CHAPTER 2 CONTROL STRUCTURES

[llustrations List (Main Page)

Fig. 2.1 Flowcharting C++'s sequence structure.

Fig. 2.2 C++ keywords.

Fig. 2.3 Flowcharting the single-selection i f structure.

Fig. 2.4 Flowcharting the double-selection i f / el se structure.

Fig. 2.5 Flowcharting the whi | e repetition structure.

Fig. 2.6 Pseudocode algorithm that uses counter-controlled
repetition to solve the class average problem.

Fig. 2.7 C++ program and sample execution for the class average problem
with counter-controlled repetition.

Fig. 2.8 Pseudocode algorithm that uses sentinel-controlled repetition to
solve the class average problem.

Fig. 2.9 C++ program and sample execution for the class average problem
with sentinel-controlled repetition.

Fig. 210 Pseudocode for examination results problem.

Fig.211 C++ program and sample executions for examination results problem.

Fig.2.12 Arithmetic assignment operators.

Fig. 213 Theincrement and decrement operators.

Fig. 214 Thedifference between preincrementing and postincrementing.

Fig. 215 Precedence of the operators encountered so far in the text.

Fig.2.16 Counter-controlled repetition.

Fig. 217 Counter-controlled repetition with thef or structure.

Fig.218 Components of atypical f or header.

Fig.219 Flowcharting atypical f or repetition structure.

Fig.220 Summationwithf or .

Fig.221 Calculating compound interest with f or .

Fig.2.22 Anexampleusingswi t ch.

Fig.2.23 Thesw t ch multiple-selection structure with br eaks.

Fig.2.24 Usingthedo/ whi | e structure.

Fig.2.25 Flowcharting the do/ whi | e repetition structure.

Fig.2.26 Usingthebr eak statementinaf or structure.

Fig.2.27 Usingthecont i nue statementinaf or structure.

Fig.2.28 Truth table for the & (logical AND) operator.

Fig. 229 Truthtablefor the| | (logical OR) operator.

Fig.2.30 Truthtablefor operator ! (logical negation).

Fig. 231 Operator precedence and associativity.

Fig. 232 C++'ssingle-entry/single-exit sequence, selection, and
repetition structures.

Fig. 233 Rulesfor forming structured programs.

Fig. 234 Thesimplest flowchart.

Fig. 235 Repeatedly applying rule 2 of Fig. 2.33 to the simplest flowchart.

Fig. 236 Applying rule 3 of Fig. 2.33 to the simplest flowchart.

Fig. 237 Stacked, nested and overlapped building blocks.

Fig. 238 Anunstructured flowchart.

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

CHAPTER 2 CONTROL STRUCTURES

O
add gradeto
total
total = total + grade;
Y counter = counter + 1;
add 1 to '
counter

'

Fig. 2.1 Flowcharting C++'s sequence structure.

C++ Keywords

C and C++ keywords

auto br eak case char const
conti nue defaul t do doubl e el se
enum extern fl oat f or goto
if int | ong register return
short si gned si zeof static struct
switch t ypedef uni on unsi gned voi d
vol atile whil e
C++ only keywords
asm bool catch cl ass const _cast
del ete dynam c_cas explicit fal se friend

t
inline nut abl e nanespace new oper at or
private prot ect ed public reinterpret_cast
static_cast tenplate this t hrow true
try typeid typenane usi ng vi rtual
wechar _t

Fig. 2.2 C++ keywords.

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

CHAPTER 2

grade>=60

print " Passed"

CONTROL STRUCTURES

Fig. 2.3 Flowcharting the single-selection i f structure.

grade >= 60

Y
print "Failed"

A

print " Passed"

Y
A

Fig.24 Flowcharting the double-selection i f / €l se structure.

.

-

product <= 1000

product =
2* product

O

Fig.25 Flowcharting the Whi | e repetition structure.

© Copyright 1998 by Prentice Hall. All Rights Reserved.

For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

3

CHAPTER 2 CONTROL STRUCTURES

Set total to zero
Set grade counter to one

While grade counter is lessthan or equal to ten
Input the next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten
Print the class average

Fig. 2.6 Pseudocode algorithm that uses counter-controlled repetition to solve the class average problem.

1 /] Fig. 2.7: fig02_07.cpp

2 |/ Cass average programw th counter-controlled repetition
3 #include <iostream h>

4

5 int main()

6 {

7 int total, /1 sum of grades

8 gradeCounter, // number of grades entered

9 gr ade, /'l one grade

10 aver age; /'l average of grades

11

12 /] initialization phase

13 total = 0; /'l clear total

14 gradeCounter = 1; /] prepare to | oop
15

16 /'l processing phase

17 while (gradeCounter <= 10) { /1 loop 10 tines

18 cout << "Enter grade: "; /'l pronpt for input
19 cin >> grade; /1 input grade

20 total = total + grade; /1 add grade to total
21 gradeCounter = gradeCounter + 1; // increment counter
22 }

23

24 /1 term nation phase

25 average = total / 10; /'l integer division
26 cout << "Class average is " << average << endl;

27

28 return 0; /1 indicate program ended successfully

29 }

Enter grade: 98
Enter grade: 76
Enter grade: 71
Enter grade: 87
Enter grade: 83
Enter grade: 90
Enter grade: 57
Enter grade: 79
Enter grade: 82
Enter grade: 94
Class average is 81

Fig. 2.7 C++ program and sample execution for the class average problem with counter-controlled repetition.

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

4

CHAPTER 2 CONTROL STRUCTURES 5

Initialize total to zero
Initialize counter to zero

Input the first grade (possibly the sentinel)
While the user has not as yet entered the sentinel
Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

else
Print “ No grades were entered”

Fig. 2.8 Pseudocode algorithm that uses sentinel-controlled repetition to solve the class average problem.

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

CHAPTER 2 CONTROL STRUCTURES

1 /] Fig. 2.9: fig02_09.cpp

2 |/ Cass average programw th sentinel-controlled repetition.
3 #include <iostream h>

4 #include <ionmanip. h>

5

6 int main()

7

8 int total, /1 sum of grades

9 gradeCounter, // number of grades entered

10 gr ade; /'l one grade

11 fl oat average; /1 number with decimal point for average
12

Fig. 2.9 C++ program and sample execution for the class average problem with sentinel-controlled repetition
(part 1 of 2).

13 /1 initialization phase

14 total = 0O;

15 gradeCounter = 0;

16

17 /'l processing phase

18 cout << "Enter grade, -1 to end: ";

19 cin >> grade;

20

21 while (grade '=-1) {

22 total = total + grade;

23 gradeCounter = gradeCounter + 1;

24 cout << "Enter grade, -1 to end: ";

25 cin >> grade;

26 }

27

28 /1 term nation phase

29 if (gradeCounter != 0)

30 average = static_cast< float >(total) / gradeCounter;
31 cout << "Class average is " << setprecision(2)
32 << setiosflags(ios::fixed | ios::showpoint)
33 << average << endl;

34 }

35 el se

36 cout << "No grades were entered" << endl;

37

38 return O; /1 indicate program ended successfully
39 }

Enter grade, -1 to end: 75
Enter grade, -1 to end: 94
Enter grade, -1 to end: 97
Enter grade, -1 to end: 88
Enter grade, -1 to end: 70
Enter grade, -1 to end: 64
Enter grade, -1 to end: 83
Enter grade, -1 to end: 89
Enter grade, -1 to end: -1
Cl ass average is 82.50

Fig. 2.9 C++ program and sample execution for the class average problem with sentinel-controlled repetition
(part 2 of 2).

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

CHAPTER 2 CONTROL STRUCTURES 7

Initialize passesto zero
Initialize failuresto zero
Initialize student counter to one

While student counter islessthan or equal to ten
Input the next exam result

If the student passed
Add one to passes
else
Add oneto failures

Add one to student counter

Print the number of passes
Print the number of failures

If more than eight students passed
Print “ Raise tuition”

Fig. 210 Pseudocode for examination results problem.

1 // Fig. 2.11: fig02_11.cpp

2 [/ Analysis of exam nation results

3 #include <iostream h>

4

5 int main()

6 {

7 /1 initialize variables in declarations

8 i nt passes = 0, /'l nunber of passes

9 failures = 0, /'l number of failures
10 student Counter = 1, /1 student counter

11 result; /1 one exam result

12

13 /'l process 10 students; counter-controlled |oop
14 while (studentCounter <= 10)

15 cout << "Enter result (1l=pass,2=fail): ";

16 cin >> result;

17

Fig. 211 C++ program and sample executions for examination results problem
(part 1 of 2).

18 if (result ==1) Il iflelse nested in while
19 passes = passes + 1;

20 el se

21 failures = failures + 1;

22

23 st udent Counter = student Counter + 1
24 }

25

26 /1 term nation phase

27 cout << "Passed " << passes << endl;
28 cout << "Failed " << failures << endl;
29

30 if (passes > 8)

31 cout << "Raise tuition " << endl;
32

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

CHAPTER 2

33 return O; /'l successful term nation

4}

CONTROL STRUCTURES

Passed 6
Fail ed 4

Enter result (1=pass, 2=fail)
Enter result (1=pass,2=fail)
Enter result (1=pass, 2=fail)
Enter result (1=pass, 2=fail)
Enter result (1=pass,2=fail):
Enter result (1=pass,2=fail):
Enter result (1=pass, 2=fail)
Enter result (1=pass,2=fail)
Enter result (1=pass,2=fail)
Enter result (1=pass, 2=fail)

NRPRNRRRERNNR

Passed 9
Failed 1
Rai se tuition

Enter result (1=pass,2=fail)
Enter result (1=pass, 2=fail)
Enter result (1=pass, 2=fail)
Enter result (1=pass,2=fail)
Enter result (1=pass, 2=fail)
Enter result (1=pass,2=fail):
Enter result (1=pass,2=fail)
Enter result (1=pass, 2=fail)
Enter result (1=pass, 2=fail)
Enter result (1=pass,2=fail)

RPRRPRRPRPRRPRNR R

Fig. 211 C++ program and sample executions for examination results problem

(part 2 of 2).

Assignment Sample

operator expression Explanation Assigns
Assumeiint ¢ =3, d =5, e=4, f =6, g=12;

+= c +=7 c=c+7 10toc
-= d-=14 d=4d- 4 1tod
*= e *= 5 e=e*5 20toe
/= f /=3 f=f7/73 2tof
% g % 9 g=9 %9 3tog

Fig.2.12 Arithmetic assignment operators.

© Copyright 1998 by Prentice Hall. All Rights Reserved.

For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

8

CHAPTER 2

CONTROL STRUCTURES

Operator Called Sample expression Explanation
++ preincrement ++a Increment a by 1, then use the new value
of a in the expression in which a resides.
++ postincre- a++ Use the current value of a in the expres-
ment sion in which a resides, then increment a
by 1.
-- predecrement --b Decrement b by 1, then use the new value
of b in the expression in which b resides.
-- postdecre- b- - Use the current value of b in the expres-
ment sion in which b resides, then decrement b

by 1.

Fig.2.13 The increment and decrement operators.

1 // Fig. 2.14: fig02_14.cpp
2 |/ Preincrenenting and postincrenenting
3 #include <iostream h>
4
5 int main()
6 {
7 int c;
8
9 c =5;
10 cout << ¢ << endl; /]l print 5
11 cout << c++ << endl; /1 print 5 then postincrenent
12 cout << ¢ << endl << endl; // print 6
13
14 c = 5;
15 cout << ¢ << endl; /] print 5
16 cout << ++c << endl; /1 preincrenent then print 6
17 cout << ¢ << endl; /] print 6
18
19 return O; /] successful term nation
20 }
5
5
6
5
6
6

Fig. 2.14 The difference between preincrementing and postincrementing.

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

CHAPTER 2 CONTROL STRUCTURES
Associativi-
Operators ty Type
() lefttoright parentheses
++ -- o+ - stati c_cast <type>() righttoleft unary
* / % lefttoright multiplicative
+ - lefttoright additive
<< >> lefttoright insertion/extrac-
tion
< <= > >= lefttoright relational
== = lefttoright equality
?: right toleft conditional
= = -= *= /= U righttoleft assignment
, lefttoright comma

Fig.

215 Precedence of the operators encountered so far in the text.

OCO~NOOOITWN P

/1 Fig. 2.16: fig02_16.cpp
/1 Counter-controlled repetition

#i ncl ude <i ostream h>
int main()

int counter = 1;

while (counter <= 10)
cout << counter << endl;

initialization

i ncrement

repetition condition

Fig.

++counter;
}
return O;
}
2.16 Counter-controlled repetition.
1
2
3
4
5
6
7
8
9
10

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

10

CHAPTER 2 CONTROL STRUCTURES

1 /] Fig. 2.17: fig02_17.cpp
2 [/ Counter-controlled repetition with the for structure
3 #include <iostream h>
4
5 int main()
6
7 /1 Initialization, repetition condition, and increnmenting
8 // are all included in the for structure header.
9
10 for (int counter = 1; counter <= 10; counter++)
11 cout << counter << endl;
12
13 return O;
14 }
Fig. 2.17 Counter-controlled repetition with the f Or structure.
for Control Fina value
keyword variable of control
name variable
for (int counter = 1; counter <= 10; counter++)
Initial value Loop- Increment of
of control continuation control vari-
variable condition able
Fig. 2.18 Components of a typical f Or header.
T
Establish initial
value of control counter =1
variable
o Y
Test if fina
value of control
variable has not — true |cout <<counter
<= -
been reached count er 10 - <<end! ; » counter++
Body of loop (this Increment the con-
may be many state- trol variable
false ments)
Y
O
Fig. 219 Flowcharting a typical f Or repetition structure.

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

11

CHAPTER 2 CONTROL STRUCTURES 12

1 /] Fig. 2.20: fig02_20.cpp
2 // Summation with for
3 #include <iostream h>
4
5 int main()
6
7 int sum= 0;
8
9 for (int number = 2; nunber <= 100; nunber += 2)
10 sum += nunber;
11
12 cout << "Sumis " << sum << endl;
13
14 return O;
15 }
Sumis 2550

Fig. 220 Summation with f Or .

1 // Fig. 2.21: fig02_21.cpp

2 [/ Calculating conpound interest

3 #include <iostream h>

4 #include <iomanip. h>

5 #include <math. h>

6

7 int main()

8

9 doubl e anpunt, /1 anmpbunt on deposit
10 principal = 1000.0, // starting principal
11 rate = .05; /'l interest rate

12

13 cout << "Year" << setw(21)

14 << "Ampunt on deposit" << endl;

15

16 for (int year = 1; year <= 10; year++) {

17 amount = principal * pow(1.0 + rate, year);
18 cout << setw 4) << year

19 << setiosflags(ios::fixed | ios::showpoint)
20 << setw 21) << setprecision(2)

21 << ampunt << endl;

22 }

23

24 return O;

25 '}

Fig. 221 Calculating compound interest with f Or (part 1 of 2).

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

CHAPTER 2 CONTROL STRUCTURES

Year Anpbunt on deposit
1050. 00
1102. 50
1157. 62
1215. 51
1276. 28
1340. 10
1407. 10
1477. 46
1551. 33
1628. 89

QOVWO~NOUITRA,WNE

[N

Fig. 221 Calculating compound interest with f Or (part 2 of 2).

OCO~NOOUITA, WN P

[l Fig. 2.22: fig02_22.cpp
/1 Counting letter grades
#i ncl ude <i ostream h>

int main()
i nt grade, /1 one grade
aCount = 0, // nunber of A's
bCount = 0, // nunber of B's
cCount =0, // nunber of Cs
dCount = 0, // nunber of Ds
fCount = 0; // nunber of F's

cout << "Enter the letter grades." << endl
<< "Enter the EOF character to end input." << endl;

while ((grade = cin.get()) !'= ECOF) {

switch (grade) { /1l switch nested in while
case 'A': /] grade was uppercase A
case 'a': // or lowercase a
++aCount ;

break; // necessary to exit switch

case 'B': // grade was uppercase B
case 'b': // or lowercase b
++bCount ;
br eak;
case 'C: [/ grade was uppercase C
case 'c': // or lowercase c
++cCount ;
br eak;
case 'D: [/ grade was uppercase D
case 'd': // or lowercase d
++dCount ;
br eak;
case 'F': /] grade was uppercase F
case 'f': // or lowercase f
++f Count ;
br eak;

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

13

CHAPTER 2

45

46 case '\n':
47 case '\t':
48 case ' ':
49 br eak
50

/1 ignore new i nes,
/1 tabs,
/1 and spaces in input

CONTROL STRUCTURES

Fig. 222 An example using SWi t ch (part 1 of 2).

51 defaul t:
52 cout <<
53

54 br eak;
55 }

56 }

57

58 cout << "\n\nT
59 << "\ nA:
60 << "\nB: "
61 << "\nC "
62 << "\nD: "
63 << "\ nF: "
64

65 return 0O;

66 }

<<

/1 catch all other characters
"Incorrect letter grade entered."
" Enter a new grade." << endl;

/'] optional

otals for each letter grade are:"

<< aCount
<< bCount
<< cCount
<< dCount
<< fCount << endl;

—mOT"er00 I

S >0

A
B:
(©:
D:
F

P NWNW

ncorrect

Enter the |l etter grades.
Enter the ECF character to end input.

letter grade entered. Enter a new grade.

Totals for each letter grade are:

Fig. 222 An example using SWi t ch (part 2 of 2).

© Copyright 1998 by Prentice Hall. All Rights Reserved.

For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

14

CHAPTER 2

casea true casea > br eak >
action(s)
false
caseb true caseb - br eak -
action(s)
l false
casez true casez > br eak >
action(s)
fase
default
action
v
O

CONTROL STRUCTURES

Fig. 223 The SWi t ch multiple-selection structure with br eaks.

1 /]l Fig. 2.24: fig02_24.cpp
2 [/ Using the do/while repetition structure
3 #include <iostream h>
4
5 int main()
6
7 int counter = 1;
8
9 do {
10 cout << counter << " ",
11 } while (++counter <= 10);
12
13 cout << endl;
14
15 return O;
16 }
1 2 3 4 5 6 7 8 9 10
Fig. 224 Using the do/ whi | e structure.

© Copyright 1998 by Prentice Hall. All Rights Reserved.

For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

15

CHAPTER 2 CONTROL STRUCTURES

I

action
true

false

O
Fig. 225 Flowcharting the do/ whi | e repetition structure.
1 /] Fig. 2.26: fig02_26.cpp
2 [/ Using the break statenent in a for structure
3 #include <iostream h>
4
5 int main()
6 {
7 /1l x declared here so it can be used after the | oop
8 int x;
9
10 for (x =1; x <= 10; x++) {
11
12 if (x ==
13 br eak; /'l break loop only if xis 5
14
15 cout << x << " ";
16 }
17
18 cout << "\nBroke out of loop at x of " << x << endl;
19 return O;
20 }
Fig. 226 Using the br eak statementin a f Or structure (part 1 of 2).

1234
Broke out of loop at x of 5

Fig. 226 Using the br eak statementin a f Or structure (part 2 of 2).

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

16

CHAPTER 2 CONTROL STRUCTURES

1 /] Fig. 2.27: fig02_07.cpp

2 /] Using the continue statement in a for structure
3 #include <iostream h>

4

5 int main()

6 {

7 for (int x =1; x <= 10; x++) {

8

9 if (x ==5)

10 continue; // skip remaining code in |oop
11 /1l only if xis 5

12

13 cout << x << " "y

14 }

15

16 cout << "\nUsed continue to skip printing the value 5"
17 << endl;

18 return O;

19 }

12346789 10
Used continue to skip printing the value 5

Fig. 227 Using the cont i nue statementin af Or structure.
expressionl expression2 expressionl && expression2
fal se fal se fal se

fal se true fal se
true fal se fal se
true true true
Fig.2.28 Truth table for the && (logical AND) operator.

expressionl expression2 expressionl | | expression2
fal se fal se fal se

fal se true true

true fal se true

true true true
Fig.2.29 Truth table for the | | (logical OR) operator.

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

17

CHAPTER 2

CONTROL STRUCTURES

expression | expression
fal se true
true fal se

Fig.2.30 Truth table for operator ! (logical negation).

Associativi-
Operators ty Type
() lefttoright parentheses
++ -- o+ - ! static_cast <type>(righttoleft unary
)
* / % lefttoright multiplicative
+ - lefttoright additive
<< >> lefttoright insertion/extrac-
tion
< <= > >= lefttoright relational
== = lefttoright equdlity
&& lefttoright logical AND
| lefttoright logical OR
?: right toleft conditional
= = -= *= |/ % righttoleft assignment
, lefttoright ~ comma
Fig. 231 Operator precedence and associativity.

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

18

CHAPTER 2 CONTROL STRUCTURES 19

do/ whi | e structure

Repetition

O whi | e structure

f or structure

t

i f/ el se structure
(double selection)

P
£

Sel ecti on
I?I

(multiple selection)

O swi t ch structure

(single selection)

()
=
2
[S]
>
=
1%}
.

Sequence
O

Fig.2.32 C++'s single-entry/single-exit sequence, selection, and repetition structures.

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

CHAPTER 2 CONTROL STRUCTURES

Rulesfor Forming Structured Programs

1) Begin with the“simplest flowchart” (Fig. 2.34).
2) Any rectangle (action) can be replaced by two rectangles (actions) in sequence.

3) Any rectangle (action) can be replaced by any control structure (sequence, i f,i f/ el se,
swi t ch,whil e,do/ whil e, orfor).

4) Rules2and 3 may be applied as often as you like and in any order.

Fig. 2.33 Rules for forming structured programs.

-
-
Y

Fig.2.34 The simplest flowchart.

Py
S
)
N
Py
S
)
im

R

|

B

H
HHH

Fig. 2.35 Repeatedly applying rule 2 of Fig. 2.33 to the simplest flowchart.

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

20

CHAPTER 2 CONTROL STRUCTURES 21

Fig.2.36 Applying rule 3 of Fig. 2.33 to the simplest flowchart.

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

CHAPTER 2 CONTROL STRUCTURES 22

Stacked building blocks Nested building blocks

L1 |
[]

UL

Overlapping building blocks
(Ilegal in structured programs)

Fig. 2.37 Stacked, nested, and overlapped building blocks.

Fig.2.38 An unstructured flowchart.

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

