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Modeling the Benefits of Vehicle-to-Grid
Technology to a Power System

Yuchao Ma, Tom Houghton, Andrew Cruden, and David Infield, Senior Member, IEEE

Abstract—Electric vehicle (EV) numbers are expected to sig-
nificantly increase in the coming years reflecting their potential
to reduce air pollutants and greenhouse gas emissions. Charging
such vehicles will impose additional demands on the electricity
network but given the pattern of vehicle usage, the possibility exists
to discharge the stored energy back to the grid when required, for
example when lower than expected wind generation is available.
Such vehicle-to-grid operation could see vehicle owners supplying
the grid if they are rewarded for providing such services. This
paper describes a model of an electric vehicle storage system
integrated with a standardized power system (the IEEE 30-node
power system model). A decision-making strategy is established
for the deployment of the battery energy stored, taking account
of the state of charge, time of day, electricity prices and vehicle
charging requirements. Applying empirical data, the benefits to
the network in terms of load balancing and the energy and cost
savings available to the vehicle owner are analyzed. The results
show that for the case under study, the EVs have only a minor
impact on the network in terms of distribution system losses and
voltage regulation but more importantly the vehicle owner’s costs
are roughly halved.

Index Terms—Electric vehicle, power flow, state of charge, ve-
hicle to grid.

I. INTRODUCTION

U NTIL relatively recently, the potential introduction of
electric vehicles (EV) has been viewed by electricity util-

ities as an additional load associated with battery recharging.
Vehicle to grid (V2G) [1], [2] is a relatively new concept
whereby the electric energy stored in the EV battery can also
be fed back to the power grid. Initially, development of V2G
technology was hampered by a conceptual doubt regarding the
predictability of vehicle availability for charging/discharging
since it depends on the specific behavior of each vehicle owner.
However, where very large numbers of vehicles are involved
and given the stochastic nature of vehicle usage, the aggregate
level of load or power injection could be relatively well deter-
mined. Thus a cluster of vehicles could represent a well-defined
responsive load or even a source of generation comparable in
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reliability to base load fossil-fuel power plants [2], [3]. The
growing interest in electric vehicles is illustrated by a U.K.
Department for Transport commissioned report which predicts
that up to 1.5 million electric vehicles could be on the U.K.
roads by 2020 [4]. Similarly, in the U.S., the California Air
Resource Board’s Zero Emission Vehicle Mandate suggested
that 2 GW would be available by 2008 [5]. In the U.K., the
estimated power available from the private automobile fleet
is 1.98 TW based on an engine rating of 74.6 kW (100 HP)
and 26.5 million registered vehicles [6]. The associated stored
energy in the form of on board petrol reserves is roughly 7.7
TWh based on an average fuel tank size of 10 gallons being
on average two thirds full. While this represents very much
an upper bound on the potential storage available from battery
EVs, since the range and power of EVs is expected to be lower
than the internal combustion engined vehicles they replace, it
nevertheless provides a useful benchmark. It is clear from this
analysis that, if V2G enabled, these vehicles could offer signif-
icant generation capacity and opportunities for the provision
of grid functionalities such as frequency response and peak
lopping comparable in magnitude to those offered by current
pumped storage hydroelectric schemes.

The application of battery storage to the provision of power
system operational support and to improve local network perfor-
mance is attracting increasing interest. Battery energy storage
has been shown to be effective in suppressing fluctuations in
power demand and providing frequency control and power
quality support for decentralized power supplies as discussed
by both Arita et al. and Sasaki et al. [7], [8]. Such systems
can also provide local voltage control/support thus reducing
the need for voltage regulation at distribution substations as
investigated by Ohtaka and Wade et al. [9], [10]. The corollary
of this is that the ability to provide network support services
could also offer a revenue opportunity to EV owner/operators,
further encouraging their adoption. The economic analysis of
V2G technology as applied to current electricity markets has
been widely studied in the literature. For example, Kempton
and Tomic [11] calculate the effective generation capacity
available from three types of EV and use this information to
evaluate the revenue and costs for these vehicles if supplying
electricity to three distinct markets: peak power, spinning
reserves, and regulation. Zhong and Cruden [12] have made a
similar assessment in the context of the U.K. electricity market,
and a recent analysis has also been published by National Grid
(the U.K. system operator) and Ricardo studying the U.K. V2G
market [13].

This paper discusses how the energy stored in EVs might be
most effectively utilized and presents an analysis of potential ap-
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proaches to controlling the charging and discharging of parked
EVs for power system support within the generic IEEE 30-node
test system. Electricity power dispatch strategies are developed
by the authors through the application of an aggregated model
of the EVs and taking into account the vehicle battery capacity
characteristics, state of charge, vehicle user driving habits and
the electricity prices. Through the application of these strate-
gies the EVs can be “instructed” to act as generation sources
and/or as responsive loads depending upon the states of the
power system and the EVs’ battery storage system.

This paper is organized into six sections. A brief introduction
to battery characteristics is presented in Section II. Section III
describes the power system dispatch model with the integration
of the EV battery energy storage. Dispatch strategies for bat-
tery storage power are developed in Section IV while numer-
ical studies covering different test scenarios are conducted in
Section V. Section VI provides concluding remarks on the ap-
plications of the V2G battery storage model.

II. BACKGROUND, BATTERY CHARACTERISTICS

Given a constant discharge current, any battery’s state of
charge (SoC), , may be described with reference to its capacity
by

(1)

where

discharge current in Ampere;

available capacity in Ampere-hour (Ah);

time in seconds.

According to the Peukert equation [14], the available capacity
of the battery, , is modeled as

(2)

where

Peukert capacity of the battery in Ah;

Peukert exponent typically between 1.1–1.3.

Both and are fixed parameters with respect to a given
battery. The Peukert capacity, , is computed as

(3)

where

nominal capacity in Ah;

rated discharge time in hour;

the nominal discharge current in Ampere.

The value of the Peukert exponent in (2) and (3) for a specific
battery can be derived by experimental test [12] and the lower
the Peukert exponent, the better the performance of the battery
( is used to model the ideal battery). For a battery rated
at 100 Ah for 5 h discharge time and a Peukert exponent of 1.2,
the available capacity decreases from the 158.5 Ah to 87.1 Ah
when the discharge current increases from 0.1 C/5 (2 A) to 2
C/5 (40 A), as shown in Fig. 1.

The battery no-load voltage is also a nonlinear dynamic vari-
able. Fig. 2 shows the variation of voltage for different types of

Fig. 1. Effective battery capacities at different discharge currents, 100 Ah at 5
h.

Fig. 2. Battery voltage versus time of use, for a range of 240 V /100 Ah, bat-
teries at a discharge current of 1.5 C/5 (30 A).

TABLE I
LOOKUP THE BATTERY VOLTAGE VERSUS RELEASED CAPACITY,

240 VOLTS AND 100 AH, LEAD-ACID BATTERY TYPE

battery (all nominal values of 240 V, 100 Ah), at a discharge
current of 1.5 C/5 (30 A) with respect to time.

To derive the charge/discharge energy during a specified time
interval, the dynamic battery voltage must be first discretized by
extracting the data from the discharge/charge curve of the bat-
tery. Since detailed information on the discharge/charge curves
at different current levels for actual EV batteries is limited, this
paper uses the simplified generic rechargeable battery model de-
scribed by Tremblay, Dessaint, and Dekkiche [15]. A lookup
table of voltage against released capacity at different discharge/
charge currents has been built within the authors’ model, as
shown in Table I for a lead-acid battery.

Data in Table I are interpolated to derive the voltage corre-
sponding to the updated SoC value at the beginning of the cur-
rent time interval , , based on the selected discharge cur-
rent . Given the value of , the released capacity until ,

, can be obtained from (1). Interpolation is then conducted
to obtain the voltage value, , based on the value of . With
the voltage and the current , the discharge/charge power
of the EV is obtained where the value of is assumed to be
constant over the fixed time interval. The requirement to ensure
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a constant voltage, and therefore constant power, over a fixed
time interval is necessary for the subsequent power system load
flow analysis.

Under the authors’ proposed algorithm, the discharge/charge
energy of the parked EV is controlled such that the SoC at the
end of the time period , , remains in the range to
given the SoC, , at the start of the time period . Generally,

is selected such that the EV will have sufficient energy to
allow transportation to the next destination. The value of
meanwhile is set to avoid damage through overcharge.

III. POWER FLOW MODEL WITH THE INTEGRATION

OF BATTERY ENERGY STORAGE

The steps required to obtain the battery storage power in a
fixed time interval are shown in the flowchart in Fig. 3 while
the strategy for determining current, , is described in the next
section. The stored energy, in Fig. 3, is not only con-
strained by the state of charge but will also be influenced by the
driving requirements for the vehicles imposed by the user, e.g.,
the vehicle may be prevented from providing V2G service by
the user because they have an extra journey to make. To put it
another way, the bi-directional EV power flow possible to the
power grid can be constrained either by the vehicle user driving
profile or preference.

In Fig. 3

and SoC values at the beginning and end of the
current time interval , respectively;
discharge or charge current of the EV during
the time interval ;
released capacity from the initial time to time
point .

One aspect of the driving profile is revealed through an anal-
ysis of the probability that a private car will be parked during
a weekday, as shown in Fig. 4. This data is generated from
time series analysis of the UK Time Use Survey (UKTUS) 2000
[16]. The probabilities are computed as the fraction of the ap-
proximately 26.5 million licensed cars [17]. Fig. 4 demonstrates
two dips during the traffic rush hours from 07:00 to 09:00 and
from 17:00 to 19:00 when most journeys occur. However, even
during these rush hour periods at least 89% of private vehicles
are parked. Although the vehicles taking part in the UKTUS are
predominantly conventionally fuelled, the usage patterns are not
expected to change dramatically with the shift to EVs, at least
for shorter journeys. In calculating the number of parked cars
that can be interfaced with the power grid, the model uses the
probabilities shown in Fig. 4.

The other important aspect to consider is the likely journey
distance to be travelled, or rather the amount of energy required
to make that journey since this could vary according to driving
conditions. Data from the Department for Transport [18] sug-
gests that the average trip distance by private car is 8.4 miles. If
the average range of an EV was considered to be 80 miles then in
principle a minimum charge of roughly 10% would be sufficient
to cover the average journey. However, the actual journey that
the vehicle will take is not known to the network operator and

Fig. 3. Flowchart of deriving the battery storage power.

Fig. 4. Probability that private cars are not in use for transportation during a
weekday.

indeed may not even be known to the vehicle driver who might
be required to undertake an unexpected journey. Actual driving
conditions might deviate from the average (due to a lack of real
driving duty cycles for EVs, the energy consumed for on-road
electric vehicles is assumed to be constant at the nominal level
of 1 C/5 (20 A)) and in consequence a significantly higher min-
imum charge level, , is chosen to reflect these uncertainties.

In formulating the load flow model, the bi-directional power
flow between the grid and the EVs, via a DC-AC power con-
verter, is grouped and represented by a power injection at the
bus to which it is connected. The power flow model is defined
as

(4)

(5)

subject to

(6)

(7)

(8)
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where

, , , set of EVs, power system buses, power
system constant PQ load buses and
voltage controlled PV buses such that

;
, , index of individual EV, time interval

and power system bus, respectively, e.g.,
indicates the battery power

of EV connected at bus during the time
interval of , given the discharge/charge
current of ;

, beginning and end of the time interval ;

, state of charge value of EV battery at
the time point and , respectively;

, real and reactive power balance at bus at
PQ bus during the current time interval
, respectively;

, lower and upper limits of the reactive
power at voltage controlled PV bus ;
bus voltage phasor value; is the
magnitude value of ;

, lower and upper limits of the voltage
magnitude;
efficiency factor of the DC/AC converter.

IV. BATTERY STORAGE POWER DISPATCH STRATEGIES

To ensure the battery SoC remains between and
when the vehicle is connected to the grid, discharge and charge
strategies need to be devised such that the amount of the power
to be dispatched in any specified time period does not vio-
late the SoC constraints at the end of the current time interval
, i.e., to satisfy (6). A simulation time step of half an hour has

been chosen to reflect the time step of current British Electricity
Trading and Transmission Arrangements (BETTA) [19]. Three
sets of rules, described below and expanded on in Fig. 5, are uti-
lized when selecting the discharge/charge current, from the
predefined V2G operation options: namely low, medium and
high levels, taking into account the SoC of the EVs and the
half hourly electricity prices. In this paper, the limit values of

and are set at 0.4 and 0.8 p.u., respectively, such that
the battery discharge characteristics remain within the approxi-
mately linear section, which simplifies the required algorithm. It
is worth noting that more robust analysis and definition of these
limits is necessary, and is the subject of ongoing study by the au-
thors. It is recognized that in practice battery performance may
be adversely affected by such a charging regime [as most EV
battery manufacturers require a full re-charge (to 100% SoC)
and equalization (cell balancing) to maintain the warranty] and
that a further iteration of the model may be required to allow the
battery to be fully charged at least once per day.

Rule Set 1: The rule for setting the EV role, during the current
time period , , is

(9)

(10)

(11)

Fig. 5. Decision strategies of EV battery energy.

These limits for SoC, i.e., 0.5 and 0.75, are set to ensure that
the gate values for and are not violated,
although these specific limits are the subject of ongoing study
by the authors.

Rule Set 2: An enable (1)/disable (0) control signal (CS) from
a third party, such as an EV aggregator, is introduced to specify
whether a vehicle is, in principle, available for V2G service.
Whether a vehicle is in fact available for a V2G role during cur-
rent time period , , depends on both the control signal,

, and SoC in Rule Set 1 as follows:

(12)
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(13)

(14)

(15)

(16)

The value of CS enables (12) or disables (13) and (16) the
V2G service. It is assumed the EV charging may be considered
as a normal load on the system and can therefore be served re-
gardless of the value, (14). In the case where the V2G role
is undetermined by Rule Set 2, (15), the model invokes the elec-
tricity selling or buying price as defined by Rule Set 3.

Rule Set 3: The final rule used for selecting the level of dis-
charge/charge current in time period , , reflects the prevailing
price as follows:

Day time (from 08:00 to 00:00)

(17)

(18)

(19)

Night time (from 00:30 to 07:30)

(20)

(21)

(22)

where

, , values of high, medium and low levels
of the discharge/charge current.
indicates the charge/discharge role;

, electricity buying price and selling price
during current time period , respectively;

, high electricity buying price and selling
price, respectively.

Rule Set 3 is designed to take into account the price arbitrage
opportunity, charging the EV at the high current rate when prices
are low and discharging when prices are high (and if the V2G
service is enabled), as defined in (17)–(19) for day time opera-
tion and (20)–(22) for night time operation. The values of
and form the threshold between low and high charge/dis-
charge levels, and examining their influence on the final V2G
results is the subject of continuing study by the authors. The
possible undetermined value of the V2GR value in (15) is there-
fore determined by (19) and (22).

In Fig. 5, is the set of EVs, is the set of EVs for which
the state of charge constraints are violated during the current
time interval and is the complementary set of , such that

. The vehicles in set are used as stand-by reserves
for the vehicles in set , provided that the paired vehicles (EV

Fig. 6. EV aggregator connected to the IEEE 30-bus system.

b and EV c in Fig. 3) take the same charge or discharge role
during the time period. The energy is shifted from the vehicles
in set that cannot be further charged, to the vehicles in com-
plementary set , in such a way as to maximize the utilization of
the energy stored in the EVs within set ; thereby minimizing
the impact on the network. A discharge/charge time limit, ,
is set according to the discharge/charge current, the actual state
of charge at the start of the time period and the minimum/max-
imum state of charge as shown in (23) and (24):

(23)

(24)

If is reached during the time period then instead of contin-
uing to the end of the period charging continues until the time
limit is reached and the simulator moves onto the next EV.

V. NUMERICAL STUDIES

The proposed EV energy storage model is applied to an IEEE
30-bus grid, the parameters of which are shown in Fig. 6 and are
taken from Alsac and Stott [20]. The system comprises 132-KV,
33-KV, and 11-KV buses. The total load demand of the power
system is based on a typical U.K. demand profile from Feb.
11/12 (from 04:00 to 03.30), 2010 [21], scaled by the maximal
amount. An EV aggregator is introduced to represent a group of
EVs that are connected at Bus 10 to the power system. In prac-
tice such a location could be a fleet charging and maintenance
facility, or a terminus or vehicle parking area for a public trans-
port provider. The modeling presented here focuses on privately
owned electric cars, but in future electric busses for public trans-
port could equally well be analyzed in a similar manner.

The characteristics of the EV batteries are listed in Table II
and are applied to each individual EV within the same aggrega-
tion.

In Table II, the three options for the charge/discharge currents
used in rule set 3, , , and , can be defined as 0.1 C/5 (2
A), 0.5 C/5 (10 A), and 1.5 C/5 (30 A), where C is the rated
capacity.

The EV on-road profile during one day is assumed to take one
of three profiles reflecting differing degrees of EV take-up as
shown in Fig. 7. Each profile is built up based on a total number
of on-road vehicles of 1000, and the probability of being parked,

, as shown in Fig. 4. Due to a lack of real driving duty cycles
for EVs, the energy consumed for on-road electric vehicle is
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TABLE II
CHARACTERISTICS OF THE EV BATTERY IN SIMULATION

Fig. 7. Three profiles of electric vehicles on road during one day.

Fig. 8. Price profiles during one day (SSP/SBP: system selling/buying price
[22], DOMT: domestic tariff, ASSP/ASBP: adjusted system selling/buying
price.

assumed to be constant at the nominal level of 1 C/5 (20 A)
discharge current.

In calculating the payments to and by the operator when
the EVs are charged or discharged from the grid, the adjusted
system selling price (ASSP) and adjusted system buying price
(ASBP) values, as shown in Fig. 8, are introduced to reflect
both the wholesale electricity prices and domestic tariffs. The
ASSP values are computed by adding a margin, equal to the
difference between the average tariff value and the average
system selling price (SSP) value, to the SSP value at each time
interval of one day. The same operation is applied to SBP
values to get the ASBP. Since no established market pricing
exists for EVs providing V2G services, existing system prices
are used. The SSP and SBP values are taken from [22]. The
high level of the ASSP price (� 0.172/kWh) is set at 90% of
the maximal ASSP (� 0.191/kWh) whilst the high level of
the ASBP price (� 0.147/kWh) is set at 60% of the maximal
ASBP (� 0.245/kWh). It should be noted that the ASSP and
ASBP values are specified at the power system operator side.
These two values swap sense as the charging energy price
(buying, ASSP) and discharging energy price (selling, ASBP)
in calculating the payments to the EV and in applying decision
rule set 3 as presented in Section IV.

Suppose the EV aggregator, with 1000 individual EVs, is con-
nected at bus 10, as shown in Fig. 6 and the simulation run based

Fig. 9. State of charge of EV1 during one day.

on the EV on-road profile (Fig. 7). To explain the strategy deci-
sion process in Section IV in detail, an individual EV, EV1, is
selected. EV1 is assumed to be on the road driving during two
separate time intervals in a day, between 08:30 and 10:00 driving
from home to the work place and between 17:30 to 19:00 re-
turning home. During the other time periods EV1 is parked and
plugged into the grid for charging or for providing V2G service.
Based on the decision process in Fig. 5, the resulting SoC values
for EV1 during one day are shown in Fig. 9.

The detail of the battery energy usage profile is reported in
Table III. Between 04:00 and 08:30 EV1 provides V2G service
with the battery being discharged at 0.1 C/5 (2 A) (rule (22))
until 07:30 and at 0.5 C/5 (10 A) between 07:30 and 08:30 due
to the high electricity selling price (rule (19)) causing the SoC
to decrease from 0.6 to 0.469. As mentioned previously, in a
further iteration of the model a requirement to fully charge the
battery at least once per day may be introduced. EV1 is on the
road from 08:30 to 10:00, with the assumed discharge current
of 20 A causing the SoC to decrease further to 0.169 at 10:00.
From 10:00, EV1 is plugged back into the grid to be charged.
The SoC increases slowly at first as the charging current is main-
tained at a low level owing to the high electricity buying price
(higher than the high ASSP value of� 0.172/kwh invoking rule
(17)) prevailing between 10:00 and 12:30, as shown in Fig. 8.
At 12:30 the ASSP falls to � 0.170/kWh and the charging rate
is ramped up to 30 A (rule (17)) and the SoC value increases
quickly to 0.363.

Between 13:00 and 15:00 the ASSP again increases and the
charging level reduces to 2 A, while a fall in price at 15:00 al-
lows the charging current to be again increased to 30 A until a
SoC of 0.551 is achieved at 15:30. From 15:30 to 16:30, EV1
provides V2G service at the 10 A level with the SoC decreasing
to 0.464, after which it is charged at the 30 A current level from
16:30 to 17:00 to restore the SoC to 0.627. V2G service resumes
between 17:00 and 17:30, at the 10 A level under rule (19) re-
sulting in a final SoC of 0.583. EV1 is on the road from 17:30
to 19:00, discharging at the assumed rate and on arrival at the
destination the SoC is 0.283. From 19:00 until 03:30 next day,
the EV1 is plugged to the grid. EV1 gets charged from 19:00 to
00:30 and provides V2G service from 00:30 to 03:30.

For the group of vehicles, the cumulative payments and cu-
mulative charge energy during one day are shown in Figs. 10
and 11, respectively. For the V2G service case, the payments
and charge energy are �–1031.6 and 6675.1 kWh. Compared
to the reference case where the EV is charged to recover the en-
ergy discharged in each journey (respecting the rules relating the
electricity price and charging current), a cost saving of � 1002,
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TABLE III
BATTERY ENERGY STORAGE STATUS OF EV1

Fig. 10. Total cumulative net charge energy to the EV aggregator.

Fig. 11. Total cumulative payments from the EV aggregator.

or nearly 50%, is apparent, while the saved energy is significant
at 5087 kWh.

With the introduction of the V2G service at bus 10 specifi-
cally, the power flow is simulated and the voltage magnitude at
bus 10 and the total energy flow loss during one day, are shown
in Figs. 12 and 13, respectively. It is observed from Fig. 12 that
the voltage magnitude difference between the two cases is neg-
ligible due to the limited capacity share (7.2 MW in the most ex-
treme case where all the 1000 EVs are either simultaneously dis-
charged or charged at 30 A) compared with the overall system

Fig. 12. Voltage magnitude at the EV-aggregator-connected bus 10.

load (180 MW of lowest demand level). Regarding to the cumu-
lative energy distribution losses, in the case where V2G service
is provided, slightly less energy is lost (190 kWh in one day)
on the transmission network compared with the reference case
(Fig. 13). This is due to, and can be affected by, the geographical
location, i.e., busbar, where the EVs are connected, as well as
the control strategy of V2G service as explained in Section IV.

Tables IV and V report the simulation results under different
cases. In Table IV Cases 1 to 3 are identical except for the ve-
hicle-on-road profiles utilized which is all variations of the pro-
file shown in Fig. 7. As the number of vehicles travelling in a
given day increases from cases 1 to 3, the saved cumulative net
charge energy and payments under V2G service increase from
� 1002 and 5087 kWh in case 1 to � 1137 and 6012.7 kWh
in case 2 and � 1271.7 and 6974.6 kWh in case 3. Case 4 has
three EV aggregators connected at the 11 KV buses 9, 11, and
13, respectively. Each aggregator has 5000 identical EVs ex-
cept that the batteries of the EVs at bus 11 is assumed to be
Lithium-Ion while the battery type of EVs connected at bus 13
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TABLE IV
EV BATTERY ENERGY STORAGE RESULTS UNDER DIFFERENT TEST CASES

TABLE V
POWER SYSTEM OPERATION RESULTS UNDER DIFFERENT TEST CASES

Fig. 13. Total energy loss profile.

is assumed to be Nickel-Metal-Hydride. Except for the dynamic
voltage profiles which vary according to the Peukert Exponent,
both the Lithium-Ion and Nickel-Metal-Hydride type of battery
are assumed to have characteristics identical to those shown in
Table II. Since the total capacity of the EVs in case 4 is 15 times
that assumed for cases 1 to 3 and given the different battery con-
figurations, the cumulative savings in terms of costs and charge
energy under V2G service are � 17,116.7, and 90.7 MWh, re-
spectively. The impact of the V2G service from the EVs on the
power system operation is summarized in Table V.

For case 4, bus 9 is a PQ bus while bus 11 and bus 13 are
PV buses with voltage magnitude controlled at 1.05 p.u. Thus,
the voltage magnitude at the PQ bus 9 and the reactive power
requirements at PV buses 11 and 13 are required to be within
the limit values during one day as discussed by Sasaki et al. [8]
and Ohtada et al. [9]. The total energy flow loss of the IEEE
30-bus system is increased due to the V2G service, 1.07 MWh
more than the case without V2G. However, taking into account
the charge energy saved by the V2G service 90.7 MWh, there is
an overall net saving of 89.6 MWh a day.

The authors are currently working on applying their V2G
strategy to further network scenarios, both continuing with the
IEEE 30 node model as well as the UK Generic Distribution
System (UKGDS) network model [23].

VI. CONCLUSION

Electric vehicle batteries store energy when they are charged
and release the energy when discharged. Apart from their in-
tended main use for transportation, electric vehicles can serve
as a rapid response load, or even as a generation source, for
the power grid when they are parked, plugged into the grid and
V2G enabled. However, the utilization of such storage energy
from the electrical vehicle battery to power grid and vice versa
is constrained by the battery state of charge and vehicle use re-
quirements. To study this, the authors have developed a battery
energy storage model for undertaking power system analysis
within the recognized IEEE 30-bus test network.

With consideration of the state of charge constraints in
charging and discharge cycles, a set of decision strategies has
been formulated based on the battery power characteristics,
electricity prices and vehicle usage requirements. Algorithms
to deploy energy storage from electric vehicles have been
developed and presented.

With reference to different test cases, the effects of the V2G
service both on the individual EV and the power system oper-
ation has been investigated. The work of this paper has proved
the feasibility of studying V2G through power flow analysis,
and this will now be further developed to study the impact on
low voltage distribution networks, where for instance V2G ser-
vice might be used to support distribution system operation with
attention to voltage control and congestion management, and
also to firm up large penetrations of wind power into the power
system as a whole. Furthermore, while it is considered that the
results presented in this paper are robust, there is merit in per-
forming a variety of sensitivity analyses as has been identified
throughout the paper. This also forms part of the authors’ on-
going work.

Results based on the U.K. market buy and sell price suggest
that there is economic benefit to be had from V2G operation. In
the specific cases considered, the vehicle aggregator could see
roughly a halving of its costs, as shown in Fig. 7. Later work
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will also consider the additional costs to deliver V2G services
associated with the increased cycling of the batteries and an ex-
pected reduction in the battery life.
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