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Programming Contest Guide
Preparing for the ACM/ICPC World Finals

Introduction

Programming contests are a fun way to learn more about quickly solving typical and atypical
computer programming problems. There are many different formats that contests may take, but
this document will focus on getting to and doing well in the arguably most famous contest of all: the
Association of Computing Machinery (ACM) International Collegiate Programming Contest (ICPC)
World Finals.

| am a student at the University of Kentucky pursuing a B.S. in Computer Science and a B.S. in
Electrical Engineering. | am a two time participant in the ACM/ICPC world finals, and a three time
participant in the mid-central regional contest. Throughout the document, | will draw upon my
personal experience in these programming contests, upon the experience of teammates, upon the
experience of our coach, and upon the wealth of information available online.

This document will first address the various means of preparing for such a contest. After a
thorough discussion of preparation, a section will be devoted to participating in the contest. At the
end, there will be a section on the various valuable references that there are both online and at the
bookstore. And finally, there will be a brief discussion on the contents of the rather bulky code
anthology.

It is suggested that you first review the rules of the ACM/ICPC World Finals and qualifying regional
contests to familiarize yourself with the format of the contest. Also, it is recommended that you read
a few of the problem statements from one of these contests (some are included in the code
anthology) in order to understand the types of problems given.

Study

A preliminary, but necessary, activity is study. The individual who wishes to participate and excel in
the ICPC contest environment will need to have a good command of many different types of data
structures and algorithms, and their respected implementations in C, C++ or Java. This study can
sometimes be integrated into practice, but there is a certain amount of knowledge which is
prerequisite in order to solve these types of computer programming problems. Recommended
books for study are listed in the Reference section along with some online sources. A good
preparation course in this respect would be your university’'s data structures class and its
algorithms class. Also, many different types of math courses would be useful, such as graph
theory, number theory, numerical methods, discrete math, linear algebra and operations research.
It has been my experience that having at least one person on the team with an extensive
background in mathematics helps tremendously in recognizing, dissecting and solving the really
tough problems. Also, it is useful to have at least one person on the team who excels at the
implementation of these problems in the contest languages. It is especially useful to have a firm




Practice

command of the Standard Template Library (STL) in C++ and the various Java classes which are
useful to the contest (such as Biginteger and BigReal).

Practice is by far the most important preparation tool. Teams with the best strategies, the best luck,
the most knowledge and a library of reference material will still perform poorly on contest day if they
have not practiced. The biggest issue here is time, not talent. To do well, one must devote the time
to practice, and to practice hard.

Individual Practice

Practicing individually can be a useful tool. It can help you identify from a problem statement what
the difficulty of the problem is, what algorithms will be useful in solving the problem, and how long
the problem will take to solve and code.

The biggest temptation to avoid is sitting in front of the computer to flesh out your approach to
solving the problem. It is strongly suggested that for every problem you attempt to solve, to flesh
out the solution on paper. This will become a very handy skill in the contest when there is only one
computer for three people. Also, it is much easier to verify and to code a pre-designed approach
than one which is hacked out on the fly on the computer. Furthermore, drawing pictures and
diagrams helps out tremendously in disassembling a problem into manageable chunks and in
recognizing the key aspects of each problem.

The problems themselves can come from many sources. They may be posed by your coach, you
may find them in a textbook, or perhaps come up with your own problems. By far the best source is
the Internet. Many of the problems on the Internet have sample solutions and some even have the
judge’s input and output, or better yet, an online judge. A list of good sources for problems may be
found in the Reference section and in the Code Anthology.

Learning how to test your problem for correctness is a vital skill. In the contest, you will not know if
your program will be accepted unless you have thoroughly tested it. Good test cases are usually a
combination of the sample test case (since you know what the correct output is supposed to be),
and boundary cases. Also, stress testing the code is important since there is always a time limit
associated with each problem. One thing that can be done is to use a scripting program, such as
Python or Perl, to generate large test cases (or, you could use C/C++ or Java) instead of trying to
type them out in a text editor.

Another practical matter is to use an environment as close to the contest environment as possible.
The regional contest environment may be vastly different from the world finals environment, so be
sure to choose an appropriate environment for the contest you are preparing for. | have also found
that becoming familiar with a powerful text editor such as VIM or EMACS makes coding a lot
faster. These editors are almost always part of a contest environment.

Avoid using a runtime debugger when practicing. In the contest, you will not have time on the
computer to debug your code in that way. The best way to do debugging, is get your code to the
point where it can generate output, run it for some test cases and print the source code and the
buggy output and trace down the problem by hand. Printing is a very useful technique in the
contest to optimize the amount of time on the computer.

Top Coder (http:/Amww.topcoder.com/) is an excellent way to prepare for the personal challenge of
beating the buzzer. It helps train you to think and code under pressure. Also, the challenge phase
helps you to quickly spot problems with other’s solutions to a problem which may help you debug a



teammate’s code during the contest (I have helped many teammates in the past spot an error they
didn’'t see — this can be a very useful skill to develop). Furthermore, the challenge phase helps to
develop a sense for the breaking cases — the test cases which may break a particular solution to a
problem which is a vital skill for writing bug-free code the first time. Nothing is worse than designing
a solution which works for some of the test cases, but falls far short for the boundary cases (such is
the case with many problems where the search space can be very large — a trivial solution works
on small cases, but takes too much time to run on large cases so a more clever solution must be
found).

Team Practice

Team practice is far more important than personal practice. Team practice should be held in
contest conditions; five to six hours working on a previously unseen set of problems as a team.
Team practice will help you figure out each other’s strengths and weaknesses. It will build the
particular team dynamic. It will force you to figure problems out on paper (since there will only be
one computer). It will help to build team endurance and rhythm, all of which are very important to
contest performance.

Probably the most effective way to motivate and facilitate team practices is to offer a university
course which encapsulates the practices. This way, students get credit for the work they put into
the contest, and they will be better equipped to meet the challenge of the contest. Such courses
already exist at some of the benchmark contest institutions (see Reference for more details). This
course could teach students various algorithms, but the emphasis should be on becoming a
cohesive team with a solid strategy and on personal practice which yields faster solving times of
the problems.

Also, a useful aspect of such a course could be to compile an anthology of all problems
successfully completed organized by topic in a fashion similar to the Code Anthology found at the
end of this document. Since printed material is allowed at the contest, such known good code is an
invaluable resource. Many problems resemble past problems, so entire functions may be lifted and
reused saving precious time at the contest. For instance, if you have solved a problem last year
which had to find connected components of a graph, and another problem arises at this year's
contest which also requires finding connected components, much of the first code can be reused to
speed up the development of the second.

Team Strategy

Team strategy can be a very complicated issue. In the two ICPC world finals | participated in, each
team was unique and had a slightly different strategy. In 2001 we didn't perform well as a team.
This was due to many factors; the main two were lack of practice as a team and lack of a cohesive
strategy. At the contest, the computer became a bottleneck because one team member was
having problems getting his two problems to work, and spent much time debugging on the
computer (as noted in the Individual Practice section, this is a big no-no). Nothing is more irritating
to your teammates than not being able to use the computer because the other is squandering
precious moments tracing and debugging code on the computer instead of by hand.

In 2003 we vastly improved on the team level. We worked well together (and we had practiced
together more than the previous year). Our team dynamic at the regional contest was excellent; we
solved all seven problems by making good use of our team. At the finals, we let the pressure and
the problem difficulty get to us a little, but we did better than the previous year, solving three
problems instead of only two. We heavily used the print-and-switch technique, which is print a
buggy program and switch so another can work on typing in his solution.



Luck

An important part of the team strategy should be to setup a rhythm where a problem is solved, the
team switches who is at the computer, another problem is solved, switch, etc. This rhythm builds
confidence and efficiency. The rhythm is broken when either an incorrect solution is submitted, or
no one is ready to code on the computer. Either of these scenarios is bad for the rhythm, and does
not optimize the available resources.

To establish a rhythm, much practice is needed. In every team, there will be one person who is
fastest at the trivial programs. That person should be the first to code on the easiest problem.
However, before coding begins, it is best for the team to look over the problem set and find an easy
problem which they all agree is easy. This eliminates an individual from underestimating the
amount of work a problem will take. Once the team has decided on a problem, the quick
programmer should briefly scratch out an outline of a solution on paper, and then begin typing.

Now, while the quick programmer is solving the first problem (both on paper and on the computer),
the other two team members should carefully read each problem statement and outline a solution.
In this way, each problem can be broken down quickly at the beginning of the contest and
classified according to its algorithmic difficulty and implementation difficulty. Sometimes, the most
straightforward problem algorithmically will present many implementation difficulties. A good
example from my experience was the problem | solved in the 2003 finals, Problem G (all the
problems from that finals year are in the Code Anthology). | was the ‘quick programmer’ who
started work on this problem, but | went a little too quickly, because there were many unanticipated
kinks in the implementation. In actuality, problem J should have been the first to be solved (it is the
easiest algorithmically and the easiest to implement).

After the problem set has been digested, the two team members who were reading switch to
solving the next two easiest problems in detail on paper. Once the person on the computer is
finished, he will switch with a teammate who has a solution ready to go. He will then begin work on
the next problem, and so on, until the contest is about an hour or so from finishing. At this point, it is
probably most advantageous to help debug if there are buggy programs, or to help solve the last
problem as a team of two on paper. At any point in the contest, one of the non-computer members
should be ready and willing to listen to another teammate explain the problem he is having with his
program. The process of explaining almost always finds the bug; if not the extra pair of eyes should
help find it.

Of course, team strategy will depend on the individual composition of the team. | have read of
teams where they only used one person as an implementer, and the other two solved the problems
algorithmically. This may fit some teams better than the above switching strategy. No matter what
the strategy, it needs to be reinforced by much practice.

Luck is the last element needed for success. Unfortunately, this one is difficult, if not impossible, to
control. The best teams sometimes have bad luck, and the worst teams sometimes have great
luck.

An example of good ‘luck’ was the 2002 ACM mid-central regional | participated in. The problem
set was manageable for the team members we had, and we established the rhythm as discussed
above by solving most problems without a hitch. When a bug was encountered, we had no trouble
printing and tracing by hand. When it was down to the final two problems, one teammate was
dedicated to helping the other two debug and solve the last hard problems. And, to top it off, the
last problem was submitted successfully with about 5 seconds to spare!



An example of bad ‘luck’ was the 2003 ICPC world finals. | was the quick programmer to start off
the coding. | had a solution | had tested and believed was correct, so after getting approval from
the team, | submitted it and printed it for reference in case it was rejected. After about 10 minutes, it
came back as rejected, so | stopped working on the new problem | had picked up, and began
working on finding the problem. | found a couple of suspect statements, traced them out by hand
and discovered the problem. | switched out quickly and corrected the bug, tested the program, and
resubmitted. It was rejected again about 10 minutes later. | printed the code, looked over it, and
found some things | thought might be wrong but couldn’t see how they would affect the solution. |
corrected these maybe mistakes and resubmitted again. Again, it was rejected. Flustered, | poured
over every line of code about three times, finding no mistakes. | finally just gave up. About five
minutes later, my teammate said ‘Yes!’ The last two runs had been re-judged as being correct!
This is an unheard of event in the world finals — that the judges would make such an over ruling. It
turns out that the judges had not tested each problem, and that they had inadvertently matched the
wrong input and output for the particular problem | was working on. Had we chosen problem J to
start with, we would have avoided this problem as long as another team had submitted it first. This
is extremely bad luck, because it destroyed our rhythm and flustered me for the whole contest. We
are always trained to trust the judge; the judge is always right. Well, in this case the judge was
somehow wrong.

Participation

Before the Contest

Don't use the few days before the contest to cram, but rather, use them to relax and to conserve
energy for the big day. Approach the contest day like you would a big exam, such as the GRE.
Make certain that you will be awake and operating at peak efficiency during the scheduled contest
time, which is generally in the afternoon. If this is the world finals, don't stress out before hand.
Relax and enjoy the trip to whatever exotic location they are having the finals at that year. If it is the
regional contest, make sure you don’t stay up late the night before.

During the Contest

Stay focused and don't let the pressure get to you. During the finals, the environment will be very
distracting, with sixty or seventy teams discussing there problems, typing, etc. You may want to
bring earplugs (they are allowed), but that will probably annoy your teammates when they try to talk
to you. | suggest getting used to working in less than ideal surroundings. Maybe you could try
practicing in your cafeteria during lunch or in some other noisy place. Don't compete directly with
the other teams, just compete with the problems. Do the best you can given the circumstances and
be happy with it. Between problems, take a small break to the bathroom and the food table to clear
your mind. Sometimes, walking to the bathroom and back will help you think of a creative solution
to the next problem, or maybe where your error was if you are debugging.

After the Contest

Spend the days after the contest debriefing each other on what when right, what when wrong, etc.
Try to document your solutions, and to solve all the remaining problems. This will help refine your
skills and your team.



Reference

Intemet
The ICPC official website is http://icpc.baylor.edu/. It has all the previous world finals problems and
links to each of the regional pages. The official page for the ACM mid-central region (the region U.
of K. is in) is http://cs.smsu.edu/~mcpc/. The University of Waterloo also is a good resource for
practice problems. The official site is http:/plg.uwaterloo.ca/~acm00/. Other problem set pages
include: http://Aww.acm.inf.ethz.ch/ProblemSetArchive.html, http:/mww.inf.bme.hu/contests/tasks/,
http://Amww.karrels.org/Ed/ACM/, and http://mww.informatik.uni-ulm.de/acm/index-en.html.
Top Coder is an individual contest in which you may be able to win money. The problem set is very
similar to the ACM contest, while the rules and interface are quite different. The official Top Coder
website is http://mwww.topcoder.com/.
La Unversidad de Valladolid has an excellent website with tons of problems with an online judge
which will judge your submissions (note that for a few of the problems the judge does not work).
The official page is http://acm.uva.es/.
A new book is being published about preparing for various programming contests. It is
Programming Challenges by Steven S. Skiena and Miguel Revilla. The official website for the book
is http://www.programming-challenges.com/pg.php?page=index.
Some web sites of university courses which prepare for the ACM contest (as of spring 2003):
http://Aww.cs.unr.edu/~westphal/cs491_spring_2003/
http://Aww.cs.sunysb.edu/~skiena/392/
http://Amww.cs.berkeley.edu/~hilfingr/csx98/
http://Amww.csee.wvu.edu/~callahan/cs191c/
http://Amww.cs.hmc.edu/ACM/
An invaluable online resource for any mathematical formulae or theorems is Eric Weissteins's
World of Mathematics (this is closely akin to his CRC Concise Encyclopedia of Mathematics). The
official site is http://mathworld.wolfram.com/.
The Java API can be found at http://java.sun.com/j2se/1.4.1/docs/api/. The official SGI Standard
Template Library (STL) documentation can be found at http://www.sgi.com/tech/stl/.

Textbooks

You are allowed to take whatever printed material you want with you to the contests, so good
reference material can help give you an edge on the harder problems in a problem set. One of the
most useful books is the CRC Concise Encyclopedia of Mathematics, by Eric W. Weisstein. This
book has just about every formula you could possibly need, and has many useful articles on
famous numbers, series, etc. It is very helpful for geometry and number theory type problems
(really any problem which involves some finer math). The other must have book is the so-called
algorithm’s bible: the Introduction to Algorithms by Cormen, Leiserson, Rivest and Stein. This book
has algorithms for many of the types of problems one will encounter in the programming contest. It
is concise and has pseudo-code for all the algorithms, as well as asymptotic analysis. Another
good reference for algorithms is Algorithms in C++ by Robert Sedgewick. Also, it is a good idea to
round out the collection with a book on numerical mathematics algorithms, such as Numerical
Mathematics and Computing by Ward Cheney and David Kincaid and perhaps a reference on



computation geometry (no recommendation yet on which book). Finally, syntax and API reference
books can be very handy. A good C/C++ resource | recommend is the C/C++ Programmer’s
Reference by Herbert Schildt, and for Java | recommend Java in a Nutshell by David Flanagan
(also, make sure you have access to the Java API which can be found online).

Guide to the Code Anthology

The code anthology contains printouts of many of the online resources, and it also contains sample
problems by category along with the author’s solution. Also, a CDROM will be packaged with this
document with a soft copy of all problems, code, and sample input for some of the problems.

The Reference section of the code anthology contains various documents printed from the Internet
which may be useful in the contest. For instance, it has a page about triangles. Also, the Java
BigInteger section has the entire Biginteger API for Java.

The rest of the sections are categories of problems which have been solved. The author of the
solutions is for the most part labeled in a comment at the top of each implementation file. (They
were mostly coded by me, but there are a couple of solutions from other team members. If a file is
not labeled, it was written by me). The source of all these problems is Top Coder, Valladolid, the
regionals, or the world finals. Again, the source code is usually documented somewhere with the
source of the problem. Some of the problems don't fit neatly in any category, but are placed in the
closest category that fits the particular problem.

Index of the Code Anthology

1. Reference
1.1. Andy’s .vimrc
1.2. Andy’s simple code template
1.3. Article from ACM Crossroads: Teamwork in Programming Contests: 3* 1 = 4.
1.4. Interview of Yu Yong, the coach of the 26™ ICPC World Champion team.
1.5. CRC Encyclopedia’s entry on Triangle
1.6. Algorithms with source code for triangles and polygons (both 2D and 3D).
1.7. An algorithm for generating highly composite numbers by Siano and Siano.
1.8. Java Biginteger API
1.9. Java BigDecimal API

2. Counting
2.1. Score a Cribbiage hand. From TopCoder SRM 138 Div. | (500).
2.2. Count Liscence Plates. From TopCoder SRM 135 Div. | (250).
2.3. The Fibonacci string problem as posed to me by Dr. Jaromczyk (see comments in code).

3. Dynamic Programming

3.1. Kingknight. From TopCoder Collegiate Challenge 2003 Div | (250).

3.2. Ferry Loading Il. Problem 10440 from Valladolid, from problem B from the Waterloo local
contest held on 25, January, 2003. Solved by Jesse Andrews.

3.3. Rock, Scissors, Paper. Problem 10443 from Valladolid, from problem E from the
Waterloo local contest held on 25, January, 2003. Solved by Jesse Andrews.

3.4. The 3n+1 Problem. Problem 100 from Valladolid.

3.5. Eurodiffusion. Problem D from the 2003 ACM/ICPC World Finals.

3.6. A Spy in the Metro. Problem H from the 2003 ACM/ICPC World Finals.



10.

11.

Geometry

4.1. Walking on Sticks. Source unknown (Dr. Jaromczyk gave us this problem at a practice).

4.2. Giftwrap. From TopCoder SRM 138 Div Il (1000).

4.3. Rigid Circle Packing. From Valladolid problem 10468.

4.4. Cutting Tabletops. From Valladolid problem 10406.

4.5. Gold rush. Source unknown (Dr. Jaromczyk gave us this problem at a practice). Solved
by Ryan Gabbard.

4.6. Riding the Bus. Problem C from the 2003 ACM/ICPC World Finals.

4.7. The Solar System. Problem | from the 2003 ACM/ICPC World Finals.

4.8. Covering Whole Holes. Problem E from the 2003 ACM/ICPC World Finals. (Note,
solution is not implemented. It is a textual description of a possible solution).

Grammar/Parsing

5.1. Basic. Valladolid problem 10442.

5.2. Parse Tree. Valladolid problem 10467.

5.3. Simple Tokenizer. TopCoder SRM 136 Div. Il (250).

Graph

6.1. Tree Recovery. Problem H from the 1997/98 ACM/ICPC Ulm Local Contest.

6.2. Clustered graph nodes. From TopCoder SRM 135 Div | (450).

6.3. Strongly connected components algorithm. Classical algorithm implemented from CLRS.
6.4. Agents. Translated from foreign language (Dr. Jaromczyk knows original source).

6.5. Building Bridges. Problem A from the 2003 ACM/ICPC World Finals.

6.6. Combining Images. Problem F from the 2003 ACM/ICPC World Finals.

6.7. Toll. Problem J from the ACM/ICPC World Finals.

Greedy/Brute Force

7.1. Balloons in a Box. Problem A from the 2002 ACM/ICPC World Finals.
7.2. Deduce types of objects in a bin. From TopCoder SRM 134 Div Il (500).
7.3. Light Bulbs. Problem B from the ACM/ICPC World Finals.

Number Theory

8.1. Andy’s c++ bigint library (still incomplete).

8.2. The Cat in the Hat. Valladolid problem 107.

8.3. Shifted Coefficient Number System. Valladolid problem 10470.
8.4. To Carry or not to Carry. Valladolid problem 10469.

8.5. Farey Sequences. Valladolid problem 10408.

Simulation

9.1. Siberian Highway. TopCoder SRM 135 Div I. (950).
9.2. Bowling Score. TopCoder SRM 136 Div Il. (1000).
9.3. Die Game. Valladolid problem 10409.

Sorting/Searching

10.1.Phone number frequency. TopCoder SRM 138 Div . (250).
10.2.Dishonest customers. TopCoder SRM 136 Div . (500).
10.3.TileMatch. TopCoder Collegiate Challenge 2003 Div 1. (550).

String/Sequence

11.1.Compromise (LCS). Problem C from 1997/98 ACM/ICPC Ulm Local Contest.
11.2.Longest Common Subsequence. Valladolid problem 10405.
11.3.RunLengthEncode. TopCoder SRM 138 Div. II. (500).

11.4.Defragment. TopCoder SRM 134 Div. Il. (250).



12. Text Formatting
12.1.Telephone Tangles. Valladolid problem 139.
12.2.A Linking Loader. Problem G from the ACM/ICPC World Finals.



Printed by
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set shiftwidth=2
set tabstop=2
set expandtab
set autoindent
set cindent

Saturday April 26, 2003 1/1



/I Andy’s simple template
#include <iostream>
#include <fstream>

using namespace std,;

int n;

int main()

{

[/l variables used in loops

int i,j,k;

char * fname = new char[sizeof(__FILE_ ) - 4];
char * fnamet = new char[sizeof( __FILE_)];
ifstream infile;

ofstream outfile;

/l construct filenames from __ FILE
strncpy(fname,__ FILE__ ,sizeof(_ FILE ) -5);

infile.open( strcat(strcpy(fnamet,fname),".in") );
outfile.open( strcat(strcp y(fnamet,fname),".out") );

/I test file validity
if( linfile )

cerr << "Bad input file." << endl;
return -1,

}

if( loutfile )

{
cerr << "Bad output file." << endl;
return - 2;

}

infile >>n;
/[ loop on each input
while(n)

/l do processing on each input
infile >>n;

}

return O;
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solved wins, where ““solved"

right outputs for a set of (secret) test inputs. Tho
the individual skills of the team members are
important, in order to be a top team it is necessal

This contest, which consists ofegional qualifying
contestand the Finals, provides college students
the opportunity to demonstrate and sharpen thei
programming skills. During this contest, teams

consisting of three students and one computer ar,
solve as many of the given problems as possible
within 5 hours. The team with the most problems

means producing th

make use of synergy within the team. As participants in the 1995 Contest Finals (two of

also participated in the 1994
teamwork.

Finals), we have given a lot of thought to strategy and

In this article we summarize our observations from various contests, and we hope that il
ever participate in this contest (or any other) that this information will be valuable to you

The Basics: Practice, Practice, Practice!

Because of the fact that only one computer is available for three people, good teamwork
essential. However, to make full use of a strategy, it is also important that your individua
skills are as honed as possible. You do not have to be a genius as practicing can take y
quite far. In our philosophy, there are three factors crucial for being a good programmin

team:

¢ Knowledge of standard

algorithms and the ability to find an appropriate algorithm
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every problem in the set;
¢ Ability to code an algorithm into a working program; and
¢ Having a strategy of cooperation with your teammates.

Team strategy will be the core discussion of this article. Nevertheless, there are s
important considerations for improving your individual skills.

After analyzing previous contest programming problems, we noticed that the same kind
problems occurred over and over again. They can be classified into five main categories

1. Search problems. These involve checking a large number of situations in order
find the best way or the number of ways in which something can be done. The difficulty |
often the imposed execution time limit, so you should pay attention to the complexity of y
algorithm.

2. Graph problems. The problems have a special structure so they can be represe
as a graph-theoretical problem for which standard algorithms are available.

3. Geometrical problems. These involve geometrical shapes, lines, and angles.

4. Trivial problems. The choice of appropriate algorithm is clear, but these usually
take quite a long time to program carefully.

5. Non-standard problems.

For the first three categories, standard algorithms are well documented in the literature,
you should program these algorithms beforehand and take the listings with you to the
contest. In this way, you can avoid making the same (small) mistakes repeatedly and yc
can concentrate on the difficult aspects of the problem.

Another angle of practice is efficient programming. This dedsnean type as fast as you
can and subsequently spend a lot of time debugging. Instead, think carefully about the
problem and all the cases which might occur. Then program your algorithm, and take tr
time to ensure that you get it right the first time with a minimum amount of debugging,
since debugging usually takes a lot of valuable time.

To become a team, it is important that you play a lot of training contests under
circumstances which are as close to the real contest as possible: Five hours, one compi
new set of problems each time, and a jury to judge your programs.

Team Strategy: The Theory

When your algorithmic and programming skills have reached a level which you cannot
improve any further, refining your team strategy will give you that extra edge you need tc
reach the top. We practiced programming contests with different team members and
strategies for many years, and saw a lot of other teams do so too. From this we develop
theory about how an optimal team should behave during a contest. However, a refined
strategy is not a must: The World Champions of 1995, Freiburg University, were a rooki
team, and the winners of the 1994 Northwestern European Contest, Warsaw University
only two weeks before that contest.

Why is team strategy important? There is only one computer, so it has to be shared. Th
problems have to be distributed in some way. Why not use the synergy that is always pr
within a team?

““Specialization" is a good way of using the inherent synergy. If each team member is a
expert for a certain category of problem, they will program this problem more robustly, a
maybe more quickly than the other two team members. Specialization in another sense
also possible. Maybe one of the team is a great programmer but has poor analytical skil
while another member can choose and create algorithms but cannot write bug-free
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programs. Combining these skills will lead to bug-free solutions for difficult problems!

Another way to use synergy is to have two people analyze the problem set. Four eyes se
more than two, so it is harder for a single person to misjudge the difficulty of a problem.
Forming a think-tank in the early stages of a contest might help to choose the best prob
from the set and find correct algorithms for them. However, once the algorithm is clear,
more than one member working on a single program should be avoided.

It is our experience that the most efficient way to write a program is to write it alone. In t
way you avoid communication overhead and the confusion caused by differing programt
styles. These differences are unavoidable, though you should try to use the same style
standards for function and variable names. In this way you can really make 3*1 equal ta
four!

Other Considerations

Since the contest final standings are based on the number of problems correctly solved,
(in the case of ties) on the sum of elapsed time for each problem, a team should adopt ¢
strategy that maximizes the number of solved problems at the end of the five hours, anc
view the total elapsed time as a secondary objective. In every contest there are some te
the ““top six" after three hours, that are not even in the ““top ten" after the total five hou
The reverse also occurs. A long term strategy is therefore important: Try to optimize the
man hours and 5 hours of computer time, and do not worry about your total time or how
quickly you solve the first two problems.

To optimize this scarce time, try to finish all problems that you start. A 99% solved probl
gives you no points. Analyze the problem set carefully at the beginning (for example, by
using a "think-tank" approach) to avoid spending more time than absolutely necessary
problem that you will not finish anyway, and to avoid misjudging an easy problem as bei
too difficult. You need a good notion about the true difficulty of the various problems as t
is the only way to be sure that you pick exactly those which you can finish within five hot

Since you never have perfect information, you have to take risks. If you follow a risky
strategy by choosing to tackle a large number of problems, you might end up in the bott
half of the score list when each is only 90% solved, or you might be the winner in the en
On the other hand, choosing a smaller number of problems has the risk that you have s
them correctly after four and a half hours, but the remaining time is too short to start an
finish a new problem, thus wasting ten percent of the valuable contest time.

Time management should play a role in your strategy. If you are going to work on a larg
problem, start with it immediately or you will not finish it. Although this sounds trivial,
there are a lot of teams which start out with the small problems, finish them quickly, anc
end up with only three problems solved because they did not finish the larger ones. In o
opinion, debugging should have the highest priority at the terminal after 3.5 hours. Whe
you start with a new problem that late in a contest, the terminal will become a bottlenecl
the rest of the contest.

Of course terminal management is crucial. Though most programs are quite small (usui
not exceeding one hundred lines of code), the terminal is often a bottleneck: Everyone v
to use it at the same time. How can this be avoided? The first thing to remember is: Use
chair in front of the terminal only for typing, not for thinking. Write your program on pape
down to the last semicolon. In this way you usually have a much better overview, and ya
have the time to consider all possible exceptions without someone breathing down your
neck, longing for the terminal. Once you have finished writing, typing will take no more
than 15 minutes. Though you should avoid debugging (this IS possible if you plan the
program carefully on paper), when you really have to do it you should do it in a similar w
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Collect as much data as possible from your program, print it out and analyze it on pape!
together with your code listing. Real- time tracing$E ULTIMATE SIN

Some Example Strategies

1. The Simple Strategy

This strategy is quite useful for novice teams, or those who do not want to get into a lot «
practice and strategy tuning, and, therefore, is in no way optimal. The basic idea is to w
as individually as possible to try to minimize overhead. Everyone reads a couple of
problems, takes the one he likes most and starts working on it. When a problem is finist
a new one is picked in the same way and so on.

Advantages are that little practice is needed. Total elapsed time will be minimal, since tl
easiest problems are solved first. However, there are also severe disadvantages: Since
easiest problems usually have the same level of difficulty, everyone will finish their probl
at about the same time. Thus the terminal will not be used for the first hour, since every
is working on a problem on paper, and remains a bottleneck thereafter. Furthermore, or
the easy problems will be solved, because no time will be left for the hard ones. The
conclusion is that, provided your programming skills are adequate, you will solve about
three or four problems as a team. This will bring you, with a good total elapsed time, intt
the top ten, but probably not into the top three.

2. Terminal Man

In the terminal man (TM) strategy, only one of the team members, the T, uses the comg
The other two team members analyze the problem set, write down the algorithms and tt
(key parts) of the code, while the T makes the necessary 1/0O-routines. After an algorithn
finished, the T starts typing and, if necessary, does some simple debugging. If the bug i
difficult to find, the original author of the algorithm helps the T to find it.

Advantages of this strategy are that the terminal is not a bottleneck anymore, and the te
solving a problem is split over people who specialized in the different parts of the proble
solving process. A disadvantage is that no optimal use is made of the capacities of the -
who is mainly a kind of secretary. If you only one of you is familiar with the programminc
environment, this might be a good strategy. You can write a lot of programs in the first |
of the contest when your brain is still fresh, since the typing and debugging is done by
someone else. It depends strongly on the composition of your team if this strategy is sui
for you.

3. Think Tank

The strategy we followed during the preparation and playing of the Contest Finals of 19¢
made use of the above-mentioned ““think tank" (TT). We felt that choosing and analyzir
the problems was such a crucial task in the early stages of a contest that it should not b
to a single person. The two team members who are the best problem analyzers form the
and start reading the problems. Meanwhile the third member, the ““programmer", will ty
in some useful standard subroutines and all the test data, which are checked carefully. .
15 minutes, the TT discusses the problems briefly and picks the one most suitable for tr
third team member. After explaining the key idea to the programmer, they can start wor
on it. Then the TT discusses all problems thoroughly, and puts the main ideas of the

algorithm down on paper. We found out that two people examining hard problems often
lead to creative solutions. After one hour the TT had a good overview over the problem :
and all algorithms were found. The next decision is how many problems you want to sol
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The easiest or shortest problems are handled by the programmer, while the TT divides
other ones among themselves.

The terminal is only used for typing in code from paper or gathering information from a

buggy program. If a program is rejected by the jury and no bug can be found, it is put as
until the last hour of the contest. In principle, after three and a half hours no more new ¢
is typed. The team will briefly discuss the situation, and a plan is made for how to solve

problems which have yet to be debugged.

Some advantages of this approach are that you will almost always tackle the programs
which have a reasonable chance of being solved correctly, and the hard problems can
solved because the TT will start working on them in an early stage of the contest. A clee
disadvantage is that you will have a relatively slow start and your total time is not optime
So to win, you need to solve one problem more than the other teams. We feel that for a
consisting of partners with about equal skills, this strategy will help you solve as many
problems as possible.

Some Other Tips

You can practice a lot for a programming contest, and your strategy can be very good.
However, luck always has its part in the contest and you have to live with that. Do not b¢
disturbed by it (or the lack of it). Play your own contest. Never look at other team's stanc
except to see if some teams solved a problem rather quickly that you thought to be too t
If a program gets rejected by the jury, don't panic. Try to find the bug, there always is on
Consider especially the limits of your program, and ask yourself under which circumstar
these limits will be exceeded. You do not have to submit a correct program. It only has t
produce the right output for the jury input. Therefore you should program robustly and
cleanly, and not write the shortest or fastest code possible. And always remember:
Programming contests are great fun!

Concluding Remarks

In this article we have recorded some of our experiences with programming contest
strategies. Though these strategies are very dependent on the individual qualities of the
members, the concepts apply equally to all teams. We hope that the information contair
this article will be useful to you, should you ever want to participate in the ACM
Programming Contest (we definitely recommend it!). More information about the contesi
can be found ohttp://www.acm.org/~contesf report of our experiences at the Contest
Finals, including more considerations on team strategy, can be found at
http://www.cs.vu.nl/~acmteam/
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Coach of Programming Contest World Champions Shares
Strategy

The 26th Annual ACM International Collegiate Programming Contest
(ICPC) was held in Honolulu, Hawaii on March 23rd and was sponsored
by IBM. The title of 2002 World Champions went to the team from
Shanghai Jiao Tong University in China, which beat out 64 world finalist
teams to win. As contest Executive Director Bill Poucher noted in a recent
interview, "We've got to shine the spotlight on the next generation of
leaders."View winning team

MemberNet interviewed Yu Yong, the coach, to learn the secrets of their
success.

MN: Why does your team work well together?

YY: The most important reason is that we all have the same goal and we
all work toward that goal. The team members all have a clear
understanding of each other's strengths and weaknesses, and they
completely trust each other. We also have some discipline and rules that
every team member must abide by. Training together for a long time also
plays an important role in reinforcing the tight cooperation between the
team members. During the training, the team members also develop
friendship and tacit understanding.

MN: What did your team do differently from the other teams?

YY: We can carry out our strategy and tactics thoroughly and have a tight
control over the timing and speed. The fast speed of problem solving is one
of our advantages. In the World Finals, we solved the first problem in 17
minutes and it built a solid confidence among the team members. We are
also good at solving difficult problems. The time saved from [solving] the
easy problems provided us the opportunity to solve more difficult

problems.

MN: How did you prepare for the competition?
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YY: We have a long-term training program which includes both personal
training and team training. Personal training mainly consists of algorithm
reading and understanding, and program writing. Team training is actually

a simulated contest and is carried out in a contest environment. Team
training starts with trying out and using various algorithms so that the basic
problem- solving skills can be established. After that, every team will try to
find the right tactics for the team. The tactics are continuously practiced,
evaluated and adjusted during the team training. They are also tested in the
regional contests. After the regional contests, the final tactics and strategies
for the World Finals are determined. The training before the World Finals
further sharpens every team member’s skills according to the tactics and
strategies.

MN: Was this your first time at the Finals?

YY: Itis the first time for one of our team members. The other two team
members have had the experience of being at the Finals.

MN: Which problem was the hardest, and why?

YY: The last one is the hardest. It is very complex and has many details
that need substantial time to deal with. The large number of details also
leads easily to errors in programming.

Problem I: Merrily, We Roll Along!

One method used to measure the length of a path is to roll a wheel
(similar to a bicycle wheel) along the path. If we know the radius of the
wheel and the number of revolutions it makes as it travels along the path,
the length of the path can be computed.

This method works well if the path is smooth. But when there are curbs or
other abrupt elevations changes in the path, the path distance may not be
accurately determined, because the wheel may rotate around a point (like
the edge of a curb), or the wheel may roll along a vertical surface. In this
problem you are to determine the distance moved by the center of such a
wheel as it travels along a path that includes only horizontal and vertical
surfaces.

To measure a path, the wheel is placed with its center directly above the
origin of the path. The wheel is then moved forward over the path as far
as possible, always remaining in contact with the surface, ending with its
center directly above the end of the path.

--excerpt from Problem | (in a total of 9 problems, A through I). For the
complete problem set from this year’s ICPC competition, go to
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http://acm.baylor.edu/icp@and click on the "problem set" link.

LRY
Coach Yu Yong (far right) and the Shanghai team.

[MemberNet homepaTop of Pagg

© 2002 ACM, Inc. All rights reserved.CM Privacy Policy

30f3 4/26/03 3:44 P!



5.1 Triangles http://www.geom.umn.edu/docs/reference/CRC-formulas/node2.

Next: 5.2 Quadrilaterals

Up: 5 Polygons
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5.1 Triangles

Because the angles of a triangle add up to 180°, at least two of them must be acute (less than 90
acute triangle all angles are acute. ight triangle has one right angle, and abtuse trianglehas one
obtuse angle.

Thealtitude corresponding to a side is the perpendicular dropped to the line containing that side fi
opposite vertex. Thieisector of a vertex is the line that divides the angle at that vertex into two equi
parts. Themedianis the segment joining a vertex to the midpoint of the opposite side. See Figure

T -

Figure 1: Notations for an arbitrary triangle of sided, c and verticeg\, B, C. The altitude
corresponding t€ is hc, the median i, the bisector itz. The radius of the circumscribed circléRis

that of the inscribed circle rs
Every triangle also has amscribed circle tangent to its sides and interior to the triangle (in other woi

any three nonconcurrent lines determine a circle). The center of this circle is the point of intersecti
the bisectors. We denote the radius of the inscribed cirale by

Every triangle has eircumscribed circle going through its vertices; in other words, any three
noncollinear points determine a circle. The point of intersection of the medians is the center of ma:
triangle (considered as an area in the plane). We denote the radius of the circumscribedR:ircle by
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Introduce the following notations for ambitrary triangle of verticesA, B, C and sides, b, c (see
Figurel). Lethc, %z and™: be the lengths of the altitude, bisector and median originating in \@rtek

r andR be as usual the radii of the inscribed and circumscribed circles, aatll@tb+c). Then:
A+ B4+ O =180°,
e?=g? + 8% — Zpbeos (law of cnsines),
g =bcosC' + ccos B,

& b e ]
sinA  sinB  sinC (law of sines),
2 . .
1 CLp. I_r:smAsmH_ _a_!n:
area = ch.e = cabsin (' = i _rs_4h)
= \/3(3 —a){s—b)(s—¢) (Heron),
. i ah gin
I"=ESlﬂ%ASlﬂ%BSEC%G=T=(S—E)t&ﬂ%{?
e,
 Nh,  hy A ?
r ahe
B= 2 sin ! = Larea’
hc=asin3=bsin;i=2area‘,

£

2ah ’ c?
tn = E+&CDEEG— Jﬂ-b(]. — m).’

1,24 1p2 1.2
\/Erx-l—gb i

L

A triangle isequilateral if all its sides have the same length, or, equivalently, if all its angles are the :
(and equal to 60°). It isoscelesf two sides are the same, or, equivalently, if two angles are the san
Otherwise it isscalene

For anequilateral triangle of sidea we have:
area=Ya* ﬁ
r=paV'3,
R=!/3av3
hzl/za\/g,

whereh is any altitude. The altitude, the bisector and the median for each vertex coincide.

For anisosceles trianglethe altitude for the unequal side is also the corresponding bisector and me
but this is not true for the other two altitudes. Many formulas for an isosceles triangle @ sidesan
be immediately derived from those for a right triangle of &egéc (see Figure, left).
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- A

[ [
Figure 2: Left: An isosceles triangle can be divided into two congruent right triangles. Right: notati
for a right triangle.

For aright triangle thehypothenuseis the longest side opposite the right anglejeégeare the two
shorter sides, adjacent to the right angle. The altitude for each leg equals the other leg. B(Fghije
h denotes the altitude for the hypothenuse, whikndn denote the segments into which this altitude
divides the hypothenuse.

The following formulas apply for a right triangle:

A+B=90°
r=al/(at+b+c)
a=c sinA =ccosB
mc=b?*
area=%ab
c?=a?+b? (Pythagoras)
=1c
b=c sinB = c cosA
nc=a?
hc=ab

The hypothenuse is a diameter of the circumscribed circle. The median joining the midpoint of the
hypothenuse (the center of the circumscribed circle) to the right angle makes aArahes2 with the
hypothenuse.

Additional facts about triangles:

e In any triangle, the longest side is opposite the largest angle, and the shortest side is oppos
smallest angle. This follows from the law of sines.

e (Ceva's Theorem see Figure, left.) In a triangleABC, let D, E andF be points on the lineBC,
CA andAB, respectively. Then the linéd, BE andCF are concurrent if and only if the signed
distance8D, CE, ... satisfy

B -CE-AF=DC-FEA-FB.

This is so in three important particular cases: when the three lines are the medians, when th
the bisectors, and when they are the altitudes.
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A A

D¢ B ¢
Figure 3: Left: Ceva's Theorem. Right: Menelaus's Theorem.

e (Menelaus's Theorem see Figurs, right.) In a triangléABC, let D, E andF be points on the line:
BC, CAandAB, respectively. TheD, E andF are collinear if and only if the signed distanB&}
CE, ... satisfy

B -OE-AF =—-DC .- BEA-FB.

e Each side of a triangle is less than the sum of the other two. For any three lengths such that
less than the sum of the other two, there is a triangle with these side lengths.

Next: 5.2 Quadrilaterals

Up: 5 Polygons
Previous: 5 Polygons
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area2D_polygon()
area3D_Polygon()

References

Computing the area of a planar polygon is a basic geometry calculation and can be found in many introductory texts. However, there are
different methods for computing planar areas depending on the information available.

Triangles

Ancient Triangles

Before Pythagoras, the area of the parallelogram (including the rectangle and the square) has been known to equal the product of its ba:
height. Further, two copies of the same triangle paste together to form a parallelogram, and thus the area of a triangle is hddftiofiiés iase
heighth. So, for these simple but commonly occurring cases, we have:

Parallelogram: A(D) =hbh x_’ h ;
! b
5

Triangle: A(ﬁ) =1bh

2

However, except in special situations, finding the height of a triangle at an arbitrary orientation usually requires also computing the perpen
distance of the top vertex from the base.

For example, if one knows the lengths of two sidemndb, of a triangle and also the anglbetween them, then Euclid says this is enough to
determine the triangle and its area. Using trigonometry, the height of the triangle over this lgasen byh = a sing, and thus the area is:

Al8)=absing A
)
b
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Another frequently used computation is derived from the fact that triangles with equal sides are congruent, and thus have the same area.
observation from Euclid (~300 BC) culminated in Heron's formula (~50 AD) for area as a function of the lengths of its three sides [Note: st
historians attribute this result to Archimedes (~250 BC)]; namely:

[
o

A(A) = \/3(3— a)(s—b)(s—c)

wheres=1{a+b+c) 5

wherea,b,c are the lengths of the sides, arid the semiperimeter. There are interesting algebraic variations of this formula; such as:

A(A) = }IJélazbz - (az +4— 02)2

which avoids calculating the 3 square roots to explicitly get the leagtiefrom the triangle's vertex coordinates. Other variations on Heron's
formula can be found at Kevin Browigron's Formul@age and Eric WeissteiTsianglepage.

The remaining classical triangle congruence is when two angles and one side are known. Knowing two angles gives all three, so we can «
anglegy andj are both adjacent to the known basé'hen the formula for area is:

b2
2(cot9+cotqp) A n

A(A) =

Modern Triangles

More recently, starting in the 17-th century with Descartes and Fermat, linear algebra produced new simple formulas ®darenslanal spac
(3D), the area of a parallelogram and triangle can be expressed as the magnitude of the cross-product of two edge estefs;, |sihegsing|
whereq is the angle between the two vectoendw. Thus for a 3D triangle with vertic®)V 1V 2 puttingv=V1-Vg andw=V2-V, one gets:

VQ
A(A) = f[vxw] W
=%‘(V1_VD)X(V2_VD)‘ y
V; v ]

In 2 dimensional spac@D), a vector can be viewed as embedded in 3D by adding a third component which is set = 0. This lets one take 1
cross-product of 2D vectors, and use it to compute area. Given a triangle with Y&rt{es)=(xi,yi,0) for i=0,2,we can compute that:

(‘xl _xn) (xz _xu)

(V= V)= (V,—V, )= 0’0’()’1 ) (3 —¥)

And the absolute value of the third z-component is twice the absolute area of the triangle. However, it is useful to not take the absolute vi
and instead let the area be a signed quantity.

Ty Yo 1
ZA(A):(XI ) xﬂ):“ﬁ a1 Va
=N Ja — W
Oi) Gam) 2
:(51_xu)(.l’z_J’n)_(xz_xu)(}ﬁ_yn) v, v,

where V, =(x,5,)

This formula for area is a very efficient computation with no roots or trigonometric functions involved - just 2 multiplications and 5 additions
possibly 1 division by 2 (which can sometimes be avoided).

Note that the signed area will pesitiveif VoV1V2 are oriented counterclockwise around the triangle, and wilelgativeif the triangle is oriented
clockwise; and so, this area computation can be used to test for a triangle's orientation. The signed area can also be used to test whéghe
is to the left (positive) or the right (negative) of the directed line segught . So this is a very useful primitive, and it's great to have such an
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efficient formula for it.

Quadrilaterals

The Greeks singled out certain quadrilaterals (also called quadrangles) for special treatment, including the square, the rectangle, the pare
and the trapezium. Then, given an arbitrary quadrilateral, they showed how to construct a parallelogram [Euclid, Book I, Prop 45] or squ
Book II, Prop 14] with an equal area. And the area of a parallelogram was equal to its base times its height. But there was no general fo
quadrilateral's area.

An extension of Heron's triangle area formula to quadrilaterals was discovered by the Hindu geometer Brahmagupta (~620 AD) [Coxeter,
Section 3.2]. However, it only works foyclic quadrilaterals where all four vertices lie on the same circle. For a cyclic quadril@etet the
lengths of the four sides be a, b, ¢, d, and the semiperimeter be s=(a+b+c+d)/2. Then, ti@ iargaerf by:

A(®) = Js—a)s—b)s—c)(s—d)

which is an amazing symmetric formula. If one side is zero length, say d=0, then we have a triangle (which is always cyclic) and this form
to Heron's one.

In modern linear algebra, as already noted, the areplahar parallelogram is the magnitude of the cross product of two adjacent edge vecto
So, for any 3D planar parallelograripV1V2V3, we have:

v, v,

A(anlvzv3) = ‘(Vl_vn)x(vs_vu)‘

In 2D, with vertices/i=(xi,yi)=(Xi,yi,0) for i=0,3, this becomes:

(x1 _xn) (Jl’1 _J’u)
(53 _10) (J’3 _Jf’u)
= (xl _xu)(jfz _J’u)_(% _‘xﬂ)(.yl _J’D)

A(g)=

which is again aignedarea just as we had for triangles.

Next, for anarbitrary quadrilateral, one can compute its area using a parallelogram discovered by Pierre Varignon (first published in 1731)
amazing that the Greeks missed Varignon's simple result which was discovered 2000 years after Euclid! Given any quadrilateral, one cal
midpoints of its 4 edges to get 4 vertices which form a new quadrilateral. It is then easy to show that this midpoint quadrilateral is always
parallelogram, called the "Varignon parallelogram”, and that its area is exactly one-half the area of the original quadrilateral [Coxeter,196
3.1]. So, for a quadrilater@=VoV1V2V3, let this parallelogram have midpoint vertiddsM1M2M3 as shown in the diagram:

From elementary geometry, we know that in triangd¥ 1V 2 the midpoint lineMoM1 is parallel to the baségVao. In triangleVoV1V2V3, the line
M3Mz2 is parallel to that same baggVo. Thus,MoM1 andM3M2 are parallel to each other. SimilafoM3 andM1M2 are parallel, which
shows thaMoM1M2M3is a parallelogram. The area relation is also easy to demonstrate, and we can compute the quadrilateral's area as
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AP AU
= 2J(va= Vo)< (V5 -,

which equals one-half the magnitude of the cross-product of the two diagonals of the quadrilateral. This result was noted by [Van Gelder
used a different proof.. This formula holds for any 3D planar quadrilateral. When restricted to 2P-{4tlyi), it becomes a formula forsagned

(m-x) (n-%)
(m—x) (m-x)
= (% =5 ) (s~ ) (5 — %) (72— »o)

24(0) =

This formula for an arbitrary quadrilateral is just as efficient as the one for an arbitrary triangle, using only 2 multiplications and 5 additions.
simple quadrilaterals, the area is positive when the vertices are oriented counterclockwise, and negative when they are clockwise. Howe
works for nonsimple quadrilaterals and is equal to the difference in area of the two regions the quadrilateral bounds. For example, in the 1
diagram where | is the self-intersection point of a nonsimple quadril@ekédV 1V 2V 3, we have:

vy

(AV,VI) + A(ATV,V,) Vi
(‘&Vﬂ\]ll) —A (.&IV3V2 )

A(®) =

A
A

Polygons

2D Polygons

A 2D polygon can be decomposed into triangles. For computing area, there is a very easy decomposition sieghlegébygons (i.e. ones
without self intersections). Let a polygdhbe defined by its verticési=(x;,yi) for i=0,n with Vn=Vg. Also, letP be any point; and for each edge
ViVi+1 of W, form the triangldi=DPV;Vi+1. Then, the area &¥ is equal to the sum of tisggnedareas of all the triangl€ for i=0,n-1; and we
have:

A(9) :2,4(51.)
vV, = v,

where A, = APV, V,, ~. NS T

Notice that, for a counterclockwise oriented polygon, when the Bision the "inside" left side of an edggVj+1, then the area @ is positive;
whereas, wherP is on the "outside" right side of an edgi#/i+1, thenDj has a negative area. If instead the polygon is oriented clockwise, the
signs are reversed, and inside triangles become negative.

For example, in the above diagram, the trianBlgsDPV2V 3 andDn-1=DPVn-1Vn have positive area, and contribute positively to the total aree
polygonW. However, as one easily observes, only pabizoindDn-1 are actually insid@V and there is a part of each triangle that is also exter
On the other hand, the triangleg andD3 have negative area and this cancels out the exterior excesses of positive area triangles. In the fin
analysis, exterior areas all get cancelled, and one is left with exactly the area of the Yalygon

One can make the formula more explicit by picking a specific poentdRexpanding the terms. By selectirg®0), the area of each triangle
reduces to &(Di) = (XiYi+1-Xi+1Yi). This yields:
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= %D‘ U5 X )\ Ve — )

:lel‘xi (y1'+1_.yi—l) v =VM\|

n a0 YV
where V,=(x,y,), with i (modn) :

1

A little algebra shows that the second and third summations are equal to the first. For a polygeentiites, the first summation uszrs
multiplications andZn-1) additions; the second usesultiplications and3n-1) additions; and the third uses onlynultiplications and4n-1)
additions. So, the third is preferred for efficiency, but to avoid any overhead from computing thénmdiy, one must extend the polygon arra
up toVnp+1=V1.

This computation gives aignedarea for a polygon; and, similar to the signed area of a trianglesitézewhen the vertices are oriented
counterclockwise around the polygon, axegjativewhen oriented clockwise. So, this computation can be used to test for a polygon's global
orientation. However, there are other more efficient algorithms for determining polygon orientation. The easiest is to find the rightmost lo
of the polygon, and then test the orientation of the entering and leaving edges at this vertex. This test can be made by checking if the enc
leaving edge is to the left of the entering edge, which means that the orientation is counterclockwise.

3D Planar Polygons

An important generalization is for planar polygons embedded in 3D space [Goldman, 1994]. We have already shown that the area of a 3l
D=VqV1V2 is given by half the magnitude of the cross product of two of its edge vectors; rianéy,1 x VoV2|.

The Standard Formula

There is a classic standard formula for the area of a 3D polygon [Goldman, 1994] that extends the cross-product formula for a triangle. It
derived from Stokes Theorem. However, we show here how to derive it from a 3D triangular decomposition that is geometrically more int

A general 3D planar polygd has vertice¥i=(xi,Vi,z) for i=0,n, with Vn=Vo. All the vertices lie
on the same 3D plagewhich has ainit normal vectorn. Now, the same as in the 2D case,Plet
be any 3D point (not generally on the plajeand for each edgg=V;Vi+1 of W, form the 3D
triangleDj=DPV;Vi+1. We would like to relate the sum of the areas of all these triangles to th
of the polygonV in the plang. But what we have is a pyramidal cone vitas an apex over the
polygonW as a base. We need to project the triangular sides of this cone onto theqgdléme
base polygon, and compute signed areas of the projected triangles. If we can do this, then tt
the projected areas will equal the total area of the planar polygon.

To achieve this, start by associating to each triangle n

Dj an area vectan=%2(PV x PVi+1), perpendicular t®;, whose magnitude we know is equal to P o
that triangle's area. Next, drop a perpendicular fidma pointPg onp, and consider the projected R\ T //'57 !
triangleTi=DPqViVi+1. Drop a perpendiculdBi from Pg to Bj on the edgei=ViVi+1. Since

PRy is also perpendicular ®, the three pointBRB; define a plane normal &, andPB; is a K
perpendicular fronP to the edgei. Thus,|PB| is the height oDj, and|PgBi| is the height oT ;.
Further, the angle between these two altitudgsthe angle betweenanda; since a 90° rotation
results in congruence. This gives:

\%

A(T)=

V.V, |[BB,

= L[V V. |[PB,|cosf = A(4,) cos & = n|ja,|cosf =n-a,

Thissignedarea computation is positive if the verticed pare oriented counterclockwise when we look at the gdnem the side pointed to by
n. The same as in the 2D case, we can now add together the signed areas of all thel{rtarggeshe area of the polygvi. Writing this down,
we have:

n=1 n-1 n n=1
AQ)=> AT }J=>n-u,=—- PV.xPV,
( ) gul ( 7 ) ; ! 2 gul ( 7 i+ )
Finally, by selectingP=(0,0,0) we havePVj=Vj and this yields the simple formula:

n-l

24(Q)=n- 3 (V,xV,,)

=0
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which uses 6+3 multiplications and@+2 additions

Similar to the 2D case, this issggnedarea which is positive when the vertices are oriented counterclockwise around the polygon when view
the side op pointed to byn.

Quadrilateral Decomposition

[Van Gelder, 1995] has shown how to significantly speed up this computation by using a decomposition into quadrilaterals instead of trian
first noted that the area of a 3D planar quadrilat@rd¥oV1V2V3 can be computed in terms of the cross-product of its diagonals; that is:

ZA(G)ZH'[(Vz_VD)X(V3_V1 ):I

which reduces four expensive cross-product computations to just one!

Then, any large polygd®/ with n>4 vertices can be decomposed into quadrilaterals form¥thlayd three other sequential vertides.-1, Vi, and
Vi+1 for i=1h whereh= the greatest integ€(n-1)/2. Forn odd, the decomposition ends with a triangle. This gives:

24(Q)=n- [i (Vo = Vo )2 (Vg = Vg ) + (Vg — Vi )< (V= Vi )]

i=l

wherek=0 for n odd, andk=n-1 for n even. This formula reduces the number of expensive cross-products by a factor of two (replacing therr
vector subtractions). In total there are-3 multiplications and®+1 additions making this formula roughly twice as fast as the classic standarc

[Van Gelder, 1995] also states that this method can be applied to 2D polygons, but he does not write down the details. Working this out |
formula that uses multiplications and 81 additions, which is not as fast as the prior formulas we have given. We simply note this here, an
pursue it further.

Projection to 2D

One can speed up the computation of 3D planar polygon area by projecting the polygon onto a 2D plane [Snyder & Barr, 1987]. Then, th
be computed in 2D using our fastest formula, and the 3D area is recovered using an area scaling factor. This method is implemented by
onto an axis-aligned plane by ignoring one of the three coordinates. To avoid degeneracy and optimize robustness, we look at the plane's
vectorn (see the April 2001 AlgorithrAbout Planels and choose the component with the greatest absolute as the one to ignore ¢().&eRa
projection that ignores the coordinate x, y, orz. Then, the ratio of areas for the projected polygorc@)jand original planar polygdw with

normaln = (ny,ny,ny) is:

M: |n'5| wherec =x,y, orz
A(9) n|

Thus, the 3D planar area can be recovered by a single extra multiplication, and in total this algorith# mstiplications, 2+1 additions, 1
square root (when is not a unit normal), plus a small overhead choosing the coordinate to ignore. This is a very significant improvement o
classic standard formula, achieving almost a 6 times speed-up. We give an efficient implementation below in e ed@nEolygon()

Implementations

Here are some sample "C++" implementations of these formulas as algorithms. We just give the 2D case with integer coordinates, and L
simplest structures for a point, a triangle, and a polygon which may differ in your application. We represent a polygon as an array of poir
often more convenient to have it as a linked list of vertices (to allow insertion or deletion during drawing operations), and the polygon routir
easily modified to scan through the linked list (see [O'Rourke, 1998] for an example of this approach).

/I Copyright 2000, softSurfer (www.softsurfer.com)

/I This code may be freely used and modified for any purpose

/I providing that this copyright notice is included with it.

/I SoftSurfer makes no warranty for this code, and cannot be held
/I liable for any real or imagined damage resulting from its use.
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/I Users of this code must verify correctness for their application.

/l'a  Point (or vector) is defined by its coordinates

typedef struct {int x, y, z;} Point; // exclude z for 2D

/l'a  Triangl e is given by three points: Point VO, V1, V2

/l'a  Pol ygon is given by:

I int n = number of vertex points

I Point* V[] = an array of points with V[n]=V[0], V[n+1]=V[1]

/I Note: for efficiency low-level functions are declared to be inline.
/I isLeft(): testsifapointis Left|On|Right of an infinite line.

/I Input: three points PO, P1, and P2
/I Return: >0 for P2 left of the line through PO and P1

1 =0 for P2 on the line
I <0 for P2 right of the line
inline int

isLeft( Point PO, Point P1, Point P2)

return ( (P1.x - P0.x) * (P2.y - PO.y)
- (P2.x-P0.x) * (PLy - PO.y));

http://geometryalgorithms.com/Archive/algorithm_01

/I orientation2D Tri angl e() : test the orientation of a triangle
/I Input: three vertex points VO, V1, V2
/I Return: >0 for counterclockwise

I =0 for none (degenerate)
I <0 for clockwise
inline int

orientation2D_Triangle( Point VO, Point V1, Point V2)

return isLeft(VO, V1, V2);
}

1l

/I area2D Tri angl e(): compute the area of a triangle
/I Input: three vertex points VO, V1, V2

/I Return: the (float) area of T

inline float

area2D_Triangle( Point VO, Point V1, Point V2 )

return (float)isLeft(VO, V1, V2) / 2.0;

/I orientation2D Pol ygon(): teststhe orientation of a simple polygon
/I Input: int n = the number of vertices in the polygon

I Point* V = an array of n+1 vertices with V[n]=V[0]
/I Return: >0 for counterclockwise

I =0 for none (degenerate)

I <0 for clockwise

/I Note: this algorithm is faster than computing the signed area.
int
orientation2D_Polygon( int n, Point* V')
{
/I first find rightmost lowest vertex of the polygon
int rmin = 0;
int xmin = V[0].x;
int ymin = V[0].y;

for (inti=1; i<n; i++) {
if (V[i.y > ymin)
continue;
if (V[i].y ==ymin){ //just as low
if (V[i].x <xmin) // and to left
continue;
}

rmin =1i; /I 'a new rightmost lowest vertex
xmin = V[i].x;
ymin = V[il.y;

}

/I test orientation at this rmin vertex
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I/l ccw <=> the edge leaving is left of the entering edge

if (rmin == 0)
return isLeft( V[n-1], V[O], V[1] );
else

return isLeft( V[rmin-1], V[rmin], V[rmin+1] );

http://geometryalgorithms.com/Archive/algorithm_01

/I area2D Pol ygon(): computes the area of a 2D polygon
/I Input: int n = the number of vertices in the polygon

I Point* V = an array of n+2 vertices

1 with V[n]=V[0] and V[n+1]=V[1]
/I Return: the (float) area of the polygon

float

area2D_Polygon( int n, Point* V')
{

float area = 0;
int i,j,k; //indices

for (i=1, =2, k=0; i<=n; i++, j++, k++) {
area += V[i].x * (V[jl.y - VIK].y);

return area / 2.0;

/I area3D _Pol ygon(): computes the area of a 3D planar polygon
/I Input: int n = the number of vertices in the polygon

I Point* V = an array of n+2 vertices in a plane

1 with V[n]=V[0] and V[n+1]=V[1]

I Point N = unit normal vector of the polygon's plane
/I Return: the (float) area of the polygon

float

area3D_Polygon( int n, Point* V, Point N )
{

float area = 0;

float an, ax, ay, az; // abs value of normal and its coords
int coord; /l coord to ignore: 1=x, 2=y, 3=z

int i,j,k; /l'loop indices

Il select largest abs coordinate to ignore for projection
ax = (N.x>0 ? N.x: -N.x);  // abs x-coord
ay = (N.y>0 ? N.y : -N.y); // abs y-coord
az =(N.z>0? N.z: -N.z); // abs z-coord

coord = 3;
if (ax > ay) {
if (ax > az) coord = 1,

/l'ignore z-coord
/l'ignore x-coord
else if (ay > az) coord = 2; // ignore y-coord

/I compute area of the 2D projection
for (i=1, j=2, k=0; i<=n; i++, j++, k++)
switch (coord) {
case 1:
area += (V[il.y * (V[j].z - VIK].2));
continue;
case 2:
area += (V[i].x * (V[j].z - V[K].2));
continue;
case 3:
area += (V[il.x * (V[]l.y - VIK].y));
continue;

}

Il scale to get area before projection
an = sqgrt( ax*ax + ay*ay + az*az); // length of normal vector
switch (coord) {
case 1:
area *= (an / (2*ax));
break;
case 2:
area *= (an / (2*ay));
break;
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case 3:
area *= (an / (2*az));

return area,

}
I
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An Algorithm for Generating Highly
Composite Numbers

D. B. Siano and J. D. Siano
Oct. 7, 1994

Introduction
All positive integers can be written in only one way as a
product of powers of primes:

Ay a5 =0 a
n=273"5 5....pp' (1)

The number of distinct divisors of n is, since each power of a prime
factor can include zero,

d(n)=(a, +1)(a, +1)(a, +1)...(ap +1). (2)

When n=12, for example, eqs. 1 and 2 yield 12 = 222 321 so d(n)=
(2+1) (1+1) = 6. The divisors of 12 can be readily enumerated as
{1,2,3,4,6,12}.

The divisor function d(n) has been of great interest to number
theorists for a long time. It fluctuates wildly from one integer to the
next, and one might think it would be quite unpredictable. However,
it is actually possible to derive some simple rules about its average
behavior. One result, for example, is that the average of the number
of divisors of n from 1 to N is approximately In[N].

Prime numbers, of course, have the minimum number of
divisors possible: 2 (1 and the prime number itself). It is natural to
examine the numbers at the other end of the range--the numbers
that have the highest possible number of divisors. These numbers
were first studied by S. Ramanujan and a number of interesting
results were demonstrated.

Highly composite numbers

The definition of a highly composite number (integer) is that it
is a number that has a larger number of divisors than any number
less than itself. For example, 12 is a highly composite number,
because it has 6 divisors while every number less than 12 has a
smaller number of divisors: e.g. 10, 8 and 6 have 4 divisors, 9 has



only 3, etc. The sequence of highly composite numbers starts out as
2, 4,6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, etc.
The 100th number published by Ramanujan is 3212537328000
which has 8192 divisors. while the average number of divisors of all
the numbers up to this one is about 29.

It is easy to show that composite numbers have some
interesting simple properties. For example, for n to be highly
composite, none of the prime factors in eq. 1 can be omitted. Thus,

k=2'3T
cannot be highly composite (5 is omitted) because
k =2'3°5°

has the same number of factors as k, by virtue of eq. 2, but is smaller
than k. Also, by similar reasoning, k' cannot be highly composite
either, because

k =235

is obviously smaller than k' and has the same number of factors as
k'.
Clearly, for n to be highly composite, we must have

a,za =2a,2a,..21.

Ramanujan gave a list of the first one hundred of these
numbers (with one error of omission), which he found "by trial".
There are several outstanding conjectures about the properties of the
sequence of highly composite numbers and it would be of some
interest to have a method of generating them automatically. A very
simple algorithm, in the form of a sieve, is

n:=2; nd:=2;

labell: n:=n+1;

if divisors(nk nd then goto labell;
else nd:=divisors(n), print n, goto 1;

will in principle print out all of the highly composite numbers.
However, this is much too slow for even moderately large n and it



quickly runs out of steam. Highly composite numbers are relatively
rare: there are (roughly) only 10 per decade. Therefore speeding
the sieve up by an order of magnitude will therefore result in only
an additional 10 highly composite numbers. To calculate the
thousandth highly composite number by the brute force sieve using
a computer that tested one number per picosecond would still take
many times (10245 or so times!) the age of the universe.

The challenge is to discover a much faster algorithm that can
yield highly composite numbers far larger than those already
tabulated.

Some preliminary observations
It is instructive to examine a short section of the known highly
composite numbers:



n pwrs of hc(n) /he(n-1)
primes

85 63221111 28/23

86 731111111 46/35

87 54221111 105/92

88| 532111111 23/21

89 442111111 3/2

90| 64221111 28/23

91 632111111 23/21

92 542111111 3/2

93 732111111 4/3

94 642111111 3/2

95 532211111 7/6

96 633111111 10/7

97 442211111 21/20

They are listed here in a compact way--only the powers of the
successive primes are shown, e.g., for n=85, the highly composite
number is

203352721 1113117110l = 97772875200.

There are several things worth noting. The prime having the highest
power is 2, and the power of the highest prime is unity. Ramanujan
proved that this is nearly always true,with only two exceptions: 4
and 36. Unfortunately, the highest prime factor does not increase
monotonically with n. The ratios of successive highly composite
numbers are always rational numbers greater than one. The ratios
are also easily seen to be less than or equal to two: multiplying any
highly composite number by two always gives a larger number with
a larger number of divisors. Thus, given a highly composite number
n, we are guaranteed to always have at least one in the range
between n and 2n.

The algorithm

A method for calculating successive highly composite numbers
can be devised from these observations. The essential part is to get
he(n+1) from the previous one, he(n) by multiplying it by a suitable
ordered (increasing) list of rational numbers {r}, where each member
of {r} is greater than one and less than or equal to two. The number



of divisors of each of the products is calculated and compared to the
number of divisors of hc(n); the first one with a greater number of
divisors is hc(n+1).

The interesting part is to calculate a suitable list {r}. We
consider first the case where the highest prime factor, p, does not
change from hc(n) to he(n+1). It is useful to factor he(n) into two
parts: a highly variable one, which we denote v, and a part that is
the same for both hc(n) and hc(n+1), which is defined as

m

S=Qn,

where m is the ordinal number of the highest prime factor. The
other, more variable part, is given by

v =hc(n)/s.
For example for n = 85

$(85)=2-3-5-7-11-13-17-19

and
v(85)=2°3"5'T"
If a maximum largest power (of 2) is assumed to be g (say 8,

for example), then it is easy to generate a list of numbers like v with
the constraint that the successive powers are non-increasing:

do i=g to 1 step -1

do j=i to 1 step -1

do k=j to 1 step -1

do 1=k to 1 step -1

v(i,j, k,1)= 221 3*4j 5%k 7*1
end do

When g is not too large, nor the number of prime factors under
consideration, f, (f=four in the case here) too many, the list of v's is
not so large as to be unmanageable. It is not hard to show that the
number of terms in v is



[1G+g)
n=-=———.
f!

Following the example along, when g=8 and f=4, this list has 495
terms in it. It can be narrowed to just those that are larger than
v(85), and smaller than or equal to two times v(85). Multiplying
each member of the list of v's by s, then ordering it gives aplist, V
of numbers that are candidates for hc(n+1). In the example, this
gives a list of only 11 elements.

Sometimes the largest prime factor in hc(n+1) is larger than
that in he(n). To cover this possibility a small modification of the
procedure is required. The same list of v's is used, but the search is
narrowed to just those that are between rp and 2 rp where rp =
v(85) /pp., and pp is the next prime after p. Multiplying the list of v's
by s pp will give a list Vp, which in the example given, has 7
members.

Similarly, when the largest prime factor in he(n+1) is smaller
than in hc(n), the search is narrowed to just those that a are between
rm and 2 rm, where rm = v(85) pm, and pm is the prime before p.
Multiplying the list of v's by s/pm will give a list Vm. For the
example given it has 17 members.

Each of these three lists are then combined (Union) and has
only 35 members for the example) into one list, ordered and
searched for the first one having a larger number of divisors than
hc(n) to give, finally he(n+1). For the example, the correct result is
found on the 13th try. Narrowing the search in this way minimizes
the time and memory requirements, but is still clearly exhaustive of
all of the possibilities, provided g and f are chosen to be large
enough. Proper limits on these are discussed in the appendix.

The above process can then be repeated to give hc(n+2). In
principle a new list of v's, with increased values for g and /or f may
be assumed to get it. In practice it is better to make the list of v's
large enough in the beginning to encompass the range of interest,
and use the same list over and over again until done, or a larger list
must be calculated. Thus f=4 and g=6 gives a list sufficiently large to
calculate all of the one hundred highly composite numbers given by
Ramanujan. On a PowerMac 7100/66, using the Mathematica
program language, the calculation of the first 100 takes only about
10 s. The complete listing of the algorithm is given in Appendix II.



Properties of the calculated highly composite numbers

The final results of the calculation of 1000 terms in the series
of highly complex numbers is shown in Fig. 1. The complete table is
too long to show here, but we may note briefly that the 1000th highly
composite number is found to have 76 digits: itis

50739595324912050170305529996630230464563024879813409718878962795046826080000,

and it has 109586090557440 divisors. This can be compared to the
average number of divisors up to this number, which is
approximately In[hc(1000)) = 177.

The powers of the successive primes of this number is also
interesting. It can be written in a compact form:

86432222111111111111111111111111111111;

That is, 2 3654 73 .... 157 163.

Examination of the numbers in the entire range computed
shows that the first three exponents (of 2, 3 and 5) in all of the
numbers larger than the 517th one are strictly decreasing.
Ramanujan showed that in very large highly composite numbers, we
would have a> g > g ... > § (strictly decreasing exponents) when

In(p) > 82 (In(A))3. ForA =75, this would make p huge. Evidently the
strictly decreasing exponents occurs far earlier than predicted by
this inequality.

We can make use of this fact to decrease the size of the list of
v's required for still larger numbers, and speed up the algorithm too.

The calculation of the 1000 highly composite numbers took
only about 2000 seconds on the PowerMac, but took a fair amount of
memory--24 M of RAM with 45 M of virtual memory. The list of v's
required for the last 100 terms had over 48,000 entries.
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Although the hc(n) appear on this scale to be a smooth function
of n, the ratio of successive numbers, shown in Fig. 2 illustrates the
variation more clearly. The ratios, of course generally decrease with
increasing n, as may be expected from the decreasing slope in Fig. 1.
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The density of the highly composite numbers is also of some interest.
Here we define the number of highly composite numbers less than x

to be Q[x]. For example, for z=100, Q[x]=8, and for z=1000, Q[x] = 14.

Fig.1 shows the density as a function of the natural logarithm of x as
discrete points. For comparison, the solid line shows the function

Q(x) =In(x)"™,

which was first shown by Erdos to give a lower bound on Q(x).

Here

c is an undetermined constant greater than zero. The solid line is
drawn with ¢= 1/3.

Summary

We have shown an algorithm to quickly calculate highly
composite numbers and have used it to extend the list of known
highly composite numbers from the 100, previously published, up to

1000.
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Appendix I.

Correct bounds f and g

The values of f and g to be used for a larger range of desired
highly composite numbers can determined as follows. Ramanujan
has shown that there is a connection between the power of two, a2
and the largest prime factor, p in a highly composite number:

[log(p) | _ flog(p )1
Toe@) )= =7 Tog2) |

where [] stands for the integral part. Thus, for our example of the
85th highly composite number, p=19 and pp=23 gives a2 between 4
and 8, compared to the actual value of 6. When p=23 and pp=29 the
formula also gives a2 between 4 and 8. Therefore g = 8 is good
enough to certainly get the next higher highly composite number.
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The number, f, of factors in v that is large enough to cover all
of the possibilities involves a somewhat more obscure function.
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Here) is a prime less than p, and, as before, p is the largest prime
factor of hc(n). For values of L greater than some critical

value A equals unity. The critical value of 1 therefore
determines the size of f, the number of prime exponents that is not
one. This is shown in fig. 1 as dashed line. The number actually
found in the sequence of the first 1000 highly composite numbers is
shown in Fig. 1.
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Overview Package Use Tree Deprecated Index Help Java™ 2 Platform

PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes Std. Ed. v1.4.1
SUMMARY: NESTED | FIELD | CONSTR | METHOD ~ DETAIL: FIELD | CONSTR | METHOD

java.math

Class Biglnteger

java.lang.Object

+-- java.lang.Number

+-- j ava. mat h. Bi gl nt eger

All Implemented Interfaces:
ComparableSerializable

public clasBiginteger
extenddNumber
implementComparable

Immutable arbitrary-precision integers. All operations behave as if Bigintegers were represented ir
two's-complement notation (like Java's primitive integer types). Biginteger provides analogues to ¢
Java's primitive integer operators, and all relevant methods from java.lang.Math. Additionally, Biglt
provides operations for modular arithmetic, GCD calculation, primality testing, prime generation, b
manipulation, and a few other miscellaneous operations.

Semantics of arithmetic operations exactly mimic those of Java's integer arithmetic operators, as ¢
in The Java Language Specificatidfor example, division by zero throws afnhmeticException ,

and division of a negative by a positive yields a negative (or zero) remainder. All of the details in tr
concerning overflow are ignored, as Bigintegers are made as large as necessary to accommodat:
results of an operation.

Semantics of shift operations extend those of Java's shift operators to allow for negative shift diste
right-shift with a negative shift distance results in a left shift, and vice-versa. The unsigned right shi
operator (>>>) is omitted, as this operation makes little sense in combination with the "infinite wort
abstraction provided by this class.

Semantics of bitwise logical operations exactly mimic those of Java's bitwise integer operators. Th
operatorsdnd, or , xor ) implicitly perform sign extension on the shorter of the two operands prior tc
performing the operation.

Comparison operations perform signed integer comparisons, analogous to those performed by Ja
relational and equality operators.

Modular arithmetic operations are provided to compute residues, perform exponentiation, and cor
multiplicative inverses. These methods always return a non-negative result, beameknodulus -
1) , inclusive.

4/26/03 3:36 P!
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Bit operations operate on a single bit of the two's-complement representation of their operand. If
necessary, the operand is sign- extended so that it contains the designated bit. None of the single
operations can produce a Biginteger with a different sign from the Biginteger being operated on, ¢
affect only a single bit, and the "infinite word size" abstraction provided by this class ensures that t
infinitely many "virtual sign bits" preceding each Biginteger.

For the sake of brevity and clarity, pseudo-code is used throughout the descriptions of Biginteger
methods. The pseudo-code expresgien) is shorthand for "a Biginteger whose value is that of tt
Bigintegeri plus that of the Biginteger." The pseudo-code expressios= j) is shorthand fortfue

if and only if the BigInteger represents the same value as the the Biginteg@ther pseudo-code
expressions are interpreted similarly.

All methods and constructors in this class thrawPointerException when passed a null object
reference for any input parameter.

Since:
JDK1.1
See Also:
BigDecimal , Serialized Form

Field Summary

static BigInteger ONE

The BiglInteger constant one.

static BigInteger ZERO
The Biglinteger constant zero.

Constructor Summary

Bi gl nt eger (byte[] val)
Translates a byte array containing the two's-complement binary representation of a Biginte
into a Biglnteger.

Bi gl nt eger (int signum, byte[] magnitude)
Translates the sign-magnitude representation of a BigInteger into a Biginteger.

Bi gl nt eger (int bitLength, int certainty, Randomrnd)

Constructs a randomly generated positive BigInteger that is probably prime, with the specil
bitLength.
Bi gl nt eger (int numBits, Randomrnd)

Constructs a randomly generated Biginteger, uniformly distributed over the targé& mBits
-1) ,inclusive.

Bi gl nt eger ( String val)
Translates the decimal String representation of a Biginteger into a Biginteger.

Bi gl nt eger ( String val, int radix)
Translates the String representation of a Biginteger in the specified radix into a Bigintege

=
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Method Summary

BigInteger @()
Returns a Biginteger whose value is the absolute value of this Bigintege

Biginteger | add( Biginteger  val)
Returns a BigIinteger whose valugnis + val)

Biginteger | and( Biginteger  val)
Returns a BigIinteger whose valughis & val)

Biginteger | andNot ( Biginteger  val)
Returns a BigInteger whose valugnis & ~val)

int | bit Count ()
Returns the number of bits in the two's complement representation of thi
Biginteger that differ from its sign bit.

int | bitLength()
Returns the number of bits in the minimal two's-complement representat
this Bigintegergexcludinga sign bit.

Biginteger | ¢l ear Bi t (int n)
Returns a Biginteger whose value is equivalent to this Biginteger with th
designated bit cleared.

int  conpar eTo( Biginteger  val)
Compares this Biginteger with the specified Biginteger.

int | conpar eTo( Object 0)
Compares this Biginteger with the specified Object.

Biginteger  di vi de( Biginteger  val)
Returns a BigInteger whose valughis / val)

Biginteger [] di vi deAndRenmi nder ( Biginteger  val)
Returns an array of two Biglntegers contaiifig/ val) followed by
(this % val)

double | doubl eVal ue()
Converts this Biginteger taiauble .

boolean | equal s( Object x)
Compares this Biginteger with the specified Object for equality.

Biginteger flipBit(intn)
Returns a Biginteger whose value is equivalent to this Biginteger with th
designated bit flipped.

float | f| oat Val ue()
Converts this BigInteger tdl@at

Biginteger gcd( Biginteger  val)
Returns a BigInteger whose value is the greatest common divisor of
abs(this)  andabs(val)

int | get Lowest Set Bi t ()
Returns the index of the rightmost (lowest-order) one bit in this Biginteg
(the number of zero bits to the right of the rightmost one bit).
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int | hashCode()
Returns the hash code for this Biginteger.

int i ntVal ue()
Converts this Biginteger to an .

boolean i sProbabl ePri nme(int certainty)
Returngue if this Biginteger is probably primeise if it's definitely
composite.

long || ongVal ue()
Converts this Biginteger tdoag .

Biginteger max ( Biginteger  val)

Returns the maximum of this BigInteger aad
Biginteger m n( Biginteger  val)

Returns the minimum of this Biginteger aad.
Biglnteger nod( Biginteger  m)

Returns a BigInteger whose valughis mod m ).

Biginteger modl| nver se( Biginteger m)
Returns a Biginteger whose valughis 1 mod m) .

Biginteger nodPow( Biginteger  exponent, Biginteger m)
Returns a Biglnteger whose valughis P°"e"t mod m) .

Biginteger | mul ti pl y( Biginteger  val)

Returns a BigIinteger whose valughis * val)
BigInteger negat e()

Returns a BigIinteger whose valugtigs)

BigInteger not ()

"~ Returns a Biglnteger whose valug-isis)

Biginteger or ( Biginteger  val)

"~ Returns a Biglnteger whose valugtis | val)
BigInteger pow(int exponent)

~ Returns a Biglnteger whose valughis exPonent

static  Biglnteger | pr obabl ePr i nme(int bitLength, Randomrnd)
Returns a positive Biglinteger that is probably prime, with the specified
bitLength.

Biginteger r emai nder ( Biginteger  val)
Returns a BigInteger whose valughis % val)
Biginteger set Bi t (int n)
Returns a Biginteger whose value is equivalent to this Biginteger with th
designated bit set.
Biginteger  shi ft Left (intn)
Returns a Biglnteger whose valugnis << n)
Biginteger | shi f t Ri ght (int n)
Returns a Biglnteger whose valugnis >> n)
int | si gnum()
Returns the signum function of this Biginteger.
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Biginteger subt ract ( Biginteger  val)
Returns a BigIinteger whose valughis - val)

boolean  t est Bi t (int n)
Returngue if and only if the designated bit is set.

byte[]  t oByteArray()

Biginteger.

Returns a byte array containing the two's-complement representation ¢

=N

String |t oStri ng()

Returns the decimal String representation of this BigInteger.

String | t oSt ri ng(int radix)

Returns the String representation of this BigInteger in the given radix.

static  Biginteger | val ueOf (long val)

Returns a Biginteger whose value is equal to that of the spegiied

Biginteger | xor ( Biginteger  val)
Returns a Biglnteger whose valughis » val)

Methods inherited from class java.langNumber

byteValue , shortValue

Methods inherited from class java.langObject

clone , finalize , getClass , notify , notifyAll , Wwait , wait , wait ‘
Field Detall

ZERO

public static final Biglinteger ZERO

The BigInteger constant zero.

Since:
1.2

ONE
public static final Biglinteger ONE
The Biginteger constant one.

Since:
1.2
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Constructor Detall

Biginteger
public  Bi gl nt eger (byte[] val)

Translates a byte array containing the two's-complement binary representation of a Biginteg
a Biginteger. The input array is assumed to Hegrendianbyte-order: the most significant byte |
in the zeroth element.

Parameters:
val - big-endian two's-complement binary representation of Biginteger.
Throws:

NumberFormatException - val iS zero bytes long.

Biginteger

public  Bi gl nt eger (int signum,
byte[] magnitude)

Translates the sign-magnitude representation of a Biginteger into a Biginteger. The sign is
represented as an integer signum value: -1 for negative, O for zero, or 1 for positive. The me
is a byte array ibig-endianbyte-order: the most significant byte is in the zeroth element. A
zero-length magnitude array is permissible, and will result in in a Biginteger value of 0, whett
signum is -1, 0 or 1.

Parameters:
signum - signum of the number (-1 for negative, O for zero, 1 for positive).
magnitude - big-endian binary representation of the magnitude of the number.
Throws:
NumberFormatException - signum iS not one of the three legal values (-1, 0, and Isigoum is
0 andmagnitude contains one or more non-zero bytes.

Biginteger

public  Bi gl nt eger ( String val,
int radix)

Translates the String representation of a Biginteger in the specified radix into a BigInteger. 1
String representation consists of an optional minus sign followed by a sequence of one or m
digits in the specified radix. The character-to-digit mapping is providethdycter.digit . The
String may not contain any extraneous characters (whitespace, for example).

Parameters:
val - String representation of Biginteger.
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radix - radix to be used in interpretingl .
Throws:
NumberFormatException - val is not a valid representation of a Biginteger in the specified rac
or radix is outside the range frogharacter.MIN_RADIX  t0 Character. MAX_RADIX , inclusive.
See Also:
Character.digit(char, int)

Biginteger
public  Bi gl nt eger ( String val)

Translates the decimal String representation of a Biginteger into a BigInteger. The String
representation consists of an optional minus sign followed by a sequence of one or more de:
digits. The character-to-digit mapping is providedchyracter.digit . The String may not
contain any extraneous characters (whitespace, for example).

Parameters:

val - decimal String representation of Biginteger.
Throws:

NumberFormatException - val is not a valid representation of a Biglnteger.
See Also:

Character.digit(char, int)

Biginteger

public  Bi gl nt eger (int numBits,
Randomrnd)

Constructs a randomly generated Biglnteger, uniformly distributed over theoramge"UmBits
1) , inclusive. The uniformity of the distribution assumes that a fair source of random bits is
provided inrnd . Note that this constructor always constructs a non-negative Biginteger.

Parameters:

numBits - maximum bitLength of the new Biginteger.

rnd - source of randomness to be used in computing the new Biglnteger.
Throws:

lllegalArgumentException - numBits IS negative.
See Also:

bitLength()

Biginteger

public  Bi gl nt eger (int bitLength,
int certainty,
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Randomrnd)

Constructs a randomly generated positive Biginteger that is probably prime, with the specifie
bitLength.

It is recommended that tipeobablePrime  method be used in preference to this constructor ur
there is a compelling need to specify a certainty.

Parameters:
bittength - bitLength of the returned Biginteger.
certainty - a measure of the uncertainty that the caller is willing to tolerate. The probability
the new Biglnteger represents a prime number will exgeet2 €@y ) The execution
time of this constructor is proportional to the value of this parameter.
rnd - source of random bits used to select candidates to be tested for primality.
Throws:
ArithmeticException - bitLength < 2
See Also:
bitLength()

Method Detall

probablePrime

public static Biglinteger pr obabl ePri me(int bitLength,
Randomrnd)
Returns a positive Biginteger that is probably prime, with the specified bitLength. The probat
that a Biginteger returned by this method is composite does not ex¢88d 2

Parameters:
bittength - bitLength of the returned Biginteger.
rnd - source of random bits used to select candidates to be tested for primality.

Returns:
a Biginteger obitLength  bits that is probably prime
Throws:
ArithmeticException - bitLength < 2
See Also:
bitLength()
valueOf
public static Biglinteger val uedf (long val)

Returns a Biginteger whose value is equal to that of the speaeifted This "static factory
method" is provided in preference taag ) constructor because it allows for reuse of frequen
used Bigintegers.
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Parameters:
val - value of the Biginteger to return.
Returns:

a Biginteger with the specified value.

add

public  Biglnteger add( Biginteger  val)

Returns a Biginteger whose valugtiss + val)

Parameters:

val - value to be added to this Biginteger.
Returns:

this + val

subtract
public  Biglnteger subt ract ( Biginteger  val)
Returns a Biginteger whose valugtigs - val)

Parameters:

val - value to be subtracted from this Biginteger.

Returns:
this - val

multiply
public  Biglnteger mul ti pl y(Biginteger val)
Returns a Biginteger whose valugtigs * val)

Parameters:

val - value to be multiplied by this Biginteger.
Returns:

this * val

divide

public  Biglnteger di vi de( Biginteger  val)

9 of 22
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Returns a Biginteger whose valugtigs / val)

Parameters:

val - value by which this Biginteger is to be divided.
Returns:

this / val
Throws:

ArithmeticException - val==0

divideAndRemainder

public

Biginteger [] divi deAndRemai nder ( Biginteger  val)
Returns an array of two Bigintegers containing / val) followed by(this % val)
Parameters:

val - value by which this Biginteger is to be divided, and the remainder computed.
Returns:

an array of two BiglIntegers: the quotigithts / val) Is the initial element, and the
remaindexthis % val) is the final element.
Throws:
ArithmeticException - val==0
remainder

public

BigInteger remai nder ( Biginteger  val)
Returns a Biginteger whose valugtigs % val)

Parameters:

val - value by which this Biginteger is to be divided, and the remainder computed.
Returns:

this % val
Throws:

ArithmeticException - val==0

pow

public

10 of 22

Biglinteger pow(int exponent)

Returns a Biginteger whose valuegtiss ®*P°"ent ) Note thakxponent is an integer rather thar
a Biginteger.

Parameters:
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exponent - exponent to which this Biginteger is to be raised.
Returns:
this exponent
Throws:
ArithmeticException - exponent IS negative. (This would cause the operation to yield
non-integer value.)

gcd

public  Biglnteger gcd( Biginteger  val)

Returns a Biginteger whose value is the greatest common divisigg(dfs)  andabs(val)
Returns 0 ithis==0 && val==0

Parameters:
val - value with with the GCD is to be computed.
Returns:

GCD(abs(this), abs(val))

abs
public  Biglnteger abs()
Returns a Biginteger whose value is the absolute value of this Biginteger.

Returns:
abs(this)

negate
public  Biglnteger negat e()
Returns a Biginteger whose valug-isis)

Returns:
-this

signum
public int si gnum()

Returns the signum function of this Biginteger.

11 of 22 4/26/03 3:36 P!



Biginteger (Java 2 Platform SE v1.4.1)

Returns:

-1, 0 or 1 as the value of this Biginteger is negative, zero or positive.

http://java.sun.com/j2se/1.4.1/docs/api/java/math/Bigintegel

mod

public  Biglnteger nod( Biginteger  m)

Returns a Biginteger whose valugtigs mod m ). This method differs fromemainder

always returns aon-negativeBiginteger.

Parameters:
m- the modulus.
Returns:
this mod m
Throws:
ArithmeticException -m<=0
See Also:
remainder(java.math.Biglnteger)

in that it

modPow

public  Biglnteger nodPow( Biginteger  exponent,

Biginteger m)

Returns a Biginteger whose valugtiss
negative exponents.)

Parameters:
exponent - the exponent.
m- the modulus.
Returns:
this &XPONeNt  mod m
Throws:
ArithmeticException -m<=0
See Also:
modInverse(java.math.Biglnteger)

exponent  mod m) . (Unlike pow, this method permits

modInverse

public  Biglnteger nodl nver se( Biginteger

Returns a Biglinteger whose valugtiss

Parameters:

12 of 22

m)

-1

mod m) .
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m- the modulus.
Returns:
this 1 modm.
Throws:
ArithmeticException -m <=0 , or this BigInteger has no multiplicative inverse mod m
(that is, this Biginteger is noglatively primeto m).

shiftLeft

public  Biglnteger shiftLeft (intn)

Returns a Biginteger whose valuegtiss <<n) . The shift distancey, may be negative, in whicl
case this method performs a right shift. (Compfitesthis * 2 m.)

Parameters:

n - shift distance, in bits.
Returns:

this << n
See Also:

shiftRight(int)

shiftRight
public  Biglnteger shi ft Ri ght (intn)

Returns a Biglinteger whose valugtigs >>n) . Sign extension is performed. The shift distan
n, may be negative, in which case this method performs a left shift. (Comipar@ss /

2" .)

Parameters:

n - shift distance, in bits.
Returns:

this >>n
See Also:

shiftLeft(int)

and

public  Biglnteger and( Biginteger  val)

Returns a Biglinteger whose valugtiss & val) . (This method returns a negative Biginteger
and only if this and val are both negative.)

Parameters:
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val - value to be AND'ed with this Biginteger.
Returns:
this & val

or

public  Biglnteger or ( Biginteger  val)

Returns a Biginteger whose valugtiss | val) . (This method returns a negative Biginteger
and only if either this or val is negative.)

Parameters:

val - value to be OR'ed with this Biginteger.
Returns:

this | val

Xor

public  Biglnteger xor ( Biginteger  val)

Returns a Biglnteger whose valugtiss * val) . (This method returns a negative Biginteger
and only if exactly one of this and val are negative.)

Parameters:

val - value to be XOR'ed with this Biglnteger.
Returns:

this ~ val

not
public  Biglnteger not ()

Returns a Biginteger whose valug-igiis) . (This method returns a negative value if and only
this Biginteger is non-negative.)

Returns:
~this

andNot

public  Biglnteger andNot ( Biginteger  val)
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Returns a Biginteger whose valugtiss & ~val) . This method, which is equivalent to
and(val.not()) , Is provided as a convenience for masking operations. (This method returns
negative Biginteger if and onlythis is negative andal is positive.)

Parameters:

val - value to be complemented and AND'ed with this Biginteger.
Returns:

this & ~val

testBit

public boolean testBit (intn)

Returngrue if and only if the designated bit is set. (Compuyes & (1<<n)) != 0) J)

Parameters:

n - index of bit to test.
Returns:

true if and only if the designated bit is set.
Throws:

ArithmeticException - n is negative.

setBit

public

Biglinteger set Bi t (int n)

Returns a Biginteger whose value is equivalent to this Biginteger with the designated bit set
(Computegthis | (1<<n)) J)

Parameters:
n - index of bit to set.
Returns:
this | (1<<n)
Throws:
ArithmeticException - n iS negative.
clearBit
public  Biglnteger cl ear Bi t (intn)
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Returns a Biglinteger whose value is equivalent to this Biginteger with the designated bit cle:
(Computegthis & ~(1<<n)) J)

Parameters:

4/26/03 3:36 P!



Biginteger (Java 2 Platform SE v1.4.1) http://java.sun.com/j2se/1.4.1/docs/api/java/math/Bigintegel

n - index of bit to clear.
Returns:
this & ~(1<<n)
Throws:
ArithmeticException - n is negative.

flipBit
public  Biglnteger flipBit(intn)

Returns a Biginteger whose value is equivalent to this Biginteger with the designated bit flipj
(Computegthis » (1<<n)) J)

Parameters:
n - index of bit to flip.
Returns:
this ~ (1<<n)
Throws:
ArithmeticException - n IS negative.

getLowestSetBit
public int get Lowest Set Bi t ()

Returns the index of the rightmost (lowest-order) one bit in this Biginteger (the number of ze
to the right of the rightmost one bit). Returns -1 if this Biginteger contains no one bits. (Com
(this==07? -1 : log 2(this & -this)) J)

Returns:
index of the rightmost one bit in this Biginteger.

bitLength
public int bi t Lengt h()

Returns the number of bits in the minimal two's-complement representation of this Bigintege
excludinga sign bit. For positive Bigintegers, this is equivalent to the number of bits in the or

binary representation. (Computesil(log  2(this < 0 ? -this : this+1))) J)

Returns:
number of bits in the minimal two's-complement representation of this Bigineegéuding
a sign bit.
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bitCount
public int bi t Count ()

Returns the number of bits in the two's complement representation of this Biginteger that dif
from its sign bit. This method is useful when implementing bit-vector style sets atop Biginteg:

Returns:
number of bits in the two's complement representation of this Biginteger that differ fron
sign bit.

iIsProbablePrime
public boolean i sProbabl ePri ne(int certainty)

Returnsrue if this Biginteger is probably primesise if it's definitely composite. Igertainty  is
<=0, true IS returned.

Parameters:
certainty - @ measure of the uncertainty that the caller is willing to tolerate: if the call
returnstrue  the probability that this Biglinteger is prime exceg@dsl/2 ~ ¢€"@inty ) The
execution time of this method is proportional to the value of this parameter.

Returns:
true if this BigInteger is probably primeise if it's definitely composite.

compareTo
public int conpar eTo( Biginteger  val)

Compares this Biginteger with the specified Biginteger. This method is provided in preferenc
individual methods for each of the six boolean comparison operators (<, ==, >, >=, I=, <=). 1
suggested idiom for performing these comparisorg.téémpareTo(y)  <0p>0) , where op> is
one of the six comparison operators.

Parameters:
val - Biginteger to which this BigInteger is to be compared.
Returns:

-1, 0 or 1 as this BigInteger is numerically less than, equal to, or greateaithan

compareTo
public int conpar eTo( Object 0)

Compares this Biginteger with the specified Object. If the Object is a Biginteger, this methoc
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behaves likeompareTo(Biginteger) . Otherwise, it throws alassCastException (as
Bigintegers are comparable only to other Biglntegers).

Specified by:
compareTo in interfaceComparable
Parameters:
o - Object to which this Biglnteger is to be compared.
Returns:
a negative number, zero, or a positive number as this Biginteger is numerically less the
equal to, or greater than which must be a Biginteger.
Throws:
ClassCastException - o is not a BiglInteger.
Since:
1.2
See Also:
compareTo(java.math.Biginteger) , Comparable

equals
public boolean equal s( Object x)
Compares this Biginteger with the specified Object for equality.

Overrides:
equals in classObject
Parameters:
x - Object to which this Biglinteger is to be compared.
Returns:
true if and only if the specified Object is a Biginteger whose value is numerically equal
this Biginteger.
See Also:
Object.hashCode() , Hashtable

min

public  Biglnteger m n( Biginteger  val)

Returns the minimum of this Biginteger ar .

Parameters:
val - value with with the minimum is to be computed.
Returns:

the Biginteger whose value is the lesser of this Bigintegevandf they are equal, either
may be returned.
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maxX

public  Biglnteger max ( Biginteger  val)

Returns the maximum of this Biginteger aad .

Parameters:
val - value with with the maximum is to be computed.

Returns:
the Biginteger whose value is the greater of thisvand|f they are equal, either may be
returned.

hashCode
public int hashCode()
Returns the hash code for this Biginteger.

Overrides:
hashCode in clasSObject
Returns:
hash code for this Biginteger.
See Also:
Object.equals(java.lang.Object) , Hashtable

toString
public  String toStri ng(int radix)

Returns the String representation of this Biginteger in the given radix. If the radix is outside 1
range fromCharacter. MIN_RADIX  t0 Character. MAX_RADIX inclusive, it will default to 10 (as is
the case fomteger.toString ). The digit-to-character mapping provided by

Character.forDigit is used, and a minus sign is prepended if appropriate. (This representa
compatible with theString, int ) constructor.)
Parameters:
radix - radix of the String representation.
Returns:
String representation of this Biginteger in the given radix.
See Also:
Integer.toString(int, int) , Character.forDigit(int, int) ,

Biglinteger(java.lang.String, int)
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toString

public

String  toString()

Returns the decimal String representation of this Biginteger. The digit-to-character mapping
provided byCharacter.forDigit is used, and a minus sign is prepended if appropriate. (This
representation is compatible with ti$&ing)  constructor, and allows for String concatenation
with Java's + operator.)

Overrides:
toString  in clasObject
Returns:
decimal String representation of this BigInteger.
See Also:
Character.forDigit(int, int) , Biginteger(java.lang.String)
toByteArray
public byte[] toByt eArray()

Returns a byte array containing the two's-complement representation of this Biginteger. The
array will be inbig-endianbyte-order: the most significant byte is in the zeroth element. The ai
will contain the minimum number of bytes required to represent this Biginteger, including at I
one sign bit, which igeil((this.bitLength() + 1)/8)) . (This representation is compatible
with the(byte[])  constructor.)

Returns:

a byte array containing the two's-complement representation of this Biginteger.
See Also:

BigInteger(byte[])

intValue

public

int i nt Val ue()

Converts this Biginteger to am . This conversion is analogous toarowing primitive
conversionfromlong toint as defined in thdava Language Specificatiahthis Biginteger is too
big to fit in anint , only the low-order 32 bits are returned. Note that this conversion can lose
information about the overall magnitude of the Biginteger value as well as return a result wit
opposite sign.

Specified by:

intValue  in clasSNumber
Returns:

this BigInteger converted to an .
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longValue
public long | ongVal ue()

Converts this Biginteger toleng . This conversion is analogous toarowing primitive
conversiorfromlong toint as defined in thdava Language Specificatiahthis Biginteger is too
big to fit in along , only the low-order 64 bits are returned. Note that this conversion can lose
information about the overall magnitude of the Biginteger value as well as return a result wit
opposite sign.

Specified by:

longValue in classNumber
Returns:

this BigInteger converted tolang .

floatValue
public float f | oat Val ue()

Converts this Biginteger tofmat . This conversion is similar to timarrowing primitive
conversiorfromdouble tofloat defined in thelava Language Specificatiahthis Biglnteger has
too great a magnitude to represent ésaa , it will be converted t&loat. NEGATIVE_INFINITY

Ofr Float.POSITIVE_INFINITY as appropriate. Note that even when the return value is finite,
conversion can lose information about the precision of the Biginteger value.

Specified by:

floatValue  in clasSNumber
Returns:

this BigInteger converted tofiaat

doubleValue
public double doubl eVal ue()

Converts this BigInteger todauble . This conversion is similar to tmarrowing primitive
conversiorfromdouble tofloat defined in thelava Language Specificatiahthis Biglnteger has
too great a magnitude to represent asuale , it will be converted to

Double.NEGATIVE_INFINITY  Or Double.POSITIVE_INFINITY  as appropriate. Note that even
when the return value is finite, this conversion can lose information about the precision of the
Biginteger value.

Specified by:
doubleValue in classNumber
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Returns:
this Biginteger converted todauble .

Overview Package Use Tree Deprecated Index Help Java™ 2 Platform
PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes Std. Ed. v1.4.1
SUMMARY: NESTED | FIELD | CONSTR | METHOD ~ DETAIL: FIELD | CONSTR | METHOD

Submit a bug or feature
For further API reference and developer documentatiorlasge2 SDK SE Developer Documentatidhat

documentation contains more detailed, developer-targeted descriptions, with conceptual overviews, definitions ol
workarounds, and working code examples.

Copyright 2002 Sun Microsystems, Inc. All rights reserved. Use is subjexriee terms
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Overview Package Use Tree Deprecated Index Help Java™ 2 Platform

PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes Std. Ed. v1.4.1
SUMMARY: NESTED | FIELD | CONSTR | METHOD ~ DETAIL: FIELD | CONSTR | METHOD

java.math

Class BigDecimal

java.lang.Object

+-- java.lang.Number

+-- j ava. mat h. Bi gDeci nal

All Implemented Interfaces:
ComparableSerializable

public clasBigDecimal
extenddNumber
implementComparable

Immutable, arbitrary-precision signed decimal numbers. A BigDecimal consists of an arbitrary prec
integerunscaled valuand a non-negative 32-bit integale which represents the number of digits tc
the right of the decimal point. The number represented by the BigDecimaldsledvalue/10 ~ Sc¢@le )
BigDecimal provides operations for basic arithmetic, scale manipulation, comparison, hashing, anc
conversion.

The BigDecimal class gives its user complete control over rounding behavior, forcing the user to e
specify a rounding behavior for operations capable of discarding precisioe($igDecimal, int) ,
divide(BigDecimal, int, int) , andsetScale(int, int) ). Eightrounding modesre provided for
this purpose.

Two types of operations are provided for manipulating the scale of a BigDecimal: scaling/rounding
operations and decimal point motion operations. Scaling/rounding operatitmeal¢ ) return a
BigDecimal whose value is approximately (or exactly) equal to that of the operand, but whose sca
specified value; that is, they increase or decrease the precision of the number with minimal effect ¢
value. Decimal point motion operationsof{ePointLeft(int) andmovePointRight(int) ) return a
BigDecimal created from the operand by moving the decimal point a specified distance in the spec
direction; that is, they change a number's value without affecting its precision.

For the sake of brevity and clarity, pseudo-code is used throughout the descriptions of BigDecima
methods. The pseudo-code expresgien) is shorthand for "a BigDecimal whose value is that of 1
BigDecimali plus that of the BigDecimal" The pseudo-code expressioa= j) is shorthand for
"true if and only if the BigDecimal represents the same value as the the BigDeg¢irh@ither
pseudo-code expressions are interpreted similarly.

Note: care should be exercised if BigDecimals are to be used as keystiimap or elements in a
SortedSet , as BigDecimal'satural orderingis inconsistent with equal&eeComparable , SortedMap
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Or SortedSet

for more information.

All methods and constructors for this class thrawPointerException when passed a null object
reference for any input parameter.

See Also:

Biginteger , SortedMap , SortedSet , Serialized Form

http://java.sun.com/j2se/1.4.1/docs/api/java/math/BigDecimal

Field Summary

static int

ROUND_CEI LI NG

Rounding mode to round towards positive infinity.

static int

ROUND DOWN

Rounding mode to round towards zero.

static int

ROUND FLOOR

Rounding mode to round towards negative infinity.

static int

ROUND HALF DOWN

Rounding mode to round towards "nearest neighbor" unless both neighbors a
equidistant, in which case round down.

static int

ROUND HALF EVEN

Rounding mode to round towards the "nearest neighbor" unless both neighbo
equidistant, in which case, round towards the even neighbor.

static int

ROUND HALF UP

Rounding mode to round towards "nearest neighbor" unless both neighbors a
equidistant, in which case round up.

static int

ROUND UNNECESSARY
Rounding mode to assert that the requested operation has an exact result, he
rounding is necessary.

oI

static int

ROUND_UP
Rounding mode to round away from zero.

Constructor Summary

Bi gDeci mal ( Biginteger  val)

Translates a BigInteger into a BigDecimal.

Bi gDeci mal ( Biginteger  unscaledVal, int scale)

Translates a Biglnteger unscaled value and ascale into a BigDecimal.

Bi gDeci mal (double val)
Translatesdouble into a BigDecimal.

Bi gDeci mal ( String val)

Translates the String representation of a BigDecimal into a BigDecimal.

20f19
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BigDecimal @()
Returns a BigDecimal whose value is the absolute value of this BigDecin
and whose scale isis.scale()

BigDecimal | add( BigDecimal val)
Returns a BigDecimal whose valughis + val) , and whose scale is
max(this.scale(), val.scale())

int  conpar eTo( BigDecimal val)
Compares this BigDecimal with the specified BigDecimal.

int | conpar eTo( Object 0)
Compares this BigDecimal with the specified Object.

BigDecimal | di vi de( BigDecimal val, int roundingMode)

Returns a BigDecimal whose valughis / val) , and whose scale is
this.scale()
BigDecimal | di vi de( BigDecimal val, int scale, int roundingMode)
Returns a BigDecimal whose valughis / val) , and whose scale is as
specified.

double | doubl eVal ue()
Converts this BigDecimal taleuble .

boolean | equal s( Object x)
Compares this BigDecimal with the specified Object for equality.

float | f| oat Val ue()
Converts this BigDecimal tdleat

int | hashCode()
Returns the hash code for this BigDecimal.

int i ntVal ue()
Converts this BigDecimal to @n .

long || ongVal ue()
Converts this BigDecimal tacag .

BigDecimal ' max( BigDecimal val)
Returns the maximum of this BigDecimal aaud.
BigDecimal ' ni n( BigDecimal val)
Returns the minimum of this BigDecimal aad.
BigDecimal  npvePoi nt Lef t (int n)

Returns a BigDecimal which is equivalent to this one with the decimal po
moved n places to the left.
BigDecimal | npvePoi nt Ri ght (int n)
Moves the decimal point the specified number of places to the right.
BigDecimal  nul ti pl y( BigDecimal val)

Returns a BigDecimal whose valughis * val) , and whose scale is
(this.scale() + val.scale())

BigDecimal negat e()
Returns a BigDecimal whose valugtigss) , and whose scale is
this.scale()
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int | scal e()
Returns thscaleof this BigDecimal.

BigDecimal | set Scal e(int scale)
Returns a BigDecimal whose scale is the specified value, and whose val
numerically equal to this BigDecimal's.

BigDecimal | set Scal e(int scale, int roundingMode)
Returns a BigDecimal whose scale is the specified value, and whose un:
value is determined by multiplying or dividing this BigDecimal's unscaled value k
the appropriate power of ten to maintain its overall value.
int | si gnum()
Returns the signum function of this BigDecimal.
BigDecimal | subt r act ( BigDecimal val)
Returns a BigDecimal whose valughss - val) , and whose scale is
max(this.scale(), val.scale())

Biginteger | t oBi gl nt eger ()

Converts this BigDecimal to a Biginteger.

String  t oSt ri ng()

Returns the string representation of this BigDecimal.

Biginteger  unscal edVal ue()

Returns a BigIinteger whose value isuthgcaled valuef this BigDecimal.

static BigDecimal | val ueCOf (long val)
Translateslang value into a BigDecimal with a scale of zero.

static ~ BigDecimal | val ueOf (long unscaledVal, int scale)
Translateslang unscaled value and an scale into a BigDecimal.

Methods inherited from class java.langNumber

byteValue , shortValue ‘

Methods inherited from class java.langObject

clone , finalize , getClass , notify , notifyAll , wait , wait , wait ‘
Field Detall

ROUND_UP

public static final int ROUND_UP

Rounding mode to round away from zero. Always increments the digit prior to a non-zero
discarded fraction. Note that this rounding mode never decreases the magnitude of the calc
value.

See Also:
Constant Field Values
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ROUND_DOWN
public static final int ROUND_DOWN

Rounding mode to round towards zero. Never increments the digit prior to a discarded fract
(i.e., truncates). Note that this rounding mode never increases the magnitude of the calculat
value.

See Also:
Constant Field Values

ROUND_CEILING
public static final int ROUND_CEI LI NG

Rounding mode to round towards positive infinity. If the BigDecimal is positive, behaves as fi
ROUND_UPIf negative, behaves as f®OUND_DOWNOote that this rounding mode never decreast

the calculated value.

See Also:
Constant Field Values

ROUND_FLOOR
public static final int ROUND_FLOOR

Rounding mode to round towards negative infinity. If the BigDecimal is positive, behave as f
ROUND_DOWIf negative, behave as feBOUND_UPNote that this rounding mode never increases

calculated value.

See Also:
Constant Field Values

ROUND_HALF_UP
public static final int ROUND_HALF_UP

Rounding mode to round towards "nearest neighbor" unless both neighbors are equidistant,
which case round up. Behaves asROUND_UH the discarded fraction is >=.5; otherwise,
behaves as fa@OUND_DOWNOote that this is the rounding mode that most of us were taught ir
grade school.
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See Also:
Constant Field Values

ROUND_HALF_DOWN
public static final int ROUND_HALF_DOWN

Rounding mode to round towards "nearest neighbor" unless both neighbors are equidistant,
which case round down. Behaves asRouND_UBRf the discarded fraction is > .5; otherwise,

behaves as fa@OUND_DOWN

See Also:
Constant Field Values

ROUND_HALF_EVEN
public static final int ROUND_HALF_EVEN

Rounding mode to round towards the "nearest neighbor" unless both neighbors are equidist
which case, round towards the even neighbor. Behaves as for ROUND_HALF_UP if the dig
the left of the discarded fraction is odd; behaves as for ROUND_HALF_DOWN if it's even. N
that this is the rounding mode that minimizes cumulative error when applied repeatedly over

sequence of calculations.

See Also:
Constant Field Values

ROUND_UNNECESSARY
public static final int ROUND_UNNECESSARY

Rounding mode to assert that the requested operation has an exact result, hence no roundi
necessary. If this rounding mode is specified on an operation that yields an inexact result, ar
ArithmeticException is thrown.

See Also:
Constant Field Values

Constructor Detall

BigDecimal

public  Bi gDeci mal ( String val)
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Translates the String representation of a BigDecimal into a BigDecimal. The String represen
consists of an optional siga; (\uo02B' ) or'- (‘w002D' ), followed by a sequence of zero
more decimal digits ("the integer"), optionally followed by a fraction, optionally followed by an
exponent.

The fraction consists of of a decimal point followed by zero or more decimal digits. The strinc
contain at least one digit in either the integer or the fraction. The number formed by the sign
integer and the fraction is referred to assigmificand

The exponent consists of the charaeter (\u0075' ) or'e' (\u0045' ) followed by one or
more decimal digits. The value of the exponent must lie betvuaetes. MAX_VALUE
(Integer.MIN_VALUE _+1) andinteger.MAX_VALUE , inclusive.

More formally, the strings this constructor accepts are described by the following grammar:

BigDecimalString:
Sigrppt Significand Exponeppt

Sign:

+

Significand:
IntegerPart. FractionParbpt
. FractionPart
IntegerPart

IntegerPart:
Digits

FractionPart:
Digits

Exponent:
Exponentindicator Signedinteger

Exponentindicator:
e
E

Signedinteger:
Sigrppt Digits

Digits:
Digit
Digits Digit
Digit:
any character for whictiharacter.isDigit(char) returnstrue , including 0,
1,2..
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The scale of the returned BigDecimal will be the number of digits in the fraction, or zero if the
string contains no decimal point, subject to adjustment for any exponent: If the string contair
exponent, the exponent is subtracted from the scale. If the resulting scale is negative, the sc
the returned BigDecimal is zero and the unscaled value is multiplied by the appropriate powt

ten so that, in every case, the resulting BigDecimal is egsandicandx 1P (f in the
future this specification is amended to permit negative scales, the final step of zeroing the sc
adjusting the unscaled value will be eliminated.)

The character-to-digit mapping is provideddnaracter.digit(char, int) set to convert to
radix 10. The String may not contain any extraneous characters (whitespace, for example).

Note: For values otheibat anddouble NaN and xInfinity, this constructor is compatible with
the values returned lrjoat.toString(float) andDouble.toString(double) . This is
generally the preferred way to convefioat ordouble into a BigDecimal, as it doesn't suffer
from the unpredictability of thBigDecimal(double) constructor.

Note: the optional leading plus sign and trailing exponent were added in release 1.3.

Parameters:

val - String representation of BigDecimal.

Throws:

NumberFormatException - val is not a valid representation of a BigDecimal.

BigDecimal

public

Bi gDeci mal (double val)

Translates double into a BigDecimal. The scale of the BigDecimal is the smallest value such
(10 S°@€ «ya)) s an integer.

Note: the results of this constructor can be somewhat unpredictable. One might assoene tha
BigDecimal(.1) is exactly equal to .1, but it is actually equal to
.1000000000000000055511151231257827021181583404541015625. This is so because .
be represented exactly as a double (or, for that matter, as a binary fraction of any finite leng
Thus, the long value that is being passetb the constructor is not exactly equal to .1,
appearances notwithstanding.

The (String) constructor, on the other hand, is perfectly predictaleigDecimal(".1") IS
exactlyequal to .1, as one would expect. Therefore, it is generally recommended that the (S
constructor be used in preference to this one.

Parameters:

val -double value to be converted to BigDecimal.

Throws:

NumberFormatException  -val If val is infinite or NaN.
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BigDecimal
public  Bi gDeci mal ( Biginteger  val)
Translates a Biginteger into a BigDecimal. The scale of the BigDecimal is zero.

Parameters:
val - Biginteger value to be converted to BigDecimal.

BigDecimal

public  Bi gDeci mal ( Biginteger  unscaledVal,
int scale)

Translates a Biginteger unscaled value anidtarscale into a BigDecimal. The value of the
BigDecimal is(unscaledval/1o ~ S¢@€ y

Parameters:
unscaledval - unscaled value of the BigDecimal.
scale - scale of the BigDecimal.

Throws:
NumberFormatException - scale is negative

Method Detall

valueOf

public static BigDecimal val ueOf (long unscaledVal,
int scale)

Translates &ng unscaled value and an scale into a BigDecimal. This "static factory methoc
is provided in preference tolar(g , int ) constructor because it allows for reuse of frequently L
BigDecimals.

Parameters:
unscaledval - unscaled value of the BigDecimal.
scale - scale of the BigDecimal.

Returns:
a BigDecimal whose value (gnscaledval/1o ~ S¢a€

valueOf
public static BigDecimal val ueOf (long val)

Translates &ng value into a BigDecimal with a scale of zero. This "static factory method" is
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provided in preference to &rfg ) constructor because it allows for reuse of frequently used
BigDecimals.

Parameters:
val - value of the BigDecimal.
Returns:

a BigDecimal whose value val .

add

public

BigDecimal add(BigDecimal val)

Returns a BigDecimal whose valuetiss + val) , and whose scale isax(this.scale(),
val.scale())

Parameters:

val - value to be added to this BigDecimal.
Returns:

this + val

subtract

public

BigDecimal subtract ( BigDecimal val)

Returns a BigDecimal whose valudtiss - val) , and whose scale isax(this.scale(),
val.scale())

Parameters:

val - value to be subtracted from this BigDecimal.
Returns:

this - val

multiply

public

BigDecimal rmul ti pl y(BigDecimal val)

Returns a BigDecimal whose valudtiss * val) , and whose scale (tis.scale() +
val.scale())

Parameters:

val - value to be multiplied by this BigDecimal.
Returns:

this * val
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divide

public  BigDecimal di vi de( BigDecimal val,
int scale,
int roundingMode)

Returns a BigDecimal whose valustiss / val) , and whose scale is as specified. If rounding
must be performed to generate a result with the specified scale, the specified rounding modke
applied.

Parameters:

val - value by which this BigDecimal i