
CHAPTER 3 FUNCTIONS 1

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Illustrations List (Main Page)

Fig. 3.1 Hierarchical boss function/worker function relationship.
Fig. 3.2 Commonly used math library functions
Fig. 3.3 Creating and using a programmer-defined function
Fig. 3.4 Programmer-defined maximum function (part 1 of 2)
Fig. 3.5 Promotion hierarchy for built-in data types.
Fig. 3.6 Standard library header files.
Fig. 3.7 Shifted, scaled integers produced by 1 + rand() % 6.
Fig. 3.8 Rolling a six-sided die 6000 times.
Fig. 3.9 Randomizing the die-rolling program.
Fig. 3.10 Program to simulate the game of craps.
Fig. 3.11 Sample runs for the game of craps.
Fig. 3.12 A scoping example.
Fig. 3.13 Recursive evaluation of 5!.
Fig. 3.14 Calculating factorials with a recursive function.
Fig. 3.15 Recursively generating Fibonacci numbers.
Fig. 3.16 Set of recursive calls to method fibonacci.
Fig. 3.17 Summary of recursion examples and exercises in the text.
Fig. 3.18 Two ways to declare and use functions that take no arguments.
Fig. 3.19 Using an inline function to calculate the volume of a cube.
Fig. 3.20 An example of call-by-reference.
Fig. 3.21 Using an initialized reference.
Fig. 3.22 Attempting to use an uninitialized reference.
Fig. 3.23 Using default arguments.
Fig. 3.24 Using the unary scope resolution operator.
Fig. 3.25 Using overloaded functions.
Fig. 3.26 Name mangling to enable type-safe linkage.
Fig. 3.27 Using a function template.

CHAPTER 3 FUNCTIONS 2

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Function Description Example

ceil(x) rounds x to the smallest inte-
ger not less than x

ceil(9.2) is 10.0
ceil(-9.8) is -9.0

cos(x) trigonometric cosine of x
(x in radians)

cos(0.0) is 1.0

exp(x) exponential function ex exp(1.0) is 2.71828
exp(2.0) is 7.38906

fabs(x) absolute value of x if x > 0 then abs(x) is x
if x = 0 then abs(x) is 0.0
if x < 0 then abs(x) is x

floor(x) rounds x to the largest integer
not greater than x

floor(9.2) is 9.0
floor(-9.8) is -10.0

fmod(x, y) remainder of x/y as a floating
point number

fmod(13.657, 2.333) is 1.992

log(x) natural logarithm of x (base e) log(2.718282) is 1.0
log(7.389056) is 2.0

log10(x) logarithm of x (base 10) log(10.0) is 1.0
log(100.0) is 2.0

pow(x, y) x raised to power y (xy) pow(2, 7) is 128
pow(9, .5) is 3

sin(x) trigonometric sine of x
(x in radians)

sin(0.0) is 0

sqrt(x) square root of x sqrt(900.0) is 30.0
sqrt(9.0) is 3.0

tan(x) trigonometric tangent of x
(x in radians)

tan(0.0) is 0

Fig. 3.2 Commonly used math library functions.

main

worker1 worker2 worker3

worker4 worker5

Fig. 3.1 Hierarchical boss function/worker function relationship.

CHAPTER 3 FUNCTIONS 3

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 3.3: fig03_03.cpp
2 // Creating and using a programmer-defined function
3 #include <iostream.h>
4
5 int square(int); // function prototype
6
7 int main()
8 {
9 for (int x = 1; x <= 10; x++)

10 cout << square(x) << " ";
11
12 cout << endl;
13 return 0;
14 }
15
16 // Function definition
17 int square(int y)
18 {
19 return y * y;
20 }

Fig. 3.3 Creating and using a programmer-defined function.

1 // Fig. 3.4: fig03_04.cpp
2 // Finding the maximum of three integers
3 #include <iostream.h>
4
5 int maximum(int, int, int); // function prototype
6
7 int main()
8 {
9 int a, b, c;

10
11 cout << "Enter three integers: ";
12 cin >> a >> b >> c;

Fig. 3.4 Programmer-defined maximum function (part 1 of 2).

13
14 // a, b and c below are arguments to
15 // the maximum function call
16 cout << "Maximum is: " << maximum(a, b, c) << endl;
17
18 return 0;
19 }
20
21 // Function maximum definition
22 // x, y and z below are parameters to
23 // the maximum function definition
24 int maximum(int x, int y, int z)
25 {
26 int max = x;
27
28 if (y > max)
29 max = y;
30
31 if (z > max)
32 max = z;
33

1 4 9 16 25 36 49 64 81 100

CHAPTER 3 FUNCTIONS 4

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

34 return max;
35 }

Fig. 3.4 Programmer-defined maximum function (part 2 of 2).

.

Enter three integers: 22 85 17
Maximum is: 85

Enter three integers: 92 35 14
Maximum is: 92

Enter three integers: 45 19 98
Maximum is: 98

Data types

long double

double

float

unsigned long int (synonymous with unsigned long)

long int (synonymous with long)

unsigned int (synonymous with unsigned)

int

unsigned short int (synonymous with unsigned short)

short int (synonymous with short)

unsigned char

short

char

Fig. 3.5 Promotion hierarchy for built-in data types.

Standard library
header file Explanation

Old-style header files (used early in the book)

<assert.h> Contains macros and information for adding diagnostics that aid pro-
gram debugging. The new version of this header file is <cassert>.

<ctype.h> Contains function prototypes for functions that test characters for cer-
tain properties, and function prototypes for functions that can be used
to convert lowercase letters to uppercase letters and vice versa. The
new version of this header file is <cctype>.

Fig. 3.6 Standard library header files (part 1 of 3).

CHAPTER 3 FUNCTIONS 5

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

<float.h> Contains the floating-point size limits of the system. The new version
of this header file is <cfloat>.

<limits.h> Contains the integral size limits of the system. The new version of
this header file is <climits>.

<math.h> Contains function prototypes for math library functions. The new ver-
sion of this header file is <cmath>.

<stdio.h> Contains function prototypes for the standard input/output library
functions and information used by them. The new version of this
header file is <cstdio>.

<stdlib.h> Contains function prototypes for conversions of numbers to text, text
to numbers, memory allocation, random numbers, and various other
utility functions. The new version of this header file is <cstdlib>.

<string.h> Contains function prototypes for C-style string processing functions.
The new version of this header file is <cstring>.

<time.h> Contains function prototypes and types for manipulating the time and
date. The new version of this header file is <ctime>.

<iostream.h> Contains function prototypes for the standard input and standard out-
put functions. The new version of this header file is <iostream>.

<iomanip.h> Contains function prototypes for the stream manipulators that enable
formatting of streams of data. The new version of this header file is
<iomanip>.

<fstream.h> Contains function prototypes for functions that perform input from
files on disk and output to files on disk (discussed in Chapter 14). The
new version of this header file is <fstream>.

New-style header files (used later in the book)

<utility> Contains classes and functions that are used by many standard library
header files.

<vector>, <list>,
<deque>, <queue>,
<stack>, <map>,
<set>, <bitset>

The header files contain classes that implement the standard library
containers. Containers are use to store data during a program’s execu-
tion. We discuss these header files in the chapter entitled “The Stan-
dard Template Library.”

<functional> Contains classes and functions used by algorithms of the standard
library.

<memory> Contains classes and functions used by the standard library to allocate
memory to the standard library containers.

<iterator> Contains classes for manipulating data in the standard library contain-
ers.

<algorithm> Contains functions for manipulating data in the standard library con-
tainers.

<exception>
<stdexcept>

These header files contain classes that are used for exception han-
dling (discussed in Chapter 13).

<string> Contains the definition of class string from the standard library
(discussed in Chapter 19, “Strings”).

<sstream> Contains function prototypes for functions that perform input from
strings in memory and output to strings in memory (discussed in
Chapter 14).

Standard library
header file Explanation

Fig. 3.6 Standard library header files (part 2 of 3).

CHAPTER 3 FUNCTIONS 6

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 3.7: fig03_07.cpp
2 // Shifted, scaled integers produced by 1 + rand() % 6
3 #include <iostream.h>
4 #include <iomanip.h>
5 #include <stdlib.h>
6
7 int main()
8 {
9 for (int i = 1; i <= 20; i++) {

10 cout << setw(10) << (1 + rand() % 6);
11
12 if (i % 5 == 0)
13 cout << endl;
14 }
15
16 return 0;
17 }

Fig. 3.7 Shifted, scaled integers produced by 1 + rand() % 6.

<locale> Contains classes and functions normally used by stream processing to
process data in the natural form for different languages (e.g., mone-
tary formats, sorting strings, character presentation, etc.).

<limits> Contains a class for defining the numerical data type limits on each
computer platform.

<typeinfo> Contains classes for run-time type identification (determining data
types at execution time).

 5 5 3 5 5
 2 4 2 5 5
 5 3 2 2 1
 5 1 4 6 4

Standard library
header file Explanation

Fig. 3.6 Standard library header files (part 3 of 3).

CHAPTER 3 FUNCTIONS 7

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 3.8: fig03_08.cpp
2 // Roll a six-sided die 6000 times
3 #include <iostream.h>
4 #include <iomanip.h>
5 #include <stdlib.h>
6
7 int main()
8 {
9 int frequency1 = 0, frequency2 = 0,

10 frequency3 = 0, frequency4 = 0,
11 frequency5 = 0, frequency6 = 0,
12 face;
13
14 for (int roll = 1; roll <= 6000; roll++) {
15 face = 1 + rand() % 6;
16
17 switch (face) {
18 case 1:
19 ++frequency1;
20 break;
21 case 2:
22 ++frequency2;
23 break;
24 case 3:
25 ++frequency3;
26 break;
27 case 4:
28 ++frequency4;
29 break;
30 case 5:
31 ++frequency5;
32 break;
33 case 6:
34 ++frequency6;
35 break;
36 default:
37 cout << "should never get here!";
38 }
39 }
40
41 cout << "Face" << setw(13) << "Frequency"
42 << "\n 1" << setw(13) << frequency1
43 << "\n 2" << setw(13) << frequency2
44 << "\n 3" << setw(13) << frequency3
45 << "\n 4" << setw(13) << frequency4
46 << "\n 5" << setw(13) << frequency5
47 << "\n 6" << setw(13) << frequency6 << endl;
48
49 return 0;
50 }

Fig. 3.8 Rolling a six-sided die 6000 times (part 1 of 2).

Fig. 3.8 Rolling a six-sided die 6000 times (part 2 of 2).

Face Frequency
1 987
2 984
3 1029
4 974
5 1004
6 1022

CHAPTER 3 FUNCTIONS 8

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 3.9: fig03_09.cpp
2 // Randomizing die-rolling program
3 #include <iostream.h>
4 #include <iomanip.h>
5 #include <stdlib.h>
6
7 int main()
8 {
9 unsigned seed;

10
11 cout << "Enter seed: ";
12 cin >> seed;
13 srand(seed);
14
15 for (int i = 1; i <= 10; i++) {
16 cout << setw(10) << 1 + rand() % 6;
17
18 if (i % 5 == 0)
19 cout << endl;
20 }
21
22 return 0;
23 }

Fig. 3.9 Randomizing the die-rolling program.

1 // Fig. 3.10: fig03_10.cpp
2 // Craps
3 #include <iostream.h>
4 #include <stdlib.h>
5 #include <time.h>
6
7 int rollDice(void); // function prototype
8
9 int main()

10 {
11 enum Status { CONTINUE, WON, LOST };
12 int sum, myPoint;
13 Status gameStatus;
14
15 srand(time(NULL));
16 sum = rollDice(); // first roll of the dice
17
18 switch (sum) {
19 case 7:
20 case 11: // win on first roll
21 gameStatus = WON;
22 break;
23 case 2:

Enter seed: 67
1 6 5 1 4
5 6 3 1 2

Enter seed: 432
4 2 6 4 3
2 5 1 4 4

Enter seed: 67
1 6 5 1 4
5 6 3 1 2

CHAPTER 3 FUNCTIONS 9

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

24 case 3:
25 case 12: // lose on first roll
26 gameStatus = LOST;
27 break;
28 default: // remember point
29 gameStatus = CONTINUE;
30 myPoint = sum;
31 cout << "Point is " << myPoint << endl;
32 break; // optional
33 }
34
35 while (gameStatus == CONTINUE) { // keep rolling
36 sum = rollDice();
37
38 if (sum == myPoint) // win by making point
39 gameStatus = WON;
40 else
41 if (sum == 7) // lose by rolling 7
42 gameStatus = LOST;
43 }
44
45 if (gameStatus == WON)
46 cout << "Player wins" << endl;
47 else
48 cout << "Player loses" << endl;
49
50 return 0;
51 }

Fig. 3.10 Program to simulate the game of craps (part 1 of 2).

52 int rollDice(void)
53 {
54 int die1, die2, workSum;
55
56 die1 = 1 + rand() % 6;
57 die2 = 1 + rand() % 6;
58 workSum = die1 + die2;
59 cout << "Player rolled " << die1 << " + " << die2
60 << " = " << workSum << endl;
61
62 return workSum;
63 }

Fig. 3.10 Program to simulate the game of craps (part 2 of 2).

CHAPTER 3 FUNCTIONS 10

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 3.11 Sample runs for the game of craps.

1 // Fig. 3.12: fig03_12.cpp
2 // A scoping example
3 #include <iostream.h>
4
5 void a(void); // function prototype
6 void b(void); // function prototype
7 void c(void); // function prototype

Fig. 3.12 A scoping example (part 1 of 3).

8
9 int x = 1; // global variable

10
11 int main()
12 {
13 int x = 5; // local variable to main
14
15 cout << "local x in outer scope of main is " << x << endl;
16
17 { // start new scope
18 int x = 7;
19
20 cout << "local x in inner scope of main is " << x << endl;
21 } // end new scope
22
23 cout << "local x in outer scope of main is " << x << endl;
24
25 a(); // a has automatic local x
26 b(); // b has static local x
27 c(); // c uses global x
28 a(); // a reinitializes automatic local x

Player rolled 6 + 5 = 11
Player wins

Player rolled 6 + 6 = 12
Player loses

Player rolled 4 + 6 = 10
Point is 10
Player rolled 2 + 4 = 6
Player rolled 6 + 5 = 11
Player rolled 3 + 3 = 6
Player rolled 6 + 4 = 10
Player wins

Player rolled 1 + 3 = 4
Point is 4
Player rolled 1 + 4 = 5
Player rolled 5 + 4 = 9
Player rolled 4 + 6 = 10
Player rolled 6 + 3 = 9
Player rolled 1 + 2 = 3
Player rolled 5 + 2 = 7
Player loses

CHAPTER 3 FUNCTIONS 11

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

29 b(); // static local x retains its previous value
30 c(); // global x also retains its value
31
32 cout << "local x in main is " << x << endl;
33
34 return 0;
35 }
36
37 void a(void)
38 {
39 int x = 25; // initialized each time a is called
40
41 cout << endl << "local x in a is " << x
42 << " after entering a" << endl;
43 ++x;
44 cout << "local x in a is " << x
45 << " before exiting a" << endl;
46 }
47
48 void b(void)
49 {
50 static int x = 50; // Static initialization only
51 // first time b is called.
52 cout << endl << "local static x is " << x
53 << " on entering b" << endl;
54 ++x;
55 cout << "local static x is " << x
56 << " on exiting b" << endl;
57 }
58

Fig. 3.12 A scoping example (part 2 of 3).

59 void c(void)
60 {
61 cout << endl << "global x is " << x
62 << " on entering c" << endl;
63 x *= 10;
64 cout << "global x is " << x << " on exiting c" << endl;
65 }

CHAPTER 3 FUNCTIONS 12

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 3.12 A scoping example (part 3 of 3).

Fig. 3.13 Recursive evaluation of 5!.

local x in outer scope of main is 5
local x in inner scope of main is 7
local x in outer scope of main is 5

local x in a is 25 after entering a
local x in a is 26 before exiting a

local static x is 50 on entering b
local static x is 51 on exiting b

global x is 1 on entering c
global x is 10 on exiting c

local x in a is 25 after entering a
local x in a is 26 before exiting a

local static x is 51 on entering b
local static x is 52 on exiting b

global x is 10 on entering c
global x is 100 on exiting c
local x in main is 5

5!

5 * 4!

 4 * 3!

 3 * 2!

 2 * 1!

 1

5!

5 * 4!

 4 * 3!

 3 * 2!

 2 * 1!

 1

a) Procession of recursive calls. b) Values returned from each recursive call.

Final value = 120

5! = 5 * 24 = 120 is returned

4! = 4 * 6 = 24 is returned

2! = 2 * 1 = 2 is returned

3! = 3 * 2 = 6 is returned

1 returned

CHAPTER 3 FUNCTIONS 13

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 3.14: fig03_14.cpp
2 // Recursive factorial function
3 #include <iostream.h>
4 #include <iomanip.h>
5
6 unsigned long factorial(unsigned long);
7
8 int main()
9 {

10 for (int i = 0; i <= 10; i++)
11 cout << setw(2) << i << "! = " << factorial(i) << endl;
12
13 return 0;
14 }
15
16 // Recursive definition of function factorial
17 unsigned long factorial(unsigned long number)
18 {
19 if (number <= 1) // base case
20 return 1;
21 else // recursive case
22 return number * factorial(number - 1);
23 }

Fig. 3.14 Calculating factorials with a recursive function.

 0! = 1
 1! = 1
 2! = 2
 3! = 6
 4! = 24
 5! = 120
 6! = 720
 7! = 5040
 8! = 40320
 9! = 362880
10! = 3628800

CHAPTER 3 FUNCTIONS 14

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 3.15: fig03_15.cpp
2 // Recursive fibonacci function
3 #include <iostream.h>
4
5 long fibonacci(long);
6
7 int main()
8 {
9 long result, number;

10
11 cout << "Enter an integer: ";
12 cin >> number;
13 result = fibonacci(number);
14 cout << "Fibonacci(" << number << ") = " << result << endl;
15 return 0;
16 }
17
18 // Recursive definition of function fibonacci
19 long fibonacci(long n)
20 {
21 if (n == 0 || n == 1) // base case
22 return n;
23 else // recursive case
24 return fibonacci(n - 1) + fibonacci(n - 2);
25 }

Fig. 3.15 Recursively generating Fibonacci numbers (part 1 of 2).

Fig. 3.15 Recursively generating Fibonacci numbers (part 2 of 2).

Enter an integer: 0
Fibonacci(0) = 0

Enter an integer: 1
Fibonacci(1) = 1

Enter an integer: 2
Fibonacci(2) = 1

Enter an integer: 3
Fibonacci(3) = 2

Enter an integer: 4
Fibonacci(4) = 3

Enter an integer: 5
Fibonacci(5) = 5

Enter an integer: 6
Fibonacci(6) = 8

Enter an integer: 10
Fibonacci(10) = 55

Enter an integer: 20
Fibonacci(20) = 6765

Enter an integer: 30
Fibonacci(30) = 832040

Enter an integer: 35
Fibonacci(35) = 9227465

CHAPTER 3 FUNCTIONS 15

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 3.16 Set of recursive calls to method fibonacci.

.

Chapter Recursion Examples and Exercises

Chapter 3 Factorial function

Fibonacci function

Greatest common divisor

Sum of two integers

Multiply two integers

Raising an integer to an integer power

Towers of Hanoi

Printing keyboard inputs in reverse

Visualizing recursion

Chapter 4 Sum the elements of an array

Print an array

Print an array backwards

Print a string backwards

Check if a string is a palindrome

Minimum value in an array

Selection sort

Eight Queens

Linear search

Binary search

Chapter 5 Quicksort

Maze traversal

Printing a string input at the keyboard backwards

Chapter 15 Linked list insert

Linked list delete

Search a linked list

Print a linked list backwards

Fig. 3.17 Summary of recursion examples and exercises in the text (part 1 of 2).

f(3)

f(1)f(2)

f(1) f(0) return 1

return 1 return 0

return +

+return

CHAPTER 3 FUNCTIONS 16

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 3.18: fig03_18.cpp
2 // Functions that take no arguments
3 #include <iostream.h>
4
5 void function1();
6 void function2(void);
7
8 int main()
9 {

10 function1();
11 function2();
12
13 return 0;
14 }
15
16 void function1()
17 {
18 cout << "function1 takes no arguments" << endl;
19 }
20
21 void function2(void)
22 {
23 cout << "function2 also takes no arguments" << endl;
24 }

Fig. 3.18 Two ways to declare and use functions that take no arguments.

Binary tree insert

Preorder traversal of a binary tree

Inorder traversal of a binary tree

Postorder traversal of a binary tree

function1 takes no arguments
function2 also takes no arguments

Chapter Recursion Examples and Exercises

Fig. 3.17 Summary of recursion examples and exercises in the text (part 2 of 2).

CHAPTER 3 FUNCTIONS 17

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 3.19: fig03_19.cpp
2 // Using an inline function to calculate
3 // the volume of a cube.
4 #include <iostream.h>
5
6 inline float cube(const float s) { return s * s * s; }
7
8 int main()
9 {

10 cout << "Enter the side length of your cube: ";
11
12 float side;
13
14 cin >> side;
15 cout << "Volume of cube with side "
16 << side << " is " << cube(side) << endl;
17
18 return 0;
19 }

Fig. 3.19 Using an inline function to calculate the volume of a cube.

1 // Fig. 3.20: fig03_20.cpp
2 // Comparing call-by-value and call-by-reference
3 // with references.
4 #include <iostream.h>
5
6 int squareByValue(int);
7 void squareByReference(int &);
8
9 int main()

10 {
11 int x = 2, z = 4;
12
13 cout << "x = " << x << " before squareByValue\n"
14 << "Value returned by squareByValue: "
15 << squareByValue(x) << endl
16 << "x = " << x << " after squareByValue\n" << endl;
17
18 cout << "z = " << z << " before squareByReference" << endl;
19 squareByReference(z);
20 cout << "z = " << z << " after squareByReference" << endl;
21
22 return 0;
23 }

Fig. 3.20 An example of call-by-reference (part 1 of 2).

Enter the side length of your cube: 3.5
Volume of cube with side 3.5 is 42.875

CHAPTER 3 FUNCTIONS 18

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

24
25 int squareByValue(int a)
26 {
27 return a *= a; // caller's argument not modified
28 }
29
30 void squareByReference(int &cRef)
31 {
32 cRef *= cRef; // caller's argument modified
33 }

Fig. 3.20 An example of call-by-reference (part 2 of 2).

1 // References must be initialized
2 #include <iostream.h>
3
4 int main()
5 {
6 int x = 3, &y = x; // y is now an alias for x
7
8 cout << "x = " << x << endl << "y = " << y << endl;
9 y = 7;

10 cout << "x = " << x << endl << "y = " << y << endl;
11
12 return 0;
13 }

Fig. 3.21 Using an initialized reference.

1 // References must be initialized
2 #include <iostream.h>
3
4 int main()
5 {
6 int x = 3, &y; // Error: y must be initialized
7
8 cout << "x = " << x << endl << "y = " << y << endl;
9 y = 7;

10 cout << "x = " << x << endl << "y = " << y << endl;
11
12 return 0;
13 }

x = 2 before squareByValue
Value returned by squareByValue: 4
x = 2 after squareByValue

z = 4 before squareByReference
z = 16 after squareByReference

x = 3
y = 3
x = 7
y = 7

CHAPTER 3 FUNCTIONS 19

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 3.22 Attempting to use an uninitialized reference.

1 // Fig. 3.23: fig03_23.cpp
2 // Using default arguments
3 #include <iostream.h>
4
5 int boxVolume(int length = 1, int width = 1, int height = 1);
6
7 int main()
8 {
9 cout << "The default box volume is: " << boxVolume()

10 << "\n\nThe volume of a box with length 10,\n"
11 << "width 1 and height 1 is: " << boxVolume(10)
12 << "\n\nThe volume of a box with length 10,\n"
13 << "width 5 and height 1 is: " << boxVolume(10, 5)
14 << "\n\nThe volume of a box with length 10,\n"
15 << "width 5 and height 2 is: " << boxVolume(10, 5, 2)
16 << endl;
17
18 return 0;
19 }
20
21 // Calculate the volume of a box
22 int boxVolume(int length, int width, int height)
23 {
24 return length * width * height;
25 }

Fig. 3.23 Using default arguments.

Compiling FIG03_21.CPP:
Error FIG03_21.CPP 6: Reference variable 'y' must be
 initialized

The default box volume is: 1

The volume of a box with length 10,
width 1 and height 1 is: 10

The volume of a box with length 10,
width 5 and height 1 is: 50

The volume of a box with length 10,
width 5 and height 2 is: 100

CHAPTER 3 FUNCTIONS 20

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

1 // Fig. 3.24: fig03_24.cpp
2 // Using the unary scope resolution operator
3 #include <iostream.h>
4 #include <iomanip.h>
5
6 const double PI = 3.14159265358979;
7
8 int main()
9 {

10 const float PI = static_cast< float >(::PI);
11
12 cout << setprecision(20)
13 << " Local float value of PI = " << PI
14 << "\nGlobal double value of PI = " << ::PI << endl;
15
16 return 0;
17 }

Fig. 3.24 Using the unary scope resolution operator.

1 // Fig. 3.25: fig03_25.cpp
2 // Using overloaded functions
3 #include <iostream.h>
4
5 int square(int x) { return x * x; }
6
7 double square(double y) { return y * y; }
8
9 int main()

10 {
11 cout << "The square of integer 7 is " << square(7)
12 << "\nThe square of double 7.5 is " << square(7.5)
13 << endl;
14
15 return 0;
16 }

Fig. 3.25 Using overloaded functions.

1 // Name mangling
2 int square(int x) { return x * x; }
3
4 double square(double y) { return y * y; }
5
6 void nothing1(int a, float b, char c, int *d)
7 { } // empty function body
8
9 char *nothing2(char a, int b, float *c, double *d)

10 { return 0; }
11
12 int main()
13 {
14 return 0;
15 }

 Local float value of PI = 3.14159
Global double value of PI = 3.14159265358979

The square of integer 7 is 49
The square of double 7.5 is 56.25

CHAPTER 3 FUNCTIONS 21

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 3.26 Name mangling to enable type-safe linkage.

1 // Fig. 3.27: fig03_27.cpp
2 // Using a function template
3 #include <iostream.h>
4
5 template < class T >
6 T maximum(T value1, T value2, T value3)
7 {
8 T max = value1;
9

10 if (value2 > max)
11 max = value2;
12
13 if (value3 > max)
14 max = value3;
15
16 return max;
17 }
18
19 int main()
20 {
21 int int1, int2, int3;
22
23 cout << "Input three integer values: ";
24 cin >> int1 >> int2 >> int3;
25 cout << "The maximum integer value is: "
26 << maximum(int1, int2, int3); // int version

Fig. 3.27 Using a function template (part 1 of 2).

27
28 double double1, double2, double3;
29
30 cout << "\nInput three double values: ";
31 cin >> double1 >> double2 >> double3;
32 cout << "The maximum double value is: "
33 << maximum(double1, double2, double3); // double version
34
35 char char1, char2, char3;
36
37 cout << "\nInput three characters: ";
38 cin >> char1 >> char2 >> char3;
39 cout << "The maximum character value is: "
40 << maximum(char1, char2, char3) // char version
41 << endl;
42
43 return 0;
44 }

public _main
public @nothing2$qzcipfpd
public @nothing1$qifzcpi
public @square$qd
public @square$qi

CHAPTER 3 FUNCTIONS 22

© Copyright 1998 by Prentice Hall. All Rights Reserved.
For use only by instructors in courses for which C++ How to Program, Second Editon is the required textbook.

Fig. 3.27 Using a function template (part 2 of 2).

Input three integer values: 1 2 3
The maximum integer value is: 3
Input three double values: 3.3 2.2 1.1
The maximum double value is: 3.3
Input three characters: A C B
The maximum character value is: C

