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GLOSSARY

ADSORPTION: Attachment and bulk transfer of a substance
from a fluid onto a surface.

ATOMIC FORCE MICROSCOPY (AFM): A scanning-probe
microscopy that maps the topography of an interface by scanning
a force sensor over the interface.

ATP: Adenosine triphosphate is a high-energy molecule contain-
ing phosphate used as a cellular energy currency to store transport
and release energy within the cell.

BLOOD PRESSURE: The hydrostatic pressure of blood within
the arteries. In vertebrates, the top number or the systolic pres-
sure, reflects pressure in the arteries when the heart contracts; the
bottom number or the diastolic pressure, is the pressure in the
arteries while the heart fills between beats.

BOTTOM-UP: Building up a complex object from its smaller
components.

CAD: Computer aided design employs hardware and software
for design and technical drawing permitting simulations of
designs without constructing physical prototypes. Using CAD,
components of designs may be reused and standard components
and assemblies generated automatically.

CARDIAC OUTPUT: The volume of blood pumped in an inter-
val by a heart.

Xi
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CAVITY TRANSPORT: Transport of substances within a fluid-
filled or fluid-lined cavity as compared to transport through a
closed circulation.

CMOS: Pronounced sea moss, stands for complementary metal
oxide semiconductor.

CHIP: An electronic component or a system of semiconductor
components containing one or a group of electronic functions in
an integrated circuit on a substrate of silicon.

CHITIN: The tough, protective, semi-transparent substance,
mostly of a nitrogen-containing polysaccharide, that is the prin-
ciple component of arthropod exoskeletons.

CLOSED CIRCULATION: A heart pump and its blood vessels:
arteries, arterioles, capillaries, and veins.

COMPLEXITY or COMPLEX SYSTEM: Features include
parts couple with each other in a network of small-world or scale
free topology; relationships between parts are nonlinear; systems
are open and exist in a thermodynamic gradient, dissipate energy,
and contain feedback loops. Initial conditions and small pertur-
bations can determine the evolution and history of complex sys-
tems, and these systems may be nested and evolve over multiple
potential paths. Because boundaries of complex systems may be
indeterminate, observers must decide where these lie.

CUTICLE: An insect’s hard outer body wall.
DIASTOLE: The resting or filling phase of the cardiac cycle.

EFFICIENCY: The ratio of the work a system performs to the
energy the system expends in performing the work.

ELECTRON TRANSPORT CHAIN: Biomolecular machinery
within cell membranes and mitochondria that couples flows
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of electrons to proton pumps converting energy from sugars
into ATP.

EMBOLUS: A clot traveling through a blood vessel that lodges
and obstructs blood flow downstream from the clot.

EMERGENCE: A large-scale unprecedented and unanticipated
group behavior we cannot explain in terms of a system’s parts,
that appears at many different levels of organization. The num-
ber of interactions between a system’s components increases with
the number of components. Some interactions, however, may be
negligible or may cancel each other out or create noise and thereby
work against the emergence of system behavior. Emergence may
not signify complexity, but emergence may help distinguish which
laws and concepts apply to macroscopic scales and which to
microscopic ones.

FEEDBACK: Moment-to-moment interaction between a con-
troller and what it controls. In NEGATIVE FEEDBACK a
disturbance causes the system to return towards a set point; in
POSITIVE FEEDBACK a disturbance compels the system to
progress rapidly towards a maximal or minimal state and then
remain there.

FRACTAL: Short for fractal dimension. A broken geometric
pattern seen in coastlines, terrain, clouds and other patterns
exhibiting a simplifying invariance under scale in that geometries
repeat themselves at different scales of magnification or resolu-
tion and so cannot be represented by a single classical geometric
figure; an object whose Hausdorff dimension is not an integer.

GRAPH: A network using the notation V, E meaning a graph
having a vertex or node set V and an edge or link set E. Any edge
is incident with the two nodes that define it, and the endpoints
are said to be adjacent nodes. See Chapter 3: “Beauty Before the
Beast,” for specific graphs and concepts.
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HEMOCOEL: The internal body cavity of an insect containing
fluid hemolymph and the internal organs of the body.

HEMOLYMPH: The watery blood of an insect. Does not con-
tain hemoglobin or transport oxygen.

HORMONE: A chemical messenger produced at one location
that travels to other parts of the system and attaches to a receptor
where it has an effect thereby eliciting responses at a distance from
its source. Depending on the receptors and machinery activated,
one hormone may perform numerous functions.

LAB-ON-A-CHIP: A microfluidic chip for clinical diagnosis and
screening minute quantities of dissolved compounds in which lig-
uids traverse micro-channels.

MALPHIGIAN TUBULES: The excretory organs of an insect.

MARKOYV CHAIN: The sequential evolution of a system where,
if we are in state 1 we move to state j with probability Pij after one
unit of time.

MASKING: A mask or “photomask” is a square glass plate hav-
ing a patterned emulsion of metal film on one side. The mask is
aligned with a silicon wafer so that the pattern can transfer onto
the wafer. Each succeeding mask after the first one must be aligned
precisely over the previous pattern. Once a mask has been aligned,
the photoresist is exposed through the pattern on the mask using
high intensity ultraviolet light.

MEMS: Microscale mechanical devices that combine electronics
to make integrated electromechanical actuators for ink jet printer
heads, chemical sensors and scanning probe microscopy. Devices
range in size from a few micrometers to a few centimeters.

MESOPHYSICS: Quantum behavior of samples or devices con-
taining a very large number of atoms. A continuous but nebulous
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area bridging between mechanics, biophysics, optics and mag-
netism where mesoscopic phenomena occur such as in the work-
ings of a macromolecular motor but where mechanical behavior
may be understood at the quantum level.

METASYSTEM TRANSITION (MST): A process creating a
higher level of organization, the metalevel, often controlling a
web of smaller, more subservient sub-systems.

MICROFLUIDICS: Refers to the science behind research and
development of microscale devices that contain chambers and
tunnels managing nano and picoliter volumes of fluids. Such
devices operate in ink jet printer heads, nucleic acid analyzers,
labs on chips, and micro-environmental and micro-hematology
analyzers.

MICROFLUIDIC CHIP: A plate of silica having narrow chan-
nels for moving fluids. Measures chemistries and extracts
molecules from solution.

MINIMAL SURFACE: A surface of minimal area having mini-
mal surface tension. The least area spanning a given contour.

MODEL: A simplified hypothetical description of a complex
entity or process.

MOORE’S LAW: An empirical trend for the number of circuits
per chip to double every eighteen months.

NAD Nicotinamide adenine dinucleotide is a coenzyme undergo-
ing cyclical reduction to NADH+ and oxidation to NAD. Acts
as a diffusible substrate for cellular dehydrogenase enymes to pro-
vide reducing equivalents for the electron transport chain.

NANOMACHINES: Mechanical devices so small that their parts
are single molecules.

NANOMETER: One billionth of a meter. (Units: nm.)
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NANOTECHNOLOGY: The technology of building electronic
circuits and devices from single atoms and molecules. Devices are
less than 100 nanometers in size. Biomolecular nanotechnology
utilizes biomolecules as components for machines.

NEMS: Nanoscale mechanical devices.

OPEN CIRCULATION: The invertebrate circulation in which
movements of the body assist open pumps to propel blood or
hemolymph over and around organs in an open cavity that is
usually called a hemocoel but in some groups a coelom.

PARALLEL PROCESSING: An architecture that performs
more than one operation at the same time.

PEDICLE: The wasp’s waist or connector between the thorax
and abdomen of an insect.

PERCOLATION THEORY: Involves a percolation threshold, p,
when p defines an average degree of connectivity between arbi-
trary subunits such as coffee grounds. When p equals zero, all
subunits are totally isolated from each other as when the grounds
are dry. Wetting the grounds randomly creates connections so p
increases. For p less than the percolation threshold only isolated
non-spanning clusters exist, and the moist patches remain local-
ized. The percolation threshold is the point at which a spanning
cluster first appears. As a spanning cluster forms, coffee starts
to drip. When p equals one, all subunits connect to some maxi-
mum number of neighboring subunits, and the system percolates
in that connected paths traverse the entire system linking one sub-
unit with the next across the spanning cluster. The hemocoel in
which fluid accumulates and resorbs may resemble a percolation
model.

PERFUSION PRESSURE: The difference between arterial and
venous pressures across an organ or capillary bed.
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PIPELINING (PIPELINE PROCESSING): Permits simultane-
ous or parallel processing and refers to overlapping operations
by envisioning the sequence of activities within a conceptual pipe
wherein all stages of the pipe process simultaneously. As one
instruction executes, the next instruction is decoded.

PHOTOLITHOGRAPHY: The process of transferring geomet-
ric shapes on a mask to the surface of a silicon wafer to form a
chip. Process involves first cleaning the wafer, forming a barrier
layer, applying resist, soft baking, aligning the mask, exposure
and development followed by hard baking.

POWER DENSITY: A measure for scaling mechanical power.
Power is proportional to force times speed that is proportional
to area, so power density is proportional to power divided by
volume. Because power is the amount of work available this idea
expresses work per unit volume of mechanical or electrical energy
available.

POWER LAW: A power law relationship exists between two
scalars, x and y, when y equals ax"k where a is the constant of
proportionality and k, the exponent, are constants. Power laws
form straight lines on a log-log graph because taking logs of both
sides shows log(y) equals klog(x) + log(a) forming the equation
for a line: y equals mx + k. Power laws describe the scaling invari-
ance in many natural systems.

QUANTUM COMPUTER: A computer exploiting quantum
mechanical phenomena such as superposition and entanglement.

QUANTUM DOT: An object so small, between two and ten
nanometers, that adding or removing an electron results in a single
observable change.

QUBIT: The quantum-computing analog to a bit.

RESIST: A material or coating that protects a surface from
chemically reacting.
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RESOLUTION: The minimum distance between two objects
that can be distinguished in microscopy or the minimum spacing
between two features that can be fabricated using lithography.

REYNOLDS NUMBER: A dimensionless combination of vari-
ables important in analyzing liquid flows when there is a substan-
tial velocity gradient or shear. The number indicates the relative
significance of the viscous effect compared with the inertial effect.
Compare with Marangoni number. (Note: Balasubramaniam, R.
and R. S. Subramanian (2004). Thermocapillary migration of
a drop: an exact solution with Newtonian interfacial rheology
and stretching/shrinkage of interfacial area elements for small
Marangoni numbers. Ann. N. Y. Acad. Sci. 1027: 1-8.) During the
thermocapillary migration of a drop, the drop’s surface under-
goes stretching and shrinking as the drop moves. As surfactant
molecules adsorb onto the interface of the drop, the surface ten-
sion in the interface changes, and this changing area of interface
contacting the liquid in turn changes how energy moves in the flu-
ids adjoining this interface. As the drop’s interface stretches, the
drop’s internal energy increases as its area increases. Adjoining
fluids must supply this energy and are consequently cooled. Con-
versely, a shrinking surface element loses energy to the adjacent
fluid and consequently warms it. In a moving drop, interfacial
areas stretch in the forward parts of the drop and shrink in the
rear half causing the surface temperatures of the drop to vary. This
interesting model demonstrates a changing convective transport
of momentum as values of the Reynolds number vary and reveals
one of the numerous intimate relationships between surfaces and
the fluids passing over them.

SAFETY FACTOR: Load tolerance.

SCALE FREE NETWORK: A complex network where some
nodes are highly connected hubs while most nodes have fewer
connections.
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SCALING: As the size of a system changes the relationships
among its components must adjust so the system continues func-
tioning. Scaling maintains these relationships over a wide range of
orders of magnitude. Such self-similarity is called fractal, and the
relationship among the variables is described by a fractal dimen-
sion or power function.

SCANNING TUNNELING MICROSCOPE: A device in which
a sharp conductive tip moves over a conductive surface, typically
at a nanometer or less, creating a tunneling current. Commonly
one keeps the voltage constant and monitors this current. Raising
or lowering the tip above the surface draws an atomic map of the
surface revealing its combined topography and electronic prop-
erties. The STM can be used to manipulate atoms and molecules
on surfaces.

SELF-ASSEMBLY: An integrative mechanism in which compo-
nents spontaneously assemble while bouncing in a liquid or gas
phase permitting stable structures of minimum energy to form. An
assembler’s process would theoretically not require added input
of external information or energy.

SELF-ORGANIZED CRITICALITY (SOC): Embodies the
idea that complex behaviors develop spontaneously in certain
many-body systems whose dynamics change rapidly. Example:
avalanches in a sand pile.

SELF-SIMILAR: Objects or systems where magnified pieces
resemble the whole. An example is a cauliflower.

SEMICONDUCTOR: A substance or object having conductive
properties between those of a conductor and an insulator.

SETPOINT: The goal for a feedback control system.

STROKE VOLUME: The volume of fluid or blood ejected per
stroke from a pump or heart.
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SURFACTANT: Short for surface-active agent; a molecule that
lowers surface tension.

SYSTOLE: The contraction or pumping phase of a heart’s cycle.

TOP-DOWN: Molding, carving and fabricating small materials
by using larger objects as tools.

TRACHEAE: The larger tubes of the tracheal system of insects
consisting of internal conduits that convey oxygen in air from
openings in the cuticle to all parts of the body.

TRANSMURALPRESSURE: The force across a wall tending to
distend or collapse it. Transmural pressure equals pressure inside
the wall minus the pressure outside the wall.

VLSI: Very large scale integration permitting more than one
hundred thousand transistors on a chip.



PREFACE

‘No honeycomb is built without a bee
adding circle to circle, cell to cell,

the wax and honey of a mausoleum,

this round dome proves its maker is alive.’

Robert Lowell

At times our restless imaginations seek insights unencumbered by
what we definitely know. We observe nature then read and wander
in imaginary spaces. We then return to nature to see if some of the
things we imagined are there and whether there or not, we pose
questions. We realize everything we see connects with so many
things we do not.

This book is like this.

We know so little about the inner workings of the small-
est insects. But insect ideas may serve us best when we design
our smallest tools and machines. This book is not a complete
study. So please do not approach it as such. It is a farrago, a
potpourri of related ideas and some of their ramifications. To
experts in the disciplines touched upon, coverage may appear
elementary, but because this book tries to pose new questions
to entomologists, systems biologists, physiologists, mathemati-
cians, engineers and computer scientists and anybody else having
interest, its scope must be general. I hope everyone will read for
a big overview of how bees move things around in their bod-
ies and afterwards are sufficiently motivated to have their own
thoughts. How much of the imaginary does our real world exclude
anyway?

XXi



XXii Preface
Origins

This book arose from a paper, ‘Insects Separate Diffusing Parti-
cles in Parallel,’ presented at the 2001 Fourth International Con-
ference on Modeling and Simulation of Microsystems. Discussions
of how the circulations of insects and other invertebrates trans-
fer heat, mass and momentum within microfluids through phase
interfaces of complicated geometries at sizes important for devel-
oping our own compact energy and chemical systems suggested
to me that many groups searching for similar grails did not talk
to each other. Systems modelers, computer scientists, mathemati-
cians and engineers were largely unaware of how insects did the
things smaller and better that they were trying to do. On the other
hand, entomologists and biological “types” were conspicuous by
their absence from this meeting. Hence this book.

James Lawry
California Academy of Sciences, San Francisco



Chapter one

WHAT’S IN THIS BOOK

Introductory Note

I hope many people from numerous disciplines will leaf through
and perhaps even read this book. Because mathematics and espe-
cially equations discourage so many readers, I present quantitative
ideas verbally, but for more formal coverage, I annotate several
seminal papers and general references in the references section.
I also omit tables, graphs and many figures, because more up-
to-date and deeper examples are online. I hope The Incredible
Shrinking Bee stimulates diverse reading, heated discussions, and
many new ideas.

Why Study Bees?

This book shows how we may use bees and other insects as models
for our smallest machines. Insects and spiders are all smaller than
our smallest ‘stand alone’ devices. Some can pass through a nee-
dle’s eye. Because insects circulate their blood differently than we
do ours, insects can be small. Bees are master miniaturists. Might
we ever create machines as small and as competent as bees?

Vector Competency

Apart from suggesting ideas for micro-machines, understand-
ing transport of fluids within insects may have enormous health
implications. ARBO or arthropod-borne diseases kill people and

1
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animals. All major groups of pathogens have evolved into arthro-
pod vectors, and at least six groups of arthropods evolved blood
feeding. We have today arthropod-borne viruses, tick-borne rick-
ettsial diseases, and mosquito-borne malaria and yellow fever.
How well an insect transmits disease is its vector competency.
Vector competency depends upon biochemical, physical, genetic
and environmental factors. Interfering with a vector’s competence
1s one way to control the vector as well as spread of the disease.

Role of Circulation in Disease

Insectsand ticks counter a host’s blood clottingmechanism, and to
be successfully transmitted, parasites must overcome biochemical
and physical barriers. Usually arthropods ingest pathogens from a
vertebrate host during a blood meal. Pathogens then emerge from
the blood meal in the gut of the arthropod and then pass through
the wall of the gut into the cavity of the circulatory system: the
hemocoel. Within the cavity of the hemocoel, hemolymph orinsect
blood circulates the pathogens throughout the body and to the
salivary glands. The pathogens invade the salivary glands, and the
arthropod’s next blood meal transmits the virus into its victim.

For example, for viral infections such as dengue, RNA viruses
persist in nature because blood-eating arthropods keep passing
viruses to new hosts. The viruses multiply in the hosts’ blood to
very high numbers, so when the next arthropod vector ingests
them with its meal, the viruses then multiply in the tissues of the
arthropod before passing on to a new vertebrate host.

A better-known example is malaria. Soon after a mosquito
ingests a blood meal, male and female malarial gametes emerge
and join to form zygotes within the blood in the gut of the
mosquito. After about two days, the zygotes penetrate the wall
of the midgut of the mosquito where in about a week they
become oocysts. Inside the oocysts, the parasites multiply into
thousands of sporozoites. Then on about day twelve, the sporo-
zoites enter the mosquito’s hemocoel where the parasites flow with
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the hemolymph to invade the salivary glands, so that during the
next blood meal, the mosquito injects malarial sporozoites into
its new host.

Were we to understand hemolymph’s circulation more deeply,
we might physically block parasites in vectors and reduce vec-
tor competency. Malaria kills more than one million people a
year. Most are in Africa: pregnant women and children under
five. Despite new drugs and better mosquito nets, deaths may
be increasing because of breakdowns in public health systems.
Moreover, mosquitoes eventually develop resistance to DDT and
all other chemical pesticides used on them so far (Ref: Arthropod
Vectors).

Insect Circulation Differs From Ours

Insect blood does not carry oxygen. Instead, insects use separate
conduits called tracheae to transport oxygen. These little tubes
convey atmospheric oxygen directly to cells and muscles through
tiny portholes in their skeletons. Keeping oxygen transport sepa-
rate from insect blood sets a maximum upper limit to how large
insects can be; the largest were about thirteen inches. Compart-
mentalized circulatory and respiratory systems permit insects to
be very small.

Millions of Years of Research and Development

Insects arose at least 350 million years ago, and over deep geo-
logical time the trial and error processes of evolution created the
diverse bodies of present day insects. Evolution adapted insects
to their changing world. Bodies of today’s insects compared with
those of fossils are miniaturized and more efficient. We know little
about the lives of the earliest insects, as we know so little about life
in the Devonian Period of the Paleozoic Era. The earliest insects
were large. They crawled, could not fly, and were adapted to cold.
Even though the world warmed, some ancient traits survived. For
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example, adult midges of one species can still walk on ice with
their bodies at minus eighteen degrees centigrade. Evolutionary
R and D provide today’s scientists and engineers with a plethora
of highly varied, self-contained, fuzzy black boxes that are cheap
to produce, versatile and robust. If we learn what’s inside these
boxes and how they work, we may plagiarize insect ideas, modify
and adapt the insect plan and build smaller machines.

Prototypes

To build small, we must first see the world and learn about it anew
‘through insect eyes.” As mammals, we often think ‘mammalianly’
and imagine that other animals do things the way we do them, so
when we design our devices, we may first try to make them too big.
We then may try to shrink our larger machines. But in their small
world, insects face different ‘issues.” For example gravity poses lit-
tle problem; insects fall without injury and can land upside down
on ceilings, but water is a menace. Surface tension traps unwary
drinkers requiring insects to have long legs and special mouth-
parts to avoid the dangers of drink. Insects have mastered small.

Masters of Small

Each bee 1s a compact packaged web of connected and closely
interwoven subsystems. Each subsystem fits perfectly together
with all her others, as insects do not tolerate extraneous redun-
dancy. Extra weight only increases need for energy, and fuel is
expensive. As knowledgeable wilderness survivalists, bees reduce
weight wherever possible. Unlike many of our human miniature
systems, bees remain unattached by wires or tubes to batteries or
fuel reservoirs. Instead, bees carry their fuel close to their motors.
Without being tethered, bees fly, crawl and behave socially. Hav-
ing their skeletons on the outside leaves large unobstructed spaces
inside their bodies.
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Inside, a bee has a built-in pilot, motors driving powerful
wings and legs, and a circulating supply of fuel. Her body special-
izes in circulating fluids and gases through pumps and tubes. As
her respiratory tubes deliver oxygen directly to where it is needed,
she may slowly circulate her blood that not only distributes fuel
but also dissipates wastes, heat and carbon dioxide.

A bee coordinates her inside activities with her outside world.
Eyes, chemical receptors and hairs sensitive to contact and pres-
sure direct her nervous system to create patterns of electrical mes-
sages. These messages pass to muscles and glands, signaling them
to contract or squirt. Although a few integration centers such as
her brain and other neural centers coordinate some of her activ-
ities, she mostly employs many local control centers that are not
hard-wired to a central processor to tell her body parts what to
do when her life changes.

Bee Fluid Dynamics

If we learn how blood moves inside bees, we should be able to
produce similar flows within our own fluid-filled systems built
around other ideas stolen from insect circulations. Our model
bees could then show us how best to create and exploit control
and delivery systems in our smallest devices.

How Can Bees Be So Small?

This book introduces the bee’s circulation that can be more useful
than the vertebrate system as a model for our small mechanical
systems. The insect body is versatile. It shrinks easily, but ours is
built too big to shrink very far. Insects have evolved a way to cir-
culate blood in their bodies using a system that also functions in
larger arthropods, like crabs and lobsters, but also, not only does a
bee’s circulation work when shrunk, but it works best in the small-
est forms. In fact, the smaller an insect is, the better its circulation
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appears to work. Before we show why bees can be small, let’s see
why we cannot shrink a woman down as small as a bee.

The Non-incredible Non-shrinking Woman

Like bees we also are pump-tube systems. Unlike bees, however,
our pump-tube vertebrate circulations include our lungs. Com-
pared to insects, our vertebrate circulation is a ‘closed’ system
while the bee’s circulation is ‘open.’ A closed circulation has arter-
ies, capillaries and veins. In animals with backbones, a heart-
pump squeezes blood through tubes that go first to gills or lungs,
and then this blood, now filled with oxygen and still staying within
tubes, goes out all over the body before coming back to the heart.
A closed tubular system like ours made small enough to supply
an insect would not work.

Printer Analogy

Why not? Imagine a printer having plastic tubes and a head of
driving pressure to transport ink from a reservoir to where ink
is needed. Were this printer shrunk down to the size of a bee,
the pump-tube system would stop distributing ink. The bores of
the tubes would now be too small, and the resistance the tubes
would place on the pump would easily overcome any pressure
the pump could generate to force fluid through the narrow bores.
Also a shrunken pump would not work. The smaller a pump is,
the less force the pump can produce, and the smaller the volume
the pump can eject each time it squeezes. So how do insects move
fluids around their bodies and still manage to be small?

Organs Float in a Barrel of Blood

Insects and spiders are hollow. Their skeletons are on the outside,
and the big space inside them contains their blood. This cavernous
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space also houses their organs. In some large insects and caterpil-
larsit’s like apples in a barrel of blood. The body spaceis the ‘space
of blood’ or the hemocoel, and the organs, mostly tethered, float
in the blood. The hemocoel contains a variable amount of watery
fluid together with blood cells and dissolved nutrients. This blood
or hemolymph washes over and bathes the insect’s organs. How
is this possible? Don’t insect organs need to breathe? Yes, they do
but not through their blood.

Open Pumps Slosh Insect Blood

One or more open pumps circulate blood in the hemocoel. An
open circulation lacks capillaries and veins. It’s more like a swim-
ming pool hooked to a filter pump that circulates the water. Imag-
ine yourself standing in a pool of water pumping a foot pump one
uses to fill air mattresses and plastic balls. You supply the energy
for the pump. As your foot rises, the pumping chamber expands
drawing water in through the inlet valve. When your foot descends
and squeezes the water trapped in the pump, the increasing water
pressure closes the inlet valve that prevents back flow from the
pump. As the water pressure in the chamber continues to increase,
the outlet valve opens. Now water ejects into the pool. If the pool
is initially still, but you keep pumping, water begins to circulate
slowly. This open pump system lacks tubes for distributing and
collecting water, but it circulates the pool.

The Insect Pump: The Dorsal Vessel

The largest pump in the insect hemocoel is the dorsal vessel
(Figure 5.2 in Chapter 5). The dorsal vessel is a small-bore tubu-
lar pump running along the top of the abdomen, and like the
foot pump, the dorsal vessel is open. This heart-pump circulates
the watery hemolymph of the hemocoel and operates in concert
with one or more, smaller secondary pumps at the bases of wings
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or legs where these join the body. The accessory pumps direct
blood from the hemocoel into the legs and antennae supplying
their muscles before it drains back into the hemocoel.

Unidirectional Flow in the Dorsal Vessel

As in the foot-pump, valves in the dorsal vessel encourage flow
in one direction, and in bees, this direction is most often from
abdomen to head. Blood from the hemocoel enters the dorsal
vessel through little holes all along its length. Then moving rings
of muscle, that resemble the waves of peristalsis that push food
through an intestine, push the blood forward or backward in the
dorsal vessel to a new location where blood leaks out again into
the hemocoel. Contracting muscles inside the hemocoel that move
wings and legs, together with the jiggling of walking and the shak-
ings of pitching and yawing as she walks or flies, enhance our bee’s
circulation. In this way she circulates her blood but keeps it at a
low pressure.

Where Does Her Blood Go?

Blood from the dorsal vessel enters her head and dribbles out over
her brain. Blood then flows backwards through the hemocoel of
her head and body contacting her muscles, digestive tract and
glands. Blood entering the appendages supplies muscles, sense
organs and glands of the legs, antennae and wings. Afterwards,
blood returns to the dorsal vessel for the next squeeze. Now what
does her blood do?

A Marxian Distribution

The blood of insects is not red because it has no hemoglobin and
does not carry oxygen. Hemolymph is mostly water and dissolved
salts. Cells, digested food products, hormones, wastes, antibodies
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and even parasites and viruses travel with the hemolymph. As
the hemolymph washes over and contacts each organ, each organ
of the body takes the things it needs from the blood and also
contributes waste substances back into this same blood in a truly
Marxian manner: to each organ according to its need; from each
organ according to its ability.

Blood Paths Stay Short and Mostly Outside Tubes

Remember there is a huge advantage in having a hemocoel. In the
cavity of the hemocoel there is no need for blood going between
two places to return to the heart each time in order to be able to go
somewhere else. Short distances in the hemocoel and the ability
of blood to move to any point in the hemocoel from any other
point without going back to the heart or passing through a tube
make it possible for substances to distribute and follow shorter
paths than the blood in a vertebrate could do.

Low Blood Pressure Promotes Longevity

Most of the time blood in the hemocoel remains outside tubes
and at low pressure. Having a low blood pressure when blood
volume is so tiny means that small holes in the skeleton do not
always cause exsanguinations. In this way a bee can lose a leg, but
its blood can still distribute and collect things directly from the
organs while she now on five legs limps away.

Hemocoels Adjust to Changes in Volume

During hot periods when water is scarce, insects retain water
within their tissues, so there may be less blood inside the hemo-
coel. Shrinking the volume of circulating blood in a vertebrate
might reduce blood pressure so much that the heart would fail.
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Low-volume heart failure does not plague insects. In fact, the
opposite happens, and exchange improves. With a reduced vol-
ume of blood, the hemocoel becomes more efficient. In a smaller
fluid volume, dissolved materials must now confine themselves to
move within thin, moist films that line the external surfaces of
organs and the walls of the cavity. Here receptors that are on or in
the surfaces still can respond to changes in concentrations telling
the system which materials and metabolites are to be removed or
added to these flows. Because there is less fluid now, distances for
travel have shortened, so fewer molecules get lost.

Zoom In

At microscopic dimensions, surface contours and asperities
project into the hemocoel. What appears to be just a simple wet
flat interior surface, at high magnification includes geometries
that change as the volume of fluid in the bee falls during desic-
cation and rises when she feeds. These microscopic interruptions
within an organ’s contour can determine how blood flows over
organs and surfaces. It is what happens when a swiftly flowing
creek dwindles in the summer to a trickle; now a greater portion
of what flow remains contacts the stones. What at full hydration
is a three-dimensional volume in drier times becomes smaller but
also thinner and thinner, behaving more and more as would a
moist almost two-dimensional film.

Control Points

To move dissolved substances from the hemocoel into and out
of cells, micro-quantities of liquid and solid materials, often
together, must traverse complicated phase interfaces having
complex geometries of their own. Control points for choices
occur at these boundary points. Individual local controllers acting
simultaneously over all interfaces together throughout the bee
determine what the entire system does as a whole.
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A Mobile Service Economy

Because some organs are free to move within the hemocoel, they
can drift with the flow to places where they are needed. For exam-
ple, the bee’s kidney or the Malpighian Tubules are long flexible
tubes. Resembling a hose attached to a pipe at one end, each tubule
floats in and is free to move with the hemolymph. The tethered
ends attach to and feed into the alimentary canal. Wastes enter
the free ends of the tubules and move along each tubule to exit
into the alimentary canal. During drier periods, the free ends of
these Malpighian Tubules slide around eventually coming to lie
in the fluid filled gutters between organs. Services have moved to
where they are needed.

Hemocoels Shrink But Still Coordinate

The properties of the changing thickness of the film of hemolymph
help us understand how hemocoels can shrink without destroy-
ing the bee’s coordination of services. Analogy: imagine a series of
machines connected by wires in a room. As the room shrinks the
machines squeeze closer together, and the wires begin to take up
more and more of the decreasing volume, until at very small vol-
umes when the machines are closest together, the spaces between
the machines now hold mostly wires.

However, in the hemocoel the organ “parts’ of the system select
what they need independently. Organs ‘decide’ on their own what
each needs and what wastes to eliminate without the need of a
large heavy brain and a system of nerve-cables to coordinate their
behaviors. Because blood moving in the hemocoel transfers heat,
mass and momentum to all parts of the bee without need of a cen-
tral controller, an engineered model of a hemocoel might excel at
sorting and distributing different cells and molecules, let’s call
them scalars, over space and time. A hemocoel model would be
incredibly space and time efficient. Why? Because as our mod-
eled hemocoel shrinks, and its circulating volume of hemolymph
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gets smaller, the distances blood must travel between pick up and
delivery points shorten, so that the distribution-collection system
becomes more efficient the more it is shrunk.

Why Model Hemocoels?

We might model hemocoels because hemocoels sort and synthe-
size, and because their control is diffuse, hemocoels avoid point
defects. Now let’s see what this means.

Sorting

The micro-mechanical subsystems of a hemocoel when modeled
or copied into future devices, may eventually be able to sort indi-
vidual molecules from moving mixtures of different molecules,
possibly to provide flows of input materials to arrays of systems
oriented in space. Arrays may be a single surface or any number
of layers. Our arrays then in turn might process their molecules
linearly or in parallel in a deterministic manner. Bees linearly as
well as parallel process recycled subunits of chitin during molt-
ing to make new cuticle. In our own machines, newly synthesized
molecules might be collected together to form or accrete into
complex floating or stationary patterns of components that then
might unite forming new structures.

Diffuse Control

The local active surfaces of the hemocoel prevent obstructions.
Theoretically at least, control of the hemocoel may occur along
any boundaries where organs contact the hemolymph. ‘Choices’
are at any points on these boundaries. Taken together, places
where absorption and elimination from organs and cells occur
become not only the control points for what goes in and comes
out of each organ, but together these choice points form the
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controller of the entire system as well. By controlling individu-
ally their receptors and surfaces, each cell and organ can regulate
what it takes in and puts out according to immediate localized
need without relying on outside information coming from a dis-
tant central processor. Because control of the hemocoel is largely a
diffused function spread over so much area, the hemocoel remains
controlled and robust even if point blockages develop.

Hemocoel as Microprocessor

It is tempting to think of the hemocoel as a kind of microproces-
sor. After all, because the hemocoel parallel processes, it is great
at what computer scientists call pipelining where all the steps of
a sequence operate concurrently. If each stage is time limited, the
time saved by the hemocoel in pipelining is proportional to the
number of stages. Low level ‘instructions’ given to the ‘hardware’
would include the dynamics of the hemolymph. The number of
stages completed each second as with a processor is the ‘clock
rate, so that a personal computer with a 200-megahertz clock
then executes 200 million stages each second. Many computers
have more stages and higher clock rates. The hemocoel is per-
fectly situated to incorporate ‘suprascalar’ tasks in which it per-
forms more than one set of instructions at each stage. Because
the controlled entities of biological systems are most often cells,
we can imagine a cache or a small amount of memory kept right
at the site of the processor itself. The cache retains the parts of a
program that the system most frequently uses, thereby avoiding
calling on more distant memory repositories.

Safety Factors

Hemocoels have huge loading tolerances or safety factors that
are much larger than those for pump-tube systems. Hemocoels
work when very full or almost empty. Were we to incorporate
such loading tolerances into our models, we could learn what
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redundancies and fail-safe mechanisms we might need to pre-
vent failure of our smallest devices. For example, small machines
are believed to have many locations within them where a point
defect can cause the entire machine to fail. As in the human
circulation, an embolus in a coronary or cerebral artery can
spell disaster. This default assumption, however, does not usu-
ally apply to machines built on the macro-scale, as tolerances
are larger, and many macro-machines can continue to function
despite numerous point defects. Because blockage of the entire
flow through a hemocoel does not occur even with a large num-
ber of point blockages, we might use macro-machine assump-
tions in modeling this small system, so that we might tolerate
even a high density of point defects in our designs. What should
become important for our hemocoel models are the shapes or
configurations of the surfaces inside the hemocoel and their fluid
interfaces.

New Models and New Control Systems

Understanding insect fluid dynamics so as to be able to model a
hemocoel might lend novel insight into creating potentially useful
control systems for our smallest devices by reducing the number
of centralized controllers and their connecting ‘wires.” Remember:
too much fluid in a pump-tube system, like our heart and blood
vessels, can cause pump failure (congestive heart failure) and lead
to overall system failure (death). One human remedy may be to
take a diuretic to get rid of the excess fluid or to increase heart or
pump function with digitalis, but all the organs of the insect hemo-
coel during fluid overload continue to function without tampering
from without. Many regulators of insect physiology are close to
the functions they control because distances inside insects are by
definition short. Short distances mean fewer ‘wires,” shorter wires,
and less weight.
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Shrinking Increases Efficiency

So let’s imagine that we somehow construct a model hemocoel.
Then let’s imagine shrinking our model all the way down to the
size of a bee, and that we watch what happens. Unlike our own
pump-tube system, the smallest hemocoel is most efficient. The
hemocoel mechanism eliminates any need for the pumps to main-
tain a high head of sustained pressure. The system conserves
energy as distances are short, and because it requires minimal
energy to wash the blood over the organs in a large open system
at low pressure. Hemocoels are less prone to interruption by clots.
A clot at one location does not stop blood flowing around it to
other places. In a pump-tube system a clot in a coronary or cere-
bral artery is so devastating because once a critical artery blocks,
there are almost no alternate routes for blood to follow.

Our Bottom Line: Hemocoels Adapt to Changes That
Would Block Closed Pump Tube Systems

Remember, hemocoels can adapt easily to changes of volume that
occur when the cavity is too full or almost empty, but unlike pump-
tube systems, hemocoels are most efficient when fluid volumes are
smallest.

Three D Becomes Two D

Think of it this way. Imagine a large hemocoel shrinking smaller
and smaller. As the fluid volume grows less and less, at one point
this volume eventually becomes just a layer of moisture lining the
inside walls of the cavity and the surfaces of the organs. We can
see an example with the naked eye if we open the hemocoel of a
cicada or locust in the summer. The body cavity is moist inside,
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but there’s not much free fluid. Diffusion of substances within
an almost two-dimensional plane film permits maximal control
of diffusing substances, as these now can never get lost in the
volume of the film. Given infinite time, a randomly moving par-
ticle on a plane contacts every point of the plane. In an almost
two-dimensional layer of fluid the probability of a molecule mov-
ing randomly by Brownian motion from one point to any other
in the surface approaches one. However, in a three-dimensional
volume of fluid things are very different. There are so many ways
for particles to get lost. Not only may a particle diffuse along all
four compass directions, but it can go up and down as well. Now
the probability is closer to a third for a particle leaving a specific
place and arriving at another by diffusion alone. Two-thirds of the
particles never arrive. In three dimensions unless a particle leaves
a place and arrives at its destination in just a few steps, it never
arrives. However, pumping of the dorsal vessel and jiggling from
walking and flying may add convection to diffusion, so having a
heart makes all our chances better.

Now You Have It

So now you know what The Incredible Shrinking Bee is about.
Chapter 1 is the shortest, simplest statement of it. In Chapter 2, we
compare bees with our micro-mechanical devices such as they are.



Chapter two

BEES AND DEVICES

Overview

Bees and devices are machines. Both couple domains of energy.
Both extract energy from the environment, convert it into other
forms of energy and liberate heat. Both bees and devices must
obey the laws of physics. But bees differ from devices in that bees
can reinvent themselves and adjust to environmental changes and
can reproduce. Before we can understand enough to copy nature’s
ways, we must rethink what we mean by emergence, complexity,
scale and energy reserves. Chapter 2 reviews what we can do now:
chips, NEMS and MEMS, and we compare our efforts with bees.
How close to nature are we? How far must we go?

Why Bees?

Insects are successful and adaptable, incredibly so. There are five
to at least ten million species of insects but only forty-two thou-
sand species of vertebrates. Because insects are so small we know
little about them. Unknown insect lives can be incredibly rich
sources for our devices. Insects are robust. They function superbly
in all climates at atmospheric pressures. One indicator of insect
success: global insect biomass is 10'%th kg worldwide, and insect
numbers may be 10'8th assuming each insect has a mean body
mass of 1 mg. In contrast, the biomass of all the world’s people is
only 2 x 10''th kg assuming ~ 5 x 10°th individuals, each with a
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mean body mass of 40 kg averaged over a lifespan (Ref: Dudley,
2000). So bees shower us with good ideas. Bee designs are lean
and optimal as evolution acting over geological time guarantees
economy of motion in return for expending minimum energy. But
how accessible to us are nature’s smaller solutions? How well can
our devices match what insects do?

Dissect to Learn?

Can we take bees apart to see how their pieces work together?
Yes. But dissection creates difficulties. We cannot isolate a wing
and neglect the system of which the wing is just a part. An
entire bee not only manufactured the wing but maintains, directs,
and even twists and adapts it while flying. We’d like to copy
nature, but learning how to transliterate nature’s words is not
easy. For example, we know how silkworms make silk, but can we
make silk?

Silk Dreams

Silk drives engineers to tears. Even though we can sequence silk
genes and can splice these into the DNA of goats and bacte-
ria, synthetic silk is still not mass-produced nor is it a high-
strength material. Silk’s composition is not our problem; we know
the chemistry, but how does the silkworm caterpillar weave the
strands of silk together to give silk its strength as the fibers pass
through the caterpillar’s spinneret? Let’s face it. We cannot build
a spinneret: too many small sticky parts; so it may not be until
we can build many rows of artificial spinnerets that coordinate
their work together without clogging, that silk will become an
industrial material. But all’s not lost. We have spin-off from our
labors, no pun intended. By mimicking the amide linkages in the
chains of polymers as we did with nylon, we made Kevlar. The
aramid fiber of Kevlar even contains hydrogen bonds in liquid
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crystal form similar to a concentrated silk solution that improves
Kevlar’s strength. But real silk? Not yet. We can even shear fibers
as they extrude from our machines, and we can crudely mimic a
spider’s spinneret to produce a tough fiber called rocket wire, so
we are getting there. So we think we comprehend silk-making, its
details, and we can even duplicate parts of it, but to perform as a
bee would require the smallest machines of the greatest delicacy.

What We Can Do

We perform electronic miracles with silicon. But unlike build-
ing microchips and electronics, making bees does not require
exotic materials, extreme energies, high temperatures or pressures.
Nature rarely uses metals or silicon, so producing bee-like devices
from metals and silicon would be astronomically expensive. But
we are saved. Bees self-replicate. Can we get a device to do that?
For a device to self-replicate, it must contain a blueprint for mak-
ing copies of itself as well as the synthetic machinery to assemble
the requisite materials using energy from the environment. So far
no device can. But a DNA computer is on its way. Nonetheless,
our devices, crude as they are, have things in common with bees.

DNA Computer

Theory has it a trillion DNA computers housed in a single test
tube might perform a billion mathematical operations per second
with ninety-nine point eight percent accuracy. In fact, this com-
puter has been theoretically possible for some time. After all, cells
manipulate DNA and RNA and encode information much as a
computer calculates. Now we have a prototype: a programmable
computer in which software, hardware, input and output are
DNA. DNA not only would mean a smaller computer; it could
compute some operations faster than silicon. A regular computer
uses bits that are ones or zeros. Quantum computing utilizes



20 Chapter 2

qubits that can be every possible number in between. Knowing
certain probabilities suggests how qubits will behave. Like DNA,
qubits can link together, and something affecting one can influ-
ence the rest, so probabilities can interact. This is a start. We have
now shown we can work small. We can also work “biological”
without destroying biodegradable DNA, and nucleic acid com-
puters would consume less energy and liberate less heat. Might
we find naturally existing machines and then combine their parts?
But entire bees? Bees are harder to copy. Bees compute, walk, feed
and fly all at the same time. Bees are much more than computers.

Devices, Bees and Philosophy

Devices and bees are emergent systems. And how we define emer-
gence either helps or hinders our thinking. Many difficulties hide
within the fuzzy, deep, philosophical concepts of emergence, scale,
complexity, and energy storage. We must rethink what we think
we know and have taken for granted. Devices and bees are also
complex systems obeying obscure laws of a “mesophysics” that
we don’t yet grasp. Mesophysics describes behaviors we can-
not predict or control. Mesophysics reigns over a scale lying in
between scales we customarily use. In this range, our usual ideas of
size and scale are imprecise and largely unknown. Mesophysics
is where many relationships overlap. What goes on in the new
Lilliput where nanometers measure the ‘small’ things and microns
and micrograms even millimeters and milligrams describe what’s
‘bigger’? We don’t really know. Emergence, scale, complexity, mes-
ophysics and energy are just some of our difficulties when we try
to plagiarize from bees.

Emergent Systems

Bees and devices are more than just the sums of their parts and
are, therefore, emergent systems. ‘Bee’ properties are not just a
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jumbled mix of wings, legs, fuzz and stinger. A television set is
not just a case, wires, a picture tube and transistors. Both are
entirely new entities. What do we mean by an emergent system?
In short, emergence is a large-scale group behavior of a system
we cannot explain in terms of the system’s parts.

A Monkey Watches The Red Sox

A monkey watches TV. He is intelligent, so we ask him to find out
all he can about the phenomenon of TV. So during a commercial,
he pulls the plug, and being intelligent, he reduces the TV to a
wiring diagram. Now he thinks he ‘understands’ TV. He knows
where currents, resistances and capacitances are. But if we ask
him what happened after he pulled the plug, he does not know
that Johnney Damon hit a grand slam and that The Red Sox won
the World Series after years of abuse by the New York Yankees.
No. Our monkey is in the dark about what happened on TV. He
lost important information when he pulled the plug. His choice to
intervene and dissect the set prevented his continued observation
of TV. His interfering defined what he could learn as well as what
he couldn’t.

The Monkey’s Question?

While ‘deconstructing” TV the monkey had to ask himself: At
what stage of connection do the parts stop being just a group of
parts and ‘become’ TV? When does emergence arise in a system,
or how complicated must a system be to be emergent? What is
emergence?

Emergence

A major ‘rule’ for emergent systems is that the parts of a sys-
tem alone do not make the whole system. We can learn about the
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parts and how they interconnect, but we also know that some-
thing somewhere along the line happens to convert the behav-
ior of individual parts into systemic behavior. When we dissect
we destroy what we study and change it to something different,
something new. When we intervene we do not know what our
effect will be, when it occurs, or the systemic outcome. Had the
monkey chosen to disassemble the TV and then count the parts,
his understanding would not have advanced, but he would still
have lost information.

It 1s like a doctor asking a patient’s sexual history. What the
patient thinks of the doctor and his or her ‘reasons’ for asking
the questions determines what the answers are. We may or may
not find out what we changed by our intervention. Often what we
change is crucial. Is there a better way to get information about
emergent systems?

Yes. We can redefine emergence. We can say emergent sys-
tems, even with perfect knowledge, will never let us predict all
their behaviors. This said; we now can approach our problem dif-
ferently. If we want to understand a system we must be able to
modelit. If we can make a working system of our own that behaves
as much like the studied system as we would like, then we might
say we understand the original system. But as we construct our
model, we define what to incorporate in its building so in building
we also define the degree of our potential understanding.

In short, to understand a bee, we must make a bee ourselves,
a simulated bee. Our simulation behaves by showing us ‘bee prop-
erties.” For each relevant ‘bee property’ we want our simulated
system to have, we must answer questions like: ‘Must my simu-
lated wings rotate in flight, or would simpler rigid wings be ade-
quate for my purpose?” “How perfectly must my wing resemble
nature’s?” In some way, crude or refined, our simulation must do
what we think a real bee does. But now we’ve made progress. A
true emergent system is one for which we can optimally predict
how it will behave by making a simulation.
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What Do We Mean by Understanding?

As our models differ, so will our “understanding.” Our models
specify the level of our knowledge. Sometimes we employ mod-
els without defining them. Here, Richard Feynman tells us of a
discussion he had with Fermi:

‘The calculations were so elaborate it was very dif-
ficult. Now, usually I was the expert at this; I could
always tell you what the answer was going to look
like, or when I got it I could explain why. But this
thing was so complicated I couldn’t explain why it
was like that.

So I told Fermi I was doing this problem, and I
started to describe the results. He said, “Wait, before
you tell me the result, let me think. It’s going to
come out like this (he was right), and it’s going to
come out like this because of so and so. And there’s
a perfectly obvious explanation for this.’

Richard Feynman (1945)

Understanding is Relative

Simulating a complex system lets us be as general or specific as our
problem requires. Here are three possible responses. After study-
ing a natural bee we might say: ‘I understand the rules governing
every part of my bee, and I can get my model bee to explain why
this and this happens.” Or when we say we understand: ‘I under-
stand the rules of bees so well that by watching a bee I can say
what it will do without my having to calculate everything.” Or
now, our most ‘precise’ and ‘mathematical understanding’ of all:
‘Analysis allows me to state clearly and precisely what happens
through a sequence of states from start to finish to achieve an
outcome I define as a “bee outcome.” I have a mapping from the
space of initial states to the space of outcomes.
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If we understand all a bee does, we might design and create a
system that does what bees do. To make our model we would have
to understand the circumstances necessary and sufficient for each
phenomenon to arise in our simulation. So our understanding of
our bee system is ‘grainy,” but we get to control the graininess.
We must always perform some minimum work to predict a phe-
nomenon. We must find the phenomenon, isolate it, study it and
then base our model on a set of rules we have copied from nature.

Or John von Neumann: ‘The sciences do not try to explain,
they hardly even try to interpret, they mainly make models. By a
model is meant a mathematical construct which, with the addition
of certain verbal interpretations, describes observed phenomena.
The justification of such a mathematical construct is solely and
precisely that it is expected to work. What does “work” — mean?
By trial and error we have determined that those models that
work are based on sound physical and mathematics principles
gradually wrested from centuries of research. Most of them are
characterized by complex partial differential and integral equa-
tions that until the advent of computers stood well outside the
reach of the engineering and scientific communities.” (Ref: von
Neumann, 1962).

Toto: “Where are our Sharp Boundaries?
Dorothy: ‘We’re not in Kansas any more.’

Where mesophysics reigns, no sharp line separates emergent and
non-emergent parts. We cannot predict exactly where the proper-
ties of a group of components become emergent properties. Our
inability to predict stems not from our inability to understand but
from some inherent property within systems. Might accumulating
interactions create “emergence”?

Enter Chaos

Even today’s micro-devices are crude when compared with bees.
To build insect-sized mechanical systems that also contain sources
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of energy as to be free of wires and tubes tying them to batteries
and reservoirs so they can freely move in micro-scale domains, will
require entirely new thinking, new designs and new ways of man-
ufacturing. We are not concerned here with the technical details
of how to build bees, but instead, we shall think abstractly about
what devices do and how perhaps to avoid silicon and comple-
mentary metal oxide semiconductor theory.

Chaos is everywhere. To see chaos, just shrink something.
Shrink a device. Will it be more or less efficient in its shrunken
state? Because electronics rely on the diffusive motions of elec-
trons, as a device shrinks towards the coherence length for
electrons, quantum interference between waves of electrons can
dramatically alter what a device does. Capitalizing on quan-
tum effects suggests that nanometer-sized electronic components
might find roles within molecular devices. We already know how
to modify the motions of electrons inside molecules. But can we
build a device as small as a bee?

Shape

Shape determines interactions in time and space, and how systems
are connected defines what systems can do. Both bees and many
devices lack the uniformity and topological simplicity of elec-
tronic circuits, making them extremely difficult to shrink towards
chip sizes.

Reproduction

Consider the emergent property of reproduction. To reproduce
requires that local and global activities be coordinated. In bees,
reproduction depends on complicated and coordinated tempo-
ral and anatomical relationships that are orchestrated simul-
taneously at a genetic, cellular, organ, and organism level of
organization. We know from mammals that cells of the pituitary
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secrete hormones. Sex hormones trigger behavior of sex organs
throughout the body, and sexual behavior once started, feeds back
to control the pituitary. Insects have analogous hormonal feed-
back systems. We know little about the rules for interconnecting
and timing all the functional components, especially between lev-
els of organization such as cellular and tissue levels. We know
more about how cells communicate with cells, but we know so
much less about how higher “organismic” patterns become super-
imposed upon and direct cellular machines all over the body.
Learning how a bee controls her own complexity is just one key
to increasing our understanding of how to control a new device.

Bees and Devices Integrated Within a Common Manifold

The bee system is exquisitely engineered. Seen more mathemati-
cally, a bee as a device is an integrated web of parts together within
a common manifold. All parts of a bee share common interwoven
properties. These communicate with and between all subsystems
of the bee while she performs a division of labor for many other
emergent functions, such as mechanical support, muscular work,
circulating fluids, reacting to sensory information with coordi-
nated motor responses, and defending her entire systemic self
against predation and disease as well as responding to any injury
and her needs for growth.

Microfluidic Chip

A device less integrated than a bee by far but suggestive of what
bees do is a microfluidic chip. Labs on chips isolate diverse par-
ticles (proteins, toxins, microorganisms) from dilute solutions of
mixed samples. A microfluidic chip is a plate of silica, glass or
plastic trenched with narrow channels through which samples
flow in tiny streams. Channels may be open or closed. Their
walls are coated with substances, monolithic porous polymers,
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that extract the desired species from solution. Because “receptors”
for the substances are only on the walls, only species moving along
the walls adhere and are extracted, while most fluid passes unim-
peded along the centers of the channels.

Hemocoels employ a similar principle as hemolymph flows
over the surfaces of the organs and cavity, giving up and receiving
molecules to and from cells on the surfaces. Both microfluidic
chips and hemocoels rely on surface to volume ratios for control
of extractions.

Porous Monolithic Polymers

Porous monolithic polymers are continuous surfaces of polymer
prepared using the channels in the microfluidic chips as molds.
Employing a channel and polymer together allows varying the
surface areas in contact with the flow. If the polymer fills a large
portion of a channel’s cross-section, more active surface confronts
the moving stream, facilitating more complete extractions from
highly dispersed samples. Additionally, using different combina-
tions of porogenic solvents alters the porosities of the polymers
thus varying the conditions for the reactions (Ref: Microfluidic
Chips).

Scale and Size

Bees and devices are continuous systems shaped for what they
do. Because anatomy determines and overlaps with function at
so many levels simultaneously, we have few endpoints for mea-
suring rates and distances and correlating the two. How and what
we measure depends on how coarse or fine our measuring instru-
ments are. There can be no single true value for a measurement.
Surfaces and borders at bee ‘sizes’ are often self-similar, meaning
that small parts are shaped something like the whole. Most nat-
ural objects, unlike mathematical objects, only approximate their
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self-similar forms (statistical similarity). Statistical self-similarity
means that something we measure on a piece of a whole object at
high resolution is proportional to this same property measured
over a larger piece of the object at a lower or coarser resolution.

But measured properties or behaviors are also functions of
the sizes of our measuring tools and the scales at which we mea-
sure the properties. Size enters our thinking at so many levels. For
example, our present theories of continuous systems often start
by assuming we use a separate scale for describing the macro-
scopic variables of a theory and another scale for detecting the
microscopic motions of the small particles the theory depends
on but that we ignore. For example, hydraulics equations ignore
how oxygen binds with hydrogen to form water molecules. The
hydraulics equations handle water molecules as point particles.
Bulk flows within bees or devices are orders of magnitude greater
than the distances between molecules of the hemolymph.

Size, in and of itself, affects almost every aspect of a system’s
functions. Scaling implies a functional range of sizes. Founda-
tions for scaling relationships lie in geometry. Take any object —
a sphere, a cube, a bee, a device. Each possesses the geometric
properties of length, area, and volume. Areas are proportional to
some measure of length squared, while volumes are proportional
to length cubed.

Here’s the Rub

Let’s see what happens if we change the size of a bee or a
device but we keep its shape (or our relative linear proportions)
constant. Voila! Something apparently quite new. Let’s say we
increase length by a factor of two. Areas are proportional to length
squared, but the new length is twice the old, so the new area is
proportional to the square of twice the old length; the new area
is not just twice as large as the old area, but four times as large as
the old area. Similarly, volumes are proportional to length cubed,
so the new volume is not twice the old volume, but two cubed or
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eight times the old volume. So as the “size” of a thing changes,
all the areas change faster than the linear dimensions, and all the
volumes change faster than the areas. These changes in areas and
volume have much to do with how bees and devices communicate
inside themselves among their parts.

Scaling

Scale is always difficult to visualize and even harder to think
about. Scientists and engineers differ in how they approach scale.
A scientist might want to understand how the hemocoel works;
an engineer might want to build a replica of a hemocoel to sep-
arate molecules of the engineer’s choosing. The engineer often
starts with a theoretical model but immediately must confront
questions of scale. The scientist superimposes units of measure
on a fluid-filled, constantly changing system where there are few
if any stable end points for measurements.

Shape Implies Forces

Our understanding of shape leads us to imagine the forces we
think gave rise to the shape. Perfect Euclidian spheres and films
form under almost equilibrium conditions (consider a spherical
raindrop), but only in the simplest scenarios may equilibrium
thermodynamics and statistical mechanics explain all that we see.
Let’s observe drops of water on a hairless smooth surface of a
bee’s cuticle under a dissecting microscope.

Condensation and the ‘C’ Word

Using simple equilibrium physics we can explain the spherical cap
form of each separate drop, but when several drops coalesce, we
immediately have non-equilibrium kinetics. The terrible ‘C” word
has entered.
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Seen at small scales of length the fractal structure of our drops
requires a larger intervening surface to hold each fractal drop
separate from the surrounding space. But as each drop reaches
its critical point, surface tension or the interfacial energy of each
drop approaches zero, and a very large wetted surface of cuticle
may develop as the drops coalesce. Now our simplistic thinking
about a surface separating two drops or phases loses its mean-
ing. Ultimately what is dissolved in the drops and how each drop
“unit” combines with its neighbor might allow large surfaces to
exist without collapsing or dissolving. Our attention now moves
to the junctions between what are the subunits and how their
edges contact the water.

It’s All in the Edge

Remember the game of taking a photograph of your family and
Xeroxing it, and then Xeroxing each successive Xerox image to
eliminate the grays and replacing these with lines indicating the
edges where the gray areas once joined? The amazing thing is that
after many copies you still recognize grandmother. Her face, now
just lines, lives concentrated along her edges. Understand where
the edges are and where transitions happen, and much informa-
tion about a system becomes recognizable.

Or take a more relevant scenario: within a hemocoel, poly-
mers of chitin and liquid froths containing protein in a “mixed”
system might momentarily be at equilibrium but still beset by
forces tending to drive the system away from equilibrium. As a
consequence, shapes continually change and grow more compli-
cated. Were we to take our sequence of Xerox snapshots of these
changes, we might watch the system progress from a uniform liq-
uid through regular or periodic patterns to a disordered more
chaotic form. Add to all this the complications in the transitions
brought about as laminar flows become turbulent together with
the chaotic behavior of some strongly driven chemical reaction,
and we rapidly can assume we can know very little about the
mechanisms operating. Were just one of these constraints not
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present, a very different structure would result. You have the ‘C’
word again; take your pick: chaos or complexity.

Microns or Nanometers?

So against such physical complexity we primates now must super-
impose our measurements. The micron scale is volumetrically ten
to the ninth times larger than the nanometer scale, and current
technologies provide no mechanisms to control with precision
molecules interacting against and within the interior surfaces
inside such a complex multidimensional structure as fluid in a
hemocoel. Remember a human hair is about eighty thousand
nanometers thick, so we use the nanometer scale to measure
molecules, strands of DNA and the microscopic structures that
determine how steel and plastics perform. In our thinking and in
our models, we often ignore the structures of materials at their
most fundamental levels unless the energies of these materials
in a device or organism exceed the characteristic excitations for
the materials. We must remain aware, however, that devices and
bees always exploit the ambient physics, and more important, the
smaller you are as a device or insect, the more important micro-
physics becomes for your stability and well-being.

Insect Units

Insects exist at a size larger than nanometers, so what units shall
we use? We will measure most often in microns or micrometers.
Only sometimes will we use nanometers. The micron unit is easy
to keep in mind.

Micrometers Visualized

The diameter of a single human red blood corpuscle is thirty
micrometers across. Insects are so large in comparison that they
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are not like atomically precise devices of nanometer dimensions
where the components are discrete molecular parts rather than
continuous materials. So insects are not nano-machines that we
can model using artificial molecular machines put together by
molecular manufacturing.

Nanometer Analogy

Lets see how small really small is. Nanotechnology is based on
the nanometer, and a nanometer is one billionth of a meter.
We have difficulty making analogies of nanometers with the
scales of length we intuitively understand from our everyday
sensory world, because nanometers are so extremely small.
Michael Mehrle has given us one visual analogy (Michael Mehrle:
michaell@w3media.com). Stretch an imaginary rubber band about
ayard long from Los Angeles to New York. That’s about 4000 km.
Now one nanometer of the rubber band will have been stretched
out to 4mm or 0.16 inches. So whenever we talk in nanometers
we are talking about molecules and the distances between them.
So most of what we shall consider to happen in hemocoels will
take place on the micrometer scale, but still we need to keep the
scale of nanometers in mind.

Scale Difficulties

We shall continually encounter difficulties with scale: often we
know well the behavior of transport mechanisms on the micro-
scale (the scale of individual grains or particles), but we under-
stand transport processes at averaged or macroscopic scales less
well. Think of turbulence. One key goal for our thinking is to
be able to pass seamlessly from one scale to the next, deriv-
ing from the laws governing what happens at the micro-scale
those governing the underlying physics of what happens at the
underlying macro-scales and vice versa. Once we can propose
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model equations, our next challenge might be to compute the
fluid dynamics for multi-phased flows in various situations.

Complexity Magnified

For a moment imagine all the complexity through all the dif-
ferent levels simultaneously. For this part just think of a bee as
being a smaller you. The big over arching relationships are sim-
ilar. You contain approximately sixty trillion (60 x 10'2) cells.
At each instant, in each of your sixty trillion cells parts of your
genome, a ribbon of two billion characters of DNA (remember in
each of your cells) produces your proteins. Your genome contains
most of your DNA and your genetic inheritance, and, at the same
time, the instructions for both constructing and operating all your
developmental stages from when you started as a fertilized egg to
your death.

Your sixty trillion genomes parallel process the proteins of
your life in as many cells continuously all your life. Presumably
you make very few errors in reading and decoding your genome,
and when you do, you successfully detect and repair these. Your
DNA makes RNA makes protein sequence is remarkable for its
complexity, its precision and its universality. Of great interest now,
your sequence relies on discrete information encoded within the
geometry of your DNA. By adopting features of life’s cellular and
genomic organization, and by incorporating similar or analogous
processes within two-dimensional integrated circuits, properties
unique to your specific life, (self-replication and self-repair) might
in some future way be transferred to our engineered objects. But
we are far away still. What are our devices like now?

Divisive Devices: Our Smallest Parts Still Stick

Our best-engineered micro-fabricated micro-machines are
mechanical oscillators and moveable mirrors. However, friction
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and other surface effects as well as clumsy power sources plague
even our best machines. Small parts still stick. In contrast, bee
systems operate in water within narrow ranges of temperature
and pressure, carry built in energy supplies, and utilize the same
surface physics more advantageously. To build machines by pick-
ing and placing atoms in sequence requires forceps smaller than
the atoms. Because atoms stick together, we need high energies to
pull atoms from one place and deposit them at another, and we
must remove any energy we release by cooling. Water batters small
groups of atoms in biological systems, so any steering maneuvers
we might employ are difficult.

Most devices are products of chip technology, and chip manu-
facturing may someday evolve to become more biological. Apart
from evolving silicon chip technology, we can design chemical
computers. Chemical machines process information by making
and breaking chemical bonds. Similar technology may create
DNA machines closer to how bees do it. A chemical computer
breaks a bond, retrieves information encoded in it, and then stores
the information in new bond sequences of the machine’s making.
We may soon represent information in quantum states, such as
the spin of an electron. Ever so slowly we are learning to con-
trol quantum states by varying electromagnetic fields facilitating
advent of quantum computers.

Corralling Molecules

Richard Feynman foresaw nanotechnology and miniaturization
of devices towards the molecular level. One use for small devices is
design and manufacture of nano-computers and nano-assemblers
and combinations of these into large-scale “intelligent” machines
having nano-computers as “brains,” but problems abound at these
scales. How do we control large numbers of extremely small
mechanical parts and overcome manufacturing difficulties? Long
ago bees evolved to control small moving and non-moving parts
as well as their ways of manufacturing. We solved ours with
nanotech.
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Nanotech?

Nanotechnology is a catchall label for products and processes
operating on or very near the molecular scale exploiting systems
and materials whose dimensions may be measured in molecules.
Up to ten years ago, nanotech considered the average charac-
teristics of blocks of atoms and molecules manipulated only in
bulks smaller than grains of sand. Today the nano-world is a
nano-cosmos of atoms and molecules ranging from 0.1 to 100
nanometers. Not all workers are studying individual molecules
rather than bulk properties, and nanotechnology’s semiconduc-
tor and biotechnology sectors are growing by leaps and bounds.
For example, in 2004 the Federal Government estimated that nan-
otechnology will have a one trillion dollar economic impact by
2015 (New York Times March 15, 2004 ‘Bashful versus Brash in
the New Field of Nanotech’ by B. J. Feder).

Limits? What Limits?

In the 1960s, Gordon Moore realized the transistors on a chip
doubled every one and a half years showing exponential growth.
This relationship, not a law of nature, is Moore’s Law. His intu-
itive projection of what exceptional engineering might accomplish
applied over many decades predicted VLSI or very large inte-
grated circuits. Keynes (1987) states however that wires thinner
than an atom and memories less than one electron are not possi-
ble and that not only physics, but the astronomical costs, impose
intractable limits. Even though today’s gate speeds and bit densi-
ties are no longer the bottlenecks they once were, microfabrication
is still the challenge (Ref: Limits).

Chip Realities

Conceptually, making a chip is like designing and printing an
etching on silicon. Using lithography we project a drawn pattern
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of the connectivity of the components onto a wafer of crystal-
lized silicon. The diffraction limit and need for miniaturization
pushed these projections to use the shortest wavelengths possi-
ble, but these are still well above atomic sizes. For resolving atom
by atom, STM’s or scanning tunneling microscopes may follow
rows of atoms piezoelectrically to delimit atomic topographies,
albeit slowly, but the huge cost of depositing, exposing, etching,
implanting, doping, dicing and testing chips during fabrication
are still limiting factors. Also as chips increase in size, and the
size of each component on a chip shrinks, a single dust particle
wrecks greater and greater havoc (Ref: Physics of Devices).

Bottom Up or Top Down?

Many of our smallest machines are downsized versions of our
larger ones. We can either build a machine up from atoms and
molecules piece by piece, or we can construct a machine top down
using such methods as rapidly solidifying jets of droplets of lig-
uid polymer sprayed on surfaces to build up sheets of nano-fibers.
A related technology, electro-spinning, forms fibers having nano-
scale diameters, but we use tens of thousands of volts to overcome
the surface tension that holds the liquid drops together. The volt-
age pulls charges from the inner surfaces of the drops onto their
surfaces crowding surface molecules of the drop causing them to
repel each other. As the surface molecules separate, new ones enter
the surface from below to destabilize the drop. In stark contrast,
epithelial cells of bees secrete layers of chitin fibers and protein
bottom up to form exoskeletons using less energy (Ref: Chitin).

Shrinking Big to Small Doesn’t Work

As in our printer analogy in Chapter 1, if we shrink conventional
micro-electrical motion devices smaller and smaller augment-
ing these with integrated circuits, we still have not made many
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working devices, because as devices shrink new manufacturing
difficulties emerge. Most technology for our constructing ‘small’
arose from complementary metal oxide semiconductor manufac-
turing techniques for making silicon chips. This technology has
helped, but we still lack sufficient understanding of synergy theory
to unite our fragmentary knowledge of sensing, signal processing,
actuating and controlling such minute devices.

What is MEMS?

A MEMS or micro-electro-mechanical-system is a micron-sized
device that senses its environment or transports gas, light or liq-
uid. MEMS are micro-machined using integrated circuit technol-
ogy so MEMS are themselves a chip-level technology. Making
one at a time is not feasible, so we make MEMS in batches at
low cost. Most with few exceptions are from silicon, contain inte-
grated circuits, and their moving parts monitor motion.

MEMS are sensors, activators or combinations of these. Sen-
sors measure such variables as pressure, temperature, accelera-
tion, flow or chemicals without modifying what they measure.
Actuators control fluids or light. Examples are in car airbags,
blood pressure monitors, and ink jet printers. Newer MEMS sense
vibrations, recognize fingerprints, provide readout displays, store
data, switch electrical or optical signals in DVD’s, disc drives,
phones and micro-mirrors in televisions. MEMS microgyros com-
pensate for trembling hands on cameras and camcorders.

NEMS

NEMS, smaller than MEMS, are nano-scaled systems having
dimensions of 1071m (molecular size) that range upwards to
10~7m or 0.1 to 100 nanometers. Studying nano-sized structures
involves understanding the physics of building up molecules from
atoms. A nano-sized process of all insects involves building up
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chitin, the major material of the exoskeleton, from chitin’s compo-
nents. NEMS employ novel materials such as carbon nano-tubes,
quantum wires and quantum dots. Our ‘nanotech revolution’
involves problems of mass-producing nano-transistors and nano-
diodes, nano-switches and nano-logic gates in order to construct
nano-scale computers having terascale capabilities. Can we do it?
Probably; but perhaps with a few changes in our thinking, insects
might help.

Generalities

Mechanical systems lack the similar modularity and topologi-
cal simplicity of electronic circuits, so small mechanical devices
are hard to manufacture. MEMS devices compared with larger
machines, have fewer rigidly linked parts, and more are intrin-
sically compliant. As with chips, we can use planar lithographic
processes to make masks for sequences in constructing MEMS.

Generally then, both NEMS and MEMS are micro-assem-
blies of parts having electronic and mechanical functions with
NEMS being much smaller than MEMS. We house and integrate
these latter assemblies on a single silicon chip.

A Generic MEMS System

To appreciate just how far we are from building bees, a current
generic MEMS system might contain a micro-pump, a flow sen-
sor, and an electronic control circuit. The pump delivers a vari-
able flow into a micro-channel, and the circuit controls the rate
of pumping. How do we build it?

First Simulate

To simulate a MEMS system on a computer, we first model
each component of the system. Then we make a coupled liquid
simulation, but disparities arise both at temporal and physical
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scales. Unlike an integrated circuit for which we have many pro-
grams that can test for errors in design, MEMS lack such verifi-
cation tools. Having strong linkages between domains of energy
in a device makes analysis difficult as computer models rapidly
grow unwieldy and computationally prohibitive. So we simplify
yet again.

Then Again and Again

We can simplify a model by mathematically lumping its functions
together, by reducing its resolution or graininess, or by lowering a
model’s dimensions. We do almost anything to make the simula-
tion work better; but even complicated mathematical descriptions
quickly grow too simplistic, especially if the model is to describe a
specific geometric domain or transitional region where our under-
standing of the underlying meso-physics is incomplete. Remem-
ber, bees live at dimensions where our knowledge of the physics
a bee encounters daily is largely unknown. Again, one reason
for our incomplete understanding is our reliance on overlapping
scales in our descriptions.

The complex forms of macro-sized systems and MEMS
devices may be incomparable. Macro-sized mechanical devices
function in multiple energy domains and utilize many compo-
nents. Some share topological boundaries, such as fluids bounded
by moving parts. Design and manufacture of the more compli-
cated macro-mechanical devices employ several techniques. We
have difficulty integrating diverse techniques and tools into gen-
eralized sequences or programs because often no general relations
or even correlations between a device’s form and what it does exist.
Example: an automobile production line.

VLSI Devices Obey Simple Laws

Very large-scale integration or VLSI is the current range of size
for miniaturizing microchips. VLSI refers to microchips having
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hundreds of thousands of transistors on each chip. We can use
structured design methods to build VLSI systems, because a com-
puter chip functions only within a single domain of energy, and
chips obey strict rules. Each of the many transistors on a chip
maps directly, one to one, from function to topology, and each
transistor obeys simple rules for interconnections. An example of
such a ‘rule’ 1s Kirkoft’s current law that states that the current
entering a node equals the current leaving it. There is an analo-
gous law for voltage. Such simple laws used to model circuits have
far reaching consequences, as these rules are the starting points
for analyzing any circuit. Unfortunately, we still must find similar
basic current rules for flows of energy and information for both
MEMS and biological system:s.

Bulk Controls Electrons

Devices are bulkier than bees. How devices employ their bulk
depends upon how they control the diffusivity of electrons. Here,
follow two examples in which we compare a device and its coun-
terpart in insects.

Diaphragm Pump Compares Unfavorably
With a Bee’s Heart

One diaphragm pump, utilizes a piezo-electrical actuated micro-
diaphragm to dose liquids and gases. Its chip measures 7 x 7 x
1 mm?, and the diaphragm displaces 2 mm a minute. The pump
tolerates bubbles and primes itself. (Remember, when you are so
small, bubbles always give you troubles.) The pump ejects liquid
against a 500 mbar head of pressure. Mechanical parts include a
valve unit, two passive check valves, and a disc actuator. The latter
periodically deflects a pump diaphragm. Parts are of silicon. One
adjusts the rate of pumping by setting a frequency or amplitude
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through a driver module. Review now the bee’s heart in Chapter 1
and compare.

Acceleration Sensor Compares Unfavorably
With a Bee’s Mechanoreceptors

Mechanoreceptors detect distortions of the bee’s body by mon-
itoring the bending of cuticle. Distortions occur from brush-
ing against objects, the bending of appendages during walking
and flying, and from vibrations transmitted through the air.
Mechanoreceptors contain hairs that attach to nerve cells. When
the hairs bend, action potentials from the nerve cells inform the
nervous system about positions of body parts and rates of change
of these bending movements. Bees and other insects also possess
campaniform sensilla. These organs are found in areas of their
body surface that are subject to stress. Sensilla are projections of
thin cuticle raised into thin domes about five to thirty micrometers
across. Deformation of the domes activates neurons.

In contrast, one manufactured acceleration sensor is a chip
and sensor electronics contained within a DIL40 silicon hous-
ing. To build this sensor, one embeds oxygen atoms in silicon and
then ‘dopes’ a monocrystalline epitaxial layer several mm thick
on the silicon. A cap sensor in this surface having its ‘sensitive
axis’ parallel to the surface of the chip is held near electrodes
suspended on small silicon beams. Moving or accelerating the
device increases the capacitance between a fixed and a moveable
electrode, so capacitance increases on one side of the device and
decreases on the other side. Each capacitor reads out separately to
give a differential measurement. Circuits on a second chip sense
the differential capacity and convert it to a voltage that is pro-
portional to the acceleration. Acceleration sensors are used now
in auto crash detection, controlling vehicular dynamics and for
measuring shock.
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Example of a Sequenced Array

We may employ a series of devices linking energetic domains:
mechanical, electrical, fluidic and optical. Micro-mirror devices
link together several energetic domains, but not as well as bees link
these. One device entails suspending a plate from two beams and
then allowing two parallel-plate actuators to deflect the plate elec-
trostatically. We may also orient individual micro-mirror devices
into arrays within larger systems. As in biological systems, the
robustness of any pattern of connections lies in how well each
component coordinates with all the others. As we shall discover,
the bee’s circulation connects and coordinates all parts of the
bee machine to exercise continuous local control over a maximal
number of metabolic interactions.

Miniature Parts

We can also miniaturize conventional electronic computing de-
vices using molecular transistors and quantum dots. Quantum
dots are nano-sized single electron transistors, each electron,
because it is a single charge, can “store” information. Also called
g-dots, dots can be of silicon and just a few atoms across. One
advantage is that q-dots glow brightly in ultraviolet light produc-
ing a different hue depending on a dot’s size. Two nanometer-sized
dots of a substance may glow green but five nanometer dots glow
red. If we coat a dot with a material that makes the dot adhere to
specific molecules, dots may be injected and followed through a
circulation to see where they adhere to their targets. In this way,
we might watch flows and processes.

We can also use quantum dots as nano-switches to process
information. The downside is that nano-switches alone have no
memory capabilities. And now comes the even harder part. To
build really small we must also design and build logic gates
and registers on the scale of single molecules. In even our best
micro-scenarios, quantum dots contain a discrete number of
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electrons that move around as a superimposed electromagnetic
field varies. How do bees operate without electronic components?
They employ the energy of sunlight captured in the chemical
bonds of carbohydrate molecules.

Energy

To supply the power to perform work, bees, unlike devices, ulti-
mately employ sunlight’s energy trapped in the carbohydrates
of green plants. Energy enters a bee directly as light and heat
from the sun or as chemical bonds stored in honey or nectar.
Metabolism occurs in discrete steps that break down or catabolize
the molecules of carbohydrate, each step releasing small quan-
tities of energy, through a sequence of enzymes. One sequence,
the aerobic pathway, works when oxygen is immediately avail-
able, and another, the anaerobic pathway, functions when oxygen
is less available. Energy from either of these paths transfers to
an intermediate molecule, ATP or NAD, through the process of
phosphorylation. ATP and NAD are coins in the cellular econ-
omy. These molecules can ferry energy to places in the cell where
synthetic or energy-requiring reactions take place, allowing cells
to build their own specific compounds on location.

Foreshadowing: Emergent Levels of Metabolism

Units of metabolic function are highly variable. ‘Units’ can range
from a single enzyme molecule, to cellular organelles to cells
to organs. Interconnections within and between these levels of
metabolic function appear seamless. Units of function increase
in size from molecules, through tissues, cells, organs and organ
systems to a bee or to a population of bees in a colony producing
heat warming itself in winter. Each level has its own terminology
for description including units of measure. As the size of an indi-
vidual functional unit increases, at each level and between levels,
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new emergent functions arise. Topologically, the visible anatomy
of a bee shares many distinct boundaries. Examples include cell
membranes and the layers of epithelial cells that line the surfaces
of organs, but most boundaries between functions remain indis-
tinct. Unlike networks of electronic components in which charge
flows through wires, most topological lines between biological
functions are indistinct. Some direct mapping between function
and form occurs most readily at macro-sized or organ or organ
system levels, (heart as a pump) and at macromolecular levels
(DNA to RNA to protein), but most intermediate mappings must
still be worked out. Lacking detailed nesting maps, we can build
at best very imperfect models.

The Monkey’s Problem: Analyze Emergent Functions?

So we are back to the monkey’s problem again. With varying
degrees of difficulty we can physically break bees and devices
down into their subunits. Extracting macromolecules or cell
organelles from homogenates is comparatively easy, but fully iso-
lating connected cellular units from the matrix of the central ner-
vous system, for example, is exceedingly difficult. Disassembling
an organism or a device at any level of resolution disrupts its
emergent functions, so that much emergent information gets lost
irretrievably.

Presumably sometime about 2040 or so, parameters for chip
devices will finally have attained their fundamental physical
limits.

Comparisons: Bees

See Table 2.1 comparing bees with our devices. Bees overlap levels
of function. Cells coordinate into tissues and tissues into organs.
Each component or level of organization excels at doing differ-
ent work. Components self repair and reproduce themselves in



Table 2.1 Organization of Bees and Devices.

Bees

Macro-machine

Very Large Scale
Integration

Micromachines

Energy

Units of
Organization

Dissection

Topology

Mapping
Between
Function and
Form

Interconnection
Rules

Geometry

Manufacture

Sunlight metabolism

Molecules, cells, tissues,
organs, organ systems. ..

Difficult to easy

Mostly indistinguishable
boundaries

Highly variable

Very complex

Integrated shape,
function, and kinematics

Sexual reproduction

Multiple, coupled
domains

Wide range of
non-modular, and
hierarchical units

Difficult

Shared boundaries
indistinguishable

No direct mapping

Complex

Shape tied to function
and kinematics

Machining in 3D over
wide range

Single domain

Small set of primitive
subunits

Easy
Distinguishable
boundaries

Direct mapping

Simple voltage/current
laws

Not a problem as planar

Planar
lithography

Multiple, coupled
domains

Intermediate range of
primative units

Limited

Shared boundaries
indistinguishable
Difficult but some direct
mapping

Complex

Monolithic and
compliant now

Planar
lithography

S90IAS(] puk 5999

14



46 Chapter 2

concert with the system as a whole. Bees work at everyday tem-
peratures and pressures and are masterful conservers of materials
and thereby avoid unnecessary redundancy and excess weight.
Bees adjust to change and reproduce themselves.

Devices

Devices constrain energy to perform specific functions well but
do not adapt well to superimposed changes. Exceptions include
self-sealing tires. To make devices and for them to work often
requires exotic materials and extreme energies and pressures.
Devices do not increase their own diversity. However, our devices
can approach organisms in their size and efficiency once we learn
how to make them more biological, perhaps even enough biolog-
ical to resemble insects.

Manufacture

We must develop user-friendly tools for computerized analy-
sis and simulation to design and manufacture more compli-
cated MEMS. Because to function MEMS must couple between
domains of energy, we can simulate and verify a design before
building it, but how a device actually performs under real con-
ditions is impossible to simulate completely. Unlike integrated
circuits, where we may incorporate algorithms for the design of
components into their manufacturing programs that we join with
programs to automatically check for errors, current manufacture
of MEMS is harder to check.

Comparing MEMS to larger machines helps us understand
why. Compared with macro-mechanical devices, MEMS have far
fewer rigidly coupled mechanical components. Instead, MEMS
components frequently possess an intrinsic springiness or compli-
ance. Manufacturing compliant components allows us to employ
structured designs and planar lithographic masking to make
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compliant parts systematically for predetermined specified trans-
missions of controlled motion and force. In this way, MEMS
devices share many features with VLSI devices. Hence, using a
mask design in a manufacturing sequence may aid sequencing
designs to simplify the processes.

Chip Manufacture: A Dirty Problem

Lithography lets us see the features of a device we intend to build.
However, the diffraction limit has pushed our optical systems
towards shorter and shorter wavelengths that still exceed atomic
dimensions. Using atomic force microscopes and scanning tun-
neling microscopes we can even scan a sharp tip over a sample
to measure piezoelectrically the deflections of a cantilever or the
electron tunneling current to measure the atomic topography.

If we limit manufacture of devices to planar processes, we
vastly limit our ranges of motion for our deformable structures.
If we can limit motion, a device’s shape and behavior become less
complex than those of macro-mechanical systems, and for less
complex designs we may use photolithography. But, even here we
get stuck. As features shrink, dust and other particles get mag-
nified. As with bubbles in small tubes, at chip sizes a very small
defect may disable an entire part.

To circumvent the need for ultra-cleanliness, we can design
MEMS expecting that most of those we assemble will be faulty.
But even so, we can still rewire hierarchies of components into
complex modules after we test the components separately and
together.

Looking closely at our MEMS devices shows us that devices
have progressed from jointed rigid mechanisms towards com-
pliant and deformable mechanisms, so in these respects, our
machines may be more like bees. Now it should soon be pos-
sible to use functional specifications alone to create multiple sys-
tematic designs that range over rigid and compliant structures to
support loads and also to control the transmission of force and
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motion. After we determine components and the displacements
of parts within a device, we may then be able to make masks for
lithographic reproduction almost automatically.

Manufacture Close on the Bee’s Knees

Producing nano-machines may someday be more bee-like because
even today by using sophisticated polymerization techniques, we
can build up large linear molecules that then spontaneously fold
themselves into three-dimensional structures without need of
brick-by-brick pick-and-place construction. We may even encode
directions within a molecular array for sequencing additional sub-
units as well as their eventual functional complex in the con-
tained chemical sequences. Such would be a useful direction for
our research, because as every bee knows at a gut level, linear
sequencing is unbeatable in its efficiency. We are ever closer on
the bees’ knees. We can now evaporate colloids of nano-particles,
each particle smaller than three nanometers in diameter, onto
surfaces to form crystallized two- or three-dimensional arrays.
Analogous arrays may soon store data.

Showcase Bee Manufacturing: Chitin

Bees construct their chitin cuticles from new and recycled precur-
sors. Bees linearly process recycled and new components through
their hemocoels. We shall refer to this model again.

What is Chitin?

A bee’s exoskeleton of cuticle is a continuous material around a
soft body. Much of insect success is due to the flexible properties
of cuticle. Cuticle 1s a network of polysaccharide fibers (chitin)
embedded in a protein matrix. This fibrous composite combines
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the intrinsic strength of the embedded chitin fibers with a high
degree of toughness (the ability to absorb the energy of impact).
Strength of cuticle to a great extent arises from the forces existing
between molecules of the hard matrix binding these to the surfaces
of the fibers. Chitin not only protects; it is essential for growth
(Ref: Chitin).

Growth

Growth in insects occurs between molts, and in bees molting
occurs as the pupa turns into an adult bee. Before a developing bee
sheds its exoskeleton, the larva, a little white worm growing within
a waxen cell of honeycomb being used as a nursery, enlarges itself
and acquires the adult form. As much internal reorganization
of the pupa’s body takes place, chitin and protein subunits from
the old exoskeleton recycle within the hemocoel, so that many
of these same components find positions in the new adult cuticle
that forms underneath the old. Producing normal chitin requires
a precise spatio-temporal ordering of molecules. This ordering
depends on the geometries of receptors and their positions in
space.

Sorting and processing molecules in the hemocoel begins in
the hemolymph. Small molecules in one part of a bee end up in
complex structures in another. Water is a natural starting point
for the insect’s molecular manufacturing. Hemolymph, largely
water, is dense, highly disordered, and simultaneously trans-
ports a diversity of cells and molecules. Manufacturing cuticle
includes: acquiring and ordering molecules from the hemolymph,
transforming streams of incoming molecules into streams of
product, and then storing or arranging these strings to build
the complex three-dimensional object that is cuticle. To analyze
these sequences, we must ultimately understand: the assembly
sequence, how molecules are transported, the timing of synthetic
cycles, their energy requirements, the error rates and the error
sensitivities.
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Contained Energy Supplies?

Few devices have these. So far no micro-engineered system comes
close. One reason is that batteries are the contained energy sources
for many machines. Batteries are heavy and come in lumps. Worse,
batteries, as we shrink them, deliver less and less power per unit
weight. Shrinking batteries brings us back again to our problems
of scale that evolution has solved.

Biological evolution guarantees economy of time, materials
and motion and a maximal return for metabolic outlay. A bee,
like a machine, performs a task, is constructed in a process, uses
power and operates using built in or supplied information. How-
ever, bee power is not battery power. Batteries have the extreme
disadvantage that battery function as a function of mass falls
rapidly as a device shrinks. We might think of a bee as being
more like a self-winding watch that siphons energy from the envi-
ronment as energy is needed. Nonetheless, bees have solved the
nano-difficulties of coupling between electrical, mechanical, ther-
mal, radiant, chemical, magnetic, acoustic and fluid domains of
energy (Ref: Self-reproducing Machines).

Webs of Levels

On the other hand, our micro-electrical-mechanical-systems and
their smaller brethren are heavily biased away from bees as
both evolved from micro-technologies that depend largely upon
electronics and silicon. Devices lack biomechanical foundations.
MEMS, however, to their credit, are often hierarchical systems
composed of layers, and we may think of bees as being com-
posed of telescoping layers too. Both devices and bees are emer-
gent systems starting with molecules passing through larger and
larger webs of parts to the whole. At each level, behaviors are
greater than the sum of the parts at that level. Each bee is built
up of complex subsystems governed by physical, chemical (hor-
mones) and electrical (neural) controllers for each component.
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But compared with a bee’s enmeshed levels of organization that
are so much more complete and intricate, our NEMS and MEMS
devices are incredibly simplistic.

Neural Coordination

Conceptually, many of today’s micro-devices are not much more
than miniaturized versions of our larger devices. We need devices
that, like insects, operate in size ranges extending from sim-
ple diatomic molecules up to biological molecules having 10°
to 10° atoms. Larger biological molecules such as proteins and
nucleic acids usually fold up into complex tertiary structures
to occupy three dimensions. Many biological molecules may
transform themselves in time as well, so even at this elemen-
tary structural level, biology has the edge over silicon. Still let’s
not forget: much coordinated behavior and motion as well as
vision and sensing, decision making, memory and learning in bees
results from neurons transmitting electrical information over neu-
ral networks within milliseconds. Transmission of neural coor-
dinating information is complex. Unequal separations of ions:
sodium, potassium and chloride, across cell membranes create
membrane potentials, and changes in permeability propagate over
distances using a unique spike or action-potential mechanism
as well as slowly varying membrane potentials. Nonetheless like
devices, insects employ inorganic components for control and
coordination.

Copper, Iron and Ordered Structure

Biological molecules such as proteins often coupled to inorganic
atoms such as iron or copper may control molecular interactions
and biochemical pathways. Most solids do not usually consist of
a single phase, because defects and boundaries exist across differ-
ent kinds of domains. It is what happens at the boundaries, often
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between domains of energy, that determines how information and
materials pass through the system. Engineering utilizes the macro-
scopic as well as the microscopic, and micro-technologies let us
work within larger and smaller scales at the same time. Macro-
scopic materials having a crystalline structure (a complete long
range ordering of molecules) and liquids and glasses having short-
range order and little long-range order, as well as gases having lit-
tle short-range order, might all be coerced into operating together
within living systems.

When You Are Small Your Rules Are Different

Insect miniaturized systems are incredibly robust and successful.
Different rules dictate success. The small sizes of many insects that
take different forms throughout an insect’s life: egg, larva, pupa,
adult let insects adapt to ecosystems worldwide, where they form
major components of many diverse ecosystems. Let’s learn the
new rules.

Bees as MEMS: A Summary

Bees control and manipulate fluids within their bodies using com-
plexly interconnected systems of pumps, valves, manifolds, tubes,
connectors, reservoirs and transducers. Bees are best at interfac-
ing; much better than we are! Bees have wonderful edges. Bio-
logical systems masterfully coordinate fluid mechanics near and
across complicated interfaces to adjust minute volumes of fluid
in parallel within different compartments while at the same time,
but only when necessary, blending them while also permitting
volumes of fluids to adjust within several body compartments
simultaneously. A bee’s fluids contain micro-structural elements,
and these elements interact via colloidal, hydrodynamic, and
Brownian forces. If one’s body is as small as a bee’s, one desiccates
in the sun and over-hydrates in the rain, all the while adjusting
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water balance while performing the daily chemistries of living.
All are major obstacles. Bees also function well within the phys-
1ological extremes of temperature and pressure. Devices on the
other hand, that employ moving fluids at microscopic dimen-
sions, range from endoscopes to labs on chips. Devices transport
minute quantities of liquids or gas through networks of micro-
channels. Controlling micro-flows in our devices includes: pump-
ing, electro-osmotic flows, electro-wetting and thermo-capillary
pumping. For small devices to employ such technologies requires
that we not only micro-machine their interior channels but employ
high temperatures or kilovolts to drive flows. We must understand
a device’s microphysics and all its contained flows. Bees do better
than we do without all this knowing. Can we learn our micro-
physics from them? Once learned, can we expand chip technology
to include this type of biology?

‘Our imagination is stretched to the utmost, not,
as in fiction, to imagine things which are not really
there, but just to comprehend the things which are
there’ (Richard Feynman).



Chapter three

BEAUTY BEFORE THE BEAST

A. GRAPHS
Graphs Before Models

We introduce elementary graph theory before we show that math-
ematical graphs reveal important differences between closed and
open circulatory systems. We then introduce modeling. Basically,
one way to compare distribution systems, be they natural or
devices, is to compare their graphs and then build models. Graphs
come before models, because before we build conceptual models,
we should learn the geography of a system’s connectivity. What
parts connect with what parts? How far apart are they? Graphs
abstract away the trees and bushes covering complex landscapes
revealing the contours of the hills. A graph in its simplest form
and sufficient for our context is a set of points connected to each
other in some way through a set of lines.

Graphs in General

A generalized graph is a set of vertices and edges. We usually rep-
resent vertices as dots and the edges as lines connecting the dots.
The edges, the lines, also called links, connect the vertices. A more
formal definition is a graph, G, is a non-empty set of elements,
the vertices, and a list of unordered pairs of these elements, the
edges. The set of vertices of graph G is the vertex set of G; we
denote this set by V(G), and the list of edges is the edge set of

54
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G, denoted E(G). If v and w are vertices of G, then the edge vw
connects or joins v and w.

Why graphs are so useful is that graph theory treats only the
number of elements in a network and their relationships to each
other, both in terms of the characteristics of the edge set. First
some terms.

Order and Size

A graph’s order or n, is how many vertices it has given by V(G).
M, the number of edges in the graph E(G) determines a graph’s
size. Graphs can represent all kinds of networks. Vertices may be
organs: heart, kidneys or brain, or chips, valves, or some anatom-
ical or functional combinations of these. Edges represent pre-
dicted or defined relationships between the vertices. Edges might
be roads, flight paths, wires, blood vessels, nerves, tubes, light-
paths, routes of diffusing molecules through the hemolymph, or
combinations. The elements of a graph and their connections can
represent any groupings of characters we choose. This one gen-
eralization makes graphs such powerful tools. To make a graph
we abstract everything else away. As with the Xeroxed picture
of grandmother, what is remarkable is how much information
remains in her connected edges.

The World Wide Web: A Graph

Consider the World Wide Web as a graph. The Web’s architecture
as i1s a hemocoel’s is non-engineered. The edges are a virtual net-
work of hyperlinks, connecting more than eight billion web pages.
These pages, created by tens of millions of independent people at
separate locations are the vertices. Large computers can scarcely
contain these data points, but after cataloging what we know of
each vertex and edge, we can create a model simplifying the WWW
but retaining some properties of its larger graph.
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From smaller representative data sets we better appreciate
global and local relationships, and later we apply these to the
larger graph. For example, growth at vertices both in the web and
in hemocoels, is decentralized but self-organized. The web con-
tains a large, strongly connected core of prominent sites through
which every page can reach every other page over a shortest path
of sixteen to twenty hyperlinks. Distances through this core are
much shorter than across the whole web. Local actions grow new
vertices near the old ones, and the chance that an existing vertex
or link receives a new link is proportional to the number of links
the vertex already has, resulting in a power law distribution of
links (Ref: Power Laws).

But growth patterns differ: Classical random graphs are regu-
lar graphs (almost all their vertices have the same expected num-
ber of edges), but in real-world graphs a few vertices have very
large numbers of edges. We can extend our random graph model
to include these new forms (Ref: Algorithm Design).

Understanding local behavior at neighboring vertices of the
WWW lets us reason that an unusually large number of links
among a small set of vertices, or web pages suggests these pages
may be related to the same topic and that the group may even be
a signature for the area. For example, in the hemocoel, the edges
leading to vertices at or near the openings of the Malpighian
tubules might suggest excretory metabolites and processes, so
computing these network flows might partition the hemocoel into
regional functional graphs. To build is to understand.

Properties of Graphs

Graphs may be unrestricted, simple, sparse or connected. In unre-
stricted graphs, the edges have no inherent direction to imply a
symmetric relationship between the vertices each edge connects.
We may leave edges unweighted and not give these strengths
a priori. An unweighted edge is important only in its relation-
ships to other edges. In a simple graph, we forbid multiple edges
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that connect the same vertices. A forbidden edge would be one
that might circle around and then connects a vertex with itself. A
graph may be sparse. For an undirected graph the maximal size
of E(G) equals (n > 2) = n(n — 1)/2, corresponding to a fully
connected or complete graph. Sparseness implies M, the graph’s
size, < n(n — 1)/2. Lastly, we may create a connected graph. In
a connected graph, one may move from any vertex to any other
vertex by traversing a path of only a finite number of edges. A
circulation, be it open or closed, is a connected graph, because a
drop of blood from one region may circulate to any other.

Restricted Representations

Our choices and assumptions restrict realistic graphical represen-
tations. Graphs, by themselves, introduce a minimum arbitrary
structure into our analysis, but even so, graphs are one useful
basis for modeling and comparing complicated relationships in
organisms and devices. We make directed edges or one-way streets
(arterial blood flow leaving or venous blood returning to the heart
for example), and when we create directed edges, some relation-
ships automatically become more important than others. Many
real networks are unconnected, but multiple relationships exist
simultaneously between the same set of elements, as with hus-
bands, wives and lovers. For each relationship, its graph would be
different but the vertices are the same.

What Graphs Show

Graph theory helps explain practical operational problems.
Example: The shortest path problem. Imagine a map of a closed
circulation supplying organs, cells, or regions. Asin a road map or
routing diagram the vertices are the organs or points of service,
and the edges are the connectors linking the points. Our map
is a connected graph with a non-negative number representing
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each edge. As in a roadmap we may choose shorter and longer
sequences of edges. What is the shortest path? Edges need not
be distances but may be times or costs of travel or measurable
metabolic or energetic costs of flow. We can construct an algo-
rithm for the graph. We find an upper bound by taking the longest
path and calculating its length. Our map is now a weighted graph,
and we must find the route having minimum total weight. If each
edge has unitary value, the problem reduces to finding the shortest
path as being the fewest edges linking our two points. A variant
of this problem is the postman’s problem that circulations have
solved during evolution.

Postman Problem

Here a carrier wants to travel the shortest distance through a
neighborhood and return to his truck. Using a weighted graph
for this network, the weight of each edge being its length, how can
he ‘walk the walk’ over each edge but once? Or, more biologically
speaking, how might carrier molecules such as hemoglobin cover
the shortest distance through the circulation delivering oxygen to
all points? Here we have many carriers in concert, but all should
travel the least distance and avoid traversing too many paths more
than once thus wasting heartbeat energy. Our weighted graph now
corresponds to a circulatory network. For vertebrates evolution
operating over millions of years discovered a closed circuit of
minimal total weight that includes each edge at least and usually
no more than once.

Closed Circulation is a Eulerian Trail

The closed circuit of a vertebrate circulation is a Eulerian trail or
circuit. The circuit starts and ends at the same vertex, the heart.
In a Eulerian circuit each edge is traversed only once, and blood
in this optimal situation visits each component of the circuit only
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once. Without doing the math, if the graph is Eulerian and the
circuit is a closed trail of the Eulerian type, we may solve it using
Fleury’s algorithm, but if the graph is non-Eulerian we also have
an algorithm (Ref: Graph Theory).

Trees

Using a tree graph, we can create a circulation pattern of n organs
or points in which a volume of blood can travel from any of the n
points to any other point. The tree graph pattern in the bee illus-
trates blood flow from the heart to the brain through the dorsal
vessel and aorta. This graph will be useful when we consider open
circulations in which materials do not necessarily pass through the
heart each time before going to a new destination.

If we must shrink a closed system for economic or anatomi-
cal reasons minimizing tubes and distances, then our graph hav-
ing the n points as vertices and the connectors as edges forms
a tree graph. The problem now is to find an efficient algorithm
for deciding which of the n*~2 possible trees connecting all our
points traverses the least distance and, consequently, uses the least
materials or energy. Evolution has created closed circulations that
do this. Solutions assume we can measure all distances. Again, we
can formulate the problem using a weighted algorithm and what’s
known as the greedy algorithm to find the optimal solutions.

A greedy or single-minded algorithm performs a single step
over and over until the steps can no longer be repeated. The algo-
rithm then chooses the next step and continues until stoppage.
Results may not be perfect but are a first approximation. We have
no algorithm, for example, that generates a pattern of coloring
using the fewest colors for every map, but if we color in as many
regions as possible with one color before choosing the next color,
and then choose a new color only after we have exhausted the
last, and we repeat this sequence until all patches are colored, we
have followed a greedy algorithm.

At one point in the process a local optimum becomes a global
optimum. Similar logic helps find a dominating set or the group of
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vertices having all other vertices in the graph as its neighbors. One
starts with the vertex having the most vertices in the graph linking
to it and then chooses the vertices of the next largest degree and
so on until we find the dominating set. A hemocoel containing
declining volumes of hemolymph passes through states in which
local deep pools grow shallower progressing to global behavior
as the volume of hemolymph becomes a two-dimensional film
wetting all surfaces (Ref: Greedy Algorithm).

Small World Graphs

Many systems display three overlapping characteristics. Their
graphs are sparse; their vertices cluster, and the graphs are of
small diameter. Graphs having the three properties of sparseness,
clustering and small diameter are small world graphs (Ref: Small
World Networks).

Sparseness

Consider a graph of the connectivity within an animal at any
resolution. Despite the huge numbers of vertices, connections in
an animal have relatively few edges and are sparse. In a graph
having n vertices, the maximum number of edgesisn(n — 1) /2, or
roughly n2/2. (I consider here only “simple” graphs, as opposed
to multi-graphs, where more than one edge can join a pair of
vertices.) In large graphs of the real-world variety, the number of
edges is generally closer to n than to n?/2.

Clustered Vertices

Vertices tend to cluster in that the probability increases that two
vertices whose edges link to a third vertex also link to each other.
In other words, each vertex has neighbors each chosen using a
distribution that weights vertices by their current degree. Thus,
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on the World Wide Web the edges of the graph of web pages
and pages linking to them are not uniformly distributed but form
clumps, knots or hubs such as the website for a major newspaper
or Google that receive many more than the average number of
links to other pages.

Small Diameters

Graphs in the real world tend to have small diameters. The diam-
eter of a graph is the longest or shortest path across it depending
on one’s definition, or in other words, the length or the number of
vertices traversed during the most direct route between its most
distant vertices. In a closed circulation, blood follows the same
circuit, but in a hemocoel routes may be direct or longer.

Only connected graphs have finite diameters. A connected
graph is all in one piece, and it must have at least n — 1 edges
so its largest possible diameter is n — 1. At the opposite extreme, a
complete graph, having n?/2 edges, has a diameter of 1, because
one can pass from any vertex to any other traversing a single edge.
Graphs having edges closer to the minimum than the maximum
number may be of large diameter. Clustering could increase the
diameter even more, because edges used up to make local clumps
leave fewer edges available for connections spanning longer dis-
tances as occurs with regulated airline routes. In a hub-and-spoke
system, travel to many cities is not over the shortest distances
because stopovers involve hub cities. Nevertheless, the diameter
of the World Wide Web and other large graphs appears to hover
about the logarithm of n, which is much smaller than » itself.

Simplified Models

To help us understand very large small-world graphs, we consider
two simplified patterns occurring at the extremes. Both will be
useful when we compare closed with open circulations.
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Lattice Model

The simplest of all graphs are highly regular lattices in which
every vertex joins to just a few neighbors. ‘Lattice’ brings to mind
a two-dimensional square grid, but a lattice graph may have other
geometries. A minimal lattice is a one-dimensional structure, like a
chorus line with dancers holding hands. Bringing this linear lattice
line into a circle and joining its two ends forms a ring lattice or
cycle. A nearest-neighbor ring lattice with n vertices has n edges,
(each dancer is a vertex) and every vertex has degree 2, meaning
that two edges meet at each vertex. When edges extend both to
nearest neighbors and to next-nearest neighbors, the ring has 2n
edges and vertices of degree 4. A ring lattice is a poor example of
a small-world graph. It is suitably sparse, having just n edges in
the nearest-neighbor case, so in one sense it is highly clustered,
because all its edges are ‘local.” But the diameter of a ring graph
cannot be small. The only way to traverse a ring graph is to pass
from neighbor to neighbor; a lattice has too many vertices. It is
like taking a streetcar that stops at all the stops along the route.
One gets there faster by taxi. The diameter of the nearest-neighbor
ring is n/2. This is much larger than log n.

Maximum Randomness

A lattice graph is highly ordered, but a random graph is its oppo-
site: maximally random. To create a random graph, begin with n
vertices and no edges. Consider every possible pairing of vertices.
For each pair either draw an edge having probability p or do not
draw an edge with a probability of 1 — p.

We can predict the outcome for our two extreme cases: If
p = 0, our random graph is edgeless. If p = 1, our graph is
a simple graph, or more specifically, a clique graph in which all
pairs of vertices are adjacent to each other. Between these two
extremes, we expect intervening graphs to have about pn? /2 edges.
The Hungarian mathematicians, Paul Erdos and Alfred Rényi,
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studied the number of vertices, edges and their connections: all
determined randomly. Most proofs about random graphs con-
sider, “almost every” random graph to have a certain property.
“Almost every” means that as a random graph grows larger and
larger towards infinity, the probability of our certain property
occuring anywhere in the graph approaches 1. So if the probability
of having an edge p is greater than a certain threshold probability,
then almost every random graph is connected. This statement is
important. The Erd6s-Rényi random graph can be made to be as
dense or as sparse as we want it to be just by adjusting the edge
probability p.

Changing Edge Probabilities

The diameter of a random graph tends to be small (in some cases
too small). But random graphs do not form clusters because their
edges occur independently. Independence of an edge means neigh-
bors of neighboring vertices are no more likely to be linked than
any other randomly chosen vertices. Does this begin to sound like
a graph of the potential connections within a hemocoel especially
one whose volume of hemolymph is changing? Stay tuned.

“Real Live” Graphs Are Mixtures

For the most part, nature’s connections are neither regular nor
random. A cell or organ communicates mostly with its immediate
neighbors as the lattice model implies, but many cells and organs
carry on more distant relationships. Cells at one location may
produce hormones having global effects over long distances. We
form our links on the World Wide Web not at random because
we intentionally link to specific pages. So most graphs of “real
live things” end up as mixtures somewhere between order and
randomness, our two extremes.
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Interpolate Between Extremes

Strogatz interpolated and found that his modified graphs
described well many diverse situations (Ref: Small World
Networks). He began with a regular ring lattice and then ‘rewired’
some of the edges to introduce randomness. To do this, examine
each edge of an original lattice in turn. Either leave the edge as you
find it or redirect the edge to another randomly chosen location.
Your decision to rewire an edge is governed solely by a probabil-
ity p, which you adjust over the range from 0 to 1. If p equals 0,
you leave the edge alone, and the lattice remains unchanged. If p
equals one, you transform your lattice into a random graph.

In analyzing their rewired lattice graphs, Watts and Strogatz
did not examine the shortest path between the most distant ver-
tices, the diameter of the graph. They studied the minimum path
length L averaged over all pairs of vertices. They found the mini-
mum length of a path changed markedly as rewiring probability
increased, and they rewired more and more edges. L is at its max-
imum in the regular lattice, but L falls steeply after rewiring just
a few edges.

Measuring Degree of Relationship: Clustering

How tight or loose are the relationships in a cluster? In a hybrid
or mixed graph we define a clustering coefficient, C. To calculate
C, list all the neighbors of a vertex, count the edges that link to its
neighbors, and then divide the sum by the maximum number of
edges that could possibly exist among the neighbors. Now repeat
this operation for all the vertices and take the average. In contrast
with the path length L, the clustering coefficient C stays large until
the rewiring probability becomes rather large. Hence, over a wide
range of p values, local connections dominate the graph between
nearby nodes, but just a few shortcuts, like freeways connecting
densely populated cities, may suffice for efficient long-distance
connections.
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Shrinking Diameters

We now see that randomly rewired connections can shrink the
diameter of a lattice, facilitating long-range connections, but
shortcuts are not useful if we cannot find them. Substances dif-
fusing within an open circulation find the short paths each time,
but closed circulations have unalterable longer and shorter paths
built into their patterns of vessels.

Finding Shortcuts

Begin with a two-dimensional square lattice, a checkerboard,
where each vertex links to its four nearest neighbors. Now add
long-distance connectors, but do not add these purely at random.
For each vertex, assign a rank to all the possible destinations
for your shortcut link, and as would a highway planner, base
your rankings on how far the shortcut extends from the source
vertex.

The probability of choosing a vertex at distance d is propor-
tional to d~", where r is an additional parameter of your model.
If you set r equal to 0, then you select all destinations at all dis-
tances with uniform probability, and your model is now just a
two-dimensional array of the Watts-Strogatz model. If r is large,
now you have the best chances of choosing only nearby destina-
tions, and you have barely altered the original form of the lattice.
The crucial value turns out to be r = 2, when the probability
obeys an inverse-square law.

We can easily traverse graphs where » = 2, not because they
have the smallest diameters (they don’t) but because we have
an algorithm for finding a short path through them. The algo-
rithm is our simple ‘greedy’ one. To find a route from node a
to node b, list all the edges emanating from a, and then choose
the edge that takes you closest to b, measure lattice distance
(you do this when reading a road map). Now repeat the same
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map reading sequence beginning again from this intermediate
point, and continue sequencing from point to point until you
reach your destination. The greedy algorithm being most effi-
cient when r = 2 determines the spectrum of edge lengths. No
other algorithm performs better than the greedy algorithm at
any other value of r. When r = 0, paths having fewer steps
exist, but we cannot find them; when r is large, the best route
to take is unlikely to be much shorter than a path you'd take over
strictly local links. Freeways are not good for traveling only a few
blocks.

Power Laws

Sparseness, clustering and small diameter are not the only distinc-
tive properties of large real-world graphs. The degree sequence —
the number of vertices with each possible number of edges from
0 to n — 1 — is also important. You know the degree sequence
of a lattice is simple. All vertices have the same number of edges,
so plotting the degree sequence for all the vertices forms a single
sharp spike. Any randomness in the graph broadens this peak. In
the limiting case of an entirely random graph, the degree sequence
forms a Poisson distribution, falling off exponentially away from
the peak value on both sides. Now the probability of finding a
vertex with k edges grows negligibly small for large k because of
the exponential decline.

Real graphs such as the World Wide Web graph behave differ-
ently. A power law describes the distribution of degrees and not
an exponential. That is, the number of vertices of degree k is given
not by e~* (an exponential) but by k~¢ (a power law, where the
power g is a positive constant). The power-law distribution slopes
away more gradually than would an exponential. It is this drop
off that permits highly connected vertices of very large degree.
We discuss graphs of a closed and an open circulation in their
respective chapters.
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B. MODELING
Models and Modeling

Models represent nature symbolically. Models simplify impor-
tant relationships making nature tractable. An effective model
is often easier to test and analyze than is a physical system, as
the model responds, within limits, in the same way. Models can
be mechanical, morphological, physiological, mathematical (that
includes dynamical systems models), finite element models and
geometrical models.

Traditional Models

Traditional models are of wood, clay or remain as sketches and
blueprints. For large objects, models are smaller and easier to eval-
uate before committing to construct the real thing. Today’s mod-
els, however, are analytical and abstract in contrast to a physical
model that is literal and concrete. First a beautiful early example
of a model of a closed circulation.

Harvey Circulation Model

William Harvey discovered the circulation of the blood and pub-
lished his treatise on the motion of the heart and blood in 1628.
Harvey did not trace the connections between the arteries and the
veins, nor did he follow blood around the circuit. Harvey never
saw how arteries and veins connected, but his intuition told him
they did. Malpighi finally observed capillaries in 1661.

Harvey was a systems modeler. He demonstrated that circu-
lating blood had to be a necessary logical consequence of his
observations. Harvey’s reasoning is important as it demonstrates
how model makers think. Harvey’s first question was: Does the
blood move the heart or does the heart move the blood? Because
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with each beat Harvey had seen the heart grow hard enough to
resemble a contracting muscle as blood left it during the squeeze
phase, called systole, and he had then seen that the heart then
softened like a relaxed muscle after blood left it, Harvey reasoned
that the heart had to be the prime mover in the system.

Harvey studied next the anatomy of the valves of the heart
and showed that the valves would permit blood to flow in just
one direction. In the living body then Harvey ligatured arteries
and veins and saw blood accumulating on one side of the tie and
draining away from the other side. Harvey measured the differ-
ences in volume between the dilated heart and the contracted
heart and calculated that within an hour the human heart must
pump some five hundred pounds of blood into the arteries, a vol-
ume that exceeded the weight of the whole body. Obviously, the
only hypothesis that made sense of Harvey’s observations was that
the blood pumped into the arteries had to return to the heart and
that this could only be happening through the veins. It, therefore,
followed that arteries and veins had to connect somewhere, and
that blood circulated through the body.

The major transport functions of mammalian blood are to
move molecules of digested food from the gut to the rest of the
body, to transport wastes from the rest of the body to the kidneys,
to transport respiratory gasses between the lungs and the cells of
the body, and to transport hormones from where they are made
to where they have their actions. Blood, of course, also serves in
hemostasis, combating infection, heat distribution and a host of
other functions. As we shall see shortly, insect blood does not
transport respiratory gases.

Modeling: Syntax and Semantics

We are most concerned here with mathematical modeling. To
construct a model of something as Harvey did, we construct a
representation that then substitutes for the real object. Model
theory, a branch of mathematics, plays a role in logic that is similar
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to the role arithmetic plays in the rest of mathematics. However,
beyond the basicideas, advanced model theory is its own specialty.

In applied mathematics, a model abstractly represents some
material reality taken from the world. This idea differs from how
logicians use the idea of model. To them a model of a theory is
something concrete, as much as any mathematical object can be
concrete, and the model is the object that ultimately satisfies all
the axioms of a theory. Logicians use formulas or sequences of
symbols to write the axioms. Rules always determine formation of
these sequences; these rules are syntax. Model theory presupposes
we interpret the symbols in the formulas in some defined way, so
that our interpretation is what brings meaning to our formulas.
Our meaning ultimately translates into true or false statements
about our observations. This interpretive notion is semantics.

What’s important is that modeling occurs more at the level of
semantics and uses little syntax. In building models we try not
to learn what a specific structure we superimpose upon nature is,
but we want to learn what is true about our model of nature and
how we can prove this trueness or validity, referring back to the
whole universe of our ideas, even though some of these ideas may
as yet be inaccessible. In this way, our modeling contrasts with
theoretical computer scientists’ study of algorithms. Algorithmic
studies are mainly syntactic.

A model of a bee’s circulation becomes the basis for visualizing
and generalizing a geometrical process. Because the model is what
gives shape or form to our thinking, we begin by classifying and
comparing our information or observations. Only later might we
employ the implication symbol to indicate the formalization of the
system that ultimately would grow into an axiomitzation formulat-
ing the rules for proof. If our model is effective, the model is easier
to test and analyze than would be studying an actual bee, because
within the limits we place on nature that we define by our observa-
tions, our model can respond in the same way we would expect a
real bee to behave.

To model something as complex as the bee’s circulation
requires combining visual and analytical thinking and frequently
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the use of metaphor. To simulate a shape in a model is to define
a shape that will come to house a process. Where we were once
satisfied with two-dimensional graphs as being adequate repre-
sentations, we now demand topologically valid and analytically
complete models having three dimensions that change with time.
Analysis then reduces our measurements and simplifies our ‘data’
into manageable concepts.

Modeling is then a loose integration of mathematical meth-
ods taken together to describe a shape or a process, often in terms
of an appropriate metaphor. Computer aided geometric design
(CAGD), for example, applies the mathematics of curves and sur-
faces usually employing the parametric equations of differential
geometry. We use computational geometry to design and analyze
geometrical algorithms.

Modeling Must Be At Several Levels

In modeling a circulation and then shrinking it, we must use a
model, because a bee is too small, too complex, and time cannot be
controlled. Using the rendering capabilities of computer graphics,
we can explore more functional qualities and then change these
at will, but still the problems and models continue to be too com-
plicated, so ultimately a working rendition must come down to
multi-scale modeling.

Approaches employing traditional, mono-scale modeling
have proven themselves to be inadequate, even using large super-
computers, because the ranges of scales and the large number of
variables involved are computationally prohibitive. Thus, there
i1s a growing need to develop systematic modeling and simula-
tion approaches for multi-scale problems. We have made some
progress. For example, we can compare local changes in patterns
of blood flow within a web of vessels with changes occurring
within larger portions of the circulation as seen globally. Such
a heterogeneous model uses Navier-Stokes equations to describe
the three-dimensional flow within a single artery. We then couple
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a model of this flow to a systemic, zero-dimensional model of the
whole circulation. Using this geometrical multi-scale strategy, we
have joined an initial boundary value problem to an initial-value
problem to predict a change wrought upon a circulation by sur-
gical intervention, such as might occur following blood loss and
onset of hypovolemic shock. Such involved models suggest we can
obtain useful ‘meta’ information by matching conditions prevail-
ing in two sub-models within a single numerical simulation.

Multi-scale Modeling

By its nature, multi-scale modeling is highly interdisciplinary. It
has evolved independently across many fields, because a broad
range of scientific and engineering problems involve multiple
scales. Even though multi-scale problems are extremely difficult
we are making progress. Inter-discipline communication difficul-
ties, however, are rampant. Even though circulatory physiology
and oceanography deal with currents and flows, many findings
remain confined to the disciplines in which they were first stud-
ied. Much of this has to do with scale differences, but different
groups think in different jargons. The overarching question again
is how does one reliably compute larger reliable coarse scales while
at the same time accurately modeling the net effect smaller events
and structures have at subgrid-sized scales in both materials and
fluids? (Ref: Multiscale Modeling).

Topology

We need to understand topology as well. How are simple ele-
ments joined, and how do we preserve these attachments when
we transform the model? Topological properties are not metrical;
they concern connectivity and dimensional continuity. These are
the things that when transformed stretched, bent, twisted, or com-
pressed without tearing, puncturing or inducing self-intersections
still persist unchanged. Much of what the hemocoel does has to
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do with the topology of closed paths, piecewise flat surfaces, and
closed curved surfaces. Ultimately physiologists and biologists
will have to acquaint themselves with such formulations as the
closed-path theorem, and the Jordan curve theorem.

Simulation System Level Modeling

MEMS devices contain varied components including electron-
ics. We can model mini- and micro-scale MEMS using classical
mechanical, electromagnetic and thermodynamic theory. Most
studies concentrate on designing, modeling, and fabricating these
systems. Comprehensive analysis precedes prototyping and fab-
rication. A common representation that encompasses multiple
energy domains becomes useful in modeling the whole system.
The bond-graph notation, based on energy transport (or power
flow) may represent an entire system at the highest level. Ulti-
mately, one seeks to know the dynamical behavior of the entire
system.

But most transducers are nonlinear; they involve at least two
energy domains, and they operate in the large signal regime. Direct
numerical simulation of the dynamics of the fully meshed dis-
tributed model of such a system is computationally difficult and
expensive. Therefore, one needs to reduce the degrees of freedom
from hundreds or thousands in the meshed 3-D model to as few
degrees as possible. We can then use such reduced order models
to simulate and approximate the dynamics of the whole system.
Such macro-models, however, should agree with our 3-D numeri-
cal simulations and our experimental results when describing the
macro behavior of the system. Macro-models can also represent
the behavior of a subsystem in one energy domain as well as the
interactions from other domains. Hence, we need to automatically
generate macro-models, and then we must insert these smaller
models into some system-level dynamic simulator.

We also need to develop procedures to make quantum
models of nano-scaled systems. Such models should avoid the
complexities posed by the many-electron wave functions of
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classical quantum mechanical formulations. The complexity of
the Schrodinger equation describing even a six-electron carbon
atom requires visualizing a six-dimensional space. Each added
electron requires adding an additional dimension.

CAD

Computer-aided analytical tools generate methods for design-
ing MEMS eliminating some expensive and cumbersome build-
ing and testing. We need accurate simulations: accurate both in
representing a structure’s geometry and its underlying constitu-
tive properties. We also require behavioral models for the device
as well as its electronics. Most devices are transducers. Trans-
ducers operate in multiple energy domains and strongly couple
among these domains (e.g., coupled electro-mechanical and fluid-
structure interaction). Transducer-like devices require specialized
analysis together with accurate 3-D simulation. Again, designers
of these things have diverse backgrounds, and the field is multi-
disciplinary. Because not everyone is conversant with everyone
else’s tools and procedures, we need to develop more user-friendly
analytical tools. For instance, should electrical engineers need
to perform finite element analysis of a mechanical structure or
should mechanical engineers need to simulate an electronic cir-
cuit, they should have suitable interfacing tools.

Coming Attractions

Circulatory systems contain and direct flows of liquids and gases
through organisms and devices. Flows confine themselves to
either closed systems of tubes and pumps or move freely within
open cavities. After introducing pump-tube anatomy in Chapter 4
and the bee’s body in Chapter 5, we study the open cavity circu-
lations of bees and insects in Chapter 6.
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YOU CAN’T SHRINK A WOMAN

The Impossible Shrinking Woman

Even with what Gulliver learned in Lilliput and what Hollywood
says, we still can’t shrink a person down to the size of a bee. Even
theoretically! Why? People are vertebrates, and vertebrates have
closed circulations. It is this closed circulation among other things
that prevents shrinking a warm-blooded vertebrate much smaller
than a hummingbird and a cold-blooded vertebrate much smaller
than a guppy.

Closed Circulation Basics

A closed circulation is a heart-pump and its blood vessels: arteries,
arterioles, capillaries and veins. Blood circulates inside a closed
system and rarely leaves the vessels. Arteries convey blood away
from the heart to capillary beds, and veins convey blood back to
the heart from the capillaries. Arterioles are stopcocks interposed
between arteries and capillaries. The nervous system opens and
closes the stopcocks. Acting together, these valves aided by the
beat of the heart maintain central blood pressure in the arteries
of the circulation, but individually, each stopcock drops the per-
fusion pressure in the capillaries and controls how much blood
runs off into the capillary beds of its region.

In seventy years, your heart beats around 2,759,400,000 times
(75 beats per minute) squeezing 400 million liters of blood around
your circulation. Your circulation matches nutrients and oxygen
to what your cells need, while at the same time, your circulation
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removes wastes, regulates your body temperature, and distributes
hormones.

Systole and Diastole

Your heart-pump cycles through two phases all your life: systole
and diastole. Diastole is the resting phase between beats. During
systole, your ventricles contract and squeeze blood into your large
arteries. Some of the blood from each squeeze distends your elastic
aorta and pulmonary artery. The rest passes through the systemic
and pulmonary vessels. As systole draws to a close, and the blood
pressures in your ventricles fall below the pressures in your aorta
and pulmonary artery, the aortic and pulmonic valves between
these arteries and your ventricles close, preventing regurgitation
of arterial blood back into the ventricles.

During both systole and diastole, blood returns from your
veins to your heart. During systole, this blood collects in the atria.
It enters the ventricles when the valves between the atria and ven-
tricles open after systole. When your heart muscle rests between
squeezes, the arteries supplying your heart muscle, the coronary
arteries, supply blood to the relaxed muscle of the heart. During
diastole, because the aortic valves between the heart and arter-
ies are closed, recoil of the stretched walls of large arteries drives
blood through your body’s vessels. If you didn’t store energy in
the stretching of your arteries each time your heart pumped, no
blood would flow to your lungs and body when your ventricles
were filling. Remember: All your diastoles together are a bit more
than half your life.

Stroke Volume
When you are not exercising, each beat of your left ventricle

ejects about seventy milliliters of blood (the ventricle’s stroke vol-
ume) into your systemic circulation. Your systematic circulation
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comprises many regional circulations in parallel that supply your
brain, heart, kidneys and other organs. After blood in your cap-
illaries gives up its oxygen and nutrients and picks up carbon
dioxide and wastes from your cells through the walls of the cap-
illaries, the same stroke volume of seventy milliliters returns to
the right atrium and the right side of the heart through your large
veins. With your next beat, the blood we’ve been following passes
through the right side of your heart to your lungs where it will
give up the carbon dioxide from your cells and acquire oxygen.
This blood will then pass to your left ventricle and be ready for
the next systolic squeeze to your body.

Cardiac Output

How much blood a heart pumps in an interval, usually a minute,
is the cardiac output. Cardiac output is simply the heart rate
times the stroke volume. Stroke volume is the volume of blood the
left ventricle ejects into the aorta each beat. The right ventricle
ejects the same volume into the pulmonary circulation. Seventy-
five beats a minute times seventy milliliters per beat equals a car-
diac output of five thousand two hundred and fifty milliliters each
minute. Cardiac output varies from high outputs of ten or more
liters during exercise to five liters or less at rest.

Matched Outputs

Each avian or mammalian circulation, then, comprises two
pumps in two circuits that connect through the heart. The right
ventricle pumps blood through the lungs under low pressure. The
left heart pumps blood through the body under high pressure.
Each pump’s output matches the output of the other almost beat
for beat. If the right and left heart pumps were not evenly matched,
one might end one’s life having all one’s blood in one’s chest or
one’s body.
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Flow Equals Pressure Over Resistance

Each heart pump creates a head of pressure that drives flow
through its side of the circuit. Flow, pressure and resistance in
each circuit are in ohmic relationship analogous to current, volt-
age and resistance in electrical circuits. Flow equals the mean dif-
ference in pressure between the arterial and venous ends of each
circuit divided by the total resistance of the circuit. The quotient
between the pressure head and the regional flow resistance deter-
mines how much blood flows in each circuit. The body provides
much more resistance to flow in the systemic circuit than the lung
resists flow in the pulmonary circuit, accounting for the differ-
ences in pressures and the muscularity of the ventricles, the right
ventricle being thinner and less muscular than the left.

So in review, the left heart ejects blood into the systemic vessels
supplying the body. These vessels form many regional circuits
serving liver, brain, muscle, bone and other organs each separately
controlled, specialized in design, and arrayed in parallel. The right
heart pumps blood under lower pressure into the vascular beds of
the lungs. These beds, more uniform in design, are where oxygen
and carbon dioxide exchange between blood and air in the alveoli
across the walls of pulmonary capillaries.

Size Differences

The difference in sizes of insects and vertebrates accounts for their
very different circulations. Insects range from about a thousandth
to a tenth of a meter long, while terrestrial vertebrates range from
about mouse size up to five meters. There is very little size overlap
between these two groups. Thus, very few insects are as large as
the smallest birds or mammals.

A large difference in the number of species — estimated to be
of the order of more than a million for insects and twenty thou-
sand for terrestrial vertebrates associates with this size difference.
Additionally, insects have short life cycles, and there are many
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more of them. Insects are very successful at remaining small in
air on land and avoiding water loss, as the surface to volume ratio
of insects is very high. Vertebrates, on the other hand, have a much
lower surface to volume ratio, and they successfully support large
bodies in air on their internal mineralized skeletons.

Size and Temperature

Cold-blooded animals can be smaller than warm-blooded ones.
It takes less energy and fewer energy stores for one’s body tem-
perature to follow passively the temperature of the surroundings
than it does to warm or cool a body in an ever-changing tem-
perature gradient. The smallest cold-blooded vertebrate is the
stout infant-fish (Schindleria brevipinguis). The adults are paedo-
morphic, meaning that the adults retain larval organs and func-
tions. Males are sexually mature when just seven millimeters long.
Females are mature at about eight and a half millimeters. The
males of the dwarf goby from the Indo-Pacific are about eight
and a half millimeters and the females are about nine. These fish
are about at the limits of smallness for a fully developed cold-
blooded closed circulation.

Being small and warm-blooded on land, on the other hand,
demands capacity for heating and cooling and, hence, larger ex-
penditures of energy. Today’s smallest shrew weighs about two
grams. Based on measurements of a fifty-million-year-old jaw-
bone from Batodonoides, an early insectivore, this animal may have
weighed only one point three grams. Somewhere in this range then
is the smallest warm-blooded body that can be supported in air.

Limits
In general, heat loss or gain increases as one’s surface to vol-

ume ratio increases. As storage space for on board energy sup-
plies dwindles, a limit arises, because to maintain a constant
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body temperature against increasingly transitory and unfavorable
external gradients, energy must be expended. What energy cannot
be stored must be consumed and used immediately. Shrews forage
day and night.

Hummingbirds

Small and warm, hummingbirds are about at the size limits for
a terrestrial closed circulation. The smallest hummingbird, the
Cuban bee hummingbird, is about six centimeters long and weighs
less than three grams. Ruby throated hummingbirds weigh about
three grams and are about nine centimeters long having resting
body temperatures around one hundred and five degrees F when
beating their wings forty to eighty times a second as they burn
large quantities of energy in rapidly contracting fast red muscles.
A Ruby’s resting heart rate is around two hundred and fifty beats
a minute, and it breathes at about the same rate. But a Ruby’s
heart rate rises to twelve hundred beats a minute when feeding
on the wing. How does the little heart do it? (Ref: Hummingbird
and Shrew Energetics).

Large Hearts, Small Chests, Cold Nights

Remember birds’ hearts are like ours: a heart of four chambers.
The right side of the heart receives deoxygenated blood from the
body and pumps it to the lungs while the left side receives oxy-
genated blood and pumps it through the body. A hummingbird’s
large heart is about two and a half percent of a hummingbird’s
body weight, and its blood contains hemoglobin and a large num-
ber of red cells for transporting oxygen. Because the bird’s surface
to volume ratio is so very large and its energy needs so very high,
to be able to sleep without feeding all night, a hummingbird’s
body temperature falls from a daytime norm of one hundred five
degrees F to an overnight low of about seventy degrees F. This
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nocturnal torpor allows a hummingbird to slow its heart and res-
piratory rate during sleep and thereby lower its basal metabolic
rate and thus sleep through the night without feeding.

Cardiac Limits

In shrews and hummingbirds, small hearts supply energy to fast
moving muscles that work almost continuously. Because these
animals consume so much energy, to be awake is to eat. Their
hearts beat so fast because small pumps can eject only a small
stroke volume. If the heart rate is too fast, however, diastolic filling
time may shorten, so much that the ventricles cannot fill and the
coronary vessels cannot supply the heart muscle. If a heart spends
too much time contracting in systole and cannot compensate in
diastole, it can fail. Insects avoid this uniquely vertebrate problem
of high output heart failure with an open circulation.

Circulatory Systems

Let’s extend our general idea of a circulation to include devices,
vertebrates and insects together. All circulations solve supply and
demand problems: how to distribute flow to points where it is
needed, and when supply and demand are both high, to match an
area’s need to appropriately increased flows. Needs and flows con-
stantly change. For example, in a running vertebrate, blood shunts
tomuscles at the expense of the intestines. After eating, blood flows
to our intestines limiting the supply to muscles. This is why, after
dinner, so few of us push back from the table to run the mile.

Blood Supply to Organs

Before turning to open circulations, we consider how blood moves
through the capillaries inside the three-dimensional volume of
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an organ. We often express blood flows to organs as volumes of
blood flowing per minute into or out of an organ as a percentage
of the total cardiac output. We can also calculate blood flow per
unit mass of tissue. Both these values indicate where flow goes as
a percentage of the cardiac output, but these simple numbers do
not reveal the pattern of how blood traverses capillaries. As a rule,
simplified global descriptions are inadequate to explain happen-
ings at microscopic levels of resolution. In the heart, blood flow
per unit mass of tissue is not uniform in space. Nor is blood flow
constant in time over periods longer than a few beats. This finding
is important in medicine where radiologists may perceive defects
in deposition of thallium in x-ray films of coronary flows and
attribute these to pathology. We may do surgery to repair a normal
heart. What is abnormal and what is normal? Often we cannot tell.

Normal Blood Flow Through Trees

Blood flows are not uniform at the microscopic level. How vessels
are arrayed can create non-uniform flow patterns. Tissues differ as
to placements of their capillaries. In cardiac muscle, capillaries lie
in parallel arrays alongside the muscle cells, and a single straight
capillary may extend for centimeters. In heart muscle, many arte-
rioles feed into one large dense network of two to four thousand
capillaries per millimeter of cross-sectional area of tissue. Cardiac
capillaries appear ideally situated to deliver oxygen and nutrients
rapidly to active cardiac muscle. Other capillary beds in other
organs have different arrays.

Trees

Vessels of a closed circulation are arrayed as trees. Large vessels
and airways branch like tree trunks into smaller and smaller divi-
sions leading to twigs. Each vessel ‘tree’ is a series of segments
of cylindrical tubes that join at their dichotomous branch points
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so that, like twigs, down stream daughter branches have smaller
diameters and are shorter than their parent vessels.

Swamps of Capillaries

Capillaries are the exchange vessels and have the smallest inside
diameters of all the vessels. However, there are so many capillaries
that their combined inside diameters are greater than the inside
diameters of the arteries, so all arterial blood can pass through
capillaries without pooling. Arterioles reduce the perfusion pres-
sure of arterial blood to the lower blood pressures of capillaries.
Blood flow in capillaries is very slow and is not uniform. In
one capillary, flow may slow down, halt and then reverse like
water surges in a swamp. Oxygen, carbon dioxide and metabo-
lites exchange through the walls of capillaries between the slowly
moving blood and the stationary tissues. The differences between
the ratios of the resistances to flow in the arterioles and the post-
capillary vessels determine intra-capillary blood pressures and
thus how much blood flows through the capillary beds to perfuse
the tissues. Because capillary walls are thin, individual capillaries
may swell or collapse depending on the differences in pressures
across the capillary walls and flows within and outside them. High
external pressures can collapse capillaries preventing adequate
perfusion of tissues. A single capillary or bed may open or close
depending on the needs of nearby cells. Capillary walls often dilate
or constrict responding to locally produced, vaso-active chemi-
cals. The small diameters of capillaries permit their thin walls to
exert leverage upon high internal pressures (Laplace’s Law). Large
capillary surface to volume ratios facilitate rapid exchange.

Exchange

Some capillary walls have holes in them, but others are tight.
Water-soluble molecules such as glucose traverse pores in the
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capillary walls, but lipids pass through the epithelia of capillaries
direct. Non-fenestrated capillaries permit large polar molecules to
cross with difficulty. Gaps between epithelial cells in sinusoids or
discontinuous capillaries in spleen, liver and bone marrow permit
even cells to pass.

What We Don’t Know

Obviously how blood and materials move from moment to
moment at the cellular level of resolution is unknown. One often
presumes that high flow through a sequence of vessels suggests
that the cells these vessels feed must have high rates of metabolism,
but there is little data, even though whole organ data support the
idea that increasing metabolic demand in tissues in turn increases
local blood flow. Suggestions abound that local flow, transport
capacity and metabolism match up in some way, but how these
variables match up, if at all, is unclear. If regional feedback
between cells and nearby capillaries controls local flow, how are
these local regions coordinated together and regulated higher up?
Such questions so far remain unanswered.

A Fractal Match

Organisms are fractal assemblies but only over a limited range of
scales. In the simplest picture, we might imagine any animal to be
a solid body of cells adjoining a liquid phase across a common
fractal border. Animals with closed circulations especially exhibit
fractal patterns of their tissues and vessels.

Fractal structures intricately intertwine stationary catalytic
or cellular surfaces against a moving liquid and can maximize
the area of contact. This arrangement maximizes apposed sur-
face and facilitates optimum exchange across the barrier and
turnover. This general almost fractal pattern occurs at many scales
and sizes. Intricate interlacing of a stationary catalytic system,
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the cells, with a pumped liquid phase, the blood or hemolymph,
minimizes distances and resistances to transport down to even
sub-cellular scales. Such fractal anatomy of interfaces optimizes
turnover through all levels of organization.

Using a similar concept we may model both closed and open
circulations together. After we have discussed open circulations,
we shall compare transfer along this type of border with transfer
through a percolation system. We may already apply concepts
of percolation to the gel states of polymers on the cellular or
molecular scale (Ref: Fractal Gels).

Matching Flows Across Exchange Surfaces

Examples occur in any organ, but the human lung is a “best”
example, as air flowing to and from alveoli must match blood
flowing through the capillaries around the alveoli. At large and
smaller resolutions we can visualize the patterns of these distribu-
tions graphically, and using our graphs we can create our models.
But first what constitutes flow matching in the lung?

In a closed circulation supplying an organ such as a liver or
lung from a blood supply entering and leaving the organ through
a single portal, one problem of distribution is how to divide up the
flows internally so that all regions of the organ receive adequate
blood. Liver or heart muscles seen at one resolution contain cells
that occupy the volume inside the organ almost homogeneously.
Blood flow backs up rarely. The alveolar surface of the lung shows
a similar match-up, but because we can easily visualize our lung
as a two-dimensional surface, we shall use the lung as our example
of a flow matched to need situation.

The Lung

The lung 1s an exchange surface of many flat cells. The surface,
about the size of a tennis court or about one hundred and thirty
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square meters, has the form of three hundred million grape-like
sacs or alveoli spread over one side of a thin membrane on the
other side of which courses a bed of capillaries. Gases must tra-
verse this alveolar-capillary membrane as they cross in both direc-
tions between alveolus and capillary. Our lung surface is crumpled
within our chests, each folded half court taking up about five liters
of space. Networks of capillaries surround each alveolus.

The capillaries around all our alveoli together must receive
blood as evenly as possible, so that the alveoli high up in our
chests and others lower down near our diaphragms all receive the
blood they need to match the air they get: no more and no less.

So one-half of our distribution problem is how to divide up
the stream of blood coming into the lung efficiently so that blood
reaches all points of the combined alveolar surface evenly in
approximately the same time. The other half of the problem entails
getting air uniformly to the alveoli. Alveoli, no matter where they
are in the chest, high up or low down, must receive adequate fresh
oxygen from each inspired breath. Airflow and blood flow must
match so that blood in some capillaries does not meet poorly ven-
tilated alveoli and return to the heart empty-handed and also so
that well ventilated alveoli receive more blood than poorly venti-
lated ones. So the goal of a matched supply system must be that
ventilation and perfusion of the exchange system must match up
almost perfectly over the area on both sides of the alveolar capil-
lary membrane.

How We Match Flows

Vertebrates solve the ventilation-perfusion flow-matching prob-
lem by having the blood vessels of the lung and the airways as
trees with their roots in the heart or in the upper airways extend-
ing down from the nose and mouth. Twigs of both of these trees
intertwine and touch at the level of the alveolar-capillary units.
Look at this match from the airway side. Air enters the trachea
that soon divides into bronchi. The bronchial tubes branch and
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narrow their diameters over and over about twenty-three times
until reaching their last division: the alveolar level. Each alveolus,
with it skein of capillaries around it, behaves as a unit. However,
shrinking the branching trees of airways, as with shrinking a sim-
ple pump-tube distributing system as we did in Chapter 1, would
lead to blockage when the internal diameters of the airways grow
too small so that flows diminish.

Look at the match-up now from the circulation’s point of view.
Blood leaving the right ventricle of the heart passes through pul-
monary arteries and then analogously branching subdivisions of
arteries all the way down to the pulmonary capillaries. The func-
tional result of this design is that all points on the exchange surface
of the lung are almost the same distance from the source of fresh
air and blood: the main airways and the heart.

Tree distributions permit air flow and blood flow to remain
almost entirely laminar and non-turbulent as they flow in very
close proximity to each other on either sides of the thin alve-
olar capillary membrane. Lack of turbulence permits the work
of pumping and the work of ventilating the alveoli to remain
minimal.

Representing a Closed Circulation

A scale-free graph best represents the vertebrate circulation. In
this graph, we see the circulatory network as connecting vertices
or nodes, or sites of metabolism. These active vertices connect
with each other through edges that are the actual blood vessels.
The edges are directed as blood flows in one direction (away from
the heart in arteries and returns to the heart through veins), so
we distinguish incoming and outgoing links for each node.

The probability that a node receives blood from k distal flows
equals the probability that this same node feeds & different down-
stream flows. Both inflows and outflows have similar distributions,
because blood is neither consumed nor created in most nodes.
(An exception would be blood entering the veins from venous
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reservoirs.) P(k) ~ k=7 in equals P(k) ~ k=7 out. Gamma is the
probability that two nodes are connected. This scale-free network
also displays small world character, as any two nodes may con-
nect along existing links by relatively short paths, for example, all
blood leaving the left heart traverses the aortic arch.

The diameter of the circulatory network spanned by our graph
characterizes the degree of interconnectivity within the circula-
tory network. We define diameter as the shortest path for blood
flow averaged over all pairs of nodes. This shortest path indi-
cates the rate at which information (blood) spreads throughout
the graph. If all nodes were fixed, the diameter of a scale-free net-
work would increase logarithmically as new nodes joined the net-
work. The diameter of the network of a larger animal comprising
a larger number of metabolic sites might exceed that for a smaller
animal. A graph of log P(k) versus log k for the vertebrate circu-
lation has no well-defined peak. For large k the graph decays as a
power law, P(k) ~ k~7, appearing as a straight line with slope —y
on a log-log plot, because the heart, lungs, kidneys and brain each
have a large number of links. As happens in the World Wide Web,
important nodal places (hubs) are vulnerable to attacks on the
system. A heart attack or brain infarct can knock out the entire
mammalian circulation. This single knock-out opportunity does
not exist for an open arthropod circulation.
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BEE’S BODY

Introduction

An adult worker honeybee represents the generalized insect body
plan and its subsystems. However, this worker bee blueprint
modifies the plan of a generalized insect. This chapter summa-
rizes bee anatomy. After laying out her plan, we shall shrink her
dimensions.

Why choose honeybees? Honeybees are large common
denizens of gardens, are easily raised, are not yet extinct, and we
understand honeybee anatomy and physiology quite well com-
pared with these in other insects. Evolution over geological time
has perfected myriad variations on the ‘insect’ theme.

Insect bodies are compact, light and stable. They function well
in all climates and at atmospheric pressures. There are at least
five to ten million species of insects and only forty-two thousand
vertebrate species; consequently, insects form an incredibly rich
but largely unknown source of ideas to be mined for miniaturizing
our engineering innovations. We shall continually ask ourselves:
how might a shrinking bee generate ideas for human designers of
small mechanical devices.

Crayfish and lobsters and other arthropods, also constructed
on ‘bee-type’ plans, are much larger than insects, so their anatomy
appears more comprehensible to our unaided eye. Arthropods
come in large as well as very small sizes indicating the arthropod
body-plan remains relatively unaltered and, hence, quite recog-
nizable and robust over a very broad range of sizes. Evolution
of external arthropod armor permits a tank-like defending shell
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as well as a secure attachment for muscles and water-proofing.
Later modifications that came to be wings also now serve as solar
heating panels and signaling devices.

Warning

Keep in mind however, we should never consider insects, spi-
ders and other invertebrates to be ‘just’ shrunken vertebrates. We
often base our human assumptions about how ‘animals work’
on what we know of human biology. For example, a ‘law’ based
on mammalian pulmonary and cardiovascular systems derives a
three-quarter power allometric scaling relationship for metabolic
rates of organisms describing distribution of gases and food-
stuffs through linear space-filling fractal networks of branching
tubes suggesting that tubular distribution systems characterize all
organisms (Ref: Allometric Scaling). Because invertebrates often
are so very small, they cannot employ closed systems of pumps
and tubes in a vertebrate configuration.

From Precambrian Chains to Three Segments

The earliest arthropod bodies undoubtedly formed from worm-
like chains of similar tubular segments in Precambrian sedi-
ments. So we must first inquire how might a wormy chain of
segments have become the plan for the insect bodies we have
today.

Imagine a centipede-like body progressively changing perhaps
stepwise into a bee’s body. A related question might be that if
change arises from mutant genes, how were these early bodies able
to tolerate large-scale mutations in the genes determining their
form without the bodies developing suddenly some grotesque
abnormality and becoming dysfunctional enough to end the evo-
lutionary sequence?
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Hox Genes Keep Legs Off of Heads

Mutations that change body parts, if the changes are too extreme,
might kill their bearers before the bearers of these new mutants
achieved reproductive maturity. Enter Hox genes. Hox genes are
‘super’ genes that apparently reside at the top of a hierarchy of
genes to control many other genes lower down.

All of an animal’s genes, working together, ultimately deter-
mine the animal’s form. One gene, having the beautiful name
of ultrabithorax for example, regulates where limbs form on the
body. Usually limbs do not grow on heads or on abdominal seg-
ments. In insects this gene, shortened to ubx, suppresses formation
of limbs and wings in the abdominal segments and also ensures
that wings and legs develop only in the thorax. We know this
because if we remove the ubx gene from fruit flies, legs sprout
from every abdominal segment. Ubx thus suppresses abdominal
legs. Then if we place the ubx gene inappropriately into the tho-
rax where it is not usually active, ubx suppresses development
of legs where legs normally occur. Thus, ubx genes turn oft and
turn on genes that more specifically and minutely control devel-
opment of the complex structures of the legs and wings. If we
take a ubx protein from brine shrimp — these crustaceans carry
legs on their abdominal segments — and we place this brine
shrimp protein into the thorax of fruit flies, only fifteen per-
cent of the limb development of a fruit fly’s legs gets turned
off or suppressed. This change suggests that over the interval
of geological time between when brine shrimp arose to when
fruit flies emerged, the ubx gene evolved and even changed its
function.

These and other genetic findings suggest that altering just one
small part of a tightly organized genetic system may, in turn,
modify a much larger pattern. Not only are individual genes not
immutable, whole patterns of genes are not fixed through time, as
they can adjust their collective responses to evolutionary demand.
It would be useful if human designers could develop devices hav-
ing at least some of the sophistication of insect bodies, so that
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devices might evolve according to the demands of their changing
environments.

Protein Plus Silicon

Protein joined with silicon is a step in the right direction. We have
taken a major conceptual step. We can now link enzymes that
are biological proteins to a chip-based technology inside a three-
dimensional anatomical array or skeleton. Biological molecules
that couple to electronic circuits open up possibilities for DNA
wires and reactor cells containing enzymes.

One new technology now harnesses the energy from elec-
tric currents produced during photosynthesis. This energy after
development may extend the lives of batteries in cell phones
and portable devices (Ref: Energy from Photosynthesis). Early
attempts to combine silicon and proteins failed largely because
the proteins that capture energy from light during photosynthesis
denature and change their form if they dry out. A peptide deter-
gent, however, helped stabilize the protein, allowing it to channel
energy within a chip. The researchers placed protein molecules,
extracted from spinach, heads up while leaving spaces between
each protein molecule on the chip. They then filled the spaces
between the proteins with the peptide detergent, so through self-
assembly, the protein component and the detergent combined.
This array is sandwiched between layers of plastic, gold and
indium-tin oxide, a transparent semi-conducting material. The
chips are durable, and they continue to pass current for weeks.
Researchers can repair individual chips by injecting more protein
into the spaces if needed. In a similar way, we may pile up many
similar layers and may then wrap these layers around conven-
tional batteries to create a three-dimensional array that generates
increased battery power.

What is interesting in this example is the anatomy. Precise
positioning of a protein and silicon relative to each other as well as
within a larger battery ‘system,’ creates a compact, organized unit



92 Chapter 5

that we may now also repair. The insect body has been layering
and integrating itself between and within twisted and organized
systems of layers since the Devonian. We have much to learn, but
we may be on our way.

Hexapod Uniformity Allows Shrinkage

The most distinctive change insects made in the primitive chain
of segments having legs on each, was by reducing their walking
legs from many to only six. These six legs attach to a special-
ized, consolidated powerful thorax of just three body segments.
As with smaller insects that resemble larger ones, the compressed
anatomy of the thorax, originally most probably a minor variant,
became standard in large as well as small arthropods. Addition-
ally, the anatomy of the thorax is stable, as it appears to ‘shrink’
down quite readily to fit within the smallest bodies.

The components of the insect plan retain for the most part
their customary relationships, suggesting that anatomical rela-
tionships are crucial to insect success and are robust enough to
have remained little changed over evolution, as organs and their
parts most often retain their standard positions. These observa-
tions taken together with the worldwide distribution of arthro-
pods demonstrate how successful design of the arthropod body
is. Would that we might emulate it and that the designs for our
devices were as robust.

Body Plan in Three Parts

A bee’s body parts like ours are often hidden. A fluffy coat of
hairs obscures the outline of a bee’s body especially in colder
climates where hairy bees are the rule. We shall shave the hair
to imagine a simplified common plan of an adult honeybee, all
the while remembering honeybees lead very specialized lives, and



Bee’s Body 93

Wings

Head

Compound

Eye Abdomen

Antenna

Mouthparts

Propodium
Proboscis Leg Abdominal
Spiracle Segment
5

Figure 5.1. The Three Parts of the Bee’s Body. Side view of a worker bee devoid of
hairs. The thorax, unlabeled, holds the legs and wings.

therefore, have very specialized bodies. A worker bee’s body is in
three parts: head, thorax and abdomen.

Head
The head holds her eyes, her antennae and her mouthparts she

uses for feeding. A slender flexible neck joins her head to her
thorax.

Thorax

Her thorax houses the machinery of walking and flying. Her tho-
rax and the third section of her abdomen or trunk arise from the
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primitive chain of joined ring-like segments. In most insects the
thorax consists of three sub-segments. Each sub-segment holds
one pair of legs, but in the bee, the thorax has four divisions, the
prothorax, the mesothorax, the metathorax and the propodeum.
A bee’s propodium is the first abdominal segment of most other
insects. In bees this propodial segment has moved forward and
joined with the thorax. The prothorax holds the first pair of legs.
The meso and the metathorax have each a pair of legs, but the
latter two segments also hold and control the two pairs of wings.
A short peduncle or stalk connects the thorax with the abdomen.

Abdomen

The abdomen of segments two to seven, segment five is labeled,
houses the bee’s internal organs and bears the sting. Segment one
is the propodium and is part of the thorax. The sting of a worker
bee is the modified ovopositer or egg layer of other insects.

Adaptations

A bee’s body is modified for specific activities. Anatomical and
physiological modifications are superimposed upon and inte-
grated into her generalized body plan. For example, the feeding
organs of bees contain similar parts as those of other insects, such
as crickets, but a bee’s mouthparts differ in shape and function in
that they form a proboscis for ingesting nectar and pollen. The
gut or alimentary canal of a honeybee is specialized for holding
honey. Her respiratory system is enlarged accommodating rapid
flight. Bee wings enable swift flight, but they can also sustain
heavy, rapidly changing loads of nectar, honey and pollen. A bee
uses her legs not only for walking. Her legs are shaped for hold-
ing on, feeding brood and young bees, for cleaning herself, and
are adapted for performing other jobs around the hive, such as
carrying pollen. The sting of a worker bee discharges formic acid
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and not eggs. Abdominal glands produce wax for the building of
honeycombs.

Bee in More Detail

The cranium-like head arises from fusing several primitive seg-
ments together. The head carries four pairs of appendages, the
antennae, the mandibles or the bee’s jaws, the maxillae and the
labium. In bees, these latter two fuse into the proboscis adapted
for feeding on liquid nectar and honey. The head of a bee carries
a pair of large compound eyes. Between these big eyes are three
smaller eyes or ocelli. The head attaches to the thorax. The cav-
ity inside the head joins the cavity inside the thorax, and the neck
tube allows the esophagus, nerves, blood vessel, tracheae and sali-
vary ducts to pass from the head into the thorax much as cables
traverse a conduit. Internally, within the cavernous space of the
head, two large bars of cuticle extend from the sides of the neck
into the cavity supporting and strengthening the head.

Because the thorax contains, supports and supplies the pow-
erful motors driving her wings and legs, muscles almost fill the
cavity of the thorax. These muscles are the muscles of locomotion
as well as those moving the head and the abdomen. Hemolymph
flows over and around these muscles, as tracheae admit air from
outside and convey oxygen directly to the cells of the active mus-
cles. Functions of the thorax depend on mass, flight activity, and
load, and especially complicated relationships between metabolic
activity and size, and are highly regulated (Chapter 10).

Thorax muscles: Muscular systems in the thorax are tightly
and conservatively organized, as any additional weight costs
dearly in terms of fuel. Cut open a bee’s thorax to see that it is
almost completely filled with masses of muscle fibers. You can see
these with the naked eye, but if you tease the muscles apart under a
dissecting microscope, you will see that the muscles are compart-
mentalized into units. Each set of muscles has multiple functions.
Half of the muscles in the thorax, a right and left mass, course
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down the center of the thorax from the head back towards the
abdomen. These are the dorsal longitudinal muscles that attach
to a complex set of hinges and upon contraction, depress the
wings. Other muscles in the thorax forming almost half the total
mass of muscle, course at almost right angles to this first set. These
crossing muscles, the dorsal ventral muscles, are the elevators of
the wings. Depressor muscles of the back also serve a double func-
tion as they also elevate the wings. Contracting depressor muscles
of the wings elevate the back and turn the wings down. During
flight and preflight warm-ups, the two sets of muscles contract
and relax alternately (Ref: Flight).

Flight

The two wings on each side hook together during flight. Flap-
ping up and down alone does not permit flight; but driving forces
arise from propeller-like twists given to each wing during up and
down strokes. Large nerve centers called ganglia in the ventral
nerve cord, control the wings. Wings hinge by their narrowed
bases to the thorax and are free to move up and down, but flight
requires forward and backward motions as well as twisting or par-
tial rotation of wings on their long axes. Thoracic muscles provide
power, but most of these muscles attach not to the wings them-
selves, but to movable parts of the thorax that move the wings
indirectly.

Abdomen

The abdomen contains the viscera: the stomach, intestine, repro-
ductive organs, and the external genitalia that usually are con-
cerned with mating and egg-laying. In worker bees, the genitalia
are incorporated into the mechanism of the sting.

The ten segments of the larval bee’s abdomen reduce to nine
segments in the adult, as the first abdominal segment joins the
thorax to become the hindmost thoracic segment, the propodium.
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Figure 5.2. Bee’s Internal Anatomy. Lengthwise section through a worker bee.

Each abdominal segment contains a large back plate, the tergum,
and a smaller ventral plate, the sternum. The successive plates of
sequential segments overlap from front to back. The plates con-
nect with each other through inter-segmental membranes. The
sides of the segments connect with each other through infolded
lateral membranes. Our primitive sequence of joined-rings makes
the abdomen distensible and contractile in length as well as allows
the tip of the abdomen to bend up and down. Long retractor
muscles that course along the length of the abdomen pull the seg-
ments together to shorten the abdomen. Shorter protractor mus-
cles in each segment oppose the retractor muscles to lengthen the
abdomen. Compressor muscles within each segment draw the ter-
gum and sternum of each segment closer together. A short tubu-
lar stalk, the petiole (think of a wasp’s waist), unites the abdomen
to the thorax permitting much movement between the two. The
nerve cord, alimentary canal and dorsal vessel traverse the petiole,
again as in a conduit.
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Alimentary Canal

A sucking pump in the head draws food, honey or nectar or
pollen, from the mouth into the esophagus. The tube of the esoph-
agus passes backwards through the neck and thorax to become
the honey stomach of the alimentary canal. This honey stomach
resembles the crop of other insects but is adapted to transport
nectar or honey and to store these foods for later regurgitation
or digestion. From the honey stomach food to be digested then
enters the true stomach or midgut or ventriculus through a nar-
row muscular proventriculus that regulates entry of food into the
stomach. Digestion and absorption occur in the midgut. Inside
the stomach, a thin peritrophic membrane secretes a delicate filmy
cylinder around the mass of food. From the wall of the stom-
ach, digestive enzymes pass through this peritrophic membrane
to digest the food. Later, the products of digestion pass back
through the peritrophic membrane once more before traversing
the stomach wall to enter the hemolymph. What remains of the
meal then enters the intestine. The intestine is divided into a nar-
row anterior part that is coiled and a larger pear-shaped posterior
intestine or rectum that opens to the outside through the anus.
These latter structures serve to absorb water and to discharge
wastes. Bees retain feces in the rectum until they are evacuated
outside the hive. In an over-wintering bee confined inside a hive,
the rectum may distend to fill a large proportion of the abdominal
cavity.

Malpighian Tubules

These little tubes are excretory organs serving as kidneys.
Malpighian tubules remove nitrogenous wastes and salts pro-
duced during metabolism from the hemolymph. A hundred or
more of these thread-like tubes join the alimentary canal where
the intestine joins the stomach. The free ends of the tubes extend
for long distances within the abdominal cavity, and like hoses,
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can move about within the spaces surrounding the organs. The
hemolymph that washes over the organs enters the free open ends.
Wastes move along the tubes to discharge into the intestine and
are eliminated with the feces.

Fat Bodies

Fat bodies are irregular masses of a soft white tissue composed of
large, loosely joined cells that are scattered throughout the body
cavity. Fat bodies are most numerous in the abdomen. The cells
of the fat body contain oily fat. The fat bodies store products of
digestion that the bee does not need immediately.

Respiratory System

For flight and other metabolic processes demanding oxygen, oxy-
gen must in some way pass through the impervious cuticle to
reach the mitochondria inside all the cells of the body. How do
bees accomplish this?

Bees exchange gases through the tracheal system, a branching
network of tubes throughout the body. Air conduits fill up large
portions of the interior body. The tracheae open to the atmo-
sphere through the spiracles, little openings resembling portholes
in the cuticle. Each porthole possesses a closing mechanism that
reduces loss of water from the respiratory tree. Oxygen influx and
carbon dioxide efflux must occur through the tracheae, as the
cuticle is quite impervious to these gases.

Spiracles

The adult honeybee has three thoracic and seven abdominal spira-
cles on each side, because the first abdominal segment, the prono-
tum, has joined the thorax. All the spiracles except the smaller
second are capable of controlled closing and opening. Spiracles
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posses a muscular apparatus controlled by the nervous system
that closes to prevent escape of air in the tracheal tree or to
adjust the flows of air through the spiracles. Most insects have
ten spiracles on each side, two on the thorax and eight on each
side of the abdomen. The first and largest spiracles lie between
the pro and meso thorax, each partially hidden by the overlap-
ping edges of the pronotum. The second spiracle is small lying
between the upper angles of the plates of the meso and meta
thorax. The third spiracle, fully exposed, is on the side of the
pronotum. The next six are in the lower portions of the first six
tergal plates of the abdomen, and the last spiracle is at the base
of the sting.

Tracheae

Internally tracheae form branching invaginations of the cuticle
deep to the spiracles, the internal diameters of the tracheae grow-
ing smaller and smaller at each bifurcation. This system of bifur-
cations transports oxygen directly to where it is utilized without
its passing through the hemolymph. The terminal branches of the
tracheae are the tracheoles. The tracheoles end on or close to the
cells. For example, up to ten percent of the mass of flight mus-
cle may be air tubes. There is, always a tradeoff between filling a
muscle’s volume with muscle fibers or airways, as space on board
is at a premium. Some of the smallest terminals of the tracheoles
may even indent cell membranes, reducing the distances for dif-
fusion to the mitochondria. Diffusion through these smallest air
tubes is continuous with diffusion of oxygen through the tissues.
At rest, tracheoles contain some liquid. During flight, however,
this liquid is absorbed, so that now a continuous pathway of air
supplies the increased metabolic demand of the mitochondria, as
the diffusion of oxygen occurs faster in air than in water. The
lengths of the paths for tissue diffusion, however, set an upper
limit on how big tissues, organs and ultimately the size of an
insect may be.
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Air Sacs

Many tracheae along their courses dilate into thin-walled air sacs.
These sacs expand to fill much of the volume at the sides of the
abdomen and within the smaller spaces of the thorax and head.
Some sacs, drawn out like filaments, even extend down into the
proximal ends of the legs.

Ventilation

To ventilate the respiratory system, opposing sets of abdom-
inal muscles contract alternately like a bellows, producing
dorsal-ventral and lengthwise contractions and expansion of the
abdomen. To move air through the spiracles, the air sacs must
also expand and contract from the alternate compressions and
expansions of the abdomen. Because the air sacs are collapsi-
ble, hemolymph can shift in the hemocoel as the intestinal tract
expands and contracts with feedings. Air sacs may allow growth
of organs without changing the exterior form of an insect’s body.
The tracheae themselves are more or less rigid, as they pos-
sess spiral thickenings of cuticle within their walls that keep
them open. Hence, the tubes themselves do not respond much
to increases and decreases of pressure around them, but the thin-
ner air sacs do.

Gas Exchange

From the air sacs, the tracheae branch and ramify to the
appendages and the organs. Tracheae then end in tracheoles that
terminate blindly within cells. Proximally tracheoles are about a
micrometer in diameter, but they taper to diameters of a tenth
of a micrometer. Physiological cascades draw oxygen from this
fluid into the mitochondria during oxidative metabolism. It is
uncertain if the tips of tracheoles ever become truly intracellular.
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Distributions of tracheoles to end-organs reflects their demands
for oxygen, as tracheoles are most numerous in muscles, glands
and neural tissues where oxygen consumption is highest. Some
carbon dioxide produced by the metabolizing cells cannot be
funneled into the air conduits. This carbon dioxide, instead, dis-
charges into the hemolymph, and after circulating may diffuse
through soft areas of cuticle or be converted into bicarbonate
and excreted through the Malpighian tubules into the midgut
(Ref: Respiration).

Might we someday construct air sac-like reservoirs in devices
that could accommodate shifting fluids within rigid interiors?
Sacs might also insulate hot spots in devices much as they help
insulate thoracic motors by confining heat flows, permitting a
warm thorax and a cooler abdomen to co-exist at different tem-
peratures. More about heat exchange in Chapter 9.
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CAVITY TRANSPORT

Overview of Chapter

Open circulations supply many invertebrates: from crabs, lob-
sters, insects and spiders to starfish, sea urchins and some mol-
lusks. More animal species employ open circulations than the
closed ‘pump-tube’ circulations of vertebrates. In open circula-
tions, movements of the body assist open pumps to propel blood
or hemolymph over and around organs inside an open cavity or
hemocoel. From the pump or heart, blood traverses tubes passing
direct to gills or brain, but ultimately blood leaves the tubes to
percolate through the open cavity. Because open circulations lack
capillaries, tissues and organs surrounding the cavity must take
up nutrients and discharge wastes into the slowly moving blood
direct. In some forms, the ‘blood’ of the open circulation trans-
ports oxygen in addition to foodstuffs and wastes, but in insects,
oxygen distributes via a separate tubular system of tracheae. Open
cavity circulations, unlike closed circulations, continue to function
when shrunk to spider or gnat size making cavity circulations ideal
models for supplying miniaturized microfluidic devices. We begin
with a thought experiment.

THOUGHT EXPERIMENT
Efficiency

Efficiency is the ratio of the work a system performs to the
energy expended in performing the work. To maintain or increase
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efficiency as a system shrinks, its decreasing mass and chang-
ing surfaces must keep pace with changing energetic processes.
Integration and efficiency depend upon on a machine’s anatom-
ical design, and in living systems, physiology continually feeds
back to fine-tune morphology. If a machine or organism is to
adapt to changing environments, structure and function must
evolve together. Structure is inseparably linked to function.

Surface-to-Volume Ratios

To appreciate how the need for a circulation relates to a sys-
tem’s size, be it animal or machine, we consider the system’s
surface-to-volume ratios. Compact efficient systems minimize
extra space and weight. Efficiency of transfer of energy and mate-
rials increases when thin surfaces having maximal areas fold up
compactly within minimal volumes. One example is how a hemo-
coel and tracheal system are coordinated, matching their surfaces.
Circulating hemolymph moves a wall’s thickness away but along-
side air flowing through the conduits and sacs of the respiratory
system that interlace the bee’s body.

Model

Our model for a thought experiment generalizes needs of supply
and demand to satisfy metabolism as size, activity and demand
increase. When bodies are small, diffusion suffices.

Conceive of a spherical bee smaller than a gnat. For energy
she requires oxygen and nutrients, and at the same time she must
eliminate carbon dioxide and water as waste products. Because
she is spherical, we assume all of her interior points of metabolism
where she consumes oxygen and fuel and produces carbon diox-
ide and water to be equidistant from her body’s surface. If she is
small enough, her body equi-permeable to the molecules so that
distances for diffusion remain optimally short, and if supplies of
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energy in the environment around her suffice, diffusion of both
oxygen and food molecules from the environment through her
body wall to her tissues as well as diffusion of wastes from her
body to her environment will supply her metabolic needs. Dif-
fusion suffices as long as diffusion time and path length remain
short enough.

Diffusion Limits

It might take up to a minute for diffusing oxygen to penetrate to
the center of a single amoeba floating in a bath, if we calculate
that the average time for diffusion equals the diffusion distance
(centimeters) squared divided by a diffusion constant that is about
~ 107> for most small molecules in water. If our amoeba’s cell
membrane is one hundred Angstroms thick, then diffusion time
might be 0.0000001 seconds, but for diffusion to supply a spherical
animal ten centimeters in diameter, time to diffuse might take one
hundred and twenty days (Ref: Diffusion Rates). But now what
happens when body size and or activity increase?

Size Increase

Unassisted diffusion cannot supply adequate oxygen fast enough
for diffusion distances greater than about two hundred and fifty
microns, so pumping or convection must be added to speed trans-
port. Let’sincrease by ten times each of our bee’s three dimensions.
Her weight, now a cubed function, goes up a thousand-fold.
So for our bee now to remain as efficient as she was before we
enlarged her, each minute she will need one thousand times as
much food energy and oxygen, and during the same minute, she
must excrete one thousand times the wastes including carbon
dioxide she excreted before her size increased.

But how can she do this? Unaided diffusion can’t suffice,
because her once optimal distances for diffusion to supply all
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her central points of metabolism are now way too long. Also, if
we wish her to fly and walk, she will have to increase her need for
energy even more and will require a more rapid supply of fuel and
removal of wastes. Our bee’s marginally sufficient metabolism at
rest now is insufficient for exercise, as her metabolic rate is tied to
how rapidly she acquires oxygen and excretes carbon dioxide. Her
rate of metabolism now restricts her activities and her mobility.

Surface Area Must Increase Relative to Volume

If our bee keeps her spherical shape, the surface of her body will
have increased one hundred times, so ten times the original oxy-
gen must enter her tissues through each square millimeter of her
new surface area per minute. Similarly, ten times as much food
energy must enter through each square millimeter of her gut each
minute, and ten times as much waste must leave her body each
minute. Therefore, to retain her present size, it behooves our bee
to increase her surface area in contact with her environment rela-
tive to her volume; that is, she must increase her surface to volume
ratio. Most animals increase surface to volume ratios by folding
and packing surfaces into lungs, gills and microvilli. Folding and
compacting the folds increase surface area and thereby increase
opportunities for transfer without increasing the bulk of the body.

Compartmentalization

At body sizes where simple diffusion is inadequate, systems for
compartmentalizing functions develop. No longer is it feasible for
food molecules to diffuse through an entire body’s surface, so a
gut with intake controlled by the head, manages intake of fuel.
A kidney, or in our bee’s case, her Malphigian tubules, take over
excreting wastes, and a gill, lung or tracheal system, exchanges
respiratory gases. So, at last, a circulatory system begins trans-
porting substances around the body.
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Circulation Combines and Integrates Functions

Bees are efficient. One moving fluid serves multiple functions.
Not only does circulating hemolymph transport foodstuffs, hor-
mones, immune cells and wastes, it shuttles heat around the body
and dissipates it to the environment cooling thoracic engines that
power the wings and legs. For example, heating and cooling are
reasons why we might try to emulate insects in building our small-
est devices: A flying mosquito maintains less than a one degree
centigrade difference between the temperature of its body and the
temperature of the air swirling around it. The mosquito maintains
this temperature differential despite enormous heat production.
Taking size into account, larger honeybees heat up their thoraxes
to about fifteen degrees centigrade. Having larger thoraxes and,
therefore, smaller surface to volume ratios than mosquitoes, hon-
eybees must generate and then maintain higher temperature gra-
dients before achieving the requisite rate of dissipation of heat.
One converse of this principle is that arctic bumblebees are quite
hairy. Hair helps retain body heat, but in comparison, tropi-
cal bees at low elevations may be quite naked facilitating heat
dissipation.

Implications for Devices: Batteries and Reservoirs

Circulations regulate. Physiological mechanisms, in even much
smaller insect bodies than those of bees, together with their reg-
ulators and suppliers of energy are smaller than half a millime-
ter cubed. One problem for devices is batteries. Because of their
bulk, we must position these energy sources at distances from
where we require their energies. Long distances between sources
and sinks dissipate useful energy. On the other hand, open circu-
lations draw sources closer to sinks, and reduce excessive energy
wastage. Now, what animals employ open circulations, and how
do they live?
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How Prevalent are Open Circulations?

More animals employ open circulations than closed circulations.
This fact alone suggests that the principles of cavity transport
are robust. They have served over millions of years through many
changes of temperature and climate. Open circulations are impor-
tant energetically and are here to stay.

History

Open circulations arose prior to Cambrian times perhaps in trilo-
bites when arthropod bodies formed. Some trilobites were slow
pelagic swimmers, others faster predators, and some crawled, con-
suming organic matter from sediments when trapped in the mud
of early oceans to deposit their exoskeletons later to be found in
Burgess Shale. Among the trilobites, worm like strings of body
segments having heads and tails possibly feathery gills occurred
(Ref: Trilobites).

Today open circulations, some quite modified, occur in at least
three major groups: Arthropods, Echinoderms and Mollusks.
Molluskan body cavities are coeloms. Coeloms resemble hemo-
coels, but they arise differently in development and are highly
modified, even though in some mollusks the cavities comprise
large portions of their circulation. According to one popular the-
ory, the coelomate theory, mollusks evolved from a coelomate
ancestor along with the annelids, the segmented worms, as both
show embryonic spiral cleavage, a specific type of cell division
during development producing a similar larval form called a tro-
chophore. Such academic questions will probably be clarified after
more genetic work. Molluskan cavities will not be considered here.

Arthropods

Arthropods are the largest most successful invertebrate group
having now perhaps a million species. Arthropods have
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exoskeletons containing chitin, and these rigid exoskeletons must
shed as their bodies grow. Arthropods are segmented into a head,
thorax, and abdomen, but segments may be fused together as are
the head and thorax, the cephalothorax, of crawfish and lobsters.
Arthropods have jointed appendages. Gas exchange occurs direct
through body surfaces in the smaller forms, as well as through
gills, tracheae or book lungs that maximize respiratory surfaces.
Blood that may or may not transport oxygen circulates within the
open circulations of arthropods.

Modern Arthropod groups are three: Chelicerates, Crus-
taceans and the Uniramia. Chelicerates are spiders, ticks, mites,
scorpions, horseshoe crabs and sea spiders. Many of these have
book lungs, and most are terrestrial. Crustaceans are mostly
marine, but some inhabit freshwater and a few are terrestrial:
the fairy shrimps, water fleas, isopods, krill, crabs, shrimps, lob-
sters, copepods, barnacles as well as a small newly discovered
group, the Remipedia. Uniramia include the centipedes, milli-
pedes and insects. Uniramians have one pair of antennae and one
or two maxilla, as well as a pair of mandibles. Uniramians breathe
through their body surface, gills or tracheae.

Echinoderms (Deuterostomes)

Echinoderms or Deuterostomes are marine and are starfish, sea
urchins and sea slugs. Compared to insects, echinoderms are large,
cold, slow-moving bottom dwellers. Echinoderms have endoskele-
tons beneath their skins or epidermis. Endoskeletons are spines or
plates having a radial symmetry (starfish), and in some instances,
symmetry is bilateral (sea cucumber). Fine networks of branching
crystals of calcium carbonate, stereoms, are the building blocks of
the interlocking plates or spines. Deuterostomes have an exten-
sive body cavity that for embryonic reasons, is not a hemocoel
but a coelom. Like a hemocoel, the coelomic cavity contains fluid
and 1s lined with tissue, so that nutrients and wastes must tra-
verse this interface. In deuterostomes, a water vascular system,
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a set of water-filled canals, radiates from a ring canal around the
gut. The radial canals lead to podia or tube feet on the surface
of the body. Tube ‘feet’ extend and retract according to changes
in hydrostatic pressure within the water vascular system. Because
deuterostomes are cold and slow-moving, open circulations can
supply the low metabolic needs of these animals.

The Circulation of Bees

With the worker bee as our example we explain the major features
of a bee’s circulation useful for modeling micro-fluidics in engi-
neered systems. We shall not dwell upon the myriad specialized
differences between bees and the circulations of other insects.

Hemocoel

Contractions of the dorsal vessel or heart circulate hemolymph
within the cavity of the hemocoel. The hemocoel is divided into
three sinuses: a dorsal or pericardial sinus surrounding the dorsal
vessel, a middle or perivisceral sinus surrounding the gut, and a
ventral or perineural sinus above the ventral nerve cord.

Dorsal Diaphragm

The heart lies upon a thin dorsal diaphragm, a sheet stretching
across the anterior end of the abdominal cavity in segments three
to seven. The membrane holds five pairs of fan-shaped bundles of
fine muscle fibers that attach laterally to the anterior ends of the
tergal plates of each segment. The fibers spread towards the heart
where the fibers break up into many smaller branching fibrils. The
pericardial cavity, the space containing the heart, lies above this
dorsal diaphragm. The lateral borders of the diaphragm are not
attached to the walls of the cavity between the attachment points
for the muscles leaving gaps. Hemolymph enters the pericardial



Cavity Transport 111

Dorsal
Diaphragm

Pericardial
Sinus

Perivisceral Sinus

Perineural Sinus

Ventral
Diaphragm

Figure 6.1. The Hemocoel. The hemocoel (black), cut horizontally on the half shell,
is divided into three horizontally arrayed intercommunicating compartments: a dorsal
pericardial sinus, the space surrounding the dorsal longitudinal vessel or heart, a middle
perivisceral sinus surrounding the gut or intestine, and a ventrally placed perineural
sinus overlying the ventral nerve cord. A dorsal diaphragm (white line), is a sheet
of tissue that is incomplete in many places but separates the pericardial sinus from
the perivisceral sinus. In a similar fashion, the ventral diaphragm (white line), also
incomplete in places, separates the perivisceral sinus from the perineural or ventral sinus.

cavity through these gaps as they impose little resistance to flow.
Muscles as well as the tracheae may occur together in this gap
region (see Tracheae below). Sometimes muscles cross the hemo-
coel from one side of the hemocoel to the other; some muscles
even traverse the dorsal diaphragm just below the heart. These
muscles contract and compress the abdomen and its contents.
Rhythmical movements of the dorsal diaphragm pulsate to ripple
the diaphragm in a forward direction and help propel hemolymph
forward.

Ventral Diaphragm

A similar ventral diaphragm lies just above the nerve cord. The
ventral diaphragm separates the perivisceral sinus around the gut
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from the perineural sinus around the nerve cord. In the honey-
bee, the ventral diaphragm extends from the meta-thorax back
to the seventh segment of the abdomen. The ventral diaphragm,
more muscular than the dorsal diaphragm, beats from front to
back, opposing movements of the dorsal diaphragm, and aids
hemolymph moving from front to back.

Look Ma, No Capillaries

Remember, the bee’s hemocoel does not possess networks of arter-
ies and veins or trees of tubules for distributing materials around
the body. In contrast, vertebrate blood in arteries, capillaries and
veins stays separated from the extracellular fluid that bathes cells.
Unlike a hemocoel, nutrients and wastes in a tubular system must
traverse capillary walls, as well as the extracellular fluid surround-
ing the cells before they pass through cell membranes.

Insect hemolymph bathes and supplies organs more directly
than blood in vertebrates, avoiding the added weight, time and the
additional energy for molecules to traverse many barriers as they
diffuse. As we will see in the chapters to follow, membranes lining
the internal walls of the cavity of the hemocoel may act as barriers
between cells and the fluid. In some instances, surfaces may be
tight, in that hemolymph proper may never directly contact cells,
except for the cells floating in the hemolymph and the exposed
surfaces of some cells around the heart. However, probably many
gaps exist between the cells lining the cavity, and movements of
materials across boundaries are complex, highly controlled and
precise (Chapter 7).

Hemolymph
The spaces in the hemocoel, unoccupied by organs or tissues, con-

tain hemolymph, that in honeybees is a pale, amber-colored fluid.
Hemolymph arisesin the embryonic or developing bee as a mixture
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of ‘blood’ and ‘lymph.” Hemolymph contains many chemicals as
well as blood cells or hemocytes that resembling white blood cells
of vertebrates. There are no red blood cells in hemolymph. Chem-
icals include sodium, chloride, amino acids, proteins, hormones,
nitrogenous wastes, dissolved carbon dioxide, and many others.
The chemical composition and volume of hemolymph change dur-
ing starvation, desiccation, feeding and at different developmental
stages. (For the chemistry and cells of hemolymph and direct mea-
sures of the volumes of hemolymph in bees and other insects, see
books by Jones, 1997 and Chapman, 1998.)

Functions of Hemolymph

Hemolymph is a reservoir of water and chemicals for the body.
Hemolymph supplies digested molecules as nutrients and water
from ingested water, honey and nectar as well as ions, hormones,
and cells of the immune system to muscles and organs sur-
rounding the hemocoel. Hemolymph transports carbon dioxide
to be eliminated through the respiratory organs, gut and cuticle.
Hemolymph also distributes heat around the body and aids dissi-
pating metabolic heat to the outside. Hemolymph acquires wastes
as the breakdown products of metabolism from the surfaces of
cells and organs lining the hemocoel. The excretory organs, the
Malphigian tubules, remove these wastes from the hemolymph by
filtering and passing them into the gut to be excreted with feces.
The water of the hemolymph is about twenty percent of the body
water of the bee, but percentages vary. In larvae, the hemolymph
may hold up to fifty percent of a bee’s body water (Chapter 9).

Regulation of Hemolymph
Hemolymph circulating between the thorax and abdomen cools

the motors driving the extremities during flying and walking
(Chapter 10). Little data exists on the time taken for hemolymph
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to make a complete circuit through the hemocoel. Rates obviously
depend on the heart rates, activity, developmental stage, degree
of hydration and physiological status.

During times of increased and decreased hydration, bees reg-
ulate the hydrostatic pressure as well as the volume and chemical
composition of the hemolymph to provide a continuous supply
of nutrients and energy as well as a stable internal environment.
Volumes of hemolymph can rise and fall without risking the circu-
latory collapse that may occur in mammals and other vertebrates.
Good data on the relative amounts of fluid in insects at different
stages and under different conditions are rare, and much of this
data is quite old.

Molting

Hemolymph forms a reservoir for water and raw materials prior
to molting. The volume of hemolymph is large in larvae and when
a pupa emerges as an adult or before and during molting in insects
that molt. In all insects, some digestion products from old cuti-
cle enter solution to be recycled and reincorporated into the new
cuticle. After new cuticle is laid down underneath the old one,
epidermal cells and glands secrete a gel-like fluid into the space
developing between the old and the new cuticles. When enzymat-
ically activated, this gel digests the old cuticle, and the fluid and
its digested products return to the hemocoel before the old cuticle
sloughs. One bizarre use of hemolymph is for reflexive bleeding in
the Ivory Coast cricket, Dictyophorus oberthur. When disturbed,
perhaps to protect itself, this cricket covers itself with dense bub-
bles from the hemolymph.

Volume of Hemolymph

The hemolymph in an insect varies with the species, the diet, the
age, the state of hydration and the methods used to measure its
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volume. Exsanguination, dye dilution methods and C'# inulin are
the most common ways of measuring the volume of hemolymph.

A bee’s volume of hemolymph may be expressed as a percent-
age of the weight of her body. This percentage of an insect’s weight
varies with the type of insect and its state of hydration. Generally,
hemolymph forms between fifteen to seventy percent of an insect’s
weight. Consider the hemolymph of an insect as being about 26%
of its body weight, a percentage that is greater than the percent
of blood volume in vertebrates.

Hemolymph is a reservoir for water. The water in hemolymph
is about one-quarter of the bee’s total body water. As an example
of volumes, one can remove about 0.01 microliters of fluid from a
honeybee and about 20,000 microliters from a large queen termite.
Some insects appear, however, to possess very little hemolymph
in their bodies when attempts are made to extract it from the
hemocoel. In general, the smaller the insect, the smaller the vol-
ume of hemolymph relative to the size of the hemocoel, but to my
knowledge, careful modern comparative studies of this impor-
tant relationship in large and small insects do not yet exist. One
example of a large insect having a small volume of hemolymph is
the periodical cicada, Magicicada sp. We expect, however, to find
low volumes of hemolymph in the smallest forms, as the three-
dimensional volume of hemolymph in larger forms shrinks down
to become a moistened two-dimensional layer lining the external
surfaces of the organs and the inner surfaces of the hemocoel
in the smallest insects. A smaller volume of hemolymph reduces
weight and should increase the probability of transport within the
hemocoel by diffusion (Chapter 9).

Hydrostatic Pressure

Hemolymph, especially in softer bodied forms, such as caterpil-
lars, may work synergistically with the musculature of the body
wall as a hydrostatic skeleton. Paralyzing the muscles causes the
bodies of soft-bodied insects to become flaccid. For normal tonus,
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muscles contract against the skeleton of the body wall. As the mus-
cles increase their tone squeezing the hemocoel and its enclosed
hemolymph, hydrostatic pressure within the cavity increases by
Pascal’s principle, in that the increase in hydrostatic pressure
transmits undiminished to every part of the volume and to the
walls. The pressure within the body depends upon the volume
of fluid hemolymph, muscular forces, and resistances to flows
of hemolymph within the body. Some insects may even achieve a
sub-atmospheric pressure within their hemocoels. Sometimes this
pressure is so far below atmospheric pressure that air and fluid
may enter an insect following puncture wounds in the cuticle. This
poorly understood finding, even occurring when small volumes
of hemolymph are present, may have something to do with how
rapidly the heart beats. Increased ventilatory movements trans-
porting air into and out of air sacs associated with the tracheae
may contribute to these differences in pressure (Ref: Negative
Pressures in Hemolymph).

As an insect molts or emerges from a larva or pupa,
hemolymph under muscular pressure flows into spaces in the
wings and appendages expanding them into their adult forms.
Localized regions of increased hydrostatic pressure assist with
movements of the body to expand the proboscis. Together with
local mechanisms hydrostatic pressure can swiftly autolyse a dam-
aged antenna, leg or wing. In mosquitoes, localized movements
of the pharynx and hydrostatic pressure activate a hatching spine
of cuticle that pokes a hole in the eggshell to release the larva.

Circulation of Hemolymph

Combined movements of the dorsal and ventral membranes beat-
ing together with a pumping heart and pitching and yawing move-
ments of locomotion as well as pulsations of the alimentary canal
and other organs together mix and circulate hemolymph.
Peristaltic contractions of the open pump system of the dor-
sal longitudinal vessel that opens into the hemocoel are the prime



Cavity Transport 117

movers circulating hemolymph. However, hemolymph in embry-
onic forms may not appear to circulate rhythmically. Muscular
contractions of the body wall, movements of ovaries, air sacs and
the alimentary canal as well and walking and flying undoubtedly
enhance flow of hemolymph. In some nymphs, for example, trans-
verse septa in the thorax open and close synchronized with respi-
ratory movements, facilitating movement of hemolymph (Jones,
1997: p. 80).

Dorsal Vessel

This single blood vessel, a long slender tube, extends forward
along the midline of the back of the abdomen from about the sixth
abdominal segment through the thorax and then into the head. In
the thorax, the vessel, now called the aorta, loops down between
the flight muscles that power the wings. In the head, the aorta,
now close to the esophagus, passes under the brain to open into
the hemocoel beneath the brain. The abdominal portion of this
tube is the heart, and the posterior end of the heart is closed. Even
though circulation usually requires a beating heart and assistance
from accessory pumps, much hemolymph circulates whenever the
skeletal muscles contract. Muscles associated with movements of
the pharynx and alimentary canal indirectly propel hemolymph.

Flow of Hemolymph

The aorta directs hemolymph onto the brain. This hemolymph
supplies organs in the head before draining backwards through
the neck into the thorax and abdomen. Pulsating membranes
in the head between the bases of the antennae and elsewhere
driven by neighboring muscles force hemolymph to move along
well-defined channels that circulate hemolymph through the
appendages: the antennae, the wings and the legs. Movements
of the ventral and dorsal diaphragms may help to channel these
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lesser flows. Hemolymph flows from regions of the abdomen
around the ventral nerve cord upward into the pericardial space
above the dorsal diaphragm. This hemolymph then circulates for-
ward aided by movements of the dorsal diaphragm finally to enter
through holes or ostia along the length of the heart. Within the
heart, contractions force hemolymph to move again to the head
through the aorta.

Pumping

The dorsal vessel, closed at its posterior end, divides into a pos-
terior heart at the back end of the tube and the aorta in front.
In this cardiac or heart area, incurrent openings, and sometimes,
external openings, the ostia, permit hemolymph in the heart to
exchange with hemolymph in the hemocoel. The aorta contains
no ostia. Ostia in honeybees occur in five pairs in abdominal seg-
ments two to six inclusive. Blood enters the heart through these
ostia. Lips of each ostium project forward into the heart cavity.
These lips act as valves preventing backward flow of hemolymph
each time the heart contracts.

The walls of the dorsal vessel in the heart area contract, as
the walls of the vessel consist of sheets of muscle cells wrapped
in spiraling layers around the bore of the tube. Systole is the con-
traction phase. Heart muscles contract synchronously beginning
at the rear of the abdomen, and a wave of contraction spreads
forward towards the head along the dorsal vessel. The muscles of
the heart then relax. This relaxation begins diastole or the filling
phase of the heart. The heart fills as it expands and as its muscles
relax. Sometimes elastic fibers that pull the walls open when mus-
cular tension subsides assist filling. During diastole, the resting
phase of the heart cycle, the heart, now full of hemolymph, pauses
briefly. As the heart rate or frequency of contraction increases, the
time the heart spends resting in diastole shortens.

The frequency of the heartbeat varies considerably. Frequency
of pumping often is higher in early larvae, and the rate of beating
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may rise just before molting. Contraction of the heart muscles
slows below one to five degrees C and stops when above fifty
degrees C. Beating may stop for a few seconds and can reverse
periodically when waves of contraction begin at the front and
move backward. When reversal occurs, hemolymph passes back-
wards through the incurrent ostia.

Ostia

The incurrent ostia are vertical slits in the sidewalls of the heart.
There may be up to twelve pairs of these incurrent ostia in some
forms. The front and back edges of each hole are molded into
little lips that form valves. These valves allow blood to enter the
heart during diastole, the filling phase of the heart. During dias-
tole incoming blood forces the lips apart, and hemolymph flows
into the heart from the hemocoel. The valves prevent backflow
through the ostia when the heart contracts and pumps during
systole. Systole is the ejection phase of the heart. The pressure of
hemolymph in the heart squeezes the lips of the incurrent ostia
together as the heart contracts and the lips remain shut during
systole. In some insects the heartbeat reverses, and when rever-
sal of flow occurs as the heartbeat reverses, hemolymph can flow
backwards into the hemocoel as the heart contracts.

In the groups where the excurrent ostia occur, little clumps
of cells, called papillae, sit at the entrances of the ostia into the
heart. These papillae expand during systole forcing hemolymph
out of the heart into the hemocoel. During diastole, the papillae
contract preventing hemolymph from flowing from the hemocoel
back into the heart.

Control of the Heartbeat

In many groups of insects cardiac nerves from the nervous sys-
tem control the beat of the heart. In others groups, the heart
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is myogenic, and the heart receives its stimuli to contract from
pacemakers in the heart muscles themselves. Hormones may also
modulate the heartbeat. Hormones may arise from the termina-
tions of neurosecretory nerves that end directly upon heart mus-
cle, or hormones may enter the hemolymph in the hemocoel from
organs distant from the heart.

Accessory Pulsatile Organs

Accessory pumps associated with the wings, legs and antennae
move hemolymph into the extremities. In some insects, the pul-
satile organs of the wings may be derived from the heart pump
directly, but in bees these pulsatile organs are separate from
the heart. Accessory pulsatile organs maintain circulation within
the appendages. Flow to and from the accessory pumps mixes
hemolymph moving in the hemocoel with hemolymph circulating
through the appendages. Contractions of these accessory pumps
may be intrinsic to the muscles that comprise them, or nerves may
control the pumping.

Extremities Divided

Extremities such as legs or antennae each may have a membrane
like a diaphragm down their centers. These membranes often sep-
arate flexor muscle groups from groups of extensor muscles on
the opposite side. When muscles on one side of a leg, the flexors
let’s say, contract, to raise a leg, the contracting muscles squeeze
hemolymph from this flexor compartment back into the hemocoel
of the thorax. When the insect steps down, muscles in the opposite
compartment, the extensor compartment, contract and squeeze
hemolymph on their side of the membrane back into the thoracic
hemocoel. The relaxing compartment alternates in each phase of
stepping and filling with fresh hemolymph from the hemocoel
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each time. There are several types of pumping mechanics for the
accessory pumps in different groups (Chapman, 1998).

Reviewing the Path

During normal circulation in the worker bee, the heart pumps
hemolymph forward into the aorta during systole. The blood then
enters the perivisceral sinus in the head as the aorta opens out over
the brain. At this time, blood also exits the dorsal vessel through
the excurrent ostia. Valves within the incurrent ostia close during
systole, so that hemolymph does not leave the dorsal vessel as
the heart squeezes. Were the incurrent ostia in the heart to open
during systole, pressure would be lost, and less hemolymph would
pass through the aorta.

As hemolymph leaves the aorta to enter the perivisceral sinus,
the new hemolymph entering the sinus forces the hemolymph
from the last systole backwards through the sinus. Movements
of the dorsal diaphragm aid this flow. Slowly moving hemolymph
washes over the organs and tissues where exchange occurs. As
the heart pump fills during diastole, hemolymph leaves the periv-
isceral sinus in the abdomen to enter the heart. As the heart
sucks hemolymph into itself during filling, loss of hemolymph
from the hemocoel promotes rearward flow of blood through
the perivisceral sinus. Presumably, a moving perineural or ventral
diaphragm encourages blood to flow around the ventral nerve
cord supplying it.

Thoraco-abdominal Shunting

In some active insects, butterflies, beetles and flies, hemolymph
shunts back and forth between the thorax and abdomen as a flap
of fatty tissue or large air-filled sacs reverse periodically near the
pedicle when pressures in the abdomen and thorax shift back
and forth, alternately opening and closing a tubular connector in



122 Chapter 6

the pedicle between the thorax and abdomen. When the abdomen
contracts, abdominal pressure rises to exceed hydrostatic pressure
in the thorax so it pumps hemolymph forward into the thorax and
head. When the heart reverses and pumps hemolymph backwards,
this new volume actively expands the abdomen, and the expan-
sion draws hemolymph past the flap of fatty tissue. In such active
insects, movements of the hemolymph correlate with movements
of the tracheae. These reversals of pressures and flows serve to
control oxygen flow to the muscles of the wings and legs in the
thorax and to exchange heat from these same muscles through
the abdomen (Chapter 10).

Some insects circulate hemolymph through their wings. This
circulation may occur in young adults as wings stiffen and become
flight-ready. In the absence of circulation through the wings, the
tracheae in the wings collapse and the wings turn dry and brittle.
In forms having hemolymph moving in the wings, the thoracic
pulsatile organs control this flow.

Respiration Compared

The vertebrate circulation lies between the lungs or gills transfer-
ring oxygen and the cells using it. In insects, the respiratory system
is separate from the circulation. Were a vertebrate-like system used
in insects, insect size would disadvantageously need to increase.
The presence of a respiratory tree within the chain of respiratory
gas exchange may have imposed minimum size requirements on
vertebrates that substantially exceed the needs of insects.

Energetics

Flying consumes huge quantities of energy. Metabolism of fly-
ing insects depends upon an extremely efficient and miniatur-
ized system specialized to deliver oxygen to where it is used and
to remove heat and carbon dioxide from where these are made.
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Thoracic flight muscles have the highest known mass-specific rates
of oxygen consumption. Tracheoles are oxygen’s closest contact
with tissues. Blind-ended tracheoles often penetrate deep into
muscles reducing the distances oxygen must travel. Diameters of
tracheoles are about the distance of the mean free path-length
for oxygen. The mean free distance is the distance a molecule
travels on the average before it collides with another molecule.
Oxygen enters the mitochondria, the cellular powerhouses, that
supply the phosphate containing ATP molecules the contract-
ing muscles need for aerobic metabolism. Mitochondria oxidize
fuels they receive from the hemolymph to make carbon dioxide
and water. Molecules of carbon dioxide exit the mitochondria of
the flight muscles, to circulating hemolymph that transports them
through the body and delivers them to the air.

Tapering of the abdomen compensates the limits to diffusion
of heat and carbon dioxide from respiration by the exoskeleton
and the cuticle and the nature of the tracheae. Bernoulli entrap-
ment of air in the tracheae aids gas exchange. High external veloc-
ities of airflow over the posterior spiracles during flight create a
gradient of pressure. This gradient drags air into the anterior
spiracles and, thereby increases bulk flow of air through the res-
piratory system. Respiration and circulation are coordinated in
that respiratory and locomotory movements also help to circulate
hemolymph.

Graph of the Hemocoel Resembles an Almost
Random Graph

How do the dynamics of a hemocoel depend upon the structure of
its graph? Graphs can help us understand how the connectivity of
a hemocoel functions, as graphs can generalize the connectivity
of lattices and trees. The only way to move through a lattice or
a tree is to crawl from vertex to vertex. There is no action at a
distance, nor are there secret wormholes magically transporting
a crawler from one branch tip to another universe. Graphs may
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show us shortcuts permitting more flexible arrangements or new
ways of traveling and do not always rely upon regular step-by-step
connections. Graphs let us violate the principle of locality.

The graph of the hemocoel approaches that of an almost ran-
dom graph. To build a graph of a hemocoel, begin with a collec-
tion of n vertices and no edges. The vertices would be the places
transported molecules might enter or leave the hemolymph by
crossing a membrane. Circulating hemolymph allows pairing of
any one vertex to any of the others. We create edges with proba-
bility p if a molecule or particle makes or can make the transition
from one vertex to another vertex through the hemolymph, but
we have an edge being created with a probability of zero if the
transition does not occur for any reason.

In the extreme case of a hemocoel empty of hemolymph, our
graph remains edgeless as no transitions are possible, but if the
hemocoel is filled with hemolymph, the graph becomes a clique. A
clique graph has all pairs of vertices adjacent. Between these two
extremes at intermediate volumes of hemolymph, we might expect
the graph to have all edges placed randomly and independent of
each other.

Consider a complete graph, Ky, having N vertices or nodes
and N(N — 1)/2 undirected edges. To each edge we attach an
exponential random variable, Eij having a mean equal to 1. For
any two arbitrary nodes we want to know the random number
of edges in the shortest path connecting these two nodes. As the
hemocoel fills, the size of its graph goes to infinity, so the prob-
ability of an edge exiting between two vertices now grows larger
than some threshold value, so that the graph of the hemocoel
becomes connected. The strength of the random graph of the
hemocoel is that the graph can be as dense or sparse as necessary.
This change occurs by adding or subtracting edge probability, p.
Because each new edge forms or disappears independently from
any other, the graph does not form clusters, because neighboring
vertices are now no more likely to be linked than would be any
other randomly chosen vertices. Unlike a closed tubular circula-
tion, nodes are eliminated in the graph of a hemocoel showing
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the hemocoel system to be less vulnerable to point defects (Ref:
Random Graphs).

Changing Volumes and Shortest Paths

As the volume of hemolymph in the hemocoel rises and falls, the
shortest paths between the most distant vertices, varies. Newman,
Watts and Strogatz (2001) studied the minimum path length, L,
averaged over all pairs of vertices in graphs to find an abrupt tran-
sition in L as the ‘rewiring’ probability increased. L, maximal in
a regular lattice, fell steeply when they rewired just a few of the
edges. Watts and Strogatz defined a clustering coefficient, C. To
calculate C, list all the neighbors of a vertex, count the edges link-
ing those neighbors, and then divide this number by the maximum
number of edges that can exist among the neighboring vertices.
The operation repeats for all vertices, and the average is taken. In
contrast to the path length L, the clustering coefficient remains
large until the rewiring probability is quite high, so that over a
wide range of p values, local connections between nearby vertices
dominate the graph, but a few shortcuts provide for the necessary
long-range connections.

How Do Molecules Know?

Shortcut connections between vertices are of little use if a particle
in the hemocoel does not know where to go. How does a particle,
lacking a nervous system and a topological map of the hemocoel
in its brain know the most direct route?

We can modify a two-dimensional square lattice where each
vertex joins its four nearest neighbors. To this lattice we add long
distance connections, but not merely at random. We rank each
edge connecting two vertices to all possible destinations as we
would a shortcut edge. We rank each edge based on its distance
from the source vertex. Now, the probability of choosing a vertex,
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d, is proportional to d” where r is an additional parameter of
the model. If we set r equal to zero, then we choose destina-
tions at all distances from d with equal probability, so our model
just becomes a two-dimensional version of Watts and Strogatz’s
model. However, if r is large, then our omniscient molecule has
appreciable chances of choosing only nearby destinations, so the
structure of our starting lattice barely changes. The threshold
value is when r = 2. At this point, the probability now obeys an
inverse square law (Ref: Routing).

A greedy algorithm can solve such routings. To go from vertex
a to vertex b, list all the edges emanating from a. Now choose the
one edge taking us closest to b as a measured distance across
the lattice. Then repeat the same procedure starting from our
new vertex, again proceeding vertex by vertex, until we reach our
destination.

Degree Sequence

Degree sequence is simple in a lattice. All vertices have the same
number of edges, so a plot of the degree sequence reveals a single
sharp spike. Any randomness in this graph broadens the peak
into a Poisson distribution. Because of the exponential decline,
the probability of finding a vertex with k edges grows negligibly
small for large k.

Does a power law describe the edges in the hemocoel? That is,
are the number of vertices having degree k given not by e~* but
by k8, where g is a positive constant? The power law distribution
falls oft more gradually than an exponential. This gradual decline
permits vertices of high degree to exist in the hemocoel.

We can use Barabasi’s model of edges in the World Wide Web
to study the hemocoel. Begin with n vertices and no edges. At
each step, add to the graph a single new vertex and m edges, so
that now all new edges link the new vertex to some of the vertices
already present. This pattern fits with what happens as volumes
of hemolymph in the hemocoel vary as edges disappear from or
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add to the network depending upon the volume of hemolymph
in the cavity.

The probability that a given vertex receives a new edge is pro-
portional to the share of the total set of edges that the vertex
already possesses. Hence, a well-connected vertex upon filling of
the hemocoel, evolves into a more connected vertex. After 7 steps,
the graph has n + ¢ vertices and m times ¢ edges. Growing by
Barbasi’s rules, the graph enters a statistical steady state, in which
the shape of the distribution of vertex degrees does not alter over
time provided thelevels of hemolymph remain constant. The prob-
ability of finding a vertex having k edges is proportional to k3.

At this point, the graph of the hemocoel approaches that of
a Moore or random graph. In a Moore graph starting from any
vertex, we can reach k vertices at distance 1, then from each of
these vertices we can achieve another (k — 1) new vertices at dis-
tance 2 and so on without any redundancies until we have filled
the hemocoel with its graph. A Moore graph is the most efficient
possible k regular graph in the sense that every vertex “reaches”
k new vertices. For a perfect Moore graph, a theoretical lower
bound that we seldom reach is that for k > 2, the characteristic
path length has to grow at least logarithmically with n.

Connectivity Reviewed

We consider all points in a hemocoel, the vertices or nodes, to be
identical, un-weighted and featureless, so connections of one node
with another through the hemolymph become our graph’s edges.
The degree of a vertex is the number of other vertices with which it
connects. We consider only the transmission possibilities through
the hemolymph as forming the network. For example, transmis-
sion of a particle from one side of an organ to its other side within
the organ, and, therefore, outside the hemocoel, does not consti-
tute travel within the hemocoel. Travel through the hemolymph
from one vertex to another is bidirectional as transmission is
equally likely in both directions. The graph of the hemocoel is
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sparse. ® measures the number of shortcuts or the average range
if the graph is large, so that the hemocoel graph exhibits logarith-
mic length scaling with respect to n, its number of vertices. One
might presume a measure of ® should be close to the character-
istic path length for the graph in that edges do not correlate with
each other (they are merely paths through fluid in two or three
dimensions). Because two vertices are connected does not imply
that their second shortest path length should be any shorter than
the average path length. Gamma, indicating an undirected graph,
and L, indicating a line graph, are larger than for a random graph.
Gamma refers to length, so clustering approximations fall apart
because any Moore graph approximation of local scale diverges.

Functions of the Volume of Hemolymph

Hemocoels remain the same size, but the volume of hemolymph,
and hence the network graphs inside the hemocoels, grow and
shrink. Hence, the degrees of the vertices cannot remain constant.
At certain sub-maximal volumes of hemolymph, the vertices will
have skewed the degrees of connectivity. As a consequence of these
volume dependant changes and others over time, the connectivity
of the graph of a hemocoel will vary from Moore type to some
related modification of the random graph. If pk is the probability
that a randomly chosen vertex has K neighbors, it turns out that
pk has either a power law tail as a function of k, indicating that
there is no characteristic scale for the degree or a power law tail
truncated by an exponential cut off. Such distributions differ from
the single scale Poisson distribution in traditional random graph
models of networks (Ref: Graph Models of Networks).

Open Circulation: Advantages

Unlike in a closed circulation, no hubs exist in hemocoels. Con-
nections within the hemocoel are direct and bidirectional, and
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because every point within the hemocoel is potentially alike and
potentially connects with any other, hemocoels are not vulner-
able to point blockages. We assume all routes for transmission
within hemolymph to be identical, although transmission may not
always equal physical flow. One example might be a cell creeping
over the surface of an organ. As an exponential network, circula-
tion inside the cavity is more stable than a pure scale free network
would be. As we shall see, circulation can grow relatively indepen-
dent of the size of a hemocoel and its volume of hemolymph, and
shortcuts may be of indeterminate length (Chapter 10).

Review of Hemolymph

Hemolymph receives nutrients from the gut and water and
ions from the rectum in the last part of the alimentary canal.
Hemolymph supplies water to the organs and tissues, and water
consumed in honey and nectar can enter the hemolymph through
the alimentary canal. Hemolymph is a reservoir for water for the
body. The water of hemolymph holds about twenty percent of
the body water of the bee, but its percentage varies. In larvae,
hemolymph may contain up to fifty percent of the larva’s body
water. Hemolymph distributes nutrients, ions and hormones to
muscles and organs surrounding the hemocoel and transports
cells of the immune system to where they are needed. Numer-
ous hemocytes or blood cells float in the hemolymph. These
cells resemble the white blood cells of vertebrates and are of sev-
eral kinds. Hemolymph distributes digested molecules that are
absorbed from the alimentary canal. Hemolymph receives the
breakdown products of metabolism that are later removed by
the excretory organs, the Malphigian tubules. Hemolymph also
transports carbon dioxide to be eliminated through the respira-
tory system and cuticle and as bicarbonate with the feces.
Regulation of the volume and compositon of hemolymph as
well as changes in its hydrostatic pressure occur during times of
increased and decreased hydration, to provide a stable cellular
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environment and a continuous supply of nutrients and energy to
active areas and muscles of the body. Volumes of hemolymph
can rise and fall without endangering circulation that can occur
in mammals and other vertebrates. Good data on the relative
amounts of fluid in insects at different stages and under different
conditions are rare, and much of what we have is quite old.



Chapter seven

WHERE THE HEMOLYMPH MEETS THE WALL

Overview

Where the hemolymph meets the wall is where the rubber meets
the road. Here we consider the walls and surfaces that hemolymph
contacts. Walls are the portals to and from the moving liquid
medium. Activities in or on the walls determine what enters and
leaves the hemolymph and, hence, determines distribution to and
from the body.

Walls include all surfaces contacting hemolymph: the exter-
nal surfaces of organs such as the coverings of the alimentary
tract, organs and muscles, the walls of the hemocoel itself, and
the diaphragms. The diaphragms help direct the bulk flow of
hemolymph. Central regions of the diaphragms direct flows fore
and aft, but flows above and below a diaphragm may join along
their lateral edges.

The circulating bulk volume of hemolymph transports
molecules. Substances then diffuse from this bulk flow into sur-
face layers of fluid along the walls before being absorbed. The
local geometry and mobility of the surfaces and any micro-
configurations abutting their interfaces help or hinder adsorbtion
and desorbtion.

Volumes of hemolymph, pumping rates, and walking and fly-
ing determine how the hemolymph moves and circulates. Sur-
face geometries and localized patterns of flow determine which
molecules adhere to what points as well as the rates of reac-
tions and release. Surface functions entail many highly irregular
complex interactions that continuously evolve over the life of a
bee or device.

131
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To point up the similarities between bees and devices, consider
now a hemocoel as if it were a microfluidic device.

Hemocoel as a Microfluidic Device

Microfluidic devices contain small volumes of fluid and reagents;
they are inexpensive to make, and devices having diverse functions
can be mass-produced in groups or individually to perform in
concert on a single chip. Applications for a hemocoel-like device
should be myriad.

Generalized Microfluidic Chip

A microfluidic chip is a plate of silica, glass or plastic trenched
with narrow channels through which samples flow in tiny streams.
Blood, bacterial suspensions, and solutions of proteins and
buffers flow within the channels. Architectures of the channels
and chips vary. Channels may be open or closed, and the walls
are coated with substances that extract molecules from solution.
Only molecules touching the walls can be extracted, and most
fluid and solute flows unimpeded along the centers of the chan-
nels. Currently, devices measure diffusion coefficients, viscosities,
pH, reaction kinetics and other modalities. Molecules cross walls
bidirectionally as hemolymph gives up or receives molecules for
cells residing on, beneath or in the surfaces. Both chips and hemo-
coels rely on surface-to-volume ratios for extractions.

Principles of Flow

Reynolds number, Re, characterizes flow. (Note at this chapter’s
end.) For many devices, D, the characteristic length, equals4A/ P,
A being the cross-sectional area of the channel and P the wetted
perimeter of the channel. In devices, Re is much less than one
hundred and often less than ten, so flow remains laminar and
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non-turbulent. Laminar flows transport molecules predictably,
but in bees at least, changes in the momentum of hemolymph
probably alter these flows.

Pressure driven syringe pumps drive flows through the chan-
nels of microfluidic devices so that single layers of fluid contact
the walls and remain stationary. Slow flow over the walls cre-
ates a parabolic profile of fluid velocities across the channel. The
most centrally positioned flows encounter the least resistance and,
therefore, travel the fastest. A second method for driving fluid is
electro-osmotic pumping (EOP).

EOP distributes a double layer of oppositely charged ions
along the walls of the channel. An electric field positioned across
the channel encourages ions in this double layer to move toward
their opposite polarities. Viscous forces impede and resist the ions
moving along the walls. Convection drags the bulk of fluid in the
center of the channel. Electro-kinetic flows require high, super-
imposed voltages and will not be considered.

Models

Models are essential aids for designing devices. Computerized
simulations generate models having varying channel geometries,
flow rates, diffusion coefficients and chemical interactions. Sim-
ulations coordinate these into larger numerical models. For the
simplest systems, models work almost as well as mock-ups. Indus-
try creates examples of these models almost daily, so rather than
give one here which will be soon out of date, use a search engine
to find the latest.

Equations derived from principles of mass, momentum and
energy that govern flows in microfluidic devices include the com-
plete Navier-Stokes continuity equations as well as several mod-
ifications of these equations that spatially discretize differential
equations over a solution domain, such as the finite difference
and finite volume methods and the finite element method (Ref:
Flow Equations).
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H-Filters

H-Filters function analogously to hemocoels. H-Filters con-
tinuously extract specific molecules from mixed solutions that
may contain interfering particles (cells, debris). Like hemocoels,
H-filters lack membranous filters that must be cleaned periodi-
cally. Because the Reynolds numbers of H-filters are less than one,
and flows are slow, convective mixing does not occur. Diffusion
alone transports molecules transversely across the channel of an
H-filter. The root mean square distance a molecule travels in an
interval is the square root of 2Dt (the Einstein equation) where
D is the molecular diffusion coefficient. D scales roughly with a
molecule’s size, so if we ignore charge, small molecules flow faster
than larger ones. The time to traverse a channel within an H-filter
is proportional the channel’s length, so molecules having different
diffusion coefficients separate themselves along the channel. As
with a five-yard dash compared with a mile race, however, slow
runners distinguish themselves from faster runners only when the
course is long enough to permit their separation.

Workable reproducible assays utilize the profiles of velocity for
molecules in channels having different aspect ratios. Higher aspect
ratios permit quantitative studies. Because the relative velocities
of two fluids moving in a channel can determine the width of the
stream flowingacross the width of an H-filter, we can use thisidea to
create 3-D models. If two fluids have the same viscosity, each occu-
pies half the channel. But if a fluid is paired with a fluid of a higher
viscosity, the fluid of higher viscosity flows slower and comes to
occupy a greater portion of the channel (Ref: Yagerfaculty).

Micro-rheology

Micro-rheological studies reveal properties of fluids at the micron
scale. One seeds a flow with small particles (typically a few
hundred nanometers in diameter) and observes their motions
under light microscopy. Brownian motion jiggles the particles, but
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particle-tracking algorithms can follow these motions if we illumi-
nate the particles so they form bright spots in videos. Algorithms
reveal the visco-elastic nature of the suspending fluids. For exam-
ple, the mean square displacement of particles in a Newtonian
fluid is simply proportional to a particle’s molecular viscosity
(via the Einstein equation), but more complex non-Newtonian
fluids, polymers and protein-laden solutions in hemolymph, for
example, behave differently.

The microstructure we can see under light microscopy and
the composition or weight fractions of elements in the mixture
determine the physical properties of traditional solutes. For nano-
structured materials, however, the atomic species present, and
their configurations on the atomic scale determine the properties.
Surface roughness determines the wetting properties of liquids
at both the micro- and nano-scales. Exact molecular shapes rub-
bing over each other determine boundary conditions and wall
slip. Newtonian fluids encountering highly hydrophobic surfaces
may slip. A rough surface at molecular dimensions may inhibit
slippage. Fabrication technology permits constructing atomically
smooth surfaces as well as precisely setting the heights of the
micro-channels.

We can model flows in devices and hemocoels having two
and three dimensions. In two-dimensional models, we give the
channels infinite dimensions and therefore no top or bottom wall
boundary conditions. Such two-dimensional views resemble our
concept of a hemocoel as a single surface enveloping the hemo-
coel that forms when fluid volumes are very small in the smallest
msects.

Minimal Surfaces are Stable

Nature favors minimal surfaces because minimal surfaces are
physically stable. Minimum surfaces are common: bubbles,
planets, and cells to name several. The eardrum spanning the han-
dle of the malleus and the annulus and the membranes between
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some cells are minimal surfaces. Having a minimal area of surface
means that the surface stores minimal energy. Because surface
energy is directly proportional to a surface area, as a result of
minimizing the surface energy, the area of the film is least when
compared to the areas of neighboring surfaces that might span
any given contour. Surface-active materials such as detergents
can alter surface energies. Much of a hemocoel’s surface may
approach minimality, especially as a hemocoel and its contained
surfaces shrink. Interactions occurring on, against or within a
minimal surface will influence the character and rate of activities
on this surface.

To visualize a minimal surface, dip a circular wire into a soapy
solution to obtain a soap film spanning the loop. The loop holds
the flat surface open. This surface is minimal, because of all the
surfaces that might span the loop this one film possesses the least
area. If you now dip two circular wire loops and hold one loop
a short distance above the other, a film spanning both wires,
a catenoid, arises. No surface bounding both wire loops has a
smaller area. The curvature of the catenoid in one direction is
equal and opposite to its curvature in the other, so the mean cur-
vature of the catenoid is zero. Therefore, the catenoid, like the
plane, has no curvature and exerts no pressure. SO0 now we may
imagine that both these minimal surfaces might span a hemocoel
allowing the catenoid and the plane to co-exist as parts of one
and the same system of boundaries in the same way two hemi-
spheres can cap the open ends of a cylinder. A catenoid surface
often bounds the cooling towers of power plants.

Minimum Surfaces Imply Minimum Weight

Minimal surfaces within a hemocoel can minimize overall sur-
face tension within the hemocoel. Having most surfaces minimal
surfaces minimizes stress on the structures that support them.
Energetically it is well that weight and thickness of the supports
for the hemocoel be minimized. Insect exoskeletal supports are
not heavy and bulky not only to conserve space. The energy to
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hold the hemocoel open needs be minimized as well. In dissecting
fresh specimens of many insects, the walls and surfaces of their
hemocoels appear to be subjected to very low wall tensions (per-
sonal observation). Low wall tensions tend not to implode the
exoskeleton, thereby permitting exoskeketal buttressing and cuti-
cles to be as thin as possible. Hence, theoretically at least, we may
view the walls of hemocoels to resemble soap-films and the insect
system to be minimized along these lines in many ways.

Contours of Co-axial Circles

As with our soap film catenoid covering two co-axial wire loops
of the same radius lying parallel to each other, we can visualize
a hemocoel as providing a contour for more than one film. How
many films or how much surface area might we span within a
hemocoel’s contour? Schoen showed that we are able to span only
minimal surfaces of revolution on such contours (Ref: Minimal
Surfaces).

Consider an ideal shrinking hemocoel. Hold three coaxial cir-
cles parallel to each other, one of which lies in plane z = 0 and
the others in planes z = +1 and z = —1. Using examples of
Morgan and Gulliver-Hildebrandt we can generate contours that
remain invariant under rotation. We may also add several seg-
ments together such that the generating system can now be split
into two symmetrical parts that no longer are invariant under
rotation to give us a minimal surface that spans the contour of our
original hemocoel. Because our second catenoid is unstable, by
using soap films we obtain just one of the two possible catenoids:
the one that ends up being most like a cylinder (Formenko and

Tuzhilin, 1991).
Deformations of Interfaces

We must keep in mind that a surface, apparently smooth at
low resolution, may reveal complicated structure under higher
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resolutions. At all spatial scales surfaces are like coastlines; sur-
faces appear bumpy at different scales. Objects whose magnified
pieces are similar or look similar to the whole are self-similar. The
lengths we measure depend on the lengths of our rulers. Scaling
means that the properties of what’s observed depend on the scale
we use to measure them.

We can show how the area of any surface in three dimen-
sions may increase if we dimple the surface so that no surface can
become a local maximum for its area functional. Critical points
other than a dimpled maximum or minimum are saddle points of
the area functional. Minimal surfaces at saddle points are unsta-
ble, so even small fluctuations in amplitude may lead to collapse.
Think of blowing on a soap bubble. The bubble indents at one
location but bulges out at another, but the volume of the bubble
remains unchanged unless our breath warms the bubble. Now,
given a hemocoel at its smallest dimensions in which the hemcoel
behaves as a two-dimensional sheet, assume its infinite planar sur-
face to be minimal. Now a closed curve anywhere on this minimal
surface will have the smallest possible area having the curve as its
boundary.

Before continuing, we must keep in mind that the mathemat-
ics of surfaces suggest simple physical “solutions” that nature
never realizes completely, because real surfaces and fluids are
never entirely “homogeneous.” Asymmetrical forces and chaos
always intervene to perturb surfaces and systems that approach
equilibrium (Meakin, 1998).

Surface Effects

Flow patterns looping in and around conformations in a surface
are complex. Uptake and discharge mechanisms involve transport
across surfaces interfacing between two media.

Might we infer from considering the surfaces of the hemo-
coel what events might transpire on or near them as molecules
of nutrients, wastes and hormones traverse the boundaries
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outward from cells to hemolymph and inward from hemolymph
into cells?

Analogous surfaces include digestive and respiratory surfaces.
We know from studies at the microscale level of resolution that
respiratory membranes and intestinal surfaces are complex and
irregular. Both have in common extended surface areas that
enhance trans-surface transport dynamics. Such extended sur-
faces are often folded, packed or rolled up conserving space. We
minimize the volume subsumed by a surface if we fold, crumple
or compress larger surfaces. Even if such surfaces behave within
limits as ergodic fractals, randomness presents similar patterns to
surfaces existing across different scales.

Over the course of a lifetime, surface structures may evolve
through developmental sequences passing through an array of
forms and functions. We can estimate fractal dimension from
the slope of a log-log regression curve, but to do so we must
discard much structural information. For example, as we have
seen, insects have solved distribution problems uniquely by cou-
pling a direct point-to-point distribution system with a more gen-
eral one. The tubular system of tracheae and tracheoles supplies
gaseous oxygen diffusing through air directly from the spiracles to
metabolizing muscle while simultaneously, foodstuffs and wastes
distribute generally to these same tissues through the circulating
hemolymph.

What happens when hemolymph encounters surfaces and
contours as it percolates from the aorta back through the cavity
of the hemocoel? By extension, how might technology duplicate
what happens in the hemocoel-hemolymph system in microflu-
idic chips or other systems composed of materials such as porous
polymers?

Service Areas and Surfactants

Mechanical and chemical properties of surfaces often interact to
determine how liquids pass over or near surfaces. What adheres



140 Chapter 7

to an interface depends on how it adsorbs as well as upon the sur-
face’s elasticity and viscosity. Many parameters feed back con-
trolling how dispersed and dilute or concentrated the bulk of
the hemolymph becomes. Hemolymph composition fluctuates as
matter passes from the hemolymph into the cells through sur-
faces and as new materials enter the hemolymph from the sur-
faces. However, such changes have not yet been studied. Curving
of a surface creates localized regions of differing pressures in the
hemolymph. Finally, capillary effects themselves may affect the
global hydrodynamics for transfer, as the volumes of hemolymph
and the wetting of surfaces change with an insect’s hydration.

Surfactants stabilize the moving colloidal systems of films,
drops, bubbles and foams. Stabilization alters systemic proper-
ties and can influence how devices work. Can learning about
insect surfactants teach us how to improve our own? After all,
volumes of insect surfactant must be quite small, so insect sur-
factants undoubtedly are very capable of influencing boundary
conditions in extremely small systems that could have great prac-
tical importance for us. Surfactants also resist clotting in the bulk
flow but may encourage clotting if hemolymph exudes from a cut
in the cuticle. Hysteresis probably changes as a hemocoel changes
shape. Hysteresis effects are common in lungs that change size on
inspiration and expiration (Ref: Hysteresis).

Smooth or convoluted, surfaces of the hemocoel efficiently
contact the hemolymph flowing over them. Molecules can be
thought of as following a concentration gradient driving them in
their directions of movement. When an organ accepts molecules
through its walls, the molecule’s concentration in the hemolymph
decreases, unless of course, its supply from the midgut or other
source keeps up with removal matching demand.

Hemocoel as Pump

We might even conceive of the whole hemocoel functioning as
a low-pressure pump for hemolymph. Studies on the Echiuroid
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worm Urechis caupo and the polychaete Hermothoé imbricata
suggest the cavity of the hemocoel may be analogous to a spring,
and even the hemocoels of caterpillars and perhaps bees may
behave similarly (personal observations and Ref: Lawry).

Muscular contractions and relaxations in the wall evoke
changes in the internal hydrostatic pressure of the hemolymph.
Proportional changes in volume occur as muscles relax and the
wall expands. In an extreme case, consider a caterpillar feed-
ing on and digesting leaves so that liquid enters the hemocoel
through the midgut accumulating in the hemolymph already dis-
tending the walls of the cavity. We might expect if we plotted
volume change against pressure change, that we’d get a straight
line, but as in filling and deflating vertebrate lungs, the filling
curve does not necessarily follow the emptying curve. As the
volume in the hemocoel increases, the loop of the emptying
curve widens so it is not the same as the filling curve. What
is happening? For any volume, filling pressure on the empty-
ing curve is less than this pressure on the filling curve. There-
fore, elastic recoil of the walls during the emptying phase is less.
The distending transmural pressure gradient had to be higher
at each volume to inflate the cavity. This manifestation of a
loss of energy as the hemocoel recoils that obeys Hook’s law is
hysteresis.

If we slowly inflate a caterpillar’s hemocoel and leave it
inflated, in about a minute the pressure drops exponentially to
around fifty percent of the initial value just after filling (personal
observation). As in many systems, the hemocoel remembers its
recent history in that low volumes of hemolymph sustained over
time soon are followed by a reduction in compliance. Hysteresis
may occur from stress relaxation of the materials of the wall and
surfaces, redistribution of hemolymph within the cavity to areas
having differing time constants, changes in surfactant activity
with volume changes, as well as changes in the absolute volume
of hemolymph. We must remember, however, that these ideas
have not been carefully studied, and that in the lung at least,
total compliance of the system as a whole probably bears little
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relation to the combination of compliances in the surfaces of the
hemocoel.

Surface Tension

A surface is a notion of geometry. For surfaces whose radii of
curvature approach molecular dimensions these concepts become
ambiguous. A real interface is a three-dimensional non-uniform
region interposed between two bulk phases. Gibbs and others
employed a geometrical surface they imagined as a dividing sur-
face interposed between the two phases.

Rigorous definitions of the interfaces employ metric tensor
fields and a system of orthogonal curvilinear coordinates that
reduce the metric tensor to its diagonal form at any point. We
locate our surface between the two phases in relation to the mean
positions of the molecules in question after we statistically average
these molecules over their disordered thermal motions or in terms
of the distance of closest approach of the molecules of one phase
to those of the condensed phase. If we place our dividing surface
appropriately, we may choose adsorption equal to zero. The sur-
face amount or Gibbs adsorption may be positive or negative,
and we define this adsorption to be the excess of the amount of
a component molecule in our system compared with that present
in a reference system having the same volume as our system in
which the bulk concentrations in the two phases remain uniform
up to the Gibbs dividing surface.

Adsorption of a component of a multiphase multi-component
system such as hemolymph occurs if concentrations of the com-
ponents in the interfacial layers differ from those in the adjacent
bulk phases. The Gibbs dividing surface is a geometrical surface
chosen parallel to the interface. If the hemolymph contacts a wall,
the boundary surface becomes this dividing surface. Two surfaces
can meet along a linear interface. We can also have foam as an
array of films and channels and regard these in our models as
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surfaces and lines. Line tensions of the channels play roles in
forming foams (Ref: Capillary Hydrodynamics).

Bulk Hemolymph: A Solution of Surfactants

Surface properties relate to each other as well as to the bulk prop-
erties of the hemolymph. Surfactants form an adsorbed mono-
layer. We might imagine molecules as parking themselves within
this adsorbed monolayer. This model works well for non-ionic
surfactants. If the surfactant within the volume of hemolymph is
dilute, surfactant in the monolayer per unit area coincides with
the adsorption of surfactant. We may define the idea of limited
parking areas that limit adsorptive capacity as being the mono-
layer capacity.

The monolayer of surfactant exerts a two-dimensional pres-
sure over the surfaces. Films are fluids spread more thickly than
as monolayers, in that a film contains a bulk layer interposed
between its two surfaces. In accord with the Gibbs theory of cap-
illarity, we can describe film like interfaces if we replace surface
tension with film tension.

Adsorption and Desorption

Adsorption not only refers to attachment but to bulk transfer of
a substance from the bulk of the hemolymph onto the surface.
To create an adsorbed monolayer, molecules of surfactant may
move from the bulk of the hemolymph to the surface, or the sur-
face, as in the lung, may produce a surfactant locally. Molecules
then enter the monolayer to pack or park themselves and orient
themselves. The first stage is diffusion; the second stage is ‘pure
adsorption.’ Relative roles of these two stages may differ for differ-
ent surfactants and molecules, thus determining the mechanism
of adsorption and perhaps in cases of the thinnest surfaces, the
stiffness of the surface as a whole.
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Transfer To and Across Irregular Membranes

Transport across the wall of a hemocoel is analogous to trans-
port across rough or porous surfaces in batteries in which high
currents flow from porous electrodes. Fractal surface irregularities
enhance both processes. Diffusing particles emitted by a diffusion
source walk randomly. If a random walker collides with the elec-
trode or membrane, it is absorbed with a finite probability, termed
the sticking probability. The sticking probability corresponds to
a finite permeability of the membrane. In diffusion, most parti-
cles diffuse back towards the source, because the net flux due to
Fick’s law is proportional to the gradient of concentration and not
to the concentration itself. Net transfer by diffusion between the
hemocoel and the surface is due to the few molecules that absorb
onto the surface before they can return to their bulk source in
the hemolymph. Hence, there are two limits to the efficiency of
transfer. First a molecule must reach the surface; second it must
enter it. This idea is analogous to ions being transported through
an electrolyte and then undergoing a redox reaction on the active
electrode of the battery to produce the current.

Deformation of Fluid Interfaces

Changes involve fluctuations in surface area as well as changes
in adsorptive and deadsorptive fluxes. Rigorous solutions of such
problems require knowledge of the non-steady regions of flow by
dividing the volume into regions of constant bulk concentration
surrounded by thin diffusing layers at the interfaces where the
concentration of surfactants changes linearly.

Porous Monolithic Polymers

Porous monolithic polymers, developed over the last ten years or
so0, are continuous surfaces of polymer prepared using a molding
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process that in some chips employs the channels in the chips as
molds. Using a channel together with a polymer permits vary-
ing the surface areas that contact the flow. If the polymer fills
a large portion of a channel’s cross-section, more active surface
encounters a smaller moving stream. Increasing the probability of
contact increases the likelihood of more molecules leaving highly
dispersed samples thus facilitating more complete extractions.
Additionally, we may alter the porosities of the polymer if we
employ differing combinations of porogenic solvents and change
the conditions for the reactions (Ref: Svec and Fréchet).

Changing Patterns of Flow

Circulatory patterns within a hemocoel are complex. Pathways for
flow vary for many reasons including volume of hemolymph in
the cavity, what enters from the alimentary canal, the bee’s state of
hydration, temperature, level of activity and developmental stage,
to mention a few. For example, as muscles in the walls of the heart
and dorsal vessel propel blood forward through the aorta, at the
same time hemolymph leaves the dorsal sinus to enter the ostia
of the heart. This forward flow in the vessel drags hemolymph in
the dorsal sinus forward. At the same time, hemolymph moving
backwards from the head courses through the visceral and ven-
tral sinuses. Lateral and medial currents interconnect these sinuses
and also pass around the alimentary canal as flows mingle over the
insides of the external boundaries of the hemocoel. At the same
time, some hemolymph, assisted by pulsatile organs and move-
ments of the body, enters and leaves the wings and appendages.

Being Bitten
One can observe with considerable clarity how complex these

moving flows can be if we are brave enough to watch an
adult mosquito on our hand through a hand lens or dissecting
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microscope. As the mosquito’s heart rapidly contracts, each pulse
moves rapidly from the abdomen towards the head. At the same
time, heaving movements of the internal organs, most of which
do not appear to progress but remain at the segmental levels,
mix the hemolymph flowing in the perivisceral cavity. As the gut
distends with your blood or perhaps somebody else’s if you are
lucky enough, you may also see the ventral diaphragm pulsing in
a posterior direction.

Packing Functions of Surfaces

In our devices, components surround a central silicon chip. Close
configurations can provide power, remove heat and connect pro-
cessors to other components. Packaging, consisting of three lay-
ers, supports the device. In the standard process for an Intel
Pentium chip for example, droplets of solder pass current from
the chip to the package. The grid of droplets or bumps connects to
a network of copper wires in the top layer. These route to copper
links that pass vertically through a plastic middle layer or core. On
the bottom of the package core, the copper connections network
through a third packaging layer to attach to larger pins that stick
out from the packaging to connect to circuits on a mother board
that link the processor to other components. This ‘macro’ design
handles the forty-two million transistors on a Pentium 4 chip,
but in biological packaging, elements having separate functions,
such as nerves and capillaries, are much more closely associated
at many different levels simultaneously.

Note on Reynolds Number

The Reynolds Number is a dimensionless combination of vari-
ables important in viscous flow studies for analyzing flows when
there is a substantial velocity gradient or shear. The number
indicates the relative significance of the viscous effect compared to
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the inertial effect and is proportional to the inertial force divided
by the viscous force.

D - v
>

Re =

(D

or
Re = DG (2)
0

where D = characteristic length, v = velocity, p = density, u =
dynamic (absolute) viscosity, G = mass velocity.

The viscosity above is dynamic viscosity also called absolute
viscosity. For a pipe the characteristic length is the diameter of
the pipe.



Chapter eight

SHRINKING

Overview of Shrinking

How do we shrink something? What happens to whatever’s inside?
May we shrink a larger machine down into its micro or nano
version? Or must we organize small machines in entirely new
ways? Shrinking alters things in unforeseen ways. Gravity affects
small machines less for example. A flea jump dozens of times
its height, but we cannot. How does smallness determine a sys-
tem’s operating speed, its power density, its output and overall
efficiency?

Scaling laws are a simplistic indicator, of why nanotechnology
may be extremely powerful even when compared with biology.
Scaling laws let us compare the relative performances of systems
having different scales to combine properties such as how a sys-
tem’s power relates to the system’s volume giving us its ‘power
density.’

Consider a muscle inside a bee’s leg. As we shrink the leg
and muscles, strength decreases as the cross-sectional area of the
leg and muscles decreases. A muscle’s weight is proportional to
its volume. Strength versus weight crudely indicates a muscle’s
power: length squared divided by length cubed or length to the
minus one. Therefore, strength per unit weight improves ten times
as our bee shrinks ten times smaller.

Consider gravity: A nanomachine, nearly a million times
smaller than a flea, is entirely unaffected by gravity. We cannot
compare directly strength and mass, but together both determine
our shrunken system’s performance.

148
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Decreasing Size Increases Power

How about speed of response? A bee moves its wings up and
down far faster than we can flap our arms. The speed of a moving
appendage may be about the same in the bee and us, but the bee’s
wing travels a much shorter distance. So in small systems the speed
of walking and flying movements increases. Think of a mosquito’s
whine. Or a factory might perform ten steps a second, but fast
enzymes operate about a million times each second. The density of
power or power density measures power, force or strength, times
speed, but strength is proportional to area. If speed is constant, a
machine ten times larger can produce one hundred times as much
power. But power per unit volume or power density remains uni-
dimensional!

Think of it this way. If a system ten centimeters cubed creates
a thousand watts of power, then an engine one centimeter cubed
may produce only ten watts of power or one hundredth the power
of the ten times larger engine. But are you ready for this? Suppose
a thousand of the one centimeter cubed engines occupies the same
volume as the one ten centimeter cubed engine, so now together,
the smaller engines create ten thousand watts. So by building a
thousand times as many machines and by making each machine
ten times smaller, the same mass and volume can be designed to
deliver ten times as much power.

Suppose we now consider frequency of operation. Frequency
of operation increases as the size of our system decreases, so
miniature engines may run at ten times the rate of smaller ones.
When a design shrinks by a factor of ten, its number of parts
increases by a factor of one thousand. This relationship is the
functional density, and functional density remains proportional
to our system’s volume. We can pack in a million, million, million,
or 10'® more nanoscale parts that are a million times smaller into
the same volume.

Suppose we pack these parts into a bee’s thorax. Shrinking by
afactor of one hundred, as might be the difference between today’s
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transistors and today’s molecular electronics, allows us to confine
a million times more circuitry within the same volume. But here’s
the rub. Suppose each additional component costs extra money,
or our parts or machines have short lives, then taking a thousand
times more parts to just increase our current performance ten
times becomes non-economical.

But what if we might coerce bees into producing our parts
using their evolutionarily honed, massively parallel, reliable and
fault tolerant, processing designs, so that our parts, now made by
contented bees, might last as long as a bee itself? It might now be
worth attempting.

And lastly, let’s consider efficiency. A large-scale system that
is ninety percent efficient may grow well over ninety-nine point
nine percent efficient if we shrink it into the nanoscale and reduce
its speed to keep its power and functional density constant.

But what about friction? After all, isn’t friction the bane of all
machines, even nature’s? That friction is proportional to force or
area implies that frictional power must be proportional to what
power is consumed, regardless of scale. Let’s say the thickness of
a protective cuticle that is available to erode through rubbing and
attrition decreases as we shrink our bee system. What happens?
Even when very thin, the covalent bonds of cuticle remain strong
enough to resist forces between sliding surfaces that are smooth
and clean, so frictional wear alone should not break these bonds,
as rubbing will never generate enough heat or force to break cova-
lent bonds. Remember I have said nothing about chemicals. Most
systems will not shrink all the way down to the nanoscale, how-
ever, as problems having to do with how the system’s parts con-
nect, intervene.

Building Smaller Machines

How might we design and build smaller machines? First, we
observe nature and abstract away from nature our ideas of what
we want to build. Were we to copy a bee, we must “transliterate”
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from the biological bee blueprint language into a machine lan-
guage of our own. Think of what a bee does. Whether the hemo-
coel contains much hemolymph or merely moistened surfaces,
connectivity within the hemocoel suffices for particles to move
from place to place without obstruction. Flows and transport
differ in large and small hemocoels.

We begin with generalizations: our common abstract notions
of size, weight and scaling. Objects seem lighter in proportion to
their size as we scale them down. When descending much below
bee size, however, physics changes markedly. Something thrown,
flicked or kicked instead of landing close to its actuator now usu-
ally ends up far away. Compare our jumping flea’s ability to jump
more than twelve body heights with our Olympic records for the
high jump.

Or look at gold. Nanoparticles, having widths of a few
nanometers to a few hundred, contain tens to thousands of
atoms and live and have their being within the realm of meso-
physics. At intermediate sizes, nanoparticles straddle quantum
and Newtonian realms: realms where common elements often
display novel properties. Of two nanoparticles of gold, for exam-
ple, the slightly larger particle may melt at a different temperature
and possess a different conductivity and be a different color than
the smaller one. So at the meso-level of organization, instead of
changing the components and composition of our materials, we
might consider altering size (Ref: Size Relationships).

Insect Scaling

Insects range in size. Bees live towards the middle of this range.
The smallest insects are the Ptiliidae or feather-winged beetles.
Less than a millimeter in length, these beetles can crawl through
the eye of a needle. Smaller yet are the Mymaridae, a family of
small parasitic wasps. A male Dicopomorpha echmepterygis lacks
wings, 1s blind and is about one hundred and forty microns long.
The largest insects now are fossils. A Phasmid, or walking stick,
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from the Carboniferous, 375 million years ago, was about nine
inches long, and a dragonfly from the Permian, 285 million years
ago, possessed a thirty-inch wingspan. In comparison, a modern
day African Goliath beetle weighs around one hundred grams.
The internal organs of even these diverse insects, however, are
quite similar across scales.

Scaling is basic, but we often do not think enough about
what scaling means. Our mathematical formulas adjust for scaling
effects, but insects and micro-machines live bizarre lives. Peeling a
charged surface oftf another charged surfaceis sticky but easy when
the charged surface is a sweater off a lover, but electrostatic attrac-
tion holds our miniaturized parts during production of a MEMS
so firmly together that peeling is not usually an option. And stick-
ing’s not the whole of it. Flimsy micro-parts puncture surface ten-
sion with great difficulty. Think of a water strider on a pond. Or
consider rice grain-sized wheels that generate too little friction to
bear much of aload. Small objects have large surface areas relative
to their masses, so the smallest insects having the thinnest cuticles
may have difficulty retaining their internal moisture, and so they
must live under constant threat of desiccation. A similar relation-
ship exists for heat loss and heat gain. The list is long.

Scaling and Differential Shrinking

For example, how fast an organism takes oxygen from the air,
digests and absorbs food, and loses or gains heat are proportional
to the areas of the lung, gut, and body surfaces, respectively. These
combined relationships mean that rates of acquisitions or losses
are proportional to the masses or volumes of the body. They are
also proportional to how the different functions connect. Or at
any given mass, size is limited, because as skeletons decrease their
masses accommodating other functions within a fixed volume,
there comes a point when the skeleton becomes too flimsy and
cuticles too thin to support the body. Skeletons are usually no
more than ten percent of a system’s mass.
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Because the geometries underlying different functions change
at different rates as an object shrinks, a change in the size of
the object alone implies that functions related to size must also
change, but at varying rates. If an organism or device is to remain
functional as it shrinks, either these relationships must change, or
the shape must change.

Size changes compel adjustments on many levels of organiza-
tion simultaneously. Molecular forces, such as cohesion, become
more important as mass decreases; flies walk upside down on ceil-
ings because the force of gravity on a fly is less than cohesive forces
holding the fly on the ceiling. Or to quote from Thompson’s On
Growth and Form: ‘A man coming wet from his bath carries a few
ounces of water and is perhaps 1% heavier than before; but a wet
fly weighs twice as much as a dry one and becomes a helpless
thing.” (Ref: Thompson, 1942).

Lilliputian Physiology

To appreciate the effects of scaling and shrinking on an organ-
ism we understand better than insects, let’s now perform the
thought experiment of shrinking a woman until she is about an
inch tall. Remember, her body circulation won’t circulate at these
dimensions, but let’s imagine we got around this problem and
we can keep her alive. At this point her linear dimensions have
shrunk by a factor of about seventy. Thus, the surface area of her
body (through which she loses heat) has decreased by a factor of
70 x 70 or about 5000, but her body’s mass (that produces heat)
has decreased by 70 x 70 x 70 or 350,000 times. As a Lilliputian
she now has great difficulty maintaining her temperature. When
her environment cools in winter she dies, unless her metabolic rate
or heat producing capacity increases drastically.

The relative importance of physical forces working on and in
her body depends on her size because of scaling again. How does
she breathe? The surface area of her lung has only decreased by
five thousand-fold, so she can still acquire the increased oxygen
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she needs perhaps by breathing more rapidly, but taking more
breaths each minute challenges her musculature and requires
more energy each minute to contract her muscles. Being so small,
now like a shrew, she must eat her own weight in food each day
just to stay alive and even more calories to support her increased
activity.

Because our Lilliputan’s surface area is now relatively larger
after shrinking (she now has an increased surface to volume ratio),
she looses water at a faster rate, so she must drink more. But
now water’s surface tension has become a major force in her life.
When she was larger, surface tension was less than gravity. But
drinking is now very difficult. The surface film tends to pull her
into itself when she tries to drink. As a small ‘machine’ now living
in the realm of microphysics, it would behoove her to develop
long mechanically advantageous jointed stilt-like legs as well as a
straw-like proboscis she could unroll like a mosquito’s to poke a
hole in the water surface. Her muscles must now attach differently
than when she was bigger.

Consider the problems of a recluse spider. The spider’s jaws
clamp as it bites with its chelicerae at a force that is proportional
to the cross-sectional areas of its jaw muscles. However, the spi-
der’s weight is proportional to its volume. So to bite and puncture
human skin is difficult for the spider. Our Lilliputian would be
at similar mechanical disadvantages, but she has also gained an
advantage. Being so small, like a little spider now, she falls grace-
fully through the air.

A falling Lilliputian accelerates until the drag force imposed
by the air on her body equals the gravity acting on her mass. When
these forces are equal to each other and from this point on, her
falling velocity is constant. Her now constant falling speed is her
terminal velocity, and for an adult person, terminal velocity is
close to one hundred and twenty miles per hour. Air’s drag on a
moving object is proportional to the object’s cross-sectional area,
but the force of gravity is proportional to the object’s mass (and
thus volume, if the density is constant). As objects shrink, gravity’s
pull decreases more rapidly than drag, so terminal velocities of
small objects decrease.
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A falling object acquires kinetic energy proportional to its
velocity of falling squared. Kinetic energy dissipates rapidly when
the object hits something and stops falling. A falling spider’s
health is potentially better than a falling person’s. Smaller objects
fall more slowly, but because of the squared velocity term in
the kinetic energy relationship, much less energy dissipates when
these objects impact, so injuries are less. An elephant falling out
a window will be hurt or die, a squirrel may not be hurt, but our
Lilliputian runs away unharmed, that is if her heart is up to it.

Connectivity Maintained

To shrink a system and keep it working in its shrunken version
requires that we maintain our system’s connectivity as we shrink
it. Ideally, we must follow what happens to the networks of com-
munication within the system. For example, endocrine glands
secrete hormones at one location, and these chemical messen-
gers circulate to other parts of the system where they attach
to receptors, eliciting effects at a distance from their sources.
What happens moment-to-moment depends upon the rates of
hormonal production and utilization as well as how well the cir-
culation continues to maintain balance and distribution so that
the shrinking system remains effective. Production of hormones
might have to slow as shrinkage occurs, for example, to compen-
sate for decreasing masses of controllers to remain in balance
with their controlled tissues. Without having to understand the
molecular details of any given network, we can grasp a network’s
common architecture or its scale-free topology.

Scale-Free Topology

A scale-free topology means that the probability, P(k), that an
arbitrary element of the network connects to exactly k other net-
works has the form: P = Ck™7, where gamma is usually the scale-
free exponent. Only a few elements of any scale-free network link
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with many of the other elements of the system, and most of the
elements link with just a few elements. Such scale-free topologies
undergo phase transitions from their ordered dynamics to chaotic
dynamics as size change. Gamma and a system parameter, P, con-
strain scale-free topologies. The dynamics of these networks are
largely unexplored (Ref: Scale-Free Topology and Robust Net-
works).

Implications of Scale-Free Structure

Understanding a network’s scale-free structure has led to inter-
esting results in diverse areas. For example, people believed ini-
tially that the best way to curb spread of a computer virus was to
provide all machines with antiviral software to make them resist
infection, but studies of random graphs of the Internet indicate
that antiviral software in an increasing numbers of machines had
a cumulative effect that does not occur in the scale-free setting
of the internet. In scale-free settings, adding antiviral software to
machines at a relatively small number of hubs of the scale-free
system can stop spread of the virus completely.

This insight is analogous to the impression that a network
of human sexual partners appears to be scale-free as well. We
may slow or stop the spread of AIDS by treating people at the
highly connected hubs, in other words, people having the most
sexual contacts. So by considering a shrinking system such as a
hemocoel to be a system of hubs simplifies thinking about how to
shrink the system and how the system communicates with itself.

Hemocoel Dynamics

Consider a wave of particles moving through a compartment of
a hemocoel as the hemocoel shrinks. Hemolymph continues to
move and evolve through the intricacies of the architecture over
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the surfaces of the hemocoel as long as particles can find a con-
nected path of permissible pathways that are above threshold
all along their course. At any moment depending on position
of the insect as well as yaw and pitch and vibrations of walk-
ing or flight, the fluid particles are either driven at random or
start out from a random state, but for flow of information to
occur between two points, regions able to transmit flow must
remain joined together in a random network even though internal
and external dynamics continue to modify the random network
with time.

Percolation: Modeling the Randomly
Connected Hemocoel

Imagine a hemocoel to be a porous brick wetted by hemolymph.
We may ask what is the probability that the interior of the hemo-
coel is wetted so that a particle can move from one place to
another through the interior of our hemocoel brick. Using ideas
from Broadbent and Hammersley’s percolation model (Ref: Per-
colation), we can move between three dimensions when the brick
or hemocoel is fully saturated towards a two-dimensional model
when the hemocoel consists only of moistened surfaces that con-
nect with each other two-dimensionally.

In two dimensions, we have the following: Let the surfaces of
the hemocoel together be represented by a plane square lattice.
Let probability, p, be a number between zero, where the edge of
a square is dry, and one, where the edge is wet. Now we examine
each edge of the lattice in sequence and declare the edge to be wet
with a probability p and dry otherwise. Each edge is wet or dry
independent of all other edges. The edges of the two-dimensional
surface represent the inner connectivity of the hemocoel so that p
becomes the proportion of passages that are wet and thus allows
flow to cross them. Grossly imagined, when p = 0.25, the con-
nected clusters of open edges are isolated and small, but as p
increases, the size of each cluster increases, and the number of
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clusters increases, until at a critical value of p, called Pc, a cluster
forms that now fills the entire space of the hemocoel.

Now, we may model any sized hemocoel using a large finite sub-
section of this two-dimensional surface. As dynamics change and
flows vary, for the hemocoel to transmit hemolymph and continue
to function as a hemocoel, the vertices and edges of the square lat-
tice must contain somewhere a connected subgraph of the surface.
A point within the model is wetted if and only if a path exists in two
dimensions connecting a wet square of the surface to our point in
question. The hemocoel functions as a circulation as long as ‘a wet
line of squares’ exists from point to point across the hemocoel, but
connectivity does not depend on the length or direction of this line
that may change moment to moment. Percolation theory investi-
gates the structure of this subgraph when we delete the closed edges
particularly in regards to how the percolation structure depends
on the numerical value of p. If p is large the probability of flow is
increased over times when p 1s small.

For purposes of shrinking, it is evident that the fine structure
of the ‘passages’ in the interior of the hemocoel is on a scale that
is negligible when compared with the overall size of the hemocoel.
In such situations a vertex in the center of the hemocoel is wet-
ted with hemolymph and, hence, can give up and receive particles
from the circulation, behaves rather similarly to the probability
that this vertex forms the end vertex of an infinite path of open
edges on the wet surface. It is for this reason also that a hemo-
coel is robust and resists point blockages, as given a minimum of
hemolymph to wet the surfaces, there are many alternative routes
for particles to follow in case one path becomes obstructed. We
may construct an analogous model for a three-dimensional vol-
ume. Our above model is called bond percolation on the square
lattice and is the most studied of all percolation processes.

Transliteration: From Bee to Device

The bee system is uniquely compacted. Imagine a large bee circuit
board before we shrink her. Bees are micro-packages; each bee’s
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systems coordinate her into an assembly robot. Hordes of bee-
robots in colonies assemble wax cells into combs for nurseries
and storing honey, defend the colony and locate food sources.
Each bee “package” resembles a very complex mass-produced
chip, comprising a system of sensors, a coordination center and
effectors. Parts on her chip are her compound eyes, a brain like a
microprocessor and the cantilevered actuators of her wings and
legs. She senses her environment. Her CPU or central processing
unit compares inputs, chooses outputs, actuates actuators, and
like any well-behaved robot, she responds to standard stimuli in
quite predictable ways. Using no tools and at ambient temper-
atures she recreates herself. Bee-manufacturing has miniaturized
her fuel supplies, sensors, CPU and actuators, while employing no
toxic metals or high energies but only “clean” biological sources
of energy. Thus, bees shrink and integrate far better and more
economically than we can.

Although we have studied the structural properties of many
such networks including a bee’s anatomy quite thoroughly, most
dynamical properties of these same networks remain unexplored.

Geometrical or size correlations of function depend on each
system’s geometry, architecture and materials. Interactions and
relationships between size, structure and function across different
scales are unknown. For example on 23 February 2005, searching
for the word ‘insect’ together with the word “mesophysics” in
Google did not match any documents.

Trend Towards Miniaturization

Our manufactured systems have shrunk over time: radios, pumps,
typewriters, motors, so that today an electric motor sixty microns
or sixty millionths of a meter across or less than a hair’s breadth
wide, can still spin when properly electrified. But static electric-
ity poses difficulties when manufacturing anything this small. To
shrink something in the lab is difficult but not impossible, but
manufacturing our something in large enough batches is the rub.
Our technology, great that it is, still limits our building small. We
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can either fit small parts together to make larger pieces, or we can
make flat things all of one piece on chips.

Remember How to Build a Chip?

Chip manufacturing illustrates some of the problems we
encounter while building small. CMOS, pronounced sea moss,
stands for complementary metal oxide semiconductors. Concep-
tually, making a chip is like designing and printing an etching we
have designed on silicon. First conceive of and draw a pattern for
the connectivity of the components. Then project this pattern as
lines onto a wafer of crystallized silicon. Then with a caustic chem-
ical etch away all the places we do not want silicon. Then deposit
one layer of metal and semiconductor and then repeat the etching
deposition process layer after layer until we build up an elabo-
rate three-dimensional structure of trenches, columns and basins,
each filled with metals and semiconductors. Each layer, however,
retains its unique two-dimensional pattern confined within its
own layer. To create three-dimensional mechanical parts from our
‘sandwich,” we etch material away around our pieces until parts
are thick enough to withstand the stresses and strains of work-
ing together as a MEMS. We can fashion from our cutouts, for
example, diaphragms for micro-pumps and blood pressure sen-
sors that flex when under pressure as well as cantilevers that work
as accelerometers to activate airbags. But undoubtedly over time,
all our ‘pieces’ will chafe because friction wears them away where
they rub on each other.

Mesophysics and Granular Models

Now lets continue shrinking until our system is smaller yet. The
realm of mesophysics currently incorporates microelectronics,
quantum computing and molecular biology. Mesophysics asks
such questions as how do we transport electrons and how might
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we achieve higher densities of components in our microelectronic
silicon-based circuits. In conventional circuits, electrons flow as
would streams of water confined within the boundaries of their
conductors. The wider a conductor is, the less the conductor
confines a carrier and the more continuous the flow. If we shrink a
conductor’sdiameter as much as possible, we must ask how do elec-
trons squeeze past the narrowest places? Because of the coulomb
blockade effect, electrons can distribute themselves to pass in sin-
gle file, but a conductor’s shape and properties and how electron
motion and quantum fluctuation interact create many complexi-
ties we do not yet understand. But we have several analogies.

Analogy: Sandpile

Consider how a sand pile behaves. A sand pile is a simple system
whose components interact by exchanging forces or information.
Gravity drives the sand pile system externally. The grains repre-
sent flowing molecules. Piled sand grains display unique behaviors
as we add grains to bring the pile into unstable, non-equilibrium
‘avalanche’ conditions. The changes grains undergo as they move
in an avalanche models the solid to liquid transition because the
avalanche recruits surrounding grains. Temperature plays no role
in the dynamic transitions between phases, as the system responds
with its own nonlinear dynamics to applied forces (Ref: Self-
organized Criticality).

Self-organized criticality (SOC) embodies the idea that
complex behaviors develop spontaneously in certain many-body
systems whose dynamics change rapidly. Self-organized critical-
ity in some basic way may influence the development of struc-
ture in biological systems. What are the properties of systems
that lend themselves to similar sand-pile like cascades? These sys-
tems require events to occur on separated time scales for one.
What constitutes the external driving of the system must occur
slower than the time for the system to relax. An example would
be the shaking of hemolymph from the movements of flying and
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walking and the imparting of the energy of body movements to
moving the hemolymph (Chapter 9). Signals of any form tra-
verse the system as long as a signal encounters a connected path
of above threshold regions for its propagation. Making analo-
gous granular models even of some of a hemocoel’s dynamics,
might suggest how information might circulate. Investigating the
consequences of the inherently inhomogeneous distributions of
forces inside piles of granules might allow particles of a system
to explore phase space as well as other aspects of aggregation.
Looking at the phenomena of aggregation and the spontaneous
formation of structure together with changing instabilities under
applied stresses suggests how energy and momentum might prop-
agate through highly dissipative materials. One might use video,
magnetic resonance imaging (MRI), and X-ray tomography to
record a model system.

Analogy: Microfluidics

The sandpile analogy suggests that in the smallest systems micro-
fluidics, the study of microflows, must be central to any ideas we
might have for shrinking complex insect-like systems (Ref: Micro-
fluidics and Drops). A dripping tap reveals just how complex even
the simplest microfluidic system is. Singularities in patterns of flow
occur almost everywhere, even in free-surface flows.

A drop hanging and then falling from a faucet models a liquid
separating into two or more pieces. The change in structure of the
drop over time reveals that as the drop falls, it first tugs out a long
neck between two masses of fluid. One mass will remain on the
tap; the other will fall as a new drop. The neck thins out elongating
until it breaks. What is the shape of the drop as the neck fractures?
Something complex happens in the mathematical description of
the liquid at this critical point, because the drop undergoes a
transition in its topology. A drop starts as a single, connected
fluid but ends as two or more separate drops. Separation is just
one example of a finite-time singularity, because a drop’s breakup
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happens just after the drop becomes unstable enough to fall. A
singularity arises for the topological transition because the radius
of the neck holding the drop to the larger mass of fluid gradually
shrinks and disappears. As the radius of the neck goes towards
zero, the drop’s curvature diverges, so the forces of surface tension
become infinite. How do such dramatic dynamics develop in a sys-
tem that has smooth initial conditions and forcing terms? Similar
transitional singularities are common in many diverse systems,
from stellar structures to turbulent air and water to a bacterial
colony’s growth. Now imagine what happens to hemolymph in
the hemocoel of a bee on the wing!

Lab-on-Chip Devices

Understanding microfluidics facilitated developing integrated
lab-on-a-chip (LoC) devices we use now for clinical diagnos-
tics and to screen minute quantities of dissolved compounds. In
most microfluidic devices, continuously flowing liquids traverse
micro-channels fabricated mainly from glass or plastics. Both
LoC devices and the bee’s hemocoel rely on surface tension to
manage discrete droplets at small length scales. One technique
involves ElectroWetting-On-Dielectric (EWOD) where a varying
electrical potential changes the wettability of liquids placed on the
surface of a dielectric. EWOD reduces a sample’s size below those
required for conventional, continuous flow microfluidic chips, as
well as reconfigures and rescales the chip’s architecture. The sim-
ilarity of the EWOD system to digital microelectronic systems
has engendered ‘digital microfluidics.” Now EWOD is used to
dispense, cut, and transport tiny droplets.

Analogy: Crumpling

Crumplingalso plays a role in shrinking surfaces and folding them
into smaller volumes. How does a fold, or in simple terms, how
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does a sheet of paper crumple into a small ball? If one compresses
a crumpled sheet of paper into a very hard ball by hand, nearly
eighty percent of the ball’s volume still remains air. What gives
the crumpled ball its strength? Analogies are endless.

Argument

I argue that as a hemocoel shrinks, reduced volumes of hemo-
lymph compared with the volume of the cavity are to be
expected in the smallest insects, because as bodies shrink, a three-
dimensional volume of hemolymph reduces towards a moistened
two-dimensional layer on the external surfaces of the organs and
the inner surfaces of the hemocoel. Reducing the volume of liq-
uid hemolymph reduces overall weight and the energy expended
to transport the weight, as well as increases the probability that
molecules diffusing in the surface films of the hemocoel reach
their destinations.

Empty Cavities

Smaller insects tend to have smaller volumes of hemolymph
in the spaces of their hemocoels than do larger forms, but
careful comparative studies of the relative volumes in different
species are scanty. The volume of hemolymph varies with the
species, age, diet, developmental stage, activity, and how volume
is determined. Methods of collecting hemolymph in the past have
included exsanguinations, dye dilutions and C'* measurements.
Each method presents different technical difficulties and can be
unreliable, but exsanguinations and dye dilution in trained hands
can yield similar values (Jones, 1997: p. 74).

Ancillary evidence shows that some nymphs, termites and
many caterpillars contain volumes of hemolymph that are large
enough to create positive transmural pressures in the hemocoel,;
in some even enough hemolymph under sufficient pressure to
swell their bodies. Many larvae maintain a constant volume of
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hemolymph relative to their weight throughout larval life, and
these larvae continually produce hemolymph as they grow. Neu-
rosecretion of hormones by the brain stimulates the corpora
cardiaca to produce a diuretic hormone, but these endocrine inter-
relationships are complex. Removing the neurosecretory cells by
excising the corpora cardiaca and allata may not affect water bal-
ance in some species. Fluid volume in an insect may peak prior to
molting, but then this volume drops quickly afterwards. Males may
possess less hemolymph than females. But in general, it appears
that the volume of hemolymph may be smaller in proportion to
the size of the cavity in smaller insects (personal observation).

In many insects, especially the smaller ones, cavities appear
‘empty’ and only ‘wet’ inside when opened. One exception to
our size rule are the seventeen-year cicadas captured in 2004
in Maryland. These cicadas, had large moist empty hemocoels
and very little fluid hemolymph. As in these cicadas, microscopic
preparations of the smallest forms, when carefully fixed and sec-
tioned for light and electron microscopy, present little evidence
for accumulated fluid.

Shrinking Electronics is Easier Than Shrinking MEMS

Problems of shrinking devices arise from many interacting factors.
Gordon Moore in the 1960s noted that the number of transistors
on a chip doubled every one and a half years. This exponential
growth isnow Moore’s Law (Moore, 1979). Moore’s Law is not an
immutable law of nature but one describing the results of summed
feats of exceptional engineering that make it possible, perhaps, to
predict the limits constraining the future sizes of our very large-
scale integrated circuits.

The Bottom Line

To be successfully shrunk, either as a bee or a device, and to still
go on working, increase your surface-to-volume ratio. Internal
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organs or parts of devices extend surface areas relative to a sys-
tem’s volume. Lungs increase surface area for the exchange of
gases; the circulatory system distributes material to an internal
space that cannot be reached by direct diffusion from the exter-
nal surface of large organisms; intestinal vili increase the surface
area available for intestinal absorption. A tapeworm that lacks
a circulation, may be twenty feet long, but a worm may not be
thicker than a few millimeters, because food and oxygen have to
diffuse through the skin to reach all the cells of its body.

Gravity’s relative weakness at insect sizes permits insects to
have thin, external skeletons permeable to many molecules. The
disadvantage of wearing a corseting cuticle is that it enables
growth only when sloughed and a new one forms to accommo-
date an enlarging body. Between shedding and regrowth of cuti-
cles, the insect body remains soft. Were mammals to do away
with their skeletons, even for a short time to change skins, the
organs of mammalian bodies would collapse under gravity. Lob-
sters and crabs can grow larger than insects do in air, because
water buoys them up so these arthropods spend their ‘soft’ stages
nearly weightless.

Large terrestrial organisms, all in all, resemble each other
by having thick legs and relatively short, stout bodies. The
“invention” of building internal organs so that they increase their
surface areas, helped animals over time to retain their highly suc-
cessful simple exterior shapes to house large internal volumes. The
principle of maximizing surface to volume ratios is important for
the nesting of functions on surfaces within devices. Limits may be
expanded, but these laws still operate. No Gothic church may be
higher than it is long, and no large animal may dip in its middle
like a dachshund.
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CHANCY TRANSPORT

Overview

Cooling small computers or miniature systems requires novel
cooling systems. Many could employ Brownian motion with cou-
pled convection as in heomocoels. Can we learn from bees and
insects how they cool themselves, so we then may incorporate
insect techniques into our devices?

We now examine how things move around through hemo-
lymph and the hemocoel. Topology, geometry, and microphy-
sics influence how particles distribute themselves. Diffusion, a
metabolically cheap transport mechanism, is the process where
random molecular motions move matter from one part of a
system to another. However, diffusion’s effectiveness decreases
rapidly with distance. An advantage of small hemocoels, then,
over larger ones might be that they increase diffusion’s effective-
ness. Pumping of the heart and movements of legs and wings
supply convection and perhaps even superdiffusion.

Were we with a light microscope to watch visible particles
small enough to share the molecular motions of the hemolymph,
we would see them move randomly. In a dilute solution, each
particle collides with molecules of solvent but behaves indepen-
dently of the other solute particles that it seldom encounters. As a
result of so many collisions on all sides, particles have no preferred
directions, moving sometimes towards a region of their higher and
sometimes towards a region of their lower concentrations.

Our conventional, familiar assumption is that concentration
differences determine rates of diffusion and that steep gradients
create faster displacements. However, this simplistic assumption

167
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only approximates a much more complicated situation (Ref:
Diffusion).

Our particles proceed by random walk or Brownian motion,
so that in a quiet hemocoel we may calculate the mean-squared
distances each travels in an interval of time, but we cannot foresee
in what direction any particle will travel. Brownian motion, due
to bombardment of particles by the thermally excited particles
of their solvent, was one of the first natural geometries recog-
nized as being a self-similar fractal. If we view a finite segment
of a two-dimensional random walk and then re-scale its time and
length, we see that the two patterns resemble each other and are
self-similar.

Now imagine particles in the hemolymph of a bee following
cardiac arrest so the hemolymph is still and two separated loca-
tions in the hemocoel. Particles might be nutrients entering the
hemolymph through the wall of the midgut that are diffusing
towards a cell in a flight muscle in the thorax that will absorb
and then consume them. In addition, let us assume a gradient of
concentration for our nutrient molecules, such that the particles
exist in higher concentration near the wall of the midgut, so they
diffuse away from the midgut towards sinks in the thorax mus-
cles. These particles on the average progress from a region of their
higher concentration to regions where they are less concentrated.

Concentration Gradient

To understand how net movement of particles occurs, consider
an imaginary horizontal section taken perpendicularly across the
concentration gradient, and imagine two thin, equal elements of
volume, one downstream and one upstream, from our horizontal
section. Though we cannot say which direction any particle will
move in an interval of time, we can say that on the average, a def-
inite fraction of the molecules in the upstream element will cross
the section moving down and that the same fraction of molecules
will cross the section moving up in the same interval. Because
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the concentration of particles is greater in the upstream element,
however, a net transfer of nutrient particles occurs from the uphill
side where nutrient particles are in greater concentration towards
the downhill side where nutrient particles are in lesser concentra-
tion. If nutrients continually enter the hemolymph from the gut
and are taken up by muscles in the thorax, our driving gradients
will transfer mass and energy directionally through the hemocoel
even though all particles move by random molecular motions.

Fick’s Law and Diffusion Coefficients

Fick’s law states that the flux of nutrient particles across our imag-
inary planar section due to their random motion is approximately
proportional to the local gradient in the concentration of parti-
cles. Together with a term, dc/dx, that describes the change in
concentration over distance, the diffusion equation depends on
D, a diffusion coefficient, whose magnitude does not depend on
distances or concentration but instead describes the mobility of
particles as a function of their size, charge, the nature of their
interactions with the solvent, and the temperature.

Without solving the diffusion equations, we may say that
the units for the diffusion constant, D, are distance squared per
unit time. This observation alone says that the average distance
through which diffusion operates in an interval of time is propor-
tional to the square root of the product: D times time, and that the
time taken to diffuse a distance, d, is proportional to the distance
squared divided by the diffusion coefficient.

Diffusion Coefficient: Example

A typical small molecule is glucose. Glucose in watery hemolymph
might diffuse ten to the minus five seconds centimeters squared
per second. Consequently, the time glucose needs to diffuse one
micron is ten to the minus three seconds, to diffuse ten microns
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is a tenth of a second, and to diffuse one millimeter is ten to the
third seconds or fifteen minutes. Diffusion is rapid at intracellu-
lar scales, so cells need not add energy to this metabolically free
transport mechanism, but diffusion alone is inadequate over dis-
tances greater than one millimeter. So remember; if you are larger,
you need a heart.

Geometry Influences Diffusion

Transit time depends heavily upon dimensionality. Flat, thin ani-
mals can live by absorption and diffusion without convection.
Tapeworms do not require a circulatory system and can elongate
without altering diffusion distances. In one dimension, transport
by diffusion is proportional to distance. At three dimensions, how-
ever, the multiplicative factor is distance divided by the radius of
the sink consuming the particles (Ref: Hardt, 1980). Therefore,
to speed transit in larger forms, we must add convection, and this
means adding a circulation with a heart or two or three.

Adding Convection

Now imagine a bee’s heart pumping hemolymph as she subjects
her body to the pitching, yawing and impacts of walking and fly-
ing. Consider also that her hemocoel contains only a small volume
of hemolymph, a volume just sufficient to coat the surfaces of her
internal organs, the walls of the hemocoel and her diaphragms
together with perhaps a small pool of hemolymph in a corner
somewhere. Now her hemocoel is a connected two-dimensional
surface within which our randomly diffusing particles move.

Somewhere in shrinking a larger volume of hemolymph to a
smaller volume, a three-dimensional volume approaches a two-
dimensional volume so that transport now depends more and
more upon the moistened geometries of a connected, almost min-
imal, two-dimensional surface.
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The Two-Dimensional Hemocoel

We characterize our two-dimensional hemocoel in different ways.
If it contains many randomly moving molecules engaged in
Brownian motion, we might imagine our ‘random walkers’ to
traverse fractal landscapes. We understand something of fractal
elastic properties as well as phase transitions occurring on fractal
structures, but we know very little of why fractals form in the first
place. We don’t even know which aspects of the evolution of a
dynamical system give rise to fractals (Ref: Fractal Difficulties).

As hemolymph disperses over irregular surfaces, at the micro-
scale we might see shallow pools around higher, dryer islands.
Or our simple picture of diffusion as a sequence of random steps
changes if our hemolymph resides in and percolates through a
porous medium having a ‘porosity’ less than one. Under these
conditions, our random walkers, now obstructed by ‘islands’ or
pores, cannot occupy all positions of space. If the porous matrix
is homogenous and isotropic, an effective diffusion coefficient
involves a formation factor that now is no longer purely geomet-
ric, like the porosity, but has become a transport coefficient (Ref:
Percolation, Chapter 8).

On free surfaces in some systems, gradients in surface tension
drive convection depending on the Marangoni number, an equa-
tion relating the fluid density, its kinematic viscosity, the interfa-
cial energy per unit area of surface or the surface tension and a
characteristic measure of the size of the container, which in our
case might be a hemocoel (Ref: Meakin, 1998).

We shall continue this discussion after again considering the
three-dimensional hemocoel of Deuterostomes.

Deuterostome Diversion
We now make the case for the large, three-dimensional hemocoels

of sea urchins and starfish. In a three-dimensional volume, there is
only about a thirty-four percent chance for molecules to traverse
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the cavity from one location to another without getting lost; so
how can deuterostomes receive adequate energy if two-thirds of
their nutrient molecules get lost in the infinities of their internal
oceans of coelomic fluid? The answer must involve the idea that
echinoderms, being exclusively marine, lead lives that are slow and
cold enough for diffusion coupled with some minimal sloshing of
fluid to supply their metabolism. Echinoderms move slowly and
require less energy than faster moving forms. Beating cilia on the
walls of coeloms may contribute a weak current.

For zoological reasons, the cavity of a starfish or sea urchin is
a coelom and not a hemocoel, but coeloms work like hemocoels.
However, all is not so simple in echinoderm larvae that possess
gel-filled cavities (Ref: Gel-Filled Cavities).

To observe the movements and fates of particles in the coelom
of a starfish such as Asterias, inject less than a milliliter of a
carmine suspension in seawater into one of the rays of a living
starfish through a hypodermic syringe attached to a twenty-gauge
needle. See the red color rapidly traverse the ray to enter the body.
You will see how the cilia on the walls of the coelom create an
internal circulation.

After ten minutes, withdraw a few milliliters of coelomic fluid
from the starfish and examine this fluid under a compound micro-
scope. You will see that amoeboid phagocytic cells in the fluid are
engulfing the particles of carmine. Along the margins of the radial
canal (remember this is the hydrostatic system having to do with
activating the tube feet) are nine areas, called Tiedemann’s Bodies.
These structures probably filter the coelomic fluid because they
remove the carmine-filled cells.

General Assumptions

We reason that as cavities shrink transport grows more effi-
cient because distances shorten. There are advantages to shrink-
ing one’s hemocoel. Fluids are heavy, and a shrinking animal



Chancy Transport 173

loses weight, but diffusion through watery films insures transit.
Confined to a plane surface and given infinite time, a randomly
moving particle covers the entire area, so the probability of its
transmission is now one, and delivery is assured provided we wait.
Movements may also agitate the hemolymph, but the counter-
ing forces of cohesion and adhesion can offset effects of jostling,
but in some areas superdiffusion may operate. The hemocoel,
within limits, adapts to changes of volume, and in small bod-
ies, supporting struts of a reduced skeleton may in turn be less
massive, because fluid films behaving as minimal surfaces reduce
total surface tension traction on skeletal supports (Ref: Lungs
and Struts).

Diffusion Within a Plane Surface

On a plane, all diffusing substances enter the film of hemolymph
through the faces of the film, and very little enters through the
edges. If the thickness of the sheet and the diffusion constants do
not change, a steady state is reached in which the concentration
of our solute molecules becomes uniform throughout the sheet,
so that any difference in concentration with distance is zero. Now
again, imagine two locations separated by a distance with a gra-
dient of concentration for our substance existing between them.
Our once three-dimensional volume is now sandwiched into a
film. As before, the difference in concentration determines how
fast transfer occurs between our two points. (Simple experimen-
tal arrangements for measuring diffusion coefficients in planar
situations are in Newns, A. C. (1950). J. Tex. Inst. 41: T269.)

If we imagine our sheet of hemolymph to be a thicker sand-
wich of superimposed layered films, then the fall in concentration
through the sheet is the sum of the falls through each layer, and
the resistance to diffusion through the sheet is the sum of the
resistances of its separate layers. We must assume, of course, we
have no diffusion barriers between the layers.
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Plane Surface Contacting a Stirred Pool

If a sheet wet with hemolymph contacts a large, well-stirred vol-
ume of hemolymph, the amount of solute that leaves the pool for
the plane surface is a negligible portion of the total solute avail-
able, and the concentrations in the pool and sheet may remain
constant as diffusion proceeds. (Equations and references for
two-dimensional solutions for these and similar situations are in
Crank, 1975.)

Role of Mechanical Dispersion

Fluctuations in local velocity of flow disperse particles mechan-
ically. If at the macroscopic scale, the fluctuations do not cor-
relate, each mechanically perturbed diffusing particle follows a
tortuous streamline of the flow we assume would otherwise be
straight. During convection, in any interval of time, particles dis-
tribute more widely and deeply in both the horizontal and vertical
directions. Because only convection creates mechanical disper-
sion, convection can occur when diffusion is absent.

Boundary layer dispersion interferes with diffusion when par-
ticles move slowly near solid boundaries. In experiments we can
observe tracer molecules to enter and leave boundary layers both
by diffusion and convection. When fluid moves slowly, diffusion
is the only mechanism moving particles into or out of boundary
regions. Hydrodynamic dispersion may occur as flows stagnate.
Taylor dispersion results as convection combines with molecular
diffusion (Ref: Mechanical Dispersion).

Circulation Time
Hemolymph does not always circulate in our usual pattern. Wit-

ness the mosquito feeding on your hand. Observe the pumping
abdomen filling with blood and the heart rapidly contracting
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forcing blood forward as moving abdominal viscera and a dis-
tending blood-filled midgut stir the hemocoel. Under a micro-
scope you can see ripples in the ventral diaphragm progressing
backwards.

In embryonic and pupal stages, even after hearts develop,
hemolymph may not circulate rhythmically, but hemolymph cir-
culates before the dorsal vessel forms. Once the dorsal vessel
begins to pump, however, flow follows the generalized dorsal, lat-
eral and ventral pathways previously established around organs
and skeletal elements. Attachments of the massive muscles for
walking and flight complicate the patterns of flow through the
thorax. The usual pattern, providing impetus for flow, is that the
accessory pumping organs, contractions of the alimentary canal,
respiratory movements, and contracting muscles and other organs
assist the heart.

Cardiac Output

What is a bee’s cardiac output? How long it takes for hemolymph
to make a complete circuit depends on how fast the dorsal vessel
beats, the volumes of hemolymph pumped in an interval as well
as other factors. Multiplying the volume per beat and the beat
frequency gives an estimate of the volume of hemolymph that
traverses the dorsal vessel in an interval or the cardiac output.
Activity, whether walking, flying or resting, the developmental
stage, hydration and temperature, play contributory roles. Few
measurements of circulation time through a hemocoel exist. Esch
in 1960 observed a circulation time of two minutes in an adult bee

(Ref: Esch, 1960).
Lattice-Boltzmann Model

Let’s ignore for a moment any complications of locomotion.
Flows over surfaces within the hemocoel are complex enough.
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A Lattice-Boltzmann simulation may reveal interactions on the
microscale, and a simulation would allow modeling the microflu-
idic dynamics. Wettability of the surfaces, phase interfaces, and
chemical properties interact to determine transport of momen-
tum, heat and mass through the hemolymph.

Using a Lattice-Boltzmann model, we divide the hemocoel
into a regular lattice and assign a set of velocity vectors to each lat-
tice point. To connect each lattice point to its neighbors, we assign
specified magnitudes and directions to our vectors. To define the
total velocity and density of fluid, we specify how much fluid
moves with each vector in each interval. By using time incre-
ments, we evolve a fluid distribution function that moves our
particles progressively stepwise through the hemocoel. We sim-
ulate how particles collide by relaxing our distribution towards
an equilibrium distribution having a linear relaxation param-
eter. We must specify rules for these interactions, so they sat-
isfy laws for the conservation of mass and momentum to give a
second order solution of the Navier-Stokes equations. Similarly
constructed Lattice-Boltzmann models simulate heat transfer and
phase changes in solid-liquid interfaces along micro-channels of
micro-fluidic devices. Some include the effects of wetability on
wall slip (Ref: Lattice-Bolzmann Models).

Convection

When the temperature of a bee or device at heat equilibrium
remains constant, heat production equals heat loss. Input of heat
from solar radiation or metabolism or resistances within devices
equals the ‘leakiness’ to heat (heat conductance) times the dif-
ference between system temperature and air temperature. In the
bee, this conductance measures how much oxygen is consumed to
maintain heat balance, expressed as oxygen demand or milliliters
of oxygen consumed per weight of bee per unit time.

Small devices or insects may maintain lower temperatures
than larger ones. Small systems often produce heat at higher
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rates, but the higher rates require higher conductances, or put
another way, smaller systems require increased circulation of
coolant because of their larger relative surface areas. Large bees
heat up while flying and elevate their body temperatures, even
though the metabolic cost of flight per unit weight drops about
two hundred and thirty percent for a tenfold increase in mass.

To increase the heat capacity of a system and decrease varia-
tions of temperature it experiences, its coolant must absorb large
quantities of heat over a narrow range of temperatures. If a bee
or device is small, and its surface to volume ratio is large, it either
changes temperature with the surroundings, losing or gaining heat
by convection as needed, or the system burns energy to cool or
warm itself independently of the environment. In biological sys-
tems, enzymes catalyze metabolic processes that are efficient only
over small ranges of temperature.

Cooling small computers or miniature systems requires novel
cooling systems. Can we learn from bees and insects how they
cool themselves, so we then may incorporate insect techniques
into our devices?

Consider any small system. Because hemocoels dissipate so
much energy from active flight muscles, hemocoels must remain
cool. Because distances between interior points in the hemocoel
and exterior points on the body’s surface are so short, conductive
cooling often suffices. On the other hand, if a hemocoel is to
operate when a bee is cold, she may have to linger in the sun
before taking off.

Warming Hemocoels

Watch bees at a hive entrance on a cold morning. Lethargic bees
beat their wings slowly and stiffly. Insects balance the heat they
absorb and produce against the large quantities they must lose
to the environment, but at early morning start-up, a little sun
helps. Insects control heat gain or loss or thermoregulate depend-
ing on need. Contracting muscles release heat. About ninety-four
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percent of a muscle’s energy degrades into heat; only the remain-
ing six percent produces mechanical force.

Hemocoels distribute heat by conductive cooling or warming.
Suppose for amoment the hemocoel were a connected tubular sys-
tem supplied by a pump. For any given rate of flow, tubes of large
diameter would present less resistance and strain to the pump,
but a large tube linking a heat source to a heat sink would be inef-
ficient, as it would make poor thermal contact with the muscu-
lar generators of heat. Giving the tubes smaller diameters might
improve thermal contact and heat exchange, but the increased
resistances of all the small tubes together would strain the pump.

So the pump tubular system of vertebrates is a compromise,
employing tubes of large bore to carry blood over the greater dis-
tances but tubes of smaller bore to cover the remainder. Linking
large arteries and veins to capillary beds satisfies Murry’s Law.
Murry’s law states that for a system of tubes containing laminar
flows, the minimum volume for any given drop in pressure occurs
when the sum of the cubed radii of the smaller tubes at a branch
point of a vessel equals the cubed radius of the larger tube leading
to or from the branch. This balance equalizes shear stresses in the
tubes. For many fractal systems, tube lengths are approximately
proportional to their radii, so the sum of the areas of the tubes at
each level of the hierarchy conveys approximately the same vol-
umes. Circulating blood resides for almost equal times at each
level (Folkov and Neil, 1971).

Heating and Cooling Review

Consider a flying bee. At any moment her temperature is a bal-
ance between heat produced or gained from the environment and
heat lost to the environment. The body’s conductance or leak-
iness to heat is the difference between air temperature and our
bee’s body temperature. Body size, flight speed, wind speed, insu-
lation and circulation of hemolymph help to determine her heat
conductance.
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Now what temperatures can she tolerate? If too cold, her
thoracic flight engines scarcely ‘turn over,” but if too warm, her
enzymes denature and fail. Small bodies have lower tempera-
tures during flight than do larger ones, even though small bodies
may produce heat faster than larger bodies. The large surface-
to-volume ratios of smaller bodies enhance convective heat loss
better than do the smaller ratios of larger bodies. For example, a
flying mosquito maintains a less than one degree centigrade gra-
dient of temperature between its thoracic motors and ambient,
whereas a flying bee heats its thorax to fifteen degrees centigrade
above ambient. Her larger thorax means she has a smaller relative
surface-to-volume ratio, so her convective losses are inadequate
until her motors create a much larger temperature gradient.

Counter-current Heat Exchanger

Honeybees fly at ambient temperatures up to forty-five degrees
Celsius when other ‘bee-sized’ insects cannot. Bees employ an effi-
cient counter-current heat exchanger that apposes two oppositely
directed flows of hemolymph in close proximity to control heat
loss and heat gain to maintain heat balance. If one flow is of a
higher temperature, heat passively flows downhill from higher to
lower temperature across the wall separating the flows.
Atwarm-up, hemolymph flowing aft conveying heat from tho-
racic ‘motors’ flows close to hemolymph passing forward in the
dorsal vessel, so heat cycles back to the thorax. Retained heat
in the thorax helps thoracic muscles warm-up on cold mornings.
Honeybees enhance heat exchange by having the aorta make tight
spirals in passing through the narrow petiole thus increasing the
area of the aorta contacting the backwards flow of hemolymph.
Now for increasing heat loss. Large naked carpenter bees
can lose heat readily. Cuticles of head, thorax and abdomen are
smooth and devoid of hairs. Smooth surfaces radiate heat. A radi-
ator increases the surface area to transmit more heat to the envi-
ronment by convection. A bee’s body, filled with hemolymph has
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a high heat capacity. The open pump circulation spreads heat
against the inner surfaces of thin cuticles. When carpenter bees
fly at about twelve meters per second, the cooling rate of the
head may be ten times greater than that of the thorax. A cooler
head draws heat from the flight motors in the thorax as the dor-
sal vessel passes the hot hemolymph forward. Backward coursing
hemolymph through the thorax transfers heat to the abdomen,
where the thin walls radiate excess heat away into the air stream. In
warmed temperature-controlled spaces, carpenter bees increase
their flight speeds. When ambient temperatures are lower, they
hover close to the ground conserving heat.

Evaporative Cooling

Honeybees on hot days regurgitate dilute nectar from their crops
onto their heads and bodies. The bee’s head is an excellent radia-
tor, but the fluid from the crop, voided through the mouthparts,
evaporates in the moving air to provide additional cooling. One
disadvantage of evaporative cooling is that bees must replenish
the nectar in their crops from nearby flowers (Ref: Heating and
Cooling).

Turbulent Transport

Turbulence allows recursive regress of eddies into eddies over a
wide range of scales. In our flying bee, turbulent air around body
and wings mixes chaotically and draws excess heat from the cir-
culation. Turbulent mixing is highly efficient. Nernst layers are
small, and the external resistance to diffusion within turbulence
is low. Periodic driving of turbulent streams, however, is necessary
to maintain a turbulent system, as turbulence continually dissi-
pates energy. Forward thrust from thoracic engines creates this
turbulence.
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Turbulent transport also underlies the high efficiencies of
metabolic reactions. In mammalian systems, laminar flows in
blood vessels (low Reynolds numbers) still produce almost tur-
bulent mixing, when these flows combine to traverse the valves
and chambers of the heart. Labeled red blood cells follow ergodic
and unpredictable paths within blood vessels. Models suggest that
after sufficiently long stroboscopic observation, the path of just
one red blood cell cycling around and around the circulation, if
given sufficient time, would fill the entire volume of all the vessels
it travels through. In vertebrates, as opposed to micro-machines,
this “circulation volume” would be the entire volume of the body.
We know about circulation volumes from the exponential distribu-
tions underlying renal clearances. Fractal arrays and optimal con-
figurations of tissues having extensive surfaces closely apposed to
aninternal transport system form a structural basis for turbulence.

Diffusion Again

Let’s consider again in greater detail the irregular jiggling dis-
placements of an uncharged particle floating in hemolymph or
within a microdevice, as all those irregularly bouncing water
molecules strike the particle. We can calculate the particle’s
average or root mean square displacements at any intervals we
choose. Then we can compare our observations with theoretical
calculations.

First some history. In 1905, Einstein showed how small water
molecules could jiggle particles like pollen grains observable
under a microscope. In his classic paper: ‘On the motion of small
particles suspended in a stationary liquid according to the molec-
ular kinetic theory of heat,” Einstein used statistics to show that
many molecular “beatings” combined to bounce larger particles
around. For particles smaller than about twenty micrometers
across, the impacts falling equally on all sides failed to average
out, thus giving the particle a kick in some direction. As we know,
no particle anticipates where it may be kicked to next.
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Particles experience viscous drag. Drag depends on mass, how
fast a particle moves and a coefficient describing the viscosity of
the hemolymph. If our particle’s a sphere, we can use Stokes Law.
Our particle, therefore, also feels this rapidly fluctuating force that
averages to zero over enough time. If we multiply our particle’s
equation of motion by its displaced distances averaged over time,
and we apply the equipartition law, we get Einstein’s equation
for diffusion. This equation says explicitly what the root mean
square displacement is in parameters we can measure. However,
we must watch our particle for along time compared to the shorter
intervals between hits. Einstein and Smoluchowski asked: in a
time interval how far does our particle move from where it starts?

One-Dimensional Random Walk

Think of it this way. We now confine our particle to wander back
and forth along a linear path. A bell-shaped Gaussian distribu-
tion defines the probability of the particle being at some specified
distance from the starting point after a certain number of steps.
The more steps taken, the wider the curve. Indeed our expected
average distance from the start is just the length of each step times
the square root of the number of steps taken.

A particle being pounded on incessantly goes with the flow, so
imagine a particle between two organs. Every minute with a fifty
percent probability, P = 1/2, it jiggles either ten units towards
‘The Thorax’ or with probability of a third, P = 1/3, it drifts
towards ‘The Midgut’ or it remains for the interval where it is with
P = 1/6. Our particle takes a random walk in one dimension, and
its movements with time form a finite Markov chain. Assume
also the midgut and thorax hold the particle if it arrives there.
Knowing the distance between the midgut and thorax and our
particle’s starting position, we ask what place is it likely to reach
first, and how long will it take to get there.

If the midgut and thorax are fifty units apart, and our parti-
cle is originally twenty units from the thorax, we can label its
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potential stops as E1 to E6 with our two extremes being the
midgut and thorax. We give E4 as the vector x = (0,0, 0, 1, 0, 0)
in which the i component of this vector is the probability that
the particle is initially at Ei. Vectors (0,0, 1/2,1/6, 1/3,0) and
0,1/4,1/6,13/36, 1/9, 1/9) are our particle’s positions after one
minute and then two minutes elapse. Using a transition matrix,
we can imagine its location after £ minutes:

Transition Matrix

Let Pij be the probability the particle moves from Ei to Ej in
one minute. Let’s say P23 = 1/2 and P24 = 0. These are our
transition probabilities, and a 6 x 6 matrix P = is the transition
matrix.

1 0 0 0 0
12 1/6 1/3 0 0
0 1/2 1/6 1/3 0
0 0 1/2 1/6 1/3
0 0 1/2 1/6 1/3
o 0 0 0 0

—_— o OO OO

Each entry in our matrix is non-negative, and each row straight
across sums to one. If x is our initial row vector, then x P gives the
probabilities for the particle’s position after a minute and after
k minutes, the vector xp* gives it, so the i component of x P¥
gives the probability that the particle is at Ej after an elapse of
k minutes. We reveal the Markov chain using an n x n transition
matrix P, and a 1 x n row vector x. Positions Ei are the states of the
chain. Now how does the particle move from one state to another?
It gets from E4 to E1 in three minutes and goes from E4 to E6
in two minutes, but it cannot go from E1 to E4, because once the
particle touches either the midgut or thorax, it stays there.

So our problem is not one of all actual probabilities but one
when these probabilities are not zero.
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A Huge Simplification

We can represent any Markov chain using a directed graph or
digraph. The vertices are the states, and the edges tell if we can
move from one vertex to another vertex in one minute. We draw
an edge only if the probability of traversing that edge is not zero.
We can also construct the graph from the matrix if we replace each
non-zero entry of the matrix with 1 or certainty. The graph shows
we can move from vertex to vertex only if a path between these
vertices exists, but, most importantly, the shortest edge gives the
quickest possible time to make the transition. The edges are strong
connections between the vertices. Edges tell us which vertices we
return to over and over, and which ones we visit a few times and
do not return to.

More formally: if we start at E1 and remain there, the prob-
ability of returning to E1 later is 1, and we call E1, our midgut
source, a persistent state. States between source and sink are tran-
sient states. Digraphs avoid difficult calculations. We see that Ei
persists if and only if a bidirected edge connects vertex i to vertex
j. If a path exists from vertex i to vertex j but not back from vertex
Jj to vertex i, then vertex i is transient. Like the midgut source and
the thorax sink, any vertex from which we cannot get to another
state is an absorbing state.

Brownian Particle

Now to a real Brownian particle and Einstein and Smoluchowski’s
solution. Divide the time we watch the particle into intervals of
hundredths of a second. Now after one short interval the parti-
cle moves to one place, and in the next short interval it moves
again and so on. A single water molecule receives about 104
strikes each second, so in a hundredth of a second, our particle
receives 10'? hits. Collisions are random, so each step a particle
takes 1s independent from the step it just took and the step it
will take.
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Where is the Particle?

After along time can we locate our particle? No. We cannot know
where it is. How about on the average? On the average how far
has our particle progressed from where it started? Remember, the
mean square of the distance traveled in the sequence of random
steps is the sum of the separate distances. So if vector N is the
vector distance from our origin after N steps, the mean square of
the distance is proportional to N, the number of steps.

But is the distance proportional to the time? If this were true,
the particle would have to have progressed at a uniform velocity.
So each hundredth of a second the particle makes headway but
only so much headway that our particle’s mean square distance is
proportional to time taken.

What About Dimension?

What happens in two dimensions? After all, we have two dimen-
sions in our smallest hemocoel. Step randomly to the north, south,
east or west each time. Once the walker returns to the origin, it
starts over again, and then given enough time, there is a second
return to the origin, and then a third return, and so on. Two-
dimensional random walks, then, visit all points of the surface if
walkers have sufficient time to complete their walks.

Now what happens to walkers in three dimensions? Here
things are different. Very different. Walkers can go up and down
as well as in the four compass directions. Use a standard six-sided
die to determine your particle’s movements. Now however, even if
our walker takes infinite time and infinitely many steps, its prob-
ability of getting back to the origin or any other specified place
in the hemocoel is only about a third or point three four. There
is so much space available to get lost in, that unless our particle
happens to make it back to the origin in just a few steps, it is
most likely to get lost forever. There are so many ways for aim-
lessly wandering molecules to get lost. It is for this reason that
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three-dimensional hemocoels do not transfer particles from one
position to another unless convection adds direction to diffusion
(Ref: Walking Particles).

Forces On Our Particle

Suppose a convective force exists on the particle, not just a
Brownian force. First our particles own inertia would slow it. Let
some number be the coefficient of inertia or the effective mass
of our particle. It is not our particle’s actual mass, because our
convective force pushes water aside as it pushes our particle. A
unidirectional force gives a mass moving over distance. If the force
is steady, there is a fluid drag proportional to our particle’s veloc-
ity. The complex viscosity of hemolymph also resists this flow. We
also irreversibly lose heat due to friction. We cannot get k7 if we
cannot have these heat producing losses due to drag.

Least Action

Suppose our particle moves from its original place to another
place in an interval. Then the particle does it again but follows
a different path through the hemolymph, but it gets to the same
place it went the first time in the same amount of time. If we calcu-
late the particle’s kinetic energy at every moment along the path
and subtract the potential energy at every moment and integrate
it over the time the particle needs for the whole trip, the number
we get is larger than the particle’s actual motion.

The principle of least action states that the average kinetic
energy minus the average potential energy stays as small as possi-
ble while going from one point to another. The true shortest path
is the path for which this integral is least.

Why is this possible? Because were our particle to take any
other path than the one it takes, its velocities would sometimes
exceed and sometimes be less than the average velocity. Average



Chancy Transport 187

speed through the hemolymph is the total distance traversed over
the time. This means that the mean square of something vary-
ing around an average exceeds the square of the mean, so that
now the integral for the kinetic energy would be greater if the
velocity were irregular than if the velocity were uniform. This is
another way of saying that our integral is minimal if the velocity
remains constant, and we have just a uniform push and no ran-
dom forces. Such solutions are always balances between holding
on to the most potential energy while expending the least extra
kinetic energy to keep the difference between kinetic energy minus
potential energy as small as possible.

Action

Kinetic energy minus potential energy integrated over time is, of
course, our particle’s action. For each path there is a minimum
action. Think of a circle as a locus of all points at a constant
distance from a fixed point or as a curve of a specified length
enclosing the largest area. Any shape for the perimeter other than
a circle must enclose a smaller surface area.

So in considering paths through the hemocoel from one point
to another, we imagine there is one true shortest path where the
action is minimal, so that taking any other curve means taking a
false path, a more energetically wasteful path, because if we cal-
culate the action over the false path, the action is greater than
if we took the shorter path. Or let’s assume the particle takes
a minimum path to start with. If we deviate from it in the first
order, the function deviates from its minimum only by the second
order. At any place along the curve, if we move a small distance
away, the value of the function changes also to the first order but
at a minimum. Taking just a tiny step to the side makes no dif-
ference at all in the first approximation. If there is a change in
the first order when a particle deviates, the change in the action
is proportional to this deviation. Reversing the sign of the devi-
ation makes the action less so. At this point we can have the
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action increase going one way and have it decrease going the
other.

It turns out that the path having the least action is the path sat-
isfying Newton’s law. However, in the hemocoel, we cannot forget
friction. The principle of least action only works for conservative
systems in which we obtain all our forces from a single potential
function. But at the microscopic level of organization there are no
conservative functions. The Lagrangian is the function integrated
over time to give the action. The Lagrangian is a function only of
the velocities and positions of particles.

Minimum Along the Entire Length

Consider an actual path of a particle through the hemolymph and
say the true path traverses point A and point B. If the action is min-
imal along the entire path, then the path between a smaller section
of the line, between points A and B for example, is also minimal.
So every subsection of the path our particle follows must also be
a minimum no matter how short we make our subsection. So now
the statement about what happens over the entire longer path also
describes what happens over any shorter piece of the path.

Lévy Flights and Superdiffusion

Now consider a particle walking randomly in a hemocoel being
jiggled by the convective circulation of hemolymph as the hemo-
coel itself jiggles during flight. Our particle starts at one position,
and takes steps in random directions. As we know, random walks
may occur in all three dimensions depending on local conditions.

In some cases the jiggling may make the steps randomly long
as well. Now suppose a ‘walker’ particle diffusing in the hemocoel
jiggles as our bee flies. Now perhaps motion from the jigging
combines with convection from normal circulation to add random
velocity component vectors that force the random walker to pause
for random amounts of time in between steps.
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Normal Random Walk

In the hemocoel perhaps ‘most’ random walks spread out dif-
fusing normally, the variance of a group of particles growing lin-
early over time. This variance describes the size of a typical group
of diffusing particles. (Remember: average of the squares of the
distance a random walker moves minus the square of the average
of the distance the random walker moves.) Our diffusion constant
is the rate at which the variance grows. Remember D, the diffusion
constant, is large when particles move faster in water and smaller
when they move slower in syrup.

For cases where a particle’s step length is random, D depends
on the average squared step length rather than the length of an
average step. Also, if the random walker takes one step every two
seconds, it is reasonable to guess that D might be smaller.
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Lévy flight

Now what happens when the average squared step is very large
compared with the usual step length or, we might say, infinite?
Such a walk with very large segments are Lévy flights, and D
becomes infinite.

The two pictures compare a normal random walk and a Lévy
flight. The thousand steps adding up to each particle’s trajectory
are of random lengths. In the normal walk the probability of a
long step is proportional to L(=3®_ In the Lévy flight, the prob-
ability of a long step is proportional to L2, which is more
probable than the normal case.



Chancy Transport 191

Follow a normal random walk for a very long time to begin
seeing ‘normal’ behavior, that is we can no longer make out the
small steps. However, the average lengths of all the steps taken
together determine the trajectory’s pattern. In a Lévy flight, con-
vection and jiggling create the long, infrequent steps, the flights.
These long straight segments determine the trajectory’s pattern.
In a Lévy flight, the few, long rare steps, the flights, mostly deter-
mine a walker’s position. Thus, in a Lévy flight, the individual
steps do not average out.

Review of Lévy Flights

If Lévy flights occur, the variance increases faster than just lin-
early with time. The variance denotes the typical size of a group
of random walkers, and is the average of the squares of the dis-
tance moved minus square of the average of the distance moved.
D is the rate at which the variance grows. Diffusion is faster in
watery hemolymph (large diffusion constant) than in hemolymph
of high osmolality (small diffusion constant). Volume changes in
the hemocoel complicate these relationships.

If variance equals time raised to some exponent, the expo-
nent being one for normal diffusion, this exponent is larger than
one, but usually less than two, during a Lévy flight. Superdiffu-
sion is when the exponent is greater than one but less than two.
Having an exponent of two would mean that all random walkers
were moving apart from each other at a constant rate as might
occur in an explosion. We still must learn what role, if any, Lévy
flight dynamics and superdiffusion play in the bee’s hemocoel
(Ref: Lévy Flight Dynamics).

Conclusions: Generalized Cavity Transport

Generalized transport in a hemocoel employs diffusion and
convective dispersal within a confined space. Convective forces
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from the open circulation and the jerky movements of walking
and flying disperse the particles perhaps adding components of
superdiffusion.

Hemocoels avoid the higher energies and limits imposed by a
closed circulation and pump to maintain high pressure to force
fluid through peripheral resistances. Hemocoel transport is minia-
turizable while pump-tube transport is not. Hemocoel transport
should be useful in microfluidic devices.

We may also model hemocoel transport using mass action
and percolation theory. We can simulate diffusion and disper-
sion on an incomplete lattice. We can explore the heterogeneities
of surfaces bordering on the hemocoel cavity to determine what
exogenous factors facilitate or impede mixing.

If diffusion distances are short and movements minimal,
might we even imagine patterns of waves traveling through the
volume? As movements increase, do contact of particles with
walls and organs increase or decrease as the cohesive and adhe-
sive forces change? How might the densities, concentrations and
other intrinsic properties of particles influence the dynamics of
hemocoels (Ref: Jacobs and Hendrickson, 1997)?
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CONTROL

Overview

Homeostasis, or staying the same, is a typical property of open
complex systems. Think of a cell, a bee and a law firm. Such sys-
tems react to disturbances by modifying themselves to oppose the
forces creating the disturbances. Homeostasis rigorously controls
many interdependent regulatory mechanisms to maintain current
structure and function. But for complex systems as complex as
bees and people, endurance is not enough; they must adapt to
changes of the environment and must evolve. Otherwise, entropy
will disorganize and destroy them.

Control systems maintain the internal state of a bee or device
so that smaller systems depending upon the internal state continue
to work optimally. A bee maintains her temperature as well as
specific ions and molecules in her hemolymph. Controllers also
permit her to adjust her response to changes in her environment.
Threaten her, and she prepares to fly and sting.

After introducing control systems, we view molting as an
example of system-wide control. We then see how controllers and
controlled systems interact continuously and evolve.

Stability and Change
A bee is a hierarchical array of subsystems regulated by a web

of control systems. The control systems together adjust the flow
of energy and materials through the body maintaining a constant

193
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internal environment despite changes in the external environment
(homeostasis). How is control maintained?

For a bee to live she must adapt to stress (trauma, infection,
drying, increased temperature) and continue to function. Analysis
of where the weak links are in her web of control systems suggests
that her life depends on a few key control systems. We limit dis-
cussion to control of the hemocoel that entails coordinating many
interrelated functions. As the volume of hemolymph fluctuates, a
bee must alter the chemical content of her fluids including the pro-
portions of cells, metabolites, ions, water and nitrogenous wastes,
as well monitor uptake and discharge by her cells from and to the
hemolymph.

Definitions of Control

Most control systems employ negative feedback, but some employ
positive feedback. Negative feedback is operating when distur-
bances to a system evoke compensatory changes tending to dimin-
ish the effects of the disturbances returning the system towards
its normal state. Positive feedback, unlike negative feedback, is
explosive, and variables rapidly achieve a maximum or a mini-
mum state. Any control system’s adjustability is limited, and each
control system operates best only within a restricted range. Within
any range of control a disturbance may exceed the limits within
which the control system can compensate for the disturbance.
Failure to correct a disturbance may exert a domino effect, spread-
ing rapidly and if related control systems cannot compensate for
the failed control system, death ensues.

Feedback and Bee Stings

Negative feedback opposes change and restores stability. Positive
feedback amplifies a disturbance’s effects. Both types of feedback
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control a disturbance and may occur within the same system. A
predator receives a bee-sting. If he moves away from the hive,
it is negative feedback. But if the disturbance continues, angry
bees may entice others to sting, until the entire colony emerges
stinging. If the predator and the angry bees all die, together they
have displayed positive feedback.

Feed-forward Loops

Positive feed-forward loops are inherently unstable, but feed-
forward loops are common in endocrine and metabolic control
systems. Positive feed-forward signals may increase flow through
a metabolic sequence. Positive feedback occurs during blood clot-
ting. The clotting sequence is inactive at rest, but once triggered,
the cascade of clotting factors goes to completion, amplifying the
original signal. The process self-limits as the clotting factors get
used up.

If we disturb a system, and a variable remains constant, we
expect to find negative feedback controlling that variable. If, on
the other hand, a variable suddenly and rapidly increases or
decreases, we expect to find positive feedback.

Redundancy

Many systems of receptors and effectors together control impor-
tant variables such as body temperature or blood pressure. Hav-
ing multiple controllers ensures that adequate control remains
if some but not all controllers are disabled. Redundant control
ensures stability.

Controllers and the Controlled

Controlling a variable means that a controller operates as part
of a controlled system. What’s controlled feeds back upon
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the controller but does not ‘control’ the controller. Feedback
describes the moment-to-moment interaction between the con-
troller and what’s controlled. Feedback is continuous and changes
over time as the system changes. Feedback filters through the
controller’s ‘representation’ of the interaction. Think of a fighter
pilot watching the image of a laser bomb striking a target. The
controller reads a composite image of its own actions superim-
posed upon an image of what’s being controlled. The controller
may even destroy what’s controlled at the same instant as the sys-
tem engenders a perception within the controller as when the pilot
watches his bomb detonate on the cockpit screen.

To accomplish control, the controller changes some variables
in the controlled system directly. At the same time, the controller
senses the changes and feeds these back to what operates the
controller. Each system’s dynamics determine what the observed
and controlled variables are. Uncontrollable disturbances may
also influence the observed variables.

Set Point

Somewhere in the system resides the goal for the control system.
This goal is the set point and is analogous to the set tempera-
ture for a thermostat. In the bomb analogy, the set point is the
target’s position. The controller observes the target, while contin-
uously comparing its momentary representation with the internal
set point of the target’s coordinates. Seen from the controller, the
loop begins with the controller’s action that feeds back to cre-
ate the controller’s perception of what it just did. In a primitive
control system no representation of the controlled system may
exist distinct from the controlled system itself, as feedback flows
directly from what’s controlled back to the controller. When the
controller’s action on the system does not differ from the system’s
feedback to the controller, we have a harmonic oscillator.

Controllers respond to minimize the difference between what
the controller observes and the set point. Analogously, a flying
bee controls its temperature (Chapter 9).
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Supercontroller

The idea of a super-controller overseeing hierarchies of lower
subservient controllers exists in biology, cybernetics and the
computer sciences. Teasing control systems apart from what they
manage can reveal new patterns of control. Control of the hemo-
coel remains unstudied but probably contains useful secrets.

A hemocoel’s local politics are unique. Control of the inputs
and outputs of the hemocoel occurs simultaneously distributed
over the entire space of the hemocoel along any open boundaries
where cells contact hemolymph and entry and exit ‘choices’ occur.
Individual entries and exits do not obstruct flow of hemolymph
within the hemocoel. Compare a hemocoel with the filling and
emptying of a football stadium as flowing crowds congest entries
and corridors where each person’s choice feeds back to change
what the group does.

Seen from a higher perspective, sites of absorption and elim-
ination from organs and cells are not the meta controllers for
what enters and leaves each organ, but together, we might imag-
ine a super controller directing all these sites, so that together
orchestrated separate controllers might coordinate the hemocoel-
system. Each cell and organ probably controls its own sur-
faces and receptors, individually responding to immediate local
demands for metabolites and excretion without requesting out-
side information filtering down to each control point from a dis-
tant central processor.

Hemocoel as a Parallel Processor

The holy grail of computer processing is parallel processing
in which many inexpensive individual microprocessors engage
simultaneously. Supra-scalar processing resembles parallel pro-
cessing, in that the hardware automatically locates instructions
that launch at the same time. One popular aid is to place a
cache or small amount of memory on each microprocessor. The
cache holds only the most frequently called parts of the general



198 Chapter 10

program, so as to avoid energetically costly frequent retrievals
from distant memory chips thereby enhancing overall speed.
Because control of the hemocoel is diffused over so much vol-
ume and area, hemocoels remain active and robust even if point
blockages develop or some controllers do not work.

Hemocoel Pipelines as a Microprocessor

We are tempted to consider the hemocoel as a microprocessor.
Its unique parallel processing capability comes from the idea
that the hemocoel ‘pipelines’ in that many steps of many paral-
lel sequences operate concurrently. Designers increase a system’s
clock rate or speed by using scaling technology to make chips
smaller and by reducing the numbers of levels of logic each cycle
needs (more levels means longer time). However, using detailed
wire and component models, many of today’s designs scale poorly
with technology (Ref: Agarwal et al., 2000). If each step has lim-
ited time to execute, the time the hemocoel saves by pipelining is
proportional to how many stages are active. Low-level “instruc-
tions” given to the “hardware of the hemocoel” might include
something about the dynamics of the hemolymph. The number
of stages of processing a hemocoel completes each second as in
a processor would be the hemocoel’s “clock rate”. For example,
in comparison, a personal computer using a 200-megaherz clock
might execute two hundred million stages each second. We have
no idea of what a hemocoel’s clock rate might be.

The hemocoel is uniquely organized to incorporate ‘supra-
scalar’ tasks in which more than one set of instructions might
be performed in separate places at each stage. Because the con-
trolled units of biological systems are cells or tissues, we might
imagine a cache of memory, perhaps analogous to extranuclear
DNA, held and used at the site of the processor itself. The cache
would hold only parts of a central genetic program that the system
most frequently refers to, thereby avoiding having to call on more
distant memory.
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Safety Factors

Hemocoels have huge safety factors or loading tolerances. Hemo-
coel safety factors are much larger than those for pump-tube sys-
tems. Hemocoels work when full or almost empty. Were we to
incorporate loading tolerances into our models, we might learn
what redundancies and fail-safe mechanisms we might use to pre-
vent failure of our smallest devices. For example, small machines
have many places in them where a point defect can cause the
entire machine to fail (Ref: Drexler, 1992). As in the human
circulation, an embolus in a coronary or cerebral artery can
spell disaster. This default assumption, however, does not usually
apply to machines built on the macro-scale, because tolerances
are larger. Many macro-scale machines continue to work despite
numerous point defects. Because even a large number of point
blockages fail to stem flow through a hemocoel, macro-machine
assumptions might aid in modeling a small system analogously,
so that its ultimate design might tolerate a high density of point
defects. What should be important for hemocoel models would
be the configurations of its surfaces as well as their changing fluid
interfaces.

New Models for New Control Systems

Understanding hemocoel dynamics so as to be able to model a
hemocoel might lend novel insight to creating potentially useful
control systems for our smallest devices if we could reduce the
number of centralized controllers and their connecting ‘wires.’
Remember: too much fluid within a pump-tube system, such as
our heart and blood vessels, can cause pump failure (congestive
heart failure) leading to overall system failure (death). One human
remedy is to take a diuretic to eliminate the excess fluid and to
increase cardiac function with digitalis, but during fluid overload
or paucity, all organs of a hemocoel continue to function without
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any tampering from without. In insects especially, most adjust-
ments are local. Many physiological regulators reside in close
proximity to the functions they control so transport is by def-
inition short. Short distances mean fewer ‘wires,” shorter wires,
and less weight.

Molting becomes now our example of system wide control
during metamorphosis. As old cuticle degrades and new cuticle
grows, the hemocoel is a reservoir for recycled parts and energy.
Even though adult bees do not molt, many insects do, and in bees,
cuticle renews just before metamorphosis when a bees passes from
larva to pupa and from pupa to adult.

Metamorphosis

Pliability and thickness of the exoskeleton differ in each devel-
opmental stage. Bees, butterflies and moths undergo ‘complete
metamorphosis,” in which the egg becomes a larva that receives
adequate nutrition for growth and then enters a resting stage, or
pupa. A pupa’s cuticle is soft, but the wax walls of a brood cell
further protect it. The pupa does not move around; it does not
feed, and it is extremely vulnerable to predators and parasites.
Even though pupae appear quiescent, they reorganize themselves
internally very rapidly. Wings form internally to appear externally
just before the pupa changes to an adult.

More than ninety percent of insects display complete meta-
morphosis. Insects undergoing incomplete metamorphosis avoid
the pupal stage. They shed their exoskeletons at intervals (ecdy-
sis or molting) while moving and foraging. Growth follows each
molt, as the immature form, called an instar, grows stepwise to
adulthood. Instars may molt four to eight times, and in some
species, molting occurs thirty times. Each time an instar molts, its
body is usually pale and soft, but the body soon swells in an hour
or two before the exoskeleton hardens and darkens.
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Molting

Insect cuticle is tough. Cuticle resists trauma and repels water.
Apodemes or attachment points inside rigid cuticles are firm
supports for muscles that move the body. Sheets and tubes of cuti-
cle form wings and appendages. Cuticle protects delicate internal
parts from predators and parasites, making insects tougher prey,
but because cuticle is hard and tight like a coat of armor, and
because cuticle stretches minimally, cuticles restrict continuous
growth. The principle structural component of cuticle is chitin,
a modified cellulose molecule. Chitin and products from the old
cuticle are absorbed and probably recycled as about eighty per-
cent of the new cuticle may contain materials from the old (Ref:
Chitin).

Growth and changes in an insect’s form occur only after molt-
ing or during metamorphosis after new soft cuticle has replaced
the old. Two hormones, juvenile hormone and molting hormones
(ecdysteroids), control molting. Rising titers of these hormones
in the hemolymph drive epidermal cells to synthesize DNA and
RNA in preparation for molting. If juvenile hormone is present
before a critical molt, the insect retains its larval characteristics.
If juvenile hormone is lacking but molting hormones are present,
the insect becomes adult.

Many factors regulate molting’s complicated sequence. The
sequence begins with turning on production of hormones that
initiate molting. The same epidermal cells that grew the old cuticle
let it slough in a controlled manner by first pushing the old cuticle
outwards so it may be shed before the same cells deposit new, soft
cuticle. Growth or expansion of the body occurs abruptly after
the molt to be followed by hardening or sclerotization of the new
cuticle.

The epidermis, a thin layer of cells lining the surface of the
body below the cuticle, secretes the new cuticle. The cuticle varies
in toughness and thickness in different regions of the body and
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at different stages. Before the old cuticle sheds, the epidermal
cells secrete digestive enzymes into the developing space between
the old and the new cuticles. Stereotyped movements, such as
rotating the abdomen, free the old cuticle from the epidermis.
Active transport of potassium ions and bulk flow of water into
the space between the old and new cuticles produce a molting
fluid that may buffer the pH changes created as the old cuticle
is digested and broken down. The insect splits the old cuticle
by increasing internal hydrostatic pressure and swelling its body.
Some insects even swallow air filling their alimentary tracts dis-
placing the hemolymph to expand the hemocoel that stretches the
cuticle. Some insects may even pump hemolymph into the thorax
expanding and stressing the old cuticle, splitting it along specific
lines of weakness.

In both types of metamorphosis, as each stage grows, the cuti-
cle around it gets too small like tight fitting trousers. This old cuti-
cle finally splits to reveal a fully formed new cuticle around the new
body. Molting ceases once an insect is fully grown. Materials and
energy for renewal of the exoskeleton must all pass through the
depot of the hemolymph, and recycling of metabolites and con-
trollers within the hemocoel determines how materials distribute
to the body.

The soft new cuticle covers a very soft body, so hemolymph
probably serves as a hydrostatic skeleton during this vulnerable
period. After the body expands and the cuticle hardens, the vol-
ume of hemolymph decreases.

Molting during metamorphosis is only one example of system
wide coordination of myriad individual controllers that accom-
plishes a very complex task. But first, how do controllers and
control systems interact?

Metasystem Transitions

Now consider a system S that might synthesize cuticle on all sur-
faces of a bee simultaneously. In different locations on the body,
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cookie-cuttered copies of this synthetic machinery exist with a
few local variants to specify different densities and thicknesses of
cuticle. These patches of cuticle-manufacturing machinery unite
into a new system S’ having the S-type cuticle producing systems
as its controlled subsystems. We posit a controller for the behavior
and production of our subsystems. S’ is now a metasystem with
respect to S, and to create S’ we perform a metasystem transition.

By creating a series of metasystem transitions, bees may con-
struct a multileveled control system increasing the complexity
of control at each level. Each metasystem transition produces a
higher level of organization, the metalevel, in relation to the level
of organization of the subsystems. In the most general terms, a
single relatively autonomous system that produces cuticle inte-
grates itself into a larger web of systems that control it. Similar
to the cell-organism analogy, in progressing from fertilized egg to
embryo to adult, primary control gradually shifts from a cell to
the organism.

The classical example of transition to a metasystem would
be the development of a bee. S is an egg cell, surviving initially
on its own. Following divisions, cells aggregate together to cre-
ate a larva, an entirely new entity. Initially control entails holding
daughter cells together, but following successive metasystem tran-
sitions, as cells integrate into tissues, tissues into organs, organs
into an adult, subsystems specialize to create a multileveled inter-
woven hierarchy of structures and functions, all controlled by
overarching humoral, endocrine, tracheal and nervous systems.

To create a metasystem, we first duplicate a subsystem and
establish control over its multiple copies. The original system S is
the scope of the metasystem transition, and the number of inte-
grated systems within S is the scale of the metasystem. The mini-
mal scale of a metasystem transition or MST is one. In a control
system with many levels, each level associates with functions char-
acteristic for its level. Each time we make a metasystem transition,
we generate a new ‘super’ level of control. If A is activity at the top
level, then each new metasystem transition, creates an additional
new level of control, A’. A’ controls what the A level does.
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Are Super-compilation Programs Natural Controllers?

In a super-compilation computer program, a metasystem transi-
tion relieves us from thinking of each single program as running
alone, to considering each program to be now an input program
into a larger metaprogram. The metaprogram now oversees a pro-
cess that executes a sub-program. The subprogram treats the free
variables of the input program and their interdependencies as
subjects for its own analysis, while at the same time, optimizes the
sequences of code in the input program.

To accomplish these feats, one part of the super-compilation
program constructs a large algorithmic tree from the parts of
the input program, while another part of the super-compilation
program analyzes this tree, recognizes any recurring patterns, then
prunes it to reduce the size of the algorithm making the whole
program more efficient. The super-compilation program finally
merges nodes together and deletes redundant sub-trees.

Would study of a bee’s hemocoel facilitate locating analogous
natural algorithms of control? If yes, might we then be able to dis-
sect these ‘natural hierarchies’ or algorithms to reveal more of how
biological control systems function? (Ref: Super-compilation).

Network Flow Problems in the Hemocoel

The hemocoel model solves several general routing problems that
are best visualized using graphs. Network problems have the fol-
lowing form: Given a graph, where each edge has a capacity c, a
source vertex s and a sink vertex ¢, the problem is to find out what
is the largest flow one can route from s to ¢ while respecting the
capacities of each edge along our flow’s course. Such routing ideas
serve not only in design of pump-tube vascular systems, plumbing,
or conduits. Finding the most economical way to move particles,
call them goods, through a set of points is to solve a network flow
problem. The dynamics of a hemocoel solve routing problems,
and similar problems plague distribution system’s allocation of
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resources in communication networks and scheduling situations.
We refine network flow problems if we consider them as patterns
involving shortest paths and edge vertex connections.

Shortest Path
S S
l L] L] L] L] L] L]
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. o o o o “—bo
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Let our graph be now an edge-weighted graph representing
an adequately filled large hemocoel having a starting vertex S, for
a substance and an end or recipient vertex 7. We must find the
shortest path from S to 7. Again, a hemocoel solves this problem
automatically.

Edge Vertex Connectivity

When volumes of hemolymph are low, the space of the hemocoel is
confined to regions where there is moisture, so we encounter prob-
lems of edge vertex connectivity. Consider the hemocoel graph
having an optimal throughput from S to 7. What is the smallest
subset of vertices or edges, that if severed, disconnect the hemo-
coel, or if we ask the question differently, what is the smallest
subset of vertices or edges, that if they become non-functional,
might isolate S from 7?

Vertex connectivity may not be less than the combined connec-
tivity of all edges, because if we delete one vertex incident on each
edge of a cut, the graph disconnects, preventing flow of substances
through it. Of course, smaller subsets of vertices might also work.
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Cut

All vertices connected Cut disconnects into two systems

A minimum vertex degree places a lower bound on the connectiv-
ity of vertices and edges, because deleting all of a single vertex’s
neighbors (or the edges to all its neighboring vertices) disconnects
the graph into one larger and one single-vertex portion. We may
formulate many practical problems of linear programming as net-
work flow problems indicating the power these models have. We
can create special purpose network flow algorithms to solve such
problems faster than we might with methods of general-purpose
linear programming (Ref: Network Flow Theory).

Metasystem Transitions Create Modelable Complexity

A complex system is present if its global behaviors result from
interaction of many small parts. The behavior emerges from the
system as a whole and we cannot predict this behavior from just
understanding the rules that govern the behavior each part indi-
vidually. As seen in Chapter 2, transition from a simple to a
complex system is neither simple nor discrete.

Complexity and emergence are only linguistic labels for dif-
fuse problems in hemocoel dynamics, economics, artificial life,
artificial intelligence, neuroscience, and even cultural change and
development. Might we probe deeper to ask of any of these sys-
tems why ‘something’ we observed ‘happened’? For our ‘explana-
tion’ to be adequate at least at some level means we must know a
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sequence of events and interactions that led up to our ‘something.’
So we would be asking our old question again: can we ‘explain’
or infer connections between the initial state of our system and
what changes to produce the ‘something’ we observe?

Asking these questions presupposes we understand on some
acceptable level, the tools and techniques we use to define our
system’s rules, and we also must accept the validity of any theory
that ‘defines’ our tools. But, still, our great open question always
necessitates a leap of faith. The question still is: can we predict the
outcome from an initial state without having to calculate every
interaction?

This means, do we have or can we obtain a sufficiently deep
enough understanding of the system that we can imagine some
minimal number of symmetries for us to calculate the outcome?
Or given the outcome, may we go stepwise in reverse order back
to some space of initial states? If we can do this, we now have our
mapping from the space of initial states to the space of outcomes.
And we’d be almost home.

For if we can simulate the hemocoel system, and our model
arrives at the result we expect, may we assume that the informa-
tion hiding in the intermediate steps of our simulation explains
the original sequence? Maybe yes, and maybe no. But if we can
reproduce the behavior of the hemocoel and control it at each
step, will we understand? Surely if we understand the system, we
should not need to simulate its behavior. We would understand
both the circumstances necessary for each step to the outcome.
We would understand the correlation between the initial state and
the outcome.

We have clearly then a continuum of levels of difficulty and a
continuum in the complexity of our analysis. This is truly quite
a deep issue. There is of course no discontinuous separation
between emergence and non-emergence. Emergence then results
from a ‘phase change’ in how much computation we must do to
optimally predict outcomes. To imagine this scenario in computa-
tional terms, we must compute some minimal amount to predict
the outcome.
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Ultimately all useful predictive knowledge is in the accumu-
lated interactions and the time required to complete our compu-
tations and thus depends on our machines and the time we need
for computation. For finite computations, the time required using
different Turing machines is related by an arbitrary polynomial. If
this phase transition is real, it should not be machine-dependent.
We measure the complexity of a step in terms of its Kolmogorov
complexity in other words the length of its minimal description.
The intuitive idea is that increases in Kolmogorov complexity
often offset any decrease in computational steps (Ref: Modeling,
Rent’s Rule, and Kolmogorov Complexity).

So in an emergent system, our understanding can be at best
zero. That we cannot predict emergent properties, stems not from
any failure to understand, but from an inherent property of
the system, brought about at least in part by the accumulation
of interactions. So understanding this, we need no longer deal
with any explicit dichotomy between emergent and non-emergent
phenomena. Our perceived lack of understanding is really just
another way of describing the complexity of the map between the
initial state and our final phenomena. In the sense that lacking
knowledge of initial conditions usually causes increasingly poor
predictions is analogous to a discrete version of chaos. Any single
phenomenon may fall anywhere in the spectrum between trivial
prediction and emergence.

Remember chaos aids distribution because it aids transport.
Transport limits turnover within bodies. Consider again how
movement of virus or malarial parasites from a mosquito’s gut to
its salivary glands depends on transport within hemolymph. Also
cooling in devices, bees or animals. Coolants moving within the
interiors of systems to be maximally effective must penetrate into
both superficial and deep compartments. The more intimately
a coolant associates with the internal surfaces producing heat
and the external surfaces radiating this heat, the more controlled
becomes the transfer of heat (Ref: Chaos and Control).

Chaos works because particles, be they molecules or cells,
suspended in blood or hemolymph responding to a chaotic
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component operating within their transport modality can explore
a much wider range of values and potentially enter a wider range
of spaces available to them within the body or device than could
molecules or cells transported solely by rhythmical oscillations of
their transport medium. Chaos introduces plasticity to cope with
unpredictable changes in the environment. One direct way to fol-
low particles through hemocoels is in (Ref: Localization Within
Hemocoels).

Even though we cannot make an algorithm to optimize a
general computer program, especially one containing chaotic ele-
ments, practical optimizations are possible because real biological
and even computer programs contain redundancies that may lead
to efficiencies. Might our local cuticle synthesizing ‘programs’ or
machines optimizing their own code over geological time have fig-
ured out the best local way to perform their part in the synthetic
function? Or simplistically, suppose the local machinery learns to
be five times more efficient, and so the superprogram containing
a metaprogram that optimizes and compliments local methods
gets to be twenty times more efficient. So then together they then
become multiplicative, speeding the process around a hundred
times. I probably have to stop now and draw my conclusions.
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GOALS AND CONCLUSIONS

Goals

We wish to correlate structures and functions at the nano- and
micro-scales with what happens at other scales. We usually take
three steps. First an idea surfaces that many feel is more fiction
than science. Later, others realize the idea might be feasible, so
they take it up. Lastly the developed idea enters research labs and
university curricula.

Can We Make a Bee?

Eons of biological evolution have given us miniature devices we
might copy. At the cellular level systems are collections of cata-
lysts, sensors, skeletons, pumps and motors. Cellular machines
create components that self-replicate, produce power, regulate
its consumption, store information and maintain the internal
environment. Analogous organizations and functions exist at the
organ and organ system levels of complexity. At all levels com-
plexity and emergence complicate our understanding. Complex-
ity and emergence are properties that manifest themselves when
any one formalism grows incapable of capturing all of a system’s
properties.

Before building a bee-like device, we must understand what the
surfaces and interfaces of small hybrid structures can do. We need
to develop capabilities across the range of complementary length
scales between structures of tens of nanometers, like proteins,
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DNA, and viruses joining our capabilities on the micron scale to
our knowledge of how to manipulate cells and cellular assemblies.

We have had some successes. We can isolate whole systems,
such as flagellar motors, and modify their biochemistry. Our
understanding of microfluidics lets us handle and analyze minute
quantities of liquids in the laboratory. Nanoprobes target cells;
nanochips process DNA, and nanoscaled biochemistry labs on
chips now depend on technologies that are approaching how inte-
grated semiconductor devices transformed electronics and com-
putation. We are learning to work small.

Scaling Holds Us Back

We use scaling laws to help us bridge between single molecules and
higher order architectures, but we encounter problems with our
‘understanding.’ Integration is an emergent property of all natural
systems including bees and micro-devices. Be they biological or
engineered, systems are not mere collections of their parts. If they
were, these systems would be subdivideable, and they are not. A
system’s ontology depends on context that in some complex way
uniquely ‘defines’ a system’s components. Outside ‘the’ system the
components have different meanings. If we remove components
from a system, the system looses its original identity and changes
to something else.

Because systems ‘emerge’ we cannot predict when ‘system
properties’ arise from assemblies of parts, but we must realize
our inability to ‘understand’ is not from our failure to compre-
hend but from these inherent ‘systemic properties’ brought about
in part as interactions accumulate.

Because dissecting cannot reveal how a system works, we must
redefine our ideas of ‘emergent system’ and ‘understanding’ to
include modeling as a new way to obtain information. If we can
‘simulate’ a system, and our model or simulation arrives at the
result we expect from the original system, we might then say we
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‘understand’ the correlation between the initial state and the out-
come in both.

Conclusions

In this book I have spoken of several kinds of connections between
the smallness of bees and insects compared with our smallest
devices. [ began with reasons to study insect circulations for their
intrinsic interest and roles as possible models for devices as well
as practically to understand their roles in the vector transmission
of disease.

I showed how our closed pump-tube circulations don’t work
when reduced to insect size. I showed how open circulations differ
from our own and how this difference permits open circulations
to be miniaturized, some even capable of passing through a nee-
dle’s eye. I then told of hemocoels and their graphs, and how
shrinking hemocoels might improve their efficiency by shorten-
ing the distances hemolymph and particles must travel. Lastly,
I spoke of diffusion on a surface and in a volume and how the
probability of transmission by diffusion increased when the vol-
ume of hemolymph became compressed into a two-dimensional
sheet.

It is time, therefore, to attempt a few generalizations, slight
as the hard data may be. Accordingly, my first generalization is
that insects can be models for our devices as they are all smaller
and more efficient than our stand-alone devices thus far. If it is
true that hemocoels really work better when shrunk, then insect
‘smallness’ is worthy of emulation.

Our second generalization based on a bit more hard data,
but proposed in the same experimental way, is that shrinking
decreases efficiency of a closed circulation but increases the effi-
ciency of an open one.
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Comparing Graphs

We compared the graphs of a closed tube circulation and an open
cavity circulation. The graph of the closed circulation is a directed
Eulerian trail. For each stroke of the heart-pump, blood flows in
only one direction, from arteries and arterioles through capillaries
to veins and back to the heart.

An open circulation or hemocoel exploits the principle that
the shorter the path length, the faster, more direct and more eco-
nomical is transmission through the system. Hemocoels remain
the same size, but the volume of hemolymph in them and hence,
the network graph for hemolymph within a hemocoel, grows and
shrinks.

The graph of the hemocoel resembles a Moore graph in that
every vertex potentially connects to every other vertex in the cavity
directly. These connecting edges are identical and unweighted.
Advantages of a cavity circulation are that nodes in the hemocoel
are and remain dimensionless, featureless vertices. Transmission is
potentially bidirectional. There are no hubs, as every point in the
hemocoel potentially possesses direct ‘airline’ connectivity with
every other point. Routes are lines or edges that are not vulnerable
to point blockages as a fixed network of vessels would be. As an
exponential network, the hemocoel is more stable than a scale-
free network. Circulation is quite independent of the volume of
hemolymph in the smallest hemocoels, and shortcuts through the
two-dimensional film would still be possible.

Because each new edge forms or disappears independently
from any other, the graph of the hemocoel does not form clus-
ters, as neighboring vertices are now no more likely to be linked
than would be any other randomly chosen vertices. Unlike a
closed tubular circulation, nodes are eliminated in the graph of
a hemocoel making the hemocoel system less vulnerable to point
defects.
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Randomly connected hemocoels differ from the connected
lattices of a closed circulation. Introducing just a few ‘short-
cuts’ reveals characteristic lengths that are closer to random
graphs than to lattices. Adding a few shortcuts changes the hemo-
coel’s dynamics appreciably, but adding more shortcuts is not
better. Adding shortcuts means to a bee or device adding an
energetic cost of volume and weight to be supported. That this
may have been tried many times during evolution seems logi-
cal because evolution seems to have worked insects and circu-
lations around to sit at the point where hemocoels are maximally
functional.

Our third generalization is about modeling: every model con-
tains an unintended intervention on the part of the model maker.
One does not feel the need of so many reservations in the case of
this principle. But in the sense of the first two, it is perhaps the
one that matters least. It refers to our sense of the world. It also
more importantly refers to a style of thought.

Models Provide Explanatory Power

Why choose one particular model of a system over numerous
possible others? Everything else being equal, which of course it
never really is, our chosen model should be the simplest model
that agrees with observations. As an acceptable even a good model
it should agree to a reasonable degree of accuracy with most of
the experimental data. Here I emphasize ‘most,” as the model also
implicitly says we ought to continually monitor up-and-coming
newer techniques.

So if our aesthetic reasons are strong enough, then it is only
necessary for a model to agree with most of our observations. A
model also should possess explanatory power. The model of the
bee hemocoel is in a modeling relation to the bee system and by
implication to those of other arthropods, and so it is not just a
simulation.
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The idea of explanatory power forces us see about how to
validate a proposed model. A model is valid only if we can test
it, and most tests of the hemocoel have yet to be devised. How-
ever, models are not merely explanations, but they are probes to
provoke nature into showing us behavior that a trained observer
can then accept as an observation. Observations provide further
inductive evidence for confirmation or counterexamples. As Karl
Popper said, “science is not to validate models but to falsify
them.” Models help us spell out testable observations and pre-
dictions. If our predictions fail, the model is falsified, and then we
must reformulate or abandon the model. So I leave this last as a
challenge to the reader. I have found no reason to abandon this
model yet.

It is also time to attempt a few simplifications of the whole
subject by way of summing it up and of coming to an end. With
a few exceptions, all of the examples we have used have been pic-
torial. The image has been descriptive or explanatory of some
image’s subject. Said a bit differently, I have accompanied the
stated thing with a restatement, and this restatement has illus-
trated and helped define the thing stated. The thing stated and its
restatement together constitute an analogy.

The Value of Analogies

In conclusion let’s talk briefly of the value of analogies. The funda-
mental ideas of the human spirit are vast collections of analogies
that have helped make our thinking what it is. From Einstein’s
train all the way to Schrodinger’s cat. The images inherent in
these analogies include more than just figures of speech. Here
we not only think these images but of the analogies of which
our images are only parts. Analogies, most elusive, are always
our larger subjects. These, our ‘pictorializations,” are what stay in
our heads to bias or spur how and what we think next. These
images and the words that accompany them and the models
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resulting from them allow us to sometimes transcend our world
while making our lives more interesting, exciting and livable. It
i1s with this idea I close and hope it will supply some impetus
and imaginative dynamism that should continue to constitute our
science.
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