
Online Algorithms for Dilworth’s Chain Partition

Selma İkiz & Vijay K. Garg

Parallel and Distributed Systems Laboratory, Dept. of Electrical and Computer Engg

The University of Texas at Austin

Austin TX 78712

Abstract

There are many interesting applications of par-
tial order theory in distributed and parallel systems.
These include testing and monitoring the concurrent
behaviour of the system. Dilworth’s chain partition
and width of the partial order plays a key role when
the trace is modelled as such. In this paper, we
discuss the desicion problem of testing the width of
a partially ordered set, and finding the Dilworth’s
chain partition in an online fashion. We present an
online algoritm with worst case time complexity be-
ing O(wn2) for finding the Dilworth’s chain partition.
We implement two of the previously known offline al-
gorithms. In particular, we compare the experimen-
tal performances of online Dilworth’s chain partition
algorithms with the offline ones.

1 Introduction

Partial order theory now plays an important role in
many disciplines of computer science and engineering.
For example, it has applications in distributed com-
puting, concurrency theory, programming language
semantics, and data mining. The theory is also useful
in disciplines of mathematics such as combinatorics,
number theory and group theory.
Partially ordered sets (posets) are particularly accu-
rate for modeling dynamic behavior of complex sys-
tems that can be captured by causal relations. Cap-
turing the partial order online appears in distributed
system in the context of the analysis of distributed
systems. A distributed program is consists of n se-
quential processes which communicate and synchro-
nize only by means of message passing. A distributed
computation describes the execution of a distributed
program. However, a distributed computation do not
yield a linear sequence of events. The relationship be-
tween events defines a partial ordering. For a particu-
lar computation, events produced by each process are
totally ordered and communications create dependen-
cies among events belonging to distinct processes. In
a seminal paper Lamport [17] calls this partial or-
der the happened-before order. Later, Fidge [7] and

Mattern [18] independently introduced vector clocks
to timestamp events such that, happened-before re-
lationship between any two events can be determined
by examining their timestamps. These timestamps
allow online computation of this order induced by
the distributed computation, and then the checking
step can be done during the computation.
Bouchitte et al. [3] discuss online and offline algo-
rithms for the interval dag recognition, and algo-
rithms building the transitive reduction of two lat-
tices usually associated with posets which are the
ideal lattice and the maximal antichain lattice, re-
spectively. Mostly motivated by the importance of
partial order theory in distributed systems, we like
to investigate the problem of finding the Dilworth’s
chain partition, and the width of the poset further.
One of the fundamental parameters of a partial or-
der is the width, which corresponds to the maximum
number of mutually incomparable elements. In this
paper, we are interested in efficient online algorithms
for the Dilworth’s chain partition problem of distrib-
uted program traces. We introduce a novel online
algorithm that has O(swn) time complexity, where
w is the width, n is the size of the poset, and s is the
maximum number of elements between two observed
antichains of poset. All of the algorithms discussed in
this paper are centralized and events are represented
as vector clocks. Our result is also useful in other
applications of partial theory. Recently, partial order
theory also receives attentions from the application
community.
The paper comprises of six sections. In section 2 we
give basic definitions of partial order sets and vector
clocks as background. In section 3 we compare two al-
gorithms on finding an antichain of size w, and parti-
tioning the poset into w, mainly finding the Dilwort’s
partition. First algorithm is given by Tomlinson and
Garg [21], hereafter we refer as QueueMerge. Sec-
ond algorithm by Bogart and Magagnosc [9] is re-
ferred as ReduceChain. In section 4, we compare
these algorithms in an online fashion, and discuss
their drawbacks compared to each other and their

1

offline versions. In section 5, we present a framework
of online algorithm development, and novel online al-
gorithms that improve on the previous ones.(Change
this sentence). In section 6, we present the simulation
results of the presented algorithms. We also give the
details of implementations and testing environment.
In section 7, some of the related applications for the
need of such online algorithms are portrayed.

2 Background
While we a detailed treatment of partial-order the-

ory is not given, we will review a few of the important
definitions.
A pair (X, P) is called a partially ordered set or poset
if X is a set and P is a reflexive, antisymmetric, and
transitive binary relation on X . We simply write P
as a poset when X is clear from the context. We call
X the ground set while P is a partial order on X . The
≤ and divides relations on the set of natural numbers
are some examples of partial orders.
We write x ≤ y and y ≥ x in P when (x, y) ∈ P .
Also, x < y and y > x in P means x ≤ y ∈ P and
x 6= y. Let, x, y ∈ X with x 6= y. If either x < y or
y < x, we say x and y are comparable. On the other
hand, if neither x < y nor y < x, then we say x and
y are incomparable and write x‖y.
A poset (X, P) is called a total order or a linear or-
der, if every distinct pair of points from X is com-
parable in P . It is possible to extend any partial
order to a linear order by adding order between un-
ordered elements. Each such linear order is called a
linearization of the partial order. A total order L
is said to be a linear extension of P , if L is a total
order on the same ground set X of P , such that each
couple of elements u, v ∈ X for which u ≤P v implies
u ≤L v.
Similarly, we call a poset an antichain if every dis-
tinct pair of points from X is incomparable in P . The
height of poset is defined to be the largest chain in
the poset and is denoted by height(P). Similarly, the
width of a poset is defined to be the largest antichain
in the poset and denoted by width(P), hereafter will
be refered as w.
A famous theorem of R. P. Dilworth [4] states that if
an ordered set P has a maximum sized antichain with
k elements i.e., w = k then, P can be partitioned into
k chains. Moreover, the set of all antichains of size k
forms a distributive lattice [9].

3 Offline Algorithms
The width of a poset P , w, is the size of the largest

antichain. A partition of a poset P is called a Dil-
worth’s chain partition, if P is partitioned into w
chains. There are two principle approaches for find-
ing this partition: Partitioning the poset greedily into

N initial chains, and reduce the number of partitions
by finding the alternating sequences, or reduce the
problem to the bipartite matching problem [8].

3.1 Alternating sequence approach

For an execution trace of a distributed program,
finding the minimum chain cover of a poset seems
more appealing since the history of execution can eas-
ily be accumulated as a chain on each process, which
is the trivial partition of an execution. At the ter-
mination of the execution, there are N such chains,
one history for each process, and reducing the chains
until we reach an antichain of size w sounds trivial.
All events in an antichain are pairwise concurrent, es-
sentially incomparable. However, concurrency is not
a transitive relation which makes the problem deli-
cate. We define the offline version of the problem as
follows:

Definition 1 Let P be a partially ordered set with
n elements. Given a chain partition of P , C =
{C0, . . . , Ct−1} into t disjoint chains, the problem is
to rearrange these chains into a chain partition with
fewest chains, or to show that no such rearrangement
is possible.

Bogart and Magagnosc [9] solves this problem by
defining the reducibility conditions, and alternating
sequence. They begin with the trivial chain partition,
the one in which each element of poset is a one ele-
ment chain. In O(n2), a lookup table is constructed.
This table essentially is the adjacency list represen-
tation of a poset. With this setup, the procedure
Reduce is called. Let C be a chain partition, then
it either finds a reducing sequence, forms the chains
by calling redoChains, and returns the reduced C; or
returns the original chain partition C. The procedure
Reduce uses a breadth first search to find an alter-
nating sequence, and then executes redoChains. The
complexity of Reduce and redoChains are O(n+e≤)
and O(n) [9]. For the completeness, the Reduce and
redoChains algorithms are given in Figure 1 and Fig-
ure 2, respectively.

Tomlinson and Garg [21] solve this problem us-
ing a notable data structure. Given N chains,
QueueMerge answers the question that is whether
there is an antichain of size at least K. Their re-
sult follows from Dilworth’s theorem that a poset
can be partitioned into K − 1 chains if and only if
there does not exist an antichain of size at least K.
Therefore, procedure QueueMerge takes N chains
and calls Merge subroutine repeatedly, and returns
either K−1 chains, or an antichain of size at least K.
The algorithm uses queues to represent chains. Each

2

procedure reduce()
N ← ∅; M ← ∅
for x ∈ P do

USED[x]← false; PAIR[x]← ∅
endfor

for c ∈ C do push(first(c), N) endfor

E ← N

while N 6= ∅ do

for a ∈ N do

I ← I[a]
for b ∈ I with USED[b] = false do

T ← TAIL[b]
if |T | > 1 then //b has a successor, a’

a′ ← second(T); PAIR[a′]← (a, b)
USED[b]← true; push(a′, E);
push(a′, M)

else

return(redoChains(a, b))
endif

endfor

endfor

N ←M ; M ← ∅
endwhile

return(C)
endprocedure

Figure 1: Reduce Algorithm

queue is stored in increasing order so that the head
of the queue is the least element in the queue.
The Merge is performed by repeatedly selecting an
element and removing it from one input queue and
placing it in an output queue. This continues until
either one of the input queues is empty or no such el-
ement can be found. In the second case, an antichain
of size K is returned. The notable data structure is a
spanning tree formed by input and output queues. In-
put queues are represented as nodes while edges are
represented as output queues. While the spanning
tree structure is preserved, the tree changes dynami-
cally.
The QueueMerge algorithm calls the Merge func-
tion N − K + 1 times. The Merge function takes
K queues as input. Instead of reducing N chains to
N − 1, then N − 1 chains to N − 2, Tomlinson and
Garg [21] choose K chains and calls Merge func-
tion on this selected subset. To minimize the num-

procedure redoChains(a, b)
while PAIR[x] 6= ∅ do

rest(TAIL[b])← TAIL[a]
PAIR[x]← {first(PAIR[a]), second(PAIR[a])}

endwhile

rest(TAIL[b])← TAIL[a]
remove(TAIL[a], C)
return(C)

endprocedure

Figure 2: Redo Procedure

ber of comparisons, they use the idea from classic
merge techniques used for sorting. They choose the
chains that have been merged the fewest number of
times. For the completeness, the QueueMerge and
Merge algorithms are given in Figure 3 and Figure 4,
respectively. The complexity of Merge is given as
Kl, where l is the total number of elements to be
merged. The upper bound of the QueueMerge is
given as KMN(K + logρN) where M is the number
of elements in the largest queue, and ρ is the reducing
factor and equals to K/(K − 1). The lower bound is
given as Ω(KMN) [21].
We can employ the rotating technique to the Reduce
algorithm as well. Therefore, it is more realistic to
compare the performances of only rounds of Merge
and Reduce, instead of QueueMerge and Reduce.
Moreover, we assume the Dilworth’s chain partition
instead of the decision question whether there is an
antichain of size K. This is the other way of asking
whether the width of the poset w is less than K.
The complexity of offline algorithms could be com-
puted as follows: Let the initial partition be given
in N disjoint partitions. Subsequently modified of-
fline algorithms have to call Merge and Reduce sub-
routines N − w times to obtain the Dilworth’s chain
partition. Hence, the total complexity of Reduce is
O((N − w)(n + e≤)), where the total complexity of
Merge is O((N − w)Nn). The worst case complex-
ity of both algorithms is the same, O(n3). Reduce
algorithm reaches the worst case when the density of
edges are high, the initial partion is the trivial parti-
tion, and the width of the poset is small. Merge algo-
rithm reaches the worst case when the initial partion
is the trivial partition, and the width of the poset is
small.

procedure

QueueMerge(K:integer, Qlist:list of queues):antichain;
assume: 1 ≤ K ≤ |Qlist|
assume: q ∈ Qlist⇒ q 6= ∅
for (n := |Qlist|;n ≥ K;n := n− 1)

(p1, . . . , pN) := Qlist);
(p1, . . . , pK) := Merge(p1, . . . , pK);
if (qK = ∅) then

Qlist := (pK+1, . . . , pn, q1, . . . , qK−1);
else

return(head(qi)|1 ≤ i ≤ K);
endif

endfor

return(∅)
endprocedure

Figure 3: QueueMerge Algoritm

3

3.2 Bipartite approach

The second approach has been to reduce the prob-
lem of finding the width of a poset to a maximum
matching problem in a bipartite graph and then using
the results of maximum matching problem [8]. Given
a bipartite graph G = (U, V, E), with n = |U | + |V |)
and m = |E|, the bipartite matching problem is find-
ing a set of edges M ⊆ E of maximum cardinality
such that no edge in the set shares a vertex with any
other edge in the set. This equivalence follows from
the proof of the Dilworth’s theorem.

Theorem 1 The maximum size of an antichain in
P equals the minimum number of chains needed to
cover the elements of P (Dilworth’s theorem).

The proof of the above theorem is given by Fulkerson.
He uses the notion of split of a graph. We give the
definition of split graph first.

Definition 2 Given a poset P = (X,≤), split S(P)
of P is a bipartite graph having as vertices two copies
of X ′,X ′′ of X and an edge (x′, y′′) whenever (x ≤ y)
in P .

procedure

Merge(P1 , . . . , PK : queues)Q1, . . . , QK : queues;
const all =1, . . . ,K;
var ac, move : subsets of all;
bigger:array[1 . . . k] of 1 . . . k;
G: initially any acyclic graph on k − 1 vertices; begin

ac := ∅;
while (|ac| =6= K∧ 6 (∃i : 1 ≤ i ≤ K : Pi = ∅)) do

move := ∅
for i ∈ (all − ac) and j ∈ all do

if head(Pi) < head(Pj) then

move := move ∪i;
bigger[i]:= j;

endif

if head(Pj) < head(Pi) then

move := move ∪j;
bigger[j]:= i;

endif

endfor

for i ∈ move do

dest:= FindQ(G,i,bigger[i]);
x := removehead(Pi);
insert(Qdest ,x);

endfor

ac := all -move;
endwhile

if (∃i :: Pi = ∅) then

FinishMerge(G, P1, . . . , PK , Q1, . . . , QK−1);
return (Q1, . . . ,QK−1, ∅)

else

return(P1 , . . . , PK);
endif

endprocedure

Figure 4: Merge Algorithm

x1

x4

x5

x6

x7x3

x2

(a)

x3’

x5’

x7’

x2’

x1’

x4’

x6’

x5’’

x2’’

x1’’

x6’’

x7’’

x4’’

x3’’

x3’

x5’

x7’

x2’

x1’

x4’

x6’

x5’’

x2’’

x1’’

x6’’

x7’’

x4’’

x3’’

(c)

(b)

Figure 5: PWP ⇒ MMP. (a) A poset (b) Split graph
of P (c) Dual of split graph

An example of a poset, and its corresponding split
graph is given in Figure 5.
A matching M in S(P) corresponds to a partition of
P into |X | − |M | chains. To see this, begin with a
partition of P having 1 element chains. For each edge
(x′, y′′) ∈ M combine the chains ending with x and
beginning with y hence reduce the number of chains
by one. Let AU = {x ∈ X : x′, x′′ 6∈ U} where U is
the minimum vertex cover of S(P). Then, it is easy
to see that AU forms an antichain. |AU | = |X | − |U |
follows from the fact that S(P) has a transitive rela-
tion. Now, Dilwort’s therom follows from the Konig-
Egervary duality theorem; maximum matching prob-
lem in a bipartite graph (MMP) is equivalent to
problem of finding the width of a poset (PWP).
An augmenting alternating path can be found with a
depth first search in O(n2) and at most n augmenta-
tions along alternating path are possible. Thus using
the alternating path algorithm for bipartite match-
ing allows one to to compute the width of (P) in
O(n3) time, and using the Hopcroft and Karp algo-
rithm [13] improves this result to O(n2.5) [10].
From a computational complexity point of view, in
the case of sparse graphs, the best sequential algo-
rithm for finding a maximum matching is by Hopcroft
and Karp, which achives a worst-case running time of
O(

√
nm). In [20], Setubal showed that implemanta-

tion of the push-relabel algorithm developed by Gold-
berg [11] and generalized by Goldberg and Tarjan
[12] was significantly faster than an implementation
of Hopcroft-Karp algorithm. The push-relabel algo-
rithm has a worst-case running time of O(nm).
Partitioning the poset greedily into N initial chains,
and reduce the number of partitions by finding the
alternating sequences. To utilize the bipartite ap-
proach, we need to construct the bipartite graph in
(n2), and find the matching in (n3). Complexity

4

wise, this approach is not different than Reduce algo-
rithm. Hence, we do not consider this approach any
further.

4 Online Algorithms

Online algorithms are algorithms working on dy-
namic structures with unpredictable behavior. An
informal definition of an online approach for the prob-
lem at hand can be stated as follows: At each step,
further information is added and we want to com-
pute Dilworth’s chain partition of the work already
done. There are two frameworks for general online
algorithms. The first one, greedy approach, assumes
that a value computed at one step is never updated
in a latter step. This kind of approach is particularly
accurate for practical applications where a previous
decision cannot be changed, e.g. scheduling prob-
lems or motion control. The second approach allows
a value to be updated to reach the real solution. In
this study, we are concerned with both of the ap-
proaches for two parts of the problem; finding the
width of the known subposet P ′ ⊆ P , and partition-
ing the subposet into w(P ′) chains. The first part
of the problem is a decision question and we want to
answer this accurately at each step without changing
the answer of previous step. On the other than, each
vertex can change the chain that it belongs at each
step.
However, when dealing with posets, adding a new el-
ement with arbitrary predecessor and successor sets
can lead to an inconsistency since the new vertex may
induce new comparabilities between vertices of the al-
ready known poset. In order to preserve the structure
of the poset, Kierstead [15, 16] makes an assumption
called subposet hypothesis, and later Bouchitté et al.
[2] defines online paradigm of posets as follows: The
current knowledge is a dag G = (X, E) whose transi-
tive closure is a poset (X, P). The additional knowl-
edge is a new vertex x 6∈ X together with a list of pre-
decessors, p(x), and a list of successors, s(x), where
p(x) and s(x) are subsets of X . Then a new directed
graph G′ = (X ′, E′) is obtained such that X ′ = X∪x,
and E′ = E ∪ {(y, x), y ∈ p(x)} ∪ {(x, y), y ∈ s(x)}.
The transitive closure of G′ is always a poset P ′ and
P is a subposet of P ′. Also some properties on the
predecessor sets and successor sets associated at each
step with the incoming vertex can be assumed. In a
later work, Bouchitté et al. [3] define the linear ex-
tension hypothesis extending to these properties, i.e.,
the new vertex x is maximal in the new poset P ′,
that is s(x) = ∅. In the online versions of our algo-
rithms, we also assume linear extension hypothesis,
that is the elements arrive in an increasing (or non-
decreasing) order.

Given the Merge and Reduce procedures, one sim-
ple way to form the online algorithm is calling these
procedures whenever an element arrives. We refer to
these algorithms as onlineMerge and onlineReduce.
The figures 6 and 7 show the online versions of the
algorithms.

procedure OnlineMerge(v:vector clock):Q1, . . . ,QK :queues;
assume: 1 ≤ K ≤ |w(P ′)|

//P’ is the part of the execution seen
Q = Merge(Q,v);
return Q;

endprocedure

Figure 6: Online Merge Algoritm

Let the number of elements seen is i at step j, then
running Merge procedure once has time complexity
of O(wi). This result follows from the fact that at one
iteration of Merge algorithm, each element must be
represented in the variable ac of the Merge procedure
before it passes to an output queue and it requires K
comparisons to be admitted to ac. Thus, if the to-

procedure OnlineReduce(v:vector clock):C1 , . . . , CK :chains;
assume: 1 ≤ K ≤ |w(P ′)|

//P’ is the part of the execution seen
C = Reduce(C, v);
return C;

endprocedure

Figure 7: Online Reduce Algoritm

tal number of elements to be merged is i at step j,
then i elements must pass through ac on their way
to the output queue for a total of Ki comparisons at
step j. Since i = j, K ≤ w, and total number of
steps is n, the total complexity of the online Merge
algorithm is O(wn2). Running Reduce only once has
time complexity of O(i+e≤). Since there are n steps,
worst time complexity of Reduce is O(n3). Felsner
et al. [10] argues that even for the decision problem
O(Kn2) is optimal.

5 New Online Algorithms

In this section, we explore the ideas to increase the
efficiency of the online algorithm. Since both online
and offline versions of Merge outperformed Reduce,
hereon we only focus on the comparisions with Merge
algorithm.
The first idea is trying to place the element at the tail
of one of the queues whenever an element arrives, in-
stead of calling the Merge subroutine immediately.
As a first step to explore this idea, we implemented

5

procedure OnlineMerge1(v:vector clock):Q1 , . . . , QK :queues;
assume: 1 ≤ K ≤ w′

//w’ is the width of the execution seen
if ∃i : Qi.tail ≤ v then

Qi.add(v);
else

Q = Merge(Q, v);
endif

return Q;
endprocedure

Figure 8: OnlineMerge1 Procedure

the procedure called OnlineMerge1 in Figure 8; Ev-
idently, the efficiency of this algorithm depends on
the mergeCount. We prove an upper bound and a
lower bound. The upper bound is proven by defin-
ing an adversary which forces the OnlineMerge1 to
call Merge algorithm as much as possible. The lower
bound is, in fact trivial, i.e., at least w calls should
be made to reach w partitions.

5.1 An Upper Bound for Merge Calls

Proposition 1 Let P be any partially ordered finite
set of size n and width K. OnlineMerge1 calls
Merge subroutine at most n.(K − 1)/K times.

Proof: We use an adversary argument. Let
OnlineMerge1 algorithm at step j has K disjoint
partition queues, i.e., the tails of the queues form a
K antichain. As the next step, adversary cannot give
a new element that forces OnlineMerge1 algorithm
to call Merge, since such call increases the partition
size to K + 1 which is contradictory to the assump-
tion that poset P has width K. However, for the
next K−1 step adversary will give new elements that
forces the OnlineMerge1 algorithm to call Merge.
By the same reasoning before, at step j+K adversary
cannot give a new element that forces OnlineMerge1
algorithm to call Merge as the new tails of the parti-
tions also form a K antichain. Hence, OnlineMerge1
calls Merge subroutine at most n.(K − 1)/K times.

The upper and lower bound of OnlineMerge1 al-
gorithm are O((K − 1)n2) and Ω(Kn), respectively.
Motivated by this result, the second idea exploits the
fact that an element of the poset arrives in a non-
decreasing order, namely linear extension hypothe-
sis. When we examined the algorithm for Merge,
there are two different places where we can readily
alter according to this hypothesis. First part is when
there is an increase in the width of the poset, P ′,
when a new element, v, arrives. Merge algorithm
finds the first antichain that contains v, and places all
the elements that are properly below this antichain

into the output queues, while the rest (the antichain
and all the elements that are properly above this an-
tichain) remains in the input queues. On the other
hand, when Merge subroutine reduces K queues into
K − 1 queues, this happens when there is no in-
crease in the width of the poset P ′, Merge places
all the elements in the output queues. When there
is an increase in the width of the poset P ′, linear
extension hypothesis allows us to consider the ele-
ments only in the input queues. For an example

x6 x7x5

x8

x4

x2x1

x3

x6 x7x5

x9x8 x10

x4

x2x1

x3

(b)(a)

Figure 9: (a) A poset P (b) Partition of poset P’ into
work space and history

in Figure 9, L = x1, x2, x3, x4, x5, x6, x8, x7, x9, x10

is a linear extension of the given poset P . Let
X ′ = {x1, x2, x3, x4, x5, x6, x8}, and the new element
v be x7. Merge places x1 and x3 into the first out-
put queue, and places x2, and x4 into second output
queue. Merge also finds the antichain as {x5, x6, x7},
and returns it. Now first input queue contains x5,
and x8, while the second input queue contains x6,
and third input queue contains x7. The following
steps of partitioning should only consider the set
X ′ = {x5, x6, x7, x8}, and corresponding poset P ′.
The complete procedure called OnlineMerge2 can
be described as in Figure 10. P is set of input queues
of Merge subroutine as Q is set of output queues.
OnlineMerge2 algorithm keeps the elements that are
not used in the current work space in the history
queues, Q′. The complexity of the above algorithm
depends on the interval between two increments of
the number of partitions. If we assume uniform dis-
tribution, then the number of elements in the work
space is less than n/(w − 1). Hence, the complexity
becomes O(n2).
The second improvement is applying the same idea
when there is no increase in the width of the poset
P ′. However, after a reduction takes place, splitting
the work space and history queues according to the

6

procedure OnlineMerge2(v:vector clock):Q1 , . . . , QK :queues,
Q′

1
, . . . ,Q′

K
:queues;

assume: 1 ≤ K ≤ w′

//w’ is the width of the execution seen
if ∃i : Qi.tail ≤ v then

Qi.add(v);
else

if Merge(Q,v).reduced then

Q = Merge.Q;
else

Q = Merge.P ;
Q′ = Q′ + Merge.Q;

endif

endif

return Q,Q′;
endprocedure

Figure 10: OnlineMerge2 Procedure

last K − 1 antichain is costly. This reduction tech-
nique should also blend well with the Merge subrou-
tine. We observe that the variable ac in the Merge
subrotine could also serve to this purpose. The vari-
able ac keeps the maximum antichain according to
the heads of the inQueues. When |ac| = K, the sub-
rotine returns an antichain of size K and shows that
no reduction is possible. We utilized ac to keep track
of the K − 1 antichains, i.e. when |ac| = K − 1
Merge subroutine appends the content of the output
queues to the history queues, and empties the out-
put queues. Whenever Merge subroutine returns a
reduced partition, online algorithm updates its work
partition according to the output queues of Merge
as usual, and updates its history queues or partitions
with the history queues of Merge. If we consider
the previous example in Figure 9; assume that the
execution seen is X ′ = {x1, x2, x3, x4, x5}, and the
new element v is x6, then, in the Merge subrou-
tine the last seen K − 1 = 2 antichain in the ac is
{x5, x6}, and online algorithm updates history queues
as {(x1, x3), (x2, x4)} and work space as {(x5), (x6)}.
This procedure called OnlineMerge3 can be depicted
as in Figure 11; Details of new Merge algorithm
can be seen in Figure 12. New Merge algorithm
keeps three types of queues, namely input queues,
otput queues and history queues. At the same time
OnlineMerge3 algorithm keeps two types of queues
work queues and history queues. At each step, either
the work queues, or history queues grow. Once an
element is placed into the history queues, it never
appears into the work queues again. Besides, the
partition of the history queues never changes. In
Figure 11, P is the input queues of Merge subrou-
tine as Q is the output queues, and Q′ is the history
queues. OnlineMerge3 algorithm keeps the elements
that are not used in the current work space in the

procedure OnlineMerge3(v:vector clock):Q1, . . . ,QK :queues,
Q′

1
, . . . ,Q′

K
:queues;

assume: 1 ≤ K ≤ w′

//w’ is the width of the execution seen
if ∃i : Qi.tail ≤ v then

Qi.add(v);
else

if Merge(Q, v).reduced then

Q = Merge.Q;
Q′ = Q′ + Merge.Q;

else

Q = Merge.P ;
Q′ = Q′ + Merge.Q′ + Merge.Q;

endif

endif

return Q,Q′;
endprocedure

Figure 11: OnlineMerge3 Procedure

procedure

Merge(P1, . . . , PK : queues) :
Q1, . . . ,QK : queues,Q′

1
, . . . ,Q′

K
: queues

const all =1, . . . , K;
var ac, move : subsets of all;
bigger:array[1 . . . k] of 1 . . . k;
G: initially any acyclic graph on k − 1 vertices; begin

ac := ∅;
while (|ac| =6= K∧ 6 (∃i : 1 ≤ i ≤ K : Pi = ∅)) do

move := ∅
for i ∈ (all − ac) and j ∈ all do

if head(Pi) < head(Pj) then

move := move ∪i;
bigger[i]:= j;

endif

if head(Pj) < head(Pi) then

move := move ∪j;
bigger[j]:= i;

endif

endfor

for i ∈ move do

dest:= FindQ(G,i,bigger[i]);
x := removehead(Pi);
insert(Qdest ,x);

endfor

ac := all -move;
if (|ac| = K − 1) then

for (1 ≤ k ≤ K) do

Q′

k
= Q′

k
+ Qk;

empty(Qk);
endfor

endif

endwhile

if (∃i :: Pi = ∅) then

FinishMerge(G, P1, . . . , PK ,Q1, . . . ,QK−1);
return (Q1, . . . , QK−1, ∅)

else

return(P1 , . . . , PK);
endif

endprocedure

Figure 12: Online Merge Algoritm

7

history queues, Q′. The complexity of the above al-
gorithm depends on the frequency of antichains of in
the poset. However, its worst case complexity is still
O(wn2). If we assume that there are no more than s
elements in the working partition then the complexity
reduces to O(wsn).

Proposition 2 Let P be any partially ordered finite
set of size n, width 2 and a linear extension L of P .
OnlineMerge3 algorithm partitions P into 2 chains
in O(n) time.

Proof: Let L = x1, x2, · · · , xn be the linear extension
of P which is assumed to be given as part of the in-
put. Let xj ||xj+1 be the first incomparable adjacent
pair in L. The algorithm returns two queues that
each contain either xj or xj+1. Moreover, because of
the pruning, queues contain only xj and xj+1. When
inserting a new element x = xt, we first compare x
to the tail elements of queues. If x is incomparable
to both, we call merge subroutine.
Observe that, when width is 2, merge subroutine re-
turns two queues containing only one element in each,
and merge subroutine performs 2n comparisons to
find the antichain of size 2.
Assume that we need to call merge subroutine in
every r elements. Then, n/r calls are made with
2r comparisons each time. Other times, we make
at most 2 comparisons.
In worst case we need to make 4 comparisons to place
a new element, hence the complexity of the algorithm
for width 2 is O(n).

6 Experiments
In this section we demonstrate our simulation re-

sults of both online and offline algorithms. All the
tests are done on a computer system equipped with
512Mb RAM and 1.13 Ghz Pentium3 processor. Each
test case is performed 5 times, then the average is
used in the analysis.

6.1 Offline Algorithms

At the implementation of the Reduce algorithm,
chains are represented as linked-lists. Each event
is represented as a vectorClock object, while adja-
cency list of an event is a vector containing pointers
to vectorClock objects that are properly below this
object. Moreover, adjacency lists are sorted to in-
crease the efficacy of the algorithm.
At the implementation of the QueueMerge and
Merge algorithm, queues are represented as Queue
objects containing a vector of vectorClock objects.
Moreover, instead of keeping a matrix for the span-
ning tree, output queues have two nodes that point to

the input queues. The identical vectorClock objects
are used for the two of the implementations.

Memory Comparisons

-50000

0

50000

100000

150000

200000

250000

0 2000 4000 6000 8000

Number of entries

M
em

o
ry

 (
K

b
)

Offline-Merge
Offline-Reduce

Figure 13: Memory usage of Offline versions of
Merge and Reduce

The algorithm QueueMerge calls the Merge func-
tion N − K + 1 times. The Merge function takes
K queues as input. Instead of reducing N chains
to N − 1, then N − 1 chains to N − 2, K queues
are choosen and Merge function is called on this se-
lected subset. To minimize the number of compar-
isons, the idea from classic merge techniques for sort-
ing is used; use the queues that have been merged the
fewest number of times.

Time Comparisons

0

1

2

3

4

5

6

7

8

9

10

0 2000 4000 6000 8000 10000

Number of entries

T
im

e
(m

s)

Offline-Merge
Offline-Reduce

Figure 14: Running times of Offline versions of
Merge and Reduce

We used a test suite containing twelve tests of differ-
ent sized partitions to test the implementations ini-
tially. This test is done using rotating technique for
QueueMerge algorithm, while only repeated calls is
performed for Reduce. Also, test is performed by ask-
ing whether there exists a K antichain. QueueMerge
algorithm outperforms both in memory and time con-
sumption. Also number of cycles differ due to the

8

decision question. We can employ the rotating tech-
nique to the second algorithm also. Therefore it is
more realistic to compare the performances of only
rounds of Merge and Reduce instead of QueueMerge
and Reduce.
We setup three different test suites such that each
includes twelve simple test cases. The first test suite
includes several small sized posets that has at most
ninety elements. Second test suite includes posets
of size 100 while width of posets change from 2 to
13. Third test suite includes fixed size initial par-
tition of 6, while number of elements changes from
10 to 10000. Merge outperforms the Reduce both
in memory consumption, see in Figure 13, and run-
ning times, see in Figure 14. Moreover, Reduce gives
out of memory error when the number of elements
is bigger than 9000. This is, in fact, expected since
constructing the lookup table is done in O(n2) and
need space O(n2).

6.2 Online Algorithms

We implement the simple online versions of Merge
and Reduce. Same test cases that are used in the of-
fline versions are used. Only this time we introduce
one element at a time adhering to linear extension hy-
pothesis. We observe that the online versions Merge
has at least twice better memory usages and running
times than Reduce Figure 15, and Figure 16, respec-
tively.

Time Comparisons

0

20

40

60

80

100

120

140

160

180

0 2000 4000 6000 8000 10000

Number of entries

T
im

e
(S

ec
s)

Online-Merge
Online-Reduce

Figure 15: Running times of Online versions of
Merge and Reduce

Memory used for online versions illustrate the total
amount used for the entire run. Although total mem-
ory usage of online algorithms are much higher than
the offline versions, it is trivial to observe that mem-
ory usage of each step of online versions never exceeds
the memory usage of the offline algorithms. There-
fore, hereafter we do not compare memory usages of
the online algorithms.

Memory Comparisons

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 2000 4000 6000 8000 10000

Number of entries

M
em

o
ry

 (
M

b
)

Online-Merge
Online-Reduce

Figure 16: Memory usage of online versions of Merge
and Reduce

Time Comparisons

0

10

20

30

40

50

60

70

80

0 2000 4000 6000 8000 10000

Number of entries

T
im

e
(S

ec
s)

Offline-Merge
Online-Merge

Figure 17: Running times of Merge (offline vs. on-
line)

Another comparison that is worthwhile is the running
time differences of online and offline versions of these
algorithms, see Figure[17- 18]. Although online ver-
sion of Merge algorithm performs better that online
version of Reduce algorithm, it is still far from the
offline version of Merge.

9

Time Comparisons

0

20

40

60

80

100

120

140

160

180

0 2000 4000 6000 8000 10000

Number of entries

T
im

e
(S

ec
s)

Offline-Reduce
Online-Reduce

Figure 18: Running times of Reduce (offline vs. on-
line)

6.3 New Online Algorithms

We implemeted the OnlineMerge1 algorithm to
observe the frequency of Merge callings. By using
the same test suites, for each test case we observed
that Merge subroutine is called at most 22% of the
times when a new element arrives.
We implemented OnlineMerge2 procedure, and run
the test suites on this implementation. Since we
know the bound on the memory usage, we will com-
pare only running times of the algorithms hereafter.
We compared it with the previous online and offline
Merge implementations, although we achieve quite
an improvement on the previous onlineMerge ac-
cording to time usage, the improvement is poor when
it is compared with the offline algorithm, see in Fig-
ure 19.

We implement OnlineMerge3 procedure, and run

Time Comparisons

0

10

20

30

40

50

60

70

80

0 2000 4000 6000 8000 10000

Number of entries

T
im

e
(S

ec
s)

OfflineMerge

OnlineMerge1

OnlineMerge2

Figure 19: Running times of OnlineMerge2 vs.
OnlineMerge1 & Offline− Merge

the test suites on this implementation. We compare
it with the previous onlineMerge2 and offline Merge

Time Comparisons

0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000

Number of entries

T
im

e
(S

ec
s)

OnlineMerge3
OnlineMerge2

Figure 20: Running times of OnlineMerge3 vs.
OnlineMerge2

Time Comparisons

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of entries

T
im

e
(S

ec
s)

OnlineMerge3
OfflineMerge

Figure 21: Running times of OnlineMerge3 vs.
Offline− Merge

implementations. Pruning the work space according
to the last seen K − 1 antichain has a big impact on
the online implementation, see Figure 20, and gives
promising results when it is compared to the offline
Merge algorithm, see Figure 21. To confirm these
results, we increased our test cases. Six new suites
are created. Each test suite contains 10 different test
cases whose initial partition varies from 40 to 450,
and size varies from 1,500 to 50,000. Test suites dif-
fer in the reducing factor, mainly width of the poset
generated. The first test suite contains such test cases
that width of the poset is 90% of the initial partition.
The other test suites follow the same convention. We
test the range of 10% to 60% reductions of the initial
partitions. Each test case is executed five times, and
the results are averaged. As expected, when the re-
ducing factor is low, offline Merge outperforms online
Merge, on the other hand online Merge outperforms
offline Merge when the reducing factor is high, see in
Figure 22. However, there is no single cut off point.

10

Reducing Factor Comparison

0.0

0.1

1.0

10.0

100.0

1000.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Reducing factor

Ti
m

e(
se

c)

5000

2500

50000
40000
30000

20000

15000
10000
7500

1500

Figure 22: Running times of OnlineMerge3 vs.
Offline− Merge

7 Other Relevant Applications
Partial order theory now plays an important role in

many disciplines of computer science and engineering.
For example, it has applications in distributed com-
puting, concurrency theory, programming language
semantics, and data mining. The theory is also useful
in disciplines of mathematics such as combinatorics,
number theory and group theory.
In their research paper, Ngom et al. [19] study
the learning abilities of (n, k, s)-perceptrons. The
(n, k, s)-perceptrons partition the input space V ⊂
Rn into s + 1 regions using s parallel hyperplanes.
When the output vector is not known during this
learning process, the perceptron searches for a partial
order relation defined over f ’s values, for a given func-
tion f . If such order relation exists, then a good lin-
ear extension of the corresponding partially ordered
set is sought and used as the output vector of the
(n, k, s)-perceptron. They propose that the selection
should be done by computing the width of the cur-
rently constructed consistent poset and keeping track
of the smallest width and the associated poset.
In his paper, Benczúr [5] introduces an algorithm for
connectivity augmentation and poset covering for the
posets that satisfy a special property by the minimal
number of intervals of the poset. They argue that
their algorithm can be modified for general posets as
well. When modified, this is not significantly differ-
ent from the one obtained by unfolding the standard
reduction of Dilworth’s problem to bipartite match-
ing. Moreover, they do not give any analysis of the
algorithm, other than mentioning that the steps of
the algorithm could easily be checked to be polyno-
mial in the number total possible different intervals
and the length of the a longest chain in the poset [5].
They achive a polynomial bound due to the reduction
in the number of edges from O(n2) to O(n).
In his PhD thesis Crampton [6] indicates that there

are three important access control paradigms: the
Bell-LaPadula model, the protection matrix model
and the role-based access control model. He points
out that partial orders play a significant part these
models. In the role-based access control model, width
of the subposet is used to identify how many such
roles can be accessed concurrently. That is the mu-
tual exclusion problem of distributed and parallel sys-
tems.
In their drug discovery process study, Joslyn et al.
[14] state that, they wish to understand the over-
all effect of some cell treatment or condition after
some gene expression analysis experiment. In order
to address this need, they view bio-ontologies more
as combinatorially structured databases than facili-
ties for logical inference. Thus, they use partially or-
dered sets to develop data representation for the Gene
Ontology (GO). In their paper, pseudo-distances be-
tween comparable nodes are used to develop scoring
functions that rank-order the GO nodes with respect
to a query. One of the metrics used in these functions
is defined as the width of the poset, and they state
that since calculating the width of a poset is still a
daunting task algorithmically, they only use it as a
lower bound estimate [14].

8 Conclusion

Finding the width of a poset by an online algo-
rithm is an important issue in distributed comput-
ing. To investigate this problem, first, we imple-
mented and analyzed two offline algorithms. Sec-
ondly, we generalized the offline algorithms to online
versions, and examined their performance. Thirdly,
we present a novel online algorithm for Dilworth’s
chain partition under the linear extension hypothesis
assumption. In the offline fashion, Merge algorithm
performs efficiently. Our first approach is to find an
algorithm A that guarantees the number of calls to
Merge in a constant factor c of the width of poset
P , then the complexity A will be O(cwn). Although,
such a constant factor could not found, we reduced
the complexity to O(swn), where s is the number of
vertices between two antichains. All the algorithms
for finding the Dilworth’s chain partition discussed in
this paper are centralized. A further research topic
could be finding a decentralized online algorithm.

References

[1] H. Alt, N. Blum, K. Mehlhorn, and M. Paul,
“Computing a Maximum Cardinality Matching
in a Bipartite Graph in time”, Information
Processing Let., 37:237-240, 1991.

11

[2] V. Bouchitté, R. Jégou and J.-X. Rampon, “On-
line recognition of interval orders”, In IRISA Re-
search Report 751, 1993.

[3] V. Bouchitté, and J.-X. Rampon, “On-line al-
gorithms for orders”,In Theor. Comput. Sci.
175(2):225-238, 1997.

[4] B.A. Davey, and H.A. Priestly, “Introduction
to Lattices and Order”, Cambirage University
press, Cambridge, UK, 1990.

[5] A. A. Benczúr, “Pushdown-reduce: an algorithm
for connectivity augmentation and poset cover-
ing problems”, In Discrete Applied Mathematics,
129(2-3):233-262, Aug. 2003

[6] J. Crampton, “Authorization and antichains”,
In PhD thesis, University of London, Birkbeck,
UK, 2002.

[7] C. Fidge, “Logical time in distributed computing
systems”, Computer, 24:28-33, Aug. 1991

[8] L.R. Ford, and D.R. Fulkerson, “Flows in Net-
works ”, Princeton University Press, 1962.

[9] R. Freese, J. Jaroslav, and J. B. Nation, “Free
Lattice”, American Mathematical Society,1996.

[10] S. Felsner, V. Raghavan, and J. Spinrad, “Recog-
nition algorithms for orders of small width and
graphs of small Dilworth number”, In Order,
20(4):351-364, 2004

[11] A.V. Goldberg, “Efficient graph algorithms for
sequential and parallel computers”,In PhD the-
sis, Massachussetts Institute of Technology,
Cambridge, Mass., Jan. 1987.

[12] A.V. Goldberg, and R.E. Tarjan, “A new ap-
proach to the maximum-flow problem”, In J. As-
soc. Comput. Mach., 35(4):921-940, 1988.

[13] J.E. Hopcroft, and R.M. Karp, “A n5/2 al-
gorithm fro maximum matchings in bipartite
graphs”, In SIAM J. Comput. 2:225-231, 1973.

[14] C. A. Joslyn, S. M. Mniszewski, A. Fulmer, and
G. Heaton, “The Gene Ontology Categorizer”,
In Bioinformatics, 20(Supplement 1):i166-i177,
Aug. 2004.

[15] H.A. Kierstead, “An effective version of Dil-
worth’ theorem”, In Trans. Amer. Math. Soc.
268, 1981.

[16] H.A. Kierstead, “Recursive ordered sets”, In
Comtemporary Mathematics, 57, 1986.

[17] L. Lamport, “Time, Clocks, and the Ordering of
Events in a Distributed System”, In Communi-
cations of the ACM(CACM),21(7):558-565, July
1978.

[18] F. Mattern, “Virtual time and global states of
distributed systems”, In Proceedings of the Inter-
national Workshop on Parallel and Distributed
algorithms, pp:215-226, 1989.

[19] A. Ngom, C. Reischer, D. A. Simovici, and I.
Stojmenović, “Learning with permutably homo-
geneous multiple-valued multiple-threshold per-
ceptrons”, In Proc. 28th IEEE Int. Symp.
Multiple-Valued Logic, pp:161166, May 1998.

[20] J. Setubal, “Sequential and parallel experimen-
tal results with bipartite matching algorithms”,
Technical Report EC-96-09, Institute of Com-
puting, University of Campinas, Brasil, 1996.

[21] A. I. Tomlinson and V. K. Garg, “Monitor-
ing Functions on Global States of Distributed
Programs”, Journal of Parallel and Distributed
Computing, 41(2):173–189, Mar. 1997.

12

