Solutions Manual to Accompany

Molecular Thermodynamics of FluidPhase Equilibria

Third Edition

John M. Prausnitz
Rüdiger N. Lichtenthaler
Edmundo Gomes de Azevedo

Prentice Hall PTR
Upper Saddle River, New Jersey 07458
http://www.phptr.com

© 2000 Prentice Hall PTR
 Prentice Hall, Inc.
 Upper Saddle River, NJ 07458

Electronic Typesetting: Edmundo Gomes de Azevedo

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher.

All product names mentioned herein are the trademarks of their respective owners.

Printed in the United States of America
1098765432

ISBN 0-13-018388-1

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon \& Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

C O N T E N T S

Preface i
Solutions to Problems Chapter 2 1
Solutions to Problems Chapter 3 17
Solutions to Problems Chapter 4 29
Solutions to Problems Chapter 5 49
Solutions to Problems Chapter 6 81
Solutions to Problems Chapter 7 107
Solutions to Problems Chapter 8 121
Solutions to Problems Chapter 9 133
Solutions to Problems Chapter 10 153
Solutions to Problems Chapter 11 165
Solutions to Problems Chapter 12 177

S OLUTTONS TOMEOBLEMS
 C H A P T E R 2

1. From problem statement, we want to find $(\partial P / \partial T)_{v}$.

Using the product-rule,

$$
\left(\frac{\partial P}{\partial T}\right)_{v}=-\left(\frac{\partial v}{\partial T}\right)_{P}\left(\frac{\partial P}{\partial v}\right)_{T}
$$

By definition,

$$
\alpha_{P}=\frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_{P}
$$

and

$$
\kappa_{T}=-\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_{T}
$$

Then,

$$
\left(\frac{\partial P}{\partial T}\right)_{v}=\frac{\alpha_{P}}{\kappa_{T}}=\frac{1.8 \times 10^{-5}}{5.32 \times 10^{-6}}=33.8 \mathrm{bar}^{\circ} \mathrm{C}^{-1}
$$

Integrating the above equation and assuming α_{P} and κ_{T} constant over the temperature range, we obtain

$$
\Delta P=\frac{\alpha_{P}}{\kappa_{T}} \Delta T
$$

For $\Delta T=1^{\circ} \mathrm{C}$, we get

$$
\Delta P=\mathbf{3 3 . 8} \text { bar }
$$

2. Given the equation of state,

$$
P\left(\frac{V}{n}-b\right)=R T
$$

we find:

$$
\begin{aligned}
& \left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{n R}{V-n b} \\
& \left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}=-\frac{n R}{P} \\
& \left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P=0 \\
& \left(\frac{\partial U}{\partial P}\right)_{T}=\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial P}\right)_{T}=0 \\
& \left(\frac{\partial H}{\partial P}\right)_{T}=-T\left(\frac{\partial V}{\partial T}\right)+V=n b
\end{aligned}
$$

For an isothermal change,

$$
\begin{gathered}
\Delta S=\int_{V_{1}}^{V_{2}}\left(\frac{\partial P}{\partial T}\right)_{V} d V=n R \ln \frac{V_{2}-n b}{V_{1}-n b} \\
=-n R \ln \frac{P_{1}}{P_{2}} \\
\Delta U=\int_{P_{1}}^{P_{2}}\left[\left(-\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial P}\right)_{T}\right] d P=0 \\
\Delta H=\int_{P_{1}}^{P_{2}}\left[-T\left(\frac{\partial V}{\partial T}\right)_{P}+V\right] d P=n b\left(P_{2}-P_{1}\right) \\
\Delta G=\Delta H-T \Delta S=n b\left(P_{2}-P_{1}\right)-n R T \ln \left(\frac{P_{1}}{P_{2}}\right) \\
\Delta A=\Delta U-T \Delta S=-n R T \ln \left(\frac{P_{1}}{P_{2}}\right)
\end{gathered}
$$

3. This entropy calculation corresponds to a series of steps as follows:

$$
\begin{gathered}
\begin{array}{c}
s_{1} \text { (saturated liq. } \\
T=298.15 \mathrm{~K} \\
P=0.03168 \mathrm{bar})
\end{array} \\
\qquad s_{3}=\Delta s_{1 \rightarrow 2}+\Delta s_{2 \rightarrow 3}+s_{1} \\
\left.\Delta s_{1 \rightarrow 2}=\Delta_{\text {vap }} s=\frac{s_{2} \text { (saturated vapor, }}{T=298.15 \mathrm{~K}} \begin{array}{l}
P=0.03168 \mathrm{var}) \\
T
\end{array}\right) \frac{(2436) \times(18.015)}{298.15}=147.19 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
\Delta s_{2 \rightarrow 3}=\int_{P_{2}}^{P_{3}}\left[-\left(\frac{\partial v}{\partial T}\right)_{P}\right] d P
\end{gathered}
$$

Because $v=\frac{R T}{P}$ (ideal gas),

$$
\begin{aligned}
\Delta s_{2 \rightarrow 3} & =-R \ln \left(\frac{P_{3}}{P_{2}}\right) \\
& =-(8.31451) \times \ln \left(\frac{1.0}{0.03168}\right) \\
& =-28.70 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
s_{3} & =s^{0}\left(\mathrm{H}_{2} \mathrm{O}, \text { vapor }\right) \\
& =147.19-28.70+69.96
\end{aligned}
$$

$$
=188.45 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

4. Because $\alpha=\frac{R T}{P}-v$,

$$
P=\frac{R T}{\alpha+v}=\frac{R T}{2-3 / v^{2}+v}
$$

or

$$
\begin{aligned}
P & =\frac{R T v^{2}}{2 v^{2}-3+v^{3}} \\
\left(\frac{\partial P}{\partial v}\right)_{T} & =-\frac{R T v\left(v^{3}+6\right)}{\left(2 v^{2}-3+v^{3}\right)^{2}}
\end{aligned}
$$

As $v=2.3 \mathrm{~L} \mathrm{~mol}^{-1}, T=373.15 \mathrm{~K}, R=0.0831451 \mathrm{bar} \mathrm{L} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$, and molar mass is 100 g mol^{-1},

$$
\begin{aligned}
&\left(\frac{\partial P}{\partial v}\right)_{T}=-3.3245 \mathrm{bar} \mathrm{~L}^{-1} \mathrm{~mol}=-3.3245 \times 10^{8} \mathrm{~Pa} \mathrm{~m}^{-3} \mathrm{~mol} \\
& w^{2}=-g_{c} k v^{2}\left(\frac{\partial P}{\partial v}\right)_{T} \\
&=-\left(1 \frac{\mathrm{~kg} \mathrm{~m}}{\mathrm{~N} \mathrm{~s}^{2}}\right) \times(1.4) \times\left(\frac{1}{100 \times 10^{-3}} \frac{\mathrm{~mol}}{\mathrm{~kg}}\right) \times\left(2.3 \times 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~mol}}\right)^{2} \times\left(-3.3245 \times 10^{8} \frac{\mathrm{~N} \mathrm{~mol}}{\mathrm{~m}^{2} \mathrm{~m}^{3}}\right) \\
&=24,621 \mathrm{~m}^{2} \mathrm{~s}^{-2}
\end{aligned}
$$

$$
w=157 \mathrm{~m} \mathrm{~s}^{-1}
$$

5. Assume a three-step process:
(1) Isothermal expansion to $v=\infty$ (ideal gas state)
(2) Isochoric (v is constant) cooling to T_{2}
(3) Isothermal compression to v_{2}

For an isentropic process,

$$
\Delta s=\Delta s_{1}+\Delta s_{2}+\Delta s_{3}=0
$$

Because $s=s(v, T)$,

$$
d s=\left(\frac{\partial s}{\partial v}\right)_{T} d v+\left(\frac{\partial s}{\partial T}\right)_{v} d T
$$

or

$$
d s=\left(\frac{\partial P}{\partial T}\right)_{v} d v+\frac{c_{v}}{T} d T
$$

by using the relations

$$
\begin{gathered}
\left(\frac{\partial S}{\partial v}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{v} \\
\left(\frac{\partial s}{\partial T}\right)_{v}=\frac{1}{T}\left(\frac{\partial u}{\partial T}\right)_{v}=\frac{c_{v}}{T}
\end{gathered}
$$

then,

$$
\Delta s=\int_{v_{1}}^{v=\infty}\left(\frac{\partial P}{\partial T}\right)_{v} d v+\int_{T_{1}}^{T_{2}} \frac{c_{v}^{0}}{T} d T+\int_{v=\infty}^{v_{2}}\left(\frac{\partial P}{\partial T}\right)_{v} d v
$$

Using van der Waals' equation of state,

$$
\begin{aligned}
& P=\frac{R T}{v-b}-\frac{a}{v^{2}} \\
& \left(\frac{\partial P}{\partial T}\right)_{v}=\frac{R}{v-b}
\end{aligned}
$$

Thus,

$$
\Delta s=R \ln \left(\frac{v_{2}-b}{v_{1}-b}\right)+\int_{T_{1}}^{T_{2}} \frac{c_{v}^{0}}{T} d T
$$

To simplify, assume

$$
\begin{aligned}
c_{v}^{0} & =c_{p}^{0}-R \\
v_{2} & =\frac{R T_{2}}{P_{2}}
\end{aligned}
$$

Then,

$$
\begin{gathered}
\frac{\frac{R T_{2}}{P_{2}}-b}{\ln }=\left(\frac{c_{p}^{0}-R}{v_{1}-b}\right) \ln \left(\frac{T_{1}}{T_{2}}\right) \\
\ln \left[\frac{(82.0578) \times\left(T_{2}\right)-45}{600-45}\right]=(3.029) \times \ln \frac{623.15}{T_{2}}
\end{gathered}
$$

$$
T_{2}=203 \mathrm{~K}
$$

6.

$$
P=\frac{R T}{v-b}-\frac{a}{v^{2}}=\frac{R T}{v}\left[\frac{1}{1-\frac{b}{v}}-\frac{a}{R T v}\right]
$$

Because $\frac{b^{2}}{v^{2}}<1$,

$$
\left(1-\frac{b}{v}\right)^{-1}=1+\frac{b}{v}+\frac{b^{2}}{v^{2}}+\cdots
$$

Thus,

$$
P=\frac{R T}{v}\left[1+\left(b-\frac{a}{R T}\right) \frac{1}{v}+\frac{b^{2}}{v^{2}}+\cdots\right]
$$

or

$$
\frac{P v}{R T}=1+\left(b-\frac{a}{R T}\right) \frac{1}{v}+\frac{b^{2}}{v^{2}}+\cdots
$$

Because

$$
z=\frac{P v}{R T}=1+\frac{B}{v}+\frac{C}{v^{2}}+\cdots
$$

the second virial coefficient for van der Waals equation is given by

$$
B=b-\frac{a}{R T}
$$

7. Starting with

$$
\begin{gathered}
d u=T d s-P d v \\
\left(\frac{\partial u}{\partial P}\right)_{T}=T\left(\frac{\partial s}{\partial P}\right)_{T}-P\left(\frac{\partial v}{\partial P}\right)_{T} \\
=-T\left(\frac{\partial v}{\partial T}\right)_{P}-P\left(\frac{\partial v}{\partial P}\right)_{T}
\end{gathered}
$$

As

$$
\begin{gathered}
v=\frac{R T}{P}+B=\frac{R T}{P}+b-\frac{a}{T^{2}} \\
\left(\frac{\partial v}{\partial T}\right)_{P}=\frac{R}{P}+\frac{2 a}{T^{3}} \\
\left(\frac{\partial v}{\partial T}\right)_{T}=-\frac{R T}{P^{2}}
\end{gathered}
$$

Then,

$$
\begin{gathered}
\left(\frac{\partial u}{\partial P}\right)_{T}=-\frac{2 a}{T^{2}} \\
\Delta u=\int_{0}^{\pi}-\left(\frac{2 a}{\tau^{2}}\right) d P \\
\Delta u=-\frac{2 a \pi}{\tau^{2}}
\end{gathered}
$$

8. The equation

$$
\left(P+\frac{n}{v^{2} T^{1 / 2}}\right)(v-m)=R T
$$

can be rewritten as

$$
\begin{align*}
& \left(P T^{1 / 2}\right) v^{3}-\left(P m T^{1 / 2}\right) v^{2}+n v-n m=R T^{3 / 2} v^{2} \\
& v^{3}-\left(m+\frac{R T}{P}\right) v^{2}+\left(\frac{n}{P T^{1 / 2}}\right) v-\frac{n m}{P T^{1 / 2}}=0 \tag{1}
\end{align*}
$$

At the critical point, there are three equal roots for $v=v_{c}$, or, equivalently,

$$
\begin{gather*}
\left(\frac{\partial P}{\partial v}\right)_{T=T_{c}}=\left(\frac{\partial^{2} P}{\partial v^{2}}\right)_{T=T_{c}}=0 \\
\left(v-v_{c}\right)^{3}=v^{3}-3 v_{c} v^{2}+3 v_{c}^{2} v-v_{c}^{3}=0 \tag{2}
\end{gather*}
$$

Comparing Eqs. (1) and (2) at the critical point,

$$
\begin{gather*}
m+\frac{R T_{c}}{P_{c}}=3 v_{c} \tag{3}\\
\frac{n}{P_{c} T_{c}^{1 / 2}}=3 v_{c}^{2} \tag{4}\\
\frac{n m}{P_{c} T_{c}^{1 / 2}}=v_{c}^{3} \tag{5}
\end{gather*}
$$

From Eqs. (3), (4), and (5) we obtain

$$
\begin{gather*}
m=\frac{v_{c}}{3} \tag{6}\\
v_{c}=\frac{3 R T_{c}}{8 P_{c}} \quad \text { or } \quad m=\frac{R T_{c}}{8 P_{c}} \\
n=3 v_{c}^{2} P_{c} T_{c}^{1 / 2}=\frac{27}{64} \frac{R^{2} T_{c}^{5 / 2}}{P_{c}}
\end{gather*}
$$

The equation of state may be rewritten:

$$
P=\frac{R T}{v}\left(\frac{1}{1-\frac{m}{v}}-\frac{n}{R T^{3 / 2} v}\right)
$$

or

$$
z=\frac{P v}{R T}=\frac{1}{1-\frac{m}{v}}-\frac{n}{R T^{3 / 2} v}
$$

From critical data,

$$
\begin{gathered}
m=0.0428 \mathrm{~L} \mathrm{~mol}^{-1} \\
n=63.78 \operatorname{bar}\left(\mathrm{~L} \mathrm{~mol}^{-1}\right)^{2} \mathrm{~K}^{1 / 2}
\end{gathered}
$$

At $100^{\circ} \mathrm{C}$ and at $v=(6.948) \times(44) / 1000=0.3057 \mathrm{~L} \mathrm{~mol}^{-1}$,

$$
z=0.815
$$

This value of z gives $P=82.7$ bar. Tables of Din for carbon dioxide at $100^{\circ} \mathrm{C}$ and $v=6.948$ $\mathrm{cm}^{3} \mathrm{~g}^{-1}$, give $P=81.1$ bar or $z=0.799$.
9. We want to find the molar internal energy $u(T, v)$ based on a reference state chosen so that

$$
u\left(T_{0}, v \rightarrow \infty\right)=0
$$

Then,

$$
\begin{align*}
u(T, v) & =u(T, v)-u\left(T_{0}, v \rightarrow \infty\right) \\
& =u(T, v)-u(T, v \rightarrow \infty)+u(T, v \rightarrow \infty)-u\left(T_{0}, v \rightarrow \infty\right) \tag{1}\\
& =\lim _{v \rightarrow \infty} \int_{v_{\infty}}^{v}\left(\frac{\partial u}{\partial v}\right)_{T} d v+\lim _{v \rightarrow \infty} \int_{T_{0}}^{T}\left(\frac{\partial u}{\partial T}\right)_{v=v_{\infty}} d T
\end{align*}
$$

Schematically we have:

In Eq. (1) we are taking 1 mol of gas from the reference state $\mathbf{1}$ to the state of interest $\mathbf{3}$ through an intermediate state 2, characterized by temperature T and volume $v \rightarrow \infty$, in a two-step process consisting of an isochoric step and an isothermal step.

In the step $\mathbf{1} \boldsymbol{\rightarrow} \mathbf{2}$ the gas is infinitely rarified, and hence exhibits ideal gas behavior. Then, the second integral in Eq. (1) gives:

$$
\begin{equation*}
\lim _{v \rightarrow \infty} \int_{T_{0}}^{T}\left(\frac{\partial u}{\partial v}\right)_{v=v_{\infty}} d T=\int_{T_{0}}^{T} c_{v}^{0} d T=\int_{T_{0}}^{T}\left(c_{p}^{0}-R\right) d T=\left(c_{p}^{0}-R\right)\left(T-T_{0}\right) \tag{2}
\end{equation*}
$$

because for an ideal gas $c_{p}^{0}-c_{v}^{0}=R$ and because, by the problem statement, the heat capacity at constant pressure of the gas is temperature independent.

We have now to calculate the first integral in Eq. (1). To make this calculation, we first transform the derivative involved in the integral to one expressed in terms of volumetric properties.

By the fundamental equation for internal energy (see Table 2-1 of the text),

$$
\begin{equation*}
\left(\frac{\partial u}{\partial v}\right)_{T}=T\left(\frac{\partial P}{\partial v}\right)_{T}-P \tag{3}
\end{equation*}
$$

Making the derivative using the equation of state give we obtain

$$
\begin{equation*}
\left(\frac{\partial u}{\partial v}\right)_{T}=\frac{R T}{v-b}-\frac{R T}{v-b}+\frac{a}{v(v-b)}=\frac{a}{v(v-b)} \tag{4}
\end{equation*}
$$

Then,

$$
\begin{align*}
\int_{v_{\infty}}^{v}\left(\frac{\partial u}{\partial v}\right) d v & =\frac{a}{b} \int_{v_{\infty}}^{v}\left[\frac{1}{v-b}-\frac{1}{v}\right] d v=\frac{a}{b}\left[\ln \left(\frac{v-b}{v_{\infty}-b}\right)-\ln \frac{v}{v_{\infty}}\right] \\
& =\frac{a}{b} \ln \left(\frac{v-b}{v} \frac{v_{\infty}}{v_{\infty}-b}\right) \tag{5}
\end{align*}
$$

and

$$
\begin{equation*}
\lim _{v \rightarrow \infty} \int_{v_{\infty}}^{v}\left(\frac{\partial u}{\partial v}\right)_{T} d v=\frac{a}{b} \ln \left(\frac{v-b}{v}\right) \tag{6}
\end{equation*}
$$

Combining Eqs. (1), (2) and (6) we obtain the desired expression for the molar internal energy,

$$
u(T, v)=\left(c_{p}^{0}-R\right)\left(T-T_{0}\right)+\frac{a}{b} \ln \left(\frac{v-b}{v}\right)
$$

10.

$$
\ln \gamma_{w}=A\left(1-x_{w}\right)^{2} \quad \text { such that } \quad \gamma_{w} \rightarrow 1 \quad \text { as } \quad x_{w} \rightarrow 1
$$

Using Gibbs-Duhem equation,

$$
x_{w} d \ln \gamma_{w}+x_{s} d \ln \gamma_{s}=0
$$

or, because $d x_{w}=-d x_{s}\left(x_{w}+x_{s}=1\right)$,

$$
\begin{gathered}
x_{w} \frac{d \ln \gamma_{w}}{d x_{w}}=x_{s} \frac{d \ln \gamma_{s}}{d x_{s}} \\
\frac{d \ln \gamma_{w}}{d x_{w}}=2 A\left(1-x_{w}\right)(-1)=-2 A\left(1-x_{w}\right)
\end{gathered}
$$

Then,

$$
\begin{gathered}
d \ln \gamma_{s}=\frac{-2 A x_{S}\left(1-x_{s}\right)}{x_{s}} d x_{s}=-2 A\left(1-x_{s}\right) d x_{s} \\
\int_{0}^{\ln \gamma_{s}} d \ln \gamma_{s}=-2 A \int_{0}^{x_{s}}\left(1-x_{s}\right) d x_{s} \\
\ln \gamma_{s}=-2 A\left(x_{s}-\frac{x_{s}^{2}}{2}\right) \\
\ln \gamma_{s}=A\left(x_{w}^{2}-1\right)
\end{gathered}
$$

11. Henry's law for component 1 , at constant temperature, is

$$
f_{1}=k_{1} x_{1} \quad\left(\text { for } \quad 0<x_{1}<a\right)
$$

where k_{1} is Henry's constant.
For a liquid phase in equilibrium with its vapor, $f_{i}^{L}=f_{i}^{V}$. If the vapor phase obeys idealgas law, $f_{i}^{V}=y_{i} P$.

Henry's law can then be written:

$$
y_{1} P=k_{1} x_{1}
$$

Taking logarithms this becomes

$$
\ln \left(y_{1} P\right)=\ln k_{1}+\ln x_{1}
$$

Differentiation at constant temperature gives

$$
\frac{d \ln \left(y_{1} P\right)}{d x_{1}}=\frac{d \ln x_{1}}{d x_{1}}=\frac{1}{x_{1}}
$$

Using the Gibbs-Duhem equation

$$
x_{1} \frac{d \ln P_{1}}{d x_{1}}+x_{2} \frac{d \ln P_{2}}{d x_{1}}=0
$$

gives

$$
1+x_{2} \frac{d \ln \left(y_{2} P\right)}{d x_{1}}=0
$$

or, because $d x_{2}=-d x_{1}$,

$$
x_{2} \frac{d \ln \left(y_{2} P\right)}{d x_{2}}=1
$$

or,

$$
d \ln \left(y_{2} P\right)=d \ln x_{2}
$$

Integration gives

$$
\ln \left(y_{2} P\right)=\ln x_{2}+\ln C
$$

where $\ln C$ is the constant of integration.
For $x_{2}=1, y_{2}=1$, and $P=P_{2}^{s}$. This gives $C=P_{2}^{s}$ and we may write

$$
\ln \left(y_{2} P\right)=\ln x_{2}+\ln P_{2}^{S}=\ln \left(x_{2} P_{2}^{S}\right)
$$

or

$$
y_{2} P=P_{2}=x_{2} P_{2}^{s} \quad\left[\text { for }(1-a)<x_{2}<1\right]
$$

which is Raoult's law for component 2.
12. Starting from $d g_{i}=R T d \ln f_{i}$,

$$
\Delta g_{i_{P^{*} \rightarrow P}}=R T \ln \frac{f_{i}(\text { at } P)}{f_{i}\left(\text { at } P^{*}\right)} \quad \begin{aligned}
& \left(P^{*}\right. \text { is a low pressure where } \\
& \text { gas } i \text { is ideal })
\end{aligned}
$$

From the Steam Tables we obtain Δh and Δs at T and P to calculate Δg from

$$
\Delta g=\Delta h-T \Delta s
$$

Choose $P^{*}=1$ bar.

$$
\begin{gathered}
\Delta h=h_{70 \text { bar }}-h_{1 \text { bar }}=-196 \mathrm{~J} \mathrm{~g}^{-1} \\
\Delta s=s_{70 \text { bar }}-s_{1 \text { bar }}=-2.215 \mathrm{~J} \mathrm{~g}^{-1 \circ} \mathrm{C}^{-1}
\end{gathered}
$$

Then, at $320^{\circ} \mathrm{C}$,

$$
\Delta g=1117.8 \mathrm{~J} \mathrm{~g}^{-1}=20137 \mathrm{~J} \mathrm{~mol}^{-1}
$$

Thus,

$$
\ln f_{i\left(70 \mathrm{bar}, 320^{\circ} \mathrm{C}\right)}=\frac{20137}{(8.31451) \times(593.15)}=4.08
$$

or

$$
f=59.1 \mathrm{bar}
$$

13. The virial equation for a van der Waals gas can be written (as shown in Problem 6)

$$
\begin{equation*}
v=\frac{R T}{P}+b-\frac{a}{R T} \tag{1}
\end{equation*}
$$

At the Boyle temperature,

$$
B=b-\frac{a}{R T}=0
$$

or

$$
b=\frac{a}{R T}
$$

The Boyle temperature then, is given by

$$
\begin{equation*}
T_{\mathrm{B}}=\frac{a}{b R} \tag{2}
\end{equation*}
$$

The Joule-Thomson coefficient is

$$
\mu=\left(\frac{\partial T}{\partial P}\right)_{H}
$$

$$
\mu=\left(\frac{\partial T}{\partial P}\right)_{H}=-\frac{\left(\frac{\partial T}{\partial H}\right)_{P}}{\left(\frac{\partial P}{\partial H}\right)_{T}}=-\frac{\left(\frac{\partial H}{\partial P}\right)_{T}}{c_{p}}
$$

Because

$$
\left(\frac{\partial H}{\partial P}\right)_{T}=-v+T\left(\frac{\partial v}{\partial T}\right)_{P}
$$

and because c_{p} is never zero, when $\mu=0,\left(\frac{\partial H}{\partial P}\right)_{T}=0$.
Substitution in Eq. (1) gives

$$
\begin{aligned}
\left(\frac{\partial H}{\partial P}\right)_{T} & =-\frac{R T}{P}-b+\frac{a}{R T}+\left(\frac{R T}{P}+\frac{a}{R T}\right) \\
& =-b+\frac{2 a}{R T}
\end{aligned}
$$

The inversion temperature is

$$
T_{\mathrm{JT}}=\frac{2 a}{R b}
$$

Comparison with Eq. (2) gives

$$
T_{\mathrm{JT}}=2 T_{\mathrm{B}}
$$

14. At equilibrium,

$$
f_{1}^{G}=f_{1}^{L}
$$

where subscript 1 stands for the solute.
At constant pressure, a change in temperature may be represented by

$$
\begin{equation*}
\left(\frac{d \ln f_{1}^{G}}{d T}\right)_{P} d T=\left(\frac{d \ln f_{1}^{L}}{d T}\right)_{P} d T \tag{1}
\end{equation*}
$$

Since the solvent is nonvolatile, f_{1}^{G} (at constant pressure) depends only on T (gas composition does not change.) However, f_{1}^{L} (at constant pressure) depends on T and x_{1} (or $\ln x_{1}$):

$$
\begin{equation*}
\left(\frac{d \ln f_{1}^{L}}{d T}\right)_{P} d T=\left(\frac{\partial \ln f_{1}^{L}}{\partial T}\right)_{P, x} d T+\left(\frac{\partial \ln f_{1}^{L}}{\partial \ln x_{1}}\right)_{T, P} d \ln x_{1} \tag{2}
\end{equation*}
$$

Further,

$$
\begin{align*}
& \left(\frac{d \ln f_{1}^{G}}{d T}\right)_{P}=\frac{h_{1}^{0}-h_{1}^{G}}{R T^{2}} \tag{3}\\
& \left(\frac{d \ln f_{1}^{L}}{\partial T}\right)_{P, x}=\frac{h_{1}^{0}-\bar{h}_{1}^{L}}{R T^{2}} \tag{4}
\end{align*}
$$

where:

$$
\begin{aligned}
& h_{1}^{0}=\text { ideal-gas enthalpy of } 1 \\
& h_{1}^{G}=\text { real-gas enthalpy of } 1 ; \\
& \bar{h}_{1}^{L}=\text { partial molar enthalpy of } 1 \text { in the liquid phase. }
\end{aligned}
$$

Assuming Henry's law,

$$
\frac{f_{1}}{x_{1}}=\text { constant }
$$

or

$$
\begin{equation*}
\left(\frac{\partial \ln f_{1}^{L}}{\partial \ln x_{1}}\right)_{T, P}=1 \tag{5}
\end{equation*}
$$

Substituting Eqs. (2), (3), (4), and (5) into Eq. (1), we obtain

$$
\frac{d \ln x_{1}}{d(1 / T)}=-\frac{\Delta \bar{h}_{1}}{R}
$$

From physical reasoning we expect $h_{1}^{G}>\bar{h}_{1}^{L}$. Therefore x_{1} falls with rising temperature. This is true for most cases but not always.

S OLUTTIONS TO PROBLEMS

C H A P T E R

1. The Gibbs energy of a mixture can be related to the partial molar Gibbs energies by

$$
\begin{equation*}
g-g_{\mathrm{o}}=\sum_{i=1}^{m} y_{i}\left(\bar{g}_{i}-\bar{g}_{i}^{\mathrm{o}}\right) \tag{1}
\end{equation*}
$$

Since, at constant temperature, $d g=R T d \ln f$, we may integrate to obtain

$$
g-g_{\mathrm{o}}=R T \ln f_{\mathrm{mixt}}-R T \ln f_{\mathrm{mixt}}^{\mathrm{o}}
$$

or

$$
\begin{equation*}
g-g_{\mathrm{o}}=R T \ln f_{\mathrm{mixt}}-R T \ln P \tag{2}
\end{equation*}
$$

where subscript mixt stands for mixture.
For a component in a solution, $d \bar{g}_{i}=R T d \ln f_{i}$. Integration gives

$$
\begin{gather*}
\bar{g}_{i}-\bar{g}_{i}^{\mathrm{o}}=R T \ln f_{i}^{\mathrm{o}} \\
\bar{g}_{i}-\bar{g}_{i}^{\mathrm{o}}=R T \ln \left(y_{i} P\right) \tag{3}
\end{gather*}
$$

Substituting Eqs. (2) and (3) into Eq. (1) gives

$$
\begin{align*}
& \ln f_{\text {mixt }}-\ln P=\sum_{i=1}^{m} y_{i} \ln f_{i}-\sum_{i=1}^{m} y_{i} \ln \left(y_{i} P\right) \\
& \ln f_{\text {mixt }}-\ln P=\sum_{i=1}^{m} y_{i} \ln \left(\frac{f_{i}}{y_{i}}\right)-\sum_{i=1}^{m} y_{i} \ln P \tag{4}
\end{align*}
$$

Because

$$
\sum_{i=1}^{m} y_{i} \ln P=\ln P\left(\sum_{i=1}^{m} y_{i}\right)=\ln P
$$

Eq. (4) becomes

$$
\begin{equation*}
\ln f_{\mathrm{mixt}}=\sum_{i=1}^{m} y_{i} \ln \left(\frac{f_{i}}{y_{i}}\right) \tag{5}
\end{equation*}
$$

Assuming the Lewis fule, $f_{i}=y_{i} f_{\text {pure } i}$, Eq. (5) becomes

$$
\ln f_{\text {mixt }}=\sum_{i=1}^{m} y_{i} \ln f_{\text {pure } i}
$$

or

$$
f_{\text {mixt }}=\prod_{i=1}^{m} f_{\text {pure } i}^{y_{i}}
$$

2. As shown in Problem 1,

$$
\ln f_{\mathrm{mixt}}=\sum_{i=1}^{m} y_{i} \ln \left(\frac{f_{i}}{y_{i}}\right)
$$

This result is rigorous. It does not assume the Lewis fugacity rule.
Using fugacity coefficients,

$$
f_{i}=\varphi_{i} y_{i} P
$$

and

$$
\begin{gathered}
\ln f_{\text {mixt }}=y_{A} \ln \varphi_{A}+y_{B} \ln \varphi_{B}+\ln P \\
f_{\text {mixt }}=\varphi_{A}^{y_{A}} \varphi_{B}^{y_{B}} P \\
=(0.65)^{0.25} \times(0.90)^{0.75} \times(50) \\
f_{\text {mixt }}=41.5 \text { bar }
\end{gathered}
$$

3. Pure-component saturation pressures show that water is relatively nonvolatile at $25^{\circ} \mathrm{C}$. Under these conditions the mole fraction of ethane in the vapor phase $\left(y_{\mathrm{E}}\right)$ is close to unity. Henry's law applies:

$$
f_{\mathrm{E}}=H(T) x_{\mathrm{E}}
$$

The equilibrium condition is

$$
f_{\mathrm{E}}^{V}=f_{\mathrm{E}}^{L}
$$

or

$$
y_{\mathrm{E}} \varphi_{\mathrm{E}} P=H(T) x_{\mathrm{E}}
$$

At 1 bar, $\varphi_{\mathrm{E}} \approx 1$ and $H(T)=P / x_{\mathrm{E}}$:

$$
H(T)=\frac{1}{0.33 \times 10^{-4}}=3.03 \times 10^{4} \mathrm{bar}
$$

At 35 bar we must calculate φ_{E} :

$$
\ln \varphi_{\mathrm{E}}=\int_{0}^{P} \frac{z-1}{P} d P
$$

Using

$$
z=1-7.63 \times 10^{-3} P-7.22 \times 10^{-5} P^{2}
$$

we obtain

$$
\varphi_{\mathrm{E}}=0.733
$$

Because Henry's constant H is not a strong function of pressure,

$$
\begin{gathered}
x_{\mathrm{E}}=\frac{f_{\mathrm{E}}}{H}=\frac{\varphi_{\mathrm{E}} P}{H} \\
x_{\mathrm{E}}=x_{\text {Ethane }}=\frac{(0.733) \times(35)}{3.03 \times 10^{4}}=\mathbf{8 . 4 7} \times \mathbf{1 0}^{-\mathbf{4}}
\end{gathered}
$$

4. The change in chemical potential can be written,

$$
\begin{equation*}
\Delta \mu_{1}=\mu_{1}-\mu_{1}^{0}=R T \ln \left(\frac{f_{1}}{f_{1}^{0}}\right) \quad\left(f_{1}^{0}=1 \text { bar }\right) \tag{1}
\end{equation*}
$$

The chemical potential may be defined as ${ }^{1}$:

$$
\begin{align*}
\mu_{1}-\mu_{1}^{0} & =\left(\frac{\partial G}{\partial n_{1}}\right)_{T, P, n_{2}}-\left(\frac{\partial G^{0}}{\partial n_{1}}\right)_{T, n_{2}} \\
& =\left(\frac{\partial A}{\partial n_{1}}\right)_{T, V, n_{2}}-\left(\frac{\partial A^{0}}{\partial n_{1}}\right)_{T, n_{2}}-R T \tag{2}
\end{align*}
$$

Combining Eqs. (1) and (2):

$$
\ln f_{1}=\frac{1}{R T}\left(\frac{\partial \Delta A}{\partial n_{1}}\right)_{T, V, n_{2}}-1
$$

Using total volume, $V=n_{T} v, n_{T}=n_{1}+n_{2}$,

$$
\frac{\Delta A}{R T}=n_{T} \ln \left(\frac{V}{V-n_{T} b}\right)-n_{1} \ln \left(\frac{V}{n_{1} R T}\right)-n_{2} \ln \left(\frac{V}{n_{2} R T}\right)
$$

Taking the partial derivative and substituting gives

$$
\ln \frac{f_{1}}{\frac{y_{1} R T}{v-b}}=\frac{b_{1}}{v-b}
$$

or

$$
f_{1}=\frac{y_{1} R T}{v-b} \exp \left(\frac{b_{1}}{v-b}\right)
$$

The same expression for the fugacity can be obtained with an alternative (but equivalent) derivation:

1

$$
\begin{aligned}
& A^{0}=U^{0}-T S^{0} ; \quad G^{0}=U^{0}+P V^{0}-T S^{0} ; \quad P V^{0}=n_{T} R T \\
& \mu_{1}^{0}=\left(\frac{\partial G^{0}}{\partial n_{1}}\right)_{T, n_{j} \neq 1}=\left(\frac{\partial U^{0}}{\partial n_{1}}\right)_{T, n_{j} \neq 1}+R T-T\left(\frac{\partial S^{0}}{\partial n_{1}}\right)_{T, n_{j} \neq 1}
\end{aligned}
$$

and

$$
\left(\frac{\partial A^{0}}{\partial n_{1}}\right)_{T, n_{j} \neq 1}=\left(\frac{\partial U^{0}}{\partial n_{1}}\right)_{T, n_{j} \neq 1}+R T-T\left(\frac{\partial S^{0}}{\partial n_{1}}\right)_{T, n_{j} \neq 1}
$$

then

$$
\mu_{1}^{0}=\left(\frac{\partial A^{0}}{\partial n_{1}}\right)_{T, n_{j} \neq 1}+R T
$$

$$
\mu_{1}-\mu_{1}^{0}=R T \ln \left(\frac{f_{1}}{f_{1}^{0}}\right) \quad\left(f_{1}^{0}=1 \mathrm{bar}\right)
$$

By definition, $\mu_{1}=\left(\frac{\partial A}{\partial n_{1}}\right)_{T, V, n_{j \neq 1}}$. The Helmholtz energy change Δa can be written as

$$
\begin{aligned}
n_{T} \Delta a & =A-\sum_{i} n_{i} a_{i}^{0} \\
& =A-\sum_{i} n_{i}\left(\mu_{1}^{0}-R T\right)
\end{aligned}
$$

Then,

$$
\begin{aligned}
\left(\frac{\partial n_{T} \Delta a}{\partial n_{1}}\right)_{n_{j \neq 1, T, V}} & =\left(\frac{\partial A}{\partial n_{1}}\right)_{n_{j \neq 1, T, V}}-\mu_{1}^{0}-R T \\
& =\mu_{1}-\mu_{1}^{0}-R T
\end{aligned}
$$

and

$$
\frac{\mu_{1}-\mu_{1}^{0}}{R T}=\left[\frac{\partial\left(n_{T} \Delta a / R T\right)}{\partial n_{1}}\right]_{n_{j \neq 1}, T, V}-1
$$

Using the equation for Δa,

$$
\left[\frac{\partial\left(n_{T} \Delta a / R T\right)}{\partial n_{1}}\right]_{n_{j \neq 1}, T, V}=\ln \frac{V}{V-n_{T} b}-\ln \frac{V}{n_{1} R T}+1+\frac{n_{T} b_{1}}{V-n_{T} b}
$$

or

$$
\begin{aligned}
\ln f_{1}= & \ln \left(\frac{\mu_{1}-\mu_{1}^{0}}{R T}\right)=\left[\frac{\partial\left(n_{T} \Delta a / R T\right)}{\partial n_{1}}\right]_{n_{j \neq 1}, T, V}-1 \\
= & \ln \frac{n_{1} R T}{V-n_{T} b}+\frac{n_{T} b_{1}}{V-n_{T} b} \\
& f_{1}=\frac{n_{1} R T}{V-n_{T} b} \exp \left(\frac{n_{T} b_{1}}{V-n_{T} b}\right)
\end{aligned}
$$

Hence,

$$
f_{1}=\frac{y_{1} R T}{v-b} \exp \left(\frac{b_{1}}{v-b}\right)
$$

5.

a) Starting with Eq. (3-51):

For a pure component $\left(n_{i}=n_{T}\right)$:

$$
\mu_{i}=\frac{G}{n_{i}} ; \quad \mu_{i}^{0}=\frac{G_{i}^{0}}{n_{i}}
$$

Because

$$
\begin{gather*}
G=U+P V-T S \\
\mu_{i}^{0}=\mu_{i}^{0}-T s_{i}^{0}+R T \tag{1}
\end{gather*}
$$

From Eq. (3-52),

$$
\begin{equation*}
\mu_{i}=\int_{V}^{\infty}\left(\frac{P}{n_{i}}-\frac{R T}{V}\right) d V-R T \ln \frac{V}{n_{i} R T}+\mu_{i}^{0}-T s_{i}^{0}+\frac{P V}{n_{i}} \tag{2}
\end{equation*}
$$

From Eqs. (1) and (2),

$$
\mu_{i}-\mu_{i}^{0}=\int_{V}^{\infty}\left(\frac{P}{n_{i}}-\frac{R T}{V}\right) d V-R T \ln \frac{V}{n_{i} R T}+\frac{P V-n_{i} R T}{n_{i}}
$$

But,

$$
R T \ln f_{i}=\mu_{i}-\mu_{i}^{0}
$$

and

$$
\frac{V}{n_{i} R T}=\frac{z_{i}}{P}
$$

Substitution gives

$$
R T \ln \left(\frac{f}{P}\right)_{i}=\int_{V}^{\infty}\left(\frac{P}{n_{i}}-\frac{R T}{V}\right) d V-R T \ln z_{i}+R T\left(z_{i}-1\right)
$$

b) Starting with Eq. (3-53):

For a pure component, $y_{i}=1$. To use Eq. (3-53), we must calculate

$$
\left(\frac{\partial P}{\partial n_{i}}\right)_{T, V, \text { pure component } i}
$$

Pressure P is a function of T, V, and n_{i} and

$$
\begin{aligned}
& \left(\frac{\partial P}{\partial n_{i}}\right)_{V}\left(\frac{\partial n_{i}}{\partial V}\right)_{P}\left(\frac{\partial V}{\partial P}\right)_{n_{i}}=-1 \\
& \begin{aligned}
\left(\frac{\partial P}{\partial n_{i}}\right)_{V} & =-\left(\frac{\partial V}{\partial n_{i}}\right)_{P}\left(\frac{\partial P}{\partial V}\right)_{n_{i}} \\
& =\frac{P}{n_{i}}-\left[\frac{P}{n_{i}}+\frac{V}{n_{i}}\left(\frac{\partial P}{\partial V}\right)_{n_{i}}\right]
\end{aligned}
\end{aligned}
$$

But,

$$
\frac{P}{n_{i}}+\frac{V}{n_{i}}\left(\frac{\partial P}{\partial V}\right)_{n_{i}}=\frac{1}{n_{i}}\left[\frac{\partial(P V)}{\partial V}\right]_{n_{i}}
$$

Then,

$$
\begin{aligned}
\int_{V}^{\infty}\left(\frac{\partial P}{\partial n_{i}}\right)_{T, V, n_{j \neq 1}} & =\int_{V}^{\infty} \frac{P}{n_{i}} d V-\frac{1}{n_{i}} \int_{P V}^{n_{i} R T} d(P V) \\
& =\int_{V}^{\infty} \frac{P}{n_{i}} d V-R T+\frac{P V}{n_{i}} \\
& =\int_{V}^{\infty} \frac{P}{n_{i}} d V-R T(z-1)
\end{aligned}
$$

Now Eq. (3-54) follows directly.
6. The solubility of water in oil is described by

$$
f_{1}=H(T) x_{1}
$$

Henry's constant can be evaluated at 1 bar where $f_{1}=1$ bar .
Then,

$$
H(T)=\frac{f_{1}}{x_{1}}=\frac{1}{35 \times 10^{-4}}=286 \text { bar } \quad\left(t=140^{\circ} \mathrm{C}\right)
$$

To obtain f_{1} at 410 bar and $140^{\circ} \mathrm{C}$, use the Steam Tables (e.g., Keenen and Keyes). Alternatively, get f at saturation (3.615 bar) and use the Poynting factor to correct to 410 bar.

At $140^{\circ} \mathrm{C}$,

$$
\begin{gathered}
R T \ln f_{1}=\Delta g_{1 \rightarrow 410 \text { bar }}=\Delta h_{1 \rightarrow 410 \text { bar }}-T \Delta s_{1 \rightarrow 410 \text { bar }} \\
R T \ln f_{1}=282 \mathrm{~J} \mathrm{~g}^{-1} \quad(\text { from Steam Tables }) \\
\ln f_{1}=\frac{(282) \times(18)}{(8.31451) \times(413)}=1.48
\end{gathered}
$$

Then, $f_{1}=4.4$ bar at 410 bar and $140^{\circ} \mathrm{C}$ and

$$
x_{1}=\frac{f_{1}}{H(T)}=\frac{4.4}{286}=0.0154
$$

7.

Applying an energy balance to this process,

$$
\Delta h=h_{\mathrm{f}}-h_{\mathrm{o}}=0
$$

This may be analyzed on a $P-T$ plot. Assume 1 mole of gas passing through the valve.

A three-step process applies:
I. Isothermal expansion to the ideal-gas state.
II. Isobaric cooling of the ideal gas.
III. Compression to the final pressure.

For this process,

$$
\Delta h=\Delta h_{\mathrm{I}}+\Delta h_{\mathrm{II}}+\Delta h_{\mathrm{III}}=0
$$

Since $h=h(T, P)$,

$$
\begin{gathered}
d h=\left(\frac{\partial h}{\partial P}\right)_{T} d P+\left(\frac{\partial h}{\partial T}\right)_{P} d T \\
\Delta h=\int_{T_{\mathrm{o}} P_{\mathrm{o}}}^{T_{f} P_{f}} d h \\
=\int_{P_{\mathrm{o}}}^{0}\left[v-T\left(\frac{\partial v}{\partial T}\right)_{P}\right]_{T_{\mathrm{o}}} d P+\int_{T_{\mathrm{o}}}^{T_{f}} c_{p}^{0} d T+\int_{0}^{P_{f}}\left[v-T\left(\frac{\partial v}{\partial T}\right)_{P}\right]_{T_{\mathrm{f}}} d P
\end{gathered}
$$

But,

$$
v=\frac{R T}{P}+50-\frac{10^{5}}{T}
$$

Then,

$$
\left(\frac{\partial v}{\partial T}\right)_{P}=\frac{R}{P}+\frac{10^{5}}{T^{2}}
$$

and

$$
\begin{gathered}
c_{p}^{0}=y_{\mathrm{A}} c_{p, \mathrm{~A}}^{0}+y_{\mathrm{B}} c_{p, \mathrm{~B}}^{0} \\
\Delta h=0=\left(50-\frac{2 \times 10^{5}}{T_{\mathrm{o}}}\right)\left(-P_{\mathrm{o}}\right)+\left(y_{\mathrm{A}} c_{p, \mathrm{~A}}^{0}+y_{\mathrm{B}} c_{p, \mathrm{~B}}^{0}\right)\left(T_{\mathrm{f}}-T_{\mathrm{o}}\right)+\left(50-\frac{2 \times 10^{5}}{T_{\mathrm{f}}}\right) P_{\mathrm{f}}
\end{gathered}
$$

Substitution gives
$(-616.7) \times P_{\mathrm{o}}=\left(33.5 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \times\left(10 \mathrm{bar} \mathrm{cm}^{3} \mathrm{~J}^{-1}\right) \times(200-300 \mathrm{~K})+(-950) \times(1 \mathrm{bar})$

$$
P_{0}=55.9 \mathrm{bar}
$$

8. From the Gibbs-Helmholtz equation:

$$
\frac{\partial\left(\frac{g}{T}\right)}{\partial T}=-\frac{h}{T^{2}}
$$

or, alternately,

$$
\begin{equation*}
\frac{\partial\left(\frac{\Delta g}{T}\right)}{\partial\left(\frac{1}{T}\right)}=\Delta h=h^{\text {real }}-h^{\text {ideal }} \tag{1}
\end{equation*}
$$

Because, at constant temperature,

$$
\begin{equation*}
d(\Delta g)=R T d \ln \left(\frac{f}{P}\right) \tag{2}
\end{equation*}
$$

we may substitute Eq. (2) into Eq. (1) to obtain

$$
R \frac{\partial \ln \left(\frac{f}{P}\right)}{\partial\left(\frac{1}{T}\right)}=\Delta h
$$

From the empirical relation given,

$$
\begin{gathered}
\ln \frac{f}{P}=0.067 P-\frac{30.7}{T} P-0.0012 P^{2}+\frac{0.416 P^{2}}{T} \\
R \frac{\partial \ln \left(\frac{f}{P}\right)}{\partial\left(\frac{1}{T}\right)}=-30.7 P+0.416 P^{2}=\frac{\Delta h}{R}
\end{gathered}
$$

At $P=30$ bar,

$$
\Delta h=(8.31451) \times\left[(-30.7) \times(30)+(0.416) \times(30)^{2}\right]
$$

$$
\Delta h=-4545 \mathrm{~J} \mathrm{~mol}^{-1}
$$

9. Consider mixing as a three-step process:
(I) Expand isothermally to ideal-gas state.
(II) Mix ideal gas.
(III) Compress mixture isothermally.

Starting with

$$
d u=c_{v} d T+\left[T\left(\frac{\partial P}{\partial T}\right)_{v}-P\right] d v
$$

$$
\left(\frac{\partial u}{\partial v}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{v}-P
$$

Because, $P=\frac{R T}{v-b}-\frac{a}{v^{2}}$,

$$
\left(\frac{\partial u}{\partial v}\right)_{T}=\frac{a}{v^{2}}
$$

Integration of this equation to the ideal-gas state $(v=\infty)$ gives

$$
\Delta u=\int_{v}^{\infty} \frac{a}{v^{2}} d v=\frac{a}{v}
$$

Therefore,

$$
\begin{gathered}
\Delta u_{\mathrm{I}}=\frac{x_{1} a_{1}}{v_{1}}+\frac{x_{2} a_{2}}{v_{2}}=5914 \mathrm{~J} \mathrm{~mol}^{-1} \\
{\left[(1 \mathrm{bar}) \times\left(1 \mathrm{~cm}^{3}\right) \approx 0.1 \mathrm{Joule}\right]}
\end{gathered}
$$

$\Delta u_{\mathrm{II}}=0 \quad$ (because is the mixing of ideal gases)

$$
\begin{aligned}
\Delta u_{\mathrm{III}} & =-\frac{a_{\text {mixt }}}{v_{\text {mixt }}}=\frac{-\left[x_{1}^{2} a_{11}+2 x_{1} x_{2} \sqrt{a_{11} a_{22}} \times(1-0.1)+x_{2}^{2} a_{22}\right]}{x_{1} v_{1}+x_{2} v_{2}} \\
& =-5550 \mathrm{~J} \mathrm{~mol}^{-1}
\end{aligned}
$$

$$
\Delta_{\text {mix }} h=\Delta_{\text {mix }} u=\Delta u_{\mathrm{I}}+\Delta u_{\mathrm{II}}+\Delta u_{\mathrm{III}}=\mathbf{3 6 4} \mathbf{~ J ~ m o l}^{-\mathbf{1}}
$$

S OL U T I O N S T O P R O BLEMS

C H A P T E R 4

1. At $25 \AA$ we can neglect repulsive forces.

The attractive forces are London forces and induced dipolar forces; we neglect (small) quadrupolar forces. (There are no dipole-dipole forces since N_{2} is nonpolar.)

Let 1 stand for N_{2} and 2 stand for NH_{3}.
London force:

$$
\begin{gathered}
\Gamma_{12}=-\frac{3}{2} \frac{\alpha_{1} \alpha_{2}}{r^{6}} \frac{I_{1} I_{2}}{I_{1}+I_{2}} \\
F_{12}=-\frac{d \Gamma}{d r}=-\frac{9 \alpha_{1} \alpha_{2}}{r^{7}} \frac{I_{1} I_{2}}{I_{1}+I_{2}}
\end{gathered}
$$

Since,

$$
\begin{gathered}
\alpha_{1}=17.6 \times 10^{-25} \mathrm{~cm}^{3} \\
\alpha_{2}=22.6 \times 10^{-25} \mathrm{~cm}^{3} \\
I_{1}=15.5 \mathrm{eV}=2.48 \times 10^{-18} \mathrm{~N} \mathrm{~m} \\
I_{2}=11.5 \mathrm{eV}=1.84 \times 10^{-18} \mathrm{~N} \mathrm{~m}
\end{gathered}
$$

then

$$
F_{12}^{\text {London }}=-62.0 \times 10^{-18} \mathrm{~N}
$$

Induced dipole force:

$$
\begin{gathered}
\Gamma_{12}=-\frac{\alpha_{1} \mu_{2}^{2}}{r^{6}} \\
F_{12}=-\frac{6 \alpha_{1} \mu_{2}^{2}}{r^{7}} \\
1 \mathrm{D}=1 \times 10^{-18}\left(\mathrm{erg} \mathrm{~cm}^{3}\right)^{1 / 2} \\
\mu_{2}=1.47 \mathrm{D}=1.47 \times 10^{-18}\left(\mathrm{erg} \mathrm{~cm}^{3}\right)^{1 / 2} \\
F_{12}^{\text {ind }}=-3.8 \times 10^{-18}\left(\mathrm{erg} \mathrm{~cm}^{3}\right)^{1 / 2}
\end{gathered}
$$

Neglecting all forces due to quadrupoles (and higher poles),

$$
\begin{aligned}
& F^{\text {tot }}=F^{\text {London }}+F^{\text {ind }} \\
& \boldsymbol{F}^{\text {tot }}=-\mathbf{6 5 . 8} \times \mathbf{1 0}^{-\mathbf{1 8}} \mathbf{N}
\end{aligned}
$$

2. From the Lennard-Jones model:

$$
\begin{aligned}
& \text { Attractive potential }=-4 \varepsilon \frac{\sigma^{6}}{r^{6}}=\Gamma \\
& \text { Attractive force }=-\frac{d \Gamma}{d r}=-24 \varepsilon \frac{\sigma^{6}}{r^{7}}
\end{aligned}
$$

Assume force of form,

$$
\text { Force }=-\frac{d \Gamma}{d r}=(\text { constant })\left(\frac{\varepsilon}{k}\right) \frac{\sigma^{6}}{r^{7}}
$$

Using corresponding states:

$$
\begin{aligned}
\left(\frac{\varepsilon}{k}\right) & =(\text { constant }) \times T_{c} & \sigma^{6} & =\left(\text { constant } \times v_{c}\right)^{2} \\
& =\alpha T_{c} & & =\beta v_{c}^{2}
\end{aligned}
$$

where α and β are universal constants.

$$
\begin{aligned}
& \frac{\text { force } \mathrm{CH}_{4}}{\text { force substance } \mathrm{B}}=\frac{(\text { constant })}{(\text { constant })} \frac{(\varepsilon / k)_{\mathrm{CH}_{4}}}{(\varepsilon / k)_{\mathrm{B}}} \frac{\frac{\left(\sigma_{\mathrm{CH}_{4}}\right)^{6}}{\left(r_{\mathrm{CH}_{4}}\right)^{7}}}{\frac{\left(\sigma_{\mathrm{B}}\right)^{6}}{\left(r_{\mathrm{B}}\right)^{7}}} \\
& \frac{2 \times 10^{-8}}{\text { force substance } \mathrm{B}}=\frac{\alpha\left(T_{c_{\mathrm{CH}}}\right)}{\alpha\left(T_{c_{\mathrm{B}}}\right)} \times \frac{\frac{\beta\left(v_{c_{\mathrm{CH}}}\right)^{2}}{\left(1 \times 10^{-7} \mathrm{~cm}\right)^{7}}}{\frac{\beta\left(v_{c_{\mathrm{B}}}\right)^{2}}{\left(2 \times 10^{-7} \mathrm{~cm}\right)^{7}}} \\
& \text { Force substance } \mathrm{B}=-4 \times 10^{-10} \text { dyne } \\
& \text { Force }=-\mathbf{4} \times \mathbf{1 0}^{-\mathbf{- 1 5} \mathbf{N}}
\end{aligned}
$$

3.

$$
\Gamma_{\mathrm{AA}}=-8 \times 10^{-16} \mathrm{erg}
$$

By the molecular theory of corresponding states:

$$
\begin{gathered}
\frac{\Gamma_{i i}}{\varepsilon_{i}}=f\left(\frac{r}{\sigma_{i}}\right) \quad(r=2 \sigma) \\
\frac{\Gamma_{\mathrm{BB}}}{\Gamma_{\mathrm{AA}}}=\left(\frac{\varepsilon_{\mathrm{B}}}{\varepsilon_{\mathrm{A}}}\right)\left[\frac{f(2)}{f(2)}\right]=\frac{\varepsilon_{\mathrm{B}}}{\varepsilon_{\mathrm{A}}} \quad(f \text { is a universal function })
\end{gathered}
$$

Since $\varepsilon / k=0.77 T_{c}$ (taking the generalized function f as the Lennard-Jones (12-6) potential),

$$
\begin{aligned}
\Gamma_{\mathrm{BB}}= & \Gamma_{\mathrm{AA}} \frac{T_{c_{\mathrm{B}}}}{T_{c_{\mathrm{A}}}} \\
= & \left(-8 \times 10^{-16} \mathrm{erg}\right) \times(180 \mathrm{~K} / 120 \mathrm{~K}) \\
\Gamma_{\mathrm{BB}} & =-12.0 \times 10^{-16} \mathrm{erg} \\
& =-\mathbf{1 2 . 0} \times \mathbf{1 0}^{-\mathbf{2 3}} \mathbf{~ J}
\end{aligned}
$$

4. For dipole-dipole interaction:

$$
\Gamma(d d)=\frac{\mu_{i} \mu_{j}}{\left(4 \pi \varepsilon_{0} r^{3}\right)} f\left(\theta_{i}, \theta_{j}, \phi\right)
$$

with

$$
f\left(\theta_{i}, \theta_{j}, \phi\right)=2 \cos \theta_{i} \cos \theta_{j}+\sin \theta_{i} \sin \theta_{j} \cos \left(\phi_{i}+\phi_{j}\right)
$$

For the relative orientation:

$$
\begin{array}{ll}
\theta_{i}=0^{\circ} & \phi_{i}=0^{\circ} \\
\theta_{j}=180^{\circ} & \phi_{j}=0^{\circ}
\end{array}
$$

$$
\Gamma(d d)=\frac{\mu_{i} \mu_{j}}{\left(4 \pi \varepsilon_{0} r^{3}\right)} \times[2 \times 1 \times(-1)]=\frac{-2 \mu_{i} \mu_{j}}{\left(4 \pi \varepsilon_{0} r^{3}\right)}
$$

For $\mu_{i}=\mu_{j}=1.08 \mathrm{D}=3.603 \times 10^{-30} \mathrm{C} \mathrm{m}$ and $r=0.5 \times 10^{-9} \mathrm{~m}$,

$$
\begin{aligned}
\Gamma(d d) & =\frac{(-2) \times\left(3.603 \times 10^{-30}\right)^{2}}{(4 \pi) \times\left(8.8542 \times 10^{-12}\right) \times\left(0.5 \times 10^{-9}\right)^{3}} \\
& =\mathbf{- 1 . 8 7} \times \mathbf{1 0}^{\mathbf{- 2 1}} \mathbf{J}
\end{aligned}
$$

For the relative orientation:

$$
\begin{array}{ll}
\theta_{i}=0^{\circ} & \phi_{i}=0^{\circ} \\
\theta_{j}=90^{\circ} & \phi_{j}=0^{\circ}
\end{array}
$$

For the dipole-induced dipole interaction:

$$
\Gamma\left(d d_{i}\right)=-\frac{\mu_{i}^{2} \alpha_{j}}{2\left(4 \pi \varepsilon_{\mathrm{o}}\right)^{2} r^{6}}\left(3 \cos ^{2} \theta_{i}+1\right)-\frac{\mu_{j}^{2} \alpha_{i}}{2\left(4 \pi \varepsilon_{\mathrm{o}}\right)^{2} r^{6}}\left(3 \cos ^{2} \theta_{j}+1\right)
$$

For the relative orientation:

$$
\begin{aligned}
\xrightarrow[i]{j} & \theta_{i}=0^{\circ}
\end{aligned} \theta_{j}=90^{\circ} ~ 子 ~\left[\frac{-\left(3.603 \times 10^{-30}\right)^{2} \times\left(2.60 \times 10^{-30}\right)}{2 \times\left(1.1124 \times 10^{-10}\right) \times\left(0.5 \times 10^{-9}\right)^{6}} \times(4)\right] .
$$

For the relative orientation:

$$
\begin{aligned}
\Gamma\left(d d_{i}\right) & =-\frac{\left(3.603 \times 10^{-30}\right)^{2} \times\left(2.60 \times 10^{-30}\right)}{2 \times\left(1.1124 \times 10^{-10}\right) \times\left(0.5 \times 10^{-9}\right)^{6}} \times(4+1) \\
& =-4.85 \times 10^{-23} \mathrm{~J} \approx-\mathbf{4 . 8} \times \mathbf{1 0}^{-\mathbf{2 3}} \mathbf{J}
\end{aligned}
$$

5. The energy required to remove the molecule from the solution is

$$
E=\frac{1}{a^{3}}\left(\frac{\varepsilon_{r}-1}{2 \varepsilon_{r}+1}\right) \mu^{2}
$$

$$
\varepsilon_{r}=3.5 \quad a=3.0 \times 10^{-8} \mathrm{~cm} \quad \mu=2 \mathrm{D}
$$

(See, for example, C. J. E. Böttcher, 1952, The Theory of Electric Polarization, Elsevier)

$$
E=4.61 \times 10^{-21} \mathrm{~J} / \text { molecule }=2777 \mathbf{~ J ~ m o l}^{-1}
$$

6.

a) The critical temperatures and critical volumes of N_{2} and CO are very similar, more similar than those for N_{2} and argon (see Table J-4 of App. J). Therefore, we expect $\mathrm{N}_{2} / \mathrm{CO}$ mixtures to follow Amagat's law more closely than $\mathrm{N}_{2} /$ Ar mixtures.
b) Using a harmonic oscillator model for $\mathrm{CO}, F=-K x$, where F is the force, x is the displacement (vibration) of nuclei from equilibrium position and K is the force constant. This constant may be measured by relating it to characteristic frequency v through:

$$
v=\frac{1}{2 \pi} \sqrt{\frac{K\left(m_{\mathrm{C}}+m_{\mathrm{O}}\right)}{m_{\mathrm{C}} m_{\mathrm{O}}}}
$$

where m_{C} and m_{O} are, respectively, the masses of carbon and oxygen atoms.
Infrared spectrum will show strong absorption at v.
Argon has only translational degrees of freedom while CO has, in addition, rotational and vibrational degrees of freedom. Therefore, the specific heat of CO is larger than that of argon.
7. Electron affinity is the energy released when an electron is added to a neutral atom (or molecule).

Ionization potential is the energy required to remove an electron from a neutral atom (or molecule).

$$
\begin{aligned}
& \text { Lewis acid = electron acceptor (high electron affinity). } \\
& \text { Lewis base = electron donor (low ionization potential). }
\end{aligned}
$$

Aromatics are better Lewis bases than paraffin. To extract aromatics from paraffins we want a good Lewis acid. SO_{2} is a better a Lewis acid than ammonia.
8. From Debye's equation:

$$
\underbrace{v\left[\frac{\varepsilon_{r}-1}{\varepsilon_{r}+2}\right]}_{\text {Total polarization }}=\underbrace{\frac{4}{3} \pi N_{A} \alpha}_{\begin{array}{c}
\text { Static polarization } \\
\text { independent of } T
\end{array}}+\frac{4}{3} \pi N_{A}\left(\frac{\mu^{2}}{3 k T}\right)
$$

Measurement of molar volume, v, and relative permitivity, ε_{r}, in a dilute solution as a function of T, allows μ to be determined (plot total polarization versus $1 / T$; slope gives μ).
9. We compare the attractive part of the LJ potential $(r \gg \sigma)$ with the London formula. The attractive LJ potential is

$$
\begin{aligned}
& \Gamma_{11}=-4 \varepsilon_{11}\left(\frac{\sigma_{11}}{r}\right)^{6} \\
& \Gamma_{22}=-4 \varepsilon_{22}\left(\frac{\sigma_{22}}{r}\right)^{6} \\
& \Gamma_{12}=-4 \varepsilon_{12}\left(\frac{\sigma_{12}}{r}\right)^{6}
\end{aligned}
$$

We assume that $\sigma_{12}=1 / 2\left(\sigma_{11}+\sigma_{22}\right)$. The London formula is

$$
\begin{gathered}
\Gamma_{11}=-\frac{3 \alpha_{1}^{2} I_{1}}{4 r^{6}} \\
\Gamma_{22}=-\frac{3 \alpha_{2}^{2} I_{2}}{4 r^{6}} \\
\Gamma_{12}=-\frac{3}{2}\left(\frac{\alpha_{1} \alpha_{2}}{r^{6}}\right)\left(\frac{I_{1} I_{2}}{I_{1}+I_{2}}\right)
\end{gathered}
$$

Substitution gives

$$
\varepsilon_{12}=\left(\varepsilon_{11} \varepsilon_{22}\right)^{1 / 2}\left[\frac{\sqrt{\sigma_{11} \sigma_{22}}}{\frac{1}{2}\left(\sigma_{11}+\sigma_{22}\right)}\right]^{6}\left[\frac{\sqrt{I_{1} I_{2}}}{\frac{1}{2}\left(I_{1}+I_{2}\right)}\right]
$$

Only when $\sigma_{11}=\sigma_{22}$ and $I_{1}=I_{2}$ do we obtain

$$
\varepsilon_{12}=\left(\varepsilon_{11} \varepsilon_{22}\right)^{1 / 2}
$$

Notice that both correction factors (in brackets) are equal to or less than unity. Thus, in general,

$$
\varepsilon_{12} \leq\left(\varepsilon_{11} \varepsilon_{22}\right)^{1 / 2}
$$

10. See Pimentel and McClellan, The Hydrogen Bond, Freeman (1960).

Phenol has a higher boiling point and a higher energy of vaporization than other substituted benzenes such as toluene or chlorobenzene. Phenol is more soluble in water than other substituted benzenes. Distribution experiments show that phenol is strongly associated when dissolved in
nonpolar solvents like CCl_{4}. Infrared spectra show absorption at a frequency corresponding to the $-\mathrm{OH} \cdots \mathrm{H}$ hydrogen bond.
11. $\gamma_{\text {acetone }}^{\left(\mathrm{CCl}_{4}\right)}$ $>\gamma_{\text {acetone }}^{\left(\mathrm{CHCl}_{3}\right)}$ because acetone can hydrogen-bond with chloroform but not with carbon tetrachloride.
12.
a)
$\mathrm{CHCl}_{3} \quad$ Chloroform is the best solvent due to hydrogen bonding which is not present in pure chloroform or in the polyether (PPD).

Chlorobenzene is the next best solvent due to its high polarizability and it is a Lewis acid while PPD is a Lewis base.

Cyclohexane is worst due to its low polarizability.

n-butanol is probably a poor solvent for PPD. Although it can hydrogenbond with PPD, this requires breaking the H -bonding network between n-butanol molecules.

t-butanol is probably better. Steric hindrance prevents it from forming Hbonding networks; therefore, it readily exchanges one H -bond for another when mixed with PPD. The lower boiling point of t-butanol supports the view that it exhibits weaker hydrogen bonding with itself than does n-butanol.
b) Cellulose nitrate (nitrocellulose) has two polar groups: ONO_{2} and OH . For maximum solubility, we want one solvent that can "hook up" with the ONO_{2} group (e.g., an aromatic hydrocarbon) and another one for the OH group (e.g., an alcohol or a ketone).
c) Using the result of Problem 5,

$$
E=\frac{1}{a^{3}}\left(\frac{\varepsilon_{r}-1}{2 \varepsilon_{r}+1}\right) \mu^{2}
$$

At $20^{\circ} \mathrm{C}$, the dielectric constants are

$$
\varepsilon_{r}\left(\mathrm{CCl}_{4}\right)=2.238 \quad \varepsilon_{r}\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)=1.948
$$

Thus,

$$
\frac{\varepsilon_{r}\left(\mathrm{CCl}_{4}\right)}{\varepsilon_{r}\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)}=1.17
$$

It takes more energy to evaporate HCN from CCl_{4} than from octane.
13. At $170^{\circ} \mathrm{C}$ and 25 bar:
$z_{\mathrm{H}_{2}}$ is above 1
$z_{\text {amine }}$ is well below 1
z_{HCl} is slightly below 1

a) A mixture of amine and H_{2} is expected to exhibit positive deviations from Amagat's law.
b) Since amine and HCl can complex, mixtures will exhibit negative deviations from Amagat's law.
c)

The strong dipole-dipole attractive forces between HCl molecules cause $z_{\mathrm{HCl}}<1$, while argon is nearly ideal. Addition of argon to HCl greatly reduces the attractive forces experienced by the HCl molecules, and the mixture rapidly approaches ideality with addition of argon. Addition of HCl to Ar causes induced dipole attractive forces to arise in argon, but these forces are much smaller than the dipole-dipole forces lost upon addition of Ar to HCl . Thus the curve is convex upwards.
14.
a) Acetylene has acidic hydrogen atoms while ethane does not. Acetylene can therefore complex with DMF, explaining its higher solubility. No complexing occurs with octane.
b) At the lower pressure (3 bar), the gas-phase is nearly ideal. There are few interactions between benzene and methane (or hydrogen). Therefore, benzene feels equally "comfortable" in both gases.

However, at 40 bar there are many more interactions between benzene and methane (or hydrogen) in the gas phase. Now benzene does care about the nature of its surroundings. Because methane has a larger polarizability than hydrogen, benzene feels more "comfortable" with methane than with hydrogen. Therefore, K_{B} (in methane) $>K_{\mathrm{B}}$ (in hydrogen).
c) Under the same conditions, CO_{2} experiences stronger attractive forces with methane than with hydrogen due to differences in polarizability. This means that CO_{2} is more "comfortable" in methane than in H_{2} and therefore has a lower fugacity that explains the condensation in H_{2} but not in CH_{4}.
d) It is appropriate to look at this from a corresponding-states viewpoint. At $100^{\circ} \mathrm{C}$, for ethane $T_{R} \approx 1.2$, for helium, $T_{R} \approx 80$.

At lower values of T_{R} (near unity) the molecules have an average thermal (kinetic) energy on the order of ε (because T_{R} is on the order of $k T / \varepsilon$). The colliding molecules (and molecules near one another, of which there will be many at 50 bar) can therefore be significantly affected by the attractive portion of the potential, leading to $z<1$. At higher T_{R}, the molecules have such high thermal energies that they are not significantly affected by the attractive part. The molecules look like hard spheres to one another, and only the repulsive part of the potential is important. This leads to $z>1$.
e) Chlorobenzene would probably be best although cyclohexane might be good too because both are polar and thus can interact favorably with the polar segment of poly(vinyl chloride). Ethanol is not good because it hydrogen bonds with itself and n-heptane will be poor because it is nonpolar.
f) i) Dipole.
ii) Octopole.
iii) Quadrupole.
iv) Octopole.
g) Lowering the temperature lowers the vapor pressure of heptane and that tends to lower solvent losses due to evaporation. However, at $0^{\circ} \mathrm{C}$ and at 600 psia , the gas phase is strongly nonideal, becoming more nonideal as temperature falls. As the temperature falls, the solubility of heptane in high-pressure ethane and propane rises due to increased attraction between heptane and ethane on propane. In this case, the effect of increased gas-phase nonideality is more important than the effect of decreased vapor pressure.
15.
a) They are listed in Page 106 of the textbook:

1. Q can be factored so that Q_{int} is independent of density.
2. Classical (rather than quantum) statistical mechanics is applicable.
3. $\Gamma_{\text {total }}=\sum\left(\Gamma_{\text {Pairs }}\right)$ (pairwise additivity).
4. $\Gamma / \varepsilon=F(r / \sigma)$ (universal functionality).
b) In general, assumption 4 is violated. But if we fix the core size to be a fixed fraction of the collision diameter, then Kihara potential is a 2 -parameter (σ, ε) potential that satisfies corresponding states.
c) Hydrogen (at least at low temperatures) has a de Broglie wavelength large enough so that quantum effects must be considered and therefore assumption 2 is violated. Assumption 1 is probably pretty good for H_{2}; assumption 4 is violated slightly. All substances violate assumption 3 , but H_{2} isn't very polarizable so it might be closer than the average substance to pairwise additivity.
d) Corresponding states (and thermodynamics in general) can only give us functions such as $c_{p}-c_{p}^{0}$. Values of c_{p}^{0} (for isolated molecules) cannot be computed by these methods, because the contributions to c_{p}^{0} (rotation, vibration, translational kinetic energy) appear in $Q_{\text {int }}$ and the kinetic energy factor, not in the configuration integral.
5. Let α represent the phase inside the droplet and β the surrounding phase.

Schematically we have for the initial state and for the final (equilibrium) state:

Because the molar mass of lysozyme is above the membrane's cut-off point, lysozyme cannot diffuse across the membrane.

Let:

$$
\delta \text { represent the change in } \mathrm{K}^{+} \text {concentration in } \alpha \text {; }
$$

φ represent the change in Na^{+}concentration in β.
The final concentrations (f) of all the species in α and β are:
In $\alpha: \quad c_{\mathrm{Lys}^{-2}}^{\mathrm{f} \alpha}=0 \quad c_{\mathrm{K}^{+}}^{\mathrm{f} \alpha}=c_{\mathrm{K}^{+}}^{0 \alpha}-\delta \quad c_{\mathrm{Na}^{+}}^{\mathrm{f} \alpha}=\varphi \quad c_{\mathrm{NO}_{3}^{-}}^{\mathrm{f} \alpha}=c_{\mathrm{NO}_{3}^{-}}^{0 \alpha}-\delta+\varphi$
$\operatorname{In} \beta: \quad c_{\text {Lys }^{2-}}^{\mathrm{f} \beta}=c_{\mathrm{Lys}^{2-}}^{0 \beta} \quad c_{\mathrm{K}^{+}}^{\mathrm{f}}=\delta \quad c_{\mathrm{Na}^{+}}^{\mathrm{f} \beta}=c_{\mathrm{Na}^{+}}^{0 \beta}-\varphi \quad \underset{\mathrm{NO}_{3}^{-}}{c^{\mathrm{f} \beta}}=c_{\mathrm{NO}_{3}^{-}}^{0 \beta}+\delta-\varphi$
The equilibrium equations for the two nitrates are

$$
\begin{align*}
& \mu_{\mathrm{K}^{+}}^{\alpha}+\mu_{\mathrm{NO}_{\overline{3}}}^{\alpha}=\mu_{\mathrm{K}^{+}}^{\beta}+\mu_{\mathrm{NO} \overline{3}}^{\beta} \tag{1}\\
& \mu_{\mathrm{Na}^{+}}^{\alpha}+\mu_{\mathrm{NO}_{\overline{3}}}^{\alpha}=\mu_{\mathrm{Na}^{+}}^{\beta}+\mu_{\mathrm{NO}_{\overline{3}}^{-}}^{\beta}
\end{align*}
$$

Similar to the derivation in the text (pages 102-103), Eq. (1) yields

$$
\begin{align*}
& c_{\mathrm{K}^{+}}^{\beta} c_{\mathrm{NO}_{\overline{3}}^{\beta}}^{\beta}=c_{\mathrm{K}^{+}}^{\alpha} c_{\mathrm{NO}_{\overline{3}}^{\alpha}}^{\alpha} \\
& c_{\mathrm{Na}^{+}}^{\beta} c_{\mathrm{NO}_{\overline{3}}}^{\beta}=c_{\mathrm{Na}^{+}}^{\alpha} c_{\mathrm{NO}_{\overline{3}}}^{\alpha} \tag{2}
\end{align*}
$$

where, for clarity, superscript f has been removed from all the concentrations.
Substituting the definitions of δ and φ gives:

$$
\begin{align*}
& \left(c_{\mathrm{K}^{+}}^{0 \alpha}-\delta\right)\binom{c^{0 \alpha}-\delta+\varphi}{\mathrm{NO}_{\overline{3}}}=(\delta)\left(\begin{array}{l}
c^{0 \beta} \\
\mathrm{NO}_{\overline{3}}
\end{array}+\delta-\varphi\right) \tag{3}\\
& \left(c_{\mathrm{Na}^{+}}^{0 \beta}-\varphi\right)\left(\begin{array}{l}
c^{0 \beta} \\
\mathrm{NO}_{\overline{3}}
\end{array}+\delta-\varphi\right)=(\varphi)\binom{c^{0 \alpha}-\delta+\varphi}{\mathrm{NO}_{\overline{3}}}
\end{align*}
$$

where

$$
c_{\mathrm{K}^{+}}^{0 \alpha}=c_{\mathrm{NO}_{3}^{-}}^{0 \alpha}=\frac{0.01 \mathrm{~mol}}{1 \mathrm{~kg} \text { water }}=9.970 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}
$$

(using the mass density of water at $25^{\circ} \mathrm{C}: 0.997 \mathrm{~g} \mathrm{~cm}^{-3}$)
and

$$
\underset{\mathrm{Na}^{+}}{c^{0 \beta}}=c_{\mathrm{NO}_{\overline{3}}^{0 \alpha}}^{0 \alpha}=0.01 \mathrm{~mol} \mathrm{~L}^{-1}
$$

Solving for δ and φ gives

$$
\begin{align*}
& \delta=4.985 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \\
& \varphi=5.000 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \tag{4}
\end{align*}
$$

Because both solutions are dilute, we can replace the activities of the solvent by the corresponding mole fractions. The osmotic pressure is thus given by [cf. Eq. (4-50) of the text]

$$
\begin{equation*}
\pi=\frac{R T}{v_{s}} \ln \frac{x_{s}^{\beta}}{x_{s}^{\alpha}} \tag{5}
\end{equation*}
$$

where x_{s} is the mole fraction of the solvent (water) given by

$$
\begin{align*}
& x_{s}^{\alpha}=x_{w}^{\alpha}=1-\left(x_{\mathrm{NO}_{3}^{-}}^{\alpha}+x_{\mathrm{K}^{+}}^{\alpha}+x_{\mathrm{Na}^{+}}^{\alpha}\right) \\
& x_{s}^{\beta}=x_{w}^{\beta}=1-\left(x_{\mathrm{NO}_{3}^{-}}^{\beta}+x_{\mathrm{K}^{+}}^{\beta}+x_{\mathrm{Na}^{+}}^{\beta}+x_{\mathrm{Lys}}^{\beta}\right) \tag{6}
\end{align*}
$$

Because solutions are dilute, we expand the logarithmic terms in Eq. (5), making the approximation $\ln (1-A) \approx-A$:

$$
\pi=\frac{R T}{v_{w}}\left[-\left(x_{\mathrm{NO}_{3}^{-}}^{\beta}+x_{\mathrm{K}^{+}}^{\beta}+x_{\mathrm{Na}^{+}}^{\beta}+x_{\mathrm{Lys}}^{\beta}\right)+\left(x_{\mathrm{NO}_{3}^{-}}^{\alpha}+x_{\mathrm{K}^{+}}^{\alpha}+x_{\mathrm{Na}^{+}}^{\alpha}\right)\right]
$$

Again, because solutions are very dilute,

$$
x_{i}=\frac{c_{i}}{\sum_{i} c_{i}} \approx \frac{c_{i}}{c_{w}}
$$

with

$$
v_{w} c_{w} \approx 1
$$

Therefore, with these simplifying assumptions, the osmotic pressure is given by

$$
\pi=R T\left[c_{\mathrm{NO}_{3}^{-}}^{\alpha}+c_{\mathrm{K}^{+}}^{\alpha}+c_{\mathrm{Na}^{+}}^{\alpha}-c_{\mathrm{NO}_{3}^{-}}^{\beta}-c_{\mathrm{K}^{+}}^{\beta}-c_{\mathrm{Na}^{+}}^{\beta}-c_{\mathrm{Lys}}^{\beta}\right]
$$

Using the relationships with the original concentrations, we have

$$
\pi=R T\left[\left(c_{\mathrm{NO}_{\overline{3}}^{0 \alpha}}^{\left.-\delta+\varphi)+\left(c_{\mathrm{K}^{+}}^{0 \alpha}-\delta\right)+(\varphi)-\left(c_{\mathrm{NO}_{3}^{-}}^{0 \beta}+\delta-\varphi\right)-\left(c_{\mathrm{Na}^{+}}^{0 \beta}-\varphi\right)-\left(c_{\mathrm{Lys}^{0 \beta}}^{0 \beta}\right)\right]}\right.\right.
$$

Because

$$
\begin{aligned}
& c_{\mathrm{NO}_{\overline{3}}^{0 \alpha}}^{0 \alpha}=c_{\mathrm{K}^{+}}^{0 \alpha} \\
& c_{\mathrm{NO}_{\overline{3}}^{0 \beta}}^{0 \beta}=c_{\mathrm{Na}^{+}}^{0 \beta}
\end{aligned}
$$

we obtain

$$
\begin{equation*}
\pi=R T\left(2 c_{\mathrm{K}^{+}}^{0 \alpha}-2 c_{\mathrm{Na}^{+}}^{0 \beta}-c_{\mathrm{Lys}}^{0 \beta}-4 \delta+4 \varphi\right) \tag{7}
\end{equation*}
$$

The lysozyme concentration is

$$
c_{\mathrm{Lys}}^{0 \beta}=\frac{2 \mathrm{~g}}{1 \mathrm{~L}}=\frac{(2 / 14,000) \mathrm{mol}}{1 \mathrm{~L}}=1.429 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}
$$

Substitution of values in Eq. (7) gives the osmotic pressure

$$
\begin{aligned}
\pi & =\left(8314.51 \mathrm{~Pa} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \times(298 \mathrm{~K}) \times\left[\left(2 \times 9.97 \times 10^{-3}\right)-(2 \times 0.01)-\left(1.429 \times 10^{-4}\right)\right. \\
& \left.-\left(4 \times 4.985 \times 10^{-3}\right)+\left(4 \times 5.000 \times 10^{-3}\right)\left(\mathrm{mol} \mathrm{~L}^{-1}\right)\right] \\
& =-\mathbf{3 5 4} \mathbf{~ P a}
\end{aligned}
$$

17. Because only water can diffuse across the membrane, we apply directly Eq. (4-41) derived in the text:

$$
\begin{equation*}
-\ln a_{w}=-\ln \left(x_{w} \gamma_{w}\right)=\frac{\pi v_{\text {pure } w}}{R T} \tag{1}
\end{equation*}
$$

where subscript w indicates water.
Since the aqueous solution in part α is dilute in the sense of Raoult's law, $\gamma_{w} \approx 1$. This reduces Eq. (1) to:

$$
\begin{equation*}
-\ln x_{w}=-\ln \left(1-x_{\mathrm{A}}-x_{\mathrm{A}_{2}}\right) \approx\left(x_{\mathrm{A}}+x_{\mathrm{A}_{2}}\right)=\frac{\pi v_{\text {pure } w}}{R T} \tag{2}
\end{equation*}
$$

or equivalently,

$$
\pi=\frac{R T\left(x_{\mathrm{A}}+x_{\mathrm{A}_{2}}\right)}{v_{\text {pure } w}}
$$

At $T=300 \mathrm{~K}, v_{\text {pure } w}=0.018069 \mathrm{~mol} \mathrm{~L}^{-1}$.
Mole fractions x_{A} and $x_{\mathrm{A}_{2}}$ can be calculated from the dimerization constant and the mass balance on protein A:

$$
\begin{gather*}
K=10^{5}=\frac{a_{\mathrm{A}_{2}}}{a_{\mathrm{A}}^{2}} \approx \frac{x_{\mathrm{A}_{2}}}{x_{\mathrm{A}}^{2}} \tag{4}\\
v_{w}=\frac{M_{w}}{d_{w}}=\frac{18.015}{0.997}=18.069 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \\
\frac{(5 / 5,000)}{(1000 / 18.069)} \frac{\mathrm{mol} \mathrm{~A}}{\text { mol water }}=1.81 \times 10^{-5}=x_{\mathrm{A}}+2 x_{\mathrm{A}_{2}} \tag{5}
\end{gather*}
$$

Solving Eqs. (4) and (5) simultaneously gives

$$
\begin{aligned}
& x_{\mathrm{A}}=7.34 \times 10^{-6} \\
& x_{\mathrm{A}_{2}}=5.38 \times 10^{-6}
\end{aligned}
$$

Substituting these mole fractions in Eq. (3), we obtain

$$
\begin{aligned}
\pi & =\frac{(0.0831451) \times(300) \times\left(5.38 \times 10^{-6}+7.34 \times 10^{-6}\right)}{(0.018069)} \\
& =0.01756 \text { bar }=\mathbf{1 7 5 6} \mathbf{~ P a}
\end{aligned}
$$

18.

a) From Eq. (4-45):

$$
\frac{\pi}{c_{2}}=\frac{R T}{M_{2}}+R T B^{*} c_{2}+\cdots
$$

Ploting π / c_{2} (with π in pascal and c_{2} in g^{-1}) as a function of c_{2}, we obtain the protein's molecular weight from the intercept and the second virial osmotic coefficient from the slope.

From a least-square fitting we obtain:
Intercept $=R T / M_{2}=35.25 \mathrm{~Pa} \mathrm{~L} \mathrm{~g}{ }^{-1}=35.25 \mathrm{~Pa} \mathrm{~m}^{3} \mathrm{~kg}^{-1}$ from which we obtain

$$
\begin{aligned}
M_{2} & =\frac{R T}{35.25}=\frac{(298.15) \times(8.314)}{35.25} \\
& =70.321 \mathrm{~kg} \mathrm{~mol}^{-1}=70,321 \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

Slope $=0.196=R T B^{*}$. Therefore, $B^{*}=7.92 \times 10^{-8} \mathrm{~L}$ mol g${ }^{-2}$.
The protein's specific volume is given by the ratio molecular volume/molecular mass.
The mass per particle is

$$
m=\frac{M_{2}}{N_{A}}=\frac{70,321}{6.022 \times 10^{23}}=1.17 \times 10^{-19} \mathrm{~g} \text { molecule }^{-1}
$$

Because protein molecule is considered spherical, the actual volume of the particle is $1 / 4$ of the excluded volume. Therefore the actual volume of the spherical particle is

$$
\frac{1.18 \times 10^{-24}}{4}=2.95 \times 10^{-25} \mathrm{~m}^{3} \text { molecule }^{-1}
$$

which corresponds to a molecular radius of $4.13 \times 10^{-9} \mathrm{~m}$ or 4.13 nm .
For the specific volume:

$$
\frac{2.95 \times 10^{-25}}{1.17 \times 10^{-19}}=2.52 \times 10^{-6} \mathrm{~m}^{3} \mathrm{~g}^{-1}=2.52 \mathrm{~cm}^{3} \mathrm{~g}^{-1}
$$

b) Comparison of this value with the nonsolvated value of $0.75 \mathrm{~cm}^{3} \mathrm{~g}^{-1}$, indicates that the particle is hydrated.
c) Plotting π / c_{2} (with π in pascal and c_{2} in g^{-1}) as a function of c_{2} for the data at $\mathrm{pH}=7.00$, we obtain:

Slope $=0.3317$, which is steeper that at $\mathrm{pH}=5.34$, originating a larger second virial osmotic coefficient: $B^{*}=1.338 \times 10^{-7} \mathrm{~L} \mathrm{~mol} \mathrm{~g}^{-2}=13.38 \times 10^{-8} \mathrm{~L} \mathrm{~mol} \mathrm{~g}^{-2}$.

At $\mathrm{pH}=7.00$, the protein is charged. The charged protein particles require counterions so electroneutrality is obtained. The counterions form an ion atmosphere around a central protein particle and therefore this particles and its surrounding ion atmosphere have a larger excluded volume than the uncharged particle.

It is the difference between the value of B^{*} at $\mathrm{pH}=7.00$ and that at $\mathrm{pH}=5.37$ for the uncharged molecule gives the contribution of the charge to B^{*} :

$$
(13.38-7.92) \times 10^{-8} \mathrm{~L} \mathrm{~mol} \mathrm{~g}^{-2}=\frac{1000 z^{2}}{4 M_{2}^{2} \rho_{1} m_{\mathrm{MX}}}
$$

In this equation, we take the solution mass density $\rho_{1} \approx \rho_{\text {water }} \approx 1 \mathrm{~g} \mathrm{~cm}^{-3}$. Moreover, $M_{2}=$ $70,321 \mathrm{~g} \mathrm{~mol}^{-1}$, and $m_{\mathrm{MX}} \approx 0.15 \mathrm{~mol} \mathrm{~kg}^{-1}$:

$$
z^{2}=\frac{4 \times\left(5.46 \times 10^{-8}\right) \times(70,321)^{2} \times(1.0) \times\left(0.15 \times 10^{3}\right)}{1000} \approx 162
$$

or $z= \pm 13$. Because pH is higher than the protein's isoelectric point, the BSA must be negatively charged. Hence, $z=\mathbf{- 1 3}$.
19.
a) From Eq. (4-45) and according to the data:

$$
\frac{\pi}{c-c_{0}}=\frac{R T}{M_{2}}+R T B^{*}\left(c-c_{0}\right)+\cdots
$$

Ploting $\pi /\left(c-c_{0}\right)$ (with π in pascal and c_{2} in g^{-1}) as a function of $c-c_{0}$, we obtain the solute's molecular weight from the intercept and the second virial osmotic coefficient from the slope.

From a least-square fitting we obtain:
Intercept $=R T / M_{2}=14.658 \mathrm{~Pa} \mathrm{~L} \mathrm{~g}{ }^{-1}=14.658 \mathrm{~Pa} \mathrm{~m}^{3} \mathrm{~kg}^{-1}$ from which we obtain

$$
\begin{aligned}
M_{2} & =\frac{R T}{14.659}=\frac{(298.15) \times(8.314)}{14.659} \\
& =169.109 \mathrm{~kg} \mathrm{~mol}^{-1}=\mathbf{1 6 9 , 1 0 9} \mathbf{g ~ m o l}^{-1}
\end{aligned}
$$

$$
\text { Slope }=0.053495=R T B^{*} . \text { Therefore, } \boldsymbol{B}^{*}=\mathbf{2 . 1 6} \times \mathbf{1 0}^{-\mathbf{8}} \mathbf{L} \mathbf{~ m o l ~ g} \mathbf{g}^{-\mathbf{2}} .
$$

b) The number of molecules in the aggregate is obtained by comparison of the molecular weight of the original ether $\left(M=390 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ with that obtained in a):

$$
\text { Number of molecules in the aggregate }=\frac{169,109}{390} \approx 434
$$

Assuming that the colloidal particles are spherical, we obtain the molar volume of the aggregates from the value of the second virial osmotic coefficient B^{*}. It can be shown (see, e.g., Principles of Colloid and Surface Chemistry, 1997, P.C. Hiemenz, R. Rajagopalan, $3^{\text {rd }}$. Ed., Marcel Dekker) that B^{*} is related to the excluded volume $V^{\text {ex }}$ through

$$
B^{*}=\frac{N_{A} V^{\mathrm{ex}}}{2 M_{2}^{2}}
$$

From a), $B^{*}=2.16 \times 10^{-8} \mathrm{~L} \mathrm{~mol} \mathrm{~g}{ }^{-2}=2.16 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~mol} \mathrm{~kg}{ }^{-2}$ and $M_{2}=169,109 \mathrm{~g} \mathrm{~mol}^{-1}=$ $169.109 \mathrm{~kg} \mathrm{~mol}^{-1}$. The above equation gives V^{ex} that is 4 times the actual volume of the particles (we assume that the aggregates are spherical). Calculation gives for the aggregate's volume, $5.13 \times 10^{-25} \mathrm{~m}^{3}$ (or $\mathbf{3 0 . 9 0} \mathbf{~ d m}^{\mathbf{3}} \mathbf{~ m o l}^{-1}$) with a radius of $4.97 \times 10^{-9} \mathrm{~m}$ or $\mathbf{5} \mathbf{~ m m}$.

S OL U T I O N S T O P R O BLEMS

C H A P T E R

1. Initial pressure P_{i} :

- for n_{1} moles of gas 1 at constant T and V :

$$
\frac{P_{\mathrm{i}} V}{n_{1} R T}=1+n_{1} \frac{B_{11}}{V}
$$

or

$$
P_{\mathrm{i}}=\frac{n_{1} R T}{V}+\frac{n_{1}^{2} R T B_{11}}{V^{2}}
$$

Final pressure P_{f} :

- after addition of n_{2} moles of gas 2 at same T and V :

$$
P_{\mathrm{f}}=\frac{\left(n_{1}+n_{2}\right) R T}{V}+\frac{\left(n_{1}+n_{2}\right)^{2} R T B}{V^{2}}
$$

where $\left(n_{1}+n_{2}\right)^{2} B=n_{1}^{2} B_{11}+2 n_{1} n_{2} B_{12}+n_{2}^{2} B_{22}$
Pressure change ΔP :

$$
\Delta P=P_{\mathrm{f}}-P_{\mathrm{i}}=\frac{n_{2} R T}{V}+\left(2 n_{1} n_{2} B_{12}+n_{2}^{2} B_{22}\right) \frac{R T}{V^{2}}
$$

Solving for B_{12} :

$$
B_{12}=\frac{1}{2 n_{1} n_{2}}\left(\frac{V^{2} \Delta P}{R T}-n_{2} V-n_{2}^{2} B_{22}\right)
$$

2. For precipitation to occur,

$$
f_{\mathrm{CO}_{2}}^{V}>f_{\mathrm{CO}_{2}}^{\triangleleft}
$$

To obtain $f_{\mathrm{CO}_{2}}^{\perp}$,

$$
\begin{aligned}
\ln \frac{f_{\mathrm{CO}_{2}}^{\mathrm{s}}}{(0.1392)} & =\frac{1}{(83.1451) \times(173)} \int_{0.1392}^{60}(27.6) d P \\
f_{\mathrm{CO}_{2}}^{\mathrm{J}} & =0.156 \text { bar } \quad(\text { at } 60 \text { bar, } 173 \mathrm{~K})
\end{aligned}
$$

Next, find the vapor mole fraction of CO_{2} that is in equilibrium with the solid at the specified P and T :

$$
y_{\mathrm{CO}_{2}}=\frac{f_{\mathrm{CO}_{2}}^{V}}{\varphi_{\mathrm{CO}_{2}} P}
$$

Using the virial equation for the vapor,

$$
\ln \varphi_{\mathrm{CO}_{2}}^{V}=\frac{2}{v}\left(y_{\mathrm{CO}_{2}} B_{\mathrm{CO}_{2}}+y_{\mathrm{H}_{2}} B_{\mathrm{H}_{2}-\mathrm{CO}_{2}}\right)-\ln z
$$

Because $y_{\mathrm{CO}_{2}} \ll 1$, we may make the approximations

$$
z=z_{\mathrm{H}_{2}} \quad \text { and } \quad v=v_{\mathrm{H}_{2}}=\frac{z_{\mathrm{H}_{2}} R T}{P}
$$

From data for H_{2} (see App. C) at $-100^{\circ} \mathrm{C}$,

$$
B_{\mathrm{H}_{2}}=8.8 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
$$

which indicates that $z_{\mathrm{H}_{2}}=1$.
From correlations:

$$
\begin{gathered}
B_{\mathrm{CO}_{2}}=-460 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \\
B_{\mathrm{CO}_{2}-\mathrm{H}_{2}}=-32.1 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
\end{gathered}
$$

At equilibrium

$$
f_{\mathrm{CO}_{2}}^{V}=f_{\mathrm{CO}_{2}}^{\Delta}
$$

and then

$$
\begin{gathered}
y_{\mathrm{CO}_{2}}=\frac{f_{\mathrm{CO}_{2}}^{s}}{\exp \left\{\frac{2 P}{R T}\left[y_{\mathrm{CO}_{2}} B_{\mathrm{CO}_{2}}+\left(1-y_{\mathrm{CO}_{2}}\right) B_{\mathrm{H}_{2}-\mathrm{CO}_{2}}\right]\right\} P} \\
y_{\mathrm{CO}_{2}}=0.00344
\end{gathered}
$$

Because $y_{\mathrm{CO}_{2}}<0.01$ at equilibrium, CO_{2} precipitates.
To find out how much, assume solid is pure CO_{2}. Let n be the number of moles of CO_{2} left in the gas phase. From the mass balance and, as basis, 1 mole of mixture,

$$
\begin{gathered}
0.00344=\frac{n}{n+0.99} \\
n=0.003417
\end{gathered}
$$

The number of moles precipitating is

$$
0.01-0.003417=\mathbf{0 . 0 0 6 6} \text { moles } \mathbf{C O}_{\mathbf{2}}
$$

3.

Condensation will occur in the outlet if $f_{\mathrm{CO}_{2}}^{V}>f_{\mathrm{CO}_{2}}^{L}$.
First it is necessary to find the outlet temperature, assuming no condensation. JouleThomson throttling is an isenthalpic process that may be analyzed for 1 mole of gas through a 3step process:

I, III: Isothermal pressure changes.

II: Isobaric temperature change.

Then

$$
\begin{gather*}
\Delta h_{\text {total }}=0=\Delta h_{\mathrm{I}}+\Delta h_{\mathrm{II}}+\Delta h_{\mathrm{III}} \tag{1}\\
\Delta h_{\mathrm{I}}=\int_{P_{\mathrm{o}}}^{0}\left[v-T_{\mathrm{o}}\left(\frac{\partial v}{\partial T}\right)_{P}\right] d P \tag{2}\\
\Delta h_{\mathrm{II}}=\int_{T_{\mathrm{o}}}^{T_{\mathrm{f}}} c_{p, \text { mixt }} d T \tag{3}\\
\Delta h_{\mathrm{III}}=\int_{0}^{P \mathrm{f}}\left[v-T_{\mathrm{f}}\left(\frac{\partial v}{\partial T}\right)_{P}\right] d P \tag{4}
\end{gather*}
$$

Assuming that the volumetric properties of the gaseous mixture are given by the virial equation of state truncated after the second term,

$$
v=\frac{R T}{P}+B_{\mathrm{mixt}}
$$

then,

$$
\left(\frac{\partial v}{\partial T}\right)_{P}=\frac{R}{P}+\left(\frac{d B_{\mathrm{mixt}}}{d T}\right)_{P}
$$

where $B_{\text {mixt }}$ is the second virial coefficient of the mixture.
Because

$$
\begin{gather*}
B_{\text {mixt }}=y_{1}^{2} B_{11}+2 y_{1} y_{2} B_{12}+y_{2}^{2} B_{22} \tag{5}\\
\left(1=\mathrm{CH}_{4} ; \quad 2=\mathrm{CO}_{2}\right) \\
\frac{d B_{\text {mixt }}}{d T}=y_{1}^{2} \frac{d B_{11}}{d T}+2 y_{1} y_{2} \frac{d B_{12}}{d T}+y_{2}^{2} \frac{d B_{22}}{d T} \tag{6}
\end{gather*}
$$

If

$$
B=c^{(0)}+\frac{c^{(1)}}{T}+\frac{c^{(2)}}{T^{2}}
$$

then

$$
\begin{equation*}
\frac{d B}{d T}=-\frac{c^{(1)}}{T^{2}}-\frac{2 c^{(2)}}{T^{3}} \tag{7}
\end{equation*}
$$

Assume

$$
\begin{equation*}
c_{p, \mathrm{mixt}}^{0}=y_{\mathrm{CH}_{4}} c_{p, \mathrm{CH}_{4}}^{0}+y_{\mathrm{CO}_{2}} c_{p, \mathrm{CO}_{2}}^{0} \tag{8}
\end{equation*}
$$

then,

$$
\begin{align*}
& 0=\int_{P_{\mathrm{o}}}^{0}\left[B_{\text {mixt }}-T_{\mathrm{o}}\left(\frac{d B_{\text {mixt }}}{d T}\right)_{P}\right] d P+\int_{T_{\mathrm{o}}}^{T_{\mathrm{f}}} c_{p, \text { mixt }} d T+\int_{0}^{P_{\mathrm{f}}}\left[B_{\text {mixt }}-T_{\mathrm{f}}\left(\frac{d B_{\text {mixt }}}{d T}\right)_{P}\right] d P \\
& 0=\left(c_{\text {mixt }}^{(0)}+\frac{2 c_{\text {mixt }}^{(1)}}{T_{\mathrm{o}}}+\frac{3 c_{\text {mixt }}^{(2)}}{T_{\mathrm{o}}^{2}}\right)\left(-P_{\mathrm{o}}\right)+c_{p, \text { mixt }}\left(T_{\mathrm{f}}-T_{\mathrm{o}}\right)+\left(c_{\text {mixt }}^{(0)}+\frac{2 c_{\text {mixt }}^{(1)}}{T_{\mathrm{f}}}+\frac{3 c_{\text {mixt }}^{(2)}}{T_{\mathrm{f}}^{2}}\right)\left(P_{\mathrm{f}}\right) \tag{9}
\end{align*}
$$

From data:
As $y_{1}=0.7, y_{2}=0.3, c_{p, \text { mixt }}=36.22 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ according to Eq. (8).
From Eqs. (5), (6) and (7),

$$
\begin{aligned}
& c_{\text {mixt }}^{(0)}=41.849 \\
& c_{\text {mixt }}^{(1)}=-18683 \\
& c_{\text {mixt }}^{(2)}=-34.12 \times 10^{5}
\end{aligned}
$$

Substitution in Eq. (9) gives $T_{\mathrm{f}}=278.4 \mathrm{~K}$.
Second, the fugacities of liquid and vapor phases may be calculated.

$$
f_{\mathrm{CO}_{2}}^{L}=x_{\mathrm{CO}_{2}} \gamma_{\mathrm{CO}_{2}} P_{\mathrm{CO}_{2}}^{S} \varphi_{\mathrm{CO}_{2}}^{S} \exp \left[\int_{P_{\mathrm{CO}_{2}}^{s}}^{P} \frac{v_{\mathrm{CO}_{2}}^{L}}{R T} d P\right]
$$

This equation may be simplified assuming that $x_{\mathrm{CO}_{2}}, \gamma_{\mathrm{CO}_{2}}, \varphi_{\mathrm{CO}_{2}}^{s}$ equal to unity.
At $278 \mathrm{~K}, P_{\mathrm{CO}_{2}}^{S}=39.8$ bar and $v_{\mathrm{CO}_{2}}^{L}=49.0 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.

$$
f_{\mathrm{CO}_{2}}^{L}=(39.8) \times \exp \left[\frac{(49.0) \times(1-39.8)}{(83.1451) \times(278)}\right]=36.6 \mathrm{bar}
$$

Fugacity of vapor is calculated from

$$
f_{\mathrm{CO}_{2}}^{V}=\varphi_{\mathrm{CO}_{2}} y_{\mathrm{CO}_{2}} P
$$

with

$$
\begin{aligned}
& \ln \varphi_{\mathrm{CO}_{2}}=\left[2\left(y_{\mathrm{CO}_{2}} B_{\mathrm{CO}_{2}}+y_{\mathrm{CH}_{4}} B_{\mathrm{CO}_{2}-\mathrm{CH}_{4}}\right)-B_{\text {mixt }}\right] \frac{P}{R T} \\
& \ln \varphi_{\mathrm{CO}_{2}}=[2 \times(0.3) \times(-139)+2 \times(0.7) \times(-77)+(69)] \frac{P}{R T}
\end{aligned}
$$

$$
\varphi_{\mathrm{CO}_{2}}=0.995 \approx 1
$$

Then

$$
f_{\mathrm{CO}_{2}}^{V}=0.3 \mathrm{bar}
$$

Because

$$
f_{\mathrm{CO}_{2}}^{V}<f_{\mathrm{CO}_{2}}^{L}
$$

no condensation occurs.
4. The Stockmayer potential is

$$
\Gamma=4 \varepsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\left(\frac{\sigma}{r}\right)^{6}\right]-\frac{\mu^{2}}{r^{3}} g\left(\theta_{1}, \theta_{2}, \phi_{2}-\phi_{1}\right)\right.
$$

where μ is the dipole moment.

We can write the potential in dimensionless form:

$$
\frac{\Gamma}{\varepsilon}=f\left(\frac{r}{\sigma}, \frac{\mu^{2}}{\varepsilon \sigma^{3}}\right) \quad \text { where } f \text { is a universal function. }
$$

Therefore, we can write the compressibility factor z in terms of the reduced quantities:

$$
z=f(\tilde{T}, \tilde{P}, \tilde{\mu})
$$

with

$$
\widetilde{T}=\frac{k T}{\varepsilon}
$$

$$
\begin{aligned}
\tilde{P} & =\frac{P \sigma^{3}}{\varepsilon} \\
\tilde{\mu} & =\frac{\mu}{\sqrt{\varepsilon \sigma^{3}}}
\end{aligned}
$$

5.

a) For acetylene: $T_{c}=308.3 \mathrm{~K}, \omega=0.184$. At $0^{\circ} \mathrm{C}, T_{R}=0.886 \approx 0.90$. Using Lee-Kesler charts (see, e.g., AIChE J., 21: 510 [1975]):

$$
\begin{array}{lll}
\Delta s^{(0)} / R=3.993 & z_{V}^{(0)}=0.78 & z_{L}^{(0)}=0.10 \\
\Delta s^{(1)} / R=3.856 & z_{V}^{(1)}=-0.11 & z_{L}^{(1)}=-0.04
\end{array}
$$

$$
\begin{gathered}
\Delta_{\text {vap }} s=(8.31451) \times[3.993+(0.184) \times(3.856)]=39.1 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
\Delta_{\text {vap }} h=T \Delta_{\text {vap }} s=(273) \times(39.1)=10.67 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\Delta_{\text {vap }} u=\Delta_{\text {vap }} h-R T\left(z_{V}-z_{L}\right)=10.67-(8.31451) \times(273) \times(0.76-0.092) \times 10^{-3} \\
\Delta_{\text {vap }} u=9.15 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{gathered}
$$

b)

$$
\begin{aligned}
& \mathrm{C}_{4} \mathrm{H}_{10}: T_{c}=425.2 \mathrm{~K} \quad \mathrm{~N}_{2}: T_{c}=126.2 \mathrm{~K} \\
& P_{c}=38.0 \text { bar } \\
& P_{c}=33.7 \mathrm{bar} \\
& \omega=0.193 \\
& \omega=0.04 \\
& v_{c}=255 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \\
& v_{c}=89.5 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
\end{aligned}
$$

At $461 \mathrm{~K}: \quad T_{R}=1.084$

$$
T_{R}=3.65
$$

Using the Pitzer-Tsonopoulos equation (see Sec. 5.7):

$$
B_{\mathrm{C}_{4} \mathrm{H}_{10}}=-267 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \quad B_{\mathrm{N}_{2}}=15.5 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
$$

For B_{12} :

$$
\omega_{12}=\frac{1}{2}\left(\omega_{1}+\omega_{2}\right)=0.1165
$$

$$
T_{c_{12}}=\left(T_{c_{1}} T_{c_{2}}\right)^{1 / 2}=231.6 \mathrm{~K} \quad\left(T_{R_{12}}=1.990\right)
$$

Then, $B_{12}=-21.6 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$

$$
B_{\mathrm{mixt}}=y_{1}^{2} B_{11}+2 y_{1} y_{2} B_{12}+y_{2}^{2} B_{22}=-177.2 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
$$

c)

$$
\begin{array}{ccc}
\qquad \mathrm{CH}_{4}(1): T_{c}=190.6 \mathrm{~K} & \mathrm{~N}_{2}(2): T_{c}=126.2 \mathrm{~K} & \mathrm{H}_{2}(3): \\
P_{c}=46.0 \mathrm{bar} & P_{c}=33.7 \mathrm{bar} & P_{c}=33.2 \mathrm{~K} \\
\omega=0.008 & \omega=0.040 & \omega=-0.22 \\
v_{c}=99.0 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} & v_{c}=89.5 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} & v_{c}=65.0 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \\
\text { At } 200 \mathrm{~K}: & T_{R}=1.58 & T_{R}=6.02
\end{array}
$$

Using the mixing rules suggested by Lee and Kesler:

$$
\begin{gathered}
v_{c, \text { mixt }}=\frac{1}{8} \sum_{j} \sum_{k} x_{j} x_{k}\left(v_{c_{j}}^{1 / 3}+v_{c_{k}}^{1 / 3}\right)^{3} \\
T_{c, \text { mixt }}=\frac{1}{8 v_{c}} \sum_{j} \sum_{k} x_{j} x_{k}\left(v_{c_{j}}^{1 / 3}+v_{c_{k}}^{1 / 3}\right)^{3}\left(T_{c_{j}} T_{c_{k}}\right)^{1 / 2} \\
\omega_{\text {mixt }}=\sum_{j} x_{j} \omega_{j} \cong 0 \\
P_{c, \text { mixt }}=\left(0.291-0.08 \omega_{\text {mixt }}\right) R T_{c, \text { mixt }} / v_{c, \text { mixt }} \\
v_{c, \text { mixt }}=84.1 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \\
T_{c, \text { mixt }}=111.38 \mathrm{~K}\left(T_{R}=1.80\right) \\
P_{c, \text { mixt }}=31.47 \text { bar } \quad\left(P_{R}=3.18\right)
\end{gathered}
$$

Enthalpy of mixing $=h^{E}=h_{\text {mixture }}-\frac{1}{3}\left(h_{1}+h_{2}+h_{3}\right)$.
Using the Lee-Kesler charts,

$$
h^{E}=-922-\frac{1}{3}(-5385-1383+0)=\mathbf{1 3 3 4} \mathbf{~ J ~ m o l}^{-1}
$$

6.

$L / G=5$
$P=40$ bar
$t=25^{\circ} \mathrm{C}$

From the mass balance for $\mathrm{C}_{3} \mathrm{H}_{8}$:

$$
\begin{gathered}
y_{\mathrm{in}} G=y_{\mathrm{out}} G+x_{\mathrm{out}}\left(L+\left[y_{\mathrm{in}}-y_{\mathrm{out}}\right] G\right) \\
y_{\mathrm{out}} G=0.05 y_{\mathrm{in}} G \\
0.10=0.005+5.005 x_{\mathrm{C}_{3}}
\end{gathered}
$$

$$
x_{\mathrm{C}_{3}}=0.01898=\text { mole fraction of } \mathrm{C}_{3} \mathrm{H}_{8} \text { in effluent oil. }
$$

To find the driving force, note that

$$
\begin{gathered}
P_{\mathrm{i}}=P_{\mathrm{C}_{3}}=y_{\mathrm{C}_{3}} P^{\text {total }}=(0.10) \times(40)=4 \text { bar } \\
P_{\mathrm{i}}^{*}=P_{\mathrm{C}_{3}}^{*}=f_{\mathrm{C}_{3}}^{*} / \varphi_{\mathrm{C}_{3}}^{*}
\end{gathered}
$$

where

$$
f_{\mathrm{C}_{3}}^{*}=x_{\mathrm{C}_{3}} H=(0.01898) \times(53.3)=1.012 \mathrm{bar}
$$

and

$$
\ln \varphi_{\mathrm{C}_{3}}^{*}=\frac{2 P}{z^{*} R T}\left[y_{\mathrm{C}_{3}} B_{\mathrm{C}_{3}}+y_{\mathrm{N}_{2}} B_{\mathrm{C}_{3}-\mathrm{N}_{2}}+y_{\mathrm{H}_{2}} B_{\mathrm{C}_{3}-\mathrm{H}_{2}}\right]-\ln z^{*}
$$

Obtain virial coefficients from one of the generalized correlations:

$$
\begin{gathered}
B_{\mathrm{C}_{3}}=-400.8 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \\
B_{\mathrm{C}_{3}-\mathrm{N}_{2}}=-73.5 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \\
B_{\mathrm{C}_{3}-\mathrm{H}_{2}}=-3.5 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
\end{gathered}
$$

We may estimate $z^{*}=0.95$ (feed value).
To find $y_{\mathrm{C}_{3}}^{*}, y_{\mathrm{N}_{2}}^{*}$, and $y_{\mathrm{H}_{2}}^{*}$, we know that $\left(y_{\mathrm{N}_{2}}^{*} / y_{\mathrm{H}_{2}}^{*}\right)=4 / 5$. As first guess, assume $y_{\mathrm{C}_{3}}^{*}=0.10$. Then we calculate,

$$
\varphi_{\mathrm{C}_{3}}^{*}=0.855 \text { and } y_{\mathrm{C}_{3}}^{*}=\frac{1.012}{(40) \times(0.855)}=0.0292
$$

This gives

$$
y_{\mathrm{N}_{2}}^{*}+y_{\mathrm{H}_{2}}^{*}=0.9708 \text { or } \quad y_{\mathrm{N}_{2}}^{*}=0.4308, y_{\mathrm{H}_{2}}^{*}=0.540
$$

With these y^{*} 's, calculate $\varphi_{\mathrm{C}_{3}}^{*}$ again:

$$
\varphi_{\mathrm{C}_{3}}^{*}=0.924 \quad \text { and } \quad y_{\mathrm{C}_{3}}^{*}=0.027
$$

That is close enough. Thus,

$$
P_{\mathrm{C}_{3}}^{*}=\frac{1.012}{0.924}=1.095 \mathrm{bar}
$$

Now we must check the assumption $z^{*}=0.95$ was correct. Using the virial equation, the assumption is close enough.

$$
\text { Driving force }=\left(P_{\mathrm{C}_{3}}-P_{\mathrm{C}_{3}}^{*}\right)=(4.00-1.095)=\mathbf{2 . 9 1} \text { bar }
$$

7. Since $f_{i}^{V}=f_{i}^{L}$,

$$
y_{i} \varphi_{i} P=x_{i} H_{i, \text { solv }} \exp \frac{\bar{v}_{i}^{\infty}\left(P-P_{\text {solv }}^{S}\right)}{R T}
$$

As $P_{\text {solv }}^{S}=0$,

$$
\frac{y_{i}}{x_{i}}=\frac{H_{i} \exp \left(\bar{v}_{i}^{\infty} P / R T\right)}{\varphi_{i} P}
$$

Using the virial equation,

$$
\begin{aligned}
& \ln \varphi_{1}=\frac{2}{v}\left(y_{1} B_{11}+y_{2} B_{12}\right)-\ln z_{\text {mixt }} \\
& \ln \varphi_{2}=\frac{2}{v}\left(y_{2} B_{22}+y_{1} B_{12}\right)-\ln z_{\text {mixt }}
\end{aligned}
$$

Because

$$
\begin{gathered}
\frac{P v}{R T}=1+\frac{B_{\text {mixt }}}{v} \\
v^{2}-\frac{R T}{P} v-\frac{B_{\text {mixt }} R T}{P}=0 \\
B_{\text {mixt }}=-3.23 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \\
v=524 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}, \quad z_{\mathrm{mixt}}=1.0067
\end{gathered}
$$

Thus,

$$
\begin{gathered}
\varphi_{1}=0.8316 \quad \varphi_{2}=0.9845 \\
\frac{y_{1}}{x_{1}}=\frac{(100) \times \exp \left[\frac{(60) \times(50)}{(313) \times(83.14)}\right]}{(50) \times(0.8316)}=2.70
\end{gathered}
$$

and

$$
\begin{gathered}
\frac{y_{2}}{x_{2}}=21.31 \\
\alpha_{2,1}=\left(\frac{y_{2}}{x_{2}}\right)\left(\frac{x_{1}}{y_{1}}\right)=\mathbf{7 . 8 9}
\end{gathered}
$$

8. For methane (1) and methanol (2), we may write

$$
\begin{aligned}
& f_{1}^{V}=f_{1}^{L} \\
& f_{2}^{V}=f_{2}^{L}
\end{aligned}
$$

Neglecting the Poynting corrections [Note: the Poynting Correction is 1.035. Including this, we get $\left.y_{2}=0.00268\right]$,

$$
y_{1} \varphi_{1} P=x_{1} H_{1,2}
$$

$$
y_{2} \varphi_{2} P=x_{2} \gamma_{2} P_{2}^{S} \varphi_{2}^{S}
$$

Because $x_{2}=1$, assume $\gamma_{2}=1$.
Use virial equation to get fugacity coefficients:

$$
\varphi_{2}^{s}=\exp \frac{B_{22} P_{2}^{s}}{R T}=\exp \frac{(-4068) \times(0.0401)}{(83.14) \times(273)}=0.993
$$

Assuming $y_{1}=1, y_{2}=0$ as first estimate,

$$
\varphi_{1}=0.954 \quad \varphi_{2}=0.783
$$

Thus,

$$
\begin{gathered}
x_{1}=\frac{\varphi_{1} P}{H_{1,2}}=0.0187 \\
y_{2}=\frac{\left(1-x_{1}\right) P_{2}^{s} \varphi_{2}^{s}}{\varphi_{2} P}=0.00250
\end{gathered}
$$

Using now $y_{2}=0.00250$, get

$$
\varphi_{1}=0.954 \quad \varphi_{2}=0.770
$$

and

$$
x_{1}=0.01867 \quad y_{2}=0.00255
$$

This calculation is important to determine solvent losses in natural gas absorbers using methanol as solvent.
9.

$$
2(\text { monomer }) \rightleftharpoons \text { dimer }
$$

The equilibrium constant is

$$
K_{a}=\frac{a_{\mathrm{d}}}{\left(a_{\mathrm{m}}\right)^{2}}=\frac{f_{\mathrm{d}} / f_{\mathrm{d}}^{0}}{\left(f_{\mathrm{m}} / f_{\mathrm{m}}^{0}\right)^{2}}=\frac{f_{\mathrm{d}}}{f_{\mathrm{m}}^{2}}\left(\frac{f_{\mathrm{m}}^{0^{2}}}{f_{\mathrm{d}}^{0}}\right)
$$

where a_{d} is the activity of the dimer, and a_{m} is the activity of the monomer.
The quantity $f_{\mathrm{m}}^{0^{2}} / f_{\mathrm{d}}^{0}$ is a constant that depends on T, but not on P or y.
Then,

$$
f_{\mathrm{d}}=k f_{\mathrm{m}}^{2}
$$

where k is a constant.
10.

Di-isopropyl ether

Ethyl butyl ether

HCl can associate with the ether's non-bonded electron pairs. However, the di-isopropyl ether will offer some steric hindrance. The cross-coefficient, B_{12}, is a measure of association. Both virial coefficients will be negative; B_{12} for ethyl butyl ether $/ \mathrm{HCl}$ will be more negative.
11. Let α be the fraction of molecules that are dimerized at equilibrium.

$$
\begin{aligned}
& \underset{1-\alpha}{2 \mathrm{~A}} \rightleftharpoons \mathrm{~A}_{2} \\
& n_{T}=1-\alpha+\frac{\alpha}{2}=1-\frac{\alpha}{2} \\
& y_{\mathrm{A}_{2}}=\frac{\alpha / 2}{1-\alpha / 2} \\
& y_{\mathrm{A}}=\frac{1-\alpha}{1-\alpha / 2}
\end{aligned}
$$

By assuming the vapor to be an ideal gas, we may write

$$
K=\frac{P_{\mathrm{A}_{2}}}{\left(P_{\mathrm{A}}\right)^{2}}=\frac{y_{\mathrm{A}_{2}} P}{\left(y_{\mathrm{A}} P\right)^{2}}=\frac{(\alpha / 2)(1-\alpha / 2)}{(1-\alpha)^{2} P}
$$

At the saturation pressure, $P=2.026$ bar and

$$
y_{\mathrm{A}}=0.493 \quad \alpha=0.6726
$$

Then

$$
f_{\mathrm{A}}^{V}=f_{\mathrm{A}}^{L}=y_{\mathrm{A}} P=(0.493) \times(2.026)=0.999 \text { bar }
$$

The pressure effect on fugacity is given by

$$
\left(\frac{\partial \ln f_{i}}{\partial P}\right)_{T}=\frac{\bar{v}_{i}}{R T}
$$

Assuming the liquid to be incompressible in the range P^{s} to 50 bar,

$$
\begin{gathered}
\ln \frac{f_{\mathrm{A}}(50 \text { bar })}{f_{\mathrm{A}}(2.026 \text { bar })}=\frac{v_{\mathrm{A}} \Delta P}{R T} \\
f_{\mathrm{A}}(50 \text { bar })=\mathbf{1 . 1} \text { bar }
\end{gathered}
$$

12.

a) The Redlich-Kwong equation is

$$
z=\frac{P v}{R T}=\frac{v}{v-b}-\frac{a}{R T^{1.5}}\left(\frac{1}{v+b}\right)
$$

If z is expanded in powers of $1 / v$:

$$
z=1+\frac{B}{v}+\frac{C}{v^{2}}+\cdots
$$

This gives

$$
\begin{gathered}
B=b-\frac{a}{R T^{1.5}} \\
C=b^{2}+\frac{a b}{R T^{1.5}}
\end{gathered}
$$

But,

$$
\begin{gathered}
B^{\prime}=B / R T \\
C^{\prime}=\frac{C-B^{2}}{(R T)^{2}}
\end{gathered}
$$

Substitution gives

$$
B^{\prime}=\frac{1}{R T}\left(b-\frac{a}{R T^{1.5}}\right)
$$

$$
C^{\prime}=\frac{a}{R^{3} T^{3.5}}\left(3 b-\frac{a}{R T^{1.5}}\right)
$$

b) Using an equation that gives fugacities from volumetric data, we obtain

$$
\ln \varphi_{1}=\frac{P}{R T}\left[b_{1}+\frac{y_{1}^{2} a_{1}-2 y_{1} a_{1}+y_{2}^{2} a_{2}-2 y_{2}^{2}\left(a_{1} a_{2}\right)^{1 / 2}}{R T^{1.5}}\right]
$$

Evaluate a and b using critical data:

$$
\begin{array}{ccc}
\text { Ethylene (1): } & T_{c}=282.4 \mathrm{~K} & P_{c}=50.4 \mathrm{bar} \\
\text { Nitrogen (2): } & T_{c}=126.2 \mathrm{~K} & P_{c}=33.7 \mathrm{bar} \\
a_{1}=7.86 \times 10^{7} \mathrm{bar} \mathrm{~cm}^{6} \mathrm{~K}^{1 / 2} \mathrm{~mol}^{-2} \\
a_{2}=1.57 \times 10^{7} \\
b_{1}=40.4 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
\end{array}
$$

Substitution gives $\varphi_{1}=0.845$,

$$
f_{1}=y_{1} \varphi_{1} P=\mathbf{8 . 4 4} \text { bar }
$$

13. Using the virial equation,

$$
P=\frac{R T}{v}+\frac{R T B_{\mathrm{mixt}}}{v^{2}}
$$

with

$$
\begin{equation*}
B_{\mathrm{mixt}}=y_{1}^{2} B_{11}+2 y_{1} y_{2} B_{12}+y_{2}^{2} B_{22} \tag{1}
\end{equation*}
$$

For maximum pressure,

$$
\begin{equation*}
\left(\frac{\partial P}{\partial y_{1}}\right)_{T, v}=\frac{R T}{v^{2}}\left(\frac{\partial B_{\mathrm{mixt}}}{\partial y_{1}}\right)_{T}=0 \tag{2}
\end{equation*}
$$

Substituting Eq. (1) into Eq. (2) gives $\left(y_{2}=1-y_{1}\right)$:

$$
\left(\frac{\partial B_{\mathrm{mixt}}}{\partial y_{1}}\right)_{T}=2 y_{1} B_{11}-2 y_{2} B_{12}+2 y_{1} B_{22}-2 B_{22}=0
$$

At maximum,

$$
\begin{equation*}
y_{1}=\frac{B_{22}}{B_{11}+B_{22}-B_{12}} \tag{3}
\end{equation*}
$$

Using the correlations,

$$
\begin{gathered}
B_{11}=-126.7 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \text { (ethylene) } \\
B_{22}=-12.5 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \text { (argon) } \\
B_{12}=-45.9 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
\end{gathered}
$$

Substitution in Eq. (3) gives

$$
y_{1}=0.134
$$

14. Consider a 3-step process:

The overall enthalpy change is zero:

$$
\begin{aligned}
& \Delta H_{\mathrm{I}}+\Delta H_{\mathrm{II}}+\Delta H_{\mathrm{III}}=0 \\
& \Delta H_{\mathrm{I}}=n_{1} \Delta H_{1}+n_{2} \Delta H_{2} \quad(1=\text { hydrogen; 2 }=\text { ethylene }) \\
\Delta H_{1}= & c_{p 1}^{0}\left(T_{\mathrm{f}}-T_{\mathrm{i}}\right)+\frac{H^{0}-H}{R T_{c_{1}}}\left(R T_{c_{1}}\right) \\
\Delta H_{2}= & c_{p 2}^{0}\left(T_{\mathrm{f}}-T_{\mathrm{i}}\right)+\frac{H^{0}-H}{R T_{c_{2}}}\left(R T_{c 2}\right)
\end{aligned}
$$

where $\frac{H^{0}-H}{R T_{c}}$ is evaluated using Lee-Kesler Tables.

For heat capacities, we can estimate

$$
\begin{gathered}
c_{p 1}^{0}=28.6 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
c_{p 2}^{0}=43.7 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
\Delta H_{\mathrm{II}}=0 \quad \text { (because we are mixing ideal gas) } \\
\Delta H_{\mathrm{III}}=-\left(\frac{H^{0}-H}{R T_{c, \text { mixt }}}\right) R T_{c, \text { mixt }} \quad \text { evaluated at } T_{R}=T_{\mathrm{f}} / T_{c, \text { mixt }}, P_{R}=20.7 / P_{c, \text { mixt }}
\end{gathered}
$$

Find T_{f} by trial and error:

$$
\boldsymbol{T}_{\mathrm{f}}=247 \mathrm{~K}
$$

15. At equilibrium,

$$
\begin{gathered}
f_{\mathrm{A}}^{V}=f_{\mathrm{A}}^{\mathrm{s}} \\
y_{\mathrm{A}} \varphi_{\mathrm{A}} P=\left(1-x_{\mathrm{CO}_{2}}\right) P_{\mathrm{A}}^{s} \varphi_{\mathrm{A}}^{s} \exp \int_{P_{\mathrm{A}}^{\mathrm{s}}}^{P} \frac{v_{\mathrm{A}}^{s}}{R T} d P
\end{gathered}
$$

Assuming $x_{\mathrm{CO}_{2}} \approx 0$,

$$
\frac{\left(y_{A} P\right) \varphi_{\mathrm{A}}}{P_{\mathrm{A}}^{s} \varphi_{\mathrm{A}}^{s}}=\exp \left[\frac{v_{\mathrm{A}}^{\nu}\left(P-P_{\mathrm{A}}^{s}\right)}{R T}\right]
$$

But

$$
\varphi_{\mathrm{A}}^{s}=\exp \left(\frac{B_{\mathrm{AA}} P_{\mathrm{A}}^{s}}{R T}\right)=1.00
$$

Because $y_{\mathrm{A}} \ll y_{\mathrm{CO}_{2}}, y_{\mathrm{CO}_{2}} \cong 1$

$$
\begin{gathered}
\varphi_{\mathrm{A}}=\exp \left[\left(2 B_{\mathrm{A}-\mathrm{CO}_{2}}-B_{\mathrm{CO}_{2}}\right) \frac{P}{R T}\right] \\
\frac{y_{\mathrm{A}} P}{P_{\mathrm{A}}^{S}}=\exp \left[\frac{v_{\mathrm{A}}^{s}\left(P-P_{\mathrm{A}}^{S}\right)}{R T}-\frac{\left(2 B_{\mathrm{A}-\mathrm{CO}_{2}}-B_{\mathrm{CO}_{2}}\right) P}{R T}\right]
\end{gathered}
$$

$$
P=\left[P_{\mathrm{A}}^{s} v_{\mathrm{A}}^{\circlearrowleft}+R T \ln \frac{y_{\mathrm{A}} P}{P_{\mathrm{A}}^{s}}\right] /\left(v_{\mathrm{A}}^{\Sigma}-2 B_{\mathrm{A}-\mathrm{CO}_{2}}+B_{\mathrm{CO}_{2}}\right)
$$

Substitution gives

$$
\begin{aligned}
& \qquad \boldsymbol{P}=\mathbf{6 8 . 7} \text { bar } \\
& \text { For this pressure, } y_{\mathrm{A}}=1.9 \times 10^{-4} \ll 1 \text { and assumption } y_{\mathrm{A}} \approx 0 \text { is correct. }
\end{aligned}
$$

16. Let $1=$ ethylene and $2=$ naphthalene.

As, at equilibrium,

$$
f_{2}^{\text {s }}=f_{2}^{V}
$$

and as

$$
\begin{gathered}
f_{2}^{\stackrel{ }{v}=P_{2}^{S} \varphi_{2}^{s} \exp \int_{P_{2}^{2}}^{P} \frac{v_{2}^{s}}{R T} d P} \\
f_{2}^{V}=y_{2} \varphi_{2} P
\end{gathered}
$$

we may write

$$
y_{2}=\left(1-x_{1}\right) P_{2}^{S} \varphi_{2}^{s} \exp \left[v_{2}^{s}\left(P-P_{2}^{S}\right) / R T\right] / \varphi_{2}^{V} P
$$

a) Using ideal-gas law:

$$
\varphi_{2}^{s}=\varphi_{2}^{V}=1
$$

As $v_{2}^{\stackrel{\Sigma}{2}}=\frac{128.174}{1.145}=111.94 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$,

$$
y_{2}=P_{2}^{s} \exp \left[\frac{v_{2}^{s}\left(P-P_{2}^{s}\right)}{R T}\right] / P=1.1 \times 10^{-5}
$$

b) Using VDW constants:

$$
\begin{array}{cc}
a=27 R^{2} T_{c}^{2} / 64 P_{c} & b=R T_{c} / 8 P_{c} \\
a_{1}=4.62 \times 10^{6} \mathrm{bar} \mathrm{~cm}^{6} \mathrm{~mol}^{-2} & b_{1}=58.23 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \\
a_{2}=4.03 \times 10^{7} \mathrm{bar} \mathrm{~cm}^{6} \mathrm{~mol}^{-2} & b_{2}=192.05 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
\end{array}
$$

$$
\begin{gathered}
B_{11}=b_{1}-a_{1} / R T=-122.2 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \\
B_{22}=-1382 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
\end{gathered}
$$

Because $y_{2} \ll y_{1}, y_{1} \cong 1$ and $B_{\text {mixt }} \cong B_{11}$

$$
\begin{gathered}
\varphi_{2}^{s}=\exp \frac{B_{22} P_{2}^{s}}{R T} \cong 1 \\
\ln \varphi_{2}^{V}=\left[2\left(y_{1} B_{12}+y_{2} B_{22}\right)-B_{\text {mixt }}\right] \frac{P}{R T} \cong\left(2 B_{12}-B_{11}\right) \frac{P}{R T} \\
B_{12}=b_{12}-a_{12} / R T \quad \text { with } \quad b_{12}=1 / 2\left(b_{1}+b_{2}\right) \quad \text { and } a_{12}=\sqrt{\left(a_{1} a_{2}\right)} \\
b_{12}=125.14 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \quad \text { and } \quad a_{12}=1.36 \times 10^{7} \mathrm{bar} \mathrm{~cm}^{6} \mathrm{~mol}^{-2}
\end{gathered}
$$

Then $B_{12}=-406 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.

$$
\begin{gathered}
\varphi_{2}^{V}=\exp \left[\left(2 B_{12}-B_{11}\right) \frac{P}{R T}\right]=0.446 \\
y_{2}=\left(2.80 \times 10^{-4}\right) \times \exp [(111.9 \times 30) /(83.1451 \times 308)] /(0.446 \times 30) \\
\boldsymbol{y}_{\mathbf{2}}=\mathbf{2 . 4} \times \mathbf{1 0 ^ { - 5 }}
\end{gathered}
$$

17. Water will condense if $f_{\mathrm{H}_{2} \mathrm{O}}^{V}>f_{\mathrm{H}_{2} \mathrm{O}}^{\Delta}$.

Thus, the maximum moisture content, $y_{\mathrm{H}_{2} \mathrm{O}}$, is given by

$$
\begin{gathered}
f_{\mathrm{H}_{2} \mathrm{O}}^{V}=f_{\mathrm{H}_{2} \mathrm{O}}^{s} \\
y_{\mathrm{H}_{2} \mathrm{O}} \varphi_{\mathrm{H}_{2} \mathrm{O}}^{V} P=x_{\mathrm{H}_{2} \mathrm{O}} P_{\mathrm{H}_{2} \mathrm{O}}^{s} \exp \int_{P_{\mathrm{H}_{2} \mathrm{O}}^{s}}^{P} \frac{v_{\mathrm{H}_{2} \mathrm{O}}^{s}}{R T} d P
\end{gathered}
$$

Assuming that the condensate is pure (solid) water,

$$
x_{\mathrm{H}_{2} \mathrm{O}}=1 \quad \text { and } \quad \varphi_{\mathrm{H}_{2} \mathrm{O}}^{s}=1
$$

Then

$$
\begin{gathered}
\left(y_{\mathrm{H}_{2} \mathrm{O}} \varphi_{\mathrm{H}_{2} \mathrm{O}}^{V}\right) \times(30 \mathrm{bar})=\frac{(1.95 \text { torr })}{(750.06 \text { torr } / \mathrm{bar})} \exp \left[\frac{(18 / 0.92) \times\left(30-\frac{1.95}{750.06}\right)}{(83.1451) \times(263.15)}\right] \\
y_{\mathrm{H}_{2} \mathrm{O}}=\frac{8.90 \times 10^{-5}}{\varphi_{\mathrm{H}_{2} \mathrm{O}}^{V}}
\end{gathered}
$$

Let $1=\mathrm{N}_{2}, 2=\mathrm{O}_{2}$, and $3=\mathrm{H}_{2} \mathrm{O}$.
To get $\varphi_{\mathrm{H}_{2} \mathrm{O}}^{V}$ use the virial equation of state:

$$
\ln \varphi_{\mathrm{H}_{2} \mathrm{O}}^{V}=\ln \varphi_{3}=\left[2\left(y_{1} B_{13}+y_{2} B_{23}+y_{3} B_{33}\right)-B_{\mathrm{mixt}}\right] \frac{P}{R T}
$$

with

$$
B_{\mathrm{mixt}}=\sum_{i} \sum_{j} y_{i} y_{j} B_{i j}
$$

Assume $y_{3} \ll y_{1}$ where $y_{1}=0.80$ and $y_{2}=0.20$.
Then,

$$
B_{\mathrm{mixt}}=y_{1}^{2} B_{11}+y_{2}^{2} B_{22}+2 y_{1} y_{2} B_{12}=-21.8 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
$$

Substitution in the equation for $\ln \varphi_{3}$ gives $\varphi_{3}=0.871$.
As

$$
y_{\mathrm{H}_{2} \mathrm{O}}=\frac{8.90 \times 10^{-5}}{\varphi_{\mathrm{H}_{2} \mathrm{O}}^{V}}
$$

then

$$
y_{\mathrm{H}_{2} \mathrm{O}}=1.0 \times 10^{-4}
$$

18. The Joule-Thompson coefficient is defined as

$$
\begin{equation*}
\mu_{H} \equiv\left(\frac{\partial T}{\partial P}\right)_{H} \tag{1}
\end{equation*}
$$

Applying the triple-product rule with T, P and H, we have

$$
\begin{equation*}
\left(\frac{\partial T}{\partial P}\right)_{H}\left(\frac{\partial P}{\partial H}\right)_{T}\left(\frac{\partial H}{\partial T}\right)_{P}=-1 \tag{2}
\end{equation*}
$$

Because

$$
\left(\frac{\partial H}{\partial T}\right)_{P} \equiv c_{p}
$$

and

$$
\left(\frac{\partial H}{\partial P}\right)_{T}=\frac{1}{\left(\frac{\partial P}{\partial H}\right)_{T}}
$$

combining Eqs. (1) and (2) gives

$$
\begin{equation*}
\mu_{H}=-\frac{1}{c_{p}}\left(\frac{\partial H}{\partial P}\right)_{T} \tag{3}
\end{equation*}
$$

From the fundamental equation $d H=T d S+V d P$, we have

$$
\begin{equation*}
\left(\frac{\partial H}{\partial P}\right)_{T}=T\left(\frac{\partial S}{\partial P}\right)_{T}+V \tag{4}
\end{equation*}
$$

However, we also have Maxwell's relation:

$$
\left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}
$$

Therefore,

$$
\begin{equation*}
\left(\frac{\partial H}{\partial P}\right)_{T}=-T\left(\frac{\partial V}{\partial T}\right)_{P}+V \tag{5}
\end{equation*}
$$

Substituting Eq. (5) into Eq. (3) gives

$$
\begin{equation*}
\mu_{H}=-\frac{1}{c_{p}}\left[-T\left(\frac{\partial V}{\partial T}\right)_{P}+V\right] \tag{6}
\end{equation*}
$$

or, in terms of molar volume (v) and molar heat capacity at constant pressure $\left(c_{p}\right)$,

$$
\begin{equation*}
\mu_{H}=-\frac{1}{c_{p}}\left[-T\left(\frac{\partial v}{\partial T}\right)_{P}+v\right] \tag{7}
\end{equation*}
$$

Because in this specific problem we want μ_{H} of the hydrogen-ethane mixture to be zero, Eq. (7) yields

$$
\begin{equation*}
v=T\left(\frac{\partial v}{\partial T}\right)_{P} \tag{8}
\end{equation*}
$$

From the truncated-virial equation of state

$$
\begin{equation*}
\frac{P v}{R T}=1+\frac{B}{v} \tag{9}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left(\frac{\partial T}{\partial v}\right)_{P}=\left(\frac{P}{R}\right)\left(\frac{v}{v+B}\right)\left(2-\frac{v}{v+B}\right)=\left(\frac{P}{R}\right) \frac{v(v+2 B)}{(v+B)^{2}} \tag{10}
\end{equation*}
$$

Substituting the equation of state Eq. (9) and Eq. (10) into Eq. (8) yields

$$
\begin{equation*}
\frac{R T}{P}\left(1+\frac{B}{v}\right)=T\left[\frac{R}{P} \frac{(v+B)^{2}}{v(v+2 B)}\right] \tag{11}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
B=0 \tag{12}
\end{equation*}
$$

where B is the second virial coefficient of the hydrogen-ethane mixture at 300 K .
Using the McGlashan and Potter equation [Eq. (5-52)],

$$
\begin{equation*}
\frac{B}{v_{c}}=0.430-0.866\left(\frac{T}{T_{c}}\right)^{-1}-0.694\left(\frac{T}{T_{c}}\right)^{-2} \tag{13}
\end{equation*}
$$

we obtain $B_{11}=11.4 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ for hydrogen, and $B_{22}=-173.3 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ for ethane, and $B_{12}=B_{21}=11.4 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ for the cross term, respectively.

Applying

$$
B_{\mathrm{mixt}}=\sum_{i} \sum_{j} y_{i} y_{j} B_{i j}
$$

and the material balance $y_{1}+y_{2}=1$, we have

$$
\begin{equation*}
B_{\text {mixt }}\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)=11.4 y_{1}^{2}+22.8 y_{1}\left(1-y_{1}\right)-173.3\left(1-y_{1}\right)^{2} \tag{14}
\end{equation*}
$$

Equations (12) and (14) yield $y_{1}=0.73$.
Consequently, if we start out with 1 mol of H_{2}, the amount of ethane that must be added to have a zero μ_{H} is $\mathbf{0 . 3 7} \mathbf{~ m o l}$.
19. Because methane does not significantly dissolve in liquid water at moderate pressures, the equation of equilibrium is

$$
\begin{equation*}
f_{2}^{V}=f_{\text {pure } 2}^{L} \tag{1}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
y_{2} \varphi_{2} P=P_{2}^{s} \varphi_{2}^{s} \exp \left[\frac{v_{2}^{L}\left(P-P_{2}^{s}\right)}{R T}\right] \tag{2}
\end{equation*}
$$

where subscript 2 denotes water.
The fugacity coefficient from the volume-explicit virial equation of state is given by Eq. (533):

$$
\begin{equation*}
\ln \varphi_{2}=\left[2\left(y_{1} B_{12}+y_{2} B_{22}\right)-B_{\text {mixt }}\right] \frac{P}{R T} \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
B_{\mathrm{mixt}}=y_{1}^{2} B_{11}+2 y_{1} y_{2} B_{12}+y_{2}^{2} B_{22} \tag{4}
\end{equation*}
$$

Similarly, we also have

$$
\begin{equation*}
\ln \varphi_{2}^{s}=\frac{B_{22} P_{2}^{s}}{R T} \tag{5}
\end{equation*}
$$

(i) At the inlet $\left(60^{\circ} \mathrm{C}, 20 \mathrm{bar}\right)$:

Substitute Eqs. (3), (4), and (5) into Eq. (2). Solving Eq. (2) using $v_{2}^{L}=18 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ and $P_{2}^{s}=149 \mathrm{mmHg}$, we obtain

$$
y_{2}^{\mathrm{i}}=0.011 \text { (superscript i denotes inlet). }
$$

(ii) At the outlet $\left(25^{\circ} \mathrm{C}, 40 \mathrm{bar}\right)$:

Similarly, with $v_{2}^{L}=18 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ and $P_{2}^{S}=24 \mathrm{mmHg}$, we obtain

$$
y_{2}^{0}=0.000951 \quad \text { (superscript o denotes outlet). }
$$

Because the gas phase is primarily methane, the amount of water that must be removed per mol methane is

$$
\frac{\text { mol water removed }}{\text { mol methane }}=y_{2}^{\mathrm{i}}-y_{2}^{\mathrm{o}} \approx \mathbf{0 . 0 1}
$$

20. Assuming negligible changes in potential and kinetic energies, the first law of thermodynamics for a steady-state flow process is

$$
\begin{equation*}
\Delta H=Q+W_{s} \tag{1}
\end{equation*}
$$

where ΔH is the change in enthalpy, and Q and W_{s} are, respectively, the heat and the shaft work done on the system (by the surroundings).

Because we are given the initial and final state and enthalpy is a state function, ΔH is fixed in this problem. Consequently, minimum W_{s} corresponds to maximum Q. Maximum Q occurs when the process is reversible, or equivalently $Q=T \Delta S$.

Hence, Eq. (1) can be rewritten as

$$
\begin{equation*}
W_{S}=\Delta H-T \Delta S \tag{2}
\end{equation*}
$$

where W_{S} is now the minimum amount of work required for the process.
To calculate ΔH and ΔS from the volume-explicit virial equation of state

$$
\frac{P V}{n_{T} R T}=1+B P
$$

we take an isothermal reversible path from the initial to the final state.
Expressions for enthalpy and entropy are given by Eqs. (3-9) and (3-10) in the text:

$$
\begin{align*}
& H=\int_{0}^{P}\left[V-T\left(\frac{\partial V}{\partial T}\right)_{P, n_{T}}\right] d P+n_{1} h_{1}^{0}+n_{2} h_{2}^{0} \tag{3}\\
& S=\int_{0}^{P}\left[\frac{n_{T} R}{P}-\left(\frac{\partial V}{\partial T}\right)_{P, n_{T}}\right] d P-R\left(n_{1} \ln y_{1} P+n_{2} \ln y_{2} P\right)+n_{1} s_{1}^{0}+n_{2} s_{2}^{0}
\end{align*}
$$

Substituting

$$
\left(\frac{\partial V}{\partial T}\right)_{P, n_{T}}=\frac{n_{T} R}{P}(1+B P)
$$

from the virial equation of state gives

$$
\begin{align*}
& H=n_{1} h_{1}^{0}+n_{2} h_{2}^{0} \\
& S=n_{T} R B P-R\left(n_{1} \ln y_{1} P+n_{2} \ln y_{2} P\right)+n_{1} s_{1}^{0}+n_{2} s_{2}^{0} \tag{4}
\end{align*}
$$

Applying Eq. (4) to this specific problem, we have

$$
\begin{align*}
& \Delta H=0 \tag{5}\\
& \Delta S=R P\left(n_{T} B_{\mathrm{mixt}}-n_{1} B_{11}-n_{2} B_{22}\right)-R\left(n_{1} \ln y_{1}+n_{2} \ln y_{2}\right)
\end{align*}
$$

At 298 K , second virial coefficients are

$$
\begin{align*}
& B_{11}=-41.9 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \\
& B_{12}=-122.2 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \tag{6}\\
& B_{22}=-66.0 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
\end{align*}
$$

Hence, at 298 K ,

$$
B_{\mathrm{mixt}}=\sum_{i} \sum_{j} y_{i} y_{j} B_{i j}=-74.0 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
$$

Taking a basis of $n_{T}=1 \mathrm{~mol}$ of the mixture initially, then $n_{1}=n_{2}=0.5 \mathrm{~mol}$, Eq. (5) yields at 298 K

$$
\begin{align*}
& \Delta H=0 \\
& T \Delta S=-248.5 \mathrm{~kJ} \tag{7}
\end{align*}
$$

Substituting Eq. (7) into Eq. (2), the minimum amount of work required for this process is $248.5 \mathbf{k J ~ m o l}^{-1}$ of initial mixture.
21. The second virial coefficient for a square-well potential is given by Eq. (5-39) in the text

$$
\begin{equation*}
B=b_{0} R^{3}\left(1-\frac{R^{3}-1}{R^{3}} \exp \frac{\varepsilon}{k T}\right) \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
b_{0}=\frac{2}{3} \pi N_{A} \sigma^{3} \tag{2}
\end{equation*}
$$

Substituting $\varepsilon / k=469 K, \sigma=0.429 \mathrm{~nm}$ and $R=0.337 \sigma$ gives

$$
B(423 \mathrm{~K})=302 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
$$

Because, for a pure component,

$$
\ln \varphi=\ln \frac{f}{P}=\frac{B P}{R T}
$$

fugacity is given by

$$
f=P \exp \left(\frac{B P}{R T}\right)
$$

Hence, at $150^{\circ} \mathrm{C}$ and 30 atm ,

$$
\left.\begin{array}{rl}
f & =(30 \mathrm{~atm}) \times \exp \left[\frac{(30 \mathrm{~atm}) \times\left(301.8 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)}{(82.06 \mathrm{~atm} \mathrm{~cm}}{ }^{3} \mathrm{~mol}^{-1}\right) \times(423 \mathrm{~K})
\end{array}\right]
$$

To obtain the standard enthalpy and entropy of dimerization of methyl chloride we assume a small degree of dimerization. In this case, the relation between the second virial coefficient and the dimerization constant is given by Eq. (5-113):

$$
B=b-\frac{R T K}{P^{0}}
$$

Applying $P^{0}=R T c^{0}$ (where $c^{0}=1 \mathrm{~mol} \mathrm{~L}^{-1}=10^{-3} \mathrm{~mol} \mathrm{~cm}^{-3}$ is the standard state) gives

$$
10^{3}\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right) K=B-b
$$

Because we only have a weak dimerization,

$$
\begin{equation*}
b=b_{0}=\frac{2}{3} \pi N_{A} \sigma^{3} \tag{3}
\end{equation*}
$$

and the second virial coefficient is essentially that of pure methyl chloride [Eq. (1)].
Combining Eqs. (1) and (3) gives

$$
\begin{equation*}
10^{3}\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right) K=\left(\frac{2}{3} \pi N_{A} \sigma^{3}\right)\left[R^{3}\left(1-\frac{R^{3}-1}{R^{3}} \exp \frac{\varepsilon}{k T}\right)-1\right] \tag{4}
\end{equation*}
$$

The following table shows $K(T)$ calculated from Eq. (4).

$T(\mathrm{~K})$	K
100	10.74
200	0.939
300	0.376
400	0.222
500	0.155

Because the standard enthalpy and entropy of dimerization obey [Eq. (5-114)]

$$
-R \ln K=\frac{\Delta h^{0}}{T}-\Delta s^{0}
$$

plotting $-R \ln K$ as a function of $1 / T$ gives Δh^{0} as the slope, and $-\Delta s^{0}$ as the intercept. Results are

$$
\begin{gathered}
\Delta h^{0}=-4.34 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\Delta s^{0}=-23.2 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{gathered}
$$

22.

a) Substitution of given $\Gamma(r)$ in Eq. (5-19) gives

$$
\begin{align*}
B & =2 \pi N_{A}\left[\int_{0}^{\sigma}\left(1-e^{-\infty / k T}\right) r^{2} d r+\int_{\sigma}^{\infty}\left(1-e^{A / k T r^{n}}\right) r^{2} d r\right] \\
& =2 \pi N_{A}\left[\int_{0}^{\sigma} r^{2} d r+\int_{\sigma}^{\infty}\left(1-e^{A / k T r^{n}}\right) r^{2} d r\right] \tag{1}\\
& =2 \pi N_{A}\left[\frac{\sigma^{3}}{3}+\int_{\sigma}^{\infty}\left(1-e^{A / k T r^{n}}\right) r^{2} d r\right]
\end{align*}
$$

At high temperatures, $A / k T r^{n}$ is small.
Because

$$
e^{x} \approx 1+x+\frac{x^{2}}{2!}+\cdots \quad \text { when } x \text { is small, }
$$

we expand the exponencial $e^{A / k T r^{n}}$:

$$
e^{A / k T r^{n}} \approx 1+\frac{A}{k T r^{n}}+\cdots
$$

Substitution of this approximation into Eq. (1) gives:

$$
\begin{align*}
\int_{\sigma}^{\infty}\left(1-e^{A / k T r^{n}}\right) r^{2} d r & =\int_{\sigma}^{\infty}\left(1-1-\frac{A}{k T r^{n}}\right) r^{2} d r=\frac{-A}{k T} \int_{\sigma}^{\infty}\left(r^{-n}\right) r^{2} d r \\
& =\frac{-A}{k T} \int_{\sigma}^{\infty}\left(r^{2-n}\right) d r=\frac{-A}{k T}\left[\frac{r^{3-n}}{3-n}\right]_{\sigma}^{\infty} \tag{2}\\
& =\frac{A}{k T}\left(\frac{\sigma^{3-n}}{3-n}\right)=\frac{-A \sigma^{3-n}}{k T(n-3)}
\end{align*}
$$

We substitute now this result in Eq. (1):

$$
B=\frac{2}{3} \pi N_{A} \sigma^{3}-2 \pi A N_{A}\left[\frac{\sigma^{3-n}}{k T(n-3)}\right]
$$

Constant n is large (i.e., $n>3$):

$$
\begin{align*}
B & =\frac{2}{3} \pi N_{A} \sigma^{3}-2 \pi A N_{A}\left[\frac{\sigma^{3}}{k T(n-3) \sigma^{n}}\right] \tag{3}\\
& =\frac{2}{3} \pi N_{A} \sigma^{3}-\frac{2}{3} \pi N_{A} \sigma^{3}\left[\frac{3 A}{k T(n-3) \sigma^{n}}\right]
\end{align*}
$$

b) From Eq. (3) we see that it is the attractive part of the potential that causes negative B and is responsible for the temperature dependence of B [the first term on the right hand side of Eq. (3) is independent of temperature].
23. Substitution of the square-well potential [Eq. (5-39)] into Eq. (5-17) gives

$$
\begin{aligned}
B & =2 \pi N_{A} \int_{0}^{\infty}\left(1-e^{-\Gamma(r) / k T}\right) r^{2} d r \\
& =2 \pi N_{A}\left[\int_{0}^{\sigma}\left(1-e^{-\infty / k T}\right) r^{2} d r+\int_{\sigma}^{R^{\prime}}\left(1-e^{\varepsilon / k T}\right) r^{2} d r+\int_{R^{\prime}}^{\infty}\left(1-e^{0 / k T}\right) r^{2} d r\right] \\
& =2 \pi N_{A}\left[\frac{\sigma^{3}}{3}+\int_{\sigma}^{R^{\prime}}\left(1-e^{\varepsilon / k T}\right) r^{2} d r+0\right] \\
& =2 \pi N_{A}\left[\frac{\sigma^{3}}{3}+\left(\frac{R^{\prime 3}}{3}-\frac{\sigma^{3}}{3}\right)\left(1-e^{\varepsilon / k T}\right)\right] \\
& =\frac{2}{3} \pi N_{A} \sigma^{3}+\frac{2}{3} \pi N_{A}\left(1-e^{\varepsilon / k T}\right)\left(R^{\prime 3}-\sigma^{3}\right)
\end{aligned}
$$

In the equation above, $R^{\prime}=R \sigma=1.55 \sigma$. For argon, $\sigma=0.2989 \mathrm{~nm}=0.2989 \times 10^{-9} \mathrm{~m}, \quad \varepsilon / k$ $=141.06 \mathrm{~K}$, and $R^{\prime}=1.55 \sigma=4.633 \times 10^{-10} \mathrm{~m}$.

The above equation gives for $T=273.15 \mathrm{~K}$,

$$
\begin{aligned}
B & =3.368 \times 10^{-5}+\left(-6.202 \times 10^{-5}\right) \\
& =-2.834 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~mol}^{-1} \approx-\mathbf{2 8} \mathbf{~ c m}^{\mathbf{3}} \mathbf{~ m o l}^{-1}
\end{aligned}
$$

The calculated value compares relatively well with the experimental B for argon at the same temperature: $B_{\exp }=-22.08 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.
24. Substitution of Sutherland potential [Eq. (5-37)] in Eq. (5-19) with $N=N_{A}$ gives

$$
\begin{gather*}
B(T)=2 \pi N_{A}\left[\int_{0}^{\sigma}\left(1-e^{-\infty / k T}\right) r^{2} d r+\int_{\sigma}^{\infty}\left(1-e^{K / k T r^{6}}\right) r^{2} d r\right] \tag{1}\\
=\frac{2}{3} \pi N_{A} \sigma^{3}+\int_{\sigma}^{\infty}\left(1-e^{K / k T r^{6}}\right) r^{2} d r \\
\exp \left(\frac{K}{k T r^{6}}\right) \approx 1+\frac{K}{k T r^{6}}+\frac{K^{2}}{2(k T)^{2} r^{12}}+\frac{K^{3}}{6(k T)^{3} r^{18}}+\frac{K^{4}}{24(k T)^{4} r^{24}}+\cdots \tag{2}\\
{\left[e^{x} \approx 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots\right]}
\end{gather*}
$$

We now have to replace the approximate result [Eq. (2)] in Eq. (1) and perform the necessary integrations.

The result is:

$$
B(T)=\frac{2}{3} \pi N_{A} \sigma^{3}-\frac{2 \pi N_{A} K}{3 k T \sigma^{3}}-\frac{2 \pi N_{A} K^{2}}{18(k T)^{2} \sigma^{9}}-\frac{2 \pi N_{A} K^{3}}{90(k T)^{3} \sigma^{15}}-\frac{2 \pi N_{A} K^{4}}{504(k T)^{4} \sigma^{21}}-\cdots
$$

This equation is best solved using an appropriate computer software such as Mathematica, TKSolver, MathCad, etc.

Making the necessary programming we obtain at 373 K ,

$$
\begin{gathered}
B(\text { methane })=-20 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \\
B(n \text {-pentane })=-634 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
\end{gathered}
$$

In both cases, the agreement with experiment is very good.
25. The equation of equilibrium for helium is

$$
\begin{equation*}
f_{1}^{L}=f_{1}^{R} \tag{1}
\end{equation*}
$$

where superscripts L and R stand for left and right compartments, respectively.
Equivalently,

$$
\begin{equation*}
y_{1}^{L} \varphi_{1}^{L} P^{L}=y_{1}^{R} \varphi_{1}^{R} P^{R} \tag{2}
\end{equation*}
$$

Equation (5-33) of the text gives the fugacity coefficients in both compartments from the volume-explicit virial equation of state:

$$
\begin{equation*}
\ln \varphi_{1}=\left[2\left(y_{1} B_{11}+y_{2} B_{12}\right)-B_{\mathrm{mixt}}\right] \frac{P}{R T} \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
B_{\mathrm{mixt}}=y_{1}^{2} B_{11}+2 y_{1} y_{2} B_{12}+y_{2}^{2} B_{22} \tag{4}
\end{equation*}
$$

Further, we also have material balances

$$
\begin{align*}
& y_{1}^{L}+y_{2}^{L}=1 \tag{5}\\
& y_{1}^{R}+y_{3}^{R}=1
\end{align*}
$$

Applying Eqs. (3), (4), and (5) to both compartments yields

$$
\begin{align*}
& \ln \varphi_{1}^{R}=\left\{2\left[y_{1}^{L} B_{11}+\left(1-y_{1}^{L}\right) B_{12}\right]-\left[\left(y_{1}^{L}\right)^{2} B_{11}+2 y_{1}^{L}\left(1-y_{1}^{L}\right) B_{12}+\left(1-y_{1}^{L}\right)^{2} B_{22}\right]\right\} \frac{P^{L}}{R T} \tag{6}\\
& \ln \varphi_{1}^{L}=\left\{2\left[y_{1}^{R} B_{11}+\left(1-y_{1}^{R}\right) B_{13}\right]-\left[\left(y_{1}^{R}\right)^{2} B_{11}+2 y_{1}^{R}\left(1-y_{1}^{R}\right) B_{13}+\left(1-y_{1}^{R}\right)^{2} B_{33}\right]\right\} \frac{P^{R}}{R T}
\end{align*}
$$

Total mole balance on helium gives

$$
\begin{equation*}
n_{1}^{L}+n_{1}^{R}=0.02 \mathrm{~mol} \tag{7}
\end{equation*}
$$

Combining with mass balances on ethane and nitrogen gives

$$
\begin{align*}
& y_{1}^{L}=\frac{n_{1}^{L}}{0.99+n_{1}^{L}} \tag{8}\\
& y_{1}^{R}=\frac{n_{1}^{R}}{0.99+n_{1}^{R}}=\frac{0.02-n_{1}^{L}}{1.01-n_{1}^{L}}
\end{align*}
$$

Substituting Eqs. (6) and (8) into Eq. (2) yields

$$
n_{1}^{L}=0.013 \mathrm{~mol}
$$

Combining this result and Eq. (8) gives

$$
\begin{aligned}
& y_{1}^{L}=0.013 \\
& y_{1}^{R}=0.007
\end{aligned}
$$

26. Because the equilibrium constant is independent of pressure, the more probable reaction is the one that satisfies this condition.
(1) Assuming reaction (a) is more probable:

With this scheme, concentration of $(\mathrm{HF})_{6}$ is negligible compared to those of (HF) and $(\mathrm{HF})_{4}$.

The equilibrium constant $K_{(a)}$ is

$$
\begin{equation*}
K_{(\mathrm{a})}=\frac{y_{(\mathrm{HF})_{4}}^{4}}{y_{(\mathrm{HF})}^{4} P^{3}}=\frac{y_{(\mathrm{HF})_{4}}}{\left[1-y_{(\mathrm{HF})_{4}}\right]^{4} P^{3}} \tag{1}
\end{equation*}
$$

Total mass balance for (HF) gives

$$
\begin{equation*}
y_{(\mathrm{HF})_{4}} n_{T}\left(4 \times M_{\mathrm{HF}}\right)+\left[1-y_{(\mathrm{HF})_{4}}\right] n_{T} M_{\mathrm{HF}}=V \times \rho_{\mathrm{HF}} \tag{2}
\end{equation*}
$$

where V is the total volume; ρ_{HF} and M_{HF} are the mass density and the molar mass of hydrogen fluoride, respectively; n_{T} is the total number of moles that can be calculated by assuming that the gas phase is ideal:

$$
\begin{equation*}
n_{T}=\frac{P V}{R T} \tag{3}
\end{equation*}
$$

Substituting Eqs. (2) and (3) into Eq. (1) yields

$$
\begin{equation*}
K_{(\mathrm{a})}=\frac{(1 / 3)\left(\frac{\rho_{\mathrm{HF}} R T}{P \times M_{\mathrm{HF}}}-1\right)}{\left[1-(1 / 3)\left(\frac{\rho_{\mathrm{HF}} R T}{P \times M_{\mathrm{HF}}}-1\right)\right]^{4} P^{3}} \tag{4}
\end{equation*}
$$

Applying Eq. (4) at the two pressures, 1.42 and 2.84 bar, we obtain for $K_{(a)}$:

P (bar)	$\rho_{\mathrm{HF}}(\mathrm{g} / \mathrm{L})$	$K_{(\mathrm{a})}$
1.42		
2.84	1.40	0.0595

Because $K_{(\mathrm{a})}$ depends on pressure, reaction (a) cannot be the more probable one.
Next we need to check for the pressure independence of $K_{(\mathrm{b})}$.
(2) Assuming reaction (b) is more probable:

In this case, concentration of $(\mathrm{HF})_{4}$ is negligible compared to those of (HF) and (HF) ${ }_{6}$. The equilibrium constant $K_{(b)}$ is

$$
\begin{equation*}
K_{(\mathrm{b})}=\frac{y_{(\mathrm{HF})_{6}}}{y_{(\mathrm{HF})}^{6} P^{5}}=\frac{y_{(\mathrm{HF})_{6}}}{\left[1-y_{(\mathrm{HF})_{6}}\right]^{6} P^{5}} \tag{5}
\end{equation*}
$$

Mass balance for HF in this case is:

$$
\begin{equation*}
y_{(\mathrm{HF})_{6}} n_{T}\left(6 \times M_{\mathrm{HF}}\right)+\left[1-y_{(\mathrm{HF})_{6}}\right] n_{T} M_{\mathrm{HF}}=V \times \rho_{\mathrm{HF}} \tag{6}
\end{equation*}
$$

where all terms are defined in Eq. (2).
Substitution of Eqs. (3) and (6) into Eq. (5) gives

$$
\begin{equation*}
K_{(\mathrm{b})}=\frac{(1 / 5)\left(\frac{\rho_{\mathrm{HF}} R T}{P \times M_{\mathrm{HF}}}-1\right)}{\left[1-(1 / 5)\left(\frac{\rho_{\mathrm{HF}} R T}{P \times M_{\mathrm{HF}}}-1\right)\right]^{6} P^{5}} \tag{7}
\end{equation*}
$$

Corresponding values of $K_{(\mathrm{b})}$ at 1.42 and 2.84 bar are:

P (bar)	$\rho_{\mathrm{HF}}(\mathrm{g} / \mathrm{L})$	$K_{(\mathrm{b})}$
1.42	1.40	0.017
2.84	5.45	0.017

Because $K_{(b)}$ is independent of pressure, reaction (b) is the more probable.

S OL U T I O N S T O P R O BLEMS

C H A P T E R

1. The three equations of equilibrium (in addition to $T^{L}=T^{V}$ and $P^{L}=P^{V}$) are

$$
\begin{aligned}
& y_{1} \varphi_{1}^{V} P=x_{1} \gamma_{1} f_{1}^{L} \\
& y_{2} \varphi_{2}^{V} P=x_{2} \gamma_{2} f_{2}^{L} \\
& y_{3} \varphi_{3}^{V} P=x_{3} \gamma_{3} f_{3}^{L}
\end{aligned}
$$

with (assuming the liquid incompressible)

$$
f_{1}^{L}=P_{1}^{s} \varphi_{1}^{s} \exp \frac{v_{1}^{L}\left(P-P_{1}^{s}\right)}{R T}
$$

We write similar expressions for f_{2}^{L} and f_{3}^{L}.
For φ^{V} we may write

$$
R T \ln \varphi_{1}^{V}=P\left(2 y_{1} B_{11}+2 y_{2} B_{12}+2 y_{3} B_{13}-B_{\mathrm{mixt}}\right)
$$

and similar expressions for φ_{2}^{V} and φ_{3}^{V}. In these equations,

$$
B_{\mathrm{mixt}}=y_{1}^{2} B_{11}+y_{2}^{2} B_{22}+y_{3}^{2} B_{33}+2 y_{1} y_{2} B_{12}+2 y_{1} y_{3} B_{13}+2 y_{2} y_{3} B_{23}
$$

2. Given $g^{E}=A x_{1} x_{2}$ with $P_{1}^{s} / P_{2}^{S}=1.649$, and assuming ideal vapor,

$$
\begin{aligned}
& \gamma_{1}=\frac{y_{1} P}{x_{1} P_{1}^{s}} \\
& \gamma_{2}=\frac{y_{2} P}{x_{2} P_{2}^{s}}
\end{aligned}
$$

At azeotrope, $x_{1}=y_{1}$:

$$
\begin{aligned}
& \ln \gamma_{1}=\ln \frac{P}{P_{1}^{s}} \\
& \ln \gamma_{2}=\ln \frac{P}{P_{2}^{s}}
\end{aligned}
$$

or

$$
\ln \frac{\gamma_{1}}{\gamma_{2}}=\ln \frac{P_{2}^{s}}{P_{1}^{s}}=-0.5
$$

From the g^{E} expression,

$$
\ln \gamma_{1}=\frac{A}{R T} x_{2}^{2}
$$

and

$$
\ln \gamma_{2}=\frac{A}{R T} x_{1}^{2}
$$

Then

$$
\begin{gathered}
\ln \frac{\gamma_{1}}{\gamma_{2}}=\frac{A}{R T}\left(x_{2}^{2}-x_{1}^{2}\right) \\
\frac{A}{R T}=\frac{-0.5}{x_{2}^{2}-x_{1}^{2}}=\frac{-1}{4 x_{2}+2}
\end{gathered}
$$

or

$$
x_{2}=\frac{1}{2}-\frac{R T}{4 A}
$$

Because $0 \leq x_{2} \leq 1$,

$$
-\frac{1}{2} \leq \frac{R T}{4 A} \leq \frac{1}{2}
$$

Thus, if $|A| \geq \frac{1}{2} R T$, an azeotrope exists.
3. From the plot $P-x-y$ we can see the unusual behavior of this system:

1. There is a double azeotrope
2. Liquid and vapor curves are very close to each other.

3. Neglecting vapor phase non-idealities,

$$
\begin{equation*}
P=x_{1} \gamma_{1} P_{1}^{S}+x_{2} \gamma_{2} P_{2}^{S} \tag{1}
\end{equation*}
$$

At the maximum,

$$
\begin{equation*}
\left(\frac{\partial P}{\partial x_{1}}\right)_{T}=0=\gamma_{1} P_{1}^{s}+x_{1} P_{1}^{s}\left(\frac{\partial \gamma_{1}}{\partial x_{1}}\right)_{T}-x_{2} P_{2}^{s}\left(\frac{\partial \gamma_{2}}{\partial x_{2}}\right)_{T}-\gamma_{2} P_{2}^{s} \tag{2}
\end{equation*}
$$

From the Gibbs-Duhem equation (at constant T and low pressure),

$$
x_{1}\left(\frac{\partial \ln \gamma_{1}}{\partial x_{1}}\right)_{T}+x_{2}\left(\frac{\partial \ln \gamma_{2}}{\partial x_{1}}\right)_{T}=0
$$

or

$$
\begin{equation*}
\frac{x_{1}}{\gamma_{1}}\left(\frac{\partial \gamma_{1}}{\partial x_{1}}\right)_{T}=\frac{x_{2}}{\gamma_{2}}\left(\frac{\partial \gamma_{2}}{\partial x_{2}}\right)_{T} \tag{3}
\end{equation*}
$$

Substituting Eq. (3) into Eq. (2) and simplifying,

$$
\left(\gamma_{1} P_{1}^{S}-\gamma_{2} P_{2}^{s}\right)\left(1+\frac{x_{1}}{\gamma_{1}} \frac{\partial \gamma_{1}}{\partial x_{1}}\right)=0
$$

There are two possibilities:
(1) $\quad \gamma_{1} P_{1}^{S}-\gamma_{2} P_{2}^{S}=0$

Then

$$
\frac{\gamma_{2} P_{2}^{s}}{\gamma_{1} P_{1}^{s}}=1=\frac{\left(y_{2} / x_{2}\right)}{\left(y_{1} / x_{1}\right)}=\alpha
$$

$\alpha=1$ corresponds to an azeotrope

$$
\text { (2) } 1+\frac{x_{1}}{\gamma_{1}} \frac{\partial \gamma_{1}}{\partial x_{1}}=0
$$

The solution to this differential equation is $x_{1} \gamma_{1}=$ constant .
To find the constant, use the boundary condition $\gamma_{1}=1$ when $x_{1}=1$.
Hence $\gamma_{1} x_{1}=1$.
As $y_{1} P=x_{1} \gamma_{1} P_{1}^{s}$ if $\gamma_{1} x_{1}=1$, then y_{1} must be $1 .{ }^{\dagger}$
Hence, the curve $P-x$ goes through a maximum at $x_{1}=1$. This is also an azeotrope (but a trivial one).
5. Given

$$
g^{E}=A_{12} x_{1} x_{2}+A_{13} x_{1} x_{3}+A_{14} x_{1} x_{4}+A_{23} x_{2} x_{3}+A_{24} x_{2} x_{4}+A_{34} x_{3} x_{4}
$$

where

[^0]\[

$$
\begin{aligned}
& x_{1}=n_{1} / n_{T} \\
& x_{2}=x_{2} / n_{T} \\
& \vdots
\end{aligned}
$$
\]

with $n_{T}=n_{1}+n_{2}+n_{3}+n_{4}$ the total number of moles.

Because

$$
R T \ln \gamma_{1}=\left(\frac{\partial n_{T} g^{E}}{\partial n_{1}}\right)_{P, T, n_{2}, n_{3}, n_{4}}
$$

we find

$$
\begin{aligned}
R T \ln \gamma_{1}= & A_{12} x_{2}^{2}+A_{13} x_{3}^{2}+A_{14} x_{4}^{2}+x_{2} x_{3}\left(A_{12}+A_{13}-A_{23}\right) \\
& +x_{2} x_{4}\left(A_{12}+A_{14}-A_{24}\right)+x_{3} x_{4}\left(A_{13}+A_{14}-A_{34}\right)
\end{aligned}
$$

6. Calculate $T-y$ giving pressure and for $x=0.1,0.2, \ldots, 0.9$ - bubble-point calculation. We have to solve the equilibrium equations:

$$
\begin{equation*}
\varphi_{i} y_{i} P=\gamma_{i} x_{i} P_{i}^{S} \tag{1}
\end{equation*}
$$

Because total pressure is low (below atmospheric) we assume vapor phase as ideal: $\varphi_{i} \approx 1$.
The activity coefficients are obtained from the equation for G^{E} given in the data. Using Eq. (6-47) of the text we obtain

$$
\begin{align*}
& \ln \gamma_{1}=-2.1 x_{2}^{2} \\
& \ln \gamma_{2}=-2.1 x_{1}^{2} \tag{2}
\end{align*}
$$

As the pressure is fixed, temperature varies along with x_{1} (and y_{1}) and is bounded by the saturation temperatures of the two components. These can be easily obtained from the vaporpressure equations. They are given in the form,

$$
\begin{equation*}
\ln P^{S}=A-\frac{B}{T+C} \tag{3}
\end{equation*}
$$

from which we obtain the saturation temperature

$$
\begin{equation*}
T^{s}=\frac{B}{A-\ln P^{s}}-C \tag{4}
\end{equation*}
$$

For $P^{s}=30 \mathrm{kPa}$, we obtain $T_{1}^{S}=387.26 \mathrm{~K}$ for cyclohexanone (1) and $T_{2}^{s}=415.59 \mathrm{~K}$ for phenol (2).

To obtain the $T-x_{1}-y_{1}$ diagram we assign values for the liquid mole fraction x_{1}. Total pressure is

$$
P=\gamma_{1} x_{1} P_{1}^{S}+\gamma_{2} x_{2} P_{2}^{S}
$$

or

$$
\begin{equation*}
P_{1}^{s}=\frac{P}{\gamma_{1} x_{1}+\gamma_{1} x_{1} \frac{P_{2}^{s}}{P_{1}^{s}}} \tag{5}
\end{equation*}
$$

To start the calculation we make an initial estimate of the temperature:

$$
\begin{equation*}
T=x_{1} T_{1}^{S}+x_{2} T_{2}^{s} \tag{6}
\end{equation*}
$$

For example, let us fix $x_{1}=0.5: T=0.5 \times 387.26+0.5 \times 415.59=401.42 \mathrm{~K}$
With this temperature we obtain P_{1}^{s} and P_{2}^{s} from Eq. (3), the pure-component vapor pressure equations: $P_{1}^{s}=47.243 \mathrm{kPa}$ and $P_{2}^{s}=17.918 \mathrm{kPa}$ Because we fixed x_{1}, Eqs. (2) give $\gamma_{1}=\exp \left(-2.1 \times 0.5^{2}\right)=0.592$ and $\gamma_{2}=0.592$.

Next we recalculate $P_{1}^{S}=73.482 \mathrm{kPa}$ from Eq. (5), which in turn gives a new temperature, $T=416.34 \mathrm{~K}$, from the pure cyclohexanone vapor pressure equation.

The sequence of calculations is now repeated for this new temperature (we assume here that activity coefficients are independent of temperature), yielding:

$$
\begin{aligned}
& P_{2}^{s}=30.786 \mathrm{kPa} ; P_{1}^{s}=71.426 \mathrm{kPa} \\
& \text { [from Eq.(5)] } \\
& T_{1}^{s}=415.34 \mathrm{~K} \quad[\text { from Eq.(6) }] \\
& \text { • } \\
& \text { • } \\
& \text { • } \\
& P_{1}^{s}=71.552 \mathrm{kPa} ; \quad T_{1}^{s}=415.40 \mathrm{~K} ; \quad P_{2}^{s}=29.798 \mathrm{kPa}
\end{aligned}
$$

After these values, the change in temperature is small and therefore additional iterations leads to no significant further change in the remaining values.

We can now calculate the vapor phase mole fraction from

$$
y_{1}=\frac{x_{1} \gamma_{1} P_{1}^{s}}{P}=\frac{(0.5) \times(0.592) \times(71.552)}{30}=0.706
$$

The whole process is repeated for a new liquid mole fraction.
The following figure shows the computed $T-x_{1}-y_{1}$ diagram for this system at 30 kPa .

Similarly, with the data calculated we can easily draw the corresponding $y_{1}-x_{1}$ diagram, shown in the figure below.

As both figures show, this system has an azeotrope at $T^{\mathrm{az}} \approx 421 \mathrm{~K}$ and for the composition $x_{1}^{\mathrm{az}} \approx 0.3$.
7. Assume $g^{E}=A x_{1} x_{2}$, where A is a function of temperature. Then,

$$
R T \ln \gamma_{1}^{\infty}=R T \ln \gamma_{2}^{\infty}=A
$$

But

$$
\ln \gamma_{1}^{\infty}=0.15+\frac{10}{T-273}=\frac{A}{R T}
$$

Because

$$
\begin{aligned}
& \frac{\partial\left(g^{E} / T\right)}{\partial T}=\frac{-h^{E}}{T^{2}} \\
& \frac{\partial\left(g^{E} / T\right)}{\partial T}=\frac{-10 R x_{1} x_{2}}{(T-273)^{2}}=\frac{-h^{E}}{T^{2}}
\end{aligned}
$$

At $x_{1}=x_{2}=0.5$ and $T=333 \mathrm{~K}$,

$$
h^{E}=\Delta_{\text {mix }} h=641 \mathbf{J ~ m o l}^{-1}
$$

8.

a) From the equation for \bar{H}_{w} we can obtain the infinite dilution partial molar enthalpy of water in sulfuric acid solutions at 293 K and 1 bar as:

$$
\bar{H}_{w}^{\infty}=\lim _{x_{w} \rightarrow 0} \bar{H}_{w}=\lim _{x_{A} \rightarrow 1} \bar{H}_{w}=-41.44 \mathbf{k J ~ m o l}^{-1}
$$

b) The mixing process is schematically shown below.

Taking the liquid in the vessel as the system, a first law balance gives for this flow process:

$$
d U=d Q+d W+H_{A} d n_{A}+H_{w} d n_{w}
$$

where work W is $d W=-P d V$, done on environment by the rising liquid level, under constant pressure.

Then,

$$
d(U+P V)=d H=d Q+H_{A} d n_{A}+H_{w} d n_{w}
$$

Integrating between initial state (empty vessel) and final state (full vessel), because $H_{A}=H_{A}(T, P)$ of the pure acid and $H_{w}=H_{w}(T, P)$ of the pure water are constant, we obtain

$$
H=Q+n_{A} H_{A}+n_{w} H_{w} \quad \text { or } \quad Q=H-n_{A} H_{A}-n_{w} H_{w}
$$

But $H=n_{A} \bar{H}_{A}+n_{w} \bar{H}_{w}$, and the equation above becomes

$$
\begin{equation*}
Q=n_{A}\left(\bar{H}_{A}-H_{A}\right)+n_{w}\left(\bar{H}_{w}-H_{w}\right)=n_{A} \Delta \bar{H}_{A}+n_{w} \Delta \bar{H}_{w}=\Delta H \tag{1}
\end{equation*}
$$

where $n_{A}=1 \mathrm{~mol}$ and $n_{w}=2 \mathrm{~mol}$ in the final state.
In Eq. (1), the quantity $\left(\bar{H}_{w}-H_{w}\right)$ is given by the equation given in the data, because the reference state in that equation has been chosen to be pure water at system T and P :

$$
\begin{equation*}
\bar{H}_{w}-H_{w}=-\frac{134 x_{A}^{2}}{\left(1+0.7983 x_{A}\right)^{2}} \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{2}
\end{equation*}
$$

We need now to calculate the quantity $\left(\bar{H}_{A}-H_{A}\right)$, knowing $\left(\bar{H}_{w}-H_{w}\right)$. This can be done by using the Gibbs-Duhem equation.

At constant T and P :

$$
\begin{equation*}
x_{A} d \bar{H}_{A}+x_{w} d \bar{H}_{w}=0 \quad \Rightarrow \quad d \bar{H}_{A}=-\frac{x_{w}}{x_{A}} d \bar{H}_{w}=-\frac{1-x_{A}}{x_{A}} d \bar{H}_{w} \tag{3}
\end{equation*}
$$

Differentiating Eq. (2), at constant T and P, we obtain:

$$
\begin{align*}
d \bar{H}_{w} & =\left(-134 \mathrm{~kJ} \mathrm{~mol}^{-1}\right) \times \frac{2 x_{A}\left(1+0.7983 x_{A}\right)^{2}-2(0.7983) x_{A}^{2}\left(1+0.7983 x_{A}\right)}{\left(1+0.7983 x_{A}\right)^{4}} d x_{A} \tag{4}\\
& =\frac{-268 x_{A}}{\left(1+0.7983 x_{A}\right)^{3}} d x_{A} \quad\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
\end{align*}
$$

Therefore, from Eqs. (3) and (4),

$$
\begin{equation*}
d \bar{H}_{A}=\frac{268\left(1-x_{A}\right)}{\left(1+0.7983 x_{A}\right)^{3}} d x_{A} \quad\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{5}
\end{equation*}
$$

Integrating Eq. (5) between composition x_{A} and composition $x_{A}=1$ (pure acid) gives

$$
\begin{align*}
\bar{H}_{A}-\bar{H}_{A}\left(x_{A}\right. & =1)=\bar{H}_{A}-H_{A}=\int_{1}^{x_{A}} \frac{268\left(1-x_{A}\right)}{\left(1+0.7983 x_{A}\right)^{3}} d x_{A} \tag{6}\\
& =\left[\frac{335.71(x-0.1263)}{\left(1+0.7983 x_{A}\right)^{2}}\right]_{1}^{x_{A}}=\frac{-74.51\left(1-x_{A}\right)^{2}}{\left(1+0.7983 x_{A}\right)^{2}} \quad(\mathrm{~kJ} \mathrm{~mol})^{-1}
\end{align*}
$$

We can now calculate the heat load Q in Eq. (1). Setting $n=n_{A}+n_{w}=3 \mathrm{~mol}$, and using Eqs. (2) and (6) in (1),

$$
\begin{align*}
Q & =n\left[\frac{-74.51 x_{A}\left(1-x_{A}\right)^{2}}{\left(1+0.7983 x_{A}\right)^{2}}-\frac{134 x_{A}^{2}\left(1-x_{A}\right)}{\left(1+0.7983 x_{A}\right)^{2}}\right] \\
& =n\left[\frac{-74.51 x_{A}\left(1-x_{A}\right)\left(1-x_{A}+1.7983 x_{A}\right)}{\left(1+0.7983 x_{A}\right)^{2}}\right] \tag{7}\\
& =n\left[\frac{-74.51 x_{A}\left(1-x_{A}\right)}{1+0.7983 x_{A}}\right] \quad\left(\mathrm{kJ} \mathrm{~mol}^{-1}\right)
\end{align*}
$$

Substitution of $n=3 \mathrm{~mol}$ and $x_{A}=1 / 3$ gives the desired heat load:

$$
Q=-39.23 \mathrm{~kJ}
$$

Q is negative because heat is removed from the system.
9.
a) Yes, it's possible. Slight positive deviations merely mean that the physical interaction between SO_{2} and $\mathrm{C}_{4} \mathrm{H}_{8}$ makes a larger contribution to the excess Gibbs energy than does the chemical interaction.
b)

$$
g_{\mathrm{SO}_{2}-\text { isobutene }}^{E}>g_{\mathrm{SO}_{2}-n \text {-butene-2 }}^{E}
$$

because the tendency to complex (which tends to make g^{E} negative) is stronger with n-butene- 2 . Steric hindrance in isobutene is larger than in n-butene-2.
10. The suggested procedure is to integrate numerically a suitable form of the Gibbs-Duhem equation.

At low pressures, we may write the Gibbs-Duhem equation:

$$
\frac{x_{1}}{\gamma_{1}}\left(\frac{\partial \gamma_{1}}{\partial x_{1}}\right)_{T}+\frac{x_{2}}{\gamma_{2}}\left(\frac{\partial \gamma_{2}}{\partial x_{2}}\right)_{T}=0
$$

By assuming ideal-gas behavior,

$$
\begin{aligned}
& \gamma_{1}=\frac{y_{1} P}{x_{1} P_{1}^{s}}=\frac{P_{1}}{x_{1} P_{1}^{s}} \\
& \frac{\partial \gamma_{1}}{\partial x_{1}}=\frac{1}{x_{1} P_{1}^{s}}\left(\frac{\partial P_{1}}{\partial x_{1}}\right)-\frac{P_{1}}{x_{1}^{2} P_{1}^{s}}
\end{aligned}
$$

Similarly,

$$
\frac{\partial \gamma_{2}}{\partial x_{1}}=-\frac{1}{x_{2} P_{2}^{s}}\left(\frac{\partial P_{2}}{\partial x_{2}}\right)+\frac{P_{2}}{x_{2}^{2} P_{2}^{s}}
$$

Substituting we find

$$
\frac{x_{1}}{P_{1}} \frac{\partial P_{1}}{\partial x_{1}}=\frac{x_{2}}{P_{2}} \frac{\partial P_{2}}{\partial x_{2}}
$$

Because $P=P_{1}+P_{2}, d P=d P_{1}+d P_{2}$, then

$$
\frac{\partial P_{2}}{\partial x_{2}}=\frac{\partial P}{\partial x_{2}}\left[\frac{1}{1-\frac{x_{2} P_{1}}{x_{1} P_{2}}}\right]
$$

In different form:

$$
\frac{\Delta P_{2}}{\Delta x_{2}}=\frac{1}{1-\frac{x_{2} P_{1}}{x_{1} P_{2}}} \frac{\Delta P}{\Delta x_{2}}
$$

For $P-x$ data, we choose a small Δx_{2} (say 0.05) and integrate to find ΔP_{2} and thus P_{2}. We obtain P_{1} by difference: $P_{1}=P-P_{2}$.

This method is described by Boissanas, quoted in Prigogine and Defay, Chemical Thermodynamics, page 346. It gives good agreement with experimental partial-pressure data for this particular system.
11. For a binary system, the Wilson equation gives

$$
\begin{align*}
& \ln \gamma_{1}=-\ln \left(x_{1}+x_{2} \Lambda_{12}\right)+x_{2}\left[\frac{\Lambda_{12}}{x_{1}+\Lambda_{12} x_{2}}-\frac{\Lambda_{21}}{x_{2}+x_{1} \Lambda_{21}}\right] \tag{1}\\
& \ln \gamma_{2}=-\ln \left(x_{2}+x_{1} \Lambda_{21}\right)-x_{1}\left[\frac{\Lambda_{12}}{x_{1}+x_{2} \Lambda_{12}}-\frac{\Lambda_{21}}{x_{2}+x_{1} \Lambda_{21}}\right] \tag{2}
\end{align*}
$$

At infinite dilution these equations become

$$
\begin{align*}
& \ln \gamma_{1}^{\infty}=-\ln \Lambda_{12}+\left(1-\Lambda_{21}\right) \tag{3}\\
& \ln \gamma_{2}^{\infty}=-\ln \Lambda_{21}-\left(\Lambda_{12}-1\right) \tag{4}
\end{align*}
$$

For $\gamma_{1}^{\infty}=12.0, \gamma_{2}^{\infty}=3.89$, solve Eqs. (3) and (4) to find,

$$
\begin{aligned}
& \Lambda_{21}=0.6185 \\
& \Lambda_{12}=0.1220
\end{aligned}
$$

Assuming ideal-gas behavior and neglecting Poynting correction, we may write:

$$
\begin{gather*}
y_{1} P=x_{1} \gamma_{1} P_{1}^{s} \tag{5}\\
y_{2} P=x_{2} \gamma_{2} P_{2}^{s} \tag{6}\\
P=x_{1} \gamma_{1} P_{1}^{s}+x_{2} \gamma_{2} P_{2}^{s} \tag{7}
\end{gather*}
$$

From Perry's, the saturation pressures at $45^{\circ} \mathrm{C}$ are:

$$
\begin{aligned}
& P_{1}^{s}=0.188 \mathrm{bar} \\
& P_{2}^{s}=0.0958 \mathrm{bar}
\end{aligned}
$$

To construct the $P-x-y$ diagram:

1. Choose x_{1} (or x_{2})
2. Calculate y_{1} (or y_{2}) from Eq. (5) and using Eqs. (1) and (2)
3. Calculate P from Eq. (7).
4. The solution procedure would be:
5. Find P_{1}^{s} and P_{2}^{s} at each T.
6. At this low pressure, assume ideal-gas behavior and neglect Poynting correction:

$$
\begin{aligned}
& y_{1} P=x_{1} \gamma_{1} P_{1}^{S} \\
& y_{2} P=x_{2} \gamma_{2} P_{2}^{s}
\end{aligned}
$$

For γ 's use the Wilson equation with two parameters: Λ_{12} and Λ_{21}. Assume that $\left(\lambda_{11}-\lambda_{12}\right)$ and $\left(\lambda_{22}-\lambda_{12}\right)$ are independent of temperature.
Λ_{12} and Λ_{21} are, however, temperature-dependent as given by Eqs. (6-107) and (6-108).
3. Assume value of $\left(\lambda_{11}-\lambda_{12}\right)$ and $\left(\lambda_{22}-\lambda_{12}\right)$ and calculate the total pressure:

$$
P_{\text {calc }}=x_{1} \gamma_{1} P_{1}^{S}+x_{2} \gamma_{2} P_{2}^{S}
$$

4. Repeat; assuming new values. Keep repeating until $P_{\text {calc }}$ is very close to 0.5 bar for every point; that is until

$$
\sum_{i=1}^{n}\left(P_{\text {calc }}-P\right)^{2} \text { is a minimum }
$$

where n is the number of data points.
13.
a) 2-Butanone:

Cyclohexane:

$$
\left(\mathrm{CH}_{2}\right)_{6}
$$

6 groups $\mathrm{CH}_{2}: R=0.6744 ; Q=0.540$

Molecule	Group	Number	R	Q
2-Butanone	$\mathrm{CH}_{3} \mathrm{CO}$	1	1.6724	1.488
	CH_{3}	1	0.9011	0.848
	CH_{2}	1	0.6744	0.540
Cyclohexane	CH_{2}	6	0.6744	0.540

b) We use UNIFAC activity coefficient equations to calculate γ_{1} and γ_{2} for the equimolar mixture at $75^{\circ} \mathrm{C}$ (for a detailed example of a similar UNIFAC calculation see Chapter 8 of The Prop-
erties of Gases and Liquids by R.C. Reid, J.M. Prausnitz, B. E Poling (4 ${ }^{\text {th }}$. Ed., McGraw-Hill, 1988).

We obtain:

$$
\begin{aligned}
& \ln \gamma_{1}=\ln \gamma_{1}^{\mathrm{comb}}+\ln \gamma_{1}^{\mathrm{res}}=0.01228+0.2595=0.27238 \quad \Rightarrow \gamma_{1}=1.31 \\
& \ln \gamma_{2}=\ln \gamma_{2}^{\mathrm{comb}}+\ln \gamma_{2}^{\mathrm{res}}=0.01415+0.3420=0.35615 \quad \Rightarrow \quad \gamma_{2}=1.43
\end{aligned}
$$

c) Using UNIFAC we can calculate the activity coefficients as a function of composition at $75^{\circ} \mathrm{C}$.

Total pressure is calculated from

$$
P=x_{1} \gamma_{1} P_{1}^{S}+x_{2} \gamma_{2} P_{2}^{S}
$$

and the vapor-phase composition from

$$
y_{1}=\frac{x_{1} \gamma_{1} P_{1}^{S}}{P}
$$

Using Antoine vapor pressure equations at $75^{\circ} \mathrm{C}$, we obtain for 2-butanone $P_{1}^{s}=0.8695$ bar and for cyclohexane $P_{2}^{s}=0.8651 \mathrm{bar}$.

The following figures show the calculated results in the form of $P-x_{1}-y_{1}$ and $y_{1}-x_{1}$ diagrams.

The table below shows the calculated activity coefficients from UNIFAC, vapor composition and total pressure.

x_{1}	γ_{1}	γ_{2}	y_{1}	$P /$ bar
0	4.38	1.00	0	0.8511
0.2	2.27	1.07	0.351	1.124
0.4	1.51	1.27	0.447	1.175
0.5	1.32	1.42	0.485	1.178
0.6	1.18	1.62	0.528	1.169
0.8	1.04	2.19	0.660	1.096
1.0	1.00	3.10	1.0	0.8695

Comparison of the calculated γ 's in this table with those given in the data, indicate that the latter are actually UNIFAC predictions and not experimental data. In the tables, at $x_{1}=0$ and x_{1} $=1$ the activity coefficients listed are, respectively, γ_{1}^{∞} and γ_{2}^{∞}. UNIFAC predicts $\gamma_{1}^{\infty}=4.38$, which compares well with the experimental ebulliometry data at $77.6^{\circ} \mathrm{C}, \gamma_{1}^{\infty}=3.70$.
14. The UNIQUAC equation is

$$
g^{E}=g_{\text {combinatorial }}^{E}+g_{\text {residual }}^{E}
$$

$$
\begin{aligned}
& \frac{g_{\mathrm{comb}}^{E}}{R T}=x_{1} \ln \frac{\Phi_{1}}{x_{1}}+x_{2} \ln \frac{\Phi_{2}}{x_{2}}+\frac{z}{2}\left(x_{1} q_{1} \ln \frac{\theta_{1}}{\Phi_{1}}+x_{2} q_{2} \ln \frac{\theta_{2}}{\Phi_{2}}\right) \\
& \frac{g_{\text {res }}^{E}}{R T}=-x_{1} q_{1} \ln \left(\theta_{1}+\theta_{2} \tau_{21}\right)-x_{2} q_{2} \ln \left(\theta_{2}+\theta_{1} \tau_{12}\right) \\
& \Phi_{1}=\frac{x_{1} r_{1}}{x_{1} r_{1}+x_{2} r_{2}} \\
& \theta_{1}=\frac{x_{1} q_{1}}{x_{1} q_{1}+x_{2} q_{2}} \\
& \tau_{12}=\exp \left(-\frac{a_{12}}{T}\right)
\end{aligned} \tau_{21}=\exp \left(-\frac{a_{21}}{T}\right) 8
$$

The condition for instability of a binary liquid mixture is

$$
\begin{equation*}
\left(\frac{\partial^{2} \Delta_{\operatorname{mix}} g}{\partial x^{2}}\right)_{P, T}<0 \tag{1}
\end{equation*}
$$

where $\Delta_{\text {mix }} g$ is the molar change in Gibbs energy upon mixing, or

$$
\left(\frac{\partial^{2} g^{E}}{\partial x_{1}^{2}}\right)_{P, T}+R T\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}\right)<0
$$

Incipient instability occurs at

$$
\left(\frac{\partial^{2} \Delta_{\operatorname{mix}} g}{\partial x^{2}}\right)_{P, T}=0
$$

and

$$
\left(\frac{\partial^{3} \Delta_{\operatorname{mix}} g}{\partial x^{3}}\right)_{P, T}=0
$$

Given x_{1}, x_{2} and all parameters, we could determine if Eq. (1) is satisfied. However, the procedure is long and tedious. It is easier to graph $\Delta_{\text {mix }} g$ over the composition range and to look for inflection points.

For the data given, phase separation occurs at $-40^{\circ} \mathrm{C}$.

15. If the two curves cross $\Delta_{\text {mix }} g / R T$ is zero because

$$
\Delta_{\text {mix }} g=\Delta_{\text {mix }} h-T \Delta_{\text {mix }} s
$$

This is not possible, because $\Delta_{\text {mix }} g$ must always be negative for two liquids to be miscible.
16. To relate γ_{i}^{∞} to $H_{i, j}$:

$$
\gamma_{i}=\frac{f_{i}}{x_{i} f_{i}^{0}}
$$

then,

$$
\gamma_{i}^{\infty}=\lim _{x_{i} \rightarrow 0}\left(\frac{f_{i}}{x_{i} f_{i}^{0}}\right)=\frac{1}{f_{i}^{0}} \lim \left(\frac{f_{i}}{x_{i}}\right)=\frac{H_{i, j}}{f_{i}^{0}}
$$

Assuming $f_{i}^{0} \cong P_{i}^{s}$,

$$
\gamma_{i}^{\infty}=\frac{H_{i, j}}{P_{i}^{s}}
$$

then,

$$
\begin{aligned}
& \gamma_{1}^{\infty}=\frac{H_{1,2}}{P_{1}^{s}}=\frac{2}{1.07}=1.869 \\
& \gamma_{2}^{\infty}=\frac{H_{2,1}}{P_{2}^{s}}=\frac{1.6}{1.33}=1.203
\end{aligned}
$$

Using the van Laar equations,

$$
\begin{aligned}
& \ln \gamma_{1}=\frac{A^{\prime}}{\left(1+\frac{A^{\prime}}{B^{\prime}} \frac{x_{1}}{x_{2}}\right)^{2}} \\
& \ln \gamma_{2}=\frac{B^{\prime}}{\left(1+\frac{B^{\prime}}{A^{\prime}} \frac{x_{2}}{x_{1}}\right)^{2}}
\end{aligned}
$$

we get

$$
\begin{aligned}
& \ln \gamma_{1}^{\infty}=A^{\prime}=0.625 \\
& \ln \gamma_{2}^{\infty}=B^{\prime}=0.185
\end{aligned}
$$

To solve for vapor composition (assuming ideal vapor and neglecting Poynting corrections),

$$
\begin{aligned}
& y_{1} P=x_{1} \gamma_{1} P_{1}^{S} \\
& y_{2} P=x_{2} \gamma_{2} P_{2}^{S} \\
& P=y_{1} P+y_{2} P
\end{aligned}
$$

At $x_{1}=x_{2}=0.5$,

$$
\begin{array}{lll}
\ln \gamma_{1}=\frac{0.625}{\left(1+\frac{0.625}{0.185}\right)^{2}}=0.033 & \Rightarrow & \gamma_{1}=1.033 \\
\ln \gamma_{2}=\frac{0.185}{\left(1+\frac{0.185}{0.625}\right)^{2}}=0.110 & \Rightarrow & \gamma_{2}=1.116
\end{array}
$$

Therefore,

$$
\begin{aligned}
& y_{1} P=(0.5) \times(1.033) \times(1.07)=0.55 \mathrm{bar} \\
& y_{2} P=(0.5) \times(1.116) \times(1.33)=0.74 \mathrm{bar} \\
& P=0.55+0.74=1.29 \mathrm{bar} \\
& y_{1}=0.55 / 1.29=\mathbf{0 . 4 2 6} \\
& y_{2}=\mathbf{0 . 5 7 4}
\end{aligned}
$$

17. To estimate the vapor-phase composition, assume ideal vapor:

$$
y_{i} P=x_{i} \gamma_{i} P_{i}^{s} \quad(i=1,2,3)
$$

Then,

$$
P=y_{1} P+y_{2} P+y_{3} P
$$

To find the activity coefficients, assume that $g^{E} / R T$ is given by a sum of Margules terms [Eq. (6-149)]. Then,

$$
\begin{align*}
& \ln \gamma_{1}=A_{12}^{\prime} x_{2}^{2}+A_{13}^{\prime} x_{3}^{2}+\left(A_{12}^{\prime}+A_{13}^{\prime}-A_{23}^{\prime}\right) x_{2} x_{3} \tag{1}\\
& \ln \gamma_{2}=A_{12}^{\prime} x_{1}^{2}+A_{23}^{\prime} x_{3}^{2}+\left(A_{12}^{\prime}+A_{23}^{\prime}-A_{13}^{\prime}\right) x_{1} x_{3} \tag{2}\\
& \ln \gamma_{3}=A_{13}^{\prime} x_{1}^{2}+A_{23}^{\prime} x_{2}^{2}+\left(A_{13}^{\prime}+A_{23}^{\prime}-A_{12}^{\prime}\right) x_{1} x_{2} \tag{3}
\end{align*}
$$

We can find $A_{12}^{\prime}, A_{13}^{\prime}, A_{23}^{\prime}$ from binary data.

From (1-2) binary:

$$
\begin{aligned}
\ln \gamma_{1}^{\infty} & =\frac{A}{R T}=\ln (1.3)=0.262 \\
A_{12}^{\prime} & =0.262 \quad \text { at } \quad 320 \mathrm{~K}
\end{aligned}
$$

At $300 \mathrm{~K}, A_{12}^{\prime}=(0.262) \times\left(\frac{320}{300}\right)=0.280$ (assuming regular solution).
From (1-3) binary:

$$
\begin{aligned}
& \text { At azeotrope } x_{1}=y_{1}, x_{3}=y_{3} \\
& \qquad \begin{array}{l}
y_{1} P=x_{1} \gamma_{1} P_{1}^{s} \\
y_{3} P=x_{3} \gamma_{3} P_{3}^{s} \\
\gamma_{1}=\gamma_{3}=P / P_{1}^{s}=1.126 \\
\ln \gamma_{1}=\frac{A}{R T} x_{2}^{3}
\end{array}
\end{aligned}
$$

At $x_{3}=0.5, \frac{A}{R T}=A_{13}^{\prime}=0.475$.

From (2-3) binary:

$$
\ln \gamma_{2}=\frac{A}{R T} x_{3}^{2}
$$

At incipient instability,

$$
\frac{A}{R T^{c}}=2
$$

or

$$
\begin{aligned}
& \frac{A}{R}=2 T^{c} \\
& \frac{A}{R T}=\left(\frac{A}{R T^{c}}\right)\left(\frac{T^{c}}{T}\right)=(2) \times\left(\frac{270}{300}\right)=1.80 \\
& A_{23}=1.80
\end{aligned}
$$

With $x_{1}=x_{2}=x_{3}$, from Eqs. (1), (2) and (3):

$$
\begin{aligned}
& \ln \gamma_{1}=-0.0322 \quad \Rightarrow \quad \gamma_{1}=0.968 \\
& \ln \gamma_{2}=0.409 \quad \Rightarrow \quad \gamma_{1}=1.506 \\
& \ln \gamma_{3}=0.475 \quad \Rightarrow \quad \gamma_{1}=1.607 \\
& y_{1} P=(1 / 3) \times(0.968) \times(0.533)=0.172 \mathrm{bar} \\
& y_{2} P=(1 / 3) \times(1.506) \times(0.400)=0.201 \mathrm{bar} \\
& y_{3} P=(1 / 3) \times(1.607) \times(0.533)=0.286 \mathrm{bar} \\
& P=0.172+0.201+0.286=0.659 \mathrm{bar}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& y_{1}=0.261 \\
& y_{2}=0.305 \\
& y_{3}=0.434
\end{aligned}
$$

18. Using the 3 -suffix Margules equation,

$$
g^{E} / R T=x_{1} x_{2}\left[A+B\left(x_{1}-x_{2}\right)\right]
$$

we obtain

$$
\begin{aligned}
& \ln \gamma_{1}=(A+3 B) x_{2}^{2}-4 B x_{2}^{3} \\
& \ln \gamma_{2}=(A-3 B) x_{1}^{2}+4 B x_{1}^{3}
\end{aligned}
$$

At infinite dilution,

$$
\begin{aligned}
& \ln \gamma_{1}^{\infty}=A-B \\
& \ln \gamma_{2}^{\infty}=A+B
\end{aligned}
$$

which gives

$$
A=1.89
$$

$$
B=-0.34
$$

For instability to occur,

$$
\left(\frac{\partial^{2} g^{E}}{\partial x_{1}^{2}}\right)_{P, T}+R T\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}\right)<0
$$

Rewriting g^{E} as

$$
\begin{aligned}
& g^{E}=R T\left[(A-B) x_{1}-(A-3 B) x_{1}^{2}-2 B x_{1}^{3}\right] \\
& \frac{\partial g^{E}}{\partial x_{1}}=R T\left[(A-B)-2(A-3 B) x_{1}-6 B x_{1}^{2}\right] \\
& \frac{\partial^{2} g^{E}}{\partial x_{1}^{2}}=R T\left[-2(A-3 B)-12 B x_{1}\right]
\end{aligned}
$$

Thus, the condition for instability (at constant T) is:

$$
R T\left[-2 A+6 B-12 B x_{1}+\frac{1}{x_{1}}+\frac{1}{1-x_{1}}\right]<0
$$

Finding the zeros of the function in brackets,

$$
x_{1}=0.421 \text { and } x_{1}=0.352 \text { in the range } 0<x_{1}<1 .
$$

Thus, instability at T is in the range

$$
0.352<x_{1}<0.421
$$

19.

a) At the azeotrope

$$
\left(\frac{\partial P}{\partial x_{A}}\right)_{T}=0
$$

With $g^{E} / R T$ of the form $g^{E} / R T=A x_{A} x_{B}$,

$$
\begin{aligned}
& \ln \gamma_{A}=A x_{B}^{2} \\
& \ln \gamma_{B}=A x_{A}^{2}
\end{aligned}
$$

Assuming an ideal vapor phase,

$$
\begin{gathered}
y_{A} P=x_{A} \gamma_{A} P_{A}^{S} \\
y_{B} P=x_{B} \gamma_{B} P_{B}^{S} \\
P=x_{A} \gamma_{A} P_{A}^{S}+x_{B} \gamma_{B} P_{B}^{S} \\
P=x_{A} \exp \left(A x_{B}^{2}\right) P_{A}^{S}+x_{B} \exp \left(A x_{A}^{2}\right) P_{B}^{S} \\
\left(\frac{\partial P}{\partial x_{A}}\right)=P_{A}^{S} \exp \left(A x_{B}^{2}\right)\left(1-2 x_{A} x_{B} A\right)+P_{B}^{S} \exp \left(A x_{A}^{2}\right)\left(-1+2 x_{B} x_{A} A\right)=0 \\
P_{A}^{S} \exp \left(A x_{B}^{2}\right)=P_{B}^{S} \exp \left(A x_{A}^{2}\right) \\
A x_{B}^{2}=\ln \left(P_{B}^{S} / P_{A}^{S}\right)+A x_{A}^{2}
\end{gathered}
$$

At $30^{\circ} \mathrm{C}$,

$$
P_{A}^{S}=0.235 \mathrm{bar} ; \quad P_{B}^{S}=0.658 \mathrm{bar} ; \quad A=0.415
$$

Then, $x_{A}=0.30$.

At $50^{\circ} \mathrm{C}$,

$$
P_{A}^{S}=0.539 \text { bar; } \quad P_{B}^{S}=0.658 \text { bar; } \quad A=0.415
$$

Then $x_{A}=0.26$.

At $70^{\circ} \mathrm{C}$,

$$
P_{A}^{S}=1.119 \mathrm{bar} ; \quad P_{B}^{S}=1.367 \mathrm{bar} ; \quad A=0.330
$$

Then $x_{A}=0.20$.
b) Assuming ideal vapor,

$$
\begin{aligned}
& \gamma_{A}=y_{A} P / x_{A} P_{A}^{S} \\
& \gamma_{B}=y_{A} P / x_{B} P_{B}^{S}
\end{aligned}
$$

At azeotrope, $x_{A}=y_{A}, x_{B}=y_{B}$. Then

$$
\begin{aligned}
& \gamma_{A}=P / P_{A}^{S} \\
& \gamma_{B}=P / P_{B}^{S}
\end{aligned}
$$

Taking the ratio

$$
\begin{aligned}
\gamma_{A} / \gamma_{B} & =P_{B}^{S} / P_{A}^{S} \\
\ln \left(\gamma_{A} / \gamma_{B}\right) & =\ln P_{B}^{S}-\ln P_{A}^{S} \\
& =12.12-\frac{4050}{T}-11.92+\frac{4050}{T} \\
& =0.20
\end{aligned}
$$

Because

$$
\begin{gathered}
\ln \gamma_{A}=A x_{B}^{2} \quad \text { and } \quad \ln \gamma_{B}=A x_{A}^{2}, \\
\ln \left(\gamma_{A} / \gamma_{B}\right)=A\left(x_{B}^{2}-x_{A}^{2}\right)=0.2 \\
A=\frac{1}{5-10 x_{A}} \quad \text { because } 0<x_{A}<1
\end{gathered}
$$

If $|\mathrm{A}|>0.2$ there is an azeotrope.
The pure component boiling points are:

$$
\begin{aligned}
& t_{b}^{A}=67^{\circ} \mathrm{C} \\
& t_{b}^{B}=61^{\circ} \mathrm{C}
\end{aligned}
$$

In the range $61^{\circ} \mathrm{C}<t<67^{\circ} \mathrm{C}, A$ is always larger than 0.2 . Therefore, the azeotrope exists.
c) The enthalpy of mixing equation cannot be totally consistent since the expression for g^{E} is quadratic in mole fraction and the expression for $\Delta_{\text {mix }} h$ is cubic. However, they may be close. To check this, we use the Gibbs-Helmholtz equation:

$$
\begin{gathered}
\frac{\partial g^{E} / R T}{\partial T}=\frac{-h^{E}}{R T^{2}} \\
\frac{g^{E}}{R T}=A(T) x_{A} x_{B} \\
\frac{\partial g^{E} / R T}{\partial T}=x_{A} x_{B} \frac{\partial A}{\partial T} \cong x_{A} x_{B}(-0.00425)
\end{gathered}
$$

Because $h^{E}=\Delta_{\text {mix }} h$,

$$
\frac{\Delta_{\text {mix }} h^{(1)}}{R T}=(323) \times(0.00425) x_{A} x_{B}=1.373 x_{A} x_{B}
$$

The other data indicate

$$
\frac{\Delta_{\text {mix }} h^{(2)}}{R T}=\left(1.020+0.112 x_{A}\right) x_{A} x_{B}
$$

Looking at selected values:

x_{A}	$\Delta_{\text {mix }} h^{(1) / R T}$	$\Delta_{\text {mix }} h^{(2)} / R T$
0.1	0.123	0.093
0.2	0.220	0.167
0.3	0.288	0.221
0.4	0.330	0.256
0.5	0.343	0.269
0.6	0.330	0.261
0.7	0.288	0.231
0.8	0.220	0.178
0.9	0.123	0.101

The above shows the degree of inconsistency of the two sets of data.

C H A P T E R 7

1. Using regular-solution theory and data for A in CS_{2} we find the solubility parameter for A . Then, we predict vapor-liquid equilibria for the A /toluene system.

Let B refer to toluene and C refer to CS_{2}. From regular-solution theory,

$$
R T \ln \gamma_{\mathrm{A}}=v_{\mathrm{A}} \Phi_{\mathrm{C}}^{2}\left(\delta_{\mathrm{A}}-\delta_{\mathrm{C}}\right)^{2} \quad\left(\text { for } \mathrm{A} \text { in } \mathrm{CS}_{2}\right)
$$

Further, assuming ideal vapor phase, we have

$$
\begin{gathered}
y_{\mathrm{A}} P=P_{\mathrm{A}}=x_{\mathrm{A}} \gamma_{\mathrm{A}} P_{\mathrm{A}}^{S} \\
\gamma_{\mathrm{A}}=\frac{8}{(0.5) \times(13.3)}=1.203
\end{gathered}
$$

or

$$
\ln \gamma_{\mathrm{A}}=0.185
$$

Then,

$$
\delta_{\mathrm{A}}-\delta_{\mathrm{C}}= \pm\left[\frac{R T \ln \gamma_{\mathrm{A}}}{v_{\mathrm{A}}}\right]^{1 / 2} \frac{1}{\Phi_{\mathrm{C}}}
$$

with

$$
\begin{gathered}
v_{\mathrm{A}}=200 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \quad \text { and } \quad \Phi_{\mathrm{C}}=0.234 \\
\delta_{\mathrm{A}}-\delta_{\mathrm{C}}= \pm 6.30\left(\mathrm{~J} \mathrm{~cm}^{-3}\right)^{1 / 2}
\end{gathered}
$$

For liquid hydrocarbons, δ is approximately $12-18\left(\mathrm{~J} \mathrm{~cm}^{-3}\right)^{1 / 2}$. Therefore, we take the smaller value.

For A in toluene,

$$
R T \ln \gamma_{\mathrm{A}}=v_{\mathrm{A}} \Phi_{\mathrm{B}}^{2}\left(\delta_{\mathrm{A}}-\delta_{\mathrm{B}}\right)^{2}
$$

or

$$
\begin{gathered}
\gamma_{\mathrm{A}}=1.18 \\
R T \ln \gamma_{\mathrm{B}}=v_{\mathrm{B}} \Phi_{\mathrm{A}}^{2}\left(\delta_{\mathrm{A}}-\delta_{\mathrm{B}}\right)^{2}
\end{gathered}
$$

or

$$
\gamma_{\mathrm{B}}=1.37
$$

For ideal vapor,

$$
P=P_{\mathrm{A}}+P_{\mathrm{B}}=x_{\mathrm{A}} \gamma_{\mathrm{A}} P_{\mathrm{A}}^{s}+x_{\mathrm{B}} \gamma_{\mathrm{B}} P_{\mathrm{B}}^{s}=25.3 \mathrm{kPa}
$$

Hence,

$$
\begin{aligned}
& y_{\mathrm{A}}=0.31 \\
& \boldsymbol{y}_{\mathbf{B}}=\mathbf{0 . 6 9}
\end{aligned}
$$

2. Excess properties $\left(h^{E}, s^{E}\right)$ are defined in reference to an ideal (in the sense of Raoult's law) mixture of pure components.

The partial molar quantities \bar{h}^{E} and \bar{s}^{E} are the contributions to these excess properties per differential amount added to the solution.

The "pure" acetic acid is highly dimerized, so as the first bits go into solution thse dimers must be broken up. This will require energy $\left(\bar{h}_{1}^{E}>0\right)$ and will increase the entropy more than is accounted for by the ideal mixing term $\left(\bar{s}_{1}^{E}>0\right)$.

As x_{1} gets larger, some dimer will begin to exist in the solution, so these effects will diminish. Therefore, at small x_{1}, the curves should look something like this:

3. The K factors for hexane (1) and benzene (2) (neglecting Poynting corrections and assuming ideal-vapor phase) are:

$$
\begin{aligned}
& K_{1}=\frac{\gamma_{1} P_{1}^{s}}{P} \\
& K_{2}=\frac{\gamma_{2} P_{2}^{s}}{P}
\end{aligned}
$$

where

$$
P=x_{1} \gamma_{1} P_{1}^{s}+x_{2} \gamma_{2} P_{2}^{s}
$$

Using regular-solution theory,

$$
\begin{aligned}
& R T \ln \gamma_{1}=v_{1} \Phi_{2}^{2}\left(\delta_{1}-\delta_{2}\right)^{2} \\
& R T \ln \gamma_{2}=v_{2} \Phi_{1}^{2}\left(\delta_{1}-\delta_{2}\right)^{2}
\end{aligned}
$$

The volume fractions are

$$
\Phi_{1}=0.389 \quad \Phi_{2}=0.611
$$

From the above equations,

$$
\gamma_{1}=1.32 \quad \gamma_{2}=1.08
$$

$$
\begin{gathered}
P=(0.3) \times(1.32) \times(0.533)+(0.7) \times(1.08) \times(0.380)=0.498 \mathrm{bar} \\
K_{1}=K_{\mathrm{C}_{6} \mathrm{H}_{14}}=\frac{(1.32) \times(0.533)}{0.498}=\mathbf{1 . 4 1} \\
K_{2}=K_{\mathrm{C}_{6} \mathrm{H}_{6}}=\frac{(1.08) \times(0.38)}{0.498}=\mathbf{0 . 8 2}
\end{gathered}
$$

4. Ether and pentachloroethane hydrogen bond with each other (but not with themselves). Then, $g^{E}<0$.

5. The relative volatility of A and B is

$$
\alpha_{\mathrm{A}, \mathrm{~B}}=\frac{\left(y_{\mathrm{A}} / x_{\mathrm{A}}\right)}{\left(y_{\mathrm{B}} / x_{\mathrm{B}}\right)}
$$

Assuming ideal vapor phase and neglecting Poynting corrections,

$$
\begin{aligned}
& y_{\mathrm{A}} P=x_{\mathrm{A}} \gamma_{\mathrm{A}} P_{\mathrm{A}}^{s} \\
& y_{\mathrm{B}} P=x_{\mathrm{B}} \gamma_{\mathrm{B}} P_{\mathrm{B}}^{s}
\end{aligned}
$$

At the azeotrope, $x_{\mathrm{A}}=y_{\mathrm{A}}$ and

$$
\alpha_{\mathrm{A}, \mathrm{~B}}=1=\frac{\gamma_{\mathrm{A}} P_{\mathrm{A}}^{s}}{\gamma_{\mathrm{B}} P_{\mathrm{B}}^{s}}
$$

From regular-solution theory,

$$
\begin{aligned}
& R T \ln \gamma_{\mathrm{A}}=v_{\mathrm{A}} \Phi_{\mathrm{B}}^{2}\left(\delta_{\mathrm{A}}-\delta_{\mathrm{B}}\right)^{2} \\
& R T \ln \gamma_{\mathrm{B}}=v_{\mathrm{B}} \Phi_{\mathrm{A}}^{2}\left(\delta_{\mathrm{A}}-\delta_{\mathrm{B}}\right)^{2}
\end{aligned}
$$

Because $v_{\mathrm{A}}=v_{\mathrm{B}}, \gamma_{\mathrm{A}}=\gamma_{\mathrm{B}}$, then $P_{\mathrm{A}}^{s}=P_{\mathrm{B}}^{S}$.
For the ternary mixture,

$$
\begin{gathered}
R T \ln \gamma_{i}=v_{i}\left(\delta_{i}-\bar{\delta}\right)^{2} \\
\bar{\delta}=\sum_{i} \Phi_{i} \delta_{i}
\end{gathered}
$$

As $\Phi_{\mathrm{A}}=\Phi_{\mathrm{B}}=0.2$ and $\Phi_{\mathrm{C}}=0.6, \bar{\delta}=17.2\left(\mathrm{~J} \mathrm{~cm}^{-3}\right)^{1 / 2}$.
Then

$$
\begin{gathered}
\ln \gamma_{\mathrm{A}}=\frac{(100) \times(14.3-17.2)^{2}}{(8.31451) \times(300)} \Rightarrow \gamma_{\mathrm{A}}=1.40 \\
\ln \gamma_{\mathrm{B}}=\frac{(100) \times(16.4-17.2)^{2}}{(8.31451) \times(300)} \Rightarrow \gamma_{\mathrm{B}}=1.03 \\
\alpha_{\mathrm{A}, \mathrm{~B}}=\frac{\gamma_{\mathrm{A}} P_{\mathrm{A}}^{s}}{\gamma_{\mathrm{B}} P_{\mathrm{B}}^{s}}=\frac{\gamma_{\mathrm{A}}}{\gamma_{\mathrm{B}}}=\frac{1.40}{1.03}=\mathbf{1 . 3 6}
\end{gathered}
$$

6. Assuming ideal vapor phase and neglecting Poynting corrections,

$$
\begin{gather*}
y_{1} P=x_{1} \gamma_{1} P_{1}^{s} \\
y_{2} P=x_{2} \gamma_{2} P_{2}^{s} \\
P=x_{1} \gamma_{1} P_{1}^{S}+x_{2} \gamma_{2} P_{2}^{s} \tag{1}
\end{gather*}
$$

Using regular-solution theory,

$$
\begin{aligned}
& R T \ln \gamma_{1}=v_{1} \Phi_{2}^{2}\left(\delta_{1}-\delta_{2}\right)^{2} \\
& R T \ln \gamma_{2}=v_{2} \Phi_{1}^{2}\left(\delta_{1}-\delta_{2}\right)^{2}
\end{aligned}
$$

Because $v_{1}=v_{2}$, we can rewrite [Eqs. (7-25) and (7-26)]:

$$
\begin{aligned}
& R T \ln \gamma_{1}=v_{1} x_{2}^{2}\left(\delta_{1}-\delta_{2}\right)^{2} \\
& R T \ln \gamma_{2}=v_{2} x_{1}^{2}\left(\delta_{1}-\delta_{2}\right)^{2}
\end{aligned}
$$

As $v_{1}=v_{2}=160 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$,

$$
\begin{aligned}
& \gamma_{1}=\exp \left(0.616 x_{2}^{2}\right) \\
& \gamma_{2}=\exp \left(0.616 x_{1}^{2}\right)
\end{aligned}
$$

Substitution in Eq. (1) gives

$$
P=0.533 \exp \left(0.616 x_{2}^{2}\right)+0.800 \exp \left(0.616 x_{1}^{2}\right)
$$

At the azeotrope,

$$
\left(\frac{\partial P}{\partial x_{1}}\right)_{T}=0
$$

Thus, after differentiation,

$$
0.616 x_{2}^{2}=0.40547+0.16 x_{1}^{2}
$$

Solving for x_{1},

$$
x_{1}=0.171
$$

7. Neglecting vapor-phase non-idealities and Poynting corrections, the total pressure, P, is

$$
P=x_{\mathrm{A}} \gamma_{\mathrm{A}} P_{\mathrm{A}}^{s}+x_{\mathrm{B}} \gamma_{\mathrm{B}} P_{\mathrm{B}}^{s}
$$

Because the two fluids are similar in size, simple and nonpolar, we can assume that γ 's are given by two-suffix Margules equations:

$$
\begin{aligned}
& \ln \gamma_{\mathrm{A}}=\frac{A}{R T} x_{\mathrm{B}}^{2} \\
& \ln \gamma_{\mathrm{B}}=\frac{A}{R T} x_{\mathrm{A}}^{2}
\end{aligned}
$$

As $x_{\mathrm{A}}=x_{\mathrm{B}}=0.5$,

$$
\begin{gathered}
P=0.667=0.5 \times\left[\exp \left(\frac{A}{4 R T}\right)\right] \times(0.427+0.493) \\
A=4696 \mathrm{~J} \mathrm{~mol}^{-1}
\end{gathered}
$$

From Eq. (6-144) of the text,

$$
T^{c}=\frac{A}{2 R}
$$

$$
T^{c}=282 \mathrm{~K}
$$

If one considers the effect of non-randomness (based on the quasichemical approximation), Eq. (7-110) gives

$$
T^{c}=\frac{A}{2.23 R}=253 \mathrm{~K}
$$

(assuming that $\frac{A}{2 R}=\frac{w}{2 k}=$ constant and that the temperature dependence is given by $\ln \gamma$ proportional to $1 / T$).

Thus, random mixing predicts a value higher than that given by quasichemical theory. The observed consolute temperature is likely to be lower than both.
8.

> Let:
> $1=$ benzene
> $2=n$-butane

There are three unknowns: x_{1}, y_{1}, and V / F.
To solve for them, we use two equilibrium equations and one mass balance.
Assuming ideal vapor and neglecting Poynting corrections:

$$
\begin{gathered}
y_{1} P=x_{1} \gamma_{1} P_{1}^{s} \\
\left(1-y_{1}\right) P=\left(1-x_{1}\right) \gamma_{2} P_{2}^{S} \\
z_{1}=\left(\frac{V}{F}\right) y_{1}+\left(1-\frac{V}{F}\right) x_{1}
\end{gathered}
$$

Using regular-solution theory,

$$
R T \ln \gamma_{i}=v_{i} \Phi_{j}^{2}\left(\delta_{i}-\delta_{j}\right)^{2}
$$

with $v_{1}=92 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ and $v_{2}=106 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.
Then,

$$
\begin{aligned}
& \gamma_{1}=\exp \left(0.828 \Phi_{2}^{2}\right) \\
& \gamma_{2}=\exp \left(0.950 \Phi_{1}^{2}\right)
\end{aligned}
$$

Substitution gives

$$
\begin{align*}
y_{1} & =0.368 x_{1} \exp \left(0.828 \Phi_{2}^{2}\right) \tag{1}\\
\left(1-y_{1}\right) & =4.76\left(1-x_{1}\right) \exp \left(0.950 \Phi_{1}^{2}\right) \tag{2}\\
0.5 & =\left(\frac{V}{F}\right) y_{1}+\left(1-\frac{V}{F}\right) x_{1} \tag{3}
\end{align*}
$$

Φ_{1} and Φ_{2} are related to x_{1} and x_{2} by Eqs. (7-25) and (7-26).
To solve Eqs. (1), (2), and (3) for x_{1}, y_{1}, and V / F, assume first that $\gamma_{i}=1$. This gives,

$$
x_{1}=0.856 \quad y_{1}=0.315 \quad \frac{V}{F}=0.658
$$

A second approximation $\left(\gamma_{i} \neq 1\right)$ gives

$$
\begin{gathered}
x_{1}=x_{\mathrm{C}_{6} \mathrm{H}_{6}}=\mathbf{0 . 9 4} \\
y_{1}=\mathbf{0 . 3 5} \\
\frac{V}{F}=0.741
\end{gathered}
$$

9. As derived in Sec. 7.2 of the text, the regular-solution equations can be written in the van Laar form

$$
\begin{equation*}
g^{E}=\frac{A x_{1} x_{2}}{\frac{A}{B} x_{1}+x_{2}} \tag{1}
\end{equation*}
$$

where parameters A and B are related to pure-component liquid molar volume and solubility parameters as follows [Eqs. (7-38) and (7-39)]:

$$
\begin{align*}
& A=v_{\mathrm{A}}\left(\delta_{\mathrm{A}}-\delta_{\mathrm{B}}\right)^{2} \tag{2}\\
& B=v_{\mathrm{B}}\left(\delta_{\mathrm{A}}-\delta_{\mathrm{B}}\right)^{2}
\end{align*}
$$

Substituting the given liquid molar volumes and solubility parameters, we obtain

$$
\begin{align*}
& A=\left(120 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right) \times\left[(18-12)^{2} \mathrm{~J} \mathrm{~cm}^{-3}\right]=4320 \quad \mathrm{~J} \mathrm{~mol}^{-1} \\
& B=\left(180 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right) \times\left[(18-12)^{2} \mathrm{~J} \mathrm{~cm}^{-3}\right]=6480 \quad \mathrm{~J} \mathrm{~mol}^{-1} \tag{3}
\end{align*}
$$

As discussed in Section 6-12, the temperature and composition at the consolute point are found from solving:

$$
\begin{equation*}
\left(\frac{\partial \ln a_{\mathrm{A}}}{\partial x_{\mathrm{A}}}\right)_{T, P}=\left(\frac{\partial^{2} \ln a_{\mathrm{A}}}{\partial x_{\mathrm{A}}^{2}}\right)_{T, P}=0 \tag{4}
\end{equation*}
$$

Upon substitution of Eq. (1) into Eq. (4), the results are given in Eq. (6-146) in the text:

$$
\begin{align*}
& x_{\mathrm{A}}^{c}=\frac{\left[(A / B)^{2}+1-(A / B)\right]^{1 / 2}-(A / B)}{1-(A / B)} \\
& T^{c}=\frac{2 x_{\mathrm{A}}^{c}\left(1-x_{\mathrm{A}}^{c}\right)\left(A^{2} / B\right)}{R\left[(A / B) x_{\mathrm{A}}^{c}+\left(1-x_{\mathrm{A}}^{c}\right)\right]^{3}} \tag{5}
\end{align*}
$$

where superscript c denotes consolute.
Substituting Eq. (3) into Eq. (5), we finally obtain

$$
\begin{aligned}
& x_{\mathrm{A}}^{c}=0.646 \\
& \boldsymbol{T}^{\boldsymbol{c}}=\mathbf{3 2 8} \mathbf{K}
\end{aligned}
$$

10. For each phase we choose the standard-state fugacity for cyclohexane as its pure subcooled liquid at $25^{\circ} \mathrm{C}$. The equation of equilibrium is

$$
\begin{equation*}
x_{3}^{(1)} \gamma_{3}^{(1)}=x_{3}^{(2)} \gamma_{3}^{(2)} \tag{1}
\end{equation*}
$$

where subscript 3 denotes cyclohexane and superscripts (1) and (2) denote, respectively, carbon disulfide phase and perfluoro- n-heptane phase.

Rearrangement of Eq. (1) gives

$$
\begin{equation*}
K \equiv \frac{x_{3}^{(1)}}{x_{3}^{(2)}}=\frac{\gamma_{3}^{(2)}}{\gamma_{3}^{(1)}} \tag{2}
\end{equation*}
$$

Because phase (1) contains only carbon disulfide and a trace amount of cyclohexane, whereas phase (2) contains only perfluoro- n-heptane and a trace amount of cylohexane, $\gamma_{3}^{(1)}$ and $\gamma_{3}^{(2)}$ are essentially activity coefficients at the infinite-dilution limit of cyclohexane.

Hence, we can write

$$
\begin{equation*}
K \equiv \frac{x_{3}^{(1)}}{x_{3}^{(2)}}=\left[\frac{\gamma_{3}^{(2)}}{\gamma_{3}^{(1)}}\right]^{\infty} \tag{3}
\end{equation*}
$$

where superscript ∞ denotes the infinite-dilution limit of cyclohexane.
From the regular-solution theory [Eq. (7-37)], $\left[\gamma_{3}^{(1)}\right]^{\infty}$ and $\left[\gamma_{3}^{(2)}\right]^{\infty}$ are given by:

$$
\begin{align*}
& \ln \left[\gamma_{3}^{(1)}\right]^{\infty}=\frac{v_{3}}{R T}\left(\delta_{1}-\delta_{3}\right)^{2} \tag{4}\\
& \ln \left[\gamma_{3}^{(2)}\right]^{\infty}=\frac{v_{3}}{R T}\left(\delta_{2}-\delta_{3}\right)^{2}
\end{align*}
$$

Substituting the pure-component liquid molar volumes and solubility parameters, we obtain

$$
\begin{align*}
& \ln \left[\gamma_{3}^{(1)}\right]^{\infty}=\frac{\left(109 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)}{\left(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \times(298 \mathrm{~K})} \times\left[(20.5-16.8)^{2} \mathrm{~J} \mathrm{~cm}^{-3}\right]=0.602 \\
& \ln \left[\gamma_{3}^{(2)}\right]^{\infty}=\frac{\left(109 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)}{\left(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \times(298 \mathrm{~K})} \times\left[(12.3-16.8)^{2} \mathrm{~J} \mathrm{~cm}^{-3}\right]=0.891 \tag{10}
\end{align*}
$$

Substituting Eq. (5) into Eq. (3), we have

$$
K=1.34
$$

11. From the definition of the solubility parameter, δ,

$$
\delta^{2}=\frac{\Delta u_{\text {complete vaporization }}}{v^{L}}
$$

[Complete vaporization means going from saturated liquid to ideal gas at constant T.] Then,

$$
\begin{gathered}
\delta^{2}=\frac{\left(\frac{h^{0}-h^{L}}{R T_{c}}\right) R T_{c}-R T\left(1-z^{L}\right)}{\frac{z^{L} R T}{P^{s}}} \\
\frac{\delta^{2}}{P_{c}}=\left[\frac{\frac{h^{0}-h^{L}}{R T_{c}}}{z^{L} T_{R}}+1-\frac{1}{z^{L}}\right] P_{R}^{s}
\end{gathered}
$$

Because

$$
\frac{h^{0}-h^{L}}{R T_{c}}=f\left(T_{R}, \omega\right)
$$

and

$$
z^{V}=f\left(T_{R}, \omega\right) \quad z^{L}=f\left(T_{R}, \omega\right) \quad P_{R}^{S}=f\left(T_{R}, \omega\right)
$$

for $T_{R} \leq 1$,

$$
\frac{\delta^{2}}{P_{c}}=f^{(0)}\left(T_{R}\right)+\omega f^{(1)}\left(T_{R}\right)+(\text { higher terms })
$$

[Reference: Lyckman et al., 1965, Chem. Eng. Sci., 20: 703].
12.
a) Pure methanol is hydrogen-bonded to dimers, trimers, etc. In dilute solution (in iso-octante), methanol is a monomer. For an order-of-magnitude estimate, we can assume that, to make a monomer, approximately one hydrogen bond must be broken. Thus $\bar{h}^{E}=12 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
b) From solubility parameters we get (roughly) an endothermic heat of $263 \mathrm{~J} \mathrm{~mol}^{-1}$. The molar specific heat is (roughly) $125 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$. Thus, $\Delta t \approx-2^{\circ} \mathrm{C}$.
c) We want a Lewis acid that can hook on to the double bond in hexene.

Good Solvents are:
$\left.\begin{array}{l}\text { Dimethyl sulfoxide } \\ \text { Sulfur Dioxide } \\ \text { Acetonitrile }\end{array}\right\} \quad$ Strong Lewis acids

Poor Solvents are:
$\left.\begin{array}{l}\text { Ammonia } \\ \text { Aniline }\end{array}\right\}$ Weak Lewis acids

It is also important that the solvent should not be something that prefers self-interaction than that with hexene molecules. Strongly hydrogen-bonded liquids (e.g. water and most alcohols) would therefore be poor solvents.
13. Let (HA) be the acid. In ionized form,

$$
\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}
$$

Equilibrium constants are defined as

$$
\begin{gathered}
K_{1}=\frac{(\mathrm{HA})_{\mathrm{W}}}{(\mathrm{HA})_{\mathrm{H}}} \\
K_{2}=\frac{\left(\mathrm{H}^{+}\right)\left(\mathrm{H}^{-}\right)}{(\mathrm{HA})_{\mathrm{W}}}=\frac{\left(\mathrm{A}^{-}\right)^{2}}{(\mathrm{HA})_{\mathrm{W}}}
\end{gathered}
$$

In hexane: $C_{\mathrm{H}}=(\mathrm{HA})_{\mathrm{H}}$
In water: $\quad C_{\mathrm{W}}=(\mathrm{HA})_{\mathrm{W}}+\left(\mathrm{A}^{-}\right)=(\mathrm{HA})_{\mathrm{W}}+\sqrt{K_{2}(\mathrm{HA})_{\mathrm{W}}}$

$$
=K_{1}(\mathrm{HA})_{\mathrm{H}}+\sqrt{K_{1} K_{2}(\mathrm{HA})_{\mathrm{H}}}
$$

$$
C_{\mathrm{W}}=K_{1} C_{\mathrm{H}}+\sqrt{K_{1} K_{2} C_{\mathrm{H}}}
$$

Thus,

$$
\frac{\sqrt{C_{\mathrm{H}}}}{C_{\mathrm{W}}}=\frac{1}{\sqrt{K_{1} K_{2}}}\left(1-K_{1} \frac{C_{\mathrm{H}}}{C_{\mathrm{W}}}\right)
$$

with

$$
\frac{1}{\sqrt{K_{1} K_{2}}}=a
$$

and

$$
K_{1}=b
$$

14.

Assume constant distribution coefficient and "reaction" equilibrium.

$$
\begin{gathered}
K_{1}=\frac{A_{\mathrm{B}}}{A_{\mathrm{W}}} \\
K_{2}=\frac{A_{\mathrm{T}}}{\left(A_{\mathrm{B}}\right)^{3}}
\end{gathered}
$$

In water:

$$
C_{\mathrm{W}}=A_{\mathrm{W}}
$$

In benzene:

$$
\begin{gathered}
C_{\mathrm{B}}=A_{\mathrm{B}}+3 A_{\mathrm{T}} \\
C_{\mathrm{B}}=K_{1} C_{\mathrm{W}}+3 K_{2} K_{1}^{3} C_{\mathrm{W}}^{3} \\
\frac{C_{\mathrm{B}}}{C_{\mathrm{W}}}=K_{1}+3 K_{2} K_{1}^{3} C_{\mathrm{W}}^{2}
\end{gathered}
$$

Thus, plot $\frac{C_{\mathrm{B}}}{C_{\mathrm{W}}}$ as a function of C_{W}^{2}.
Slope is $3 K_{2} K_{1}^{3}$ and intercept is K_{1}.
15.
a) Pure $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and acetone do not hydrogen bond themselves but some hydrogen bonding is likely to occur between dissimilar pairs, which explains the negative deviations from Raoult's law observed for this system.

Pure methanol is highly hydrogen bonded. However, in dilute solutions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, methanol exists primarily as monomer. Hydrogen bonding between methanol and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is likely to be weak. (Note that at infinite dilution, activity coefficient γ_{1}^{∞} indicates the effect on a molecule 1 when surrounded by molecules of the other component).
b) Nitroethane has a large dipole moment. Both n-hexane and benzene are non-polar but, due to π electrons, benzene is more polarizable. Therefore, we expect nitroethane/benzene interactions to be stronger than those for nitroethane n-hexane. Thus $\gamma_{\text {nitroethane }}$ in n-hexane is larger than that in benzene.
c) Both CHCl_{3} and methanol are polar and slightly acidic. Although methanol has a slightly higher dipole moment, CHCl_{3} is likely to solvate the coal tar more easily because methanol tends to form strong hydrogen bonds with itself.

S OLUTIONS TOMEOBLEMS C H A P TER

1. Given

$$
\ln \Gamma_{1}^{\infty}=\left(1-\frac{1}{r}\right)+\chi
$$

For $r \gg 1$,

$$
\ln \Gamma_{1}^{\infty}=1+\chi
$$

If $\chi=0.44$,

$$
\ln \Gamma_{1}^{\infty}=1.44 \quad \Rightarrow \quad \Gamma_{1}^{\infty}=4.22
$$

As defined,

$$
\Gamma_{1}^{\infty}=\frac{a_{1}}{\Phi_{1}}=\frac{a_{1}}{10^{-4}}=4.22 \quad \Rightarrow \quad a_{1}=4.22 \times 10^{-4}
$$

Because

$$
\begin{gathered}
a_{1}=\frac{P_{1}}{P_{1}^{s}} \\
P_{1}=\left(4.22 \times 10^{-4}\right) \times(4.49)=0.0019 \mathrm{bar}
\end{gathered}
$$

For a non-volatile polymer, $P_{2}=0$. Therefore,

$$
P \cong P_{1}=0.0019 \text { bar }
$$

2. We can use the data for the Henry's-law region to evaluate the Flory interaction parameter, χ, and then predict results at higher concentration.

Let:
$1=$ solvent
$2=$ polymer
$w_{i}=$ weight fraction
$\Phi_{i}=$ volume fraction

Then,

$$
\Phi_{1}=\frac{v_{1}}{v_{1}+v_{2}}=\frac{\frac{w_{1}}{\rho_{1}}}{\frac{w_{1}}{\rho_{1}}+\frac{w_{2}}{\rho_{2}}}
$$

In the Henry's law region,

$$
\begin{gathered}
w_{1} \rightarrow 0, \quad w_{2} \rightarrow 1 \\
\frac{a_{1}}{\Phi_{1}}=\frac{f_{1}}{\Phi_{1} f_{1}^{0}}=\frac{w_{1} H_{1,2}}{\Phi_{1} f_{1}^{0}}
\end{gathered}
$$

But, as $w_{1} \rightarrow 0$,

$$
\begin{aligned}
& \Phi_{1}=w_{1} \rho_{2} / \rho_{1} \\
& \Phi_{2}=1
\end{aligned}
$$

Then,

$$
\frac{a_{1}}{\Phi_{1}}=\frac{\rho_{1} H_{1,2}}{\rho_{2} f_{1}^{0}}
$$

If $f_{1}^{0}=P_{1}^{S}$,

$$
\frac{a_{1}}{\Phi_{1}}=\frac{f_{1}}{\Phi_{1} f_{1}^{0}}=\frac{\rho_{1} H_{1,2}}{\rho_{2} P_{1}^{s}}=\frac{(0.783) \times(18.3)}{(1.11) \times(3340 / 760)}=2.94
$$

From Flory-Huggins theory (r is large),

$$
\ln \frac{a_{1}}{\Phi_{1}}=\Phi_{2}+\chi \Phi_{2}^{2}
$$

If $\Phi_{1} \rightarrow 1$,

$$
\ln (2.94)=1+\chi \quad \Rightarrow \quad \chi=0.078
$$

At higher concentrations ($w_{1}=0.5$), assume $\chi \neq \chi\left(w_{1}\right)$:

$$
\Phi_{2}=\frac{(0.5) \times(1 / 1.11)}{(0.5) \times(1 / 1.11)+(0.5) \times(1 / 0.783)}=0.414 \quad\left(\Phi_{1}=0.586\right)
$$

Then,

$$
\begin{gathered}
\ln \frac{a_{1}}{\Phi_{1}}=0.414+0.078 \times(0.414)^{2} \\
\frac{a_{1}}{\Phi_{1}}=1.53 \quad \text { or } \quad a_{1}=0.898 \\
P \approx f_{1}=a_{1} f_{1}^{0} \approx a_{1} P_{1}^{S}=(0.898) \times(3340)=3000 \text { torr } \\
P=3000 \text { torr } \approx \mathbf{3 . 9} \mathbf{~ b a r}
\end{gathered}
$$

3.

a) The generalized van der Waals partition is given by [Eq. (8-39)]

$$
\begin{equation*}
Q(T, V, N)=\frac{1}{N!}\left(\frac{V_{f}}{\Lambda^{3}}\right)^{N}\left[q_{\mathrm{ext}}(V)\right]^{N}\left[q_{\mathrm{int}}(T)\right]^{N}\left[\exp \left(-\frac{E_{\mathrm{o}}}{2 k T}\right)\right]^{N} \tag{1}
\end{equation*}
$$

Following the discussion on pages 442 and 443 of the textbook, we further have

$$
\begin{align*}
& \frac{V_{f}}{\Lambda^{3}} q_{\mathrm{ext}}=\left(\frac{V_{f}}{\Lambda^{3}}\right)^{r c} \\
& \frac{E_{\mathrm{o}}}{2}=\frac{-r s \eta}{2 v} \\
& V_{f}=\tau r v^{*}\left[\left(\frac{v}{v^{*}}\right)^{1 / 3}-1\right]^{3} \tag{2}\\
& v=\frac{V}{N r}
\end{align*}
$$

Substituting Eq. (2) into Eq. (1) yields

$$
\begin{align*}
\ln Q & =-\ln N!-N r c \ln \Lambda^{3}+N r c \ln \left(\tau r v^{*}\right) \tag{3}\\
& +3 N r c \ln \left[\left(\frac{v}{v^{*}}\right)^{1 / 3}-1\right]+N \ln q_{\mathrm{int}}+\frac{N r s \eta}{2 v k T}
\end{align*}
$$

Because the first, second, third and fifth terms on the right-hand side of Eq. (3) are only functions of temperature, the equation of state is given by

$$
\begin{align*}
\frac{P}{k T} & =\left(\frac{\partial \ln Q}{\partial V}\right)_{N, T}=\frac{1}{N r}\left(\frac{\partial \ln Q}{\partial v}\right)_{N, T} \\
& =\frac{1}{N r}\left[\frac{3 N r c}{\left(\tilde{v}^{1 / 3}-1\right)}\left(\frac{1}{3} \frac{v^{-2 / 3}}{v^{* 1 / 3}}\right)+\frac{N r s \eta}{2 k T}\left(-\frac{1}{v^{2}}\right)\right] \tag{4}
\end{align*}
$$

We can rewrite Eq. (4) as

$$
\begin{equation*}
\frac{\tilde{P} \tilde{v}}{\tilde{T}}=\frac{\tilde{v}^{1 / 3}}{\tilde{v}^{1 / 3}-1}-\frac{1}{\tilde{T} \tilde{v}} \tag{5}
\end{equation*}
$$

where the reduced properties are defined by

$$
\begin{align*}
& \tilde{T}=\frac{T}{T^{*}}=\frac{2 v^{*} c k T}{s \eta} \\
& \tilde{P}=\frac{P}{P^{*}}=\frac{2 v^{*^{2}} P}{s \eta} \tag{6}\\
& \tilde{v}=\frac{v}{v^{*}}
\end{align*}
$$

Equation (5) is the Flory equation of state [Eq. (8-45) of the textbook].
b) The configurational partition function [Eqs. (8-82) and (8-83]

$$
\begin{align*}
& Q=Q^{C} \exp \left(-\frac{E}{k T}\right) \tag{7}\\
& Q^{C}=(\text { constant })^{N} \frac{\left(V / v^{*}\right)^{N}}{N_{0}!N!} \frac{1}{\left(V / v^{*}\right)^{N(r-1)}}
\end{align*}
$$

where

$$
\frac{V}{v^{*}}=N_{0}+r N
$$

$$
\begin{equation*}
E=-\frac{z}{2} \varepsilon N_{r}\left[\frac{r N}{\left(V / v^{*}\right)}\right] \tag{8}
\end{equation*}
$$

Combining Eqs. (7) and (8) gives

$$
\begin{align*}
\ln Q & =\ln (\text { constant })+\frac{V}{v^{*}} \ln \left(\frac{V}{v^{*}}\right)-\frac{V}{v^{*}} \\
& -\ln N_{0}!-\ln N!-N(r-1) \ln \left(\frac{V}{v^{*}}\right) \tag{9}\\
& +\varepsilon^{*}\left(v^{*} r N\right)^{2}\left(\frac{V}{v^{*}}\right) V^{-2}
\end{align*}
$$

where

$$
\begin{align*}
& \varepsilon^{*}=\frac{z}{2} \frac{\varepsilon}{k T} \tag{10}\\
& \ln N_{0}!=\ln \left[\left(\frac{V}{v^{*}}\right)-r N\right]! \\
& \quad=\left[\left(\frac{V}{v^{*}}\right)-r N\right] \ln \left[\left(\frac{V}{v^{*}}\right)-r N\right]-\left[\left(\frac{V}{v^{*}}\right)-r N\right]
\end{align*}
$$

The equation of state is thus given by

$$
\begin{align*}
\frac{P}{k T} & =\left(\frac{\partial \ln Q}{\partial V}\right)_{N, T} \\
& =\frac{1}{v^{*}} \ln \left(\frac{V}{v^{*}}\right)+\left(\frac{V}{v^{*}}\right) \frac{v^{*}\left(1 / v^{*}\right)}{V}-\frac{1}{v^{*}} \tag{11}\\
& -\frac{1}{v^{*}} \ln \left(\frac{V}{v^{*}}-r N\right)-\left(\frac{V}{v^{*}}-r N\right) \frac{1 / v^{*}}{\frac{V}{v^{*}}-r N}+\frac{1}{v^{*}} \\
& -N(r-1) \frac{1 / v^{*}}{V / v^{*}}+\varepsilon^{*}\left(v^{*} r N\right)^{2}\left(-\frac{V^{-2}}{v^{*}}\right)
\end{align*}
$$

We can rewrite

$$
\begin{align*}
\left(\frac{P V}{k T}\right)\left(\frac{1}{r N}\right) & =\frac{\tilde{P} \tilde{v}}{\tilde{T}} \\
& =\tilde{v} \ln \left(\frac{V}{v^{*}}\right)-\tilde{v} \ln \left(\frac{V}{v^{*}}-r N\right)-(\tilde{v}-1)\left(\frac{\frac{V}{v^{*}}}{\frac{V}{v^{*}}-r N}\right) \tag{12}\\
& +\tilde{v}-1+\frac{1}{r}-\varepsilon^{*} \frac{r N}{V / v^{*}} \\
& =\frac{1}{r}-\left[1+\tilde{v} \ln \left(1-\frac{1}{\tilde{v}}\right)\right]-\frac{1}{\tilde{T} \tilde{v}}
\end{align*}
$$

where

$$
\begin{align*}
& \tilde{T}=\frac{T}{T^{*}}=\frac{T}{z \varepsilon / 2 k} \\
& \tilde{P}=\frac{P}{P^{*}}=\frac{P}{z \varepsilon / 2 v^{*}} \tag{13}\\
& \tilde{v}=\frac{v}{v^{*}}
\end{align*}
$$

Equation (12) is the Sanchez-Lacombe lattice-fluid equation of state [Eq. (8-84) of the textbook].
4. The Flory-Huggins equation for the activity of the solvent [Eq. (8-11)] is

$$
\begin{equation*}
\ln a_{1}=\ln \left(1-\Phi_{2}^{*}\right)+\left(1-\frac{1}{r}\right) \Phi_{2}^{*}+\chi \Phi_{2}^{* 2} \tag{1}
\end{equation*}
$$

Conditions for incipient instability give [analogous to Eqs. (6-141) and (6-142)]:

$$
\begin{aligned}
& \left(\frac{\partial \ln a_{1}}{\partial \Phi_{1}^{*}}\right)_{P, T}=0 \\
& \left(\frac{\partial^{2} \ln a_{1}}{\partial \Phi_{1}^{* 2}}\right)_{P, T}=0
\end{aligned}
$$

Equivalently, we have

$$
\begin{align*}
& \left(\frac{\partial \ln a_{1}}{\partial \Phi_{2}^{*}}\right)_{P, T}=0 \\
& \left(\frac{\partial^{2} \ln a_{1}}{\partial \Phi_{2}^{* 2}}\right)_{P, T}=0 \tag{2}
\end{align*}
$$

because

$$
\Phi_{1}^{*}+\Phi_{2}^{*}=1
$$

Substituting Eq. (1) into Eq. (2), we obtain

$$
\begin{aligned}
& \frac{1}{1-\Phi_{2}^{* c}}-\left(1-\frac{1}{r}\right)-2 \chi^{c} \Phi_{2}^{* c}=0 \\
& \left(\frac{1}{1-\Phi_{2}^{* c}}\right)^{2}-2 \chi^{c}=0
\end{aligned}
$$

where superscript c stands for critical.
Hence, we obtain

$$
\begin{aligned}
& \Phi_{2}^{* c}=\frac{1}{1+r^{1 / 2}} \\
& \chi^{c}=\frac{1}{2}\left(1+\frac{1}{r^{1 / 2}}\right)^{2}
\end{aligned}
$$

5. The Flory-Huggins equation for the activity coefficient of HMDS (1) [Eq. (8-12)] with $\chi=0$ is

$$
\ln \gamma_{1}=\ln \left[1-\left(1-\frac{1}{r}\right) \Phi_{2}^{*}\right]+\left(1-\frac{1}{r}\right) \Phi_{2}^{*}
$$

Using data in Table 8-5 of the text, calculated molecular characteristic volumes V^{*}, ratios of molecular segments r and activity coefficients of $\operatorname{HMDS}\left(\right.$ at $\left.\Phi_{2}^{*}=0.8\right)$ are given in the following table:

Substance	$V^{*}=v_{s p}^{*} \bar{M}_{n}$ $\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)$	$r=V_{2}^{*} / V_{1}^{*}$	$\ln \gamma_{1}\left(\Phi_{2}^{*}=0.8\right)$
HMDS	162.30	-	-
PDMS 3	521.53	3.21	-0.249
PDMS 10	832.89	5.13	-0.389
PDMS 20	1313.8	8.09	-0.528
PDMS 100	3507.8	21.61	-0.677
PDMS 350	5530.1	34.07	-0.722
PDMS 1000	6604.8	40.70	-0.735
PDMS ∞	∞	∞	-0.809

As we increase the molecular weight of PDMS, $\ln \gamma_{1}$ becomes more negative. γ_{1} is smaller than unity and increasingly deviates from unity as the molecular weight of PDMS is increased.

This example illustrates the effect of differences in molecular sizes of HMDS and various PDMS with $\chi=0$ (Fig. 8-3).
6. The flux of gas i through the membrane is given by, Eq. (8-118)

$$
\begin{equation*}
J_{i}=\frac{D_{i}}{\delta_{M}}\left(S_{i F}^{G} P_{i F}-S_{i P}^{G} P_{i P}^{G}\right) \tag{1}
\end{equation*}
$$

Because solubility coefficients for both O_{2} and N_{2} in the feed and permeate are assumed to be equal and the permeate pressure is vacuum, Eq. (1) reduces to

$$
\begin{align*}
J_{i} & =\frac{D_{i} S_{i}^{G}}{\delta_{M}} P_{i F} \\
& =\frac{D_{i} S_{i}^{G}}{\delta_{M}} y_{i} P_{F} \tag{2}
\end{align*}
$$

where y_{i} and $P_{F}\left(P_{F}=2 \times 10^{5} \mathrm{~Pa}\right)$ denote, respectively, the mole fraction of component i and the total pressure of the feed.

For the feed mixture (air) we have

$$
\begin{align*}
& y_{\mathrm{O}_{2}} \cong 0.21 \\
& y_{\mathrm{N}_{2}} \cong 0.79 \tag{3}
\end{align*}
$$

Substituting Eq. (3) and the given data for membrane thickness, solubility and diffusion coefficients into Eq. (2), the corresponding fluxes of O_{2} and N_{2} are

$$
\begin{aligned}
& J_{\mathrm{O}_{2}}=0.148 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~m}^{-2} \mathrm{~s}^{-1} \\
& J_{\mathrm{N}_{2}}=0.197 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~m}^{-2} \mathrm{~s}^{-1}
\end{aligned}
$$

The separation factor is defined by [Eq. (8-121)]

$$
\begin{aligned}
\alpha_{\mathrm{O}_{2} / \mathrm{N}_{2}} & =\frac{D_{\mathrm{O}_{2}} S_{\mathrm{O}_{2}}^{G}}{D_{\mathrm{N}_{2}} S_{\mathrm{N}_{2}}^{G}} \\
& =\mathbf{2 . 7 9}
\end{aligned}
$$

Although $\alpha_{\mathrm{O}_{2} / \mathrm{N}_{2}}>1$, the net flux of N_{2} is larger than that of O_{2} due to the difference in partial pressures in the feed.
7. If the feed pressure were low, we could use Eq. (8-112) to calculate J_{1}, the flux of carbon dioxide, and J_{2}, the flux of methane. Equation (8-113) then gives the composition (y) of the permeate.

However, because the pressure of the feed is high, we must allow for the effect of pressure on nonideality of the gas phase.

Equation (8-111) is

$$
\begin{equation*}
J_{1}=\frac{D_{1}}{\delta_{M}}\left(c_{1 F}^{M}-c_{1 P}^{M}\right) \tag{1}
\end{equation*}
$$

where c_{1}^{M} is the concentration of carbon dioxide in the membrane; subscripts F and P refer to feed and permeate.

To find $c_{1 F}^{M}$, we use the equilibrium relation

$$
\begin{equation*}
\left(y_{1} P \varphi_{1}\right)_{F}=\left[H_{1} c_{1}^{M} \exp \left(\frac{\bar{v}_{1} P}{R T}\right)\right]_{F} \tag{2}
\end{equation*}
$$

where H_{1} and \bar{v}_{1} are Henry's constant and partial molar volume for carbon dioxide in the membrane, both at 300 K and 100 bar.

Fugacity coefficient φ_{1} is given by the virial equation of state, truncated after the second virial coefficient [Eq. (5-33)]:

$$
\begin{align*}
& \ln \varphi_{1}=\left(2 \sum_{i=1}^{2} y_{i} B_{1 i}-B_{\mathrm{mixt}}\right) \frac{P}{R T} \tag{3}\\
& B_{\mathrm{mixt}}=\sum_{i=1}^{2} \sum_{j=1}^{2} y_{i} y_{j} B_{i j}
\end{align*}
$$

Substituting the given temperature, pressure and second virial coefficients into Eq. (3), we obtain

$$
\varphi_{1}=0.729
$$

Substituting Eq. (4) and all other given data into Eq. (2) yields

$$
\begin{equation*}
c_{1 F}^{M}=0.314 \mathrm{~mol} \mathrm{~L}^{-1} \tag{4}
\end{equation*}
$$

To find $c_{1 P}^{M}$ we use the equilibrium relation

$$
\begin{equation*}
\left(y_{1} P \varphi_{1}\right)_{P}=\left(H_{1} c_{1}^{M}\right)_{P} \tag{5}
\end{equation*}
$$

where $P_{P}=1$ bar and $\varphi_{1 P}=1$.
Hence, Eq. (5) reduces to

$$
\begin{equation*}
c_{1 P}^{M}=\frac{y_{1 P}}{19} \quad \mathrm{~mol} \mathrm{~L}^{-1} \tag{6}
\end{equation*}
$$

The quantity $y_{1 P}$ is an unknown in this problem.
Substituting Eqs. (4) and (6) into Eq. (1) gives

$$
\begin{equation*}
J_{1}\left(\frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}}\right)=\frac{5 \times 10^{-6}}{0.1}\left(0.314 \times 10^{-3}-\frac{y_{1 P}}{19} \times 10^{-3}\right) \tag{7}
\end{equation*}
$$

Applying the same procedure for methane (2), we obtain

$$
\begin{equation*}
J_{2}\left(\frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}}\right)=\frac{50 \times 10^{-6}}{0.1}\left(0.155 \times 10^{-3}-\frac{y_{2 P}}{50} \times 10^{-3}\right) \tag{8}
\end{equation*}
$$

The (steady-state) mole fraction of carbon dioxide in the permeate is given by [Eq. (8-113)]

$$
\begin{equation*}
y_{1 P}=\frac{J_{1}}{J_{1}+J_{2}} \tag{9}
\end{equation*}
$$

Further, the mass conservation gives

$$
\begin{equation*}
y_{1 P}+y_{2 P}=1 \tag{10}
\end{equation*}
$$

Substituting Eqs. (7), (8) and (10) into Eq. (9) gives $\boldsymbol{y}_{\mathbf{1} \boldsymbol{P}}=\mathbf{0} \mathbf{. 1 6 8}$ for carbon dioxide in the permeate.

Therefore, for methane in the permeate, $\boldsymbol{y}_{2} \boldsymbol{P}=\mathbf{0 . 8 3 2}$.
8.
a) Flux of water through the membrane is given by Eq. (8-128):

$$
\begin{equation*}
J_{w}=\left(\frac{\text { permeability }}{\text { thickness }}\right) \times\left\{x_{w F}^{L}-x_{w P}^{L} \exp \left[-\frac{\bar{v}_{w}\left(P_{F}-P_{P}\right)}{R T}\right]\right\} \tag{1}
\end{equation*}
$$

where $x_{w P}^{L}=1$ (pure water in the permeate); $P_{P}=P_{w}^{S}=0.0312 \mathrm{~atm}$.
To calculate concentration of water in the feed, we use

$$
\begin{equation*}
\left(P_{w}\right)_{F}=\left(x_{w}^{L} P_{w}^{s}\right)_{F} \tag{2}
\end{equation*}
$$

with

$$
\begin{aligned}
& P_{w}^{S}=0.0312 \mathrm{~atm} \\
& P_{w F}=(1-0.0184) \times(0.0312) \mathrm{atm}
\end{aligned}
$$

Therefore, we obtain

$$
x_{w F}^{L}=0.9816
$$

Because the permeate is pure water, we obtain

$$
\bar{v}_{w} \approx v_{w}=\frac{18.015 \mathrm{~g} \mathrm{~mol}^{-1}}{0.997 \mathrm{~g} \mathrm{~cm}^{-3}}=18.069 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
$$

The feed pressure is thus given by

$$
\begin{aligned}
7.2 \times 10^{-4} \mathrm{~g} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} & =\left(\frac{2.6 \times 10^{-5} \mathrm{~g} \mathrm{~cm} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}}{10 \times 10^{-4} \mathrm{~cm}}\right) \\
& \times\left\{0.9816-(1) \times \exp \left[-\frac{\left(18.069 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right) \times\left(P_{F}-0.0312 \mathrm{~atm}\right)}{\left(82.06 \mathrm{~atm} \mathrm{~L} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(298.15 \mathrm{~K})}\right]\right\}
\end{aligned}
$$

Therefore, the feed pressure is

$$
P_{F}=63.93 \mathrm{~atm}
$$

b)

$$
1 \times 10^{6} \text { gallons } / \text { day }=3785.4 \mathrm{~m}^{3} / \text { day }=0.0438 \mathrm{~m}^{3} / \mathrm{s}=43.67 \mathrm{~kg} / \mathrm{s}
$$

$$
\begin{equation*}
\text { Flux }=7.2 \times 10^{-4} \mathrm{~g} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}=\frac{43.67 \times 10^{3} \mathrm{~g} \mathrm{~s}^{-1}}{\left(A \mathrm{~cm}^{2}\right)} \tag{3}
\end{equation*}
$$

where A is the membrane area needed.
Solving Eq. (3) for the area, we get

$$
A=6.07 \times 10^{7} \mathrm{~cm}^{2}=6.07 \times 10^{3} \mathrm{~m}^{2}=\mathbf{6 . 5} \times \mathbf{1 0}^{\mathbf{4}} \mathbf{f t}^{\mathbf{2}}
$$

SOLUTIONS TO PROBLEMS

1. The solubility product is the equilibrium constant for the reaction

defined as

$$
K_{S P}=\left(a_{\mathrm{Ag}^{+}}\right)\left(a_{\mathrm{Cl}^{-}}\right)
$$

being the standard states the pure solid AgCl and the ideal dilute 1-molal aqueous solution for each ion.
a) Let S be the solubility of AgCl in pure water, in $\frac{\mathrm{mol} \mathrm{AgCl}}{\mathrm{kg} \text { water }}$ (a molality).

$$
\begin{gather*}
a_{\mathrm{Ag}^{+}}=\gamma_{\mathrm{Ag}^{+}} S \quad a_{\mathrm{Cl}^{-}}=\gamma_{\mathrm{Cl}^{-}} S \\
K_{S P}=\left(a_{\mathrm{Ag}^{+}}\right)\left(a_{\mathrm{Cl}^{-}}\right)=\left(\gamma_{\mathrm{Ag}^{+}}\right)\left(\gamma_{\mathrm{Cl}^{-}}\right) S^{2}=\left(\gamma_{ \pm} S\right)^{2} \tag{1}
\end{gather*}
$$

Because the solution is very dilute, $\gamma_{ \pm} \approx 1$ and $S \approx \sqrt{K_{S P}}$ and is of the order of 10^{-5} molal and therefore the ionic strength is also very low: $I \approx 1.31 \times 10^{-5}$ molal. Therefore we may apply the Debye-Hückel limiting law.

$$
I=\frac{1}{2}\left[m \times(+1)^{2}+m \times(-1)^{2}\right]=m=S
$$

Using Eq. (9-50a) of the text,

$$
\begin{equation*}
\log \gamma_{ \pm}^{(\mathrm{m})}=-0.510 \times|(1) \times(-1)| I^{1 / 2}=-0.510 S^{1 / 2} \tag{2}
\end{equation*}
$$

We now replace $\gamma_{ \pm}$given by Eq. (2) into Eq. (1) and solve for the solubility S :

$$
\begin{aligned}
& {\left[\left(10^{-0.510 S^{1 / 2}}\right) S\right]^{2}=1.72 \times 10^{-10} } \\
\boldsymbol{S}= & \mathbf{1 . 3 1} \times \mathbf{1 0}^{-\mathbf{5}} \mathbf{~ m o l ~ k g}^{\mathbf{- 1}} \quad\left(\gamma_{ \pm} \approx 1.0\right)
\end{aligned}
$$

b) With the addition of NaCl the ionic strength increases and we need to evaluate $\gamma_{ \pm}$because now the solution is not very dilute and therefore we don't have $\gamma_{ \pm} \approx 1.0$.

Let S be the new solubility of AgCl in this aqueous solution that contains NaCl . The molalities are

$$
m_{\mathrm{Ag}^{+}}=S \quad m_{\mathrm{Cl}^{-}}=S+0.01
$$

The total ionic strength (due almost exclusively to NaCl because S is small) is

$$
I=\frac{1}{2}\left[S \times(+1)^{2}+S \times(-1)^{2}+0.01 \times(+1)^{2}+0.01 \times(-1)^{2}\right] \approx 0.01 \mathrm{~mol} \mathrm{~kg}^{-1}
$$

We use in this case the extended limiting law [Eq. (9-52)] with $A_{\gamma}=1.174 \mathrm{~kg}^{1 / 2} \mathrm{~mol}^{-1 / 2}$:

$$
\ln \gamma_{ \pm}=-\frac{1.174 \times(0.01)^{1 / 2}}{1+(0.01)^{1 / 2}} \quad \Rightarrow \quad \gamma_{ \pm}=0.90
$$

As in a),

$$
\begin{aligned}
K_{S P} & =\left(a_{\mathrm{Ag}^{+}}\right)\left(a_{\mathrm{Cl}^{-}}\right)=\left(\gamma_{\mathrm{Ag}^{+}}\right)\left(\gamma_{\mathrm{Cl}^{-}}\right)\left(m_{\mathrm{Ag}^{+}}\right)\left(m_{\mathrm{Cl}^{-}}\right) \\
& =\left(\gamma_{ \pm}\right)^{2}(S)(S+0.01)=1.72 \times 10^{-10}
\end{aligned}
$$

or substituting $\gamma_{ \pm}=0.90$,

$$
S(S+0.01)=2.12 \times 10^{-10}
$$

Because S is small and $S \ll 0.01$, we obtain $S \approx \mathbf{2 . 1 2} \times \mathbf{1 0}^{\mathbf{- 8}} \mathbf{~ m o l ~ k g}{ }^{\mathbf{- 1}}$.
The addition of NaCl reduces the AgCl solubility from $1.31 \times 10^{-5} \mathrm{~mol} \mathrm{~kg}^{-1}$ [as calculated in a) for pure water] to $2.12 \times 10^{-8} \mathrm{~mol} \mathrm{~kg}^{-1}$ (in a 0.01 molal NaCl aqueous solution). This is the common ion ("salting out") effect.
c) Similarly, let S be the new AgCl solubility.

Molalities are:

$$
m_{\mathrm{Ag}^{+}}=S \quad m_{\mathrm{Cl}^{-}}=S
$$

Again, the ionic strength is almost exclusively due to NaNO_{3} :

$$
\begin{gathered}
I \approx 0.01 \mathrm{~mol} \mathrm{~kg}^{-1} \quad \text { and } \quad \gamma_{ \pm}=0.90 \\
K_{S P}=\left(a_{\mathrm{Ag}^{+}}\right)\left(a_{\mathrm{Cl}^{-}}\right)=\left(\gamma_{\mathrm{Ag}^{+}}\right)\left(\gamma_{\mathrm{Cl}^{-}}\right)\left(m_{\mathrm{Ag}^{+}}\right)\left(m_{\mathrm{Cl}^{-}}\right) \\
=\left(\gamma_{ \pm}\right)^{2}(S)^{2}=1.72 \times 10^{-10} \\
\quad \boldsymbol{S}=\mathbf{1 . 4 6} \times \mathbf{1 0}^{-5} \mathbf{~ m o l ~ k g}
\end{gathered}
$$

Compared to the solubility of AgCl in pure water, the solubility of AgCl in a 0.01 molal NaNO_{3} aqueous solution increases by roughly 10%, because the higher ionic strength reduces the activity of Ag^{+}and Cl^{-}ions and causes more AgCl to dissolve ("salting in" effect).
2. The solubility product is the equilibrium constant for the reaction $\left(\mathrm{PbI}_{2}\right.$ is a 1-2 electrolyte)

$$
\underset{\text { Solid }}{\mathrm{PbI}_{2}} \rightleftharpoons \mathrm{~Pb}^{2+}+2 \mathrm{I}^{-}
$$

defined as

$$
K_{S P}=\left(a_{\mathrm{Pb}^{2}+}\right)\left(a_{\mathrm{I}^{-}}\right)^{2}=\left(\gamma_{ \pm}\right)^{3} S^{3}
$$

being the standard states the pure solid PbI_{2} and the ideal dilute 1-molal aqueous solution for each ion. In the above equation, S is the solubility of PbI_{2} in pure water, in $\frac{\mathrm{mol} \mathrm{PbI}_{2}}{\mathrm{~kg} \text { water }}$ (a molality). Because the solution is very dilute, $\gamma_{ \pm} \approx 1$ and

$$
K_{S P}=(S)^{3}=\left(1.66 \times 10^{-3}\right)^{3}=4.57 \times 10^{-9}
$$

For the solution with KI the ionic strength increases and we need to evaluate $\gamma_{ \pm}$because now the solution is not very dilute and therefore we may not have $\gamma_{ \pm} \approx 1.0$.

Let S be the new solubility of PbI_{2} in this aqueous solution that contains KI. The molalities are

$$
m_{\mathrm{Pb}^{2}+}=S \quad m_{\mathrm{I}^{-}}=2 S+0.01 \quad m_{\mathrm{K}^{+}}=0.01
$$

The total ionic strength is

$$
\begin{equation*}
I=\frac{1}{2}\left[2 S \times(-1)^{2}+S \times(+2)^{2}+0.01 \times(+1)^{2}+0.01 \times(-1)^{2}\right]=(3 S+0.01) \mathrm{mol} \mathrm{~kg}^{-1} \tag{1}
\end{equation*}
$$

We use in this case the extended limiting law [Eq. (9-52)] with $A_{\gamma}=1.174 \mathrm{~kg}^{1 / 2} \mathrm{~mol}^{-1 / 2}$:

$$
\begin{equation*}
\ln \gamma_{ \pm}=-\frac{1.174 \times(3 S+0.01)^{1 / 2}}{1+(3 S+0.01)^{1 / 2}} \tag{2}
\end{equation*}
$$

Simultaneous solution of Eqs. (1) and (2) gives

$$
\begin{aligned}
& \gamma_{ \pm}=0.88 \\
& \boldsymbol{S}=\mathbf{1 . 8 9} \times \mathbf{1 0}^{\mathbf{- 3}} \mathbf{~ m o l ~ k g}^{\mathbf{- 1}}
\end{aligned}
$$

3. The solubility product for PbI_{2} in an aqueous solution is

$$
\begin{equation*}
\log K_{S P}=3 \log m_{ \pm}+3 \log \gamma_{ \pm} \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& m_{+}=m_{\mathrm{Pb}^{2+}}=m \\
& m_{-}=m_{\mathrm{I}^{-}}=2 m \tag{2}\\
& m_{ \pm}=\left[m(2 m)^{2}\right]^{1 / 3}=1.587 \mathrm{~m}
\end{align*}
$$

With $I=\frac{1}{2}\left(2^{2} m+2 m\right)=3 m$ Eq. (9-50a) gives

$$
\begin{equation*}
\log \gamma_{ \pm}=-0.510 \times(2) \times(3 m)^{1 / 2} \tag{3}
\end{equation*}
$$

With $m=1.66 \times 10^{-3} \mathrm{~mol} \mathrm{~kg}^{-1}$ we obtain

$$
\begin{equation*}
\log K_{S P}=-7.953 \tag{4}
\end{equation*}
$$

For the solutions containing sodium chloride or potassium iodide saturated with PbI_{2}, we have

$$
\begin{equation*}
\log K_{S P}=-7.953=3 \times \log m_{ \pm}-0.510 \times(2) \times I^{1 / 2} \tag{5}
\end{equation*}
$$

For the NaCl solution, we write

$$
\begin{aligned}
& m_{\mathrm{Pb}^{2+}}=m \quad m_{\mathrm{I}^{-}}=2 m \quad m_{\mathrm{Na}^{+}}=m_{\mathrm{Cl}^{-}}=0.01 \\
& m_{ \pm}=\left[m \times(2 m)^{2}\right]^{1 / 3}=1.587 m \\
& I=\frac{1}{2}\left[2^{2} m+2 m+2 \times(0.01)\right]=3 m+0.01
\end{aligned}
$$

Substitution in Eq. (1) yields

$$
m=1.89 \mathrm{~mol} \mathrm{~kg}^{-1}
$$

For the KI solution, we write

$$
\begin{aligned}
& m_{\mathrm{Pb}^{2+}}=m \quad m_{\mathrm{I}^{-}}=2 m+0.01 \quad m_{\mathrm{K}^{+}}=0.01 \\
& m_{ \pm}=\left[m \times(2 m+0.01)^{2}\right]^{1 / 3} \\
& I=\frac{1}{2}\left[\left(2^{2}\right) \times m+2 m+2 \times(0.01)\right]=3 m+0.01
\end{aligned}
$$

Substitution in Eq. (1) yields

$$
m=0.24 \mathrm{~mol} \mathrm{~kg}^{-1}
$$

For both systems, calculated and experimental values are in good agreement. The large decrease in PbI_{2} solubility in the KI solution follows because all iodide ions are included in $m_{ \pm}$. This reduction in solubility is called the common-ion effect.
4. The dissociation of acetic acid is represented by

$$
\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{CH}_{3} \mathrm{COOH}^{-}
$$

or schematically

$$
\mathrm{AH} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}
$$

The dissociation constant is

$$
\begin{aligned}
K & =1.758 \times 10^{-5}=\frac{\left(a_{\mathrm{H}^{+}}\right)\left(a_{\mathrm{H}^{-}}\right)}{a_{\mathrm{AH}}} \\
& =\frac{\left(m_{+}^{v_{+}}\right)\left(m_{-}^{v_{-}}\right)}{m_{\mathrm{AH}}^{(\mathrm{m})}} \frac{\left(\gamma_{ \pm}^{(\mathrm{m})}\right)^{v}}{\gamma_{\mathrm{AH}}^{(\mathrm{m})}}=\frac{\left(m_{\mathrm{H}^{+}}\right)\left(m_{\mathrm{A}^{-}}\right)}{m_{\mathrm{AH}}^{(\mathrm{m})}} \frac{\left(\gamma_{ \pm}^{(\mathrm{m})}\right)^{2}}{\gamma_{\mathrm{AH}}^{(\mathrm{m})}}
\end{aligned}
$$

Designating by α the extent of ionization, and by m the stoichiometric molality of acetic acid, in dilute solutions we may assume $a_{\mathrm{H}^{+}}=a_{\mathrm{A}^{-}}=\alpha$ and $a_{\mathrm{AH}^{+}}=m-\alpha$. Further, the activity of undissociated acetic acid approaches its molality at infinite dilution.

Assuming that the activity coefficients are unity (very dilute solutions) we have

$$
K=1.758 \times 10^{-5}=\frac{(\alpha)(\alpha)}{m-\alpha}=\frac{\alpha^{2}}{m-\alpha}
$$

For a $m=10^{-3}$ molal aqueous solution, the equation above gives $\alpha=1.24 \times 10^{-4}$.
The fraction of acetic acid ionized is:

$$
\frac{\alpha}{m}=\frac{1.24 \times 10^{-4}}{1 \times 10^{-3}}=\mathbf{0 . 1 2 4}
$$

5. In SI units, the Debye length is defined by Eq. (9-47) of the text:

$$
\kappa^{-1}=\left(\frac{R T \varepsilon_{0} \varepsilon_{r}}{2 d_{S} N_{A}^{2} e^{2} I}\right)^{1 / 2}
$$

where d_{s} is the density of the solvent in $\mathrm{kg} \mathrm{m}^{-3}$. For water at $25^{\circ} \mathrm{C}, d_{s}=997 \mathrm{~kg} \mathrm{~m}^{-3}$.
The ionic strength is $I \approx 0.001 \mathrm{~mol} \mathrm{~kg}^{-1}$ for the 0.001 M solution and $I \approx 0.1 \mathrm{~mol} \mathrm{~kg}^{-1}$ for the 0.1 M solution.

Substitution of values gives the values for the Debye length κ^{-1} (in nm) presented in the following table:

Solution	Water	Methanol
0.001 M	9.6	6.1
0.1 M	0.96	0.61

We see that κ^{-1} decreases ten times with a hundredfold increase in concentration. For the solutions at higher concentrations, shielding effects are more important and κ^{-1} is low. Further, the Debye length increases with increasing dielectric constant: when ε_{r} is large (as in water), the ionic atmosphere is weak and the coulombic interactions are strongly reduced.
6.
a) The molality of NaCl in seawater is

$$
\begin{aligned}
m_{\mathrm{NaCl}} & =\frac{\left(\frac{3.5}{58.5}\right) \mathrm{mol} \mathrm{NaCl}}{(100-3.5) \mathrm{g} \text { water }} \\
& =\frac{\left(\frac{3.5}{58.5}\right)}{(100-3.5)} \times 1000 \frac{\mathrm{~mol}}{\mathrm{~kg}} \\
& =0.620 \mathrm{~mol} / \mathrm{kg} \text { water }
\end{aligned}
$$

The ionic strength is given by

$$
I=\frac{1}{2}\left(m_{\mathrm{Na}^{+}} z_{\mathrm{Na}^{+}}^{2}+m_{\mathrm{Cl}^{-}} z_{\mathrm{Cl}^{-}}^{2}\right)=m=0.620 \quad \mathrm{~mol} / \mathrm{kg} \text { water }
$$

which is a relatively high value.
Also,

$$
v=v_{\mathrm{Na}^{+}}+v_{\mathrm{Cl}^{-}}=2
$$

The molar volume of water at $25^{\circ} \mathrm{C}$ is

$$
v_{w}=\frac{M_{w}}{d_{w}}=\frac{18}{0.997} \frac{\mathrm{~g} / \mathrm{mol}}{\mathrm{~g} / \mathrm{cm}^{3}}=18.05 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
$$

To obtain the molal osmotic coefficient, ϕ, we need an expression for $\gamma_{ \pm}$in terms of the ionic strength $I(=m)$.

Since solution is not dilute, we use Bromley's model:

$$
\ln \gamma_{ \pm}=-\frac{A_{\gamma} I^{1 / 2}}{1+I^{1 / 2}}+\frac{(0.138+1.38 B) I}{(1+1.5 I)^{2}}+2.303 B I
$$

with, for NaCl at $25^{\circ} \mathrm{C}, A_{\gamma}=1.174 \mathrm{~kg}^{1 / 2} \mathrm{~mol}^{-1 / 2}$ and $B=0.0574 \mathrm{~kg}^{1 / 2} \mathrm{~mol}^{-1 / 2}$.
From Eq. $(9-11)$ of the text (reminding that in this case $I=m$),

$$
\begin{aligned}
\phi & =1+\frac{1}{I} \int_{0}^{I} I d \ln \gamma_{ \pm} \\
& =1-\frac{A}{I} \int_{0}^{I} \frac{I^{1 / 2}}{2\left(1+I^{1 / 2}\right)^{2}} d I+(0.138+1.38 B) \frac{I}{(1+1.5 I)^{2}} \\
& -\frac{(0.138+1.38 B)}{I} \int_{0}^{I} \frac{I}{(1+1.5 I)^{2}} d I+\frac{B}{2.303} \int_{0}^{I} d I
\end{aligned}
$$

Performing the integrations, we obtain:

$$
\begin{aligned}
\phi & =1-\frac{A}{I}\left[1+I^{1 / 2}-2 \ln \left(1+I^{1 / 2}\right)-\frac{1}{1+I^{1 / 2}}\right] \\
& +\frac{(0.138+1.38 B)}{1.5}\left[\frac{1+3 I}{(1+1.5 I)^{2}}-\frac{1}{1.5 I} \ln (1+1.5 I)\right]+2.303 \frac{I B}{2}
\end{aligned}
$$

Substituting $A_{\gamma}=1.174, B=0.0574$, and $I=0.62$ we obtain $\boldsymbol{\phi}=\mathbf{0 . 9 2 4}$.
b) From the expression that relates the osmotic pressure, π, to the molal osmotic coefficient, ϕ, we obtain

$$
\begin{aligned}
\pi & =\frac{v R T M_{w}}{1000 v_{w}} \phi m \\
& =\frac{(2) \times\left(8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \times(298.15 \mathrm{~K}) \times\left(18 \mathrm{~g} \mathrm{~mol}^{-1}\right)}{(1000) \times\left(18.05 \times 10^{-6}\right)} \times(0.924) \times\left(0.620 \mathrm{~mol} \mathrm{~kg}^{-1}\right) \\
& =2.83 \times 10^{6} \text { Pascal }=28.3 \text { bar } \approx \mathbf{2 8} \mathbf{~ a t m}
\end{aligned}
$$

Linear interpolation from osmotic pressure data of aqueous NaCl listed in Perry gives for m $=0.62 \mathrm{~mol} \mathrm{~kg}^{-1}, 28.0 \mathrm{~atm}$, in good agreement with our calculated osmotic pressure.
7. For $\mathrm{K}_{2} \mathrm{SO}_{4}$, which is a 2-1 electrolyte, we have

$$
\begin{aligned}
& m_{+}=m_{\mathrm{K}^{+}}=2 m ; z_{+}=1 \\
& m_{-}=m_{\mathrm{SO}_{4}^{2-}}=m ; z_{-}=-2 \\
& I=\frac{1}{2}\left(2 m+2^{2} m\right)=3 m ; \quad v_{+}=2, \quad v_{-}=1, \quad v=3 \\
& \ln \gamma_{ \pm}^{(\mathrm{m})}=\frac{A_{\gamma}\left|z_{+} z_{-}\right| I^{1 / 2}}{1+B a I^{1 / 2}}+b I \quad \Rightarrow \quad b=\frac{1}{3 m}\left[\ln \gamma_{ \pm}^{(\mathrm{m})}+\frac{A_{\gamma}\left|z_{+} z_{-}\right|(3 m)^{1 / 2}}{1+B a(3 m)(3 m)^{1 / 2}}\right]
\end{aligned}
$$

With
$\gamma_{ \pm}^{(\mathrm{m})}=0.4$ for $m=0.12 \mathrm{~mol} \mathrm{~kg}^{-1} ; A_{\gamma}=1.174 \mathrm{~kg}^{1 / 2} \mathrm{~mol}^{-1 / 2} ; B=0.33 \mathrm{~kg}^{1 / 2} \mathrm{~mol}^{-1 / 2} \AA^{-1} ; a=4 \AA$ we obtain

$$
\begin{aligned}
b & =\frac{1}{0.36}\left[\ln 0.4+\frac{(1.174) \times(2) \times(0.36)^{1 / 2}}{1+(0.33) \times(4) \times(0.36)^{1 / 2}}\right] \mathrm{kg} \mathrm{~mol}^{-1} \\
& =-0.362 \mathrm{~kg} \mathrm{~mol}^{-1}
\end{aligned}
$$

For $m=0.33 \mathrm{~mol} \mathrm{~kg}^{-1}$, we obtain $\gamma_{ \pm}=0.25$ (the experimental value is 0.275).
To use Eq. (9-25) for calculating the activity of water, we first need to calculate the osmotic coefficient, ϕ.

$$
\phi=1-\frac{1.174}{3}(2) \times(3 \times 0.33)^{1 / 2} \sigma(y)-\frac{0.3615 \times(3 \times 0.33)}{2}
$$

where

$$
y=(0.33) \times 4 \times(3 \times 0.33)^{1 / 2}=1.32
$$

and

$$
\begin{aligned}
\sigma(y=1.32)= & \frac{3}{(1.32)^{3}}\left[1+1.32-2 \ln (1+1.32)-\frac{1}{1+1.32}\right]=0.257 \\
\phi=0.618= & -\left[\frac{1000(\mathrm{~g} / \mathrm{kg})}{3 \times 0.33(\mathrm{~mol} / \mathrm{kg}) \times 18(\mathrm{~g} / \mathrm{mol})}\right] \times \ln a_{w} \\
& \ln a_{w}=-0.011 \quad \Rightarrow \quad a_{w}=0.989 \\
& P_{w} / P_{w}^{s a t}=0.989 \quad \Rightarrow \quad \boldsymbol{P}_{w}=\mathbf{0 . 0 3 1 4} \mathbf{~ b a r}
\end{aligned}
$$

The vapor pressure has not changed much; it is only about 1% lower than that of pure water because m is still small.
8.

$$
\begin{aligned}
& \frac{\pi}{R T}=c_{\mathrm{BSA}}+c_{\mathrm{CI}}+B c_{\mathrm{BSA}}^{2} \\
& c=\text { concentration in } \mathrm{mol} \mathrm{~L}^{-1} \\
& \mathrm{CI}=\text { counter ion }
\end{aligned}
$$

Because the charge on BSA is -20 , there are 20 counter ions (protons) for each molecule of BSA.
B is the osmotic second virial coefficient characterizing the BSA-BSA interaction in a 1 M aqueous NaCl medium. We neglect contributions from proton-proton and proton-BSA interactions, and also contributions from interactions with NaCl .

Because the concentration (1 M) of NaCl is the same in both sides and because 1 M is much larger than the concentration of counter ions, we neglect any (tiny) charges that might occur in NaCl concentration due to interactions of Na^{+}and Cl^{-}with counter ions or with BSA.

$$
\begin{aligned}
& \pi=\frac{224}{13}=17.2 \mathrm{mmHg} ; T=298 \mathrm{~K} ; R=62.36 \mathrm{mmHg} \mathrm{~L} \mathrm{~mol} \\
& \\
& -1 \\
& \mathrm{~K}^{-1} \\
& c_{\mathrm{BSA}}=\frac{44.6}{66,000}=6.76 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} ; c_{\mathrm{CI}}=(20) \times\left(6.76 \times 10^{-4}\right) \mathrm{mol} \mathrm{~L}^{-1}
\end{aligned}
$$

Substitution gives

$$
B=-29040 \mathrm{~L} \mathrm{~mol}^{-1}
$$

9.

a) To calculate the activity coefficients of water we use the Gibbs-Duhem equation:

$$
\begin{equation*}
d \ln \gamma_{w}=-\frac{x_{S}}{x_{w}} d \ln \gamma_{ \pm} \tag{1}
\end{equation*}
$$

where subscripts w and s refer to water and salt, respectively.
Integration of Eq. (1) between mole fractions $x_{s}=0$ (or $x_{w}=1$, for which $\gamma_{w}=1$) and x_{s}, gives

$$
\ln \gamma_{w}\left(x_{s}\right)=\int_{0}^{x_{S}} \frac{-x_{s}}{1-x_{s}} d \ln \gamma_{ \pm}
$$

or

$$
\begin{equation*}
\ln \gamma_{w}\left(x_{s}\right)=\int_{0}^{x_{s}} \frac{-x_{s}}{1-x_{s}}\left(\frac{d \ln \gamma_{ \pm}}{d x_{s}}\right) d x_{s} \tag{2}
\end{equation*}
$$

The derivative in Eq. (2) can be obtained from the truncated Pitzer equation given:

$$
\begin{equation*}
\ln \gamma_{ \pm}=\frac{-8.766 x^{1 / 2}+124.598 x^{3 / 2}}{1+9 x^{1 / 2}} \tag{3}
\end{equation*}
$$

We made $I=x_{s}$, because being NaBr a 1-1 electrolyte, the solution ionic strength is

$$
\begin{equation*}
I_{x}=\frac{1}{2} \sum_{i} x_{i} z_{i}^{2}=\frac{1}{2}\left(x_{s}+x_{s}\right)=x_{s} \tag{4}
\end{equation*}
$$

Differentiation of $\ln \gamma_{ \pm}$in Eq. (3) in order of x and substitution in Eq. (2) gives

$$
\begin{equation*}
\ln \gamma_{w}\left(x_{s}\right)=\int_{0}^{x_{S}} \frac{-x_{s}}{1-x_{s}}\left[\frac{-4.383 x_{s}^{-1 / 2}+186.897 x_{s}^{1 / 2}+1121.382 x_{S}}{\left(1+9 x_{s}^{1 / 2}\right)^{2}}\right] d x_{s} \tag{5}
\end{equation*}
$$

The salt mole fractions are easily calculated from the given molalities (between $m=0$ and m $=5 \mathrm{~mol} \mathrm{~kg}^{-1}$) from:

$$
\begin{equation*}
x_{s}=\frac{n_{\mathrm{NaBr}}}{n_{w}+n_{\mathrm{NaBr}}}=\frac{m_{\mathrm{NaBr}}}{\frac{1000}{18.015}+m_{\mathrm{NaBr}}}=\frac{m_{\mathrm{NaBr}}}{55.51+m_{\mathrm{NaBr}}} \tag{6}
\end{equation*}
$$

The following figure shows the activity coefficients of water in different NaBr aqueous solutions at $25^{\circ} \mathrm{C}$, calculated using the Sympson rule to evaluate the integral in Eq. (5). As the figure shows, $\gamma_{w} \approx 1$ until about $m=1.5 \mathrm{~mol} \mathrm{~kg}^{-1}$ and becomes less than one after that concentration. For example, $\gamma_{w}=0.92$ for $m=8 \mathrm{~mol} \mathrm{~kg}$ - and $\gamma_{w}=0.88$ for $m=10 \mathrm{~mol} \mathrm{~kg}^{-1}$.

b) The mean ionic activity coefficients for NaBr aqueous solutions at $25^{\circ} \mathrm{C}$ are calculated from Debye-Hückel equation, $\ln \gamma_{ \pm}=-A_{x} \sqrt{I_{x}}$, and from the Pitzer equation as given in this problem. The following figure compares both predictions. As expected, they agree only at very low salt concentrations.

c) Equation (4-44) gives the Van't Hoff equation for the osmotic pressure: (valid for ideal, dilute solutions):

$$
\begin{equation*}
\pi V=n_{s} R T \tag{7}
\end{equation*}
$$

where V is the total volume and n_{s} the number of moles of the salt.
Taking into consideration the nonideality of the liquid phase we write [Eq. (4-41)]:

$$
\begin{equation*}
-\ln a_{w}=-\ln \left(\gamma_{w} x_{w}\right)=\frac{\pi v_{w}}{R T} \tag{8}
\end{equation*}
$$

where v_{w} is the molar volume of the pure solvent (water).
We use Eq. (7) to calculate the osmotic pressure for the simplest case (Van't Hoff equation) and Eq. (8) for the more correct calculation that takes into account the solution nonideality, with γ_{w} obtained from Eq. (5).

Assuming that NaBr is completely dissociated into Na^{+}and Br^{-}in water, we rewrite Eq. (7) as

$$
\begin{equation*}
\pi=2 c_{s} R T \quad \text { with } \quad c_{s}=\frac{n_{s}}{V} \quad \mathrm{~mol} \mathrm{~L}^{-1} \tag{9}
\end{equation*}
$$

We obtain the salt concentrations (molarities) from the given molalities $\left(m_{2}\right)$ from

$$
c_{s}\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)=\frac{d m_{s}}{1+0.001 M_{s} m_{s}}
$$

where d is the mass density (in $\mathrm{g} \mathrm{cm}^{-3}$) of the solution and M_{s} is the molar mass of NaBr (in g mol^{-1}).

To use Eq. (8) we take the molar volume of pure water as $v_{w}=18.015 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$, $x_{w}=1-2 x_{s}$ with γ_{w} given by Eq. (5).

The following figures compares the results obtained from the Van't Hoff equation [Eq. (9)] with the equation that takes into account the solution nonideality [Eq. (8)].

As the figure shows, the solution behaves as an ideal solution (i.e. Van't Hoff equation is valid) up to a concentration of about $m_{\mathrm{NaBr}}=2 \mathrm{~mol} \mathrm{~kg}$. . However, for more concentrated solutions ($m_{\mathrm{NaBr}}>2 \mathrm{~mol} \mathrm{~kg}{ }^{-1}$), the effect of thermodynamic nonideality can not be neglected anymore.
10. For the dissociation reaction

$$
\mathrm{AB} \rightleftharpoons \mathrm{~A}^{+}+\mathrm{B}^{-}
$$

the equilibrium constant is

$$
K=\frac{\left(a_{\mathrm{A}^{+}}\right)\left(a_{\mathrm{B}^{-}}\right)}{a_{\mathrm{AB}}}=5 \times 10^{-3} \mathrm{~mol} \mathrm{~kg}^{-1}
$$

The equilibrium equation is

$$
\begin{equation*}
f_{\mathrm{AB}}^{L}=f_{\mathrm{AB}}^{V} \tag{1}
\end{equation*}
$$

where f denotes fugacity.

$$
\begin{equation*}
m_{\mathrm{AB}} H_{\mathrm{AB}, \mathrm{w}} \exp \left[\int_{P_{\mathrm{w}}^{s a t}}^{P} \frac{\bar{v}_{\mathrm{AB}}^{\infty}}{R T} d P\right]=\varphi_{\mathrm{AB}} P \tag{2}
\end{equation*}
$$

Component AB in the vapor phase is in equilibrium with the undissociated AB dissolved in water. The total molality of AB (solubility) in water is:

$$
m_{T}=m_{\mathrm{AB}}+m_{\mathrm{A}^{+}}
$$

If α is the fraction dissociated, we obtain

$$
m_{\mathrm{A}^{+}}=\alpha m_{T} \quad \text { and } \quad m_{\mathrm{AB}}=(1-\alpha) m_{T}
$$

The equilibrium constant then is

$$
\begin{equation*}
K=5 \times 10^{-3} \mathrm{~mol} \mathrm{~kg}^{-1}=\frac{\gamma_{ \pm}^{2} \alpha^{2} m_{T}}{1-\alpha} \tag{3}
\end{equation*}
$$

and Eq. (2) becomes

$$
\begin{equation*}
(1-\alpha) m_{T} H_{\mathrm{AB}, \mathrm{w}} \exp \left[\frac{\bar{v}_{\mathrm{AB}}^{\infty}\left(P-P_{w}^{s a t}\right)}{R T}\right]=\varphi_{\mathrm{AB}} P \tag{2a}
\end{equation*}
$$

where $P-P_{\mathrm{w}}^{\text {sat }} \cong P$ because $P=50$ bar $\gg P_{\mathrm{w}}^{\text {sat }}$.
The fugacity coefficient at 50 bar is

$$
\begin{aligned}
\varphi_{\mathrm{AB}} & =\exp \left[\frac{P B_{\mathrm{AB}, \mathrm{AB}}}{R T}\right] \\
& =\exp \left[\frac{(50 \mathrm{bar}) \times\left(-200 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)}{\left(83.14 \mathrm{~cm}^{3} \text { bar K} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right) \times(298 \mathrm{~K})}\right]=0.668
\end{aligned}
$$

With $I=\frac{1}{2}\left(m_{\mathrm{A}^{+}}+m_{\mathrm{B}^{-}}\right)=m_{\mathrm{A}^{+}}=\alpha \times m_{T}$, the mean ionic activity coefficient is [Eq. (9-52)]

$$
\begin{equation*}
\ln \gamma_{ \pm}=-\frac{A_{\gamma} \sqrt{\alpha m_{T}}}{1+\sqrt{\alpha m_{T}}} \tag{4}
\end{equation*}
$$

where $A_{\gamma}=1.174 \mathrm{~kg}^{1 / 2} \mathrm{~mol}^{-1 / 2}$.
We have now three equations [Eqs. (2a), (3), (4)] and three unknowns m_{T}, α, and $\gamma_{ \pm}$.
Solving these gives:

$$
\begin{aligned}
& m_{T}=1.038 \mathrm{~mol} \mathrm{~kg}^{-1} \\
& \alpha=0.0871 \\
& \gamma_{ \pm}=0.762
\end{aligned}
$$

Iteration procedure is:
Start with $\alpha=0$ in Eq. (2a) and calculate m_{T}.
Then calculate a first approximation for α with $\gamma_{ \pm}=1$ using Eq. (3).
Use m_{T} and α in Eq. (4) to obtain better $\gamma_{ \pm}$, etc.
11. In his theory of absolute reaction rates, Eyring states that reactants A and B form an activated complex (AB) as an intermediate state in the reaction

$$
\begin{equation*}
\mathrm{A}+\mathrm{B} \rightleftharpoons(\mathrm{AB}) \rightarrow \text { Products } \tag{1}
\end{equation*}
$$

By assumption, reactants A and B are in equilibrium with the activated complex (AB), so that

$$
\begin{equation*}
K=\frac{a_{(\mathrm{AB})}}{a_{\mathrm{A}} a_{\mathrm{B}}} \tag{2}
\end{equation*}
$$

The reaction rate is proportional to the concentration of (AB), i.e., constant $\times c_{(\mathrm{AB})}$.
Replacing the activities by the products of concentrations and activity coefficients in Eq. (2) we obtain

$$
\begin{equation*}
c_{(\mathrm{AB})}=K c_{\mathrm{A}} c_{\mathrm{B}} \frac{\gamma_{\mathrm{A}} \gamma_{\mathrm{B}}}{\gamma_{(\mathrm{AB})}} \tag{3}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\text { Rate of reaction }=(\text { constant }) K c_{\mathrm{A}} c_{\mathrm{B}} \frac{\gamma_{\mathrm{A}} \gamma_{\mathrm{B}}}{\gamma_{(\mathrm{AB})}} \tag{4}
\end{equation*}
$$

The rate of reaction can also be expressed in the usual manner by $k c_{\mathrm{A}} c_{\mathrm{B}}$, where k is the observed specific rate. Hence, from Eq. (4), we can write

$$
\begin{equation*}
k=(\text { constant }) K \frac{\gamma_{\mathrm{A}} \gamma_{\mathrm{B}}}{\gamma_{(\mathrm{AB})}}=k_{\mathrm{o}} \frac{\gamma_{\mathrm{A}} \gamma_{\mathrm{B}}}{\gamma_{(\mathrm{AB})}} \tag{5}
\end{equation*}
$$

Equivalently, we can write

$$
\begin{equation*}
\log k=\log k_{\mathrm{o}}+\log \frac{\gamma_{\mathrm{A}} \gamma_{\mathrm{B}}}{\gamma_{(\mathrm{AB})}} \tag{6}
\end{equation*}
$$

To calculate the second term on the right side of Eq. (6), we use Eq. (9-50a)

$$
\begin{equation*}
\log \frac{\gamma_{\mathrm{A}} \gamma_{\mathrm{B}}}{\gamma_{(\mathrm{AB})}}=-0.510 \sqrt{I} \times\left(z_{\mathrm{A}}^{2}+z_{\mathrm{B}}^{2}-z_{(\mathrm{AB})}^{2}\right) \tag{7}
\end{equation*}
$$

Substituting $z_{(\mathrm{AB})}=z_{\mathrm{A}}+z_{\mathrm{B}}$ gives

$$
\begin{equation*}
\log \frac{\gamma_{\mathrm{A}} \gamma_{\mathrm{B}}}{\gamma_{(\mathrm{AB})}}=0.510 \sqrt{I} \times\left(2 z_{\mathrm{A}} z_{\mathrm{B}}\right) \tag{8}
\end{equation*}
$$

Combining Eqs. (6) and (8) gives

$$
\begin{equation*}
\log k=\log k_{\mathrm{o}}+1.02 z_{\mathrm{A}} z_{\mathrm{B}} \sqrt{I} \tag{9}
\end{equation*}
$$

Therefore, a plot of $\log k$ versus \sqrt{I} is a straight line with slope $1.02 z_{\mathrm{A}} z_{\mathrm{B}}$.

Reaction	$z_{\mathrm{A}} z_{\mathrm{B}}$	Change of k
I	-2	Decreases with increasing I
II	0	Constant

When the inert salt NaCl is added, I changes.
For $m_{\mathrm{NaCl}}=0.01$ and negligible molalities of reactants, we obtain

$$
\begin{array}{ll}
m_{+}=m_{\mathrm{Na}^{+}}=0.01 & z_{+}=1 \\
m_{-}=m_{\mathrm{Cl}^{-}}=0.01 & z_{-}=-1 \tag{10}
\end{array}
$$

and

$$
\begin{equation*}
I=\frac{1}{2}(0.01+0.01)=0.01 \mathrm{M} \tag{11}
\end{equation*}
$$

Combining Eqs. (9) and (11) gives

Reaction	$z_{\mathrm{A}} z_{\mathrm{B}}$	k
I	-2	-0.204
II	0	0

12. Some helpful relations for single-electrolyte solutions (i.e., one cation M and one anion X)

$$
\begin{gather*}
v=v_{\mathrm{M}}+v_{\mathrm{X}} \quad \text { or } \quad 1=\frac{v_{\mathrm{M}}}{v}+\frac{v_{\mathrm{X}}}{v} \tag{1}\\
v_{\mathrm{M}} z_{\mathrm{M}}+v_{\mathrm{X}} z_{\mathrm{X}}=0 \quad \text { or } \quad v_{\mathrm{M}}\left|z_{\mathrm{M}}\right|=v_{\mathrm{X}}\left|z_{\mathrm{X}}\right| \tag{2}\\
m v=m_{\mathrm{M}}+m_{\mathrm{X}}=m v_{\mathrm{M}}+m v_{\mathrm{X}} \\
\sum_{i} m_{i}=v m \\
\sum_{i} m_{i}\left|z_{i}\right|=m\left(v_{\mathrm{M}}\left|z_{\mathrm{M}}\right|+v_{\mathrm{X}}\left|z_{\mathrm{X}}\right|\right) \\
I=\frac{1}{2} \sum_{i} m_{i} z_{i}^{2}=\frac{1}{2} m\left(v_{\mathrm{M}} z_{\mathrm{M}}^{2}+v_{\mathrm{X}} z_{\mathrm{X}}^{2}\right)
\end{gather*}
$$

a) Eq. (9-59) from Eq. (I-13):

For a single electrolyte: $c=1=\mathrm{M}$ and $a=1=\mathrm{X}$
All $\Phi ' s, \Psi ' s$, and λ 's are zero. Equations (I-14), (I-15), (9-61) and Eq. (I-13) give

$$
\begin{aligned}
\ln \gamma_{ \pm} & =\underline{\left|z_{\mathrm{M}} z_{\mathrm{X}}\right| f^{\gamma}}+\left|z_{\mathrm{M}} z_{\mathrm{X}}\right| m_{\mathrm{M}} m_{\mathrm{X}} B_{\mathrm{MX}}^{\prime} \\
& +\frac{v_{\mathrm{M}}}{v} m_{\mathrm{X}}\left(2 B_{\mathrm{MX}}+\sum_{i} m_{i}\left|z_{i}\right| c_{\mathrm{M} X}\right) \\
& +\frac{v_{\mathrm{X}}}{v} m_{\mathrm{M}}\left(2 B_{\mathrm{MX}}+\sum_{i} m_{i}\left|z_{i}\right| c_{\mathrm{MX}}\right) \\
& +\frac{m_{\mathrm{M}} m_{\mathrm{X}}}{v} 2 v_{\mathrm{M}}\left|z_{\mathrm{M}}\right| c_{\mathrm{MX}}
\end{aligned}
$$

where B_{MX} and B_{MX}^{\prime} are given by Eq. (I-19a) and Eq. (I-19b), respectively, and C_{MX} is given by Eq. (I-18).

Equations (I-16), (I-19), and (9-62) - (9-65) give

$$
2 B_{\mathrm{MX}}+I B_{\mathrm{M}}^{\prime}=B_{\mathrm{MX}}^{\gamma}
$$

and

$$
C_{\mathrm{MX}}=\frac{2}{3} C_{\mathrm{MX}}^{\gamma} /\left(2\left|z_{\mathrm{M}} z_{\mathrm{X}}\right|^{1 / 2}\right)
$$

From Eq. (9-45), the terms with B_{MX} or B_{MX}^{\prime} can be summarized as:

$$
\begin{aligned}
& \left|z_{\mathrm{M}} z_{\mathrm{X}}\right| m_{\mathrm{M}} m_{\mathrm{X}} B_{\mathrm{MX}}^{\prime}+2\left(\frac{v_{\mathrm{M}} m_{\mathrm{X}}+v_{\mathrm{X}} m_{\mathrm{M}}}{v}\right) B_{\mathrm{MX}} \\
& =\frac{2 I}{m v} m^{2} v_{\mathrm{M}} v_{\mathrm{X}} B_{\mathrm{MX}}^{\prime}+\frac{1}{v}\left(v_{\mathrm{M}} v_{\mathrm{X}} m+v_{\mathrm{X}} v_{\mathrm{M}} m\right) 2 B_{\mathrm{MX}} \\
& =\frac{2 v_{\mathrm{M}} v_{\mathrm{X}}}{v} m\left(I B_{\mathrm{MX}}^{\prime}+2 B_{\mathrm{MX}}\right) \\
& = \\
& =m^{2}\left(\frac{2 v_{\mathrm{M}} v_{\mathrm{X}}}{v}\right) B_{\mathrm{MX}}^{\gamma}
\end{aligned}
$$

Summarizing the C_{MX} terms gives:

$$
\begin{aligned}
& {\left[\left(\frac{v_{\mathrm{M}}}{v} m_{\mathrm{X}}+\frac{v_{\mathrm{X}}}{v} m_{\mathrm{M}}\right)\left(m_{\mathrm{M}}\left|z_{\mathrm{M}}\right|+m_{\mathrm{X}}\left|z_{\mathrm{X}}\right|\right)+\frac{m_{\mathrm{M}} m_{\mathrm{X}}}{v} 2 v_{\mathrm{M}} z_{\mathrm{M}}\right] \frac{2}{3} \frac{1}{2\left|z_{\mathrm{M}} z_{\mathrm{X}}\right|^{1 / 2}} C_{\mathrm{M}}^{\gamma}} \\
& \quad=\left[\left(\frac{v_{\mathrm{M}} v_{\mathrm{X}}}{v} m+\frac{v_{\mathrm{X}} v_{\mathrm{M}}}{v} m\right)\left(v_{\mathrm{M}}\left|z_{\mathrm{M}}\right|+v_{\mathrm{X}}\left|z_{\mathrm{X}}\right|\right) m+\frac{m^{2} v_{\mathrm{M}} v_{\mathrm{X}}}{v} 2 v_{\mathrm{M}} z_{\mathrm{M}}\right] \frac{C_{\mathrm{MX}}^{\gamma}}{3\left|z_{\mathrm{M}} z_{\mathrm{X}}\right|^{1 / 2}} \\
& \quad=m^{2}\left[\frac{2\left(v_{\mathrm{M}} v_{\mathrm{X}}\right)^{3 / 2}}{v}\right] C_{\mathrm{MX}}^{\gamma}
\end{aligned}
$$

The 3 terms above marked with \qquad are identical to the 3 terms in Eq. (9-59).
b) Eq. (9-60) from Eq. (I-10):

As before $c=1=\mathrm{M}$ and $a=1=\mathrm{X}$ and all Φ 's, Ψ 's, and λ 's are zero.
Equations (9-64) and (I-18) and Eq. (I-10) give

$$
\begin{align*}
\phi-1= & \underbrace{\left(2 I / \sum m_{i}\right)}_{(1)} f^{\phi} \\
& +\underbrace{\frac{2}{m_{i}} m_{\mathrm{M}} m_{\mathrm{X}} B_{\mathrm{MX}}^{\phi}}_{(2)} \tag{1}\\
& +\underbrace{\frac{2}{\sum m_{i}} \sum m_{i}\left|z_{i}\right| \frac{m_{\mathrm{M}} m_{\mathrm{X}}}{2\left|z_{\mathrm{M}} \mathrm{Z}_{\mathrm{X}}\right|^{1 / 2}}}_{(3)} c_{\mathrm{MX}}^{\phi}
\end{align*}
$$

Term (1):

$$
\begin{aligned}
2 I / \sum m_{i} & =2 \frac{1}{2} m\left(v_{\mathrm{M}} z_{\mathrm{M}}^{2}+v_{\mathrm{X}} z_{\mathrm{X}}^{2}\right) \\
& =\frac{v_{\mathrm{M}} z_{\mathrm{M}}^{2}+v_{\mathrm{X}} z_{\mathrm{X}}^{2}}{v}
\end{aligned}
$$

With $v_{\mathrm{M}}\left|z_{\mathrm{M}}\right|=v_{\mathrm{X}}\left|z_{\mathrm{X}}\right|$, it follows

$$
\begin{aligned}
\operatorname{Term}(1) & =\frac{1}{v}\left(v_{\mathrm{M}}\left|z_{\mathrm{M}}\right| \frac{v_{\mathrm{X}}}{v_{\mathrm{M}}}\left|z_{\mathrm{X}}\right|+v_{\mathrm{X}}\left|z_{\mathrm{X}}\right| \frac{v_{\mathrm{M}}}{v_{\mathrm{X}}}\left|z_{\mathrm{M}}\right|\right) \\
& =\left|z_{\mathrm{M}}\right|\left|z_{\mathrm{X}}\right|\left(\frac{v_{\mathrm{X}}}{v}+\frac{v_{\mathrm{M}}}{v}\right) \\
& =\left|z_{\mathrm{M}}\right|\left|z_{\mathrm{X}}\right|\left(\frac{v_{\mathrm{X}}}{v}+\frac{v_{\mathrm{M}}}{v}\right) \\
& =\left|z_{\mathrm{M}}\right|\left|z_{\mathrm{X}}\right|
\end{aligned}
$$

Term (2):

$$
\frac{2}{\sum m_{i}} m_{\mathrm{M}} m_{\mathrm{X}}=\frac{2 m^{2} v_{\mathrm{M}} v_{\mathrm{X}}}{v m}=m\left(\frac{2 v_{\mathrm{M}} v_{\mathrm{X}}}{v}\right)
$$

Term (3):

$$
\frac{2}{\sum m_{i}} \sum m_{i}\left|z_{i}\right| \frac{m_{\mathrm{M}} m_{\mathrm{X}}}{2\left|z_{\mathrm{M}} z_{\mathrm{X}}\right|^{1 / 2}}=\frac{v_{\mathrm{M}} v_{\mathrm{X}} m^{2}}{v m} \frac{m\left(v_{\mathrm{M}}\left|z_{\mathrm{M}}\right|+v_{\mathrm{X}}\left|z_{\mathrm{X}}\right|\right)}{\left|z_{\mathrm{M}} z_{\mathrm{X}}\right|^{1 / 2}}
$$

Again using $v_{M}\left|z_{M}\right|=v_{X}\left|z_{X}\right|$ gives

$$
v_{\mathrm{M}}\left|z_{\mathrm{M}}\right|\left|z_{\mathrm{X}}\right|=v_{\mathrm{X}}\left|z_{\mathrm{X}}\right|\left|z_{\mathrm{X}}\right| \quad \Rightarrow \quad\left|z_{\mathrm{M}} z_{\mathrm{X}}\right|^{1 / 2}=\left(\frac{v_{\mathrm{X}}}{v_{\mathrm{M}}}\right)^{1 / 2}\left|z_{\mathrm{X}}\right|
$$

and

$$
v_{\mathrm{M}}\left|z_{\mathrm{M}}\right|+v_{\mathrm{X}}\left|z_{\mathrm{X}}\right|=2 v_{\mathrm{X}}\left|z_{\mathrm{X}}\right|
$$

Therefore,

$$
\operatorname{Term}(3)=\frac{v_{\mathrm{M}} v_{\mathrm{X}}}{v} m^{2} \frac{2 v_{\mathrm{X}}\left|z_{\mathrm{X}}\right|}{v_{\mathrm{X}}^{1 / 2} v_{\mathrm{M}}^{-1 / 2}\left|z_{\mathrm{X}}\right|}=m^{2}\left[\frac{2\left(v_{\mathrm{M}} v_{\mathrm{X}}\right)^{3 / 2}}{v}\right]
$$

Comparison of the results for the terms (1), (2), and (3) with those in Eq. (9-60) shows that they are identical.

SOLUTIONSTOMROBLEMS C H A P TER 10

1. Let $1=$ methane, $2=$ benzene, $3=m$-xylene, and $4=$ hexane. Neglecting Poynting corrections and vapor non-idealities,

$$
K_{1}=\frac{y_{1}}{x_{1}}=\frac{\gamma_{1} f_{\text {pure } 1}^{L}}{\varphi_{1} P}
$$

From Fig. 10-13 of the text we obtain $f_{\text {pure } 1}^{L}$ at 366 K and 13.8 bar.
Because $y_{1} \cong 1$ we can use Lewis' fugacity rule to obtain φ_{1} by writing $\varphi_{1}=(f / P)_{\text {pure } 1}$.
We find γ_{1} from

$$
\ln \gamma_{1}=\frac{v_{1}\left(\delta_{1}-\bar{\delta}\right)^{2}}{R T}
$$

In the first iteration, find $\bar{\delta}$ using $x_{1}=0$.
For a second estimate, first calculate y_{1} from $y_{1}=1-y_{1}-y_{3}-y_{4}$, where

$$
y_{2}=\frac{x_{2} \gamma_{2} f_{2}^{0}}{P}, \quad \text { etc. }
$$

Then,

$$
x_{1}=\frac{y_{1}}{K_{1}} \quad \text { (other } x_{i} \text { from relative amounts) }
$$

Recalculate $\bar{\delta}$ for second estimate of γ_{1} to find

$$
K_{1}=K_{\mathrm{CH}_{4}}=\mathbf{3 4}
$$

2. Let $1=$ argyle acetate and $2=$ helium.

Because we have two data points, we can use the Krichevsky-Kasarnovsky equation to evaluate the two parameters $H_{2,1}$ and \bar{v}_{2}^{∞}.

$$
\ln \left(\frac{f_{2}}{x_{2}}\right)=\ln H_{2,1}^{\left(P_{1}^{S}\right)}+\frac{\bar{v}_{2}^{\infty}\left(P-P_{1}^{s}\right)}{R T}
$$

Assume:

1. $\gamma_{2}^{*}=1$
2. $P_{1}^{S} \ll P$

Then, for helium,

$$
f_{2}=y_{2} \varphi_{2} P
$$

From data given in App. C for helium,

$$
B_{22}(293 \mathrm{~K})=12.1 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
$$

Using the virial equation and assume $y_{2}=1$,

$$
\ln \varphi_{2}=\frac{B_{22} P}{R T}
$$

Find f_{2} at different pressures:

P (bar)	φ_{2}	f_{2} (bar)
25	1.012	25.3
75	1.038	77.8
150	1.077	161.5

At 25 bar,

$$
\begin{gathered}
\ln \frac{f_{2}}{x_{2}}=\ln \left(25.3 \times 10^{4}\right) \\
=\ln H_{2,1}+\frac{(25) \times\left(\bar{v}_{2}^{\infty}\right)}{(83.14) \times(293)} \\
\ln \left(27 \times 10^{4}\right)=\ln H_{2,1}+\frac{(75) \times\left(\bar{v}_{2}^{\infty}\right)}{(83.14) \times(293)}
\end{gathered}
$$

These equations give

$$
\bar{v}_{2}^{\infty}=32.4 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
$$

and

$$
\ln H_{2,1}=12.4
$$

At 150 bar,

$$
\begin{aligned}
& \ln x_{2}=\ln f_{2}-12.62 \\
& x_{2}=x_{\mathrm{He}}=\mathbf{5 . 3 7} \times \mathbf{1 0}^{-\mathbf{4}}
\end{aligned}
$$

3. Over a small range of values for δ, Hildebrand has shown that $\log x_{2}$ is linear (approximately) in δ_{1}. A plot of $\log x_{2}$ vs. $\delta_{\text {solvent }}$ gives x_{2} in liquid air.

Because

$$
\delta_{i}=\left(\frac{\Delta_{\mathrm{vap}} u_{i}}{v_{i}}\right)^{1 / 2} \approx\left(\frac{\Delta_{\mathrm{vap}} h_{i}-R T}{v_{i}}\right)^{1 / 2}
$$

we can calculate δ 's from data given:

$$
\delta_{\mathrm{CH}_{4}}=15.0\left(\mathrm{~J} \mathrm{~cm}^{-3}\right)^{1 / 2}
$$

and

$$
\delta_{\mathrm{CO}}=1.4\left(\mathrm{~J} \mathrm{~cm}^{-3}\right)^{1 / 2}
$$

For air, assume a mixture of N_{2} and O_{2} :

$$
\bar{\delta}_{\text {air }}=11.4\left(\mathrm{~J} \mathrm{~cm}^{-3}\right)^{1 / 2}
$$

From plot of $\log x_{2}$ vs. δ_{1} we find for $\bar{\delta}=11.4\left(\mathrm{~J} \mathrm{~cm}^{-3}\right)^{1 / 2}$,

$$
x_{2}(\text { in air })=x_{\mathbf{H}_{2}}=2.63 \times 10^{-3}
$$

Note that in this case we hit one of our known points. In general, we must interpolate or extrapolate.
4.
a) The equilibrium equation between the gaseous phase containing oxygen and the liquid phase saturated in dissolved oxygen is:

$$
\begin{equation*}
f_{\mathrm{O}_{2}}^{G}=f_{\mathrm{O}_{2}}^{L} \tag{1}
\end{equation*}
$$

At the low pressures of interest here, we assume the gas phase as an ideal gas mixture:

$$
\begin{equation*}
f_{\mathrm{O}_{2}}^{G}=y_{\mathrm{O}_{2}} P \tag{2}
\end{equation*}
$$

Moreover, because oxygen is sparingly soluble, i.e., oxygen is present at very low concentrations in the liquid phase, Henry's law holds:

$$
\begin{equation*}
f_{\mathrm{O}_{2}}^{L}=x_{\mathrm{O}_{2}} k_{\mathrm{O}_{2}} \tag{3}
\end{equation*}
$$

From Eqs. (1), (2) and (3),

$$
\begin{equation*}
y_{\mathrm{O}_{2}} P=x_{\mathrm{O}_{2}} k_{\mathrm{O}_{2}} \tag{4}
\end{equation*}
$$

Equation (4) is the condition for phase equilibrium that characterizes the dissolution of a sparingly soluble gas. Under the given pressure and gaseous composition, Henry's law constant $k_{\mathrm{O}_{2}}$ can be determined, once the solubility $x_{\mathrm{O}_{2}}$ is known. This solubility is given here by the Bunsen coefficient α.

Substituing $t=20^{\circ} \mathrm{C}$ in the equation for α we obtain,

$$
\alpha=31.01 \times 10^{-3} \frac{\mathrm{Ncm}^{3}\left(\mathrm{O}_{2}\right)}{\mathrm{cm}^{3}\left(\mathrm{H}_{2} \mathrm{O}\right)}
$$

where Ncm^{3} stands for normal cubic centimeters, i.e., cubic centimeters of gas measured at $0^{\circ} \mathrm{C}$ and 1 atm .

We convert normal cubic centimeters of gas to moles using the ideal gas law:

$$
\begin{aligned}
& v_{\mathrm{O}_{2}}=\frac{R T}{P}=\frac{(8.31451) \times(293.15)}{101325} \\
& =0.022414 \mathrm{~m}^{3} \mathrm{~mol}^{-1} \\
& =22414 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
\end{aligned}
$$

The molar density of water at $20^{\circ} \mathrm{C}$ and 1 atm is

$$
\frac{1}{v_{\mathrm{H}_{2} \mathrm{O}}}=\frac{\rho_{\mathrm{H}_{2} \mathrm{O}}}{M_{\mathrm{H}_{2} \mathrm{O}}}=\frac{0.9982}{18.015}=0.0554 \mathrm{~mol} \mathrm{~cm}^{-3}
$$

Under the conditions of the Bunsen experiment, we have:

$$
\text { Dissolved oxygen }=\frac{\alpha}{v_{\mathrm{O}_{2}}}=\frac{31.01 \times 10^{-3}}{22414}=1.3835 \times 10^{-6} \frac{\mathrm{~mol} \mathrm{O}_{2}}{\mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{O}}
$$

The liquid phase is made exclusively of $\mathrm{H}_{2} \mathrm{O}$ and O_{2}. Then the mole fraction of O_{2} in the liquid is

$$
\begin{aligned}
x_{\mathrm{O}_{2}} & =\frac{\left(\frac{\alpha}{v_{\mathrm{O}_{2}}}\right)}{\left(\frac{\alpha}{v_{\mathrm{O}_{2}}}\right)+\left(\frac{1}{v_{\mathrm{H}_{2} \mathrm{O}}}\right)}=\frac{1.3835 \times 10^{-6}}{1.3835 \times 10^{-6}+0.0554} \\
& \approx \frac{1.3835 \times 10^{-6}}{0.0554}=2.497 \times 10^{-5} \frac{\mathrm{~mol} \mathrm{O}_{2}}{\mathrm{~mol} \mathrm{O}_{2}+\mathrm{mol} \mathrm{H}_{2} \mathrm{O}}
\end{aligned}
$$

By the definition of $\alpha, y_{\mathrm{O}_{2}}=1.0$ and $P=1 \mathrm{~atm}=1.01325$ bar.
From Eq. (4),

$$
k_{\mathrm{O}_{2}}=\frac{y_{\mathrm{O}_{2}} P}{x_{\mathrm{O}_{2}}}=\frac{(1.0) \times(1.01325)}{\left(2.497 \times 10^{-5}\right)}=4.058 \times 10^{4} \mathrm{bar}
$$

b) Here we want to determine $x_{\mathrm{O}_{2}}$ given $y_{\mathrm{O}_{2}}, P$ and $k_{\mathrm{O}_{2}}$, using again Eq. (4).

The atmospheric air above the water phase is a mixture of water vapor, oxygen and other atmospheric gases (predominantly nitrogen).

Assuming that the air is saturated in water vapor,

$$
y_{\mathrm{H}_{2} \mathrm{O}}=\frac{P_{\mathrm{H}_{2} \mathrm{O}}^{s}}{P}=\frac{17.5}{760}=0.0230
$$

The mole fraction of oxygen in the vapor phase is then

$$
y_{\mathrm{O}_{2}}=\frac{P_{\mathrm{O}_{2}}}{P}=\frac{(0.2095) \times[(760)-(17.5)]}{(760)}=0.02047
$$

For the ambient pressure we obtain form Eq. (4),

$$
x_{\mathrm{O}_{2}}=\frac{y_{\mathrm{O}_{2}} P}{k_{\mathrm{O}_{2}}}=\frac{(0.2047) \times(1.01325)}{\left(4.057 \times 10^{4}\right)}=5.112 \times 10^{-6} \frac{\mathrm{~mol} \mathrm{O}_{2}}{\mathrm{~mol} \text { liquid }}
$$

This solubility can now be expressed as mass of gas per volume of liquid, making the simplifying assumption that the liquid phase is pratically pure water:

$$
\begin{aligned}
\text { Solubility } & =\frac{\left(5.112 \times 10^{-6} \mathrm{~mol} \mathrm{O}_{2} / \mathrm{mol} \text { liquid }\right) \times\left(32.0 \mathrm{~g} \mathrm{O}_{2} / \mathrm{mol} \mathrm{O}_{2}\right)}{\left(18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} / \mathrm{mol} \mathrm{H}_{2} \mathrm{O}\right) \times\left(\frac{1}{0.9982 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} / \mathrm{cm}^{3} \mathrm{H}_{2} \mathrm{O}}\right) \times\left(1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} / \text { mol liquid }\right)} \\
& =9.06 \times 10^{-6} \mathrm{~g} \mathrm{O}_{2} / \mathrm{cm}^{3} \mathrm{H}_{2} \mathrm{O}=9.06 \mathrm{mg} \mathrm{dm}^{-3}=\mathbf{9 . 0 6} \mathbf{~ p p m}
\end{aligned}
$$

5. The number of moles for each component is

$$
n_{1}=\frac{180}{18.015}=10.0 \mathrm{~mol} \quad n_{2}=\frac{420}{84.16}=5.0 \mathrm{~mol} \quad n_{3}=\frac{28}{28.012}=1.0 \mathrm{~mol}
$$

The volume available for the vapor phase is

$$
V=3.0-\left(\frac{420}{0.774}+\frac{180}{0.997}\right) \times 10^{-6}=2.28 \times 10^{-3} \mathrm{~m}^{3}
$$

Therefore the pressure inside the vessel is (assuming vapor - formed almost exclusively by nitrogen whose second virial coefficient at $25^{\circ} \mathrm{C}$ is zero - as ideal),

$$
\begin{aligned}
P & =\frac{n_{3} R T}{V}=\frac{(1) \times(8.314) \times(298.15)}{\left(2.28 \times 10^{-6}\right)} \\
& =10.88 \times 10^{5} \mathrm{~Pa}=10.88 \mathrm{bar}
\end{aligned}
$$

Because the solubilities are very small, we use Henry's law to describe the fugacity of cyclohexane in gas phase:

$$
f_{3} \approx p_{3}=y_{3} P=x_{3} H_{3, i} .
$$

Further, because we neglect mutual solubility of water and cyclohexane, we obtain for the solubility of nitrogen in water,

$$
x_{3, w}=\left(\frac{H_{3,1}}{p_{3}}\right)^{-1}=\left(\frac{86,000}{10.88}\right)^{-1}=1.26 \times 10^{-4}
$$

and for the solubility of nitrogen in cyclohexane,

$$
x_{3, c}=\left(\frac{H_{3,2}}{p_{3}}\right)^{-1}=\left(\frac{1,300}{10.88}\right)^{-1}=8.37 \times 10^{-3}
$$

6. Let $1=\mathrm{N}_{2}$ and $2=\mathrm{H}_{2}$.

From Orentlicher's correlation,

$$
\ln \frac{f_{2}}{x_{2}}=\ln H_{2,1}^{\left(P_{1}^{s}\right)}+\frac{A}{R T}\left(x_{1}^{2}-1\right)+\frac{\bar{v}_{2}^{\infty}\left(P-P_{1}^{S}\right)}{R T}
$$

Assuming that the vapor is pure H_{2} :

$$
f_{2}=f_{2}^{V}=y_{2} \varphi_{2} P=88 \text { bar } \quad \text { (with } y_{2}=1 \text {) }
$$

Because,

$$
\begin{aligned}
& P_{1}^{S}=1 \quad \text { bar } \\
& A=7.1 \quad \mathrm{~L} \text { bar } \mathrm{mol}^{-1} \\
& H_{2,1}=467 \quad \text { bar } \\
& \bar{v}_{2}^{\infty}=31.3 \quad \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
\end{aligned}
$$

by trial and error we find

$$
x_{2}=0.17
$$

7. From Fig. $10-11$ with $\delta_{1}=14.9\left(\mathrm{~J} \mathrm{~cm}^{-3}\right)^{1 / 2}$, at $25^{\circ} \mathrm{C}$ and at 1.01325 bar partial pressure,

$$
\log x_{2}=-3.1 \quad \Rightarrow \quad x_{2}=8 \times 10^{-4}
$$

For $t=0^{\circ} \mathrm{C}$, use Eq. (10-26):

$$
\ln \frac{x_{2}\left(T_{2}\right)}{x_{2}\left(T_{1}\right)} \cong \frac{\Delta \bar{s}_{2}}{R} \ln \frac{T_{2}}{T_{1}}
$$

But at $25^{\circ} \mathrm{C}$ and 1.01325 bar,

$$
-R \ln x_{2}=59.29 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
$$

and from Fig. 10-7,

$$
\bar{s}_{2}^{L}-s_{2}^{G} \cong 17 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
$$

Then,

$$
\begin{aligned}
& \Delta \bar{s}_{2}=\bar{s}_{2}^{L}-s_{2}^{G}=17 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& \ln \frac{x_{2}}{8 \times 10^{-4}}=\frac{17}{8.31451} \ln \frac{273}{298} \\
& \left.x_{2}=6.7 \times 10^{-4} \quad \text { (at } 1 \mathrm{bar}\right)
\end{aligned}
$$

Assuming

$$
\frac{x_{2}\left(P_{2}\right)}{x_{2}\left(P_{1}\right)}=\frac{\left(y_{2} P\right)_{2}}{\left(y_{2} P\right)_{1}}
$$

we obtain at $0^{\circ} \mathrm{C}$ and 2 bar partial pressure,

$$
x_{2}=1.34 \times 10^{-3}
$$

8. Let $1=$ ethylene oxide and $2=\mathrm{CH}_{4}$.

Then,

$$
\ln \frac{f_{2}}{x_{2}}=\ln H_{2,1}^{\left(P_{1}^{S}\right)}+\frac{\bar{v}_{2}^{\infty}\left(P-P_{1}^{S}\right)}{R T}
$$

From Tables $10-2$ and $10-3$ at $10^{\circ} \mathrm{C}$,

$$
\begin{gathered}
H_{2,1}=621 \mathrm{bar} \\
\bar{v}_{2}^{\infty}=45 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
\end{gathered}
$$

At $10^{\circ} \mathrm{C}, P_{1}^{S} \approx 1$ bar. Then,

$$
\begin{gathered}
\ln \frac{f_{2}}{x_{2}}=6.5 \\
\frac{f_{2}}{x_{2}}=665 \mathrm{bar}
\end{gathered}
$$

But

$$
f_{2}=\varphi_{2} y_{2} P
$$

Assuming $y_{2} \approx 1$,

$$
\ln \varphi_{2}=\frac{B_{22} P}{R T}
$$

with $B_{22}=-49 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \quad($ Table 10-3)

$$
\begin{gathered}
\varphi_{2}=0.949 \\
f_{2}=(0.949) \times(25)=23.7 \mathrm{bar} \\
x_{\mathrm{CH}_{4}}=x_{2}=\frac{f_{2}}{665}=\mathbf{0 . 0 3 6}
\end{gathered}
$$

9.

a) Henry's constant $H_{2,1}$ is calculated from [Eq. (10-21)]:

$$
H_{2,1}^{\left(P_{1}^{S}\right)}=P_{1}^{S} \varphi_{2}^{L, \infty}
$$

where $\varphi_{2}^{L, \infty}$ is the fugacity coefficient of solute 2 in the liquid phase at infinite dilution ($x_{2}=0$); φ_{2} may be obtained from Eq. (12-64) of the text with

$$
\begin{aligned}
& b_{\text {mixture }} \approx b_{1} \\
& v_{\text {mixture }} \approx v_{1}^{s} \\
& P \approx P_{1}^{s} \\
& x_{2} \approx 0
\end{aligned}
$$

Then, $H_{2,1}$ is given by

$$
\begin{aligned}
\ln H_{2,1}= & \ln \frac{R T}{v_{1}-b_{1}}+\frac{b_{2}}{v_{1}-b_{1}}-\frac{a_{1} b_{2} v_{1}}{R T b_{1}\left[v_{1}\left(v_{1}+b_{1}\right)+b_{1}\left(v_{1}-b_{1}\right)\right]} \\
& +\frac{a_{1} b_{2}}{2 \sqrt{2} R T b_{1}^{2}} \ln \frac{\left(v_{1}+2.414 b_{1}\right)}{\left(v_{1}-0.414 b_{1}\right)}-\frac{a_{12}}{R T \sqrt{2} b_{1}} \ln \frac{\left(v_{1}+2.414 b_{1}\right)}{\left(v_{1}-0.414 b_{1}\right)}
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{12}=\left(a_{1} a_{2}\right)^{1 / 2}\left(1-k_{12}\right) \\
& k_{12}=0.0867
\end{aligned}
$$

Constants a_{1} and a_{2} are obtained from Eqs. (12-61) to (12-63) and constants b_{1} and b_{2} from Eq. (12-60). Substitution gives

$$
H_{2,1}=360 \mathrm{bar}
$$

b) From Eq. (10-22),

$$
\bar{v}_{2}^{\infty}=-\left[\frac{\left(\frac{\partial P}{\partial n_{2}}\right)_{T, V, n_{1}}}{\left(\frac{\partial P}{\partial V}\right)_{T, n_{1}, n_{2}}}\right]_{n_{2}=0}
$$

Using Peng-Robinson equation of state [Eq. (12-59)], we find

$$
\bar{v}_{2}^{\infty}=\frac{\frac{R T\left(b_{2}+v_{1}^{s}-b_{1}\right)}{\left(v_{1}^{s}-b_{1}\right)^{2}}-\frac{2 a_{12}}{v_{1}^{s}\left(v_{1}^{s}+b_{1}\right)+b_{1}\left(v_{1}^{s}-b_{1}\right)}+\frac{2 a_{1} b_{2}\left(v_{1}^{s}-b_{1}\right)}{\left[v_{1}^{s}\left(v_{1}^{s}+b_{1}\right)+b_{1}\left(v_{1}^{s}-b_{1}\right)\right]^{2}}}{\frac{R T}{\left(v_{1}^{s}-b_{1}\right)^{2}}-\frac{2 a_{1}\left(v_{1}^{s}+b_{1}\right)}{\left[v_{1}^{s}\left(v_{1}^{s}+b_{1}\right)+b_{1}\left(v_{1}^{s}-b_{1}\right)\right]^{2}}}
$$

Substitution gives

$$
\bar{v}_{2}^{\infty}=69.5 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
$$

c) Margules parameter A can be found from Eq. (10-23):

$$
A=-\frac{R T}{2}\left(\frac{\partial \ln \varphi_{2}^{L}}{\partial x_{2}}\right)_{P=P_{1}^{s}, T, x_{2}=0}
$$

The result is:

$$
A=-\frac{R T}{2}\left\{\frac{b_{2}\left(b_{2}-b_{1}\right)-v^{\prime} b_{2}}{\left(v_{1}^{s}-b_{1}\right)^{2}}-\frac{a_{1} b_{2} v^{\prime}+2 b_{2} v_{1}^{s}\left(a_{12}-a_{1}\right)}{R T b_{1}\left[v_{1}^{s}\left(v_{1}^{s}+b_{1}\right)+b_{1}\left(v_{1}^{s}-b_{1}\right)\right]}-\frac{v^{\prime}-\left(b_{2}-b_{1}\right)}{v_{1}^{s}-b_{1}}\right.
$$

$$
\begin{aligned}
& +\frac{a_{1} b_{2} v_{1}^{s}\left[\left(b_{2}-b_{1}\right)\left\{v_{1}^{s}\left(v_{1}^{s}+b_{1}\right)+b_{1}\left(v_{1}^{s}-b_{1}\right)\right\}+2 b_{1}\left\{v^{\prime}\left(v_{1}^{s}+b_{1}\right)+\left(v_{1}^{s}-b_{1}\right)\left(b_{2}-b_{1}\right)\right\}\right]}{R T\left\{b_{1}\left[v_{1}^{s}\left(v_{1}^{s}+b_{1}\right)+b_{1}\left(v_{1}^{s}-b_{1}\right)\right]\right\}^{2}} \\
& -\frac{2 b_{1}\left(a_{12}-a_{1}\right)-a_{1}\left(b_{2}-b_{1}\right)}{2 \sqrt{2} R T b_{1}^{2}}\left(\frac{2 a_{12}}{a_{1}}-\frac{b_{2}}{b_{1}}\right) \ln \frac{v_{1}^{s}+2.414 b_{1}}{v_{1}^{s}-0.414 b_{1}} \\
& -\frac{a_{1}}{\sqrt{2} R T b_{1}}\left[\frac{a_{1}\left(a_{2}-a_{12}\right)-2 a_{12}\left(a_{12}-a_{1}\right)}{a_{1}^{2}}+\frac{b_{2}\left(b_{2}-b_{1}\right)}{2 b_{1}^{2}}\right] \ln \frac{v_{1}^{s}+2.414 b_{1}}{v_{1}^{s}-0.414 b_{1}} \\
& \left.-\frac{a_{1}}{R T b_{1}}\left(\frac{2 a_{12}}{a_{1}}-\frac{b_{2}}{b_{1}}\right) \frac{v_{1}^{s}\left(b_{2}-b_{1}\right)-b_{1} v^{\prime}}{\left(v_{1}^{s}+2.414 b_{1}\right)\left(v_{1}^{s}-0.414 b_{1}\right)}\right\}
\end{aligned}
$$

with

$$
v^{\prime}=\left(\frac{\partial v}{\partial x_{2}}\right)_{x_{2}=0}=\bar{v}_{2}^{\infty}-v_{1}^{s}
$$

Substitution gives

$$
\boldsymbol{A}=13,900 \mathrm{bar} \mathrm{~cm}^{-3} \mathrm{~mol}^{-1}
$$

SOLUTIONS TOMEOBLEMS

C H A P T E R

1. Assuming

$$
f_{i}^{\Delta}=f_{\text {pure } i}^{\Delta}
$$

and

$$
f_{i}^{L}=x_{i} f_{\text {pure } i}^{L} \quad\left(\text { i.e. } \gamma_{i}=1\right)
$$

with $T_{t}=T_{m}, \Delta c_{p}=0$,

$$
\ln \frac{f_{\text {pure } i}^{L}}{f_{\text {pure } i}^{\Delta}}=\ln \left(\frac{1}{x_{i}}\right)=\frac{\Delta_{\text {fus }} h_{i}}{R T}\left[1-\frac{T}{T_{m}}\right]
$$

Rearranging,

$$
T=\left(\frac{\Delta_{\mathrm{fus}} h_{i}}{R}\right)\left[\frac{1}{\ln \left(\frac{1}{x_{i}}\right)+\frac{\Delta_{\mathrm{fus}} h_{i}}{R T_{m, i}}}\right]
$$

For $i=$ benzene, $\Delta_{\text {fus }} h_{i}=9843 \mathrm{~J} \mathrm{~mol}^{-1}, x_{i}=0.95, T_{m, i}=278.7 \mathrm{~K}$, we obtain

$$
T=275 \mathrm{~K}
$$

For $i=$ naphthalene, $\Delta_{\text {fus }} h_{i}=19008 \mathrm{~J} \mathrm{~mol}^{-1}, x_{i}=0.05, T_{m, i}=353.4 \mathrm{~K}$, we obtain

$$
T=241 \mathrm{~K}
$$

We choose the higher temperature (i.e., benzene precipitates first).

At $T=275 \mathrm{~K}$, a solid phase appears.
2. We need activity a_{A} at $x_{\mathrm{A}}=x_{\mathrm{A}}^{\text {sat }} / 2$.

At saturation,

$$
f_{\mathrm{A}}^{L}=f_{\mathrm{A}}^{\mathrm{B}}=f_{\text {pure } \mathrm{A}}^{\mathrm{\Delta}}
$$

Because

$$
\begin{gathered}
f_{\mathrm{A}}^{L}=a_{\mathrm{A}} f_{\text {pure A }}^{L} \\
-\ln a_{\mathrm{A}}^{\text {sat }}=\ln \left(\frac{f_{\mathrm{A}}^{L}}{f_{\mathrm{A}}^{\mathrm{L}}}\right)_{\text {pure }}=\frac{\Delta_{\text {fus }} h}{R T}\left(1-\frac{T}{T_{t}}\right)-\frac{\Delta c_{p}}{R}\left(\frac{T_{t}-T}{T}\right)+\frac{\Delta c_{p}}{R} \ln \frac{T_{t}}{T}
\end{gathered}
$$

Assuming, $T_{m}=T_{t}$, we find $a_{\mathrm{A}}^{\text {sat }}=0.118$.
Because $x_{\mathrm{A}}^{\text {sat }}=0.05, \gamma_{\mathrm{A}}=2.36$.
To find the activity at another composition, assume that

$$
R T \ln \gamma_{\mathrm{A}}=D\left(1-x_{\mathrm{A}}\right)^{2}
$$

Using the above data, we find $D=2357 \mathrm{~J} \mathrm{~mol}^{-1}$.
Hence at $x_{\mathrm{A}}=x_{\mathrm{A}}^{\text {sat }} / 2$,

$$
\gamma_{\mathrm{A}}=2.47
$$

$$
a_{\mathrm{A}}=x_{\mathrm{A}} \gamma_{\mathrm{A}}=0.0618
$$

Then

$$
\frac{\theta}{1-\theta}=8.04 \quad \Rightarrow \quad \theta=0.89
$$

Thus, $\mathbf{8 9 \%}$ of sites are occupied.
3. Klatt's data are really at $0^{\circ} \mathrm{C}$, not $-70^{\circ} \mathrm{C}$. This is above the freezing points of toluene and xylene and near that of benzene.

Let HF be component 1 and the solute (2) be A (benzene), B (toluene), and C (m-xylene). The order of increasing substitution (basicity) is A, B, C. To simplify things, ignore the solubility of 1 in 2 .

Then:

$$
f_{\text {pure } 2}=f_{2, \text { in } 1}=x_{2} \gamma_{2} f_{2}^{0}
$$

But, $f_{2}^{0}=f_{\text {pure 2 }}$, so this reduces to: $1=x_{2} \gamma_{2}$. Therefore, x_{2} is inversely proportional to γ_{2}.
We might think that γ_{2} depends only on the 1-2 interaction. On this basis, we expect $\gamma_{\mathrm{C}}<\gamma_{\mathrm{B}}<\gamma_{\mathrm{A}}$, and thus $x_{\mathrm{C}}>x_{\mathrm{B}}>x_{\mathrm{A}}$. Klatt's data show the reverse.

There is, however, another factor: the strength of the 2-2 interactions. At $0^{0} \mathrm{C}$, $P_{A}^{s} \approx 0.036 \mathrm{bar}, P_{\mathrm{B}}^{s} \approx 0.009 \mathrm{bar}$ and $P_{\mathrm{C}}^{s} \approx 0.002 \mathrm{bar}$. This means that pure C "holds on" to its molecules more tightly than B which in turn has a tighter grip than A .

In other words, the more volatile solute (that has the weakest 2-2 interactions) exerts more "pressure" to enter the solvent phase. This is discussed in a qualitative manner by Hildebrand, 1949, J. Phys. Coll. Chem., 53: 973.

It may be helpful to look at this from a lattice theory (interchange energy) perspective. Using the simplest form of this theory, we can say:

$$
\begin{gathered}
\ln \gamma_{2}=\frac{w}{k T} x_{1}^{2} \\
w=z\left[\Gamma_{12}-\frac{1}{2}\left(\Gamma_{11}+\Gamma_{22}\right)\right]
\end{gathered}
$$

where w is the interchange energy.
With the attractive interaction, we expect $\Gamma_{1 \mathrm{~A}}>\Gamma_{1 \mathrm{~B}}>\Gamma_{1 \mathrm{C}}$.
This produces a higher w (and hence a higher γ_{2} and lower x_{2}) for the less-substituted molecule.

But, if we look at the vapor pressures we see that the less-substituted molecules have less attractive 2-2 interactions. Hence, $\Gamma_{\mathrm{AA}}>\Gamma_{\mathrm{BB}}>\Gamma_{\mathrm{CC}}$. This produces a higher w (and hence a higher γ_{2} and lower x_{2}) for the more-substituted molecule. Sometimes, this effect is greater than that of the 1-2 interactions; that is apparently true in this case.
4. Let $1=$ naphthalene, $2=$ iso-pentane, and $3=\mathrm{CCl}_{4}$.

At saturation,

$$
f_{1}^{\mathcal{D}}=f_{1}^{L}=x_{1} \gamma_{1} f_{1, \text { pure }}^{L}
$$

Assuming, $f_{1, \text { pure }}^{\mathcal{L}}=f_{1}^{\mathcal{L}}$,

$$
\ln \left(\frac{f_{1}^{L}}{f_{1}^{2}}\right)_{\text {pure }}=-\ln a_{1}=\frac{\Delta_{\text {fus }} h}{R T}\left(1-\frac{T}{T_{t}}\right)=-\ln x_{1} \gamma_{1}
$$

From the regular-solution theory, assuming $x_{1}=0$ initially, we obtain

$$
\bar{\delta}=14.9\left(\mathrm{~J} \mathrm{~cm}^{-3}\right)^{1 / 2}
$$

and

$$
\begin{gathered}
\ln \gamma_{1}=\frac{v_{1}\left(\delta_{1}-\bar{\delta}\right)^{2}}{R T}=1.45 \\
\delta_{1}=20.3\left(\mathrm{~J} \mathrm{~cm}^{-3}\right)^{1 / 2} \\
\ln a_{1}=1.18 \\
x_{1}=0.073
\end{gathered}
$$

Now repeat the calculation using $x_{1}=0.073$ and $\frac{x_{2}}{x_{3}}=\frac{7}{3}$, to obtain

$$
\bar{\delta}=15.3\left(\mathrm{~J} \mathrm{~cm}^{-3}\right)^{1 / 2}
$$

and

$$
x_{1}=0.093
$$

One more iteration gives $x_{1}=x_{\text {naphthalene }} \approx 0.10$.
5. The equilibrium equation for benzene (B) is

$$
\begin{equation*}
\text { Partial pressure of } \mathrm{B}=y_{\mathrm{B}} P=x_{\mathrm{B}} \gamma_{\mathrm{B}} P_{\text {liquid } \mathrm{B}}^{S} \tag{1}
\end{equation*}
$$

where $x_{\mathrm{B}}\left(x_{\mathrm{B}}=0.10\right)$ and γ_{B} denote liquid-phase mole fraction and activity coefficient of benzene; $P_{\text {liquid } \mathrm{B}}^{S}$ is the vapor pressure of pure, subcooled liquid benzene at 260 K .

To find $P_{\text {liquid B }}^{S}$, we use the approximation

$$
\begin{equation*}
\frac{P_{\text {liquid B }}^{S}}{P_{\text {solid B }}^{S}}=\left(\frac{f^{L}}{f^{\mathcal{L}}}\right)_{\text {pure B }} \tag{2}
\end{equation*}
$$

where $P_{\text {solid B }}^{S}\left(P_{\text {solid B }}^{S}=0.0125\right.$ bar at 260 K$)$ is the vapor pressure of pure solid benzene at 260 K ; the fugacity ratio for pure benzene is calculated from Eq. (11-13) neglecting Δc_{p} for benzene

$$
\begin{equation*}
\ln \left(\frac{f^{L}}{f^{\Sigma}}\right)_{\text {pure B }}=\frac{\Delta_{\text {fus }} h}{R T_{m}}\left(\frac{T_{m}}{T}-1\right) \tag{3}
\end{equation*}
$$

Substituting $\Delta_{\text {fus }} h=30.45 \mathrm{cal} \mathrm{g}^{-1}=9944.07 \mathrm{~J} \mathrm{~mol}^{-1}, T_{m}=278.7 \mathrm{~K}, T=260 \mathrm{~K}$ and $R=8.314$ $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ into Eqs. (2) and (3), we obtain

$$
\begin{equation*}
\frac{P_{\text {liquid B }}^{S}}{P_{\text {solid B }}^{S}}=1.362 \tag{4}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
P_{\text {liquid B }}^{S}=1.362 \times(0.0125 \mathrm{bar})=0.0170 \mathrm{bar} \tag{5}
\end{equation*}
$$

To calculate γ_{B} in Eq. (1), we use Eq. (7-55):

$$
\begin{equation*}
\ln \gamma_{\mathrm{B}}=\frac{v_{\mathrm{B}}}{R T}\left(\delta_{\mathrm{B}}-\bar{\delta}\right)^{2} \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
& \bar{\delta}=\sum_{i=1}^{3} \Phi_{i} \delta_{i} \\
& \Phi_{i}=\frac{x_{i} v_{i}}{\sum_{j}^{3} x_{j} v_{j}} \tag{7}
\end{align*}
$$

Substituting $T=260 \mathrm{~K}, R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ and the given liquid-phase mole fractions, pure-component molar volumes and solubility parameters into Eqs. (6) and (7), we obtain

$$
\begin{equation*}
\gamma_{B}=1.305 \tag{8}
\end{equation*}
$$

Combining $x_{\mathrm{B}}=0.10$ and Eqs. (1), (5) and (8) yields Partial pressure of $\mathrm{B}=y_{\mathrm{B}} P=\mathbf{0 . 0 0 2 2}$ bar
6. This is similar to Problem 1, but includes activity coefficients.

$$
f_{i}^{\mathrm{s}}=f_{i, \text { pure }}^{\mathrm{D}}=f_{i}^{L}=x_{i} \gamma_{i} f_{i, \text { pure }}^{L}
$$

Then, considering $\Delta c_{p}=0$ and $T_{t}=T_{m}$,

$$
\ln \left(\frac{f_{i}^{L}}{f_{i}^{\perp}}\right)_{\text {pure }}=\frac{\Delta_{\mathrm{fus}} h_{i}}{R T}\left(1-\frac{T}{T_{m, i}}\right)=\ln \left(\frac{1}{x_{i} \gamma_{i}}\right)
$$

Using the regular-solution theory,

$$
\ln \gamma_{i}=\frac{v_{i}\left(\delta_{1}-\delta_{2}\right)^{2} \Phi_{j}^{2}}{R T}
$$

Let $1=$ benzene and $2=n$-heptane

$$
\begin{gathered}
\Phi_{2}=0.935 \\
\ln \gamma_{1}=\frac{(89) \times(18.8-15.1)^{2} \times(0.935)^{2}}{(8.31451) \times(T)}=\frac{128}{T}
\end{gathered}
$$

Then,

$$
\frac{9843}{R T}\left(1-\frac{T}{278.7}\right)=-\ln \left[(0.1) \times \exp \left(\frac{128}{T}\right)\right]
$$

Solving for T,

$$
T=200 \mathrm{~K}
$$

Similarly, for n-heptane,

$$
\begin{gathered}
\Phi_{1}=0.065 \\
\ln \gamma_{2}=\frac{(148) \times(18.8-15.1)^{2} \times(0.065)^{2}}{(8.31451) \times(T)}=\frac{1.03}{T}
\end{gathered}
$$

Then,

$$
\frac{14067}{R T}\left(1-\frac{T}{182.6}\right)=-\ln \left[(0.9) \times \exp \left(\frac{1.03}{T}\right)\right]
$$

Solving for T,

$$
T=181 \mathrm{~K}
$$

As temperature decreases, benzene starts to precipitate at $\mathbf{2 0 0} \mathbf{K}$.
7. Plotting the data we obtain:

A compound, $\mathrm{Cu}_{2} \mathrm{OP}_{2} \mathrm{O}_{5}$, is formed with a congruent melting point at 1518 K . Eutectics occur at 1208 K and 1078 K .
8.
a) According to the ideal solubility equation, T_{m} of the solvent has no influence on the solubility. Any difference would have to come from nonideality (i.e. activity coefficients).

If we look at solubility parameters, we find that the solubility parameter of CS_{2} is closer to that of benzene. Therefore, we expect greater solubility in CS_{2}.
b) Let $1=$ benzene, $2=\mathrm{CS}_{2}$ and $3=n$-octane.

Assuming

$$
f_{1}^{\mathcal{L}}=f_{\text {pure 1 }}^{\mathcal{L}}=f_{1}^{L}=x_{1} \gamma_{1} f_{\text {pure 1 }}^{L}
$$

and

$$
\begin{aligned}
& \Delta c_{p}=0 \\
& T_{t} \cong T_{m}
\end{aligned}
$$

we have

$$
\begin{equation*}
-\ln \gamma_{1} x_{1}=\frac{\Delta_{\mathrm{fus}} h}{R T}\left(1-\frac{T}{T_{f}}\right) \tag{1}
\end{equation*}
$$

Using the regular-solution theory,

$$
\begin{equation*}
\ln \gamma_{1}=\frac{v_{1}\left(\delta_{1}-\bar{\delta}\right)^{2}}{R T} \tag{2}
\end{equation*}
$$

with

$$
\bar{\delta}=\sum_{i=1}^{3} \Phi_{i} \delta_{i}
$$

From Tables:

Component	$\delta\left(\mathrm{J} \mathrm{cm}^{-3}\right)^{1 / 2}$	$v\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)$
1	18.8	89
2	20.4	61
3	15.3	164

From Eq. (1) with $x_{1}=0.3$,

$$
\ln \gamma_{1}=0.144
$$

Then, from Eq. (2),

$$
\ln \gamma_{1}=0.144=\frac{v_{1}\left(\delta_{1}-\bar{\delta}\right)}{R T}
$$

$\bar{\delta}=17.1$ (or 20.6 ; this value is probably meaningless since it is higher than δ 's of pure components).

$$
\begin{gathered}
\bar{\delta}=\sum_{i=1}^{3} \Phi_{i} \delta_{i} \\
\Phi_{1}=\frac{x_{1} v_{1}}{x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}}, \quad \text { etc. }
\end{gathered}
$$

Solving for x_{2} and x_{3},

$$
\begin{aligned}
& x_{1}=0.30 \\
& x_{2}=x_{\mathrm{CS}_{2}}=0.32 \\
& x_{3}=0.38
\end{aligned}
$$

9. At $x_{2}=0.25$,

$$
\begin{gathered}
f_{2}^{\lrcorner}=f_{\text {pure } 2}^{\perp}=f_{2}^{L}=x_{2} \gamma_{2} f_{\text {pure 2 }}^{L} \\
x_{2} \gamma_{2}=\left(f^{\Delta} / f^{L}\right)_{\text {pure } 2}=0.56 \\
\gamma_{2}=2.24
\end{gathered}
$$

Because $f_{\text {pure 2 }}^{\mathrm{D}}=P_{2}^{\mathcal{D}, \text { sat }}=0.99 \mathrm{bar}$,

$$
f_{\text {pure 2 }}^{L}=1.77 \text { bar }
$$

Assuming $\ln \gamma_{2}=A x_{1}^{2}$, at $x_{2}=0.25$, then $\gamma_{2}=2.24$, and

$$
A=1.434
$$

At $x_{2}=0.05$,

$$
\begin{gathered}
f_{2}^{V}=f_{2}^{L}=x_{2} \gamma_{2} f_{\text {pure } 2}^{L} \\
\ln \gamma_{2}=(1.434) \times(0.95)^{2} \\
\gamma_{2}=3.65 \\
P_{2}=P_{\mathrm{CO}_{2}}=(0.05) \times(3.65) \times(1.77)=\mathbf{0 . 3 2 3} \mathbf{~ b a r}
\end{gathered}
$$

10. At 250 K , we need a standard-state fugacity for a hypothetical liquid.

$$
\begin{aligned}
\ln \left(\frac{f_{\mathrm{A}}^{L}}{f_{\mathrm{A}}^{亡}}\right)_{\text {pure }} & =\frac{\Delta_{\text {fus }} h}{R T}\left(1-\frac{T}{T_{m}}\right) \\
& =\frac{(13000)}{(8.31451) \times(250)} \times\left(1-\frac{250}{300}\right)
\end{aligned}
$$

Hence,

$$
\frac{f_{\mathrm{A}}^{L}}{f_{\mathrm{A}}^{\bullet}}=2.84
$$

Because solid is pure,

$$
\begin{aligned}
& f_{\mathrm{A}}^{\mathrm{s}}=f_{\text {pure } \mathrm{A}}^{\mathrm{\Sigma}}=P_{\mathrm{A}}^{\mathrm{A}}, \text { sat }=35 \text { torr } \\
& f_{\text {pure A }}^{L}=\left(\frac{35}{750.06}\right) \times(2.84)=0.1325 \text { bar }
\end{aligned}
$$

For the $\mathrm{A}-\mathrm{CCl}_{4}$ system,

$$
f_{\mathrm{A}}^{V}=f_{\mathrm{A}}^{L}=x_{\mathrm{A}} \gamma_{\mathrm{A}} f_{\text {pure A }}^{L}
$$

Neglecting vapor-phase non idealities and the Poynting correction factor,

$$
\begin{gathered}
y_{\mathrm{A}} P=x_{\mathrm{A}} \gamma_{\mathrm{A}} f_{\text {pure A }}^{L} \\
\gamma_{\mathrm{A}}=\frac{(5 / 750.06)}{(0.03) \times(0.1325)}=1.677
\end{gathered}
$$

Using the regular-solution theory,

$$
R T \ln \gamma_{\mathrm{A}}=v_{\mathrm{A}}\left(\delta_{\mathrm{A}}-\delta_{\mathrm{CCl}_{4}}\right)^{2} \Phi_{\mathrm{CCl}_{4}}^{2}
$$

Thus,

$$
\begin{aligned}
\left(\delta_{\mathrm{A}}-\delta_{\mathrm{CCl}_{4}}\right)^{2} & =\frac{(8.31451) \times(250) \times(\ln 1.677)}{(95) \times\left[\frac{(0.97) \times(97)}{(0.03) \times(95)+(0.97) \times(97)}\right]^{2}} \\
\delta_{\mathrm{A}} & -\delta_{\mathrm{CCl}_{4}}=3.4\left(\mathrm{~J} \mathrm{~cm}^{-3}\right)^{1 / 2}
\end{aligned}
$$

As for $\delta_{\mathrm{CCl}_{4}}=17.6\left(\mathrm{~J} \mathrm{~cm}^{-3}\right)^{1 / 2}$,

$$
\delta_{\mathrm{A}}=21.0\left(\mathrm{~J} \mathrm{~cm}^{-3}\right)^{1 / 2}
$$

$$
\delta_{\mathrm{A}}=14.2\left(\mathrm{~J} \mathrm{~cm}^{-3}\right)^{1 / 2}
$$

Because A is a branched hydrocarbon, we choose $\delta_{\mathrm{A}}=14.2\left(\mathrm{~J} \mathrm{~cm}^{-3}\right)^{1 / 2}$.
For the A-hexane system,

$$
\begin{gathered}
y_{\mathrm{A}} P=x_{\mathrm{A}} \gamma_{\mathrm{A}} f_{\text {pure A }}^{L} \\
\ln \gamma_{\mathrm{A}}=\frac{v_{\mathrm{A}}\left(\delta_{A}-\delta_{\text {hex }}\right)^{2}}{R T} \Phi_{\text {hex }}^{2} \\
=\frac{(95) \times(14.2-14.9)^{2} \times\left[\frac{(0.99) \times(132)}{(0.01) \times(95)+(0.99) \times(132)}\right]^{2}}{(8.31451) \times(250)} \\
\gamma_{\mathrm{A}}=1.02
\end{gathered}
$$

Then,

$$
\begin{gathered}
y_{\mathrm{A}} P=P_{\mathrm{A}}=(0.01) \times(1.02) \times(0.1325) \\
\boldsymbol{P}_{\mathbf{A}}=\mathbf{0 . 0 0 1 3 5} \mathbf{~ b a r}
\end{gathered}
$$

11. Let

$$
\begin{array}{ll}
f_{\mathrm{A}}^{L}=x_{\mathrm{A}} f_{\text {pure A }}^{L} & \left(\gamma_{\mathrm{A}}=1\right) \\
f_{\mathrm{B}}^{L}=x_{\mathrm{B}} f_{\text {pure B }}^{L} & \left(\gamma_{\mathrm{B}}=1\right)
\end{array}
$$

From Eq. (11-13) with $T \cong T_{m}, \Delta c_{p} \cong 0$,

$$
\begin{aligned}
& \ln \left(\frac{f_{\text {pure A }}^{L}}{f_{\text {pure A }}^{\nu}}\right)=\frac{\Delta_{\text {fus }} h_{\mathrm{A}}}{R T}\left(1-\frac{T}{T_{m, \mathrm{~A}}}\right) \\
& \ln \left(\frac{f_{\text {pure } \mathrm{B}}^{L}}{f_{\text {pure } \mathrm{B}}^{\llcorner }}\right)=\frac{\Delta_{\text {fus }} h_{\mathrm{B}}}{R T}\left(1-\frac{T}{T_{m, \mathrm{~B}}}\right)
\end{aligned}
$$

Because solids A and B are mutually insoluble,

$$
f_{\mathrm{A}}^{\mathrm{J}}=f_{\text {pure } \mathrm{A}}^{\mathcal{L}}
$$

$$
f_{\mathrm{B}}^{\mathrm{D}}=f_{\text {pure } \mathrm{B}}^{\mathrm{D}}
$$

At equilibrium,

$$
\begin{aligned}
& f_{\mathrm{A}}^{\mathrm{D}}=x_{\mathrm{A}} f_{\text {pure A }}^{L} \\
& f_{\mathrm{B}}^{\mathrm{D}}=x_{\mathrm{B}} f_{\text {pure B }}^{L}
\end{aligned}
$$

Then,

$$
\begin{gathered}
\ln \left(\frac{f_{\text {pure A }}^{L}}{f_{\text {pure A }}^{\text {¿ }}}\right)=\ln \left(\frac{1}{x_{\mathrm{A}}}\right)=\frac{(8000)}{(8.31451) \times(T)} \times\left(1-\frac{T}{293}\right) \\
\ln \frac{1}{x_{\mathrm{B}}}=\frac{(12000)}{(8.31451) \times(T)} \times\left(1-\frac{T}{278}\right)
\end{gathered}
$$

with $x_{\mathrm{B}}=1-x_{\mathrm{A}}$.
Solving the above equations, we obtain $x_{\mathrm{A}}=0.516$ (or $\mathbf{5 1 . 6} \mathbf{~ m o l ~ \% ~ A) , ~} x_{\mathrm{B}}=0.484$ and $\boldsymbol{T}=\mathbf{2 4 4} \mathrm{K}$

C H A P T E R 12

1.

iii) $T_{\mathrm{U}}<T<T_{\mathrm{C}_{n}}$

ii) $\quad T=T_{\mathrm{U}}$

iv) $\quad T_{\mathrm{C}_{n}}<T<T_{\mathrm{C}_{\mathrm{b}}}$

vii) $\quad T>T_{\mathrm{C}_{\mathrm{H}_{2} \mathrm{O}}}$

2.
a) $\quad T=T_{1}$
P

vi) $T_{\mathrm{C}_{\mathrm{b}}}<T<T_{\mathrm{C}_{\mathrm{H}_{2} \mathrm{O}}}$

3. Let A stand for alcohol.

For alcohol distributed between phases ' and "

$$
x_{\mathrm{A}}^{\prime} \gamma_{\mathrm{A}}^{\prime}=x_{\mathrm{A}}^{\prime \prime} \gamma_{\mathrm{A}}^{\prime \prime}
$$

Then,

$$
K=\lim _{x_{\mathrm{A}} \rightarrow 0}\left(\frac{x_{\mathrm{A}}^{\prime}}{x_{\mathrm{A}}^{\prime \prime}}\right)=\lim _{x_{\mathrm{A}} \rightarrow 0}\left(\frac{\gamma_{\mathrm{A}}^{\prime \prime}}{\gamma_{\mathrm{A}}^{\prime}}\right)
$$

At $0^{\circ} \mathrm{C}$ and 1 bar ,

$$
\begin{aligned}
& \ln \gamma_{\mathrm{A}}^{\prime}=\frac{2400}{R T}\left(1-x_{\mathrm{A}}^{\prime}\right)^{2} \\
& \ln \gamma_{\mathrm{A}}^{\prime \prime}=\frac{320}{R T}\left(1-x_{\mathrm{A}}^{\prime \prime}\right)^{2}
\end{aligned}
$$

The pressure correction to γ_{A} is

$$
\gamma_{\mathrm{A}}\left(P_{2}\right)=\gamma_{\mathrm{A}}\left(P_{1}\right) \exp \int_{P_{1}}^{P_{2}} \frac{\bar{v}^{E}}{R T} d P
$$

The temperature correction is:

$$
\gamma_{\mathrm{A}}\left(T_{2}\right)=\gamma_{\mathrm{A}}\left(T_{1}\right) \exp \int_{T_{1}}^{T_{2}} \frac{-\bar{h}^{E}}{R T^{2}} d T
$$

Thus, we can write,

$$
\begin{aligned}
\ln \gamma_{\mathrm{A}}^{\prime}= & {\left[\frac{2400}{(8.31451) \times(273)}+\int_{1}^{100} \frac{16}{(8.31451) \times(273)} d P\right.} \\
& \left.-\int_{273}^{303} \frac{4800}{(8.31451) \times\left(T^{2}\right)} d T\right] \times\left(1-x_{\mathrm{A}}^{\prime}\right)^{2} \\
= & 0.9178 \times\left(1-x_{\mathrm{A}}^{\prime}\right)^{2} \\
\ln \gamma_{\mathrm{A}}^{\prime \prime}= & {\left[\frac{320}{(8.31451) \times(273)}+\int_{1}^{100} \frac{-10}{(8.31451) \times(273)} d P\right.} \\
& \left.-\int_{273}^{303} \frac{600}{(8.31451) \times\left(T^{2}\right)} d T\right] \times\left(1-x_{\mathrm{A}}^{\prime \prime}\right)^{2} \\
= & 0.0712\left(1-x_{\mathrm{A}}^{\prime \prime}\right)^{2}
\end{aligned}
$$

This gives

$$
K=\lim _{x_{\mathrm{A}} \rightarrow 0} \frac{\gamma_{\mathrm{A}}^{\prime \prime}}{\gamma_{\mathrm{A}}^{\prime}}=\mathbf{0 . 4 2 9}
$$

4. For pure benzene, neglecting fugacity coefficients and assuming constant density of each phase with respect to pressure,

$$
\begin{gathered}
f_{\mathrm{B}}^{L}=f_{\mathrm{B}}^{\mathrm{s}} \\
P_{\mathrm{B}}^{s, L} \exp \frac{v^{L}\left(P-P_{\mathrm{B}}^{s, L}\right)}{R T}=P_{\mathrm{B}}^{s, \mathcal{\delta}} \exp \frac{v^{\mathcal{D}}\left(P-P_{\mathrm{B}}^{s, \delta}\right)}{R T}
\end{gathered}
$$

with $v^{L}=87.7 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ and $v^{2}=77.4 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$, as obtained from density data.

$$
P_{\mathrm{B}}^{s, L} \exp \left[\frac{(87.7) \times\left(200-P_{\mathrm{B}}^{s, L}\right)}{(83.1451) T}\right]=P_{\mathrm{B}}^{s, \mathcal{L}} \exp \left[\frac{(77.4) \times\left(200-P_{\mathrm{B}}^{s, \mathcal{L}}\right)}{(83.1451) T}\right]
$$

Temperature T can be found from the intercept of the curves obtained by representing each side of the last equation as a function of temperature.

In an alternate way, we can express $P_{\mathrm{B}}^{s, L}$ and $P_{\mathrm{B}}^{s, \mathcal{L}}$ from vapor-pressure equations:

$$
\begin{aligned}
& P_{\mathrm{B}}^{s, L}=\frac{10^{(7.9622-1785 / T)}}{750.06} \\
& P_{\mathrm{B}}^{s, \mathcal{L}}=\frac{10^{(9.846-2310 / T)}}{750.06}
\end{aligned}
$$

which, together with the last equation, can be solved for T :

$$
T_{m}(200 \mathrm{bar})=\mathbf{2 8 4 . 4} \mathrm{K}
$$

5. The Redlich-Kwong equation is:

$$
P=\frac{R T}{v-b}-\frac{a}{T^{1 / 2} v(v+b)}
$$

with

$$
\begin{gathered}
a=\sum_{i} \sum_{j} z_{i} z_{j} a_{i j}=z_{\mathrm{A}}^{2} a_{\mathrm{AA}}+2 z_{\mathrm{A}} z_{\mathrm{B}} a_{\mathrm{AB}}+z_{\mathrm{B}}^{2} a_{\mathrm{BB}} \\
b=\sum_{i} z_{i} b_{i}=z_{\mathrm{A}} b_{\mathrm{A}}+z_{\mathrm{B}} b_{\mathrm{B}}
\end{gathered}
$$

Assuming that a_{AB} is given by the geometric rule,

$$
a_{\mathrm{AB}}=\left(a_{\mathrm{AA}} a_{\mathrm{BB}}\right)^{1 / 2}
$$

we get for $z_{\mathrm{A}}=z_{\mathrm{B}}=0.5$,

$$
\begin{gathered}
a=4.35 \times 10^{8} \text { bar }\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right) \mathrm{K}^{1 / 2} \\
b=91.5 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
\end{gathered}
$$

Substitution in the R-K equation gives for total pressures:

$$
P=-41.3 \mathrm{bar}
$$

Because this result is absurd, we use Henry's constant data to find a_{AB}.
For infinitely dilute solutions of A in B ,

$$
H_{\mathrm{A}, \mathrm{~B}}=\left(P \varphi_{\mathrm{A}}\right)_{x_{\mathrm{A}}=0}=P_{\mathrm{B}}^{s} \varphi_{\mathrm{B}}^{\infty}
$$

At infinite dilution, $P_{\text {total }} \cong P_{\text {pure B }}^{s}$ which can be obtained from the R-K equation with the appropriate constants $\left[a=4.53 \times 10^{8}\right.$ bar $\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)^{2} \mathrm{~K}^{1 / 2}$ and $\left.b=82.8 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right]$.

This gives,

$$
P_{\mathrm{B}}^{S}=1.13 \mathrm{bar}
$$

Therefore,

$$
\varphi_{\mathrm{A}}^{\infty}=\frac{H_{\mathrm{A}, \mathrm{~B}}}{P_{\mathrm{B}}^{s}}=\frac{7.01}{1.13}=6.195
$$

For the R-K equation, fugacity coefficients are given by:

$$
\ln \varphi_{\mathrm{A}}^{\infty}=\ln \frac{v}{v-b}+\frac{b_{\mathrm{A}}}{v-b}-\frac{2 a_{\mathrm{AB}}}{R T^{3 / 2} b} \ln \frac{v+b}{v}+\frac{a b_{\mathrm{A}}}{R T^{3 / 2} b^{2}}\left[\ln \frac{v+b}{v}-\frac{b}{v+b}\right]-\ln \frac{P v}{R T}
$$

Using $b \cong b_{\mathrm{B}}, a \cong a_{\mathrm{B}}$ and $v \cong v_{\mathrm{B}}$ (infinite dilution of A).
Solving for a_{AB},

$$
a_{\mathrm{AB}}=3.963 \times 10^{8} \text { bar }\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)^{2} \mathrm{~K}^{1 / 2}
$$

Then, for the mixture,

$$
\begin{gathered}
a=4.159 \times 10^{8} \text { bar }\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right) \mathrm{K}^{1 / 2} \\
b=91.5 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
\end{gathered}
$$

Calculating again the pressure we obtain,

$$
P=4.14 \mathrm{bar}
$$

6. Let $1=\mathrm{C}_{2} \mathrm{H}_{6}$ and $2=\mathrm{C}_{6} \mathrm{H}_{6}$.

The K factor of component i is defined as

$$
K_{i}=\frac{y_{i}}{x_{i}}=\frac{\varphi_{i}^{L}(P, x)}{\varphi_{i}^{V}(P, y)}
$$

with

$$
\varphi=c^{(0)}+c^{(1)} P+c^{(2)} z_{i}
$$

Thus, we need to solve for P and y_{1} (or y_{2}).
At equilibrium,

$$
\begin{equation*}
y_{1} \varphi_{1}^{V}=x_{1} \varphi_{1}^{L} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\left(1-y_{1}\right) \varphi_{2}^{V}=\left(1-x_{1}\right) \varphi_{2}^{L} \tag{2}
\end{equation*}
$$

From the given equations, we rewrite Eqs.(1) and (2) for $x_{1}=0.263$:

$$
\begin{aligned}
& \left(1.2545-2.458 \times 10^{-4} P-0.4091 y_{1}\right) y_{1}=1.1699-0.008345 P \\
& {\left[0.74265-7.0069 \times 10^{-3} P+0.50456\left(1-y_{1}\right)\right]\left(1-y_{1}\right)=0.24596-0.001874 P}
\end{aligned}
$$

The above equations can be solved (either graphically or numerically) for P and y_{1} :

$$
\begin{gathered}
P=59 \mathrm{~atm} \\
y_{1}=0.715 \quad\left(y_{2}=0.285\right)
\end{gathered}
$$

Then,

$$
\begin{aligned}
& K_{1}=\frac{y_{1}}{x_{1}}=\frac{0.715}{0.263}=2.72 \\
& K_{2}=\frac{y_{2}}{x_{2}}=\frac{0.285}{0.737}=0.387
\end{aligned}
$$

[From Kay's data: $K_{1}=2.73$ and $K_{2}=0.41$].
7. The stability criterion is [see Eq. $(6-131)$ of text]:

$$
\left(\frac{\partial^{2} g^{E}}{\partial x_{1}^{2}}\right)_{T, P}+R T\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}\right)<0
$$

We need an expression for g^{E} valid at high pressures.
Because

$$
\left(\frac{\partial g^{E}}{\partial P}\right)_{T, x}=v^{E}
$$

we write

$$
\begin{aligned}
g^{E}(T, P, x) & =g^{E}(T, P=1 \mathrm{~atm}, x)+\int_{1}^{P} v^{E} d P \\
& =(R T) \times(1.877) x_{1} x_{2}+\int_{1}^{P} x_{1} x_{2}(4.026-0.233 \ln P) d P
\end{aligned}
$$

Thus,

$$
\begin{aligned}
g^{E}(T, P, x) & =(R T) \times(1.877) x_{1} x_{2}+(P-1) \times(4.026) x_{1} x_{2} \\
& +(P-1) \times(0.233) x_{1} x_{2}-0.233 P(\ln P) x_{1} x_{2} \\
& =(42043+4.259 P-0.233 P \ln P) x_{1} x_{2}=A x_{1} x_{2}
\end{aligned}
$$

For g^{E} of this form $\left(g^{E}=A x_{1} x_{2}\right.$, where A is a constant), the stability criterion is (see Sec. 6.12):

$$
\frac{A}{R T}>2
$$

or

$$
42043+4.259 P-0.233 P \ln P>(2) \times(82.0578) \times(273)
$$

Solving for P,

$$
P=1046 \mathrm{~atm} \quad \text { (or } 1060 \mathrm{bar} \text {) }
$$

At pressures higher than 1060 bar, the system splits into two phases.
To solve for the composition at a higher pressure, we use:

$$
\begin{gathered}
x_{1}^{\prime} \gamma_{1}^{\prime}=x_{1}^{\prime \prime} \gamma_{1}^{\prime \prime} \\
\left(1-x_{1}^{\prime}\right) \gamma_{2}^{\prime}=\left(1-x_{1}^{\prime \prime}\right) \gamma_{2}^{\prime \prime}
\end{gathered}
$$

where

$$
R T \ln \gamma_{i}=(42043+4.259 P-0.233 P \ln P) x_{j}^{2}
$$

At 1500 atm (or 1520 bar) and 273 K ,

$$
\ln \gamma_{i}=2.0477 x_{j}^{2}
$$

Thus,

$$
\begin{aligned}
x_{1}^{\prime} \exp \left[2.0477\left(1-x_{1}^{\prime}\right)^{2}\right] & =x_{1}^{\prime \prime} \exp \left[2.0477\left(1-x_{1}^{\prime \prime}\right)^{2}\right] \\
\left(1-x_{1}^{\prime}\right) \exp \left[2.0477\left(x_{1}^{\prime}\right)^{2}\right] & =\left(1-x_{1}^{\prime \prime}\right) \exp \left[2.0477\left(x_{1}^{\prime \prime}\right)^{2}\right]
\end{aligned}
$$

Solving (either graphically or numerically), we obtain

$$
\begin{array}{ll}
x_{1}^{\prime}=0.37 & \left(x_{2}^{\prime}=0.63\right) \\
x_{1}^{\prime \prime}=\mathbf{0 . 6 3} & \left(x_{2}^{\prime \prime}=0.37\right)
\end{array}
$$

8. We want to relate h^{E} to volumetric data. Relations given in Chapter 3 of the text may be used. We write h^{E} at any pressure P relative to h^{E} at 1 bar as:

$$
h^{E}(P)-h^{E}(1 \text { bar })=\int_{1}^{P}\left[v^{E}-T\left(\frac{\partial v^{E}}{\partial T}\right)_{P}\right] d P
$$

Thus, we need the above integrand as a function of pressure at 333 K .
From volumetric data, using linear regression at each pressure between 323 K and 348 K ,

$$
\begin{gathered}
\left(\frac{\partial v^{E}}{\partial T}\right)_{1 \mathrm{bar}}=0.0186 \quad\left(\frac{\partial v^{E}}{\partial T}\right)_{100 \mathrm{bar}}=0.0154 \\
\left(\frac{\partial v^{E}}{\partial T}\right)_{250 \mathrm{bar}}=0.01239 \quad\left(\frac{\partial v^{E}}{\partial T}\right)_{500 \mathrm{bar}}=0.00963
\end{gathered}
$$

Using linear interpolation, at 333 K ,

$$
\begin{array}{ll}
v^{E}(1 \text { bar })=1.091 & v^{E}(100 \text { bar })=0.9638 \\
v^{E}(250 \text { bar })=0.8284 & v^{E}(500 \text { bar })=0.6846
\end{array}
$$

If

$$
F(P)=v^{E}-T\left(\frac{\partial v^{E}}{\partial T}\right)_{P}
$$

then:

$P($ bar $)$	1	100	250	500
$F(P)\left(\mathrm{J}\right.$ bar mol $\left.^{-1}\right)$	-0.5102	-0.4164	-0.3297	-0.2522

Using a trapezoid-rule approximation,

$$
\int_{1}^{360} F(P) d P=-128 \mathrm{~J} \mathrm{~mol}^{-1}
$$

Therefore, at 333 K

$$
\begin{aligned}
& h^{E}(360 \text { bar })=h^{E}(1 \text { bar })+\int_{1}^{360} F(P) d P \\
&=1445-128 \\
& \boldsymbol{h}^{E}(\mathbf{3 6 0} \text { bar, } \mathbf{3 3 3 K})=\mathbf{1 3 1 7} \mathbf{~ J ~ m o l}^{-\mathbf{1}}
\end{aligned}
$$

9. For condensation to occur,

$$
f_{\mathrm{W}}^{L}>f_{\mathrm{W}}^{V}
$$

To find the temperature for condensation (at constant pressure and vapor composition), we solve the equilibrium relation

$$
f_{\mathrm{W}}^{L}=f_{\mathrm{W}}^{V}
$$

The liquid phase is assumed to be pure water. Its fugacity is given by

$$
f_{\mathrm{W}}^{L}=f_{\text {pure }}^{L} \exp \int_{P_{\mathrm{W}}^{s}}^{P} \frac{v_{\mathrm{W}}}{R T} d P
$$

As a good approximation, let

$$
f_{\mathrm{W}}^{L} \cong P_{\mathrm{W}}^{s} \exp \frac{v_{\mathrm{W}}^{s}\left(P-P_{w}^{s}\right)}{R T} \quad \text { (obtain data from Steam Tables) }
$$

Thus, we are neglecting φ_{W}^{s} and we assume that (liquid) water is incompressible over the pressure range between P_{W}^{S} and $P(150 \mathrm{~atm})$.

The vapor phase is described by an equation of state. Therefore,

$$
f_{\mathrm{W}}^{V}=y_{\mathrm{W}} \varphi_{\mathrm{W}}^{V} P
$$

To obtain φ_{W}^{V}, we use the Redlich-Kwong equation of state:

$$
\begin{equation*}
P=\frac{R T}{v-b}-\frac{a}{T^{1 / 2} v(v+b)} \tag{1}
\end{equation*}
$$

from which we obtain

$$
\begin{align*}
\ln \varphi_{\mathrm{W}} & =\ln \frac{v}{v-b}+\frac{b_{\mathrm{W}}}{v-b}-\left(2 \sum_{j} y_{j} a_{\mathrm{W} j}\right)\left(R T^{1.5} b\right)^{-1} \ln \left(\frac{v+b}{v}\right) \\
& +\frac{a b_{\mathrm{W}}}{R T^{1.5} b^{2}}\left(\ln \frac{v+b}{v}-\frac{b}{v+b}\right)-\ln \frac{P v}{R T} \tag{2}
\end{align*}
$$

where v is the molar volume of the mixture and

$$
\begin{aligned}
& a=\sum_{i} \sum_{j} y_{i} y_{j} a_{i j} \\
& b=\sum_{i} y_{i} b_{i}
\end{aligned}
$$

In these equations, a_{W} and $a_{\mathrm{CO}_{2}}$ are given as functions of temperature; the cross-coefficient is

$$
a_{i j}=\left(a_{i}^{(0)} a_{j}^{(0)}\right)^{1 / 2}+0.5 R^{2} T^{2.5} K
$$

With a trial-and-error procedure, we can calculate f_{W}^{V}. Use the following procedure:

1. Guess temperature.
2. Calculate v from equation of state [Eq. (1)].
3. Use T and v (along with P and y) to calculate φ_{W} from Eq. (2).
4. Calculate the fugacity of vapor.
5. Compare f_{W}^{V} with saturation pressure of water at that temperature.

Typical results are:

$T(\mathrm{~K})$	φ_{W}	$f_{\mathrm{W}}^{V}(\mathrm{~atm})$
475	0.588	17.7
500	0.633	19.9
525	0.711	21.3
550	0.746	22.4

Plotting f_{W}^{V} and f_{W}^{L} as a function of temperature (see figure), we see that

$$
f_{\mathrm{W}}^{L}=f_{\mathrm{W}}^{V}
$$

at $T \approx 482 \mathrm{~K}$. That is the temperature where condensation first occurs (dew-point temperature of the mixture).

Fugacity of water in vapor phase and in liquid phase at $P=150 \mathrm{~atm}$.
10.
a) For equilibrium between solid solute and solute dissolved in the supercritical fluid,

$$
f_{2}^{\mathfrak{s}}(P, T)=f_{2}^{f}\left(P, T, y_{2}\right)
$$

or

$$
\begin{equation*}
d \ln f_{2}^{\perp}=d \ln f_{2}^{f} \tag{1}
\end{equation*}
$$

where subscript 2 refers to solute and superscript f to fluid phase.
Expanding Eq. (1) with respect to T, P and composition (see Sec. 12.4), we obtain (temperature is constant):

$$
\begin{aligned}
& \left(\frac{\partial \ln f_{2}^{2}}{\partial T}\right)_{P, y}=0 \\
& \left(\frac{\partial \ln f_{2}^{f}}{\partial T}\right)_{P, y}=0
\end{aligned}
$$

$$
\begin{gather*}
\left(\frac{\partial \ln f_{2}^{\nu}}{\partial x_{2}}\right)_{P, T}=0 \quad \text { (pure solid solute) } \\
\left(\frac{\partial \ln f_{2}^{\nu}}{\partial P}\right)_{T} d P=\left(\frac{\partial \ln f_{2}^{f}}{\partial P}\right)_{T, y} d P+\left(\frac{\partial \ln f_{2}^{f}}{\partial y_{2}}\right)_{T, P} d y_{2} \tag{2}
\end{gather*}
$$

But because

$$
\begin{aligned}
& \left(\frac{\partial \ln f_{2}^{\delta}}{\partial P}\right)_{T}=\frac{v_{2}^{s}}{R T} \\
& \left(\frac{\partial \ln f_{2}^{f}}{\partial P}\right)_{T}=\frac{\bar{v}_{2}^{f}}{R T}
\end{aligned}
$$

Equation (2) becomes:

$$
\begin{equation*}
\frac{\left(v_{2}^{*}-\bar{v}_{2}^{f}\right)}{R T} d P=\left(\frac{\partial \ln f_{2}^{f}}{\partial y_{2}}\right)_{T, P d y} d y_{2}=\left(\frac{\partial \ln f_{2}^{f}}{\partial \ln y_{2}}\right)_{T, P} d\left(\ln y_{2}\right) \tag{3}
\end{equation*}
$$

Finally, because

$$
f_{2}^{f}=y_{2} \varphi_{2} P
$$

Equation (3) becomes

$$
\begin{equation*}
\left(\frac{\partial \ln y_{2}}{\partial P}\right)_{T}=\frac{\frac{v_{2}^{s}-\bar{v}_{2}^{f}}{R T}}{1+\left(\frac{\partial \ln \varphi_{2}}{\partial \ln y_{2}}\right)_{T, P}} \tag{4}
\end{equation*}
$$

b) Maxima (or minima) occur when

$$
\left(\frac{\partial \ln y_{2}}{\partial P}\right)_{T}=0
$$

Because $\partial \ln \varphi_{2} / \partial \ln y_{2}$ is always greater than -0.4 , the above derivative is zero when $v_{2}^{\nu}=\bar{v}_{2}^{f}$.

It is necessary, then, to calculate \bar{v}_{2}^{f} as a function of pressure.
Using Eq. (12-41),

$$
\bar{v}_{2}=-\frac{\left(\frac{\partial P}{\partial n_{2}}\right)_{T, V, n_{1}}}{\left(\frac{\partial P}{\partial V}\right)_{T, \text { all } n}}
$$

and the Redlich-Kwong equation of state with the mixing rules,

$$
\begin{aligned}
a & =\sum_{i} \sum_{j} x_{i} x_{j} a_{i j} \\
b & =\sum_{i} x_{i} b_{i}
\end{aligned}
$$

we obtain

$$
\bar{v}_{2}=\frac{\frac{R T}{v-b}\left(1+\frac{b_{2}}{v-b}\right)-\frac{2\left(\sum_{i} x_{i} a_{2 i}\right)-a b_{2} /(v+b)}{v(v+b) T^{1 / 2}}}{\frac{R T}{(v-b)^{2}}-\frac{a}{T^{1 / 2}}\left[\frac{2 v+b}{v^{2}+(v+b)^{2}}\right]}
$$

Assuming that the fluid phase is almost pure solvent, v, a and b are those for pure solvent 1 . Cross parameter a_{12} is given by:

$$
a_{12}=\left(a_{11} a_{22}\right)^{1 / 2}\left(1-k_{12}\right)
$$

Constants are:

$$
\begin{aligned}
& a_{11}=0.7932 \times 10^{8} \quad \text { bar }\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)^{2} \mathrm{~K}^{1 / 2} \\
& a_{22}=0.11760 \times 10^{10} \quad \text { bar }\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)^{2} \mathrm{~K}^{1 / 2} \\
& a_{12}=0.3264 \times 10^{9} \quad \text { bar }\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)^{2} \mathrm{~K}^{1 / 2} \\
& b_{1}=40.683 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \quad b_{2}=140.576 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
\end{aligned}
$$

Using volumetric data for ethylene at 318 K (IUPAC Tables), and because

$$
v_{2}^{\mathrm{s}}=\frac{128.174}{1.144}=112 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
$$

the maximum (and minimum) occurs $\left(\bar{v}_{2}=v_{2}^{\nu}\right)$ at (see figure below)

$$
\text { minimum }=19 \text { bar }
$$

$$
\text { maximum }=478 \text { bar }
$$

These values are in good agreement with results shown in Fig. 5-39 of the text.

Partial molar volumes of naphthalene infinitely dilute in ethylene at 318 K calculated from Redlich-Kwong equation of state with $k_{12}=-0.0182$.

[^0]: \dagger This may not be immediately obvious. But $\gamma_{1} x_{1}$ is the activity, and the activity of component 1 cannot reach unity for any x_{1} less than one because the solution will split into two phases of lower activity. See Fig. 6-25 in the text.

