EEL 6266
 Power System Operation and Control

Chapter 3
Economic Dispatch of Thermal Units

The Economic Dispatch Problem

- Consider a system that consists of N thermal-generating units serving an aggregated electrical load, $P_{\text {load }}$
- input to each unit: cost rate of fuel consumed, F_{i}
- output of each unit: electrical power generated, P_{i}
- total cost rate, F_{T}, is the sum of the individual unit costs
- essential constraint: the sum of the output powers must equal the load demand
- the problem is to minimize F_{T}

The Economic Dispatch Problem

- The mathematical statement of the problem is a constrained optimization with the following functions:
- objective function:

$$
F_{T}=\sum_{i=1}^{N} F_{i}\left(P_{i}\right)
$$

- equality constraint:

$$
\phi=0=P_{\text {load }}-\sum_{i=1}^{N} P_{i}
$$

- note that any transmission losses are neglected and any operating limits are not explicitly stated when formulating this problem
- Problem may be solved using the Lagrange function

$$
L=F_{T}+\lambda \phi=\sum_{i=1}^{N} F_{i}\left(P_{i}\right)+\lambda\left(P_{\text {load }}-\sum_{i=1}^{N} P_{i}\right)
$$

The Economic Dispatch Problem

- Principles
- the Lagrange function establishes the necessary conditions for finding an extrema of an objective function with constraints
- taking the first derivatives of the Lagrange function with respect to the independent variables allows us to find the extreme value when the derivatives are set to zero
- there are $N_{F}+N_{\lambda}$ derivatives, one for each independent variable and one for each equality constraint
- the derivatives of the Lagrange function with respect to the Lagrange multiplier λ merely gives back the constraint equation
- the N_{F} partial derivatives result in

$$
\frac{\partial L}{\partial P_{i}}=\frac{\mathrm{d} F_{i}\left(P_{i}\right)}{\mathrm{d} P_{i}}-\lambda=0
$$

The Economic Dispatch Problem

- Example

- determine the economic operating point for the three generating units when delivering a total of 850 MW
- input-output curves
- unit 1: coal-fired steam unit: $H_{1}=510+7.2 P_{1}+0.00142 P_{1}^{2}$
- unit 2: oil-fired steam unit: $\quad H_{2}=310+7.85 P_{2}+0.00194 P_{2}^{2}$
- unit 3: oil-fired steam unit: $H_{3}=78+7.97 P_{3}+0.00482 P_{3}^{2}$
- fuel costs
- coal: \$ 3.30 / MBtu
- oil: \$ 3.00 / MBtu
- the individual unit cost rate functions

$$
\begin{aligned}
& F_{1}\left(P_{1}\right)=H_{1}\left(P_{1}\right) \times 3.3=1683+23.76 P_{1}+0.004686 P_{1}^{2} \\
& F_{2}\left(P_{2}\right)=H_{2}\left(P_{2}\right) \times 3.0=930+23.55 P_{2}+0.00582 P_{2}^{2} \\
& F_{3}\left(P_{3}\right)=H_{3}\left(P_{3}\right) \times 3.0=234+23.70 P_{3}+0.01446 P_{3}^{2}
\end{aligned}
$$

The Economic Dispatch Problem

- Example
- the conditions for an optimal dispatch

$$
\begin{aligned}
& \mathrm{d} F_{1} / \mathrm{d} P_{1}=23.76+0.009372 P_{1}=\lambda \\
& \mathrm{d} F_{2} / \mathrm{d} P_{2}=23.55+0.01164 P_{2}=\lambda \\
& \mathrm{d} F_{3} / \mathrm{d} P_{3}=23.70+0.02892 P_{3}=\lambda \\
& P_{1}+P_{2}+P_{3}=850
\end{aligned}
$$

- solving for λ yields

$$
\frac{\lambda-23.76}{0.009372}+\frac{\lambda-23.55}{0.01164}+\frac{\lambda-23.70}{0.02892}=850
$$

$$
\lambda=27.41
$$

- then solving for the generator power values

$$
\begin{aligned}
& P_{1}=(27.41-23.76) / 0.009372=389.8 \\
& P_{2}=(27.41-23.55) / 0.01164=331.8 \\
& P_{3}=(27.41-23.70) / 0.02892=128.4
\end{aligned}
$$

The Economic Dispatch Problem

- In addition to the cost function and the equality constraint
- each generation unit must satisfy two inequalities
- the power output must be greater than or equal to the minimum power permitted: $P_{i} \geq P_{i, \text { min }}$
- minimum heat generation for stable fuel burning and temperature
- the power output must be less than or equal to the maximum power permitted: $P_{i} \leq P_{i, \text { max }}$
- maximum shaft torque without permanent deformation
- maximum stator currents without overheating the conductor
- then the necessary conditions are expanded slightly

$$
\begin{array}{ll}
\mathrm{d} F_{i} / \mathrm{d} P_{i}=\lambda & \forall P_{i}: P_{i, \text { min }} \leq P_{i} \leq P_{i, \text { max }} \\
\mathrm{d} F_{i} / \mathrm{d} P_{i} \geq \lambda & \forall P_{i}=P_{i, \text { min }} \\
\mathrm{d} F_{i} / \mathrm{d} P_{i} \leq \lambda & \forall P_{i}=P_{i, \text { max }}
\end{array}
$$

The Economic Dispatch Problem

- Example
- reconsider the previous example with the following generator limits and the price of coal decreased to $\$ 2.70$ / MBtu
- generator limits
- unit 1: $150 \leq P_{1} \leq 600 \mathrm{MW}$
- unit 2: $100 \leq P_{2} \leq 400 \mathrm{MW}$
- unit 3: $50 \leq P_{3} \leq 200 \mathrm{MW}$
- new fuel cost rate function for unit 1:

$$
F_{1}\left(P_{1}\right)=H_{1}\left(P_{1}\right) \times 2.7=1377+19.44 P_{1}+0.003834 P_{1}^{2}
$$

- solving for λ yields

$$
\begin{aligned}
& \frac{\lambda-19.44}{0.007668}+\frac{\lambda-23.55}{0.01164}+\frac{\lambda-23.70}{0.02892}=850 \\
& \lambda=24.82 \\
& P_{1}=701.9 \quad P_{2}=109.3 \quad P_{3}=38.8
\end{aligned}
$$

The Economic Dispatch Problem

- Example
- this solution meets the constraint of generation meeting the 850 MW load demand, but units 1 and 3 are not within limit
- let unit 1 be set to its maximum output and unit 3 to its minimum output. The dispatch becomes:

$$
P_{1}=600 \mathrm{MW} \quad P_{2}=200 \mathrm{MW} \quad P_{3}=50 \mathrm{MW}
$$

- hence, λ must equal the incremental cost of unit 2 since it is the only unit not at either limit

$$
\lambda=\left.\frac{\mathrm{d} F_{2}}{\mathrm{~d} P_{2}}\right|_{P_{2}=200}=23.55+0.01164(200)=25.88
$$

- next compute the incremental costs for units 1 and 3

$$
\begin{aligned}
& \left.\frac{\mathrm{d} F_{1}}{\mathrm{~d} P_{1}}\right|_{P_{1}=600}=19.44+0.007668(600)=24.04 \\
& \left.\frac{\mathrm{~d} F_{3}}{\mathrm{~d} P_{3}}\right|_{P_{3}=50}=23.7+0.02892(50)=25.15
\end{aligned}
$$

The Economic Dispatch Problem

- Example
- note that the incremental cost for unit 1 is less than λ indicating that it is at its maximum
- however, the incremental cost for unit 3 is not greater than λ so it should not be forced to its minimum
- rework with units 2 and 3 incremental cost equal to λ

$$
\begin{aligned}
& \frac{\lambda-23.55}{0.01164}+\frac{\lambda-23.70}{0.02892}=850-P_{1}=250 \\
& \lambda=25.67 \\
& P_{1}=600 \quad P_{2}=182.0 \quad P_{3}=68.0
\end{aligned}
$$

- note that this dispatch meets the necessary conditions
- incremental cost of electricity $=2.567$ cents $/$ kilowatt-hour

Network Losses

- Consider a similar system, which now has a transmission network that connects the generating units to the load
- the economic dispatch problem is slightly more complicated
- the constraint equation must include the network losses, $P_{\text {loss }}$
- the objective function, F_{T} is the same as before
- the constraint equation must be expanded

$$
\begin{aligned}
& \text { as: } \\
& \phi=0=P_{\text {load }}+P_{\text {loss }}-\sum_{i=1}^{N} P_{i}
\end{aligned}
$$

Network Losses

- The same math procedure is followed to establish the necessary conditions for a minimum-cost operating solution
- Lagrange function and its derivatives w.r.t. the input power:

$$
\begin{aligned}
& L=F_{T}+\lambda \phi=\sum_{i=1}^{N} F_{i}\left(P_{i}\right)+\lambda\left(P_{\text {load }}+P_{\text {loss }}-\sum_{i=1}^{N} P_{i}\right) \\
& \frac{\partial L}{\partial P_{i}}=\frac{\mathrm{d} F_{i}}{\mathrm{~d} P_{i}}-\lambda\left(1-\frac{\partial P_{\text {loss }}}{\partial P_{i}}\right)=0 \rightarrow \frac{\mathrm{~d} F_{i}}{\mathrm{~d} P_{i}}+\lambda \frac{\partial P_{\text {loss }}}{\partial P_{i}}=\lambda
\end{aligned}
$$

- the transmission network loss is a function of the impedances and the currents flowing in the network
- for convenience, the currents may be considered functions of the input and load powers
- it is more difficult to solve this set of equations

Network Losses

- Example

- repeat the first example, but include a simplified loss expression for the transmission network

$$
P_{\text {loss }}=0.00003 P_{1}^{2}+0.00009 P_{2}^{2}+0.00012 P_{3}^{2}
$$

- the incremental cost functions and the constraint function are formed as:

$$
\begin{aligned}
& \frac{\mathrm{d} F_{i}}{\mathrm{~d} P_{i}}=\lambda\left(1-\frac{\partial P_{\text {loss }}}{\partial P_{i}}\right) \\
& \mathrm{d} F_{1} / \mathrm{d} P_{1}=23.76+0.009372 P_{1}=\lambda\left[1-2(0.00003) P_{1}\right] \\
& \mathrm{d} F_{2} / \mathrm{d} P_{2}=23.55+0.01164 P_{2}=\lambda\left[1-2(0.00009) P_{2}\right] \\
& \mathrm{d} F_{3} / \mathrm{d} P_{3}=23.70+0.02892 P_{3}=\lambda\left[1-2(0.00012) P_{3}\right] \\
& P_{1}+P_{2}+P_{3}-850=P_{\text {loss }}=0.00003 P_{1}^{2}+0.00009 P_{2}^{2}+0.00012 P_{3}^{2}
\end{aligned}
$$

- this is no longer a set of linear equations as before

Network Losses

- Example

- a new iterative solution procedure
step 1 pick starting values for P_{1}, P_{2}, and P_{3} that sum to the load
step 2 calculate $\partial P_{\text {loss }} / \partial P_{\mathrm{i}}$ and the total losses $P_{\text {loss }}$
step 3 calculate λ that causes $P_{1}, P_{2}, \& P_{3}$ to sum to $P_{\text {load }} \& P_{\text {loss }}$
step 4 compare $P_{1}, P_{2}, \& P_{3}$ of step 3 to the values used in step 2 ; if
there is significant change to any value, go back to step 2 , otherwise, the procedure is done
- pick generation values

$$
P_{1}=400 \mathrm{MW} \quad P_{2}=300 \mathrm{MW} \quad P_{3}=150 \mathrm{MW}
$$

- find the incremental losses

$$
\begin{aligned}
& \partial P_{\text {loss }} / \partial P_{1}=2(0.00003)(400)=0.0240 \\
& \partial P_{\text {loss }} / \partial P_{2}=2(0.00009)(300)=0.0540 \\
& \partial P_{\text {loss }} / \partial P_{3}=2(0.00012)(150)=0.0360
\end{aligned}
$$

Network Losses

- Example

- total losses

$$
P_{\text {loss }}=3 \times 10^{-5}(400)^{2}+9 \times 10^{-5}(300)^{2}+12 \times 10^{-5}(150)^{2}=15.6 \mathrm{MW}
$$

- solve for λ

$$
\begin{aligned}
& 23.76+0.009372 P_{1}=\lambda(1-0.024) \\
& 23.55+0.01164 P_{2}=\lambda(1-0.054) \\
& 23.70+0.02892 P_{3}=\lambda(1-0.036) \\
& P_{1}+P_{2}+P_{3}-(850+15.6)=0
\end{aligned}
$$

- in matrix form

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
-0.009372 & 0 & 0 & 0.976 \\
0 & -0.01164 & 0 & 0.946 \\
0 & 0 & -0.02892 & 0.964 \\
1 & 1 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
P_{1} \\
P_{2} \\
P_{3} \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
23.76 \\
23.55 \\
23.70 \\
865.6
\end{array}\right]} \\
& P_{1}=437.20 \quad P_{2}=296.49 \quad P_{3}=131.91 \quad \lambda=28.54
\end{aligned}
$$

Network Losses

- Example

- since the values of P_{1}, P_{2}, and P_{3} are quite different from the starting values, we return to step 2
- find the incremental losses and total losses

$$
\begin{aligned}
& \partial P_{\text {loss }} / \partial P_{1}=2(0.00003)(437.2)=0.0262 \\
& \partial P_{\text {loss }} / \partial P_{2}=2(0.00009)(296.5)=0.0534 \\
& \partial P_{\text {loss }} / \partial P_{3}=2(0.00012)(131.9)=0.0317 \\
& P_{\text {loss }}=3 \times 10^{-5}(437.2)^{2}+9 \times 10^{-5}(296.5)^{2}+12 \times 10^{-5}(131.9)^{2}=15.73 \mathrm{MW}
\end{aligned}
$$

- solve for λ in matrix form

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
-0.009372 & 0 & 0 & 0.9738 \\
0 & -0.01164 & 0 & 0.9466 \\
0 & 0 & -0.02892 & 0.9683 \\
1 & 1 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
P_{1} \\
P_{2} \\
P_{3} \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
23.76 \\
23.55 \\
23.70 \\
865.73
\end{array}\right]} \\
& P_{1}=431.03
\end{aligned} P_{2}=298.38 \quad P_{3}=136.33 \quad \lambda=28.55-1 .
$$

Network Losses

- Example

- summarization of the iteration process

iteration count	P_{1} (MW)	P_{2} (MW)	P_{3} (MW)	losses (MW)	λ $(\$ / \mathrm{MWh})$
1	400.00	300.00	150.00	15.60	28.54
2	437.20	296.49	131.91	15.73	28.55
3	431.03	298.38	136.33	15.82	28.55
4	432.45	297.92	135.45	15.80	28.55
5	432.11	298.06	135.63	15.81	28.55
6	432.19	298.02	135.59	15.80	28.55
7	432.17	298.03	135.60	15.80	28.55

