
CHAPTER 9 INHERITANCE 1

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Illustrations List (Main Page)

Fig. 9.1 Some simple inheritance examples.
Fig. 9.2 An inheritance hierarchy for university community members.
Fig. 9.3 A portion of a Shape class hierarchy.
Fig. 9.4 Casting base-class pointers to derived-class pointers.
Fig. 9.5 Overriding a base-class member function in a derived class.
Fig. 9.6 Summary of base-class member accessibility in a derived class.
Fig. 9.7 Order in which base-class and derived-class constructors and destructors are called.
Fig. 9.8 Demonstrating class Point.
Fig. 9.9 Demonstrating class Circle.
Fig. 9.10 Demonstrating class Cylinder.
Fig. 9.11 Demonstrating multiple inheritance.

CHAPTER 9 INHERITANCE 2

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

her faculty members or staff mem bers . Facu lty mem bers are either adminis tr ato rs (such as d ean s and dep artment chairpersons) or teaching faculty. This yields th e inh eritance h ier archy shown in Fig . 9.2. Note that som e admin is trators also teach classes , so we hav e u sed multiple inheritance to form class AdministratorTeacher. Because s tuden ts often work fo r th eir u nivers ities , and b ecause emplo yees often take cour ses , it wou ld also be reaso nable to u se multiple in heritance to cr eate a class called EmployeeStudent.

Fig. 9.2 An inheritance hierarchy for university community members.

Fig. 9.3 A portion of a Shape class hierarchy.

Base class Derived classes

Student GraduateStudent
UndergraduateStudent

Shape Circle
Triangle
Rectangle

Loan CarLoan
HomeImprovementLoan
MortgageLoan

Employee FacultyMember
StaffMember

Account CheckingAccount
SavingsAccount

Fig. 9.1 Some simple inheritance examples.

CommunityMember

Employee Student

Faculty Staff (single inheritance)

Administrator Teacher (single inheritance)

Alumnus (single inheritance)

AdministratorTeacher (multiple inheritance)

Shape

TwoDimensionalShape ThreeDimensionalShape

Circle Square Triangle Sphere Cube Tetrahedron

CHAPTER 9 INHERITANCE 3

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 9.4: point.h
2 // Definition of class Point
3 #ifndef POINT_H
4 #define POINT_H
5
6 class Point {
7 friend ostream &operator<<(ostream &, const Point &);
8 public:
9 Point(int = 0, int = 0); // default constructor

10 void setPoint(int, int); // set coordinates
11 int getX() const { return x; } // get x coordinate
12 int getY() const { return y; } // get y coordinate
13 protected: // accessible by derived classes
14 int x, y; // x and y coordinates of the Point
15 };
16
17 #endif

Fig. 9.4 Casting base-class pointers to derived-class pointers (part 1 of 6).

18 // Fig. 9.4: point.cpp
19 // Member functions for class Point
20 #include <iostream.h>
21 #include "point.h"
22
23 // Constructor for class Point
24 Point::Point(int a, int b) { setPoint(a, b); }
25
26 // Set x and y coordinates of Point
27 void Point::setPoint(int a, int b)
28 {
29 x = a;
30 y = b;
31 }
32
33 // Output Point (with overloaded stream insertion operator)
34 ostream &operator<<(ostream &output, const Point &p)
35 {
36 output << '[' << p.x << ", " << p.y << ']';
37
38 return output; // enables cascaded calls
39 }

Fig. 9.4 Casting base-class pointers to derived-class pointers (part 2 of 6).

40 // Fig. 9.4: circle.h
41 // Definition of class Circle
42 #ifndef CIRCLE_H
43 #define CIRCLE_H
44
45 #include <iostream.h>
46 #include <iomanip.h>
47 #include "point.h"
48
49 class Circle : public Point { // Circle inherits from Point
50 friend ostream &operator<<(ostream &, const Circle &);
51 public:
52 // default constructor
53 Circle(double r = 0.0, int x = 0, int y = 0);
54
55 void setRadius(double); // set radius
56 double getRadius() const; // return radius
57 double area() const; // calculate area

CHAPTER 9 INHERITANCE 4

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

58 protected:
59 double radius;
60 };
61
62 #endif

Fig. 9.4 Casting base-class pointers to derived-class pointers (part 3 of 6).

63 // Fig. 9.4: circle.cpp
64 // Member function definitions for class Circle
65 #include "circle.h"
66
67 // Constructor for Circle calls constructor for Point
68 // with a member initializer then initializes radius.
69 Circle::Circle(double r, int a, int b)
70 : Point(a, b) // call base-class constructor
71 { setRadius(r); }
72
73 // Set radius of Circle
74 void Circle::setRadius(double r)
75 { radius = (r >= 0 ? r : 0); }
76
77 // Get radius of Circle
78 double Circle::getRadius() const { return radius; }
79
80 // Calculate area of Circle
81 double Circle::area() const
82 { return 3.14159 * radius * radius; }
83
84 // Output a Circle in the form:
85 // Center = [x, y]; Radius = #.##
86 ostream &operator<<(ostream &output, const Circle &c)
87 {
88 output << "Center = " << static_cast< Point >(c)
89 << "; Radius = "
90 << setiosflags(ios::fixed | ios::showpoint)
91 << setprecision(2) << c.radius;
92
93 return output; // enables cascaded calls
94 }

Fig. 9.4 Casting base-class pointers to derived-class pointers (part 4 of 6).

95 // Fig. 9.4: fig09_04.cpp
96 // Casting base-class pointers to derived-class pointers
97 #include <iostream.h>
98 #include <iomanip.h>
99 #include "point.h"
100 #include "circle.h"
101
102 int main()
103 {
104 Point *pointPtr = 0, p(30, 50);
105 Circle *circlePtr = 0, c(2.7, 120, 89);
106
107 cout << "Point p: " << p << "\nCircle c: " << c << '\n';
108
109 // Treat a Circle as a Point (see only the base class part)
110 pointPtr = &c; // assign address of Circle to pointPtr
111 cout << "\nCircle c (via *pointPtr): "
112 << *pointPtr << '\n';
113
114 // Treat a Circle as a Circle (with some casting)

CHAPTER 9 INHERITANCE 5

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

115 pointPtr = &c; // assign address of Circle to pointPtr
116
117 // cast base-class pointer to derived-class pointer
118 circlePtr = static_cast< Circle * >(pointPtr);
119 cout << "\nCircle c (via *circlePtr):\n" << *circlePtr
120 << "\nArea of c (via circlePtr): "
121 << circlePtr->area() << '\n';
122
123 // DANGEROUS: Treat a Point as a Circle
124 pointPtr = &p; // assign address of Point to pointPtr
125
126 // cast base-class pointer to derived-class pointer
127 circlePtr = static_cast< Circle * >(pointPtr);
128 cout << "\nPoint p (via *circlePtr):\n" << *circlePtr
129 << "\nArea of object circlePtr points to: "
130 << circlePtr->area() << endl;
131 return 0;
132 }

Fig. 9.4 Casting base-class pointers to derived-class pointers (part 5 of 6).

Fig. 9.4 Casting base-class pointers to derived-class pointers (part 6 of 6).

1 // Fig. 9.5: employ.h
2 // Definition of class Employee
3 #ifndef EMPLOY_H
4 #define EMPLOY_H
5
6 class Employee {
7 public:
8 Employee(const char *, const char *); // constructor
9 void print() const; // output first and last name

10 ~Employee(); // destructor
11 private:
12 char *firstName; // dynamically allocated string
13 char *lastName; // dynamically allocated string
14 };
15
16 #endif

Fig. 9.5 Overriding a base-class member function in a derived class (part 1 of 5).

Point p: [30, 50]
Circle c: Center = [120, 89]; Radius = 2.70

Circle c (via *pointPtr): [120, 89]

Circle c (via *circlePtr):
Center = [120, 89]; Radius = 2.70
Area of c (via circlePtr): 22.90

Point p (via *circlePtr):
Center = [30, 50]; Radius = 0.00
Area of object circlePtr points to: 0.00

CHAPTER 9 INHERITANCE 6

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

17 // Fig. 9.5: employ.cpp
18 // Member function definitions for class Employee
19 #include <string.h>
20 #include <iostream.h>
21 #include <assert.h>
22 #include "employ.h"
23
24 // Constructor dynamically allocates space for the
25 // first and last name and uses strcpy to copy
26 // the first and last names into the object.
27 Employee::Employee(const char *first, const char *last)
28 {
29 firstName = new char[strlen(first) + 1];
30 assert(firstName != 0); // terminate if not allocated
31 strcpy(firstName, first);
32
33 lastName = new char[strlen(last) + 1];
34 assert(lastName != 0); // terminate if not allocated
35 strcpy(lastName, last);
36 }
37
38 // Output employee name
39 void Employee::print() const
40 { cout << firstName << ' ' << lastName; }
41
42 // Destructor deallocates dynamically allocated memory
43 Employee::~Employee()
44 {
45 delete [] firstName; // reclaim dynamic memory
46 delete [] lastName; // reclaim dynamic memory
47 }

Fig. 9.5 Overriding a base-class member function in a derived class (part 2 of 5).

48 // Fig. 9.5: hourly.h
49 // Definition of class HourlyWorker
50 #ifndef HOURLY_H
51 #define HOURLY_H
52
53 #include "employ.h"
54
55 class HourlyWorker : public Employee {
56 public:
57 HourlyWorker(const char*, const char*, double, double);
58 double getPay() const; // calculate and return salary
59 void print() const; // overridden base-class print
60 private:
61 double wage; // wage per hour
62 double hours; // hours worked for week
63 };
64
65 #endif

Fig. 9.5 Overriding a base-class member function in a derived class (part 3 of 5).

CHAPTER 9 INHERITANCE 7

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

66 // Fig. 9.5: hourly.cpp
67 // Member function definitions for class HourlyWorker
68 #include <iostream.h>
69 #include <iomanip.h>
70 #include "hourly.h"
71
72 // Constructor for class HourlyWorker
73 HourlyWorker::HourlyWorker(const char *first,
74 const char *last,
75 double initHours, double initWage)
76 : Employee(first, last) // call base-class constructor
77 {
78 hours = initHours; // should validate
79 wage = initWage; // should validate
80 }
81
82 // Get the HourlyWorker's pay
83 double HourlyWorker::getPay() const { return wage * hours; }
84
85 // Print the HourlyWorker's name and pay
86 void HourlyWorker::print() const
87 {
88 cout << "HourlyWorker::print() is executing\n\n";
89 Employee::print(); // call base-class print function
90
91 cout << " is an hourly worker with pay of $"
92 << setiosflags(ios::fixed | ios::showpoint)
93 << setprecision(2) << getPay() << endl;
94 }

Fig. 9.5 Overriding a base-class member function in a derived class (part 4 of 5).

95 // Fig. 9.5: fig.09_05.cpp
96 // Overriding a base-class member function in a
97 // derived class.
98 #include <iostream.h>
99 #include "hourly.h"
100
101 int main()
102 {
103 HourlyWorker h("Bob", "Smith", 40.0, 10.00);
104 h.print();
105 return 0;
106 }

Fig. 9.5 Overriding a base-class member function in a derived class (part 5 of 5).

HourlyWorker::print() is executing

Bob Smith is an hourly worker with pay of $400.00

CHAPTER 9 INHERITANCE 8

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

.

Base class
member
access specifier Type of inheritance

public
inheritance

protected
inheritance

private
inheritance

public public in derived
class.

Can be accessed
directly by any non-
static member func-
tions, friend func-
tions and non-member
functions.

protected in
derived class.

Can be accessed
directly by all non-
static member
functions and
friend functions.

private in derived
class.

Can be accessed
directly by all non-
static member
functions and
friend functions.

protected protected in
derived class.

Can be accessed
directly by all non-
static member
functions and
friend functions.

protected in
derived class.

Can be accessed
directly by all non-
static member
functions and
friend functions.

private in derived
class.

Can be accessed
directly by all non-
static member
functions and
friend functions.

private Hidden in derived
class.

Can be accessed by
non-static member
functions and
friend functions
through public or
protected member
functions of the base
class.

Hidden in derived
class.

Can be accessed by
non-static member
functions and
friend functions
through public or
protected member
functions of the base
class.

Hidden in derived
class.

Can be accessed by
non-static member
functions and
friend functions
through public or
protected member
functions of the base
class.

Fig. 9.6 Summary of base-class member accessibility in a derived class.

CHAPTER 9 INHERITANCE 9

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 9.7: point2.h
2 // Definition of class Point
3 #ifndef POINT2_H
4 #define POINT2_H
5
6 class Point {
7 public:
8 Point(int = 0, int = 0); // default constructor
9 ~Point(); // destructor

10 protected: // accessible by derived classes
11 int x, y; // x and y coordinates of Point
12 };
13
14 #endif

Fig. 9.7 Order in which base-class and derived-class constructors and destructors are called (part 1 of 5).

15 // Fig. 9.7: point2.cpp
16 // Member function definitions for class Point
17 #include <iostream.h>
18 #include "point2.h"
19
20 // Constructor for class Point
21 Point::Point(int a, int b)
22 {
23 x = a;
24 y = b;
25
26 cout << "Point constructor: "
27 << '[' << x << ", " << y << ']' << endl;
28 }
29
30 // Destructor for class Point
31 Point::~Point()
32 {
33 cout << "Point destructor: "
34 << '[' << x << ", " << y << ']' << endl;
35 }

Fig. 9.7 Order in which base-class and derived-class constructors and destructors are called (part 2 of 5).

36 // Fig. 9.7: circle2.h
37 // Definition of class Circle
38 #ifndef CIRCLE2_H
39 #define CIRCLE2_H
40
41 #include "point2.h"
42
43 class Circle : public Point {
44 public:
45 // default constructor
46 Circle(double r = 0.0, int x = 0, int y = 0);
47
48 ~Circle();
49 private:
50 double radius;
51 };
52
53 #endif

Fig. 9.7 Order in which base-class and derived-class constructors and destructors are called (part 3 of 5).

CHAPTER 9 INHERITANCE 10

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

54 // Fig. 9.7: circle2.cpp
55 // Member function definitions for class Circle
56 #include "circle2.h"
57
58 // Constructor for Circle calls constructor for Point
59 Circle::Circle(double r, int a, int b)
60 : Point(a, b) // call base-class constructor
61 {
62 radius = r; // should validate
63 cout << "Circle constructor: radius is "
64 << radius << " [" << x << ", " << y << ']' << endl;
65 }
66
67 // Destructor for class Circle
68 Circle::~Circle()
69 {
70 cout << "Circle destructor: radius is "
71 << radius << " [" << x << ", " << y << ']' << endl;
72 }

Fig. 9.7 Order in which base-class and derived-class constructors and destructors are called (part 4 of 5).

73 // Fig. 9.7: fig09_07.cpp
74 // Demonstrate when base-class and derived-class
75 // constructors and destructors are called.
76 #include <iostream.h>
77 #include "point2.h"
78 #include "circle2.h"
79
80 int main()
81 {
82 // Show constructor and destructor calls for Point
83 {
84 Point p(11, 22);
85 }
86
87 cout << endl;
88 Circle circle1(4.5, 72, 29);
89 cout << endl;
90 Circle circle2(10, 5, 5);
91 cout << endl;
92 return 0;
93 }

Fig. 9.7 Order in which base-class and derived-class constructors and destructors are called (part 5 of 5).

Point constructor: [11, 22]
Point destructor: [11, 22]

Point constructor: [72, 29]
Circle constructor: radius is 4.5 [72, 29]

Point constructor: [5, 5]
Circle constructor: radius is 10 [5, 5]

Circle destructor: radius is 10 [5, 5]
Point destructor: [5, 5]
Circle destructor: radius is 4.5 [72, 29]
Point destructor: [72, 29]

CHAPTER 9 INHERITANCE 11

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 9.8: point2.h
2 // Definition of class Point
3 #ifndef POINT2_H
4 #define POINT2_H
5
6 class Point {
7 friend ostream &operator<<(ostream &, const Point &);
8 public:
9 Point(int = 0, int = 0); // default constructor

10 void setPoint(int, int); // set coordinates
11 int getX() const { return x; } // get x coordinate
12 int getY() const { return y; } // get y coordinate
13 protected: // accessible to derived classes
14 int x, y; // coordinates of the point
15 };
16
17 #endif

Fig. 9.8 Demonstrating class Point (part 1 of 3).

18 // Fig. 9.8: point2.cpp
19 // Member functions for class Point
20 #include <iostream.h>
21 #include "point2.h"
22
23 // Constructor for class Point
24 Point::Point(int a, int b) { setPoint(a, b); }
25
26 // Set the x and y coordinates
27 void Point::setPoint(int a, int b)
28 {
29 x = a;
30 y = b;
31 }
32
33 // Output the Point
34 ostream &operator<<(ostream &output, const Point &p)
35 {
36 output << '[' << p.x << ", " << p.y << ']';
37
38 return output; // enables cascading
39 }

Fig. 9.8 Demonstrating class Point (part 2 of 3).

40 // Fig. 9.8: fig09_08.cpp
41 // Driver for class Point
42 #include <iostream.h>
43 #include "point2.h"
44
45 int main()
46 {
47 Point p(72, 115); // instantiate Point object p
48
49 // protected data of Point inaccessible to main
50 cout << "X coordinate is " << p.getX()
51 << "\nY coordinate is " << p.getY();
52
53 p.setPoint(10, 10);
54 cout << "\n\nThe new location of p is " << p << endl;
55
56 return 0;
57 }

CHAPTER 9 INHERITANCE 12

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 9.8 Demonstrating class Point (part 3 of 3).

1 // Fig. 9.9: circle2.h
2 // Definition of class Circle
3 #ifndef CIRCLE2_H
4 #define CIRCLE2_H
5
6 #include "point2.h"
7
8 class Circle : public Point {
9 friend ostream &operator<<(ostream &, const Circle &);

10 public:
11 // default constructor
12 Circle(double r = 0.0, int x = 0, int y = 0);
13 void setRadius(double); // set radius
14 double getRadius() const; // return radius
15 double area() const; // calculate area
16 protected: // accessible to derived classes
17 double radius; // radius of the Circle
18 };
19
20 #endif

Fig. 9.9 Demonstrating class Circle (part 1 of 5).

21 // Fig. 9.9: circle2.cpp
22 // Member function definitions for class Circle
23 #include <iostream.h>
24 #include <iomanip.h>
25 #include "circle2.h"
26
27 // Constructor for Circle calls constructor for Point
28 // with a member initializer and initializes radius
29 Circle::Circle(double r, int a, int b)
30 : Point(a, b) // call base-class constructor
31 { setRadius(r); }
32
33 // Set radius
34 void Circle::setRadius(double r)
35 { radius = (r >= 0 ? r : 0); }
36
37 // Get radius
38 double Circle::getRadius() const { return radius; }

Fig. 9.9 Demonstrating class Circle (part 2 of 5).

X coordinate is 72
Y coordinate is 115

The new location of p is [10, 10]

CHAPTER 9 INHERITANCE 13

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

39
40 // Calculate area of Circle
41 double Circle::area() const
42 { return 3.14159 * radius * radius; }
43
44 // Output a circle in the form:
45 // Center = [x, y]; Radius = #.##
46 ostream &operator<<(ostream &output, const Circle &c)
47 {
48 output << "Center = " << static_cast< Point > (c)
49 << "; Radius = "
50 << setiosflags(ios::fixed | ios::showpoint)
51 << setprecision(2) << c.radius;
52
53 return output; // enables cascaded calls
54 }

Fig. 9.9 Demonstrating class Circle (part 3 of 5).

55 // Fig. 9.9: fig09_09.cpp
56 // Driver for class Circle
57 #include <iostream.h>
58 #include "point2.h"
59 #include "circle2.h"
60
61 int main()
62 {
63 Circle c(2.5, 37, 43);
64
65 cout << "X coordinate is " << c.getX()
66 << "\nY coordinate is " << c.getY()
67 << "\nRadius is " << c.getRadius();
68
69 c.setRadius(4.25);
70 c.setPoint(2, 2);
71 cout << "\n\nThe new location and radius of c are\n"
72 << c << "\nArea " << c.area() << '\n';
73
74 Point &pRef = c;
75 cout << "\nCircle printed as a Point is: " << pRef << endl;
76
77 return 0;
78 }

Fig. 9.9 Demonstrating class Circle (part 4 of 5).

Fig. 9.9 Demonstrating class Circle (part 5 of 5).

X coordinate is 37
Y coordinate is 43
Radius is 2.5

The new location and radius of c are
Center = [2, 2]; Radius = 4.25
Area 56.74

Circle printed as a Point is: [2, 2]

CHAPTER 9 INHERITANCE 14

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 9.10: cylindr2.h
2 // Definition of class Cylinder
3 #ifndef CYLINDR2_H
4 #define CYLINDR2_H
5
6 #include "circle2.h"
7
8 class Cylinder : public Circle {
9 friend ostream &operator<<(ostream &, const Cylinder &);

10
11 public:
12 // default constructor
13 Cylinder(double h = 0.0, double r = 0.0,
14 int x = 0, int y = 0);
15
16 void setHeight(double); // set height
17 double getHeight() const; // return height
18 double area() const; // calculate and return area
19 double volume() const; // calculate and return volume
20
21 protected:
22 double height; // height of the Cylinder
23 };
24
25 #endif

Fig. 9.10 Demonstrating class Cylinder (part 1 of 5).

26 // Fig. 9.10: cylindr2.cpp
27 // Member and friend function definitions
28 // for class Cylinder.
29 #include <iostream.h>
30 #include <iomanip.h>
31 #include "cylindr2.h"
32

Fig. 9.10 Demonstrating class Cylinder (part 2 of 5).

33 // Cylinder constructor calls Circle constructor
34 Cylinder::Cylinder(double h, double r, int x, int y)
35 : Circle(r, x, y) // call base-class constructor
36 { setHeight(h); }
37
38 // Set height of Cylinder
39 void Cylinder::setHeight(double h)
40 { height = (h >= 0 ? h : 0); }
41
42 // Get height of Cylinder
43 double Cylinder::getHeight() const { return height; }
44
45 // Calculate area of Cylinder (i.e., surface area)
46 double Cylinder::area() const
47 {
48 return 2 * Circle::area() +
49 2 * 3.14159 * radius * height;
50 }
51
52 // Calculate volume of Cylinder
53 double Cylinder::volume() const
54 { return Circle::area() * height; }
55
56 // Output Cylinder dimensions
57 ostream &operator<<(ostream &output, const Cylinder &c)

CHAPTER 9 INHERITANCE 15

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

58 {
59 output << static_cast< Circle >(c)
60 << "; Height = " << c.height;
61
62 return output; // enables cascaded calls
63 }

Fig. 9.10 Demonstrating class Cylinder (part 3 of 5).

64 // Fig. 9.10: fig09_10.cpp
65 // Driver for class Cylinder
66 #include <iostream.h>
67 #include <iomanip.h>
68 #include "point2.h"
69 #include "circle2.h"
70 #include "cylindr2.h"
71
72 int main()
73 {
74 // create Cylinder object
75 Cylinder cyl(5.7, 2.5, 12, 23);
76

Fig. 9.10 Demonstrating class Cylinder (part 4 of 5).

77 // use get functions to display the Cylinder
78 cout << "X coordinate is " << cyl.getX()
79 << "\nY coordinate is " << cyl.getY()
80 << "\nRadius is " << cyl.getRadius()
81 << "\nHeight is " << cyl.getHeight() << "\n\n";
82
83 // use set functions to change the Cylinder's attributes
84 cyl.setHeight(10);
85 cyl.setRadius(4.25);
86 cyl.setPoint(2, 2);
87 cout << "The new location, radius, and height of cyl are:\n"
88 << cyl << '\n';
89
90 // display the Cylinder as a Point
91 Point &pRef = cyl; // pRef "thinks" it is a Point
92 cout << "\nCylinder printed as a Point is: "
93 << pRef << "\n\n";
94
95 // display the Cylinder as a Circle
96 Circle &circleRef = cyl; // circleRef thinks it is a Circle
97 cout << "Cylinder printed as a Circle is:\n" << circleRef
98 << "\nArea: " << circleRef.area() << endl;
99
100 return 0;
101 }

CHAPTER 9 INHERITANCE 16

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 9.10 Demonstrating class Cylinder (part 5 of 5).

1 // Fig. 9.11: base1.h
2 // Definition of class Base1
3 #ifndef BASE1_H
4 #define BASE1_H
5
6 class Base1 {
7 public:
8 Base1(int x) { value = x; }
9 int getData() const { return value; }

10 protected: // accessible to derived classes
11 int value; // inherited by derived class
12 };
13
14 #endif

Fig. 9.11 Demonstrating multiple inheritance (part 1 of 6).

15 // Fig. 9.11: base2.h
16 // Definition of class Base2
17 #ifndef BASE2_H
18 #define BASE2_H
19
20 class Base2 {
21 public:
22 Base2(char c) { letter = c; }
23 char getData() const { return letter; }
24 protected: // accessible to derived classes
25 char letter; // inherited by derived class
26 };
27
28 #endif

Fig. 9.11 Demonstrating multiple inheritance (part 2 of 6).

X coordinate is 12
Y coordinate is 23
Radius is 2.5
Height is 5.7

The new location, radius, and height of cyl are:
Center = [2, 2]; Radius = 4.25; Height = 10.00

Cylinder printed as a Point is: [2, 2]

Cylinder printed as a Circle is:
Center = [2, 2]; Radius = 4.25
Area: 56.74

CHAPTER 9 INHERITANCE 17

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

29 // Fig. 9.11: derived.h
30 // Definition of class Derived which inherits
31 // multiple base classes (Base1 and Base2).
32 #ifndef DERIVED_H
33 #define DERIVED_H
34
35 #include "base1.h"
36 #include "base2.h"
37
38 // multiple inheritance
39 class Derived : public Base1, public Base2 {
40 friend ostream &operator<<(ostream &, const Derived &);
41
42 public:
43 Derived(int, char, double);
44 double getReal() const;
45
46 private:
47 double real; // derived class's private data
48 };
49
50 #endif

Fig. 9.11 Demonstrating multiple inheritance (part 3 of 6).

51 // Fig. 9.11: derived.cpp
52 // Member function definitions for class Derived
53 #include <iostream.h>
54 #include "derived.h"
55
56 // Constructor for Derived calls constructors for
57 // class Base1 and class Base2.
58 // Use member initializers to call base-class constructors
59 Derived::Derived(int i, char c, double f)
60 : Base1(i), Base2(c), real (f) { }
61
62 // Return the value of real
63 double Derived::getReal() const { return real; }
64
65 // Display all the data members of Derived
66 ostream &operator<<(ostream &output, const Derived &d)
67 {
68 output << " Integer: " << d.value
69 << "\n Character: " << d.letter
70 << "\nReal number: " << d.real;
71
72 return output; // enables cascaded calls
73 }

Fig. 9.11 Demonstrating multiple inheritance (part 4 of 6).

CHAPTER 9 INHERITANCE 18

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

74 // Fig. 9.11: fig09_11.cpp
75 // Driver for multiple inheritance example
76 #include <iostream.h>
77 #include "base1.h"
78 #include "base2.h"
79 #include "derived.h"
80
81 int main()
82 {
83 Base1 b1(10), *base1Ptr = 0; // create Base1 object
84 Base2 b2('Z'), *base2Ptr = 0; // create Base2 object
85 Derived d(7, 'A', 3.5); // create Derived object
86
87 // print data members of base class objects
88 cout << "Object b1 contains integer " << b1.getData()
89 << "\nObject b2 contains character " << b2.getData()
90 << "\nObject d contains:\n" << d << "\n\n";
91
92 // print data members of derived class object
93 // scope resolution operator resolves getData ambiguity
94 cout << "Data members of Derived can be"
95 << " accessed individually:"
96 << "\n Integer: " << d.Base1::getData()
97 << "\n Character: " << d.Base2::getData()
98 << "\nReal number: " << d.getReal() << "\n\n";
99
100 cout << "Derived can be treated as an "
101 << "object of either base class:\n";
102
103 // treat Derived as a Base1 object
104 base1Ptr = &d;
105 cout << "base1Ptr->getData() yields "
106 << base1Ptr->getData() << '\n';
107
108 // treat Derived as a Base2 object
109 base2Ptr = &d;
110 cout << "base2Ptr->getData() yields "
111 << base2Ptr->getData() << endl;
112
113 return 0;
114 }

Fig. 9.11 Demonstrating multiple inheritance (part 5 of 6).

Fig. 9.11 Demonstrating multiple inheritance (part 6 of 6).

Object b1 contains integer 10
Object b2 contains character Z
Object d contains:
 Integer: 7
 Character: A
Real number: 3.5

Data members of Derived can be accessed individually:
 Integer: 7
 Character: A
Real number: 3.5

Derived can be treated as an object of either base class:
base1Ptr->getData() yields 7
base2Ptr->getData() yields A

CHAPTER 9 INHERITANCE 19

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

