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The Economic Dispatch Problem

� Consider a system that consists of N thermal-generating 
units serving an aggregated electrical load, Pload

� input to each unit: cost rate of fuel consumed, Fi

� output of each unit: electrical power generated, Pi

� total cost rate, FT, is the
sum of the individual
unit costs

� essential constraint:
the sum of the output
powers must equal
the load demand

� the problem is to 
minimize FT
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The Economic Dispatch Problem

� The mathematical statement of the problem is a constrained 
optimization with the following functions:
� objective function:

� equality constraint:

� note that any transmission losses are neglected and any operating 
limits are not explicitly stated when formulating this problem

� Problem may be solved using the Lagrange function
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The Economic Dispatch Problem

� Principles
� the Lagrange function establishes the necessary conditions for 

finding an extrema of an objective function with constraints

� taking the first derivatives of the Lagrange function with 
respect to the independent variables allows us to find the 
extreme value when the derivatives are set to zero
� there are NF + Nλ derivatives, one for each independent variable 

and one for each equality constraint

� the derivatives of the Lagrange function with respect to the 
Lagrange multiplier λ merely gives back the constraint equation

� the NF partial derivatives result in
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The Economic Dispatch Problem

� Example
� determine the economic operating point for the three 

generating units when delivering a total of 850 MW
� input-output curves

� unit 1: coal-fired steam unit:

� unit 2: oil-fired steam unit:

� unit 3: oil-fired steam unit:

� fuel costs
� coal:  $ 3.30 / MBtu
� oil:    $ 3.00 / MBtu

� the individual unit cost rate functions
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The Economic Dispatch Problem

� Example
� the conditions for an optimal dispatch

� solving for λ yields

� then solving for the generator power values
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The Economic Dispatch Problem

� In addition to the cost function and the equality constraint
� each generation unit must satisfy two inequalities

� the power output must be greater than or equal to the minimum 
power permitted:
� minimum heat generation for stable fuel burning and temperature

� the power output must be less than or equal to the maximum 
power permitted:
� maximum shaft torque without permanent deformation

� maximum stator currents without overheating the conductor

� then the necessary conditions are expanded slightly
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The Economic Dispatch Problem

� Example
� reconsider the previous example with the following generator 

limits and the price of coal decreased to $2.70 / MBtu
� generator limits

� unit 1:  150 ≤ P1 ≤ 600 MW

� unit 2:  100 ≤ P2 ≤ 400 MW

� unit 3:   50 ≤ P3 ≤ 200 MW

� new fuel cost rate function for unit 1:

� solving for λ yields
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The Economic Dispatch Problem

� Example
� this solution meets the constraint of generation meeting the 

850 MW load demand, but units 1 and 3 are not within limit
� let unit 1 be set to its maximum output and unit 3 to its minimum 

output. The dispatch becomes:
P1 = 600 MW P2 = 200 MW P3 = 50 MW

� hence, λ must equal the incremental cost of unit 2 since it is the 
only unit not at either limit

� next compute the incremental costs for units 1 and 3
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The Economic Dispatch Problem

� Example
� note that the incremental cost for unit 1 is less than λ indicating 

that it is at its maximum

� however, the incremental cost for unit 3 is not greater than λ so it 
should not be forced to its minimum

� rework with units 2 and 3 incremental cost equal to λ

� note that this dispatch meets the necessary conditions

� incremental cost of electricity = 2.567 cents / kilowatt-hour
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� Consider a similar system, which now has a transmission 
network that connects the generating units to the load
� the economic dispatch problem is slightly more complicated

� the constraint equation must include the network losses, Ploss

� the objective 
function, FT

is the same 
as before

� the constraint 
equation must 
be expanded 
as:

Network Losses
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Network Losses

� The same math procedure is followed to establish the 
necessary conditions for a minimum-cost operating solution
� Lagrange function and its derivatives w.r.t. the input power:

� the transmission network loss is a function of the impedances 
and the currents flowing in the network
� for convenience, the currents may be considered functions of the

input and load powers 

� it is more difficult to solve this set of equations
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Network Losses

� Example
� repeat the first example, but include a simplified loss 

expression for the transmission network

� the incremental cost functions and the constraint function are 
formed as:

� this is no longer a set of linear equations as before
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Network Losses

� Example
� a new iterative solution procedure

step 1 pick starting values for P1, P2, and P3 that sum to the load

step 2 calculate ∂Ploss/∂Pi and the total losses Ploss

step 3 calculate λ that causes P1, P2, & P3 to sum to Pload & Ploss

step 4 compare P1, P2, & P3 of step 3 to the values used in step 2; if 
there is significant change to any value, go back to step 2, otherwise, 
the procedure is done

� pick generation values

� find the incremental losses
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Network Losses

� Example
� total losses

� solve for λ

� in matrix form 
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Network Losses

� Example
� since the values of P1, P2, and P3 are quite different from the 

starting values, we return to step 2
� find the incremental losses and total losses 

� solve for λ in matrix form
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Network Losses

� Example
� summarization of the iteration process

iteration P1 P2 P3 losses λ
count (MW) (MW) (MW) (MW) ($/MWh)

1 400.00 300.00 150.00 15.60 28.54
2 437.20 296.49 131.91 15.73 28.55
3 431.03 298.38 136.33 15.82 28.55
4 432.45 297.92 135.45 15.80 28.55
5 432.11 298.06 135.63 15.81 28.55
6 432.19 298.02 135.59 15.80 28.55
7 432.17 298.03 135.60 15.80 28.55


