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CHAPTER 1  COMPUTER SYSTEM OVERVIEW 
 
1.1 In hardware: device sends signal (voltage) on IRQ line. The signal causes a bit to be 

flipped in the interrupt register. At the end of an instruction cycle, the interrupt register is 
checked (in priority order) and, if a bit is on, the hardware places the value currently in the 
PC (typically) on the system stack and goes to the interrupt vector, at the location matched 
to the interrupt register, to get the address of the ISR. This address is placed in the PC 
register. 

 In software: the ISR begins to execute. It will save values in registers that it will need, 
perhaps on the stack, perhaps in the previous process's PCB. It may disable interrupts long 
enough to save these values. It may have to identify one of several devices using that IRQ 
line (if devices share a signal). It will handle the interrupt. It may restore the interrupted 
process's register values (note that sometimes processes are terminated, etc.). 

 
1.2 a. Addresses Contents 
  0x0000B128 0x0200EC00 
  0x0000B12C 0x0300EC04 
  0x0000B130 0x0100EC08 
  (1st byte: opcode (e.g., 0x02), remaining 3 bytes are address of data) 
  …………………………… 
  0x0000EC00 0x00000016 ; (a=22=0x16) 
  0x0000EC04 0x0000009E ; (b=158=0x9E) 
  0x0000EC08 0x00000000 ; (c=0=0x00, or it can be anything) 
  b. Instruction Contents 
  PC → MAR 0x0000B128 
  M → MBR 0x0200EC00 
  MBR → IR 0x0200EC00 
  IR → MAR 0x0000EC00 
  M → MBR 0x00000016 
  MBR → AC 0x00000016 
 
  PC → MAR 0x0000B12C 
  M → MBR 0x0300EC04 
  MBR → IR 0x0300EC04 
  IR → MAR 0x0000EC04 
  M → MBR 0x0000009E 
  MBR + AC → AC 0x00000B4 
 
  PC → MAR 0x0000B130 
  M → MBR 0x0100EC08 
  MBR → IR 0x0100EC08 
  IR → MAR 0x0000EC08 
  AC → MBR 0x000000B4 
  MBR → M 0x000000B4 
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1.3 EAT = .9 (10) + .1 [ .8 (10 + 100) + .2 (10 + 100 + 10000) ] = 220ns 
 OR 
 EAT = 10 + .1 (100) + .02 (10000) = 220ns 
 
1.4 a. Since the targeted memory module (MM) becomes available for another 

transaction 600 ns after the initiation of each store operation, and there are 8 
MMs, it is possible to initiate a store operation every 100 ns. Thus, the 
maximum number of stores that can be initiated in one second would be: 

 
109/102 = 107 words per second 

 
 Strictly speaking, the last five stores that are initiated are not completed until 

sometime after the end of that second, so the maximum transfer rate is really 
107 – 5 words per second. 

 b. From the argument in part (a), it is clear that the maximum write rate will be 
essentially 107 words per second as long as a MM is free in time to avoid 
delaying the initiation of the next write. For clarity, let the module cycle time 
include the bus busy time as well as the internal processing time the MM 
needs. Thus in part (a), the module cycle time was 600 ns. Now, so long as the 
module cycle time is 800 ns or less, we can still achieve 107 words per second; 
after that, the maximum write rate will slowly drop off toward zero. 
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CHAPTER 2  OPERATING SYSTEM OVERVIEW 
2.1 a. I/O-bound processes use little processor time; thus, the algorithm will favor 

I/O-bound processes. 
 b. if CPU-bound process is denied access to the processor 
  ==> the CPU-bound process won't use the processor in the recent past. 
  ==> the CPU-bound process won't be permanently denied access. 
 
2.2 a. The time required to execute a batch is M + (N × T), and the cost of using the 

processor for this amount of time and letting N users wait meanwhile is (M + 
(N × T)) × (S + (N × W)). The total cost of service time and waiting time per 
customer is 

C = (M + (N × T)) × (S + (N × W))/N 
  The result follows by setting dC/dN = 0 
 b. $0.60/hour. 
 
2.3 The countermeasure taken was to cancel any job request that had been waiting for 

more than one  hour without being honored. 
 
2.4 The problem was solved by postponing the execution of a job until all its tapes 

were mounted. 
 
2.5 An effective solution is to keep a single copy of the most frequently used 

procedures for file manipulation, program input and editing permanently (or 
semi-permanently) in the internal store and thus enable user programs to call them 
directly. Otherwise, the system will spend a considerable amount of time multiple 
copies of utility programs for different users. 
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CHAPTER 3  PROCESS DESCRIPTION AND 
CONTROL 

 
3.1 RUN to READY can be caused by a time-quantum expiration 
 READY to NONRESIDENT occurs if memory is overcommitted, and a process is 

temporarily swapped out of memory 
 READY to RUN occurs only if a process is allocated the CPU by the dispatcher 
 RUN to BLOCKED can occur if a process issues an I/O or other kernel request. 
 BLOCKED to READY occurs if the awaited event completes (perhaps I/O 

completion) 
 BLOCKED to NONRESIDENT - same as READY to NONRESIDENT. 
 
3.2 0 
 <child pid> 
 or 
 <child pid> 
 0 
 
3.3 At time 22: 
  P1: blocked for I/O 
  P3: blocked for I/O 
  P5: ready/running 
  P7: blocked for I/O 
  P8: ready/running 
 At time 37 
  P1: ready/running 
  P3: ready/running 
  P5: blocked suspend 
  P7: blocked for I/O 
 P8: ready/running 
 At time 47 
  P1: ready/running 
  P3: ready/running 
  P5: ready suspend 
  P7: blocked for I/O 
  P8: exit 
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3.4 ==> exponential growth of processes occurs 
 
 - only a finite number of process ID's on systems 
 - only a finite amount of memory on systems 
 however, since the size of created processes is small and since the OS has lots of 

swap space available 
 ==> above code will most likely exhaust process table (run out of IDs) 

instead of run out of memory 
 
 - most systems, OS will run out of process IDs and then error "can't create a 

process" 
 user/root can't kill the malicious process (kill needs to create a new process) 
 user/root can't ps the processes in the system (ps needs to create a new 

process) 
   ==> only choice is to re-boot the system 
 
 - some systems, OS will actually crash 
 - some systems, user has a pre-specified limit on the number of processes he/she 

can create (a long-term scheduler) 
==> user process won't be allowed to take the system down 

 
3.5 We need to keep the process switch time as short as possible, so keeping the part 

of the OS that deals with context switches always in a fixed location in memory 
(rather than bringing it in from disk every time or even on occasions), means that 
the OS instructions will execute faster and the process switch time will be 
predictable. 
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CHAPTER 5  CONCURRENCY: MUTUAL 
EXCLUSION AND SYNCHRONIZATION 

5.1 Dispatcher 1 
Get ptr to next process to execute 
Update pointer 
Execute process 

Dispatcher 2 
Get ptr to next process to execute 
Update pointer 
Execute process 

 
 Execute the above sequentially - no problem with consistency 
 Now interleave the first instruction on both dispatchers. 
 The processors will execute the same process and one process will be skipped. 
 
5.2 Mutual exclusion: If all three processes try to access the resource concurrently, two 

processes will enter Spago's due to AND criteria (i.e., sign can only be ONE value 
at a time). A social disaster! 

 
5.3 1. Provide mutual exclusion? 
  There are two cases to consider: 
  a. A process is inside the critical section and another tried to enter: Without loss 

of generality, assume Penelope is inside the critical section  and Nicole tries to 
enter. Before entering the critical section  Penelope sets her own flag to 1. When 
Nicole tries to enter the critical section  she will see that Lope is up and will get 
caught in the while loop. Nicole will continue in the while loop until Penelope 
lowers her flag, which happens only at the end of the critical section  

  b. Both are trying to enter simultaneously: In this situation, if both reach their 
respective while loop at the top, then the SIGN will ensure that only one of 
them passes through. The SIGN is alternating between the two of them, and is 
only modified at the exit of a critical section. 

 2. No Deadlock? 
  Suppose both are trying to enter simultaneously. In this case if the first is 

trapped into the while loop, then the SIGN will make one of the two women 
lower her flag and go into a loop waiting for the SIGN to change (the inner 
while loop). The other woman whose turn is set by the SIGN will be able to get 
into Spago's. 

 3. No Starvation? 
  Assume one is blocked inside the inner while loop, while the other is in the 

critical section  In such a case, if the one inside the critical section tries to re-
enter, she will be blocked because on exit of the critical section  she sets the 
SIGN to point to the other. Therefore, the one that just got out of the critical 
section  will be forced to wait for her own turn. So, bounded waiting is taken 
care of. 

 4. Progress? 
  Suppose one of them is trying to enter with no competition: In such a case, the 

flag of the other is down, and thus she can enter. 
 In summary, ALL requirements are SATISFIED 
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5.4 The operation does not always cause a wait; when semaphore value is > 0. NO 

actual waiting occurs 
 
5.5 #include <pthread.h> 
 pthread_mutex_t countlock = PTHREAD_MUTEX_INITIALIZER; 
 
 static int count = 0; 
 int increment(void) 
 { 
  pthread_mutex_lock(&countlock); 
  count++; 
  if (count > 5) { 
   printf(°∞counter %d reached value > 5°±, count); 
   pthread_mutex_unlock(&countlock); 
   return 0; 
  } 
  pthread_mutex_unlock(&countlock); 
  return 1; 
 } 
 
 int decrement(void) 
 { 
  pthread_mutex_lock(&countlock); 
  while (count >5) { 
  printf(°∞counter %d is > 5:, count); 
  count --; 
  } 
  if (count ==0) { 
   pthread_mutex_unlock(&countlock); 
   return 0; 
  } 
  else { 
   pthread_mutex_unlock(&countlock); 
   return 1; 
  } 
 } 
 
5.6 Identify processes:  
 i. The generic teller process, parameterized by type (quick or normal service) and 

number 
 ii. The generic customer service, parameterized by type (quick or normal service) 

and number 
 
 Identify variables:  
  quick: teller or customer is quick service 
  number: number of the teller or customer 
  tn: teller number to serve this customer 
  t[i]: the ith teller 
  c[j]: the jth customer 
  Qserve: the current quick service customer to be served 
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  Nserve: the current normal service customer to be served 
  mutexQ: semaphore for mutual exclusion on queue computations 
 
 The first two are part of each teller record, the first three are part of each customer 

record. The others are global.  
 
 Identify events We could approach these from either the teller point of view, or 

the customer point of view. The latter is preferable, as each customer transaction is 
unique, while teller transactions are not. Hence we will not have to worry about 
synchronizing with the wrong event.  

 —A customer arrives in the bank and joins a queue 
 —A customer is called to the teller 
 —A customer arrives at a teller window 
 —A customer completes a transaction and leaves the bank 
 We create a semaphore for each of these (except the first: that is assumed to be 

outside our control), as part of each customer record. 
 
 Write customer process We write this first, since the customer is the driving 

process for the tellers. The customer process is characterized by a) the type of 
customer (normal or quick), and b) the number of the customer  

 
 class customer(Thread): 
  def init(self,quick,number): 
   self.quick=quick; self.number=number 
   self.tn = 0 
   self.call=semaphore() 
   self.customer_arrive=semaphore() 
   self.transaction_complete=semaphore() 
  def isQuick(self): return self.quick 
  def run(self): 
   self.call.wait() # wait for our turn 
   goto_teller(self.tn) # teller number tn is 

our teller 
   elf.customer_arrive.signal() # tell teller we're here 
   do_transaction() 
   self.transaction_complete.signal() # tell teller we're  
     # not here 

   leave_bank 
  
 Write teller process The teller process is characterized by a) the type of teller 

(normal or quick), and b) the number of the teller  
 
 class teller(Thread): 
  def run(self,quick,number): 
   global mutexQ,c,Qserve,Nserve 
    while (1): 
     mutexQ.wait() 
     if quick: 
      while Qserve < j and not c[Qserve].isQuick: 
       Qserve=Qserve+1 
      if not c[Qserve].isQuick: 
       Nserve=Nserve+1; Serving = Nserve 
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      else: 
       Serving = Qserve 
     else: 
      while Nserve < j and c[Nserve].isQuick:  
       Nserve=Nserve+1 
      if c[Nserve].isQuick: 
       Qserve=Qserve+1; Serving = Qserve 
      else: 
       Serving = Nserve 
     mutexQ.signal() 
     # "Now serving customer number 'Serving'" 
     c[Serving].tn = number # flag our number 
     c[Serving].call.signal() # tell the customer 
     c[Serving].customer_arrive.wait() # wait for her 
     c[Serving].transaction_complete.wait() # and her transaction 
 
 The if quick: ... statement does all the queue calculations. We scan forward on the 

list of customers, looking for customers of our type. If we find one, that is the next 
customer to be served. If there are none, then the next customer in the opposite 
type of queue is to be served. Since this is updating shared variables, it must be a 
mutual exclusion zone.  

 
 write bank process (This is really the main program.)  
 
 Qserve = 0 # customer number for quick service Q 
 Nserve = 0 # customer number for normal service Q 
  
 t = n*[0] # list of tellers 
 for i in range(1,n): # create and start all tellers 
  if i < k:                 
   t[i] = teller(1,i) # create quick service teller 
  else: 
   t[i] = teller(0,i) # create normal service teller 
  t[j].start() # start teller 
  
 j = 0  # customer number 
 c = [] # customer list 
 while 1: # create and start customers forever 
  j = j+1 
  x = random() 
  if x < QuickRatio: # QuickRatio is fraction of customers  
    # wanting quick service 
   c.append(customer(1,j)) # create a quick service customer 
     else: 
   c.append(customer(0,j)) # create a normal service customer 
  c[j].start() # start customer 
    # now customer[j] is implicitly on one  
    # of the service queues 
  wait_random_interval() # for next customer to arrive 
 
 Add critical sections There is only one: the queue computation to see who is next 

to be served. Identified above by the mutexQ variable. 
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5.7 The code for the one-writer many readers is fine if we assume that the readers 

have always priority. The problem is that the readers can starve the writer(s) since 
they may never all leave the critical region, i.e., there is always at least one reader 
in the critical region, hence the ‘wrt’ semaphore may never be signaled to writers 
and the writer process does not get access to ‘wrt’ semaphore and writes into the 
critical region. 

 
5.8 a. For "x is 10", the interleaving producing the required behavior is easy to find 

since it requires only an interleaving at the source language statement level. 
The essential fact here is that the test for the value of x is interleaved with the 
increment of x by the other process. Thus, x was not equal to 10 when the test 
was performed, but was equal to 10 by the time the value of x was read from 
memory for printing. 

 
                                       M(x) 
        P1: x = x - 1;                  9 
        P1: x = x + 1;                  10 
        P2: x = x - 1;                  9 
        P1: if(x != 10)                 9 
        P2: x = x + 1;                  10 
        P1: printf("x is %d", x);       10 
 
  "x is 10" is printed. 
 
 b. For "x is 8" we need to be more inventive, since we need to use interleavings of 

the machine instructions to find a way for the value of x to be established as 9 
so it can then be evaluated as 8 in a later cycle. Notice how the first two blocks 
of statements correspond to C source lines, but how later blocks of machine 
language statements interleave portions of a source language statement. 

 
        Instruction                     M(x)    P1-R0   P2-R0 
        P1: LD   R0, x                  10      10      -- 
        P1: DECR R0                     10      9       -- 
        P1: STO  R0, x                  9       9       -- 
` 
        P2: LD   R0, x                  9       9       9 
        P2: DECR R0                     9       9       8 
        P2: STO  R0, x                  8       9       8 
 
        P1: LD   R0, x                  8       8       8 
        P1: INCR R0                     8       9       -- 
 
        P2: LD   R0, x                  8       9       8 
        P2: INCR R0                     8       9       9 
        P2: STO  R0, x                  9       9       9 
        P2: if(x != 10) printf("x is %d", x); 
        P2: "x is 9" is printed. 
 
        P1: STO  R0, x                  9       9       9 
        P1: if(x != 10) printf("x is %d", x); 
        P1: "x is 9" is printed. 
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        P1: LD   R0, x                  9       9       9 
        P1: DECR R0                     9       8       -- 
        P1: STO  R0, x                  8       8       -- 
 
        P2: LD   R0, x                  8       8       8 
        P2: DECR R0                     8       8       7 
        P2: STO  R0, x                  7       8       7 
 
        P1: LD   R0, x                  7       7       7 
        P1: INCR R0                     8       8       7 
        P1: STO  R0, x                  8       8       7 
        P1: if(x != 10) printf("x is %d", x); 
        P1: "x is 8" is printed. 
 
5.9 Here the solution is simple: enclose the operations on the shared variable within 

semaphore operations, which will ensure that only one process will operate on x at 
a time. The only trick here is to realize that we have to enclose the if statement as 
well since if we do not, erroneous printing can still happen if one process is in the 
middle of the critical section while another is testing x. 

 
        s: semaphore; 
 
        parbegin 
        P1: { 
                shared int x; 
                x = 10; 
                for (; ;) { 
                        semWait(s); 
                        x = x - 1; 
                        x = x + 1; 
                        if (x != 10) 
                          printf("x is %d", x); 
                        semSignal(s); 
                } 
        } 
 
        P2: { 
                shared int x; 
                x = 10; 
                for (; ;) { 
                        semWait(s); 
                        x = x - 1; 
                        x = x + 1; 
                        if(x != 10) 
                          printf("x is %d", x); 
                        semSignal(s); 
                } 
        } 
        parend 
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5.10 Here the essential point is that without an atomic operation to test and set the 

semaphore variable, the only way to ensure that the semaphore manipulations will 
not be interrupted and thus potentially corrupted, is to create a system call which 
blocks all interrupts. That way, after the spl(highest) we know that nothing will 
interrupt execution until the priority is set back to the previous value. The sleep 
and wakeup calls are used to avoid busy waiting in the kernel. A busy waiting 
solution was declared acceptable since the point of the question was to use spl as 
the way to ensure atomicity. However, if used, it will not actually work, because 
the machine will be trapped in an uninterruptible loop waiting for the semaphore 
to be released. Note that key(s) is meant to symbolize creating a unique integer to 
represent the semaphore in question. 

 
semWait(s, val) 
 
  int old; 
 
  while (1) { 
    old = spl(highest); 
    if ( s < val ) { 
      spl(old); 
      /* we could busy wait here, but would block the kernel */ 
      sleep(key(s)); 
      continue; 
    } else { 
      s = s - val; 
      spl(old); 
    } 
  } 
 
 
semSignal(s, val) 
 
  int old; 
 
  old = spl(highest); 
  s = s + val; 
  spl(old); 
  wakeup(key(s)); 
 
5.11 To move the statement inside the critical section, but as late as possible, the 

statement would occur immediately after n--. But at this  point, n = 0, therefore, 
consumer will not wait on semaphore delay. This means that consumer will not 
issue semSignalB(s). Therefore, n remains at 1. The producer therefore cannot 
issues a semSignalB(delay) and can get hung up at its statement 
semWaitB(s). Thus, both processes are waiting and deadlocked. 
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CHAPTER 6  CONCURRENCY: DEADLOCK AND 
STARVATION 

6.1 P1 can complete, and release, allowing P0 to complete. But neither P2 or P3 or P4 
can complete. System is not safe. 

 
6.2 Available:   A = 1; B = 2 
 User 1 stills needs (8 2) 
 User 2 stills needs (5 2) 
 User 3 stills needs (2 2) 
 User 4 stills needs (2 3) 
 
 The algorithm would not have allowed these allocations, since none of the 

processes are guaranteed to be able to complete. 
 
6.3 a. 15 – (2+0+4+1+1+1) = 6 
  6 – (0+1+1+0+1+0) = 3 
  9 – (2+1+0+0+0+1) = 5 
  10 – (1+1+2+1+0+1) = 4 
 b. Need Matrix = Max Matrix – Allocation Matrix 
 
 

 need 
process A B C D 

P0 7 5 3 4 
P1 2 1 2 2 
P2 3 4 4 2 
P3 2 3 3 1 
P4 4 1 2 1 
P5 3 4 3 3 

 
 c. The following matrix shows the order in which the processes and shows what 

is available once the give process finishes) 
 

 available 
process A B C D 

P5 7 3 6 5 
P4 8 4 6 5 
P3 9 4 6 6 
P2 13 5 6 8 
P1 13 6 7 9 
P1 15 6 9 10 
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 d. ANSWER is NO for the following reasons: IF this request were granted, then 

the new allocation matrix would be: 
 

 allocation 
process A B C D 

P0 2 0 2 1 
P1 0 1 1 1 
P2 4 1 0 2 
P3 1 0 0 1 
P4 1 1 0 0 
P5 4 2 4 4 

  
  Then the new need matrix would be 
 

 allocation 
process A B C D 

P0 7 5 3 4 
P1 2 1 2 2 
P2 3 4 4 2 
P3 2 3 3 1 
P4 4 1 2 1 
P5 0 2 0 0 

  
  And Available is then: 
 

Available 
A B C D 
3 1 2 1 

 
  Which means I could NOT satisfy ANY process’ need. 
 
6.4 a. Concurrency ratings  In order from most-concurrent to least, here is a rough 

partial order on the deadlock-handling algorithms: 
  1. detect deadlock and kill thread, releasing its resources;  detect deadlock 

and roll back thread's actions ; restart thread and release all resources if 
thread needs to wait.  None of these algorithms limit concurrency before 
deadlock occurs, since  they rely on runtime checks rather than static 
restrictions. Their  effects after deadlock is detected are harder to characterize: 
they  still allow lots of concurrency (in some cases they enhance it), but the  
computation may no longer be sensible or efficient. The third algorithm  is the 
strangest, since so much of its concurrency will be useless  repetition; because 
threads compete for execution time, this algorithm  also prevents useful 
computation from advancing. Hence it is listed  twice in this ordering, at both 
extremes.  

  2. banker's algorithm; resource ordering. These algorithms cause more 
unnecessary waiting than the previous two by  restricting the range of 
allowable computations. The banker's algorithm  prevents unsafe allocations (a 
proper superset of deadlock-producing  allocations) and resource ordering 
restricts allocation sequences so  that threads have fewer options as to whether 
they must wait or not.  
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  3. reserve all resources in advance.  This algorithm allows less concurrency 

than the previous two, but is  less pathological than the worst one. By reserving 
all resources in  advance, threads have to wait longer and are more likely to 
block other  threads while they work, so the system-wide execution is in effect 
more  linear.  

  4. restart thread and release all resources if thread needs to wait.  As noted 
above, this algorithm has the dubious distinction of allowing  both the most 
and the least amount of concurrency, depending on the  definition of 
concurrency. 

 b. Efficiency ratings.   In order from most efficient to least, here is a rough partial 
order on  the deadlock-handling algorithms: 

  1. reserve all resources in advance;  resource ordering.  These algorithms are 
most efficient because they involve no runtime  overhead. Notice that this is a 
result of the same static restrictions  that made these rank poorly in 
concurrency. 

  2. banker's algorithm; detect deadlock and kill thread, releasing its resources.   
These algorithms involve runtime checks on allocations which are roughly  
equivalent; the banker's algorithm performs a search to verify safety  which is 
O(n m) in the number of threads and allocations, and deadlock  detection 
performs a cycle-detection search which is O(n) in the length  of resource-
dependency chains. Resource-dependency chains are bounded by  the number 
of threads, the number of resources, and the number of  allocations. 

  3. detect deadlock and roll back thread's actions.   This algorithm performs the 
same runtime check discussed previously but  also entails a logging cost which 
is O(n) in the total number of memory  writes performed. 

  4. restart thread and release all resources if thread needs to wait.   This 
algorithm is grossly inefficient for two reasons. First, because  threads run the 
risk of restarting, they have a low probability of  completing. Second, they are 
competing with other restarting threads for  finite execution time, so the entire 
system advances towards completion  slowly if at all. 

   This ordering does not change when deadlock is more likely. The  
algorithms in the first group incur no additional runtime penalty  because they 
statically disallow deadlock-producing execution. The  second group incurs a 
minimal, bounded penalty when deadlock occurs. The  algorithm in the third 
tier incurs the unrolling cost, which is O(n) in  the number of memory writes 
performed between checkpoints. The status of  the final algorithm is 
questionable because the algorithm does not allow  deadlock to occur; it might 
be the case that unrolling becomes more  expensive, but the behavior of this 
restart algorithm is so variable  that accurate comparative analysis is nearly 
impossible. 

 
6.5 a. Yes. If foo( ) executes semWait(S) and then bar( ) executes semWait(R) both 

processes will then block when each executes its next instruction. Since each 
will then be waiting for a semSignal( ) call from the other, neither will ever 
resume execution. 

 b. No. If either process blocks on a semWait( ) call then either the other process 
will also block as described in (a) or the other process is executing in its critical 
section. In the latter case, when the running process leaves its critical section, it 
will execute a semSignal( ) call, which will awaken the blocked process. 
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CHAPTER 7  MEMORY MANAGEMENT 
7.1 MVT uses the remainder of the hole that is left during allocation, otherwise Worst-fit 

makes no sense whatsoever. The concept of Worst-fit is that allocation leaves a large 
enough hole for another process, while best fit leaves a small fragment. Thus, using worst-
fit, 20,30, 10 and 100 all go into the 200k partition (i.e., what is left each time) and there is 
no room for 60k. Using first fit, 20 and 30 go into the 50k partition, 10k into the next 30k, 
100 into 200k and 60 into the 100k hole that is left. 

 
7.2 a.  1219 + 430 b.  illegal c.  90 + 50 d.  2327 + 400 e.  illegal 
 
7.3 a. 100K 
  500K holds 417K 
  200K holds 112K 
  300K holds 212K 
  600K 
  350K waits for 500K partition to become free 
 b. 100K 
  500K holds 417K 
  200K holds 112K 
  300K holds 212K 
  600K holds 350K 
 c. internal after a.: (500K – 417K) + (200K – 112K) + (300K – 212K) = 259K 
 d. external after b.: zero, since no request is pending 
 
7.4 a. 8 × 1024 = 8192 = 213 
  13 bits needed for the logical address 
 b. 32 × 1024 = 32,768 = 215 
  15 bits needed for the physical address 
 
7.5  

Strategy Base Address Length 
First fit 0 15 
Best fit 30 15 

Worst fit 64 15 
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7.6 

P3   3K

(a) (b) (c) (d)

P4 cannot
be allocated

P2   4K

not allocated  4K

not allocated  5K

P3   6K

P3   3K

P2   4K

not allocated  1K

not allocated  2K
P3  4K (3K used)

P4  8K (6K used)

P2   4K

P3   4K (3K used)

P2   4K

P4 (the other part)
2K

P4 (one part)
2K

not allocated  2K

 
 
7.7 12 bits 
 
7.8 64 bits 
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CHAPTER 8  VIRTUAL MEMORY 
8.1 (d) The system is obviously thrashing. You do not want to increase the number of 

processes competing for page frames. Installing a faster processor will not help; processor 
is underutilized as is. There is no indication that the current paging disk is inadequate. (A 
faster paging disk might be helpful.) 

 
8.2 (e) Processes being unable to establish their working set of pages. A local page replacement 

algorithm may increase the probability of one process thrashing, but cannot be considered 
the cause of it. If a FIFO page replacement algorithm is ineffective, it will increase the 
probability of page thrashing, but (e) is the best answer. 

 
8.3 a. 200 nsec + 200 nsec = 400 nsec 
 b. 75 (10 nsec + 200 nsec) + .25 (10 nsec + 200 nsec + 200 nsec) = about 250 nsec 
  TLB  page table  page 
 c. Add 0.7 (10 nsec + 200 nsec) + 0.2 (200 nsec + 200 nsec) 
  + 0.1( 10 nsec+ 200 nsec + 100 msec +10 nsec + 200 nsec + 200 nsec) 
  TLB memory disk TLB memory disk 
 
8.4 a. logical address space = 32 bits 
  page number = 20 bits; offset = 12 bits 
 b. In TLB, need page number (20 bits), frame number (12) 
  ==> 32 bits for each entry 
  ==> 4 bytes for each entry 
  TLB = 26 bytes or 64 bytes 
  ==> 16 entries 
 c. 220 page table entries are needed for the 220 pages 
 d. PROBLEM: page table is very large ... it won't fit on one page and the OS won't 

want to keep the whole table in memory at all times 
  SOLUTION: page the page table 
  ==> leads to page faults for page table pages 
  ==> more I/O swapping 
 
8.5 a. EAT = 0.8 (TLB + MEM) + 0.2 (TLB + MEM + MEM) 
  EAT = 0.8 (20 + 75) + 0.2 (20 + 75 + 75) 
  EAT = 76 + 34 = 110 ns 
 b. EAT = 0.8 (TLB + MEM) + 0.2 (0.9(TLB + MEM + MEM) + 0.1 (TLB + MEM + 

0.5 (DISK) + 0.5 (2 DISK) + MEM)) 
  EAT = 0.8 (20 + 75) + 0.2 (0.9 (20 + 75 + 75) + 0.1 (20 + 75 + 0.5 (500000) 
   + 0.5 (1000000) + 75)) 
  EAT = 76 + 0.2 (153 + .1 (750170)) = 76 + 15034 = 15110 ns 
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8.6 a. OPT replacement (three frames are allocated to the process) - 7 page faults 
 
* * *   *    *  *  *     
0 1 7 0 1 2 0 1 2 3 2 7 1 0 3 1 0 3 
0 0 0 0 0 0 0 0 0 3 2 3 3 3 3 3 3 3 
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  7 7 7 2 2 2 2 2 2 7 7 0 0 0 0 0 

 
 b. FIFO replacement (three frames are allocated to the process) - 12 page faults 
 
* * *   * * *  * * * * * *    
0 1 7 0 1 2 0 1 2 3 2 7 1 0 3 1 0 3 
0 0 0 0 0 1 7 2 2 0 1 3 2 7 1 1 1 1 
 1 1 1 1 7 2 0 0 1 3 2 7 1 0 0 0 0 
  7 7 7 2 0 1 1 3 2 7 1 0 3 3 3 3 

 
 c. Pure LRU replacement (three frames are allocated to the process) - 9 page faults 
 
* * *   *    *  * * * *    
0 1 7 0 1 2 0 1 2 3 2 7 1 0 3 1 0 3 
0 0 0 0 0 0 0 0 0 3 3 3 1 1 1 1 1 1 
 1 1 1 1 1 1 1 1 1 1 7 7 7 3 3 3 3 
  7 7 7 2 2 2 2 2 2 2 2 0 0 0 0 0 

 
 d. Clock Policy (three frames are allocated to the process)  - 12 page faults 
 

* * *   * * *  * * * * * * 
0 1 7 0 1 2 0 1 2 3 2 7 1 0 3 

>0/1 0/1 0/1 0/1 0/1 2/1 2/1 >2/1 2/1 3/1 3/1 >3/1 1/1 1/1 >1/1 
 1/1 1/1 1/1 1/1 >1/0 0/1 0/1 0/1 >0/0 2/1 2/1 >2/0 0/1 0/1 
  7/1 7/1 7/1 7/0 >7/0 1/1 1/1 1/0 >1/0 7/1 7/0 >7/0 3/1 

 
8.7 Assume that whenever a fault occurs, there are other processes to run, so that the 

processor never needs to wait for paging disk traffic. In that case, in each second of 
time, we will have N instructions executed, and P page faults, so that 

 
  N × 1 x 10–9 + P × 20 × 10–6 = 1  
 
 But we want the number of instructions per page fault, so we need to compute 

N/P: 
 
  N/P = (1/P - 20 × 10–6) × 109  
 
 What is P? We know that each page fault on average causes 1 disk read and 0.5 

disk writes, so the time taken by the disk to handle each "average" fault will be 300 
+ 0.5 x 300, or 450 µS. Hence 

 
  450 x 10–6 × P = 1 
  1/P = 450 × 10–6  
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 Substituting in the equation for N/P above, we get 
 
  N/P = (450 x 10–6 - 20 × 10–6) × 109 = (450 – 20) × 103 = 430,000  
 
 Answer: 1 page fault every 430,000 instructions 
 
 
8.8 a. FIFO with 3 page frames: 10 page faults 
 

* * *  *  * * * *   * * 
1 2 3 2 6 3 4 1 5 6 1 6 4 2 
1 1 1 1 2 2 3 6 4 1 1 1 5 6 
 2 2 2 3 3 6 4 1 5 5 5 6 4 
  3 3 6 6 4 1 5 6 6 6 4 2 

 
 b. FIFO with 4 page frames: 8 page faults 
 

* * *  *  * * *     * 
1 2 3 2 6 3 4 1 5 6 1 6 4 2 
1 1 1 1 1 1 2 3 6 6 6 6 6 4 
 2 2 2 2 2 3 6 4 4 4 4 4 1 
  3 3 3 3 6 4 1 1 1 1 1 5 
    6 6 4 1 5 5 5 5 5 2 

 
 c. LRU with 3 page frames: 10 page faults 
 

* * *  *  * * * *   * * 
1 2 3 2 6 3 4 1 5 6 1 6 4 2 
1 1 1 1 2 2 3 3 4 1 1 1 1 6 
 2 2 2 3 3 6 4 1 5 5 5 6 4 
  3 3 6 6 4 1 5 6 6 6 4 2 

 
 d. LRU with 4 page frames:  9 page faults 
 

* * *  *  * * * *    * 
1 2 3 2 6 3 4 1 5 6 1 6 4 2 
1 1 1 1 1 1 2 3 3 4 4 4 4 4 
 2 2 2 2 2 3 6 4 1 1 1 1 1 
  3 3 3 3 6 4 1 5 5 5 5 6 
    6 6 4 1 5 6 6 6 6 2 

 
No, Belady's Anomaly does not occur, but we note that FIFO gives better performance 
with 4 frames than LRU, which is counter intuitive. 
 
8.9 a. 3 page faults for every 4 executions of C[i, j] = A[i, j] +B[i, j]. 
 b. Yes. The page fault frequency can be minimized by switching the inner and 

outer loops. 
 c. After modification, there are 3 page faults for every 256 executions. 
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8.10 Estimating the number of page faults is most easily done by considering the loops 

from the inside out, and analyzing the cumulative effects of each layer. With this 
method, this solution will consider both sizes of matrices together. 

 
 In the innermost loop (k), each processor is accessing a row of Array A, which is 

only 1 page in the small case, and 10 pages in the large case. At any time, however, 
only 1 is needed for each Array B, however, during that loop refers to a whole slew 
of pages, since it is accessing a column, and every element in that column is on a 
different page. This will therefore generate many page faults. If 100 pages are 
reserved for A, then there would be 900 left for B to perform this loop. Once it was 
done, there would similarly be 100 page faults to store the values into each row of 
C. The need to access SIZE pages for B and 100 for C with only 900 available would 
result in (SIZE+100 - 900) page faults each time through -- 200 for the small case, 
9200 for the large one. 

 
 The outer loops just repeat the inner loop SIZE*SIZE/100 times, yielding the 

overall estimate of: 
 
 SIZE = 1000 --> 200 × 1000 × 10 -> 2×106 page faults 
 SIZE = 10000 -> 9200 × 10000 * 100 -> 9×109 page faults 
  
 The mandatory page faults for getting data into memory in the first place (and for 

referring to array A) are negligible in comparison. To see the big picture, see what 
effect this has on the RAM miss rate. A non-clairvoyant scheme will generate a 
page fault on every single iteration of the innermost loop. Counting all the other 
memory requests (arrays A and C, the variables I,J,K, and the instructions), this 
probably means the RAM miss rate is greater than 1%. It doesn't matter if the 
instructions are cached, or if the manipulations for C are optimized -- the regular 
page fault will slow this program down a great deal. Try to minimize the number 
of page faults by modifying the program to account for them (but without 
changing the page replacement policy). Then estimate how many page faults the 
new program has. This program suffers from a lack of locality of reference. Many 
pages are replaced after very little use, only to be reloaded later. One option to 
consider limiting how far the innermost loop counts at any moment, to try to 
improve the likelihood of something not getting kicked out. This would require an 
additional loop, to determine which "chunk" of rows to do next. The J loop might 
be divided into two, one for 'small K' and one for larger K, which just looks at 
alternate halves of the array (page faulting the whole thing only for iterations of I). 
This would allow the smaller array multiplication to only need 8000 page faults for 
array K in the entire picture (+1000 for the others). One could extend this divide-
and-conquer approach in both dimensions, and imagine that the 10,000x10,000 
array is just 100 1000x1000 arrays. However, it should be noticed that the number 
of instructions of the form 

 
c[i][j] = a[i][k] + b[k][j] 

 
 is SIZE3 -- so there would have to be 1000 'smaller' multiplications (not just 100). 

Even so, using the numbers above, 1000 * (2×106) is better than 9×109. By 
improving the 1000 case as above, by chopping it in half, this could be improved to 
under 1000 × 10000. Examining the innermost loop, one can see that that loop must 
access many pages of B in sequence. Although all the processors may access the 



 

-26- 

 
same page of B at roughly the same time, they must load a new one at each 
iteration. One way to force spatial locality on array B is simply to change the layers 
of the loops, swapping j and k: 

 
                 for (k=0; k<SIZE; k++) 
                     for (j=0; j<SIZE; j++) 
                         { 
                         if (k==0)  c[i][j] = 0; 
                         c[i][j] += a[i][k] * b[k][j]; 
                         } 
 
 { a[0][0], a[10][0], a[20][0], .... a[990][0] }   one access 
 { b[0][0], b[ 0][0], b[ 0][0], .... b[  0][0] }     for each 
 { a[0][0], a[10][0], a[20][0], .... a[990][0] }     processor 
 { b[0][1], b[ 0][1], b[ 0][1], .... b[  0][1] } 
 etc. 
 
 Now, the innermost loop is J, which just uses one row each of each array. The K 

loop will then try to fit the entirety of array B into the 800 pages available. One 
could get a similar effect by transposing B. This shows a definite improvement in 
the use of array B, since now it accesses only a single row for the entire duration of 
the innermost loop, fetching a new row as J iterates. Each iteration of J, then uses 
100 pages each of A and C (repeatedly) and a new row for B. The J loop itself 
would then try to fit all of the pages of B (SIZE*SIZE/1000) into the 800 not being 
used by A and C. Hence: 

 
 SIZE = 1000 --> (1000–800) × 10 -> 2000 page faults (for B) 
  + 3×1000 mandatory page faults = 5000 
 SIZE = 10000 -> (100000-800) × 100 -> 1×107 page faults 
 
 One could alternatively notice that array A has poor locality of reference in light of 

the parallel processors. Perhaps if they all referred to elements of the same page 
instead of all different ones, things could be improved. Let each processor do a 
column instead, and compute: 

 
             for (i=0; i<SIZE; i++) 
                 for (j=ProcN ; j<SIZE; j += mult) 
                     { 
                     temp = 0; 
                     for (k=0; k<SIZE; k++) 
                         temp += a[i][k] * b[k][j]; 
                     c[i][j] = temp; 
                     } 
             } 
 
 { a[0][0], a[0][ 0], a[0][ 0], .... a[0][  0] }   one access 
 { b[0][0], b[0]l10], b[0][20], .... b[0][990] }     for each 
 { a[0][1], a[0][ 1], a[0][ 1], .... a[0][  1] }     processor 
 { b[1][0], b[1][10], b[1][20], .... b[1][990] } 
 etc. 
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 In this form, only one row is needed for arrays A and C through all of the 

iterations of J and K. In this form, The K loop cycles through 
 
 SIZE pages of B, with 998 available, yielding: 
 SIZE = 1000 --> (1000–998) × 1000 × 10 -> 2×104 page faults 
 SIZE = 10000 -> (10000–998) × 10000 * 100 -> 9×109 page faults 
 
 Transposing B in this picture would access 100 rows, instead of so many pages. 100 

pages needed for B for the k loop, the entirety of B through the J loop (still with 
only 2 pages needed for A and C)... 

 
 SIZE = 1000 --> (1000–998) × 10 -> 20 page faults (for conflict in B) 
  + 3×1000 mandatory page faults = 3000 
 SIZE = 10000 -> (100000–998) × 100 -> 1×107 page faults 
 
 At this point, it might be feasible to reconsider the subdivision of the array that 

was mentioned before, where it was estimated that the large case should 'only' 
require 1000 times as many page faults as the smaller. If so, it should be possible to 
design a program that has fewer than 3 * 10^6 page faults. This would probably 
combine several of the above effects. It is natural to question the validity of using 
Optimal Page Replacement as a measurement for this exercise. Indeed, it may 
simplify the calculations, but it probably does not indicate what a real system is 
likely to do. One could certainly analyze this in terms of a FIFO replacement 
scheme, which might produce a 'worst case' kind of result. But this certainly shows 
that an applications programmer can still exercise some control over the use of 
memory. 

 
8.11 a.  

0 0 1 1 0 3 1 2 2 4 4 3 
 
 b. Page fault rate = 50%  

F   F   F  F  F  F 
 
 c. Page fault rate = 58% 

F   F   F F F  F  F 
 
 d. Page fault rate = 42% 

F   F   F  F  F   
 
8.12 a. 224/28 = 216 = 65536 pages 
 b. 218/28 = 210 = 1024 pages 
 c. virtual: 7FA4F1 physical: 3B2F1 
 d. virtual: 7FA314 physical: none (page not loaded in PM) 
 e. virtual: none (invalid address) physical: none 
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CHAPTER 9  UNIPROCESSOR SCHEDULING 
9.1 a. Shortest Remaining Time: 
 

P1 P1 P2 P2 P1 P1 P1 P4 P4 P4 P4 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
 
 Explanation: P1 starts but is preempted after 20ms when P2 arrives and has 

shorter burst time (20ms) than the remaining burst time of P1 (30 ms) . So, P1 is 
preempted. P2 runs to completion. At 40ms P3 arrives, but it has a longer burst 
time than P1, so P1 will run. At 60ms P4 arrives. At this point P1 has a 
remaining burst time of 10 ms, which is the shortest time, so it continues to run. 
Once P1 finishes, P4 starts to run since it has shorter burst time than P3. 

 
 Non-preemptive Priority: 
 

P1 P1 P1 P1 P1 P2 P2 P4 P4 P4 P4 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
 
 Explanation: P1 starts, but as the scheduler is non-preemptive, it continues 

executing even though it has lower priority than P2. When P1 finishes, P2 and 
P3 have arrived. Among these two, P2 has higher priority, so P2 will be 
scheduled, and it keeps the processor until it finishes. Now we have P3 and P4 
in the ready queue. Among these two, P4 has higher priority, so it will be 
scheduled. After P4 finishes, P3 is scheduled to run. 

 
 Round Robin with quantum of 30 ms: 
 

P1 P1 P1 P2 P2 P1 P1 P3 P3 P3 P4 P4 P4 P3 P3 P3 P4 P3 P3 P3 P3 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
 
 Explanation: P1 arrives first, so it will get the 30ms quantum. After that, P2 is in 

the ready queue, so P1 will be preempted and P2 is scheduled for 20ms. While 
P2 is running, P3 arrives. Note that P3 will be queued after P1 in the FIFO 
ready queue. So when P2 is done, P1 will be scheduled for the next quantum. It 
runs for 20ms. In the mean time, P4 arrives and is queued after P3. So after P1 
is done, P3 runs for one 30 ms quantum. Once it is done, P4 runs for a 30ms 
quantum. Then again P3 runs for 30 ms, and after that P4 runs for 10 ms, and 
after that P3 runs for 30+10ms since there is nobody left to compete with. 

 b. Shortest Remaining Time: (20+0+70+10)/4 = 25ms. 
  Explanation: P2 does not wait, but P1 waits 20ms, P3 waits 70ms and P4 waits 

10ms. 
  Non-preemptive Priority: (0+30+10+70)/4 = 27.5ms 
  Explanation: P1 does not wait, P2 waits 30ms until P1 finishes, P4 waits only 

10ms since it arrived at 60ms and it is scheduled at 70ms. P3 waits 70ms. 
  Round-Robin: (20+10+70+70)/4 = 42.5ms 
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  Explanation: P1 waits only for P2 (for 20ms). P2 waits only 10ms until P1 

finishes the quantum (it arrives at 20ms and the quantum is 30ms). P3 waits 
30ms to start, then 40ms for P4 to finish. P4 waits 40ms to start and one 
quantum slice for P3 to finish. 

 
9.3 The following figure shows the timing charts for each scheduling method. 
 

 
 
 a. FCFS 
  turnaround = [ (5-0) + (14-1) + (17-3) + (24-10) + (30-12) ] / 5 = 64 / 5 = 12.8 
  normalized turnaround: 
   P1: 5 / 4 = 1.25 
   P2: 13 / 8 = 1.625 
   P3: 14 / 2 = 7   <--- FCFS can be unfair to short processes 
   P4: 14 / 6 = 2.333 
   P5: 18 / 5 = 3.6 
  processor efficiency = 25 / 30 = 83.33% 
 b. SPN 
  turnaround = [ (5-0) + (17-1) + (8-3) + (30-10) + (23-12) ] / 5 = 57 / 5 = 11.4 
  NOTE: SPN has the smallest turnaround, compared to other algorithms 
  normalized turnaround: 
   P1: 5 / 4 = 1.25 
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   P2: 16 / 8 = 2 
   P3: 5 / 2 = 2.5  <--- SPN much more fair to short processes (compared to FCFS) 
   P4: 20 / 6 = 3.333 
   P5: 11 / 5 = 2.2 
  processor efficiency = 25 / 30 = 83.33% 
 c. SRTN 
  turnaround = [ (5-0) + (31-1) + (8-3) + (17-10) + (23-12) ] / 5 = 58 / 5 = 11.6 
  normalized turnaround: 
   P1: 5 / 4 = 1.25 
   P2: 30 / 8 = 3.75   <--- largest normalized turnaround; also largest process 
   P3: 5 / 2 = 2.5 
   P4: 7 / 6 = 1.166 
   P5: 11 / 5 = 2.2 
  processor efficiency = 25 / 31 = 80.6% 
 d. RR quantum = 3 
  turnaround = [ (13-0) + (28-1) + (11-3) + (32-10) + (35-12) ] / 5 = 93 / 5 = 18.6 
  normalized turnaround: 
   P1: 13/ 4 = 3.25 
   P2: 27 / 8 = 3.375 
   P3: 8 / 2 = 4.0 
   P4: 22 / 6 = 3.666 
   P5: 23 / 5 = 4.6 
  In RR, all processes are considered equally important 
  processor efficiency = 25 / 35 = 71.4% 
 e. Multilevel Feedback Queue 
  turnaround = [ (12-0) + (35-1) + (9-3) + (28-10) + (32-12) ] / 5 = 90 / 5 = 18 
  normalized turnaround: 
   P1: 12/ 4 = 3.0 
   P2: 34 / 8 = 4.25  <--- largest job 
   P3: 6 / 2 = 3.0  <--- smallest job 
   P4: 18 / 6 = 3.0 
   P5: 20 / 5 = 4.0 
  processor efficiency = 25 / 35 = 71.4% 
 
9.4 a. Because the ready queue has multiple pointers to the same process, the system 

is giving that process preferential treatment That is, this process will get double 
the processor time than a process with only one pointer. 

 b. The advantage is that more important jobs could be given more processor time 
by just adding an additional pointer (i.e., very little extra overhead to 
implement). 

 c. Want longer time slice to processes deserving higher priority. 
  - add bit in PCB that says whether a process is allowed to execute two time 

slices 
  - add integer in PCB that indicates the number of time slices a process is 

allowed to execute 
  - have two ready queues, one of which has a longer time slice for higher 

priority jobs 
 
9.5 a. Lower Bound: n 
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 b. Upper Bound: p 
 



 

-32- 

 
 

CHAPTER 11  I/O MANAGEMENT AND DISK 
SCHEDULING 

11.1 a. 11 + 63 + 86 +64 + 55 + 66 + 87 = 432 
 b. 7 + 4 + 23 + 2 + 76 + 11 + 1 = 124 
 c. 7 + 4 + 51 + 11 + 1 + 86 + 2 = 162 
 d. 7 + 4 + 51 + 11 + 1 + 88 +2 + 164 
 
11.2 The first factor could be the limiting speed of the I/O device; Second factor could 

be the speed of bus, the third factor could be no internal buffering on the disk 
controller or too small internal buffering space. Fourth factor could be erroneous 
disk or transfer of block. 

 
11.3 a. T=transfer time = b/rN, where b=number of bytes to transfer, 
  r=rotation speed, and N = number of bytes on a track → b = 1MByte = 
  1,048,576 Bytes, r=15,000rpm, N=512 × 400=204800 bytes per track → 
  1,048,576/(15,000/60,000 × 204800)=20.48ms 
 
  Here are the units: 
  T[ms] = b[bytes]/(r[rotations/ms] × N[bytes/rotation]) 
  15,000[rotations/min]/60,000[ms/min] = 0.25[rotations/ms] 
 
  Comment: This calculation is a simplified estimation but sufficient for basic 

disk transfer models: A more sophisticated estimate might notice that the file 
spans several tracks, thus a worst-case estimate is to include additional seek 
(but assume the track starts are staggered so there is no significant rotational 
delay). 

 b. Ta=average access time of the whole file = Ts+ 1/2r+b/rN = 
  4+2+20.508 ms = 26.508ms 
 c. Rotational delay = (average 180 degree wait) = 1/2r=2ms 
 d. Total time to read 1 sector (512 Bytes) = seek time + rotational delay 
  + transfer time = 4ms+2ms+ 512/(15000/60000 * 204,500) = 
  4+2+0.01ms = 6.01ms. 
 e. If the disk uses sequential organization, then the total time to read 1 track (400 

sectors per track) = seek_time + rotational_delay + 
additional_time_to_go_around = 4ms + 2ms + 4ms = 10ms = (Tseek+3/(2r) 

 
11.4 Prefetching is a user-based activity, while spooling is a system-based activity. 

Comparatively, spooling is a much more effective way of overlapping I/O and 
processor operations. Another way of looking at it is to say that prefetching is 
based upon what the processor might do in the future, while spooling is based 
upon what the processor has done in the past. 
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11.5 a. Total time = Seek time + Rotational delay + Transfer time 
  = 15 msec + 10 msec + 20 msec = 45 msec 
 b. Total time = 8 × (Seek time + Rotational delay + Transfer time) 
  = 8(15 msec + 10 msec + 2.5msec) = 220 msec 
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CHAPTER 12  FILE MANAGEMENT 
12.1 13 (1 block) + 1 (2k pointers) (1 block) + 1 (2k)(2k) (1 block) + (2k)(2k)(2k) (1 block) 

= 13 (8kB) + 2k (8kB) + 4M (8kB) + 8G (8kB) = 
 104KB + 16MB + 32GB + 64 TB = 64032016024000Bytes 
 It is actually greater than that since kB = 1024 Bytes, but I have written it like that 

to indicate the size of the file that each portion can handle. 
 
12.2 Record 5 is preceded by 4 records, each of 150 bytes. The fifth record will start at 

byte (4 × 15o) + 1 = 601. 
 
12.3 The answer is the same as for the preceding question, 601. The logical layout of the 

records is the same for both access methods. 
 
12.4 Eight 60-byte records can be allocated to each block, leaving 20 bytes wasted. 
 
12.5 The first block can contain the first two records, leaving 30 bytes wasted. The 

second block can contain the third record, wasting 65 bytes. The third block can 
contain the fourth record, wasting 30 bytes. The fourth block can contain the last 
two record, wasting 40 bytes. Of the 400 bytes in the four blocks, 30 + 65 + 30 + 40 
= 165 bytes, or 41.25%, are wasted. 

 


