
Problem 1 : Solution/marking scheme � Two Problems in Mechanics (10
points)

Part A. The Hidden Disk (3.5 points)

A1 (0.8 pt) Find an expression for b as a function of the quantities (1), the angle φ and
the tilting angle Θ of the base.

Solution A1: [0.8]

Geometric solution: use that torque with respect to point of contact is 0 ⇒ cen-
ter of gravity has to be vertically above point of contact.

sinφ =
D

b
0.3

sin Θ =
D

r1
0.3

Here D may be called another name. Solve this:

sinφ =
r1
b

sin Θ ⇒ b =
r1 sin Θ

sinφ
0.2

Alternative: Torque and forces with respect to another point: [0.8]
Correct equation for torque 0.3
Correct equation for force 0.3
Correct solution 0.2

A2 (0.5 pt) Find the equation of motion for ϕ. Express the moment of inertia IS of the
cylinder around its symmetry axis S in terms of T , b and the known quantities (1). You
may assume that we are only disturbing the equilibrium position by a small amount so
that ϕ is always very small.

Solution A2: [0.5]

Write some equation of the form ϕ̈ = −ω2ϕ 0.1

Writing an equation of the form ϕ = A cosωt is also correct.
Two solutions:

1. Kinetic energy: 1
2ISϕ̇

2 and potential energy: −bMg cosϕ. Total energy is con-
served, and di�erentiation w.r.t. time gives the equation of motion.

2. Angular equation of motion from torque, τ = ISϕ̈ = −Mgb sinϕ.

Correct equation (either energy conservation or torque equation of motion) 0.3
Final answer

T = 2π

√
IS
Mgb

⇒ IS =
MgbT 2

4π2
0.1
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(Derivation:

⇒ ϕ̈ = −bMg

IS
sinϕ ' −bgM

IS
ϕ

so that

ω2 =
bgM

IS

)

A3 (0.4 pt) Find an expression for the distance d as a function of b and the quantities
(1). You may also include r2 and h2 as variables in your expression, as they will be
calculated in subtask A.5.

Solution A3: [0.4]

Some version of the center of mass equation, e.g.

b =
dM2

M1 +M2
0.2

correct solution:

d =
bM

πh2r22(ρ2 − ρ1)
0.2

A4 (0.7 pt) Find an expression for the moment of inertia IS in terms of b and the known
quantities (1). You may also include r2 and h2 as variables in your expression, as they
will be calculated in subtask A.5.

Solution A4: [0.7]

correct answer for moment of inertia of homogeneous disk

I1 =
1

2
πh1ρ1r

4
1 0.2

Mass wrong -0.1
Factor 1/2 wrong in formula for moment of inertia of a disk -0.1
Correct answer for moment of inertia of `excess' disk:

I2 =
1

2
πh2(ρ2 − ρ1)r42 0.2

Using Steiner's theorem:

IS = I1 + I2 + d2πr22h2(ρ2 − ρ1) 0.1

correct solution:

IS =
1

2
πh1ρ1r

4
1 +

1

2
πh2(ρ2 − ρ1)r42 +

b2M2

πr22h2(ρ2 − ρ1)
0.2
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In terms of d rather than b gives 0.1pts rather than 0.2pts for the �nal answer: 0.1

IS =
1

2
πh1ρ1r

4
1 +

1

2
πh2(ρ2 − ρ1)r42 + d2πr22h2(ρ2 − ρ1)

A5 (1.1 pt) Using all the above results, write down an expression for h2 and r2 in terms
of b, T and the quantities (1). You may express h2 as a function of r2.

Solution A5: [1.1]

It is not clear how exactly students will attempt to solve this system of equations. It is
likely that they will use the following equation:

M = πr21h1ρ1 + πr22h2(ρ2 − ρ1) . 0.3

solve IS for r22:

r22 =
2

M − πr21h1ρ1

(
IS −

1

2
πh1ρ1r

4
1 − b2

M2

M − πr21h1ρ1

)
0.4

replace IS by T :

IS =
MgbT 2

4π2
0.1

solve correctly for r2:

r2 =

√
2

M − πr21h1ρ1

(
M
bgT 2

4π2
− 1

2
πh1ρ1r41 − b2

M2

M − πr21h1ρ1

)
0.1

write down an equation for h2 along the lines of M = πr21ρ1h1 +πr22(ρ2−ρ1)h2 and solve
it correctly:

h2 =
M − πr21ρ1h1
πr22(ρ2 − ρ1)

0.2

Part B. Rotating Space Station (6.5 points)

B1 (0.5 pt) At what angular frequency ωss does the space station rotate so that the
astronauts experience the same gravity gE as on the Earth's surface?

Solution B1: [0.5]

An equation for the centrifugal force along the lines of

Fce = mω2r 0.1

3
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Balancing the forces, correct equation

gE = ω2
ssR 0.2

Correct solution
ωss =

√
gE/R 0.2

B2 (0.2 pt) Assuming that on Earth gravity is constant with acceleration gE , what
would be the angular oscillation frequency ωE that a person on Earth would measure?

Solution B2: [0.2]

Realize that result is independent of gE 0.1

Correct result:
ωE =

√
k/m 0.1

B3 (0.6 pt) What angular oscillation frequency ω does Alice measure on the space
station?

Solution B3: [0.6]

some version of the correct equation for force

F = −kx±mω2
ssx 0.2

getting the sign right
F = −kx+mω2

ssx 0.2

Find correct di�erential equation

mẍ+ (k −mω2
ss)x = 0 0.1

Derive correct result
ω =

√
k/m− ω2

ss 0.1

Using gE/R instead of ω2
ss is also correct.

B4 (0.8 pt) Derive an expression of the gravity gE(h) for small heights h above the
surface of the Earth and compute the oscillation frequency ω̃E (linear approximation is
enough). The radius of the Earth is given by RE .
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Solution B4: [0.8]

gE(h) = −GM/(RE + h)2 0.1

linear approximation of gravity:

gE(h) = −GM
R2

E

+ 2h
GM

R3
E

+ . . . 0.2

Realize that gE = GM/R2
E :

gE(h) = −gE + 2hgE/RE + . . . 0.1

Opposite sign is also correct, as long as it is opposite in both terms.
Realize what this means for force, i.e. that the constant term can be eliminated by shifting
the equilibrium point:

F = −kx+ 2xmgE/RE 0.2

Find correct di�erential equation

mẍ+ (k − 2mgE/RE)x = 0 0.1

correct result
ω̃E =

√
k/m− 2gE/RE 0.1

No points are deducted if student answers with ω̃E/(2π) because �oscillation frequency�
might also be interpreted as inverse period.

B5 (0.3 pt) For what radius R of the space station does the oscillation frequency ω
match the oscillation frequency ω̃E on the surface of the Earth? Express your answer in
terms of RE .

Solution B5: [0.3]

Write down equation
ω2
ss = 2gE/RE 0.1

Solve
R = RE/2 0.2

If GM/R2
E rather than gE is used, give only 0.1pt.

B6 (1.1 pt) Calculate the horizontal velocity vx and the horizontal displacement dx
(relative to the base of the tower, in the direction perpendicular to the tower) of the mass
at the moment it hits the �oor. You may assume that the height H of the tower is small,
so that the acceleration as measured by the astronauts is constant during the fall. Also,
you may assume that dx � H.
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Solution B6: [1.1]

There are several possible solutions.
Solution one � Using Coriolis force

• Velocity vx

Equation for Coriolis force with correct velocity:

FC(t) = 2mω2
ssRtωss = 2mω3

ssRt 0.1

Integrate this, or realize that it is like uniform acceleration for the velocity:

vx(t) = ω3
ssRt

2 0.2

plug in correct value for
t =

√
2H/ω2

ssR 0.2

overall correct result
vx = 2Hωss 0.1

• The displacement dx:

Integrate vx(t):

dx =
1

3
Rω3

sst
3 0.3

Instead of integrating, students may simply `average' by taking 1
2 of the �nal

velocity. This gives a factor of 1
2 instead of 1

3 . Deduct a total of 0.1 pts for this. -0.1

Plug in value for t

dx =
1

3
Rω3

ss(2H/ω
2
ssR)3/2 =

1

3
23/2H3/2R−1/2 =

1

3

√
8H3

R
0.2

Solution two � Using inertial frame This solution is similar to the way to solve B7,
but needs more complicated approximations than Solution one.

• vx
Here φ denotes the angle swept by the mass and α the angle the astronauts (and
tower) has rotated when the mass lands on the �oor, see

Initially the velocity of the mass in an inertial frame is vx = ωss(R−H). 0.1

When the mass lands, the x-direction has been rotated by φ so the new horizontal
velocity component is then

ωss(R−H) cosφ 0.1

(Student may also write cosα instead of cosφ, since dx � H.)

cosφ =
R−H
R

= 1− H

R
0.1

Transforming to the rotating reference frame, one needs to subtract ωssR. 0.1

Finally in the reference frame of the astronauts

vx = ωssR

(
1− H

R

)2

− ωssR ≈ ωssR

(
1− 2

H

R

)
− ωssR = −2ωssH 0.2

The sign of the velocity depend on the choice of reference direction, so a positive
sign is also correct.
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• dx
With the notation from the calculation of vx

dx = (α− φ)R 0.1

φ = arccos

(
1− H

R

)
α = ωsst

where t is the fall time of the mass, which is given by

t =

√
R2 − (R−H)2

ωss(R−H)
0.1

(see solution to B7)

Writing ξ ≡ H/R this means

dx =

[√
1− (1− ξ)2

1− ξ
− arccos(1− ξ)

]
R 0.3

which is a valid end answer to the problem. It is possible, but not necessary, to
approximate this for small ξ:

arccos(1− ξ) ≈
√

2ξ

(
1 +

ξ

12

)
which after insertion into the equation for dx and approximation of small ξ yields
the same result as in Solution one:

dx =
2

3

√
2H3

R

If this end answer misses the factor 2/3, deduct 0.1 points. -0.1

Solution three � Inertial frame with geometry trick
This is an alternative solution to obtain dx
The mass travels the distance l, and during the fall the space station rotates by φ, see
Figure 2. According to the intersecting chord theorem,

l2 = H(2R−H) 0.1

The rotated angle is φ = ωsst where

t =
l

R−H
0.1

is the fall time. Thus

φ =

√
H(2R−H)

R−H
0.1

d

R
= φ− arcsin

l

R
=

√
H(2R−H)

R−H
− arcsin

√
x(2− x) 0.1
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Figure 1: Notation for solution two

Figure 2: Notation for solution three.

Denote x ≡ H/R and y ≡
√
x(2− x). Since

arcsin y ≈ y +
y3

6

one gets

d

R
≈ y(1 + x)− y − y3/6 = y(x− y2/6) ≈ 2xy/3 ≈ 2x

√
2x/3 =

2

3

√
2H3

R

Final answer 0.1

B7 (1.3 pt) Find a lower bound for the height of the tower for which it can happen that
dx = 0.

Solution B7: [1.3]

The key is to use a non-rotating frame of reference. If the mass is released close enough
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to the center, its linear velocity will be small enough for the space station to rotate more
than 2π before it hits the ground.
The velocity is given by

v = ωss(R−H) 0.1

distance d that the mass �ies before hitting the space station

d2 = R2 − (R−H)2 0.1

use non-rotating frame of reference to obtain time t until impact

t = d/v =

√
R2 − (R−H)2

ωss(R−H)
0.1

Now there are several possible ways to relate H and the rotated angle φ of the space
station:
Solution one

t =
R sinφ

ωssR cosφ
0.2

This time must match t = φ/ωss. Obtain the equation

φ = tanφ 0.2

Realizing that there is an in�nite number of solutions. 0.2
This equation has one trivial solution φ = 0, next solution is slightly less than 3π/2 which
corresponds to the case H > R (and is thus not correct). The one that gives a lower
bound for H is the third solution

φ ≈ 5π/2

The equation φ = tanφ can be solved graphically or numerically to obtain a close value
(φ = 7.725 rad) which means

H/R = (1− cosφ) ≈ 0.871

Give points if the method is correct, depending on the value of H/R found, according to
these intervals: 0.4
0.85 ≤ H/R ≤ 0.88: 0.4 pts

0.5 ≤ H/R < 0.85: 0.3 pts

0 < H/R < 0.5 or H > 0.88: 0.2 pts

H = 0 or method is incorrect: 0 pts

Solution two
relation between H and rotated angle φ

R−H
R

= cosφ 0.2

obtain equation of the form

H

R
= 1− cos

(√
1− (1−H/R)2

1−H/R

)
0.2

Figure 3 gives a plot of f(x) = 1− cos

(√
1−(1−x)2
1−x

)
. The goal is to �nd an approximate

solution for the second intersection. The �rst intersection is discarded � it is introduced
because of cosφ = cos(−φ) and corresponds to a situation with H > R.
Realizing that there is an in�nite number of solutions. 0.2

9
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Figure 3: Plot of f(H/R) and H/R

Figure 4: Plot of g(x) and x

• introduce new variable x := 1−H/R, so that the equation becomes

x = cos(
√

1− x2/x) =: g(x)

• g(x) is then smaller than x up to the �rst solution. In particular it is negative in
some region (see �gure 4). Finding the third zero thus gives a lower bound for the
solution: √

1− x2
x

= 5π/2

• give lower bound

x = 1/
√

25π2/4 + 1⇒ H = R(1− 1/
√

25π2/4 + 1) ≈ 0.874

Note: the actual result is H/R = 0.871 . . ..

Use the same points for the numerical answer as was mentioned in solution one. 0.4

If the student plots f rather than g, �nd solution to f = 1: is equivalent to the
solution above. Give same number of points.

It is also possible to use cos
(√

1−x2

x

)
= sin(1/x).

B8 (1.7 pt) Alice pulls the mass a distance d downwards from the equilibrium point
x = 0, y = 0, and then lets it go (see �gure 4).
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• Give an algebraic expression of x(t) and y(t). You may assume that ωssd is small.

• Sketch the trajectory (x(t), y(t)), marking all important features such as amplitude.

Solution B8: [1.7]

Note: we did not specify the overall sign of the Coriolis force. Give same amount
of points if using opposite convention, but it has to be consistent! Otherwise: subtract
0.1pt for each instance of inconsistency -0.1.
Students are allowed to express everything in terms of ω, they don't need to write√
k/m− ω2

ss explicitly. Deduct 0.1pt however if they use k/m instead of ω. -0.1.

Realize that y(t) is standard harmonic oscillation:

y(t) = A cosωt+B 0.1

Give correct constants from initial conditions

y(t) = −d cosωt 0.2

Correct expression for vy(t):
vy(t) = −dω sinωt 0.1

Coriolis force in x-direction

Fx(t) = 2mωssvy(t) = −2mωssdω sinωt 0.2

Realize that this implies that x(t) is also a harmonic oscillation. . . 0.1

. . . but with a constant movement term superimposed: vt 0.1

getting the correct amplitude:

A =
2ωssd

ω
0.1

Correct answer with correct initial conditions:

x(t) =
2ωssd

ω
sinωt− 2ωssdt 0.2

Sketch:

x

y

-d

d

A

B 4πωssd
ω

C

11
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Correct qualitative sketch:
periodic motion 0.1

overall constant movement 0.1

B): cusps 0.1

And additionally correct quantitative sketch:

A)+B): peaks and cusps are at y = ±d 0.1

C): cusps are at distance ∆x =
4πωssd

ω
from each other 0.2
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Problem 2 : Solution/marking scheme – Nonlinear Dynamics in Electric Circuits
(10 points)

Part A. Stationary states and instabilities (3 points)

Solution A1: [0.4]

By looking at the I − V graph, we obtain

Roff = 10.0 Ω, 0.1

Ron = 1.00 Ω, 0.1

Rint = 2.00 Ω, 0.1

I0 = 6.00A. 0.1

Note: No penalty for the number of digits in this question

Solution A2: [1]

Kirchoff law for the circuit (U is the voltage of the bistable element):

E = IR+ U 0.1

This yields

I =
E − U
R

0.1

Hence, stationary states of the circuit are intersections of the line defined by this equation
and the I − V graph of X 0.2.

For R = 3.00 Ω, one always gets exactly one intersection. 0.2
For R = 1.00 Ω, one gets 1, 2 or 3 intersections depending on the value of E . 0.4
The following table summarizes the number of points granted for possible answers to the
last subquestion with R = 1.00 Ω:

Possible answer 1 2 3 1,3 1,2 2,3 1,2,3
Points 0 0 0.2 0.3 0 0.2 0.4

Solution A3: [0.6]

The stationary state is on the intermediate branch, one can thus use the corresponding
equation: 0.2

1
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Istationary =
E −RintI0

R−Rint
0.1

= 3.00A 0.1

Ustationary = Rint(I0 − I) 0.1
= 6.00V 0.1

Extra (non-physical) stationary states on the switched on and/or switched off branches
lead to a penalty of 0.2 point.

Solution A4: [1]

Any correct modeling such as the following: 0.5
The Kirchoff law for the circuit reads

E = IR+ UX + L
dI

dt
= IR+ (I0 − I)Rint + L

dI

dt

This implies

L
dI

dt
= E − I0Rint − (R−Rint)I

The separation between two cases is of importance, especially because of the relative sign
of dI/dt:
If I > Istationary, we have dI/dt < 0 and I decreases. 0.2
If I < Istationary, we have dI/dt > 0 and I increases. 0.2
Note: Formulas with time derivatives are not essential, any other correct justification is
accepted.
We conclude that the stationary state is stable. 0.1

Note: The checkbox gives 0.1 points if “stable” is checked, regardless of the previous rea-
soning (also if there is nothing). A wrong reasoning leading to check the “unstable” option
doesn’t however give any point for the checkbox.

Part B. Bistable non-linear elements in physics and engineering: radio transmitter (5 points)

Solution B1: [1.8]

A correctly drawn cycle gives 1.2 points, distributed as follows:

• Switched on branch is part of the cycle 0.2

• Switched off branch is part of the cycle 0.2

• Jumps are vertical (constant U) 0.2

• Jumps are positioned at Uh and Uth 0.2

• The system moves to the left on the switched on branch 0.2

2
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• The system moves to the right on the switched off branch 0.2

Each of the following observations individually gives up to 0.2 points, but their total
cannot exceed 0.6:

• U constant during jumps because the charge on the capacitor cannot change in-
stantaneously 0.2

• The intermediate branch cannot be part of the cycle because there is a stationary
state on it 0.2

• Jumps occur at corners of the IV graph because at those points the system has
nowhere else to go 0.2

• The system moves moves to the left on the switched on branch because it approaches
the stable stationary state (which is located outside the IV graph), or argument with
the Kirchoff law 0.2

• The system moves moves to the right on the switched off branch because it ap-
proaches the stable stationary state (which is located outside the IV graph), or
argument with the Kirchoff law 0.2

^ IIA )

"

:
oscillation

cycle
8 ⇒: =stationary

I it
state

I
3 ÷l¥In=÷

=
 0  2  3  45 6 7  85

:
th

Solution B2: [1.9]

Since the non-linear element is oscillating between the switched on and switched
off branches we can put UX = Ron/offIX . On either of the branches, the circuit behaves
as a standard RC-circuit with conductance C and resistance Ron/offR/(Ron/off +R) (the
resistor and the element X being connected in parallel). 0.5Another way to express it is to
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write the Kirchhoff law for the switched on and switched off branches

Ron/offRC
dIX
dt

= E − (Ron/off +R)IX

The time constant of the circuit is

Ron/offR

Ron/off +R
C.

If the branch in question (switched on or switched off) extended indefinitely, after a long
time the system would have landed in a stationary state with the voltage

Uon/off =
Ron/off

Ron/off +R
E .

Then, the time dependence of the voltage drop on the non-linear element is a sum of the
constant term Uon/off and of the exponentially decaying term:

UX(t) =
Ron/off

Ron/off +R
E +

(
Uon/off −

Ron/off

Ron/off +R
E
)
e
−

Ron/off+R

Ron/offRC
t

There are 0.5 points distributed as follow for UX(t):

• Correct exponential 0.2

• Correct constant term (t→∞) 0.1

• Correct coefficient in front of the exponential 0.1

• Correct equation for UX(t) 0.1

Time spent by the system on the switched on branch during one cycle:

ton =
RonR

Ron +R
C log

(
Uth − Uon

Uh − Uon

)
= 2.41 · 10−6 s, 0.4

Time spent by the system on the switched off branch during one cycle:

toff =
RoffR

Roff +R
C log

(
Uoff − Uh

Uoff − Uth

)
= 3.71 · 10−6 s. 0.4

The total period of oscillations:

T = ton + toff = 6.12 · 10−6 s 0.1

Note: Correct final answers give full points. One may earn points for intermediate steps
(see above) for partial answers.

Solution B3: [0.7]

Neglect the energy consumed on the switched off branch. The energy consumed

4
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on the switched on branch during the cycle is estimated by

E =
1

Ron

(
Uh + Uth

2

)2

ton = 1.18 · 10−4 J. 0.4

For the power, this gives an estimate of

P ∼ E

T
= 19.3 W. 0.3

Note:

• Formula + answer inside 5 W ≤ P ≤ 50 W give full points

• Formula + answer outside the range above but inside 1 W ≤ P ≤ 100 W give 0.5
points

• answer outside range but good formula gives 0.4 points

Also, the proposed formula is only an example, any other reasonable approximation of the
integral of the upper branch should be accepted.

Solution B4: [0.6]

The wave length of the radio signal is given by λ = cT = 1.82 · 103 m. 0.2
The optimal length of the antenna is λ/4 (or 3λ/4, 5λ/4 etc.) 0.3
The only choice which is below 1 km is s = λ/4 = 459 m. 0.1
Note: The correct answer s = λ/4 = 459 m gives full points, and the mistake s = λ/2 =
918 m only 0.4 pts.

Part C. Bistable non-linear elements in biology: neuristor (2 points)

Solution C1: [1.2]

For Ẽ = 12.0 V, the steady state of the system is located on the switched off
branch:

Ũ =
Roff

R+Roff
Ẽ = 9.23 V.

When the voltage is increased to E = 15.0 V, the system starts moving to the right along
the switched off branch (in the same way it did in task B).
If the voltage drops again before the system reaches the threshold voltage, it will simply
return to the stationary state.
If system reaches the threshold voltage, it will jump to the switched on branch, and it
will make one oscillations (since τ < T ) before the voltage drops again and it returns to
the stationary state.
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^ I
x

T <

to
0 return to the

original stationary
state

osier:h÷:# .⇐÷
>

to tote t

1. Approach to the new stationary state 0.2

2. Return to the old stationary state 0.2

' ' T
- X

�5� evolution on

Ji
f upper branch

T > Tent

�4� jump to i

upper branch

\
�6� jump to

, lower branch

:
, )

apprach
i

L �7� return to
�3� new state

,

: Stationary

¥ , ( state

. -
'

✓

.

!#
. i I )

to tot T t

3. Approach to the new stationary state 0.1

4. Jump to the upper branche before t0 + τ 0.2

5. Evolution on the upper branch 0.2

6. Jump to the lower branche below the old stationary state 0.1

7. Return to the old stationary state (from below) 0.2
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Solution C2: [0.6]

The time needed to reach the threshold voltage is given by

τcrit =
RoffR

Roff +R
C log

(
Uoff − Ũ
Uoff − Uth

)
= 9.36 · 10−7 s.

Note: This is the same formula as for toff in task B2, with Uh replaced by Ũ .

• Correct time constant 0.2

• Correct choice of voltages 0.2

• Correct final formula 0.1

• Correct numerical value 0.1

Note: Correct final answers give full points. One may earn points for intermediate steps
(see above) for partial answers.

Solution C3: [0.2]

Since τ > τcrit, the system will make one oscillation. We conclude that the sys-
tem is a neuristor. 0.2

Note: 0.2 are given only if “Yes” is checked, regardless of the development of the other
tasks.

7

Ira
nPhO.ir



Problem 3 : Solution/marking scheme – Large Hadron Collider (10 points)

Part A. LHC Accelerator (6 points)

A1 (0.7 pt) Find the exact expression for the final velocity v of the protons as a function
of the accelerating voltage V , and fundamental constants.

Solution A1: [0.7]

Conservation of energy:

mp · c2 + V · e = mp · c2 · γ =
mp · c2√
1− v2/c2

0.5

Penalties

No or incorrect total energy -0.3

Missing rest mass -0.2

Solve for velocity:

v = c ·

√
1−

(
mp · c2

mp · c2 + V · e

)2

0.2

without proton rest mass [0.5]:

V · e ' mp · c2 · γ =
mp · c2√
1− v2/c2

0.3

Solve for velocity:

v = c ·

√
1−

(
mp · c2

V · e

)2

0.2

Classical solution [0.2]:

v =

√
2 · e · V
mp

0.2

1
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A2 (0.8 pt) For particles with high energy and low rest mass the relative deviation
∆ = (c− v)/c of the final velocity v from the speed of light is very small. Find a suitable
approximation for ∆ and calculate ∆ for electrons with an energy of 60.0 GeV.

Solution A2: [0.8]

velocity (from previous question):

v = c ·

√
1−

(
me · c2

me · c2 + V · e

)2

or c ·

√
1−

(
me · c2

V · e

)2

0.1

relative difference:
∆ =

c− v
c

= 1− v

c
0.1

→ ∆ ' 1

2

(
me · c2

me · c2 + V · e

)2

or
1

2

(
me · c2

V · e

)2

0.4

relative difference
∆ = 3.63 · 10−11 0.2

classical solution gives no points 0.0
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A3 (1.0 pt) Derive an expression for the uniform magnetic flux density B necessary to
keep the proton beam on a circular track. The expression should only contain the energy
of the protons E, the circumference L, fundamental constants and numbers. You may
use suitable approximations if their effect is smaller than the precision given by the least
number of significant digits. Calculate the magnetic flux density B for a proton energy
of E = 7.00 TeV.

Solution A3: [1.0]

Balance of forces:
γ ·mp · v2

r
=

mp · v2

r ·
√

1− v2

c2

= e · v ·B 0.3

In case of a mistake, partial points can be given for intermediate steps (up to max 0.2).
Examples:

Example: Lorentz force 0.1

Example:
γ ·mp · v2

r
0.1

Energy:

E = (γ − 1) ·mp · c2 ' γ ·mp · c2 → γ =
E

mpc2

Therefore:
E · v
c2 · r

= e ·B 0.3

With
v ' c and r =

L

2π

follows:
→ B =

2π · E
e · c · L

0.2

Solution:
B = 5.50T 0.2

Penalty for < 2 or > 4 significant digits -0.1
Calculation without approximations is also correct but does not give more points

B =
2π ·mp · c
e · L

·

√(
E

mp · c2

)2

−
(

1 +
m · c2

E

)2

0.5

Penalty for each algebraic mistake -0.1

Classical calulation gives completely wrong result and maximum 0.3 pt [0.3]

mp · v2

r
= e · v ·B 0.1

B =
2π

L · e
√

2 ·mp · E 0.1

3
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B = 0.0901T 0.1

Penalty for < 2 or > 4 significant digits -0.1
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A4 (1.0 pt) An accelerated charged particle radiates energy in the form of electromag-
netic waves. The radiated power Prad of a charged particle that circulates with a constant
angular velocity depends only on its acceleration a, its charge q, the speed of light c and
the permittivity of free space ε0. Use a dimensional analysis to find an expression for the
radiated power Prad.

Solution A4: [1.0]

Ansatz:
Prad = aα · qβ · cγ · εδ0 0.2

Dimensions: [a]=ms−2, [q]=C=As, [c]=ms−1,[ε0]=As(Vm)−1=A2s2(Nm2)−1=A2s4(kgm3)−1

All dimensions correct 0.3

Three dimensions correct 0.2

Two dimensions correct 0.1

if dimensions: N and Coulomb [ε0]= C2(Nm2)−1

mα

s2α
· Cβ · mγ

sγ
· C2δ

Nδ ·m2δ
=

N ·m
s

0.1

From this follows:

N :→ δ = −1, C :→ β + 2 · δ = 0, m :→ α+ γ − 2δ = 1, s :→ 2 · α+ γ = 1 0.2

Two equations correct 0.1

And therefore:
→ α = 2, β = 2, γ = −3, δ = −1 0.1

if dimensions: N and As [ε0]=A2s2(Nm2)−1

mα

s2α
·Aβ · sβ · mγ

sγ
· A2δ · s2δ

Nδ ·m2δ
=

N ·m
s

0.1

From this follows:

N :→ δ = −1, A :→ β+2 ·δ = 0, m :→ α+γ−2δ = 1, s :→ −2 ·α+β−γ+2δ = −1 0.2

Two equations correct 0.1

And therefore:
→ α = 2, β = 2, γ = −3, δ = −1 0.1

if dimensions: kg and As [ε0]=A2s4(kg· m3)−1

mα

s2α
·Aβ · sβ · mγ

sγ
· A2δ · s4δ

kgδ ·m3δ
=

kg ·m2

s3
0.1
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From this follows:

kg :→ δ = −1, A :→ β+2 ·δ = 0, m :→ α+γ−3δ = 2, s :→ −2 ·α+β−γ+4δ = −3 0.2

Two equations correct 0.1

And therefore:
→ α = 2, β = 2, γ = −3, δ = −1 0.1

Radiated Power:

Prad ∝
a2 · q2

c3 · ε0
0.1

Other solutions with other units are possible and are accepted
No solution but realise that unit of charge must vanish β = 2δ 0.2
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A5 (1.0 pt) Calculate the total radiated power Ptot of the LHC for a proton energy of
E = 7.00 TeV (Note table 1). You may use appropriate approximations.

Solution A5: [1.0]

Radiated Power:

Prad =
γ4 · a2 · e2

6π · c3 · ε0
0.1

Energy:
E = (γ − 1)mp · c2 or equally valid E ' γ ·mp · c2 0.2

Acceleration:

a ' c2

r
with r =

L

2π
0.2

Therefore:

Prad = (
E

mpc2
+ 1)4 · e2 · c

6πε0 · r2
or (

E

mpc2
)4 · e2 · c

6πε0 · r2
0.3

(not required Prad = 7.94 · 10−12W)

Total radiated power:

Ptot = 2 · 2808 · 1.15 · 1011 · Prad = 5.13kW 0.2

penalty for missing factor 2 (for the two beams): -0.1 -0.1
penalty for wrong numbers 2808 and/or 1.15 · 1011 (numbers come from table 1): -0.1 -0.1
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A6 (1.5 pt) Determine the time T that the protons need to pass through this field.

Solution A6: [1.5]

2nd Newton’s law
F =

dp

dt
leads to 0.2

V · e
d

=
pf − pi
T

with pi = 0 0.3

Conservation of energy:
Etot = m · c2 + e · V 0.2

Since
E2
tot = (m · c2)2 + (pf · c)2 0.2

→ pf =
1

c
·
√

(m · c2 + e · V )2 − (m · c2)2 =

√
2e ·m · V +

(
e · V
c

)2

0.2

→ T =
d · pf
V · e

=
d

V · e

√
2e ·mp · V +

(
e · V
c

)2

0.3

T = 218ns 0.1

Alternative solution [1.5]
2nd Newton’s law

F =
dp

dt
leads to 0.2

V · e
d

=
pf − pi
T

with pi = 0 0.3

velocity from A1 or from conservation of energy

v = c ·

√
1−

(
mp · c2

mp · c2 + V · e

)2

0.2

and hence for γ

γ = 1/

√
1− v2

c2
= 1 +

e · V
mp · c2

0.2

→ pf = γ ·mp · v =

(
1 +

e · V
mp · c2

)
·mp · c ·

√
1−

(
mp · c2

mp · c2 + V · e

)2

0.2

→ T =
d · pf
V · e

=
d ·mp · c
V · e

·

√(
mp · c2 + e · V

mp · c2

)2

− 1 =
d

V · e

√
2e ·mp · V +

(
e · V
c

)2

0.3

T = 218ns 0.1

Alternative solution: integrate time [1.5]
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Energy increases linearly with distance x

E(x) =
e · V · x

d
0.2

t =

∫
dt =

∫ d

0

dx

v(x)
0.2

v(x) = c ·

√√√√1−

(
mp · c2

mp · c2 + e·V ·x
d

)2

= c ·

√(
mp · c2 + e·V ·x

d

)2 − (mp · c2)2

mp · c2 + e·V ·x
d

= c ·

√(
1 + e·V ·x

d·mp·c2

)2
− 1

1 + e·V ·x
d·mp·c2

0.2

Substitution : ξ =
e · V · x
d ·mp · c2

dξ

dx
=

e · V
d ·mp · c2

0.2

→ t =
1

c

∫ b

0

1 + ξ√
(1 + ξ)2 − 1

d ·mp · c2

e · V
dξ b =

e · V
mp · c2

0.2

1 + ξ := cosh(s)
dξ

ds
= sinh(s) 0.1

t =
mp · c · d
e · V

∫
cosh(s) · sinh(s)ds√

cosh2(s)− 1
=
mp · c · d
e · V

[sinh(s)]b2b1 0.2

with b1 = cosh−1(1), b2 = cosh−1

(
1 +

e · V
mp · c2

)
0.1

T = 218ns 0.1

Alternative: differential equation [1.5]

F =
dp

dt
0.2

→ V · e
d

=
d

dt

 m · v√
1− v2

c2

 =
m · a

(
1− v2

c2

)
+m · av2

c2(
1− v2

c2

) 3
2

= γ3 ·m · a 0.4

a = s̈ =
V · e
d ·m

(
1− ṡ2

c2

) 3
2

0.3

Ansatz : s(t) =
√
i2 · t2 + k − l with boundary conditions s(0) = 0, v(0) = 0 0.1

→ s(t) =
c

V · e

(√
e2 · V 2 · t2 + c2 ·m2 · d2 − c ·m · d

)
0.2

s = d→ T =
d

V · e

√(
V · e
c

)2

+ 2V · e ·m 0.2

T = 218ns 0.1
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classical solution: [0.4]

F =
V · e
d
→ acceleration a =

F

mp
=

V · e
mp · d

0.1

d =
1

2
· a · T 2 → T =

√
2d

a
0.1

And hence for the time

T = d ·
√

2 ·mp

V · e
0.1

T = 194ns 0.1

10

Ira
nPhO.ir



Part B. Particle identification (4 points)

B1 (0.8 pt) Express the particle rest mass m in terms of the momentum p, the flight
length l and the flight time t assuming that the particles with elementary charge e travel
with velocity close to c on straight tracks in the ToF detector and that it travels perpen-
dicular to the two detection planes (see Figure 2).

Solution B1: [0.8]

with velocity

v =
l

t
0.1

relativistic momentum
p =

m · v√
1− v2

c2

0.2

gets

p =
m · l

t ·
√

1− l2

t2·c2

0.2

→ mass

m =
p · t
l
·
√

1− l2

t2 · c2
=

p

l · c
·
√
t2 · c2 − l2 0.3

Alternative [0.8]

with flight distance: l, flight time t gets:

t =
l

(c · β)
0.1

relativistic momentum
p =

m · β · c√
1− β2

therefore the velocity:
β =

p√
m2 · c2 + p2

0.2

insert into the expression for t:

t = l

√
m2 · c2 + p2

c · p
0.2

→ mass:

m =

√(
p · t
l

)2

−
(p
c

)2
=

p

l · c

√
(t · c)2 − (l)2 0.3

non-relativistic solution: [0.0]
flight time: t = l/v velocity:

v =
p

m
→ t =

l ·m
p

and m =
p · t
l

this solution gives no points 0.0
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B2 (0.7 pt) Calculate the minimal length of a ToF detector that allows to safely distin-
guish a charged kaon from a charged pion given both their momenta are measured to be
1.00 GeV/c. For a good separation it is required that the difference in the time-of-flight
is larger than three times the time resolution of the detector. The typical resolution of a
ToF detector is 150 ps (1 ps = 10−12 s).

Solution B2: [0.7]

Flight time difference between kaon and pion

∆t = 450ps = 450 · 10−12s 0.1

Flight time difference between kaon and pion

∆t =
l

cp
(
√
m2
π · c2 + p2 −

√
m2
K · c2 + p2) = 450ps = 450 · 10−12s 0.2

→ l =
∆t · p√

m2
K + p2/c2 −

√
m2
π + p2/c2

0.2

√
m2
K + p2/c2 = 1.115 GeV/c2and

√
m2
π + p2/c2 = 1.010 GeV/c2

l = 450 · 10−12 · 1

1.115− 1.010
s GeVc2/(GeVc) 0.1

l = 4285.710−12s · c = 4285.7 · 10−12 · 2.998 · 108m = 1.28m 0.1

Penalty for < 2 or > 4 significant digits -0.1

Non-relativistic solution: [0.3]

Flight time difference between kaon and pion

∆t =
l

p
(mK −mπ) = 450ps = 450 · 10−12s 0.1

length:

l =
∆tp

mK −mΠ
=

450 · 10−12s · 1GeV/c
(0.498− 0.135)GeV/c2

0.1

l = 450 · 10−12/0.363 · cs = 450 · 10−12/0.363 · 2.998 · 108m

l = 3716 · 10−4m = 0.372m 0.1

Penalty for < 2 or > 4 significant digits -0.1
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B3 (1.7 pt) Express the particle mass as a function of the magnetic flux density B, the
radius R of the ToF tube, fundamental constants and the measured quantities: radius r
of the track and time-of-flight t.

Solution B3: [1.7]

Particle is travelling perpendicular to the beam line hence the track length is given by
the length of the arc
Lorentz force → transverse momentum, since there is no longitudinal momentum, the
momentum is the same as the transverse momentum
Use formula from B1 to calculate the mass
track length: length of arc

l = 2 · r · asin
R

2 · r
0.5

penalty for just taking a straight track (l = R) -0.4

partial points for intermediate steps, maximum 0.4
Lorentz force

γ ·m · v2
t

r
= e · vt ·B → pT = r · e ·B 0.4

partial points for intermediate steps, maximum 0.3
longitudinal momentum=0 → p = pT 0.1

momentum
p = e · r ·B 0.1

m =

√(
p · t
l

)2

−
(p
c

)2
= e · r ·B ·

√√√√( t

2r · asin R
2r )

)2

−
(

1

c

)2

0.6

partial points for intermediate steps, maximum 0.5

Non-relativistic: [0.9]track length: length of arc

l = 2 · r · asin
R

2 · r
0.5

penalty for just taking a straight track (l = R) -0.4

partial points for intermediate steps, maximum 0.4

m =
p · t
l

=
e · r ·B · t
2r · asin R

2r

=
e ·B · t

2 · asin R
2r

0.4

partial points for intermediate steps, maximum 0.3
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B4 (0.8 pt) Identify the four particles by calculating their mass.

Particle Radius r [m] Time of flight [ns]
A 5.10 20
B 2.94 14
C 6.06 18
D 2.32 25

Solution B4: [0.8]

Particle arc p p pt/l pt/l pt/l Mass Mass
[m] [MeV

c ] [mkgs ] [MeV s
cm ] [MeV

c2
] [kg] [MeV

c2
] [kg]

10−19 10−6 10−27 10−27

A 3.786 764.47 4.0855 4.038 1210.6 2.158 938.65 1.673
B 4.002 440.69 2.3552 1.542 462.2 0.824 139.32 0.248
C 3.760 908.37 4.8546 4.349 1303.7 2.324 935.10 1.667
D 4.283 347.76 1.8585 2.030 608.6 1.085 499.44 0.890

Particles A and C are protons, B is a Pion and D a Kaon
correct mass and identification: per particle 0.2
penalty for correct mass but no or wrong identification for 1 or 2 particles -0.1
penalty for correct mass but no or wrong identification for 3 or 4 particles -0.2
wrong mass, correct momentum:per particle 0.1
wrong momentum, correct arc for 3 or 4 particles 0.2
wrong momentum, correct arc for 1 or 2 particles 0.1

non relativistic solution m = pt/l Particle identification is not possible [0.4]

Particle arc p p m = p · t/l m = p · t/l m = p · t/l
[m] [MeV

c ] [mkgs ] [MeV s
cm ] [MeV

c2
] [kg]

10−19 10−6 10−27

A 3.786 764.47 4.0855 4.038 1210.6 2.158
B 4.010 440.69 2.3552 1.542 462.2 0.824
C 3.760 908.37 4.8546 4.349 1303.7 2.324
D 4.283 347.76 1.8585 2.030 608.6 1.085

correct mass or correct momentum: per particle 0.1
wrong momentum, correct arc for 3 or 4 particles 0.2
wrong momentum, correct arc for 1 or 2 particles 0.1
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