Internationa

International Mathematics Competition 2008 (IMC 2008)

World Youth Mathematics Intercity Competition

Individual Contest Time limit: 120 minutes
2008/10/28 Section A.
In this section, there are 12 questions, fill in the correct answers in the spaces provided at the end of each question. Each correct answer is worth 5 points.

1. Starting from the southwest corner $(0,0)$ of a 5×5 net, an ant crawls along the lines towards the northeast corner (5,5). It can only go east or north, but cannot get pass the four broken intersections at $(1,1),(1,4),(4,1)$ and $(4,4)$. What is the total number of different paths?

Solution:

In the diagram below, we represent each intersection by a box, containing a number which indicates the number of ways this intersection can be reached. The answer, as indicated by the box at the northeast corner, is 34 .

Answer : \qquad
2. The positive integer $a-2$ is a divisor of $3 a^{2}-2 a+10$. What is the sum of all possible values of a ?

Solution:

Dividing $3 a^{2}-2 a+10$ by $a-2$, we obtain a quotient of $3 a+4$ and a remainder of 18 . Then $a-2$ is a divisor of $3 a^{2}-2 a+10$ if and only if it is a divisor of 18 . Now the divisors of 18 are $1,2,3,6,9$ and 18 . The corresponding values of a are 3, 4, 5, 8, 11 and 20 , and their sum is 51 .

Answer : \qquad
3. Let a, b and c be real numbers such that $a+b+c=11$ and $\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{13}{17}$. What is the value of $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} ?$

Solution:

We have

$$
\begin{aligned}
& \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{11-(b+c)}{b+c}+\frac{11-(c+a)}{c+a}+\frac{11-(a+b)}{a+b} \\
&=11\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3 \\
&=\frac{\mathbf{9 2}}{\mathbf{1 7}} \\
& \text { Answer : } \frac{\mathbf{9 2}}{\mathbf{1 7}} \text { or } 5 \frac{7}{17} \text { or } 5.4117
\end{aligned}
$$

4. Let x be any real number. What is the maximum real value of $\sqrt{2008-x}+\sqrt{x-2000}$?

Solution:

We have $(\sqrt{2008-x}-\sqrt{x-2000})^{2}=8+2 \sqrt{(2008-x)(x-2000)}$. Now $2008-x$ and $x-2000$ are two positive numbers with constant sum 8 . Hence the maximum value of their product occurs when they are equal. In other words, each is 4 and the maximum value of the product is 16 . It follows that the maximum value of $\sqrt{2008-x}+\sqrt{x-2000}$ is $\sqrt{8+2 \sqrt{16}}=4$.

Answer : \qquad
5. How many ten-digit numbers are there in which every digit is either 2 or 3 , and no two 3 s are adjacent?

Solution \#1:

Using the the given condition, we can deduce the number of digits in increasing order as follow: there are $\underline{2}$ different one-digit numbers (they are 2 or 3); there are $\underline{3}$ different two-digit numbers (they are 22,23 or 32); there are $\underline{5}$ different three-digit numbers (they are 222, 223, 232, 322, 323); there are $\underline{8}$ different four-digit numbers (they are 2222, 2223, 2232, 2322, 2323, 3222, 3232, 3222), as we observe there is a pattern 2, $\underline{3}, \underline{5}, \underline{8}, \ldots$, where this just follow the Fibonnaci Pattern, Hence, we have 13 different five-digit numbers; 21 different six-digit numbers; 34 different seven-digit numbers; 55 different eight-digit numbers; 89 different nine-digit numbers and 144 different ten-digit numbers.

Therefore, there are 144 ten-digit numbers satisfy the given condition in the problem.

Solution \#2:

From the the given condition of this ten-digit number, we have the following cases:
(a) Suppose, none of the digit is 3 , then there is only 1 ten-digit numbers satisfy the given condition.
(b) Suppose the digit 3 appear only once, then the remaining nine digits are 2 and we can insert the digit 3 in ten different places. $\quad C_{1}^{10}=10$ different ways.
(c) Suppose the digit 3 appear twice in the ten-digit number, then the remaining eight digits are 2 and we can intepret as insert the digit 3 in nine different places. $C_{2}^{9}=36$ different ways.
(d) Suppose the digit 3 will appear three times in the ten-digit number, then we have $C_{3}^{8}=56$ different ways.
(e) Suppose the digit 3 will appear four times in the ten-digit number, then we have $C_{4}^{7}=35$ different ways.
(f) Suppose the digit 3 will appear five times in the ten-digit number, then we have $C_{5}^{6}=6$ different ways.
(g) When the digit 3 will appear six times or more in the ten-digit number, then there the digit 3 will be in adjacent position.

Therefore, we have a total of $1+10+36+56+35+6=\mathbf{1 4 4}$ different ten-digit numbers in which every digit is either 2 or 3 , and no two 3 s are adjacent.
6. On a circle there are $n(n>3)$ integers with a total sum 94 , such that each number is equal to the absolute value of the difference between the two numbers which follow it in clockwise order. What is the possible value of n ?

Solution:

Among the n integers, there is one with the maximum value m. Since it is the absolute value of the difference between two numbers, one of these two numbers is also m and the other is 0 . Therefore, the n numbers consist of several 3-cycles ($m, m, 0$), so that $n=3 k$ for some integer k. Now $2 k m=94$ or $k m=47$. Since 47 is prime, either $k=1$ and $m=47$ or $k=47$ and $m=1$. The sum of all possible values of n is therefore $3 \times 47=141$.

Answer :

 1417. If the thousands digit of a four-digit perfect square is decreased by 3 and its units digit is increased by 3, the result is another four-digit perfect square. What is the original number?

Solution:

Let $A^{2}=\overline{a b c d}$, then

$$
\left\{\begin{array}{l}
A^{2}=1000 a+100 b+10 c+d \\
B^{2}=1000(a-3)+100 b+10 c+(d+3)
\end{array}\right.
$$

We have $A^{2}-B^{2}=2997$, hence $(A-B)(A+B)=3^{4} \times 37$.
Since $A+B \leq 2 \times 99=198$, hence

$$
\left\{\begin{array}{l}
A-B=3^{3}, 37, \\
A+B=3 \times 37,3^{4},
\end{array}\right.
$$

We get $A=69, B=42, M=4761$, or $A=59, B=22, M=3481$ (not our answer).
8. Each segment of the broken line $A-B-C-D$ is parallel to an edge of the rectangle, and it bisects the area of the rectangle. E is a point on the perimeter of the rectangle such that $A E$ also bisects the area of the rectangle. If $A B=30, B C=24$ and $C D=10$, what is the length of $D E$?

Solution:

Move the two vertical edges of the rectangle inwards by an equal amount, until the right edge contains $C D$. The broken line $A-B-C$ still bisects the area of the reduced rectangle. The area of the right half is $30 \times 24=720$, and so is the area of the left half. The shaded part of the left half has area $10 \times 24=240$, so that the area of the unshaded part of the left half is $720-240=480$. This is a rectangle of height $30+10=40$, so that its width is 12 . Now A is at a distance of 12 from the left edge, and $A E$ bisects the area of the reduced rectangle also. Hence the length of $D E$, which is the distance from E to the right edge, is also 12.

Answer : 12
9. Let $f(x)=a x^{2}-c$, where a and c are real numbers satisfying $-4 \leq f(1) \leq-1$ and $-1 \leq f(2) \leq 2$. What is the maximum value of $f(8) ?$

Solution:

From $f(1)=a-c$ and $f(2)=4 a-c$, we have $a=\frac{f(2)-f(1)}{3}$ and $c=\frac{f(2)-4 f(1)}{3}$. It follows that we have $f(8)=64 a-c=21 f(2)-20 f(1)$.
The maximum value of $f(8)$ is $21 \times(2)-20 \times(-4)=122$
Answer :
122
10. Two vertical mirrors facing each other form a 30° angle. A horizontal light beam from source S parallel to the mirror $W V$ strikes the mirror $U V$ at A, reflects to strike the mirror $W V$ at B, and reflects to strike the mirror $U V$ at C. After that, it goes back to S. If $S A=A V=1$, what is the total distance covered by the light beam?

Solution:

Let the mirrors be $U V$ and $V W$, and let the light beam be parallel to $V W$ initially. Then it strikes $U V$ at some point A, reflects off to strike $V W$ at B, and off to strike $U V$ again at C, and so on. At A, the angle of incidence $\angle U A S=\angle U V W=30^{\circ}$.

Hence the angle of reflection $\angle B A V=30^{\circ}$. At B, the angle of incidence $\angle A B W=\angle$ $B A V+\angle A V B=60^{\circ}$. Hence the angle of reflection $\angle C B V=60^{\circ}$. At C, the angle of incidence $\angle B C V=180^{\circ}-\angle U V W-\angle C B V=90^{\circ}$. It follows that the light beam will retrace its path back through B, A to S. Since $A V=1, \quad A C=\frac{1}{2}$. Hence $\quad A B=\frac{\sqrt{3}}{3}$ and $B C=\frac{\sqrt{3}}{6}$. The total length of the path is $2(S A+A B+B C)=2 \sqrt{3} \sqrt{3}$.

Answer :
or 3.73205
11. Let n be a positive integer such that $n^{2}-n+11$ is the product of four prime numbers, some of which may be the same. What is the minimum value of n ?

Solution:

The chart below shows that $n^{2}-n+11$ is not divisible by any of $2,3,5$ and 7 . The smallest number with four prime divisors which are divisible by these numbers is 11^{4}. From $n^{2}-n+11=11^{4}$, we have $n(n-1)=2 \times 5 \times 7 \times 11 \times 19$.

This does yield any integral value for n. The next smallest number is 13×11^{3}.
From $n^{2}-n+11=13 \times 11^{3}$, we have $n(n-1)=2 \times 2 \times 3 \times 11 \times 131$. This yields the minimal integral value $n=\mathbf{1 3 2}$.

	$\bmod 2$			$\bmod 3$													
n	0	1	0	1	2	0	1	2	3	4	0	1	2	3	4	5	6
n^{2}	0	1	0	1	1	0	1	4	4	1	0	1	4	2	2	4	1
$n^{2}-n+11$	1	1	2	2	1	1	1	3	2	3	4	4	6	3	2	3	6

Answer : \qquad
12. $A B C$ is an equilateral triangle, and $A B D E$ is a rectangle with $D E$ passing through C. If the circle touching all three sides of $A B C$ has radius 1 , what is the diameter of the circle passing through A, B, D and E ?

Solution:

In an equilateral triangle, the incentre coincides with the centroid. Hence its altitude is three times its inradius. It follows that $A E=3$. Since $A C=2 C E$, $C E=\sqrt{3}$ and $D E=2 \sqrt{3}$. Finally, $A D^{2}=A E^{2}+D E^{2}=21$, so that the diameter of the circle passing through A, B, D and E is $\sqrt{21}$.

$$
\text { Answer : }{ }^{\sqrt{21}} \text { or } 4.5825
$$

Section B.

Answer the following 3 questions, and show your detailed solution in the space provided after each question. Each question is worth 20 points.

1. In the expression $[\sqrt{2008+\sqrt{2008+\sqrt{2008+\ldots+\sqrt{2008}}}}]$, the number 2008 appears 2008 times, and $[x]$ stands for the greatest integer not exceeding x. What is the value of this expression?

Solution:

Let $a_{1}=\sqrt{2008}$ and for any positive integer n, let $a_{n+1}=\sqrt{2008+a_{n}}$. Then our expression is a_{2008}. We have $44^{2}=1936<2008<2025=45^{2}$, so that $44<a_{1}<45$. (5pt) We claim that $45<a_{n}<46$ for all $n \geq 2$. Since
$45^{2}=2025<2052=2008+44<2008+a_{1}<2008+45=2053 \leq 2116=46^{2}$, the claim holds for $n=2$. (10pt)
Suppose its holds for some $n \geq 2$. Then $45<\sqrt{2053}<a_{n+1}<\sqrt{2054}<46$. This justifies the claim. In particular, $\left[a_{2008}\right]=45$.(5pt)
2. In the triangle $A B C, \angle A B C=60^{\circ} . O$ is its circumcentre and H is its orthocentre. D is a point on $B C$ such that $B D=B H$. E is a point on $A B$ such that $B E=B O$. If $B O=1$, what is the area of the triangle $B D E$? (The orthocenter is the intersection of the lines from each vertex of the triangle making a perpendicular with its opposite sides. The circumcenter is the center of the circle passing through each vertex of the triangle.)

Solution:

Let $A F$ be a diameter of the circumcircle.
Then $\angle A F C=\angle A B C=60^{\circ}$. Since $O F=O C$, COF is an equilateral triangle. (5pt) Moreover, $C F$ is perpendicular to $A C$, and therefore parallel to $B H$. Similarly, BF is parallel to $C H$, so that $B F C H$ is a parallelogram. (5pt) It follows that $B D=B H=C F=C O=B O=B E$, so that $B E D$ is also an equilateral triangle. (5pt) Since $B O=1$, its area is $\frac{\sqrt{3}}{4}$ (or $\mathbf{0 . 4 3 3}$).(5pt)

3. Let t be a positive integer such that $2^{t}=a^{b} \pm 1$ for some integers a and b, each greater than 1 . What are all the possible values of t ?

Solution:

Clearly, a is odd. Suppose b is also odd. (5pt) Then $2^{t}=(a \pm 1)\left(a^{b-1} \mp a^{b-2}+a^{b-3} \mp \cdots \mp a+1\right)$. The second factor is an odd number, so that it must be 1 . However, this means that $a^{b} \pm 1=a \pm 1$, but this contradicts $b \geq 2$. (5pt) Hence $b=2 m$ for some positive integer m. Then $a^{2 m} \equiv 1(\bmod 4)$. If $2^{t}=a^{b}+1$, then $2^{t}=a^{2 m}+1 \equiv 2(\bmod 4)$. Hence $t=1$, but this contradicts $a \geq 2$.(5pt) It follows that we must have $2^{t}=a^{b}-1=\left(a^{m}+1\right)\left(a^{m}-1\right)$. The only two consecutive even numbers both of which are powers of 2 are 2 and 4 . Hence $a=3, b=2$ and the only possible value for t is 3 . (5pt)

