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1. From problem statement, we want to find .P T/b g
v

Using the product-rule,
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Integrating the above equation and assuming P and T constant over the temperature range,
we obtain

P P
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For T = 1 C, we get

P 33.8 bar

1
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2. Given the equation of state,

P
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b RT
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3. This entropy calculation corresponds to a series of steps as follows:

s
T

P

 (saturated liq.
 = 298.15 K

 = 0.03168 bar)

1 s
T

P

 (saturated vapor,
 = 298.15 K

 = 0.03168 bar)

2

s
T

P

 (vapor,
 = 298.15 K

 = 1 bar)

3

s s s3 1 2 2 3 s1

vap 1 1
1 2 vap

(2436) (18.015)
147.19 J K mol

298.15

h
s s

T

s
T

dP

PP

P

2 3
2

3 F
HG
I
KJ

L
N
M
M

O
Q
P
Pz v

Because v
RT

P
 (ideal gas), 

3
2 3

2

1 1

ln

1.0
(8.31451) ln

0.03168

28.70 J K  mol

P
s R

P

0
3 2(H O,vapor)

147.19 28.70 69.96

s s

1 1
188.45 J K mol
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4. Because
RT

P
v,

P
RT RT

v v v2 3 2/

or

P
RTv

v v

2

2 32 3

3

2 3

( 6)

(2 3 )T

P RTv v

v v v
2

,As T = 373.15 K, R = 0.0831451 bar L K-1 mol-1, and molar mass is 100 g 

mol-1,

v 2 3 1. L mol

F
HG
I
KJ

P

Tv
33245 33245 108. bar L  mol . Pa m mol-1 3

w g k
P

c
T
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3
3

2
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1
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m  m
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2 2

( . ) . .

,

w 157 m s 1

5. Assume a three-step process: 
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(1) Isothermal expansion to v = 
(ideal gas state) 

(2) Isochoric (v is constant) cool-
ing to T2

(3) Isothermal compression to v2

V

T

v =

(1)

(2)

(3)

( , )T v

( , )T v

1 1

2 2

For an isentropic process,

s s s s1 2 3 0

Because s = s(v, T),

ds
s

d
s

T
dT

T

F
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P

T
d

c

T
dT

F
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KJ
v

v
v

by using the relations

F
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KJ
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S P

TTv
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 (Maxwell relation)

F
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F
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u

T
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T
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then,
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T

cP P
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T T T

v v
v
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Using van der Waals’ equation of state,
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2
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To simplify, assume
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Because

z
P

RT

B Cv

v v

1
2

the second virial coefficient for van der Waals equation is given by

B b
a

RT

7. Starting with

du Tds Pdv
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8. The equation

P
n

T
m RT

F
HG

I
KJv

v
2 1 2/
b g

can be rewritten as 

( ) ( )/ /PT PmT n nm RT1 2 3 1 2 2 3/2 2
v v v v

v v v
3 2

1 2 1 2
0

F
HG

I
KJ
F
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I
KJm

RT

P

n
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nm

PT/ /
 (1) 

At the critical point, there are three equal roots for v = vc, or, equivalently,

F
HG
I
KJ

F
HG
I
KJ

P P

T Tc T Tc

v v

2

2
0

 (2) v v v v v v v vc c c cb g3 3 2 2 33 3 0

Comparing Eqs. (1) and (2) at the critical point, 

m
RT

P

c

c
c3v (3)

n

P Tc c
c1 2
23

/
v (4)

nm

P Tc c
c1 2
3

/
v (5)

From Eqs. (3), (4), and (5) we obtain 

m cv

3
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c

c
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3
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2 1 2

2 5 2

v
/

/

The equation of state may be rewritten: 
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P
RT

m

n

RT

F

H

G
G
G

I

K

J
J
Jv

v

v

1

1
3/2

or

z
P

RT m

n

RT

v

v

v

1

1
3/2

From critical data, 

m 0 0428 1. L mol

n 63 78. bar (L mol )  K1 2 1/2

At 100 C and at v = (6.948) (44)/1000 = 0.3057 L mol-1,

z = 0.815 

This value of z gives P = 82.7 bar. Tables of Din for carbon dioxide at 100 C and v = 6.948 
cm3 g-1, give P = 81.1 bar or z = 0.799. 

9. We want to find the molar internal energy u T  based on a reference state chosen so that( , )v

u T( , )0 0v

Then,

u T u T u T

u T u T u T u T

u
d

u
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T T
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( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )
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v v v

v v v v
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v v
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Schematically we have: 

1 2

Ref. state

Ideal gas

(  ,   )T v

3

0

v = v

Ideal gas

Intermediate state

Ideal gas

( ,    )T v

State of interest

Real gas

( , )T v
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In Eq. (1) we are taking 1 mol of gas from the reference state 1 to the state of interest 3

through an intermediate state 2, characterized by temperature T and volume v , in a two-step 
process consisting of an isochoric step and an isothermal step. 

In the step 1 2 the gas is infinitely rarified, and hence exhibits ideal gas behavior. Then, 
the second integral in Eq. (1) gives: 

0 00

0 0 0
0lim ( ) ( )(

T T T

p p
T TT

u
dT c dT c R dT c R T Tv

v
v v

v

) (2)

because for an ideal gas  and because, by the problem statement, the heat capacity at 

constant pressure of the gas is temperature independent. 

c c Rp
0 0

v

We have now to calculate the first integral in Eq. (1). To make this calculation, we first 
transform the derivative involved in the integral to one expressed in terms of volumetric proper-
ties.

By the fundamental equation for internal energy (see Table 2-1 of the text),

F
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I
KJ
F
HG
I
KJ

u
T

P
P

T Tv v
(3)

Making the derivative using the equation of state give we obtain 

F
HG
I
KJ

u RT

b

RT

b

a

b

a

b
T

v v v v v v v( ) ( )
 (4) 

Then,

1 1
ln ln

ln

u a a b
d d

b b b b

a b

b b

v v

v v

v v
v v

v v v v

vv

v v

v

(5)

and

lim ln
v v

v

v

v
v

v

F
HG
I
KJ

F
HG
I
KJz u

d
a

b

b

T

(6)

Combining Eqs. (1), (2) and (6) we obtain the desired expression for the molar internal en-
ergy,

u T c R T T
a

b

b
p( , ) ( )( ) lnv

v

v

F
HG
I
KJ

0
0
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10.

     such that2ln (1 )w A xw w 1   as xw 1

Using Gibbs-Duhem equation, 

ln ln 0w w s sx d x d

or, because ( 1 ,dx dxw s )w sx x

x
d

dx
x

d

dx
w

w

w
s

s

s

ln ln

d

dx
A x A xw

w
w w

ln
( )( ) ( )2 1 1 2 1

Then,

2 (1 )
ln 2 (1 )s s

s s s
s

Ax x
d dx A

x
sx dx

ln

0 0
ln 2 (1 )

s sx

s s sd A x dx

2

ln 2
2
s

s s
x

A x

ln ( )s wA x2 1

11. Henry’s law for component 1, at constant temperature, is 

f k x1 1 1 ( )for 0 1x a

where is Henry’s constant. k1

For a liquid phase in equilibrium with its vapor, fi
L

i
V .  If the vapor phase obeys ideal-

V

f

gas law, 

1

f y Pi i .

Henry’s law can then be written: 

y P k x1 1

Taking logarithms this becomes

11 1ln( ) ln lny P k x

Differentiation at constant temperature gives 



12 Solutions Manual 

1 1

1 1 1

) ln 1y P d x

dx dx x

ln(d

Using the Gibbs-Duhem equation 

x
d P

dx
x

d P

dx
1

1

1
2

2

1
0

ln ln

gives

2
2

1

ln( )
1 0

d y P
x

dx

dx dx2 1 ,or, because 

2
2

2

ln( )
1

d y P
x

dx

or,

ln(y P2 2) lnd d x

Integration gives 

2 2ln( ) ln lny P x C

lnCwhere  is the constant of integration. 

For , and . This gives  and we may write 

2

x2 1, y2 1 P Ps
2 C Ps

2

2 2 2 2ln( ) ln ln ln( )s sy P x P x P

or

       [for y P P x Ps
2 2 2 2 ( )1 12a x ]

which is Raoult’s law for component 2. 

12. Starting from fln ,dg RTdi i

*

*
*

(at )
ln ( is a low pressure where

(at )
gas is ideal)

P P

i
i

i

f P
g RT P

f P
i

From s we obtain h  and s  at T and P to calculate g the Steam Table  from

g h T s
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Choose  = 1 bar. 

15bar
-1J g C

Then, at 320 C,

P*

h h h70 1
1196bar bar J g

1 2 21bar .s s s70

g 1117 8 201371 1. J g J mol

Thus,

ln
. .

.fi 70 320
20137

8 31451 59315
4 08bar, Cb g b g b g

or

f = 59.1 bar 

13. Th an be written (as shown in Problem 6) e virial equation for a van der Waals gas c

v
RT

P
b

a

RT
(1)

At the Boyle temperature,

B b
a

RT
0

or

b
a

RT

The Boyle temperature then, is given by 

T
a

bR
B  (2) 

isThe Joule-Thomson coefficient

F
HG
I
KJ

T

P H

or
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F
HG
I
KJ

F
HG
I
KJ

F
HG
I
KJ

F
HG
I
KJT

P

T

H

P

H

H

P

cH

P

T

T

p

Because

F
HG
I
KJ

F
HG
I
KJ

H

P
T

TT P

v
v

0 ,
F
HG
I
KJand because cp is never zero, when 

H

P T

0 .

Substitution in Eq. (1) gives 

2

T

H RT a RT a
b

P P RT P R

a
b

RT

T

The inversion temperature is

T
a2

Rb
JT

Comparison with Eq. (2) gives

JT B2T T

14. At equilibrium,

G
1 1

where subscript 1 stands for the solute. 
At constant pressure, a change in temperature may be represented by 

f Lf

d f

dT

1 1dT
d f

dT
dT

G

P

L

P

ln lnF
H
G

I
K
J

F
H
G

I
K
J  (1) 

depends only on T (gas composi-

tion does not change.)  However,  (at constant pressure) depends on T and x1 (or ):

Since the solvent is nonvolatile, f G
1  (at constant pressure)

f L
1 ln x1
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d f

dT
dT

f

T
dT

f

x
d x

L

P

L

P x

L

T P

ln ln ln

ln
ln

, ,

1 1 1

1
1

F
H
G

I
K
J

F
H
G

I
K
J

F
H
G

I
K
J (2)

Further,

d f h hG Gln 1 1
0

1

dT RT
P

2

F
H
G

I
K

(3)J

d f

T RT

1 1
2

h hL

P x

Lln

,

0
1

F
H
G

K
J (4)
I

where:

 = ideal-gas enthalpy of 1; 

 = real-gas enthalpy of 1; 

h1
0

hG
1

h L
1  = partial molar enthalpy of 1 in the liquid phase. 

Assuming Henry’s law, 

f

x

1

1
constant

or

F
H
G

I
K
J

ln

ln
,

f

x

L

T P

1

1
1  (5) 

Substituting Eqs. (2), (3), (4), and (5) into Eq. (1), we obtain 

d x

d T

h

R

ln

( / )
1 1

1

From physical reasoning we expect h hG L
1 1 . Therefore  falls with rising temperature.

This is true for most cases but not always.

x1
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1. The Gibbs energy of a mixture can be related to the partial molar Gibbs energies by

g g y g gi i i
i

m

o e j
1

(1)

Since, at constant temperature,

o

ln ,dg RTd f  we may integrate to obtain 

or

g g RT f RT fo mixt mixt
oln ln

g g RT f RT Po mixtln ln  (2) 

where subscript mixt stands for mixture.
For a component in a solution, dg RTd fi iln . Integration gives 

g g RT f olni i i
o

o ln( )i i ig g RT y P  (3) 

Substituting Eqs. (2) and (3) into Eq. (1) gives 

f P yi

i

m

i

m

mixt
1 1

ln ln( )f y y Pi i iln ln

ln lf imixt ln ln nP y
f

y
y Pi

i

ii

m

i

mF
HG
I
KJ1 1

(4)

Because

17
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lny P P y Pi

i

m

i

i

ln ln
mF I
HG KJ1 1

Eq. (4) becomes

ln lnf y
f

y
i

i

ii

m

mixt
F
HG
I
KJ1

 (5) 

Assuming the Lewis fule, if y fi i pure , Eq. (5) becomes

or

ln lnf y fi i

i

m

mixt pure
1

f f i
yi

m

mixt pure
i=1

2. As shown in Problem 1, 

ln lnf y
f

y
i

i

ii

m

mixt
F
HG
I
KJ1

This result is rigorous. It does not assume the Lewis fugacity rule.
Using fugacity coefficients, 

Pf yi i i

and

Pln ln ln lnf y yA A B Bmixt

A By y
BAf Pmixt

0.25 0.75(0.65) (0.90) (50)

fmixt 41.5 bar
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3. Pure-component saturation pressures show that water is relatively nonvolatile at 25 C.
Under these conditions the mole fraction of ethane in the vapor phase (yE) is close to unity. 

Henry’s law applies:

f H T xE E( )

The equilibrium condition is 

or

f fV L
E E

y P H T xE E E( )

At 1 bar,  and E 1 H T P x( ) / E :

H T( )
.

.
1

0 33 10
303 10

4
4  bar

At 35 bar we must calculate E:

ln E z z

P
dP

P 1

0

Using

P2

we obtain 

z P1 7 63 10 7 22 103 5. .

E 0 733.

Because Henry’s constant H is not a strong function of pressure, 

P

H
x

f

H
E

E E

x xE Ethane
)

.303 1

( . ( )0 733 35

04
8.47 10 4

4. The change in chemical potential can be written,

0 1
1 1 1 0

1

ln
f

RT
f

        ( ) (1) 0
1 1 barf
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The chemical potential may be defined as
1
:

2 2n

2 2

0

1 1
1 1, , ,

0

1 1, , ,

T P n T

T V n T n

G G

n n

A A
RT

n n

 (2) 

0

Combining Eqs. (1) and (2): 

2

1
1 , ,

1
ln 1

T V n

A
f

RT n

V nTv , n n nT 1 2 ,Using total volume,

A

RT V n b n RT n RTT

n
V

n
V

n
V

T

F
H KG

I
J
F
H KG
I
J

F
H K1 2

Taking the partial derivative and substituting gives 

G
I
Jln ln1 2ln

1 1

1
ln

f b

y RT b

b

v

v

or

f
y RT

b

b

b
1

1 1F
HG
I
KJv v

exp

The same expression for the fugacity can be obtained with an alternative (but equivalent) 
derivation:

1 0 0 0 0 0 0 0 0; ; TA U TS G U PV TS PV n RT

0 0 0
0
1

G

1 1 1, 1 , 1j j jT n T n

U S
RT T

n n n
, 1T n

and
0 0 0

1 1 1, 1 , 1 , 1j jT n T n T n

A U S
RT T

n n n
j

then
0

0
1

1 , 1jT n

A
RT

n
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0 01
1 1 10

1

ln ( 1 bar)
f

RT f
f

1
1 1

F
HG
I
KJ

A

n
T V nj, ,

. The Helmholtz energy change aBy definition,  can be written as 

0

0
1( )

T i i

i

i

i

n a A n a

A n RT

Then,

1, , 1, ,

0
1

1 1

0
1 1

j T V j T V

T

n n

n a A
RT

n n

RT

and

1

0
1 1 ( / )Tn a RT

1 , ,

1

jn T V
RT n

Using the equation for a ,

1

1

1 1, ,

( / )
ln ln 1

j

T T

T Tn T V

n a RT n bV V

n V n b n RT V n b

or

1
1 , ,jn T V

0
1 1

1

1 1

( / )
ln ln 1

ln

T

T

T T

n a RT
f

RT n

n RT n b

V n b V n b

1 1
1 exp T

T T

n RT n b
f

V n b V n b

Hence,

1 1
1 exp

y RT b
f

b bv v
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5.

a) :

For a pure component

Starting with Eq. (3-51)

( )i Tn n :

0
0; i

i i
i i

GG

n n

Because

G U PV TS

(1)

From Eq. (3-52), 

0 0 0
i i iTs RT

0 0lni i
V i i

P RT V PV
dV RT Ts

n V n RT n
i

i

(2)

qs. (1) and (2),From E

0 ln i
i i

V i i

PV n RTP RT V
dV RT

n V n RT ni

But,

0ln i i iRT f

and

V

n RT

z

Pi

i

Substitution gives

ln ln ( 1)i i
V ii

f P RT
RT dV RT z RT z

P n V

b)  with Eq. (3-53):
For a pure component  To use Eq. (3-53), we must calculate 
Starting

, yi 1.

F
HG KJ

P

n

I
i T V i, ,pure component

Pressure P is a function of T, V, and ni  and
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1
ii nPV

n V P

inP V

F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ

F
HG
I
KJ

L

N
M
M

O

Q
P
P

P

n

V

n

P

V

P

n

P

n

V

n

P

V

i V i P ni

i i i ni

But,

P

n

V

n

P

V n

PV

Vi i ni
i ni

F
HG
I
KJ

L
NM
O
QP

1 ( )

Then,

1, ,

1
( )

( 1)

i

j

n RT

V V PVi i iT V n

V i i

V i

P P
dV d PV

n n n

P PV
dV RT

n n

P
dV RT z

n

Now Eq. (3-54) follows directly. 

6. The solubility of water in oil is described by

f H T x1 1( )

f1 1 barHenry’s constant can be evaluated at 1 bar where .
Then,

H T
f

x
( ) 1 t( )

1
4

1

35 10
286 140bar C

To o 1 bles (e.g., Keenen and Keyes). Alterna-
tively, ge e Poynting factor to correct to 410 bar. 

At 1

btain f  at 410 bar and 140 C, use the Steam Ta
t f at saturation (3.615 bar) and use th
40 C,
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T s

    (from Steam Tables) 

1 1 410 bar 1lnRT f g h 410 bar 1 410 bar

RT fln 1 282 J g 1

ln
( ) ( )

( . ) ( )
.f1

282 18

8 31451 413
148

Then, f1 = 4.4 bar at 410 bar and 140 C and 

x
f

H T
1

1 4 4

286
0 0154

( )

.
.

7.

T = 300 K
o

P = ?o

T = 300 K
f

P = 1 barf

Applying an energy balance to this process, 

h h hf o 0

This may be analyzed on a P-T plo ole of gas passing through the valve. t. Assume 1 m

P

T

I

II

III

ooT P,

ffT P,

p process applies:

I. Isothermal expansion to the ideal-gas state. 

II. Isobaric cooling of the ideal gas. 

A three-ste

III. Compression to the final pressure. 

For this process,
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h h h hI II III 0

Since h = h(T,P),

dh
h

P
dP

h

T
dT

T P

F
HG
I
KJ

F
HG
I
KJ

o oT P

o o
o f

0
0

0

f f

f f

T P

T P

p
P TP PT T

h dh

T dP c d T T dP
T T

v v
v v

But,

v
RT

P T
50

105

Then,

F
HG
I
KT P TP

2

and

J
v R 105

c y c y cp p p
0 0 0

A B,A ,B

h P y
T

c y c T T
T

Pp p

F
H KG

I
J

F
HG

I
KJ

50
2 100 0

5

o A B f o
f

fjb g,A ,B

Subs o

)33 5 10 200 300 950 11 11 3J mol  K bar cm J K bar

Po = 55.9 bar 

0 50
2 105

b g e
o

tituti n gives

( . )616 7 Po ( . ) ( ) ( ) ( ) (

8. From the Gibbs-Helmholtz equation:

F
HG
I
KJ

g

T

T

h

T 2
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or, alternately,

F
HG
I
KJ
F I

T
h h h

1
eal ideal

HG KJ

g

T

r (1)

Because, at constant temperature,

d g RTd
f

P
b g F

HG
I
KJln  (2) 

we may substitute Eq. (2) into Eq. (1) to obtain

R

f

P

T

h

F
HG
I
KJ

F
HG
I
KJ

ln

1

From the empirical relation given,

ln .
.

.
.f

P
P

T
P P

P

T
0 067

30 7
0 0012

0 4162
2

R

f

P

T

P P
h

R

F
HG
I
KJ

F
HG
I
KJ

ln

. .
1

30 7 0 416 2

At P = 30 bar, 

h = (8.31451) [(-30.7) (30) + (0.416) (30)2]

h = -4545 J mol-1

9. Consider mixing as a three-step process: 

(I) Expand isothermally to ideal-gas state.

(II) Mix ideal gas. 

(III) Compress mixture isothermally.
Starting with

du c dT T
P

T
P d

F
HG
I
KJ

L
N
MM

O
Q
PPv

v

v
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F
HG
I
KJ
F
HG
I
KJ

u
T

P

T
P

T
v

v

P
RT a

,Because,
bv v

2

F
HG
I
KJ

u

T
v v

2

a

Integration of this equation to the ideal-gas state ( )v  gives 

u
a

d
az

v

v

vv
2

Therefore,

u
x a x a

I J mol1 1

1

2 2

2

15914
v v

 [(1 bar) (1 cm3) 0.1 Joule]

u (because is the mixing of ideal gases)0II

2 2
1 11 1 2 11 22 2 22mixt

III
mixt 1 1 2 2

1

[ 2 (1 0.1)

5550 J mol

]x a x x a a x aa
u

x xv v v

mix mix I II IIIh u u u u 1
364 J mol





S O L U T I O N S  T O  P R O B L E M S  

C H A P T E R 4

1.

r
At 25 Å we can neglect repulsive forces.
The attractive forces are London forces and induced dipola forces; we neglect (small) quadrupo-
lar forces.  (There are no dipole-dipole forces since N2 is nonpolar.) 

Let 1 stand for N2 and 2 stand for NH3.

London force:

12
1 2

6
1 2

1 2

3

2 r

I I

I I

F
d

dr r

I I

I I
12

1 2
7

1 2

1 2

9

Since,

m

m

 = 15.5 eV = 

1
25 317 6 10.  c

2
25 322 6 10.  c

2 4 18.I1 8 10 N m

184 10 8. 1= 11.5 eV = I2 N m

then

0 10London

Induced dipole force:

F12
1862  N.

29
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12
1 2

2

6r

F
r

12
1 2

26
7

1 21 4

1 1 10 18 1 2D (erg cm )3 /

2
187 1 47 10. /m )3

/

eglecting all forces due to quadrupoles (and higher poles),

.D (erg c

F12
18 1 23 8 10ind 3erg cm. ( )

N

F F Ftot London ind

Ftot 1865.8 10 N

2. From

Attractive potential = 

 the Lennard-Jones model:

4
6

6r

Attractiv force =e
d

dr r
24

6

7

Assume force of form,

 Force =
F
HG
I
KJ

d

dr k r
( )constant

6

7

Using corresponding states:

k
T

T

c

c

F
HG KJ ( )constant

where  and  are universal constants.

I 6 2

2

( )constant v

v

c

c
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force CH

force substance B

constant

constant

CH4

CH

CH

B

B

4

4
6

4
7

6

7

( )

( )

( / )

( / )

( )

( )

( )

( )

k

k

r

r

B

CH4

2

CH4

B B

8 7 7

2

7 7

2 10 (1 10 cm)

force substance B

(2 10 cm)

( )

( ) ( )

c

c c

T

T v

( )cv

Force substance B =  dyne04 10 1

Force = 4 10 N15

3.

AA  erg8 10 16

By the molecular theory of corresponding states:

( 2 )ii r
f r

i i

BB B B ( is a universal function)
F

AA A AHG
I
KJ MM
P
P

f

f
f

2

2b g
L
N
O
Q
b g

the Lennard-Jones (12-6) poten-
tial),

Since / .k Tc0 77  (taking the generalized function f as

B

A

BB AA

16( 8 10  erg) (180 K/120 K)

c

c

T

T

12 0 10 16.BB  erg

12.0 10  J23
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4. For dipole-dipole interaction:

( )
( )

( , , )dd
r

f
i j

i j
4 3

o

with

f i j i j i j i j( , , ) cos cos sin sin cos( )2

For the relative orientation:

i j

i = 0º i = 0º 

j = 180º j = 0º 

( )
( )

[ ( )]
( )

dd
r r

i j i j

4
2 1 1

2

43 3
o o

For i = j = 1.08 D = 3.603 10  C m  and-30 r = 0.5 10-9 m,

30 2

12 9 3

( 2) (3.603 10 )
( )

(4 ) (8.8542 10 ) (0.5 10 )
dd

-21
-1.87 ×10 J

For the relative orientation:

i
j

i = 0º i = 0º 

j = 90º j = 0º 

For the dipole-induced dipole interaction:

( )
( )

( cos ) ( cos )ddi
i j

i
j i

j

2

2 6
2

2

2 6
2

2 4
3 1 3 1

o ( )r r2 4 o

For the relative orientation:

i

j

i

j

i

j

i

j

j
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i j
i = 0º j = 90º 

30 2 30

10 9 6
( ) 2

2 (1.1124 10 ) (0.5 10 )
idd

23

(3.603 10 ) (2.60 10 )
(4)

7.77 10 J 23
8.0 10 J

or the relative orientation:F

i
j

i = 0º j = 90º 

30 2 30

10 9 6

(3.603 10 ) (2.60 10 )
( ) (4 1)

2 (1.1124 10 ) (0.5 10 )
idd

234.85 10 J 23
4.8 10 J

5. The energy required to rem  the solution is ove the molecule from

E
a

r

r

F
HG

I
KJ

1 1

2 13
2

3.5r a 3.0 10 cm 2 D

ee, for example, C. J. E. Böttcher, 1952, The Theory of Electric Polarization, Elsevier) 

-8

(S

E = 4.61 10-21 J/molecule = 2777 J mol-1

6.

a) The critical temperatures and critical volumes of N2 and CO are very similar, more similar
than those for N2 and argon (see Table J-4 of App. J). Therefore, we expect N2/CO mixtures to 
follo ore closely than N2/Ar mixtures.w Amagat’s law m
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b) Using a harmonic oscillator model for CO, F = Kx, where F is the force, x is the displace-
ment (vibration) of nuclei from equilibrium position and K is the force constant. This constant 
may be measured by relating it to characteristic frequency  through: 

1

2

K m m

m m

C O

C O

b g

where mC and mO are, respectively, the masses of carbon and oxygen atoms.
Infrared spectrum will show strong absorption at .
Argon has only translational degrees of freedom while CO has, in addition, rotational and 

vibrational degrees of freedom. Therefore, the specific heat of CO is larger than that of argon. 

7. Electron affinity is the energy released when an electron is added to a neutral atom (or mole-
cule).

Ionization potential is the energy required to remove an electron from a neutral atom (or
molecule).

Lewis acid = electron acceptor (high electron affinity). 

romatics are better Lewis bases than paraffin. To extract aromatics from paraffins we want 

Lewis base = electron donor (low ionization potential).

A
a good Lewis acid. SO2 is a better a Lewis acid than ammonia.

8. From Debye’s equation: 

2

Static polarizationTotal polarization
independent of

1 4 4

2 3 3 3
r

A A
r

T

N N
kT

v

Measurement of molar volume, , and relative permitivity,v r , in a dilute solution as a 
function of T, allows  to be determined (plot total polarization versus 1/T; slope gives ).
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9. We compare the attractive part of the LJ potential (r >> ) with the London formula.
The attractive LJ potential is 

11 11
11

6

4
F
HG
I
KJr

22 22
22

6

4
F I
HG Kr
J

12
6

412 12
F
HG
I
Kr
J

We assume that 12 11 221/ 2( ) . The London formula is

11
1
2

1
6

3

4

I

r

22
2
2

2
6

3

4

I

r

12 6
1 22

1 2 1 23 F
HG KJ
IF
HG KJr I I

Substitution gives 

II I

6

11 22 1 21/ 2
12 11 22 1 1

11 22 1 22 2

( )
I I

I I

Only when 11 22  and I I1 2  do we obtain 

22 )

1/ 2
12 11 22( )

Notice that both correction factors (in brackets) are equal to or less than unity. Thus, in gen-
eral,

12 11( 1/ 2

10. See Pimentel and McClellan, The Hydrogen Bon

Phenol has a higher boiling point and a higher en
d, Freeman (1960). 
ergy of vaporization than other substituted ben-

zenes suc ater than other substituted
benzenes sociated when dissolved in

h as toluene or chlorobenzene. Phenol is more soluble in w
. Distribution experiments show that phenol is strongly as
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nonpolar v d spectra show absorption at a frequency corresponding to 
the  –OH H  hydrogen b

sol ents like CCl4. Infrare
ond.

11.

rbon tetrachloride.
4 3CCl CHClacetone acetone  because acetone can hydrogen-bond with chloroform but not

with ca

12.

a)

CHCl3 Chloroform is the best solvent due to hydrogen bonding which is not
present in pure chloroform or in the polyether (PPD). 

Chlorobenzene is the next best solvent due to its high p
it is a Lewis acid while PPD is a Lewis base. 

olarizability and

Cyclohexane is worst due to its low polarizability. 

n-butanol is probably a poor solvent for PPD. Although it can hydrogen-
bond with PPD, this requires breaking the H-bonding ne
n-butanol molecules.

twork between

t-butanol is

ports the view that it exhibits weaker h

probably better. Steric hindrance prevents it from forming H-
bonding networks; therefore, it readily exchanges one H-bond for an-
other when mixed with PPD. The lower boiling point of t-butanol sup-

ydrogen bonding with itself than 
does n-butanol.

b) 2 and OH. For maximum solu-
bility, we want one solvent that can “hook up” with the ONO2 group (e.g., an aromatic hydro-

b n o one for the O ro (e.g., an alcohol or a ketone). 

c) Using the result of Problem 5, 

Cellulose nitrate (nitrocellulose) has two polar groups: ONO

car o ) and an ther H g up
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E
a

r

r

F
HG

I
KJ

1 1

2 13
2

At 20 C, the dielectric constants are 

4 8(CCl ) 2.238 (C H ) 1.948r r 18

Thus,

r

r

( )

( )
.

CCl

C H8

4

18
117

It takes more energy to evaporate HCN from CCl4 than from octane. 

13. At 170 C and 25 bar:

is above 1 

 is well below 1 

zH2

zamine

z

1

H2

HCl

0 1
yamine

zHCl  is slightly below 1 

a) A mixture of amine and H  is expected to exhibit positive deviations from Amagat’s la2 w.

b) Since amine and HCl can complex, mixtures will exhibit negative deviations from Amagat’s

c)

law.

z

1

0 1
yargon

HClz

argonz
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The strong dipole-dipole attractive forces between HCl molecules cause , while ar-
gon is nearly ideal. Addition of argon to HCl greatly reduces the attractive forces experienced by 
the HCl molecules, and the mixture rapidly approaches ideality with addition of argon. Addition 

l to Ar causes induced dipole attractive forces to arise in argon, but these forces are much
smaller than the dipole-dipole forces lost upon add
upwards.

zHCl 1

of HC
ition of Ar to HCl. Thus the curve is convex 

14.

a) has acidic hydrogen atoms while ethane does not. Acetylene can therefore com-
plex with DMF, explaining its higher solubility. No complexing occurs with octane. 

lower pressure (3 bar), the gas-phase is nearly ideal. There are few interactions be-
ene and methane (or hydrogen). Therefore, benzene feels equally “comfortable” in 

both gases. 
However, at 40 bar there are many more interactions betwee

drogen) in the gas phase. Now benzene does care about the nature of its surroundings. Because
meth han hydrogen, benzene feels more “comfortable” with meth-
ane than with hydrogen. Therefore, KB (in methane) > KB (in hydrogen).

c) ctive forces with methane than 
with hydrogen due to differences in 2 is more “comfortable” in
methane than in H2 and therefore has a lower fugacity that explains the condensation in H2 but 
not in CH4.

d) It is appropriate to look at this from a corresponding-states viewpoint. At 100°C, for ethane 
, for helium,

At lower values of  (near unity) the molecules have an average thermal (kinetic) energy 
on the order of  (because  is on the order of 

Acetylene

b) At the
tween benz

n benzene and methane (or hy-

ane has a larger polarizability t

Under the same conditions, CO2 experiences stronger attra
 polarizability. This means that CO

TR 12. TR 80 .
TR

TR kT / ). The colliding molecules (and molecules
near one another, of which there will be many therefore be significantly affected 
by the attractive portion of the potential, leading to  < 1. At higher , the molecules have such 
high thermal energies that they are not significantly affected by the attractive part. The mole-
cules look like hard spheres to one another, and only the repulsive part of the potential is impor-
tant. This leads to z > 1. 

e) Chlorobenzene would probably be best although cyclohexane might be good too because
de).

ot good because it hydrogen bonds with itself and n-heptane will be poor because it 
is nonpolar. 

le.
iv) Octopole. 

at 50 bar) can 
z TR

both are polar and thus can interact favorably with the polar segment of poly(vinyl chlori
Ethanol is n

f)  i) Dipole. 
ii) Octopole. 
iii) Quadrupo
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g) Lowering the temperature lowers the vapor pressure
vent losses due to evaporation. However, at 0 C and at
ideal, becoming more nonideal as temperature falls. As the temperature falls, the solubility of 
heptane in high-pressure ethane and propane rises due to increased attraction between heptane 
and e.

of heptane and that tends to lower sol-
600 psia, the gas phase is strongly non-

ethane on propan In this case, the effect of increased gas-phase nonideality is more impor-
tant than the effect of decreased vapor pressure. 

15.

a) They are listed in Page 106 of the textbook: 

int dent of density.

2. Classical (rather than quantum) sta

4. )  (universal functionality). 

b) In general, assumption 4 is violated. But if we fix the core size to be a fixed fraction of the 
collision diameter, then Kihara potential is a 2-parameter ( , ) potential that satisfies corre-
sponding states. 

c) Hydrogen (at least at low temperatures) has a de Broglie wavelength large enough so that
quantum effects must be considered and therefore assumption 2 is violated. Assumption 1 is 
probably pretty good for H2; assumption 4 is violated slightly. All substances violate assumption
3, but H2 isn’t very polarizable so it might be closer than the average substance to pairwise addi-
tivity.

d) Corresponding states (and thermodynamics in general) can only give us functions such as
0 . Values of  (for isolated molecules) cannot be computed by these methods, because 

 (rotation, vibration, translational kinetic energy) appear in Qint and the 

1. Q can be factored so that Q is indepen

tistical mechanics is applicable. 

3. total Pairs( )  (pairwise additivity). 

/ ( /F r

cp
0c cp p

the contributions to cp
0

kinetic energy factor, not in the configuration integral. 

16. Le
Schematically we have for the initial state and for the final (equilibrium) state: 

t  represent the phase inside the droplet and  the surrounding phase.
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NO3

Na
+

Lys
2

K+

3NO

Initial state Equilibrium state

K+

NO3

Na
+

3NO

Na
+

Lys
2

K+

Because the molar mass of lysozyme is above the membrane’s cut-off point, lysozyme can-

 represent the change in K+ concentration in ;

centrations (f) of all the species in  and  are: 

2 K

not diffuse across the membrane.

Let:

 represent the change in Na+ concentration in .

he final conT

In : 0 c cfc
Lys

f

K NO3

0 cf c cf

Na NO3

0

0

 In : c c
Lys Lys2 2 c

K
c c

Na Na

f f f 0 0

q. (1) yields

Na NO3 Na NO3

 (2) 

where, for clarity, superscript f has been removed from all the concentrations. 

NO3

Na NO3 NO3

c c
NO3 NO3

f

The equilibrium equations for the two nitrates are 

K NO3 K NO3

(1)

Na NO3 Na NO3

Similar to the derivation in the text (pages 102-103), E

c c c c
K NO3 K NO3

c c c c

Substituting the definitions of  and  gives: 

c c
K NO3

c

c c c

F
H K

IF
H KG

I
J
F
HG

I
KJ

F
H

I
K
F
HG

I
KJ
F
HG

I
KJ

0 0 0

0 0 0

( )

( )

 (3) 

where



Solutions Manual 41

-
3

0 0 3 -1

K NO

-3

0.01 mol
9.970 10  mol L

1 kg water

(using the mass density of water at 25 C: 0.997 g cm )

c c

and

Solving for  and  gives 

c c
Na

0

NO3
-

0  mol L0 01 1.

3 1

3 1

4.985 10 mol L

5.000 10 mol L

 (4) 

Because both solutions are dilute, we can replace the activities of the solvent by the corre-
sponding mole fractions. The osmotic pressure is thus given by [cf. Eq. (4-50) of the text]

RT x

xs

s

s
v

ln  (5) 

where s

3

NO K Na

a

s w x

 (6) 

x  is the mole fraction of the solvent (water) given by 

3

1 ( )x x x x

+ LysNO K N
1 ( )s wx x x x x x

Because solutions are dilute, we expand the logarithmic terms in Eq. (5), making the ap-
proximation ln( )1 A A :

3 3
LysNO NOK Na K Na

( ) (
RT

x x x x x )
w

x x
v

Again, because solutions are very dilute,

i i
i

c c
x

c ci w
i

with

1w wcv

Therefore, with these simplifying assumptions, the osmotic pressure is given by

Using the relationships with the original concentrations, we have 

RT c c c c c c c[ ]
NO

3 K Na NO
3 K Na Lys
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0

Because

we obtain 

 (7) 

The lysozyme concentration is 

RT c c c c c[( ) ( ) ( ) ( ) ( ) ( )]
NO3 K NO3 Na Lys
0 0 0 0

c c

c c

NO3 K

NO3 Na

0 0

0 0

RT c c c( )2 2 4 40 0 0

K Na Lys

cLys
-1 g

 L

 mol

1 L
 mol L0 42

1

2 14 000
1 429 10

( / , )
.

Substitution of values in Eq. (7) gives the osmotic pressure 

)( . ( [( . ) ( . ) ( .

( . ) ( . ) ]

8314 51 298 2 9 97 10 2 0 01 1429 10

4 4 985 10 4 5 000 10

3 4

3 3

 Pa L mol K )  K)

(mol L )

-1 -1

1

354 Pa

17. Because only water can diffuse across the membrane, we apply directly Eq. (4-41) derived 
in the text: 

ln ln( )a x
RT

w w w
wvpure

 (1) 

where subscript w indicates water. 
Since the aqueous solution in part  is dilute in the sense of Raoult’s law, . This re-

duces Eq. (1) to: 
w 1

ln ln( ) ( )x x x x x
RT

w
w

1
2 2A A A A

purev

 (2) 

or equivalently,
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RT x x

w

( )A A

pure

2

v

At T = 300 K, 1
pure 0.018069 mol L .wv

Mole fractions  and  can be calculated from the dimerization constant and the ss
balance on protein A: 

xA xA2
ma

K
a

a

x

x
105 2

2
2

2

A

A

A

A

 (4) 

3 118.015
18.069 cm mol

0.997
w

w
w

M

d
v

( / , )
.

5 5 000
181 10 25

2(1000 / 18.069)

mol A

mol water
A Ax x  (5) 

Solving Eqs. (4) and (5) simultaneously gives 

7 34 10

5 38 10

6

2

.

.

Substituting these mole fractions in Eq. (3), we obtain 

x

x

A

A
6

.0 01 56 bar 1756 Pa

( . ) ( ) ( . . )

( . )

0 0831451 300 5 38 10 7 34 10

0 0 069

7

6 6

18

18.

a) From Eq. (4-45):

c

RT

M
RTB c

2 2
2

*

Ploting  (with  in pascal and c2 in g L-1) as a function of c2, we obtain the protein’s 
mo  the intercept and the second virial osmotic coefficient from the slope. 

/ c2
lecular weight from
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0 20 40 60
BSA Concentration, g L-1

35

37.5

40

42.5

45

47.5

50

/c
2
, 

P
a
 L

 g
 -1

Intercept = RT/M2 = 35.25 Pa L g = 35.25 Pa m  kg from which we obtain 
From a least-square fitting we obtain: 

-1 3 -1

M
RT 29

2

1

35 25

815 8 314

35 25

70 321 70 321

.

. ) ( . )

.

. ,kg mol g mol-1

RTB*. Therefore, B* = 7.92 10-8 L mol g-2.
cific v me is given by the ratio molecular volume/molecular mass.

le is

(

Slope = 0.196 = 
The protein’s spe olu
The mass per partic

19 12
23

70,321
1.17 10  g molecule

6.022 10A

M
m

N

Because protein molecule is considered spherical, the actual volume of the particle is 1/4 of
the e . Therefore the actual volume of the spherical particle isxcluded volume

118 10

4
2 95 10

24
25 3 1.

.  m molecule

which corresponds to a molecular radius of 4.13 10-9 m or 4.13 nm.
For the specific volume:

2 95 10

117 10
2 52 10 2 52

25

19
6 3 1 3 1.

.
. . m  g cm  g

b) 3 -1Comparison of this value with the nonsolvated value of 0.75 cm  g , indicates that the par-
ticle is hydrated.
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c) Plotting  (with in pascal and c2 in g L-1) as a function of c2 for the data at pH = 7.00, 
we obtain:

/ c2

15 25 3 45 555
40

42.5

45

47.5

50

52.5

55

57.5

60

/c
2
, 
P

a
 L

 g
 -1

BSA Concentration, g L -1

Slope = 0.3317, which is steeper that at pH = 5.34, originating a larger second virial os-
motic coefficient: B* = 1.338 10-7 L mol g-2 = 13.38 10-8 L mol g-2.

s charged. The charged protein particles require counterions so 
electro e counterions form an ion atmosphere around a central protein 
particle and therefore this particles and its surrounding ion atmosphere have a larger excluded 
volum e.

It the value of B* at pH = 7.00 and that at pH = 5.37 for the un-
charged m ontribution of the charge to B*:

 (13.38  7.92) 10-8 L mol g-2 = 

At pH = 7.00, the protein i
neutrality is obtained. Th

e than the uncharged particl
is the difference between

olecule gives the c

1000

4

2

2
2

1

z

M mMX

In this equation, we take the solu on mass density . Moreover, M2 = 

70,321 g mol-1, and mMX  0.15 mol kg-1:
1

31water g cmti

z2
8 2 310 015 10) ( . ) ( . )4 5 46 10 70 321

1000
162

( . ) ( ,

or  Because pH is higher than the protein’s isoelectric point, the BSA must be nega-
tively charged. Hence, z = -13.

9.

a) From Eq. (4-45) and according to the data:

z 13.

1

c c

RT

M
RTB c c

0 2
0

*( )
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Ploting  (with  in pascal and  in g L-1) as a function of c  c0, we obtain the 
molecular weight from the intercept and the second virial osmotic coefficient from the 

c2/ ( )c c0
solute’s
slope.

(c-c
0
), g L

-1

30 40 50 60

/(
c
-c

0
),

 P
a

 L
 g

-1

16.0

16.5

17.0

17.5

18.0

RT/M2 = 14.658 Pa L g-1 = 14.658 Pa m3 kg-1 from which we obtain

From a least-square fitting we obtain: 

Intercept = 

2

1

(298.15) (8.314)

14.659 14.659

169.109 kg mol

RT
M

-1
169,109 g mol

Slope = 0.053495 = RTB*. Therefore, B* = 2.16 10-8 L mol g-2.

b) number of molecules in the aggrega parison of the molecular
weight of the original ether (M = 390 g mol-1) with that obtained in a): 

Number of molecules in the aggregate = 

The te is obtained by com

169,109

390
434

Assuming that the colloidal p sparticles are herical, we obtain the molar volume of the ag-
gregates from the value of the second virial osmotic coefficient B*.  It can be shown (see, e.g.,
Prin opalan, 3rd. Ed., Mar-
cel Dekker) that B* is related to the excluded volume Vex through 

ciples of Colloid and Surface Chemistry, 1997, P.C. Hiemenz, R. Rajag

B
N V

M2 2
2

A*
ex
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From a), B* = 2.16 10-8 L mol g-2 = 2. 0-5 m3 mol kg-2 and M2 = 169,109 g mol-1 = 
169.109 kg mol-1. The above equation gives Vex that is 4 times the actual volume of the particles
(we rical). Calculation gives for the aggregate’s volume,
5.13 10-25 m3 (or 30.90 dm3 mol-1) with a radius of 4.97 10-9 m or 5 nm.

16 1

assume that the aggregates are sphe





S O L U T I O N S  T O  P R O B L E M S  

C H A P T E R 5

1. Initial pressure P :
moles of gas T a

i
   - for n1 1 at constant nd V:

PV
n

Bi
1

111
n RT V1

or

P
n RT

V

n RTB

V
i

1 1
2

11
2

Final pressure Pf:
- after addition of moles of gas 2 at same T and V:n2

2
1 2 1 2

f 2

( ) ( )n n RT n n RTB
P

V V

where

Pressure change 

( )n n B n B n n B n B1 2
2

1
2

11 1 2 12 2
2

222

:P

P nP P
n RT

V
n n B B

RT

V
f i

2
1 2 12 2

2
22 2

2( )

12Solving for B :

2
2

12 2 2 22
1 2

1

2

V P
B n V

n n RT
n B

49
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2. For precipitation to occur, 

f fV
CO CO2 2

s

f
CO2
s ,To obtain

2
60CO

0.1392

1
ln (27.6)

(0.1392) (83.1451) (173)

f
dP

s

6f
CO

5s bar  (at 60 bar, 173 K)
2

01.

Next, find the vapor mole fraction of CO2 hat is in equilibrium with the solid at the speci-

fied P and T:

t

y
f

P
CO2

CO2

V
CO2

or,Using the virial equation for the vap

ln ( ) ln
CO CO2 CO2 H H CO2 2 2 2

2V y B y B
v

z

Because , we may make the approximations

 and 

yCO2
1

z zH2
v vH2

Hz RT

P

2

From data for H2 (see App. C) at –100 C,

2

3 1
H 8.8 cm  molB

whic

From correlations: 

c460

 mol
2

h indicates that zH2
1.

3 1m  molBCO2

cm321.BCO2 H
3 1

At equilibrium

f fV
CO2 CO2

s

and then 



Solutions Manual 51

2

2

2 2 2 2 2

CO
CO

CO CO CO H CO
2

exp (1 )

f
y

P
y B y B P

RT

s

yCO2
0 00344.

Because CO 0.01y  at equilibrium, CO
2 2 precipitates.

To find out how much, assume solid is pure CO2. Let n be the number of moles of CO2 left
in the gas phase. From the mass balance and, as basis, 1 m le of mixture,o

0 00344
0 99

.
.

n

n

0.003417n

The number of moles precipitating is

0 01 0 003417. . 0.0066  moles CO2

3.

T = 313 K
o

P = 70 baro

T = ?
f

P = 1 barf

Condensation will occur in the outlet if .

First

f fV L
CO2 CO2

 it is necessary to find the outlet temperature, assuming no condensation. Joule-
Thomson throttling is an isenthalpic process that may be analyzed for 1 mole of gas through a 3-
step

I, III: Isothermal pres-
sure changes. 

II: Isobaric temperature

process:

change.

P

T

I

II
III

ooT P,

ffT P,

P = 0
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Then

h htotal h hI II III0 (1)

h T
T

dP
PP

I o
o

F
HG
I
KJ

L
N
MM

O
Q
PPz v

v
0

                             (2) 

p
T

h c dT (3)
fT

o
II ,mixt

h T
T

dP
P

P

III f

f F
HG
I
KJ

L
N
MM

O
Q
PPz v

v

0
 (4) 

Assuming that the volumetric properties o gaseous mixture are given by the virial equa-
tion of state truncated after the second term,

f the

v
RT

P
Bmixt

then,

F
HG
I
KJ

F
HG

v

T

R

P

dB I
KJdTP P

mixt

where Bmixt is the second virial coefficient of the mixture.
Because

(1 = CH4; 2 = C )

B y B y y B y Bmixt 1
2

11 1 2 12 2
2

222 (5)

O2

dB

dT
y

dB

dT
y y

dB

dT
y

dB

dT

mixt
1
2 11

1 2
12

2
2 222 (6)

If

B c
c

T

c

T

( )
( ) ( )

0
1 2

2

then

dB

dT

c

T

c

T

( ) ( )1

2

2

3

2
 (7) 

Assume

 (8) 

then,

c y c y cp p p, ,CH ,COmixt CH CO
0

4 4
0

2 2
0
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f f

o o

0
mixt mixt

mixt o ,mixt mixt f
0

0
T P

p
P TP P

dB dB
B T dP c dT B T d

dT dT
P

(1) (2) (1) (2)
(0) (0)mixt mixt mixt mixt

o ,mixt f o fmixt mixt2 2
o f

0 ( ) ( ) ( )pc P c T T c P
T TT T

(9)
o f

2 3 2 3c c c c

From data:

s y1 0 7. , y2 0 3. , 1 1
,mixt 36.22 J K molpcA  according to Eq. (8). 

From Eqs. (5), (6) and (7),

c

mixt

mixt

( )

( )

.

.

0

2 5

41849

34 12 10

Substitution in Eq. (9) gives 

c

cmixt
( )1 18683

Tf K278 4. .

Second, the fugacities of liquid and vapor phases may be calculated.

2

2 22 2 2
CO2

CO
CO COCO CO CO

exp
s

L
P

L

P

s sf x P d
RT

P
v

xCO2
, CO2

, CO2
sThis equation may be simplified assuming that equal to unity. 

At 278 K, bar and Ps
CO2

39 8. v
CO

3 1cm mol
2

49 0L . .

f L
CO2

39 8
49 0 1 39 8

831451 278
36 6

L
NM

O
QP

( . ) exp
( . ) ( . )

( . ) ( )
. bar

Fugacity of vapor is calculated from

P

with

f yV
CO CO2 CO22

2 2 2 4 2 4CO C CO CH CO CH mixtln 2( )
P

y B y B B
RT

O

2COln 2 (0.3) ( 139) 2 (0.7) ( 77) (69)
P

RT
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CO2
0 995 1.

Then

f V
CO bar

2
0 3.

Because

no

f fV L
CO CO2 2

 condensation occurs.

4. The Stockmayer potential is 

F
HG
I
KJ
F
HG
I
KJ

L

N
M
M

O

Q
P
P

4
12 6 2

3 1 2 2 1)
r r r

g( ( , ,

where  is the dipole moment.

11 2

We can write the potential in dimensionless form:

F
HG

I
KJ

f
r

,
2

3
      where f  is a universal function. 

Therefore, we can write the compressibility factor z in terms of the reduced quantities: 

( , , )z f T P

with

~
T

kT
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3P
P

~

3

5.

a) For acetylene: Tc 308 3. K , 0 184. . At 0 C, TR 0 886 0 90. . . Using Lee-Kesler charts

(see, e.g., AIChE J., 21: 510 [1975]):

s R( ) / .0 3 993 zV
( ) .0 0 78 zL

( ) .0 0 10

s R( ) / .1 3 856 z( ) .1 0 11 z( ) .1 0 04V L

( . ) ( . )] .0184 3856 391

a

s ( . ) [ .8 31451 3993vap
1 1J K mol

1
vap v p (273) (39.1) 10.67 kJ molh T s

vap vapu h RT z zV L( ) . ( . ) ( ) (10 67 8 31451 273 0. . )76 0 092 10 3

vap
1kJ molu 915.

b)

C H :4 10 Tc 425 2. K N :2 Tc 126 2. K

 bar Pc 38 0. Pc 33 7.  bar 

0 193. 0 04.

 cm3 mol-1vc 255 vc 89 5.  cm3 mol-1

At 461 K: TR 1084. TR 3 65.

Using the Pitzer-Tsonopoulos equation (see Sec. 5.7):

BC4H10
267  cm3 mol-1 BN2

15 5.  cm3 mol-1

or B12:F

12 1 2 0 1165) .
1

2
(
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T T Tc c c12 1 2
1 2 2316( ) . K ( TR12

1990. )

12 120.291 0.08 0.2817cz

P
z RT

c
c c

12
12 12

1
c c1
1 3

2
1 3 3

8

34 3
( )

.
/ /

v v

bar

Then,  cm3 mol-1

3 1

B12 216.

2 2
mixt 1 11 1 2 12 2 222 177.2 cm molB y B y y B y B

c)

CH T K4 1( ): c 190 6. N2 2( ): Tc 126 2. K H2( ):3 Tc 33 2. K

barPc 46 0. Pc 33 7. bar Pc 130.  bar 

0 008. 0 040. 0 22.

cvc 99 0. cm  mol3 1 3 1.5 cm mol89v

At 200 K:

3 165.0 cm molvc

TR 158. TR 6 02.

At 100 bar:

TR 105.

PR 2 97. PR 217.

sing the mixing rules suggested by Lee and Kesler: 

PR 7 69.

U

v vc j

kj

k c j ck
x x,

/ /( )mixt
1

8
1 3 1 3 3

v

T x x Tc
c

j

kj

k c j ck
c j ck,

/ /( ) (mixt
1

8
1 3 1 3 3 1 2

v

v v T /)

mixt 0j j
j

x

c,P RTc c, ,( . . ) /mixt mixt mixt mixt0 291 0 08 v

3 1
,mixt 84.1 cm  molcv

Tc, .mixt 11138  K  ( TR 180. )

Pc, .mixt 31 47  bar   ( PR 318. )

Enthalpy of mixing = h h h h hE
mixture

1

3
1 2 3( ).

Using the Lee-Kesler charts, 
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hE 922
1

3
5385 1383 0( ) 1334 J mol-1

6.

L G/ 5

P 40  bar 

t 25 C

L G

40% N
50% H

10% C H

2

2

3 8

From the mass balance for C H :3 8

y G y G x L y y Gin out out in out( [ ] )

y G y Gout in0 05.

010 0 005 5 005
3

. . . xC

xC3
0 01898. mole fraction of C3H8 in effluent oil.

To find the driving force, note that 

 bar 

3

 bar 

and

P P y Pi C C
total

3 3
010 40 4( . ) ( )

P P fi C C C
* * * */

3 3

where

f x HC C3 3
0 01898 533 1012* ( . ) ( . ) .

ln [ ] ln*

*
*

C C C N C N H C H3 3 3 2 3 2 2 3 2

2P

z RT
y B y B y B z

Obtain virial coefficients from one of the generalized correlations: 
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BC3
400 8.  cm3 mol-1

BC N3 2
735.  cm3 mol-1

BC H3 2
35.  cm3 mol-1

) = 4/5. As first guess, assume

 Then we calculate, 

   and

We may estimate  (feed value). 

To find y* , y* , and y* , we know that ( y* / y

z* .0 95

C3 N2 H2 N2 H2
*

3

*
C 0.10.y

C3
0 855* . yC3

1012

40 0 855
0 0292* .

( ) ( . )
.

This gives 

.     or

With these ’s, calculate  again: 

    and

That is close enough. Thus,

y yN H2 2
0 9708* * yN2

0 4308* . , yH2
0 540* .

y* C3
*

C3
0 924* . yC3

0 027* .

PC3

1012

0 924
1095* .

.
.  bar 

Now we must check the assumption was correct. Using the virial equation, the as-
sumption is close enough.

force =

z* .0 95

( ) ( . . )*P PC C3 3
4 00 1095 2.91 barDriving

7. Since ,V L
i if f

solv
,solv exp i

i i i iy P x H
RT

( )sP Pv

As Ps
solv 0 ,

y

x

H P R

P

i

i

i i

i

exp( / )v T

Using the virial equation, 
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ln ( ) ln1 1 11 2 12
2

v

y B y B zmixt

ln ( ) ln2 2 22 1 12
2

v

y B y B zmixt

Because

P

RT

Bv

v

1 mixt

v v
2 0

RT

P

B RT

P

mixt

3 23.  cm3 mol-1Bmixt

 cm3 mol-1 , zmixt 10067.v 524

Thus,

1 20 8316 0 9845. .

y

x

1

1

100
60 50

313 8314

50 0 8316
2 70

L
NM

O
QP

( ) exp
( ) ( )

( ) ( . )

( ) ( . )
.

and

y

x

2

2
2131.

2 1
2

2

1

1
,
F
HG
I
KJ
F
HG KJ

y

x
7.89
Ix

y

8. ay write For methane (1) and methanol (2), we m

Neglecting the Poynting corrections [Note: the Poy Correction is 1.035. Including this, 
we get y2 = 0.00268],

f fV L
1 1

f fV L
2 2

nting

y P x H1 1 1 1 2,
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y P x Ps s
2 2 2 2 2 2

= 1, assumex2 2 1Because .
t fugacity coefficients: Use virial equation to ge

2
22 2

8314
s

RT
exp exp

( . )

4068 0 0401

273
0 993

sB P ( ) ( . )

( )
.

Assuming  as first estimate,y1 1, y2 0

1 20 954 0 783. .

Thus,

x
P

H
1

1

1 2
0 0187

,
.

y
x P

P

s s

2
1 2 2

2

1
0 00250

( )
.

Using now , get y2 0 00250.

1 20 954 0 770. .

and

x y1 20 01867 0 00255. .

This calculation is important to determine solvent losses in natural gas absorbers using 
methanol as solvent.

9.

 2(monomer)    dimer

The equilibrium constant is 

20 0
d d d d m

2 0 2 2
m m m m d

/
0) ( / )

a
a f f f f

K
a f f f f

where ad is the activity of the dimer, and am is

ot on P or y.

Then,

(

the activity of the monomer.

The quantity f fm d
02 0/  is a constant that depends on T, but n
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m

where k is a constant.

f k fd
2

10.

CH O  CH

CH3

CH3

CH3

CH3 CH CH   O CH CH CH CH2 2 2 2 33

          Di-isopropyl ether Ethyl butyl ether

HCl can associate with the ether’s non-b
ether will offer some steric hindrance. The cross-coefficient, 
Both ethyl butyl ether/HCl will be more negative.

onded electron pairs. However, the di-isopropyl
B , is a measure of association.12

virial coefficients will be negative; B12 for

11. Let  be the fraction of molecules that are dimerized at equilibrium.

 2A 2A

1 / 2

nT 1
2 2

1

2A
1 / 2

/ 2
y

A
1

1 / 2
y

By assuming the vapor to be an ideal gas, we may write 

2 2A A

2 2 2
A A

( / 2)(1 / 2)

( ) ( ) (1 )

P y P
K

P y P P

At the saturation pressure, P = 2.026 bar and

A 0.493 0.6726y
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Then

A A A (0.493) (2.026) 0.999V Lf f y P  bar 

 is given byThe pressure effect on fugacity

F
HG KJP RT

i

T

i

Assuming the liquid to be incompressible in the range Ps to 50 bar,

Iln f v

A A

A

(50 bar)
ln

(2.026 bar)

f P

f RT

v

A (50 bar)f 1.1 bar

12.

a) The Redlich-Kwong equation is 

z
RT b RT b

P a F
HG
I
KJv v1 5.

v v 1

If z is expanded in powers of 1/ :v

z
B C

1
2v v

This gives 

1.5RT

a
B b

2
1.5

ab
C b

RT

But,

' /B B RT

C
C B

RT
'

( )

2

2

Substitution gives

B
RT

b
RT

'
.

aF
HG

I
K1 5 J

1
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C
a

b
a

'
R T RT. .

F
HG

I
K3 3 5 1 5

b) Using an equation that gives fugacities from volumetric data, we obtain 

J3

2 2 2
1 1 1 1 2 2 2 1 2

1 1 1.5

2 2 (
ln

y a y a y a y a aP
b

RT RT

1/ 2)

Evaluate a and b using critical data: 

Ethylene (1): Tc = 282.4 K Pc = 50.4 bar 

c

1 = 7.86 107 ba

1

P  = 33.7 bar Nitrogen (2): Tc = 126.2 K

 a r cm6 K1/2 mol-2

a2 = 1.57 07

b1 = 40.4 cm3 mol-1

Substitution gives 1 0 845. ,

f y P1 1 1 8.44 bar

13. Using the virial equation, 

P
RT RTB

v v

mixt
2

with

 (1) 

For maximum pressure,

B y B y y B y Bmixt 1
2

11 1 2 12 2
2

222

F
HG
I
KJ

F
HG

I
KJ

P

y

RT B

y
T T1

2
1

0
,v v

mixt  (2) 

Substituting Eq. (1) into Eq. (2) gives :2 1( 1 )y y

mixt
1 11 2 12 1 22 22

1
2 2 2 2

T

B
y B y B y B B

y
0

At maximum,



Solutions Manual 64

22B
 (3) 

1
11B 22 12

y
B B

Using the correlations,

B11 126 7.  cm3 mol-1  (ethylene) 

B22 12 5.   cm3 mol-1   (argon) 

B12 45 9.  cm3 mol-1

. (3) gives

34y

Substitution in Eq

.11 = 0

14. i :Cons der a 3-step process

I

P = 20.7 bar

Ti T f

Pure gases Mixed gases

Mixed ideal gasesPure ideal gases

T f T f

The overall enthalpy change is zero: 

H H IIHI II I 0

H n HI n H1 1 2 (1 = hydrogen;  2 = ethylene2 )

H c T T
H H

RT
RTp

c
c1 1

0
0

1
1

( ) ( )f i

H c T T
H H

RT
RTp

c2
c2 2

0
0

2( ) ( )f i

where
H H0

is evaluated using L
RTc

ee-Kesler Tables.
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For heat capacities, we can estimate

 J K-1 mol-1

 J K-1 mol-1

cp1
0 28 6.

cp2
0 437.

HII 0     (because we are mixing ideal gas) 

H
H H

RT
RTc

cIII
mixt

mixt

F
HG

I
KJ,

,     evaluated at T  = T / T , P  = 20.7/P
0

R f c,mixt R c,mixt

Find Tf by trial and error: 

Tf 247 K

15. At equilibrium,

f fV
A A

s

y P x P
RT

dPs s

P

P

A A CO2 A A
A

A
s

(1 z) exp
v
s

Assuming ,xCO2
0

A A

A A

( ) A )
exp

( s
Ay P

s s

P

RTP

Pv
s

But

AA A
A exp 1.00

s
s B P

RT

Because y yA CO2
, yCO2

1

2 2A A CO COexp (2 )
P

B B
RT

2 2A CO COA A A

A

(2 )( )
exp

s

s

B By P P P

RT RTP

Pv
s

or
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2 2

A
A A Aln /(s

s

y P
P P RT A CO CO

A

2 )B B
P

Substitution gives 

P = 68.7 bar 

For this pressure,  and assumption

v v
s s

yA 19 10 14. yA 0 is correct.

16. Let 1 = ethylene and 2 = naphthalene. 
As, at equilibrium,

f f V
2 2
s

and as 

f P
RT

dPs s

P

P

2 2 2
2

2
2

s

szexp
v

P

we may write 

P

f yV
2 2 2

y x P P P RTs s s V
2 1 2 2 2 2 21( ) exp[ ( ) / ] /v

s

a) Using ideal-gas law: 

As

2 2 1s V

3 1
2

128.174
111.94 cm mol

1.145
v
s ,

52 2
2 2

( )
exp / 1.1 10

s
s P P

y P P
RT

v
s

b) Using VDW constants: 

Pa R Tc c27 642 2 / b RT Pc c/ 8

106 bar cm6 mol-2a1 4 62. b1 58 23.  cm3 mol-1

a2 4 03. 107 bar cm6 mol-2 b2 192 05.  cm3 mol-1
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B b a RT11 1 1 122 2/ .  cm3 mol-1

 cm3 mol-1B22 1382

Because y2 << y1, y1 1  and Bmixt B11

22 2
2

xt 12 11

exp 1

(2 )

s
s B P

P P
B B

RT RT

RT

2 1 12 2 22 miln 2( )V y B y B B

B b a RT12 12 12 /    with bb b12 1 21 2/ ( )    and a a a12 1 2( )

12

b12 12514.  cm3 mol-1    and a12 = 1.36 107 bar cm6 mol-2

Then B  = -406 cm3 mol-1.

2 12 11exp (2 ) 0.446V P
B B

RT

(2.80 10-4)  exp [(111.9 30)/(83.1451 308)]/(0.446 30)

y  = 2.4 10-5

y2

2

17. Water will condense if f fV
H2O H2O

s .

s, the maximum moisture content, yH2O , is given byThu

f fV
H2O H2O

s

y P x P
RTPs2 H2O 2 H2O

H2O

dPV s H OP

H O H O zexp
v

2
s

Assuming that the condensate is pure (solid) water, 

xH2O 1     and
H2O
s 1

Then
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2 2
H O H O

1.95
(18 / 0.92) 30

(1.95 torr) 750.06
( ) (30 bar) exp

(750.06 torr/bar) (83.1451) (263.15)
Vy

y
VH2O

H2O

8 90 10 5.

Let 1 = N2, 2 = O2, and 3 = H2O.

To get V  use the virial equation of state: 
H2O

2
3 1 13 2 23 3 33 mixtH O

ln ln [2( ) ]V P
y B y B y B B

RT

with

y B

i

j ijBmixt yi

j

e y3 << y1 where y1 = 0.80 and y2 = 0.20. 

Then,

18   cm  mol

Substitution in the equation for 

Assum

B y B y B y y Bmixt 1
2

11 2
2

22 1 2 122 2 . 3 -1

ln 3  gives 3 0 871. .

As

y
VH2O

H2O

8 90 10 5.

then

yH2O
41.0 10

18. The Joule-Thompson coefficient is defined as

H
H

T

P

F
HG
I
KJ  (1) 

Applying the triple-product rule with T, P and H, we have 
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F
H KG
IJ FHG

I
KJ
F
H
I
KJ

T P H

TT P

1 (2) 

Because

G
P HH

p
P

H
c

T

and

F
HG
I
KJ F
HG
I
KJ

H

P P

H
T

T

1

 combining Eqs. (1) and (2) gives 

1
H

p T

H

c P
 (3) 

From the fundamental equation dH TdS VdP , we have 

F
H
I
KJG
F
HG
I
KJP

T
S

P
V

T

 (4) 

Maxwell’s relation: 

H

T

However, we also have

F
HG
I
KJ
F
HG KJ

V

T

IS

P T P

Therefore,

F
HG
I
KJ

F
H KT

V
P

 (5) G IJH

P
T

V

T

Substituting Eq. (5) into Eq. (3) gives 

1
H

p P

V
T V

c T
 (6) 

or, in terms of molar volume  and molar heat capacity at constant pressure ( )v ( )cp ,

H T
p Pc T

F
HG
I
KJ

L
N
M

O
P1 v
v

M QP
(7)

Because in this specific problem we want H of the hydrogen-ethane mixture to be zero,
Eq. (7) yields

v
vF
HG
I
KJT

T P

 (8) 
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From the truncated-virial equation of state 

P

RT v

1
Bv

 (9) 

we have

F
H KG
IJ FHG K

IJFHG
I
KJ
F
HG

I
KJ
F
HG
I
KJR B B

P

R

B

BPv

v

v

v

v

v v

v

2
2

2

( )

( )
 (10) 

Substituting the equation of state Eq. (9) and Eq. (10) into Eq. (8) yields 

T P

RT B
1

P
T

R B 2

P B2

I
KJ

F
HG

L
N
M
M

O
P

v

v( )
 (11) 
QPv v( )

or equivalently,

B 0 (12)

where B is the second virial coefficient of the hydrogen-ethane mixture at 300 K. 
Using the McGlashan and Potter equation [Eq. (5-52)],

B T

T

T

Tc cv c

F
HG
I
KJ

F
HG
I
KJ

2

0 430 0 866 0 694

1

. . .  (13) 

we  for ethane, and

. cm  mol3 1   for the cross term, respectively.

Applying

yi j

j

mi

obtain B11 11 4. cm mo3 1  for hydrogen, and B2l 2 173 3. cm  mol3 1

B B12 21 11 4

B y Bij

i

xt

and the material balance y y1 2 1, , we have 

y )  (14) 

Equations (12) and (14) yield

B y y ymixt
3 1cm  mol( ) . . ( ) . (11 4 22 8 1 173 3 11

2
1 1 1

2

y1 0 73. .

Consequently, if we start out with 1 mol of H2, the amount of ethane that must be added to 

have a zero  is 0.37 mol.H

19. Because methane does not significantly dissolve in liquid water at moderate pressures, the 
equation of equilibrium is 

 (1) f fV L
2 pure 2
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or equivalently,

y P P
RT

s s
2 2 2 2

P PL s
2 2
L

N
M

O
Pv e j

where subscript 2 denotes water. 
The fugacity coefficient from the volume-explicit vi -

33):

M
M Q

P
P

exp (2)

rial equation of state is given by Eq. (5

ln ( )2 1 12 2 222 y B y B B
P

RT
mixt  (3) 

with

 (4) 

Similarly, we also have 

B y B y y B y Bmixt 1
2

11 1 2 12 2
2

222

ln 2
22 2s

sB P

RT
 (5) 

(i) At the inlet (60ºC, 20 bar):

q. (2). Solving Eq. (2) using 1  and 

, we obtain 

   (superscript i denotes inlet). 

5ºC, 40 bar)

Substitute Eqs. (3), (4), and (5) into E v2 18L  cm  mol3 -

Ps
2 149 mmHg

y2 0 011i .

(ii) At the outlet (2 :

Similarly, with 1  and , we obtain 

951 tes outlet).

Because the gas phase is primarily methane, the amount of water that must be removed per 
mol methane is

v2 18L cm  mol3 - Ps
2 24 mmHg

y 0 000o . (superscript o deno2

mol water removed

mol methane
i oy y2 2 0.01

20. Assuming negligible changes in potential and kinetic energies, the first law of thermody-
namics for a steady-state flow process is 
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H Q Ws  (1) 

where H  is the change in enthalpy, and Q and  are, respectively, the heat and the shaft 
work done on the system (by the surroundings). 

Because we are given the initial and final state and enthalpy is a state function, 

Ws

H  is fixed 
in this problem. Consequently, minimum  corresponds to maximum  Maximum  occurs 
when the process is reversible, or equivalently

Ws Q . Q

Q T S .
Hence, Eq. (1) can be rewritten as

SW H Ts  (2) 

where  is now the minimum amount of work required for the process. 
and from the volume-explicit virial equation of state

Ws

To calculate H S

PV

n RT
BP

T

1

we take an isothermal reversible path from the initial to the final state.
Expressions for enthalpy and entropy are given by Eqs. (3-9) and (3-10) in the text: 

H V T
V

T
dP n h n h

S
n R

P

V

T
dP R n y P n y P n s n s

P nT

T

P nT

P

P F
HG
I
KJN

M
M

O

Q
P
P

F
HG
I
KJ

L

N
M
M

O

Q
P
Pz

,

,

( ln ln )

0
1

0
2 2

0

0
1 1 2 2 1 1

0
2 2

0

 (3) 

Substituting

Lz 1

,

(1 )
T

T

P n

n RV
BP

T P

 from the virial equation of state gives

 (4) 

Applying Eq. (4) to this specific problem, we have 

ln )

 (5) 

 coefficients are 

H n h n h

S n RBP R n y P n y P n s n sT

1 1
0

2 2
0

1 1 2 2 1 1
0

2 2
0( ln ln )

mixt 1 11 2 22 1 1 2 2

0

( ) ( lnT

H

S RP n B n B n B R n y n y

At 298 K, second virial
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B11 419. cm  mol3 -1

cmB

B

12

22

122 2

66 0

.

.

 mol

cm  mol

3 -1

3 -1

 (6) 

ence, at 298 K,

1

Taking a basis of  mol of the mixture initially, then 

H

B y y Bi j ij

ji

mixt
3 -cm  mol74 0.

nT 1 n n1 2 0.5  mol, Eq. (5) yields
at 298 K 

H

T S

0

248 5. kJ

 (7) 

quired for this process is

248.5  of initial mixture.

Substituting Eq. (7) into Eq. (2), the minimum amount of work re

kJ mol 1

21. The second virial coefficient for a square-well potential is given by Eq. (5-39) in the text 

B b R
R

R kT

F
HG

I
KJ0

3
3

3
1

1
exp  (1) 

with

b NA0
32

3
 (2) 

Substituting  and / k 469 K , 0.429 nm 0.337R  gives 

l 1

Because, for a pure component,

B( )423 302K cm  mo3 -

ln ln
f B

P

P

fuga iven by

RT

city is g

f P
BP

RT

F
HG
I
KJexp
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Hen e, a and 3 atm,c t 150ºC 0

f
L

N
M
M Q

P
P

( exp
( . )

.

30
82 06 423

38 94

1
atm)

cm m

atm cm  mol K

atm

3

3 b g

39 atm

To obtain the standard enthalpy and entropy of dimerization of methyl chloride we assume a 
small degree of dimerization. In this case, the relation between the second virial coefficient and 
the dimerization constant is given by Eq. (5-113): 

O( )30 1atm) (301.8 ol

B b
RTK

P0

ing P RTc0 0  (where 3  is the standard state) gives c0 11 mol L = 10 mol cm-3Apply

3 3 110 (cm  mol )K B b

Because we only have a weak dimerization,

b b NA0
32

3
 (3) 

and the second virial coefficient is essentially that of pure methyl chloride [Eq. (1)].
Combining Eqs. (1) and (3) gives 

10
2

3
1

1
13 1 3 3

3

3
(cm  mol3 F

HG
I
KJ
F
HG

I
KJ

L

N
M
M

O

Q
P
P

) eK N R
R

R kT
A xp  (4) 

The following table shows  calculated from Eq. (4). 

T (K) K

K T( )

100 10.74 
200 0.939 
300 0.376 
400 0.222 
500 0.155 

Because the standard enthalpy and entropy of dimerization obey [Eq. (5-114)] 

R K
h

T
sln

0
0

plotting R Kln  as a function of  1/T gives h0  as the slope, and s0  as the intercept. 
Results are

h0 14.34 kJ mol

s0 1 123.2 J  K  mol
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22.

a) Substitution of given (r) in Eq. (5-19) gives 

/ 2kT / 2

0

2 / 2

0

2 (1 ) (1 )

2 (1 )

n

n

A kTr
A

A kTr
A

B N e r dr e r dr

N r dr e

At high temperatures, A/kTrn is small.
Because

r dr  (1) 

3
/ 22 (1 )

3

nA kTr
AN e r dr

e x
xx 1
2!

2

      when 

we expand the exponencial 

x is  small,

e A kTrn/ :

e
AA kTrn

n

/ 1
kTr

Substitution of this approximation into Eq. (1) gives: 

/ 2 2 2(1 ) 1 1 ( )
nA kTr nA A

e r dr r dr r r dr
kTr

3
2( )

n
nA A r

r dr

3 3

n

n n

kT

A A

3kT kT n
 (2) 

3 ( 3)kT n kT n

We substitute now this result in Eq. (1):

B N AN
kT n

A A

nL
N
M
M

O
Q
P
P

2

3
2

3
3

3

( )

Constant n is large (i.e., n > 3): 
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B N AN
kT n

N N
A

kT n

A A n

A A n

L
N
M
M

O
Q
P
P

L
N
M

O
Q
P

2

3
2

3

2

3

2

3

3

3

3
3

3 3

( )

( )

(3)

b) From Eq. (3) we see that it is the attractive part of the potential that causes negative B

and is responsible for the temperature dependence of B [the first term on the right hand side of 
Eq. (3) is independent of temperature].

23. Substitution of the square-well potential [Eq. (5-39)] into Eq. (5-17) gives

( ) / 2

0

'
/ 2 / 2 0 / 2

0 '
2 (1 ) (1 ) (1 )

R
kT kT kT

A
R

N e r dr e r dr e r dr

3 '
/ 2

3 3 3

3 / 3 3

2 (1 )

2 (1 ) 0
3

'

2 2
(1 )( ' )

3 3

r kT
A

R
kT

A

kT
A A

B N e r dr

N e r dr

R

N N e R

/2 (1 )
3 3 3

kT
AN e

In the equation above, R' = R  = 1.55 . For argon,  = 0.2989 nm = 0.2989 10-9 m, /k
= 141.06 K, and R' = 1.55  = 4.633 10-10 m.

e equation gives for T = 273.15 K, 

1

The calculated value compares relatively well with the experimental B for argon at the same
temperature: B  = -22.08 cm3 mol-1.

The abov

B 3368 10 6 202 10

2 834 10

5 5

5 3 1

. ( . )

. m mol 28 cm  mol3 -

exp
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24. Su titution of Sutherland potential [Eq. (5-37)] in Eq. (5-19) with N = NA givesbs

6

63 / 22
(1

3
K kTr

AN e

/ 2 / 2

0
( ) 2 (1 ) (1 )

)

kT K kTr
AB T N e r dr e r dr

r dr

 (1) 

2 3 4

6 6 2 12 3 18 4 24
exp 1

2( ) 6( ) 24( )

K K K K K

kTr kTr kT r kT r kT r
 (2) 

[
2 3 4

1
2! 3! 4!

x x x x
e x ]

We now have to replace the approximate result [Eq. (2)] in Eq. (1) and perform the neces-
tegrations.sary in

The result is: 

B T N
N K N K N K N KA A A A( )

2 2 2 2 23
2 3 4

kT kT kT kT
A

( ) ( ) ( )3 3 18 90 5043 2 9 3 15 4 21

This equation is best solved using an appropriate computer software such as Mathematica,
TKS

B(methane) = -20 cm3 mol-1

In both cases, the agreement with experim

olver, MathCad, etc.
Making the necessary programming we obtain at 373 K,

B(n-pentane) = -634 cm3 mol-1

ent is very good. 

25. Th

 (1) 

where superscripts L and R stand for left and right compartments, respectively. 
Equivalently,

e equation of equilibrium for helium is 

f fL R
1 1
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(2)

Equation (5-33) of the text gives the fug
volu

y P y PL L L R R R
1 1 1 1

acity coefficients in both compartments from the
me-explicit virial equation of state:

ln ( )1 1 11 2 122 y B y B B
P

RT
mixt  (3) 

with

mixt 1
2

11 2

 (5) 

Applying Eqs. (3), (4), and (5) to both compartments yields

y y B y B1 2 12 2
2

22  (4) B y B

Further, we also have material balances

y y

y y

L L

R R

1 2

1 3

1

1

2 2
1 1 11 1 12 1 11 1 1 12 1 22

2 2
1 1 11 1 13 1 11 1 1 13 1 33

ln 2 (1 ) ( ) 2 (1 ) (1 )

ln 2 (1 ) ( ) 2 (1 ) (1 )

}{

}{

L
L LR L L L L

R
R R R R R RL

y B y B y B y y B y B
RT

P
y B y B y B y y B y B

RT

 (6) 

0 02. mol  (7) 

Combining with mass balances on ethane and nitrogen gives

P

Total mole balance on helium gives

n nL R
1 1

y
n

n

y
n

n

n

n

L
L

L

R
R

R

L

L

1
1

1

1
1

1 10 99 101. .

Substituting Eqs. (6) and (8) into Eq. (2) yields

1

0 99

0 02

.

.

 (8) 

l

Combining this result and Eq. (8) gives

1

0.013

nL
1 0 013. mo

y

y

L

R

1

0.007



Solutions Manual 79

26. Because the equilibrium constant is independent of pressure, the more probable reaction is
satisfies this condition.

(1) Assuming reaction (a) is more probable

the one that

:

f  is negligible compared to those of  and 

The equilibrium constant  is 

With this scheme, concentration o ( )HF 6 ( )HF

( )HF 4 .

K( )a

K
y

y P

y

y P
( )

( )

( )

( )

( )

a
HF

HF

HF

HF

4
4 3

4

4

4 31
 (1) 

Total mass balance for  gives( )HF

y n M y n M VT T( ) ( )( )HF HF HF HF HF4 4
4 1  (2) 

whe e;  and  are the mass density and the molar mass of hydro-
gen fluoride, respectively; is the total number of moles that can be calculated by assuming
that the gas phase is ideal:

re V is the total volum HF MHF
nT

n
PV

RT
T  (3) 

Substituting Eqs. (2) and (3) into Eq. (1) yields

K

RT

P M

RT

P M
P

( )

( / )

( / )

a

HF

HF

HF

HF

F
HG

I
KJ

F
HG

I
KJ

L
N
MM

O
Q
PP

1 3 1

1 1 3 1

4
3

 (4) 

he two pressures, 1.42 and 2.84 bar, we obtain for 

HF (a)

K( )a :Applying Eq. (4) at t

P (bar)  (g/L) K

1.42 1.40 0.0595 
2.84 5.45 0.453 

Because depends on pressure, reaction (a) cannot be the more probable one. 

Next we need to check for the pressure independence of 

(2) Assuming reaction (b) is more probab

K( )a

K( )b .

le:
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In this case, concentration of  is negligible compared to those

The equilibrium constant  is 

of ( )HF  and ( )HF 6 .( )HF 4

K( )b

K
y

y P

y

y P
( )

( )

( )

( )HF 6
6 5

 (5) 

( )

b
HF

HF HF

6
6 5

6
1

Mass balance for HF in this case is: 

y n M y n M VT T( ) ( )( )HF HF HF HF HF6 6
6 1  (6) 

where all terms are defined in Eq. (2). 
Substitution of  Eqs. (3) and (6) into Eq. (5) gives

RT

K
P

RT

P M

( )

( / )

( / )

b

HF

HF

MHF

F
HG

I

P
HF

KJ

F
HG K

L I
J

N
MM P

1 5

1 1 5

re:

P (bar) HF (g/L) K(b)

O
P1

6
5

1

 (7) 

Q

Corresponding values of K( )b  at 1.42 and 2.84 bar a

1.42 1.40 0.017 
2.84 5.45 0.017

Beca obable.use K( )b  is independent of pressure, reaction (b) is the more pr



S O L U T I O N S  T O  P R O B L E M S  

C H A P T E R 6

T TL V and P PL V1. The three equations of equilibrium (in addition to ) are

with iquid incompressible)

y P x f

y P x f

y P x f

V L

V L

V L

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

 (assuming the l

P P

RT

L s

f PL s s
1 1 1

1 1exp
( )v

We wr expres r

For te

2 12 mixtln (2 2 2 )RT P y B y B

f L

2 and f L

3 .ite similar sions fo

V we may wri

1 1 11 3 13
V y B B

and similar expressions for 2
V and 3

V .  In these equations,

B y B y B y B y y B y y B y y Bmixt 1
2

11 2
2

22 3
2

33 1 2 12 1 3 13 2 3 232 2 2

81
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2. Given g Ax x1 2 with P P1 2 1649/ . , and assuming ideal vapor, E s s

1
1

1 1

2
2

2 2

y P

x P

y P

x P

s

s

x y1 1:At azeotrope, 

ln ln

ln ln

1

2
2

P

P

P

s

s

or

P

1

ln ln .1

2

2

1

0 5
P

P

s

s

From the expression,gE

ln 1 2
2A

RT
x

and

ln 2 1
2A

RT
x

Then

ln ( )1

2
2
2

1
2A

RT
x x

A 0 5 1.

RT x x x4 2
2
2

1
2

2

or

RT

A
x2

1

2 4

Because x0 12 ,

2 4

1

2

RT1

A

| | ,A RT
1

2
 an azeotrope exists. Thus, if
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3. :

1. There is a double azeotrope 

2. Liquid and vapor curves are very close to each other. 

From the plot P-x-y we can see the unusual behavior of this system

Liquid ( )

Vapor (   )

0.2 0.4

75

0.6 0.8 1.00

P
re

s
s
u
re

, 
k
P
a

72

73

74

x y,
11

4. ecting vapor phase non-idealities,

(1)

axim

Negl

P x P x Ps s
1 1 1 2 2 2

At the m um,

1
1 1 1 1 2 2

1 1
0 2

2 2
2

s s sP
P x P x P

x x

s

T T T

P
x

 (2) 

From the Gibbs-Duhem equation (at constant T and low pressure), 
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1 2
1 2

1 1

ln ln
0

T T

x x
x x

or

1 1 2 2

1 1 2 2T T

x x

x x
 (3) 

Substituting Eq. (3) into Eq. (2) and simplifying,

1 1
1 1 2 2

1 1
( ) 1s s x

P P
x

0

There are two possibilities:

               (1)

Then

1 1 2 2 0P Ps s

2 2

1 1

2 2

1 1
1

P

P

y x

y x

s

s

( / )

( / )

1 corresponds to an azeotrope 

               (2) 1 01

1

1

1

x

x

x1 1 constantThe solution to this differential equation is .

To find the constant, use the boundary condition 1 1 when x1 1.

Hence

As  if then must be 1.
†

Hence, the curve P-x goes through a maximum at

1 1 1x .

y P x Ps
1 1 1 1 1 1 1x , y1

x1 1. This is also an azeotrope (but a 

trivial one).

5. Given

where

g A x x A x x A x x A x x A x x A x xE
12 1 2 13 1 3 14 1 4 23 2 3 24 2 4 34 3 4

†
This may not be immediately obvious. But 1 1x is the activity, and the activity of component 1 cannot reach unity for any x1 less 

than one because the solution will split into two phases of lower activity. See Fig. 6-25 in the text. 
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1 1

2 2

/

/

T

T

x n n

x x n

with  the total number of moles.

Because

n n n n nT 1 2 3 4

RT
n g

n

T
E

P T n n n

ln

, , , ,

1
1

2 3 4

F
HG

I
KJ

we find

4 2 3 12 13 23

12 14 24 3 4 13 14 34

ln ( )

) ( )

RT A x A x A x x x A A A

A A x x A A A

4
2 2 2

1 12 2 13 3 1

2 4 (x x A

6. Calculate T-y giving pressure and for x = 0.1, 0.2, …, 0.9  bubble-point calculation.
We have to solve the equilibrium equations: 

 (1) 

Because total pressure is low (below atmospheric) we assume vapor phase as ideal: 

i i i i i
sy P x P

i 1 .
The activity coefficients are obtained from the equation for GE given in the data. Using Eq. 

(6-47) of the text we obtain 

(2)

t pressure is fixed, temperature varies along with x1 (and y1) and is bounded by the 
saturation temperatures of the two components. These can be easily obtained from the vapor-
pressure equations. They are given in the form,

ln .

ln .

1 2
2

2 1
2

21

21

x

x

As he

ln P A
B

T C

s (3)

 from which we obtain the saturation temperature

T
B

A P
Cs

sln
(4)
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For Ps = 30 kPa, we obtain  for cyclohexanone (1) and  for 

phenol (2). 
To obtain the T-x1-y1 diagram we assign values for the liquid mole fraction x1. Total pres-

sure is

or

1 387.26 KsT T s
2 415 59. K

P x P x Ps s
1 1 1 2 2 2

P
P

x x
Ps

2

P

s

s

1

1 1 1 1
1

(5)

To start the calculation we make an initial estimate of the temperature:

2  (6) 

x1 = 0.5:

T x T xs s
1 1 2

For example, let us fix 

T

T 0 5 387 26 0 5 415 59 401 42. . . . . K

With this temperature we obtain  and 

sure equations: Because w

 and 

Ps
1 Ps  from Eq. (3), the pure-component vapor pres-2

P Ps s
1 247 243 17 918. .kPa and kPa e fixed x1, Eqs. (2) give 

1
221 0 5 0 592exp( . . ) . 2 0 592. .

 Eq. (5), which in turn gives a new temperature,

T = 416.34 K, from th re r pressure equation.
r this new temperature (we assume here that 

activity coefficients are independent of temperature), yielding:

30.786 kPa; 71.426 kPa [from Eq.(5)]

415.34 K [from Eq.(6)]

0 K;

s s

s

P P

T

After these values, the change in temperature is small and therefore additional iterations 
leads to no significant further change in the remaining values.

We can now calculate the vapor phase mole fraction from

Next we recalculate  from

e pu cyclohexanone vapo

Ps
1 73 482. kPa

The sequence of calculations is now repeated fo

2 1

1

1 1 2
71.552 kPa; 415.4 29.798 kPas s sP T P

y
x P

P

s

1
1 1 1 0 5 0 592 71552

30
0 706

( . ) ( . ) ( . )
.

The whole process is repeated for a new liquid mole fraction. 
The following figure shows the computed T-x1-y1 diagram for this system at 30 kPa. 
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Cyclohexanone Mole Fraction

0.0 0.2 0.4 0.6 0.8 1.0

T
e
m

p
e
ra

tu
re

/K

380

390

400

410

420

430

V

L

L+V

we can easily draw the corresponding y1-x1 diagram,
shown in the figure below.

Similarly, with the data calculated

Liquid Mole Fracton Cyclohexanone

0.0 0.2 0.4 0.6 0.8 1.0

V
a
p
o
r 

M
o
le

 F
ra

c
ti
o
n

C
y
c
lo

h
e
x
a
n
o
n
e

0

1

As both figures show, this system has an azeotrope at  and for the compositionT az K421

x1 0 3az . .
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7. where A is a function of temperature. Then, 

But

Assume g Ax xE
1 2,

RT RT Aln ln1 2

ln .1 015
10

273T

A

RT

Because

h( / )

( / )

( )

g T

T

g T

T

Rx x

T

h

T

E E

E E

2

1 2
2 2

10

3

nd T = 333K, 

41 J mol 1

T

27

At x x1 2 0 5. a

6h hE
mix

8.

a) From the equation for Hw  we can obtain the infinite dilution partial molar enthalpy of water 

in sulfuric acid solutions at 293 K and 1 bar as: 

0 1
lim lim -H 41
w A

w w w
x x

H H -1
.44 kJ mol

b) he mixing process is schematically shown below. T

A W

HA HW

W
Cooling
coils
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Taking the liquid in the vessel as the system, a first law balance gives for this flow process: 

dU dQ dW H dn H dnA A w w

where work W is dW PdV , done on environment by the rising liquid level, under constant 
pressure.

Then,

d U PV dH dQ H dn H dnA A w w( )

Integrating between initial state (empty vessel) and final state (full vessel), because 
 of the pure acid and H H T PA A( , ) H H T Pw w ( , )  of the pure water are constant, we obtain 

H Q n H n H Q H n H n HA A w w A A w w  or

H n H n HA A w wBut , and the equation above becomes

Q n H H n H H n H n H HA A A w w w A A w w( ) ( ) (1)

whe ol and nw = 2 mol in the final state. 

In Eq. (1), the quantity 

re nA = 1 m

( )H Hw w

tion has been chosen to be pure water at system

 is given by the equation given in the data, because the

reference state in that equa T and P:

H H
x

x
w w

A

A

134

1 0 7983

2

2( . )
 kJ mol-1 (2)

We need now to calculate the quantity ( )H HA A , knowing (H )Hw w . This can be done

by using the Gibbs-Duhem equation.
P:At constant T and

x dH x dH dH
x

x
dH

x

x
dHA A w w A

w

A
w

A

A
w0

1
(3)

Differentiating Eq. (2), at constant T and P, we obtain: 

dHw ( 134 kJ mo
x x x x

x
dx

x

x
dx

A A A A

A
A

A

A
A

)
( . ) ( . ) ( . )

( . )

( . )
( )

2 1 0 7983 2 0 7983 1 0 7983

1 0 7983

268

1 0 7983

2 2

4

3
1

l

kJ mol

-1

 (4) 

Therefore, from Eqs. (3) and (4),

dH
x

x
dxA

A

A
A

268 1

1 0 7983 3
1( )

( . )
( )kJ mol (5)

) between composition xA and composition xA = 1 (pure acid) gives Integrating Eq. (5
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H H x H H
x

x
dx

x

x

x

x

A A A A A
A

A

xA

A

A

xA
A

A

L
N
M
M

O
Q
P
P

z( )
( )

( . )

. ( . )

( . )

. ( )

( . )
( )

1
268 1

1 0 7983

335 71 01263

1 0 7983

74 51 1

1 0 7983

3
1

2
1

2

2
1kJ mol

(6)

We can now calculate the heat load Q in Eq. (1). Setting n = nA + nw = 3 mol, and using
Eqs. (2) and (6) in (1), 

2 2

2 2

2

1

74.51 (1 ) 134 (1 )

(1 0.7983 ) (1 83 )A A

Q n
x x0.79

74.51 (1 1 1.7983 )

(1 0.7983 )

74.51 (1 )
(kJ mol )

3

A A A A

A A A A

A

A A

x x x x

x x x x
n

x

x x

x

)(

1 0.798
n

A

(7)

Substitution of n = 3 mol and xA = 1/3 gives the desired heat load:

Q 39.23 kJ

Q is negative because heat is removed fr system.om the

9.

a) es, it’s possible. Slight positive deviations merely mean that the physical interaction be-
tween SO2 and C4H8 makes a larger contribution to the excess Gibbs energy than does the 
chemical interaction. 

b)

because the tendency to complex (which tends make gE negative) is stronger with n-butene-2.
Steric hindrance in isobutene is larger than in n utene-2.

Y

2 2SO isobutene SO butene 2
E E

n
g g

to
-b
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10. Th tegrate numerically a suitable form of the Gibbs-Duhem
 equation.

At low pressures, we may te the

e suggested procedure is to in

 wri Gibbs-Duhem equation:

x

x x
T T

1

1

2

2

x1

1

2

2
0

F
HG
I
KJ

F
HG
I
KJ

By assuming ideal-gas behavior,

1
1

1 1

1 F I

y P

x P

P P

s s

imilarly,

1P

1 1x P

1

1 1 1

1

1

1

1
2

1
HG KJx x P x x Ps s

S

F
HG
I
KJ

2

1 2 2

2

2

2

2
2

2

1

x x P

P

x

P

x Ps s

Substituting we find

x

P

P

x

x

P

P

x

1

1

1

1

2

2

2

2

P P P dP dP dP1 2 1 2, ,Because then

2

2 12 2

1 2

1

1
[ ]P P

x Px x

x P

In different form:

P

x x P

x P

P

x

2

2 2 1

1 2

2

1

1

For P-x data, we choose a small x2 (say 0.05) and integrate to find P2  and thus  We
obtain  by difference: 

This method is descri ssanas, quoted in Prigogine and Defay, Chemical Thermo-

dynamics, page 346. It gives good agreement with experimental partial-pressure data for this par-
ticular system.

P2.
P1 P P P1 2.

bed by Boi

11. For a binary system, the Wilson equation gives
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12 21
1 1 2 12 2

1 12 2 2 1 21
ln ln( )x x x

x x x x
 (1) 

12 21
2 2 1 21 1

1 2 12 2 1 21
ln ln( )x x x

x x x x
 (2) 

At infinite dilution these equations become

21  (3) 

 (4) 

For  solve Eqs. (3) and (4) to find, 

Assuming ideal-gas behavior and neglecting Poynting correction, we may write:

 (5) 

 (6) 

 (7) 

From Perry’s, the saturation pressures at 45 C are: 

bar

bar

To construct the P-x-y diagram:

1. Choose x1 (or x2)

2. Calculate y1 (or y2) from Eq. (5) and using Eqs. (1) and (2) 

3. Calculate P from Eq. (7). 

ln ln ( )1 12 1

ln ln ( )2 21 12 1

1 212 0 389. , . ,

21

12

0 6185

0 1220

.

.

y P x Ps
1 1 1 1

y P x Ps
2 2 2 2

P x P x Ps s
1 1 1 2 2 2

Ps
1 0 188.

Ps
2 0 0958.

12. The solution procedure would be:

1. Find and  at each T.

2. At this low pressure, assume ideal-gas behavior and neglect Poynting correc-
tion:

Ps
1 Ps

2
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1 1 1 1

2 2 2 2

s

s

y P x P

For ’s use the Wilson equation with two parameters:

y P x P

12  and . Assume that 

and  are independent of temperature.

 and  are, however, temperature-dependent a

3. Assume value of 

21

( )11 12 ( )22 12

s given by Eqs. (6-107) and (6-108). 12 21

( )11 12 and ( )22 12 and calculate the total pressure:

4. Repeat; assuming new values. Keep repeating until s very close to 0.5 
bar for every point; that is until

  is a minimum

where n is the number of data points.

P x P x Ps s
calc 1 1 1 2 2 2

Pcalc i

2
calc

1

( )
n

i

P P

13.

a) 2-Butanone:

H C C C C

H

H

O

H H

H

H H

Cyclohexane:

(CH 6

H2: R = 0.6744; Q = 0.540 

Molecule Group Number R Q

2)

6 groups C

2-Butanone CH3CO 1 1.6724 1.488
 CH3 1 0.9011 0.848

ohexane CH2 6 0.6744 0.540
 CH2 1 0.6744 0.540
Cycl

b) ctivity coefficient equations to calculate 1 and 2 for the equimolar mix-
ture at 75ºC (for a detailed example of a similar UNIFAC calculation see Chapter 8 of The Prop-

We use UNIFAC a
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erties of Gases and Liquids by R.C. Reid, J.M. Prausnitz, B. E Poling (4th. Ed., McGraw-Hill, 
1988).

We obtain:

c) Using UNIFAC we can calculate the activity coefficients as a function of composition at
75ºC.

essure is calculated from

ln ln ln . . . .1 1 1 10 01228 0 2595 0 27238 131comb res

ln ln ln . . . .2 2 2 20 01415 0 3420 0 35615 1 43comb res

Total pr

P x P x Ps s
1 1 1 2 2 2

and the vapor-phase composition from

y
x P

P

s

1
1 1 1

Using Antoine vapor pressure equations at 75ºC, we obtain for 2-butanone

r and for cyclohexane r

The following figures show the calculated results in the form of P-x1-y1 and y1-x1 dia-
grams.

Ps
1 0 8695. ba Ps

2 0 8651. ba .

2-Butanone Mole Fraction

0.0 0.2 0.4 0.6 0.8 1.0
0.6

0.7

0.8

1.3

L

1.2

1.0

1.1

re
/b

a
r

P
re

s
s
u

V
0.9

L+V L+V
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Liquid Mole Fracton 2-Butanone

0.0 0.2 0.4 0.6 0.8 1.0

V
a

p
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o

le
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c
ti
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n
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u
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o
n
e

0

1

The table below shows the calculated activity coefficients from UNIFAC, vapor composi-
tion and total pressure.

x1 1 2 y1 P/bar

0
0.2 2.27 
0.4 1.51 1.27 0.447 1.175
0.5 1.32 1.42 0.485 1.178
0.6 1.18 1.62 0.528 1.169
0.8 1.04 2.19 0.660 1.096
1.0 1.00 3.10 1.0 0.8695

4.38 1.00 0 0.8511
1.07 0.351 1.124

omparison of the calculated ’s in this table with those given in the data, indicate that the
latte are actually UNIFAC predictions and not experimental data. In the tables, at x  = 0 and x

=1 the activity coefficients listed are, respectively,  and . UNIFAC predicts 1 4 38. ,

which compares well with the experimental ebulliometry da 7.6ºC,

C
r 1 1

1 2

ta at 7 1 3 70. .

14. The UNIQUAC equation is

combinatorial residual
E E Eg g g
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comb 1 2 1
1 2 1 1 2 2

1 2 1

res
1 1 1 2 21

2

2

2 2 1 12

1 1
1

2 2 1 1 2 2

12 21
12 21

ln ln ( ln )
2

ln( ) ln( )

exp( ) exp( )

E

E

g z
x x x q x q

RT x x

g
x q x q

RT

x r x q

x r x q x q

a a

T T

 a binary liquid mixture is 

ln

2

1 1
1

1 1x r

The condition for instability of

F
HG

I
KJ

2

2
0mixg

x
P T,

(1)

where mixg  is th chang ine molar e  Gibbs energy upon mixing, or

2

2
1 21 ,

1 1
0

E

P T

g
RT

x xx

Incipient instability occurs at 

2
mix
2

,

0

P T

g

x

and

3
mix
3

,

0

P T

g

x

Given  and all parameters, we could determine if Eq. (1) is satisfied. However, the
procedure i ong and tedious. It is easier to graph 

x x1 2,
s l mixg  over the composition range and to

look for inflection points.
For the data given, phase separation occurs at -40 C.
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g
m

ix
(J

 m
o
l

0

-100

-400

0.2 0.4 0.6 0.8

-Hexane
x
n

)
-1

-300

-500

223.15 K
233.15 K

243.15 K
253.15 K

263.15 K

0

-200

15. If the two curves cross  is zero because 
mix

g RT/

mix mix mixg h T s

 This is not possible, because mixg must always be negative for two liquids to be miscible.
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16. To relate toi Hi j, :

0
i

i

i i

f

x f

then,

,

0 0 00

1
lim lim

i ji i
i

xi ii i i i

Hf f

xx f f f

Assuming f Pi i
s0 ,

,i j
i

H

s
iP

then,

1
1 2

1

2
2 1

2

2

107
1869

16

133
1203

H

P

H

P

s

s

,

,

.
.

.

.
.

Using the van Laar equations,

1 2
1

2

2 2
21

xB

1A x

ln

1

ln

A

xA

B x

B

we get 

To solve for vapor composition (assuming ideal vapor and neglecting Poynting corrections),

2

1 2

ln .

ln .

1

2

0 625

0185

A

B

1 1 1 1

2 2 2

s

s

y P x P

P

P y P y P

y P x
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x x1 2 0 5. ,At

1 12

2 2 1.116
2

0.625
0.033 1.033

0.625
1

0.185

0.185
ln 0.110

0.185

Therefore,

(1.116) (1.33) 0.74 bar

0.55 0.74 1.2  bar

0.55/1.29

y P

P

y

y

0.426

0.574

ln

1
0.625

9

1

2

1

2

(0.5) (1.033) (1.07) 0.55 bar

(0.5)y P

17. e the vapor-phase composition, assume ideal vapor:To estimat

y P x Pi i i i                (i=1, 2, 3) 

Then,

s

P y P y P y P1 2 3

To find the activity coefficients, assume that s given by a sum of Margules terms

[Eq. (6-149)]. Then, 

13 3

 (3) 

We can find  from binary data.

g RTE / i

ln ( )2 2A x A x A A A x x  (1) 1 12 2 12 13 23 2 3

ln ( )2 12 1
2

23 3
2

12 23 13 1 3A x A x A A A x x (2)

ln ( )3 13 1
2

23 2
2

13 23 12 1 2A x A x A A A x x

A12 , A13 , A23
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From (1-2) binary:

ln ln( . ) .1 13 0 262
A

RT

A      at   320K 12 0 262.

12
320

(0.262) 0.280
300

AAt 300K,  (assuming regular solution).

rom (1-3) binary:

 At 

F

azeotrope x y1 1, x y3 3

1 1 1 1
sy P x P

3 3 3 3

1ln

sy P x P

A
x

RT

1 3 1/ 1.126sP P

3
2

At 3 130.5, 0.475.
A

x A
RT

From (2-3) binary:

ln 2 3
2A

RT
x

At incipient instability,

A

RT c
2

or

2

270
(2) 1.80

c

c

A
T

R

A A T

300cRT TRT

23 1.80A

With  from Eqs. (1), (2) and (3): x x x1 2 3,



Solutions Manual 101

ln . .

ln . .

ln . .

( / ) ( . ) ( . ) .1 1 3 0 968 0 533 0172 bary P

( / ) ( . ) ( . ) .

( / ) ( . ) ( . ) .

1 1

2 1

3 1

2

3

0 0322 0 968

0 409 1506

1607

1 3 1506 0 400 0 201 bar

1 3 1607 0 533 0 286 ar

y P

y P

P = 0.172 + 0.201 + 0.286 = 0.659 bar 

Then,

0 475

b

y

y

y

1

2

3

0.261

0.305

0.434

18. Using the 3-suffix Margules equation,

)]

we obtain

1 2
2

2
33 4A B x Bx

2 A B

which gives

A = 1.89 

g RT x x A B x xE / [ (1 2 1 2

ln ( )

ln ( )2 1
2

1
33 4A B x Bx

At infinite dilution,

ln 1 A B

ln
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B = 0.34

For instability to occur,

F
H
G
I
K
J

F
HG

I
KJ

2

1
2

1 2

1 1
0

g

x
RT

x x

E

P T,

Rewriting gE as

g RT A B x A B x Bx

g

x
RT A B Bx

E

E

[( ) ( ) ]

[ ( ) ]

1 1
2

1
3

2

1
2 1

3 2

2 3 12

Thus, the condition for instability (at constant T) is: 

g

x
RT A B A B x Bx

E

[( ) ( ) ]
1

1 1
22 3 6

1
1 1

1 1
2 6 12 0

1
RT A B Bx

x x

   and

Finding the zeros of the function in brackets,

x1 0 421. x1 0 352.    in the range    0 <  < 1. 

us, instability at T is in the range

< x1 < 0.421 

x1

Th

0.352

19.

a) At the azeotrope 

F
HG
I
KxA T

With of the form

2

2

J
P

0

g RTE / g RT Ax xE
A B/ ,

ln

ln

A B

B A

Ax

Ax
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Assuming an ideal vapor phase, 

2 2exp( ) exp( )

s
A A A A

s
B B B B

s s
A A A B B B

s s
A B A B A B

y P x P

y P x P

P x P x P

P x Ax P x Ax P

2 2

2 2

2 2

exp( )(1 2 ) exp( )( 1 2 ) 0

exp( ) exp( )

ln( / )

s s
A B A B B A B A

A

s s
A B B A

s s
B B A A

P
P Ax x x A P Ax x x A

x

P Ax P Ax

Ax P P Ax

At 30 C,

0.235 bar; 0.658 bar; A = 0.415 

At 50 C,

0.539 bar; 0.658 bar; A = 0.415 

Then .

At 70 C,

1.119 bar; 1.367 bar; A = 0.330 

Then 0.20.

b) Assuming ideal vapor, 

A A A A
s

A B B
s

y P x P

y P x P

/

/

At azeotrope,  Then 

PA
s PB

s

Then, xA 0 30. .

PA
s PB

s

xA 0.26

PA
s PB

s

xA

B

x yA A, x yB B .
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s

sP P/

A AP P/

B B

Taking the ratio

/ /s s
A B B AP P

ln( / ) ln ln

50

s s
A B B AP P

4050 40
12.12 11.92

T T

       and

0.20

Because

ln A BAx2 ln ,B AAx2

ln( / ) ( ) .A B B AA x x2 2 0 2

A
xA

1

5 10
      because   0 < < 1 

If |A| > 0.2 there is an azeotrope.
The pure component boiling points are: 

67 C

61 C

In the range 61 C < t < 67 C, A is always larger than 0.2. Therefore, the azeotrope exists. 

c) The enthalpy of mixing equation cannot be totally consistent since the expression for  is 

quadratic in mole fraction and the expression for

xA

tb
A

tb
B

gE

mixh  is cubic. However, they may be close.

To check this, we use the Gibbs-Helmholtz equation:

2

/

( )

E E

E

A B

g RT h

T RT

g
A T x x

RT

/
( 0.00425)

E

A B A B
g RT A

x x x x
T T
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h hE
mix ,Because

mixh

RT
x x x xA B A B( ) ( . ) .323 0 00425 1373

( )1

The other data indicate

mixh

RT
x x xA A B

( )

( . . )
2

1020 0112

Looking at selected values:

xA mixh
(1)/RT mixh

(2)/RT

0.1 0.123 0.093
0.2 0.220 0.167
0.3 0.288 0.221
0.4 0.330 0.256
0.5 0.343 0.269
0.6 0.330 0.261
0.7 0.288 0.231
0.8 0.220 0.178
0.9 0.123 0.101

The above shows the degree of inconsistency of the two sets of data.
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1. Using regular-solution theory and data for A in CS2 we find the solubility parameter for A.

Then, we predict vapor-liquid equilibria for the A/toluene system.
Let B refer to toluene and C refer to CS2. From regular-solution theory,

            (for A in CS2)

Further, assuming ideal vapor phase, we have 

RT ln A A C A Cv
2 2b g

y P P x Ps
A A A A A

A
8

0 5 133
1203

( . ) ( . )
.

or

ln .A 0 185

Then,

1/ 2
lnRT A

A C
A C

1

v

with

1        and3 -
A 200 cm molv C 0.234

3 1/ 2
A C 6.30 (J cm )

107
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For liquid hydrocarbons,  is approxim

or

ately 12-18 (J cm-3)1/2. Therefore, we take the 
smaller value.

For A in toluene,

RT ln A A B A Bv
2 2b g

A 118.

or

RT ln B B A A Bv
2 2b g

B 137.

For ideal vapor, 

Hence,

P P P x P x Ps s
A B A A A B B B kP25 3. a

A 0.31y

B 0.69y

2. Excess properties ( ) are defined in reference to an ideal (in the sense of Raoult’s law)

mixture of  pure components.

The partial molar quantities

h sE E,

h E  and s E are the contribution
differential amount added to the solution.

The “pure” acetic acid is highly dimerized, so as the first bits go into solution thse dimers

must be broken up. This will require energy

s to these excess properties per

( h E
1 0 ) and will increase the entropy more than is 

accounted for by the ideal mixing term ( s E
1 0 ).

x1 gets larger, some dimer will begin to exist in the solution, so these effects will dimin-
ish.  Therefore, at small x1, the curves should look som

As
ething like this:
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0
x1

h1

0.5
0

x10.5

s1

3. The K factors for hexane (1) and benzene (2) (neglecting Poynting corrections and assuming
 ideal-vapor phase) are: 

K
P

P

s
1

1
1

K
P

P

s

2
2 2

where

Using regular-solution theory,

v

The volume fractions are 

P x P x Ps s
1 1 1 2 2 2

RT ln 1 1 2
2

1 2
2

v b g

RT ln 2 2 1
2

1 2
2b g

1 20 389 0 611. .

From the above equations,

1 2132 108. .

) (1.08) (0.380) = 0.498 bar P = (0.3) (1.32) (0.533) + (0.7

6 141 C H
(1.32) (0.533)

K K 1.41
0.498

6 62 C H
(1.08) (0.38)

0.498
K K 0.82
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4. Ether and pentachloroethane hydrogen bond with each other (but not with themselves).

Then, gE 0 .

gE

0

0

1x

5. The relative volatility of A and B is 

A,B
A A( / )y x

B B( / )y x

Assuming ideal vapor phase and neglecting Poynting corrections,

At the azeotrope,  and 

y P x Ps
A A A A

y P x Ps
B B B B

x yA A

A,B
A A

B B

1
P

P

s

s

From regular-solution theory,

RT ln A A B A Bv
2 2b g

RT ln B B A A Bv
2 2b g
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Because , then 

For the ternary mixture,

v vA B , A B P Ps s
A B .

2lnRT ( )i i iv

i i

i

1 2/3 .As  and 0 6. ,A B 0 2. C 17 2. )(J cm

Then

2

A A
(100) (14.3 17.2)

ln 1.40
(8.31451) (300)

2(100) (16.4 17.2)
B Bln 1.03

(8.31451) (300)

A A A
A,B

BB B

1.40

1.03

s

s

P

P
1.36

6. Ass

 (1) 

Using regular-solution theory,

uming ideal vapor phase and neglecting Poynting corrections,

y P x Ps
1 1 1 1

y P x Ps
2 2 2 2

P x P x Ps s
1 1 1 2 2 2

2 2
1 1 2 1 2ln ( )RT v

( )2 2
2 2 1 1 2lnRT v

Because , we can rewrite [Eqs. (7-25) and (7-26)]:1 2v v

2 2
1 1 2 1 2ln ( )RT xv

2 2
2 2 1 1 2ln ( )RT xv

3 -1As  cm  mol ,1 2 160v v
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2
1 2exp(0.616x )

2
2 1exp(0.616 )x

Substitution in Eq. (1) gives

x2 2
2 10.533exp(0.616 ) 0.800 exp(0.616 )P x

At the azeotrope, 

F
HG
I
KJ

P

x
T1

0

Thus, after differentiation,

0 616 0 40547 0 162
2

1
2. . .x x

Solving for x1,

x1 0.171

7.

B B B

Because the two fluids are similar in size,
given by two-suffix Margules equations:

Neglecting vapor-phase non-idealities and Poynting corrections, the total pressure, P, is 

P x PA A A x Ps s

 simple and nonpolar, we can assume that ’s are 

ln A BRT
x2A

ln B AR

A

T
x2

As x xA B 0 5. ,

P
A

RT

F
HG
I
KJ

L
NM

O
QP

0 427 0 493. .b g0 667 0 5
4

. . exp

From Eq. (6-144) of the text,

A = 4696 J mol-1

T
A

R2
c
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If one considers the effect of non-randomness (based on the quasichemical approximation),
Eq. (7-110) gives

T c 282 K

T
Ac 25

R2 23.
3 K

(assuming that 
A

R

w

k2 2
constant  and that the temperature dependence is given by ln  propor-

tional to 1/T).
Thus, random mixing predicts a value higher than that given by quasichemical theory. The 

observed consolute temperature is likely to be lower than both.

8.

2 = n-butane

Let:

1 = benzene 

L

V

x = ?i

y = ?i

z z= = 0.5
1 2

To solve for them, we use two equilibrium equations and one mass balance.
Assuming ideal vapor and neglecting Poynting corrections:

There are three unknowns: x y V F1 1, , / .and

y P x Ps
1 1 1 1

1 1 2 2(1 ) (1 ) sy P x P

z
V

F
y

V

F
x1 1 1 1

F
HG
I
KJ
F
HG
I
KJ

Using regular-solution theory,

2 2ln ( )i i j i jRT v
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with d  = 106 cm3 mol-1.

Then,

2 )

v1  = 92 cm3 mol-1 an v2

2
1 exp(0.828

2
2 1exp(0.950 )

Substitution gives

2368 exp(0.828 )x 2
1 10.y (1)

1 (2)2
1 1(1 ) 4.76(1 )exp(0.950 )y x

0 5 11 1.
F
HG
I
KJ
F
HG
I
KJ

V

F
y

V

F
x (3)

1 and 2 are related to x1 and x  by Eqs. (7-25) and (7-26). 
To solve Eqs. (1), (2), and (3) for  assume first that 

2
x y V F1 1, , / ,and i 1.  This gives,

1 10.856 0.315 0.658
V

x y
F

A second approximation ( i 1) gives

x
6 61 C Hx 0.94

1y 0.35

V

F
0 741.

9. As derived in Sec. 7.2 of the text, the regular-solution equations can be written in the van
Laar form

g
Ax x

A

B
x x

E 1 2

1 2

 (1) 

where parameters A and B are related to pure-component liquid molar volume and solubility pa-
rameters as follows [Eqs. (7-38) and (7-39)]:

 (2) 

A

B

v

v

A A B

B A B

( )

( )

2

2
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Substituting the given liquid molar volumes and solubility parameters, we obtain

( ) [( ) ]120 18 12 43201 2 3 1

1 2 3 1

cm mol J cm J mol3

3

 (3) 

As discussed in Section 6-12, the temperature and composition at the consolute point are
found from solving:

A

B ( ) [( ) ]180 18 12 6480cm mol J cm J mol

F
HG

I
KJ
F
H
G

I
K
J

ln ln

, ,

a

x

a

xT P T P

A

A

A

A

2

2
0  (4) 

Upon substitution of Eq. (1) into Eq. (4), the results are given in Eq. (6-146) in the text: 

x
A B A B A B

A B

T
x x A B

R A B x x

c

c
c c

c c

A

A A

A A

[( / ) ( / )] ( / )

( / )

( )( / )

[( / ) ( )]

/2 1 2

2

3

1

1

2 1

1

 (5) 

Tc 328 K

where superscript c  denotes consolute.
Substituting Eq. (3) into Eq. (5), we finally obtain

xc
A 0 646.

1 ug0. For each phase we choose the standard-state f acity for cyclohexane as its pure subcooled 
liquid at 25ºC.  The equation of equilibrium is 

 (1) 

ves

x x3
1

3
1

3
2

3
2( ) ( ) ( ) ( )

where subscript 3 denotes cyclohexane and superscripts (1) and (2) denote, respectively, carbon
disulfide phase and perfluoro-n-heptane phase. 

Rearrangement of Eq. (1) gi

K
x

x

3
1

3
2

3
2

3
1

( )

( )

( )

( )
 (2) 
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Because phase (1) contains only carbon disulfide and a trace amount of cyclohexane,

whereas phase (2) contains only perfluoro-n-heptane and a trace amount of cylohexane,  and 

 are essentially activity coefficients at the infinite-dilution limit of cyclohexane.

Hence, we can write

3
1( )

3
2( )

K
x

x

L

N
M
M
O

Q
P
P

3
1

2
3
2

1

( )

( )

( )

( )
(3)

erscript  denotes the infinite-dilution limit of cyclohexane.

From the regular-solution theory [Eq. (7-37)]

3 3

where sup

, 3
1( )  and 3

2( )  are given by:

(1) 23ln ( )1 33

2 33

RT

RT

v

(2) 23ln ( )

 (4) 

Substituting the pure-component liquid molar volumes and solubility parameters, we obtain 

v

3 -1
(1) 2 -3
3 -1 -1

3 -1
(2) 2 -3
3 -1 -1

(109 cm  mol )
ln (20.5 16.8) J cm 0.602

(8.314 J mol K ) (298 K)

(109 cm  mol )
ln (12.3 16.8) J cm 0.891

(8.314 J mol K ) (298 K)

 (10) 

Substituting Eq. (5) into Eq. (3), we have

K 1.34

11. From the definition of the solubility parameter, ,

2
L
v

ucomplete vaporization

[Complete vaporization means going from urated liquid to ideal gas at constant T.]
Then,

 sat
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2

0
1

F
HG

I
KJ

h h

RT
RT RT z

z RT

L

c
c

L

L

( )

Ps

2

0

1
1

P

h h

RT

z T z
P

c

L

c

L
R

L R
s

L

N

M
M
M
M

O
P
P
P
PM QP

Because

h hL0

RT
f T

c
R( , )

and

( , ) ( , ) ( , )V L s
R R R Rz f T z f T P f T

for TR 1,

2
0 1f T T( ) ( )b g b

P
f

c
R R g b ghigher terms

[Reference: Lyckman et al., 1965, Chem. Eng. Sci., 20: 703].

12.

a) Pure methanol is hydrogen-bonded to dimers, trimers, etc. In dilute solution (in
methanol is a monomer. For an order-of-magnitude estimate, we can assume that, to make a 
mon

iso-octante),

h Eomer, approximately one hydrogen bond must be broken. Thus = 12 kJ mol-1.

b) From solubility parameters we get (roughly) an endothermi -1

specific heat is (roughly) 125 J K-1 mol-1 . Thus, 
c heat of 263 J mol .  The molar

t 2 C.

c) uble bond in hexene. 

Good Solvents are:

Dimethyl sulfoxide

Sulfur Dioxide

Acetonitrile

   Strong Lewis acids

We want a Lewis acid that can hook on to the do

U
V|

W|
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Poor Solvents are: 

Ammonia

Aniline
W

It is also important that the solvent shoul
than t th hexene molecules. St liquids (e.g. water and most alco-
hols herefore be poor so

UVW
eak Lewis acids 

d not be something that prefers self-interaction
hat wi rongly hydrogen-bonded

) would t lvents.

13. HA) be the acid. In ionized form,

HA

Let (

H+  +  A-

Hexane

Water

(HA)
W

(HA)
H

A   +  H+-

Equilibrium constants are defined as 

K1
HA

W

Hb g
HAb g

2

2
W W

(H )(H ) (A )

(HA) (HA)
K

In hexane: CH = (HA)H

In water: CW = (HA)W + (A-) = (HA)W + K2 HA
Wb g

K1 HAb K K HA
H 1 2 Hg b g

C K C K K CW H1 1 2 H

Thus,
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C

C K K
K

C

C

H

W

H

W

F
HG

I
KJ

1
1

1 2
1

with
1

1 2K K
a

and

K b1

14.

Benzene

Water

A
W

A   1/3 AB T

Assume constant distribution coefficient and “reactio ” equilibrium.n

K
A

1
BA

W

K
A

2 3
T

b g
A

B

In water: 

C AW W

In benzene: 

C A AB B T3

C K C K K CB W W1 2 1
3 33

C

C
K K K CB

W
W1 2 1

3 23
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Thus, plot
C

C
CB

W
Was a function of 2 .

Slope is  and intercept is K1.3 2 1
3K K

15.

a) Pure CH2Cl2 and acetone do not hydrogen bond themselves but some hydrogen bonding is 
likely to occur between dissimilar pairs, which explains the negative deviations from Raoult’s
law observed for this system.

However, in dilute solutions of CH2Cl2, metha-

nol ydrogen bonding between methanol and CH2Cl2 is likely to

be weak. (Note that at infinite dilution, activity efficient  indicates the effect on a molecule

1 when surrounded by molecules of the other component).

b) ane has a large dipole moment. Both n-hexane and benzene are non-polar but, due 
to  electrons, benzene is more polarizable. Therefore, we expect nitroethane/benzene interac-
tions to be stronger than those for nitroethane/n-hexane. Thus nitroethane in n-hexane is larger than 

that

c) Both CHCl3 and methanol are polar and ightly acidic. Although methanol has a slightly

higher dipole moment, CHCl3 is likely to solvate the coal tar more easily because methanol tends

to fo

Pure methanol is highly hydrogen bonded. 

exists primarily as monomer. H

1co

Nitroeth

in benzene.

sl

rm strong hydrogen bonds with itself.
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1. Given

ln 1 1
1F

HG
I
KJr

For r >>1,

If  = 0.44, 

ned,

ln 1 1

ln . .1 11 44 4 22

As defi

1
1

1

1
4 1

4

10
4 22 4 22 10

a a
a. .

Because

a
P

Ps1
1

1

er,

P1
44 22 10 4 49 0 0019( . ) ( . ) . bar

P2 0.For a non-volatile polym  Therefore, 

P P1 0.0019 bar

121
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2. We can use the data for the Henry’s-law region to evaluate the Flory interaction parameter, ,
and then predict results at higher concentration.

Let:
e

ym
wi = weight fraction

i = volume fraction

en,

1 = solv nt
2 = pol er

Th

1
1

1 2

1

1

1

1

2

2

v

v v

w

w w

In the Henry’s law region,

w w1 20 1,

a f

f

w H

f

1

1

1

1 1
0

1 1 2

1 1
0
,

But, as 

1

w1 0,

1 1 2

2 1

w /

Then,

a H

f

1

1

1 1 2

2 1
0
,

If f Ps
1
0

1 ,

a f H1 1 1 1 2 0 783 18 3
2 94, ( . ) ( . )
.

f Ps
1 1 1

0
2 1

111 3340 760( . ) ( / )

From Flory-Huggins theory (r is large),

ln
a1

1
2 2

2

If 1 1 ,

ln(2.94) 1 0.078
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At higher concentrations (w1 = 0.5), assume ( )w1 :

2 1
(0.5) (1/1.11)

0.414 ( 0.586)
(0.5) (1/1.11) (0.5) (1/ 0.783)

Then,

ln . . ( . )
a1

1

20 414 0 078 0 414

a
a1

1153 0 898. .or
1

P f a f a Ps
1 1 1

0
1 1 0 898 3340 3000( . ) ( ) torr

P 3000 torr 3.9 bar

3.

a) The generalized van der Waals partition is given by [Eq. (8-39)]

oexp
N

E
ext int3

1
, , ( ) ( )

! 2

N
f N NV

Q T V N q V q T
N kT

 (1) 

Following the discussion on pages 442 and 443 of the textbook, we further have

ext3 3

o

31/ 3

2 2

f fV V
q

E rs

Nr

rc

*
*

1fV r

V

v
v

v

v

v

 (2) 

Substituting Eq. (2) into Eq. (1) yields
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3 *

1/ 3

ln ln ! ln ln( )Q N Nrc Nrc r

Nrs
int

*
3 ln 1 ln

2
Nrc N q

kT

v

v

(3)

vv

ecause the first, second, third and fifth terms on the right-hand side of Eq. (3) are only B
functions of temperature, the equation of state is given by

, ,N T

2 / 31 3 1 1Nrc Nrs

1/ 3

ln 1 ln

3( 1)

N T

P Q Q

kT V Nr

Nr 21/ 3* 2kT v

v

vv

 (4) 

e c

v

W an rewrite Eq. (4) as

1 3 1P /
v v

 (5) 
1 3/

ere the reduced properties are defined by

1T Tvv

wh

*2 ckT

*
T

sT

2
*

*

2

T

P P
P

v

* sP

v

v

 (6) 

b) The configurational partition function [Eqs (8-82) and (8-83]

v
v

Equation (5) is the Flory equation of state [Eq. (8-45) of the textbook].

.

*

( 1)*0

expC E
Q Q

kT

( / ) 1
(constant)

! ! ( / )

N
C N

N r

V
Q

N N V

v

v

where

(7)

0
*

V
N r N

v
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*2 ( / )
r

z rN
E N

V
=

v

 (8) 

ivesCombining Eqs. (7) and (8) g

* * *

0
*

! ( 1) lnN r
v

 (9) 

2 2**
V

*

ln ln(constant) l

ln ! ln

( )

V
Q

V
N N

r N V

v v v

v

v

whe

n
V V

re

*

0
*

* * *

2

ln ! ln

ln

!

z

kT

V
N r N

V V V
r N r N r N

v

v v v

 (10) 

of state is thus given byThe equation

,

* *1/ ) 1v v

* * *

*

*

2*
2*

*

1 (
ln

1/
)

N TkT V

V V

r N

V

lnP Q

*V v

* * * *

1 1/ 1
ln

V V
r N r N

V

*
*

( 1) (
/

r r N
V

v

v

N

v v v

v

v

v

 (11) 

v

v v v v

We can rewrite 
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*
ln ln ( 1)

V V
r N

V
v

v v v
* *v v

*

1

1

1 1
1 ln 1

PV P

kT r N T

V

r N

r

v

v

v

v

v

 (12) 

whe

*
1 rN

*/r V v

1

Tv

re

*

* *

*v

/ 2

/ 2

z kT

P P
P

P z v

v
v =

 (13) 

Equation (12) is the Sanchez-Lacombe lattice-fluid equation of state [Eq. (8-84) of the text-
book].

T T
T

4 the solvent [Eq. (8-11)] is.  The Flory-Huggins equation for the activity of

2* *
1 2 2

*1
ln ln(1 ) 1a 2

r
 (1) 

give [analogous to Eqs. (6-141) and (6-142)]: Conditions for incipient instability

1
*
1 ,P T

2
1

2*
1 ,

ln
0

ln

P T

a

a
0

Equivalently, we have 
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1
*
2 ,

2
1

2*

ln

ln
0

P T

a

a

0

2 ,P T

 (2) 

because

* *
1 2 1

Substituting Eq. (1) into Eq. (2), we obtain

*
2

*
2

2

*
2

1 1
1 2

1

1
2 0

0
cc

c

c

c

r

1

where superscript  stands for critical. 
Hence, we obtain

c

*
2 1/ 2

2

1/ 2

1

1

1 1
1

2

c

c

r

r

5 ) [Eq. (8-12)] with 0. The Flory-Huggins equation for the activity coefficient of HMDS (1

 is

* *
1 2

1 1
ln ln 1 1 1

r r
2

Using data in Table 8-5 of the text, calculated molecular characteristic volumes , ratios

of molecular segments r and activity coefficients of HMDS (at ) are given in the fol-

lowing table:

*V

*
2 0.8
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Substance **
sp nV Mv * *

2 1/r V V *
1 2ln ( 0.8)

(cm3 mol-1)

HMDS 162.30 
3.21 -0.249

PDMS 20 1313.8 8.09 -0.528
PDMS 100 3507.8 21.61 -0.677
PDMS 350 5530.1 34.07 -0.722
PDM

S  -0.809 

PDMS 3 521.53

PDMS 10 832.89 5.13 -0.389

S 1000 6604.8 40.70 -0.735
PDM

As we increase the molecular weight of PDMS, 1ln  becomes more negative.  is smaller
than unity and increasingly deviates from unity s the molecular weight of PDMS is increased. 

This example illustrates the effect of differences in molecular sizes of HMDS and various
S with  (Fig. 8-3). 

1
a

0PDM

6. The gh t s given by, Eq. (8-118) flux of gas i  throu he membrane i

G Gi
i iF

G
iP iP

M

D
iFJ S P S P (1)

Because solubility coefficients for both O2 and N2 in the feed and permeate are assumed to 
re is vacuum, Eq. (1) reduces tobe equal and the permeate pressu

G
i i

i iF
D S

M

J P

G
i i

i F
M

D S
y P

(2)

where yi and PF )  denote, respectively, the mole fraction of component i and the

total pressure of the feed.
For the feed mixture (air) we have 

(3)

Substituting Eq. (3) and the given data for membrane thickness, solubility and diffusion
coefficients into Eq. (2), the corresponding fluxes of O2 and N2 are 

5( 2 10  PaFP

2

2

O

N

0.21

0.79

y

y
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The separation factor is defined by [Eq. (8-121)]

2

2

5 3 -2 -1
O

5 3 -2 -1
N

0.148 10 m  m  s

0.197 10 m  m s

J

J

2 2

2 2

2 2

O O
O / N

N N

G

G

D S

D S

2.79

2 2O / N 1Although , the net flux of N2  is larger than that of O2 due to the difference in 

partial pressures in the feed. 

7. If the feed pressure were low, we could use Eq. (8-112) to calculate 1,J  the flux of carbon diox-

ide, and 2,J the flux of methane. Equation (8-113) then gives the composition (y) of the perme-

ate.
However, because the pressure of the feed is high, we must allow for the effect of pressure

Equation (8-111) is 
on nonideality of the gas phase.

1
1 1 1

M M
F P

M

D
J c c (1)

where 1
Mc  is the concentration of carbon dioxide in the membrane; subscripts F and P refer to 

feed and permeate.

To find , we use the equilibrium relation c F
M
1

1
1 1 1 1( ) expM

F

F

P
y P H c

RT

v
(2)

where H1 and v1  are Henry’s constant and partial molar volume for carbon dioxide in the mem-

brane, both at 300 K and 100 bar. 
Fugacity coefficient 1 is given by the virial equation of state, truncated after the second 

virial coefficient [Eq. (5-33)]:
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2

1 1 mixt

1

2 2

mixt
1 1

ln 2 i i

i

i j ij

i j

P
y B B

RT

B y y B

 (3) 

Substituting the given temperature, pressure and second virial coefficients into Eq. (3), we 
obtain

1 0.729

Substituting Eq. (4) and all other given data into Eq. (2) yields 

 (4) 

To find 

1
1

-0.314 mol LM
Fc

1
M
Pc  we use the equilibrium relation 

 (5) 

where  and 

Hence, Eq. (5) reduces to 

1 1 1 1( ) ( )M
P Py P H c

1 barPP 1 1.P

11
1 mol L

19
M P
P

y
c  (6) 

The quantity  is an unknown in this problem.

Substituting Eqs. (4) and (6) into Eq. (1) gives 
1Py

6
3 31

1 2

mol 5 10
0.314 10 10

0.1 19cm s

Py
J  (7) 

Applying the same procedure for methane (2), we obtain 

6
3 32

2 2

mol 50 10
0.155 10 10

0.1 50cm s

Py
J  (8) 

The (steady-state) mole fraction of carbon dioxide in the permeate is given by [Eq. (8-113)]

1
1

1 2
P

J
y

J J
(9)

Further, the mass conservation gives 

1 2 1P Py y  (10) 

Substituting Eqs. (7), (8) and (10) into Eq. (9) gives  for carbon dioxide in the

permeate.
Therefore, for methane in the permeate,

1 = 0.168Py

.2 = 0.832Py
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8.

a) Flux of water through the membrane is given by Eq. (8-128): 

( )permeability
exp

thickness
L L w F P

w wF wP
P P

J x x
RT

v
 (1) 

where  (pure water in the permeate);

To calculate concentration of water in the feed, we use 

1L
wPx 0.0312 atm.s

P wP P

( ) ( )L s
w F w w FP x P  (2) 

with

Therefore, we obtain 

Because the permeate is pure water, we obtain 

0.0312 atm

(1 0.0184) (0.0312) atm

s
w

wF

P

P

0.9816wFxL

1
3 118.015 g m

18.069 cm  molw w
ol

30.997 g cm
v v

The feed essurepr is thus given by

5 2 1
4 2 1

4

3 1

1 1

2.6 10 g cm cm  s
7.2 10  g cm  s

10

18.069 cm  mol ) ( 0.0312 atm)
0.9816 (1) exp

(82.06 atm L K  mol ) (298.15 K)

FP

10 cm

(

Therefore, the feed pressure is 

b)

= 3.93 atmFP 6

6 3 31 10  gallons/day 3785.4 m /day 0.0438 m /s 43.67 kg/s
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3 1
4 2 1

2

43.67 10  g s
Flux 7.2 10  g cm  s

(  cm )A
(3)

where A is the membrane area needed. 
Solving Eq. (3) for the area, we get 

7 2 3 26.07 10  cm 6.07 10  mA 4 2
6.5 10  ft



S O L U I O N S TT O P R O B L E M S

C H A P T E R 9

1. The solubility product is the equilibrium constant for the reaction 

 AgCl Ag+  +  Cl-

          Solid               Aqueous solution 

defined as 

K a aSP ( )( )
Ag Cl

being the standard states the pure solid AgCl and the ideal dilute 1-molal aqueous solution for 
each ion. 

a) Let S be the solubility of AgCl in pure water, in 
mol AgCl

kg water
 (a molality).

Sa S a
Ag Ag Cl Cl

)( ) ( )( ) ( )
Cl Ag Cl

Because the solution is very dilute, 

K a a S SSP (
Ag

2 2  (1) 

S KSP and is of the order of 10-5 molal1 and

therefore the ionic strength is also very low: I 131 10 5.  molal. Therefore we may aand pply
the Debye-Hückel limiting law.

I m m m S
1

2
1 12 2[ ( ) ( ) ]

Using Eq. (9-50a) of the text, 

133
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./ /0 5102 1 2S  (2) log . ( ) ( )( )m 0 510 1 1 1I

y Eq. (2) into Eq. (1) and solve for the solubility S:

. /
10 0 510 1 2S S

We now replace given b

.172 102 10[( ) ]

-5 -1
= 1.31×10 mol kgS           ( 10. )

b) With the addition of NaCl the ionic strength increases and we need to evaluate  because 

now avethe solution is not very dilute and therefore we don't h 10. .

Let S be the new solubility of AgCl in this aqueous solution that contains NaCl.  The mola-
lities are 

m S m S
Ag Cl

0 01.

The total ionic strength (due almost exclusively to NaCl because S is small) is

I S S
1

2
1 1 0 01 1 0 01 1 0 012 2 2) 2 1[ ( ) ( ) . ( . ( ) ] . mol kg

A 1174. :kg  mol1/2 1/2We use in this case the extended limiting law [Eq. (9-52)] with 

ln
. ( . )

( . )
.

/

/

1174 0 01

1 0 01
0 90

1 2

1 2

As in a), 

Ag

2 1

( )( ) ( )( )( )( )

( ) ( )( 0.01) 1.72 10

SPK a a m m

S S

Cl Cl ClAg Ag

0

or substituting 

Because S is small and S << 0.01, we obtain  mol kg-1.
The addition of NaCl reduces the AgCl solubility from 1.31 10-5 m  kg-1 [as calculated in 

a) for pure water] to 2.12 10-8  mol kg-1 (in a 0.01 molal NaCl aqueous solution). This is the 
common ion (“salting out”) effect. 

c) Similarly, let S be the new AgCl solubility.

S

0 90. ,

S S( . ) .0 01 212 10 10

-8
2.12 ×10S

ol

Molalities are:

m S m
Ag Cl

Again, the ionic strength is almost exclusively due to NaNO3:
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1. .

Ag

2 2 10

)( )( )( )

( ) ( ) 1.72 10

m m

S

I 0 01 0 90mol kg and

ClAg
( )( ) (SPK a a

Cl ClAg

Compared to the solubility of AgCl in pure water, the solubility of AgCl in a 0.01 molal
NaNO3 aqueous solution increases by roughly 10%, because the higher ionic strength reduces 

the a to dissolve (“salting in” effect). 

-5 -1
= 1.46 ×10 mol kgS

ctivity of Ag+ and Cl- ions and causes more AgCl

2. The solubility product is the equilibrium constant for the reaction (PbI2 is a 1-2 electrolyte) 

 PbI2 Pb2+  +  2I-

        Solid             Aqueous solution 

defined as 

3

and the ideal dilute 1-molal aqueous solution for 

each ion. In the above equation, S is the solubility of PbI2 in pure water, in 

K a a SSP ( )( ) ( )
Pb I2

2 3

being the standard states the pure solid PbI2

mol PbI

kg water
2  (a mo-

lality). Because the solution is very dilute, 1  and

94 57 100K SSP ( ) ( . ) .3 3 3166 1

For the solution with KI the ionic strength increases and we need to evaluate  because 

now the solution is not very dilute and therefore we may not have 10. .

Let S be the new solubility of PbI2 in this aqueous solution that contains KI. The molalities
are

m S m S m
Pb I K2 2 0 01 0 01. .

The total ionic strength is

I S S S
1

2
2 1 2 0 01 1 0 01 1 3 0 012 2 2 2 1[ ( ) ( ) . ( ) . ( ) ] ( . ) mol kg  (1) 

A 1174. :kg  mol1/2 1/2We use in this case the extended limiting law [Eq. (9-52)] with 
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ln
. ( . )

( . )

/

/

1174 3 0 01

1 3 0 01

1 2

1 2

S

S
 (2) 

sSimultaneous solution of Eqs. (1) and (2) give

0 88.

S 1.89 10 mol kg3 1

3. The solubility product for PbI2 in an aqueous solution is

log 3log 3logSPK m  (1) 

whe

m m m

m m m m

 (2) 

With

re

2Pb
m m

I

1/ 32

2

(2 ) 1.587

m

21
(2 2 ) 3

2
I m m m  Eq. (9-50a) gives 

 (3) 

With 1  we obtain 

1/ 2log 0.510 (2) (3 )m

3 -1.66 10  mol kgm

log 7.953SPK  (4) 

For the solutions containing sodium chloride or potassium iodide saturated with PbI , we 
have

7.953 3 log 0.510 (2)

2

1/ 2log SPK m I  (5) 

For the NaCl solution, we write 
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2P b I N a C l

1 / 32

2

2 0 .0 1

( 2 ) 1 .5 8 7

1
2 2 2 ( 0 . 0 1

2

m m m m m m

m m m m

I m m

For the KI solution, we write 

0 1) 3 0 .m

Substitution in Eq. (1) yields 

-11.89 mol kgm

2Pb I K

1 / 32

2

2 0.01 0.01

(2 0.01)

1
(2 ) 2 2 (0.01) 3 0.01

2

m m m m m

m m m

I m m m

bstitution in Eq. (1) yieldsSu

10.24  mol kgm

For both systems, calculated and experimental values are in good agreement. The large de-

crease in PbI2 solubility in the KI solution follows because all iodide ions are included in .m

This reduction in solubility is called the common-ion effect.

4. The dissociation of acetic acid is represented by 

CH3COOH H+  + CH3COOH-

or sc

AH

hematically

H+  +  A-

he dissociation consT tant is
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5 H H

AH

(m) (m) 2
AH

(m) (m) (m) (m)
AH AH AH AH

( )( )
1.758 10

( )( )( ) ( )( )( )

a a
K

a

m mm m

m m

Designating by  the extent of ionization, and by m the stoichiometric molality of acetic 

AH
.a macid, in dilute solutions we may assume a a

H A
 and  Further, the activity 

Assuming that the activity coefficients are unity (very dilute solutions) we have 
of undissociated acetic acid approaches its molality at infinite dilution. 

K
m m

2( )( )

The fraction of acetic acid ionized is: 

1758 10 5.

For a m = 10-3 molal aqueous solution, the equation above gives 124 10 4. .

m

124 10

1 10

4

3

.
0.124

5. In SI units, the Debye length is defined by Eq. (9-47) of the text: 

F
H
G

I
K
J1

2 2

1 2

2

RT

d N e I

r

s A

o

/

whe

01 mol kg-1 for the 0.001 M solution and I  0. 1 mol kg-1 for 
the 0.1 M solution. 

ues gives the values for the Debye length -1  (in nm) presented in the 
following table:

Solution Water Methanol

re ds is the density of the solvent in kg m-3. For water at 25ºC, ds = 997 kg m-3.

The ionic strength is I 0.0

Substitution of val

0.001 M 9.6 6.1
0.1 M 0.96 0.61

We see that -1 decreases ten times with a hundredfold increase in concentration. For the so-
lutio t and -1 is low. Further, the 
Debye length increases with increasing dielectric constant: when r is large (as in water), the 
ionic atmosphere is weak and the coulombic interactions are strongly reduced. 

ns at higher concentrations, shielding effects are more importan
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6.

a) The molality of NaCl in seawater is 

NaCl

3.5
mol NaCl

58.5

(100 3.5) g water
m

3.5

mol58.5
1000

(100 3.5) kg

0.620 mol/kg water

The ionic strength is given by

I m z m z m
1

2
0 6202 2( ) .

Na Na Cl Cl
mol / kg water

which is a relatively high value.
Also,

Na Cl
2

f water at 25ºC isThe molar volume o

vw
w

w

M

d

18

0 997
18 05

.
.

g / mol

g / cm
 cm mol

3
3 -1

To obtain the molal osmotic coefficient, , we need an expression for in terms of the

ionic strength I (= m).
Since solution is not dilute, we use Bromley’s model:

ln
( . . )

( . )
.

/

/

A I

I

B I

I
BI

1 2

1 2 21

0 138 138

1 15
2 303

with, for NaCl at 25ºC,  and

From Eq. (9-11) of the text (reminding that in this case I = m),

1/2 1/21.174 kg  molA 1/2 -1/20.0574 kg mol .B
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0

1/ 2

1/ 2 2 2
0

2
0 0

1
1 ln

1 (0.138 1.38 )
2(1 ) (1 1.5 )

(0.138 1.38 )

2.303(1 1.5 )

I

I

I I

I d
I

A I I
dI B

I I I

B I B
dI dI

I I

Performing the integrations, we obtain:

1/ 2 1/ 2
1/ 2

2

1
1 1 2 ln(1 )

1

(0.138 1.38 ) 1 3 1
ln(1 1.5 ) 2.303

1.5 1.5 2(1 1.5 )

A
I I

I I

B I
I

II

I B

Substituting A  = 1.174, B = 0.0574, and I = 0.62 we obtain  = 0.924.

b) From the expression that relates the osmotic pressure, , to the molal osmotic coefficient, ,
we obtain

1 1 1
1

6

6

1000

(2) (8.314 J K mol ) (298.15 K) (18 g mol )
(0.924) (0.620 mol kg )

(1000) (18.05 10 )

2.83 10  Pascal =28.3 bar

w

w

RTM
m

28 atm

v

Linear interpolation from osmotic pressure data of aqueous NaCl listed in Perry gives for m

= 0.62 mol kg-1, 28.0 atm, in good agreement with our calculated osmotic pressure. 

7. For , which is a 2-1 electrolyte, we have 2 4K SO
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2
4SO

; 2m m m z

K

2

1/ 21/ 2
(m) (m)

1/ 2 1/ 2

2  ; 1

1
(2 2 ) 3 ; 2, 1,

2

(3 )1
ln ln

31 1 (3 )(3 )

m m m z

I m m m

A z z mA z z I
bI b

mBaI Ba m m

3

With

a

we obtain

(m) -1 1/2 -1/2 1/2 1/ 2 -10.4 for 0.12 mol kg ; 1.174 kg  mol ; 0.33 kg mol Å ; 4 Åm A B

1/ 2
1

1/ 2

1

1 (1.174) (2) (0.36)
ln 0.4   kg mol

0.36 1 (0.33) (4) (0.36)

0.362 kg mol

b

For , we obtain10.33 mol kgm 0.25 (the experimental value is 0.275).

To use Eq. (9-25) for calculating the activi e e first need to calculate the osmotic
coefficient,

ty of wat r, w
.

1/ 21.174 0.3615 (3 0.33)
1 (2) (3 0.33) ( )

3 2
y

whe

and

re

1/ 2(0.33) 4 (3 0.33) 1.32y

3

3 1
( 1.32) 1 1.32 2 ln(1 1.32) 0.257

1 1.32(1.32)
y

1000 (g/kg)
0.618 ln

3 0.33 (m /mol)
wa

ol/kg) 18 (g

ln 0.011 0.989

/ 0.989

w w

sat
w w

a a

P P 0.0314 barwP

The vapor pressure has not changed much; it is only about 1% lower than that of pure wa-
ter because m  is still small.
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8.

2
BSA CI BSA

-1concentration in mol L

CI counter ion

c c Bc
RT

c

Because the charge on BSA is –20, there are 20 counter ions (protons) for each molecule of 
BSA.

B is the osmotic second virial coefficient characterizing the BSA-BSA interaction in a 1 M
aqueous NaCl medium. We neglect contributions from proton-proton and proton-BSA interac-
tions ntribut ractions with NaCl.

of NaCl is the same in both sides and because 1 M is much
large concentr on of counter ions, we neglect any (tiny) charges that might occur in
NaC unter ions or with BSA.

, and also co ions from inte
Because the concentration (1 M) 
r than the ati
l concentration due to interactions of Na+ and Cl- with co

1 1

4 1 4
BSA CI

224
17.2 mmHg; 298 K; 62.36 mmHg L mol  K

13

44.6
6.76 10  mol L ; (20) (6.76 10 ) mol L

66,000

T R

c c 1

Substitution gives

-1
= 29040 L mol-B

9.

a) To calculate the activity coefficients of water we use the Gibbs-Duhem equation:

d
x

x
dw

w

ln ln  (1) s

where subscripts w and s refer to water and salt, respectively.
Integration of Eq. (1) between mole fractions xs = 0 (or xw = 1, for which w = 1) and xs,

gives
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ln ( ) lnw s
s

s

xs

x
x

x
dz 1

or

0

ln ( )w s
s

s s
sx

x dx
dxz lnd

xs x F
HG KJ

I
10

)

The derivative in Eq. (2) can be obtai

(2

ned from the truncated Pitzer equation given:

ln
. ./8 766 124 5981 2 3/2x x

 (3) 
/1 2

ectrolyte, the solution ionic strength is 

1 9x

We made I = xs, because being NaBr a 1-1 el

I x z x xx i i
i

s s
1

2

1

2
2 ( ) xs  (4) 

) in order of x and substitution in Eq. (2) givesDifferentiation of ln in Eq. (3

ln ( )
. . .

/w s
s

s
s s s

sx
x x x x

dx
/ /x L

( )s s
x xN
M P
M

O

QPz 1

1

6

1 90

4 383 18 897 11213822 1 2

1 2 2
(5)

The salt mole fractions are easily calculated from the given molalities (between m = 0 and m

= 5 mol kg-1) from:

x
n

n n

m

m

m

m
s

w

NaBr

NaBr

NaBr

NaBr

NaBr

NaBr1000

18 015
55 51

.
.

 (6) 

The following figure shows the activity coefficients of water in different NaBr aqueous so-
lutions at 25ºC, calculated using the Sympson rule to evaluate the integral in Eq. (5). As the fig-
ure shows, w  1 until about m = 1.5 mol kg-1 and becomes less than one after that concentra-

 = 0.88 for m =10 mol kg-1.tion. For example, w = 0.92 for m = 8 mol kg-1 and w
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Molality NaBr

0.01 0.10 1.00 10.00

w

0.90

0.95

1.00

b) The mean ionic activity coefficients for NaBr aqueous solutions at 25ºC are calculated from

Deb  equation, ln A Ix xye-Hückel , and from the Pitzer equation as given in this problem.

The following figure compares both predictions. As expected, they agree only at very low salt 
concentrations.

Molality NaBr

0.001 0.01 0.1 1
0.2

0.6

1.0

1.2

10

M
e

a
n

 I
o

n
ic

 A
c
tv

it
y

e
n

t
C

o
e

ff
ic

i

0.8

0.4 Debye-Huckel

Pitzer

c) (4-44) gives the Van’t Hoff equation for the osmotic pressure: (valid for ideal, di-
lute ):

Equation
solutions

V n RTs  (7) 

whe oles of the salt.
Taking into consideration the nonideality of the liquid phase we write [Eq. (4-41)]: 

re V is the total volume and ns the number of m
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ln ln( )a x
RT

w w w
wv (8)

 is the molar volume of the pure solvent (water). 
W e Eq. (7) to calculate the osmotic pr

and Eq. (8) for the more correct calculation tha

w o q. (5).
ater, we rewrite Eq. (7)

where vw

e us essure for the simplest case (Van’t Hoff equation)
t takes into account the solution nonideality, with 

btained from E
Assuming that NaBr is completely dissociated into Na+ and Br- in w

as

2 1c RT c
n

V
s s with s   mol L  (9) 

We obtain the salt concentrations (molarities) from the given molalities (m2) from

c
d m

M m
s

s

s s

( )
.

mol L 1

1 0 001

where d is the mass density (in g cm-3) of the solution and Ms is the molar mass of NaBr (in g
mol-1).

To use Eq. (8) we take the molar volume of pure water as 3 118.015 cm  mol ,wv

x xw s1 2  with w  given by Eq. (5).

The following figures compares the results obtained from the Van’t Hoff equation [Eq. (9)]
with the equation that takes into account the solution nonideality [Eq. (8)]. 

Molality NaBr

0 2 4 6 8 10 12

O

0

100

200

300

500

600

700

i
m

)
c
 P

re
s
s
u

e
 (

a
t

400

s
m

o
t

Van't Hoff

Eq. (8)

As the figure shows, the solution behaves as an ideal solution (i.e. Van’t Hoff equation is
valid ration of about mNaBr = 2 mol  kg-1. However, for more concentrated solu-
tions l  kg-1), the effect of thermodynamic nonideality can not be neglected any-

re.

) up to a concent
(mNaBr > 2 mo

mo
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10. For the dissociation reaction

 AB  A+ + B-

equilibrium constantthe is

3 1A B

AB

( )( )
5 10  mol kg

a a
K

a

The equilibrium equation is 

AB AB
L Vf f  (1) 

where f denotes fugacity.

quation (1) is equivalent to (Henry’s constant 1
AB,w 30 bar kg molH , AB 1y )E

w

AB
AB AB,w ABexp

sat

P

P
m H dP P

RT

v
 (2) 

omponent AB in the vapor phase is in equilibrium with the undissociated AB dissolved in 
water. The total molality of AB (solubility) in water is: 

C

AB ATm m m

If  is the fraction dissociated, we obtain

A Tm m       and AB (1 ) Tm m

The equilibrium constant then is

2 2
3 15 10  mol kg

1
Tm

K  (3) 

and Eq. (2) becomes

AB
AB,w AB

( )
(1 ) exp

sat
w

T
P P

m H P
RT

v
 (2a) 

where  because w
satP P P w50 bar .satP P

The fugacity coefficient at 50 bar is

AB,AB
AB

3 1

3 1 1

exp

(50 bar) ( 200 cm mol )
exp 0.668

(83.14 cm  bar K  mol ) (298 K)

PB

RT

A B A

1
( )

2
TI m m m m , the mean ionic activity coefficient is [Eq. (9-52)]With
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ln
T

1 T

A m

m

/

(4)

w three equations [Eqs. (2a), (3), (4)] and three unknowns , and 

Solving these gives:

where 1/2 1 21.174 kg  mol .A

mT , .We have no

11.038 mol kg

0.0871

0.762

Tm

Iteration procedure is:
  Start with in Eq. (2a) and calcu

ation for  with

late .Tm0

Then calculate a first approxim 1 using Eq. (3). 

  Us  and  in Eq. (4) to obtain bettere Tm ,  etc. 

11. In his theory of absolute reac A and B form an activa- 
ted complex (AB) as an acti

tion rates, Eyring states that r
 intermediate

eactants
onstate in the re

A   +   B    (AB) Products (1)

By assumption, reactants A and B are in equilib ed complex (AB), so 
that

rium with the activat

(AB)

A B

a
K

a a
 (2) 

ional to the concentration of  (AB), i.e.,

Replacing the activities by the products of concentrations and activity coefficients in Eq. (2) 
we obtain

(AB)constant c .The reaction rate is proport

A B
(AB) A Bc Kc c

(AB)
(3)

Hence,

A B
A B

(AB)
Rate of reaction (constant)Kc c  (4) 
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The rate of reaction can also be expressed in the usual manner by , where k is the ob-
served specific rate. Hence, from Eq. (4), we can write 

A Bkc c

A B A B
o

(AB) (AB)
(constant)k K k  (5) 

Equivalently, we can write 

A B
o

(AB)
log log logk k  (6) 

To calculate the second term on the right side of Eq. (6), we use Eq. (9-50a) 

2 2 2A B
A B (AB)

(AB)
log 0.510 ( )I z z z  (7) 

Substituting z  gives(AB) A Bz z

A B
A B

(AB)
log 0.510 (2 )I z z (8)

Combining Eqs. (6) and (8) gives

o A Blog log 1.02k k z z I  (9) 

Therefore, a plot of  versus logk I  is a straight line with slope

Reaction zAzB Change of 

A B1.02 .z z

k

I -2 Decreases with increasing I

II 0 Constant

When the inert salt NaCl is added, I  changes. 
For  and negligible molalities of reactants, we obtaiNaCl 0.01m n

-

Na

Cl

0.01 1

0.01 1

m m z

m m z

 (10) 

and

1
(0.01 0.01) 0.01 M

2
I (11)

Combining Eqs. (9) and (11) gives
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Reaction zAzB k

I -2 -0.204

II 0 0

12.  Some helpful relations for single-electrolyte solutions (i.e., one cation M and one anion X) 

M X
M X   or 1 (1)

M M X X M M X X0  orz z z z  (2) 

XM X Mm m m m m

i

i

m m

M M X X( )i i

i

m z m z z

2 2
M M X X

1 1
( )

2 2
i i

i

2I m z m z z

a) Eq. (9-59) from Eq. (I-13):

For a single electrolyte: c = 1 = M and a = 1 = X 
All ’s, ’s, and ’s are zero. Equations (I-14), (I-15), (9-61) and Eq. (I-13) give
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'
M X M X M X MX

M
X MX M

X
M MX MX

M X
M M MX

ln

2

2

2

i i X

i

i i

i

z z f z z m m B

m B m z c

m B m z c

m m
z c

where  and are given by Eq. (I-19a) and Eq. (I-19b), respectively, and s given

by Eq. (I-18). 
Equations (I-16), (I-19), and (9-62) – (9-65) gi

MXB BMX
' CMX  i

ve

'
MX M MX2B I B B

and

1/ 2
MX M XMX

2
/(2 )

3
C C z z

From Eq. (9-45), the terms with  or '  can be summarized as: BMX MXB

' M X X M
M X M X MX MX

2 '
M X MX M X X M MX

'M X
MX MX

2 M X
MX

2

2 1
( )

2
( 2 )

2

m m
z z m m B B

I
m B m m B

m

m IB B

m B

2

Summarizing the erms gives:CMX  t
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M X M X
X M M M X X M M M1/ 2

M X

2
M X X M M X MX

M M X X M M 1/ 2
M X3 z z

3/ 2
2 M X

MX

2 1
( ) 2

3 2

( ) 2

2( )

m m
m m m z m z z C

z z

Cm
m m z z m z

m C

The 3 terms above marked with  are identical to the 3 terms in Eq. (9-59).

b) Eq. (9-60) from Eq. (I-10):

As before c = 1 = M and a = 1 = X and all ’s, ’s, and ’s are zero. 
Equations (9-64) and (I-18) and Eq. (I-10) give

(1)

M X MX

(2)

M X
MX1/ 2

M X

(3)

1 2 /

2

2

2

i

i

i i
i

I m f

m m B
m

m m
m z C

m z z

 (1) 

Term (1): 

2 2
M M X X

2 2
M M X X

1
2 / 2 ( )

2
iI m m z z

z z

M M X Xz z , it followsWith
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X M
M M X X M

M X

X M
M X

X M
M X

M X

1
Term (1) z z z z

z z

z z

z z

Term (2): 

X

2
M X M X

M X
2 22

i

m
m m m

m m

Term (3): 

2
M M X XM X M X

1/ 2 1/ 2
M X M X

( )2

2
i i

i

m z zm m m
m z

m mz z z z

M M X Xz zAgain using  gives

1/ 2
1/ 2 X

M M X X X X M X X
M

z z z z z z z

and

M M X X X X2z z z

Th oeref re,

X X2M X M X
1/ 2 1/ 2
X M X

3/ 22 2( )2Term (3)
z

m m
z

Comparison of the results for the terms (1), (2), and (3) with those in Eq. (9-60) shows that
they are identical. 



S O L U T I O N S  T O  P R O B L E M S  

C H A P T E R 1 0

1. Let 1 =  methane, 2 = benzene, 3 = m-xylene, and 4 = hexane.
Neglecting Poynting corrections and vapor non-idealities, 

K
y

x

f

P

L

1
1

1

1 1

1

pure

From Fig. 10-13 of the text we obtain  at 366 K and 13.8 bar. 

Because  we can use Lewis’ fugacity rule to obtain 

f L
pure 1

y1 1 1  by writing 1 ( / )f P pure 1 .

We find 1  from

2
1 1

1
( )

ln
RT

v

 using x1 0.In the first iteration, find 

For a second estimate, first calculate  from y1 1 41y1 y y y3 , where 

y
x f

P
2

2 2 2
0

, etc.

Then,

x
y

K
1

1

1
(other  from relative amounts)

Recalculate

xi

 for second estimate of 1  to find

153
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K K1 CH4
34

2. Let 1 = argyle acetate and 2 = helium.
Because we have two data points, we can use the Krichevsky-Kasarnovsky equation to evaluate

the two parameters  and H2 1, v2 .

ln ln
( )

,
( )f

x
H

P P

RT

Ps s
2

2
2 1

1 2 1F
HG
I
KJ

v

Assume:

1.

Then, for helium,

2 1*

2. P Ps
1

f y P2 2 2

From data given in App. C for helium,

3 1(293 K) 12.1 cm  molB22

Using the virial equation and assume y2 1,

ln 2
22B P

RT

Find f  at different pressures: 

P (bar) 2 f2 (bar)

2

25 1.012 25.3
75 1.038 77.8
150 1.077 161.5

At 25 bar, 

ln ln( . )

ln
( ) ( )

( . ) ( )
,

f

x

H

2

2

425 3 10

2 1
225

8314 293

v

ln( ) ln
( ) ( )

( . ) ( )
,27 10

75

8314 293
4

2 1
2H
v
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These equations give

3 1
2 32.4 cm molv

 and 

ln .,H2 1 12 4

At 150 bar,

2

ln ln .x f2 2 12 62

x xHe 5.37 10 4

3. Over a small range of values for , Hildebrand has shown that  is linear (approximately)

in 1. A plot of  vs.  gives x2  in l d air.

log x2

log x2 solvent iqui

logx2

1

Because

1/ 2 1/ 2
vap vapi i

i
i iv v

u h RT

we can calculate ’s from data given:

and

1.

re of N2 and O2:

CH4
3J cm15 0 1 2. ( ) /

3 1/2J cm )4 (CO

For air, assume a mixtu

air
3 1/2(J cm )11 4.
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From plot of  vs.  we find for log x2 1 114. (J cm )3 1/2 ,

2 (in air)x
2

3
H 2.63 10x

Note that in this case we hit one of our known points. In general, we must interpolate or ex-
trapolate.

4.

a) The equilibrium equation between the gaseous phase containing oxygen and the liquid phase
ted in dissolved oxygen is: 

 (1) 

me the gas phase as an ideal gas mixture:

G
O2

Moreover, because oxygen is sparingly soluble, i.e.,
trations in the liquid phase, Henry's law holds:

From Eqs. (1), (2) and (3),

O  (4) 

Equation (4) is the condition for phase equilibrium that characterizes the dissolution of a 
sparingly soluble gas. Under the given pressur position, Henry's law constant

can be determined, once the solubility is known. This solubility is given here by the 

Bunsen coefficient .
Substituing t = 20ºC in the equation for  we obtain,

 = 31.01 10-3

satura

f fG L
O O2 2

At the low pressures of interest here, we assu

P
O2

(2)f y

oxygen is present at very low concen-

f x kL  (3) 
O O O2 2 2

y P x k
O O2 2 2

e and gaseous com
kO2

xO2

3
2

3
2

Ncm (O )

cm (H O)

whe normal cubic centimeters, i.e., cubic centimeters of gas measured at 0ºC 
and 1 atm.

We convert normal cubic centimeters of gas to moles using the ideal gas law:

re Ncm3 stands for 
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2O

3 10.022414 m mol

3 1

51) (293.15)

101325

22414 cm mol

P

(8.314RT
v

The molar density of water at 20ºC and 1 atm is

1 0 9982

18 015
0 0554

2

2

2

3

vH O

H O

H O
mol cm

M

.

.
.

Under the conditions of the Bunsen experiment, we have:

Dissolved oxygen
mol O

cm  H OO
3v

2

3
6 2

2

3101 10

22414
13835 10

.
.

The liquid phase is made exclusively of H2O and O2. Then the mole fraction of O2 in the
liquid is

xO
O

O H2O

m57 10
ol O

2
2

2

6

6

6
2

1

13835 10

13835 10 0 0554

13835 10
2 49

mol O mol H O2 20 0554

F
HG
I
KJ

F
HG
I
KJ
F
HG
I
KJ

v

v v

.

. .

.
.

.

By the definition of , y 10.  and P = 1 atm = 1.01325O2
bar.

From Eq. (4), 

k
y P

x
O

O

O
 bar

2
2

2
5

410 101325

2 497 10
4 058 10

( . ) ( . )

( . )
.

b) Here we want to determine  given P and , using again Eq. (4). 

s a mixture of water vapor, oxygen and other
atmospheric gases (predominantly nitrogen).

Assuming that the air is saturated in water vapor,

xO2

The atmospheric air above the water phase i

yO2
, kO2

y
P

P

s

H2O
H O2 17 5

760
0 0230

.
.

The mole fraction of oxygen in the vapor phase is then
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y
P

P
O2

O2 0 2095 7( 60 17 5

760
0 02047

( . ) [ ) ( . )]

( )
.

For the ambient pressure we obtain form Eq. (4), 

x
y P

k
O

O

O

2mol O

mol liquid2
2

2
4

60 2047 101325

4 057 10
5112 10

( . ) ( . )

( . )
.

This solubility can now be expressed as mass of gas per volume of liquid, making the sim-
re water:plifying assumption that the liquid phase is pratically pu

6
2 2 2

2 2 23
2 20.9982 g H O/cm  H O

6 3 3
2 2

(5.112 10 mol O / mol liquid) (32.0 g O mol O )
Solubility=

1
(18.015 g H O/mol H O) (1 mol H O / mol liquid)

9.06 10 g O /cm  H O = 9.06 m  dm 9.06 ppm

/

g

5. The number of moles for each component is 

n n n1 2 3
180

18 015
10 0

420

8416
5 0

28

28 012
10

.
.

.
.

.
.mol mol mol

The volume available for the vapor phase is

V
F
HG

I
KJ3 0

420

0 774

180

997
10 28 106 3 3.

. .
. m

Therefore the pressure inside the vessel is (assum g vapor  formed almost exclusively by 
nitrogen whose second vi icient s zero l),

0
2

in
rial coeff at 25ºC i as idea

P
n RT

V 6

5

8 314 29815

8 10

10 88 10 10 88

) ( . ) ( . )

( . )

. Pa .  bar

Because the solubilities are very small, we use Henry's law to describe the fugacity of 
cyclohexane in gas phase:

3 1(

2 2

3 3 3 3 3,if p y P x H .

Further, because we neglect mutual solubility of water and cyclohexane, we obtain for the 
solubility of nitrogen in water, 
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x
H

p
w3

3 1

3

1 1
486 000

10 88
126 10,

, ,

.
.

F
HG
I
KJ
F
HG

I
KJ

and for the solubility of nitrogen in cyclohexane,

x
H

p
c3

3 2

3

1 1
31 300

10 88
8 37 10,

, ,

.
.

F
HG
I
KJ
F
HG
I
KJ

6. Let 1 = N  and 2 = H .

From
2 2

 Orentlicher’s correlation,

1( ) 22
12,1

2

( )
ln ln ( 1)

s
2 1

s
Pf P PA

H x
x RT RT

v

Assuming that the vapor is pure H2:

f f y PV
2 2 2 2 88 bar                   (with y2 1 )

Because,

1 1 barsP

1

2,1

3 1
2

7.1 L b

467 bar

31.3 cm  mol

A

H

ar mol

v

by trial and error we find

x2 0.17

7. m Fig. 10-11 with , at 25oC and at 1.01325 bar partial pressure, 1
1 214 9. ( ) /J cm 3Fro

4
2 2log 3.1 8 10x x

For t = 0 C, use Eq. (10-26):o
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ln
( )

( )
ln

x T R T2 1 1

x T s T2 2 2 2

But at 2

and

5 C and 1.01325 bar, o

R xln 2 59.29 J mol K1 1

from Fig. 10-7, 

s sL G
2 2 17 J mol K1 1

Then,

s s sL G
2 2 2 17 J mo 1l K1

ln
.

ln
48 10 8 31451 298

x2 17 273

          (at 1 bar) x2
46 7 10.

Assuming

x P

x P

y P

y P

2 2

2 1

2 2

2 1

( )

( )

( )

( )

we obtain at 0oC and 2 bar partial pressure, 

-3
2 = 1.34 ×10x

8. Let 1 = ethylene oxide and 2 =  CH4.

Then,

ln ln
( )

,
( )f

x
H

P P

RT

Ps s
2

2
2 1

1 1v2

From Tables 10-2 and 10-3 at 100C,

H2 1, 621 bar

v2 45 cm  mol3 -1

At 10oC,  Then, 1 1 bar.sP
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ln .
x

2

2
6 5

f

f

x

2

2
665 bar

But

f y P2 2 2

Assuming 2y 1,

ln 2
22B P

RT

with  (Table 10-3) B22 49 cm mol3 1

2 0 949.

f2 0 949 25( . ) ( ) 23.7 bar

x x
f

CH4 2
2

665
0.036

9.

a)  calculated from [Eq. (10-21)]:

where is the fugacity coefficient of solute 2 in he liquid phase at infinite dilution (x2 = 0);

2 may be obtained from Eq. (12-64) of the text with

mixture 1

1

2 0

Henry’s constant H2,1 is

H P
Ps

s L
2 1

1
1 2,

( ) ,

2
L, t

mixture 1

s

s

b b

P P

x

v v

1Then, H2,  is given by
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ln ln
[ ( ) ( )]

ln
( . )

( . )
ln

( .

( .

,H
RT

b

b

b

a b

RTb b b b

a b

RTb

b

b

a

RT b

b

b

2 1
1 1

2

1 1

1 2 1

1 1 1 1 1 1 1

1 2

1
2

1 1

1 1

12

1

1 1

1 12 2

2 414

0 414 2

2 414

0 414

v v

v

v v v

v

v

v

v

)

)

where

)

nts a1 and a2 are obtained from Eqs. (12-61) to (12-63) and constants b1 and b2 from

Eq. (12-60).  Substitution gives

a a a k

k

12 1 2
1 2

12

12

1

0 0867

( ) (

.

/

Consta

H2,1 360 bar

b) From Eq. (10-22), 

v2

2 1

1 2
2 0

F
HG
I
KJ

F
HG
I
KJ

L

N

M
M
M
M
M

O

Q

P
P
P
P
P

P

n

P

V

T V n

T n n
n

, ,

, ,

Using Peng-Robinson equation of state [Eq. (12-59)], we find

v
v v v v v

2
1 1

2
1 1 1 1 1 1 1b b b bs s s s s( ) ( ) ( ) [

v v

v v

v v v v

2 1 1 12 1 2 1 1

1 1 1 1 1
2

1 1

1

1 1 1 1 1 1
2

2 2RT b b a a b b

b b b

RT

b

b

b b b

s

s

s

s

s

s

s

( ) ( )

( ) ( )]

( )

)

[ ( ) ( )]

ubstitution gives

v

2
1 12a

s s

(

S

v2
3 169.5 cm mol

c) Margules parameter A can be found from Eq. (10-23):

A
RT

x

L

P Ps T x

F
H
G

I
K
J

2
2

2
1 2 0

ln

, ,

The result is: 

A
RT b b b b

b

a b b a a

RTb b b b

b b

bs

s

s s s s

R
S|
T|2

22 2 1 2

1 1
2

1 2 2 1 12 1

1 1 1 1 1 1 1

2 1

1 1

( ) '

( )

' ( )

[ ( ) ( )]

' ( )v

v

v v

v v v

v

v
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a b b b b b b b b b b b

RT b b b b

s s s s s s

s s s

1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1

1 1 1 1 1 1 1

2

2v v v v v v v

v v v

( ) ( ) ( ) ' ( ) ( )( )

( ) ( )

{ } {

{ }

}

F
HG

I
KJ

2

2 2

2 2 414

0 414

1 12 1 1 2 1

1
2

12

1

2

1

1 1

1 1

b a a a b b

RTb

a

a

b

b

b

b

s

s

( ) ( )
ln

.

.

v

v

L

N
M
M

O

Q
P
P

a

RTb

a a a a a a

a

b b b

b

b

b

s

s

1

1

1 2 12 12 12 1

1
2

2 2 1

1
2

1 1

1 12

2

2

2 414

0 414

( ) ( ) ( )
ln

.

.

v

v

F
HG

I
KJ

U
V|
W|

a

RTb

a

a

b

b

b b b

b b

s

s s

1

1

12

1

2

1

1 2 1 1

1 1 1 1

2

2 414 0 414

v v

v v

( ) '

( . )( . )

with

v
v

v v'
F
HG
I
KJx

x

s

2 2 0
2 1

Substitution gives

3 113,900 bar cm molA
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S O L U T I O N S  T O  P R O B L E M S  

C H A P T E R 1 1

1. Assuming  

f fi i
s s

pure 

and

f x fi
L

i i
L
pure       (i.e. i 1)

with T Tt m , cp 0,

ln ln
f

f x

h

RT

T

T

i
L

i i

i

m

pure 

pure 

fus

s

F
HG
I
KJ

L
NM
O
QP

1
1

Rearranging,  

fus

fus

,

1

1
ln

i

i

i m i

h
T

R h

x RT

For i = benzene, fus 9843ih  J mol-1, xi = 0.95, Tm i, .278 7 K , we obtain 

T 275 K

For i = naphthalene, fushi 19008  J mol-1, xi = 0.05, Tm i, .353 4 K , we obtain 

T 241 K
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We choose the higher temperature (i.e., benzene precipitates first). 

T, K

Benzene Naphthalene

279 K

275 K

353 K

At T = 275 K, a solid phase appears.  

2. We need activity aA at x xA A
sat / .2

At saturation, 

f f fL
A A pure A

s s

Because

f a fL L
A A pure A

sat fusA
A

A pure

ln ln 1 ln
L

p pt t

t

c ch T T Tf T
a

RT T R T R Tf s

Assuming, T Tm t , we find aA
sat 0 118. .

Because xA
sat 0 05. , A 2 36. .

To find the activity at another composition, assume that 

RT D xln ( )A A1 2

Using the above data, we find D 2357 J mol 1 .

Hence at x xA A
sat / 2 ,

A 2 47.
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a xA A A 0 0618.

Then

1
8 04 0 89. .

   Thus, 89% of sites are occupied.

3. Klatt’s data are really at 0 P

0
PC, not -70 P

0
PC. This is above the freezing points of toluene and xylene 

and near that of benzene.
Let HF be component 1 and the solute (2) be A (benzene), B (toluene), and C (m-xylene). 

The order of increasing substitution (basicity) is A, B, C. To simplify things, ignore the solubil-
ity of 1 in 2.  

Then:

f f x fpure 2 in 12 2 2 2
0

,

But, f f2
0

pure 2 , so this reduces to: 1 2 2x . Therefore, x2 is inversely proportional to 2.

We might think that 2 depends only on the 1-2 interaction. On this basis, we expect 

C B A , and thus x x xC B A . Klatt’s data show the reverse. 

There is, however, another factor: the strength of the U2-2 interactions. U At 0 P

0
PC,

PA
s 0 036. bar , Ps

B bar0 009.  and Ps
C bar0 002. . This means that pure C “holds on” to its 

molecules more tightly than B which in turn has a tighter grip than A.  
In other words, the more volatile solute (that has the weakest 2-2 interactions) exerts more 

“pressure” to enter the solvent phase. This is discussed in a qualitative manner by Hildebrand, 
1949, J. Phys. Coll. Chem., 53: 973.   

It may be helpful to look at this from a lattice theory (interchange energy) perspective. Us-
ing the simplest form of this theory, we can say: 

ln 2 1
2w

kT
x

1
12 11 222

[ ( )]w z

where w is the interchange energy.  
With the attractive interaction, we expect 1A 1B 1C .

This produces a higher w (and hence a higher 2 and lower x2) for the less-substituted mole-

cule.
UBut, U if we look at the vapor pressures we see that the less-substituted molecules have less 

attractive 2-2 interactions. Hence, AA BB CC . This produces a higher w (and hence a 

higher 2 and lower x2) for the Umore U-substituted molecule. Sometimes, this effect is greater than 

that of the 1-2 interactions; that is apparently true in this case.  
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4. Let 1 = naphthalene, 2 = iso-pentane, and 3 = CCl4.

At saturation,  

f f x fL L
1 1 1 1
s

1, pure

Assuming, f f1, pure
s s

1 ,

fus1
1 1 1

1 pure

ln ln 1 ln
L

t

hf T
a x

RT Tf s

From the regular-solution theory, assuming x1 = 0 initially, we obtain 

14 9.  (J cm-3)1/2

and

ln
( )

.1
1 1

2

145
v

RT

1 20 3.  (J cm-3)1/2

ln .

.

a

x

1

1

118

0 073

Now repeat the calculation using x1 = 0.073 and 
x

x

2

3

7

3
, to obtain 

15 3.  (J cm-3)1/2

and

x1 0 093.

One more iteration gives 1 naphthalene 0.10x x .

5. The equilibrium equation for benzene (B) is 

B B B liquid BPartial pressure of B sy P x P  (1) 
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where Bx  ( B 0.10x ) and B  denote liquid-phase mole fraction and activity coefficient of ben-

zene; liquid B
sP  is the vapor pressure of pure, subcooled liquid benzene at 260 K. 

To find liquid B
sP , we use the approximation 

liquid B

solid B pure B

s L

s

P f

P f s
 (2) 

where solid B
sP  ( solid B 0.0125 bar at 260 KsP ) is the vapor pressure of pure solid benzene at 260 

K; the fugacity ratio for pure benzene is calculated from Eq. (11-13) neglecting pc  for benzene 

fus

pure B

ln 1
L

m

m

h Tf

RT Tf s
 (3) 

Substituting 1 1
fus 30.45 cal g 9944.07 J molh , 278.7 KmT , T 260 K  and R = 8.314 

J K-1 mol-1 into Eqs. (2) and (3), we obtain 

liquid B

solid B

1.362
s

s

P

P
 (4) 

Hence,

liquid B 1.362 (0.0125 bar) 0.0170 barsP  (5) 

To calculate B  in Eq. (1), we use Eq. (7-55): 

2B
B Bln ( )

RT

v
 (6) 

where

3

1

3

i i
i

i i
i

j j
j

x

x

v

v

 (7) 

Substituting T 260 K , 1 18.314 J K  molR  and the given liquid-phase mole fractions, 

pure-component molar volumes and solubility parameters into Eqs. (6) and (7), we obtain 

B 1.305  (8) 

Combining B 0.10x  and Eqs. (1), (5) and (8) yields 

BPartial pressure of B y P 0.0022  bar
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6. This is similar to Problem 1, but includes activity coefficients.  

f f f x fi i i
L

i i i
Ls s

, ,pure pure

Then, considering cp 0  and T Tt m ,

      fus

,
pure

1
ln 1 ln

L
i i

m i i ii

f h T

RT T xf s

Using the regular-solution theory, 

ln
( )

i

i j

RT

v 1 2
2 2

Let 1 = benzene and 2 = n-heptane

2 0 935.

ln
( ) ( . . ) ( . )

( . ) ( )
1

2 289 18 8 151 0 935

8 31451

128

T T

Then,

9843 128
1 ln (0.1) exp

278.7

T

RT T

Solving for T,

T 200 K

Similarly, for n-heptane,

            1 0 065.

2 2

2
(148) (18.8 15.1) (0.065) 1.03

ln
(8.31451) ( )T T

Then,

             
14067 1.03

1 ln (0.9) exp
182.6

T

RT T

Solving for T,

T 181 K
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As temperature decreases, benzene starts to precipitate at 200 K.

7. Plotting the data we obtain: 

800

1000

1200

t 
( 
 C

)

Mole % Cu  O2

100 80 60 40

935

1245

805

A compound, Cu2OP2O5, is formed with a congruent melting point at 1518 K. Eutectics oc-

cur at 1208 K and 1078 K.  

8.

a) According to the ideal solubility equation, Tm of the Usolvent U has no influence on the solubil-
ity. Any difference would have to come from nonideality (i.e. activity coefficients).

If we look at solubility parameters, we find that the solubility parameter of CS2 is closer to 
that of benzene. Therefore, we expect greater solubility in CS2.
b) Let 1 = benzene, 2 = CS2 and 3 = n-octane.

Assuming  

f f f x fL L
1 1 1 1
s s

pure 1 pure 1

and
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c

T T

p

t m

0

we have 

fus
1 1ln 1

f

h T
x

RT T
 (1) 

Using the regular-solution theory,  

ln
( )

1
1 1

2
v

RT
 (2) 

with

i i

i 1

3

From Tables: 

Component  (J cm-3)1/2
v (cm3 mol-1)

1 18.8 89 
2 20.4 61 
3 15.3 164 

From Eq. (1) with x1 = 0.3, 

ln .1 0 144

Then, from Eq. (2),  

ln .
( )

1
1 10144
v

RT

171.  (or 20.6; this value is probably meaningless since it is higher than ’s of pure com-
ponents).

i i

i 1

3

1
1 1

1 1 2 2 3 3

x

x x x

v

v v v

,    etc. 

Solving for x2 and x3,
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x

x x

x

1

2 2

3

0 30

0 32

0 38

.

.

.

CS

9. At x2 0 25. ,

f f f x fL L
2 2 2 2
s s

pure 2 pure 2

x f f L
2 2 0 56( / ) .s

pure 2

2 2 24.

Because f P sat
pure 2
s s

2 0 99, .  bar, 

f L
pure 2 177.  bar

Assuming ln 2 1
2Ax , at x2 0 25. , then 2 2 24. , and 

A 1434.

At x2 0 05. ,

f f x fV L L
2 2 2 2 pure 2

ln ( . ) ( . )2
21 434 0 95

2 3 65.

P P2 0 05 365 177CO2
( . ) ( . ) ( . ) 0.323 bar

10. At 250 K, we need a standard-state fugacity for a hypothetical liquid. 
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fusA

A pure

ln 1

(13000) 250
1

(8.31451) (250) 300

L

m

hf T

RT Tf s

Hence,

f

f

L
A

A
s

2 84.

Because solid is pure, 

f f P sat
A pure A A torrs s s , 35

pure A
35

(2.84) 0.1325 bar
750.06

Lf

For the A-CCl4 system,  

f f x fV L L
A A A A pure A

Neglecting vapor-phase non idealities and the Poynting correction factor, 

y P x f L
A A A pure A

A
(5/ 750.06)

1.677
(0.03) (0.1325)

Using the regular-solution theory, 

RT ln ( )A A A CCl4 CCl4
v

2 2

Thus,

4

2
A CCl 2

(8.31451) (250) (ln1.677)
( )

(0.97) (97)
(95)

(0.03) (95) (0.97) (97)

A CCl4
3 4.  (J cm-3)1/2

As for CCl4
17 6.  (J cm-3) P

1/2
P,

A 210.  (J cm-3)1/2P

P

or
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A 14 2.  (J cm-3)1/2

Because A is a branched hydrocarbon, we choose A 14 2. (J cm-3)1/2.
For the A-hexane system, 

y P x f L
A A A pure A

2
2A hex

A hex

2
2

( )
ln

(0.99) (132)
(95) (14.2 14.9)

(0.01) (95) (0.99) (132)

(8.31451) (250)

A

RT

v

A 102.

Then,

y P PA A ( . ) ( . ) ( . )0 01 102 0 1325

PA 0.00135 bar

11. Let

f x fL L
A A pure A ( )A 1

f x fL L
B B pure B ( )B 1

From Eq. (11-13) with T Tm , cp 0 ,

pure A fus A

,Apure A

ln 1
L

m

f h T

RT Tf s

pure B fus B

,Bpure B

ln 1
L

m

f h T

RT Tf s

Because solids A and B are mutually insoluble,  

f fA pure A
s s
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f fB pure B
s s

At equilibrium, 

f x f L
A A pure A
s

f x f L
B B pure B
s

Then,

pure A

Apure A

1 (8000)
ln ln 1

(8.31451) ( ) 293

Lf T

x Tf s

B

1 (12000)
ln 1

(8.31451) ( ) 278

T

x T

with x xB A1 .

Solving the above equations, we obtain xA 0 516.  (or 51.6 mol % A), xB 0 484.  and 

T 244 K.
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S O L U T I O N S  T O  P R O B L E M S  

C H A P T E R 1 2

1.  

i) T < TU

n-Alkane Water
x

P

L+L’

L+V
V

L+
V

L
L’

ii) T = TU

n-Alkane Water
x

P

L+L’

V

L+
V

L’UL

iii)  TU < T < TCn

n-Alkane Water
x

P

L+L’

V

L+
V

L’

iv)  TCn
< T < TCb

n-Alkane Water
x

P

L+G

V

L’
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v) T = TCb

n-Alkane Water
x

P

L+G
V

vi) TCb
 < T < TCH2O

n-Alkane Water
x

P

G+G’

vii) T > TCH2O

n-Alkane Water
x

P

G+G’

2.

a) T = T1

1 2x

P

L+L’

L’+V
V

L+V

L L’

b) P1 < PUCEP

1 2x

T

L+L’

L’+V

V

L+V

L
L’
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 P2 = PUCEP

1 2x

T

L+L’

L’+V

V

L+V

L
L’

 P3 > PUCEP

1 2x

T

L+L’

V

L+V

L

3. Let A stand for alcohol.
For alcohol distributed between phases '  and "

x xA A A A
' ' " "

Then,

K
x

xx x

F
HG
I
KJ

F
HG
I
KJ

lim lim
'

"

"

'
A

A

A A

A

A0 0

At 0 C and 1 bar, 

ln ( )' '
A A

2400
1 2

RT
x

ln ( )" "
A A

320
1 2

RT
x

The pressure correction to A is

A A( ) ( )expP P
RT

dP
E

P

P

2 1
1

2z v
The temperature correction is: 

A A( ) ( )expT T
h

RT
dT

E

T

T

2 1 2
1

2z
Thus, we can write, 
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100
'
A

1

303
' 2
A2273

' 2
A

2400 16
ln

(8.31451) (273) (8.31451) (273)

4800
(1 )

(8.31451) ( )

0.9178 (1 )

[

]

dP

dT x
T

x

100
"
A

1

303
" 2
A2273

" 2
A

320 10
ln

(8.31451) (273) (8.31451) (273)

600
(1 )

(8.31451) ( )

0.0712(1 )

[

]

dP

dT x
T

x

This gives 

K
x
lim

"

'
A

A

A0
0.429

4. For pure benzene, neglecting fugacity coefficients and assuming constant density of each phase
with respect to pressure, 

f fL
B B

s

P
P P

RT
P

P P

RT

s L
L s L

s
s

B
B

B
B,

,
,

,

exp
( )

exp
( )v v

s

s s

with vL 87 7. cm  mol3 1  and vs 77 4. cm  mol3 1 , as obtained from density data. 

, ,
, ,B B

B B

(87.7) (200 ) (77.4) (200 )
exp exp

(83.1451) (83.1451)

s L s
s L sP P

P P
T T

s

s

Temperature T can be found from the intercept of the curves obtained by representing each 
side of the last equation as a function of temperature. 

In an alternate way, we can express Ps L
B

, and Ps
B

,s from vapor-pressure equations: 
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Ps L
T

B
,

( . / )

.

10

750 06

7 9622 1785

Ps
T

B
,

( . / )

.
s 10

750 06

9 846 2310

which, together with the last equation, can be solved for T:

Tm(200 bar) = 284.4 K 

5. The Redlich-Kwong equation is: 

P
RT

b

a

T bv v v
1 2/ ( )

with

a z z a z a z z a z ai j ij

ji
A AA A B AB B BB
2 22

b z b z b z bi i

i

A A B B

Assuming that aAB is given by the geometric rule, 

a a aAB AA BB( ) /1 2

we get for z zA B 0 5. ,

a 4 35 108.   bar (cm3 mol-1) K1/2

b = 91.5  cm3 mol-1

Substitution in the R-K equation gives for total pressures: 

P 413. bar

Because this result is absurd, we use Henry’s constant data to find aAB.
For infinitely dilute solutions of A in B, 

H P Px
s

A,B A A B B( ) 0

At infinite dilution, P Ps
total pure B  which can be obtained from the R-K equation with the 

appropriate constants [ a 4 53 108.  bar (cm3 mol-1)2 K1/2 and b 82 8.  cm3 mol-1]. 
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This gives, 

Ps
B bar113.

Therefore,

A
A,B

B

H

Ps

7 01

113
6 195

.

.
.

For the R-K equation, fugacity coefficients are given by:

ln ln ln ln lnA
A AB A L

NM
O
QP

v

v v

v

v

v

v v

v

b

b

b

a

RT b

b ab

RT b

b b

b

P

RT

2
3/2 3/2 2

Using b bB , a aB  and v vB  (infinite dilution of A). 

Solving for aAB,

aAB 3 963 108.  bar (cm3 mol-1)2 K1/2P

Then, for the mixture, 

a 4 159 108.  bar (cm3 mol-1) K1/2

b 915.  cm3 mol-1

Calculating again the pressure we obtain, 

P 4.14 bar

6. Let 1 = C2H6 and 2 = C6H6.

The K factor of component i is defined as 

K
y

x

P x

P y
i

i

i

i
L

i
V

( , )

( , )

with

c c P c zi
( ) ( ) ( )0 1 2

Thus, we need to solve for P and y1 (or y2).

At equilibrium, 

y xV L
1 1 1 1  (1) 
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( ) ( )1 11 2 1 2y xV L  (2) 

From the given equations, we rewrite Eqs.(1) and (2) for x1 = 0.263:

( . . . ) . .

[ . . . ( )]( ) . .

12545 2 458 10 0 4091 11699 0 008345

0 74265 7 0069 10 0 50456 1 1 0 24596 0 001874

4
1 1

3
1 1

P y y P

P y y P

The above equations can be solved (either graphically or numerically) for P and y1:

P 59 atm

y y1 20 715 0 285. ( . )

Then,

K
y

x
1

1

1

0 715

0 263
2 72

.

.
.

K
y

x
2

2

2

0 285

0 737
0 387

.

.
.

[From Kay’s data: K K1 22 73 0 41. .and ]. 

7. The stability criterion is [see Eq. (6-131) of text]: 

F
H
G
I
K
J

F
HG

I
KJ

2

1
2

1 2

1 1
0

g

x
RT

x x

E

T P,

We need an expression for gE valid at high pressures.
Because

F
HG
I
KJ

g

P

E

T x

E

,

v

we write 

g T P x g T P x dP

RT x x x x P dP

E E EP

P

( , , ) ( , , )

( ) ( . ) ( . . ln )

z

z

1

1877 4 026 0 233

1

1 2 1 21

atm v
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Thus,

g T P x RT x x P x x

P x x P P x x

P P P x x Ax x

E ( , , ) ( ) ( . ) ( ) ( . )

( ) ( . ) . (ln )

( . . ln )

1877 1 4 026

1 0 233 0 233

42043 4 259 0 233

1 2 1 2

1 2 1 2

1 2 1 2

For gE of this form ( g Ax xE
1 2 , where A is a constant), the stability criterion is (see Sec. 

6.12):

A

RT
2

or

42043 4 259 0 233 2 82 0578 273. . ln ( ) ( . ) ( )P P P

Solving for P,

P 1046 atm    (or 1060 bar) 

At pressures higher than 1060 bar, the system splits into two phases. 
To solve for the composition at a higher pressure, we use: 

x x1 1 1 1
' ' " "

( ) ( )' ' " "1 11 2 1 2x x

where

RT P P P xi jln ( . . ln )42043 4 259 0 233 2

At 1500 atm (or 1520 bar) and 273 K, 

ln .i jx2 0477 2

Thus,

x x x x1 1
2

1 1
22 0477 1 2 0477 1' ' " "exp[ . ( ) ] exp[ . ( ) ]

( )exp[ . ( ) ] ( )exp[ . ( ) ]' ' " "1 2 0477 1 2 04771 1
2

1 1
2x x x x

Solving (either graphically or numerically), we obtain 

'
2

"
2

( 0.63)

( 0.37)

x

x

'
1

"
1

0.37

0.63

x

x
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8. We want to relate hE to volumetric data. Relations given in Chapter 3 of the text may be used.  
We write hE at any pressure P relative to hE at 1 bar as: 

h P h T
T

dPE E E
E

P

P

( ) ( )
F
HG
I
KJ

L

N
M
M

O

Q
P
Pz1

1
bar v

v

Thus, we need the above integrand as a function of pressure at 333 K. 
From volumetric data, using linear regression at each pressure between 323 K and 348 K, 

F
HG
I
KJ

F
HG
I
KJ

v v
E E

T T
1 bar 100 bar

0 0186 0 0154. .

F
HG
I
KJ

F
HG
I
KJ

v v
E E

T T
250 bar 500 bar

0 01239 0 00963. .

Using linear interpolation, at 333 K, 

(1 bar) 1.091 (100 bar) 0.9638

(250 bar) 0.8284 (500 bar) 0.6846

E E

E E

v v

v v

If

F P T
T

E
E

P

( )
F
HG
I
KJ

v
v

then:

P  (bar) 1 100 250 500

F(P) (J bar mol-1) -0.5102 -0.4164 -0.3297 -0.2522

Using a trapezoid-rule approximation, 

360
1

1
( ) 128 J molF P dP

Therefore, at 333K 

360

1
(360 bar) (1 bar) ( )

1445 128

E Eh h F P dP

hE (360 bar,  333K) 1317 J mol 1
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9. For condensation to occur, 

f fL V
W W

To find the temperature for condensation (at constant pressure and vapor composition), we 
solve the equilibrium relation 

f fL V
W W

The liquid phase is assumed to be pure water. Its fugacity is given by 

f f
RT

dPL L

Ps

P

W pure
W

W
zexp

v

As a good approximation, let 

f P
P P

RT

L s
s

w
s

W W
Wexp

( )v
  (obtain data from Steam Tables) 

Thus, we are neglecting W
s  and we assume that (liquid) water is incompressible over the 

pressure range between Ps
W and P (150 atm). 

The vapor phase is described by an equation of state. Therefore, 

f y PV V
W W W

To obtain W
V , we use the Redlich-Kwong equation of state: 

P
RT

b

a

T bv v v
1 2/ ( )

 (1) 

from which we obtain 

1.5 1W
W W

W
1.5 2

ln ln (2 )( ) ln

ln ln

j j

j

b b
y a RT b

b b

ab b b P

b RTRT b

v v

v v v

v v

v v

 (2) 

where v is the molar volume of the mixture and 
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i j ij

i j

i i

i

a y y a

b y b

In these equations, aW and aCO2
 are given as functions of temperature; the cross-coefficient 

is

a a a R T Kij i j( ) .( ) ( ) / .0 0 1 2 2 2 50 5

With a trial-and-error procedure, we can calculate f V
W.  Use the following procedure: 

1. Guess temperature. 

2. Calculate v from equation of state [Eq. (1)]. 

3. Use T and v (along with P and y) to calculate W  from Eq. (2). 

4. Calculate the fugacity of vapor.  

5. Compare f V
W  with saturation pressure of water at that temperature. 

Typical results are: 

T (K) W fVW (atm)

475 0.588 17.7 
500 0.633 19.9 
525 0.711 21.3 
550 0.746 22.4 

Plotting f V
W  and f L

W  as a function of temperature (see figure), we see that 

f fL V
W W

at T 482 K.  That is the temperature where condensation first occurs (dew-point temperature of 
the mixture). 
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Temperature, K

400 450 500 550 600

F
u
g
a
c
it
y
 o

f 
w

a
te

r,
 a

tm

0

25

50

75
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Fugacity of water in vapor phase and in liquid phase at P  = 150 atm. 

10.

a) For equilibrium between solid solute and solute dissolved in the supercritical fluid, 

f P T f P T y
f

2 2 2
s ( , ) ( , , )

or

d f d f
fln ln2 2

s   (1) 

where subscript 2 refers to solute and superscript f to fluid phase. 
Expanding Eq. (1) with respect to T, P and composition (see Sec. 12.4), we obtain (tempera-

ture is constant): 

F

H
GG

I

K
JJ

ln

,

f

T
P y

2 0
s

F

H
GG

I

K
JJ

ln

,

f

T

f

P y

2 0
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F
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J

ln

,

f

x
P T

2

2
0

s

      (pure solid solute) 

F
H
G

I
K
J

F

H
GG

I

K
JJ

F

H
GG

I

K
JJ

ln ln ln

, ,

f

P
dP

f

P
dP

f

y
dy

T

f

T y

f

T P

2 2 2

2
2

s

  (2) 

But because

F
H
G

I
K
J

ln f

P RT
T

2 2
s s

v

F

H
GG

I

K
JJ

ln f

P RT

f

T

f
2 2v

Equation (2) becomes: 

( ) ln ln

ln
(ln )

, ,

v v2 2 2

2
2

2

2
2

s F

H
GG

I

K
JJ

F

H
GG

I

K
JJ

f f

T Pdy

f

T P
RT

dP
f

y
dy

f

y
d y   (3) 

Finally, because 

f y P
f

2 2 2

Equation (3) becomes  

F
HG

I
KJ F

HG
I
KJ

ln

ln

ln
,

y

P

RT

y

T

f

T P

2

2 2

2

2
1

v v
s

  (4) 

b) Maxima (or minima) occur when 

F
HG
I
KJ

ln y

P T

2 0

Because ln / ln2 2y  is always greater than –0.4, the above derivative is zero when 

v v2 2
s f .

It is necessary, then, to calculate v2
f as a function of pressure. 

Using Eq. (12-41), 
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v2

2 1

F
HG
I
KJ

F
HG
I
KJ

P

n

P

V

T V n

T n

, ,

, all 

and the Redlich-Kwong equation of state with the mixing rules, 

i j ij
i j

i i
i

a x x a

b x b

we obtain 

2 2
2

1/ 2

2

2 1/ 2 2 2

2( ) /( )

1
( )

2

( ) ( )

i i

i

x a ab b
bRT

b b b T

RT a b

b T b

v

v v v v
v

v

v v v

Assuming that the fluid phase is almost pure solvent, v, a and b are those for pure solvent 1. 
Cross parameter a12 is given by: 

a a a k12 11 22
1 2

121( ) ( )/

Constants are: 

8 3 1 2 1/2
11

10 3 1 2 1/2
22

9 3 1 2 1/2
12

3 1 3 1
1 2

0.7932 10 bar (cm  mol )  K

0.11760 10   bar (cm  mol )  K

0.3264 10 bar (cm  mol )  K

40.683 cm  mol 140.576 cm  mol

a

a

a

b b

Using volumetric data for ethylene at 318 K (IUPAC Tables), and because 

v2
128174

1144
112s

.

.
cm  mol3 1

the maximum (and minimum) occurs ( )v v2 2
s  at (see figure below) 

 minimum = 19 bar 

 maximum = 478 bar 

These values are in good agreement with results shown in Fig. 5-39 of the text. 
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Partial molar volumes of naphthalene infinitely dilute in ethylene at 318 K calculated from 
Redlich-Kwong equation of state with k12 = 0.0182.


