
CHAPTER 2 CONTROL STRUCTURES 1

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Illustrations List (Main Page)

Fig. 2.1 Flowcharting C++’s sequence structure.
Fig. 2.2 C++ keywords.
Fig. 2.3 Flowcharting the single-selection if structure.
Fig. 2.4 Flowcharting the double-selection if/else structure.
Fig. 2.5 Flowcharting the while repetition structure.
Fig. 2.6 Pseudocode algorithm that uses counter-controlled

repetition to solve the class average problem.
Fig. 2.7 C++ program and sample execution for the class average problem

with counter-controlled repetition.
Fig. 2.8 Pseudocode algorithm that uses sentinel-controlled repetition to

solve the class average problem.
Fig. 2.9 C++ program and sample execution for the class average problem

with sentinel-controlled repetition.
Fig. 2.10 Pseudocode for examination results problem.
Fig. 2.11 C++ program and sample executions for examination results problem.
Fig. 2.12 Arithmetic assignment operators.
Fig. 2.13 The increment and decrement operators.
Fig. 2.14 The difference between preincrementing and postincrementing.
Fig. 2.15 Precedence of the operators encountered so far in the text.
Fig. 2.16 Counter-controlled repetition.
Fig. 2.17 Counter-controlled repetition with the for structure.
Fig. 2.18 Components of a typical for header.
Fig. 2.19 Flowcharting a typical for repetition structure.
Fig. 2.20 Summation with for.
Fig. 2.21 Calculating compound interest with for.
Fig. 2.22 An example using switch.
Fig. 2.23 The switch multiple-selection structure with breaks.
Fig. 2.24 Using the do/while structure.
Fig. 2.25 Flowcharting the do/while repetition structure.
Fig. 2.26 Using the break statement in a for structure.
Fig. 2.27 Using the continue statement in a for structure.
Fig. 2.28 Truth table for the && (logical AND) operator.
Fig. 2.29 Truth table for the || (logical OR) operator.
Fig. 2.30 Truth table for operator ! (logical negation).
Fig. 2.31 Operator precedence and associativity.
Fig. 2.32 C++’s single-entry/single-exit sequence, selection, and

repetition structures.
Fig. 2.33 Rules for forming structured programs.
Fig. 2.34 The simplest flowchart.
Fig. 2.35 Repeatedly applying rule 2 of Fig. 2.33 to the simplest flowchart.
Fig. 2.36 Applying rule 3 of Fig. 2.33 to the simplest flowchart.
Fig. 2.37 Stacked, nested and overlapped building blocks.
Fig. 2.38 An unstructured flowchart.

CHAPTER 2 CONTROL STRUCTURES 2

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 2.1 Flowcharting C++’s sequence structure.

C++ Keywords

C and C++ keywords
auto break case char const
continue default do double else
enum extern float for goto
if int long register return
short signed sizeof static struct
switch typedef union unsigned void
volatile while
C++ only keywords
asm bool catch class const_cast
delete dynamic_cas

t
explicit false friend

inline mutable namespace new operator
private protected public reinterpret_cast
static_cast template this throw true
try typeid typename using virtual
wchar_t

Fig. 2.2 C++ keywords.

add grade to
total

add 1 to
counter

total = total + grade;
counter = counter + 1;

CHAPTER 2 CONTROL STRUCTURES 3

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 2.4 Flowcharting the double-selection if/else structure.

Fig. 2.5 Flowcharting the while repetition structure.

grade >= 60 print "Passed"true

false

Fig. 2.3 Flowcharting the single-selection if structure.

grade >= 60

print "Passed"

true

print "Failed"

false

product <= 1000 product =
2 * product

true

false

CHAPTER 2 CONTROL STRUCTURES 4

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Set total to zero
Set grade counter to one

While grade counter is less than or equal to ten
Input the next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten
Print the class average

Fig. 2.6 Pseudocode algorithm that uses counter-controlled repetition to solve the class average problem.

1 // Fig. 2.7: fig02_07.cpp
2 // Class average program with counter-controlled repetition
3 #include <iostream.h>
4
5 int main()
6 {
7 int total, // sum of grades
8 gradeCounter, // number of grades entered
9 grade, // one grade

10 average; // average of grades
11
12 // initialization phase
13 total = 0; // clear total
14 gradeCounter = 1; // prepare to loop
15
16 // processing phase
17 while (gradeCounter <= 10) { // loop 10 times
18 cout << "Enter grade: "; // prompt for input
19 cin >> grade; // input grade
20 total = total + grade; // add grade to total
21 gradeCounter = gradeCounter + 1; // increment counter
22 }
23
24 // termination phase
25 average = total / 10; // integer division
26 cout << "Class average is " << average << endl;
27
28 return 0; // indicate program ended successfully
29 }

Fig. 2.7 C++ program and sample execution for the class average problem with counter-controlled repetition.

Enter grade: 98
Enter grade: 76
Enter grade: 71
Enter grade: 87
Enter grade: 83
Enter grade: 90
Enter grade: 57
Enter grade: 79
Enter grade: 82
Enter grade: 94
Class average is 81

CHAPTER 2 CONTROL STRUCTURES 5

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Initialize total to zero
Initialize counter to zero

Input the first grade (possibly the sentinel)
While the user has not as yet entered the sentinel

Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

else
Print “No grades were entered”

Fig. 2.8 Pseudocode algorithm that uses sentinel-controlled repetition to solve the class average problem.

CHAPTER 2 CONTROL STRUCTURES 6

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 2.9: fig02_09.cpp
2 // Class average program with sentinel-controlled repetition.
3 #include <iostream.h>
4 #include <iomanip.h>
5
6 int main()
7 {
8 int total, // sum of grades
9 gradeCounter, // number of grades entered

10 grade; // one grade
11 float average; // number with decimal point for average
12

Fig. 2.9 C++ program and sample execution for the class average problem with sentinel-controlled repetition
(part 1 of 2).

13 // initialization phase
14 total = 0;
15 gradeCounter = 0;
16
17 // processing phase
18 cout << "Enter grade, -1 to end: ";
19 cin >> grade;
20
21 while (grade != -1) {
22 total = total + grade;
23 gradeCounter = gradeCounter + 1;
24 cout << "Enter grade, -1 to end: ";
25 cin >> grade;
26 }
27
28 // termination phase
29 if (gradeCounter != 0) {
30 average = static_cast< float >(total) / gradeCounter;
31 cout << "Class average is " << setprecision(2)
32 << setiosflags(ios::fixed | ios::showpoint)
33 << average << endl;
34 }
35 else
36 cout << "No grades were entered" << endl;
37
38 return 0; // indicate program ended successfully
39 }

Fig. 2.9 C++ program and sample execution for the class average problem with sentinel-controlled repetition
(part 2 of 2).

Enter grade, -1 to end: 75
Enter grade, -1 to end: 94
Enter grade, -1 to end: 97
Enter grade, -1 to end: 88
Enter grade, -1 to end: 70
Enter grade, -1 to end: 64
Enter grade, -1 to end: 83
Enter grade, -1 to end: 89
Enter grade, -1 to end: -1
Class average is 82.50

CHAPTER 2 CONTROL STRUCTURES 7

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Initialize passes to zero
Initialize failures to zero
Initialize student counter to one

While student counter is less than or equal to ten
Input the next exam result

If the student passed
Add one to passes

else
Add one to failures

Add one to student counter

Print the number of passes
Print the number of failures

If more than eight students passed
Print “Raise tuition”

Fig. 2.10 Pseudocode for examination results problem.

1 // Fig. 2.11: fig02_11.cpp
2 // Analysis of examination results
3 #include <iostream.h>
4
5 int main()
6 {
7 // initialize variables in declarations
8 int passes = 0, // number of passes
9 failures = 0, // number of failures

10 studentCounter = 1, // student counter
11 result; // one exam result
12
13 // process 10 students; counter-controlled loop
14 while (studentCounter <= 10) {
15 cout << "Enter result (1=pass,2=fail): ";
16 cin >> result;
17

Fig. 2.11 C++ program and sample executions for examination results problem
(part 1 of 2).

18 if (result == 1) // if/else nested in while
19 passes = passes + 1;
20 else
21 failures = failures + 1;
22
23 studentCounter = studentCounter + 1;
24 }
25
26 // termination phase
27 cout << "Passed " << passes << endl;
28 cout << "Failed " << failures << endl;
29
30 if (passes > 8)
31 cout << "Raise tuition " << endl;
32

CHAPTER 2 CONTROL STRUCTURES 8

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

33 return 0; // successful termination
34 }

Fig. 2.11 C++ program and sample executions for examination results problem
(part 2 of 2).

Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 2
Enter result (1=pass,2=fail): 2
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 2
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 2
Passed 6
Failed 4

Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 2
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Enter result (1=pass,2=fail): 1
Passed 9
Failed 1
Raise tuition

Assignment
operator

Sample
expression Explanation Assigns

Assume: int c = 3, d = 5, e = 4, f = 6, g = 12;
+= c += 7 c = c + 7 10 to c
-= d -= 4 d = d - 4 1 to d
*= e *= 5 e = e * 5 20 to e
/= f /= 3 f = f / 3 2 to f
%= g %= 9 g = g % 9 3 to g

Fig. 2.12 Arithmetic assignment operators.

CHAPTER 2 CONTROL STRUCTURES 9

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 2.14: fig02_14.cpp
2 // Preincrementing and postincrementing
3 #include <iostream.h>
4
5 int main()
6 {
7 int c;
8
9 c = 5;

10 cout << c << endl; // print 5
11 cout << c++ << endl; // print 5 then postincrement
12 cout << c << endl << endl; // print 6
13
14 c = 5;
15 cout << c << endl; // print 5
16 cout << ++c << endl; // preincrement then print 6
17 cout << c << endl; // print 6
18
19 return 0; // successful termination
20 }

Fig. 2.14 The difference between preincrementing and postincrementing.

Operator Called Sample expression Explanation

++ preincrement ++a Increment a by 1, then use the new value
of a in the expression in which a resides.

++ postincre-
ment

a++ Use the current value of a in the expres-
sion in which a resides, then increment a
by 1.

-- predecrement --b Decrement b by 1, then use the new value
of b in the expression in which b resides.

-- postdecre-
ment

b-- Use the current value of b in the expres-
sion in which b resides, then decrement b
by 1.

Fig. 2.13 The increment and decrement operators.

5
5
6

5
6
6

CHAPTER 2 CONTROL STRUCTURES 10

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 2.16: fig02_16.cpp
2 // Counter-controlled repetition
3 #include <iostream.h>
4
5 int main()
6 {
7 int counter = 1; // initialization
8
9 while (counter <= 10) { // repetition condition

10 cout << counter << endl;
11 ++counter; // increment
12 }
13
14 return 0;
15 }

Fig. 2.16 Counter-controlled repetition.

Operators
Associativi-
ty Type

() left to right parentheses
++ -- + - static_cast<type>() right to left unary
* / % left to right multiplicative
+ - left to right additive
<< >> left to right insertion/extrac-

tion
< <= > >= left to right relational
== != left to right equality
?: right to left conditional
= += -= *= /= %= right to left assignment
, left to right comma

Fig. 2.15 Precedence of the operators encountered so far in the text.

1
2
3
4
5
6
7
8
9
10

CHAPTER 2 CONTROL STRUCTURES 11

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 2.17: fig02_17.cpp
2 // Counter-controlled repetition with the for structure
3 #include <iostream.h>
4
5 int main()
6 {
7 // Initialization, repetition condition, and incrementing
8 // are all included in the for structure header.
9

10 for (int counter = 1; counter <= 10; counter++)
11 cout << counter << endl;
12
13 return 0;
14 }

Fig. 2.17 Counter-controlled repetition with the for structure.

Fig. 2.18 Components of a typical for header.

Fig. 2.19 Flowcharting a typical for repetition structure.

for (int counter = 1; counter <= 10; counter++)

Initial value
of control
variable

Increment of
control vari-
able

Control
variable
name

Final value
of control
variable

for
keyword

Loop-
continuation
condition

counter <= 10 true

false

counter = 1

counter++cout << counter
 << endl;

Establish initial
value of control
variable

Test if final
value of control
variable has not
been reached

Body of loop (this
may be many state-
ments)

Increment the con-
trol variable

CHAPTER 2 CONTROL STRUCTURES 12

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 2.20: fig02_20.cpp
2 // Summation with for
3 #include <iostream.h>
4
5 int main()
6 {
7 int sum = 0;
8
9 for (int number = 2; number <= 100; number += 2)

10 sum += number;
11
12 cout << "Sum is " << sum << endl;
13
14 return 0;
15 }

Fig. 2.20 Summation with for.

1 // Fig. 2.21: fig02_21.cpp
2 // Calculating compound interest
3 #include <iostream.h>
4 #include <iomanip.h>
5 #include <math.h>
6
7 int main()
8 {
9 double amount, // amount on deposit

10 principal = 1000.0, // starting principal
11 rate = .05; // interest rate
12
13 cout << "Year" << setw(21)
14 << "Amount on deposit" << endl;
15
16 for (int year = 1; year <= 10; year++) {
17 amount = principal * pow(1.0 + rate, year);
18 cout << setw(4) << year
19 << setiosflags(ios::fixed | ios::showpoint)
20 << setw(21) << setprecision(2)
21 << amount << endl;
22 }
23
24 return 0;
25 }

Fig. 2.21 Calculating compound interest with for (part 1 of 2).

Sum is 2550

CHAPTER 2 CONTROL STRUCTURES 13

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 2.21 Calculating compound interest with for (part 2 of 2).

1 // Fig. 2.22: fig02_22.cpp
2 // Counting letter grades
3 #include <iostream.h>
4
5 int main()
6 {
7 int grade, // one grade
8 aCount = 0, // number of A's
9 bCount = 0, // number of B's

10 cCount = 0, // number of C's
11 dCount = 0, // number of D's
12 fCount = 0; // number of F's
13
14 cout << "Enter the letter grades." << endl
15 << "Enter the EOF character to end input." << endl;
16
17 while ((grade = cin.get()) != EOF) {
18
19 switch (grade) { // switch nested in while
20
21 case 'A': // grade was uppercase A
22 case 'a': // or lowercase a
23 ++aCount;
24 break; // necessary to exit switch
25
26 case 'B': // grade was uppercase B
27 case 'b': // or lowercase b
28 ++bCount;
29 break;
30
31 case 'C': // grade was uppercase C
32 case 'c': // or lowercase c
33 ++cCount;
34 break;
35
36 case 'D': // grade was uppercase D
37 case 'd': // or lowercase d
38 ++dCount;
39 break;
40
41 case 'F': // grade was uppercase F
42 case 'f': // or lowercase f
43 ++fCount;
44 break;

Year Amount on deposit
 1 1050.00
 2 1102.50
 3 1157.62
 4 1215.51
 5 1276.28
 6 1340.10
 7 1407.10
 8 1477.46
 9 1551.33
 10 1628.89

CHAPTER 2 CONTROL STRUCTURES 14

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

45
46 case '\n': // ignore newlines,
47 case '\t': // tabs,
48 case ' ': // and spaces in input
49 break;
50

Fig. 2.22 An example using switch (part 1 of 2).

51 default: // catch all other characters
52 cout << "Incorrect letter grade entered."
53 << " Enter a new grade." << endl;
54 break; // optional
55 }
56 }
57
58 cout << "\n\nTotals for each letter grade are:"
59 << "\nA: " << aCount
60 << "\nB: " << bCount
61 << "\nC: " << cCount
62 << "\nD: " << dCount
63 << "\nF: " << fCount << endl;
64
65 return 0;
66 }

Fig. 2.22 An example using switch (part 2 of 2).

Enter the letter grades.
Enter the EOF character to end input.
a
B
c
C
A
d
f
C
E
Incorrect letter grade entered. Enter a new grade.
D
A
b

Totals for each letter grade are:
A: 3
B: 2
C: 3
D: 2
F: 1

CHAPTER 2 CONTROL STRUCTURES 15

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 2.23 The switch multiple-selection structure with breaks.

1 // Fig. 2.24: fig02_24.cpp
2 // Using the do/while repetition structure
3 #include <iostream.h>
4
5 int main()
6 {
7 int counter = 1;
8
9 do {

10 cout << counter << " ";
11 } while (++counter <= 10);
12
13 cout << endl;
14
15 return 0;
16 }

Fig. 2.24 Using the do/while structure.

1 2 3 4 5 6 7 8 9 10

case a case a
action(s)

true

false

break

case b case b
action(s)

true

false

break

case z case z
action(s)

true

false

break

.

.

.

default
action

CHAPTER 2 CONTROL STRUCTURES 16

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 2.26: fig02_26.cpp
2 // Using the break statement in a for structure
3 #include <iostream.h>
4
5 int main()
6 {
7 // x declared here so it can be used after the loop
8 int x;
9

10 for (x = 1; x <= 10; x++) {
11
12 if (x == 5)
13 break; // break loop only if x is 5
14
15 cout << x << " ";
16 }
17
18 cout << "\nBroke out of loop at x of " << x << endl;
19 return 0;
20 }

Fig. 2.26 Using the break statement in a for structure (part 1 of 2).

Fig. 2.26 Using the break statement in a for structure (part 2 of 2).

1 2 3 4
Broke out of loop at x of 5

condition true

action

false

Fig. 2.25 Flowcharting the do/while repetition structure.

CHAPTER 2 CONTROL STRUCTURES 17

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 2.27: fig02_07.cpp
2 // Using the continue statement in a for structure
3 #include <iostream.h>
4
5 int main()
6 {
7 for (int x = 1; x <= 10; x++) {
8
9 if (x == 5)

10 continue; // skip remaining code in loop
11 // only if x is 5
12
13 cout << x << " ";
14 }
15
16 cout << "\nUsed continue to skip printing the value 5"
17 << endl;
18 return 0;
19 }

Fig. 2.27 Using the continue statement in a for structure.

1 2 3 4 6 7 8 9 10
Used continue to skip printing the value 5

expression1 expression2 expression1 && expression2

false false false
false true false
true false false
true true true

Fig. 2.28 Truth table for the && (logical AND) operator.

expression1 expression2 expression1 || expression2

false false false
false true true
true false true
true true true

Fig. 2.29 Truth table for the || (logical OR) operator.

CHAPTER 2 CONTROL STRUCTURES 18

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

expression !expression

false true
true false

Fig. 2.30 Truth table for operator ! (logical negation).

Operators
Associativi-
ty Type

() left to right parentheses
++ -- + - ! static_cast<type>(

)
right to left unary

* / % left to right multiplicative
+ - left to right additive
<< >> left to right insertion/extrac-

tion
< <= > >= left to right relational
== != left to right equality
&& left to right logical AND
|| left to right logical OR
?: right to left conditional
= += -= *= /= %= right to left assignment
, left to right comma

Fig. 2.31 Operator precedence and associativity.

CHAPTER 2 CONTROL STRUCTURES 19

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 2.32 C++’s single-entry/single-exit sequence, selection, and repetition structures.

. . .

t

f

if
 s

tru
ct

ur
e

(s
in

gl
e

se
le

ct
io

n)
t

f

if
/e
ls
e

st
ru

ct
ur

e
(d

ou
bl

e
se

le
ct

io
n)

t

f

sw
it
ch

 s
tru

ct
ur

e
(m

ul
tip

le
 s

el
ec

tio
n) br

ea
k

t

f
br
ea
k

t

f
br
ea
k

. . .

Se
qu
en
ce

Se
le
ct
io
n

Re
pe
ti
ti
on

t

f

wh
il
e

st
ru

ct
ur

e

t

f

fo
r

st
ru

ct
ur

e

t

f

do
/w
hi
le

 s
tru

ct
ur

e

CHAPTER 2 CONTROL STRUCTURES 20

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 2.34 The simplest flowchart.

Fig. 2.35 Repeatedly applying rule 2 of Fig. 2.33 to the simplest flowchart.

Rules for Forming Structured Programs

1) Begin with the “simplest flowchart” (Fig. 2.34).
2) Any rectangle (action) can be replaced by two rectangles (actions) in sequence.
3) Any rectangle (action) can be replaced by any control structure (sequence, if, if/else,

switch, while, do/while, or for).
4) Rules 2 and 3 may be applied as often as you like and in any order.

Fig. 2.33 Rules for forming structured programs.

.

.

.

Rule 2 Rule 2 Rule 2

CHAPTER 2 CONTROL STRUCTURES 21

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 2.36 Applying rule 3 of Fig. 2.33 to the simplest flowchart.

Rule 3

Rule 3Rule 3

CHAPTER 2 CONTROL STRUCTURES 22

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 2.37 Stacked, nested, and overlapped building blocks.

Fig. 2.38 An unstructured flowchart.

Stacked building blocks Nested building blocks

Overlapping building blocks
(Illegal in structured programs)

