like this:

while (test) {
statements to loop

}

You could, of course, use the or operator in place of the ||. Either one
would work.

Note

08 0355 ch06 5/9/02 2:34 PM Page 149

In the while loop, the test is evaluated, and if it’s true, then the statements inside the block
are executed. At the end of the block, the test is evaluated again, and if it’s still true, then
the block is executed again. This process repeats until the test returns false. For example,
here’s the while loop from the cookie script you saw on Day 1:

while ($cookie ne “cookie”) {
print “Give me a cookie: “;
chomp($cookie = <STDIN>);

}

Here, the prompt and input will repeat until the input actually matches the string “cookie”.
You could read this statement as “while the value of $cookie doesn’t equal the string
‘cookie’, do these things.”

Here’s another example from Day 4 that loops through an array using an temporary vari-
able $i as the array index:

$i = 0;
while ($i <= $#array) {

print $array[$i++], “\n”;
}

In this case, the test is whether $i is less than the largest index of the @array array. Inside
the block, we print the current array element, and increment $i, so that the loop will only
repeat a certain number of times: while $i is less than or equal to the largest index in
@array, actually.

Remember as you write your while loops that something has to happen inside the loop
to bring the state of the loop closer to exiting. If you forget to increment $i, $i will never
reach a point where the test is true, and the loop will never exit.

Loops that don’t exit are called infinite loops, and sometimes they’re useful to use inten-
tionally. A while loop without a test, for example, is an intentional infinite loop. You’ve
seen these in a number of the examples we’ve done so far. This one’s from the various
statistics scripts:

while () {
print ‘Enter a number: ‘;
chomp ($input = <STDIN>);
if ($input eq ‘’) { last; }

more stuff to do
}

This loop will read a line of input from the standard input at each pass of the loop, and will
never exit based on the test at the top of the while—there is no test inside the parentheses
after the while. But we do test the input in an if conditional three lines down, and if the

150 Day 6

08 0355 ch06 5/9/02 2:34 PM Page 150

Conditionals and Loops 151

6

$input doesn’t match our test there (if it’s equal to the empty string), then the last;
keyword will forcibly break the loop and go onto the next part of the script. The last
part is a form of loop control statement, and there are three of them: last, next, and
redo. You’ll learn about these later in this chapter, in the section, “Controlling Loops.”

I could have rewritten this loop so the while had a real test, and exited at the appropriate
time. For this particular type of example, I found it easier to construct it this way. Perl
doesn’t enforce a specific kind of mindset for creating loops or conditionals; you can
construct your script in the best way based on how you see the problem.

until
Just as the reverse of an if is an unless, the reverse of a while is an until. Until looks
just like a while, with a test and a block:

until (test) {
statements

}

The only difference is in the test—in a while, the loop executes as long as a test is true.
In an until, it executes as long as the test is false—“until this test is true, do this stuff.”
Otherwise, they both behave the same.

do
A third form of while loop is called the do. With both while and until, the test is evalu-
ated before the block is executed—so, actually, if the test ends up being false (or true for
unless), then the block won’t get executed and the loop might never do anything. Some-
times you want to execute some block of statements, and then try the test afterwards. That’s
where do comes in. do loops are formed differently from while and until loops; unlike
the former, they require semicolons at the end of the statement. do loops look like this:

do {
block to loop

} while (test);

Or, with until, same idea:

do {
...

} until (test);

With either of these statements, the statements inside the block are always executed
before the test is evaluated. Even if the test returns false (for while) or true (for until),
the block of statements will be executed at least once.

08 0355 ch06 5/9/02 2:34 PM Page 151

One important thing to note about the do: do in this case is actually a function call pre-
tending to be a loop (that’s why you need the semicolon). In most basic cases, it’ll per-
form just like a loop, but if you want to use loop controls inside it (such as last or
next), or include a label, you’ll have to use either while or until instead. More about
loop controls and labels later.

An Example: Pick a Number
In this example, we’ll play a sort of game where Perl prompts you for a number, picks a
random number between 1 and your number, and then has you try to guess which number
it’s picked, like this:

% picknum.pl
Enter top number: 50
Pick a number between 1 and 50: 25
Too high!
Pick a number between 1 and 50: 10
Too low!
Pick a number between 1 and 50: 17
Too high!
Pick a number between 1 and 50: 13
Too high!
Pick a number between 1 and 50: 12
Correct!
Congratulations! It took you 5 guesses to pick the right number.
%

This script makes use of two while loops and a number of if tests, as well as the rand
function to pick the number. Listing 6.1 shows the code, our longest script so far.

LISTING 6.1 The picknum.pl Script

1: #!/usr/ bin/perl -w
2:
3: $top = 0; # topmost number
4: $num = 0; # random number
5: $count = 0; # number of guesses
6: $guess = “”; # actual guess
7: $done = “”; # done guessing?
8:
9: while () {
10: print ‘Enter top number: ‘;
11: chomp($top = <STDIN>);
12:
13: if ($top =~ /\D/) { # non-numbers, also negative numbers
14: if ($top =~ /-\d+/) { # only negative numbers
15: print “Positive numbers only\n”;

152 Day 6

08 0355 ch06 5/9/02 2:34 PM Page 152

Conditionals and Loops 153

6

16: } else {
17: print “Digits only.\n”;
18: }
19: next;
20: } elsif ($top <= 1) {
21: print “Numbers greater than 1 only.\n”;
22: next;
23: }
24:
25: last;
26: }
27:
28: srand;
29: $num = int(rand $top) + 1;
30:
31: while (!$done) {
32: print “Pick a number between 1 and $top: “;
33: chomp($guess = <STDIN>);
34:
35: if ($guess =~ /\D/) {
36: if ($guess =~ /-\d+/) {
37: print “Positive numbers only\n”;
38: } else {
39: print “Digits only.\n”;
40: }
41: next;
42: } elsif ($guess == 0) {
43: print “Numbers greater than 0 only.\n”;
44: } elsif ($guess < $num) {
45: print “Too low!\n”;
46: $count++;
47: } elsif ($guess > $num) {
48: print “Too high!\n”;
49: $count++;
50: } else {
51: print “\a\aCorrect! \n”;
52: $count++;
53: $done = 1;
54: }
55: }
56: print “Congratulations! It took you $count guesses”;
57: print “ to pick the right number.\n”;

We have four parts to this script: initialization, picking the top number, picking the secret
number, and then the guessing process. I’ll skip the initialization this time around—you
know how to assign scalar variables by now.

LISTING 6.1 continued

08 0355 ch06 5/9/02 2:34 PM Page 153

Lines 9 through 26 contain a while loop for picking the highest number the secret number
could be. This is an infinite while loop, like you’ve seen before. In this loop we have
two tests: one, to make sure you’re entering only digits, and the second to make sure the
digits you’re entering are greater than 1.

The first test, in lines 13 through 20, is for all entries that are not digits, for example, a
or 4a. It will also, however, catch negative numbers—-4, for example—because the dash
character is considered a nondigit. You could just have one error message for all these
cases (“no digits or negative numbers, please”), or we could separate out those cases and
provide one error message for negative numbers and one for actual nondigits. That’s what
we’ve done here. If the value of $top triggers the test in line 13, we then do an additional
test in line 14. Does $top contain a dash followed by one or more digits? If so, we print
the message in line 15. If not, $top contains some plain nondigit data, and we print the
message in line 17. In either case we need different input, so we call next in line 19.

You might wonder, why put the test for the dash in line 14 inside the block for the previous
test—why not use a nested if, like this:

if ($top =~ /\D/) { # non-numbers
print “Digits only.\n”;
next;

} elsif ($top =~ /-\d+/) { # only negative numbers
print “Positive numbers only\n”;
next;

} elsif ($top == 0) {
...

You have to work through the logic of things, here. If you enter an a as input, the first test
triggers, Digits only is printed, next is called, and the loop repeats. So far, so good.
What happens if you enter as input -4? The first test triggers because the dash character
is a nondigit. Digits only is printed, and the loop repeats. The second test, the one for
negative numbers, never gets called at all.

Okay, so you could put the dash test first:

if ($top =~ /-\d+/) { # only negative numbers
print “Positive numbers only\n”;
next;

} elsif ($top =~ /\D/) { # non-numbers
print “Digits only.\n”;
next;

}

This actually works just fine—the first test traps for negative numbers with the dash, and
the second traps for other nondigits with \D. So, why not do it this way in picknum.pl?
You have already seen a number of examples of simple nested if statements; the one
starting in line 20 is slightly more complex, logic-wise, and demonstrates the sorts of
ifs-within-ifs we’ll be working more with as the book progresses.

154 Day 6

08 0355 ch06 5/9/02 2:34 PM Page 154

Conditionals and Loops 155

6

The second main test in this while loop checks to make sure that the digit you’ve
entered is not zero or one. Why do we care? The goal of the problem is to pick a number
between 1 and X, where X is your topmost number. You can’t have 0 as your topmost
number for obvious reasons—its less than 1. You could use 1, technically, although picking
a number between 1 and 1 makes for a really boring game. This test makes sure that your
topmost number will be at least 2 so that the game holds some interest.

Finally, after these two tests, we presumably have an acceptable top number, and at line
25 we can break out of the infinite while loop with a call to last.

With a top number in hand, in lines 28 and 29 we generate the secret number between
0 and the top using the srand and rand built-in functions. The srand function, with no
arguments, is used to seed the random-number generator with the current time, so that
we’ll get different numbers each time we run the script (otherwise it would be a very
boring game indeed). The rand function generates a random number between 0 and an
argument, here, our $top. We’ll truncate that number to an integer, add 1 to it to make
sure we don’t have zeros and that occasionally a number will be the same as the top, and
store that number in $num for safekeeping.

Lines 31 through 55 are while loops to keep track of the guesses. A couple of things are
going on here. The most obvious is a big nested if containing a whole lot of tests to see
if the guess is the right kind of data, and if so, if it’s the right number. But before we get
to that, there’s also a secondary test here for the loop itself in line 31 that uses a scalar
variable called $done.

Up until this point when we had input to verify I used an infinite while loop, got some
input, and if the input was right or if we had the correct amount of input, I just used a
last to break out of the while. This is another way to do the same thing: use a variable
to keep track of whether the input is correct or not, and use the status of that variable as
the test.

In this case, the variable we’re using is $done, and at the start of the script its been ini-
tialized to 0. As this while loop starts at line 31 the test is !$done (“not done”), which
evaluates to true. Each test inside the while loop is tested, and if any of those tests are
true, an error message is printed. But then we don’t need any next or last commands;
the while loop can simply complete normally. At the end of the loop $done is still 0;
when the while loop restarts !$done is still false, and the whole thing starts over again.

The only time anything changes is if every test comes out false, if the guess is correct,
and the last block in the nested if in lines 50 through 54 is executed. Then $done is set
to 1 in line 53, the loop completes, and starts one more time. This time, however, when
!$done is tested, it will be false, and the block will not execute at all.

08 0355 ch06 5/9/02 2:34 PM Page 155

Which method is better—infinite loops and next/last statements, or a roving $done
variable? It’s all a matter of style and what looks or reads better to you.

Let’s move onto the tests themselves in this big nested if in lines 30 through 44. Here
we test the value of $guess for five things:

• Nondigit characters (lines 35 through 41)

• Negative numbers. This test is part of the nondigit character test in lines 36 and 37

• To make sure the guess is a number greater than 0 (line 42).

• To see if the guess is less than the secret number (line 44), in which case we print,
“Too low!”

• To see if the guess is greater than the secret number (line 47), in which case we print,
“Too high!”

If the guess is neither too low nor too high and is a valid number, then it must be the right
number, so we beep twice (that’s what the \a escape is for), Perl prints a congratulatory
message, and the script exits.

As the user is guessing the numbers, we also keep track of the number of guesses with a
$count variable. We only want to count a guess if it’s a valid number, however, so we
only increment $count in the three valid number cases. $count is then printed at the end
as part of the congratulatory message.

Iteration with foreach and for Loops
while loops provide a general way to repeat a block of code—that block will just keep
executing until some test is met. The for loop, a second form of loop, is a slightly different
approach to the same problem. With for loops, the loop is executed a specific number of
times, and then stops. This is sometimes called iteration because the focus is on the specific
number of loops as opposed to the more vague “loop until true” that the while provides.

In just about every case, you could write a while loop to do iteration, or you could write
a for loop to do the same thing as a while. But some tasks lend themselves better to one
form or another, and so we have multiple kinds of loops.

Perl provides two for loops: a foreach that enables a block to be repeated for each element
in a list, and a more general-purpose for loop.

foreach
You’ve already seen foreach as used to iterate over lists and over the keys in a hash. Here
are the specifics of how it’s used: The foreach loop takes a list as an argument—for

156 Day 6

08 0355 ch06 5/9/02 2:34 PM Page 156

Conditionals and Loops 157

6

example, a range, or a list of keys in a hash—and executes a block of statements for each
element in the list. It also takes a temporary scalar variable that gets assigned to each
element in the list in turn.

Here’s a simple foreach loop that prints the number of the counter five times:

foreach $loop (1 .. 5) {
print “loop $loop\n”;

}

Here the range operator .. creates a list of numbers 1 to 5, and the foreach loop works
through that list, assigning each number to the $loop variable.

Probably the most common use for foreach loops is for iterating over actual lists, for
example, to print out the keys and values of a hash, as you learned yesterday:

foreach $key (sort keys %hashname) {
print “Key: $key Value: $hashname{$key}\n”;

}

You’ll note that I haven’t initialized the $key variable here (or the $loop variable, earlier).
That’s because the variable after the foreach and before the list is a local variable to the
loop—if it doesn’t exist prior to the loop, it’ll stop existing after the loop. If it does exist
prior to the loop, the foreach will just use it as a temporary variable, and then restore its
original value when you’re done looping. You can think of the foreach variable as a sort
of scratch variable used solely to store elements, which is then thrown away when the
loop’s done.

One other important thing to note about the $key variable; it does not just contain the
value of the current list element, it is the actual list element. If you change the value of
$key inside the block, then you will also be changing that list element, and therefore
the list (or array or hash) itself. In programmer parlance: the $key variable is passed by
reference. Here’s a short Perl script that demonstrates this:

#!/usr/local/bin/perl -w

@ones = (1,1,1,1,1);
$switch = 0;

foreach $key (@ones) {
if (!$switch) {

$switch = 1;
$key = 2;

} else {$switch = 0};
}

print “@ones\n”;

08 0355 ch06 5/9/02 2:34 PM Page 157

Initially in this script the @ones array is assigned to (1,1,1,1,1). When the script finishes
and the array is printed at the end, the @ones array contains (2 1 2 1 2). The $switch
variable alternates between 0 and 1 with each pass of the loop, so that every other list
element is changed. But the line inside the block where $key is assigned to 2 is where the
list is changed. It’s the variable $key that is assigned to 2, but $key refers to the current list
element inside @ones, so that list element is changed as well. Even though $key changes
every time the loop turns, and then vanishes altogether when the loop is complete, the
result of changing it still lingers.

If you want to modify the actual value of $key without also affecting the list it came
from, you can always copy it to a temporary variable:

foreach $key (@array) {
$temp = $key;
$temp = “blah blah blah”; # will not change the list
…

“

for
For a more general-purpose iterative loop that isn’t necessarily tied to list elements, you
can use a for loop. Perl borrowed the syntax of this loop from the C language, so if
you’re familiar with that language this will look the same.

The for loop in Perl has four parts:

• An initializer statement

• An ending test

• A change or increment statement

• The loop block

The for loop looks like this:

for (init; test; change) {
statements

}

Using these statements, then, the for loop works like this:

• The first time through, the initializer statement is executed. Often this statement
sets a counter such as $i or $j to 0.

• The test is tested. The test often compares the counter against some value, for
example $i < $#array or $i == 0. If the test is false, the loop exits and none of
the statements inside the block are executed.

• If the test is true, the block is executed.

158 Day 6

08 0355 ch06 5/9/02 2:34 PM Page 158

Conditionals and Loops 159

6

• After all the statements in the block have executed, the change or increment
expression is executed. This statement usually brings the loop one iteration closer
to completion, for example, to increment or decrement the counter ($i++).

• The test is tried again, and again, as the loop repeats.

So, for example, to loop five times you might use a for loop like this:

for ($i = 1; $i <= 5; $i++) {
print “loop $i\n”;

}

The snippet of code produces this output:

loop 1
loop 2
loop 3
loop 4
loop 5

You could, of course, have written this loop as a while:

$i = 1;
while ($i <= 5) {

print “loop $i\n”;
$i++;

}

The two loops would both loop five times, but it might take some searching in the while
to figure that out and it takes more lines to do it (or at least it does the way I formatted it
here). The for loop puts it all up front—where to start, where to stop, and the steps to
take in between. Whether you use a for loop or a while loop depends on the situation
and what you feel more comfortable with at the time.

Usually, but not always, the for loop uses a temporary counter variable (commonly
called $i or $j) to keep track of the iterations. This is very common, but it isn’t required.
Depending on the iteration you’re doing, you can initialize, test, and change anything
you want in the top part of the for. For example, here’s a somewhat pointless for loop
that creates an array, and then destroys it, backwards, printing the number of remaining
and the array itself as it goes:

for (@things = (33,44,55,66); @things > 0; pop @things) {
print scalar @things, “ elements left in @things\n”;

}

I can’t imagine what sort of Perl program would need this kind of loop, and because it
iterates over a list it would probably make more sense as a foreach. The idea to grasp
here is that as long as you have the three parts: a start point, an end point, and something
to step you between the two, you have a for loop.

08 0355 ch06 5/9/02 2:34 PM Page 159

But wait. You don’t even need all three. You can leave off the initialization, the test, the
change, or all three, in the top part of the for. You still need to include the semicolons
between them, however. So, to create an infinite for loop, you might leave off the test
statement:

for ($i = 0; ; $i++) {
statements

}

Or just this:

for (;;) {
statements

}

The first one initializes the counter and just increments it each time; there’s no test so
there’s no end point. The second doesn’t even use a counter or have a test; it just loops.
You’ll need to do something inside these loops (such as a last) to break out of them
when an appropriate condition is met.

Want to use multiple counters? You can do that, too; by separating the counter expressions
with commas:

for ($i=0, $j=1; $i < 10, $j < $total; $i++, $j++) {
statements

}

In this case, the for loop will exit if either one of the tests returns false.

Controlling Loops
With both while and for loops, the tests at the top are there to stop the loop when some
sort of condition has been reached. And, in many loops, it’ll be the test that stops the loop.
When you start working with more complex loops, however, or play with infinite loops
as I have in some of the previous examples we’ve looked at, chances are good there will
be some point in the middle of a loop block where you might want to stop looping, stop
executing, or somehow control the actual execution of the loop itself. That’s where loop
controls come in.

Loop controls are simple constructs that are used to change the flow of execution of a
loop. You’ve already seen two of them: next and last, to restart the loop and to break
out of it altogether. In addition, Perl also provides a redo control and labels for loops that
control which loop to break out of with the other keywords.

160 Day 6

08 0355 ch06 5/9/02 2:34 PM Page 160

Conditionals and Loops 161

6

last, next, and redo
The last, next, and redo keywords are the simplest of loop controls; when one of these
occurs inside a while or a for, Perl will interrupt the normal execution of the loop in
some way.

You can use all three of these keywords by themselves, in which case they refer to the
innermost loop, or they can be used with labels to refer to specific loops (more about
labels later). Here’s what happens with each keyword:

• last causes the loop to stop looping immediately (like break in C). Execution con-
tinues onto the next part of the script.

• next stops the execution of the current iteration of the loop, goes back to the top,
and starts the next iteration with the test. It’s like continue in C. The next keyword
is a convenient way of skipping the code in the rest of the block if some condition
was met.

• redo stops execution of the current loop iteration and goes back to the top again.
The difference between redo and next is that next restarts the loop by reevaluating
the test (and executing the change statement, for for loops); redo just restarts the
block from the topmost statement without testing or incrementing anything.

So, for example, let’s reexamine the first while loop in picknum.pl, our number picker
game:

while () {
print ‘Enter top number: ‘;
chomp($top = <STDIN>);

if ($top =~ /\D/) { # non-numbers, also negative numbers
if ($top =~ /-\d+/) { # only negative numbers

print “Positive numbers only\n”;
} else {

print “Digits only.\n”;
}
next;

} elsif ($top <= 1) {
print “Numbers greater than 1 only.\n”;
next;

}
last;

}

As I mentioned in the section on the do loop, you cannot use any loop con-
trols inside do loops, or label those loops. Rewrite the loop to use while,
until, for, or foreach instead.

Note

08 0355 ch06 5/9/02 2:34 PM Page 161

Because the familiar while loop in this example is an infinite loop, we have to use some
sort of loop control expression to break out of it when some condition has been met—in
this case, when an actual number has been met. As you learned, those tests are that its an
actual number, and that its greater than 0. In each of these if statements, if the number
meets that criteria, we use next to immediately skip over the rest of the code in the block
and go back up to the top of the loop (if there was a test in that while loop, we’d have
evaluated it again at that point). If the number entered ends up passing both tests, then
that number is acceptable, and we can break out of the loop altogether using last.

Loop controls are generally only necessary where you’re checking for some special-case
condition that would interrupt the normal flow of the loop or, in this case, to break out of
an infinite loop.

Labeling Loops
Loop controls, by themselves, exit out of the closest enclosing block. Sometimes, however,
you might have a situation with multiple nested loops, where some condition might occur
that would cause you to want to exit out of several loops, or to jump around inside different
nested loops. For just this reason, you can label specific loops, and then use last, next,
and redo to jump to those outer loops.

Labels appear at the start of a loop, and are conventionally in all caps. This convention
keeps them from getting confused with Perl keywords. Use a colon to separate the label
name from the loop:

LABEL: while (test) {
#...

}

Then, inside the loop, use last, next, or redo with the name of the label:

LABEL: while (test) {
#...
while (test2) {

...
if (test) {

last LABEL;
}

}
}

The labels can be anything you want to call them, with two exceptions: BEGIN and END

are reserved labels that are used for package construction and deconstruction. You’ll
learn more about this on Day 13, “Scope, Modules, and Importing Code.”

Here’s a simple example without labels. The outer while loop controls the repetition of
the script itself; tests to see if the variable $again is equal to the string ‘y’. The inner

162 Day 6

08 0355 ch06 5/9/02 2:34 PM Page 162

Conditionals and Loops 163

6

while loop is an infinite loop that tests the input and repeats until there is correct input
(I’ve deleted the part of the script that processes that input to do whatever this script
might be doing).

$again = ‘y’;

while ($again eq ‘y’) {
while () {

print ‘Enter the number: ‘;
chomp($num = <STDIN>);
if ($num !~ /\d+/) { # test for strings

print “No strings. Numbers only please..\n”;
next;

}
more tests
last;

}
print ‘Try another number (y/n)?: ‘;
chomp ($again = <STDIN>);

}

In this example, the next and the last command in the inner loop will exit the nearest
enclosing loop—the infinite loop where you’re entering the number and testing the input
for strings. They will not exit out of the outer loop. The only thing that will exit the outer
loop is if $again gets set to ‘n’ at the end of the outer loop (those last two lines prompt
for the appropriate answer). Note also that $again has to be initialized to ‘y’ for the
loop to start looping at all.

Say you wanted to add behavior to this simple script so that if you typed exit anywhere
Perl would exit all the loops and end the script. You might label the outer loop like this:

OUTER: while ($again eq ‘y’) {
etc.

}

Then, inside both the outer and inner loops, you’d use last with the name of the label,
like this:

OUTER: while ($again eq ‘y’) {
while () {

print ‘Enter the number: ‘;
chomp($num = <STDIN>);
if ($num eq “exit”) { # quit! exit! gone!

last OUTER;
}
etc.

}
more...
}

08 0355 ch06 5/9/02 2:34 PM Page 163

In this case, if the user typed exit at the ‘Enter the number’ prompt, the last com-
mand breaks out all the way to the loop labeled OUTER, which in this case is the outer
loop.

Note that the label applies to the loop itself, and not to a specific position in the script
(in fact, given that a label jumps outside a loop, it actually goes to the next line past that
labeled loop, not to the loop itself). Don’t think of labeled loops as gotos (if you know
what a goto is); think of them more as handles attached to the loop to which you can jump.

Using the $_ (default) Variable
Congratulations! You now know (just about) everything you need to know about loops in
Perl (and anything else you’re curious about, you can find out in “Going Deeper.”) Let’s
finish up with two general topics that we’ll use quite a lot throughout the rest of this book:
the special $_ variable, and the syntax for reading input from files on the Perl command
line.

First, the $_ variable. This is a special variable in Perl that you can think of as being a
default placeholder for scalar values. Lots of different constructs in Perl will use the $_
if you don’t give them a specific scalar variable to deal with; this has the advantage of
making your scripts shorter and more efficient—but sometimes it can make them more
confusing to read.

One use of the $_ variable is in foreach. Remember that the foreach loop takes a tempo-
rary variable in which each element of the list is stored. If you leave off that temporary
variable, Perl will use $_ instead. Then, inside the body of the foreach, you can refer to
$_ to get to that value:

foreach (sort keys %hash) {
print “Key: $_ Value: $hash{$_}\n”;

}

Many functions will also use the value of $_ if you don’t give them any arguments—
print and chomp being prime examples. So, for example if you see what appears to be a
bare print in someone’s script, like this:

print;

Then, mentally add the $_ on the end of it:

print $_;

The $_ variable is very common throughout Perl, so get used to seeing it and remember-
ing the places where it can be used. We’ll look more at the $_ variable in the next section
and quite a lot more on Day 9, “Pattern Matching with Regular Expressions.”

164 Day 6

08 0355 ch06 5/9/02 2:34 PM Page 164

Conditionals and Loops 165

6

Input from Files with while Loops and <>
Over the last three days, you’ve seen a number of examples that read input from the key-
board using <STDIN>. You’ve also used the standard input file handle in both a scalar and
list context, so at this point you should know the difference between input in a scalar
context (line by line) and input in a list context (read until end-of-file).

Getting input from the keyboard, however, is pretty tedious for any amount of input more
than a few lines. That statistics script we worked on yesterday proves it—entering more
than a couple of numbers into the script takes a long time, and if we want to just add to
the existing data, we have to reenter it all each time.

Ideally, then, we’d store the data in a separate file, and then read it in each time the script
executes. There are actually two ways to do this in Perl: one is to open and read a specific
named file from inside your script. I’ve actually reserved an entire lesson for that, which
you’ll work through on Day 15, “Working with Files and I/O.” There is a quicker and
easier way, however, to get data from any random file into your Perl script, which takes
advantage of the Perl command line. That’s the technique I’m going to teach you today.

The core of this technique involves the Perl input operator (<>). You’ve been using that
operator with <STDIN> to get input from the keyboard using the STDIN file handle. When
you use <> without a file handle, however, Perl will get its input from the files you speci-
fy on the command line. <> means, effectively, “take all the filenames specified on the
command line, open them all, concatenate them all together, and then read them in as if
they were one file.”

Technically, Perl gets the filenames to open and read from a special array
called @ARGV, which contains the filenames or other values specified on the
command line. You could, in fact, set the contents @ARGV yourself. But for
now, assume @ARGV contains, and <> operates on, the filenames from the
command line. More about @ARGV on Day 15, “Working with Files and I/O.”

Note

Here’s an example that will read the input files indicated on the command line, line by
line, and then print each line in turn:

while (defined($in = <>)) {
print “$in”;

}

Say you saved that script in a file called echofile.pl. You’d then call it on the command
line with the name of the file echo, like this:

% echofile.pl afile.txt

08 0355 ch06 5/9/02 2:34 PM Page 165

If you wanted to echo multiple files, just stick all the filenames on the command line:

% echofile.pl afile.txt anotherfile.txt filethree.txt

Perl will happily open all those files read and print them one after the other.

166 Day 6

If you’re using MacPerl, chances are good you don’t have a command line
and you’re feeling somewhat confused. But fear not, you can do the same
thing by saving your Perl script as a “droplet.” There’s a menu in the Save
dialog that enables you to do this (click the Type menu to see it). When you
save your script as a droplet, you can then drag and drop your files onto
your script icon, and MacPerl will launch and read those files into the script.

Note

Let’s look at that while loop from the inside out so you can figure out what’s going on
here. The $in = <> part will look familiar; that’s similar to reading a line from <STDIN>
in scalar context. And you might remember from Day 4 that the defined function returns
true or false whether its argument is defined or not (that is, it doesn’t contain the unde-
fined value). Here, however, defined is used to halt the loop when we get to the end of
the file. For each line read using <> we’ll get a valid value up until the end of the file,
and then <> returns undefined. $in gets undefined as well, and that triggers the defined
function to return false, and the while loop to stop.

Like <STDIN>, the empty angle brackets can be used in either a scalar or a list context. In
scalar context, they will read the input files line-by-line; in a list context, each line of the
file (or of multiple files) will be an element in the list.

An even shorter version of that echofiles script is one that takes advantage of the $_
variable. You can use $_ to replace the $in variable we used in this script, and then dis-
pense with the temporary variable and the defined function altogether, like this:

while (<>) {
print;

}

In this case, the while loop will read the input files line-by-line, setting the value of the
$_ variable to each line in turn, and stop when <> is undefined without you having to test
for it.

Note, however, that it’s the while loop that knows enough to assign each line to $_ in
turn and to test for the end of file—not the <> characters. You cannot, for example, do
chomp(<>); that function call will not save the current line into $_. Only the while loop
will do that.

08 0355 ch06 5/9/02 2:34 PM Page 166

Conditionals and Loops 167

6

This mechanism for getting data into a Perl script is extremely common; in fact, many
Perl scripts will have these loops right up at the top of the script to read the input files
into an array or hash.

Here’s another example of using <> and the $_ variable in place of getting input from the
standard input. Yesterday, we worked through a script that prompted the user for a set of
names, and then stored those names in an array. The input loop for that script looked like
this:

while () {
print ‘Enter a name (first and last): ‘;
chomp($in = <STDIN>);
if ($in eq ‘’) { last; }

($fn, $ln) = split(‘ ‘, $in);
$names{$ln} = $fn;

}

To read those names from an input file, first we can replace the prompt, the call to
<STDIN> and the test for blank input:

while (defined($in = <>)) {
chomp($in);
($fn, $ln) = split(“ “, $in);
$names{$ln} = $fn;

}

Then, we could shorten that further to use the default $_ variable:

while (<>) {
chomp;
($fn, $ln) = split(‘ ‘);
$names{$ln} = $fn;

}

Here, the $_ variable is used to store the input from the file in the while loop test; chomp
uses it to remove the newline, and split uses it as well to have something to split. You’ll
find these sorts of shortcuts very common in Perl scripts.

We could shorten the split even further by leaving off the space argument; split with no
arguments assumes it will break the string in $_ on whitespace without any arguments:

($fn, $ln) = split;

Going Deeper
As with the previous lessons, I still haven’t told you everything you might want to know
about conditionals and loops. In this section, I’ll summarize some of these other features.
Feel free to explore these features of the Perl language on your own.

08 0355 ch06 5/9/02 2:34 PM Page 167

Conditional and Loop Modifiers
The conditionals and loops you learned about in today’s lesson are all complex statements—
they operate on blocks of other statements, and don’t require a semicolon at the end of
the line. However, Perl also includes a set of modifiers to simple statements that can be
used to form conditional and loop-like expressions. Sometimes these modifiers can provide
shorter versions of simple conditionals and loops; other times they can help you express
the logic of a statement you’re trying to create in Perl that doesn’t quite fit into the tradi-
tional conditionals or loops.

Each of the modifiers follows a simple statement, just before the semicolon. There are
four of them, which mimic the more complex versions: if, unless, while, and until.
Here are some examples:

print “$value” if ($value < 10);
$z = $x / $y if ($y > 0);
$i++ while ($i < 10);
print $value until ($value++ > $maxvalue)

In the conditional case, the front part of the statement will only execute if the test is true
(or, with unless, if it’s false). With the while and until loops, the statement will repeat
until the test is false (or true, in the case of until).

Note that loops created with while and until modifiers are not the same as regular while
and until loops; you cannot control them with loop control statements like next or
last, nor can you label them.

The do loops you learned about earlier in this lesson are actually forms of loop modifiers.
do is actually a function that executes a block of code, and you can use while and until

to repeat that block of code some number of times based on a test (you’ll learn more
about do on Day 13). This is why you cannot use loop controls in do loops either.

Using continue blocks
The continue block is an optional block of statements after a loop that gets executed if
the block finished executing, or if the loop was interrupted using next. The continue
block is not executed if the loop was interrupted using last or redo. After the continue
block is executed, Perl continues with the next iteration of the loop.

You might use a continue block to collect code that would otherwise be repeated for
several different loop-exit situations, to change variables in those situations, or do some
kind of cleaning up from an error that resulted in the loop exiting in the first place. It
looks like this (where the while loop here could be a for or a foreach; any loop will do):

while (test) {
statements
if (anothertest) {

168 Day 6

08 0355 ch06 5/9/02 2:34 PM Page 168

Conditionals and Loops 169

6

error!
next; # skip down to continue

}
more statements

} continue {
cleanup code from error
after this is done, go back to top of loop

}

Constructing switch or case Statements
Perl, remarkably, does not have syntax for an explicit switch statement. A switch, some-
times known as a case depending on your favorite language, is a construct that enables
you to test a value and get a result in a much more compact, often more efficient, and
easier-to-read manner than a whole lot of nested ifs. However, with labeled blocks, do
loops, and logical expressions, you can build something that looks at least a little bit like
a switch. Add pattern matching to it, and you get a Perl-like switch that works pretty well.

For example, here’s a simple switch-like thing in Perl:

SWITCH: {
$a eq “one” && do {

$a = 1;
last SWITCH;

};
$a eq “two” && do {

$a = 2;
last SWITCH;

};
$a eq “three” && do {

$a = 3;
last SWITCH;
};

and so on
}

On Day 9, you’ll learn a way to make that even shorter with patterns.

Summary
Conditionals and loops are the switches and dials of your Perl script. Without them, you
can get stuff done, but it’ll be the same stuff each time and your script will turn out pret-
ty dull. Conditionals and loops allow you to make decisions and change what your script
does based on different input or different situations. Conditional statements are those that
branch to different blocks of Perl code depending on whether a test is true or false. You
learned about the if, the if...else, and the if...elsif constructs for building conditionals,
as well as the conditional operator ?..:, which can be nested in other expressions, and the
use of the logical operators (&&, ||, and and or) as conditionals.

08 0355 ch06 5/9/02 2:34 PM Page 169

Next, we moved onto loops: specifically the while loops, which repeat a block of state-
ments an unidentified number of times based on a test. There are four loops we covered
here: while, until, do...while, and do...until.

The second kind of loop is the for loop, which also repeats a block of statements, but
emphasizes the number of times aspect of the loop much more. You learned about the
foreach loop for working through elements in a list, and the more general-purpose for
loop.

You then learned about loop controls, which allow you to stop executing a block and skip
to some part of a loop: next, last, and redo, as well as using labels to control jumping
around inside nested loops.

And finally, we ended this lesson as we did the previous two: with more notes about input,
including using the <> syntax to read from files and using the $_ variable as a shortcut in
many popular operations.

After this lesson, you’ve learned the core of the Perl language, and we’ll explore some
longer examples tomorrow to finish up the week. But don’t stop now—next week’s
lessons will introduce you to some of the most powerful and exciting features of Perl,
including various ways of processing lists and pattern matching.

The functions you learned about in this lesson include

• do, a function that behaves like loop with a while or until at the end of it.

• rand generates a random number between 0 and its argument

• srand seeds the random number generator used by rand. Without an argument,
srand uses the time as the seed.

Q&A
Q. It seems to me that for loops could be written as while loops, and vice versa.

A. Yup, they sure could. If you wanted to strip all the constructs out of Perl that dupli-
cate the behavior of other constructs, this could be one place where either one or
the other would work. But there are some problems that are more easily thought of
as number-of-times loops, as opposed to repeat-until-done loops. And being able to
code the way you think is one of Perl’s best features.

Q. I tried to use continue to break out of a loop, and Perl spewed errors at me.
What did I do wrong?

A. C programmer, eh? You forgot that continue isn’t used to break out of a loop in
Perl (or you skipped that section). The equivalent of continue in Perl is next. Use
continue as an optional block of statements to execute at the end of a block (see
“Going Deeper.”)

170 Day 6

08 0355 ch06 5/9/02 2:34 PM Page 170

Conditionals and Loops 171

6

Q. I looked at your two examples of reading input from files, the one that uses
$_ and the one that doesn’t. The former is shorter, yes, but it’s really hard to
figure out what’s going on if you don’t know which operations are using $_.
I’d rather use actual variables and avoid $_. I think it’s worth a few extra
characters if a script is more readable that way.

A. That’s definitely a philosophy to follow, and there are many Perl programmers that
do follow that philosophy. And using the $_ variable willy-nilly to shorten a script
can definitely make it much harder to read. But in some cases—reading input from
<> being one of them—the use of $_ provides a common idiom in the language
that when you get used to seems reasonable and easy to understand. If you have to
read or modify other people’s Perl scripts, chances are good you’ll run into myste-
rious $_ behavior at some point.

Be aware of $_, use it where it’s most appropriate, or avoid it if you feel it hurts
readability. That’s your choice.

Workshop
The workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience in using what you’ve learned. Try
and understand the quiz and exercise answers before you go on to tomorrow’s lesson.

Quiz
1. What is a block? What can you put inside a block?

2. What’s the difference between an if and an unless?

3. What makes a while loop stop looping?

4. Why are do loops different from while or until loops?

5. What are the three parts of the part of the for loop in parentheses, and what do
they do?

6. Define the differences between next, last, and redo.

7. Name three situations in which the $_ variable can be used.

8. How does <> differ from <STDIN>?

Exercises
1. Write a script that prompts you for two numbers. Test to make sure that both numbers

entered are actually numbers, and that the second number is not zero. If both num-
bers meet these requirements, divide the first by the second and print the result.

2. Rewrite #1 to include a test for negative numbers.

08 0355 ch06 5/9/02 2:34 PM Page 171

3. BUG BUSTER: What’s wrong with this script (Hint: there might be more than one
error)?
if ($val == 4) then { print $val; }
elseif ($val > 4) { print “more than 4”; }

4. BUG BUSTER: What’s wrong with this script (Hint: there might be more than one
error)?
for ($i = 0, $i < $max, $i++) {

$vals[$i] = “”;
}

5. BUG BUSTER: How about this one?
while ($i < $max) {

$vals[$i] = 0;
}

6. Rewrite the names.pl script from yesterday to read from a file of names instead of
from the standard input.

Answers
Here are the answers to the Workshop questions in the previous section.

Quiz Answers
1. A block is a group of other Perl statements (which can include other blocks) sur-

rounded by curly braces ({}). Blocks are most commonly used in conjunction with
conditionals and loops, but can also be used on their own (bare blocks).

2. The difference between and if and an unless is in the test: an if statement executes
its block if the test returns true; unless executes is block if the test returns false.

3. The while loop stops looping when its test returns false. You can also break out of a
while loop, or any loop, with last.

4. do loops are different from while or until loops in several ways. First, their blocks
are executed before their tests, which allows you to execute statements at least once
(for while and until, the block might not execute at all). Secondly, because the do
loop is not actually really a loop (it’s a function with a modifier), you cannot use
loop controls inside it like last or next.

5. The three parts of the for loop in parentheses are

• A loop counter initialization expression such as $i = 0

• A test to determine how many times the loop will iterate, for example
$i < $max

• An increment expression to bring the loop counter closer to the test, for
example, $i++.

172 Day 6

08 0355 ch06 5/9/02 2:34 PM Page 172

Conditionals and Loops 173

6

6. next, last, and redo are all loop control expressions. next will stop executing the
current block and start the loop at the top, including executing the test in a for or
a while loop. redo is the same as next, except it restarts the block from the first
statement in that block without executing the loop control test. last exits the loop
altogether without retesting or reexecuting anything.

7. Here are a number of situations that default to the $_ if a variable isn’t indicated:

• while (<>) will read each line into $_ separately

• chomp will remove the newline from $_

• print will print $_

• foreach will use $_ as the temporary variable

8. <> is used to input the contents of files specified on the command line (and as stored
in @ARGV). <STDIN> is used to input data from standard input (usually the keyboard).

Exercise Answers
1. Here’s one answer:

#!/usr/local/bin/perl -w

$num1 = 0;
$num2 = 0;

while () {
print ‘Enter a number: ‘;
chomp($num1 = <STDIN>);
print ‘Enter another number: ‘;
chomp($num2 = <STDIN>);

if ($num1 =~ /\D/ or $num2 =~ /\D/) {
print “Numbers only, please.\n”;
next;

} elsif ($num2 == 0) {
print “Second number cannot be 0!\n”;
next;

} else { last; }
}

print “The result of dividing $num1 by $num2 is “;
printf(“%.2f\n”, $num1 / $num2);

2. Here’s one answer:
#!/usr/local/bin/perl -w

$num1 = 0;
$num2 = 0;

while () {
print ‘Enter a number: ‘;

08 0355 ch06 5/9/02 2:34 PM Page 173

chomp($num1 = <STDIN>);
print ‘Enter another number: ‘;
chomp($num2 = <STDIN>);

if ($num1 =~ /\D/ or $num2 =~ /\D/) { # contains non-digit or -
if ($num1 =~ /-\d+/ or $num2 =~ /-\d+/) { # contains -

print “Positive numbers only.\n”;
next;

} else { # contains non digit, not -
print “Digits only.\n”;
next;

}
} elsif ($num2 == 0) {

print “Second number cannot be 0!\n”;
next;

} else { last; }
}

print “The result of dividing $num1 by $num2 is “;
printf(“%.2f\n”, $num1 / $num2);

3. There are two errors: then is not a Perl keyword; leave it out. And elseif is also
not a valid Perl keyword; use elsif instead.

4. The expressions inside the for control expression should be separated with semi-
colons, not commas.

5. Syntactically, that loop is correct, but there’s no way it’ll ever exit—there’s no
increment for $i inside the body of the loop.

6. Here’s one answer:

#!/usr/local/bin/perl -w

%names = (); # hash of names
$fn = ‘’; # first name
$ln = ‘’; # last name

while (<>) {
chomp;
($fn, $ln) = split;
$names{$ln} = $fn;

}

foreach $lastname (sort keys %names) {
print “$lastname, $names{$lastname}\n”;

}

174 Day 6

08 0355 ch06 5/9/02 2:34 PM Page 174

DAY 7

WEEK 1

Exploring a Few Longer
Examples

To finish up the week, let’s take this day to explore some more examples that
make use of the techniques you’ve learned so far. We won’t spend a lot of time
on background in this lesson, nor will you have any quizzes or exercises to
work through at the end. Consider this a brief pause to look at more bits of
code in further detail. We’ll have three of these example lessons, one after each
six or so lessons, to cement what you’ve learned.

Today we’ll look at three Perl scripts:

• A new version of stats.pl with a more complex histogram

• A script to spell numbers

• A script to convert text files into simple Web pages

09 0355 ch07 5/9/02 2:34 PM Page 175

Statistics with a Better Histogram
Here’s yet another version of the statistics program we’ve been working with throughout
the last week. Yesterday’s version of the statistics program included a horizontal his-
togram that looked like this:

Frequency of Values:
1 | *****
2 | *************
3 | *******************
4 | ****************
5 | ***********
6 | ****
43 | *
62 | *

For this version, we’ll print a vertical histogram that looks like this:

†††††*
†††††*
†††††*
†††††*
†††††*
†††††*†*
†††††*†*†*
†††††*†*†*†††††††*†††††*†††††*
†††††*†*†*†††*†*†*†††††*†††††*
†††*†*†*†*†††*†*†*†††††*†††††*
†††*†*†*†*†††*†*†*†††††*†††††*
†*†*†*†*†*†*†*†*†*†††††*†††††*††*
†*†*†*†*†*†*†*†*†*††*††*††*††*††*††*††*

†1†2†3†4†5†6†7†8†9†12†23†25†34†37†39†42

This form of histogram is actually much harder to produce than a horizontal histogram;
this version uses two nested for loops and some careful counting for it to come out the
right way.

There’s one other change to this version of stats.pl: it gets its data from a file, rather
than making you enter in all the data at a prompt. As with all the scripts that read data
from a file, you need to specify a data file for this script to use on the command line, as
follows:

% statsfinal.pl data.txt

The data file, here called data.txt, has each of the numbers on individual lines. First,
let’s look closely at the two parts of this script that are different from the last version: the
part that reads in the data file, and the part that prints the histogram.

176 Day 7

09 0355 ch07 5/9/02 2:34 PM Page 176

Exploring a Few Longer Examples 177

7

Listing 7.1 shows the script for our final statistics script. Given how much we’ve been
working with this script up to this point, it should look familiar to you. The parts to con-
centrate on are the input loop in lines 14 through 21, and the code to generate the new
histogram in lines 36 through 49.

LISTING 7.1 The statsfinal.pl Script

1: #!/usr/loczl/bin/perl -w
2:
3: $input = “”; # temporary input
4: @nums = (); # array of numbers;
5: %freq = (); # hash of number frequencies
6: $maxfreq = 0; # maximum frequency
7: $count = 0; # count of numbers
8: $sum = 0; # sum of numbers
9: $avg = 0; # average
10: $med = 0; # median
11: @keys = (); # temp keys
12: $totalspace = 0; # total space across histogram
13:
14: while (defined ($input = <>)) {
15: chomp ($input);
16: $nums[$count] = $input;
17: $freq{$input}++;
18: if ($maxfreq < $freq{$input}) { $maxfreq = $freq{$input} }
19: $count++;
20: $sum += $input;
21: }
22: @nums = sort { $a <=> $b } @nums;
23:
24: $avg = $sum / $count;
25: $med = $nums[$count /2];
26:
27: print “\nTotal count of numbers: $count\n”;
28: print “Total sum of numbers: $sum\n”;
29: print “Minimum number: $nums[0]\n”;
30: print “Maximum number: $nums[$#nums]\n”;
31: printf(“Average (mean): %.2f\n”, $avg);
32: print “Median: $med\n\n”;
33:
34: @keys = sort { $a <=> $b } keys %freq;
35:
36: for ($i = $maxfreq; $i > 0; $i--) {
37: foreach $num (@keys) {
38: $space = (length $num);
39: if ($freq{$num} >= $i) {
40: print((“ “ x $space) . “*”);
41: } else {
42: print “ “ x (($space) + 1);
43: }

09 0355 ch07 5/9/02 2:34 PM Page 177

LISTING 7.1 continued

44: if ($i == $maxfreq) { $totalspace += $space + 1; }
45: }
46: print “\n”;
47: }
48: print “-” x $totalspace;
49: print “\n @keys\n”;

Because you’ve seen the boilerplate code for reading data from files using <>, nothing in
lines 14 through 21 should be too much of a surprise. Note that we read each line (that
is, each number) into the $input variable, and then use that value throughout the block.

Why not use $_? We could have done that here, but a lot of the statements in this block
need an actual variable reference (they don’t default to $_). Using $_ for that reference
would have made things only very slightly smaller, but would have decreased the readabil-
ity of the example, and in this case, it was a better idea to err on the side of readability.

178 Day 7

A point to remember throughout this book as I explain more and more
strange and obscure bits of Perl—just because Perl uses a particular feature
doesn’t mean you have to use it. Consider the tradeoffs between creating
very small code that no one except a Perl wizard can decipher, versus longer,
maybe less efficient, but more readable code. Consider it particularly well
done if someone else can read your Perl code further down the line.

Note

Anyhow, other than reading the input from a file instead of standard input, much of the
while block is the same as it was in yesterday’s version of this script. The one other dif-
ference is the addition in line 18 to calculate the $maxfreq value. This value is the maxi-
mum frequency of any number—that is, the number of times the most frequent number
appears in the data set. We’ll use this value later to determine the overall height of the
histogram. Here, all we do is compare the current maximum frequency to the current fre-
quency, and change $maxfreq if the new one is larger.

Farther down in the script, after we’ve sorted, summed, and printed, we get to the his-
togram part of the script, in the daunting set of loops in lines 36 through 49.

Building a horizontal histogram like we did yesterday is much easier than building one
vertically. With the horizontal histogram, you can just loop through the keys in the %freq
hash and print out the appropriate number of asterisks (plus some minor formatting). For
the vertical histogram, we need to keep track of the overall layout much more closely, as
each line we draw doesn’t have any direct relationship to any specific key or value in the
hash. Also, we still must keep track of the spaces for formatting.

09 0355 ch07 5/9/02 2:34 PM Page 178

Exploring a Few Longer Examples 179

7

We’ll keep track of the histogram using two loops. The outer loop, a for loop, controls
the number of lines to print, that is, the overall height from top to bottom. The second
loop is a foreach loop that moves from left to right within each line, printing either an
asterisk or a space. With two nested loops (the for and the foreach), we can go from
left to right and line to line, with both the height and the width of the histogram deter-
mined by the actual values in the data.

First, we extract a sorted list of keys out of the %freq hash in line 34. This is mostly for
convenience and to make the for loops coming up at least a little less complex.

Line 36 starts our outer for loop. The overall height of the histogram is determined by
the most frequent value in the data set. Here’s where we make use of that $maxfreq vari-
able we calculated when the data is read in. This outer for loop starts at the maximum
frequency and works down to 0, printing as many lines as it takes.

The inner loop prints each line, looping over the values in the data set (the keys from the
%freq data set). For each line, we print either a space or a *, depending on whether the
given value’s frequency should start showing up on the current line. We also keep track
of formatting, to add more space for those values that have multiple digits (the spacing
for a value of 333 will be different from that for 1).

Line by line, starting at line 38 here’s what we’re doing:

• In line 38, we calculate the space this column will need, based on the number of
digits in the current value.

• Lines 39 and 40 print a * if the * is warranted. The test here is to see if the current
value we’re looking at is as frequent as our vertical position in the histogram (fre-
quency greater or equal to the current value of $i). This way, at the start of the his-
togram we’ll get fewer asterisks, and as we progress downward and $i gets lower,
more values will need asterisks. Note that the print statement in line 40 prints
both the asterisk and enough spaces to space it out to the correct width.

• If there’s no * to be printed in this line, we print the right amount of filler space:
space for the column, plus one extra.

• Line 44 is a puzzler. What’s this here for? This line is here to calculate the total width
of the histogram, overall, based on the lengths of all the digits in the data set with
spaces in between them all. We’ll need this in line 48 when we print a divider line,
but because we’re already in the midst of a loop here, I figured I’d get this calcula-
tion now instead of waiting until then. What this loop does is if $i is equal to
$maxfreq—that is, if we’re on the very first line of the outer for loop—the loop adds
the current amount of space to the $totalspace variable to get the maximum width.

• And, finally, in line 46, when we’re done with a line of data, we print a newline to
restart the next line at the appropriate spot.

09 0355 ch07 5/9/02 2:34 PM Page 179

With the columns of the histogram printed, all we’ve got left are the labels on the bot-
tom. Here we’ll print an appropriate number of hyphens to mimic a horizontal line (using
the value we calculated for $totalspace), and then print the set of keys, interpolated
inside a string, which prints all the elements in @keys with spaces between them.

Complicated nested loops such as this are particularly hard to follow, and sometimes a
description like the one I just gave you isn’t enough. If you’re still really bewildered
about how this example worked, consider working through it step by step, loop by loop,
making sure you understand the current values of all the variables and how they relate to
each other.

A Number Speller
This second example isn’t particularly useful for the real world, but does show some
more complex uses of ifs, whiles, and various tests. This script asks you to enter a
single-digit number (and has the usual verification tests to make sure you have indeed
entered a single-digit number), and then it spells out that number for you—in other
words, 2 is two, 5 is five, and so on. Then, it asks you if you want to enter another num-
ber, and if so, it repeats the process. Here’s an example:

% numspeller.pl
Enter the number you want to spell: foo
No strings. 0 through 9 please..
Enter the number you want to spell: 45
Too big. 0 through 9 please.
Enter the number you want to spell: 6
Number 6 is six
Try another number (y/n)?: foo
y or n, please
Try another number (y/n)?: y
Enter the number you want to spell: 3
Number 3 is three
Try another number (y/n)?: n

Listing 7.2 shows the full code.

Listing 7.2 The numspeller.pl Script

1: #!/usr/local/bin/perl -w
2: # numberspeller: prints out word approximations of numbers
3: # simple version, only does single-digits
4:
5: $num = 0; # raw number
6: $exit = “”; # whether or not to exit the program.
7: %numbers = (
8: 1 => ‘one’,

180 Day 7

09 0355 ch07 5/9/02 2:34 PM Page 180

Exploring a Few Longer Examples 181

7

Listing 7.2 continued

9: 2 => ‘two’,
10: 3 => ‘three’,
11: 4 => ‘four’,
12: 5 => ‘five’,
13: 6 => ‘six’,
14: 7 => ‘seven’,
15: 8 => ‘eight’,
16: 9 => ‘nine’,
17: 0 => ‘zero’
18:);
19:
20: while ($exit ne “n”) {
21:
22: while () {
23: print ‘Enter the number you want to spell: ‘;
24: chomp($num = <STDIN>);
25: if ($num !~ /\d/ or $num =~ /\D/) { # test for strings
26: print “No strings. 0 through 9 please.\n”;
27: next;
28: }
29: if ($num > 9) { # numbers w/more than 1 digit
30: print “Too big. 0 through 9 please.\n”;
31: next;
32: }
33: if ($num < 0) { # negative numbers
34: print “No negative numbers. 0 through 9 please.\n”;
35: next;
36: }
37: last;
38: }
39:
40: print “Number $num is “;
41: print $numbers{$num};
42: print “\n”;
43:
44: while () {
45: print ‘Try another number (y/n)?: ‘;
46: chomp ($exit = <STDIN>);
47: $exit = lc $exit;
48: if ($exit ne ‘y’ && $exit ne ‘n’) {
49: print “y or n, please\n”;
50: }
51: else { last; }
52: }
53: }

whiles within whiles, and ifs after ifs. Let’s start from the outer loop, and work
inward. The first while loop, in line 20, includes the bulk of the entire script in its block.

09 0355 ch07 5/9/02 2:34 PM Page 181

That’s because the entire script will repeat, or not, based on the yes/no prompt at the end.
At the start, however, we need to run it at least once, so the test in line 8 will return true
(note that we carefully initialized the $exit variable so that it would).

The second while loop, lines 22 through 38, tests our input through the use of three ifs.
The first one checks to make sure you haven’t typed any strings using a regular expres-
sion; the second one makes sure you haven’t typed a number greater than 9 (this version
of the script only tests for single-digit numbers); and the third tests for negative numbers.
If any of these three tests are true, we use the next keyword, which skips the rest of the
block and goes back up to the test for the nearest enclosing loop—which in this case is
still that infinite while loop that started in 10. If the input meets all three criteria—it’s
not a string, and it’s in between 0 and 9, then we call last, which breaks out of the near-
est while loop and goes onto the next statement in the block.

That next statement is line 40, where we print the introductory message. At the beginning
of the script set up a hash with a mapping from all the supported digits to their fully
spelled out equivalents. Use a simple hash lookup to retrieve the word that corresponds
to the digit entered by the user, and print that out. An if…elsif type of statement could
have been used here to test for each of the possible digits the user could enter, but deal-
ing with the hash is easier.

When our number is printed, we can do it all over again if we want, thanks to the final
while loop in lines 44 through 52. This one prompts for a y or an n character in response
to the “Try another number” prompt. Note the call to the lc function in line 47—if the
user types a capital Y or a capital N, we’ll still accept that input because the lc function
will lowercase it before we actually test. That line saves us some extra tests in the body
of the while.

You’ll notice that this chunk of code doesn’t actually determine what to do if the reply is
y or n; all it does is verify that it is indeed y or n. That’s because this code doesn’t need
to do anything. When $exit has the appropriate value, the outer while loop ends, and we
return right back up to the top again to that test in the first while. If the reply was n, that
test returns false and the script exits. Otherwise, we start the body of that outer while
again, and continue until the user gets bored and types n to exit the script.

Text-to-HTML Converter Script
Let’s finish up with a slightly more useful script: webbuild.pl takes a simple text file
as an argument, prompts you for some basic values, and then spits out an HTML ver-
sion of your text file. It’s not a very sophisticated HTML generator—it won’t handle
embedded boldface or other formatting, it doesn’t handle links or images; really, it does
little other than stick paragraph tags in the right place, let you specify the foreground

182 Day 7

09 0355 ch07 5/9/02 2:34 PM Page 182

Exploring a Few Longer Examples 183

7

and background colors, and give you a simple heading and a link to your e-mail
address. But it does give you a basic HTML template to work from.

How It Works
In addition to simply converting text input to HTML, the webbuild.pl script prompts
you for several other values, including

• The title of the page (<title>...</title> in HTML).

• Background and text colors (here I’ve limited it to the built-in colors supported by
HTML, and we’ll verify the input to make sure that it’s one of those colors). This
part also includes some rudimentary online help as well.

• An initial heading (<h1>…</h1> in HTML).

• An e-mail address, which will be inserted as a link at the bottom of the final
HTML page

Here’s what running the webbuild.pl script would produce with the some given prompts
and output:

% webbuild.pl janeeyre.txt
Enter the title to use for your web page: Charlotte Bronte, Jane Eyre, Chapter
One
Enter the background color (? for options): ?
One of:
white, black, red, green, blue,
orange, purple, yellow, aqua, gray,
silver, fuchsia, lime, maroon, navy,
olive, or Return for none
Enter the backgroundcolor (? for options): white
Enter the text color (? for options): black
Enter a heading: Chapter One
Enter your email address: lemay@lne.com

<html>
<head>
<title>Charlotte Bronte, Jane Eyre, Chapter One</title>
</head>
<body bgcolor=”white” text=”black”>
<h1>Chapter One</h1>
<p>There was no possibility of taking a walk that day. We had been
wandering, indeed, in the leafless shrubbery an hour in the morning;
... more text deleted for space ...
fireside, and with her darlings about her (for the time neither
</p>
<hr>
<address>lemay@lne.com</address>
</body>
</html>

09 0355 ch07 5/9/02 2:34 PM Page 183

The resulting HTML file, as the previous output shows, could then be copy-and-pasted
into a text editor, saved, and loaded into a Web browser to see the result (Figure 7.1
shows that result).

184 Day 7

FIGURE 7.1.
The result of the
webbuild.pl script.

Later in this book (on Day 15, “Managing I/O,” specifically), I’ll show you a way to out-
put the data to a file, rather than to the screen.

The Input File
One note about the text file you give to webbuild.pl to convert: The script assumes the
data you give it is a file of paragraphs, with each paragraph separated by a blank line.
For example, here are the contents of the file janeeyre.txt, which I used for the exam-
ple output:

There was no possibility of taking a walk that day. We had been
wandering, indeed, in the leafless shrubbery an hour in the morning;
but since dinner (Mrs. Reed, when there was no company, dined early)
the cold winter wind had brought with it clouds so sombre, and a
rain so penetrating, that further outdoor exercise was now out of
the question.

I was glad of it: I never liked long walks, especially on chilly
afternoons: dreadful to me was the coming home in the raw twilight,
with nipped fingers and toes, and a heart saddened by the chidings
of Bessie, the nurse, and humbled by the consciousness of my
physical inferiority to Eliza, John, and Georgiana Reed.

The said Eliza, John, and Georgiana were now clustered round
their mama in the drawing-room: she lay reclined on a sofa by the
fireside, and with her darlings about her (for the time neither

09 0355 ch07 5/9/02 2:34 PM Page 184

Exploring a Few Longer Examples 185

7

The Script
Listing 7.3 shows the code for our script.

LISTING 7.3 webbuild.pl

1: #!/usr/local/bin/perl -w
2: #
3: # webbuild: simple text-file conversion to HTML
4: # *very* simple. Assumes no funky characters, embedded
5: # links or boldface, etc. Blank spaces == paragraph
6: # breaks.
7:
8: $title = ‘’; # <TITLE>
9: $bgcolor = ‘’; # BGCOLOR
10: $text = ‘’; # TEXT
11: $head = ‘’; # main heading
12: $mail = ‘’; # email address
13: $paragraph = ‘’; # is there currently an open paragraph tag?
14:
15: print “Enter the title to use for your web page: “;
16: chomp($title = <STDIN>);
17:
18: foreach $color (‘background’, ‘text’) { # run twice, once for each color
19: $in = ‘’; # temporary input
20: while () {
21: print “Enter the $color color (? for options): “;
22: chomp($in = <STDIN>);
23: $in = lc $in;
24:
25: if ($in eq ‘?’) { # print help
26: print “One of: \nwhite, black, red, green, blue,\n”;
27: print “orange, purple, yellow, aqua, gray,\n”;
28: print “silver, fuchsia, lime, maroon, navy,\n”;
29: print “olive, or Return for none\n”;
30: next;
31: } elsif ($in eq ‘’ or
32: $in eq ‘white’ or
33: $in eq ‘black’ or
34: $in eq ‘red’ or
35: $in eq ‘blue’ or
36: $in eq ‘green’ or
37: $in eq ‘orange’ or
38: $in eq ‘purple’ or
39: $in eq ‘yellow’ or
40: $in eq ‘aqua’ or
41: $in eq ‘gray’ or
42: $in eq ‘silver’ or
43: $in eq ‘fuchsia’ or
44: $in eq ‘lime’ or
45: $in eq ‘maroon’ or

09 0355 ch07 5/9/02 2:34 PM Page 185

LISTING 7.3 continued

46: $in eq ‘navy’ or
47: $in eq ‘olive’) { last; }
48: else {
49: print “that’s not a color.\n”;
50: }
51: }
52:
53: if ($color eq ‘background’) {
54: $bgcolor = $in;
55: } else {
56: $text = $in;
57: }
58: }
59:
60: print “Enter a heading: “;
61: chomp($head = <STDIN>);
62:
63: print “Enter your email address: “;
64: chomp($mail = <STDIN>);
65:
66: print ‘*’ x 30;
67:
68: print “\n<html>\n<head>\n<title>$title</title>\n”;
69: print “</head>\n<body”;
70: if ($bgcolor ne ‘’) { print qq(bgcolor=”$bgcolor”); }
71: if ($text ne ‘’) { print qq(text=”$text”); }
72: print “>\n”;
73: print “<h1>$head</h1>\n<p>”;
74: $paragraph = ‘y’;
75:
76: while (<>) {
77: if ($_ =~ /^\s$/) {
78: if ($paragraph eq ‘y’) {
79: print “</p>\n”;
80: $paragraph = ‘n’;
81: }
82:
83: print “<p>\n”;
84: $paragraph = ‘y’;
85: } else {
86: print $_;
87: }
88: }
89:
90: if ($paragraph eq ‘y’) {
91: print “</p>\n”;
92: }
93:
94: print qq(<hr>\n<address>$mail</address>\n);
95: print “</body>\n</html>\n”;

186 Day 7

09 0355 ch07 5/9/02 2:34 PM Page 186

Exploring a Few Longer Examples 187

7

There’s little that’s overly complex, syntax-wise, in this script; it doesn’t even use any
arrays or hashes (it doesn’t need to; there’s nothing that really needs storing or process-
ing here). It’s just a lot of loops and tests.

There are at least a few points to be made about why I organized the script the way I did,
so we can’t end this lesson quite yet. Let’s start with the large foreach loop starting in
line 18.

This loop handles the prompt for both the background and text colors. Because both of
these prompts behave in exactly the same way, I didn’t want to have to repeat the same
code for each one (particularly given that there’s a really huge if test in lines 31 through
47). Later, you’ll learn how to put this kind of repetitive code into a subroutine, and then
just call the subroutine twice. But for now, because we know a lot about loops at this
point, and nothing about subroutines, I opted for a sneaky foreach loop.

The loop will run twice, once for the string ‘background’ and once for the string
‘text’. We’ll use these strings for the prompts, and later to make sure the right value
gets assigned to the right variable ($bgcolor or $text).

Inside the foreach loop, we have another loop, an infinite while loop, which will repeat
each prompt until we get acceptable input (input verification is always a good program-
ming practice). At the prompt, the user has three choices: enter one of the sixteen built-in
colors, hit Return (or Enter) to use the default colors, or type ? for a list of the choices.

The tests in lines 25 through 50 process each of these choices. First, ?. In response to a
question mark, all we have to do is print a helpful message, and then use next to drop
down to the next iteration of the while loop (that is, redisplay the prompt and wait for
more data).

The next test (starting in line 30) makes sure we have correct input: either a Return, in
which case the input is empty (line 30); or one of the sixteen built-in colors. Note that
the tests all test lowercase colors, which would seem overly limiting if the user typed
BLACK or Black or some other odd-combination of upper and lowercase. But fear not; in
line 23, we used the lc function to lowercase the input, which combines all those case
issues into one (but conveniently doesn’t affect input of ?).

If the input matches any of those seventeen cases, we call last in line 47 to drop out of
the while loop (keep in mind that next and last, minus the presence of labels, refer to the
nearest enclosing loop—to the while, not to the foreach). If the input doesn’t match, we
drop to the final else case in line 48, print an error message, and restart the while loop.

The final test in the foreach loop determines whether we have a value for the back-
ground color or for the text color, and assigns that value to the appropriate variable.

The final part of the script, starting on line 68 and continuing to the end, prints the top
part of our HTML file, reads in and converts the text file indicated on the command line

09 0355 ch07 5/9/02 2:34 PM Page 187

to HTML, and finishes up with the last part of the HTML file. Note the tests in line 69
and 70; if there are no values for $bgcolor or $text, we’ll leave off those attributes to
the HTML <body> tag altogether. (A simpler version would be to just leave them there,
as bgcolor=”” or text=””, but that doesn’t look as nice in the output).

You’ll note also the use of the qq function. You learned about qq in passing way back in
the “Going Deeper” section on Day 2, “Working with Strings and Numbers.” The qq

function is a way of creating a double-quoted string without actually using any double-
quotes. I used it here because if I had actually used double-quotes, I would have had to
backslash the double-quotes in the string itself. I think it looks better this way.

Lines 74 through 80 read in the input file (using <>), and then simply print it all back out
again, inserting paragraph tags at the appropriate spots (that is, where there are blank
lines). I use the $paragraph variable to keep track of whether there’s an open <p> tag
with no corresponding closing tag. If there is, the script prints out a closing </p> tag
before printing another opening <p>. A more robust version of this script would watch
for things such as embedded special characters (accents, bullets, and so on) and replace
them with the appropriate HTML codes—but that’s a task done much easier with pattern
matching, so we’ll leave it for later.

All that’s left is to print the final e-mail link (using an HTML mailto URL and link tags)
and finish up the HTML file.

Summary
Often, programming books give you a lot of wordy background, but don’t include
enough actual code examples for how to do stuff. While I won’t claim that this book
shirks on the wordy background (you might snicker now), this lesson—and the two to
come on Day 14 and Day 21—will offer you some longer bits of code that make use of
the techniques you’ve learned in the previous lessons, put them all together, and maybe
even accomplish some sort of useful task (although I’m not certain how often you’re
going to need to spell a number.)

In today’s lesson, we explored three scripts. First, a revision of the familiar stats script,
printed a sophisticated histogram using for loops and some careful measuring. The sec-
ond, a number speller, used tests and a hash lookup to print a result. And the third, web-
build, took an input file from the command line and data from the keyboard and
converted the contents of the file into something else—in this case, a Web page.

Congratulations on completing the first week of this three-week book. During this week,
you’ve picked up a hefty chunk of the language. From this point on, we’ll be building on
what you’ve already learned. Onward to Week 2!

188 Day 7

09 0355 ch07 5/9/02 2:34 PM Page 188

Doing More
Day 8 Manipulating Lists and Strings

Day 9 Pattern Matching with Regular Expressions

Day 10 Doing More with Regular Expressions

Day 11 Creating and Using Subroutines

Day 12 Debugging Perl

Day 13 Scope, Modules, and Importing Code

Day 14 Exploring a Few Longer Examples

WEEK 2 8

9

10

11

12

13

14

10 0355 part02 5/9/02 2:35 PM Page 189

10 0355 part02 5/9/02 2:35 PM Page 190

DAY 8

WEEK 2

Manipulating Lists and
Strings

We’ll start Week 2 with a hodgepodge of things; in today’s lesson, we’ll look
more closely at lists, arrays, hashes, and strings, and the sorts of things you can
do to manipulate the data they contain. A lot of what you’ll learn about today
uses many of Perl’s built-in functions, but these functions are useful to have in
your repertoire as you learn more about the language itself.

Today we’ll explore

• Creating array and hash slices (smaller portions of other arrays and
hashes)

• Sorting lists

• Searching lists

• Modifying list contents

• Processing all the elements of a list

• Various string manipulations: reverse, finding substrings, extracting
substrings

11 0355 ch08 5/9/02 2:35 PM Page 191

Array and Hash Slices
In addition to all the operations you learned about on Days 4, “Working with Lists and
Arrays,” and 5, “Working with Hashes,” Perl also has a mechanism for copying some
subset of elements from the collection. That’s called a slice—a subset of an array or a
hash that is, in turn, another array or hash.

You take a slice of an array similarly to how you access one element: using brackets.
However, there are two significant differences between a slice and a single element. Here
are some lines of Perl code that show the syntax for slices:

@array = (1,2,3,4,5);
$one = $array[0]; # $one is 1
@slice = @array[0,1,2]; # @slice is (1,2,3)

See the differences? In the element access expression $array[0], you use a $ to refer to
the array variable, and a single index number inside the brackets. The result, stored in
$one, is a single scalar variable. With the slice notation, you use an at sign (@) for the
array variable, and a list of indexes inside the brackets. With this notation, you end up
with a list of three elements in @slice.

You can put any expression inside the brackets for a slice, as long as it’s a list of indexes.
Range operators work exceptionally well here for taking a slice of consecutive numbers:

@lowers = @nums[1..100];

Note that a very common Perl mistake is to use an array slice with a single index, when
what you wanted was a single element:

$single = @array[5];

This notation won’t produce what you’re looking for. Here, you’re extracting a list of one
element from the array @array, and then trying to evaluate that list in a scalar context. If
you have warnings turned on in your script, Perl will let you know if you’re making this
mistake.

Hash slices work similarly to array slices, but require different notation:

%hashslice = @hash{‘this’, ‘that’, ‘other’};

Note that for a hash slice, the keys you want to extract go into curly brackets, like indi-
vidual hash keys, but you still use an array variable symbol even though it’s a hash.
That’s because the resulting slice will be a list of the keys and values (in the right order:
key, value, key, value, and so on). You can then just assign that slice to a hash variable
and turn it into a hash once again. Don’t do this:

%hashslice = %hash{‘this’, ‘that’, ‘other’};

192 Day 8

11 0355 ch08 5/9/02 2:35 PM Page 192

Manipulating Lists and Strings 193

8
That’ll give you an error (even if you don’t have warnings turned on). The rule is, if you
want a scalar out of an array or hash, use $ (scalar notation). If you want a slice, use @
(array notation).

Sorting Lists
You’ve already seen how to sort a list, for example, the keys in a hash, using the sort
function:

@keys = sort keys %hash;

By default, the sort function sorts a list in ASCII order. To sort a list of numbers in
numeric order, use sort with an extra expression just before the list to be sorted:

@keys = sort { $a <=> $b } keys %hash;

What does that bit in the middle with the <=> operator do? What are $a and $b for? Up
until now, I asked you to just learn that line by heart; here’s where I’ll explain what all
that means.

The extra bit between curly brackets in the sort determines how the list is to be sorted,
by describing what happens when one element is greater than, less than, or equal to
another. Given two arguments ($a and $b), the expression inside the block should return
an integer less than 0 (if the first argument is less than the second), an integer greater
than 0 (if the first argument is greater), or 0 (if the two arguments are equal).

Perl, conveniently, has two operators that do just this, making it easy for you to write
simple sort routines. Why two operators? For the same reason there are two sets of
equality and relational operators: one for strings (cmp), and one for numbers (<=>).

The cmp operator works on strings, comparing two arguments and returning -1, 0, or 1
depending on whether the first operand is less than, equal to, or greater than the second.
You could write cmp the long way something like this:

$result = ‘’;
if ($a lt $b) { $result = -1; }
elsif ($a gt $b { $result = 1; }
else { $result = 0; }

The <=> operator, sometimes called the spaceship operator for its appearance, does
exactly the same comparison, only for numbers.

Which brings us to the $a and $b part of the sort routine. The $a and $b variables are
temporary to the sort (you don’t have to declare them, they go away when the sort’s
done), and contain elements in the list you’re sorting. If you were going to write your
own sort routine inside the block, you would use $a and $b to refer to the two elements
that need to be compared each time.

11 0355 ch08 5/9/02 2:35 PM Page 193

The default sort routine uses the cmp operator to compare values (which is why it sorts
in ASCII order). Using { $a <=> $b } compares the values with a numeric comparison,
which sorts those values in numeric order.

By default these sort routines have sorted lists in ascending order. To sort in the reverse
order, simply reverse $a and $b:

@keys = sort { $b <=> $a } keys %hash;

You can print a hash, sorted by keys, using a sort routine and a foreach loop. If you
want to do the same thing with the values in the hash, however, things can get a little
complicated. If all you need are the values, you can just use the values function to get a
list of those values, and then sort it. By doing that you lose access to the original keys
and there’s no way to associate a raw value back to its key. You can, however, sort the
keys in value order, and then print out both the key and its value, like this:

foreach $key (sort {$things{$a} cmp $things{$b}} keys %things) {
print “$key, $things{$key}\n”;

}

Here, the sort routine, instead of using raw keys for the values of $a and $b, sorts the
values associated with the keys ($things{$a} and $things{$b}) instead. The resulting
list, which we iterate over using foreach, is a list of the keys in the hash sorted by value.

Searching
Sorting’s easy; there’s a function for it. Searching a list for a particular element—or for a
part of an element—isn’t quite so straightforward. Searching is one of those things where
there is definitely more than one way to do it. Given a list of strings and a search string,
you could, for example, simply iterate over the list with a foreach loop and test each ele-
ment against the string, like this:

chomp($key = <STDIN>); # thing to look for
foreach $el (@strings) {

if ($key eq $el) {
$found = 1;

}
}

194 Day 8

Because $a and $b are special to the sort routine, and refer to two elements
in the list, be careful about using variables named $a and $b in your scripts,
or of changing the values of $a and $b inside your sort routine. Weird and
unexpected results can occur.

Note

11 0355 ch08 5/9/02 2:35 PM Page 194

Manipulating Lists and Strings 195

8
If the thing you were searching for can be a substring of an element in the list, you could
use the index function to search for the substring in the string. The index function
returns the position of the substring in the string, if it’s found, and -1 otherwise (remem-
ber that string positions, like arrays, start from 0):

foreach $el (@strings) {
if ((index $el, $key) >= 0) { # -1 means not found

$found = 1;
}

}

A more efficient (and potentially more powerful) version of the substring tests would be
to use patterns, which you’ll learn more about tomorrow (don’t worry about this syntax
right now):

foreach $el (@strings) {
if ($el =~ /$key/) {

$found = 1;
}

}

Despite the differences with the test, all these examples use a number of lines of code. To
make things even more efficient, number-of-characters-wise, we can use Perl’s built-in
grep function. Named after the Unix tool of the same name, grep is used specifically for
searching for things in lists. As with many other Perl features, however, grep behaves
differently when used either in a list or a scalar context.

In list context, grep is used to extract all the elements of a list for which an expression or
test is true, and return a new list of those elements. So, for example, here’s an example of
grep that will extract all the elements of the list @nums that are greater than 100:

@large = grep { $_ > 100 } @nums;

Note the use of our friend the $_ default variable. The grep function works by taking
each element in the list and assigning it to $_, and then evaluating the expression inside
the brackets. If the expression is true, that list element “matches” the search and is added
to the final list. Otherwise, grep moves onto the next element in the @nums list until it
gets to the end.

You can use any expression you want to inside the brackets. The expression you use,
however, should be a test that returns true or false, so that grep can build the new list on
that criteria.

An alternate way to use grep is with a pattern built using a regular expression. We’ll
learn all about regular expressions tomorrow and the next day, but I’ll include an exam-
ple here (and in the example that follows this section), just to give you a taste:

@exes = grep /x/, @words;

11 0355 ch08 5/9/02 2:35 PM Page 195

Instead of a test inside of curly brackets, as with the previous examples, this example uses a
pattern. The characters inside the slashes (here, just the character x) are the search pattern;
in this case, grep will find all the elements in the @words array that contain the letter x, and
store those words in the @exes array. You can also use a variable inside the search pattern:

print “Search for? “;
chomp($key = <STDIN>);
@exes = grep /$key/, @words;

The pattern inside the slashes can be any number of characters, and grep will search for
that set of characters in any element in the list. So, for example, a pattern of /the/ will
match any elements that contain the letters the (which includes the word “the” as well as
the words “there” or “other”). As you’ll learn tomorrow, the pattern can also contain a
number of special characters to build much more sophisticated search criteria. Don’t for-
get the comma after the pattern; unlike the syntax with an expression inside brackets, the
comma is required after the pattern.

In scalar context, grep behaves much the same as in list context, except that instead of
returning a list of all the elements that matched, grep returns the number of elements
that matched (0 means no matches).

The grep function works best with lists or arrays, but there’s nothing stopping you from
using it with hashes, as long as you write your test correctly. For example, this bit of
code uses grep to find all the hash keys for which either the key or its associated value is
larger than 100:

@largekeys = grep { $_ > 100 or $numhash{$_} > 100 } keys %numhash;

In the previous lesson’s webbuild.pl example, there was a huge if…elsif construct
that was used to determine whether a color entered by the user was valid. Using the grep
function, it would be more easily written as:

elsif (grep { $in eq $_ } (“white”, “black”, “red”, ...))

An Example: More Names
On Day 5, we had a simple example that read in names (first and last), and then split
those names into a hash of names keyed by the last name. On Day 6, both in the body of
the lesson and in the exercises, we used the <> operator to read those names into a hash
from an external file. Let’s extend the names script here so that it doesn’t just read the
names into a hash, it also does something with those names. This version of the names
script, morenames.pl, adds a large while loop that gives you a list of four options:

• Sort and print the names list by last name

• Sort and print the names list by first name

196 Day 8

11 0355 ch08 5/9/02 2:35 PM Page 196

Manipulating Lists and Strings 197

8
• Search for first or last name

• Quit

If you choose any of the options to search or sort the list, the program repeats and allows
you to choose another option. The fourth option exits the program. Here’s a transcript of
how the program might look when run:

$ morenames.pl names.txt

1. Sort names by last name
2. Sort names by first name
3. Search for a name
4. Quit

Choose a number: 1
Adams, Douglas
Alexander, Lloyd
Alighieri, Dante
Asimov, Isaac
other names deleted for space

1. Sort names by last name
2. Sort names by first name
3. Search for a name
4. Quit

Choose a number: 2
Albert Camus
Aldous Huxley
Angela Carter
Anne Rice
Anne McCaffrey
Anthony Burgess
other names deleted for space

1. Sort names by last name
2. Sort names by first name
3. Search for a name
4. Quit

Choose a number: 3
Search for what? Will
Names matched:

William S. Burroughs
William Shakespeare

1. Sort names by last name
2. Sort names by first name
3. Search for a name
4. Quit

Choose a number: 4
$

11 0355 ch08 5/9/02 2:35 PM Page 197

Listing 8.1 shows the code for our sorting and searching script:

LISTING 8.1 morenames.pl

1: #!/usr/local/bin/perl -w
2:
3: %names = (); # hash of names
4: @raw = (); # raw words
5: $fn = “”; # first name
6: $in = ‘’; # temporary in
7: @keys = (); # temporary keys
8: @n = (); # temporary name
9: $search = ‘’; # thing to search for
10:
11: while (<>) {
12: chomp;
13: @raw = split(“ “, $_);
14: if ($#raw == 1) { # regular case
15: $names{$raw[1]} = $raw[0];
16: } else { # build a first name
17: $fn = “”;
18: for ($i = 0; $i < $#raw; $i++) {
19: $fn .= $raw[$i] . “ “;
20: }
21: $names{$raw[$#raw]} = $fn;
22: }
23: }
24:
25: while () {
26: print “\n1. Sort names by last name\n”;
27: print “2. Sort names by first name\n”;
28: print “3. Search for a name\n”;
29: print “4. Quit\n\n”;
30: print “Choose a number: “;
31:
32: if ($in eq ‘1’) { # sort and print by last name
33: foreach $name (sort keys %names) {
34: print “$name, $names{$name}\n”;
35: }
36:
37: } elsif ($in eq ‘2’) { # sort and print by first name
38: @keys = sort { $names{$a} cmp $names{$b} } keys %names;
39: foreach $name (@keys) {
40: print “$names{$name} $name\n”;
41: }
42: } elsif ($in eq ‘3’) { # find a name (1 or more)
43: print “Search for what? “;
44: chomp($search = <STDIN>);
45:
46: while (@n = each %names) {

198 Day 8

11 0355 ch08 5/9/02 2:35 PM Page 198

Manipulating Lists and Strings 199

8
LISTING 8.1 continued

47: if (grep /$search/, @n) {
48: $keys[++$#keys] = $n[0];
49: }
50: }
51:
52: if (@keys) {
53: print “Names matched: \n”;
54: foreach $name (sort @keys) {
55: print “ $names{$name} $name\n”;
56: }
57: } else {
58: print “None found.\n”;
59: }
60:
61: @keys = (); # undefine @keys for next search
62: } elsif ($in eq ‘4’) { # quit
63: last;
64: } else {
65: print “Not a good answer. 1 to 4 please.\n”;
66: }
67: }

The basic framework of this script is the large while loop that manages the choices, from
1 to 4. After printing the choices and prompting for one, the while loop contains a set of
statements to test for each answer. If the answer was not 1, 2, 3, or 4 (and we test for the
string versions of these numbers, so that an errant letter won’t produce warnings), the
final else in line 64 will handle that and repeat from the top.

The framework itself is just a bunch of tests and not worth a detailed description. What
happens at each option is much more interesting. The two sorting options (options 1 and
2, starting in lines 35 and 41, respectively) each use different forms of the sort function
you’ve learned about previously in this lesson. The first option, to search for something
in the names, uses grep to find it.Let’s look at the two sorting options first. Our names
hash is keyed by last name, so sorting the list by last name is easy. In fact, the foreach
loop in line 32 through 37 is the same foreach loop we used for previous versions of this
example.

Sorting by first name, the second option involves sorting the hash by the values, which is
more difficult. Fortunately, I just showed you how to do this in the section on sorting, so
you can use the technique I showed you there in lines 37 through 41. Build a temporary
list of the keys with a sort routine that compares the values, and then to use those keys
to print out the names in the right order.

11 0355 ch08 5/9/02 2:35 PM Page 199

Which brings us to the search. We’ll start in lines 43 and 44 by prompting for the search
key, storing it in the $search variable.

At first glance, you might think doing this search is easy—just use the grep function
with the characters the user entered as the pattern. But the catch here is that we’re
searching a hash, and there are both keys and values to keep track of.

If all we wanted to search was the last names, we could just use the keys function to
extract the keys and search them, like this:

@matches = grep /$search/, keys %names;

To get at the values, we could use a foreach loop to loop through the keys, and then test
the pattern against both the key and the value in turn. And there would be nothing wrong
with that approach, but in this particular example I wanted to use grep, so I took what
might look like a rather unusual approach (I prefer to think of it as a creative approach).
I used the each function, which you learned about on Day 5, which gives you a list of a
key/value pair. With that list, you can then use grep, and if it matches, store the key for
printing later.

That’s what I’m doing in lines 46 through 50. Let’s look at those lines more closely:

46: while (@n = each %names) {
47: if (grep /$search/, @n) {
48: $keys[++$#keys] = $n[0];
49: }
50: }

The each function gives you a two-element list of a key and a value from the hash.
Calling each multiple times eventually works its way through all the keys and values in
the hash. So, in line 54, this while loop will iterate as many times as there are key/value
pairs in the hash, assigning each pair to the list in @n. When there are no more pairs to
examine, @n will get the empty list () and the while will stop.

Inside the while loop, we use an if test and grep to test for the search pattern in our
simple key/value list. Here we’re using grep in a scalar context, so if grep finds any-
thing, it’ll return a nonzero number, and the if test will be true. Otherwise, it’ll return 0
and we’ll skip to the next iteration of the while.

Line 55 is where we store the key if grep was able to find something that matched the
search pattern, by simply appending the key to the end of the @keys array. This line is
one of those examples of convoluted Perl, so let’s look at it more closely:

$keys[++$#keys] = $n[0];

200 Day 8

11 0355 ch08 5/9/02 2:35 PM Page 200

Manipulating Lists and Strings 201

8
Remember that @n contains two elements, a key and a value. At this point in the script,
either the key or the value have matched, so we’ll store the key in the @keys array (stor-
ing the key will give us access to the value, so we don’t have to worry about that). $n[0]
gives us that matched key.

Next step is to assign that value to the end of the @keys array. Remember that $#keys
gives us the highest index position in the array, so ++$#keys refers to the position just
after that last one. Note that the increment is done in prefix notation, so we can incre-
ment that element before we assign anything to it. We can then use that new highest
index position as the position in which to assign the key.

Whew! This line is one of those examples where you can cram a whole lot of informa-
tion into a single line, and unless you understand each and every character, it’ll take a
while to decipher it. Fortunately, if this sort of syntax makes your head spin, there’s a
much easier way to add an element onto the end of a list, using the push function, which
we’ll look at later in this lesson.

After the list of matched keys has been built, all that’s left is to print them. In this case,
we’ll test first to see if @keys has any elements (line 60), and if so, the script sorts and
prints them. Otherwise, it prints a helpful message (line 66).

Modifying List Elements
You can always add and remove list, array, and hash elements using the methods I
described on Days 4 and 5. But sometimes the standard ways of adding and removing
elements from lists can be awkward, hard to read, or inefficient. To help with modifying
lists, Perl provides a number of built-in functions, including

• push and pop: add and remove list elements from the end of a list.

• shift and unshift: add and remove list elements from the start of a list.

• splice: add or remove elements anywhere in a list.

push and pop
The push and pop functions allow you to add or remove elements from the end of a list,
that is, it affects the highest index positions of that list. Both push and pop will be famil-
iar functions if you’ve ever worked with stacks, where the notion is that the first element
in is the last element out. If you haven’t dealt with stacks before, envision one of those
spring-loaded plate dispensers you sometimes see in cafeterias. You add plates to the dis-
penser (push them onto the stack), but the top plate is always the one you use first (pop
them off of the stack). So it is with push and pop and arrays: pushing adds an element to
the end of the list, and popping removes an element from the end of the list.

11 0355 ch08 5/9/02 2:35 PM Page 201

The push function takes two arguments: a list to be modified, and a list of elements to be
added. The original list is modified in place, and push returns the number of elements in
the newly modified list. So, for example, in morenames.pl from the previous section, we
used this ugly bit of code to add a key to the @keys array:

$keys[++$#keys] = $n[0];

That same bit could be written with push like this:

push @keys, $n[0];

Fewer characters, yes, and also conceptually easier to figure out. Note that the second
argument here is a scalar (which is then converted to a list of one element), but the sec-
ond argument can itself be a list, which lets you combine multiple lists easily like this:

push @final, @list1;

The pop function does the reverse of push; it removes the last element from the list or
array. The pop function takes one argument (the list to change), removes the last element,
and returns that element:

$last = pop @array;

As with push, the list is modified in place and will have one less element after the pop. A
convoluted way of moving elements from one array to another might look like this:

while (@old) {
push @new, pop @old;

}

Note that with this bit of code the new array will be in the reverse order because the last
element is the first to get pushed onto the new array. A better way of reversing a list is to
use the reverse function instead, and a better way of moving one list to another is sim-
ply to use assignment. You could, however use this mechanism to modify each element
as it gets passed from one element to the other:

while (@old) {
push @new, 2 * pop @old;

}

shift and unshift
If push and pop add or remove elements from the end of the list, wouldn’t it be nice to
have functions that add or remove elements from the beginning of the list? No problem!
shift and unshift do just that, shifting all elements one position up or down (or, as is
more commonly envisioned with shift and unshift, left and right). As with push and
pop, the list is modified in place.

202 Day 8

11 0355 ch08 5/9/02 2:35 PM Page 202

Manipulating Lists and Strings 203

8
The shift function takes a single argument, a list, and removes the first element from
that list, moving all the remaining elements down (left) one position. It returns the ele-
ment it removed. So, for example, this bit of code moves elements from one array to
another, but this example doesn’t reverse the list in the process:

while (@old) {
push @new, shift @old;

}

The unshift function is the beginning-of-list equivalent to push. It takes two arguments:
the list to modify and the list to add. The new list contains the added elements, and then
the old elements in the list, shifted as many places upward as there were elements added.
The unshift function returns the number of elements in the new list:

$numusers = unshift @users, @newusers;

splice
push and pop modify the elements at the end of a list, shift and unshift do the same
thing at the beginning. The splice function, however, is a much more general-purpose
way to add, remove, or replace elements at any position inside the list. splice takes up
to four arguments:

• The array to be modified

• The point (position, or offset) in that array to add or remove elements after

• The number of elements to remove or replace. If this argument isn’t included,
splice will change every element from the offset forward.

• The list of elements to add to the array, if any.

Let’s start with removing elements from an array using splice. For each of these exam-
ples, let’s assume a list of ten elements, 0 to 9:

@nums = 0 .. 9;

To remove elements 5, 6, and 7, you would use an offset of 5 and a length of 3. There’s
no list argument because we’re not adding anything:

splice(@nums, 5, 3); # results in (0,1,2,3,4,8,9)

To remove all elements from position 5 to the end of the list, leave off the length argument:

splice(@nums, 5); # results in (0,1,2,3,4)

To replace elements, add a list of the elements to replace to the splice. For example, to
replace elements 5, 6, and 7 with the elements “five”, “six”, and “seven”, use this code:

splice(@nums, 5, 3, qw(five six seven)); # results in (0,1,2,3,4,
“five”,”six”,”seven”,8,9)

11 0355 ch08 5/9/02 2:35 PM Page 203

Perl doesn’t care whether you’re removing the same number of elements as you’re
adding; it’ll just add the elements in the list at the position given by the offset, and move
all the other elements out of the way (or shrink the array to fit). So, for example, here’s a
call to splice to delete elements 5, 6, and 7, and add the word “missing” in their place:

splice(@nums, 5, 3, “missing”); # results in (0,1,2,3,4,”missing”,8,9);

The new array, in that latter case, will contain only eight elements.

To add elements to the array without also removing elements, use 0 for the length. For
example, here’s a call to splice that adds a couple numbers after element 5:

splice(@nums, 5, 0, (5.1, 5.2, 5.3)); # results in

(0,1,2,3,4,5,5.1,5.2,5.3,6.7.8.9)

The splice function, as with the other list modification functions, modifies the list it’s
working on in place. It also returns a list of the elements it removed. You can use the lat-
ter feature to break up a list into several parts. For example, let’s say you had a list of
some number of elements, @rawlist, that you want broken up into two lists, @list1 and
@list2. The first element in @rawlist is the number of elements that should be in
@list1; the second final list will then contain any remaining elements. You might use
code similar to this, where the first line extracts the appropriate elements from @rawlist
and stored them in @list1, the second removes the first element (the number of ele-
ments) from @rawlist, and the third stores the remaining elements in @list2.

@list1 = splice(@rawlist, 1, $rawlist[0]);
shift @rawlist;
@list2 = @rawlist;

Other Ways to Mess with Lists
But wait, that’s not all. I’ve got a couple more functions that are useful for modifying
and playing with lists: reverse, join, and map.

reverse
The reverse function takes each element of a list and turns it blue. Just kidding.
reverse, as you might expect, reverses the order of the elements in the list:

@otherway = reverse @list;

Note that if you’re sorting a list, or moving elements around using shift, unshift, push,
or pop, you can use those methods to create reversed lists without having to reverse them
using reverse (try to avoid moving array elements around more than you have to).

The reverse function also works with scalars, in which case it reverses the order of char-
acters in a scalar. We’ll come back to this in “Manipulating Strings,” later in this chapter.

204 Day 8

11 0355 ch08 5/9/02 2:35 PM Page 204

Manipulating Lists and Strings 205

8
join
The split function splits a string into a list. The join function does just the reverse: It
combines list elements into a string, with any characters you want in between them. So,
for example, if you had split a line of numbers into a list using this split command:

@list = split(‘ ‘, “1 2 3 4 5 6 7 8 9 10”);

you could put them back into a string, with each number separated by a space, like this:

$string = join(‘ ‘, @list);

Or, you could separate each element with plus signs like this:

$string = join(‘+’,@list);

Or, with no characters at all:

$string = join(‘’,@list);

Let’s look at a practical application of join. If you wanted to turn a list into an HTML
list, you could use the following code:

print ‘’‘’, join(‘’‘’, @list), ‘’‘’;

If you’re concatenating a lot of strings, it’s more efficient to use the join function than to
use the . operator. Simply include an empty string as the separator, like this:

$new_string = join ‘’, (‘one’, ‘two’, ‘three’, ‘four’);

map
Earlier, you learned about grep, which is used to extract elements from a list for which
an expression or pattern returns true. The map function operates in a similar way, except
that instead of selecting particular elements from a list, map executes a given expression
or block on each element in a list, and then collects the results of each expression into a
new list.

For example, let’s say you had a list of numbers, 1 to 10, and you wanted to build a list
of the squares of all those numbers. You could use a foreach loop and push, like this:

foreach $num (1 .. 10) {
push @squares, (@num**2);

}

The same operation in map might look like this:

@num = (1..10);

@squares = map { $_**2 } @num;

11 0355 ch08 5/9/02 2:35 PM Page 205

Like grep, map takes each element in the list and assigns it to $_. Then, also like grep, it
evaluates the expression. Unlike grep, it stores the result of that expression into the new
list, regardless of whether it evaluates to true or not. Depending on how you write the
expression, however, you can pass anything you want to the new list, including nothing,
some value other than the original list item in $_, or even multiple items. Consider map to
be a filter for each of the list items, in which the result of the filter can be anything you
want it to be.The “filter” part of the map can be either a single expression or a block. If
you’re using a single expression, the value that gets returned at each turn of the map is
simply the result of that expression. If you’re using a block, the return value is the last
expression that gets evaluated inside that block—so make sure you have an expression at
the end that returns the value you’re looking for. For example, here’s a call to map that
takes a list of numbers. It replaces any negative numbers with zero, and replaces all inci-
dences of the number 5 with two numbers: 3 and 2. I’ve also formatted this version of
map so that it’s easier to read; there’s no requirement for the code in either map or grep to
be all on one line:

@final = map {
if ($_ < 0) {

0;
} elsif ($_ == 5) {

(3,2);
} else { $_; }

} @nums;

This “last thing evaluated” behavior is actually a general rule for how blocks behave.
You’ll learn more about it when we get to subroutines on Day 11, “Creating and Using
Subroutines.”

If you want to use an expression rather than a block, you need to include a comma
between the two arguments to map. If you have an array of strings and you want to
remove the line feeds from the end of each of the strings, you can use map as follows:

@new = map chomp, @old;

There’s no rule that says the expression or block has to return a single, scalar value
either. If an array is returned, then the entire array will be inserted in the new array
where the original element was. Here’s an example:

@old = (‘one two’, ‘three four’);
@new = map { split “ “; } @old;
print scalar @new;

This snippet will print out the number 4 because the @new array now contains four items.
Both of the original elements will be split into lists of two items, which will be inserted
into the new list that the map function generates.

206 Day 8

11 0355 ch08 5/9/02 2:35 PM Page 206

Manipulating Lists and Strings 207

8
Manipulating Strings

In the bulk of this lesson, we’ve explored ways you can manipulate lists and list contents
with various built-in functions. Perl also has several useful functions for manipulating
strings as well (and I summarized a number of these on Day 2). In this section, let’s
cover a few of these functions, including reverse, index, rindex, and substr.

Each of these functions is used to modify strings. In many cases, it might be easier or
more efficient to modify strings using other mechanisms—concatenating them using
the . operator, building them with variable values using variable interpolation, or search-
ing and extracting substrings with patterns (as you’ll learn in the next few days). But in
many cases, these functions might be conceptually easier to use, particularly if you’re
used to similar string-manipulation functions from other languages.

reverse
You’ve already seen the reverse function, as used with lists, which reverses the order of
elements in the list. reverse, when used in a scalar context, behaves differently: It
reverses all the characters in the number or string.

With a single string like “To be or not to be” or “antidisestablishmentarian-
ism,” you’ll end up with new strings that simply have all the characters
reversed. Note, however, that if the strings you’re reversing have newlines at
the end, that the reversed strings will have those newlines at the beginning
of the string (creating somewhat puzzling results). If you don’t want the
newline to be reversed, don’t forget to chomp it first.

Note

The different behaviors of reverse in list and scalar context can sometimes be confus-
ing. Take, for example, this bit of code:

foreach $string (@list) {
push @reversed, reverse $string;

}

Offhand, that bit of code looks like it takes all the string elements in the @list array,
reverses each one, and then pushes the result onto the @reversed array. But if you run
that code, the contents of @reversed appear to be exactly the same as the contents of
@list. Why? The push function takes a list as its second argument, so reverse is called
in a list context, not a scalar context. The string in $string is then interpreted as a list of
one element, which, when reversed, still contains the one element. The characters inside
that element aren’t even touched. To fix this, all you need is the scalar function:

foreach $string (@list) {
push @reversed, scalar (reverse $string);

}

11 0355 ch08 5/9/02 2:35 PM Page 207

index and rindex
The index and rindex functions are used to find substrings inside other strings. Given
two strings (one to look in and one to search for), they return the position of the second
string inside the first, or -1 if the substring was not found. Positions are marked between
characters, with 0 at the start of the string. So, for example, you could create a grep-like
bit of code with index or rindex like this:

foreach $str (@list) {
if ((index $str, $key) != -1) {

push @final, $str;
}

The difference between index and rindex is in where the function starts looking. The
index function begins from the start of the string and finds the position of the first occur-
rence of that string; rindex starts from the end of the string and finds the position of the
last occurrence of that string.

Both index and rindex can take an optional third argument, indicating the position
inside the string to start looking for the substring. So, for example, if you had already
found a match using one call to index, you could call index again and start looking
where you left off.

substr
The substr function is shorthand for substring, and can be used to extract characters
from or add characters to a string—although it’s most common usage is to extract sub-
strings of other strings. The substr takes up to three arguments:

• The string to act on

• The position (offset) of the start of the substring to extract or replace. You can use a
negative number to start counting from the end of the string.

• The length of the substring to extract or replace. If the length isn’t included,
substr will change the substring from the offset to the end of the string.

The substr function returns the characters it removed (it does not modify the original
string). So, for example, to extract characters 5 through 8 in the string $longstring, and
store them in $newstr, use this line:

$newstr = substr($longstring, 5, 3);

To create a new string that replaces characters or adds characters to another string, use
the substr function on the left side of an assignment. The string you use on the right can
be larger or smaller than the string you replace; Perl doesn’t care:

substr($longstring, 5, 3) = “parthenogenesis”;

208 Day 8

11 0355 ch08 5/9/02 2:35 PM Page 208

Manipulating Lists and Strings 209

8
If you wanted to search for and replace a substring everywhere in another string, you
might use a while loop, index, and substr like this:

$str = “This is a test string. The string we want to change.”;
$pos = 0;
$key = ‘i’;
$repl = “*”;

while ($pos < (length $str) and $pos != -1) {
$pos = index($str, $key, $pos);

if ($pos != -1) {
substr($str,$pos,length $key) = $repl;
$pos++;

}
}

Don’t become overly attached to this code, however; there are a number of ways to do
this sort of operation using much less code. In particular, Perl’s regular expressions
enable you to compress that entire loop into one line:

$str =~ s/$key/$repl/g;

Going Deeper
In this lesson, I’ve shown you how to use many of the more popular functions for mod-
ifying or mangling lists and strings. And, in turn, I’ve only described the more com-
mon uses of these functions. If you’re interested in more detail about any of these
functions, or about any functions I haven’t described in this book, see Appendix A or
the perlfunc man page.

Some of the functions in this chapter have features I didn’t talk about, mostly because
they involve things you haven’t learned yet. For example, the sorting routine for the
sort function (the part inside the curly brackets) can be replaced with an actual sub-
routine name, which allows you to use that subroutine in many different places and to
write quite sophisticated sort routines indeed.

The pop and shift functions, in turn, can also be used with no arguments. What list
they affect depends on where in your script they’re used: pop and shift with no argu-
ments in the main body of the script pops or shifts the @ARGV array (containing the
arguments to the script); pop and shift inside a subroutine affect the @_ argument list
to that subroutine (which you’ll learn about when we get to Day 11, “Creating and
Using Subroutines”).

11 0355 ch08 5/9/02 2:35 PM Page 209

Summary
Learning the Perl language involves learning much more than just the syntax of the core
language; the built-in functions provide a lot of the cooler functionality and the power of
Perl scripts. Although many of the functions accomplish things in the language that can
be better done some other way, others are useful to at least have around for specific
cases. The functions you’ve learned about in this lesson are like that; most everything
you’ve learned here can be done in some other way, although sometimes that other way
might be longer, less efficient, or harder to figure out.

Today, then, you learned about the various functions you can use to modify lists and
strings, and the ways to use these functions to accomplish simple tasks. You also learned
about array and hash slices, which, although they aren’t actually functions, give you a
method for extracting elements out of a list or hash.

The functions you’ve learned about today include

• sort, for sorting lists

• grep, for extracting list elements that match a criteria such as a pattern

• push and pop, for adding or removing list elements to the end of a list

• shift and unshift, for adding and removing list elements to the beginning of a list

• splice, for adding, removing or replacing elements from anywhere in a list

• reverse, to reverse the order of elements in the list, or, in scalar context, for
reversing the order of the characters in a string

• join, the reverse of split, for combining list elements into a string with one or
more characters between them

• map, for performing some operation on each element of a list and building a new
list of the results

• index and rindex, for finding the position of a given string in another string

• substr, for removing, adding, or replacing one string with another

Q&A
Q. Most of the functions you described on this lesson seem to work only with

lists. Can I use them with hashes as well?

A. Hashes and lists are interchangeable in the sense that a hash will be unwound into
its component parts when used as a list, and then the elements will be paired up
into keys and values when the list becomes a hash again. So technically, yes, you
can use many of these functions with hashes. The result, however, might not be

210 Day 8

11 0355 ch08 5/9/02 2:35 PM Page 210

Manipulating Lists and Strings 211

8
what you expect and might not be very useful. For example, the pop function on a
hash will unwind the hash into a list, and then pop off the last item in that list (the
last key in the hash)—but since you don’t know what order the hash’s keys will
appear in, the result is unpredictable at best. Better to use hash slices or the delete
function to modify hashes, or use these functions on lists of the keys or values.

Q. I’m trying to use reverse on a list of strings. They’re not reversing; it’s like I
never called the function.

A. Are you sure you’re using the reverse function on a string, and not on a list of one
element? A list of one element is still a list, and the reverse function will happily
reverse that list for you—giving you the same string you put into it. Make sure
you’re calling reverse in a scalar context, and if you’re not, change the context
with a different bit of code or with the scalar function.

Q. In a previous lesson, you described the $” variable, which is used to set the
separator character for list elements. It shows up when you interpolate a list
inside a string. How is the join function different from this technique?

A. If you’re looking at the end result, it’s not. Both will provide a way of “flattening”
a list into a string with some character in between each of the list elements. The
join function, however, is more efficient for this purpose because the string in
question doesn’t have to be interpolated for variables before it’s expanded.

Workshop
The workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience in using what you’ve learned. Try
and understand the quiz and exercise answers before you go on to tomorrow’s lesson.

Quiz
1. What is a slice? How does a slice affect the original list?

2. What are the $a and $b variables used for in sort routines?

3. What do the <=> and cmp operators do? What is the difference between them?

4. The grep function takes an expression or a block as its first argument. What is this
block used for?

5. How can you use splice to add elements to an array? Replace two elements with a
list of four elements?

6. How can you return a value from the block in map?

11 0355 ch08 5/9/02 2:35 PM Page 211

Exercises
1. Rewrite the following expressions using splice:

push @list, 1;
push @list, (2,3,4);
$list[5] = “foo”;
shift @list;

2. BUG BUSTERS: What’s wrong with this code (HINT: there might be multiple
errors)?
while ($i <= $#list) {

$str = @novel[$i++];
push @final, reverse $str;

}

3. BUG BUSTERS: How about this code?
while ($pos < (length $str) and $pos != -1) {

$pos = index($str, $key, $pos);

if ($pos != -1) {
$count++;

}
}

4. Write a version of this expression using a foreach loop and push:

@list2 = grep {$_ < 5 } @list;

5. Write a script that prompts you for a string and a character, and then returns the
number of times that character occurs in the string. Use the index function.

6. Rewrite the script in #5 without using index (or patterns, if you already know
something of patterns). Hint: try using grep.

Answers
Here are the answers to the Workshop questions in the previous section.

Quiz Answers
1. A slice is some subset of the elements in an array or hash. Slices do not affect the

original list; they copy the sliced elements into the new list. Compare with ele-
ments extracted using splice, where the original array or list is permanently
changed.

2. The $a and $b variables in a sort routine are local to that routine and refer to two
list elements being compared. Use $a and $b to write your sort routines to do
what you want.

212 Day 8

11 0355 ch08 5/9/02 2:35 PM Page 212

Manipulating Lists and Strings 213

8
3. The <=> and cmp operators take two operands and return -1 if the first is less than

the second, 0 if the two are equal, and 1 if the first is larger than the second.
Although this behavior might not seem overly useful in ordinary use, these opera-
tors work exceptionally well for sort routines, which need exactly that kind of out-
put to sort the elements in a list.

The difference between <=> and cmp is the same as the difference between == and
eq; the former is used for numbers, the latter for strings.

4. The expression or block as an argument to grep is used as a test to determine
whether a particular list element (as stored in $_) will be saved in the final list grep
returns. If the expression or block returns true, the list element is saved.

5. Add elements to an array with splice by using a length argument (the third argu-
ment) of 0. This will remove no elements, and add the new elements at the position
specified by the offset:

splice(@array, 0, 0, (1,2,3,4); # add (1,2,3,4) at the start of the array

To replace two items with four items, use 2 as the length argument, and the items
to add as a list:

splice(@array, 0, 2, (1,2,3,4); # remove first two elements and replace

with (1,2,3,4)

6. To return a value from the block of expressions in map, make sure the last thing to
be evaluated in the block is the thing you want to return (and therefore to be passed
onto the new list).

Exercise Answers
1. Here are the answers:

splice(@list, $#list+1, 0, 1);
splice(@list, $#list+1, 0, (2,3,4));
splice(@list, 5, 1, “foo”);
splice(@list, 0, 1);

2. There are multiple bugs and conceptual errors in this snippet of code. The first is in
the second line; the array access expression here is actually an array splice, so
you’ll end up with an array of one element instead of an actual string. Perl warn-
ings will catch this one.

But even if you fix that error, the string will not be reversed, because in the third
line reverse is being called in a list context, so the string is interpreted as a list of
one element. Use the scalar function to create a scalar context for reverse.

3. At some point inside the loop, you have to increment the current position.
Otherwise, the loop will continue to find the same substring at the same position,
over and over again, and turn into an infinite loop.

11 0355 ch08 5/9/02 2:35 PM Page 213

4. Here’s one answer:
foreach (@list) {

if ($_ < 5) {
push @list2, $_;

}
}

5. Here’s one answer:
#!/usr/bin/perl -w

$str = ‘’;
$key = ‘’;
$pos = 0;
$count = 0;

print “Enter the string to search: “;
chomp($str = <STDIN>);
print “Enter the character to count: “;
chomp($key = <STDIN>);

while ($pos < (length $str) and $pos != -1) {
$pos = index($str, $key, $pos);

if ($pos != -1) {
$count++;
$pos++;

}
}

print “$key appears in the string $count times.\n”;

6. Here’s one answer:
#!/usr/bin/perl -w

$str = ‘’;
$key = ‘’;
$pos = 0;
$count = 0;

print “Enter the string to search: “;
chomp($str = <STDIN>);
print “Enter the character to count: “;
chomp($key = <STDIN>);

@chars = split(‘’,$str);
$count = grep {$_ eq $key} @chars;

print “$key appears in the string $count times.\n”;

The sneaky part about this example is the line that uses split to convert the string
into a list of characters. After you have a list using grep is easy.

214 Day 8

11 0355 ch08 5/9/02 2:35 PM Page 214

DAY 9

WEEK 2

Pattern Matching with
Regular Expressions

As I’m sure you’ve noticed, I’ve been gradually introducing regular expressions
since nearly the beginning of this book. In this lesson, it’s time to focus our full
attention on how regular expressions work. Pattern matching is more than just
searching for some set of characters in your data; it’s a way of looking at data
and processing that data in a manner that can be incredibly efficient and amaz-
ingly easy to program. Many Perl programmers use regular expressions in
nearly every program that they write.

Today, we’ll dive deep into regular expressions, why they’re useful, how they’re
built, and how they work. Tomorrow we’ll continue the discussion and cover
more advanced uses of regular expressions. Today, specifically, you’ll learn

• Understanding pattern matching and regular expressions and why you’ll
find them useful

• Building simple regular expressions with single-character searches and
pattern-matching operators

12 0355 ch09 5/9/02 2:35 PM Page 215

• Matching groups of characters

• Matching multiple instances of characters

• Using patterns in tests and loops

The Whys and Wherefores of Pattern
Matching

Pattern matching is the technique of searching a string containing text or binary data for
some set of characters based on a specific search pattern. When you search for a string of
characters in a file using the Find command in your word processor, or when you use a
search engine to look for something on the Web, you’re using a simple version of pattern
matching: your criteria is “find these characters.” In those environments, you can often
customize your criteria in particular ways, for example, to search for this or that, to
search for this or that but not the other thing, to search for whole words only, or to search
only for those words that are 12 points and underlined. As you’ve seen from the regular
expressions I’ve already explained, pattern matching in Perl, however, can be even more
complicated than that. Using Perl, you can define an incredibly specific set of search cri-
teria, and do it in an incredibly small amount of space using a pattern-definition minilan-
guage called regular expressions.

Perl’s regular expressions, often called just regexps or REs, borrow from the regular
expressions used in many Unix tools, such as grep(1) and sed(1). As with many other
features Perl has borrowed from other places, however, Perl includes slight changes and
lots of added capabilities. If you’re used to using regular expressions, you’ll be able to
pick up Perl’s regular expressions fairly easily because most of the same rules apply
(although there are some gotchas to be aware of, particularly if you’ve used sophisticated
regular expressions in the past).

216 Day 9

The term regular expressions might seem sort of nonsensical. They don’t
really seem to be expressions, nor is it easy to figure out what’s regular
about them. Don’t get hung up on the term itself; regular expression is a
term borrowed from mathematics that refers to the actual language with
which you write patterns for pattern matching in Perl.

Note

I used the example of the search engine and the Find command earlier to describe the
sorts of things that pattern matching can do. It’s important for you not to get hung up on

12 0355 ch09 5/9/02 2:35 PM Page 216

Pattern Matching with Regular Expressions 217

9

thinking that pattern matching is only good for plain old searching. The sorts of things
regular expressions can do in Perl include

• Making sure your user has entered the data you’re looking for—input validation.

• Verifying that input is in the right specific format, for example, that e-mail
addresses have the right components.

• Extracting parts of a file that match a specific criteria (for example, you could
extract the headings from a file to build a table of contents, or extract all the links
in an HTML file).

• Splitting a string into elements based on different separator fields (and often, com-
plex nested separator fields).

• Finding irregularities in a set of data—multiple spaces that don’t belong there,
duplicated words, errors in formatting.

• Counting the number of occurrences of a pattern in a string.

• Searching and replacing—find a string that matches a pattern and replace it with
some other string.

This is only a partial list, of course—you can apply Perl’s regular expressions to all kinds
of tasks. Generally, if there’s a task for which you’d want to iterate over a string or over
your data in another language, that task is probably better solved in Perl using regular
expressions. Many of the operations you learned about yesterday for finding bits of
strings can be better done with patterns.

Pattern Matching Operators and Expressions
Let me first start with a quick overview of the regular expression information I’ve
already covered. To construct patterns that search a variable for a particular expression,
you use two operators: the regular expression operator m// and the pattern-match
operator =~, like this:

if ($string =~ m/foo/) {
do something...

}

As you know, that test simply checks whether the variable $string contains foo.

For these sorts of patterns, the m is optional and can be left off (and usually is). In
addition, you can leave off the variable and the =~ if you want to search the contents of
the default variable $_. Commonly in Perl, you’ll see shorthand pattern matching like
this one:

if (/^\d+/) { # ...

12 0355 ch09 5/9/02 2:35 PM Page 217

Which is equivalent to

if ($_ =~ m/^\d+/) { # ...

You learned a simple case of this yesterday with the grep function, which can use pat-
terns to find a string inside the $_ list element:

@foothings = grep /foo/, @strings;

That line, in turn, is equivalent to this long form:

@foothings = grep { $_ =~ /foo/ } @strings;

As we work through today’s lesson, you’ll learn different ways of using patterns in dif-
ferent contexts and for different reasons. Much of the work of learning pattern matching,
however, involves actually learning the regular expression syntax to build patterns, so
let’s stick with this one situation for now.

Simple Patterns
We’ll start with some of the most simple and basic patterns you can create: patterns that
match specific sequences of characters, patterns that match only at specific places in a
string, or combining patterns using what’s called alternation.

Character Sequences
One of the simplest patterns is just a sequence of characters you want to match, like
this:

/foo/
/this or that/
/ /
/Laura/
/patterns that match specific sequences/

All these patterns will match if the data contains those characters in that order. All the
characters must match, including spaces. The word or in the second pattern doesn’t have
any special significance (it’s not a logical or); that pattern will only match if the data
contains the string this or that somewhere inside it.

Note that characters in patterns can be matched anywhere in a string. Word boundaries
are not relevant for these patterns—the pattern /if/ will match in the string “if wishes
were horses” and in the string “there is no difference.” The pattern /if /, however,
because it contains a space, will only match in the first string where the characters i, f,
and the one space occur in that order.

218 Day 9

12 0355 ch09 5/9/02 2:35 PM Page 218

Pattern Matching with Regular Expressions 219

9

Upper and lowercase are relevant for characters: /kazoo/ will only match kazoo and not
Kazoo or KAZOO. To turn case sensitivety off in a particular search, you can use the i
option after the pattern itself (the i indicates ignore case), like this:

/kazoo/i # search for any upper and lowercase versions

Alternately, you can also create patterns that will search for either upper or lowercase let-
ters, as you’ll learn about in the next section.

You can include most alphanumeric characters in patterns, including string escapes for
binary data (octal and hex escapes). There are a number of characters that you cannot
match without escaping them. These characters are called metacharacters and refer to
bits of the pattern language and not to the literal character. These are the metacharacters
to watch out for in patterns:

^ $

. +

? *

{ (

) \

/ |

[

If you want to actually match a metacharacter in a string—for example, search for an
actual question mark—you can escape it using a backslash, just as you would in a regu-
lar string:

/\?/ # matches question mark

Matching at Word or Line Boundaries
When you create a pattern to match a sequence of characters, those characters can appear
anywhere inside the string and the pattern will still match. But sometimes you want a
pattern to match those characters only if they occur at a specific place—for example,
match /if/ only when it’s a whole word, or /kazoo/ only if it occurs at the start of the
line (that is, the beginning of the string).

I’m making an assumption here that the data you’re searching is a line of
input, where the line is a single string with no embedded newline characters.
Given that assumption, the terms string, line, and data are effectively inter-
changeable. Tomorrow, we’ll talk about how patterns deal with newlines.

Note

12 0355 ch09 5/9/02 2:35 PM Page 219

To match a pattern at a specific position, you use pattern anchors. To anchor a pattern at
the start of the string, use ^:

/^Kazoo/ # match only if Kazoo occurs at the start of the line

To match at the end of the string, use $:

/end$/ # match only if end occurs at the end of the line

Once again, think of the pattern as a sequence of things in which each part of the pattern
must match the data you’re applying it to. The pattern matching routines in Perl actually
begin searching at a position just before the first character, which will match ^. Then it
moves to each character in turn until the end of the line, where $ matches. If there’s a new-
line at the end of the string, the position marked by $ is just before that newline character.

So, for example, let’s see what happens when you try to match the pattern /^foo/ to the
string “to be or not to be” (which, obviously, won’t match, but let’s try it anyhow).
Perl starts at the beginning of the line, which matches the ^ character. That part of the
pattern is true. It then tests the first character. The pattern wants to see an f there, but it
got a t instead, so the pattern stops and returns false.

What happens if you try to apply the pattern to the string “fob”? The match will get far-
ther—it’ll match the start of the line, the f and the o, but then fail at the b. And keep in
mind that /^foo/ will not match in the string “ foo”—the foo is not at the very start of
the line where the pattern expects it to be. It will only match when all four parts of the
pattern match the string.

Some interesting but potentially tricky uses of ^ and $—can you guess what these pat-
terns will match?

/^/
/^1$/
/^$/

The first pattern matches any strings that have a start of the line. It would be very weird
strings indeed that didn’t have the start of a line, so this pattern will match any string
data whatsoever, even the empty string.

The second one wants to find the start of the line, the numeral 1, and then the end of the
line. So it’ll only match if the string contains 1 and only 1—it won’t match “123” or “foo
1” or even “1”.

The third pattern will only match if the start of the line is immediately followed by the
end of the line—that is, if there is no actual data. This pattern will only match an empty
line. Keep in mind that because $ occurs just before the newline character, this last pat-
tern will match both “” and “\n”.

220 Day 9

12 0355 ch09 5/9/02 2:35 PM Page 220

Pattern Matching with Regular Expressions 221

9

Another boundary to match is a word boundary—where a word boundary is considered
the position between a word character (a letter, number, or underscore) and some other
character such as whitespace or punctuation. A word boundary is indicated using a \b
escape. So /\bif\b/ will match only when the whole word “if” exists in the string—but
not when the characters i and f appear in the middle of a word (as in “difference.”). You
can use \b to refer to both the start and end of a word; /\bif/, for example, will match
in both “if I were king” and “that result is iffy,” and even in “As if!”, but not in “bomb
the aquifer” or “the serif is obtuse.”

You can also search for a pattern not in a word boundary using the \B escape. With this,
/\Bif/ will match only when the characters i and f occur inside a word and not at the
start of a word. Table 9.1 contains a list of boundaries.

TABLE 9.1 Boundaries

Boundary Character Matches

^ The beginning of a string or line

$ The end of a string or line

\b A word boundary

\B Anything other than a word boundary

Matching Alternatives
Sometimes, when you’re building a pattern, you might want to search for more than one
pattern in the same string, and then test based on whether all the patterns were found, or
perhaps any of the sets of patterns were found. You could, of course, do this with the reg-
ular Perl logical expressions for boolean AND (&& or and) and OR (|| or or) with multi-
ple pattern-matching expressions, something like this:

if (($in =~ /this/) || ($in =~ /that/)) { ...

Then, if the string contains /this/ or if it contains /that/, the whole test will return
true.

In the case of an OR search (match this pattern or that pattern—either one will work),
however, there is a regular expression metacharacter you can use: the pipe character (|).
So, for example, the long if test in that example could just be written as

if ($in =~ /this|that/) { ...

Using the | character inside a pattern is officially known as alternation because it allows
you to match alternate patterns. A true value for the pattern occurs if any of the alterna-
tives match.

12 0355 ch09 5/9/02 2:35 PM Page 221

Any anchoring characters you use with an alternation character apply only to the pattern
on the same side of the pipe. So, for example, the pattern /^this|that/ means “this at
the start of the line” or “that anywhere,” and not “either this or that at the start of a
line.” If you wanted the latter form you could use /^this|^that/, but a better way is to
group your patterns using parentheses:

/^(this|that)/

For this pattern, Perl first matches the start of the line, and then tries to match all the
characters in “this.” If it can’t match “this,” it’ll then back up to the start of the line
and try to match “that.” For a pattern line /^this|that/, it’ll first try and match every-
thing on the left side of the pipe (start of line, followed by this), and if it can’t do that,
it’ll back up and search the entire string for “that.”

An even better version would be to group only the things that are different between the
two patterns, not just the ^ to match the beginning of the line, but also the th characters,
like this:

/^th(is|at)/

This last version means that Perl won’t even try the alternation unless th has already
been matched at the start of the line, and then there will be a minimum of backing up to
match the pattern. With regular expressions, the less work Perl has to do to match some-
thing, the better.

You can use grouping for any kinds of alternation within a pattern. For example,
/(1st|2nd|3rd|4th) time/ will match “1st time,” “2nd time,” and so on—as long as
the data contains one of the alternations inside the parentheses and the string “ time”
(note the space).

Matching Groups of Characters
So far, so good? The regular expressions we’ve been building so far shouldn’t strike you
as being that complex, particularly if you look at each pattern in the way Perl does, char-
acter by character and alternate by alternate, taking grouping into effect. Now we’re
going to start looking at some of the shortcuts that regular expressions provide for
describing and grouping various kinds of characters.

Character Classes
Say you had a string, and you wanted to match one of five words in that string: pet, get,
met, set, and bet. You could do this:

/pet|get|met|set|bet/

222 Day 9

12 0355 ch09 5/9/02 2:35 PM Page 222

Pattern Matching with Regular Expressions 223

9

That would work. Perl would search through the whole string for pet, then search
through the whole string for get, then do the same thing for met, and so on. A shorter
way—both for number of characters for you to type and for Perl—would be to group
characters so that we don’t duplicate the et part each time:

/(p|g|m|s|b)et/

In this case, Perl searches through the entire string for p, g, m, s, or b, and if it finds one
of those, it’ll try to match et just after it. Much more efficient!

This sort of pattern—where you have lots of alternates of single characters, is such a
common case that there’s regular expression syntax for it. The set of alternating charac-
ters is called a character class, and you enclose it inside brackets. So, for example, that
same pet/get/met pattern would look like this using a character class:

/[pgmsb]et/

That’s a savings of at least a couple of characters, and it’s even slightly easier to read.
Perl will do the same thing as the alternation character, in this case it’ll look for any of
the characters inside the character class before testing any of the characters outside it.

The rules for the characters that can appear inside a character class are different from
those that can appear outside of one—most of the metacharacters become plain ordinary
characters inside a character class (the exception being a right-bracket, which needs to be
escaped for obvious reasons, a caret (^), which can’t appear first, or a hyphen, which has
a special meaning inside a character class). So, for example, a pattern to match on punc-
tuation at the end of a sentence (punctuation after a word boundary and before two
spaces) might look like this:

/[.!?] /

Although . and ? have special meanings outside the character class, here they’re plain
old characters.

Ranges
What if you wanted to match, say, all the lowercase characters a through f (as you might
in a hexadecimal number, for example). You could do

/[abcdef]/

Looks like a job for a range, doesn’t it? You can do ranges inside character classes, but
you don’t use the range operator .. that you learned about on Day 4. Regular expres-
sions use a hyphen for ranges instead (which is why you have to backslash it if you actu-
ally want to match a hyphen). So, for example, lowercase a through f looks like this:

/[a-f]/

12 0355 ch09 5/9/02 2:35 PM Page 223

You can use any range of numbers or characters, as in /[0-9]/, /[a-z]/, or /[A-Z]/.
You can even combine them: /[0-9a-z]/ will match the same thing as
/[0123456789abcdefghijklmnopqrstuvwxyz]/.

Negated Character Classes
Brackets define a class of characters to match in a pattern. You can also define a set of
characters not to match using negated character classes—just make sure the first charac-
ter in your character class is a caret (^). So, for example, to match anything that isn’t an
A or a B, use

/[^AB]/

Note that the caret inside a character class is not the same as the caret outside one. The
former is used to create a negated character class, and the latter is used to mean the
beginning of a line.

If you want to actually search for the caret character inside a character class, you’re wel-
come to—just make sure it’s not the first character or escape it (it might be best just to
escape it either way to cut down on the rules you have to keep track of):

/[\^?.%]/ # search for ^, ?, ., %

You will most likely end up using a lot of negated character classes in your regular
expressions, so keep this syntax in mind. Note one subtlety: Negated character classes
don’t negate the entire value of the pattern. If /[12]/ means “return true if the data con-
tains 1 or 2,” /[^12]/ does not mean “return true if the data doesn’t contain 1 or 2.” If
that were the case, you’d get a match even if the string in question was empty. What
negated character classes really mean is “match any character that’s not these characters.”
There must be at least one actual character to match for a negated character class to
work.

Special Classes
If character class ranges are still too much for you to type, you can use the character
classes that were introduced in Chapter 5. You’ll see these a lot in regular expressions,
particularly those that match numbers in specific formats. Note that these special codes
don’t need to be enclosed between brackets; you can use them all by themselves to refer
to that class of characters.

Table 9.2 shows the list of special character class codes:

224 Day 9

12 0355 ch09 5/9/02 2:35 PM Page 224

Pattern Matching with Regular Expressions 225

9

TABLE 9.2 Character Class Codes

Code Equivalent Character Class What It Means

\d [0-9] Any digit

\D [^0-9] Any character not a digit

\w [0-9a-zA-z_] Any “word character”

\W [^0-9a-zA-z_] Any character not a word character

\s [\t\n\r\f] whitespace (space, tab, newline, carriage return,
form feed)

\S [^ \t\n\r\f] Any nonwhitespace character

Word characters (\w and \W) are a bit mystifying—why is an underscore considered a
word character, but punctuation isn’t? In reality, word characters have little to do with
words, but are the valid characters you can use in variable names: numbers, letters, and
underscores. Any other characters are not considered word characters.

You can use these character codes anywhere you need a specific type of character. For
example, the \d code to refers to any digit. With \d, you could create patterns that match
any three digits /\d\d\d/, or, perhaps, any three digits, a dash, and any four digits, to
represent a phone number such as 555-1212: /\d\d\d-\d\d\d\d/. All this repetition isn’t
necessarily the best way to go, however, as you’ll learn in a bit when we cover quanti-
fiers.

Matching Any Character with . (Dot)
The broadest possible character class you can get is to match based on any character
whatsoever. For that, you’d use the dot character (.). So, for example, the following pat-
tern will match lines that contain one character and one character only:

/^.$/

You’ll use the dot more often in patterns with quantifiers (which you’ll learn about next),
but the dot can be used to indicate fields of a certain width, for example:

/^..:/

This pattern will match only if the line starts with two characters and a colon.

More about the dot operator after we pause for an example.

12 0355 ch09 5/9/02 2:35 PM Page 225

Matching Multiple Instances of Characters
Ready for more? The second group of regular expression syntax to explore is quanti-
fiers. The patterns you’ve seen up to now refer to individual things or groups of individ-
ual things, but quantifiers enable you to indicate multiple instances of things—or
potentially no things. These regular expression metacharacters are called quantifiers
because they indicate some quantity of characters or groups of characters in the pattern
you’re looking for.

Perl’s regular expressions include three quantifier metacharacters: ?, *, and +. Each refers
to some multiple of the character or group that appears just before it in the pattern.

Optional Characters with ?
Let’s start with ?, which matches a sequence that may or may not have the character
immediately preceding it (that is, it matches zero or one instance of that character). So,
for example, take this pattern:

/be?ar/

The question mark in that pattern refers to the character preceding it (e). This pattern
would match with the string “step up to the bar” and with the string “grin and bear it”—
because both “bar” and “bear” will match this pattern. The string you’re searching must
have the b, the a, and the r, but the e is optional.

Once again, think in terms of how the string is processed. The b is matched first. Then
the next character is tested. If it’s an e, no problem, we move on to the next character
both in the string and in the pattern (the a). If it’s not an e, that’s still no problem, we
move onto the next character in the pattern to see if it matches instead.

You can create groups of optional characters with parentheses:

/bamboo(zle)?/

The parentheses make that whole group of characters (zle) optional—this pattern will
match both bamboo or bamboozle. The thing just before the ? is the optional thing, be it a
single character or a group.

226 Day 9

Why bother creating a pattern like this? It would seem that the (zle) part
of this pattern is irrelevant, and that just plain /bamboo/ would work just as
well, with fewer characters. In these easy cases, where we’re just trying to
find out whether something matches, yes or no, it doesn’t matter.
Tomorrow, when you learn how to extract the thing that matched and cre-
ate more complex patterns, the distinction will be more important.

Note

12 0355 ch09 5/9/02 2:35 PM Page 226

Pattern Matching with Regular Expressions 227

9

You can also use character classes with ?:

/thing \d?/

This pattern will match the strings “thing 1,” “thing 9,” and so on, but will also match
“thing “ (note the space). Any character in the character class can appear either zero or
one time for the pattern to match.

Matching Multiple Characters with *
A second form of multiplier is the *, which works similarly to the ? except that * allows
zero or any number of the preceding character to appear—not just zero or one instance as
? does. Take this pattern:

/xy*z/

In this pattern, the x and the z are required, but the y can appear any number of times
including not at all. This pattern will match xyz, xyyz, xyyyyyyyyyyyyyyyyz, or just
plain old xz without the y.

As with ?, you can use groups or character classes before the *. One use of * is to use it
with the dot character—which means that any number of any characters could appear at
that position:

/this.*/

This pattern matches the strings “thisthat,” “this is not my sweater. The blue one with the
flowers is mine,” or even just “this”—remember, the character at the end doesn’t have to
exist for there to be a match.

A common mistake is to forget that * stands for “zero or more instances,” and to use it
like this:

if (/^[0-9]*$/) {
contains numbers

}

The intent here is to create a pattern that matches only if the input contains numbers and
only numbers. And this pattern will indeed match “7,” “1540,” “15443,” and so on. But
it’ll also match the empty string—because the * means that no numbers whatsoever will
also produce a match. Usually, when you want to require something to appear at least
once, you want to use + instead of *.

Note also that “match zero or more numbers,” as that example would imply, does not
mean that it will match any string that happens to have zero numbers—it won’t match
the string “lederhosen,” for example. Matching zero or more numbers does not imply
any other matches; if you want it to match characters other than numbers, you’ll need to
include those characters in the pattern. With regular expressions, you have to be very
specific about what you want to match.

12 0355 ch09 5/9/02 2:35 PM Page 227

Requiring at Least One Instance with +
The + metacharacter works identically to *, with one significant difference; instead of
allowing zero or more instances of the given character or group, requires that character
or group to appear at least once (“one or more instances.”). So, given a pattern like the
one we used for *:

/xy+z/

This pattern will match “xyz,” “xyyz,” “xyyyyyyyyyyz,” but it will not match “xz.” The y

must appear at least once.

As with * and ?, you can use groups and character classes with +.

Restricting the Number of Instances
For both * and + the given character or group can appear any number of times—there is
no upper limit (characters with ? can appear only once). But what if you want to match a
specific number of instances? What if the pattern you’re looking for does require a lower
or upper limit, and any more or less than that won’t match? You can use the optional
curly bracket metacharacters to set limits on the quantity, like this:

/\d{1,4} /

This pattern matches if the data includes one digit, two digits, three digits, or four digits,
any of them followed by a space; it won’t match any more digits than that, nor will it
match if there aren’t any digits whatsoever. The first number inside the brackets is the
minimum number of instances to match; the second is the maximum. Or you can match
an exact number by just including the number itself:

/a{5}b/

This pattern will only match if it can find five a’s in a row followed by one b—no more,
no less. It’s exactly equivalent to /aaaaab/. A less specific use of {} for an exact number
of instances might be something like this:

/\$\d+\.\d{2}/

Can you work through this pattern and figure out what it matches? It uses a number of
escaped characters, so it might be confusing. First, it matches a dollar sign (\$), then one
or more decimals (\d+), then it matches a decimal point (.), and finally, it matches only
if that pattern is followed by two digits and no more. Put it all together and this pattern
matches monetary input—$45.23 would match just fine, as would $0.45 or $15.00, but
$.45 and $34.2 would not. This pattern requires at least one number on the left side of
the decimal, and exactly two numbers on the right.

228 Day 9

12 0355 ch09 5/9/02 2:35 PM Page 228

Pattern Matching with Regular Expressions 229

9

Back to the curly brackets. You can set a lower bound on the match, but not an upper
bound, by leaving off the maximum number but keeping the comma:

/ba{4,}t/

This pattern matches b, at least four instances of the letter a, and then t. Three instances
of a in a row won’t match, but twenty a’s will.

Note that you could represent +, *, and ? in curly bracket format:

/x{0,1}/ # same as /x?/
/x{0,}/ # same as /x*/
/x{1,}/ # same as /x+/

An Example: A Guessing Program
Back in Lesson 6, there was an example program that implemented a number guessing
game. In this example, we’re going to turn things around and let the program try to guess
what you entered. This program illustrates how you can use regular expressions to break
down strings and figure out what they are.

The structure of the program is simple. It consists of an infinite while loop that continues
to iterate until the last function is called. If the user enters ‘q’ on a line by itself, then
the program will exit. Otherwise, it applies a number of regular expressions to the user’s
input to try to determine what sort of data was entered. If the input does not match any
of the expressions, then a message indicating that no match was found is printed, and the
program solicits more input.

The most interesting part of this program is the regular expressions themselves—the
logic you’ve seen in several other examples in this book. Let’s break each of them down
so you can get an idea of how these regular expressions are used.

The first expression is simple, it checks to see whether the input is just male or female:

if ($value =~/^(male|female)$/i) {
print “$value looks like a gender.\n”;
next;

}

First, I use one convention in this expression that holds true for all of the expressions in
this example. The expression being tested begins with ^ and ends with $, indicating that
the expression must match the entire string. This is true of all of the expressions in the
program. We’re not trying to extract data from the middle of strings, but rather to test
entire strings to see whether they conform to a standard. This expression is simple, it
checks to see whether the string contains “male” or “female,” and uses the i switch to
make the search case insensitive.

12 0355 ch09 5/9/02 2:35 PM Page 229

The next search is a bit more complex—it’s used to search for a street address. It
searches for a number, followed by a space, followed by a capital letter, followed any
number of word characters or white space characters. Here’s the expression:

if ($value =~ /^\d+\s[A-Z][\w\s]*$/) {
print “$value looks like a street address.\n”;
next;

}

It will match things like 105 Locust, as well as more complex strings like 10 South
Street Plaza. However, it will not match 10B West Main, or even 2105 westheimer
(because the first letter is not capitalized). Breaking this down, we see several individual
expressions. First, \d+ is used to match at least one digit. Then, \s is used to match
exactly one white space character. Next is [A-Z], a character range that matches one cap-
italized letter. Finally any combination of whitespace or word characters is matched using
[\w\s]*), which accounts for any sort of weird endings in the address (except incorrect
use of punctuation).

The next snippet of code checks to see whether the value being evaluated is an e-mail
address. Here it is:

if ($value =~ /^[\w.]+@\w[\w.-]+\w\.[A-Za-z]{2,4}$/) {
print “$value looks like an email address.\n”;
next;

}

Let’s look at how this regular expression breaks down. First, I check for one or more
word characters, or a period, followed by an @ sign. It then searches for a word charac-
ter, followed by any number of word characters and periods, followed by a single word
character, followed by a period, followed by two to four letters. This expression isn’t per-
fect, but more often than not, it can tell the difference between a valid email address and
something that isn’t a valid email address. Let’s look at why I used each expression after
the at sign. First, the expression starts by searching for a single word character, which
represents the beginning of the domain name. It ends with two to four letters, which rep-
resent the top level domain name. Before that is the period which separates the top level
domain name from the rest of the domain name, and before that is the word character
which is required at the end of the domain name (prior to the top level domain name). In
the middle, any sequence of word characters, hyphens, and periods is allowed.

The next expression matches a typical city, state, and zip code:

if ($value =~ /^[A-Z][a-z]+,\s[A-Z]{2}\s{1,2}\d{5}$/) {
print “$value looks like a city, state, and zip code.\n”;
next;

}

230 Day 9

12 0355 ch09 5/9/02 2:35 PM Page 230

Pattern Matching with Regular Expressions 231

9

This expression is probably a bit more comprehensible than the e-mail address expres-
sion. It searches for a capital letter followed by some sequence of lowercase letters, which
represent the city name. It then looks for a comma, followed by a white space character,
which separate the city from the state. It then checks for two uppercase letters, which rep-
resent a state abbreviation. For greater accuracy, I could have included all 50 state abbre-
viations in an expression like:

(AK|AR|LA|TX|...)

One or two spaces can follow the state abbreviation, and then the program checks for a
five digit number representing a Zip code. The next expression is the most complex, in
fact, it spans two lines:

if ($value =~ /^\W{0,1}\d{3}\W{0,1}\s{0,1}
\W{0,1}\s{0,1}\d{3}\s{0,1}\W{0,1}\s{0,1}\d{4}$/x) {
print “$value looks like a telephone number.\n”;
next;

}

This expression is used to match phone numbers. It tries to account for a number of ways
of formatting phone numbers—everything from 8005551212 to (800) 555-1212. It will
even match something like 800/555/1212. The key here is flexibility. The main thing is that
it searches for 10 digits formatted in any way that could be taken to represent a telephone
number. The complexity in this expression revolves around all of the optional characters.

First, I search for 0 or 1 non-word characters, so I can catch something like an opening
parenthesis. Then I search for 3 digits, representing the area code. I follow that by search-
ing for another nonword character, possibly representing a closing parenthesis. Then
there’s an optional white space character, which could separate the area code from the
exchange. That’s followed by an optional nonword character, followed by another
optional white space character. The purpose here is to allow things like 800 - 555 -
1212. Then, I match 3 digits representing the exchange. After that, I again match an
optional space, an optional nonword character, and another optional space, finishing with
a four digit number representing the extension. This is a /x expression, which means that
white space is ignored so that it can span multiple lines.

The rest of the script is just a wrapper that loops and allows the user to enter values and
have them tested. The full source listing is in Listing 9.1.

LISTING 9.1 The Source Code for the values.pl Script

1: #!/usr/local/bin/perl
2:
3: print “Enter a value and this program will try to guess what type of\n”;
4: print “value it is. Enter ‘q’ by itself on a line to quit.\n”;

12 0355 ch09 5/9/02 2:35 PM Page 231

LISTING 9.1 continued

5:
6: while () {
7: print “Enter a value: “;
8: chomp($value = <STDIN>);
9:
10: if ($value =~ /^$/) {
11: print “Please enter a value.\n”;
12: next;
13: }
14:
15: last if ($value =~ /^q$/i);
16:
17: if ($value =~/^(male|female)$/i) {
18: print “$value looks like a gender.\n”;
19: next;
20: }
21:
22: if ($value =~ /^\d+\s[A-Z][\w\s]*$/) {
23: print “$value looks like a street address.\n”;
24: next;
25: }
26:
27: if ($value =~ /^[\w.]+@\w[\w.-]+\w\.[A-Za-z]{2,4}$/) {
28: print “$value looks like an email address.\n”;
29: next;
30: }
31:
32: if ($value =~ /^[A-Z][a-z]+,\s[A-Z]{2}\s{1,2}\d{5}$/) {
33: print “$value looks like a city, state, and zip code.\n”;
34: next;
35: }
36:
37: if ($value =~ /^\W{0,1}\d{3}\W{0,1}\s{0,1}
38: \W{0,1}\s{0,1}\d{3}\s{0,1}\W{0,1}\s{0,1}\d{4}$/x) {
39: print “$value looks like a telephone number.\n”;
40: next;
41: }
42:
43: if ($value =~ /^perl$/i) {
44: print “$value looks like the name of a programming language.\n”;
45: next;
46: }
47:
48: print “I couldn’t figure out what that value is.\n”;
49: }

232 Day 9

12 0355 ch09 5/9/02 2:35 PM Page 232

Pattern Matching with Regular Expressions 233

9

More About Building Patterns
We started this lesson with a basic overview of how to use patterns in your Perl scripts
using an if test and the =~ operator—or, if you’re searching in $_, you can leave off the =~
part altogether. Now that you know something of constructing patterns with regular ex-
pression syntax, let’s return to Perl, and look at some different ways of using patterns in
your Perl scripts, including interpolating variables into patterns and using patterns in loops.

Patterns and Variables
In all the examples so far, we’ve used patterns as hard-coded sets of characters in the test
of a Perl script. But what if you want to match different things based on some sort of
input? How do you change the search pattern on the fly?

Easy. Patterns, like quotes, can contain variables, and the value of the variable is substi-
tuted into the pattern:

$pattern = “^\d{3}\$”;
if (/$pattern/) { ...

The variable in question can contain a string with any kind of pattern, including meta-
characters. You can use this technique to combine patterns in different ways, or to search
for patterns based on input. For example, here’s a simple script that prompts you for both
a pattern and some data to search, and then returns true or false if there’s a match:

#!/usr/bin/perl -w

print ‘Enter the pattern: ‘;
chomp($pat = <STDIN>);

print ‘Enter the string: ‘;
chomp($in = <STDIN>);

if ($in =~ /$pat/) { print “true\n”; }
else { print “false\n”; }

You might find this script (or one like it) useful yourself, as you learn more about regular
expressions.

Patterns and Loops
One way of using patterns in Perl scripts is to use them as tests, as we have up to this
point. In this context (a scalar boolean context), they evaluate to true or false based on
whether the pattern matches the data. Another way to use a pattern is as the test in a
loop, with the /g option at the end of the pattern, like this:

while (/pattern/g) {
loop

}

12 0355 ch09 5/9/02 2:35 PM Page 233

The /g option is used to match all the patterns in the given string (here, $_, but you can
use the =~ operator to match somewhere else). In an if test, the /g option won’t matter,
case the test will return true at the first match it finds. In the case of while (or a for
loop), however, the /g will cause the test to return true each time the pattern occurs in
the string—and the statements in the block will execute that number of times as well.

234 Day 9

We’re still talking about using patterns in a scalar context, here; the /g just
causes interesting things to happen in loops. We’ll get to using patterns in
list context tomorrow.

Note

Another Example: Counting
Here’s an example of a script that makes use of that patterns-in-loops feature I just men-
tioned to work through a file (or any numbers of files) and count the incidences of some
pattern in that file. With this script you could, for example, count the number of times
your name occurs in a file, or find out how many hits to your Web site came from
America Online (aol.com). I ran it on a draft of this lesson and found that I’ve used the
word pattern 184 times so far.

Listing 9.2 shows this simple script:

LISTING 9.2 count.pl

1: #!/usr/bin/perl -w
2:
3: $pat = “”; # thing to search for
4: $count = 0; # number of times it occurs
5:
6: print ‘Search for what? ‘;
7: chomp($pat = <STDIN>);
8: while (<>) {
9: while (/$pat/g) {
10: $count++;
11: }
12: }
13:
14: print “Found /$pat/ $count times.\n”;

As with all the scripts we’ve built that cycle through files using <>, you’ll have to call
this one on the command line with the name of a file:

% count.pl logfile
Search for what? aol.com
Found /aol.com/ 3456 times.
%

12 0355 ch09 5/9/02 2:35 PM Page 234

Pattern Matching with Regular Expressions 235

9

Nothing in Listing 9.2 should look overly surprising, although there are a few points to
note. Remember that using while with the file input characters (<>) sets each line of
input to the default variable $_. Because patterns will also match with that value by
default, we don’t need a temporary variable to hold each line of input. The first while
loop (line 8), then, reads each line from the input files. The second while loop searches
that single line of input repeatedly and increments $count each time it finds the pattern
in each line. This way, we can get the total number of instances of the given pattern, both
inside each line and for all the lines in the input.

One other important thing to note about this script is if you have it search for a phrase
instead of a single word—for example, find all instances of both a first and last name—
then there is a possibility that that phrase could fall across multiple lines. This script will
miss those instances because neither line will completely match the pattern. Tomorrow,
you’ll learn how to search for a pattern that can fall on multiple lines.

Pattern Precedence
Back in Day 2, you might remember we had a little chart that showed the precedence of
the various operators, and allowed you to figure out which parts of an expression would
evaluate first in a larger expression. Metacharacters in patterns have the same sort of
precedence rules, so you can figure out which characters or groups of characters those
metacharacters refer to. Table 9.3 shows that precedence, where characters closer to the
top of the table group tighter than those lower down.

TABLE 9.3 Pattern Metacharacter Precedence

Character Meaning

() grouping and memory

? + * { } quantifiers

x \x $ ^ (?=) (?!) characters, anchors, look-ahead

| alternation

As with expressions, you can group characters with () to force them to be evaluated as a
sequence.

You haven’t learned about all these metacharacters yet. Tomorrow, we’ll
explore more of them.

Note

12 0355 ch09 5/9/02 2:35 PM Page 235

Going Deeper
In this lesson, I’ve given you the basics of regular expressions so you can get started, and
tomorrow you’ll learn even more uses of regular expressions. For more information
about any of these things, the perlre man page can be quite enlightening. For this sec-
tion, let’s look at a few other features I haven’t discussed elsewhere in this lesson.

More Uses of Patterns
At the start of this lesson, you learned about the =~ for matching patterns to scalar vari-
ables other than $_. In addition to =~, you can also use !~, like this:

$thing !~ = /pattern/;

!~ is the logical not version of =~; in other words, it will return true only if the pattern is
NOT found in $thing.

Another useful function for patterns is the pos function, which works similarly to the
index function, except with patterns. You can use the this function to find out the exact
position inside the pattern where a match was made using m//g, or to start a pattern-
match at a specific position in a string. The pos function takes a scalar value (often a
variable) as an argument, and returns the offset of the character after the last character of
the match. For example:

$find = “123 345 456 346”;
while ($find =~ /3/g) {

@positions = (@positions, pos $find);
}

This code snippet builds an array of all the positions inside the string $find where the
number 3 appears (3, 5, 13) in this case.

For more information on the pos function, see the perlfunc man page.

Pattern Delimiters and Escapes
All the patterns we’ve seen so far began and ended with slashes, with everything in
between the characters or metacharacters to match. The slashes are themselves metachar-
acters, which means that if you want to actually search for a slash, you must backslash it.
This can be problematic for patterns that actually contain lots of slashes—for example,
Unix path names, which are all separated by slashes. You can easily end up with a pat-
tern that looks something like this:

/\/usr(\/local)*\/bin\//;

236 Day 9

12 0355 ch09 5/9/02 2:35 PM Page 236

Pattern Matching with Regular Expressions 237

9

That’s rather difficult to read (more so than many other regular expressions). Fortunately,
Perl has a way around this: you don’t have to use // to surround a pattern—you can use
any nonalphanumeric character you want to. The only catch is that if you use a different
character you must include the m on the m// expression (you can also replace the delim-
iters for substitution, but you have to use the s/// for that anyhow). You’ll also have to
escape uses of those delimiters inside the pattern itself. For example, the previous
expression could be written like this:

m%/usr(/local)*/bin/%;

Alternately, if you’re creating a search pattern for a number of nonalphanumeric charac-
ters that are also pattern metacharacters, you might end up blackslashing an awful lot of
those characters, making the pattern difficult to read. Using the \Q escape you can essen-
tially turn off pattern processing for a set of characters, and the use \E to turn them back
on again. For example, if you were searching for a pattern containing the characters
{(^*)} (for whatever reason), this pattern would search for those literal characters:

/\Q{(^*)}\E/;

Using \Q to turn off pattern processing is also useful for variable interpolation inside pat-
terns, to prevent unusual results in search pattern input:

/From:\s*\Q$from\E/;

Summary
Pattern matching and regular expressions are, arguably, Perl’s most powerful feature.
Whereas other languages might provide regular expression libraries or functions, pattern
matching is intrinsic to Perl’s operation and tightly bound to many other aspects of the
language. Perl without regular expressions is just another funny-looking language. Perl
with regular expressions is incredibly useful.

Today you learned all about patterns: building them, using them, saving bits of them, and
putting them together with other parts of Perl. You learned about the various metacharac-
ters you can use inside regular expressions: metacharacters for anchoring a pattern (^, $,
\B, \b), for creating a character class ([] and [^]), for alternating between different pat-
terns (|), and for matching multiples of characters (+, *, ?).

With that language for creating patterns, you can then apply those patterns to strings
using the m// expression. By default, patterns affect the string stored in the $_ variable,
unless you use the =~ operator to apply the pattern to any variable.

Tomorrow, we’ll expand on what you’ve learned here, building on the patterns you’ve
already learned with additional patterns and more and better ways to use those patterns.

12 0355 ch09 5/9/02 2:35 PM Page 237

Q&A
Q. What’s the difference between m// and just //?

A. Nothing, really. The m is optional, unless you’re using a different character for the
pattern delimiter. They both do the same thing.

Q. Alternation produces a logical OR situation in the pattern. How do I do a logi-
cal AND?

A. The easiest way is simply to use multiple patterns and the && or and operators, like
this:

/pat1/ && /pat2/;

If you know the order in which the two patterns will appear, you can just do some-
thing like this:

/pat1.*pat2/

Q. I have a pattern that searches for numbers: /\d*/. It matches for numbers, all
right, but it also matches for all other strings. What am I doing wrong?

A. You’re using * when you mean +. Remember that * means “zero or more
instances.” That means if your string has no numbers whatsoever, it’ll still match—
you’ve got zero instances. + is used for at least one instance.

Workshop
The workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience in using what you’ve learned. Try
and understand the quiz and exercise answers before you go on to tomorrow’s lesson.

Quiz
1. Define the terms pattern matching and regular expressions.

2. What sort of tasks is pattern matching useful for? Name three.

3. What do each of the following patterns do?
/ice\s*cream/
/\d\d\d/
/^\d+$/
/ab?c[,.:]d/
/xy|yz+/
/[\d\s]{2,3}/
/”[^”]”/

4. Assume that $_ contains the value 123 kazoo kazoo 456. What is the result of the
following expressions?
if (/kaz/) { # true or false?
while (/kaz/g) { # what happens?

238 Day 9

12 0355 ch09 5/9/02 2:35 PM Page 238

Pattern Matching with Regular Expressions 239

9

if (/^\d+/) { # true or false?
if (/^\d?\s/) { # true or false?
if (/\d{4}/) { # true or false?

Exercises
1. Write patterns to match the following things:

• First words in a sentence (that is, words with initial capital letters following some
kind of punctuation and white space)

• Percentages (any decimals followed by a percent sign)

• Any number (with or without a decimal point, positive or negative)

2. BUG BUSTER: What’s wrong with this code?
print ‘Enter a string: ‘;
chomp($input = <STDIN>);
print ‘Search for what? ‘;
chomp($pat = <STDIN>);

if (/$pat/) {
pattern found, handle it

}

3. BUG BUSTER: How about this one?
print ‘Search for what? ‘;
chomp($pat = <STDIN>);
while (<>) {

while (/$pat/) {
$count++;

}
}

4. Yesterday, we created a script called morenames.pl that let you sort a list of names
and search for different parts. The searching part used a rather convoluted mecha-
nism of each and grep to find the pattern. Rewrite that part of the script to use pat-
terns instead.

Answers
Here are the answers to the Workshop questions in the previous section.

Quiz Answers
1. pattern matching is the concept on Perl of writing a pattern which is then applied

to a string or a set of data. Regular expressions are the language you use to write
patterns.

12 0355 ch09 5/9/02 2:35 PM Page 239

2. There are many uses of pattern matching—you are limited only by your imagina-
tion. A few of them include

a. Input validation

b. Counting the number of things in a string

c. Extracting data from a string based on certain criteria

d. Splitting a string into different elements

e. Replacing a specific pattern with some other string

f. Finding regular (or irregular) patterns in a data set

3. The answers are as follows:

a. This pattern matches the characters “ice” and “cream,” separated by zero or
more whitespace characters.

b. This pattern matches three digits in a row

c. This pattern matches one or more digits on a line by themselves with no other
characters or whitespace.

d. This pattern matches ‘a’, and optional ‘b’, a c, one of a comma, period, or colon,
and a ‘d’. “ac.d” will match, as will “acb,d”, but not “abcd”

e. This pattern will match either ‘xy’ or ‘y’ with one or more ‘z’s.

f. This pattern will match either a digit or a whitespace character appearing at least
two but no more than three times.

g. This pattern matches all the characters in between opening and closing quotes.

4. The answers are

a. True

b. The loop repeats for every instance of ‘kaz’ in the string (twice, in this case).

c. True. The pattern matches one or more digits at the start of a line.

d. False. This pattern matches 0 or one digits at the start of the line, followed by
whitespace. It doesn’t match the three digits we have in this string.

e. False. This pattern matches four digits in a row; we only have three digits here.

Exercise Answers
1. As with all Perl, there are different ways of doing different things. Here are some

possible solutions:
/[.!?”]\s+[A-Z]\w+\b/
/d+%/
/[+-]\d+\.?\d+/
/([a-zA-z]{3})\s*\1/

240 Day 9

12 0355 ch09 5/9/02 2:35 PM Page 240

Pattern Matching with Regular Expressions 241

9

2. There’s a mismatch between where the pattern is trying to match and where the
actual data is. The pattern in the if statement is trying to match the pattern against
$_, but as per the second line, the actual input is in $input. Use this if test instead:

if ($input =~ /$pat/) {

3. This one’s sneaky, because there’s nothing syntactically wrong with this statement.
The second while loop, the one with the pattern in it, will look for the pattern in
$_, which is correct. But the test is a simple true and false test: Does that pattern
exist? The first line that has that pattern in it will register as true, and then $count
will get incremented. But then the test will occur again, and it’ll still be true, and
the counter will get incremented again, and again, infinitely. There’s nothing here
to stop the loop from iterating.

The /g option to the pattern in that while loop is what sets up the special case
where the while loop will loop only as many times as the pattern was matched in
the string, and then stop. If you’re using patterns inside loops, don’t forget the /g.

4. The only part that needs to change are the lines that build the @keys array (the ones
that use grep to search for the pattern). Here we’ll use a foreach loop and a test in
both the key and value. We’ll also add the /i option to make it not case sensitive,
and also reset the @keys list to the empty list so that it doesn’t build up between
searches. Here’s the new version of option 3:
} elsif ($in eq ‘3’) { # find a name (1 or more)

print “Search for what? “;
chomp($search = <STDIN>);

@keys = ();
foreach (keys %names) {

if (/$search/i or $names{$_} =~ /$search/i) {
push @keys, $_;

}
}

if (@keys) {
print “Names matched: \n”;
foreach $name (sort @keys) {

print “ $names{$name} $name\n”;
}

} else {
print “None found.\n”;

}
}

12 0355 ch09 5/9/02 2:35 PM Page 241

12 0355 ch09 5/9/02 2:35 PM Page 242

DAY 10

WEEK 2

Doing More with Regular
Expressions

Yesterday, we explored the basics of regular expressions. You learned about the
basic metacharacters and the ways you can use them to find patterns in strings.
Today, in part two of our regular expression saga, we’ll build on that back-
ground and explore other more complex ways in which regular expressions can
be used. The things you’ll learn about today include

• Extracting what was matched by a regular expression

• Notes on using patterns in scalar and list context

• Using patterns for search and replace

• More about using the split function

• Matching patterns over multiple lines

Extracting Matches
Using patterns in a boolean scalar context, as tests for conditionals or loops,
you can find out whether your pattern will match some part of a string. You can

13 0355 ch10 5/9/02 2:35 PM Page 243

only get one of the two answers to that question: yes or no. Although this is useful for
validating input, or for collating instances of patterns in a string, it’s only half the story.
Yes or no are fine answers, but even more useful is the capability to find out exactly what
bit of data matched the pattern, and then reuse that data later in the pattern, or to build a
list of all the matches that were found.

Whether the thing you match with a pattern is useful or not, of course, depends on the
pattern. If your pattern is /abc/, the thing that pattern matches is “abc”, and you knew
that ahead of time. If, however, your pattern is something like /\+.*/ (find a +, then any
number of characters), then the thing that gets matched could be any set of characters—
anything in your data that happens to occur after a + sign. Being able to get at the actual
thing that gets matches is an important feature of regular expressions.

Perl has a number of ways to access matches, and different uses for those matches when
you have them. When you have a match, you can refer back to that match later in the
pattern, save that match into a scalar variable, or collect a list of all the matches. We’ll do
all those things in this section.

Using Parentheses for Backreferences
Yesterday, you learned how to use parentheses to group together bits of a pattern, and
also how to use parentheses to change the precedence of how a pattern is matched. The
third and most important use of parentheses is to save a match, and then refer back to
that match later to build a much more complex regular expression. This mechanism of
saving matches is often called using backreferences in regular expression parlance.

Here’s an example. Say you were looking for lines that begin and end with the same
word. You don’t care what the word is, just that they begin and end with the same one.
You could do this with two pattern tests, a loop, and a couple ifs. But a better way to do
it is to test for the first word at the start of the line, save that value, and then test for that
same word at the end of the line. Here’s how you would do that:

/^(\S+)\s.*\1$/

Let’s break it down character by character. The first character is a caret (^), which refers
to the start of a line. Next is a parenthesis, which starts a pattern we will save for later. \S
is a nonwhitespace character, and \S+ refers to one or more nonwhitespace characters.
The closing parenthesis ends the part that will be saved. With me so far? That pattern
inside the parentheses will look for some set of characters followed by whitespace at the
start of the line.

Moving on, we have a single whitespace character (\s), zero or more characters of any
type (.*), \1, and then an end-of-line ($). What’s \1? That’s a reference to the thing we

244 Day 10

13 0355 ch10 5/9/02 2:35 PM Page 244

Doing More with Regular Expressions 245

10

matched in the parentheses; \1 says “put the thing you found in the first set of parenthe-
ses here.” So whatever we matched inside those parentheses will then appear later on in
the pattern—and therefore must appear at the end of the line for the entire pattern to
return true. All parts of the pattern must be true, not just the one inside parentheses.

So, for example, let’s say you had a line like this one:

“Perl is the best language for quick scripting.
If you want to get your job done, use Perl.”

(OK, that’s two lines. Pretend it’s a single line inside a variable like $_). Will this match
the pattern above? Let’s see. The pattern first tests for the beginning of the line, then any
non-whitespace characters, ending with a single whitespace character. What we have: the
word Perl and the space matches just fine (note, however, that the final whitespace char-
acter occurs outside the parentheses, so it won’t get saved). The next part of the pattern
(.+) will suck up any intervening characters to the end of the line, and then we’ll look for
a whitespace character and another instance of what we matched earlier. Remember, \1
becomes the match, so we’ll match the word “Perl”. After matching “Perl” the pattern
next wants the end of the line with $—but no! We’re not at the end of the line! We’ve got
a period there! And because of that punctuation, the entire pattern will return false.

We could fix that, of course. You could include punctuation by changing the pattern to
look like this:

/^(\S+)\s.+\s\1[.!?”]$/

The most important part, however, is the fact that \1 refers to the thing that matched in
parentheses. The pattern will only be successful if the thing that matched in the parenthe-
ses also appears at the same place in the string where you have the \1 reference to that
match.

You might be wondering about the significance of \1. It’s called \1 because there’s only
one pattern saved in parentheses. You can have any number of saved matches in a pat-
tern, all surrounded by parentheses, and refer to each one to using \1, \2, \3 and so on,
with the numbers matching up left to right. The numbers are assigned based on the open-
ing parenthesis—which means that you don’t have to end one saved match before start-
ing another one. You can nest the patterns to match, and the numbers will refer to the
thing matched by each one.

Be careful with parentheses—whether you use them as groups for changing precedence
or you use them for saving matches—Perl will still save the values. You can prevent a
parenthesized match from being saved using the special form (?:pattern) instead of
just (pattern). More about this in “Going Deeper.”

13 0355 ch10 5/9/02 2:35 PM Page 245

Saved Match Variables
Backreferences allow you to refer to a match in a subpattern in that same pattern. There’s
also a way to refer to those subpatterns outside the pattern. In addition to backreferences
referred to by \1, \2 and so on, Perl will assign scalar variables $1, $2, and so on to the
values matched by those subpatterns. This mechanism can be incredibly useful for
extracting bits out of strings or out of data. For example, here’s a bit that pulls the first
word out of a string:

if (/^(\S+)\s/) {
print “first word: $1\n”;

}

Here, if Perl can match the pattern (if it can find the start of the line and some number of
non-whitespace characters followed by a whitespace character), then it’ll print “first
word: “ and the match that it found. If the data doesn’t have a first word (for example, if
it’s an empty string, or if there is no whitespace whatsoever in the string), then nothing
will get printed because the test will return false. Remember, the whole pattern has to
match for the pattern to return true, not just the part in parentheses.

One other important note about the match variables: their values are local to the block,
read-only, and very transient. The next time you try to match anything, their original val-
ues will disappear. Those values will also vanish when a block ends. In other words, if
you want to keep the values of these variables to use later, or if you want to change the
values of those variables, you should save them off to some other variable or put them in
a list. Match variables are for temporary storage only.

Matches and Context
Up until now, we’ve seen patterns used only in scalar context, primarily in a boolean test.
The two rules for using patterns in a scalar boolean context are

• A test like /abc/ will return 1 (true) if the pattern was found in the given string ($_
if no variable, or =~ for anything else), and false otherwise. This is most useful in
conditionals.

• A /g option after the pattern allows iteration over the string; the pattern will return
1 (true) each time the pattern is matched, and then false at the end of the string.
This is most useful in while loops.

In both instances, parentheses inside the pattern will fill the match variables $1, $2, $3,
and so on, and you can then use those values inside the conditional and loop block or up
until the next pattern math.

246 Day 10

13 0355 ch10 5/9/02 2:35 PM Page 246

Doing More with Regular Expressions 247

10

If you use a pattern in a list context, the rules are different (surprise, surprise):

• A pattern containing parenthesized subpatterns to save will return a list of the first
subpatterns that matched ($1, $2, $3, and so on, as well as the individual variables
themselves). If there are no parenthesized patterns in the pattern, the list (1) is
returned (that’s a list of one element: the number 1).

• A /g option after the pattern returns a list of all the subpatterns that matched
throughout the string.

• If the pattern doesn’t match at all, the result is an empty list ().

Because patterns in list context return matches as a list, you could use patterns to split
your data into elements. Here’s another way of splitting a first and last name into their
component parts:

($fn, $ln) = /^(\w+)\s+(\S+)$/

A Note About Greed
On Day 2 we had a short discussion about truth, and now we’re going to talk about
greed. Perhaps later in the book we can discuss justice and envy.

Humor aside, one tricky feature of extracting patterns has to do with how the quantifier
metacharacters behave in respect to what they match. The metacharacters +, *, and {} are
called greedy metacharacters, because given a chance, they will match as many charac-
ters as they can up to and including all the characters up to the end the line.

Normal behavior for a pattern is that if a match is to be returned (that is, if the pattern is
being used in a list context), it’ll return the first match it finds. Take, for example, this
expression:

@x = /(\d\d\d)/;

Now say the data contained in $_ looks like this:

“3443 32 784 234 123 78932”

The @x array ends up being a list of one element, the first element in the list that matches
three digits, which in this case is (344). The pattern always stops at the first possible
match.

The *, + and {} quantifiers, however, change the rule. For example, let’s use that same
data, and try and match this pattern:

/(\d*)/;

13 0355 ch10 5/9/02 2:35 PM Page 247

Because * is defined as “zero or more of the preceding character,” you might think that
the pattern will stop when it satisfies that condition—that is, after it’s read a single
appropriate character, which in the case of our number data would return (3). Although
that number satisfies the pattern, the * is a greedy quantifier, which means it will keep
matching characters until it is unable to. The result of matching that pattern with the
string of numbers is (3443)—the * quantifier here kept sucking up numbers until it hit
the space. Space isn’t a number, so that’s as far as it could go.

Here’s an even more problematic example:

/’(.*)’/

At first glance, this pattern would appear to match (and fill $1) with characters in
between quotes. However, if you tried this pattern on this string:

“She said, ‘I don’t want to eat that bug,’ and then she hit me.”

Because the .* sequence is greedy, it’ll match and return all the characters in between
the single-quotes (‘I don’t want to eat that bug,’) the single-quote after the comma, and
then continue to match all the characters to the end of the line. Then, because it didn’t
get to match the quote mark, Perl will keep backing up and trying different characters
until it finds the quote mark. You’ll get the result you expect, but Perl will spend a lot of
time backtracking to find it. And, to make things even worse, if you have multiple quotes
in the string, when Perl backtracks, it’ll match the first one it finds. Take this string:

“‘I despise you,’ she said, throwing a pot at me. ‘I wish you were dead.’”;

Trying to match that same pattern to this string, $1 will end up containing this string:

I despise you,’ she said, throwing a pot at me. ‘I wish you were dead.

Assuming you were originally trying to match the contents of the first quote with that
pattern (just the words I despise you), that’s definitely not what you wanted.

Quantifiers initially appear to be a clever way of filling the space between two patterns.
Because of their greedy behavior, however, in many cases they are totally inappropriate
for that use, and you’ll get frustrated trying to get them to work in that way. The better
solution—both for making sure you only match what you want and to keep Perl from
spinning its wheels —is to use a negated character class instead of a quantifier. Instead of
thinking of the problem as “all the characters in between the opening and closing
quotes,” think of that problem as “an opening quote, then some number of characters that
aren’t a quote, then the closing quote.” Implementing that pattern in a regular expression
looks like this:

/”([^”]+)”/

248 Day 10

13 0355 ch10 5/9/02 2:35 PM Page 248

Doing More with Regular Expressions 249

10

It’s a few more characters, and a little more difficult to sort out, but this pattern is guar-
anteed to return the characters in between quotes, not to greedily eat all he characters
past the closing quote, and not to require any backtracking. As you might imagine, deal-
ing with the greediness of expressions is a common problem. In fact, it’s so common that
there’s another built-in way to deal with greed. To make a quantifier nongreedy, you can
just include a question mark after it. Take a look at this expression:

/”(.*?)”/

The question mark indicates that the smallest possible match should be made, not the
greediest. It’s a bit more readable than the character negation example used previously.

One thing you’ll find is that question marks have a variety of uses in the
world of regular expressions. You’ve already seen two, and you’ll see more
in the “Going Deeper” section of this chapter. Whenever you see one, be
careful to make sure you understand how it’s being used in context.

Note

An Example: Extracting Attributes from
HTML Tags

Here’s a quick example that illustrates how to use expressions to extract data from a doc-
ument and how greediness works. This program simply extracts all the HTML tags from
a document, prints out their names, and then prints out all their attributes and the values
assigned to those attributes. It assumes that the attributes all have values, and that those
values are enclosed in quotation marks (single or double).

First, let’s go straight to the source code for the script. It’s in Listing 10.1.

LISTING 10.1 The extractattrs.pl Script

#!/usr/bin/perl

while (<>)
{

while (/<(\w+)(.*?)>/g)
{

print “Tag: $1\n”;

my $attrs = $2;

while ($attrs =~ /(\w+)=(‘|”)(.+?)\2/g)
{

13 0355 ch10 5/9/02 2:35 PM Page 249

LISTING 10.1 continued

print “Attribute: $1\n”;
print “Value: $3\n”;

}
}

}

This script is really simple. It iterates over the files that are passed in on the command
line, searching for HTML tags. Let’s look at the first regular expression in the file:

/<(\w+)(.*?)>/g

This expression is applied to each line in the file. On the outside of the expression I have
< and > to match tags. Inside the angle brackets, I start with an expression that matches
any number of word characters and extracts the tag name. The second expression
matches everything else between the angle brackets. This expression is marked as non-
greedy so if there are multiple tags on the line they will match the closing angle bracket
in the tag I’m currently processing, not the closing angle bracket for the last tag on the
line. Everything between the tag name and the closing angle bracket is grouped so that I
can process it separately. This expression won’t match closing tags because the tag must
start with word characters, not /.

After the tag information has been extracted the tag name is printed and stored in $1.
Then, I have another inner while loop that iterates over the information stored in the
remainder of the tag. Let’s look at that expression:

/(\w+)=(‘|”)(.+?)\2/g

This expression extracts attributes from the rest of the data in the tag. More specifically,
it extracts attributes with values that are enclosed in single or double quotation marks. (If
the HTML document is XHTML-compliant, this will catch all the attributes.)

Let’s look at the expression in detail. First, it matches some number of word characters,
and stores them in the first backreference. Then, it matches an equal sign, then either a
single or double quotation mark. Then, a nongreedy expression matches any string of
characters (and stores them in backreference three), until it hits the value of backrefer-
ence two, which contains the quotation mark used to open the value of the expression.
This expression matches attributes such as color=”blue” or size=’3’, but not
height=15, or nowrap, or colspan=’2”. The script then prints out the name and value of
the attributes in the tag.

250 Day 10

13 0355 ch10 5/9/02 2:35 PM Page 250

Doing More with Regular Expressions 251

10

Using Patterns for Search and Replace
One of the niftiest uses of regular expressions involves not just searching for a pattern
or extracting matches into lists or variables or whatever, but also replacing that pattern
with some other string. This is equivalent to a search and replace in your favorite word
processor or editor—only with all the power and flexibility that regular expressions
give you.

To search for a pattern and then replace it with some other pattern, use this syntax:

s/pattern/replacement/

For this syntax the pattern is some form of regular expression; replacement is the string
that will replace the match. A missing replacement will delete the match from the string.
For example:

s/\s+/ / # replace one or more whitespace characters with a single space

As with regular patterns, this syntax will search and replace the string in $_ by default.
Use the =~ operator to search a different location.

The search-and-replace syntax, as shown, will replace only the first match, and return 1.
With the /g option (g stands for global) on the end, Perl will replace all instances of the
pattern in the string with the replacement:

s/--/—/g # replace two dashes -- with an em dash code —

Also, as with regular patterns, you can use the /i option at the end to perform a search
that’s not case sensitive (although the replacement will not match case, so be careful):

s/a/b/gi; # replace [Aa] with b, globally

Feel free to use parentheses and match variables inside search-and-replace patterns; they
work just fine here:

s/^(\S+\b)/=$1=/g # put = signs around first word
s//^(\S+)(\s.*)(\S+)$/$3†$2†$1/ # swap first and last words

Fans of sed will think that it’s better to use \1, \2, and so on in the replace-
ment part of the search and replace. Although this will work in Perl (basi-
cally by Perl replacing those references with variables for you), you should
really get out of the habit—officially, in Perl, the replacement part of the
s/// expression is a plain old double-quoted string, and \1 means a differ-
ent thing in that context.

Note

13 0355 ch10 5/9/02 2:35 PM Page 251

More About split
Remember the split function, from Day 5, Working with Hashes?” We were using
split to divide up names into first and last name lists, like this:

($fn, $ln) = split(“ “, $in);

At the time, I explained that using split with a space in quotes was actually a special
case that would only work on data in which fields were separated by whitespace. To use
split for data separated by any other characters, or needing any kind of sophisticated
processing to find the elements, you’ll use split with a regular expression as the pattern
to match on:

($fn, $ln) = split(/\s+/, $in); # split on whitespace
@nums = split(//, $num); # split 123 into (1,2,3)
@fields = split(/\s*,\s*/, $in); # split comma-separated fields,

with or without whitespace around the comma

The first example here, which splits on one or more whitespace characters, is equivalent
to the behavior of split with a quoted space, and also equivalent to using split without
any pattern whatsoever. (The quoted space syntax is borrowed from the Unix tool awk,
which has that same string-splitting behavior).

You can also tell split to limit the number of chunks to split the data into using a num-
ber as the third argument:

($ln, $fn, $data{$ln}) = split(/,/ $in, 3);

This example would be useful for data that might look like this:

Jones,Tom,brown,blue,64,32

That split command will split the data around a comma into a last name, a first name,
and everything else, for a total of three elements. The assignment will put the last and
first names into scalar variables, and everything else into a hash keyed by last name.

Normally, the parts of the string that are stored in the final list don’t include anything
matched by the pattern. If you include parentheses in the pattern, however, than anything
matched in the pattern inside those parentheses will also be included in the final list,
with each match its own list element. So, for example, say you had a string like this one:

1:34:96:54:0

Splitting on the colon (with a pattern of /:/) will give you a list of everything that
doesn’t match the colon. But a pattern of /(:)/ will give you a list that looks like this,
splitting on both things not included in the pattern and things that match the parenthe-
sized parts of the pattern:

1, ‘:’, 34, ‘:’, 96, ‘:’, 54, ‘:’, 0

252 Day 10

13 0355 ch10 5/9/02 2:35 PM Page 252

Doing More with Regular Expressions 253

10

Between split and regular pattern matching, you should be able to extract data out of
strings just about any way you want to. Use patterns and backreferences to extract the
things you want, and split to break the string up into its elements based on the parts
you don’t want. With the right sets of patterns and understanding the format of the input
data, you should be able to handle data in most any format with only a few simple lines
of code—something that would be much more difficult to do in a language like C.

Matching Patterns over Multiple Lines
Up to this point we’ve been assuming that all the pattern matching you’ve been doing is
for individual lines (strings), read from a file, or from the keyboard. The assumption,
then, is that the string you’ll be searching has no embedded line feeds or carriage returns,
and that the anchors for beginning and end of line refer to the beginning and end of the
string itself. For the while (<>) code we’ve been writing up to this point, that’s a sensi-
ble assumption to make.

Quite often, however, you might want to match a pattern across lines, particularly if the
input you’re working with is composed of sentences and paragraphs, where the line
boundaries are arbitrary based on the current test formatting. If you want to, for example,
search for all instances of the term “Exegetic Frobulator 5000” in a Web page, you want
to be able to find the phrases that cross line boundaries as well as the ones that exist in
total in each logical line.

You have to do two things to do this. First, you have to modify your input routines so
they will read all the input into a single string, rather than process it line by line. That’ll
give you one enormous string with newline or carriage return characters in place.
Secondly, depending on the pattern you’re working with, you might have to tell Perl to
manage newlines in different ways.

Storing Multiple Lines of Input
You can read your entire input into a single string in a number of ways. You could use <>
in a list context, like this:

@input = <>;

That particular line could potentially be dangerous, for example, if your input is very, very
large, it could suck up all the available memory in your system trying to read all that input
into memory. There’s also no way to get it to stop in the middle. A less aggressive
approach for reading paragraph-based data in particular is to set the special $/ variable.
If you set $/ to a null string ($/ = “”;), Perl will read in paragraphs of text, including

13 0355 ch10 5/9/02 2:35 PM Page 253

new lines, and stop when it gets to two or more newlines in a row. (The assumption here
is that your input data has one or more empty lines between paragraphs):

$/ = “”;
while (<>) { # read a para, not a line

$_ will contain the entire paragraph, not just a line
}

A third way to read multiple lines into a single string is to use nested whiles and append
lines to an input string until you reach a certain delimiter. For strictly coded HTML files,
for example, a paragraph ends with a </P> tag, so you could read all the input up until
that point:

while (<>) {
if (/(.*)<\/P>/) {

$in.=$1
} else {

$in.=$_
}

}

Handling Input with Newlines
After you have multiline input in a string to be searched, be it stored in $_ or in a scalar
variable, you can go ahead and search that data for patterns across multiple lines. Be
aware of several things regarding pattern matches with embedded newlines:

• The \s character class includes newlines and carriage returns as whitespace, so a
pattern such as /George\s+Washington/ will match with no problem regardless of
whether the words George Washington are on a single line or on separate lines.

• The ^ and $ anchoring characters refer to beginning of string or end of string—not
to embedded newlines. If you want to treat ^ and $ as beginning and end of line in
a string that contains multiple lines, you can use the /m option.

• The dot (.) metacharacter will NOT match newlines by default. You can change
this behavior using the /s option.

That last point is the tricky one. Take this pattern, which uses the .* quantifier to extract
a whole line after an initial “From:” heading:

/From: (.*)/

That pattern will search for the characters “From:”, and then fill $1 with the rest of the
line. Normally, with a string that ends at the end of the line, this would work fine. If the
string goes onto multiple lines, however, this pattern will match only up to the first new-
line (\n). The dot character, by default, does not match newlines.

254 Day 10

13 0355 ch10 5/9/02 2:35 PM Page 254

Doing More with Regular Expressions 255

10

You could get around this by changing the pattern to be one or more words or white-
space, avoiding the use of dot altogether, but that’s a lot of extra work. What you want is
the /s option at the end of your pattern, which tells Perl to allow dot to include \n as a
character. Using /s does not change any other pattern-matching behavior—^ and $ con-
tinue to behave as beginning and end of string, respectively.

If your regular expression contains the ^ or $ characters, you might want to treat strings
differently if they stretch over multiple lines. By default, ^ and $ refer to the beginning
and end of the string, and ignore newlines altogether. If you use the /m option, however,
^ will refer to either the beginning of a string or the beginning of a line (the position just
after a \n), and $ will refer to the end of the string or the end of the line (the position just
before the \n). In other words, if your string contains four lines of text, ^ will match four
times, and similarly for $. Here’s an example:

while (/^(\w}/mg) {
print “$1\n”;

}

This while loop prints the first word of each line in $_, regardless of whether the input
contains a single line or multiple lines.

If you use the /m option, and you really do want to test for the beginning or end of the
string, ^ and $ will no longer work for you in that respect. But fear not, Perl provides \A
and \Z to refer to the beginning and end of the string, regardless of the state of /m.

You can use both the /s and /m options together, of course, and they will coexist happily.
Just keep in mind that /s effects how dot behaves, and /m effects ^ and $, and you should
be fine. Beyond that, embedded newlines in strings are no problem for pattern matching.

A Summary of Options and Escapes
Throughout this lesson, I’ve been mentioning various options you can use with patterns,
as well as a number of the special escapes that you can use inside patterns.

Table 10.1 shows the options you can tag onto the end of the pattern matching expression
(m// or just //) as well as those that can be used with the substitution expression (s///).

I haven’t described all these options in this lesson. You’ll learn about some
of these in “Going Deeper,” later in this chapter, but you might also want to
check out the perlre man page for more information on any options that
look interesting.

Note

13 0355 ch10 5/9/02 2:35 PM Page 255

TABLE 10.1 Pattern Matching and Substitution Options

Option Use

g Match all occurrences (not just one)

i Match both upper and lowercase

m Use ^ and $ for newlines

o Interpolate pattern once (for better efficiency)

s Dot (.) includes newlines

x Extend regular expressions (can include comments and whitespace)

e Evaluate replacement as a Perl expression (s/// substitution only)

Table 10.2 contains the special escapes that can be used inside regular expressions, in
addition to the usual string escapes such as \t and \n, and backslashes used to turn
metacharacters into regular characters.

TABLE 10.2 Pattern Matching Escapes

Escape Use

\A Beginning of string

\Z End of string

\w Word character

\W Non-word character

\b Word boundary

\B Non-word boundary

\s Whitespace character

\S Non-whitespace character

\d Digit

\D Non-digit

\Q Escape all special characters

\E End \Q sequence

An Example: Image Extractor
Let’s finish up with an example of a pretty hefty regular expression (two of them, actu-
ally), used inside a Perl script. This script takes an HTML file as input, ranges over the
file and looks for embedded images (using the tag in HTML). It then prints a list

256 Day 10

13 0355 ch10 5/9/02 2:35 PM Page 256

Doing More with Regular Expressions 257

10

of the images in that page, printing a list of the various attributes of that image (its loca-
tion, width or height, text alternative, and so on). The output of the script will look some-
thing like this:

Image: title.gif

HSPACE: 4
VPSACE: 4
ALT: *

Image: smbullet.gif

ALT: *

Image: rib_bar_wh.gif

BORDER: 0
HSPACE: 4
WIDTH; 50
HEIGHT: 50
ALT: --

If you’re not familiar with HTML, the tag can be embedded anywhere inside an
HTML file, looks something like this:

There are a couple of tricky things about this tag, however, that make this task more diffi-
cult than it would initially appear: The tag itself can appear in upper or lowercase, and it
can be spread over multiple lines. The attributes (the key/value pairs after the img part) can
also be in any case, have space around the equal sign, and may or may not be quoted. The
values can have spaces (but must be quoted if they do). Only one attribute is required—the
src attribute—but there are a number of other attributes, and any of them can appear in
any order. In an the example where I extracted attributes from HTML tags, nearly all these
factors were ignored for the sake of convenience. This example will handle them properly.

All these choices make for a much more complex regular expression than just grabbing
everything between the opening and closing tags. In fact, for this particular script I’ve
split up the task into two regular expressions: one to find and extract the img tag out of
the file, and one to extract and parse each individual attribute.

Listing 10.2 shows the code for this script. Try looking it over now to get a feel for how
it works, but don’t worry too much about grasping the pattern right now:

LISTING 10.2 The img.pl Script

1: #!/usr/local/bin/perl -w
2:
3: $/ = “”; # paragraph input mode
4: $raw = “”; # raw attributes

13 0355 ch10 5/9/02 2:35 PM Page 257

LISTING 10.2 continued

5: %atts = (); # attributes
6:
7: while (<>) {
8: while (/<img\s(.+?)>/igs) {
9: $raw = $1;
10: while ($raw =~ /(\w+)\s*=\s*((“|’)(.*?)\3|(\w*)\s*)/igs) {
11: if (defined $4) {
12: $atts{ lc($1) } = $4;
13: } else { $atts{ lc($1)} = $2; }
14: }
15: if ($raw =~ /ismap/i) {
16: $atts{‘ismap’}= “Yes”;
17: }
18:
19: print ‘-’ x 15;
20: print “\nImage: $atts{‘src’}\n”;
21: foreach $key (“width”, “height”,
22: “border”, “vspace”, “hspace”,
23: “align”, “alt”, “lowsrc”, “ismap”) {
24: if (exists($atts{$key})) {
25: $atts{$key} =~ s/\s*\n/ /g;
26: print “ $key: $atts{$key}\n”;
27: }
28: }
29: %atts = ();
30: }
31: }

This script has two main sections: a section to extract the data from the input, and a sec-
tion to print out a report of what we found.

The first section uses a number of nested while loops to range over the HTML file: line
7 to loop over all the input, line 8 to find each instance of the image tag in the input, and
line 10 to loop over each attribute in the tag and store it into a hash called %atts,
keyed by attribute name. This is very similar to the mechanism used in the example that
extracted attributes from HTML tags.

With the %atts hash built, all we have to do is print out the values. Because I wanted
them printed in a specific order, with the foreach loop in 21, I indicated the keys I
wanted to find in a specific order.

But the focus of this script is the regular expressions in lines 8 and 10, so let’s look at
those two patterns in detail. Line 8 looks like this:

while (/<img\s(.+?)>/igs) {

258 Day 10

13 0355 ch10 5/9/02 2:35 PM Page 258

Doing More with Regular Expressions 259

10

Working through that regular expression, character to character, we look for the charac-
ters <img (the opening part of the tag), a whitespace character, and then all the charac-
ters until a > is reached. Note that I use a nongreedy expression here so only the contents
of the current tags will match the .+ qualifier.

Note the parentheses around the “.+?” expression—that’s the part we’re interested in
(which contains the attributes for the image), and that’s the part of this pattern that will
be extracted and saved for later use inside the body of this loop.

Note also the options at the end of the pattern: /i for a search that’s not case sensitive
(searching for both <img...> and <IMG...>), and /g for a global search (we’ll get one
pass of the while loop for each instance of <img in the loop). The /s is used to have
the . match any line breaks that are encountered inside the parts of the tag it matches.

Inside the body of that loop, we can save the attribute list into the $raw variable (line 9).
We have to do this because the values of $1, $2, $3, and so on are all transient—they’ll
get reset at the next pattern match. That brings us to line 10 and the truly gnarly regular
expression we’ve got there:

while ($raw =~ /(\w+)\s*=\s*((“|’)(.*?)\3|(\w*)\s*)/igs) {

Four important parts of this regular expression are outlined in Figure 10.1.

FIGURE 10.1.
Regular expression
parts for img.pl.

Attribute = "something" OR something

/ ([^ =] +) \ s * = \ s * (" ([^ "] +) " l [^ \ s] = \ s *) / i g)

$1
$3

$2

The parts are further explained as follows:

• The attribute name, some set of characters that are neither a space nor an equal
sign. We’ll save this off into $1.

• An equal sign with optional whitespace on either side of it.

• One of two formats of value: This first one is a single or double quotation mark,
followed by some number of characters, followed by another quotation mark of the
same type as the first. This covers the quoted attributes (for example, alt=”some

alternative text”). The value here is saved into $4.

• Some number of word characters followed by optional whitespace. This covers the
nonquoted value case (height=100). The value here is saved into $5.

13 0355 ch10 5/9/02 2:35 PM Page 259

Note the placement of parentheses for the values, and remember the rule for match vari-
ables: the numbers are assigned based on the opening parentheses. So $2 ends up being
the complete value, but $4 will be the value minus the quotes—if the value had quotes in
the first place.

We cover either case in line 11 through 14, where we test to see if $4is set. If it is, our
value has quotes, and we’ll store the nonquoted part into the %atts hash. If $4 isn’t
defined, our values aren’t quoted, and we can store $2 into %atts instead. Note, here we
also use the lc function to put our attribute names in uppercase before storing them.

Lines 15 through 17 cover a special case for the tag—the ismap attribute doesn’t
take a value and indicates whether the image is an image map (that is, you can click dif-
ferent areas on the image and get different results). This form of image maps isn’t com-
monly used in HTML anymore (it’s been superseded by another tag), but we’ll include it
here to be complete. We have to make this one a special case because the expression in
line 10 won’t match it.

So after all those loops and patterns, we end up with a hash that stores all the attributes
of the tag we found. All that’s left is to print those values. The loop in line 21
loops through all possible values for the tag, in the order they’ll be printed. But
each we find in the file can have a subset of those attributes—all of which are
optional, except for src, so we have to test in line 24 to make sure the attribute actually
exists before printing it. The exists function tests a hash to see if a key exists and
returns true or false.

One other unusual line is 25, where we do a quick search and replace of the value. This
is to cover the case where the attribute might have been split over several lines—that
value will have an embedded newline character, and we don’t want that to be printed out
in the final table. This little regular expression will look for optional whitespace followed
by a newline character, and then replace it with a single space.

And finally, in line 29 we clear the attributes hash for the next go-around and the next
 tag.

This script, while short, shows the sort of task for which Perl works exceptionally well:
finding sophisticated patterns in text, and then printing them back out again in sophisticated
reports. This same task in C would most likely take much longer than 30 lines to code.

Hints for Building Regular Expressions
Depending on the complexity of your data or what you need to do with it; formulating a
regular expression can either be very easy or need several iterations to get right. Here are
some hints to help you get along with patterns:

260 Day 10

13 0355 ch10 5/9/02 2:35 PM Page 260

Doing More with Regular Expressions 261

10

• Know your data. Try and get a feel for the different ways that your pattern can
appear, and to come up with a set of consistent rules before starting to write your
pattern.

• Use multiple regular expressions if you need to. Sometimes it’s easier to break the
task into several smaller chunks than trying to get everything done at once.

• Develop your regular expressions incrementally. If you need a complex expression,
generally it’s easier to start by writing the first part of the expression, testing it, and
then adding pieces one at a time and testing them as you move on. That way, you
know immediately where the problem is if you suddenly stop matching things that
the expression is supposed to match.

• Don’t forget split. Some tasks work better using split (removing everything
except for a pattern) than they do with plain matches. And vice versa.

• Use parentheses to extract what you need (and only what you need). If you don’t
need the quote marks in a match, put the parentheses inside the quotation marks.
Only save what you want, and you’ll save yourself time removing the parts you
don’t want later.

• Remember that * and ? refer to “zero or more” and “zero or one” characters. This
means that if the character doesn’t exist at all the pattern might still match. If your
pattern requires at least one instance of a character, use + instead of * or ?.

• Don’t forget alternation. The pipe (|) character can come in handy for very com-
plex patterns that might have several alternative complex cases to work with.

• Consider not using a regular expression at all for the task you’re trying to accom-
plish. Regular expressions are incredibly powerful but there is a performance hit to
using them, particularly for easy things like simple tests.

• Don’t obsess. Regular expressions can be incredibly powerful, but can also drive a
person absolutely insane when they don’t work. If a regular expression just doesn’t
seem to be working, stop, take a break, and think about it in a different way.

Going Deeper
Regular expressions are one of those things that you could write a whole book about and
still not cover the extent to which they can be used. In the last two lessons, I’ve given
you the basics of how to build and how to use regular expressions in your own programs.
There are still many more features haven’t been discussed, however, including many
more metacharacters and regular expression forms specific to Perl. In this section I’ll
give you an overview of some of these other forms.

13 0355 ch10 5/9/02 2:35 PM Page 261

For more information about any aspect of regular expressions in Perl, the perlre man
page can be quite enlightening. If you find yourself enjoying working with regular
expressions, consider the book Mastering Regular Expressions, (Friedl, O’Reilly &
Associates), which covers regular expressions of all kinds, Perl and otherwise, in an
amazing amount of detail.

More Metacharacters, Variables, and Options
The metacharacters I described in previous two lessons are most of the basic set of char-
acters you can find in most regular expression flavors (not just those in Perl). Perl
includes a number of extra metacharacters, variables, and options that provide different
ways of creating complex patterns (or of processing the patterns that match).

Metacharacters
The first of these are nongreedy versions of the quantifiers *, +, and ?. As you learned
throughout the lesson, these quantifiers are greedy—they’ll match any characters far
beyond what you expect, sometimes to the detriment of figuring out how the pattern actu-
ally works. As I’ve used throughout the chapter, Perl also provides a second set of quanti-
fiers which are nongreedy (sometimes called lazy quantifiers): *?, +?, and ??. These
quantifiers match the minimal number of characters needed to match the pattern, rather
than the maximum like the regular quantifiers. Don’t forget to use negated character classes
when necessary. The lazy quantifiers are less efficient than a negated character class.

• The (?:pattern) construct is a variant on the use of parentheses to group patterns
and save the results in the match variables $1, $2, $3, and so on. You can use
parentheses to group an expression, but the result will get saved whether you want
it to be or not. Using (?:pattern) instead, the expression will be grouped and
evaluated as a unit, but the result will not be saved. It provides a slight perfor-
mance advantage over regular parentheses where you don’t care about the result.

• The (?o) construct enables you to nest pattern-matching options inside the pattern
itself, for example, to make only some parts of the expression not case sensitive.
The o part of the construct can be any valid pattern-matching option.

Look-ahead is a feature in Perl’s regular expressions that enables Perl to peek ahead in a
string and see if a pattern will match without changing the position in the string or
adding anything to the parenthetical part of the pattern. It’s sort of like saying “if the next
part of this pattern contains X, then this part matches” without actually going anywhere.
Use (?=pattern) to create a positive-lookahead pattern (if pattern matches in future bits
of the string, the previous part of the pattern also matches). The reverse is a negative-
lookahead pattern, (?!pattern), and works only if the pattern cannot match anything.

262 Day 10

13 0355 ch10 5/9/02 2:35 PM Page 262

Doing More with Regular Expressions 263

10

Special Variables
In addition to the match variables $1, $2, and so on, Perl also includes the variables $’,
$& and $`, which provide context for the text matches by the pattern. $’ refers to the text
leading up to the match, $& is the text that was matched, and $` is the text after the
match (note the backquote; that’s a different character from quote ‘). Unlike the transient
match variables, these variables will hold their values until the next successful match and
regardless of whether or not the original string was changed. Using any of these variables
is a significant performance hit, so consider avoiding them when at all possible.

The $+ variable indicates the highest number of match variables that were defined; for
example, if both $1 and $2 were filled, but not $3, $+ will be set to 2.

Options
You’ve learned about most of the options available to Perl regular expressions (both m//
and s///) throughout the body of this lesson. Two not touched on are /x, for extended
regular expressions, and /o, to avoid compiling the same regular expression over and
over again.

The /x option enables you to add whitespace and comments to a regular expression, for
better readability. Normally, if you add spaces to a pattern, those spaces are considered
part of the pattern itself. The /x option ignores all spaces and newlines, as well as allow-
ing comments on individual lines of the regular expression. So, for example, that regular
expression in our extractor script, which looked like this in the script:

while ($raw =~ /(\w+)\s*=\s*((“|’)(.*?)\3|(\w*)\s*)/igs) {

Might be rewritten to look like this:

while ($raw =~ /([^ =]+) # find the attribute name
\s*=\s* # find the equals, with or without whitespace
(“([^”]+)”| # find and extract quoted values
[^\s]+\s*) # or find non-quoted values
/igx) {

The use of extended regular expressions can help quite a bit to improve the readability of
a regular expression.

And, finally the /o option is used to optimize how Perl compiles and reads a regular
expression interpolated via a scalar variable. Take the following code snippet:

while (<>) {
if (/$pattern/) {
...

}
}

13 0355 ch10 5/9/02 2:35 PM Page 263

In this snippet, the pattern stored in $pattern is interpolated and compiled into a real
pattern that Perl can understand. The problem is that because this pattern is inside a
while loop, that same process will occur each and every time the loop comes around. By
including the /o at the end of the pattern, you’re telling Perl the pattern won’t change,
and so it’ll compile it once and reuse the same pattern each time:

if (/$pattern/o) { # compile once

For information on all these metacharacters, variables, and options, see the perlre man
page.

Summary
In today’s lesson, you learned more about using regular expressions, building on the
basics you learned about yesterday. Today, we talked about extracting matches from a
pattern-matching operation using parentheses, and using backreferences and match vari-
ables to save matches and refer back to them later.

As part of that discussion, you also learned about pattern matching in different contexts
(scalar contexts return true or false, lists return lists of matches), about the greedy behav-
ior of the quantifier metacharacters, and more about the split function. If you made it
this far, through both these lessons, you now know enough about regular expressions to
match just about any pattern in any set of data.

Q&A
Q. You’ve discussed efficiency a lot in this chapter, but as far as I can see, all my

programs run in the blink of an eye. Is efficiency really worth worrying about?

A. It depends. When you’re using Perl to process example data, efficiency probably
doesn’t make a difference. When your Perl program has to process a 5 gigabyte
Web log, it’s worthwhile to cash in on any time savings that coding for efficiency
can afford you. Perl is a language that’s perfect for batch processing, and in the
world of batch processing, every millisecond often counts.

Q. I have a bit of code that uses a two-step process to extract something out of a
string. The first pattern puts a substring into $1, and then the second pattern
searches $1 for a different pattern. The second pattern never matches, and
printing $1 shows that it’s empty. But if it was empty, the second pattern
shouldn’t have even been tried in the first place. What’s going on here?

A. It sounds like you’re trying something like this:
if ($string =~ /some long pattern with a {subpattern} in it/) {

if ($1 =~ /some second pattern/) {

264 Day 10

13 0355 ch10 5/9/02 2:35 PM Page 264

Doing More with Regular Expressions 265

10

process second pattern
}

}

Unfortunately, you can’t do that. The $1 variable (or any other variable) is incredi-
bly temporary. Each time you use a regular expression, Perl resets all the match
variables. So, for this particular example, the first line does match and fills $1 with
the contents of the parentheses. However, the minute you try another pattern-match
(in the second line), the value of $1 disappears, which means that second pattern
can never match.

The secret here is simply to make sure you put the values of any match variables
somewhere else if you want to use them again. In this particular case, just adding a
temporary variable and searching it instead will work just fine:
if ($string =~ /some long pattern with a {subpattern} in it/) {

$tmp = $1;
if ($tmp =~ /some second pattern/) {

process second pattern
}

}

Q. I’ve seen some scripts that set a $* variable to 1 to do multiline matching,
similarly to the way you described the /m option. What’s $*, and should I be
using it?

A. In earlier versions of Perl, you set the $* to tell Perl to change the meaning of ^
and $. In current versions of Perl, you should be using /m instead; $* is only there
for backwards compatibility.

Workshop
The workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience in using what you’ve learned. Try
and understand the quiz and exercise answers before you go on to tomorrow’s lesson.

Quiz
1. Assume that $_ contains the value “123 kazoo kazoo 456”. What is the result of

the following expressions?
@matches = /(\b[^\d]+)\b/g;
@matches = /\b[^\d]+\b/;
s/\d{3}/xxx/;
s/\d{3}/xxx/g;
$matches = s/\d{3}/xxx/g;
if (/\d+(.*)\d+/) { print $1;}
@matches = split(/z/);
@matches = split/” “/,$_, 3;

13 0355 ch10 5/9/02 2:35 PM Page 265

2. What is the rule for how backreferences and match variables are numbered?

3. How long do the values of match variables stay around?

4. How can you stop the greedy behavior of the quantifiers + and *?

5. What do the following options do?
/g
/i
/o
/s

Exercises
1. BUG BUSTER: What’s wrong with this bit of code?

while (<>) {
$input =~ /pat\s/path /;

}

2. BUG BUSTER: What’s wrong with this bit of code?

@matches = /\b[^\d]+\b/;

3. Write a script to find duplicated words (“the the” or “any any”) in its input and to
replace them with one instance of that same word. Watch out for words duplicated
over multiple lines.

4. Write a script to expand acronyms in its input (for example, to replace the letters
“HTML” with “HTML (HyperText Markup Language). Use the following
acronyms and meanings to replace:
HTML (HyperText Markup Language)
ICBM (InterContinental Ballistic Missile)
EEPROM (Electrically-erasable programmable read-only memory)
SCUBA (self-contained underwater breathing apparatus)
FAQ (Frequently Asked Questions)

5. Modify the img.pl script to extract and report about links instead of images. Hint:
Links look something like this:

test to underline for the link

Links can also contain attributes for name, rel, rev, target and title.

Make sure you report on both the contents of the link tag and the text in between
the opening and closing tags.

266 Day 10

13 0355 ch10 5/9/02 2:35 PM Page 266

Doing More with Regular Expressions 267

10

Answers
Here are the answers to the Workshop questions in the previous section.

Quiz Answers
1. The answers are

a. (“kazoo”, “kazoo”)

b. (1). A pattern in a list context without parenthesized parts of the pattern or with
/g will return (1) if the pattern matched.

c. The string will be changed to “xxx kazoo kazoo 456”

d. The string will be changed to “ xxx kazoo kazoo xxx”

e. The $matches variable will be set to 2 (the number of changes made).

f. “ kazoo kazoo 45” (watch out for those greedy quantifiers).

g. (“123 ka”, “oo ka” “oo 456”)

h. (“123”, “kazoo”, “kazoo 456”)

2. Backreferences and match variables are numbered based on opening parentheses.
Parenthesized patterns can be nested inside each other.

3. Match variables are extremely transient; their values only stay set until the next
pattern match or until the end of a block.

4. Two ways: the most efficient way is to avoid using greedy quantifiers with the dot
(.) character and use negated characters classes instead; the other way is to use the
nongreedy versions of those quantifiers (+? and *?).

5. The answers are

a. The /g option means “global”; it applies the pattern to the entire string (as
opposed to stopping after the first match). Different things happen depending on
context.

b. The /i option creates a search that’s not case sensitive search. Upper and lower-
case letters become irrelevant.

c. The /o option means “compile the pattern only once.” It’s most useful for opti-
mizations on patterns with embedded variables.

d. The /s option allows the dot (.) character to match newlines.

13 0355 ch10 5/9/02 2:35 PM Page 267

Exercise Answers
1. There’s two parts to that pattern (a pattern and a replacement), but no leading ‘s’ If

you leave out the s in front, $input is never assigned a value. The fixed version
looks like this:
while (<>) {

$input =~ s/pat\s/path /;
}

2. Trick question! There’s nothing actually wrong with that bit of code, although it
probably doesn’t do what you expect. A pattern in a list context without parenthe-
sized subpatterns will result in the value (1) if the pattern matches. To save a list of
the matches you need to include parentheses somewhere in the pattern.

3. Here’s one version:
#!/usr/bin/perl -w
find and extract links
doesn’t handle link text with embedded HTML

$/ = “”; # paragraph input mode
$raw = “”; # raw attributes
$linktext = “”; # link text
%atts = (); # attributes

while (<>) {
while (/<a\s([^>]+)>([^<]+)<\/a>/ig) {

$raw = $1;
$linktext = $2;
$linktext =~ s/[\s]*\n/ /g;
while ($raw =~ /([^\s=]+)\s*=\s*(“([^”]+)”|[^\s]+\s*)/ig) {

if (defined $3) {
$atts{ lc($1) } = $3;

} else { $atts{ lc($1)} = $2; }
}
print ‘-’ x 15;
print “\nLink text: $linktext\n”;
foreach $key (“href”, “name”, “title”,

“rel”, “rev”, “target”) {
if (exists($atts{$key})) {

$atts{$key} =~ s/[\s]*\n/ /g;
print “ $key: $atts{$key}\n”;

}
}
%atts = ();

}
}

268 Day 10

13 0355 ch10 5/9/02 2:35 PM Page 268

DAY 11

WEEK 2

Creating and Using
Subroutines

We’ll finish up your lesson on the core of the Perl language today with a dis-
cussion of subroutines, functions, and local variables. With subroutines you can
collect bits of commonly used code into a single operation, and then perform that
operation at different times in your script—the same way you use the built-in Perl
functions.

The specific things you’ll learn about include

• The differences between user-defined subroutines and Perl’s standard
functions

• How to define and call simple subroutines

• Using variables local to subroutine definitions

• Returning values from subroutines

• Passing arguments to subroutines

• Using subroutines in different contexts

14 0355 ch11 5/9/02 2:35 PM Page 269

Subroutines Versus Functions
A function, in general, is a chunk of code that performs some operation on some form
of data. You call, or invoke, a function by naming it and giving it arguments somewhere
in your Perl script. Perl then transfers execution to the function definition, performs the
operations in that function, and then returns to where the execution left off when the
function is done. This is true of any kind of function.

In previous lessons, we’ve been working a lot with Perl’s built-in functions such as print,
sort, keys, chomp, and so on. These are functions that are defined by the standard Perl
library that you can use anywhere in your Perl programs. Another set of functions are
available to you using additional Perl modules or libraries, written by other Perl program-
mers, that you load in at the start of your script—you learned more about those on Day 3,
“Scope, Modules and Importing Code.”

A third set of functions are those that you define yourself using a subroutine definition
in Perl. In common practice, the terms function and subroutine are entirely equivalent—
some programmers call subroutines user-defined functions to differentiate them from the
built-in set; in other contexts, there’s no distinction to be made. Throughout this lesson,
and throughout this book, I’ll refer to the functions that you define in your own programs
(or modules, later on), as subroutines, and those that you get elsewhere—from the standard
Perl distribution or from optional modules—as functions.

Why would you need a subroutine? Any time you’re reusing more than a few lines of code
in your Perl scripts, that’s a good reason to put that code into a subroutine. You could
also use subroutines to portion different parts of your script into chunks, perhaps to split
up a complex problem into easier bites, or because it’s more readable to refer to a certain
operation by name (remove_newlines, say, or find_max) rather than to simply include
the code itself. Creating a script as a set of subroutines also makes it easier to isolate pro-
gramming problems. You can write and test and debug a single subroutine by itself, and
be assured when you integrate that subroutine into your larger script that that subroutine
will behave as you expect. Whether or not you use subroutines for different problems in
your Perl scripts is a matter of programming style; use subroutines any time it will make
your life easier as a programmer or your scripts easier to read and understand.

Defining and Calling Basic Subroutines
The most basic subroutine is one that takes no arguments, uses no local variables, and
returns no value. Although this kind of subroutine might not seem terribly useful, it’s a
good place to start learning about them. So, we’ll start with that kind of subroutine in this
section and build from there. In this section, you learn the drill for defining and calling
subroutines in your Perl scripts.

270 Day 11

14 0355 ch11 5/9/02 2:35 PM Page 270

Creating and Using Subroutines 271

11

An Example of a Subroutine
Let’s take a really simple example of a subroutine. Remember the temperature script from
Day 2, which prompted you for a temperature in Fahrenheit, and then converted that tem-
perature to Celsius? We included the actual calculation right in the middle of the script,
but it could have been included in a subroutine, like this:

#!/usr/ bin/perl -w

print ‘Enter a temperature in Farenheight: ‘;
chomp ($fahr = <STDIN>);
&f2c();
print “$fahr degrees Fahrenheight is equivalent to “;
printf(“%d degrees Celsius\n”, $cel);

sub f2c {
$cel = ($fahr - 32) * 5 / 9;

}

Look over that example carefully, and see how the subroutine works. Perl executes the
script line-by-line starting from the first line, as it always does, but when it gets to a ref-
erence to a subroutine (here, &f2c()), it switches execution to the subroutine definition
(the last couple of lines in the script), executes the block there, and then returns to where
it left off. In this case, that means that after the temperature is read from the keyboard,
Perl switches to the &f2c() subroutine to convert the value to a Celsius value, and then
prints out the value it found.

By saying switches execution, I don’t mean Perl actually jumps to that specific
line of the script. Perl actually loads the entire script first and keeps track of
all subroutine definitions before the script actually begins running, so it
actually does just switch execution to the subroutine definition and switch
back afterwards.

Note

Defining Subroutines
From this simple example, you can probably infer the basic syntax for a subroutine defi-
nition:

sub subroutinename {
statements;
...

}

14 0355 ch11 5/9/02 2:36 PM Page 271

A subroutine definition starts with the word sub, followed by the name of the subroutine,
followed by a block. The block, as with the blocks you used with conditionals and loops,
is a set of Perl statements surrounded by curly brackets ({}). Here’s an example:

sub getnumber {
print ‘Enter a number: ‘;
chomp($number = <STDIN>);

}

As with all other named things in Perl that start with odd characters, subroutine names
can be made up of any number of alphanumeric characters and underscores. Uppercase
and lowercase are different from each other, and subroutine names do not conflict with
any other scalar, array, or hash variable names.

Subroutine definitions can appear at the start of your script, at the end, somewhere in the
middle, or even inside other blocks. Anywhere a regular statement can appear, you can
stick a subroutine definition. Generally, however, to make your programs easier to read
and to understand, you should group them together either at the start or end of your script.

Calling Subroutines
The most basic way to call a subroutine (or, to use the technical term, to invoke a sub-
routine) is with an ampersand (&) followed by the name of the subroutine, followed by
parentheses ():

&f2c(); # convert Fahrenheit to Celsius
&getnumber();

Arguments you want to pass to the subroutine are included inside the parentheses, but
we’ll get to that later (in “Creating Subroutines with Arguments”).

The ampersand (&) is entirely optional in this case; you can call your subroutines with or
without it. Some programmers find it preferable to include the ampersand because it makes
it easier to differentiate between the built-in functions and those that they define them-
selves (or import from modules), but if you end up reading other people’s Perl code,
you’ll see the nonampersand version quite a bit. I’ll be using the ampersand syntax
throughout the examples in this book to call subroutines.

272 Day 11

The one place where the & is not optional is if you are referring to the sub-
routine indirectly, rather than calling it, for example, if you were using
defined to find out if the subroutine had been defined or not.

Also, in some cases the parentheses are also optional (specifically, when the
subroutine has been predefined with a declaration earlier in the script or in an
imported module). You’ll learn more about declaring subroutines in “Going
Deeper;” in this lesson I’ll use the parentheses in each case to prevent confusion.

Note

14 0355 ch11 5/9/02 2:36 PM Page 272

Creating and Using Subroutines 273

11

You don’t have to call a subroutine from the main body of your script; you can call a
subroutine from inside another subroutine, and another subroutine from inside that one.
In fact, you can go as deep into subroutine calls as you want to—unlike some other lan-
guages, there are no limits (other than your system memory) to how deeply you can nest
subroutine calls. Variable scope can cause issues with the arguments passed to nested
subroutine calls—I’ll discuss those issues in a bit.

An Example: Son of Stats
Just for kicks, I took the final version of the statistics script we’ve been working with
throughout this week, and “subroutinified” it. I broke the script up into its component
parts, and put each of them into a subroutine. The actual body of the script, then, does
nothing but call individual subroutines. There’s no change in behavior to the script itself;
just in how it’s organized. Listing 11.1 shows the result:

LISTING 11.1 The statssubbed.pl Script

1: #!/usr/local/bin/perl -w
2:
3: &initvars();
4: &getinput();
5: &printresults();
6:
7: sub initvars {
8: $input = “”; # temporary input
9: @nums = (); # array of numbers;
10: %freq = (); # hash of number frequencies
11: $maxfreq = 0; # maximum frequency
12: $count = 0; # count of numbers
13: $sum = 0; # sum of numbers
14: $avg = 0; # average
15: $med = 0; # median
16: @keys = (); # temp keys
17: $totalspace = 0; # total space across histogram
18: }
19:
20: sub getinput {
21: while (defined ($input = <>)) {
22: chomp ($input);
23: $nums[$count] = $input;
24: $freq{$input}++;
25: if ($maxfreq < $freq{$input}) { $maxfreq = $freq{$input} }
26: $count++;
27: $sum += $input;
28: }
29:

14 0355 ch11 5/9/02 2:36 PM Page 273

LISTING 11.1 continued

30: }
31:
32: sub printresults {
33: @nums = sort { $a <=> $b } @nums;
34:
35: $avg = $sum / $count;
36: $med = $nums[$count /2];
37:
38: print “\nTotal count of numbers: $count\n”;
39: print “Total sum of numbers: $sum\n”;
40: print “Minimum number: $nums[0]\n”;
41: print “Maximum number: $nums[$#nums]\n”;
42: printf(“Average (mean): %.2f\n”, $avg);
43: print “Median: $med\n\n”;
44: &printhist();
45: }
46:
47: sub printhist {
48: @keys = sort { $a <=> $b } keys %freq;
49:
50: for ($i = $maxfreq; $i > 0; $i--) {
51: foreach $num (@keys) {
52: $space = (length $num);
53: if ($freq{$num} >= $i) {
54: print((“ “ x $space) . “*”);
55: } else {
56: print “ “ x (($space) + 1);
57: }
58: if ($i == $maxfreq) { $totalspace += $space + 1; }
59: }
60: print “\n”;
61: }
62: print “-” x $totalspace;
63: print “\n @keys\n”;
64: }

Because this version of the stats script doesn’t do anything functionally different from
the one before it, there’s only a couple of things to note here:

• The only part of this script that doesn’t live inside a subroutine definition are the
lines 3 through 5, which call subroutines to initialize variables, to get the input
from a file of numbers, and to calculate the results.

• You may note that there are four subroutine definitions in this script, but only three
subroutine calls at the top of the script. That’s because the &printresults() sub-
routine calls the &printhist() subroutine at the end of its block.

274 Day 11

14 0355 ch11 5/9/02 2:36 PM Page 274

Creating and Using Subroutines 275

11

Returning Values from Subroutines
Calling a subroutine by itself on one line is one way of splitting the execution of a script
to a subroutine, but more useful is a subroutine that returns a value. With return values,
you can nest subroutine calls inside expressions, use them as arguments to other subrou-
tines, or as parts of other Perl statements (depending on whether the return value is
appropriate, of course).

By default, the return value of a Perl script is the last thing that was evaluated in the
block that defines the subroutine. So, for example, here’s a short Perl script to read in
two numbers and add them together:

$sum = &sumnums();
print “Result: $sum\n”;

sub sumnums {
print ‘Enter a number: ‘;
chomp($num1 = <STDIN>);
print ‘Enter another number: ‘;
chomp($num2 = <STDIN>);
$num1 + $num2;

}

The fact that subroutines can return values is important for the first line in that example;
the value of the $sum variable will only be set as a result of the &sumnum() subroutine
being called. Inside the subroutine, the last line where the two numbers $num1 and $num2

are added together is the value that is returned from the subroutine, the value that gets
assigned to $sum, and the value that gets printed as the result. The reason the sum of $num1
and $num2 is returned is that unless you explicitly tell Perl what to return, it returns the
value of the last expression in the subroutine. For example, 42 would be returned if the
last line of the subroutine was 42. The catch to this behavior is that although the last
statement in the block is often the return value for the subroutine, that’s not always the
case. Remember, the rule is that the last thing evaluated is the return value for the sub-
routine—and that might not be the last statement in the block. With loops such as while
loops or for loops, the last thing evaluated might be the test. Or with loop controls, it
might be the loop control itself.

Because the return value of a subroutine isn’t always readily apparent, it’s a much better
idea to create a subroutine that explicitly returns a value using return. return, which is
actually a function, takes any expression as an argument and returns the value of that
expression. So the last line of that &sumnums() subroutine might look like this:

return $num1 + $num2;

14 0355 ch11 5/9/02 2:36 PM Page 275

Want to return multiple values from a subroutine? No problem. Just put them in a list and
return them that way (and then, in the main part of your script that called the subroutine
in the first place, make sure you deal with that returned list in some way). For example,
this snippet calls a subroutine that processes an array of values. That subroutine returns a
list of three values which can then be assigned (using list assignments in parallel) to the
variables $max, $min, and $count.

($max, $min, $count) = &process(@foo);
...
sub foo {

...
return ($value1, $value2, $value3);

}

What if you want to pass two or more discrete lists of elements out of a subroutine? That
you can’t do. The return function with a list argument flattens all sublists, expands all
hashes, and returns a single list of elements. If you want discrete arrays or lists on the
outside of a subroutine, you’ll need to figure out a way of splitting that list into its com-
ponent lists after the subroutine is done. This is not a problem specific to return values;
Perl also uses this single-list method of getting arguments into a subroutine as well (more
about that later).

Using Local Variables in Subroutines
Structuring a Perl script to use subroutines that refer to the same global variables as the
code outside the subroutines is essentially an exercise in code formatting. The subroutines
in this case don’t give you much intrinsic value in terms of efficiency or effective script
design. Subroutines are much better designed and used as self-contained units that have
their own variables and that deal only with data passed to that subroutine through arguments
and passed back through return values. This makes them easier to manage, easier to reuse,
and easier to debug. We’ll work towards that goal as this lesson progresses, but we’ll
start here with a discussion of local variables.

The vast majority of the variables we’ve been looking at up to this point—scalar, list, and
array variables—have been global variables, that is, they’re available to all parts of the script,
and continue to exist as long as the script runs. We’ve seen a few minor exceptions—the
element variable in a foreach loop or the match variables in regular expressions, for
example—but for the most part we’ve been looking solely at variables as having global
scope.

276 Day 11

14 0355 ch11 5/9/02 2:36 PM Page 276

Creating and Using Subroutines 277

11

Local variables, in the context of a subroutine, are variables that spring into existence
when the subroutine is called, are available solely to that subroutine, and then disappear
when the subroutine is finished. Other than the fact that they’re local, they look just like
other variables and contain the same sort of data.

Perl actually has two different ways of creating two different kinds of local variables.
We’ll cover one way (the easiest one) here, and deal with the other and the specific dif-
ferences between the two on Day 13, “Scope, Modules, and Importing Code.”

To create a local variable for a subroutine, use the my modifier before you initialize or
use the variable for the first time:

my $x = 1; # $x is now local

The my modifier only applies to a single variable. If you want to create multiple local
variables you have to enclose them in parentheses, like this:

my ($a, $b, $c); # three locals, all undefined.

In the previous section we created a subroutine that prompted for two numbers and
summed them. In that example the two number variables, $num1 and $num2 were global
variables. We can make a single-line change to make those variables local variables:

$sum = &sumnums();
print “Result: $sum\n”;

sub sumnums {
my ($num1, $num2);
print ‘Enter a number: ‘;
chomp($num1 = <STDIN>);
print ‘Enter another number: ‘;
chomp($num2 = <STDIN>);
return $num1 + $num2;

}

In this version, the line my ($num1, $num2) creates variables that are local to the subrou-
tine. They are available to the subroutine as temporary placeholders for the numbers, but
are not visible outside the boundaries of that subroutine.

What happens if you create a my variable that has the same name as a previously used
global variable? Perl has no problem with this; the new variables created by my will hide
the global variables with the same name. Then, when the subroutine is done, the my vari-
ables will go away and the global variables will be visible (and usable) again. Because
this can often be very confusing to debug, it’s generally a good idea to give your local
variables different names from global variables, or to simply avoid the use of global vari-
ables altogether.

14 0355 ch11 5/9/02 2:36 PM Page 277

Here’s an example that demonstrates how this works:

#!/usr/ bin/perl -w

$value = 0;
print “before callsub, \$value is $value\n”;
&callsub();
print “after callsub, \$value is $value\n”;

sub callsub {
my ($value);
$value++;
print “inside callsub, \$value is $value\n”;

}

If you run this example, you’ll get the following output:

before callsub, $value is 0
inside callsub, $value is 1
after callsub, $value is 0

Note here that the my variable $value is a new variable, local to the subroutine. Changing
its value has no effect on the global variable once the subroutine is complete.

The one other catch to watch out for with my variables is that they are truly local to the
subroutine definition itself. If you nest subroutine calls—call one subroutine from anoth-
er subroutine—the my variables defined in the first subroutine will not be available to the
second subroutine, and vice versa. This is different from many other languages, where
local variables cascade to nested subroutines. With my variables, you can only use them
inside the same subroutine definition and nowhere else in the script.

278 Day 11

You can get to the values of global variables from inside a subroutine that
declares my variables of the same name by putting your code into a pack-
age, and then referring to the package name and the global variable name.
But I won’t discuss that here; see Day 13 for details.

Note

For the computer scientists in the audience, this means that my variables have
lexical scope, rather than dynamic scope. They only exist inside the lexical
block in which they are defined. There is more about this later in the book
when we get to scope.

Note

14 0355 ch11 5/9/02 2:36 PM Page 278

Creating and Using Subroutines 279

11

Passing Values into Subroutines
When you’ve got local variables to store values specific to a subroutine, and return values
to send data out from the subroutine, the only part of the subroutine left is getting infor-
mation into it. For that you use arguments, just as you do for the built-in Perl functions.

Passing Arguments
Let’s start with how arguments get passed into subroutines. Perl has an extremely loose
notion of subroutine arguments. Whereas in other languages you have to be very specific
when you write your subroutines to make sure you indicate how many and what type of
arguments your subroutine will take, Perl doesn’t care. When you call a subroutine in Perl,
any and all arguments you give it are combined or expanded into a single list of values.
For scalar arguments, this is no big deal:

&mysub(1,2,3);

The &mysub() subroutine in this case will get a list of three numeric values. Watch out
for lists, though:

&mysub(@list, @anotherlist);

In this case, both @list and @anotherlist are expanded into their component values and
combined into one list. It’s that single list that ends up inside the body of the subroutine.
Your original arrays lose their identities when passed into a subroutine. This behavior is
identical to the behavior when you assign multiple lists to a single array, as described on
Day 4, “Working with Lists and Arrays.”

A similar thing happens with hashes; the hash is expanded into its keys and values (fol-
lowing the usual hash rules), combined with any other list arguments, and passed into the
subroutine as a flat list.

But what if you really want your arguments to consist of multiple arrays or hashes? Perl’s
argument-passing behavior doesn’t make this easy, but there are a number of ways to work
around it. One way is to store your arrays or hashes as global variables and just refer to
them in the body of your subroutines. Another way is to reconstruct the arrays inside
the subroutine using a clever hack (for example, including the count of the first array as
an argument to the subroutine). A third way, and arguably the best one, is to pass the
arguments to the subroutine as references, which retains the construction of the original
arrays or hashes inside the subroutine. You’ll learn about references later on in this book
on Day 19, “Working with References.”

14 0355 ch11 5/9/02 2:36 PM Page 279

Handling Arguments Inside Subroutines
Okay, so arguments are passed into a subroutine as a single list of values. How do you
then get to those arguments from inside the body of your subroutine?

The list of arguments passed to your subroutine is stored in the special local variable @_.
You can access elements of that array, or split those values into individual values using
the standard array access and assignment expressions. The @_ variable is a local variable
to the subroutine; if you set a @_ global variable, its values are hidden inside the subroutine,
and if you call another subroutine from inside a subroutine, that second subroutine will
get its own version of @_.

Here’s an example of a subroutine that adds together its two arguments (and a line of code
showing how it’s called:

&addthem(2,3);

sub addthem {
return $_[0] + $_[1];

}

The two arguments to the subroutine—here 2 and 3—are put into the list stored in the @_
variable. Then you can just use $_[0] and $_[1] access forms to get to those values.
Keep in mind that just as $foo[0] and $foo refer to different things, so are $_[0] and $_

different (the first one is the first element in the argument list; the second is the special
default variable).

Note that this subroutine is kind of limited (brain-dead might be a better term)—it only
adds together its first two arguments, no matter how many you give it. Because you cannot
control how many arguments you can get inside a subroutine, you have to be careful that
you only call the subroutine with the right number of arguments, test the number or type
of arguments you get, or write the subroutine generally enough to be able to handle multiple
arguments. We might modify the above subroutine to add all its arguments together,
regardless of the number, like this:

sub addthem {
my $sum = 0;
foreach $i (@_) {

$sum += $i;
}
return $sum;

}

280 Day 11

14 0355 ch11 5/9/02 2:36 PM Page 280

Creating and Using Subroutines 281

11

Perl doesn’t have a way of explicitly naming incoming arguments, but one common trick
is to split out the array of arguments into local variables as a first step, like this, where
this subroutine expects three arguments:

sub foo {
my($max, $min, $inc) = @_;
...

}

You can then refer to those arguments using mnemonic local variable names rather than
having to keep track of their positions in the array all the time. Another (very common)
way of doing this same thing is to use shift. Conveniently, shift with no arguments
inside a subroutine will extract the first element from @_ (pop will do the same thing to
the last element):

sub foo {
my $max = shift;
my $min = shift;
my $inc = shift;
...

}

A Note on Arguments Passed by Reference
The argument list that you get inside your subroutine via @_ are implicit references to the
values that were passed in from outside. That means that if you pass in a list of strings,
and inside the body of your subroutine, modify those strings (by altering the contents
of the @_ array itself), then the strings will remain modified outside the body of the sub-
routine as well. As I mentioned earlier, however, arrays and hashes do not maintain their
integrity inside the subroutine, nor can you modify a number. And, if you assign the
argument list @_ to a local variable, those values will all be copied and cease to be refer-
ences. Because Perl’s notion of pass by reference is rather vague, it’s not commonly used
as such; using actual references to pass in arrays or hashes of values is a much more
direct way of approaching the problem.

Recent versions of Perl (after 5.003) do actually provide a way to define a
subroutine to only take specific numbers and types of arguments. Given that
this feature is quite new, it’s probably not something you want to rely on in
your own scripts. More about subroutine prototypes in the “Going Deeper”
section.

Note

14 0355 ch11 5/9/02 2:36 PM Page 281

Subroutines and Context
Argument passing, subroutine definition, return values—these are the features of function
definitions in any language. But, because this is Perl, there are always wrinkles. You
already saw one of those wrinkles with the fact that individual arrays and hashes lose
their identities when they’re passed into subroutines as arguments. Another wrinkle is
the issue of context.

Given that subroutines can be called in either a scalar or list context, and that they can
return either a scalar or a list, context is a relevant issue to subroutine development. Or
at least it’s a relevant issue to keep in mind as you use your subroutines: be careful not to
call subroutines that return lists in a scalar context, unless you’re aware of the result and
know how lists behave in that particular context.

There are the occasions, however, when you want to write a subroutine that will behave
differently based on the context in which it was called (a very Perl-like thing to do). That’s
where the built-in wantarray function comes in. You use wantarray to find out the con-
text in which your subroutine was called in. wantarray returns true if your subroutine
was called in a list context; false if it was called in a scalar context (a more proper name
might be “wantlist,” but it is called wantarray for historical reasons). So, for example,
you might test for the context of your subroutine before returning a value, and then do
the right thing based on that context, like this:

sub arrayorlist {
blah blah
if (wantarray()) {

return @listhing;
} else { return $scalarthing }

}

Be careful with this feature, however. Keep in mind that just as functions that do different
things based on context can be confusing (and may sometimes require a check of the
documentation to figure out what they do), subroutines that do different things based on
context can be doubly confusing. In many cases it’s better to just return an appropriate
value for the subroutine itself, and then deal with that value appropriately in the statement
that called the subroutine in the first place.

Another Example: Stats with a Menu
Let’s modify the stats example once more in this lesson to take advantage of just about
everything you’ve learned so far in this book. I’ve modified stats such that instead of
reading the values, printing everything, and then exiting, the script prints a menu of oper-
ations. You have a choice of the sort of operations you want to perform on the numbers
in the data set.

282 Day 11

14 0355 ch11 5/9/02 2:36 PM Page 282

Creating and Using Subroutines 283

11

Unlike the names.pl script from Day 8, however, which used a large while loop and a
number of if tests to handle the menu, this one uses subroutines. In addition, it moves a
lot of the calculations we performed in earlier versions of this script into the subroutine
that actually uses those calculations, so that only the work that needs to be done gets done.

Because this script is rather long, instead of showing you the whole thing, and then ana-
lyzing it, I’m going to walk through each important part and show you bits of the overall
code to point out what I did when I wrote this version of the stats script. At the end of
this section, in Listing 11.2, I’ll show you all the code.

Let’s start with the main body of code in this script. Previous versions of stats used a rather
large set of global variables, which we defined and initialized at the start of the script.
This version uses only two: the array of numbers for the input, and a variable to keep
track of whether to quit the script or not. All the other variables are my variables, local
to the various subroutines that need them.

The script starts with a call to a subroutine called &getinput(). This subroutine, which
we’ll look at in a bit, reads in the input from the input files and stores it in the @nums array.
This version of &getinput() is significantly smaller than the one we’ve used in previous
versions of stats—this one simply reads in the numbers. It doesn’t keep track of frequencies,
sums, or anything else, and it uses the $_ variable instead of a temporary input variable.
It does, however, include the line that sorts the numbers in the final @nums array, and it
discards any lines of input that contain characters other than numbers.

sub getinput {
while (<>) {

chomp;
next if (/\D/);
push @nums, $_;

}
@nums = sort { $a <=> $b } @nums;

}

After reading the input, the core of this menu-driven version of stats is a while loop that
prints the menu and executes different subroutines based on the part of the menu that
was selected. That while loop looks like this:

&getinput();
while ($choice !~ /q/i) {

$choice = &printmenu();
SWITCH: {

$choice =~ /^1/ && do { &printdata(); last SWITCH; };
$choice =~ /^2/ && do { &countsum(); last SWITCH; };
$choice =~ /^3/ && do { &maxmin(); last SWITCH; };
$choice =~ /^4/ && do { &meanmed(); last SWITCH; };
$choice =~ /^5/ && do { &printhist(); last SWITCH; };

}
}

14 0355 ch11 5/9/02 2:36 PM Page 283

Look! A switch! This is one way to accomplish a switch-like statement in Perl, using
pattern matching, do statements, and a label. For each value of $choice, 1 to 5, this state-
ment will call the right subroutine and then call last to fall through the labeled block.
Note that the labeled block isn’t a loop, but you can still use last to exit out of it.

The value of $choice gets set via the &printmenu() subroutine (we’ll look at that one in
a bit). Note that the while loop here keeps printing the menu and repeating operations
until the &printmenu() subroutine returns the value ‘q’ (or ‘Q’), in which case the while
loop stops, and the script exits.

The &printmenu() subroutine simply prints the menu of options, accepts input, verifies
it, and then returns that value:

sub printmenu {
my $in = “”;
print “Please choose one (or Q to quit): \n”;
print “1. Print data set\n”;
print “2. Print count and sum of numbers\n”;
print “3. Print maximum and minimum numbers\n”;
print “4. Print mean and median numbers\n”;
print “5. Print a histogram of the frequencies.\n”;
while () {

print “\nYour choice --> “;
chomp($in = <STDIN>);
if ($in =~ /^\d$/ || $in =~ /^q$/i) {

return $in;
} else {

print “Not a choice. 1-5 or Q, please,\n”;
}

}
}

Let’s work down the list of choices the menu gives us. The first choice is simply to print
out the data set, which uses the &printdata() subroutine. &printdata() looks like this:

sub printdata {
my $i = 1;
print “Data Set: \n”;
foreach my $num (@nums) {

print “$num “;
if ($i == 10) {

print “\n”;
$i = 1;

} else { $i++; }
}
print “\n\n”;

}

284 Day 11

14 0355 ch11 5/9/02 2:36 PM Page 284

Creating and Using Subroutines 285

11

This subroutine simply iterates over the array of numbers and prints them. But there’s
one catch: it prints them ten per line for better formatting. That’s what that $i variable
does; it simply keeps track of how many numbers have been printed, and prints a new
line after ten of them.

Note one other point—even though the $num variable is implicitly local to the foreach
loop, you still have to declare it as my variable in order to get past use strict (which is
at the beginning of this script even though I didn’t show it to you).

The second menu choice prints the count and sum of the data set. The &countsum()
subroutine looks like this:

sub countsum {
print “Number of elements: “, scalar(@nums), “\n”;
print “Sum of elements: “, &sumnums(), “\n\n”;

}

This subroutine, in turn, calls the &sumnums() to generate a sum of all the elements:

sub sumnums {
my $sum = 0;
foreach my $num (@nums) {

$sum += $num;
}
return $sum;

}

In previous versions of this stats script, we simply generated the sum as part of reading in
the input from the file. In this example, we’ve postponed generating that sum until now.
You could make the argument that this is less efficient—particularly since the average
uses the sum as well—but it does allow us to put off some of the data processing until
it’s actually required.

Our third choice is the maximum and minimum value in the data set. We don’t actually
have to calculate these at all; because the data set is sorted, the minimum and maximum
values are the first and last elements of the @nums array, respectively:

sub maxmin {
print “Maximum number: $nums[0]\n”;
print “Minimum number: $nums[$#nums]\n\n”;

}

Fourth choice is the mean and median values, which we can get as we did in previous
stats scripts:

sub meanmed {
printf(“Average (mean): %.2f\n”, &sumnums() / scalar(@nums));
print “Median: $nums[@nums / 2]\n\n”;

}

14 0355 ch11 5/9/02 2:36 PM Page 285

Which brings us to the last subroutine in this script, &printhist(), which calculates and
prints the histogram of the values. As with previous versions, this part of the script is the
most complex. This version, however, collects everything relating to the histogram into
this one place, instead having bits of it spread all over the script. That means more local
variables for this subroutine than for others, and more processing of the data that has to
take place before we can print anything. But it also means that the data input isn’t slowed
down calculating values that won’t be used until later, if at all, and there isn’t a hash of
the frequencies hanging around and taking up space as the script runs. Here’s the
&printhist() subroutine:

sub printhist {
my %freq = ();
my $maxfreq = 0;
my @keys = ();
my $space = 0;
my $totalspace = 0;
my $num;

build frequency hash, set maxfreq
foreach $num (@nums) {

$freq{$num}++;
if ($maxfreq < $freq{$num}) { $maxfreq = $freq{$num} }

}

print hash
@keys = sort { $a <=> $b } keys %freq;
for (my $i = $maxfreq; $i > 0; $i--) {

foreach $num (@keys) {
$space = (length $num);
if ($freq{$num} >= $i) {

print((“ “ x $space) . “*”);
} else {

print “ “ x (($space) + 1);
}
if ($i == $maxfreq) { $totalspace += $space + 1; }

}
print “\n”;

}
print “-” x $totalspace;
print “\n @keys\n\n”;

}

A careful look will show that beyond collecting all the frequency processing into this one
subroutine, little else has changed. Putting it into a subroutine simply makes the process
and its data more self-contained.

Listing 11.2 shows the full script (all the individual parts put together):

286 Day 11

14 0355 ch11 5/9/02 2:36 PM Page 286

Creating and Using Subroutines 287

11

LISTING 11.2 The statsmenu.pl Script

#!/usr/ bin/perl -w
use strict;

my @nums = (); # array of numbers;
my $choice = “”;

main script
&getinput();
while ($choice !~ /q/i) {

$choice = &printmenu();
SWITCH: {

$choice =~ /^1/ && do { &printdata(); last SWITCH; };
$choice =~ /^2/ && do { &countsum(); last SWITCH; };
$choice =~ /^3/ && do { &maxmin(); last SWITCH; };
$choice =~ /^4/ && do { &meanmed(); last SWITCH; };
$choice =~ /^5/ && do { &printhist(); last SWITCH; };

}
}

read in the input from the files, sort it once its done
sub getinput {

while (<>) {
chomp;
next if (/\D/);
push @nums, $_;

}
@nums = sort { $a <=> $b } @nums;

}
our happy menu to be repeated until Q
sub printmenu {

my $in = “”;
print “Please choose one (or Q to quit): \n”;
print “1. Print data set\n”;
print “2. Print count and sum of numbers\n”;
print “3. Print maximum and minimum numbers\n”;
print “4. Print mean and median numbers\n”;
print “5. Print a histogram of the frequencies.\n”;
while () {

print “\nYour choice --> “;
chomp($in = <STDIN>);
if ($in =~ /^\d$/ || $in =~ /^q$/i) {

return $in;
} else {

print “Not a choice. 1-5 or Q, please,\n”;
}

}
}

print out the data set, ten numbers per line

14 0355 ch11 5/9/02 2:36 PM Page 287

sub printdata {
my $i = 1;
print “Data Set: \n”;
foreach my $num (@nums) {

print “$num “;
if ($i == 10) {

print “\n”;
$i = 1;

} else { $i++; }
}
print “\n\n”;

}

print the number of elements and the sum
sub countsum {

print “Number of elements: “, scalar(@nums), “\n”;
print “Sum of elements: “, &sumnums(), “\n\n”;

}

find the sum
sub sumnums {

my $sum = 0;
foreach my $num (@nums) {

$sum += $num;
}
return $sum;

}

print the max and minimum values
sub maxmin {

print “Maximum number: $nums[0]\n”;
print “Minimum number: $nums[$#nums]\n\n”;

}

print the mean and median
sub meanmed {

printf(“Average (mean): %.2f\n”, &sumnums() / scalar(@nums));
print “Median: $nums[@nums / 2]\n\n”;

}

print the histogram. Build hash of frequencies & prints.
sub printhist {

my %freq = ();
my $maxfreq = 0;
my @keys = ();
my $space = 0;
my $totalspace = 0;
my $num;

build frequency hash, set maxfreq

288 Day 11

LISTING 11.2 continued

14 0355 ch11 5/9/02 2:36 PM Page 288

Creating and Using Subroutines 289

11

foreach $num (@nums) {
$freq{$num}++;
if ($maxfreq < $freq{$num}) { $maxfreq = $freq{$num} }

}

print hash
@keys = sort { $a <=> $b } keys %freq;
for (my $i = $maxfreq; $i > 0; $i--) {

foreach $num (@keys) {
$space = (length $num);
if ($freq{$num} >= $i) {

print((“ “ x $space) . “*”);
} else {

print “ “ x (($space) + 1);
}
if ($i == $maxfreq) { $totalspace += $space + 1; }

}
print “\n”;

}
print “-” x $totalspace;
print “\n @keys\n\n”;

}

Going Deeper
Subroutines are fairly basic concepts that don’t involve a large amount of depth in Perl.
Nonetheless, there are a few concepts that aren’t discussed in this lesson, which are sum-
marized here.

The definitive description of Perl subroutines, because my is an operator, more information
about it can also be found in the perlfunc man pages (although we’ll also talk more
about it on Day 13). See those pages for further details on any of the concepts described
in this section.

Local Variables in Blocks
I’ve made a point of referring to local variables in this section as being defined inside
subroutines, and local only as far as those subroutines are running. In reality, local variables
can be defined to be local to any enclosing block, not just to subroutines. You can use
local variables inside conditionals, loops or labeled blocks, and those local variables will
follow the same rules as they do in subroutines as far as hiding global variables of the
same name and of being only available to the subroutine in which they are defined. Most
of the time, however, local variables make the most sense when they are applied to sub-
routines and not to other blocks.

LISTING 11.2 continued

14 0355 ch11 5/9/02 2:36 PM Page 289

Leaving Off the Parentheses for Arguments
When you call built-in functions in Perl, you can call them with their arguments in
parentheses, or leave off the parentheses if Perl can figure out where your arguments
begin and end. You can actually do the same thing with subroutines, if you want to, but
only if these two rules are met:

• You also call the subroutine without the leading & (with the leading & and Perl will
try to use @_ instead)

• Perl has already seen a declaration or definition of that subroutine previously in the
script

Perl, for the most part, is not particular about where in a script a subroutine is defined, as
opposed to where it is called (some languages require you to define a subroutine further
up in the file from where you call it). Leaving off the parentheses for the arguments is
the one exception.

One way to get around this is to predeclare a subroutine at the top of your script, similarly
to how you’d declare all your global variables before using them. To do this, just leave
off the block part of the subroutine definition:

sub mysubroutine;

With the subroutine declared, you can then call it with arguments with or without paren-
theses. Don’t forget to actually define that subroutine later in your script, however.

Note that common practice among Perl programmers is to include the parentheses, even
if it’s possible to leave them off. Parentheses make your subroutines easier to read, less
error-prone, and more consistent with other programming languages, so consider using
this feature sparingly.

Using @_ to Pass Arguments to Subroutines
You’ve seen how the @_ variable contains the argument list to any subroutine, and is
implicitly local to that that subroutine. You can, however, also use @_ inside or outside a
subroutine to redefine a set of arguments for the subroutine call.

For example, if you set @_ to a list of elements in the main body of your Perl script, then
call a predeclared subroutine with no arguments, Perl will use the values in that array as
the arguments to that subroutine. Here’s a simple example:

@_ = (“this”, “that”, “other things”);
&mysubroutine; # no specific args, use @_

290 Day 11

14 0355 ch11 5/9/02 2:36 PM Page 290

Creating and Using Subroutines 291

11

In this case, because the subroutine &mysubroutine() was called without ending paren-
theses, Perl will use the contents of @_ as the arguments to that subroutine. This could be
useful for calling ten different subroutines with all the same arguments, for example.

This works for calling nested subroutines as well; you can use the current contents of any
@_ variable as the arguments to a nested subroutine. Note that calling a subroutine with
any arguments whatsoever, including an empty set of parentheses, overrides the use of
@_. Note also that you must have predeclared the subroutine for this to work.

Anonymous Subroutines
Anonymous subroutines are subroutines without names, and they operate sort of like
pointers to functions in C. You use anonymous subroutines to create references to a sub-
routine, and the use Perl’s references capabilities to gain access to that subroutine later.

We’ll discuss anonymous subroutines more in Day 19, “Working with References.”

Using Subroutine Prototypes
Prototypes are one of those newer features that have snuck into Perl in the minor releases.
Added to Perl as of version 5.003, subroutine prototypes enable your subroutines to look
and behave just like regular built-in functions—that is, to determine the type of argu-
ments they can accept rather than just stuffing them all into a list.

Subroutine prototypes only effect subroutines called without a leading &; you can call
that same subroutine with a &, but the prototype will be ignored. In this way you can call
a subroutine like a function or call it like a subroutine depending on your mood or for
any other reason.

To declare or define a subroutine with a prototype, use one of the following:

sub subname (prototype); # predeclaration
sub subname (prototype) {

...
}

The subname is, of course, the name of the subroutine. The prototype contains special
characters referring to the number and type of arguments:

• $ refers to a scalar variable, @ to an array, % to a hash. @ and % indicate list context
and must appear last in the argument list (because they eat up the remaining argu-
ments).

• Semicolons separate required arguments from optional arguments.

• Backslashed characters require arguments that start with that actual character.

14 0355 ch11 5/9/02 2:36 PM Page 291

So, for example, a subroutine with a prototype of ($$) would expect two scalar variables
as arguments. One with ($$;@) would require two scalars, and have an optional list. One
with (\@) requires a single list variable argument starting with @.

While subroutine prototypes might seem nifty, the fact that they are only available in newer
versions of Perl might be problematic because you must be assured that the system you
run your scripts on will have at least Per 5.003 installed. If you are only running your
scripts on your own system this isn’t a problem. If they’re intended for wider use, it
might be, although there is a way to figure this out at runtime which was described on
Day 8, “Manipulating Lists and Strings.”)

For more information on subroutine prototypes, see the perlsub man page.

The caller Function
One function I didn’t mention in the body of this lesson is caller. The caller function
is used to print out information about where a subroutine was called from (which can be
sometimes useful for debugging). For more information, see the perlfunc man page.

Summary
A subroutine is a way of collecting together commonly used code or of portioning a larger
script into smaller bits. Today you learned all about defining, calling, and returning values
from subroutines, including delving into some of the issues of local and global variables.

Subroutines are defined using the sub keyword, the name of a subroutine, and a block
containing the definition of the subroutine itself. Inside that block, you can define my
variables that have a scope local to that subroutine, use the special @_ variable to get to
the arguments that were passed into the subroutine, and use the return function to return
a value (or list of values) from that subroutine. If the context in which the subroutine was
called is relevant, the wantarray function will tell you how your subroutine was called.

When you call subroutines, you use the name of the subroutine with an option & at the
beginning, and with the arguments to the subroutine inside parentheses. Perl passes all
the arguments to the subroutine as a flat array of all the values of its arguments, expand-
ing any nested arrays and copying all the values into the local variable @_.

Q&A
Q. How are subroutines different from functions?

A. They’re not; they both refer to the same conceptual things. In this lesson I simply
decided to make the distinction so there would not be any confusion about calling
built-in functions versus functions you define yourself.

292 Day 11

14 0355 ch11 5/9/02 2:36 PM Page 292

Creating and Using Subroutines 293

11

Note that subroutines you define are, in fact, different from the built-in functions;
subroutines don’t control the number or type of arguments they can receive (at least,
not without prototypes), and the rules of whether you can leave off the parentheses
for subroutines are different. Future versions of Perl are working toward making
programmer-defined subroutines and built-in subroutines closer in behavior.

Q. Subroutine calls with & look really weird to me. Can I just leave off the &?

A. Yes, the & is entirely optional. Include it or leave it off—it’s your choice.

Q. I want to pass two arrays into a subroutine and get two arrays out. But the
two arrays get squashed into one list on the way in and on the way out. How
can I keep the two arrays discrete?

A. The best way to do this is to use references, but you won’t learn about those until
Day 19. Another way is to modify global variables inside the subroutine, rather
than passing the array data in via an argument list. Yet another way is to compress
the arrays into single scalar values (using delimiters), and then expanding them
back into arrays inside your subroutine.

Q. But global variables are evil and bad.

A. Well, that depends on who you talk to. In Perl, sometimes the best solution to a
problem involves a global variable, and if you’re careful (declaring globals with my,
for example, and making sure you limit the use of those variables), you can get
around the disadvantages of global variables.

Q. So I can’t figure it out, are Perl subroutines pass-by-value or pass-by-reference?

A. They’re pass-by-reference as far as the values in the argument list are concerned.
Change a value inside the @_ array (for example, modify a string), and that value
will change outside as well. However, multiple arrays will get squashed into a single
flat list, so you could consider arrays to be pass-by-value. And, if you assign the @_
argument list to one or more local variables, those values will be copied and any
changes will not be reflected outside the subroutine.

Workshop
The workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience in using what you’ve learned. Try
and understand the quiz and exercise answers before you go on to tomorrow’s lesson.

Quiz
1. Name two reasons why subroutines are useful.

2. Show how to call a subroutine.

3. Show how to define a subroutine.

14 0355 ch11 5/9/02 2:36 PM Page 293

4. Does it matter whether or not a subroutine is defined before it’s called? Where in
your Perl script should subroutine definitions appear?

5. If you don’t include an explicit call to return in your script, what value does a
subroutine return?

6. Is the argument that gets returned from the subroutine with return a scalar or a list
value?

7. In which parts of a Perl script are variables declared using my available?

8. What happens when you declare a my local variable with the same name as a global
variable?

9. What happens to a hash you pass into a subroutine?

10. What is @_ used for? Where is it available?

11. How do you name parameters in a Perl subroutine?

12. What does wantarray do? Why would you want to use it?

Exercises
1. Write a subroutine that does nothing but print its arguments, one argument per line,

with each line numbered.

2. Write a subroutine that takes a string as an argument and returns the string in
reverse order by words.

3. Write a subroutine that takes a list of numbers and squares them all, returning the
list of squares. If there are elements in the string that are not numbers, delete them
from the final list.

4. BUG BUSTER: What’s wrong with this script?
@int = &intersection(@list1, @list2);

sub intersection {
my (@1, @2) = @_;
my @final = ();
OUTER: foreach my $el1 (@one) {

foreach my $el2 (@two) {
if ($el1 eq $el2) {

@final = (@final, $el1);
next OUTER;

}
}

}
return @final;

}

294 Day 11

14 0355 ch11 5/9/02 2:36 PM Page 294

Creating and Using Subroutines 295

11

5. BUG BUSTER: How about this one?
$numtimes = &search(@input, $key);

sub search {
my (@in, $key) = @_;
my $count = 0;
foreach my $str (@in) {

while ($str =~ /$key/og) {
$count++;

}
}
return $count;

}

6. Write a subroutine that, when used in a scalar context, reads in a single line of
input and reverses it (character by character this time). When used in a list context,
reads in multiple lines of input into a list and reverses all the lines (last line first,
and so on—the individual strings don’t have to be reversed).

7. Take the image extractor script we wrote yesterday and turn it into a script that
uses subroutines.

Answers
Here are the answers to the Workshop questions in the previous section.

Quiz Answers
1. Subroutines are useful for a number of reasons:

• They help break up a large script into smaller bits to help manage complexity

• Procedures in subroutines can be referred to by name to make scripts more
readable

• Subroutines can define local variables that are more efficient, easier to man-
age and control than globals

• If you use the same code repeatedly throughout your programs, you can put
that code into a subroutine, and then just reuse it

• Smaller chunks of scripts can be more easily developed and debugged

2. Call a subroutine using one of these forms:
&thisubroutine(); # both % and parens
&thissubroutine(1,2); # with arguments
thissubroutine(1,2); # & is optional

14 0355 ch11 5/9/02 2:36 PM Page 295

3. Define a subroutine like this:
sub name {

body of subroutine
}

4. For most instances, you can call a subroutine before defining it, and vice versa.
Perl is not particular about predefining subroutines.

You can define a subroutine anywhere a regular Perl statement can go, although,
typically, subroutines are defined in a group at the beginning or end of a Perl script.

5. Without an explicit return, subroutines return the last value that was evaluated in
the block.

6. Trick question! Return can be used to return either a scalar or a list, depending on
what you want to return.

7. My variables are only available to code inside the nearest enclosing block and not
to any nested subroutines.

8. Variables declared with my that have the same names as global variables will hide
the value of the global. Once the subroutine or other block is finished executing,
the original value of the global will be restored.

9. When you pass any list into a subroutine, it is flattened into a single list of scalar
values. In the case of hashes, this means unwinding the hash into its component
keys and values (the same way a hash is handled in any general list context).

10. @_ refers to the argument list of the current subroutine. It’s most commonly used
inside a subroutine definition, although you can also define is as a global variable
(see “Going Deeper”).

11. Perl does not have formal named parameters. You can extract elements from the
argument list @_ and assign them to local variables in the body of your subroutine
(although once assigned to local values, they cease to be references to the same
values outside that subroutine).

12. The wantarray function allows you to find out the context in which your subroutine
was called (scalar or list) to provide different behavior or return a sensible result.

Exercise Answers
1. Here’s one answer:

sub printargs {
my $line = 1;
foreach my $arg (@_) {

print “$line. $arg\n”;
$line++;

}
}

296 Day 11

14 0355 ch11 5/9/02 2:36 PM Page 296

Creating and Using Subroutines 297

11

2. Here’s one answer:
sub reverstring {

my @str = split(/\s+/, $_[0]);
return join(“ “, reverse @str);

}

3. Here’s one answer:
sub squares {

my @final = ();
foreach my $el (@_) {

if ($el !~ /\D+/) {
@final = (@final, $el**2);

}
}
return @final;

}

4. The fallacy in this script is assuming that the two lists, @list1 and @list2, will
remain as two lists inside the body of the subroutine. Because Perl combines all list
arguments into a single list, you cannot retain individual lists inside the body of the
subroutine. Consider using globals instead.

5. The problem with this script results because of the order of the arguments. The list
and scalar arguments are flattened into a single list on their way into the subroutine.
The failure results with the line that assigns the local variables @in and $key to the
argument list in @_; because @in is a list it will copy all the elements in @_, and
leave none left for $key. By simply reversing the order of the arguments (put the
key first, then the list), you’ll get around this problem.

6. Here’s one answer:
sub rev {

my $in = “”;
if (wantarray()) { # list context

my @inlist = ();
while () {

print ‘Enter input: ‘;
$in = <STDIN>;
if ($in ne “\n”) {

@inlist = ($in, @inlist); # reverse order
}
else { last; }

}
return @inlist;

}
else { # scalar context

print ‘Enter input: ‘;
chomp($in = <STDIN>);
return reverse $in;

}
}

14 0355 ch11 5/9/02 2:36 PM Page 297

7. Here’s one approach:

#!/usr/local/bin/perl -w

$/ = “”; # paragraph input mode

while (<>) {
while (/<IMG\s([^>]+)>/ig) {

&processimg($1);
}

}

sub processimg {
my $raw = $_[0];
my %atts = ();

while ($raw =~ /([^\s=]+)\s*=\s*(“([^”]+)”|[^\s]+\s*)/ig) {
if (defined $3) {

$atts{ uc($1) } = $3;
} else { $atts{ uc($1)} = $2; }

}
if ($raw =~ /ISMAP/i) {

$atts{‘ISMAP’}= “Yes”;
}
&printatts(%atts);

}

sub printatts {
my %atts = @_;

print ‘-’ x 15;
print “\nImage: $atts{‘SRC’}\n”;
foreach my $key (“WIDTH”, “HEIGHT”,

“BORDER”, “VSPACE”, “HSPACE”,
“ALIGN”, “ALT”, “LOWSRC”, “ISMAP”) {

if (exists($atts{$key})) {
$atts{$key} =~ s/[\s]*\n/ /g;
print “ $key: $atts{$key}\n”;

}
}

}

298 Day 11

14 0355 ch11 5/9/02 2:36 PM Page 298

DAY 12

WEEK 2

Debugging Perl
No matter how good a programmer you are, chances are fairly high that any
script over a few lines long is going to have some bugs. Some of those bugs are
easy to figure out—syntax errors, infinite loops, or complaints from Perl because
of -w. Others are much subtler, producing incomprehensible results or no results
at all.

You could figure out what’s going on at each point in your script by using sev-
eral print statements to determine the current values of variables and see if loops
and conditionals are actually getting executed. But there is an easier way—
particularly for larger scripts. Perl comes with a source-level debugger that lets
you step through your script, watch it as it executes, and print out the various
values of variables throughout the script’s execution. The debugger can help
you track down subtle problems in your code far more quickly than print
statements can.

In this chapter, we’ll look at how to use the Perl debugger. In particular, we’ll

• Explore a quick example of how you might commonly use the debugger

• Learn how to start and run the debugger

• Trace the execution of your program

15 0355 ch12 5/9/02 2:36 PM Page 299

• Step through the execution of your script

• List the source in various ways

• Print out the values of variables

• Set breakpoints for halting execution at specific places

Using the Debugger: A Simple Example
Probably the best way to see how Perl’s debugger works is to show you an example of a
typical use of the debugger. For this example, we’ll step through the execution of a simple
script that contains subroutines—the names script from Day 6, which reads in a list of
names, prompts you for something to search for, and returns the names that match that
search key.

When you run a script with the Perl debugger turned on, you’ll end up inside the debugger
itself, which looks something like this:

% perl -d statssubbed.pl statsdata.txt

Loading DB routines from perl5db.pl version 1.01
Emacs support available.

Enter h or `h h’ for help.

main::(statssubbed.pl:3): &initvars();
DB<1>

300 Day 12

Don’t worry about starting the debugger yet; you’ll learn how to do that
after we do a little walkthrough.

Note

The debugger prints out two lines of output at each step. That DB<1> on the second line
is the debugger prompt; you’ll type in various commands at this prompt. The number 1
means this is the first command; you can repeat commands by referring to the command
number.

The first line provides information about where the debugger is in the script. The number
in the information lineshows the line number of the line of code that will be executed
next. The part on the left refers to the current package, name of the file, and the line num-
ber. The part on the right is the actual line of code, including any comments for that line.

15 0355 ch12 5/9/02 2:36 PM Page 300

Debugging Perl 301

12

To execute a line of code, use either the s or n commands. The s command is more
exhaustive; it will step into subroutines. The n command only steps through lines of code
at the top level of your script; it’ll execute subroutines silently (in other words, it exe-
cutes them without allowing you to step through them). When you’ve used either s or n,
you can repeat that command by just pressing Return (or Enter) at each prompt:

main::(statssubbed.pl:3): &initvars();
DB<1> s

main::initvars(statssubbed.pl:8): $input = “”; # temporary input
DB<1>

main::initvars(statssubbed.pl:9): @nums = (); # array of numbers;
DB<1>

main::initvars(statssubbed.pl:10): %freq = (); # hash of number frequ
encies
DB<1>

Note in this example how when the script execution moves to the &initvars() subrou-
tine (immediately, in the case of this script) that the information on the left side of the
output shows the name of that subroutine. This way, you always know where within your
script you are. But in case you forget, or can’t place the position based on the one line,
you can use the l command to list some lines:

DB<1> l
10==> %freq = (); # hash of number frequencies
11: $maxfreq = 0; # maximum frequency
12: $count = 0; # count of numbers
13: $sum = 0; # sum of numbers
14: $avg = 0; # average
15: $med = 0; # median
16: @keys = (); # temp keys
17: $totalspace = 0; # total space across histogram
18 }
19

The l command will list ten lines after the current line; you can also use - to print lines
before the current line. Multiple uses of l and - will move back and forth in the script’s
source code. Keep in mind that this just prints the lines so you can get some context for
where you are in the script—1 and - don’t actually execute anything.

As you step through the code, you can print out the value of any variable—any scalar,
array, hash, and so on, using the x command. In this next example, the &getinput() sub-
routine has just read a line from the data input file, stored it in the $input variable, and
chomped the newline off the end of it. At DB<5> we print the value of $index, and print
the current values of @nums (the array indexes are on the left, and the actual elements on
the right). Keep in mind that the line of code displayed (line 23 in the source) is dis-
played before it is run, so the value of $input will not yet be in @nums.

15 0355 ch12 5/9/02 2:36 PM Page 301

main::getinput(statssubbed.pl:21): while (defined ($input = <>)) {
DB<5> s

main::getinput(statssubbed.pl:22): chomp ($input);
DB<5>

main::getinput(statssubbed.pl:23): $nums[$count] = $input;
DB<5> x $input

0 5
DB<6> x @nums
0 1
1 4
2 3
3 4
DB<7>

You can also use the x command to execute bits of Perl code; in the following case, to
find the number of elements in @raw, or to show the first element:

DB<3> x scalar(@nums)
0 4
DB<4> x $raw[0]

0 1

Stepping through the script using n or s enables you to see each line in excruciating
detail, but sometimes it’s more detail than you want. If you’re inside a subroutine, you
can use the r command to stop stepping through that subroutine, execute the rest of it,
and return to the place where that subroutine was called (which, in the case of nested
subroutines, may be still another subroutine).

To stop stepping through the script at any time, use the c command (c for continue). Perl
then runs the rest of the script with no intervening stops (unless you’ve put them into
your script itself, for example, to read some input).

In addition to stepping through the execution of a script line by line, you can also control
execution of your script with breakpoints. A breakpoint is a mark at a line of code or the
beginning of a subroutine. Using c will run the script until the breakpoint, and then stop.
At the breakpoint, you can use n or s to step through lines of code, use x to print variables,
or use c to continue to the next breakpoint.

For example, take the statsmenu.pl script we created yesterday, which organized the
stats script into several subroutines. The &countsum() subroutine prints out the count and
the sum of the data, calling the &sumnums() subroutine to get the latter value. To set a
breakpoint at the &sumnums() subroutine, use the b command with the name of that sub-
routine, then c to execute the script up to that breakpoint:

perl -d statsmenu.pl statsdata.txt

302 Day 12

15 0355 ch12 5/9/02 2:36 PM Page 302

Debugging Perl 303

12

Loading DB routines from perl5db.pl version 1.01
Emacs support available.

Enter h or `h h’ for help.

main::(statsmenu.pl:3): @nums = (); # array of numbers;
DB<1> b sumnums
DB<2> c

Please choose one (or Q to quit):
1. Print data set
2. Print count and sum of numbers
3. Print maximum and minimum numbers
4. Print mean and median numbers
5. Print a histogram of the frequencies.

Your choice --> 2
Number of elements: 70
main::sumnums(statsmenu.pl:72): my $sum = 0;
DB<2>

Can’t remember the name of a subroutine? You can use the S command to print all the
available subroutines. S main in particular will show you the subroutines you’ve defined
(although there may be some extra Perl subroutines listed in there as well). Take a look
at the following example.

DB<7> S main
main::BEGIN
main::countsum
main::getinput
main::maxmin
main::meanmed
main::printdata
main::printhist
main::printmenu
main::sumnums
DB<8>

The main part is in reference to the main package, which is where all your
variables and subroutines live by default. We’ll explore more about pack-
ages tomorrow on Day 13.

Note

If you want to set a breakpoint at a particular line, you can find the line using l to list
the script, and then just use that line number with the b command:

DB<3> l
38: print “5. Print a histogram of the frequencies.\n”;
39: while () {
40: print “\nYour choice --> “;

15 0355 ch12 5/9/02 2:36 PM Page 303

41: chomp($in = <STDIN>);
42: if ($in =~ /^\d$/ || $in =~ /^q$/i) {
43: return $in;
44 } else {
45: print “Not a choice. 1-5 or Q, please,\n”;
46 }
47 }
DB<3> b 43

One other neat feature of the debugger is the ability to trace the execution of the script
as it’s running. The s and n commands step through each statement one at a time, but
sometimes it’s useful to see a printout of each statement as it executes even if you aren’t
stepping through each one. The t command will turn tracing on or off, toggling between
the two. Here’s a trace from the &printdata() subroutine, with a breakpoint set at the
top of the foreach loop:

DB<1> b 54
DB<2> t
Trace = on

DB<2> c
Please choose one (or Q to quit):
1. Print data set
2. Print count and sum of numbers
3. Print maximum and minimum numbers
4. Print mean and median numbers
5. Print a histogram of the frequencies.

Your choice --> 1
Data Set:
1 main::printdata(statsmenu.pl:54): foreach $num (@nums) {
DB<2> c
main::printdata(statsmenu.pl:55): print “$num “;
1 main::printdata(statsmenu.pl:56): if ($i == 10) {
main::printdata(statsmenu.pl:59): } else { $i++; }
main::printdata(statsmenu.pl:54): foreach $num (@nums) {
DB<2>

Note here that tracing prints not only the script’s output (note the 1 at the start of the line
in the middle of the output after the c command), but it also prints each script line as it’s
being executed. If we typed c here again, we’d get another loop of the foreach, and that
same output all over again.

To quit the debugger, use the q command (not quit, just q).

DB<18> q
%

304 Day 12

15 0355 ch12 5/9/02 2:36 PM Page 304

Debugging Perl 305

12

With that walkthrough under your belt, you should now have a basic idea of how the
debugger works. For the rest of this section, I’ll show you more detail on the specific
commands.

Starting and Running the Debugger
Perl’s built-in debugger is run from the command line using the -d option. If you’ve been
running your Perl scripts on Unix or Windows NT using just the name of the script,
you’ll need to call Perl explicitly, with the name of the script and any filename arguments
after that. In other words, if you usually call a script like this:

% myscript.pl names.txt

Call it like this for the debugger:

% perl -d myscript.pl names.txt

Alternately, if you think you’ll be using the debugger a lot for a particularly gnarly
script, you can add the -d option to the shebang line in the script itself:

#!/usr/ bin/perl –wd

Don’t forget to remove it again when you’re done debugging.Note

To turn on the debugger in MacPerl, choose Perl Debugger from the Script menu, and
then save your script and run it as usual. If you’re going to use the script as a droplet (to
accept files as input), don’t forget the save the script as a droplet.

Note that before the debugger can run, your script has to be free of syntax errors or
warnings. You’ll have to fix those fatal errors before you can start debugging your script.
But you’d have to do this anyway, so it shouldn’t be too much of a burden.

To get help at any time as the debugger is running, use the h command, which will print
out a list of possible commands. If it scrolls by too quickly you can use the |h command
instead (which will pause between pages). You can also get help on any command using
h with an argument; all the commands that match the argument will be printed, as shown
here:

DB<3> h c
c [line|sub] Continue; optionally inserts a one-time-only breakpoint

at the specified position.
command Execute as a perl statement in current package.
DB<4>

15 0355 ch12 5/9/02 2:36 PM Page 305

Each debugger command has an associated number (in the previous example, the command
“h c” was command number 3). You can refer back to any previous command using an
exclamation point and the command number:

DB<4> !3

You can review the last few commands using H and number with a minus sign in front of it:

DB<13> H -3
13: H-3
12: b sumnums
11: x @nums
DB<14>

To quit the debugger, use the q command. In addition, if the execution of your Perl script
is complete, you can use R to restart the execution. Note that R might not work depending
on the environment and command-line arguments you used for that script.

Tracing Execution
Tracing allows you to see each line of your script as Perl executes it. If a line is executed
multiple times, for example, as a loop, Perl will show it in the trace multiple times. For
very complex scripts, this can often be more output than you need, but with breakpoints
in place it might be helpful to see the actual order of execution that Perl takes through
your script.

To toggle between trace modes in your Perl script, use the t command. If tracing is off,
t will turn it on and vice versa. For example, this output shows the result of executing a
loop with trace turned off and with trace turned on (the breakpoint has been set at line
54, a foreach loop).

main::printdata(statsmenu.pl:54): foreach $num (@nums) {
DB<4> c

2 main::printdata(statsmenu.pl:54): foreach $num (@nums) {
DB<4> t

Trace = on
DB<4> c

main::printdata(statsmenu.pl:55): print “$num “;
2 main::printdata(statsmenu.pl:56): if ($i == 10) {
main::printdata(statsmenu.pl:59): } else { $i++; }
main::printdata(statsmenu.pl:54): foreach $num (@nums) {

Turning tracing on shows you your script as it’s executing. A stack trace shows you where
you’ve already been—in the case of nested subroutines, it’ll show you the subroutine that
called the one you’re currently executing, the one that called that subroutine, and so on,
all the way back to the top level of your script. Use the T command to show the stack
trace, as follows:

306 Day 12

15 0355 ch12 5/9/02 2:36 PM Page 306

Debugging Perl 307

12

DB<4> T
@ = main::sumnums() called from file `statsmenu.pl’ line 68
$ = main::countsum() called from file `statsmenu.pl’ line 13
DB<4>

The characters at the beginning of those lines show the context in which the subroutine
was called—for example, the first line of this stack trace shows that the &sumnums() sub-
routine (the current routine) was called in a list context (the @ at the beginning of the line
indicates that), from inside the &countsum() routine. The &countsum() routine in turn
was called from the main body of the script, in a scalar context (the $ at the beginning of
the line shows that).

Stepping Through the Script
To step through the code to your script one statement at a time, use either the s or n com-
mands. Return (or Enter) will repeat the previous s or n. At each step, Perl displays the
line of code it will execute next (not the one it just executed):

DB<1> s
main::getinput(statsmenu.pl:25): $nums[$count] = $_;
DB<1>

The difference between the s and n commands is that s will descend into subroutine defi-
nitions. The n command stays at the same level, executing the subroutines without stepping
through them.

To stop stepping through a subroutine, execute the remainder of that subroutine, and
return to the statement where the subroutine was originally called, use the r command.

To stop stepping through the code altogether, use the c command.

Listing the Source
You can list the current source code being run, with line numbers, to get an idea of the
context of the current line of code or to find a specific line at which to set a breakpoint.

To list the next ten lines of code from the current line down, use the l command:

DB<15> l
75==> $sum += $num;
76 }
77: return $sum;
78 }
79
80 # print the max and minimum values
81 sub maxmin {
82: print “Maximum number: $nums[0]\n”;
83: print “Minimum number: $nums[$#nums]\n\n”;
84 }
DB<15>

15 0355 ch12 5/9/02 2:36 PM Page 307

Additional calls of l will continue to show the next couple of lines. You can also use l
with a line number to display just that line, with a range of numbers (1-4, for example)
to display those particular lines, or with a subroutine name to list the first ten lines of
that subroutine.

To back up a few lines in the display, use the - command. As with l for moving forward
in the source, multiple uses of - will continue to move back.

The w command will show a window around the current line (or the line number, if you
specify one): a few lines before and a few lines after. An arrow (==>) will show the current
line position:

DB<3> w
20 # read in the input from the files, sort it once its done
21: sub getinput {
22: my $count = 0;
23==> while (<>) {
24: chomp;
25: $nums[$count] = $_;
26: $count++;
27 }
28: @nums = sort { $a <=> $b } @nums;
29 }

To search for a particular line in the source, use the pattern matching expression. /key/,
for example, will find the first instance of the word key. Use ?pattern? to search back-
wards in the file.

One last useful listing command is S; the S command will show all the subroutines available
in the script. Most of those subroutines will be internal to Perl or to the debugger itself, but S
with a package name (such as main) will only print those in that package, as shown here:

DB<20> S main
main::BEGIN
main::getpat
main::readnames
main::searchpat

308 Day 12

The S command accepts a regular expression as its argument. Any subrou-
tines with names (including package names) containing main will be listed
when you use the command S main. You can use any Perl regular expression
to create more complex patterns to filter the subroutine list. Regular expres-
sions were discussed on Days 9 and 10.

Note

More about packages tomorrow.

15 0355 ch12 5/9/02 2:36 PM Page 308

Debugging Perl 309

12

Printing Variables
Scrolling around in the source for your file is all well and good, but it helps to be able
to figure out what Perl is doing while it’s running your script. To print out the values of
variables, use one of the following commands:

The X command will print out all the variables in the current package. Because many
of these variables are special to Perl (including special variables such as @_, $_, and
$1), the list can be fairly long. X with the name of a variable will print all the variables
that match that name. Note that you should use just the name itself, and not include
the $, @, or % character. X foo prints the values of all the variables named foo, ($foo,
@foo, and %foo).

The V command is identical to X, except that it assumes the first argument is the name
of a package and prints the variables in that package. This won’t be of much use until
you start using packages, but I mention it here for completeness.

When you provide a variable name to the x command, you must include the
character that specifies its type ($, @, or %). When you provide a list of vari-
able names to the X command, the type identifier must be left off.

Caution

The one problem with X is that it seems to be unable to recognize local variables inside
subroutines. For printing the values of local variables, or to execute small bits of Perl
code that will result in values of interest, use the x command, as follows:

DB<3> x $input
0 ‘Dante Alighieri’

Printing arrays or hashes shows the contents of that array or hash. The output of X and V

is slightly easier to read than that of x, particularly for hashes. Here’s how a hash looks
using X:

DB<4> X %names
%names = (

‘Adams’ => ‘Douglas’
‘Alexander’ => ‘Lloyd’
‘Alighieri’ => ‘Dante’
‘Asimov’ => ‘Isaac’
‘Barker’ => ‘Clive’
‘Bradbury’ => ‘Ray’
‘Bronte’ => ‘Emily’

)

15 0355 ch12 5/9/02 2:36 PM Page 309

Setting Breakpoints
Setting breakpoints inside a script allows you specify points in the script where the debug-
ger will pause and allow you to use the other commands to figure out where a problem is
occurring. Breakpoints are particularly useful in large scripts where you don’t want to
step over every single line. You can set as many breakpoints in your script as you need to,
and then use the stepping or variable printing commands to work through the problem.
Use c to continue execution past the breakpoint.

To set a breakpoint, use the b command. With the name of a subroutine, the breakpoint
will be set at the first statement inside that subroutine; with a line number, the breakpoint
will be set at that line number. With no argument, b will set a breakpoint at the current line.
Breakpoints show up as a lowercase b in the source listings (there’s one here at line 33):

DB<19> w 33
30 }
31
32 sub searchpat {
33:b my $key = $_[0];
34: my $found = 0;
35: foreach $ln (sort keys %names) {
36==> if ($ln =~ /$key/o || $names{$ln} =~ /$key/o) {
37: print “$ln, $names{$ln}\n”;
38: $found = 1;
39 }

The L command is used to print all the breakpoints you have set at any given time, like in
the following:

DB<22> L
namessub.pl:
9: my @raw = (); # raw list of names
break if (1)

33: my $key = $_[0];
break if (1)

You can delete a breakpoint using either a line number or a subroutine name using the
d command. Use D to delete all set breakpoints.

DB<22> d 9
DB<23> L
namessub.pl:
33: my $key = $_[0];
break if (1)

Other Commands
So far, I’ve only shown you the commands that will help you get started with the debug-
ger and that you’re likely to use the most. In addition to the commands here, Perl also

310 Day 12

15 0355 ch12 5/9/02 2:36 PM Page 310

Debugging Perl 311

12

allows you to set conditional breakpoints, to change the values of variables, to perform
actions at particular lines and, in fact, to enter entire Perl scripts and watch them execute
interactively. As you learn more about the Perl debugger, you’ll definitely want to make
active use of the h command, and to refer to the perldebug man page when necessary.

One Other Thing
The debugger will help you figure out problems in your code. However, judicious use of
the -w option can help you prevent many problems before you even start running your script
(or having to resort to the debugger to figure out what’s going wrong). Don’t forget to use
-w when you can.

Perl Debugger Command Reference
Table 12.1 contains a list of all the debugger commands mentioned in this chapter. They’re
the ones you’ll probably use most often, but the commands in the table represent a subset
of all of the debugger commands available. For the full list of debugger commands, see
the perldebug chapter of the Perl documentation.

TABLE 12.1 Debugger Command Reference

Command Purpose

s Step into the next statement. If the next statement is a subroutine call, it steps
into the subroutine.

n Next statement. If the statement contains subroutine calls, they are executed
silently, and the debugger stops at the beginning of the next statement.

l List the next set of lines in the program.

l min+incr List incr + 1 lines starting at line min.

l min-max List lines min through max. (For example, l 10-20.)

l line List a single line.

l subroutine List the first set of lines in subroutine.

- List the previous set of lines.

x expr Evaluates the expression supplied in list context and prints the results.

c Continue. Execute the statements that follow until a breakpoint is reached.

c line Continue, inserting a one-time breakpoint at line.

c subroutine Continue, inserting a one-time breakpoint at subroutine.

b line Set a breakpoint at line.

b subroutine Set a breakpoint at subroutine.

15 0355 ch12 5/9/02 2:36 PM Page 311

d Delete breakpoint at the line about to be executed.

d line Delete the breakpoint at line.

D Delete all breakpoints.

L List all breakpoints.

S Show all subroutine names.

S regex Show all subroutine names matching regex.

t Toggle tracing.

q Stop execution of the program and exit the debugger.

h Help.

|h Help, filtered through the pager.

H Show the commands run in the current debugging session.

H -number Show the last number commands.

R Restart the debugging session (start the program being debugged over from the
beginning).

T Produce a backtrace for the current statement.

w List the lines of code surrounding the current line.

w line List the lines of code surrounding line.

/pattern/ Search forward in the program for lines matching pattern.

?pattern? Search backward in the program for lines matching pattern.

V Display all of the variables in the package main.

V vars Display vars in the package main. vars is a list of variable names, separated by
spaces (make sure to leave off the type identifier).

V package Display all of the variables in package.

V package vars Display vars in package.

X Display variables in the current package.

X vars Display the listed variables, if they’re members of the current package.

Using a Graphical Debugger
Unless you use the debugger frequently, it can be difficult to keep track of all of the
commands that are associated with it. For that reason, you might prefer to use a graphical
debugger to debug your programs. ActiveState created the graphical debugger, and is part

312 Day 12

TABLE 12.1 continued

Command Purpose

15 0355 ch12 5/9/02 2:36 PM Page 312

Debugging Perl 313

12

of a commercial product called the Perl Dev Kit. The price for the package varies based
on what sort of user you are. You can find out about it at
http://www.activestate.com/.

When you install the graphical debugger, it starts automatically when you run a Perl
script in debug mode in place of the command-line debugger. There’s a screen shot of the
debugger in figure 12.1.

FIGURE 12.1
The ActiveState Perl
Debugger.

The primary advantage of the graphical debugger is that it presents a lot of information
in the interface. Rather than using debugger commands to view snippets of code, see the
contents of variables, and list breakpoints, you can see all of the information directly in
the debugger window.

The window consists of four panes. The top pane contains the source code to the script
being debugged. Not only can you see the full source of the script in this pane, you can
also see which will be executed next, and which lines have breakpoints assigned to them.

The pane in the lower-left corner is the watch list. You can add watches for any expression
you like. For example, if you want to keep track of the value of an array called @foo, you
can simply add it to the watch list by selecting it in the source code, right clicking it, and
selecting Copy to Watch.

The pane in the bottom middle is the Proximity list. It displays the values of all variables
referenced in lines of source code near the one currently being executed. Oftentimes you
won’t even need to bother with the watch list because the variable you’re interested in
will be listed in the Proximity list.

15 0355 ch12 5/9/02 2:36 PM Page 313

The final pane is the Register list. It keeps track of the variables that Perl maintains on its
own. The special variables like $_ and $1 through $5 are displayed in this listing.

Aside from the data display, the main advantages of the debugger are that you don’t have
to remember all of the debugger commands to make it work. There are menu items and
buttons on the toolbar for all the frequently used debugger commands, so the casual user
will find it easier to debug their programs using the graphical interface. Unfortunately, the
debugger does not use the same keyboard commands as the command-line debugger, so
hardcore debugger users might still prefer the command-line debugger to the graphical
version.

Going Deeper
I’ve discussed essentially all the most important debugger commands in this chapter, but
not the complete set. If you begin using the debugger quite a lot, you might want to check
the perldebug man page or the debugger’s online help for more of the options.

Using Different Debuggers
Perl allows you to customize the behavior of the debugger, or to plug in an entirely different
debugger system if you like. The -d switch, when used with a colon and the name of a
module, will use that module as the debugger. For example, the Devel::DProf module,
available from CPAN, provides profiling for your Perl scripts (testing how long it takes
to run each subroutine, to figure out the inefficiencies in your code). When installed, you
can call it like this:

% perl -d:DProf thescript.pl

In addition, the perl5db.pl file contains the actual code for the debugger; you can copy
and modify that file to change the behavior of the debugger. For more information, see
the perldbug man page, or the documentation that comes with the DProf module.

Running Perl Interactively
The debugger can be used to run Perl in a sort of interactive mode to test commands and
see their output right away. And you don’t even need an actual script to do it. Here’s a
simple command that will load the debugger without a script to debug:

perl -d -e1

314 Day 12

Actually, you have given Perl a script to execute, a script of one character: 1.
The -e option is used to run Perl scripts directly on the command line. We’ll
come back to this at the end of the book, on Day 20, “Odds and Ends.”

Note

15 0355 ch12 5/9/02 2:36 PM Page 314

Debugging Perl 315

12

Common Pitfalls and FAQs
Throughout the last twelve days I’ve tried to point out common mistakes that new Perl
programmers (and even experienced programmers) make in various topics. The Perl
documentation also contains a list of common pitfalls, and many more, in the perltraps
man page. A quick perusal of that page can provide interesting hints for solving problems
in difficult code.

The Perl documentation also contains an extensive set of FAQ files (Frequently Asked
Questions). Before pulling your hair out over a particular problem, check the FAQs.
Start from the perlfaq man page and work from there.

Summary
Today you learned not so much about Perl itself, but about Perl’s associated command-
line debugger. You learned how to start and run the debugger, how to step through each
line of your script, list the source, set breakpoints, trace the execution, and find out infor-
mation about different parts of your script as they’re running.

With the debugger there’s few problems you can’t figure out, and you can usually figure
them out faster this way than trying to use print statements everywhere.

Q&A
Q. I use emacs. Is there any way to tie the Perl debugger into emacs?

A. Yup. The cperl-mode.el file has a ton of stuff for tying Perl into emacs. You can
find this file in the standard Perl distribution in the emacs directory.

Workshop
The workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience in using what you’ve learned. Try
and understand the quiz and exercise answers before you go on to tomorrow’s lesson.

Quiz
1. What is a debugger for? Why is it more useful than, say, -w or print?

2. How do you start the Perl debugger?

3. Name three ways of listing bits of code inside the debugger.

4. How do you print the values of variables in the debugger?

5. How is tracing execution different from stepping through each line of code?

6. How are the X and V commands for printing variables different?

15 0355 ch12 5/9/02 2:36 PM Page 315

Exercises
Type the following script:

#!/usr/local/bin/perl -w

my @foo = (2,5,3,7,4,3,4,3,2,3,9);

foreach $thing (0..10) {
×it($thing, $foo[$thing]);

}

sub timesit {
my ($num, $val) = @_;
print “$num times $val is “, $num * $val, “\n”;

}

Run the debugger on it. Perform the following debugger operations:

1. Turn on tracing using the t command. Type c to see the result.

2. Type R to restart running the script. Use n to step through the script. When you get
inside the foreach loop, print the values of $thing a number of times.

3. Type R to restart the script again. Use s to step through the script. Print the values
of $num and $val from inside the ×it() subroutine. Use r to return from
inside the ×it() subroutine.

4. Type R to restart the script. Set a breakpoint at the ×it() subroutine using the
b command. Type L to view the breakpoint. Type c to run until the breakpoint is
hit. Use d to delete the breakpoint.

5. BUG BUSTER: Use the debugger to find the bugs in this script:
#!/usr/local/bin/perl -w

@foo = (2,5,3,7,4,3,4,3,2,9);

while ($i < $#foo) {
×it($i, $foo[$i]);

}

sub timesit {
my ($num, $val) = @_;
print “$num times $val is “, $num * $val, “\n”;

}

Answers
Here are the answers to the Workshop questions in the previous section.

316 Day 12

15 0355 ch12 5/9/02 2:36 PM Page 316

Debugging Perl 317

12

Quiz Answers
1. The -w command in Perl is there to help you fix (or avoid) syntax mistakes or

poor-coding practices. The Perl debugger is there to help you with all other prob-
lems: arrays not getting built or not getting printed, values not getting matched,
script logic not running the way you expect it to. Using print statements will pro-
duce some of the same effect, but it’ll take longer and often be more difficult to
figure out the problem. With the debugger you can also change values of variables
and execute different bits of code at different times while your script is running—
something you cannot do with a simple print statement.

2. Start the Perl debugger by running perl on the command line with the -d option
followed by the name of your script and any script arguments. In MacPerl, choose
Perl Debugger from the Script menu.

3. There are several ways of listing code in the debugger:

• Use the l command to show succeeding chunks of code

• Use l with a line number to show that line number

• Use l with a range of line numbers to show those lines

• Use - to show the preceding chunks of code

• Use w to show a few lines before and a few lines after the current line

4. Print values of global and package variables using the X command with a variable
name (minus the $, @, or %). Use the x command to print other variables and execute
other Perl expressions (such as $hash{‘key’}).

5. Turning on tracing shows each line of code as it’s being executed, whether you are
stepping through the execution or not. Stepping through the code shows each line
as it’s about to be executed. Stepping through code using the n command skips
over subroutines (they get executed, but their contents are not displayed).

6. The X command prints the variables for the current package (main). The V command
prints variables in any given package (something you’ll need later when you work
with packages).

7. A breakpoint is a marker somewhere in your Perl code. When you run the code in
the debugger, Perl runs until it finds a breakpoint, and then stops. You can then step
through the code from there, print values of variables, or continue to the next time
the breakpoint is hit.

Exercise Answers
1–4. There are no answers to these exercises; they demonstrate the use of the debugger.

15 0355 ch12 5/9/02 2:36 PM Page 317

5. There are two bugs in the script:

• $i is never initialized, which means that the ×it() subroutine will get
initialization errors when it tries to print the value of $num.

• $i is never incremented, which means it will be 0 each time and go into an
infinite loop.

318 Day 12

15 0355 ch12 5/9/02 2:36 PM Page 318

DAY 13

WEEK 2

Scope, Modules, and
Importing Code

In today’s lesson, we’ll discuss issues concerning space and time (to complement
our earlier discussions of truth and greed). By space, I’m referring to variable
namespace: how variable names are managed across local and global scope,
and how packages can be used to manage global variables across programs.
Related to space is the capability to import code from modules into your scripts,
either at compile time or runtime (thus covering the time part of today’s lesson).
Today we’ll explore

• The problem with global variables and various ways of controlling those
variables

• More about local variables; going beyond my and subroutines

• Importing and using external code with modules and pragmas

• Using modules from the standard library and from CPAN

16 0355 ch13 5/9/02 2:36 PM Page 319

Global Variables and Packages
Variable scope, in general, refers to the availability and existence of a variable in your
script. A global scope, then, refers to a variable that is available to all parts of your script
and exists as long as your script is running. Local scope, in turn, refers to a variable that
has some limited scope and might pop in and out of existence depending on what part of
your Perl script is currently executing.

We’ll start this chapter with a look at global variables and global scope. In the next section
we’ll turn to local scope.

The Problem with Globals
Throughout this book, we’ve been using global variables (and global scope) in most of
the examples, with the exception of the occasional local variable in a subroutine. There’s
a good reason for this: Global variables are easy to create and easy to use. Any variable
that is not explicitly declared with my (or, as you’ll learn soon, local) automatically be-
comes a global variable, regardless of the context in which you use it, and is available at
any point in that script.

This makes simple scripts easy to write. But as your scripts become larger and larger, the
use of global variables becomes more and more problematic. There are more variables to
keep track of and more variables taking up space as your script runs. Global variables that
mysteriously appear deep in the body of a script can be difficult to debug—which part of
the script is updating this variable at what time? Do you even remember what that global
variable does?

As you develop larger scripts that use global variables, there’s also a significant danger
that you will accidentally use a name for a variable that already exists somewhere else in
your script. Although this problem can make it more difficult to debug your scripts, it’s a
particularly difficult problem if you have to incorporate your scripts into someone else’s
code, or if you want to create reusable Perl libraries. The risk of clashing variable names
across multiple bodies of code becomes a very real and very painful problem.

The best way to control the potential of name clashes with promiscuous global variables
is to not use them. Organize all your scripts in subroutines, and declare all your variables
local to those subroutines. Data that needs to be shared between subroutines can be passed
from subroutine to subroutine via arguments. Many software developers argue that all
programs—no matter how small, no matter how specialized the purpose—should be written
this way, that the avoidance of global variables is Good Software Design.

320 Day 13

16 0355 ch13 5/9/02 2:36 PM Page 320

Scope, Modules, and Importing Code 321

13

In real life, however, everyone uses the occasional global variable, particularly in situations
where every part of the script must access the same stored data in a list or other structure.
Which brings us to another method for organizing and managing global variables: packages.

What’s a Package?
A package is a way to bundle up your global variables so they aren’t really global
anymore—they’re only global inside a given package. In other words, each package de-
fines its own variable name space. Packages enable you to control which global variables
are available to other packages, thereby avoiding the problems of clashing variable names
across different bits of code.

Chances are good you’ll only need to develop your own packages if you’re creating Perl
modules or libraries or classes in object-oriented Perl programming—all topics that are
too advanced for this book. Even if you don’t develop your own, packages are all around
you as you write and run your Perl scripts, whether you know it or not. With that in
mind, having at least a passing understanding of how packages work will help you not
only understand how Perl looks at variables and name spaces in your own scripts, but
also how importing code from modules works as well. And it’ll help in the event that
your code grows to the point where it does become a library or a module later. Learn
the rules now, and it’ll be that much easier later.

How Packages and Variables Work
The core concept of the package is that every line of Perl is compiled in the current package,
which can be the default package or one you define yourself. Each package has a set of
variable names (called a symbol table) that determines whether a variable is available for
Perl to use and what the value of that variable currently is. The symbol table contains all
the names you could possibly use in your script—scalars, arrays, hashes, and subroutines.

If you refer to a variable name—say, $x—in your script, Perl will try to find that variable
in the current package’s symbol table. If you tell Perl to switch packages, it will look up
$x in the new package. You can also refer to a variable by its complete package name,
which tells Perl which symbol table to look in for the variable and its value. Package
names contain both the name of the package, two colons, and the name of the variable.
The special character indicating whether the variable is a scalar, a list, or a hash, or so
on, is still included at the start of the package.

So, for example, $main::x would be used to refer to the scalar variable $x stored in the
main package, whereas $x would refer to the scalar variable $x in the current package,
which may or may not be the same variable stored in the package main. They have the
same variable name but because they live in different packages, they have different values
(or they might not exist at all in other packages).

16 0355 ch13 5/9/02 2:36 PM Page 321

Main is the default package that you’ve been using all along, although you haven’t been
aware of it. When you create and use global variables in scripts that do not define an
explicit package, you’re actually creating variables that belong to the main package (you
might have seen this come up in the error messages you get when you make a mistake—
some of them refer to “Name main::foo used only once...”). All this time, whenever
I’ve been referring to global variables, I’ve actually been slightly dishonest: Global variables
are actually package variables belonging to the package main.

Note that the existence of global variables in packages doesn’t make them any less difficult
to manage if you use lots of them. A hundred global variables defined in main are going
to be just as difficult to use as a hundred global variables defined in a new package called
mypackage. Using local variables and passing data between subroutines is still good-
programming practice for your own bit of the Perl world.

To create a new package, or switch between packages, use the package function:

package mypack; # define or switch to a package other than main

Package definitions have a scope similar to that of local variables: Package definitions
inside a subroutine or block compile all the code inside that subroutine or block as part
of that new package, and then revert to the enclosing package. Calling package at the
start of a script defines a new package for that entire script.

As I said earlier, you’ll define your own packages most often when you’re writing code
libraries or modules of your own. The most important things to understand about pack-
ages are

• Every variable name and value is stored in a symbol table for the current package.

• You can refer to a variable name as either a plain variable name for the current
package, or with a complete package name. This determines which symbol table
Perl checks for the variable’s value.

• The default package is package main.

A Simple Package Example
Here’s a simple example of a program that uses packages. Its only purpose is to demon-
strate how packages affect variable scope. In this program, I create three packages, and
demonstrate how the scope of global variables is affected by those package declarations.
The source code is in Listing 13.1.

322 Day 13

16 0355 ch13 5/9/02 2:36 PM Page 322

Scope, Modules, and Importing Code 323

13

LISTING 13.1 A Program that Demonstrates the Use of Packages

#!/usr/ bin/perl -w

package foo;
print “Package foo ...\n”;

$bar = ‘bar’;

package red;
print “Package red ...\n”;

$blue = ‘blue’;

print “Value of \$bar: $bar\n”;
print “Value of \$blue: $blue\n”;
print “Value of \$foo::bar: $foo::bar\n”;

Let’s look at the source code. First, create a package called foo, and initialize a variable
in it, $bar. Then, initialize a second package, called red. In it, initialize a new variable
called $blue, and print out the values of $bar, $blue, and $foo::bar. When the value
of $bar is printed, nothing is displayed because there is no variable called $bar in the
current package. On the other hand, $blue’s value is printed out as you would expect,
because it is native to the current package. Finally, when $bar is qualified with a package
name, the value is printed correctly. By using the full-package qualifier, the value can be
retrieved from the other package.

Under ordinary circumstances, you probably wouldn’t create more than one package in a
single program like I did in this case. However, by presenting the code in this way, you
can see how packages can be used to encapsulate variables so they don’t get in the way
of variable names that you can use elsewhere in your code.

Using Non-Package Global Variables
One way of creating well-mannered globals is to create packages. However, there is one
other trick that is very common for creating globals: Declare your globals as local to
your own script.

If you declare your global variables with the my modifier, as you do local variables inside
subroutines, then those global variables won’t belong to any package, not even main. They’ll
still be global to your script, and available to all parts of that script (including subroutines),
but they won’t conflict with any other variables inside actual packages, including those
declared in package main. Global variables declared with my also have a slight performance
advantage because Perl doesn’t have to access the package’s symbol table each time the
variable is referenced.

16 0355 ch13 5/9/02 2:36 PM Page 323

Because of these advantages of using non-package globals, it’s recommended Perl practice
to do this for all but the simplest of Perl scripts. To make use of it in your own scripts,
simply include the my modifier when you declare your global variables, the same way
you do for the locals:

my %names = (); # global hash for the names

Perl also includes a special feature to help you make sure you’re using all your variables
properly, as either local variables inside subroutines, or as non-package variables if they’re
global. Add the line use strict at the top of your script to turn on this feature, like this:

#!/usr/local/bin/perl -w
use strict;

my $x = ‘’; # OK
@foo = (); # will cause script to exit

remainder of your script

With use strict in place, when you run your script Perl will complain about stray global
variables and exit. Technically, use strict will complain about any variables that are
not declared with my, referenced using package names, or imported from elsewhere.
Consider it an even stricter version of the variable warnings you get with -w.

There’s one odd side effect of the use strict command worth mentioning: It will complain
about the placeholder variable in a foreach loop, for instance, $key in this example:

foreach $key (keys %names) {
...

}

Technically, this is because the foreach variable, which is implicitly local, is actually a
global variable pretending to be a local. It’s still only available to the foreach, and behaves
as if it were local, but internally it’s declared differently (you’ll learn about the two dif-
ferent kinds of local variables later in this lesson, in “Local Variables with my and local.”)
To fix the complaint from use strict, simply put a my in front of the variable name:

foreach my $key (keys %names) {
...

}

324 Day 13

There’s one case where you don’t want to use non-package globals, and
that’s if you’re writing scripts to run in Apache’s mod_perl environment.
Because of the way mod_perl works, if you do so, the main body of your
script will run as though it’s an anonymous subroutine, and your global vari-
ables won’t be visible to the other subroutines in your program.

Caution

16 0355 ch13 5/9/02 2:36 PM Page 324

Scope, Modules, and Importing Code 325

13

Throughout the rest of this book, all the examples will use use strict and declare global
variables as my variables.

Local Scope and Variables
A local variable, as you learned on Day 11, “Creating and Using Subroutines,” is one
that is only available to a certain part of a script. After that part of the script is finished
executing, the variable ceases to exist. Local variables also have a limited availability to
other parts of a script. They might be private to just the scope in which they were defined,
or they might only be available to those parts of the script that are running at the same
time as the part of the script that defined the variable.

Local Variables and Local Scope
On Day 11, we looked at local variables, defined with my, inside subroutines. A subroutine
defines a local scope, and the local variable is available to all the code defined inside that
subroutine.

A subroutine isn’t the only thing that can create a local scope, however. Any block sur-
rounded by brackets defines a local scope, and any local variables defined within that
block will cease to exist at the end of the block. This enables you to define local variables
inside loops or conditionals, or even inside bare blocks, if there’s some portion of code
that will benefit from a new local scope.

All the following snippets of code define a local scope. Each declaration of the variable
$s is local to that enclosing block, and each $x is different from all the other versions of
$x. Note, in particular, the use of a local variable in the foreach loop; here the variable is
local to the entire loop, not to each iteration. $x will be incremented five times, as you’d
expect:

if ($foo) { # conditional
my $x = 0;
print “X in conditional: $x\n”;
$x++;

}

foreach (1..5) { # loop
my $x += $_;
print “X in loop: $x\n”;

}

{ # bare block
my $x = 0;
print “X in bare block: $x\n”;
$x++;

}

16 0355 ch13 5/9/02 2:36 PM Page 325

One other rule of variables and scope to always keep in mind: Local variables with the
same name as global variables hide the values of the global variable of the same name.
The value of the local variable is used throughout the current local scope, and then the
original global and its original value will be restored at the end of that scope.

Although this is a convenient feature, it can also be terribly confusing. Generally it’s a
good idea to avoid naming your locals the same name as your globals unless you’ve got
good reasons for doing so.

Alternately, you can always refer to a global variable using its complete package name,
even from inside a local scope. This technique assumes you did not use use strict or
declare your globals with my:

$foo = 0; # global
{

my $foo = 1; # local
print “$foo\n”; # prints 1
print “$main::foo\n”; # prints 0

}
print “$foo\n”; # prints 0

Local Variables with my and local
In addition to the local variables defined with my, there are also local variables defined
with local. The local modifier is used the same way as the my modifier, with one or
more variable names:

local ($x, $y);

What’s the difference? The most obvious difference between my local variables and local
local variables is that the scope for local local variables is determined by the execution
of the script, not by how the code is laid out. A my variable is only available to the code
up until the nearest enclosing block or subroutine definition; if you call another subrou-
tine from within that one, the second subroutine won’t have access to those variables.
Local variables declared with local are available to the code inside that block and sub-
routine and to nested subroutines called from that same subroutine. That variable definition
will cascade to any nested subroutines, in much the same way that global variables are
available everywhere. Local local variables are available from that subroutine and all the
subroutines it calls as well.

326 Day 13

In technical terms, my variables are lexically scoped, and local variables are
dynamically scoped. But you don’t have to know those terms unless you’re a
computer scientist, or you’re trying to impress other computer scientists.

Note

16 0355 ch13 5/9/02 2:36 PM Page 326

Scope, Modules, and Importing Code 327

13

I’ve put an example of how the scope differences between my and local variables work
in the section “Going Deeper,” if you’re interested in looking more at local versus my.
For the most part, however, local variables are best defined with my, and not local; my
variables follow the more common definition of local scope in other languages and are
easier to use and manage.

Using Perl Modules
Half of learning how to script Perl successfully is knowing how to write the code. The
other half is knowing when NOT to write the code. Or, to be more exact, knowing when
to take advantage of the built-in Perl functions or when to use libraries and modules that
other people have written to make your programming life easier.

If you’ve got a given task to do in Perl that sounds kind of complex but that might also
be something other programmers might have done in the past, chances are really good
that someone else has beaten you to it. And, in the Perl tradition, he may very well have
packaged their code in a module or a library and made it available for public downloading.
If it’s a really common task, that module might even be part of the standard Perl distribu-
tion. Much of the time, all you have to do to make use of these libraries is import them
into your own Perl scripts, add some code to customize them for your particular situation,
and that’s it. You’re done.

Throughout many of the lessons in the remainder of this book, we’ll be looking at a num-
ber of modules that you have available to you as part of the standard Perl distribution, as
part of the distribution for your particular platform, or as downloadable files from the
Comprehensive Perl Archive Network. In this section, then, you’ll learn the basics: what
a module is, and how to import and use modules in your own scripts.

Some Terminology
But first, some terminology. I’ve been bandying about the terms function, library, module,
and package, and it’s worth noting what all these terms mean.

A built-in function, as I’ve noted before, is a function that comes with Perl and is available
for you to use in your script. You don’t need to do anything special to call a built-in func-
tion; you can call it anytime you want to.

A Perl library is a collection of Perl code intended for reuse in other scripts. Old-style
Perl libraries were nothing more than this, and were used in other Perl scripts by importing
them with the require operator. More recently, the term library has come to be equivalent
to a Perl module, with old-style libraries and require falling out of favor. More about
importing code with require later in this lesson.

16 0355 ch13 5/9/02 2:36 PM Page 327

A Perl module is a collection of reusable Perl code. Perl modules define their own packages,
and have a set of variables defined by that package. To use a module, you import that
module into your script with the use operator, and then you can (usually) refer to the
subroutines (and, sometimes, variables) in that module as you would any other subroutines
(or variables). Some modules are object-oriented, which means using them in slightly
different ways, but the basic procedure is the same.

In addition, there are also pragmas, which are special kinds of Perl modules that affect
both how Perl compiles and runs a script (whereas most Perl modules only affect its actual
execution). Otherwise, they behave the same. use strict is an example of the use of a
pragma. We’ll look at pragmas later in this lesson in the section entitled “Using Pragmas.”

Getting Modules
Where are these modules found? If you have Perl, you already have a number of modules
to play with and you don’t need to do anything further. The standard Perl library is the
collection of modules, pragmas, and scripts that are distributed with the standard Perl
distribution. Different versions of Perl for different platforms might have a different standard
library—the Windows version of Perl, for example, has a set of modules for accessing
capabilities specific to Windows machines. Although you have to explicitly import these
modules to use them, you don’t have to download them or install them.

The “official” set of library modules is fully described in the perlmod man page, and
includes modules for the following:

• Interfaces to databases

• Simple networking

• Language extensions, module and platform-specific development support, dynamic
module and function loading

• Text processing

• Object-oriented programming

• Advanced math

• File, directory, and command-line argument handling

• Error management

• Time

• Locale (for creating international scripts)

328 Day 13

16 0355 ch13 5/9/02 2:36 PM Page 328

Scope, Modules, and Importing Code 329

13

For the Windows version of Perl, there are standard Win32 modules for Windows extensions,
including the following:

• Win32::Process: Creation and use of Windows processes

• Win32::OLE: For OLE automation

• Win32::Registry: Access to the Windows Registry

• Win32::Service: Management of Windows services

• Win32::NetAdmin: Remotely create users and groups

MacPerl includes Mac modules for accessing the Mac Toolbox, including AppleEvents,
dialogs, files, fonts, movies, Internet Config, QuickDraw, and speech recognition (whew!).
We’ll explore many of the Mac and Win32 modules on Day 18, “Perl and the Operating
System.”

In addition to the standard Perl library, there is the Comprehensive Perl Archive Network,
otherwise known as CPAN. CPAN is a collection of Perl modules, scripts, documentation,
and other tools relating to Perl. Perl programmers all over the world write modules and
submit them to CPAN. To use the modules from the CPAN, you’ll need to download and
install those modules into your Perl distribution; sometimes you’ll also need to compile
them with a C compiler. Let’s start in this section, using the modules you’ve already
installed; we’ll look more at CPAN later in this lesson.

Importing Modules
To gain access to the code stored in any module from your script, you import that module
using the use operator and the name of that module:

use CGI;

use Math::BigInt;

use strict;

The use operator imports the subroutine and variable names defined and exported by that
module into the current package so that you can use them as though you had defined them
yourself (in other words, that module has a package, which defines a symbol table;
importing that module loads that symbol table into your script’s current symbol table).

Module names can take on many forms—a single name refers to a single module, for
example, CGI, strict, POSIX, or Env. A name with two or more parts separated by double-
colons refers to parts of larger modules (to be exact, they refer to packages defined inside
other packages). So, for example, Math::BigInt refers to the BigInt part of the Math
module, or Win32::Process refers to the Process part of the Win32 module. Module
names conventionally start with an initial capital letter.

16 0355 ch13 5/9/02 2:36 PM Page 329

When you use the use operator to import a module’s code into your script, Perl searches
for that module’s file in a special set of directories called the @INC array. @INC is a Perl
special variable that contains any directories specified on the Perl command line with the
-I option, followed by the standard Perl library directories (/usr/lib/perl5 and various
subdirectories on Unix, perl\lib on Windows, MacPerl:lib on Macintosh), followed by
. to represent the current directory. The final contents of @INC will vary from system to
system, and different versions of Perl might have different values for @INC by default.
On my system, a Linux machine running Perl 5.005_02, the contents of @INC are

/usr/lib/perl5/5.00502/i486-linux
/usr/lib/perl5/5.00502
/usr/lib/perl5/site_perl/5.005/i486-linux
/usr/lib/perl5/site_perl/5.005
.

If you want to import a module that’s stored in some other directory, you can use the lib
pragma at the start of your script to indicate that directory in your script:

use lib ‘/home/mystuff/perl/lib/’;
use Mymodule;

Perl module files have the same names as the modules themselves, and have the extension
.pm. Many modules contain just plain Perl code with some extra framework to make
them behave like modules, so if you’re curious about how they work you can go ahead
and look at the code. Other modules, however, contain or make use of compiled code
specific to the platform on which they run, and are not quite as educational to look at.

330 Day 13

These latter modules use what are called Perl extensions, sometimes called
XSUBS, which enable you to tie compiled C libraries into Perl modules.
Working with extensions is way too advanced for this book, but I’ll provide
some pointers to more information on Day 20, “Odds and Ends.”

Note

Using Modules
Using use enables you to import a module. Now what? Well, now you can use the code
that module contains. How you actually do that depends on whether the module you’re
using is a plain module or an object-oriented one (you can find out from the documentation
for that module whether it’s object-oriented or not).

For example, take the module Carp, part of the standard Perl library. The Carp module
provides the carp, croak, and confess subroutines for generating error messages, similar
to how the built-in functions warn and die behave. By importing the Carp module, the

16 0355 ch13 5/9/02 2:36 PM Page 330

Scope, Modules, and Importing Code 331

13

three subroutine names are imported into the current package, and you gain access to
those subroutines as if they were built-in functions or subroutines you defined yourself:

use Carp;
open(OUT, “>outfile” || croak “Can’t open outfile\n”;

The carp and croak subroutines, by the way, are analogous to warn and die

in that they are used to print an error message (and then exit, in the case of
die and croak). The difference is that if they’re used inside a module, the
carp subroutines are better at reporting where an error occurred. In the
case where a script imports a module that has a subroutine that calls carp,
carp will report the package and line number of the enclosing script, not
the line number inside of the module itself (which would not be very useful
for debugging). We’ll come back to carp when we look at CGI scripts on Day
16, “Using Perl for CGI Scripting.”

Note

Object-Oriented Modules
Some modules are object oriented. Object-oriented programming involves designing
systems so that the components are treated as “objects” that comprise both the data asso-
ciated with them, and the code used to perform actions associated with the object. The
description of what an object looks like is referred to as a class, and you deal with objects
by creating instances of those classes. For example, in the object-oriented world, you
might have a class called Date, which contains the current date and time, and methods
that convert the date and time to alternate calendars, or allow you to display the date in
various formats. You could create an instance of Date containing the current date and
time, and call a method of the date class called convert_to_julian to get the Julian ver-
sion of the date. Perl implements the idea of classes and instances of those classes, the
means by which it does so are described on Day 20. Modules are often written in an
object-oriented manner, here’s what you need to know to use them.

In object-oriented programming parlance, functions and subroutines are called methods,
and they’re executed in a different way than normal functions. So, for modules you import
that are object-oriented, you’d use special syntax to get at that code (your script itself
doesn’t have to also be object-oriented, so don’t worry about that. You can mix and
match object-oriented Perl with regular Perl). Here’s an example from the CGI module,
which we’ll look at in more detail on Day 16:

use CGI;
my $x = new CGI;
my $name = $x->param(“myname”);
print $x->header();

16 0355 ch13 5/9/02 2:36 PM Page 331

print $x->start_html(“Hello!”);
print “<H2>Hello $name!\n”;
print $x->end_html();

Weird-looking, isn’t it? If you’re familiar with object-oriented programming, what’s going
on here is that you’re creating a new CGI object, storing the reference to that object in
the $x variable, and then calling methods using the -> notation.

If you’re not familiar with object-oriented programming, this is going to seem odd. Here’s
the short version:

• The line my $x = new CGI; creates a new CGI object and stores a reference to it
in the variable $x. $x isn’t a normal scalar like an array or a string; it’s a reference
to a special CGI object.

• To call subroutines defined by the module, otherwise known as a method, you use
the variable holding the object, the -> operator, and the name of the subroutine. So
the line $x->header() calls the header() subroutine, defined in the object stored
in $x.

Follow this same notation for other subroutines in that same module, and you’ll be fine.
We’ll get back to references and object orientation later Day 19, “Working with
References.”

Modules from the Inside Out
If the documentation for the module you’re using is insufficient, you can discover which
variables and subroutines from the module are available to your program by doing a bit
of investigative work. When someone writes a module, they have to list the variables and
subroutines (both of which are considered symbols in a module) that are exported to Perl
programs that use the module.

There are two key variables in a module that indicate which symbols (variables and sub-
routines) are available to programs that import the module, @EXPORT and @EXPORT_OK.
The symbols listed in @EXPORT are available to the importing module automatically. The
symbols listed in @EXPORT_OK are available for import, but are not imported automatically
when you import the module. I’ll explain how to import them in the next section. These
two variables are your first clues to how an undocumented module works.

Let’s look at the Carp module, which I discussed earlier. You can examine the @EXPORT
and @EXPORT_OK variables to see which symbols are exported. In the case of Carp, you
can also just read the documentation by typing perldoc Carp, but that’s not the point of
this exercise.

@EXPORT = qw(confess croak carp);
@EXPORT_OK = qw(cluck verbose);

332 Day 13

16 0355 ch13 5/9/02 2:36 PM Page 332

Scope, Modules, and Importing Code 333

13

As you can see from those two variables, there are three symbols that are imported auto-
matically with this module, and two that are optional imports. One thing you’ll need to
look out for is symbols that are not variables or methods that you can use, but instead are
flags that control how the module is used in your program. Flags will only appear in the
@EXPORT_OK variable. If a symbol is imported automatically, it doesn’t work very well as
a flag that only takes effect when it is imported manually. The only way to tell flags from
other optionally exported symbols is by examining the source code of the module.

The exported symbols make up the public interface of the module. Using the package
qualifier, you can always access global variables and subroutines within the module if
you choose to do so, but keep in mind that accessing the internal structure of the module
in a way that the author did not intend can cause results that you didn’t plan for. Generally
speaking, it’s better to use a module in the way the author intended.

Importing Symbols by Hand
Importing a module using use brings in the variables and subroutine names defined and
exported by the module in question. The words and exported in the preceding sentence
are important—some modules export all their variables, some export only a subset, and
others export none at all. With use, you gain access to all the code in the module, but not
necessarily as if you had defined it yourself. Sometimes you’ll have to do some extra
work to gain access to the parts of the module you want to use.

If a module you’re using doesn’t export any variables or subroutine names, you’ll find
out soon enough—when you try and use those names, you’ll get undefined errors from
Perl. There are two ways to gain access to the features of that module:

• You can refer to those variables or subroutines using the full-package name.

• You can import those symbols (variable or subroutine names) by hand, in the use
statement.

With the first method, all you need to do to access a module’s variables or subroutines is
add the package name to those variables or subroutines. This is especially useful if
you’ve got variables or subroutines of the same name in your own code and you don’t
want those names to clash:

call additup, defined in Mymodule module
$result = &Mymodule::additup(@vals);

change value of the $total variable (defined in Mymodule)
$Mymodule::total = $result;

Note that if the package name itself contains two colons, you just add the whole thing
before the variable name:

$Text::Wrap::columns = 5;

16 0355 ch13 5/9/02 2:36 PM Page 333

The second method, importing all the symbols you need, is easier if you intend to call a
module’s subroutines a lot in your own code; importing them means you don’t have to
include the package name each time. To import any name from a module into the current
package, add those names to the end of the use command. A common way to do this is to
use the qw function, which enables you to leave off the quotes and add new symbols easily:

use MyModule qw(oneSub, twoSub, threeSub);

Note that these are symbol names, not variable names. There are no special letters before
these names, and all the variables in the module with that name will be imported (the
symbol foo will import $foo, @foo, &foo, and so on). To import specific variables,
you can use the variable characters:

use MyModule qw($count);

Some modules are defined so that they have a set of variables that are imported by default,
and a set that are only imported by request (if you look at the code, the hash %EXPORT
commonly defines exported symbols by default; %EXPORT_OK defines the optional symbols).
The easiest way to import both these things is to issue two calls to use: one for the defaults,
and one for any optional symbols:

use Mymodule; # import all default names
use Mymodule qw(this, that); # import this and that as well

Import Tags
Some of the larger modules enable you to import only a subset of their features, for
greater efficiency. These modules use what are called import tags. If you have a module
that uses import tags, you can find out which tags a module supports by checking the
documentation of that module. Alternately, the %EXPORT_TAGS hash in the source code
will show you which tags you can use (tags are exported from the module, and imported
into your code).

To import a subset of a module, add the tag to the end of the use statement:

use CGI qw(:standard);

Once again, qw is the quote word function; although you could just quote the import tag
itself; this format is more commonly used and enables you easily to add more tags if you
need them.

How a module behaves—if it uses import tags, or if it has variables or subroutines that
must be imported by hand—is defined by the module itself, and (hopefully) documented.
You might try running perldoc on the module to extract any online documentation the
author of that module provided, or check the readme files that came with the module to
make sure you’re using it right.

334 Day 13

16 0355 ch13 5/9/02 2:36 PM Page 334

Scope, Modules, and Importing Code 335

13

Using Pragmas
The line use strict for restricting global variables to the current script is an example of
a special kind of module called a pragma. A pragma is a module that affects how Perl
behaves at both compile time and runtime (as opposed to regular modules, which provide
code for Perl just at runtime). The strict pragma, in particular, tells Perl to be strict in
its parsing of your code, and to disallow various unsafe constructs.

The notions of compile-time and runtime might initially seem odd if you remember back
to Day One, where I noted that Perl isn’t a compiled language like C or Java. In those
languages, you run a compiler to convert your source code into bytecode or an executable
file; then you execute that new file to actually run the program. With Perl, the script is
your executable. There’s no intermediate compiled step.

In reality, I fibbed a little on Day One. Perl does indeed compile its source code, just as
C and Java do. But then it goes ahead and runs the result; there is no intermediate exe-
cutable file hanging around.

What this means is that there are tasks that Perl does during compile time (as the script
is compiled), and tasks that happen during runtime (as the result is executing). At com-
pile-time, Perl checks for syntax and verifies that everything it needs to run that script is
available. At runtime, the script actually executes and operates on the data you give it. As
you grow more advanced in your knowledge of Perl, you’ll learn that when some operations
happen is as important as whether they happen at all.

But back to pragmas. As I mentioned, a pragma is a bit of imported code that affects how
Perl operates both during compile time and runtime. Unlike most imported code in modules
and libraries, which only affect a script’s runtime behavior, pragmas can change the whole
look and feel of your code and how Perl looks at it.

Perl has very few pragmas in its standard library (unlike modules, of which there are
dozens). Pragmas are conventionally spelled in all lowercase letters, to differentiate
them from modules. You use pragmas just like you do modules, with the use operator:

#!/usr/local/bin/perl -w
use strict;
use diagnostics;

Each of the pragmas can be used at the top of your script to affect the entire script. They
can also be used inside a block, in which case they only change the behavior of that
enclosing block. At the end of the block the normal script behavior resumes.

Some of the more useful Perl pragmas include strict and diagnostics. You can find a
more complete listing of available pragmas in the perlmod man page under the section
“Pragmatic Modules.”

16 0355 ch13 5/9/02 2:36 PM Page 335

strict

The strict pragma that you’ve seen already, restricts various unsafe constructs in your
scripts. The strict pragma watches for misplaced global variables, barewords (unquoted
strings with no definitions in the language or defined as subroutines), and symbolic refer-
ences (which we’ll look at in greater detail on Day 19). You can control only some of
these unsafe constructs by including the strings ‘vars’, ‘subs’, or ‘refs’ after the use
strict, like this:

use strict ‘vars’;

You can turn off strictness for various blocks of code using the no strict command
(and with optional ‘vars’, ‘subs’, and ‘refs’, if necessary). The no strict applies
only to the end of the enclosing block (subroutine, conditional, loop, or bare block), and
then Perl reverts to the usual amount of strictness.

diagnostics

The diagnostics pragma is used to turn on Perl verbose warnings. It works similarly
to the -w switch; however, it can be used to limit diagnostic warnings and messages to
specific parts of your script enclosed in blocks. You cannot turn off diagnostics at the
compile phase of your script (as you can with strict using no strict), but you can
control runtime warning using the enable and disable subroutines:

use diagnostics;
#
various bits of code

disable diagnostics;
code that usually produces run-time warnings
enable diagnostics;

continue on as usual...

The English Module
The English module is worth mentioning specifically because, like the pragmas, it offers
a way to change how Perl interprets your script, but unlike the pragmas, it operates at
runtime, and you can’t limit its scope to a block. The English module is used to make
Perl less terse in its built-in special variable names. Although true Perl wizards can glee-
fully litter their scripts with variables like $_, $”, $_, and so on, most mere mortals have
trouble keeping all but the most common special variables straight. That’s where use
English can help, by aliasing various longer variable names to the shorter versions.

336 Day 13

16 0355 ch13 5/9/02 2:36 PM Page 336

Scope, Modules, and Importing Code 337

13

For example, the variable $, is known as the output field separator, and it’s used to sepa-
rate items in print statements. With use English, you can still refer to the variable as
$, if you like, or you can also use the names $OUTPUT_FIELD_SEPARATOR or $OFS. All
three will work equally well.

You can find a list of Perl’s special variables and all their names (both using the English
module and not) in the perlvar man page.

An Example: Using the Text::Wrap Module
Here’s a small example that uses a module from the standard library: the Text:Wrap
module, which, given a very long string, will wrap that string into multiple lines of a
given length, and with an optional indentation character to include for each line.

This particular example formats an input file to be 80 or so characters wide and indents it
in a format familiar to you if you’re used to e-mail—it puts a > symbol at the start of each
line. The file to be quoted is assumed to be broken up into multiple paragraphs with a
blank line between each one. So, for example, if the input file looks like this (a single
long string; the end of lines here are not actual ends of lines in the input):

The event on which this fiction is founded has been supposed, by Dr. Darwin, and
some of the
physiological writers of Germany, as not of impossible occurrence. I shall not
be supposed as
according the remotest degree of serious faith to such an imagination; yet, in
assuming it as the
basis of a work of fancy, I have not considered myself as merely weaving a
series of supernatural
terrors. The event on which the interest of the story depends is exempt from the
disadvantages of
a mere tale of spectres or enchantment. It was recommended by the novelty of the
situations which
it develops; and, however impossible as a physical fact, affords a point of view
to the imagination
for the delineating of human passions more comprehensive and commanding than any
which the
ordinary relations of existing events can yield.

The output will look like this:

> The event on which this fiction is founded has been supposed, by Dr.
> Darwin, and some of the physiological writers of Germany, as not of
> impossible occurrence. I shall not be supposed as according the remotest
> degree of serious faith to such an imagination; yet, in assuming it as
> the basis of a work of fancy, I have not considered myself as merely
> weaving a series of supernatural terrors. The event on which the interest
> of the story depends is exempt from the disadvantages of a mere tale of

16 0355 ch13 5/9/02 2:36 PM Page 337

> spectres or enchantment. It was recommended by the novelty of the
> situations which it develops; and, however impossible as a physical
> fact, affords a point of view to the imagination for the delineating of
> human passions more comprehensive and commanding than any which the
> ordinary relations of existing events can yield.

Listing 13.1 shows the code for the script to do this.

LISTING 13.1 The wrapit.pl Script

1: #!/usr/ bin/perl -w
2: use strict;
3:
4: use Text::Wrap; # import module
5: my $indent = “> “; # indent character
6:
7: while (<>) {
8: print wrap($indent, $indent, $_);
9 : }

As you can see, this is not very much code at all, and it’s much easier than writing the
same procedure using raw Perl code. The important parts of this script are

• Line 4, where we import the Text::Wrap module.

• Line 5, which defines the indent character (here >, although it could be any set of
indentation characters you want).

• Line 8, where we call the wrap function to actually wrap the test. The wrap function,
defined in the Text::Wrap module, takes three arguments: the character to indent
the first line with, the character to indent each successive line with, and the string
to wrap. In this case, we wanted to indent all the lines with the same character, so
we called wrap with $indent specified twice.

By default, the Text::Wrap function wraps to 76 characters wide. You can change this
value using the $columns variable, although that variable is not imported from the mod-
ule by default. You’ll have to import that variable explicitly or use its full package name
to be able to make use of it:

use Text::Wrap qw($columns); # import $columns
$columns = 50; # set it

338 Day 13

16 0355 ch13 5/9/02 2:36 PM Page 338

Scope, Modules, and Importing Code 339

13

Using Modules from CPAN (The
Comprehensive Perl Archive Network)

If the modules in the standard Perl library don’t have enough capabilities—and often, they
don’t—there is also CPAN. The Comprehensive Perl Archive Network, as I mentioned
earlier, is a massive collection of publicly available modules for Perl; covering just about
every topic you can imagine. Want a module to handle encrypting data? CPAN’s got it.
Need to send e-mail? CPAN’s got a module to do that. Want to read in and process an
entire HTML file? Not a problem. No matter what it is you want to do, it’s a good idea
to check CPAN first to see if someone has already done it for you. There’s no point in
reinventing the wheel when you can use someone else’s code. That’s the advantage of
having a Perl community to rely on.

A Note of Caution
There are two drawbacks to the CPAN modules. The first is that you have to download,
build, and install modules before you can use them, which means a bit more work involved
than just inserting a use module line in your script. Some modules might require you to
compile them, which means you’ll need a working C compiler installed on your computer.

The second problem with modules on CPAN is that most of them are developed for use
with Unix Perl. If you’re using Windows or MacPerl, the module you want to use might
not be available for that platform. This is changing as time goes on, however, and more
and more modules are being developed cross-platform. Windows support, in particular,
is becoming more and more widespread. There’s even a special tool, PPM, for installing
and managing Windows-specific CPAN modules for the ActiveState version of Perl for
Windows (we’ll look at PPM later in this lesson in the section entitled “Installing CPAN
Modules on Windows Using PPM.”) If you’re not sure if a particular module is available
for your platform, you’ll need to check the documentation for that module—or be prepared
to port it yourself.

Acquiring Modules from CPAN
The CPAN modules are stored on the CPAN Web site or one of its mirrors. If you start at
http://www.cpan.org/you’ll find out what CPAN contains, how to get the files, and how
to find out if a particular module is available on your platform. There’s also a module
search engine available so you can figure out quickly if there is a module to do what you
want.

16 0355 ch13 5/9/02 2:36 PM Page 339

Some modules come in bundles to reduce dependencies between different modules (there’s
nothing more irritating than trying to run a script, which needs one module, only to find
after downloading that module that it requires another module, which then requires a third
module, and so on down the line). Module bundles usually start with the word “lib”—for
example, the libwww group of modules includes a whole set of modules for handling
things relating to the World Wide Web. If the module you want is contained in a bundle
available on CPAN, it’s usually a good idea to download the whole bundle instead of the
individual module, just to be safe.

Say you’ve found a module that you want to use. Usually, you’ll download that module,
uncompress or unarchive it using the tools for your platform (usually gzip and tar for
Unix, WinZip for Windows, Stuffit for Mac). On Unix many modules include a makefile
to install everything in the right spots (type perl Makefile.PL to get the process started).
On Windows and the Mac, if there are not specific directions for installing the files on
your platform you can sometimes just copy the .pm module files into the appropriate
spots in your Perl hierarchy. The perlmodinstall man page part of the Perl installation
offers many specific suggestions for getting modules decompressed and installed. The
process, however, can be different for each module, so follow what the README files
say to make sure everything is installed correctly.

Some modules have parts written in C that might require you to have a C compiler installed
on your machine. If you don’t have a C compiler, you might be able to use the module
without these extra parts, depending on the module. Again, check the documentation that
comes with the module.

If you’re on Unix, and you’re installing modules that have compiled parts, make sure that
the C compiler you use to compile the modules is the same compiler you used to compile
Perl in the first place (with network-mounted file systems this isn’t as unusual a case as it
sounds). You can run into difficult-to-solve incompatibilities with modules compiled in
different environments than those with which Perl was compiled.

After you’re done dearchiving, building, compiling, and installing, you should have a
number of files installed into the right locations in your Perl hierarchy. You might want
to explore the various directories in your @INC array to make sure they’re there.

Installing CPAN Modules on Windows Using PPM
The Perl Package Manager, or PPM, is a tool that comes with the ActiveState version of
Perl for Windows that makes installing and managing CPAN modules on Windows much,
much easier. With PPM, you don’t have to worry whether a particular module is supported
on Windows, or figure out how to compile or install it using arcane Unix-based tools.
PPM enables you to install, update, and remove individual already-built modules from
inside a single program.

340 Day 13

16 0355 ch13 5/9/02 2:36 PM Page 340

Scope, Modules, and Importing Code 341

13

To use PPM, you must be connected to the Internet. The PPM script gets its packages
from a repository on the ActiveState Web site. To start PPM, simply type ppm from inside
a command shell:

c:\> ppm
PPM interactive shell (0.9.5) - type ‘help’ for available commands
PPM>

At the PPM prompt, you have several choices, including

• help, to print a list of choices

• search, to show which packages you have available to install

• query, to show the packages you already have installed

• install, to install a specific package

• verify, to make sure all your packages are up to date

• remove, to remove a specific package

You can find out more about PPM from the PPM Web page (part of ActiveState’s Perl
for Windows installation), or at
http://www.activestate.com/activeperl/docs/ppm.html.

Using Modules from CPAN
After you have a module from CPAN installed—either by downloading and installing it
yourself, using PPM, or even by copying files manually to your Perl installation—that
module is available to your scripts. You can then import it with use and use its capabili-
ties as if it were any other module. You’ll need to check its documentation to see if it’s a
regular or object-oriented module, or to see if it uses import tags, but other than the fact
that they need to be installed first, the CPAN modules typically behave the same as those
in the standard library.

Going Deeper
I’ve covered a lot of ground in this chapter, from packages to modules to importing, to
how Perl actually looks at code at various times. Much of what I’ve discussed in this
chapter is the tip of the iceberg. Packages and modules, in particular, could fill up entire
books of their own, and the short description of object orientation is barely even enough
to get started.

A package, per the Perl Package Manager, is a collection of one or more
modules and supporting files. It’s different from a Perl namespace package.

Note

16 0355 ch13 5/9/02 2:36 PM Page 341

We’ll go a little deeper into a few of these topics later in this book. Other topics, however,
including developing your own packages and just about everything to do with creating
modules, are best left to the advanced Perl programmer, and as such are outside the scope
of this book. After finishing the 21 days of this course, consider exploring modules and
packages with the text in the online man pages and FAQs.

There are a few topics that I can describe in this section, however, that relate more closely
to the topics we’ve discussed in this lesson.

Typeglobs
Typeglobs is a strange name that involves being able to refer to multiple types of variables
by a single name (the term typeglob is borrowed from Unix, where referring to multiple
files using file.* or some such character is called file globbing). Typeglobbing refers to
the symbol table entries of a given package.

The typeglob expression *foo refers to any variable with the name foo—$foo, @foo, &foo,
and so on. Normally, these variables are distinct; typeglobbing is a way of lumping them
all together.

In earlier versions of Perl, typeglobbing was used to pass arrays into subroutines by ref-
erence. You could use a typeglob to alias a local variable to a global array, and then any
changes you made to the local array would be reflected outside the global array, like this:

@foo = (1,2,3);
&removethrees(*foo);

sub removethrees {
my *list = @_;
foreach my $x @list {

if ($x == 3) { undef $x }
}
return @list;

}

In this example, all the changes made to the local list in @list are reflected in the list @foo,
because @list has been set up as an alias for @foo.

Typeglobs for passing arrays into subroutines have been essentially replaced by the newer
reference feature; references not only enable you to pass individual arrays into subroutines
by reference, but also enable you to maintain the integrity of multiple arrays. Use references
instead of typeglobs for this purpose (more about references on Day 19).

342 Day 13

16 0355 ch13 5/9/02 2:36 PM Page 342

Scope, Modules, and Importing Code 343

13

One Other Difference Between local and my
The most obvious difference between variables defined with my and those defined with
local is that of lexical and dynamic scope, as I noted in the body of this lesson. The
other difference is how Perl manages those variables:

• local local variables are actually global variables in disguise. When you create a
local variable, if a global of the same name exists, Perl saves the value of that global
and reinitializes the same variable (and its same location in the symbol table) to the
new local value. The value of the global is restored at the end of the local variable’s
scope.

• my local variables are entirely new variables that are not stored in the symbol table.
They are wholly private to the block or subroutine in which they’re stored. This
makes them slightly faster to use than local local variables because they don’t
require a symbol table lookup.

Neither of these differences really change how you would use local or my in your own
scripts (local local variables are relevant when it comes to using typeglobs, but that’s a
detail outside the scope of this book). In most cases, use my where you want a local vari-
able and you’ll do just fine.

An Example of local Versus my
In the section on local variables defined using either local or my, I promised an example
of how this works if the difference was totally befuddling. Listing 13.2 shows a script to
make things clearer (or perhaps just completely dark).

LISTING 13.2 A Scope Script

1: #!/usr/ bin/perl -w
2:
3: $global = “ global available here\n”;
4:
5: &subA();
6: print “Main script:\n”;
7: foreach $var ($global, $mylocal, $locallocal) {
8: if (defined $var) {
9: print $var;
10: }
11: }
12:
13: sub subA {
14: my $mylocal = “ mylocal available here\n”;
15: local $locallocal = “ local local available here\n”;
16: print “SubA:\n”;
17: foreach $var ($global, $mylocal, $locallocal) {

16 0355 ch13 5/9/02 2:36 PM Page 343

18: if (defined $var) {
19: print $var;
20: }
21: }
22: &subB();
23: }
24:
25: sub subB {
26: print “SubB: \n”;
27: foreach $var ($global, $mylocal, $locallocal) {
28: if (defined $var) {
29: print $var;
30: }
31: }
32: }

This script uses three variables: $global, $mylocal, and $locallocal, and declares them
all appropriately. For each subroutine, and then once again at the end of the script, the
values of those variables are printed if they exist and if they have a proper value. Try to
follow the flow of this script and predict what will get printed when.

Here’s the actual output:

SubA:
global available here
mylocal available here
local local available here
SubB:
global available here
local local available here
Main script:
global available here

Was it what you expected? Let’s work through it. This script starts at the top and calls
&SubA(), which calls &SubB(), and then prints some variables. In the subroutine &SubA(),
we declare both $mylocal and $locallocal with the my and local modifiers, respective-
ly, in lines 14 and 15. Both those variables, plus the $global, will then be available
inside the boundaries of that subroutine, so all three values will be printed.

In line 22, &subA() calls &SubB(), and here we just print the variables that we have avail-
able. The global will be there because global variables are available to all parts of a script.
But $mylocal is not there—the my modifier makes that local variable only available to
that subroutine and not to other parts of the script. The $locallocal variable definition,
however, is available to subroutines further down than the one in which it was defined.

344 Day 13

LISTING 13.2 continued

16 0355 ch13 5/9/02 2:36 PM Page 344

Scope, Modules, and Importing Code 345

13

After &SubB() is finished, execution pops back up to &subA(), and then back up to the
main part of the script where we try printing those same values again. Here only the
global will be available, and only the global will get printed.

Package Initialization and Finalization with
BEGIN and END
One aspect of packages worth mentioning before we move on are the subroutines BEGIN
and END, which are used to initialize a script before it runs, and to finalize a script after
it’s done running. These subroutines are most commonly used inside complex Perl
libraries and modules, and as constructors and destructors for object-oriented classes.

The BEGIN subroutine is executed just as soon as it’s found, during compile time, before
the rest of the script is parsed. Use BEGIN for any code that you want to run at compile-
time, for example, importing symbols for module definitions that will later be exported
to other code, or to include other code that is required by the module.

END, on the other hand, is executed as the Perl script finishes executing, either if the script
executed correctly or if there was an error that caused it to execute prematurely (including
die). Use END to clean up after your script. You can change the status value that is returned
to the Unix shell after your script exits using END, for example.

You can find out more about BEGIN and END in the perlmod man page.

Importing Code with require
In this lesson, I showed you how to import code from modules using the use function. The
use function, in short, imports code from another source at compile time, and imports
various symbols into the current package. The require function, on the other hand, is
used to include code from other sources at runtime (in fact, use is equivalent to calling
require inside a BEGIN subroutine and importing that file’s variables into the current
namespace).

In earlier versions of Perl, require was used as the general-purpose import mechanism.
You stuck your subroutine or global variable definitions in a separate file, and then
included that file in another script using require, like this:

require ‘foo.pl’;

Perl looks for the given file to be imported in the directories stored in @INC. In addition,
it keeps track of which files have already been imported, so it won’t reimport code that’s
already been loaded. If the included file, however, defines its own package, then require
will not import that package’s variables into the current package (not even main), and

16 0355 ch13 5/9/02 2:36 PM Page 345

you’ll have to refer to those variables using the complete package name. Also, you have
to be careful when you use require; because the require occurs at runtime, you must
make sure the require happens before you actually call or use anything defined in that
imported file.

This mechanism for importing code from one file to another still works just fine in current
versions of Perl, and you can use it to build your own simple libraries of subroutine defi-
nitions. However, the new mechanisms of packages and modules provide better features
and more control over what gets imported when. For serious library development, consider
learning more about the development packages, modules, and use.

One other cool use of require is with a Perl version number, in which case if the script
is being run with an earlier version of Perl, it will immediately exit with an error. Use
this mechanism for making sure the version of Perl that’s being run has the features you use
in your script—for example, features that only exist in Perl 5, or more advanced features
that might only exist in 5.005 or higher:

require 5.005;

See the perlfunc man page for further information on require.

Summary
Today’s lesson has covered a few topics that might be considered somewhat esoteric, but
will become more important as the remainder of this book unfolds. The first half of this
lesson discussed aspects of variables and scope, including what a global variable means
when there are packages to restrict it from being truly global, and making sure your
global variables are local to a script by defining them with my.

Then, we turned to local variables, and you learned more about the use of my variables
inside blocks and subroutines, as well as defining local variables with local.

Given all these choices for declaring and using different variables, it’s confusing to know
what’s right. Among Perl programmers, there are general rules and practices that are
commonly used for dealing with variables and scope:

• Don’t declare raw global variables. Declare all global variables using my, and use
use strict to make sure you’re doing it right.

• Use my variables over local unless you have specific reasons for doing so. Local
local variables suffer from many of the same reusability and debugging problems
that global variables do, and confuse what’s an otherwise clean distinction between
the concepts of local and global.

346 Day 13

16 0355 ch13 5/9/02 2:36 PM Page 346

Scope, Modules, and Importing Code 347

13

• Try to avoid using local variables that have the same name as globals unless you
have a good reason for doing so

In the second half of the lesson, we looked at the use function, and how to use it to turn
on pragmas—hints to Perl for how to compile and run your scripts—and to import and
use code contained in modules either in the standard library or from CPAN. The module
part of this lesson was potentially the most important thing you’ll learn today; we’ll be
using modules throughout the rest of this book.

The functions and other commands we explored today include:

• package, to switch between different packages

• my, to define a local variable or a non-package version of a global variable

• use strict, to make sure you’re not using any stray global variables

• local, another way of defining local variables (use my instead)

• use, in general, to import a pragma or module

Q&A
Q. How is declaring global variables with my any advantage over using regular

global variables if I’m writing self-contained scripts to do very simple things?

A. If the only scripts you write are smaller, self-contained scripts, then you don’t really
need to use use strict or make sure your variables are declared using my. You’d
use my globals if there was a chance for your code being incorporated into someone
else’s code, even accidentally. Because quite a lot of code has a chance of being
used in ways contrary to how you intended it to be used, the use of my globals and
use strict is considered a defensive move and good-programming practice. But it
is not required.

Q. Most languages use either lexical or dynamic scope, but not both. Why does
Perl confuse things and provide multiple kinds of local scopes?

A. It’s mostly historical. Earlier versions of Perl provided a dynamic scope for variables
with the local operator. The my operator was added later to provide a more distinct
lexical local scope; local stays around for backward compatibility with earlier
scripts.

If the difference seems hopelessly confusing, just use my variables and assume they
are private to any given subroutine, and you’ll be fine.

16 0355 ch13 5/9/02 2:36 PM Page 347

Q. I’ve got an older script that someone wrote that starts out with a lot of
‘require thislibrary.pl’ lines. Should I change those to use use instead?

A. Actually, no. The require operator was the old way of incorporating library code
into Perl scripts, and it’s likely that the library you’re importing (thislibrary.pl
in your example) isn’t written as a module, and won’t work well with use. Unless
you’re intending to rewrite the entire script—and potentially rewrite all the libraries
as well—you can go ahead and continue to use require.

Q. I’ve got a module called Mail which is supposed to give me access to subroutines
for sending and receiving mail: send_mail() and rec_mail(). I’ve imported the
module with use, but I keep getting undefined errors for those two subroutines.

A. Sounds like the module doesn’t explicitly import those subroutine names. You have
two choices: You can import them yourself, or you can call those subroutines using
the full package names:
use Mail; # import defaults, if any
use Mail qw(send_mail rec_mail); # import subroutines
send_mail();
OR
&Mail::send_mail(); # call subroutine with full package name

Workshop
The workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience in using what you’ve learned. Try
to understand the quiz and exercise answers before you go on to tomorrow’s lesson.

Quiz
1. What is a package? Why are packages useful?

2. How do you call a variable by its full package name?

3. Can you use my with global variables? Why would you want to do this?

4. What does the line use strict do? Why would you want to use it?

5. What are the differences between libraries, modules, packages, and pragmas?

6. What is the CPAN? Where is it?

7. What is the @INC array used for?

8. How do you import a module into your script? What does that give you?

9. What is an import tag and why would you use it?

10. How do you call a subroutine you’ve imported from a module? How do you call a
subroutine from an object-oriented module?

348 Day 13

16 0355 ch13 5/9/02 2:36 PM Page 348

Scope, Modules, and Importing Code 349

13

Exercises
1. Define a subroutine that takes a single argument, a string, and builds a new string

with each of the characters separated by another globally defined value (such as
“:”). Return the new string. The catch: Use the same variable name for the local
variable that holds the new string, and the global variable that stores the separator
character. HINT: Don’t use use strict or my globals.

2. BUG BUSTER: What’s wrong with this script?
use This:That; # import module
while (<>) {

print theother($_);
}

3. Modify the wrapit.pl script to prompt you for the column width, and then wrap
the input text to that width.

4. Consider the Config module, part of the standard Perl library. This module is used
to store configuration information about the current version of Perl. Using the doc-
umentation that comes with Config (which you can get to via the perldoc program,
the Shuck application in MacPerl, or via the perlmod man page), write a script
that prints out the various values available in Config. NOTE: The Config module
does not automatically import any subroutine names.

Answers
Here are the answers to the Workshop questions in the previous section.

Quiz Answers
1. Packages are used to, well, package sets of global variables in a single unit, such

that those units can be combined without one unit’s variables tromping over another’s.
Packages work best for scripts that are made up of lots of parts that must work in
harmony, or for modules of reusable library code.

2. The full package name for any variable or subroutine consists of the variable symbol
($ for scalars, @ for arrays, % for hashes, & for subroutine calls), the package name,
two colons, and the variable name, for example, $AModule::avariable or
&Amodule::asubroutine().

3. Declaring global variables with my prevents them from being declared in the main
package, which makes them slightly more efficient for value lookup and assignment,
as well as making your script more well-behaved should it ever be incorporated
into a package or combined with other scripts.

16 0355 ch13 5/9/02 2:36 PM Page 349

4. use strict is a special Perl directive that makes sure all the variables in your
script are local variables or assigned to a particular package. At this point in your
Perl knowledge, it’s most useful for catching random global variables and making
sure your scripts are self-contained as far as variable declarations go.

5. Libraries are collections of Perl code intended to be reused. Libraries can use pack-
ages to manage variable names inside that library. A module is a library that uses a
package and has the same filename as that package. Modules include code that
allows that module to be reused easily in other scripts. A pragma is a special kind
of module that affects Perl’s operation during both compile time and runtime.

6. CPAN stands for Comprehensive Perl Archive Network; it’s a collection of user-
contributed modules, scripts, documentation, and utilities for use by anyone pro-
gramming in Perl. CPAN is available at several sites around the world; you can
find a site local to you starting at http://www.cpan.org/.

7. The @INC array defines the directories in which Perl will look for modules and
code imported into your scripts using use.

8. Import a module into your script using use with the name of the module and an
optional list of variables or import tags. Importing a module gives you access to
the variables and subroutines defined by that module.

9. An import tag defines a subset of variables and subroutines in the module to be
imported into your own script. Import tags are defined by the module developer
and documented in the documentation for that module.

10. Subroutines imported from modules can be called just like regular subroutines,
using the name of the subroutine with parentheses surrounding any arguments.

In object-oriented modules, you must create a new object before you can call sub-
routines. With a new object stored in a scalar variable, you’d then call a subroutine
using the $var->sub() syntax, where $var is the name of the variable holding the
object and sub is the name of the subroutine. Subroutines defined inside objects are
called methods.

Exercise Answers
1. The secret is to use a real global, stored in the package main, and then refer to it by

its full package name in the body of the subroutine. Note that this doesn’t work
with global variables defined by my because they do not belong to any package.
#!/usr/local/bin/perl -w

$x = “:”; # separator character (global)
print &splitit(“defenestration”), “\n”;

350 Day 13

16 0355 ch13 5/9/02 2:36 PM Page 350

Scope, Modules, and Importing Code 351

13

sub splitit {
my $string = $_[0];
my $x = ‘’; # new string (global);

$x = join $main::x, (split //,$string);
return $x;

}

2. There’s only one colon in that module name; modules with two names always have
two colons.

3. Changing wrapit.pl is a simple question of modifying the $columns variable. This
variable isn’t imported into your script by default, so you’ll have to explicitly
import it yourself.

#!/usr/local/bin/perl -w
use strict;

use Text::Wrap; # import module defaults
use Text::Wrap qw($columns); # also import $columns
$\ = “”; # Paragraph mode
my $indent = “> “; # indent character

print ‘Enter a width: ‘;
chomp($columns = <STDIN>);

while (<>) {
print wrap($indent, $indent, $_);

}
4. The subroutine myconfig() will do this for you. Because this

subroutine is not imported by default, you’ll have to call it with its full
package name (or import it explicitly):
#!/usr/local/bin/perl -w
use strict;
use Config;

print Config::myconfig();

16 0355 ch13 5/9/02 2:36 PM Page 351

16 0355 ch13 5/9/02 2:36 PM Page 352

DAY 14

WEEK 2

Exploring a Few Longer
Examples

To finish up the week, let’s explore a couple longer, more useful examples that
make use of the techniques you’ve learned so far in the book. We won’t spend a
lot of time on background in this lesson, nor will you have any quizzes or exer-
cises to work through at the end. Consider this a brief pause to look at code in
detail. This is the second of three example lessons, one after each six or so
lessons, to cement what you’ve learned.

Today we’ll look at two longer Perl scripts:

• An address-book script that stores names and addresses in a simple text
database format. Our Perl script will allow you to search for addresses in
the database using simply logical AND and OR tests

• A Web log file analyzer. This script takes the standard Web server log for-
mat (called the common log format) and generates various statistics about
how the Web site is being used.

17 0355 ch14 5/9/02 2:36 PM Page 353

A Searchable Address Book (address.pl)
Our first script today consists of two parts:

• A simple address book file, containing names, addresses, and phone numbers

• A Perl script that prompts you for things to search for, and then prints out any
matching addresses

This script makes use of just about everything you’ve learned so far this week: scalar and
hash data, conditionals, loops, input and output, subroutines, local variables, and pattern
matching. There’s even a function call here and there to make things interesting. And so,
without further ado, let’s dive in.

How It Works
The address.pl script is called with a single argument: the address file, called
address.txt. Call it on the command line as you have other Perl scripts:

% address.pl address.txt

The first thing the address book script does is prompt you for what you want to search:

Search for what? Johnson

The search pattern you give to address.pl can be in several different forms:

• Single words, such as the Johnson in the preceding example.

• Multiple words (John Maggie Alice). Any addresses that match any of those
words will be printed (equivalent to an OR search).

• Multiple words separated by AND or OR (in upper or lowercase). Boolean searches
behave as logical operators do in Perl, and are tested left to right. (Note that AND
searches only make sense when matched inside a single address; they will not
match across multiple addresses the way OR searches will.)

• Multiple words surrounded by quotes (“this that”) are treated as a single search
pattern. Spaces are relevant in this case.

• Pattern-matching characters are accepted and processed as regular expressions
(don’t include the // around the patterns).

So, for example, in my sample address.txt file, the search for the word Johnson
returned this output:

Paul Johnson
212 345 9492
234 33rd St Apt 12C, NY, NY 10023
http://www.foo.org/users/don/paul.html

354 Day 14

17 0355 ch14 5/9/02 2:36 PM Page 354

Exploring a Few Longer Examples 355

14

Alice Johnson
(502) 348 2387
(502) 348 2341

Mary Johnson
(408) 342 0999
(408) 323 2342
mj@asd.net
http://www.mjproductions.com

In generating this sample address file, I made up all names, addresses,
phone numbers, and Web pages. Any similarity between this data and any
persons living or dead is coincidental.

Note

The Address File
The core of the address book (and something you’ll have to generate yourself if you
want to use this script) is a file of addresses in a specific format that Perl can understand.
You could consider this a simple text database, and write Perl scripts to add and delete
records (addresses) to or from that database.

The format of the address book file looks like this, generically:

Name: Name
Phone: number
Fax: number
Address: address
Email: email address
URL: Web URL

For example:

Name: Paul Johnson
Phone: 212 345 9492
Address: 234 33rd St Apt 12C, NY, NY 10023
URL: http://www.foo.org/users/don/paul.html

Each record has a list of fields (Name, Phone, Fax, Address, E-mail, and URL, although
not all of them are required), and ends with three dashes. The field names (Name, Phone,
URL, and so on) are separated from their values with a colon and a space. The values do
not have to be in any specific format. Although you can include other field names in the
database, and search keys will search those extra fields, those fields will be ignored in
the final printed output (but if you had to have an extra field, say, for a pager number,
you could always modify the script. Perl is easy that way).

17 0355 ch14 5/9/02 2:36 PM Page 355

You can have as many addresses in the address.txt file as you like; the larger the
address book, the longer it will take to find matching records, as each address is checked
from start to finish in turn. Unless you have four or five million friends, you probably
won’t notice Perl working very hard.

Inside the Script
The address.pl script reads in the address.txt file, one address at a time, and then
processes the search pattern for each of those addresses. The topmost part of the script is
a while loop that does just this, which in turn works through five other subroutines to
handle more complex parts of the script.

Let’s start with this topmost part of the script. At this top level, we define three global
variables:

• %rec, which will hold the current address record, indexed by field name.

• $search, the search pattern you enter at the prompt.

• $bigmatch, whether a record was found anywhere in the address file that matched
the search pattern (there are also local variables for whether the current record
matches, but we’ll get to those soon enough.

Step one in this outer part of the script is to prompt for the search pattern and store it in
$search:

$search = &getpattern(); # prompt for pattern

The &getpattern() subroutine is the basic “read the input/chomp it/return the result”
code you’ve seen all too often in this book so far:

sub getpattern {
my $in = ‘’; # input
print ‘Search for what? ‘;
chomp($in = <STDIN>);
return $in;

}

Step two in the outer script is an infinite while loop that reads in a record, processes the
search pattern, and prints it if it matches. That while loop looks like this:

while () { # range over address file
my %rec = &read_addr();
if (%rec) { # got a record

&perform_search($search, %rec);
} else { # end of address file, finish up

if (!$bigmatch) {
print “Nothing found.\n”;

} else { print “*********************\n”; }
last; # exit, we’re done

}

356 Day 14

17 0355 ch14 5/9/02 2:36 PM Page 356

Exploring a Few Longer Examples 357

14

Inside the while loop, we call &read_addr() to read in a record, and if a record was
found, we search for it by calling &perform_search(). At the end of the address file, if
the $bigmatch variable is 0, that means no matches were found, and we can print a help-
ful message. At any rate, at the end of the address file, we call last to exit from the loop
and finish the script.

Reading the Address
The &read_addr() subroutine is used to read in an address record. Listing 14.1 shows
the contents of &read_addr().

LISTING 14.1 The &read_addr() Subroutine

sub read_addr {
my %curr = (); # current record
my $key = ‘’; # temp key
my $val = ‘’; # temp value

while (<>) { # stop if we get to EOF
chomp;
if (!/^---/) { # record seperator

($key, $val) = split(/: /,$_,2);
$curr{$key} = $val;

}
else { last; }

}
return %curr;

}

In past examples of using a while loop with <>, we’ve read in and processed the entire
file at once. This while loop is a little different; this one reads chunks of the file, and
stops when it reaches a record separator (in this case, the string ‘---’). I use a regular
expression that matches any lines that don’t begin with ‘---’. The next time the
&read_addr() subroutine is called, the while loop picks up where it left off in the
address file. Perl has no problem with this stopping and restarting the input, and it makes
it particularly convenient for reading and processing sections of a file as we have here.

That said, what this subroutine does is read in a line. If the line does not begin with
‘---’, then it’s the inside of a record, and that line gets split into the field name (Name:,
Phone:, and so on) and the value. The call to the split function in line 9 is where this
takes place; note that the 2 argument at the end of split means we’ll only end up with
two things overall. With the field name ($key) and the value ($val), you can start build-
ing up the hash for this address.

17 0355 ch14 5/9/02 2:36 PM Page 357

If the line that gets read is the end-of-record marker, then the if statement in line 8 drops
to the else part in line 12, and the last command exits the loop. The result of this sub-
routine is a hash containing all the lines in the address, indexed by the field name.

Performing the Search
At this point in the script’s execution, you have a search pattern, stored in the $search
variable, and an address stored in the %rec variable. The next step is to move to the next
part of our big while loop at the top of the script, where if %rec is defined (an address
exists), then we call the &perform_search() subroutine to actually see if the pattern in
$search can be matched to the address in %rec.

The &perform_search() subroutine is shown in Listing 14.2.

LISTING 14.2 The &perform_search() subroutine

sub perform_search {
my ($str, %rec) = @_;
my $matched = 0; # overall match
my $i = 0; # position inside pattern
my $thing = ‘’; # temporary word

my @things = $str =~ /(“[^”]+”|\S+)/g; # split into search items

while ($i <= $#things) {
$thing = $things[$i]; # search item, AND or OR
if ($thing =~ /^or$/i) { # OR case

if (!$matched) { # no match yet, look at next thing
$matched = &isitthere($things[$i+1], %rec);

}
$i += 2; # skip OR and next thing

}
elsif ($thing =~ /^and$/i) { # AND case

if ($matched) { # got a match, need to check other side
$matched = &isitthere($things[$i+1], %rec);

}
$i += 2; # skip AND and next thing

}
elsif (!$matched) { # no match yet

$matched = &isitthere($thing, %rec);
$i++; # next!

}
else { $i++; } # $match is found, move onto next thing

}

if ($matched) { # all keys done, did we match?
$bigmatch = 1; # yes, we found something
print_addr(%rec); # print the record then

}
}

358 Day 14

17 0355 ch14 5/9/02 2:36 PM Page 358

Exploring a Few Longer Examples 359

14

That’s one large subroutine, and quite complex, but it’s not as awful as it looks. Starting
from the top, then, this subroutine takes two arguments: the search pattern and the
address hash. Note that because those values are stored in global variables, it’s not neces-
sary to pass these along into the subroutine via arguments; we could have referred to
those global variables in the body of this subroutine. This strategy, however, makes the
subroutine more self-contained in that the only data it deals with is that which it gets
explicitly. You could, for example, copy and paste this subroutine into another search
script without having to worry about renaming any variables.

The first real operation we do in this subroutine is in line 7, where we split the search
pattern into its component parts. Remember that the search pattern can appear in many
different ways, including nested quoted strings, ANDs and ORs, or just a list of key-
words. Line 7 extracts each element from the search pattern and stores all the search
“things” in the array @things (note that the regular expression has the g option at the
end, and is evaluated in a list context—meaning the @things list will contain all the pos-
sible matches captured by the parentheses. What does that particular pattern match?
There are two groups of patterns, separated by alternation (|). The first is this one:

“[^”]+”

Which, if you remember your patterns, is a double-quote, followed by one or more char-
acters that are not a double-quote, followed by another closing quote. This pattern will
match quoted strings in the search pattern such as “John Smith” or “San Francisco”

and treat them as a single search element. This could also be written as “*+?”, the ques-
tion mark indicating that this is a nongreedy expression (thereby stopping at the first “ it
finds, rather than the final one.

The second part of the pattern is simply one or more characters that are not whitespace
(\S). This part of the pattern matches any single words, such as AND or OR, or single
keywords. Between these two patterns, a long complex pattern such as “San Jose”

OR “San Francisco” AND John will break into the list (“San Jose”, OR, “San

Francisco”, AND, John).

With all our search objects in a list, the hard part is to work through that list, search the
address when necessary, and deal with the logical expressions. This all takes place in the
big while loop that starts in line 9, which keeps a placeholder variable $i for the current
position in the pattern, and loops over the pattern until the end. Throughout the while
loop, the $matched variable keeps track of whether any particular part of the pattern has
matched the record. We start with a 0—false—for no match yet.

17 0355 ch14 5/9/02 2:36 PM Page 359

Inside the while loop, we start in line 10 by setting the variable $thing to the current
part of the pattern we’re examining, just as a shorthand. Then, there are four major tests:

• If the current thing is an OR, then we’re in the middle of two tests, one of which
has already occurred and returned either true or false depending on the value of
$matched. If $matched was true, then the thing on the left side was a match, and
there’s no point to actually trying the thing on the right (yes, it’s a short-circuiting
OR). If the thing on the left didn’t match, the $matched variable will be 0, and we
have to test the thing on the right. That’s what line 13 does; it calls the
&isitthere() subroutine to actually search for a search pattern, giving it an argu-
ment of the right side of the OR (the next thing in the @things array) and the
record itself (%rec).

Whether there was a match or not, this test handles both the OR itself and the pat-
tern on the right of the OR, so we can skip two elements forward in the @things
array. Line 15 increments the $i counter to do just that.

• If the current thing is an AND, we trigger the test in line 17. This section operates
in much the same way as the OR did, with one exception; it short-circuits in the
other way. Remember, given a test x AND y, if x is false then the entire expression
is false. If x is true, you still have to test to see if y is also true. That’s how this test
works; if the $matched variable is true, then the left side of the AND was true, and
we call &isitthere() to test the right side. Otherwise, we do nothing, and in either
case we just skip the AND and the right side of the AND ($i+=2, line 21) and
move on.

• At line 23, we’ve covered ANDs and ORs, so the thing we’re looking at must be an
actual search pattern. It could be a single search pattern, or it could be one of many
search patterns contained in a string. Doesn’t matter; each one can be treated indi-
vidually. But we only need to actually search for it if we haven’t already found a
match (remember, multiple searches are treated as OR tests, so if one matches
we’re all set for the others). So, in line 23, if we haven’t found a match, we search
for that thing using &isitthere().

• The final case covers a $thing that’s an actual search key, and $matched is true.
We don’t need to actually do anything here because the match has already been
made. So, increment the position in the pattern by one and restart the loop.

If you can follow all of that, you’ve made it through the hardest part of this script, by far.
If it’s still confusing you, try working through various search patterns, with single search
elements, elements separated with ANDs and ORs, and patterns with multiple search
keys. Watch the values of $i and $matched as the loop progresses (when you learn how
to use the Perl debugger, this will be easy, but you can do it on paper by hand as well).

360 Day 14

17 0355 ch14 5/9/02 2:36 PM Page 360

Exploring a Few Longer Examples 361

14

So what happens in the mysterious &isitthere() subroutine that gets called throughout
that big while loop? That’s where the actual searching takes place, given a pattern and
the record. I’m not going to show you the contents of &isitthere() itself (you can see it
in the full code printout in Listing 14.3), other than to note that it simply loops through
the contents of the address hash and compares the pattern to each line using a regular
expression. If it matches, the subroutine returns 1, and returns 0 if it doesn’t match.

In the last part of the subroutine, all the parts of the pattern have been read, some amount
of searching has taken place, and now we know whether the pattern matched the record
or not. In lines 30 through 33, we test to see if a match was made, and if it was we set
the $bigmatch variable (we found at least one address that matched), and call
&print_addr() to print the actual address.

Printing the Record
It’s all downhill from here. The last subroutine in the file is one that’s only called if a
match was made. The &print_addr() subroutine simply loops over the record hash and
prints out the values to display the address record:

sub print_addr {
my %record = @_;
print “*********************\n”;
foreach my $key (qw(Name Phone Fax Address Email URL)) {

if (defined($record{$key})) {
print “$record{$key}\n”;

}
}

}

The only interesting part of this subroutine is the list of keys in the foreach loop. I’ve
listed the specific keys here in this order (and quoted them using the qw function) so that
the output will print in a specific order. The keys in a hash are not stored in any reliable
order, so I have to take measures like this one. It also lets us print only the lines that
were actually available—the call to defined inside the foreach loop makes sure that
only those fields that existed in the record get printed.

The Code
Got it? No? Sometimes seeing all the code at once can help. Listing 14.3 shows the full
code for address.pl. If you’ve downloaded the source from this book’s Web site at
http://www.typerl.com, the code there has many more comments to help you figure out
what’s going on.

17 0355 ch14 5/9/02 2:36 PM Page 361

LISTING 14.3 The Code for address.pl

1: #!/usr/bin/perl -w
2: use strict;
3:
4: my $bigmatch = 0; # was anything found?
5: my $search = ‘’; # thing to search for
6:
7: $search = &getpattern(); # prompt for pattern
8:
9: while () { # range over address file
10: my %rec = &read_addr();
11: if (%rec) { # got a record
12: &perform_search($search, %rec);
13: } else { # end of address file, finish up
14: if (!$bigmatch) {
15: print “Nothing found.\n”;
16: } else { print “*********************\n”; }
17: last; # exit, we’re done
18: }
19: }
20:
21: sub getpattern {
22: my $in = ‘’; # input
23: print ‘Search for what? ‘;
24: chomp($in = <STDIN>);
25: return $in;
26: }
27:
28: sub read_addr {
29: my %curr = (); # current record
30: my $key = ‘’; # temp key
31: my $val = ‘’; # temp value
32:
33: while (<>) { # stop if we get to EOF
34: chomp;
35: if (!/^---/) { # record seperator
36: ($key, $val) = split(/: /,$_,2);
37: $curr{$key} = $val;
38: }
39: else { last; }

362 Day 14

As I mentioned yesterday in the section on my variables, some versions of
Perl might have difficulties with this script’s use of my variables and foreach
loops. To get around this problem, simply predeclare the foreach variable
before using it, like this:

my $key = 0;
foreach $key (qw(Name Phone Fax Address Email URL)) { ...

Note

17 0355 ch14 5/9/02 2:36 PM Page 362

Exploring a Few Longer Examples 363

14

LISTING 14.3 continued

40: }
41: return %curr;
42: }
43:
44: sub perform_search {
45: my ($str, %rec) = @_;
46: my $matched = 0; # overall match
47: my $i = 0; # position inside pattern
48: my $thing = ‘’; # temporary word
49:
50: my @things = $str =~ /(“[^”]+”|\S+)/g; # split into search items
51:
52: while ($i <= $#things) {
53: $thing = $things[$i]; # search item, AND or OR
54: if ($thing =~ /^or$/i) { # OR case
55: if (!$matched) { # no match yet, look at next thing
56: $matched = &isitthere($things[$i+1], %rec);
57: }
58: $i += 2; # skip OR and next thing
59: }
60: elsif ($thing =~ /^and$/i) { # AND case
61: if ($matched) { # got a match, need to check other side
62: $matched = &isitthere($things[$i+1], %rec);
63: }
64: $i += 2; # skip AND and next thing
65: }
66: elsif (!$matched) { # no match yet
67: $matched = &isitthere($thing, %rec);
68: $i++; # next!
69: }
70: else { $i++; } # $match is found, move onto next thing
71: }
72:
73: if ($matched) { # all keys done, did we match?
74: $bigmatch = 1; # yes, we found something
75: print_addr(%rec); # print the record then
76: }
77: }
78:
79: sub isitthere { # simple test
80: my ($pat, %rec) = @_;
81: foreach my $line (values %rec) {
82: if ($line =~ /$pat/) {
83: return 1;
84: }
85: }
86: return 0;
87: }
88:

17 0355 ch14 5/9/02 2:36 PM Page 363

LISTING 14.3 continued

89: sub print_addr {
90: my %record = @_;
91: print “*********************\n”;
92: foreach my $key (qw(Name Phone Fax Address Email URL)) {
93: if (defined($record{$key})) {
94: print “$record{$key}\n”;
95: }
96: }
97: }

A Web Log Processor (weblog.pl)
The second example script is one that takes a log file, as generated by Web servers, and
generates statistics about the information contained in that log file. Most Web servers
keep files of this sort, which keep track of how many accesses (“hits”) have been made
to a Web site, the files that were requested, the sites that requested them, and other infor-
mation.

Many log file-analyzer programs already exist on the Web (and there are usually pro-
grams that come with the Web server), so this example isn’t breaking any new ground.
The statistics it generates are fairly simple, although this script could be easily modified
to include just about any information that you’d like to include. It’s a good starting point
for processing Web logs, or a model to follow for processing log files from any other
programs.

How It Works
The weblog.pl script is called with one argument: a log file. On many Web servers, these
files are commonly called access_log, and follow what is known as the common log for-
mat. The script processes for a while (it’ll print the date of the logs it’s working on so you
know it’s still working), and then prints some results. Here’s an example of the sort of
output you can get (this example is from the logs on my own Web server, www.lne.com):

% weblog.pl access_log
Processing log....
Processing 09/Apr/1998
Processing 10/Apr/1998
Processing 11/Apr/1998
Processing 12/Apr/1998
Web log file Results:
Total Number of Hits: 55789
Total failed hits: 1803 (3.23%)
(sucessful) HTML files: 18264 (33.83%)
Number of unique hosts: 5911
Number of unique domains: 2121

364 Day 14

17 0355 ch14 5/9/02 2:36 PM Page 364

Exploring a Few Longer Examples 365

14

Most popular files:
/Web/index.html (2456 hits)
/lemay/index.html (1711 hits)
/Web/Title.gif (1685 hits)
/Web/HTML3.2/3.2thm.gif (1669 hits)
/Web/JavaProf/javaprof_thm.gif (1662 hits)

Most popular hosts:
202.185.174.4 (487 hits)
vader.integrinautics.com (440 hits)
linea15.secsa.podernet.com.mx (437 hits)
lobby.itmin.com (284 hits)
pyx.net (256 hits)

Most popular domains:
mindspring.com (3160 hits)
aol.com (1808 hits)
uu.net (792 hits)
grid.net (684 hits)
compuserve.com (565 hits)

This particular output shows only the top 5 files, hosts, and domains, to save space here.
You can configure the script to print out any number of those statistics.

The difference between a host and a domain might not be readily apparent; a host is the
full host name of the system that accessed the Web server, which might include dynami-
cally assigned addresses and proxy servers. The host dialup124.servers.foo.com will
be a different host from dialup567.servers.foo.com. The domain, on the other hand, is
a larger group of hosts, usually consisting of two or three parts. foo.com is a domain, as
is aol.com or demon.co.uk. The domain listings tend to collapse separate entries for
hosts into major groups—all the hosts under aol.com’s purview will show up as hits
from aol.com in the domain list.

Note also that a single hit can be an HTML page, an image, a form submission, or any
other file. There are usually significantly more raw hits than there are actual page
accesses. This script points those out by keeping track of HTML hits separately from the
total number of hits.

What a Web Log Looks Like
Because the weblog.pl script processes Web log files, it helps to know what those log
files look like. Web log files are stored with one hit per line, and each line in what’s
called common log format (common because it’s common to various Web servers). Most
Web servers generate their log files in this format, or can be configured to do so (many
servers use a superset of the common log format with more information in it). A line in a
common log format log file might look something like this (here I’m showing it to you
on two lines; actually, it only appears on one in real life):

proxy2bh.powerup.com.au - - [03/Apr/1998:00:09:02 -0800]
“GET /lemay/ HTTP/1.0” 200 4621

17 0355 ch14 5/9/02 2:36 PM Page 365

The various elements of each line in the log file are

• The host name accessing the server (here proxy2bh.powerup.com.au).

• The username of the person accessing the page discovered through ident (a Unix
program used to identify users), or through the user signing into your site. These
two parts usually show up as two dashes (- -) when the username cannot be deter-
mined.

• The date and time the hit was made, in square brackets.

• Inside quotes, the action for the hit (actually a Web server action): GET is to get a
file or submit a form, POST is to submit a form in a different way, HEAD is to get
header information about a file.

• After the action, the filename (or directory) that was requested, here /lemay/.

• The version number of the protocol, here HTTP/1.0.

• The return code for the hit; 200 is successful, 404 is “not found,” and so on.

• The number of bytes transferred.

Not all these elements of the log file are interesting to a statistics generator script, of
course, and a lot of them won’t make any sense to you unless you know how Web
servers work. But a few, such as the host, the date, the filename, and the return code, can
be extracted and processed for each line of the file.

Building the Script
The path of execution for this script is easier to follow than the one for the address.pl
script; there are basically only two major steps—process the log and generate the statis-
tics. We do have a number of subroutines along the way to help, however.

In fact, all of the code for this script is contained in subroutines. The body of the code
consists of a bunch of global variables and two subroutine calls: &process_log() and
&print_results().

The global variables are used to store the various statistics and information about parts of
the log file. Because many of these statistics are hashes, using local variables and passing
around the data would become complicated. In this case, keeping the data global makes
it easier to manage. The global data we keep track of includes

• The number of hits, number of failed hits, and number of hits to HTML pages

• A hash to store the various host names, and the number of times those hosts appear
in the log

• A hash to do the same for the various files in the log

366 Day 14

17 0355 ch14 5/9/02 2:36 PM Page 366

Exploring a Few Longer Examples 367

14

In addition, two other global variables are worth mentioning:

• The $topthings variable stores a number indicating how many entries you want to
print for the “most popular” parts of the statistics. In the example output I showed
you, $topthings was set to 5, which gives us some nice short output. Setting it to
20 will print the top 20 files, hosts, and domains.

• The $default variable should be set to the default HTML file for your Web server,
often called index.html or home.html. This is the file that serves as the main file
for a directory when the user doesn’t ask for a specific file. Usually it’s
index.html.

These two variables determine how the script itself will behave. Although we could have
put these variables deep inside the program, putting them up here, right up front, enables
you or someone else using your script to change the overall behavior of the script in one
place without having to search for the right variable to change. It’s one of those “good
programming practices” that make sense, no matter which programming language you’re
using.

Processing the Log
The first part of the weblog.pl script is the &process_log() subroutine, which loops
over each line in the script, and stores various statistics about that line. I’m not going to
show you every line of this subroutine, but I will point out the important parts. You can
see the complete code in Listing 14.7 at the end of this section.

The core of the &process_log() subroutine is yet another while (<>) loop, to read each
line of the input at a time. Unlike address.pl, this script doesn’t pause anywhere; it just
reads in the file from start to finish.

The first thing we do to process each line is to split the line into its component parts and
store those parts in a hash keyed by the part name (‘site’, ‘file’, and so on). There’s a
separate subroutine to do the splitting, called &splitline(). Listing 14.4 shows this sub-
routine.

LISTING 14.4 The &splitline() Subroutine

1: sub splitline {
2: my $in = $_[0];
3: my %line = ();
4: if ($in =~ /^([^\s]+)\s # site
5: ([\w-]+\s[\w-]+)\s # users
6: \[([^\]]+)\]\s # date
7: \”(\w+)\s # protocol
8: (\/[^\s]*)\s # file
9: ([^”]+)\”\s # HTTP version

17 0355 ch14 5/9/02 2:37 PM Page 367

LISTING 14.4 continued

10: (\d{3})\s # return code
11: ([\d-]+) # bytes transferred
12: /x) {
13: $line{‘site’} = $1;
14: $line{‘date’} = $3;
15: $line{‘file’} = $5;
16: $line{‘code’} = $7;
17: return %line;
18: } else { return (); }
19: }

The first thing that probably catches your eye about that subroutine is that enormous
monster of a regular expression smack in the middle (lines 4 through 11). It’s so ugly it
needs six lines! And comments! This regular expression is in a form called extended reg-
ular expressions; if you read the “Going Deeper” section on Day 5, “Working with
Hashes,” I described these there. But here’s a quick review: Say you have a particularly
ugly regular expression like the one in this example (here I’ve put it on two lines because
it doesn’t fit on one line!):

if ($in =~ /^([^\s]+)\s([\w-]+\s[\w-]+)\s\[([^\]]+)\]\s\”(\w+)
\(\/[^\s]*)\s([^”]+)\”\s(\d{3})\s([\d-]+)/)

Chances are good you won’t be able to make heads or tails of that expression without a
lot of patient dissecting or very strong tranquilizers. And debugging it won’t be much fun
either. But if you put the /x option on the end of the expression (as we have in line 12),
then you can spread that regular expression apart into sections or onto separate lines, and
comment it as you would lines of Perl code. All whitespace in the pattern is ignored; if
you want to match for whitespace in the text, you’ll have to use \s. All the /x option
does is make a regular expression easier to read and debug.

This particular regex assumes the common log format I described earlier. Specifically:

• Line 4 matches the site (host) name. The site always appears at the start of the line,
and consists of some nonwhitespace characters followed by a space (a \s here so
that extended patterns work).

• Line 5 matches the user fields (two of them). The users consist of one or more
alphanumeric characters or a dash separated by and followed by whitespace. Note
the dashes inside the character classes; the \w class does not include dashes.

• Line 6 matches the date, which is one or more characters or whitespace in between
brackets ([]).

• Line 7 matches the protocol (GET, HEAD, and so on), by starting the string with a
quote and following it by one or more characters (the closing quote is after the
HTTP version in line 9).

368 Day 14

17 0355 ch14 5/9/02 2:37 PM Page 368

Exploring a Few Longer Examples 369

14

• Line 8 matches the file. It always starts with a slash (/), followed by zero or more
other characters and ending with whitespace.

• Line 9 matches the HTTP version, which includes any remaining characters before
the closing quote.

• Line 10 matches the return code, which is always three digits long followed by
whitespace (it would be less specific to just use \d+ here, but this is a chance to
show off the use of the {3} pattern.

• Line 11 finishes up the pattern with the number of bytes transferred, which is any
number of digits. If no bytes were transferred—for example, the hit resulted in an
error—this field will be a dash. The pattern covers that as well.

Each element of this regex is stored in a parenthesized expression (and a match variable),
with the extra brackets or quotes removed. After the match has occurred, we can put the
various matched bits into a hash. Note that we only use about half of the actual matches
in the hash; we only need to store what we’re actually going to use. But if you extend
this example to include statistics on other parts of the hit, all you have to do is add lines
to add those matches to the hash. You don’t have to muck with the regular expression to
get more information.

With the line split into its component parts, we return from the &splitline() subroutine
back up to the main &process_log() routine. The next part of this subroutine checks for
failed hits. If a line in the Web log didn’t match the pattern—and some don’t—then the
&splitline() subroutine will return null. That’s considered a failed hit, so we add it to
the count of failed hits, and then skip to the end of the loop to process the next line:

if (!%hit) { # malformed line in web log
$failhits++;
next;

}

The next part of the script is a convenience for the person running the script. Processing
a log file of any size takes a long time, and sometimes it can be hard to tell whether Perl
is still working on the log file, or if the system has hung and it’s never going to return
anything. This part of the script prints a processing message with the date of the lines
being processed, printing a new message each time a day’s hits are complete and show-
ing Perl’s progress through the file:

$dateshort = &getday($hit{‘date’});
if ($currdate ne $dateshort) {

print “Processing $dateshort\n”;
$currdate = $dateshort;

}

17 0355 ch14 5/9/02 2:37 PM Page 369

Here, the subroutine &getday() is simply a short routine that grabs the month and the
day out of the date field using a pattern so they can be compared to the date being
processed (I’m not going to show you &getday(); you can see it in the full code if you’re
curious). If they’re different, a message is printed and the $currdate variable is updated.

In addition to lines in the log file that don’t match the log format, also considered failed
hits are those that matched the pattern, but didn’t result in an actual file being returned
(misspellings in URLs or files that have moved will cause these kinds of hits, for exam-
ple). These hits are recorded in the log with error codes that start with 4, for example, the
404 you’ve probably seen on the Web. The return code was one of the things we saved
from the line, so testing that is a simple pattern match:

if ($hit{‘code’} =~ /^4/) { # 404, 403, etc. (errors)
$failhits++;

The else part of this if test handles all other hits—that is, the successful ones that actu-
ally returned HTML files or images. Those hits will have return codes of 200 or 304:

} elsif ($hit{‘code’} =~ /200|302|304/) { # deal only with successes

Web servers are set up to deliver a default file, usually index.html, when a site requests
a URL that ends in a directory name. This means that a request for /web/ and a request
for /web/index.html actually refer to the same file, but they show up as different entries
in the log file, which means our script will process them as different files. To collapse
directories and default files, we have a couple of lines that test to see if the file requested
ends with a slash, and if so, to add the default filename on the end of it. The default file,
as I noted earlier, is defined by the $default variable:

if ($hit{‘file’} =~ /\/$/) { # slashes map to $default
$hit{‘file’} .= $default;

}

With that done, now we can finish up the processing by incrementing the $htmlhits
variable if the file is an HTML file and updating the hashes for the site and for the file:

if ($hit{‘file’} =~ /\.html?$/) { # .htm or .html
$htmlhits++;

}

$hosts{ $hit{‘site’} }++;
$files{ $hit{‘file’} }++;

At this point, we’re now at the end of the while loop, and the loop starts over again with
the next line in the file. The loop continues until all the lines are processed, and then we
move onto the printing part of the script.

370 Day 14

17 0355 ch14 5/9/02 2:37 PM Page 370

Exploring a Few Longer Examples 371

14

Printing the Results
The &process_log() subroutine processes the log file line by line, and calls the
&splitline() and &getday() subroutines to help. The second part of the weblog.pl
script is the &print_results() subroutine, and it has a few other subroutines to help it
as well. Much of print_results(), however, is as it sounds: a bunch of print state-
ments to print out the various statistics.

First, the script checks to make sure that the log file wasn’t empty (using the $totalhits
variable). If the file was empty, then the script prints an error message and exits. The
next few lines print out the total number of hits, total number of failed hits, and total
number of HTML hits. The latter are also shown as a percentage of total hits, with
HTML hits a total of successful hits. We can get these values with a little math and a
printf:

print “Web log file Results:\n”;
print “Total Number of Hits: $totalhits\n”;
print “Total failed hits: $failhits (“;
printf(‘%.2f’, $failhits / $totalhits * 100);
print “%)\n”;
print “(sucessful) HTML files: $htmlhits (“;
printf(‘%.2f’, $htmlhits / ($totalhits - $failhits) * 100);
print “%)\n”;

Next up: total number of hosts. We can get this value by extracting the keys of the
%hosts hash into a list, and then evaluate that list in a scalar context (using the scalar
function):

print ‘Number of unique hosts: ‘;
print scalar(keys %hosts);
print “\n”;

To get the number of unique domains, we need to process the %hosts hash to compress
the hosts into their smaller domains, and build a new hash (%domains) that has the new
count of all the hits for each domain. We’ll use a subroutine called &getdomains() for
that, which I’ll discuss in the next section; assume we’ve done it, that we have our
domains %hash. We can do the same scalar trick with the keys to that hash to get the
number of unique domains:

my %domains = &getdomains(keys %hosts);
print ‘Number of unique domains: ‘;
print scalar(keys %domains);
print “\n”;

The last three things that get printed are the most popular files, hosts, and domains.
There’s a subroutine to get these values as well, called &gettop(), which sorts each hash
by its values (the number of times each thing appeared in a hit), and then builds an array

17 0355 ch14 5/9/02 2:37 PM Page 371

of descriptive strings with the keys and values in the hash. The array will contain only
the top five or ten things (or whatever the value of $topthings is). More about the
&gettop() subroutine in a bit.

Each of those arrays gets printed to the output to finish up. Here’s the one for files:

print “Most popular files: \n”;
foreach my $file (&gettop(%files)) {

print “ $file\n”;
}

The &getdomains() Subroutine
We’re not done yet. We still have to cover the helper subroutines for printing the statis-
tics: &getdomains(), to extract the domains from the %hosts hash and recalculate the
stats, and gettop(), to take a hash of keys and frequencies and return the most popular
elements. The &getdomains() subroutine is shown in Listing 14.5.

LISTING 14.5 The &getdomains() Subroutine

1: sub getdomains {
2: my %domains = ();
3: my ($sd,$d,$tld); # secondary domain, domain, top-level domain
4: foreach my $host (@_) {
5: my $dom = ‘’;
6: if($host =~ /(([^.]+)\.)?([^.]+)\.([^.]+)$/) {
7: if (!defined($1)) { # only two domains (i.e. aol.com)
8: ($d,$tld) = ($3, $4);
9: } else { # a usual domain x.y.com etc
10: ($sd, $d, $tld) = ($2, $3, $4);
11: }
12: if ($tld =~ /\D+/) { # ignore raw IPs
13: if ($tld =~ /com|edu|net|gov|mil|org$/i) { # US TLDs
14: $dom = “$d.$tld”;
15: } else { $dom = “$sd.$d.$tld”; }
16: $domains{$dom} += $hosts{$host};
17: }
18: } else { print “Malformed: $host\n”; }
19: }
20: return %domains;
21: }

This is less complex than it looks. A few basic assumptions are made about the makeup
of a host name: in particular, that each host name has a number of parts separated by
periods, and that the domain consists of either the right-most two or three parts, depend-
ing on the name itself. In this subroutine, then, we’ll reduce each host into its actual
domain, and then use that domain name as the index to a new hash, storing all the origi-
nal hits from the full hosts into the new domain-based hash.

372 Day 14

17 0355 ch14 5/9/02 2:37 PM Page 372

Exploring a Few Longer Examples 373

14

The core of this subroutine is the foreach loop starting in line 4. The argument that gets
passed to this subroutine is an array of all the host names from the %hosts array, and
we’ll loop over each host name in turn to make sure we covered them all.

The first part of that foreach loop is the long scary-looking regular expression in line 6.
All this pattern does is grab the last two parts of the host name, and the last three if it can
(some host names only have two parts; this regex will handle those, too). Lines 7 through
11 then check to see how many parts we got (2 or 3), and assign the variables $sd, $d,
and $tld to those parts ($sd stands for secondary domain, $d stands for domain, and
$tld stands for top-level domain, if you want to keep them straight).

The second part of the loop determines whether we’ll use two or three parts of the host
as the actual domain (and ignores any hosts made up of IP numbers rather than actual
domain names in line 12). The purely arbitrary rule I used for determining whether a
domain has two or three parts is this: If the top-level domain (that is, the right-most part
of the host name) is a US domain such as .com, .edu, and so on (full list in line 13), then
the domain only has two parts. This covers aol.com, mit.edu, whitehouse.gov, and so
on. If the top-level domain is anything else, it’s probably a country-specific domain such
as .uk, .au, .mx, and so on. Those domains typically use three parts to refer to a site, for
example, citygate.co.uk or monash.edu.au. Two parts would not be enough granular-
ity (edu.au refers to all universities in Australia, not to a specific place called edu).

This is what lines 13 through 15 deal with; building up the domain name from two or
three parts and storing it in the string $dom. After we’ve built the domain name, we can
then use it as the key in the new hash, and bring over the hits we had for the original host
in line 16. By the time the domain hash is done, all the hits in the host’s hash should be
accounted for in the domain’s hash as well, and we can return that hash back to the
print_results subroutine.

One last bit: line 28 is a bit of error checking for this subroutine. If the pattern matching
expression in 6 doesn’t match, then we’ve got a very weird host name indeed, and we’ll
print a message to that effect. Generally speaking, however, that message should never be
reached because a malformed host name in the log file usually means a malformed host
name on the host itself, and the Internet makes that difficult to do.

The &gettop() Subroutine
One last subroutine to cover, and then we can put this week to bed and you can go have a
beer and celebrate finishing two thirds of this book. This last subroutine, &gettop(),
takes a hash, sorts it by value, and then trims off the top X elements, where X is deter-
mined by the $topthings variable. The subroutine returns an array of strings, where each
string contains the key and value for the top X elements in form that can be easily printed
by the &print_results() subroutine that called this one in the first place. Listing 14.6
shows this subroutine.

17 0355 ch14 5/9/02 2:37 PM Page 373

LISTING 14.6 The &gettop() Subroutine

1: sub gettop {
2: my %hash = @_;
3: my $i = 1;
4: my @topkeys = ();
5: foreach my $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
6: if ($i <= $topthings) {
7: push @topkeys, “$key ($hash{$key} hits)”;
8: $i++;
9: }
10: }
11: return @topkeys;
12: }

The Code
Listing 14.7 contains the complete code for the weblog.pl script.

374 Day 14

Once again, watch out for the my variables inside foreach loops in certain
versions of Perl. See the note just before Listing 14.3 for details.

Note

LISTING 14.7 The Code for weblog.pl

1: #!/usr/bin/perl -w
2: use strict;
3:
4: my $default = ‘index.html’; # change to be your default HTML file
5: my $topthings = 30; # number of files, sites, etc to report
6: my $totalhits = 0;
7: my $failhits = 0;
8: my $htmlhits = 0;
9: my %hosts= ();
10: my %files = ();
11:
12: &process_log();
13: &print_results();
14:
15: sub process_log {
16: my %hit = ();
17: my $currdate = ‘’;
18: my $dateshort = ‘’;
19: print “Processing log....\n”;
20: while (<>) {
21: chomp;
22: %hit = splitline($_);
23: $totalhits++;

17 0355 ch14 5/9/02 2:37 PM Page 374

Exploring a Few Longer Examples 375

14

LISTING 14.7 continued

24:
25: # watch out for malformed lines
26: if (!%hit) { # malformed line in web log
27: $failhits++;
28: next;
29: }
30:
31: $dateshort = &getday($hit{‘date’});
32: if ($currdate ne $dateshort) {
33: print “Processing $dateshort\n”;
34: $currdate = $dateshort;
35: }
36:
37: # watch 404s
38: if ($hit{‘code’} =~ /^4/) { # 404, 403, etc. (errors)
39: $failhits++;
40: # other files
41: } elsif ($hit{‘code’} =~ /200|304/) { # deal only with sucesses
42: if ($hit{‘file’} =~ /\/$/) { # slashes map to $default
43: $hit{‘file’} .= $default;
44: }
45:
46: if ($hit{‘file’} =~ /\.html?$/) { # .htm or .html
47: $htmlhits++;
48: }
49:
50: $hosts{ $hit{‘site’} }++;
51: $files{ $hit{‘file’} }++;
52: }
53: }
54: }
55:
56: sub splitline {
57: my $in = $_[0];
58: my %line = ();
59: if ($in =~ /^([^\s]+)\s # site
60: ([\w-]+\s[\w-]+)\s # users
61: \[([^\]]+)\]\s # date
62: \”(\w+)\s # protocol
63: (\/[^\s]*)\s # file
64: ([^”]+)\”\s # HTTP version
65: (\d{3})\s # return code
66: ([\d-]+) # bytes transferred
67: /x) {
68: # we only care about some of the values
69: # (every other one, coincidentally)
70: $line{‘site’} = $1;
71: $line{‘date’} = $3;
72: $line{‘file’} = $5;
73: $line{‘code’} = $7;

17 0355 ch14 5/9/02 2:37 PM Page 375

LISTING 14.7 continued

74: return %line;
75: } else { return (); }
76: }
77:
78: sub getday {
79: my $date;
80: if ($_[0] =~ /([^:]+):/) {
81: $date = $1;
82: return $date;
83: } else {
84: return $_[0];
85: }
86: }
87:
88: sub print_results {
89: if ($totalhits == 0) {
90: print “The log file is empty.\n”;
91: exit;
92: }
93:
94: print “Web log file Results:\n”;
95: print “Total Number of Hits: $totalhits\n”;
96: print “Total failed hits: $failhits (“;
97: printf(‘%.2f’, $failhits / $totalhits * 100);
98: print “%)\n”;
99:
100: print “(sucessful) HTML files: $htmlhits (“;
101: printf(‘%.2f’, $htmlhits / ($totalhits - $failhits) * 100);
102: print “%)\n”;
103:
104: print ‘Number of unique hosts: ‘;
105: print scalar(keys %hosts);
106: print “\n”;
107:
108: my %domains = &getdomains(keys %hosts);
109: print ‘Number of unique domains: ‘;
110: print scalar(keys %domains);
111: print “\n”;
112:
113: print “Most popular files: \n”;
114: foreach my $file (&gettop(%files)) {
115: print “ $file\n”;
116: }
117: print “Most popular hosts: \n”;
118: foreach my $host (&gettop(%hosts)) {
119: print “ $host\n”;
120: }
121:
122: print “Most popular domains: \n”;

376 Day 14

17 0355 ch14 5/9/02 2:37 PM Page 376

Exploring a Few Longer Examples 377

14

LISTING 14.7 continued

123: foreach my $dom (&gettop(%domains)) {
124: print “ $dom\n”;
125: }
126: }
127:
128: sub getdomains {
129: my %domains = ();
130: my ($sd,$d,$tld); # secondary domain, domain, top-level domain
131: foreach my $host (@_) {
132: my $dom = ‘’;
133: if($host =~ /(([^.]+)\.)?([^.]+)\.([^.]+)$/) {
134: if (!defined($1)) { # only two domains (i.e. aol.com)
135: ($d,$tld) = ($3, $4);
136: } else { # a usual domain x.y.com etc
137: ($sd, $d, $tld) = ($2, $3, $4);
138: }
139: if ($tld =~ /\D+/) { # ignore raw IPs
140: if ($tld =~ /com|edu|net|gov|mil|org$/i) { # US TLDs
141: $dom = “$d.$tld”;
142: } else { $dom = “$sd.$d.$tld”; }
143: $domains{$dom} += $hosts{$host};
144: }
145: } else { print “Malformed: $host\n”; }
146: }
147: return %domains;
148: }
149:
150: sub gettop {
151: my %hash = @_;
152: my $i = 1;
153: my @topkeys = ();
154: foreach my $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
155: if ($i <= $topthings) {
156: push @topkeys, “$key ($hash{$key} hits)”;
157: $i++;
158: }
159: }
160: return @topkeys;
161: }

Summary
Often programming books give you a lot of wordy background, but don’t give you
enough actual code examples for how to do stuff. Although I won’t claim that this book
shirks on the wordy background (you may snicker now), these example sections offer
you some longer bits of code that accomplish real things and show how a real-world
script is put together.

17 0355 ch14 5/9/02 2:37 PM Page 377

In today’s lesson, we explored two longer scripts. The first is a simple searchable address
file, which used a text-based database of names and addresses. The script to process that
file enabled you to process a reasonably complex search pattern, including nesting logi-
cal expressions and grouping words and phrases via quotes. You could extend this exam-
ple to cover just about any situation that calls for a complex search over parts of a data
file; for example, to filter mail messages out of a mail folder based on some criteria, or
to search for specific comic books in a collection of comics. Any text file can serve as a
simple database, and this script can search it as long as it’s modified to handle the data in
that database.

The second example was a log file analyzer that processes Web log files and prints statis-
tics about those files. Raw Web log files tend to be sort of daunting to look at; this script
provided some basic summary information about what’s actually going on with the Web
site. Along the way, it used some complex regular expressions and a whole lot of hashes
to store the raw data. You could extend this example to generate other statistics (for
example, to generate histograms of the number of hits per day or per hour, or to keep
track of image or other files in addition to HTML files). Or, you could modify it to cover
other log files (mail logs, FTP logs, whatever logs you have lying around).

Congratulations on completing the second week of this three-week book. After this
week, you’ve picked up a substantial part of the language, and you should be able to
accomplish quite a few tasks in Perl. From this point on we’ll be building on what
you’ve already learned. Onward to Week 3!

378 Day 14

17 0355 ch14 5/9/02 2:37 PM Page 378

Advanced Perl
Day 15 Working with Files and I/O

Day 16 Using Perl for CGI Scripting

Day 17 Managing Files and Directories

Day 18 Perl and the Operating System

Day 19 Working with References

Day 20 Odds and Ends

Day 21 Exploring a Few Longer Examples

WEEK 3 15

16

17

18

19

20

21

18 0355 part03 5/9/02 2:37 PM Page 379

18 0355 part03 5/9/02 2:37 PM Page 380

DAY 15

WEEK 3

Working with Files and I/O
Throughout the first two weeks of this book, I introduced you to input and output
(otherwise known as I/O) a little at a time. You’ve learned about standard input
and output using <STDIN> and print, and about file input using the command
line, the <> operator, and a while loop to automatically assign each line to the
$_ variable.

In today’s lesson, we’ll expand on what you already know about input and out-
put in greater detail, as well as touch more on script argument lists and getting
data and options into your script. Today, we’ll explore

• All about file handles: creating them, reading input from them, writing
output to them

• Simple file tests for finding out information about a particular file

• Working with script arguments and @ARGV

• Using the Getopt module for managing switches

19 0355 ch15 5/9/02 2:37 PM Page 381

Input and Output with File Handles
Way back on Day 2, “Working with Strings and Numbers,” you learned just a bit about
file handles, as part of the information on standard input and output. At that time, I ex-
plained that STDIN and STDOUT are a special kind of file handle that refer to nonfile-based
input and output streams—the keyboard and the screen, for example. And, conveniently,
much of what you’ve learned already is going to apply just as well to file handles that
refer to actual files.

In this section, you’ll learn how to tame the wily file handles: creating them with the open
function, reading from them, writing or appending to them, and closing them when you’re
done. Along the way, we’ll review what you’ve learned so far about input and output.

Creating File Handles with open
To read input from a source, or to write output to a destination, you need to use a file han-
dle. A file handle is commonly associated with a specific file on a disk that you’re reading
or writing from. It can also refer to a network connection (a socket), to a pipe (a sort of
connection between standard output and standard input we’ll look at on Day 18, “Perl
and the Operating System”), or even to and from a specific hardware device. The file handle
simply just makes all those things consistent so you can do the same things regardless of
where the data is coming from or going to.

Perl provides three default file handles, two of which you’ve already seen: STDIN, STDOUT
and STDERR. The first two are for standard input and output (the keyboard and the screen,
typically). STDERR is the standard error, and is used for error messages and other asides
that aren’t part of the actual script output. You’ll commonly see STDERR messages printed
to the screen just like STDOUT; it’s only programs that specifically make use of standard
output (programs on the other side of pipes in Unix, for example) that will notice the dif-
ference.

You don’t have to do anything to open or initialize these file handles; you can just go
ahead and use them (as we have been throughout last week’s lessons).

To read from or write to a file, you must first create a file handle for that operation with
the open function. The open function opens a file for reading (input) or for writing (output),
and associates a file handle name of your choosing to that file. Note that reading from and
writing to a file are separate operations, and you’ll need a file handle for each one.

The open function takes two arguments: the name of a file handle, and the file to open
(which includes a special code indicating opening the file for reading or writing). Here
are a few examples:

382 Day 15

19 0355 ch15 5/9/02 2:37 PM Page 382

Working with Files and I/O 383

15
open(FILE, ‘myfile’);

open(CONFIG, ‘.scriptconfig’);

open(LOG, ‘>/home/www/logfile’);

The name of the file handle is anything you want it to be. File handles are, by convention,
all uppercase, and contain letters, numbers, or underscores. Unlike variables, they must
start with a letter.

The second argument is the name of the file on the disk that will be attached to your file
handle. A plain filename with no path information will be read from the current directory
(either the one your script is being run from, or from some other directory if you’ve changed
it). You learn more about navigating directories on Day 17, “Managing Files and
Directories.”

If you’re going to use path names other than single files, be careful—the path notation
varies from platform to platform. On Unix, paths are delineated with forward slashes, as
in the last one of the preceding examples.

For Windows systems, standard DOS notation, with backslashes in between directory
names, works fine as long as you use single quotes to surround the path. Remember that
backslashes indicate special characters in Perl, so you might end up creating a bizarre
path with no relation to reality. If you do use double-quoted string, you must backslash
each backslash to escape it properly.

open(FILE, ‘c:\tempfiles\numbers’); # correct

eeek! contains a tab and a newline (\t, \n)
open(FILE, “c:\tempfiles\numbers”);

open(FILE “c:\\tempfiles\\numbers”); # correct

Because most modern Windows systems can handle directory pathnames with forward
slashes, you might want to use those instead, for better portability to Unix systems (if
you care) and to improve the readability of your scripts.

On the Mac, the directory separator is a colon, and absolute path names start with the
disk or volume name (hard disk, CD-ROM, mounted disk, and so on). If you’re con-
cerned about portability to other systems, you’ll need to make a note of it and convert
your path names later. A couple examples of Mac syntax are

open(FILE, “My Hard Disk:Perl Stuff:config”);

open(BOOKMARKS, “HD:System Folder:Preferences:Netscape:Bookmarks.html”);

19 0355 ch15 5/9/02 2:37 PM Page 383

In each of these cases, we’ve been opening a file handle for reading input into the script.
This is the default. If you want to write output back to a file, you still need a file handle
and you still use open to get it, but you use it with a special character ahead of the file-
name:

open(OUT, “>output”);

The > character indicates that this file handle is to be opened for writing. The given file
is opened and any current contents, if they exist, are deleted (you can test to see if a file
exists before you open it for writing to avoid this behavior; more about file tests later on
in “Managing Files.”)

What if you want to read input from a file, do something with it, and then write the same
file back? You’ll have to open two file handles: one to read in the input, and then another
later on to reopen the file for writing. Reading and writing are different processes and
require different file handles.

384 Day 15

Actually, there is a code for both reading and writing to the same file:
“+>filename”. You might use this if you wanted to treat a file as a data-
base, where instead of reading in the whole thing, you store it on disk, and
then read and write to that file as you read or change data. This book will
stick with reading and writing simple text files, in which case it’s less confus-
ing and easier to manage the data if you use two separate file handles: one
to read the data into memory, and one to write the data back out again.

Note

You can also open a file for appending—where the current contents of the file are retained,
and when you print to the output file handle, your output is appended to the end of that
file. To do this, use the >> special characters in your call to open:

open(FILE, “>>logfile”);

The die Function
The open function is nearly always called in conjunction with a logical or and a call to
die on the other side, like this:

open(FILE, “thefile”) or die “Can’t findfile”;

The call to die isn’t required, but it occurs so frequently in Perl code that the combination
is almost boilerplate. If you don’t do something like this, chances are good that if anyone
else sees your code, they’re going to ask you why you didn’t.

19 0355 ch15 5/9/02 2:37 PM Page 384

Working with Files and I/O 385

15
“Open this file or die!” is the implied threat of this statement, and that’s usually precisely
what you want. The open command could potentially fail—for example, if you’re opening
the file for reading and it doesn’t exist, if the disk is behaving weirdly and can’t open the
file, or for whatever other strange reason. Usually, you don’t want your script to plow
ahead if something has gone horribly wrong and it can’t find anything to read. Fortunately,
the open function returns undef if it could not open the file (and 1 if it could), so you can
check the result and decide what to do.

Sometimes “what to do” can vary depending on the script. Commonly, however, you just
want to exit the script with an error message. That’s what the die function does: it imme-
diately exits the entire Perl script, and prints its argument (a string message) to the STDERR
file handle (the screen, typically).

If you put a newline character at the end of the message, Perl will print that message as
it exits. If you leave off the newline, Perl will print an additional bit of information: at
script.pl line nn. The script.pl will be the name of your script, and line nn will be
the actual line number in which the die occurred. This can be useful for debugging your
script later.

One other clever use of die: The Perl special variable $! contains the most recent operating
system error (if your OS will generate one). By putting the $! variable inside the string
to die, your error message can sometimes be more helpful than just “Can’t open file.”
For example, this version of die:

die “Can’t open file: $!\n”;

might result in the message “Can’t open file: Permission denied” if the reason the file can’t
be opened is because the user doesn’t have the right access to that file. Use of $! is gen-
erally a good idea if you’re calling die in response to some sort of system error.

Although die is commonly used on the other side of a call to open, don’t think it’s only
useful there. You can use die (and its nonfatal equivalent, warn) anywhere in your script
where you want to stop executing the script (or print a warning message). See the
perlfunc man page for more information on how to use die and warn.

Reading Input from a File Handle
So you’ve got a file handle. It’s attached to a file you’ve opened for reading. To read
input from a file handle, use the <> (input) operator with the name of that file handle,
like this:

$line = <FILE>;

19 0355 ch15 5/9/02 2:37 PM Page 385

Looks familiar, right? You’ve been doing the same thing with STDIN to get a line of input
from the keyboard. That’s what’s so cool about file handles—you use exactly the same
procedures to read from a file as you do to read from the keyboard or to read from a net-
work connection to a server. Perl doesn’t care. It’s exactly the same procedure, and
everything you’ve already learned applies.

In scalar context, the input operator reads a single line of input up until the newline:

$line = <STDIN>;
if (<FILE>) { print “more input...” };

One special case of using the input operator in a scalar context is to use it inside the test of
a while loop. This has the effect of looping through the input one line at a time, assigning
each line to the $_ variable, and stopping only when the end of the input is reached:

while (<FILE>) { .
... process each line of the file in $_

}

You’ve seen this same notation a lot with empty input operators. The empty input operators
<> are, themselves, a special case in Perl. As you’ve learned, you use the empty input
operators to get input from files contained on the script’s command line. What Perl does
for those files is open them all for you and send their contents to you in order via the
STDIN file handle. You don’t have to do anything special to handle them. Of course, you
could open and read each file yourself, but the use of <> in a while loop is an extremely
handy shortcut.

In list context, the input operators behave as if the entire input was being read in at once,
with each line in the input assigned to an element in the list. Watch out for the input
operator in a list context, as it might not always do what you expect it to. Here are some
examples:

@input = <FILE>; # read the entire file into @input;

$input = <FILE>; # read the first line of file into $input

($input) = <FILE>; # read the first line of file into $input,
throw the rest of FILE away (yikes!)

print <FILE>; # print the entire contents of <FILE> to the screen

Writing Output to a File Handle
To write output to a file handle, you’ll commonly use the print or printf functions. By
default, the print (and printf) functions print to the file handle STDOUT. To print to a
different file handle, for example, to write a line to a file, first open the file handle for
writing, as follows:

open(FILE, “>$myfile”) or die “Can’t find $myfile\n”;

386 Day 15

19 0355 ch15 5/9/02 2:37 PM Page 386

Working with Files and I/O 387

15
And then use print with a file handle argument to put data into that file:

print FILE “$line\n”;

The printf and sprintf functions work similarly; include the file handle to print to
before the formatting string and the values as shown here:

printf(FILE “%d responses have been tabulated\n”, $total / $count);

One very important part of print and printf that you need to be aware of: There is no
comma between the file handle and the list of things to print. This comes under the head-
ing of most common Perl mistakes (and will be caught if you have Perl warnings turned
on). The file handle argument is entirely separate from the second argument, which is a
list of elements separated by commas.

Reading and Writing Binary Files
Throughout this book, we’ve been reading and writing text data. But not all the files you
work with in Perl are in text format; many of them may be binary files. If you’re using
Perl on Unix or the Mac, the difference won’t matter; Unix and MacPerl can handle both
text and binary files just fine. If you’re using Windows, however, you’ll get garbled
results if you try to process a binary file in a normal Perl script.

Fortunately, there’s an easy work-around: The binmode function takes a single file handle
as an argument, and will process that file handle (read from it or write to it) in binary
mode:

open(FILE, “myfile.exe “) or die “Can’t open myfile: $!\n”;
binmode FILE;
while (<FILE>) { # read in binary mode...

For the sake of portability, it’s a good idea to just go ahead and use binmode
whenever you’re dealing with binary programs. It never hurts anything, and
if your program ever winds up being used on a system that requires the use
of binmode, it will just work without modification.

Tip

Closing a File Handle
When you’re done reading from or writing to a file handle, you need to close it. Actually,
you often don’t have to close it yourself; when your script finishes executing, Perl closes
all your file handles for you. And if you call open multiple times on the same file handle
(for example, to open a file handle for writing after you’re done reading from it), Perl

19 0355 ch15 5/9/02 2:37 PM Page 387

will close that file handle automatically before opening it again. However, it’s considered
good programming practice to close your file handles after you’re done with them; that
way they won’t take up any more space in your script.

To close a file handle, use the close function, like this:

close FILE;

An Example: Extract Subjects and Save Them
E-mail mailboxes are one of those formats that Perl is really good at managing because
each message follows a very specific format (based on the protocol RFC822), and all are
collected in a plain-text file. If you want to range over a mailbox and do something to
messages that fits a specific criteria, then Perl is your language.For this example, however,
let’s do something really simple. The script in Listing 15.1 takes a mailbox as an argument
on the script command line, reads in each message, extracts all the Subject lines, and
writes a file called subjects in the same directory containing that list of subjects. If the
file subjects already exist, this script will overwrite it (we’ll learn in the next few sections
how to test to see if the file exists and complain if it does).

Listing 15.1 shows the (very simple) code.

LISTING 15.1 The subject.pl Script

1: #!/usr/local/bin/perl -w
2: use strict;
3:
4: open(OUTFILE, “>subjects.txt”) or die “Can’t open subjects file: $!\n”;
5:
6: while (<>) {
7: if (/^Subject:/) {
8: print OUTFILE $_;
9: }
10: }
11: close OUTFILE;

A short script almost not worth pointing out as an example, you might think. But that’s
just the point—reading from and writing to files uses the same techniques you’ve used
all along for standard input and output. There are two things to watch for here. First, line
4 opens the file subjects for writing (note the > character at the start of the filename).
Second is line 8, where we print to that same OUTFILE file handle, rather than to standard
output.

388 Day 15

19 0355 ch15 5/9/02 2:37 PM Page 388

Working with Files and I/O 389

15
This script has no visual output, although if you run it on a file of mail, and then examine
the subjects.txt file, you’ll see lines like this (I ran this particular example on a file of
“commercial mail,” otherwise known as spam—hence the strange subjects):

Subject: FREE SOFTWARE TURN$ COMPUTER$ INTO CA$H MACHINE$!!
Subject: IBM 33.6 PCMCIA Modem $89.00
Subject: 48 MILLION Email Leads $195 + BONUSES
Subject: Re: E-ALERT: URGENT BUY RECOMMENDATION
Subject: Make $2,000 - $5,000 per week -NOT MLM
Subject: Email your AD to 57 MILLION People for ONLY $99
Subject: SHY?.....................................
Subject: You Could Earn $100 Every Time the Phone Rings!!

File Tests
Opening files for reading and writing is all well and good when you know something
about the files you’re working with—for example, that they’re all there, or that you’re
not about to overwrite something important. But sometimes in Perl you want to be able
to check the properties of a file before you open it, or handle a file differently depending
on the various properties of that file.

Perl has a (rather large) set of tests for the various properties of files: to see if they exist,
that they have data in them, that they’re a certain kind of file, or that it’s a certain age.
(1996 was a very good year for binary files, wasn’t it?) These tests all look like switches
(-e, -R, -o, and so on), but don’t confuse them with actual switches (the reason they look
like this is because they’re borrowed from Unix shell scripting, and they look like that
there).

Table 15.1 shows some of the more useful file tests. The perlfunc man page, in the entry
for -X, contains the complete set (although you might note that not all the options are
appropriate for all platforms).

Each of these tests can take a filename or a file handle as an argument; either will work
(although if you’re testing to see whether or not a file exists, you’ll probably want to test
the filename before calling open on it).

TABLE 15.1 File Tests

Operator Test

-d Returns 1 if the file is a directory, 0 if not.

-e Returns 1 if the file exists, 0 if not.

-f Returns 1 if the file is a plain file (as opposed to a directory, a link, or a net-
work connection), 0 if not.

-l Returns 1 if the file is a link (Unix only), 0 if not.

19 0355 ch15 5/9/02 2:37 PM Page 389

-r Returns 1 if the file is readable, 0 if not.

-s Returns the size of the file in bytes.

-t Returns 1 if the file handle is open to STDIN (or some other tty on Unix),
0 if not.

-w Is the file writable (by user or group on Unix)?

-x Returns 1 if the file is executable, 0 if not.

-z Returns 1 if the file exists, but is empty, 0 if not.

-A Returns the number of seconds that have elapsed since the file was last accessed.

-B Returns 1 if the file is a binary file, 0 if not.

-M Returns the number of seconds that have elapsed since the file was last modified.

-T Returns 1 if the file is a plain text file, 0 if not.

Each test returns either true (1) or false (“”), except for –e, which returns undef if the
file doesn’t exist, -s, which returns the number of bytes (characters) in the file, and the
time operators -M and -A, which return the number of seconds since the file was modified
or accessed, respectively.

So, for example, let’s say you wanted to modify the subject.pl script such that if the
subjects.txt file exists, you’d prompt the user to make sure they want to overwrite it.
Instead of the plain call to open we had, you could test to see if the file exists, and if it
does, make sure the user wants to overwrite it. Study the following code:

if (-e ‘subjects.txt’) {
print ‘File exists. Overwrite (Y/N)? ‘;
chomp ($_ = <STDIN>);
while (/[^yn]/i) {

print ‘Y or N, please: ‘;
chomp ($_ = <STDIN>);

}
if (/n/i) { die “subjects file already exists; exiting.\n”; }

}

Here you see another use of the die function, this time away from the open function. If
the user answers n to the overwrite question, you could simply exit the script; the die
function is an explicit end and prints a message to that effect.

390 Day 15

TABLE 15.1 continued

Operator Test

19 0355 ch15 5/9/02 2:37 PM Page 390

Working with Files and I/O 391

15
A File Test Example

Here’s an example program that uses the file tests described above. It accepts two strings
as arguments, followed by a file or list of files. It replaces any occurrences of the first
string in the file with the second string. Before it modifies any file, though, it performs a
number of tests on it to make sure that performing the search and replace is okay. Let’s
skip straight to the source code, which is in Listing 15.2

LISTING 15.2 The sr.pl Search and Replace Program

1: #!/usr/bin/perl
2:
3: use strict;
4:
5: if (@ARGV < 3)
6: {
7: print “Usage: sr.pl old_string new_string file(s)\n”;
8: exit;
9: }
10:
11: my $old = shift @ARGV;
12: my $new = shift @ARGV;
13:
14: my $filename;
15:
16: foreach $filename (@ARGV)
17: {
18: print “Processing $filename ...\n”;
19:
20: # If the file does not exist, move along.
21: unless (-e $filename)
22: {
23: print “Skipping $filename, it does not exist.\n”;
24: next;
25: }
26:
27: # If the file is a directory, move along.
28: if (-d $filename)
29: {
30: print “Skipping $filename, it’s a directory.\n”;
31: next;
32: }
33:
34:
35: # If the file is not readable, move along.
36: unless (-r $filename)
37: {
38: print “Skipping $filename, it’s not readable.\n”;
39: next;

19 0355 ch15 5/9/02 2:37 PM Page 391

40: }
41:
42: # If the file is not writable, move along.
43: unless (-w $filename)
44: {
45: print “Skipping $filename, it’s not writable.\n”;
46: next;
47: }
48:
49: # If the file is not a text file, move along.
50: if (-B $filename)
51: {
52: print “Skipping $filename, it’s a binary file.\n”;
53: next;
54: }
55:
56: my $backup_filename = $filename . “~”;
57:
58: # If the backup file already exists, raise an error
59: if (-e $backup_filename)
60: {
61: print “Skipping $filename, backup file $backup_filename exists.\n”;
62: next;
63: }
64:
65: rename $filename, $backup_filename;
66:
67: open (IN, “< $backup_filename”)
68: or die “Can’t open $backup_filename”;
69:
70: open (OUT, “> $filename”)
71: or die “Can’t write to $filename”;
72:
73: while (<IN>)
74: {
75: s/$old/$new/g;
76: print OUT;
77: }
78:
79: close IN;
80: close OUT;
81: }

First things first, on lines 5 through 9, check to see whether the user called the script
properly. If he didn’t include at least three arguments, print a message indicating the
proper usage of the script. On lines 11 and 12, extract the string to search for and the
string to replace it with from @ARGV. Any further arguments are assumed to be the names
of files that will be searched.

392 Day 15

LISTING 15.2 continued

19 0355 ch15 5/9/02 2:37 PM Page 392

Working with Files and I/O 393

15
Loop over the remaining arguments to the array, treating them as filenames. Five tests are
performed on each argument before even trying to deal with it as a file. If the file does
not exist, is a directory, is not readable or writable, or is a binary file, it is skipped. These
tests assure that a file is not processed and fails, or that a binary file or directory is not
corrupted by processing it without checking out what it is first.

If any of these tests fail, a message is printed indicating that something went wrong, and
use next to stop processing the current filename and move to the next one. If the tests all
succeed, append to the file’s name to create the name of the backup file that the script
will produce. If the backup file exists, go ahead and skip the file so that the user’s work
isn’t inadvertently destroyed.

If the backup file doesn’t exist everything is okay for the script to proceed. First, rename
the file to the backup file name that was generated. Then, open the backup file for input
and the original filename for output. On line 73, start looping over the contents of the
backup file, replacing the old string with the new one, and printing out those lines to the
output file, which has the name of the file that we’re currently processing.

In the end, the original file is saved as the file named in the variable $backup_file, and
$filename contains the results of the processed file.

Working with @ARGV and Script Arguments
One aspect of running Perl scripts that I’ve sort of sidestepped over the last few days is
that of dealing with command-line arguments. Yesterday we talked a bit about Perl’s own
switches (-e, -w) and so on, but what if you want to actually pass switches or arguments
to your own scripts—how do you handle those? That’s what we’ll discuss in this section:
script arguments in general, and handling script switches.

Anatomy of the @ARGV
When you call a Perl script with arguments beyond the name of the script, those argu-
ments are stored in the special global list @ARGV (on the Mac, for droplets, @ARGV will be
the filenames that were dropped onto the droplet). You can process this array the same
way you would any other list in your Perl script. For example, here’s a snippet that will
just print out the arguments the script was called with, one on each line:

foreach my $arg (@ARGV) {
print “$arg\n”;

}

If your script uses a construct such as while (<>), Perl will use the contents of the
@ARGV list as the filenames to open and read (if there are no files in @ARGV, Perl will try to
read from the standard input). Multiple files are all opened and read sequentially, as if
they were all one big file.

19 0355 ch15 5/9/02 2:37 PM Page 393

If you want more control over the contents of the files you’re reading into a script, you
could examine the contents of @ARGV to find the filenames to open and read. Processing
@ARGV is also useful if you’re looking for a specific number of arguments—for example,
one configuration file and one data file. If you just want to process the contents of any
number of files, it’s handy to use the <> shortcut. If you want to specifically have a set of
arguments, and control the processing of each one, read the files from @ARGV and process
them individually.

394 Day 15

Unlike C and Unix’s argv, Perl’s @ARGV contains only the arguments, not the
name of the script itself ($ARGV[0] will contain the first argument). To get
the name of the script, you can use the special variable $0 instead.

Note

Script Switches and Fun with Getopt
One use of the script command line is to pass switches to a script. Switches are arguments
that start with a dash (-a, -b, -c), and are usually used to control the behavior of that
script. Sometimes switches are single letters (-s), sometimes they’re grouped (-abc), and
sometimes they have an associated value or argument (-o outfile.txt).

You can call a script with any switches you want; those switches will end up as elements
of the @ARGV array just as any other arguments do. If you were using <> to process @ARGV,
you’ll want to get rid of those switches before reading any data—otherwise, Perl will
assume that your -s switch is the name of a file. To process and remove those switches
littering @ARGV, you could laboriously go through the array and figure out which elements
were options, which ones were options with associated arguments, and finally end up
with a list of actual filenames after you were done doing all that. Or you could use the
Getopt module to do all that for you.

The Getopt module, part of the standard module library that comes with Perl, manages
script switches. There are actually two modules: Getopt::Std, which processes single-
character switches (-a, -d, -ofile, and so on); and Getopt::Long, which allows just about
any kind of options, including multicharacter options (-sde) and GNU-style double-
hyphen options (--help, --size, and so on).

In this section, I describe the Getopt::Std module, for handling simple options. If you
want to handle more complex options via the Getopt::Long module, you are welcome
to explore that module’s documentation for yourself (see the perlmod manual page for
details).

19 0355 ch15 5/9/02 2:37 PM Page 394

Working with Files and I/O 395

15
To use the Getopt::Std module, you import it in your script as you do all modules:

use Getopt::Std;

Importing Getopt::Std gives you two functions: getopt and getopts. These functions
are used to extract the switches from your @ARGV array and set scalar variables in your
script for each of those switches.

getopts
Let’s start with getopts, which defines and processes single-character switches with or
without values. The getopts function takes a single string argument containing the single-
character switches that your script will accept. Arguments that take values must be fol-
lowed by a colon (:). Uppercase and lowercase are significant and represent different
switches. For example:

getopts(‘abc’);

The argument here, ‘abc’, processes -a, -b or -c switches, in any order, with no associ-
ated values. Those switches can be grouped: -ab or -abc will work just as well as the
individual switches will. Here’s another:

getopts(‘ab:c’);

In this example, the -b switch can take a value, which must appear on the Perl command
line immediately after that switch, like this:

% myscript.pl -b 10

The space after the switch itself isn’t required: -b10 works as well as -b 10. You can
also nest these switches as long as the value appears after the switch itself, like this:

% myscript.pl -acb10 # OK
% myscript.pl -abc10 # wrong

If you want to pass regular arguments to your script that look like switches,
you can include the argument -- to indicate that the items that follow are
arguments, not switches. For example, if you wanted to pass the argument
-whatever to your script, you could call it

% myscript.pl -acb10 -- -whatever

Note

For each switch defined in getopts, the getopts function creates a scalar variable switch
with the name $opt_x, where x is the letter of the switch (in the example above, getopts
would create three variables for $opt_a, $opt_b, and $opt_c). The initial value of each
scalar variable is undefined. Then, if that switch was included in the arguments to the

19 0355 ch15 5/9/02 2:37 PM Page 395

script (in @ARGV), getopts sets the value of its associated variable to 1. If the switch
required a value, getopts assigns the value on @ARGV to the scalar variable for that option.
The switch, and its associated value, are then deleted from @ARGV. After getopts finishes
processing, your @ARGV will either be empty, or will contain any remaining filename
arguments which you can then read with file handles or with <>.

After getopts is done, you’ll end up with a variable for each switch that will either have
a value of 0 (that switch wasn’t used), 1 (that switched was used), or have some value
(that switch was used with the given value). You can then test for those values and have
your script do different things based on the switches it was called with, as shown here:

if ($opt_a) { # -a was used
...

}
if ($opt_b) { # -b was used
...
}

So, for example, if your script was called like this:

% script.pl -a

then getopts(‘abc’) will set $opt_a to 1. If it was called like this:

% script.pl -a -R

then $opt_a will be set to 1, and the -R switch will be quietly deleted with no variable
set. If you called it like this:

% script.pl -ab10

and called getopts like this:

getopts(‘ab:c’);

then $opt_a will be set to 1, and $opt_b will be set to 10.

Note that if you’re using use strict Perl will complain about the $opt_ variables sud-
denly popping into existence. You can get around this by predeclaring those variables
with use vars, like this:

use vars qw($opt_a $opt_b $opt_c);

or, you can use the our keyword, as follows:

our ($opt_a, $opt_b, $opt_c);

396 Day 15

19 0355 ch15 5/9/02 2:37 PM Page 396

Working with Files and I/O 397

15
Error Processing with getopts
Note that getopts reads your @ARGV in order, and stops processing when it gets to an ele-
ment that does not start with a dash (-) or that isn’t a value for a preceding option. This
means that when you call your Perl script, you should put the options first and the bare
arguments last, otherwise you may end up with unprocessed options or errors trying to
read files that aren’t files. You may want to write your script to make sure @ARGV is empty
after getopts is done, or that its remaining arguments do not start with a dash.

The switches defined by getopts are expected to be the only switches that your script will
accept. If you call a script with a switch not defined in the argument to getopts, getopts
will print an error (“Unknown option”), delete that option from @ARGV, and return false.
You can use this behavior to make sure your script is being called correctly, and exit with
a message if it’s not. Just put the call to getopts inside an if statement, as follows:

if (! getopts(‘ab:c’)) {
die “Usage: myscript -a -b file -c \n”;

}

Note also that if getopts stops processing your switches in the middle because of an
error, any switch variables that were set beforehand will still have their values, and may
contain bad values. Depending on how robust you’d like your argument checking to be,
you might want to check those values if getopts returns false (or exit altogether).

getopt

The getopt function works just like getopts, in that it takes a string argument with the
switches, and it assigns $opt_ variables to each of those arguments and removes them
from @ARGV as it goes. However, getopt differs from getopts in three significant
respects:

• The argument to getopt is a string containing the switches that must have associated
values.

• getopt does not require you to define arguments without values beforehand. It allows
any single-letter options, and creates an $opt_ variable for each one.

• getopt does not return a (useful) value, and does not print errors for unexpected
options.

Say, for example, you have a call to getopt like this:

getopt(‘abc’);

This function assumes that your script will be called with any of three switches, -a, -b,
or -c, each one with a value. If the script is called with switches that don’t have values,
getopt will not complain; it happily assigns the next element in @ARGV to the variable for

19 0355 ch15 5/9/02 2:37 PM Page 397

that switch—even if that next element is another switch or a filename that you might have
wanted to read as a file. It’s up to you to figure out if the values are appropriate, or if the
script was called with the wrong set of arguments.

Essentially, the core difference between getopt and getopts is that getopt doesn’t
require you to declare your options, but also makes it more difficult to handle errors. I
prefer getopts for most cases, to avoid having to do a lot of value testing.

Another Example
Here’s a simple example (in Listing 15.3) that processes a file in various ways depending
on the switches that you use with that script.

LISTING 15.3 The switches.pl Script

1: #!/usr/bin/perl -w
2: use strict;
3: use Getopt::Std;
4: use vars qw($opt_r $opt_l $opt_s $opt_n);
5:
6: if (! getopts(‘rlsn’)) {
7: die “Usage: switches.pl -rlsn\n”;
8:}
9:
10: my @file = <>;
11:
12:if ($opt_s) {
13: @file = sort @file;
14: }
15:
16:if ($opt_n) {
17: @file = sort {$a <=> $b} @file;
18: }
19:
20:if ($opt_r) {
21: @file = reverse @file;
22: }
23:
24: my $i = 1;
25: foreach my $line (@file) {
26: if ($opt_l) {
27: print “$i: $line”;
28: $i++;
29: } else {
30: print $line;
31: }
32: }

398 Day 15

19 0355 ch15 5/9/02 2:37 PM Page 398

Working with Files and I/O 399

15
This script uses single switches only, with no values (note the call to getopts in line 7;
there are no colons after any of those options. Those switches are -r, to reverse the con-
tents of the file; -s, to sort the lines of the file; -n to sort the lines numerically; and -l to
print line numbers. You can combine options on the command line, although some multi-
ple options don’t make sense (-sn sorts the file, and then resorts it numerically).

Line 4 predeclares our variables, so they won’t suddenly spring into existence when getopts
creates them (and cause use strict to complain).

The test in lines 6 through 8 make sure the script is being called with the right options. If
a stray option slipped through (for example, an -a or -x), then the script exits with a
usage message.

Finally, the various if statements test for the existence of the $opt_r, $opt_l, $opt_s,
and $opt_n variables, and performs different operations depending on which options
were called on the command line. Any arguments that aren’t switches remain in @ARGV
after getopts is done, and are read into the script via the <> operator in line 10.

Going Deeper
In this lesson, I’ve given you the basics of I/O and of managing file systems; the lessons
you learn here should apply to all your basic Perl programs that need to use files and
command-line arguments. On Day 17 we’ll explore how to handle aspects of the file
system itself. In this lesson’s Going Deeper, I’ll try and point you to a number of other
places to look for more information and details about advanced input and output and
handling filesystem features.

All the built-in Perl functions, as I’ve noted before, are documented in the perlfunc man
page. Also of some use may be the FAQ on files and formats contained in the perlfaq
man page.

More About open and File Handles
A few other shortcuts and features of the open function:

You can leave off the filename to the open function if, and only if, a scalar variable with
the same name as the file handle has already been set to the file to be opened. For example:

$FILE = “myfile.txt”;
open(FILE) or die “Can’t open $FILE: $!\n”;

This can be useful for filenames that need to be opened or reopened; you can set a variable
at the start of your script, and then reuse that filename over and over again.

19 0355 ch15 5/9/02 2:37 PM Page 399

Contrary to what I claimed earlier in this chapter, you can open a file both for reading
and writing using the +> special character in front of the filename:

open(FILE, “+>thefile”) or die “Can’t open file: $!\n”;

Because this can often be confusing, however, I prefer to use separate file handles and to
read and write as separate operations.

Filenames that start with pipes (|) operate as if the filename was a command, and the
output will be piped to that command via the command shell for your system.

For many more details about the various uses of open, see the perlfunc man page.

Various Other File-Related Functions
Table 15.2 shows several file-related built-in functions that I have not described in this
lesson.

TABLE 15.2 More I/O Functions

Function What It Does

eof Returns true if next line input will be at the end of file

eof() Different function than eof; this version detects end of the last file for files
input using <>

lstat Displays information about links

pack Outputs data into a binary structure

select Changes the default file handle for output (if lots of print statements will be
directed to the same filehandle, it’s usually easier just to select it)

stat Prints various bits of information about a file or file handle

truncate Truncates (delete the contents of) a file or file handle

unpack Inputs data from a binary structure

Expert-Level I/O
The input and output techniques described in this chapter provide simple, line-oriented
buffered input and output from and to file handles and standard input, output, and error.
If you’re interested in doing more low-level sophisticated forms of input and output,
explore the various other I/O functions Perl provides for you, as listed in Table 15.3.

400 Day 15

19 0355 ch15 5/9/02 2:37 PM Page 400

Working with Files and I/O 401

15
TABLE 15.3 More I/O Functions

Function What It Does

fcntl File control (the Unix fctrl(2) function)

flock Lock file (Unix flock(2) function)

getc Get next byte

ioctl TTY control (The Unix ioctl(2) system call)

read Input a specific number of bytes (fread(2))

rewinddir Set the current (input) position to the beginning of the directory handle

seek Position the file pointer at a specific location in a file (same as fseek() in C)

seekdir Same as seek for directory handles

select Make file descriptors ready for reading (same as the select(2) command on
Unix. Not to be confused with select on a file handle for setting the default
file handle.

syscall Call a Unix system call (syscall(2))

sysopen Open a file handle with a mode and permissions

sysread Read a certain number of bytes using read(2)

syswrite Write a certain number of bytes to the file handle with write(2)

tell Return the current file pointer position

telldir Same as tell for directory handles.

write Write a formatted record to an output file handle (see Day 20, “Odds and
Ends.”) write is not the opposite of read

In addition, the POSIX module provides a number of features for handling more sophisti-
cated I/O (but, alas, only works on Unix). See the perlmod man page for more information
about POSIX.

DBM Files
Perl provides built-in and module behavior for reading and writing files from and to
Berkeley Unix DBM (database) files. These files can be smaller and faster to deal with
than flat text-based databases. For more information about DBM, see the DB_File module,
the tie function, and the various Tie modules (Tie::Hash, Tie::Scalar, and so on).

CPAN also provides a number of modules for dealing with databases—both those you
write yourself, as well as interfaces to and drivers for various commercial databases such
as Oracle and Sybase. For the latter, the DBD (Database Drivers) and DBI (Database
Interface) packages by the Perl Database Initiative come highly recommended.

19 0355 ch15 5/9/02 2:37 PM Page 401

Timestamps
Files and directories can both contain timestamps, that is, indications of when that file
was created, modified, or just accessed. You can test a file for its timestamp using the -M
(modification), -A (access), and -C (inode change, Unix only) file tests, get more infor-
mation about timestamps via the stat function, or change the timestamp of a file using
the utime function. The behavior of these tests and functions might vary from platform
to platform.

All times are in seconds elapsed since a certain date; that date is January 1, 1970 for
Unix and Windows and January 1, 1904 on the Macintosh. The functions time, gmtime,
localtime, and the Time::Local modules might also be of interest for decoding and
changing timestamps.

Summary
In this chapter, we’ve reviewed and expanded on all the information you’ve learned about
input and output so far in this book, taking what you already knew about reading from
standard input and writing to standard output and using those same techniques to read
and write from files.

Files and file handles were the focus of the start of this chapter, and you learned about
using the open function to open a file and create a file handle to read from or write to
that file. As an adjunct to open you also learned about die, a function that exits the script
and prints an error message to the standard error file handle as it goes.

In the next part of the lesson, we talked about script arguments and switches: what happens
when you call a script with arguments (they get put into @ARGV) and what you can do to
process those arguments. If those arguments includes switches, the best way to process
them is with the Getopt::Std module, which lets you define and process, switches to
your script, and then tests for the existence of those switches using special variables.

The functions you learned about in this chapter include

• open, for creating file handles

• die, for exiting the script with an error message

• binmode, for setting a file handle to binary mode

• close, to close a file handle

• getopts, part of the Getopt module, for declaring and processing arguments

• getopt, also part of the Getopt module, for handling arguments

402 Day 15

19 0355 ch15 5/9/02 2:37 PM Page 402

Working with Files and I/O 403

15
Q&A

Q. I’m trying to open a file for writing, but die keeps getting triggered and I
can’t figure out why. The directory is writable, the file doesn’t exist—there’s no
reason why things should be going wrong.

A. Did you remember to put the > character at the start of your filename? You need
that character to tell Perl that the file is to be written to—otherwise it’ll assume the
file is to be read from, and if it can’t find the file it won’t be able to open it.

The open function should work most of the time; it should only fail under unusual
circumstances. If it’s consistently failing for you, consider double-checking your
use of open.

Q. I want to use a subroutine to open my file, and then pass the file handle
around to other subroutines. But when I try this is doesn’t work. Why?

A. Well, you can’t. You can do sneaky things with typeglobs to pass symbol names
between subroutines, but that’s a kludge with its own set of problems. The best way
to pass file handles around is to use the FileHandle module, create a file handle as
an object, and then pass that object between subroutines.

But, since we haven’t learned much about objects, you might (for now) want to just
create your file handle globally and refer to them inside subroutines instead. (We’ll
explore objects on Day 19, “Working with References.”)

Q. I’m trying to read a simple text-based database file in Perl. I know what the
format for the file is, and I know how to decode it into something I can use,
but the input I’m getting is really garbled. What’s going on here?

A. Are you on a Windows system? Is the database file in a binary format. Use the
binmode function to make sure Perl is reading your file handle in binary format.

Workshop
The workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience in using what you’ve learned. Try
and understand the quiz and exercise answers before you go on to tomorrow’s lesson.

Quiz
1. What’s a file handle? What are the STDIN, STDOUT, and STDERR file handles used for?

2. What are the differences between creating file handles for reading, writing, or
appending?

3. What’s the die function used for? Why should you bother using it with open?

19 0355 ch15 5/9/02 2:37 PM Page 403

4. How do you read input from a file handle? Describe how input behaves in a scalar
context, in a scalar context inside a while loop test, and in a list context.

5. How do you send output to a file handle?

6. What do the following file tests test for?
-e
-x
-f
-M
-z

7. What is @ARGV used for? What does it contain?

8. What’s the difference between getopt and getopts?

9. What switches do the following calls to getopts allow?

getopts(‘xyz:’);
getopts(‘x:y:z’);
getopts(‘xXy’);
getopts(‘xyz’);
getopt(‘xyz’);

Exercises
1. Write a script that merges two files (specified on the command line) with their lines

intertwined (one line from file 1, one line from file 2, another line from file 1, and
so on). Write the resulting data to a file called merged.

2. Write a script that merges the two files only if the filename extensions are the same,
and use that same filename extension for the final merged file. If the extensions are
different, exit the script with an error message. (Hint: use regular expressions to
find the filename extensions).

3. Write a script that merges two files and takes a single option: -o, which bypasses
the error message from the previous exercise and merges the file anyhow (the
extension of the final file is up to you).

4. Write a script that takes a single-string argument and any of four switches, -u, -s,
-r, and -c. -u returns the string in uppercase, -s removes all punctuation and
whitespace (s stands for “squash”), -r reverses the string, and -c counts the number
of characters. Make sure you can combine the options for different effects.

5. BUG BUSTERS: This script is called like this:

myscript.pl -sz inputfile

What’s wrong with this script? (Hint: The test for $opt_z will not return true).
use strict;
use Getopt::Std;

404 Day 15

19 0355 ch15 5/9/02 2:37 PM Page 404

Working with Files and I/O 405

15
use vars qw($opt_s $opt_z);
getopt(‘sz’);

if ($opt_z) {
...

}

Answers
Here are the answers to the Workshop questions in the previous section.

Quiz Answers
1. A file handle is used by Perl to read data from or write data to some source or des-

tination (which could be a file, the keyboard, the screen, a network connection, or
another script). The STDIN, STDOUT, and STDERR file handles refer to standard input,
standard output, and standard error, respectively. You create file handles to any
other files using the open function.

2. Use special characters in the filename to be opened to indicate whether that file
will be opened for reading, writing, or appending. The default is to open a file for
reading.

3. The die function exits the script gracefully with a (supposedly) helpful error mes-
sage. It’s most commonly used in conjunction with open because if something so
unusual happened that the file couldn’t be opened, generally you don’t want your
script to continue running. Good programming practice says always check your
return values for open and call die if it didn’t work.

4. Read input from a file handle using the input operator <> and the name of the file
handle. In scalar context, the input operator reads one line at a time. Inside a while
loop, it assigns each line to the $_ variable. In a list context, all the input to end of
file is read.

5. Send output to a file handle using the print function and the name of the file han-
dle. Note that there is no comma between the file handle and the thing to print.

6. -e test to see if the file exists

-x tests to see if the file is executable (usually only relevant on Unix)

-f tests to see if the file is a plain file (and not a directory, a link or anything else)

-M tests the modification date of the file

-z tests to see if the file exists and is empty

19 0355 ch15 5/9/02 2:37 PM Page 405

7. The @ARGV array variable stores all the arguments and switches the script was
called with.

8. The getopt function defines switches with values, and can accept any other options.
The getopts declares the possible options for the script and if they have values or
not. The other difference is that getopts returns a false value if there were errors
processing the command-line switches; getopt doesn’t return any useful value.

9. getopts(‘xyz:’) allows the switches -x, -y, and -z with a value.

getopts(‘x:y:z’) allows -x and -y, each with values, and -z without a value.

getopts(‘xXy’) allows -x and -X (they are separate switches) and -y, none with
values.

getopts(‘xyz’) allows -x, -y and -z, none with values.

getopt(‘xyz’) allows -x, -y and -z, each one with required values, as well as any
other single-character switches.

Exercise Answers
1. Here’s one answer:

#!/usr/ bin/perl -w
use strict;

my ($file1, $file2) = @ARGV;

open(FILE1, $file1) or die “Can’t open $file1: $!\n”;
open(FILE2, $file2) or die “Can’t open $file2: $!\n”;
open(MERGE, “>merged”) or die “Can’t open merged file: $!\n”;

my $line1 = <FILE1>;
my $line2 = <FILE2>;
while (defined($line1) || defined($line2)) {

if (defined($line1)) {
print MERGE $line1;
$line1 = <FILE1>;

}
if (defined($line2)) {

print MERGE $line2;
$line2 = <FILE2>;

}
}

2. Here’s one answer:
#!/usr/bin/perl -w
use strict;

my ($file1, $file2) = @ARGV;
my $ext;

406 Day 15

19 0355 ch15 5/9/02 2:37 PM Page 406

Working with Files and I/O 407

15
if ($file1 =~ /\.(\w+)$/) {

$ext = $1;
if ($file2 !~ /\.$ext$/) {

die “Extensions do not match.\n”;
}

}

open(FILE1, $file1) or die “Can’t open $file1: $!\n”;
open(FILE2, $file2) or die “Can’t open $file2: $!\n”;
open(MERGE, “>merged.$ext”) or die “Can’t open merged file: $!\n”;

my $line1 = <FILE1>;
my $line2 = <FILE2>;
while (defined($line1) || defined($line2)) {

if (defined($line1)) {
print MERGE $line1;
$line1 = <FILE1>;

}
if (defined($line2)) {

print MERGE $line2;
$line2 = <FILE2>;

}
}

3. Here’s one answer:
#!/usr/bin/perl -w
use strict;
use Getopt::Std;
use vars qw($opt_o);
getopts(‘o’);

my ($file1, $file2) = @ARGV;
my $ext;

if ($file1 =~ /\.(\w+)$/) {
$ext = $1;
if ($file2 !~ /\.$ext$/) {

if (!$opt_o) {
die “Extensions do not match.\n”;

}
}

}

open(FILE1, $file1) or die “Can’t open $file1: $!\n”;
open(FILE2, $file2) or die “Can’t open $file2: $!\n”;
open(MERGE, “>merged.$ext”) or die “Can’t open merged file: $!\n”;

my $line1 = <FILE1>;
my $line2 = <FILE2>;
while (defined($line1) || defined($line2)) {

19 0355 ch15 5/9/02 2:37 PM Page 407

if (defined($line1)) {
print MERGE $line1;
$line1 = <FILE1>;

}
if (defined($line2)) {

print MERGE $line2;
$line2 = <FILE2>;

}
}

4. Here’s one way:
#!/usr/bin/perl -w
use strict;
use Getopt::Std;
use vars qw($opt_s $opt_r $opt_u $opt_c);
getopts(‘sruc’);

my $str = $ARGV[0];

if ($opt_s) {
$str =~ s/[\s.,;:!?’”]//g;

}

if ($opt_r) {
$str = reverse $str;

}

if ($opt_u) {
$str = uc $str;

}

if ($opt_c) {
$str = length $str;

}

print “$str\n”;

5. The script snippet uses the getopt function. This function (as opposed to getopts,
assumes all the switches will have values associated with them. So when the script
is called with the switch -sz, getopt assumes that you’re using the -s switch, and
that its value is z. The -z switch never registers to getopt. Use the getopts function
instead to make sure both $opt_s and $opt_z are set.

408 Day 15

19 0355 ch15 5/9/02 2:37 PM Page 408

DAY 16

WEEK 2

Using Perl for CGI Scripting
In recent years one of the most common uses of Perl has been for creating CGI
scripts. CGI, short for the Common Gateway Interface, refers to programs and
scripts that live on a Web server and run in response to input from a browser—
form submissions, complex links, some image maps—just about anything that
isn’t a plain ordinary file involves some sort of CGI script.

Because of Perl’s popularity as a CGI language, I would be remiss if I did
not give you a short introduction to CGI using Perl. Today we’ll use what you
already know about Perl in the context of creating CGI scripts on the Web.
Today, you’ll learn

• Some notes about CGI, before we start

• How the CGI process works, from browser to server and back again

• Creating a short CGI script, from start to finish

• An introduction to the CGI.pm module

• Working with data from HTML forms

• Printing the output

• Debugging the script

20 0355 ch16 5/9/02 2:37 PM Page 409

Before You Start
To write CGI scripts in Perl, you’ll need three things:

• A Web server that supports Perl and an understanding of how to install CGI scripts
on that server

• The CGI.pm module, which should have come with your Perl distribution (more
about this later)

• A basic understanding of HTML

410 Day 16

You don’t specifically need the CGI.pm module to write CGI scripts in Perl.
There are other utility scripts to help you do CGI, or you could hand-write all
of the underlying code yourself. But that would mean a lot of work for you,
and it’s much, much easier just to use CGI.pm. Everyone else is doing it; why
not join us?

Note

Because of the wide variety of Web servers for different platforms and the differences
between them, the space isn’t available to get into a discussion of getting your Web server
set up for CGI. There are extensive help files on the Web, however, including

• The basic CGI documentation at http://hoohoo.ncsa.uiuc.edu/cgi/, which
applies mostly to Unix-based servers.

• The Perl CGI FAQ at http://www.perl.com/pub/a/doc/FAQs/cgi/
perl-cgi-faq.html.

• “The Idiot’s Guide to Solving CGI Problems” at http://www.perl.com/language/
CPAN/doc/FAQs/cgi/idiots-guide.html.

You should also refer to the documentation that came with your Web server. If you plan
to do a lot of work with CGI, you might consider Sams Teach Yourself CGI Programming
in a 24 Hours for more help and more examples beyond what is offered here.

If you don’t have at least a passing background in HTML, much of the rest of this lesson
may be difficult to follow. Again, consider boning up with the multitude of HTML tutorials
on the Web, or with Sams Teach Yourself Web Publishing with HTML and XHTML in 21
Days.

How CGI Works
Let’s start with some conceptual background about CGI and how it fits into the relationship
between a Web browser and a Web server.

20 0355 ch16 5/9/02 2:37 PM Page 410

Using Perl for CGI Scripting 411

16

CGI, as mentioned, stands for Common Gateway Interface. Common because the same
process is used for many different kinds of Web servers, and gateway because the scripts
at one time commonly served as a gateway between the Web server itself and some larger
program—for example, a database or a search engine. These days, CGI has lost much of
its original precise meaning, and now refers simply to a script or program that runs in
response to input from a Web browser.

There are a lot of different things you can do with a CGI script and different ways to write
one. For the purposes of this lesson, we’ll focus on one typical use: CGI scripts to handle
data received as part of an HTML form. Figure 16.1 shows a typical flowchart for how
things work when a user with a Web browser requests a form, fills it out, and submits it:

Browser Server

7. Send Form

4. Call CGI

with Form Data

6. Send Reply

CGI
(5. Process Data)

1. Get Form

2. Send Form

3. Submit Form

FIGURE 16.1.
The CGI process.

Here’s what’s going on at each step:

• The user, running a Web browser, requests a page with a form on it.

• The server sends the form. The form itself may be a CGI script that generates the
HTML for the form, or just a plain old HTML file.

• The user fills out the form and clicks the submit button.

• The browser packages up the form data and sends it to the Web server.

• The Web server passes the data to the CGI script.

• The CGI script decodes the data, processes it in some way, and returns a response
(typically another HTML file).

• The server sends the response to the browser

This is obviously not all that complicated, but you should understand where the CGI
script fits into the process so you know where the data is coming from and where its
going. This will be important later.

20 0355 ch16 5/9/02 2:37 PM Page 411

Building a CGI Script, From Form to Response
The best way to learn how to code CGI is to go ahead and do it, so let’s do it. In this sec-
tion we’ll create a really simple CGI script—the equivalent of Hello, World—using a basic
HTML form, Perl for the CGI script, and the CGI.pm module to help put it all together.
I’ll give you the HTML form to work from, but we’ll build up the script itself line by line.

The Form
Listing 16.1 shows the HTML code for a simple HTML form that asks you for your
name. Figure 16.2 shows what this form looks like in a Web browser.

LISTING 16.1 The name.html File

1: <html>
2: <head>
3: <title>Tell Me Your Name</title>
4: </head>
5: <body>
6: <form action=”/cgi-bin/name.pl”>
7: <p>Enter your Name: <input name=”name” /></p>
8: <p><input type=”submit” value=”Submit me!”></p>
9: </form>
10: </body>
11: </html>

412 Day 16

FIGURE 16.2.
Hello!

There are two important parts to note about this bit of HTML:

• In Line 6, the action attribute points to the CGI script that will process this form
when it’s submitted to the server. Here, that script is called name.pl, and it’s stored
in the server’s cgi-bin directory (the usual place for CGI scripts to be stored,

20 0355 ch16 5/9/02 2:37 PM Page 412

Using Perl for CGI Scripting 413

16

although it might be different for your server, or you might need permission to put
your scripts there). You’ll need to substitute the path to your version of the script
when you write it in the next section.

Some Web servers might also require you to rename your scripts with a .cgi
extension for those scripts to be recognized as CGI scripts. This differs from
server to server, so check your documentation.

Note

• Line 7 defines a text field form element (in the <input> tag). Note that the name
attribute gives this element a name. This will also be important when you build the
CGI script for this form.

Creating the Script
Now let’s create a Perl script to process the data we get back from that CGI script. Although
writing a CGI script in Perl is similar in many ways to writing an ordinary command-line
Perl script, there are several important differences relating to the fact that your script is
called by the Web server, not by you. You won’t get any command-line options or file-
name arguments. All the data you get into the script will come from the Web server (or
you’ll read it in yourself from files on the disk). The output you write will have to be in
a specific format—usually HTML.

Fortunately, the CGI.pm module, written by Lincoln Stein and available as part of the
standard Perl installation, is there to make CGI scripting easier and to cover up a lot of
the oddities.

Let’s start with the top couple of lines of our CGI script:

#!/usr/local/bin/perl -w
use strict;
use CGI qw(:standard);

The shebang line and use strict you already know, and the third use CGI line shouldn’t
be much of a surprise either. The :standard tag, as you learned on Day 13, “Scope
Models and Importing Code,” imports a subset of the CGI module, rather than importing
the whole thing. In the case of CGI.pm, the :standard tag will probably be the one you
use most often. (It exports most of the commonly used subroutines in the module into
the namespace of your script.)

Most CGI scripts have two main parts: the initial part reads and processes any data you
got from the form or from the Web browser, and the second outputs a response, usually
in HTML form. In this example, because there isn’t any real processing to do, we can
skip directly to the output part.

20 0355 ch16 5/9/02 2:37 PM Page 413

The first thing you need to output is a special header to the Web server indicating the
kind of file you’re sending back. If you send back an HTML file, the type is text/html.
If you send back a plain text file, it’s text/plain. Send back an image, and it’s image/gif.
These file types are all standardized as part of the MIME specification, and if you get
into serious CGI scripting you’ll need to learn at least some of these. The most common
type, however, is text/html. CGI.pm provides a basic subroutine, print_header(), for
printing out the appropriate header for that type:

print header();

After the header, all the output you print will be in HTML format. You can either print
raw HTML tags or use CGI.pm’s Perl subroutines for generating HTML, or you can use
a combination of both. Because I know HTML fairly well, I like to use the CGI.pm sub-
routines where it will save me some typing, and regular print statements for everything
else. Here’s the remainder of our simple CGI script:

print start_html(‘Hello!’);
print “<h1>Hello, “, param(‘name’), “!</h1>\n”;
print end_html;

The first line calls CGI.pm’s start_html() subroutine, which prints the top part of an
HTML file (the <html>,<head>,<title>, and <body> tags). The string argument to
start_html() is the title of the page. There are also other arguments you can give this
subroutine to set the background color, keywords, and other features of the header (more
about that in the next section).

The second line is a regular print statement, which prints an HTML heading (<h1> tag)
to say hello. In between the opening and closing tags, however, is the interesting part.
The param() subroutine, part of CGI.pm, is how you get to the information that your user
entered into the form. You use param() with the name of the form element (from the
name attribute of the element’s HTML tag), and it returns the value the user entered for
that element. By calling param(‘name’) here, we get the string the user entered into the
one text field on our form, and we can use that value to generate the response.

The third line is another CGI.pm subroutine that simply prints out the closing bits of
HTML (</body> and </html>), finishing up the response. Here’s the complete script, all
put together:

#!/usr/local/bin/perl -w
use strict;
use CGI qw(:standard);

print header;
print start_html(‘Hello!’);
print “<h1>Hello, “, param(‘name’), “!</h1>\n”;
print end_html;

414 Day 16

20 0355 ch16 5/9/02 2:37 PM Page 414

Using Perl for CGI Scripting 415

16

You might have noticed that we’re not doing anything special as far as output is concerned;
we’re just using simple print statements. And yet, the output doesn’t go to the screen; it
goes back to the browser. A CGI script is a prime example of how standard input and
output don’t necessarily have to be the keyboard or the screen. CGI scripts do read their
input from the standard input, and output to the standard output. Except in this case the
standard input and output is the Web server. You don’t have to do anything special to deal
with that server; the standard ways work just fine.

So what is the output? If the user entered “Fred” into the form, the output of the CGI script
will look like this, with the header and the HTML data in place:

Content-Type: text/html; charset=ISO-8859-1

<?xml version=”1.0” encoding=”utf-8”?>
<!DOCTYPE html

PUBLIC “-//W3C//DTD XHTML Basic 1.0//EN”
“http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” lang=”en-
US”><head><title>Hello!</title>
</head><body><h1>Hello, Fred!</h1>
</body></html>

That data will get passed over the standard output to the Web server, which in turn will
pass it back to the Web browser that Fred is running.

Testing the Script
Before actually installing the script on your Web server, it’s helpful to be able to test it to
make sure you haven’t made any obvious errors. Using CGI.pm, you can run a CGI script
from the command line to test it, like this:

% name.pl
(offline mode: enter name=value pairs on standard input)

After that line, you can enter sample form input as a name=value pair. For example, for
the Hello form the name is “name” and the value would be a sample name (like “Fred”),
so you’d type:

name=Fred

You don’t have to include quotes unless the input has spaces in it. After you’ve entered
your name and value pairs, hit Ctrl-D (Ctrl-Z on Windows) to end the standard input.
The script will then run as if it had received that input from the form, and output the
result to the screen.

20 0355 ch16 5/9/02 2:37 PM Page 415

Alternatively, you can also enter the names and values as arguments to the script’s
command line:

% name.pl name=Fred

The script will then use those name=value pairs as the input, and not prompt you for more.

When you’ve verified your CGI script works as you expect, the final step is to install it
on your Web server. Installation might involve putting the script in a special directory
called cgi-bin, renaming it with a .cgi extension, or indicating by some other method
to the Web server that your script is a CGI script. (Again, this varies from server to server,
so see the docs that came with your server to figure it out). You may also need to make
sure the script is executable or to give it special user permissions. And, finally, you’ll
need to modify the original HTML file to point to the actual location of the script.

With all that out of the way, you should then be able to bring up the HTML for the form,
fill in a name, click the Submit button, and have the CGI script give you a response.
Figure 16.3 shows the response as a Web page.

416 Day 16

FIGURE 16.3.
Hello, the response.

Developing CGI Scripts with CGI.pm
The core of any CGI script is the CGI.pm module. While you can write CGI scripts using
raw Perl, or using various other CGI libraries out there, CGI.pm is available as part of the
Perl distribution, is well-supported and robust, runs across platforms, and gives you just
about any feature you might want as you work with CGI. Working without it will make
your CGI-scripting life much harder.

In the preceding section, I showed you a really simple example of using CGI.pm. Let’s
explore the features of this module in more detail in this section, so you know the sorts
of things you can do with it.

20 0355 ch16 5/9/02 2:37 PM Page 416

Using Perl for CGI Scripting 417

16

Using CGI.pm
To use CGI.pm in your Perl scripts, you import it like you do any module. CGI.pm has
several import tags you can use, including the following:

• :cgi imports features of CGI protocol itself, including param()

• :html2 imports features to help generate HTML 2 tags including start_html()
and end_html()

• :form imports features for generating form elements

• :standard imports all the features from :cgi, :html2, and :form.

• :html3 imports features from HTML 3.0

• :netscape imports features from Netscape’s version of HTML

• :html imports all the features from :html2, :html3, and :netscape.

• :all imports everything

CGI.pm is implemented such that you can use it in an object-oriented way (using a CGI
object and calling methods defined for that object), or by calling plain subroutines. If you
use any of the preceding import tags, you’ll have those subroutine names available to you
in your script. If you just use CGI without any import tags, it’s assumed you’ll be using
the object-oriented version of CGI.

Processing Form Input
The most significant feature that CGI.pm gives you is that it handles the CGI-encoded
form input that the Web browser sends to the Web server and the server passes on to the
script. This input comes from the browser in a special encoded form, sometimes on the
standard input and sometimes as keyword arguments, with nonalphanumeric characters
encoded in hex. If you were writing a raw CGI processor you’d have to deal with all that
decoding yourself (and it’s not pretty). By using CGI.pm you can avoid all that stuff and
deal solely with the actual input values, which is what you really care about.

The input you get from a form is composed of key/value pairs, where the key is the name
of the form element (as indicated by the name attribute in HTML), and the value is the
actual thing the user typed, selected, or chose from the form when it was submitted. The
value you actually get depends on the form element—some values are a string, as with
text fields; others might be simply yes or no, as with check boxes. Pop-up menus and
scrolling lists created with the HTML <select> tag (or check box groups) might have
multiple values.

20 0355 ch16 5/9/02 2:37 PM Page 417

The CGI.pm module stores these keys and values in a parameter array. To get at them you
use the param() subroutine. Without any arguments, param() returns a list of keys in the
parameter array (the names of all the form elements). This is mostly useful to see whether
the form was filled out in the case where the CGI script generates both the initial HTML
page and the result. You could also call param() without any arguments if you were
printing out all the keys and values on the form for debugging purposes, like this:

foreach $key (param()) {
print “$key has the value “, param($key), “\n”;

}

Note that the order of the parameters in the array is the same order in which the browser
sent them, originally, which in many cases will be the same order in which they appear
on the page. However, that behavior isn’t guaranteed, so you’re safest referring to each
form element explicitly if you’re concerned about order.

The param() subroutine with a form element name as an argument returns the value of
that form element, or undef if there’s no submitted value for that form element. This is
probably the way you’ll use param() most often in your own CGI scripts. The key you
use as the argument to param() must match the name of the form elements in the HTML
file exactly—to get to the value of a text field defined <INPUT NAME=”foozle”> you’d
use param(‘foozle’). Most of the time you’ll get back a single scalar value, but some
form elements that allow multiple selections will return a list of all the possible selec-
tions. It’s up to you to handle the different values you get from a form in the CGI script.

Generating HTML
The bulk of a CGI script is often taken up mostly by generating the HTML for the
response. The scripts we write for handling CGI will probably have more print state-
ments than any other scripts we’ve written so far.

To generate HTML output, you simply print lines of output to the standard output as you
would in any other script. You have a number of options for doing this:

• Using individual print statements

• Using “here” documents

• Using shortcut subroutines from CGI.pm

Output with print
The first way is simply to use print with the bit of HTML to output, as you’ve been
doing all along, like this:

print “<html><head><title>This is a Web page</title></head>\n”;
print “<body bgcolor=\”white\”>\n”;
and so on

418 Day 16

20 0355 ch16 5/9/02 2:37 PM Page 418

Using Perl for CGI Scripting 419

16

Output with Here Documents
While print statements work fine, they can get somewhat unwieldy, particularly when
you have a lot of print and you have to deal with nested quotation marks (as with the
“white” value in the preceding example). If you have a block of HTML to print pretty
much verbatim, you can use a Perl feature called a here document. Awkward name, but
what it means is simply “print everything up to here.” A here document looks something
like this:

print <<EOF;
These lines will be printed
as they appear here, without the need
for fancy print statements, “escaped quotes,”
or special newline characters. Just like this.
EOF

That bit of Perl code results in the following output:

These lines will be printed
as they appear here, without the need
for fancy print statements, “escaped quotes,”
or special newline characters. Just like this.

In other words, the text outputs pretty much exactly the same way the text appears in the
script. The initial print line in the here document determines how far to read and print
before stopping, using a special code that can be either a word that has no other meaning
in the language, or a quoted string. Here I used EOF, which is a nice, short, common
phrase and easy to pick out from the rest of the script.

The quotes you use around that word, if any, determine how the text inside the here doc-
ument is processed. A single word, like the EOF we used above, allows variable interpo-
lation as if the text inside the here document were a double-quoted string. The same is
true if you use a double-quoted word (“EOF”). A single-quoted word (‘EOF’) suppresses
variable interpolation just as it does in a regular single-quoted string.

The end of the here document is that same word or string that started the here document,
minus the quotes, on a line by itself with no leading trailing characters or whitespace.
After the ending tag you can start another here document, go back to print, or use any
other lines of Perl code that you like.

For more information on using here documents, see the perldata man page.

Output with CGI.pm Subroutines
The third way to generate HTML in a CGI script is to use CGI.pm’s subroutines for doing
so. Most HTML tags have equivalent Perl subroutines in CGI.pm, and the CGI.pm subrou-
tines have the advantage of letting you insert variable references (through double-quoted

20 0355 ch16 5/9/02 2:37 PM Page 419

strings) and to generate things like form elements quickly. In addition, CGI.pm has the
start_html() and end_html() subroutines to print the top and bottom of an HTML file,
respectively. All the HTML generation subroutines return strings; you’ll need to use them
with a print to actually print them.

Some subroutines generate one-sided tags that take no arguments (p() and hr(), for
example, which generate <p> and <hr> tags, respectively). Others create opening and
closing tags, in which case they take one or more string arguments for the text in between
the opening and closing tags. You can nest subroutines inside other subroutines:

h1(‘This is a heading’); # <H1>This is a heading</H1>
b(‘Bold’); # Bold</n>
some bold and some <i>italic</i>
b(‘some bold and some’, i(‘italic’));
ol(
li(‘item one),
li(‘item two’),
li(‘item three’),

);

If the HTML tag takes attributes inside the tag itself, indicate those using curly brackets
{} and the name and value of the attribute separated using => (as with hashes):

a({href=>”index.html”, name=>”foo”}, “Home Page”);
Home Page

Most every HTML tag you can use in an HTML file is available as a subroutine, although
different tags might be available at different times depending which group of subroutines
you import in your use CGI line. CGI.pm has a particularly robust set of subroutines for
generating other form elements. I won’t go through all of them here; if you’re interested,
see the documentation for CGI.pm.

Debugging the Result
You’ve already seen, in the Hello example, one of the ways to debug your scripts before
you install them by entering your CGI input as name=value pairs either on the script
command line or as standard input. This mechanism can be invaluable in fixing the smaller
errors that creep up as you’re writing your CGI scripts. By running the script from the
command line you can also use the Perl debugger to make sure your script is running
right before you install it.

There comes a time, however, when you need to install the CGI script and run it in place
to make sure that it’s working right. When it’s installed, however, it can be difficult to
debug because errors tend to get reported to the browser with unhelpful messages like
Server Error 500, or to the error logs without any kind of identifier or timestamp to
figure out which errors are yours.

420 Day 16

20 0355 ch16 5/9/02 2:37 PM Page 420

Using Perl for CGI Scripting 421

16

That’s where the CGI::Carp module comes in. CGI::Carp comes with CGI.pm, although
as with the latter module it should also be part of your standard Perl distribution (make
sure you look for it in the CGI subdirectory of Perl’s lib directory; there’s also a regular
Carp module that’s related, but not the same thing). Carp is used to generate error mes-
sages for CGI scripts, which can be useful for debugging those scripts. In particular, the
fatalsToBrowser keyword can be very useful for debugging because it prints any Perl
errors in the CGI script as an HTML response, which are then displayed in response to
the form submission in the browser that called the form in the first place. To echo these
errors to the browser, include a use line at the top of your script like this:

use CGI::Carp qw(fatalsToBrowser);

Even if you don’t use fatalsToBrowser, the CGI::Carp module provides new definitions
of the warn() and die() functions (and adds the croak(), carp(), and confess() sub-
routines) such that errors are printed with sensible identifiers and appear in the errors
logs for your Web server. (See the documentation for the standard Carp module for infor-
mation on croak(), carp(), and confess()). CGI::Carp is quite useful for debugging
your CGI scripts in place.

An Example: Survey
Our Hello World example earlier might have given you a taste of how CGI scripts work,
but it was too simple to be of much use. Here’s a much more complex script that handles
a Web-based survey. The script keeps track of all the survey for the data, handling the
input from the current form and generating tables of results based on all the data submitted
so far. Figure 16.4 shows our simple survey.

FIGURE 16.4.
A simple Web survey.

20 0355 ch16 5/9/02 2:37 PM Page 421

After filling out the survey, the CGI script processes the input, adds it to the data already
received, and generates a set of tables, shown in Figure 16.5.

422 Day 16

FIGURE 16.5.
The Web survey
results

All the data from the survey is stored in a separate file on the Web server. You’ll open,
read, and write that data file as part of the CGI script to process the form.

The Form
Let’s start with the HTML for the form, just to point out the values that you’ll be working
with in the CGI script. Listing 16.2 shows that HTML code:

LISTING 16.2 survey.html

<html>
<head>

<title>Quick Survey</title>
</head>
<body>
<h1>Please take our survey!</h1>
<form action=”/cgi-bin/survey.pl”>
<p>Age:

<input type=”radio” name=”age” value=”under18” />Under 18

<input type=”radio” name=”age” value=”18to34” />18-34

20 0355 ch16 5/9/02 2:37 PM Page 422

Using Perl for CGI Scripting 423

16

<input type=”radio” name=”age” value=”35to50” />35-50

<input type=”radio” name=”age” value=”50plus” />50+
</p>
<p>Sex:

<input type=”radio” name=”sex” value=”male” />Male

<input type=”radio” name=”sex” value=”female” />Female
</p>
<p>Are you a Perl programmer?

<input type=”radio” name=”perl” value=”yes”>Yes

<input type=”radio” name=”perl” value=”no”>No
<p><input type=”submit” value=”Submit my Results” /></p>
</form>
</body>
</html>

There are only a few important things to note about this HTML code. Here, instead of a
text field like we had in the last example, we’re using groups of radio buttons. Note that
each group has the same name (for example, all four radio buttons in the age group are
named “age”). This prevents more than one button from being selected at one time. It
also means that when you get the input from your script, only one value from each group
will appear. You’ll have to test for the existence of each one to find out which one was
selected.

The Script
The CGI script to process this form accomplishes four main things:

• It opens and reads the survey data file into a hash.

• It processes the input from the form, adding the new data to the old data.

• It writes out the new data to the file again.

• It generates HTML for the output, containing tables generated from the current
survey data.

Listing 16.3 shows the code for our CGI script, called survey.pl.

LISTING 16.3 The survey.pl Script

1: #!/usr/local/bin/perl -w
2: use strict;
3: use CGI qw(:standard);
4:
5: my $results = ‘survey_results.txt’;
6: my %data = ();

LISTING 16.2 continued

20 0355 ch16 5/9/02 2:37 PM Page 423

7: my $thing = ‘’;
8: my $val = 0;
9:
10: open(RESULTS, $results) or die “Can’t open results file: $!”;
11: while (<RESULTS>) {
12: ($thing, $val) = split(‘ ‘);
13: $data{$thing} = $val;
14: }
15: close(RESULTS);
16:
17: # overall total
18: $data{total}++;
19: # handle age
20: if (!param(‘age’)) { $data{age_na}++ }
21: else {
22: if (param(‘age’) eq ‘under18’) { $data{age_under18}++; }
23: elsif (param(‘age’) eq ‘18to34’) { $data{age_18to34}++; }
24: elsif (param(‘age’) eq ‘35to50’) { $data{age_35to50}++; }
25: elsif (param(‘age’) eq ‘50plus’) { $data{age_50plus}++; }
26: }
27:
28: # handle sex
29: if (!param(‘sex’)) { $data{sex_na}++ }
30: else {
31: if (param(‘sex’) eq ‘male’) { $data{sex_m}++; }
32: elsif (param(‘sex’) eq ‘female’) { $data{sex_f}++; }
33: }
34:
35: # perl
36: if (!param(‘perl’)) { $data{perl_na}++ }
37: else {
38: if (param(‘perl’) eq ‘yes’) { $data{perl_y}++; }
39: elsif (param(‘perl’) eq ‘no’) { $data{perl_n}++; }
40: }
41:
42: open(RESULTS, “>$results”) or die “Can’t write to results file: $!”;
43: foreach $thing (keys %data) {
44: print RESULTS “$thing $data{$thing}\n”;
45: }
46: close(RESULTS);
47:
48: print header;
49: print start_html(‘Thank you’);
50: print <<EOF;
51: <h1>Thank you for filling out our survey!</h1>
52: <p>Our results so far:
53: <p>Sex:
54: <table border=”1”><tr><th>Male</th><td>
55: EOF
56:

424 Day 16

LISTING 16.3 continued

20 0355 ch16 5/9/02 2:37 PM Page 424

Using Perl for CGI Scripting 425

16

57: print &percent(‘sex_m’), “</td></tr>\n”;
58: print “<tr><th>Female</th><td>\n”;
59: print &percent(‘sex_f’), “</td></tr>\n”;
60: print “<tr><th>No Answer</th><td>\n”;
61: print &percent(‘sex_na’), “</td></tr>\n”;
62: print “</table>\n”;
63:
64: print “<p>Age:\n”;
65: print “<table border=\”1\”><tr><th>Under 18</th><td>\n”;
66: print &percent(‘age_under18’), “</td></tr>\n”;
67: print “<tr><th>18 to 34</th><td>\n”;
68: print &percent(‘age_18to34’), “</td></tr>\n”;
69: print “<tr><th>35 to 50</th><td>\n”;
70: print &percent(‘age_35to50’), “</td></tr>\n”;
71: print “<tr><th>Over 50</th><td>\n”;
72: print &percent(‘age_50plus’), “</td></tr>\n”;
73: print “<tr><th>No Answer</th><td>\n”;
74: print &percent(‘age_na’), “</td></tr>\n”;
75: print “</table>\n”;
76: print “<p>Perl Programmer?\n”;
77: print “<table border=\”1\”><tr><th>Yes</th><td>\n”;
78: print &percent(‘perl_y’), “</td></tr>\n”;
79: print “<tr><th>No</th><td>\n”;
80: print &percent(‘perl_n’), “</td></tr>\n”;
81: print “<tr><th>No Answer</th><td>\n”;
82: print &percent(‘perl_na’), “</td></tr>\n”;
83: print “</table>\n”;
84:
85: print end_html;
86:
87: sub percent {
88: if (defined $data{$_[0]}) {
89: return sprintf(“%.1f%%”, $data{$_[0]} / $data{total} * 100);
90: }
91: else { return ‘0%’; }
92: }

I’m not going to go through this script line by line because much of this is code you’ve
seen in a similar form before (and a whole lot of it is just print statements). Here are
some of the important parts to note, however.

The name of the survey data file is stored in the $results variable in line 10. Here, that
file is assumed to be in the same directory as the CGI script itself; you’ll need to set the
pathname to the appropriate location for your script. That file consists of a set of data
keys for each choice in the survey, as well as “na” keys for no answer. Each key has a
value for the number of “votes” submitted. Lines 10 through 15 open and read that data
file into the %data hash, closing it again immediately afterward.

LISTING 16.3 continued

20 0355 ch16 5/9/02 2:37 PM Page 425

Lines 17 through 41 process the input from the form in groups, corresponding to each
group of radio buttons in the HTML file (age, sex, and perl). Note that for each group,
you have to test to see if there was no answer (in which case, there won’t be a key for
that group in the param() array CGI.pm gives you). If there was a vote, we’ll increment
the value of that key in the data hash. We also keep track of the overall total (line 16),
which we’ll need to calculate the percentages for the final output.

After we’re done processing the data, we can write out the new data file to that same
file, one data key and value per line, separated by a space. The actual order of the keys
doesn’t matter because they’ll just be re-read by the script again into a hash. A simple
foreach loop in lines 44 and 45 will print the new values to the results file (which we
reopened for writing in line 43).

The second half of the script prints the output to the survey so the user can get a
response from the survey. Starting from line 49 we print the output starting with the
header (line 49), the beginning of the HTML file (line 50), and some boilerplate HTML
printed with a here document in lines 51 through 56.

Line 58 is where things start getting interesting. The rest of the HTML file consists of
tables that show the current results of the survey. Much of the printing here involves the
HTML code for the tables, but the final percentages are calculated using a help subrou-
tine we defined called &percent(). The &percent() routine, defined in lines 89 through
94, generates a percent string based on the value it’s given divided by the total number
of responses. It also makes sure that the given data key actually has a value (if it’s zero,
it won’t even appear in the %data hash). And, finally it formats the percentage with one
decimal point and a percent sign using the sprintf function (note that because of the
sprintf formatting codes, if you want to print an actual percent sign, you have to type
it as %%).

426 Day 16

The results file—here, located in the same directory as the CGI script—must
be writeable by the Web server. On Unix, that means the file must have the
right permissions so that the user or group ID the Web server runs under
(usually nobody) can write to it. On Windows that means your security must
also be set accordingly. If you run into “can’t write to results file” errors
when you run this script under a Web server (that didn’t happen when you
ran it with regular Perl), check your file permissions.

Note

20 0355 ch16 5/9/02 2:37 PM Page 426

Using Perl for CGI Scripting 427

16

Going Deeper
As I mentioned at the beginning of this lesson, I could easily go on for pages and pages
and chapters and chapters about all the different aspects of CGI. Documenting all of CGI.pm
itself would give us a much larger lesson than I’ve got here. There are a few other features
of CGI.pm I’d like to mention, however. All of these features are documented in the docu-
mentation for CGI.pm (perldoc CGI will show it to you), as well as in the Web page at
http://stein.cshl.org/WWW/software/CGI/.

If you need further details about CGI itself, feel free to visit the Web pages or to read
the book I mentioned at the beginning of this lesson. The Usenet newsgroup
comp.infosystems.www.authoring.cgi can also provide assistance in getting your
CGI scripts to work on different platforms.

Using CGI Variables
When your CGI script gets called, along with the data from the browser, the Web server
also provides several values in its environment that relate to the script itself, to the Web
server, and to the system running the browser that submitted the form in the first place.
On Unix systems, these are environment variables that you can access from inside your
Perl script using the %ENV hash. Other Web servers may have different ways of passing in
these variables. However, CGI.pm provides subroutines to access these variables in a way
that works across platforms and Web servers. You aren’t required to use any of these sub-
routines in your CGI scripts, but you might find the data useful.

Table 10.1 shows the CGI variable subroutines for CGI.pm.

TABLE 10.1 CGI Variable Subroutines

Subroutine What it Gives You

accept() A list of MIME types the browser will accept.

auth_type() The authentication type (usually ‘basic’).

path_info() Path information encoded into the script URL (if used).

path_translated() Same as path_info() expanded into a full pathname.

query_string() Arguments to the CGI script tagged on to the URL.

raw_cookie() Returns raw cookie information. Use the cookie() subroutines to manage
this information.

referer() The URL of the page that called this script (note the incorrect spelling).

remote_addr() The IP address of the host that called this script (the browser’s host).

remote_ident() The user’s ID, but only if the system is running ident (not common).

remote_host() The name of the host that called this script.

20 0355 ch16 5/9/02 2:37 PM Page 427

TABLE 10.1 continued

Subroutine What it Gives You

remote_user() The name of the user that called this script (usually only set if the user has
logged in using authentication).

request_method() The Web server method the script was called with (for example, GET or POST).

script_name() The name of the script.

server_name() The host name of the Web server that called this script.

server_software() The name and version of the Web server software.

virtual_host() For servers that support virtual hosts, the name of the virtual host that is
running this script.

server_port() The network port the server is using (usually 80).

user_agent() The browser name and version that called this script, for example
Mozilla/4.x (Win95).

user_name() The name of the user who called this script (almost never set).

POST Versus GET
CGI scripts can be called by a browser in one of two forms: POST and GET. GET submis-
sions encode the form elements into the URL itself; POST sends the form elements over
the standard input. GET can also be used to submit a form without actually having a form—
for example, you could have a link in which the URL contained the hard-coded form ele-
ments to submit.

Inside your CGI script, CGI.pm will process both these kinds of methods and store them
in the parameters array, so you don’t have to worry about which method was used to sub-
mit the script. If you really want to get the parameters from the URL, use url_param()
instead of param().

Redirection
Sometimes the result of a CGI script isn’t a raw HTML file, but rather a pointer to an
existing HTML file on this server or elsewhere. CGI.pm supports this result with the
redirect() subroutine:

print redirect(‘http://www.anotherserver.com/anotherfile.html’);

The redirect tells the user’s browser to retrieve a specific page on the Web, rather than to
display any HTML. Because a CGI script that uses redirect doesn’t create a new Web
page, you should not combine a redirect and any HTML code in the output from a CGI
script.

428 Day 16

20 0355 ch16 5/9/02 2:37 PM Page 428

Using Perl for CGI Scripting 429

16

Cookies and File Upload
CGI.pm also enables you to manage cookie values and to handle files that get uploaded
via the file upload feature of HTML forms. For managing cookies, see the cookie() sub-
routine in CGI.pm. File upload works similarly to ordinary form elements; the param()
subroutine is used to return the filename that was entered in the form. That filename is
also a filehandle that is open and which you can read lines from using the standard Perl
mechanisms.

See the CGI.pm documentation for information on both these things.

CGI Scripts and Security
Every CGI script is a potential security hole on your Web server. A CGI script runs on
your server based on input from any random person out on the Web. Depending on how
carefully you write your scripts and how determined someone is, your CGI scripts could
offer openings up to and including allowing malicious users to break into your system
and irreparably damage it.

The best way to prevent a problem is to understand it and take steps to avoid it. A great
starting point is at the World Wide Web security FAQ at http://www-genome.wi.mit.edu/
WWW/faqs/www-security-faq.html. Perl also includes a feature, called taint mode,
which prevents you from using nonsecure data in a way that could do harm to your
system. More about taint mode on Day 20, “Odds and Ends.”

Embedding Perl in Web Servers
Each time a Perl CGI script is called from a Web server, Perl is called to execute that
script. For very busy Web servers, running lots and lots of CGI scripts can mean running
many copies of Perl at once, and a considerable load for the machine acting as the Web
server. To help with performance, many Web servers provide a mechanism for embedding
the Perl interpreter inside the Web server itself, so that scripts that run on Web servers no
longer run as actual CGI scripts. Instead, they run as if they were Web server libraries,
reducing the overhead and startup time for each script. In many cases, you don’t even
have to modify your CGI scripts to get them to work under this system.

Different Web servers on different platforms provide different mechanisms for doing this.
You’ll need to check the documentation that comes with your Web server to see if Perl-
based CGI scripts can be embedded, and if so, where to get the tools or modules to
embed them.

20 0355 ch16 5/9/02 2:37 PM Page 429

If you’re using an ISAPI-based Web server on Windows (such as IIS), you’ll need the
Perl for ISAPI package (sometimes called PerlIIS). This package is part of ActiveState’s
version of Perl for Windows, and is installed with that package. You can also get it sepa-
rately from ActiveState’s Web site at http://www.activestate.com.

If you’re using the open source Apache Web server, mod_perl is an Apache module that
embeds the Perl interpreter in the Apache Web server. While the most obvious feature
this gives you is better CGI performance, it also allows you access, with Perl, to all of
Apache’s internal extension APIs, allowing almost infinite customization of the Web server
itself. Find out more about the Apache Web server at http://www.apache.org, and the
Apache/Perl Integration Project, the developers of mod_perl, at
http://perl.apache.org.

If you want to run CGI scripts under mod_perl, you should use the Apache::Registry
module, which is designed for porting scripts that use CGI.pm to the mod_perl environ-
ment. You can read the documentation for the module at http://www.perldoc.com/
cpan/Apache/Registry.html.

Summary
Not everything to do with Perl has to involve long and involved scripts with lots of sub-
routines. Sometimes the most useful things in Perl can be done using modules with a little
glue code to get the result you want. CGI is a terrific example of this; the CGI.pm module
covers up most of the gritty parts of CGI scripting and makes it easy to get the values
from a form or other CGI submission and return an HTML file as the result.

Today you learned something about using Perl for CGI, including how CGI works from
the browser to the server to the script and back again; how CGI.pm can be imported and
used in your script, and how to use its various features to make your life with CGI more
pleasant. We also explored a couple of CGI examples: a survey form that keeps track of
the survey data in an external file, and a color-generation script that is its own form and
which maintains the current form values each time the form is regenerated. I can’t guar-
antee that this lesson has given you everything you need to create CGI scripts (because it
hasn’t), but hopefully it’s given you a starting point from which you can work.

The subroutines you’ve learned about in this lesson are all part of the CGI.pm module,
and include

• param() gets the parameters that were given to the CGI script, usually as part of a
form submission. param() with no arguments returns a list of the keys (form ele-
ment names) available; param() with a key argument returns the value for that key.

430 Day 16

20 0355 ch16 5/9/02 2:37 PM Page 430

Using Perl for CGI Scripting 431

16

• print header() prints the CGI header for the output. The print_header() sub-
routine without any arguments assumes the output will be in HTML format.

• start_html() returns the top part of an HTML page, including the <html>, <head>,
<title> and <body> tags. Different arguments to the start_html() tag will generate
different values for the HTML (for example, a single string argument will set the
title of the page.

• end_html() generates closing </body> and </html> tags for the output.

Q&A
Q. I’ve seen a number of CGI scripts written in Perl that don’t use CGI.pm; they

use other libraries like cgi-lib.pl. Are those bad scripts that should be fixed?

A. Not necessarily. There are a number of libraries floating around the Web for man-
aging CGI scripts with Perl; cgi-lib.pl is one of the more popular ones. There’s
nothing wrong with using those other libraries. I chose to use CGI.pm for this les-
son because it’s become the standard for using Perl with CGI, it’s a well-behaved
module and follows the standard module conventions, it’s object-oriented if you
choose to use it that way and, most importantly, it’s available as part of the stan-
dard Perl distribution. This gives it significant advantages over other libraries.

If you have a script that uses cgi-lib.pl, but you don’t actually have the cgi-
lib.pl library, you can use CGI.pm to emulate it. You just replace these lines:
require “cgi-lib.pl”;
ReadParse();

with these:
use CGI qw(:cgi-lib);
ReadParse();

Q. My CGI scripts work from the command line, but don’t work when I try them
from a Web page. What am I doing wrong?

A. With all the different platforms and Web servers out there, there’s no one single
answer to this question. Is the script executable? Is the place where you put your
script an “official” CGI location according to your server (usually a special
cgi-bin directory or something like it)? Does your script have the right permis-
sions (Web servers run CGI scripts as a special user with limited permissions)? Are
you sure you even have a Web server running on your machine?

The list of Web sites I gave you earlier in the lesson have ideas and suggestions for
debugging CGI scripts.

20 0355 ch16 5/9/02 2:37 PM Page 431

Q. My Web site is stored on a Unix machine. I can run CGI scripts there. But I’d
like to write and debug my CGI scripts on my Windows machine at home so I
don’t have to be logged in all the time. Can I do this?

A. Through the wonder of cross-platform Perl and the CGI.pm module, you certainly
can. You’ll need a Web server running on your Windows system—hopefully one
similar or identical to the one running on your Unix machine—but then you can
install and debug and run CGI scripts locally all you want. (There’s a version of
Apache available for Windows, you can download it at http://httpd.apache.org.)
Watch out for differences in paths to files, and differences in how different servers
deal with CGI. Try to keep things simple, and you should need little work to get
your scripts to run on Unix.

Q. I modified the survey file to be used with a guestbook-like script, which allows
people to post comments to a Web page. But I’m having problems where if
multiple people post to the Web page at once, sometimes the file gets written
to before the other one is done, and the comments get lost or weird things
happen. What’s going on here?

A. The survey example here demonstrates basic CGI scripting in the technical sense;
for real production Web sites you’ll need to go a little deeper (I recommend the
Web sites I mentioned earlier, or another book). In particular, if you’ve got an
external file that will potentially be written to by multiple users at once—as any
CGI script might—you’ll want to “lock” the file before writing to it, and then
release the lock after you’re done. This could be as easy as creating another tempo-
rary file, called, for example, survey.lock. In your script, before actually writing
to the survey results file, you would:

• Check to see if the lock file exists. If it does, someone else is writing to the
file. Wait a little bit (check out the sleep function for this) and try again.

• When the file is free, set the lock file yourself.

• Write the data.

• Unlock the file.

Workshop
The workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience in using what you’ve learned. Try
to understand the quiz and exercise answers before you go on to tomorrow’s lesson.

432 Day 16

20 0355 ch16 5/9/02 2:37 PM Page 432

Using Perl for CGI Scripting 433

16

Quiz
1. What does CGI stand for? What’s it used for?

2. What does the CGI.pm module give you? How do you get it and use it?

3. Why would you want to run a CGI script on the command line before trying to run
it via a Web page?

4. How do you use the param() subroutine?

5. List three ways to print HTML code as output for your CGI script.

6. Why is a here document sometimes more useful than print?

Exercises
1. Write a CGI script that prints the form elements it was submitted with as a bulleted

list. HINT: bulleted lists in HTML look like this:

One item
Two items
Three items

Another hint: param() without any arguments gives you a list of all the form ele-
ment names the script was submitted with.

2. BUG BUSTER: What’s wrong with this bit of script?
if (!param()) { $data{sex_na}++ }
else {

if (param() eq ‘male’) { $data{sex_m}++; }
elsif (param() eq ‘female’) { $data{sex_f}++; }

}

3. Write a CGI script that prints a simple HTML page (a hello world is fine) but also
keeps track of how many times the page has been accessed and prints that value on
the page as well.

4. Write a CGI script to implement a very simple guestbook-like feature that allows
users to post one-line comments to a Web page. Keep track of all past postings.
You can assume the existence of an HTML form with two elements: a text field
called mail for the e-mail address of the poster, and a text field called comment for
comments.

20 0355 ch16 5/9/02 2:37 PM Page 433

Answers
Here are the answers to the Workshop questions in the previous section.

Quiz Answers
1. CGI stands for Common Gateway Interface, and refers to programs that run on the

Web server in response to requests from a Web browser (commonly from a form
on an HTML page).

2. The CGI.pm module provides behavior for writing, running, and debugging CGI
scripts. It provides a number of subroutines for managing input to and output from
those scripts as well as other utility subroutines for just about any aspect of CGI
you can think of.

The CGI.pm module is shipped with most current versions of Perl. If it is not
already available as part of your Perl distribution, you can download and install it
from the URL mentioned earlier in this lesson.

To use the CGI module, you import it like you do any other module: with use and
an import tag such as :standard or :all.

3. Running a CGI script from the command line is usually easier to find the smaller
syntax or basic errors you might have made without needing to install the script on
the Web server, connect to the Internet, and so on. By running the script on the
command line and giving it sample data, you can test your script before actually
putting it online.

4. The param() subroutine is used to find out the values of any form elements on the
Web page that called this script. Without any arguments, param() returns a list of
keys referring to the names of the form elements. With a key argument (a string),
param() returns the value associated with that form element.

5. You can print HTML code using one of these methods:

• Use regular print statements. Watch out for embedded quotes!

• Here document

• Various subroutines via the CGI.pm module.

6. Here documents provide a way to print a block of text verbatim: all newlines and
quotes are printed verbatim. Here documents provide a way for you to avoid a lot
of repetitive print statements or escaped quotation marks.

434 Day 16

20 0355 ch16 5/9/02 2:37 PM Page 434

Using Perl for CGI Scripting 435

16

Exercise Answers
1. Here’s one way to do it:

#!/usr /bin/perl -w
use strict;
use CGI qw(:standard);

my @keys = param();

print header;
print start_html(‘Hello!’);
print “<h1>Key/Value Pairs</h1>\n”;
print “\n”;

foreach my $name (@keys) {
print “$name = “, param($name), “\n”;

}
print “\n”;

print end_html;

2. The param() subroutine is called without any arguments. In some cases—such as
the one in Exercise 1—this may be exactly what you want to do. In this case, how-
ever, because the tests are looking for string values, param() should probably be
called with some sort of string argument to extract a value from the form parameters.

3. Here’s one way to do it (don’t forget to create count.txt beforehand):
#!/usr /bin/perl -w
use strict;
use CGI qw(:standard);

my $countfile = ‘count.txt’;
my $count = ‘’;

open(COUNT, $countfile) or die “Can’t open counter file: $!”;
while (<COUNT>) {

$count = $_;
}
close(COUNT);

$count++;

open(COUNT, “>$countfile”) or die “Can’t write to counter file: $!”;
print COUNT $count;
close(COUNT);

print header;
print start_html(‘Hello!’);
print “<h1>Hello, World</h1>\n”;
print “<p>This page has been visited $count times.</p>\n”;

print end_html;

20 0355 ch16 5/9/02 2:37 PM Page 435

4. Here’s one (particularly simple) way of doing it. This script assumes a file of past
comments, one per line, with the e-mail address first.

#!/usr/ bin/perl -w
use strict;
use CGI qw(:standard);

my $guestbook = ‘guest.txt’;
my $mail = ‘’; # email address
my $comment = ‘’; # comments

open(GUEST, $guestbook) or die “Can’t open guestbook file: $!”;

print header;
print start_html(‘Comments’);
print “<H1>Comments</H1>\n”;
print “<P>Comments about this Web site!\n”;
print “<HR>\n”;

while (<GUEST>) {
chomp();

($mail, $comment) = split(‘ ‘,$_,2);
if ($mail) {

if (!$comment) { $comment = “nothing\n”; }
else { print “<p><n>$mail says: $comment</p>”; }

}
}

$mail = param(‘mail’);
$comment = param(‘comment’);
print “<p>$mail says: $comment</p>\n”;

open(GUEST, “>>$guestbook”) or die “Can’t open guestbook file: $!”;
print GUEST “$mail $comment\n”;

print end_html;

436 Day 16

20 0355 ch16 5/9/02 2:37 PM Page 436

DAY 17

WEEK 3

Managing Files and
Directories

On Day 15, we covered dealing with reading and writing files inside a Perl script.
In today’s lesson, we’ll look at several other aspects of managing files—in
particular, dealing with various aspects of the file system itself from inside your
scripts. Here’s what you learn about today:

• Managing files: removing, renaming, copying and linking them, and
changing permissions

• Managing directories: navigating, creating, and removing them

• Getting the contents of directories with file “globs” (a way to indicate
groups of files quickly), and using directory handles.

Managing Files
In addition to simply reading from and writing to files, you can also manage
them from inside Perl, just as you might from a command line or in a file man-
ager: you can rename them, delete them, change their permissions, or create
links to them. Each of these tasks makes use of several Perl built-in functions.
In this section, you get an overview of each of these.

21 0355 ch17 5/9/02 2:37 PM Page 437

Renaming Files
To rename a file from one name to another, keeping its contents intact, use the rename
function with two arguments: the old name of the file and the new name:

rename myfile, myfile.bak;

If a file with the same name as the new file already exists, Perl will overwrite it. If you’re
used to Unix, this won’t be a problem. If you’re a Windows or Mac user, beware! There
are no checks to make sure you’re not overwriting an existing file. You might want to test
to make sure that the new file doesn’t exist (with one of the file tests, such as -e) before
you rename it.

The rename function returns 1 or 0 (true or false) depending on whether the rename was
successful or not. You (or the user running the script) must have the right file permissions
to rename the file.

Creating and Following Links
The Unix version of Perl also provides two functions for creating links between files: link
and symlink, which create hard and symbolic links, respectively (similar to the Unix
command ln(1)). Hard links are used to create a file with more than one name; if you
remove any of those names (including the original file), the file continues to exist as long
as there are multiple names for it. Symbolic links are pointers to other files; if you remove
the link, the file continues to exist, but if you remove the original file, the symbolic link will
no longer point to anything useful. Some Unix systems might not support symbolic links.

Use either the link or symlink functions with two arguments: the name of the original
file to link to, and the name of the new link. Take this example:

link file1, file2;

Both functions return 1 (true) or 0 (false) depending on whether they were successful or not.

Both hard and symbolically linked files are transparent to Perl; if you use open with a
filename that is actually a link, the original file will be opened instead. You can test to
see if a given file is a symbolic link with the -l file test, and then follow that link to its
original location with the readlink function:

if (-l $file) { # file is a link
$realfile = readlink $file; # get the real file

}

Note that readlink returns the location of the real file as a relative path to the symbolic
link, which means you might need to expand that path into a full path, or change directories
to the place where the symbolic link is able to use the original file’s path name. Changing
directories is covered later in this chapter.

438 Day 17

21 0355 ch17 5/9/02 2:37 PM Page 438

Managing Files and Directories 439

17

Using Perl for Windows? Neither hard nor symbolic links are available in Perl for Windows.
You can use the Win32::Shortcut module to create Windows Explorer shortcuts on
Windows.

Removing Files and Links
You’re done with a file, you’re sure you don’t need it anymore. How do you get rid of it?
Use the unlink function (despite its name, it’s used to remove both links and files). It
works much like the Unix command rm or the DOS command del; it does not move the
file to a trashcan or recycle bin like Windows or the Mac. When the file is removed, it’s
really removed. Be careful or you can easily delete files you actually wanted to be there.

unlink takes a list argument, which can be a single file or a list of files. It returns the
number of files it deleted:

unlink temp, config, foo;

Be aware that on some systems—Unix being the most obvious—Perl has no qualms
about deleting read-only files, so watch what you’re doing (the state of being read-only
actually determines whether the contents of the file can be changed, not whether or not
that filename can be moved or deleted).

The unlink function, when used on a hard link, removes that link. Other hard links to
the file will continue to exist. On a symbolic link, you’ll remove the link, but not the
original file. You can use readlink to follow any symbolic links. Note that removing a
file that has other symbolic links to it causes those symbolic links to point to nothing.

You cannot use unlink to remove directories; you’ll learn how to remove directories in
the section “Managing and Navigating Directories.”

Other Operations
I’m going to lump a number of other file-related functions together here, because these
operations tend to vary from platform to platform (or not to exist at all on Windows or
Mac). Table 17.1 shows some of the other file-management functions available on Unix
systems, all of which correspond to actual Unix commands. If you’re interested in running
any of the functions listed in Table 17.1, check the documentation for your particular ver-
sion of Perl to see if these functions are supported (or if the capabilities are supported
through other means such as platform-specific modules.)

For more information on any of these functions, see the perlfunc man page.

21 0355 ch17 5/9/02 2:37 PM Page 439

TABLE 17.1 Other File Management Functions

Function What It Means

chmod Change the permissions for the file (read, write, execute, for world, group or
owner). Windows and Mac have limited versions of this command that only
accept permissions of 0666 (read and write) and 0444 (read only or locked).

chown Change the owner of the file (Unix only).

fileno Return the file descriptor number for the file.

utime Change the timestamp for a file.

For managing file permissions and attributes on Windows and Windows NT, consider the
Win32::File and Win32::FileSecurity modules, which allow you to check and modify
file attributes and NT user permissions.

Managing and Navigating Directories
Just as you can work with files inside Perl as you might in a shell or command line, you
can also navigate around your file system and manage directories (or folders, depending
on your OS loyalties). You can find out the current directory, change the current directory,
list the contents of that directory or some subset of its files, and create or remove the
directories themselves. This section explains some of the nuances of performing these
operations with Perl.

Navigating Directories
Each Perl script has a notion of a current working directory, that is, the directory from
which the script was called (if you’re used to working with command line–based systems,
this is no surprise to you).To change the current directory from inside a Perl script, use
the chdir function:

chdir “images”;

As with the directory names in the open function, watch out for path names and different
systems. Relative paths, as in this example, are fine. This example changes the current
working directory to the images directory, which resides in the same directory in which
the script was originally called (whew!).

Is it possible to actually find out what directory you’re currently in? Yes, but it varies
depending on the system on which you’re running. In Unix, the back-quote operator can
execute the Unix pwd command to find out the current directory (you’ll learn more about
back-quotes on Day 18, “Perl and the OS”):

$curr =`pwd`;

440 Day 17

21 0355 ch17 5/9/02 2:37 PM Page 440

Managing Files and Directories 441

17

On Windows, the Win32::GetCWD function will give you the current working directory.
However, the best way to find out the current working directory—and the method that will
work across platforms—is to use the Cwd module, part of the standard library. The Cwd
module gives you a cwd function, which returns the current working directory (in fact,
cwd actually executes `pwd` on Unix, so you’re safe there as well):

use Cwd;
$cuur = cwd();

Listing Files
Perl provides two ways to get a list of files in a directory. The first, file globbing, gives
you a list of specific files matching a pattern. The second method, using the opendir and
readdir functions, allows you to get a complete list of all files in a directory.

File Globbing
The somewhat bizarrely named technique called file globbing enables you to get a list of
files in the current directory that match a certain, simple pattern. If you’ve used a command-
line system, and you’ve ever listed files using a pattern such as *.txt or *foo*, then
you’ve done file globbing (although you might not have known it was called that).

The term glob, in case you haven’t guessed, is borrowed from Unix. Never
use a simple word when a weird one works just as well.

Note

File globbing allows you to indicate a set of filenames using a *. Don’t confuse file globbing
with regular expressions—here, the * simply stands for any character (zero or more), and
it’s the only special character you can use. The result of a file glob is all the filenames in
the current directory that match the pattern: *.html will return all the filenames that end
with a .html extension, *foo* will return all the files with foo in their names, and so on.
You could then use those filenames to perform operations on each file in turn.

Perl has two ways of creating file globs: the <> operator, which looks like the input oper-
ator but isn’t, and the glob function.

To operator (file globbing)> (file globbing)> use the <> operator for file globs, put the
pattern inside the brackets:

@files = <*.pl>;

This expression, using <> in a list context, returns a list of all the files with a .pl extension.
If you use <> as a glob in a scalar context, you get each filename in turn, just like with
input (and if you stick it inside a while loop, each filename will get assigned to $_, just
like input as well).

21 0355 ch17 5/9/02 2:37 PM Page 441

So, for example, this snippet will print out a list of all the files in the current directory
that end with a .txt extension:

while (<*.txt>) {
print $_, “\n”;

}

Don’t confuse the <> operator for globbing with the <> operator for input—they might
look the same, but they behave differently. The latter needs a file handle as an argument
and reads the contents of that input file; the former returns the plain filename strings that
match the pattern in the current directory.

Because it’s so easy to confuse the use of <> for globbing and for input, there is also the
glob function, which makes globbing more apparent and less open to confusion:

@files = glob ‘*.pl’;

The result is the same; you end up with a list of files that end with the .pl extension (or
one at a time, in scalar context). The latter form is preferable to the former in modern
Perl scripts.

Directory Listings
The second way to get a listing of files in a directory is through directory handles, which
look and behave sort of like file handles, but only apply to directories. Reading with
directory handles gives you a list of all the files in a directory, including hidden files
starting with a dot (which file globs won’t give you), as well as . and .. for the current
and parent directories on Unix and Windows.

Just as you open and close file handles, so do you open and close directory handles using
the opendir and closedir functions. The opendir function takes two arguments: the
name of a directory handle—of your choosing—and the directory to open:

opendir(DIR, “.”) or die “Can’t open directory: $!\n”;

As with the open function, you should always check the result and fail gracefully with
the die function (the $! variable is helpful here as well).

The directory file handle (here DIR) follows all the same rules as a file handle in terms of
naming. Directory file handles are also entirely separate from file handles—you could
give both the same name and they would not conflict.

When the file handle is open, use readdir to read from it. As with the input operator <>,
readdir returns a single filename in scalar context, and a list of all the filenames in list
context. So, for example, this snippet will open the current directory (on Unix and
Windows, use “:” on Mac instead), and print a directory listing:

442 Day 17

21 0355 ch17 5/9/02 2:37 PM Page 442

Managing Files and Directories 443

17

opendir(CURR, “.”) or die “can’t open directory: $!\n”;
while (defined($file = readdir(CURR))) {

print “$file\n”;
}

Note that unlike the input operator <>, readdir does not assign anything automatically to
the $_ variable. You can do that yourself inside the while loop or just use a temporary
variable (as I’ve done here).

Readdir gives you a list of all the files and subdirectories in the directory. If you want
to screen out specific files (hidden files, . or ..), you’ll have to do that yourself with a
regular expression test.

When you’re finished with the directory handle, close it using the closedir function:

closedir(CURR);

Making and Removing Directories
You can also create new directories and remove unused directories from inside Perl using
the mkdir and rmdir functions.

The mkdir function takes two arguments: a directory (folder) name, and a set of permis-
sions. On Unix, the permissions refer to the standard permission bits from the chmod
command in octal format (0 plus three numbers 0 through 7). On Windows and the Mac,
the permissions argument is required but not useful; use 0777 as the permissions argu-
ment and you’ll be fine:

mkdir temp, 0777;

0777 is an octal number that refers to Unix permission bits for read, write,
and execute permissions for world, group, and owner. Windows uses differ-
ent forms of file and directory permissions, and doesn’t use the permissions
argument to mkdir (although you’ll need to put something in there, any-
how. 0777 is a good general purpose answer).

Note

The mkdir function creates the given directory in the script’s current working directory.
You can create directories in different locations using full path names, by changing the
current directory first, or if you want to get really fancy, check out the File::Path module,
part of the standard library, which enables you to create or remove whole subsets of
directories.

21 0355 ch17 5/9/02 2:37 PM Page 443

To remove a directory, use rmdir:

rmdir temp;

The directory must be empty (contain no files) for you to remove it.

An Example: Creating Links
Here’s a useful example I tend to use a lot in real life: Given a directory full of files that
are either GIF or JPEG images (that is, they have .gif, .jpeg, or .jpg extensions), this script
will generate an HTML file, called index.html, which contains nothing but links to each
of the files. This is a good way to get a whole lot of images up on the Web really quickly
without having to spend a lot of time creating HTML files (or it at least provides a basic
file you can then edit to make it read better).

The script I wrote for this task uses file handles to open and write to the index.html file,
directory handles to read the contents of the current directory, and file tests and regular
expressions to match the files we’re actually looking for. Listing 17.1 shows the result.

LISTING 17.1 The imagegen.pl Script

1: #!/usr/ bin/perl -w
2: use strict;
3: use Cwd;
4:
5: open(OUT, “>index.html”) or die “Can’t open index file: $!\n”;
6: &printhead();
7: &processfiles();
8: &printtail();
9:
10: sub printhead {
11: my $curr = cwd();
12: print OUT “<html>\n<head>\n”;
13: print OUT “<title>Image files in directory $curr</title>\n”;
14: print OUT “</head>\n<body>\n”;
15: print OUT “<h1>Image Files</h1>\n”;
16: print OUT “<p>”;
17: }
18:
19: sub processfiles {
20: opendir(CURRDIR, ‘.’) or die “Can’t open directory ($!), exiting.\n”;
21: my $file = “”;
22:
23: while (defined($file = readdir(CURRDIR))) {
24: if (-f $file and $file =~ /(\.gif|\.jpe?g)$/) {
25: print OUT “$file
\n”;
26: }

444 Day 17

21 0355 ch17 5/9/02 2:37 PM Page 444

Managing Files and Directories 445

17

27: }
28: closedir(CURRDIR)
29: }
30:
31: sub printtail {
32: print OUT “</p></body></html>\n”;
33: close(OUT);
34: }sub printtail {

print OUT “</p></body></html>\n”;
close(OUT);

}

We start by opening the output file (index.html) in line 5. Note the > character, which
indicates an output file handle.

The &printhead() subroutine, in lines 10 through 17, simply prints out the top part of an
HTML file. The only tricky part is the use of the current working directory in the title of
the page, which we get using the cwd() function (as imported from the Cwd module in
line 3). I didn’t bother using a “here” document to print out the HTML code; that would
have ended up being even more lines than are already here.

The &processfiles() subroutine (lines 19 through 29) is where the real work goes on.
Here, we open the current directory in line 20, and then loop over each filename in that
directory in the while loop in lines 23 through 26. The test in line 24 checks to see if the
file is an actual file and not a directory (the -f test), and uses a regular expression to only
operate on image files (those that have a .gif, .jpg, or .jpeg extension). If the current
file is indeed an image file, we print out a link to that file in line 25, using the filename
as the actual link text.

Note that using the filename as the link text doesn’t make for very descriptive links—you
could end up with a set of links that say “image1.gif,” “image2.gif,” “image3.gif,” and so
on. Not very descriptive, but it’s a start. After the script runs you could edit the HTML to
create more descriptive links (“nice sunset,” “Easter parade,” “Bill behaving foolishly,”
and so on).

To finish up the script we call the &printtail() subroutine, which simply prints the end
of the HTML file and closes the output file handle.

Going Deeper
In addition to the functions I’ve described in this lesson and on Day 15, all of which are
described in the perlfunc man page, there are also quite a few modules in the standard
module library for managing files and file handles.

LISTING 17.1 continued

21 0355 ch17 5/9/02 2:38 PM Page 445

Many of these modules are simply object-oriented wrappers for the standard file operations;
others are especially useful for covering up or getting around cross-platform issues. Still
others simply provide convenience functions for managing files and directories.

I’ve mentioned a number of these modules previously in this chapter—Getopt and Cwd in
particular. Table 17.2 shows the more complete list; for details on any of these modules,
see the perlmod man page.

TABLE 17.2 File-Related Modules

Module Name What it Does

Cwd Finds out the current working directory in a safe, cross-platform way

DirHandle An object-oriented wrapper for manipulating directory handles

File::Basename Allows you to parse file and directory path names in a cross-platform manner

File::CheckTree Performs multiple file tests on a group of files

File::Copy Copies files or file handles

File::Find Similar to the Unix find command, traverses a directory tree to find a specific
file that matches a specific pattern

File::Path Creates or removes multiple directories or directory trees

FileCache Some systems might not let you have large numbers of files open at once;
this gets around that limit.

FileHandle An object-oriented wrapper for manipulating file handles

Getopt::Long Manages script arguments (complicated POSIX syntax)

Getopt::Std Manages script arguments (simpler single-character syntax)

SelectSaver Saves and restores file handles (used with the select function. We’ll look at
select on Day 20, “Odds and Ends”

Summary
No Perl script is an island. At some point, chances are good your script is going to need
to peek outside at the world of the file system, particularly if your script reads and writes
extensively from files. On Day 15, you learned how to read and write the contents of the
files themselves; today, we covered how to handle the bigger issues of file and directory
management from inside Perl scripts.

We started with files: renaming them, linking them, and moving them as you might out-
side your script with a command line or iconic file manager.

446 Day 17

21 0355 ch17 5/9/02 2:38 PM Page 446

Managing Files and Directories 447

17

If you can manage files, you must be able to manage directories. And so, in the second
half of this lesson, we discussed creating and removing directories, printing and changing
the current working directory from inside the Perl script, and reading lists of the files inside
a directory (either through the use of file globs or by reading from a directory handle.

Q&A
Q. I’m on Unix. I was testing a script that reads from a file, and then deletes it.

Because I didn’t want it to actually delete the file until I was done debugging
the script, I removed write permission from the file. But Perl went ahead and
deleted it anyhow. Why?

A. Setting the permissions on a file determines whether you can read or write the con-
tents of that file. The filename—and whether that file can be renamed, moved, or
changed—is controlled by the permissions of the enclosing directory. To actually
prevent Perl from deleting files, remove write permission from the directory the
file is in. Or, even better, comment out your unlink command until you’ve got the
rest of the script debugged.

Q. You’ve described how to rename a file, how to link to one, and how to remove
it. How do you copy a file?

A. You could just open both the file to copy from and the file to copy to, and then
read lines from one and print them to the other. Or you could use back-quotes to
call the system copy command (as you’ll learn on Day 18). Or you could use the
File::Copy module, which gives you a copy function for copying files or file
handles from a source to a destination.

Workshop
The workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience in using what you’ve learned. Try
and understand the quiz and exercise answers before you go on to tomorrow’s lesson.

Quiz
1. What’s the difference between a hard link and a symbolic link? What happens if

you remove the file that you’ve linked to with either one?

2. What’s the difference between `pwd` and cwd()? Why would you want to use one
over the other?

3. What is a file glob? Why are they useful?

4. What’s the difference between a file glob of <*> and the list of files you get with
readdir()?

21 0355 ch17 5/9/02 2:38 PM Page 447

5. What are the differences between file handles and directory handles?

6. What does the permissions argument to mkdir do?

Exercises
1. Write a script that reads in a list of files from the current directory and prints them

in alphabetical order. If there are directories, print those names with a slash (/) fol-
lowing them.

2. BUG BUSTER: This script is supposed to remove all the files and directories from
the current directory. It doesn’t. Why not?
while (<foo*>) {

unlink $_;
}

3. BUG BUSTER: How about this one?
#!/usr/ bin/perl -w

opendir(DIR, ‘.’) or die “can’t open directory ($!), exiting.\n”;
while (readdir(DIR)) {
print “$_\n”;

}
closedir(DIR);

4. Write a script that gives you a menu with five choices: create a file, rename a file,
delete a file, list all files, or quit. For the choice to create a file, prompt the user for
a filename and create that file (it can be empty) in the current directory. For the
rename and delete operations, prompt for the old file to rename or delete; also for
rename, prompt for the new name of the file and rename it. For the choice to list
all files, do just that. SUGGESTION: You don’t have to bother with handling direc-
tories. EXTRA CREDIT: Do error checking on all filenames to make sure you’re
not creating a file that already exists, or deleting/renaming a file that doesn’t exist.

Answers
Here are the answers to the Workshop questions in the previous section.

Quiz Answers
1. Hard links provide a way for a single file to have multiple filenames. Removing

one instance of the filename—be it the original or the link—leaves all other hard
links intact. The file is only actually removed when all the links to it are also removed.
Symbolic links also provide a way for a single file to have multiple names, except
that the original file is separate from the links. Removing the links has no effect on
the file; removing the original file makes any existing links point to nothing.

448 Day 17

21 0355 ch17 5/9/02 2:38 PM Page 448

Managing Files and Directories 449

17

Note that only Unix systems differentiate between hard and symbolic links, and
some Unix systems don’t even have symbolic links. Aliases on the Mac or shortcuts
on Windows are analogous to symbolic links.

2. The `pwd` command makes use of back quotes and the pwd command in Unix.
While some versions of Perl work around this function on other systems, for a
more portable version use the Cwd module and the cwd() function. Note: you’ll
have to import Cwd (use Cwd) before you can use it.

3. A file glob is a way of getting a list of files that match a certain pattern. *.pl, for
example, is a glob that returns all the files in a directory with a .pl extension. Globs
are useful for grabbing and reading a set of files without having to open the file
handle, read the list, and process only those files that match a pattern.

4. A file glob of <*> returns all the files in a directory, but it does not include hidden
files, files that start with a ., or the . and .. directories. Directory handles return
all these things.

5. File handles are used to read and write the contents of files (or to the screen, or to
a network connection, and so on). Directory handles are used to read lists of files
from directories. Both file handles and directory handles use their own variables,
and the names do not clash.

6. The argument to mkdir determines the permissions that directory will have. On
Unix, those permissions follow the usual format of read, write, and execute access
for owner, group and all; on Mac and Windows, the permissions argument isn’t
useful, but you have to include it anyway (use 0777 and everything will work fine).

Exercise Answers
1. Here’s one answer:

#!/usr/ bin/perl -w
use strict;
use Cwd;

my $curr = cwd();
opendir(CURRDIR, $curr) or die “can’t open directory ($!), exiting.\n”;

my @files = readdir(CURRDIR);
closedir(CURRDIR);

foreach my $file (sort @files) {
if (-d $file) {

print “$file/\n”;
}
else { print “$file\n”; }

}

21 0355 ch17 5/9/02 2:38 PM Page 449

2. The unlink function is only used to remove files. Use rmdir to remove directories.
If the goal, per the description, is to remove all the files and directories in the
directory, you’ll need to test each filename to see if it’s a file or directory and call
the appropriate function.

3. The bug lies in the test for the while loop; the assumption here is that readdir
inside of a while loop assigns the next directory entry to $_, the same way that
reading a line of input from a file handle does. This is not true. For readdir you
must explicitly assign the next directory entry to a variable, like this:

while (defined($in = readdir(DIR))) { ... }

4. Here’s one example. Pay particular attention to the &getfilename() subroutine,
which handles error checking to make sure the file that was entered doesn’t already
exist (for creating a new file) or does actually exist (renaming or deleting a file).

#!/usr/ bin/perl -w
use strict;

my $choice = ‘’;
my @files = &getfiles();

while ($choice !~ /q/i) {
$choice = &printmenu();

SWITCH: {
$choice =~ /^1/ && do { &createfile(); last SWITCH; };
$choice =~ /^2/ && do { &renamefile(); last SWITCH; };
$choice =~ /^3/ && do { &deletefile(); last SWITCH; };
$choice =~ /^4/ && do { &listfiles(); last SWITCH; };
$choice =~ /^5/ && do { &printhist(); last SWITCH; };

}
}

sub printmenu {
my $in = “”;
print “Please choose one (or Q to quit): \n”;
print “1. Create a file\n”;
print “2. Rename a file\n”;
print “3. Delete a file\n”;
print “4. List all files\n”;
while () {

print “\nYour choice --> “;
chomp($in = <STDIN>);
if ($in =~ /^[1234]$/ || $in =~ /^q$/i) {

return $in;
} else {

print “Not a choice. 1<\!->4 or Q, please,\n”;
}

}
}

450 Day 17

21 0355 ch17 5/9/02 2:38 PM Page 450

Managing Files and Directories 451

17

sub createfile {
my $file = &getfilename(1);

if (open(FILE, “>$file”)) {
print “File $file created.\n\n”;
@files = &getfiles();
close(FILE);

} else {
warn “Cannot open $file ($!).\n”;

}
}

sub renamefile {
my $file = &getfilename();
my $in = ‘’;

print “Please enter the new filename: “;
chomp($in = <STDIN>);

if (rename $file,$in) {
print “File $file renamed to $in.\n”;
@files = &getfiles();

} else {
warn “Cannot rename $file ($!).\n”;

}
}

sub deletefile {
my $file = &getfilename();

if (unlink $file) {
print “File $file removed.\n”;
@files = &getfiles();

} else {
warn “Cannot delete $file ($!).\n”;

}
}

sub getfilename {
my $in = ‘’;

call with no args to make sure the file exists
my $new = 0;

call with an arg to make sure the file *doesn’t* exist
if (@_) {

$new = 1;
}

while (!$in) {
print “Please enter a filename (? for list): “;

21 0355 ch17 5/9/02 2:38 PM Page 451

chomp($in = <STDIN>);
if ($in eq ‘?’) {

&listfiles();
$in = ‘’;

} elsif ((grep /^in/, @files) && $new) {
file exists, not a new file, OK
file exists, new file: error
print “File ($in) already exists.\n”;
$in = ‘’;

} elsif ((!grep /^in/, @files) && !$new) {
file doesn’t exist, new file, OK
file doesn’t exist, not a new file: error
print “File ($in) not found.\n”;
$in = ‘’;

}
}

return $in;
}

sub getfiles {
my $in = ‘’;
opendir(CURRDIR, ‘.’) or die “can’t open directory ($!), exiting.\n”;
@files = readdir(CURRDIR);
closedir(CURRDIR);
return @files;

}

sub listfiles {
foreach my $file (@files) {

if (-f $file) { print “$file\n”; }
}
print “\n”;

}

452 Day 17

21 0355 ch17 5/9/02 2:38 PM Page 452

DAY 18

WEEK 3

Perl and the Operating
System

Throughout this book I’ve been focusing on those features of Perl that behave
the same whether you’re running your scripts on a Unix system, under
Windows, or on a Mac (or at least I’ve been letting you know about the differ-
ences where they exist). Fortunately, as far as the core language is concerned,
there aren’t too many issues surrounding writing cross-platform scripts; a hash
is a hash is a hash, regardless of where you’re looking at it.

There are other features of Perl, however, that are not portable. Some of these
are historical—because Perl was developed for Unix, many of its built-in fea-
tures relate to features of Unix that simply don’t exist on other platforms. Other
features are contained in platform-specific modules, and relate to features of
those platforms, like the Windows Registry. If you’re certain your scripts will
only run on a single platform, you can take advantage of these features to solve
platform-specific problems. Or, if you’ve been given a script to port from one
platform to another, it’ll help if you know which features are specific to which
platform.

22 0355 ch18 5/9/02 2:38 PM Page 453

In this lesson we’ll look at some of the features of Perl available to specific platforms,
both in the built-in language and in some of the modules. In particular, today we’ll
explore

• Unix features such as back quotes and the system function

• Creating Unix processes with fork and exec

• Functions for handling various Unix system files

• Windows compatibility with Unix features

• Using the Win32 group of modules, including the Win32::Process and
Win32::Registry modules

Unix Features in Perl
Perl’s Unix heritage shows in many of its built-in features, which are borrowed directly
from Unix tools such as shells, or relate specifically to the management of various Unix
files. In this part of the lesson, then, we’ll look at the features in Perl useful on Unix sys-
tems, including

• Working with environment variables

• Using the system function to run other programs

• Running other programs and capturing their output with backquotes

• Creating and managing new processes with fork, wait, and exec

• Some functions for managing Unix user and group information

Note that with the exception of processes, many of these features might also be available
in versions of Perl for other systems, with different or more limited behavior. So, even if
you’re working on Windows, you might want to at least scan this section before skipping
down to the part that relates to your own platform.

454 Day 18

If you’re a Mac OS X user, you should pay attention to the Unix information
in this lesson. Mac OS X is based on BSD Unix, and so the version of Perl that
it uses is the Unix version.

Note

Environment Variables
Perl scripts, like shell scripts, inherit their environment (the current execution path, user-
name, shell, and so on) from the shell in which they were started (or from the user ID
that runs them). And, if you run other programs or spawn processes from inside your Perl
script, they will get their environment from your script in turn. When you run Perl scripts

22 0355 ch18 5/9/02 2:38 PM Page 454

Perl and the Operating System 455

18

from the command line, these variables might not have much interest for you. But Perl
scripts that run in other environments might have additional variables relating to that
environment, or might have different values for those variables than what you expect.
CGI scripts, for example, have a number of environment variables relating to various
CGI-related features, as you learned on Day 16.

Perl stores all its environment variables in a special hash called %ENV, where the keys are
the names of the variables, and the values are those values. Environment variables are
commonly in uppercase. So, for example, to print the execution path for your script,
you’d use a line like this:

print “Path: $ENV{PATH}\n”;

You can print out all the environment variables and values using a regular foreach loop:

foreach $key (keys %ENV) {
print “$key -> $ENV{$key}\n”;

}

Running Unix Programs with system
Want to run some other Unix command from inside a Perl script? No problem. Just use
the system function to do it, like this:

system(‘ls’);

In this case, system will simply run the ls command, listing the contents of the current
directory to the standard output. To include options to the command you want to run, just
include them inside the string argument. Anything you can type at a shell command (and
that is available through the current execution path), you can include as an argument to
system.

system(“find t -name ‘*.t’ -print | xargs chmod +x &”);
system(‘ls -l *.pl’);

If you use a double-quoted string as the argument to system, Perl will interpolate vari-
ables before it passes the string on to the shell:

system(“grep $thing $file | sort | uniq >newfile.txt”);

Be very careful when passing data you have not personally verified to the
shell (for example, data some user entered from the keyboard). Malicious
users could give you data that, when passed through to the shell unchecked,
could damage or allow unauthorized access to your system. At the very least,
verify incoming data before passing it to the shell. Alternatively, a mecha-
nism in Perl called taint mode allows you to control and manage potentially
insecure (tainted) data. See the perlsec man page for more information.

Note

22 0355 ch18 5/9/02 2:38 PM Page 455

The return value of the system function is the return value of the command itself from
the shell: 0 for success and 1 or greater for failure. Note that this is the reverse of the
standard values Perl uses for true and false, so if you want to check for errors that might
result from calling system, you’ll want to use an and logical instead of an or:

system(‘who’) and die “Cannot execute who\n”;

When system runs, Perl passes the string argument to a shell (usually /bin/sh) to
expand any shell metacharacters (for example, variables or filename globs), and that shell
then executes the command. If you don’t have any shell metacharacters, you can make
the process more efficient by passing system a list of arguments, instead of a single
string. The first element of the list should be the name of the command to run, and any
other elements should be the various arguments to that command:

system(“grep $thing $file”); # starts a shell
system(“grep”, “$thing”, “$file”); # bypasses the shell, slightly more
efficient

Perl will also make this optimization for you if your string argument is simple enough—
that is, if it doesn’t contain any special characters that the shell must process before actu-
ally exiting the program (for example, shell variables or filename globs).

In either case—a single string argument or a list—the system function will end up
spawning new subprocesses to handle each of the commands in its argument. Each new
process inherits its current environment variables from the values in %ENV, and shares its
standard input, output, and error with the Perl script. Perl will wait for the command to
complete before continuing on with the script (unless the command has a & at the end of
it, which will run that command in the background, just as it would in the shell).

456 Day 18

Don’t be too quick to use the system function. Because system spawns a
separate process for each of the commands it runs (and sometimes a process
for the shell that runs those commands as well), all those extra processes can
mean a lot of overhead for your Perl script. Usually it’s better to do a task
with a bit of code inside your Perl script than to spawn a Unix shell to do
the same thing. More portable, too.

Note

Input with Backquotes
You’ve already seen how to get input into a script through the use of standard input and
via file handles. The third way is through the use of backquotes (``), a common paradigm
used in Unix shells.

22 0355 ch18 5/9/02 2:38 PM Page 456

Perl and the Operating System 457

18

Backquotes work similarly to system in that they run a Unix command inside a Perl
script. The difference is in the output. Commands run with system simply print their out-
put to the standard output. When you use backquotes to run a Unix command, the output
of that command is captured either as a string or as a list of strings, depending on the
context in which you use the backquotes.

For example, take the ls command, which prints out a listing of the directory:

$ls = `ls`;

Here, the backquotes execute the ls command in a Unix shell, and the output of that
command (the standard output) is assigned the scalar variable $ls. In scalar context (as
with this example), the resulting output is stored as a single string; in list context each
line of output becomes a list element.

As with system, any command you can give to a Unix shell you can include as a back-
quoted command, and that command runs in its own process, inherits its environment
from %ENV, and shares standard input, output, and error. The contents of the backquoted
string are also variable-interpolated by Perl as double-quoted strings are. The return sta-
tus of the command is stored in the special variable $?. As with system, that return status
is 0 if successful, or 1 or greater if it failed.

Using Processes: fork, wait, and exec
When you run a Perl script, it runs as its own Unix process. For many simple scripts, one
process might be all you need, particularly if your script runs mostly in a linear start-to-
finish way. If you create more complex scripts, where different parts of the script need to
do different things all at the same time, then you’ll want to create another process and run
that part of the script independently. That’s what the fork function is used for. When you
have a new process, you can keep track of its process ID (PID), wait for it to complete, or
run another program in that process. You’ll learn about all these things in this section.

Creating new processes, and managing how they behave, is the one feature
of Unix Perl that’s nearly impossible to duplicate on other systems. So while
creating new processes can give you a good amount of power over your Perl
scripts, if your scripts are portable you’ll want to avoid these features or
think about how to work around them on other platforms.

Threads, a new experimental feature in Perl 5.005, promise to help with the
problems of porting process-based scripts across platforms. Threads offer
quite a lot of the multiprocessing-like behavior of Unix processes, while also
being more lightweight and portable across all platforms. As of this writing,
however, threads are extremely new and very experimental.

Note

22 0355 ch18 5/9/02 2:38 PM Page 457

How Processes Work
Multiple processes are used to run different parts of your script concurrently. When you
start your script, a process is created. When you create a new process from inside a
script, that new process will run on its own, in its own memory space, until it’s done or
until you stop it from running. From your script you can spawn as many processes as
you need, up to the limits of your system.

Why would you need multiple processes? When you want different bits of your program
to run at once, or for multiple copies of your program to run at the same time. One com-
mon use for processes is for creating network-based servers, which wait for a connection
from a client, and then process that connection in some way. With a server that uses a
single process, when the connection comes in the server “wakes up” and processes that
connection (parsing the input, looking up values in databases, returning files—whatever).
But if your server is busy processing one connection and another connection arrives in
the meantime, that second connection will just have to wait. If you’ve got a busy server
you can end up with a whole queue of connections waiting for the server to finish and
move on to the next connection.

If you create a server that uses processes, however, you can have a main body of the script
that does nothing but wait for connections, and a second part that does nothing but process
those connections. Then, if the main server gets a connection, it can spawn a new process,
hand off the connection to that new process, and then the parent is free to go back to lis-
tening for new connections. The second process, in turn, handles the input from that con-
nection, and then exits (dies) when it’s done. It can repeat this procedure for every new
connection, allowing each one to be dealt with in parallel rather than serially.

Network servers make a good example for explaining why processes are useful, but you
don’t need a network to use them. Any time you want to run different parts of your script
in parallel, or separate some processing-intensive part of your script from the main body,
processes can help you.

If you’re familiar with threads in a language like Java, you might think you understand
processes already. But beware. Unlike threads, any running process is completely inde-
pendent of any other process. The parent and child processes run independently of each
other. There is no shared memory, no shared variables, and no simple way to communi-
cate information from one process to another. To communicate between processes you’ll
need to set up a mechanism called inter-process communication (IPC). The space isn’t
available to talk about IPC in this book, but I’ll give you some pointers in “Going
Deeper” at the end of the lesson.

458 Day 18

22 0355 ch18 5/9/02 2:38 PM Page 458

Perl and the Operating System 459

18

Using fork and exit

To create a new process in your Perl script, you use the fork function. fork, which takes
no arguments, creates a new second process in addition to the process for the original
script. Each new process is a clone of the first, with all the same values of the same vari-
ables (although it doesn’t share those with the parent; they’re different memory locations
altogether). The child continues running the same script, in parallel, to the end, using the
same environment and the same standard input and output as the parent. From the point
of the fork onward, it’s as if you had started two copies of the same script.

Running the same identical script, however, is not usually why you create a new process.
Usually you want the new process (known as the child) to execute something different
from the first process (the parent). The most common way to use fork, then, is with an
if conditional, which tests for the return value of the fork function. fork returns a dif-
ferent value depending on whether the current process is the parent or the child. In the
parent, the return result is the PID (process ID) of the new process. In the child, the
return result is 0 (if the fork didn’t happen, for whatever reason, the return value is
undef). By testing for this return value, you can run different bits of code in the child
than you do in the parent.

The core boilerplate for creating processes often looks something like this:

if (defined($pid = fork)) { # fork worked
if ($pid) { # pid is some number, this is the parent

&parent();
} else { # pid is 0. this is the child.

&child();
}

} else { # fork didn’t work, try again or fail
die “Fork didn’t work...\n”;

}

In this example, the first line calls fork and stores the result in the variable $pid (the
variable name $pid is almost universally used for process IDs, but you can call it any-
thing you want, of course). That result can be one of three things: a process ID, 0, or
undef. The call to defined in that first line checks for a successful result; otherwise we
drop down to the outer else and exit with an error.

If the fork doesn’t occur because of some error, the current error message
(or error number, depending on how you use it) will be stored in the global
system variable $!. Because many fork errors tend to be transient (an over-
loaded system might not have new processes available at the moment, some
Perl programmers test for a value of $! that contains the string “No more
Processes”, wait a while, and then try forking again.

Note

22 0355 ch18 5/9/02 2:38 PM Page 459

The successful result can either be 0 or some number representing the process ID (PID)
of the new process; each result tells the script which process it is. Here two mythical
subroutines, &parent() and &child(), are called to execute different parts of the script
depending on whether the script is executing as the parent or as the child.

Here’s a simple example (in Listing 18.1) of a script that forks three child processes,
printing messages from the parent and from each child. The end of the script prints the
message “End”:

LISTING 18.1 processes.pl

1: #!/usr/bin/perl -w
2: use strict;
3:
4: my $pid = undef;
5:
6: foreach my $i (1..3) {
7: if (defined($pid = fork)) {
8: if ($pid) { #parent
9: print “Parent: forked child $i ($pid)\n”;
10: } else { #child
11: print “Child $i: running\n”;
12: last;
13: }
14: }
15: }
16:
17: print “End...\n”;

The output of this script will look something like this (you might get different results on
your own system:

processes.pl
Parent: forked child 1 (8577)
Parent: forked child 2 (8578)
Parent: forked child 3 (8579)
End...
#
Child 1: running
End...
Child 2: running
Child 3: running
End...
End...

That’s some weird output. All the output from each process is intermingled, and what’s
that extra prompt doing in the middle? Why are there four “End…” statements?

460 Day 18

22 0355 ch18 5/9/02 2:38 PM Page 460

Perl and the Operating System 461

18

The answer to all these questions lies in how each process executes and what it prints at
what time. Let’s start by looking solely at what happens in the parent:

• Fork a new process in line 7. In the parent, $pid gets the process id of that new
process.

• Test for a nonzero value of $pid, and print a message for each process that gets
forked (lines 8 and 9).

• Repeat these steps two more times for each turn of the foreach loop.

• Print “End…”.

• Exit (printing the system prompt).

All that occurs fairly rapidly, so the output from the parent happens fairly quickly. Now
let’s look at any of the three children, whose execution starts just after the fork:

• Test for the value of $pid in line 8. $pid for each of the children is 0, so the test in
line 8 is false and we drop to line 10. Print the message in line 11.

• Exit the foreach immediately with last. Without a last here the child would go
ahead and repeat the loop as many times as remain (remember, the child starts from
the exact same point as the fork left off. It’s a clone of the parent).

• Print “End…”.

• Exit. No system prompt, because it was the parent that created the child.

The output from all the processes is intermingled as each one prints to the standard out-
put. Each child process, however, does take some time to start up before it runs, which is
why the output of the parent is printed and the parent exits before some of the children
even start. Note also that the line that prints the “End…” is printed regardless of whether
a parent or a child is running; because the child has all the same code as the parent when
it runs, it will happily continue past the block that it’s supposed to run and continue on.

Depending on your situation, you might not want any of this behavior. You might want
the parent to exit only after the child is done, or the child to stop running when it’s done
with its specific block of code. Or you might want the parent to wait for one child to fin-
ish before you start up another child. All this involves process management, which we’ll
explore in the next section.

Process Management with exit and wait (and Sometimes kill)
Starting up a child process with fork, and then letting it run is kind of like letting an
actual child of say, age 4, run wild in a public place. You’ll get results, but they might not
be exactly what you (or the people around you) want. That’s what process control is for.
Two functions, exit and wait, help you keep control of your processes.

22 0355 ch18 5/9/02 2:38 PM Page 461

Let’s look at exit first. The exit function, most simply, stops running the current script
at the point where it is called. It’s sort of like the die function, in that respect, except that
die exits with a failed status (on Unix) and prints an error message. exit simply ends the
program with an option status argument (0 for success, 1 for failed).

Exit is most commonly used to stop a child from executing more of the parent’s code
than it’s supposed to. Put an exit at the end of the block of the child’s code, and the
child will run only that far and then stop. So, for example, in the little processes.pl
script we looked at in that last section, let’s replace the call to last with a call to exit,
like this:

...
} else { #child

print “Child $i: running\n”;
exit;

}

With this modification, the child will print its message, and then exit altogether. It won’t
restart the foreach loop, and it also won’t ever print the “End…”. The parent, which is
executing the other branch of the if, executes the “End…” after the loop is complete.
The output of this version of the script will look like this:

procexit.pl
Parent: forked child 1 (11828)
Parent: forked child 2 (11829)
Parent: forked child 3 (11830)
End...
#
Child 1: running
Child 2: running
Child 3: running

As with the previous example, the output from the parent and the child is intermingled,
and the parent completes before the children do.

For further control over when each child runs and when the parent exits, use the wait or
waitpid functions. Both wait and waitpid do the same thing: they cause the current
process (often the parent) to stop executing until the child is finished. This prevents min-
gling of the output, keeps the parent from exiting too soon and, in more complicated
scripts than this one, prevents your script from leaving “zombie” processes (child
processes that have finished executing but are still hanging around the system taking up
processing space).

The difference in wait and waitpid is that wait takes no arguments, and waits for any
child to return. If you spawn five processes, and then call wait, the wait will return a
successful result when any of the five child processes exits. The waitpid function, on the
other hand, takes a process ID argument, and waits for that specific child process to fin-
ish (remember, the parent gets the PID of the child as the return to the fork function).

462 Day 18

22 0355 ch18 5/9/02 2:38 PM Page 462

Perl and the Operating System 463

18

Both wait and waitpid return the PID of the child that exited, or -1 if there are no child
processes currently running.

Let’s return once again to our process example, where we spawn three children in a
foreach loop. For exit we changed the behavior of the children. Now let’s change the
behavior of the parent by adding a call to wait, and another message inside the parent
part of the conditional:

if ($pid) { #parent
print “Parent : forked child $i ($pid)\n”;
wait;
print “Parent: child $i ($pid) complete\n”;

} else {

In the parent code for the previous example, the parent simply printed the first message, and
then the foreach loop would repeat, spawning three children in quick succession. In this
version, the child is created, the parent prints the first message, and then waits for that child
to complete. Then it prints the second message. Each turn of the loop occurs only after the
current child is done and has exited. The output of this version of the script looks like this:

procwait.pl
Parent : forked child 1 (11876)
Child 1: running
Parent: child 1 (11876) complete
Parent : forked child 2 (11877)
Child 2: running
Parent: child 2 (11877) complete
Parent : forked child 3 (11878)
Child 3: running
Parent: child 3 (11878) complete
End...
#

Note here that execution is very regular: each child is forked, runs, and exits before the
next process starts. And the parent stays in execution until the third child is done, exiting
only at the end.

The fact that this example runs each child serially, one after the other, makes it sort of
silly to have processes at all (particularly given that each process takes time to start up
and takes up extra processing space on your system). Because the wait function is so
flexible, however, you don’t have to wait for the most recently spawned child to finish
before spawning another one—you could spawn five processes, and then later on in your
script call wait five times to clean up all the processes. We’ll look this later in this lesson
when we explore a larger example.

There’s one last function worth mentioning in reference to controlling processes: the
kill function, which sends a kill signal to a process. To use kill, you’ll need to know
something about signals. For the sake of space I’m not going to talk about signals in this
chapter, but see “Going Deeper” and the perlfunc man pages for a few pointers.

22 0355 ch18 5/9/02 2:38 PM Page 463

Running Something Else in a Process with exec
When you create a new process with fork, that process creates a clone of the current
script and continues processing from there. Sometimes, however, when you create a new
process, you want that process to stop what it’s doing altogether and to run some other
program instead. That’s where exec comes in.

The exec function causes the current process to stop running the current script, and to
run something else. The “something else” is usually some other program or script, given
as the argument to exec, something like this:

exec(“grep $who /etc/passwd”);

The arguments to exec follow the same rules as with system; if you use a single string
argument, Perl passes that argument to the shell first. With a list of arguments you can
bypass the shell process. In fact, the similarities between exec and system are not coinci-
dental—the system function is, actually, a fork and an exec put together.

When Perl encounters an exec, that’s the end of that script. The exec shifts control to the
new program being exec’ed; no other lines in the script will be executed.

Other Unix-Related Functions
In addition to the functions mentioned throughout this section, Perl’s set of built-in func-
tions includes a number of other process-related functions and smaller utility functions
for getting information about various parts of the system. Because these functions apply
specifically to Unix system files or features, most of these functions are not available on
other systems (although the developers porting Perl to those systems might attempt to
create rudimentary equivalents for the behavior of these functions).

Table 18.1 shows a summary of many of these functions. For more information on any of
these, see Appendix A, “Perl Functions,” or the perlfunc man page.

TABLE 18.1 Unix-Related Functions

Function What it Does

alarm Send a SIGALRM signal to a process

chroot Change the root directory for the current process

getgrent, Look up or set setgrent,values from endgrent /etc/groups

getgrgid Look up a group file entry in /etc/groups

getgrnam Look up a group file entry by name in /etc/groups

getpgrp Get the process group name for a process

getppid Get the process ID of the parent process (if the current script is running
in a child process)

464 Day 18

22 0355 ch18 5/9/02 2:38 PM Page 464

Perl and the Operating System 465

18

TABLE 18.1 continued

Function What it Does

getpriority Return the current priority for a process, process group, or user

getpwent, setpwent, Look up or set values from /etc/passwd

endpwent

getpwnam Look up a user by name in /etc/passwd

getpwuid Look up a user by user ID (UID) in /etc/passwd

setpgrp Set the process group for a process

Perl for Windows
Perl for Windows supports most of the core set of Unix features, as well as a number of
extensions for Win32 features. If you’ve installed the ActiveState version of Perl for
Windows, you’ll get the Win32 modules as part of that package. If you compile Perl for
Windows yourself, you’ll need to get the libwin32 package yourself from CPAN (see
http://www.perl.com/CPAN-local/modules/by-module/Win32/ for the latest version).
Otherwise, the functionality is the same.

Earlier versions of Perl for Windows were much less coordinated as far as
which modules and features were available in which package. If you’re
using a version of Perl earlier than 5.6.1 (or ActiveState’s Perl earlier than
Build 631), you should upgrade to make sure you have the newest and best
version.

Note

Compatibility with Unix
With a few notable exceptions, most Unix-like Perl features will work on Windows,
although how they are used is different. The biggest notable exception is fork and its
related functions, which was not supported at all before version 5.6.1 of Perl. Version
5.6.1 provided a support for fork under Windows on an experimental basis. For more
information, see the perlfork man page. You can run another program from inside a
Perl script using system, exec, backquotes, of one of the Win 32 extensions (more about
those later).

The system function, exec, and backquotes work on Perl for Windows. The “shell” for
these commands is cmd.exe for Windows NT, or command.com for Windows 95.
Commands and argument lists that you give to these commands must follow Windows
conventions, including pathnames and file globbing.

22 0355 ch18 5/9/02 2:38 PM Page 465

Keep in mind, of course, that if you’re porting a Unix script to Windows, and that Unix
script uses Unix utilities in system or backquotes, that you’ll need to find the Windows
equivalents of those same utilities; simply having support for system and backquotes is
not enough.

466 Day 18

The Cygwin project provides probably the most complete set of Unix tools for
Windows. It includes Windows versions of most familiar shell commands, along
with the bash shell itself. You can find out more about Cygwin, and download
the installation program at http://sources.redhat.com/cygwin/.

Note

Functions that relate to specific Unix features (such as those listed in Table 18.1) are
unlikely to work on Perl for Windows. Other functions that do not work are specialized
functions I haven’t bothered to mention in this book relate to interprocess communica-
tion or low-level networking. In general, most of the common Perl functions you’ll use
will be available in Perl for Windows. You can find a complete list of unimplemented
functions in the FAQ for Perl for Win32 at http://aspn.activestate.com/ASPN/
Reference/Products/ActivePerl/faq/Windows/ActivePerl-Winfaq5.html (look in
the section on “Implementation Quirks”).

Built-in Win32 Subroutines
The extensions to Perl for managing Windows features come in two parts: a set of built-
in Win32 subroutines, and a number of additional Win32 modules for more sophisticated
techniques (such as Win32::Registry or Win32::Process). The Win32 subroutines pro-
vide easy access to system information, as well as a number of smaller utility routines. If
you are running Perl for Windows, you don’t need to import any of the Win32 modules
to use these subroutines. Table 18.2 contains a list of several of the Win32 subroutines
available in Perl for Windows.

For more information on any of these subroutines, you might want to check the Win32
man page. I also found Philippe Le Berre’s pages at http://www.le-berre.com/ to be
especially helpful.

TABLE 18.2 Built-in Win32 Subroutines

Subroutine What it Does

Win32::DomainName Returns the Microsoft Network domain.

Win32::FormatMessage Takes the error returned by GetLastError errorcode and
turns it into a descriptive string.

Win32::FsType The filesystem type (FAT or NTFS).

22 0355 ch18 5/9/02 2:38 PM Page 466

Perl and the Operating System 467

18

TABLE 18.2 continued

Subroutine What it Does

Win32::GetCwd Gets the current directory.

Win32::GetLastError If the last Win32 subroutine failed, this subroutine will give you
the reason why (format the result of this with FormatMessage).

Win32::GetNextAvailDrive Gets the drive letter of the next available drive, for example, “E:”.

Win32::GetOSVersion Returns an array representing the OS version and number:
($string, $major, $minor, $build, $id), where the $string
is an arbitrary string, $major and $minor are version numbers,
$build is the build number, and $is is 0 for a generic Win32, 1
for Windows 95, or 2 for Windows NT.

Win32::GetShortPathName Given a long filename (“thisisareallylongfilename.textfile”),
returns the 8.3 version (THISI~1.TXT).

Win32::GetTickCount The number of ticks (milliseconds) that have elapsed since
Windows was started.

Win32::IsWin95 True if you’re on Windows 95.

Win32::IsWinNT True if you’re on Windows NT.

Win32::LoginName The username of the user running the script.

Win32::NodeName The Microsoft Network node name for the current machine.

Win32::SetCwd newdir Changes the current directory.

Win32::Sleep milliseconds Sleep for the given number of milliseconds.

Win32::Spawn Spawn a new process (see the following section, “Win32
Processes”).

Win32::MsgBox
The basic Win32 subroutines give you access to basic Windows features and system
information from inside Perl. Installing the libwin32 modules (or using ActiveState’s ver-
sion of Perl for Windows) gives you access to the Win32 modules, with which you can
access a lot more of the advanced Windows features. One nifty feature in the Win32
modules is the Win32::MsgBox subroutine, which can be used to pop-up rudimentary
modal dialog boxes from inside your Perl scripts. Win32::MsgBox takes up to three argu-
ments: the text to put in the dialog itself, a code representing the icon in the dialog and
some combination of buttons, and the test to put in the title bar of the dialog. For exam-
ple, the following code will show the dialog on the left side of Figure 18.1:

Win32::MsgBox(“I can’t do that!”);

22 0355 ch18 5/9/02 2:38 PM Page 467

FIGURE 18.1
Dialogs.

468 Day 18

This one shows a dialog with two buttons, OK and Cancel, and a Question icon (as
shown on the right side of Figure 18.1):

Win32::MsgBox(“Are you sure you want to delete that?”, 33);

The second argument represents the codes for the number of buttons and the type of
icon. Table 18.3 shows the choices for number of buttons.

TABLE 18.3 Button Codes

Code Result

0 OK

1 OK and Cancel

2 Abort, Retry, Ignore

3 Yes, No, and Cancel

4 Yes and No

5 Retry and Cancel

Table 18.4 shows the choices for the icon.

TABLE 18.4 Icon Codes

Code Result

16 Hand

32 Question (?)

48 Exclamation point (!)

64 Asterisk (*)

To get the second argument for Win32::MsgBox, just pick a choice from each table and
add the numbers together. So an exclamation icon (48) with Yes and No buttons (4)
would result in a code of 52.

The return value of Win32::MsgBox is based on the buttons you used in the dialog and
what the user actually clicked. Table 18.5 shows the possible return values.

22 0355 ch18 5/9/02 2:38 PM Page 468

Perl and the Operating System 469

18

TABLE 18.5 Button Codes

Code Button Clicked

1 OK

2 Cancel

3 Abort

4 Retry

5 Ignore

6 Yes

7 No

Win32 Processes
If you don’t feel comfortable using the experimental version of the fork subroutine for
Windows provided in Perl 5.6.1, or you’re using an earlier version of Perl, you won’t be
able to write programs that fork new processes while running. However, you can start
new processes that run separate programs (the equivalent for a fork followed by an
exec). The easiest way to do this is to use either system or backquotes, or to halt the cur-
rent script with an exec. An alternative way is the use either Win32::Spawn or the
Win32::Process module.

Win32::Spawn is part of the basic Win32 subroutines, and enables you to start up another
process in a really simple way. The Win32::Process module, on the other hand, is more
recent, more robust, uses proper module conventions, but is somewhat more difficult to
understand.

To create a new process with Win32::Spawn, you’ll need three arguments: the full path-
name to the command to run in the new process, the arguments to that command (includ-
ing the command name again), and a variable to hold the process ID of the new process.
Here’s an example that starts up Notepad on Windows NT with a temporary file in
“C:\tempfile.txt”. It also traps errors:

my $command = “c:\\windows\\notepad.exe “;
my $args = “notepad.exe c:\\tempfile”;
my $pid = 0;

Win32::Spawn($command, $args, $pid) || &error();
print “Spawned! The new PID is $pid.”;

sub error {
my $errmsg = Win32::FormatMessage(Win32::GetLastError());
die “Error: $errmsg\n”;

}

22 0355 ch18 5/9/02 2:38 PM Page 469

One annoying side effect of Win32::Spawn is that the new process—in this case,
Notepad—comes up minimized, so it appears as if nothing is happening. The original
Perl script also continues executing (or, in this case, finishes executing) as the new
process is running.

The Win32::Process module handles processes in a much more sensible way. However,
it’s more complex, and it’s set up to be object oriented, which means some slightly dif-
ferent syntax (but you learned the basics on Day 13, “Scope, Modules, and Importing
Code,” so you should be okay).

Creating a Win32::Process object is vaguely similar to using Win32::Spawn. You’ll still
need a command and a list or arguments, but you’ll also need some other stuff. To create
a Win32::Process object, first make sure you import Win32::Process:

use Win32::Process;

Then call the Create method to create your new process object (you’ll need a variable to
hold it):

#!c:/perl/bin/perl

my $command = “c:\\windows\\notepad.exe “;
my $args = “notepad.exe c:\\tempfile”;
my $proc; # process object

Win32::Process::Create($process,
$command,
$args,
0,
DETACHED_PROCESS,
‘.’) || die &error();

(I’ve left off the definition for the error subroutine here to save space.)

The arguments to Win32::Process are

• A variable to hold a reference to the new process object.

• The command to run.

• The arguments to that command.

• Whether handles are inherited (if you don’t know what that means, just use 0).

• One of several options. DETACHED_PROCESS is the most popular, although
CREATE_NEW_CONSOLE might also be useful. All the options are listed in the
Win32::Process man page.

• The temporary directory for this process.

In this case, when the new process is created, Notepad will start up maximized and edit
the file in C:\tempfile. But the original Perl script will still continue executing.

470 Day 18

22 0355 ch18 5/9/02 2:38 PM Page 470

Perl and the Operating System 471

18

To make the parent process wait for the child to finish executing, use the Wait method
(note the capital W; this isn’t the same as Perl’s wait function). You’ll have to call this as
an object-oriented method, with the process object first:

$proc->Wait(INFINITE);

In this case, the parent process will wait indefinitely until the child finishes. You can also
give Wait an argument of some number of milliseconds to wait before continuing.

In addition to Wait, the Win32::Process module also includes these methods:

• Kill, to kill the new process

• Suspend, to temporarily stop the process

• Resume, to start a suspended process

• GetPriorityClass and SetPriorityClass, to look up or change the process’s pri-
ority

• GetExitCode, to find out why a process exited

You can get more information about Win32::Process from the documentation that
comes with the Win32 modules, or from the online documentation at
http://aspn.activestate.com/ASPN/Reference/.

Working with the Win32 Registry
The Windows Registry is a warehouse of information about your system, its configura-
tion, and the programs installed on it. The Win32::Registry module, an object-oriented
module, allows you to read from, modify, and add values to the Windows Registry from
inside a Perl script.

If you’re unfamiliar with the Windows Registry, chances are good you should
not be playing with it from inside Perl. You can make your system unusable
by messing with the Registry and changing things that are not intended to
be changed. You can use the Windows program regedit to examine and
modify the Windows Registry.

Note

The Windows Registry consists of a number of trees of keys and values. At the topmost
level, the Registry contains several subtrees, including HKEY_LOCAL_MACHINE for
information about the configuration of the local machine, or HKEY_CURRENT_USER
for information about the currently logged-in user. Depending on whether you’re running
Windows NT or Windows 95, you’ll have a different set of subtrees. Inside each subtree
are a number of sets of keys and values, like hashes, only nested (a key can map to a
whole other hash tree).

22 0355 ch18 5/9/02 2:38 PM Page 471

When you import the Win32::Registry module (with use Win32::Registry), you get a
registry key object for each of the topmost subtrees, for example
$HEKY_LOCAL_MACHINE. Using the various Win32::Registry methods, you can
open, traverse, and manage any part of the Windows Registry.

Unfortunately, to get the most use out of the Win32::Registry module, you need to
know something of references to handle the nested-hash nature of the Registry keys. For
now, then, Table 18.6 shows several of the Win32::Registry methods and their argu-
ments; after going on to the lesson on references these will be more meaningful.

To start working with any part of the Registry, you must first use Open with of the major
subkey objects, like this (don’t forget to use Win32::Registry at the top of your script):

use Win32::Registry;
my $reg = “SOFTWARE”;
my ($regobj, @keys);
$HKEY_LOCAL_MACHINE->Open($reg,$regobj)|| die “Can’t open registry\n”;

Then, you can call the various Registry methods on that new Registry object:

$regobj->GetKeys(\@keys);
$regobj->Close();

TABLE 18.6 Win32::Registry Methods

Method What it Does

Close Closes the currently open key.

Create keyname,keyref Creates a new key with the name keyname. keyref will contain a ref-
erence to the new key.

DeleteKey keyname Deletes the key keyname.

DeleteValue valname Deletes the value valname.

GetKeys listref Returns a list of the keys in the current key. listref is a reference to
a list.

GetValues hashref Returns a hash of the keys and values in the current key. The keys
in this hash are nested lists. hashref is a reference to a hash.

Open obj, objref Opens a key. obj is the key to open, objref is a reference to the
object that will hold that key.

Save filename Saves the currently open key to filename

SetValue Change the value of keyname to value.

keyname,REG_SZ,value The second argument must be REG_SZ.

Load keyname, filename Imports the keys and values in filename into keyname.

472 Day 18

22 0355 ch18 5/9/02 2:38 PM Page 472

Perl and the Operating System 473

18

For more information on Win32::Registry, the documentation that comes with the
Win32 modules is helpful. You might also want to check out Phillipe Le Berre’s How To
Guide at http://www.le-berre.com/perl/main.htm, which has lots of examples and
notes on using Win32::Registry.

Other Win32 Modules
The Win32 modules, shipped with Active State’s Perl and gathered in the libwin32 bun-
dle, contain lots and lots of modules for handling various aspects of Windows opera-
tions—by only describing Win32::Process and Win32::Registry I’ve only touched the
surface. And in addition to those “standard” Win32 modules, more and more is being
written and included on CPAN. If you do lots of work with Windows, and intend to do
more work with Perl on that platform, look into these modules for many more features to
work with. Table 18.7 contains a summary of the standard Win32 modules; see CPAN
for even more.

TABLE 18.7 Win32 Modules

Module What it Does

Win32::AuthenticateUser Enables you to authenticate Windows users using domains.

Win32::ChangeNotify Provides access to Windows change-notification objects.

Win32::Clipboard Enables you to interact with the Windows clipboard.

Win32::Console Functions for Windows console and character mode.

Win32::Event Provides access to Win32 event objects.

Win32::EventLog Provides access to the Windows event log.

Win32::File Manages file attributes.

Win32::FileSecurity Manages NTFS file security.

Win32::Internet Wrapper for WININET.DLL.

Win32::IPC Inter-Process Communication: allows you to synchronize and
communicate between Process, ChangeNotify, Semaphore, and
Mutex.

Win32::Mutex Provides access to Windows Mutex objects.

Win32::NetAdmin Administers users and groups (Windows NT only).

Win32::NetResource Administers system resources (printers, servers, and so on)
(Windows NT only).

Win32::ODBC Provides access to ODBC databases from Perl.

Win32::OLE Provides access to OLE automation.

22 0355 ch18 5/9/02 2:38 PM Page 473

TABLE 18.7 continued

Win32::PerfLib Provides access to the Windows Performance Counter.

Win32::Pipe Enables you to use named pipes from Perl.

Win32::Process Creates and manages Windows processes

Win32::Registry Works with the Windows registry.

Win32::Semaphore Provides access to Windows Semaphore objects.

Win32::Service Enables you to administer services.

Win32::Sound Provides access to Windows sounds.

Win32::TieRegistry Enables you to access the registry via tied hashes.

Going Deeper
Whole books have been written on using the various platform-specific bits of Perl (or for
avoiding them). To keep this chapter to the minimum, I’ve skipped over a number of fea-
tures that you might want to explore on your own when you’re done with this book.

Pipes
Probably the biggest feature that was not talked about in this book is the use of pipes. A
pipe is sort of a channel from which you can read data, and to which you can send data.
The pipe can connect to the standard input and output of your script and some other pro-
gram, or it can also connect to a device such as a printer, or a network connection such
as a socket.

On Unix, you can open a pipe as if it were just another file handle, and read and write to
it that way. The pipe can be to another program, or to another process running the same
program. You can also use named pipes that might exist on your system. The perlipc
man page contains more information about using pipes.

On Windows, you can use regular pipes with open as on Unix to other processes running
on the system. For named pipes, look for the Win32::Pipe module.

Signals
Signals are a Unix feature that let you trap various errors and messages and handle them
in some sensible way. The %SIG hash contains references to various signal handlers.
Signals only work in Unix; see the perlipc man page for more information.

474 Day 18

22 0355 ch18 5/9/02 2:38 PM Page 474

Perl and the Operating System 475

18

Basic Networking
The Unix version of Perl has a number of built-in functions for handling low-level
networking commands and sockets. Most of these functions are unsupported on other
platforms, superseded by various platform-specific networking modules. If you’re a real
network fiend, feel free to visit the perlipc man page for plenty of information on sock-
ets and network programming.

If you just want to, say, retrieve a Web page from the Internet, there are modules that will
do that for you without you needing to know anything about what a TCP is. I’ll discuss
those on Day 20, “Odds and Ends.”

Creating User Interfaces with Perl
Creating a graphical user interface (GUI) in Perl isn’t easy, and it’s not very cross-
platform. But it is possible.

One of the best ways to create GUIs in Perl is with the Tk package. Tk is a simple way
of creating and managing user interface widgets, originally associated with the TCL lan-
guage, but now available for Perl as well. Tk is available for both Unix and Windows,
and has a platform-specific look for each one. Perl/Tk has an FAQ at
http://www.faqs.org/faqs/by-newsgroup/comp/comp.lang.perl.tk.html.

The Win32::OLE module can enable you to create interfaces in Visual Basic, and then
control them with OLE automation. See Win32::OLE.

Summary
Someday, Perl will be a seamless cross-platform language in which you can write a
script to do just about anything, and it will work on any platform with a Perl environ-
ment. That day isn’t here yet. And some would argue that the goal of total cross-platform
compatibility isn’t all that great an idea when there are so many differences between
platforms and so many cool platform-specific things to play with.

Today, we stopped looking at Perl as a language that works exactly the same across plat-
forms and explored a few of the differences, including environment variables, running
programs, and forking processes on Unix, and creating and working with processes and
the Registry on Windows. Along the way, I pointed out differences between the ports and
other dark corners of each port to explore.

22 0355 ch18 5/9/02 2:38 PM Page 475

Q&A
Q. I have a script that calls several programs via system. I want to run this script

via Unix cron job. It runs fine when I run it on the command line, but when I
install it I get errors that such-and-such command cannot be found. What’s
going on here?

A. Probably an execution path problem. Remember that each Perl script inherits the
execution path (that is, the PATH environment variable) from the shell or user ID
that is currently running the script. When a script is intended to be run by some
other process—for example, a CGI script or a cron job—it gets a different or lim-
ited execution path than what you expect. In this case, the cron user ID probably
has a very limited execution path, and the system function cannot find the pro-
grams it needs. To avoid this problem, you can always use full pathnames to all
executable programs you call from system, or you could set the PATH variable
yourself inside the Perl script through the %ENV hash.

Q. I have a script that forks multiple processes. I have a single global variable
and I want to be able to increment that variable globally across all the child
processes. This isn’t working. Why?

A. All processes created with fork are totally independent of all the other processes.
That includes all the variables defined by the parent; the child gets a copy of all
those variables, and has no access back to the parent’s version.

To communicate between processes, you’ll have to set up a mechanism for inter-
process communication (IPC). See “Going Deeper” for some suggestions on IPC.

Q. When I fork child processes, the output from the children is all mixed up with
the output from the parent. How can I separate them?

A. You can’t. There’s only one standard output, and that output is shared between all
the children. If you absolutely have to have separate output from each process, you
could do something like store each process’s output to a temporary file, and then
print each file in turn.

Q. I have a Perl script that was written on Unix. It uses system and the Unix pro-
gram sendmail all over the place. How can I adapt this program for other sys-
tems?

A. Sending mail is awfully convenient on Unix; just call the mail program and ship
off the message. Unfortunately, it’s not that easy on other platforms. If you’re on
Windows, the Perl for Win32 FAQ lists alternative methods for sending mail.
Alternately, the Net::SMTP (at CPAN) package might also provide some help in
getting mail to work across platforms.

476 Day 18

22 0355 ch18 5/9/02 2:38 PM Page 476

Perl and the Operating System 477

18

Q. I want to be able to find out what platform I’m on, so I can be sure my script
will only run on one platform.

A. The Config module can help you with that. The ‘osname’ key in the %Config hash
contains the platform you’re running on. So, for example, to make sure you’re run-
ning on Windows, you could use something like this:

use Config;
if ($Config{‘osname’} !~ /Win/i) {
die “Hey! This is a Win32 script. You can’t run it here.\n”;

}

Workshop
The workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience in using what you’ve learned. Try
to understand the quiz and exercise answers before you go on to tomorrow’s lesson.

Quiz
1. What is %ENV used for? Why is it useful?

2. What’s the difference between using system and backquotes?

3. Why would you want to use multiple processes in your Perl script?

4. What does fork do?

5. What’s the difference between system and exec?

6. Can Win32 processes be used interchangeably with fork?

Exercises
1. (Unix only) Create a script that takes a single number as an argument. Fork that

number of child processes, and make sure the parent waits for each to finish. Each
process should:

• Generate a random number between 1 and 100,000.

• Sum all the numbers between 1 and that random number.

• Print the result.

2. (Unix only) Modify the img.pl script from Day 10 (the one that printed informa-
tion about the images in an HTML file) such that the output is e-mailed to you
instead of displayed on the screen. HINT: this command will send a message:

mail yourmail@yoursite.com < bodyofmessage

3. (Windows only) Create a script that takes a directory listing (using the dir com-
mand) and prints only the filenames, one per line (you don’t have to sort them).

22 0355 ch18 5/9/02 2:38 PM Page 477

Answers
Here are the answers to the Workshop questions in the previous section.

Quiz Answers
1. The %ENV hash holds the variable names and values for the script’s environment.

On Unix and Windows, the values in this hash can be useful for finding out infor-
mation about the system environment (or for changing it and passing it on to other
processes). On the Mac %ENV doesn’t serve any useful purpose.

2. The system command runs some other program or script from inside your Perl
script and sends the output to the standard output. Backquotes also run an external
program, but they capture the input to a scalar or list value (depending on context).

3. Multiple processes are useful for portioning different parts of your script that might
need to be run simultaneously, or for splitting up the work your script needs to do.

4. The fork function creates a new process, a clone of the original process. Both the
new processes continue executing the script at the point where the fork occurred.

5. system and exec are closely related; both are used to execute an external program.
The difference is that system does a fork first; exec stops running the current
script in the current process and runs the external program instead.

6. Win32::Process and fork are not interchangeable. The fork function ties very
strongly to processes on Unix; Win32::Process is more analogous to a fork fol-
lowed immediately to an exec.

Exercise Answers
1. Here’s one answer:

#!/usr/local/bin/perl -w
use strict;

if (@ARGV > 1) {
die “Only one argument, please.\n”;

}
elsif ($ARGV[0] !~ /^\d+/) {

die “Argument should be a number.\n”;
}

my $pid;
my $procs = pop;

foreach my $i (1..$procs) {
if (defined($pid = fork)) {

if ($pid) { #parent
print “Parent: forked child $i\n”;

} else { #child

478 Day 18

22 0355 ch18 5/9/02 2:38 PM Page 478

Perl and the Operating System 479

18

srand;
my $top = int(rand 100000);
my $sum;
for (1..$top) {

$sum += $_;
}
print “Finished child $i: Sum of $top is $sum\n”;
exit;

}
}

}

while ($procs > 0) {
wait;
$procs--;

}

2. All you need are three changes. First, create and open a temporary file:
my $tmp = “tempfile.$$”; # temporary file;
open(TMP, “>$tmp”) || die “Can’t open temporary file $tmp\n”;

Second, make sure all print statements write to that file:
if (exists($atts{$key})) {

$atts{$key} =~ s/[\s]*\n/ /g;
print TMP “ $key: $atts{$key}\n”;

}

Finally, use system to mail the temporary file and remove it:
close TMP;
my $me = “youremail@yoursite.com”;
system(“mail $me <$tmp”);
unlink $tmp

3. Here’s one way to do it (start the substr function from character 44 if you’re on
Windows 95):
#!c:/perl/bin/perl -w
use strict;

my @list = `dir`;

foreach (@list) {
if (/^\w/) {

print substr($_,39);
}

}

22 0355 ch18 5/9/02 2:38 PM Page 479

22 0355 ch18 5/9/02 2:38 PM Page 480

DAY 19

WEEK 3

Working with References
For the last several chapters, we’ve been looking at a number of aspects of Perl
that you might consider auxiliary to the core language itself. For instance, working
with various functions in the standard library for managing filesystems or process-
es, importing code from modules, and then using those modules to accomplish
various tasks, or working with the Perl debugger. Today, as we reach the final
few lessons in this book, we’ll return to the core language with a discussion of
references. References are a way of indirectly pointing to other bits of data in
Perl. They allow you to manage data in more advanced and often more efficient
ways than handling the data itself. In today’s lesson, we’ll explore these topics:

• What references are, and the advantages they give you

• Creating and using references to scalars, arrays, and hashes

• Using references in subroutines for arguments and return values

• Creating nested data structures (multidimensional arrays, arrays of hashes,
and so on)

• Clever ways to avoid using references

23 0355 ch19 5/9/02 2:38 PM Page 481

What Is a Reference?
A reference is a form of data in Perl that indirectly points to some other bit of data. The
reference itself is a scalar, like a number or string—it can be assigned to a scalar variable,
printed, added to, tested to see if it’s true or false, stored in a list, or passed to a subroutine,
just as numbers and strings can. In addition to its scalar-like behavior, however, the refer-
ence also refers, or points to, the location of some other bit of data. To find out what the
reference points to, you dereference the reference—fancy terminology for essentially
following the pointer to the thing it points to.

482 Day 19

If you actually want more fancy terminology in your life, the thing the refer-
ence points to is called the referent. You dereference the reference to get to
the referent. Me, I prefer regular words like “the thing it points to.”

Note

References in Perl are similar to pointers or references in other languages, and have the
same advantages. But, if you’re not used to other languages, you might wonder, “What’s
the point? Why would you want to deal with a reference when you could deal with the
data itself?” The answer is that by indirectly referring to data, you can do more advanced
things with that data—for example, pass large amounts of data by reference into and out
of subroutines, or create multidimensional arrays. References also allow more advanced
uses of data, including creating object-oriented structures in Perl. We’ll look at a number
of these uses as the lesson progresses.

There’s one other technical point to make before we move on to actual code. What I’m
referring to in this chapter as references are known in technical Perl circles as hard refer-
ences. Perl also has another form of reference called a symbolic reference. Although there
are perfectly good reasons for using symbolic references, hard references are more useful
in general, so for the bulk of this chapter we’ll stick to those. I’ll talk more about symbolic
references in “Going Deeper” at the end of this lesson.

The Basics: A General Overview of How to
Use References

Let’s look at a few simple examples of creating and using references so you can get a feel
for the technique. Perl actually has a number of ways of working with references, but
here we’ll focus on the easiest and most popular mechanisms, and explore the others in
a later section (“Other Ways of Using References”).

23 0355 ch19 5/9/02 2:38 PM Page 482

Working with References 483

19

Creating a Reference
Start with something you’ve seen a gazillion times before in this book: A plain old scalar
variable that contains a string.

$str = “This is a string.”

This is an ordinary scalar variable, holding ordinary scalar data. There’s some location in
memory that stores that string, which you can get to through the $str variable name. If
you assigned something else to $str, the memory location would have different contents
and there would be a different value for $str. All this is the basic stuff you’ve been
doing all along.

Now let’s create a reference to that data. To create a reference, you need the actual memory
location of the data in question (a scalar, an array, a hash, or a subroutine). To get at that
memory location, you use the backslash (\) operator and a variable name:

$strref = \$str;

The backslash operator gets the memory location of the data stored in $str and creates a
reference to that location. That reference then gets assigned to the scalar variable $strref
(remember, references are a form of scalar data).

The backslash operator is very similar to the address (&) operator in C. Both
are used to access the actual memory location of a piece of data.

Note

At no point here do the actual contents of $str—the string “This is a string.”—come
into play. The reference doesn’t care about the contents of $str, just its location. And
$str remains a scalar variable containing a string; the reference’s existence doesn’t
change anything about that either. (See Figure 19.1.)

$strref $str

This is a string.

FIGURE 19.1
A variable, a string,
and a reference.

This example created a reference to a string. But you can also create references to arrays,
hashes, or subroutines—anything that has a memory location in Perl. For example,
here’s a reference to an array:

@array = (1..10);
$arrayref = \@array;

23 0355 ch19 5/9/02 2:38 PM Page 483

And here’s one for a hash:

%hash = (
‘red’ => ‘0 0 255’,
‘green’ => ‘0 255 0’,
‘blue’ => ‘255 0 0;);

$hashref = \%hash;

As with the reference to a scalar value, the array and hash in these examples remain arrays
and hashes stored in the @array and %hash variables, respectively. And the array and
hash references in $arrayref and $hashref are bits of scalar data, regardless of the data
they point to. The most important thing to remember here is that the reference itself is a
scalar. The thing it points to can be any kind of data.

484 Day 19

You can also create references to subroutines. Because this is an advanced
topic, and not as commonly used as references to scalars, arrays, and hashes,
we’ll look at references to subroutines and how they’re used in this lesson’s
“Going Deeper” section.

Note

Printing and Using References
So now you’ve created a reference with the backslash operator and stored it in a scalar
variable. What do these references look like? They’re scalars, and as such can be used
anywhere a scalar can, and as with numbers and strings they behave differently based on
context.

A reference used as a string indicates the data it refers to (a scalar, an array, a hash, and
so on), and a hexadecimal number representing the internal memory location the reference
points to. So, for example, if you did this:

print “$strref\n”;

You’d get something like this:

SCALAR(0x807f61c)

The equivalent for $arrayref and $hashref would look like this:

ARRAY(0x807f664)

HASH(0x807f645)

Using a reference in a numeric context gives you the same hexadecimal number that you
get when you use the reference in a string context, representing the memory location of
the thing the reference points to. The numbers in both the string and number representations

23 0355 ch19 5/9/02 2:38 PM Page 484

Working with References 485

19

of the reference will vary depending on when you run the script and the memory that’s
free for Perl to use at that time. You wouldn’t want to rely on those numbers; just consider
that to be an internal representation of where the reference points.

Other uses of references? You can assign them to scalar variables, as we have here, use
them as list elements, or store them in arrays and hashes (although they cannot be used
as hash keys—more about this later). A reference, when used as a test, will always be true.
But the most typical thing you do with references is to dereference them to gain access
to the data they point to.

Dereferencing References
When you dereference a reference, you get at the data that reference points to. You could
also think of it as following the reference, or accessing the location the reference refers
to. But the term dereference is what is most commonly used.

There are a number of ways to dereference a reference, but the easiest way is to substitute
the reference’s scalar variable where a plain variable name would be expected, like this:

$originalstr = $$strref;

Two dollar signs? Yes. A single dollar sign is just the scalar variable $strref, which gives
you the reference itself. The double dollar sign says “give me the thing that $strref
points to.” In this case, the thing that $strref points to was the original string “This is a
string.” You could think of two dollar signs as putting the reference—$strref—in place
of the actual name of the variable you want to access.

To follow an array reference and gain access to the array itself, you’d do the same thing
with an @ sign instead, and the $arrayref goes where the name of the array would be

@firstlist = @$arrayref;

The contents of @firstlist will now be that initial array we created and that $arrayref
pointed to (actually, it’ll be a copy of all the elements of that array).

Need to gain access to an actual array element from a reference? No problem. It’s the same
rule, just put the variable holding the reference where the name of the array would be

$first = $$arrayref[0];

Same rule for getting the topmost index number of an array:

$index = $#$arrayref;

Hashes work similarly:

%newhash = %$hashref; # copy what $hashref points to

23 0355 ch19 5/9/02 2:38 PM Page 485

$value = $$hashref{red}; # get the value for the key “red”

@keys = keys %$hashref; # extract keys

Changing Referenced-To Data
Here’s the tricky part of references: changing the data that the reference points to. Say
you’ve got your $strref as before, but then you change the value of $str later:

$str = “This is a string.”
$strref = \$str;
...
$str = “This is a different string.”

What happens to the reference $strref? It continues to exist. It continues to point to that
same memory location named by $str. If you dereference it, you’ll now get the new string:

print “$$strref\n”; # results in “This is a different string.”

The reference itself doesn’t care about the contents of the thing it points to, just the location.
You can merrily change the contents all you want—the reference will just keep pointing
to that same spot. Each time you dereference it, you’ll get the thing contained at that
location.

Note that this is different from regular variable assignment, which copies the contents of
one memory location to another. References always continue to point to the same loca-
tions, and the contents can be changed out from under that reference. Take, for example,
these statements:

@array1 = qw(ready set go);
@array2 = @array1;
$arrayref = \@array1;
push @array1, “stop”;

$, = ‘ ‘; # set the array element delimeter
print “@array1\n”;
print “@array2\n”;
print “@$arrayref\n”;

Can you guess what will get printed in each of the three print statements? The contents
of @array1 were created in the first statement, and then changed in the fourth, so the
printout of @array1 will be this:

ready set go stop

@array2 was assigned to the contents of @array1 in the second line. With list assignment,
the array on the right is expanded into its component elements, and then those elements
are assigned to the array on the left. So, @array2 gets a copy of @array1 at that time and
will print like this:

ready set go

486 Day 19

23 0355 ch19 5/9/02 2:38 PM Page 486

Working with References 487

19

Modifying @array2 has no effect on @array1; they are now separate arrays with separate
contents.

The reference to @array1 in $arrayref, however, will be the same as the current contents
of @array1 because the reference points to the same memory location as @array1 does.
Printing that dereference, then, will result in this:

ready set go stop

Using References with Subroutine
Arguments and Return Values

So far, you’ve got a basic idea of how references work. There’s still lots more detail to
explain about creating and using references, but let’s stop for a moment and do something
practical. On Day 11, “Creating and Using Subroutines,” when we talked about sub-
routines, I mentioned that lists and subroutines tend to be somewhat awkward without
references. Let’s revisit that topic and explore how references can make subroutine list
arguments and return values much easier to manage.

Subroutine Arguments
As you already know, Perl has a very basic capability to pass arguments into and out of
subroutines. All list arguments into a subroutine are flattened into a single list and stored
in @_. Return values, as well, are returned as a single scalar or flattened list of scalars.
Although this makes simple arguments easy to process, subroutines that take several lists
as arguments can become problematic, as those lists lose their identities on their way into
the subroutine. As noted on Day 11, you can work around this limitation in a variety of
ways, including storing lists in global array or hash variables (avoiding argument passing
altogether), or passing along information about the lists themselves (such as the length)
as an argument, which allows you to reconstruct the list inside the subroutine itself.

The most sensible way—and often the most efficient—to get around Perl’s list-flattening
behavior with subroutines is to avoid passing actual list contents into subroutines altogether.
Pass in references instead, and then dereference the references inside the subroutine to
get at the contents of those lists.

Here’s an example, borrowed from an earlier exercise, of a subroutine that takes two
arrays as arguments and returns a list of all the elements that are common between them
(the intersection of the two arrays). The length of the first array is passed in as the first
argument, so we can reconstruct the two arrays inside the subroutine. Here we do it with
a call to splice (remember that shift inside a subroutine, with no arguments, shifts @_):

23 0355 ch19 5/9/02 2:38 PM Page 487

1: sub inter {
2: my @first = splice(@_,0,shift);
3: my @final = ();
4: my ($el, $el2);
5:
6: foreach $el (@first) {
7: foreach $el2 (@_) {
8: if (defined $el2 && $el eq $el2) {
9: push @final,$el2;
10: undef $el2;
11: last;
12: }
13: }
14: }
15: return @final;
16: }

We’d call this subroutine with a length and two arrays as arguments:

@one = (1..10);
@two = (8..15);
@three = inter(scalar(@one),@one,@two);

You could argue that this example isn’t too awful; it’s only two arrays, after all, and a
splice takes care of splitting up the elements. But what if you had more than two arrays
as arguments? That would be a lot of splitting. And if any of the arrays were particularly
huge, that would mean a lot of copying elements before you even started actually pro-
cessing any elements. Not very efficient.

Let’s rewrite that subroutine to use references. Instead of passing the actual arrays into
the subroutine, pass references to those arrays. Then assign those references to variables
inside the subroutine and dereference them to get the contents. Our new subroutine might
look like this:

1: sub inter {
2: my ($first, $second) = @_;
3: my @final = ();
4: my ($el, $el2);
5:
6: foreach $el (@$first) {
7: foreach $el2 (@$second) {
8: if (defined $el2 && $el eq $el2) {
9: push @final,$el2;
10: undef $el2;
11: last;
12: }
13: }
14: }
15: return @final;
16: }

488 Day 19

23 0355 ch19 5/9/02 2:38 PM Page 488

Working with References 489

19

You’d call this subroutine with only two arguments, two references to arrays:

@one = (1..10);
$oneref = \@one;
@two = (8..14);
$tworef = \@two;
@three = inter($oneref,$tworef);

There are only two differences between this subroutine and the one before it: The first
line that manages the argument list (line 2), and the references to the lists inside both
nested foreach loops (lines 6 and 7). In the reference version, we don’t need to splice
elements from a single argument list; the argument list only has two elements: the two
scalar references. So we can replace the splice with an ordinary scalar assignment to two
local variables.

With the references in hand, we move on to the foreach loops that test each element. Here,
we don’t have local arrays at all, all we have are references. To get at the array contents,
we dereference the references using @$first and @$second, and access the array contents
from there.

With this subroutine, each array retains its original contents and makeup. If you pass in
references to hashes, those hashes remain hashes and are not flattened into lists. And there’s
also no copying of the list data from one place to another as there is with passing regular
lists. It’s more efficient and it’s often easier to manage and to understand, particularly
with subroutines with complex arguments.

Passing References Back from Subroutines
The converse of passing lists to subroutines is returning lists back from subroutines using
the return operator. By default, return can return either a single scalar or a list, and
will flatten multiple lists into a single list.

To return multiple items from a subroutine, and keep the integrity of lists and hashes,
simply return references to those structures instead of the contents themselves, just as
you did with passing list data into the subroutine:

sub foo {
my @templist;
my %temphash;
...

my $tempref = \@templist;
my $temphashref = \%temphash;
return ($tempref, $temphashref);

}

23 0355 ch19 5/9/02 2:38 PM Page 489

This might initially seem wrong, given that the variables in this example, @templist and
%temphash, are local variables, and will vanish after the subroutine is done executing. If
the variables go away, what do the references have left to point to? The secret here is that
even though the variable name goes away when it goes out of scope (when the subroutine
finishes executing), the data it contained still exists, and the reference continues to point
to it. In fact, dereferencing that reference will now be the only way to continue to get
access to that data. This behavior affects how Perl stores and reclaims memory while your
script is running; we’ll look at that notion in the section “A Note About Memory and
Garbage Collection.”

An Example
Here’s an example that illustrates how useful references can be in dealing with lists that are
passed to subroutines as arguments and returned by subroutines. The program is basically a
shell for a subroutine that accepts an arbitrary number of lists, sorts them numerically, and
returns all the sorted lists. It also provides a sneak preview of a topic that will be discussed
later in this chapter—nested data structures. The source code for the program is in
Listing 19.1.

LISTING 19.1 The Source Code for args.pl

#!/usr/ bin/perl

my @one = (55, 11, 33, 22, 44);
my @two = (8, 4, 7, 3, 1);
my @three = (100, 700, 200);

my @sorted_arrays = sort_arrays(\@one, \@two, \@three);

foreach my $ref (@sorted_arrays)
{

foreach my $num (@$ref)
{

print $num, “ “;
}
print “\n”;

}

sub sort_arrays
{

my @new_arrays = ();

foreach my $ref (@_)
{

490 Day 19

23 0355 ch19 5/9/02 2:38 PM Page 490

Working with References 491

19

my @sorted = sort {$a <=> $b} @$ref;
push @new_arrays, \@sorted;

}

return @new_arrays;
}

Three arrays were created on lines three through five, all of which will be passed to the
subroutine at the same time. They each contain lists of numbers, which will be sorted by
the subroutine. On line seven the subroutine is called sort_arrays, and the results are
assigned to the variable @sorted_arrays. The subroutine returns a list of references to
the newly sorted arrays, and accepts a list of references to lists as its argument. As you
can see, its argument list contains references to the three arrays that were just created.

The foreach loop that starts on line nine prints out the newly sorted arrays. It iterates
over the list of references, assigning each of the individual references to a variable called
$ref. There’s also an inner foreach loop, which dereferences $ref and processes the
individual elements in the arrays passed back by the subroutine. This is your first look at
a nested data structure—a list of lists. The @sorted_arrays variable is a list of references,
each of which points to a list that was created when the sort_arrays subroutine was
executed. When those references are dereferenced, we’re able to iterate over the individual
values in those lists using the foreach loop. Inside the foreach loop, just print out each
element individually, and when the inner foreach loop finishes, print out a line feed to
separate the lists.

Now let’s look at sort_arrays, which begins on line 18. First, declare a new list variable
called new_arrays. This is where we are going to stick the sorted arrays that the subroutine
will return. On line 22, begin another foreach loop. This one processes all the arguments
to the subroutine. Each argument is a reference to a list, and is assigned to the variable
$ref. On line 24, dereference $ref and pass it to the sort function, assigning the results
to a list called @sorted. Then, push a reference to @sorted onto the @new_arrays variable.
What results is the nested data structure that I talked about previously, a list of lists. Then
return that list from the subroutine.

Finally, use a foreach loop to process each of the references in the list. Because each
reference points to another list, inside the body of the loop, use another foreach loop to
process the elements in the list referenced by the current element in the outer loop. Print
out those elements, and print a newline to separate each list following the inner foreach
loop.

LISTING 19.1 continued

23 0355 ch19 5/9/02 2:38 PM Page 491

Other Ways of Using References
Both using the backslash operator to create a reference and putting the reference where a
name would be expected to dereference that reference are two common ways of creating
and using references. But there are lots of other ways for doing the same things, some of
which give you new and complex abilities, and others that provide more readable ways
of doing the same thing. In this section, we’ll look at some of the other ways to create
and use references, as well as explore some of the other issues surrounding references.

Dereferencing List Reference Elements
If you have a reference to a list, one of the more common things you’ll want to do with
that reference is to get access to the individual elements inside that list—to print them, to
sort them, to slice them, and so on. One way to do that is to use the basic syntax you
learned about at the start of this lesson, and that we used in the previous example:

print “Minimum number: $$ref[0]\n”;

This particular line prints the first element of the array pointed to by the reference $ref.
If you were going to do the same thing to a hash, you’d use hash syntax, and replace the
hash name with the reference:

print “John’s last name: $$ref{john}\n”;

There’s another way to gain access to the list and hash elements pointed to by a reference,
one that in many cases (particularly with complex data structures and object-oriented
objects) is slightly easier to read. Use the reference, the arrow operator (->), and an array
subscript to gain access to list elements pointed to by references:

$first = $listref->[0];

Note that in this expression there is only one dollar sign. This expression dereferences
the list reference in the variable $listref, and returns the 0th element of that list. It is
precisely the same as using the standard dereferencing mechanism:

$first = $$listref[0];

To use this syntax with hashes, use the hash reference, the arrow operator ->,, and the
hash key in brackets:

$value = $hashref->{$key};

This form is just the same as the standard way:

$value = $$hashref{$key};

492 Day 19

23 0355 ch19 5/9/02 2:38 PM Page 492

Working with References 493

19

We’ll come back to this syntax in the section on “Creating Nested Data Structures with
References.”

References with Blocks
A third way of dereferencing references is similar to that of basic references; instead of
using a reference variable name in place of a regular variable name, you use a block
(inside curly brackets) in place of a regular variable name. The block, when evaluated,
should return a reference. So, for example, say you had a reference to a list:

$listref = \@list;

You could get at the third element of that list using regular dereferencing:

$third = $$listref[3];

Or, through arrow notation:

$third = $listref->[3];

Or, with a block:

$third = ${$listref}[3];

To get the contents or last index of a list through a reference you might use regular de-
referencing:

@list = @$listref;
$index = $#$listref;

Or a block:

@list = @{$listref};
$index = $#{$listref};

This particular block doesn’t have much of a point, given that all it does is evaluate the
$listref variable, and you could do that just as easily and with fewer characters using
a regular dereference. But you could, for example, have called a subroutine inside the
block that returned a reference, used an if conditional to choose one reference or another,
or put any other expression inside that block. It doesn’t have to be a simple variable.

Don’t confuse the arrow operator -> with the hash pair operator =>. The
former is used to dereference a reference; the latter is the same as a comma
and is used to make initializing the contents of hashes easier to read.

Note

23 0355 ch19 5/9/02 2:38 PM Page 493

Block dereferencing also allows you to build up some very complex dereferences for very
complex structures that use those references. We’ll look at this in more detail in the
section on “Accessing Elements in Nested Data Structures.”

The ref Function
Say you’ve got a reference stored in a scalar variable. You’d like to know what kind of
data that reference actually points to, so you don’t end up trying to multiply lists or get
elements out of strings. Perl has a built-in function to do just that called ref.

The ref function takes a scalar for an argument. If the scalar isn’t a reference, that is, if
it’s a string or a number, then ref returns a null string. Otherwise, it returns a string indi-
cating the kind of data the reference points to. Table 19.1 shows the possible values.

TABLE 19.1 Possible Return Values of ref Function

Return Value Means the Reference Points To

REF Another reference

SCALAR A scalar value

ARRAY An array

HASH A hash

CODE A subroutine

GLOB A typeglob

“” (null string) Not a reference

494 Day 19

We’ll look at references to subroutines and typeglobs in the “Going Deeper”
section of this lesson.

Note

The ref function is most commonly used to test references for their type:

if (ref($ref) eq “ARRAY”) {
foreach $key (@$ref) {

...
}

} elsif (ref($ref eq “HASH”) {
foreach $key (keys %$ref) {

...
}

}

23 0355 ch19 5/9/02 2:38 PM Page 494

Working with References 495

19

A Note About Memory and Garbage Collection
One internal side effect of using references concerns the amount of memory that Perl
uses up as it runs your script and creates various bits of data. Normally, when your script
runs, Perl sets aside bits of memory for your data automatically, and then reclaims the
memory when you’re done with it. The process of reclaiming the memory—called garbage
collection—is different from many other languages, such as C, where you must allocate
and free memory on your own.

Perl uses what’s called a reference-counting garbage collector. That means for each bit of
data, Perl keeps track of the number of references to that data—including the variable
name that holds it. If you create a reference to that bit of data, then Perl increments the
reference count by 1. If you move the reference to something else, or if a local variable
that holds a bit of data disappears at the end of the block or a subroutine, Perl decrements
the reference count. When the reference count goes to 0—there are no variables referring
to that data, nor any references that point to it—then Perl reclaims the memory that was
held by that data.

Normally, this all works automatically and you don’t have to do anything about it in your
scripts. However, there is a case with references that you have to be careful about: the
problem of circular references.

Take these two references:

sub silly {
my ($ref1, $ref2);
$ref1 = \$ref2;
$ref2 = \$ref1;
.. do silly things

}

In this example, the reference in $ref1 points to the thing $ref2 points to, and $ref2
points to the thing $ref1 points to. This is called a circular reference. The difficulty here
is when the subroutine is done executing, the local variable names $ref1 and $ref2 dis-
appear, but the data that each one contains still has at least one reference pointing to it,
so the memory those references hold cannot be reclaimed. And without the variable
names, or a returned reference to one or the other of the references, you can’t even get to
the data inside that subroutine. It’s just going to sit there. And each time that subroutine
runs while your script executes, you’ll end up with more and more bits of unclaimable
memory until Perl takes up all the memory on your system (or your script stops executing).

Circular references are bad things. Although this particular example might seem silly and
easy to catch, with complex data structures containing references pointing all over the
place, it is possible to accidentally create a circular reference where you don’t intend one

23 0355 ch19 5/9/02 2:38 PM Page 495

to be. Consider “cleaning up” any references you use in blocks or subroutines (undef
them or assign them to something like 0 or ‘’) to make sure they don’t become
unclaimed memory.

Creating Nested Data Structures with
References

Subroutines are not the only place where references come in handy. The other significant
feature that becomes possible with references is complex data structures such as multi-
dimensional arrays. In this section we’ll look at constructing complex data structures
with nested arrays and hashes using references and anonymous data. Later in the lesson,
in “Accessing Elements in Nested Data Structures,” we’ll look at getting data back out of
the nested data structures you’ve just created.

What Is a Nested Data Structure?
Normally in Perl, lists, arrays, and hashes are flat, one dimensional, containing nothing
but scalars. Combine multiple lists, and they all get squished down to a single one. Hashes
are effectively just lists with a different way of organizing the data inside them. Although
this makes creating and using collections of data really easy, it’s also quite limiting when
you’re trying to represent larger or more complex data sets efficiently.

Say, for example, that your data consists of information about people: first name, last
name, age, height, and names of all that person’s children. How would you represent this
data? First and last names are easy: create a hash, keyed by last name, and with the first
names as the values for those keys. Heights—well, you might create a second hash, also
keyed by last name, for the heights. But then there’s the names of children. Perhaps a
third hash, keyed by last name, with the values being strings representing the names of
the children, separated by colons, and then split on-the-fly when you want to use them?
As you can see, when the data gets complex, you end up creating too many flat lists to
keep track of it all, or creating funny workarounds with strings to get around the inability
to store lists inside other lists.

That’s where references come in. It’s true a list is a flat collection of scalars. But a reference
is a scalar—and a reference can point to another list. And that list, in turn, can contain
references to other lists. Get it? References allow you to nest lists inside other lists, arrays
inside arrays, hashes inside arrays, arrays as values for hashes, and so on. We’ll call all
these things—any combination of lists, arrays, and hashes—nested data structures.

496 Day 19

23 0355 ch19 5/9/02 2:38 PM Page 496

Working with References 497

19

Using Anonymous Data
Although references are crucial for creating nested data structures, there’s one other thing
you need to know that will make building nested data structures easier: anonymous data.
The term anonymous means without a name. Anonymous data in Perl, specifically, refers
to data (usually arrays and hashes, but also subroutines) that you can only access through
a reference—that data does not also have an associated variable name.

As with the last section, in this section we’ll look specifically at arrays and
hashes. We’ll cover anonymous subroutines and the references to them in
“Going Deeper,” at the end of this lesson.

Note

We’ve already seen anonymous data earlier in this chapter, when we created arrays inside
subroutines, and then returned references to those arrays. After the subroutine exits, the
original local variable that held the data disappears, and the only way to get at the data is
through a reference. That data is then anonymous.

Anonymous data is useful for nested data structures because if you’re going to create a
list of lists, then the only variable name you need is the one that holds the outside list
(and you don’t even really need that one). You don’t need separate variables for all the
data inside the lists; references will work just fine.

You could create anonymous data for nested data structures using local variables inside
subroutines or blocks. In some ways, when you’re filling structures with data you read
from files or from standard input, it’s easier to do so that way. But there’s another way to
create anonymous data, and that’s with actual Perl syntax: brackets ([]) or curly brackets
({}).

Say you wanted to create a reference to an array. The normal way would be as we’ve
seen it:

@array = (1..10);
$arrayref = \@array;

But this isn’t anonymous; the array is stored in the variable @array. To create that same
array anonymously, you’d initialize that list inside brackets, instead of parentheses. The
result is a reference, which you can then store:

$listref = [1..10];

This array is accessible through the reference. You would dereference it the way you
would any array, but not through a variable name. It’s anonymous data.

23 0355 ch19 5/9/02 2:38 PM Page 497

You can do the same thing with anonymous hashes, where curly brackets create a refer-
ence to an anonymous hash:

$hashref = {
‘Taylor’ => 12,
‘Ashley’ => 11,
‘Jason’ => 12,
‘Brenadan’ => 13,

}

Note that the elements inside the hash must still be in pairs, and will be combined into
keys and values just as regular hashes are.

498 Day 19

The brackets and curly brackets here should not be confused with the array
indexes ($array[0]) and hash lookups ($hash{key}). The characters are the
same so that you can remember that brackets go with array and curly brack-
ets with hashes, but they do entirely different things.

Note

Array and hash brackets construct an array or hash in memory, and then return a refer-
ence to that memory location. Anything that you can put inside an array or a hash, you
can put inside anonymous array or hash brackets. That includes array and hash variables,
although these two lines do not produce the same result:

$arrayref = \@array;

$arrayref = [@array];

The difference between these two is that the first reference points to the actual memory
location of the @array variable. The second one produces a new array, copying all the
elements of @array, and then creates a reference to that new memory location. You could
consider it as simply creating a reference to a copy of @array. This will be an important
trick to know later when we create data structures inside loops.

Creating Data Structures with Anonymous Data
With anonymous data and references, creating nested data structures is a simple matter of
putting it all together. In this section, we’ll look at three kinds of nested data structures:
arrays of arrays, hashes of arrays, and hashes of hashes.

Arrays of Arrays
Let’s start with something simple: an array of arrays, or a multidimensional array (see
Figure 19.2). You might use an array of arrays to create a sort of two-dimensional field
such as a chessboard (where each square on the “board” has a position somewhere inside
a row, and the larger array stores all the rows).

23 0355 ch19 5/9/02 2:38 PM Page 498

Working with References 499

19

To create an array of arrays, use anonymous array syntax for the inner arrays, and regular
list syntax for the outer (this array of arrays represents the red, green, and blue values for
various shades of gray):

@greys = (
[0, 0, 0],
[63, 63, 63],
[127, 127, 127],
[191, 191, 191],
[255, 255, 255],

);

Here, the arrays with the numbers are inside brackets, which creates references to those
arrays. Then the larger array, inside parentheses, creates a simple array of those references.
Be careful not to do this:

@greys = [
[0, 0, 0],
[63, 63, 63],
...

];

The brackets around the outer array will create a reference to an array, not a regular
array. Perhaps that is what you want, but in that case you wouldn’t assign it to an array
variable. Use a scalar variable to hold the reference instead.

@array
�

�

�

�

�

� � � � �

‘foo’ 0 ‘A’ undef 3.14

� � � � �

��� ��� �	� �
� ���

� � �

��� ��� ���

� � � �

� � � �

� �

���
� �����

FIGURE 19.2
An array of arrays.

If you’re used to C’s true multidimensional arrays, note that Perl’s multidi-
mensional arrays are more like arrays of pointers and are not truly multidi-
mensional.

Note

23 0355 ch19 5/9/02 2:38 PM Page 499

To access data within one of the inner arrays, the following notation is used:

print $greys[1]->[2];

Hashes of Arrays
A hash of arrays is a nested data structure in which a hash, with normal keys, has values
that are references to arrays (see Figure 19.3). You might use a hash of arrays to keep track
of a list of people and their children, where the hash would be keyed by the people’s names,
and the values would be lists of their children’s names. Or a movie theater might keep a
hash of movie names and their associated show times.

500 Day 19

�����

�����

��	

��

���
�

�����
�

������

� � �

��� � �

� � �

� ��� �

� � �

� � ���

� � �

��� ��� ���

�

� � �

� �

FIGURE 19.3
Hashes of arrays.

To create a hash of arrays, use hash syntax for the outer hash, normal strings as the keys,
and anonymous arrays as the values (this one keeps track of a schedule of activities at a
summer camp):

%schedule = (
‘monday’ => [‘archery’, ‘soccer’, ‘dance’],
‘tuesday’ => [‘basketweave’, ‘swimming’, ‘canoeing’],
‘wednesday’ => [‘nature walk’, ‘soccer’, ‘dance’],
‘thursday’ => [‘free time’, ‘swimming’, ‘canoeing’],
‘friday’ => [‘archery’, ‘soccer’, ‘hike’],

);

Once again, watch out for the placement of brackets and parentheses. Here, the inner
brackets create the anonymous arrays. The outer parentheses create a list that is then
converted into a hash when it’s assigned to the %schedule variable. Using curly brackets
({}) around the entire list would create a reference to an anonymous hash.

To access the data in one of the arrays inside the hash, use the following notation:

print $schedule{‘monday’}->[1];

23 0355 ch19 5/9/02 2:38 PM Page 500

Working with References 501

19

Note that in a hash of arrays, only the values can be arrays. The hash keys must be strings,
and, in fact, Perl assumes they will be strings and converts anything else (numbers and
references) to strings. Be careful when you build nested hashes to make sure your keys
are strings.

Hashes of Hashes
How complex would you like to get? Hashes of hashes allow you to create very complex
data structures. In a hash of hashes, the outer hash has regular keys and values that in turn
store other hashes (see Figure 19.4). You could then look up specific keys and “subkeys”
in each of the hashes. For example, a hash of hashes could collect a classroom full of
children and the grades they were getting in each subject. Have the children’s last names
be the keys, and the values would be another hash containing, for example, first name,
date of birth, and then the grades for each class.

%hash

'White'

�������

����	
�

'first_
name' 'Amy'

��� ���

�������� ���

����� ���

'first_
name' 'Jon'

����� ���

�������� ���

����� ���

'first_
name' 'Sue'

����� ���

�������� ���

����� ���

FIGURE 19.4
Hashes of hashes.

Hashes of hashes get anonymous hash syntax for the insides, and regular list syntax for
the outside:

%people = (
‘Jones’ => {

‘name’ => ‘Alison’,
‘age’ => 15,
‘pet’ => ‘dog’,

},

23 0355 ch19 5/9/02 2:38 PM Page 501

‘Smith’ => {
‘name’ => ‘Tom’,
‘age’ => 18,
‘pet’ => ‘fish’,

},
);

To retrieve data from one of the inner hashes, you could use the following code:

print $people{‘Smith’}->{‘pet’}, “\n”;

Other Structures
I’ve shown you three simple and common nested data structures in this section: arrays of
arrays, hashes of arrays, and hashes of hashes. But you can combine arrays and hashes
with references and anonymous data in just about any way you’d like, depending on the
data you’re working with and the best way to organize that data. You can also nest your
data further down than I did here, to create, for example, a hash of a hash in which the keys
are in turn arrays, and those array elements are hashes, and so on. There’s no limit to how
deeply you can nest your data structures, so if it seems appropriate, go ahead and do it.

Building Data Structures with Existing Data
The examples of creating nested data structures with anonymous data work great when
you already know exactly what data that structure is going to contain ahead of time. But
in real life, these sorts of structures tend to get built from data that might be read in from
a file or entered via the keyboard.

In that case, sometimes you’ll end up combining anonymous data with references to reg-
ular variables. As long as you end up with references in the right spot, there’s no harm in
using whatever mechanism works best for building your data structure. For example, let’s
say that you had a file that contained a matrix of numbers that looked something like this:

3 4 2 4 2 3
5 3 2 4 5 4
7 6 3 2 8 3
3 4 7 8 3 4

You want to read that file into an array of arrays, with each row its own array, and a larger
array to store the individual rows. You might accomplish that with a loop that looks
something like this:

while (<>) {
chomp;
push @matrix, [split];

}

502 Day 19

23 0355 ch19 5/9/02 2:38 PM Page 502

Working with References 503

19

That loop would read each line, chomp off its newline with chomp, split it into elements
with split, create an anonymous array of those elements with brackets, and then finally
push the reference to that array onto a larger array.

You might think that this example would be more readable if we split the elements into a
list first, and then stored a reference to that list instead, like this:

my @list = ();
while (<>) {

chomp;
@list = split;
push @matrix, \@list;

}

But there’s a big catch to this example (a catch lots of programmers make the first time
they try this). Given input like the preceding matrix, with this loop you’d end up with an
array of arrays that looked like this:

3 4 7 8 3 4
3 4 7 8 3 4
3 4 7 8 3 4
3 4 7 8 3 4

Can you guess why? The problem is with the variable name and, later, the reference to it.
With each turn of the loop, although the contents of the variable @list change, the mem-
ory location stays the same. Each time you read a line, you’re pushing a reference to the
same memory location. The array you end up with is an array of four references, and
each one points to exactly the same place.

One solution to this mistake—and it’s a common one, so watch out for it—is to create a
reference to a copy of the array’s data, not to the array itself. This way, a new location is
created in memory each time the loop executes, so you end up with references to different
places. You can do this simply by putting anonymous array brackets around your array
variable:

my @list = ();
while (<>) {

chomp;
@list = split;
push @matrix, [@list];

}

Watch out with hashes that you do the same thing with an anonymous hash (in this case,
putting an anonymous hash into an array of hashes):

push @arrayofhashes, { %hash };

23 0355 ch19 5/9/02 2:38 PM Page 503

The other solution to this problem is to use a my variable inside the loop itself. Because
the my variable will be created from scratch at each turn of the loop, the references will
point to different bits of memory each time:

while (<>) {
chomp;
my @list = split;
push @matrix, \@list ;

}

Accessing Elements in Nested Data
Structures

Building nested data structures is one thing; getting elements out of them is another.
With references inside arrays pointed to by other references, getting at an actual element
can be a chore, particularly in complex structures. Fortunately, Perl has syntax to help.

Say you have a matrix (array of arrays) of numbers like the one we used in the last section:

@nums = (
[3, 4, 2, 4, 2, 3],
[5, 3, 2, 4, 5, 4],
[7, 6, 3, 2, 8, 3],
[3, 4, 7, 8, 3, 4,],

);

Now let’s say you wanted to access the fourth element of the third row. You could use
standard array access to get to the third row:

$nums[2]

But that would give you a reference, not the data that reference points to (remember, you
only get the data pointed to by a reference by explicitly referencing it). To dereference
the reference and give you an actual element, you could do this (the fourth element of the
array pointed to the reference in $nums[2]):

$nums[2]->[3]

Or this ($nums[2] gives you a reference which is dereferenced inside the block):

${ $nums[2] }[3];

Either one of these would work, but neither is particularly readable. Perl provides a
shorthand syntax for multidimensional arrays that makes this easier: Using the standard
arrow deferencing syntax, you can leave off the -> characters, like this:

$nums[2][3];

504 Day 19

23 0355 ch19 5/9/02 2:38 PM Page 504

Working with References 505

19

That’s much easier to figure out, and analogous to multidimensional array access in other
languages (like C, for instance).

The situation is different if, instead of an actual array in @nums, all you had was a reference
to an array of arrays. Then there are two references to dereference, and you’d use syntax
like this (where $numref is the reference to the array of arrays):

$numref->[2][2];

Nested hashes of arrays and hashes of hashes work analogously, using curly brackets for
the hash keys and brackets for the array indexes:

$hash{joe}[5]; # sixth element of array accessed
by the key ‘joe’ in the hash %hash

$hashref->{joe}[5] # same thing, if $hashref contains a reference

$hash{Jones}{age}; # age value for the Jones record in the hash %hash

$hashref->{Jones}{age}; # samething, $hashref is reference

If all these nested subscripts and keys are too disturbing, there’s nothing wrong with cre-
ating a temporary copy of the reference to an internal array or hash, and then dereferencing
that reference in a more simple way:

same as $nums[0][5]
my $tempref = $nums[0]; # get reference to first row of nums
print $$tempref[5]; # print fifth element

Need to take a slice of a nested array? You’d use normal slice syntax for that, with the
references in the appropriate spots. You’ll also need to use block dereferencing in this
case, and you’ll end up with something ugly like this (this one extracts elements 2
through 5 in the second array in @nums:

@elements = @{ $nums[1] }[2..5];

Because this notation can quickly become really ugly, it might be easier to pull references
into temporary variables and take slices of those, or to create loops that extract individual
elements from a nested array. If you want to take vertical slices (one element from some
number of nested “rows”) or rectangular slices (some number of elements across, another
number of elements down), then you’ll have to create a loop to do that.

Another Example: A Database of Artists and
Their Works

Nested data structures work best for representing complex sets of data and allow you to
do various things with that data. In this example, then, we’ll look at a database of artists,

23 0355 ch19 5/9/02 2:38 PM Page 505

some information about those artists, and their various works. To save space, we’ll keep
this example short. All this example does is

• Read the artist data from a file into a complex nested data structure

• Prompt for a search string

• Print the data for that particular artist, given that search string

The data we’ll look at in this example consists of an artist’s first and last names, their birth
and death dates, and a list of titles of their works. The artist’s data is stored in an external
file consisting of two lines per artist:

Monet,Claude,1840,1926
Woman With a Parasol:Field of Poppies:Camille at the Window:Water Lillies

The first line consists of the artist’s personal data, separated by commas. The second line
is the artist’s works, separated by colons. The data file (which I’ve called artists.txt)
contains a number of artists in this format.

The structure we’ll read this information into is a hash of hashes with a nested array. The
topmost hash is keyed by artist’s last name. The extra artist data is a nested hash with the
keys “FN,” “BD,” “DD,” and “works.” The value of the works key is, in turn, an array
consisting of all the titles. Figure 19.5 shows how a single record (artist) of this structure
might look and where each part of the data fits into that structure.

Listing 19.2 shows the code for this simple example. Before reading down to the discussion
of this code, look carefully at the lines inside the while loop in the &read_input() sub-
routine (lines 21 through 35), and the dereferences in the &process() subroutine (lines 53
and 55).

LISTING 19.2 The artists.pl Script

1: #!/usr/ bin/perl -w
2: use strict;
3:
4: my $artdb = “artists.txt”; # name of artists database
5: my %artists = (); # hash of artists, keyed by last name
6:
7: &read_input();
8: &process();
9:
10: sub read_input {
11: my $in = ‘’; # temp input line
12: my ($fn,$ln,$bd,$dd); # last name, first name
13: # date of birth, date of death
14: my %artist = (); # temp artist hash
15:

506 Day 19

23 0355 ch19 5/9/02 2:38 PM Page 506

Working with References 507

19

16: open(FILE, $artdb) or die “Cannot open artist’s database ($artdb):
$!\n”;
17:
18: while () {
19: # name and dates on first line
20: chomp($in = <FILE>);
21: if ($in) {
22: ($ln,$fn,$bd,$dd) = split(‘,’,$in);
23: $artist{FN} = $fn;
24: $artist{BD} = $bd;
25: $artist{DD} = $dd;
26:
27: chomp($in = <FILE>); # list of works in second line
28: if ($in) {
29: my @works = split(‘:’,$in);
30: $artist{works} = \@works;
31: } else { print “no works”;}
32:
33: # add a reference to the artist hash in the bigger
34: # artists hash
35: $artists{$ln} = { %artist };
36:
37: } else { last; } # end of DB
38: }
39:
40: }
41:
42: sub process {
43: my $input = ‘’;
44: my $matched = 0;
45:
46: print “Enter an Artist’s Name: “;
47: chomp($input = <>);
48:
49: foreach (keys %artists) {
50: if (/$input/i and !$matched) {
51: $matched = 1;
52: my $ref = $artists{$_};
53: print “$_, $ref->{FN} $ref->{BD}-$ref->{DD}\n”;
54: my $work = ‘’;
55: foreach $work (@{$ref->{works}}) {
56: print “ $work\n”;
57: }
58: }
59: }
60: if (!$matched) {
61: print “Artist $input not found.\n”;
62: }
63: }

LISTING 19.2 continued

23 0355 ch19 5/9/02 2:38 PM Page 507

You may note that in this example I did exactly the reverse of the last example: I’m using
a global variable to hold the global artists database, rather than keeping all variables local.
How you organize your data and variables is your choice; in this case I’m using a global
variable because the dereferences are complicated enough without adding another level
of reference at the topmost level.

One other kind of odd thing I did in this example is to hard-code the name of the artists
database into the script, rather than indicating the name of the database file on the com-
mand line. Once again, this is a question of programmer choice and how the script will
be used; either way will work equally well (note, however, that I put the filename of the
artists database right at the top of the script so it can be easily changed if necessary).

Let’s look first at the &read_input() subroutine, which reads the artists database and fills
our nested data structure with that data. The way I’ve approached this task is to create a
temporary hash for the current artist, to fill up that hash with the data, and then to put
that temporary hash into the larger hash with a reference.

We start in line 18 with a loop that reads in the artists database file, two lines at a time.
The loop will be exited when there’s no more data (as determined by the test in line 21).
We’ll start with the first line of data, which contains the artist’s name and date information:

Monet,Claude,1840,1926

Line 22 splits this data into its component parts, and lines 23 and 25 put that data into a
temporary hash (called %artist, not to be confused with the larger %artists hash).

Line 27 reads the second line of each artist’s data, the list of works:

Woman With a Parasol:Field of Poppies:Camille at the Window:Water Lillies

In line 29, we split this line into list elements, based on a “:” separator character, and
then store that list into the @works temporary array. In line 30 we add a reference to that
array to the temporary %artist hash with the key “works.” Note that each time the while
loop executes, we’ll end up with a new @works temporary array (declared with my), so
we’ll avoid the problem of referencing the same memory location each time.

With the individual artist’s data built, we can add that record to the larger artist’s hash
with the last name as the key. Line 35 does just that. Note in this instance that because
we use the same %artist hash for each turn of the loop, we’ll use an anonymous hash
constructor and a copy of the %artist hash to make sure the reference points to a different
memory location each time.

If &read_input() puts data into the nested hash, then &process() subroutine gets that
data out again. Here we’ll use a simple search on the artist’s last name and print the
matching record. The output that gets printed looks like this:

508 Day 19

23 0355 ch19 5/9/02 2:38 PM Page 508

Working with References 509

19

Enter an Artist’s Name: Monet
Monet, Claude 1840-1926

Woman With a Parasol
Field of Poppies
Camille at the Window
Water Lillies
The Artist’s Garden at Giverny

The most important parts of this subroutine are the parts that dereference the references
to get at the important data in lines 52 through 56. But let’s back up a bit and start from
line 49, the foreach loop. In this loop, because we don’t have an actual loop variable,
Perl will store each key (each artist’s last name) in the $_ variable.

Line 50 is our core test: We use a pattern-match here with the input and the current key
to see if a match was made. And, because we’re only interested in the first match for this
example, we’ll also keep track of a $matched variable to see if we’ve already found a match.

Assuming a match was indeed found, we move to line 52. Here we’ll create a temporary
variable to hold the reference to the artist’s data record—as in the stats example, not entirely
necessary, but it makes it easier to manage references this way. In this case, because $_
holds the matched key, we can use a simple hash lookup to get the reference.

With the reference in hand, we can dereference it to gain access to the contents of the
hash. In line 53 we print the basic data: the last name ($_), the first name (the value of
the key “FN” in the hash), the date of birth (“BD”), and date of death (“DD”).

Lines 54 through 56 are used to print each of the artist’s works on separate lines. The only
odd part of these lines is the reference in the foreach loop. Let’s look at that one in detail:

@{$ref->{works}}

Remember that what we have in $ref is a reference to a hash. The expression $ref-
>{works} dereferences that reference, and returns the value indicated by the key “works.”
But that value is also a reference, this time a reference to an array. To dereference that
reference, and end up with an actual array for the foreach loop to iterate over, you need
the block syntax for dereferencing: @{}.

Figuring out references and how to get at the actual data you want can be a complex
process. It helps to start from the outer data structure and work inward, using blocks where
necessary and temporary variables where it’s helpful. Examining different referencing
expressions in the Perl debugger or with print statements can also go a long way toward
helping create the right dereferences.

23 0355 ch19 5/9/02 2:38 PM Page 509

Avoiding the Use of References
Just because you can use references doesn’t mean you have to. For one thing, under-
standing references can be tricky. For another, references were not available until Perl 5,
so seasoned programmers might be used to doing things other ways.

Let’s say you want to pass two arrays to a subroutine. One way is to create references to
them and call the subroutine, like this:

@colors = (‘red’, ‘green’, ‘blue’);
@shapes = (‘circle’, ‘square’, ‘triangle);
$colors_ref = \@colors;
$shapes_ref = \@shapes;
&some_subroutine($colors_ref, $shapes_ref);

There’s an alternative approach, too. If you like, you can turn the arrays into regular strings
with a known delimiter, and use them instead of references. For example, here’s an
approach you could use to pass the two arrays in separately without using references:

@colors = (‘red’, ‘green’, ‘blue’);
@shapes = (‘circle’, ‘square’, ‘triangle’);
$colors_str = join ‘,’, @colors;
$shapes_str = join ‘,’, @shapes;
&some_subroutine($colors_str, $shapes_str);

sub some_subroutine
{

my @colors = split /,/, $_[0];
my @shapes = split /,/, $_[1];

}

To maintain the identity of my arrays, I used the join function to turn them into comma-
delimited strings before passing them to the subroutine. Inside my subroutine, I use the
split function to extract the values from the strings and turn them back into arrays. As
you can see, this is a bit more tedious than simply passing in two references, but it can
make life easier.

You might also use such a technique when you’re dealing with nested data structures,
such as an array of arrays or a hash of arrays. Converting your arrays into strings and
using them as elements in an array or values in a hash can be a bit more tedious than just
using anonymous arrays, but can also be easier to understand. Here’s a simple example
that uses arrays nested in a hash.

@items = (‘can’, ‘bucket’, ‘needle’);
%stuff = ();
$stuff{‘items’} = join ‘,’, @items;
@temp = split /,/, @stuff{‘items’};
print @temp[1];

510 Day 19

23 0355 ch19 5/9/02 2:38 PM Page 510

Working with References 511

19

As you can see, you can just put the comma-delimited list into the hash as a value rather
than putting in a reference to an anonymous array (or a regular array). This allows you
to avoid using references, but again at the cost of additional tedium when it comes to
extracting the values from the data structure.

This technique is worth knowing about for two reasons. One is that if you don’t use ref-
erences often, it can be easy to forget how they work. The second is that there’s a good
chance that if you ever work on scripts written by other people, you’ll see techniques
similar to these. Until Perl 5 was released, the only way to create complex data structures
was to use collapse arrays and hashes into strings and extract them when you wanted to
use them.

If you’re writing new code, you probably ought to bite the bullet and use references. They
might seem confusing at first, but the more you use them, the more you’ll get the hang of it.

Going Deeper
The creation and use of references is probably one of the more complex aspects of Perl
(arguably surpassed only by object-oriented programming, which we’ll look at tomorrow).
In today’s lesson I’ve introduced you to the basics of references and the places where
you’ll most commonly use them. But as with most Perl topics, there’s plenty of other
features I haven’t covered that relate to references, including symbolic references (a whole
other form of reference), and references to subroutines, typeglobs, and filehandles.

For more information on references, check out the perlref man page. If you do more
work with nested data structures, the man pages perldsc (data structures cookbook) and
perllol (lists of lists) provide further detail and examples.

Shorthand References to Scalars
Need to create a lot of scalar references at once? Here’s an easy way to do it:

@listofrefs = \($thing1, $thing2, $thing3, $thing4);

Here you’ll end up with a list of references in @listofrefs. It’s a shorthand for something
doing this:

@listofrefs = (\$thing1, \$thing2, \$thing3, \$thing4);

Symbolic References
As I mentioned in passing earlier in this lesson, Perl actually defines two kinds of refer-
ences: hard references and symbolic references. The references I’ve used throughout this
lesson are hard references that are actual bits of scalar data that can be manipulated like
scalars or dereferenced to get to the data they refer to.

23 0355 ch19 5/9/02 2:38 PM Page 511

Symbolic references are different: a symbolic reference is simply a string. If you try to
dereference that string, the string is interpreted to be the name of a variable, and if that
variable exists, you get the value of that variable. So, for example:

$foo = 1; # variable $foo contains 1
$symref = “foo”; # string
$$symref = “I am a variable”; # sets the variable $foo
print “synbolic reference: $symref\n”; # results in “foo”
print “Foo: $foo\n”; # results in “I am a variable”
print “dereferenced: $$symref\n”; # prints $foo, results in “I am a variable”

As you can see, you can use symbolic references as if they were real references, but they’re
just strings that name variables. The difference is subtle and confusing, particularly if
you mix hard and symbolic references. You can accidentally dereference a string when
you meant to dereference a scalar, and end up with it being difficult to debug problems.
For this reason, Perl provides a strict pragma to restrict the use of references to hard
references:

use strict ‘refs’;

Setting this pragma at the top of your script will prevent you from using symbolic refer-
ences. You’ll also get this effect if you use a regular use strict at the top of your script
as well.

References to Typeglobs and Filehandles
Two types of references I didn’t mention in the body of this lesson were references to
typeglobs, which in turn allow references to filehandles. A typeglob, as I’ve mentioned
in passing previously in this book, is a way of referring to multiple types of variables that
share the same name (it holds an actual symbol table entry). Typeglobs are not as com-
monly used in Perl as they were in the past (they used to be how you passed references
to lists into subroutines before there were references), but they do provide a mechanism
for creating references to filehandles, which allows you to pass filehandles into and out
of subroutines, or to create local filehandles, if you feel the need to do so.

To create a reference to a filehandle, use a typeglob with the name of the filehandle and
the backslash operator (\):

$fh = *MYFILE;

To create a local filehandle, use the local operator (not my) and a filehandle typeglob:

local *MYFILE;

See the perldata man page (the section on typeglobs and filehandles) for details.

512 Day 19

23 0355 ch19 5/9/02 2:38 PM Page 512

Working with References 513

19

References to Subroutines
Much more useful than references to filehandles are references to subroutines. Given that
a subroutine’s definition is stored in memory just as an array or hash is, you can create
references to subroutines just as you can references to other bits of data. By dereferencing
the reference to a subroutine, you call that subroutine.

References to subroutines allow you to change the definition of a subroutine on-the-fly,
or to choose between several different subroutines depending on the situation. They
also allow advanced features in Perl such as object-oriented programming and closures
(anonymous subroutines whose local variables “stick” based on the time and scope in
which they were defined, even if they’re called in a different scope).

To create a reference to a subroutine, you can use the backslash operator with the name
of a predefined subroutine:

$subref = \&mysub;

You can also create an anonymous subroutine by simply leaving off the name of the
subroutine when you define it:

$subref = sub { reverse @_;};

Dereference a subroutine using regular reference syntax or with a block. When you de-
reference a subroutine, you call it, so don’t forget to include arguments:

@result = &$subref(1..10);

For more details on references to subroutines, and of closures, see the perlref man page.

Summary
The last major feature of Perl we had left to cover in this book were references, and today
you got a good introduction to creating and using references in various contexts.

A reference is a bit of scalar data that points to another piece of data: another scalar, an
array, a hash, or a subroutine. Because a reference is a scalar, you can pass it to subrou-
tines, store it in variables, treat it as a string or a number, test it for its truth value, or
include it inside another array. To create a reference, you can use one of two methods:

• Use the backslash operator (\) with a variable

• Use one of the anonymous constructors to create a reference to an array, a hash, or
a subroutine

23 0355 ch19 5/9/02 2:38 PM Page 513

To gain access to the thing the reference points to, you dereference that reference. You
can dereference references in one of three ways:

• Place the reference variable where a regular variable name might go, for example
$$ref, @$ref, or $$ref[0].

• Place a block expression (which evaluates to a reference) where a variable name
might go, for example @{$ref[0]}.

• Use “arrow notation,” particularly for references to lists ($ref->[0] or $ref->{key}).
For nested arrays and hashes, you can include multiple subscripts without needing
intervening arrows, ($ref->[0][4], or $ref[0]{key}).

In addition to the basics of creating and using references, we also looked at two of the
most common uses of references: as subroutine arguments (for retaining the structure of
arrays and hashes inside subroutines), and for creating nested data structures such as arrays
of arrays and arrays of hashes. Finally, you also learned about the ref function, which
returns a string indicating the kind of data the reference contains.

Congratulations! Today you’ve completed the bulk of the hard work of this book. Tomorrow
we’ll explore some of the other Perl features we haven’t looked at in this chapter, and
then finish up on Day 21, “Exploring a Few Longer Examples,” with some examples that
make use of everything you’ve learned in this book.

Q&A
Q. Can you create references to references?

A. Sure! All you have to do is use the backslash operator to get the memory location
of that reference. Keep in mind that if you create references to references, you’ll
need to dereference them twice to get to the data at the end of the chain.

Q. I’m trying to fill an array of arrays from a bunch of data in a file. I read the
data into an simple array, and the add that array to a larger array. But at the
end, the whole array has nothing but the last values I added. What am I doing
wrong?

A. Sounds like you’re doing something like this:
while (<>) {

@input = split $_;
@bigarray = \@input;

}

514 Day 19

23 0355 ch19 5/9/02 2:38 PM Page 514

Working with References 515

19

The problem is that each time you create a reference to @input, you’re pointing to
exactly the same location each time. The contents of @input change with each turn
of the loop, but the location is the same. Each reference then points to the same
location and has the value of the last thing you put in there. To get around this
problem, either:

• Declare your temporary input variable as a my variable inside the loop itself.
This will create a new memory location each time.

• Use an anonymous array constructor with the @input variable (that is,
[@input]). This will create a reference to a copy of the contents of input,
creating a new memory location each time.

Q. I created an array of arrays. I printed it with a simple print “@myarray\n”;.
But all I got was this:

ARRAY(0x807f048) ARRAY(0x808a06c) ARRAY(0x808a0cc)

What am I doing wrong?

A. You can’t use variable interpolation with arrays of arrays. What your print com-
mand is doing is printing the top-level of the array—which is essentially three ref-
erences. The ARRAY(...) stuff is the printable string representation of those refer-
ences. To print a nested array (or any nested data structure) you’ll have to use one
or more foreach loops and dereference the references yourself. Here’s an example
of what you’re actually looking for:

foreach (@myarray) {
print “(@$_)\n”;

}

Workshop
The workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience in using what you’ve learned. Try
to understand the quiz and exercise answers before you go on to tomorrow’s lesson.

Quiz
1. What’s a reference? What advantages do they give you?

2. Show two ways of creating a reference to an array.

3. Show two methods for gaining access to an element of an array through a reference.

4. What happens to a reference if you change the data that reference points to?

5. What happens when you print a reference? Add four to it? Test to see if it’s true?

23 0355 ch19 5/9/02 2:38 PM Page 515

6. Assume you have a reference in $ref that can refer to a scalar, an array, a hash, or
to some nested data structure. What do the following dereferences result in
(assume the reference points to the data most appropriate for each example)?

$$ref;
$$ref[0];
$ref->[0];
@$ref;
$#$ref;
$ref->[0][5];
@{$ref->{key}}

Exercises
1. Create a subroutine that takes any arbitrary number of references to arrays, reverses

each of those arrays, and returns them in the same order it received them. Be sure
to test whether the references you get are indeed references to arrays.

2. BUG BUSTER: What’s wrong with this snippet of code (Hint: there’s more than
one error)?
%hash = {
key => [1.. 10],
key2 => [100 ..110],
};
$ref = \%hash;
foreach (keys %$ref) {

print “$$ref{$_}\n”;
}

3. Write a subroutine that takes a rectangular slice of a multidimensional array. Your
subroutine should take five arguments: a reference to the array to slice, the indexes
of the element to start with (row and element), and the number of rows and number
of elements to slice. So, for example, if you had a reference to a multidimensional
array that looked like this stored in the variable $listref:
[3, 4, 2, 4, 2, 3]
[5, 3, 2, 4, 5, 4]
[7, 6, 3, 2, 8, 3]
[3, 4, 7, 8, 3, 4]

And if you called your subroutine (&rect()) to start at 0,0 and slice a 3×3 element
square, like this:

&rect($listref,0,0,3,3);

Your result should be
3 4 2
5 3 2
7 6 3

516 Day 19

23 0355 ch19 5/9/02 2:38 PM Page 516

Working with References 517

19

4. Write a simple version of the game Battleship. Use a 5×5 grid (numbers for the
rows, letters for the columns), choose one “cell” at random, and then allow the user
to choose a cell to hit. Print out the current state of the board, with choices marked,
in between guesses. Here’s a sample:

Enter the coordinates of your choice (eg A4): C4
Miss! Try again.

A B C D E

1| 0 0 0 0 0
2| 0 0 0 0 0
3| 0 0 0 0 0
4| 0 0 X 0 0
5| 0 0 0 0 0

Enter the coordinates of your choice (eg A4): B3
Miss! Try again.

A B C D E

1| 0 0 0 0 0
2| 0 0 0 0 0
3| 0 X 0 0 0
4| 0 0 X 0 0
5| 0 0 0 0 0

Enter the coordinates of your choice (eg A4): E1
Congratulations! You sank the battleship!

Answers
Here are the answers to the Workshop questions in the previous section.

Quiz Answers
1. A reference is a bit of scalar data that allows you to refer to some other bit of data

in an indirect way. References allow you to pass subroutine arguments by reference
(retaining the structure of multiple arrays and hashes), return discrete multiple lists,
as well as create and manage nested data structures such as lists of lists.

2. You can create a reference to an array using the backslash operator:

$ref = \@array;

Or with an anonymous array constructor:

$ref = [1 ..100];

23 0355 ch19 5/9/02 2:38 PM Page 517

3. You can dereference a reference to an array to get access to its elements by substi-
tuting the reference where the array name is expected:

$thing = $$ref[0];

Or using arrow notation:

$thing = $ref->[0];

4. Changing the data a reference points to has no effect on the reference itself. The
reference points to that data’s location in memory, not to the data itself.

5. A reference is a scalar, and will behave like a scalar in scalar context, according to
these rules:

• A reference as a string prints the type of data the reference points to (SCALAR,
ARRAY, HASH, and so on) and a hexadecimal number representing the
memory location that data is located in

• A reference as a number is that same memory location number. Adding four
to it gets you that same number plus four (not a very meaningful number)

• All references are true

6. The answers are as follows:

a. Assuming $ref is a reference to a scalar, returns a scalar

b. Assuming $ref is a reference to an array, returns the first element of that array

c. Same as b

d. Assuming $ref is a reference to an array, returns the contents of that array (or
the number of elements, in scalar context)

e. Assuming $ref is a reference to an array, returns the last index in that array

f. Assuming $ref is a reference to a multidimensional array, returns the sixth
element in the first row

g. Assuming $ref is a reference to a hash of arrays, returns the contents of the
array that is the value of the key “key.”

Exercise Answers
1. Here’s one answer:

sub reverseall {
my $listref;
foreach $listref (@_) {

if (ref($listref) eq ‘ARRAY’) {
my @templist = reverse @$listref;
$listref = \@templist;

} else {
print “$listref is not a list\n”;

518 Day 19

23 0355 ch19 5/9/02 2:38 PM Page 518

Working with References 519

19

}
}
return @_;

}

2. There are two errors in this snippet. The first is in the definition of the hash; the
curly brackets around the hash definition ({}) produce a reference to a hash, not a
regular hash. Use parentheses for that, like this:
%hash = (
key => [1.. 10],
key2 => [100 ..110],
);

The second error is in the print statement. This print will successfully dereference
$ref and print each value in the hash, but each value is in turn a reference, and
you’ll end up with a printout that looks like this:
ARRAY(0x807f670)
ARRAY(0x807f7a8)

To print the actual values of those arrays, you need to dereference those references
as well. You could do that with some complex dereferences like this:

print “@{ $$ref{$_} }\n”;

Although judicious use of temporary references would make that easier to read:
my $arrayref = $$ref{$_};
print “@$arrayref\n”;

3. Here’s one answer (this one does no error-reporting for slices that are too wide or
too tall for the data; it slices as much as it can):
sub rect {

my $ref = shift;
my ($c1,$c2,$width,$height) = @_;
my @finalarray = ();
my @slice = ();
my $rowref;

for (; $height > 0; $height--) { # do the rows
my $c = $c2;
if ($$ref[$c1]) { # catch too-tall heights

$rowref = $$ref[$c1];
} else {next;}

for (my $w = $width; $w > 0; $w--) { # do the columns
if ($$rowref[$c]) { # catch too-wide widths

push @slice, $$rowref[$c];
$c++;

}
}

23 0355 ch19 5/9/02 2:38 PM Page 519

push @finalarray, [@slice];
@slice = (); # reset the slice for next time
$c1++;

}
return \@finalarray;

}

4. Here’s one example. The “board” is a nested array of arrays:

#!/usr/ bin/perl -w
use strict;

my @board = (
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
);

my $hit = 0;
my @coords = &init();

while () {
&print_board();
my @choice = &get_coords();

if (&compare_coords(@choice,@coords)) {
print “Congratulations! You sank the battleship!\n”;
last;

} else {
print “Miss! Try again.\n”;
&mark_board(@choice);

}
}

sub init {
srand;
my $num1 = int(rand 5);
my $num2 = int(rand 5);
return ($num1, $num2);

}

sub print_board {
$, = ‘ ‘;
print “\n A B C D E \n”;
print “ --------- \n”;
my $i = 1;
foreach (@board) {

print “$i| @$_ \n”;
$i++;

}

520 Day 19

23 0355 ch19 5/9/02 2:38 PM Page 520

Working with References 521

19

print “\n”;
}

sub get_coords {
my ($c1, $c2);
my $coords;
while () {

print “Enter the coordinates of your choice (eg A4): “;
chomp($coords = <>);
($c1,$c2) = split(‘’,$coords);
$c1 = uc $c1;

if ($c1 !~ /[ABCDE]/i) {
print “Invalid letter coordinate. A - E, please.\n”;
next;

} elsif ($c2 !~ /[1-5]/) {
print “Invalid number coordinate. 1- 5 please.\n”;
next;

} else { last; }
}
($c1 eq ‘A’) and $c1 = 0;
($c1 eq ‘B’) and $c1 = 1;
($c1 eq ‘C’) and $c1 = 2;
($c1 eq ‘D’) and $c1 = 3;
($c1 eq ‘E’) and $c1 = 4;
$c2--;

return ($c1, $c2);
}

sub compare_coords {
my ($c1,$c2,$d1,$d2) = @_;
if ($c1 == $d1 and $c2 == $d2) { return 1; }
else { return 0; }

}

sub mark_board {
my ($c2,$c1) = @_;
$board[$c1][$c2] = ‘X’;

}

23 0355 ch19 5/9/02 2:38 PM Page 521

23 0355 ch19 5/9/02 2:38 PM Page 522

DAY 20

WEEK 3

Odds and Ends
As this book draws to a close, you’ve now learned, or at least explored, the
bulk of the Perl language as it exists today. But, as with every individual sub-
ject in Perl, there are other things to do and other ways to do them that I have
not explored in this book.

This lesson, then, is the “Going Deeper” for the whole book. In this lesson
we’ll look at a number of topics that are either too complex or too tangential to
have been explored earlier. Those topics include the following:

• One-liner scripts called on the Perl command line

• An introduction to object-oriented programming in Perl

• Sockets and simple networking

• POD Files (Plain Old Documentation)

• Evaluating code on-the-fly

• International Perl scripts

• Checking for security holes with Perl’s “taint mode”

• Using PerlScript on Windows

• What’s coming up in Perl 6

24 0355 ch20 5/9/02 2:39 PM Page 523

Perl One-Liners
When you write a Perl script, much of the time you’ll write it as you have throughout
this book—putting the script into a file, and then using the Perl interpreter to run that
script. But sometimes there might be a task that’s just really simple, or there might be
something that you only need to do once (or very infrequently). For these kinds of tasks,
it’s almost a waste of time to start up an editor to write an actual script. For just this rea-
son there are Perl one-liners.

Perl one-liners are scripts that you type directly on the Perl command line. They aren’t
saved anywhere; if you get them wrong you’ll have to type them again.

To create a Perl one-liner, use the -e option, followed by the script inside quotes, like
this:

% perl -e ‘print “this is a one-liner\n”;’
this is a one-liner
%

In Windows, you’ll have to use double-quotes around the entire script, and back-slash the
quotes for the strings, like this:

C:\> perl -e “print \”this is a windows one-liner\n\”;”

If your script contains multiple statements, put them all on the single line (in most Unix
shells, you can continue a single command onto multiple lines by putting a backslash (\)
at the end of a line). Remember, Perl doesn’t care much about whitespace, so you could
theoretically create an incredibly complex Perl one-liner, and Perl would have no prob-
lem executing it (in fact, this is a boast you’ll commonly hear from Perl programmers—
“I can do that in one line!”—of course, you can do anything in Perl in one line, as long
as that line is long enough).

Here are a couple example Perl one-liners. To reverse all the lines in a file

% perl -e ‘print reverse <>;’ filename.txt

To print all the lines in a file, with line numbers

% perl -e ‘$i=1;while(<>){print “$i: $_”;$i++}’ filename.txt

To remove all leading whitespace from each line in a file

% perl -e ‘while(<>){s/^\s+//g;print;}’ filename.txt

To print a file all in uppercase

% perl -e ‘while(<>){print uc $_;}’

524 Day 20

24 0355 ch20 5/9/02 2:39 PM Page 524

Odds and Ends 525

20

Because these sorts of scripts commonly use while loops with <> and some form of
print, Perl has a shortcut for that. The -p option allows you to omit the while (<>) part.
It will also print $_ for each line. So, for example, that uppercase example could be writ-
ten like this instead (whether this example is better or not is up to you):

% perl -p -e ‘$_ = uc $_;’ test.txt

This is equivalent to the code

while (<>) {
$_ = uc $_;
print;

}

You can also collapse the options into a single dash, as long as the e comes last:

% perl -pe ‘$_ = uc $_;’ test.txt

-p isn’t the only Perl option designed to optimize your typing in one-liners.
The -n option does the same thing as -p, minus the print part (all it gives
you is the while (<>) loop). The -l option, when used with either -p or
-n, will automatically chomp the newlines off of each line for you, and then
put it back when you print the line. (Or, to be more specific, it sets the value
of the $\ variable, the output record separator, to be $/, the input record
separator, usually a newline.) You can also give -l an octal argument repre-
senting the character you want to use as the output record separator.

Note

Finally, Perl one-liners can be extremely powerful when used in conjunction with the -i
option. For example, say you had written a novel and had it stored in a series of files
ending with a .txt extension. You want to change all instances of the name “Steve” with
the name “Fred.” Here’s a Perl one-liner that modifies all the original files and creates a
backup copy of each:

% perl -p -i.bak -e ‘s/Steve/Fred/g’ *.txt

The -i option changes your original files in place, so that the new versions will have the
same filenames as the originals. The old versions of the files (the ones with Steve in
them) will be saved off to filenames with the extension .txt.bak. This way, if you find
that it wasn’t Steve you wanted to change, it was Albert, you can get your original files
back. Be careful when you use this Perl command—try it on a single file without modi-
fying it, first, to make sure your one-liner works right. Otherwise you could end up mov-
ing a lot of .bak files back to where they belong!

24 0355 ch20 5/9/02 2:39 PM Page 525

Object-Oriented Programming
One of the major topics I didn’t cover in this book is the use of Perl for object-oriented
programming, or OOP (if this was Sams Teach Yourself Perl in 25 and a Half Days, we
might have been able to cover it). Fortunately, Perl makes object-orientation easy by
using familiar Perl features such as packages, subroutines, and references to implement
an object-oriented programming environment. This way, if you know something about
OOP, you can start programming right away by following only a few rules. If you don’t
know object-oriented programming, you have some basic background to catch up on, but
then you won’t have any other major new language features of Perl to learn to be able to
use OOP skills right away.

Getting Started and Learning More
If you’re unfamiliar with object-oriented programming but want to do some, your best
first step is to learn about the basic concepts. Object-oriented programming is simply a
different way of looking at the same programming problem. Everything you’ve learned
so far in this book about syntax and good programming practice still applies; the differ-
ence is how your whole larger script is organized and how it behaves.

The central notion behind object-oriented programming is that instead of your script
being a collection of sequentially executed statements and subroutines, it is a collection
of objects that interact with each other in some predefined way. Each object has a
defined appearance or state (variables, or properties in OOP jargon) and a defined set of
behaviors (subroutines, called methods in OOP parlance). Objects get this template of
behavior and state from a class definition. That class definition, in turn, often automati-
cally inherits (uses) features from one or more other classes. When you build an object-
oriented script, you use Perl to create one or more of your own classes, which import and
use classes and objects from other sources (usually modules). When your Perl script
runs, runtime objects are created from the various classes that modify each other’s vari-
ables and call each other’s subroutines to produce some result at the end.

If that previous paragraph scared the living daylights out of you, don’t panic. Perl makes
it easy to learn about OOP slowly, to use only some features of OOP without having to
learn about everything at once. And there are lots of OOP tutorials out there to help you
grasp the concepts and the theory. The following are some good places to start:

• The definitive text for writing object-oriented programs in Perl is Damian
Conway’s Object Oriented Perl, which is published by Manning. It’s not an easy
read, but if you’re serious about object-oriented Perl, it’s the book to get.

• The perltoot (object-oriented tutorial) man page comes with Perl and offers a
basic tutorial and Perl background for object-oriented programming. From there,

526 Day 20

24 0355 ch20 5/9/02 2:39 PM Page 526

Odds and Ends 527

20

the perlobj (Perl Objects) and perlbot (“bag of tricks”) man pages will fill in the
gaps.

• Many books that deal with other OOP languages such as Java or C++ might offer
basic OOP background chapters, if you’ve already got those books lying around or
if you can borrow one from a friend. I wrote one for Sams Teach Yourself Java in
21 Days that may be of use. OOP concepts can usually be applied from one lan-
guage to another.

If you’re still boggled, don’t panic. Although OOP is considered the wave of the future
by many, if you’re comfortable working in plain-old Perl and no one at a job is demand-
ing that you learn OOP, there’s nothing wrong with sticking to what you know. There’s
more than one way to do it.

The Basics (for Those Who Already Know OOP)
So you know what an object is, how it relates to a class, and you’re familiar with the
terms instance variable, method, inheritance, constructors, destructors, and encapsulation.
Let’s apply that terminology to Perl.

Using Classes, Objects, and Object References
In Perl, a class is a package, and the namespace defined by the package defines the
encapsulation and scope for that class. Variables defined in that package are class (static)
variables; instance variables are typically created by using a reference to a hash, keyed
by instance variable name. Class and instance methods are both defined by using subrou-
tines; the only difference between a method and a regular subroutine is that a method
assumes its first argument will be a classname (for class methods) or an object reference
(for instance methods).

An object reference? Indeed. This is the one bit of new Perl information you need to
know to use OOP in Perl. An object in Perl is effectively a reference to some data struc-
ture (typically an anonymous empty hash) that has been specially marked so that it
behaves as an object and knows to which class it belongs. To mark something as an
object, you use the built-in bless function. The bless function returns a reference to an
object that you can then assign to a scalar variable the way you would any reference.

Typically, you’ll use bless in the constructor for your class. That constructor is simply a
subroutine conventionally called new. The bless function takes two arguments: the thing
for which you want to create an object reference and the name of a class. A simple class
definition, then, might look something like the following:

package MyClass;
sub new {

my $classname = shift;

24 0355 ch20 5/9/02 2:39 PM Page 527

my $self = {};
return bless $self, $classname;

}

Here, the new class method is assumed to be called with one argument, a classname.
Inside new we create an empty anonymous hash, bless it with the current classname,
and return that reference. Note that this is a class method, and class methods always have
the name of the class as their first argument.

528 Day 20

You can also use bless with a single argument (the thing to bless), and
Perl will use the name of the current class for the second argument.
However, because of the way Perl operates on inherited methods, using the
single-argument bless can result in wrong results if some other class inher-
its your constructor. It’s generally a good idea to get into the habit of using
the two-argument version of bless and to get the classname from the
argument list for the method.

Note

To create and use an object (from this class or from any other class), you’d call the new
method with the package (class) name. You can do it in the same file as your class defin-
ition, as long as you switch to package main first:

package main;
$obj = new MyClass;

The scalar variable $obj then contains a reference to the object defined by the class
MyClass. Alternately, you can use an alternate syntax with -> to call the new constructor:

$obj = MyClass->new();

The two different ways of calling new are exactly the same; however, if your new con-
structor requires arguments other than the classname, it’s often easier to use the latter
format:

$obj = MyClass->new(12, 240, 15);

To call methods defined in your new object, you’d simply dereference the object refer-
ence. The -> syntax works particularly well here:

$obj->aSubroutine(‘foo’,’bar’);

Alternately, you can use a more standard function call syntax for methods, where the
classname or an object reference must be the first argument to that method:

aSubroutine $obj, ‘foo’, ‘bar’;

24 0355 ch20 5/9/02 2:39 PM Page 528

Odds and Ends 529

20

In this case, because the first argument is an object reference, Perl will dereference the
reference for you and call the right method.

You can also call a method as if it were a function inside a package
(Myclass::aSubroutine()), but don’t do that unless you know what you’re doing.
You’re subverting the OOP-ness of the class when you do that, and you lose the ability to
get at a method definition available through inheritance. More about defining and calling
references in the next section, “Instance Variables.”

Instance Variables
When you create an object by using this example, you use an anonymous hash as the
“thing” to be blessed into an object. Why a hash? Because you can use that hash to store
and access instance variables, and you’ll get a new version of those variables each time.
This is how all internal object state is stored in Perl objects.

Some OOP languages make a distinction between instance variables and
class variables (the latter is sometimes called static data). Perl does not have
class variables per se. Although you can always create package global vari-
ables to represent class variables (and access them through normal package
syntax ($MyClass::myclassvar), those variables are not inherited and can
be accessed or changed without restriction by any user of your class. Try to
work around the use of class variables by using instance variables instead.

Note

Generally, a class’s instance variables are defined and initialized in the constructor for
your class. In fact, you might want to pass arguments to new that represent the initial val-
ues of that class:

#!/usr/bin/perl -w

package Rectangle;
sub new {

my ($classname, $w, $h) = @_;
my $self = {};
$self->{Width} = $w;
$self->{Height} = $h;
return bless $self, $classname

}
sub area {

my $self = shift;
return $self->{Width} * $self->{Height};

}

package main;

24 0355 ch20 5/9/02 2:39 PM Page 529

$sq = new Rectangle (12, 20);
print “Area: “, $sq->area(), “\n”;

In this example, we used a class constructor that takes two extra arguments—a width and
a height—with which it constructs the rectangle object, storing those values in the
object’s hash keyed by the strings Width and Height. We also created an area method
that multiplies the current values of those instance variables and returns the result.

Generally, Perl’s model for instance variables is that to access or modify the values of
those variables, you create and use methods to do so rather than modifying those values
yourself through direct assignment. This has advantages for inheritance, and some would
argue provides more of a “pure” object-oriented interface to your class or object. You
can, however access instance variables by using regular dereferencing syntax:

non OOPy variable access
print “Width: $sq->{Width}\n”;
print “Height: $sq->{Height}\n”;

Inheritance
Similar to any respectable object-oriented programming language, Perl provides class
inheritance to allow classes to automatically make use of and expand on the definitions
of other classes. If class B inherits behavior from class A, class A is called the superclass
or base class. Class B, in turn, is called the derived class or subclass.

To indicate that a class inherits from some other class, use the special array @ISA. The
@ISA array indicates in which classes to search for method definitions if a definition for a
method being called does not exist in the current class. So, for example, if you had a
superclass called Feline, a subclass called Lion might look like this:

package Lion;
@ISA = qw(Feline);
...

The call to qw here isn’t really needed when a class inherits from only one superclass, but
it does make it easy to add more superclasses later, for multiple inheritance:

package HouseCat;
@ISA = qw(Feline Pet);
...

When a method is invoked on a particular object and no definition of that method is
found in the current class definition, Perl looks for a method definition in each of the
listed superclasses, depth first, in the @ISA array. In other words, the method eat, invoked
on the HouseCat class, would first look for a definition in HouseCat itself, then in
Feline, and then in all the superclasses of Feline, if any, and in those classes’ super-
classes, before looking for that definition in Pet. The first definition found is the one that
will be used.

530 Day 20

24 0355 ch20 5/9/02 2:39 PM Page 530

Odds and Ends 531

20

Perl only provides method inheritance. For “inherited” instance variables you can use
inherited constructor methods to build a single hash of instance variables, which is made
up of all the superclasses’ instance variables plus any defined for the current class (the
perlobj man page includes an example of this).

Defining Methods
There are three general conceptual ways to look at defining a method:

• New methods specific to the current class

• Methods that override methods defined in superclasses

• Methods that expand on or add to the behavior of a superclasses’ methods

Regular methods that don’t make use of inheritance are defined as regular subroutines
inside the class (package) definition. The only assumption you need to make concerns
the first argument to that subroutine, which determines whether the method is a class or
instance method.

For instance methods, the first argument is an object reference. Typically, the first thing
you do in these methods is extract that reference from the argument list and store it in a
scalar variable ($self is a very common variable name, but you can call it anything you
like):

sub myMethod {
my $self = shift;

...
}

For class methods, the first argument is simply the name of the class—just a string, noth-
ing special. Again, generally you’ll want to extract and save it in a scalar variable.

What about methods that could be class or instance methods, depending on their argu-
ment? You’ll need a way to test that argument inside the body of the method to see if it’s
an object or a class. The ref function works well this way:

sub classOrInstance {
my $arg = shift;
if (ref($arg)) {

print “Argument is an object\n”;
} else {

print “Argument is a class name\n”;
}

}

Note that the ref function, given an object reference as an argument, returns the name of
the class of which the object is an instance.

24 0355 ch20 5/9/02 2:39 PM Page 531

Invoking methods defined in the current class will execute that method—even if there’s a
method of the same name further up in the inheritance chain. This is how you define
methods that override existing methods—just define it and you’re done.

If you want to add to the behavior of some superclass’s method rather than override it
altogether, a special package called SUPER tells Perl to search for a method definition in
the classes defined by @ISA:

sub calculate {
my $self = shift;
my $sum = $self->SUPER::calculate(); # do superclass first

foreach (@_) {
$sum += $_;

}
return $sum;

}

532 Day 20

One common use of SUPER is in inherited constructors (new methods). With
SUPER, you can create a constructor that runs up the chain of inheritance to
make sure the current object has all the instance variables and default state
of those variables that it needs.

Note

You’ve already seen how to create constructor methods by using bless; you can also
create destructor methods, which are executed after all references to the object have gone
away and it’s just about to be garbage collected. To create a destructor method, define a
subroutine called DESTROY in your class:

sub DESTROY {
print “Destroying object\n”;
...

}

Autoloaded Methods
One nifty feature of Perl’s method invocation is that of autoloaded methods. Autoloaded
methods are sort of the methods of last resort—if you invoke a method on an object and
Perl cannot find any existing definition for that method, it will attempt to call a method
called AUTOLOAD instead. The package variable $AUTOLOAD will contain the name of the
method that was called (including the original classname from which it was called); you
can then use that information to do something for otherwise unknown methods. The
perlobj man page shows a great example of using autoloaded methods as accessor

24 0355 ch20 5/9/02 2:39 PM Page 532

Odds and Ends 533

20

methods for instance variables without having to define separate methods for each one.
Here’s a simple example of an autoloaded method to handle this sort of behavior:

package HouseCat;
@ISA = qw(Feline, Pet);

sub new {
my $classname = shift;
return bless {}, $classname;

}

sub AUTOLOAD {
my ($self,$arg) = @_;
my $name = $AUTOLOAD;

my $name =~ s/.*://; # get rid of package part
if ($arg) { # set value

$self->{$name} = $arg;
return $arg;

} else { # no arg, return value
return $self->{$name};

}
}

package main;
my $cat = new HouseCat;
$cat->color(“Grey”);
print “My cat is “ . $cat->color() . “\n”;

In this example, the HouseCat class doesn’t have a color method (and we’re assuming
that none of its superclasses has one either). When the color method is called, Perl calls
AUTOLOAD instead. For this definition of AUTOLOAD, we get the name of the method that
was called through the $AUTOLOAD variable, strip off the package name at the beginning,
and then use that method name as an instance variable name. If the method was called
with an argument, we’ll set that instance variable; otherwise we’ll just print the current
value (it’s up to the caller to manage undefined instance variables). You could just as eas-
ily use this AUTOLOAD method for any instance variable—name, age, temperament,
favorite_food, and so on.

AUTOLOAD methods aren’t technically the methods of last resort; in addition
to AUTOLOAD there is also the UNIVERSAL class. UNIVERSAL is used as sort of
a global superclass; you can define your last-resort methods there.

Note

24 0355 ch20 5/9/02 2:39 PM Page 533

An Example: Using Object-Oriented Modules
Perl’s sense of OOP is that much of it is optional; you can use only a little OOP, or go
whole hog and OOP everything in sight if you want. It all depends on whatever’s easiest,
and how much of an OOP fanatic you are.

In many cases, the easiest way to use Perl’s OOP in your scripts is to make use of the
various CPAN modules in an object-oriented way, but not necessarily to structure your
own scripts as a set of objects. Let’s re-examine the work we did on Day 16, “Using Perl
for CGI Scripting,” with CGI scripts and the CGI module. This module is written so that
its subroutines can be used as ordinary subroutines or as object-oriented methods. Let’s
take an exercise we did at the end of that lesson—Exercise #1, a CGI script that does
nothing but print the keys and values that were submitted to it—and use the CGI module
in an object-oriented way.

Listing 20.1 shows the original script.

LISTING 20.1 pairs1.pl

1: #!/usr/bin/perl -w
2: use strict;
3: use CGI qw(:standard);
4:
5: my @keys = param();
6:
7: print header;
8: print start_html(‘Hello!’);
9: print “<H1>Key/Value Pairs</H1>\n”;
10: print “<UL\n”;
11:
12: foreach my $name (@keys) {
13: print “$name = “, param($name), “\n”;
14: }
15: print “\n”;
16:
17: print end_html;

We use four of the CGI module’s subroutines in this script: param (lines 5 and 13), which
gives us both the full list of available keys and the values of specific keys; header (line
7), which prints a CGI header; start_html (line 8), which prints the top part of an
HTML file; and end_html (line 17), which prints the tail end of an HTML file. In this
previous example, we used these subroutines as regular subroutines.

But the CGI module can also be used as an object-oriented class. Create an instance of
that class, and you can use those subroutines as if they were methods (because, well,

534 Day 20

24 0355 ch20 5/9/02 2:39 PM Page 534

Odds and Ends 535

20

they are). All this involves is one extra line of code and some slightly different syntax for
the subroutines. I also removed the “standard” flag when I imported the CGI module
because it’s not necessary to import the standard methods when using it in object-
oriented mode.) Listing 20.2 shows the result.

LISTING 20.2 An Object-Oriented pairs1.pl

1: #!/usr/bin/perl -w
2: use strict;
3: use CGI;
4:
5: my $obj = CGI->new();
6: my @keys = $obj->param();
7:
8: print $obj->header();
9: print $obj->start_html(‘Hello!’);
10: print “<H1>Key/Value Pairs</H1>\n”;
11: print “<UL\n”;
12:
13: foreach my $name (@keys) {
14: print “$name = “, $obj->param($name), “\n”;
15: }
16: print “\n”;
17:
18: print $obj->end_html();

See the differences? There are effectively only two:

• Line 5 is where we instantiate our CGI object and store a reference to it in the $obj
variable. Following Perl conventions, the object constructor for the CGI class is
called new.

• All our subroutines—param, start_html, header, and end_html—are called as
object methods by using dereferencing syntax (the object, ->, and the name of the
method).

The end result? Exactly the same thing as the non-OOP version. The CGI module is
written to work equally well as a regular collection of subroutines and as an object-
oriented class.

Note that this example isn’t a pure OOP program; we haven’t created any of our own
classes here. A “true” OOP script would put the bulk of the code into its own class, using
the CGI module there, and then do little in the main package other than instantiate our
class and call a method or two to get it running. This is one of the neat things about OOP
in Perl—you can use only as much object-oriented programming as you need to. Unlike

24 0355 ch20 5/9/02 2:39 PM Page 535

more strict OOP languages, you don’t have to objectify the things that don’t seem to fit
into objects.

Sockets
Unix was built from the ground up with networking in mind, and Perl shows its Unix
roots by providing robust support for networking code. Perl includes a number of built-in
functions for dealing with sockets (listed in Table 20.1), which behave similarly to their
C counterparts. If you’re familiar with socket-based programming, these functions should
look familiar to you. You might also want to use the Socket module, which gives you
access to the common structure definitions from C’s socket.h.

Some caveats about the use of sockets in Perl, however. The first is that some of the Perl
socket features are available only on Unix; on some Windows or Macintoshes you’ll
need to use Win32 or MacPerl equivalents, making your scripts much less portable. The
second caveat is that unless you’re implementing some form of nonstandard networking
protocol, chances are very good that there’s a module that already exists to do what you
want to do with sockets. There’s no reason to implement any part of a Web server or Web
browser; there are modules that will do that, and all you have to do is use them. I’ll dis-
cuss the LWP (a popular Web library for Perl) library a bit later in this chapter, and we’ll
use it extensively in the next lesson.

536 Day 20

Before you write any program by hand that implements a well-known pro-
tocol, be sure to check out CPAN. You might want to look specifically at
modules in the Net package, most of the non-Web networking modules are
subpackages of that package.

Note

Let’s look at some example code that demonstrates how to use sockets. Listing 20.3 is
the source code for a simple TCP client that uses a socket to connect to a Web server.
What it amounts to is the world’s simplest Web browser.

LISTING 20.3 A Program That Uses a Socket to Connect to a Web Server

#!/usr/bin/perl

use Socket;

my ($hostname, $file, $port, $iaddr, $paddr, $proto, $line);

24 0355 ch20 5/9/02 2:39 PM Page 536

Odds and Ends 537

20

$host = “www.perl.org”;
$file = “/pub/a/language/info/software.html”;

$iaddr = (gethostbyname($host))[4];
$port = 80;
$paddr = sockaddr_in($port, $iaddr);
$proto = getprotobyname(‘tcp’);

socket(SOCK, AF_INET, SOCK_STREAM, $proto)
or die “socket: $!”;

Connect our socket to the server socket.
connect(SOCK, $paddr)

or die “connect: $!”;

For flush on socket file handle after every
write.
select(SOCK);
$| = 1;
select(STDOUT);

Send get request to server.
print SOCK “GET $file HTTP/1.0\n\n”;

Print out the contents of the page
while (<SOCK>)
{

print;
}

close(SOCK);

This script is very straightforward, the name of the server to connect to, and the name of
the file to retrieve are hard coded. The script simply connects to the server, requests the
file specified, and then prints out the data that’s returned—the HTML that makes up the
Web page. Let’s break down the script line by line.

On line 3 import the Socket module, which imports a bunch of symbols into the script.
I’ll indicate later when I use things from the Socket module. On line 5, a number of vari-
ables are declared using the my function so that they’re local to my script. It’s not neces-
sary, but it is a good programming practice.

On lines 7 and 8, the hostname of the server to which I’ll be connecting, and the file-
name I want to retrieve from the server are defined. From this point forward we get into
real socket programming. On line 10 the gethostbyname function (passing in the

LISTING 20.3 continued

24 0355 ch20 5/9/02 2:39 PM Page 537

hostname I defined earlier as an argument) is used to retrieve the address of the server
and assign it to the $iaddr variable. There’s a little bit going on here that needs explain-
ing.

The gethostbyname function returns a list. I’m only interested in the fifth element in the
list, which is the first address associated with that hostname. The format of the address is
four bytes, so if you print it out, you could very well end up with control characters or
something weird from the higher end of the ASCII character set. The important thing is
that the socket code uses this format to connect to the remote host.

On line 12, the sockaddr_in function is used, which is provided by the Socket module,
and returns a SOCKADDR_IN structure when passed a port number and four-byte address.
On line 13, the built-in function getprotobyname is used to retrieve the number associ-
ated with the TCP protocol.

At this point, I’ve prepared all the information I need to create a socket connection. The
next step is to actually create the socket. To do so, the socket function is used, which is
another Perl built-in. It accepts four arguments—the filehandle to assign to the socket,
the domain, the type of socket to create, and the protocol to use. The second and third
arguments are constants provided by the Socket module. As you can see, the fourth argu-
ment is the $proto variable that was set earlier.

The next step is to connect to the remote machine, using the built-in connect function.
The filehandle is passed in to the socket and the address (stored in $paddr) that I want to
connect to. Assuming that the script is still executing, I’m now connected to the Web
server.

On lines 30–32, the SOCK filehandle is selected, set $| to 1, turning off buffering of out-
put, and then select STDOUT so that everything printed will go to standard out by default.
The reason buffering is turned off is so that I’m only sending a bit of output to the
socket, and the Web server won’t start returning data until it receives the HTTP com-
mand I’m sending.

On line 35, you’ll find the actual HTTP GET command that retrieves the filename speci-
fied from the Web server. As soon as the server receives two consecutive carriage returns,
it sends the requested Web page over the socket. On lines 38–41, just iterate over the
lines of output received over the socket, and print them out to the screen. That’s all there
is to it.

Table 20.1 shows the built-in functions for sockets; see the perlfunc man page for
details on any of these functions.

538 Day 20

24 0355 ch20 5/9/02 2:39 PM Page 538

Odds and Ends 539

20

TABLE 20.1 Socket Functions

Function What it Does

accept In a network server, accept a socket connection from a client. Same as
accept(2).

bind Binds an address to an already-open socket file handle. Same as bind(2).

connect In a network client, connects to a server that is waiting for connections. Same as
connect(2).

getpeername Returns the socket address at the other end of a connection.

getsockname Returns the socket address at this end of a connection.

getsockopt Returns values of socket options.

listen In a server, tells the system to listen for and queue socket connections to this
socket. Same as listen(2).

recv Receive a message on a socket. Same as recv(2).

send Send a message on a socket. Same as send(2).

setsockopt Sets the socket options.

shutdown Close a socket, with some control options. You could also use close().

socket Open a socket and associate it with a file handle.

socketpair Open a pair of unnamed sockets. Same as socketpair(2).

POD (Plain Old Documentation) Files
POD, short for Plain Old Documentation, is a simple formatting language for creating
documentation to go along with your Perl scripts or modules. Commonly, you’ll embed
that documentation inside your script file itself; that way you can keep both the script
and the documentation together and not have to keep track of each separately (Perl will
happily ignore the POD content when it executes your scripts).

To view the POD content of your script (or to view POD files containing nothing but
POD content), you can use the perldoc script (part of the Perl distribution) to display
that text on your screen, or you can use a translator to convert the POD files into some-
thing else—for example, pod2text for text files, pod2html for HTML, pod2man for
nroff-formatted man pages, or pod2latex for LaTeX formatting. Throughout this book
you’ve probably been using perldoc—and therefore POD files—to view the various bits
of Perl documentation online.

POD is not a fully featured text-formatting language such as troff, TeX, or even HTML.
If you want to create lots of heavily formatted documentation for your scripts, you’d be

24 0355 ch20 5/9/02 2:39 PM Page 539

better off using something else and keeping your document files separate from your
scripts. But POD files generally can be read on different platforms and with different
systems or can be converted to other more common formats on-the-fly.

You can find examples of POD text in just about any publicly available script or module
from the Perl distribution and from CPAN. More details than those in this section can
also be found in the perldoc man page.

Creating POD Files
POD-formatted text consists of command paragraphs and regular paragraphs. Command
paragraphs describe simple formatting and some text; regular paragraphs contain actual
body text. You can also embed character-formatting commands inside regular paragraphs.

Command paragraphs appear on individual lines and begin with an equal sign. Some
command paragraphs have associated text, which appears just after the name of that
paragraph. The end of the command paragraph is a blank line.

For headings, use the =head1 and =head2 command paragraphs, with the text of the
heading immediately following the command. These headings are similar to the <H1> and
<H2> tags in HTML or the .SH tag in troff or nroff.

For lists or other indented items, use the =over, =item, and =back commands. Use =over
to start a list, with an optional number indicating the number of spaces to indent the list.
Each list item begins with an =item tag, with an optional character indicating the symbol
or number to mark each item (you’ll have to do numbering yourself; it doesn’t happen
automatically). And, finally, use =back to undo the indent created by the =over.

Regular paragraphs are included as simple paragraphs, typed, with no command para-
graph to indicate them. Paragraphs that start without initial whitespace are typically
reformatted to fit the page width (like <p> in HTML); paragraphs with initial indentation
are used verbatim (like <pre> in HTML). All paragraphs must end with a blank line.

You can embed character-formatting codes and links in paragraphs to emphasize a partic-
ular word or to link to something else (commonly another Perl-related man page like
perlfunc or the like). The following are some of the more common character formats:

• I<text> will italicize the word text.

• B<text> will boldface the word text.

• C<text> uses text as literal code.

• &escape; substitutes a special character for the code escape. These are nearly iden-
tical to the HTML escape codes for accents and other special characters.

540 Day 20

24 0355 ch20 5/9/02 2:39 PM Page 540

Odds and Ends 541

20

• E<escape> does the same thing as &escape;.

• L<manpage> will create a link (or a textual cross-reference) to a man page, for
example, L<perlfunc> links to the perlfunc man page. You can also link to spe-
cific sections in the man page itself.

To embed text formatted in some other formatting language—HTML, or troff, for
example—use the =for, =begin, and =end commands. Text formatted for specific format-
ting languages will be output unprocessed by the specific translator (for example, the
pod2html translator will copy any formatted HTML directly to the output) and will be
ignored otherwise. Use embedded formatting as a way of providing conditional format-
ting in specific instances.

Embedding POD in Scripts
You can either include POD-formatted text in its own file (conventionally as files ending
with a .pod extension), or you can include them inside your script files, making them
easy to change and keep updated.

To include POD text inside a script, start it with any POD command (typically =head1,
although the =pod command can indicate the start of POD text as well). End all the POD
text with =cut. This will tell Perl when to stop and restart parsing the text for actual Perl
code.

Although POD text is usually included as a block either at the beginning or end of a
script, you can also put it anywhere inside your script, for example, to describe a subrou-
tine’s behavior next to the subroutine itself. As long as you start and end your POD text
with a command paragraph and =cut, Perl won’t have a problem with this.

To include POD text at the end of a file, and when you’re using an __END__ marker (as
you might be if you’re creating modules), make sure you include a blank line after the
__END__.

Evaluating Code On-the-Fly
One useful advanced feature of Perl borrowed from other languages is the capability to
evaluate a string as a bit of Perl code on-the-fly at a script’s runtime. This is accom-
plished through the use of the eval function, which takes a string or a block as an argu-
ment and compiles and runs that bit of Perl code as if it were typed into a file or
executed by using a Perl one-liner—all inside another currently running Perl script.

Why is this useful? For a number of reasons. One use is that it allows you to build up
sophisticated structures and function calls without needing extensive if-else branches:
just compose the thing you want to call by appending strings together, and then call

24 0355 ch20 5/9/02 2:39 PM Page 541

eval to execute that string. It also allows you to read in and execute other files of Perl
code from inside a Perl script—similar to how use and require works, but always at
your script’s runtime (in fact, require is semantically similar to eval with some extra
features for handling where to find files and reloading those files). It also allows you to
execute code on-the-fly when that’s your actual intent—the Perl debugger’s code execu-
tion feature uses this, for example. Or you could write an interpreter for your own lan-
guage in Perl by using eval.

The eval feature of Perl is also useful for testing code before actually running it and
handling any errors or unusual conditions that result from executing that code. This is a
feature other languages often call exceptions. For example, if you were looking for a par-
ticular feature of Perl to see if it was available on the current system—for example,
fork—you could try a simple example inside an eval, see if it works and, if so, continue
on with the script and if not try something else. Exception handling with eval allows for
more robust error-checking and handling in your scripts.

For a description of eval, see the perlfunc man page.

Commonly Used Modules
Modules have been discussed on and off throughout this book. Now that the end is here,
it’s time to discuss a few useful modules that we didn’t cover earlier. As has been men-
tioned several times already, CPAN is huge—these modules are just a selection that are
widely used, but that aren’t included as part of the Perl distribution.

LWP
LWP, also referred to as libwww-perl, is a massive package that contains a number of
individual modules that pertain to basically all things Web-related. It’s most frequently
used for its built-in HTTP client, but it provides plenty of other Web-related features as
well. After you’ve installed it, you can type perldoc LWP for details.

One module in the LWP package is LWP::Simple, which enables you to easily use the
HTTP client features of LWP. More flexible (and difficult to use) modules exist if you
have unusual requirements, but if you’re just retrieving regular old Web pages (even if
you’re calling CGI programs or other applications with arguments), LWP::Simple will do
the trick.

Let’s look at an example of how LWP::Simple is used:

#!/usr/bin/perl
use LWP::Simple;
getprint(“http://www.typerl.com/”);

542 Day 20

24 0355 ch20 5/9/02 2:39 PM Page 542

Odds and Ends 543

20

That’s the whole script. First, I import the LWP::Simple module, then I call the getprint

function and pass in the URL http://www.typerl.com/. As you might have guessed, the
script downloads the Web page and prints it out to STDOUT. Of course, there are plenty
of other ways to simply print out the source code to a Web page.

If you want to do more to the Web page than just print it out, you can use the get func-
tion, which retrieves the contents of a page and returns a string. Here’s what a script that
uses get looks like:

#!/usr/bin/perl
use LWP::Simple;
my $text = get(“http://www.typerl.com/”);

The function returns undef if there’s an error, so you can make sure that the request
worked. You might want to use some other functions as well. The head function is used
to retrieve information from the headers of a request. It can be called as follows:

($content_type, $document_length, $modified_time, $expires, $server)
= head(“http://www.typerl.com/”);

There are also two functions used to copy remote Web pages to local files. getstore()
simply takes two arguments, a URL and a filename, and copies the contents of the
requested into the filename provided. The mirror function is a bit more sophisticated. It
attempts to fetch and store a file, just like getstore(), but before storing the file, it
checks to see if the local file already exists. If it does, it only stores the remote file if it
has been modified since the file on disk was modified, and only if the content length of
the remote file is different from the file stored on disk.

If LWP::Simple doesn’t fulfill your requirements, the next step is to use the
LWP::UserAgent module, which offers more flexibility. For information on
LWP::UserAgent, check out the perldoc for it. You might also find the lwpcook Perl doc-
umentation useful, it’s a cookbook for LWP users.

Sending E-mail with Net::SMTP
If you’re writing Perl programs with Unix, it’s easy to send mail. You just do something
like this:

open (MAIL, “| mail someone@example.com”)
or die “Can’t send email:”;

Then you can just print out your e-mail message to the MAIL filehandle and close it when
you’re ready to send the message. Unfortunately, if your script will run somewhere other
than on a computer running Unix, your calls to the mail program won’t work. If you
want to make sure that your script works correctly across platforms, using Net::SMTP is
the wiser choice.

24 0355 ch20 5/9/02 2:39 PM Page 543

Net::SMTP sends mail by connecting directly to an SMTP server and transmitting your
e-mail message. Because it doesn’t use any local program on the computer you’re using,
it will work from any platform. You just have to know the address of an SMTP server
that will allow you to connect and send an e-mail.

Net::SMTP is an object-oriented module, here’s some example code that demonstrates
how it is used:

use Net::SMTP;
$smtp = Net::SMTP->new(‘mailhost’);
$smtp->mail(‘user’);
$smtp->to(‘anybody@example.com’);
$smtp->data();
$smtp->datasend(“To: postmaster\n”);
$smtp->datasend(“\n”);
$smtp->datasend(“A simple test message\n”);
$smtp->dataend();
$smtp->quit();

Let’s look at the example line by line. First, the Net::SMTP method is imported so that it
can be used. On the next line, the constructor is called to create a new SMTP session.
The constructor accepts the hostname (or IP address) of the SMTP server as its argu-
ment. Needless to say, the host specified must be running an SMTP server, and you must
be authorized to use it for this to work.

Next, the mail method is used to initiate the sending of the new message. The argument
passed in is the address that will appear in the From: field of the e-mail. If you just pass
in a username, the hostname of the machine that the script is running on will be
appended to the address.

The to method is used to specify the recipient (or list of recipients) to which the message
will be sent. If you are sending the e-mail to multiple recipients, the argument list should
take the following format:

$smtp->to(‘anybody@example.com’, ‘somebody@example.com’,

‘everybody@example.com’);

The data method can be used in two ways. In this example, I use the data method to
indicate that I’m going to start sending the body of the e-mail. Then, the datasend
method is used to send the actual data and dataend to indicate that I’m finished. The
alternate approach is to supply a list (or list reference) as an argument to data. The data
in the list is used as the body of the e-mail message.

When you’ve sent your e-mail message, you can use the quit method to end your SMTP
session.

544 Day 20

24 0355 ch20 5/9/02 2:39 PM Page 544

Odds and Ends 545

20

Handling XML with Perl
At this point, XML is more than just a trend. It’s being used as a storage format for doc-
uments, an interchange format for sharing data between applications, and a standardized,
structured format for things like configuration files. Perl is a perfect match for handling
XML data just because of its built-in functionality for dealing with text files. However,
because valid XML follows a specific structure, you don’t just have to rip apart your
XML files using regular expressions and functions such as split. Instead, you can use a
module designed to handle XML files.

There are a number of XML modules for Perl, including XML::Parser and XML::Simple,
which can be used to parse XML and to create it. There are also a lot of modules that are
designed to produce XML output, like a module that turns POD documentation into
XML files. For a list of all the XML-related modules, check out CPAN.

Here’s a specific example that uses the XML::Simple module. First, let’s look at our data
file, a very simple XML document. Here’s the data:

<computers>
<computer name=”foo”>

<os>Mac OS X</os>
<memory>256</memory>
<address>foo.example.com</address>
<applications>

<application>Emacs</application>
<application>Microsoft Word</application>
<application>FileMaker</application>

</applications>
</computer>
<computer name=”bar”>

<os>Linux</os>
<memory>256</memory>
<address>bar.example.com</address>
<applications>

<application>vi</application>
<application>mutt</application>
<application>Apache</application>

</applications>
</computer>

</computers>

As you can see, the data in the XML document is stored in a tree-like data structure.
XML::Simple will parse the file and create a nested data structure using hashes and arrays
that mirror the data in the XML file. Using the Data::Dumper module, we can see the
data structure that’s created.

24 0355 ch20 5/9/02 2:39 PM Page 545

Here’s the program:

#!/usr/bin/perl

use XML::Simple;
use Data::Dumper;

my $computers = XMLin(“computers.xml”, searchpath=>(“.”));

print Dumper($computers);

First, the XML::Simple and Data::Dumper modules are imported. Then, the XMLin()
function is used to parse the XML file. The first argument to XMLin() is the name of the
file to parse and the second is a hash of options. For a list of all the options, see the perl-
doc for XML::Simple. In this case, I just put the current directory in the search path for
XML documents.

The last line of the script runs the data structure generated by XML::Simple through data
dumper, producing the following:

‘computer’ => {
‘foo’ => {

‘os’ => ‘Mac OS X’,
‘memory’ => ‘256’,
‘address’ => ‘foo.example.com’,
‘apps’ => {

‘app’ => [
‘Emacs’,
‘Microsoft Word’,
‘FileMaker’

]
}

},
‘bar’ => {

‘os’ => ‘Linux’,
‘memory’ => ‘256’,
‘address’ => ‘bar.example.com’,
‘apps’ => {

‘app’ => [
‘vi’,
‘mutt’,
‘Apache’

]
}

}
}

(I cheated a bit and trimmed the output, but for all intents and purposes, it’s the same.)
Compare the output of Data::Dumper to the example XML document. The root level of

546 Day 20

24 0355 ch20 5/9/02 2:39 PM Page 546

Odds and Ends 547

20

the document is mapped to the variable $computers, which is a reference to a hash. The
hash has one element—its key is computer. Its value is a reference to another hash, with
keys denoted by the name attributes of the computer elements in the XML file. Each of
those hashes has members with keys mapped to children of the computer elements. Let’s
look at one special item. The apps element contains a number of app elements. Those are
stored in an anonymous array, which is referenced by the value of the app element.

Let’s look at a program that fetches specific data from the data structure:

#!/usr/bin/perl

use XML::Simple;

my $computers = XMLin();

print $computers->{computer}->{foo}->{os}, “\n”;
print $computers->{computer}->{foo}->{applications}->{application}->[0], “\n”;

On line 3, the module is imported. On line 5, the XMLIn() subroutine is called, which
reads in the XML document and assigns the data structure to the variable $computers.
Because a filename is not specified anywhere in this program, it assumes I want to load
an XML file with the same base name as the name of the program. So if the program is
called testxml.pl, it looks for testxml.xml.

The output of this program is

Mac OS X
Emacs

It’s easy to save a data structure to an XML file as well. To convert a data structure into
XML, you just use the XMLout() function. It returns a string that you can save to a file,
or a database field, or anywhere else you choose. Here’s the syntax:

my $xml = XMLout($computers);

Creating International Perl Scripts
Internationalization, sometimes called I18N, is the process of generalizing a script or
program so that it can be easily moved or translated into a different language or dialect.
Localization, L10N, is the process of taking the internationalized version of a script and
making it work in a specific language. Some internationalization can be done in core
Perl—extracting all the text strings that a script uses, for example, to allow those to be
translated without mucking with the core code. Other things—working with character
sets other than English’s A to Z, using sorting (collating) systems other than simple A to
Z, and formatting numbers—can be controlled through the use of Perl’s local module.

24 0355 ch20 5/9/02 2:39 PM Page 547

For more information on using and managing Perl locales to create internationalized (or
localized) scripts, see the perllocale man page.

Script Security with Taint Checking
Say you wrote a Perl script that was intended to be run by someone you don’t know and
don’t necessarily trust—for example, if you’re administering a multiuser Unix machine,
or if your script will be used for CGI. Because you don’t know the person running that
script, that person could theoretically have hostile intentions and attempt to use your
script to gain unauthorized access to your system or damage it in some way.

So what can you do to prevent a malicious user from doing any damage through your
script? Careful programming can help with that—checking to make sure input doesn’t
include any sneaky things before passing it to a system function call or backquotes, for
example. But sometimes it’s hard to keep track of what data might be insecure, or hard to
remember to make those sorts of checks. That’s where taint mode can come in handy.

Taint mode is enabled with the -T option to Perl. (It also runs automatically if the user or
group ID of the script itself is different from the user or group ID of the person running
the script—for example, setuid scripts on Unix systems). When taint mode is enabled,
Perl will watch the data that comes into your script—the environment, any command-line
arguments, or data from a file handle (including standard input). If you try to use that
data to affect anything outside your script, Perl will immediately exit. To actually use
that data, you’ll have to write your script to modify or extract specific bits of that data,
thereby preventing data you don’t expect from slipping through.

In other words, taint mode doesn’t provide any extra security, but it does force you to
write your code with an eye for security. If your scripts might end up running in an inse-
cure environment, taint mode can help you make sure your scripts aren’t glaring security
holes for your system.

Find out more about taint mode and security in Perl in the perlsec man page. For more
general issues of security and CGI, check out the WWW security FAQ at
http://www.w3.org/Security/Faq/.

If you’re particularly concerned about the security of your scripts in general, you might
also want to check out Penguin, part of CPAN, which provides an environment that
allows you to encrypt and digitally sign a piece of code and send it to some other site. At
the destination site, Penguin decrypts and checks the trustworthiness of that code before
executing it. Even then, Penguin executes the code within tightly controlled confines.
You could consider Penguin similar to Java’s mechanism for signing applets, and then

548 Day 20

24 0355 ch20 5/9/02 2:39 PM Page 548

Odds and Ends 549

20

running them inside a closed, secure “sandbox.” See CPAN for more details about
Penguin.

PerlScript
PerlScript, part of ActiveState’s Perl for Windows package, is an ActiveX scripting
engine. PerlScript allows you to add Perl as a scripting language to any ActiveX scripting
host—in Internet Explorer, IIS or any Web server, or Microsoft’s Windows Scripting
Host (WSH), for example.

Microsoft’s ActiveX scripting engines natively support VBScript and JavaScript scripting
engines. Although those languages are adequate for many purposes, Perl can in many
instances provide for features and more power. And if you’re used to working with Perl,
the capability to continue working in Perl rather than having to switch between lan-
guages is a nice advantage.

For the Web, PerlScript enables you to create Perl scripts embedded inside Web pages
both on the client (Web browser) and the server side, in much the same way JavaScript
and VBScript scripts and Active Server Pages (ASP) behave today.

PerlScript also works with the Windows Scripting Host, which enables you to control
various aspects of the Windows system itself through the use of scripts (it’s a replace-
ment for old-fashioned DOS batch scripts). Windows Scripting Host has been built into
all versions of Windows since Windows 98.

For information on ActiveX scripting in general, check out
http://msdn.microsoft.com/scripting. For information on PerlScript, see the simple
documentation that comes with PerlScript at
http://aspn.activestate.com/ASPN/Reference/, or Matt Sergeant’s excellent
Complete Guide to PerlScript at
http://www.fastnetltd.ndirect.co.uk/Perl/Articles/PSIntro.html.

What’s Coming in Perl 6
The next major revision of Perl will be Perl 6. The development team will continue
releasing versions of Perl under version number 5 until Perl 6 is released. Perl 6 is going
to be a rewrite of Perl from the ground up. In most ways, it will be the same language
that Perl 5 is, but everything in the language has been evaluated for inclusion in Perl 6,
and lots of new things will be added as well. Unfortunately, there’s so much going on
with Perl 6 that it can’t all be described here, especially because nothing is final until it’s
released.

24 0355 ch20 5/9/02 2:39 PM Page 549

The design for Perl 6 started with a request for comments process that yielded 361 RFC
documents. The documents are currently being sifted through by Larry Wall and con-
verted into a cohesive design of the next version of the language. The architecture of Perl
will be changing fundamentally. Perl 6 will consist of a parser, a compiler, a byte code
optimizer, and a virtual machine. This will make Perl 6 significantly more flexible than
Perl 5. For example, there can be parsers for multiple languages, which produce syntax
trees that can be compiled by the Perl 6 compiler. The compiler will produce byte code
for the new Perl 6 runtime engine. Alternate compilers will be able to produce byte code
for other runtime engines, like Microsoft .NET or the Java Virtual Machine.

As you can see, the emphasis with Perl 6 will be on creating a more flexible architecture
for the language. There will also be plenty of syntax enhancements and features added to
make life easier for Perl programmers. Also, thanks to the flexible parser built into Perl
6, Perl 5 programs will run without changes.

Going Deeper
Because this whole chapter is a larger version of the “Going Deeper” sections, there’s
not much left to talk about here. So instead, a reminder: If you have problems, questions,
difficulties, or just curiosities about how any part of Perl behaves—from the basic opera-
tors to regular expressions to references to modules—try the Perl documentation (man
pages and POD files), and particularly the Perl FAQs—for help and more information.
The camel book (The Perl Programming Language, which I mentioned in Day 1’s
“Going Deeper”) can often clear up many of the smaller details of how Perl is supposed
to behave. If you’re still stuck, hit the Web—www.perl.com, www.activestate.com (for
Windows), and many of the other Web sites I’ve mentioned throughout this book can
offer further assistance. Beyond that, there are a number of newsgroups (such as the
comp.perl hierarchy—comp.perl.misc, in particular) and mailing lists where other Perl
programmers hang out.

Good luck!

Summary
Today is the tying-up-the-loose-ends day. Today we looked at a number of extra features
in Perl, the stuff that wasn’t discussed in the previous 19 lessons of this book. It’s a bit of
a hodgepodge of stuff, including

• Perl one-liners, simple scripts that can be run directly from a command line to
accomplish basic tasks without having to create a whole script

550 Day 20

24 0355 ch20 5/9/02 2:39 PM Page 550

Odds and Ends 551

20

• Object-oriented programming in Perl—a combination of references, packages,
modules, and subroutines, and some extra stuff to pull it all together

• An overview of network socket programming in Perl

• POD files, Perl’s simple method for creating embedded documentation that can be
formatted in various other ways (HTML, text, and so on)

• Building and evaluating code on-the-fly with eval

• Internationalization and localization with the locale module

• Checking for tainted data to prevent security bugs and holes in your scripts

• Using the PerlScript engine on Windows to incorporate Perl scripts into HTML
Web pages or as a replacement for DOS and Windows batch files

Congratulations! We’ve only got one day left, and that one’s full of examples. You’ve
now learned enough of Perl to get quite a lot of exciting things done. Go to it! And don’t
forget—Perl is a collaborative effort. Make use of the modules in the CPAN, and if you
write something that you think others might find useful, consider submitting it to the
CPAN yourself.

Q&A
Q My one-liners don’t work in MacPerl.

A Make sure in the Edit, Peferences, Scripts dialog that you have “Run Scripts
Opened from Finder” selected. If you’ve chosen “Edit” here your one-liners won’t
work (“One Liner” is itself a MacPerl script).

Q My one-liners don’t work in Windows.

A Notions of quotes are different in the Windows/DOS command line than they are
on Unix. You can use both single and double-quotes in Unix; in Windows you can
only use double quotes. For one-liners in Windows, make sure that you surround
the entire one-line script in double-quotes and that all quotes inside the actual
script are back-slashed.

Q My one-liners don’t work in Unix.

A They don’t? Did you type the script all on one line with no returns? Did you sur-
round the entire script with single-quotes? Did you remember the -e option to
Perl? If you’ve checked all these things, make sure the same script works if you
put it into a file of its own.

24 0355 ch20 5/9/02 2:39 PM Page 551

Q From your description, Perl doesn’t appear to support the object-oriented
programming notions of public and private data. What’s to stop someone
from using methods in your class that you didn’t intend to be part of the pub-
lic API?

A Nothing. Perl’s object-oriented model doesn’t enforce any notion of a public or pri-
vate API; it assumes that you and the programmers who use your classes will
behave decently as far as the API is concerned. As the developer of a class, you
should be sure to document your API and which of your methods are public (POD
is good for this) and assume that if someone is using your class that they’ll stick to
that API. Conversely, if you’re using someone else’s class, you should stick to their
documented public API and use internal methods or data only at your own risk and
if you’re sure you know what you’re doing.

Q Multiple inheritance is really confusing and error-prone. Why didn’t Perl use
single inheritance instead?

A What, and limit the power of the language? It should be apparent at this point in
the book that Perl doesn’t really ever try to limit what the programmer can do.
Multiple inheritance may indeed often be confusing and difficult to debug, but it’s
also incredibly powerful when used in conjunction with a good design (and don’t
forget, a good design doesn’t necessarily involve inheritance). The designers of
Perl would rather err on the side of having too much rope to hang yourself than not
enough to tie a good knot.

Q Where on earth did the terms I18N and L10N come from?

A There’s eighteen letters between the I and the N in the word internationalization
(and ten between the L and N in localization). Internationalization and localization
are really long words to type. Programmers hate that.

Workshop
The workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to give you experience using what you’ve learned. Try to
understand the quiz and exercise answers before you go on to tomorrow’s lesson.

Quiz
1. What do the following Perl switches do (with regard to one-liners):

-e
-i
-p

2. How are classes, methods, and instance variables represented in Perl?

552 Day 20

24 0355 ch20 5/9/02 2:39 PM Page 552

Odds and Ends 553

20

3. Show two ways to call a method.

4. How are multiply inherited superclasses searched when a method is invoked?

5. What do autoloaded methods do?

6. What are Perl formats used for? What are the two functions that make them work?

7. What is a POD file? Why use POD in your Perl scripts over some other format like
HTML?

8. What does the eval function do? Why would you want to use it?

9. What is “taint mode” used for? How do you turn it on?

Exercises
1. Write a Perl one-liner that counts all occurrences of the letter “t” in the input and

prints the result.

2. Write a Perl one-liner that sums all its input (assume all the input is numeric).

3. Write a Perl one-liner that replaces all instances of three spaces with a tab and
saves the result in a file of the same name.

4. BUG BUSTER: What’s wrong with this one-liner?

perl -p ‘s/t/T/q’;

5. BUG BUSTER: How about this one (HINT: There’s more than one problem)?

perl -ne ‘print ‘line: ‘, reverse $_;’;

6. EXTRA CREDIT: Write a Perl class called SimpleClass that has three instance
variables: a, b, and c. Include these methods:

• A new constructor to create and initialize the a, b, and c variables.

• Methods to print and change the values of a, b, and c. Implement these how-
ever you want.

• A method to print the sum of a, b, and c. Make sure to test to see if a, b, and
c contain numbers; print warnings otherwise.

Answers
Here are the answers to the Workshop questions in the previous section.

Quiz Answers
1. The -e option runs a Perl script on the command line (a one-liner).

The -i option edits files in place; that is, the result of the script will be saved back
to the original file. Any file extension argument to the -i option will be used to
save the original version of the file.

24 0355 ch20 5/9/02 2:39 PM Page 553

The -p option surrounds the Perl one-liner with a while (<>) loop with a print
statement at the end. If you want to perform some operation for each line of a file
and then print it, use this command to save some typing.

2. Classes are packages in Perl; methods are subroutines that have either a classname
or an object reference as their first argument. Instance variables are commonly
implemented as hash elements with the name of the variable as the key.

3. You can call methods as if they were regular functions:

method $obj,1,2,3;

Or, using dereferencing syntax:

$obj->method(1,2,3);

4. Multiply inherited superclasses are searched depth-first; that is, all the superclasses
of the first superclass in the list (including any multiply inherited ones, in turn) are
searched before the other superclasses in the list are searched.

5. Autoloaded methods are called when a method is called that doesn’t have a corre-
sponding method definition in the current class or any of its superclasses. You can
use autoloaded methods to group together common methods (such as get and set

variable methods) or to otherwise catch unknown method names.

6. Perl formats are used to format data in a tabular format for text output. The data
will be fit automatically to the appropriate width, with each column aligned or
filled based on the format you define. To create a format, you use format to define
the format template and write to output the final result.

7. POD stands for Plain Old Documentation; it’s a simple way of creating online-
accessible documentation for your Perl scripts. POD makes a good general-purpose
documentation format that can be easily extracted and converted into some other
output format, like HTML or troff.

8. The eval function is used to evaluate bits of Perl code on-the-fly, during your
script’s runtime. You might use eval to incorporate other scripts into your current
script or to test bits of code before actually running them for real.

9. Perl’s taint mode is used to protect against errors and omissions in your Perl scripts
that could result in insecure code. Insecure code, run in an insecure environment,
could result in a malicious user tampering with or damaging your system. Taint
mode puts all external data and settings in a special controlled environment and
prevents you from accidentally using that data in a way that could be harmful. You
turn on taint mode by using the -T option to Perl; it’ll also automatically run if Perl
is run in a situation where the user or group of the person running the script are
different from the user or group of the script itself, for example, a CGI script run-
ning from a Web server.

554 Day 20

24 0355 ch20 5/9/02 2:39 PM Page 554

Odds and Ends 555

20

Exercise Answers
1. Here’s one way to do it:

perl -e ‘ while (<>){while (/t/g){$c++;}};print $c;’ file.txt

2. Here’s one way:

perl -e ‘while(<>){$sum+=$_;}print “$sum\n”;’

3. Here’s one way:

perl -pe -i.bak ‘s/ /\t/g’ ozy.txt

4. It’s missing the -e option.

5. There are two problems with this example: one syntactic, one conceptual. The first
is that you cannot nest single quotes inside single quotes. Replace the inner single
quotes with double quotes.

The second problem concerns the reverse function. Although this one-liner might
appear to print each line in reverse order by character with the word “line” at the
start, keep in mind that the reverse function behaves differently depending on
whether it’s used in scalar or list context. Here, because the arguments to print are
always a list or combination of lists, reverse is called in a list context, which
reverses the order of lines in an array. The $_ argument is then converted to a list,
that list of one line is reversed, and then passed onto print. In other words, nothing
appears to happen.

To actually reverse the string, you have to call the reverse function in a scalar
context. This can be easily remedied with the scalar function:

perl -ne ‘print ”line: ”, scalar (reverse $_);’;

Watch out for the newlines, though. Reversing a line with a newline at the end will
print the newline at the beginning. An even better solution is to chomp the string,
reverse it, and then print it with the newline tacked on again:

perl -ne ‘chomp;print “line: “, scalar(reverse $_), “\n” ; ‘

Conveniently, there’s a Perl option that’ll let you shorten this a little bit: the -l
option, which pulls the newline off input, and then puts it (or any other end-of-line
character you choose) back for you:

perl -lne ‘print “line: “, scalar(reverse $_);’

6. Here’s one way to do it (with code to test the result at the end). This version shows
three different ways you might consider implementing instance variable access.
Note that none of these methods is very robust; none of them check to make sure
you’re not trying to get or set the values of nonexistent variables (and, in fact, the
generic versions will happily add an instance variable other than a, b, or c.)

24 0355 ch20 5/9/02 2:39 PM Page 555

#!/usr/bin/perl -w

package SimpleClass;

sub new {
my ($classname, $a, $b, $c) = @_;
my $self = {};
$self->{a} = $a;
$self->{b} = $b;
$self->{c} = $c;
return bless $self, $classname;

}

the long way
sub getA {

my $self = shift;
return $self->{a};

}
sub setA {

my $self = shift;
if (@_) {

$self->{a} = shift;
} else {

warn “no argument; using undef\n”;
$self->{a} = undef;

}
}

a more generic way, needs more args.
sub get {

my ($self, $var) = @_;
if (!defined $var) {

print “No variable!\n”;
return undef;

} elsif (!defined $self->{$var}) {
print “Variable not defined, or no value.\n”;
return undef;

} else {
return $self->{$var};

}
}
sub set {

my ($self, $var, $val) = @_;
if (!defined $var or !defined $val) {

print “Need both a variable and value argument!”;
return undef;

} else {
$self->{$var} = $val;
return $val;

}
}

556 Day 20

24 0355 ch20 5/9/02 2:39 PM Page 556

Odds and Ends 557

20

a really generic way
sub AUTOLOAD {

my $self = shift;
my $var = $AUTOLOAD;
$var =~ s/.*::Σet//;
$var = lc $var;

if (@_) {
$self->{$var} = shift;
return $self->{$var};

} else {
return $self->{$var};

}
}

sub sum {
my $self = shift;
my $sum = 0;
foreach (‘a’,’b’,’c’) {

if (!defined $self->{$_} or $self->{$_} !~ /^\d+/) {
warn “Variable $_ does not contain a number.\n”;

} else { $sum += $self->{$_}; }
}
return $sum;

}

package main;
$obj = new SimpleClass (10,20,30);

print “A: “, $obj->getA(), “\n”;
$obj->setA(“foo”);
print “A: “, $obj->getA(), “\n”;

print “B: “, $obj->get(‘b’), “\n”;
$obj->set(‘b’, ‘bar’);
print “B: “, $obj->get(‘b’), “\n”;

print “C: “, $obj->getC(), “\n”; # no such method getC; will autoload
$obj->setC(‘baz’); # ditto setC
print “C: “, $obj->getC(), “\n”;

reset
print “\nA: 10\n”;
$obj = new SimpleClass (10);
print “Sum: “, $obj->sum(), “\n”;
print “\nA: 10 B: 5\n”;
$obj = new SimpleClass (10,5);
print “Sum: “, $obj->sum(), “\n”;
print “\nA: 10 B: 5 C: 5\n”;
$obj = new SimpleClass (10,5,5);
print “Sum: “, $obj->sum(), “\n”;

24 0355 ch20 5/9/02 2:39 PM Page 557

24 0355 ch20 5/9/02 2:39 PM Page 558

DAY 21

WEEK 3

Exploring a Few Longer
Examples

As with Days 7 and 14, which closed out Weeks 1 and 2 of this book, we’ll
close Week 3 with another chapter of examples. The two we’ll look at cover
nearly every aspect of Perl you’ve learned over the last twenty days. If you can
make it through these examples, you’ll be just fine with most of the things you
might be asked to do with Perl.

Today we’ll look at two examples, both of which are CGI scripts:

• A customized stock portfolio manager that keeps track of multiple portfo-
lios and downloads the latest stock prices from Yahoo! Finance whenever
you view your portfolio.

• A Web-based To Do list that allows you to add and remove items, mark
them as done, prioritize them, and sort them in a variety of ways.

Both of these examples are longer than the ones we’ve looked at earlier; the lat-
ter example more than doubly so. Remember that all the examples from this
book are available online at the Teach Yourself Perl Web site at

25 0355 ch21 5/9/02 2:39 PM Page 559

http://www.typerl.com/—please don’t think you have to type 350 lines of Perl code
yourself. Use this chapter to explore what the code does and then, if you want to experi-
ment further, you can download the online versions.

Both of these examples run as CGI scripts. As with the CGI scripts we looked at on Day
16, “Using Perl for CGI Scripting,” how these scripts are installed and used might vary
from platform to platform and from Web server to Web server. Some servers might
require scripts to be installed in a special directory (cgi-bin), to have special filename
extensions (.cgi rather than .pl), or to have special permissions. You might also need to
set the permissions of the configuration and data files that these scripts use. See the doc-
umentation that comes with your Web server or your system administrator for more
information on installing and using CGI scripts.

A Stock Portfolio Manager
Let’s look at an example program that illustrates just how much time you can save using
Perl modules that are already written. The example application is a stock portfolio man-
ager. It maintains any number of portfolios, each of which can contain any number of
securities. The portfolio manager downloads the latest share prices for all the stocks in
your portfolio from Yahoo! Finance every time you view a portfolio.

First, the program creates a list of portfolios. From that page, you can add a new portfo-
lio or view or delete an existing portfolio. When you view a portfolio, the latest prices
for those stocks will be displayed. You can also delete stocks from the portfolio, or add
new stocks to the portfolio from that page as well.

One thing this program demonstrates is how you can save yourself a lot of pain and suf-
fering by using modules to take care of a lot of the grunt work in your script. In this
example, the CGI modules LWP::Simple and XML::Simple were used. Both were intro-
duced in earlier lessons. I use the LWP module to download stock prices from the Yahoo!
Finance Web site. The CGI module takes care of everyday stuff such as processing query
parameters on HTTP requests. All the persistent data is stored in an XML file, which is
accessed using the XML::Simple module.

The Data File
Let’s look at how the data is stored from request to request. Bear in mind that this data
file is generated by the XML::Simple module from the data structure used in the program.
I actually start out by writing the XML file, use the XML::Simple to read it in, and then
write it back out every time the script runs to be sure to catch any changes that were
made. Listing 21.1 contains a data listing.

560 Day 21

25 0355 ch21 5/9/02 2:39 PM Page 560

Exploring a Few Longer Examples 561

21

LISTING 21.1 The Data for the Stock Portfolio Program

<opt>
<portfolio name=”red”>
<stock lastfetch=”1015292886” lastprice=”48.65” company=”DU PONT CO”

name=”dd” />
<stock lastfetch=”1015279312” lastprice=”17.81” company=”YAHOO INC”

name=”yhoo” />
</portfolio>
<portfolio name=”foo”>
<stock lastfetch=”1015280450” lastprice=”63.30” company=”MICROSOFT CP”

name=”msft” />
<stock lastfetch=”1015280613” lastprice=”17.81” company=”YAHOO INC”

name=”yhoo” />
<stock lastfetch=”1015280455” lastprice=”16.05” company=”AT&T CORP”

name=”t” />
</portfolio>
<portfolio name=”bar”>
<stock lastfetch=”1015296403” lastprice=”13.67” company=”ORACLE CORP”

name=”orcl” />
<stock lastfetch=”1015296404” lastprice=”17.81” company=”YAHOO INC”

name=”yhoo” />
<stock lastfetch=”1015296404” lastprice=”24.29” company=”APPLE COMP INC”

name=”aapl” />
<stock lastfetch=”1015296405” lastprice=”16.05” company=”AT&T CORP”

name=”t” />
</portfolio>
<portfolio name=”baz”>
<stock lastfetch=”1015278274” lastprice=”31.85” company=”INTEL CORP”

name=”intc” />
</portfolio>

</opt>

When XML::Simple reads this file, it turns it into a structure of nested hashes (using ref-
erences). One of the challenges when reading the program is figuring out how the data in
this file maps to the data structure used throughout.

How the Program Works
Let’s look at how this program is structured. The first thing to point out is that this pro-
gram actually responds to many different kinds of requests. It is used to view a list of
portfolios, view individual portfolios, and handle the addition and removal of both port-
folios and stocks. The program expects a parameter named c (for command), which will
indicate what sort of action should be taken. If the c parameter is not supplied, the pro-
gram assumes that you want a list of portfolios.

Depending on the command sent to the program, other parameters might also be
expected. The two optional parameters are the name of the portfolio and the ticker

25 0355 ch21 5/9/02 2:39 PM Page 561

symbol of the stock. For example, if the command is del and the p parameter (for portfo-
lio) is foo, the program knows you want to delete the portfolio named foo.

The core of the program is an if construct that checks which command was issued, and
performs the tasks associated with that command. For example, if the command is
add_stock, the program performs some basic error checking, calls the add_stock sub-
routine, and then displays the updated portfolio and the add stock form (using the
view_portfolio and display_add_stock_form subroutines).

The commands that the program supports are

• list—Lists the portfolios available.

• view—Views the stocks in a particular portfolio.

• del—Deletes the specified portfolio.

• del_stock—Deletes the specified stock from the specified portfolio.

• add—Adds a portfolio with the name specified.

• add_stock—Adds the stock with the ticker specified to the current portfolio.

Before the conditional statement that drives the program, some modules were imported,
some variables were initialized, and the parts of the page were printed out that are con-
sistent regardless of which command was used. The footer of the page was printed out
following the conditional statement.

Setting Up
Before I get into the meat of the program, some things have to be set up. This means
importing the CGI, CGI::Carp (for better error reporting), XML::Simple, and
LWP::Simple modules. Then, some global variables for this package that will be used
throughout the script are set up. For example, the URLs for downloading stock informa-
tion from Yahoo! Finance are hard coded, so that if those URLs change, they can be
updated at the top of my program.

Also $command is initialized so that if the user fails to supply a command, list is used as
the default. Probably the biggest job here, though, is reading in my data file. Amazingly,
that part seems simple:

my $portfolios = XMLin(“./portfolio.xml”, forcearray => 1);

This code reads in a file called portfolio.xml, parses the XML data, and produces a
reference to a data structure, which is assigned to a variable called $portfolios. An
argument is passed to the XMLin() subroutine, forcearray, which basically tells it to
treat all data as though it were in an array instead of handling lists of one item differ-
ently. This eliminates problems when a portfolio contains only one stock.

562 Day 21

25 0355 ch21 5/9/02 2:39 PM Page 562

Exploring a Few Longer Examples 563

21

Displaying a List of Portfolios with list_portfolios()
Most of the list_portfolios() subroutine is concerned with printing out HTML, but
there’s some stuff that’s worth inspecting here. For one thing, it introduces the data struc-
ture in the XML file. On the first line of the subroutine, a reference to the value in the
top-level anonymous hash is created in my datastructure with the key portfolio, using
this statement:

my $hashref = $portfolios->{portfolio};

The reference that’s returned is to a hash containing all the portfolios in my file. On line
87, the keys in that anonymous hash are looped over, like this:

foreach my $port (keys %$hashref)

A list of the portfolios is printed out, along with links to view and delete them.

Displaying the Contents of a Single Portfolio Using
view_portfolio()

This subroutine is a bit more complex. First, I read the argument passed to the subroutine
and assign it to $port. Then, I create a reference to the hash containing the stocks in the
named portfolio, like this:

my $hashref = $portfolios->{portfolio}->{$port}->{stock};

This reference points to a hash that contains hashes for each stock in the portfolio. The
hashes are keyed on the stock’s ticker symbol. Each of the stocks are then looped over
using a foreach loop (just like the previous subroutine):

foreach my $stock_ticker (keys %$hashref)

In the body of the loop, the first thing to do is create a reference to the stock currently
being processed, like this:

my $stock = $hashref->{$stock_ticker};

Then, some variables are set up that will be used to display this stock, print out the name
of the company, and a delete link. Then, the get_current_price() subroutine is called
to fetch the current price of the stock from Yahoo! Finance. I’ll discuss that subroutine in
a bit. After the price is fetched, a couple of temporary variables are set up so that the data
can be used to update the record (which I do immediately after):

$stock->{lastprice} = $current_price;
$stock->{lastfetch} = time;

These two lines update the data structure so that the current price and time will be writ-
ten to the data file as the previous price and time. At this point, all that’s left is to print
out the rest of the information about the stock.

25 0355 ch21 5/9/02 2:39 PM Page 563

Deleting Stocks and Portfolios Using delete_stock() and
delete_portfolio()

When a user clicks on a delete link, the appropriate subroutine is called depending on
whether they want to delete a stock or a portfolio. The statement used to delete a portfo-
lio is

delete $portfolios->{portfolio}->{$portfolio_name};

And here’s the statement that deletes a stock:

delete $portfolios->{portfolio}->{$portfolio_name}->{stock}->{$ticker};

As you can see, these statements simply delete values from hashes in the large data struc-
ture. When the data is saved, the changes will automatically be applied to the XML data
file.

Adding a Portfolio Using add_portfolio()
Adding a portfolio is simple, you just test to make sure that the portfolio name entered
doesn’t already exist, and add a new empty hash to the data structure, like this:

$portfolios->{portfolio}->{$portfolio_name} = {};

That’s all there is to it. The user can populate the new portfolio. They just have to view it
and start adding stocks to it.

Adding a Stock Using add_stock()
Okay, here’s where the real action is. This subroutine demonstrates how error handling is
dealt with, how to access the data structure, and it pulls information down from the Web.
I’ll go ahead and list the source code for this subroutine so that it can be examined
closely:

1: sub add_stock
2: {
3: my $portfolio = shift(@_);
4: my $ticker = shift(@_);
5: my $stock_name = “”;
6: my $stock_price = 0;
7:
8: if (exists $portfolios->{portfolio}->{$portfolio}->{stock}->{$ticker})
9: {
10: $errors .= “That stock is already in the portfolio.\n”;
11: return;
12: }
13:
14: my $url = $stock_info_url . “$ticker”;
15: my $content = get($url);
16:

564 Day 21

25 0355 ch21 5/9/02 2:39 PM Page 564

Exploring a Few Longer Examples 565

21

17: if (!$content)
18: {
19: $errors .= “Couldn’t retrieve stock information.\n”;
20: return;
21: }
22:
23: if ($content =~ /No such ticker symbol/i)
24: {
25: $errors .= “Invalid ticker symbol.\n”;
26: return;
27: }
28:
29: if ($content =~ /<td colspan=7><font(.+?)>(.+?)\s+<\/b>/i)
30: {
31: $stock_name = $2;
32: }
33:
34: if ($content =~ /Last Trade
(.+?)([\d.]+)<\/b>/i)
35: {
36: $stock_price = $2;
37: }
38:
39: my $hashref = $portfolios->{portfolio}->{$portfolio}->{stock};
40:
41: $hashref->{$ticker} = { lastfetch => time, lastprice => $stock_price,
42: company => $stock_name };

43: }

First, on lines 3 through 6, set up some variables. The first two variables take their values
from the arguments passed to the subroutine, and the next two are set to default values.
I’ll get the real values from Yahoo! Finance, assume everything goes as planned.

Next, check to ensure that the stock the user is trying to add isn’t already in the portfolio.
If it is, add an error message, $errors, and return. Next, append the stock ticker to the
URL for retrieving information about the stock. Then, use the get subroutine (which is
part of LWP::Simple) to request the page associated with that URL. If the page was
requested successfully, the HTML code that makes up the page is assigned to $content.
Just in case it isn’t, a test is done to see whether $content evaluates as true, and if it
doesn’t, raise an error and return.

If it isn’t empty, look for a particular string named No such ticker symbol. This text
only appears on the page if the ticker symbol is invalid. If it’s there, they’ve requested a
stock using a ticker symbol that doesn’t exist, so raise an error and return.

Now we’re ready to start grabbing data using regular expressions. First, grab the stock
name, and then the current price. By carefully examining the source code of the page, I
wrote the regular expressions used to extract this information (and nothing extraneous)

25 0355 ch21 5/9/02 2:39 PM Page 565

from the page. The catch here is that if Yahoo! changes the appearance of this page,
there’s a pretty good chance that these regular expressions will stop matching what
they’re supposed to, and therefore, you’ll have to update your script. When you extract
information from Web pages like this, that’s just something you have to contend with.
One bit of advice is that you should use as small an expression as possible, which makes
it less likely that someone will come along and break your script.

After these two bits of data have been extracted from the page, access the data structure
to insert a new anonymous hash into the portfolio. When the data is written to disk, this
new stock will be included.

Getting the Current Stock Price Using get_current_price()
I explained add_stock() in detail, therefore, I don’t have to go into that much detail for
this subroutine because it’s sort of like add_stock(), except simpler. Like the previous
subroutine, take the ticker symbol as an argument, append it to the URL where stock
quotes are found, and then fetch the page containing the pertinent information. If, for
some reason, the page isn’t found, I raise an error and return from the subroutine.

What we then have is a large regular expression that extracts the current stock price from
the HTML that was returned. This is a different regular expression than was used before.
The same one could have been used, but because this is an example program, I wanted to
use multiple pages and expressions. After the price has been extracted, it’s returned.

Writing the Data Using write_data()
One of the last things the program does before exiting is write its data to disk.
Transforming the data in $portfolios to XML is easy with XML::Simple, just use the
following subroutine call:

my $xml = XMLout($portfolios);

After the XML is stored in the variable $xml, open a filehandle and write the data out to
disk.

The Source Code
Listing 21.2 contains the source code for the portfolio.cgi program.

LISTING 21.2 The Stock Portfolio Program

1: #!/usr/local/bin/perl
2:
3: use strict;
4: use CGI;

566 Day 21

25 0355 ch21 5/9/02 2:39 PM Page 566

Exploring a Few Longer Examples 567

21

5: use CGI::Carp qw(fatalsToBrowser);
6: use XML::Simple;
7: use LWP::Simple;
8:
9: my $portfolios = XMLin(“./portfolio.xml”, forcearray => 1);
10: my $command = “list”;
11: my $query = new CGI;
12: my $quote_url = ‘http://finance.yahoo.com/q?d=v1&s=’;
13: my $stock_info_url = ‘http://finance.yahoo.com/q?d=t&s=’;
14: my $errors = “”;
15:
16: if ($query->param(‘c’))
17: {
18: $command = $query->param(‘c’);
19: }
20:
21: print $query->header;
22: print “<html><head><title>portfolio</title></head><body>\n”;
23: print “<h1 align=\”center\”>Stock Portfolio</h1>\n”;
24:
25: if ($command eq “list”)
26: {
27: &list_portfolios;
28: &display_add_form;
29: }
30: elsif ($command eq “view”)
31: {
32: &view_portfolio($query->param(‘p’));
33: &display_add_stock_form($query->param(‘p’));
34: }
35: elsif ($command eq “del”)
36: {
37: &delete_portfolio($query->param(‘p’));
38: &list_portfolios;
39: &display_add_form;
40: }
41: elsif ($command eq “del_stock”)
42: {
43: &delete_stock($query->param(‘p’), $query->param(‘s’));
44: &view_portfolio($query->param(‘p’));
45: &display_add_stock_form($query->param(‘p’));
46: }
47: elsif ($command eq “add”)
48: {
49: if ($query->param(‘p’))
50: {
51: &add_portfolio($query->param(‘p’));
52: }
53: else

LISTING 21.2 continued

25 0355 ch21 5/9/02 2:39 PM Page 567

54: {
55: $errors .= “You must enter a portfolio name.\n”;
56: }
57:
58: &list_portfolios;
59: &display_add_form;
60: }
61: elsif ($command eq “add_stock”)
62: {
63: if ($query->param(‘s’))
64: {
65: &add_stock($query->param(‘p’), $query->param(‘s’));
66: }
67: else
68: {
69: $errors .= “You must enter a ticker symbol.\n”;
70: }
71:
72: &view_portfolio($query->param(‘p’));
73: &display_add_stock_form($query->param(‘p’));
74: }
75:
76: # Write out the update data file.
77: &write_data;
78: print “<p>return to portfolio list</p>\n”;
79: print “</body></html>\n”;
80:
81: sub list_portfolios
82: {
83: my $hashref = $portfolios->{portfolio};
84:
85: print “<div align=\”center\”>\n”;
86: print “<table cellpadding=\”8\”>\n”;
87: foreach my $port (keys %$hashref)
88: {
89: my $encoded_port = &encode_string($port);
90: my $view_link = “portfolio.pl?c=view&p=$encoded_port”;
91: my $delete_link = “portfolio.pl?c=del&p=$encoded_port”;
92: print “<tr>\n”;
93: print “<td>$port</td>\n”;
94: print “<td>”;
95: print “view</td>\n”;
96: print “<td>delete</td>\n”;
97: print “</tr>\n”;
98: }
99: print “</table>\n”;
100: print “</div>\n”;
101: }
102:

568 Day 21

LISTING 21.2 continued

25 0355 ch21 5/9/02 2:39 PM Page 568

Exploring a Few Longer Examples 569

21

103: sub view_portfolio
104: {
105: my $port = shift(@_);
106:
107: my $hashref = $portfolios->{portfolio}->{$port}->{stock};
108:
109: print “<h3>$port</h3>”;
110: foreach my $stock_ticker (keys %$hashref)
111: {
112: my $stock = $hashref->{$stock_ticker};
113: my $company_name = $stock->{company};
114: my $delete_link = “portfolio.pl?c=del_stock&p=$port”;
115: $delete_link .= “&s=” . $stock_ticker;
116:
117: print “<p>\n”;
118: print “<table border=\”1\” cellspacing=\”0\” cellpadding=\”5\”>\n”;
119: print “<tr><td colspan=\”2\”>”, $company_name, “”;
120: print “
”;
121: print “delete”;
122: print “”;
123: print “</td></tr>\n”;
124:
125: my $current_price = &get_current_price($stock_ticker);
126:
127: my $lastprice = $stock->{lastprice};
128: my $lastfetch = $stock->{lastfetch};
129:
130: # Move this soon.
131: $stock->{lastprice} = $current_price;
132: $stock->{lastfetch} = time;
133:
134: print “<tr><td>ticker</td>”;
135: print “<td>”, $stock_ticker, “</td></tr>\n”;
136: print “<tr><td>current price:</td>”;
137: print “<td>”, $current_price, “</td></tr>\n”;
138: print “<tr><td>last price:</td>”;
139: print “<td>”, $lastprice, “</td></tr>\n”;
140: print “<tr><td>as of:</td>”;
141: print “<td>”, scalar localtime($lastfetch), “</td></tr>\n”;
142: print “</table>\n”;
143: print “</p>\n”;
144: }
145: }
146:
147: sub delete_portfolio
148: {
149: my $portfolio_name = shift(@_);
150:
151: delete $portfolios->{portfolio}->{$portfolio_name};

LISTING 21.2 continued

25 0355 ch21 5/9/02 2:39 PM Page 569

152: }
153:
154: sub delete_stock
155: {
156: my $portfolio_name = shift(@_);
157: my $ticker = shift(@_);
158:
159: delete $portfolios->{portfolio}->{$portfolio_name}->{stock}->{$ticker};
160: }
161:
162: sub get_current_price
163: {
164: my $ticker = shift(@_);
165: my $url = $quote_url . “$ticker”;
166: my $content = get($url);
167:
168: if (!$content)
169: {
170: return “request failed”;
171: }
172:
173: my $current_price = “not found”;
174:
175: if ($content =~
/<td[^>]*><font[^>]*><a[^>]*>(\w+?)<\/a><\/font><\/td><td[^>]*><font[^>]*>(.+?)<
\/font><\/td><td[^>]*><font[^>]*>([\d.]+?)<\/b><\/font><\/td>/i)
176: {
177: $current_price = $3;
178: }
179:
180: return $current_price;
181: }
182:
183: sub add_portfolio
184: {
185: my $portfolio_name = shift(@_);
186:
187: if (exists $portfolios->{portfolio}->{$portfolio_name})
188: {
189: $errors .= “That portfolio name is already in use.\n”;
190: return;
191: }
192:
193: $portfolios->{portfolio}->{$portfolio_name} = {};
194: }
195:
196: sub add_stock
197: {
198: my $portfolio = shift(@_);

570 Day 21

LISTING 21.2 continued

25 0355 ch21 5/9/02 2:39 PM Page 570

Exploring a Few Longer Examples 571

21

199: my $ticker = shift(@_);
200: my $stock_name = “”;
201: my $stock_price = 0;
202:
203: if (exists $portfolios->{portfolio}->{$portfolio}->{stock}->{$ticker})
204: {
205: $errors .= “That stock is already in the portfolio.\n”;
206: }
207:
208: my $url = $stock_info_url . “$ticker”;
209: my $content = get($url);
210:
211: if (!$content)
212: {
213: $errors .= “Couldn’t retrieve stock information.\n”;
214: return;
215: }
216:
217: if ($content =~ /No such ticker symbol/i)
218: {
219: $errors .= “Invalid ticker symbol.\n”;
220: return;
221: }
222:
223: if ($content =~ /<td colspan=7><font(.+?)>(.+?)\s+<\/b>/i)
224: {
225: $stock_name = $2;
226: }
227:
228: if ($content =~ /Last Trade
(.+?)([\d.]+)<\/b>/i)
229: {
230: $stock_price = $2;
231: }
232:
233: my $hashref = $portfolios->{portfolio}->{$portfolio}->{stock};
234:
235: $hashref->{$ticker} = { lastfetch => time, lastprice => $stock_price,
236: company => $stock_name };
237: }
238:
239: sub write_data
240: {
241: my $xml = XMLout($portfolios);
242: open (FILE, “> portfolio.xml”)
243: or die “Can’t open data file: “;
244: print FILE $xml;
245: close FILE;
246: }
247:

LISTING 21.2 continued

25 0355 ch21 5/9/02 2:39 PM Page 571

248: sub display_add_form
249: {
250: print “<h3 align=\”center\”>add a new portfolio</h3>\n”;
251: if ($errors)
252: {
253: print “<div align=\”center\”><table><tr><td>\n”;
254: print “Please correct the following error:\n”;
255: print “\n”, $errors, “\n”;
256: print “</td></tr></table>\n”;
257: }
258: print “<form>\n”;
259: print “<input type=\”hidden\” name=\”c\” value=\”add\”>\n”;
260: print “<div align=\”center\”><table>\n”;
261: print “<tr><td>portfolio name:</td><td>”;
262: print “<input type=\”text\” name=\”p\” value=\”\”>”;
263: print “</td></tr>\n”;
264: print “<tr><td colspan=\”2\”><input type=\”submit\”></td></tr>\n”;
265: print “</table></div>\n”;
266: print “</form>\n”;
267: }
268:
269: sub display_add_stock_form
270: {
271: my $portfolio_name = shift(@_);
272: print “<h3 align=\”center\”>add a new stock</h3>\n”;
273: if ($errors)
274: {
275: print “<div align=\”center\”><table><tr><td>\n”;
276: print “Please correct the following error:\n”;
277: print “\n”, $errors, “\n”;
278: print “</td></tr></table>\n”;
279: }
280: print “<form>\n”;
281: print “<input type=\”hidden\” name=\”c\” value=\”add_stock\”>\n”;
282: print “<input type=\”hidden\” name=\”p\” value=\”$portfolio_name\”>\n”;
283: print “<div align=\”center\”><table>\n”;
284: print “<tr><td>stock ticker symbol:</td><td>”;
285: print “<input type=\”text\” name=\”s\” value=\”\”>”;
286: print “</td></tr>\n”;
287: print “<tr><td colspan=\”2\”><input type=\”submit\”></td></tr>\n”;
288: print “</table></div>\n”;
289: print “</form>\n”;
290: }
291:
292: sub encode_string
293: {
294: my $string_to_encode = shift @_;
295:
296: $string_to_encode =~ s/\&/%26/g;

572 Day 21

LISTING 21.2 continued

25 0355 ch21 5/9/02 2:39 PM Page 572

Exploring a Few Longer Examples 573

21

297: $string_to_encode =~ s/\+/%2B/g;
298: $string_to_encode =~ s/\?/%2B/g;
299: $string_to_encode =~ s/ /+/g;
300:
301: return $string_to_encode;
302: }

A Web-Based To Do List (todolist.pl)
Our second—and final—example, is a simple To Do list application that runs on the Web
called todolist.pl. You can add, delete, and change list items, sort by date, priority, or
descriptions, and mark items as done. Figure 21.3 shows an example of the To Do list at
work:

LISTING 21.2 continued

FIGURE 21.1
To Do List Web appli-
cation.

The To Do list application consists of a large table containing the To Do items. Each
item has a check box indicating whether it is done or not, a priority, a due date, and a
description. All the data in this table is editable through form elements; the changes are

25 0355 ch21 5/9/02 2:39 PM Page 573

applied when the user chooses the Update button. Also affected with Update is whether
an item is to be removed (the check boxes in the right-most column of the table), how to
sort the data (the Sort By menu just below the table), and whether to display done items
(the Show Done check box under the table as well).

In addition to the table and the display preferences, there is also an area for adding new
items to the list. By filling out the boxes in that part of the application and choosing Add
Item, new items are added (and all other changes applied as well).

As with the stock portfolio program, the script that runs the To Do list is a CGI script,
and runs directly as a URL, no initial form needed. The script generates its own content,
including the forms that enable you to change the items in the list and how they are dis-
played. It’s all the same script. The only other part is a data file—listdata.txt—which
stores the To Do data, and which is read and written by the To Do script.

This script is twice the size of anything we’ve looked at in this book, so, as with the last
example, I’m not going to go over it line by line. The complete script is at the end of this
section, in Listing 21.3, and you can get it from the Web site for this book as well
(www.typerl.com). In this section, I’ll describe the flow and general structure of how the
script works and, if you’re still curious, you can check out the code for yourself.

The Data File
As with most of the examples we’ve looked at this week, this script has a data file that it
reads and writes to that keeps track of the scripts data. The data file for this script, called
listdata.txt, stores the To Do item data. The todolist.pl script reads this file at each
iteration and writes new data to it whenever anything is changed. It looks much like the
data files you’ve seen previously in other examples:

id=1
desc=Finish Chapter 20
date=3/1/2002
prior=1
done=1

id=2
desc=Finish Chapter 21
date=3/14/2002
prior=1
done=0

id=3
desc=Lunch with Eric
date=3/16/2002
prior=2
done=1

574 Day 21

25 0355 ch21 5/9/02 2:39 PM Page 574

Exploring a Few Longer Examples 575

21

Each record is separated in the file by three dashes (---). Each field of the record has a
key and a value, separated by an equal sign.

When the CGI script for the To Do list is installed, an initial data file must also be
installed somewhere the Web server can read (and write) it. The initial data file can be
empty—the script will simply generate a Web page with no items in it—but the file must
exist for the script to work.

How the Script Works
The todolist.pl is large, but pretty straightforward. There aren’t many confusing regu-
lar expressions, and the flow from function to function is fairly straightforward. In fact,
much of the bulk of the script is taken up by print statements to generate the HTML for
the To Do List and its various form elements—and customizing those elements to behave
differently in different situations.

The two starting subroutines for the todolist.pl script are &init() and &process().
The &init() determines the current date, calls the &read_data() subroutine, and prints
the top part of the HTML file to be generated by the script. Let’s start from there and
work down.

Data Initialization with &init()
The initialization subroutine is responsible primarily for calling &read_data() to open
the data file and read each of its elements into a single data structure. That data structure
is an array of hashes, with each hash containing the data for each To Do item. The keys
in the hash are

• id—The unique ID of the item.

• desc—The description of the item.

• date—The due date for the item. The date is of the format MM/DD/YYYY (this is
enforced by the script).

• prior—The priority of the item, from 1 (highest) to 5.

• done—Whether or not this item is complete.

In addition to these keys, which come from the data file, each item in the list also has an
ID. The ID is assigned when the data file is read, from 0 to the number of elements. The
ID will be used later to keep track of the various form elements for each list item.

Process the Form and the Data with &process()
The &process() routine is where the major work of the script takes place. In this subrou-
tine there are two main branches, based on the param() function from the CGI.pm

25 0355 ch21 5/9/02 2:39 PM Page 575

module. Back on Day 16 you learned about param(), and how it can be used to get the
values of form elements. Another way of using param() is without any arguments, in
which case it returns all the names of all the form elements—or, if the script wasn’t
called with a form, param() returns undefined (undef). In the &process() subroutine, we
take advantage of that behavior to produce two different results:

• The first time the script is called, there are no parameters, so we simply display the
current To Do list (by using the &display_all() subroutine).

• All other times the script is called, there are potential changes to be managed,
either changes to how the existing items are or changes and additions to the items.
If the Update button was selected, we remove the items to be deleted (the
&remove_selected() subroutine), update all the data (&update_data()), write the
data back out to the file (&write_data()), and display it over again
(&display_all()).

If the Add Items button was pressed, we do all the same steps, except that in
between updating the data and writing it out, we call &add_item() to add the new
To Do Item to the list of items.

As all the updating and adding is happening, we’re also checking for formatting errors in
the dates. More about that later when we talk about updating the data and adding list
items.

Displaying the Data with &display_all() and
&display_data()

The largest part of the To Do list script, number-of-lines-of-code-wise, is contained in the
&display_all() and &display_data() script. These subroutines don’t just generate
HTML for the data; the data table is also a form, and all the elements need to be gener-
ated automatically. In addition, a lot of the HTML that is generated is conditional on var-
ious states of the table. Priority 1 items are displayed in red, for example, and the menus
for each priority are set to their current values based on the data. So rather than just
using an enormous “here” document for this part of the script, we need to work through
line by line to generate it.

The &display_all() subroutine is the main one that gets called first. It starts the table,
prints the headers, sorts the main array based on the current sort order, and then calls
&display_data() inside a for loop to display each element in the To Do list. It also gen-
erates the elements below the data itself: the Sort By menu, the Show Done check box,
the form elements for adding an item, and both of the buttons to submit the form. Along
the way, it also prints and manages warnings if there’s an error processing the date. All
this involves a lot of conditional statements and prints, as well as a whole lot of lines of
HTML.

576 Day 21

25 0355 ch21 5/9/02 2:39 PM Page 576

Exploring a Few Longer Examples 577

21

The &display_data() subroutine has a similar task for each specific element of the To
Do list. Each row of the table has five columns, each of which contains a form element.
Each element needs a unique name, and many form elements change appearance based
on the data they reflect (a check box is checked if an item is done, for example).
&display_data() also handles NOT displaying some items—if the Show Done check
box is not selected, it won’t display any item that is marked Done—but it will generate a
hidden form element with some of that item’s data so that the updates work right.

As with &display_all(), this involves a lot of if statements and a lot of HTML. The
result is a gigantic form with each form element attached to the item to which it refers,
and which is already filled in with the current To Do list data. Change any part of that
data and, when the form is submitted, those changes will make it back to the original
data set.

Updating Changes with &update_data()
Speaking of updating the changes, let’s move onto the &update_data() subroutine. This
subroutine is called regardless of whether the user chooses the Update or Add Item but-
tons to make sure that any changes made to the data get made in either case. What
&update_data() does is loop through all the form elements on the page—each element
for the list items, as well as the Sort By and Show Done form elements—and change the
data or global settings to reflect the changes that were made on the Web page.

Let’s focus on the data itself. Each part of the HTML form that is generated by
&display_data() has a unique name, generated from the name of the field (description,
priority, and so on) and that item’s ID number. By picking apart those form element
names that come back when the form is submitted, we can match each name to each part
of the data set, compare the values, and if they differ, update the data set with the new
value. Each time the form is submitted, every single element is checked. This isn’t the
most efficient way to keep track of the data, but it does let us keep everything on one
page.

The other thing the &update_data() subroutine does is check for bad dates in the exist-
ing data. If you tried to change a date from its normal format (“10/9/1998” or something
like that), &update_data() will catch that and report an error, which will then be dis-
played along with the data set when &display_all() is called.

Adding and Removing items with &add_item() and
&remove_selected()

To remove items from the list, you select the check boxes in the Remove column for the
data and choose Update. To add an item to the list, you enter its data in the form at the
bottom of the page and choose Add Item. In either case, &remove_selected() is called;
for the latter case, &add_item() is also called.

25 0355 ch21 5/9/02 2:39 PM Page 577

The &remove_selected() subroutine is responsible for updating the data to delete any
records that have been chosen by the user to be removed. In this case, because all our
data is stored in an array of references, removing those items is easy—we just build
another array of references, minus the ones we want to delete, and then put that new
array back in the old one’s variable. Because it’s an array of references, all the data
referred to by those references stays put and doesn’t need to be recopied or reconstructed
anywhere. At the end of the subroutine, renumber all the records so that there aren’t any
gaps that could cause problems when the form is processed.

The &add_item() subroutine is equally easy; with all the data from the form elements,
all we need to do is stuff it into a hash and put a reference to that hash in the data array.
We also assign this new item a new ID, one larger than the current largest ID.

Other Subroutines: Writing Data and Checking for Errors
All that’s left are a few minor supporting subroutines: &write_data() to write the data
back out to the listdata.txt file, and two subroutines to manage date formats and com-
parisons.

The &write_data() subroutine is easy; here all we do is open the listdata.txt file for
writing, and then loop over the data set to write out each of the records. Because this
subroutine is called once each time the script is run and after any changes have been
made to the data, we can be close to certain that the data will never be corrupted or items
lost. Note here that the item IDs are not written to the data file with the rest of the data;
those IDs are generated when the data is initially read and used only to keep track of
form elements, so they don’t need to be preserved between calls to the script.

The final two sets of subroutines relate to date management. Dates, as I mentioned ear-
lier, are of the format MM/DD/YYYY. Using a single consistent format is important
because it enables the list of items to be sorted by the date—which is a form of numeric
sort. To convert the data format into a number that can be compared to some other num-
ber, the formatting must be correct. For this reason, whenever a date is changed in the
existing data or added to a new item, its format is checked with the &check_date() sub-
routine and errors are reported if the format doesn’t match up or the numbers used are
clearly out of bounds (both a large red message at the top of the Web page and by aster-
isks added to the wrong date itself).

Sorting the list by date happens in the &display_all() subroutine, if the value of the
Sort By menu is Date. To convert the dates into something that can be compared against
something else, we use the Time::Local module, a built-in module that can be used to
convert various parts of a date and time into time format—that is, number of seconds
since 1900 (the value returned by the time function). The &date2time() subroutine is

578 Day 21

25 0355 ch21 5/9/02 2:39 PM Page 578

Exploring a Few Longer Examples 579

21

used for just this purpose, to split up a correctly formatted date into its elements and
return the time value. The &date2time() subroutine also watches for dates in error for-
mat—with leading asterisks—and sorts those values to the top.

The Code
Listing 21.3 contains the (very) complete code for the todolist.pl script. Start from the
top and read down. The only tricky parts are those that deal with attaching the IDs to the
form elements, and handling the data errors (watch for the &check_date() subroutine).
And, as with all CGI scripts, it helps to have an understanding of HTML and of how
forms and CGI.pm interact with each other.

LISTING 21.3 The Code for todolist.pl

1: #!/usr/local/bin/perl -w
2: use strict;
3: use CGI qw(:standard);
4: use CGI::Carp qw(fatalsToBrowser);
5: use Time::Local;
6:
7: my $listdata = ‘listdata.txt’; # data file
8: my @data = (); # array of hashes
9:
10: # global default settings
11: my $sortby = ‘prior’; # order to sort list
12: my $showdone = 1; # show done items? (1 == yes)
13:
14: &init();
15: &process();
16:
17: sub init {
18: # get the current date, put in in MM/DD/YY format
19: my ($day,$month,$year) = 0;
20: (undef,undef,undef,$day,$month,$year) = localtime(time);
21: $month++; # months start from 0
22: $year += 1900; # Perl years are years since 1900;
23: # this keep us from getting bit by Y2K
24: my $date = “$month/$day/$year”;
25: # open & read data file
26: &read_data();
27:
28: # start HTML
29: print header;
30: print start_html(‘My To Do List’);
31: print “<h1 align=\”center\”>”;
32:
33: print “To Do List</h1>\n”;
34: print “<h2 align=\”center\”>”;

25 0355 ch21 5/9/02 2:39 PM Page 579

35: print “$date</h2>\n”;
36: print “<hr />\n”;
37: print “<form method=\”post\”>\n”;
38: }
39:
40: sub process {
41: my $dateerror = 0; # error in date format in old list
42: my $newerror = 0; # error in date format in new item
43:
44: # main switching point. There are 2 choices:
45: # no parameters, for displaying defaults
46: # any parameters: update, add item if necessary, write and display
47: if (!param()) { # first time only
48: &display_all();
49: } else { # handle buttons
50: &remove_selected();
51: $dateerror = &update_data(); # update existing changes, if any
52:
53: # add items
54: if (defined param(‘additems’)) {
55: $newerror = &check_date(param(‘newdate’));
56: if (!$newerror) {
57: &add_item();
58: }
59: }
60:
61: &write_data();
62: &display_all($dateerror,$newerror);
63: }
64:
65: print end_html;
66: }
67:
68: # read data file into array of hashes
69: sub read_data {
70: open(DATA, $listdata) or die “Can’t open data file: $!”;
71: my %rec = ();
72: while (<DATA>) {
73: chomp;
74: if ($_ =~ /^\#/) {
75: next;
76: }
77: if ($_ ne ‘---’ and $_ ne ‘’) { # build the record
78: my ($key, $val) = split(/=/,$_,2);
79: $rec{$key} = $val;
80: } else { # end of record
81: push @data, { %rec };
82: %rec = ();
83: }

580 Day 21

LISTING 21.3 continued

25 0355 ch21 5/9/02 2:39 PM Page 580

Exploring a Few Longer Examples 581

21

84: }
85: close(DATA);
86: }
87:
88: sub display_all {
89: my $olderror = shift; # has an error occurred?
90: my $newerror = shift;
91:
92: if ($olderror or $newerror) {
93: print “<p>Error: Dates marked with *** “;
94: print “not in right format (use MM/DD/YYYY)</p>\n”;
95: }
96:
97: print “<table width=\”75%\” align=\”center\”>\n”;
98: print “<tr bgcolor=\”silver\”><th>Done?</th><th>Priority</th>”;
99: print “<th>Date Due</th><th align=\”left\”>Description</th>”;
100: print “<th>Remove?</th></tr>\n”;
101:
102: # determine sort type (numeric or string) based on $sortby
103: my @sdata = ();
104:
105: # sort the array of hashes based on value of $sortby
106: if ($sortby eq ‘date’) { # special date sort
107: @sdata = sort {&date2time($a->{‘date’}) <=>
108: &date2time($b->{‘date’})} @data;
109: } else { # regular text/priority sort
110: @sdata = sort {$a->{$sortby} cmp $b->{$sortby}} @data;
111: }
112:
113: # print each item in order
114: foreach (@sdata) {
115: &display_data(%$_); # pass in record
116: }
117:
118: print “</table>\n”;
119:
120: # preference table, with state preserved
121: print “<p><table width=\”75%\” align=\”center\”>\n”;
122: print “<tr><td align=\”center\”>Sort By:”;
123: print “<select name=\”sortby\”>\n”;
124:
125: my @sort_options = (‘prior’, ‘date’, ‘desc’);
126: my @sort_option_names = (‘Priority’, ‘Date’, ‘Description’);
127:
128: for (my $i = 0; $i < @sort_options; $i++)
129: {
130: # get current val of sortby, show menu
131: print “<option value=\”$sort_options[$i]\” “;
132: if ($sortby eq $sort_options[$i]) {

LISTING 21.3 continued

25 0355 ch21 5/9/02 2:39 PM Page 581

133: print “selected>”;
134: } else {
135: print “>”;
136: }
137: print “$sort_option_names[$i]</option>\n”;
138: }
139:
140: print “</select></td>\n”;
141:
142: # get current val of showdone, show check boxn
143: print “<td align=\”center\” width=\”50%\”>Show Done?\n”;
144: my $checked = ‘’;
145: if ($showdone == 1) {
146: $checked = ‘checked’;
147: }
148: print “<input type=\”checkbox\” name=\”showdone\” value=\”showdone\””;
149: print “ $checked /> </td>\n”;
150:
151: # print submit button and start of add items table
152: print <<EOF;
153: </tr></table>
154: <p><table align=\”center\”>
155: <tr><td align=”center” valign=”center”>
156: <input type=”submit” value=” Update “ name=”update”></td></tr>
157: </table><hr />
158: <table align=”center”>
159: <tr><th>Priority</th><th>Date</th><th align=”left”>Description</th>
160: EOF
161: # print priority menu;
162: print “<tr><td><select name=\”newprior\”>\n”;
163: my $i;
164: foreach $i (1..5) { # priorities 1 to 5
165: if ($newerror and param(‘newprior’) == $i) {
166: $checked = ‘selected’;
167: }
168: print “<option $checked>$i</option>\n”;
169: }
170: print “</select></td>\n”;
171:
172: # print date and description cells; may be different in case of
173: # errors
174: my $newdate = ‘’;
175: my $newdesc = ‘’;
176: print “<td align=\”center\”><input type=\”text\” name=\”newdate\””;
177: if ($newerror) { # has an error occurred?
178: $newdate = “***” . param(‘newdate’);
179: $newdesc = param(‘newdesc’);
180: }

582 Day 21

LISTING 21.3 continued

25 0355 ch21 5/9/02 2:39 PM Page 582

Exploring a Few Longer Examples 583

21

181: print “value=\”$newdate\” size=\”10\”></td> \n”;
182: # description cell; preserve old value if error
183: print “<td><input type=\”text\” name=\”newdesc\” value=\”$newdesc\””;
184: print “size=\”50\”></td></tr></table><table align=\”center\”>\n”;
185:
186: # and finish up
187: print <<EOF;
188: <tr><td align=”center” valign=”center”>
189: <input type=”submit” value=”Add New Item” name=”additems” /></td></tr>
190: </table></form>
191: EOF
192: }
193:
194: # display each line of the data. Data is already sorted; this just
195: # prints an inidividual record
196: sub display_data {
197: my %rec = @_; # record to print
198:
199: # don’t show done items if Show Done is unchecked
200: # BUT include their settings anyhow (otherwise its too
201: # difficult to figure out what’s shown and changed versus
202: # what’s hidden
203: if ($showdone == 0 and $rec{‘done’}) {
204: print “<input type=\”hidden\” name=\”done”, $rec{‘id’};
205: print “\” />\n”;
206: next;
207: }
208: # make 1 priority items print in red
209: my $bgcolor = ‘’; # priority items are red, all others ‘’
210: if ($rec{‘prior’} == 1) {
211: $bgcolor = “bgcolor=\”red\””;
212: }
213:
214: # Is it done or not?
215: my $checked = ‘’; # done items are checked
216: if ($rec{‘done’}) {
217: $checked = ‘checked=”checked”’;
218: }
219:
220: print “<!-- ID: “, $rec{id}, “ -->\n”;
221:
222: print “<tr>\n”; # start row
223:
224: # done boxes
225: print “<td width=\”10%\” align=\”center\” $bgcolor>”;
226: print “<input type=\”checkbox\” name=\”done”, $rec{‘id’};
227: print “\” $checked /></td>\n”;
228:

LISTING 21.3 continued

25 0355 ch21 5/9/02 2:39 PM Page 583

229: # priority menus
230: print “<td width=\”10%\” align=\”center\” $bgcolor>”;
231: print “<select name=\”prior”, $rec{‘id’}, “\”>\n”;
232: my $select = ‘’;
233: my $i;
234: foreach $i (1..5) { # priorities 1 to 5
235: $checked = ‘’;
236: if ($rec{‘prior’} == $i) {
237: $checked = ‘selected’;
238: }
239: print “<option value=\”$i\” $checked>$i</option>\n”;
240: $select = ‘’;
241: }
242: print “</select></td>\n”;
243:
244: # dates
245: print “<td $bgcolor width=\”10%\” align=\”checked\”>”;
246: print “<input type=\”text\” size=\”10\” name=\”date”, $rec{‘id’}, “\”
“;
247: print “value=\””, $rec{‘date’}, “\” /></td>\n”;
248:
249: # descriptions
250: print “<td $bgcolor><input type=\”text\” name=\”desc”, $rec{‘id’};
251: print “\” size=\”50\” value=\””, $rec{‘desc’}, “\” /></td>\n”;
252:
253: # Remove boxes
254: print “<td $bgcolor align=\”center\”>”;
255: print “<input type=\”checkbox\” name=\”r”, $rec{‘id’}, “\” /></td>”;
256:
257: # end row
258: print “</tr>\n\n”;
259: }
260:
261: # update all values in case changes were made
262: sub update_data {
263: my $error = 0; # error checking
264: # check to see if showdone is selected;
265: if (defined param(‘showdone’)) {
266: $showdone = 1;
267: } else {
268: $showdone = 0;
269: }
270:
271: # get currrent sortby value
272: $sortby = param(‘sortby’);
273:
274: foreach (@data) {
275: my $id = $_->{‘id’}; # not the global $id
276:

584 Day 21

LISTING 21.3 continued

25 0355 ch21 5/9/02 2:39 PM Page 584

Exploring a Few Longer Examples 585

21

277: # Entries that are marked done cannot be changed (usability
278: # assumption). So if an entry is marked done, and hasn’t
279: # been changed to not-done, we can skip checking any of the
280: # rest of its data.
281: if ($_->{‘done’} == 1 && defined param(‘done’ . $id)) {
282: next;
283: }
284:
285: # All newly done items.
286: if (defined param(‘done’ . $id)) {
287: $_->{‘done’} = 1;
288: } else {
289: $_->{‘done’} = 0;
290: }
291: # dates. check for weird date
292: if (param(‘date’ . $id) ne $_->{‘date’}) {
293: $error = check_date(param(‘date’ . $id));
294: if ($error) {
295: $_->{‘date’} = “*** “ . param(‘date’ . $id);
296: } else {
297: $_->{‘date’} = param(‘date’ . $id);
298: }
299: }
300:
301: # priorities, descriptions, change only if different
302: my $thing;
303: foreach $thing (‘prior’, ‘desc’) {
304: if (param($thing . $id) ne $_->{$thing}) {
305: $_->{$thing} = param($thing . $id);
306: }
307: }
308: }
309: return $error;
310: }
311:
312: # remove items by redoing the @data list
313: sub remove_selected {
314: my @newdata = ();
315: foreach (@data) {
316: my $id = $_->{‘id’}; # also not the global id
317:
318: if (!defined param(‘r’ . $id)) {
319: push @newdata, $_; # $_ is the reference
320: }
321: }
322: @data = @newdata; # get rid of removed items
323: }
324:
325: # add a new item. This is only called if check_date has already said OK

LISTING 21.3 continued

25 0355 ch21 5/9/02 2:39 PM Page 585

326: sub add_item {
327: my %newrec = ();
328:
329: $newrec{‘desc’} = param(‘newdesc’);
330: $newrec{‘date’} = param(‘newdate’);
331: $newrec{‘prior’} = param(‘newprior’);
332: $newrec{‘done’} = 0;
333:
334: my $max_id = 0;
335:
336: foreach my $datum (@data) {
337: if ($datum->{‘id’} > $max_id) {
338: $max_id = $datum->{‘id’};
339: }
340: }
341:
342: $newrec{‘id’} = ++$max_id; # global ID + 1
343: push @data, { %newrec };
344: }
345:
346: # dates must be in XX/XX/XX format
347: sub check_date {
348: my $date = shift;
349: # MM/DD/YYYY, MM and DD can be 0 or 1 char, but YYYY must be four
350: # ending whitespace is OK.
351: if ($date !~ /^(\d{1,2})\/(\d{1,2})\/(\d{4})\s*$/) {
352: return 1; # error!
353: }
354: return 1 if ($1 > 12);
355: return 1 if ($2 > 31);
356:
357: return 0; # OK date
358: }
359:
360: # rewrite data file
361: sub write_data {
362: open(DATA, “>$listdata”) or die “Can’t open list data: $!.”;
363: foreach (@data) {
364: my %rec = %$_;
365:
366: foreach (‘id’, ‘desc’, ‘date’,’prior’,’done’) {
367: print DATA “$_=$rec{$_}\n”;
368: }
369: print DATA “---\n”;
370: }
371: close(DATA);
372: }
373:
374: # I use MM/DD/YY format for dates. To sort by date you need to

586 Day 21

LISTING 21.3 continued

25 0355 ch21 5/9/02 2:39 PM Page 586

Exploring a Few Longer Examples 587

21

375: # convert this format back into Perl’s seconds-since-1900 format.
376: # the Time::Local module and the timelocal func do this.
377: sub date2time {
378: my $date = shift;
379: if ($date =~ /^***/) { # error formatting, sort to top
380: return 0;
381: } else {
382: my ($m,$d,$y) = split(/\//,$date);
383: $m--; # months start from 0 in perl’s time format
384: return timelocal(0,0,0,$d,$m,$y);
385: }
386: }

Summary
If you had picked up this book without understanding anything about Perl and looked at
the script in Listing 21.3, chances are pretty good you might have had a hard time deci-
phering it—even if you already knew something about programming languages (Perl is
funny that way). After 21 days deep into the language and its idiosyncrasies, reading the
code in these examples should be easy—or at least less perplexing.

Today, we finished up the week and the book with the usual longer examples (one longer
than the other). The two scripts we looked at in this lesson, the Stock Portfolio manager
and the To Do list application, are both CGI scripts that process data from different
sources (or multiple sources) and generate HTML as their output. The first is a good
example of cobbling together code from various modules on CPAN and your own glue,
saving a lot of time in the process. The latter displayed HTML form construction and
used a nested data structure to keep track of the data. From these scripts, and the work
you’ve done in the previous 20 chapters, you’re now off and running as far as Perl is
concerned.

Off you go!

LISTING 21.3 continued

25 0355 ch21 5/9/02 2:39 PM Page 587

25 0355 ch21 5/9/02 2:39 PM Page 588

Appendixes
A Perl Functions

B Installing Perl on a Unix System

C Installing Perl for Windows

26 0355 part04 5/9/02 2:39 PM Page 589

26 0355 part04 5/9/02 2:39 PM Page 590

APPENDIX A
Perl Functions

This appendix contains a brief reference, organized in alphabetical order, of all the
built-in functions in the Perl language. If you’re looking for a function that doesn’t
exist, there’s a good chance that someone has written a module that supports it.

Note that not all the functions in this appendix are supported by all versions of
Perl. Day 18, “Perl and the Operating System,” contains some background
information on which functions might not be available for Windows or the Mac
OS. For the ultimate list, see the documentation that comes with your Perl port.

For More Information
Further information on any of these functions can be found in the perlfunc
man page. As with all Perl documentation, you can access this man page
through the man command on Unix, the perldoc command on Unix or
Windows (perldoc perlfunc for the whole thing, or perldoc -f for individ-
ual functions, or the Shuck application if you use MacPerl).

All the documentation for Perl can also be found on the Web at http://www.
perldoc.com.

In addition to Perl-related man pages, this appendix also frequently refers to
other Unix man pages (mostly because Perl makes use of many Unix features).

27 0355 appA 5/9/02 2:39 PM Page 591

Unix man pages are organized into numbered chapters. When you see an item listed with
a number in parentheses after it, it indicates that the item is found in that chapter in the
man pages. For example, fseek(2) is found in Chapter 2 of the Unix manual. To look up
fseek in Chapter 2, you would use the following Unix command:

man 2 fseek

Or, on some systems:

man -s 2 fseek

The command man man will help you on the man command itself.

Perl Functions, in Alphabetical Order
Here are the Perl functions, listed alphabetically.

abs
abs VALUE

Returns the absolute value of VALUE. VALUE can be a number (such as -7), or an expres-
sion (such as int(5/2)).

accept
accept NEWSOCKET, GENERICSOCKET

accept is used to accept an incoming socket connection. If the connection is successful,
the packed address is returned, otherwise, FALSE is returned. Identical to the accept(2)
system call.

alarm
alarm SECONDS

The alarm function sends a SIGALRM to the program after the number of seconds speci-
fied in SECONDS has elapsed. Only one timer can be running at a time, so if you call this
function and a timer is already running, it will be replaced by the more recent call.
Calling this function with an argument of 0 will suspend the current timer without start-
ing a new one. If SECONDS is not specified, the value in $_ is used.

atan2
atan2 Y, X

Returns the arctangent of Y/X in the range -p to p. Functions for the tangent operation
are in the POSIX and Math::Trig modules.

592 Appendix A

27 0355 appA 5/9/02 2:39 PM Page 592

Perl Functions 593

A
bind
bind SOCKET, NAME

The bind function binds a network address to a socket. NAME should contain the packed
address for that type of socket. If the bind function is successful, it returns TRUE, other-
wise it returns FALSE. Identical to the bind system call.

binmode
binmode FILEHANDLE

binmode accepts a filehandle as an argument, and indicates that data should be written to
(or read from) the filehandle as binary, as opposed to ASCII, data. It has no effect under
Unix, but is critical under MS-DOS and other archaic platforms. It should be called after
a file is opened, but before any I/O is performed on that file.

bless
bless REFERENCE, CLASSNAME

bless is used in object-oriented Perl programming to assign whatever is referenced by
REFERENCE to the package named by CLASSNAME. If CLASSNAME is omitted, REFERENCE is
assigned to the current package. bless returns the reference being blessed. Usually to
create an object you bless an anonymous hash. For detailed information check out the
perlobj man page.

caller
caller EXPR
caller

caller returns the context of the current subroutine call. In the scalar context, caller
returns the package name from which the subroutine was called; in the list context, it
returns the package name, filename of the program, and line number from which the call
was issued. If EXPR is supplied, caller also returns extra information used to print a
stack trace. EXPR indicates how many call frames to go back before the current one.
When EXPR is supplied, the following list of values is returned:

($package, $file, $line, $subname, $hasargs, $wantarray, $evaltext,
$is_require, $hints, $bitmask) = caller(any_func);

If called from within the DB package, caller also sets the variable @DB::args to the argu-
ments passed to the given stack frame.

27 0355 appA 5/9/02 2:39 PM Page 593

chdir
chdir EXPR

chdir accepts an expression as an argument, and attempts to set the current directory to
the directory supplied by the expression. If no argument is provided, it attempts to
change to the home directory for the current user.

chmod
chmod LIST

chmod is used to change the file permissions for the list of files provided in LIST. The
first element of LIST must be the numerical mode for the files, in octal notation. It
should also include the SUID bit. Here’s an example of the usage of chmod:

chmod 0755, @files;

Note that the first element of the list is not enclosed within quotation marks, it is a bare
number. For more information on file permissions, see the chmod man page.

chomp
chomp VARIABLE
chomp LIST
chomp

chomp is a safe version of chop, which is described next. It removes any line ending that
matches $/ (the variable that contains the input record separator, usually a newline). If it
is called in paragraph mode, it removes all the trailing newlines from a string.

chop
chop VARIABLE
chop LIST
chop

chop is used to remove the last character from a string. Originally it was designed to
make it easy to strip the line feed from the end of a string (when you’re editing a file line
by line, it often makes sense to remove the line feeds from the lines before you start
working on them). The problem with chop is that it removes the last character from the
string regardless of what it is, so if the string ends with a line feed, great, but if it doesn’t
you lose the last character, which might have been meaningful.

while (<INPUT_FILE>) {
Note that in this example, $_ is assumed to be the argument to
the chomp function.

chop;
push (@names);

}

594 Appendix A

27 0355 appA 5/9/02 2:39 PM Page 594

Perl Functions 595

A
If no argument is supplied to chop, it removes the last character from $_. If a list is sup-
plied, the last character in all the items in the list is removed.

chown
chown LIST

chown is used to set the user and group ownership for files provided in LIST. It returns
the number of files that were successfully changed. The first two elements of LIST must
be the numerical uid and gid of the user and group, which will become the owners of the
files. Usually, only the root user can change the owner of files on a system.

chr
chr NUMBER

The chr function returns the character in the ASCII table associated with the number
passed to the function. For example; chr(80); returns R. The pack function can be used
to convert multiple characters at the same time.

chroot
chroot DIRNAME

The chroot function does the same thing as the chroot system call (see the chroot(2)
man page for details). Basically, chroot tells the program that’s currently running, as
well as all exec calls and subprocesses, to use the directory named in DIRNAME as the new
root directory. So, paths starting with / will begin in DIRNAME instead of the actual root
directory of the file system. Only the root user can use the chroot function.

close
close FILEHANDLE

The close function is used to close a previously opened file handle (whether it is a file
or a pipe). It performs the necessary system-level cleanup operations at the system level,
and returns true if all those operations are successful. Note that all filehandles are closed
automatically when a Perl program exits, so you can often get by with not explicitly
closing all the filehandles that you open.

closedir
closedir DIRHANDLE

closedir closes a directory opened using the opendir function.

27 0355 appA 5/9/02 2:39 PM Page 595

connect
connect SOCKET, NAME

connect attempts to connect to a remote socket. NAME should contain the packed address
appropriate to the type of socket. The function returns TRUE if it is successful or FALSE if
it isn’t. Identical to the connect system call.

cos
cos EXPR

Returns the cosine of EXPR. To use the inverse cosine operation, you should use the
POSIX::acos() function, or the Math::Trig module.

crypt
crypt PLAINTEXT, SALT

The crypt function is used to encrypt strings in the same way that passwords are stored
in a Unix password file. The function accepts two arguments, the string to be encrypted,
and the salt code used to seed the encryption algorithm. The crypt function is one-way;
there is no known method for decrypting text enciphered using crypt (Unix tests pass-
words by using crypt on the password the user enters and testing the encrypted pass-
word against it).

dbmclose
dbmclose HASH

dbmclose breaks the binding between HASH and the DBM file with which it is associated.
It has been superseded by the untie function.

dbmopen
dbmopen HASH, DBNAME, MODE

dbmopen binds a dbm, ndbm, sdbm, gdbm, or Berkeley DB file to hash. HASH is the name
of the hash variable to which the database will be bound, and DBNAME is the name of the
database file, minus the extension. If DBNAME doesn’t exist, a new file will be created with
permissions specified by MODE.

This function has been superseded by tie.

596 Appendix A

27 0355 appA 5/9/02 2:39 PM Page 596

Perl Functions 597

A
defined
defined EXPR

defined is used to identify expressions that return the undefined value (as opposed to 0,
newline, or other empty return values). It can be used to determine whether a subroutine
exists or a scalar variable is defined. If no EXPR is given, defined checks to see if $_ is
undefined.

delete
delete EXPR

The delete function is used to remove elements from a hash. To delete a member of a
hash, you simply pass the name of the hash and the key you want to remove to the delete
function. Here’s an example:

delete $hash{$key};

Note that because you’re referring to a single member of the hash, you reference the hash
variable in the scalar context (using $).

die
die LIST

die accepts a list as its argument. When die is called, the program exits returning the
value of $!, and the list passed to die as an argument is printed to standard error. If the
list does not end with a newline, the name of the program and the line number where
execution halted are appended, along with a newline, to the output of the function.

Here’s an example:

open (FILE, $file) or die “Can’t open $file”;

will return the following if $file can’t be opened:

Can’t open /tmp/file at test_program line 13.

do
do BLOCK
do SUBROUTINE(LIST)
do EXPR

When used with a block of code inside BLOCK, do executes the statements in a block and
returns the value of the last statement in the block. If do is used with a loop expression,
BLOCK is executed before the loop condition is tested for the first time.

27 0355 appA 5/9/02 2:39 PM Page 597

do SUBROUTINE is a deprecated way to call a subroutine. do EXPR provides a way to run
code in another file. EXPR is treated as the filename for a Perl file, and the code inside is
executed. Even though you can use do in this way, you should probably use require or
use instead because they are more robust.

dump
dump LABEL

dump causes Perl to immediately dump core. You can then use the undump program to
create a binary that will begin execution by issuing a goto LABEL command.

each
each HASH

The each function is used to grab values from a hash so that they can be iterated over in
a loop. It acts differently depending on whether it is used in the scalar or the list context.
Let’s look at each.

In the scalar context, the each function returns the key for the next element in the hash.
So, you could use it as follows:

while ($key = each %hash) {
$hash{$key}++;

}

On the other hand, used in the list context, the each function returns a two-element list
that contains the key and the value for the next element in the hash. Let’s take a look:

while (($key, $value) = each %hash) {
print “$key = $value\n”;

}

eof
eof FILEHANDLE
eof ()
eof

The eof function returns 1 if the next read on FILEHANDLE will return the end of file
marker, or if FILEHANDLE is not open. Used without an argument, eof evaluates the last
file read. Called with empty parentheses, eof detects the end of the pseudo-file made up
of all the files specified on the command line. As the perlfunc man page astutely points
out, eof is rarely useful, because Perl returns the undefined value automatically when the
end of a file is reached, making it easy to detect file endings without it.

598 Appendix A

27 0355 appA 5/9/02 2:39 PM Page 598

Perl Functions 599

A
eval
eval EXPR

eval BLOCK

eval is used to execute an expression or block of code as though it were a separate Perl
program. It is executed within the context of the Perl program that’s running, so when
the expression within eval finishes executing, all the variables and other persistent val-
ues for the larger program are still defined.

The value returned by an eval is the value of the last expression evaluated. To explicitly
return a particular value, you can use a return statement inside the eval. If a syntax or
runtime error occurs within the eval statement, or a die statement is executed, the eval
statement returns an undefined value, and the variable $@ contains the error message.

Because fatal errors executed within eval statements don’t stop execution of the closing
program, they can be used to trap errors, or run potentially volatile code.

exec
exec LIST

The exec function executes a system command and never returns, unless the command
does not exist. If LIST consists of more than one element, exec uses the system call
execvp(3) with the arguments in LIST. If the argument contains a single scalar value, the
argument is checked for shell metacharacters. If shell metacharacters exist, the argument
is executed through /bin/sh -c, otherwise, the argument is broken into words and
passed on to execvp.

exists
exists EXPR

The exists function is used to check whether a particular key is defined within a hash.
Whether a value is defined for that key is not checked by the exists function, it is strict-
ly used to test keys. Here’s an example of the usage:

if (exists $hash{$key}) { print “Yes.”; }
else { print “No.\n”; }

exit
exit EXPR

The exit function evaluates EXPR and immediately exits the program. The die function
is usually a cleaner way to abort execution of a program, because the error information
returned can be trapped.

27 0355 appA 5/9/02 2:39 PM Page 599

exp
exp EXPR

Returns e to the power of EXPR; if EXPR is omitted, then exp($) is assumed. For regular
exponents, use the ** operator.

fcntl
fcntl FILEHANDLE, FUNCTION, SCALAR

Used to emulate the fcntl(2) system call. You can use Fcntl; to obtain the function
definitions needed to use this function. See the man page for more information on this
function. fcntl returns a fatal error if it is not implemented on the platform on which it
is called.

fileno
fileno FILEHANDLE

fileno returns a file descriptor for a given filehandle. A file descriptor is a small integer
identifying the file. It can be used to construct bitmaps for use with select. If
FILEHANDLE is not open, it returns undefined.

flock
flock FILEHANDLE, OPERATION

This function calls the flock(2) system call on FILEHANDLE. For more information on
the operations available, see the flock(2) man page. It produces a fatal error on systems
that do not support flock(2) or some other file-locking mechanism.

fork
fork

fork is used to fork a system call into a separate process. fork returns the child PID to
the parent process. It is only implemented on Unix-like platforms. All the code inside the
block will run in a new process.

format
format

The format function is designed to give Cobol programmers a head start in learning Perl.
Actually, it provides a method for creating templates for formatted output. For all the
details on generating output using format, read the perlform man page.

600 Appendix A

27 0355 appA 5/9/02 2:39 PM Page 600

Perl Functions 601

A
formline
formline PICTURE, LIST

The formline function is used internally by formats. It is used to format LIST according
to PICTURE. For more information, see the perlform man page.

getc
getc FILEHANDLE

getc returns the next character from FILEHANDLE. If FILEHANDLE is omitted, getc returns
the next character from STDIN. getc does not allow unbuffered input (in other words, if
STDIN is the console, getc does not get the character until the buffer is flushed with a
newline).

getlogin
getlogin

Returns the current login from /etc/utmp, if any. If null, you should use getpwuid().

getpeername
getpeername SOCKET

getpeername returns the packed sockaddr address of the other end of the SOCKET con-
nection.

getpgrp
getpgrp PID

getpgrp returns the process group for the specified process. Supplying a PID of 0 will
return the process group for the current process.

getppid
getppid

getppid returns the process ID for the parent process of the current process.

getpriority
getpriority WHICH, WHO

getpriority returns the priority for a process, process group, or user, assuming the sys-
tem function getpriority is implemented on this machine.

27 0355 appA 5/9/02 2:39 PM Page 601

getsockname
getsockname SOCKET

getsockname returns the packed sockaddr address of this end of the SOCKET connection.

getsockopt
getsockopt SOCKET, LEVEL, OPTNAME

getsockopt returns the requested option, or undefined in the case of an error.

glob
glob EXPR

The glob function returns the value of EXPR with filename expansions, similar to those
that would occur under a shell. If EXPR is omitted, $_ is assumed to be the argument.

gmtime
gmtime EXPR

gmtime converts a time in the format returned by the time function (seconds since Jan. 1,
1970, 00:00), to Greenwich Standard Time (otherwise known as Greenwich Mean Time).
The time is returned as a nine-element list. The contents of each element are provided in
this example:

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = gmtime(time);

Note that all the items are returned in numerical format, and numbers in series (such as
month and day of the week) begin with 0 rather than 1. This means that months range
from 0 to 11. The year returned is the number of years since 1900, not simply the last
two digits of the year, thus avoiding the dreaded year 2000 problem. If you use gmtime in
the scalar context, it returns the time in ctime(3) format, like this:

Sat Jun 6 01:56:44 1998

goto
goto LABEL
goto EXPR
goto &NAME

The goto function finds the statement labeled with LABEL, and continues executing from
there. It cannot shift execution to statements within blocks that require initialization, such
as subroutines or foreach loops. The other two usages of goto are rather arcane. goto
EXPR is used to jump to a label that is specified by EXPR, which is scoped dynamically.
goto &name substitutes a call to the named subroutine for the currently running subrou-
tine, as though it was the one that was called in the first place.

602 Appendix A

27 0355 appA 5/9/02 2:39 PM Page 602

Perl Functions 603

A
grep
grep EXPR, LIST
grep BLOCK LIST

The grep function is used to search lists, and return all the elements in that list matching
a particular pattern. grep accepts two arguments, an expression and a list. It returns
another list containing each of the elements for which the expression was true. Let’s look
at an example:

@newarray = grep /red/, @oldarray;

@newarray will contain a list of all the items in @oldarray that contained the string red.
If you call grep within the scalar context, it will return the number of items that
matched, instead of a list of items that matched.

hex
hex EXPR

hex reads EXPR as a hexadecimal string and returns the decimal value. If EXPR is omitted,
the function reads $_.

import
import CLASSNAME LIST
import CLASSNAME

import is not a built-in function; instead, it is implemented by modules that want to
export names into another module. The import function is called by the use function
when a module is loaded into a Perl program.

index
index STR, SUBSTR, POSITION
index STR, SUBSTR

index is used to locate a substring within a larger string. It accepts three arguments, one
of which is optional. The arguments are the string to search, the substring to search for,
and the position where the search should begin (optional). index returns the position in
the string where the first occurrence of the substring begins. For example, to find the
string go within the larger string bingo, you could use the following code index
(‘bingo’, ‘go’);. To find the second occurrence of go within the string go or no go,
you could use the optional third argument to start at position 3 in the string like this:
index (‘go or no go’, ‘go’, 3);.

27 0355 appA 5/9/02 2:39 PM Page 603

int
int EXPR

int returns the integer portion of a string. Basically, if a string begins with an integer,
such as 55 MPH, int will return that integer, in this case, 55. Strings that don’t begin with
an integer will return 0 if you have Perl warnings turned on, you’ll get a warning any
non-numbers in the string.

ioctl
ioctl FILEHANDLE, FUNCTION, SCALAR

ioctl is used to implement the ioctl(2) system call. You will probably need to use

require “ioctl.ph”;

to import the function definitions for ioctl. If it doesn’t exist, you will need to create
your own function definitions based on the system’s ioctl.h file.

join
join EXPR, LIST

The join function is the opposite of split, it is used to join the elements of a list into a
single string. It takes two arguments, an expression and a list. The contents of the expres-
sion are used as the delimiter between the elements in the string that is returned.

keys
keys HASH

The keys function returns an array containing all the keys in the named hash. It is often-
times used to sort the keys in a hash before you iterate over them in a loop. Here’s a
common example:

foreach $key (sort (keys %hash)) {
print $key, “ = “, $value, “\n”;

}

kill
kill LIST

kill is actually used to send a signal to a list of processes, rather than simply killing
them. The first argument in LIST must be the signal to send, the rest should be the
processes that will receive the signal. To kill processes, you would use this code:

kill 1, 100, 102, 110;

604 Appendix A

27 0355 appA 5/9/02 2:39 PM Page 604

Perl Functions 605

A
To kill those same processes with extreme prejudice, you would use this code:

kill 9, 100, 102, 110;

You can supply the signal name inside quotes instead of the signal number if you prefer.
See the signal(5) man page for more information on signals.

last
last LABEL
last

The last command immediately exits the loop specified by LABEL. If no label is speci-
fied, the innermost loop exits.

lc
lc EXPR

The lc function converts all the alphabetic characters in a string to lowercase. lc ‘ABC’;

returns abc. If no expression is provided, the lc function acts on $_.

lcfirst
lcfirst EXPR

Returns the value in EXPR with the first character lowercased. If EXPR is omitted, $_ is
used.

length
length EXPR

length accepts a string as an argument, and returns an integer containing the length of
the string in bytes. For example, length(“dog”); returns 3. If EXPR is not supplied, $_ is
used.

link
link OLDFILE, NEWFILE

Creates a hard (as opposed to symbolic) link from OLDFILE to NEWFILE. To create a sym-
bolic link, use the symlink function.

listen
listen SOCKET, QUEUESIZE

The listen function in Perl performs the same function as the listen system call. It
returns TRUE if it succeeds, FALSE if it doesn’t.

27 0355 appA 5/9/02 2:39 PM Page 605

local
local EXPR

local specifies that the variables listed will be local to the currently executing block,
loop, subroutine, eval {}, or do. If more than one variable is passed to local, they
should be enclosed in parentheses. To restrict the scope of a variable, though, you should
probably use my instead.

localtime
localtime EXPR

The localtime function is identical to gmtime, except that it returns the time converted
to the local time zone instead of Greenwich time.

log
log EXPR

Returns the logarithm (base e) of EXPR, or $_ if EXPR is not provided.

lstat
lstat FILEHANDLE
lstat EXPR
lstat

lstat is identical to the stat function, except that it stats a symbolic link instead of the
file the link points to. If EXPR is omitted, lstat acts on the value in $_.

map
map BLOCK LIST
map EXPR, LIST

map provides an alternative to foreach for performing an operation on every element in a
list. It can take two forms, and you can perform all the operations in a block of code on a
list like this:

@backwards_words = map {
lc;
reverse;

} @words;

The previous example reverses and lowercases each element in the array @words. The
results of map are returned in a list context, which is why I assign them to an array. Note

606 Appendix A

27 0355 appA 5/9/02 2:39 PM Page 606

Perl Functions 607

A
that when each element is processed, it is assigned to the $_ variable, which is why I can
use the functions within the code block without arguments. To perform a single operation
on each element of a list, map is called like this:

@newlist = map(uc, @oldlist);

Note that when a single operation is used with map, a comma is used to separate the
function from the list that is being processed.

mkdir
mkdir FILENAME, MODE

mkdir is used to create a new directory, the name of which is specified in FILENAME. You
should set the permissions for the directory with MODE, which should be specified in stan-
dard octal format (as a bare number, not within quotation marks), and should include the
SUID bit.

msgctl
msgctl ID, CMD, ARG

msgctl calls the msgctl(2) system call. This function is available only on machines sup-
porting System V IPC.

msgget
msgget KEY, FLAGS

Calls the System V IPC function msgget and returns the message queue ID, or undefined
in the case of an error.

msgrcv
msgrcv ID, VAR, SIZE, TYPE, FLAGS

Calls the System V ICP function msgrcv to receive a message from message queue ID,
into variable VAR, with a maximum size of SIZE. Returns TRUE if successful or FALSE if
there’s an error.

msgsnd
msgsnd ID, MSG, FLAGS

Calls the System V IPC function msgsnd to send MSG to the message queue specified in
ID. Returns TRUE if successful or FALSE if there’s an error.

27 0355 appA 5/9/02 2:39 PM Page 607

my
my EXPR

my is used to scope the listed variables so that they are local to the current block, eval
{}, subroutine, or imported file. If more than one variable is supplied, they must be
placed within parentheses.

next
next LABEL
next

When the next command is encountered within a loop, it skips immediately to the next
iteration of that loop.

no
no MODULE LIST

The no module is the opposite of the use operator. You can find more information in the
perlobj man page.

oct
oct EXPR

oct reads EXPR as an octal string and returns the decimal value, unless the string starts
with 0x, in which case it is interpreted as a hex value. If EXPR is omitted, the function
reads $_.

open
open FILEHANDLE, EXPR

The open function opens the file specified in EXPR, and assigns it to FILEHANDLE. If EXPR
is omitted, a variable with the same name as FILEHANDLE is assumed to contain the name
of the file.

By prepending < to the filename you can open it for input. By prepending > to the file-
name you can open it for output. To append data to the output file, instead of overwriting
it, you should prepend the filename with >>. To open a filehandle using a pipe instead of
standard input and output, you can use the pipe character. Placing a | before the program
name opens a pipe to that program, whereas placing a | after the filename opens a pipe
from the program to your filehandle.

For more information on the open function, look at Chapter 15, “Working with Files
and I/O.”

608 Appendix A

27 0355 appA 5/9/02 2:39 PM Page 608

Perl Functions 609

A
opendir
opendir DIRHANDLE, EXPR

The opendir function opens the directory specified in EXPR for input, and assigns it to
DIRHANDLE. A list of entries in the directory can then be read from the directory handle.
Note that the namespace for directory handles does not overlap with that for filehandles.

ord
ord EXPR

Returns the numeric ASCII value of the first character of EXPR. If EXPR is omitted, $_ is
used.

pack
pack TEMPLATE, LIST

pack accepts a list of values, packs it into a binary structure, and returns the string con-
taining that structure. The TEMPLATE is a list of characters that gives the order and type of
the values.

TABLE A.1 pack Template Characters

Character What It Means

A An ascii string, will be space padded.

a An ascii string, will be null padded.

b A bit string (ascending bit order, like vec()).

B A bit string (descending bit order).

h A hex string (low nybble first).

H A hex string (high nybble first).

c A signed char value.

C An unsigned char value.

s A signed short value.

S An unsigned short value. (This ‘short’ is exactly 16 bits, which might differ from
what a local C compiler calls “short.”)

i A signed integer value.

I An unsigned integer value. (This “integer” is at least 32 bits wide. Its exact size
depends on what a local C compiler calls “int”, and might even be larger than the
“long” described in the next item.)

l A signed long value.

27 0355 appA 5/9/02 2:39 PM Page 609

TABLE A.1 continued

Character What It Means

L An unsigned long value. (This “long” is exactly 32 bits, which might differ from
what a local C compiler calls “long.”)

n A short in “network” (big-endian) order.

N A long in “network” (big-endian) order.

v A short in “VAX” (little-endian) order.

V A long in “VAX” (little-endian) order. (These “shorts” and “longs” are exactly 16
bits and exactly 32 bits, respectively.)

f A single-precision float in the native format.

d A double-precision float in the native format.

p A pointer to a null-terminated string.

P A pointer to a structure (fixed-length string).

u A uuencoded string.

w A BER compressed integer. Its bytes represent an unsigned integer in base 128,
most significant digit first, with as few digits as possible. Bit eight (the high bit) is
set on each byte except the last.

x A null byte.

X Back up a byte.

@ Null fill to absolute position.

Each letter can be followed with a number, which is used as the repeat count for that let-
ter. The unpack function can be used to extract items stored in a binary structure.

package
package NAMESPACE

The package function declares that all the variables inside the innermost enclosing block,
subroutine, eval, or file, belong to NAMESPACE. For more information, see the permod man
page.

pipe
pipe READHANDLE, WRITEHANDLE

pipe opens a pipe from READHANDLE to WRITEHANDLE, similar to the system call of the
same name.

610 Appendix A

27 0355 appA 5/9/02 2:39 PM Page 610

Perl Functions 611

A
pop
pop ARRAY

The pop function removes the last item in an array (shortening it by one element) and
returns it as a scalar value. Both push (which will be discussed later) and pop are known
as stack functions. If you imagine an array as a stack of trays in a cafeteria, pop is used
to remove the top item from that stack.

pos
pos SCALAR

Returns the location in SCALAR where the last m//g search left off. If SCALAR is not speci-
fied, $_ is used.

print
print FILEHANDLE LIST
print LIST
print

The print function is used to output the data passed to it in the list context to standard
output, or if a filehandle is specified, to that filehandle. If the list of data to print is omit-
ted, the contents of $_ are printed by default. Note that there shouldn’t be a comma
between the filehandle and the actual list of data being printed, so to print some data to
the filehandle FILE, you would use the following:

print FILE $data;

Or, to print a list of data, you could do this:

print FILE $data, ‘ ‘, $more_data, ‘\n’;

printf
printf FILEHANDLE LIST
printf LIST

printf is used to format output using the conventions set for the sprintf function.
Basically, this:

printf FILEHANDLE FORMAT, LIST;

is identical to:

print FILEHANDLE sprintf(FORMAT, LIST);

27 0355 appA 5/9/02 2:39 PM Page 611

push
push ARRAY, LIST

push is used to add an element onto the end of an array. When you push a scalar value
onto an array, the array is lengthened by one element, and that value is assigned to the
last element in the array. Imagining the same stack of trays from the description of the
pop function, you can envision the push function as putting a tray onto the top of the
stack. You can also push multiple values onto the array by using a list as the argument to
the push function.

quotemeta
quotemeta EXPR
quotemeta

quotemeta returns the value of EXPR, with all the nonalphanumeric characters escaped
using backslashes. Uses $_ when EXPR is omitted.

rand
rand EXPR
rand

The rand function returns a random number between 0 and EXPR. If EXPR is omitted, the
function returns a value between 0 and 1 (not including 1). See srand for information on
seeding the random number generator.

read
read FILEHANDLE, SCALAR, LENGTH, OFFSET
read FILEHANDLE, SCALAR, LENGTH

The read function is used to read an arbitrary number of bytes of data from a filehandle
into a scalar value. It accepts four arguments; filehandle, scalar, length, and offset (offset
is optional). The filehandle argument specifies the filehandle from which to read the data.
The scalar argument defines the variable to which the data will be assigned. Length spec-
ifies how many bytes of data will be read. Offset is used if you want to read the data
from a place other than the beginning of the string. Here’s an example, which would read
1024 bytes of data from 2048 bytes into the filehandle FILE, and assign them to the vari-
able $chunk:

read FILE, $chunk, 1024, 2048;

612 Appendix A

27 0355 appA 5/9/02 2:39 PM Page 612

Perl Functions 613

A
readdir
readdir DIRHANDLE

readdir is used to read entries from a directory that has been opened using the opendir
function. When used in the scalar context, it returns the next entry in the directory. In the
list context, it returns all the remaining entries in the directory. If all the entries in the
directory have already been read, it returns the undefined value.

readlink
readlink EXPR

The readlink function reads the value of a symbolic link. If symbolic links are not im-
plemented on the platform, it returns a fatal error. If EXPR is omitted, the value in $_ is
used.

recv
recv SOCKET, SCALAR, LEN, FLAGS

recv is used to receive a message on a socket, using a C recvfrom. Receives LEN bytes
into variable SCALAR from SOCKET. It returns the address of the sender, unless there’s an
error, in which case it returns undefined. recv accepts the same flags as the system call
of the same name.

redo
redo LABEL
redo

redo restarts the current loop block, without reevaluating the loop’s test condition. If
LABEL is omitted, redo acts on the innermost enclosing block.

ref
ref EXPR

ref returns TRUE if EXPR is a reference, FALSE otherwise. If EXPR is omitted, $_ is used.

rename
rename OLDNAME, NEWNAME

The rename function changes the name of the file OLDNAME to NEWNAME.

27 0355 appA 5/9/02 2:39 PM Page 613

require
require EXPR

require is most often used to load an external Perl file into the current program, but
more generally speaking, it is used to base some sort of dependency on its argument. If
EXPR is numeric, that version of Perl is required for the program to run. If no argument is
supplied, $_ is used.

To load a file, you should provide the filename as the argument to require. If you provide
the filename as a bare word, .pm is automatically appended, and :: will be replaced by /
to make it easy to load standard modules. The required file must end with a statement that
evaluates as true. Customarily, files built to be required end with the 1; statement.

reset
reset EXPR
reset

reset is used to clear global variables or ?? searches, and is often used at the beginning
of a loop, or in the continue block at the end of a loop. reset clears the values of all the
variables beginning with the character provided in EXPR. If called with no arguments,
reset clears all ?? searches.

return
return EXPR

The return function suspends execution of an eval, subroutine, or do FILE, and returns
the value of EXPR. If no return statement is provided, the value of the last expression
evaluated will be returned.

reverse
reverse LIST

The reverse function accepts a scalar value or a list as its argument. For scalar values, it
reverses of the order of the characters in the scalar. For example, reverse “red”;

returns der. When a list is passed to reverse, the order of the items in the list is
reversed. reverse (“red”, “green”, “blue”); returns (“blue”, “green”, “red”).

rewinddir
rewinddir DIRHANDLE

rewinddir resets the directory handle for a directory opened with readdir back to the
first entry in that directory.

614 Appendix A

27 0355 appA 5/9/02 2:39 PM Page 614

Perl Functions 615

A
rmdir
rmdir FILENAME

rmdir removes the directory specified by FILENAME, if it is empty. If the directory is not
empty, or the function fails for some other reason, it returns 1. It returns 0 if it is success-
ful. If FILENAME is not provided, the value in $_ is used.

scalar
scalar EXPR

Forces the value of EXPR to be evaluated in the scalar context, and returns the value of
EXPR.

seek
seek FILEHANDLE, OFFSET, WHENCE

seek is used to set the position of FILEHANDLE. WHENCE can be any of the following val-
ues; 0 to set the position to POSITION, 1 to add POSITION to the current position, and 2 to
set it to EOF plus POSITION (usually a negative number is used here, for obvious rea-
sons).

seekdir
seekdir DIRHANDLE, POS

seekdir sets the position of DIRHANDLE for the readdir function. POS must be a value
returned by telldir.

select
select FILEHANDLE
select

Called without arguments, select returns the currently selected filehandle. When you
provide a filehandle (or an expression that returns a filehandle) to select, that filehandle
is now the default handle to which output will be sent, in other words, it becomes stan-
dard output. So, if you will be printing a number of items to a particular filehandle, it
might be easier to select that filehandle, and leave the filehandles out of your print
statements.

semctl
semctl ID, SEMNUM, CMD, ARG

semctl calls the System V IPC system call semctl(2).

27 0355 appA 5/9/02 2:39 PM Page 615

semget
semget KEY, NSEMS, SIZE, FLAGS

semget calls the System V IPC system call semget(2), and returns the semaphore ID, or
undefined if there is an error.

semop
semop KEY, OPSTRING

Calls the System V IPC system call semop(2), which performs semaphore operations like
signaling and waiting.

send
send SOCKET, MSG, FLAGS, TO
send SOCKET, MSG, FLAGS

The send function sends a message over a socket. If the socket is not connected, you
must specify an address to send to. The function takes the same flags as the send system
call, and returns the number of characters sent if it is successful, or undefined if it fails.

setpgrp
setpgrp PID, PGRP

setpgrp sets the process group for the specified PID. If 0 is supplied as the PID, the
process group is set for the current process. Produces a fatal error if setpgrp(2) is not
supported by the system.

setpriority
setpriority WHICH, WHO, PRIORITY

Sets the priority for a process, process group, or user. If setpriority(2) is not support-
ed, a fatal error occurs.

setsockopt
setsockopt SOCKET, LEVEL, OPTNAME, OPTVAL

setsockopt is used to set the specified option for a socket. If there is an error, undefined
is returned. Use undef for OPTVAL to set an option without specifying a value for the
option.

616 Appendix A

27 0355 appA 5/9/02 2:39 PM Page 616

Perl Functions 617

A
shift
shift ARRAY
shift

The shift function is the opposite of the unshift function, it removes the first element
from an array and returns it as a scalar value. The indexes of all the other elements in the
array are decreased by one, and the array winds up one element shorter than it was
before. shift is commonly used to process arguments passed to a user-written function.
As you know, arguments are passed to functions through the array @_. By using com-
mands such as $arg = shift @_;, you can easily make use of function arguments with-
out worrying about their indexes.

shmctl
shmctl ID, CMD, ARG

shmctl calls the System V shmctl(2) system call. For more information on all the
shared memory functions (which begin with shm), see the perlipc man page.

shmget
shmget KEY, SIZE, FLAGS

shmget calls the System V shmget(2) system call.

shmread
shmread ID, VAR, POS, SIZE

shmread calls the System V shmread(2) system call.

shmwrite
shmwrite ID, STRING, POS, SIZE

shmwrite calls the System V shmwrite(2) system call.

shutdown
shutdown SOCKET, HOW

shutdown closes a socket connection in the manner specified with HOW, which uses the
same syntax as the shutdown system call.

sin
sin EXPR

Returns the sine of EXPR, or of $_ if no argument is provided.

27 0355 appA 5/9/02 2:39 PM Page 617

sleep
sleep EXPR
sleep

sleep causes the program to sleep for EXPR seconds, or if EXPR is not specified, to sleep
indefinitely. sleep can be interrupted using the SIGALRM signal. It returns the number of
seconds actually slept.

socket
socket SOCKET, DOMAIN, TYPE, PROTOCOL

The socket function is used to open a socket attached to filehandle SOCKET. DOMAIN,
TYPE, and PROTOCOL are specified in the same way that they are specified for the socket
system call. You should use Socket; to import the Socket module before you call the
socket function to import the proper definitions.

socketpair
socketpair SOCKET1, SOCKET2, DOMAIN, TYPE, PAIR

The socketpair function creates a pair of unnamed sockets, in the specified domain, of
the specified type. A fatal error occurs if this function is unimplemented, if it is success-
ful, it returns TRUE.

sort
sort SUBNAME LIST
sort BLOCK LIST
sort LIST

The sort routine is used to sort the entries in a list, and returns the members in the list in
the sorted order. There are three ways sort can be used; the simplest is to simply invoke
sort with the list you want to sort as the argument. This returns the list sorted in stan-
dard string comparison order.

Another option is to supply a subroutine to compare with the items in the list. The sub-
routine should return an integer less than, equal to, or greater than zero, depending on
how the elements of the list should be ordered (the <=> operator, which performs numer-
ic comparisons, and the cmp operator, which provides string comparisons are often used
in these subroutines).

Although the subroutine method described in the preceding paragraph can be used to sort
lists by criteria other than the default, it is more common to simply insert a block of code
as the first argument to the function call. You’ve probably seen the sort function used
like this:

@sortedlist = sort { $a <=> $b } @list;

618 Appendix A

27 0355 appA 5/9/02 2:39 PM Page 618

Perl Functions 619

A
The preceding example sorts @list in ascending numerical order and assigns the list
returned to the array @sortedlist. The items being compared by the sort routine are sent
to the code block (or subroutine) as $a and $b, so the preceding block of code compares
the two items using the <=> operator. Let’s take a look at some other common code
blocks used with the sort function:

Sort in lexical order (the same as the default sort)
@sortedlist = sort {$a cmp $b } @list;

Sort in descending lexical order
@sortedlist = sort { $b cmp $a } @list;

Sort in numerical order
@sortedlist = sort { $a <=> $b } @list;

Sort in descending numerical order
@sortedlist = sort { $b <=> $a } @list;

splice
splice ARRAY, OFFSET, LENGTH, LIST
splice ARRAY, OFFSET, LENGTH
splice ARRAY, OFFSET

splice is the Swiss Army Knife of array functions; it provides a general purpose for
inserting elements into an array, removing elements from an array, or replacing elements
in an array with new values. splice can be called with up to four arguments, the last two
of which are optional. The first argument should be the array you want to splice. The
second argument is the offset, the position in the array where the action will take place
(to count back from the end of the array, you can use a negative number). The third argu-
ment, which is optional, is the number of items you want to remove (if you leave it out,
all the items from the offset to the end of the array will be removed). The rest of the
arguments are assumed to be a list of items that will be inserted at the offset. That sounds
pretty confusing, but an example will make it all clear.

To delete all the elements in the array after the second element (remember that array
indexes begin with 0), you could use the following code:

splice(@array, 2);

To insert a new scalar value between the second and third elements in an array, without
removing anything, you would use

splice(@array, 2, 0, “new value”);

To replace the second and third elements in an array with three new elements, you could
use the following:

splice(@array, 2, 2, “red”, “green”, “blue”);

27 0355 appA 5/9/02 2:39 PM Page 619

You should note that after an array is spliced, all the elements in the array are reindexed
to reflect the changes in the structure. So, in the previous example, all the indexes for the
items after the ones we inserted would be incremented by one because we replaced two
items with three.

split
split /PATTERN/, EXPR, LIMIT
split /PATTERN/, EXPR
split /PATTERN/
split

The split function is used to break a string into multiple parts and return those parts as
a list. It accepts up to three arguments: a pattern on which to split, the string to split up,
and a limit on the number of list items returned (optional). If you leave out the string to
be split up, the value stored in $_ will be used. You can also leave out the pattern on
which to split up the string, and Perl will use whitespace as the delimiter. The pattern
argument is always a regular expression contained within //, so to split the string on
commas, you would use /,/ as the pattern. Let’s look at some examples:

Empty pattern splits string into individual characters
@letters = split //, “word”;
A space in the pattern splits the sentence
into individual words
@words = split / /, “this is a sentence”;
This pattern splits on any white space instead of just
spaces (same as the default)
@words = split /\s/, “this is a sentence”;
The third argument ensures that only the first two items
extracted from the string will be returned in the list.
($first, $second) = split /\s/, “this is a sentence”, 2;

sprintf
sprintf FORMAT, LIST

The Perl sprintf function is used to format strings using the conventions established for
the C sprintf function. Here’s a table listing the conversions used with sprintf:

TABLE A.2 sprintf Formats

Format What It Represents

%% A percent sign

%c A character

%s A string

%d A signed integer, in decimal notation

%u An unsigned integer, in decimal notation

620 Appendix A

27 0355 appA 5/9/02 2:39 PM Page 620

Perl Functions 621

A
TABLE A.2 continued

Format What It Represents

%o An unsigned integer, in octal notation

%x An unsigned integer, in hexidecimal notation

%e A floating point number, in scientific notation

%f A floating point number, in fixed decimal notation

%g A floating point number, in %e or %f notation

%X The same as %x, but using capital letters for hexidecimal notation

%E The same as %e, but using a capital E

%G The same as %g, but using a capital E (if applicable)

%p A pointer, prints the memory location of the Perl value in hexadecimal

%n Stores the number of characters output so far in the next variable in the parameter list

For detailed information on the conventions used with sprintf, check out the man page
for printf(3).

sqrt
sqrt EXPR

sqrt returns the square root of EXPR, or of $_ if EXPR is not supplied.

srand
srand EXPR

srand seeds Perl’s random number generator. If you leave off EXPR, srand(time) is
assumed. You should only use it once in your program.

stat
stat FILEHANDLE

The stat function gathers some information on the file specified by FILEHANDLE, and
returns a list containing that information. It can also accept an expression containing a
filename instead of an open filehandle. If no argument is provided, the stat function
uses the value of $_ as its argument. The data returned by stat is in list form, and
includes

• The device number of the filesystem

• The file’s inode

• The file mode (type and permissions)

27 0355 appA 5/9/02 2:39 PM Page 621

• The number of hard links to the file

• The uid and gid of the file’s owner

• The device identifier (for special files)

• The size of the file in bytes

• The times since the file was last accessed, last modified, and the inode was changed

• The file’s block size

• The number of blocks used

Let’s take a look at the values returned by stat. This is how you might assign the list
returned by stat to a group of variables.

($dev,$inode,$mode,$uid,$gid,$rdev,
$size,$atime,$mtime,$ctime,$blksize,$blocks) = stat $filename

study
study SCALAR
study

study takes extra time to study SCALAR (or $_ if SCALAR is omitted), to make future pat-
tern matches on the value more efficient. Whether this saves time or not depends on how
many pattern matches you plan on making, and the nature of those matches.

substr
substr EXPR, OFFSET, LENGTH, REPLACEMENT
substr EXPR, OFFSET, LENGTH
substr EXPR, OFFSET

substr is used to extract some characters from a string. It accepts three arguments,
the last of which is optional. The arguments are the expression from which characters
should be extracted (this can be a scalar value, a variable, or a call to another function),
the position to begin extracting characters, and, optionally, the number of characters to
extract. So, substr(“foobar”, 3, 2); returns ba. Leaving out the length, like this:
substr(“foobar”, 3); returns bar. You can also use a negative offset value, which
will count positions from the end of the string instead of the beginning. Here’s an exam-
ple: substr(“foobar”, -4, 2); returns ob.

symlink
symlink OLDFILE, NEWFILE

The symlink function is used to create a symbolic link from OLDFILE to NEWFILE.
symlink produces a fatal error if the system doesn’t support symbolic links.

622 Appendix A

27 0355 appA 5/9/02 2:39 PM Page 622

Perl Functions 623

A
syscall
syscall LIST

syscall calls the system call specified as the first argument in LIST. The remaining
items in LIST are passed to the system call as arguments.

sysopen
sysopen FILEHANDLE, FILENAME, MODE
sysopen FILEHANDLE, FILENAME, MODE, PERMS

Opens the file specified by FILENAME, associating it with FILEHANDLE. If the file does not
exist, it is created.

sysread
sysread FILEHANDLE, SCALAR, LENGTH, OFFSET
sysread FILEHANDLE, SCALAR, LENGTH

Reads LENGTH bytes from FILEHANDLE into SCALAR using the read(2) system call.
Returns the number of bytes read, or undefined if there is an error. OFFSET places the
bytes read that many bytes into the string, rather than at the beginning.

sysseek
sysseek FILEHANDLE, POSITION, WHENCE

Similar to the seek function, except that it uses the lseek(2) system call rather than the
fseek(2) call.

system
system LIST

The system function works exactly like exec LIST, except that it forks a new process
and executes the commands in LIST in that process, and then returns.

syswrite
syswrite FILEHANDLE, SCALAR, LENGTH, OFFSET
syswrite FILEHANDLE, SCALAR, LENGTH

syswrite attempts to write LENGTH bytes of data from variable SCALAR to FILEHANDLE,
using the write(2) system call. It returns the number of bytes written, or undefined in
the case of an error.

27 0355 appA 5/9/02 2:39 PM Page 623

tell
tell FILEHANDLE

tell returns the current position for the specified filehandle, or if no filehandle is speci-
fied, for the last file read.

telldir
telldir DIRHANDLE

telldir returns the current position in the specified directory handle.

tie
tie VARIABLE, CLASSNAME, LIST

tie binds a variable to a package class that will provide the implementation for a vari-
able. VARIABLE is the name of the variable to be bound, and CLASSNAME is the name of the
class implementing objects of the correct type. Any additional arguments are passed to
the new method of the class.

tied
tied VARIABLE

tied returns a reference to the underlying object of VARIABLE, if it is tied to a package. If
the variable isn’t tied, it returns undefined.

time
time

The time function returns the number of seconds that have elapsed since the time that
the system considers the epoch. On most systems, this is 00:00:00 UTC, January 1,
1970; on the MacOs, 00:00:00, January 1, 1904. Most often passed to localtime or
gmtime for formatting.

times
times

times returns a four element array containing the user and system times for the current
process, and its children. Here’s an example:

($user, $system, $cuser, $csystem) = times;

624 Appendix A

27 0355 appA 5/9/02 2:39 PM Page 624

Perl Functions 625

A
truncate
truncate FILEHANDLE, LENGTH
truncate EXPR, LENGTH

Truncates the file assigned to FILEHANDLE, or specified by EXPR, to LENGTH. If truncate
isn’t implemented on the system, a fatal error occurs.

uc
uc EXPR

Just as lc converts all the letters in a string to lowercase, uc converts all the letters in a
string to uppercase.

ucfirst
ucfirst EXPR

Returns EXPR with the first character capitalized.

umask
umask EXPR

umask is used to set the default umask for the process. It accepts an octal number (not a
string of digits). The umask function is useful if your program will be creating a number
of files. If EXPR is omitted, umask returns the current umask.

undef
undef EXPR

undef is used to eliminate the value of a variable. It can be used on a scalar variable, an
entire array, or an entire hash.

unlink
unlink (LIST)

unlink deletes the files passed to it via LIST. It returns the number of files it successfully
deletes. If no list is passed to unlink, it uses $_ as its argument.

unpack
unpack TEMPLATE, EXPR

unpack is the reverse of pack. It accepts a data structure and translates it into a list, based
on TEMPLATE. The TEMPLATE format is the same as that for pack.

27 0355 appA 5/9/02 2:39 PM Page 625

unshift
unshift ARRAY, LIST

The unshift function inserts a scalar value as the first element in an array, moving the
indexes of all the other items in the array up by one.

utime
utime LIST

utime is the Perl equivalent of the Unix touch command; it sets the access and modifica-
tion times for a list of files. The first two arguments must contain the numerical access
and modification times for the files. All the arguments after the first two are assumed to
be files that should have their access and modification dates changed. The function
returns the number of files that were successfully touched.

values
values HASH

Returns an array containing the values for each of the items in a hash, much like keys
returns an array of the keys in a hash.

vec
vec EXPR, OFFSET, BITS

vec treats a string (specified by EXPR) as a vector of unsigned integers, and returns the
value of the bit field specified by OFFSET.

wait
wait

wait simply waits for a child process to die, and then returns the PID of that process.

waitpid
waitpid PID, FLAGS

The waitpid function waits for a particular child process (specified by PID) to exit, and
then returns the process ID of the dead process.

626 Appendix A

27 0355 appA 5/9/02 2:39 PM Page 626

Perl Functions 627

A
wantarray
wantarray

wantarray returns TRUE if the context of the subroutine currently being executed requires
a list value. If it was called in the scalar or void context, this function returns FALSE. To
avoid executing the entire subroutine, you can use a statement like this to make sure that
the subroutine was called in the list context:

return unless defined wantarray;

warn
warn LIST

warn is used to print a message to standard error without terminating the program. Other
than the fact that the program doesn’t stop executing, it is just like the die function.

write
write FILEHANDLE

The write function is used to output data using a template defined with the format func-
tion. For more information, check out the perlform man page.

27 0355 appA 5/9/02 2:39 PM Page 627

27 0355 appA 5/9/02 2:39 PM Page 628

APPENDIX B
Installing Perl on a Unix
System

This appendix explains how to obtain and install Perl for a computer running
Unix. Unlike Windows, installing Perl on a Unix computer involves compiling
Perl from the source code. Fortunately, thanks to tools such as the Configure
program and make, this process is pretty straightforward. However, it does mean
that certain tools should be present on your computer before you get started.
This appendix explains which tools are required to install Perl, and where to get
them. It also provides step-by-step instructions on performing the installation.

Do You Need to Install Perl?
Unless you’re running on your own personal Unix system where you’re the
owner and the only person on it, chances are really good that you don’t need to
install Perl at all. It would be odd if Perl hadn’t already installed because it is
so useful to Unix system administrators. From your Unix system prompt, try
this first:

% perl -v

28 0355 appB 5/9/02 2:39 PM Page 629

If you get a message that says This is perl, v5.6.0 built for sun4-solaris or
some such, you’re set. Stop here, and go directly to Day 1, “An Introduction to Perl,” to
start working with Perl.

If you get a message that says perl: command not found, or if you get the proper ver-
sion message, but it says something like This is perl, version 4, then things are
going to be tougher. It means that either Perl isn’t installed on your system, or Perl is
installed but it’s an older version (you want to be running a version of Perl 5 or higher
for this book; older versions won’t work). Or it could mean that Perl is installed, but it’s
not in your search path; you might try looking around in /usr/bin or /usr/local/bin.

If you still can’t find Perl and if you’re on a Unix machine administered by someone else
(that is, a system at work, or a public ISP) your next step is to contact the system admin-
istrator or support organization for that system and ask them if they have Perl installed
(and if they do, where they put it), or if they’ve got an old version, to upgrade it.
Although you can install Perl on a system that you don’t have administrator access to,
it’s generally a better idea for your administrator to do it for you.

And, finally, if you run your own Unix system—say, a Linux system on a partition of
your Windows machine—and you cannot find Perl already installed, then you are your
own system administrator, and it’s your job to install Perl.

Obtaining Perl
To install Perl on your system, you have three choices:

• Install a vendor package

• Download and install a prebuilt binary version

• Download, compile, and install the source-code version

Installing a Vendor Package
If you’re using a free variety of Unix (Linux, FreeBSD, or OpenBSD) your vendor prob-
ably supplies a vendor-created package designed for your system. Usually, when you
install these operating systems, you have the option of installing Perl along with the rest
of the operating system. They also provide tools that enable you to download and install
updated packages. For example, Red Hat provides many third-party applications as RPM
files. You can use any RPM tool to download and install Perl on your system. Most free
Unixes have similar systems.

For more information on these types of packages, see your vendor’s Web site. If such a
system is available, you’ll definitely want to look into installing Perl that way rather than

630 Appendix B

28 0355 appB 5/9/02 2:39 PM Page 630

Installing Perl on a Unix System 631

B

using the following methods. These systems generally make it easy to uninstall and
update packages, so it’s best to use them when you can.

Getting Binaries
Installing a binary version is the simpler than installing Perl—you don’t need to compile
anything, just unpack and go. However, binaries are only available for a very few Unix
platforms, they tend to lag behind the current version of the Perl source code, and there
is a danger of viruses or other nasties being hidden in the binary versions if you don’t get
them from a reputable source. Building the Perl source code is not difficult, and if you
use Unix for any extensive period of time you’ll probably end up doing a lot anyhow.
Plus, with the source code you’ll always end up with the latest and greatest versions. If
you can’t get a vendor-supplied package, building Perl from source is the preferred
method of getting Perl installed on your system.

Another place to look, particularly for Solaris and Linux software, is the archive at
http://ibiblio.org/pub/, formerly called Sunsite. Check in http://ibiblio.org/
pub/packages/solaris/sparc for Solaris software, and http://ibiblio.org/pub/
Linux for Linux.

Different companies and sites have different ways of packaging their binaries; you’ll
need to follow the directions for each site to discover how to install the Perl binaries on
your system. You might find that with tracking down binaries and figuring out how to
install them that it was easier to just go the source code route in the first place.

Getting Source (and Related Tools)
To compile and install Perl from the source code, there are several other things you’ll
need in addition to the Perl code itself: tar and gzip to unpack the source archive, and a
C compiler to compile the source. The Perl installation will also go most smoothly if you
have superuser (root) access on the computer on which Perl will be installed. If you’re
not the system administrator for the computer on which you need to run Perl, you’ll
probably be better off tracking down the person who is, and asking him to do it.

To expand the Perl archive you’ll need tar and gzip. The tar utility is present on almost
every Unix machine. Most Unix computers also have gzip installed, especially if they’re
running a free version of Unix such as FreeBSD or Linux. If you don’t have these utili-
ties, you’ll need to locate them on the Internet, download them, and install them. As with
the Perl binaries, it’s likely that the vendor of your Unix system can provide you with
access to these tools, or if your Unix system came on a CD-ROM they might have been
bundled with that CD-ROM. Solaris users can download precompiled GNUtar and gzip

packages from SunSite at http://metalab.unc.edu/pub/packages/solaris/sparc.

28 0355 appB 5/9/02 2:39 PM Page 631

Second, you’ll also need a C compiler. It is likely that the computer you’re using will
have either cc or gcc installed (type cc or gcc at a prompt and see what happens). If you
can’t locate a C compiler on your system, you should contact your system administrator
about locating or installing one. Again, C compilers are almost always installed by
default with free Unix systems, and are also installed with many popular commercial
Unix variants. Solaris users can download precompiled versions of gcc at the SunSite
URL mentioned previously.

When you’re sure that you have all the tools required to successfully install Perl, you can
download the Perl source code. The easiest way to get it is to simply point your Web
browser to www.perl.com, which keeps the latest stable version of Perl at http://www.
perl.com/CPAN/src/stable.tar.gz.

The stable.tar.gz package contains the C source code, which should compile success-
fully on nearly every Unix platform. As I write this, that’s version 5.6.1, and that’s the
version this book covers. If you’re feeling really adventurous, you can download the new
experimental developer’s version of Perl at http://www.perl.com/CPAN/src/devel.
tar.gz. The developer’s version is currently version 5.7.2 (but has most likely changed
by the time you read this). You should only use it if you already know Perl, know what
you’re doing, want to check out some of the newer features, and are willing to put up
with some odd behavior.

All the .gz packages are in binary format, so make sure you download them as binary
files. If you download them in text format, they won’t decompress (if you use a browser
to download them, you don’t have to worry about this).

Extracting and Compiling Perl
When you’ve successfully downloaded the Perl source code, extract it from its archive.
There are two steps required to extract the Perl archive; decompressing it using gzip, and
expanding the archive using tar. To unzip the file, use the following command:

gzip -d latest.tar.gz

Then, untar the file using this command:

tar xvf latest.tar

As the tar program runs, a list of all the files being extracted from the archive will be
printed on the screen. Don’t worry about the output. A directory named perl5.6.1 or
something similar will be created with all the Perl files inside.

Detailed installation instructions can be found in the README and INSTALL files; I’ll
summarize the process in the following sections.

632 Appendix B

28 0355 appB 5/9/02 2:39 PM Page 632

Installing Perl on a Unix System 633

B

Running the Configure Program
Before you install Perl, run the Configure program to set up the compile-time options.
First, cd to the Perl directory created when you untarred the archive (usually, perl plus a
version number, for example, perl5.6.1). Then, remove any existing configuration file
using

rm -f config.sh

(There might not be any existing configuration file, but don’t worry about it.) Then run
the Configure program like this:

sh Configure

Configure will ask you a lot of questions about the makeup of your system and where
things should be installed. If you want to skip most of those questions, you can use sh
Configure -d instead. This will cause Configure to automatically select as many default
values as it can, and install Perl in various default locations typical for your platform.
These instructions assume you want to run Configure the long way.

Before we start, please be aware that Configure is written to configure
software for all kinds of complex features of different platforms. Unless
you’re really very familiar with Unix systems and with C, a lot of the ques-
tions it asks might be really confusing or seem to make no sense. Most every
question will have a default value, which you can accept by pressing Return
or Enter. Generally, you’ll do no harm by accepting Configure’s default val-
ues, so if you don’t know what the program is asking, just press Return.

Also, depending on the version of Perl you’re installing, some of the follow-
ing questions may or may not appear in a slightly different order. If things
start to get confusing, just accept the defaults and you should be fine.

Note

Setting Up
First, Configure ensures that you have some things necessary for the Perl installation,
provides you with some instructions on the installation process (you can read them if you
want to, but it’s not necessary), and then locates some of the utilities used in the installa-
tion process.

To speed up the installation process, Configure guesses which system you’re on so that
it can set up some default values. Most likely, it’ll guess right, so you can just press Enter
and accept the default.

Then, it makes a guess at which operating system you’re using. If the defaults are cor-
rect, just press Enter for both the name and version.

28 0355 appB 5/9/02 2:39 PM Page 633

Depending on your Perl version, you might be asked if you want to build a threading
version of Perl. Unless you know what you’re doing, you’re better off not building one
right now because threads are experimental. When you know more about Perl you can go
back and recompile it with threads turned on.

Directories and Basic Configuration
The next step, an important one, is to specify under which directory hierarchy Perl will
be installed. The default is typically under the /usr/local hierarchy; binaries in
/usr/local/bin, man pages in /usr/local/man, and libraries in /usr/local/lib. You
can change the basic hierarchy where Perl is installed if you choose to do so; for exam-
ple, to install them under /usr with the system files (/usr/bin/, /usr/lib, /usr/man).
Just indicate a prefix here; if you want to customize where you put each part of Perl
you’ll have an opportunity to do that later.

The next directory you need to specify is the location for site-specific and architecture-
dependent Perl libraries. If you’ve accepted the defaults for the other directory locations,
accepting the defaults here are almost certainly okay.

Depending on the version of Perl you’re installing, the next question might be whether
you want Perl to be binary-compatible with Perl’s earlier versions. If Perl 5.001 was
installed on the machine you are currently installing Perl, you’ll need to specify where
to put the old architecture-dependent library files. For both these questions, the defaults
are fine unless you have reason to change them.

configure then checks for secure setuid scripts, and you have a choice of whether to do
setuid emulation. Chances are good that if you don’t know what this means, you don’t
need it. Accept the default.

The next question is which memory models are supported on the machine; for most, it’s
none. Accept the default.

Compilers and Libraries
Configure asks you which compiler to use. It figures out which compiler it would prefer
to use, and offers you that as the default.

Configure also figures out in which directories to look for libraries. If you know of other
directories to search for shared libraries, add them to the list, and remove any directories
that should not be searched from the list. The default will probably work here.

Configure asks for the file extension for shared libraries. If you don’t want to use shared
libraries, change the default to none. You probably don’t want to change it, however.

Next, Configure checks for the presence of some specific libraries on your system. It
presents you with a list of shared libraries it will use when it’s done. You can add or
remove libraries from the list, but the default list will probably work fine.

634 Appendix B

28 0355 appB 5/9/02 2:39 PM Page 634

Installing Perl on a Unix System 635

B

The Configure program then asks some questions about your compiler. If you don’t
specifically know a good reason to change the defaults, just go ahead and use them.

One of the compiler questions is where you want to store the Perl binaries. By default
the choice is the prefix hierarchy you chose, plus the bin directory, for example,
/usr/local/bin. You have the opportunity to change that here.

Documentation and Networking
After all the compiler-related questions are finished, Configure asks where you want to
place the Perl man files. As with the binaries, the default is the directory prefix plus man.
You’ll only need to change it if you want to put the man page somewhere else on your
system. It also asks for the extensions for your man pages; you should accept the default.

Configure then tries to determine your host and domain names. If it guesses right, you
can accept the defaults. Otherwise, edit its choices and enter the correct values (the host-
name is your fully-qualified Internet name for that particular system (for example,
www.typerl.com); the domain name is the last part of the address (typerl.com).

The next question is your e-mail address. Perl will try to get the right e-mail address
here, but it will be specific to the machine on which you are installing Perl. You might
need to change it to your general e-mail address. (For example, it will probably select
person@somemachine.somedomain.com, when what you really want is
person@somedomain.com.)

Perl also wants the e-mail address for the person who will be responsible for administra-
tion of Perl on the machine. If it’s not you, enter the e-mail address for the person or
group who will be responsible here (be nice).

Other Things
Next, Perl wants the value to place in the shebang line of scripts. The default value is
almost certainly correct because you’ve already told Configure where the Perl binaries
will be installed. (Don’t worry if you don’t know what a shebang is; you’ll learn about
that soon enough. Accept the defaults.)

Then, you need to tell Perl where to place publicly executable scripts. Reasons why you
might not want to accept the default are provided by Configure.

Depending on your Perl version, you might be asked for yet more directory pathnames,
this time for library files. Once again, the defaults are probably fine.

The next question is whether you want to use the experimental PerlIO abstraction layer
instead of <stdio.h>. You probably don’t.

28 0355 appB 5/9/02 2:39 PM Page 635

Configure then checks for the presence of certain system calls, and for other system spe-
cific things. It might ask you a few questions along the way. You can probably accept the
defaults for all these. Even if Configure seems to have misgivings (my Linux system trig-
gered a few “WHOA THERE” and “Are you sure” messages), accept the defaults and
you’ll be fine.

The last questions Configure asks is which Perl extensions you want to load dynamical-
ly and statically. You can probably just accept the default, which is to load them all
dynamically.

Perl then gives you a chance to edit the configuration file it just built, config.sh, manu-
ally. You probably don’t need to do so; just press Return.

Configure gives you the chance to run make depend (go ahead), and then exits.

For detailed instructions on most of the options in the Configure program, you should
read the INSTALL file in the Perl directory.

Run make
The next step after the Configure program generates the config.sh file is to type make
in the Perl directory. make will compile all the Perl binaries and prepare them for instal-
lation.

On some systems, the ar program is required to build Perl. Unfortunately, for most users,
ar is not in their path. If the make fails because it can’t find ar, you should do a man ar,
find out where it is located, and add that directory to your PATH environment variable (on
Solaris systems, ar is in /usr/ccs/bin). You should then be able to run make again and
successfully build Perl. It will take a while for the make process to work, so you might
want to go do something else while it’s working.)

Before you install Perl, you should type make test in the Perl directory to make sure
everything was built correctly. After that’s finished, you can make install to move all
the Perl files to the locations that you specified using Configure.

One last question that might be asked is whether you want to link /usr/bin/perl to the
location where you actually installed Perl. Many scripts assume that Perl will be located
in /usr/bin/perl, so if you link your Perl binary to /usr/bin/perl, it could save you
some work down the road.

After make install is finished, Perl should be installed and ready to go. This time, if
you installed Perl in a standard location in your PATH, then this time if you type

% perl -v

you should get a version message (This is perl, version 5....), and you’re all set
and ready to learn Perl.

636 Appendix B

28 0355 appB 5/9/02 2:39 PM Page 636

Installing Perl on a Unix System 637

B

For More Information
Because you’re on Unix, Perl was written for you. All core Perl man pages, FAQs, utili-
ties, modules, and documentation were originally written for Unix, so you should be fine
starting right off. The central repository of all things Perl is at www.perl.com; start from
there and work downward. And, of course, there are always the pointers scattered
throughout this book.

28 0355 appB 5/9/02 2:40 PM Page 637

28 0355 appB 5/9/02 2:40 PM Page 638

APPENDIX C
Installing Perl for Windows

This appendix explains how to obtain and install Perl for the Windows platform,
sometimes known as Win32 Perl. Perl for Windows will run on Windows NT or
Windows 95/98, although it is slightly more robust on Windows NT (I found
very little that was different between the two platforms).

With the release of version 5.005 of Perl, Windows support has been incorpo-
rated into the core Perl source code tree, and is up to date with the Unix version.
Previously, there had been several different versions of Perl for Windows, with
each version supporting different features and lagging behind the Unix platform
in different ways. The merged 5.005 version made a tremendous difference in
stability and support for the Windows platform. If you have installed a previous
version of Perl for Windows, I strongly suggest you upgrade to the latest version
before starting this book.

To install Perl for Windows, you have two choices. You can

• Download the core Perl source code, and compile and build it yourself

• Download a prebuilt version of Perl for Windows, sometimes called
ActivePerl, from ActiveState

29 0355 appC 5/9/02 2:40 PM Page 639

Going the source code route enables you to be up-to-minute with the latest bug fixes,
experimental features, and changes, but you must have a modern C++ compiler (Micro-
soft’s Visual C++, Borland C++, and so on), and you must understand how to build large
C projects. Windows 2000 and XP are definitely the better-supported platforms for build-
ing Perl yourself. You’ll also need to download and install the Win32 modules (libwin32)
yourself to get access to various Windows features such as OLE and processes.

The other choice is to download the prebuilt binary version of Perl from ActiveState.
ActivePerl, as this version is called, contains Perl for Windows, some nice installation
scripts, the Win32 Perl modules, PerlScript (an ActiveX scripting engine to replace
JavaScript or VBScript inside Internet Explorer), Perl of ISAPI for Perl CGI scripts, and
the Perl Package Manager (PPM), which makes installing extra Perl modules much easier.

Because the prebuilt ActiveState version of Perl is probably the better choice for most
Windows users, this appendix will primarily cover downloading and installing that ver-
sion. If you’d prefer to build Perl yourself, I’ve included a section at the end of this
appendix (“Downloading the Perl Source Code”) to help you get started. The README
files included with the source can help you get started from there.

Downloading Perl for Windows
The first step in installing Perl for Windows on your computer is to download the instal-
lation package from ActiveState’s Web site.

640 Appendix C

ActiveState is a company dedicated to building and supporting Perl and its
tools on the Windows platform. ActiveState also offers a Perl developer’s kit,
a GUI-based Perl debugger, and a plug-in for NT-based Web serves that
improves CGI performance (although none of these packages are part of the
core Perl for Windows package).

Note

Get the latest version of Perl for Windows at http://www.activestate.com/
ActivePerl/download.html. The first page lists the requirements for installing Perl.
Download and install any of the required software, if you lack any, before adding Perl.
On the next page, you can download the actual Perl installation file.

Installing Perl for Windows
The Perl installed file you downloaded from ActiveState is an MSI file, which works
with Microsoft’s built-in installation program (users of Windows 95 or Windows NT 4.0
will have to install Microsoft Installer 2.0 before they can install the MSI file). If you

29 0355 appC 5/9/02 2:40 PM Page 640

Installing Perl for Windows 641

C

save the file to disk, double-click it to launch and start the installation process. An instal-
lation wizard will launch, and you’ll need to agree to the Perl license. The next screen
enables you to select packages to install and to specify where to install Perl.

The packages you can install are as follows:

• Perl: The core Perl installation.

• Perl ISAPI: Only needed if you’ve got a IIS Web server and you’ll be using Perl to
develop CGI scripts for it.

• PerlScript: Only needed if you’ll be using the PerlScript ActiveX plug-in.

• Perl Package Manager (PPM): You definitely want this if you’re going to use any
public modules that aren’t included with Perl.

• Example Files: Also useful.

Next screen: Here are those options you learned about earlier in the installation notes.
You can have up to four choices:

• Adding Perl to your path

• Associate .pl files with the Perl executable

• Associate .pl files with your IIS or Web site Web servers

• Associate .plx files with IIS and Perl for ISAPI

Unless you have compelling reasons not to, you can go ahead and allow all four of these
options when they occur.

The final screen offers you a last chance to confirm that you want to install Perl. You can
go back and change your choices, or choose Install to start the actual installation and
configuring process.

After the installer finishes installing the files and configuring Perl for Windows, you can
view the release notes or exit (the release notes contain lots of information about what’s
changed since the last release, but probably aren’t exceptionally useful if you’re
installing Perl for the first time).

Now you’re ready to get started with Perl. If you look at the directory C:\Perl on your
computer (or wherever you chose to install Perl), you’ll see several subdirectories:

• bin: Contains the executable for Perl and all supporting tools.

• Docs: The included Perl documentation.

• eg: Examples. Look at the files in this directory for example scripts and various
bits of Perl code (most of them are supplied on an as-is basis, and are undocu-
mented, so they won’t necessarily be helpful).

29 0355 appC 5/9/02 2:40 PM Page 641

• html: Online documentation, in HTML format. You can use your favorite browser
to read any of these files. Start from the file index.html.

• lib: core library files.

• site: additional library files supplied by ActiveState.

Running Perl for Windows
To run Perl for Windows, you’ll need to start a command prompt window (a DOS
Prompt in Windows 95, or a Command Prompt in Windows NT). At the command line,
you can make sure Perl’s running with the -v option:

c:\> perl -v

You’ll get a message telling you the version of Perl you’re running and some other infor-
mation about your Perl installation. This verifies that Perl has been installed correctly,
and that your system can find the Perl executable. From here, you can proceed to Day 1
and start writing Perl scripts.

Downloading the Perl Source Code
If you’re looking to live on the cutting edge of Perl for Windows, you’ll want to get the
Perl source code instead of the binary version. Alternately, if you know something about
C code, sometimes having the source around can help you figure out what’s going on
when your Perl scripts are not behaving the way you want them to. In either of these
cases, you’ll want to download the actual Perl source code as well as, or instead of, the
ActiveState version of Perl.

Perl’s source code is available at http://www.perl.com/pub/a/language/info/
software.html. A number of versions are available to choose from. The latest stable ver-
sion is always available as stable.tar.gz (as I write this, that’s version 5.6.1). Alter-
natively, the experimental development version is at devel.tar.gz (that’s version 5.7.2
as I write this, but most likely will have changed by the time you’re reading it). This
book covers the stable.tar.gz version.

Perl source code is stored in Unix-format tar archives, compressed with GNU zip. They
are binary files, so download them in binary format. After you have the archive stored on
your system, WinZip can decompress and unarchive the Perl source files just fine.

The file README.win32 provides detailed documentation for compiling the source into
a workable Perl installation.

642 Appendix C

29 0355 appC 5/9/02 2:40 PM Page 642

Installing Perl for Windows 643

C

Getting More Information
Regardless of whether you’re using the ActiveState build of Perl for Windows or not,
ActiveState’s Web site at www.activestate.com is a great place to start for help getting
started with Perl for Windows. From there you can find the ActivePerl FAQ at
http://aspn.activestate.com/ASPN/Perl, and the various ActivePerl mailing lists at
http://aspn.activestate.com/ASPN/Perl/Mail.

ActiveState also offers support for their version of Perl. See http://www.activestate.
com/support/ for details.

And, of course, the standard Perl resources are always available at www.perl.com, and
pointers are scattered throughout this book.

29 0355 appC 5/9/02 2:40 PM Page 643

29 0355 appC 5/9/02 2:40 PM Page 644

== (equals) operator, 41-42
!= (equals) operator, 41
** (exponent) operator, 36
/ (floating-point division)

operator, 36
%% format (sprintf func-

tion), 620
> (greater than) operator,

41
>= (greater than or equals)

operator, 41
=> (hash pair) operator,

493
++ (increment) operator, 59
<> (input) operator,

165-167, 385-386
< (less than) operator, 41
<= (less than or equals)

operator, 41
% (modulus) operator, 36
* (multiplication) operator,

36
!=~ (negated pattern match)

operator, 45-46

! (not) operator, 43
<=> operator, 78, 193
() (parentheses), 245, 290
=~ (pattern match) opera-

tor, 45-46
! (pattern match) operator,

236
| (pipe), 400
+ (plus sign), 130, 247-249
(pound sign), 16
*? quantifier, 262
+? quantifier, 262
? (question mark), 226-227,

262
.. (range) operator, 106
%= (shorthand assignment)

operator, 58
**= (shorthand assignment)

operator, 58
*= (shorthand assignment)

operator, 58
/= (shorthand assignment)

operator, 58

Symbols

+ (addition) operator, 36
& (ampersand), 272-273
&& (and) operator, 43
-> (arrow) operator, 492
= (assignment) operator,

34-35
* (asterisk), 227, 247-249
@ (at symbol), 485, 610
` (backquote), 456-457
\ (backslash), 483, 524
{} (braces), 228-229,

247-249, 272
^ (caret), 220
- command (debugger), 308,

311
?..: (conditional) operator,

147-148
— (decrement) operator, 59
$ (dollar sign), 33
. (dot) operator, 60, 225
“ (double quotes), 15, 31

INDEX

30 0355 index 5/9/02 2:40 PM Page 645

+= (shorthand assignment)
operator, 58

-= (shorthand assignment)
operator, 58

* special character (file
globbing), 441

‘ (single quote), 15, 31
/ (slash), 236-237
[] subscript syntax, 90
- (subtraction) operator, 36
@_ variable, 280, 290-291
$, variable, 107
$” variable, 107, 211
$$ notation, 485
$\ variable, 107
$_ variable, 164, 167

A

A template character (pack
function), 609

$a variable, 193-194
abs function, 78, 592
accept function, 427, 539,

592
accessing

module subroutines,
330-331

nested data structures,
504-505

ActivePerl FAQ Web site,
643

ActivePerl. See Win32 Perl
ActiveState graphical

debugger, 312-314
ActiveState Web site, 313,

430, 643
ActiveX scripting, 549
add command, 562
&add_item() subroutine,

577

adding list elements. See
inserting list elements

addition operator, 36
address book

address file, 355-356
address.pl script, 361-364
global variables, 356-357
printing, 361
reading, 357-358
searching, 354-355,

358-361
address.pl script (address

book)
address file, 355-356
addresses

printing, 361
reading, 357-358

code listing, 361-364
global variables, 356-357
searches, 354-355,

358-361
addresses

address book
address file, 355-356
address.pl script,

361-364
global variables,

356-357
printing, 361
reading, 357-358
searching, 354-355,

358-361
e-mail addresses, 635
network addresses, 593

add_portfolios() subroutine,
564

add_stock() subroutine,
562-566

advantages of Perl, 9-12
ease of use, 10
flexibility, 11
Perl community, 12
portability, 10

power, 11
simplicity, 12
software requirements, 10
usefulness, 9

alarm function, 464, 592
:all import tag (CGI.pm

module), 417
alphabetical list of names

script, 128-129
alternation (pattern match-

ing), 222
ampersand (&), 272-273
anchoring patterns, 220
AND logical expressions,

222
and logical operator, 43
anonymous data

anonymous subroutines,
291

defined, 497
nested data structures,

497-498
applications. See also scripts

address book, 354
address file, 355-356
address.pl script,

361-364
global variables,

356-357
printing, 361
reading, 357-358
searching, 354-355,

358-361
log file analyzer, 364

global variables,
366-367

log processing,
367-370

output, 364-365
printing results,

371-374
weblog.pl script,

374-377

646 /= (shorthand assignment) operator

30 0355 index 5/9/02 2:40 PM Page 646

stock portfolio manager,
560

adding stocks, 564-566
code listing, 566-573
creating portfolios, 564
data file, 560-561
deleting portfolios, 564
listing portfolios, 563
returning stock prices,

566
setup, 562
supported commands,

561-562
viewing portfolios, 563
writing data, 566

To Do list, 573-574
adding/removing items,

577
data file, 574-575
data initialization, 575
displaying data,

576-577
error checking, 578
form processing,

575-576
todolist.pl code listing,

579-587
updating changes, 577

arctangents, 592
args.pl script, 490-491
@ARGV array, 165
@ARGV list, 393-394
arguments

handling inside subrou-
tines, 280-281

naming in subroutines,
281

open function, 382
parentheses, 290
passing to subroutines,

279-281, 290-291
script arguments, 393-394

script switches, 394-397
getopt function,

397-398
getopts function,

395-397
switches.pl script,

398-399
subroutine references,

487-489
arithmetic operators

floating-point numbers, 37
precedence, 36
rounding, 37

array indexes, 91
ARRAY return value (ref

function), 494
array variables, 86
arrays, 86

accessing elements, 90-91
@ARGV, 165
associative arrays, 116
creating

list syntax, 87-88
qw operator, 88

defining, 86-87
deleting elements, 95-96
extracting data into,

126-127
finding end of, 93-94
finding length of, 92,

100-101
growing to fit elements,

91-92
hashes of arrays, 118-119,

500-501
iterating over, 92-93
multidimensional, 498-499
negative array indexes,

106
references, 483
slices, 192-193
sorting, 92

splicing, 619-620
statistics script, 96-98
testing for existence of

elements, 96
undefined values, 94-95
variables, 86

arrow operator (->), 492
artists database, 505

artists.pl script, 506-507
pattern matching, 509
&process() subroutine,

508
&read_input() subroutine,

508
assignment operators,

34-35, 58
assignments

context, 101-102
lists, 89-90

associative arrays, 116
associativity

associative arrays, 116
operators, 61-62

asterisk (*), 36, 227, 247-249
at symbol (@), 485
atan2 function, 78, 592
attributes, extracting from

HTML tags, 249-250
auth_type function, 427
autoloaded methods,

532-533
avoiding references, 510-511

B

b command (debugger),
303, 310-311

b template character (pack
function), 609

$b variable, 193-194

$b variable 647

How can we make this index more useful? Email us at indexes@samspublishing.com

30 0355 index 5/9/02 2:40 PM Page 647

backquote (`), 456-457
backreferences (matches),

245
backslash (\), 483, 524
bare blocks, 144
barewords, 49
BEGIN function, 345
BEGIN label, 162
$bigmatch variable (address

book application), 356
bin directory, 641
binary files

compatibility, 634
installation, 631
reading/writing, 387

bind function, 539, 593
binding

files, 596
network addresses to sock-

ets, 593
variables, 624

binmode function, 387, 593
bitwise operators, 78
bless function, 527-528, 593
blocks, 144

bare blocks, 144
continue block, 168-169
evaluating, 599
local variables, 289
references, 493-494

books, Programming Perl,
22

boolean context, 99-100
boolean operators, 43-44
breakpoints, 302-303, 310
bugs, fixing. See debugger

C

c command (debugger), 302,
311

%c format (sprintf func-
tion), 620

C template character (pack
function), 609

calculator, 38
caller function, 292, 593
calling

CGI (Common Gateway
Interface) scripts, 428

functions, 76-77
subroutines, 272-273

Can’t open perl script
(error message), 17

carp function, 331
Carp module (CGI.pm), 421
case statement, 169
cc compiler, 632
CGI (Common Gateway

Interface), scripts, 8,
410-411

calling, 428
CGI.pm module, 416

importing, 417
input processing,

417-418
subroutines, 419-420

cookies, 429
creating, 413-415
debugging, 420-421
embedding in Web servers,

429-430
HTML forms, 412-413
HTML output, generating

CGI.pm subroutines,
419-420

Here documents, 419
print statement, 418

online resources, 410
redirection, 428
security, 429
Survey example, 421-422

code listing, 423-426
HTML form, 422-423

testing, 415-416
troubleshooting, 431
variables, 427-428
Web server requirements,

410
:cgi import tag (CGI.pm

module), 417
CGI.pm module, 416

importing, 417
input processing, 417-418
subroutines, 419-420

ChangeNotify module
(Win32), 473

changing
file permissions, 594
referents, 486-487

characters
matching, 222

? quantifier metachar-
acter, 227

negated character
classes, 224

sequences of, 218-219
special character

classes, 224-225
reversing order of, 207

character classes (pattern
matching)

? quantifier metacharacter,
227

negated character classes,
224

special character classes,
224-225

648 backquote (`)

30 0355 index 5/9/02 2:40 PM Page 648

chdir function, 440, 594
&check_date() subroutine,

578
chmod function, 440, 594
chomp function, 51, 69, 79,

106, 594
chop function, 69, 79, 106,

594-595
chown function, 440, 595
chr function, 78, 595
chroot function, 464, 595
circular references, 495
classes

constructors, 527
destructors, 532
inheritance, 530-531, 552
instance variables,

529-530
methods

autoloaded, 532-533
defining, 531-532

close function, 387-388, 472,
595

closedir function, 443, 595
closing

directories, 595
file handles, 387-388, 595
sockets, 617

cmp operator, 78, 193
code listings

address book
&read_addr() subrou-

tine, 357-358
address.pl script,

362-364
args.pl script, 490-491
artists.pl script, 506-507
checkprice.pl script,

131-132
cookie.pl script, 20, 47
cookie2.pl script, 48
count.pl script, 234

echo.pl script, 19
extractattrs.pl, 249-250
hello.pl script, 15
imagegen.pl script, 444
img.pl script, 257-258
log file analyzer

&getdomains() subrou-
tine, 372

&gettop() subroutine,
374

&splitline() subroutine,
367-368

weblog.pl, 374-377
morenames.pl script,

198-199
morestats.pl script, 96-98
name.html file, 412
names.pl script, 128
numspeller.pl script,

180-181
package example, 323
pairs1.pl script, 534-535
picknum.pl script, 152
processes.pl script, 460
scope script, 343-344
socket program, 536-537
sr.pl script, 391-392
stats.pl script, 65
statsfinal.pl script,

177-178
statsmenu.pl script,

287-289
statssubbed.pl script,

273-274
stillmorestats.pl script,

123-124
stock portfolio manager

data file, 561
portfolio.cgi source

code, 566-573
stock.pl script, 73

subject.pl script, 388
survey.html, 422-425
survey.pl script, 423-425
switches.pl script, 398
temperature.pl script, 39
todolist.pl, 579-587
values.pl script, 231-232
webbuild.pl script,

185-186
wrapit.pl script, 338

CODE return value (ref
function), 494

combining list elements, 205
command line

arguments, 393-394
switches, 394-397

getopt function,
397-398

getopts function,
395-397

switches.pl script,
398-399

Command not found (error
message), 17

commands. See also func-
tions; methods; subrou-
tines

add, 562
debugger

- command, 308
b command, 303, 310
c command, 302
D command, 310
h command, 305-306
l command, 301, 307,

310
n command, 301
q command, 304
r command, 302, 306
reference table,

311-312

commands 649

How can we make this index more useful? Email us at indexes@samspublishing.com

30 0355 index 5/9/02 2:40 PM Page 649

s command, 301, 303,
308

t command, 304-306
V command, 309
w command, 308
x command, 301, 309

del, 562
executing, 599
gzip, 631
list, 562
make, 636
man, 22
perl, 15, 524-525
perldoc, 22
ppm, 341
pwd, 440
tar, 631
Unix commands, 455-457
view, 562

comments, 18
Common Gateway

Interface. See CGI scripts
comparison operators,

41-42
compilers

cc, 632
configuring, 634-635
gcc, 632
warnings, 18-19

compiling Perl source code,
632

complex statements, 144
Comprehensive Perl Archive

Network. See CPAN mod-
ules

concatenation, 60
conditionals, 143-145

conditional operator,
147-148

if statement, 145-146
if...else statement, 145
if...elsif statement, 146

logical operators as,
148-149

modifiers, 168
unless statement, 147

Configure program, 633-634
binary compatibility, 634
compilers, 634-635
directory setup, 634
e-mail addresses, 635
extensions, 636
host and domain names,

635
libraries, 634-635
man pages, 635
memory module support,

634
publicly executable

scripts, 635
setuid emulation, 634
shebang value, 635

configuring Perl for Unix
systems, 633-634

binary compatibility, 634
compilers, 634-635
directory setup, 634
e-mail addresses, 635
extensions, 636
host and domain names,

635
libraries, 634-635
man pages, 635
memory module support,

634
publicly executable

scripts, 635
setuid emulation, 634
shebang value, 635

connect function, 539, 596
constructors, 527
context, 101-102

arrays, 100-101
assignments, 101-102

boolean context, 99-102
defined, 99
functions, 103
hashes, 121-122
list context, 247
scalar boolean context,

246
subroutines, 282
void context, 107

continue block, 168-169
controls, loop controls,

160-164
labeling loops, 162-164
last keyword, 161-162
next keyword, 161-162
redo keyword, 161-162

converting
Fahrenheit/Celsius, 39-40
strings

to lowercase, 605
to/from numbers, 33
to uppercase, 625

Cookie Monster script,
20-21, 46-48

cookies, 429
cos function, 78, 596
cosines, 596
counting script, 234-235
&countsum() subroutine,

285
CPAN (Comprehensive Perl

Archive Network) mod-
ules, 329

disadvantages, 339
downloading, 339-340
importing, 341
installing, 340-341

create function, 472
croak function, 331
crypt function, 596
curly brackets ({}), 228-229,

247-249, 272

650 commands

30 0355 index 5/9/02 2:40 PM Page 650

current working directory,
changing, 440-441

cwd function, 441
Cwd module, 441, 446
Cygwin project, 466

D

D command (debugger),
310-312

%d format (sprintf func-
tion), 620

-d option (debugger), 305
d template character (pack

function), 610
data function, 544
data initialization (To Do

list application), 575
data structures, nested, 496

accessing, 504-505
anonymous data, 497-498
artist database example,

505-509
creating, 502-504
defined, 496
hashes of arrays, 500-501
hashes of hashes, 501-502
multidimensional arrays,

498-499
databases, artists database,

505
artists.pl script, 506-507
pattern matching, 509
&process() subroutine,

508
&read_input() subroutine,

508

datasend function, 544
DBM files, 401
dbmclose function, 596
dbmopen function, 596
debugger, 299-308

alternative debuggers, 314
breakpoints, 303, 310
calling scripts, 305
CGI (Common Gateway

Interface) scripts,
420-421

command prompt, 300
command reference,

311-312
commands

- command, 308
b command, 303, 310
c command, 302
D command, 310
h command, 305-306
l command, 301, 307,

310
n command, 301
q command, 304
r command, 302, 306
s command, 301, 303,

308
t command, 304, 306
V command, 309
w command, 308
x command, 301, 309

executing lines of code,
301

graphical debugger,
312-314

listing lines of code, 301
listing source code,

307-308
perl5db.pl file, 314
printing variable values,

301, 309
quitting, 304

running, 305-306
running Perl interactively,

314
stepping through scripts,

307
tracing script execution,

304-307
declaring

global variables
my modifier, 323-324
use strict statement,

324-325
local variables

local modifier,
326-327, 343-345

my modifier, 325-326,
343-345

decrement operator, 59
$default variable (log ana-

lyzer), 367
defined function, 94, 108,

597
defining

arrays, 86-87
lists, 86-87
methods, 531-532
subroutines, 271-272, 291

del command, 562
delete function, 108, 120,

134, 597
DeleteKey function, 472
DeleteValue function, 472
delete_portfolios() subrou-

tine, 564
delete_stock() subroutine,

564
deleting

array elements, 95-96
directories, 443-444, 615
files, 439
hash elements, 120, 597
links, 439

deleting 651

How can we make this index more useful? Email us at indexes@samspublishing.com

30 0355 index 5/9/02 2:40 PM Page 651

list elements, 201
pop function, 201-202
shift function, 202-203
splice function, 203-204

delimiters, 236-237
del_stock command, 562
dereferencing references,

485-486
blocks, 493-494
list elements, 492-493

destructor methods, 532
Devel DProf module, 314
diagnostics pragma, 336
die function, 384-385, 597
directories

bin, 641
closing, 595
configuring, 634
creating, 443-444, 607
current working directory,

changing, 440-441
deleting, 615
directory handles, 442-443
Docs, 641
eg, 641
html, 642
lib, 642
listing files in

directory handles,
442-443

file globbing, 441-442
opening, 609
reading, 613
removing, 443-444
site, 642
timestamps, 402

directory handles, 442-443
DirHandle module, 446
&display_all() subroutine,

576-577
&display_data() subroutine,

576-577

displaying
POD (plain old documen-

tation) files, 539
To Do list, 576-577

division operator, 37
do function, 170, 597
do...while loops, 151-152
Docs directory, 641
documentation. See online

documentation
dollar sign ($), 33, 485
domain names, 635
DomainName subroutine

(Win32), 466
dot operator (.), 60, 225
double quotes (“), 15, 31
double-quoted strings, 31-32

creating, 188
escape characters, 32
variable interpolation, 31

downloading
CPAN (Comprehensive

Perl Archive Network)
modules, 339-340

Perl source code, 631-632,
642

Win32 Perl, 640
droplets, saving scripts as,

166
dump function, 598
dynamic scope, 326

E

%e format (sprintf func-
tion), 621

e option
pattern matching, 256
perl command, 524

e-mail
address configuration, 635
sending, 543-544

each function, 133, 598
Echo script, 19-20
eg directory, 641
elements (lists)

adding, 201
push function, 201-202
splice function, 203-204
unshift function, 202-203

combining, 205
filtering, 205-206
removing, 201

pop function, 201-202
shift function, 202-203
splice function, 203-204

reversing order of, 204
emacs, 315
embedded newlines, pattern

matching, 254-255
embedding POD (plain old

documentation) files, 541
empty strings, 33
enabling warnings, 18-19
encrypting strings, 596
END function, 345
END label, 162
end of arrays, finding, 93-94
English module, 336-337
%ENV hash, 455
environment variables,

454-455
eof function, 400, 598
equal sign (=), 34-35, 41-42
equality operators, 41-42
errors

error messages, 17
processing

getopts function, 397
To Do list application,

578
rounding-off error (floating-

point arithmetic), 37

652 deleting

30 0355 index 5/9/02 2:40 PM Page 652

escape characters, 32
lowercase, 49
uppercase, 49
pattern matching, 256

eval function, 541-542, 599
evaluating code at runtime,

541-542
EventLog module (Win32),

473
exec function, 464, 599
executing

debugger, 305-306
Hello World script, 16-17
Perl, 642, 314
system commands, 599
Unix commands, 455-457

exercises
day 1, 26
day 2, 53
day 3, 81-82
day 4, 111
day 5, 136
day 6, 171-172
day 8, 212
day 9, 239
day 10, 266
day 11, 294-295
day 12, 316
day 13, 349
day 15, 404-405
day 16, 433
day 17, 448
day 18, 477
day 19, 516-517
day 20, 553

exists function, 96, 108, 120,
134, 599

exit function, 462, 599
exiting processes, 462
exp function, 78, 600
exponent operator, 36

@EXPORT variable,
332-333

@EXPORT_OK variable,
332-333

expressions. See regular
expressions

Extensible Markup
Language (XML), 545-547

extractattrs.pl script,
249-250

extracting data
into arrays, 126-127
into hashes, 126-127
Perl source code, 632
substrings, 208-209

extreme prejudice, killing
processes with, 605

F

%f format (sprintf func-
tion), 621

f template character (pack
function), 610

Fahrenheit/Celsius conver-
sion script, 39-40

FAQ (Frequently Asked
Questions) files, 315

fcntl function, 401, 600
file globbing, 342, 441-442
file handles, 68

closing, 387-388, 595
creating with open func-

tion, 382-384
die function, 384-385
open function

features/shortcuts,
399-400

reading input from,
385-386

references, 512
STDERR, 382
STDIN, 68-69, 104, 382
STDOUT, 68-70, 382
writing output to, 386-387

file-management functions,
439-440

File module (Win32), 473
File not found (error mes-

sage), 17
File Path module, 443
file-related built-in func-

tions, 400-401
file-related modules,

445-446
file tests, 389

operators, 389-390
search and replace pro-

gram example, 391-393
FileCache module, 446
FileHandle module, 446
fileno function, 440, 600
files. See also scripts

binary files
compatibility, 634
installation, 631
reading/writing, 387

binding, 596
DBM files, 401
FAQ files, 315
file globbing, 342,

441-442
file handles, 68

closing, 387-388
creating with open

function, 382-384
die function, 384-385
open function fea-

tures/shortcuts,
399-400

reading input from,
385-386

files 653

How can we make this index more useful? Email us at indexes@samspublishing.com

30 0355 index 5/9/02 2:40 PM Page 653

STDERR, 382
STDIN, 68-69, 104,

382
STDOUT, 68-70, 382
writing output to,

386-387
file input/output, 165-167,

400-401
file-management func-

tions, 439-440
file-related built-in func-

tions, 400-401
file-related modules,

445-446
file tests, 389

operators, 389-390
search and replace pro-

gram example,
391-393

index.html, 444-445
links

creating, 438-439
hard links, 438
symbolic links, 438

listing, 441
directory handles,

442-443
file globbing, 441-442

loading, 614
log files

analyzer program,
364-377

structure, 365-366
opening, 608
ownership, 595
permissions, 594
POD (plain old documen-

tation), 539
creating, 540-541
displaying, 539
embedding, 541

reading from, 382-384,
388-389

removing, 439
renaming, 438, 613
testing properties of, 389

operators, 389-390
search and replace pro-

gram example,
391-393

timestamps, 402
writing to, 382-384,

388-389
FileSecurity module

(Win32), 473
File::Basename module, 446
File::CheckTree module,

446
File::Copy module, 446
File::Find module, 446
File::Path module, 446
filtering list elements,

205-206
finding

end of arrays, 93-94
substring position, 208
substrings, 603

flexibility of Perl, 11
floating-point division oper-

ator, 36
floating-point numbers, 30,

37
flock function, 401, 600
for loops, 156-160

infinite for loops, 160
syntax, 158

foreach loops, 93, 121,
156-158, 164

fork function, 459-461, 600
:form import tag (CGI.pm

module), 417
format codes, 71-72
format function, 600

FormatMessage subroutine
(Win32), 466

formatting strings, 620-621
formline function, 601
forms. See CGI (Common

Gateway Interface) scripts
Frequently Asked Questions

(FAQ), 315
FsType subroutine (Win32),

466
function-like operators, 79
functions. See also com-

mands; methods; subrou-
tines

abs, 78, 592
accept, 427, 539, 592
alarm, 464, 592
atan2, 78, 592
auth_type, 427
BEGIN, 345
bind, 539, 593
binmode, 387, 593
bless, 527-528, 593
caller, 292, 593
calling, 76-77
carp, 331
chdir, 440, 594
chmod, 440, 594
chomp, 51, 69, 79, 106,

594
chop, 69, 79, 106, 594-595
chown, 440, 595
chr, 78, 595
chroot, 464, 595
close, 387-388, 472, 595
closedir, 443, 595
compared to subroutines,

270
connect, 539, 596
context, 103
cos, 78, 596
create, 472

654 files

30 0355 index 5/9/02 2:40 PM Page 654

croak, 331
crypt, 596
cwd, 441
data, 544
datasend, 544
dbmclose, 596
dbmopen, 596
defined, 94, 108, 327, 597
delete, 108, 120, 134, 597
DeleteKey, 472
DeleteValue, 472
die, 384-385, 597
do, 170, 597
dump, 598
each, 133, 598
END, 345
eof, 400, 598
eval, 541-542, 599
exec, 464, 599
exists, 96, 108, 120, 134,

599
exit, 462, 599
exp, 78, 600
fcntl, 401, 600
fileno, 440, 600
flock, 401, 600
fork, 459-461, 600
format, 600
formline, 601
get, 543
getc, 401, 601
getgrent, 464
getgrgid, 464
getgrnam, 464
GetKeys, 472
getlogin, 601
getopt, 397-398
getopts, 395-397
getpeername, 539, 601
getpgrp, 464, 601
getppid, 464, 601
getprint, 543

getpriority, 465, 601
getpwent, 465
getpwnam, 465
getpwuid, 465
getsockname, 539, 602
getsockopt, 539, 602
getstore, 543
GetValues, 472
glob, 442, 602
gmtime, 602
goto, 602
grep, 195-196, 218, 603
hex, 603
import, 603
index, 78, 195, 208, 603
int, 37, 51, 78, 604
ioctl, 401, 604
join, 205, 604
keys, 121-122, 133-134,

604
kill, 463, 604-605
lc, 78, 605
lcfirst, 78, 605
length, 78, 605
link, 438-439, 605
listen, 539, 605
Load, 472
local, 606
localtime, 606
log, 78, 606
lstat, 400, 606
mail, 544
map, 205-206, 606-607
mkdir, 443-444, 607
msgctl, 607
msgget, 607
msgrcv, 607
msgsnd, 607
my, 608
next, 608
no, 608
number functions, 78

oct, 33, 50, 608
open, 472, 608

arguments, 382
file handles, 382-384,

399-400
opendir, 442, 609
ord, 78, 609
pack, 400, 609-610
package, 322, 610
param, 418, 575
path_info, 427
path_translated, 427
pipe, 610
pop, 95, 108, 201-202,

611
pos, 236, 611
print, 18, 51, 70, 79,

103-105, 386-387, 611
printf, 37, 51, 79, 611

format codes, 71-72
printing to output

streams, 70-72
writing output to file

handles, 386-387
push, 108, 201-202, 612
qq, 188
query_string, 427
quit, 544
quotemeta, 612
rand, 78, 155, 170, 612
raw_cookie, 427
read, 401, 612
readdir, 442, 613
readlink, 438, 613
recv, 539, 613
redirect, 428
redo, 613
ref, 494, 613
referer, 427
remote_addr, 427
remote_host, 427
remote_ident, 427

functions 655

How can we make this index more useful? Email us at indexes@samspublishing.com

30 0355 index 5/9/02 2:40 PM Page 655

remote_user, 428
rename, 438, 613
request_method, 428
require, 345-346, 614
reset, 614
return, 275-276, 614
reverse, 78, 204, 207, 614
rewinddir, 401, 614
rindex, 78, 208
rmdir, 443-444, 615
Save, 472
scalar, 103, 108, 615
script_name, 428
seek, 401, 615
seekdir, 401, 615
select, 400-401, 615
semctl, 615
semget, 616
semop, 616
send, 539, 616
server_name, 428
server_port, 428
server_software, 428
setgrent, 464
setpgrp, 465, 616
setpriority, 616
setpwent, 465
setsockopt, 539, 616
SetValue, 472
shift, 202-203, 617
shmctl, 617
shmget, 617
shmread, 617
shmwrite, 617
shutdown, 539, 617
sin, 78, 617
sleep, 618
socket, 539, 618
socketpair, 539, 618
sort, 92, 108, 193-194,

618-619
splice, 203-204, 619-620

split, 134, 205, 620
data extraction,

126-127
pattern matching,

252-253
sprintf, 37, 51, 79, 620-621

format codes, 71-72
printing to output

streams, 70-72
sqrt, 78, 621
srand, 155, 170, 621
stat, 400, 621-622
string functions, 78
study, 622
substr, 78, 208-209, 622
symlink, 438-439, 622
syscall, 401, 623
sysopen, 401, 623
sysread, 401, 623
sysseek, 623
system, 455-456, 623
syswrite, 401, 623
tell, 401, 624
telldir, 401, 624
tie, 624
tied, 624
time, 624
times, 624
to, 544
truncate, 400, 625
uc, 78, 625
ucfirst, 78, 625
umask, 625
undef, 95-96, 108, 625
unlink, 439, 625
unpack, 400, 625
unshift, 202-203, 626
user-defined functions, 270
user_agent, 428
user_name, 428
utime, 440, 626
values, 121, 134, 626
vec, 626

virtual_host, 428
wait, 462-463, 626
waitpid, 462-463, 626
wantarray, 282, 627
warn, 627
write, 401, 627
XMLin, 546-547
XMLout, 547

G

%G format (sprintf func-
tion), 621

garbage collection (memo-
ry), 495-496

gcc compiler, 632
generating HTML

(Hypertext Markup
Language) output, 418

CGI.pm subroutines,
419-420

Here documents, 419
print statement, 418

get function, 543
GET method, 428
getc function, 401, 601
GetCwd subroutine, 467
&getday() subroutine, 370
&getdomains() subroutine,

372-373
getgrent function, 464
getgrgid function, 464
getgrnam function, 464
&getinput() subroutine, 283
GetKeys function, 472
GetLastError subroutine

(Win32), 467
getlogin function, 601
GetNextAvailDrive subrou-

tine (Win32), 467
getopt function, 397-398

656 functions

30 0355 index 5/9/02 2:40 PM Page 656

Getopt module, 394
getopt function, 397-398
getopts function, 395-397
Long module, 446
Std module, 446

getopts function, 395-397
GetOSVersion subroutine,

467
getpeername function, 539,

601
getpgrp function, 464, 601
getppid function, 464, 601
getprint function, 543
getpriority function, 465,

601
getpwent function, 465
getpwnam function, 465
getpwuid function, 465
GetShortPathName subrou-

tine, 467
getsockname function, 539,

602
getsockopt function, 539,

602
getstore function, 543
GetTickCount subroutine,

467
&gettop() subroutine,

373-374
GetValues function, 472
get_current_price() subrou-

tine, 566
glob function, 442, 602
GLOB return value (ref

function), 494
global variables, 320

address book application,
356-357

declaring
my modifier, 323-324
use strict command,

324-325

disadvantages, 320
list-separator variable, 107
log file analyzer, 366-367
output-field variable, 107
output-record variable,

107
packages

advantages, 321
creating, 322
example, 322-323
symbol tables, 321

globbing (file), 342, 441-442
gmtime function, 602
goto function, 602
graphical debugger, 312-314
graphical user interfaces

(GUIs), creating, 475
greater than operator, 41
greater than or equals oper-

ator, 41
greedy metacharacters,

247-249
Greenwich standard time,

converting to, 602
grep function, 195-196, 218,

603
growing arrays to fit ele-

ments, 91-92
GUIs (graphical user inter-

faces), creating, 475
gzip command, 631

H

h command (debugger),
305-306, 312

H template character (pack
function), 609

hard links, 438, 605

hard references. See refer-
ences

hash pair operator, 493
HASH return value (ref

function), 494
hashes, 115-117. See also

lists
alphabetical list of names

sample script, 128-129
context, 121-122
converting into lists, 119
creating, 117-119
each function, 133
elements

accessing, 119-120
deleting, 120, 597

%ENV, 455
extracting data into,

126-127
hashes of arrays, 500-501
hashes of hashes, 501-502
internal state, 122
keys function, 133
references, 484
slices, 192-193
values

assigning, 119-120
processing all values,

121
variables, 116

Hello World script, 16-18
CGI (Common Gateway

Interface) script
CGI.pm module, 416
creating, 413-415
HTML form, 412-413
testing, 415-416

code explanation, 17-18
creating, 15-16
one-liner, 13-15
running, 16-17
troubleshooting, 17

Hello World script 657

How can we make this index more useful? Email us at indexes@samspublishing.com

30 0355 index 5/9/02 2:40 PM Page 657

help, 22-23
man pages, 22, 48

configuring, 635
perlfunc, 591

newsgroups, 23
Programming Perl, 22

Here documents, 419
hex function, 603
hexadecimal numbers, 33
histograms (statistics script)

histogram of frequencies,
122-126

vertical histogram,
176-180

history of Perl, 8-9
host names, 635
HTML (Hypertext Markup

Language)
generating, 418

CGI.pm subroutines,
419-420

Here documents, 419
print statement, 418

index.html file, 444-445
tags, extracting attributes

from, 249-250
Text-to-HTML Converter

script, 182-188
:html import tag (CGI.pm

module), 417
html directory, 642
:html2 import tag (CGI.pm

module), 417
:html3 import tag (CGI.pm

module), 417

I

i option
pattern matching, 256
perl command, 525

I template character (pack
function), 609

I/O (input/output)
expert-level I/O, 400
file handles

closing, 387-388
creating with open

function, 382-384
die function, 384-385
open function fea-

tures/shortcuts,
399-400

reading input from,
385-386

STDERR, 382
STDIN, 68-69, 104,

382
STDOUT, 68-70, 382
writing output to,

386-387
file-related functions,

400-401
files, 165-167, 400-401

binary files, 387
DBM files, 401
reading from, 382-384
while loops, 165, 167
writing to, 382-384

printing to output streams,
70-72

standard output
file handles, 68
writing to, 70, 386-387

I18N, 547-548
Idiot’s Guide to Solving

CGI Problems (Web site),
410

if modifier, 168
if statement, 145-146
if...else statement, 145
if...elsif statement, 146
image extractor script,

256-260

imagegen.pl script, 444-445
import function, 603
import tags, 334
importing

CGI.pm module, 417
CPAN (Comprehensive

Perl Archive Network)
modules, 341

modules
import tags, 334
require function,

345-346
use statement, 329-330,

333-334
increment operator, 59
index function, 78, 195, 208,

603
index.html file, 444-445
indexes

array indexes, 91
negative array indexes, 106

infinite loops, 150, 160
inheritance, 530-531, 552
&init() subroutine, 575
initializing packages, 345
input. See I/O (input/output)
input files, 184
input operator, 165-167,

385-386
inserting list elements, 201

push function, 201-202
splice function, 203-204
unshift function, 202-203

installing Perl, 12-13
CPAN (Comprehensive

Perl Archive Network)
modules, 340-341

Perl for Unix systems, 629
binary versions, 631
checking for existing

installations, 629-630
Configure program,

633

658 help

30 0355 index 5/9/02 2:40 PM Page 658

extraction and compila-
tion, 632

make command, 636
source code, 631-632
vendor packages,

630-631
Win32 Perl, 639-640

directories, 641-642
download process, 640
online resources, 643
options, 641
packages, 641
source code, 642

instance variables, 529-530
int function, 37, 51, 78, 604
integers, 30
internal states (hashes), 122
internationalization,

547-548
interpreted languages, 10
interpreter, embedding in

Web servers, 429-430
invoking subroutines,

272-273
ioctl function, 401, 604
IPC module (Win32), 473
IsWin95 subroutine, 467
IsWinNT subroutine, 467
iteration

arrays, 92-93
for loops, 156-160
foreach loops, 156-158

J-K

join function, 205, 604
joining list elements, 205,

604

keys function, 121-122,
133-134, 604

keywords. See also com-
mands

last, 161-162
next, 161-162
redo, 161-162
sub, 272

kill function, 463, 604-605
killing processes, 605

L

l command (debugger), 301,
307, 310-312

l template character (pack
function), 609-610

labels
BEGIN label, 162
END label, 162
loop labels, 162-164

last function, 605
last keyword, 161-162
lc function, 78, 605
lcfirst function, 78, 605
length function, 78, 605
length of arrays, finding, 92,

100-101
less than operator, 41
less than or equals operator,

41
lexical scope, 326
lib directory, 642
libraries

configuring, 634-635
defined, 327

libwww-perl (LWP) module,
542-543

line boundaries (pattern
matching), 219-221

link function, 438-439, 605
links

creating between files,
438-439

hard links, 438, 605
removing, 439
symbolic links, 438

creating, 622
reading, 613

list command, 562
list context, 247
list data, 30, 85-86

arrays, 86
accessing elements,

90-91
array variables, 86
creating, 87-88
defining, 86-87
deleting elements,

95-96
finding end of, 93-94
finding length of, 92,

100-101
growing to fit ele-

ments, 91-92
indexes, 91
iterating over, 92-93
qw operator, 88
sorting, 92
statistics script, 96-98
testing for existence of

elements, 96
undefined values,

94-95
context, 101-102

assignments, 101-102
boolean context,

99-100, 102
defined, 99
functions, 103
void context, 107

list data 659

How can we make this index more useful? Email us at indexes@samspublishing.com

30 0355 index 5/9/02 2:40 PM Page 659

lists, 86
assignments, 89-90
chomp function, 106
chop function, 106
creating, 87-88
defining, 86-87
list syntax, 117-118
nesting, 87
qw operator, 88
range operator, 88-89

list-separator variable, 107
listdata.txt file (To Do list

application), 574-575
listen function, 539, 605
listing

files in directories, 441
directory handles,

442-443
file globbing, 441-442

source code (debugger),
307-308

listings. See code listings
lists, 86. See also hashes

@ARGV list, 393-394
assignments, 89-90
chomp function, 106
chop function, 106
converting hashes to, 119
creating, 87-88

qw operator, 88
range operator, 88-89

defining, 86-87
elements

adding, 201-204
combining, 205
filtering, 205-206
joining, 604
removing, 201-204
reversing, 614
reversing order of, 204

nesting, 87
printing, 104-105

list-separator variable,
107

output-field variable,
107

output-record variable,
107

variable interpolation,
105

references, 492-493
searching, 194

grep function, 195-196,
603

index function, 195
morenames.pl script,

196-201
pattern matching, 195

sorting, 618-619
morenames.pl script,

196-201
sort function, 193-194

splitting, 205
list_portfolios() subroutine,

563
literals, 33
Load function, 472
loading files, 614
local function, 606
local modifier, 326-327

compared to my modifier,
343

example, 343-345
local variables, 320, 325

blocks, 289
declaring

local modifier,
326-327, 343-345

my modifier, 325-326,
343-345

subroutines, 276-278

localtime function, 606
log files

analyzer program, 364
global variables,

366-367
log processing,

367-370
output, 364-365
printing results,

371-374
weblog.pl script,

374-377
structure, 365-366

log function, 78, 606
logarithms, 606
logical operators, 43-44,

148-149
LoginName subroutine, 467
loop controls, 160-164

labeling loops, 162-164
last keyword, 161-162
next keyword, 161-162
redo keyword, 161-162

loops, 143-144. See also
statements

do...while loops, 151-152
for loops, 156-160

infinite for loops, 160
syntax, 158

foreach loops, 93, 121,
156-158, 164

infinite loops, 150
labeling, 162-164
modifiers, 168
patterns, 233-235
pick a number script,

152-156
until loops, 151
while loops, 149-151,

165-167, 283

660 list data

30 0355 index 5/9/02 2:40 PM Page 660

lowercase
converting strings to, 605
converting to uppercase,

625
escapes, 49

lstat function, 400, 606
LWP (libwww-perl) module,

542-543

M

m option (pattern match-
ing), 256

m/, / (pattern match) opera-
tor, 45-46

m// (regular expression)
operator, 218

Mac modules, 329
MacPerl debugger, 305
mail (e-mail), sending,

543-544
mail function, 544
make command, 636
man command, 22
man pages, 22

configuring, 635
FAQ (Frequently Asked

Questions) files, 315
perlfunc, 591
pod format, 22

map function, 205-206,
606-607

matches (regular expres-
sions), 243. See also pat-
tern matching

backreferences, 245
list context, 247
match variables, 246, 263
scalar boolean context,

246

matching patterns. See pat-
tern matching

math operators
floating-point numbers, 37
precedence, 36
rounding, 37

memory. See also references
garbage collection,

495-496
memory module support,

634
messages

e-mail messages, sending,
543-544

error messages, 17
methods. See also com-

mands; functions
autoloaded, 532-533
defining, 531-532
destructors, 532
GET, 428
POST, 428

mkdir function, 443-444,
607

modifiers
if, 168
local, 326-327

compared to my modi-
fier, 343

example, 343-345
my, 277

compared to local
modifier, 343

example, 344-345
global variable declara-

tions, 323-324
local variable declara-

tions, 325-326
unless, 168
until, 168
while, 168

modules, 11, 327
accessing, 330-331
CGI.pm, 416-417
CPAN (Comprehensive

Perl Archive Network)
modules, 329

disadvantages, 339
downloading, 339-340
importing, 341
installing, 340-341

Cwd, 446
defined, 328
DirHandle, 446
English, 336-337
@EXPORT variable,

332-333
@EXPORT_OK variable,

332-333
FileCache, 446
FileHandle, 446
File

File::Basename, 446
File::CheckTree, 446
File::Copy, 446
File::Find, 446
File::Path, 446

Getopt, 394
Getopt::Long, 446
Getopt::Std, 446
getopt function,

397-398
getopts function,

395-397
importing

import tags, 334
require function,

345-346
use statement, 329-330,

333-334
LWP (libwww-perl),

542-543
Mac modules, 329

modules 661

How can we make this index more useful? Email us at indexes@samspublishing.com

30 0355 index 5/9/02 2:40 PM Page 661

Net::SMTP, 543-544
object-oriented, 331-332,

534-536
obtaining, 328-329
pragmas

defined, 335
diagnostics, 336
strict, 336

SelectSaver, 446
Text::Wrap, 337-338
Win32 modules, 329

ChangeNotify, 473
EventLog, 473
File, 473
FileSecurity, 473
IPC, 473
Mutex, 473
NetAdmin, 473
NetResource, 473
OLE, 473
Process, 470-471, 474
Registry, 471-474
Semaphore, 474
Service, 474

XML
XML::Parser, 545
XML::Simple, 545-547

modulus operator, 36
morenames.pl script,

198-199
morestats.pl script, 97
MsgBox subroutine, 467-469
msgctl function, 607
msgget function, 607
msgrcv function, 607
msgsnd function, 607
multidimensional arrays,

498-499
multiple characters, pattern

matching, 130
multiple inheritance, 552

multiple line pattern match-
ing, 253-254

multiplication operator, 36
Mutex module (Win32), 473
my function, 608
my modifier, 277

compared to local
modifier, 343

example, 344-345
global variable declara-

tions, 323-324
local variable declarations,

325-326

N

n command (debugger),
301, 311

%n format (sprintf func-
tion), 621

n option (perl command),
525

n template character (pack
function), 610

names.pl script, 128
naming

arguments in subroutines,
281

array variables, 86
files, 613
variables, 34

negated character classes,
pattern matching, 224

negative array indexes, 106
nested data structures, 496

accessing, 504-505
anonymous data, 497-498
artist database example,

505-509
creating, 502-504

defined, 496
hashes of arrays, 500-501
hashes of hashes, 501-502
multidimensional arrays,

498-499
nesting lists, 87
NetAdmin module (Win32),

473
NetResource module

(Win32), 473
:netscape import tag

(CGI.pm module), 417
network addresses, binding,

593
networks, 475

network addresses, bind-
ing, 593

sockets
functions, 538-539
limitations, 536
sample program,

536-538
Net::SMTP module,

543-544
newlines, pattern matching,

254-255
newsgroups, 23
next function, 608
next keyword, 161-162
no function, 608
NodeName subroutine, 467
not equals operator, 41
nongreedy quantifiers, 262
not logical operator, 43
null string return value (ref

function), 494
number comparisons, 41-42
number functions, 78
number guessing game,

229-232
number speller script,

180-182

662 modules

30 0355 index 5/9/02 2:40 PM Page 662

numbers, 30-31
converting to strings, 33,

50
floating-point numbers,

30, 37
integers, 30
number comparisons,

41-42
number functions, 78
number guessing game,

229-232
number speller script,

180-182
pattern matching, 63-64

O

%o format (sprintf func-
tion), 621

o option (pattern matching),
256

object-oriented modules,
331-332

object-oriented program-
ming. See OOP

objects
creating, 528-529
references, 527

oct function, 33, 50, 608
octal numbers, 33
OLE module (Win32), 473
one-liner scripts, 13

creating, 524
defined, 524
examples, 524-525
Hello World example,

14-15
simple calculator, 38
troubleshooting, 551

online documentation, 22
FAQ (Frequently Asked

Questions) files, 315
man pages, 22

configuring, 635
FAQ (Frequently Asked

Questions) files, 315
perlfunc, 591
pod format, 22

OOP (object-oriented pro-
gramming), 526

classes, 527
constructors, 527
destructors, 532
inheritance, 530-531
instance variables,

529-530
inheritance, 552
methods

autoloaded, 532-533
defining, 531-532

objects
creating, 528-529
references, 527

sample module, 534-536
tutorials, 526-527

open function, 472, 608
arguments, 382
file handles, 382-384,

399-400
opendir function, 442, 609
opening

directories, 609
files, 608
pipes, 610
sockets, 618

operating systems. See Unix;
Windows

operators
<=> operator, 193
arithmetic operators, 36-37
arrow operator (->), 492

assignment operators,
34-35, 58

associativity, 61-62
backslash (\), 483
bitwise operators, 78
boolean operators, 43-44
cmp operator, 78, 193
conditional operator,

147-148
decrement operator, 59
dot operator, 60, 225
equality operators, 41-42
function-like operators, 79
hash pair operator (=>),

493
increment operator, 59
input operator, 165-167,

385-386
logical operators, 43-44,

148-149
pattern matching, 45-48,

63-64
pattern-match operator, 217
precedence, 43, 61-62
q// operator, 48-49
qq// operator, 49
qw operator, 88
range operator, 88-89, 106
relational operators, 41-42
return, 489-490
ternary operator, 147-148
x operator, 60-61

OR logical expressions, 222
or logical operator, 43
ord function, 78, 609
output. See also I/O

(input/output)
printing to output streams,

70-72
standard output

file handles, 68
writing to, 70, 386-387

output 663

How can we make this index more useful? Email us at indexes@samspublishing.com

30 0355 index 5/9/02 2:40 PM Page 663

output-field variable, 107
output global variables, 107
output-record variable, 107
ownership, 595

P

%p format (sprintf func-
tion), 621

p template character (pack
function), 610

pack function, 400, 609-610
package function, 322, 610
packages, 322

advantages, 321
creating, 322
example, 322-323
initializing, 345
PPM (Perl Package

Manager), 340-341
symbol tables, 321

param function, 418, 575
parentheses

backreferences, 245
calling functions, 76-77
leaving off arguments/sub-

routines, 290
parsing XML (Extensible

Markup Language),
545-547

passing
arguments into subrou-

tines, 279, 281
references from subrou-

tines, 489-490
path_info function, 427
path_translated function,

427
pattern anchors, 220

pattern matching, 129, 216,
218. See also matches

alternation, 222
character classes, 222-223,

227
character sequences,

218-219
delimiters, 236-237
digits, 63-64
escapes, 256
example, 46-48
line boundaries, 219-221
list context, 247
loops, 233-235
matching over multiple

lines, 253
newlines, 254-255
storing input, 253-254

multiple characters, 130
negated character classes,

224
number guessing game,

229-232
operators, 45-46

! operator, 236
dot operator, 225

options, 255-256
pattern metacharacter

precedence, 235
pos function, 236
quantifiers, 226-229

* metacharacter, 227
? metacharacter,

226-227
{} metacharacters,

228-229
greedy quantifiers,

247-250
lazy quantifiers, 262

ranges, 223-224

regular expressions,
216-217

scalar boolean context,
246

search and replace, 251
slash metacharacter,

236-237
special character classes,

224-225
split function, 252-253
stock price converter

example, 130-133
variables, 233
whitespace, 129
word boundaries, 219-221

pausing processes, 462-463
perl command, 15, 524-525
Perl community, 12
Perl for Unix systems

configuration, 633-634
binary compatibility,

634
compilers, 634-635
directory setup, 634
e-mail addresses, 635
extensions, 636
host and domain

names, 635
libraries, 634-635
man pages, 635
memory module sup-

port, 634
publicly executable

scripts, 635
setuid emulation, 634
shebang value, 635

installation, 629
binary versions, 631
checking for existing

installations, 629-630
Configure program,

633

664 output-field variable

30 0355 index 5/9/02 2:40 PM Page 664

extraction and compila-
tion, 632

make command, 636
source code, 631-632
vendor packages,

630-631
Perl for Windows, 465

modules
ChangeNotify, 473
EventLog, 473
File, 473
FileSecurity, 473
IPC, 473
Mutex, 473
NetAdmin, 473
NetResource, 473
OLE, 473
Process, 470-471, 474
Registry, 471-474
Semaphore, 474
Service, 474

Perl for Win32 FAQ, 466
Unix compatibility,

465-466
Win32 processes, 469-471
Win32 subroutines, 466

DomainName, 466
FormatMessage, 466
FsType, 466
GetCwd, 467
GetLastError, 467
GetNextAvailDrive,

467
GetOSVersion, 467
GetShortPathName,

467
GetTickCount, 467
IsWin95, 467
IsWinNT, 467
LoginName, 467
MsgBox, 467-469
NodeName, 467

SetCwd, 467
Sleep, 467
Spawn, 467

Perl installation
Unix systems, 629

binary versions, 631
checking for existing

installations, 629-630
Configure program,

633
extraction and compila-

tion, 632
make command, 636
source code, 631-632
vendor packages,

630-631
Windows systems,

639-640
directories, 641-642
download process, 640
online resources, 643
options, 641
packages, 641
source code, 642

Perl Package Manager
(PPM), 340-341

Perl scripts, 13. See scripts
Perl statements, 35-36
Perl Web site, 12, 48
perl5db.pl file, 314
perldoc command, 22
perlfaq man page, 315
perlfunc man page, 48, 77,

389, 591
perlop man page, 48, 77
PerlScript, 549
perltraps man page, 315
Permission denied error, 17
permissions, 594
pick a number script,

152-156
pipe (|), 400

pipe function, 610
pipes, 474, 610
plain old documentation

files. See POD files
platforms. See Unix;

Windows
plus sign (+), 130, 247-249
POD (plain old documenta-

tion) files
creating, 540-541
displaying, 539
embedding, 541

pod format (man pages), 22
pointers. See references
pop function, 95, 108,

201-202, 611
portability of Perl, 10
portfolio manager. See stock

portfolio manager
pos function, 236, 611
POST method, 428
postfix notation, 59
pound sign (#), 16
PPM (Perl Package

Manager), 340-341
ppm command, 341
pragmas

defined, 328, 335
diagnostics, 336
strict, 336

precedence
operators, 36, 43, 61-62
pattern metacharacters, 235

prefix notation, 59
&print_addr() subroutine,

361
print function, 18, 51, 79,

103-105, 611
writing output to file han-

dles, 386-387
writing to standard output,

70

print function 665

How can we make this index more useful? Email us at indexes@samspublishing.com

30 0355 index 5/9/02 2:40 PM Page 665

&print_results() subroutine,
371-372

print statement, 418
&printdata() subroutine,

284
&printhead() subroutine,

445
&printhist() subroutine, 286
printf function, 37, 51, 79,

611
format codes, 71-72
printing to output streams,

70-72
writing output to file han-

dles, 386-387
&printhist() subroutine, 286
&printmenu() subroutine,

284
printing

address book, 361
lists, 104-105

list-separator variable,
107

output-field variable,
107

output-record variable,
107

variable interpolation,
105

log file statistics, 371-374
references, 484-485
variable values (debugger),

309
printmenu() subroutine, 284
Process module (Win32),

470-471, 474
&process() subroutine,

575-576
&process_log() subroutine,

367

processes, 457-458
creating, 459

boilerplate, 459
example, 460-461

external programs, run-
ning, 464

killing, 463, 605
pausing, 462-463
stopping, 462
Win32 processes, 469-471

&processfiles() subroutine,
445

processing
form input, 417-418
hash values, 121
To Do list application,

575-576
program listings. See code

listings
Programming Perl, 22
programs. See applications;

scripts
properties (file), 389-393
protocols, CGI (Common

Gateway Interface), 8
prototypes (subroutine),

291-292
publicly executable scripts,

635
push function, 108, 201-202,

612
pwd command, 440

Q

q command (debugger),
304, 312

q// operator, 48-49
qq function, 188
qq// operator, 49

quantifiers (regular expres-
sions), 226-229

* metacharacter, 227
? metacharacter, 226-227
{} metacharacters,

228-229
greedy quantifiers,

247-250
lazy quantifiers, 262

query_string function, 427
question mark (?), 226-227
quit function, 544
quitting debugger, 304
quizzes

day 1, 25
day 2, 52-53
day 3, 81
day 4, 110
day 5, 135
day 6, 171
day 8, 211
day 9, 238
day 10, 265
day 11, 293-294
day 12, 315
day 13, 348
day 15, 403-404
day 16, 433
day 17, 447-448
day 18, 477
day 19, 515
day 20, 552-553

quotemeta function, 612
qw operator, 88

R

r command (debugger), 302,
306, 312

rand function, 78, 155, 170,
612

666 &print_results() subroutine

30 0355 index 5/9/02 2:40 PM Page 666

random numbers, generat-
ing, 612

range operator, 88-89, 106
ranges

pattern matching, 223-224
range operator, 88-89, 106

raw_cookie function, 427
read function, 401, 612
readdir function, 442, 613
reading

address book, 357-358
binary files, 387
directories, 613
files, 382-384, 388-389
input from file handles,

385-386
&read_input() subroutine,

508
readlink function, 438, 613
%rec variable (address

book application), 356
recv function, 539, 613
redirect function, 428
redirection (CGI), 428
redo function, 613
redo keyword, 161-162
ref function, 494, 613
REF return value (ref func-

tion), 494
reference, passing by, 281
references, hard, 481-482

avoiding, 510-511
circular, 495
creating, 483-484
defined, 482
dereferencing, 485-486

blocks, 493-494
list elements, 492-493

file handles, 512
garbage collection,

495-496

nested data structures, 496
accessing, 504-505
anonymous data,

497-498
artist database exam-

ple, 505-509
creating, 502-504
defined, 496
hashes of arrays,

500-501
hashes of hashes,

501-502
multidimensional

arrays, 498-499
printing, 484-485
ref function, 494
referents

changing, 486-487
defined, 482

sample script, 490-491
scalar, 511
subroutine references

arguments, 487-489
creating, 513
passing, 489-490

troubleshooting, 514-515
typeglobs, 512

references, symbolic,
511-512

referents
changing, 486-487
defined, 482

referer function, 427
regexes. See regular expres-

sions
Registry module (Win32),

471-474
regular expression operator,

218

regular expressions, 129,
216-217

building hints, 260-261
example, 46-48
image extractor script

example, 256-260
matches, 243

backreferences, 245
list context, 247
match variables, 246,

263
scalar boolean context,

246
matching digits, 63-64
multiple characters, 130
operators, 45-46
options, 263-264
pattern matching, 216-217

alternation, 222
character classes,

222-223
character sequences,

218-219
dot operator, 225
line boundaries,

219-221
negated character

classes, 224
number guessing game,

229-232
operators, 217-218
quantifiers, 226-229
ranges, 223-224
special classes,

224-225
word boundaries,

219-221
quantifiers, 226, 229

* metacharacter, 227
? metacharacter,

226-227

regular expressions 667

How can we make this index more useful? Email us at indexes@samspublishing.com

30 0355 index 5/9/02 2:40 PM Page 667

{} metacharacters,
228-229

greedy quantifiers,
247-250

lazy quantifiers, 262
search and replace, 251
split function, 252-253
stock price converter

example, 130-133
whitespace, 129

relational operators, 41-42
remote sockets, 596
remote_addr function, 427
remote_host function, 427
remote_ident function, 427
remote_user function, 428
&remove_selected() subrou-

tine, 577
removing

array elements, 95-96
directories, 443-444, 615
files, 439
hash elements, 120, 597
links, 439
list elements, 201

pop function, 201-202
shift function, 202-203
splice function,

203-204
rename function, 438, 613
renaming files, 438, 613
reordering

list elements, 204, 614
string characters, 207

repetition (strings), 60-61
request_method function,

428
require function, 345-346,

614
REs. See regular expres-

sions

reset function, 614
return function, 275-276,

614
return operator, 489-490
return values

ref function, 494
subroutines, 275-276

reverse function, 78, 204,
207, 614

reversing
list elements, 204, 614
string characters, 207

rewinddir function, 401, 614
rindex function, 78, 208
rmdir function, 443-444,

615
rounding (arithmetic opera-

tors), 37
rounding-off error (floating-

point arithmetic), 37
running

debugger, 305-306
Hello World script, 16-17
Perl, 642, 314
system commands, 599
Unix commands, 455-457

runtime, evaluating code at,
541-542

S

\s escape character, 129
s command (debugger),

301-303, 308, 311-312
%s format (sprintf func-

tion), 620
s option (pattern matching),

256
s template character (pack

function), 609

Save function, 472
saving scripts as droplets,

166
scalar data, 29-31

context, 102
arrays, finding number

of elements, 100-101
assignments, 101-102
boolean context,

99-102, 246
defined, 99
functions, 103
void context, 107

numbers, 30-31
converting to strings,

33, 50
floating-point numbers,

30
integers, 30

strings, 32-33
converting to numbers,

33, 50
double-quoted strings,

31-32
empty strings, 33
hexadecimal numbers,

33
octal numbers, 33
single-quoted strings,

31-32
variable interpolation,

50
truth values, 41
variables, 33-34

assigning values to,
34-35

naming, 34
scalar function, 103, 108,

615
scalar references, 511
SCALAR return value (ref

function), 494

668 regular expressions

30 0355 index 5/9/02 2:40 PM Page 668

scope (variables)
dynamic, 326
global, 320

declaring, 323-325
disadvantages, 320
packages, 321-323

lexical, 326
local, 320, 325-327,

343-345
script switches, 394-397

getopt function, 397-398
getopts function, 395-397
switches.pl script, 398-399

scripts, 13. See also code
listings

address book, 354
address file, 355-356
address.pl script,

361-364
global variables,

356-357
printing, 361
reading, 357-358
searching, 354-355,

358-361
alphabetical list of names,

128-129
arguments, 393-394
CGI (Common Gateway

Interface) scripts,
409-411

calling, 428
CGI.pm module,

416-418
cookies, 429
creating, 413-415
debugging, 420-421
embedding in Web

servers, 429-430
HTML forms, 412-413
HTML output, generat-

ing, 418-420

online resources, 410
redirection, 428
security, 429
Survey example,

421-426
testing, 415-416
troubleshooting, 431
variables, 427-428
Web server require-

ments, 410
comments, 18
constructing, 35-36
Cookie Monster script,

20-21, 46-48
counting script, 234-235
Echo script, 19-20
Fahrenheit/Celsius conver-

sion, 39-40
Hello World script, 16, 18

code explanation,
17-18

creating, 15-16
one-liner, 13-15
running, 16-17
troubleshooting, 17

image extractor, 256-260
internationalization,

547-548
log file analyzer

global variables,
366-367

log processing,
367-370

output, 364-365
printing results,

371-374
weblog.pl, 374-377

number guessing game,
231-232

number speller, 180-182

one-liners, 13
creating, 524
defined, 524
examples, 524-525
Hello World example,

14-15
simple calculator, 38
troubleshooting, 551

PerlScript, 549
pick a number, 152-156
POD (plain old documen-

tation) files, 539-540
creating, 540-541
embedding, 541

publicly executable
scripts, 635

saving as droplets, 166
scope script, 343-344
search and replace,

391-393
security, 548-549
setuid emulation, 634
shebang value, 635
statistics script, 64-67,

176-180
arrays, 96-98
data files, 176
histogram of frequen-

cies, 122-126
menu of operations,

282-289
subroutine version,

273-274
vertical histogram,

176-180
stepping through, 307
stock performance tracker,

72
arithmetic operations,

75-76
code listing, 72-73
input verification,

74-75

scripts 669

How can we make this index more useful? Email us at indexes@samspublishing.com

30 0355 index 5/9/02 2:40 PM Page 669

stock portfolio manager,
560

adding stocks, 564-566
code listing, 566-573
creating portfolios, 564
data file, 560-561
deleting portfolios, 564
listing portfolios, 563
returning stock prices,

566
setup, 562
supported commands,

561-562
viewing portfolios, 563
writing data, 566

stock price converter,
130-133

switches, 394-397
getopt function,

397-398
getopts function,

395-397
switches.pl script,

398-399
Text-to-HTML Converter,

182-188
input file, 184
value prompts, 183

To Do list, 573-574
adding/removing items,

577
data file, 574-575
data initialization, 575
displaying data,

576-577
form processing,

575-578
todolist.pl code listing,

579-587
updating changes, 577

tracing execution of,
306-307

warnings, 18-19

script_name function, 428
search and replace patterns,

251
search and replace script,

391-393
$search variable (address

book application), 356
searching. See also pattern

matching
address book application,

354-355, 358-361
lists, 194

grep function, 195-196,
603

index function, 195
morenames.pl script,

196-201
pattern matching, 195

security
CGI (Common Gateway

Interface) scripts, 429
taint checking, 548-549

seek function, 401, 615
seekdir function, 401, 615
select function, 400-401, 615
SelectSaver module, 446
Semaphore module

(Win32), 474
semctl function, 615
semget function, 616
semicolon (;), 35
semop function, 616
send function, 539, 616
sending e-mail, 543-544
sequences of characters,

matching, 218-219
servers

CGI (Common Gateway
Interface) scripts,
embedding, 429-430

Web servers, connecting
to, 536-538

server_name function, 428
server_port function, 428
server_software function,

428
Service module (Win32),

474
SetCwd subroutine (Win32),

467
setgrent function, 464
setpgrp function, 465, 616
setpriority function, 616
setpwent function, 465
setsockopt function, 539,

616
setuid emulation, 634
SetValue function, 472
shebang value, 635
shift function, 202-203, 617
shmctl function, 617
shmget function, 617
shmread function, 617
shmwrite function, 617
shorthand assignment oper-

ators, 58
shutdown function, 539, 617
signals, 474
simplicity of Perl, 12
sin function, 78, 617
sines, calculating, 617
single quotes (‘), 15, 31-32
site directory, 642
slash metacharacter (/),

236-237
sleep function, 618
Sleep subroutine, 467
slices, 192-193
SMTP module, 543-544
socket function, 539, 618
socketpair function, 539,

618
sockets

closing, 617
connecting to, 596

670 scripts

30 0355 index 5/9/02 2:40 PM Page 670

functions, 538-539
limitations, 536
network addresses, bind-

ing, 593
opening, 618
sample program, 536-538

sort function, 92, 108,
193-194, 618-619

<=> operator, 193
$a variable, 193-194
$b variable, 193-194
cmp operator, 193

sorting
arrays, 92
lists, 92, 193-194, 618-619

source code (Perl)
compiling, 632
downloading, 631-632, 642
extracting, 632

source code listings. See code
listings

“spaceship” operator (<=>),
193

Spawn subroutine (Win32),
467

special character classes,
pattern matching, 224-225

splice function, 203-204,
619-620

splicing arrays, 619-620
split function, 134, 205, 620

extracting data, 126-127
pattern matching, 252-253

&splitline() subroutine,
367-369

splitting
lists, 205
strings, 620

sprintf function, 37, 51, 79,
620-621

format codes, 71-72
printing to output streams,

70-72

sqrt function, 78, 621
sr.pl script, 391-392
srand function, 155, 170, 621
:standard import tag

(CGI.pm module), 417
standard input/output. See

also I/O (input/output)
file handles, 68
reading lines from, 68-69
STDIN file handle, 68-69,

104, 382
STDOUT file handle, 68,

70, 382
writing to, 70

starting debugger, 305-306
stat function, 400, 621-622
statements, 35-36. See also

loops
blocks, 144

bare blocks, 144
continue block, 168-169
local variables, 289

case, 169
complex, 144
if, 145-146
if...else, 145
if...elsif, 146
print, 418
switch, 169
unless, 147
use, 329-330, 333-334
use strict, 324-325

statistics script, 64-67,
176-180

arrays, 96-98
data files, specifying, 176
histogram of frequencies,

122-126
subroutine version,

273-274, 282-289
vertical histogram, 176-180

statsmenu.pl script, 287-289
STDERR file handle, 382
STDIN file handle, 68-69,

104, 382
STDOUT file handle, 68, 70,

382
stillmorestats.pl script,

123-124
stock performance tracking

script
arithmetic operations,

75-76
code listing, 72-73
input verification, 74-75

stock portfolio manager, 560
adding stocks, 564-566
code listing, 566-573
creating portfolios, 564
data file, 560-561
deleting portfolios, 564
listing portfolios, 563
returning stock prices, 566
setup, 562
supported commands,

561-562
viewing portfolios, 563
writing data, 566

stock price converter,
130-133

stopping processes, 462
storing multiple lines of

input (pattern matching),
253-254

strict pragma, 336
string functions, 78
strings, 32-33, 207

barewords, 49
comparisons, 41-42
concatenation, 60
converting

to lowercase, 605
to numbers, 33, 50
to uppercase, 625

strings 671

How can we make this index more useful? Email us at indexes@samspublishing.com

30 0355 index 5/9/02 2:40 PM Page 671

creating, 48-49
double-quoted strings,

31-32
creating, 188
escape characters, 32
variable interpolation,

31
empty strings, 33
encrypting, 596
escape characters, 32, 49
evaluating at runtime,

541-542
formatting, 620-621
hexadecimal numbers, 33
octal numbers, 33
pattern anchors, 220
pattern matching. See pat-

tern matching
references, 483
repetition, 60-61
reversing order of, 207
single-quoted strings,

31-32
splitting, 620
string functions, 78
substrings

extracting, 208-209
finding, 603
finding position of, 208

variable interpolation, 50
structures, nested, 496

accessing, 504-505
anonymous data, 497-498
artist database example,

505-509
creating, 502-504
defined, 496
hashes of arrays, 500-501
hashes of hashes, 501-502
multidimensional arrays,

498-499

study function, 622
sub keyword, 272
subject.pl script, 388-389
subroutines, 269. See also

commands; functions;
methods

@_ variable, 280
&add_item(), 577
&add_portfolios(), 564
&add_stock(), 564-566
anonymous subroutines,

291
arguments

handling, 280-281
naming, 281
passing into subrou-

tines, 279-281
breakpoints, 302-303
calling, 272-273
CGI.pm subroutines,

419-420
&check_date(), 578
compared to functions,

270
context, 282
&countsum(), 285
defining, 271-272
&delete_portfolios(), 564
&delete_stock(), 564
&display_all(), 576-577
&display_data(), 576-577
example, 271
&get_current_price(), 566
&getday(), 370
&getdomains(), 372-373
&getinput(), 283
&gettop(), 373-374
&init(), 575
&list_portfolios(), 563
local variables, 276-278
my variable, 277-278

parentheses, 290
passing arguments to,

290-291
&printdata(), 284
&printhead(), 445
&printhist(), 286
&printmenu(), 284
&print_addr(), 361
&print_results(), 371-372
&process(), 575-576
&processfiles(), 445
&process_log(), 367
prototypes, 291-292
&read_input(), 508
references, 487

arguments, 487-489
creating, 484, 513
dereferencing, 513
passing, 489-490

&remove_selected(), 577
returning values from,

275-276
&splitline(), 367-369
statistics script example,

273-274, 282-289
&sumnums(), 285
switching execution, 271
&update_data(), 577
&view_portfolios(), 563
Win32 subroutines

DomainName, 466
FormatMessage, 466
FsType, 466
GetCwd, 467
GetLastError, 467
GetNextAvailDrive,

467
GetOSVersion, 467
GetShortPathName,

467
GetTickCount, 467
IsWin95, 467

672 strings

30 0355 index 5/9/02 2:40 PM Page 672

IsWinNT, 467
LoginName, 467
MsgBox, 467-469
NodeName, 467
SetCwd, 467
Sleep, 467
Spawn, 467

&write_data(), 566, 578
subscript syntax, 90
substr function, 78, 208-209,

622
substrings

extracting, 208-209
finding, 603
finding position of, 208

subtraction operator, 36
&sumnums() subroutine,

285
Survey script (CGI),

421-422
code listing, 423-426
HTML form, 422-423

survey.html script, 422-425
survey.pl script, 423-425
switch statement, 169
switches (script), 394-397

getopt function, 397-398
getopts function, 395-397
switches.pl script, 398-399

switches.pl script, 398-399
switching execution (sub-

routines), 271
symbol tables, 321
symbolic links, 438

creating, 622
reading, 613

symbolic references,
511-512

symlink function, 438-439,
622

syscall function, 401, 623

sysopen function, 401, 623
sysread function, 401, 623
sysseek function, 623
system function, 455-456,

623
syswrite function, 401, 623

T

t command (debugger), 304,
306, 312

tables, symbol tables, 321
tags (HTML), extracting

attributes from, 249-250
taint checking, 548-549
tar command, 631
tell function, 401, 624
telldir function, 401, 624
template characters (pack

function), 609-610
ternary operator, 147-148
testing

CGI (Common Gateway
Interface) scripts,
415-416

existence of elements, 96
file properties

operators, 389-390
search and replace pro-

gram example,
391-393

Text-to-HTML Converter
script, 182-188

input file, 184
value prompts, 183

Text::Wrap module,
337-338

threads. See processes
tie function, 624

tied function, 624
time, converting to

Greenwich standard, 602
time function, 624
times function, 624
timestamps, 402
Tk package, 475
To Do list application,

573-574
adding/removing items,

577
data file, 574-575
data initialization, 575
displaying data, 576-577
error checking, 578
form processing, 575-576
todolist.pl code listing,

579-587
updating changes, 577

to function, 544
todolist.pl (To Do list appli-

cation), 573-574
adding/removing items,

577
code listing, 579-587
data file, 574-575
data initialization, 575
displaying data, 576-577
error checking, 578
form processing, 575-576
updating changes, 577

tracing script execution,
304-307

$topthings variable (log
analyzer), 367

tracking stock performance
arithmetic operations,

75-76
code listing, 72-73
input verification, 74-75

tracking stock performance 673

How can we make this index more useful? Email us at indexes@samspublishing.com

30 0355 index 5/9/02 2:40 PM Page 673

troubleshooting. See also
debugger

CGI (Common Gateway
Interface) scripts, 431

Hello World script, 17
one-liner scripts, 551
references, 514-515
warnings, 18-19

truncate function, 400, 625
truth values, 41
turning on/off warnings,

18-19
typeglobs, 342, 512

U

%u format (sprintf func-
tion), 620

u template character (pack
function), 610

uc function, 78, 625
ucfirst function, 78, 625
umask function, 625
undef function, 95-96, 108,

625
undefined values, testing for,

94
Unix systems

commands, 455-457
environment variables,

454-455
networking, 475
Perl configuration,

633-634
binary compatibility,

634
compilers, 634-635
directory setup, 634
e-mail addresses, 635
extensions, 636

host and domain
names, 635

libraries, 634-635
man pages, 635
memory module sup-

port, 634
publicly executable

scripts, 635
setuid emulation, 634
shebang value, 635

Perl installation, 629
binary versions, 631
checking for existing

installations, 629-630
Configure program,

633
extraction and compila-

tion, 632
make command, 636
source code, 631-632
vendor packages,

630-631
pipes, 474
processes, 457-458

creating, 459-461
external programs, run-

ning, 464
killing, 463
pausing, 462-463
stopping, 462

signals, 474
utility functions, 464-465

unless statement, 147, 168
unlink function, 439, 625
unpack function, 400, 625
unquoted strings, 49
unshift function, 202-203,

626
until loops, 151
until modifier, 168
&update_data() subroutine,

577
updating To Do list, 577

uppercase
converting strings to, 625
converting to lowercase,

605
escapes, 49

use statement, 329-330,
333-334

use strict statement, 324-325
Usenet newsgroups, 23
user_agent function, 428
user-defined functions, 270
user_name function, 428
utime function, 440, 626

V

V command (debugger),
309, 312

v template character (pack
function), 610

values
assigning to hashes,

119-120
assigning to variables,

34-35, 58
converting to rounded-off

equivalents, 37
returning from subrou-

tines, 275-276
undefined values, testing

for, 94
values function, 121, 134,

626
values.pl script, 231-232
variable interpolation, 31,

50, 105
variables

$”, 211
$_, 164, 167
$a, 193-194
@_, 280, 290-291

674 troubleshooting

30 0355 index 5/9/02 2:40 PM Page 674

address book application,
356-357

array variables, 86
assigning values to, 34-35
$b, 193-194
binding, 624
CGI (Common Gateway

Interface), 427-428
changing value of, 58
decrement operator, 59
environment variables,

454-455
@EXPORT, 332-333
@EXPORT_OK, 332-333
global, 320

declaring, 323-325
disadvantages, 320
packages, 321-323

hash variables, 116
increment operator, 59
instance variables,

529-530
interpolation, 31, 50, 105
list-separator variable, 107
local variables, 320, 325

blocks, 289
declaring, 325-327,

343-345
subroutines, 276-278

log file analyzer, 366-367
match variables, 246, 263
my variable, 277-278
naming, 34
output-field variable, 107
output-record variable,

107
patterns, 233
printing value of, 309
scalar variables, 33-34

assigning values to,
34-35

naming, 34

vec function, 626
verifying input, 74-75
vertical histogram, 176-180
view command, 562
view_portfolios() subrou-

tine, 563
virtual_host function, 428
void context, 107

W

w command (debugger),
308, 312

-w option (debugger), 311
w template character (pack

function), 610
wait function, 462-463, 626
waitpid function, 462-463,

626
Wall, Larry, 8
wantarray function, 282,

627
warn function, 627
warnings, 18-19
Web servers, connecting to,

536-538
Web sites

ActivePerl FAQ, 643
ActiveState, 313, 430, 643
CGI resources, 410
Cygwin project, 466
Perl, 12, 48
Perl binaries, 631
Perl documentation, 591
Perl for Win32 FAQ, 466
Perl source code, 642
PerlScript resources, 549
Tk package, 475

webbuild.pl script, 182-188
input file, 184
value prompts, 183

weblog.pl script (log file
analyzer), 364

code listing, 374-377
global variables, 366-367
log processing

conditional statements,
370

&getday() subroutine,
370

&process_log() subrou-
tine, 367

&splitline() subroutine,
367-369

output, 364-365
printing results

&getdomains subrou-
tine, 372-373

&gettop subroutine,
373-374

&print_results subrou-
tine, 371-372

while loops, 149-151
file input, 165-167
statistics script, 283

while modifier, 168
whitespace, pattern match-

ing, 129
Win32 modules, 329, 439
Win32 Perl

downloading, 640
installation, 639-640

directories, 641-642
options, 641
packages, 641

online resources, 643
running, 642
source code, 642

Win32 processes, 469-471
Win32 subroutines, 466

DomainName, 466
FormatMessage, 466
FsType, 466
GetCwd, 467

Win32 subroutines 675

How can we make this index more useful? Email us at indexes@samspublishing.com

30 0355 index 5/9/02 2:40 PM Page 675

GetLastError, 467
GetNextAvailDrive, 467
GetOSVersion, 467
GetShortPathName, 467
GetTickCount, 467
IsWin95, 467
IsWinNT, 467
LoginName, 467
MsgBox, 467-469
NodeName, 467
SetCwd, 467
Sleep, 467
Spawn, 467

Windows operating systems
Perl for Windows, 465

modules, 473
Perl for Win32 FAQ,

466
Registry, 471-473
Unix compatibility,

465-466
Win32 processes,

469-471
Win32 subroutines,

466-469
Perl installation, 639-640

directories, 641-642
download process, 640
online resources, 643
options, 641
packages, 641
source code, 642

pipes, 474
Win32

modules, 329, 439
processes, 469-471
subroutines, 466-467
Win32 Perl, 639-643

word boundaries, pattern
matching, 219-221

wrapit.pl script, 338

write function, 401, 627
&write_data() subroutine,

566, 578
writing

output to file handles,
386-387

to files, 382-384
binary files, 387
subject.pl script,

388-389

X-Z

x command (debugger), 301,
309-312

%X format (sprintf func-
tion), 621

x operator, 60-61
x option (pattern matching),

256
X template character (pack

function), 610
XML (Extensible Markup

Language), 545-547
XMLin function, 546-547
XMLout function, 547
XML::Parser module, 545
XML::Simple module,

545-547

676 Win32 subroutines

30 0355 index 5/9/02 2:40 PM Page 676

	Sams Teach Yourself Perl in 21Days, Second Edition
	Copyright © 2002 by Sams Publishing
	Contents at a Glance
	Contents
	About the Authors
	Tell Us What You Think!

	Introduction
	How This Book Is Organized
	Conventions Used in This Book

	WEEK 1 Getting Started
	DAY 1 An Introduction to Perl
	What Is Perl and Where Did It Come From?
	Why Learn Perl?
	Getting Started Programming in Perl
	An Example: The Ubiquitous Hello World
	Another Example: Create Hello World As a Script
	Another Example: Echo
	A Third Example: The Cookie Monster
	Going Deeper
	Summary
	Q&A
	Workshop
	Answers

	DAY 2 Working with Strings and Numbers (Scalar Data)
	Scalar Data and Scalar Variables
	Constructing Perl Scripts
	Arithmetic Operators
	One-Liners: Simple Calculator
	An Example: Converting Fahrenheit to Celsius
	Operators for Tests and Comparisons
	Another Example: More Cookies
	Going Deeper
	Summary
	Q&A
	Workshop
	Answers

	DAY 3 More Scalar Data and Operators
	Assignment Operators
	Increment and Decrement Operators
	String Concatenation and Repetition
	Operator Precedence and Associativity
	Using Patterns to Match Digits
	An Example: Simple Statistics
	Input and Output
	Another Example: Stocks
	A Note About Using Functions
	Going Deeper
	Summary
	Q&A
	Workshop
	Answers

	DAY 4 Working with Lists and Arrays
	List Data and Variables
	Defining and Using Lists and Arrays
	An Example: More Stats
	List and Scalar Context
	Input, Output, and Lists
	Going Deeper
	Summary
	Q&A
	Workshop
	Answers

	DAY 5 Working with Hashes
	Hashes Versus Arrays and Lists
	Defining and Using Hashes
	An Example: Frequencies in the Statistics Program
	Another Example: Alphabetical Lists of Names
	A Few More Patterns
	Yet Another Example: Stock Price Converter
	Going Deeper
	Summary
	Q&A
	Workshop
	Answers

	DAY 6 Conditionals and Loops
	Complex Statements and Blocks
	Conditionals
	while Loops
	An Example: Pick a Number
	Iteration with foreach and for Loops
	Controlling Loops
	Using the $_ (default) Variable
	Input from Files with while Loops and <>
	Going Deeper
	Summary
	Q&A
	Workshop
	Answers

	DAY 7 Exploring a Few Longer Examples
	Statistics with a Better Histogram
	A Number Speller
	Text-to-HTML Converter Script
	Summary

	WEEK 2 Doing More
	DAY 8 Manipulating Lists and Strings
	Array and Hash Slices
	Sorting Lists
	Searching
	An Example: More Names
	Modifying List Elements
	Other Ways to Mess with Lists
	Manipulating Strings
	Going Deeper
	Summary
	Q&A
	Workshop
	Answers

	DAY 9 Pattern Matching with Regular Expressions
	The Whys and Wherefores of Pattern Matching
	Pattern Matching Operators and Expressions
	Simple Patterns
	Matching Groups of Characters
	Matching Multiple Instances of Characters
	An Example: A Guessing Program
	More About Building Patterns
	Another Example: Counting
	Pattern Precedence
	Going Deeper
	Summary
	Q&A
	Workshop
	Answers

	DAY 10 Doing More with Regular Expressions
	Extracting Matches
	An Example: Extracting Attributes from HTML Tags
	Using Patterns for Search and Replace
	More About split
	Matching Patterns over Multiple Lines
	A Summary of Options and Escapes
	An Example: Image Extractor
	Going Deeper
	Summary
	Q&A
	Workshop
	Answers

	DAY 11 Creating and Using Subroutines
	Subroutines Versus Functions
	Defining and Calling Basic Subroutines
	An Example: Son of Stats
	Returning Values from Subroutines
	Using Local Variables in Subroutines
	Passing Values into Subroutines
	Subroutines and Context
	Another Example: Stats with a Menu
	Going Deeper
	Summary
	Q&A
	Workshop
	Answers

	DAY 12 Debugging Perl
	Using the Debugger: A Simple Example
	Starting and Running the Debugger
	Perl Debugger Command Reference
	Using a Graphical Debugger
	Going Deeper
	Summary
	Q&A
	Workshop
	Answers

	DAY 13 Scope, Modules, and Importing Code
	Global Variables and Packages
	Local Scope and Variables
	Using Perl Modules
	An Example: Using the Text::Wrap Module
	Using Modules from CPAN (The Comprehensive Perl Archive Network)
	Going Deeper
	Summary
	Q&A
	Workshop
	Answers

	DAY 14 Exploring a Few Longer Examples
	A Searchable Address Book (address.pl)
	A Web Log Processor (weblog.pl)
	Summary

	WEEK 3 Advanced Perl
	DAY 15 Working with Files and I/O
	An Example: Extract Subjects and Save Them
	File Tests
	A File Test Example
	Working with @ARGV and Script Arguments
	Another Example
	Going Deeper
	Summary
	Q&A
	Workshop
	Answers

	DAY 16 Using Perl for CGI Scripting
	Before You Start
	How CGI Works
	Building a CGI Script, From Form to Response
	Testing the Script
	Developing CGI Scripts with CGI.pm
	An Example: Survey
	Going Deeper
	Summary
	Q&A
	Workshop
	Answers

	DAY 17 Managing Files and Directories
	Managing Files
	Managing and Navigating Directories
	An Example: Creating Links
	Going Deeper
	Summary
	Q&A
	Workshop
	Answers

	DAY 18 Perl and the Operating System
	Unix Features in Perl
	Perl for Windows
	Going Deeper
	Summary
	Q&A
	Workshop
	Answers

	DAY 19 Working with References
	What Is a Reference?
	The Basics: A General Overview of How to Use References
	Using References with Subroutine Arguments and Return Values
	Other Ways of Using References
	Creating Nested Data Structures with References
	Building Data Structures with Existing Data
	Accessing Elements in Nested Data Structures
	Another Example: A Database of Artists and Their Works
	Avoiding the Use of References
	Going Deeper
	Summary
	Q&A
	Workshop
	Answers

	DAY 20 Odds and Ends
	Perl One-Liners
	Object-Oriented Programming
	An Example: Using Object-Oriented Modules
	Sockets
	POD (Plain Old Documentation) Files
	Evaluating Code On-the-Fly
	Commonly Used Modules
	Creating International Perl Scripts
	Script Security with Taint Checking
	PerlScript
	What’s Coming in Perl 6
	Going Deeper
	Summary
	Q&A
	Workshop
	Answers

	DAY 21 Exploring a Few Longer Examples
	A Stock Portfolio Manager
	A Web-Based To Do List (todolist.pl)
	Summary

	Appendixes
	APPENDIX A Perl Functions
	For More Information
	Perl Functions, in Alphabetical Order

	APPENDIX B Installing Perl on a Unix System
	Do You Need to Install Perl?
	Obtaining Perl
	Extracting and Compiling Perl
	For More Information

	APPENDIX C Installing Perl for Windows
	Downloading Perl for Windows
	Installing Perl for Windows
	Running Perl for Windows
	Downloading the Perl Source Code
	Getting More Information

	INDEX

