
Issue 45 February 2014

2

Curator
Lim Cheng Soon

Contributors
Naval Ravikant
Brennan Moore
Alex MacCaw
Thomas Fuchs
Philip Zimmermann
Steven Lott
Brian Hayes
Andrew “bunnie” Huang
Sean Cassidy
Cecily Carver
John H. Lienhard
Andrew Rossignol
Oleg Andreev
Saar Drimer

Proofreaders
Emily Griffin
Sigmarie Soto

Illustrator
Jaime G. Wong

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

HACKER MONTHLy is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Jaime G. Wong

Issue 45 February 2014

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

 3

For links to Hacker News dicussions, visit hackermonthly.com/issue-45

Contents
FEATURES

04 Bitcoin — The Internet of Money
By NAvAL RAviKANT

08 Debugging a Live Saturn V
By BRENNAN MOORE

STARTUPS

12 An Engineer’s Guide to Stock Options
By ALEx MACCAW

16 5 Things I’ve Learned in 5 Years of Running
a SaaS
By THOMAS FuCHS

SPECIAL

34 How to Launder Bitcoins Perfectly
By OLEG ANDREEv

36 An Engineer’s Emergency Kit Business Card
By SAAR DRiMER

PROGRAMMING

18 Why I Wrote PGP
By PHiLiP ZiMMERMANN

21 How to Design a Class
By STEvEN LOTT

22 The Keys to the Keydom
By BRiAN HAyES

24 On Hacking MicroSD Cards
By ANDREW “BuNNiE” HuANG

27 Don’t Pipe to your Shell
By SEAN CASSiDy

28 Things I Wish Someone Had Told Me When I
Was Learning How to Code
By CECiLy CARvER

31 Ethiopian Binary Math
By JOHN H. LiENHARD

32 A Testament to X11 Backwards
Compatibility
By ANDREW ROSSiGNOL

http://hackermonthly.com/issue-45

Bitcoin —
The Internet of Money

By NAvAL RAviKANT

FEATURES

 5

Bitcoin will eventu-
ally be recognized
as a platform for
building new finan-

cial services.
Most people are only familiar

with (b)itcoin, the electronic cur-
rency, but more important is (B)
itcoin, with a capital B, the underly-
ing protocol, which encapsulates
and distributes the functions of
contract law.

Bitcoin encapsulates four funda-
mental technologies:

 ■ Digital Signatures — these can’t
be forged and allow one party to
securely verify a transaction with
another.

 ■ Peer-to-Peer networks, like Bit-
Torrent or TCP/iP — difficult to
take down and no central trust
required.

 ■ Proof-of-Work prevents users
from spending the same money
twice, without needing a central
authority to distinguish valid
from invalid transactions. Bitcoin
creates an incentive for miners,
who run powerful computers in
the network, to validate transac-
tions and to secure them from
future tampering. The miners are
paid by “discovering” new coins,
and anyone with computational
resources can anonymously and
democratically become a miner.

 ■ Distributed Ledger — Bitcoin
puts a history of each and every
transaction into every wallet. This
“block chain” means that anyone
can validate that a given transac-
tion was performed.

Thanks to these technical under-
pinnings, bitcoins are scarce (Cen-
tral Banks can’t inflate them away),
durable (they don’t degrade), porta-
ble (can be carried and transmitted
electronically or as numbers in your
head), divisible (into trillionths),
verifiable (through everyone’s block
chain), easy to store (paper or
electronic), fungible (each bitcoin
is equal), difficult to counterfeit
(cryptographically impossible),
and can achieve widespread use
— many of the technologists that
brought us advances on the inter-
net are now working overtime to
improve Bitcoin.

Proponents of the role of govern-
ment argue that a currency with
fixed supply will fail. They posit
that inflation is required to keep
people spending and that prices
and wages are still as sticky as they
were decades ago. They overlook
that the world functioned on fixed
money supplies until 40 years
ago (the gold standard), and that
bitcoin can gather many uses and
value long before it has to become
the main currency in which all
prices are denominated. Another
fear is that a central actor could
take over the Bitcoin comput-
ing network — but the combined
Bitcoin distributed supercomputer
runs at the equivalent of 2,250
PetaFLOPS, 90x the rate of the
fastest supercomputer (note — in
Nov, it’s now 48,000 PetaFLOPS!),
and consumes an infinitesimal
fraction of the resources used by
a bloated banking system. Many
label it as a speculative pyramid
scheme — without realizing that all
government-printed money is such.
To the extent anyone holds cash
over other assets, they are speculat-
ing that other assets will decline
in relative value. Concerns abound

over the security of the encryption
scheme, the speed of transactions,
the size of the block chain, the irre-
versibility of the transactions, and
the potential for hacking and theft.
All are fixable through third-party
services and protocol upgrades. it’s
better to think about Bitcoin the
protocol as Bitcoin 1.0, destined to
evolve just as HTTP 1.0 evolved
beyond of simple text and image-
only web-browsers.

So why not just use Pounds or
Dollars? One can use bitcoins as
high-powered money with distinct
advantages. Bitcoins, like cash, are
irrevocable. Merchants don’t have
to worry about shipping a good,
only to have a customer void the
credit card transaction and charge-
back the sale. Bitcoins are easy to
send — instead of filling forms with
your address, credit card number,
and verification information, you
just send money to a destina-
tion address. Each such address is
uniquely generated for that single
transaction, and therefore easily
verifiable. Bitcoins can be stored as
a compact number, traded by mere
voice, printed on paper, or sent
electronically. They can be stored
as a passphrase that exists only
in your head! There is no threat
of money printing by a bankrupt
government to dilute your savings.
Transactions are pseudonymous —
the wallets do not, by default, have
names attached to them, although
transaction chains are easy to trace.
it has near-zero transaction costs —
you can use it for micropayments,
and it costs the same to send 0.1
bitcoins or 10,000 bitcoins. Finally,
it is global — so a Nigerian citizen
can use it to safely transact with
a uS company, no credit or trust
required.

6 FEATURES

Even more importantly, Bitcoin
the protocol will enable financial
services transactions that are not
possible today or require expensive
and powerful third-parties.

Bitcoin has a scripting language
which enables more than a “send
money from x to y” transaction. A
Bitcoin transaction can require M
of N parties to approve a transac-
tion. imagine wills that automati-
cally unlock when most of the heirs
agree that their parent has passed,
no lawyer required. Or business
accounts that require two of any
three trusted signatures to approve
an expenditure. Or wire escrows
that go through when any arbiter
agrees that the supplier sent the
goods to the buyer. Or wallets
that are socially secured by your
friends and family. Or an allowance
account accessible by the child and
either of two parents. Or a crowd-
funding of a Kickstarter project that
pays out on milestones, based on
the majority of the backers approv-
ing the next payment. The escrow
in each case can be locked so that
the arbiters can’t take the money
themselves — only approve or deny
the transaction.

The scripting language can also
unlock transactions based on other
parameters. unlocking them over

time can enable automatic mort-
gage, trust, and allowance payouts.
unlocking them on guessable num-
bers creates a lottery auditable by
third parties. One can even design
smart property — for example, a
car’s electronic key so that when
and only when a payment is made
by the car buyer to the seller, the
seller’s car key stops working and
the buyer’s car key (or mobile
phone) starts the car. imagine your
self-driving car negotiating traffic,
paying fractional bitcoin to neigh-
boring cars in exchange for priority.

Everyone has a copy of the
Bitcoin block chain, so anyone can
verify your transactions. you can
write software that will crawl the
block chain and generate automatic
accounting histories for tax and ver-
ification purposes. you can engage
in “Trusted Timestamping” — take
a cryptographic signature of any
document, timestamp it, and put
it into the block chain. Anyone can
verify that the document existed at
a given time. if you sign the docu-
ment with your private key and
another party signs it with theirs,
it becomes an undeniable, mutu-
ally signed contract. This entirely
eliminates notaries, and websites
likeproofofexistence.com are showing
the concept. The Namecoin project

is building a distributed Domain
Name System that allocates and
resolves Domain Names without
needing iCANN or verisign, by
using the block chain to establish
proof-of-ownership. Similarly, look
for entrepreneurs to apply this
authoritative proof-of-ownership
to build P2P Stock and Bond
Exchanges — at least one Bitcoin
site, “Satoshi Dice,” has sold shares
and issues dividends without using
a stock exchange. The ownership
and dividends are easily verifiable
by anyone who wants to look inside
the block chain. Predictious.com is
combining the transaction scripting
and the verifiability to create a pre-
diction market in which you cannot
be cheated and third-party arbiters
can allocate the winnings.

Bitcoin’s “send-only” and irre-
versible nature makes it much
less vulnerable to theft. Today,
anyone with your Credit Card or
E-Checque (ACH) information
can pull money from your account.
This creates chargebacks, expensive
dispute resolution and merchants
double-checking your identity.
Bitcoin is send only. Anyone who
has received bitcoins from you can’t
request or pull more money from
your account.

“Just as the web democratized publishing
and development, Bitcoin can democratize
building new financial services.”

http://proofofexistence.com

 7

Most importantly, Bitcoin offers
an open APi to create secure, script-
able e-cash transactions. Just as the
web democratized publishing and
development, Bitcoin can democra-
tize building new financial services.
Contracts can be entered into,
verified, and enforced completely
electronically, using any third-party
that you care to trust, or by the
code itself. For free, within minutes,
without possibility of forgery or
revocation. Any competent pro-
grammer has an APi to cash, pay-
ments, escrow, wills, notaries, lotter-
ies, dividends, micropayments, sub-
scriptions, crowdfunding, and more.
While the traditional banks and
credit card companies lock down
access to their payments infrastruc-
ture to a handful of trusted parties,
Bitcoin is open to all.

Silicon valley knows a plat-
form when it sees it, and is aflame
with Bitcoin. Teams of brilliant
young programmers, entranced by
the opportunity, are working on
Exchanges (Payward, Buttercoin,
varum), Futures Markets (iCBiT),
Hardware Wallets (BitCoinCard,
Trezor, etc), Payment Processors
(bitpay.com), Banks, Escrow com-
panies, vaults, Mobile Wallets,
Remittance Networks (bitinstant.
com), Local Trading networks
(localbitcoins.com), and more.

Looming over them is how
governments view Bitcoin and
the entrenched financial powers
it threatens. The last few decades
have seen a move towards a cash-
less society, where every transaction
is tracked, reported, and controlled.
Bitcoin takes powers from the
central actors and returns it to
merchants and consumers, savers,
and borrowers. Bitcoin brings back
some pseudonymity in the transac-
tions, and can be irrevocably traded

like cash. And finally, it points a
way towards a single currency — it
is a bug, not a feature, that we have
multiple global currencies with
exchangers and transaction fees in
between.

Governments have been crack-
ing down on the bitcoin exchanges,
making it harder to obtain and
slowing its development. Strict and
expensive Money Transmitter regu-
lations, designed to slow terrorist
and child porn financing, threaten
the next great technological revolu-
tion — never mind that terrorists
can use cash just fine, the means
of terror are cheap, and that they
account for an infinitesimal fraction
of global commerce. The develop-
ment and innovation in Bitcoin has
already begun the move to friend-
lier jurisdictions, where its innova-
tion can continue un-impeded. Reg-
ulators in the uS and uK would be
wise to proceed with a light touch,
lest they push the development of
Bitcoin and its entrepreneurs to
places like Canada, Finland, and the
Sino-sphere. The united States has
benefited enormously from being
home to the majority of global
companies driving the internet
revolution. The country that is the
home to the internet of Money
could one day end up as the guard-
ian of the new Reserve Currency
and the Global Money Supply. ■

Naval Ravikant is the CEO and a co-founder
of AngelList. He previously co-founded
Epinions (which went public as part of
Shopping.com) and Vast.com. Naval is an
active Angel investor, and have invested
in dozens of companies, including Twitter,
Uber, Yammer, Stack Overflow and Wanelo.
Follow him on Twitter at @naval

Reprinted with permission of the original author.
First appeared in hn.my/bitcoin (startupboy.com)

http://bitpay.com
http://bitinstant.com
http://bitinstant.com
http://localbitcoins.com
http://twitter.com/naval
http://hn.my/bitcoin

8 FEATURES

By BRENNAN MOORE

Debugging a Live Saturn V

 9

We all have stories, as
engineers, of fixing
some crazy thing

at the last minute right before the
demo goes up. We have all encoun-
tered situations where we needed
to fix something that was our fault
and we needed to fix it now.

This story is something that
i think about in those times to
remember to stay calm. No last
minute fix could ever be this dra-
matic or important.

My grandfather passed away
about a week ago. At the service, i
was asked to say a few words and
read from his memoirs. This was my
choice.

Red Team 4 To The Pod
The first unmanned launch of a
Saturn V on November 9th. 1967.
From the personal memoirs and the
pen of William E. Moore January
28th. 1994.

There was five of us Rocket
Scientists lounging around the

ready room listening to the Apollo
4 Countdown on loud speakers
and headsets. We were members of
the Red Team Group and we were
the Electrical Systems experts on
all hardware interfaces between
the firing room and the Saturn v
vehicle three miles away. Our ears
were now being drawn into a devel-
oping situation happening on the
net. No response was received from
an electrical circuit that controlled
the separation of the S-ii Stage
from the S-1C Stage in flight.

“That was one of my electrical
circuits!”

it just so happened that circuit
is controlled by a series of relays
located almost directly beneath that
cold beast that was spewing out all
kinds of funny colored, very cold
gases — the Saturn v rocket. We
took a look at our blue prints and
found the relay that must be the
problem and called for a recycle in
the countdown to a point where
we could cycle the switch on the
electrical networks console to see if
the relay would pick up — that was
a “no go”. Now things got serious.
The NASA Test Conductor was
talking “scrub the launch” but our
S-ii Stage Test Conductor was talk-
ing “go to the pad”.

Well, the Red Phone rings.

“Bill, how sure are you that this
relay is the problem? Are we going
to send people to the pad to rewire
the rocket and not be able to
launch because we guessed wrong?”
said “AC” Filbert C. Martin

“It’s worth a shot, the signal is not
reaching the vehicle and that relay
module is the only active com-
ponent between the Firing Room
Console and the Vehicle. You snap
out the old Relay Module and snap
in the new one and we will be able
to tell if that was the problem a few
seconds later.”

“Well, we are a little concerned
about sending a team to the pad
with a fully loaded vehicle. We
thought your team would do a lot
of blueprint trouble shooting —
I’m not sure we planned to actu-
ally send anybody out to a fueled
vehicle.”

“Just don’t let them launch this
mother till we are at least half way
back from the pad — OK!”

About thirty minutes later the
five of us (Bob Kelso NRR Sr. Tech,
Bill Moore; NAR Engineer/ Team
Leader, the NASA Safety Engineer,
the NRR Quality Control and the
NASA Pad Leader) got the offi-
cial word to head for the Launch
Pad with our new Relay Pod. it
was 11:30pm. it was a dark, slow,
three mile trip. As we got closer to
the Saturn v it was shrouded in a
white cloud of venting gases which
relieved the pressures building up
inside the vehicle fuel tanks.

Our goal was to enter this
two level hermetically sealed,
all welded steel coffin called the
Mobil Launcher Base topped by a
fully loaded 363 ft. high Saturn v,
weighing 6.2 million pounds, and
the permanently attached 380 ft.
high umbilical Tower, weighing
500,000 pounds. We finally stopped
and left our van to walk up and
into the second level of the Mobile
Launcher Base. About this time, it
came to my mind that during one
of our training sessions we were
told that one of the fully fueled
prototype S-ii rocket stages had
been exploded out in the desert.
The results showed that all build-
ings better be at least three miles
from the launch pads - which they
are. We were now within 25 feet of
this 363ft tall bomb that sounded
like its giant fuse had been lit, and
we were soon going to get much
closer.

The Saturn v was more noisy
and ghostly than i had ever
expected and it had grown much
taller and certainly more threaten-
ing since last week. The venting fuel
made loud hissing sounds when
relief valves popped or opened up
suddenly. it was very easy to let
your imagination infect your brain.
This is a very dangerous place and

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

10 FEATURES

everything seems to be moving in
the heavy foggy mist. There was no
way to talk to each other, heck, we
could barely see each other and...
we hadn’t thought of this problem
so we held onto each other’s yellow
protective clothing like kindergart-
ners crossing the street. We all wore
safety helmets but they just did not
make you feel like you were really
safe.

We climbed up the last step prior
to opening the sealed submarine
type entry door that led into the
second level. We slowly opened the
heavy steel hatch-type pressurized
door and it was like stepping into
the jaws of a huge steaming dragon.
The nitrogen fog, used to suppress
fire, and the dim red glow from the
emergency lights of level A made it
look like a hollywood swamp scene.
We started making our way through
the 21 compartments to find our
Relay Rack as the noise took on a
more penetrating tone that seemed
to bounce from wall to wall.

The smell became a mixture
of kerosene with a mild touch of
burnt paint and rubber. i was glad
that the astronauts did not take
this path to go aboard the Saturn
v because my goosebumps were
changing to a weird color of purple.
With the realization that this was
a much worse place to be trapped
in, the team moved more rapidly
to the relay rack. We replaced the
old relay module and then had to
cycle the switch on the firing room
console. We then checked that the
relay kicked in and that the signal
was picked up on the vehicle. We
resealed the cabinet, signed off
on all the paperwork and got the
out of there without any more
sightseeing.

The drive back to the ready room
very was fast and uneventful. The
five of us were like stone figures,
thinking about where we had
been and what we had just accom-
plished. What could have happened
and didn’t. All of this without ever
realizing that this experience was
as close to being in the shoes of
a Saturn v astronaut as any of us
would ever be again.

in later letters, my grandfather
mentions how fortunate he really

was, having growing up a farm boy
in West virginia to have not just
once-in-a-lifetime experiences,
but really once-in-many-lifetimes
experiences. The service was about
celebrating his life, and this seems
like one of those incredibly unique
events that really does celebrate
his life, both in terms of how he
handled a mind bogglingly stress-
ful situation and how he tells it so
comfortably detailed and with slyly
humorous ease that was so charac-
teristic of how he spoke.

A really incredible man who
really contributed a lot to the world
around him and meant a lot to
those close to him, he will be sorely
missed. ■

Brennan Moore leads the web team at
Artsy.net, a site for discovering and collect-
ing art. He is looking for Bojangles biscuits
in Brooklyn.

Reprinted with permission of the original author.
First appeared in hn.my/saturnv (zamiang.com)

http://duckduckhack.com
http://artsy.net
http://hn.my/saturnv

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://duckduckhack.com

12 STARTUPS

STARTUPS

There’s a lot of fear, uncer-
tainty and doubt when it
comes to stock options,

and i’d like to try and clear some of
that up today. As an engineer, you
may be more interested in getting
on with your job than compensa-
tion. However, if you’re working at
a fast growing startup, with a little
luck and the right planning you can
walk away from a liquidity event
with a significant amount of money.

On the other hand i have friends
who have literally lost out on mil-
lions of dollars because the process
of exercising stock options was so
complicated, opaque and expensive.
Believe me, you’ll be kicking your-
self if this happens to you, so why
not arm yourself with some knowl-
edge and make informed decisions?

This guide is an attempt to
correct some of the imbalance in
information between companies
and employees, and explain in plain
English the whole stock option
process.

Shares 101
i like thinking about shares as a
virtual currency. Shareholders are
speculating on that currency, and
the company is trying to increase
its value. Companies can inflate or
deflate this currency depending on
their performance and perceived
potential or by issuing new shares.

When companies are formed,
they typically issue around 10 mil-
lion shares. These are split between
members of the founding team and
are diluted in subsequent invest-
ment rounds. A portion of these
shares are put aside into an option
pool, a group of shares dedicated
for employees. Any shares you
receive will probably come out of
this pool.

Stock Options
When you join a company, you
probably won’t receive any shares
though, but rather the option to
buy shares. This is a contract which
states you have the “option” to buy
shares at a specific price.

you can think of a stock option
as a Future. The company is basi-
cally saying: “Here’s our current
valuation. We hope it’ll go up. in a
year or so, once you’ve worked at
the company for a while, we’ll give
you the option to buy shares in the
company at the price when you
joined, even if our valuation has
subsequently increased.”

Vesting schedules
Option agreements typically have
a four-year vesting schedule, with a
one year cliff. in plain English this
means that you will receive all your
stock options over a period of four
years, but if you leave in less than a
year (or are fired) then you won’t
receive any options at all.

The “cliff” is included to incen-
tivize employees to stay at least a
year, and to protect the company’s
shareholders if the founders decide
that you’re not a good fit.

Typically you see your shares
broken up into 1/48ths. you get
12/48 at your 1 year mark, and
each month after that you’ll vest
another 1/48.

An Engineer’s Guide to
Stock Options

By ALEx MACCAW

 13

Exercising
Once you’ve cliffed, you have the
right to buy shares in the company.
There are few ways in which you
can benefit from this right:

 ■ Acquisition: Hope that the
company is acquired and the
shares are sold at a large mul-
tiple of the exercise price in your
option agreement. investors pay
a premium and their shares are
preferred for a reason — if the
company is sold for less than
the value placed on it at the last
round of investment, your shares
will probably be worth next to
nothing.

 ■ Secondary market: Stock option
agreements usually give the com-
pany a right of first refusal. This
means that you cannot sell the
shares to a third party without
giving the company the opportu-
nity to buy them first. However,
once a company reaches a certain
stage, the board may allow you
to sell your shares through an
exchange like Second Market or
some other mechanism. At this
stage you can cash-out by selling
your vested shares to outside
investors.

 ■ Cashless exercise: in the event
of an iPO, you can work with
a broker to exercise all of your
vested options and immediately
selling a portion of them into the
public market. This means you
can afford both the shares, and
the tax without having to invest
money yourself.

 ■ Exercise before leaving: you can
write your company a check and
pay any taxes due — in return,
you’ll get a stock certificate
and become a shareholder in
the company. you can carry on

working at the company (and
exercise more shares as they vest)
or leave whenever you want.

 ■ Exercise after leaving: you leave
the company, and send a check
for all your vested shares before
90 days is up. This, combined
with a cashless exercise, are
probably the two most common
scenarios.

Each route has different tax
implications that can depend on the
timing of the sale and the amounts
involved. As a general rule, if the
company you’re working for is
growing like crazy (and you think it
might go public someday) it makes
a lot of sense to exercise your right
to become a shareholder as soon as
possible.

Depending on your personal
financial situation, the number of
options granted to you, their exer-
cise price, and their change in value,
exercising the right to buy all of
your vested shares may be prohibi-
tively expensive.

Even if you have the cash, you
may not want to spend your life
savings on a stock certificate and a
tax bill. The earlier you joined the
company, the cheaper these shares
will have been. if the value of those
shares have increased considerably
there will be significant tax liabili-
ties. Furthermore you’ll probably
only make money on the invest-
ment if there’s a liquidity event.
This is why early employees at
fast-growing startups essentially
have a pair of golden handcuffs on
and cannot leave — they’re paper
millionaires but they’re not able
to exercise their right to buy the
shares and therefore have to stick
around until the company is sold or
goes public.

if you decide that you want to
leave (and you think the company
has a great future ahead) you typi-
cally have about 90 days to decide
whether you want to exercise your
vested shares and come up with
the cash to buy the shares and the
associated taxes. if you can’t afford
to exercise, or decide not take the
risk, then the option expires.

Questions you should ask going
in
When you join a company, there
are some important questions you
should ask:

 ■ How many shares will i have the
option to exercise?

 ■ How many shares are there in
outstanding? (Or what is the
total number of shares?)

 ■ What is the exercise price per
share? (Or what price can i buy
them for?)

 ■ What is the preferred share
price? (Or what have investors
paid for their shares)?

 ■ What does my vesting schedule
look like?

These questions will let you
figure what it would cost to buy the
shares and the current valuation of
the company. Crucially, you’ll be
able to calculate the percentage of
the company your shares would
represent if they were all vested
today. As a company grows and
issues more shares this percentage
will decrease as your shares are
diluted. Nevertheless, it’s still good
to have a rough idea of the percent-
age of the company you own when
you start.

14 STARTUPS

Don’t be deceived if you’re
offered a large number of shares
without any mention of the number
of shares currently outstanding.
Many companies are reluctant to
share this kind of information and
claim it’s confidential.

if the company seems reluctant
to answer these questions, keep
pressing and don’t take “no” for an
answer. if you’re going to factor in
your options into any compensation
considerations, you deserve to know
what percentage of the company
you’re getting, and its value.

i’d be wary of compromising on
salary for shares, unless you’re one
of the first few employees or found-
ers. it’s often a red flag if the found-
ers are willing to give up a large
percentage of their company when
they could otherwise afford to pay
you. Sometimes you can negotiate
a tiered offer, and decide what ratio
of salary to equity is right for you.

Likewise, i’d take into consid-
eration the likelihood of an iPO
when estimating how valuable
your options are. Companies such
as small consultancies or lifestyle
businesses may offer you shares, but
a return is unlikely. Having a small
slice of ownership may feel good,
but may ultimately be worthless. if
the company has been around for
a few years without a clear upward
trajectory, an iPO is probably
unlikely.

Other questions
There are some other questions you
should ask, but may have a harder
time getting a straight answer:

 ■ How many shares is the company
authorized to issue?

 ■ Have any shares been issued with
a liquidation preference greater
than 1x?

The answers to these ques-
tions could affect any returns. For
example, if the company dilutes the
stock pool, then the value of your
shares will decrease. Additionally, if
some investors have a preferred liq-
uidation preference, then they have
the right to cash out first if there’s a
liquidity event.

Example scenario #1
Let’s say the company gives you
the option to buy 100,000 shares
at an exercise price (or strike price)
of $0.50 per share. if the company
has 10,000,000 shares outstanding,
then you have the option to buy 1%
of the company when fully vested.
it also means the current valuation
of the company is $5 million uSD.

Let’s say you leave the company
after the first year, meaning you
have only vested 25,000 shares
(100,000 / 4), which will cost you
$12,500 uSD to purchase. This is
a highly simplified example which
doesn’t include any tax liabilities,
but it gives you the general idea.

409A valuations & tax
A 409A valuation is a fair market
valuation of a company as deter-
mined by an accountant and is
reported to the iRS. This valuation
is often lower than the valuation at
the last investment round because
investors are more optimistic about
the company’s future, and are

speculating on its potential. As a
company approaches an iPO, the
delta between these two valua-
tions will shrink and eventually
disappear.

By comparing the company’s
409A valuation when you were
granted the options and the 409A
valuation when you purchase the
stock, you can get a good indication
of your tax liabilities. if you’ve only
been at the company for a year (or
the company hasn’t grown materi-
ally), the 409A valuation may not
have changed, and if you decide
to buy shares you’ll have no tax
liability.

However, if the difference is
significant, the iRS will treat this
gain as an “AMT preference”, and
tax you on the spread. The tax bill
can often be greater than the check
you have to write to your com-
pany. you have to pay real money
for gains that only exist on paper.
What’s more, if the company fails
then you don’t get the tax refunded
— only credits towards your next
tax return. This can substantially
increase the risk on the investment.

The last thing worth mentioning
here is that if you’re buying vested
shares before you leave the com-
pany, then i strongly suggest you
look into filing a “83(b) election”,
which could significantly decrease
the amount of tax you have to
pay. A full explanation of 83(b)
elections is a guide in itself, but
essentially they let you pay all your
tax liabilities for both vested and
un-vested stock early, at the current
409A valuation (even if the valua-
tion subsequently increases).

 15

Things you should know going
out
if you’re thinking about leaving
and you haven’t bought any shares,
you should decide whether or not
you’d like to become a shareholder.
if you think the company’s going to
be wildly successful, then it might
be worth the risk. Assuming you
decide to go ahead and purchase
the stock, you have three months to
give the company a check.

ideally, you should know the
following:

 ■ How many shares have been
issued

 ■ The current 409A valuation

 ■ Preferred share price of the last
round

it’s much easier to find out the
answers to these questions when
you’re still at the company, so i sug-
gest you get this information before
you leave if at all possible.

Example scenario #2
you’ve left the company after a
year and decided that you want to
become a shareholder. your option
to buy the shares will expire 90
days after you’ve stopped working
at the company, so you have to get
the money together and give the
company a check before that date.
you know that the 409A valuation
has increased from $0.50 a share
to $5. Since you have the option
to buy 25,000 shares (you vested
a quarter of your 100,000 shares),
this is going to cost you $12,500 to
purchase.

However, since the 409A valua-
tion of the company has increased
to $5, the iRS will see the current
valuation of your stock as $125,000,
and you’ll have to report a gain of
$112,500 ($125,000 - $12,500). As
income, this will be taxed at around
40% (~20% federal, ~20% state).
Obviously this tax level will vary
vastly between individuals, but let’s
just take 40% for argument’s sake.

So your total cost to exercise
is $12,500 to the company, and
$45,000 to the government for a
total of 25,000 shares.

Financing options
if you can’t afford to exercise your
right to buy your vested shares (or
don’t want to take the risk) then
there’s no need to despair — there
are still alternatives. There are a
few funds and a number of angel
investors who will front you all
the cash to purchase the shares
and cover all of your tax liabilities.
you hold the shares in your name
and if there’s a liquidity event
you distribute a percentage of the
profits to them. They’ll typically ask
for somewhere between 20-50%
of the upside depending on the
company, the taxes, and the size of
the investment. it’s an interest-free
loan without a personal guarantee.
if the company fails, you don’t owe
anyone anything; if it succeeds,
you’ll be rewarded for the value
you created whilst working there.

if you’re interested in learning
more about financing your stock
options then send me an email and
i’ll make some introductions. i’ve
set up an informal mailing list, and
have a group of angel investors sub-
scribed who do these kinds of deals
all the time.

Conclusion
The reason why i wrote this guide
is that engineers are often the
unsung heroes at startups, and they
too deserve to benefit from the
upside in any value they create. it’s
also why i’m excited about stock
option financing, which serves to
level the playing field a bit and
make exercising affordable, whilst
removing the risk for the engineer.

 Thanks to Richard Burton,
Colin Regan, Adam Fraser, Josh
Buckley, Kip Kaehler, Tim O’Shea,
and Andrew McCalister for help-
ing with drafts of this article.
if you have questions or feed-
back, then feel free to email me
[alex@alexmaccaw.com].

As with all information on the
internet, take this with a pinch of
salt and get advice from a profes-
sional CPA before making any
decisions. None of this article is to
be construed as legal or financial
advice. ■

Alex MacCaw is an O’Reilly author, soft-
ware engineer, traveller and founder of
sourcing.io

Reprinted with permission of the original author.
First appeared in hn.my/stock (alexmaccaw.com)

mailto:alex@alexmaccaw.com
http://sourcing.io
http://hn.my/stock

16 STARTUPS

By THOMAS FuCHS

Freckle time tracking
[letsfreckle.com] is turn-
ing five on December 1. in

5 years of being a co-founder of
Freckle i’ve learned a lot of things,
but here are 5 important takeaways.
Maybe it’ll helps you on your path
to product nirvana:

➊ You’re not a “tech
company” — you’re a

“make customers awesome”
company
People don’t pay you because you
have amazing programming skills
and can write nginx configurations
blindfolded. People pay you money
because the product you sell saves
them time, money, effort and nerves.
it’s your job to make your customer
more awesome. Every decision you
make for your product and business
should revolve around that.

➋ Never promise dates for a
feature launch

Just don’t promise launch dates
for a feature. Ever. Trust me on
this. People will ask you all the
time when “feature x” is ready. A
good way to answer that question
is (if you plan on doing it), “We’re
considering this feature for a future
version. i can’t give you a date
on when it will be ready.” Just be
honest with your customers — you
don’t know yourself if and when a
feature will really be ready.

➌ Spend money on things
that help you stay

productive
This includes obvious stuff like a
laptop that doesn’t suck (upgrade
often), a good working chair and
desk, and less obvious things, like
software that allows you to concen-
trate on developing your applica-
tion’s features rather than configur-
ing servers.

➍ Do not work too much
Overworking yourself is the

first step to failure in business. you
can’t do your best if you’re perma-
nently stressed out. Don’t check
email in the evenings. if you’re
only 1 or 2 people, don’t provide
24/7 support. it’s ok. Customers
understand. it helps to not have a
mission-critical product (if Time
Tracking goes down it’s annoying,
but people can make a note on
paper).

you didn’t start a company to
die of exhaustion. your health,
family and social life is more
important than 5 minute support
response times and a 100% uptime
guarantee.

By the way, one way to keep on
top of this is to keep track on how
you spend your time.

➎ Don’t believe the hype
People are good at getting

excited. And people are good at
believing the hype™ about new
technologies, frameworks, program-
ming languages and ways to deploy.
People will tell you what to do and
what to plan for. That you need to
scale to millions of users, and that
you’re doomed if you don’t plan for
that. That generating HTML on the
server is so 1994. That node.js will
cure cancer.

The fact is that you need to be
pragmatic — your goal is to run
a business. use technology that is
proven (to you), and that you know
how to work with. My “litmus test”
for technology is if the people that
provide it are in a similar situation
as you are: having to rely on it to
run their own business. you need to
optimize for shipping. That includes
writing less code, having broad test
coverage, and concentrating on get-
ting things out in order of long-term
profitability for your business. ■

Thomas Fuchs was born and raised in
Vienna, Austria and is now living in Phila-
delphia. He is the author of Zepto.js and
script.aculo.us and a Ruby on Rails core
alumnus. With his wife Amy Hoy he’s build-
ing cheerful software, like Freckle Time
Tracking [letsfreckle.com], Every Time Zone
[everytimezone.com] and occasionally
writes books like Retinafy.me

5 Things I’ve Learned in 5 Years of
Running a SaaS

Reprinted with permission of the original author.
First appeared in hn.my/5saas (mir.aculo.us)

http://letsfreckle.com
http://hn.my/5saas

 17

By THOMAS FuCHS

Metrics and monitoring for people
who know what they want
We know from experience that monitoring your servers and
applications can be painful, so we built the sort of service that
we would want to use. Simple to set up, responsive support
from people who know what they're talking about, and reliably
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexibile: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!
Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards StatsD Happiness

Grab a free trial at http://www.hostedgraphite.com

http://hostedgraphite.com

18 PROGRAMMING

By PHiLiP ZiMMERMANN

PROGRAMMING

it’s personal. it’s private. And
it’s no one’s business but yours.
you may be planning a politi-

cal campaign, discussing your taxes,
or having a secret romance. Or
you may be communicating with
a political dissident in a repres-
sive country. Whatever it is, you
don’t want your private electronic
mail (email) or confidential docu-
ments read by anyone else. There’s
nothing wrong with asserting your
privacy. Privacy is as apple-pie as
the Constitution.

The right to privacy is spread
implicitly throughout the Bill
of Rights. But when the united
States Constitution was framed,
the Founding Fathers saw no need
to explicitly spell out the right to
a private conversation. That would
have been silly. Two hundred years
ago, all conversations were private.
if someone else was within earshot,
you could just go out behind the
barn and have your conversation

there. No one could listen in with-
out your knowledge. The right to a
private conversation was a natural
right, not just in a philosophical
sense, but in a law-of-physics sense,
given the technology of the time.

But with the coming of the infor-
mation age, starting with the inven-
tion of the telephone, all that has
changed. Now most of our conver-
sations are conducted electronically.
This allows our most intimate con-
versations to be exposed without
our knowledge. Cellular phone calls
may be monitored by anyone with
a radio. Electronic mail, sent across
the internet, is no more secure than
cellular phone calls. Email is rapidly
replacing postal mail, becoming the
norm for everyone, not the novelty
it was in the past.

until recently, if the govern-
ment wanted to violate the pri-
vacy of ordinary citizens, they had
to expend a certain amount of
expense and labor to intercept and
steam open and read paper mail.
Or they had to listen to and pos-
sibly transcribe spoken telephone
conversation, at least before auto-
matic voice recognition technol-
ogy became available. This kind of
labor-intensive monitoring was not
practical on a large scale. it was
only done in important cases when
it seemed worthwhile. This is like
catching one fish at a time, with a
hook and line. Today, email can be
routinely and automatically scanned
for interesting keywords, on a vast
scale, without detection. This is
like driftnet fishing. And exponen-
tial growth in computer power is
making the same thing possible
with voice traffic.

Why I Wrote PGP

“Whatever you do will be insignificant, but it is
very important that you do it. — Mahatma Gandhi”

 19

Perhaps you think your email is
legitimate enough that encryption
is unwarranted. if you really are a
law-abiding citizen with nothing
to hide, then why don’t you always
send your paper mail on postcards?
Why not submit to drug testing on
demand? Why require a warrant
for police searches of your house?
Are you trying to hide something?
if you hide your mail inside enve-
lopes, does that mean you must
be a subversive or a drug dealer, or
maybe a paranoid nut? Do law-
abiding citizens have any need to
encrypt their email?

What if everyone believed
that law-abiding citizens should
use postcards for their mail? if a
nonconformist tried to assert his
privacy by using an envelope for
his mail, it would draw suspicion.
Perhaps the authorities would open
his mail to see what he’s hiding.
Fortunately, we don’t live in that
kind of world, because everyone
protects most of their mail with
envelopes. So no one draws suspi-
cion by asserting their privacy with
an envelope. There’s safety in num-
bers. Analogously, it would be nice
if everyone routinely used encryp-
tion for all their email, innocent or
not, so that no one drew suspicion
by asserting their email privacy
with encryption. Think of it as a
form of solidarity.

Senate Bill 266, a 1991 omnibus
anticrime bill, had an unsettling
measure buried in it. if this non-
binding resolution had become real
law, it would have forced manufac-
turers of secure communications
equipment to insert special “trap
doors” in their products, so that the
government could read anyone’s
encrypted messages. it reads, “it is
the sense of Congress that provid-
ers of electronic communications

services and manufacturers of
electronic communications ser-
vice equipment shall ensure that
communications systems permit
the government to obtain the
plain text contents of voice, data,
and other communications when
appropriately authorized by law.” it
was this bill that led me to publish
PGP electronically for free that
year, shortly before the measure
was defeated after vigorous protest
by civil libertarians and industry
groups.

The 1994 Communications
Assistance for Law Enforcement
Act (CALEA) mandated that
phone companies install remote
wiretapping ports into their central
office digital switches, creating a
new technology infrastructure for
“point-and-click” wiretapping, so
that federal agents no longer have
to go out and attach alligator clips
to phone lines. Now they will be
able to sit in their headquarters in
Washington and listen in on your
phone calls. Of course, the law still
requires a court order for a wiretap.
But while technology infrastruc-
tures can persist for generations,
laws and policies can change
overnight. Once a communications
infrastructure optimized for surveil-
lance becomes entrenched, a shift
in political conditions may lead to
abuse of this new-found power.
Political conditions may shift with
the election of a new government,
or perhaps more abruptly from the
bombing of a federal building.

A year after the CALEA passed,
the FBi disclosed plans to require
the phone companies to build into
their infrastructure the capacity
to simultaneously wiretap 1% of
all phone calls in all major u.S.
cities. This would represent more
than a thousand-fold increase over

previous levels in the number of
phones that could be wiretapped.
in previous years, there were only
about a thousand court-ordered
wiretaps in the united States per
year, at the federal, state, and local
levels combined. it’s hard to see
how the government could even
employ enough judges to sign
enough wiretap orders to wiretap 1
percent of all our phone calls, much
less hire enough federal agents to
sit and listen to all that traffic in
real time. The only plausible way of
processing that amount of traffic is
a massive Orwellian application of
automated voice recognition tech-
nology to sift through it all, search-
ing for interesting keywords or
searching for a particular speaker’s
voice. if the government doesn’t
find the target in the first 1 percent
sample, the wiretaps can be shifted
over to a different 1 percent until
the target is found, or until every-
one’s phone line has been checked
for subversive traffic. The FBi said
they need this capacity to plan for
the future. This plan sparked such
outrage that it was defeated in Con-
gress. But the mere fact that the FBi
even asked for these broad powers
is revealing of their agenda.

Advances in technology will not
permit the maintenance of the
status quo, as far as privacy is con-
cerned. The status quo is unstable.
if we do nothing, new technologies
will give the government new auto-
matic surveillance capabilities that
Stalin could never have dreamed
of. The only way to hold the line
on privacy in the information age is
strong cryptography.

20 PROGRAMMING

you don’t have to distrust the
government to want to use cryptog-
raphy. your business can be wire-
tapped by business rivals, organized
crime, or foreign governments.
Several foreign governments, for
example, admit to using their sig-
nal’s intelligence against companies
from other countries to give their
own corporations a competitive
edge. ironically, the united States
government’s restrictions on cryp-
tography in the 1990s have weak-
ened u.S. corporate defenses against
foreign intelligence and organized
crime.

The government knows what a
pivotal role cryptography is des-
tined to play in the power rela-
tionship with its people. in April
1993, the Clinton administration
unveiled a bold new encryption
policy initiative, which had been
under development at the National
Security Agency (NSA) since the
start of the Bush administration.
The centerpiece of this initiative
was a government-built encryp-
tion device, called the Clipper chip,
containing a new classified NSA
encryption algorithm. The govern-
ment tried to encourage private
industry to design it into all their
secure communication products,
such as secure phones, secure faxes,
and so on. AT&T put Clipper into
its secure voice products. The catch:
At the time of manufacture, each
Clipper chip is loaded with its
own unique key, and the govern-
ment gets to keep a copy, placed in
escrow. Not to worry, though — the
government promises that they will
use these keys to read your traf-
fic only “when duly authorized by
law.” Of course, to make Clipper
completely effective, the next logi-
cal step would be to outlaw other
forms of cryptography.

The government initially claimed
that using Clipper would be
voluntary, that no one would be
forced to use it instead of other
types of cryptography. But the
public reaction against the Clip-
per chip was strong, stronger than
the government anticipated. The
computer industry monolithically
proclaimed its opposition to using
Clipper. FBi director Louis Freeh
responded to a question in a press
conference in 1994 by saying that
if Clipper failed to gain public sup-
port, and FBi wiretaps were shut
out by non-government-controlled
cryptography, his office would have
no choice but to seek legislative
relief. Later, in the aftermath of the
Oklahoma City tragedy, Mr. Freeh
testified before the Senate Judiciary
Committee that public availability
of strong cryptography must be cur-
tailed by the government (although
no one had suggested that cryptog-
raphy was used by the bombers).

The government has a track
record that does not inspire con-
fidence that they will never abuse
our civil liberties. The FBi’s COiN-
TELPRO program targeted groups
that opposed government policies.
They spied on the antiwar move-
ment and the civil rights movement.
They wiretapped the phone of
Martin Luther King, Jr. Nixon had
his enemies list. Then there was the
Watergate mess. More recently, Con-
gress has either attempted to or suc-
ceeded in passing laws curtailing our
civil liberties on the internet. Some
elements of the Clinton White
House collected confidential FBi
files on Republican civil servants,
conceivably for political exploita-
tion. And some overzealous prosecu-
tors have shown a willingness to go
to the ends of the Earth in pursuit
of exposing sexual indiscretions of

political enemies. At no time in the
past century has public distrust of
the government been so broadly
distributed across the political spec-
trum, as it is today.

Throughout the 1990s, i figured
that if we want to resist this unset-
tling trend in the government to
outlaw cryptography, one measure
we can apply is to use cryptogra-
phy as much as we can now while
it’s still legal. When use of strong
cryptography becomes popular,
it’s harder for the government to
criminalize it. Therefore, using PGP
is good for preserving democracy.
if privacy is outlawed, only outlaws
will have privacy.

it appears that the deployment of
PGP must have worked, along with
years of steady public outcry and
industry pressure to relax the export
controls. in the closing months of
1999, the Clinton administration
announced a radical shift in export
policy for crypto technology. They
essentially threw out the whole
export control regime. Now, we are
finally able to export strong cryp-
tography, with no upper limits on
strength. it has been a long struggle,
but we have finally won, at least on
the export control front in the uS.
Now we must continue our efforts
to deploy strong crypto, to blunt
the effects increasing surveillance
efforts on the internet by various
governments. And we still need to
entrench our right to use it domesti-
cally over the objections of the FBi.

PGP empowers people to take
their privacy into their own hands.
There has been a growing social
need for it. That’s why i wrote it. ■

Philip R. Zimmermann is the creator of
Pretty Good Privacy, an email encryption
software package.

Reprinted with permission of the original author.
First appeared in hn.my/pgp (philzimmermann.com)

http://hn.my/pgp

 21

➊ Write down the words. you
started to do this. Some

people don’t and wonder why they
have problems.

➋ Expand your set of words
into simple statements about

what these objects will be doing.
That is to say, write down the vari-
ous calculations you’ll be doing on
these things. your short list of 30
dogs, 24 measurements, 4 con-
tacts, and several “parameters” per
contact is interesting, but only part
of the story. your “locations of each
paw” and “compare all the paws of
the same dog to determine which
contact belongs to which paw” are
the next step in object design.

➌ underline the nouns. Seri-
ously. Some folks debate the

value of this, but i find that for
first-time OO developers it helps.
underline the nouns.

➍ Review the nouns. Generic
nouns like “parameter” and

“measurement” need to be replaced
with specific, concrete nouns that
apply to your problem in your
problem domain. Specifics help
clarify the problem. Generics
simply elide details.

➎ For each noun (“contact”,
“paw”, “dog”, etc.) write down

the attributes of that noun and
the actions in which that object
engages. Don’t short-cut this. Every
attribute. “Data Set contains 30
Dogs” for example is important.

➏ For each attribute, identify
if this is a relationship to a

defined noun, or some other kind
of “primitive” or “atomic” data like
a string or a float or something
irreducible.

➐ For each action or operation,
you have to identify which

noun has the responsibility, and
which nouns merely participate.
it’s a question of “mutability.” Some
objects get updated, others don’t.
Mutable objects must own total
responsibility for their mutations.

➑ At this point, you can start
to transform nouns into class

definitions. Some collective nouns
are lists, dictionaries, tuples, sets or
namedtuples, and you don’t need to
do very much work. Other classes
are more complex, either because
of complex derived data or because
of some update/mutation which is
performed.

Don’t forget to test each class in
isolation using unit test.

Also, there’s no law that says
classes must be mutable. in your
case, for example, you have almost
no mutable data. What you have is
derived data, created by transfor-
mation functions from the source
dataset. ■

Steven Lott is a consultant, teacher, author
and software developer with over 35
years of experience building software of
every kind, from specialized control sys-
tems for military hardware to large data
warehouses.

How to Design a Class
By STEvEN LOTT

Reprinted with permission of the original author.
First appeared in hn.my/designclass (stackoverflow.com)

http://hn.my/designclass

22 PROGRAMMING

your security and privacy
on the internet (to the
extent that such quaint

notions still have meaning) depend
on the difficulty of factoring certain
large numbers. For example, take
this 1,024-bit integer:

X = 12378451765455704420457203
00156476432601975715662027908
82488143432336664289530131607
571273603815008562006802500078
94557646372684708763884626821
078230649285613963510276802208
436872101227718450860737080502
115462982139570265498874808387
544019984191522340090773419265
571309789586682270651794950799
3107455319103401

The number printed above in
squinty type is the product of two
512-bit prime factors. if you set out
to find those factors, the project
might well keep you busy for many
megayears. But i can make the job
much easier by giving you a second
number of the same size:

Y = 13975280625857017971965733
49412654630082054150470733499
42370461270597321020717639292
879992151626413610247750429267
91623042401095505475050283351
707039598628972423711241081600
055814862378541156884551714630
342138406352509182489831822617
523419381595059704162751814090
638488921805486788705842944493
4835873139133193

Factoring both x and y would
appear to be twice as much
work, but in fact you can do it

lickety-split. On my laptop it took
roughly 200 microseconds. From
millions of years to millionths of a
second — that’s quite a speedup!

There’s a trick, of course. Both
x and y are products of two large
primes, but it so happens that one
of the primes is a shared factor
of both numbers. For finding that
shared factor, we can rely on a very
old, very famous, very simple and
very efficient algorithm: Euclid’s
algorithm for the greatest common
divisor. in Python it looks like this:

def gcd(a, b):
 if b == 0:
 return a
 else:
 return gcd(b, a % b)

(The “%” in line 5 is Python’s
modulo or remainder operator.)
When this function is applied to x
and y, the recursion is invoked 297
times before returning the common
factor:

F = 10704679319376067064256301
45948715022696962191248959648
26285098009220803181996357261
170093401891033361708413159003
54200725312700639146605265442
630619090531

you don’t have to take my word
for it that F divides both x and y.
Do the division: in that way you
will also learn the co-factors of x
and y.

if x and y were components
of public keys in the RSA crypto-
system, their shared factor would
create a huge hole in the security

fence. And the problem is par-
ticularly insidious in that each of
the two keys, when examined in
isolation, looks perfectly sound; the
weakness only becomes apparent
when you have both members of
the pair.

This potential vulnerability of
factoring-based encryption methods
has been known for decades, but
it seemed there was no reason to
worry because coincidentally shared
factors are so utterly unlikely. A
couple of weeks ago i heard an
eye-opening talk by Nadia Hen-
inger, a member of a group that has
searched for such unlikely coin-
cidences in the wild. They found
64,000 of them. Reason to worry.

Heninger and her colleagues
polled every public iPv4

address in the known universe,
requesting a connection on the
ports commonly used for two
secure communication protocols,
TLS and SSH. For every address
that responded to queries on those
ports, they collected the server’s
public encryption key and then
closed the connection. Here i
am going to discuss only the TLS
servers with RSA keys; there were
vulnerabilities in other cryptosys-
tems as well, but the issues are
slightly different.

Before telling the rest of this
story, i have to pause here. For
those of you in the born-digital
generation, pinging every address
on the internet may sound like a
routine walk around the block on

The Keys to the Keydom By BRiAN HAyES

 23

By BRiAN HAyES

a sunny afternoon, but i confess
that i never would have dared to
try anything so audacious. it’s like
knocking on every door in America,
or calling every possible telephone
number — a task that’s not feasible
for individuals of ordinary means,
and that also seems unforgivably
rude. But standards of feasibil-
ity and rudeness are different in
the world of machine-to-machine
communication. Computers don’t
care if you make four billion hang-
up calls (although some system
administrators might frown on the
practice). And, after all, the encryp-
tion keys being collected are by
definition public.

Back to Heninger’s story. They
ran their scan of iP addresses from
Amazon’s Elastic Compute Cloud
service, where the data-collection
phase of the project took a few
days. Out of 232≈4 billion addresses
(less a few special-purpose or
reserved areas) they found about
29 million servers accepting con-
nections on the standard port for
TLS, but only 12.8 million of those
servers supplied public keys. Some
60 percent of the keys retrieved
were not unique. Presumably, most
of the duplicates are accounted for
by organizations that have multiple
servers all operating with the same
cryptographic credentials, but there
were also instances of apparently
unaffiliated individuals sharing a
key. This is rather like discovering
that your house key also opens your
neighbor’s front door (and vice
versa).

After eliminating the duplicates,
some 5.8 million distinct RSA keys
needed to be tested for common
factors. Even though Euclid’s GCD
algorithm is highly efficient, run-
ning it on all possible pairings of
keys would be a strain. There’s an

ingenious shortcut, based on the
observation that if y is relatively
prime to each of x1, x2,…, xn, then
it also has no factor in common
with the product x1× x2 ×· · ·×xn.
Thus it’s possible to detect the
presence of shared factors with just
n GCD operations, instead of n2. A
drawback of this approach is that
the product of millions of RSA keys
is a huge number, and intermediate
results have to be swapped out to
disk. Nevertheless, the processing
was completed in an hour and a
half on the Amazon cloud at a cost
of $5.

The output was a list of 64,081
compromised keys for TLS hosts,
about 0.5 percent of all such keys
collected. For obvious reasons,
Heninger et al. are not publishing
that list; they tried to contact the
owners of vulnerable machines, and
they are also offering a web lookup
service where you can check to see
if your key is on the list.

The good news is that none of
the weak keys are guarding access
to major web servers hosting bank
accounts or medical records or
stock markets or military instal-
lations. Most of them are found
in embedded networked devices,
such as routers and firewalls. That’s
also the bad news. A programmer
with malicious intent who can gain
control of a well-placed router can
make a lot of mischief.

Could the prevalence of
common factors in RSA keys

be explained as a product of pure
bad luck? To answer this ques-
tion we need to solve a birthday
problem. The original version of
this problem asks how many people
you need to bring together before
there’s a good chance that two or
more of them will have the same

birthday (assuming birthdays are
distributed randomly over the 365
days of the year). An order-of-
magnitude approximation is √365,
or about 19. (The actual number
is 23.) For the RSA variant of the
problem, we ask how many 512-bit
primes you need to generate —
assuming you select them uni-
formly at random from the set of
all such primes — before you have
a good chance of seeing at least one
prime twice. in this case we replace
365 with the number of 512-bit
primes, which is in the neighbor-
hood of 10150. Thus there’s scarcely
any chance of a collision until the
number of randomly generated
primes approaches 1075. We’re only
at 107 so far. As Heninger said in
her talk, we have enough 512-bit
primes to assign a public encryption
key to every atom in the universe,
with little worry over possible
duplicates.

According to this line of reason-
ing, it would be a colossal fluke
to see even one duplicated RSA
prime, and finding 64,000 of them
is clear evidence that those primes
are not being chosen uniformly
at random. The blame apparently
lies with pseudorandom number
generators. it’s not that the algo-
rithms are defective. in many cases,
cryptographic keys are being gener-
ated immediately after a machine
is booted, when it just can’t scrape
together enough entropy to make a
passable pseudorandom number. ■

Brian Hayes writes about math and com-
puting for American Scientist magazine
and for bit-player.org. And he is the author
of Infrastructure: A Field Guide to the
Industrial Landscape.

Reprinted with permission of the original author.
First appeared in hn.my/keydom (bit-player.org)

http://hn.my/keydom

24 PROGRAMMING

On Hacking MicroSD Cards
By ANDREW “bunnie” HuANG

Today at the Chaos Com-
puter Congress (30C3),
xobs [xoblo.gs] and i

disclosed a finding that some SD
cards contain vulnerabilities that
allow arbitrary code execution —
on the memory card itself. On the
dark side, code execution on the
memory card enables a class of
MiTM (man-in-the-middle) attacks,
where the card seems to be behav-
ing one way, but in fact it does
something else. On the light side, it
also enables the possibility for hard-
ware enthusiasts to gain access to a
very cheap and ubiquitous source
of microcontrollers.

 in order to explain the hack, it’s
necessary to understand the struc-
ture of an SD card. The information
here applies to the whole family
of “managed flash” devices, includ-
ing microSD, SD, and MMC, as
well as the eMMC and iNAND
devices typically soldered onto the

mainboards of smartphones and
used to store the OS and other
private user data. We also note that
similar classes of vulnerabilities
exist in related devices, such as uSB
flash drives and SSDs.

Flash memory is really cheap. So
cheap, in fact, that it’s too good to
be true. in reality, all flash memory
is riddled with defects — without
exception. The illusion of a con-
tiguous, reliable storage media is
crafted through sophisticated error
correction and bad block manage-
ment functions. This is the result of
a constant arms race between the
engineers and mother nature; with
every fabrication process shrink,
memory becomes cheaper but more
unreliable. Likewise, with every
generation, the engineers come
up with more sophisticated and
complicated algorithms to compen-
sate for mother nature’s propensity
for entropy and randomness at the
atomic scale.

These algorithms are too compli-
cated and too device-specific to be
run at the application or OS level,
and so it turns out that every flash
memory disk ships with a reason-
ably powerful microcontroller to
run a custom set of disk abstraction
algorithms. Even the diminutive

microSD card contains not one, but
at least two chips — a controller,
and at least one flash chip (high
density cards will stack multiple
flash die). you can
see some die shots
of the inside of
microSD cards at a
microSD teardown
[hn.my/microtear]
i did a couple years ago.

 in our experience, the qual-
ity of the flash chip(s) integrated
into memory cards varies widely.
it can be anything from high-grade
factory-new silicon to material
with over 80% bad sectors. Those
concerned about e-waste may (or
may not) be pleased to know that
it’s also common for vendors to use
recycled flash chips salvaged from
discarded parts. Larger vendors
will tend to offer more consistent
quality, but even the largest players
staunchly reserve the right to mix
and match flash chips with different

http://xoblo.gs
http://hn.my/microtear

 25

controllers, yet sell the assembly as
the same part number — a night-
mare if you’re dealing with imple-
mentation-specific bugs.

The embedded microcontroller
is typically a heavily modified 8051
or ARM CPu. in modern imple-
mentations, the microcontroller
will approach 100 MHz perfor-
mance levels, and also have sev-
eral hardware accelerators on-die.
Amazingly, the cost of adding these
controllers to the device is prob-
ably on the order of $0.15 – $0.30,
particularly for companies that can
fab both the flash memory and the
controllers within the same busi-
ness unit. it’s probably cheaper to
add these microcontrollers than
to thoroughly test and character-
ize each flash memory chip, which
explains why managed flash devices
can be cheaper per bit than raw
flash chips, despite the inclusion of
a microcontroller.

The downside of all this com-
plexity is that there can be bugs
in the hardware abstraction layer,
especially since every flash imple-
mentation has unique algorithmic
requirements, leading to an explo-
sion in the number of hardware
abstraction layers that a microcon-
troller has to potentially handle.
The inevitable firmware bugs are
now a reality of the flash memory
business, and as a result it’s not
feasible, particularly for third party
controllers, to indelibly burn a static
body of code into on-chip ROM.

The crux is that a firmware load-
ing and update mechanism is virtu-
ally mandatory, especially for third-
party controllers. End users are
rarely exposed to this process, since
it all happens in the factory, but this
doesn’t make the mechanism any
less real. in my explorations of the
electronics markets in China, i’ve

seen shop keepers burning firmware
on cards that “expand” the capacity
of the card — in other words, they
load a firmware that reports the
capacity of a card is much larger
than the actual available storage.
The fact that this is possible at
the point of sale means that most
likely, the update mechanism is not
secured.

in our talk at 30C3, we report
our findings exploring a particular
microcontroller brand, namely,
Appotech and its Ax211 and
Ax215 offerings. We discover a
simple “knock” sequence transmit-
ted over manufacturer-reserved
commands (namely, CMD63
followed by “A”, “P”, “P”, “O”) that
drop the controller into a firmware
loading mode. At this point, the
card will accept the next 512 bytes
and run it as code.

From this beachhead, we were
able to reverse engineer (via a
combination of code analysis and
fuzzing) most of the 8051′s func-
tion specific registers, enabling us to
develop novel applications for the
controller, without any access to the
manufacturer’s proprietary docu-
mentation. Most of this work was
done using our open source hard-
ware platform, Novena, and a set
of custom flex circuit adapter cards
(which, tangentially, lead toward
the development of flexible circuit
stickers aka chibitronics).

Significantly, the SD command
processing is done via a set of inter-
rupt-driven call backs processed by
the microcontroller. These callbacks
are an ideal location to implement
an MiTM attack.

it’s as of yet unclear how many
other manufacturers leave their
firmware updating sequences
unsecured. Appotech is a relatively
minor player in the SD controller
world; there’s a handful of com-
panies that you’ve probably never
heard of that produce SD control-
lers, including Alcor Micro, Sky-
medi, Phison, SMi, and of course,
Sandisk and Samsung. Each of them
would have different mechanisms

26 PROGRAMMING

and methods for loading and updating their
firmware. However, it’s been previously noted
that at least one Samsung eMMC implemen-
tation using an ARM instruction set had a
bug which required a firmware updater to
be pushed to Android devices, indicating yet
another potentially promising venue for further
discovery.

From the security perspective, our find-
ings indicate that even though memory cards
look inert, they run a body of code that can be
modified to perform a class of MiTM attacks
that could be difficult to detect; there is no
standard protocol or method to inspect and
attest to the contents of the code running on the
memory card’s microcontroller. Those in high-
risk, high-sensitivity situations should assume
that a “secure-erase” of a card is insufficient to
guarantee the complete erasure of sensitive
data. Therefore, it’s recommended to dispose of
memory cards through total physical destruc-
tion (e.g., grind it up with a mortar and pestle).

From the Diy and hacker perspective, our
findings indicate a potentially interesting source
of cheap and powerful microcontrollers for use
in simple projects. An Arduino, with its 8-bit 16
MHz microcontroller, will set you back around
$20. A microSD card with several gigabytes
of memory and a microcontroller with several
times the performance could be purchased for a
fraction of the price. While SD cards are admit-
tedly i/O-limited, some clever hacking of the
microcontroller in an SD card could make for a
very economical and compact data logging solu-
tion for i2C or SPi-based sensors.

Slides from our talk at 30C3 can be down-
loaded here [hn.my/sdcard], or you can watch
the talk on youtube [hn.my/30c3]. ■

Andrew “bunnie” Huang loves hardware. He was involved
in some of the earliest stages of hardware reverse engi-
neering on the Xbox, and his experiences are summarized
in his book, “Hacking the Xbox: An Introduction to Reverse
Engineering”. bunnie also serves as a Research Affiliate for
the MIT Media Lab, technical advisor for several hardware
startups and MAKE magazine, and shares his experiences
manufacturing hardware in China through his blog.

Reprinted with permission of the original author.
First appeared in hn.my/microsd (bunniestudios.com)

http://hn.my/sdcard
http://hn.my/30c3

 27

Piping wget or curl to bash or sh is stupid. Like
this:

wget -O - http://example.com/install.sh |
sudo sh

it’s everywhere. Sometimes they tell you to ignore
certificates as well (looking at you, Salt). That’s dumb.

The main reason i think it’s dumb (other than run-
ning arbitrary commands on your machine that could
change based on user agent to trick you) is its failure
mode.

What happens if the connection closes midstream?
Let’s find out.

(echo -n "echo \"Hello\""; cat) | nc -l -p 5555

This will send a command to whoever connects, but
it won’t send the newline. Then, it’ll hang. Let’s con-
nect the client:

nc localhost 5555 | sh

At first, nothing happens. Great. What will happen
if we kill -9 the listening netcat? Will sh execute the
partial command in its buffer?

yes.

nc localhost 5555 | sh
Hello

But what about wget, or curl?

wget -O - http://localhost:5555 | sh
--2013-10-31 16:22:38-- http://localhost:5555/
Resolving localhost (localhost)... 127.0.0.1
Connecting to localhost (local-
host)|127.0.0.1|:5555... connected.
HTTP request sent, awaiting response... 200 No
headers, assuming HTTP/0.9
Length: unspecified
Saving to: `STDOUT'

[<=] 12 --.-K/s in 8.6s

2013-10-31 16:22:47 (1.40 B/s) - written to
stdout [12]

Hello

What if that partial command wasn’t a harmless
echo but instead one of these:

TMP=/tmp
TMP_DIR=`mktemp`
rm -rf $TMP_DIR

Harmless, right? And what if the connection closes
immediately after “rm -rf $TMP” is sent? it’ll delete
everything in the temp directory, which is certainly
harmful.

This might be unlikely, but the results of this hap-
pening, even once, could be catastrophic.

Friends don’t let friends pipe to sh. ■

Sean is a software engineer who is passionate about doing things
right. He is currently working on Squadron [gosquadron.com]:
an awesome configuration and release management tool for
SaaS applications.

Don’t Pipe to your Shell
By SEAN CASSiDy

Reprinted with permission of the original author.
First appeared in hn.my/pipeshell (existentialize.com)

http://gosquadron.com

28 PROGRAMMING

By CECiLy CARvER

Before you learn to code, think
about what you want to code
Knowing how to code is mostly
about building things, and the path
is a lot clearer when you have a
sense of the end goal. if your goal is
“learn to code,” without a clear idea
of the kinds of programs you will
write and how they will make your
life better, you will probably find it
a frustrating exercise.

i’m a little ashamed to admit that
part of my motivation for studying
computer science was that i wanted
to prove i was smart, and i wanted
to be able to get Smart Person jobs.
i also liked thinking about math
and theory, and the program was a
good fit. it wasn’t enough to sustain
me for long, though, until i found
ways to connect technology to the
things i really loved, like music and
literature.

So, what do you want to code?
Websites? Games? iPhone apps? A
startup that makes you rich? inter-
active art? Do you want to be able
to impress your boss or automate a
tedious task so you can spend more
time looking at otter pictures? Per-
haps you simply want to be more
employable, add a buzzword to
your resume, or fulfill the require-
ments of your educational program.
All of these are worthy goals. Make
sure you know which one is yours,
and study accordingly.

There’s nothing mystical about it
Coding is a skill like any other. Like
language learning, there’s grammar
and vocabulary to acquire. Like
math, there are processes to work
through specific types of problems.
Like all kinds of craftsmanship and
art-making, there are techniques
and tools and best practices that

people have developed over time,
specialized to different tasks, that
you’re free to use or modify or
discard.

Joel Spolsky posits that there is
a bright line between people with
the True Mind of a Programmer
and everyone else, who are lacking
the intellectual capacity needed to
succeed in the field. That bright line
consists, according to him, of point-
ers and recursion.

i learned about pointers and
recursion in school, and when i
understood them, it was a delight-
ful jolt to my brain — the kind of
intellectual pleasure that made me
want to study computer science
in the first place. But, outside of
classroom exercises, the number of
times i’ve had to be familiar with
either concept to get things done
has been relatively small. And when
helping others learn, over and over

Things I Wish Someone
Had Told Me When I Was

Learning How to Code
And What I’ve Learned From Teaching Others

 29

again, i’ve watched people com-
plete interesting and rewarding
projects without knowing anything
about either one.

There’s no point in being intimi-
dated or wondering if you’re Smart
Enough. Sure, the more complex
and esoteric your task, the higher
the level of mastery you will need
to complete it. But this is true in
absolutely every other field. unless
you’re planning to make your living
entirely by your code, chances are
you don’t have to be a recursion-
understanding genius to make the
thing you want to make.

It never works the first time
And probably won’t the second or
third time
When you first start learning to
code, you’ll very quickly run up
against this particular experience:
you think you’ve set up everything
the way you’re supposed to, you’ve
checked and re-checked it, and it
still doesn’t work. you don’t have
a clue where to begin trying to fix
it, and the error message (if you’re
lucky enough to have one at all)
might as well say “fuck you.” you
might be tempted to give up at this
point, thinking that you’ll never
figure it out, that you’re not cut out
for this. i had that feeling the first
time i tried to write a program in
C++, ran it, and got only the words
“segmentation fault” for my trouble.

But this experience is so common
for programmers of all skill levels
that it says absolutely nothing
about your intelligence, tech-sav-
viness, or suitability for the coding
life. it will happen to you as a
beginner, but it will also happen to
you as an experienced programmer.
The main difference will be in how
you respond to it.

i’ve found that a big difference
between new coders and expe-
rienced coders is faith: faith that
things are going wrong for a logical
and discoverable reason, faith that
problems are fixable, faith that
there is a way to accomplish the
goal. The path from “not working”
to “working” might not be obvious,
but with patience you can usually
find it.

Someone will always tell you
you’re doing it wrong
Braces should go on the next line.
Braces should go on the same line.
use tabs to indent. But tabs are evil.
you should use stored procedures,
but actually you shouldn’t use
them. you should always comment
your code. But good code doesn’t
need comments.

There are almost always many
different approaches to a particular
problem, with no single “right way.”
A lot of programmers get very good
at advocating for their preferred
way, but that doesn’t mean it’s the
One True Path. Going head-to-head
with people telling me i was wrong,
and trying to figure out if they were
right, was one of the more stressful
aspects of my early career.

if you’re coding in a team with
other people, someone will almost
certainly take issue with some-
thing that you’re doing. Sometimes
they’ll be absolutely correct, and
it’s always worth investigating to
see whether you are, in fact, Doing
it Wrong. But sometimes they will
be full of shit, or re-enacting an
ancient and meaningless dispute
where it would be best to just
follow a style guide and forget
about it.

On the other hand, if you’re the
kind of person who enjoys ancient
but meaningless disputes (grammar
nerds, i’m looking at you), you’ve
come to the right place.

Someone will always tell you
you’re not a real coder
HTML isn’t real coding. if you
don’t use vi, you’re not really seri-
ous. Real programmers know C.
Real coders don’t do Windows.
Some people will never be able to
learn it. you shouldn’t learn to code.
you’re not a computer programmer
(but i am).

“Coding” means a lot of dif-
ferent things to a lot of different
people, and it looks different now
from how it used to. And, funnily
enough, the tools and packages
and frameworks that make it faster
and easier for newcomers or even
trained developers to build things
are most likely to be tarred with the
“not for REAL coders” brush.

Behind all this is the fear that
if “anyone” can call themselves a
programmer, the title will become
meaningless. But i think that this
gatekeeping is destructive.

use the tools that make it easiest
to build the things you want to
build. if that means your game was
made in Stencyl or GameMaker
rather than written from scratch,
that’s fine. if your first foray into
coding is HTML or Excel macros,
that’s fine. Work with something
you feel you can stick with.

As you get more comfortable,
you’ll naturally start to find those
tools limiting rather than helpful
and look for more powerful ones.
But most of the time, few people
will ever even look at your code or
even ask what you used — it’s what
you make with it that counts.

30 PROGRAMMING

Worrying about “geek cred” will
slowly kill you
See above. i used to worry a lot,
especially in school, about whether
i was identifying myself as “not a
real geek” (and therefore less worthy
of inclusion in tech communities)
through my clothing, my presenta-
tion, my choice of reading material
and even my software customiza-
tion choices. it was a terrible waste
of energy and i became a lot more
functional after i made the decision
to let it all go.

you need to internalize this: your
ability to get good at coding has
nothing to do with how well you fit
into the various geek subcultures.
This goes double if you know deep
down that you’ll never quite fit. The
energy you spend proving yourself
should be going into making things
instead. And, if you’re an indisput-
able geek with cred leaking from
your eye sockets, keep this in mind
for when you’re evaluating someone
else’s cred level. it may not mean
what you think it does.

Sticking with it is more important
than the method
There’s no shortage of articles about
the “right” or “best” way to learn
how to code, and there are lots of
potential approaches. you can learn
the concepts from a book [pine.fm/
LearnToProgram] or by completing
interactive exercises [codecademy.
com] or by debugging things that
others have written [learnpython-
thehardway.org]. And, of course,
there are lots of languages you might
choose as your first to learn, with
advocates for each.

A common complaint with “teach
yourself to code” programs and work-
shops is that you’ll breeze happily
through the beginner material and
then hit a steep curve where things

get more difficult very quickly. you
know how to print some lines of text
on a page but have no idea where
to start working on a “real,” useful
project. you might feel like you were
just following directions without
really understanding, and blame the
learning materials.

When you get to this stage, most
of the tutorials and online resources
available to you are much less useful
because they assume you’re already
an experienced and comfortable
programmer. The difficulty is further
compounded by the fact that “you
don’t know what you don’t know.”
Even trying to figure out what to
learn next is a puzzle in itself.

you’ll hit this wall no matter what
“learn to code” program you follow,
and the only way to get past it is
to persevere. This means you keep
trying new things, learning more
information, and figuring out, piece
by piece, how to build your project.
you’re a lot more likely to find suc-
cess in the end if you have a clear
idea of why you’re learning to code
in the first place.

if you keep putting bricks on top
of each other, it might take a long
time but eventually you’ll have
a wall. This is where that faith i
mentioned earlier comes in handy.
if you believe that with time and
patience you can figure the whole
coding thing out, in time you almost
certainly will. ■

Cecily Carver is a Toronto-based software
developer for Bento Box Projects and co-
director of the Toronto organization Dames
Making Games, which aims to support
women interested in making, playing, and
changing. She leads programming and
game-making workshops for beginners, and
has spoken about her work at IndieCade,
GRAND, and FanExpo.

Reprinted with permission of the original author.
First appeared in hn.my/learn (medium.com)

http://pine.fm/LearnToProgram
http://pine.fm/LearnToProgram
http://codecademy.com
http://codecademy.com
http://learnpythonthehardway.org
http://learnpythonthehardway.org
http://hn.my/learn

 31

This is part of the long-running series, The Engines of Our
Ingenuity, heard nationally on Public Radio.

The scene is a remote Ethiopian village in
1940. A Farmer offers his herd of 34 goats for
sale. One goat is worth, say $7. The villagers

don’t know how to multiply, so they call in a shaman.
They ask him to set a fair price for the whole herd.

The shaman digs two rows of small holes in the
hard dry earth. He reaches into his sack of pebbles and
goes to work. He puts 34 stones in the first hole on
the left — one for each goat. He puts half that, or 17,
in the next — half 17, or 8, in the next — and so on.
He keeps dividing by two and dropping the remainder,
until the sixth hole has only one stone in it.

Now he goes to the other row. He puts 7 stones —
the value of one goat — in the first hole. He puts twice
that, or 14 stones in the next hole, and so on. Now his
deliberations begin.

He goes down the left-hand side, seeing whether the
holes are good or evil. An even number of stones makes
the hole evil. An odd number makes it good. Two holes
are good. The holes next to them, in the right row, con-
tain 14 stones and 224 stones. He adds those numbers
together. The result is the fair market value of the herd.
it’s $238.

you and i know about multiplication. So we multi-
ply the number of sheep, by the value of a sheep — 7
times 34. When we do that, we get $238. But that’s
just what the shaman got! So what in the world was
all the business with the holes? And would he get the
right answer with different numbers?

We try it with other numbers. it works every time.
So we turn to a mathematician. He says it’s not at all
obvious. He puzzles for a long time. Finally he sees
it. This Ethiopian shaman has created a remarkable
algorithm.

All that business with the holes identifies the num-
bers in their binary form. That lets the shaman reduce
multiplication to simple addition. He’s multiplied just
the way a digital computer does. Where did his method
come from? How long have his forbears carried this
rote tradition?

An anonymous genius lurks somewhere in the haze
of his history. So we look at our own multiplication
and realize that we too use ritual to find what 7 times
34 is. it makes no more sense to most people who use
it than the shaman’s holes. Our multiplication algo-
rithm was also given us by an anonymous genius. He is
also lost in rote tradition.

So how do we and that Ethiopian shaman differ?
very little, i reckon. very little indeed. Of course, i
wouldn’t be surprised if he makes fewer mistakes than
we do. ■

 ■ Currie, W.S., Binary in the Stone Age. Geophysics:
The Leading Edge of Exploration, March, 1985, pp.
50-52.

 ■ The shaman’s multiplication of 7 x 34:

row #1 row #2 the calculation

34 stones (evil) 7 evil 0
17 (good) 14 good 14
8 (evil) 28 evil 0
4 (evil) 56 evil 0
2 (evil) 112 evil 0
1 (good) 224 good 224

 238 = 7 x 34

John H. Lienhard is a Professor Emeritus of Mechanical Engineer-
ing at University of Houston.

Ethiopian Binary Math
By JOHN H. LiENHARD

Reprinted with permission of the original author.
First appeared in hn.my/ethiopian (uh.edu)

http://hn.my/ethiopian

32 PROGRAMMING

i recently scored a Hewlett Packard 1670A Deep
Memory Logic Analyzer, and i finally had a chance
to fire it up. This unit dates back to 1992 and is

packed with all sorts of interesting options for connect-
ing peripherals to it. One particular feature that caught
my eye was the option to connect to an x Server.

 Here is the interface of the logic analyzer running
on a remote x connection. i enjoy the color scheme.

i will give you a quick explanation as to how i was
able to set this up by modifying a couple of configura-
tion files to enable remote x connections.

i run Linux Mint 15 with the e17 window manager
(absolutely fantastic) and the gnome desktop manager
(gdm). The first step was to assign my new logic ana-
lyzer an iP address as it does not support DHCP. This
was fairly trivial, i merely assigned it a vacant iP on my
network.

Here is the configuration menu of the logic analyzer
sporting classic interface design complete with the x
logo. Take note of then convenient arrows to indicate
which port each button adjusts settings for.

 i especially enjoy the rotary encoder to the right of
the screen as an input device. it is quite tactile and is a
fun way to input the iP address. All that it is missing is
the ability to depress it.

By ANDREW ROSSiGNOL

A Testament to X11
Backwards Compatibility

HP 1670A Logic Analyzer

HP 1670A user interface over an x connection :]

Configuration Menu

 33

 i also found some bonus help material about the
hosts file on uNix systems. i see everything has been
status quo since 1992.

 Next, i had to make a couple of changes to configu-
ration files to allow remote x TCP connections. i fol-
lowed instructions from a question on serverfault.com
to make this happen.

First, i modified /etc/gdm/custom.conf to allow
DisallowTCP = false

i also modified /etc/X11/xinit/xserverrc and
removed the “-nolisten tcp” option. A quick restart
of gdm later and i was able to establish the connection
between the logic analyzer and my laptop. i find this to
be a rather interesting feature of this piece of test gear.
it’s a shame that more devices don’t implement the
protocol, this is quite a cool feature if you ask me.

This all reminds me very much of the Chain of
Fools video [hn.my/chain] from back in 2011 where
Andy successfully upgraded from Microsoft’s DOS
5.0 through to Windows 7 and was still able to play
Doom and Monkey island. i can definitely say that this
is an impressive feat for a systems design house such as
Microsoft, but the *nix’s deserve some credit, too! ■

Andrew Rossignol is passionate about electronics and technol-
ogy. He has been doing tear downs and coming up with fun
technical projects since he was a little kid. Not much has changed
since then!

iP Address information, Boring.

Hosts File information

Waveform viewer

Reprinted with permission of the original author.
First appeared in hn.my/x11 (theresistornetwork.com)

http://serverfault.com
http://hn.my/chain

34 SPECIAL

SPECIAL

By OLEG ANDREEv

People often talk about
privacy problems with
Bitcoin: all transactions are

public and every move is watched
by millions of eyes. Where there’s a
problem, there’s a solution.

Let’s first define the problem
more rigorously. There are two situ-
ations (ok, three) when you want to
launder your coins.

First: you receive monthly salary
on a single address and then want to
do regular purchases with it. When
you’re buying a cup of coffee, the
shop owner will see how much
money you have, which might be
unsafe.

Second: you want to buy some-
thing expensive, so you have to
combine “change” from various
addresses in a single transaction.
This may link many of your private
payment histories in one. Someone
may connect the dots and make a
full profile of a single person: what
he eats, where he travels and so on.
it’s being done with credit cards
already and people don’t seem to
like it very much.

Third: you sold something
anonymously and your payment is
being watched. if you later spend
that money in the open, your iden-
tity may be revealed.

Bonus track: Some people think
that “money laundering” is not
sinful enough, so they invented
“structuring laws,” which forbid not
only buying bad things, but also
hiding the monetary trails even if
you don’t do anything illegal at all.
if your method to launder bitcoins
is screaming “LAuNDERiNG” on
the blockchain (like with Zerocoin,
using shared addresses or CoinJoin
transactions), it’s not good for you.
you may get your privacy, but you
also go to jail for “structuring.” To
be a law-abiding citizen you should
not hide your financial history. The
rest of this article is for pure enter-
tainment only.

To address all of these issues
we need to disperse and mix the
funds in a way that their source or
destination becomes statistically
indistinguishable from any ordinary
transaction.

you might do that with these
ingredients: discover, insurance, split
and swap.

Disclaimer: This is not advice,
it’s a technological overview for all
those who are interested in privacy
aspects of Bitcoin. Anyone can
implement this or come up with an
even better idea. This is not even
my original idea. i recommend gov-
ernments to shut down the entire
network to prevent people from
doing nasty things with Bitcoin. At
the same time, there’s an opportu-
nity to use this scheme by under-
cover FBi agents to detect anyone
mixing their bitcoins. Dear reader,
please obey the laws and be a good,
socially responsible person.

➊ your wallet app discovers
random nodes on the P2P

network (other instances of the
same app) and posts a request to
launder some bitcoins. When two
wallets meet with similarly sized
requests, they exchange information
about some of the available coins.
Each of them does statistical analy-
sis of those coins and decides if the
coin is “good enough.” For instance,
if this coin’s history correlates as
little as possible with the histories
of the coins already owned.

How to Launder
Bitcoins Perfectly

 35

➋ When both nodes like each
other’s coins, they enter an

insurance contract. Each party locks
up an equal amount of coins in a
single special transaction where
coins can only be unlocked atomi-
cally and by mutual agreement.
At the same time, each party can
destroy both deposits (e.g., in
case of timeout or misbehavior of
another node). The amount of each
deposit should be 200-300% of the
amount to be exchanged.

➌ Each node splits their coin
in two parts. One part is to

be exchanged now, another part is
to be exchanged with some other
node later. Parts of the coins should
be equal. (This produces some cor-
relation detectable on blockchain,
but that’s easy to fix with multiple
independent transactions instead of
just one.)

➍ Each node tells another one
an address on which to send

a part of the coin. Each of them
does that transaction. All the other
nodes don’t know about this swap
of coins and therefore cannot link
them together. if your coin was
“tainted” (watched by adversary),
half of it anonymously goes to
someone else and in return you
get some absolutely different coin.
insurance contract prevents a node
from receiving a payment, but not
making a payment back. Since there
is no human supervision, anyone
trying to cheat the scheme will get
punished by an automatic destruc-
tion of his deposit (which is worth
much more than just received
money).

During one session (one insur-
ance contract), nodes can swap
more coins until they run out of
coins or cannot provide each other
with a statistically good one. When
the session is over, insurance depos-
its are unlocked and nodes go talk
to other nodes.

Think about it this way: you
split all your money in 1000 pieces
and send them to 1000 differ-
ent random strangers via regular,
statistically innocent transactions. in
return you get 1000 pieces from all
around the world that are not con-
nected to each other in any mean-
ingful way. 10 rounds splits money
into 1024 portions, 20 rounds into
over a million. in a short period of
time you never expose more than
a fraction of your funds and never
receive more than a fraction of
someone else’s history.

How does this address our
examples?

When you receive a monthly
salary payment, you mix it with
1000 random users and in return
get 1000 smaller pieces. it’s like
exchanging one $1000 bill for a
thousand $1 bills. Then, you can
go buy your coffee and no one will
know how much money you have.

When you need to spend a lot of
money at once, you do the same:
take all your small coins, swap
anonymously for other small coins
and make a single payment. your
individual spending histories will
be dispersed among thousands of
random people. And the recipient
of your payment will link together
totally uncorrelated histories having
nothing to do with you personally.

Finally, if some of your money is
being watched (“tainted”), it will be
moved to someone else completely.
you yourself have little risk of get-
ting someone else’s tainted history
because you never get more than
0.1% of it due to multiple rounds
of splitting.

The ui for this can be quite
simple. you install a special kind of
wallet, load it with bitcoins, con-
nect to the internet and click “Mix
coins.” The next morning all your
coins are perfectly mixed with
thousands of random strangers.

Again, this is not a ready solu-
tion, but a theoretical possibility
for those who are interested in
solving puzzles. Don’t use this if
the law forbids it. The law is very
important. ■

Oleg Andreev is a software developer
from St. Petersburg, Russia interested in
a variety of areas from user interfaces to
networking protocols and cryptography.

Reprinted with permission of the original author.
First appeared in hn.my/launder (oleganza.com)

http://hn.my/launder

36 SPECIAL

By SAAR DRiMER

An Engineer’s Emergency
Kit Business Card

Circuit board business cards have been done.
But since circuit boards are, literally, my busi-
ness [boldport.com], i felt that i needed one,

too. Of course it also had to be special. Research and
experimentation took a long time with this one, and
the design even sat dormant, ready, for a while before i
sent it out to fab.

 The concept was to have through-hole components
embedded within the PCB and soldered lying down.
The components — two resistors, LED, NPN MOSFET,
and a capacitor — form a complete circuit so that
when voltage is applied, the LED turns on.

 it’s meant to be an engineer’s emergency kit. When
all hope is lost, the MacGuyver engineer could snap
out one of the components and save the day. Recall
the countless times you desperately needed a 1 KOhm
resistor to fix an amplifier at a party, only to see the girl
you were trying to impress slip away with an OCaml
programmer? Never again with this little kit. you even
have 2cm of solder in there to make sure the connec-
tion’s electrically solid!

Without components

Sizing up the components. Notice the wiggly piece of solder
that fits into one of the slots.

http://boldport.com

 37

Consider the times when you were too drunk to
recall Ohm’s Law, yet was called in to fix a spaceship’s
control system. v=iR is written on the board to rescue
you into awesomeness in spite of your inebriated state.

For those extreme situations when you need a Win-
ston Wolfe, my details are there so you know who to
contact when the going gets tough. Finally, as motiva-
tion, my disapproving mug is there to stare at you as
you’re going about your engineering super hero day.

 The board was manufactured by PCB-POOL, with-
out soldermask or silkscreen and using their default
ENiG finish. This was the first PCBmodE board i’ve
made with this fab, and they’ve done a great job. i
particularly like that they send pictures of the board
during the manufacturing process.

Components soldered into place (top side)

Components soldered into place (bottom side)

it’s a functional circuit! The LED lights up when you apply
power.

Banana for scale for us Reddit types

38 SPECIAL

Now i only need to figure out how to manufacture
this design cheaply enough so i can actually give those
kits away. ■

Saar Drimer is an engineer.

A view from Inkscape/PCBmodE. The assembly layer

was used to size the cutouts. (That break in my face

is an artefact from Inkscape’s bitmap export)

Reprinted with permission of the original author.
First appeared in hn.my/businesscard (blogspot.co.uk)

39 SPECIAL

https://www.mailjet.com/?utm_source=hackermonthly&utm_medium=pdf&utm_campaign=October-hackermonthly

40 SPECIAL

http://circleci.com/?join=hackermonthly

	FEATURES
	Bitcoin — The Internet of Money
	Debugging a Live Saturn V

	STARTUPS
	An Engineer’s guide to Stock Options
	5 Things I’ve Learned In 5 Years Of Running A SaaS

	PROGRAMMING
	Why I Wrote PGP
	How to Design a Class
	The Keys to the Keydom
	On Hacking MicroSD Cards
	Don't Pipe to your Shell
	Things I Wish Someone Had Told Me When I Was Learning How to Code
	Ethiopian Binary Math
	By John H. Lienhard
	A Testament to X11 Backwards Compatibility
	By Andrew Rossignol

	SPECIAL
	How to Launder Bitcoins Perfectly
	An Engineer's Emergency Kit Business Card

