
CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 1

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Illustrations List (Main Page)

Fig. 16.1 A possible storage alignment for a variable of type Example
showing an undefined area in memory.

Fig. 16.2 High-performance card shuffling and dealing simulation.
Fig. 16.3 Output for the high-performance card shuffling and dealing

simulation.
Fig. 16.4 The bitwise operators.
Fig. 16.5 Printing an unsigned integer in bits.
Fig. 16.6 Results of combining two bits with the bitwise AND operator &.
Fig. 16.7 Using the bitwise AND, bitwise inclusive OR, bitwise exclusive

OR, and bitwise complement operators.
Fig. 16.8 Output for the program of Fig. 16.7.
Fig. 16.9 Results of combining two bits with the bitwise inclusive

OR operator |.
Fig. 16.10 Results of combining two bits with the bitwise exclusive

OR operator ^.
Fig. 16.11 Using the bitwise shift operators.
Fig. 16.12 The bitwise assignment operators.
Fig. 16.13 Operator precedence and associativity.
Fig. 16.14 Using bit fields to store a deck of cards.
Fig. 16.15 Output of the program in Fig. 16.14.
Fig. 16.16 Summary of the character handling library functions.
Fig. 16.17 Using isdigit, isalpha, isalnum, and isxdigit.
Fig. 16.18 Using islower, isupper, tolower, and toupper.
Fig. 16.19 Using isspace, iscntrl, ispunct, isprint,

and isgraph.
Fig. 16.20 Summary of the string conversion functions of the general

utilities library.
Fig. 16.21 Using atof.
Fig. 16.22 Using atoi.
Fig. 16.23 Using atol.
Fig. 16.24 Using strtod.
Fig. 16.25 Using strtol.
Fig. 16.26 Using strtoul.
Fig. 16.27 Search functions of the string handling library.
Fig. 16.28 Using strchr.
Fig. 16.29 Using strcspn.
Fig. 16.30 Using strpbrk.
Fig. 16.31 Using strrchr.
Fig. 16.32 Using strspn.
Fig. 16.33 Using strstr.
Fig. 16.34 The memory functions of the string handling library.
Fig. 16.35 Using memcpy.
Fig. 16.36 Using memmove.
Fig. 16.37 Using memcmp.
Fig. 16.38 Using memchr.
Fig. 16.39 Using memset.
Fig. 16.40 Another string manipulation function of the string handling library.
Fig. 16.41 Using strerror.

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 2

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 16.1 A possible storage alignment for a variable of type Example showing an undefined area in
memory.

1 // Fig. 16.2: fig16_02.cpp
2 // Card shuffling and dealing program using structures
3 #include <iostream.h>
4 #include <iomanip.h>
5 #include <stdlib.h>
6 #include <time.h>
7
8 struct Card {
9 char *face;

10 char *suit;
11 };
12
13 void fillDeck(Card *, char *[], char *[]);
14 void shuffle(Card *);
15 void deal(Card *);
16
17 int main()
18 {
19 Card deck[52];
20 char *face[] = { "Ace", "Deuce", "Three", "Four", "Five",
21 "Six", "Seven", "Eight", "Nine", "Ten",
22 "Jack", "Queen", "King" };
23 char *suit[] = { "Hearts", "Diamonds", "Clubs", "Spades" };
24
25 srand(time(0)); // randomize

Fig. 16.2 High-performance card shuffling and dealing simulation (part 1 of 2).

26 fillDeck(deck, face, suit);
27 shuffle(deck);
28 deal(deck);
29 return 0;
30 }
31
32 void fillDeck(Card *wDeck, char *wFace[], char *wSuit[])
33 {
34 for (int i = 0; i < 52; i++) {
35 wDeck[i].face = wFace[i % 13];
36 wDeck[i].suit = wSuit[i / 13];
37 }
38 }
39
40 void shuffle(Card *wDeck)
41 {
42 for (int i = 0; i < 52; i++) {
43 int j = rand() % 52;
44 Card temp = wDeck[i];
45 wDeck[i] = wDeck[j];
46 wDeck[j] = temp;
47 }
48 }
49
50 void deal(Card *wDeck)
51 {

01100001

20 1 3Byte

00000000 01100001

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 3

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

52 for (int i = 0; i < 52; i++)
53 cout << setiosflags(ios::right)
54 << setw(5) << wDeck[i].face << " of "
55 << setiosflags(ios::left)
56 << setw(8) << wDeck[i].suit
57 << ((i + 1) % 2 ? '\t' : '\n');
58 }

Fig. 16.2 High-performance card shuffling and dealing simulation (part 2 of 2).

Fig. 16.3 Output for the high-performance card shuffling and dealing simulation.

Eight of Diamonds Ace of Hearts
Eight of Clubs Five of Spades
Seven of Hearts Deuce of Diamonds
 Ace of Clubs Ten of Diamonds
Deuce of Spades Six of Diamonds
Seven of Spades Deuce of Clubs
 Jack of Clubs Ten of Spades
 King of Hearts Jack of Diamonds
Three of Hearts Three of Diamonds
Three of Clubs Nine of Clubs
 Ten of Hearts Deuce of Hearts
 Ten of Clubs Seven of Diamonds
 Six of Clubs Queen of Spades
 Six of Hearts Three of Spades
 Nine of Diamonds Ace of Diamonds
 Jack of Spades Five of Clubs
 King of Diamonds Seven of Clubs
 Nine of Spades Four of Hearts
 Six of Spades Eight of Spades
Queen of Diamonds Five of Diamonds
 Ace of Spades Nine of Hearts
 King of Clubs Five of Hearts
 King of Spades Four of Diamonds
Queen of Hearts Eight of Hearts
 Four of Spades Jack of Hearts
 Four of Clubs Queen of Clubs

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 4

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 16.5: fig16_05.cpp
2 // Printing an unsigned integer in bits
3 #include <iostream.h>
4 #include <iomanip.h>
5
6 void displayBits(unsigned);
7
8 int main()
9 {

10 unsigned x;
11
12 cout << "Enter an unsigned integer: ";
13 cin >> x;
14 displayBits(x);
15 return 0;
16 }
17
18 void displayBits(unsigned value)
19 {
20 unsigned c, displayMask = 1 << 15;
21
22 cout << setw(7) << value << " = ";
23
24 for (c = 1; c <= 16; c++) {
25 cout << (value & displayMask ? '1' : '0');
26 value <<= 1;
27
28 if (c % 8 == 0)
29 cout << ' ';
30 }
31
32 cout << endl;
33 }

Operator Name Description

& bitwise AND The bits in the result are set to 1 if the corresponding bits
in the two operands are both 1.

| bitwise inclusive
OR

The bits in the result are set to 1 if at least one of the cor-
responding bits in the two operands is 1.

^ bitwise exclusive
OR

The bits in the result are set to 1 if exactly one of the corre-
sponding bits in the two operands is 1.

<< left shift Shifts the bits of the first operand left by the number of bits
specified by the second operand; fill from right with 0 bits.

>> right shift with sign
extension

Shifts the bits of the first operand right by the number of
bits specified by the second operand; the method of filling
from the left is machine dependent.

~ one’s complement All 0 bits are set to 1 and all 1 bits are set to 0.

Fig. 16.4 The bitwise operators .

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 5

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 16.5 Printing an unsigned integer in bits.

1 // Fig. 16.7: fig16_07.cpp
2 // Using the bitwise AND, bitwise inclusive OR, bitwise
3 // exclusive OR, and bitwise complement operators.
4 #include <iostream.h>
5 #include <iomanip.h>
6
7 void displayBits(unsigned);
8
9 int main()

10 {
11 unsigned number1, number2, mask, setBits;
12
13 number1 = 65535;
14 mask = 1;

Fig. 16.7 Using the bitwise AND, bitwise inclusive OR, bitwise exclusive OR, and bitwise complement
operators (part 1 of 2).

15 cout << "The result of combining the following\n";
16 displayBits(number1);
17 displayBits(mask);
18 cout << "using the bitwise AND operator & is\n";
19 displayBits(number1 & mask);
20
21 number1 = 15;
22 setBits = 241;
23 cout << "\nThe result of combining the following\n";
24 displayBits(number1);
25 displayBits(setBits);
26 cout << "using the bitwise inclusive OR operator | is\n";
27 displayBits(number1 | setBits);
28
29 number1 = 139;
30 number2 = 199;
31 cout << "\nThe result of combining the following\n";
32 displayBits(number1);
33 displayBits(number2);
34 cout << "using the bitwise exclusive OR operator ^ is\n";
35 displayBits(number1 ^ number2);
36

Enter an unsigned integer: 65000
 65000 = 11111101 11101000

Bit 1 Bit 2 Bit 1 & Bit 2

0 0 0

1 0 0

0 1 0

1 1 1

Fig. 16.6 Results of combining two bits with the bitwise AND operator (&).

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 6

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

37 number1 = 21845;
38 cout << "\nThe one's complement of\n";
39 displayBits(number1);
40 cout << "is" << endl;
41 displayBits(~number1);
42
43 return 0;
44 }
45
46 void displayBits(unsigned value)
47 {
48 unsigned c, displayMask = 1 << 15;
49
50 cout << setw(7) << value << " = ";
51
52 for (c = 1; c <= 16; c++) {
53 cout << (value & displayMask ? '1' : '0');
54 value <<= 1;
55
56 if (c % 8 == 0)
57 cout << ' ';
58 }
59
60 cout << endl;
61 }

Fig. 16.7 Using the bitwise AND, bitwise inclusive OR, bitwise exclusive OR, and bitwise complement
operators (part 2 of 2).

Fig. 16.8 Output for the program of Fig. 16.7.

The result of combining the following
 65535 = 11111111 11111111
 1 = 00000000 00000001
using the bitwise AND operator & is
 1 = 00000000 00000001

The result of combining the following
 15 = 00000000 00001111
 241 = 00000000 11110001
using the bitwise inclusive OR operator | is
 255 = 00000000 11111111

The result of combining the following
 139 = 00000000 10001011
 199 = 00000000 11000111
using the bitwise exclusive OR operator ^ is
 76 = 00000000 01001100

The one's complement of
 21845 = 01010101 01010101
is
 43690 = 10101010 10101010

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 7

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 16.11: fig16_11.cpp
2 // Using the bitwise shift operators
3 #include <iostream.h>
4 #include <iomanip.h>
5
6 void displayBits(unsigned);
7
8 int main()
9 {

10 unsigned number1 = 960;
11
12 cout << "The result of left shifting\n";
13 displayBits(number1);
14 cout << "8 bit positions using the left "
15 << "shift operator is\n";

Fig. 16.11 Using the bitwise shift operators (part 1 of 2).

16 displayBits(number1 << 8);
17 cout << "\nThe result of right shifting\n";
18 displayBits(number1);
19 cout << "8 bit positions using the right "
20 << "shift operator is\n";
21 displayBits(number1 >> 8);
22 return 0;
23 }
24
25 void displayBits(unsigned value)
26 {
27 unsigned c, displayMask = 1 << 15;
28
29 cout << setw(7) << value << " = ";
30
31 for (c = 1; c <= 16; c++) {
32 cout << (value & displayMask ? '1' : '0');

Bit 1 Bit 2 Bit 1 | Bit 2

0 0 0

1 0 1

0 1 1

1 1 1

Fig. 16.9 Results of combining two bits with the bitwise inclusive OR operator (|).

Bit 1 Bit 2 Bit 1 ^ Bit 2

0 0 0

1 0 1

0 1 1

1 1 0

Fig. 16.10 Results of combining two bits with the bitwise exclusive OR operator (^).

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 8

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

33 value <<= 1;
34
35 if (c % 8 == 0)
36 cout << ' ';
37 }
38
39 cout << endl;
40 }

Fig. 16.11 Using the bitwise shift operators (part 2 of 2).

The result of left shifting
 960 = 00000011 11000000
8 bit positions using the left shift operator << is
 49152 = 11000000 00000000

The result of right shifting
 960 = 00000011 11000000
8 bit positions using the right shift operator >> is
 3 = 00000000 00000011

Bitwise assignment operators

&= Bitwise AND assignment operator.

|= Bitwise inclusive OR assignment operator.

^= Bitwise exclusive OR assignment operator.

<<= Left shift assignment operator.

>>= Right shift with sign extension assignment operator.

Fig. 16.12 The bitwise assignment operators.

Operators
Associa-
tivity Type

:: (unary; right to left) :: (binary; left to right) left to right highest

() [] . -> left to right highest

++
*

--
&

+
ne
w

- ! delete sizeof right to left unary

* / % left to right multiplicative

+ - left to right additive

<< >> left to right shifting

< <= > >= left to right relational

== != left to right equality

& left to right bitwise AND

^ left to right bitwise XOR

| left to right bitwise OR

Fig. 16.13 Operator precedence and associativity (part 1 of 2).

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 9

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 16.14: fig16_14.cpp
2 // Example using a bit field
3 #include <iostream.h>
4 #include <iomanip.h>
5
6 struct BitCard {
7 unsigned face : 4;
8 unsigned suit : 2;
9 unsigned color : 1;

10 };
11
12 void fillDeck(BitCard *);
13 void deal(BitCard *);
14
15 int main()
16 {
17 BitCard deck[52];
18
19 fillDeck(deck);
20 deal(deck);
21 return 0;
22 }
23
24 void fillDeck(BitCard *wDeck)
25 {
26 for (int i = 0; i <= 51; i++) {
27 wDeck[i].face = i % 13;
28 wDeck[i].suit = i / 13;
29 wDeck[i].color = i / 26;
30 }
31 }
32
33 // Output cards in two column format. Cards 0-25 subscripted
34 // with k1 (column 1). Cards 26-51 subscripted k2 in (column 2.)
35 void deal(BitCard *wDeck)
36 {
37 for (int k1 = 0, k2 = k1 + 26; k1 <= 25; k1++, k2++) {
38 cout << "Card:" << setw(3) << wDeck[k1].face
39 << " Suit:" << setw(2) << wDeck[k1].suit
40 << " Color:" << setw(2) << wDeck[k1].color
41 << " " << "Card:" << setw(3) << wDeck[k2].face
42 << " Suit:" << setw(2) << wDeck[k2].suit
43 << " Color:" << setw(2) << wDeck[k2].color

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

=
&=

+=
|=

-=
^=

*=
<<
=

/=
>>
=

%= right to left assignment

, left to right comma

Operators
Associa-
tivity Type

Fig. 16.13 Operator precedence and associativity (part 2 of 2).

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 10

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

44 << endl;
45 }
46 }

Fig. 16.14 Using bit fields to store a deck of cards.

Fig. 16.15 Output of the program in Fig. 16.14.

Card: 0 Suit: 0 Color: 0 Card: 0 Suit: 2 Color: 1
Card: 1 Suit: 0 Color: 0 Card: 1 Suit: 2 Color: 1
Card: 2 Suit: 0 Color: 0 Card: 2 Suit: 2 Color: 1
Card: 3 Suit: 0 Color: 0 Card: 3 Suit: 2 Color: 1
Card: 4 Suit: 0 Color: 0 Card: 4 Suit: 2 Color: 1
Card: 5 Suit: 0 Color: 0 Card: 5 Suit: 2 Color: 1
Card: 6 Suit: 0 Color: 0 Card: 6 Suit: 2 Color: 1
Card: 7 Suit: 0 Color: 0 Card: 7 Suit: 2 Color: 1
Card: 8 Suit: 0 Color: 0 Card: 8 Suit: 2 Color: 1
Card: 9 Suit: 0 Color: 0 Card: 9 Suit: 2 Color: 1
Card: 10 Suit: 0 Color: 0 Card: 10 Suit: 2 Color: 1
Card: 11 Suit: 0 Color: 0 Card: 11 Suit: 2 Color: 1
Card: 12 Suit: 0 Color: 0 Card: 12 Suit: 2 Color: 1
Card: 0 Suit: 1 Color: 0 Card: 0 Suit: 3 Color: 1
Card: 1 Suit: 1 Color: 0 Card: 1 Suit: 3 Color: 1
Card: 2 Suit: 1 Color: 0 Card: 2 Suit: 3 Color: 1
Card: 3 Suit: 1 Color: 0 Card: 3 Suit: 3 Color: 1
Card: 4 Suit: 1 Color: 0 Card: 4 Suit: 3 Color: 1
Card: 5 Suit: 1 Color: 0 Card: 5 Suit: 3 Color: 1
Card: 6 Suit: 1 Color: 0 Card: 6 Suit: 3 Color: 1
Card: 7 Suit: 1 Color: 0 Card: 7 Suit: 3 Color: 1
Card: 8 Suit: 1 Color: 0 Card: 8 Suit: 3 Color: 1
Card: 9 Suit: 1 Color: 0 Card: 9 Suit: 3 Color: 1
Card: 10 Suit: 1 Color: 0 Card: 10 Suit: 3 Color: 1
Card: 11 Suit: 1 Color: 0 Card: 11 Suit: 3 Color: 1
Card: 12 Suit: 1 Color: 0 Card: 12 Suit: 3 Color: 1

Prototype Description

int isdigit(int c) Returns true if c is a digit, and false otherwise.

int isalpha(int c) Returns true if c is a letter, and false otherwise.

int isalnum(int c) Returns true if c is a digit or a letter, and false other-
wise.

int isxdigit(int c) Returns true if c is a hexadecimal digit character, and
false otherwise. (See Appendix C, “Number Systems,” for
a detailed explanation of binary numbers, octal numbers,
decimal numbers and hexadecimal numbers.)

int islower(int c) Returns true if c is a lowercase letter, and false other-
wise.

int isupper(int c) Returns true if c is an uppercase letter; false otherwise.

int tolower(int c) If c is an uppercase letter, tolower returns c as a lowercase
letter. Otherwise, tolower returns the argument
unchanged.

Fig. 16.16 Summary of the character handling library functions (part 1 of 2).

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 11

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 16.17: fig16_17.cpp
2 // Using functions isdigit, isalpha, isalnum, and isxdigit
3 #include <iostream.h>
4 #include <ctype.h>
5
6 int main()
7 {
8 cout << "According to isdigit:\n"
9 << (isdigit('8') ? "8 is a" : "8 is not a")

10 << " digit\n"
11 << (isdigit('#') ? "# is a" : "# is not a")
12 << " digit\n";
13 cout << "\nAccording to isalpha:\n"
14 << (isalpha('A') ? "A is a" : "A is not a")
15 << " letter\n"

Fig. 16.17 Using isdigit, isalpha, isalnum, and isxdigit (part 1 of 2).

16 << (isalpha('b') ? "b is a" : "b is not a")
17 << " letter\n"
18 << (isalpha('&') ? "& is a" : "& is not a")
19 << " letter\n"
20 << (isalpha('4') ? "4 is a" : "4 is not a")
21 << " letter\n";
22 cout << "\nAccording to isalnum:\n"
23 << (isalnum('A') ? "A is a" : "A is not a")
24 << " digit or a letter\n"
25 << (isalnum('8') ? "8 is a" : "8 is not a")
26 << " digit or a letter\n"
27 << (isalnum('#') ? "# is a" : "# is not a")
28 << " digit or a letter\n";
29 cout << "\nAccording to isxdigit:\n"
30 << (isxdigit('F') ? "F is a" : "F is not a")
31 << " hexadecimal digit\n"
32 << (isxdigit('J') ? "J is a" : "J is not a")
33 << " hexadecimal digit\n"

int toupper(int c) If c is a lowercase letter, toupper returns c as an uppercase
letter. Otherwise, toupper returns the argument
unchanged.

int isspace(int c) Returns true if c is a white-space character—newline
('\n'), space (' '), form feed ('\f'), carriage return
('\r'), horizontal tab ('\t'), or vertical tab ('\v')—and
false otherwise

int iscntrl(int c) Returns true if c is a control character, and false other-
wise.

int ispunct(int c) Returns true if c is a printing character other than a space,
a digit, or a letter, and false otherwise.

int isprint(int c) Returns true value if c is a printing character including
space (' '), and false otherwise.

int isgraph(int c) Returns true if c is a printing character other than space
(' '), and false otherwise.

Prototype Description

Fig. 16.16 Summary of the character handling library functions (part 2 of 2).

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 12

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

34 << (isxdigit('7') ? "7 is a" : "7 is not a")
35 << " hexadecimal digit\n"
36 << (isxdigit('$') ? "$ is a" : "$ is not a")
37 << " hexadecimal digit\n"
38 << (isxdigit('f') ? "f is a" : "f is not a")
39 << " hexadecimal digit" << endl;
40 return 0;
41 }

Fig. 16.17 Using isdigit, isalpha, isalnum, and isxdigit (part 2 of 2).

1 // Fig. 16.18: fig16_18.cpp
2 // Using functions islower, isupper, tolower, toupper
3 #include <iostream.h>
4 #include <ctype.h>
5
6 int main()
7 {
8 cout << "According to islower:\n"
9 << (islower('p') ? "p is a" : "p is not a")

10 << " lowercase letter\n"
11 << (islower('P') ? "P is a" : "P is not a")
12 << " lowercase letter\n"
13 << (islower('5') ? "5 is a" : "5 is not a")
14 << " lowercase letter\n"
15 << (islower('!') ? "! is a" : "! is not a")
16 << " lowercase letter\n";
17 cout << "\nAccording to isupper:\n"
18 << (isupper('D') ? "D is an" : "D is not an")
19 << " uppercase letter\n"
20 << (isupper('d') ? "d is an" : "d is not an")
21 << " uppercase letter\n"
22 << (isupper('8') ? "8 is an" : "8 is not an")
23 << " uppercase letter\n"
24 << (isupper('$') ? "$ is an" : "$ is not an")
25 << " uppercase letter\n";
26 cout << "\nu converted to uppercase is "
27 << (char) toupper('u')
28 << "\n7 converted to uppercase is "

According to isdigit:
8 is a digit
is not a digit

According to isalpha:
A is a letter
b is a letter
& is not a letter
4 is not a letter

According to isalnum:
A is a digit or a letter
8 is a digit or a letter
is not a digit or a letter

According to isxdigit:
F is a hexadecimal digit
J is not a hexadecimal digit
7 is a hexadecimal digit
$ is not a hexadecimal digit
f is a hexadecimal digit

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 13

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

29 << (char) toupper('7')

Fig. 16.18 Using islower, isupper, tolower, and toupper (part 1 of 2).

30 << "\n$ converted to uppercase is "
31 << (char) toupper('$')
32 << "\nL converted to lowercase is "
33 << (char) tolower('L') << endl;
34
35 return 0;
36 }

Fig. 16.18 Using islower, isupper, tolower, and toupper (part 2 of 2).

1 // Fig. 16.19: fig16_19.cpp
2 // Using functions isspace, iscntrl, ispunct, isprint, isgraph
3 #include <iostream.h>
4 #include <ctype.h>
5
6 int main()
7 {

Fig. 16.19 Using isspace, iscntrl, ispunct, isprint, and isgraph (part 1 of 3).

8 cout << "According to isspace:\nNewline "
9 << (isspace('\n') ? "is a" : "is not a")

10 << " whitespace character\nHorizontal tab "
11 << (isspace('\t') ? "is a" : "is not a")
12 << " whitespace character\n"
13 << (isspace('%') ? "% is a" : "% is not a")
14 << " whitespace character\n";
15 cout << "\nAccording to iscntrl:\nNewline "
16 << (iscntrl('\n') ? "is a" : "is not a")
17 << " control character\n"
18 << (iscntrl('$') ? "$ is a" : "$ is not a")
19 << " control character\n";
20 cout << "\nAccording to ispunct:\n"
21 << (ispunct(';') ? "; is a" : "; is not a")
22 << " punctuation character\n"
23 << (ispunct('Y') ? "Y is a" : "Y is not a")
24 << " punctuation character\n"
25 << (ispunct('#') ? "# is a" : "# is not a")
26 << " punctuation character\n";

According to islower:
p is a lowercase letter
P is not a lowercase letter
5 is not a lowercase letter
! is not a lowercase letter

According to isupper:
D is an uppercase letter
d is not an uppercase letter
8 is not an uppercase letter
$ is not an uppercase letter

u converted to uppercase is U
7 converted to uppercase is 7
$ converted to uppercase is $
L converted to lowercase is l

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 14

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

27 cout << "\nAccording to isprint:\n"
28 << (isprint('$') ? "$ is a" : "$ is not a")
29 << " printing character\nAlert "
30 << (isprint('\a') ? "is a" : "is not a")
31 << " printing character\n";
32 cout << "\nAccording to isgraph:\n"
33 << (isgraph('Q') ? "Q is a" : "Q is not a")
34 << " printing character other than a space\nSpace "
35 << (isgraph(' ') ? "is a" : "is not a")
36 << " printing character other than a space" << endl;
37
38 return 0;
39 }

Fig. 16.19 Using isspace, iscntrl, ispunct, isprint, and isgraph (part 2 of 3).

Fig. 16.19 Using isspace, iscntrl, ispunct, isprint, and isgraph (part 3 of 3).

According to isspace:
Newline is a whitespace character
Horizontal tab is a whitespace character
% is not a whitespace character

According to iscntrl:
Newline is a control character
$ is not a control character

According to ispunct:
; is a punctuation character
Y is not a punctuation character
is a punctuation character

According to isprint:
$ is a printing character
Alert is not a printing character

According to isgraph:
Q is a printing character other than a space
Space is not a printing character other than a space

Prototype Description

double atof(const char *nPtr) Converts the string nPtr to double.

int atoi(const char *nPtr) Converts the string nPtr to int.

long atol(const char *nPtr) Converts the string nPtr to long int.

double strtod(const char *nPtr, char **endPtr)

Converts the string nPtr to double.

long strtol(const char *nPtr, char **endPtr, int base)

Converts the string nPtr to long.

unsigned long strtoul(const char *nPtr, char **endPtr, int base)

Converts the string nPtr to unsigned
long.

Fig. 16.20 Summary of the string conversion functions of the general utilities library.

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 15

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 16.21: fig16_21.cpp
2 // Using atof
3 #include <iostream.h>
4 #include <stdlib.h>
5
6 int main()
7 {
8 double d = atof("99.0");
9

10 cout << "The string \"99.0\" converted to double is "
11 << d << "\nThe converted value divided by 2 is "
12 << d / 2.0 << endl;
13 return 0;
14 }

Fig. 16.21 Using atof.

1 // Fig. 16.22: fig16_22.cpp
2 // Using atoi
3 #include <iostream.h>
4 #include <stdlib.h>
5
6 int main()
7 {
8 int i = atoi("2593");
9

10 cout << "The string \"2593\" converted to int is " << i
11 << "\nThe converted value minus 593 is " << i - 593
12 << endl;
13 return 0;
14 }

Fig. 16.22 Using atoi.

1 // Fig. 16.23: fig16_23.cpp
2 // Using atol
3 #include <iostream.h>
4 #include <stdlib.h>
5
6 int main()
7 {
8 long l = atol("1000000");
9

10 cout << "The string \"1000000\" converted to long is " << l
11 << "\nThe converted value divided by 2 is " << l / 2
12 << endl;
13 return 0;
14 }

The string "99.0" converted to double is 99
The converted value divided by 2 is 49.5

The string "2593" converted to int is 2593
The converted value minus 593 is 2000

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 16

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 16.23 Using atol.

1 // Fig. 16.24: fig16_24.cpp
2 // Using strtod
3 #include <iostream.h>
4 #include <stdlib.h>
5
6 int main()
7 {
8 double d;
9 char *string = "51.2% are admitted", *stringPtr;

Fig. 16.24 Using strtod (part 1 of 2).

10
11 d = strtod(string, &stringPtr);
12 cout << "The string \"" << string
13 << "\" is converted to the\ndouble value " << d
14 << " and the string \"" << stringPtr << "\"" << endl;
15 return 0;
16 }

Fig. 16.24 Using strtod (part 2 of 2).

1 // Fig. 16.25: fig16_25.cpp
2 // Using strtol
3 #include <iostream.h>
4 #include <stdlib.h>
5
6 int main()
7 {
8 long x;
9 char *string = "-1234567abc", *remainderPtr;

Fig. 16.25 Using strtol (part 1 of 2).

10
11 x = strtol(string, &remainderPtr, 0);
12 cout << "The original string is \"" << string
13 << "\"\nThe converted value is " << x
14 << "\nThe remainder of the original string is \""
15 << remainderPtr
16 << "\"\nThe converted value plus 567 is "
17 << x + 567 << endl;
18 return 0;
19 }

The string "1000000" converted to long int is 1000000
The converted value divided by 2 is 500000

The string "51.2% are admitted" is converted to the
double value 51.2 and the string "% are admitted"

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 17

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 16.25 Using strtol (part 2 of 2).

1 // Fig. 16.26: fig16_26.cpp
2 // Using strtoul
3 #include <iostream.h>
4 #include <stdlib.h>
5
6 int main()
7 {
8 unsigned long x;
9 char *string = "1234567abc", *remainderPtr;

10
11 x = strtoul(string, &remainderPtr, 0);
12 cout << "The original string is \"" << string
13 << "\"\nThe converted value is " << x
14 << "\nThe remainder of the original string is \""
15 << remainderPtr
16 << "\"\nThe converted value minus 567 is "
17 << x - 567 << endl;
18 return 0;
19 }

Fig. 16.26 Using strtoul (part 1 of 2).

Fig. 16.26 Using strtoul (part 2 of 2).

The original string is "-1234567abc"
The converted value is -1234567
The remainder of the original string is "abc"
The converted value plus 567 is -1234000

The original string is "1234567abc"
The converted value is 1234567
The remainder of the original string is "abc"
The converted value minus 567 is 1234000

Prototype Description

char *strchr(const char *s, int c)

Locates the first occurrence of character c in string s. If c is found, a
pointer to c in s is returned. Otherwise, a NULL pointer is returned.

size_t strcspn(const char *s1, const char *s2)

Determines and returns the length of the initial segment of string s1
consisting of characters not contained in string s2.

size_t strspn(const char *s1, const char *s2)

Determines and returns the length of the initial segment of string s1
consisting only of characters contained in string s2.

char *strpbrk(const char *s1, const char *s2)

Fig. 16.27 Search functions of the string handling library.

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 18

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 16.28: fig16_28.cpp
2 // Using strchr
3 #include <iostream.h>
4 #include <string.h>
5
6 int main()
7 {
8 char *string = "This is a test";
9 char character1 = 'a', character2 = 'z';

10
11 if (strchr(string, character1) != NULL)
12 cout << '\'' << character1 << "' was found in \""
13 << string << "\".\n";
14 else
15 cout << '\'' << character1 << "' was not found in \""
16 << string << "\".\n";
17
18 if (strchr(string, character2) != NULL)
19 cout << '\'' << character2 << "' was found in \""
20 << string << "\".\n";
21 else
22 cout << '\'' << character2 << "' was not found in \""
23 << string << "\"." << endl;
24 return 0;
25 }

Fig. 16.28 Using strchr.

1 // Fig. 16.29: fig16_29.cpp
2 // Using strcspn
3 #include <iostream.h>
4 #include <string.h>
5
6 int main()
7 {
8 char *string1 = "The value is 3.14159";
9 char *string2 = "1234567890";

Locates the first occurrence in string s1 of any character in string s2.
If a character from string s2 is found, a pointer to the character in
string s1 is returned. Otherwise a NULL pointer is returned.

char *strrchr(const char *s, int c)

Locates the last occurrence of c in string s. If c is found, a pointer to
c in string s is returned. Otherwise, a NULL pointer is returned.

char *strstr(const char *s1, const char *s2)

Locates the first occurrence in string s1 of string s2. If the string is
found, a pointer to the string in s1 is returned. Otherwise, a NULL
pointer is returned.

'a' was found in "This is a test".
'z' was not found in "This is a test".

Prototype Description

Fig. 16.27 Search functions of the string handling library.

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 19

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

10
11 cout << "string1 = " << string1 << "\nstring2 = " << string2
12 << "\n\nThe length of the initial segment of string1"
13 << "\ncontaining no characters from string2 = "
14 << strcspn(string1, string2) << endl;
15 return 0;
16 }

Fig. 16.29 Using strcspn.

1 // Fig. 16.30: fig16_30.cpp
2 // Using strpbrk
3 #include <iostream.h>
4 #include <string.h>
5
6 int main()
7 {
8 char *string1 = "This is a test";
9 char *string2 = "beware";

10
11 cout << "Of the characters in \"" << string2 << "\"\n'"
12 << *strpbrk(string1, string2) << '\''
13 << " is the first character to appear in\n\""
14 << string1 << '\"' << endl;
15 return 0;
16 }

Fig. 16.30 Using strpbrk.

1 // Fig. 16.31: fig16_31.cpp
2 // Using strrchr
3 #include <iostream.h>
4 #include <string.h>
5
6 int main()
7 {
8 char *string1 = "A zoo has many animals including zebras";
9 int c = 'z';

10
11 cout << "The remainder of string1 beginning with the\n"
12 << "last occurrence of character '" << (char) c
13 << "' is: \"" << strrchr(string1, c) << '\"' << endl;
14 return 0;
15 }

string1 = The value is 3.14159
string2 = 1234567890

The length of the initial segment of string1
containing no characters from string2 = 13

Of the characters in "beware"
'a' is the first character to appear in
"This is a test"

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 20

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 16.31 Using strrchr.

1 // Fig. 16.32: fig16_32.cpp
2 // Using strspn
3 #include <iostream.h>
4 #include <string.h>
5
6 int main()
7 {
8 char *string1 = "The value is 3.14159";
9 char *string2 = "aehilsTuv ";

10
11 cout << "string1 = " << string1
12 << "\nstring2 = " << string2
13 << "\n\nThe length of the initial segment of string1\n"
14 << "containing only characters from string2 = "
15 << strspn(string1, string2) << endl;
16 return 0;
17 }

Fig. 16.32 Using strspn (part 1 of 2).

Fig. 16.32 Using strspn (part 2 of 2).

1 // Fig. 16.33: fig16_33.cpp
2 // Using strstr
3 #include <iostream.h>
4 #include <string.h>
5
6 int main()
7 {
8 char *string1 = "abcdefabcdef";
9 char *string2 = "def";

10
11 cout << "string1 = " << string1 << "\nstring2 = " << string2
12 << "\n\nThe remainder of string1 beginning with the\n"
13 << "first occurrence of string2 is: "
14 << strstr(string1, string2) << endl;
15 return 0;
16 }

The remainder of string1 beginning with the
last occurrence of character 'z' is: "zebras"

string1 = The value is 3.14159
string2 = aehilsTuv

The length of the initial segment of string1
containing only characters from string2 = 13

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 21

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 16.33 Using strstr.

1 // Fig. 16.35: fig16_35.cpp
2 // Using memcpy
3 #include <iostream.h>
4 #include <string.h>
5
6 int main()
7 {
8 char s1[17], s2[] = "Copy this string";
9

10 memcpy(s1, s2, 17);
11 cout << "After s2 is copied into s1 with memcpy,\n"
12 << "s1 contains \"" << s1 << '\"' << endl;
13 return 0;
14 }

string1 = abcdefabcdef
string2 = def

The remainder of string1 beginning with the
first occurrence of string2 is: defabcdef

Prototype Description

void *memcpy(void *s1, const void *s2, size_t n)

Copies n characters from the object pointed to by s2 into the object
pointed to by s1. A pointer to the resulting object is returned.

void *memmove(void *s1, const void *s2, size_t n)

Copies n characters from the object pointed to by s2 into the object
pointed to by s1. The copy is performed as if the characters are first
copied from the object pointed to by s2 into a temporary array, then
from the temporary array into the object pointed to by s1. A pointer
to the resulting object is returned.

int memcmp(const void *s1, const void *s2, size_t n)

Compares the first n characters of the objects pointed to by s1 and
s2. The function returns 0, less than 0, or greater than 0 if s1 is
equal to, less than, or greater than s2.

void *memchr(const void *s, int c, size_t n)

Locates the first occurrence of c (converted to unsigned char) in
the first n characters of the object pointed to by s. If c is found, a
pointer to c in the object is returned. Otherwise, 0 is returned.

void *memset(void *s, int c, size_t n)

Copies c (converted to unsigned char) into the first n characters
of the object pointed to by s. A pointer to the result is returned.

Fig. 16.34 The memory functions of the string handling library.

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 22

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 16.35 Using memcpy.

1 // Fig. 16.36: fig16_36.cpp
2 // Using memmove
3 #include <iostream.h>
4 #include <string.h>
5
6 int main()
7 {
8 char x[] = "Home Sweet Home";
9

10 cout << "The string in array x before memmove is: " << x;
11 cout << "\nThe string in array x after memmove is: "
12 << (char *) memmove(x, &x[5], 10) << endl;
13 return 0;
14 }

Fig. 16.36 Using memmove.

1 // Fig. 16.37: fig16_37.cpp
2 // Using memcmp
3 #include <iostream.h>
4 #include <iomanip.h>
5 #include <string.h>
6
7 int main()
8 {
9 char s1[] = "ABCDEFG", s2[] = "ABCDXYZ";

10
11 cout << "s1 = " << s1 << "\ns2 = " << s2 << endl
12 << "\nmemcmp(s1, s2, 4) = " << setw(3)
13 << memcmp(s1, s2, 4) << "\nmemcmp(s1, s2, 7) = "
14 << setw(3) << memcmp(s1, s2, 7)
15 << "\nmemcmp(s2, s1, 7) = " << setw(3)
16 << memcmp(s2, s1, 7) << endl;
17 return 0;
18 }

Fig. 16.37 Using memcmp.

After s2 is copied into s1 with memcpy,
s1 contains "Copy this string"

The string in array x before memmove is: Home Sweet Home
The string in array x after memmove is: Sweet Home Home

s1 = ABCDEFG
s2 = ABCDXYZ

memcmp(s1, s2, 4) = 0
memcmp(s1, s2, 7) = -19
memcmp(s2, s1, 7) = 19

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 23

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 16.38: fig16_38.cpp
2 // Using memchr
3 #include <iostream.h>
4 #include <string.h>
5
6 int main()
7 {
8 char *s = "This is a string";

Fig. 16.38 Using memchr (part 1 of 2).

9
10 cout << "The remainder of s after character 'r' "
11 << "is found is \"" << (char *) memchr(s, 'r', 16)
12 << '\"' << endl;
13 return 0;
14 }

Fig. 16.38 Using memchr (part 2 of 2).

1 // Fig. 16.39: fig16_39.cpp
2 // Using memset
3 #include <iostream.h>
4 #include <string.h>
5
6 int main()
7 {
8 char string1[15] = "BBBBBBBBBBBBBB";
9

10 cout << "string1 = " << string1 << endl;
11 cout << "string1 after memset = "
12 << (char *) memset(string1, 'b', 7) << endl;
13 return 0;
14 }

Fig. 16.39 Using memset.

The remainder of s after character 'r' is found is "ring"

string1 = BBBBBBBBBBBBBB
string1 after memset = bbbbbbbBBBBBBB

Prototype Description

char *strerror(int errornum)

Maps errornum into a full text string in a system dependent man-
ner. A pointer to the string is returned.

Fig. 16.40 Another string manipulation function of the string handling library.

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 24

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 16.41: fig16_41.cpp
2 // Using strerror
3 #include <iostream.h>
4 #include <string.h>
5
6 int main()
7 {
8 cout << strerror(2) << endl;
9 return 0;

10 }

Fig. 16.41 Using strerror.

No such file or directory

