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Abstract. In practice, obtaining the global optimum for the economic dis-

patch (ED) problem with ramp rate limits and prohibited operating zones
is presents difficulties. This paper presents a new and efficient method for
solving the economic dispatch problem with non-smooth cost functions using

a Fuzzy Adaptive Genetic Algorithm (FAGA). The proposed algorithm deals
with the issue of controlling the exploration and exploitation capabilities of
a heuristic search algorithm in which the real version of Genetic Algorithm
(RGA) is equipped with a Fuzzy Logic Controller (FLC) which can efficiently
explore and exploit optimum solutions. To validate the results obtained by
the proposed FAGA, it is compared with a Real Genetic Algorithm (RGA).
Moreover, the results obtained by FAGA and RGA are also compared with
those obtained by other approaches reported in the literature. It was observed

that the FAGA outperforms the other methods in solving the power system
economic load dispatch problem in terms of quality, as well as convergence and

success rates.

1. Introduction

An economic dispatch (ED) problem has complex, nonlinear characteristics as
well as equality and inequality constraints. The objective of an economic dispatch
problem of a power system is to determine the optimal combination of power out-
puts for all generators, which minimizes the total fuel cost while satisfying con-
straints. In the traditional ED problem, the cost function for each generator is
approximately represented by a single quadratic function and the problem is solved
using mathematical programming based on optimization techniques such as the
lambda-iteration, gradient and dynamic programming methods. However, many
mathematical assumptions such as convexity, quadratic, differentiable or linear ob-
jectives are required to simplify the problem.

The practical ED problem with ramp rate limits, prohibited operating zones,
valve-point effects and multi-fuel options is represented as a non-smooth or non-
convex optimization problem with equality and inequality constraints and this
makes the problem of finding the global optimum difficult to solve by traditional
methods.
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A considerable amount of research has been conducted for solving a practical ED
problem with non-convex cost functions using various heuristic approaches such as
Genetic Algorithm (GA) [3, 4, 19, 27], Simulated Annealing (SA) [26], Artificial
Neural Network (ANN) [12], Tabu Search (TS) [13], Evolutionary Programming
(EP) [23, 28] , Particle Swarm Optimization (PSO) [2, 6, 14, 20, 22], Ant Colony
Optimization (ACO) [24] and Differential Evolutionary (DE) [25].

Among these, only [2] and [22] considered the exploration and exploitation ca-
pabilities of the algorithm. However, the issue of controlling exploration and ex-
ploitation capabilities of a heuristic search algorithm is a key factor in finding op-
timum solutions. Exploration is the ability of expanding the search space, whereas
exploitation is the ability of finding the optima around a good solution. When
exploration increases, the algorithm tends to search for new points in the search
space. Therefore, for a high performance search, it is essential to have a tradeoff
between exploration and exploitation. In view of this, the authors in [18] proposed
an approach to the non-smooth ED problem using the Memetic Algorithm (MA)
with three different local searches. MA is a hybrid GA that uses a genetic search
to explore the search space and a local search to exploit information in the search
region. To validate the results obtained by the proposed MAs, the problem is solved
by by an RGA as well as an MA adapted from CHC in the literature.[7].

In this paper, in continuation of our previous work [18], in order to make a
suitable tradeoff between exploration and exploitation, an alternative approach is
proposed to the non-smooth ED problem using a Fuzzy Adaptive Genetic Algo-
rithm (FAGA) in which the genetic algorithm is equipped with fuzzy logic that
can efficiently search and exploit the optimum solutions. One type of non-smooth
ED problems, i.e. ED with ramp rate limits and prohibited operating zones, is
considered.

To validate the results obtained by the proposed FAGA, the problem is also
solved by RGA and the results are compared with results previously obtained using
MA and CHC in [18]. The results obtained by FAGA are also compared with those
obtained by previous approaches reported in the literature. The basic concepts of
the GA and MA are briefly explained in the next section followed by a description
of FAGA. The basic formulation of ED problem is given in section 3. Section 4
introduces cases that are used in experiments. Implementation and results are
presented in section 5 and section 6 provides a conclusion.

2. Overview of Genetic, Memetic and Fuzzy Adaptive Genetic
Algorithms

2.1. Genetic Algorithm. GA has desirable characteristics as an optimization tool
and offers significant advantages over traditional methods. GA efficiently searches
the large solution space containing discrete or discontinuous variables and nonlin-
ear constraints. Thus, it is able to give a good solution of a certain problem in a
reasonable computation time. The optimal solution is sought from a population
of solutions using random process. Applying to the current population, the fol-
lowing three operators create a new generation: selection, crossover and mutation.
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The reproduction is a process dependent on an objective function to maximize or
minimize, which depends on the problem.

GA can be implemented through Binary GA (BGA) and Real GA (RGA). The
first step in the solution of an optimization problem using BGA is the encoding of
the variables. The most usual approach is to represent these variables as strings
of 0s and 1s. A collection of such strings is called population. Then, selection,
crossover and mutation are applied on the encoded variables. On the other hand,
RGA uses the real codes and the selection, crossover and mutation are applied to
the variable directly.

2.2. Memetic Algorithm. MA is a population-based meta-heuristic search meth-
od inspired by the conjecture of natural selection and Dawkins’ notion of ‘meme’
[11, 16] . GAs that have been hybridized with local search techniques are often
called Memetic Algorithms [17]. Therefore, MA is a hybrid GA that uses a genetic
search to explore new solutions and a local search to exploit information in the
search region. In other words, MA tries to achieve a balance or a suitable tradeoff
between exploration and exploitation by genetic search and a local search. The
term ‘memetic algorithm’ was used for the first time by Moscato [17] and then in
Norman and Moscato [15] , where MA was a hybrid of traditional GA and simulated
annealing.

The unit of information in the memetic approach is referred to as a meme rather
than a gene. The main difference between MA and GA is that memes can be
improved upon by their owner. This improvement is obtained by incorporating
local search into the genetic algorithm. Different versions of MA are reported in
the literature [1, 7, 15] and may be classified into two different groups. The first
group uses efficient hill- climbers on continuous domain. Hill-Climbing (HC) is
a local search algorithm that starts from a single solution point. Local search is
applied to each member of population. If improvement is achieved, the population
members are replaced and used to generate the next population by selection and
recombination.

The second group of MAs are known as MAs with crossover-based local search
(XLS) algorithms. The crossover in GA is an operator that produces offspring
around the parents. Therefore, it may be considered to be a move operator for
a local search strategy. In XLS, a crossover creates offspring distributed densely
around the parents, favoring local tuning. Crossover Hill-Climbing (XHC) [7] is
a kind of XLS approach that allows the self-adaptive capacity of real-parameter
crossover operators to be exploited inside the proper XLS, i.e., it is a self- adaptive
crossover local search method. The mission of XHC is to obtain the best possi-
ble accuracy levels for leading the population toward the most promising search
areas, producing their refinement [7]. In addition, the MA employs an adap-
tive mechanism that determines the probability with which every solution receives
the application of XHC. Thus it attempts to adjust the exploration/exploitation
balance. The crossover introduced in [7] is an extended version of the BLX-
α, called parent-centric BLX-α (PLX-α). Suppose that X1 = (x1
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real-coded chromosomes that have been selected as parents to produce two off-
spring using the crossover operator. Here xd

i indicates the variable d (dth dimen-
sion) of chromosome i and xd,min and xd,max are the lower and upper bounds
of the variable d , respectively. According to [8] , PLX-α randomly generates
one of two possible offspring: O1 = (o1
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In our previous work in [18], by proposing three different local searches, we

arrived at three different MAs which we called FVMA, SVMA and TVMA. It was
shown that SVMA performs better than FVMA and TVMA. In SVMA, the HC
local search is applied only on the first K individuals with the best fitness function.
In this way, the algorithm searches the neighborhood of the K selected individuals
to find a solution with greater improvement in the value of the fitness function. If
such a solution exists, the new individual replaces the old. This local search may
be repeated m times for the K selected individuals.

To evaluate the proposed FAGA, the results are compared with those obtained
by the SVMA and XHC. The flow charts for SVMA and XHC are shown in Figure
1 and 2, respectively.

2.3. Fuzzy Adaptive Genetic Algorithm. Achieving a good balance between
exploration and exploitation is a difficult issue when applying a heuristic algorithm
to solve different problems. When exploration increases, the algorithm tends to
search for new points in the search space. While this capability is vital for a
heuristic search, the algorithm also needs to exploit the neighborhood of good
solutions for optima. Furthermore, the exploration and exploitation cannot occur
simultaneously. In other words, once a heuristic algorithm has reached the stage
of high exploration, the probability of it converging to a near-optimum solution
is small. On the other hand, a excessive exploitation may lead the algorithm to
stagnation and premature convergence to a local optimum.

One of the major steps in applying GA or any other heuristic algorithm to a
particular problem is to choose its components e.g. different operators (in GA,
selection, mutation, crossover, and replacement mechanism) and their parameters
(in GA , mutation and crossover rates, selection pressure, and the population size).
The value of these parameters significantly affects exploration and exploitation
abilities and determine whether the algorithm will find a near-optimum solution
efficiently [5].

Many researchers have tried to address this issue in. For example, MA makes an
effort to carry out the steps of exploration and exploitation independently of each
other. As mentioned before, MA uses GA as a global search to do the exploration
and applies a local search such as hill-climbing or simulated annealing to exploit
around good solutions to find the optimum.

Eiben et al. (1999) considers two major ways for setting parameter values:
parameter tuning, and parameter control [5]. In parameter tuning, one tries to find
a suitable value for the parameters before running the algorithm. The algorithm
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Figure 1. The Principle of SVMA

is then run using these values which remain fixed during the run. This approach
suffers from the following technical drawbacks [5]:

a) Parameters are dependent on each other and trying all combinations is
not practical.
b) It is time consuming, even if the parameters are optimized regardless of
their relationships.
c) During a run, an algorithm needs different values of exploration and
exploitation. Even if the parameters were tuned well, it may not lead to
the desired exploration and exploitation.

These drawbacks motivated researchers to use parameter control techniques for
parameter setting. Parameter control techniques may be classified into three cate-
gories: deterministic, self-adaptive, and adaptive. Deterministic parameter control
occurs when the value of a parameter is changed by a set of deterministic rules.
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Figure 2. The Principle of XHC

The rules determine the parameter value, usually using a time-varying function but
without any feedback from search and performance indices.

When one designing a GA based on fixed parameters or controlling parameters
using deterministic rules, to avoid getting trapped in a local optimum in the first
few iterations, a heuristic search algorithm should explore the search space to find
new solutions. After sufficient iterations, exploration fades out, exploitation begins
and the algorithm tunes itself in semi-optimal points [21].

The self-adaptive parameter control terminology uses the idea of “evolution of
evolution”. In this policy, the parameters to be adapted are encoded as added genes
into the chromosomes to adjust during the reproduction.

The adaptive terminology of control uses feedback from the search (e.g. search di-
rection, performance indices, convergence) to change the parameters . The feedback
signals are selected from genotype or phenotype and monitor the search conditions
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before changing the parameters so as to lead the search to a desired state. In this
approach, based on existing conditions and using a set of heuristic rules, one can
control the parameters dynamically to achieve desired abilities of exploration and
exploitation. Generally, adaptive terminology of control uses the current value of
the parameters together with performance feedback signals to produce new value
of the parameters.

Another important approach for adaptive control of parameters is the adaptive
parameter control technique using Fuzzy Logic Controllers (FLC). The GA that
uses a FLC to dynamically adjust its parameters is known as the Fuzzy Adaptive
Genetic Algorithm (FAGA). The FLC provide facilities for handling the complex
problem of adaptation of GA parameters by extracting expert knowledge in terms
of fuzzy rules. The FLC uses a combination of performance indices and current
GA control parameters as inputs and computes new control parameter values to be
used by GA. Figure 3 depicts the structure of the FAGA.

Many researchers have tried to address the issue of balancing between exploration
and exploitation using FAGA [8, 9, 10, 29]. Herrera and Lozano (2003) have Carried
out some basic research in this field and shown how one can design an FAGA [10].
We note that FLC can also be used to adaptively control parameters of other
heuristic algorithms.

From another point of view, parameter control techniques are categorized into
three groups based on levels of adaptation [5]:

Population level : in which the parameters are set to be the same for all
individuals in the population.
Individual level : where the parameters are set to be different for each in-
dividual of the population but similar for all components of a particular
individual.
Component level : where the parameters are different for different com-
ponents (gene/allele) in an individual and also differ from individual to
individual.

Figure 3. FAGA Structure

The authors believe that adaptive parameter control (especially fuzzy adaptive
control) is the best way for balancing exploration and exploitation in a particular
heuristic algorithm. Therefore, a FAGA is proposed which is applied at the individ-
ual level. Since, to understand the mechanism of this FAGA, it is necessary to have



8 H. Nezamabadi-Pour, S. Yazdani, M. M. Farsangi and M. Neyestani

some knowledge of FLC, in the rest of this section we first describe fuzzy inference
systems and then proceed to discuss our FAGA. Fuzzy systems provide the means
of representing expert knowledge about the process in terms of fuzzy (IF-THEN)
rules. A fuzzy rule is the basic unit for capturing knowledge in fuzzy systems. Just
like a conventional rule in artificial intelligence, a fuzzy rule has two components: an
if part and a then part, also referred to as antecedent and consequent, respectively.
The main structure of the fuzzy rule is given by equation (1).

IF < antecedent > THEN < consequent > (1)

The antecedent of a fuzzy rule has a condition that can be satisfied to a degree.
As in conventional rules, the antecedent of a fuzzy rule may combine multiple
simple conditions into a complex one using AND, OR and NOT logic operators.
The consequent of a fuzzy rule can be classified into two main categories:

a) Fuzzy consequent (equation (2)), where C is a fuzzy set.
b) Functional consequent (equation (3)), where p,q and r are constant.

Basically, fuzzy logic controllers incorporate an expert’s experience into the sys-
tem design and are composed of four blocks (Figure 4). A FLC comprises a fuzzifier
that transforms the ’crisp’ inputs into fuzzy inputs using membership functions that
represent fuzzy sets of input vectors, a knowledge-base that includes the informa-
tion given by the expert in the form of linguistic fuzzy rules, an inference-system
(Engine) and a defuzzifier that transforms the fuzzy results of the inference into a
crisp output using a defuzzification method [10].

The knowledge-base has two components: a data-base, which defines the mem-
bership functions of the fuzzy sets used in the fuzzy rules, and a rule-base comprising
a collection of linguistic rules that are joined by a specific operator. The generic
structure of a FLC is shown in Figure 4. Based on the consequent type of fuzzy
rules, there are two common types of FIS which vary according to differences be-
tween the specifications of the consequent part (equation (2) and (3)). The first
fuzzy system uses the inference method proposed by Mamdani in which the rule
consequence is defined by fuzzy sets and has the following structure:

IF x is A and y is B THEN f is C (2)

The second fuzzy system proposed by Takagi, Sugeno and Kang (TSK) contains
an inference engine in which the conclusion of a fuzzy rule comprises a weighted
linear combination of the crisp inputs rather than a fuzzy set. The TSK system
has the following structure:

IF x is A and y is B THEN f = px + qy + r (3)

where p, q and r are constant parameters. The TSK models are suitable for ap-
proximating a large class of non-linear systems.

The knowledge-base containing the database and rule-base of a FLC can be
constructed from an expert’s knowledge, where the expert selects the membership
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functions and rules. Fuzzy systems can also be constructed from data, which allevi-
ates the problem of knowledge acquisition. In practice, we may use soft computing
tools, hybridizing artificial neural networks (ANN), evolutionary algorithms (EA)
and clustering techniques with fuzzy logic. In the proposed FAGA, the FLC is
constructed by knowledge of an expert.

Figure 4. FLC Structure

2.4. The Proposed FAGA. The proposed FAGA is an algorithm that integrates
a FLC to adapt the standard deviation of Gaussian mutation, σ , during a run.
The Gaussian mutation in RGA is as follows:

xd
i (new) = xd

i (old) + N(0, σi) (4)

where xd
i (old) and xd

i (new) represent dimension d (variable d ) of individual i
before and after mutation, respectively and N(0, σi) is a random number generated
by Gaussian density function with zero mean and standard deviation σi . In this
paper, the standard deviation is selected as a control parameter because of its
ability to make the population diverse and hence be an important factor in barring
premature convergence. When σ is increased, the search algorithm based on a
mutation operator produces offspring far from the parent. Thus the population
diversity as well as exploration ability of the algorithm increases. On the other
hand, when σ is decreased, offspring are produced close to their parents and the
algorithm can exploit around the existing solution. Also, an algorithm with a small
value of σ may potentially converge to a near-optimal solution. It is better to
rewrite σi in more detail as σd

i = σ0
i (xd,max − xd,min) , where xd,max and xd,min

represent the upper and lower bounds of variable xd (dimension d ), and σ0
i is a

scale factor that is similar for all dimensions of individual i, specifies the range σd
i .

As mentioned, the proposed FAGA is applied at the individual level. In other
words, the FLC is run for each individual in the mutation stage and σ0

i (t + 1) (the
control parameter) is computed. Two types of inputs are considered: the current
value of parameter control (σ0

i (t)) and performance indices of GA such as diversity
measures, average fitness and variance of fitness. In this paper, the Expected Value
of each individual ( EVi ) and fitness Variance of population ( V ar ) are used along
with σ0

i (t) as inputs and control parameter σ0
i (t + 1) is the output. EVi and V ar

are computed respectively as follows:
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EVi = N.
fiti∑N

j=1 fitj
=

fiti
fitave (5)

V ar =
fitmax − fitave

fitmax − fitmin (6)

where fitaveistheaveragefitnessofthecurrentpopulation, fiti ,fitmax ,fitmin , are
respectively the fitness values of individual i , the best individual and the worst
individual, and N is the population size. The input EVi shows the quality of
individual i with respect to other individuals of population. A large value of EVi

indicates that the corresponding individual is of good quality and may lead us to
a near optimum solution (in an ideal case to the optimum). The input V ar is a
phenotypic measure that represents the amount of diversity in the population. For
a converged population, V ar tends to zero while a large value for V ar indicates a
diverse population.

Each input and output is defined by an associated set of linguistic variables. A
linguistic variable is quantified by a fuzzy set and qualified by a linguistic term. A
knowledge base (containing data base and rule base) depends on the problem and
the knowledge base for ED problem is explained in section 5.

3. Formulation of Economic Dispatch Problem

3.1. Traditional ED Problem with Smooth Cost Functions. In the tradi-
tional ED problem, the cost function for each generator has been approximately
represented by a single quadratic function. The primary objective of the ED prob-
lem is to determine the optimal combination of power outputs of all generating
units so that the required load demand at minimum operating cost is met while
satisfying system equality and inequality constraints. Therefore, the ED problem
can be described as a minimization process with the following objective:

minF =
NG∑
i=1

Fi(PGi) =
NG∑
i=1

(aiPGi
2 + biPGi + Ci) (7)

subject to
NG∑
i=1

PGi = Pload + Ploss (8)

PGi min ≤ PGi ≤ PGi max for i = 1, 2, . . . , NG (9)

where F is the total generation cost ($/hr), Fi is the fuel-cost function of generator
($/hr), NG is the number of generators, PGi is the real power output of generator
i (MW), and ai, bi and ci are the fuel-cost coefficients of generator i , Pload is
the total load in the system (MW), Ploss is the network loss (MW) that can be
calculated by B matrix loss formula,PGi min and PGi max are the minimum and
maximum power generation limits of generator i .
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3.2. Practical ED Problem with Non-smooth Cost Functions. As men-
tioned, for a complete formulation of the ED, it is necessary to take ramp rate
limits, prohibited operating zones, valve- point effects, and multifuel options into
consideration. The resulting ED will be a nonconvex optimization problem that has
multiple minima, which makes the problem of finding the global optimum difficult.
We shall here consider a special type of non- smooth ED problems, i.e. an ED with
ramp rate limits and prohibited operating zones as follows:

a) Generator Ramp Rate Limits. By considering generator ramp rate limits, the
effective real power operating limits are modified as follows:

max(PGi min, P 0
Gi −DRi) ≤ PGi ≤ min(PGi max, P 0

Gi + URi) for i = 1, 2, . . . , NG

(10)
where P 0

Gi is the previous operating point of generator i , DRi and URi are the
down and up ramp limits of the generator i .

b) Prohibited Operating Zones. A generator with prohibited regions (zones) has
discontinuous fuel-cost characteristics. The discontinuous fuel-cost characteristics
of the generators by considering prohibited zones are shown in Figure 5.

Taking into account these prohibited operating zones, we have the following
constraint :

PGi ∈


PGi min ≤ PGi ≤ PLB1

Gi

P
UBk−1
Gi ≤ PGi ≤ PLBk

Gi k = 2, 3, . . . , NPZi

PUBk

Gi ≤ PGi ≤ PGi max i = 1, 2, . . . , NGPZ (11)

where PLBK

Gi and PUBK

Gi are the lower and upper boundaries of prohibited operating
zone k of generator i in (MW), respectively, NPZi is the number of prohibited op-
erating zones of generator i and NGPZ is the number of generators with prohibited
operating zones.

Figure 5. Input-output Curve with Prohibited Operating Zones
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4. Case Studies

The superiority of FAGA has been demonstrated on two test systems for solving
an ED problem with non-convex solution spaces. The study systems are as follows:

1) The First Study System. This study system consists of six generators with
ramp rate limit and prohibited operating zones. The input data for a 6-generator
system are given in [6] and the total demand is set as 1263 MW. All the generators
have ramp rate limits. The network losses are calculated by B matrix loss formula.
That the best generation cost reported until now is 15446.02 $/h [2].

2) The Second Study System. This study system consists of 15 generators
with ramp rate limits and prohibited operating zones. The input data of this
system are given in [6] and has a total load of 2630 MW. Again, network losses are
calculated by the B matrix loss formula. The main difference of the study systems
1 and 2 is that system 2 has more local minima. Thus, the ability of the proposed
algorithms is investigated on a larger system. The best generation cost reported
until now is 32751.39 $/h [2].

For convenience, the data for the two systems are given in the Appendix.

5. Implementation of FAGA and RGA

The implementation of FAGA and RGA for the ED problem for the systems
under study is presented below. It should be noted that in this paper the penalty
method is used to handle constraints in the ED problem. Also, the objective func-
tion is converted into an appropriate fitness function, so that the algorithms may
be able to solve the problem.

5.1. Implementation of FAGA and RGA for the First Study System.

1) The Use of RGA. For study system1 (with six generators), the goal of the
optimization is to find the best generation for six generators. Therefore, a configu-
ration is considered for each individual in RGA as a vector [PG1, PG2, PG3, PG4, PG5

, PG6].
The size of population was taken to be 20. In RGA, the chromosomes evolve

through successive iterations, called generations. During each generation, the chro-
mosomes are evaluated with some measure of fitness, which is calculated from the
objective function (equation (7) subject to 8 - 11).

Moving to a new generation is carried out according to the results obtained
for the old generation. A roulette wheel is created from the obtained values of
the objective function of the current population. To create the next generation,
new chromosomes, called offspring, are formed using a crossover operator and a
mutation operator. In RGA, linear crossover and Gaussian mutation are used with
the crossover probability Pc = 0.7 and the mutation probability Pm = 0.1.

For the study of system1, the number of iterations was 50, the stopping criterion.

2) The Use of FAGA. RGA is applied to the ED problem and FLC is used
to improve its performance. FAGA was implemented using Stochastic Universal
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Sampling (SUS) selection, linear crossover and Gaussian mutation with crossover
probability Pc = 0.7 and mutation probability Pm = 0.1. Before applying the
selection operator, linear fitness scaling was performed to control selection pressure.
The parameter of linear scaling was set up such that the ratio of the selection
probability of the best individual of current population over the individual with
average fitness was 3.

As mentioned in section 2-4, each input and output is defined by an associated
set of linguistic variables. A linguistic variable is quantified by a fuzzy set and
qualified by a linguistic term. Figure 6 presents the membership functions of the
inputs and output. Based on our experience the standard deviation parameter,
σ0

i , should be in the interval [0, 0.3]. This interval guarantees that GA is able to
carry out the necessary exploration and exploitation. The set of linguistic terms
used for σ0

i as well as V ar and EVi was {Low, Medium, High}. As a result, EVi

and V ar have values in [0, 3] and [0, 0.6], respectively. A ‘Mamdani’ type FLC
was implemented using ‘min’ intersection, ‘max’ union, ‘min’ implication method
(clipping method), ‘max’ aggregation method and ‘centroid’ defuzzification. The
pseudo-code of the proposed FAGA is shown in Figure 7.

Figure 6. Membership Functions of Inputs and Output
a) EVi b) V ar c) σ0

i (t) d) σ0
i (t + 1)

Fuzzy rules describe the relation between inputs and output of the FLC. Fuzzy
rules (Rule-Base) used in the proposed FLC are shown in Table 1. The Rule-Base
was produced considering three following heuristics:
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• The fuzzy rules 19-27 are justified by the heuristic: “decrease σ0
i to exploit

around good solutions for finding optimum solution”.
• The fuzzy rules 1-6 and 10-12 are justified by the heuristic: “increase σ0

i

when diversity is not sufficient”.
• The fuzzy rules 1-9 and 13-18 are justified by the heuristic: “otherwise do

not change σ0
i . It may provide a better solution or may allow convergence”.

Begin

t=0;
initialize population P (t); % randomly generate the initial

population

evaluate population P (t); % compute fitness values
t = t + 1;

while (not termination condition) do

Scaling the fitness; % linear fitness scaling
Select (parent-selection) P (t) from P (t− 1); % SUS operator

CalculateV ar and EVi for population % EVi is calculated for each in-

dividual
Crossover P (t) to yield C(t); % linear crossover operator

Calculate σ0
i for population % σ0

i is calculated for each indi-
vidual

mutate C(t) % Gaussian mutation operator
evaluate C(t) ;

end

end

Figure 7. Pseudo-code of the Proposed FAGA

In order to show the effectiveness of the proposed FAGA, the results obtained by
FAGA were compared with results obtained by MAs and RGA and other algorithms
available in the literature. To make the results comparable, the size of population
and the number iterations were the same as those found in the literature.

To find the minimum cost, the algorithms were run for 50 independent runs
with different random seeds. The results obtained by the FAGA, RGA and MAs
are shown in Table 2. The last four columns of the table show the results obtained
by a binary version of GA, PSO, a modified (new) version of PSO having local
random search (NPSO-LRS) reported in [22] and a self-organizing hierarchical PSO
(SOH PSO) reported in [2]. This table shows that the FAGA performs better than
other algorithms in terms of the best generation schedule with minimum network
loss in addition to minimum generation cost.

The optimal solutions obtained by all heuristic algorithms (the generation level
of the units) are within the limits. The entries in Table 3 show the prohibited zones,
generation limits and the results obtained by the algorithms. As is illustrated, these
results are within the allowed regions.

The average best-so-far of each run were recorded and averaged over 50 inde-
pendent runs. For clarity, the convergence characteristics for minimum cost are
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Rule# EVi V ar σ0
i (t) σ0

i (t + 1)
1 Low Low Low High
2 Low Low Medium High
3 Low Low High High
4 Low Medium Low Medium
5 Low Medium Medium High
6 Low Medium High High
7 Low High Low Low
8 Low High Medium Medium
9 Low High High High
10 Medium Low Low Medium
11 Medium Low Medium High
12 Medium Low High High
13 Medium Medium Low Low
14 Medium Medium Medium Medium
15 Medium Medium High High
16 Medium High Low Low
17 Medium High Medium Medium
18 Medium High High High
19 High Low Low Low
20 High Low Medium Low
21 High Low High Medium
22 High Medium Low Low
23 High Medium Medium Low
24 High Medium High Low
25 High High Low Low
26 High High Medium Low
27 High High High Low

Table 1. Proposed Rule-base for the Proposed FLC

presented in Figure 8. This figure shows that the FAGA performs better than
other algorithms in terms of convergence rate.

5.2. Implementation of FAGA and RGA for the Second Study System.
To investigate the ability of the FAGA to obtain the solution and the convergence
characteristics of the algorithms, the same study was carried out on the second
system which is larger . The size of population is considered to be 100. In RGA,
linear crossover and Gaussian mutation were used with crossover probability Pc =
0.7 and the mutation probability Pm = 0.1. The number of iterations was 200,
which is the stopping criterion.

The results obtained are given in Table 4. The last three columns of the table
show the obtained results by binary version of GA and PSO reported in [6] and
SOH PSO reported in [2] . The results obtained by all algorithms (listed in Table 4)
reveals that the optimal solution found by FAGA is better than those obtained by
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unit RGA FAGA SVMA

[18]

XHC [18] GA [22] PSO[22] NPSO-

LRS[22]

SOH

PSO[2]

P1 437.40479 445.6843 441.10864 432.18417 474.8066 447.4970 446.9600 438.21

P2 167.83279 172.1456 173.2927 171.41996 178.6363 173.3221 173.3944 172.58

P3 261.12049 265 260.01194 259.26337 262.2089 263.4745 262.3436 257.42

P4 139.78646 135.8666 141.37487 146.26538 134.2826 139.0594 139.512 141.09

P5 174.76442 169.5886 167.07667 166.24179 151.9039 165.4761 164.7089 179.37

P6 94.55358 87.2219 92.47441 99.88581 74.1812 87.128 89.0162 86.88

Total

Gen.

1275.4625 1275.507 1275.3392 1275.2605 1276.03 1276.01 1275.94 1275.55

Loss 12.47183 12.494 12.34867 12.2594 13.0217 12.9584 12.9361 12.55

Total

load

1262.9907 1263.013 1262.9905 1263 1263 1263.05 1263 -

Cost 15444.77 15442.89 15443.02 15446.37 15459 15450 15450 15446.02

Table 2. Comparison of the Obtained Results of the Algorithms
(6- generator System)

generation

limit

prohibited zones obtained optimal values

Unit Pmax Pmin Zone 1
(MW)

Zone 2
(MW)

RGA FAGA SVMA
[18]

XHC
[18]

1 500 100 [210-240] [350-380] 437.40479 445.6843 441.10864 432.18417

2 200 50 [90-110] [140-160] 167.83279 172.1456 173.2927 171.41996

3 300 80 [150-170] [210-240] 261.12049 265 260.01194 259.26337

4 150 50 [80-90] [110-120] 139.78646 135.8666 141.374874 146.26538

5 200 50 [90-110] [140-150] 174.76442 169.5886 167.07667 166.24179

6 120 50 [75-85] [100-105] 94.55358 87.2219 92.47441 99.88581

Table 3. The Obtained Optimal Values are Within the
Generation Limits and Prohibited Operating

other algorithms. The convergence characteristics in finding the minimum cost are
given in Figure 9. This figure shows that the FAGA outperforms other algorithms.

Table 5 gives the mean values and the standard deviations of the results obtained
on the 50 independent runs for the study systems 1 and 2. This table illustrates
that FAGA not only provides better solutions but it is also more robust. This is
because the variance of the solutions obtained by the FAGA is smaller than the
variance for the other algorithms.

6. Conclusions

This paper presents an alternative approach to the non-smooth ED problem
using FAGA. The proposed algorithm deals with the issue of controlling of explo-
ration and exploitation capabilities of GA using a fuzzy logic controller which can
efficiently explore and exploit the optimum solutions. One type of non-smooth ED
problem, i.e. ED with ramp rate limits and prohibited operating zones, is consid-
ered.
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Figure 8. Convergence Characteristics of FAGA, SVMA, RGA
and XHC on the Average Best-so-far in Finding the

Solution in Study System 1

Figure 9. Convergence Characteristics of FAGA, SVMA, RGA
and XHC on the Average Best-so-far in Finding

the Solution in Study System 2

Comparisons with the results of earlier methods in the literature, show that the pro-
posed FAGA is better in terms of solution quality, dynamic convergence, robustness
and stability.
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unit RGA FAGA SVMA[18] XHC [18] GA [22] PSO [22] SOH

PSO[2]

P1 453.4254 455 451.7666 447.58422 415.3108 439.1162 455

P2 366.5059 380 348.4377 377.86384 359.7206 407.9727 380

P3 119.4675 129.9098 128.4636 126.64927 104.425 119.6324 130

P4 118.9688 130 128.9972 121.47775 74.9853 129.9925 130

P5 166.2064 170 161.5901 159.62502 380.2844 151.0681 170

P6 458.4367 457.5862 457.4644 458.08802 426.7902 459.9978 459.96

P7 425.6331 430 425.7521 423.2246 341.3164 425.5601 430

P8 116.279 60.666 137.0207 88.1951 124.7867 98.5699 117.53

P9 89.7486 76.0249 75.0004 61.61113 133.1445 113.4936 77.9

P10 114.9537 149.7171 130.8868 158.96636 89.2567 101.1142 119.54

P11 77.693 80 70.5982 73.9875 60.0572 33.9116 54.5

P12 71.345 80 77.6038 67.18293 49.9998 79.9583 80

P13 28.1113 25 30.2831 36.93463 38.7713 25.0042 25

P14 28.7535 20.9559 20.7348 37.73344 41.9425 41.414 17.86

P15 26.2959 15.6749 19.5886 22.84158 22.6445 35.614 15

Total

genera-
tion

2661.8238 2660.5348 2664.1881 2661.9654 2668.4 2262.4 2662.29

Loss 31.9192 30.489 33.5005 31.9322 38.2782 32.4306 32.28

Total
load

2629.9046 2630.0458 2630.6876 2630.0332 2630.1218 2230.03 -

cost 32839.26 32714.56 32830.19 32835.39 33113 32858 32751.39

Table 4. Comparison of the Obtained Results of the Algorithms
(15- generator System)

study system 1 study system 2
algorithm ST mean ST mean

RGA 12.9 15462.33 48.67 32984.03
FAGA 4.38 15451.1 23.03 32761.16

SVMA[18] 10.52 15457.88 45.63 32948.79
XHC[18] 11.92 15465.39 46.13 32981

Table 5. The Mean Value and Standard Deviation (ST) of Fitness

Among the Independent Runs

7. Appendix

Data for the study system 1:

unit Prohibited zones

a b c Pmin Pmax UR DR P0 Zone 1 (MW) Zone 2 (MW)
1 240 7 0.007 100 500 80 120 440 [210-240] [350-380]
2 200 10 0.0095 50 200 50 90 170 [90-110] [140-160]
3 220 8.5 0.009 80 300 65 100 200 [150-170] [210-240]
4 200 11 0.009 50 150 50 90 150 [80-90] [110-120]
5 220 10.5 0.008 50 200 50 90 190 [90-110] [140-150]
6 190 12 0.0075 50 120 50 90 110 [75-85] [100-105]
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Bij =


−0.0002 −0.0001 −0.0006 −0.0008 −0.0002 0.015
−0.0005 −0.0006 −0.001 −0.0006 0.0129 −0.0002
−0.0001 0.0001 0.0000 0.0024 −0.0006 −0.0008
0.0007 0.0009 0.0031 0.0000 −0.001 −0.0006
0.0012 0.0014 0.0009 0.0001 −0.0006 −0.0001
0.0017 0.0012 0.0007 −0.0001 −0.0005 −0.0002



B0i =
[
−0.0003908 −0.0001297 0.0007047 0.0000591 0.0002161 −0.0006635

]

B00 = 0.0056

Data for the study system 2:

unit Prohibited zones

a b c Pmin Pmax UR DR P0 Zone 1
(MW)

Zone 2
(MW)

Zone 3
(MW)

1 671 10.1 0.0003 150 455 80 120 400 - - -
2 574 10.2 0.0002 150 455 80 120 300 [420,450] [305,335] [185,225]
3 374 8.8 0.0011 20 130 130 130 105 - - -
4 374 8.8 0.0011 20 130 130 130 100 - - -
5 461 10.4 0.0002 150 470 80 130 90 [390,420] [260,335] [180,200]
6 630 10.1 0.0003 135 460 80 120 400 [430,455] [365,395] [230,255]
7 548 9.8 0.0004 135 465 80 120 350 - - -
8 227 11.2 0.0003 60 300 65 100 95 - - -
9 173 11.2 0.0008 25 162 60 100 105 - - -
10 175 10.7 0.0012 20 160 60 100 110 - - -
11 186 10.2 0.0036 20 80 80 80 60 - - -
12 230 9.9 0.0055 20 80 80 80 40 [30,55] [65,75] -
13 225 13.1 0.0004 25 85 80 80 30 - - -
14 309 12.1 0.0019 15 55 555 55 20 - - -
15 323 12.4 0.0044 15 55 55 55 20 - - -

Bij = 0.0001×



14 12 7 -1 -3 -1 -1 -1 -3 5 -3 -2 4 3 -1
12 15 13 0 -5 -2 0 1 -2 -4 -4 0 4 10 -2
7 13 76 -1 -13 -9 -1 0 -8 -12 -17 0 -26 111 -28
-1 0 -1 34 -7 -4 11 50 29 32 -11 0 1 1 -26
-3 -5 -13 -7 90 14 -3 -12 -10 -13 7 -2 -2 -24 -3
-1 -2 -9 -4 14 16 0 -6 -5 -8 11 -1 -2 -17 3
-1 0 -1 11 -3 0 15 17 15 9 -5 7 0 -2 -8
-1 1 0 50 -12 -6 17 168 82 79 -23 -36 1 5 -78
-3 -2 -8 29 -10 -5 15 82 129 116 -21 -25 7 -12 -72
-5 -4 -12 32 -13 -8 9 79 116 200 -27 -34 9 -11 -88
-3 -4 -17 -11 7 11 -5 -23 -21 -27 140 1 4 -38 168
-2 0 0 0 -2 -1 7 -36 -25 -34 1 54 -1 -4 28
4 4 -26 1 -2 -2 0 1 7 9 4 -1 103 -

101
28

3 10 111 1 -24 -17 -2 5 -12 -11 -38 -4 -
101

578 -94

-1 -2 -28 -26 -3 3 -8 -78 -72 -88 168 28 28 -94 1283



B0i =
[−0.0001 −0.0002 0.0028 −0.0001 0.0001 −0.0003 −0.0002 . . .
−0.0002 0.0006 0.0039 −0.0017 −0.0000 −0.0032 0.0067 −0.0064]

B00 = 0.0055
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