

To three special people: my nephew, Commander Mark A. Escoe, Supply Corps, United States Navy; my niece, Barbie Davis; and to the memory of their Dad and my brother, Creighton L. Escoe, who died tragically in a fre on March 7, 2008.

About the Author

A. Keith Escoe, P.E., has w orked in the chemical process, oil ref ning, and pipeline industries for thirty-f ve years allo ver the w orld. His e xperience includes South America, North America, and the Middle East. He is retired from Saudi Aramco in the Kingdom of Saudi Arabia where he w as an engineering specialist and returned to the United States as an international consultant. He is currently a Senior Principal Vessel Engineer with the Foster Wheeler USA Corporation in Houston, Texas. The author of many technical papers and books, Mr. Escoe has a B.S. in Mechanical engineering from the Uni versity of Texas at Arlington, an MBA from the University of Arkansas, and is a licensed professional engineer in Texas and a member of ASME. He participated with the Pressure Research Council for many years.

This book is meant to be a companion for those w orking in the f eld and facing various tasks in volving pressure vessels and stacks. A typical e xample of these tasks is during a plant expansion project when equipment is modif ed for various reasons. One solution might be to increase the height of a particular process column to accommodate additional trays and /or packing to enhance process productivity. Another e xample is to retrof t existing pressure v essels or stacks to either enhance process capability or replace damaged equipment. Once these items are modif ed or constructed, it is up to the f eld personnel or hired contractors to de vise mechanisms to lift them into place. These lifting de vices (e.g., lifting and tailing lugs) become necessary to design and f abricate in order to install the desired pressure v essel or stack. Other cases may in volve lifting devices which may ha ve been remo ved and the equipment that must be mo ved for various reasons. There is no end to using lifting de vices in an operations facility. This book does not get in volved in the details of rigging, b ut does expand on the subject of various lift devices and useful rigging techniques.

Otheissues face feld personnel. Some may call these issues problems, but after reading this book it is hoped that these problems will be called opportunities. It has happened on man y unfortunate occasions where process columns and stacks have been erected in the f eld and the structures vibrate. This involves a dynamic response induced from wind v ortex shedding that results in disruption of the contained f uids and can be signif cant enough to be of concern for the safety of all present at the f acility. Most people that observ e such a dynamic response fear that the anchor bolts attaching the stack or column will f ail due to static or fatigue loading on the anchor bolts. In this book, we discuss methods to screen and pre vent such a reaction and practical methods to predict and correct the unstable motion should it occur.

Often defect mechanisms de velop in portions of the process columns. T o assess the stress, wind loads must be considered in the stress state at the location of the defect. W ind loads also become important when performing localized stress relieving and when a section of the process column is heated to stress relieving temperatures. When a section of a process column is to be stress relieed and heated up, wind striking the to wer results in forces and moments across the heated section. This condition must be considered before repairs begin.

There is also a discussion about the application of guy cable supports for stacks in regards to dynamic response and wind loads. Of particular interest is a discussion about f are header stacks and ho w to design guy cables for these tall and slender structures.

Defect mechanisms also affect the internals of process columns. This book is a handy guide to the assessment of v essel internals and practical solutions. Tray support rings and catalyst bed support beams are some examples of vessel internals discussed.

Rather than present tables for con version between U.S. Customary units and metric SI units, we be gin with a section about unit systems. Before these topics are discussed, Chapter 1 discusses tw o unit systems: AES (American Engineering Units), or what the ASME calls the U.S. Customary Units, and the metric SI system of units. Because the United States is some what alone in the world using the AES, more foreign work and more foreign engineers are entering our country to practice engineering. Man y foreign clients insist that the w ork be done using the metric SI system of units. All the calculations and the results are, by contract, to be in the metric SI system. Therefore, it is w orthwhile spending some time on the tw o systems, because man y of the e xamples are in one or the other system of units. This chapter will allo w discussions and e xamples to be entirely in either system of units without con verting from one to the other. Why not just pick up a basic te xt book on physics and read about metric SI? This is an option, but here the perspective is different. Our focus is on the units that one faces in f eld operations and ho w to clear up confusion dealing with fundamentals of mass and weight and also the v arious units of measurement encountered in the feld. There is a detailed discussion about the two systems of units and how the various units are derived and used. This discussion is most important to read when it is necessary to w ork in a system of units one is not f amiliar with. It will also be a useful guide to refresh those who need to review the systems of units.

The examples in this book are from actual f eld applications. The y come from various parts of the world and are written to enhance f eld operations. In many parts of the world, often in remote locations, these methods were applied to repair pressure vessels and stacks. These problems will still continue to happen, so there is a need to kno whow to address them. This book is to present assessments and techniques and methods for the repair of pressure v essels and stacks for f eld applications. Also the book is to be a repair manual for easy use for mechanical engineers, civil-structural engineers, plant operators, maintenance engineers, plant engineers and inspectors, materials specialists, consultants, and academicians.

There are also handy pressure v essel formulas-calculation of head for mulas with partial loaded volumes and head weights-included, making this a handy f eld guide.

The contents of this book do not necessarily ref ect the practices of my cur rent emplo yer, F oster Wheeler USA Corporation. I wish to thank J. W esley Mueller, P.E., for his helpful comments pertaining to Chapters 6 and 7. I also wish to thank my wife, Emma, for her unrelenting patience throughout the project.
A. Keith Escoe

HoustonTexas
ApriA, 2008

Chapter 1

Systems of Units

This chapter presents two systems of units so that you can follow the examples ahead. These two systems of units are the metric $S I$ and what is termed by the American Society of Mechanical Engineers (ASME) as the U.S. Customary system of units, namely in the ASME Section II Part D [1]. This system is also termed the American Engineering System (AES) by the U.S. government. I mentioned the latter term in my book Piping and Pipelines Assessment Guide [2] in how to use the two systems of units. In this book, we will discuss brief y the other variants of the metric SI system, b ut it is the pre vailing metric system of units. Likewise, we will concentrate on the U.S. Customary system v ersus the British Imperial system. Even though the latter two are similar, there are some differences.

This book is about engineering and discusses ho w to engineer with each system. It is not of interest to get into a historical discussion about ho w the system of units e volved, as there are man y sources a vailable if you ha ve this interest. There are strong emotions associated with using each system, b ut this book is not interested in the polemics of using one system v ersus the other . The other reason for this discussion is that I ha ve worked extensively in each system and ha ve noticed the le vel of apprehension and intimidation among those using U.S. Customary units to ward the metric SI system. This apprehension is totally unnecessary and is without w arrant, as the metric SI is used in almost every country of the w orld except the United States, where it has made headway in medicine and the pure sciences. After reading this chapter, you will not need to con vert from one system to the other in the discussions that follow; this text is for users of each system of units.

If you have used only the U.S. Customary system of units, the younger you are, the more likely you will be in the future to encounter the metric SI in practice. If you w ork outside the United States, then chances are certain that you will have to w ork in this system of units in one form or another . With more and more foreign projects and foreign engineers coming to the United States, the more lik ely the e vent of your using metric SI. Instead of resisting metric SI, consider it as a new friend, which it has been to me. In the metric SI, there are no fractions to w orry about, like adding $3 / 32$ to $11 / 64$! The thought of not having to work with fractions is addictive in itself.

The metric SI is an absolute system of units, meaning that it does not depend on where the measure is made. The measurements can be made at an y
location. For example, the meter has the same (or absolute) length re gardless of where the measurement is tak en-here on earth or else where. The unit of force is a deri ved unit. The metric SI system has been called the meter, kilogram, and second system, or $M K S$. These three units are primary units. In this system the Newton is the amount of force needed to gi ve 1 Kg mass an acceleration of $1 \mathrm{~m} / \mathrm{sec}^{2}$. Thus, Newton's second law is the crux of the system.
orderive force from mass, you have to use Newton's second law:

$$
\begin{equation*}
\mathrm{F}=\mathrm{M}^{*} \mathrm{~A}, \text { Newtons } \tag{1.1}
\end{equation*}
$$

The unit of mass is kilogram (Kg) and acceleration is $\mathrm{m} / \mathrm{sec}^{2}$. To perform the conversion, you use

$$
\begin{equation*}
\mathrm{F}=\left(\frac{g}{g_{c}}\right) \mathrm{M}(\mathrm{Kg}) \tag{1.2}
\end{equation*}
$$

In the metric SI system, you use

$$
g=9.807 \frac{\mathrm{~m}}{\mathrm{sec}^{2}} \text { and } g_{c}=1.0 \frac{\mathrm{Kg}-\mathrm{m}}{\mathrm{~N}-\mathrm{sec}^{2}}
$$

Thushe force required giving 1 Kgof mass an acceleration of $1 \mathrm{~m} / \mathrm{sec}^{2}$ is

$$
\begin{equation*}
\mathrm{F}=(1.0 \mathrm{Kg})\left(\frac{9.807 \frac{\mathrm{~m}}{\mathrm{sec}^{2}}}{1 \frac{\mathrm{Kg}-\mathrm{m}}{\mathrm{~N}-\mathrm{sec}^{2}}}\right)=9.807 \mathrm{~N} \tag{1.3}
\end{equation*}
$$

$\mathrm{d} K$, that's right: It takes 9.807 N (Newtons) to accelerate 1 Kg (kilogram) of mass $1 \mathrm{~m} / \mathrm{sec}^{2}$-almost 10 times. This is a number to remember . See the note later in this section.

Regarding the U.S. Customary system, the same discussion is presented in my book Piping and Pipelines Assessment Guide, pp. 498-500 [2], as follows:

$$
g=32.174 \frac{\mathrm{ft}}{\sec ^{2}} \text { and } g_{c}=\frac{32.174 \mathrm{ft}-\mathrm{lb}_{\mathrm{m}}}{\mathrm{sec}^{2}-\mathrm{lb}_{\mathrm{f}}}
$$

From Newton's second law, we have the following:

$$
\begin{equation*}
\text { Force }=\frac{\text { Mass }\left(\mathrm{lb}_{\mathrm{m}}\right) * \text { Acceleration }\left(g=32.174 \frac{\mathrm{ft}}{\mathrm{sec}^{2}}\right)}{\left(g_{c}=\frac{32.174 \mathrm{lb}_{\mathrm{m}}-\mathrm{ft}}{\mathrm{lb}_{\mathrm{f}}-\mathrm{sec}^{2}}\right)}=\mathrm{lb}_{\mathrm{f}} \tag{1.4}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\text { Mass }=\frac{\text { Force }\left(\mathrm{lb}_{\mathrm{f}}\right) *\left(g_{c}=\frac{32.174 \mathrm{lb}_{\mathrm{m}}-\mathrm{ft}}{\mathrm{lb}_{\mathrm{f}}-\mathrm{sec}^{2}}\right)}{\text { Acceleration }\left(g=\frac{32.174 \mathrm{ft}}{\mathrm{sec}^{2}}\right)}=\mathrm{sb}_{\mathrm{m}} \tag{1.5}
\end{equation*}
$$

As you can see, in the U.S. Customary system, mass is a deri ved unit, with the primary units being force, pound, and second. Some authors refer to it as the $F P S$ system. This is a gra vitational system, where force is a primary unit. Since most experiments involve a direct measurement of force, engineers prefer a gravitational system of units as opposed to an absolute system. Often the units g and $g c$ are rounded to $32.2 \mathrm{ft} / \mathrm{sec}^{2}$.

As you can see in equations 1.4 and 1.5 , the terms $l b_{f}$ and $l b_{m}$ are used interchangeably. In the U.S. Customary system of units, lb_{f} and lb_{m} have the same magnitude (value). Pound (mass), lb_{m}, and pound (force), lb_{f}, have identical numerical values. Thus, 1 pound mass is equal to 1 pound force; hence, it is not uncommon to use the term pound, or $l b$, interchangeably. This usage has unfortunately caused confusion. F orce is not mass, and this is hard to under stand using the U.S. Customary system of units, where the same term is used for both mass and force. In locations without gra vity, such as outer space, weight is meaningless. The off cial unit of mass in the U.S. Customary system of units is the slug. A pound is the force required to accelerate 1 slug of mass at $1 \mathrm{ft} / \mathrm{sec}^{2}$. Since the acceleration of gra vity in the U.S. Customary system is $32.2 \mathrm{ft} / \mathrm{se}^{2}$, it follo ws that the weight of one slug is 32.2 pounds, commonly referred to as 32.3 lk . The comparison of the slug and the pound mak es it clear why the size of the pound is more practical for commerce. W ith the current scientif c work, it is undesirable to ha ve the weight of an object as a standard because the value of g does vary at different locations on Earth. It is much better to have a standard in terms of mass. The standard kilogram is the mass reference for scientif c w ork. This book is for industrial practice by practicing engineers, inspectors, maintenance engineers, plant and pipeline personnel, rigging engineers, and others that w ork in industry. It is not intended for scientif c work. The v alue of the gra vitational constant does not v ary enough to affect most engineering applications. The slug is rarely used outside of te xtbooks, which has contrib uted to the confusion between the pound mass and the pound force. When expressing mass in pounds, it is necessary to recognize that we are actually e xpressing "weight," which is a measure of the gra vitational force on a body. When used in this manner, the weight is that of a mass when it is subjected to an acceleration of 1 g . In academia, where the study of dynamics involves forces, masses, and accelerations, it is important that mass be expressed in slugs, that is, $\mathrm{m}=\mathrm{W} / \mathrm{g}$, where g is approximately equal to $32.174 \mathrm{ft} / \mathrm{sec}^{2}$. These points are ar guments for the use of the metric SI system
of units. P articularly in the study of dynamics, the SI system is much easier The slug is def ned as

$$
\begin{equation*}
\text { 1 Slug }=32.174 \mathrm{lb}_{\mathrm{m}}=\frac{\mathrm{lb}_{\mathrm{f}}-\mathrm{sec}^{2}}{\mathrm{ft}} \tag{1.6}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
g_{c}=1=\frac{32.174 \mathrm{lb}_{\mathrm{m}}-\mathrm{ft}}{\mathrm{lb}_{\mathrm{f}}-\mathrm{sec}^{2}} \tag{1.7}
\end{equation*}
$$

Like text books in academia, the slug is rarely used in industrial circles, b ut where it is used remember that $1 \mathrm{slug}=32.2 \mathrm{lh}$. This will come up brief y in Chapter 3 where the ASME STS-1 uses the slug as mass. Ho wever, ASME is in the process of making the SI system the preferred system of units. In locations without gravity, such as outer space, weight is meaningless. If two bodies were to collide in outer space, the results w ould be due to their dif ferences in mass and velocity. The body with the greater mass would win out.

Note: Because lb_{f} and lb_{m} have the same unit and both are often referred to as pounds, it is a common mistak e for users of the U.S. Customary system to for get to con vert kilogram mass to Ne wton's force, or vice v ersa. When using the metric SI, don't forget the conversion factor of 9.807 derived earlier. Repeating again, kilograms are not Newtons. With the metric SI, this phenomenon does not exist, as 1 kilogram is 9.807 Ne wtons, so mass and weight cannot be confused.

GETTING FAMILIAR WITH METRIC SI UNITS

Civil-structural engineers prefer to w ork in units of force in designing foundations. W ith the U.S. Customary system, this is ob vious: A pound is a pound. In the metric SI system, you must mak e a conversion. In the metric SI, KiloNewtons (KN) are used for foundations. Often I ha ve heard the question "How do I convert kilograms to KiloNewtons?" The answer is simple. Suppose you have a pressure vessel that is a large reactor that is to go into a new ref nery. This reactor weighs $1,000,000$ kilograms. This is converted to force as follows:

$$
\begin{equation*}
\mathrm{F}=1,000,000 \mathrm{Kg} * \frac{\left(9.807 \frac{\mathrm{~m}}{\sec ^{2}}\right)}{\frac{\mathrm{Kg}-\mathrm{m}}{\mathrm{sec}^{2}-\mathrm{N}}}=9,807,000 \mathrm{~N} \tag{1.8}
\end{equation*}
$$

This means 1 million kilograms almost equals 10 million Ne wtons. So the civil-structural engineers would design for 9807 KiloNewtons (KN).

In Europe it is quite common to see lifting de vices, such as small cranes in automobile shops, rated in KN. I sa w a lifting crane in an automobile shop in Germany marked as 20 KN . This marking means that the crane could safely lift

$$
20 \mathrm{KN}=20,000 \mathrm{~N}
$$

Using Eq. 1.3, we have

$$
\operatorname{Mass}(\mathrm{Kg})=\mathrm{F} *\left(\frac{g_{c}}{g}\right)=20,000 \mathrm{~N} *\left(\frac{1 \frac{\mathrm{Kg}-\mathrm{m}}{\mathrm{~N}-\mathrm{sec}^{2}}}{9.807 \frac{\mathrm{~m}}{\mathrm{sec}^{2}}}\right)=2039.4 \mathrm{Kg}
$$

So the crane is rated at roughly 2039 Kg . It would not be wise to ask ho w many pounds this is, as often man y in the European Union are as emotional about the metric SI as some Americans are about the U.S. Customary system. In secret, you can calculate

$$
\text { 2039.Kg }=4496.1 \mathrm{lb}_{\mathrm{m}}
$$

Most people using the U.S. Customary system would then say the measurement is " 4496.1 pounds."

If you are be ginning to use the metric SI for the f rst time, it is quick er to learn the system by carrying all calculations solely in metric. This will enable you to become f amiliar with the system more quickly and obtain a "feel" for the answer.

OTHER IMPORTANT METRIC SI UNITS USED IN MECHANICS

The basic units-area, section modulus, and moment of inertia-are mm ${ }^{2}$, mm^{3}, and mm^{4}, respectively.

Density

Thdensity of steel is $0.283 \mathrm{lb} / \mathrm{in}^{3}$. In the SI metric system, this measurement converts to approximately

$$
\rho=0.283 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{in}^{3}}=7840 \frac{\mathrm{Kg}}{\mathrm{~m}^{3}}
$$

Bending Moments and Torque

Because moment of force (bending moment) and torque are equal to a force times a distance (moment arm or le ver arm), their SI unit is $\mathrm{N}^{*} \mathrm{~m}$. The Joule $\left(\mathrm{J}=\mathrm{N}^{*} \mathrm{~m}\right)$, which is a special name for the SI unit of ener gy and work, should
not be used as a name for the unit of moment of force or of torque. T ypically, the moment of torque is written as N m , with a space between the N and m or as $\mathrm{N}^{*} \mathrm{~m}$.

The Joule is equal to a $1 \mathrm{~N}^{*} \mathrm{~m}$, but is reserved for a unit of ener gy and can have more than one application, as discussed later. When we get into thermal stresses and heat transfer, it is confusing to use Joule as a bending moment of torque and as a thermal unit. W e will spend more time later on the proper use of metric units.

UNITS FOR STRESS AND PRESSURE

The term for pressure and stress is 1 Newton per square meter, which is named in honor of the f amous mathematician, physicist, and philosopher Blaise Pascal. Since the area of a meter is rather lar ge, 1,000 pascals is a kilopascal (KPa), and 1 million pascals is 1 megapascal (MPa). Simply written, we have

$$
\text { 1.0 Megapascal }=(1,000,000)(1.0) \frac{N}{\mathrm{~m}^{2}}\left(\frac{1 \mathrm{~m}}{1000 \mathrm{~mm}}\right)^{2}=1.0 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
$$

A megapascal, or MP a, is most commonly used for stress. It can also be used for pressure, but the numbers may remain small for small v alues of pressure. Typically, the kilopascal is used for pressure. The bar has been used for pressure often in the past, b ut the bar is not an SI unit. Although it may be accepted in the SI, it is discouraged. Now

$$
1 \text { kilopascal }=0.01 \text { bar }=0.001 \text { megapascal }
$$

In U.S. Customary units, these metric units are

$$
\begin{aligned}
\text { megapascal } & =145 \mathrm{psi}=10 \text { bars } \\
1 \text { bar } & =14.5 \mathrm{psi} \\
\text { 1kilopascal } & =0.145 \mathrm{psi}
\end{aligned}
$$

A WARNING ABOUT COMBINING METRIC SI UNITS

When you are using the metric SI system of units, it is wise to remember that many units are named in terms of a magnitude of 10, e.g., kilo or mega as a pref x. When you are performing computations, it is advised to reduce these terms to their most basic set of units. F or example, if you have a cylinder that is $609.6 \mathrm{~mm}\left(24^{\prime \prime}\right)$ ID that contains 1000 KR of pressure that is 24 mmthick, the hoop stress is

$$
\sigma=\frac{P D}{2 t}
$$

Enteringhe equation as

$$
\sigma=\frac{(1575) \mathrm{Pa} \mathrm{K09.4)} \mathrm{~m} \mathrm{~m}}{2(24) \mathrm{mm}}
$$

can lead to mistakes, since the stress term is in MPa and the pressure is in KPa . The best way to avoid mistakes is to write the equation as follows:

$$
1575 \mathrm{KPa}(0.001)=1.575 \mathrm{MPa}=1.575 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}
$$

If the pressure (written in KP a) is not con verted correctly to me gapascals (MPa), then big errors can occur. I have seen this problem occur with v eteran users of the metric SI system. The error is e ven more lik ely with those not accustomed to using the metric SI system.

UNITS FOR ENERGY

The unit of heat is the Joule, mentioned pre viously. The Joule w as named for James Prescott Joule, the famous English physicist. His development of Joule's Law, which related the amount of heat produced in a wire as proportional to the resistance of the wire and the square of the current, led to the thermal unit being named for him. The Joule is also used in Charp y impact tests, where an impact hammer is dropped from a specif ed height to impact a sample. The force is in Ne wtons, which is at a specif ed height in meters (or millimeters), and the ener gy that impacts the metal specimen is $\mathrm{N}^{*} \mathrm{~m}$ or Joules. Refer to Figure 1.1, which shows a Charpy impact test machine.

FIGURE 1.1 Schematic diagram sho wing impact hammer of M dropping from height L_{1}, impacting sample S , and rising to a height L_{2}. The ener gy absorbed by the sample, related to the difference of heights $L_{1}-L_{2}$, is recorded on gauge G.

If the metal specimen does not break after impact, then it absorbed the energy of impact, which def nes its toughness. W e will discuss toughness later . The comparable impact ener gy used in the U.S. Customary system is the $\mathrm{ft}-\mathrm{lb}{ }_{\mathrm{f}}$. The unit $\mathrm{ft}-\mathrm{lb}_{\mathrm{f}}$ can be used as an energy unit or as a bending moment of torque. The thermal unit in the U.S. Customary system is the British Thermal Unit, or BTU. For reference, 1 BTU approximately equals 1055 Joules, or 1.055 kJ (kilojoules).

The amount of thermal enegy transferred per unit of time, power, is BTU/hr. In the SI metric, the comparable unit is Watt (W). Thus,

$$
1 \mathrm{Watt}=3.4128 \frac{\mathrm{BTU}}{\mathrm{hr}} \text { or } 1 \frac{\mathrm{BTU}}{\mathrm{hr}}=0.293 \mathrm{~W}
$$

The heat transfer con vection coeff cient in the U.S. system is BTU/ ($\mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}$). In the SI metric, the coeff cient is Watts/($\left.\mathrm{m}^{2}-{ }^{\circ} \mathrm{C}\right) \mathrm{r}$

$$
1 \frac{\text { Watt }}{\mathrm{m}^{2}-{ }^{\circ} \mathrm{C}}=0.17612 \frac{\mathrm{BTU}}{\mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}}
$$

or,

$$
1 \frac{\mathrm{BTU}}{\mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}}=5.68 \frac{\text { Watt }}{\mathrm{m}^{2}-{ }^{\circ} \mathrm{C}}
$$

Thermal Conductivity Units

The unit for thermal conducti vity in the U.S. Customary system is BTU/ ($\mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}$). Thus, in the SI metric,

$$
1 \frac{\text { Watt }}{\mathrm{m}-{ }^{\circ} \mathrm{C}}=0.57782 \frac{\mathrm{BTU}}{\mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}}
$$

or

$$
1 \frac{\mathrm{BTU}}{\mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}}=1.731 \frac{\text { Watt }}{\mathrm{m}-{ }^{\circ} \mathrm{C}}
$$

Coefficient of Thermal Expansion

The U.S. Customary system unit for the coeff cient of thermal e xpansion is microinch per inch per de gree Fahrenheit. To convert to metric SI, you multiply the U.S. Customary system unit by 1.8. As an e xample, if the thermal coeff cient of expansion is

$$
\left(6.25 \times 10^{-6}\right) \frac{\text { in }}{\text { in }-{ }^{\circ} \mathrm{F}}=\left(1.125 \times 10^{-6}\right) \frac{\mathrm{m}}{\mathrm{~m}-{ }^{\circ} \mathrm{C}}
$$

Aandy website for conversions is wwwefunda.com.

THE UNIT OF TOUGHNESS

The unit of toughness is a v ery important parameter used in fracture mechanics. Toughness, K, is the property of a material to absorb engy. In the U.S. Customary system, this unit is expressed as $\mathrm{ksi} \sqrt{\mathrm{in}}$. When using the metric SI system, many people use $\mathrm{MPa} \sqrt{\mathrm{m}}$, mainly because it is closer inalue to the U.S. Customary unit. The m denotes meters. The critical v alue of the mode stress intensity , K_{I}, at which fracture occurs is a function of the maximum uniform membrane stress. In the SI system, stress is usually denoted as MPa ($\mathrm{N} / \mathrm{mm}^{2}$). Since the stress unit MPa is $1.0 \mathrm{~N} / \mathrm{mm}^{\text {a }}$, the unit for toughness becomes

$$
\frac{\mathrm{lb}_{\mathrm{f}}}{\mathrm{in}^{2}} \sqrt{\mathrm{in}}=\frac{\mathrm{lb}_{\mathrm{f}}}{\mathrm{in}^{2}}\left(\frac{4.448 \mathrm{~N}}{1 l b_{\mathrm{f}}}\right)\left(\frac{\text { in }}{25.4 \mathrm{~mm}}\right)^{2}\left[\text { in }\left(\frac{25.4 \mathrm{~mm}}{1 \mathrm{in}}\right)\right]^{0.5}
$$

Thus,

$$
1.0 \frac{\mathrm{lb}_{\mathrm{f}}}{\mathrm{in}^{2}} \sqrt{\mathrm{in}}=0.0347 \frac{\mathrm{~N} \sqrt{\mathrm{~mm}}}{\mathrm{~mm}^{2}}
$$

Since

$$
\begin{gathered}
1 \mathrm{MPa}=1 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}, \text { then } \\
1.0 \mathrm{MPa} \sqrt{\mathrm{~mm}}=28.78 \mathrm{psi} \sqrt{\mathrm{in}}
\end{gathered}
$$

९r

$$
1.0 \mathrm{MPa} \sqrt{\mathrm{~mm}}=0.02878 \mathrm{ksi} \sqrt{\mathrm{in}}
$$

If you use meters instead of millimeters, the preceding becomes

$$
1.0 \mathrm{MPa} \sqrt{\frac{\mathrm{~mm}(\mathrm{~m})}{(1000 \mathrm{~mm})}}=0.03162 \mathrm{MPa} \sqrt{\mathrm{~m}}
$$

Thus,

$$
1 \mathrm{MPa} \sqrt{\mathrm{~m}}=0.91 \mathrm{ksi} \sqrt{\mathrm{in}}
$$

Since these units are fairly close, many people prefer to use MPa $\sqrt{\mathrm{m}}$ The same ar gument can be used for using centimeters v ersus millimeters-the
centimeter is closer to 1 inch than the millimeter; ho wever, all dimensions are given in millimeters in countries that use the metric SI. Thus, you can use the unit $\mathrm{MPa} \sqrt{\mathrm{mm}}$ or $\mathrm{MPa} \sqrt{\mathrm{m}}$, although the former is more consistent with the dimensions, which are in millimeters. Either unit is acceptable, as long as you keep the units consistent.

REFERENCES

1. ASME Section II Part D, Properties Materials, American Society of Mechanical Engineers, New York, NY, 2007.
2. Escoe, A. Keith, Piping and Pipelines Assessment Guide, Gulf Professional Publishing (Elsevier) ,March 2006.

Chapter 2

Handy Pressure Vessel Formulas

This chapter contains handy formulas for pressure v essels. Some of the for mulas are from ASME, Section VIII, Di vision 1 [1], and others are associated formulations to calculate weights and partial fuid volumes.

In feld applications, it is assumed that the equipment has already been fabricated and been shop-tested for the maximum allo wable pressure (MAP). The MAP is def ned as the maximum allo wable pressure of the v essel in the ne w and cold condition. It is more often determined in the shop before deli very. After the vessel is deli vered, any test performed after operation be gins is the maximum allowable working pressure (MAWP). The MAWP can also be used for new construction. The maximum allo wable working pressure is def ned as the maximum gauge pressure permissible at the top of the completed v essel in its operating condition for a designated temperature. Thus, in the f eld, you are likely to hear the term MAWP much more than MAP.

The minimum required wall thickness for a component can be tak en as the thickness in the ne w condition minus the original specif ed corrosion allo wance. The minimum required w all thickness for pressure v essel components can be computed if the component geometry, design pressure (including liquid head) and temperature, specif cations for the material of construction, allo wable stress, and thicknesses required for supplemental loads are kno wn. The values for thickness calculations must include future corrosion allowance-the amount of corrosion e xpected after se veral f eld inspections are performed. Refer to the API 579, "Fitness-for-Service" [2], for additional discussion.

CYLINDRICAL SHELLS

Three formulas that are alvays helpful in mechanics problems are the properties of area, section modulus, and moment of inertia for the cross-section of a circular cylinder (see Figure 2.1). These formulas are as follows, with the approximate formulations on the left and the exact expressions on the right side:

$$
\begin{equation*}
I=\pi R^{3} t ; \text { Exact } I=\frac{\pi}{64}\left(D_{\mathrm{o}}^{4}-D_{\mathrm{i}}^{4}\right) \tag{2.1}
\end{equation*}
$$

FIGURE 2.1 Righitcular cylinder.

FIGURE 2.2 Right circular cylinder showing circumferential and longitudinal axes.

$$
\begin{gather*}
Z=\pi R^{2} t ; \text { Exact }=Z=\frac{\pi}{32}\left(\frac{D_{\mathrm{o}}^{4}-D_{\mathrm{i}}^{4}}{D_{\mathrm{o}}}\right)=\left(\frac{2}{D_{\mathrm{o}}}\right) I \tag{2.2}\\
A=\pi R t ; \text { Exact }=A=\frac{\pi}{4}\left(D_{\mathrm{o}}^{2}-D_{\mathrm{i}}^{2}\right) \tag{2.3}
\end{gather*}
$$

where
$A=$ cross-sectional area of cylindrical shell, $\mathrm{mm}^{2}\left(\mathrm{in}^{2}\right)$
$D_{\mathrm{o}}=$ outside diameter of cylindrical shell, mm (in)
$D_{\mathrm{i}}=$ inside diameter of cylindrical shell, mm (in)
$I=$ moment of inertial of cylindrical shell cross-section, $\mathrm{mm}^{4}\left(\mathrm{in}^{4}\right)$
$R=$ mean radius of cylindrical shell in approximate formulation, mm (in)
$t=$ thickness of cylindrical shell in approximate formulation, mm (in)
$Z=$ section modulus of cylindrical shell cross-section, $\mathrm{mm}^{3}\left(\mathrm{in}^{3}\right)$
In the era of high-speed computers, there is no reason for the e xact expressions not to be used.

Circumferential Stress in a Cylindrical Shell (Longitudinal Joints)

The equations for a right circular c ylinder for the circumferential stress acting along the longitudinal joints follow (see Figure 2.2).

$$
\begin{gather*}
t_{r}^{C}=\frac{P R_{C}}{S_{a} E-0.6 P} \tag{2.4}\\
M A W P^{C}=\frac{S_{a} E t_{c}}{R_{C}-0.6 t_{C}} \tag{2.5}\\
\sigma_{m}^{C}=\frac{P}{E}\left(\frac{R_{C}}{t_{C}}+0.6\right) \tag{2.6}
\end{gather*}
$$

where
$E=$ weldgoint eff ciency from original construction code; if unknown, use 0.7
$M A W P=$ maximumallowable working pressure, $\mathrm{MPa}(\mathrm{psi})$
$P=$ internalesign pressure, $\mathrm{MPa}(\mathrm{psi})$
$R_{C}=R+L O S S+F C A$
$R=$ Insideadius, mm (in)
$\operatorname{LOSS}=$ wall loss in the shell prior to the assessment equal to the nominal (or furnished thickness if available) minus the measured minimum thickness at the time of the inspection, mm (in)
$F C A=$ Future corrosion allowance-the amount of wall loss expected over the specif ed time of the assessment predicting the remaining life based on inspection data or estimates, mm (in)
$S_{a}=$ allowable tensile stress of the shell material e valuated at the design temperature per the applicable construction code, MPa (psi)
$t_{C}=t-L O S S-F C A, \mathrm{~mm}$ (in)
$t=$ nominal or furnished thickness of the shell, or cylinder thickness at a conical transition for a junction reinforcement calculation, mm (in)
$t_{r}=$ requiredninimum wall thickness
$\sigma_{m}=$ nominamembrane stress

Longitudinal Stress (Circumferential Joints)

The equations for a right circular c ylinder for the longitudinal stress acting on the circumferential joints follow.

$$
\begin{align*}
t_{r}^{L} & =\frac{P R_{C}}{2 S_{a} E+0.4 P}+t_{s l} \tag{2.7}\\
M A W P^{L} & =\frac{2 S_{a} E\left(t-t_{s l}\right)}{R_{C}-0.4\left(t_{C}-t_{s l}\right)} \tag{2.8}\\
\sigma_{m}^{L} & =\frac{P}{2 E}\left(\frac{R_{C}}{t_{C}-t_{s l}}-0.4\right) \tag{2.9}
\end{align*}
$$

whert $\boldsymbol{c}_{s l}=$ thickness required by supplemental loads, e.g., wind or seismic loads, mm (in).

Final or Resulting Values

$$
\begin{align*}
t_{r} & =\max \left(t_{r}^{C}, t_{r}^{L}\right) \tag{2.10}\\
M A W P & =\min \left(M A M P^{C}, M A W P^{L}\right) \tag{2.11}\\
\sigma_{\max } & =\max \left(\sigma_{m}^{C}, \sigma_{m}^{L}\right) \tag{2.12}
\end{align*}
$$

SPHERICAL SHELL OR HEMISPHERICAL HEAD

The equations for a spherical shell or hemispherical head follow (see Figure 2.3).
The minimum thickness, MA WP, and equations for the membrane stress are given in the ASME, Section VIII, Di vision 1, Boiler and Pressure V essel Code, paragraph UG-27 [1], as follows:

$$
\begin{align*}
t_{\min } & =\frac{P R_{C}}{2 S_{a} E-0.2 P} \tag{2.13}\\
M A W P & =\frac{2 S_{a} E t_{C}}{R_{C}+0.2 t_{C}} \tag{2.14}\\
\sigma_{m} & =\frac{P}{2 E}\left(\frac{R_{C}}{t_{C}}+0.2\right) \tag{2.15}
\end{align*}
$$

FIGURE 2.3 Hemispheridadad or sphere

ELLIPTICAL HEAD

The equations for an elliptical head follow (see Figure 2.4).
The minimum thickness, MA WP, and membrane stress equations are as follows per the ASME, Section VIII, Division 1, Appendix 1 [1] code:

$$
\begin{equation*}
t_{\min }=\frac{P D_{C} K}{2 S_{a} E-0.2 P} \tag{2.16}
\end{equation*}
$$

$$
\begin{align*}
M A W P & =\frac{2 S_{a} E t_{C}}{K D_{C}+0.2 t_{C}} \tag{2.17}\\
\sigma_{m} & =\frac{P}{2 \mathrm{E}}\left(\frac{D_{\mathrm{C}} K}{t_{C}}+0.2\right) \tag{2.18}
\end{align*}
$$

where

$$
\begin{align*}
D_{C} & =2 R_{c} \tag{2.19}\\
K & =\frac{1}{6}\left(2.0+R_{\mathrm{ell}}^{2}\right) \tag{2.20}
\end{align*}
$$

FIGURE 2.4 Ellipsoidmad
$R_{\text {ell }}=$ Ratio of the major-to-minor axis of an elliptical head (most common is $R_{\text {ell }}=$ for a 2:1 ellipsoidal head)

Note: To compute the minimum thickness, MA WP, and membrane stress for the spherical portion of an ellipsoidal head, def ned as a section within 0.8 D centered on the head centerline, use $\quad K_{c}$ instead of K in the preceding equations. K_{c} is def ned as follows:

$$
\begin{equation*}
K_{c}=0.25346+0.13995 R_{\mathrm{ell}}+0.12238 R_{\mathrm{ell}}^{2}-0.015297 R_{\mathrm{ell}}^{3} \tag{2.21}
\end{equation*}
$$

TORISPHERICAL HEAD

The equations for a torispherical head follow (see Figure 2.5).

FIGURE 2.5 ortspherical head (Note: $C r=L$ below)
$C_{r c}=C_{r}+$ Loss + FCA $(m m, i n)$
$R_{c}=R+\operatorname{Loss}+$ FCA (mm, in)

The minimum thickness, MA WP, and membrane stress equations are as follows:

$$
\begin{align*}
t_{r} & =\frac{P C_{r c} M}{2 S E-0.2 P} \tag{2.22}\\
M A W P & =\frac{2 S_{a} E t_{c}}{C_{r c} M+0.2 t_{c}} \tag{2.23}\\
\sigma_{m} & =\frac{P}{2 E}\left(\frac{C_{r c} M}{t_{c}}+0.2\right) \tag{2.24}
\end{align*}
$$

where

$$
\begin{equation*}
M=\frac{1}{4}\left(3.0+\sqrt{\frac{C_{r c}}{r}}\right) \tag{2.25}
\end{equation*}
$$

Geometrical Equations for a Torispherical Head

Referring to Figure 2.6, we have the following:

$$
\begin{equation*}
\alpha=\arcsin \left(\frac{R_{c}}{C_{r c}}\right) \tag{2.26}
\end{equation*}
$$

Imost cases, $49^{\circ} \leq \varphi \leq 65^{\circ}$, depending on the thickness and diameter of the head. For many cases $\varphi \approx 55^{\circ}$.

FIGURE 2.6 orfspherical head geometry (where $R_{i}=C_{r}=L$).

The equation for the knuckle angle is as follows:

$$
\begin{equation*}
\varphi=\arccos \left[\frac{I D D-C_{r}(1-\cos (\alpha))}{r_{k}}\right]\left(\frac{180}{\pi}\right) \tag{2.27}
\end{equation*}
$$

CONICAL SECTIONS

The equations for conical sections follow, referring to Figures 2.7, 2.8, and 2.9.

Circumferential Stress (Longitudinal Joints)

$$
\begin{equation*}
t_{r}^{C}=\frac{P D_{c}}{2 \cos \alpha\left(S_{a} E-0.6 P\right)} \tag{2.28}
\end{equation*}
$$

wher® $_{c}=D+2($ LOSS $)+F C A$

FIGURE 2.7 Conicalction.

FIGURE 2.8 Conical transition section (Courtesy of the American Petroleum Institute).

FIGURE 2.9 Toriconical head geometry (Courtesy of the American Petroleum Institute).

$$
\begin{equation*}
M A W P^{C}=\frac{2 S_{a} E t_{c} \cos \alpha}{D_{c}+1.2 t_{c} \cos \alpha} \tag{2.29}
\end{equation*}
$$

wherf $_{c}=t-$ LOSS $-F C A$

$$
\begin{equation*}
\sigma_{m}^{c}=\frac{P}{2 E}\left(\frac{D_{c}}{t_{c} \cos \alpha}+1.2\right) \tag{2.30}
\end{equation*}
$$

wherR $_{c}=R+L O S S+F C A$

Longitudinal Stress (Circumferential Joints)

$$
\begin{equation*}
t_{r}^{L}=\frac{P D_{c}}{2 \cos \alpha\left(2 S_{a} E+0.4 P\right)}+t_{s l} \tag{2.31}
\end{equation*}
$$

where $_{l l}=$ thickness required for any supplemental load based on the longitudinal stress, such as weight, wind, or seismic loads.

$$
\begin{align*}
& M A W P^{L}=\frac{4 S_{a} E\left(t_{c}-t_{s l}\right) \cos \alpha}{D_{c}-0.8\left(t_{c}-t_{s l}\right) \cos \alpha} \tag{2.32}\\
& \sigma_{m}^{L}=\frac{P}{2 E}\left(\frac{R_{c}}{2\left(t_{c}-t_{s l}\right) \cos \alpha}-0.4\right) \tag{2.33}
\end{align*}
$$

Final Values

$$
\begin{align*}
t_{r} & =\max \left(t_{r}^{C}, t_{r}^{L}\right) \tag{2.34}\\
M A W P & =\min \left(M A W P^{C}, M A W P^{L}\right) \tag{2.35}\\
\sigma_{\max } & =\max \left(\sigma_{m}^{C}, \sigma_{m}^{L}\right) \tag{2.36}
\end{align*}
$$

Knuckle Section

$$
\begin{equation*}
t_{r}^{k}=\frac{P L_{k c} M}{2 S_{a} E-0.2 P} \tag{2.37}
\end{equation*}
$$

where

$$
\begin{align*}
L_{k c} & =\frac{R_{c}-r_{k c}(1-\cos \alpha)}{\cos \alpha} \tag{2.38}\\
M & =\frac{1}{4}\left(3.0+\sqrt{\frac{L_{k c}}{r_{k c}}}\right) \tag{2.39}
\end{align*}
$$

Final Values

$$
\begin{align*}
t_{r} & =\max \left(t_{r}^{c}, t_{r}^{k}\right) \tag{2.40}\\
M A W P & =\min \left(M A W P^{C}, M A W P^{L}\right) \tag{2.41}\\
\sigma_{\max } & =\max \left(\sigma_{m}^{c}, \sigma_{m}^{k}\right) \tag{2.42}
\end{align*}
$$

Conical Transitions

The minimum thickness, MA WP, and membrane stress equations are computed on a component basis. Y ou can use the preceding equations to compute the minimum required thickness, MA WP, and membrane stress of the cone section. These v alues are designated as $t_{r}^{c}, M A W P^{C}$, and σ_{m}^{c}, respectively. These parameters are shown in Figure 2.10.

Conical Transition Knuckle Section

You can use the follo wing equations to compute the required thickness, MAWP, and membrane stress for the knuckle region, if used:

$$
\begin{equation*}
t_{r}^{k}=\frac{P L_{k c} M}{2 S_{a} E-0.2 P} \tag{2.43}
\end{equation*}
$$

(c)

(d)

Note: $r_{k} \Rightarrow \max \left[0.12\left(R_{L}+t\right), 3 t_{\mathrm{c}}\right]: R_{S}$ has no dimensional requirements.

(e)
$\alpha_{1}>\alpha_{2}$: Therefore use α_{1} in design equations.
FIGURE 2.10 Conical transition geometry (courtesy of the American Petroleum Institute).

$$
\begin{align*}
M A W P^{k} & =\frac{2 S_{a} E t_{k c}}{L_{k c} M+0.2 t_{k c}} \tag{2.44}\\
\sigma_{m}^{k} & =\frac{P}{2 E}\left(\frac{L_{k c} M}{t_{k c}}+0.2\right) \tag{2.45}
\end{align*}
$$

where

$$
\begin{align*}
L_{k c} & =\frac{R_{L C}-r_{k c}(1-\cos \alpha)}{\cos \alpha} \tag{2.46}\\
M & =\frac{1}{4}\left(3.0+\sqrt{\frac{L_{k c}}{r_{k c}}}\right) \tag{2.47}
\end{align*}
$$

Conical Transition Flare Section

$$
\begin{align*}
t_{r}^{f} & =\frac{P L_{f c} M}{2 S_{a} E-0.2 P} \tag{2.48}\\
M A W P^{f} & =\frac{2 S_{a} E t_{f c}}{L_{f c} M+0.2 t_{f c}} \tag{2.49}\\
\sigma_{m}^{f} & =\frac{P}{2 E}\left(\frac{L_{f_{c}} M}{t_{f c}}+0.2\right) \tag{2.50}
\end{align*}
$$

where

$$
\begin{align*}
r_{f c} & =r_{k}+L O S S+F C A \tag{2.51}\\
L_{f c} & =\frac{R_{S c}+r_{f c}(1-\cos \alpha)}{\cos \alpha} \tag{2.52}\\
M & =\frac{1}{4}\left(3.0+\sqrt{\frac{L_{f c}}{r_{f c}}}\right) \tag{2.53}
\end{align*}
$$

Equations Based on a Pressure-Area Force Balance Procedure

$$
\begin{equation*}
t_{r}^{f}=\left(\frac{1}{r_{f c}}\right)\left(\frac{P\left[K_{1}+K_{2}+K_{3}\right]}{1.5 S_{a} E}-K_{4}-K_{5}\right) \tag{2.54}
\end{equation*}
$$

$$
\begin{align*}
M A W P^{f} & =1.5 S_{a} E\left(\frac{t_{f c} \alpha_{r} r_{f c}+K_{4}+K_{5}}{K_{1}+K_{2}+K_{3}}\right) \tag{2.55}\\
\sigma_{m}^{f} & =\frac{P\left(K_{1}+K_{2}+K_{3}\right)}{1.5 E\left(t_{f_{c}} \alpha_{r} r_{f c}+K_{4}+K_{5}\right)} \tag{2.56}
\end{align*}
$$

where

$$
\begin{align*}
& K_{1}=0.125\left(2 r_{f c}+D_{1}\right)^{2} \tan \alpha-\frac{\alpha_{r} r_{f c}^{2}}{2} \tag{2.57}\\
& K_{2}=0.28 D_{1} \sqrt{D_{1} t_{c}^{s}} \tag{2.58}\\
& K_{3}=0.78 K_{6} \sqrt{K_{6} t_{c}^{c}} \tag{2.59}\\
& K_{4}=0.78 t_{c}^{c} \sqrt{K_{6} t_{c}^{c}} \tag{2.60}\\
& K_{5}=0.55 t_{c}^{s} \sqrt{D_{1} t_{c}^{s}} \tag{2.61}\\
& K_{6}=\frac{D_{1}+2 r_{f c}(1-\cos \alpha)}{2 \cos \alpha} \tag{2.62}\\
& \alpha_{r}=\alpha\left(\frac{\pi}{180}\right) \tag{2.63}\\
& D_{1}=2 R_{s} \tag{2.64}
\end{align*}
$$

where
$t^{c}=$ nominal or furnished small-end cone thickness in a conical transition
$t_{c}^{c}=t^{c}-L O S S-F C A$
$t^{s}=$ nominal or furnished small-end cylinder thickness in a conical transition
$t_{c}^{s}=t^{s}-L O S S-F C A$

Final Values

Case 1: The conical transition contains only a cone; see Figure 2.11(a).

$$
\begin{align*}
t_{r} & =t_{r}^{c} \tag{2.65}\\
M A W P & =M A W P^{c} \tag{2.66}\\
\sigma_{\max } & =\sigma_{m}^{c} \tag{2.67}
\end{align*}
$$

FIGURE 2.11 Conical transition geometry—Unsupported length for conical transitions (courtesy of the American Petroleum Institute).

Case 2: The conical transition contains a cone and knuckle; see Figure 2.11(b).

$$
\begin{align*}
t_{r} & =\max \left(t_{\min }^{c}, t_{\min }^{k}\right) \tag{2.68}\\
M A W P & =\min \left(M A W P^{c}, M A W P^{k}\right) \tag{2.69}\\
\sigma_{\max } & =\max \left(\sigma_{m}^{c}, \sigma_{m}^{k}\right) \tag{2.70}
\end{align*}
$$

Case 3: The conical transition contains a cone, knuckle, and f are; see Figure2.11(c).

$$
\begin{align*}
t_{r} & =\max \left(t_{r}^{c}, t_{r}^{k}, t_{r}^{f}\right) \tag{2.71}\\
M A W P & =\min \left(M A W P^{c}, M A W P^{k}, M A W P^{f}\right. \tag{2.72}\\
\sigma_{\max } & =\max \left(\sigma_{m}^{c}, \sigma_{m}^{k}, \sigma_{m}^{f}\right) \tag{2.73}
\end{align*}
$$

Case 4: The conical transition contains a knuckle and f are; see Figure 2.11(d).

$$
\begin{align*}
t_{r} & =\max \left(t_{r}^{k}, t_{r}^{f}\right) \tag{2.74}\\
M A W P & =\min \left(M A W P^{k}, M A W P^{f}\right. \tag{2.75}\\
\sigma_{\max } & =\max \left(\sigma_{m}^{k}, \sigma_{m}^{f}\right) \tag{2.76}
\end{align*}
$$

Case 5: The conical transition contains a cone and f are; see Figure 2.11(e).

$$
\begin{align*}
t_{r} & =\max \left(t_{r}^{c}, t_{r}^{f}\right) \tag{2.77}\\
M A W P & =\min \left(M A W P^{c}, M A W P^{f}\right) \tag{2.78}\\
\sigma_{\max } & =\max \left(\sigma_{m}^{c}, \sigma_{m}^{f}\right) \tag{2.79}
\end{align*}
$$

Computation of the Half-Apex Angle of a Conical Transition

The following equations were de veloped with the assumption that the conical transition contains a cone section, knuckle, and f are. If the transition does not contain a knuckle or f are, you should set the radii of these components to 0 when computing the half-apex angle.

If

$$
\begin{gather*}
\left(R_{L}-r_{k}\right)>\left(R_{S}+r_{f}\right): \\
\alpha=\beta+\phi \tag{2.80}\\
\beta=\arctan \left[\frac{\left(R_{L}-r_{k}\right)-\left(R_{S}+r_{f}\right)}{L_{c}}\right] \tag{2.81}
\end{gather*}
$$

If

$$
\begin{gather*}
\left(R_{L}-r_{k}\right)<\left(R_{S}+r_{f}\right): \\
\alpha=\beta-\phi \tag{2.82}\\
\beta=\arctan \left[\frac{\left(R_{S}+r_{f}\right)-\left(R_{L}-r_{k}\right)}{L_{c}}\right] \tag{2.83}
\end{gather*}
$$

with

$$
\begin{equation*}
\phi=\arcsin \left[\frac{\left(r_{f}+r_{k}\right) \cos \beta}{L_{c}}\right] \tag{2.84}
\end{equation*}
$$

HANDY FORMULAS FOR COMPUTING HEAD WEIGHTS

Ellipsoidalf anged and dished (F \&D), and hemispherical heads are made simply with a blank that has a diameter lar ger than the f nished part and is formed by spinning or using an alternate forming process. During forming, the w all thickness is carefully controlled. The resulting product is formed through the use of forming rollers with specif c prof les that are set at precise distances from each other and the mandrel. In one process, a comple x shape is formed by a f at blank that is "sheared" by one or more rollers o ver a rotating mandrel. There is no material lost in the process. Such a process is sho wn in Figure2.12.

2:1 ellipsoidal head weights

The weight of a head can be quickly and accurately found by computing the volume of a circular blank. For a 2:1 ellipsoidal head, the blank equation is

$$
\begin{equation*}
B D=1.22(I D)+2(S . F .)+T \tag{2.85}
\end{equation*}
$$

where
$\mathrm{BD}=$ Blank diameter, in (mm)
ID = Inside diameter of head, in (mm)
S.F. $=$ Straighf ange of head, in (mm)
$\mathrm{T}=$ Head (or blank) thickness, in (mm)

FIGURE 2.12 orfming a formed head in the mill

EXAMPLE 2.1

Find the weight of a 2:1 ellipsoidal head that has an inside diameter of 78 inches, is $3 / 8$ inch thick, and has a straight flange of 2 inches.

Solution:

$$
\mathrm{BD}=1.22(78) \text { in }+2(2.0) \text { in }+\frac{3}{8} \mathrm{in}=99.535 \mathrm{in}
$$

Now you can compute the weight by multiplying the volume of the blank by the density of steel, as follows:

$$
\begin{aligned}
& \left(\rho=0.283 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{in}^{3}}=489.02 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}=7834 \frac{\mathrm{Kg}}{\mathrm{~m}^{3}}=7.833 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}\right), \\
& \text { Wgt }=(0.283) \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{in}^{3}}\left(\frac{\pi}{4}\right)(99.535)^{2} \mathrm{in}^{2}(0.375) \mathrm{in}=825.8 \mathrm{lb}_{\mathrm{m}}
\end{aligned}
$$

Thus, the head weighs $825.8 \mathrm{lb}_{\mathrm{m}}$, which agrees with the steel mill's catalog.

ASME FED HEAD WEIGHTS

The blank equation for an ASME F\&D head is

$$
\begin{equation*}
\mathrm{BD}=\mathrm{OD}+2(\mathrm{ICR})+T \tag{2.86}
\end{equation*}
$$

where
$\mathrm{ICR}=$ Insiderown radius $=r_{k}$ in Figure 2.6. Many people use the term $I K R$ for inside knuckle radius.
$\mathrm{OD}=$ Outside diameter of head, in (mm)
$\mathrm{T}=$ Thicknessof blank, in (mm)
$\mathrm{OD}=$ Outside diameter of blank, in (mm)

EXAMPLE 2.2

Compute the weight of an ASME F\&D head that has an ID of 78 inches, a thickness of $3 / 8$ inch, and a knuckle radius of $43 / 4$ inches.

Solution:

$$
\mathrm{OD}=78 \mathrm{in}+2\left(\frac{3}{8}\right) \mathrm{in}=78.75 \mathrm{in}
$$

$$
\begin{aligned}
\mathrm{BD} & =78.75 \mathrm{in}+2(4.75) \mathrm{in}+\frac{3}{4} \mathrm{in}=88.625 \mathrm{in} \\
\mathrm{Wgt} & =(0.283) \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{in}^{3}}\left(\frac{\pi}{4}\right)(88.625)^{2} \mathrm{in}^{2}\left(\frac{3}{8}\right) \mathrm{in}=654.67 \mathrm{lb}_{\mathrm{m}}
\end{aligned}
$$

The manufacturer's catalog lists the head weight as being $654 \mathrm{lb}_{\mathrm{m}}$.
To compute the values of α and ρ, you may use Eq. 2.26 and Eq. 2.27, respectively.

HEMISPHERICAL HEAD WEIGHTS

You might think that hemispherical head weights can be computed easily from the following formulation:

$$
\begin{equation*}
\mathrm{Wgt}=\frac{2 \pi}{3}\left(R_{\mathrm{o}}^{3}-R_{\mathrm{i}}^{3}\right) \mathrm{in}^{3}(0.283) \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{in}^{3}} \tag{2.87}
\end{equation*}
$$

The truth is that the blanks used normally produce a head approximately 11% higher in weight than that computed with Eq. 2.87 . If the heads are forged, which the y are for v ery thick wall heads, then Eq. 2.87 is more accurate. Blanks can be used up to about 6 inches. F orging is used for thick er wall heads. Six inches is thick, so for gings can start at an y thickness, particularly over 2 inches of wall thickness. To correct for this error for heads formed from blanks, you can use the following formulas:

$$
\begin{gather*}
\mathrm{BD}=1.506(\mathrm{ID})+T \quad \text { for } T \leq 2 \text { in } \tag{2.88}\\
\mathrm{BD}=1.506(\mathrm{ID})+T\left(\frac{T}{2 \text { in }}\right)^{0.03} \text { for } T>2 \text { in } \tag{2.89}
\end{gather*}
$$

where
$\mathrm{BD}=$ Blankdiameter, in
$\mathrm{ID}=$ Insideliameter of head, in
$T=$ Thicknessof head wall, in
Note: These equations are empirical and de veloped using U.S. Customary units. If you are using the metric SI system, it is recommended that you use the equations with U.S. Customary units and then con vert them to the metric SI system.

EXAMPLE 2.3

Consider a 78 -inch ID hemispherical head with a nominal 1 -inch wall. Compute the weight of the head.

From Eq. 2.88, you can compute the diameter of the blank as follows:

$$
\mathrm{BD}=1.506(78)+1=118.5 \mathrm{in}
$$

The computed weight is as follows:

$$
\mathrm{Wgt}=\left(\frac{\pi}{4}\right)(78)^{2} \mathrm{in}^{2}(\mathrm{l}) \mathrm{in}(0.283) \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{in}^{3}}=3119.46 \mathrm{lb}_{\mathrm{m}}
$$

Using the actual blank that is used in the mill gives the following:

$$
\mathrm{BD}=118.5 \mathrm{in}
$$

The error between the actual mill weight and that computed from Eq. 2.88 is 0.054%. The error between the actual mill weight and that computed from Eq. 2.87 is 11.11%.

EXAMPLE 2.4

Compute the weight of a hemispherical head with an ID of 132 inches and a minimum head thickness of 6 inches.

Applying Eq. 2.89, you can determine the blank diameter as follows:

$$
\begin{gathered}
\mathrm{BD}=1.506(132)+6\left(\frac{6}{2}\right)^{0.03}=204.993 \mathrm{in} \\
\mathrm{Wgt}=\left(\frac{\pi}{4}\right)(204.993)^{2} \mathrm{in}^{2}(6) \mathrm{in}(0.283) \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{in}^{3}}=56041.124 \mathrm{lb}_{\mathrm{m}}
\end{gathered}
$$

The actual blank diameter used at the mill is 207.5 inches in diameter. Therefore, you can calculate the weight as follows:

$$
\text { Wgt }_{\text {act }}=\left(\frac{\pi}{4}\right)(207.5)^{2} \mathrm{in}^{2}(6) \mathrm{in}\left(\frac{6 \mathrm{in}}{2 \mathrm{in}}\right)^{0.03}(0.283) \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{in}^{3}}=57420.211 \mathrm{lb}_{\mathrm{m}}
$$

The error between the results of Eq. 2.8 and the actual weight is 2.40%. The error between the actual weight and the result of Eq. 2.87 is 11.48%.

PARTIAL VOLUMES AND PRESSURE VESSEL CALCULATIONS

Listed in the follo wing are formulations for the v olumes of liquids occup ying partial volumes.

FIGURE 2.13 Ekh for calculating partial volume of a cylinder

Partial Volume of Cylinder in Horizontal Position

The partial v olume of a liquid in a horizontal circular c ylinder, referring to Figure 2.13 is

$$
\begin{equation*}
V_{\mathrm{P}}=\frac{R_{\mathrm{i}}^{2} L}{2}\left(\frac{\pi \alpha^{o}}{180}-\sin \alpha\right)=\text { partial volume shown in Figure } 2.13 \tag{2.90}
\end{equation*}
$$

where
$L=$ lengtbof cylinder
$R_{\mathrm{i}}=$ insideradius of cylinder

EXAMPLE 2.5

For a cylinder with a 144-inch ID, find the partial volume of a liquid head of 60 inches, if $\mathrm{L}=100 \mathrm{ft}$.

$$
\begin{aligned}
& \frac{\alpha}{2}=80.41^{\circ} \\
& \mathrm{V}_{\mathrm{P}}=\frac{(72)^{2}(1200)}{2}\left[\frac{\pi(160.81)}{180}-\sin \left(160.81^{\circ}\right)\right] \\
& \mathrm{V}_{\mathrm{P}}=7,707,650.2 \mathrm{in}^{3}=33,366.5 \mathrm{gal}
\end{aligned}
$$

Partial Volume of a Hemispherical Head

$$
\begin{equation*}
V_{\mathrm{P}}=\frac{\pi y^{2}\left(3 R_{\mathrm{i}}-D\right)}{3} \tag{2.91}
\end{equation*}
$$

where
$V_{\mathrm{P}}=$ partiakolume shown in shaded region
For vertical volume in Figure 2.14(a), f nd the partial v olume jfor a head with $R_{\mathrm{i}}=5$ Onches and $y=35$ nches:

$$
V_{\mathrm{P}}=\frac{\pi(35)^{2}[3(50-100)]}{3}=64,140.85 \mathrm{in}^{3}=277.7 \mathrm{gal}
$$

FIGURE 2.14 (a) Partial volume of a hemispherical head in the v ertical position. (b) Partial volume of a hemispherical head in the horizontal position.

EXAMPLE 2.6

For horizontal volume in Figure 2.14(b), find the partial volume for a head with $\mathrm{R}_{i}=50$ inches and $y=35$ inches:

$$
\mathrm{V}_{\mathrm{P}}=\frac{277.7}{2}=138.85 \mathrm{gal}
$$

Partial Volumes of Spherically Dished Heads

The equations for partial v olumes of a liquid occup ying spherically dished heads follow.

Spherically Dished Head in Horizontal Position

The partial volume of a horizontal head shown in Figure 2.15 is

$$
\begin{equation*}
V=\alpha\left|\frac{\sqrt{\left(\rho^{2}-y_{i}^{2}\right)^{3}}-\sqrt{\left(\rho^{2}-R_{\mathrm{i}}^{2}\right)^{3}}}{3}-\frac{L\left(R_{\mathrm{i}}^{2}-y_{\mathrm{i}}^{2}\right)}{2}\right| \tag{2.92}
\end{equation*}
$$

FIGURE 2.15 Partial volume of a spherically dished head in the horizontal position.

EXAMPLE 2.7

A spherically dished head with a 114 -inch OD is spun from a 1 -inch plate. Determine the partial volume of liquid that is at the bottom portion of the head. The head is shown in Figure 2.16, with a liquid level 10.0 inches below the centerline. From the vessel head manufacturer's catalog, you can determine the following:

$$
\begin{aligned}
& \text { IDD }=16.786 \text { in, } \rho=108 \mathrm{in} \\
& \begin{aligned}
& \mathrm{R}_{i}=\frac{114-2(1.0)}{2}=56.0 \mathrm{in} \\
& \alpha=159.43^{\circ}=2.78 \text { radians } \\
& \mathrm{L}=108-16.786=91.21 \mathrm{in} \\
& \mathrm{~V}=2.78\left|\frac{\sqrt{\left(108^{2}-10^{2}\right)^{3}}-\sqrt{\left(108^{2}-56^{2}\right)^{3}}}{3}-\frac{(91.21)\left(56^{2}-10^{2}\right)}{2}\right| \\
& \mathrm{V}=37,677.63 \mathrm{in}^{3}=163.1 \mathrm{gal}
\end{aligned}
\end{aligned}
$$

FIGURE 2.16 Spherically dished head in the horizontal position sho wing the liquid level at 10.0 inches below the centerline.

Spherically Dished Head in Vertical Position

The equation for the partial v olume of a liquid occup ying a spherically dished head in the vertical position is

The partial volume of a vertical head in Figure 2.17 is

$$
\begin{equation*}
V=\frac{\pi y\left(3 x^{2}+y^{2}\right)}{6} \tag{2.93}
\end{equation*}
$$

FIGURE 2.17 Volume of a spherically dished head in the vertical position.
or

$$
\begin{equation*}
V=\frac{\pi y^{2}(3 \rho-y)}{3} \tag{2.94}
\end{equation*}
$$

EXAMPLE 2.8

For the same head in the example in Figure 2.16, determine the partial volume of a head of liquid of 9 inches.

$$
\begin{aligned}
& x=55.456 \mathrm{in} . \\
& V=\frac{\pi(9)\left[3(55.456)^{2}+9^{2}\right]}{6}=14,874 \mathrm{in}^{3}=64.4 \mathrm{gal}
\end{aligned}
$$

Partial Volumes of Elliptical Heads

The partial volumes of elliptical heads are described in the horizontal and vertical positions as follows:

Elliptical Head in Horizontal Position

The exact partial volume of a horizontal elliptical head, as illustrated in Figure 2.18 is:

$$
\begin{equation*}
V=\frac{(\mathrm{IDD}) \alpha}{3 R_{\mathrm{i}}} \sqrt{\left(R_{\mathrm{i}}^{2}-y_{\mathrm{i}}^{2}\right)^{3}} \tag{2.95}
\end{equation*}
$$

FIGURE 2.18 Partial volume of an ellipsoidal head in the horizontal position showing the elevation and front views.

EXAMPLE 2.9

Find the partial volume of a 2:1 elliptical head ($\mathrm{R}_{i} / I \mathrm{IDD}=2$) for which the OD is 108 inches. The level of the liquid is 35 inches and the head is spun from a 1 -inch plate.

$$
\operatorname{IDD}=\frac{108-2(1.0)}{4}=26.50 \mathrm{in}
$$

FIGURE 2.19 Ellipsoidmad in horizontal position example
From Eq. 2.95 and Figure 2.19, you get the following:

$$
\begin{aligned}
& \mathrm{V}=\frac{(\mathrm{IDD}) \alpha}{3 \mathrm{R}_{i}} \sqrt{\left(\mathrm{R}_{i}^{2}-y_{i}^{2}\right)^{3}} \\
& \alpha=138.80^{\circ}=2.42 \text { radians } \\
& \mathrm{V}=\frac{(26.5)(2.42)}{3(53)} \sqrt{\left(53^{2}-19^{2}\right)^{3}} \\
& \mathrm{~V}=48,851.88 \mathrm{in}^{3}=211.5 \mathrm{gal}
\end{aligned}
$$

Elliptical Head in Vertical Position

The volume of the top portion, shown as section 2 of Figure 2.20, is

$$
\begin{equation*}
V_{2}=\pi R_{i}^{2}\left[y-\frac{y^{3}}{3(I D D)^{2}}\right] \tag{2.96}
\end{equation*}
$$

The volume of the bottom portion, shown as section 1 in Figure 2.20, is

$$
\begin{equation*}
V_{1}=\frac{2 \pi(I D D) R_{i}^{2}}{3}-\pi R_{i}^{2}\left[y-\frac{y^{3}}{3(I D D)^{2}}\right] \tag{2.97}
\end{equation*}
$$

FIGURE 2.20 Partial volume of an elliptical head in the vertical position.

EXAMPLE 2.10

For the same head in the preceding example for the elliptical head, determine the partial volume for a vertical head with 19 inches of liquid. Using Eq. 2.97, you get the following:

$$
\begin{aligned}
\mathrm{V} & =\frac{2 \pi(26.50)(53.0)^{2}}{3}-\pi(53.0)^{2}\left[7.5-\frac{(7.5)^{3}}{3(26.50)^{2}}\right] \\
\mathrm{V} & =155,903.62 \mathrm{in}^{3}-64,418.36 \mathrm{in}^{3}=91,485.26 \mathrm{in}^{3} \\
\text { or, } \mathrm{V} & =396.04 \mathrm{gal}
\end{aligned}
$$

Partial Volumes of Torispherical Heads

The equations for a liquid occup ying partial v olumes of torispherical heads follow.

Figurresnd 2.22 use the following nomenclature:
$\mathrm{V}_{\mathrm{k}}=$ knucklevolume
$\mathrm{V}_{\mathrm{D}}=$ dishoolume
$\mathrm{KR}=$ knuckleadius
$y=$ heightf liquid
IDD $=$ insidelepth of dish
$\rho=$ insidedish radius

Torispherical Head in the Vertical Position

For the torispherical head in the v ertical position shown in Figure 2.21(c), the knuckle-cylinder partial volume is

$$
\begin{equation*}
V_{k}=\frac{\pi y}{6}\left(r_{\mathrm{o}}^{2}+4 r_{m}^{2}+r_{\mathrm{i}}^{2}\right) \tag{2.98}
\end{equation*}
$$

The partial volume of the dish re gion of a torispherical head in the vertical position is

$$
\begin{equation*}
V_{D}=\frac{\pi y\left(3 x^{2}+y^{2}\right)}{6} \tag{2.99}
\end{equation*}
$$

The total partial v olume of a liquid in a torispherical head in the v ertical position is

$$
\begin{equation*}
V_{V}=\frac{\pi H}{6}\left(r_{\mathrm{o}}^{2}+4 r_{m}^{2}+r_{\mathrm{i}}^{2}\right)+\frac{\pi y\left(3 x^{2}+y^{2}\right)}{6} \tag{2.30}
\end{equation*}
$$

where $_{d}=I D D-K R$.

FIGURE 2.21 arflal volume of torispherical heads: (a) vertical position, (b) horizontal position, (c) knuckle region in vertical position, (d) knuckle region in horizontal position

FIGURE 2.22 Partial volume of torispherical head in v ertical position sho wing the dish and knuckle volumes

End view of dish volume

FIGURE 2.23 Sketch for the e xample of the partial v olume in a torispherical head in the horizontal position

Torispherical Head in the Horizontal Position

In Figure 2.23 the partial volume of Dish 1 is

$$
\begin{equation*}
V_{1}=\alpha\left|\frac{\sqrt{\left(\rho^{2}-y_{\mathrm{i}}^{2}\right)^{3}}-\sqrt{\left(\rho^{2}-R_{\mathrm{i}}^{2}\right)^{3}}}{3}-\frac{L\left(R_{\mathrm{i}}^{2}-y_{\mathrm{i}}^{2}\right)}{2}\right| \tag{2.101}
\end{equation*}
$$

The volume of the knuckle-cylinder region is

$$
\begin{equation*}
V_{2}=\alpha\left[\frac{4(\mathrm{KR})}{3 \pi}+\left(R_{\mathrm{i}}-\mathrm{KR}\right)+\left(R_{\mathrm{i}}-\mathrm{KR}\right)^{2}\right] \tag{2.102}
\end{equation*}
$$

The total partial v olume for a torispherical head in the horizontal position is as follows:

$$
\begin{gather*}
V_{T}=V_{1}+V_{2} \tag{2.103}\\
V_{T}=\alpha\left|\frac{\sqrt{\left(\rho^{2}-y_{i}^{2}\right)^{3}}-\sqrt{\left(\rho^{2}-R_{i}^{2}\right)^{3}}}{3}-\frac{L\left(R_{i}^{2}-y_{i}^{2}\right)}{2}\right| \tag{2.104}\\
\quad+\alpha\left[\frac{4(K R)}{3 \pi}+\left(R_{i}-K R\right)+\left(R_{i}-K R\right)^{2}\right]
\end{gather*}
$$

where $=\rho-I D D$.

EXAMPLE 2.11: A Torispherical Head in the Horizontal Position

A 102-inch OD FED (flanged and dished, or torispherical) head made to ASME specifications ($K R \geq 0.60 \rho$ and $K R>3 t_{h}$, where $t_{h}=$ head thickness) is spun from a 1 -inch plate. The head is in the horizontal position. The liquid level is 35 inches inside the head. Determine the volume of the liquid that occupies the partial volume of the head.

From the vessel head manufacturer's catalog and Figure 2.24, you can calculate the following:

$$
\begin{gathered}
\rho=96 \mathrm{in}, \mathrm{KR}=6.125 \mathrm{in}, \mathrm{IDD}=17.562 \mathrm{in} \\
\mathrm{R}_{i}=\frac{100}{2}=50 \mathrm{in}, \mathrm{~L}=96.0-17.562=78.438 \mathrm{in}
\end{gathered}
$$

From Eq. 2.104, you can determine

$$
\begin{aligned}
\mathrm{V}_{\mathrm{T}}= & 2.532\left|\frac{\sqrt{\left(96^{2}-15^{2}\right)^{3}}-\sqrt{\left(96^{2}-50^{2}\right)^{3}}}{3}-\frac{(78.438)\left(50^{2}-15^{2}\right)}{2}\right| \\
& +2.532\left[\frac{4(6.125)}{3 \pi}+(50-6.125)+(50-6.125)^{2}\right] \\
\mathrm{V}_{\mathrm{T}}= & 34,093.44 \mathrm{in}^{3}=147.59 \mathrm{gal}
\end{aligned}
$$

FIGURE 2.24 Example of torispherical head in the horizontal position.

EXAMPLE 2.12: A Torispherical Head in the Vertical Position

A 138-inch OD FED head not made to ASME specifications is spun from a $11 / 2$-inch plate. The liquid level is 18 inches. Find the volume of the liquid.

From the vessel head manufacturer's catalog, you can calculate the following:

$$
\begin{aligned}
\rho & =132 \mathrm{in}, \mathrm{KR}=3 \mathrm{in}, \mathrm{IDD}=20.283 \mathrm{in} \\
\mathrm{R}_{i} & =\frac{138-2(1.5)}{2}=67.50 \mathrm{in} \\
x & =67.50-\left[3^{2}-\mathrm{H}^{2}\right]^{0.5}=66.466 \mathrm{in}
\end{aligned}
$$

For the knuckle-cylinder region,

$$
\begin{aligned}
r_{\mathrm{O}} & =\mathrm{R}_{i}=67.50 ; r_{i} \cong \mathrm{R}_{i}-\mathrm{KR}=67.50-3.00=64.50 \mathrm{in} \\
r_{m} & =\frac{67.50+64.50}{2}=66.0 \\
h & =|20.283-(3.0+15.0)|=2.283 \mathrm{in} \\
\mathrm{~V}_{\mathrm{V}} & =\frac{\pi(2.283)}{6}\left[67.50^{2}+4(66.0)^{2}+64.5^{2}\right]+\frac{\pi(17.283)\left[3(64.5)^{2}+17.283^{2}\right]}{6} \\
\mathrm{~V}_{\mathrm{V}} & =31,247.726 \mathrm{in}^{3}+115,645.832 \mathrm{in}^{3} \\
\mathrm{~V}_{\mathrm{V}} & =146,893.558 \mathrm{in}^{3}=635.903 \mathrm{gal}
\end{aligned}
$$

REFERENCES

1. ASME Section VIII, Division 1, Boiler and Pressure Vessel Code, 2007.
2. ARPecommended Practice 579 Fitness-for-Service 1ste,dition AmerjcanPetroleum Institute January 2000.

Chapter 3

Dynamic Response of Pressure Vessels and Stacks

This chapter describes the dynamic response of pressure v essel columns and stacks. We will focus on screening criteria and methods of remediation and follow with a discussion on methodology.

The subject of a v ertical column or stack responding to wind in dynamic resonance has been addressed in engineering for o ver 100 years. F or the past 50 years, discussion of the subject has gro wn in engineering publications. The subject is more accurately called fuid-structure interaction. The dynamic resonance is mostly caused by v ortex shedding around the column or stack, b ut where there are two or more stacks, the mechanism of turbulence buffeting can exist.

It has been found that the upper third or fourth of the to wer is signif cant because the correlation length of the v ortices mostly af fects this portion. The correlation length applies to the length o ver which the v ortex streets are synchronized with each other. If tw o vortex streets around a to wer are acting at different elevations but are in phase with each other, the distance between the two ele vations of the v ortices is called the correlation length. On avertical tower, the correlation length is usually the upper third or fourth of the to wer. Below this le vel the v ortices diminish rapidly in magnitude. The correlation length can be tw o-dimensional in one plane or three-dimensional in three planes. In the former case, the to wer behaves much lik e a pendulum. In the latter case, the to wer top mo ves in an elliptical orbit in which the major axis of the ellipse is normal to the air f ow. This latter case is the most common response. Readings from accelerometers mounted on the tops of to wers reveal that the elliptical path is not a pure ellipse, b ut highly irregular jagged patterns that approximate an ellipse. T owers with tw o or more diameters with a signif cant amount of mass in the top one third or fourth tend to be problematic. The piping, platforms, and ladders can act as vortex inhibitors, but the designer should not depend on this outcome.

This elliptical pattern is what in the past w as called ovaling. Some towers display an oval movement in resonance more than others; however, feld accelerometers show that the movement may not be entirely elliptical; it is random
in a generally elliptical pattern. Se veral screening criteria can be used to predict dynamic resonance response; these criteria are as follows:

1. Critical wind v elocity is the wind speed in which dynamic resonance occurs, V_{1}. This is def ned as follows:

$$
\begin{equation*}
V_{1}=\frac{3.40 d(\mathrm{ft})}{T\left(\frac{\mathrm{sec}}{\mathrm{cycle}}\right)} \tag{3.1}
\end{equation*}
$$

where
$d=$ average diameter of the top third or fourth portion of a tower
$T=$ periooff vibration
This is the frst critical wind velocity and is usually the one that go verns compared to the second critical wind velocity, which is def ned as follows:

$$
\begin{equation*}
V_{2}=8.25 V_{1} \tag{3.2}
\end{equation*}
$$

If the critical wind v elocity is close to the hourly a veraged wind speed, resonance is possible. This means that if the pre vailing wind remains constant over a prolonged time span, lar ge dynamic amplitudes can be possible. Short wind gusts can set up resonance, but usually it is only temporary. When resonance occurs in the f eld, there is diff culty in measuring wind speed. This parameter requires judgment b ut can be helpful when you are using the other criteria.
2. The vortex shedding frequenc y is the frequenc y in which the v ortices will shed. It is def ned as follows:

$$
\begin{equation*}
f_{v}=\frac{0.2 \widetilde{v}\left(\frac{\mathrm{ft}}{\mathrm{sec}}\right)}{d(\mathrm{ft})}=\text { Hertz } \tag{3.3}
\end{equation*}
$$

where
$\widetilde{v}=45$ mplor 66 fps
$d=$ gerage diameter def ned previously
It has been found in v arious studies that v ortex shedding de velops over the length of the top one third or top fourth of the to wer, be it a process column or stack. If an y top one third or fourth of the to wer when $f_{r}<2 f_{v}$, then an oval pattern response is possible and lik ely. The wind velocity that would theoretically induce ovaling is

$$
\begin{equation*}
V_{o}=\frac{60 f_{r} d}{2 S} \tag{3.4}
\end{equation*}
$$

where $S=$ Strouhahumber $=0$. For most applications.
3. The computation of the natural frequenc y method using Rayleigh's method, which will be discussed later , can be applied to estimate the maximum dynamic displacement of the to wer. This method is for undamped systems but is reasonably accurate in computing the f rst natural period, T, for most engineering applications. If you were to theoretically place the to wer horizontally and $\mathrm{f} x$ it like a cantile ver beam at the base, when it is subjected to gravity, the resulting def ection would be a reasonable estimate of the potential maximum response during resonance. This has been a helpful, and somewhat accurate, prediction of the dynamic response. The criterion of 6 inches per 100 feet, or 0.5% of the total height, is used to determine the section modulus of each tower section to minimize the response for process columns with trays. F or packed columns, 9 inches per 100 feet, or 0.75% of the total height, is a criterion. Using this approach, you can change each tower section thickness to alter the mass distribution along the tower height. This technique has been a helpful rule of thumb in industrial practice; ho wever, some members of academia do not like its use. This book is not intended for these people; the target audience here is for people working in the real world.
4. I developed the plot in Figure 3.1 [1] by comparing data for approximately 100 stacks. These data were taken from stacks, not process columns. The difference can be signif cant because the latter ha ve more external attachments, such as piping, ladders, and platforms, and process f uids during operation. You must be cognizant of this difference when using the plot in Figure 3.1.

The dynamic response of stacks lar gely depends on the structural damping coeff cient, ζ. Table 3.1 provides a list of structural damping coeff cients for stacks. Using this table, you can select a structural damping value and refer to Figure 3.1 to predict a dynamic displacement.

As you can see from the curv es, for one v alue of natural frequenc y, the lower the structural damping coeff cient, the higher the ratio of the dynamic amplitude to the total height, Δ. Thus, for one natural frequenc y, it is possible to obtain a range of dynamic amplitudes between the upper and lo wer bound curves for the design case. If the natural frequenc y is lower than the value shown in the f gure, then you have several options.

If the situation is the design phase of constructing a stack then one can increase the natural frequency and/or increase the structural damping coeff cient and/or add vibration inhibitors. The latter will be discussed under the topic of remediation. Also, the criterion for the minimum values of natural frequency is discussed later in the chapter. Each stack is inf uenced by its surroundings, including the support at the base. If the stack is mounted on another piece of equipment, then both the stack and supporting equipment need to be assessed together . Also, a stack do wnstream from other stacks will respond differently from one standing alone with no other stack in the proximity. This explains some of the wide scatter in the data.

The vast majority of empirical data rearding vibration is widely scattered. It w as found that for the same natural frequenc y and structural damping

FIGURE 3.1 Probabilistic plot of the stack's natural frequency f versus Δ, the ratio of the maximum dynamic amplitude (in) to the total height (in) for v arious values of structuralt damping (ζ). $\mathrm{UB}=$ thaipper bound value for Δ for a given frequency value; $\mathrm{LB}=$ thdower bound frequency value for Δ.
coeff cient, v arious to wers e xhibited dif ferent dynamic amplitudes. The scatter is shown in Figure 3.1; the lower line shows the dynamic amplitude for a certain natural frequenc y and structural damping coeff cient, while the upper curves do the same for the higher bound values. Figure 3.1 shows only the extreme values of ζ. You can interpolate for the v alue of ζ in the f gure, using prudent judgment of the application at hand.
5. From steps 3 and 4 earlier in this section, you may suspect that another important parameter for screening dynamic response is the fundamental natural frequency of the tower. I observed that in process columns with the mass distributed toward the upper sections, there w as a correlation between the fundamental natural frequency and excessive dynamic response. I observed

TABLE 3.1 Industrial Accepted Structural Damping Coefficient, ζ, Values $\zeta_{\mathrm{T}}=\zeta_{\text {min }}+\Sigma \zeta_{\mathrm{i}} \leq 0.008$

Note: A higher damping value is used if a relatively flexible stack is mounted on a stiff strcuture (Structure stiffness > 100x stack stiffness)
that the fundamental frequency of the to wer should be greater than 1.0 Hz , although slightly less than 1.0 Hz would be acceptable. If the natural frequency is not below 0.97 Hz , excessive dynamic amplitude will be avoided. This test has been applied to many process columns, and towers with a natural frequency less than 0.97 Hz failed. Note: This criterion does not say that, if the natural frequenc y of the to wer in the f rst mode is greater than 0.97 Hzthen dynamic resonance will not occur.
6. The ASME STS-1 Steel Stacks [2] governing standard used in the design of steel stacks is important, and e veryone should be f amiliar with it. In Example E. 7 in the standard, the mass damping parameter is used as a
criterion for assessing dynamic response. This parameter is de veloped as follows:

$$
\begin{equation*}
m_{r}=\frac{m_{e}}{\rho \bar{D}^{2} g} \tag{3.5}
\end{equation*}
$$

where
$m_{r}=$ dimensionlesmass
$\underline{\rho}=$ density of air, taken in the example as 0.00238 slugs $/ \mathrm{ft}^{3}$
$\bar{D}=$ average diameter of the stack, ft
$g=32.17 \mathrm{lh} / \mathrm{slug}$
Note: If the value of the density is entered as $1 \mathrm{~b}_{\mathrm{m}} / \mathrm{ff}^{3}$,then

$$
\rho^{e}=0.00238\left(\frac{\mathrm{slugs}}{\mathrm{ft}^{3}}\right) g(32.17) \frac{\mathrm{lb}_{\mathrm{m}}}{\operatorname{slug}}=0.0779 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}}
$$

and Eq. 3.5 becomes

$$
\begin{equation*}
m_{r}=\frac{m_{e}}{\rho^{e} \bar{D}^{2}} \tag{3.5a}
\end{equation*}
$$

The structural damping value, ξ_{s} (β_{s} is used in the standard), is gi ven in Table 3.2 and is taken from Table 5.2.1 in the standard [2].

The mass damping parameter is def ned as follows:

$$
\begin{equation*}
m_{p} \equiv m_{r} \zeta_{s} \tag{3.6}
\end{equation*}
$$

When referring to stacks, you can f nd the structural damping v alue, ξ_{s}, in Table 3.2. When referring to process columns, you use either Table 3.1 or 3.2.

Example E. 7 in ASME STS-1 [2] says that $m_{p}>0.8$ for the stack to be satisfactory. Findlay [3] reports that ExxonMobil requires $m_{p}>$ 1.lfor the

TABLE 3.2 ASME STS-1 Representative Structural Damping Values $\left(\xi_{s}\right)$

Support			
Type Welded Stack		Damping Value	Elastic Support (2)
Unlined	0.002	0.004	
Lined (3)	0.003	0.006	

[^0]stack or process column to be satisfactory to prevent unacceptable dynamic amplitudes.

We will illustrate the six f uid-structure interaction criteria in Example 3.1. It is important that you are cognizant of the f act that these criteria are based on rules of thumb. They are not to be considered as la ws of physics, and judgment has to be rendered in their application.

Example 3.1

This example (from [1]) was an actual case where a tower developed dynamic amplitudes that were unacceptable. The internals, ladders, and external piping were installed on the process column. We will evaluate each of the six criteria and see how they apply to this process column, which is shown in Figure 3.2.

First, you need to find the natural frequency. To this end, refer to Figure 3.2 and Figure 3.3 for the solution.

After solving for the natural frequency, you can continue with the following calculations.

The first critical wind velocity is

$$
\begin{aligned}
& \mathrm{V}_{1}=\frac{3.40 \mathrm{~d}}{\mathrm{~T}} \\
& \mathrm{~L}=\frac{76.96}{4}=19.24 \mathrm{ft} \\
& d=\left(\frac{13.0}{19.24}\right)(8.74)+\left(\frac{6.24}{19.24}\right)(3.75)=7.122
\end{aligned}
$$

From Eq. 3.1, making the vortex shedding frequency equal to the natural frequency, you can calculate

$$
\mathrm{V}_{1}=\frac{f_{\mathrm{v}} \mathrm{~d}}{\mathrm{~s}}=\frac{(0.97)(7.122)}{0.2}=34.540 \frac{\mathrm{ft}}{\mathrm{sec}}
$$

Considering the top portion (Section 1), you can find

$$
\mathrm{V}_{1}=\frac{(0.97)(8.74)}{0.2}=42.39 \frac{\mathrm{ft}}{\mathrm{sec}}=28.90 \mathrm{mph}
$$

Since the field measurements indicated an air velocity of 30 mph and a column dynamic amplitude of 13 inches, this agrees well with the previous calculations with a possible amplitude of 13.59 inches. For a stack only 77 feet 5 inches tall, the 13.59 inches is significantly higher than the 6 inches per 100 feet criterion. Thus, if you use criteria 1, 2, and 5, described earlier in the chapter, the process column is a potential vibration problem.

FIGURE 3.2 Schematic sho wing the process column that e xperienced unacceptable dynamic amplitudes .

EXAMPLE OF A SOLUTION FOR NATURAL FREQUENCY

Rules Sheet
Rules

$$
\mathrm{M} 1=0
$$

$$
\mathrm{M} 2=\mathrm{M} 1+\mathrm{W} 1 \cdot \mathrm{~L} 2
$$

$$
\mathrm{M} 3=\mathrm{M} 2+(\mathrm{W} 1+\mathrm{W} 2) \cdot \mathrm{L} 3
$$

$$
\mathrm{M} 4=\mathrm{M} 3+(\mathrm{W} 1+\mathrm{W} 2+\mathrm{W} 3) \cdot \mathrm{L} 4
$$

$$
\mathrm{M} 5=\mathrm{M} 4+(\mathrm{W} 1+\mathrm{W} 2+\mathrm{W} 3+\mathrm{W} 4) \cdot \mathrm{L} 5
$$

$$
\mathrm{M} 6=\mathrm{M} 5+(\mathrm{W} 1+\mathrm{W} 2+\mathrm{W} 3+\mathrm{W} 4+\mathrm{W} 5) \cdot \mathrm{L} 6
$$

$$
\mathrm{M} 7=\mathrm{M} 6+(\mathrm{W} 1+\mathrm{W} 2+\mathrm{W} 3+\mathrm{W} 4+\mathrm{W} 5+\mathrm{W} 6) \cdot \mathrm{L} 7
$$

$$
\mathrm{M} 8=\mathrm{M} 7+(\mathrm{W} 1+\mathrm{W} 2+\mathrm{W} 3+\mathrm{W} 4+\mathrm{W} 5+\mathrm{W} 6+\mathrm{W} 7) \cdot \mathrm{L} 8
$$

$$
\mathrm{M} 9=\mathrm{M} 8+(\mathrm{W} 1+\mathrm{W} 2+\mathrm{W} 3+\mathrm{W} 4+\mathrm{W} 5+\mathrm{W} 6+\mathrm{W} 7+\mathrm{W} 8) \cdot L 9
$$

$$
\mathrm{M} 10=\mathrm{M} 9+(\mathrm{W} 1+\mathrm{W} 2+\mathrm{W} 3+\mathrm{W} 4+\mathrm{W} 5+\mathrm{W} 6+\mathrm{W} 7+\mathrm{W} 8+\mathrm{W} 9) \cdot \mathrm{L} 10
$$

$$
\text { RAT2 }=\frac{\mathrm{M} 2 \cdot 1000}{\mathrm{I} 2}
$$

$$
\text { RAT3 }=\frac{\mathrm{M} 3 \cdot 1000}{\mathrm{I} 3}
$$

$$
\text { RAT } 4=\frac{\mathrm{M} 4 \cdot 1000}{14}
$$

$$
\text { RAT5 }=\frac{\mathrm{M} 5 \cdot 1000}{\mathrm{I} 5}
$$

$$
\text { RAT6 }=\frac{\mathrm{M} 6 \cdot 1000}{16}
$$

$$
\text { RAT7 }=\frac{\mathrm{M} 7 \cdot 1000}{17}
$$

$$
\text { RAT8 }=\frac{\mathrm{M} 8 \cdot 1000}{\mathrm{I} 8}
$$

$$
\text { RAT9 }=\frac{\text { M9 } \cdot 1000}{19}
$$

$$
\text { RAT10 }=\frac{\mathrm{M} 10 \cdot 1000}{110}
$$

$$
\mathrm{S} 10=\frac{(\text { RAT10 }+ \text { RAT9 }) \cdot \text { L10 }}{2}
$$

$$
\mathrm{S} 9=\frac{(\text { RAT9 }+\mathrm{RAT8}) \cdot \mathrm{L} 9}{2}
$$

$$
\mathrm{S} 8=\frac{(\text { RAT8 }+ \text { RAT7 }) \cdot \text { L8 }}{2}
$$

$$
\mathrm{S} 7=\frac{(\text { RAT7 }+ \text { RAT6 }) \cdot \text { L7 }}{2}
$$

FIGURE 3.3(a) Equation sheet for solution for natural frequency.

FIGURE 3.3(a) (Continued)

FIGURE 3.3(a) (Continued)

Variables sheet				
Input	Name Output		Unit	Comment
	M1	0		
	M2	32.78631		Moment at Section 2, kip-ft
4.71	W1			Weight of Section 1, kips
6.961	L2		ft	Length between centroids of Sections 1 \& 2
	M3	75.175657		Moment at Section 3, kip-ft
. 113	W2			Weight at Section 2, kips
8.789	L3		ft	Length between centroids of Sections 2 \& 3
	M4	174.987907		Moment at Section 4, kip-ft
2.71	W3			Weight at Section 3, kips
13.25	L4		ft	Length between centroids of Sections 3 \& 4
	M5	265.104907		Moment at Section 5, kip-ft
2.48	W4			Weight at Section 4, kips
9	L5		ft	Length between centroids of Sections 4 \& 5
	M6	361.288907		Moment at Section 6, kip-ft
2.01	W5			Weight at Section 5, kips
8	L6		ft	Length between centroids of Sections 5 \& 6
	M7	487.598993		Moment at Section 7, kip-ft
2.23	W6			Weight at Section 6, kips
8.862	L7		ft	Length between centroids of Sections 6 \& 7
	M8	633.053146		Moment at Section 8, kip-ft
3.44	W7			Weight at Section 7, kips
8.221	L8		ft	Length between centroids of Sections 7 \& 8
	M9	748.94286		Moment at Section 9, kip-ft
3.54	W8			Weight at Section 8, kips
5.458	L9		ft	Length between centroids of Sections 8 \& 9
	M10	782.685354		Moment at Section 10, kip-ft
1.91	W9			Weight at Section 9, kips
1.458	L10		ft	Length between centroids of Sections 9 \& 10
	RAT2	117513.655914		Ratio of moment to moment of inertia
. 279	12			Moment of inertia of Section 2, $\mathrm{ft}^{\wedge} 4$
	RAT3	1105524.367647		Ratio of moment to moment of inertia
. 068	13			Moment of inertia of Section 3, $\mathrm{ft}^{\wedge} 4$
	RAT4	1698911.718447		Ratio of moment to moment of inertia
. 103	14			Moment of inertia of Section 4, $\mathrm{ft}^{\wedge} 4$
	RAT5	1907229.546763		Ratio of moment to moment of inertia
. 139	15			Moment of inertia of Section 5, $\mathrm{ft}^{\wedge} 4$

FIGURE 3.3(b) Variable sheet sho wing results and answers for solution of natural frequency.

Variables sheet				
Input	Name	Output	Unit	Comment
	RAT6	2041180.265537		Ratio of moment to moment of inertia
. 177	16			Moment of inertia of Section 6, $\mathrm{ft}^{\wedge} 4$
	RAT7	3750761.484615		Ratio of moment to moment of inertia
. 13	17			Moment of inertia of Section 7, $\mathrm{ft}^{\wedge} 4$
	RAT8	1120448.046018		Ratio of moment to moment of inertia
. 565	18			Moment of inertia of Section 8, $\mathrm{ft}^{\wedge} 4$
	RAT9	1872357.150000		Ratio of moment to moment of inertia
. 4	19			Moment of inertia of Section 9, $\mathrm{ft}^{\wedge} 4$
	RAT10	1956713.385000		Ratio of moment to moment of inertia
. 4	110			Moment of inertia of Section $10, \mathrm{ft}^{\wedge} 4$
	S10	2791392.420015		Intermediate moment ratio
	S9	8167365.379932		Intermediate moment ratio
	S8	20023106.775667		Intermediate moment ratio
	S7	25664093.894924		Intermediate moment ratio
	S6	15793639.249197		Intermediate moment ratio
	S5	16227635.693441		Intermediate moment ratio
	S4	18579389.070371		Intermediate moment ratio
	S3	5374640.594539		Intermediate moment ratio
	S2	409006.279409		Intermediate moment ratio
	ES10	2791392.420015		Sum of intermediate ratio
	こS9	10958757.799947		Sum of intermediate ratio
	こS8	30981864.575615		Sum of intermediate ratio
	SS7	56645958.470539		Sum of intermediate ratio
	ES6	72439597.719736		Sum of intermediate ratio
	\S5	88667233.413177		Sum of intermediate ratio
	ES4	107246622.483548		Sum of intermediate ratio
	SS3	112621263.078087		Sum of intermediate ratio
	SS2	113030269.357495		Sum of intermediate ratio
	P10	2034925.074191		Force per unit length
	P9	37524159.950277		Force per unit length
	P8	172396928.274747		Force per unit length
	P7	388278883.917505		Force per unit length
	P6	516342224.761098		Force per unit length
	P5	724980740.098109		Force per unit length
	P4	1297929295.315800		Force per unit length
	P3	966209423.100602		Force per unit length

FIGURE 3.3(b) (Continued)

Now look at the sixth criterion: the mass damping parameter . According to Table 3.2 (from Table 5.2.1 of ASME STS-1 [2]), an unlined stack has a structural damping v alue, x, of 0.004 , which Findlay [3] states is commonly used. According to Note 3 of this table, a structural damping v alue of 0.006 can be used only when the stack has a lining of a minimum of 2 inches thick
and a nominal density of 100 pounds per cubic foot (pcf). A density of 100 pcf is very dense-like f re proof $n g$. It can be ar gued that, for an operating process column with an o verhead pipe e xtending most of the full length and with ladders and internal attachments, you can use a structural damping coeff cient of 0.006. Also ASME STS-1 [2] is for stacks, not process columns. No w see what the sixth criterion yields.

Computing the a verage diameter for the top third of the column, you learn that

$$
\begin{aligned}
L_{T 1 / 3} & =\frac{77.417}{3}=25.806 \mathrm{ft} \\
\bar{D} & =\left(\frac{14.417}{25.806}\right) 36^{\prime \prime}+\left(\frac{11.389}{25.806}\right) 24^{\prime \prime}=30.704^{\prime \prime}
\end{aligned}
$$

$$
\mathrm{od}=2.559 \mathrm{ft} .
$$

For the top head, and referring to Chapter 2 for the weight of a 36 -inch ID 2:1 ellipsoidal head with a minimum 5/16-inch head, you can calculate

$$
\begin{align*}
\mathrm{BD} & =1.22(I D)+2(S . F .)+\mathrm{T} \tag{2.82}\\
\mathrm{BD} & =1.22(36)+2(2)+\frac{5^{\prime \prime}}{16}=48.23^{\prime \prime} \\
\mathrm{WgtHD} & =(0.283) \frac{\mathrm{lb}}{\mathrm{in}^{3}}\left(\frac{\pi}{4}\right)(48.23)^{2} \mathrm{in}^{2}\left(\frac{5}{16}\right) \mathrm{in}=161.57 \mathrm{l} b_{m}
\end{align*}
$$

or tlfe 36 -inch ID cylindrical can, the weight is

$$
\text { Wgt36 }=\left(\frac{\pi}{4}\right)\left(36.625^{2}-36^{2}\right) \operatorname{in}^{2}(162) \text { in }(0.283) \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{in}^{3}}=1634.4 \mathrm{lb}_{\mathrm{m}}
$$

For the 24 -inch cylindrical can, the weight is

$$
\begin{aligned}
L & =25.806 \mathrm{ft}-\left(\frac{162+9}{12}\right)=11.556 \mathrm{ft}=138.672 \mathrm{in} \\
\text { Wgt } 24 & =\left(\frac{\pi}{4}\right)\left(24.5^{2}-24^{2}\right) \text { in }^{2}(138.672) \text { in }=747.44 \mathrm{lb}_{\mathrm{m}}
\end{aligned}
$$

For the top third of the stack, the weight is

$$
\mathrm{Wgt}=161.57+1634.4+747.44=2543.41 \mathrm{lb}_{\mathrm{m}}
$$

The mass per unit length becomes

$$
m_{e}=\frac{2543.41 \mathrm{lb}_{\mathrm{m}}}{25.806 \mathrm{ft}}=98.56 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}}
$$

Now using a structural damping v alue of $\zeta_{s}=0.004 a n d$ an air density of $0.0779 \mathrm{~lm} / \mathrm{ff}$, you can substitute into Eq. 3.6 to obtain

$$
m_{p}=m_{r} \zeta_{s}=\frac{m_{e} \zeta_{s}}{\rho \bar{D}}=\frac{(98.56) \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}}(0.004)}{(0.0779) \frac{\mathrm{b}_{\mathrm{m}}}{\mathrm{ft}^{3}}(2.559)^{2} \mathrm{ft}^{2}}=0.773<0.8
$$

Using the structural damping value of $\zeta_{s}=0.006$ you obtain

$$
m_{p}=\frac{0.006}{0.004}(0.773)=1.1592>1.1
$$

Depending on which structural damping v alue you use, the sixth criterion becomes less certain, and opinions run high on each side for each v alue of ζ_{s}. Hence, it is recommended that all six criteria be used together to pro vide closure to the problem. If one of the criteria indicates the to wer is unacceptable, then this mak es the decision easier. Criterion 6 w as intended for stacks, not process stacks, but like the other criteria, it can be handy.

FLOW-INDUCED VIBRATION-IMPEDING DEVICES

Helical Strakes

Devices can be built into stacks to counter the v ortex shedding, which causes dynamic instability. Helical vortex strakes are the most common and practical vibration inhibitors for stacks. They are generally too awkward to use on process columns because of e xternal attachments, such as ladders, platforms, and piping.

The application of helical v ortex strakes to v ertical cylindrical towers has shown remarkable results. I independently de veloped the method presented here over 20 years ago in a f abrication shop in Houston, T exas. Others developed the strak e concept long before that, b ut the challenge for me at the time was to f gure out ho w to f abricate and install them onto stacks using simple shop tools. This information was published f rst in a technical journal and then later in [1].

— Helix design.
FIGURE 3.4 Cylindricattrake helix geometry.

The strakes' function is to break up v ortices such that mode shapes stimulating dynamic response to the to wer are quickly dampened. It is signif cant to note that adding the strak es signif cantly increases the drag and thus wind loading. These strakes are shown in Figure 3.4.
oTminimize the fow-induced drag and optimize the vortex-breaking effect, you should leave the strake width, $W(\mathrm{ft})$, in the following range:

$$
0.09 D \leq \mathrm{W} \leq 0.10 D
$$

wher $\boldsymbol{P}=$ ODof stack, ft .
Figure 3.4 shows a helix generated on ac ylinder by taking a template πD long by L high and wrapping it around a c ylinder. The length, L, of the helix is the top third of the stack. Wind tunnel tests have shown that vortex-breaking devices are most ef fective on the upper third of the stack. The helix angle, ϕ, should have a magnitude in the following range:

$$
54^{\circ} \leq \phi \leq 58^{\circ}
$$

There are always three strak es per stack to counter the alternate formation of vortices on either side of the stack.

FIGURE 3.5 Strake fabrication detail.

Strakes can be fabricated from a f at piece of metal, normally $3 / 16$ inch or 5 mm thick. Each strak e is divided to a certain number of strips, usually 5-20 segments, depending on the length of the stack. The o verall length of the individual strakes that are divided is determined by

$$
\begin{equation*}
S=\sqrt{(\pi D)^{2}+L^{2}} \tag{3.7}
\end{equation*}
$$

where
$D=$ the OD of the stack, as def ned previously
$L=$ height of the tower portion straked (one third of total stack height), ft
Thqumber S is di vided into indi vidual strips that are cut from a lar ger piece of plate, as shown in Figure 3.5.

The strips must be cut to a radius of curv ature, r, which is determined as follows:

$$
\begin{equation*}
r=\frac{a^{2} \omega^{2}+b^{2}}{a \omega^{2}} \tag{3.8}
\end{equation*}
$$

where

$$
a=\frac{D}{2}, \mathbf{f}
$$

FIGURE 3.6 Clamping each strip on 45° of fsets and hot-forming with a torch to obtain the desired geometry.

$$
b=\frac{L}{2 \pi \omega}
$$

$\omega=$ number of revolutions around stack cylinder made by helical strak e (usually $\omega=1$).

An alternative formula which is within $2 \%-3 \%$ in error of Eq. 3.8, is

$$
\begin{equation*}
r=\frac{\lambda W}{1-\lambda} \tag{3.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\frac{S_{\mathrm{i}}}{S_{\mathrm{o}}}=\frac{\text { interior arc length of helix }}{\text { exterior arc length of helix }} \tag{3.10}
\end{equation*}
$$

Thealue S_{i} is determined by using the outside diameter of the stack in Eq. 3.7, and S_{0} is obtained by using $D+2 W$ in place of the same equation. For the most accurate results, you should use Eq. 3.8 because it is the e xact radius of curvature of a helix projected on a cylinder [4].

Strips are laid out, as shown in Figure 3.5, with an inner radius of curvature determined by Eq. 3.8 and an outer radius of $r=r+W$. You want the helix to be perpendicular to the centerline of the cylinder along the entire length of the helical strake shown in Figure 3.4. To obtain this, you place each metal strip in a rig, as shown in Figure 3.6.

The rig is composed of tw o clamps, each 45° from the plane perpendicular to the table, or 90° of fset from each other. Once the metal strip is clamped in, a hot torch is run up and do wn the length of the metal strip, hot-forming it to a shape formed by the clamps. The strip should not be heated an y longer than necessary to hot-form it.

The metal strips should be the same material as the stack. The effectiveness of the system is not impaired by a gap of 0.005 D between the inner edge of the helical strake and the outside surface of the stack.

This method leads to ease and quickness in $\mathrm{f} \quad$ abricating helical v ortex strakes.

Example 3.2: Stack Helical Strake Design

An exhaust stack 126 ft . tall is to be provided with helical vortex strakes. The length of the stack to have strakes is the top portion 31 ft .6 inches long (top fourth of the stack). Compute the radius of curvature of the strake to be cut from the flat plate. Referring to Figure 3.7, you can compute the following:

$$
\mathrm{D}=\mathrm{OD} \text { of stack }=7 \mathrm{ft} 4 \mathrm{in}
$$

FIGURE 3.7 Fabricating helical strakes from a f at plate.

$$
\begin{aligned}
& \mathrm{L}=31 \mathrm{ft} 6 \text { in } \\
& a=\frac{\mathrm{D}}{2}=\frac{7.333}{2}=3.667 \\
& \omega=1 \\
& b=\frac{\mathrm{L}}{2 \pi \omega}=\frac{31.5}{2 \pi(1)}=5.013 \\
& r=\frac{a^{2} \omega^{2}+b^{2}}{a \omega^{2}} \\
& r=\frac{(3.667)^{2}(1)^{2}+(5.013)^{2}}{(3.667)(1)^{2}}=10.521 \mathrm{ft}
\end{aligned}
$$

Check:
Using the alternate equation, you can calculate

$$
\begin{aligned}
\mathrm{S}_{\mathrm{i}} & =\text { interior arc length }=\left[\left(\pi \mathrm{D}_{\mathrm{o}}\right)^{2}+\mathrm{L}^{2}\right]^{0.5}=41.637 \mathrm{ft} \\
\mathrm{~S}_{\mathrm{o}} & =\text { exterior arc length }=\left[[\pi(8.667)]^{2}+(31.5)^{2}\right]^{0.5}=41.637 \mathrm{ft} \\
\lambda & =\frac{\mathrm{S}_{\mathrm{i}}}{\mathrm{~S}_{\mathrm{o}}}=\frac{39.025}{41.637}=0.937 \\
r & =\frac{\lambda \mathrm{W}}{1-\lambda} \\
r & \frac{(0.937)(0.667)}{1-0.937}=9.966 \mathrm{ft}=9 \mathrm{ft} 11.594 \mathrm{in} \\
\% \text { error } & =\left(\frac{10.521-9.966}{10.521}\right)(100)=5.276 \% \text { error }
\end{aligned}
$$

The final product is shown in Figure 3.8. The actual value of r used on the flat plate cutout shown in Figure 3.7 was 10.521 ft .

Damping Pads

The structural damping of a tower can be increased by the application of a damping pad, as shown in Figure 3.9. It consist of two components: one is a damping washer or pad between the anchor bolt and the chair plate; and the other is a large pad that fts between the base plate and leveling, or shim, plate on top of the concrete foundation. There are several kinds of damping pads, each with its own damping characteristics. Normally, a damping pad consists of three layers: a top and bottom elastomer layer with a cork layer in the middle. Common elastomers used are silicone or nitrate, and normally are sold under trade names. Sheral companies make these pads; one is F abreeka International in Boston, Massachusetts, and another is Tech Products Corporation (TRC) out of Dayton, Ohio.

FIGURE 3.9 Damping pad details.

TABLE 3.3 Minimum Structural Plate Thickness and Maximum Stiffener Spacing

Inside Diameter, $\mathrm{D}(\mathrm{ft})$	Minimum Structural Plate Thickness*	Maximum Stiffener Spacing, ft
$\mathrm{D} \leq 3.5$	0.125	5 D
$3.5<\mathrm{D} \leq 6.5$	0.1875	3 D
$6.5<\mathrm{D} \leq 18.0$	0.1875	2 D
$\mathrm{D} \geq 18.0$	0.25	$11 / 2 \mathrm{D}$

*Note: Minimum plate thickness does not include corrosion allowance. If corrosion allowance is required, the minimum plate thickness will be increased by the magnitude of the corrosion allowance. (Reprinted from ASME STS-1-2006, by permission of the American Society of Mechanical Engineers.)

Several facilities ha ve stacks e xhibiting e xcessive dynamic amplitudes; the addition of these pads does not al ways add to the e xisting damping of the stack. The pads are ef fective "win" situations where the e xisting damping is very lo w, resulting in a net increase in structural damping. Although some manufacturers of the pads claim higher damping v alues, the maximum should be only 2.0% of critical damping, as listed in Table 3.3.

These pads are ine xpensive and are best used for a ne w stack. F or an existing operational stack, installation costs of these pads may be e xcessive. The disadv antages of these pads are (1) the y cannot withstand temperatures $>200^{\circ} \mathrm{F}$ and must be insulated from higher temperatures; (2) the pads may deteriorate when exposed to hydrocarbons; and (3) the pads may require maintenance and inspection. If the pads ha ve deteriorated, their replacement may radically disrupt operations. Gunite linings are used to protect the pads from excessive temperatures or acids. These disadv antages must be considered at each site. If the increase in the structural damping of the stack still does not suff ce for vortex shedding, then FIV inhibitors such as helical strak es or ovaling rings should be considered. We will cover ovaling rings next.

These damping pads are used for stacks mounted on concrete foundations. According to ASME STS-1, P aragraph 5.2.1(a) [2], for steel stacks mounted on b uildings, the interaction ef fects of the b uilding need to be included. Generally, this involves modeling the building and stack together. When stacks are mounted on steel structures, such as e xhaust stacks, the steel structure and stack should be modeled together because the structure' s stif fness will enter into the analysis.

Ovaling Rings

Placing metal rings on a stack can prevent dynamic amplitudes at higher mode shapes. The f rst tw o mode shapes are the stack in translation, retaining its
circular shape. The third and fourth mode shapes involve the transformation of the circular outline of the stack cross-section to an elliptical shape. At the f fth and sixth mode shapes, the stack cross-section e volves into a triangular shape. These last tw o mode shapes do not occur with e very stack because the y are a function of the stack's diameter-to-thickness ratio (D / t). The occurrence of the higher mode shapes is kno wn as ovaling. The ovaling rings provide a redistribution of the mass of the stack, which can of fset the higher mode shapes. This can happen if the o valing rings are located properly. To analyze the ef fect of the rings, you must consider the mass and moment of inertia of the ring as a separate section in Rayleigh' s method, as sho wn in Example 3-1. The f nite element method allows you to quickly see mode shapes and optimize the ring locations.

The phenomenon of o valing is predominant with stacks. ASME STS-1, Paragraph 5.2.2(b) [2], gives guidelines for o valing. F or unlined steel stacks, the ovaling natural frequency is computed as follows:

$$
\begin{equation*}
f_{o}=\frac{680 t}{D^{2}} \tag{3.11}
\end{equation*}
$$

wherdSME STS-1 [2] def nes
$t=$ stack shell or liner wall thickness, inches
$D=$ diameter of stack at elevation under consideration
The critical wind velocity for ovaling is

$$
\begin{equation*}
v_{c o}=\frac{f_{o} D}{2 S} \tag{3.12}
\end{equation*}
$$

wher $\mathcal{E}=$ Strouhal number, mentioned pre viously in Eq. 3.4, usually tak en as 0.2 for single stacks and may v ary due to Re ynolds numbers and multiple stacks.

If $v_{c o}$ is less than \bar{V}_{z}, the mean hourly wind speed ($\mathrm{ft} / \mathrm{sec}$), the unlined stack should be reinforced with ring stiffeners meeting the requirements of Table 3.3 (Table 4.4.7 in ASME STS-1 [2]).

The required minimum section modulus of the ring stif fener, $S_{s}\left(\mathrm{in}^{3}\right)$, with respect to the neutral axis of its cross-section parallel to the longitudinal axis of the stack, is as follows:

$$
\begin{equation*}
S_{s}=\frac{\left(2.52 \times 10^{-3}\right)\left(v_{\mathrm{co}}\right)^{2} D^{2} l_{s}}{\sigma_{a}} \tag{3.13}
\end{equation*}
$$

where
$l_{s}=$ spacing between circumferential stiffeners, determined as the sum of half the distance to adjacent stif feners on either side of the stif fener under consideration (ft)
$\sigma_{a}=0.6 F_{y}$, where $F_{y}=$ speci€d minimum yield strength of the ring material at mean shell temperature, psi

In the area where helical strak es are attached to the stack, ring stif feners may be omitted if you can pro ve that the helical strak es provide adequate stiffness.

Ovaling rings are used often as remediation de vices. They can be welded in during shutdo wns or turnarounds. Y ou can a void them in the design phase if you use thick er plates along the length of the stack using the criteria mentioned previously.

GUY CABLES, REMEDIATION DEVICES, AND SUPPORT OF FLARE STACKS

Guy cables can be remediation devices to stabilize a dynamic unstable stack or process column, or as abuilt-in design support mechanism for a tall and nar row diameter stack. A f are stack is more in volved than other types of stacks because there are thermal gradients to complicate matters.

Determining the pre-tension required for guy cables on f are stacks is necessary for proper support. The method discussed here has been used in practice and is therefore tried and proven.

Flare stacks supported by guy cables are ubiquitous in use and seem quite innocuous to the untrained e ye. Ho wever, their f ailure during the f aring of a stack could ha ve dire consequences. This section is based on actual pretensioning cases that have proven to be successful.

This section concerns the static problem of guy wires. Experience has shown that if guy cables are properly tensioned, f ow-induced vibration (FIV), induced by vortex shedding, is of minimal concern. The reason is that the natural frequency of the stack is well abo ve the resonant range. One reason for pre-tensioning the cables is to avoid FIV.

Wind loadings should be check ed with the appropriate wind standard or company standard. This section is based on a paper I [5] wrote while w orking in Saudi Arabia. The compan y in Saudi Arabia check ed the wind loads at 100 mph , and the guy wires proved to be more than adequate.

The Basic Methodology

Flare stacks under go se veral thermal re gimes, hot and cold. If a cold liquid is f ared, and on entering the f are stack, the b urner tip does not ignite, then the entire stack can reach cold temperatures. As a consequence, the stack can shrink for a short time before the burner tip ignites. During this time, a steadystate thermal re gime is established. In this case, the cold temperatures w ould exist in the stack metal in a transient condition. When the f are tip ignites and burns, the temperature of the surroundings and the stack metal elevates. This is

FIGURE 3.10 Flare stack guy wire thermal mo vements. Points A, A^{\prime}, and $A^{\prime \prime}$ are at the cable connection on the upper portion of the f are stack; Point C is at the base of the stack; and Point B is where the cable ties into the ground with a dead man The term "dead man" refers to an anchor in the ground that has suff cient rigidity to restrain the forces in the cables. T ypically they are concrete masses embedded in the ground.
a fact observed both in the f eld and by analytical studies. Of course, if a hot f uid enters the stack, the stack will increase in height.

The guy wires therefore must accommodate the various thermal conditions. ASTM SA-333 pipe material ($31 / 2 \mathrm{Ni}$-comparable to BS 3603 HF5503 LT100 CAT.2) is used for the stack. When cold, this material will not e xperience brittle fracture under wind loads. Ho wever, the use of this material does not mean that the stack is al ways cold when f aring. In man y instances, the f are metal temperature is hot and will e xperience thermal gro wth. Therefore, the f are must be designed for both cases.

Becausthe f are stack gets hot and grows in height, the cable has to incorporate sag to accommodate stretching under tension. Figure 3.10 illustrates the general f are scheme with the guy wires.

The guy wire e xtends from the f are stack ring to the dead man position, forming the hypotenuse of a triangle with the f are stack and the ground. In the nonoperating position, this forms triangle A-B-C. As the f are stack heats up and grows, the distance from the guy cable support ring on the f are stack to

FIGURE 3.11 Flare stack guy cable details.
the dead man increases, making the guy cable stretch. This is shown as triangle $\mathrm{A}^{\prime}-\mathrm{B}-\mathrm{C}$. If the f are stack cools and contracts, the guy cable will shrink, sho wn as $\mathrm{A}^{\prime \prime}-\mathrm{B}-\mathrm{C}$. Because the guy wire is forced to stretch (or break) in the hot case (triangle $\mathrm{A}^{\prime}-\mathrm{BC}$), the cable incorporates sag to compensate for this movement. There is no sag required for the cold case as the guy cable decreases in length, since line $\mathrm{A}^{\prime \prime}-\mathrm{C}$ is shorter than $\mathrm{A}-\mathrm{C}$. Line $\mathrm{A}^{\prime}-\mathrm{C}$ is longer than line $\mathrm{A}-\mathrm{C}$ and is the worst case for determining the sag. The actual conf guration is sho wn in Figure 3.11

The analytical e xpression for the sag of a uniformly loaded beam under tensile loads, shown in Figure 3.12, is given by the following:

$$
\begin{equation*}
y_{\max }=-\frac{w L^{2}}{8 P} \tag{3.14}
\end{equation*}
$$

FIGURE 3.12 Beam subjected to a uniform load with axial tensile load.
where
$y=\operatorname{ir}(\mathrm{mm})$
$w=$ cableveight $\left(\mathrm{lb}_{\mathrm{m}} / \mathrm{in}, \mathrm{kg} / \mathrm{mm}\right)$
$L=$ cabldength (in, mm)
$P=$ tensilforce $\left(\mathrm{lb}_{\mathrm{f}}, \mathrm{N}\right)$
The minus sign in Eq. 3.14 indicates that the sag is in the ne gative direction. As you can see from the equation, the amount of sag is in versely proportional to the tensile force, P. Thus, to theoretically have zero sag would require an inf nite amount of force. In practical terms, there will al ways be some sag. Solving for the tensile force and using a ne gative value for $y_{\max }$ (downward direction), you obtain the following equation:

$$
\begin{equation*}
P=\frac{w L^{2}}{8 y_{\max }} \tag{3.15}
\end{equation*}
$$

The amount of sag required depends on the magnitude of thermal e xpansion of the stack. As stated earlier, if the stack e xpands upward, the cable is stretched. If the stack contracts, the cable shrinks in length. Thus, the stack expansion upward sets the amount of cable sag.

The equation for the def ection of a cable under its o wn weight is given by the catenary equation, written as follows:

$$
\begin{equation*}
P=\frac{\left(y_{\max }\right)(w)}{\left[\cosh \left(\frac{w L}{2 P}\right)-1\right]} \tag{3.16}
\end{equation*}
$$

It can be shown that for cables (see "Supplement A"), Eq. 3.15 and Eq. 3.16 yield the same results, although each has a dif ferent basis of derivation. In the derivation of Eq. 3.16, a similar equation is developed for the arc length of the cable. This is important in establishing the relati ve inf uence of the thermal movements of the stack on the cable sag. The arc length of the cable is gi ven as follows:

$$
\begin{equation*}
S=\frac{P}{w} \sinh \left(\frac{w L}{2 P}\right) \tag{3.17}
\end{equation*}
$$

Using Eq. 3.17, the length of the cable arc is seen to be almost identical to line A-B in Figure 3.10. In the case of the stack in the f eld in Saudi Arabia, the distance A-B w as 1935.07 inches (49.15 m), and the arc length with a sag of 5.244 inches (133.2 mm ; installed at $20^{\circ} \mathrm{C}$) is 1935.10 inches (49.152 m): a mere $1 / 32$ inch $(0.79 \mathrm{~mm})$ difference! This mak es more sense when you consider that the 133.2 mmsag is insignif cant compared to 49 m (1935.10 inches). Similarly, if the guy cables are installed at $0^{\circ} \mathrm{C}$, the resulting sag is reduced to 4.7 inches (119.38 mm). The resulting tensile load is not greater than the pretension load (see "Supplement B"); therefore, the change in sag is acceptable. With this result, it can be reasonably concluded that the cable sag is approximately equal to the thermal mo vement of the stack. As the stack heats up, so do the guy cables from thermal radiation induced from the f ame exhaust from the f are tip. This is an important assumption because it simplif es the solution process. For this reason, the $y_{\max }$ parameter in Eq. 3.15 and Eq. 3.16 was selected to be equal to the sag. Thus, $y_{\max }$ can be substituted for the parameter $S A G$. This is shown in the contractor's drawing in Figure 3.11.

The solution process be gins with calculating the thermal gro wth of the stack at each guy cable ring support. This thermal expansion is then substituted into Eq. 3.15 or Eq. 3.16 to calculate the corresponding tensile force, P.This was carried out with both equations, and the results v erif ed that the y yielded the same results. However, Eq. 3.16 is more awkward to use, since solving for P requires a trial-and-error process; whereas Eq. 3.15 is direct substitution. For this reason Eq. 3.15 is the basic equation to be used in this method. Ho wever, the use of Eq. 3.16 gives the required mathematical rigor in verifying the engineering mechanics of the problem. Its deri vation is simpler than Eq. 3.15 and is published in every elementary textbook on statistics.
of compute the fare stack thermal e xpansion, you compute the a verage temperature of the f are stack by taking the a verage of the temperature at the guy support ring and the temperature at the ground. This is carried out for each elevation of guy cables. T o do this, you use the temperature of the air at the time of tensioning to calculate the thermal e xpansion of the f are stack and, hence, the cable tension. Calculating the length of thermal expansion gives

$$
\begin{equation*}
S A G=\Delta l=\alpha L(\Delta T) \text { in (mm) } \tag{3.18}
\end{equation*}
$$

where
$\Delta T=$ temperature at guy ring-temperature of air at cable tensioning
$\alpha=$ coeff cient of thermal e xpansion at temperature of stack at guy support ring (in/in $-{ }^{\circ} \mathrm{F}\left(\mathrm{mm} / \mathrm{mm}-{ }^{\circ} \mathrm{C}\right)$.

Substitutingll $l=y_{\max }(=$ SA $)$ gives the following:

$$
\begin{equation*}
P=\frac{w L^{2}}{8(\mathrm{SAG})} \tag{3.19}
\end{equation*}
$$

Thæensile force, P, is solved for each ambient air temperature to produce cable tensions. The tensile load is increased to allo w for any slack in tensioning the cable and, for the cold case, when the stack shrinks. The e xcessive tensile load allo ws for the increased sag in the cable if the stack shrinks in the cold state. This e xcessive tensile force w as developed by using a straight line. The tensile force, P, was calculated for the corresponding $S A G$ length at tw o points: $0^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$. A straight line w as then dra wn, of which the loci of points were the values of P. This is an empirical constant, derived from experience. The constant, C, is a linear function, given as follows:

$$
\begin{equation*}
C=1.1429-0.001772 T \tag{3.20}
\end{equation*}
$$

wher $E=$ temperatur $\left({ }^{\circ} \mathrm{C}\right)$.
Thealue for P in Eq. 3.19 is converted to the S.I. (metric SI) as

$$
\begin{equation*}
P=\frac{w L^{2}\left(\mathrm{lb}_{\mathrm{f}}\right)}{8(\mathrm{SAG})}\left(\frac{C}{2.2046\left(\frac{\mathrm{lb}_{\mathrm{f}}}{\mathrm{Kg}}\right)}\right)\left(\frac{9.807 \mathrm{~N}}{\mathrm{Kg}}\right)=\frac{0.556 w L^{2} C}{\mathrm{SAG}} \mathrm{~N} \tag{3.21}
\end{equation*}
$$

where
$w=\mathrm{lb}_{\mathrm{f}} / \mathrm{in}$
$L=$ in
$\mathrm{SAG}=\mathrm{in}$
$C=$ isdef ned in Eq. 3.20
$P=$ Nwtons

Example 3.3: Guy Cables

A guy cable is 1935.07 inches long and weighs $0.154 \mathrm{lb}_{\mathrm{m}} / \mathrm{in}$. At operating flare conditions, the guy cable connection on the upper part of the stack (guy cable support ring) is $700^{\circ} \mathrm{F}$ and at grade the temperature is $500^{\circ} \mathrm{F}$. The elevation of the guy cable connection is 114.042 feet. The ambient air temperature is $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$. The material of construction of the flare stack is A333 Gr 3.

Solution:
The average temperature of the stack from the guy cable support ring connection to grade is calculated as

$$
\mathrm{T}=\frac{(700+500)}{2}=600^{\circ} \mathrm{F}\left(316^{\circ} \mathrm{C}\right)
$$

The coefficient of thermal expansion for the stack material at $600^{\circ} \mathrm{F}$, with $70^{\circ} \mathrm{F}$ reference temperature is

$$
\alpha=7.23 \times 10^{-6} \frac{\mathrm{in}}{\mathrm{in}-{ }^{\circ} \mathrm{F}}
$$

Solving for the thermal expansion of the stack, you can calculate

$$
\begin{aligned}
& \Delta l=\alpha l(\Delta \mathrm{~T})=\left(7.23 \times 10^{-6}\right) \frac{\mathrm{in}}{\mathrm{in}-{ }^{\circ} \mathrm{F}}(114.04) \mathrm{in}(12) \frac{\mathrm{in}}{\mathrm{ft}}(600-70)^{\circ} \mathrm{F} \\
& \Delta l=5.244 \mathrm{in}(133.2 \mathrm{~mm})
\end{aligned}
$$

Since we are using $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$ as the reference temperature, we must compensate for the ambient air at $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$. At $104^{\circ} \mathrm{F}$ the coefficient of thermal expansion of the cable material is $6.1396 \times 10^{-6} \mathrm{in} / \mathrm{in}-^{\circ} \mathrm{F}$. Solving for the expansion of the guy cable, you can calculate

$$
\begin{aligned}
& \Delta l=\alpha l(\Delta \mathrm{~T})=\left(6.14 \times 10^{-6}\right) \frac{\mathrm{in}}{\text { in }-{ }^{\circ} \mathrm{F}}(1935.07) \mathrm{in}(104-70)^{\circ} \mathrm{F} \\
& \Delta l=0.404 \mathrm{in}
\end{aligned}
$$

The total sag for the cable considering thermal expansion is

$$
\mathrm{SAG}=5.244 \mathrm{in}+0.404 \mathrm{in}=5.648 \mathrm{in}=143.46 \mathrm{~mm}
$$

Now solving for C in Eq. 3.20, you have

$$
C=1.1429-0.001772(20)=1.1075
$$

With total sag of 5.648 inches, the required tension in the guy cable is, from Eq. 3.21, as follows:

$$
\begin{aligned}
& P=\frac{(0.556)(0.154)(1935.07)^{2}(1.1075)}{5.648}=62869.20 \mathrm{~N} \\
\text { or } \quad P & =14132.996 \mathrm{lb}_{\mathrm{f}}
\end{aligned}
$$

This same process is repeated for ambient temperatures of $0^{\circ} \mathrm{C}, 10^{\circ} \mathrm{C}$, $20^{\circ} \mathrm{C}$, and $50^{\circ} \mathrm{C}$-each representative for different seasons in Saudi Arabia.

Supplement A

The following is a comparison of Eq. 3.15 and Eq. 3.16.
Setting both equations equal to each other

$$
\frac{y_{\max } w}{\cosh \left(\frac{w \mathrm{~L}}{2 \mathrm{P}}\right)-1}=\frac{w \mathrm{~L}^{2}}{8 y_{\max }}
$$

This equation results in the following:

$$
\cosh \left(\frac{w \mathrm{~L}}{2 \mathrm{P}}\right)=1+8\left(\frac{y_{\max }}{\mathrm{L}}\right)^{2}
$$

Substituting in values for the $20^{\circ} \mathrm{C}$ case, $\mathrm{W}=0.154 \mathrm{lb}_{\mathrm{m}} / \mathrm{in}, \mathrm{L}=1935.07 \mathrm{in}, \mathrm{P}=68943.21, \mathrm{~N}=15498.338 \mathrm{lb}_{\mathrm{f}}$, you have

$$
\begin{aligned}
\cosh \left(\frac{w \mathrm{~L}}{2 P}\right) & =1.0000462 \\
1+8\left(\frac{y_{\max }}{L}\right)^{2} & =1.0000588
\end{aligned}
$$

Comparing these results with those of other installation temperatures, you can assume that Eq. 3.15 and Eq. 3.16 yield the same results for this application.

Supplement B

The purpose of this section is to solve for the tensile load and the resulting sag for the case of thermal expansion that results in the cable extending from 1935.07 inches to 1938.557 inches at the installation temperature of $0^{\circ} \mathrm{C}$.

Writing Eq. 3.15 and solving for P,

$$
\mathrm{P}=\frac{w \mathrm{~L}^{2}}{8 y_{\max }}
$$

Substituting $w=0.154 \mathrm{lb}_{\mathrm{m}} / \mathrm{in}, \mathrm{L}=1938.557 \mathrm{in}$, you solve for a variable, Δ, such that

$$
\Delta=\frac{w L^{2}}{8 y_{\max }}-\mathrm{P}=\frac{0.154(1938.557)^{2}}{8 y_{\max }}-\mathrm{P}
$$

or

$$
\Delta=\frac{72341.562}{y_{\max }}-\mathrm{P}
$$

For $\Delta=0$, the theoretical solution is $y_{\max }=4.7$ inches and $\mathrm{P}=$ $15391.8 \mathrm{lb}_{\mathrm{f}}$. Since P is less than the pre-tension load of $76396.53 \mathrm{~N}=$ $17,173.834 \mathrm{lb}_{\mathrm{f}}$, you can assume that the elongation of the cable has relatively no effect on the cable sag. The cable sag can be assumed to equal the thermal expansion of the flare stack. This is the basis of that assumption.

Note: After the cables were installed at the location in Saudi Arabia, the flare stack flared for 30 days nonstop.

REFERENCES

Escoe, A.Kith ,Mechanical Design of Process Systems, ol.v2 2nd edition, GulfPublishing Company Houston,Texas 19,95
ASME STS-1-2006, American Society of Mechanical Engineers, New York, NY, 2006. FBndlay, Madtnproved Screening Criteria for the Prediction of Wind Induced Vibration of Tall Process Vessels Arising from Recent Field Experience ASME Nes York, NY November 2001
Thonłas, GB. Calculus and Analytic Geometry 3rdedition Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, U.S.A. 19,60
Escoe, A.Kith, Guyed Flare Stacks HydrocarbonEngineering Farnham, Surrey, England Sept.,1998

Chapter 4

Wind Loadings on Pressure Vessels and Stacks

This chapter considers wind loads as the y relate to f eld applications. This discussion is not intended to be for the wind design of problems; albeit, the material presented can be used in wind design. This chapter provides a generic guide to wind because, depending on the location of the f acility where the analysis is being performed, the wind codes may vary. Some areas do not have formal wind codes as such. Often the wind codes of other countries are applied in these locations-e ven though the wind isopleths are not applicable. Most often people estimate an appropriate wind speed and use the preferred code accordingly.

Wind and seismic codes change re gularly, and the trend is a shift to ward the use of the Load and Resistance F actor Design (LRFD) approach v ersus the Allowable Stress Design (ASD) basis. The Canadian codes ha ve done this, making their application to stacks and pressure v essels virtually impractical. Some of the bodies that produce the wind standards argue that their documents were ne ver intended for pressure v essels and stacks; their main concern is buildings and civil structures like bridges. This may lead to the development of a separate wind and seismic code for pressure vessels and stacks. However, for the present, we must use what is available.

The consideration of wind loads in a plant or operating f acility normally happens when a section of a to wer is to be stress-relie ved by post weld heat treatment and an entire shell portion of the v essel is to be heated to the stressrelieving temperature. In this application, you must be cognizant of the imposing wind loads on the v essel. Another application w ould be the installation of guy cables, as discussed in Chapter 3, and the loads on these cables. These situations are routine in plants. In the case of relie ving stress on a process column, only the wind shear and bending moments at the location under consideration are of interest.

ASME STS-1 [1] follows the latest ASCE 7 standard series-presently ASCE 7-2005 [2]. We will de velop a general guideline of this standard that can be used throughout the w orld in v arious locations that do not ha ve wind codes. If you are located in a country that has such a standard, it is advised that you follow that document. Ho wever, for operational applications, the methodology proposed here should be adequate.

The general equation for the wind force imposed on a pressure v essel or columns is

$$
\begin{equation*}
F=q_{z} G C_{f} A_{f}\left(\mathrm{lb}_{\mathrm{f}} \text { or } \mathrm{N}\right) \tag{4.1}
\end{equation*}
$$

where
$q_{z}=$ velocity pressure at elevation of height z of the centroid of area A_{f}
$G=$ gust-effect factor
$C_{f}=$ forccoeff cient
$A_{f}=$ projected area normal to the wind
In this chapter we will discuss the terms in Eq. 4.1 and guidelines on their application.

THE VELOCITY PRESSURE DISTRIBUTION, $\boldsymbol{q}_{\mathrm{z}}$

Thterm q_{z} is the velocity pressure and is e valuated at a height z. It is def ned as follows:

$$
\begin{equation*}
q_{z}=0.00256 K_{z} K_{z t} K_{d} V^{2} I\left(\mathrm{lb}_{\mathrm{f}} / \mathrm{ft}^{2}\right) \tag{4.2}
\end{equation*}
$$

or

$$
\begin{equation*}
q_{z}=0.613 K_{z} K_{z t} K_{d} V^{2} I\left(\mathrm{~N} / \mathrm{m}^{2}\right) ; \quad V \text { is in } \mathrm{m} / \mathrm{s} \tag{4.2a}
\end{equation*}
$$

where
$K_{d}=$ windlirectionality factor
$K_{z}=$ elocity pressure exposure coeff cient
$K_{z t}=$ topographifactor

WIND DIRECTIONALITY FACTOR, $\boldsymbol{K}_{\boldsymbol{d}}$

Thevind directionality factor, K_{d}, is def ned in Table 4.1 (Table 6.4 of ASCE 7-2005 [2].

TABLE 4.1 Wind Directionality Factor, K_{d}

Structure type—chimneys, tanks,	Directionality factor, and similar structures
Square	0.90
Hexagonal	0.95
Round	0.95

(Courtesy of the American Society of Civil Engineers)

VELOCITY PRESSURE COEFFICIENT, $\boldsymbol{K}_{\boldsymbol{z}}$

Thevelocity pressure coeff cient factor, K_{z}, is determined from Table 4.2 (Table 6.3 of ASCE 7-2005 [2]).

TABLE 4.2 K_{z} and Exposure Coefficients

Height above ground level, z		Exposure category		
ft	m	B	C	D
0-15	0-4.6	0.57	0.85	1.03
20	6.1	0.62	0.9	1.08
25	7.6	0.66	0.94	1.12
30	9.1	0.7	0.98	1.16
40	12.2	0.76	1.04	1.22
50	15.2	0.81	1.09	1.27
60	18	0.85	1.13	1.31
70	21.3	0.89	1.17	1.34
80	24.4	0.93	1.21	1.38
90	27.4	0.96	1.24	1.4
100	30.5	0.99	1.26	1.43
120	36.6	1.04	1.31	1.48
140	42.7	1.09	1.36	1.52
160	48.8	1.13	1.39	1.55
180	54.9	1.17	1.43	1.58
200	61	1.2	1.46	1.61
250	76.2	1.28	1.53	1.68
300	91.4	1.35	1.59	1.73
350	106.7	1.41	1.64	1.78
400	121.9	1.47	1.69	1.82
450	137.2	1.52	1.73	1.86
500	152.4	1.56	1.77	1.89

(Courtesy of the American Society of Civil Engineers)

\section*{TABLE 4.3 Terrain Exposure Constants
 | Exposure | α | $z_{g}(\mathrm{ft})$ | $\mathrm{Z}_{\min }(\mathrm{ft})$ |
| :--- | :---: | :---: | :---: |
| B | 7.0 | 1200 | 30 |
| C | 9.5 | 900 | 15 |
| D | 11.5 | 700 | 7 |}

(Courtesy of the American Society of Civil Engineers)

TABLE 4.4 Terrain Exposure Constants (Metric)

Exposure	α	$z_{g}(\mathrm{~m})$	$\mathrm{Z}_{\text {min }}(\mathrm{m})$
B	7.0	365.76	9.14
C	9.5	274.32	4.57
D	11.5	213.36	2.13

(Courtesy of the American Society of Civil Engineers)

Thevelocity pressure coeff cient, K_{z}, may be determined from the following:

For $15 \mathrm{ft} \leq z \leq z_{g}$

$$
\begin{equation*}
K_{z}=2.01\left(\frac{z}{z_{g}}\right)^{2 / \alpha} \tag{4.3}
\end{equation*}
$$

For $z>15 \mathrm{ft}$

$$
\begin{equation*}
K_{z}=2.01\left(\frac{15}{z_{g}}\right)^{2 / \alpha} \tag{4.4}
\end{equation*}
$$

Theonstants α and z_{g} are tabulated in the U.S. Customary system in Table 4.3 and in the metric SI in Table 4.4.

TOPOGRAPHIC FACTOR, $K_{z t}$

Thtopographic factor, $K_{z t}$, is perhaps one of the most diff cult to def ne, especially in remote locations. In remote locations in man y regions of the world, it would be undesirable to stake out the terrain for man y reasons-safety, accessibility, ability to record changes in terrain. Paragraph 6.5.7.2 of ASCE 7-2005
[2] states, "If site conditions and locations of structures do not meet all the conditions specif ed in Section 6.5.7.1 then $K_{z t}=1.0$.'The wind exposure categories are def ned in Paragraph 6.5.6.2 [2] as a function of the surf ace roughness, as follows:

Surface Roughness B: Urban and sub urban areas, w ooded areas or other terrain with numerous closely spaced obstructions ha ving the size of sin-gle-family dwellings or larger.
Surface Roughness C: Open terrain with scattered obstructions ha ving heights generally less than $30 \mathrm{ff}(9.1 \mathrm{~m})$.This category includes fat open country, grasslands, and all water surfaces in hurricane-prone regions.
Surface Roughness D: Flat, unobstructed areas and water surfaces outside hurricane-prone regions. This category includes smooth mud fats, salt fats, and unbroken ice.
If the topographic factor def ned in P aragraph 6.5.7 [2] cannot adequately be determined, and if there is no specif cation, such as from a client, nor mally it is adequate to be conserv ative on the Surface Roughness Category and use $K_{z t}=1.0 \mathrm{n}$ the f eld.

BASIC WIND SPEED, V

The basic wind speed, V, is often found in the isopleth charts of the gi ven wind code for a certain area. Where there is no such standard for the area concerned, you can use various readings and communication with the locals to f nd a conservative wind speed value. In desert re gions, sand storms, kno wn as shamals, can de velop and appear suddenly if there are no mass communication warnings from a weather station. Normally, a shamal can be seen approaching from a long distance, so there is some warning. Some shamals can reach hurricane-force winds, so you must use judgment if an area has a history and occurrence of these storms in desert regions.

IMPORTANCE FACTOR, I

For process columns and stacks, the importance f actor, I, is al ways made 1.0 because of the importance of the tower.

We have now discussed the terms for solving Eq. 4.2. Now we turn our attention to solving Eq. 4.1.

GUST-EFFECT FACTOR, \boldsymbol{G}

Thgust-effect factor, G, is perhaps the most demanding parameter to calculate, and the results are nearly always in the same predictable range. Paragraph 6.5.8.1 of ASCE 7-2005 [2] def nes a rigid structure as one in which the structure's fundamental natural frequenc y is equal to or greater than 1 Hz . F or a rigid structure, $G=0.85 \mathrm{~A}$ f exible structure is one in which the fundamental
natural frequency is less than 1 Hz . In this case, you must perform a v ery long algorithm to obtain G. Normally, G is seldom less than 1.4. If you are making a quick estimate and w ant to be conserv ative, a value of $G=1.5 \mathrm{will}$ handle the vast majority of cases. This is a rule of thumb that can be helpful.

Solving for the Gust-Effect Factor, G

Thequation for G is given in Paragraph 6.5.8.2 of ASCE 7-2005 [2] for fexible or dynamically sensiti ve structures. This equation, listed as Eq. 6.8 in the standard, reads as follows:

$$
\begin{equation*}
G_{f}=0.925\left(\frac{1+1.7 I_{\bar{z}} \sqrt{g_{Q}^{2} Q^{2}+g_{R}^{2} R^{2}}}{1+1.7 g_{v} I_{\bar{z}}}\right) \tag{4.5}
\end{equation*}
$$

where, in Eq. 4.1, $G=G_{f}$ for a f exible structure.
Thbackground response, Q, is given by the following:

$$
\begin{equation*}
Q=\sqrt{\frac{1}{1+0.63\left(\frac{O D+h}{L_{\bar{z}}}\right)^{0.63}}} \tag{4.6}
\end{equation*}
$$

where
$O D=$ vessel or stack outside diameter (ft) (denoted as B in ASCE 7-2005 [2])
$h=$ height of vessel or stack (ft)

$$
\begin{equation*}
L_{\bar{z}}=l\left(\frac{\bar{z}}{33}\right)^{\bar{\varepsilon}} \tag{4.7}
\end{equation*}
$$

wherd and $\bar{\varepsilon}$ are given in the U.S. Customary system in Table 4.5 and in the metric SI in Table 4.6 (taken from the ASME STS-1 2006 Table I. 1 [1]).

Settinf $=$ fundamental natural frequency of the tower (ASCE 7-2005 [2] uses n_{1}), $V=$ basic wind speed, $\mathrm{mph}(\mathrm{m} / \mathrm{s})$, in which $80 \leq V \leq 140 \mathrm{mph}$ (some note as $V_{\text {ref }}$).

ASCE 7-2005 [2] lists the following formulations to solve Eq. 4.5:

$$
\begin{equation*}
\overline{V_{\bar{z}}}=\bar{b}\left(\frac{\bar{z}}{33}\right)^{\bar{\alpha}} V\left(\frac{22}{15}\right) \tag{4.8}
\end{equation*}
$$

TABLE 4.5 Gust-Effect Parameters

Exposure	$l(\mathrm{ft})$	$\bar{\varepsilon}$	c	$\bar{\alpha}$	\bar{b}
B	320	30	0.30	$1 / 4.0$	0.45
C	500	15	0.20	$1 / 6.5$	0.65
D	650	7	0.15	$1 / 9.0$	0.80

(Courtesy of the American Society of Civil Engineers)

TABLE 4.6 Gust-Effect Parameters (Metric)

Exposure	$l(\mathrm{~m})$	$\bar{\varepsilon}$	c	$\bar{\alpha}$	\bar{b}
B	97.54	9.14	0.30	$1 / 4.0$	0.45
C	152.4	4.57	0.20	$1 / 6.5$	0.65
D	198.12	2.13	0.15	$1 / 9.0$	0.80

(Courtesy of the American Society of Mechanical Engineers)

$$
\begin{gather*}
\left.R_{l}=R_{h} \quad \text { where } R_{h}=\frac{1}{\eta_{1}}-\frac{1}{2 \eta_{1}^{2}} 1-e^{-2} \eta_{1}\right) \tag{4.9}\\
R_{l}=R_{B}: R_{B}=\frac{1}{\eta_{2}}-\frac{1}{2 \eta_{2}^{2}}\left(1-e^{-2} \eta_{2}\right), \quad \text { where } B=\mathrm{OD} \tag{4.10}\\
R_{l}=R_{d} \quad \text { where } R_{d}=\frac{1}{\eta_{3}}-\frac{1}{2 \eta_{3}^{2}}\left(1-e^{-2} \eta_{3}\right) \tag{4.11}
\end{gather*}
$$

where

$$
\begin{gather*}
\eta_{1}=\frac{4.6 f_{1} h}{\bar{V}_{\bar{z}}} \tag{4.12}\\
\eta_{2}=\frac{4.6 f_{1}(\mathrm{OD})}{\bar{V}_{\bar{z}}} \tag{4.13}\\
\eta_{3}=\frac{4.6 f_{1} d}{\bar{V}_{\bar{z}}} \tag{4.14}
\end{gather*}
$$

wherd $=$ top one third of tower (see ASME STS-1 2006, p. 87 [1])

$$
\begin{gather*}
N_{1}=\frac{f_{1} L_{\bar{z}}}{\bar{V}_{\bar{z}}} \tag{4.15}\\
R_{n}=\frac{7.47 N_{1}}{\left(1+10.3 N_{1}\right)^{5 / 3}} \tag{4.16}\\
R=\sqrt{\left(\frac{1}{\beta}\right) R_{n} R_{h} R_{B}\left(0.53+0.47 R_{d}\right)} \tag{4.17}
\end{gather*}
$$

where $\beta=$ damping ratio $\rightarrow 0.002 \leq \beta \leq 0.004$
The intensity of turbulence at height z is $I_{\bar{z}}$ where

$$
\begin{align*}
I_{\bar{z}} & =c\left(\frac{33}{z}\right)^{1 / 6} \tag{4.18}\\
\bar{z} & =0.6 \mathrm{~h} \tag{4.19}\\
& =\text { the equivalent height of the tower }
\end{align*}
$$

where
$\bar{z} \geq z_{\text {min }}$, where $z_{\text {min }}$ is listed in Tables 4.3 and 4.4 and c in Eq. 4.18 is listed in Tables 4.5 and 4.6

N

$$
\begin{gather*}
g=32.2 \frac{\mathrm{ft}}{\sec ^{2}} ; \quad g_{Q}=g_{v}=3.4 \\
g_{R}=\sqrt{2 \operatorname{Ln}\left(3600 f_{1}\right)}+\frac{0.577}{\sqrt{2 \operatorname{Ln}\left(3600 f_{1}\right)}} \tag{4.20}
\end{gather*}
$$

Now you ha ve the equations to solv e Eq. 4.5 . Paragraph 6.5.8.3 of ASCE 7-2005 [2] notes, "In lieu of the procedure def ned in 6.5.8.1 and 6.5.8.2 [the above algorithms for solving for the gust-ef fect parameter], determination of the gust-effect factor by any rational analysis def ned in the recognized literature is permitted. " We ha ve already gi ven rules of thumb for this parameter based on proven engineering practice.

THE PROJECTED AREA NORMAL TO THE WIND, \boldsymbol{A}_{f}

The nal parameter to solve for in Eq. 4.1 is the projected area normal to the wind, A_{f}. Figure 4.1 shows the effective wind diameter for a process column.

FIGURE 4.1 Thffective wind diameter can vary with height [3]

As shown in the f gure, the ef fective wind diameter can v ary with height. Figure 4.2 shows the effective wind diameter of a conical section.
ofcalculate the parameter A_{f}, you multiply D_{E} by the length of the section. Now you have the tools to solve Eq. 4.1.

EXAMPLE 4.1

In this example, a tower that has the same geometry as that in Example 3.1 is made of a different metallurgy and has a different weight distribution. Because of the metallurgy of the tower, any welding requires post weld heat treating (PWHT) of the section having hot work performed for an upcoming turnaround. When performing PWHT, you need to know the wind loads exerted on the subject tower section. The areas of repair will be determined by the turnaround team.

The facility is located on the Texas gulf coast, and the maximum expected basic wind speed during the PWHT is 85 mph , although the wind zone is 120 mph (for this example, do not expect to perform such an operation during a hurricane, so 85 mph is the maximum expected basic wind speed for analysis; the actual basic wind speed was 30 mph). This application is for an operations facility, not an engineering firm that is designing a tower for the worst possible conditions.

What you need is a chart of wind pressures and shear and bending moments for the turnaround.

The ASCE 7-2005 [2] parameters are as follows:
Wind force coefficient, $\mathrm{C}_{\mathrm{f}}=0.7$
Basic wind speed, $\mathrm{V}=85 \mathrm{mph}$
Importance factor, $\mathrm{I}=1$
Exposure category = C
Wind Directionality Factor, $K_{d}=0.95$
Topographic Factor, $K_{z t}=1.00$

Vessel Characteristics:

Vessel height, $\mathfrak{h}=80.4152 \mathrm{ft}$
Vessel minimum diameter, $\bar{b}=\mathrm{OD}=2.0417 \mathrm{ft}$
Corrosion allowance $=0$
Fundamental Frequency $=n_{1}=f_{1}=0.9534 \mathrm{~Hz}$
Damping coefficient for operating condition, $\beta=0.0191$
Basic Load Combinations for Allowable Stress Design (ASD):
D $+\mathrm{H}+\mathrm{W}$
$0.6 \mathrm{D}+\mathrm{H}+\mathrm{W}=0.6 \mathrm{D}+\mathrm{H}+\mathrm{W}$
where
D = dead load
H = Pressure load
$\mathrm{W}=$ Wind load
Gust-Factor Calculations for the Operating Condition:

$$
\begin{aligned}
& \bar{z}=0.6 h \\
& =0.60(80.4152) \\
& =48.2491
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{I}_{\bar{z}}=c\left(\frac{33}{\bar{z}}\right)^{1 / 6} \\
& =0.200\left(\frac{33}{48.2491}\right)^{1 / 6} \\
& =0.1877 \\
& \mathrm{~L}_{\bar{z}}=l\left(\frac{\bar{z}}{33}\right)^{\bar{\varepsilon}}=500\left(\frac{48.2491}{33}\right)^{0.200} \\
& =539.4673 \\
& Q=\sqrt{\frac{1}{\left(1+0.63\left(\frac{h+O D}{L_{\bar{z}}}\right)^{0.63}\right)}} \\
& \mathrm{Q}=0.9156 \\
& \mathrm{~V}_{\bar{z}}=\bar{b}\left(\frac{\bar{z}}{33}\right)^{\bar{\alpha}} \mathrm{V}_{\text {ref }}\left(\frac{88}{60}\right) \\
& =0.6500\left(\frac{48.2491}{33}\right)^{0.1538}(85)\left(\frac{88}{60}\right) \\
& =85.9102 \\
& \mathrm{~N}_{1}=f_{1}\left(\frac{\mathrm{~L}_{\bar{z}}}{\mathrm{~V}_{\bar{z}}}\right)=0.9534\left(\frac{539.4673}{85.9102}\right)=5.9867 \\
& \mathrm{R}_{n}=\frac{7.465 \mathrm{~N}_{1}}{\left(1+10.302 \mathrm{~N}_{1}\right)^{5 / 3}}=\frac{7.465(5.9867)}{(1+10.302(5.9867))^{5 / 3}}=0.0452 \\
& \eta_{1}=\frac{4.60 f_{\mathrm{f}} h}{\mathrm{~V}_{\bar{z}}}=\frac{4.60(0.9534)(80.4152)}{85.9102}=4.1050 \\
& R_{h}=\frac{1}{n_{1}}-\frac{1-e^{-2 n_{1}}}{2 n_{1}^{2}}=\frac{1}{4.1050}-\frac{1-e^{-2(4.1050)}}{2(4.1050)^{2}}=0.2139
\end{aligned}
$$

$$
\begin{aligned}
& \eta_{2}=\frac{4.60 f_{1}(\mathrm{OD})}{\mathrm{V}_{\bar{z}}}=\frac{4.60(0.9534)(2.0417)}{85.9102}=0.1042 \\
& R_{B}=\frac{1}{\eta_{2}}-\frac{1-e^{-2 \eta_{2}}}{2 \eta_{2}^{2}}=\frac{1}{0.1042}-\frac{1-e^{-2(0.1042)}}{2(0.1042)^{2}}=0.9340 \\
& \eta_{3}=\frac{15.40 f_{1} \mathrm{~d}}{\mathrm{~V}_{\bar{z}}}=\frac{15.40(0.9543)(2.0417)}{85.9102}=0.3489 \\
& \mathrm{R}_{d}=\frac{1}{\eta_{3}}-\frac{1-e^{-2 \eta_{3}}}{2 \eta_{3}^{2}}=\frac{1}{0.3489}-\frac{1-e^{-2(0.3489)}}{2(0.3489)^{2}}=0.8029 \\
& \mathrm{R}=\sqrt{\left(\frac{1}{\beta}\right) \mathrm{R}_{n} \mathrm{R}_{h} \mathrm{R}_{\mathrm{B}}\left(0.53+0.47 \mathrm{R}_{d}\right)} \\
& R=\sqrt{\left(\frac{1}{0.0191}\right)(0.0452)(0.2139)(0.9340)(0.53+0.47(0.8029))}=0.4286 \\
& g_{R}=\sqrt{2 \operatorname{Ln}\left(3600 f_{1}\right)}+\frac{0.577}{\sqrt{2 \operatorname{Ln}\left(3600 f_{1}\right)}} \\
& g_{R}=\sqrt{2 \operatorname{Ln}(3600(0.9534))}+\frac{0.577}{\sqrt{2 \operatorname{Ln}(3600(0.9534))}}=4.1781 \\
& \mathrm{G}_{f}=\frac{0.925\left(1+1.7 \mathrm{I}_{\bar{z}} \sqrt{g_{\mathrm{Q}}^{2} \mathrm{Q}^{2}+g_{R}^{2} \mathrm{R}^{2}}\right)}{\left(1+1.7 g_{v} \mathrm{I}_{\bar{z}}\right)} \\
& \mathrm{G}_{f}=\frac{0.925\left(1+1.7(0.1877) \sqrt{(3.40)^{2} 0.8383+(4.1781)^{2}(0.4286)}\right)}{(1+1.7(3.40)(0.1877))}=1.0303
\end{aligned}
$$

Wind Pressure Calculations:

$$
\begin{gathered}
\mathrm{K}_{z}=2.01\left(\frac{z}{z_{g}}\right)^{2 / a}=2.01\left(\frac{z}{900}\right)^{0.2105} \\
a_{z}=0.00256 \mathrm{~K}_{z} \mathrm{~K}_{z t} \mathrm{~K}_{d} \mathrm{~V}^{2} \mathrm{I}=0.00256 \mathrm{~K}_{z}(1.0)(0.950)(85.0)^{2}(1.0) \\
\mathrm{WP}=q_{z} \mathrm{G}_{f} \mathrm{C}_{f}\left(\text { Minimum of } 10 \frac{\mathrm{l} \mathrm{~b}_{\mathrm{f}}}{\mathrm{ft}^{2}}\right) \\
\mathrm{WP}=a_{z}(1.0303)(0.7)=0.7212 a_{z}
\end{gathered}
$$

Table 4.7 lists the wind pressures for the job site
Table 4.8 shows the wind loadings that the turnaround team requested. From this table, you can quickly determine the stresses imposed by the wind when the proper areas of repair and PWHT are determined.

TABLE 4.7 Wind Pressures

Height Z (ft)	K_{z}	$q_{z}(\mathrm{psf})$	WP: Operating (psf)
15.0	0.8489	14.92	10.76
20.0	0.9019	15.85	11.43
25.0	0.9453	16.61	11.98
30.0	0.9823	17.26	12.45
40.0	1.0436	18.34	13.22
50.0	1.0938	19.22	13.86
60.0	1.1741	20.63	14.88
70.0	1.2075	21.22	15.30
80.0	1.2379	21.75	15.69
90.0			
			14.40

| TABLE 4.8 | Wind Loadings and Deflection Report | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |

REFERENCES

1. ASME STS-1-2006, American Society of Mechanical Engineers, 2006, New York, NY.
2. ASCE, American Society of Civil Engineers, ASCE 7-2005, Minimum Design Loads for Buildings and Other Structures ,New York, NY, 2005.
Bscoe, A. Keith, Mechanical Design of Process Systems, vol. 1, 2nd edition. Gulf Publishing Company Houston,Texas 19,95

Chapter 5

Pressure Vessel Internal Assessment

The internals of pressure vessels are what make the vessels work. The processing of f uids is the inte gral function of these pressure v essels. As a result, the failure of internals af fects the performance of an y operating facility. The consequence of such failures normally results in unscheduled shutdo wns, depending on the se verity of the damage. Not much has been written on this subject because people do not w ant to admit to such f ailures-let alone adv ertise the event. Thus, this chapter was diff cult to write but is based on actual cases. This chapter does not address the design of internals, but rather the assessment of the mechanisms that cause f ailures of internals. The most common f ailure of the internals of pressure v essels is fatigue. Figure 5.1 shows a fatigue failure that initiated the collapse of the internals of an MTBR Regenerator air distributor.

The failure shown in Figure 5.1 involved more than just f atigue alone. In a large f uidized bed, pulsation of the internal f uids initiates strong and rapidly changing forces. F or such services, the internals must be designed adequately

FIGURE 5.1 The collapse of internals of an MTBR Regenerator air distributor.

FIGURE 5.2 Adiistributor piping.

FIGURE 5.3 Gus§date attachment.
for these conditions. In this failure, the large pulsation responses throughout the f uidized bed ripped out trays and other internals, and the y were piled up at the bottom of the vessel.

Figufe 2 shows air distributor piping in this scenario. Figufe 3 provides a closer view of the f atigue failure. Here, a f atigue crack initiated in a gusset plate attachment set up the f atigue crack that propagated and allo wed the air distributor pipe to break completely.

The fatigue crack in the gusset plate attachment resulted in lar ge stress concentrations. W ith a highly c yclic service, the f atigue crack initiated and resulted in the e ventual failure of the air distrib utor pipe. The use of abrupt geometric boundaries on surfaces is not good practice in cyclic service because of stress intensif cation.

The effect of the large pulsation forces is graphically sho wn in Figure 5.4. The bent channels and w arped sections resulted from the po werful pressure pulsations extending up and down the regenerator.

The only member of this v essel left standing upright is the center pipe shown on the f ar right in Figure 5.4. Everything attached to this center pipe was ripped loose-including the thermowells on the walls.

Figure 5.5 shows w arped reinforcing sections, a result of the forces described in the preceding paragraphs.
gearding the f gures shown here, there w as argument between the parent company and consultants as to what initiated such f ailures. The parent company thought that thermal gradients were the root cause; ho wever, lab tests conf rmed the failure shown in Figure 5.3 was due to fatigue.

During the reb uild, for ged f ttings with smooth surf ace contours and self-reinforced nozzle designed for a c yclic surface, as sho wn in Figure 5.6, replaced gusset plates shown in Figures 5.2 and 5.3.

FORCES ON INTERNAL COMPONENTS

Forces exerted on internal components can be controlled with proper operational procedures. Ho wever, if procedures are violated and/or mistak es are made, such internal forces can be multiplied in magnitude.

FIGURE 5.5 adfed reinforcing members.

FIGURE 5.6 orged ftting designed for c yclic service w as an inte gral part of the reb uild and withstood the pulsation pressure forces (courtesy of WFI International, Inc.).

As you can see in the pre vious f gures, f uid forces acting on internals can be enormous. T ypically, column internals are designed to accommodate the weight of at least one man, depending on the diameter of the column. A typical value would be a do wnward force of 1000 Ne wtons. The weight of f uid on trays in a column w ould be equi valent to twice the weir height with

Slow (spatially uniform) compression

Rapid (propagative) compression

FIGURE 5.7 Comparisofispatially uniform compression to propagative compression.
a stipulated minimum hydrostatic weight per unit area of the trays. A typical minimum value would be $1 \mathrm{KR}(0.001 \mathrm{MPa})$ or 0.145 psi.The upward and downward pressures induced by the process conditions must be stipulated by the process engineers or licensor . Typical values for upw ard and do wnward pressures would be approximately 2 KR .

Thdef ection of sieve, valve, grid, and bubble trap trays is held to a minimum to minimize disruption of the process. One typical v alue is $1 / 800$ times the column diameter with a maximum of 6 mm .

In fuidized bed reactors and re generators, the magnitude of compressed gas pressure varies whether the compression is made slo wly or rapidly. A gas that is compressed slo wly such that the pressure rises uniformly in a control volume is kno wn as slow, or spatially uniform, compression. A rapidly compressed gas, such as by a rapid piston motion, is kno wn as propagative compression. Figure 5.7 shows the schematics of both spatially uniform and propagative compression.

Moody [1] has shown that, for a gas to be compressed skely so that its pressure rises uniformly in a c ylinder, the compressed pressure is 43% of the pressure obtained by rapid, or propagati ve, pressure. Referring to Figure 5.7, the f nal pressure of the gas for each case, you consider the following parameters:
$k=1.4=$ gasatio of specif c heats

$$
\frac{V}{V_{i}}=\frac{1}{2}
$$

Pi= 1. Matmosphere
$P s=1$ 1atmospheres
$F=\mathrm{PA}$

For spatially uniform compression, the amount of work done is

$$
d W_{k}=F d x=P A d x=-P d V=\frac{1}{k-1} d(P V)
$$

The last term is the change in internal energy, where

$$
d U=\frac{1}{k-1} d(P V)
$$

Now,

$$
\begin{gathered}
\int_{P_{\mathrm{i}}}^{P} \frac{d P}{P}=-k \int_{V_{\mathrm{i}}}^{V} \frac{d V}{V} \\
\frac{P}{P_{i}}=\left(\frac{V_{i}}{V}\right)^{k}=(2)^{1.4}=2.6
\end{gathered}
$$

Likewise, for rapid, or propagati ve, compression, you ha ve the follo wing: $F s=\mathrm{PsA}$

$$
d W_{k}=F_{s} d x=P_{s} A d x=P_{s} d V=\frac{1}{k-1} d(P V)
$$

where

$$
d U=\frac{1}{k-1} d(P V)
$$

Now,

$$
\begin{gathered}
\int_{P_{\mathrm{i}}}^{P} \frac{d P}{P+(k+1) P_{s}}=-\int_{V_{\mathrm{i}}}^{V} \frac{d V}{V} \\
\frac{P}{P_{i}}=\frac{V}{V_{i}}+(k-1) \frac{P_{s}}{P_{i}}\left(\frac{V_{i}}{V}-1\right) \\
\frac{P}{P_{i}}=2+(1.4-1)(10)(2-1)=6
\end{gathered}
$$

Thus, you can see that the propagati ve compression results in a f nal pressure are 2.3 times that produced by spatially uniform compression. There is the added effect of shock with propagati ve compression that can enhance forces exerted on internal vessel components.

LINED PLATES AND INTERNAL COMPONENTS

Vessels are lined with another material to pro vide corrosion resistance. The lining we are addressing here is metal clad plates. These plates ha ve the following features:

1. Wld overlaid.
2. They are integrally clad by explosion welding.
3. They are produced from a roll-bonded integrally clad plate by forming into a cylinder and welding.

In a vessel's operating life, there will be shutdowns and startups. During each of these cycles, the base metal and clad will e xperience different thermal movements, resulting in shear stresses. These stresses v ary as to the relati ve coeff cient of thermal expansion of the two metals. This phenomenon can be analyzed through fatigue analysis, which we will not go into here. The only justif cation for such an analysis is if man y shutdown and startup cycles are expected, resulting in cyclic service. The vast majority of time this phenomenon is not a concern in the operating unit.

Most licensors of v arious processes ha ve limitations on loadings on clad metal surfaces. A typical requirement is to limit a structural support welded to a clad surf ace to 13 mm in thickness, with a maximum stress induced by the loading to 34.48 MR (5 ksi).

HELPFUL STRUCTURAL FORMULATIONS

The following are formulations for various structural attachments.

Tray Support Ring

Figure 5.8 illustrates a tray support ring. The required thickness and resulting def ection of the support ring are deri ved from Roark [2]. These equations are based on the material ha ving a Poisson ratio of $1 / 3$. F or more comprehensive equations, including a different Poisson ratio, refer to Roark [2]. The tray support ring thickness equation and the maximum def ection equations at the ring center are as follows:

$$
\begin{equation*}
t_{r}=\sqrt{\frac{3 r_{o} w}{2 S_{r}}\left(1-\frac{r_{o}^{2}}{a^{2}}\right)+\frac{18 M}{S_{r}}\left(\frac{b^{2}}{a^{2}+2 b^{2}}\right)} \tag{5.1}
\end{equation*}
$$

where,
$t_{r}=$ required support ring thickness, not including corrosion allo wance, in, mm
a, b, r_{o} are def ned in Figure 5.8
$S_{r}=$ allowable stress at temperature, $\mathrm{psi}(\mathrm{MPa})$
$w=$ Force per unit length at a point on the ring. Sho wn on the right side of Figure 5.8 is the axisymmetric representation of the support ring, $\mathrm{lb}_{\mathrm{f}} / \mathrm{in}$ (N / mm).

$$
\begin{equation*}
M=\frac{w r_{\mathrm{o}}}{6}\left[2 L N\left(\frac{a}{r_{\mathrm{o}}}\right)+\frac{r_{\mathrm{o}}^{2}}{a^{2}}-1\right] \tag{5.2}
\end{equation*}
$$

FIGURE 5.9 Support clip welded on two sides with fllet welds; see Giachino et al. [3].

Support Clip Welded on Two Sides with Fillet Welds with Force on Short End

A welded clip is illustrated in Figure 5.9. The weld stresses are as follows:

$$
\begin{gather*}
\sigma_{\max }=\frac{4.24 P e}{h L^{2}}, \mathrm{psi}(\mathrm{MPa}) \tag{5.3}\\
\tau_{\text {avg }}=\frac{0.707 P}{h L}, \mathrm{psi}(\mathrm{MPa}) — \text { Average shear stress in weld } \tag{5.4}
\end{gather*}
$$

From the von Mises theory, the combined stress is

$$
\begin{equation*}
\sigma_{c}=\sqrt{\sigma_{\max }^{2}+3 \tau^{2}} \tag{5.5}
\end{equation*}
$$

Hicks [4] recommends the following for computing weld stresses:

$$
\begin{equation*}
\sigma_{c}=\beta \sqrt{\sigma_{\max }^{2}+3 \tau^{2}} \tag{5.6}
\end{equation*}
$$

where. $8 \leq \beta \leq 0.9$.

Example 5.1

The following is an example of a design of a support clip with fillet welds with a force applied at the short end of the clip.
A clip with $\mathrm{L}=127 \mathrm{~mm}, h=6 \mathrm{~mm}, \mathrm{P}=31,000 \mathrm{~N}, e=76 \mathrm{~mm}$.
The maximum stress in the welds is from Eq. 5.3:

$$
\begin{aligned}
& \sigma_{\max }=\frac{4.24(31,000) \mathrm{N}(76) \mathrm{mm}}{(6) \mathrm{mm}(127)^{2} \mathrm{~mm}^{2}}=103.2 \mathrm{MPa} \\
& \sigma_{\text {allow }}=0.6 \sigma_{y}=0.6(248) \mathrm{MPa}=148.8 \mathrm{MPa}
\end{aligned}
$$

where $\sigma_{y}=$ specified minimum yield strength, psi (MPa)
Now, from Eq. 5.4, you can calculate

$$
\begin{gathered}
\tau_{\text {avg }}=\frac{0.707(31,000) \mathrm{N}}{(6) \mathrm{mm}(127) \mathrm{mm}}=28.8 \mathrm{MPa} \\
\tau_{\text {allow }}=(0.4) \sigma_{y}=(0.4)(248) \mathrm{MPa}=99.2 \mathrm{MPa} \\
\sigma_{c}=0.9 \sqrt{103.2^{2}+3(28.8)^{2}}=103.2 \mathrm{MPa} \\
\sigma_{\mathrm{c}}^{\text {allow }}=0.6 \sigma_{y}=0.6(248) \mathrm{MPa}=148.8 \mathrm{MPa}
\end{gathered}
$$

With $\sigma_{\text {max }}, \tau_{\text {avg }}, \sigma_{\mathrm{c}}$ are below their respective allowable stresses, and the 6 mm fillet welds an each side of the plate are satisfactory. The plate should be $2 \mathrm{~mm}\left(1 / 16^{\prime \prime}\right)$ greater than the weld size, so an 8 mm thick plate should suffice. With a corrosion rate of 3 mm , the actual clip plate thickness is 11 mm .

Note: The total load is transmitted through the fillet welds only, and no credit is given for possible bearing between the lower part of the clip and the vessel wall. The assumption that the shear, $t_{\text {avg, }}$, is carried uniformly in the welds is ubiquitously accepted.

You can find the derivation of these equations in Bednar, pp. 268-269 [5].

Support Clip with Applied Tensile Force

A welded clip is shown in Figure 5.10.

$$
\begin{equation*}
\sigma=\frac{P}{\left(\frac{h}{\cos 45^{\circ}}\right) L}=\frac{0.707 P}{h L} \mathrm{psi}(\mathrm{MPa}) \tag{5.7}
\end{equation*}
$$

FIGURE 5.10 Support clip with applied tensile force; see Giachino et al. [3].
where
the weld throat size, $t=\frac{h}{\cos 45^{\circ}}$ in (mm) for each f llet weld $h=\lg$ size of the fllet weld, in (mm)

See the note in the preceding section. Also, for the derivation of these equations, see Bednar, pp. 268-269 [5].

Support Clip with Out-of-Plane Bending Moment

A support clip with an out-of-plane bending moment is shown in Figure 5.11.

$$
\begin{equation*}
\sigma=\frac{1.414 M_{y y}}{h L(b+h)} \operatorname{psi}(\mathrm{MPa}) \tag{5.8}
\end{equation*}
$$

Support Clip with an In-Plane Bending Moment

A support clip with an in-plane bending moment is shown in Figure 5.12.

$$
\begin{equation*}
\sigma=\frac{4.24 M_{z z}}{h L^{2}} \operatorname{psi}(\mathrm{MPa}) \tag{5.9}
\end{equation*}
$$

FIGURE 5.11 Support clip with an out-of-plane bending moment, $\quad M_{y y}$; see Giachino et al. [3]

Support Clip with Continuous Fillet Weld with an Out-of-Plane Bending Moment, $M_{y y}$

A support clip with continuous f llet weld with an out-of-plane bending moment is shown in Figure 5.13.

$$
\begin{equation*}
\sigma=\frac{4.24 M_{y y}}{h\left[b^{2}+3 L(b+h)\right]} \operatorname{psi}(\mathrm{MPa}) \tag{5.10}
\end{equation*}
$$

Support Clip with Continuous Fillet Weld with an In-Plane Bending Moment, $M_{z z}$

A support clip with continuous f llet weld with an in-plane bending moment is shown in Figure 5.14.

$$
\begin{equation*}
\sigma=\frac{4.24 M_{z z}}{h\left[L^{2}+3 b(L+h)\right]} \operatorname{psi}(\mathrm{MPa}) \tag{5.11}
\end{equation*}
$$

FIGURE 5.12 Support clip with an in-plane bending moment, $M_{z z}$; ;ee Giachino et al. [3]

FIGURE 5.13 Suppaltip with continuous flet weld with an out-of-plane bending moment, $M_{y y}$;see Giachino et al. [3]

FIGURE 5.14 Suppartip with continuous f llet weld with an in-plane bending moment, $M_{z z}$; see Giachino et al. [3]

Example 5.2

An example illustrating the design of a support clip with continuous fillet weld with an in-plane bending moment.
A support clip has an in-plane bending moment of 50 kNM . The clip has the following parameters:
$\mathrm{L}=300 \mathrm{~mm} ; b=120 \mathrm{~mm}$; weld size $=t=5 \mathrm{~mm}$
Now, $M=50 \mathrm{KNm}=50,000 \mathrm{Nm}$

$$
h=\frac{t}{\cos 45^{\circ}}=\frac{5 \mathrm{~mm}}{\cos 45^{\circ}}=7.071 \mathrm{~mm}
$$

Using Eq. 5.11, you can calculate

$$
\sigma=\frac{4.24(50,000) \mathrm{Nm}\left(\frac{1000 \mathrm{~mm}}{\mathrm{~m}}\right)}{(7.07 \mathrm{l}) \mathrm{mm}\left[300^{2}+3(120)(300+7.071] \mathrm{mm}^{2}\right.}=149.5 \mathrm{MPa}
$$

Hicks, p. 87-88 [4], has a more comprehensive solution. However, the preceding equation is much simpler and very accurate.

TABLE 5.1 Wire and Sheet-Metal Gauges (Diameters and thickness values are in decimals of an inch)

Gauge No.	American wire gauge, or Brown and Sharpe (for copper wire)	Steel wire gauge, or Washburn and Moen or Roebling (for steel wire)	Birmingham wire gauge (B.W.G.) (for steel wire or sheets)	Stubs steel wire gauge	U.S. standard gauge for sheet metal (iron and steel) 480 lb per cu ft	AISI inch equivalent for U.S. steel sheet thickness
0000000		0.4900			0.500	
000000		0.4615			0.469	
00000		0.4305			0.438	
0000	0.460	0.3938	0.464		0.406	
000	0.410	0.3625	0.425		0.375	
00	0.365	0.3310	0.380		0.344	
0	0.325	0.3065	0.340		0.312	
1	0.289	0.2830	0.300	0.227	0.281	
2	0.258	0.2625	0.284	0.219	0.266	
3	0.229	0.2437	0.259	0.212	0.250	0.2391
4	0.204	0.2253	0.238	0.207	0.234	0.2242
5	0.182	0.2070	0.220	0.204	0.219	0.2092
6	0.162	0.1920	0.203	0.201	0.203	0.1943
7	0.144	0.1770	0.180	0.199	0.188	0.1793

TABLE 5.1 Continued

Gauge No.	American wire gauge, or Brown and Sharpe (for copper wire)	Steel wire gauge, or Washburn and Moen or Roebling (for steel wire)	Birmingham wire gauge (B.W.G.) (for steel wire or sheets)	Stubs steel wire gauge	U.S. standard gauge for sheet metal (iron and steel) 480 lb per cu ft	AISI inch equivalent for U.S. steel sheet thickness
8	0.128	0.1620	0.165	0.197	0.172	0.1644
9	0.114	0.1483	0.148	0.194	0.156	0.1495
10	0.102	0.1350	0.134	0.191	0.141	0.1345
11	0.091	0.1205	0.120	0.188	0.125	0.1196
12	0.081	0.1055	0.109	0.185	0.109	0.1046
13	0.072	0.0915	0.095	0.182	0.094	0.0897
14	0.064	0.0800	0.083	0.180	0.078	0.0747
15	0.057	0.0720	0.072	0.178	0.070	0.0673
16	0.051	0.0625	0.065	0.175	0.062	0.0598
17	0.045	0.0540	0.058	0.172	0.056	0.0538
18	0.040	0.0475	0.049	0.168	0.050	0.0478
19	0.036	0.0410	0.042	0.164	0.0438	0.0418
20	0.032	0.0348	0.035	0.161	0.0375	0.0359
21	0.0285	0.0317	0.032	0.157	0.0344	0.0329

22	0.0253	0.0286	0.028	0.155	0.0312	0.0299
23	0.0226	0.0258	0.025	0.153	0.0281	0.0269
24	0.0201	0.0230	0.022	0.151	0.0250	0.0239
25	0.0179	0.0204	0.020	0.148	0.0219	0.0209
26	0.0159	0.0181	0.018	0.146	0.0188	0.0179
27	0.0142	0.0173	0.016	0.143	0.0172	0.0164
28	0.0126	0.0162	0.014	0.139	0.0156	0.0149
29	0.0113	0.0150	0.013	0.134	0.0141	0.0135
30	0.0100	0.0140	0.012	0.127	0.0125	0.0120
31	0.0089	0.0132	0.010	0.120	0.0109	0.0105
32	0.0080	0.0128	0.009	0.115	0.0102	0.0097
33	0.0071	0.0118	0.008	0.112	0.0094	0.0090
34	0.0063	0.0104	0.007	0.110	0.0086	0.0082
35	0.0056	0.0095	0.005	0.108	0.0078	0.0075
36	0.0050	0.0090	0.004	0.106	0.0070	0.0067
37	0.0045	0.0085		0.103	0.0066	0.0064
38	0.0040	0.0080		0.101	0.0062	0.0060
39	0.0035	0.0075		0.099		

TABLE 5.1 Continued

	American wire gauge, or Brown and Sharpe (for copper wire)	Steel wire gauge, or Gauge No. or Roebling (for steel wire)	Birmingham wire gauge (B.W.G.) (for steel wire or sheets)	Stubs steel wire gauge
40	0.0031	0.0070	U.S. standard gauge for sheet metal (iron and steel) 480 lb per cu ft	
41	0.0066	0.097		
42	0.0062	0.095		
43	0.0060	0.092		
44	0.0058	0.088		
45	0.0055	0.085		
46	0.0052	0.081		
47	0.0050	0.079		
48	0.0048	0.077		
49	0.0046	0.075		
50	0.0044	0.072		

INTERNAL EXPANSION JOINTS

Internal expansion joints are used to accommodate dif ferential expansion of vessel components. The most common type of e xpansion joint used in pressure vessels is bellows expansion joints. These joints are normally thin-walled, with a normal minimum wall of $1 / 16^{\prime \prime}(1.5 \mathrm{~mm})$. When these devices are used, there should be a contingenc y plan for accessing them when the y fail. Most bellows expansion joints have a life span of 10-11 years. If a bello ws expansion joint is located in a space with no access, then the shell w all must be cut open, which results in labor-intensive and complex repairs that require a lar ge number of man hours. Access space in the e xpansion joint enclosure must be designed for personnel to perform maintenance. The access space should also contain enough room to accommodate ne w repair components, such as a clam shell. The clam shell is a bello ws expansion joint that f ts o ver an e xisting joint; it eliminates the removal of an existing bellows expansion joint. It has to be welded by a highly skilled welder, and that person needs space to work.

This clam shell de vice is f abricated welding bello ws pro vided in multiple sections for installation o ver an e xisting element or o ver a piping system that has internal components such as tube b undles. The welding of clam shells requires the longitudinal seams of the bello ws element to be welded manually, thus requiring a welder who has a very high degree of skill. These devices can signif cantly shorten the shutdo wn or turnaround time required to repair a damaged bellows expansion joint. Along with the repair, expansion joint components, such as hinges and gimbal boxes, can be installed along with pressure monitoring systems to alert you to future leaks.

Expansion joints bello ws may be described in terms of gauge of metal, being that the y are usually v ery thin. This term is not uncommon in welding and general plant repair w ork. For the reader's reference, Table 5.1 lists wire and sheet metal gauges. The Birmingham wire gauge (B.W .G.) is v ery common for tubes.

REFERENCES

[^1]
Chapter 6

Safety Considerations for Lifting and Rigging

Safety cannot be o veremphasized in almost all applications, b ut especially in lifting and rigging of equipment. These principles are v alid for whatever is to be lifted, whether it in volves pressure vessels and stacks, marine ship yard applications, aerospace use, or any of the many more needs for lifting and rigging.

The purpose of this chapter is to highlight safety issues and, more important, relevant safety standards. Also listed are helpful feld reference cards, which are used widely in the f eld for v aluable reference material; the y are a vailable on weatherproof pocket cards for easy access.

THE CONCEPT OF A TON WEIGHS HEAVY WHEN LIFTING

The unit of measurement, the ton, means different things to different people. In the metric SI, the concept is simple: A metric ton equals 1,000 kilograms. Hovever, in U.S. Customary units, the ton can be tricky. The ton in U.S. Customary units is deri ved from hundredweights. A short ton and long ton are equal to 20 hundredweights; ho wever, a short hundredweight is equal to 100 pounds, and a long hundredweight is equal to 112 pounds. Thus, a short ton is

$$
\text { (20) hundredweights }(100)=2000 \mathrm{lb}_{\mathrm{m}}
$$

Thbong ton is likewise (20) hundredweights $(112)=2240 \mathrm{lb}_{\mathrm{m}}$

In lifting and in general practice, the short ton is used in the United States. However, in countries that formerly used the Imperial system of units, the long ton is referred to as a weight ton or gross ton. The long ton is used for petroleum products such as oil tank ers hauling petroleum products. This trend is changing toward the wider use of the metric ton.

The metric ton is sometimes referred to as the tonne and is equal to 1,000 kilograms or 2,204.6 lk . Lifting and rigging in the United States use the short ton, meaning 2000 lb . The short ton is simply called ton in the United States, or sometimes net ton .

Another example of the adv antage of the metric SI system of units is that you do not have to worry about long or short, but simply a metric ton, or tonne. The issue is confusing to the point that purchasing groups apply all units for each pressure vessel or stack shipped. Normally, a chart is made sho wing the shipping weight of the item in short tons, long tons, and metric tons to a void confusion.

MAXIMUM CAPACITY OF SLINGS

The angle between a sling and a horizontal plane is v ery important. This concept is illustrated by the simple double sling sho wn in Figure 6.1. When looking at this f gure, you can mak e some basic assumptions. One assumption is that the tw o slings are attached to a common body , or mass. The second assumption is that the center of gravity, or CG (to be discussed later), is equally distant between the two lift points.

The capacity of the tw o slings is a function of the angle θ. For equilibrium to exist,

$$
\begin{equation*}
2 F \sin \theta=L O A D \tag{6.1}
\end{equation*}
$$

Solving for the load in each sling, you have

$$
\begin{equation*}
F=\frac{L O A D}{2 \sin \theta} \tag{6.2}
\end{equation*}
$$

FIGURE 6.1 Load vectors and sling angles. The force vectors are shown in the upper right. The two slings form is known as a two-leg bridle.

Thus, using U.S. Customary units, if $L O A D=50$ tons and $\theta=60$ then, the force in each sling is

$$
F=\frac{L O A D}{2 \sin \theta}=\frac{50 \text { tons }}{2 \sin (60)}=28.87 \text { tons }
$$

For $\theta=45^{\circ}$,

$$
F=\frac{50 \text { tons }}{2 \sin (45)}=35.36 \text { tons }
$$

andor $\theta=30^{\circ}$,

$$
F=\frac{50 \text { tons }}{2 \sin (30)}=50 \text { tons }
$$

This discussion is in conformance with the ANSI/ASME B30.9 and good engineering practice.

Thus, the maximum capacity ($M L$) of each sling conf guration is propor tional to the sling angle, θ. With a sling angle of 30°, the force in the sling is $50 / 28.87=1.732$ times the force in the sling using a sling angle of $\theta=60^{\circ}$. Thus, using a sling angle of $\theta=60^{\circ}$, the sling has 1.732 times the capacity of using a sling angle of $\theta=30^{\circ}$. Stated dif ferently, using a sling angle of 30° results in a force in the sling which is 1.732 times the force in a sling if one were using a sling angle of 60°.

Sling manufacturers use the concept of $M L$ in maximum capacity charts. In Figure 6.1 using $\theta=30^{\circ}$, the load in each sling is equal to the $L O A D$.Hence, for two slings with $\theta=60^{\circ}$, a sling manuf actured for taking a tensile force equal to the $L O A D$, the maximum capacity for the tw o slings, $M L$, would be $1.732 \times L O A D$, or

$$
\begin{equation*}
M L=(2 \sin \theta) L O A D \tag{6.3}
\end{equation*}
$$

Thus, for $\theta=60^{\circ}$,

$$
\begin{equation*}
M L=[2 \sin (60)] L O A D=1.732 L O A D \tag{6.4}
\end{equation*}
$$

Similarlfor

$$
\begin{array}{ll}
\theta=45^{\circ}, & M L=[2 \sin (45)] L O A D=1.4142 L O A D \\
\theta=30^{\circ}, & M L=[2 \sin (30)] L O A D=L O A D \tag{6.6}
\end{array}
$$

It is common practice to mak e the sling angle, θ, equal to or greater than 45°, preferably 60°.

Example 6.1 The Kilo Newton Problem

For this example, suppose you are in Australia and have to lift an Americanbuilt tank that weighs $2500 \mathrm{lb}_{\mathrm{m}}$. The crane from Germany you have available is rated at 20 KN . The metric SI is the only acceptable system of units in Australia, so you must talk, speak, and calculate in metric SI.

From Chapter 1 remember the following:

$$
\begin{equation*}
\mathrm{F}=(1.0 \mathrm{Kg})\left(\frac{9.807 \frac{\mathrm{~m}}{\mathrm{sec}^{2}}}{1 \frac{\mathrm{Kg}-\mathrm{m}}{\mathrm{~N}-\mathrm{sec}^{2}}}\right)=9.807 \mathrm{~N} \tag{1.3}
\end{equation*}
$$

The German crane could safely lift

$$
20 \mathrm{KN}=20,000 \mathrm{~N}
$$

Using Eq. 1.3, you have

$$
\operatorname{Mass}(\mathrm{Kg})=\mathrm{F}^{*}\left(\frac{g_{c}}{g}\right)=20,000 \mathrm{~N} *\left(\frac{1 \frac{\mathrm{Kg}-\mathrm{m}}{\mathrm{~N}-\mathrm{sec}^{2}}}{9.807 \frac{\mathrm{~m}}{\mathrm{sec}^{2}}}\right)=2039.4 \mathrm{Kg}
$$

So the crane is rated at roughly 2039 Kg . Using the U.S. Customary system of units, you calculate $2039.4 \mathrm{Kg}=4496.1 \mathrm{lb}_{\mathrm{m}}>2500 \mathrm{lb}_{\mathrm{m}}$, so the crane is adequate. This is a factor of safety (FOS) of

$$
\mathrm{FOS}=\frac{4496.1}{2500}=1.8
$$

Now with a sling angle of 60°, the sling capacity configuration with two slings would be from Eq. 6.4:

$$
\mathrm{ML}=1.732 \mathrm{LOAD}=1.732(2500)=4330 \mathrm{lb}_{\mathrm{m}}=1964.05 \mathrm{Kg}
$$

You now know that the maximum capacity of both slings exceeds $2500 \mathrm{lb}_{\mathrm{m}}$ $(1134 \mathrm{Kg})$ and is thus adequate. Using a typical sling manufacturer chart, shown in Table 6.1, you can select slings with an angle of 60° rated at, say, 1500 Kg , and a diameter of the sling chain of 8 mm .

TABLE 6.1 A Typical Sling Manufacturer Chart (Courtesy of Slingmax, Inc.)							
		Double Slin			Triple and	uple Sling	
Chain Size Inches	Single Branch Sling 90 degree Loading	60 degree	45 degree	 30 degree	 60 degree	45 degree	 30 degree
9/32	3,500	6,100	4,900	3,500	9,100	7,400	5,200
3/8	7,100	12,300	10,000	7,100	18,400	15,100	10,600
1/2	12,000	20,800	17,000	12,000	31,200	25,500	18,000
5/8	18,100	31,300	25,800	18,100	47,000	38,400	27,100
3/4	28,300	49,000	40,000	28,300	73,500	60,000	42,400
7/8	34,200	59,200	48,400	34,200	88,900	72,500	51,300
1	47,700	82,600	67,400	47,700	123,900	101,200	71,500
1-1/4	72,300	125,200	102,200	72,300	187,800	153,400	108,400
1-1/2	80,000	138,600	113,100	80,000	-	-	-

BRIDLES AND CENTER OF GRAVITY (CG)

Figure 6.1, earlier in the chapter, shows a two-leg bridle. When you are using bridles, lifting lugs, and trunnions, the center of gravity, or CG, is all important on how the loads are distrib uted. This concept is illustrated in more detail in Chapter 7, where we demonstrate lifting analyses.

Suppose you ha ve a four -leg bridle. The loads in the slings v ary because the slings are almost al ways unequal in length. The loads are statically indeterminate, meaning that the true load in each sling cannot be mathematically solved. In reality, the load is carried by tw o slings, while the other tw o act to balance the load. To solve this problem, you must size the bridle such that just two legs carry the full load, or you must use a spreader.

LIFT CATEGORIES

There are four lift categories described as follows:

- Light Lift: Any lift where the payload lift is 10 tons or less.
- Medium Lift: Any lift where the payload weight is o ver 10 tons but less than 50 tons.
- Heavy Lift: Any lift where the payload lift is 50 tons or greater.
- Critical Lift: An y lift that e xceeds 90% of the crane' s chart capacity; or any multiple-crane lift where either crane e xceeds 75% of the crane's load capacity or requires one or both cranes to change locations during the lifting operation; or any lift over operating or occupied facilities, operating process pipe racks, or near po wer lines; any lift involving complex rigging arrangement or that requires specialty rigging; also an y lifting operation in volving sensitive or risk to costly equipment.

In Chapter 7 we will discuss lifting hydrocrack ers that ha ve over a 1,000 metric ton lift weight. These cases are critical lifts because of the payload, and consequences of failure are prohibitive.

PREPARING FOR THE LIFT

It is al ways prudent to check with equipment manuf acturers on ho w to lift equipment the y designed and f abricated. In Chapter 3, the e xample of guy cables for f are stacks was a real scenario in Saudi Arabia. The f are tip arrived and had no lifting de vices on it. A project engineer ask ed me to design and install lifting lugs on the f are tip. Upon investigation, I discovered the f are tip was made of Allo y 600 and had v ery low specif ed minimum yield strength, meaning that the lifting lugs w ould have to be massi ve. I advised the project engineer to contact the f are tip manuf acturer on how to lift the tip to the top of the f are tip. The f are tip manufacturer responded that it purposely did not
install lifting lugs on the f are tip and that we should use plastic slings wrapped around it for lifting! The riggers used the plastic rope and successfully lifted and installed the f are tip without any lifting lugs.

Another problem that lifting lugs could ha ve caused is unequal heat distribution around the ring during f are. This is a classic e xample of making sure you lift the equipment as it is intended. Note: the same is true for the rigging. Be sure to refer to hoist and rigging equipment manuf acturers' specif cations for proper applications and limitations.

AMERICAN NATIONAL STANDARD INSTITUTE (ANSI) SAFETY CODES

ANSI standards provide comprehensive guidelines for the variety of equipment and work operations for rigging w ork. Many of these standards are enforced by the Occupational Safety and Health Administration (OSHA), among other safety regulations. These standards are as follows:

- ANSI B30.1 JACKS: Addressed in this standard are safety requirements for construction, installation, operation, inspection, and maintenance of scre w, ratchet, lever, and hydraulic jacks. Minimum inspection requirements are included before jacks are employed in use.
- ANSB30.20 Overhead and Gantry Cranes
- ANSB30.3 Hammerhead Tower Cranes
- ANSI B30.4 Portal, Tower, and Pillar Cranes
- ANSB30.6 Derricks
- ANSI B30.8 Floating Cranes and Floating Derricks
- ANSI B30.11 Monorail Systems and Underhung Cranes
- ANSB30.13 Controlled Mechanical Storage Cranes
- ANSB30.14 Side Boom Tractors
- ANSI B30.17 Ov erhead and Gantry Cranes (T op Running Bridge, Single Girder, Underhung Hoist)
- ANSB30.18 Stacker Cranes
- ANSB30.22 Articulating Boom Cranes
- ANSB30.24 Container Cranes
- ANSI B30.25 Material Handling Hybrid Cranes: Safety requirements for various kinds of cranes are established in this standard. Pro vided are frequent and periodic inspection requirements, operator qualif cations, and standard hand signals. Emphasized is the importance of utilizing the right standard for the right kind of crane.
- ANSB30.7 Base Mounted Drum Hoists
- ANSB30.16 Overhead Hoists (Underhung)
- ANSI B30.21 Manually Le ver Operated Hoists: Pro visions for detailed requirements for hoists which are frequently used in construction rigging work are covered in this standard.
- ANSI B30.9 Slings: Provisions are made for a comprehensi ve set of safety standards for the use and periodic inspection of alloy steel chain, wire rope, metal mesh, natural and synthetic f ber rope, and synthetic webbing (nylon, polyester, and polyprop ylene). The rigging personnel must ha ve a good working knowledge of this standard to ef fectively design and use slings in construction work operations.
- ANSB30.10 Hooks
- ANSI B30.12 Handling Loads from Suspended Rotorcraft (Helicopters)
- ANSB30.19 Cableways
- ANSI B30.20 Below-the-Hook Lifting Devices: In this standard are pro visions for lifting de vices such as lifting beams (spreader beams), edge grip sheet clamps, and plate clamps. The requirements for the design, abrication, inspection, and use of lifting beams.
- ANSB30.23 Personnel Lifting
- ANSI B56.1 Lift and High Lift Trucks (Forklifts)
- ANSB56.5 Guided Industrial Vehicles
- ANSB56.6 Rough Terrain Forklift Trucks
- ANSB56.7 Industrial Crane Trucks
- ANSB56.8 Personnel and Burden Carriers
- ANSI B56.9 Operator Controlled Industrial Tow Tractors
- ANSI N45.15 Hoisting, Rigging, and Transporting of Items at Nuclear Plants.

HELPFUL REFERENCES FOR RIGGING

The following references list many helpful rigging tips:
Rigger's Pocket Guide, by Construction Safety Association of Ontario, 21 Voyager Court South, Etobicoke, Ontario, Canada M9W 5M7, 1-800-781-2726.
Journeyman Rigger's Reference Card, by Parnell Services Group Training \& Inspection Resource Center, PO Box 1660, Woodland, WA 98674, in U.S. 1-888-567-8472.
Master Rigger's Reference Card, by Parnell Services Group Training \& Inspection Resource Center, PO Box 1660 Woodland, WA 98674, in U.S. 1-888-567-8472.
Lineman Rigger's Reference Card, by Parnell Services Group Training \& Inspection Resource Center, PO Box 1660, Woodland, WA 98674, in U.S. 1-888-567-8472.
Rigging Gear Inspection Card (Per ASME B30.9 \& 29 CFR 1910.184), by Parnell Services Group Training \& Inspection Resource Center, PO Box 1660, Woodland, WA 98674, in U.S. 1-888-567-8472.
Equipment Operator's Card, by Parnell Services Group Training \& Inspection Resource Center, PO Box 1660, Woodland, WA 98674, in U.S. 1-888-567-8472. This handy card list components that need to be checked for mobile cranes and boom trucks, overhead cranes, forklifts, tractor rigs/large trucks, load securement, graders, backhoes, dozers, yard tractors, and snow vehicles.
Mobile Crane Operator Reference Card, by Parnell Services Group Training \& Inspection Resource Center, PO Box 1660, Woodland, WA 98674, in U.S. 1-888-567-8472. A handy f eld reference card for planning the lift, from checking out the crane to hitch types and wire rope capacities.

Chapter 7

Lifting and Tailing Devices

This chapter describes the lifting of pressure v essels and stacks in the f eld. The perspective is from the f eld, and not design, vie wpoint. This information should be valuable to engineering designers, b ut, as mentioned, the information is more from a f eld perspective. Unfortunately, many engineering designers do not w ork in the f eld and, consequently, are not e xposed to operational and f eld problems. This chapter therefore should serve as a source of information for both f eld and engineering design off ces.

Lifting and tailing de vices are e xtremely important because their f ailure can result in the loss of property and li ves. The responsibility for lifting systems is very explicit, making the parties responsible accountable.

This chapter is partially based on the w ork of Duerr [1] and Bragassa [2]. Duerr's work is validated with laboratory tests by v arious investigators. What we are f rst concerned with are the modes of f ailures and how to prevent them. First, we will address tail and lifting lugs for lifting pressure v essels and stacks. Later , we will address lifting trunnions, which are different lifting devices than lugs.

Lifting (and tailing) lugs are pinned connections consisting of a pin extended through the lug hole connected to a shackle or a link-pin arrangement. We will discuss the latter arrangement later in this chapter . The stress distribution in a lug pin arrangement is very complex; consequently, the design code requirements are empirical. Ho wever, these empirical relationships ha ve worked o ver man y decades, and the stress prof le of the pin connection is understood well enough for general application.

The lug geometry is shown in Figure 7.1.
Using Figure 7.1 as a starting point, we will discuss the f ve basic mechanisms of failure and expand on the others. The f ve basic mechanisms of f ailure of a lug plate, as outlined by Duerr [1], are as follows:

1. Tension at net section
2. Hoop tension (splitting failure beyond hole)
3. Double plane shear failure
4. Failure by out-of-plane instability (dishing)
5. Bearingailure

Thesfailure modes are graphically shown in FigZ民éa) and 2(b) These modes of failure act independently and do not occur at the same time.

FIGURE 7.1 Theting lug conf guration

IMPACT FACTOR

In the following discussion the use of impact factors is performed in the examples, whether mentioned or not. The impact factor, also known as the dynamic load factor, is used to consider crane slippage, wind gusts, or an y other f actor resulting in an increase load. The impact f actor can vary from 1.25 to 2.0 . T ypically, 1.5 is used. This f actor varies with each compan y. For the hea vy vessels mentioned in the examples in this chapter, the client used an impact factor of 1.35. This factor is not applied to below-the-hook lifting devices, such as shackles. Shackles are proof tested to 1.33 to 2.2 , the w orking load limit, depending on the capacity (this may vary with the manufacturer). Thus shackles have a built-in factor of safety making the application of an impact factor unnecessary.

FIGURE 7.2(a) The modes of f ailure of a lifting lug (dishing is sho wn in Figure 7.2(b)) (b) ouf of the f ve modes of failure of a lifting lug. In dishing, the diagram at the top right is a side view of a lug that is deformed, or dished.

TENSION AT NET SECTION

This mode of failure is described by the following:
Let
$F_{u}=$ ultimate strength of the lug material, $\mathrm{MPa}(\mathrm{psi})$
$F_{y}=$ specied minimum yield strength of the lug material, $\mathrm{MPa}(\mathrm{psi})$
$D_{p}=$ diameter of lift pin, mm (in)
$C_{r}=$ capacity reduction factor of the pin and hole diameters
The effective width of the lug is

$$
\begin{equation*}
b_{\mathrm{eff}}=0.6 b_{e}\left(\frac{F_{u}}{F_{y}}\right) \sqrt{\frac{D_{H}}{b_{e}}} \tag{7.1}
\end{equation*}
$$

Theapacity reduction factor, $C r$, is a function of the ratio of the pin and hole diameters given by

$$
\begin{equation*}
C_{r}=1-0.275 \sqrt{1-\frac{D_{p}^{2}}{D_{H}^{2}}} \tag{7.2}
\end{equation*}
$$

The strength of a pin-connected plate in the limit state of tension in the net section is given by

$$
\begin{equation*}
P_{n}=2 b_{\mathrm{eff}} C_{r} b_{\mathrm{eff}} t F_{u} \tag{7.3}
\end{equation*}
$$

FIGURE 7.3 Refiohe ratio b_{e} / D_{t} to stress concentration factor, K_{i}.

If $P_{n}>P$, the applied load, then the lug plate is satisf actory for tension at the net section.

The pin clearance in the lug hole as a function of the stress concentration factor has been determined in lab tests. Figure 7.3 shows the pin-to-lug hole ratio plotted against the stress concentration factor for $b_{e} D_{H}=0.5$.

Figure 7.4 shows a plot of the capacity reduction f actor, Cr , plotted against the ratio D_{p} / D_{H}. Inpractice the lug hole diameter is $3 \mathrm{~mm}\left(1 / 8^{\prime}\right)$ From the stress viewpoint, as shown in Figure 2.2 and Figure 7.3, the closer D_{p} is to D_{H}, the lower the stress. Ho wever, you must be careful not to specify something that cannot be built. Using a clearance between the pin and lug diameters of $0.8 \mathrm{~mm}\left(1 / 32^{\prime \prime}\right)$ is extremely diff cult to accomplish. One reason is that, after the v essel is lifted, all it takes is for a pin to def ect a very slight amount, and the pin cannot be remo ved from the lug hole. Second, when paint is added to the lifting lug, the pin will not ft . When such tight clearances are used, the w orst e vent usually happens. The construction personnel cut a lar ger (and uneven) hole with a weld torch in the lug plate, resulting in an undesirable situation. The resulting hole lea ves a conf guration that was not considered in the calculations.

This newly cut hole presents an interesting dilemma when modeling a pin connection in a lug plate hole with the f nite element method (FEM). The angle of contact between the pin and lug plate is v ery small- 5° or less, depending on the ratio of the diameter of the pin to the diameter of the lug hole. Point contacts are very diff cult to model in FEM; the reason is that, if forces are not distrib uted over several elements, the resulting stress can be enormous and unrealistic. When the pin and lug come into contact, localized yielding occurs in the pin and lug plate.

FIGURE 7.4 Capacethuction factor, Cr , versus the ratio of D_{p} / D_{1}.

The closed-form formulations ha ve proven adequate throughout man y years. The laboratory tests re garding this issue pro vide in valuable data for the use of closed form solutions. The reason for designers specifying a v ery low $D p / D_{H}$ ratio of $0.8 \mathrm{~mm}\left(1 / 32^{\prime \prime}\right)$ is to provide a greater area of contact. When localized deformation results, which it inevitably will, such tight tolerances are not only unnecessary, but impossible to execute in the feld. Thus, $3 \mathrm{~mm}(1.8$ " should be adequate for the difference between the pin diameter and lug hole diameter.

HOOP TENSION—SPLITTING FAILURE BEYOND HOLE

The hoop tension phenomenon is perhaps the most likely mode of failure. This mode occurs when the lift force acts in tension in the hoop direction, as sho wn in Figure 7.5. This mode of f ailure is the tensile force acting on the area of the lug from the top of the lug hole to the lug edge in one plane, and the lug

FIGURE 7.5 Hteapsion forces splitting apart a lifting lug
thickness in the other plane. This is what is meant by the "hoop" direction. The hoop tensile force that tends to pull the lug apart is resisted by a direct shear through a single plane. In the AISC Manual of Steel Construction [3], Chapter D, P aragraph D3.1, states that the allo wable stress on the net area of the pin hole for pin-connected members is 0.45 Fy . Sometimes this mode of failure is referred to as "tensile splitting." The net area, A, is $(a)(t)$, as shown in Figure 7.5(a). Figure 7.5(b) shows the actual failure where the lug splits. Using the AISC criterion, you can use the equation for the hoop tension as follows:

$$
\begin{equation*}
t_{r}=\frac{P}{0.45 F_{y} a} \tag{7.4}
\end{equation*}
$$

where
$a=R-D_{H} / 2$ shown in Figure 7.5(a), mm (in)
$F_{y}=$ specied minimum yield strength of the lug material, $\mathrm{MPa}(\mathrm{psi})$
$P=$ tensile load on the lifting lug, $\mathrm{N}, \mathrm{lb}_{\mathrm{f}}$
$t_{r}=$ requiredug thickness, mm (in)
The strength of a pin-connected plate for the net area abo ve the hole, A, is given by Duerr [1] as follows:

$$
\begin{equation*}
P_{b}=C_{r} F_{u}\left[1.13 a+\frac{0.92 b}{D_{H}}\right] t \tag{7.5}
\end{equation*}
$$

where all the terms in the equation are as def ned previously. Now if $P_{b} \geq P$ and $t \geq t_{r}$, where $t=$ the actual lug thickness, then the lug is satisf actory for hoop tension.

Hoop tension is quite often the governing mode.

DOUBLE PLANE SHEAR FAILURE

The double plane shear mode of f ailure is graphically sho wn in Figure 7.6. The parameters associated with this failure are shown in Figure 7.7.

The region beyond the hole is that of shear on tw o planes which are parallel to each other and the v ector of the acting force on the lug, sho wn in Figure 7.6. The locations of the shear planes are def ned by the angle, ϕ, shown in Figure 7.7. The shear plane consists of two vertical lines from the point def ned by ϕ. The ultimate strength of the material decreases as the clearance between the pin and lug hole increases, pro vided all other dimensions remain constant. Duerr [1] records lab tests where a relationship for ϕ was developed to account for this clearance.

The computation of the shear strength of the plate requires kno wledge of the ultimate shear strength of the material, $F_{u s}$. This property is not a vailable

FIGURE 7.7 Double plane shear mode of failure and associated parameters.
and usually must be determined by empirical tests. F or purposes of this example, to be conservative, you have

$$
\begin{equation*}
F_{u s}=0.7 F_{u} \tag{7.6}
\end{equation*}
$$

Thangle ϕ is def ned as follows:

$$
\begin{equation*}
\phi=55 \frac{D_{p}}{D_{H}} \tag{7.7}
\end{equation*}
$$

The length of the shear plane, shown in Figure 7.7, is as follows:

$$
\begin{equation*}
Z=a+\frac{D_{p}}{2}(1-\cos \phi) \tag{7.8}
\end{equation*}
$$

For a lug with an outer surf ace that is a circular arc, as in Figure 7.7, the dimension Z_{1} is calculated as follows:

$$
\begin{equation*}
Z_{1}=R-\sqrt{R^{2}-\left(\frac{D_{p}}{2} \sin \phi\right)^{2}} \tag{7.9}
\end{equation*}
$$

For a rectangular or square lug, where the outer surf ace is a straight line, then $Z_{1}=0$.

For the strength of a pin-connected plate in the limit state of a double plane shear for a lug with a circular edge,

$$
\begin{equation*}
P_{s}=2\left(Z-Z_{1}\right) F_{u s} \tag{7.10}
\end{equation*}
$$

For a rectangular plate with a straight top edge,

$$
\begin{equation*}
P_{s}=2 Z F_{u s} \tag{7.11}
\end{equation*}
$$

Now, continuing with the circular edge lug plate, the area of shear is

$$
\begin{equation*}
A_{\text {shear }}=2\left(Z-Z_{1}\right) t \tag{7.12}
\end{equation*}
$$

The shear stress in the lug plate is

$$
\begin{equation*}
\tau=\frac{P_{S}}{A_{\text {shear }}} \tag{7.13}
\end{equation*}
$$

The acceptance criteria for double shear are as follows:
If $\leq 0.4 F_{y}$ then the lug is satisfactory for double shear.
If $\tau>0.4 F_{y}$ then the lug is not satisfactory for double shear.

OUT-OF-PLANE INSTABILITY (DISHING) FAILURE

The out-of-plane instability mode of failure occurs with slender pin-connected plates that f ail by out-of-plane b uckling. This mode is demonstrated in

Figure 7.2(b). The plate above the pin is analogous to a cantilevered beam. The critical buckling stress can be e xpressed in terms of a slenderness ratio $K L / r$, where L is equal to the plate dimension a in Figure 7.5 and r is the radius of gyration of the plate through the thickness direction $(t / \sqrt{12})$ Tests indicate that the length of the cantilever is not necessarily equal to a. Plates that are widewith a relatively larger value of b_{e}-are seen to provide less support to the area in compression above the hole, resulting in a lager effective length. This means that the wider the spread of the centroids on each side of the hole, the more likely the plate will b uckle. This phenomenon is accounted for with the effective length factor, K, as follows:

$$
\begin{equation*}
K=2 \sqrt{\frac{b_{e}}{a}} \tag{7.14}
\end{equation*}
$$

The lug plate can either f ail elastically or inelastically. Plates in which the following is true will fail inelastically:

$$
\begin{equation*}
C_{c}=\sqrt{\frac{2 \pi^{2} E}{F_{y}}}<\frac{K L}{r} \tag{7.15}
\end{equation*}
$$

The inelastic critical buckling stress is given as follows:

$$
\begin{equation*}
F_{c r}=\left[\frac{1-\frac{(K L / r)^{2}}{2 C_{c}^{2}}}{1-v^{2}}\right] F_{y} \tag{7.16}
\end{equation*}
$$

where $=$ Poissons ratio $(=0.3$ for steel $)$.
The elastic critical buckling stress is given as follows:

$$
\begin{equation*}
F_{c r}=\frac{\pi^{2} E}{(K L / r)^{2}\left(1-v^{2}\right)} \tag{7.17}
\end{equation*}
$$

Referring to Figure 7.2(b), the critical buckling stress acts on an ef fective area of the plate, equal to $W_{\text {eff }} / t$. $W_{\text {eff }}$ is an effective width shown in the f gure and the lesser of the v alues given by Eq. 7.16 or Eq. 7.17. The follo wing is analogous to the effective width model used for some edge-loaded plate buckling problems:

$$
\begin{equation*}
W_{\mathrm{eff}}=D_{p}+a \tag{7.18}
\end{equation*}
$$

The following is an upper limit value determined from test data:

$$
\begin{equation*}
W_{\mathrm{eff}}=D_{H}+1.25 b_{e} \tag{7.19}
\end{equation*}
$$

The strength of a pin-connected plate in the limit state of dishing is as follows:

$$
\begin{equation*}
P_{d}=W_{\mathrm{eff}} t F_{c r} \tag{7.20}
\end{equation*}
$$

wher $\epsilon_{c r}$ is given in Eq. 7.16 and Eq. 7.17 and $W_{\text {eff }}$ is given in Eq. 7.18 and Eq. 7.19.

The last acceptance criterion is that no f shing occurs in plates for which the proportions are def ned as follows:

$$
\begin{equation*}
\text { DISHRATIO }=\frac{(a)\left(D_{H}\right)}{t\left(D_{p}\right)} \tag{7.21}
\end{equation*}
$$

IfDISHRATIO $<\sqrt{\frac{E}{F_{y}}}$ then the acceptance criterion is met. If the DISHRATIO is equal to or greater than $\sqrt{\frac{E}{F_{y}}}$, then the acceptance criterion is
not met.

Duerr's important w ork [1] is the basis for the ASME BTH-1-2005 Standard, Design of Below-the-Hook Lifting De vices [4] and the ASME B30.20-2006, Below-the-Hook Lifting Devices [5] .

BEARING FAILURE

Bearingailure is def ned by the following:

$$
\begin{equation*}
\sigma_{B}=\frac{P}{D_{p}\left(T_{L}+T_{D P}\right)} \tag{7.22}
\end{equation*}
$$

where
$\sigma_{B}=$ Bearingstress, MPa (psi)
$P=$ Load on lifting lug, $\mathrm{N}\left(\mathrm{lb}_{\mathrm{f}}\right)$
$D_{p}=$ Pindiameter, mm (in)
$T_{L}=$ Thickness of lifting lug, mm (in)
$T_{D P}=$ Thickness of doubler plate, mm (in), $T_{D P}=$ Qvith no doubler plates
The term "doubler plate" is often referred to as "ears" or "collar plates." We will use the term "doubler plate."

The allo wable stress criterion (acceptance criterion) for bearing stress is $\sigma_{B} \leq 0.9 F_{y}$.

Validation Tests for Bearing Failure

Labests to conf rm equations used in the bearing deformation of lifting lugs were chronicled by Duerr [1]. We will present just a summary of the results for practicing engineers.

Thstiffness coeff cient, $K_{b r}$, attributable to shear deformation be yond the lug hole, is as follows:

$$
\begin{equation*}
K_{b r}=120 t F_{y}\left(\frac{D_{p}}{25.4}\right)^{0.8} \tag{7.23}
\end{equation*}
$$

When you use U.S. Customary Units (USCU), Eq. 7.23 becomes

$$
\begin{equation*}
K_{b r}=120 t F_{y} D_{p}^{0.8} \tag{7.24}
\end{equation*}
$$

Thequations for $K_{b r}$ are based on the model shown in Figure 7.8. Referring to Figure 7.8, the pin bearing area is given by

$$
\begin{equation*}
A_{p}=\sin \left(\alpha_{1}\right) D_{p} t \tag{7.25}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{1}=\operatorname{Arccos}\left(\frac{0.25 D_{H}^{2}-0.25 D_{p}^{2}-\Delta^{2}}{D_{p} \Delta}\right) \tag{7.26}
\end{equation*}
$$

FIGURE 7.8 Beasithiffness model.

$$
\begin{equation*}
\Delta=\frac{D_{H}}{2}-\frac{D_{p}}{2}+\Delta_{b r} \tag{7.27}
\end{equation*}
$$

Lab tests indicate that a $\Delta_{b r}=0.1 \mathrm{mnis}$ a good initial assumption, and that plate deformations are linear up to the value of $\Delta_{b r}=0.25 \mathrm{mmTh}$ pin load,

$$
\begin{equation*}
P=A_{p} F_{y}, \tag{7.28}
\end{equation*}
$$

anthe stiffness,

$$
\begin{equation*}
K_{b r}=\frac{P}{\Delta_{b r}} \tag{7.29}
\end{equation*}
$$

resuln the following:

$$
\begin{equation*}
K_{b r}=10 C \sin \left(\alpha_{1}\right) D_{p} t F_{y} \tag{7.30}
\end{equation*}
$$

wher $\mathbb{C}=1.0$ in SI units and 25.4 in USCU. In USCU when $10 \quad C \sin \left(\alpha_{1}\right)=$ 120 for the range of specimen dimensions reported in lab tests, Eq. 7.30 gives results similar to Eq. 7.24. You can use the stif fness values given by Eq. 7.30 to compute local bearing deformations up to maximum value $\Delta_{b r}=0.25 \mathrm{~mm}$.

PIN HOLE DOUBLER PLATES

If you want to increase the bearing area, it is common practice to reinforce lifting lugs with doubler plates sho wn in Figure 7.9. These plates were described in the

FIGURE 7.9 Liflingreinforced with doubler plates.
section on Bearing F ailure. Calculation of the strength of these plates is done by calculating the strength of each plate - each doubler plate and the lug plate-and summing the values. This approach yields good agreement with lab tests.

Another approach is to assume the applied load is distrib uted between the pin and the plates as uniform bearing. The use of doubler plates is ubiquitous. However, with heavy lifts where the lug plate thickness e xceeds 100 mm (approximately 4 inches), lifting lugs without doubler plates ha ve successfully been used on many occasions.

Example 7.1 Evaluating a Lifting Lug for Five Modes of Failure

To demonstrate the modes of failure for lifting lugs described by Duerr [1], we use the following example that was successfully used in practice recently. The lug has a maximum tensile load, P, of $10,000,000$ Newtons. The lug is shown in Figure 7.10. This lug has a flanged lug design that is welded to a cover plate, which is bolted to the top nozzle on a hemispherical head of a hydrocracker. The vessel has 194 mm of wall made of $2-1 / 4 \mathrm{Cr}-1$ Mo metal with 321 austenitic stainless steel lining. Typically, the top head in the center of a hemispherical head is one of the most robust components of a vessel.

The algorithm of the lifting lugs is shown in Figures 7.11(a) and (b).

FIGURE 7.10 Thage lifting lug used in actual practice and demonstrated inExample 7.1. Here and in the example, note that D_{h} is the same as D_{H} used in the previous discussion.

Rules Sheet:
;TENSION IN NET SECTION

$$
\begin{aligned}
& \text { beff }=0.6 \cdot \text { be } \cdot\left[\frac{\mathrm{Fu}}{\mathrm{Fy}}\right] \cdot \sqrt{\frac{\mathrm{Dh}}{\mathrm{be}}} \\
& \mathrm{Cr}=1-0.275 \cdot \sqrt{1-\frac{\mathrm{Dp}^{2}}{\mathrm{Dh}^{2}}} \\
& \mathrm{Pn}=2 \cdot \mathrm{Cr} \cdot \text { beff } \cdot \mathrm{t} \cdot \mathrm{Fu} \\
& \text { If } \mathrm{Pn}>\mathrm{P} \text { then } \mathrm{Pn}=\mathrm{OKT} \\
& \text { If } \mathrm{Pn}=\mathrm{P} \text { then } \mathrm{Pn}=\mathrm{OKT} \\
& \text { If } \mathrm{Pn}<\mathrm{P} \text { then } \mathrm{Pn}=\text { NOTOKT } \\
& ; \mathrm{HOOP} \text { TENSION }
\end{aligned}
$$

$$
\mathrm{Pb}=\mathrm{Cr} \cdot \mathrm{Fu} \cdot\left[1.13 \cdot \mathrm{a}+\frac{0.92 \cdot \mathrm{be}}{1+\frac{\mathrm{be}}{\mathrm{Dh}}}\right] \cdot \mathrm{t}
$$

$$
\text { If } \mathrm{Pb}>\mathrm{P} \text { then } \mathrm{Pb}=\mathrm{OKHT}
$$

$$
\text { If } \mathrm{Pb}=\mathrm{P} \text { then } \mathrm{Pb}=\mathrm{OKHT}
$$

$$
\text { If } \mathrm{Pb}<\mathrm{P} \text { then } \mathrm{Pb}=\text { NOTOKHT }
$$

$$
H T=\frac{P}{a \cdot t}
$$

$$
\text { If } \mathrm{HT}<0.45 \cdot \text { Fy then } \mathrm{HT}=\mathrm{OK}
$$

$$
\text { If } \mathrm{HT}=0.45 \cdot \text { Fy then } \mathrm{HT}=\mathrm{OK}
$$

$$
\text { If } \mathrm{HT}>0.45 \cdot \text { Fy then } \mathrm{HT}=\text { NOTOK }
$$

;DOUBLE PLANE SHEAR FAILURE

$$
\varphi=55 \cdot\left[\frac{\mathrm{Dp}}{\mathrm{Dh}}\right]
$$

$$
Z \cdot a+\left[\frac{D p}{2}\right] \cdot(1-\cos (\varphi))
$$

$$
Z 1=R-\sqrt{R^{2}-\left[\left[\frac{D p}{2}\right] \cdot \operatorname{SIN}(\varphi)\right]^{2}}
$$

$$
\text { Fus }=0.7 \cdot \mathrm{Fu}
$$

$$
P s=2 \cdot(Z-Z 1) \cdot F u s
$$

$$
\text { Ashear }=2 \cdot(Z-Z 1) \cdot t
$$

$$
\tau=\frac{\text { Ps }}{\text { Ashear }}
$$

$$
\text { If } \tau<0.4 \cdot \text { Fy then } \tau=\text { OKS }
$$

$$
\text { If } \tau=0.4 \cdot \text { Fy then } \tau=\text { OKS }
$$

$$
\text { If } \tau>0.4 \cdot \text { Fy then } \tau=\text { NOTOKS }
$$

FIGURE 7.11(a) Equation sheet for Duerr acceptance criteria.
;FAILURE BY OUT-OF-PLANE INSTABILITY (DISHING)

$$
\begin{aligned}
& \mathrm{K}=2 \cdot \sqrt{\frac{\mathrm{be}}{\mathrm{a}}} \\
& \pi=3.1416 \\
& \mathrm{r}=\frac{\mathrm{t}}{\sqrt{12}} \\
& \mathrm{Cc}=\sqrt{\frac{2 \cdot \pi^{2} \cdot \mathrm{E}}{\mathrm{Fy}}} \\
& \text { RATIO }=\frac{\mathrm{K} \cdot \mathrm{~L}}{\mathrm{r}}
\end{aligned}
$$

$$
L=a
$$

$$
\text { If } \mathrm{Cc}>\text { RATIO then RATIO }=\text { OK1 }
$$

$$
\text { If } \mathrm{Cc}=\mathrm{RATIO} \text { then RATIO }=\mathrm{OK} 1
$$

$$
\text { If } \mathrm{Cc}<\text { RATIO then RATIO }=\text { NOTOK1 }
$$

$$
u=0.3
$$

$$
\text { Fcrie }=\left[\frac{1-\left[\frac{K \cdot L}{r}\right]^{2}}{\frac{2 \cdot C^{2}}{1-u^{2}}}\right]
$$

$$
\text { Fcre }=\frac{\pi^{2} \cdot \mathrm{E}}{\Gamma \ldots \cdot 7^{2}}
$$

$$
\text { Fcre }=\frac{\left[\frac{K \cdot L}{r}\right]^{2} \cdot\left[1-u^{2}\right]}{\left[\frac{1}{}\right.}
$$

$$
W_{\text {eff }}=\operatorname{MIN}\left(\left(D_{p}+a\right),\left(D_{H}+1.25 \cdot b e\right)\right)
$$

$$
\mathrm{Pd} 1=\mathrm{W}_{\mathrm{eff}} \cdot \mathrm{t} \cdot \text { Fcrie }
$$

$$
\mathrm{Pd} 2=\mathrm{W}_{\mathrm{eff}} \cdot \mathrm{t} \cdot \text { Fcre }
$$

$$
\text { DISHRATIO }=\frac{a \cdot D_{H}}{t \cdot D p}
$$

$$
\text { if DISHRATIO }<0.19 \cdot \sqrt{\frac{E}{F y}} \text { then DISHRATIO }=\text { OK2 }
$$

$$
\text { if DISHRATIO }=0.19 \cdot \sqrt{\frac{E}{F y}} \text { then DISHRATIO }=\text { NOTOK2 }
$$

$$
\text { if DISHRATIO }>0.19 \cdot \sqrt{\frac{\mathrm{E}}{\mathrm{Fy}}} \text { then DISHRATIO }=\text { NOTOK2 }
$$

;BEARING FAILURE

$$
\sigma B=\frac{P}{D p \cdot(t+t D P)}
$$

$$
\text { If } \sigma \mathrm{B}<0.9 \cdot \text { Fy then } \sigma \mathrm{B}=\mathrm{OK} 3
$$

$$
\text { If } \sigma B=0.9 \cdot \text { Fy then } \sigma B=O K 3
$$

$$
\text { If } \sigma B>0.9 \cdot \text { Fy then } \sigma B=\text { NOTOK3 }
$$

FIGURE 7.11(a) (continued)

Variables sheet Input Name		Output	Unit	Comment
				TENSION IN NET SECTION
	beff	304.680828	mm	Effective width of lug
245	be		mm	Horizontal distance from hole centerline from edge of hole to edge of lug
482.76	Fu		MPa	Ultimate strength of lug material
262	Fy		MPa	Specified minimum yield strength of lug material
310	Dh		mm	Diameter of hole in lug
	Cr	0.955965674		Function of ratio of ratio of pin and hole diameters
306	Dp		mm	Diameter of lift pin
	Pn	104051998		Strength of a pin-connected plate for tension in the net section, N
370	t		mm	Thickness of lug plate
	OKT	104051998		If this space is filled then tension in the net section is acceptable
	NOTOKT			If this space is filled then tension in the net section is NOT acceptable
				HOOP TENSION (SPLITTING FAILURE BEYOND HOLE)
	Pb	68771718.8		Strength of a pin-connected plate for net area on top of hole, N
	OKHT	68771718.8		If this space is filled then Hoop Tension is acceptable
	NOTOKHT			If this space is filled then the Hoop Tension is NOT acceptable
245	a		mm	Vertical distance from top edge of lug hole to edge of lug plate
	HT	110.314396	MPa	Hoop Tensile Stress
1 E 7	P			Maximum tensile load on lifting lug, N
	OK	110.314396		If this space is filled then Hoop Tensile stress is acceptable
	NOTOK			If this space is filled then Hoop Tensile stress is NOT acceptable
				DOUBLE PLANE SHEAR FAILURE
	φ	54.2903226		Angle from lug centerline to shear plane, radians
	Z	495.10066	mm	Vertical distance of shear plane for rectangular lug
	Z1	17.8749705	mm	Vertical distance of shear plane in lug with radius of curvature
400	R		mm	Radius from lug hole centerline to curved edge of lug
	Fus	337.932	MPa	Ultimate shear strength
	Ps	322539.664		Strength of pin-connected plate in double shear, N

FIGURE 7.11(b) Variable sheet showing results and answers for the lifting lug.

Variables sheet				
	Ashear	353147.01		Area of double shear, sq. mm
	τ	0.91332973	MPa	Shear stress
	OKS	0.91332973		If this space is filled then Double Shear is not a problem
	NOTOKS			If this space is filled then Double Shear is a problem
				FAILURE BY OUT-OF-PLANE INSTABILITY (DISHING)
	K	2		Effective length factor
	π	3.1416		
	r	106.8098	mm	Radius of gyration through thickness direction
	Cc	122.752470		Elastic stability criterion
200000	E		MPa	Modulus of elasticity of lug material
	RATIO	4.58759403		Slenderness ratio
	L	245		
	OK1	4.58759403		If this space is filled then lug will not fail inelastically
	NOTOK1			If this space is filled then lug will fail inelastically
	u	. 3		Poisson's Ratio
	Fcrie	-0.00073096	MPa	Inelastic critical buckling stress
	Fcre	103067.187	MPa	Elastic plate buckling stress
	Weff	551	mm	The effective width of lug
	Pd1	-149.02173		Strength of pin-connected plate in inelastic condition, N
	Pd2	2.10123 E 10		Strength of pin-connected plate in elastic condition, N
	DISHRATIO	0.670817877		Value of DISHRATIO
	OK2	0.670817877		If this space is filled then dishing will not occur
	NOTOK2			If this space is filled the dishing is probable
				BEARING FAILURE
	$\sigma \mathrm{B}$	88.323618	MPa	Bearing failure stress
0	tDP		mm	Thickness of both doubler plates
	OK3	88.323618		If this space is filled then value of bearing stress is acceptable
	NOTOK3			If this space is filled then value of bearing stress is NOT acceptable

FIGURE 7.11(b) (continued)
This example shows that the flange top lifting lug is acceptable. It worked in practice on 10 vessels, so the design passed the "acid test."

MULTIPLE LOADS ON LIFTING AND TAIL LUGS

We have now established four modes of f ailure in lifting lugs as v alidated in laboratory tests. We now will consider the lugs, and later trunnions, on pressure vessels and stacks e xposed to v arious loads. Consider the schematic in Figure 7.12. Refer to Eq. 1.2 and Eq. 1.3, where the unit of mass, Kg , is converted to the unit of force, N , by Newton's second law.

As the vessel rotates in space in a single plane, the forces $L_{V}, L_{H}, L_{L}, T_{V}, T_{H}$, and T_{L} vary with the lift angle θ. (In the discussion that follo ws, any variable name followed by the Greek letter theta, θ, varies with this variable.) Thus, to designate these v ariables as a function of the lift angle θ, you write them as follows:

$$
L V \theta, L H \theta, L L \theta, T V \theta, T H \theta, \text { and } T L \theta
$$

FIGURE 7.12 Lifting schematic of v essel showing forces acting on the v essel. The top lifting lug is a top fange lug.

Using these equations, you make the conversion from mass to force as follows for the top fange lug:

$$
\begin{align*}
& P_{T}=L V \theta\left(\frac{g}{g_{c}}\right) \text { Newtons }\left(\mathrm{lb}_{\mathrm{f}}\right) \tag{7.31}\\
& P_{N}=L L \theta\left(\frac{g}{g_{c}}\right) \text { Newtons }\left(\mathrm{lb}_{\mathrm{f}}\right) \tag{7.32}\\
& P_{L}=\operatorname{LH} \theta\left(\frac{g}{g_{c}}\right) \text { Newtons }\left(\mathrm{lb}_{\mathrm{f}}\right) \tag{7.33}
\end{align*}
$$

When a stack or vessel is lifted, various loads are imposed on the lift devices (lifting lug, tail lug, or trunnions) o ver the v arious values of the lift angle, θ. To assess these stresses, Chapter H ("Combined Stresses ") of the AISC Manual [3] combines axial tension and bending, illustrated in paragraph H2 in Equation H2-1, as follows:

$$
\begin{equation*}
\frac{f_{a}}{F_{t}}+\frac{f_{b x}}{F_{b x}}+\frac{f_{b y}}{F_{b y}} \leq 1.0 \tag{7.34}
\end{equation*}
$$

Since we are dealing with loads acting in a single plane, Eq. 7.34 reduces to the following:

$$
\begin{equation*}
\frac{f_{a}}{F_{t}}+\frac{f_{b}}{F_{b}} \leq 1.0 \tag{7.35}
\end{equation*}
$$

Thstress values f_{a}, f_{b} vary with the lift angle θ, so you can rewrite Eq. 7.35 as follows:

$$
\begin{equation*}
\text { AISCRAT } \theta=\frac{\sigma t \theta}{0.6 \sigma_{y} L}+\frac{\sigma b \theta}{0.66 \sigma_{y} L} \tag{7.36}
\end{equation*}
$$

where
$\sigma \theta=$ tensilstress MPa (psi)
$\sigma b \theta=$ bendingtress $\mathrm{N}-\mathrm{mm}$ (ft ly)
$\sigma_{y} L=$ specifd minimum yield strength of lug and co ver plate attachment, MPa (psi)
The acceptance criterion is as follows:

$$
\begin{equation*}
\text { AISCRAT } \theta \leq 1 \tag{7.37}
\end{equation*}
$$

FIGURE 7.13 faifte acting at an angle θ.
Figure 7.13 illustrates the lift force acting on the lug. From Figure 7.12 and Figure 7.13, you can compute the tensile stress from Eq. 7.33 as follows:

$$
\begin{equation*}
P_{T}=P \sin \theta=L_{H}\left(\frac{g}{g_{c}}\right) \tag{7.38}
\end{equation*}
$$

Referring to Figure 7.10, the net tensile area, A_{a}, is

$$
\begin{equation*}
A_{a}=\left(W_{L}\right) t-\left(D_{H}\right) t=2 b_{e} t \tag{7.39}
\end{equation*}
$$

wher $\mathbb{W}_{L}=$ widtbof lug $=2 b_{e}+D_{H} \mathrm{~mm}$ (in)
The tensile stress is as follows:

$$
\begin{equation*}
\sigma t \theta=\frac{P_{T}}{A_{a}} \tag{7.40}
\end{equation*}
$$

The bending stress is computed referring to Eq. 7.31 as

$$
\begin{equation*}
M \theta=P(e) \cos \theta=L_{H}\left(\frac{g}{g c}\right)(e) \tag{7.41}
\end{equation*}
$$

The section modulus of the lifting lug is

$$
\begin{equation*}
\text { Zlug }=\frac{t_{L}\left(W_{L}^{2}\right)}{6} \mathrm{~mm}^{3}\left(\mathrm{in}^{3}\right) \tag{7.42}
\end{equation*}
$$

So the bending stress is

$$
\begin{equation*}
\sigma b \theta=\frac{M \theta}{Z} M P a(p s i) \tag{7.43}
\end{equation*}
$$

The ISCRAT θ parameter must be computed over lift angles of $\theta=0-90^{\circ}$. Normally, this is done in 5° increments. Then the AISCRAT θ parameter is plotted versus the lift angle θ. The AISCRAT θ should al ways be less than or equal to 1, as shown in Eq. 7.37.

The tailing lug or lugs are handled in a similar method. The parameter with the tail lug is AISCRT θ, which is def ned as follows:

$$
\begin{equation*}
\operatorname{AISCRT} \theta=\frac{\sigma \operatorname{Ten} \theta}{0.6 \sigma_{y} L}+\frac{\sigma b T \theta}{0.66 \sigma_{y} L} \tag{7.44}
\end{equation*}
$$

The tensile stress is computed as follows:

$$
\begin{equation*}
\sigma \operatorname{Ten} \theta=\frac{T V \theta\left(\frac{g}{g_{c}}\right)}{2 \text { Abring }}=\frac{T V \theta(9.807)}{2 \text { Abring }} \mathrm{MPa} \tag{7.45}
\end{equation*}
$$

The bending stress is computed as follows:

$$
\begin{equation*}
\sigma b T \theta=\frac{M b T \theta}{\text { Ztailug }} \mathrm{MPa} \tag{7.46}
\end{equation*}
$$

The parameters in Eq. 7.45 and Eq. 7.46, Abring and Ztailug, are computed for the ring block cross-section of the location where the tail lug is welded onto the base plate, compression ring, and skirt area shown in Figure 7.14.

Figure 7.14 shows a spreadsheet solution for the tail lug ring block assembly. The parameter Abring $=$ Area $=172.651 \mathrm{in}^{2}$ and Ztailug $=$ theminimum value of $Z 1$ and $Z 2$, which is $361.88 \mathrm{in}^{3}$.

Thparameter MbTO is def ned as follows:

$$
\begin{equation*}
\operatorname{MbT} \theta=\frac{\operatorname{TV\theta }\left(\frac{g}{g_{c}}\right) x+\operatorname{TH\theta }\left(\frac{g}{g_{c}}\right) y}{2(1000)} \tag{7.47}
\end{equation*}
$$

In SI metric, this equation becomes

$$
\begin{equation*}
M b T \theta=\frac{\operatorname{TV} \theta(9.807) x+T H \theta(9.807) y}{2(1000)} \tag{7.48}
\end{equation*}
$$

Part \#	Width (in.)	Height (in.)	Area (in^2)	Location (in.)	A* C	$\begin{gathered} \mathbf{A}^{*} \mathbf{d}^{\wedge} \mathbf{2} \\ \left(\mathrm{in}^{\wedge} 4\right) \end{gathered}$	$\underset{\left(\mathrm{in}^{\wedge} 4\right)}{ }$
1 Skirt	28.8672	2.5590	73.8710	15.611	1153.16	53.59	93.90
2 Base pl.	3.1500	24.6070	77.5121	12.304	953.67	467.26	4378.42
3 Top rg.	2.7560	7.7170	21.2681	20.749	441.28	763.04	868.58
Sum (Σ) ====>>			172.6511		2548.11		5340.91
	$) / \Sigma(\mathrm{A})=$	14.7587		Z1 =	$\Sigma(1) / \mathrm{h} 1=$	$361.88 \mathrm{in}^{\wedge} 3$	
	h2	9.8483		Z2 =	$\Sigma(1) / \mathrm{h} 2=$	$542.32 \mathrm{in}^{\wedge} 3$	
Radius of	xis, $\mathrm{R}=$	57.1007					

FIGURE 7.14 ail Ing ring block assembly
where
$x=$ distance from tail lug hole center to lug edge, mm
$y=$ radial distance from tail lug hole center to centerline of skirt, mm
The acceptance criterion for AISCRT θ is the same as $\operatorname{AISCRAT} \theta$, as follows:

$$
\begin{equation*}
\text { AISCRT } \theta \leq 1.0 \tag{7.49}
\end{equation*}
$$

Another parameter used in the assessment of lifting and tail lugs is the equivalent stress proposed by Hicks [6], which combines the shear stress with the tensile and bending stress as follows:

$$
\begin{equation*}
\sigma e \theta=\beta \sqrt{(\sigma t \theta+\sigma b \theta)^{2}+3 \tau s \theta^{2}} \tag{7.50}
\end{equation*}
$$

wher $0.8 \leq \beta \leq 0.9$ is recommended by Hicks [6]. Eq. 7.50 comes from the von Mises theory of failure. The shear stress τs is computed from

$$
\begin{equation*}
\tau s \theta=\frac{\operatorname{LH\theta }\left(\frac{g}{g_{c}}\right)}{2\left(R-\frac{D H}{2}\right) t}=\frac{L H \theta(9.807)}{2\left(R-\frac{D H}{2}\right) t} \tag{7.51}
\end{equation*}
$$

wherthe $g g_{c}=9.807$ is for SI metric system of units.
For the tail lug, the equivalent stress is

$$
\begin{equation*}
\sigma e T \theta=\beta \sqrt{(\sigma \operatorname{Ten} \theta+\sigma b T \theta)^{2}+3 \tau s T \theta^{2}} \tag{7.52}
\end{equation*}
$$

where the shear stress for the tail lug is computed from

$$
\begin{equation*}
\tau s T \theta=\frac{\operatorname{TV\theta }\left(\frac{g}{g_{c}}\right)}{4 A L U G}=\frac{T V \theta(9.807)}{2 A L U G} \tag{7.53}
\end{equation*}
$$

where, for the tail lug,

$$
\begin{equation*}
\text { ALUG }=(\text { Wtailug }- \text { DHtail }) \text { tlug } \tag{7.54}
\end{equation*}
$$

Wtailug $=$ widthf tail lug, mm
DHtail $=$ diameter of hole in tail lug, mm
tlug $=$ thicknessof tail lug, mm
The acceptance criteria for the equi valent stress at the top lug and tail lugs are

$$
\begin{gather*}
\text { RATIO } e \mathrm{e} \theta=\frac{\sigma e \theta}{\sigma_{y} L} \leq 1.0 \tag{7.55}\\
\text { RATIO } \sigma e T \theta=\frac{\sigma e T \theta}{\sigma_{y} L} \leq 1.0 \tag{7.56}
\end{gather*}
$$

Example 7．2 Rigging Analysis of Lifting A Pressure Vessel

This example shows how the lifting and tail lug loadings are evaluated．The vessel being erected is shown in Figure 7．12．We want to compute the reac－ tion loads on the top flange lug and two tail lugs on the bottom．As the vessel is lifted in a two－dimensional plane，the parameters that end with the Greek character θ vary with the lift angle．Figure 7．15（a）shows the equations sheet．

Rules

```
RATLL \(\theta=\frac{\mathrm{HC} \cdot \operatorname{cosd}(\theta)+\mathrm{RB} \cdot \operatorname{sind}(\theta)}{\mathrm{HL} \cdot \operatorname{cosd}(\theta)+\mathrm{RB} \cdot \operatorname{sind}(\theta)}\)
\(\mathrm{LL} \theta=\mathrm{W} \cdot \mathrm{RATLL} \theta\)
RATTL \(\theta=\frac{\mathrm{HT} \cdot \operatorname{cosd}(\theta)}{\mathrm{HL} \cdot \operatorname{cosd}(\theta)+\mathrm{RB} \cdot \operatorname{sind}(\theta)}\)
\(\mathrm{TL} \theta=\mathrm{W} \cdot\) RATTL \(\theta\)
\(\operatorname{LV} \theta=\mathrm{LL} \theta \cdot \operatorname{cosd}(\theta)\)
TV \(\theta=\mathrm{TL} \theta \cdot \operatorname{cosd}(\theta)\)
\(\mathrm{LH} \theta=\operatorname{LL} \theta \cdot \operatorname{sind}(\theta)\)
TH \(\theta=\mathrm{TL} \theta \cdot \operatorname{sind}(\theta)\)
LVmax = MAX('LV \(\theta\) )
LHmax \(=\) MAX('LH \(\theta\) )
LLmax = MAX('LL \(\theta\) )
\(\operatorname{Lmax}=\operatorname{MAX}(\) MAX('LV \(\theta)\), MAX('LH \(\theta))\)
\(\pi=3.1416\)
PL = LHmax • 9.807
\(\mathrm{P}=\) LLmax \(\cdot 9.807\)
PT = LVmax • 9.807
\(\mathrm{W} 1 \theta=\frac{3 \cdot \mathrm{e} \cdot \mathrm{LV} \theta}{\mathrm{WL}^{2}}\)
\(W 2 \theta=\frac{L H \theta}{W L}\)
\(\mathrm{P} \theta=(\mathrm{W} 1 \theta+\mathrm{W} 2 \theta) \cdot 9.807 \cdot \mathrm{WL}\)
\(\mathrm{M} 1=\mathrm{B} \cdot \mathrm{PT}\)
\(\operatorname{Ar} \theta=\frac{P \theta}{0.4 \cdot \sigma y L}\)
\(A a=(W L \cdot t)-(D H \cdot t)\)
P日max = MAX('P日)
Armax \(=\frac{\mathrm{P} \theta \max }{0.4 \cdot \sigma y \mathrm{~L}}\)
If \(A a>A r m a x\) then \(A a=\) Okay1
If \(A a=\) Armax then \(A a=\) Okay 1
If \(A a<\) Armax then \(A a=\) NOTOkay 1
;COMPUTING THE AISCRAT日 MAXIMUM VALUE FOR THE TOP LIFTING LUG
\(\sigma t \theta=\frac{\mathrm{LH} \theta \cdot 9.807}{\mathrm{Aa}}\)
\(\mathrm{M} \theta=\mathrm{LV} \theta \cdot 9.807 \cdot \mathrm{e}\)
```

FIGURE 7．15（a）The equations sheet for the lift assessment of the v essel in Figure 7.12 This f gure is where the spreadsheet lists all the equations used in the algorithm．

$$
\begin{aligned}
& \text { Zlug }=\frac{t \cdot W L^{2}}{6} \\
& \sigma b \theta=\frac{\mathrm{M} \theta}{\text { Zlug }} \\
& \text { AISCRAT } \theta=\frac{\sigma t \theta}{0.6 \cdot \sigma \mathrm{yL}}+\frac{\sigma \mathrm{b} \theta}{0.66 \cdot \sigma \mathrm{yL}} \\
& \text { If AISCRAT } \theta<1.0 \text { then AISCRAT } \theta=\text { Okay2 } \\
& \text { If AISCRAT } \theta=1.0 \text { then AISCRAT } \theta=\text { Okay2 } \\
& \text { If AISCRAT } \theta>1.0 \text { then AISCRAT } \theta=\text { NOTOkay2 } \\
& \text {;COMPUTING THE AISCRT日 MAXIMUM VALUE FOR THE TAILING LUG } \\
& \sigma \operatorname{Ten} \theta=\frac{\text { TV } \theta \cdot 9.807}{2 \cdot \text { Abring }} \\
& \text { MbT } \theta=\frac{\text { TV } \theta \cdot 9.807 \cdot x+\text { TH } \theta \cdot 9.807 \cdot y}{2 \cdot 1000} \\
& \sigma \text { bT } \theta=\frac{\frac{\text { MbT } \theta}{\text { Ztailug }}}{2 \cdot 1000000} \\
& \text { AISCRT } \theta=\frac{\sigma \mathrm{bT} \theta}{0.66 \cdot \sigma \mathrm{yL}}+\frac{\sigma \text { Ten } \theta}{0.6 \cdot \sigma y \mathrm{~L}} \\
& \text {; COMPUTING EQUIVALENT STRESS FOR THE TOP FLANGE LUG } \\
& \operatorname{Ts} \theta=\frac{L H \theta \cdot 9.807}{2 \cdot\left[R-\frac{D H}{2}\right] \cdot t} \\
& \sigma e \theta=\beta \cdot \sqrt{(\sigma t \theta+\sigma b \theta)^{2}+3 \cdot \mathrm{ss} \theta^{2}} \\
& \text { RATIO } \sigma e \theta=\frac{\sigma e \theta}{\sigma y L} \\
& \text { If RATIO } \sigma e \theta<1.0 \text { then RATIO } \sigma e \theta=\text { OKAY3 } \\
& \text { If RATIOбe } \theta=1.0 \text { then RATIO } \sigma e \theta=\text { OKAY3 } \\
& \text { If RATIOбe } \theta>1.0 \text { then RATIOбe } \theta=\text { NOTOK3 } \\
& \text {;COMPUTING EQUIVALENT STRESS IN TAIL LUGS } \\
& \text { ALUG }=\text { (Wtailug }- \text { DHtail) } \cdot \text { tlug } \\
& \text { TsT } \theta=\frac{\text { TV } \theta \cdot 9.807}{2 \cdot \text { ALUG }} \\
& \sigma \mathrm{eT} \theta=\beta \cdot \sqrt{(\sigma \operatorname{Ten} \theta+\sigma \mathrm{bT} \theta)^{2}+3 \cdot \tau \mathrm{sT} \theta^{2}} \\
& \text { RATIO } \sigma \text { T } \theta=\frac{\sigma e \mathrm{~T} \theta}{\sigma y \mathrm{~L}} \\
& \text { If RATIOceT } \theta<1.0 \text { then RATIOбe } \theta=\text { OKAY4 } \\
& \text { If RATIOбeT } \theta=1.0 \text { then RATIO } \sigma e \theta=\text { OKAY4 } \\
& \text { If RATIO } \sigma \text { T } \theta>1.0 \text { then RATIOбe } \theta=\text { NOTOK4 }
\end{aligned}
$$

Status	Input	Name	Output	Unit	Comment
L		RATLL θ	. 489801255		
	18730	HC		mm	Length from tailling lug to Center of Gravity (CG)
L	0	θ			Lift angle in degrees
	3309.5	RB		mm	Outside radius of skirt center line to tail lug hole center
	38240	HL		mm	Length from tailling lug to top lifting lug (HC + HT)
L		LL θ	647601.726	Kg	
	1322172.45	W		Kg	Lifting weight - includes dynamic load factor
L		RATTLE	. 510198745		
	19510	HT		mm	Length from top lifting lug to CG
L		TL θ	674570.724	Kg	Vertical lift load component at each tail lug varies with θ
L		LV θ	647601.726	Kg	Tangential lift load component at top lift lug- varies with θ
L		TV θ	674570.724	Kg	Tangential lift load component at each tail lug - varies with θ
L		LH0	0	Kg	
L		TH日	0	Kg	
		LVmax	650187.413	Kg	Max value of LVe
		LHmax	1322172.45	Kg	Max value of LHe
		LLmax	1322172.45	Kg	Max value of LL θ
		Lmax	1322172.45	Kg	Max load value
		π	3.1416		
		PL	12966545.2	N	
		P	12966545.2	N	
		PT	6376387.96	N	
L		W1 θ	1343.4814		
	410	e			Vertical distance from flange surface to centerline of lug hole
	770	WL		mm	Width of top lug plate
L		W2 θ	0		
L		P θ	10145152		
		M1	4846054849		
	760	B		mm	Vert. Dist. from cover plate bottom to lug hole centerline
L		Ar日	102269.678		Required tensile area of top lug for each value of θ
	248	бyL		MPa	Specified minimum yield strength of lug
		Aa	163760		Calculated actual tensile area, sq mm
	356	t		mm	Thickness of top lug plate

FIGURE 7.15(b) The variables sheet showing all the variables used for the lift assessment. This f gure is where the spreadsheet lists all the variables used in the algorithm.

Status	Input	Name	Output	Unit	Comment
	310	DH		mm	Diameter of hole in top lug plate
		Armax	130711.141		Maximum required tensile area of top lifting lug
		Okay1	163760		If this space is filled then the bolt area is satisfactory
		NOTOkay1			If this space is filled then the bolt area is NOT satisfactory
					COMPUTING THE AISCRAT θ MAX VALUE
		P θ max	12966545.2	N	
L		σ бө	0	MPa	Tensile stress in top lifting lug - varies with lift angle θ
L		M θ	2603922351		Bending moment in top lifting lug, $\mathrm{N}-\mathrm{mm}$
		Zlug	35178733.3		Section modulus of cross section of top lifting lug, mm^3
L		$\sigma \mathrm{b} \theta$	74.0197871	MPa	Bending stress in top lifting lug - varies with lift angle θ
L		AISCRAT0	45222255		AISC Ratio for top lifting lug - see plot for values
		Okay2	. 45222255		If this space is filled then the AISCRATө max value is OK
		NOTOkay2			If this space is filled then the AISCRAT日 max value is NOT OK
					COMPUTING THE MAXIMUM AISCRT日 VALUE
		σ Ten θ	29.695808	MPa	Tensile stress in tail lug - varies with lift angle θ
	111388.03	Abring			Area of ring block (Fig. 7.12), sq mm
		MbT θ	694629.085	MPa	Bending stress in the tail lugs - varies with θ, N-mm
	210	x		mm	Distance from tail lug hole to lug edge
	417.5	y		mm	Radial distance from tail lug hole center to centerline of skirt
	. 006	Ztailug			Section modulus of ring block (Fig. 7.12), cu meters
L		$\sigma b T \theta$	57.8857571		Bending stress in tail lugs - varies with lift angle θ
L		AISCRT0	. 553220588		AISC Ratio for tail lugs - see plot for values
					COMPUTING EQUIVALENT STRESS IN TOP FLANGE LUG
L		TS θ	0	MPa	Shear stress in top flange lug
	385	R		mm	Radius of top lug extending from lug hole center to lug edge

FIGURE 7.15(b) (continued)

FIGURE 7.15(b) (continued)

FIGURE 7.16 Theeds LV θ (solid line) and LH θ (dashed line) v ersus θ for top f ange lug. Refer to Figure 7.12 for the orientation of these forces.

Figures 7.16 through 7.21 are plots of the various ratios used in the algorithm. The reader can tell at a glance if the ratios are acceptable. The corresponding equation number is indicated below each figure.

The actual lifting of the hydrocracker in this example is shown in Figures 7.22 and 7.23 . This is validation that the analysis works, as there were 10 similar vessels lifted and installed on site.

FIGURE 7.17 Tdacels TV θ (solid line) and $\mathrm{TH} \theta$ (dashed line) versus θ for top fange lug. Refer to Figure 7.12 for the orientation of these forces.

FIGURE 7.18 TAESCRAT θ for the top f ange lug v ersus the lift angle θ. See Eq. 7.37.

FIGURE 7.19 THISCRT θ for each tail lug versus the lift angle θ.See Eq. 7.44.

FIGURE 7.20 $\operatorname{TR} \subset A \sigma \oplus$ of top f ange lug versus θ. See Eq. 7.53.

FIGURE 7.21 TRRA σ eT θ for each tail lug versus θ.See Eq. 7.54.

FIGURE 7.22 The actual lifting of the hydrocracker using the top f ange lug and tail lugs.

FIGURE 7.23 Thdowering and f nal installation of the hydrocrack er referred to in Figure 7.22 .

TRUNNIONS

Trunnions are used for v essels that are too tall to be lifted by lugs at the top head. Figure 7.24 shows the three basic types of trunnions.

Unlike lifting lugs, it is not as common for trunnions to be designed and f abricated by an operating facility. Trunnions are mostly designed by an engineering contractor or a fabrication shop and welded into place in the fabrication shop. Trunnions are used to erect vessels that are too tall to be lifted by lugs. Lifting from lugs at top would result in excessive bending stresses and possible distortion in the shell. That is why we will not go into much detail here; this book is intended for f eld applications, although much of the discussion and e xamples are equally applicable to engineering companies and fabricators. However, it is important for f eld personnel to understand trunnions and how to assess them - contractors do make mistakes.

(a)

(b)

FIGURE $7.24 \quad$ Three basic types of trunnions: (a) trunnion only; (b) trunnion and f xed lug; (c) trunnion and rotating lug.

One factor that predicates the use of trunnions is when the v essel is lifted and the stresses at the midsection-either at or close to the centroid-get excessive. The bending stress normally is the most signif cant. When the vessel is lifted and is in the horizontal position, if the bending stresses become e xcessive, then trunnions are used rather than lifting lugs. Calculations will v erify this fact. On some vessels that are very large and long, such as vacuum towers used in ref neries, trunnions are ubiquitously used.

The trunnion type shown in Figure 7.24(a) is the most common. F or clearance purposes the lug plate has to be long, thus justifying the types sho wn in Figure 7.24(b) or 7.24(c). In some cases there are high torsion loads, and the trunnion type sho wn in Figure 7.24(c) is used to minimize torsion. F or this reason, when the trunnion type in Figure 7.24(a) is used, the entire trunnion is lubricated with grease to minimize torsion.

FIGURE 7.25 truAnion reinforcing pad with plug welds. Along with the weld connecting the reinforcing pad to the shell, the welds in the plug hole add considerably to the weld strength. The trunnion is welded both to the vessel bare wall and the reinforcing pad.

There are three cardinal rules about trunnions, which are as follows:

1. The trunnion cylinder should be welded to the vessel shell and the reinforcing pad.
2. If the trunnion load is suff ciently high to w arrant a reinforcing pad, and a conventional circular pad is not adequate, then an enlar ged pad should be used with plug hole welds. The plug hole welds will multiply the weld area.
3. The trunnion support should be analyzed like lifting lugs with the lift angle, θ, varying from $0-90^{\circ}$.

If a trunnion is welded to a pad, which in turn is welded to the v essel shell with f llet welds, the f llet welds tak e the entire loads and consequently may shear off the v essel during lift. An enlar ged reinforcing pad with plug welds will multiply the weld area, while at the same time the trunnion is welded to the vessel base metal. This type of arrangement is shown in Figure 7.25.

Another de vice used with high-lifting loads using a trunnion is a gusset plate, as shown in Figure 7.26.

FIGURE 7.26 A trunnion with gusset plates welded to the reinforcing pad. The reinforcing pad cannot be seen because of the insulation and aluminum jack et covering the vessel. The vessel operates at high temperatures because it is an FCCU regenerator.

Example 7.3 Erection Analysis Using Trunnions

This example illustrates the erection analysis of a vacuum tower in a refinery that has trunnions. The lifting schematic is shown in Figure 7.27.

FIGURE 7.27 The lifting schematic of a vacuum tower with trunnions.

$$
\begin{aligned}
& R A T L L \theta=\frac{H C \cdot \operatorname{cosd}(\theta)+R \cdot \sin d(\theta)}{H L \cdot \cos d(\theta)+R \cdot \operatorname{sind}(\theta)} \\
& \text { LL } \theta=\mathrm{W} \quad \text { RATLL } \theta \\
& \text { RATTL } \theta=\frac{H T \cdot \operatorname{cosd}(\theta)}{H L \cdot \operatorname{cosd}(\theta)+R \cdot \operatorname{sind}(\theta)} \\
& \text { TL } \theta=\mathrm{W} \cdot \mathrm{RATTL} \theta \\
& \mathrm{LV} \theta=\mathrm{LL} \theta \cdot \operatorname{cosd}(\theta) \\
& \text { TV } \theta=\mathrm{TL} \theta \cdot \operatorname{cosd}(\theta) \\
& \mathrm{LH} \theta=\mathrm{LL} \theta \cdot \operatorname{sind}(\theta) \\
& \mathrm{TH} \theta=\mathrm{TL} \theta \cdot \operatorname{sind}(\theta) \\
& \text { LVmax = MAX ('LV } \theta \text {) } \\
& \text { LHmax = MAX ('LH } \theta \text {) } \\
& \text { LLmax = MAX ('LL } \theta \text {) } \\
& \text { Lmax = MAX (MAX('LV } \theta \text {), MAX('LH } \theta) \text {) } \\
& F=\frac{\operatorname{Lmax} \cdot 9.807}{N} \\
& \pi=3.1416 \\
& Z=\frac{\left[\frac{\pi}{32}\right] \cdot\left[\mathrm{do}^{4}-\mathrm{di}^{4}\right]}{\mathrm{do}} \\
& \mathrm{FH} \theta=\frac{\mathrm{LH} \theta \cdot 9.807}{\mathrm{~N}} \\
& \text { ftball }=0.66 \cdot \text { SMYS } \\
& \mathrm{ftbL} \theta=\frac{\mathrm{FH} \theta \cdot \mathrm{e}}{\mathrm{Z}} \\
& F V \theta=\frac{L V \theta \cdot 9.807}{N} \\
& \mathrm{ftbC} \theta=\frac{\mathrm{FV} \theta \cdot \mathrm{e}}{\mathrm{Z}} \\
& \text { TAREA }=\left[\frac{\pi}{4}\right] \cdot\left[\mathrm{do}^{2}-\mathrm{di}^{2}\right] \\
& \mathrm{ftCP} \theta=\frac{\mathrm{FV} \theta}{\text { TAREA }} \\
& \mathrm{ftCPall}=0.6 \cdot \text { SMYS } \\
& \text { AISCT } \theta=\frac{\mathrm{ftbL} \theta+\mathrm{ftbC} \theta}{\mathrm{ftball}}+\left[\frac{\mathrm{ftCP} \theta}{\mathrm{ftCPall}}\right] \\
& \text { If AISCT } \theta<1.0 \text { then AISCT } \theta=\text { OK1 } \\
& \text { If AISCT } \theta=1.0 \text { then AISCT } \theta=\text { OK1 } \\
& \text { If AISCT } \theta>1.0 \text { then AISCT } \theta=\text { NOTOKA } \\
& \mathrm{fs} \mathrm{~T} \theta=\frac{\mathrm{LH} \theta}{\text { TAREA }} \\
& \text { fsall }=0.4 \cdot \text { SMYS } \\
& \text { fsTmax }=\text { MAX('fsT } \theta \text {) }
\end{aligned}
$$

FIGURE 7.28 The equations sheet for the lifting analysis of the v acuum. This f gure is where the spreadsheet lists all the equations used in the algorithm.

$$
\begin{aligned}
& \text { If fsT } \theta<\text { fsall then } \mathrm{fs} T \theta=\text { OK2 } \\
& \text { If fs } \mathrm{T} \theta=\mathrm{fs} \text { all then fsT } \theta=\text { OK2 } \\
& \text { If fs } \mathrm{T} \theta>\text { fsall then } \mathrm{fs} T \theta=\text { NOTOK2 } \\
& \sigma \mathrm{eT} \theta=\sqrt{(\mathrm{ftbL} \theta+\mathrm{ftbC} \theta+\mathrm{ftCP} \theta)^{2}+3 \cdot \mathrm{fs} T \theta^{2}} \\
& \text { RAT } \sigma e \mathrm{~T} \theta=\frac{\sigma \mathrm{eT} \theta}{\mathrm{SMYS}} \\
& \text { Mbtail } \theta=\frac{\text { TV } \theta \cdot 9.807 \cdot x+\text { TH } \theta \cdot 9.807 \cdot y}{2 \cdot 1000} \\
& \text { Mbtail } \theta \\
& \text { obtail } \theta=\frac{\overline{\text { Ztailug }}}{1000000} \\
& \sigma \text { Tent } \theta=\frac{\text { TV } \theta \cdot 9.807}{2 \cdot \text { Abring }} \\
& \text { ALUG }=\text { WLt } \cdot \text { ttail }- \text { Dhole } \cdot \text { ttail } \\
& \tau \text { tail } \theta=\frac{\text { TV } \theta \cdot 9.807}{4 \cdot \text { ALUG }} \\
& \sigma \text { eTail }=\sqrt{(\sigma \text { Tent } \theta+\sigma \text { btail } \theta)^{2}+3 \cdot \tau \text { tail } \theta^{3}} \\
& \text { AISCRT } \theta=\left[\frac{\sigma \text { Tent } \theta}{0.6 \cdot \sigma y \mathrm{~L}}\right]+\frac{\sigma \text { btail } \theta}{0.66 \cdot \sigma y \mathrm{~L}} \\
& \text { RAT } \sigma e \mathrm{~T}=\frac{\sigma \mathrm{e} \text { Tail }}{\sigma \mathrm{y}} \\
& R t L u g=\frac{W L t}{2} \\
& H A=\left[\text { RtLug }-\frac{\text { Dhole }}{2}\right] \cdot \text { ttail } \\
& T V t=M A X(' T V \theta) \\
& P V t=T V t \cdot 9807 \\
& \sigma H T=\frac{\mathrm{PVt}}{\mathrm{Nt} \cdot \mathrm{HA}} \\
& \text { If } \sigma \mathrm{HT}<0.45 \cdot \sigma y \mathrm{~L} \text { then } \sigma \mathrm{HT}=\mathrm{OK} \\
& \text { If } \sigma H T=0.45 \cdot \sigma y L \text { then } \sigma H T=O K \\
& \text { If } \sigma \mathrm{HT}=0.45 \cdot \sigma y \mathrm{~L} \text { then } \sigma \mathrm{HT}=\text { NOTOK } \\
& \text {;COMPUTING STRESS IN TRUNNION WELDS } \\
& \sigma b w \theta=\frac{5.66 \cdot \mathrm{LL} \theta \cdot \mathrm{e}}{\mathrm{~h} \cdot \mathrm{do}^{2} \cdot \pi}+\frac{5.66 \cdot \mathrm{LL} \theta \cdot \mathrm{e}}{\mathrm{hp} \cdot \mathrm{Dp}^{2} \cdot \pi} \\
& \tau \mathrm{bw} \theta=\frac{2.83 \cdot \mathrm{MT}}{\pi \cdot \mathrm{~h} \cdot \mathrm{do}^{2}}+\frac{2.83 \cdot \mathrm{MT}}{\pi \cdot \mathrm{hp} \cdot \mathrm{Dp}^{2}} \\
& \sigma w \theta=0.9 \cdot \sqrt{\sigma b w \theta^{2}+3 \cdot T b w \theta^{2}} \\
& \text { AISCW } \theta=\frac{\sigma w \theta}{\sigma y L}
\end{aligned}
$$

FIGURE 7.29 The variable sheet for the vacuum tower lifting analysis. The variable sheet is where the spreadsheet lists all the v ariables used in the algorithm. The computations of Abring and Ztailug are shown in Figure7.30 .

Status	Input	Name	Output	Unit	Comment
L		FV θ	1315522.29	N	Force component due to LV
		ftCP θ	11.355736	MPa	Compressive stress on trunnion
		ftCPall	156	MPa	Allowable compressive stress
		AISCT θ	0.177701111		AISC Allowable Ratio for bending and shear per Section 5, Chapter H
		OK1	0.177701111		
		NOTOKA			
L		fsT θ	0	MPa	Shear stress at trunnion vessel wall
		fsall	104	MPa	Allowable shear stress
		fsTmax	7.25097435	MPa	Maximum shear stress at trunnion \& vessel wall
		OK2	0		If this space contains an entry then shear stress is acceptable
		NOTOK2			If this space contains an entry then shear stress is NOT acceptable
L		$\sigma \mathrm{T} \theta$	29.357937	MPa	Von Mises equivalent stress for trunnion
L		RATбeTө	0.112915143	MPa	
					ANALYSIS FOR TAIL LUGS
	350	x		mm	Distance from tail lug hole center to lug edge
	484	y		mm	Radial distance from tail lug hole center to centerline of skirt
L		Mbtaile	981196.199	Nm	Bending moment at tail lug attachment
L		obtaile	87.606803	MPa	Bending stress in each tail lug
	. 0112	Ztailug			Section modulus of ring assembly from Excel spreadsheet, cu m
	98876	Abring			Tensile stress area of each tail lug, sq mm
		ALUG	61200		Shear area of each tail lug, sq mm
	700	WLt		mm	Width of each tail lug
	120	ttail		mm	Thickness of each tail lug
	190	Dhole		mm	Diameter of hole in each tail lug
L		τ taile	22.903739	MPa	Shear stress in each tail lug
L		бeTail	222.466320	MPa	Von Mises equivalent stress in each tail lug
L		σ Tent θ	28.352863	MPa	Tensile stress in each tail lug
L		AISCRTө	0.692278282		AISC Ratio for each tail lug based on Sec. 5 Chapter H
	260	бyL			Yield stress of lug plate (SA-516-70)
L		RATбeT	0.855639691		Ratio of equivalent stress of SMYS
					CHECKING HOOP TENSILE STRESS IN TAIL LUGS
		RtLug	350	mm	Radius of tail lug from center to edge of lug
		HA	30600		Hoop tensile area, sq mm

FIGURE 7.29 (continued)

Status	Input	Name	Output	Unit	Comment
		TVt	571717.694		Maximum tensile weight on both tail lugs
		PVt	5606835.423459		Maximum tensile load on both tail lugs
		oht	91.6149579	MPa	Hoop Tensile stress on each tail lug
	2	Nt			Number of tail lugs
		OK	91.6149579		If this space is filled than Hoop Tension stress is OK
		NOTOK			If this space is filled than Hoop Tension stress is NOTOK
					COMPUTING WELD STRESSES ON TRUNNION
L		бbw θ	24.125312	MPa	Bending stress in trunnion-pad configuration
	8	h		mm	Size of weld connecting trunnion to pad or shell
	8	hp		mm	Size of weld connecting trunnion pad to shell
	2000	Dp		mm	Diameter of trunnion pad
L		тbw θ	0	MPa	Shear stress in trunnion-pad configuration
	0	MT			Torsion moment on trunnion = 0 because of grease
		бw θ	21.7127808		
L		AISCW θ	0.083510696		

FIGURE 7.29 (continued)

FIGURE 7.31 runfion lift loads $\operatorname{LV} \theta$ and $\mathrm{LH} \theta$ plotted against θ.

FIGURE 7.32 The AISC ratio for the trunnions versus the lift angle θ.

FIGURE 7.33 eigWt components $\operatorname{TV} \theta, \operatorname{TL} \theta$, and $\operatorname{TH} \theta$ plotted against the lift angle θ.

FIGURE 7.34 AISC ratio for each tail lug plotted against the lift angle θ.

FIGURE 7.35 Drawing of actual trunnion with plug weld reinforcing pad and gusset plates.

REFERENCES

1. DuerĐrid ", Firomendction Strength and Behavior ,"Journal of Structural Engineering ASCE February,2006 pp 183 - 194
2. Bragasßa,W., "Tank TSF-09/18 V-Tanks Remediation Tank Lifting Design, Document ID: EDF-5595, Project No. 22901," Idaho National Engineering and Environmental Laboratory, April 18, 2005.
3. Americkmstitute of Steel Construction (AISC), AISC Manual of Steel Construction ,9th edition, Chicago, Illinois, July, 1989.
4. Ameri\&oniety of Mechanical Engineers (ASME) ASSME BTH-1-2005 Design of Below-the-Hook Lifting Devices ASME 2,005,
5. Ameri8oniety of Mechanical Engineers (ASME) AS,ME B30.20-2006 Below-the-Hook Lifting Devices ASME 2,006
6. HicksohnWeld Joint Design 3rdedition IndustrialPress, Inc. Now York 19,99

Chapter 8

Assessing Weld Attachments

The assessment of welds attaching lifting lugs, tail lugs, and trunnions to v essels and stacks is av ery important function. A simple lifting lug is sho wn in Figures 8.1(a) and (b). The lug in Figure 8.1(a) is attached to the v essel or stack with simple "U" bend welding-tw of llet welds on each side and one f llet weld at the bottom of the lug. The lug in Figure 8.1(b) is attached to the vessel or stack by tw of llet welds on the outside, tw of llet welds on the tw o bottom portions, two f llet welds on the inside of the cutout, and the f llet weld on the arc at the top of the cutout. The pattern sho wn in Figure 8.1(b) is used when more welding strength is needed.

FIGURE 8.1 elding of two simple lifting lugs

Example 8.1 Evaluation of the Welds in a Simple "U" Configuration

Here, we will analyze the configuration shown in Figure 8.1(a). Refer now to Figure 8.2.

Figure $8.3(\mathrm{a})$ shows the equations used in assessing these welds, and Figure 8.3(b) shows the variables and solutions. As you can see from Figure 8.3(b), the welds are satisfactory.

FIGURE 8.2 Liftihgg with simple" U design

;CALCULATION OF "U" SHAPED WELD ON LUG

$$
\begin{aligned}
& \mathrm{P} 2=\frac{\mathrm{P} 1 \cdot \mathrm{IF}}{2} \\
& \mathrm{P} 3=\frac{\mathrm{P} 1 \cdot \mathrm{IF} \cdot \mathrm{HC}}{2 \cdot \mathrm{HL}} \\
& \mathrm{Aw}=(\mathrm{LB}+2 \cdot \mathrm{LS}) \cdot 0.707 \cdot \mathrm{~h} \\
& \mathrm{Th}=\frac{\mathrm{P} 3}{\mathrm{Aw}}
\end{aligned}
$$

$$
L C G=\frac{L S^{2}}{2 \cdot L S+L B}
$$

$$
\mathrm{Jw}=\left[\frac{8 \cdot \mathrm{LS}^{3}+6 \cdot \mathrm{LS} \cdot \mathrm{LB}^{2}+\mathrm{LB}^{3}}{12}\right]-\left[\frac{\mathrm{LS}^{4}}{2 \cdot \mathrm{LS}+\mathrm{LB}}\right]
$$

$$
\mathrm{J}=0.707 \cdot \mathrm{~h} \cdot \mathrm{Jw}
$$

$$
\mathrm{Mw}=\mathrm{P} 3 \cdot(\mathrm{H}-\mathrm{LCG})
$$

$$
\tau \mathrm{Wa}=\frac{\mathrm{Mw}-\left[\frac{\mathrm{LB}}{2}\right]}{\mathrm{J}}
$$

$$
\tau \mathrm{WL}=\frac{\mathrm{Mw} \cdot(\mathrm{LS}-\mathrm{LCG})}{\mathrm{J}}
$$

$$
\mathrm{TTOT}=\mathrm{Th}+\mathrm{TWL}
$$

;STRESS IN WELD WITH VESSEL IN VERTICAL POSITION

$$
\sigma \mathrm{w} 1=\frac{\mathrm{P} 2}{\mathrm{Aw}}
$$

$$
\text { ow1all }=0.4 \cdot \sigma y w
$$

$$
\text { If } \sigma w 1<\sigma w 1 \text { all then } \sigma w 1=\text { OKAY1 }
$$

$$
\text { If } \sigma w 1=\sigma w 1 \text { all then } \sigma w 1=\text { OKAY } 1
$$

$$
\text { If } \sigma w 1>\sigma w 1 \text { all then } \sigma w 1=\text { NOTOK1 }
$$

;STRESS IN WELD WITH VESSEL IN HORIZONTAL POSITION

$$
\sigma \mathrm{w} 2=\sqrt{\tau \mathrm{Wa}^{2}+\tau \mathrm{TOT}^{2}}
$$

$$
\sigma w 2 a l l=0.4 \cdot \sigma y w
$$

$$
\text { If } \sigma w 2<\sigma w 2 a l l \text { then } \sigma w 2=\text { OKAY2 }
$$

$$
\text { If } \sigma \mathrm{w} 2=\sigma \mathrm{w} 2 \text { all then } \sigma \mathrm{w} 2=\text { OKAY2 }
$$

$$
\text { If } \sigma w 2=\sigma w 2 \text { all then } \sigma w 2=\text { NOTOK2 }
$$

FIGURE 8.3(a) The equations sheet sho wing the equations used in the assessment of the welds.

Input	Name	Output	Unit	Comment
	P2	375,000	Ibm	Load on lug in vertical position
500,000	P1		lbm	Weight of vessel
1.5	IF			Impact Factor (Normally 1.5)
	P3	215,000	Ibm	Load on lug in horizontal position
860	HC		in	Distance from tailing lug hole to CG
1500	HL		in	Distance from hole in tailing lug to hole in top lifting lug
	Aw	120.19		Weld area, sq in
28	LB		in	Length of lifting lug on bottom
20	LS		in	Weld height on sides
2.5	h		in	Lug weld leg size
	$\tau \mathrm{h}$	1788.834346	psi	Shear stress in weld in horizontal position
	LCG	5.882353	in	Distance to weld centroid
	Jw	12649.725490		Weld unit polar moment of inertia, in^3
	J	22358.389804		Weld polar moment of inertia, in^4
	Mw	6475294.117647	in-lb	Moment in weld
36	H		in	Height from bottom of lug to centerline of lug hole
	TWa	4054.590623	psi	Weld axial torsional stress
	TWL	4088.662813	psi	Weld lateral torsional stress
	тTOT	5877.497159	psi	Total lateral weld shear stress
				STRESS IN WELD WITH VESSEL IN VERTICAL POSITION
	ow1	3120.059905	psi	Stress in weld with vessel in horizontal position
38000	ow1all		psi	Allowable stress in weld for vertical position
	oyw	95,000	psi	Specified minimum yield stress of weld metal
	OKAY1	3120.059905		If this space is filled then vertical weld stress is OK
	NOTOK1			If this space is filled then vertical weld stress is NOTOK
				STRESS IN WELD WITH VESSEL IN HORIZONTAL POSTION
	ow2	7140.355592	psi	Stress in weld with vessel in horizontal postion
38000	ow2all		psi	Allowable stress in weld for vertical position
	OKAY2	7140.355592		If this space is filled then horizontal weld stress is OK
	NOTOK2			If this space is filled then horizontal weld stress is NOTOK

FIGURE 8.3(b) Thariable sheet with the variables and solutions

Example 8.2 Lifting Lug with "U" Shape and Cutout

Figure 8.4 illustrates a simple lifting lug with a cutout for more welding area.
The solution to this kind of lug weld configuration is shown in Figures 8.5(a) and 8.5(b). As you can see in Figures 8.5(a) and 8.5(b), the welds are satisfactory for this application.

Side and
Horizontal
Welds
(Weld area = ABW)

Side welds
on inside
of cutout
$($ Weld area $=$ ASW $)$

Arc weld
in cutout
$($ Weld area $=$ ARW $)$

FIGURE 8.4 Lifting lug with weld attachment with a simple cutout.

$$
\begin{aligned}
& \mathrm{P} 2=\frac{\mathrm{P} 1 \cdot \mathrm{IF}}{2} \\
& \mathrm{P} 3=\frac{\mathrm{P} 1 \cdot \mathrm{IF} \cdot \mathrm{HC}}{2 \cdot \mathrm{HL}} \\
& \mathrm{~L} 1 \mathrm{~B}=\frac{\mathrm{LB}}{2}-\mathrm{R} 2 \\
& X B=\frac{L B}{2}-\left[\frac{L_{1 B}}{2 \cdot(L 1 B+L 1 h)}\right] \\
& Y B=L S-\left[\frac{2 \cdot L 1 B \cdot L S+L S^{2}}{2 \cdot(L 1 B+L S)}\right] \\
& \text { XS = R2 } \\
& Y S=\frac{L 1 h}{2} \\
& X A=0 \\
& \pi=3.1416 \\
& \mathrm{YA}=\mathrm{L} 1 \mathrm{~h}+\left[\frac{2 \cdot \mathrm{R} 2}{\pi}\right] \\
& A B W=0.707 \cdot h \cdot(L 1 B+L S) \\
& \text { ASW }=0.707 \cdot \mathrm{~h} \cdot \mathrm{~L} 1 \mathrm{~h} \\
& \text { ARW }=0.707 \cdot \pi \cdot h \cdot R 2 \\
& \text { ATOT }=2 \cdot(\text { ABW }+ \text { ASW })+\text { ARW } \\
& \text { AY1 }=A B W \cdot Y B \\
& A Y 3=A S W \cdot Y S \\
& \text { AY5 }=A R W \cdot Y A \\
& A Y=2 \cdot(A Y 1+A Y 3)+A Y 5 \\
& \text {;By symmetry } \mathrm{Xbar}=0 \\
& \text { Xbar }=0 \\
& \mathrm{Ybar}=\frac{\text { AY }}{\text { ATOT }} \\
& R 1=\sqrt{X B^{2}+(Y b a r-Y B)^{2}} \\
& R 3=\sqrt{X S^{2}+(Y b a r-Y S)^{2}} \\
& R 5=Y A-Y b a r \\
& \mathrm{~S} 3=\frac{\mathrm{P} 3}{\text { ATOT }} \\
& \mathrm{JB}=\frac{0.707 \cdot \mathrm{~h} \cdot\left[(\mathrm{~L} 1 \mathrm{~B}+\mathrm{LS})^{4}-\left[6 \cdot \mathrm{L1B}^{2} \cdot \mathrm{LS}^{2}\right]\right]}{12 \cdot(\mathrm{~L} 1 \mathrm{~B}+\mathrm{LS})} \\
& \mathrm{JS}=\frac{0.707 \cdot \mathrm{~h} \cdot \mathrm{~L} 1 \mathrm{~h}^{3}}{12} \\
& \mathrm{JR}=0.707 \cdot \mathrm{~h} \cdot \pi \cdot \mathrm{R}^{3} \\
& J=2 \cdot\left[J B+J S+A B W \cdot R 1^{2}+A S W \cdot R 3^{2}\right]+J R+A R W \cdot R 5^{2}
\end{aligned}
$$

FIGURE 8.5(a) Thquations sheet for the weld assessment

```
\(\mathrm{M} 2=\mathrm{P} 3 \cdot(\mathrm{H}-\mathrm{Ybar})\)
\(\tau y=\frac{\mathrm{M} 2 \cdot\left[\frac{\mathrm{LB}}{2}\right]}{\mathrm{J}}\)
C1 \(=\) LS - Ybar
\(\mathrm{C} 2=\mathrm{Ybar}\)
If \(\mathrm{C} 1>\mathrm{C} 2\) then \(\mathrm{C}=\mathrm{C} 1\)
If \(\mathrm{C} 2>\mathrm{C} 1\) then \(\mathrm{C}=\mathrm{C} 2\)
\(\tau_{\mathrm{xx}}=\frac{\mathrm{M} 2 \cdot \mathrm{C}}{\mathrm{J}}\)
\(\tau_{\mathrm{w}}=\mathrm{S} 3+\tau_{\mathrm{xx}}\)
;SOLVING FOR STRESS IN WELD WITH VESSEL IN VERTICAL POSITION
\(\mathrm{S} 1=\frac{\mathrm{P} 2}{\text { ATOT }}\)
\(\sigma 1\) all \(=0.4 \cdot \sigma y w\)
If S1 < o1all then S1 = Okay1
If S1 = o1all then S1 = Okay1
If S1 > 0 1all then S1 \(=\) NOTOK1
;SOLVING FOR STRESS IN WELD WITH VESSEL IN HORIZONTAL POSITION PC
\(\mathrm{S} 2=\sqrt{\sigma \mathrm{y}^{2}+\sigma \mathrm{w}^{2}}\)
If S2 < 1 1all then S2 \(=\) OKay2
If S2 \(=\sigma 1\) all then \(\mathrm{S} 2=\) OKay2
If \(\mathrm{S} 2>\) o1all then \(\mathrm{S} 2=\) NOTOK2
FIGURE 8.5(a) (continued)
```

Input	Name	Output	Unit	Comment
	P2	450,000	lb	Load on lug with vessel in vertical position
600,000	P1		lb	Lift weight
1.5	IF			Impact Factor (1.5 is recommended)
	P3	263268.443	lb	Load on lug with vessel in horizontal position
856.5	HC		in	Distance from hole in tail lug to vessel CG
1464	HL		in	Distance from hole in tail lug to hole in lift lug
	L1B	10	in	Bottom weld leg length
24	LB		in	Lug width at bottom
2	R2		in	Radius of arc weld made on lug in cutout
	XB	9.5	in	Centroid of side and horizontal bottom welds in x direction
10	L1h		in	Weld cutout height
	YB	5.78571429	in	Centroid of side and horizontal bottom welds in y direction
18	LS		in	Side weld height
	XS	2	in	Centroid of side and horizontal bottom welds in x direction
	YS	5	in	Centroid of side and horizontal bottom welds in y direction
	XA	0	in	Centroid of arc weld in cutout ($=0$ by symmetry)
	π	3.1416		
	YA	11.2732366	in	Centroid of arc weld in cutout in y direction
	ABW	57.349012		Area of side and horizontal welds, sq in
2.897	h		in	Lug weld leg size
	ATOT	168.530722		Sum of weld area, sq in
	ASW	20.48179		Side welds area on inside of cutout, sq in
	ARW	12.8691183		Weld area of arc in cutout, sq in
	AY1	331.804998		Weld areas of outside side welds times centroid, in^3
	AY3	102.40895		Weld areas of inside side welds times centroid, in ${ }^{\wedge} 3$
	AY5	145.076615		Weld area of arc in cutout times centroid, in^3
	AY	1013.50451		Weld area times sum of centroids
	Xbar	0		Group of welds centroid
	Ybar	6.01376709		Group of welds centroid
	R1	9.50273687	in	Outside side welds centroid
	R3	2.24225862	in	Inside side welds centroid
	R5	5.25946948	in	Centroid of arc in cutout group
	S3	1562.13917	psi	Shear stress in weld when vessel is in horizontal position
	JB	2561.78427		Polar moment of inertia of outside side and bottom welds, in^4
	JS	170.681583		Polar moment of inertia of inside side weld of cutout, in $\wedge 4$
	JR	51.4764732		Polar moment of inertia of arc in cutout, in^4
	J	16435.8094		Polar moment of inertia of group of welds, in $\wedge 4$
	M2	7894428.84		Moment in weld, in-lbf
36	H		in	Vertical distance from bottom horizontal weld to lug hole center
	тy	5763.82602	psi	Weld Torsional stress
	C1	11.9862329	in	Extreme fibers above centroid
	C2	6.01376709	in	Extreme fibers below centroid
	C	11.9862329	in	Greater of C1 or C2
	$\tau x x$	5757.21343	psi	Lateral torsional stress in weld
	tw	7319.3526	psi	Total lateral shear stress in weld
				VESSEL IN VERTICAL POSITION
	S1	2670.1363	psi	Stress in weld
	б1all	15,200	psi	Allowable weld stress
38,000	бyw		psi	Specified minimum yield stress in weld
	Okay1	2670.1363		If this space is filled then weld stress is acceptable in vertical position
	NOTOK1			If this space is filled then weld stress is NOT acceptable in vertical position
				VESSEL IN HORIZONTAL POSITION
	S2	9316.36264	psi	Stress in weld
	Okay2	9316.36264		If this space is filled then weld stress is acceptable in horizontal position
	NOTOK2			If this space is filled then weld stress is NOT acceptable in horizontal position

FIGURE 8.5(b) Thariables sheet for the weld assessment

A FEW WORDS ABOUT REINFORCING PADS AND LIFTING LUGS

Lifting lugs are connected to the shell with $\mathrm{f} \quad$ llet welds. If lifting lugs are welded to a reinforcing pad, and the pad is connected to the shell with f llet welds, then the capacity of the lifting lugs is a function of the strength of the pad f llet welds, as well as the f llet welds attaching the lug to the pad. Quite often this is not acceptable. Fillet welds can, and will, shear of f if the loads exceed their capacity. For lifting lugs, quite often the reinforcing pad is rectangular or square. If the thickness of the shell is considered too small for the capacity of lifting lugs, then tw o stiffening rings may be welded around the circumference of the shell with the lifting lugs welded between the rings. In this manner the lifting load is distributed around the shell and not localized.

Example 8.3 Evaluating Welds for Top Flange Lifting Lugs

Top flange lifting lugs are mounted on cover plates that are bolted to a nozzle on the centerline of a vessel. They commonly consist of a lug plate welded to a cover plate. One such lug is shown in Figure 8.6(a). As you can see in the figure, the weld sizes vary; hence, the "line" weld concept cannot be used because that method depends on all welds being the same size. The algorithm used for assessing the welds in Figure 8.6(a) is shown in Figure 8.6(b). The corresponding variable sheet is shown in Figure 8.6(c).

FIGURE 8.6(a) tAp f ange lug used to lift a reactor. The lift was successful.

```
LTOP20mm = 2 .567+2 •100
LTOP14mm = 4 \cdot2\cdot150+4\cdot20+8\cdot150
LBOT20mm = 2.600 = 4.20
T20mm = 20 • cosd (45)
T14mm = 14 曾0sd (45)
WA = (LTOP20mm + LBOT20mm) \T20mm + LTOP14mm •T14mm
WC = (WA)\cdot\mp@subsup{\sigma}{y}{}
ract }=\frac{LHmax •9.807}{WA
\sigmaall = 0.4 聠
If Tact < \sigmaall then ract = OK1
If Tact = \sigmaall then ract = OK1
If Tact > \sigmaall then \tauact = NOTOK1
AreaT1 =T20mm - 100
AreaS1 = 2.567•T20mm
AreaB1 = T20mm •100
SUMA1 = AreaT1 +AreaS1 +AreaB1
yT1 = 283.5
yS1 =0
yB1 = -283.5
```



```
yS1SQ = 0
yB1SQ = yB1 •yB1
AyT1 = AreaT1 • yT1
AyS1 = AreaS1 | yS1
AyB1 = AreaB1•yB1
SUMAy1 = AyT1 + AyS1 + AyB1
AyT1sq = AreaT1 }\cdot\textrm{yT1}\cdot\textrm{yT1
AyS1sq = AreaS1 }\cdot\textrm{yS1}\cdot\textrm{yS1
AyB1sq = AreaB1 }\cdotyB1 \cdotyB
SAysq1 = AyT1sq}+AyS1sq+AyB1s
IT1 = 0
IS1 = 2•T20mm 年5673}
lB1 = 0
I1 = SAysq1 + IT1 + IS1 + IB1
Z1 = 年1
AreaTL = T14mm • 150
AreaSL = T14mm • 20
AreaBL =T14mm • 150
```

FIGURE 8．6（b）Thquations sheet of the algorithm

$$
\begin{aligned}
& y T L=220.0 \\
& y S L=230.0 \\
& y B L=240.0 \\
& y T L s q=y T L \cdot y T L \\
& y S 1 s q=y S L \cdot y S L \\
& y B L s q=y B L \cdot y B L \\
& \text { AyTL }=\text { AreaTL } \cdot y T L \\
& \text { AySL }=\text { AreaSL } \cdot y S L \\
& \text { AyBL }=\text { AreaBL } \cdot y B L \\
& \text { AyTLsq }=\text { AreaTL } \cdot y T L \cdot y T L \\
& \text { AySLsq }=\text { AreaSL } \cdot y S L \cdot y S L \\
& \text { AyBLsq }=\text { AreaBL } \cdot y B L \cdot y B L \\
& \text { SAysq }=A y T L s q+A y S L s q+A y B L s q \\
& \mathrm{I} T \mathrm{~L}=0 \\
& \text { ISL }=\frac{\mathrm{T} 14 \mathrm{~mm} \cdot\left[20^{3}\right]}{12} \\
& \mathrm{IBL}=0 \\
& I L=I T L+I S L+I B L+\text { SAysq } \\
& \mathrm{IL} 8=8 \cdot \mathrm{IL} \\
& Z L=\frac{\text { IL8 }}{230} \\
& \text { AreaTB1 }=\text { T20mm } \cdot 100 \\
& \text { AreaSS1 }=2 \cdot \text { T20mm } \cdot 600 \\
& \text { AreaBB1 }=\text { T20mm } \cdot 100 \\
& y \text { TB1 }=300 \\
& y S B 1=0 \\
& y B B 1=-300 \\
& y \text { TB1sq }=y \text { TB1 } \cdot y \text { TB1 } \\
& y S B 1 s q=y S B 1 \cdot y S B 1 \\
& y B B 1 s q=y B B 1 \cdot y B B 1 \\
& \text { AyTB }=\text { AreaTB1 } \cdot y \text { TB1 } \\
& \text { AySS }=\text { AreaSS1 } \cdot y S B 1 \\
& \mathrm{AyBB}=\text { AreaBB1 } \cdot \mathrm{yBB} 1 \\
& S A y B=A y T B+A y S S+A y B B \\
& \text { AyTBsq }=\text { AreaTB1 } \cdot \mathrm{yTB} 1 \cdot y \text { TB1 } \\
& \text { AySSsq }=\text { AreaSS1 } \cdot y S B 1 \cdot y S B 1 \\
& \text { AyBBsq }=\text { AreaBB1 } \cdot y B B 1 \cdot y B B 1 \\
& \text { SAyBB }=\text { AyTBsq }+ \text { AySSsq }+ \text { AyBBsq } \\
& \mathrm{IBT}=0 \\
& \text { FIGURE 8.6(b) (continued) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ISS }=\left[\frac{1}{12}\right] \cdot \mathrm{T} 20 \mathrm{~mm} \cdot 600^{3} \\
& \mathrm{IBOT}=\mathrm{SAyBB}+\mathrm{ISS} \\
& Z B O T=\frac{\text { IBOT }}{300} \\
& \mathrm{ZTOT}=\mathrm{Z1}+\mathrm{ZL}+\mathrm{ZBOT} \\
& I T O T=I 1+I L+I B O T \\
& \mathrm{~b}=\mathrm{e}+\frac{\mathrm{tcp}}{2} \\
& \text { PVmax }=\text { LVmax • } 9.807 \\
& \sigma \mathrm{~b}=\frac{\mathrm{PV} \max \cdot \mathrm{~b}}{\text { ZTOT }} \\
& \text { If } \sigma b<0.6 \cdot \sigma y \text { then } \sigma b=\text { OK2 } \\
& \mathrm{If} \sigma \mathrm{~b}=0.6 \cdot \sigma \mathrm{y} \text { then } \sigma \mathrm{b}=\text { OK2 } \\
& \text { If } \sigma b>0.6 \cdot \sigma y \text { then } \sigma b=\text { NOTOK2 } \\
& \sigma E F F=\beta \cdot \sqrt{\sigma b^{2}+3 \cdot \text { tact }^{2}} \\
& \sigma \text { aEFF }=0.9 \cdot \sigma y \\
& \text { If } \sigma E F F<\sigma a E F F \text { then } \sigma E F F=O K 3 \\
& \text { If } \sigma E F F=\sigma \text { aEFF then } \sigma E F F=O K 3 \\
& \text { If } \sigma E F F>\sigma \text { aEFF then } \sigma E F F=\text { NOTOK3 } \\
& \text { FIGURE 8.6(b) (continued) }
\end{aligned}
$$

Input	Name	Output	Unit	Comment
				COMPUTING SHEAR CAPACITY
	LTOP20mm	1334	mm	Length of 20 mm fillet welds on top of cover plate
	LTOP14mm	2480	mm	Length of 14 mm fillet welds on top cover plate
	LBOT20mm	1280	mm	Length of 20 mm fillet welds on bottom
	T20mm	14.1421356	mm	Throat of 20 mm fillet weld
	T14mm	9.89949494	mm	Throat of 14 mm fillet weld
	WA	61518.29		Total weld area, sq mm
	WC	11301137.7	MPa	Weld capacity of welds on top lug
248	бy		MPa	Yield strength of weld metal
	тact	44.1519523		Actual shear stress in welds
276960.6	LHmax		N	Maximum vertical force
	бall	99.2		Allowable shear stress for fillet welds
	OK1	44.1519523		If this space has a value, the ract is acceptable
	NOTOK1			If this space has a value, the ract is not acceptable
				COMPUTING THE MOMENT OF INERTIA IN THE LUG WELDS
				FOR SECTION 1
	AreaT1	1414.21356		Weld area for 100 mm top side, sq mm
	AreaS1	16037.1818		Weld area for 567 mm sides, sq mm
	AreaB1	1414.21356		Weld area for 100 mm bottom side, sq mm
	SUMA1	18865.6089		Sum of 20 mm weld area on top of cover plate, sq mm
	yT1	283.5		Distance from centroid of top weld to lug centerline
	yS1	0		Distance from centroid of side welds to lug centerline
	yB1	-283.5		Distance from centroid of bottom weld to lug centerline
	yT1SQ	80372.25		
	yS1SQ	0		
	yB1SQ	80372.25		
	AyT1	400929.545		
	AyS1	0		
	AyB1	-400929.54		
	SUMAy1	0		
	AyT1sq	113663526		
	AyS1sq	0		
	AyB1sq	113663526		
	SAysq1	227327052		
	IT1	0		
	IS1	429648128		
	IB1	0		
	11	656975180		Total moment of inertia of welds on top of cover plate, $\mathrm{mm}^{\wedge} 4$
	Z1	2317372.77		Section modulus of top center lug plate, cu mm
				FOR THE FOUR LEGS ATTACHED TO SECTION 1
	AreaTL	1484.92424		Weld area on top side of leg, sq mm
	AreaSL	197.989899		Weld area on side of leg, sq mm
	AreabL	1484.92424		Weld area on bottom side of leg, sq mm
	yTL	220	mm	Distance from centroid of weld to lug centerline
	ySL	230	mm	Distance from centroid of weld to lug centerline
	yBL	240	mm	Distance from centroid of weld to lug centerline
	yTLsq	48400		
	yS1sq	52900		
	yBLsq	57600		
	AyTL	326683.333		
	AySL	45537.6767		
	AyBL	356381.818		
	AyTLsq	71870333.2		
	AySLsq	10473665.6		
	AyBLsq	85531636.3		
	SAysq	167875635		
	ITL	0		
	ISL	6599.66329		
	IBL	0		
	IL	167882235		
	IL8	1343057878		Moment of inertia for welds on top legs, $\mathrm{mm}^{\wedge} 4$
	ZL	5839382.08		Section of 8 welded sides of braces, cu mm

FIGURE 8.6(c) Thariable sheet of the algorithm.

Input	Name	Output	Unit	Comment
				FOR WELDS ON BOTTOM OF COVER PLATE
	AreaTB1	1414.21356		
	AreaSS1	16970.5627		
	AreaBB1	1414.21356		
	yTB1	300		
	ySB1	0		
	yBB1	-300		
	yTB1sq	90000		
	ySB1sq	0		
	yBB1sq	90000		
	AyTB	424264.069		
	AySS	0		
	AyBB	-424264.07		
	SAyB	0		
	AyTBsq	127279221		
	AySSsq	0		
	AyBBsq	127279221		
	IBT	0		
	ISS	254558441		
	IBOT	509116882		Total moment of inertia of bottom fillet welds, $\mathrm{mm}^{\wedge} 4$
	SAyBB	254558441		
	ZBOT	1697056.27		Section modulus of welds on bottom center plate, cu mm
				COMPUTING THE BENDING STRESS IN LUG WELDS
250	e		mm	Distance from lug hole to top of cover plate
	b	325	mm	Moment arm from hole in lug to center of cover plate thickness
150	tcp		mm	Thickness of cover plate
	ITOT	1333974297		Total moment of inertial for lug fillet welds, mm^4
	ZTOT	9853811.12		
	бb	46.183714	MPa	Actual bending stress in welds
142782.03	LVmax		Kg	Maximum horizontal weight for bending at 10 deg from TK run for top lug 9 Aug 2006
	PVmax	1400263.37	N	Maximum horizontal force for bending
	OK2	46.183714		If this space is filled then ob is acceptable
	NOTOK2			If this space is filled then σ b is not acceptable
				TOTAL EFFECTIVE STRESS IN WELDS
	σ EFF	80.4034035	MPa	Total stress in welds
. 9	β			Factor of yield stress
	бaEFF	223.2	MPa	Allowable stress for effective stress
	OK3	80.4034035		If this space has a value then σ EFF is acceptable
	NOTOK3			If this space has a value then σ EFF is not acceptable

FIGURE 8.6(c) (continued)

Example 8.4 Capacities of Various Welds

Often you may be required to evaluate the capacity of different types of welds. Figure 8.7 shows a cross-section of a top flange lug forged to an inner circular plate that is welded to an outer forged cover plate. The originator wanted to use all fillet welds, but a combination of fillet and groove welds produced a much stronger welded piece.

You evaluate the welds as follows:

$$
\begin{aligned}
& \text { SL }=\text { SHEAR RESISTANCE LENGTH } \\
& \text { SL }=50+38+50 \cos \left(45^{\circ}\right)+38 \cos \left(45^{\circ}\right)=150.23 \mathrm{~mm}
\end{aligned}
$$

The length resisting the shear is the full length of the groove welds and the weld leg of the fillet weld times $\cos \left(45^{\circ}\right)$, which is the fillet weld throat. The fillet weld throat is the length that determines the weld capacity. The view of the cover plate attached to the lug is axisymmetric about the center axis of the configuration. Thus, the weld capacity is as follows:
WC = WELD CAPACITY

With a specified minimum yield strength of 248 MPa and an impact factor for lifting of 1.35, you have

$$
\mathrm{WC}=\frac{\pi \mathrm{D}(\mathrm{SL}) \sigma_{y}}{1.35}=\pi(800)(150.23) \mathrm{mm}^{2}\left(\frac{248}{1.35}\right) \frac{\mathrm{N}}{\mathrm{~mm}^{2}}
$$

or, $\mathrm{WC}=69,360,855.2 \mathrm{~N}$

FIGURE 8.7 Capacitirdf llet and groove welds.

From prior calculations, you know that the actual load on the welds is $13,243,500 \mathrm{~N}$. The actual shear stress is as follows:

$$
\tau=\frac{13,243,500 \mathrm{~N}}{\pi(800) \mathrm{mm}(150.23) \mathrm{mm}}=35.08 \mathrm{MPa}
$$

The allowable shear stress $=0.40 \sigma_{y}=99.20 \mathrm{MPa}>35.08 \mathrm{MPa}$.
The maximum weight that the lug can lift is as follows:

$$
\text { MAX ALLOW LIFT WEIGHT }=\frac{13,243,500 \mathrm{~N}}{(1.35)(9.807) \frac{\mathrm{N}}{\mathrm{Kg}}}=1,000,305.9 \mathrm{Kg}
$$

The reactor was successfully lifted with the lug. The groove welds added significant strength to the welded configuration.

Chapter 9

Rigging Devices

This chapter pro vides an o verview of v arious rigging de vices used in the f eld. The plant engineer' s responsibilities include the lifting lugs, tail lugs, and trunnions. We have discussed these items at length in pre vious chapters. Responsibility transfers to riggers when the time comes to lift. It does not hurt for the plant personnel to know some rigging terminology to facilitate communication. During the process of designing lift systems, it is advisable to ha ve riggers informed as to the design. A typical topic is the hole in the lifting lug. Nothing irritates a rigger more than when an engineer specif es that the shackle pin be $1 / 32^{\prime \prime}$ in diameter smaller than the lug hole. W ith such close tolerance, the pin cannot be remo ved after the lift. Consequently, construction personnel cut larger holes in the lug to $f t$ the pins-often resulting in une ven holes and high discontinuity stresses in the lug plate.

BLOCKS

A block is a frame that encloses one or se veral sheaves and has a hook that allows attachment to a v essel or stack or other car go to a f xed anchor point. The block has tw o functions: (1) it is used to change the direction of a wire

FIGURE 9.1 Different kinds of snatch blocks and wire rope blocks (courtesy of the Bechtel Corporation).

FIGURE 9.2 A typical wire rope block (courtesy of the Bechtel Corporation).
cable or rope; and (2) when used in pairs, blocks increase the mechanical capacity by allo wing the use of multiple parts of line. Blocks range in size from several hundreds of kilograms (or pounds) to hundreds of tons.

There are three types of blocks: snatch, wire rope, and crane blockigure 9.1 shows variations of the snatch block and wire rope block. A typical wire rope block is shown in Figure 9.2.

1. Side plates
2. Center plates
3. "Mouse ear" deadend
4. Upper tie bolts
5. Center pin
6. Cheek weight
7. Safety precautions
plate:
Tonnage rating nameplate (opposite sides)
8. Cheek weight cap
screw(s) (1 or 2)
9. Trunnion pin, or hook housing trunnion
10. Hook
11. Hook latch
12. Hook housing
13. Thrust bearing
14. Hook nut
15. Wire rope sheaves
16. Lower tie bolts

FIGURE 9.3 A typical crane block (courtesy of the Bechtel Corporation).

TABLE 9.1 Multiplication Factors for Snatch Block	
Loads	
Angle Between Lead and Load Lines (Degrees)	Multiplication Factor
10	1.99
20	1.97
30	1.93
40	1.87
50	1.81
60	1.73
70	1.64
80	1.53
90	1.41
100	1.29
110	1.15
130	1.00
140	0.84
160	0.68
170	0.52
180	0.35

A snatch block is an intermittent service block that jerks or snatches the load over small distances. It is characterized by a side-opening plate that facilitates threading wire rope through the block.

A crane block, as opposed to a snatch block, is required to perform long lifts under continuous service conditions. A crane block has multiple lar ge diameter shea ves, designed for long service life, with check plate weights added to the block side frame to increase the o verhaul weight. Normally , a crane block is outf tted with swivel hooks that allow the mass being lifted to be rotated without fouling the multiple parts of reeving. Figure 9.3 shows a typical crane block.

SELECTION OF A BLOCK

The go verning criterion for selecting a block is the load to be encountered rather than the diameter or strength of the rope used. In blocks with multiple sheaves, the load is distrib uted among se veral parts of the rope, whereas the

FIGURE 9.4 Rope angle as a variable of snatch block loads (courtesy of the Bechtel Corporation).
shackles or hooks on the blocks must carry the entire load. F or heavy loads and fast hoisting, it is recommended that roller or bronze bearings be used. The block anchor supports the total weight of the load, plus the weight of the blocks and load applied to the lead line.

Snatch blocks are either single or double shea ve blocks manuf actured with a shackle eye, hook, and swi vel end fttings. Snatch blocks are mostly applied for altering the direction of the pull on a line. The stress on a snatch block v aries with the angle between the lead and load line. When the two lines are parallel, 2,000 lbs on the lead line added to the $1,000 \mathrm{lbs}$ on each load line result in a load of 4,000 lbs on the block. Table 9.1 shows the multiplication factors for snatch block loads. Figure 9.4 illustrates the rope angle as a variable of snatch block loads.

LIFTING AND ERECTING PRESSURE VESSELS AND STACKS

Figure 9.5 illustrates a typical method of lifting and erecting pressure v essels and stacks where lifting lugs are attached.

The spreader bar sho wn in Figure 9.5 avoids an y bending moment on the lift lugs because the chok er angle is 90°. As mentioned in Chapter 7, the choker angle should ne ver be more than 45° under an y circumstances. It is

(a) Horizontal lift

(b) Vertical lift

(c) Spreader bar rig avoids excessive bending moments on lifting lugs

FIGURE 9.5 Liftihggs and erection procedure.
highly recommended that the chok er angle be as small as possible-normally 15°. Many industrial standards use 30° as the maximum choker angle.

SHACKLES

Shackles are the most common de vices used with lifting lugs. There are three basic types: wide body, bolt type, and scre w pin shackles. Figure 9.6 shows alloy wide body shackles.

"WIDE BODY" SLING SAVER SHACKLES INCREASE SLING LIFE

- Greatly improves wearability of wire rope slings.

- Can be used to connect HIGH STRENGTH Synthetic Web Slings, HIGH STRENGTH Synthetic Round Slings or Wire Rope Slings.
- Increase in shackle bow radius provides minimum 58% gain in sling bearing surface and eliminates need for a thimble.
- Increases usable sling strength minimum of 15%.
- Pin is non-rotating, with weld on handles for easier use (300 ton and larger).
- All ratings are in metric tons, embossed on side of bow.
- Forged alloy steel from 30 through 300 metric tons.
- Cast alloy steel from 400 through 1000 metric tons.
- Sizes 400 tons and larger are tested to 1.33 times Working Load Limit.
- Sizes 300 tons and smaller are proof tested to 2 times the Working Load Limit.
- All 2160 shackles are individually proof tested, Crosby certification available at time of order. Shackles requiring ABS, DNV, Lloyds and other certifications are available upon special request and must be specified at time of order.
- Shackles are produced in accordance with certified lifting Patented appliance requirements.

- Non Destructive Testing
- Serialization/Identification
- Material Testing (Physical/Chemical/Charpy)
- Proof Testing
- All sizes Quenched and Tempered for maximum strength.
- Bows and pins are furnished Dimetcoted. All Pins are Dimetcoted then painted red.
- Type Approval and certification in accordance with DNV specifications 2.7-1 Offshore Containers and DNV rules for Lifting Appliances-Loose Gear.

NOTICE: All G-2160 shackles are magnetic particle inspected

Working Load Limit* (metric tons)	G-2160 Stock No.	Weight Each (lbs.)	Dimensions (lns.)										
			A	$\begin{gathered} \mathrm{B} \\ \pm 25 \\ .25 \\ \hline \end{gathered}$	C	$\begin{gathered} \mathrm{D} \\ \pm .02 \\ .02 \\ \hline \end{gathered}$	E	G	H	J	K	P	R
† 30	1021575	25	7.75	2.38	1.38	1.63	3.56	2.00	6.50	3.13	2.50	9.13	11.00
† 40	1021584	35	9.06	2.88	1.75	2.00	4.00	2.31	8.06	3.75	3.00	10.62	13.62
$\dagger 55$	1021593	71	10.41	3.25	2.00	2.26	4.63	2.63	9.38	4.50	3.50	12.88	15.53
+ 75	1021290	99	13.62	4.13	2.12	2.76	4.76	2.52	11.41	4.72	3.66	12.32	18.31
+ 125	1021307	161	15.75	5.12	2.56	3.15	5.71	3.15	14.37	5.90	4.33	14.96	22.68
† 200	1021316	500	20.00	5.90	3.35	4.13	7.28	4.33	18.90	8.07	5.41	19.49	29.82
+ 300	1021325	811	23.27	7.28	4.00	5.25	9.25	5.51	23.62	10.43	6.31	23.64	37.39
†† 400	1021334	1041	28.13	8.66	5.16	6.30	11.02	6.30	22.64	12.60	7.28	27.16	38.78
$\dagger \dagger 500$	1021343	1378	31.87	9.84	5.59	7.09	12.52	6.69	24.80	13.39	8.86	31.10	42.72
†† 600	1021352	1833	35.94	10.83	6.04	7.87	13.78	7.28	27.56	14.57	9.74	34.06	47.24
$\dagger \dagger 700$	1021361	2446	39.07	11.81	6.59	8.46	14.80	7.87	28.94	15.75	10.63	37.01	50.18
†† 800	1021254	3016	38.82	12.80	7.19	9.06	15.75	8.27	29.53	16.54	10.92	38.39	52.09
$\dagger \dagger 900$	1021389	3436	41.34	13.78	7.78	9.84	16.93	8.66	29.80	17.32	11.52	40.35	54.04
††1000	1021370	4022	46.30	14.96	8.33	10.63	17.72	9.06	29.92	18.11	12.11	42.32	55.3

- Ultimate is 5 times the Working Load Limit.
\dagger Forged Alloy Steel. Proof Load is 2 times the Working Load Limit.
$\dagger \dagger$ Cast Alloy Steel. Proof Load is 1.33 times the Working Load Limit.
FIGURE 9.6 Typical catalog of wide body shackles (courtesy of Slingmax).

FIGURE 9.7 Lipkate and pin assembly arrangement.

In cases where v ery high loads are encountered, such as the f ange lug mounted on a co ver plate bolted to a nozzle on top of the v essel, a link plate and pin assembly is often used. This arrangement is shown in Figure 9.7.

The adv antage of this de vice o ver a shackle is that it can $f \quad t$ in tighter spaces; sometimes the shackle can interfere with the co ver plate bolts. It can be designed and fabricated for loads be yond conventional commercially available shackles. The arrangement in Figure 9.7 is designed to lift 1600 tonnes (or metric tons).

Other rigging de vices, such as hooks, v arious cables, and types of cranes, can be found in the following recommended sources:

1. Slingmax Rigging Handbook, by II Sling, Inc.
2. Products of Industrial Training International, Inc.

- Crosby User's Lifting Guide
- Mobile Crane Operator Reference Card
- Equipment Operator's Card
- Rigging Gear Inspection Card
- Journeyman Rigger's Reference Card
- Master Rigger's Reference Card
- Lineman Rigger's Reference Card

3. Yellow Str and W ire Rope Handbook, by Broderick \& Bascom Rope Company, \quad 10440enton Ave St. Louis, Mo 63132

Index

2:1ellipsoidal head weights , 25-6
Airdistributor piping, 92
American Engineering System (AES) , 1
American National Standard Institute (ANSI) safety codes , 117-18
American Society of Mechanical Engineers (ASME) , 1 ,
f anged and dished heads , 26-7
ANSIstandards see American National Standard Institute (ANSI) safety codes
ASCE7-2005, 75
ASMEF \& Dhead , 26-7
ASME STS-1, 4, 45, 46, 47, 54, 55, 64, 65, 74
ASTMSA-333 pipe material , 67

Basicwind speed , 79
Bearingfailure , 119 ,129
validation tests for , 130-1
Bellows expansion joints , 109
Bendingmoments and torque , 5-6
Blocks ,181-4
selection ,184-5
Bridlesand center of gravity , 116
BritishThermal Unit (BTU), 8

Capacityreduction factor, 122 , 123
Charpy impact test , 7
Circumferentialjoints see
Longitudinastress
Circumferentialstress:
conicalsections , 17-18
incylindrical shell , 12-13
Clamshell , 109

Coeffcient of thermal expansion , 8
Combinedstress , 99
Conicalsections:
circumferentialstress , 17-18
conicaltransitions , 20
f air section , 21
half-apex angle, computation of , 24
knucklesection , 1921
pressure-area force balance procedure, equations based on , 21-2
f nal values , 19
knucklesection , 19
longitudinalstress , 18
Correlationlength , 41
Craneblock , 182 , 183 ,184
Criticalbuckling stress , 128
Criticallift , 116
Criticalwind velocity , 4265
Cylindricalshells , 11
circumferentialstress , 12-13
f nal/resulting values , 14
longitudinalstress , 13-14
Dampingpads , 62-4
Density, 5
Doubleplane shear failure , 119 , 125-7
Dynamic response, of pressure
vessels and stacks , 41
fow-induced vibration-impeding devices:
dampingpads , 62-4
helicalstrakes , 56-62
waling rings , 64-6
guycables , 71-2

Dynamic response, of pressure vessels and stacks (Contd.)
basicmethodology , 66-71
screeningcriteria , 42-56
Efective wind diameter , 82-4
Ellipticalhead , 14-15
partialvolumes of , 33-6
Enegy, units of , 7
thermalconductivity units , 8
thermal expansion, coeff cient of , 8
Expansionjoints see Bellws expansion joints

Fabreeka International, 62
Fillet and groove welds, capacities of , 178-9
Finiteelement method (FEM) , 123
Flarestacks , 666768
see also Guycables
Flexible structure , 79-80
Flow-induced vibration-impeding devices:
dampingpads , 62-4
helicalstrakes , 56-62
ovaling rings , 64-6
Fluid-structureinteraction , 41
criteria ,47-56
Force , 2
Force, pound, and second system (FPS) system , 3
Forces on internal components , 93-7
Formulas for pressure vessels , 11
ASMEF \& Dhead weights , 26-7
conicalsections:
circumferentialstress , 17-18
conicaltransitions, 19-22 24
f nal values , 19
longitudinalstress , 18
glindrical shells , 11
circumferentialstress , 12-13
f nal or resulting values , 14
longitudinalstress , 13-14
ellipticalhead , 14-15
headweight computations , 25-6
hemisphericalhead weights , 27-8
partialvolumes , 28
of cylinder in horizontal
position , 29
ofelliptical heads , 33-6
ofhemispherical head , 30-1
of spherically dished heads, 31-3
torisphericalheads , 36-40
sphericalshell, 14
torisphericalhead , 15-17
Growe and fllet welds, capacities of , 178-9
Grosston see Longon
Gust-efect factor , 79-82
Guycables , 66-72
Half-ape angle, computation of , 24
Head weights, formulas for:
2:1ellipsoidalhead weights , 25-6
ASMEF \& Dhead weights , 26-7
hemisphericalhead weights , 27-8
Heary lift, 116
Helicalstrakes , 56-62
Hemisphericalhead, 14
partialvolume of , 30-1
Hemisphericalhead weights , 27-8
Hooptension , 119, 124-5
Impactfactor , 120,166, 170, 178
Importancefactor, 79
Internal assessment, of pressure vessels, 91
forces on internal components, 93-7
internalexpansion joints , 109
lined plates and internal components , 97
structuralformulations:
supportclips , 99-104
traysupport ring , 98
wire and sheet metal gauges, 105-8

Joule ,5-6 7,

KiloNevtons (KN) , 4-5

Liftcategories , 116
Lifting and erecting pressure vessels and stacks , 185-7
Lifting and tailing devices:
filure modes , 119,121
bearingfailure , $121,129-31$
double plane shear failure, 119 , $121,125-7$
evaluation , 132-6
hooptension , 119,121 , 124-5
out-of-planeinstability (dishing) failure , 119,127-9
tension at net section, 119,120 , 121 , 122-4
multipleloads , 137-42
pinhole doubler plates , 131-2
rigginganalysis , 143-50
trunnions ,150-62
see also Liftingugs
Liftinglugs , 163
anderection procedure , 186
andreinforcing pads , 171
withsimple " U đesign , 164
equations sheet for weld assessment , 165
variable sheet for weld assessment , 166
topf ange lifting lugs , 172-7
with " U shape and cutout, 167
equation sheet for weld assessment , 168-9
variables sheet for weld assessment , 170
see also Liftingand tailing devices
Lightlift , 116

Lined plates and internal components , 97
Longton , 111 ,112
Longitudinaljoints see Circumferentiabtress, in cylindrical shell
Longitudinalstress , 13-14 ,18

Mass ,2 3
Massdamping parameter , 45-6 , 54-5
Maximum allowable pressure (MAP) , 11
Maximum allowable working pressure (MAWP) , 11
Mediumlift , 116
Meter, kilogram, and second (MKS) system , 2
MetricSI system , 12
inAustralia , 114
bending moments and torque, 5-6
density, 5
familiarity , 4-5
ton, concept of , 111
warning about combining , 6-7
Metricton , 111-12
MTBR Regenerator air distributor, internal collapse of , 91-3
Multiple loads, on lifting and tail lugs , 137-42
rigginganalysis , 143-50

Naturalfrequency method , 43-5, 49-54 65
Netton see Shorton

Occupational Safety and Health Administration (OSHA), 117
Out-of-plane instability (dishing) failure , 119 ,127-9
Ovaling rings , 64-6

Partial volumes pressure vessel calculations , 28
of cylinder in horizontal position, 29
ofelliptical heads , 33-6
ofhemispherical head , 30-1
ofspherically dished heads , 31-3
torisphericalheads , 36-40
Pinhole doubler plates , 131-2
Pound ,3 , 4
Pressure, unit for , 6
Propagative compression , 95-7
Rayleighs̉ method, 4365
Reinforcing pads and lifting lugs, 171
Remediationdevices, 66
Rigging analysis, of pressure vessel
lifting, 143-50
Riggingdevices , 181
blocks ,181-4
selection ,184-5
lifting and erecting pressure vessels and stacks , 185-7
shackles ,187-8
Rigidstructure:
guest-efect factor , 79
Safety considerations, for lifting and rigging, 111
American National Standard
Institute safety codes, 117-18
bridlesand center of gravity , 116
liftcategories , 116
preparationfor lift , 116-17
slings, maximum capacity of, 112-15
weightton, concept of , 111-12
SaudiArabia, 66 70 72,73,116
Screening criteria, of dynamic
resonance response , 42-56
Shackles ,120,185, 187-8
Shamal ,79

Shortton , 111,112
Slings, maximum capacity of, 112-13
Slav compression see Spatially uniform compression
Slug , 3 , 4
Snatchblock , 181, 184,185
Spatiallyuniform compression , 95 , 96
Sphericalshell see Hemispherical head
Spherically dished head:
partialvolumes of , 31-3
Stackhelical strake design , 60-1
Stress, unit for , 6
Structural damping coeff cient , 43-45
Structuralformulations:
supportclips , 99-104
traysupport ring, 98
Supportclips:
withapplied tensile force , 100-1
with continuous fllet weld with in-plane bending moment, 102,104
with continuous fllet weld with out-of-plane bending moment, 102
with in-plane bending moment, 101, 103
with out-of-plane bending moment , 101,102
welded on two sides with fllet welds , 99 ,100
Surfice roughness , 79
Systemsof units , 1
enegy, units of , 7
coeffcient of thermal expansion, 8 thermalconductivity units , 8
metricSI system , 12,3
basicunits, 5
bending moments and torque, 5-6
density, 5
fmiliarity , 4-5
warning about combining , 6-7
stressand pressure, units for , 6
toughness, unit of , 9-10
Tech Products Corporation (TRC) , 62
Tensile force , 6971
Tensile splitting see Hooptension
Eension at net section , 119, 120 , 122-4
Thermalconductivity units , 8
Thermalexpansion:
coeffcient , 8
off are stack , 70
Ton, concept of , 111-12
Tonne see Metridon
Top fange lifting lugs , 172-7
Topographic factor , 78-9
Torispherical heads , 15
geometricalequations , 16-17
inhorizontal position , 38-40
partialvolumes of , 36-8
Toughness, unit of , 9-10
Tray support ring , 98
Trunnions , 150-62, 171
U.S.Customary Units (USCU) , 1

Velocity pressure coeff cient , 77-8
Velocity pressure distribution , 76
Vortex shedding frequency , 42

Weight ton see Longon
Weld attachments, assessing:
f llet and groove welds, capacities of , 178-9
liftinglugs , 163
andreinforcing pads , 171
withsimple "U design , 164-6
topf ange lifting lugs , 172-7
with " U shape and cutout , 167-70
Meld stresses , 99,159
Wide body shackles , 187
Wind directionality factor , 76 , 85
Wind loading, on pressure vessels and stacks , 75 85-9
basicwind speed, 79
gust-efect factor , 79-82
importancefactor, 79
projected area normal to wind, 82-4
topographicfactor , 78-9
velocity pressure coeff cient , 77-8
velocity pressure distribution , 76
winddirectionality factor, 76
Wire and sheet metal gauges, 105-8 ,109
Wire rope block , 181, ,82

[^0]: NOTES: (1) Foundations on bedrock, end-bearing piles or other rigid base support conditions.
 (2) For foundations with friction piles or mat foundations on soil or other elastic base support conditions.
 (3) Lining must consist of a minimum 2 in. thick, nominally 100 pcf density liner material for stack to be considered lined for the use of this table. (Reprinted from ASME STS-1-2006, by permission of the American Society of Mechanical Engineers. All rights reserved.)

[^1]: Moody, Fredrick, Predicting Thermal-Hydraulic Loads on Pressure Vessels ,ASME
 Continuing Education Course Notes PD382. American Society of Mechanical Engineers, New York, NY, 2007.
 Roark Raymond JFormulas for Stress and Strain ,ettition McGrav-Hill Thble X Case 60, New York, NY 1965
 Giachino, J.W, Weks, Wand Johnson, G.SWelding Technology 2ndedition American Technical Society Chicago,Illinois 19,73
 Hicks, JohnWelded Joint Design 3rdedition IndustrialPress, Inc. Nev York, NY 19,99 Bednar, eßsure Deisgn Handbook 2ndEdition Van Nostrand Reinhold Company NYNY, 1986

