5. Earth and Its Motions

5.1. Earth's annual motion
5.2. Earth's spin, precession, and nutation
5.3. Earth's free nutation
5.4. Observed polar motion and spin velocity variations

Earth and its Motions

- It moves with our galaxy in respect to other galaxies
- It circulates with the solar system with in our galaxy
- It revolves around the sun , together with other planets
- It rotates around its instantaneous axis of rotation

Earth's annual motion

- Kepler's lows:

1. The orbit of every planet is an ellipse with the Sun at one of the two foci.
2. A line joining a planet and the Sun sweeps out equal areas during equal intervals of time
3. The square of the orbital period of a planet is proportional to the cube of the semi-major axis of its orbit.

$$
\begin{aligned}
& \frac{a^{3}}{T^{2}}=\frac{G^{2}}{4 \pi^{2}}(M+m)=\text { const. } \\
& G=(6.67259 \pm 0.00085) \times 10^{-11} \mathrm{~m}^{3} \mathrm{~s}^{-2} \mathrm{~kg}^{-1}\left(\text { or } \mathrm{Nm}^{2} \mathrm{~kg}^{-2}\right)
\end{aligned}
$$

كه در آن G ثابت جهانى جاذبه، M جرم خورشيد و m جرم زمين مى باشد.

Radius of the Earth's Orbit $=1 \mathrm{AU}=150,000,000$ kilometers Circumference of the Earth's Orbit $=2 * p i * R=942,000,000$ kilometers
Time to complete one Orbit $=365.2422$ days $=8766 \mathrm{hr}$
Speed of Revolution = Distance/Time = 942,000,000 km / 8766 hr $=107,000 \mathrm{~km} / \mathrm{hr}=30 \mathrm{~km} / \mathrm{sec}$

Why do we have seasons?

- Seasons are the result of the tilt of the Earth's axis.
- Earth's axis is tilted 23.5°.
- This tilting is why we have
- This tilting is why we have
SEASONS like fall, winter, spring, summer.
- The number of daylight hours is greater for the hemisphere, or half of Earth, that is tilted toward the Sun.

Equinoxes

- A day lasts 12 hours and a night lasts 12 hours at all latitudes.
- Equinox literally means "equal night".
- Sunlight strikes the earth most directly at the equator.
- This occurs twice a year.

91997 Okfome Climetologios Survey. All rights reserved.
http://k12.ocs.ou.edu/teachers/reference/e quinox.gif

Equinox

- The vernal (spring) equinox occurs March 21.
- The autumnal (fall) equinox occurs September 21.

UT date and time of
equinoxes and solstices on Earth ${ }^{[1]}$

event	equinox		solstice	equinox		solstice	
month	March		June		September		December
year	day	time	day	time	day	time	day
time							
$\mathbf{2 0 1 0}$	20	$17: 32$	21	$11: 28$	23	$03: 09$	21
$23: 38$							
$\mathbf{2 0 1 1}$	20	$23: 21$	21	$17: 16$	23	$09: 04$	22
$\mathbf{2 0 1 2}$	20	$05: 14$	20	$23: 09$	22	$14: 49$	21
$\mathbf{2 0 1 3}$	20	$11: 02$	21	$05: 04$	22	$20: 44$	21
$\mathbf{2 0 1 4}$	20	$16: 57$	21	$10: 51$	23	$02: 29$	21
$\mathbf{2 0 1 5}$	20	$22: 45$	21	$16: 38$	23	$08: 20$	22
$\mathbf{2 0 1 6}$	20	$04: 30$	20	$22: 34$	22	$14: 21$	21
$\mathbf{2 0 1 7}$	20	$10: 28$	21	$04: 24$	22	$20: 02$	21
$\mathbf{2 0 1 8}$	20	$16: 15$	21	$10: 07$	23	$01: 54$	21
$\mathbf{2 0 1 9}$	20	$21: 58$	21	$15: 54$	23	$07: 50$	22
$\mathbf{2 0 1 5}$	20	$03: 50$	20	$21: 44$	22	$13: 31$	21
$\mathbf{2 0 2 0}$	$20: 19$						

- The 2013 perihelion is around 05:00 UTC on January 2(دوازدهم ديماه), 2013 and the aphelion is around July 5(جّاردهم تُّر مـاه), 2013 at 15:00 UTC. In 2014 the perihelion is around 12:00 UTC on January 4, 2014 and the aphelion is around 00:00 on July 4, 2014
- The earth is farthest away from the sun around July 4 when it is $152,171,522 \mathrm{~km}$ from the sun. This point in the earth's orbit is called aphelion.
- The earth takes 365 days, 5 hours, 48 minutes, and 46 seconds (365.242199 days) to make a full revolution around the sun.
- Scientists utilize the average distance from the earth to the sun as the standard for one astronomical unit (1 AU). This average distance from the earth to the sun is $149,597,870.691 \mathrm{~km}$. It takes light from the sun about 8.317 minutes to reach the earth.

Earth's spin ,precession and nutation

- Earth's rotation is the rotation of the solid Earth around its own axis. The Earth rotates from the west towards the east. As viewed from the North Star or polestar Polaris, the Earth turns counter-clockwise.
- solar day
- sidereal day

Sidereal Time

Star werhead

Sim and star overhead

- A sidereal year (365.256363 days) is the time taken by the Earth to orbit the Sun once with respect to the fixed stars. Hence it is also the time taken for the Sun to return to the same position with respect to the fixed stars after apparently travelling once around the ecliptic. This differs from the solar or tropical year (365.242199 days) which has length equal to the time interval between vernal equinoxes in successive years

- The motion of the vernal point along the ecliptic is clockwise, i.e. , against the annual motion of the earth.

Free nutation

- In addition to precession and nutation, the spin axis also undergoes a torque-free nutation, also called a wobble, with respect to the earth. More accurately, the wobble should be viewed as the motion of the earth with respect to the instantaneous spin axis. It is governed by famous Euler's gyroscopic equation:

Kinetic Energy of Rotation

The total kinetic energy K can be expressed

$$
\begin{gathered}
K=\frac{1}{2} m_{l} \cdot v_{l}^{2}+\frac{1}{2} m_{2} \cdot v_{2}^{2}+\frac{1}{2} m_{3} \cdot v_{3}^{2}+\ldots+\frac{1}{2} m_{n} \cdot v_{n}^{2} \\
K=\sum_{i=1}^{n} \frac{1}{2} m_{i} \cdot v_{i}^{2}
\end{gathered}
$$

where, m_{i} is the mass of the $i_{t}^{\text {th }}$ particle and v_{i} is the speed of the $i^{t h}$ particle. Sinc ϵ $v_{i}=\omega \cdot r_{i}$, this equation can be further written as

$$
\begin{gathered}
K=\sum_{i=1}^{n} \frac{1}{2} m_{i} \cdot \omega^{2} \cdot r_{i}^{2} \\
K=\frac{1}{2}\left(\sum_{i=1}^{n} m_{i} \cdot r_{i}^{2}\right) \cdot \omega^{2}
\end{gathered}
$$

moment of inertia.

$$
\begin{aligned}
I & =\sum_{i=1}^{n} m_{i} \cdot r_{i}^{2} \\
K & =\frac{1}{2} \cdot I \cdot \omega^{2}
\end{aligned} \quad I=\sum_{i=1}^{n} m_{i} \cdot r_{i}^{2}=\int r^{2} \mathrm{~d} m
$$

Problem Statement: Find the moment of inertia of a disk of radius R, thickness t, total mass M, and total volume V about its central axis as shown in the image below.

$$
I_{d i s k}=\frac{M}{2} \cdot R^{2}
$$

Parallel Axis Theorem

$I=I_{\text {COM }}+M h^{2} \quad$ center of mass (COM)

where, h is the distance between the two axes and M is the total mass of the object.

Proof ? ?

Problem Statement: Find the moment of inertia of a disk rotating about an axis passing through the disk's circumference and parallel to its central axis, as shown below. The radius of the disk is R, and the mass of the disk is M.

تنسور اينر سى و محورهاى اصلى

فرض كنيد يك جسم در يك سيستم مختصات سه بعدى، حول يك محور(يك بردار سه بعدى) تّرنده از مركز سيستم مختصات با بردار سرعت زاويه ای صورت اندازه حركت زاويه اى L) (angular momentum) برابر است با:

$$
\begin{aligned}
L & =\sum m_{i} \vec{r}_{i} \times \vec{v}_{i} \\
& =\sum m_{i} \vec{r}_{i} \times\left(\vec{\omega} \times \vec{r}_{i}\right)
\end{aligned}
$$

كه در آن باز نويسى است.

$$
\begin{aligned}
\mathbf{r} \times(\boldsymbol{\omega} \times \mathbf{r})= & \left(\left(y^{2}+z^{2}\right) \omega_{x}-x y \omega_{y}-x z \omega_{z}\right. \\
& \quad-y x \omega_{x}+\left(z^{2}+x^{2}\right) \omega_{y}-y z \omega_{z} \\
& \left.\quad-z x \omega_{x}-z y \omega_{y}+\left(x^{2}+y^{2}\right) \omega_{z}\right)
\end{aligned}
$$

$$
\left.\mathbf{L}=\left[\begin{array}{l}
L_{x} \\
L_{y} \\
L_{z}
\end{array}\right] \quad \begin{array}{l}
L_{x}=I_{x x} \omega_{x}+I_{x y} \omega_{y}+I_{x x} \omega_{z} \\
L_{y}=I_{y x} \omega_{x}+I_{y y} \omega_{y}+I_{y z} \omega_{z} \\
L_{z}=I_{z x} \omega_{x}+I_{z y} \omega_{y}+I_{z z} \omega_{z}
\end{array}\right\}
$$

كـ در آن (Products of Inertia)

$$
I_{x x}=-\sum m_{i}\left(y_{i}^{2}+z_{i}^{2}\right) \quad, \quad I_{y y}=-\sum m_{i}\left(x_{i}^{2}+z_{i}^{2}\right) \quad, \quad I_{z z}=-\sum m_{i}\left(x_{i}^{2}+y_{i}^{2}\right)
$$

$$
I_{x z}=-\sum m_{i} x_{i} z_{i} \quad, \quad I_{y z}=-\sum m_{i} y_{i} z_{i} \quad, \quad I_{x y}=-\sum m_{i} x_{i} y_{i}
$$

$$
I_{x z}=I_{z x} \quad, \quad I_{x y}=I_{y x} \quad, \quad I_{y z}=I_{z y}
$$

در اين حالت مقدار اندازه حركت زاويه ای به صورت حاصلضرب ماتريس تنسور اينرشياى جسم، I، در بردار سرعت زاويه ای محاسبه مى شود.

$$
L=I \vec{\omega}=\left[\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right]\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right]
$$

كه در آن I ماتريس تنسور اينرشيا و يكى ماتريس متقارن مى باشد.
گشتاور اينرسى moment of inertia) I): يا اينرسى دورانى يك جسم در حال دوران، يك سنجه (مقياس) براى بيان مقاومت يك شىء در مقابل تغييرات دوران آن جسم مى باشد.

در حالت كلى بردار اندازه حركت زاويه ای L براى جسمى كه در حول يك نقطه مانند O دوران مى كند با
 در حول يك نقطه مانتد O دوران مى كند سه محور دو به دو عمود برهه و حذْرنده از نقطه O وجود دارد كه در آن بردار L با بردار ف موازی است كه به اين محورها محورهاى اصلى جسم (Principle Axes) تفته مى شود. اين محورها منطبق بر بردارهاى ويرهه ماتريس تنسور اينرشيا مى باشند و ماتريس تنسور اينرشيا در اين حالت به صورت قطرى خواهد بود.

$$
\begin{gathered}
\mathbf{L}=\lambda \boldsymbol{\omega} \\
\mathbf{I}=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right], \quad \mathbf{L}=\mathbf{I} \boldsymbol{\omega}=\left(\lambda_{1} \omega_{x}, \lambda_{2} \omega_{y}, \lambda_{3} \omega_{z}\right)
\end{gathered}
$$

Earth's free nutation

$$
\boldsymbol{J} \dot{\bar{\omega}}+\vec{\omega} \times \boldsymbol{J} \bar{\omega}=\overrightarrow{\mathbf{0}},
$$

Euler's equation

$$
\left[\begin{array}{ccc}
I_{1} & 0 & 0 \\
0 & I_{2} & 0 \\
0 & 0 & I_{3}
\end{array}\right]\left[\begin{array}{l}
\dot{\omega}_{1} \\
\dot{\omega}_{2} \\
\dot{\omega}_{3}
\end{array}\right]+\left[\begin{array}{rcc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right]\left[\begin{array}{ccc}
I_{1} & 0 & 0 \\
0 & I_{2} & 0 \\
0 & 0 & I_{3}
\end{array}\right]\left[\begin{array}{l}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right]=\overrightarrow{0},
$$

J tensor of inertia

Observational evidence shows that the earth's two equatorial moments of inertia I1 and I2 are to high degree of accuracy, equal to each other but significantly different from the polar moment of inertia 13 .
$\dot{\omega}_{1}+\frac{I_{3}-I_{1}}{I_{1}} \omega_{2} \omega_{3}=0, \quad \dot{\omega}_{2}-\frac{I_{3}-I_{1}}{I_{1}} \omega_{1} \omega_{3}=0$,
$\dot{\omega}_{3} \doteq 0$.

$$
\omega_{3}(\tau) \doteq \text { const. }=\mu
$$

By differentiating with respect to time ,the first two equation we have:

$$
\ddot{\omega}_{1}+\left(\frac{I_{3}-I_{1}}{I_{1}}\right)^{2} \mu^{2} \omega_{1}=0, \quad \ddot{\omega}_{2}+\left(\frac{I_{3}-I_{1}}{I_{1}}\right)^{2} \mu^{2} \omega_{2}=0
$$

$$
\omega_{1}(\tau)=\beta \cos \left(\frac{I_{3}-I_{1}}{I_{1}} \mu \tau+\psi\right)
$$

$$
\omega_{2}(\tau)=\beta \sin \left(\frac{I_{3}-I_{1}}{I_{1}} \mu \tau+\psi\right),
$$

Earth's angular velocity(frequency) $\omega_{3}=\mu \doteq \omega=2 \pi / 1$ sidereal day.

Since the free nutation period P is equal $2 \pi /$ frequency
$P=2 \pi \frac{I_{1}}{\left(I_{3}-I_{1}\right) \mu}$.

This value equal 305 sidereal day. This value is usually referred to as Euler period. But the actual value is about 40% longer than the Euler period.
The non-rigidity of the earth tends to increase the wobble period. Which is now known to be about 435 days and is called the Chandler period.

Polar motion

Table 5il

Some results of determination of the Chandler period

Solution	Chandler period (Solar days)	Span of data	Source of data
Jefrrevs [1968]	433.15	1899-1967	ILS
Vanicek [1969]	435.1	1951-1966	B1H
Yumi [1970]	429.9	1890-1969	ILS
	439.4	1963-1969	ILS
Amperix [1970]	416.6	1967-1970	DPMS
Currie [1974]	432.95	1990-1973	LLS
Grabier [1976]	430.8	1960-1974	IPMS

Polar Motion 1909-2001

The track made by the location of the North Spin Axis through the 6.5 year spirals of Chandler's Wobble. Each color shows one 6.5 year spiral cycle. The shift towards the left shows the drift of the
average location of the pole.

1861-1890
1890
1898
1903
1909-1916
1916
1923
1931
1939
1945
1952
1958
1964-1971 1971

Folhody ower 2001-2006 and mean pole since 1900

Fluctuations in the length of day

- There are various factors which cause the orientation of the Earth to change with time.
- - Polar motion
- - The secular variation (linear increase in the length of the day, about 0.0015 to 0.0020 seconds per day per century.
- - The irregular changes in speed appear to be the result of random accelerations,
- - Periodic variations are associated with periodically repeatable physical processes affecting the Earth.

Fig. 5.9. Variation in the earth's spin velocity in terms of the length of the day (86400 s plus increment) with periodic terms removed. (Courtesy of Dr. B. Guinot [1977], Director of BIH.)

Secular change: Tidal friction

Earth's rotation is indeed slowing down at

 a present rate of 0.0018 seconds per century(1) Earth's rotation displaces tidal bulge

(2) Moon attracts tidal bulge;
Earth slows down

(3) Tidal bulge attracts Moon:
Moon speeds up and moves outward

Orbital characteristics

```
Epoch J2000.0.0
    Aphelion 152,098,232 km
        1.01671388 AU.[note 2]
    Perihelion 147,098,290 km
        0.98329134 AU [nde z]
    Semi-major 149,598,261 km
    axis 1.00000261 AU [1]
    Eccentricity 0.01671123 [1]
Orbital period 365.256363004 days [2]
    1.000017421 yr
    Average }\quad29.78\textrm{km}/\mp@subsup{\textrm{s}}{}{[3]
    orbital speed }107,200\textrm{km}/\textrm{h
Mean anomaly 357.51716 [[3]
    Inclination 7.155' to Sun's equator
    1.57869 [[4] to invariable plane
    Longitude of
Argument of
    perihelion
    114.20783[[]]wse 4]
    Satellites 1 natural (The Moon)
        8681 artificial}\mp@subsup{}{}{[3]
```


Physical characteristics

Mean radius	$6,371.0 \mathrm{~km}^{[6]}$
Equatorial radius	$6,378.1 \mathrm{~km}^{[713]}$
Polar radius	$6,356.8 \mathrm{~km}^{[9]}$
Flattening	$0.0033528^{[10]}$
Circumference	$40,075.017 \mathrm{~km}$ (equatorial) ${ }^{[8]}$ $40,008.00 \mathrm{~km}$ (meridional) ${ }^{[11]}$
Surface area	$510,072,000 \mathrm{~km}^{2[12][13][\text { note 5] }}$
	$148,940,000 \mathrm{~km}^{2}$ land (29.2 \%)
	$361,132,000 \mathrm{~km}^{2}$ water (70.8%)
Volume	$1.08321 \times 10^{12} \mathrm{~km}{ }^{3[3]}$
Mass	$5.9736 \times 10^{24} \mathrm{~kg}^{[3]}$
Mean density	$5.515 \mathrm{~g} / \mathrm{cm}^{3[3]}$
Equatorial	$9.780327 \mathrm{~m} / \mathrm{s}^{2[14]}$
surface gravity	0.99732 g
Escape velocity	$11.186 \mathrm{~km} / \mathrm{s}^{[3]}$
Sidereal rotation period	$0.99726968 \mathrm{~d}^{[15]}$
	$23^{\text {n }} 56^{m} 4.100^{\text {r }}$
Equatorial rotation velocity	$1,674.4 \mathrm{~km} / \mathrm{h}(465.1 \mathrm{~m} / \mathrm{s})^{[16]}$
Axial tilt	$23^{\circ} 26^{\prime 2} 21^{\prime \prime} .4119^{[2]}$
Albedo	$\begin{aligned} & 0.367 \text { (geometric) }{ }^{[3]} \\ & 0.306 \text { (Bond) }^{33]} \end{aligned}$
	min mean max
Kelvin	$184 \mathrm{~K}^{[17]} 287.2 \mathrm{~K}^{[18]} \quad 331 \mathrm{~K}^{[19]}$
Celsius	$-89.2{ }^{\circ} \mathrm{C} \quad 14^{\circ} \mathrm{C} \quad 57.8^{\circ} \mathrm{C}$

