
Class notes for Randomized Algorithms

Sariel Har-Peled①

December 1, 2005

②Department of Computer Science; University of Illinois; 201 N. Goodwin Avenue; Urbana, IL, 61801,
USA; sariel@uiuc.edu; http://www.uiuc.edu/~sariel/. Work on this paper was partially supported by
a NSF CAREER award CCR-0132901.

http://www.uiuc.edu/~sariel/

2

Contents

1 Min Cut 7
1.1 Min Cut . 7

1.1.1 Problem Definition . 7
1.1.2 Some Definitions . 7

1.2 The Algorithm . 8
1.3 A faster algorithm . 11
1.4 Bibliographical Notes . 13

2 Complexity, the Changing Minimum and Closest Pair 15
2.1 Las Vegas and Monte Carlo algorithms . 15

2.1.1 Complexity Classes . 15
2.2 How many times can a minimum change, before it is THE minimum? 16
2.3 Closest Pair . 17
2.4 Bibliographical notes . 19

3 The Occupancy and Coupon Collector problems 21
3.1 Preliminaries . 21
3.2 Occupancy Problems . 22

3.2.1 The Probability of all bins to have exactly one ball 23
3.3 The Markov and Chebyshev inequalities . 24
3.4 The Coupon Collector’s Problem . 24
3.5 Notes . 25

4 The Occupancy and Coupon Collector problems - part II 27
4.1 The Coupon Collector’s Problem Revisited . 27
4.2 Randomized Selection . 29
4.3 A technical lemma . 30

5 Sampling and other Stuff 31
5.1 Two-Point Sampling . 31

5.1.1 About Modulo Rings and Pairwise Independence 31
5.1.2 Using less randomization for a randomized algorithm 32

5.2 Chernoff Inequality - A Special Case . 33
5.2.1 Application – QuickSort is Quick . 34

3

6 Chernoff Inequality - Part II 37
6.1 Tail Inequalities . 37

6.1.1 The Chernoff Bound — General Case . 37
6.1.2 A More Convenient Form . 38

6.2 Application of the Chernoff Inequality – Routing in a Parallel Computer 39
6.3 Application of the Chernoff Inequality – Faraway Strings 41
6.4 Bibliographical notes . 42
6.5 Exercises . 42

7 Martingales 43
7.1 Martingales . 43

7.1.1 Preliminaries . 43
7.1.2 Martingales . 44

7.2 Even more probability . 46

8 Martingales II 47
8.1 Filters and Martingales . 47
8.2 Martingales . 48

8.2.1 Martingales, an alternative definition . 48
8.3 Occupancy Revisited . 50

9 The Probabilistic Method 53
9.1 Introduction . 53

9.1.1 Examples . 53
9.2 Maximum Satisfiability . 54

10 The Probabilistic Method II 57
10.1 Expanding Graphs . 57
10.2 Probability Amplification . 58
10.3 Oblivious routing revisited . 59

11 The Probabilistic Method III 61
11.1 The Lovász Local Lemma . 61
11.2 Application to k-SAT . 63

11.2.1 An efficient algorithm . 63

12 The Probabilistic Method IV 65
12.1 The Method of Conditional Probabilities . 65
12.2 A Very Short Excursion into Combinatorics using the Probabilistic Method 66

12.2.1 High Girth and High Chromatic Number . 66
12.2.2 Crossing Numbers and Incidences . 67

13 Random Walks I 69
13.1 Definitions . 69

13.1.1 Walking on grids and lines . 69

4

14 Random Walks II 73
14.1 The 2SAT example . 73

14.1.1 Solving 2SAT . 73
14.2 Markov Chains . 74

15 Random Walks III 77
15.1 Random Walks on Graphs . 77
15.2 Electrical networks and random walks . 78
15.3 Tools from previous lecture . 80
15.4 Notes . 80

16 Random Walks IV 81
16.1 Cover times . 81
16.2 Graph Connectivity . 82

16.2.1 Directed graphs . 83
16.3 Graphs and Eigenvalues . 83
16.4 Bibliographical Notes . 83

17 The Johnson-Lindenstrauss Lemma 85
17.1 The Johnson-Lindenstrauss lemma . 85

17.1.1 Some Probability . 85
17.1.2 Proof of the Johnson-Lindenstrauss Lemma 86

17.2 Bibliographical notes . 88
17.3 Exercises . 89

18 Finite Metric Spaces and Partitions 91
18.1 Finite Metric Spaces . 91
18.2 Examples . 92

18.2.1 Hierarchical Tree Metrics . 92
18.2.2 Clustering . 93

18.3 Random Partitions . 93
18.3.1 Constructing the partition . 93
18.3.2 Properties . 94

18.4 Probabilistic embedding into trees . 94
18.4.1 Application: approximation algorithm for k-median clustering 95

18.5 Embedding any metric space into Euclidean space 96
18.5.1 The bounded spread case . 96
18.5.2 The unbounded spread case . 97

18.6 Bibliographical notes . 99
18.7 Exercises . 99

19 VC Dimension, ε-nets and ε-approximation 101
19.1 VC Dimension . 101

19.1.1 Examples . 101
19.2 VC-Dimensions and the number of different ranges 102
19.3 On ε-nets and ε-sampling . 104
19.4 Proof of the ε-net Theorem . 104
19.5 Exercises . 106

5

19.6 Bibliographical notes . 108

20 Approximate Max Cut 109
20.1 Problem Statement . 109

20.1.1 Analysis . 110
20.2 Semi-definite programming . 111
20.3 Bibliographical Notes . 111

21 Entropy, Randomness, and Information 113
21.1 Entropy . 113

21.1.1 Extracting randomness . 115
21.2 Bibliographical Notes . 117

22 Entropy II 119
22.1 Compression . 119
22.2 Bibliographical Notes . 120

23 Entropy III - Shannon’s Theorem 121
23.1 Coding: Shannon’s Theorem . 121

23.1.1 The encoder/decoder . 121
23.2 Bibliographical Notes . 122

6

Chapter 1

Min Cut
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

To acknowledge the corn - This purely American expression means to admit the losing of an argument,
especially in regard to a detail; to retract; to admit defeat. It is over a hundred years old. Andrew
Stewart, a member of Congress, is said to have mentioned it in a speech in 1828. He said that haystacks
and cornfields were sent by Indiana, Ohio and Kentucky to Philadelphia and New York. Charles
A. Wickliffe, a member from Kentucky questioned the statement by commenting that haystacks and
cornfields could not walk. Stewart then pointed out that he did not mean literal haystacks and cornfields,
but the horses, mules, and hogs for which the hay and corn were raised. Wickliffe then rose to his feet,
and said, ”Mr. Speaker, I acknowledge the corn”.

Funk, Earle, A Hog on Ice and Other Curious Expressions.

1.1 Min Cut

1.1.1 Problem Definition

Let G = (V,E) be undirected graph with n vertices, and m edges. We are interested in the notion
of a cut in a graph.

Definition 1.1.1 A cut in G is a partition of the vertices of V into two sets S and V \ S, where
the edges of the cut are

(S, V \ S) =
{
uv
∣∣∣u ∈ S, v ∈ V \ S, and uv ∈ E

}
,

where S 6= ∅ and V \ S 6= ∅. We will refer to the number of edges in the cut (S, V \ S) as the size
of the cut.

For an example of a cut, see Figure 1.1.
We are interested in the problem of computing the minimum cut, that is, the cut in the graph

with minimum cardinality. Compute the cut with minimum number of edges in the graph. Namely,
find S ⊆ V such that (S, V \ S) is as small as possible, and S is neither empty nor is V \ S.

1.1.2 Some Definitions

Definition 1.1.2 The conditional probability of X given Y is

Pr[X = x |Y = y] =
Pr[(X = x) ∩ (Y = y)]

Pr[Y = y]
.

7

� � � �

(a) (b) (c)

Figure 1.1: (a) A cut in the graph. (b) A contraction of an edge. (c) The resulting graph.

�

�
�

�

(a) (b)

Figure 1.2: (a) A multi-graph. (b) A minimum cut in the resulting multi-graph.

An equivalent, useful statement of this is that

Pr[(X = x) ∩ (Y = y)] = Pr[X = x |Y = y] ∗Pr[Y = y] .

Definition 1.1.3 Two events X and Y are independent, if Pr[X = x ∩ Y = y] = Pr[X = x] ·
Pr[Y = y]. In particular, if X and Y are independent, then

Pr
[
X = x

∣∣∣Y = y
]

= Pr[X = x] .

The following is easy to prove by induction.

Lemma 1.1.4 Let η1, . . . , ηn be n events which are not necessarily independent. Then,

Pr[∩ni=1ηi] = Pr[η1] ∗Pr[η2 |η1] ∗

Pr[η3 |η1 ∩ η2] ∗ . . . ∗Pr
[
ηn

∣∣∣ η1 ∩ . . . ∩ ηn−1

]

1.2 The Algorithm

The basic operation used by the algorithm is edge contraction, depicted in Figure 1.1. We take an
edge e = xy and merge the two vertices into a single vertex. What we get is depicted in Figure 1.1
(c). The new graph is denoted by G/xy. Note, that we remove self loops. However, the resulting
graph is no longer a regular graph, it has parallel edges – namely, it is a multi-graph. We represent
a multi-graph, as a regular graph with multiplicities on the edges. See Figure 1.2.

8

�

�

�

� �

� �

�

� �

(a) (b) (c)

�

�

�

� �
�

(d) (e) (f)
(g)

Figure 1.3: (a)-(f) a sequence of contractions in the graph, and (g) the cut in the original graph,
corresponding to the single edge in (f).

The edge contraction operation can be implemented in O(n) time for a graph with n vertices.
This is done by Merging the adjacency lists of the two vertices being contracted, and then using
hashing to do the fix-ups (i.e., we need to fix the adjacency list of the vertices that are connected
to the two vertices).

Note, that the cut is now computed counting multiplicities (i.e., if an edge is in the cut, and it
has weight w we add w to the weight of the cut.

Observation 1.2.1 The size of the minimum cut in G/xy is at least as large as the minimum cut
in G (as long as G/xy has at least one edge). Since any cut in G/xy has a corresponding cut of
the same cardinality in G.

So, the main idea of our algorithm is to repeatedly perform contraction, which is beneficial since
it shrinks the graph. And we would like to compute the cut in the resulting (smaller) graph. An
“extreme” example of this, is shown in Figure 1.3, where we contract the graph into a single edge,
which in turn corresponds to a cut in the original graph. (It might help the reader to think about
each vertex in the contracted graph, as corresponding to a connected component in the original
graph.)

Figure 1.3 also demonstrate the problem with taking this approach. Indeed, the resulting cut
is not the minimum cut in the graph. So, why we did not find the minimum cut?

Observation 1.2.2 Let e1, . . . , en−2 be a sequence of edges in G, such that none of them is in the
minimum cut, and such that G′ = G/ {e1, . . . , en−2} is a single multi-edge. Then, this multi-edge
correspond to the minimum cut in G.

Note, that the claim in the above observation is only in one direction. We might be able to still
compute a minimum cut, even if we contract an edge in a minimum cut, the reason being that a
minimum cut is not unique.

Using Observation 1.2.2 in an algorithm is problematic, since the argumentation is circular,
how can we find a sequence of edges that are not in the cut without knowing what the cut is? The
way to cut the Gordian know here, is to randomly contract an edge.

Lemma 1.2.3 If a graph G has a minimum cut of size k, and it has n vertices, then |E(G)| ≥ kn
2 .

Proof: Each vertex degree is at least k, otherwise the vertex itself would form a minimum cut of
size smaller than k. As such, there are at least

∑
v∈V degree(v)/2 ≥ nk/2 edges in the graph.

9

Algorithm MinCut(G)
G0 ← G
i = 0
while Gi has more than two vertices do

Pick randomly an edge ei from the edges of Gi
Gi+1 ← Gi/ei
i← i+ 1

Let (S, V − S) be the cut in the original graph
corresponding to the single edge in Gi

Figure 1.4: The minimum cut algorithm.

Lemma 1.2.4 If we pick in random an edge e from a graph G, then with probability at most 2/n
it belong to the minimum cut.

Proof: There are at least nk/2 edges in the graph and exactly k edges in the minimum cut. Thus,
the probability of picking an edge from the minimum cut is smaller then k/(nk/2) = 2/n.

The resulting algorithm is depicted in Figure 1.4.

Observation 1.2.5 MinCut runs in O
(
n2
)

time.

Observation 1.2.6 The algorithm always outputs a cut, and the cut is not smaller than the min-
imum cut.

Lemma 1.2.7 MinCut outputs the min cut in probability ≥ 2
n(n− 1)

.

Proof: Let ηi be the event that ei is not in the minimum cut of Gi. By Observation 1.2.2, MinCut
outputs the minimum cut if the events η0, . . . , ηn−3 all happen (namely, all edges picked are outside
the minimum cut).

By Lemma 1.2.4, it holds Pr[ηi |η1 ∩ . . . ∩ ηi−1] ≥ 1− 2
|V (Gi)|

= 1− 2
n− i

. Implying that

Pr[η0 ∩ . . . ∩ ηn−2] = Pr[η0] ·Pr[η1 |η0] ·Pr[η2 |η0 ∩ η1]
· . . . ·Pr[ηn−3 |η0 ∩ . . . ∩ ηn−4]

≥
n−3∏
i=0

(
1− 2

n− i

)
=

n−3∏
i=0

n− i− 2
n− i

=
n− 2
n

∗ n− 3
n− 1

∗ n− 4
n− 2

. . . · 2
4
· 1
3

=
2

n · (n− 1)
.

Definition 1.2.8 (informal) Amplification is the process of running an experiment again and again
till the things we want to happen, with good probability, do happen.

Let MinCutRep be the algorithm that runs MinCut n(n− 1) times and return the minimum cut
computed in all those independent executions of MinCut.

Lemma 1.2.9 The probability that MinCutRep fails to return the minimum cut is < 0.14.

10

Proof: The probability of failure is at most(
1− 2

n(n− 1)

)n(n−1)

≤ exp
(
− 2
n(n− 1)

· n(n− 1)
)

= exp(−2) < 0.14,

since 1− x ≤ e−x for 0 ≤ x ≤ 1.

Theorem 1.2.10 One can compute the minimum cut in O(n4) time with constant probability to
get a correct result. In O

(
n4 log n

)
time the minimum cut is returned with high probability.

1.3 A faster algorithm

The algorithm presented in the previous section is extremely simple. Which raises the question of
whether we can complicate things, and get a faster algorithm?

So, why is the algorithm needs so many executions? Well, the probability of success in the first
l iterations, is

Pr[η0 ∩ . . . ∩ ηl−1] ≥
l−1∏
i=0

(
1− 2

n− i

)
=

l−1∏
i=0

n− i− 2
n− i

=
n− 2
n

∗ n− 3
n− 1

∗ n− 4
n− 2

. . . =
(n− l)(n− l − 1)

n · (n− 1)
. (1.1)

Namely, this probability deteriorates very quickly toward the end of the execution, when the graph
become small enough.

Observation 1.3.1 As the graph get smaller, the probability to make a bad choice increases. So,
run the algorithm more times when the graph is smaller.

The basic new operation we use is Contract, depicted in Figure 1.5, which also depict the
new algorithm FastCut.

Lemma 1.3.2 The running time of FastCut(G) is O
(
n2 log n

)
, where n = |V (G)|.

Proof: Well, we perform two calls to Contract(G, t) which takes O(n2) time. And then we perform
two recursive calls, on the resulting graphs. We have:

T (n) = O
(
n2
)

+ 2T
(
n√
2

)
The solution to this recurrence is O

(
n2 log n

)
as one can easily (and should) verify.

Exercise 1.3.3 Show that one can modify FastCut so that it uses only O(n2) space.

Lemma 1.3.4 The probability that Contract(G,n/
√

2) had NOT contracted the minimum cut is
at least 1/2.

Proof: Just plug in l = n− t = n−
⌈
1 + n/

√
2
⌉

into Eq. (1.1). We have

Pr[η0 ∩ . . . ∩ ηn−t] ≥
t(t− 1)
n · (n− 1)

=

⌈
1 + n/

√
2
⌉(⌈

1 + n/
√

2
⌉
− 1
)

n(n− 1)
≥ 1

2
.

11

Contract(G, t)
begin

while |(G)| > t do
Pick a random edge e in G.
G← G/e

return G
end

FastCut(G = (V,E))
G – multi-graph

begin
n← |V (G)|
if n ≤ 6 then

Compute (via brute force) minimum cut
of G and return cut.

t←
⌈
1 + n/

√
2
⌉

H1 ← Contract(G, t)
H2 ← Contract(G, t)
/* Contract is randomized!!! */
X1 ← FastCut(H1),
X2 ← FastCut(H2)
return minimum cut out of X1 and X2.

end

Figure 1.5: Contract(G, t) shrinks G till it has only t vertices. FastCut computes the minimum
cut using Contract.

Theorem 1.3.5 FastCut finds the minimum cut with probability larger than Ω(1/ log n).

Proof: Let P (n) be the probability that the algorithm succeeds on a graph with n vertices.
The probability to succeed in the first call on H1 is the probability that contract did not hit

the minimum cut (this probability is larger than 1/2 by Lemma 1.3.4), times the probability that
the algorithm succeeded on H1 in the recursive call (those two events are independent). Thus, the
probability to succeed on the call on H1 is at least (1/2) ∗ P (n/

√
2), Thus, the probability to fail

on H1 is ≤ 1− 1
2P
(
n√
2

)
.

The probability to fail on both H1 and H2 is smaller than(
1− 1

2
P

(
n√
2

))2

.

And thus, the probability for the algorithm to succeed is

P (n) ≥ 1−
(

1− 1
2
P

(
n√
2

))2

= P

(
n√
2

)
− 1

4

(
P

(
n√
2

))2

.

We need to solve this recurrence. Divide both sides of the equation by P
(
n/
√

2
)

we have:

P (n)
P (n/

√
2)
≥ 1− 1

4
P (n/

√
2).

It is now easy to verify that this inequality holds for P (n) ≥ c/ log n (since the worst case is
P (n) = c/ log n we verify this inequality for this value). Indeed,

c/ log n
c/ log(n/

√
2)
≥ 1− c

4 log(n/
√

2)
.

log n− log
√

2
log n

≥ 4(log n− log
√

2)− c
4(log n− log

√
2)

.

12

Let ∆ = log n
∆− log

√
2

∆
≥ 4(∆− log

√
2)− c

4(∆− log
√

2)

and
4(∆− log

√
2)2 ≥ 4∆(∆− log

√
2)− c∆.

Which implies
−8∆ log

√
2 + 4 log2

√
2 ≥ −4∆ log

√
2− c∆

c∆− 4∆ log
√

2 + 4 log2
√

2 ≥ 0,

which clear holds for c ≥ 4 log
√

2.
We conclude, that the algorithm succeeds in finding the minimum cut in probability≥ 2 log 2/ log n.

(Note that the base of the induction holds because we use brute force, and then P (i) = 1 for small
i.)

Exercise 1.3.6 Prove, that running FastCut c·log2 n times, guarantee that the algorithm outputs
the minimum cut with probability ≥ 1− 1/n2, say, for c a constant large enough.

1.4 Bibliographical Notes

The MinCut algorithm was developed by David Karger during his PhD thesis in Stanford. The
fast algorithm is a joint work with Clifford Stein. The basic algorithm of the min-cut is described
in [MR95, pages 7–9], the faster algorithm is described in [MR95, pages 289–295].

13

14

Chapter 2

Complexity, the Changing Minimum
and Closest Pair
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

2.1 Las Vegas and Monte Carlo algorithms

Definition 2.1.1 A Las Vegas algorithm!Las Vegas algorithm is a randomized algorithms that
always return the correct result. The only variant is that it’s running time might change between
executions.

An example for a Las Vegas algorithm is the QuickSort algorithm.

Definition 2.1.2 Monte Carlo algorithm!Monte Carlo algorithm is a randomized algorithm that
might output an incorrect result. However, the probability of error can be diminished by repeated
executions of the algorithm.

The MinCut algorithm was an example of a Monte Carlo algorithm.

2.1.1 Complexity Classes

I assume people know what are Turing machines, NP, NPC, RAM machines, uniform model,
logarithmic model. PSPACE, and EXP. If you do now know what are those things, you should
read about them. Some of that is covered in the randomized algorithms book, and some other stuff
is covered in any basic text on complexity theory.

Definition 2.1.3 The class P consists of all languages L that have a polynomial time algorithm
A, such that for any input Σ∗,

• x ∈ L⇒ A(x) accepts.

• x /∈ L⇒ A(x) rejects.

Definition 2.1.4 The class NP consists of all languages L that have a polynomial time algorithm
A, such that for any input Σ∗,

• x ∈ L ⇒ then ∃y ∈ Σ∗, A(x, y) accepts, where |y| (i.e. the length of y) is bounded by a
polynomial in |x|.

15

• x /∈ L⇒ then ∀y ∈ Σ∗A(x, y) rejects.

Definition 2.1.5 For a complexity class C, we define the complementary class co-C as the set of
languages whose complement is in the class C. That is

co− C =
{
L
∣∣∣L ∈ C

}
,

where L = Σ∗ \ L.

It is obvious that P = co−P and P ⊆ NP ∩ co−NP. (It is currently unknown if P =
NP ∩ co−NP or whether NP = co−NP, although both statements are believed to be false.)

Definition 2.1.6 The class RP (for Randomized Polynomial time) consists of all languages L that
have a randomized algorithm A with worst case polynomial running time such that for any input
x ∈ Σ∗,

• x ∈ L⇒ Pr[A(x) accepts] ≥ 1/2.

• x /∈ L⇒ Pr[A(x) accepts] = 0.

An RP algorithm is Monte Carlo, but the mistake can only be if x ∈ L. co−RP is all the
languages that have a Monte Carlo algorithm that make a mistake only if x /∈ L. A problem which
is in RP∩ co−RP has an algorithm that does not make a mistake, namely a Las Vegas algorithm.

Definition 2.1.7 The class ZPP (for Zero-error Probabilistic Polynomial time) is the class of
languages that have Las Vegas algorithms in expected polynomial time.

Definition 2.1.8 The class PP (for Probabilistic Polynomial time) is the class of languages that
have a randomized algorithm A with worst case polynomial running time such that for any input
x ∈ Σ∗,

• x ∈ L⇒ Pr[A(x) accepts] > 1/2.

• x /∈ L⇒ Pr[A(x) accepts] < 1/2.

The class PP is not very useful. Why?

Definition 2.1.9 The class BPP (for Bounded-error Probabilistic Polynomial time) is the class
of languages that have a randomized algorithm A with worst case polynomial running time such
that for any input x ∈ Σ∗,

• x ∈ L⇒ Pr[A(x) accepts] ≥ 3/4.

• x /∈ L⇒ Pr[A(x) accepts] ≤ 1/4.

2.2 How many times can a minimum change, before it is THE
minimum?

Let a1, . . . , an be a set of n numbers, and let us randomly permute them into the sequence b1, . . . , bn.
Next, let ci = minik=1 bi, and let X be the random variable which is the number of distinct values
appears in the sequence c1, . . . , cn. What is the expectation of X?

16

Lemma 2.2.1 In expectation, the number of times the minimum of a prefix of n randomly permuted
numbers change, is O(log n). That is E[X] = O(log n).

Proof: Consider the indicator variable Xi, such that Xi = 1 if ci 6= ci−1. The probability for that
is ≤ q1/i, since this is the probability that the smallest number if b1, . . . , bi is bi. As such, we have

X =
∑

iXi, and E[X] =
∑
i

E[Xi] =
n∑
i=1

1
i

= O(log n).

2.3 Closest Pair

Assumption 2.3.1 Throughout the discourse, we are going to assume that every hashing operation
takes (worst case) constant time. This is quite a reasonable assumption when true randomness is
available (using for example perfect hashing [CLRS01]). We probably will revisit this issue later in
the course.

For r a real positive number and a point p = (x, y) in R2, define Gr(p) to be the point
(bx/rc r, by/rc r). We call r the width of the grid Gr. Observe that Gr partitions the plane
into square regions, which we call grid cells. Formally, for any i, j ∈ Z, the intersection of the
half-planes x ≥ ri, x < r(i+ 1), y ≥ rj and y < r(j + 1) is said to be a grid cell. Further we define
a grid cluster as a block of 3× 3 contiguous grid cells.

For a point set P , and parameter r, the partition of P into subsets by the grid Gr, is denoted
by Gr(P). More formally, two points p, q ∈ P belong to the same set in the partition Gr(P), if
both points are being mapped to the same grid point or equivalently belong to the same grid cell.

Note, that every grid cell C of Gr, has a unique ID; indeed, let p = (x, y) be any point in C,
and consider the pair of integer numbers idC = id(p) = (bx/rc , by/rc). Clearly, only points inside
C are going to be mapped to idC . This is very useful, since we store a set P of points inside a
grid efficiently. Indeed, given a point p, compute its id(p). We associate with each unique id a
data-structure that stores all the points falling into this grid cell (of course, we do not maintain
such data-structures for grid cells which are empty). So, once we computed id(p), we fetch the data
structure for this cell, by using hashing. Namely, we store pointers to all those data-structures in
a hash table, where each such data-structure is indexed by its unique id. Since the ids are integer
numbers, we can do the hashing in constant time.

We are interested in solving the following problem:

Problem 2.3.2 Given a set P of n points in the plane, find the pair of points closest to each other.
Formally, return the pair of points realizing CP(P) = minp,q∈P ‖pq‖.

Lemma 2.3.3 Given a set P of n points in the plane, and a distance r, one can verify in linear
time, whether or not CP(P) < r or CP(P) ≥ r.

Proof: Indeed, store the points of P in the grid Gr. For every non-empty grid cell, we maintain
a linked list of the points inside it. Thus, adding a new point p takes constant time. Indeed,
compute id(p), check if id(p) already appears in the hash table, if not, create a new linked list for
the cell with this ID number, and store p in it. If a data-structure already exist for id(p), just add
p to it.

This takes O(n) time. Now, if any grid cell in Gr(P) contains more than, say, 9 points of p,
then it must be that the CP(P) < r. Indeed, consider a cell C containing more than four points of
P , and partition C into 3× 3 equal squares. Clearly, one of those squares must contain two points

17

of P , and let C ′ be this square. Clearly, the diameter of C ′ = diam(C)/3 =
√
r2 + r2/3 < r. Thus,

the (at least) two points of P in C ′ are distance smaller than r from each other.
Thus, when we insert a point p, we can fetch all the points of P that were already inserted,

for the cell of P , and the 8 adjacent cells. All those cells, must contain at most 9 points of P
(otherwise, we would already have stopped since the CP(·) of inserted points, is smaller than r).
Let S be the set of all those points, and observe that |S| ≤ 9 · 9 = O(1). Thus, we can compute by
brute force the closest point to p in S. This takes O(1) time. If d(p, S) < r, we stop, otherwise,
we continue to the next point, where d(p, S) = mins∈S‖ps‖.

Overall, this takes O(n) time. As for correctness, first observe that if CP(P) > r then the
algorithm would never make a mistake, since it returns ‘CP(P) < r’ only after finding a pair of
points of P with distance smaller than r. Thus, assume that p, q are the pair of points of P realizing
the closest pair, and ‖pq‖ = CP(P) < r. Clearly, when the later of them, say p, is being inserted,
the set S would contain q, and as such the algorithm would stop and return ‘CP(P) < r’.

Lemma 2.3.3 gives a natural way of computing CP(P). Indeed, permute the points of P in
arbitrary fashion, and let P = 〈p1, . . . , pn〉. Next, let ri = CP({p1, . . . , pi}). We can check if
ri+1 < ri, by just calling the algorithm for Lemma 2.3.3 on Pi+1 and ri. In fact, if ri+1 < ri, the
algorithm of Lemma 2.3.3, would give us back the distance ri+1 (with the other point realizing this
distance).

In fact, consider the “good” case, where ri+1 = ri = ri−1. Namely, the length of the shortest
pair does not check for awhile. In this case, we do not need to rebuild the data structure of
Lemma 2.3.3, for each point. We can just reuse it from the previous iteration. Thus, inserting a
single point takes constant time, as long as the closest pair does not change.

Things become bad, when ri < ri−1. Because then, we need to rebuild the grid, and reinsert
all the points of Pi = 〈p1, . . . , pi〉 into the new grid Gri(Pi). This takes O(i) time.

So, if the closest pair radius, in the sequence r1, . . . , rn changes only k times, then the running
time of our algorithm would be O(nk). In fact, we can do even better.

Theorem 2.3.4 Let P be a set of n points in the plane, one can compute the closest pair of points
of P in expected linear time.

Proof: Pick a random permutation of the points of P , let 〈p1, . . . , pn〉 be this permutation. Let
r2 = ‖p1p2‖, and start inserting the points into the data structure of Lemma 2.3.3. In the ith
iteration, if ri = ri−1, then this insertion takes constant time. If ri < ri−1, then we rebuild the grid
and reinsert the points. Namely, we recompute Gri(Pi).

To analyze the running time of this algorithm, let Xi be the indicator variable which is 1 if
ri 6= ri−1, and 0 otherwise. Clearly, the running time is proportional to

R = 1 +
n∑
i=2

(1 +Xi · i) .

Thus, the expected running time is

E[R] = 1 + E

[
1 +

n∑
i=2

(1 +Xi · i)

]
= n+

n∑
i=2

(E[Xi] · i) = n+
n∑
i=2

i ·Pr[X1 = 1] ,

by linearity of expectation and since for indicator variable Xi, we have E[Xi] = Pr[Xi = 1].
Thus, we need to bound Pr[Xi = 1] = Pr[ri < ri−1]. To bound this quantity, fix the points of

Pi, and randomly permute them. A point q ∈ Pi is called critical, if CP(Pi \ {q}) > CP(Pi). If
there are no critical points, then ri−1 = ri and then Pr[Xi = 1] = 0. If there is one critical point,

18

than Pr[Xi = 1] = 1/i, as this is the probability that this critical point, would be the last point in
the random permutation of Pi.

If there are two critical points, and let p, q be this unique pair of points of Pi realizing CP(Pi).
The quantity ri is smaller than ri−1, one if either p or q are pi. But the probability for that is 2/i
(i.e., the probability in a random permutation of i objects, that one of two marked objects would
be the last element in the permutation).

Observe, that there can not be more than two critical points. Indeed, if p and q are two points
that realizing the closest distance, than if there is a third critical point r, then CP(Pi \{r}) =‖pq‖,
and r is not critical.

We conclude that

E[R] = n+
n∑
i=2

i ·Pr[X1 = 1] ≤ n+
n∑
i=2

i · 2
i
≤ 3n.

We have that the expected running time is O(E[R]) = O(n).
Theorem 2.3.4 is a surprising result, since it implies that uniqueness (i.e., deciding if n real

numbers are all distinct) can be solved in linear time. However, there is a lower bound of Ω(n log n)
on uniqueness, using the comparison tree model. This reality dysfunction, can be easily explained,
once one realizes that the model of computation of Theorem 2.3.4 is considerably stronger, using
hashing, randomization, and the floor function.

2.4 Bibliographical notes

Section 2.1 follows [MR95, Section 1.5]. The closest-pair algorithm follows Golin et al. [GRSS95].
This is in turn a simplification of a result of Rabin [Rab76]. Smid provides a survey of such
algorithms [Smi00].

19

20

Chapter 3

The Occupancy and Coupon Collector
problems
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

3.1 Preliminaries

Definition 3.1.1 (Variance and Standard Deviation) For a random variable X, let V[X] =
E
[
(X − µX)2

]
= E

[
X2
]
− µ2

X denote the variance of X, where µX = E[X]. Intuitively, this tells
us how concentrated is the distribution of X.

The standard deviation of X, denoted by σX is the quantity
√

V[X].

Observation 3.1.2 (i) V[cX] = c2 V[X].
(ii) For X and Y independent variables, we have V[X + Y] = V[X] + V[Y].

Definition 3.1.3 (Bernoulli distribution) Assume, that one flips a coin and get 1 (heads) with
probability p, and 0 (i.e., tail) with probability q = 1 − p. Let X be this random variable. The
variable X is has Bernoulli distribution with parameter p. Then E[X] = p, and V[X] = pq.

Definition 3.1.4 (Binomial distribution) Assume that we repeat a Bernoulli experiments n
times (independently!). Let X1, . . . , Xn be the resulting random variables, and let X = X1 + · · ·+
Xn. The variable X has the binomial distribution with parameters n and p. We denote this fact
by X ∼ B(n, p). We have

b(k;n, p) = Pr[X = k] =
(
n

k

)
pkqn−k.

Also, E[X] = np, and V[X] = npq.

Observation 3.1.5 Let C1, . . . , Cn be random events (not necessarily independent). Than

Pr

[
n⋃
i=1

Ci

]
≤

n∑
i=1

Pr[Ci] .

(This is usually referred to as the union bound.) If C1, . . . , Cn are disjoint events then

Pr

[
n⋃
i=1

Ci

]
=

n∑
i=1

Pr[Ci] .

21

Lemma 3.1.6 For any positive integer n, we have:
(i) (1 + 1/n)n ≤ e.
(ii) (1− 1/n)n−1 ≥ e−1.
(iii) n! ≥ (n/e)n.

(iv) For any k ≤ n, we have:
(n
k

)k
≤
(
n

k

)
≤
(ne
k

)k
.

Proof: (i) Indeed, 1 + 1/n ≤ exp(1/n), since 1 + x ≤ ex, for x ≥ 0. As such (1 + 1/n)n ≤
exp(n(1/n)) = e.

(ii) Rewriting the inequality, we have that we need to prove
(
n−1
n

)n−1 ≥ 1
e . This is equivalence

to proving e ≥
(

n
n−1

)n−1
=
(
1 + 1

n−1

)n−1
, which is our friend from (i).

(iii) Indeed,
nn

n!
≤

∞∑
i=0

ni

i!
= en,

by the Taylor expansion of ex =
∑∞

i=0
xi

i! . This implies that (n/e)n ≤ n!, as required.
(iv) Indeed, for any k ≤ n, we have n

k ≤ n− 1k − 1, as can be easily verified. As such, nk ≤
n−i
k−i ,

for 1 ≤ i ≤ k − 1. As such, (n
k

)k
≤ n

k
· n− 1
k − 1

· n− k + 1
1

=
(
n

k

)
.

As for the other direction, we have(
n

k

)
≤ nk

k!
≤ nk(

k
e

)k =
(ne
k

)k
,

by (iii).

3.2 Occupancy Problems

Problem 3.2.1 We are throwing m balls into n bins randomly (i.e., for every ball we randomly
and uniformly pick a bin from the n available bins, and place the ball in the bin picked). What
is the maximum number of balls in any bin? What is the number of bins which are empty? How
many balls do we have to throw, such that all the bins are non-empty, with reasonable probability?

Let Xi be the number of balls in the ith bins, when we throw n balls into n bins (i.e., m = n).
Clearly,

E[Xi] =
n∑
j=1

Pr
[
The jth ball fall in ith bin

]
= n · 1

n
= 1,

by linearity of expectation. The probability that the first bin has exactly i balls is(
n

i

)(
1
n

)i(
1− 1

n

)n−i
≤
(
n

i

)(
1
n

)i
≤
(ne
i

)i(1
n

)i
=
(e
i

)i
This follows by Lemma 3.1.6 (iv).

Let Cj(k) be the event that the jth bin has k or more balls in it. Then,

Pr[C1(k)] ≤
n∑
i=k

(e
i

)i
≤
(e
k

)k(
1 +

e

k
+
e2

k2
+ . . .

)
=
(e
k

)k 1
1− e/k

.

22

Let k∗ = d(3 lnn)/ ln lnne. Then,

Pr[C1(k∗)] ≤
(e
k∗

)k∗ 1
1− e/k∗

≤ 2
(

e

(3 lnn)/ ln lnn

)k∗
= 2
(
e1−ln 3−ln lnn+ln ln lnn

)k∗
≤ 2

(
e− ln lnn+ln ln lnn

)k∗
≤ 2 exp

(
−3 lnn+ 6 lnn

ln ln lnn
ln lnn

)
≤ 2 exp(−2.5 lnn) ≤ 1

n2
,

for n large enough. We conclude, that since there are n bins and they have identical distributions
that

Pr
[
any bin contains more than k balls

]
≤

n∑
i=1

Ci(k∗) ≤
1
n
.

Theorem 3.2.2 With probability at least 1 − 1/n, no bin has more than k∗ = d(3 lnn)/ ln lnne
balls in it.

Exercise 3.2.3 Show that for m = n lnn, with probability 1− o(1), every bin has O(log n) balls.

It is interesting to note, that if at each iteration we randomly pick d bins, and throw the ball
into the bin with the smallest number of balls, then one can do much better. We currently do not
have the machinery to prove the following theorem, but hopefully we would prove it later in the
course.

Theorem 3.2.4 Suppose that n balls are sequentially places into n bins in the following manner.
For each ball, d ≥ 2 bins are chosen independently and uniformly at random (with replacement).
Each ball is placed in the least full of the d bins at the time of placement, with ties broken randomly.
After all the balls are places, the maximum load of any bin is at most ln lnn/lnd + O(1), with
probability at least 1− o(1/n).

Note, even by setting d = 2, we get considerable improvement. A proof of this theorem can be
found in the work by Azar et al. [ABKU00].

3.2.1 The Probability of all bins to have exactly one ball

Next, we are interested in the probability that all m balls fall in distinct bins. Let Xi be the event
that the ith ball fell in a distinct bin from the first i− 1 balls. We have:

Pr

[
m⋂
i=2

Xi

]
= Pr[X2]

m∏
i=3

Pr

Xi

∣∣∣∣∣∣
i−1⋂
j=2

Xj

 ≤ m∏
i=2

(
n− i+ 1

n

)
≤

m∏
i=2

(
1− i− 1

n

)

≤
m∏
i=2

e−(i−1)/n ≤ exp
(
−m(m− 1)

2n

)
,

thus for m =
⌈√

2n+ 1
⌉
, the probability that all the m balls fall in different bins is smaller than

1/e.
This is sometime referred to as the birthday paradox. You have m = 30 people in the room, and

you ask them for the date (day and month) of their birthday (i.e., n = 365). The above shows that
the probability of all birthdays to be distinct is exp(−30 · 29/730) ≤ 1/e. Namely, there is more
than 50% chance for a birthday collision, a simple but counterintuitive phenomena.

23

3.3 The Markov and Chebyshev inequalities

We remind the reader that for a random variable X assuming real values, its expectation is E[Y] =∑
y y ·Pr[Y = y]. Similarly, for a function f(·), we have E[xf(Y)] =

∑
y f(y) ·Pr[Y = y].

Theorem 3.3.1 (Markov Inequality) Let Y be a random variable assuming only non-negative
values. Then for all t > 0, we have

Pr[Y ≥ t] ≤ E[Y]
t

Proof: Indeed,

E[Y] =
∑
y≥t

yPr[Y = y] +
∑
y<t

yPr[Y = y] ≥
∑
y≥t

yPr[Y = y]

≥
∑
y≥t

tPr[Y = y] = tPr[Y ≥ t] .

Markov inequality is tight, to see that:

Exercise 3.3.2 Define a random positive variable X, such that Pr[X ≥ kE[X]] = 1
k .

Theorem 3.3.3 (Chebyshev inequality) Pr[|X − µX | ≥ tσX] ≤ 1
t2

.

Proof: Note that
Pr[|X − µX | ≥ tσX] = Pr

[
(X − µX)2 ≥ t2σ2

X

]
.

Set Y =(X − µX)2. Clearly, E[Y] = σ2
X . Now, apply Markov inequality to Y .

3.4 The Coupon Collector’s Problem

There are n types of coupons, and at each trial one coupon is picked in random. How many trials
one has to perform before picking all coupons? Let m be the number of trials performed. We
would like to bound the probability that m exceeds a certain number, and we still did not pick all
coupons.

Let Ci ∈ {1, . . . , n} be the coupon picked in the i-th trial. The j-th trial is a success, if Cj was
not picked before in the first j − 1 trials. Let Xi denote the number of trials from the i-th success,
till after the (i+ 1)-th success. Clearly, the number of trials performed is

X =
n−1∑
i=0

Xi.

Clearly, the probability of Xi to succeed in a trial is pi = n−i
n , and Xi has geometric distribution

with probability pi. As such E[Xi] = 1/pi, and var[Xi] = q/p2 = (1− pi)/p2
i .

Thus,

E[X] =
n−1∑
i=0

E[Xi] =
n−1∑
i=0

n

n− i
= nHn = n(lnn+ Θ(1)) = n lnn+O(n),

where Hn =
∑n

i=1
1
i is the n-th Harmonic number.

24

As for variance, using the independence of X0, . . . , Xn−1, we have

V[X] =
n−1∑
i=0

V[Xi] =
n−1∑
i=0

1− pi
p2
i

=
n−1∑
i=0

1− (n− i)/n(
n−i
n

)2 =
n−1∑
i=0

i/n(
n−i
n

)2 =
n−1∑
i=0

i

n

(
n

n− i

)2

= n

n−1∑
i=0

i

(n− i)2
= n

n∑
i=1

n− i
i2

= n

(
n∑
i=1

n

i2
−

n∑
i=1

1
i

)
= n2

n∑
i=1

1
i2
− nHn.

Since, limn→∞
∑n

i=1
1
i2

= π2/6, we have limn→∞
V[X]
n2 = π2

6 .
This implies a weak bound on the concentration of X, using Chebyshev inequality, but this is

going to be quite weaker than what we implied we can do. Indeed, we have

Pr
[
X ≥ n log n+ n+ t · n π√

6

]
≤ Pr

[
|X −E[X]| ≥ tV[X]

]
≤ 1
t2
,

for any t.
Stronger bounds will be shown in the next lecture.

3.5 Notes

The material in this note covers parts of [MR95, sections 3.1,3.2,3.6]

25

26

Chapter 4

The Occupancy and Coupon Collector
problems - part II
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

4.1 The Coupon Collector’s Problem Revisited

There are n types of coupons, and at each trial one coupon is picked in random. How many trials
one has to perform before picking all coupons? Let m be the number of trials performed. We
would like to bound the probability that m exceeds a certain number, and we still did not pick all
coupons.

In the previous lecture, we showed that

Pr
[
of trials ≥ n log n+ n+ t · n π√

6

]
≤ 1
t2
,

for any t.
A stronger bound, follows from the following observation. Let Zri denote the event that the i-th

coupon was not picked in the first r trials. Clearly,

Pr[Zri] =
(

1− 1
n

)r
≤ e−r/n.

Thus, for r = βn log n, we have Pr[Zri] ≤ e−(βn logn)/n = n−β. Thus,

Pr[X > βn log n] ≤ Pr

[⋃
i

Zβn logn
i

]
≤ n ·Pr[Z1] ≤ n−β+1.

This is quite strong, but still not as strong as we can do.

Lemma 4.1.1 Let c > 0 be a constant, m = n lnn + cn for a positive integer n. Then for any
constant k, we have

lim
n→∞

(
n

k

)(
1− k

n

)m
=

exp(−ck)
k!

.

Proof: By Lemma 4.3.1, we have(
1− k2m

n2

)
exp
(
−km

n

)
≤
(

1− k

n

)m
≤ exp

(
−km

n

)
.

27

Observe also that limn→∞

(
1− k2m

n

)
= 1, and exp(−km/n) = n−k exp(−ck). Also,

lim
n→∞

(
n

k

)
k!
nk

= lim
n→∞

n(n− 1) · · · (n− k + 1)
nk

= 1.

Thus,

lim
n→∞

(
n

k

)(
1− k

n

)m
= lim

n→∞

nk

k!
exp
(
−km

n

)
= lim

n→∞

nk

k!
n−k exp(−ck) =

exp(−ck)
k!

.

Theorem 4.1.2 Let the random variable X denote the number of trials for collecting each of the
n types of coupons. Then, for any constant c ∈ IR, and m = n lnn+ cn, we have

lim
n→∞

Pr[X > m] = 1− exp
(
−e−c

)
.

Before dwelling into the proof, observe that 1 − exp(−e−c) ≈ 1 −(−e−c) = e−c, as such the
bound in the above theorem is indeed a considerable improvement over the previous bounds.

Proof: We have Pr[X > m] = Pr[∪iZmi]. By inclusion-exclusion, we have

Pr

[⋃
i

Zmi

]
=

n∑
i=1

(−1)i+1Pni ,

where

Pnj =
∑

1≤i1<i2<...<ij≤n
Pr

[
j⋂

v=1

Zmiv

]
.

Let Snk =
∑k

i=1(−1)i+1Pni . We know that Sn2k ≤ Pr[
⋃
i Z

m
i] ≤ Sn2k+1.

By symmetry,

Pnk =
(
n

k

)
Pr

[
k⋂
v=1

Zmv

]
=
(
n

k

)(
1− k

n

)m
,

Thus, Pk = limn→∞ Pnk = exp(−ck)/k!, by Lemma 4.1.1.
Let

Sk =
k∑
j=1

(−1)j+1Pj =
k∑
j=1

(−1)j+1 · exp(−cj)
j!

Clearly, limk→∞ Sk = 1− exp(−e−c) by the Taylor expansion of exp(x) for x = −e−c. Indeed,

exp(x) =
∞∑
j=0

xj

j!
=

∞∑
j=0

(−e−c)j

j!
= 1 +

∞∑
j=0

(−1)j e−cj

j!

Clearly, limn→∞ Snk = Sk and limk→∞ Sk = 1− exp(−e−c). Thus, (using fluffy math), we have

lim
n→∞

Pr[X > m] = lim
n→∞

Pr[∪ni=1Z
m
i] = lim

n→∞
lim
k→∞

Snk = lim
k→∞

Sk = 1− exp
(
−e−c

)
.

28

Func LazySelect(S, k)
Input: S - set of n elements, k - index of element to be output.

begin
repeat

R←
{
Sample with replacement of n3/4 elements from S

}
∪{−∞,+∞}.

Sort R.
l← max

(
1,
⌊
kn−1/4 −

√
n
⌋)

, h← min
(
n3/4,

⌊
kn−1/4 +

√
n
⌋)

a← R(l), b← R(h).
Compute the ranks rS(a) and rS(b) of b in S

/* using 2n comparisons */

P ←
{
y ∈ S

∣∣∣ a ≤ y ≤ b}
/* done when computing the rank of a and b */

Until (rS(a) ≤ k ≤ rS(b)) and
(
|P | ≤ 8n3/4 + 2

)
Sort P in O(n3/4 log n) time.
return Pk−rS(a)+1

end LazySelect

Figure 4.1: The LazySelect algorithm.

4.2 Randomized Selection

We are given a set S of n distinct elements, with an associated ordering. For t ∈ S, let rS(t) denote
the rank of t (the smallest element in S has rank 1). Let S(i) denote the i-th element in the sorted
list of S.

Given k, we would like to compute Sk (i.e., select the k-th element). The code of LazySelect
is depicted in Figure 4.1.

Exercise 4.2.1 Show how to compute the ranks of rS(a) and rS(b), such that the expected number
of comparisons performed is 1.5n.

Consider the element S(k) and where it is mapped to in the random sample R. Consider the
interval of values

I(j) =
[
R(α(j)), R(β(j))

]
,

where α(j) = j · n−1/4 −
√
n and β(j) = j · n−1/4 +

√
n.

Lemma 4.2.2 For a fixed j, we have that Pr
[
S(j) ∈ I(j)

]
≥ 1− 1/(4n1/4).

Proof: There are two possible bad events: (i) a > S(j) and (ii) b < S(j), where a = R(α(j)) and
b = R(β(j)). Let Xi be an indicator variable which is 1 if the ith sample is smaller equal to S(j),

otherwise 0. We have p = Pr[Xi] = j/n, q = 1− j/n, and let X =
∑n3/4

i=1 Xi. The random variable
X is the rank of S(j) in the random sample. Clearly, X ∼ Bin(n3/4, j/n) (i.e., X has a binomial
distribution with p = j/n, and n3/4 trials).

By Chebyshev inequality

Pr
[
|X − pn3/4| ≥ t

√
n3/4pq

]
≤ 1
t2
.

29

Since pn3/4 = jn−1/4 and
√
n3/4(j/n)(1− j/n) ≤ n3/8/2, we have that the probability of a > S(j)

or b > S(j) is

Pr
[
X < (jn−1/4 −

√
n) or X > (jn−1/4 −

√
n)
]

= Pr

[
|X − jn−1/4| ≥ 2n1/8 · n

3/8

2

]
≤ 1(

2n1/8
)2 =

1
4n1/4

.

Lemma 4.2.3 LazySelect succeeds with probability ≥ 1 − O(n−1/4) in the first iteration. And
it performs only 2n+ o(n) comparisons.

Proof: By Lemma 4.2.2, we know that S(k) ∈ I(k) with probability ≥ 1− 1/(4n1/4). This in turn
implies that S(k) ∈ P . Thus, the only possible bad event is that the set P is too large. To this end,
set k− = k − 3n3/4 and k+ = k + 3n3/4, and observe that, by definition, it holds I(k−) ∩ I(k) = ∅
and I(k) ∩ I(k+) = ∅. As such, we know by Lemma 4.2.2, that S(k−) ∈ I(k−) and S(k+) ∈ I(k+),
and this holds with probability ≥ 1− 2

4n1/4 . As such, the set P , which is by definition contained in
the range I(k), has only elements that are larger than S(k−) and smaller than S(k+). As such, the
size of P is bounded by k+ − k− = 6n3/4. Thus, the algorithm succeeds in the first iteration, with
probability ≥ 1− 3

4n1/4 .
As for the number of comparisons, an iteration requires

O(n3/4 log n) + 2n+O(n3/4 log n) = 2n+ o(n)

comparisons
Any deterministic selection algorithm requires 2n comparisons, and LazySelect can be changed

to require only 1.5n+ o(n) comparisons (expected).

4.3 A technical lemma

Lemma 4.3.1 For any y ≥ 1, and |x| ≤ 1, we have(
1− x2y

)
exy ≤(1 + x)y ≤ exy

Proof: The right side of the inequality is standard by now. As for the left side, we prove it for
x ≥ 0. Let us first prove that

(1− x2)ex ≤ 1 + x.

Dividing by (1 + x), we get (1 − x)ex ≤ 1, which obviously holds by the Taylor expansion of ex.
Indeed,

(1− x)ex = ex − xex = 1 + x/1! + x2/2! + x3/3! . . .
−x− x2/1!− x3/2! . . . ≤ 1.

Next, observe that (1− x2)y ≥ 1− yx2, for y ≥ 1. As such,(
1− x2y

)
exy ≤ (1− x2)yexy =

(
(1− x2)ex

)y ≤(1 + x)y ≤ exy.

A similar argumentation works for x ≤ 0.

30

Chapter 5

Sampling and other Stuff
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

5.1 Two-Point Sampling

5.1.1 About Modulo Rings and Pairwise Independence

Let p be a prime number, and let ZZp = {0, 1, . . . , p− 1} denote the ring of integers modules p. Two
integers a, b are equivalent modulo p, if a ≡ p mod p; namely, the reminder of dividing a and b by
p is the same.

Lemma 5.1.1 Given y, i ∈ ZZp, and choosing a, b randomly and uniformly from ZZp, the probability
of y ≡ ai+ b (mod p) is 1/p.

Proof: Imagine that we first choose a, then the required probability, is that we choose b such
that y − ai ≡ b (mod p). And the probability for that is 1/p, as we choose b uniformly.

Lemma 5.1.2 Given y, z, x, w ∈ ZZp, such that x 6= w, and choosing a, b randomly and uniformly
from ZZp, the probability that y ≡ ax+ b (mod p) and z = aw + b (mod p) is 1/p2.

Proof: This equivalent to claiming that the system of equalities y ≡ ax+ b (mod p) and z = aw+ b
have a unique solution in a and b.

To see why this is true, subtract one equation from the other. We get y−z ≡ a(x−w) (mod p).
Since x−w 6≡ 0 (mod p), it must be that there is a unique value of a such that the equation holds.
This in turns, imply a specific value for b. The probability that a and b get those two specific values
is 1/p2.

Lemma 5.1.3 Let i, j be two distinct elements of ZZp. And choose a, b randomly and independently
from ZZp. Then, the two random variables Yi = ai+b (mod p) and Yj = aj+b (mod p) are uniformly
distributed on ZZp, and are pairwise independent.

Proof: The claim about the uniform distribution follows from Lemma 5.1.1, as Pr[Yi = α] = 1/p,
for any α ∈ ZZp. As for being pairwise independent, observe that

Pr
[
Yi = α

∣∣∣Yj = β
]

=
Pr[Yi = α ∩ Yj = β]

Pr[Yj = β]
=

1/n2

1/n
=

1
n

= Pr[Yi = α] ,

by Lemma 5.1.1 and Lemma 5.1.2. Thus, Yi and Yj are pairwise independent.

31

Remark 5.1.4 It is important to understand what independence between random variables mean:
It means that having information about the value of X, gives you no information about Y . But this
is only pairwise independence. Indeed, consider the variables Y1, Y2, Y3, Y4 defined above. Every
pair of them are pairwise independent. But, if you give the value of Y1 and Y2, I know the value of
Y3 and Y4 immediately. Indeed, giving me the value of Y1 and Y2 is enough to figure out the value
of a and b. Once we know a and b, we immediately can compute all the Yis.

Thus, the notion of independence can be extended k-pairwise independence of n random vari-
ables, where only if you know the value of k variables, you can compute the value of all the other
variables. More on that later in the course.

Lemma 5.1.5 Let X1, X2, . . . , Xn be pairwise independent random variables, and X =
∑n

i=1Xi.
Then V[X] =

∑n
i=1 V[Xi].

Proof: Observe, that

V[X] = E
[
(X −E[X])2

]
= E

[
X2
]
−(E[X])2 .

Let X and Y be pairwise independent variables. Observe that E[XY] = E[X]E
[
Y
]
, as can be

easily verified. Thus,

V[X + Y] = E
[
(X + Y −E[X]−E[Y])2

]
= E

[
(X + Y)2 − 2(X + Y)(E[X] + E[Y]) +(E[X] + E[Y])2

]
= E

[
(X + Y)2

]
−(E[X] + E[Y])2

= E
[
X2 + 2XY + Y 2

]
−(E[X])2 − 2E[X]E[Y]−(E[Y])2

=
(
E
[
X2
]
−(E[X])2

)
+
(
E
[
Y 2
]
−(E[Y])2

)
+ 2E[XY]− 2E[X]E[Y]

= V[X] + V[Y] + +2E[X]E[Y]− 2E[X]E[Y]
= V[X] + V[Y] .

Using the above argumentation for several variables, instead of just two, implies the lemma.

5.1.2 Using less randomization for a randomized algorithm

We can consider a randomized algorithm, to be a deterministic algorithm A(x, r) that receives
together with the input x, a random string r of bits, that it uses to read random bits from. Let us
redefine RP:

Definition 5.1.6 The class RP (for Randomized Polynomial time) consists of all languages L that
have a deterministic algorithm A(x, r) with worst case polynomial running time such that for any
input x ∈ Σ∗,

• x ∈ L⇒ A(x, r) = 1 for half the possible values of r.

• x /∈ L⇒ A(x, r) = 0 for all values of r.

Let assume that we now want to minimize the number of random bits we use in the execution of
the algorithm (Why?). If we run the algorithm t times, we have confidence 2−t in our result, while
using t log n random bits (assuming our random algorithm needs only log n bits in each execution).

32

Similarly, let us choose two random numbers from ZZn, and run A(x, a) and A(x, b), gaining us only
confidence 1/4 in the correctness of our results, while requiring 2 log n bits.

Can we do better? Let us define ri = ai + b mod n, where a, b are random values as above
(note, that we assume that n is prime), for i = 1, . . . , t. Thus Y =

∑t
i=1A(x, ri) is a sum of random

variables which are pairwise independent, as the ri are pairwise independent. Assume, that x ∈ L,
then we have E[Y] = t/2, and σ2

Y = V[Y] =
∑t

i=1 var
[
A(x, ri)

]
≤ t/4, and σY ≤

√
t/2. The

probability that all those executions failed, corresponds to the event that Y = 0, and

Pr[Y = 0] ≤ Pr
[
|Y −E[Y]| ≥ t

2

]
= Pr

[
|Y −E[Y]| ≥

√
t

2
·
√
t

]
≤ 1
t
,

by the Chebyshev inequality. Thus we were able to “extract” from our random bits, much more
than one would naturally suspect is possible.

5.2 Chernoff Inequality - A Special Case

Theorem 5.2.1 Let X1, . . . , Xn be n independent random variables, such that Pr[Xi = 1] = Pr[Xi = −1] =
1
2 , for i = 1, . . . , n. Let Y =

∑n
i=1Xi. Then, for any ∆ > 0, we have

Pr[Y ≥ ∆] ≤ e−∆2/2n.

Proof: Clearly, for an arbitrary t, to specified shortly, we have

Pr[Y ≥ ∆] = Pr[exp(tY) ≥ exp(t∆)] ≤ E[exp(tY)]
exp(t∆)

,

the first part follows by the fact that exp(·) preserve ordering, and the second part follows by the
Markov inequality.

Observe that

E[exp(tXi)] =
1
2
et +

1
2
e−t =

et + e−t

2

=
1
2

(
1 +

t

1!
+
t2

2!
+
t3

3!
+ · · ·

)
+

1
2

(
1− t

1!
+
t2

2!
− t3

3!
+ · · ·

)
=

(
1 + +

t2

2!
+ + · · ·+ t2k

(2k)!
+ · · ·

)
,

by the Taylor expansion of exp(·). Note, that (2k)! ≥ (k!)2k, and thus

E[exp(tXi)] =
∞∑
i=0

t2i

(2i)!
≤

∞∑
i=0

t2i

2i(i!)
=

∞∑
i=0

1
i!

(
t2

2

)i
= exp

(
t2/2

)
,

again, by the Taylor expansion of exp(·). Next, by the independence of the Xis, we have

E[exp(tY)] = E

[
exp

(∑
i

tXi

)]
= E

[∏
i

exp(tXi)

]
=

n∏
i=1

E[exp(tXi)]

≤
n∏
i=1

et
2/2 = ent

2/2.

33

We have

Pr[Y ≥ ∆] ≤
exp
(
nt2/2

)
exp(t∆)

= exp
(
nt2/2− t∆

)
.

Next, by minimizing the above quantity for t, we set t = ∆/n. We conclude,

Pr[Y ≥ ∆] ≤ exp

(
n

2

(
∆
n

)2

− ∆
n

∆

)
= exp

(
−∆2

2n

)
.

By the symmetry of Y , we get the following:

Corollary 5.2.2 Let X1, . . . , Xn be n independent random variables, such that Pr[Xi = 1] =
Pr[Xi = −1] = 1

2 , for i = 1, . . . , n. Let Y =
∑n

i=1Xi. Then, for any ∆ > 0, we have

Pr[|Y | ≥ ∆] ≤ 2e−∆2/2n.

Corollary 5.2.3 Let X1, . . . , Xn be n independent coin flips, such that Pr[Xi = 0] = Pr[Xi = 1] =
1
2 , for i = 1, . . . , n. Let Y =

∑n
i=1Xi. Then, for any ∆ > 0, we have

Pr
[∣∣∣Y − n

2

∣∣∣ ≥ ∆
]
≤ 2e−2∆2/n.

Remark 5.2.4 Before going any further, it is might be instrumental to understand what this
inequalities imply. Consider then case where Xi is either zero or one with probability half. In this
case µ = E[Y] = n/2. Set δ = t

√
n (
√
µ is approximately the standard deviation of X if pi = 1/2).

We have by

Pr
[∣∣∣Y − n

2

∣∣∣ ≥ ∆
]
≤ 2 exp

(
−2∆2/n

)
= 2 exp

(
−2(t

√
n)2/n

)
= 2 exp

(
−2t2

)
.

Thus, Chernoff inequality implies exponential decay (i.e., ≤ 2−t) with t standard deviations, instead
of just polynomial (i.e., ≤ 1/t2) by the Chebychev’s inequality.

5.2.1 Application – QuickSort is Quick

We revisit QuickSort. We remind the reader that the running time of QuickSort is proportional
to the number of comparisions performed by the algorithm. Next, consider an arbitrary element u
being sorted. Consider the ith level recursive subproblem that contains u, and let Si be the set of
elements in this subproblems. We consider u to be successful in the ith level, if |Si+1| ≤ |Si| /2.
Namely, if u is successful, then the next level in the recursion involing u would include a considerably
smaller subproblem. Let Xi be the indicator variable which is 1 if u is successful.

We first observe that if QuickSort is applied to an array with n elements, then u can be
successful at most T = dlg ne times, before the subproblem it participates in is of size one, and the
recurssion stops. Thus, consider the indicator variable Xi which is 1 if u is successful in the ith
level, and zero otherwise. Note that the Xis are independent, and Pr[Xi = 1] = 1/2.

If u participates in v levels, then we have the random variables X1, X2, . . . , Xv. To make things
simpler, we will extend this series by adding indpendent random variables, such that Pr[‘]Xi = 1 =
1/2, for i ≥ v. Thus, we have an infinite sequence of independent random variables, that are 0/1
and get 1 with probablity 1/2. The question is how many elements in the sequence we need to
read, till we get T ones.

34

Lemma 5.2.5 Let X1, X2, . . . be an infinite sequence of indpendent random 0/1 variables. Let
M be an arbitrary parameter. Then the probability that we need to read more than 2M + 4t

√
M

variables of this sequence till we collect M ones is at most 2 exp
(
−t2
)
, for t ≤

√
M . If t ≥

√
M

then this probablity is at most 2 exp
(
−t
√
M
)
.

Proof: Consider the random variable Y =
∑L

i=1Xi, where L = 2M + 4t
√
M . Its expectation is

L/2, and using the Chernoff inequality, we get

α = Pr[Y ≤M] ≤ Pr
[∣∣∣∣Y − L

2

∣∣∣∣ ≥ L

2
−M

]
≤ 2 exp

(
− 2
L

(
L

2
−M

)2
)

≤ 2 exp
(
− 2
L

(
M + 2t

√
M −M

)2
)
≤ 2 exp

(
− 2
L

(
2t
√
M
)2
)

= 2 exp
(
−8t2M

L

)
,

by Corollary 5.2.3. For t ≤
√
M we have that L = 2M + 4t

√
M ≤ 8M , as such in this case

Pr[Y ≤M] ≤ 2 exp
(
−t2
)
.

If t ≥
√
M , then α = 2 exp

(
− 8t2M

2M + 4t
√
M

)
≤ 2 exp

(
− 8t2M

6t
√
M

)
≤ 2 exp

(
−t
√
M
)
.

Going back to the QuickSort problem, we have that if we sort n elements, the probablity
that u will participate in more than L = (4 + c) dlg ne = 2 dlg ne + 4c

√
lg n
√

lg n, is smaller than
2 exp

(
−c
√

lg n
√

lg n
)
≤ 1/nc, by Lemma 5.2.5. There are n elements being sorted, and as such

the probablity that any element would partiticpate in more than (4 + c+ 1) dlg ne recursive calls is
smaller than 1/nc.

Lemma 5.2.6 For any c > 0, the probablity that QuickSort performs more than (6 + c)n lg n, is
smaller than 1/nc.

35

36

Chapter 6

Chernoff Inequality - Part II
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

6.1 Tail Inequalities

6.1.1 The Chernoff Bound — General Case

Here we present the Chernoff bound in a more general settings.

Question 6.1.1 Let X1, . . . , Xn be n independent Bernoulli trials, where

Pr[Xi = 1] = pi, and Pr[Xi = 0] = qi = 1− pi.

(Each Xi is known as a Poisson trials.) And let X =
∑b

i=1Xi. µ = E[X] =
∑

i pi. We are
interested in the question of what is the probability that X > (1 + δ)µ?

Theorem 6.1.2 For any δ > 0, we have Pr[X > (1 + δ)µ] <
(

eδ

(1 + δ)1+δ

)µ
.

Or in a more simplified form, for any δ ≤ 2e− 1,

Pr[X > (1 + δ)µ] < exp
(
−µδ2/4

)
, (6.1)

and
Pr[X > (1 + δ)µ] < 2−µ(1+δ), (6.2)

for δ ≥ 2e− 1.

Proof: We have Pr[X > (1 + δ)µ] = Pr
[
etX > et(1+δ)µ

]
. By the Markov inequality, we have:

Pr[X > (1 + δ)µ] <
E
[
etX
]

et(1+δ)µ

On the other hand,

E
[
etX
]

= E
[
et(X1+X2...+Xn)

]
= E

[
etX1

]
· · ·E

[
etXn

]
.

Namely,

Pr[X > (1 + δ)µ] <
∏n
i=1 E

[
etXi

]
et(1+δ)µ

=
∏n
i=1

(
(1− pi)e0 + pie

t
)

et(1+δ)µ
=
∏n
i=1

(
1 + pi(et − 1)

)
et(1+δ)µ

.

37

Let y = pi(et − 1). We know that 1 + y < ey (since y > 0). Thus,

Pr[X > (1 + δ)µ] <

∏n
i=1 exp(pi(et − 1))

et(1+δ)µ
. =

exp
(∑n

i=1 pi(e
t − 1)

)
et(1+δ)µ

=
exp
(
(et − 1)

∑n
i=1 pi

)
et(1+δ)µ

=
exp
(
(et − 1)µ

)
et(1+δ)µ

=

(
exp
(
et − 1

)
et(1+δ)

)µ
=
(

exp(δ)
(1 + δ)(1+δ)

)µ
,

if we set t = log(1 + δ).
For the proof of the simplified form, see Section 6.1.2.

Definition 6.1.3 F+(µ, δ) =
[

eδ

(1+δ)(1+δ)

]µ
.

Example 6.1.4 Arkansas Aardvarks win a game with probability 1/3. What is their probability
to have a winning season with n games. By Chernoff inequality, this probability is smaller than

F+(n/3, 1/2) =

[
e1/2

1.51.5

]n/3
= (0.89745)n/3 = 0.964577n.

For n = 40, this probability is smaller than 0.236307. For n = 100 this is less than 0.027145. For
n = 1000, this is smaller than 2.17221 · 10−16 (which is pretty slim and shady). Namely, as the
number of experiments is increases, the distribution converges to its expectation, and this converge
is exponential.

Theorem 6.1.5 Under the same assumptions as Theorem 6.1.2, we have:

Pr[X < (1− δ)µ] < e−µδ
2/2.

Definition 6.1.6 F−(µ, δ) = e−µδ
2/2.

Let ∆−(µ, ε) denote the quantity, which is what should be the value of δ, so that the probability
is smaller than ε. We have that

∆−(µ, ε) =

√
2 log 1/ε

µ
.

And for large δ

∆+(µ, ε) <
log2 (1/ε)

µ
− 1.

6.1.2 A More Convenient Form

Proof: (of simplified form of Theorem 6.1.2) Eq. (6.2) is easy. Indeed, we have[
e

1 + δ

](1+δ)µ

≤
[

e

1 + 2e− 1

](1+δ)µ

≤ 2−(1+δ)µ,

since δ > 2e− 1.

38

Values Probabilities Inequality Ref
−1,+1 Pr[Xi = −1] = Pr[Y ≥ ∆] ≤ e−∆2/2n Theorem 5.2.1

Pr[Xi = 1] = 1
2 Pr[Y ≤ −∆] ≤ e−∆2/2n Theorem 5.2.1

Pr[|Y | ≥ ∆] ≤ 2e−∆2/2n Corollary 5.2.2

0, 1
Pr[Xi = 0] =

Pr[Xi = 1] = 1
2

Pr
[∣∣Y − n

2

∣∣ ≥ ∆
]
≤ 2e−2∆2/n Corollary 5.2.3

0,1
Pr[Xi = 0] = 1− pi
Pr[Xi = 1] = pi

Pr[Y > (1 + δ)µ] <
(

eδ

(1+δ)1+δ

)µ
Theorem 6.1.2

For δ ≤ 2e− 1 Pr[Y > (1 + δ)µ] < exp
(
−µδ2/4

)
Theorem 6.1.2

δ ≥ 2e− 1 Pr[Y > (1 + δ)µ] < 2−µ(1+δ)

For δ ≥ 0 Pr[Y < (1− δ)µ] < exp
(
−µδ2/2

)
Theorem 6.1.5

Table 6.1: Summary of Chernoff type inequalities covered. Here we have n variables X1, . . . , Xn,
Y =

∑
iXi and µ = E[Y].

As for Eq. (6.1), we prove this only for δ ≤ 1/2. For details about the case 1/2 ≤ δ ≤ 2e − 1,
see [MR95]. By Theorem 6.1.2, we have

Pr[X > (1 + δ)µ] <
(

eδ

(1 + δ)1+δ

)µ
= exp(µδ − µ(1 + δ) ln(1 + δ)) .

The Taylor expansion of ln(1 + δ) is

δ − δ2

2
+
δ3

3
− δ4

4
+ · ≥ δ − δ2

2
,

for δ ≤ 1. Thus,

Pr[X > (1 + δ)µ] < exp
(
µ
(
δ −(1 + δ)

(
δ − δ2/2

)))
= exp

(
µ
(
δ − δ + δ2/2− δ2 + δ3/2

))
≤ exp

(
µ
(
−δ2/2 + δ3/2

))
≤ exp

(
−µδ2/4

)
,

for δ ≤ 1/2.

6.2 Application of the Chernoff Inequality – Routing in a Parallel
Computer

The following is based on Section 4.2 in [MR95].
Let G be a graph of a network, where every node is a processor. The processor communicate

by sending packets on the edges. Let [1, . . . , N] denote be vertices (i.e., processors) of G, where
N = 2n, and G is the hypercube. As such, each processes is a binary string b1b2 . . . bn.

We want to investigate the best routing strategy for this topology of network. We assume that
every processor need to send a message to a single other processor. This is representation by a
permutation π, and we would like to figure out how to send the permutation and create minimum
delay?

In our model, every edge has a FIFO queue of the packets it has to transmit. At every clock
tick, one message get sent. All the processors start sending the packets in their permutation in the
same time.

39

(i) Pick a random intermediate destination σ(i) from [1, . . . , N]. Packet vi
travels to σ(i).

(ii) Wait till all the packets arrive to their intermediate destination.

(iii) Packet vi travels from σ(i) to its destination d(i).

Figure 6.1: The routing algorithm

Theorem 6.2.1 For any deterministic oblivious permutation routing algorithm on a network of N
nodes each of out-degree n, there is a permutation for which the routing of the permutation takes
Ω(
√
N/n) time.

Oblivious here refers to the fact that the routing of packet is determined only by inspecting
only the packet, and without referring to other things in the network.

How do we sent a packet? We use bit fixing. Namely, the packet from the i node, always go
to the current adjacent node that have the first different bit as we scan the destination string d(i).
For example, packet from (0000) going to (1101), would pass through (1000), (1100), (1101).

We assume each edge have a FIFO queue. The routing algorithm is depicted in Figure 6.1.
We analyze only (i) as (iii) follows from the same analysis. In the following, let ρi denote the

route taken by vi in (i).

Exercise 6.2.2 Once a packet vj that travel along a path ρj can not leave a path ρi, and then
join it again later. Namely, ρi ∩ ρj is (maybe an empty) path.

Lemma 6.2.3 Let the route of a message c follow the sequence of edges π = (e1, e2, . . . , ek). Let S
be the set of packets whose routes pass through at least one of (e1, . . . , ek). Then, the delay incurred
by c is at most |S|.

Proof: A packet in S is said to leave π at that time step at which it traverses an edge of π for
the last time. If a packet if ready to follow edge ej at time t, we define its lag at time t to be t− j.
The lag of c is initially zero, and the delay incurred by c is its lag when it traverse ek. We will
show that each step at which the lag of c increases by one can be charged to a distinct member of
S.

We argue that if the lag of c reaches `+ 1, some packet in S leaves π with lag `. When the lag
of c increases from ` to ` + 1, there must be at least one packet (from S) that wishes to traverse
the same edge as c at that time step, since otherwise c would be permitted to traverse this edge
and its lag would not increase. Thus, S contains at least one packet whose lag reach the value `.

Let τ be the last time step at which any packet in S has lag `. Thus there is a packet d ready
to follow edge eµ at τ , such that τ − µ = `. We argue that some packet of S leaves π at τ ; this
establishes the lemma since once a packet leaves π, it would never join it again and as such will
never again delay c.

Since d is ready to follow eµ at τ , some packet ω (which may be d itself) in S follows eµ at
time τ . Now ω leaves π at time τ ; if not, some packet will follow eµ+1 at step µ+ 1 with lag still
at `, violating the maximality of τ . We charge to ω the increase in the lag of c from ` to ` + 1;
since ω leaves π, it will never be charged again. Thus, each member of S whose route intersects π
is charge for at most one delay, establishing the lemma.

40

Let Hij be an indicator variable that is 1 if ρi and ρj share an edge, and 0 otherwise. The
total delay for vi is at most ≤

∑
j Hij . Note, that for a fixed i, the variables Hi1, . . . ,HiN are

independent (note however, that H11, . . . ,HNN are not independent!). For ρi = (e1, . . . , ek), let
T (e) be the number of packets (i.e., paths) that pass through e.

N∑
j=1

Hij ≤
k∑
j=1

T (ej) and thus E

 N∑
j=1

Hij

 ≤ E
 k∑
j=1

T (ej)

 .
Because of symmetry, the variables T (e) have the same distribution for all the edges of G. On the
other hand, the expected length of a path is n/2, there are N packets, and there are Nn/2 edges.
We conclude E[T (e)] = 1. Thus

µ = E

 N∑
j=1

Hij

 ≤ E
 k∑
j=1

T (ej)

 = E
[
|ρi|
]
≤ n

2
.

By the Chernoff inequality, we have

Pr

∑
j

Hij > 7n

 ≤ Pr

∑
j

Hij > (1 + 13)µ

 < 2−13µ ≤ 2−6n.

Since there are N = 2n packets, we know that with probability ≤ 2−5n all packets arrive to their
temporary destination in a delay of most 7n.

Theorem 6.2.4 Each packet arrives to its destination in ≤ 14n stages, in probability at least
1− 1/N (note that this is very conservative).

6.3 Application of the Chernoff Inequality – Faraway Strings

Consider the Hamming distance between binary strings. It is natural to ask how many strings of
length n can one have, such that any pair of them, is of Hamming distance at least t from each other.
Consider two random strings, generated by picking at each bit randomly and independently. Thus,
E[dH(x, y)] = n/2, where dH(x, y) denote the hamming distance between x and y. In particular,
using the Chernoff inequality, we have that

Pr[dH(x, y) ≤ n/2−∆] ≤ exp
(
−2∆2/n

)
.

Next, consider generating M such string, where the value of M would be determined shortly.
Clearly, the probability that any pair of strings are at distance at most n/2−∆, is

α ≤
(
M

2

)
exp
(
−2∆2/n

)
< M2 exp

(
−2∆2/n

)
.

If this probability is smaller than one, then there is some probability that all the M strings are of
distance at least n/2−∆ from each other. Namely, there exists a set of M strings such that every
pair of them is far. We used here the fact that if an event has probability larger than zero, then it
exists. Thus, set ∆ = n/4, and observe that

α < M2 exp
(
−2n2/16n

)
= M2 exp(−n/8) .

Thus, for M = exp(n/16), we have that α < 1. We conclude:

41

Lemma 6.3.1 There exists a set of exp(n/16) binary strings of length n, such that any pair of
them is at Hamming distance at least n/4 from each other.

This is our first introduction to the beautiful technique known as the probabilistic method —
we will hear more about it later in the course.

This result has also interesting interpretation in the Euclidean setting. Indeed, consider the
sphere S of radius

√
n/2 centered at (1/2, 1/2, . . . , 1/2) ∈ IRn. Clearly, all the vertices of the binary

hypercube {0, 1}n lie on this sphere. As such, let P be the set of points on S that exists according to
Lemma 6.3.1. A pair p, q of points of P have Euclidean distance at least

√
dH(p, q) =

√
n4 =

√
n/2

from each other. We conclude:

Lemma 6.3.2 Consider the unit hypersphere S in IRn. The sphere S contains a set Q of points,
such that each pair of points is at (Euclidean) distance at least one from each other, and |Q| ≥
exp(n/16).

6.4 Bibliographical notes

The exposition here follows more or less the exposition in [MR95]. Exercise 6.5.1 (without the hint)
is from [Mat99]. A similar result to Theorem 6.2.4 is known for the case of the wrapped butterfly
topology (which is similar to the hypercube topology but every node has a constant degree, and
there is no clear symmetry). The interested reader is referred to [MU05].

6.5 Exercises

Exercise 6.5.1 [10 Points] Let S =
∑n

i=1 Si be a sum of n independent random variables each
attaining values +1 and −1 with equal probability. Let P (n,∆) = Pr[S > ∆]. Prove that for
∆ ≤ n/C,

P (n,∆) ≥ 1
C

exp
(
−∆2

Cn

)
,

where C is a suitable constant. That is, the well-known Chernoff bound P (n,∆) ≤ exp(−∆2/2n))
is close to the truth.

[Hint: Use Stirling’s formula. There is also an elementary solution, using estimates for the
middle binomial coefficients [MN98, pages 83–84], but this solution is considerably more involved
and yields unfriendly constants.]

Exercise 6.5.2 To some extent, Lemma 6.3.1 is somewhat silly, as one can prove a better bound
by direct argumentation. Indeed, for a fixed binary string x of length n, show a bound on the
number of strings in the Hamming ball around x of radius n/4 (i.e., binary strings of distance at
most n/4 from x). (Hint: interpret the special case of the Chernoff inequality as an inequality over
binomial coefficients.)

Next, argue that the greedy algorithm which repeatedly pick a string which is in distance ≥ n/4
from all strings picked so far, stops after picking at least exp(n/8) strings.

42

Chapter 7

Martingales
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

‘After that he always chose out a “dog command” and sent them ahead. It had the task of

informing the inhabitants in the village where we were going to stay overnight that no dog must

be allowed to bark in the night otherwise it would be liquidated. I was also on one of those

commands and when we came to a village in the region of Milevsko I got mixed up and told

the mayor that every dog-owner whose dog barked in the night would be liquidated for strategic

reasons. The mayor got frightened, immediately harnessed his horses and rode to headquarters

to beg mercy for the whole village. They didn’t let him in, the sentries nearly shot him and so

he returned home, but before we got to the village everybody on his advice had tied rags round

the dogs muzzles with the result that three of them went mad.’

– The good soldier Svejk, Jaroslav Hasek

7.1 Martingales

7.1.1 Preliminaries

Let X and Y be two random variables. Let ρ(x, y) = Pr[(X = x) ∩ (Y = y)]. Then,

Pr
[
X = x

∣∣∣Y = y
]

=
ρ(x, y)

Pr[Y = y]
=

ρ(x, y)∑
z ρ(z, y)

and

E
[
X
∣∣∣Y = y

]
=
∑
x

xPr
[
X = x

∣∣∣Y = y
]

=
∑

x xρ(x, y)∑
z ρ(z, y)

=
∑

x xρ(x, y)
Pr[Y = y]

.

Definition 7.1.1 The random variable E
[
X
∣∣∣Y] is the random variable f(y) = E

[
X
∣∣∣Y = y

]
.

Lemma 7.1.2 E
[
E
[
X
∣∣∣Y]] = E

[
Y
]
.

43

Proof:

E
[
E
[
X
∣∣∣Y]] = EY

[
E
[
X
∣∣∣Y = y

]]
=
∑
y

Pr[Y = y]E
[
X
∣∣∣Y = y

]
=

∑
y

Pr[Y = y]
∑

x xPr[X = x ∩ Y = y]
Pr[Y = y]

=
∑
y

∑
x

xPr[X = x ∩ Y = y] =
∑
x

x
∑
y

Pr[X = x ∩ Y = y]

=
∑
x

xPr[X = x] = E[X] .

Lemma 7.1.3 E
[
Y ·E

[
X
∣∣∣Y]] = E[XY].

Proof:

E
[
Y ·E

[
X
∣∣∣Y]] =

∑
y

Pr[Y = y] · y ·E
[
X
∣∣∣Y = y

]
=

∑
y

Pr[Y = y] · y ·
∑

x xPr[X = x ∩ Y = y]
Pr[Y = y]

=
∑
x

∑
y

xy ·Pr[X = x ∩ Y = y] = E
[
XY

]
.

7.1.2 Martingales

Definition 7.1.4 A sequence of random variables X0, X1, . . . , is said to be a martingale sequence
if for all i > 0, we have E

[
Xi

∣∣∣X0, . . . , Xi−1

]
= Xi−1.

Lemma 7.1.5 Let X0, X1, . . . , be a martingale sequence. Then, for all i ≥ 0, we have E[Xi] =
E[X0].

An example for martingales is the sum of money after participating in a sequence of fair bets.

Example 7.1.6 Let G be a random graph on the vertex set V = {1, . . . , n} obtained by indepen-
dently choosing to include each possible edge with probability p. The underlying probability space
is called Gn,p. Arbitrarily label the m = n(n− 1)/2 possible edges with the sequence 1, . . . ,m. For
1 ≤ j ≤ m, define the indicator random variable Ij , which takes values 1 if the edge j is present
in G, and has value 0 otherwise. These indicator variables are independent and each takes value 1
with probability p.

Consider any real valued function f defined over the space of all graphs, e.g., the clique number,
which is defined as being the size of the largest complete subgraph. The edge exposure martingale
is defined to be the sequence of random variables X0, . . . , Xm such that

Xi = E
[
f(G)

∣∣∣ I1, . . . , Ik] ,
whileX0 = E(f(G)] andXm = f(G). The fact that this sequence of random variable is a martingale
follows immediately from a theorem that would be described in the next lecture.

One can define similarly a vertex exposure martingale, where the graph Gi is the graph induced
on the first i vertices of the random graph G.

44

ADMIN
Highlight

Theorem 7.1.7 (Azuma’s Inequzality) Let X0, . . . , Xm be a martingale with X0 = 0, and
|Xi+1 −Xi| ≤ 1 for all 0 ≤ i < m. Let λ > 0 be arbitrary. Then

Pr
[
Xm > λ

√
m
]
< e−λ

2/2.

Proof: Let α = λ/
√
m. Let Yi = Xi −Xi−1, so that |Yi| ≤ 1 and E

[
Yi

∣∣∣X0, . . . , Xi−1

]
= 0.

We are interested in bounding E
[
eαYi

∣∣∣X0, . . . , Xi−1

]
. Note that, for −1 ≤ x ≤ 1, we have

eαx ≤ h(x) =
eα + e−α

2
+
eα − e−α

2
x,

as eαx is a convex function, h(−1) = e−α, h(1) = eα, and h(x) is a linear function. Thus,

E
[
eαYi

∣∣∣X0, . . . , Xi−1

]
≤ E

[
h(Yi)

∣∣∣X0, . . . , Xi−1

]
= h

(
E
[
Yi

∣∣∣X0, . . . , Xi−1

])
= h(0) =

eα + e−α

2

=
(1 + α+ α2

2! + α3

3! + · · ·) + (1− α+ α2

2! −
α3

3! + · · ·)
2

= 1 +
α2

2
+
α4

4!
+
α6

6!
+ · · ·

≤ 1 +
1
1!

(
α2

2

)
+

1
2!

(
α2

2

)2

+
1
3!

(
α2

2

)3

+ · · · = eα
2/2

Hence,

E
[
eαXm

]
= E

[
m∏
i=1

eαYi

]
= E

[(
m−1∏
i=1

eαYi

)
eαYm

]

= E

[(
m−1∏
i=1

eαYi

)
E
[
eαYm

∣∣∣X0, . . . , Xm−1

]]
≤ eα2/2 E

[
m−1∏
i=1

eαYi

]
≤ emα

2/2

Therefore, by Markov’s inequality, we have

Pr
[
Xm > λ

√
m
]

= Pr
[
eαXm > eαλ

√
m
]

=
E
[
eαXm

]
eαλ

√
m

= emα
2/2−αλ

√
m

= exp
(
m(λ/

√
m)2/2− (λ/

√
m)λ
√
m
)

= e−λ
2/2,

implying the result.
Alternative form:

Theorem 7.1.8 (Azuma’s Inequzality) Let X0, . . . , Xm be a martingale sequence such that and
|Xi+1 −Xi| ≤ 1 for all 0 ≤ i < m. Let λ > 0 be arbitrary. Then

Pr
[
|Xm −X0| > λ

√
m
]
< 2e−λ

2/2.

45

Example 7.1.9 Let χ(H) be the chromatic number of a graph H. What is chromatic number of
a random graph? How does this random variable behaves?

Consider the vertex exposure martingale, and let Xi = E
[
χ(G)

∣∣∣Gi]. Again, without proving

it, we claim that X0, . . . , Xn = X is a martingale, and as such, we have: Pr[|Xn −X0| > λ
√
n] ≤

e−λ
2/2. However, X0 = E[χ(G)], and Xn = E

[
χ(G)

∣∣∣Gn] = χ(G). Thus,

Pr
[∣∣∣χ(G)− E

[
χ(G)

]∣∣∣ > λ
√
n
]
≤ e−λ2/2.

Namely, the chromatic number of a random graph is high concentrated! And we do not even know,
what is the expectation of this variable!

7.2 Even more probability

Definition 7.2.1 A σ-field (Ω,F) consists of a sample space Ω (i.e., the atomic events) and a
collection of subsets F satisfying the following conditions:

1. ∅ ∈ F.

2. C ∈ F ⇒ C ∈ F.

3. C1, C2, . . . ∈ F ⇒ C1 ∪ C2 . . . ∈ F.

Definition 7.2.2 Given a σ-field (Ω,F), a probability measure Pr : F → IR+ is a function that
satisfies the following conditions.

1. ∀A ∈ F, 0 ≤ Pr[A] ≤ 1.

2. Pr[Ω] = 1.

3. For mutually disjoint events C1, C2, . . . , we have Pr[∪iCi] =
∑

iPr[Ci].

Definition 7.2.3 A probability space (Ω,F,Pr) consists of a σ-field (Ω,F) with a probability mea-
sure Pr defined on it.

46

Chapter 8

Martingales II
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

“The Electric Monk was a labor-saving device, like a dishwasher or a video recorder. Dishwashers washed tedious

dishes for you, thus saving you the bother of washing them yourself, video recorders watched tedious television for

you, thus saving you the bother of looking at it yourself; Electric Monks believed things for you, thus saving you

what was becoming an increasingly onerous task, that of believing all the things the world expected you to believe.”

— Dirk Gently’s Holistic Detective Agency, Douglas Adams.

8.1 Filters and Martingales

Definition 8.1.1 Given a σ-field (Ω,F) with F = 2Ω, a filter (also filtration) is a nested sequence
F0 ⊆ F1 ⊆ · · · ⊆ Fn of subsets of 2Ω such that

1. F0 = {∅,Ω}.

2. Fn = 2Ω.

3. For 0 ≤ i ≤ n, (Ω,Fi) is a σ-field.

Intuitively, each Fi define a partition of Ω into blocks. This partition is getting more and more
refined as we progress with the filter.

Example 8.1.2 Consider an algorithm A that uses n random bits, and let Fi be the σ-field gen-
erated by the partition of Ω into the blocks Bw, where w ∈ {0, 1}i. Then F0,F1, . . . ,Fn form a
filter.

Definition 8.1.3 A random variable X is said to be Fi-measurable if for each x ∈ IR, the event
{X ≤ x} is contained in Fi.

Example 8.1.4 Let F0, . . . ,Fn be the filter defined in Example 8.1.2. Let X be the parity of the
n bits. Clearly, X is a valid event only in Fn (why?). Namely, it is only measurable in Fn, but not
in Fi, for i < n.

Namely, a random variable X is Fi-measurable, only if it is a constant on the blocks of Fi.

Definition 8.1.5 Let (Ω,F) be any σ-field, and Y any random variable that takes on distinct
values on the elementary elements in F. Then E

[
X
∣∣∣F] = E

[
X
∣∣∣Y].

47

8.2 Martingales

Definition 8.2.1 A sequence of random variables Y1, Y2, . . . , is said to be a martingale difference
sequence if for all i ≥ 0,

E
[
Yi

∣∣∣Y1, . . . , Yi−1

]
= 0.

Clearly, X1, . . . , is a martingale sequence iff Y1, Y2, . . . , is a martingale difference sequence where
Yi = Xi −Xi−1.

Definition 8.2.2 A sequence of random variables Y1, Y2, . . . , is said to be a super martingale
sequence if for all i ≥,

E
[
Yi

∣∣∣Y1, . . . , Yi−1

]
≤ Yi−1,

and a sub martingale sequence if

E
[
Yi

∣∣∣Y1, . . . , Yi−1

]
≥ Yi−1.

Example 8.2.3 Let U be a urn with b black balls, and w white balls. We repeatedly select a ball
and replace it by c balls having the same color. Let Xi be the fraction of black balls after the first
i trials. This sequence is a martingale.

Indeed, let ni = b+ w + i(c− 1) be the number of balls in the urn after the ith trial. Clearly,

E
[
Xi

∣∣∣Xi−1, . . . , X0

]
= Xi−1 ·

(c− 1) +Xi−1ni−1

ni
+ (1−Xi−1) ·

Xi−1ni−1

ni

=
Xi−1(c− 1) +Xi−1ni−1

ni
= Xi−1

c− 1 + ni−1

ni
= Xi−1

ni
ni

= Xi−1.

8.2.1 Martingales, an alternative definition

Definition 8.2.4 Let (Ω,F,Pr) be a probability space with a filter F0,F1, Suppose that
X0, X1, . . ., are random variables such that for all i ≥ 0, Xi is Fi-measurable. The sequence
X0, . . . , kXn is a martingale provided, for all i ≥ 0,

E
[
Xi+1

∣∣∣Fi] = Xi.

Lemma 8.2.5 Let (Ω,F) and (Ω,G) be two σ-fields such that F ⊆ G. Then, for any random
variable X, E

[
E
[
X
∣∣∣G] ∣∣∣F] = E

[
X
∣∣∣F].

48

Proof: E
[
E
[
X
∣∣∣G] ∣∣∣F] = E

[
E
[
X
∣∣∣G = g

] ∣∣∣F = f
]

= E

[∑
x xPr[X = x ∩G = g]

Pr[G = g]

∣∣∣F = f

]

=
∑
g∈G

P
x xPr[X=x∩G=g]

Pr[G=g] ·Pr[G = g ∩ F = f]

Pr[F = f]

=
∑

g∈G,g⊆f

P
x xPr[X=x∩G=g]

Pr[G=g] ·Pr[G = g ∩ F = f]

Pr[F = f]

=
∑

g∈G,g⊆f

P
x xPr[X=x∩G=g]

Pr[G=g] ·Pr[G = g]

Pr[F = f]

=
∑

g∈G,g⊆f

∑
x xPr[X = x ∩G = g]

Pr[F = f]

=

∑
x x
(∑

g∈G,g⊆f Pr[X = x ∩G = g]
)

Pr[F = f]

=
∑

x xPr[X = x ∩ F = f]
Pr[F = f]

= E
[
X
∣∣∣F] .

Theorem 8.2.6 Let (Ω,F,Pr) be a probability space, and let F0, . . . ,Fn be a filter with respect to
it. Let X be any random variable over this probability space and define Xi = E

[
X
∣∣∣Fi] then, the

sequence X0, . . . , Xn is a martingale.

Proof: We need to show that E
[
Xi+1

∣∣∣Fi] = Xi. Namely,

E
[
Xi+1

∣∣∣Fi] = E
[
E
[
X
∣∣∣Fi+1

] ∣∣∣Fi] = E
[
X
∣∣∣Fi] = Xi,

by Lemma 8.2.5 and by definition of Xi.

Definition 8.2.7 Let f : D1 × · · · × Dn → IR be a real-valued function with a arguments from
possibly distinct domains. The function f is said to satisfy the Lipschitz condition If for any
x1 ∈ D1, . . . , xn ∈ Dn , and i ∈ {1, . . . , n} and any yi ∈ Di,

|f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, yi, xi+1, . . . , xn)| ≤ 1.

Definition 8.2.8 Let X1, . . . , Xn be a sequence of random variables, and a function f(X1, . . . , Xn)
defined over them that such that f satisfies the Lipschitz condition. The Dobb martingale sequence
Y0, . . . , Ym is defined by Y0 = E[f(X1, . . . , Xn)] and Yi = E

[
f(X1, . . . , Xn)

∣∣∣X1, . . . , Xi

]
, for i =

1, . . . , n. Clearly, Y0, . . . , Yn is a martingale, by Theorem 8.2.6.
Furthermore, |Xi −Xi−1| ≤ 1, for i = 1, . . . , n. Thus, we can use Azuma’s inequality on such a

sequence.

49

8.3 Occupancy Revisited

We have m balls thrown independently and uniformly into n bins. Let Z denote the number of
bins that remains empty. Let Xi be the bin chosen in the ith trial, and let Z = F (X1, . . . , Xm).
Clearly, we have by Azuma’s inequality that Pr[|Z −E[Z]| > λ

√
m] ≤ 2e−λ

2/2.
The following is an extension of Azuma’s inequality shown in class. We do not provide a proof

but it is similar to what we saw.

Theorem 8.3.1 (Azuma’s Inequality - Stronger Form) Let X0, X1, . . . , be a martingale se-
quence such that for each k,

|Xk −Xk−1| ≤ ck,

where ck may depend on k. Then, for all t ≥ 0, and any λ > 0,

Pr[|Xt −X0| ≥ λ] ≤ 2 exp

(
− λ2

2
∑t

k=1 c
2
k

)
‘.

Theorem 8.3.2 Let r = m/n, and Zm be the number of empty bins when m balls are thrown
randomly into n bins. Then

µ = E[Zm] = n

(
1− 1

n

)m
≈ ne−r

and for λ > 0,

Pr[|Zm − µ| ≥ λ] ≤ 2 exp
(
−λ

2(n− 1/2)
n2 − µ2

)
.

Proof: Let z(Y, t) be the expected number of empty bins, i there are Y empty bins in time t.
Clearly,

z(Y, t) = Y

(
1− 1

n

)m−t
.

In particular, µ = z(n, 0) = n
(
1− 1

n

)m.
Let Ft be the σ-field generated by the bins chosen in the first t steps. Let Zm be the end of

empty balls at time m, and let Zt = E
[
Zm

∣∣∣Ft]. Namely, Zt is the expected number of empty
bins after we know where the first t balls had been placed. The random variables Z0, Z1, . . . , Zm
form a martingale. Let Yt be the number of empty bins after t balls where thrown. We have
Zt−1 = z(Yt−1, t− 1). Consider the ball thrown in the t-step. Clearly:

1. With probability 1 − Yt−1/n the ball falls into a non-empty bin. Then Yt = Yt−1, and
Zt = z(Yt−1, t). Thus,

∆t = Zt − Zt−1 = z(Yt−1, t)− z(Yt−1, t− 1) = Yt−1

((
1− 1

n

)m−t
−
(

1− 1
n

)m−t+1
)

=
Yt−1

n

(
1− 1

n

)m−t
≤
(

1− 1
n

)m−t
.

50

2. Otherwise, with probability Yt−1/n the ball falls into an empty bin, and Yt = Yt−1 − 1.
Namely, Zt = z(Yt − 1, t).

∆t = Zt − Zt−1 = z(Yt−1 − 1, t)− z(Yt−1, t− 1)

= (Yt−1 − 1)
(

1− 1
n

)m−t
− Yt−1

(
1− 1

n

)m−t+1

=
(

1− 1
n

)m−t(
Yt−1 − 1− Yt−1

(
1− 1

n

))
=
(

1− 1
n

)m−t(
−1 +

Yt−1

n

)
= −

(
1− 1

n

)m−t(
1− Yt−1

n

)
≥ −

(
1− 1

n

)m−t
.

Thus, Z0, . . . , Zm is a martingale sequence, where |Zt − Zt−1| ≤ |∆t| ≤ ct, where ct =
(
1− 1

n

)m−t.
We have

n∑
t=1

c2t =
1− (1− 1/n)2m

1− (1− 1/n)2
=
n2
(
1− (1− 1/n)2m

)
2n− 1

=
n2 − µ2

2n− 1
.

Now, deploying Azuma’s inequality, yield the result.

51

52

Chapter 9

The Probabilistic Method
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

“Shortly after the celebration of the four thousandth anniversary of the opening of space, Angary J. Gustible discov-
ered Gustible’s planet. The discovery turned out to be a tragic mistake.

Gustible’s planet was inhabited by highly intelligent life forms. They had moderate telepathic powers. They
immediately mind-read Angary J. Gustible’s entire mind and life history, and embarrassed him very deeply by making
up an opera concerning his recent divorce.”

— From Gustible’s Planet, Cordwainer Smith

9.1 Introduction

The probabilistic method is a combinatorial technique to use probabilistic algorithms to create
objects having desirable properties, and furthermore, prove that such objects exist. The basic
technique is based on two basic observations:

1. If E[X] = µ, then there exists a value x of X, such that x ≥ E[X].

2. If the probability of event E is larger than zero, then E exists and it is not empty.

The surprising thing is that despite the elementary nature of those two observations, they lead to
a powerful technique that leads to numerous nice and strong results. Including some elementary
proofs of theorems that previously had very complicated and involved proofs.

The main proponent of the probabilistic method, was Paul Erdős. An excellent text on the
topic is the book by Noga Alon and Joel Spencer [AS00].

This topic is worthy of its own course. The interested student is refereed to the course “Math
475 — The Probabilistic Method”.

9.1.1 Examples

Theorem 9.1.1 For any undirected graph G(V,E) with n vertices and m edges, there is a partition
of the vertex set V into two sets A and B such that∣∣∣{uv ∈ E ∣∣∣u ∈ A and v ∈ B

}∣∣∣ ≥ m

2
.

Proof: Consider the following experiment: randomly assign each vertex to A or B, independently
and equal probability.

53

For an edge e = uv, the probability that one endpoint is in A, and the other in B is 1/2, and
let Xe be the indicator variable with value 1 if this happens. Clearly,

E
[∣∣∣{uv ∈ E ∣∣∣u ∈ A and v ∈ B

}∣∣∣] =
∑

e∈E(G)

E[Xe] =
∑

e∈E(G)

1
2

=
m

2
.

Thus, there must be a partition of V that satisfies the theorem.

Definition 9.1.2 For a vector v = (v1, . . . , vn) ∈ IRn, ‖v‖∞ = max
i
|vi|.

Theorem 9.1.3 Let A be an n × n binary matrix (i.e., each entry is either 0 or 1), then there
always exists a vector b ∈ {−1,+1}n such that ‖Ab‖∞ ≤ 4

√
n log n.

Proof: Let v = (v1, . . . , vn) be a row of A. Chose a random b = (b1, . . . , bn) ∈ {−1,+1}n. Let
i1, . . . , im be the indices such that vij = 1. Clearly,

E[v · b] =
∑
i

E[vibi] =
∑
j

viE
[
bij
]

= 0.

Let Xj = 1 if bij = +1, for j = 1, . . . ,m. We have E
[∑

j Xj

]
= n/2, and

Pr
[
|v · b| ≥ 4

√
n lnn

]
= 2Pr

[
v · b ≤ −4

√
n lnn

]
= 2Pr

∑
j

Xj −
n

2
≤ −2

√
n lnn

= 2Pr

∑
j

Xj <

(
1− 4

√
lnn
n

n

m

)
m

2

≤ 2 exp

−m
2

(
4

√
lnn
n

n

m

)2
 = 2 exp

(
−m

2

(
16
n lnn
m2

))

= 2 exp
(
−8n lnn

m

)
≤ 2 exp(−8 lnn) =

2
n8

by the Chernoff inequality and symmetry. Thus, the probability that any entry in Ab exceeds
4
√
n lnn is smaller than 2/n7. Thus, with probability at least 1− 2/n7, all the entries of Ab have

value smaller than 4
√
n lnn.

In particular, there exists a vector b ∈ {−1,+1}n such that ‖Ab‖∞ ≤ 4
√
n lnn.

9.2 Maximum Satisfiability

Theorem 9.2.1 For any set of m clauses, there is a truth assignment of variables that satisfies at
least m/2 clauses.

Proof: Assign every variable a random value. Clearly, a clause with k variables, has probability
1 − 2−k to be satisfied. Using linearity of expectation, and the fact that even clause has at least
one variable, it follows, that E[X] = m/2, where X is the random variable counting the number of
clauses being satisfied. In particular, there exists an assignment for which X ≥ m/2.

54

For an instant I, let mopt(I), denote the maximum number of clauses that can be satisfied
by the “best” assignment. For an algorithm A, let mA(I) denote the number of clauses satisfied
computed by the algorithm A. The approximation factor of A, is mA(I)/mopt(I). Clearly, the
algorithm of Theorem 9.2.1 provides us with 1/2-approximation algorithm.

For every clause, Cj in the given instance, let zj ∈ {0, 1} be a variable indicating whether Cj is
satisfied or not. Similarly, let xi = 1 if the i-th variable is being assigned the value TRUE. Let C+

j

be indices of the variables that appear in Cj in the positive, and C−
j the indices of the variables

that appear in the negative. Clearly, to solve MAX-SAT, we need to solve:

maximize
m∑
j=1

zj

subject to yi, zj ∈ {0, 1} for all i, j∑
i∈C+

j

yi +
∑
i∈C−j

(1− yi) ≥ zj for all j.

We relax this into the following linear program:

maximize
m∑
j=1

zj

subject to 0 ≤ yi, zj ≤ 1 for all i, j∑
i∈C+

j

yi +
∑
i∈C−j

(1− yi) ≥ zj for all j.

Which can be solved in polynomial time. Let ·̂ denote the values assigned to the variables by the
linear-programming solution. Clearly,

∑m
j=1 ẑj is an upper bound on the number of clauses of I

that can be satisfied.
We set the variable yi to 1 with probability ŷi. This is called randomized rounding.

Lemma 9.2.2 Let Cj be a clause with k literals. The probability that it is satisfied by randomized
rounding is at least βkẑj ≥ (1− 1/e)ẑj, where

βk = 1−
(

1− 1
k

)k
.

Proof: Assume Cj = y1 ∨ v2 . . . ∨ vk. By the LP, we have ŷ1 + · · · + ŷk ≥ ẑj . Furthermore,
the probability that Cj is not satisfied is

∏k
i=1(1− ŷi). Note that 1 −

∏k
i=1(1− ŷi) is minimized

when all the ŷi’s are equal (by symmetry). Namely, when ŷi = ẑj/k. Consider the function
f(x) = 1− (1−x/k)k. This is a concave function, which is larger than g(x) = βkx for all 0 ≤ x ≤ 1,
as can be easily verified, by checking the inequality at x = 0 and x = 1.

Thus,

Pr[Cj is satisfied] = 1−
k∏
i=1

(1− ŷi) ≥ f(ẑj) ≥ βkẑj .

55

The second part of the inequality,m follows from the fact that βk ≥ 1 − 1/e, for all k ≥ 0.
Indeed, for k = 1, 2 the claim trivially holds. Furthermore,

1−
(

1− 1
k

)k
≥ 1− 1

e
⇔

(
1− 1

k

)k
≤ 1
e
,

but this holds since 1− x ≤ e−x implies that 1− 1
k ≤ e

−1/k, and as such
(
1− 1

k

)k ≤ e−k/k = 1/e.

Theorem 9.2.3 Given an instance of MAX-SAT, the expected number of clauses satisfied by linear
programming and randomized rounding is at least (1− 1/e) times the maximum number of clauses
that can be satisfied on that instance.

Theorem 9.2.4 Let n1 be the expected number of clauses satisfied by randomized assignment, and
let n2 be the expected number of clauses satisfied by linear programming followed by randomized
rounding. Then, max(n1, n2) ≥ 3

4

∑
j ẑj.

Proof: It is enough to show that (n1 + n2)/2 ≥ 3
4

∑
j ẑj . Let Sk denote the set of clauses that

contain k literals. We know that

n1 =
∑
k

∑
Cj∈Sk

(
1− 2−k

)
≥
∑
k

∑
Cj∈Sk

(
1− 2−k

)
ẑj .

By Lemma 9.2.2 we have n2 ≥
∑

k

∑
Cj∈Sk

βkẑj . Thus,

n1 + n2

2
≥
∑
k

∑
Cj∈Sk

1− 2−k + βk
2

ẑj .

One can verify that
(
1− 2−k

)
+ βk ≥ 3/2, for all k. ② Thus, we have

n1 + n2

2
≥ 3

4

∑
k

∑
Cj∈Sk

ẑj =
3
4

∑
j

ẑj .

②Indeed, by the proof of Lemma 9.2.2, we have that βk ≥ 1 − 1/e. Thus,
`
1− 2−k

´
+ βk ≥ 2 − 1/e − 2−k ≥ 3/2

for k ≥ 3. Thus, we only need to to check the inequality for k = 1 and k = 2, which can be done directly.

56

Chapter 10

The Probabilistic Method II
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

“Today I know that everything watches, that nothing goes unseen, and that even wallpaper has a better memory
than ours. It isn’t God in His heaven that sees all. A kitchen chair, a coat-hanger a half-filled ash tray, or the wood
replica of a woman name Niobe, can perfectly well serve as an unforgetting witness to every one of our acts.”

— – The tin drum, Gunter Grass

10.1 Expanding Graphs

In this lecture, we are going to discuss expanding graphs.

Definition 10.1.1 An (n, d, α, c) OR-concentrator is a bipartite multigraph G(L,R,E), with the
independent sets of vertices L and R each of radinality n, such that

1. Every vertex in L has degree at most d.

2. For any subset S of vertices from L , such that |S| ≤ αn, there are at least c |S| neighbors in
R.

(d should be as small as possible, and c as large as possible.)

Theorem 10.1.2 There is an integer n0 such that for all n ≥ n0, there is an (n, 18, 1/3, 2) OR-
concentrator.

Proof: Let every vertex of L choose neighbors by sampling (with replacement) d vertices indepen-
dently and uniformly from R. We discard multiple edges in the resulting graph.

Let Es be the event that a subset of s vertices of L has fewer than cs neighbors in R. Clearly,

Pr[Es] ≤
(
n

s

)(
n

cs

)(cs
n

)ds
≤
(ne
s

)s(ne
cs

)cs(cs
n

)ds
=
((s
n

)d−c−1
e1+ccd−c

)s
,

since
(
n
k

)
≤
(
ne
k

)k. Setting α = 1/3 using s ≤ αn, and c = 2, we have

Pr[Es] ≤

((
1
3

)d−c−1

e1+ccd−c

)s
≤

((
1
3

)d
31+ce1+ccd−c

)s
≤

((
1
3

)d
31+ce1+ccd

)s

≤
((c

3

)d
(3e)1+c

)s
≤

((
2
3

)18

(3e)1+2

)s
≤ (0.4)s,

57

as c = 2 and d = 18. Thus, ∑
s≥1

Pr[Es] ≤
∑
s≥1

(0.4)s < 1.

It thus follows that the random graph we generated has the required properties with positive
probability.

10.2 Probability Amplification

Let A be an algorithm in RP, such that given x, A picks a random number r from the range
ZZn = {0, . . . , n− 1}, for a suitable choice of a prime n, and computes a binary value A(x, r) with
the following prpoerties:

1. If x ∈ L, then A(x, r) = 1 for at least half the possible values of r.

2. If x /∈ L, then A(x, r) = 0 for all possible choices of r.

Next, we show that using log2n bits, one can achieve 1/nlogn confidence, compared with the
naive 1/n, and the 1/t confidence achived by t (dependent) excutions of the algorithm using two-
point sampling.

Theorem 10.2.1 For n large enough, there exists a bipartite graph G(L,R,E) with |L| = n,
|R| = 2log2 n such that:

1. Even subset of n/2 vertices of L has at least
(
2log2 n − n

)
neighbors in R.

2. No vertex of R has more than 12 log2 n neighbors.

Proof: Each vertex of R chooses d = 2log2 n(4 log2 n)/n neighbors in R. We show that the
resulting graph violate the required properties with probablity less than half.

The probablity for a set of n/2 vertices on the left to fail to have enough enighbors, is(
n

n/2

)(
2log2 n

n

)(
1− n

2log2 n

)dn/2
� 1

2
,

as can be easily verified.
As for the second property, note that the expected number of neighbors of a vertex of R is

4 log2 n; the Chernoff bound now shows that the probablity of exceeding 12 log2 n neighbors is less
than (e/3)12 log2 n = (1/3)log2 n. Since R contains 2log2 n vertices this implies, that the probablity
for a bad vertex is bounded by (2/3)log2 n � 1/2.

Thus, with constant positive probablity, the random graph has the required property.
There exist implictly represented such graphs as the graph required in Theorem 10.2.1. Namely,

we can assume that given a vertex we can compute its neighbors, without computing the whole
graph. We assume that we are given such an implicty representation of an expanding graph.

Use log2 n bits to pick a vertex v ∈ R. We next identify the neighbors of v in L: r1, . . . , rk. We
then compute A(x, ri for 1 ≤ i ≤ k. Note that k = O(log2 n). If all k calls return 0, then we return
that A is not in the language. Otherwise, we return that x belong to L.

Clearly, the probablity for our failure is n/ log2 n, as n is the number of vertices on R which fail
to be connected to one of the (at least n/2) witnesses of L.

Unfortunately, there is no explict construction of the expanders used here. However, there are
alternative techniques that achieve a similiar result.

58

10.3 Oblivious routing revisited

Theorem 10.3.1 Consider any randomized oblivious algorithm for permutation routing on the
hypercube with N = 2n nodes. If this algorithm uses k random bits, then its expected running time
is Ω

(
2−k
√
N/n

)
.

Corollary 10.3.2 Any randomized oblivious algorithm for permutation routing on the hypercube
with N = 2n nodes must use Ω(n) random bits in order to achieve expected running time O(n).

Theorem 10.3.3 For every n, there exists a randomized oblivious scheme for permutation routing
on a hypercube with n = 2n nodes that uses 3n rnadom bits and runs in expected time at most 15n.

59

60

Chapter 11

The Probabilistic Method III
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

At other times you seemed to me either pitiable or contemptible, eunuchs, artificially confined to an eternal

childhood, childlike and childish in your cool, tightly fenced, neatly tidied playground and kindergarten, where

every nose is carefully wiped and every troublesome emotion is soothed, every dangerous thought repressed,

where everyone plays nice, safe, bloodless games for a lifetime and every jagged stirring of life, every strong

feeling, every genuine passion, every rapture is promptly checked, deflected and neutralized by meditation

therapy. – The Glass Bead Game, Hermann Hesse

11.1 The Lovász Local Lemma

Lemma 11.1.1 (i) Pr
[
A
∣∣∣B ∩ C] =

Pr
h
A∩B

˛̨̨
C

i
Pr

h
B

˛̨̨
C

i
(ii) Let η1, . . . , ηn be n events which are not necessarily independent. Then,

Pr
[
∩ni=1ηi

]
= Pr

[
η1

]
∗ Pr

[
η2

∣∣∣ η1

]
∗ Pr

[
η3

∣∣∣ η1 ∩ η2

]
∗ . . . ∗ Pr

[
ηn

∣∣∣ η1 ∩ . . . ∩ ηn−1

]
.

Proof:

Pr
[
A ∩B

∣∣∣C]
Pr
[
B
∣∣∣C] =

Pr[A ∩B ∩ C]
Pr[C]

/
Pr[B ∩ C]

Pr[C]
=

Pr[A ∩B ∩ C]
Pr[B ∩ C]

= Pr
[
A
∣∣∣B ∩ C] .

As for (ii), we already saw it and used it in the minimum cut algorithm lecture.

Lemma 11.1.2 (Lovász Local Lemma) Let G(V,E) be a dependency graph for events C1, . . . , Cn.
Suppose that there exist xi ∈ [0, 1], for 1 ≤ i ≤ n such that

Pr[Ci] ≤ xi
∏

(i,j)∈E

(1− xj) .

Then

Pr
[
∩ni=1Ci

]
≥

n∏
i=1

(1− xi) .

61

Proof: Let S denote a subset of the vertices from {1, . . . , n}. We first establish by induction on
k = |S| that for any S and for any i such that i /∈ S,

Pr
[
Ci

∣∣∣∩j∈SCj] ≤ xi. (11.1)

For S = ∅, we have by assumption that Pr
[
Ci

∣∣∣∩j∈SCj] = Pr[Ci] ≤ xi
∏

(i,j)∈E(1− xj) ≤ xi.

Thus, let N =
{
j ∈ S

∣∣∣ (i, j) ∈ E}, and let R = S \ N . If N = ∅, then we have that

Ci is mutually independent of the events of C(R) =
{
Cj

∣∣∣ j ∈ R}. Thus, Pr
[
Ci

∣∣∣∩j∈SCj] =

Pr
[
Ci

∣∣∣∩j∈RCj] = Pr[Ci] ≤ xi, by arguing as above.
By Lemma 11.1.1 (i), we have that

Pr

Ci
∣∣∣∣∣∣
⋂
j∈S

Cj

 =
Pr
[
Ci ∩

(
∩j∈NCj

) ∣∣∣∩m∈RCm]
Pr
[
∩j∈NCj

∣∣∣∩m∈RCm] .

We bound the numerator by

Pr
[
Ci ∩

(
∩j∈NCj

) ∣∣∣∩m∈RCm] ≤ Pr
[
Ci

∣∣∣∩m∈RCm] = Pr[Ci] ≤ xi
∏

(i,j)∈E

(1− xj) ,

since Ci is mutually independent of C(R). As for the denominator, let N = {j1, . . . , jr}. We have,
by Lemma 11.1.1 (ii), that

Pr
[
Cj1 ∩ . . . ∩ Cjr

∣∣∣∩m∈RCm]= Pr
[
Cj1

∣∣∣∩m∈RCm]Pr
[
Cj2

∣∣∣Cj1 ∩(∩m∈RCm)]
· · ·Pr

[
Cjr

∣∣∣Cj1 ∩ . . . ∩ Cjr−1

(
∩m∈RCm

)]
=
(
1−Pr

[
Cj1

∣∣∣∩m∈RCm])(1−Pr
[
Cj2

∣∣∣Cj1 ∩(∩m∈RCm)])
· · ·
(
1−Pr

[
Cjr

∣∣∣Cj1 ∩ . . . ∩ Cjr−1

(
∩m∈RCm

)])
≥ (1− xj1) · · ·(1− xjr) ≥

∏
(i,j)∈E

(1− xj) ,

by Eq. (11.1) and induction, as every probability term in the above expression has less than |S|
items involved. It thus follows, that Pr

[
Ci

∣∣∣⋂j∈S Cj

]
≤ xi.

Now, the proof of the lemma, follows from

Pr
[
∩ni=1Ci

]
=(1−Pr[C1])

(
1−Pr

[
C2

∣∣∣C1

])
· · ·
(
1−Pr

[
Cn

∣∣∣∩n−1
i=1 Ci

])
≥

n∏
i=1

(1− xi) .

Corollary 11.1.3 Let C1, . . . , Cn be events, with Pr[Ci] ≤ p for all i. If each event is mutually
independent of all other events except for at most d, and if ep(d+ 1) ≤ 1, then Pr

[
∩ni=1Ci

]
> 0.

Proof: If d = 0 the result is trivial, as the events are independent. Otherwise, there is a
dependency graph, with every vertex having degree at most d. Apply Lemma 11.1.2 with xi = 1

d+1 .
Observe that

xi(1− xi)d =
1

d+ 1

(
1− 1

d+ 1

)d
>

1
d+ 1

· 1
e
≥ p,

62

by assumption and the fact that
(
1− 1

d+1

)d
> 1/e. To see that, observe that, observe that we need

to show that 1/
(
1− 1

d+1

)d
< e, which is equivalent to ((d+ 1)/d) < e1/d. However,

d+ 1
d

= 1 +
1
d
< 1 +

(
1
d

)
+

1
2!

(
1
d

)2

+
1
3!

(
1
d

)3

+ · · · = e1/d,

establishing the claim.

11.2 Application to k-SAT

We are given a instance I of k-SAT, where every clause contains k literals, there are m clauses, and
every one of the n variables, appears in at most 2k/50 clauses.

Consider a random assignment, and let Ci be the event that the ith clause was not satisfied.
We know that p = Pr[Ci] = 2−k, and furthermore, Ci depends on at most d = k2k/50 other events.
Since ep(d+ 1) = e

(
kk/50 + 1

)
2−k < 1, for k ≥ 4, we conclude that by Corollary 11.1.3, that

Pr[I have a satisfying assignment] = Pr[∪iCi] > 0.

11.2.1 An efficient algorithm

The above, just proves that a satisfying assignment exists. We next show a polynomial algorithm
(in m) for the computation of such an assignment (the algorithm will not be polynomial in k).

Let G be the dependency graph for I, where the vertices are the clauses of I, and two clauses
are connected if they share a variable. In the first stage of the algorithm, we assign values to
the variables one by one, in an arbitrary order. In the beginning of this process all variables are
unspecified, at each step, we randomly assign a variable either 0 or 1 with equal probability.

Definition 11.2.1 A clause Ci is dangerous if both the following conditions hold:

1. k/2 literals of Ci have been fixed.

2. Ci is still unsatisfied.

After assigning each value, we discover all the dangerous clauses, and we defer (“freeze”) all
the unassigned variables participating in such a clause. We continue in this fashion till all the
unspecified variables are frozen. This completes the first stage of the algorithm.

At the second stage of the algorithm, we will compute a satisfying assignment to the variables
using brute force. This would be done by taking the surviving formula I ′ and breaking it into
fragments, so that each fragment does not share any variable with any other fragment (naively,
it might be that all of I ′ is one fragment). We can find a satisfying assignment to each fragment
separately, and if each such fragment is “small” the resulting algorithm would be “fast”.

We need to show that I ′ has a satisfying assignment and that the fragments are indeed small.

Analysis

A clause had survived if it is not satisfied by the variables fixed in the first stage. Note, that a
clause that survived must have a dangerous clause as a neighbor in the dependency graph G. Not
that I ′, the instance remaining from I after the first stage, has at least k/2 unspecified variables
in each clause. Furthermore, every clause of I ′ has at most d = k2k/50 neighbors in G′, where G′ is

63

the dependency graph for I ′. It follows, that again, we can apply Lovász local lemma to conclude
that I ′ has a satisfying assignment.

Definition 11.2.2 Two connected graphs G1 = (V1, E1) and G2 = (V2, E2), where V1, V2 ⊆
{1, . . . , n} are unique if V1 6= V2.

Lemma 11.2.3 Let G be a graph with degree at most d and with n vertices. Then, the number of
unique subgraphs of G having r vertices is at most nd2r.

Proof: Consider a unique subgraph Ĝ of G, which by definition is connected. Let H be a
connected subtree of G spanning Ĝ. Duplicate every edge of H, and let H ′ denote the resulting
graph. Clearly, H ′ is Eulerian, and as such posses a Eulerian path π of length at most 2(r − 1),
which can be specified, by picking a starting vertex v, and writing down for the i-th vertex of π
which of the d possible neighbors, is the next vertex in π. Thus, there are st most nd2(r−1) ways of
specifying π, and thus, there are at most nd2(r−1) unique subgraphs in G of size r.

Lemma 11.2.4 With probability 1−o(1), all connected components of G′ have size at most O(logm),
where G′ denote the dependency graph for I ′.

Proof: Let G4 be a graph formed from G by connecting any pair of vertices of G of distance
exactly 4 from each other. The degree of a vertex of G4 is at most O(d4).

Let U be a set of r vertices of G, such that every pair is in distance at least 4 from each other
in G. We are interested in bounding the probability that all the clauses of U survive the first stage.

The probability of a clause to be dangerous is at most 2−k/2, as we assign (random) values
to half of the variables of this clause. Now, a clause survive only if it is dangerous or one of its
neighbors is dangerous. Thus, the probability that a clause survive is bounded by 2−k/2(d+ 1).

Furthermore, the survival of two clauses Ci and Cj in U is an independent event, as no neighbor
of Ci shares a variable with a neighbor of Cj (because of the distance 4 requirement). We conclude,
that the probability that all the vertices of U appear in G′ is bounded by(

2−k/2(d+ 1)
)r
.

On the other hand, the number of unique such sets of size r, is bounded by the number of unique
subgraphs of G4 of size r, which is bounded by md8r, by Lemma 11.2.3. Thus, the probability of
any connected subgraph of G4 of size r = log2m to survive in G′ is smaller than

md8r
(
2−k/2(d+ 1)

)r
= m

(
k2k/50

)8r(
2−k/2(k2k/50 + 1)

)r
≤ m2kr/5 · 2−kr/4 = m2−kr/20 = o(1),

since k ≥ 50. (Here, a subgraph survive of G4 survive, if all its vertices appear in G′.) Note,
however, that if a connected component of G′ has more than L vertices, than there must be a
connected component having L/d3 vertices in G4 that had survived in G′. We conclude, that with
probability o(1), no connected component of G′ has more than O(d3 logm) = O(logm) vertices
(note, that we consider k to be a constant, and thus, also d).

Thus, after the first stage, we are left with fragments of (k/2)-SAT, where every fragment has
size at most O(logm), and thus having at most O(logm) variables. Thus, we can by brute force
find the satisfying assignment to each such fragment in time polynomial in m. We conclude:

Theorem 11.2.5 The above algorithm finds a satisfying truth assignment for any instance of k-
SAT containing m clauses, which each variable is contained in at most 2k/50 clauses, in expected
time polynomial in m.

64

Chapter 12

The Probabilistic Method IV
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

Once I sat on the steps by a gate of David’s Tower, I placed my two heavy baskets at my side. A group

of tourists was standing around their guide and I became their target marker. “You see that man with the

baskets? Just right of his head there’s an arch from the Roman period. Just right of his head.” “But he’s

moving, he’s moving!” I said to myself: redemption will come only if their guide tells them, “You see that arch

from the Roman period? It’s not important: but next to it, left and down a bit, there sits a man who’s bought

fruit and vegetables for his family.” — Yehuda Amichai, Tourists

12.1 The Method of Conditional Probabilities

In previous lecture, we encountered the following problem:

Problem 12.1.1 (Set Balancing) Given a binary matrix A of size n × n, find a vector ~v ∈
{−1,+1}n, such that ‖A~v‖∞ is minimized.

Using random assignment and the Chernoff inequality, we showed that there exists ~v, such that
‖A~v‖∞ ≤ 4

√
n lnn. Can we derandomize this algorithm? Namely, can we come up with an efficient

deterministic algorithm that has low discrepancy?
To derandomize our algorithm, construct a computation tree of depth n, where in the ith level

we expose the ith coordinate of ~v. This tree T has depth n. The root represents all possible
random choices, while a node at depth i, represents all computations when the first i bits are
fixed. For a node v ∈ T , let P (v) be the probability that a random computation starting from v
succeeds. Let vl and vr be the two children of v. Clearly, P (v) = (P (vl) + P (vr))/2. In particular,
max(P (vl), P (vr)) ≥ P (v). Thus, if we could could compute P (·) quickly (and deterministically),
then we could derandomize the algorithm.

Let C+
m be the bad event that rm · ~v > 4

√
n log n, where rm is the mth row of A. Similarly,

C−
m is the bad event that rm · ~v < −4

√
n log n, and let Cm = C+

m ∪ C−
m. Consider the probability,

Pr
[
C+
m

∣∣∣~v1, . . . , ~vk] (namely, the first k coordinates of ~v are specified). Let vm = (α1, . . . , αn). We
have that

Pr
[
C+
m

∣∣∣~v1, . . . , ~vk] = Pr

[
n∑

i=k+1

~viαi > 4
√
n log n−

k∑
i=1

~viαi

]

= Pr

 ∑
i≥k+1,αi 6=0

~viαi > L

 = Pr

 ∑
i≥k+1,αi=1

~vi > L

 ,
65

where L = 4
√
n log n−

∑k
i=1 ~viαi. Let V =

∑
i≥k+1,αi=1 1. We have,

Pr
[
C+
i

∣∣∣~v1, . . . , ~vk] = Pr

 ∑
i≥k+1
αi=1

(~vi + 1) > L+ V

 = Pr

 ∑
i≥k+1
αi=1

~vi + 1
2

>
L+ V

2

 ,
The last probability, is the probability that in V flips of a fair coin we will get more than (L+V)/2
heads. Thus,

P+
m = Pr

[
C+
m

∣∣∣~v1, . . . , ~vk] =
V∑

i=d(L+V)/2e

(
V

i

)
1
2n

=
1
2n

 V∑
i=d(L+V)/2e

(
V

i

) .

This implies, that we can compute P+
m in polynomial time! Indeed, we are adding V ≤ n numbers,

each one of them is a binomial coefficient that has polynomial size representation in n, and can
be computed in polynomial time (why?). One can define in similar fashion P−

m , and let Pm =
P+
m + Pm−. Clearly, Pm can be computed in polynomial time, by applying a similar argument to

the computation of P−
m = Pr

[
C−
m

∣∣∣~v1, . . . , ~vk].
For a node v ∈ T , let ~vv denote the portion of ~v that was fixed when traversing from the root

of T to v. Let P (v) =
∑n

m=1 Pr
[
Cm

∣∣∣~vv]. By the above discussion P (v) can be computed in
polynomial time. Furthermore, we know, by the previous result on set balancing that P (r) < 1
(thats was the bound used to show that there exist a good assignment).

As before, for any v ∈ T , we have P (v) ≥ min(P (vl), P (vr)). Thus, we have a polynomial
deterministic algorithm for computing a set balancing with discrepancy smaller than 4

√
n log n.

Indeed, set v = root(T). And start traversing down the tree. At each stage, compute P (vl) and
P (vr) (in polynomial time), and set v to the child with lower value of P (·). Clearly, after n steps,
we reach a leaf, that corresponds to a vector ~v′ such that ‖A~v′‖∞ ≤ 4

√
n log n.

Theorem 12.1.2 Using the method of conditional probabilities, one can compute in polynomial
time in n, a vector ~v ∈ {−1, 1}n, such that ‖A~v‖∞ ≤ 4

√
n log n.

Note, that this method might fail to find the best assignment.

12.2 A Very Short Excursion into Combinatorics using the Prob-
abilistic Method

In this section, we provide some additional examples of the Probabilistic Method to prove some
results in combinatorics and discrete geometry. While the results are not directly related to our
main course, their beauty, hopefully, will speak for itself.

12.2.1 High Girth and High Chromatic Number

Definition 12.2.1 For a graph G, let α(G) be the cardinality of the largest independent set in G,
χ(G) denote the chromatic number of G, and let girth(G) denote the length of the shortest circle
in G.

Theorem 12.2.2 For all K,L there exists a graph G with girth(G) > L and χ(G) > K.

66

Proof: Fix µ < 1/L, and let G ≈ G(n, p) with p = nµ−1; namely, G is a random graph on
n vertices chosen by picking each pair of vertices as an edge randomly and independently with
probability p. Let X be the number of cycles of size at most L. Then

E[X] =
L∑
i=3

n!
(n− i)!

· 1
2i
· pi ≤

L∑
i=3

ni

2i
·
(
nµ−1

)i ≤ L∑
i=3

nµi

2i
= o(n),

as µL < 1, and since the number of different sequence of i vertices is n!
(n−i)! , and every cycle is being

counted in this sequence 2i times.
In particular, Pr[X ≥ n/2] = o(1).
Let x =

⌈
3
p lnn

⌉
+ 1. We have

Pr[α(G) ≥ x] ≤
(
n

x

)
(1− p)(

x
2) <

(
n exp

(
−p(x− 1)

2

))x
<

(
n exp

(
−3

2
lnn

))x
< (o(1))x = o(1).

Let n be sufficiently large so that both these events have probabilist less than 1/2. Then there is
a specific G with less than n/2 cycles of length at most L and with α(G) < 3n1−µ lnn+ 1.

Remove from G a vertex from each cycle of length at most L. This gives a graph G∗ with at
least n/2 vertices. G∗ has girth greater than L and α(G∗) ≤ α(G) (any independent set in G∗ is
also an independent set in G). Thus

χ(G∗) ≥ |V (G∗)|
α(G∗)

≥ n/2
3n1−µ lnn

≥ nµ

12 lnn
.

To complete the proof, let n be sufficiently large so that this is greater than K.

12.2.2 Crossing Numbers and Incidences

The following problem has a long and very painful history. It is truly amazing that it can be solved
by such a short and elegant proof.

And embedding of a graph G = (V,E) in the plane is a planar representation of it, where each
vertex is represented by a point in the plane, and each edge uv is represented by a curve connecting
the points corresponding to the vertices u and v. The crossing number of such an embedding is the
number of pairs of intersecting curves that correspond to pairs of edges with no common endpoints.
The crossing number cr(G) of G is the minimum possible crossing number in an embedding of it
in the plane.

Theorem 12.2.3 The crossing number of any simple graph G = (V,E) with |E| ≥ 4 |V | is at least
|E|3

64|V |2 .

Proof: By Euler’s formula any simple planar graph with n vertices has at most 3n − 6 edges.
(Indeed, f − e + v = 2 in the case with maximum number of edges, we have that every face, has
3 edges around it. Namely, 3f = 2e. Thus, (2/3)e − e + v = 2 in this case. Namely, e = 3v − 6.)
This implies that the crossing number of any simple graph with n vertices and m edges is at least
m − 3n + 6 > m − 3n. Let G = (V,E) be a graph with |E| ≥ 4 |V | embedded in the plane with
t = cr(G) crossings. Let H be the random induced subgraph of G obtained by picking each vertex of
G randomly and independently, to be a vertex of H with probabilistic p (where P will be specified
shortly). The expected number of vertices of H is p |V |, the expected number of its edges is p2 |E|,

67

and the expected number of crossings in the given embedding is p4t, implying that the expected
value of its crossing number is at most p4t. Therefore, we have p4t ≥ p2 |E| − 3p |V |, implying that

cr(G) ≥ |E|
p2
− 3 |V |

p3
,

let p = 4 |V | / |E| < 1, and we have cr(G) ≥ (1/16− 3/64) |E|3 / |V |2 = |E|3 /(64 |V |2).

Theorem 12.2.4 Let P be a set of n distinct points in the plane, and let L be a set of m distinct
lines. Then, the number of incidences between the points of P and the lines of L (that is, the
number of pairs (p, `) with p ∈ P , ` ∈ L, and p ∈ `) is at most c(m2/3n2/3 + m + n), for some
absolute constant c.

Proof: Let I denote the number of such incidences. Let G = (V,E) be the graph whose vertices
are all the points of P , where two are adjacent if and only if they are consecutive points of P on
some line in L. Clearly |V | = n, and |E| = I −m. Note that G is already given embedded in the
plane, where the edges are presented by segments of the corresponding lines of L.

Either, we can not apply Theorem 12.2.3, implying that I −m = |E| < 4 |V | = 4n. Namely,
I ≤ m+ 4n. Or alliteratively,

(I −m)3

(64n2)
≤ cr(G) ≤

(
m

2

)
≤ m2

2
.

Implying that I ≤ (32)1/3m2/3n2/3 +m. In both cases, I ≤ 4(m2/3n2/3 +m+ n).
This technique has interesting and surprising results, as the following theorem shows.

Theorem 12.2.5 For any three sets A,B and C of s real numbers each,

|A ·B + C| =
∣∣∣{ab+ c

∣∣∣ a ∈ A, b ∈ B,mc ∈ C}∣∣∣ ≥ Ω
(
s3/2

)
.

Proof: LetR = A·B+C, |R| = r and define P =
{

(a, t)
∣∣∣ a ∈ A, t ∈ R}, and L =

{
y = bx+ c

∣∣∣ b ∈ B, c ∈ C}.

Clearly n = |P | = sr, and m = |L| = s2. Furhtermore, a line y = bx+ c of L is incident with s
points of R, namely with

{
(a, t)

∣∣∣ a ∈ A, t = ab+ c
}

. Thus, the overall number of incidences is at

at least s3. By Theorem 12.2.4, we have

s3 ≤ 4(m2/3n2/3 +m+ n) = 4
((
s2
)2/3(sr)2/3 + s2 + sr

)
= 4
(
s2r2/3 + s2 + sr

)
.

For r < s3, we have that sr ≤ s2r2/3. Thus, for r < s3, we have s3 ≤ 12s2r2/3, implying that
s3/2 ≤ 12r. Namely, |R| = Ω(s3/2), as claimed.

Among other things, the crossing number technique implies a better bounds for k-sets in the
plane than what was previously known. The k-set problem had attracted a lot of research, and
remains till this day one of the major open problems in discrete geometry.

68

Chapter 13

Random Walks I
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

“A drunk man will find his way home; a drunk bird may wander forever.”

13.1 Definitions

Let G = G(V,E) be a undirected connected graph. For v ∈ V , let Γ(v) denote the neighbors of v
in G. A random walk on G is the following process: Starting from a vertex v0, we randomly choose
one of the neighbors of v0, and set it to be v1. We continue in this fashion, such that vi ∈ Γ(vi−1).
It would be interesting to investigate the process of the random walk. For example, questions like:
(i) how long does it take to arrive from a vertex v to a vertex u in G? and (ii) how long does it
take to visit all the vertices in the graph.

Example 13.1.1 In the completely graphKn, visiting all the vertices takes in expectationO(n log n)
time, as this is just the coupon collector problem with n− 1 coupons. Similarly, arriving from u to
v, takes in expectation n− 1 steps of a random walk.

13.1.1 Walking on grids and lines

Lemma 13.1.2 Consider the infinite random walk on the integer line, starting from 0. The ex-
pected number of times that such a walk visits 0 is unbounded.

Proof: The probability that in the 2ith step we visit 0 is 1
22i

(
2i
i

)
, As such, the expected number

of times we visit the origin is
∞∑
i=1

1
22i

(
2i
i

)
≥

∞∑
i=1

1
2
√
i

=∞,

since 22i

2
√
i
≤
(
2i
i

)
≤ 22i

√
2i, as can be verified from the Stirling formula, and the resulting sequence

diverges.
A random walk on the integer grid ZZd, starts from a point of this integer grid, and at each step

if it is at point (i1, i2, . . . , id), it chooses a coordinate and either increases it by one, or decreases it
by one, with equal probability.

Lemma 13.1.3 Consider the infinite random walk on the two dimensional integer grid ZZ2, starting
from (0, 0). The expected number of times that such a walk visits the origin is unbounded.

69

Proof: Rotate the grid by 45 degrees, and consider the two new axises X ′ and Y ′. Let xi be
the projection of the location of the ith step of the random walk on the X ′-axis, and define yi in a
similar fashion. Clearly, xi are of the form j/

√
2, where j is an integer. By scaling by a factor of√

2, consider the resulting random walks x′i =
√

2xi and y′i =
√

2yi. Clearly, xi and yi are random
walks on the integer grid, and furthermore, they are independent . As such, the probability that

we visit the origin at the 2ith step is Pr[x′2i = 0 ∩ y′2i = 0] = Pr[x′2i = 0]2 =
(

1
22i

(
2i
i

))2
≥ 1/4i. We

conclude, that the infinite random walk on the grid ZZ2 visits the origin in expectation
∞∑
i=0

Pr
[
x′i = 0 ∩ y′i = 0

]
≥

∞∑
i=0

1
4i

=∞,

as this sequence diverges.

In the following, let
(

i

a b c

)
=

i!
a! b! c!

.

Lemma 13.1.4 Consider the infinite random walk on the three dimensional integer grid ZZ3, start-
ing from (0, 0, 0). The expected number of times that such a walk visits the origin is bounded.

Proof: The probability of a neighbor of a point (x, y, z) to be the next point in the walk is
1/6. Assume that we performed a walk for 2i steps, and decided to perform 2a steps parallel to
the x-axis, 2b steps parallel to the y-axis, and 2c steps parallel to the z-axis, where a + b + c = i.
Furthermore, the walk on each dimension is balanced, that is we perform a steps to the left on the
x-axis, and a steps to the right on the x-axis. Clearly, this corresponds to the only walks in 2i steps
that arrives to the origin.

Next, the number of different ways we can perform such a walk is (2i)!
a!a!b!b!c!c! , and the probability

to perform such a walk, summing over all possible values of a, b and c, is

αi =
∑

a+b+c=i
a,b,c≥0

(2i)!
a!a!b!b!c!c!

1
62i

=
(

2i
i

)
1

22i

∑
a+b+c=i
a,b,c≥0

(
i!

a! b! c!

)2(1
3

)2i

=
(

2i
i

)
1

22i

∑
a+b+c=i
a,b,c≥0

((
i

a b c

)(
1
3

)i)2

Consider the case where i = 3m. We have that
(

i
a b c

)
≤
(

i
m m m

)
. As such,

αi ≤
(

2i
i

)
1

22i

(
1
3

)i(i

m m m

) ∑
a+b+c=i
a,b,c≥0

(
i

a b c

)(
1
3

)i

=
(

2i
i

)
1

22i

(
1
3

)i(i

m m m

)
.

By the Stirling formula, we have(
i

m m m

)
≈

√
2πi(i/e)i(√

2πi/3
(
i
3e

)i/3)3 = c
3i

i
,

70

for some constant c. As such,

αi = O

(
1√
i

(
1
3

)i 3i

i

)
= O

(
1
i3/2

)
.

Thus,
∞∑
m=1

α6m =
∑
i

O

(
1
i3/2

)
= O(1).

Finally, observe that α6m ≥ (1/6)2α6m−2 and α6m ≥ (1/6)4α6m−4. Thus,

∞∑
m=1

αm = O(1).

Notes

The presentation here follows [Nor98].

71

72

Chapter 14

Random Walks II
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

“Mr. Matzerath has just seen fit to inform me that this partisan, unlike so many of them, was an authentic

partisan. For - to quote the rest of my patient’s lecture - there is no such thing as a part-time partisan. Real

partisans are partisans always and as long as they live. They put fallen governments back in power and over

throw governments that have just been put in power with the help of partisans. Mr. Matzerath contended -

and this thesis struck me as perfectly plausible - that among all those who go in for politics your incorrigible

partisan, who undermines what he has just set up, is closest to the artiest because he consistently rejects what

he has just created.” – The tin drum, Gunter Grass

14.1 The 2SAT example

Let G = G(V,E) be a undirected connected graph. For v ∈ V , let Γ(v) denote the neighbors of v
in G. A random walk on G is the following process: Starting from a vertex v0, we randomly choose
one of the neighbors of v0, and set it to be v1. We continue in this fashion, such that vi ∈ Γ(vi−1).
It would be interesting to investigate the process of the random walk. For example, questions like:
(i) how long does it take to arrive from a vertex v to a vertex u in G? and (ii) how long does it
take to visit all the vertices in the graph.

14.1.1 Solving 2SAT

Consider a 2SAT formula F with m clauses defined over n variables. Start from an arbitrary
assignment to the variables, and consider a non-satisfied clause in F . Randomly pick one of the
clause variables, and change its value. Repeat this till you arrive to a satisfying assignment.

Consider the random variable Xi, which is the number of variables assigned the correct value
(according to the satisfying assignment) in the current assignment. Clearly, with probability (at
least) half Xi = Xi−1 + 1.

Thus, we can think about this algorithm as performing a random walk on the numbers 0, 1, . . . , n,
where at each step, we go to the right probability at least half. The question is, how long does it
take to arrive to n in such a settings.

Theorem 14.1.1 The expected number of steps to arrive to a satisfying assignment is O(n2).

Proof: Consider the random walk on the integer line, starting from zero, where we go to the
left with probability 1/2, and to the right probability 1/2. Let Yi be the location of the walk at
the i step. Clearly, E[Yi] ≥ E[Xi]. In fact, by defining the random walk on the integer line more

73

carefully, one can ensure that Yi ≤ Xi. Thus, the expected number of steps till Yi is equal to n is
an upper bound on the required quantity.

To this end, observe that the probability that in the ith step we have Yi ≥ n is

i∑
m=n/2

1
2i

(
i

i−m

)
> 1/3,

for i > µ = c′n2, where c′ is a large enough constant.
Next, if Xi fails to arrive to n at the first µ steps, we will reset Yµ = Xµ and continue the

random walk, using those phases. The probability that the number of phases exceeds i is ≤ (2/3)i.
As such, the expected number of steps in the walk is at most

∑
i

c′n2i

(
2
3

)i
= O(n2),

as claimed.

14.2 Markov Chains

Let S denote a state space, which is either finite or countable. A Markov chain is at one state at
any given time. There is a transition probability Pij , which is the probability to move to the state j,
if the Markov chain is currently at state i. As such,

∑
j Pij = 1 and ∀i, j, 0 ≤ Pij ≤ 1. The matrix

P = {Pij}ij is the transition probabilities matrix .
The Markov chain start at an initial state X0, and at each point in time moves according to the

transition probabilities. This form a sequence of states {Xt}. We have a distribution over those
sequences. Such a sequence would be referred to as a history .

Similar to Martingales, the behavior of a Markov chain in the future, depends only on its location
Xt at time t, and does not depends on the earlier stages that the Markov chain went through. This
is the memorylessness property of the Markov chain, and it follows as Pij is independent of time.
Formally, the memorylessness property is

Pr
[
Xt+1 = j

∣∣∣X0 = i0, X1 = i1, . . . , Xt−1 = it−1, Xt = i
]

= Pr
[
Xt+1 = j

∣∣∣Xt = i
]

= Pij .

The initial state of the Markov chain might also be chosen randomly.
For states i, j ∈ S, the t-step transition probability is P

(t)
ij = Pr

[
Xt = j

∣∣∣X0 = i
]
. The proba-

bility that we visit j for the first time, starting from i after t steps, is denoted by

r
(t)
ij = Pr

[
Xt = j and X1 6= j,X2 6= j, . . . , Xt−1 6= j

∣∣∣X0 = i
]
.

Let fij =
∑

t>0 r
(t)
ij denote the probability that the Markov chain visits state j, at any point in

time, starting from state i. The expected number of steps to arrive to state j starting from i is

hij =
∑
t>0

t · r(t)
ij .

Of course, if fij < 1, then there is a positive probability that the Markov chain never arrives to j,
and as such hij =∞ in this case.

74

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

Definition 14.2.1 A state i ∈ S for which fii < 1 (i.e., the chain has positive probability of never
visiting i again), is a transient state. If fii = 1 then the state is persistent .

If a state is persistent, but hii =∞ are called null persistent . If i persistent and hii 6=∞ then
it is non null persistent .

In finite Markov chains, there are no null persistent states (this required a proof, which is left
as exercise). There is a natural directed graph associated with a markov chain. The states are the
vertices, and the transition probability Pij is the weight assigned to the edge (i, j). Note that we
include only edges with Pij > 0.

Definition 14.2.2 A strong component of a directed graph G is a maximal subgraph C of G such
that for any pair of vertices i and j in the vertex set of C, there is a directed path from i to j, as
well as a directed path from j to i.

Definition 14.2.3 A strong component C is said to be a final strong component if there is no edge
going from a vertex in C to a vertex not in C.

In a finite Markov chain, there is positive probability to arrive from any vertex on C to any
other vertex of C in a finite number of steps. If C is a final strong component, then probability is
1, since the Markov chain can never leave C once it enters it. It follows that a state is persistent if
and only if it lies in a final strong component.

Definition 14.2.4 A Markov chain is irreducible when its underlying graph consists of single
strong component.

Clearly, if a Markov chain is irreducible, then all states are persistent.

Definition 14.2.5 Let q(t) =
(
q
(t)
1 , q

(t)
2 , . . . , q

(t)
n

)
be the state probability vector (also called the

distribution of the chain at time t), to be the row vector whose ith component is the probability
that the chain is in state i at time t.

The key observation is that
q(t) = q(t−1)P = q(0)Pt.

Namely, a Markov chain is full defined by q(0) and P.

Definition 14.2.6 A stationary distribution for the Markov chain with transition matrix P is a
probability distribution π such that π = πP.

In general, stationary distribution does not necessarily exist. We will mostly be interested
in Markov chains that have stationary distribution. Intuitively it is clear, that if a stationary
distribution exists, then the Markov chain, given enough time, will converge to the stationary
distribution.

Definition 14.2.7 The periodicity of a state i is the maximum integer T for which there exists an
initial distribution q(0) and positive integer a such that, for all t if at at time t we have q(i t) > 0

then t belongs to the arithmetic progression
{
a+ ti

∣∣∣ i ≥ 0
}

A state is said to be periodic if it
has periodicity greater than 1, and is aperiodic otherwise. A Markov chain in which every state is
aperiodic is aperiodic.

75

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Sticky Note
Marked set by ADMIN

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

A near trick that forces a Markov chain to be aperiodic, is to shrink all the probabilities by a
factor of 2, and every state has transition probability to itself which is 1/. Clearly, the resulting
Markov chain is aperiodic.

Definition 14.2.8 An ergodic state is aperiodic and (non-null) persistent.
An ergodic Markov check is one in which all states are ergodic.

The following theorem is the fundamental fact about Markov chains that we will need. The
interested reader, should check the proof in [Nor98].

Theorem 14.2.9 (Fundamental theorem of Markov chains) Any irreducible, finite, and ape-
riodic Markov chain has the following properties.

(i) All states are ergodic.

(ii) There is a unique stationary distribution π such that, for 1 ≤ i ≤ n, πi > 0.

(iii) For 1 ≤ i ≤ n, fii = 1 and hii = 1/πi.

(iv) Let N(i, t) be the number of times the Markov chain visits state i in t steps. Then

lim
t→∞

N(i, t)
t

= πi.

Namely, independent of the starting distribution, the process converges to the stationary dis-
tribution.

76

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

Chapter 15

Random Walks III

“ I gave the girl my protection, offering in my equivocal way to be her father. But I came too late, after she had ceased to believe in fathers. I wanted to do what
was right, I wanted to make reparation: I will not deny this decent impulse, however mixed with more questionable motives: there must always be a place for
penance and reparation. Nevertheless, I should never have allowed the gates of the town to be opened to people who assert that there are higher considerations
that those of decency. They exposed her father to her naked and made him gibber with pain, they hurt her and he could not stop them (on a day I spent occupied
with the ledgers in my office). Thereafter she was no longer fully human, sister to all of us. Certain sympathies died, certain movements of the heart became no
longer possible to her. I too, if I live longer enough in this cell with its ghost not only of the father and the daughter but of the man who even by lamplight did
not remove the black discs from his eyes and the subordinate whose work it was to keep the brazier fed, will be touched with the contagion and turned into a
create that believes in nothing. ” – Waiting for the Barbarians, J. M. Coetzee.

15.1 Random Walks on Graphs

Let G = (V,E) be a connected, non-bipartite, undirected graph, with n vertices. We define the
natural Markov chain on G, where the transition probability is

Puv =

{
1

d(u) if uv ∈ E
0 otherwise,

where d(w) is the degree of vertex w. Clearly, the resulting Markov chain MG is irreducible. Note,
that the graph must have an odd cycle, and it has a cycle of length 2. Thus, the gcd of the lengths
of its cycles is 1. Namely, MG is aperiodic. Now, by the Fundamental theorem of Markov chains,
MG has a unique stationary distribution π.

Lemma 15.1.1 For For all v ∈ V , πv = d(v)/2m.

Proof: Since π is stationary, and the definition of Puv, we get

πv = [πP]v =
∑
uv

πuPuv,

and this holds for all v. We only need to verify the claimed solution, since there is a unique
stationary distribution. Indeed,

d(v)
2m

= πv = [πP]v =
∑
uv

d(u)
2m

1
d(u)

=
d(v)
2m

,

as claimed.

Lemma 15.1.2 For all v ∈ V , hvv = 1/πv = 2m/d(v).

77

ADMIN
Highlight

Definition 15.1.3 The hitting time huv is the expected number of steps in a random walk that
starts at u and ends upon first reaching v.

The commute time between u and v is denoted by CTuv = huv + hvu.
Let Cu(G) denote the expected length of a walk that starts at u and ends upon visiting every

vertex in G at least once. The cover time of G denotes by C(G) is defined by C(G) = maxu Cu(G).

Example 15.1.4 Let Ln be the n-vertex lollipop graph, this graph consists of a clique on n/2
vertices, and a path on the remaining vertices. There is a vertex u in the clique which where the
path is attached to it. Let v denote the end end of the path.

Taking a random walk from u to v requires in expectation O(n2) steps, as we already saw in
class. This ignores the fact that with probability (n/2− 1)/(n/2) we enter Kn/2. As such, it turns
out that huv = Θ(n3), and hvu = Θ(n2).

Note, that the cover time is not monotone decreasing with the number of edges. Indeed, the
path of length n, has cover time O(n2), but the larger graph Ln has cover time Ω(n3).

Definition 15.1.5 A n× n matrix M is stochastic if all its entries are non-negative and for each
row i, it holds

∑
k Mik = 1. It is doubly stochastic if in addition, for any i, it holds

∑
k Mki = 1.

Lemma 15.1.6 Let MC be a Markov chain, such that transition probability matrix P is doubly
stochastic. Then, the distribution u = (1/n, 1/n, . . . , 1/n) is stationary for MC.

Proof: [uP]i =
∑n

k=1
Pki
n = 1

n .

Lemma 15.1.7 For any edge (u, v) ∈ E, huv + hvu ≤ 2m.

(Note, that the fact that (u, v) is an edge in the graph is crucial. Indeed, without it a worst
bound holds, see Theorem 15.2.1.)

Proof: Consider a new Markov chain defined by the edges of the graph (where every edge is
taken twice as two directed edges), where the current state is the last (directed) edge visited. There
are 2m edges in the new Markov chain, and the new transition matrix, has Q(u,v),(v,w) = Pvw = 1

d(v) .
This matrix is doubly stochastic, meaning that not only do the rows sum to one, but the columns
sum to one as well. Indeed, for the (v, w) we have∑

x∈V,y∈Γ(x)

Q(x,y),(v,w) =
∑

u∈Γ(v)

Q(u,v),(v,w) =
∑

u∈Γ(v)

Pvw = d(v)× 1
d(v)

= 1.

Thus, the stationary distribution for this Markov chain is uniform, by Lemma 15.1.6. Namely,
the stationary distribution of e = (u, v) is hee = πe = 1/(2m). Thus, the expected time between
successive traversals of e is 1/πe = 2m, by Theorem 15.3.1 (iii).

Consider huv + hvu and interpret this as the time to go from u to v and then return to u.
Conditioned on the event that the initial entry into u was via the (v, u) , we conclude that the
expected time to go from there to v and then algorithm(v, u) is 2m. The memorylessness property
of a Markov chains now allows us to remove the conditioning: since how we arrived to u is not
relevant. Thus, the expected time to travel from u to v and bac is at most 2m.

15.2 Electrical networks and random walks

A resistive electrical network is an undirected graph; each edge has branch resistance associated
with it. The electrical flow is determined by two laws: Kirchhoff’s law (preservation of flow - all

78

the flow coming into a node, leaves it) and Ohm’s law (the voltage across a resistor equals the
product of the resistance times the current through it). Explicitly, Ohm’s law states

voltage = resistance ∗ current.

The effective resistance between nodes u and v is the voltage difference between u and v when
one ampere is injected into u and removed from v (or injected into v and removed from u). The
effective resistance is always bounded by the branch resistance, but it can be much lower.

Given an undirected graph G, let N(G) be the electrical network defined over G, associating
one ohm resistance between the corresponding nodes in N(G).

You might now see the connection between a random walk on a graph and electrical network.
Intuitively (used in the most unscientific way possible), the electricity, is made out of electrons each
one of them is doing a random walk on the electric network. The resistance of an edge, corresponds
to the probability of taking the edge. The higher the resistance, the lower the probability that we
will travel on this edge. Thus, if the effective resistance Ruv between u and v is low, then there is
a good probability that travel from u to v in a random walk, and huv would be small.

Theorem 15.2.1 For any two vertices u and v in G, the commute time CTuv = 2mRuv.

Proof: Let φuv denote the voltage at u in N(G) with respected to v, where d(x) amperes of
current are injected into each node x ∈ V , and 2m amperes are removed from v. We claim that

huv = φuv.

Note, that the voltage on the edge uw is φuw = φuv−φwv. Thus, using Kirchhoff’s Law and Ohm’s
Law, we obtain that, for all ., we have

u ∈ V \ {v} d(u) =
∑

w∈Γ(u)

current(uw) =
∑

w∈Γ(u)

φuw
resistance(uw)

=
∑

w∈Γ(u)

(φuv − φwv) .

By the definition of expectation we have

u ∈ V \ {v} huv =
∑

w∈Γ(u)

(1 + hwv) .

The last two displays show two systems of linear inequalities that have both a unique solution.
However, if we identify huv with φuv. This implies, that φuv = huv, for all u, v.

Imagine the network where u is injected with 2m amperes, and for all nodes w remove d(w)
units from w. In this new network, hvu = −φ′vu = φ′uv. Now, since flows behaves linearly, we can
superimpose them (i.e., add them up). We have that in this new network 2m unites are being
injected at u, and 2m units are being extracted at v, all other nodes the charge cancel itself out.
The voltage difference between u and v in the new network is φ̂ = φuv + φ′uv = huv + hvu = Cuv.
Now, in the new network there are 2m amperes going from u to v, and by Ohm’s law, we have

φ̂ = voltage = resistance ∗ current = 2mRuv,

as claimed.

Example 15.2.2 Recall the lollipop from Exercise 15.1.4 Ln. Let u be the connecting vertex
between the clique and the path. We inject d(u) units of flow for each vertex u of Ln, and collect
2m units at u. Next, let u = u0, u!, . . . , un/2 = v be the vertices of the path. Clearly, there are

79

ADMIN
Highlight

n/2− i units of electricity flowing on the edge(ui+1, ui). Thus, the resistance of this edge is n/2− i,
by Ohm’s law (every edge has resistance one). The effective resistance from v to u is as such Θ(n2),
which implies that hvu = Θ(n2).

Similarly, it is easy to show huv = Θ(n3).
A similar analysis works for the random walk on the integer line in the range 1 to n.

Lemma 15.2.3 For any n vertex connected graph G, and for all u, v ∈ V (G), we have CTuv < n3.

Proof: The effective resistance between any two nodes in the network is bounded by the length
of the shortest path between the two nodes, which is at most n − 1. As such, plugging this into
Theorem 15.2.1, yields the bound, since m < n2.

15.3 Tools from previous lecture

Theorem 15.3.1 (Fundamental theorem of Markov chains) Any irreducible, finite, and ape-
riodic Markov chain has the following properties.

(i) All states are ergodic.

(ii) There is a unique stationary distribution π such that, for 1 ≤ i ≤ n, πi > 0.

(iii) For 1 ≤ i ≤ n, fii = 1 and hii = 1/πi.

(iv) Let N(i, t) be the number of times the Markov chain visits state i in t steps. Then

lim
t→∞

N(i, t)
t

= πi.

Namely, independent of the starting distribution, the process converges to the stationary dis-
tribution.

15.4 Notes

A nice survey of the material covered here, is available at http://arxiv.org/abs/math.PR/
0001057.

80

http://arxiv.org/abs/math.PR/0001057
http://arxiv.org/abs/math.PR/0001057

Chapter 16

Random Walks IV
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

“ Do not imagine, comrades, that leadership is a pleasure! On the contrary, it is a deep and heavy responsibility. No one believes more firmly than Comrade
Napoleon that all animals are equal. He would be only too happy to let you make your decisions for yourselves. But sometimes you might make the wrong
decisions, comrades, and then where should we be? Suppose you had decided to follow Snowball, with his moonshine of windmills-Snowball, who, as we now
know, was no better than a criminal?” – Animal Farm, George Orwell

16.1 Cover times

We remind the reader that the cover time of a graph is the expected time to visit all the vertices
in the graph, starting from an arbitrary vertex (i.e., worst vertex). The cover time is denoted by
C(G).

Theorem 16.1.1 Let G be an undirected connected graph, then C(G) ≤ 2m(n − 1), where n =
|V (G)| and m = |E(G)|.

Proof: (Sketch.) Construct a spanning tree T of G, and consider the time to walk around T .
The expected time to travel on this edge on both directions is CTuv = huv + hvu, which is smaller
than 2m, by Lemma 15.1.7. Now, just connect up those bounds, to get the expected time to travel
around the spanning tree. Note, that the bound is independent of the starting vertex.

Definition 16.1.2 The resistance of G is R(G) = maxu,v∈V (G) Ruv; namely, it is the maximum
effective resistance in G.

Theorem 16.1.3 mR(G) ≤ C(G) ≤ 2e3mR(G) lnn+ 2n.

Proof: Consider the vertices u and v realizing R(G), and observe that max(huv, hvu) ≥ CTuv/2,
and CTuv = 2mRuv by Theorem 15.2.1. Thus, C(G) ≥ CTuv/2 ≥ mR(G).

As for the upper bound. Consider a random walk, and divide it into epochs, where a epoch is a
random walk of length 2e3mR(G). For any vertex v, the expected time to hit u is hvu ≤ 2mR(G),
by Theorem 15.2.1. Thus, the probability that u is not visited in a epoch is 1/e3 by the Markov
inequality. Consider a random walk with lnn epochs. We have that the probability of not visiting u
is ≤ (1/e3)lnn ≤ 1/n3. Thus, all vertices are visited after lnn epochs, with probability ≥ 1− 1/n3.
Otherwise, after this walk, we perform a random walk till we visit all vertices. The length of
this (fix-up) random walk is ≤ 2n3, by Theorem 16.1.1. Thus, expected length of the walk is
≤ 2e3mR(G) lnn+ 2n3(1/n2).

81

Rayleigh’s Short-cut Principle. Observe that effective resistance is never raised by lowering
the resistance on an edge, nd it is never lowered by raising the resistance on an edge. Similarly,
resistance is never lowered by removing a vertex.

Another interesting fact, is that effective resistance comply with the triangle inequality.

Observation 16.1.4 For a graph with minimum degree d, we have R(G) ≥ 1/d (collapse all
vertices except the minimum-degree vertex into a single vertex).

Lemma 16.1.5 Suppose that g contains p edge-disjoint paths of length at most ` from s to t. Then
Rst ≤ `/p.

16.2 Graph Connectivity

Definition 16.2.1 A probabilistic log-space Turing machine for a language L is a Turing machine
using space O(log n) and running in time O(poly(n)), where n is the input size. A problem A is
in RLP, if there exists a probabilistic log-space Turing machine M such that M accepts x ∈ L(A)
with probability larger than 1/2, and if x /∈ L(A) then M(x) always reject.

Theorem 16.2.2 Let USTCON denote the problem of deciding if a vertex s is connected to a vertex
t in an undirected graph. Then USTCON ∈ RLP.

Proof: Perform a random walk of length 2n3 in the input graph G, starting from s. Stop as soon
as the random walk hit t. If u and v are in the same connected component, then hst ≤ n3. Thus,
by the Markov inequality, the algorithm works. It is easy to verify that it can be implemented in
O(log n) space.

Definition 16.2.3 A graph d-regular, if all its vertices are of degree d.
A d-regular graph is labeled if at each vertex of the graph, ach of the d edges incident on that

vertex has a unique label in {1, . . . , d}.
Any sequence of symbols σ = (σ1, σ2, . . .) from {1, . . . , d} together with a starting vertex s in a

labeled graph describes a walk in the graph.
A sequence σ is said to traverse a labeled graph if the walk visits every vertex of G regardless of

the starting vertex. A sequence σ is said to be a universal traversal sequence of a graph of labeled
graphs if it traverses all the graphs in this class.

Given such a universal traversal sequence, we can construct (a non-uniform) Turing machine
that can solve USTCON for such d-regular graphs, by encoding the sequence in the machine.

Let F denote a family of graphs, and let U(F) denote the length of the shortest universal
traversal sequence for all the labeled graphs in F. Let R(F) denote the maximum resistance of
graphs in this family.

Theorem 16.2.4 U(F) ≤ 5mR(F) lg(n |F|).

Let U(d, n) denote the length of the shortest universal traversal sequence of connected, labeled
n-vertex, d-regular graphs.

Lemma 16.2.5 The number of labeled n-vertex graphs that are d-regular is (nd)O(nd).

Proof: There are at most nnd choices for edges in the graph. Eery vertex has d! possible labeling
of the edges adjacent to it.

82

Lemma 16.2.6 U(d, n) = O(n3dlogn).

Proof: The diameter of every connected n-vertex, d-regular graph is O(n/d). And so, this
also bounds the resistance of such a graph. The number of edges is m = nd/2. Now, combine
Lemma 16.2.5 and Theorem 16.2.4.

This is, as mentioned before, not uniform solution. There is by now a known log-space deter-
ministic algorithm for this problem, which is uniform.

16.2.1 Directed graphs

Theorem 16.2.7 One can solve the
−−−−−→
STCON problem with a log-space randomized algorithm, that

always output NO if there is no path from s to t, and output YES with probability at least 1/2 if
there is a path from s to t.

16.3 Graphs and Eigenvalues

Consider an undirected graph G = G(V,E) with n vertices. The adjacency matrix A(G) of G is
the n × n symmetric matrix where Aij = Aji is the number of edges between the vertices vi and
vj . Where G is bipartite, we assume that its has two independent sets X and Y . In this case the
matrix A(G) can be written in block form.

Since A(G) is symmetric, all its eigenvalues exists λ1 ≥ λ2 · · · ≥ λn, and their corresponding
orthonormal basis vectors are e1, . . . , en. We will need the following theorem.

Theorem 16.3.1 (Fundamental theorem of algebraic graph theory) Let G = G(V,E) be
an n-vertex, undirected (multi)graph with maximum degree d. Then, under the canonical labeling
of eigenvalues λi and orthonormal eigenvectors ei for the matrix A(G) we have:

(i) If G is connected then λ2 < lambda1.

(ii) For i = 1, . . . , n, we have |λi| ≤ d.

(iii) d is an eigenvalue if and only if G is regular.

(iv) If G is d-regular then the eigenvalue λ1 = d ha the eigenvector e1 = 1√
n
(1, 1, 1, . . . , 1).

(v) The graph G is bipartite if and only if for every eigenvalue λ there is an eigenvalue −λ of the
same multiplicity.

(vi) Suppose that G is connected. Then G is bipartite if and only if −λ1 is an eigenvalue.

(vii) If G is d-regular and bipartite, then λn = d and en = 1√
n
(1, 1, . . . , 1,−1, . . . ,−1), where there

are equal numbers of 1s and −1s in en.

16.4 Bibliographical Notes

A nice survey of algebraic graph theory appears in [Wes01] and in [Bol98].

83

84

Chapter 17

The Johnson-Lindenstrauss Lemma
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

17.1 The Johnson-Lindenstrauss lemma

17.1.1 Some Probability

Definition 17.1.1 Let N(0, 1) denote the one dimensional normal distribution. This distribution
has density n(x) = e−x

2/2/
√

2π.
LetNd(0, 1) denote the d-dimensional Gaussian distribution, induced by picking each coordinate

independently from the standard normal distribution N(0, 1).
Let Exp(λ) denote the exponential distribution, with parameter λ. The density function of the

exponential distribution is f(x) = λ exp(−λx).
Let Γλ,k denote the gamma distribution, with parameters λ and k. The density function of

this distribution is gλ,k(x) = λ (λx)k−1

(k−1)! exp(−λx). The cumulative distribution function of Γλ,k is

Γλ,k(x) = 1 − exp(−λx)
(
1 + λx

1! + · · ·+ (λx)i

i! + · · ·+ (λx)k−1

(k−1)!

)
. As we prove below, gamma distri-

bution is how much time one has to wait till k experiments succeed, where an experiment duration
distributes according to the exponential distribution.

A random variable X has the Poisson distribution, with parameter η > 0 (which is a discrete
distribution) if Pr[X = i] = ηi

i! e
−η.

Lemma 17.1.2 If X ∼ Exp(λ) then E[λ] = 1
λ .

Proof:
∫ ∞

x=0
x · λe−λx dx =

[
− 1
λ
e−λx − xe−λx

]∞
x=0

=
1
λ

.

Lemma 17.1.3 The following properties hold for the d dimensional Gaussian distribution Nd(0, 1):

(i) The distribution Nd(0, 1) is centrally symmetric around the origin.

(ii) If X ∼ Nd(0, 1) and u is a unit vector, then X · u ∼ N(0, 1).

(iii) If X,Y ∼ N(0, 1) are two independent variables, then Z = X2 + Y 2 follows the exponential
distribution with parameter λ = 1

2 .

(iv) Given k independent variables X1, . . . , Xk distributed according to the exponential distribution
with parameter λ, then Y = X1 + · · ·+Xk is distributed according to the Gamma distribution
Γλ,k(x).

85

Proof: (i) Let x = (x1, . . . , xd) be a point picked from the Gaussian distribution. The density
φd(x) = φ(x1)φ(x2) · φ(xd), where φ(xi) is the normal distribution density function, which is
φ(xi) = exp(−x2

i /2)/
√

2π. Thus φd(x) = (2π)−n/2 exp(−(x2
1 · · ·+ x2

d)/2). Consider any two points
x, y ∈ IRn, such that r = ‖x‖ = ‖y‖. Clearly, φd(x) = φd(y). Namely, any two points of the same
distance from the origin, have the same density (i.e., “probability”). As such, the distribution
Nd(0, 1) is centrally symmetric around the origin.

(ii) Consider e1 = (1, 0, . . . , 0) ∈ IRn. Clearly, x · e1 = x1, which is distributed N(0, 1). Now,
by the symmetry of of Nd(0, 1), this implies that x · u is distributed N(0, 1). Formally, let R be
a rotation matrix that maps u to e1. We know that Rx is distributed Nd(0, 1) (since Nd(0, 1) is
centrally symmetric). Thus x ·u has the same distribute as Rx ·Ru, which has the same distribution
as x · e1, which is N(0, 1).

(iii) If X,Y ∼ N(0, 1), and consider the density function g(x, y) = 1
2π exp

(
−x2+y2

2

)
and the

associated integral
∫∞
x=−∞

∫∞
y=−∞ g(x, y) dx dy. We would like to change the integration variables

to x(r, α) =
√
r sinα and y(r, α) =

√
r cosα. The Jacobian of this change of variables is

I(r, α) =

∣∣∣∣∣∂x∂r ∂x
∂α

∂y
∂r

∂y
∂α

∣∣∣∣∣ =
∣∣∣∣∣
sinα
2
√
r

√
r cosα

cosα
2
√
r
−
√
r sinα

∣∣∣∣∣ = −1
2
(
sin2 α+ cos2 α

)
= −1

2
.

As such, we have

Pr[Z = z] =
∫
x2+y2=z

1
2π

exp
(
−x

2 + y2

2

)
dx dy

=
∫ 2π

α=0

1
2π

exp
(
−x(
√
z, α)2 + y(

√
z, α)2

2

)
· |I(z, α)| dα

=
1
2π
· 1
2
·
∫ 2π

α=0
exp
(
−z

2

)
=

1
2

exp
(
−z

2

)
.

As such, Z has an exponential distribution with λ = 1/2.
(iv) For k = 1 the claim is trivial. Otherwise, let gk−1(x) = λ (λx)k−2

(k−2)! exp(−λx). Observe that

gk(t) =
∫ t

0
gk−1(t− x)g1(x) dx =

∫ t

0

(
λ

(λ(t− x))k−2

(k − 2)!
exp(−λ(t− x))

)
(λ exp(−λx)) dx

=
∫ t

0
λ2 (λ(t− x))k−2

(k − 2)!
exp(−λt) dx

= λ exp(−λt)
∫ t

0
λ

(λx)k−2

(k − 2)!
dx = λ exp(−λt) (λt)k−1

(k − 1)!
= gk(x).

17.1.2 Proof of the Johnson-Lindenstrauss Lemma

Lemma 17.1.4 Let u be a unit vector in IRd. For any even positive integer k, let U1, . . . , Uk be
random vectors chosen independently from the d-dimensional Gaussian distribution Nd(0, 1). For
Xi = u · Ui, define W = W (u) = (X1, . . . , Xk) and L = L(u) = ‖W‖2. Then, for any β > 1, we
have:

1. E[L] = k.

2. Pr[L ≥ βk] ≤ k+3
2 exp

(
−k

2 (β − (1 + lnβ))
)
.

86

3. Pr[L ≤ k/β] < O(k)× exp(−k
2 (β−1 − (1− lnβ))).

Proof: By Lemma 17.1.3 (ii) each Xi is distributed as N(0, 1), and X1, . . . , Xk are independent.
Define Yi = X2

2i−1 + X2
2i, for i = 1, . . . , τ , where τ = k/2. By Lemma 17.1.3 (iii) Yi follows the

exponential distribution with parameter λ = 1/2. Let L =
∑τ

i=1 Yi. By Lemma 17.1.3 (iv), the
variable L follows the Gamma distribution (k/2, 1/2), and its expectation is E[L] =

∑k/2
i=1 E[Yi] =

τ × 2 = k, since E[Yi] = 2 by Lemma 17.1.2.
Now, let η = λβk = βk/2 = βτ , we have

Pr[L ≥ βk] = 1−Pr[L ≤ βk] = 1− Γ1/2,τ (βk) =
τ−1∑
i=0

e−η
ηi

i!
≤ (τ + 1)e−η

ητ

τ !
,

since η = βτ > τ , as β > 1 and Γλ,k(x) = 1− exp(−λx)
(
1 + λx

1! + · · ·+ (λx)i

i! + · · ·+ (λx)k−1

(k−1)!

)
. Now,

since τ ! ≥ (τ/e)τ , and thus

Pr[L ≥ βk] ≤ (τ + 1)e−η
ητ

τ τ/eτ
= (τ + 1)e−η

(eη
τ

)τ
= (τ + 1)e−βτ

(
eβτ

τ

)τ
= (τ + 1)e−βτ · exp(τ ln(eβ)) = (τ + 1) exp(−τ(β − (1 + lnβ)))

≤ k + 3
2

exp
(
−k

2
(β − (1 + lnβ))

)
.

Arguing in a similar fashion, we have, for a large constant ρ� 1

Pr[L ≤ k/β] = Γ1/2,τ (k/β) = 1−
τ−1∑
i=0

e−τ/β
(τ/β)i

i!
= e−τ/β

∞∑
i=0

(τ/β)i

i!
−
τ−1∑
i=0

e−τ/β
(τ/β)i

i!

=
∞∑
i=τ

e−τ/β
(τ/β)i

i!
≤ e−τ/β

∞∑
i=τ

(
eτ

iβ

)i

= e−τ/β

ρeτ/β∑
i=τ

(
eτ

iβ

)i
+

∞∑
i=ρeτ/β+1

(
eτ

iβ

)i
The second sum is very small for ρ� 1 and we bound only the first one. As the sequence (eτiβ)i is
decreasing for i ≥ τ/β, we can bound the first sum by

ρeτ

β
· e−τ/β

(
e

β

)τ
= O(τ) exp

(
−τ(β−1 − (1− lnβ))

)
.

Since τ = k/2, we obtain the desired result.
Next, we show how to interpret the above inequalities in a somewhat more intuitive way. Let

β = 1 + ε, ε > 0. From Taylor expansion we know that lnβ ≤ ε− ε2/2 + ε3/3. By plugging it into
the upper bound for Pr[L ≥ βk] we get

Pr[L ≥ βk] ≤ O(k)× exp
(
−k

2
(
1 + ε− 1− ε+ ε2/2− ε3/3

))
≤ O(k)× exp(−k

2
(ε2/2− ε3/3))

87

On the other hand, we also know that lnβ ≥ ε− ε2/2. Therefore

Pr[L ≤ k/β] ≤ O(k)× exp(−k
2
(β−1 − 1 + ε− ε2/2))

≤ O(k)× exp(−k
2
(

1
1 + ε

− 1 + ε− ε2/2))

≤ O(k)× exp(−k
2
(
ε2

1 + ε
− ε2/2))

≤ O(k)× exp(−k
2
· ε

2 − ε3

2(1 + ε)
)

Thus, the probability that a given unit vector gets distorted by more than (1 + ε) in any
direction② grows roughly as exp(−kε2/4), for small ε > 0. Therefore, if we are given a set P of n
points in l2, we can set k to roughly 8 ln(n)/ε2 and make sure that with non-zero probability we
obtain projection which does not distort distances② between any two different points from P by
more than (1 + ε) in each direction.

Theorem 17.1.5 Given a set P of n points in IRd, and parameter ε, one can compute a random
projection R into k = 8ε−2 lnn dimensions, such that the distances between points are roughtly
preserved. Formally, with constant probablity, for any p, q ∈ P , we have

(1− ε)‖p− q‖ ≤‖R(p)−R(q)‖ ≤‖p− q‖ .

The probability of success improves to high probability, if we use, say, k = 10ε−2 lnn dimensions.

17.2 Bibliographical notes

The probability review of Section 17.1.1 can be found in Feller [Fel71]. The proof of the Johnson-
Lindenstrauss lemma of Section 17.1.2 is due to Indyk and Motwani [IM98]. The original proof of
the Johnson-Linenstrauss lemma is from [JL84].

It exposes the fact that the Johnson-Lindenstrauss lemma is no more than yet another instance
of the concentration of mass phenomena (i.e., like the Chernoff inequality).

Interestingly, it is enough to pick each entry in the dimension reducing matrix randomly out
of −1, 0, 1. This requires more involved proof [Ach01]. This is useful when one care about storing
this dimension reduction transformation efficiently.

Magen [Mag01] observed that in fact the Johnson-Lindenstrauss lemma preserves angles, and
in fact can be used to preserve any “k dimensional angle”, by projecting down to dimension
O(kε−2 log n). In particular, Exercise 17.3.1 is taken from there.

Dimension reduction is crucial in learning, AI, databases, etc. One common technique that is
being used in practice is to do PCA (i.e., principal component analysis) and take the first few main
axises. Other techniques include independent component analysis, and MDS (multidimensional
scaling). MDS tries to embed points from high dimensions into low dimension (d = 2 or 3),
which preserving some properties. Theoretically, dimension reduction into really low dimensions is
hopeless, as the distortion in the worst case is Ω(n1/(k−1)), if k is the target dimension [Mat90].

②Note that this implies distortion (1 + ε)2 if we require the mapping to be a contraction.
②In fact, this statement holds even for the square of the distances.

88

17.3 Exercises

Exercise 17.3.1 [10 Points] Show that the Johnson-Lindenstrauss lemma also (1± ε)-preserves
angles among triples of points of P (you might need to increase the target dimension however by
a constant factor). [Hint: For every angle, construct a equilateral triangle that its edges are being
preserved by the projection (add the vertices of those triangles [conceptually] to the point set being
embedded). Argue, that this implies that the angle is being preserved.]

89

90

Chapter 18

Finite Metric Spaces and Partitions
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

18.1 Finite Metric Spaces

Definition 18.1.1 A metric space is a pair (X,d) where X is a set and d : X × X → [0,∞) is a
metric, satisfying the following axioms: (i) d(x, y) = 0 iff x = y, (ii) d(x, y) = d(y, x), and (iii)
d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality).

For example, IR2 with the regular Euclidean distance is a metric space.
It is usually of interest to consider the finite case, where X is an n-point set. Then, the function

d can be specified by
(
n
2

)
real numbers. Alternatively, one can think about (X,d) is a weighted

complete graph, where we specify positive weights on the edges, and the resulting weights on the
edges comply with the triangle inequality.

In fact, finite metric spaces rise naturally from (sparser) graphs. Indeed, let G = (X, E) be
an undirected weighted graph defined over X, and let dG(x, y) be the length of the shortest path
between x and y in G. It is easy to verify that (X,dG) is a finite metric space. As such if the graph
G is sparse, it provides a compact representation to the finite space (X,dG).

Definition 18.1.2 Let (X, d) be an n-point metric space. We denote the open ball of radius r
about x ∈ X, by b(x, r) =

{
y ∈ X

∣∣∣d(x, y) < r
}

.

Underling our discussion of metric spaces are algorithmic applications. The hardness of various
computational problems depends heavily on the structure of the finite metric space. Thus, given
a finite metric space, and a computational task, it is natural to try to map the given metric space
into a new metric where the task at hand becomes easy.

Example 18.1.3 For example, computing the diameter is not trivial in two dimensions, but is easy
in one dimension. Thus, if we could map points in two dimensions into points in one dimension,
such that the diameter is preserved, then computing the diameter becomes easy. In fact, this
approach yields an efficient approximation algorithm, see Exercise 18.7.3 below.

Of course, this mapping from one metric space to another, is going to introduce error. We
would be interested in minimizing the error introduced by such a mapping.

Definition 18.1.4 Let (X,dX) and (Y,dY) be metric spaces. A mapping f : X → Y is called an
embedding, and is C-Lipschitz if dY (f(x), f(y)) ≤ C · dX(x, y) for all x, y ∈ X. The mapping f is

91

called K-bi-Lipschitz if there exists a C > 0 such that

CK−1 · dX(x, y) ≤ dY (f(x), f(y)) ≤ C · dX(x, y),

for all x, y ∈ X.
The least K for which f is K-bi-Lipschitz is called the distortion of f , and is denoted dist(f).

The least distortion with which X may be embedded in Y is denoted cY (X).

There are several powerful results in this vain, that show the existence of embeddings with low
distortion that would be presented:

1. Probabilistic trees - every finite metric can be randomly embedded into a tree such that the
“expected” distortion for a specific pair of points is O(log n).

2. Bourgain embedding - shows that any n-point metric space can be embedded into (finite
dimensional) metric space with O(log n) distortion.

3. Johnson-Lindenstrauss lemma - shows that any n-point set in Euclidean space with the regular
Euclidean distance can be embedded into IRk with distortion (1+ ε), where k = O(ε−2 log n).

18.2 Examples

What is distortion? When considering a mapping f : X→ IRd of a metric space (X,d) to IRd,
it would useful to observe that since IRd can be scaled, we can consider f to be an an expansion
(i.e., no distances shrink). Furthermore, we can in fact assume that there is at least one pair of
points x, y ∈ X, such that d(x, y) =‖x− y‖. As such, we have dist(f) = maxx,y

‖x−y‖
d(x,y) .

s
a

b

c

Why distortion is necessary? Consider the a graph G = (V,E) with one
vertex s connected to three other vertices a, b, c, where the weights on the edges
are all one (i.e., G is the star graph with three leafs). We claim that G can not
be embedded into Euclidean space with distortion ≤

√
2. Indeed, consider the

associated metric space (V,dG) and an (expansive) embedding f : V → IRd.
Consider the triangle formed by 4 = a′b′c′, where a′ = f(a), b′ = f(b) and c′ = f(c). Next,

consider the following quantity max(‖a′ − s′‖ ,‖b′ − s′‖ ,‖c′ − s′‖) which lower bounds the distortion
of f . This quantity is minimized when r =‖a′ − s′‖ =‖b′ − s′‖ =‖c′ − s′‖. Namely, s′ is the center
of the smallest enclosing circle of 4. However, r is minimize when all the edges of 4 are of equal
length, and are in fact of length dG(a, b) = 2. It follows that dist(f) ≥ r ≥ 2/

√
3.

It is known that Ω(log n) distortion is necessary in the worst case. This is shown using expanders
[Mat02].

18.2.1 Hierarchical Tree Metrics

The following metric is quite useful in practice, and nicely demonstrate why algorithmically finite
metric spaces are useful.

Definition 18.2.1 Hierarchically well-separated tree (HST) is a metric space defined on the leaves
of a rooted tree T . To each vertex u ∈ T there is associated a label ∆u ≥ 0 such that ∆u = 0 if
and only if u is a leaf of T . The labels are such that if a vertex u is a child of a vertex v then
∆u ≤ ∆v. The distance between two leaves x, y ∈ T is defined as ∆lca(x,y), where lca(x, y) is the
least common ancestor of x and y in T .

92

A HST T is a k-HST if for a vertex v ∈ T , we have that ∆v ≤ ∆p(v)/k, where p(v) is the parent
of v in T .

Note that a HST is a very limited metric. For example, consider the cycle G = Cn of n vertices,
with weight one on the edges, and consider an expansive embedding f of G into a HST H. It is
easy to verify, that there must be two consecutive nodes of the cycle, which are mapped to two
different subtrees of the root r of H. Since H is expansive, it follows that ∆r ≥ n/2. As such,
dist(f) ≥ n/2. Namely, HSTs fail to faithfully represent even very simple metrics.

18.2.2 Clustering

One natural problem we might want to solve on a graph (i.e., finite metric space) (X,d) is to
partition it into clusters. One such natural clustering is the k-median clustering, where we would
like to choose a set C ⊆ X of k centers, such that νC(X,d) =

∑
p∈X d(p, C) is minimized, where

d(p, C) = minc∈C d(p, c) is the distance of p to its closest center in C.
It is known that finding the optimal k-median clustering in a (general weighted) graph is NP-

complete. As such, the best we can hope for is an approximation algorithm. However, if the
structure of the finite metric space (X,d) is simple, then the problem can be solved efficiently. For
example, if the points of X are on the real line (and the distance between a and b is just |a− b|),
then k-median can be solved using dynamic programming.

Another interesting case is when the metric space (X,d) is a HST. Is not too hard to prove the
following lemma. See Exercise 18.7.1.

Lemma 18.2.2 Let (X,d) be a HST defined over n points, and let k > 0 be an integer. One can
compute the optimal k-median clustering of X in O(k2n) time.

Thus, if we can embed a general graph G into a HST H, with low distortion, then we could
approximate the k-median clustering on G by clustering the resulting HST, and “importing” the
resulting partition to the original space. The quality of approximation, would be bounded by the
distortion of the embedding of G into H.

18.3 Random Partitions

Let (X, d) be a finite metric space. Given a partition P = {C1, . . . , Cm} of X, we refer to the sets
Ci as clusters. We write PX for the set of all partitions of X. For x ∈ X and a partition P ∈ PX we
denote by P (x) the unique cluster of P containing x. Finally, the set of all probability distributions
on PX is denoted DX.

18.3.1 Constructing the partition

Let ∆ = 2u be a prescribed parameter, which is the required diameter of the resulting clusters.
Choose, uniformly at random, a permutation π of X and a random value α ∈ [1/4, 1/2]. Let
R = α∆, and observe that it is uniformly distributed in the interval [∆/4,∆/2].

The partition is now defined as follows: A point x ∈ X is assigned to the cluster Cy of y, where
y is the first point in the permutation in distance ≤ R from x. Formally,

Cy =
{
x ∈ X

∣∣∣x ∈ b(y,R) and π(y) ≤ π(z) for all z ∈ X with x ∈ b(z,R)
}
.

Let P = {Cy}y∈X denote the resulting partition.

93

Here is a somewhat more intuitive explanation: Once we fix the radius of the clusters R, we
start scooping out balls of radius R centered at the points of the random permutation π. At the
ith stage, we scoop out only the remaining mass at the ball centered at xi of radius r, where xi is
the ith point in the random permutation.

18.3.2 Properties

Lemma 18.3.1 Let (X, d) be a finite metric space, ∆ = 2u a prescribed parameter, and let P be
the partition of X generated by the above random partition. Then the following holds:

(i) For any C ∈ P , we have diam(C) ≤ ∆.

(ii) Let x be any point of X, and t a parameter ≤ ∆/8. Then,

Pr[b(x, t) * P (x)] ≤ 8t
∆

ln
b

a
,

where a = |b(x,∆/8)|, b = |b(x,∆)|.

Proof: Since Cy ⊆ b(y,R), we have that diam(Cy) ≤ ∆, and thus the first claim holds.
Let U be the set of points of b(x,∆), such that w ∈ U iff b(w,R) ∩ b(x, t) 6= ∅. Arrange the

points of U in increasing distance from x, and let w1, . . . , wb′ denote the resulting order, where
b′ = |U |. Let Ik = [d(x,wk)− t, d(x,wk) + t] and write Ek for the event that wk is the first point in
π such that b(x, t)∩Cwk

6= ∅, and yet b(x, t) * Cwk
. Note that if wk ∈ b(x,∆/8), then Pr[Ek] = 0

since b(x, t) ⊆ b(x,∆/8) ⊆ b(wk,∆/4) ⊆ b(wk, R).
In particular, w1, . . . , wa ∈ b(x,∆/8) and as such Pr[E1] = · · · = Pr[Ea] = 0. Also, note that

if d(x,wk) < R − t then b(wk, R) contains b(x, t) and as such Ek can not happen. Similarly, if
d(x,wk) > R + t then b(wk, R) ∩ b(x, t) = ∅ and Ek can not happen. As such, if Ek happen then
R−t ≤ d(x,wk) ≤ R+t. Namely, if Ek happen then R ∈ Ik. Namely, Pr[Ek] = Pr[Ek ∩ (R ∈ Ik)] =
Pr[R ∈ Ik] · Pr[Ek |R ∈ Ik]. Now, R is uniformly distributed in the interval [∆/4,∆/2], and Ik is
an interval of length 2t. Thus, Pr[R ∈ Ik] ≤ 2t/(∆/4) = 8t/∆.

Next, to bound Pr[Ek |R ∈ Ik], we observe that w1, . . . , wk−1 are closer to x than wk and their
distance to b(x, t) is smaller than R. Thus, if any of them appear before wk in π then Ek does not
happen. Thus, Pr[Ek |R ∈ Ik] is bounded by the probability that wk is the first to appear in π out
of w1, . . . , wk. But this probability is 1/k, and thus Pr[Ek |R ∈ Ik] ≤ 1/k.

We are now ready for the kill. Indeed,

Pr[b(x, t) * P (x)] =
b′∑
k=1

Pr[Ek] =
b′∑

k=a+1

Pr[Ek] =
b′∑

k=a+1

Pr[R ∈ Ik] · Pr[Ek |R ∈ Ik]

≤
b′∑

k=a+1

8t
∆
· 1
k
≤ 8t

∆
ln
b′

a
≤ 8t

∆
ln
b

a
,

since
∑b

k=a+1
1
k ≤

∫ b
a
dx
x = ln b

a and b′ ≤ b.

18.4 Probabilistic embedding into trees

In this section, given n-point finite metric (X,d). we would like to embed it into a HST. As
mentioned above, one can verify that for any embedding into HST, the distortion in the worst

94

case is Ω(n). Thus, we define a randomized algorithm that embed (X, d) into a tree. Let T be
the resulting tree, and consider two points x, y ∈ X. Consider the random variable dT (x, y). We
constructed the tree T such that distances never shrink; i.e. d(x, y) ≤ dT (x, y). The probabilistic
distortion of this embedding is maxx,y E

[
dT (x,y)
d(x,y)

]
. Somewhat surprisingly, one can find such an

embedding with logarithmic probabilistic distortion.

Theorem 18.4.1 Given n-point metric (X, d) one can randomly embed it into a 2-HST with prob-
abilistic distortion ≤ 24 lnn.

Proof: The construction is recursive. Let diam(P), and compute a random partition of X with
cluster diameter diam(P)/2, using the construction of Section 18.3.1. We recursively construct a
2-HST for each cluster, and hang the resulting clusters on the root node v, which is marked by
∆v = diam(P). Clearly, the resulting tree is a 2-HST.

For a node v ∈ T , let X(v) be the set of points of X contained in the subtree of v.
For the analysis, assume diam(P) = 1, and consider two points x, y ∈ X. We consider a node

v ∈ T to be in level i if level(v) = dlg ∆ve = i. The two points x and y correspond to two leaves in T ,
and let û be the least common ancestor of x and y in t. We have dT (x, y) ≤ 2level(v). Furthermore,
note that along a path the levels are strictly monotonically increasing.

In fact, we are going to be conservative, and let w be the first ancestor of x, such that b =
b(x,d(x, y)) is not completely contained in X(u1), . . . ,X(um), where u1, . . . , um are the children of
w. Clearly, level(w) > level(û). Thus, dT (x, y) ≤ 2level(w).

Consider the path σ from the root of T to x, and let Ei be the event that b is not fully contained
in X(vi), where vi is the node of σ of level i (if such a node exists). Furthermore, let Yi be the
indicator variable which is 1 if Ei is the first to happened out of the sequence of events E0, E−1,
Clearly, dT (x, y) ≤

∑
Yi2i.

Let t = d(x, y) and j = blg d(x, y)c, and ni =
∣∣b(x, 2i)

∣∣ for i = 0, . . . ,−∞. We have

E[dT (x, y)] ≤
0∑
i=j

E[Yi] 2i ≤
0∑
i=j

2iPr
[
Ei ∩ Ei−1 ∩ Ei−1 · · · E0

]
≤

0∑
i=j

2i · 8t
2i

ln
ni
ni−3

,

by Lemma 18.3.1. Thus,

E[dT (x, y)] ≤ 8t ln

 0∏
i=j

ni
ni−3

 ≤ 8t ln(n0 · n1 · n2) ≤ 24t lnn.

It thus follows, that the expected distortion for x and y is ≤ 24 lnn.

18.4.1 Application: approximation algorithm for k-median clustering

Let (X,d) be a n-point metric space, and let k be an integer number. We would like to compute the
optimal k-median clustering. Number, find a subset Copt ⊆ X, such that νCopt(X,d) is minimized,
see Section 18.2.2. To this end, we randomly embed (X,d) into a HST H using Theorem 18.4.1.
Next, using Lemma 18.2.2, we compute the optimal k-median clustering of H. Let C be the set
of centers computed. We return C together with the partition of X it induces as the required
clustering.

Theorem 18.4.2 Let (X,d) be a n-point metric space. One can compute in polynomial time a
k-median clustering of X which has expected price O(α log n), where α is the price of the optimal
k-median clustering of (X,d).

95

Proof: The algorithm is described above, and the fact that its running time is polynomial can
be easily be verified. To prove the bound on the quality of the clustering, for any point p ∈ X,
let c(p) denote the closest point in Copt to p according to d, where Copt is the set of k-medians in
the optimal clustering. Let C be the set of k-medians returned by the algorithm, and let H be the
HST used by the algorithm. We have

β = νC(X,d) ≤ νC(X,dH) ≤ νCopt(X,dH) ≤
∑
p∈X

dH(p, Copt) ≤
∑
p∈X

dH(p, c(p)).

Thus, in expectation we have

E[β] = E

∑
p∈X

dH(p, c(p))

 =
∑
p∈X

E[dH(p, c(p))] =
∑
p∈X

O(d(p, c(p)) log n)

= O

(log n)
∑
p∈X

d(p, c(p))

 = O
(
νCopt(X,d) log n

)
,

by linearity of expectation and Theorem 18.4.1.

18.5 Embedding any metric space into Euclidean space

Lemma 18.5.1 Let (X,d) be a metric, and let Y ⊂ X. Consider the mapping f : X → IR, where
f(x) = d(x, Y) = miny∈Y d(x, y). Then for any x, y ∈ X, we have |f(x)− f(y)| ≤ d(x, y). Namely
f is nonexpansive.

Proof: Indeed, let x′ and y′ be the closet points of Y , to x and y, respectively. Observe that
f(x) = d(x, x′) ≤ d(x, y′) ≤ d(x, y) + d(y, y′) = d(x, y) + f(y) by the triangle inequality. Thus,
f(x)− f(y) ≤ d(x, y). By symmetry, we have f(y)− f(x) ≤ d(x, y). Thus, |f(x)− f(y)| ≤ d(x, y).

18.5.1 The bounded spread case

Let (X,d) be a n-point metric. The spread of X, denoted by Φ(X) = diam(X)
minx,y∈X,x6=y d(x,y) , is the ratio

between the diameter of X and the distance between the closest pair of points.

Theorem 18.5.2 Given a n-point metric Y = (X, d), with spread Φ, one can embed it into Eu-
clidean space IRk with distortion O(

√
lnΦ lnn), where k = O(lnΦ lnn).

Proof: Assume that diam(Y) = Φ (i.e., the smallest distance in Y is 1), and let ri = 2i−2,
for i = 1, . . . , α, where α = dlg Φe. Let Pi,j be a random partition of P with diameter ri, using
Theorem 18.4.1, for i = 1, . . . , α and j = 1, . . . , β, where β = dc log ne and c is a large enough
constant to be determined shortly.

For each cluster of Pi,j randomly toss a coin, and let Vi,j be the all the points of X that belong
to clusters in Pi,j that got ’T ’ in their coin toss. For a point u ∈ x, let fi,j(x) = d(x,X \ Vi,j) =
minv∈X\Vi,j

d(x, v), for i = 0, . . . ,m and j = 1, . . . , β. Let F : X→ IR(m+1)·β be the embedding, such
that F (x) =

(
f0,1(x), f0,2(x), . . . , f0,β(x), f1,1(x), f0,2(x), . . . , f1,β(x), . . . , fm,1(x), fm,2(x), . . . , fm,β(x)

)
.

Next, consider two points x, y ∈ X, with distance φ = d(x, y). Let k be an integer such that
ru ≤ φ/2 ≤ ru+1. Clearly, in any partition of Pu,1, . . . , Pu,β the points x and y belong to different

96

clusters. Furthermore, with probability half x ∈ Vu,j and y /∈ Vu,j or x /∈ Vu,j and y ∈ Vu,j , for
1 ≤ j ≤ β.

Let Ej denote the event that b(x, ρ) ⊆ Vu,j and y /∈ Vu,j , for j = 1, . . . , β, where ρ = φ/(64 lnn).
By Lemma 18.3.1, we have

Pr[b(x, ρ) * Pu,j(x)] ≤
8ρ
ru

lnn ≤ φ

8ru
≤ 1/2.

Thus,

Pr[Ej] = Pr
[(

b(x, ρ) ⊆ Pu,j(x)
)
∩(x ∈ Vu,j) ∩(y /∈ Vu,j)

]
= Pr[b(x, ρ) ⊆ Pu,j(x)] ·Pr[x ∈ Vu,j] ·Pr[y /∈ Vu,j] ≥ 1/8,

since those three events are independent. Notice, that if Ej happens, than fu,j(x) ≥ ρ and fu,j(y) =
0.

Let Xj be an indicator variable which is 1 if Ei happens, for j = 1, . . . , β. Let Z =
∑

j Xj ,

and we have µ = E[Z] = E
[∑

j Xj

]
≥ β/8. Thus, the probability that only β/16 of E1, . . . , Eβ

happens, is Pr[Z < (1− 1/2)E[Z]]. By the Chernoff inequality, we have Pr[Z < (1− 1/2)E[Z]] ≤
exp
(
−µ1/(2 · 22)

)
= exp(−β/64) ≤ 1/n10, if we set c = 640.

Thus, with high probability

‖F (x)− F (y)‖ ≥

√√√√ β∑
j=1

(fu,j(x)− fu,j(y))2 ≥
√
ρ2
β

16
=
√
β
ρ

4
= φ ·

√
β

256 lnn
.

On the other hand, |fi,j(x)− fi,j(y)| ≤ d(x, y) = φ ≤ 64ρ lnn. Thus,

‖F (x)− F (y)‖ ≤
√
αβ(64ρ lnn)2 ≤ 64

√
αβρ lnn =

√
αβ · φ.

Thus, setting G(x) = F (x)256 lnn√
β

, we get a mapping that maps two points of distance φ from

each other to two points with distance in the range
[
φ, φ ·

√
αβ · 256 lnn√

β

]
. Namely, G(·) is an em-

bedding with distortion O(
√
α lnn) = O(

√
lnΦ lnn).

The probability that G fails on one of the pairs, is smaller than (1/n10) ·
(
n
2

)
< 1/n8. In

particular, we can check the distortion of G for all
(
n
2

)
pairs, and if any of them fail (i.e., the

distortion is too big), we restart the process.

18.5.2 The unbounded spread case

Our next task, is to extend Theorem 18.5.2 to the case of unbounded spread. Indeed, let (X, d) be
a n-point metric, such that diam(X) ≤ 1/2. Again, we look on the different resolutions r1, r2, . . .,
where ri = 1/2i−1. For each one of those resolutions ri, we can embed this resolution into β
coordinates, as done for the bounded case. Then we concatenate the coordinates together.

There are two problems with this approach: (i) the number of resulting coordinates is infinite,
and (ii) a pair x, y, might be distorted a “lot” because it contributes to all resolutions, not only to
its “relevant” resolutions.

Both problems can be overcome with careful tinkering. Indeed, for a resolution ri, we are
going to modify the metric, so that it ignores short distances (i.e., distances ≤ ri/n

2). Formally,
for each resolution ri, let Gi = (X, Êi) be the graph where two points x and y are connected if

97

d(x, y) ≤ ri/n
2. Consider a connected component C ∈ Gi. For any two points x, y ∈ C, we have

d(x, y) ≤ n(ri/n2) ≤ ri/n. Let Xi be the set of connected components ofGi, and define the distances
between two connected components C,C ′ ∈ Xi, to be di(C,C ′) = d(C,C ′) = minc∈C,c′∈C′ d(c, c′).

It is easy to verify that (Xi,di) is a metric space (see Exercise 18.7.2). Furthermore, we can
naturally embed (X,d) into (Xi,di) by mapping a point x ∈ X to its connected components
in Xi. Essentially (Xi,di) is a snapped version of the metric (X, d), with the advantage that
Φ((X,di)) = O(n2). We now embed Xi into β = O(log n) coordinates. Next, for any point of
X we embed it into those β coordinates, by using the embedding of its connected component in
Xi. Let Ei be the embedding for resolution ri. Namely, Ei(x) = (fi,1(x), fi,2(x), . . . , fi,β(x)), where
fi,j(x) = min(di(x,X\Vi,j), 2ri). The resulting embedding is F (x) = ⊕Ei(x) = (E1(x), E2(x), . . . ,).

Since we slightly modified the definition of fi,j(·), we have to show that fi,j(·) is nonexpansive.
Indeed, consider two points x, y ∈ Xi, and observe that

|fi,j(x)− fi,j(y)| ≤ |di(x, Vi,j)− di(y, Vi,j)| ≤ di(x, y) ≤ d(x, y),

as a simple case analysis③ shows.
For a pair x, y ∈ X, and let φ = d(x, y). To see that F (·) is the required embedding (up

to scaling), observe that, by the same argumentation of Theorem 18.5.2, we have that with high
probability

‖F (x)− F (y)‖ ≥ φ ·
√
β

256 lnn
.

To get an upper bound on this distance, observe that for i such that ri > φn2, we have Ei(x) =
Ei(y). Thus,

‖F (x)− F (y)‖2 =
∑
i

‖Ei(x)− Ei(y)‖2 =
∑

i,ri<φn2

‖Ei(x)− Ei(y)‖2

=
∑

i,φ/n2<ri<φn2

‖Ei(x)− Ei(y)‖2 +
∑

i,ri<φ/n2

‖Ei(x)− Ei(y)‖2

= βφ2 lg
(
n4
)

+
∑

i,ri<φ/n2

(2ri)2β ≤ 4βφ2 lg n+
4φ2β

n4
≤ 5βφ2 lg n.

Thus, ‖F (x)− F (y)‖ ≤ φ
√

5β lg n. We conclude, that with high probability, F (·) is an embedding
of X into Euclidean space with distortion

(
φ
√

5β lg n
)
/
(
φ ·

√
β

256 lnn

)
= O(log3/2 n).

We still have to handle the infinite number of coordinates problem. However, the above proof
shows that we care about a resolution ri (i.e., it contributes to the estimates in the above proof)
only if there is a pair x and y such that ri/n2 ≤ d(x, y) ≤ rin

2. Thus, for every pair of distances
there are O(log n) relevant resolutions. Thus, there are at most η = O(n2β log n) = O(n2 log2 n)
relevant coordinates, and we can ignore all the other coordinates. Next, consider the affine subspace
h that spans F (P). Clearly, it is n − 1 dimensional, and consider the projection G : IRη → IRn−1

that projects a point to its closest point in h. Clearly, G(F (·)) is an embedding with the same
distortion for P , and the target space is of dimension n− 1.

Note, that all this process succeeds with high probability. If it fails, we try again. We conclude:

③Indeed, if fi,j(x) < di(x, Vi,j) and fi,j(y) < di(x, Vi,j) then fi,j(x) = 2ri and fi,j(y) = 2ri, which implies the
above inequality. If fi,j(x) = di(x, Vi,j) and fi,j(y) = di(x, Vi,j) then the inequality trivially holds. The other option
is handled in a similar fashion.

98

Theorem 18.5.3 (Low quality Bourgain theorem.) Given a n-point metric M , one can em-
bed it into Euclidean space of dimension n− 1, such that the distortion of the embedding is at most
O(log3/2 n).

Using the Johnson-Lindenstrauss lemma, the dimension can be further reduced to O(log n). In
fact, being more careful in the proof, it is possible to reduce the dimension to O(log n) directly.

18.6 Bibliographical notes

The partitions we use are due to Calinescu et al. [CKR01]. The idea of embedding into spanning
trees is due to Alon et al. [AKPW95], which showed that one can get a probabilistic distortion of
2O(

√
logn log logn). Yair Bartal realized that by allowing trees with additional vertices, one can get

a considerably better result. In particular, he showed [Bar96] that probabilistic embedding into
trees can be done with polylogarithmic average distortion. He later improved the distortion to
O(log n log log n) in [Bar98]. Improving this result was an open question, culminating in the work
of Fakcharoenphol et al. [FRT03] which achieve the optimal O(log n) distortion.

Interestingly, if one does not care about the optimal distortion, one can get similar result (for
embedding into probabilistic trees), by first embedding the metric into Euclidean space, then reduce
the dimension by the Johnson-Lindenstrauss lemma, and finally, construct an HST by constructing
a quadtree over the points. The “trick” is to randomly translate the quadtree. It is easy to verify
that this yields O(log4 n) distortion. See the survey by Indyk [Ind01] for more details. This random
shifting of quadtrees is a powerful technique that was used in getting several result, and it is a crucial
ingredient in Arora [Aro98] approximation algorithm for Euclidean TSP.

Our proof of Lemma 18.3.1 (which is originally from [FRT03]) is taken from [KLMN04]. The
proof of Theorem 18.5.3 is by Gupta [Gup00].

A good exposition of metric spaces is available in Matoušek [Mat02].

18.7 Exercises

Exercise 18.7.1 (Clustering for HST.) Let (X,d) be a HST defined over n points, and let
k > 0 be an integer. Provide an algorithm that computes the optimal k-median clustering of X in
O(k2n) time.

[Hint: Transform the HST into a tree where every node has only two children. Next, run a
dynamic programming algorithm on this tree.]

Exercise 18.7.2 (Partition induced metric.)

(a) Give a counter example to the following claim: Let (X,d) be a metric space, and let P be a par-
tition of X. Then, the pair (P,d′) is a metric, where d′(C,C ′) = d(C,C ′) = minx∈C,y∈C′ d(x, y)
and C,C ′ ∈ P .

(b) Let (X,d) be a n-point metric space, and consider the set U =
{
i
∣∣∣ 2i ≤ d(x, y) ≤ 2i+1, for x, y ∈ X

}
.

Prove that |U | = O(n). Namely, there are only n different resolutions that “matter” for a finite
metric space.

Exercise 18.7.3 (Computing the diameter via embeddings.)

99

(a) (h:1) Let ` be a line in the plane, and consider the embedding f : IR2 → `, which is the
projection of the plane into `. Prove that f is 1-Lipschitz, but it is not K-bi-Lipschitz for any
constant K.

(b) (h:3) Prove that one can find a family of projections F of size O(1/
√
ε), such that for any two

points x, y ∈ IR2, for one of the projections f ∈ F we have d(f(x), f(y)) ≥ (1− ε)d(x, y).

(c) (h:1) Given a set P of n in the plane, given a O(n/
√
ε) time algorithm that outputs two

points x, y ∈ P , such that d(x, y) ≥ (1− ε)diam(P), where diam(P) = maxz,w∈P d(z, w) is the
diameter of P .

(d) (h:2) Given P , show how to extract, in O(n) time, a set Q ⊆ P of size O(ε−2), such that
diam(Q) ≥ (1− ε/2)diam(P). (Hint: Construct a grid of appropriate resolution.)

In particular, give an (1 − ε)-approximation algorithm to the diameter of P that works in
O(n+ε−2.5) time. (There are slightly faster approximation algorithms known for approximating
the diameter.)

Acknowledgments

The presentation in this write-up follows closely the insightful suggestions of Manor Mendel.

100

Chapter 19

VC Dimension, ε-nets and
ε-approximation
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

“I’ve never touched the hard stuff, only smoked grass a few times with the boys to be polite, and that’s
all, though ten is the age when the big guys come around teaching you all sorts to things. But happiness
doesn’t mean much to me, I still think life is better. Happiness is a mean son of a bitch and needs to
be put in his place. Him and me aren’t on the same team, and I’m cutting him dead. I’ve never gone
in for politics, because somebody always stand to gain by it, but happiness is an even crummier racket,
and their ought to be laws to put it out of business.”

– Momo, Emile Ajar

In this lecture, we would be interested in using sampling to capture or learn a concept. For
example, consider an algorithm that tries to learn a classifier, that given positive and negative
examples, construct a model of the universe. For example, the inputs are records of clients, and we
would like to predict whether or not one should give them a loan.

Clearly, we are trying to approximate a function. The natural question to ask, is how many
samples one needs to learn a concept reliably? It turns out that this very fundamental question
has a (partial) answer, which is very useful in the developement of algorithms.

19.1 VC Dimension

Definition 19.1.1 A range space S is a pair (X,R), where X is a (finite or infinite) set and R is a
(finite or infinite) family of subsets of X. The elements of X are points and the elements of R are
ranges. For A ⊆ X, PR(A) =

{
r ∩A

∣∣∣ r ∈ R
}

is the projection of R on A.

If PR(A) contains all subsets of A (i.e., if A is finite, we have |PR(A)| = 2|A|) then A is shattered
by R.

The Vapnik-Chervonenkis dimension (or VC-dimension) of S, denoted by VC(S), is the max-
imum cardinality of a shattered subset of X. It there are arbitrarily large shattered subsets then
VC(S) =∞.

19.1.1 Examples

Example. Let X = IR2, and let R be the set of disks in the plane. Clearly, for three points in the
plane 1, 2, 3, one can find 8 disks that realize all possible 23 different subsets.

101

But can disks shatter a set with four points? Consider such a set P of four points, and there
are two possible options. Either the convex-hull of P has three points on its boundary, and in
this case, the subset having those vertices in the subset but not including the middle point is
impossible, by convexity. Alternatively, if all four points are vertices of the convex hull, and they
are p1, p2, p3, p4 along the boundary of the convex hull, either the set {p1, p3} or the set {p2, p4} is
not realizable. Indeed, if both options are realizable, then consider the two disks D1, D2 the realizes
those assignments. Clearly, D1 and D2 must intersect in four points, but this is not possible, since
two disks have at most two intersection points. See Figure 19.1 (b).
Example. Consider the range space S = (IR2,R), where R is the set of all (closed) convex sets
in the plane. We claim that the VC(S) = ∞. Indeed, consider a set U of n points p1, . . . , pn all
lying on the boundary of the unit circle in the plane. Let V be any subset of U , and consider the
convex-hull CH(V). Clearly, CH(V) ∈ R, and furthermore, CH(V)∩U = V . Namely, any subset of
U is realizable by S. Thus, S can shatter sets of arbitrary size, and its VC dimension is unbounded.

Example 19.1.2 Let S = (X,R), where X = IRd and R is the set of all (closed) halfspaces in IRd.
To see what is the VC dimension of S, we nee the following result of Radon:

Theorem 19.1.3 (Randon’s Lemma) Let A be a set of d + 2 points in IRd. Then,
there exists two disjoint subsets C,D of A, such that CH(C) ∩ CH(D) 6= ∅.

Proof: The points p1, . . . , pd+2 of A are linearly dependent. As such, there exists
β1, . . . , βd+2, not all of them zero, such that

∑
i βipi = 0 and

∑
i βi = 0 (to see that,

remember that the affine subspace spanned by p1, . . . , pd+2 is induced by all points that
can be represented as p1 +

∑d+2
i=2 αi(pi − p1) where

∑
i αi = 0). Assume, for the sake of

simplicity of exposition, that the β1, . . . βk ≥ 0 and βk+1, . . . , βd+2 < 0. Furthermore, let
µ =

∑k
i=1 βi. We have that

k∑
i=0

βipi = −
d+2∑
i=k+1

βipi.

In particular, v =
∑k

i=0(βi/µ)pi is a point in the CH({p1, . . . , pk}) and∑d+2
i=k+1−(βi/µ)pi ∈ CH({pk+1, . . . , pd+2}). We conclude that v is in the intersection

of the two convex hulls, as required.

In particular, this implies that if a set Q of d+2 points is being shattered by S, we can partition
this set Q into two disjoint sets A and B such that CH(A)∩CH(B) 6= ∅. It should now be clear that
any halfspace h+ containing all the points of A, must also contain a point of the CH(B). But this
implies that a point of B must be in h+. Namely, the subset A can not be realized by a halfspace,
which implies that Q can not be shattered. Thus VC(S) < d+ 2. It is also easy to verify that the
regular simplex with d+ 1 vertices is being shattered by S. Thus, VC(S) = d+ 1.

19.2 VC-Dimensions and the number of different ranges

Let

g(d, n) =
d∑
i=0

(
n

i

)
.

Note that for all n, d ≥ 1, g(d, n) = g(d, n− 1) + g(d− 1, n− 1)

102

1

2

3

{1.2}

a

b

c

d

(a) (b)

Figure 19.1: Disks in the plane can shatter three points, but not four.

Lemma 19.2.1 (Sauer’s Lemma) If (X,R) is a range space of VC-dimension d with |X| = n
points then |R| ≤ g(d, n).

Proof: The claim trivially holds for d = 0 or n = 0.
Let x be any element of X, and consider the sets

Rx =
{
r \ {x}

∣∣∣x ∈ r, r ∈ R, r \ {x} ∈ R}
and

R \ x =
{
r \ {x}

∣∣∣ r ∈ R} .
Observe that |R| = |Rx|+ |R \ x| (Indeed, if r does not contain x than it is counted in Rx, if does
contain x but r \x /∈ R, then it is also counted in Rx. The only remaining case is when both r \{x}
and r ∪ {x} are in R, but then it is being counted once in Rx and once in R \ x.)

Observe that Rx has VC dimension d − 1, as the largest set that can be shattered is of size
d− 1. Indeed, any set A ⊂ X shattered by Rx, implies that A ∪ {x} is shattered in R.

Thus,
|R| = |Rx|+ |R \ x| = g(n− 1, d− 1) + g(n− 1, d) = g(d, n),

by induction.
By applying Lemma 19.2.1, to a finite subset of X, we get:

Corollary 19.2.2 If (X,R) is a range space of VC-dimension d then for every finite subset A of
X, we have |PR(A)| ≤ g(d, |A|).

Lemma 19.2.3 Let S = (X,R) and S′ = (X,R′) be two range spaces of dimension d and d′,
respectively, where d, d′ > 1. Let R̂ =

{
r ∪ r′

∣∣∣ r ∈ R, r′ ∈ R′
}
. Then, for the range space Ŝ =

(X, R̂), we have that VC
(
Ŝ
)

= O((d+ d′) log(d+ d′))

Proof: Let A be a set of n points in X that are being shattered by Ŝ. There are g(n, d) and g(n, d′)
different assignments for the elements of A by ranges of R and R′, respectively. Every subset C of
A realized by r̂ ∈ R̂, is a union of two subsets A∩ r and A∩ r′ where r ∈ R and r′ ∈ R′. Thus, the
number of different subsets of A realized by Ŝ is bounded by g(n, d)g(n, d′). Thus, 2n ≤ ndnd′ , for
d, d′ > 1. We conclude n ≤ (d+ d′) lg n, which implies that n ≤ O((d+ d′) log(d+ d′)).

103

19.3 On ε-nets and ε-sampling

Definition 19.3.1 Let (X,R) be a range space, and let A be a finite subset of X. For 0 ≤ ε ≤ 1,
a subset B ⊆ A, is an ε-sample for A if for any range r ∈ R, we have∣∣∣∣ |A ∩ r||A|

− |B ∩ r|
|B|

∣∣∣∣ ≤ ε.
Similarly, N ⊆ A is an ε-net for A, if for any range r ∈ R, if |r ∩A| ≥ ε |A| implies that r contains
at least one point of N (i.e., r ∩N 6= ∅).

Theorem 19.3.2 There is a positive constant c such that if (X,R) is any range space of VC-
dimension at most d, A ⊆ X is a finite subset and ε, δ > 0, then a random subset B of cardinality
s of A where s is at least the minimum between |A| and

c

ε2

(
d log

d

ε
+ log

1
δ

)
is an ε-sample for A with probability at least 1− δ.

Theorem 19.3.3 (ε-net Theorem) Let (X,R) be a range space of VC-dimension d, let A be a
finite subset of X and suppose 0 < ε, δ < 1. Let N be a set obtained by m random independent
draws from A, where

m ≥ max
(

4
ε

log
2
δ
,
8d
ε

log
8d
ε

)
. (19.1)

Then N is an ε-net for A with probability at least 1− δ.

19.4 Proof of the ε-net Theorem

Let (X,R) be a range space of VC-dimension d, and let A be a subset of X of cardinality n. Suppose
that m satisfiers Eq. (19.1). Let N = (x1, . . . , xm) be the sample obtained by m independent
samples from A (the elements of N are not necessarily distinct, and thats why we treat N as a
ordered set). Let E1 be the probability that N fails to be an ε-net. Namely,

E1 =
{
∃r ∈ R

∣∣∣ |r ∩A| ≥ εn, r ∩N = ∅
}
.

(Namely, there exists a “heavy” range r that does not contain any point of N .) To complete the
proof, we must show that Pr[E1] ≤ δ. Let T = (y1, . . . , ym) be another random sample generated
in a similar fashion to N . Let E2 be the event that N fails, but T “works”, formally

E2 =
{
∃r ∈ R

∣∣∣ |r ∩A| ≥ εn, r ∩N = ∅, |r ∩ T | ≥ εm

2

}
.

Intuitively, since ET
[
|r ∩ T |

]
≥ εm, then for the range r that N fails for, we have with “good”

probability that |r ∩ T | ≥ εn
2 . Namely, E1 and E2 have more or less the same probability.

Claim 19.4.1 Pr[E2] ≤ Pr[E1] ≤ 2Pr[E2].

104

Proof: Clearly, E2 ⊆ E1, and thus Pr[E2] ≤ Pr[E1]. As for the other part, note that
Pr
[
E2

∣∣∣E1

]
= Pr[E2 ∩ E1] /Pr[E1] = Pr[E2] /Pr[E1]. It is thus enough to show that Pr

[
E2

∣∣∣E1

]
≥ 1/2.

Assume that E1 occur. There is r ∈ R, such that |r ∩A| > εn and r ∩ N = ∅. The required
probability is at least the probability that for this specific r, we have |r ∩ T | ≥ εn

2 . However, |r ∩ T |
is a binomial variable with expectation εm, and variance ε(1 − ε)m ≤ εm. Thus, by Chebychev
inequality (Theorem 3.3.3),

Pr
[
|r ∩ T | < εm

2

]
≤ Pr

[∣∣|r ∩ T | − εm∣∣ > εm

2

]
Pr
[∣∣|r ∩ T | − εm∣∣ > √εm

2
√
εm

]
≤ 4
εm
≤ 1

2
,

by Eq. (19.1). Thus, Pr[E2] /Pr[E1] = Pr
[
|r ∩ T | ≥ εn

2

]
= 1−Pr

[
|r ∩ T | < εm

2

]
≥ 1

2 .
Thus, it is enough to bound the probability of E2. Let

E′
2 =

{
∃r ∈ R

∣∣∣ r ∩N = ∅, |r ∩ T | ≥ εm

2

}
,

Clearly, E2 ⊆ E′
2. Thus, bounding the probability of E′

2 is enough to prove the theorem. Note
however, that a shocking thing happened! We no longer have A as participating in our event.
Namely, we turned bounding an event that depends on a global quantity, into bounding a quantity
that depends only on local quantity/experiment. This is the crucial idea in this proof.

Claim 19.4.2 Pr[E2] ≤ Pr[E′
2] ≤ g(d, 2m)2−em/2.

Proof: We imagine that we sample the elements of N ∪ T together, by picking a set Z =
(z1, . . . , z2m) from A, by picking each element independently from A. Next, we randomly decide
which of the m elements of Z form N , and remaining elements from T . Clearly,

Pr
[
E′

2

]
=
∑
Z

Pr
[
E′

2

∣∣∣Z]Pr[Z] .

Thus, from this point on, we fix the set Z, and we bound Pr
[
E′

2

∣∣∣Z].
It is now enough to consider the ranges in the projection space PR(Z). By Lemma 19.2.1, we

have |PR(Z)| ≤ g(d, 2m).
Let us fix any r ∈ PR(Z), and consider the event

Er =
{
r ∩N = ∅ and |r ∩ T | > εm

2

}
.

For k = |r ∩ (N ∪ T)|, we have

Pr[Er] ≤ Pr
[
r ∩N = ∅

∣∣∣ |r ∩ (N ∪ T)| > εm

2

]
=

(
2m−k
m

)(
2m
m

)
=

(2m− k)(2m− k − 1) · · · (m− k + 1)
2m(2m− 1) · · · (m+ 1)

=
m(m− 1) · · · (m− k + 1)

2m(2m− 1) · · · (2m− k + 1)
≤ 2−k ≤ 2−εm/2.

Thus,
Pr
[
E′

2

∣∣∣Z] ≤ ∑
r∈PR(Z)

Pr[Er] ≤ |PR(Z)| 2−εm/2 = g(d, 2m)2−εm/2,

105

implying that Pr[E′
2] ≤ g(d, 2m)2−εm/2.

Proof of Theorem 19.3.3. By Lemma 19.4.1 and Lemma 19.4.2, we have Pr[E1] ≤ 2g(d, 2m)2−εm/2.
It is thus remains to verify that if m satisfies Eq. (19.1), then 2g(d, 2m)2−εm/2 ≤ δ. One can verify
that this inequality is implied by Eq. (19.1).

Indeed, we know that 2m ≥ 8d and as such g(d, 2m) =
∑d

i=0

(
2m
i

)
≤
∑d

i=0
(2m)i

i! ≤ (2m)d, for
d > 1. Thus, it is sufficient to show that the inequality 2(2m)d2−εm/2 ≤ δ holds. By taking lg of
both sides and rearranging, we have that this is equivalent to

εm

2
≥ d lg(2m) + lg

2
δ
.

By our choice of m (see Eq. (19.1)), we have that εm/4 ≥ lg(2/δ). Thus, we need to show that

εm

4
≥ d lg(2m).

We verify this inequality for m = 8d
ε lg 8d

ε , indeed

2d lg
8d
ε
≥ d lg

(
16d
ε

lg
8d
ε

)
.

This is equivalent to
(

8d
ε

)2

≥ 16d
ε

lg
8d
ε

. Which is equivalent to
4d
ε
≥ lg

8d
ε

, which is certainly true

for 0 ≤ ε ≤ 1 and d > 1. Note that it is easy to verify that the inequality holds for m ≥ 8d
ε lg 8d

ε ,
by deriving both sides of the inequality.

This completes the proof of the theorem.

19.5 Exercises

Exercise 19.5.1 (Flip and Flop.) (A) [5 Points] Let b1, . . . , b2m be m binary bits. Let Ψ be
the set of all permutations of 1, . . . , 2m, such that for any σ ∈ Ψ, we have σ(i) = i or
σ(i) = m+ i, for 1 ≤ i ≤ m, and similarly, σ(m+ i) = i or σ(m+ i) = m+ i. Namely, σ ∈ Ψ
either leave the pair i, i +m in their positions, or it exchange them, for 1 ≤ i ≤ m. As such
|Ψ| = 2m.

Prove that for a random σ ∈ Ψ, we have

Pr
[∣∣∣∣
∑m

i=1 bσ(i)

m
−
∑m

i=1 bσ(i+m)

m

∣∣∣∣ ≥ ε] ≤ 2e−ε
2m/2.

(B) [5 Points] Let Ψ′ be the set of all permutations of 1, . . . , 2m. Prove that for a random σ ∈ Ψ′,
we have

Pr
[∣∣∣∣
∑m

i=1 bσ(i)

m
−
∑m

i=1 bσ(i+m)

m

∣∣∣∣ ≥ ε] ≤ 2e−Cε
2m/2,

where C is an appropriate constant. [Hint: Use (A), but be careful.]

(C) [10 Points] Prove Theorem 19.3.2 using (B).

106

Exercise 19.5.2 (Dual VC dimension.) Let (X,R) be a range space with VC dimension d, and
let A ⊆ X be a finite set. Consider the induced range space S =(A,PR(A)).

Next, for a point p ∈ A, let R(p) denote the set of all the ranges of PR(A) that contains is, and
consider the dual range space D =

(
PR(A),

{
R(p)

∣∣∣ p ∈ A}).
Prove that the VC dimension of D is at most 2d.

Exercise 19.5.3 (On VC dimension.) (A) Prove directly a bound on the VC dimension of the
range space of ellipses in two dimensions (i.e., the ranges are the interior of ellipses). Show a
matching lower bound (or as matching as you can).

(B) Prove that the VC dimension of regions defined by a polynomial of degree at most s in d
dimensions is bounded. Such an inequality might be for example ax2 + bxy + y3 − x2y2 ≤ 3
(s = 2 + 2 = 4 in this example), and the region it defines is all the points that comply with
this inequality.

[Hint: Consider a mapping of IRd into IRk, such that all polynomials of degree s correspond
to linear inequalities.]

Exercise 19.5.4 (Dual VC dimension.) Let (X,R) be a range space with VC dimension d, and
let A ⊆ X be a finite set. Consider the induced range space S = (A,PR(A)).

Next, for a point p ∈ A, let R(p) denote the set of all the ranges of PR(A) that contains is, and
consider the dual range space D =

(
PR(A),

{
R(p)

∣∣∣ p ∈ A}).
Prove that the VC dimension of D is at most 2d.

Exercise 19.5.5 (Improved Hitting Set.) Let (X,R) be a range space with constant VC di-
mension d. Furthermore, assume that you have access to an oracle, such that given a finite set
A ⊆ X of n elements, it computes the range space S = (A,PR(A)) in time O(|A|+ |PR(A)|).

(A) Assume, that ever element of p ∈ A has an associated weight wp, where the weight is a positive
integer number. Show, how to compute ε-net efficiently so that it is an ε-net for the weighted
points.

(B) In fact, the computation in the previous part would be slow if the weights are very large
integers. To make things easier, assume very weight wp is of the form 2j , where j is a non-
negative integer bounded by a parameter M . Show how to compute efficiently an ε-net in this
case. (You can assume that computations on integers smaller than MO(1) can be performed
in constant time.)

(C) Prove the following theorem:

Theorem 19.5.6 Let (X,R) be a range space with constant VC dimension d. Let A be subset
of X with n elements. Furthermore, assume that there is a hitting set H ⊆ A of size k for
(A,PR(A)). Namely, any range r of PR(A) contains a point of H.

Then one can compute in polynomial time, a set U of O(dk log(dk)) points of X, such that U
is a hitting set for S = (A,PR(A)).

To this end, assign weight 1 to all the points of A. Next, consider an δ-net for S, for the
appropriate δ. If it is the required hitting set, then we are done. Otherwise, consider a “light”
range (which is not being hit) and double the weight of its elements. Repeat. Argue that this

107

algorithm terminates (by comparing the weight of H to the weight of the whole set A). What
is the number of iterations of the algorithm being performed? What is the required value of
δ? What is the exact size of the generated hitting set.

(D) Show a polynomial time algorithm that compute a hitting set of the range space S = (A,PR(A)),
of size O(kd log(kd)), where d is the VC dimension of S, n = |A|, and k is the smallest hitting
set of S. What is the expected running time of your algorithm?

(This is interesting because in general the smallest hitting set of a range space can not be
approximated within a factor better than Ω(log n) unless P = NP .)

19.6 Bibliographical notes

The exposition here is based on [AS00]. The usual exposition of the ε-net/ε-sample tend to be long
and tedious in the learning literature. The proof of the ε-net theorem is due Haussler and Welzl
[HW87]. The proof of the ε-sample theorem is due to Vapnik and Chervonenkis [VC71]. However,
the importance of Vapnik and Chervonenkis result was not realized at the time, and only in the
late eighties the strong connection to learning was established.

An alternative proof of both theorems exists via the usage of discrepancy. Using discrepancy, one
can compute ε-samples and ε-nets deterministically. In fact, in some geometric cases, discrepancy
yields better results than the ε-net and ε-sample theorem. See [Mat99, Cha01] for more details.

Exercise 19.5.1 is from Anthony and Bartlett [AB99].

108

Chapter 20

Approximate Max Cut
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

20.1 Problem Statement

Given an undirected graph G = (V,E) and nonnegative weights wij on the edge ij ∈ E, the
maximum cut problem (MAX CUT) is that of finding the set of vertices S that maximizes the
weight of the edges in the cut (S, S); that is, the weight of the edges with one endpoint in S and
the other in S. For simplicity, we usually set wij = O for ij /∈ E and denote the weight of a cut
(S, S) by w(S, S) =

∑
i∈S,j∈j

wij .

This problem is NP-Complete, and hard to approximate within a certain constant.
Given a graph with vertex set V = 1, . . . , n and nonnegative weights Wij , the weight of the

maximum cut w(S, S) N given by the following integer quadratic program:

(Q) Maximize
1
2

∑
i<j

, wij(1− yiyj)

subject to: yi ∈ {−1, 1} ∀i ∈ V.

Indeed, set S =
{
i
∣∣∣ yi = 1

}
. Clearly, w(S, S) = 1

2

∑
i<j , wij(1− yiyj).

Solving quadratic integer programming is of course NP-Hard. Thus, we we will relax it, by
thinking about the the numbers yi as unit vectors in higher dimensional space. If so, the multipli-
cation of the two vectors, is now replaced by dot product. We have:

(P) Maximize 1
2

∑
i<j wij(1− 〈vi, vj〉)

subject to: vi ∈ S(n) ∀i ∈ V,

where S(n) is the n dimensional unit sphere in IRn+1. This is an instance of semi-definite pro-
gramming, which is a special case of convex programming, which can be solved in polynomial time
(solved here means approximated within arbitrary constant in polynomial time). Observe that (P)
is a relaxation of (Q), and as such the optimal solution of (P) has value larger than the optimal
value of (Q).

The intuition is that vectors that correspond to vertices that should be on one side of the cut,
and vertices on the other sides, would have vectors which are faraway from each other in (P). Thus,
we compute the optimal solution for (P), and we uniformly generate a random vector ~r on the unit
sphere S(n). This induces a hyperplane h which passes through the origin and is orthogonal to ~r.
We next assign all the vectors that are on one side of h to S, and the rest to S.

109

20.1.1 Analysis

The intuition of the above rounding procedure, is that with good probability, vectors that have big
angle between them would be separated by this cut.

Lemma 20.1.1 We have Pr[sign(〈vi, ~r 〉) 6= sign(〈vj , ~r 〉)] =
1
π

arccos(〈vi, vj〉).

vi
vj

τ

Proof: Let us think about the vectors vi, vj and ~r as being in the plane.
To see why this is a reasonable assumption, consider the plane g spanned
by vi and vj , and observe that for the random events we consider, only
the direction of ~r matter, which can be decided by projecting ~r on g, and
normalizing it to have length 1. Now, the sphere is symmetric, and as
such, sampling ~r randomly from S(n), projecting it down to g, and then
normalizing it, is equivalent to just choosing uniformly a vector from the
unit circle.

Now, sign(〈vi, ~r 〉) 6= sign(〈vj , ~r 〉) happens only if ~r falls in the double
wedge formed by the lines perpendicular to vi and vj . The angle of this double wedge is exactly
the angle between vi and vj . Now, since vi and vj are unit vectors, we have 〈vi, vj〉 = cos(τ), where
τ = ∠vivj . Thus, Pr[sign(〈vi, ~r 〉) 6= sign(〈vj , ~r 〉)] = 2τ/(2π) = 1

π · arccos(〈vi, vj〉), as claimed.

Theorem 20.1.2 Let W be the random variable which is the weight of the cut generated by the
algorithm. We have

E[W] =
1
π

∑
i<j

wij arccos(〈vi, vj〉) .

Proof: Let Xij be an indicator variable which is 1 if ij is in the cut. We have E[Xij] =
Pr[sign(〈vi, ~r 〉) 6= sign(〈vj , ~r 〉)] = 1

π arccos(〈vi, vj〉), by Lemma 20.1.1.
Clearly, W =

∑
i<j wijXij , and by linearity of expectation, we have

E[W] =
∑
i<j

wij E[Xij] =
∑
i<j

arccos(〈vi, vj〉) .

Lemma 20.1.3 For −1 ≤ y ≤ 1, we have
arccos(y)

π
≥ α· 1

2
(1− y), where α = min

0≤ψ≤π

2
π

ψ

1− cos(ψ)
.

Proof: Set y = cos(ψ). The inequality now becomes ψ
π ≥ α1

2(1− cosψ). Reorganizing, the
inequality becomes 2

π
ψ

1−cosψ ≥ α, which trivially holds by the definition of α.

Lemma 20.1.4 α > 0.87856.

Proof: Using simple calculus, one can see that α achieves its value for ψ = 2.331122..., the nonzero
root of cosψ + ψ sinψ = 1.

Theorem 20.1.5 The above algorithm computes in expectation a cut of size αOpt ≥ 0.87856Opt,
where Opt is the weight of the maximal cut.

Proof: Consider the optimal solution to (P), and lets its value be γ ≥ Opt. We have

E[W] =
1
π

∑
i<j

wij arccos(〈vi, vj〉) ≥
∑
i<j

wijα
1
2
(1− 〈vi, vj〉) = αγ ≥ αOpt,

by Lemma 20.1.3.

110

20.2 Semi-definite programming

Let us define a variable xij = 〈vi, vj〉, and consider the n by n matrix M formed by those variables,
where xii = 1 for i = 1, . . . , n. Let V be the matrix having v1, . . . , vn as its columns. Clearly,
M = V TV . In particular, this implies that for any non-zero vector v ∈ IRn, we have vTMv =
vTATAv = (Av)T (Av) ≥ 0. A matrix that has this property, is called semidefinite. The interesting
thing is that any semi-definite matrix P can be represented as a product of a matrix with its
transpose; namely, P = BTB. It is easy to observe that if this semi-definite matrix has a diagonal
one, then B has rows which are unit vectors. Thus, if we solve (P) and get back a semi-definite
matrix, then we can recover the vectors realizing the solution, and use them for the rounding.

In particular, (P) can now be restated as

(SD) Maximize 1
2

∑
i<j wij(1− xij)

xii = 1 for i = 1, . . . , n
subject to:

(
xij
)
i=1,...,n,j=1,...,n

is semi-definite.

We are trying to find the optimal value of a linear function over a set which is the intersection of
linear constraints and the set of semi-definite matrices.

Lemma 20.2.1 Let U be the set of n× n semidefinite matrices. The set U is convex.

Proof: Consider A,B ∈ U, and observe that for any t ∈ [0, 1], and vector v ∈ IRn, we have:
vT (tA+ (1− t)B)v = tvTAv + (1− t)vTBv ≥ 0 + 0 ≥ 0, since A and B are semidefinite.

Positive semidefinite matrices corresponds to ellipsoids. Indeed, consider the set xTAx = 1: the
set of vectors that solve this equation is an ellipsoid. Also, the eigenvalues of a positive semidefinite
matrix are all non-negative real numbers. Thus, given a matrix, we can in polynomial time decide
if it is positive semidefinite or not.

Thus, we are trying to optimize a linear function over a convex domain. There is by now
machinery to approximately solve those problems to within any additive error in polynomial time.
This is done by using interior point method, or the ellipsoid method. See [BV04, GLS88] for more
details.

20.3 Bibliographical Notes

The approximation algorithm presented is from the work of Goemans and Williamson [GW95].
H̊astad [H̊as01] showed that MAX CUT can not be approximated within a factor of 16/17 ≈
0.941176. Recently, Khot et al. [KKMO04] showed a hardness result that matches the constant
of Goemans and Williamson (i.e., one can not approximate it better than φ, unless P = NP).
However, this relies on two conjectures, the first one is the “Unique Games Conjecture”, and the
other one is “Majority is Stablest”. The “Majority is Stablest” conjecture was recently proved by
Mossel et al.[MOO05]. However, it is not clear if the “Unique Games Conjecture” is true, see the
discussion in [KKMO04].

The work of Goemans and Williamson was very influential and spurred wide research on using
SDP for approximation algorithms. For an extension of the MAX CUT problem where negative
weights are allowed and relevant references, see the work by Alon and Naor [AN04].

111

112

Chapter 21

Entropy, Randomness, and
Information
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

“If only once - only once - no matter where, no matter before what audience - I could better the record
of the great Rastelli and juggle with thirteen balls, instead of my usual twelve, I would feel that I had
truly accomplished something for my country. But I am not getting any younger, and although I am
still at the peak of my powers there are moments - why deny it? - when I begin to doubt - and there is
a time limit on all of us.”

–Romain Gary, The talent scout.

21.1 Entropy

Definition 21.1.1 The entropy in bits of a discrete random variable X is given by

H(X) = −
∑
x

Pr[X = x] lg Pr[X = x] .

Equivalently, H(X) = E
[
lg 1

Pr[X]

]
.

The binary entropy function H(p) for a random binary variable that is 1 with probability p, is
H(p) = −p lg p− (1− p) lg(1− p). We define H(0) = H(1) = 0.

The function H(p) is a concave symmetric around 1/2 on the interval [0, 1] and achieves its maximum
at 1/2. For a concrete example, consider H(3/4) ≈ 0.8113 and H(7/8) ≈ 0.5436. Namely, a coin
that has 3/4 probably to be heads have higher amount of “randomness” in it than a coin that has
probability 7/8 for heads.

We have H(′) (p) = − lg p + lg(1 − p) = lg 1−p
p and H′(p) = p

1−p ·
(
− 1
p2

)
= − 1

p(1−p) . Thus,
H′′(p) ≤ 0, for all p ∈ (0, 1), and the H(·) is concave in this range. Also, H(′) (1/2) = 0, which
implies that H(1/2) = 1 is a maximum of the binary entropy. Namely, a balanced coin has the
largest amount of randomness in it.

Example 21.1.2 A random variable X that has probability 1/n to be i, for i = 1, . . . , n, has
entropy H(X) = −

∑n
i=1

1
n lg 1

n = lg n.

Note, that the entropy is oblivious to the exact values that the random variable can have, and
it is sensitive only to the probability distribution. Thus, a random variables that accepts −1,+1
with equal probability has the same entropy (i.e., 1) as a fair coin.

113

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

ADMIN
Highlight

Lemma 21.1.3 Let X and Y be two independent random variables, and let Z be the random
variable (X,T). Then H(Z) = H(X) + H(Y).

Proof: In the following, summation are over all possible values that the variables can have. By
the independence of X and Y we have

H(Z) =
∑
x,y

Pr[(X,Y) = (x, y)] lg
1

Pr[(X,Y) = (x, y)]

=
∑
x,y

Pr[X = x]Pr[Y = y] lg
1

Pr[X = x]Pr[Y = y]

=
∑
x

∑
y

Pr[X = x]Pr[Y = y] lg
1

Pr[X = x]

+
∑
y

∑
x

Pr[X = x]Pr[Y = y] lg
1

Pr[Y = y]

=
∑
x

Pr[X = x] lg
1

Pr[X = x]
+
∑
y

Pr[Y = y] lg
1

Pr[Y = y]
= H(X) + H(Y) .

Lemma 21.1.4 Suppose that nq is integer in the range [0, n]. Then
2nH(q)

n+ 1
≤
(
n

nq

)
≤ 2nH(q).

Proof: This trivially holds if q = 0 or q = 1, so assume 0 < q < 1. We know that
(
n
nq

)
qnq(1 −

q)n−nq ≤ (q+ (1− q))n = 1. As such, since q−nq(1− q)−(1−q)n = 2n(−q lg q−(1−q) lg(1−q)) = 2nH(q), we
have (

n

nq

)
≤ q−nq(1− q)−(1−q)n = 2nH(q).

As for the other direction, we claim that µ(nq) =
(
n
nq

)
qnq(1 − q)n−nq is the largest term in∑n

k=0 µ(k) = 1, where µ(k) =
(
n
k

)
qk(1− q)n−k. Indeed,

∆k = µ(k)− µ(k + 1) =
(
n

k

)
qk(1− q)n−k

(
1− n− k

k + 1
q

1− q

)
,

and the sign of this quantity is the sign of (k + 1)(1− q)− (n− k)q = k + 1− kq − q − nq + kq =
1+k−q−nq. Namely, ∆k ≥ 0 when k ≥ nq+q−1, and ∆k < 0 otherwise. Namely, µ(k) < µ(k+1),
for k < nq, and µ(k) ≥ µ(k + 1) for k ≥ nq. Namely, µ(nq) is the largest term in

∑n
k=0 µ(k) = 1,

and as such it is larger than the average. We have µ(nq) =
(
n
nq

)
qnq(1−q)n−nq ≥ 1

n+1 , which implies(
n

nq

)
≥ 1
n+ 1

q−nq(1− q)−(n−nq) =
1

n+ 1
2nH(q).

Lemma 21.1.4 can be extended to handle non-integer values of q. This is straightforward, and
we omit the easy details.

Corollary 21.1.5 We have:
(i) q ∈ [0, 1/2] ⇒

(
n

bnqc
)
≤ 2nH(q). (ii) q ∈ [1/2, 1]

(
n

dnqe
)
≤ 2nH(q).

(iii) q ∈ [1/2, 1] ⇒ 2nH(q)

n+1 ≤
(
n

bnqc
)
. (iv) q ∈ [0, 1/2] ⇒ 2nH(q)

n+1 ≤
(
n

dnqe
)
.

The bounds of Lemma 21.1.4 and Corollary 21.1.5 are loose but sufficient for our purposes. As a
sanity check, consider the case when we generate a sequence of n bits using a coin with probability q
for head, then by the Chernoff inequality, we will get roughly nq heads in this sequence. As such, the
generated sequence Y belongs to

(
n
nq

)
≈ 2nH(q) possible sequences that have similar probability. As

such, H(Y) ≈ lg
(
n
nq

)
= nH(q), by Example 21.1.2, a fact that we already know from Lemma 21.1.3.

114

ADMIN
Highlight

21.1.1 Extracting randomness

Entropy can be interpreted as the amount of unbiased random coin flips can be extracted from a
random variable.

Definition 21.1.6 An extraction function Ext takes as input the value of a random variable X and
outputs a sequence of bits y, such that Pr

[
Ext(X) = y

∣∣∣ |y| = k
]

= 1
2k , whenever Pr[|y| = k] ≥ 0,

where |y| denotes the length of y.

As a concrete (easy) example, considerX to be a uniform random integer variable out of 0, . . . , 7.
All that Ext(x) has to do in this case, is just to compute the binary representation of x. However,
note that Definition 21.1.6 is somewhat more subtle, as it requires that all extracted sequence of
the same length would have the same probability.

Thus, for X a uniform random integer variable in the range 0, . . . , 11, the function Ext(x) can
output the binary representation for x if 0 ≤ x ≤ 7. However, what do we do if x is between 8
and 11? The idea is to output the binary representation of x − 8 as a two bit number. Clearly,
Definition 21.1.6 holds for this extraction function, since Pr

[
Ext(X) = 00

∣∣∣ |Ext(X)| = 2
]

= 1
4 , as

required. This scheme can be of course extracted for any range.

Theorem 21.1.7 Suppose that the value of a random variable X is chosen uniformly at random
from the integers {0, . . . ,m− 1}. Then there is an extraction function for X that outputs on average
at least blgmc − 1 = bH(X)c − 1 independent and unbiased bits.

Proof: We represent m as a sum of unique powers of 2, namely m =
∑

i ai2
i, where ai ∈ {0, 1}.

Thus, we decomposed {0, . . . ,m− 1} into a disjoint union of blocks that have sizes which are
distinct powers of 2. If a number falls inside such a block, we output its relative location in the
block, using binary representation of the appropriate length (i.e., k if the block is of size 2k). The
fact that this is an extraction function, fulfilling Definition 21.1.6, is obvious.

Now, observe that the claim holds trivially if m is a power of two. Thus, if m is not a power of
2, then in the decomposition if there is a block of size 2k, and the X falls inside this block, then
the entropy is k. Thus, for the inductive proof, assume that are looking at the largest block in the
decomposition, that is m < 2k+1, and let u =

⌊
lg(m− 2k)

⌋
< k. It is easy to verify that, for any

integer α > 2k, we have α−2k

α ≤ α+1−2k

α+1 . Furthermore, m ≤ 2u+1 + 2k. As such, m−2k

m ≤ 2u+1

2u+1+2k .
Thus,

H(X) ≥ 2k

m
k +

m− 2k

m

(⌊
lg(m− 2k)

⌋
− 1
)

= k +
m− 2k

m
(u− k − 1)

≥ k +
2u+1

2u+1 + 2k
(u− k − 1) = k − 2u+1

2u+1 + 2k
(1 + k − u) .

If u = k− 1, then H(X) ≥ k− 1
2 · 2 = k− 1, as required. If u = k− 2 then H(X) ≥ k− 1

3 · 3 = k− 1.
Finally, if u < k − 2 then

H(X) ≥ k − 2u+1

2k
(1 + k − u) ≥ k − k − u+ 1

2k−u−1
≥ k − 1,

since 2+i
2i ≤ 1 for i ≥ 2.

Theorem 21.1.8 Consider a coin that comes up heads with probability p > 1/2. For any constant
δ > 0 and for n sufficiently large:

115

1. One can extract, from an input of a sequence of n flips, an output sequence of (1− δ)nH(p)
(unbiased) independent random bits.

2. One can not extract more than nH(p) bits from such a sequence.

Proof: There are
(
n
j

)
input sequences with exactly j heads, and each has probability pj(1−p)n−j .

We map this sequence to the corresponding number in the set
{

0, . . . ,
(
n
j

)
− 1
}

. Note, that this,
conditional distribution on j, is uniform on this set, and we can apply the extraction algorithm of
Theorem 21.1.7. Let Z be the random variables which is the number of heads in the input, and let
B be the number of random bits extracted. We have

E[B] =
n∑
k=0

Pr[Z = k]E
[
B
∣∣∣Z = k

]
,

and by Theorem 21.1.7, we have E
[
B
∣∣∣Z = k

]
≥
⌊
lg
(
n

k

)⌋
− 1. Let ε < p− 1/2 be a constant to

be determined shortly. For n(p− ε) ≤ k ≤ n(p+ ε), we have(
n

k

)
≥
(

n

bn(p+ ε)c

)
≥ 2nH(p+ε)

n+ 1
,

by Corollary 21.1.5 (iii). We have

E[B] ≥
dn(p−ε)e∑

k=bn(p−ε)c

Pr[Z = k]E
[
B
∣∣∣Z = k

]
≥

dn(p−ε)e∑
k=bn(p−ε)c

Pr[Z = k]
(⌊

lg
(
n

k

)⌋
− 1
)

≥
dn(p−ε)e∑

k=bn(p−ε)c

Pr[Z = k]

(
lg

2nH(p+ε)

n+ 1
− 2

)
= (nH(p+ ε)− lg(n+ 1))Pr[|Z − np| ≤ εn]

≥ (nH(p+ ε)− lg(n+ 1))
(

1− 2 exp
(
−nε

2

4p

))
,

since µ = E[Z] = np and Pr
[
|Z − np| ≥ ε

ppn
]
≤ 2 exp

(
−np

4

(
ε
p

)2
)

= 2 exp
(
−nε2

4p

)
, by the Cher-

noff inequality. In particular, fix ε > 0, such that H(p+ ε) > (1 − δ/4)H(p), and since p is fixed
nH(p) = Ω(n), in particular, for n sufficiently large, we have − lg(n+ 1) ≥ − δ

10nH(p). Also, for n

sufficiently large, we have 2 exp
(
−nε2

4p

)
≤ δ

10 . Putting it together, we have that for n large enough,
we have

E[B] ≥
(

1− δ

4
− δ

10

)
nH(p)

(
1− δ

10

)
≥(1− δ)nH(p) ,

as claimed.
As for the upper bound, observe that if an input sequence x has probability q, then the output

sequence y = Ext(x) has probability to be generated which is at least q. Now, all sequences of
length |y| have equal probability to be generated. Thus, we have the following (trivial) inequality
2|Ext(x)|q ≤ 2|Ext(x)| Pr[y = Ext(X)] ≤ 1, implying that |Ext(x)| ≤ lg(1/q). Thus,

E[B] =
∑
x

Pr[X = x] |Ext(x)| ≤
∑
x

Pr[X = x] lg
1

Pr[X = x]
= H(X) .

116

21.2 Bibliographical Notes

The presentation here follows [MU05, Sec. 9.1-Sec 9.3].

117

118

Chapter 22

Entropy II
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

The memory of my father is wrapped up in
white paper, like sandwiches taken for a day at work.

Just as a magician takes towers and rabbits
out of his hat, he drew love from his small body,

and the rivers of his hands
overflowed with good deeds.

– Yehuda Amichai, My Father.

22.1 Compression

In this section, we will consider the problem of how to compress a binary string. We will map each
binary string, into a new string (which is hopefully shorter). In general, by using a simple counting
argument, one can show that no such mapping can achieve real compression (when the inputs are
adversarial). However, the hope is that there is an underling distribution on the inputs, such that
some strings are considerably more common than others.

Definition 22.1.1 A compression function Compress takes as input a sequence of n coin flips,
given as an element of {H,T}n, and outputs a sequence of bits such that each input sequence of n
flips yields a distinct output sequence.

The following is easy to verify.

Lemma 22.1.2 If a sequence S1 is more likely than S2 then the compression function that min-
imizes the expected number of bits in the output assigns a bit sequence to S2 which is at least as
long as S1.

Note, that this is very weak. Usually, we would like the function to output a prefix code, like
the Huffman code.

Theorem 22.1.3 Consider a coin that comes up heads with probability p > 1/2. For any constant
δ > 0, when n is sufficiently large, the following holds.

(i) There exists a compression function Compress such that the expected number of bits output by
Compress on an input sequence of n independent coin flips (each flip gets heads with probability
p) is at most (1 + δ)nH(p); and

119

(ii) The expected number of bits output by any compression function on an input sequence of n
independent coin flips is at least (1− δ)nH(p).

Proof: Let ε > 0 be a constant such that p− ε > 1/2. The first bit output by the compression
procedure is ’1’ if the output string is just a copy of the input (using n + 1 bits overall in the
output), and ’0’ if it is compressed. We compress only if the number of ones in the input sequence,
denoted by X is larger than (p−ε)n. By the Chernoff inequality, we know that Pr[X < (p− ε)n] ≤
exp
(
−nε2/2p

)
.

If there are more than (p− ε)n ones in the input, and since p− ε > 1/2, we have that

n∑
j=dn(p−ε)e

(
n

j

)
≤

n∑
j=dn(p−ε)e

(
n

dn(p− ε)e

)
≤ n

2
2nH(p−ε),

by Corollary 21.1.5. As such, we can assign each such input sequence a number in the range
0 . . . n2 2nH(p−ε), and this requires (with the flag bit) 1 + blg n+ nH(p− ε)c random bits.

Thus, the expected number of bits output is bounded by

(n+ 1) exp
(
−nε2/2p

)
+(1 + blg n+ nH(p− ε)c) ≤ (1 + δ)nH(p) ,

by carefully setting ε and n being sufficiently large. Establishing the upper bound.
As for the lower bound, observe that at least one of the sequences having exactly τ = b(p+ ε)nc

heads, must be compressed into a sequence having

lg
(

n

b(p+ ε)nc

)
− 1 ≥ lg

2nH(p+ε)

n+ 1
− 1 = nH(p− ε)− lg(n+ 1)− 1 = µ,

by Corollary 21.1.5. Now, any input string with less than τ heads has lower probability to be
generated (since 1 − p < p. As such, Lemma 22.1.2 implies that all the input strings with less
than τ ones, must be compressed into strings of length at least µ, by an optimal compresser. Now,
the Chenroff inequality implies that Pr[X ≤ τ] ≥ 1 − exp

(
−nε2/12p

)
. Implying that an optimal

compresser outputs on average at least
(
1− exp

(
−nε2/12p

))
µ. Again, by carefully choosing ε and

n sufficiently large, we have that the average output length of an optimal compressor is at least
(1− δ)nH(p).

22.2 Bibliographical Notes

The presentation here follows [MU05, Sec. 9.1-Sec 9.3].

120

Chapter 23

Entropy III - Shannon’s Theorem
598 - Class notes for Randomized Algorithms
Sariel Har-Peled
December 1, 2005

The memory of my father is wrapped up in
white paper, like sandwiches taken for a day at work.

Just as a magician takes towers and rabbits
out of his hat, he drew love from his small body,

and the rivers of his hands
overflowed with good deeds.

– Yehuda Amichai, My Father.

23.1 Coding: Shannon’s Theorem

Definition 23.1.1 The input to a binary symmetric channel with parameter p is a sequence of
bits x1, x2, . . . , and the output is a sequence of bits y1, y2, . . . , such that Pr[xi = yi] = 1 − p
independently for each i.

Definition 23.1.2 A (k, n) encoding function Enc : {0, 1}k → {0, 1}n takes as input a sequence of
k bits and outputs a sequence of n bits. A (k, n) decoding function Dec : {0, 1}n → {0, 1}k takes
as input a sequence of n bits and outputs a sequence of k bits.

Theorem 23.1.3 (Shannon’s theorem) For a binary symmetric channel with parameter p <
1/2 and for any constants δ, γ > 0, where n is sufficiently large, the following holds:

(i) For an k ≤ n(1−H(p)− δ) there exists (k, n) encoding and decoding functions such that the
probability the receiver fails to obtain the correct message is at most γ for every possible k-bit
input messages.

(ii) There are no (k, n) encoding and decoding functions with k ≥ n(1 − H(p) + 1) such that the
probability of decoding correctly is at least γ for a k-bit input message chosen uniformly at
random.

23.1.1 The encoder/decoder

We will provide encoding and decoding functions for the case k ≤ n(1 − H(p) − δ) by using the
probabilistic method. For i = 0, . . . , 2k−1, let Xi be a random string of length 2n. The encoder
would map the binary string of length k corresponding to number i to the binary string Xi.

The decoder when receiving a message

121

23.2 Bibliographical Notes

The presentation here follows [MU05, Sec. 9.1-Sec 9.3].

122

Bibliography

[AB99] M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations.
Cambridge, 1999.

[ABKU00] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. SIAM J.
Comput., 29(1):180–200, 2000.

[Ach01] D. Achlioptas. Database-friendly random projections. In Proc. 20th ACM Sympos.
Principles Database Syst., pages 274–281, 2001.

[AKPW95] N. Alon, R. M. Karp, D. Peleg, and D. West. A graph-theoretic game and its application
to the k-server problem. SIAM J. Comput., 24(1):78–100, February 1995.

[AN04] N. Alon and A. Naor. Approximating the cut-norm via grothendieck’s inequality. In
Proc. 36th Annu. ACM Sympos. Theory Comput., pages 72–80, New York, NY, USA,
2004. ACM Press.

[Aro98] S. Arora. Polynomial time approximation schemes for euclidean tsp and other geometric
problems. J. Assoc. Comput. Mach., 45(5):753–782, Sep 1998.

[AS00] N. Alon and J. H. Spencer. The probabilistic method. Wiley Inter-Science, 2nd edition,
2000.

[Bar96] Y. Bartal. Probabilistic approximations of metric space and its algorithmic application.
In Proc. 37th Annu. IEEE Sympos. Found. Comput. Sci., pages 183–193, October 1996.

[Bar98] Y. Bartal. On approximating arbitrary metrices by tree metrics. In Proc. 30th Annu.
ACM Sympos. Theory Comput., pages 161–168. ACM Press, 1998.

[Bol98] B. Bollobas. Modern Graph Theory. Springer-Verlag, 1998.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge, 2004.

[Cha01] B. Chazelle. The Discrepancy Method: Randomness and Complexity. Cambridge Uni-
versity Press, New York, 2001.

[CKR01] G. Calinescu, H. Karloff, and Y. Rabani. Approximation algorithms for the 0-extension
problem. In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete
algorithms, pages 8–16. Society for Industrial and Applied Mathematics, 2001.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press / McGraw-Hill, Cambridge, Mass., 2001.

123

http://www.math.tau.ac.il/~nogaa/
http://www.math.tau.ac.il/~nogaa/
http://www.cs.princeton.edu/~arora/
http://www.acm.org/jacm/
http://www.math.tau.ac.il/~nogaa/
http://www.cs.nyu.edu/cs/faculty/spencer/
http://www.cs.princeton.edu/~chazelle/
http://www.cs.technion.ac.il/~rabani/

[Fel71] W. Feller. An Introduction to Probability Theory and its Applications, volume II. John
Wiley & Sons, NY, 1971.

[FRT03] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. In Proc. 35th Annu. ACM Sympos. Theory Comput., pages
448–455, 2003.

[GLS88] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinato-
rial Optimization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin
Heidelberg, 2nd edition, 1988. 2nd edition 1994.

[GRSS95] M. Golin, R. Raman, C. Schwarz, and M. Smid. Simple randomized algorithms for
closest pair problems. Nordic J. Comput., 2:3–27, 1995.

[Gup00] A. Gupta. Embeddings of Finite Metrics. PhD thesis, University of California, Berkeley,
2000.

[GW95] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maxi-
mum cut and satisfiability problems using semidefinite programming. J. Assoc. Com-
put. Mach., 42(6):1115–1145, November 1995.

[H̊as01] J. H̊astad. Some optimal inapproximability results. J. Assoc. Comput. Mach.,
48(4):798–859, 2001.

[HW87] D. Haussler and E. Welzl. ε-nets and simplex range queries. Discrete Comput. Geom.,
2:127–151, 1987.

[IM98] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proc. 30th Annu. ACM Sympos. Theory Comput., pages
604–613, 1998.

[Ind01] P. Indyk. Algorithmic applications of low-distortion geometric embeddings. In Proc.
42nd Annu. IEEE Sympos. Found. Comput. Sci., pages 10–31, 2001. Tutorial.

[JL84] W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz mapping into hilbert
space. Contemporary Mathematics, 26:189–206, 1984.

[KKMO04] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results
for max cut and other 2-variable csps. In Proc. 45th Annu. IEEE Sympos. Found.
Comput. Sci., pages 146–154, 2004. To appear in SICOMP.

[KLMN04] R. Krauthgamer, J. R. Lee, M. Mendel, and A. Naor. Measured descent: A new
embedding method for finite metric spaces. In Proc. 45th Annu. IEEE Sympos. Found.
Comput. Sci., page to appear, 2004.

[Mag01] A. Magen. Dimensionality reductions that preserve volumes and distance to affine
spaces, and its algorithmic applications. Submitted to STOC 2002, 2001.

[Mat90] J. Matoušek. Bi-lipschitz embeddings into low-dimensional euclidean spaces. Comment.
Math. Univ. Carolinae, 31:589–600, 1990.

[Mat99] J. Matoušek. Geometric Discrepancy. Springer, 1999.

[Mat02] J. Matoušek. Lectures on Discrete Geometry. Springer, 2002.

124

http://www.acm.org/jacm/
http://www.acm.org/jacm/
http://www.acm.org/jacm/
http://www.acm.org/jacm/
http://www.acm.org/jacm/
http://link.springer-ny.com/link/service/journals/00454/
http://theory.lcs.mit.edu/~indyk/
http://theory.lcs.mit.edu/~indyk/
http://kam.mff.cuni.cz/~matousek
http://kam.mff.cuni.cz/~matousek
http://kam.mff.cuni.cz/~matousek

[MN98] J. Matoušek and J. Nešetřil. Invitation to Discrete Mathematics. Oxford Univ Pr,
1998.

[MOO05] E. Mossel, R. O’Donnell, and K. Oleszkiewicz. Noise stability of functions with low in-
fluences invariance and optimality. In Proc. 46th Annu. IEEE Sympos. Found. Comput.
Sci., pages 21–30, 2005.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
New York, NY, 1995.

[MU05] M. Mitzenmacher and U. Upfal. Probability and Computing – randomized algorithms
and probabilistic analysis. Cambridge, 2005.

[Nor98] J. R. Norris. Markov Chains. Statistical and Probabilistic Mathematics. Cambridge
Press, 1998.

[Rab76] M. O. Rabin. Probabilistic algorithms. In J. F. Traub, editor, Algorithms and Com-
plexity: New Directions and Recent Results, pages 21–39. Academic Press, New York,
NY, 1976.

[Smi00] M. Smid. Closest-point problems in computational geometry. In Jörg-Rüdiger Sack and
Jorge Urrutia, editors, Handbook of Computational Geometry, pages 877–935. Elsevier
Science Publishers B. V. North-Holland, Amsterdam, 2000.

[VC71] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequen-
cies of events to their probabilities. Theory Probab. Appl., 16:264–280, 1971.

[Wes01] D. B. West. Intorudction to Graph Theory. Prentice Hall, 2ed edition, 2001.

125

http://kam.mff.cuni.cz/~matousek
http://www.math.uiuc.edu/~west/

Index

eps-net, 104
eps-sample, 104

algorithm
Las Vegas, 15
Monte Carlo, 15

ball, 91
binary symmetric channel, 121

Chernoff inequality, 37
simplified form, 37

commute time, 78
Complexity

co−, 16
BPP, 16
NP, 15
PP, 16
P, 15
RP, 16
ZPP, 16

cover time, 78
cut, 7

distortion, 92
distribution

exponential, 85
gamma, 85
Gaussian, 85
normal, 85
poisson, 85

doubly stochastic, 78

effective resistance, 79
encoding function, 121
entropy, 113

binary, 113

final strong component, 75

graph
lollipop, 78

Hierarchically well-separated tree, 92
history, 74
hitting time, 78
HST, 92

independent, 8
irreducible, 75

LazySelect, 29, 30
Lipschitz, 92

bi-Lipschitz, 92

Markov chain, 74
memorylessness property, 74
metric space, 91

non null persistent, 75
null persistent, 75

persistent, 75
Probability

Amplification, 10
probability

conditional, 7

QuickSort, 34, 35

range space, 101

semidefinite, 111
shatter, 101
stochastic, 78
strong component, 75

transient, 75
transition probabilities matrix, 74
transition probability, 74

uniqueness, 19

VC-Dimension, 101

126

	Min Cut
	Min Cut
	Problem Definition
	Some Definitions

	The Algorithm
	A faster algorithm
	Bibliographical Notes

	Complexity, the Changing Minimum and Closest Pair
	Las Vegas and Monte Carlo algorithms
	Complexity Classes

	How many times can a minimum change, before it is THE minimum?
	Closest Pair
	Bibliographical notes

	The Occupancy and Coupon Collector problems
	Preliminaries
	Occupancy Problems
	The Probability of all bins to have exactly one ball

	The Markov and Chebyshev inequalities
	The Coupon Collector's Problem
	Notes

	The Occupancy and Coupon Collector problems - part II
	The Coupon Collector's Problem Revisited
	Randomized Selection
	A technical lemma

	Sampling and other Stuff
	Two-Point Sampling
	About Modulo Rings and Pairwise Independence
	Using less randomization for a randomized algorithm

	Chernoff Inequality - A Special Case
	Application -- QuickSort is Quick

	Chernoff Inequality - Part II
	Tail Inequalities
	The Chernoff Bound --- General Case
	A More Convenient Form

	Application of the Chernoff Inequality -- Routing in a Parallel Computer
	Application of the Chernoff Inequality -- Faraway Strings
	Bibliographical notes
	Exercises

	Martingales
	Martingales
	Preliminaries
	Martingales

	Even more probability

	Martingales II
	Filters and Martingales
	Martingales
	Martingales, an alternative definition

	Occupancy Revisited

	The Probabilistic Method
	Introduction
	Examples

	Maximum Satisfiability

	The Probabilistic Method II
	Expanding Graphs
	Probability Amplification
	Oblivious routing revisited

	The Probabilistic Method III
	The Lovász Local Lemma
	Application to k-SAT
	An efficient algorithm

	The Probabilistic Method IV
	The Method of Conditional Probabilities
	A Very Short Excursion into Combinatorics using the Probabilistic Method
	High Girth and High Chromatic Number
	Crossing Numbers and Incidences

	Random Walks I
	Definitions
	Walking on grids and lines

	Random Walks II
	The 2SAT example
	Solving 2SAT

	Markov Chains

	Random Walks III
	Random Walks on Graphs
	Electrical networks and random walks
	Tools from previous lecture
	Notes

	Random Walks IV
	Cover times
	Graph Connectivity
	Directed graphs

	Graphs and Eigenvalues
	Bibliographical Notes

	The Johnson-Lindenstrauss Lemma
	The Johnson-Lindenstrauss lemma
	Some Probability
	Proof of the Johnson-Lindenstrauss Lemma

	Bibliographical notes
	Exercises

	Finite Metric Spaces and Partitions
	Finite Metric Spaces
	Examples
	Hierarchical Tree Metrics
	Clustering

	Random Partitions
	Constructing the partition
	Properties

	Probabilistic embedding into trees
	Application: approximation algorithm for k-median clustering

	Embedding any metric space into Euclidean space
	The bounded spread case
	The unbounded spread case

	Bibliographical notes
	Exercises

	VC Dimension, eps-nets and eps-approximation
	VC Dimension
	Examples

	VC-Dimensions and the number of different ranges
	On eps-nets and eps-sampling
	Proof of the eps-net Theorem
	Exercises
	Bibliographical notes

	Approximate Max Cut
	Problem Statement
	Analysis

	Semi-definite programming
	Bibliographical Notes

	Entropy, Randomness, and Information
	Entropy
	Extracting randomness

	Bibliographical Notes

	Entropy II
	Compression
	Bibliographical Notes

	Entropy III - Shannon's Theorem
	Coding: Shannon's Theorem
	The encoder/decoder

	Bibliographical Notes

